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     2     The hardware    

    I always loved that word, Boolean  . 
 Claude Shannon  1    

  Going through the layers 

 In   the   last chapter, we saw that it was possible to logically separate the 

design of the actual computer hardware – the electromagnetic relays, vacuum 

tubes, or transistors – from the software – the instructions that are executed 

by the hardware. Because of this key abstraction, we can either go down into 

the hardware layers and see how the basic arithmetic and logical operations 

are carried out by the hardware, or go up into the software levels and focus 

on how we tell the computer to perform complex tasks.   Computer architect 

Danny Hillis says:

  This hierarchical structure of abstraction is our most important tool in 

understanding complex systems because it lets us focus on a single aspect of a 

problem at a   time  .  2    

 We   will also see the importance of “functional abstraction”:

  Naming the two signals in computer logic 0 and 1 is an example of functional 

abstraction. It lets us manipulate information without worrying about 

the details of its underlying representation. Once we fi gure out how to 

accomplish a given function, we can put the mechanism inside a “black box,” 

or a “building block” and stop thinking about it. The function embodied by 

the building block can be used over and over, without reference to the details 

of what’s inside  .  3    

 In this chapter, like Strata Smith going down the mines, we’ll travel downward 

through the hardware layers ( Fig. 2.1 ) and see these principles in action.   

  George Boole and Claude Shannon 

 In the   spring of 1936, Vannevar Bush was looking for a smart electrical 

engineering graduate who could assist visiting scientists in setting up their 

calculations on his Differential Analyzer at MIT.   Claude Shannon ( B.2.1 ), a 

Processor Memory I/O

Registers and logic circuits

Logic gates

Electrons

 Fig. 2.1.      A   diagram showing the 

major abstraction layers of computer 

hardware  .  
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The Computing Universe24

twenty-year-old graduate from the University of Michigan, applied and got the 

position. Although the Differential Analyzer was a mechanical machine with 

many spinning discs and rods, there was, as Shannon said later, also “a com-

plicated control circuit with relays.”  4     A relay is just a mechanical switch that 

can be opened or closed by an electromagnet, so that it is always in one of two 

states: either on or off, just like a light switch  . Bush suggested that a study of 

the logical organization of these relays could be a good topic for a master’s 

thesis  .   Shannon agreed, and drawing on his undergraduate studies in symbolic 

logic, he began trying to understand the best way to design complicated relay 

circuits with hundreds of relays. Commenting on the importance of symbolic 

logic in this endeavor, Shannon later said that “this branch of mathematics, 

now called Boolean algebra, was very closely related to what happens in a 

switching circuit  .”  5   Let’s see how this comes about.  

 George   Boole ( B.2.2 ) was a nineteenth-century, self-taught mathematician 

whose best-known work is a book called  An Investigation of the Laws of Thought . 

In this book, Boole tried to reduce the logic of human thought to a series of 

mathematical operations in which decisions are predicated on determining 

whether any given logical statement is true or false.   It was the Greek philoso-

pher Aristotle who introduced what is now called propositional logic. This was 

a form of reasoning that enabled him to deduce new conclusions by combining 

true propositions in a “syllogism” of the form:

  Every Greek is human. 

 Every human is mortal. 

 Therefore, every Greek is mortal  .    

 Boole devised a language for describing and manipulating such logical state-

ments and for determining whether more complex statements are true or 

false.   Equations involving such statements can be written down using the log-

ical operations AND, OR, and NOT. For example, we can write an equation to 

express the obvious fact that if neither statement A nor statement B is true, 

then both statements A and B must be false:

  NOT (A OR B) = (NOT A) AND (NOT B  )   

 This   equation is actually known as De Morgan’s theorem, after Boole’s col-

league, Augustus De Morgan ( B.2.3 ). It is a simple, (but as we shall see) pow-

erful expression of Boolean logic. In this way, Boolean algebra allows much 

more complex logical statements to be   analyzed  .    

 Shannon   realized that relays combined in circuits were equivalent to 

combining assertions in Boolean algebra. For example, if we connect two 

relays, A and B, in series and apply a voltage to the ends, current can only 

fl ow if both relays are closed ( Fig. 2.2 ).   If we take the closed state of a relay 

as corresponding to “true,” then this simple connection of two relays cor-

responds to an AND operation: both relays must be closed – both true – for 

current to fl ow. Similarly, if we connect up the two relays in parallel, this cir-

cuit performs an OR operation, since current will fl ow if either relay A or B is 

closed or true   ( Fig. 2.3 ).     

 Shannon’s master’s thesis, “A Symbolic Analysis of Relay and Switching 

Circuits,” showed how to build electrical circuits that were equivalent to 

 B.2.1.      Claude   Shannon (1916–2001) 

is often referred to as the father of 

information technology. He is cred-

ited with two groundbreaking ideas: 

the application of Boolean algebra to 

logical circuit design and digitization 

of information. In this photograph, 

he is holding a mechanical mouse 

that can learn from experience as it 

moves around the complicated maze  .  

 B.2.2.      George   Boole (1815–64) 

invented the algebra of 0s and 1s by 

introducing the rules and notation 

for describing logic. He was a self-

taught mathematician and at the 

age of thirty-four became a professor 

of mathematics at Queens College 

in Cork, Ireland. Boole was widely 

recognized for his work aiming 

to combine algebra and logic. De 

Morgan, the leading logician of the 

time wrote: “Boole’s system of logic 

is but one of many proofs of genius 

and patience combined  .”  B1    
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25The hardware

expressions in Boolean algebra.   Relays are switches that can be closed or open 

corresponding to a state being logical true or false, respectively. This means 

that any function that can be described as a correct logical statement can be 

implemented as a system of electrical switches  .   Toward the end of his thesis, 

Shannon points out that true and false could equally well be denoted by 1 and 

0, respectively, so that the operation of the set of switches corresponds to an 

operation in binary arithmetic. He wrote:

  It is possible to perform complex mathematical operations by means of 

relay circuits. Numbers may be represented by the position of relays and 

stepping switches, and interconnections between sets of relays can be made 

to represent various mathematical operations.  6    

 As an example, Shannon showed how to design a relay circuit that could add 

two binary numbers. He also noted that a relay circuit can make comparisons 

and take alternative courses of actions depending on the result of the compar-

ison. This was an important step forward, since desktop calculators that could 

add and subtract had been around for many years. Shannon’s relay circuits 

could not only add and subtract, they could also make decisions  . 

 Let us now look at how Shannon’s insights about relay circuits and Boolean 

algebra transformed the way early computer builders went about designing 

their machines.   Computer historian Stan Augarten says:

  Shannon’s thesis not only helped transform circuit design from an art into 

a science, but its underlying message – that information can be treated like 

any other quantity and be subjected to the manipulation of a machine – had a 

profound effect on the fi rst generation of   computer   pioneers  .  7    

 But before we take a deeper look at relay circuits and Boolean algebra, we 

should say a few words about binary arithmetic.  

  Binary arithmetic, bits, and bytes 

 Although   some of the early computers – like the ENIAC – used the familiar 

decimal system for their numerical operations, it turns out to be much simpler 

to design computers using binary arithmetic. Binary operations are simple, with 

no need to memorize any multiplication tables. However, we pay a price for 

these easy binary operations by having to cope with longer numbers: a dozen is 

expressed as 12 in decimal notation but as 1100 in binary ( B.2.4 ,  Fig. 2.4 ).   

 Mathematics in   our normal decimal system works on base 10. A number is 

written out in “positional notation,” where each position to the left represents 

10 to an increasing power. Thus when we write the number 4321 we under-

stand this to mean:

  4321 = (4 × 10 3 ) + (3 × 10 2 ) + (2 × 10 1 ) + (1 × 10 0 )   

 Here 10 0  is just 1, 10 1  is 10, 10 2  is 100, and so on; the numbers of powers of ten 

in each fi eld are specifi ed by digits running from 0 to 9. In the binary system, 

we use base 2 instead of base 10, and we specify numbers in powers of two and 

use only the two digits, 0 and 1. Thus the binary number 1101 means:

 Fig. 2.2.      Two   relay switches in series 

serving as an AND gate. The current can 

only fl ow if both relays are closed  .  

 B.2.3.      Augustus   De Morgan (1806–71) 

is known for his pioneering work in 

logic, including the formulation of 

the theorem that bears his name  .  

 Fig. 2.3.      Two   relay switches in parallel 

equivalent to an OR gate. The current 

can fl ow if at least one of the relays is 

closed  .  
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The Computing Universe26

  1101 = (1 × 2 3 ) + (1 × 2 2 ) + (0 × 2 1 ) + (1 × 2 0 ) = 13 in decimal   

 We can add and multiply binary numbers in a similar but much simpler way as 

in the decimal system. When adding in the decimal system, we automatically 

align the powers of ten in the numbers and perform a “carry” to the next power 

when needed, for example:

47

85

132

+

 For binary addition we have similar sum and carry operations. Adding the deci-

mal numbers 13 and 22 using binary notation leads to:

   
1101

10110

100011

+  

 We have just used the basic rules of binary addition:

0 0 0

0 1 1

1 0 1

1 1 0 1

=0

=1

=0

+ =1 pl y

 Let’s take a look at multiplication in both the decimal and binary systems by 

multiplying 37 by 5 in both decimal and binary notation: 

 In decimal:

37

5

185

×

 Fig. 2.4.      A   silver coin capturing the con-

cept of binary   numbers.  

 B.2.4.        Gottfried Wilhelm Leibniz (1646–1716) was a German mathematician and philosopher who 

is credited with the discovery of binary numbers. Leibniz described his ideas in a book titled  The 

Dyadic System of Numbers , published in 1679. His motivation was to develop a system of notation 

and rules for describing philosophical reasoning. Leibniz was fascinated by binary numbers and 

believed that the sequences of 0s and 1s revealed the mystery of creation of the universe and 

that everything should be expressed by binary numbers. In 1697 he wrote a letter to the Duke of 

Brunswick suggesting a design for a celebration of binary numbers to be minted in a silver coin. 

The Latin text at the top of the coin reads “One is suffi cient to produce out of nothing everything.” 

On the left of the table there is an example of binary addition and on the right, an example of 

multiplication. At the bottom the text in Latin says the “Image of Creation  .”  
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27The hardware

 In binary:

100101

101

100101

10010100

1011100

×

(shifted two places to the left)

11

 As this example shows, all we need to perform binary multiplication is an 

implementation of these basic rules of binary addition including the carry and 

shift operations  . 

 We   can perform a binary addition physically by using a set of strips of 

plastic with compartments, rather like ice cube trays, and small pebbles 

to specify the binary numbers. An empty compartment corresponds to the 

binary digit 0; a compartment containing a pebble represents the binary digit 

1. We can lay out the two strips with the numbers to be added plus a strip 

underneath them to hold the answer ( Fig. 2.5 ).  

 The abstract mathematical problem of adding 1101 to 10110 has now 

been turned into a set of real world rules for moving the pebbles. Remarkably, 

with these simple rules we can now add two numbers of any size ( Fig. 2.6 ). 

What this shows is that the basic operations of addition and multiplication 

can be reduced to a very simple set of rules that are easy to implement in a 

variety of technologies – from pebbles to relays to silicon chips. This is an 

example of functional abstraction  .  

 The   word  bit  was used by Shannon as a contraction of the phrase “binary 

digit” in his groundbreaking paper “A Mathematical Theory of Communication.” 

In this paper, Shannon laid the foundations for the new fi eld of information 

theory  .   Modern computers rarely work with single bits but with a larger group-

ing of eight bits, called a “byte,” or with groupings of multiple bytes called 

“words.”   The ability to represent all types of information by numbers is one of 

the groundbreaking discoveries of the twentieth century. This discovery forms 

the foundation of our digital universe. Even the messages that we have sent out 

into space are encoded by numbers   ( Fig. 2.7 ).   

  Universal building blocks 

 With   this introduction, we can now explain how a small set of basic 

logic building blocks can be combined to produce any logical operation. The 

logic blocks for AND and OR are usually called logic gates. These gates can 

be regarded just as “black boxes,” which take two inputs and give one output 

depending entirely on the inputs, without regard to the technology used to 

implement the logic gate.   Using 1s and 0s as inputs to these gates, their oper-

ation can be summarized in the form of “truth tables.” The truth table for the 

AND gate is shown in  Figure 2.8 , together with its standard pictorial symbol. 

This table refl ects the fundamental property of an AND gate, namely, that the 

output of A AND B is 1 only if both input A is 1 and input B is 1. Any other com-

bination of inputs gives 0 for the output  .   Similarly, the truth table for the OR 

Result

Addends

 Fig. 2.5.      Addition   of binary numbers as 

illustrated by pebbles  .  

 Fig. 2.6.      A Russian abacus, used in 

almost all shops across the Soviet Union 

well into the 1990s. It is fast, reliable, 

and requires no electricity or batteries. It 

was common practice in shops that the 

results calculated by an electronic till 

were double-checked on the abacus.  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core


The Computing Universe28

gates can be written as in  Figure 2.9 , where we also show the usual pictorial 

symbol for an OR gate. For the output of the OR gate to be 1, either or both of 

the inputs A and B have to be   1.   

   For a complete set of logic gates from which we can build any logical oper-

ation, it turns out that we need to supplement these AND and OR gates by 

another, very simple gate, the NOT, or invert, operation (see  Fig. 2.10 ). This is a 

black box that inverts the input signal. If the input is 1, the NOT gate outputs 

a 0; if the input is a 0, NOT outputs a 1. The truth table for the NOT gate is 

shown in with the usual symbol for NOT. De Morgan’s theorem allows one to 

play around with these operators and fi nd complicated equivalences between 

combinations of operators, such as writing an OR gate in terms of AND and 

NOT gates  .   Another example is joining the OR and NOT gates to construct a 

NOR gate   (see  Fig. 2.11 ).   

 Functional   abstraction allows us to implement these logic building blocks 

in a range of technologies – from electromagnetic relays to vacuum tubes to 

transistors. Of course, different types of gates may be easier or harder to make 

in any given technology  . The set of AND, OR, and NOT gates are suffi cient to 

 Fig. 2.7.      This   photograph shows the binary message that was sent out to space by the Arecibo radio 

telescope in November 1974. Using numbers to represent information is expected to be a univer-

sally understandable way to communicate with alien civilizations. The message shown here contains 

1,679 binary digits arranged in seventy-three rows and twenty-three columns. The fi rst ten rows 

represent numbers from 1 to 10 in binary format. The following rows are numbers that represent 

our genetic basis: the atomic numbers of chemical elements that form DNA, followed by the chem-

ical formulas of the bases in DNA, the shape of the double helix, and the number of nucleotides in 

DNA. These are followed by the fi gure and height of an average man, the population of Earth, the 

position of the planet in our solar system, and the dimensions of the radio antenna broadcasting this 

message  .  
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29The hardware

construct any logical operation with any number of inputs and outputs. There 

are also other possible choices for such a “complete set” of gates. 

 Let’s   see how this all works by building a “bit-wise adder” black box 

from our basic AND, OR, and NOT building blocks. The bit-wise adder has two 

inputs – the bits A and B to be added – and two outputs – the result R and the 

carry C, if there is one ( Fig. 2.12 ).  

 We need to combine AND, OR, and NOT gates appropriately to produce this 

logical behavior. First we note that the table for the carry bit is identical to that 

of the AND gate. We can write:

     Carry C: A AND B   

 The table for the result R is almost the same as that for the OR gate except for 

the result for the 1 + 1 input when the output must be inverted. The result 

R is therefore A OR B unless A AND B is 1. After some thought we can write 

this as:

     Result R: (A OR B) AND NOT (A AND B)  

 This leads to the implementation of the bit-wise adder shown in  Figure 2.13 . 

 This   circuit is actually called a “half-adder” because although it correctly 

produces the carry value, it does not include a possible carry as an input to the 

device, as well as A and B. Using the half-adder of  Figure 2.13 , we can easily cre-

ate an implementation for a “full adder”   ( Fig. 2.14 ). Adders for words with any 

number of bits can now be created by chaining these full adders together  .   

 These examples illustrate two key principles of computer design.   The fi rst 

principle is that we rely on a “hierarchical design” process by which complex 

objects are built up from simpler objects. Logic gates are our fundamental and 

A B A  AND  B

0 0 0

0 1 0

1 0 0

1 1 1

A AND BA

B

A B A  OR  B

0 0 0

0 1 1

1 0 1

1 1 1

A

B

A OR B

A NOT A

0 1

1 0

A NOT A

 Fig. 2.8.      Truth   table for AND   Gate.  

 Fig. 2.9.      Truth   table for OR   Gate.  

 Fig. 2.10.      The   NOT   Gate.  

A

B

A NOR B

A B A  NOR  B

0 0 1

0 1 0

1 0 0

1 1 0

 Fig. 2.11.      The   NOR   Gate.  
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The Computing Universe30

 B.2.5.        George Stibitz   (1904–95).   As is often the case in science, some of Claude Shannon’s ideas 

about relay circuits had been discovered independently around the same time. George Stibitz, a 

physicist at Bell Telephone Laboratories, was a member of a group of mathematicians whose job 

was to design relay-switching equipment for telephone exchanges. Stibitz also saw “the similarity 

between circuit paths through relays and the binary notation for numbers.”  B2   Over one weekend 

in 1937, Stibitz wired up some relays to give the binary digits for the sum of two one-digit binary 

numbers. His output was two lightbulbs, which lit up according to the result of the binary addi-

tion. He then designed more complicated circuits that could subtract, multiply, and divide. With 

a Bell Labs engineer named Samuel Williams, Stibitz went on to build a machine with about four 

hundred relays that could handle arithmetic on complex numbers  .  

universal building blocks. These objects can then be combined to build a bit-

wise half-adder, which can then be used to build a full bit-wise adder, which 

then can be used to build whole-word adders and so on  .   The second principle 

is that of “functional abstraction.” We have seen how the early computers used 

electromagnetic relays to implement logic gates and logical operations ( B.2.5 , 

 Fig. 2.15 ).   

 The slow relays were soon replaced by the faster but unreliable vacuum 

tubes, which in turn gave way to transistors and now to integrated circuits in 

silicon. The important point is that the logical design of an adder is indepen-

dent of its implementation  .   In his delightful book  The Pattern in the Stone , the 

computer architect Danny Hillis shows how you can make mechanical imple-

mentations of logic   gates   ( Fig. 2.16 ).   

  The memory hierarchy 

 In   order to be able to do something useful, computers need a mechanism 

for storing numbers. A useful memory not only needs to store results of inter-

mediate calculations on some sort of digital scratch pad, but also needs to be 

A B R C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A

B

R

C

 Fig. 2.12.      Truth   table for bit-wise 

  adder.  

R

C

A

B A

B

R

C

HA

C

A

B
HA

HA

C

C

R

C

A

B

C

R

FA

 Fig. 2.13.      A   half-adder made by combin-

ing four logic   gates.  

 Fig. 2.14.      A   full adder made by compos-

ing two half-adders with an OR   gate.  

 Fig. 2.15.      The   fi rst binary adder, 

consisting of two battery cells, wires, 

two telephone relays, two light bulbs,  

pieces of wire, and a switch made from 

a tobacco   tin.  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core


31The hardware

able to alter what we have stored. We can think of computer memory as being 

like an array of mailboxes or pigeonholes ( Fig. 2.17 ). Each box can store a data 

value that can either be retrieved or replaced with a new value. Memory reg-

isters are just a set of electronic boxes that can store a pattern of bits. As with 

logic gates, a wide variety of technologies have been used to implement com-

puter memory. From an abstract point of view, the specifi c technology does not 

matter – in practice it matters a great deal, for reasons of reliability, speed of 

access, and cost!  

 In   the logic-gate circuits discussed in the preceding text, the output states 

are completely determined by the inputs and the connections between the 

gates. Such a circuit is called a “combinational circuit.”   It is also possible to 

construct another type of circuit – a “sequential circuit” – for which the out-

put of a device depends on the previous history of its inputs. A counter circuit 

is an example of a sequential device where the current count number stored 

is the sum of the number of pulses it has received. The elemental sequential 

digital circuit is designed to be stable in one of two states.   These “bistable ele-

ments” are usually called “fl ip-fl ops” – since they fl ip between the two states in 

response to an input. The basic fl ip-fl op circuit is important because it is used 

as a memory cell to store the state of a bit. Register memories are constructed 

by connecting a series of fl ip-fl ops in a row and are typically used for the inter-

mediate storage needed during arithmetic operations.   Another type of sequen-

tial circuit is an oscillator or clock that changes state at regular time intervals. 

Clocks are needed to synchronize the change of state of fl ip-fl op circuits  . 

 The   simplest bistable circuit is the set-reset or RS fl ip-fl op ( Fig. 2.18 ). The 

state of the fl ip-fl op is marked as Q and is interpreted as the state 1 if the voltage 

at Q is high or as 0 if the voltage is low. The complement of Q, Q , is also avail-

able as a second output. There are also two terminals that allow the fl ip-fl op to 

be initialized. The state Q can be set to 1 by applying a voltage pulse on the “set” 

input S. A signal on the “reset” input R resets Q to 0.  Figure 2.18  shows an RS 

fl ip-fl op made out of NOR gates together with the corresponding truth tables. An 

input signal S = 1 sets Q = 0 and if the input R = 0 then both inputs to the top 

NOR gate are zero. Thus a signal on the set line S and no signal on R gives Q = 1. 

This makes both inputs to the lower NOR gate 1. The other elements of the truth 

table can be fi lled in by similar reasoning. Note that an input state with both R = 

1 and S = 1 is logically inconsistent and must be avoided in the operation of the 

fl ip-fl op.   So far, this RS fl ip-fl op is still a combinational circuit because the state Q 

depends only on the inputs to R and S  .   We can make this a sequential RS fl ip-fl op 

by adding a clock signal and a couple of additional gates ( Fig. 2.19 ). The response 

of the clocked RS fl ip-fl op at time t+1, Q(t+1), now depends on the inputs and the 

state of the fl ip-fl op at time t, Q(t). A clock pulse must be present for the fl ip-fl op 

to respond to its input states  . There are many other different types of fl ip-fl ops 

and it is these bistable devices that are connected together to make registers, 

counters, and other sequential   logic   circuits.   

 Nowadays   computers   make use of a whole hierarchy of memory storage, 

built from a variety of technologies ( Fig. 2.20 ). The earliest machines had only 

registers for storing intermediate results, but it soon became apparent that 

computers needed an additional quantity of memory that was less intimately 

linked to the central processing unit (CPU). This additional memory is called 

 Fig. 2.17.      Pigeon  holes are a useful ana-

logy for a computer’s   memory.  

 Fig. 2.16.      We   think of computers in 

terms of today’s technologies, which 

use electronics and integrated circuits. 

Computers can be constructed from 

mechanical devices. This machine was 

built by a group of students at MIT using 

Tinker Toy spools and fi shing line and 

can play tic-tac-toe  .  
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The Computing Universe32

the “main memory” of the computer and can be used to store results from reg-

isters as well as storing data needed by the registers for the different stages of 

the calculation. Between the registers and main memory, modern computers 

now incorporate several levels of memory that can be accessed more quickly 

than the main memory. These fast-access levels constitute the “cache memory” 

that is used to store the most frequently used data in order to avoid time delays 

that would be incurred in retrieving data from the slower memory    .  

 Finally,   since main memory is expensive, computer engineers introduced 

“secondary memory.” This uses cheaper and slower technologies but allows 

data to be transferred to the main memory as and when required.   Initially, 

data for this secondary memory was recorded on punched cards or paper tape 

and fed in manually to the machine by computer operators.   The use of cards 

for secondary memory was superseded by magnetic tapes rather than much 

more expensive magnetic core memory  . Magnetic tapes holding computer 

data became so common that many movies showing computers in operation 

showed images of spinning tape drives as an icon for a computer. Much clever 

engineering has been devoted to making tape drives extremely reliable and 

fast. However, there is one problem that no amount of engineering can solve: 
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 Fig. 2.18.      Truth   table and schema 

of a fl ip-fl op circuit built from NOR 

gates. Inputs S = 1 and R = 1 are not 

allowed, the outputs marked by * are 
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 Fig. 2.20.      How   long does it take to get 

the data? This fi gure shows an analogy 

suggested by Jim Gray to illustrate the 

different data access times and the 

importance of memory hierarchy in 

computers. On the left, the access time 

is given in CPU clock ticks. For a typical 

1 gigahertz clock this is one nano-

second. To relate these times to human 

timescales, on the right we translate a 

clock tick to one minute. The drawing in 

the middle illustrates how far we could 

have traveled during the time to retrieve 

data from the different elements of the 

computer memory hierarchy  .  
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magnetic tapes are fundamentally sequential in the way they store and access 

data on the tape. Accessing some data stored halfway along the tape requires 

running through all the other data on the tape until that point is reached. This 

is fi ne if we only want to read long streams of information  ,   but it is not very 

effi cient if we want to access small amounts of nonsequentially stored bits of 

information. For this reason, disks and solid state semiconductor memory tech-

nologies that allow “random access” directly to any piece of data stored on the 

device are usually preferred, with the use of magnetic tapes restricted to pro-

viding archival backup storage for large   data   sets  .  

  The fetch-execute cycle 

 We have now seen that computer hardware consists of many different 

components, which can all be implemented in a variety of ways. How do we 

coordinate and orchestrate the work of all these devices? The word  orchestrate  

is an appropriate analogy. In an orchestra, there is a conductor who makes sure 

that everybody plays at the right time and in the right order.   In the computer, 

an electronic clock performs the function of the conductor. Without the pres-

ence of a clock signal, memory circuits will not operate reliably. The clock sig-

nal also determines when the logic gates are allowed to switch. 

 In   his draft report on the EDVAC, another key idea that von Neumann intro-

duced was the “fetch-execute cycle.” This relies on an electronic clock to generate 

a heartbeat that drives the computer through its series of operations  . For simpli-

city and reliability, von Neumann chose the simplest possible control cycle to be 

coordinated by the central control unit:

   -     Fetch the next instruction from memory and bring it to the control unit;  

  -     Execute the instruction using data retrieved from memory or already 

present;  

  -     Send results back for storage in memory; and  

  -     Repeat the fetch-execute cycle.   

 Von Neumann chose the approach of just getting one instruction at a time 

because he feared that any other approach would make the computer too hard 

to build and program reliably  .   Alan Perlis, one of the early programming pio-

neers, once said, “sometimes I think the only universal in the computing fi eld 

is the fetch-execute cycle  .”  8   

 The   processor or CPU is the place where the instructions are executed and 

the data are manipulated. The main functions of the processor are to fetch the 

instructions from the main memory, decode the instructions, fetch the data on 

which the instruction’s mathematical or logical operation will be performed, 

execute the instructions, and store the results. These main functions have not 

changed since the early processor designs.   On a logical level, a simple processor 

(see  Fig. 2.21 ) consists of a bank of registers, an arithmetical logical unit (ALU), 

and control unit (CU).  

 The CU fetches instructions from the memory, decodes them and generates 

the sequence of control signals that are required for completing the instruc-

tions. The ALU performs the arithmetical and logical operations. For an execu-

tion of each instruction, various components need to be connected by switches 
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that set the paths directing the fl ow of electrons. The bank of registers is for 

storing the instructions and the intermediate results of   operations  . 

 The exact choice of instructions that the hardware is built to execute 

defi nes the hardware-software interface. This is the “instruction set” of the 

machine. In the next chapter we will go up the hierarchy from the hardware 

layers and examine the software of the machine.  

  Key concepts  

   Hierarchical design and functional abstraction   >
  Boolean algebra and switching circuits   >
  Binary arithmetic   >
  Bits, bytes, and words   >
  Logic gates and truth tables   >
  Combinational and sequential logic circuits   >
  Flip-l ops and clocks   >
  The memory hierarchy   >
  The fetch-execute cycle    >    
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 Fig. 2.21.      A   programmer’s view of a 

  processor.  
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    Some early history   

   The Manchester Baby and the Cambridge EDSAC computers 

 In his   draft report on the design for the EDVAC, von Neumann analyzed the technical options for 

implementing the memory of the machine at length and concluded that the ability to construct large mem-

ories was likely to be a critical limiting factor.   The fi rst “stored program” 

computer to actually run a program was the University of Manchester’s 

“Baby” computer.   This was a cut-down design of their more ambitious 

“Mark 1” and was built primarily to test the idea of hardware architect, 

Freddie Williams, to use a cathode ray tube – like the screens of early 

televisions – as a device for computer memory  .   In June 1948, the Baby ran 

a program written by co-architect Tom Kilburn to fi nd the highest factor 

of 2 18  ( Fig. 2.22 ).   The program was just a sequence of binary numbers 

that formed the instructions for the computer to execute.   The output 

appeared on the cathode ray tube and, as Williams recounted, it took 

some time to make the system work:

  When fi rst built, a program was laboriously inserted and the start switch 

pressed. Immediately the spot on the display tube entered a mad dance. In 

early trials it was a dance of death leading to no useful result and, what was 

even worse, without yielding any clue as to what was wrong. But one day it 

stopped and there, shining brightly in the expected place, was the expected 

answer.    9      

 The   success of the Manchester Baby experiment led to the construction 

of the full-scale Manchester Mark 1 machine. This became the prototype 

for the Ferranti Mark I, the world’s fi rst “commercially available general-

purpose computer”  10   in February 1951, just a month before Eckert and 

Mauchly delivered their fi rst UNIVAC computer in the United States  . 

 While the Manchester Baby showed that a stored program com-

puter was feasible  ,   it was the EDSAC, built by Maurice Wilkes ( B.2.6 ) and 

his team in Cambridge that was really the “fi rst complete and fully opera-

tional regular electronic digital stored-program computer.”  11     The computer 

used mercury delay-lines for storage as refl ected in Wilkes’s choice of the 

name EDSAC – Electronic Delay-Storage Automatic Calculator.   The devel-

opment of a suitable computer memory technology was one of the major 

problems for the early computer designers. It was mainly because of stor-

age diffi culties that EDVAC-inspired computers in the United States were 

delayed and lagged behind the Manchester and Cambridge developments. 

Wilkes chose to use mercury delay-lines for EDSAC because he knew that 

such delay-lines had played an important role in the development of radar 

systems during the war  .   Wilkes had a working prototype by February 1947, 

just six months after he had attended the Moore School Lectures. Working 

with a very limited budget had forced Wilkes to make some compromises 

in the design: “There was to be no attempt to fully exploit the technology. 

Provided it would run and do programs that was enough  .”  12    

 Fig. 2.22.      Kilburn’s   highest factor rou-

tine from July 1948. The program ran for 

fi fty-two minutes, and executed about 

2.1 million instructions and made more 

than 3.5 million memory accesses  .  

 B.2.6.      Maurice   Wilkes (1913–2010) seen 

here checking a mercury delay-line 

memory. He was a major fi gure in the 

history of British computing and at the 

University of Cambridge he led the team 

that designed and built the fi rst fully 

operational stored-program computer  .  
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 Wilkes said later:

  It resembled the EDVAC in that it was a serial machine using mercury 

tanks, but that was all. When I was at the Moore School the EDVAC 

design did not exist, except maybe in Eckert’s head  .  13    

 His   visit to the Moore School had had a huge impact on Wilkes and 

he left with an enduring respect for Ekert and Mauchly and said “They 

remain my idols.”  14   He also spent time with John Mauchly after the lec-

tures and acknowledged this action as a “wonderful, wonderful   piece   of 

  generosity.”  15   

   Computer memory technologies 

   Williams   and Kilburn and their team designing the Manchester 

Baby developed an internal memory using cathode ray tubes, the same technology as was then used in radar 

screens and televisions. In these so-called Williams Tubes, the electron guns could make charge spots on the 

screen that corresponded to binary 1 and 0 values. Since the charge would dissipate after a fraction of a sec-

ond, the screen needed to be refreshed in order to retain the record of the bits. The Baby had four Williams 

Tubes: one to provide storage for 32-by-32-bit words; a second to hold a 

32-bit “register,” in which the intermediate results of a calculation could 

be stored temporarily; and a third to hold the current program instruc-

tion and its address in memory. The fourth tube, without the storage 

electronics of the other three, was used as the output device and could 

display the bit pattern of any selected storage tube ( Fig. 2.23 ). Williams 

Tubes were used as storage in the commercial version of the Baby, the 

Ferranti Mark 1, as well as in such U.S. computers as the Princeton IAS 

and the IBM 701  .  

 Another   early   memory storage technology, originally suggested 

by Eckert, was based on the idea of a mercury delay-line   – a thin tube 

fi lled with mercury that stores electronic pulses in much the same way 

as a hiker in a canyon can “store” an echo. A pulse represented binary 

1; no pulse, binary 0. The pulses bounced from end to end and could be 

created, detected, and reenergized by electronic components attached 

to the tube.   The EDSAC, built by Wilkes and his team in Cambridge, 

U.K., used mercury delay-lines. Wilkes had the good fortune to recruit a 

remarkable research physicist at Cambridge, Tommy Gold ( B.2.7 ), who 

had been working on mercury delay-lines for radar during the war. Gold’s 

knowledge and experience were invaluable in constructing large, fi ve-

foot “tanks” of mercury that were long enough to store enough pulses 

but were also precision engineered to an accuracy of a thousandth of an 

inch  . Each mercury-fi lled tube could store 576 binary digits and the main 

store consisted of thirty-two such tubes, with additional tubes acting as 

central registers within the processor  .  

 Mercury delay-lines and Williams Tubes were widely used until 

the early 1950s,   when Jay Forrester ( B.2.8 ), working at MIT, invented 

the magnetic core memory ( Fig. 2.24 ). This device consisted of small 

 Fig. 2.23.      A   bit pattern on a cathode ray 

tube used in “Williams”   memory.  

  B.2.7.      Austrian-born   astrophysicist 

Tommy Gold (1920–2004) did important 

work in many scientifi c and academic 

fi elds. His knowledge of mercury delay-

line storage from his experience with 

radar during the war was very helpful to 

Wilkes. Gold made major contributions 

to astronomy and cosmology as well 

as to radar technology. Gold was fi rst 

to propose the now generally accepted 

theory that pulsars are rotating neutron 

stars  .  
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magnetizable rings located at the intersections of a grid of 

wires. Magnetization in the north direction could repre-

sent binary 1, and this could be fl ipped to a south magne-

tization, representing binary 0, by changing the current in 

the wire. By having a rectangular grid of wires and locating 

the cores at the intersections, it was possible to access each 

core individually. This allowed genuine random access of 

the individual memory locations – as opposed to having to 

go through the bits in sequence to get to the desired bit, as 

would be the case if the bits are stored on a magnetic tape. 

  Forrester’s technology was fi rst tested in the construction 

of the Memory Test Computer at MIT in 1952. Compared to 

memory based on Williams Tubes, magnetic core memory 

proved much faster and far more   reliable  .   

 The fi rst   device to provide almost random access to data was not 

Forrester’s magnetic core memory. It was a spinning drum with a magne-

tizable surface that allowed fast access to information stored in magne-

tized bands on the drum. This was invented in 1948 by Andrew Booth of 

Birkbeck College in England ( B.2.9 ).   Booth had made a visit to Princeton 

and had seen the progress von Neumann’s team was making toward build-

ing the IAS stored program computer  . Booth’s prototype magnetic drum 

device was only two inches in diameter and could store ten bits per inch 

( Fig. 2.25 ). He followed up this prototype with larger drums that featured 

thirty-two magnetized bands, each divided into thirty-two words of thirty-

two bits.   A read/write head simply read off the values as the drum spun. 

Booth’s drum memory was soon taken up by others and was adopted as sec-

ondary memory for Williams and Kilburn’s scaled up version of the Baby, 

the Manchester Mark 1 machine  . Magnetic drum memory was widely used 

for secondary memory in the 1950s and 1960s, until it was gradually super-

seded by magnetic disks  .   

 The   fi rst hard disk 

was introduced by IBM 

in 1956 and hard disks 

soon became ubiquitous. 

Hard disk drives consist 

of a number of fl at circu-

lar disks, called platters, 

mounted on a spindle 

( Fig. 2.26 ). The platters are 

coated with a thin fi lm of 

magnetic material, and 

changes in the direction of 

magnetization record the 

required pattern of binary 

digits. The engineering of 

these drives is impressive. 

The platters can rotate at 

 B.2.8.      Jay Forrester   holding a frame 

of core memory from the Whirlwind 

  computer. He invented magnetic 

core memory while working at MIT 

in the early 1950s. His invention 

proved much faster and more reli-

able than the earlier Williams Tubes 

or delay-line memory technologies.  

 Fig. 2.24.      Forrester’s   Magnetic Core   Memory.  

 B.2.9.      Andrew   Booth (1918–

2009), together with his assis-

tant and future wife, Kathleen 

Britten, developed magnetic 

drum storage. He also invented 

a fast multiplication algorithm 

that is used in modern Intel 

microprocessors  .   Fig. 2.25.      Andrew   Booth’s magnetic drum   memory.  
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speeds of up to 15,000 rpm and the read and write heads operate within 

tens of nanometers of the surface. Originally introduced for IBM’s main-

frame computers, hard disks are now small enough to be incorporated in 

PCs, laptops, and even iPods.   The company referred to hard disk drives 

as “direct access storage devices” or DASDs – rather than use the term 

 computer memory . This was reportedly because Tom Watson Sr., the legend-

ary fi rst head of IBM, feared that an anthropomorphic term like  memory  

might exacerbate people’s fear and   distrust   of   computers   ( B.2.10 ).       

 B.2.10.      Tom   Watson Sr. (1874–1956) had built IBM to be the dominant company in punched 

card tabulating machines that offered businesses and governments the ability to process 

huge amounts of data. IBM was also known for its highly effective salesmen dressed in ties 

and dark suits; for the company motto “THINK”; and the prohibition of any alcohol on IBM 

property. Watson is often credited with saying “I think there is a world market for maybe 

fi ve computers,” but there is no evidence that he actually said this. It was his son, Tom 

Watson Jr. (1914–93), who drove the company’s move into electronic computers  .  

 Fig. 2.26.        Hard disk drive from   IBM.  
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