
23

 2 The hardware

 I always loved that word, Boolean .
 Claude Shannon 1

 Going through the layers

 In the last chapter, we saw that it was possible to logically separate the

design of the actual computer hardware – the electromagnetic relays, vacuum

tubes, or transistors – from the software – the instructions that are executed

by the hardware. Because of this key abstraction, we can either go down into

the hardware layers and see how the basic arithmetic and logical operations

are carried out by the hardware, or go up into the software levels and focus

on how we tell the computer to perform complex tasks. Computer architect

Danny Hillis says:

 This hierarchical structure of abstraction is our most important tool in

understanding complex systems because it lets us focus on a single aspect of a

problem at a time . 2

 We will also see the importance of “functional abstraction”:

 Naming the two signals in computer logic 0 and 1 is an example of functional

abstraction. It lets us manipulate information without worrying about

the details of its underlying representation. Once we fi gure out how to

accomplish a given function, we can put the mechanism inside a “black box,”

or a “building block” and stop thinking about it. The function embodied by

the building block can be used over and over, without reference to the details

of what’s inside . 3

 In this chapter, like Strata Smith going down the mines, we’ll travel downward

through the hardware layers (Fig. 2.1) and see these principles in action.

 George Boole and Claude Shannon

 In the spring of 1936, Vannevar Bush was looking for a smart electrical

engineering graduate who could assist visiting scientists in setting up their

calculations on his Differential Analyzer at MIT. Claude Shannon (B.2.1), a

Processor Memory I/O

Registers and logic circuits

Logic gates

Electrons

 Fig. 2.1. A diagram showing the

major abstraction layers of computer

hardware .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe24

twenty-year-old graduate from the University of Michigan, applied and got the

position. Although the Differential Analyzer was a mechanical machine with

many spinning discs and rods, there was, as Shannon said later, also “a com-

plicated control circuit with relays.” 4 A relay is just a mechanical switch that

can be opened or closed by an electromagnet, so that it is always in one of two

states: either on or off, just like a light switch . Bush suggested that a study of

the logical organization of these relays could be a good topic for a master’s

thesis . Shannon agreed, and drawing on his undergraduate studies in symbolic

logic, he began trying to understand the best way to design complicated relay

circuits with hundreds of relays. Commenting on the importance of symbolic

logic in this endeavor, Shannon later said that “this branch of mathematics,

now called Boolean algebra, was very closely related to what happens in a

switching circuit .” 5 Let’s see how this comes about.

 George Boole (B.2.2) was a nineteenth-century, self-taught mathematician

whose best-known work is a book called An Investigation of the Laws of Thought .

In this book, Boole tried to reduce the logic of human thought to a series of

mathematical operations in which decisions are predicated on determining

whether any given logical statement is true or false. It was the Greek philoso-

pher Aristotle who introduced what is now called propositional logic. This was

a form of reasoning that enabled him to deduce new conclusions by combining

true propositions in a “syllogism” of the form:

 Every Greek is human.

 Every human is mortal.

 Therefore, every Greek is mortal .

 Boole devised a language for describing and manipulating such logical state-

ments and for determining whether more complex statements are true or

false. Equations involving such statements can be written down using the log-

ical operations AND, OR, and NOT. For example, we can write an equation to

express the obvious fact that if neither statement A nor statement B is true,

then both statements A and B must be false:

 NOT (A OR B) = (NOT A) AND (NOT B)

 This equation is actually known as De Morgan’s theorem, after Boole’s col-

league, Augustus De Morgan (B.2.3). It is a simple, (but as we shall see) pow-

erful expression of Boolean logic. In this way, Boolean algebra allows much

more complex logical statements to be analyzed .

 Shannon realized that relays combined in circuits were equivalent to

combining assertions in Boolean algebra. For example, if we connect two

relays, A and B, in series and apply a voltage to the ends, current can only

fl ow if both relays are closed (Fig. 2.2). If we take the closed state of a relay

as corresponding to “true,” then this simple connection of two relays cor-

responds to an AND operation: both relays must be closed – both true – for

current to fl ow. Similarly, if we connect up the two relays in parallel, this cir-

cuit performs an OR operation, since current will fl ow if either relay A or B is

closed or true (Fig. 2.3).

 Shannon’s master’s thesis, “A Symbolic Analysis of Relay and Switching

Circuits,” showed how to build electrical circuits that were equivalent to

 B.2.1. Claude Shannon (1916–2001)

is often referred to as the father of

information technology. He is cred-

ited with two groundbreaking ideas:

the application of Boolean algebra to

logical circuit design and digitization

of information. In this photograph,

he is holding a mechanical mouse

that can learn from experience as it

moves around the complicated maze .

 B.2.2. George Boole (1815–64)

invented the algebra of 0s and 1s by

introducing the rules and notation

for describing logic. He was a self-

taught mathematician and at the

age of thirty-four became a professor

of mathematics at Queens College

in Cork, Ireland. Boole was widely

recognized for his work aiming

to combine algebra and logic. De

Morgan, the leading logician of the

time wrote: “Boole’s system of logic

is but one of many proofs of genius

and patience combined .” B1

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

25The hardware

expressions in Boolean algebra. Relays are switches that can be closed or open

corresponding to a state being logical true or false, respectively. This means

that any function that can be described as a correct logical statement can be

implemented as a system of electrical switches . Toward the end of his thesis,

Shannon points out that true and false could equally well be denoted by 1 and

0, respectively, so that the operation of the set of switches corresponds to an

operation in binary arithmetic. He wrote:

 It is possible to perform complex mathematical operations by means of

relay circuits. Numbers may be represented by the position of relays and

stepping switches, and interconnections between sets of relays can be made

to represent various mathematical operations. 6

 As an example, Shannon showed how to design a relay circuit that could add

two binary numbers. He also noted that a relay circuit can make comparisons

and take alternative courses of actions depending on the result of the compar-

ison. This was an important step forward, since desktop calculators that could

add and subtract had been around for many years. Shannon’s relay circuits

could not only add and subtract, they could also make decisions .

 Let us now look at how Shannon’s insights about relay circuits and Boolean

algebra transformed the way early computer builders went about designing

their machines. Computer historian Stan Augarten says:

 Shannon’s thesis not only helped transform circuit design from an art into

a science, but its underlying message – that information can be treated like

any other quantity and be subjected to the manipulation of a machine – had a

profound effect on the fi rst generation of computer pioneers . 7

 But before we take a deeper look at relay circuits and Boolean algebra, we

should say a few words about binary arithmetic.

 Binary arithmetic, bits, and bytes

 Although some of the early computers – like the ENIAC – used the familiar

decimal system for their numerical operations, it turns out to be much simpler

to design computers using binary arithmetic. Binary operations are simple, with

no need to memorize any multiplication tables. However, we pay a price for

these easy binary operations by having to cope with longer numbers: a dozen is

expressed as 12 in decimal notation but as 1100 in binary (B.2.4 , Fig. 2.4).

 Mathematics in our normal decimal system works on base 10. A number is

written out in “positional notation,” where each position to the left represents

10 to an increasing power. Thus when we write the number 4321 we under-

stand this to mean:

 4321 = (4 × 10 3) + (3 × 10 2) + (2 × 10 1) + (1 × 10 0)

 Here 10 0 is just 1, 10 1 is 10, 10 2 is 100, and so on; the numbers of powers of ten

in each fi eld are specifi ed by digits running from 0 to 9. In the binary system,

we use base 2 instead of base 10, and we specify numbers in powers of two and

use only the two digits, 0 and 1. Thus the binary number 1101 means:

 Fig. 2.2. Two relay switches in series

serving as an AND gate. The current can

only fl ow if both relays are closed .

 B.2.3. Augustus De Morgan (1806–71)

is known for his pioneering work in

logic, including the formulation of

the theorem that bears his name .

 Fig. 2.3. Two relay switches in parallel

equivalent to an OR gate. The current

can fl ow if at least one of the relays is

closed .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe26

 1101 = (1 × 2 3) + (1 × 2 2) + (0 × 2 1) + (1 × 2 0) = 13 in decimal

 We can add and multiply binary numbers in a similar but much simpler way as

in the decimal system. When adding in the decimal system, we automatically

align the powers of ten in the numbers and perform a “carry” to the next power

when needed, for example:

47

85

132

+

 For binary addition we have similar sum and carry operations. Adding the deci-

mal numbers 13 and 22 using binary notation leads to:

1101

10110

100011

+

 We have just used the basic rules of binary addition:

0 0 0

0 1 1

1 0 1

1 1 0 1

=0

=1

=0

+ =1 pl y

 Let’s take a look at multiplication in both the decimal and binary systems by

multiplying 37 by 5 in both decimal and binary notation:

 In decimal:

37

5

185

×

 Fig. 2.4. A silver coin capturing the con-

cept of binary numbers.

 B.2.4. Gottfried Wilhelm Leibniz (1646–1716) was a German mathematician and philosopher who

is credited with the discovery of binary numbers. Leibniz described his ideas in a book titled The

Dyadic System of Numbers , published in 1679. His motivation was to develop a system of notation

and rules for describing philosophical reasoning. Leibniz was fascinated by binary numbers and

believed that the sequences of 0s and 1s revealed the mystery of creation of the universe and

that everything should be expressed by binary numbers. In 1697 he wrote a letter to the Duke of

Brunswick suggesting a design for a celebration of binary numbers to be minted in a silver coin.

The Latin text at the top of the coin reads “One is suffi cient to produce out of nothing everything.”

On the left of the table there is an example of binary addition and on the right, an example of

multiplication. At the bottom the text in Latin says the “Image of Creation .”

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

27The hardware

 In binary:

100101

101

100101

10010100

1011100

×

(shifted two places to the left)

11

 As this example shows, all we need to perform binary multiplication is an

implementation of these basic rules of binary addition including the carry and

shift operations .

 We can perform a binary addition physically by using a set of strips of

plastic with compartments, rather like ice cube trays, and small pebbles

to specify the binary numbers. An empty compartment corresponds to the

binary digit 0; a compartment containing a pebble represents the binary digit

1. We can lay out the two strips with the numbers to be added plus a strip

underneath them to hold the answer (Fig. 2.5).

 The abstract mathematical problem of adding 1101 to 10110 has now

been turned into a set of real world rules for moving the pebbles. Remarkably,

with these simple rules we can now add two numbers of any size (Fig. 2.6).

What this shows is that the basic operations of addition and multiplication

can be reduced to a very simple set of rules that are easy to implement in a

variety of technologies – from pebbles to relays to silicon chips. This is an

example of functional abstraction .

 The word bit was used by Shannon as a contraction of the phrase “binary

digit” in his groundbreaking paper “A Mathematical Theory of Communication.”

In this paper, Shannon laid the foundations for the new fi eld of information

theory . Modern computers rarely work with single bits but with a larger group-

ing of eight bits, called a “byte,” or with groupings of multiple bytes called

“words.” The ability to represent all types of information by numbers is one of

the groundbreaking discoveries of the twentieth century. This discovery forms

the foundation of our digital universe. Even the messages that we have sent out

into space are encoded by numbers (Fig. 2.7).

 Universal building blocks

 With this introduction, we can now explain how a small set of basic

logic building blocks can be combined to produce any logical operation. The

logic blocks for AND and OR are usually called logic gates. These gates can

be regarded just as “black boxes,” which take two inputs and give one output

depending entirely on the inputs, without regard to the technology used to

implement the logic gate. Using 1s and 0s as inputs to these gates, their oper-

ation can be summarized in the form of “truth tables.” The truth table for the

AND gate is shown in Figure 2.8 , together with its standard pictorial symbol.

This table refl ects the fundamental property of an AND gate, namely, that the

output of A AND B is 1 only if both input A is 1 and input B is 1. Any other com-

bination of inputs gives 0 for the output . Similarly, the truth table for the OR

Result

Addends

 Fig. 2.5. Addition of binary numbers as

illustrated by pebbles .

 Fig. 2.6. A Russian abacus, used in

almost all shops across the Soviet Union

well into the 1990s. It is fast, reliable,

and requires no electricity or batteries. It

was common practice in shops that the

results calculated by an electronic till

were double-checked on the abacus.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe28

gates can be written as in Figure 2.9 , where we also show the usual pictorial

symbol for an OR gate. For the output of the OR gate to be 1, either or both of

the inputs A and B have to be 1.

 For a complete set of logic gates from which we can build any logical oper-

ation, it turns out that we need to supplement these AND and OR gates by

another, very simple gate, the NOT, or invert, operation (see Fig. 2.10). This is a

black box that inverts the input signal. If the input is 1, the NOT gate outputs

a 0; if the input is a 0, NOT outputs a 1. The truth table for the NOT gate is

shown in with the usual symbol for NOT. De Morgan’s theorem allows one to

play around with these operators and fi nd complicated equivalences between

combinations of operators, such as writing an OR gate in terms of AND and

NOT gates . Another example is joining the OR and NOT gates to construct a

NOR gate (see Fig. 2.11).

 Functional abstraction allows us to implement these logic building blocks

in a range of technologies – from electromagnetic relays to vacuum tubes to

transistors. Of course, different types of gates may be easier or harder to make

in any given technology . The set of AND, OR, and NOT gates are suffi cient to

 Fig. 2.7. This photograph shows the binary message that was sent out to space by the Arecibo radio

telescope in November 1974. Using numbers to represent information is expected to be a univer-

sally understandable way to communicate with alien civilizations. The message shown here contains

1,679 binary digits arranged in seventy-three rows and twenty-three columns. The fi rst ten rows

represent numbers from 1 to 10 in binary format. The following rows are numbers that represent

our genetic basis: the atomic numbers of chemical elements that form DNA, followed by the chem-

ical formulas of the bases in DNA, the shape of the double helix, and the number of nucleotides in

DNA. These are followed by the fi gure and height of an average man, the population of Earth, the

position of the planet in our solar system, and the dimensions of the radio antenna broadcasting this

message .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

29The hardware

construct any logical operation with any number of inputs and outputs. There

are also other possible choices for such a “complete set” of gates.

 Let’s see how this all works by building a “bit-wise adder” black box

from our basic AND, OR, and NOT building blocks. The bit-wise adder has two

inputs – the bits A and B to be added – and two outputs – the result R and the

carry C, if there is one (Fig. 2.12).

 We need to combine AND, OR, and NOT gates appropriately to produce this

logical behavior. First we note that the table for the carry bit is identical to that

of the AND gate. We can write:

 Carry C: A AND B

 The table for the result R is almost the same as that for the OR gate except for

the result for the 1 + 1 input when the output must be inverted. The result

R is therefore A OR B unless A AND B is 1. After some thought we can write

this as:

 Result R: (A OR B) AND NOT (A AND B)

 This leads to the implementation of the bit-wise adder shown in Figure 2.13 .

 This circuit is actually called a “half-adder” because although it correctly

produces the carry value, it does not include a possible carry as an input to the

device, as well as A and B. Using the half-adder of Figure 2.13 , we can easily cre-

ate an implementation for a “full adder” (Fig. 2.14). Adders for words with any

number of bits can now be created by chaining these full adders together .

 These examples illustrate two key principles of computer design. The fi rst

principle is that we rely on a “hierarchical design” process by which complex

objects are built up from simpler objects. Logic gates are our fundamental and

A B A AND B

0 0 0

0 1 0

1 0 0

1 1 1

A AND BA

B

A B A OR B

0 0 0

0 1 1

1 0 1

1 1 1

A

B

A OR B

A NOT A

0 1

1 0

A NOT A

 Fig. 2.8. Truth table for AND Gate.

 Fig. 2.9. Truth table for OR Gate.

 Fig. 2.10. The NOT Gate.

A

B

A NOR B

A B A NOR B

0 0 1

0 1 0

1 0 0

1 1 0

 Fig. 2.11. The NOR Gate.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe30

 B.2.5. George Stibitz (1904–95). As is often the case in science, some of Claude Shannon’s ideas

about relay circuits had been discovered independently around the same time. George Stibitz, a

physicist at Bell Telephone Laboratories, was a member of a group of mathematicians whose job

was to design relay-switching equipment for telephone exchanges. Stibitz also saw “the similarity

between circuit paths through relays and the binary notation for numbers.” B2 Over one weekend

in 1937, Stibitz wired up some relays to give the binary digits for the sum of two one-digit binary

numbers. His output was two lightbulbs, which lit up according to the result of the binary addi-

tion. He then designed more complicated circuits that could subtract, multiply, and divide. With

a Bell Labs engineer named Samuel Williams, Stibitz went on to build a machine with about four

hundred relays that could handle arithmetic on complex numbers .

universal building blocks. These objects can then be combined to build a bit-

wise half-adder, which can then be used to build a full bit-wise adder, which

then can be used to build whole-word adders and so on . The second principle

is that of “functional abstraction.” We have seen how the early computers used

electromagnetic relays to implement logic gates and logical operations (B.2.5 ,

 Fig. 2.15).

 The slow relays were soon replaced by the faster but unreliable vacuum

tubes, which in turn gave way to transistors and now to integrated circuits in

silicon. The important point is that the logical design of an adder is indepen-

dent of its implementation . In his delightful book The Pattern in the Stone , the

computer architect Danny Hillis shows how you can make mechanical imple-

mentations of logic gates (Fig. 2.16).

 The memory hierarchy

 In order to be able to do something useful, computers need a mechanism

for storing numbers. A useful memory not only needs to store results of inter-

mediate calculations on some sort of digital scratch pad, but also needs to be

A B R C

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

A

B

R

C

 Fig. 2.12. Truth table for bit-wise

 adder.

R

C

A

B A

B

R

C

HA

C

A

B
HA

HA

C

C

R

C

A

B

C

R

FA

 Fig. 2.13. A half-adder made by combin-

ing four logic gates.

 Fig. 2.14. A full adder made by compos-

ing two half-adders with an OR gate.

 Fig. 2.15. The fi rst binary adder,

consisting of two battery cells, wires,

two telephone relays, two light bulbs,

pieces of wire, and a switch made from

a tobacco tin.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

31The hardware

able to alter what we have stored. We can think of computer memory as being

like an array of mailboxes or pigeonholes (Fig. 2.17). Each box can store a data

value that can either be retrieved or replaced with a new value. Memory reg-

isters are just a set of electronic boxes that can store a pattern of bits. As with

logic gates, a wide variety of technologies have been used to implement com-

puter memory. From an abstract point of view, the specifi c technology does not

matter – in practice it matters a great deal, for reasons of reliability, speed of

access, and cost!

 In the logic-gate circuits discussed in the preceding text, the output states

are completely determined by the inputs and the connections between the

gates. Such a circuit is called a “combinational circuit.” It is also possible to

construct another type of circuit – a “sequential circuit” – for which the out-

put of a device depends on the previous history of its inputs. A counter circuit

is an example of a sequential device where the current count number stored

is the sum of the number of pulses it has received. The elemental sequential

digital circuit is designed to be stable in one of two states. These “bistable ele-

ments” are usually called “fl ip-fl ops” – since they fl ip between the two states in

response to an input. The basic fl ip-fl op circuit is important because it is used

as a memory cell to store the state of a bit. Register memories are constructed

by connecting a series of fl ip-fl ops in a row and are typically used for the inter-

mediate storage needed during arithmetic operations. Another type of sequen-

tial circuit is an oscillator or clock that changes state at regular time intervals.

Clocks are needed to synchronize the change of state of fl ip-fl op circuits .

 The simplest bistable circuit is the set-reset or RS fl ip-fl op (Fig. 2.18). The

state of the fl ip-fl op is marked as Q and is interpreted as the state 1 if the voltage

at Q is high or as 0 if the voltage is low. The complement of Q, Q , is also avail-

able as a second output. There are also two terminals that allow the fl ip-fl op to

be initialized. The state Q can be set to 1 by applying a voltage pulse on the “set”

input S. A signal on the “reset” input R resets Q to 0. Figure 2.18 shows an RS

fl ip-fl op made out of NOR gates together with the corresponding truth tables. An

input signal S = 1 sets Q = 0 and if the input R = 0 then both inputs to the top

NOR gate are zero. Thus a signal on the set line S and no signal on R gives Q = 1.

This makes both inputs to the lower NOR gate 1. The other elements of the truth

table can be fi lled in by similar reasoning. Note that an input state with both R =

1 and S = 1 is logically inconsistent and must be avoided in the operation of the

fl ip-fl op. So far, this RS fl ip-fl op is still a combinational circuit because the state Q

depends only on the inputs to R and S . We can make this a sequential RS fl ip-fl op

by adding a clock signal and a couple of additional gates (Fig. 2.19). The response

of the clocked RS fl ip-fl op at time t+1, Q(t+1), now depends on the inputs and the

state of the fl ip-fl op at time t, Q(t). A clock pulse must be present for the fl ip-fl op

to respond to its input states . There are many other different types of fl ip-fl ops

and it is these bistable devices that are connected together to make registers,

counters, and other sequential logic circuits.

 Nowadays computers make use of a whole hierarchy of memory storage,

built from a variety of technologies (Fig. 2.20). The earliest machines had only

registers for storing intermediate results, but it soon became apparent that

computers needed an additional quantity of memory that was less intimately

linked to the central processing unit (CPU). This additional memory is called

 Fig. 2.17. Pigeon holes are a useful ana-

logy for a computer’s memory.

 Fig. 2.16. We think of computers in

terms of today’s technologies, which

use electronics and integrated circuits.

Computers can be constructed from

mechanical devices. This machine was

built by a group of students at MIT using

Tinker Toy spools and fi shing line and

can play tic-tac-toe .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe32

the “main memory” of the computer and can be used to store results from reg-

isters as well as storing data needed by the registers for the different stages of

the calculation. Between the registers and main memory, modern computers

now incorporate several levels of memory that can be accessed more quickly

than the main memory. These fast-access levels constitute the “cache memory”

that is used to store the most frequently used data in order to avoid time delays

that would be incurred in retrieving data from the slower memory .

 Finally, since main memory is expensive, computer engineers introduced

“secondary memory.” This uses cheaper and slower technologies but allows

data to be transferred to the main memory as and when required. Initially,

data for this secondary memory was recorded on punched cards or paper tape

and fed in manually to the machine by computer operators. The use of cards

for secondary memory was superseded by magnetic tapes rather than much

more expensive magnetic core memory . Magnetic tapes holding computer

data became so common that many movies showing computers in operation

showed images of spinning tape drives as an icon for a computer. Much clever

engineering has been devoted to making tape drives extremely reliable and

fast. However, there is one problem that no amount of engineering can solve:

Q RR Q

S

Q

Q

S

1

0

0

0

1 1

0

1

1

1

1

1

0

0

0

0

0

* *

0

 Fig. 2.18. Truth table and schema

of a fl ip-fl op circuit built from NOR

gates. Inputs S = 1 and R = 1 are not

allowed, the outputs marked by * are

indeterminate .

Clock

R

(a) (b)

S

Q

Q

R S Q Q(t+1)

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 *

1 1 1 *

 Fig. 2.19. Truth table and schema of

clocked RS fl ip -fl op.

 1 Registers

 2 On Chip Cache

 10 On Board Cache

100 Memory

109 Tape /Optical

 Robot

106 Disk

Sacramento

This Campus

This Room

My Head

10 min

1.5 hr

2 Years

1 min

Pluto

2,000 Years

Andromeda

C
o
m

p
u
te

r
T

im
e
:
c
lo

c
k
 t
ic

k
s

H
u

m
a

n
 T

im
e

:
m

in
u

te
s

 Fig. 2.20. How long does it take to get

the data? This fi gure shows an analogy

suggested by Jim Gray to illustrate the

different data access times and the

importance of memory hierarchy in

computers. On the left, the access time

is given in CPU clock ticks. For a typical

1 gigahertz clock this is one nano-

second. To relate these times to human

timescales, on the right we translate a

clock tick to one minute. The drawing in

the middle illustrates how far we could

have traveled during the time to retrieve

data from the different elements of the

computer memory hierarchy .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

33The hardware

magnetic tapes are fundamentally sequential in the way they store and access

data on the tape. Accessing some data stored halfway along the tape requires

running through all the other data on the tape until that point is reached. This

is fi ne if we only want to read long streams of information , but it is not very

effi cient if we want to access small amounts of nonsequentially stored bits of

information. For this reason, disks and solid state semiconductor memory tech-

nologies that allow “random access” directly to any piece of data stored on the

device are usually preferred, with the use of magnetic tapes restricted to pro-

viding archival backup storage for large data sets .

 The fetch-execute cycle

 We have now seen that computer hardware consists of many different

components, which can all be implemented in a variety of ways. How do we

coordinate and orchestrate the work of all these devices? The word orchestrate

is an appropriate analogy. In an orchestra, there is a conductor who makes sure

that everybody plays at the right time and in the right order. In the computer,

an electronic clock performs the function of the conductor. Without the pres-

ence of a clock signal, memory circuits will not operate reliably. The clock sig-

nal also determines when the logic gates are allowed to switch.

 In his draft report on the EDVAC, another key idea that von Neumann intro-

duced was the “fetch-execute cycle.” This relies on an electronic clock to generate

a heartbeat that drives the computer through its series of operations . For simpli-

city and reliability, von Neumann chose the simplest possible control cycle to be

coordinated by the central control unit:

 - Fetch the next instruction from memory and bring it to the control unit;

 - Execute the instruction using data retrieved from memory or already

present;

 - Send results back for storage in memory; and

 - Repeat the fetch-execute cycle.

 Von Neumann chose the approach of just getting one instruction at a time

because he feared that any other approach would make the computer too hard

to build and program reliably . Alan Perlis, one of the early programming pio-

neers, once said, “sometimes I think the only universal in the computing fi eld

is the fetch-execute cycle .” 8

 The processor or CPU is the place where the instructions are executed and

the data are manipulated. The main functions of the processor are to fetch the

instructions from the main memory, decode the instructions, fetch the data on

which the instruction’s mathematical or logical operation will be performed,

execute the instructions, and store the results. These main functions have not

changed since the early processor designs. On a logical level, a simple processor

(see Fig. 2.21) consists of a bank of registers, an arithmetical logical unit (ALU),

and control unit (CU).

 The CU fetches instructions from the memory, decodes them and generates

the sequence of control signals that are required for completing the instruc-

tions. The ALU performs the arithmetical and logical operations. For an execu-

tion of each instruction, various components need to be connected by switches

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe34

that set the paths directing the fl ow of electrons. The bank of registers is for

storing the instructions and the intermediate results of operations .

 The exact choice of instructions that the hardware is built to execute

defi nes the hardware-software interface. This is the “instruction set” of the

machine. In the next chapter we will go up the hierarchy from the hardware

layers and examine the software of the machine.

 Key concepts

 Hierarchical design and functional abstraction >
 Boolean algebra and switching circuits >
 Binary arithmetic >
 Bits, bytes, and words >
 Logic gates and truth tables >
 Combinational and sequential logic circuits >
 Flip-l ops and clocks >
 The memory hierarchy >
 The fetch-execute cycle >

ALU

Register 0

Control Unit

Memory

01001011111101100111

00110111101011110110

01101110011001010111

01000111010001100101

01101100001000000100

11011111001101101110

01101001011010111110

00010110111001100001

01101011001000001110

10010111001100100000

01001001011101100110

01010111010001101011

11100001011011100110

00010110101100101110

Register 1

Register N

Processor

 Fig. 2.21. A programmer’s view of a

 processor.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

35The hardware

 Some early history

 The Manchester Baby and the Cambridge EDSAC computers

 In his draft report on the design for the EDVAC, von Neumann analyzed the technical options for

implementing the memory of the machine at length and concluded that the ability to construct large mem-

ories was likely to be a critical limiting factor. The fi rst “stored program”

computer to actually run a program was the University of Manchester’s

“Baby” computer. This was a cut-down design of their more ambitious

“Mark 1” and was built primarily to test the idea of hardware architect,

Freddie Williams, to use a cathode ray tube – like the screens of early

televisions – as a device for computer memory . In June 1948, the Baby ran

a program written by co-architect Tom Kilburn to fi nd the highest factor

of 2 18 (Fig. 2.22). The program was just a sequence of binary numbers

that formed the instructions for the computer to execute. The output

appeared on the cathode ray tube and, as Williams recounted, it took

some time to make the system work:

 When fi rst built, a program was laboriously inserted and the start switch

pressed. Immediately the spot on the display tube entered a mad dance. In

early trials it was a dance of death leading to no useful result and, what was

even worse, without yielding any clue as to what was wrong. But one day it

stopped and there, shining brightly in the expected place, was the expected

answer. 9

 The success of the Manchester Baby experiment led to the construction

of the full-scale Manchester Mark 1 machine. This became the prototype

for the Ferranti Mark I, the world’s fi rst “commercially available general-

purpose computer” 10 in February 1951, just a month before Eckert and

Mauchly delivered their fi rst UNIVAC computer in the United States .

 While the Manchester Baby showed that a stored program com-

puter was feasible , it was the EDSAC, built by Maurice Wilkes (B.2.6) and

his team in Cambridge that was really the “fi rst complete and fully opera-

tional regular electronic digital stored-program computer.” 11 The computer

used mercury delay-lines for storage as refl ected in Wilkes’s choice of the

name EDSAC – Electronic Delay-Storage Automatic Calculator. The devel-

opment of a suitable computer memory technology was one of the major

problems for the early computer designers. It was mainly because of stor-

age diffi culties that EDVAC-inspired computers in the United States were

delayed and lagged behind the Manchester and Cambridge developments.

Wilkes chose to use mercury delay-lines for EDSAC because he knew that

such delay-lines had played an important role in the development of radar

systems during the war . Wilkes had a working prototype by February 1947,

just six months after he had attended the Moore School Lectures. Working

with a very limited budget had forced Wilkes to make some compromises

in the design: “There was to be no attempt to fully exploit the technology.

Provided it would run and do programs that was enough .” 12

 Fig. 2.22. Kilburn’s highest factor rou-

tine from July 1948. The program ran for

fi fty-two minutes, and executed about

2.1 million instructions and made more

than 3.5 million memory accesses .

 B.2.6. Maurice Wilkes (1913–2010) seen

here checking a mercury delay-line

memory. He was a major fi gure in the

history of British computing and at the

University of Cambridge he led the team

that designed and built the fi rst fully

operational stored-program computer .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe36

 Wilkes said later:

 It resembled the EDVAC in that it was a serial machine using mercury

tanks, but that was all. When I was at the Moore School the EDVAC

design did not exist, except maybe in Eckert’s head . 13

 His visit to the Moore School had had a huge impact on Wilkes and

he left with an enduring respect for Ekert and Mauchly and said “They

remain my idols.” 14 He also spent time with John Mauchly after the lec-

tures and acknowledged this action as a “wonderful, wonderful piece of

 generosity.” 15

 Computer memory technologies

 Williams and Kilburn and their team designing the Manchester

Baby developed an internal memory using cathode ray tubes, the same technology as was then used in radar

screens and televisions. In these so-called Williams Tubes, the electron guns could make charge spots on the

screen that corresponded to binary 1 and 0 values. Since the charge would dissipate after a fraction of a sec-

ond, the screen needed to be refreshed in order to retain the record of the bits. The Baby had four Williams

Tubes: one to provide storage for 32-by-32-bit words; a second to hold a

32-bit “register,” in which the intermediate results of a calculation could

be stored temporarily; and a third to hold the current program instruc-

tion and its address in memory. The fourth tube, without the storage

electronics of the other three, was used as the output device and could

display the bit pattern of any selected storage tube (Fig. 2.23). Williams

Tubes were used as storage in the commercial version of the Baby, the

Ferranti Mark 1, as well as in such U.S. computers as the Princeton IAS

and the IBM 701 .

 Another early memory storage technology, originally suggested

by Eckert, was based on the idea of a mercury delay-line – a thin tube

fi lled with mercury that stores electronic pulses in much the same way

as a hiker in a canyon can “store” an echo. A pulse represented binary

1; no pulse, binary 0. The pulses bounced from end to end and could be

created, detected, and reenergized by electronic components attached

to the tube. The EDSAC, built by Wilkes and his team in Cambridge,

U.K., used mercury delay-lines. Wilkes had the good fortune to recruit a

remarkable research physicist at Cambridge, Tommy Gold (B.2.7), who

had been working on mercury delay-lines for radar during the war. Gold’s

knowledge and experience were invaluable in constructing large, fi ve-

foot “tanks” of mercury that were long enough to store enough pulses

but were also precision engineered to an accuracy of a thousandth of an

inch . Each mercury-fi lled tube could store 576 binary digits and the main

store consisted of thirty-two such tubes, with additional tubes acting as

central registers within the processor .

 Mercury delay-lines and Williams Tubes were widely used until

the early 1950s, when Jay Forrester (B.2.8), working at MIT, invented

the magnetic core memory (Fig. 2.24). This device consisted of small

 Fig. 2.23. A bit pattern on a cathode ray

tube used in “Williams” memory.

 B.2.7. Austrian-born astrophysicist

Tommy Gold (1920–2004) did important

work in many scientifi c and academic

fi elds. His knowledge of mercury delay-

line storage from his experience with

radar during the war was very helpful to

Wilkes. Gold made major contributions

to astronomy and cosmology as well

as to radar technology. Gold was fi rst

to propose the now generally accepted

theory that pulsars are rotating neutron

stars .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

37The hardware

magnetizable rings located at the intersections of a grid of

wires. Magnetization in the north direction could repre-

sent binary 1, and this could be fl ipped to a south magne-

tization, representing binary 0, by changing the current in

the wire. By having a rectangular grid of wires and locating

the cores at the intersections, it was possible to access each

core individually. This allowed genuine random access of

the individual memory locations – as opposed to having to

go through the bits in sequence to get to the desired bit, as

would be the case if the bits are stored on a magnetic tape.

 Forrester’s technology was fi rst tested in the construction

of the Memory Test Computer at MIT in 1952. Compared to

memory based on Williams Tubes, magnetic core memory

proved much faster and far more reliable .

 The fi rst device to provide almost random access to data was not

Forrester’s magnetic core memory. It was a spinning drum with a magne-

tizable surface that allowed fast access to information stored in magne-

tized bands on the drum. This was invented in 1948 by Andrew Booth of

Birkbeck College in England (B.2.9). Booth had made a visit to Princeton

and had seen the progress von Neumann’s team was making toward build-

ing the IAS stored program computer . Booth’s prototype magnetic drum

device was only two inches in diameter and could store ten bits per inch

(Fig. 2.25). He followed up this prototype with larger drums that featured

thirty-two magnetized bands, each divided into thirty-two words of thirty-

two bits. A read/write head simply read off the values as the drum spun.

Booth’s drum memory was soon taken up by others and was adopted as sec-

ondary memory for Williams and Kilburn’s scaled up version of the Baby,

the Manchester Mark 1 machine . Magnetic drum memory was widely used

for secondary memory in the 1950s and 1960s, until it was gradually super-

seded by magnetic disks .

 The fi rst hard disk

was introduced by IBM

in 1956 and hard disks

soon became ubiquitous.

Hard disk drives consist

of a number of fl at circu-

lar disks, called platters,

mounted on a spindle

(Fig. 2.26). The platters are

coated with a thin fi lm of

magnetic material, and

changes in the direction of

magnetization record the

required pattern of binary

digits. The engineering of

these drives is impressive.

The platters can rotate at

 B.2.8. Jay Forrester holding a frame

of core memory from the Whirlwind

 computer. He invented magnetic

core memory while working at MIT

in the early 1950s. His invention

proved much faster and more reli-

able than the earlier Williams Tubes

or delay-line memory technologies.

 Fig. 2.24. Forrester’s Magnetic Core Memory.

 B.2.9. Andrew Booth (1918–

2009), together with his assis-

tant and future wife, Kathleen

Britten, developed magnetic

drum storage. He also invented

a fast multiplication algorithm

that is used in modern Intel

microprocessors . Fig. 2.25. Andrew Booth’s magnetic drum memory.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

The Computing Universe38

speeds of up to 15,000 rpm and the read and write heads operate within

tens of nanometers of the surface. Originally introduced for IBM’s main-

frame computers, hard disks are now small enough to be incorporated in

PCs, laptops, and even iPods. The company referred to hard disk drives

as “direct access storage devices” or DASDs – rather than use the term

 computer memory . This was reportedly because Tom Watson Sr., the legend-

ary fi rst head of IBM, feared that an anthropomorphic term like memory

might exacerbate people’s fear and distrust of computers (B.2.10).

 B.2.10. Tom Watson Sr. (1874–1956) had built IBM to be the dominant company in punched

card tabulating machines that offered businesses and governments the ability to process

huge amounts of data. IBM was also known for its highly effective salesmen dressed in ties

and dark suits; for the company motto “THINK”; and the prohibition of any alcohol on IBM

property. Watson is often credited with saying “I think there is a world market for maybe

fi ve computers,” but there is no evidence that he actually said this. It was his son, Tom

Watson Jr. (1914–93), who drove the company’s move into electronic computers .

 Fig. 2.26. Hard disk drive from IBM.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.005
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.005
http:/www.cambridge.org/core

