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     3     The software is in the holes    

  Computer programs are the most complicated 
things that humans have ever created. 
 Donald Knuth  1    

  Software and hardware 

 Butler   Lampson,   recipient of the Turing Award for his contributions to 

computer science, relates the followi ng anecdote about software: 

 There’s a story about some people who were writing the software for an early 

avionics computer. One day they get a visit from the weight control offi cer, 

who is responsible for the total weight of the plane. 

 “You’re building software?” 

 “Yes.” 

 “How much does it weigh?” 

 “It doesn’t weigh anything.” 

 “Come on, you can’t fool me. They all say that.” 

 “No, it really doesn’t weigh anything.” 

 After half an hour of back and forth he gives it up. But two days later he 

comes back and says, “I’ve got you guys pinned to the wall. I came in last 

night, and the janitor showed me where you keep your software.” 

 He opens a closet door, and there are boxes and boxes of punch cards. 

 “You can’t tell me those don’t weigh anything!” 

 After a short pause, they explain to him, very gently, that the software is in 

the holes  .  2     

 It is amazing how these holes ( Fig. 3.1 ) have become a multibillion-dollar busi-

ness and arguably one of the main driving forces of modern civilization.  

 In the previous chapter we described the idea of separating the physical 

hardware from the software. Identifying these two entities is one of the key 

concepts of computer science. This is why we were able to go “down” into the 

hardware layers and see how the arithmetic and logical operations could be 

implemented without worrying about the software. Now let’s go “up” into the 

software levels and fi nd out how to tell the computer what to do.   Software, also 

called a  program , is a sequence of instructions which “give orders” to the hard-

ware to carry out a specifi c task  .   In this program we can use only the operations 

 Fig. 3.1.      Carving   holes on a punch 

card. The software in the early days of 

computing was represented by these 

holes but the cards were actually 

punched by   machines.  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core


The Computing Universe40

that the hardware can “understand” and execute. These core operations are 

called the “instruction set.” In terms of implementation the simplest instruc-

tions are hard-wired in the processor’s circuitry and more complex ones are 

constructed from the core instructions as we describe later in this chapter  . For 

the program to work the instructions must be arranged in the right order and 

expressed in an unambiguous way. 

 A   computer’s need for such exact directions contrasts with our everyday 

experience when we give instructions to people. When we ask a person to do 

something, we usually rely on some unspoken context, such as our previous 

knowledge of the person or the individual’s familiarity with how things work, 

so that we do not need to specify exactly what we want to happen. We depend 

on the other person to fi ll in the gaps and to understand from experience how 

to deal with any ambiguities in our request. Computers have no such under-

standing or knowledge of any particular person, how things work, or how to 

fi gure out the solution of the problem. Although some computer scientists 

believe that computers may one day develop such “intelligence,” the fact is 

that today we still need to specify exactly what we want the computer to do in 

mind-numbing detail. 

 When we write a program to do some specifi c task, we can assume that our 

hardware “understands” how to perform the elementary arithmetic and logic 

operations. Writing the precise sequence of operations required to complete 

a complicated task in terms of basic machine instructions at the level of logic 

gates would make for a very long program. For example, for numerical calcu-

lations we know we have an “add” operation in our basic set of instructions. 

However, if we have not told the machine how to carry out a multiply oper-

ation, it will not be able to do a simple calculation such as “multiply 42 by 3.” 

Even though for us it is obvious that we can multiply 42 by 3 by using multiple 

additions, the computer cannot make this leap of imagination. In this sense, 

the computer is “stupid” – it is unable to fi gure out such things for itself. In 

compensation, however, our stupid computer can add far faster than we can! 

 If we are trying to solve a problem that involves a numerical calculation 

requiring several multiplications, it will obviously simplify our program if we 

introduced a separate “multiply” instruction for the computer. This instruction 

will just be a block of additions contained in a program. Now when we give the 

computer the instruction “multiply 42 by 3,” the machine can recognize the 

word  multiply  and can start running this program. This ability to construct com-

pound operations from simple ones and introduce a higher level of abstraction 

in this way is one of the fundamental principles of computer science. Moving 

up this ladder of abstraction saves us from having to write our programs using 

only the most elementary operations. 

 In the early days of computing, writing programs was not considered dif-

fi cult. Even von Neumann thought that programming was a relatively simple 

task. We now know that writing correct programs is hard and error prone. Why 

did early computer scientists so badly underestimate the diffi culty of this task? 

There are at least two possible explanations. The pioneers of computing were 

mostly male engineers or mathematicians who rarely spent time on the nitty-

gritty details of actually writing programs. Like many men of the time, the early 

hardware pioneers thought that the actual coding of programs using binary 
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41The software is in the holes

numbers to represent the instructions and setting the appropriate switches 

on the machines was a secondary task, suitable for young women who needed 

only appropriate secretarial skills and some aptitude for mathematics. A more 

charitable explanation is that the diffi culties of actually constructing the early 

computers and keeping them running were so overwhelming that these chal-

lenges completely overshadowed the problem of coding. Looking back, it now 

seems naive for the early computer builders to think that once they managed 

to get the machine up and running, the coding of a problem for the machine 

would be a relatively minor task  ! 

 There   were some early warnings that programming might not be so sim-

ple.   Maurice Wilkes recalls:

  As soon as we started programming, we found out to our surprise that it was 

not as easy to get programs right as we had thought. I can remember the 

exact instant when I realised that a large part of my life from then on was 

going to be spent in fi nding mistakes in my own programs  .  3     

 In   a similar vein, one of the pioneers of computing, Edsger Dijkstra of the 

Netherlands, suggests in his autobiography that programming is even harder 

than theoretical physics.  

  In 1955 I took the decision not to become a theoretical physicist, but to 

become a programmer instead. I took that decision because I had concluded 

that of theoretical physics and programming, programming embodied the 

greater intellectual challenge. You see, in those days I did not suffer from 

intellectual   modesty  .  4     

 Software now surrounds us like the air that we breathe. It runs the communica-

tion networks, the power grid, our PCs, and our smart phones. It is embedded 

in cars, aircraft, and buildings, and in banks and national defense systems. We 

use software all the time, even if we are not aware of it. When we drive a car, 

pay bills, use a phone, or listen to a CD, thousands of lines of code are executed. 

  According to Bjarne Stroustrup, the Danish inventor of the C++ programming 

language, “Our civilization runs on software  .”  5   Let’s take a closer look at how 

we write the software that controls such a large part of our lives.  

  The i le clerk model 

 Computers   do much more than just compute. Typically there will be one 

part of the machine where the computer does all the basic mathematical oper-

ations while the rest of the machine is dedicated to moving the digital data 

around in the form of electrical signals. In many ways, we can think of the oper-

ation of a computer as being like the work that fi le clerks once did in an offi ce. 

The fi le clerk was given a job to do and then had to move back and forth to racks 

of fi ling cabinets, taking fi les out and putting them back, scribbling notes on 

pieces of paper, passing notes around, and so on, until the job was completed 

(see  Fig. 3.2 ). It will be helpful to use this analogy of the computer as a fi le clerk 

as a starting point to explain some of the basic ideas of a computer’s structure 

and organization. This model is a good way for us to understand the essential 

ideas of how a computer actually does what it does.  

 Fig. 3.2.      A   fi ling cabinet is a good 

analogy for thinking about the way a 

computer’s hard disk stores information 

in fi les and folders  .  
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The Computing Universe42

 Suppose there is a big company that employs many salespeople to sell its 

products and stores a great deal of information about the sales force in a big 

fi ling system consisting of cards in cabinets. Let’s say that our fi le clerk knows 

how to get information out of the fi ling system. The data are stored in the 

fi ling cabinets on “Sales” cards, which contain the name, location, number 

of sales, salary, and other information about each salesperson. Suppose we 

want the answer to a simple question: “What are the total sales in the state of 

Washington?” 

 The instructions for the clerk could be: 

 Take out a “Sales” card. 

 If “Location” says  Washington , then add the number of “Sales” to a running 

count called “Total.” 

 Put the card back. 

 Take out the next “Sales” card and repeat.  

 This set of instructions looks fi ne, but what do we do if our fi le clerk does not 

know what is meant by keeping a “running count”? In this case we need to pro-

vide the clerk with more detailed instructions on exactly how to do that task. 

We therefore provide the clerk with a new card called “Total,” and our more 

detailed “program” now reads: 

 Take out the next “Sales” card. 

 If “Location” says  Washington , then take out the “Total” card. 

 Add the sales number to the number on the card. 

 Put the “Total” card back. 

 Put the “Sales” card back. 

 Take out the next “Sales” card and repeat.  

 In a modern computer, of course, the data would not be stored on cards and the 

machine does not physically take out a card. Instead, the computer reads the 

stored information from a  memory register , a storage place in its main memory. 

Similarly, the computer can write from such a register to a “card” without actu-

ally physically taking out a card and putting it back. 

 To go any further with our analogy, we need to specify more  precisely how 

our fi le clerk carries out the basic set of operations. One of the most elemen-

tary operations is that of transferring information from the cards that the clerk 

reads to some sort of scratch pad or working area where the clerk can do the 

arithmetic. We can do this by specifying exactly what our “Take” and “Replace” 

card operations mean: 

 “Take card X” means that the information on card X should be written on the 

scratch pad. 

 “Replace card Y” means that the information on the pad should be written 

on card Y.  

 We now need to instruct the clerk exactly how to check if the location on 

card X was  Washington . The clerk will need to do this for each card, so he 

needs to remember  Washington  from one card to the next. One way to do this 

is to have  Washington  written on another card we shall call C. The instruc-

tions are now: 
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43The software is in the holes

 Take card X (from store to pad). 

 Take card C (from store to pad). 

 Compare what is on card X with what is on card C. 

 If the contents match, add the “Sales” to the “Total.” If not, replace both 

cards and take the next one.  

 It would obviously be more effi cient not to keep taking out and putting back 

card C, the  Washington  card. If there is enough room on the scratch pad, the clerk 

could store this information on the pad for the duration of the calculation. This 

is an example of a trade-off in the hardware design: the balance between the 

clerk having to shuffl e cards in and out versus increasing the amount of stor-

age space needed on the pad. We can keep breaking down the clerk’s tasks into 

simpler ones until they correspond directly to basic operations that he knows 

how to carry out. For example, we need to tell the clerk precisely how to com-

pare the information stored in “Location” and the name  Washington.  

 Let us teach the fi le clerk how to use the scratch pad. The instructions can 

be divided into two groups  . One group is a core set of simple procedures that 

come with the pad – add, transfer, and so on. In a computer, these instructions, 

called the  instruction set , are the ones that have been implemented in the hard-

ware: they do not change when we change the problem. They are like the clerk’s 

intrinsic abilities  . Then there is a set of instructions specifi c to the task at hand, 

such as calculating the total number of sales for the state of Washington. This 

set of specialized instructions is the “program.” The program’s instructions can 

be broken down into operations from the core set as we have seen. The pro-

gram represents the detailed instructions about how to use the clerk’s intrinsic 

abilities to do the specifi c job. 

 To   get the right answer, the clerk must follow exactly the instructions that 

constitute the “program” in precisely the right order. We can ensure this by 

designating an area on the scratch pad to keep track of which steps have been 

completed. In a computer, this area is called a  program counter . The program 

counter tells the clerk where he is in the list of instructions that constitute the 

program. As far as the clerk is concerned, this number is just an “address” that 

tells him where to look for the card with the instruction about what to do next. 

  The clerk goes and gets this instruction and stores it on the pad. In a computer, 

this storage area is called the  instruction register . Before carrying out the instruc-

tion, the clerk prepares for the next one by adding one to the number in the 

program counter. The clerk will also need some temporary storage areas on the 

pad to do the arithmetic, save intermediate values, and so on. In a computer, 

these storage areas are called  registers . Even if you are only adding two num-

bers, you need to remember the fi rst while you fetch the second. Everything 

must be done in the correct sequence and the registers allow us to organize 

things so that we achieve this goal  . 

 Suppose our computer has four registers – A, B, and X plus a special regis-

ter C that we use to store any number that we need to carry (put into another 

column) as part of the result of adding two numbers.   Let us now look at a pos-

sible set of core instructions, the  instruction set , for the part of a computer cor-

responding to the scratch pad. These instructions are the basic ones that will 

be built into the computer hardware. The fi rst kind of instruction concerns 

the transfer of data from one place to another. For example, suppose we have 
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The Computing Universe44

a memory location called M on the pad. We need an instruction that transfers 

the contents of register A or B into M or that moves the contents of M into reg-

ister A or B. We will also need to be able to manipulate the program counter so 

we can keep track of the current number in register X. We therefore need an 

operation that can change this stored number as well as a “clear” instruction 

so that we can wipe out what was in a register and set it to zero. Then there 

are the instructions for the basic arithmetic operations, such as “add.” These 

instructions will allow us to add the contents of register B to the contents of 

register A and update the contents of register A with the sum A + B. We also 

need the logical operations: the logic gates AND and OR that allow the com-

puter to make decisions depending on the input to these gates. This capability 

is important because it enables the computer to follow different branches of a 

program depending on the result of the logical operation.   We therefore need to 

add another class of instructions that enable the computer to “jump” to a spe-

cifi c location. This instruction is called a  conditional jump , an action in which the 

computer jumps to the new location in the program only if a certain condition 

is satisfi ed. This conditional jump instruction allows the machine to leap from 

one part of a program to another  . And fi nally we will need a command to tell 

the computer when to stop, so we should add a “Halt” instruction to our list. 

 These elementary instructions now enable us to get the computer to do 

many different types of calculations. The machine is able to perform complex 

operations by breaking them down into the basic operations it understands. In 

the example above, our computer had only four registers. In modern comput-

ers, although the underlying concepts are exactly the same, a larger set of basic 

instructions and registers is typically built into the hardware. The lesson we 

should take from the fi le clerk analogy is this. As long as our fi le clerk knows 

how to move data in and out of registers and can follow a sequence of simple 

instructions using a scratch pad, he can accomplish many different complex 

tasks  . Similarly, a computer does all of these tasks completely mindlessly, just 

following these very basic instructions, but the important thing is that it can do 

the work very quickly  .   As Richard Feynman ( B.3.1 ) says, “The inside of a com-

puter is as dumb as hell but it goes like mad!  ”  6   A computer can perform many 

millions of simple operations a second, and multiply two numbers far faster 

than any human. However, it is important to remember that, at its heart, a 

computer is just like a very fast, dumb fi le clerk. It is only because a computer 

can do the basic operations so quickly that we do not realize that it is in fact 

doing things very stupidly  .   

  Maurice Wilkes and the beginning of software 
development 

 Let us now look at how the “fi le clerk model” is actually implemented 

in real computers. Computers work by allowing small electric charges to 

fl ow from the memory to collections of logic gates or to other memory loca-

tions.   These fl ows are all regulated by von Neumann’s fetch-execute cycle: at 

each step, the computer reads an instruction from memory and performs the 

specifi ed action  .   The section of the computer that does the actual computing 

is called the  processor  or the  central processing unit    (CPU).   The processor has a 

 B.3.1.      Richard   Feynman (1918–88) 

lecturing on computing at the 

workshop on Idiosyncratic Thinking 

at the Esalen Institute. In this lecture 

he explained in simple terms how 

computers work and what they are 

capable of. According to Feynman 

calling computers  data handlers  

would be more fi tting because they 

actually spend most of the time 

accessing and moving data around 

rather than doing calculations  .  
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45The software is in the holes

number of holding places for data known as  registers  that may be used to keep 

an instruction, a storage address, or any other kind of data  . As in the case of 

our fi le clerk, some instructions tell the computer to copy words from memory 

to the central processor’s registers. Other instructions perform some numerical 

or logical operation on this data and place the result in one of the processor’s 

registers. The instructions accomplish this by opening control gates that allow 

the data to fl ow from location to location within the computer. These control 

gates are on the paths between the memory storage cells and the logic gates. 

Between each register and each specifi c processing element are data paths with 

gates activated by each instruction. In the architecture of most processors and 

in their associated instruction sets, this linking of instructions to specifi c data 

paths is created using a structure of branching paths called a  decision tree . Data 

for arithmetic operations are sent one way, while data for logical operations 

are sent another way. 

 In an actual instruction, branch decisions are represented by 1s and 0s in dif-

ferent places in the instruction (see  Fig. 3.3 ). For example, we might choose the 

fi rst bit to be 1 for an arithmetic operation and 0 for a logical operation. The sec-

ond bit could be 1 for an ADD in the arithmetic branch or for an AND gate in the 

logic branch. If we have an eight-bit instruction set, the remaining six bits could 

be used to specify the three-bit addresses of two registers. Thus the instruction 

word  11010001  could mean “Use the arithmetic unit to add the number in regis-

ter 010 to the number in register 001.” Modern instruction sets are more compli-

cated but follow similar principles. For the fi rst computers, programmers had to 

carefully think through how the desired sequence of operations translated into 

the actual setting of the switches.   The use of  machine code  – the representation of 

instructions that were implemented in the computer hardware as binary num-

bers – was the fi rst step in liberating the programmer from needing to know all 

the details of the hardware architecture. Writing programs in machine code is 

the fi rst step up the software abstraction layers  .  

 A   stored-program computer is one that keeps its instructions, as well as its 

data, in its memory  .   Because it was Maurice Wilkes and the EDSAC who fi rst 

proved the feasibility of such an architecture, it is not surprising that many 

of the early ideas of programming and software development came from the 

Cambridge team. The EDSAC ran its fi rst program on 6 May 1949. The program, 

which was the calculation and printing of a table of squares from 0 to 99, ran 

for two minutes and thirty-fi ve seconds. Within a year, the EDSAC was provid-

ing a programming service for the entire university. However, as Wilkes had 

discovered, programming correctly in machine code was diffi cult. He therefore 

introduced a more programmer-friendly notation for the machine instructions. 

For example, the EDSAC instruction “Add the short number in memory loca-

tion 25” was stored as the binary string:

  11100000000110010   

 This was abbreviated as:

  A 25 S   

 where A stood for “add,” 25 was the decimal address of the memory location, 

and S indicated that a “short” number was to be used  .   David Wheeler ( B.3.2 ), 

1111111100010110011001000110111000000000101101000000000

0011011000000000011010000000101000010110100001010101100

0100111100101100000111110010011110000100000111110110010

0001011100000001000100110010010011101000111111001111111

1111111111111111111001001110000111001000110010111011001

1011001101111100000101011111011111110010110110011001000

0100011110000111000011111010100000101000101010111000101

1101011101110111010011101011011111001100110100111011101

1000011110010110111110000011010010111011010010111011010

0101101110001110100111010111000101110101110111011101001

1101011101011010011000001101001011101101001011101101010

0101110111001111110011101101111010011000011100010010111

0111001111101001110010111010011000011100010010111011100

1111010001110011111010011100101110100110000111000100101

1101110010110010111011001011101110100110010111110001110

1000101110110010011000011110100110000101011101100010111

0011111001101011101110010110111111001001100001111010011

0000101011101100011110111111011011101101110010111011101

1101000101110110111011011111110100110010110111010001111

0011101010101101101111001111101001100001110001111010110

0000000000000000000000000001111100010001100000000110100

0001100000000000000100000000011011000100100000000000100

0100110010000000100100010001000001000000100101000100011

0000000100110000000000000000010000000001010110001000000

1100000001001100000000000000000100000000011000000010001

0000000010011000001100000000000001000000011100000010001

1000000000001011000000101100000000000001000100010000010

0010000000000010000100000000000000000100000001000100011

0000000000010000100000101000100000000000100000001000100

0000000000100100001000101000000001010000100000010000010

0000001001000110000000000011000011001010000000000000100

0000000000000000000001000000000001000111100011111111100

0000000000110100000000000001101100000000000001101000000

0000000001101010000000000000110111000000000000011011001

0000000000110000001001001011010000000000010000000011101

0011001011110011111010010111011000110110110111000011101

0011101110011100001110010110100111011101110100110011001

0100001101001001000010100100

 Fig. 3.3.      This   illustration shows the 

binary code of the “Hello world” 

program generated by the GNU 

CC compiler for a modern Intel 

  microprocessor.  
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The Computing Universe46

a graduate student in Cambridge, therefore introduced a program he called 

“Initial Orders” that read these more intuitive shorthand terms for the basic 

machine instructions, translated them into binary, and loaded them into mem-

ory ready for execution. Using these abbreviations made programs much more 

understandable and made it possible for users who were not computer special-

ists to begin to develop programs for the machine.  

 Wheeler’s Initial Orders program was really the fi rst practical realization 

of von Neumann’s hardware-software interface  .   It was also the fi rst example of 

an  assembly language , a programming language that used names instead of num-

bers. Assembly languages constituted the next signifi cant step up the hierarchy 

of software abstractions. They were easier to use than machine code but still 

much harder than later high-level languages. Writing an assembly language 

instruction such as “MOV R1 R2,” meaning “Move contents of register 1 to reg-

ister 2,” allowed the user to avoid having to think about the explicit switches 

that needed to open to direct the fl ow of charge from register 1 to register 

2  . Similarly,  memory addresses , the binary numbers that the computer used to 

track where data and instructions are stored in its memory, were replaced with 

more intuitive names like “sum” or “total.”   Although assembly languages made 

the writing of programs easier, computers still ran with machine code, the 

low-level language composed of binary numbers. To run an assembly language 

program, the assembly language fi rst has to be translated into machine code. 

The need for such translation required the development of programs called 

 assemblers  that could perform the translation and produce machine code as out-

put  .   On the EDSAC, this translation was originally done with Wheeler’s Initial 

Orders program, which we might now call the fi rst assembler  . 

 Despite   the great simplifi cation introduced by using assembly language 

to write programs, the Cambridge team quickly found that a large amount of 

time was being taken up in fi nding errors in programs. They therefore intro-

duced the idea of a “library” of tested, debugged portions of programs that 

could be reused in other programs. These blocks of trusted code are now called 

 subroutines   .   For these blocks of code to be used in different programs, we need 

to use the  Wheeler jump . As we have seen in our fi le clerk discussion, the com-

puter takes its next instruction from the memory location specifi ed in the 

special memory register called the  program counter . After each instruction is 

read, the contents of the program counter are increased by one to point to the 

next instruction in memory. With a jump instruction, the computer can copy 

the memory address corresponding to the beginning of the subroutine code 

into the program counter. The computer is no longer restricted to the next 

instruction but can jump to the starting address of the subroutine code. The 

program will then follow the instructions in the subroutine code incrementing 

the program counter from that entry point. Of course, to know where in the 

program the subroutine should return after it has completed its execution, 

the computer also needs to have saved the previous contents of the program 

counter in another memory location, which was an essential feature of the 

Wheeler jump  . 

 If   we want to call a subroutine from within another subroutine, we will 

clearly need to save the multiple return addresses. We cannot use just one spe-

cial memory location because the return address of the fi rst subroutine will be 

 B.3.2.      David   John Wheeler 

(1927–2004) was a British computing 

pioneer who made a major 

contribution to the construction 

and programming of the EDSAC 

computer. With his colleagues 

Maurice Wilkes and Stanley Gill, 

Wheeler invented  subroutines , the 

creation of reusable blocks of 

code. Wheeler also helped develop 

methods of  encryption , which puts a 

message into a form that can be read 

only by the sender and the intended 

recipient. Wheeler, Wilkes, and 

Gill wrote the fi rst programming 

textbook in 1951,  The Preparation 

of Programs for an Electronic Digital 

Computer  .   
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overwritten by the return address of the second and so on. To overcome this 

diffi culty, computer scientists introduced the idea of a group of sequential stor-

age locations linked together to operate as a  memory stack  ( Fig. 3.4 ). The memory 

stack functions much like a stack of dinner plates: plates can only be added or 

removed at the top of the stack. This is an example of a simple data structure 

that is useful in many applications. It is called a  LIFO stack , which stands for 

Last In, First Out. This data structure is able to handle the storage of the return 

addresses of nested subroutines  .  

 The   conditional jump instruction introduces two powerful new concepts 

for programmers:  loops  and  branches . With a conditional jump, the program only 

performs the jump if a certain condition is met; if not, the program continues 

down the original path. A loop is where a block of code is executed a specifi ed 

number of times. This can be done by keeping a tally called a  loop count  that is 

increased by one on each pass through the code. At the end of each block of 

code, the loop count is tested to see if the specifi ed number of repetitions has 

been carried out: if not, the program is sent back to the beginning of the loop. 

A branch is just what it says: the choice of what section of code to execute is 

made depending on the result of the condition  . 

 In   1951, Maurice Wilkes, with David Wheeler and Stanley Gill, wrote 

up their experiences in teaching programming. Their book  The Preparation of 

Programs for an Electronic Digital Computer  was the fi rst textbook on computer 

programming. Also in the same year, Wheeler was awarded the fi rst PhD in 

computer science for his work with the   EDSAC.  

  FORTRAN and COBOL:  The story of John Backus 
and Grace Hopper 

 Although the computing fraternity was very much male-dominated in the 

early years, there were a few infl uential pioneers who were women.   Probably 

the most famous is Grace Hopper, or Rear Admiral Professor Grace Hopper as 

she later became ( B.3.3 ). Hopper received her PhD in mathematics 

from Yale University in 1934 and was teaching at Vassar College in 

Poughkeepsie, New York, when the United States entered World 

War II. She enlisted in the Naval Reserve in December 1943 and 

graduated at the top of her class in June 1944.  

 The   Harvard Mark I of Howard Aiken had been commandeered 

for the war effort, and Aiken was now a Naval Reserve commander 

( B.3.4 ). He liked to say that he was the fi rst naval offi cer in history 

who commanded a computer. Although Aiken’s machine was not 

very infl uential on the future development of digital computers, 

Aiken was one of the fi rst to recognize the importance of program-

ming as a discipline. He persuaded Harvard to start the fi rst master’s 

degree courses in what would now be called computer science. In 

addition he insisted that the Mark I project be staffed with trained 

mathematicians. And this is how Lieutenant Grace Hopper of the U.S. 

Navy found herself being greeted by Aiken in the summer of 1944:  

  [Howard Aiken] waved his hand and said: “That’s a computing 

machine.” I said, “Yes, Sir.” What else could I say? He said he would 

 Fig. 3.4.      The   information stored in a 

computer’s memory is much like a stack 

of plates. Just as we can add or take 

plates only from the top of the stack, the 

last data added to memory must be the 

fi rst removed  .  

 B.3.3.      Grace Hopper (1906–92), an American 

computer scientist, led the team that developed 

COBOL, the fi rst programming language for business 

that allowed programmers to use everyday words.  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core


The Computing Universe48

like to have me compute the coeffi cients of the arc tangent series, for 

Thursday. Again, what could I say? “Yes, Sir.” I did not know what on earth 

was happening, but that was my meeting with Howard Hathaway Aiken.  7      

 Hopper   is credited with introducing the word  bug  into computer terminology 

after her team found a real insect, a moth, stuck in one of the machine’s relays 

  ( Fig. 3.5 ).   At the end of the war, Hopper chose to remain at Harvard, program-

ming fi rst the Mark I and then the Mark II machines  .   But in 1949 she defected 

from Aiken’s camp and joined the opposition, the Eckert-Mauchly Computer 

Corporation in Philadelphia, which Aiken had dismissed as a foolish idea  . This 

company was Eckert and Mauchly’s brave effort to commercialize their EDVAC 

ideas by building the UNIVAC computer. At the time, there was great skep-

ticism as to whether there was a signifi cant market for business computers. 

Hopper later joked:  

  Mauchly and Ekert had chosen their building perfectly. It was between a junk 

yard and a cemetery, so if it all went wrong . . . they could throw the UNIVAC 

out of one window and themselves out of the other  .  8      

 Following   along the same lines as Wilkes and Wheeler in Cambridge, 

Hopper and her team began to code their programs in UNIVAC assembly 

language. In doing this, she produced a program that would translate the 

assembly code into the binary machine code automatically, as Wheeler had 

done with his Initial Orders program. However, Hopper had much larger 

ambitions than using just primitive abbreviations for the low-level opera-

tions of assembly language. She began to investigate whether it was possible 

to write a program using expressions that more closely resembled every-

day English.   Initially focusing on creating a more natural language for sci-

entifi c computing, Hopper experimented with a language called A-0. She 

introduced the term  compiler  for the software system she created to translate 

 B.3.4.      Howard   Aiken (1900–73), an 

American physicist and computer 

pioneer, proposed to IBM in 1937 

the idea of constructing a large-scale 

electromechanical computer. By 

1944, the computer, known as Mark 

I, became operational. The machine 

was fi fty-fi ve feet long, eight feet 

high, and about two feet wide  .  

 Fig. 3.5.      The   fi rst recorded appearance 

of a computer “bug” dates from 

1947. Grace Hopper is credited with 

introducing the word into computer 

terminology after her team found a real 

insect, a moth, stuck in one of the relays 

of the Mark II computer. They removed 

the insect and taped it into the logbook  .  
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programs written in A-0 to UNIVAC machine code. The results, she reported, 

were mixed:

  The A-0 compiler worked, but the results were far too ineffi cient to be 

commercially acceptable. Even quite simple programs would take as long as 

an hour to translate, and the resulting programs were woefully slow  .  9     

 However   Hopper remained an energetic advocate for  automatic programming , in 

which the computer generates the machine code from a program written in a 

“high-level” programming language  . She and her team therefore persevered 

with the development of the A-0 language and its compiler.   In 1955, the com-

pany released the MATH-MATIC language for the UNIVAC ( Fig. 3.6 ), and a news 

release declared, “Automatic programming, tried and tested since 1950, elimi-

nates communication with the computer in special code or   language  .”   These 

attempts in the early 1950s had shown that the outstanding problem in pro-

gramming technology was to produce a compiler that could generate programs 

as good as those written by an experienced assembly language or machine code 

  programmer. Enter John Backus and IBM ( B.3.5 ).   

 IBM   introduced its 704 computer for scientifi c applications in 1954. A 

major advance in the architecture of the 704 was that the hardware included 

dedicated circuits to perform the operations needed to handle  fl oating-point 

numbers  – numbers containing fractions in which the decimal point is moved 

to a standard position in order to simplify the hardware required to manip-

ulate such fractional numbers – and not just integers (whole numbers). Now 

programmers could add, subtract, multiply, and divide real numbers as eas-

ily as performing these same operations with integers, without having to call 

on complex subroutines to do these operations. Backus had been developing 

an assembly language for another IBM computer, but in late 1953 he sent 

a proposal to his manager suggesting the development of what he called a 

“higher level language” and compiler for the IBM 704  . It is interesting that 

Backus made the case for such a language mainly on economic grounds, 

arguing that “programming and debugging accounted for as much as three-

quarters of the cost of operating a computer; and obviously as computers got 

cheaper, this situation would get worse.”  10   

 The project was approved, and the FORTRAN – for FORmula TRANslation – 

project began in early 1954. Producing code that was nearly as good as that 

written by an experienced machine code programmer was always the overrid-

ing goal of Backus’s team:

  We did not regard language design as a diffi cult problem, merely a simple 

prelude to the real problem: designing a compiler which could produce 

effi cient [binary] programs. Of course one of our goals was to design a language 

which would make it possible for engineers and scientists to write programs 

for the 704. We also wanted to eliminate a lot of the bookkeeping and detailed 

repetitive planning which hand coding [in assembly language] involved.  11     

 In April 1957, the language and the compiler were fi nished. The compiler con-

sisted of about twenty thousand lines of machine code and had taken a team of 

about a dozen programmers more than two years to produce. 

 B.3.5.      John   Backus (1924–2007), a 

computer scientist at IBM, developed 

FORTRAN, the fi rst programming 

language that enabled scientists 

and engineers to write their own 

programs  .  

 Fig. 3.6.      In 1955,   Hopper and her team 

released the MATH-MATIC language for 

the UNIVAC. MATH-MATIC was one of 

the fi rst higher-level languages above 

assembly language to be developed  .  
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 A typical statement in FORTRAN looks very like the underlying mathemat-

ical equation. Thus

    y e x xx −ex +sin 2

 became

    y F F X X( ) ( )EXP SFF XXF ( )) INFF * *2

 Because of this simplicity and how closely it resembles the language of mathe-

matics, FORTRAN rapidly became the dominant language for scientifi c comput-

ing. Backus’s team had come very close to meeting their design goal:

  In practice the FORTRAN system produced programs that were 90% as good 

as those written by hand, as measured by the memory they occupied or 

the time they took to run. It was a phenomenal aid to the productivity of 

a programmer. Programs that had taken days or weeks to write and get 

working could now be completed in hours or days.  12    

 FORTRAN also produced another great benefi t – the portability of programs 

across different machines.   Although the fi rst compiler was written for the 

IBM 704, very soon there were FORTRAN compilers for other IBM computers  . 

Competing computer manufacturers also soon produced FORTRAN compilers 

for their machines. For the fi rst time there were computers capable of speaking 

the same language so that programmers did not have to learn a new language 

for every new computer. 

 In 1961, Daniel McCracken published the fi rst FORTRAN programming 

textbook for use in undergraduate courses in universities. In 1966, FORTRAN 

became the fi rst programming language to be formally standardized by ANSI, 

the American National Standards Institute, the organization that creates stan-

dards for the U.S. computer industry ( Fig. 3.7 ). The FORTRAN language, now 

written  Fortran  with only one capital letter, has evolved with time to incorpo-

rate new structures and technologies from research on programming languages 

by computer scientists. It is nevertheless surprising that Fortran programs are 

still much used in scientifi c computing more than fi fty years after the fi rst 

introduction of the language.  

 The other major breakthrough in early computer programming was a 

language for business applications.   After her work on MATH-MATIC, Hopper 

turned to the problem of making business programming – the tasks needed to 

run a business such as managing accounting and inventory – easier and more 

intelligible to that community.   By the end of 1956, she had produced a com-

piler for FLOW-MATIC, a language that contained around twenty English-like 

expressions and allowed the use of long character names ( Fig. 3.8 ). For exam-

ple, to test whether the value of variable A is greater than that of variable B, in 

Fortran we would write:  

  IF A.GT. B    

 By contrast, in a language like FLOW-MATIC, one would write a similar com-

parison test as:

 Fig. 3.7.      The   fi rst FORTRAN book 

from   IBM.  

 Fig. 3.8.      FLOW-MATIC,   developed by 

Grace Hopper in 1956, was the fi rst 

programming language that allowed 

users to describe operations in English-

like expressions  .  

 Fig. 3.9.      COBOL,   one of the fi rst 

programming languages, is still alive 

and well. Much business transaction 

software is written in COBOL and there 

are about 200 billion lines of code in use. 

Ninety percent of fi nancial transactions 

are written in COBOL  .  
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  IF EMPLOYEE-HOURS IS GREATER THAN MAXIMUM   

 The language not only made the programs more intelligible to managers but 

also provided a form of self-documentation that describes what the program is 

supposed to do. 

 In May 1959 the U.S. Department of Defense started an initiative to develop 

a common business language.   This led to the COBOL ( Fig. 3.9 ) programming 

language – for COmmon Business-Oriented Language – which was strongly 

infl uenced by Hopper’s earlier FLOW-MATIC language  . For this reason, Hopper 

is sometimes known as “the mother of COBOL.” What made the language so 

successful was a declaration by the U.S. government a year later that it would 

not lease or purchase any new computer without a COBOL compiler. At the end 

of 1966, Hopper retired from the Navy with the rank of commander. Less than 

a year later she was recalled to active duty and tasked with the job of rewrit-

ing the Navy’s payroll system in COBOL. She was promoted to rear admiral 

in 1985  .  

 For   the next twenty years, from about 1960 to about 1980, FORTRAN and 

COBOL accounted for approximately 90 percent of all applications programs. 

  Backus went on to develop a notation to capture the “grammar” of a program-

ming language – that is, the way in which the special words and concepts of 

a language can be put together.   A Danish computer scientist, Peter Naur, then 

simplifi ed Backus’s notation so that the grammar of any language could be cap-

tured in what is now known as Backus-Naur Form or BNF ( B.3.6 ). In the 1970s 

Bell Labs produced a  compiler-compiler , a program that could transform a BNF 

specifi cation into a compiler for that   language  . There has been much research 

and experimentation with programming in the fi fty years since FORTRAN and 

  COBOL  . We   will look at some of these developments in the next chapter.   

  Early operating systems 

 In using even these early machines, it clearly made no sense for each 

user to have to fi gure out independently how to interact with the computer. 

Originally, users might input their programs and data – send instructions and 

information to the computer – using a punched card or paper tape reader. Later 

the input process might involve a keyboard, mouse, or, nowadays, a touch-

enabled tablet. Each user could also use disk drives to access and store data, 

and could read off the results from a printer or some form of screen display. So 

although the earliest computers had no real  operating system –  that is, no   soft-

ware to control the operation of the entire computer   system with anything like 

the sophistication we see today – it was still useful to collect together all the 

I/O subroutines – programs for input and output – and have them permanently 

loaded on the machine. 

 In the earliest days of computers, users had to book a time slot on the 

machine, so graduate students were naturally allocated the nighttime slots! 

Users loaded their programs into the machine using punched cards or paper 

tape and then waited while the computer ran their program ( Fig. 3.10 ).   This 

personalized system quickly evolved to a more effi cient system in which the 

users were isolated from the machine by “operators.” Users now had to give 

their program deck to the operator, who would load a batch of such programs 

 B.3.6.      Peter   Naur, a Danish computer 

scientist, helped develop a successful 

programming language called Algol 

60. In 2005, Naur received the Turing 

Award for his contributions to 

computer science  .  

 Fig. 3.10.        Early computers used punched 

cards to input programs and   data.  
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into the machine and then return the output to the users when the jobs were 

completed. The “operating system” was just the loading routine used by the 

operator to schedule the jobs on the computer plus the collection of I/O subrou-

tines. As commercial computers began to appear in the early 1950s, such  batch 

processing  was the norm  .  

 By the mid- to late 1950s, the limitations of batch processing were becom-

ing apparent, and in universities there was a great deal of experimentation 

with the idea of more interactive computing. In   1955, John McCarthy ( B.3.7 ), 

  one of the pioneers of  artifi cial intelligence , spent a summer at IBM’s laboratory 

in Poughkeepsie and got to learn computer programming through batch pro-

cessing on the IBM 704 computer  .   He was appalled at having to wait to learn 

whether or not his program had run correctly. He wanted the ability to debug 

the program interactively in “real time,” before he had lost his train of thought. 

Because computers were very expensive systems at that time, McCarthy con-

ceived of many users sharing the same computer at one time instead of just 

being allowed access to the machine sequentially, as in batch processing. For 

such sharing to be possible, multiple users had to be connected to the machine 

simultaneously and be assigned their own protected part of memory for their 

programs and data. Although there was only one CPU, each user would have the 

illusion that he or she had sole access to it. McCarthy’s idea was that because 

the computer cycles from instruction to instruction very quickly on a human 

timescale, why not let the CPU switch from one memory area and program to 

another memory area and program every few cycles? This way the user would 

have the illusion that they are sole user of the machine. He called his concept 

 time sharing :  

  Time-sharing to me was one of these ideas that seemed quite inevitable. 

When I was fi rst learning about computers, I [thought] that even if [time 

sharing] wasn’t the way it was already done, surely it must be what everybody 

had in mind to do.  13      

 Time sharing was not what IBM had in mind. It is perhaps understandable that 

IBM had little interest in time sharing and interactive computing, despite its 

longtime involvement in postwar projects with MIT, because all of its business 

customers were happy with their new batch-mode IBM computers.   In order to 

implement time sharing, McCarthy needed IBM to make a modifi cation to the 

hardware of the 704. This was needed for an “interrupt” system that would 

allow the machine to suspend one job and switch to another. Fortunately IBM 

had created such an interrupt modifi cation for the Boeing Company to connect 

its 704 computer directly to data from wind-tunnel experiments. IBM allowed 

MIT to have free use of the package and in 1959 McCarthy was able to demon-

strate an IBM 704 computer executing some of his own code between batch 

jobs. In his live demonstration, the time-sharing software was working fi ne 

until his program unexpectedly ran out of memory  . The machine then printed 

out the error message:

  THE GARBAGE COLLECTOR HAS BEEN CALLED. SOME INTERESTING 

STATISTICS ARE AS FOLLOWS . . .  14     

 B.3.7.      John   McCarthy (1927–2011) 

contributed many groundbreaking 

ideas to computing, such as time 

sharing, the LISP programming 

language, and artifi cial intelligence. 

In recognition of his pioneering 

work in computer science, he 

received the Turing Award in   1971.  

 B.3.8.      Fernando   Corbat ó  pioneered 

the development of operating 

systems that allowed multitasking 

and time sharing. He stated a rule of 

computer science called Corbat ó ’s 

law, according to which “The number 

of lines of code a programmer can 

write in a fi xed period of time is the 

same independent of the language 

used  .”  
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 McCarthy’s audience at MIT thought he had been the victim of a practical 

joke.   In fact he was writing his programs in LISP (List Processing), a high-

level language he had developed for programming artifi cial intelligence 

applications. For this language, he had introduced a  garbage collection  routine 

to reclaim parts of the memory that were no longer needed by the program. 

In effect, McCarthy’s routine was an early attempt to build an automatic 

memory management   system  . 

 It was   not until 1961 that Fernando Corbat ó  ( B.3.8 ) at the MIT Computation 

Center was able to demonstrate a fully working time-sharing system. This was 

called the Compatible Time-Sharing System or CTSS. This was the starting point 

for J. C. R. Licklider’s famous Project MAC, a time-sharing system of which the 

goal was nothing less than what its proponents called “the democratization of 

computing.” The MAC project (MAC could stand for Machine-Aided Cognition 

or Multiple Access Computer) and the Multics (Multiplexed Information and 

Computing Service) time-sharing operating system that developed from these 

beginnings were enormously infl uential and led to spin-off projects in many 

different areas  . Most modern operating systems use an interrupt system to shift 

resources when and where they are needed, making multitasking   possible.   

  The many roles of an operating system 

 Operating   systems have progressed a long way from being a simple col-

lection of subroutines and a batch loader to software systems of enormous 

complexity and power. We end this chapter by listing the major functions 

that a modern operating system must carry out. 

  Device drivers and interrupts 

 One   of the earliest roles of the operating system was to allow users to interact 

with a wide variety of devices, such as keyboards, scanners, printers, disks, and 

mice without having to write their own code. The key to making this possible 

with all the multitude of different devices we have today is to hide all the intri-

cate details of a particular device behind a standard piece of software called a 

 device driver , a program that operates a particular type of device attached to the 

computer. The interface of a device driver with the computer needs to be care-

fully specifi ed because many devices need to access specifi c memory locations. 

They also must generate and respond to control signals called  interrupts , indica-

tions that some event happening in the computer needs immediate attention. 

Handling these interrupts is a key function of the operating system   ( Fig. 3.11 ).   

  Job scheduling 

 If   one program has to wait for some input, another program could start run-

ning. The operating system must have the capability of sending a waiting pro-

gram to “sleep” and then waking it up again with an interrupt when its input 

has arrived and it is ready to proceed. To do this, the operating system needs 

to maintain a table of “active processes,” the operations that are under way. 

This list contains all the details for each process – where it is in main memory, 

Hardware

CPU Management

Memory Management

Device Drivers

I/O Management

Applications

 Fig. 3.11.      A computer’s   operating 

system can be pictured in layers. The 

bottom layer consists of  hardware , the 

mechanical, electronic, and electrical 

parts that make up the machine. Higher 

layers represent the main functions 

of the operating system, including the 

CPU that does the actual computing, 

management of the computer’s memory, 

and device drivers that operate devices 

attached to the computer. Higher still 

is the I/O layer, which enables users to 

communicate with the computer. At the 

top are the applications that perform 

specifi c tasks, such as word processing 

and managing databases  .  
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what the current contents of the CPU registers are, what addresses are in the 

program counter and the memory stack, and so on. When a process becomes 

active, the operating system loads all of this information into the CPU and 

restarts the program from where it left off. The operating system also needs 

to have some “scheduling policy” to decide which should be the next process 

to become active. There are many such scheduling policies that attempt to 

ensure “fair” process selection – but most users would argue that none of 

them are perfect  !  

  Hardware interrupts 

 The   next problem for the operating system is fundamental. Because the oper-

ating system is also a program and the CPU can only run one program at a 

time, how can the operating system hand the CPU over to one process and 

then get back control of the CPU so it can schedule another process? This is 

done by a different type of interrupt, one that switches not between a pro-

cess and the operating system but between the actual computer hardware 

and the operating system. It is called a  hardware interrupt . Such an interrupt 

happens when some event like a keyboard entry or mouse movement occurs. 

The hardware interrupt changes the computer’s operation from  user mode  

to  supervisor mode . Supervisor mode is a method of operation in which the 

operating system can access and use all of the computer’s hardware and 

instructions. By contrast, in user mode only a restricted set of hardware and 

instructions are accessible to the program. At a hardware interrupt, the com-

puter jumps to the  scheduler  program. This software fi nds out what event has 

happened and decides which user process should next gain control of the 

CPU   ( Fig. 3.12 ).   

  System calls 

 In   addition to hiding the complexity of devices through standard interfaces 

with device drivers ( Fig. 3.13 ) and scheduling user processes, the operating 

system manages how programs request services from the hardware. When 

user programs need to access and control devices directly, the role of the 

operating system is to make sure they do so safely without causing damage 

to the hardware. The operating system ensures the safety of the entire com-

puter system through a set of special-purpose functions called  system calls.  

System calls are the means by which programs request a service from the 

operating system  .   

  File management 

 One   special class of system calls has come to symbolize the entire operat-

ing system. These are the calls that create and manipulate the fi le system. 

Computers store data in a hierarchical arrangement of  fi les  or  folders  that are 

accessed through “directories” on a hard disk. The  hard disk , housed in a unit 

called a hard drive consists of magnetic plates called  platters  that store infor-

mation. The computer reads and writes data to the disk. The operating system 

has to keep track of the fi le names and be able to map them to their physical 

location on the disk  .  

CPU

Process5

Process4

Process3

Process2

Process1

 Fig. 3.12.      Perhaps the most important 

task for an operating system is allocating 

time on the CPU to different processes. 

Each process is allowed to use the CPU 

for a limited time.  

Printer 

driver

Camera 

driver

CD 

driver

Operating system

User programs

 Fig. 3.13.      A   signifi cant portion of the 

code of an operating system is made up 

of device drivers. These are programs 

that operate various devices attached 

to the computer, such as a printer, a 

camcorder, or a CD player  .  
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  Virtual memory 

 Besides   managing the fi le store, where the fi les are kept on the hard disk, the 

operating system also manages the computer’s main memory. Computer mem-

ory is expensive, and typically a computer has much less main memory than 

its address space can support.   A computer’s  address space  represents the range 

of numbers that can be used for addressing memory locations. For example, if 

the CPU registers are 32 bits wide, they can hold 2 32  different bit patterns. This 

is the largest possible address space and is usually referred to as 4 gigabytes, 

because 2 32  is 4,294,967,296, or just more than four billion (a thousand million). 

G stands for  giga , a prefi x that means one billion  . Nowadays users can write 

programs without worrying about the limitations of main memory. Clever  vir-

tual memory  software allows user programs to assume they can employ all of 

the addressable memory even though the main memory supports far fewer 

real addresses. The virtual memory creates this illusion by moving blocks of 

memory called “pages” back and forth between the hard disk and the main 

memory.   This leads to a new type of interrupt called a  page fault , which occurs 

when the page that the program needs is not yet in main memory. The oper-

ating system then must suspend the program so that the required page can be 

copied into main memory from the hard disk. To make room for this page in 

main memory, another page must be swapped out  . Memory mismanagement 

is one of the most common causes of “crashes” and there are many elaborate 

strategies for deciding which page is best to move out  .  

  Security 

 One   vital function that an operating system must provide is security ( Fig. 3.14 ). 

For each user the operating system must maintain the confi dentiality and 

integrity of the information they have stored on the computer. A fi rst step 

toward this goal is to identify permitted users by a password so that they must 

use this password to log into the computer before they are allowed access to 

any of its resources. The operating system must keep track of the users and 

passwords and ensure that only those fi les associated with an authorized user 

can be accessed and manipulated by that user.   Alas there is now a thriving 

subculture of  hackers , skilled programmers who try to subvert these security 

 Fig. 3.14.      With   the widespread use of 

the Internet, online security is becoming 

one of the most important aspects of 

present-day   computing.  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core


The Computing Universe56

measures. Suppliers of operating systems are locked into an escalating strug-

gle to develop effective countermeasures to foil   hackers  .  

 We will return to the problem of hackers later in this book when we come 

to the creation of the Internet and the personal computer. In the next chapter we 

look at the continued development of programming languages and of the attempt 

to turn the business of writing programs into a real engineering   discipline  .   

  Key concepts  

   Instruction set   �

  File clerk model of computer   �

  Machine code and assembly language   �

  Subroutines, loops, and branches   �

  FORTRAN and COBOL   �

  Operating system concepts  �

   Batch processing and time sharing   �

  Device drivers   �

  Interrupts   �

  System calls   �

  Memory management   �

  Security     �

  Microcode                 �
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 Microcode 

 In   1951,   at a ceremony to inaugurate 

the Manchester University computer, 

Maurice Wilkes argued that “the best 

way to design an automatic calculating 

machine”  15   was to build its control sec-

tion as a stored-program computer of its 

own  .   Each control operation, such as the 

command to add two numbers, is broken 

down into a series of  micro-operations  that 

are stored in a  microprogram . This method 

had the advantage of allowing the hard-

ware design of the control unit to be sim-

plifi ed while still allowing fl exibility in 

the choice of instruction set  . 

 The   microcode approach turned out 

to be the key insight that enabled IBM to successfully implement its ambitious 

“360” project ( Fig. 3.15 ). The 360 project was an attempt by IBM in the mid-1960s 

to make all IBM computers compatible with one another, simplifying what 

many people saw as the confusing tangle of the company’s machines.   Thomas 

Watson Jr. ( B.3.9 ), then president of IBM, set up a group called the SPREAD 

(Systems Programming, Research Engineering and Development) Committee 

to investigate how this goal could be achieved. At one stage, two key architects of the System/360 family 

of mainframe computers, Fred Brooks and Eugene Amdahl, argued that it couldn’t be done.   However, an 

English engineer called John Fairclough ( B.3.10 ), who was a member of SPREAD  , had studied electrical engi-

neering at Manchester and learned about the advantages of Wilkes’s microprogramming and microcode  . It 

was through him that IBM realized 

that microcode offered a solution 

to the problem of offering a com-

mon instruction set across the 

System/360 family of computers. 

Microcode also gave engineers 

the possibility of offering  back-

ward compatibility , which would 

enable a new computer to run the 

same software as previous ver-

sions of the machine. By install-

ing microcode that implemented 

instructions written for programs 

developed for earlier machines, 

the older programs would still be 

able to run on the new 360   com-

puter  . Fairclough later became 

director of IBM’s UK Develop-

ment Laboratory at Hursley, near 

Winchester ( Fig. 3.16 ). 

 Fig. 3.16.      IBM   Hursley Laboratories near 

Winchester, U.K. The Lab developed 

several IBM computers and much 

important software. The software 

produced by Hursley includes one of 

the best-selling software products of all-

time, CICS, for transaction processing – 

the day-to-day transactions of banking, 

airline ticket systems, and so   on.  

 B.3.10.      John   Fairclough (1930–2003) played 

an important role in the British computing 

industry. He was a member of the IBM 360 

team and, in 1974, he became managing 

director of IBM Hursley Laboratory near 

Winchester in England. In the 1980s, 

Fairclough served as chief scientifi c adviser to 

the British government. He strongly supported 

close collaboration between universities and 

computer designers and manufacturers  .  

 B.3.9.      Thomas   Watson Jr. 

(1914–93), then president of IBM, 

took an unprecedented gamble 

by putting huge resources into 

the IBM 360 project to unify 

IBM’s many different computing 

systems. The gamble paid 

off and changed the history 

of computing. From 1979 to 

1981, Watson served as the U.S. 

ambassador in Moscow  .  

 Fig. 3.15.      The   IBM System/360 was a 

family of general-purpose mainframe 

computers delivered in 1965. It was the 

fi rst line of computers designed to be 

compatible with one   another.  
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