
vii

 Inspirations

 There are many “popular” books on science that provide accessible

accounts of the recent developments of modern science for the general reader.

However, there are very few popular books about computer science – arguably

the “science” that has changed the world the most in the last half century.

This book is an attempt to address this imbalance and to present an accessible

account of the origins and foundations of computer science. In brief, the goal

of this book is to explain how computers work, how we arrived at where we are

now, and where we are likely to be going in the future.

 The key inspiration for writing this book came from Physics Nobel Prize

recipient Richard Feynman. In his lifetime, Feynman was one of the few physi-

cists well known to a more general public. There were three main reasons for

this recognition. First, there were some wonderful British television programs

of Feynman talking about his love for physics. Second, there was his best-

 selling book “Surely You’re Joking, Mr. Feynman!”: Adventures of a Curious Character ,

an entertaining collection of stories about his life in physics – from his experi-

ences at Los Alamos and the Manhattan atomic bomb project, to his days as a

professor at Cornell and Caltech. And third, when he was battling the cancer

that eventually took his life, was his participation in the enquiry following the

 Challenger space shuttle disaster. His live demonstration, at a televised press

conference, of the effects of freezing water on the rubber O-rings of the space

shuttle booster rockets was a wonderfully understandable explanation of the

origin of the disaster.

 Among physicists, Feynman is probably best known for Feynman diagrams,

the work that brought him his Nobel Prize in 1964. The diagrams constitute a

calculational tool kit that enables physicists to make sense of not only Quantum

Electrodynamics, the theory that underpins electricity and magnetism, but also

of the relativistic quantum fi eld theories believed to describe the weak and

strong interactions of elementary particles. But Feynman was not only a great

researcher: his Feynman Lectures on Physics are a masterly three-volume introduc-

tion to modern physics based on lectures that he gave at Caltech in the 1960s.

He was also a visionary: Feynman’s after-dinner talk “There’s Plenty of Room at

the Bottom” in 1959 fi rst introduced the ideas of nanotechnology – the behav-

ior of devices at length scales approaching atomic dimensions.

 Preface

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.001
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.001
http:/www.cambridge.org/core

Prefaceviii

 By the early 1980s, Feynman had become interested in computing, and

for the last fi ve years of his life, he gave a lecture course on computing. In the

fi rst two years, he collaborated on an ambitious computing course with two

Caltech colleagues, Carver Mead and John Hopfi eld . In the third year, assisted

by Gerry Sussman, a computer scientist on sabbatical from MIT, Feynman gave

his own version of the course . The lectures contained a fascinating mixture of

standard computer science material plus discussion of the thermodynamics of

computing and an analysis of a quantum computer. Before he died, Feynman

asked Tony Hey to edit his notes for publication, and the lectures eventually

saw the light of day as The Feynman Lectures on Computation . Feynman also acted

as a consultant to the Thinking Machines computer company, founded by MIT

researcher Danny Hillis .

 Feynman’s introductory lectures on quantum mechanics were the inspi-

ration for The New Quantum Universe , an earlier popular science book by one

of the present authors. Feynman’s computing lectures seemed to invite the

creation of a similar popular treatment. Feynman had also given an intro-

ductory talk on computers in his “Computers from the Inside Out” lecture

at the Esalen Institute – a “holistic learning and retreat center” – in Big Sur,

California. In this talk he explained the essential working of a computer

using the analogy of a “very dumb fi le clerk.” Thus Feynman’s lectures on

computing were the original inspiration for our attempt at a popular book

on computer science .

 There were several other sources of inspiration for this book. One was The

Soul of a New Machine by Tracy Kidder. Although that book is about the design

and construction of a new mini-computer, it reads like a thriller – and even has

a chapter titled “The Case of the Missing NAND Gate.” Another inspiration was

the book The State of the Art , a pictorial history of Moore’s law by computer histo-

rian Stan Augarten. It is another book by Augarten, Bit by Bit – an illustrated his-

tory of computers, from calculating machines to the personal computer – that

is closest in spirit to the present book. Other inspirations were Algorithmics by

the Israeli computer scientist David Harel, originally given as a series of radio

lectures, and The Pattern in the Stone by the computer architect Danny Hillis .

 Digital literacy and computer science

 At school, we take profi ciency in the “3 Rs” – reading, writing, and arith-

metic – to be an essential life skill. Now, in addition, we expect that all children

should know how to use computers – to produce electronic documents, manip-

ulate spreadsheets, make slide-show presentations, and browse the web. But

such basic “digital literacy” skills are not what is meant by the term computer

science . Computer science is the study of computers – how to build them, under-

stand their limitations, and use their power to solve complex problems . Alan

Turing, the English genius who was one of the fi rst to explore these questions,

developed a theoretical machine model by imitating how a “human computer”

would go about solving a computational problem. Turing machines provide

the essential mathematical basis for reasoning about the behavior of comput-

ers . But computer science is about more than mathematics; it is also about

engineering – building complex systems that do useful things. In computer

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.001
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.001
http:/www.cambridge.org/core

ixPreface

engineering we also have the additional freedom to explore virtual systems –

complex structures without the limitations of real physical systems .

 Computer scientist Jeannette Wing defi nes computational thinking as the abil-

ity to use the fundamental concepts of computer science to solve diffi cult prob-

lems, design complex systems, and understand human behavior. She believes

that education in computational thinking will be as essential in the twenty-

fi rst century as the 3 Rs have been in all previous centuries . Computational

thinking includes techniques of abstraction and decomposition that assist in

the development of algorithms to attack complex tasks or to design complex

systems. It also gives new insights on system concepts such as prevention,

protection, and recovery by thinking in terms of corresponding computer sci-

ence concepts such as redundancy, damage containment, and error correction.

Computational thinking can also help apply ideas from machine learning and

Bayesian statistics to everyday problems. In many areas of life we are faced

with the problem of planning and learning in the presence of uncertainty, and

computational thinking ideas applied to “big data” have application in both

science and commerce .

 How do we instruct a computer to solve a particular problem? First we

must write down our algorithm – a sequence of steps to the solution rather like

a cooking recipe – in a specialized programming language . The specifi c sequence

of instructions is called a program and this constitutes part of the computer soft-

ware required to solve the problem on the computer. The programming lan-

guage instructions can then be translated into operations that can be carried

out by the low-level components of the computer hardware . Running the pro-

gram requires more software, the operating system that manages the input and

output of data and the use of storage devices and printers. Programming is the

skill required to translate our computer science algorithms into programs that

computers can understand. Like digital literacy skills, the ability to program is

certainly a vital skill for a future career in the information technology industry

but constitutes only a small part of Jeannette Wing’s computational thinking

agenda .

 The goal of this book

 Our goal in writing this book is not to produce another textbook on com-

puters, or a book on the history of computing. Rather, the book is intended

to be intelligible to both high school and fi rst-year university students and to

stimulate their interest in the wide range of opportunities of a career in com-

puter science. We also hope that it will provide general readers with an under-

standable and accessible account of how computers work, as well as a glimpse

of the vast scope of activities that have been enabled by networks of intercon-

nected computers. In order to make the book more readable and entertaining

we have included brief biographies and anecdotes about the scientists and engi-

neers who helped create this computing universe.

 It is curious that schoolchildren are taught the names and achievements

of great mathematicians, physicists, chemists, and biologists but not about the

great computer pioneers. In part then, one goal of the book is to make a start

at correcting this imbalance by highlighting the contributions of the pioneers

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.001
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.001
http:/www.cambridge.org/core

Prefacex

of computing. These include the early theoretical ideas of Alan Turing and John

von Neumann as well as the achievements of the fi rst computer engineers such

as Presper Ekert and John Mauchly in the United States and Maurice Wilkes

and Konrad Zuse in Europe. The story follows the rise of IBM and Digital to the

computing legends at Xerox PARC with their incredible Alto computer, created

by Alan Kay, Chuck Thacker, and Butler Lampson. In a very real sense, the story

of computing follows the evolution of Moore’s law and the rise of the semi-

conductor industry. It was the microprocessor – “a computer on a chip” – that

made possible the personal computing revolution with pioneers like Steve Jobs

and Steve Wozniak from Apple and Bill Gates and Paul Allen from Microsoft.

 If the fi rst thirty years of computers were about using computers for com-

puting, the second thirty years have been about using computers for commu-

nicating. The story takes us from the earliest speculations about interactive

computing and the Internet by J. C. R. Licklider; to the packet-switching ideas

of Paul Baran and Donald Davies; to the ARPANET of Bob Taylor, Larry Roberts,

and BBN; to the Internet protocols of Bob Kahn and Vint Cerf. Early ideas about

hypertext and linked documents of Vannevar Bush, Ted Nelson, and Doug

Engelbart evolved into the now ubiquitous World Wide Web, created by Tim

Berners-Lee. Similarly, the PageRank algorithm, invented by Stanford graduate

students Sergey Brin and Larry Page, led to the rise of Internet search engines

like Google, Bing, and Baidu.

 Today, we are able to forecast the weather with reasonable accuracy; access

vast amounts of information; talk to anybody over the Internet; play games,

collaborate, and share information easily with others; and, if we wish, broad-

cast our thoughts to the entire world. Already, the opportunities of our pre-

sent computing universe seem endless, yet we are only at the beginning of

what will be possible in the future. According to Turing Award recipient Butler

Lampson, the next thirty years will see us enter the Third Age of Computing in

which computers become able to act intelligently on our behalf. These devel-

opments will bring with them serious issues concerning ethics, security, and

privacy, which are beyond the scope of this book . Instead, the book ends with

a look at some possible computing technologies and computer science chal-

lenges for the future.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.001
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.001
http:/www.cambridge.org/core

