
39

 3 The software is in the holes

 Computer programs are the most complicated
things that humans have ever created.
 Donald Knuth 1

 Software and hardware

 Butler Lampson, recipient of the Turing Award for his contributions to

computer science, relates the followi ng anecdote about software:

 There’s a story about some people who were writing the software for an early

avionics computer. One day they get a visit from the weight control offi cer,

who is responsible for the total weight of the plane.

 “You’re building software?”

 “Yes.”

 “How much does it weigh?”

 “It doesn’t weigh anything.”

 “Come on, you can’t fool me. They all say that.”

 “No, it really doesn’t weigh anything.”

 After half an hour of back and forth he gives it up. But two days later he

comes back and says, “I’ve got you guys pinned to the wall. I came in last

night, and the janitor showed me where you keep your software.”

 He opens a closet door, and there are boxes and boxes of punch cards.

 “You can’t tell me those don’t weigh anything!”

 After a short pause, they explain to him, very gently, that the software is in

the holes . 2

 It is amazing how these holes (Fig. 3.1) have become a multibillion-dollar busi-

ness and arguably one of the main driving forces of modern civilization.

 In the previous chapter we described the idea of separating the physical

hardware from the software. Identifying these two entities is one of the key

concepts of computer science. This is why we were able to go “down” into the

hardware layers and see how the arithmetic and logical operations could be

implemented without worrying about the software. Now let’s go “up” into the

software levels and fi nd out how to tell the computer what to do. Software, also

called a program , is a sequence of instructions which “give orders” to the hard-

ware to carry out a specifi c task . In this program we can use only the operations

 Fig. 3.1. Carving holes on a punch

card. The software in the early days of

computing was represented by these

holes but the cards were actually

punched by machines.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe40

that the hardware can “understand” and execute. These core operations are

called the “instruction set.” In terms of implementation the simplest instruc-

tions are hard-wired in the processor’s circuitry and more complex ones are

constructed from the core instructions as we describe later in this chapter . For

the program to work the instructions must be arranged in the right order and

expressed in an unambiguous way.

 A computer’s need for such exact directions contrasts with our everyday

experience when we give instructions to people. When we ask a person to do

something, we usually rely on some unspoken context, such as our previous

knowledge of the person or the individual’s familiarity with how things work,

so that we do not need to specify exactly what we want to happen. We depend

on the other person to fi ll in the gaps and to understand from experience how

to deal with any ambiguities in our request. Computers have no such under-

standing or knowledge of any particular person, how things work, or how to

fi gure out the solution of the problem. Although some computer scientists

believe that computers may one day develop such “intelligence,” the fact is

that today we still need to specify exactly what we want the computer to do in

mind-numbing detail.

 When we write a program to do some specifi c task, we can assume that our

hardware “understands” how to perform the elementary arithmetic and logic

operations. Writing the precise sequence of operations required to complete

a complicated task in terms of basic machine instructions at the level of logic

gates would make for a very long program. For example, for numerical calcu-

lations we know we have an “add” operation in our basic set of instructions.

However, if we have not told the machine how to carry out a multiply oper-

ation, it will not be able to do a simple calculation such as “multiply 42 by 3.”

Even though for us it is obvious that we can multiply 42 by 3 by using multiple

additions, the computer cannot make this leap of imagination. In this sense,

the computer is “stupid” – it is unable to fi gure out such things for itself. In

compensation, however, our stupid computer can add far faster than we can!

 If we are trying to solve a problem that involves a numerical calculation

requiring several multiplications, it will obviously simplify our program if we

introduced a separate “multiply” instruction for the computer. This instruction

will just be a block of additions contained in a program. Now when we give the

computer the instruction “multiply 42 by 3,” the machine can recognize the

word multiply and can start running this program. This ability to construct com-

pound operations from simple ones and introduce a higher level of abstraction

in this way is one of the fundamental principles of computer science. Moving

up this ladder of abstraction saves us from having to write our programs using

only the most elementary operations.

 In the early days of computing, writing programs was not considered dif-

fi cult. Even von Neumann thought that programming was a relatively simple

task. We now know that writing correct programs is hard and error prone. Why

did early computer scientists so badly underestimate the diffi culty of this task?

There are at least two possible explanations. The pioneers of computing were

mostly male engineers or mathematicians who rarely spent time on the nitty-

gritty details of actually writing programs. Like many men of the time, the early

hardware pioneers thought that the actual coding of programs using binary

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

41The software is in the holes

numbers to represent the instructions and setting the appropriate switches

on the machines was a secondary task, suitable for young women who needed

only appropriate secretarial skills and some aptitude for mathematics. A more

charitable explanation is that the diffi culties of actually constructing the early

computers and keeping them running were so overwhelming that these chal-

lenges completely overshadowed the problem of coding. Looking back, it now

seems naive for the early computer builders to think that once they managed

to get the machine up and running, the coding of a problem for the machine

would be a relatively minor task !

 There were some early warnings that programming might not be so sim-

ple. Maurice Wilkes recalls:

 As soon as we started programming, we found out to our surprise that it was

not as easy to get programs right as we had thought. I can remember the

exact instant when I realised that a large part of my life from then on was

going to be spent in fi nding mistakes in my own programs . 3

 In a similar vein, one of the pioneers of computing, Edsger Dijkstra of the

Netherlands, suggests in his autobiography that programming is even harder

than theoretical physics.

 In 1955 I took the decision not to become a theoretical physicist, but to

become a programmer instead. I took that decision because I had concluded

that of theoretical physics and programming, programming embodied the

greater intellectual challenge. You see, in those days I did not suffer from

intellectual modesty . 4

 Software now surrounds us like the air that we breathe. It runs the communica-

tion networks, the power grid, our PCs, and our smart phones. It is embedded

in cars, aircraft, and buildings, and in banks and national defense systems. We

use software all the time, even if we are not aware of it. When we drive a car,

pay bills, use a phone, or listen to a CD, thousands of lines of code are executed.

 According to Bjarne Stroustrup, the Danish inventor of the C++ programming

language, “Our civilization runs on software .” 5 Let’s take a closer look at how

we write the software that controls such a large part of our lives.

 The i le clerk model

 Computers do much more than just compute. Typically there will be one

part of the machine where the computer does all the basic mathematical oper-

ations while the rest of the machine is dedicated to moving the digital data

around in the form of electrical signals. In many ways, we can think of the oper-

ation of a computer as being like the work that fi le clerks once did in an offi ce.

The fi le clerk was given a job to do and then had to move back and forth to racks

of fi ling cabinets, taking fi les out and putting them back, scribbling notes on

pieces of paper, passing notes around, and so on, until the job was completed

(see Fig. 3.2). It will be helpful to use this analogy of the computer as a fi le clerk

as a starting point to explain some of the basic ideas of a computer’s structure

and organization. This model is a good way for us to understand the essential

ideas of how a computer actually does what it does.

 Fig. 3.2. A fi ling cabinet is a good

analogy for thinking about the way a

computer’s hard disk stores information

in fi les and folders .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe42

 Suppose there is a big company that employs many salespeople to sell its

products and stores a great deal of information about the sales force in a big

fi ling system consisting of cards in cabinets. Let’s say that our fi le clerk knows

how to get information out of the fi ling system. The data are stored in the

fi ling cabinets on “Sales” cards, which contain the name, location, number

of sales, salary, and other information about each salesperson. Suppose we

want the answer to a simple question: “What are the total sales in the state of

Washington?”

 The instructions for the clerk could be:

 Take out a “Sales” card.

 If “Location” says Washington , then add the number of “Sales” to a running

count called “Total.”

 Put the card back.

 Take out the next “Sales” card and repeat.

 This set of instructions looks fi ne, but what do we do if our fi le clerk does not

know what is meant by keeping a “running count”? In this case we need to pro-

vide the clerk with more detailed instructions on exactly how to do that task.

We therefore provide the clerk with a new card called “Total,” and our more

detailed “program” now reads:

 Take out the next “Sales” card.

 If “Location” says Washington , then take out the “Total” card.

 Add the sales number to the number on the card.

 Put the “Total” card back.

 Put the “Sales” card back.

 Take out the next “Sales” card and repeat.

 In a modern computer, of course, the data would not be stored on cards and the

machine does not physically take out a card. Instead, the computer reads the

stored information from a memory register , a storage place in its main memory.

Similarly, the computer can write from such a register to a “card” without actu-

ally physically taking out a card and putting it back.

 To go any further with our analogy, we need to specify more precisely how

our fi le clerk carries out the basic set of operations. One of the most elemen-

tary operations is that of transferring information from the cards that the clerk

reads to some sort of scratch pad or working area where the clerk can do the

arithmetic. We can do this by specifying exactly what our “Take” and “Replace”

card operations mean:

 “Take card X” means that the information on card X should be written on the

scratch pad.

 “Replace card Y” means that the information on the pad should be written

on card Y.

 We now need to instruct the clerk exactly how to check if the location on

card X was Washington . The clerk will need to do this for each card, so he

needs to remember Washington from one card to the next. One way to do this

is to have Washington written on another card we shall call C. The instruc-

tions are now:

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

43The software is in the holes

 Take card X (from store to pad).

 Take card C (from store to pad).

 Compare what is on card X with what is on card C.

 If the contents match, add the “Sales” to the “Total.” If not, replace both

cards and take the next one.

 It would obviously be more effi cient not to keep taking out and putting back

card C, the Washington card. If there is enough room on the scratch pad, the clerk

could store this information on the pad for the duration of the calculation. This

is an example of a trade-off in the hardware design: the balance between the

clerk having to shuffl e cards in and out versus increasing the amount of stor-

age space needed on the pad. We can keep breaking down the clerk’s tasks into

simpler ones until they correspond directly to basic operations that he knows

how to carry out. For example, we need to tell the clerk precisely how to com-

pare the information stored in “Location” and the name Washington.

 Let us teach the fi le clerk how to use the scratch pad. The instructions can

be divided into two groups . One group is a core set of simple procedures that

come with the pad – add, transfer, and so on. In a computer, these instructions,

called the instruction set , are the ones that have been implemented in the hard-

ware: they do not change when we change the problem. They are like the clerk’s

intrinsic abilities . Then there is a set of instructions specifi c to the task at hand,

such as calculating the total number of sales for the state of Washington. This

set of specialized instructions is the “program.” The program’s instructions can

be broken down into operations from the core set as we have seen. The pro-

gram represents the detailed instructions about how to use the clerk’s intrinsic

abilities to do the specifi c job.

 To get the right answer, the clerk must follow exactly the instructions that

constitute the “program” in precisely the right order. We can ensure this by

designating an area on the scratch pad to keep track of which steps have been

completed. In a computer, this area is called a program counter . The program

counter tells the clerk where he is in the list of instructions that constitute the

program. As far as the clerk is concerned, this number is just an “address” that

tells him where to look for the card with the instruction about what to do next.

 The clerk goes and gets this instruction and stores it on the pad. In a computer,

this storage area is called the instruction register . Before carrying out the instruc-

tion, the clerk prepares for the next one by adding one to the number in the

program counter. The clerk will also need some temporary storage areas on the

pad to do the arithmetic, save intermediate values, and so on. In a computer,

these storage areas are called registers . Even if you are only adding two num-

bers, you need to remember the fi rst while you fetch the second. Everything

must be done in the correct sequence and the registers allow us to organize

things so that we achieve this goal .

 Suppose our computer has four registers – A, B, and X plus a special regis-

ter C that we use to store any number that we need to carry (put into another

column) as part of the result of adding two numbers. Let us now look at a pos-

sible set of core instructions, the instruction set , for the part of a computer cor-

responding to the scratch pad. These instructions are the basic ones that will

be built into the computer hardware. The fi rst kind of instruction concerns

the transfer of data from one place to another. For example, suppose we have

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe44

a memory location called M on the pad. We need an instruction that transfers

the contents of register A or B into M or that moves the contents of M into reg-

ister A or B. We will also need to be able to manipulate the program counter so

we can keep track of the current number in register X. We therefore need an

operation that can change this stored number as well as a “clear” instruction

so that we can wipe out what was in a register and set it to zero. Then there

are the instructions for the basic arithmetic operations, such as “add.” These

instructions will allow us to add the contents of register B to the contents of

register A and update the contents of register A with the sum A + B. We also

need the logical operations: the logic gates AND and OR that allow the com-

puter to make decisions depending on the input to these gates. This capability

is important because it enables the computer to follow different branches of a

program depending on the result of the logical operation. We therefore need to

add another class of instructions that enable the computer to “jump” to a spe-

cifi c location. This instruction is called a conditional jump , an action in which the

computer jumps to the new location in the program only if a certain condition

is satisfi ed. This conditional jump instruction allows the machine to leap from

one part of a program to another . And fi nally we will need a command to tell

the computer when to stop, so we should add a “Halt” instruction to our list.

 These elementary instructions now enable us to get the computer to do

many different types of calculations. The machine is able to perform complex

operations by breaking them down into the basic operations it understands. In

the example above, our computer had only four registers. In modern comput-

ers, although the underlying concepts are exactly the same, a larger set of basic

instructions and registers is typically built into the hardware. The lesson we

should take from the fi le clerk analogy is this. As long as our fi le clerk knows

how to move data in and out of registers and can follow a sequence of simple

instructions using a scratch pad, he can accomplish many different complex

tasks . Similarly, a computer does all of these tasks completely mindlessly, just

following these very basic instructions, but the important thing is that it can do

the work very quickly . As Richard Feynman (B.3.1) says, “The inside of a com-

puter is as dumb as hell but it goes like mad! ” 6 A computer can perform many

millions of simple operations a second, and multiply two numbers far faster

than any human. However, it is important to remember that, at its heart, a

computer is just like a very fast, dumb fi le clerk. It is only because a computer

can do the basic operations so quickly that we do not realize that it is in fact

doing things very stupidly .

 Maurice Wilkes and the beginning of software
development

 Let us now look at how the “fi le clerk model” is actually implemented

in real computers. Computers work by allowing small electric charges to

fl ow from the memory to collections of logic gates or to other memory loca-

tions. These fl ows are all regulated by von Neumann’s fetch-execute cycle: at

each step, the computer reads an instruction from memory and performs the

specifi ed action . The section of the computer that does the actual computing

is called the processor or the central processing unit (CPU). The processor has a

 B.3.1. Richard Feynman (1918–88)

lecturing on computing at the

workshop on Idiosyncratic Thinking

at the Esalen Institute. In this lecture

he explained in simple terms how

computers work and what they are

capable of. According to Feynman

calling computers data handlers

would be more fi tting because they

actually spend most of the time

accessing and moving data around

rather than doing calculations .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

45The software is in the holes

number of holding places for data known as registers that may be used to keep

an instruction, a storage address, or any other kind of data . As in the case of

our fi le clerk, some instructions tell the computer to copy words from memory

to the central processor’s registers. Other instructions perform some numerical

or logical operation on this data and place the result in one of the processor’s

registers. The instructions accomplish this by opening control gates that allow

the data to fl ow from location to location within the computer. These control

gates are on the paths between the memory storage cells and the logic gates.

Between each register and each specifi c processing element are data paths with

gates activated by each instruction. In the architecture of most processors and

in their associated instruction sets, this linking of instructions to specifi c data

paths is created using a structure of branching paths called a decision tree . Data

for arithmetic operations are sent one way, while data for logical operations

are sent another way.

 In an actual instruction, branch decisions are represented by 1s and 0s in dif-

ferent places in the instruction (see Fig. 3.3). For example, we might choose the

fi rst bit to be 1 for an arithmetic operation and 0 for a logical operation. The sec-

ond bit could be 1 for an ADD in the arithmetic branch or for an AND gate in the

logic branch. If we have an eight-bit instruction set, the remaining six bits could

be used to specify the three-bit addresses of two registers. Thus the instruction

word 11010001 could mean “Use the arithmetic unit to add the number in regis-

ter 010 to the number in register 001.” Modern instruction sets are more compli-

cated but follow similar principles. For the fi rst computers, programmers had to

carefully think through how the desired sequence of operations translated into

the actual setting of the switches. The use of machine code – the representation of

instructions that were implemented in the computer hardware as binary num-

bers – was the fi rst step in liberating the programmer from needing to know all

the details of the hardware architecture. Writing programs in machine code is

the fi rst step up the software abstraction layers .

 A stored-program computer is one that keeps its instructions, as well as its

data, in its memory . Because it was Maurice Wilkes and the EDSAC who fi rst

proved the feasibility of such an architecture, it is not surprising that many

of the early ideas of programming and software development came from the

Cambridge team. The EDSAC ran its fi rst program on 6 May 1949. The program,

which was the calculation and printing of a table of squares from 0 to 99, ran

for two minutes and thirty-fi ve seconds. Within a year, the EDSAC was provid-

ing a programming service for the entire university. However, as Wilkes had

discovered, programming correctly in machine code was diffi cult. He therefore

introduced a more programmer-friendly notation for the machine instructions.

For example, the EDSAC instruction “Add the short number in memory loca-

tion 25” was stored as the binary string:

 11100000000110010

 This was abbreviated as:

 A 25 S

 where A stood for “add,” 25 was the decimal address of the memory location,

and S indicated that a “short” number was to be used . David Wheeler (B.3.2),

1111111100010110011001000110111000000000101101000000000

0011011000000000011010000000101000010110100001010101100

0100111100101100000111110010011110000100000111110110010

0001011100000001000100110010010011101000111111001111111

1111111111111111111001001110000111001000110010111011001

1011001101111100000101011111011111110010110110011001000

0100011110000111000011111010100000101000101010111000101

1101011101110111010011101011011111001100110100111011101

1000011110010110111110000011010010111011010010111011010

0101101110001110100111010111000101110101110111011101001

1101011101011010011000001101001011101101001011101101010

0101110111001111110011101101111010011000011100010010111

0111001111101001110010111010011000011100010010111011100

1111010001110011111010011100101110100110000111000100101

1101110010110010111011001011101110100110010111110001110

1000101110110010011000011110100110000101011101100010111

0011111001101011101110010110111111001001100001111010011

0000101011101100011110111111011011101101110010111011101

1101000101110110111011011111110100110010110111010001111

0011101010101101101111001111101001100001110001111010110

0000000000000000000000000001111100010001100000000110100

0001100000000000000100000000011011000100100000000000100

0100110010000000100100010001000001000000100101000100011

0000000100110000000000000000010000000001010110001000000

1100000001001100000000000000000100000000011000000010001

0000000010011000001100000000000001000000011100000010001

1000000000001011000000101100000000000001000100010000010

0010000000000010000100000000000000000100000001000100011

0000000000010000100000101000100000000000100000001000100

0000000000100100001000101000000001010000100000010000010

0000001001000110000000000011000011001010000000000000100

0000000000000000000001000000000001000111100011111111100

0000000000110100000000000001101100000000000001101000000

0000000001101010000000000000110111000000000000011011001

0000000000110000001001001011010000000000010000000011101

0011001011110011111010010111011000110110110111000011101

0011101110011100001110010110100111011101110100110011001

0100001101001001000010100100

 Fig. 3.3. This illustration shows the

binary code of the “Hello world”

program generated by the GNU

CC compiler for a modern Intel

 microprocessor.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe46

a graduate student in Cambridge, therefore introduced a program he called

“Initial Orders” that read these more intuitive shorthand terms for the basic

machine instructions, translated them into binary, and loaded them into mem-

ory ready for execution. Using these abbreviations made programs much more

understandable and made it possible for users who were not computer special-

ists to begin to develop programs for the machine.

 Wheeler’s Initial Orders program was really the fi rst practical realization

of von Neumann’s hardware-software interface . It was also the fi rst example of

an assembly language , a programming language that used names instead of num-

bers. Assembly languages constituted the next signifi cant step up the hierarchy

of software abstractions. They were easier to use than machine code but still

much harder than later high-level languages. Writing an assembly language

instruction such as “MOV R1 R2,” meaning “Move contents of register 1 to reg-

ister 2,” allowed the user to avoid having to think about the explicit switches

that needed to open to direct the fl ow of charge from register 1 to register

2 . Similarly, memory addresses , the binary numbers that the computer used to

track where data and instructions are stored in its memory, were replaced with

more intuitive names like “sum” or “total.” Although assembly languages made

the writing of programs easier, computers still ran with machine code, the

low-level language composed of binary numbers. To run an assembly language

program, the assembly language fi rst has to be translated into machine code.

The need for such translation required the development of programs called

 assemblers that could perform the translation and produce machine code as out-

put . On the EDSAC, this translation was originally done with Wheeler’s Initial

Orders program, which we might now call the fi rst assembler .

 Despite the great simplifi cation introduced by using assembly language

to write programs, the Cambridge team quickly found that a large amount of

time was being taken up in fi nding errors in programs. They therefore intro-

duced the idea of a “library” of tested, debugged portions of programs that

could be reused in other programs. These blocks of trusted code are now called

 subroutines . For these blocks of code to be used in different programs, we need

to use the Wheeler jump . As we have seen in our fi le clerk discussion, the com-

puter takes its next instruction from the memory location specifi ed in the

special memory register called the program counter . After each instruction is

read, the contents of the program counter are increased by one to point to the

next instruction in memory. With a jump instruction, the computer can copy

the memory address corresponding to the beginning of the subroutine code

into the program counter. The computer is no longer restricted to the next

instruction but can jump to the starting address of the subroutine code. The

program will then follow the instructions in the subroutine code incrementing

the program counter from that entry point. Of course, to know where in the

program the subroutine should return after it has completed its execution,

the computer also needs to have saved the previous contents of the program

counter in another memory location, which was an essential feature of the

Wheeler jump .

 If we want to call a subroutine from within another subroutine, we will

clearly need to save the multiple return addresses. We cannot use just one spe-

cial memory location because the return address of the fi rst subroutine will be

 B.3.2. David John Wheeler

(1927–2004) was a British computing

pioneer who made a major

contribution to the construction

and programming of the EDSAC

computer. With his colleagues

Maurice Wilkes and Stanley Gill,

Wheeler invented subroutines , the

creation of reusable blocks of

code. Wheeler also helped develop

methods of encryption , which puts a

message into a form that can be read

only by the sender and the intended

recipient. Wheeler, Wilkes, and

Gill wrote the fi rst programming

textbook in 1951, The Preparation

of Programs for an Electronic Digital

Computer .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

47The software is in the holes

overwritten by the return address of the second and so on. To overcome this

diffi culty, computer scientists introduced the idea of a group of sequential stor-

age locations linked together to operate as a memory stack (Fig. 3.4). The memory

stack functions much like a stack of dinner plates: plates can only be added or

removed at the top of the stack. This is an example of a simple data structure

that is useful in many applications. It is called a LIFO stack , which stands for

Last In, First Out. This data structure is able to handle the storage of the return

addresses of nested subroutines .

 The conditional jump instruction introduces two powerful new concepts

for programmers: loops and branches . With a conditional jump, the program only

performs the jump if a certain condition is met; if not, the program continues

down the original path. A loop is where a block of code is executed a specifi ed

number of times. This can be done by keeping a tally called a loop count that is

increased by one on each pass through the code. At the end of each block of

code, the loop count is tested to see if the specifi ed number of repetitions has

been carried out: if not, the program is sent back to the beginning of the loop.

A branch is just what it says: the choice of what section of code to execute is

made depending on the result of the condition .

 In 1951, Maurice Wilkes, with David Wheeler and Stanley Gill, wrote

up their experiences in teaching programming. Their book The Preparation of

Programs for an Electronic Digital Computer was the fi rst textbook on computer

programming. Also in the same year, Wheeler was awarded the fi rst PhD in

computer science for his work with the EDSAC.

 FORTRAN and COBOL: The story of John Backus
and Grace Hopper

 Although the computing fraternity was very much male-dominated in the

early years, there were a few infl uential pioneers who were women. Probably

the most famous is Grace Hopper, or Rear Admiral Professor Grace Hopper as

she later became (B.3.3). Hopper received her PhD in mathematics

from Yale University in 1934 and was teaching at Vassar College in

Poughkeepsie, New York, when the United States entered World

War II. She enlisted in the Naval Reserve in December 1943 and

graduated at the top of her class in June 1944.

 The Harvard Mark I of Howard Aiken had been commandeered

for the war effort, and Aiken was now a Naval Reserve commander

(B.3.4). He liked to say that he was the fi rst naval offi cer in history

who commanded a computer. Although Aiken’s machine was not

very infl uential on the future development of digital computers,

Aiken was one of the fi rst to recognize the importance of program-

ming as a discipline. He persuaded Harvard to start the fi rst master’s

degree courses in what would now be called computer science. In

addition he insisted that the Mark I project be staffed with trained

mathematicians. And this is how Lieutenant Grace Hopper of the U.S.

Navy found herself being greeted by Aiken in the summer of 1944:

 [Howard Aiken] waved his hand and said: “That’s a computing

machine.” I said, “Yes, Sir.” What else could I say? He said he would

 Fig. 3.4. The information stored in a

computer’s memory is much like a stack

of plates. Just as we can add or take

plates only from the top of the stack, the

last data added to memory must be the

fi rst removed .

 B.3.3. Grace Hopper (1906–92), an American

computer scientist, led the team that developed

COBOL, the fi rst programming language for business

that allowed programmers to use everyday words.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe48

like to have me compute the coeffi cients of the arc tangent series, for

Thursday. Again, what could I say? “Yes, Sir.” I did not know what on earth

was happening, but that was my meeting with Howard Hathaway Aiken. 7

 Hopper is credited with introducing the word bug into computer terminology

after her team found a real insect, a moth, stuck in one of the machine’s relays

 (Fig. 3.5). At the end of the war, Hopper chose to remain at Harvard, program-

ming fi rst the Mark I and then the Mark II machines . But in 1949 she defected

from Aiken’s camp and joined the opposition, the Eckert-Mauchly Computer

Corporation in Philadelphia, which Aiken had dismissed as a foolish idea . This

company was Eckert and Mauchly’s brave effort to commercialize their EDVAC

ideas by building the UNIVAC computer. At the time, there was great skep-

ticism as to whether there was a signifi cant market for business computers.

Hopper later joked:

 Mauchly and Ekert had chosen their building perfectly. It was between a junk

yard and a cemetery, so if it all went wrong . . . they could throw the UNIVAC

out of one window and themselves out of the other . 8

 Following along the same lines as Wilkes and Wheeler in Cambridge,

Hopper and her team began to code their programs in UNIVAC assembly

language. In doing this, she produced a program that would translate the

assembly code into the binary machine code automatically, as Wheeler had

done with his Initial Orders program. However, Hopper had much larger

ambitions than using just primitive abbreviations for the low-level opera-

tions of assembly language. She began to investigate whether it was possible

to write a program using expressions that more closely resembled every-

day English. Initially focusing on creating a more natural language for sci-

entifi c computing, Hopper experimented with a language called A-0. She

introduced the term compiler for the software system she created to translate

 B.3.4. Howard Aiken (1900–73), an

American physicist and computer

pioneer, proposed to IBM in 1937

the idea of constructing a large-scale

electromechanical computer. By

1944, the computer, known as Mark

I, became operational. The machine

was fi fty-fi ve feet long, eight feet

high, and about two feet wide .

 Fig. 3.5. The fi rst recorded appearance

of a computer “bug” dates from

1947. Grace Hopper is credited with

introducing the word into computer

terminology after her team found a real

insect, a moth, stuck in one of the relays

of the Mark II computer. They removed

the insect and taped it into the logbook .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

49The software is in the holes

programs written in A-0 to UNIVAC machine code. The results, she reported,

were mixed:

 The A-0 compiler worked, but the results were far too ineffi cient to be

commercially acceptable. Even quite simple programs would take as long as

an hour to translate, and the resulting programs were woefully slow . 9

 However Hopper remained an energetic advocate for automatic programming , in

which the computer generates the machine code from a program written in a

“high-level” programming language . She and her team therefore persevered

with the development of the A-0 language and its compiler. In 1955, the com-

pany released the MATH-MATIC language for the UNIVAC (Fig. 3.6), and a news

release declared, “Automatic programming, tried and tested since 1950, elimi-

nates communication with the computer in special code or language .” These

attempts in the early 1950s had shown that the outstanding problem in pro-

gramming technology was to produce a compiler that could generate programs

as good as those written by an experienced assembly language or machine code

 programmer. Enter John Backus and IBM (B.3.5).

 IBM introduced its 704 computer for scientifi c applications in 1954. A

major advance in the architecture of the 704 was that the hardware included

dedicated circuits to perform the operations needed to handle fl oating-point

numbers – numbers containing fractions in which the decimal point is moved

to a standard position in order to simplify the hardware required to manip-

ulate such fractional numbers – and not just integers (whole numbers). Now

programmers could add, subtract, multiply, and divide real numbers as eas-

ily as performing these same operations with integers, without having to call

on complex subroutines to do these operations. Backus had been developing

an assembly language for another IBM computer, but in late 1953 he sent

a proposal to his manager suggesting the development of what he called a

“higher level language” and compiler for the IBM 704 . It is interesting that

Backus made the case for such a language mainly on economic grounds,

arguing that “programming and debugging accounted for as much as three-

quarters of the cost of operating a computer; and obviously as computers got

cheaper, this situation would get worse.” 10

 The project was approved, and the FORTRAN – for FORmula TRANslation –

project began in early 1954. Producing code that was nearly as good as that

written by an experienced machine code programmer was always the overrid-

ing goal of Backus’s team:

 We did not regard language design as a diffi cult problem, merely a simple

prelude to the real problem: designing a compiler which could produce

effi cient [binary] programs. Of course one of our goals was to design a language

which would make it possible for engineers and scientists to write programs

for the 704. We also wanted to eliminate a lot of the bookkeeping and detailed

repetitive planning which hand coding [in assembly language] involved. 11

 In April 1957, the language and the compiler were fi nished. The compiler con-

sisted of about twenty thousand lines of machine code and had taken a team of

about a dozen programmers more than two years to produce.

 B.3.5. John Backus (1924–2007), a

computer scientist at IBM, developed

FORTRAN, the fi rst programming

language that enabled scientists

and engineers to write their own

programs .

 Fig. 3.6. In 1955, Hopper and her team

released the MATH-MATIC language for

the UNIVAC. MATH-MATIC was one of

the fi rst higher-level languages above

assembly language to be developed .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe50

 A typical statement in FORTRAN looks very like the underlying mathemat-

ical equation. Thus

 y e x xx −ex +sin 2

 became

 y F F X X() ()EXP SFF XXF ()) INFF * *2

 Because of this simplicity and how closely it resembles the language of mathe-

matics, FORTRAN rapidly became the dominant language for scientifi c comput-

ing. Backus’s team had come very close to meeting their design goal:

 In practice the FORTRAN system produced programs that were 90% as good

as those written by hand, as measured by the memory they occupied or

the time they took to run. It was a phenomenal aid to the productivity of

a programmer. Programs that had taken days or weeks to write and get

working could now be completed in hours or days. 12

 FORTRAN also produced another great benefi t – the portability of programs

across different machines. Although the fi rst compiler was written for the

IBM 704, very soon there were FORTRAN compilers for other IBM computers .

Competing computer manufacturers also soon produced FORTRAN compilers

for their machines. For the fi rst time there were computers capable of speaking

the same language so that programmers did not have to learn a new language

for every new computer.

 In 1961, Daniel McCracken published the fi rst FORTRAN programming

textbook for use in undergraduate courses in universities. In 1966, FORTRAN

became the fi rst programming language to be formally standardized by ANSI,

the American National Standards Institute, the organization that creates stan-

dards for the U.S. computer industry (Fig. 3.7). The FORTRAN language, now

written Fortran with only one capital letter, has evolved with time to incorpo-

rate new structures and technologies from research on programming languages

by computer scientists. It is nevertheless surprising that Fortran programs are

still much used in scientifi c computing more than fi fty years after the fi rst

introduction of the language.

 The other major breakthrough in early computer programming was a

language for business applications. After her work on MATH-MATIC, Hopper

turned to the problem of making business programming – the tasks needed to

run a business such as managing accounting and inventory – easier and more

intelligible to that community. By the end of 1956, she had produced a com-

piler for FLOW-MATIC, a language that contained around twenty English-like

expressions and allowed the use of long character names (Fig. 3.8). For exam-

ple, to test whether the value of variable A is greater than that of variable B, in

Fortran we would write:

 IF A.GT. B

 By contrast, in a language like FLOW-MATIC, one would write a similar com-

parison test as:

 Fig. 3.7. The fi rst FORTRAN book

from IBM.

 Fig. 3.8. FLOW-MATIC, developed by

Grace Hopper in 1956, was the fi rst

programming language that allowed

users to describe operations in English-

like expressions .

 Fig. 3.9. COBOL, one of the fi rst

programming languages, is still alive

and well. Much business transaction

software is written in COBOL and there

are about 200 billion lines of code in use.

Ninety percent of fi nancial transactions

are written in COBOL .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

51The software is in the holes

 IF EMPLOYEE-HOURS IS GREATER THAN MAXIMUM

 The language not only made the programs more intelligible to managers but

also provided a form of self-documentation that describes what the program is

supposed to do.

 In May 1959 the U.S. Department of Defense started an initiative to develop

a common business language. This led to the COBOL (Fig. 3.9) programming

language – for COmmon Business-Oriented Language – which was strongly

infl uenced by Hopper’s earlier FLOW-MATIC language . For this reason, Hopper

is sometimes known as “the mother of COBOL.” What made the language so

successful was a declaration by the U.S. government a year later that it would

not lease or purchase any new computer without a COBOL compiler. At the end

of 1966, Hopper retired from the Navy with the rank of commander. Less than

a year later she was recalled to active duty and tasked with the job of rewrit-

ing the Navy’s payroll system in COBOL. She was promoted to rear admiral

in 1985 .

 For the next twenty years, from about 1960 to about 1980, FORTRAN and

COBOL accounted for approximately 90 percent of all applications programs.

 Backus went on to develop a notation to capture the “grammar” of a program-

ming language – that is, the way in which the special words and concepts of

a language can be put together. A Danish computer scientist, Peter Naur, then

simplifi ed Backus’s notation so that the grammar of any language could be cap-

tured in what is now known as Backus-Naur Form or BNF (B.3.6). In the 1970s

Bell Labs produced a compiler-compiler , a program that could transform a BNF

specifi cation into a compiler for that language . There has been much research

and experimentation with programming in the fi fty years since FORTRAN and

 COBOL . We will look at some of these developments in the next chapter.

 Early operating systems

 In using even these early machines, it clearly made no sense for each

user to have to fi gure out independently how to interact with the computer.

Originally, users might input their programs and data – send instructions and

information to the computer – using a punched card or paper tape reader. Later

the input process might involve a keyboard, mouse, or, nowadays, a touch-

enabled tablet. Each user could also use disk drives to access and store data,

and could read off the results from a printer or some form of screen display. So

although the earliest computers had no real operating system – that is, no soft-

ware to control the operation of the entire computer system with anything like

the sophistication we see today – it was still useful to collect together all the

I/O subroutines – programs for input and output – and have them permanently

loaded on the machine.

 In the earliest days of computers, users had to book a time slot on the

machine, so graduate students were naturally allocated the nighttime slots!

Users loaded their programs into the machine using punched cards or paper

tape and then waited while the computer ran their program (Fig. 3.10). This

personalized system quickly evolved to a more effi cient system in which the

users were isolated from the machine by “operators.” Users now had to give

their program deck to the operator, who would load a batch of such programs

 B.3.6. Peter Naur, a Danish computer

scientist, helped develop a successful

programming language called Algol

60. In 2005, Naur received the Turing

Award for his contributions to

computer science .

 Fig. 3.10. Early computers used punched

cards to input programs and data.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe52

into the machine and then return the output to the users when the jobs were

completed. The “operating system” was just the loading routine used by the

operator to schedule the jobs on the computer plus the collection of I/O subrou-

tines. As commercial computers began to appear in the early 1950s, such batch

processing was the norm .

 By the mid- to late 1950s, the limitations of batch processing were becom-

ing apparent, and in universities there was a great deal of experimentation

with the idea of more interactive computing. In 1955, John McCarthy (B.3.7),

 one of the pioneers of artifi cial intelligence , spent a summer at IBM’s laboratory

in Poughkeepsie and got to learn computer programming through batch pro-

cessing on the IBM 704 computer . He was appalled at having to wait to learn

whether or not his program had run correctly. He wanted the ability to debug

the program interactively in “real time,” before he had lost his train of thought.

Because computers were very expensive systems at that time, McCarthy con-

ceived of many users sharing the same computer at one time instead of just

being allowed access to the machine sequentially, as in batch processing. For

such sharing to be possible, multiple users had to be connected to the machine

simultaneously and be assigned their own protected part of memory for their

programs and data. Although there was only one CPU, each user would have the

illusion that he or she had sole access to it. McCarthy’s idea was that because

the computer cycles from instruction to instruction very quickly on a human

timescale, why not let the CPU switch from one memory area and program to

another memory area and program every few cycles? This way the user would

have the illusion that they are sole user of the machine. He called his concept

 time sharing :

 Time-sharing to me was one of these ideas that seemed quite inevitable.

When I was fi rst learning about computers, I [thought] that even if [time

sharing] wasn’t the way it was already done, surely it must be what everybody

had in mind to do. 13

 Time sharing was not what IBM had in mind. It is perhaps understandable that

IBM had little interest in time sharing and interactive computing, despite its

longtime involvement in postwar projects with MIT, because all of its business

customers were happy with their new batch-mode IBM computers. In order to

implement time sharing, McCarthy needed IBM to make a modifi cation to the

hardware of the 704. This was needed for an “interrupt” system that would

allow the machine to suspend one job and switch to another. Fortunately IBM

had created such an interrupt modifi cation for the Boeing Company to connect

its 704 computer directly to data from wind-tunnel experiments. IBM allowed

MIT to have free use of the package and in 1959 McCarthy was able to demon-

strate an IBM 704 computer executing some of his own code between batch

jobs. In his live demonstration, the time-sharing software was working fi ne

until his program unexpectedly ran out of memory . The machine then printed

out the error message:

 THE GARBAGE COLLECTOR HAS BEEN CALLED. SOME INTERESTING

STATISTICS ARE AS FOLLOWS . . . 14

 B.3.7. John McCarthy (1927–2011)

contributed many groundbreaking

ideas to computing, such as time

sharing, the LISP programming

language, and artifi cial intelligence.

In recognition of his pioneering

work in computer science, he

received the Turing Award in 1971.

 B.3.8. Fernando Corbat ó pioneered

the development of operating

systems that allowed multitasking

and time sharing. He stated a rule of

computer science called Corbat ó ’s

law, according to which “The number

of lines of code a programmer can

write in a fi xed period of time is the

same independent of the language

used .”

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

53The software is in the holes

 McCarthy’s audience at MIT thought he had been the victim of a practical

joke. In fact he was writing his programs in LISP (List Processing), a high-

level language he had developed for programming artifi cial intelligence

applications. For this language, he had introduced a garbage collection routine

to reclaim parts of the memory that were no longer needed by the program.

In effect, McCarthy’s routine was an early attempt to build an automatic

memory management system .

 It was not until 1961 that Fernando Corbat ó (B.3.8) at the MIT Computation

Center was able to demonstrate a fully working time-sharing system. This was

called the Compatible Time-Sharing System or CTSS. This was the starting point

for J. C. R. Licklider’s famous Project MAC, a time-sharing system of which the

goal was nothing less than what its proponents called “the democratization of

computing.” The MAC project (MAC could stand for Machine-Aided Cognition

or Multiple Access Computer) and the Multics (Multiplexed Information and

Computing Service) time-sharing operating system that developed from these

beginnings were enormously infl uential and led to spin-off projects in many

different areas . Most modern operating systems use an interrupt system to shift

resources when and where they are needed, making multitasking possible.

 The many roles of an operating system

 Operating systems have progressed a long way from being a simple col-

lection of subroutines and a batch loader to software systems of enormous

complexity and power. We end this chapter by listing the major functions

that a modern operating system must carry out.

 Device drivers and interrupts

 One of the earliest roles of the operating system was to allow users to interact

with a wide variety of devices, such as keyboards, scanners, printers, disks, and

mice without having to write their own code. The key to making this possible

with all the multitude of different devices we have today is to hide all the intri-

cate details of a particular device behind a standard piece of software called a

 device driver , a program that operates a particular type of device attached to the

computer. The interface of a device driver with the computer needs to be care-

fully specifi ed because many devices need to access specifi c memory locations.

They also must generate and respond to control signals called interrupts , indica-

tions that some event happening in the computer needs immediate attention.

Handling these interrupts is a key function of the operating system (Fig. 3.11).

 Job scheduling

 If one program has to wait for some input, another program could start run-

ning. The operating system must have the capability of sending a waiting pro-

gram to “sleep” and then waking it up again with an interrupt when its input

has arrived and it is ready to proceed. To do this, the operating system needs

to maintain a table of “active processes,” the operations that are under way.

This list contains all the details for each process – where it is in main memory,

Hardware

CPU Management

Memory Management

Device Drivers

I/O Management

Applications

 Fig. 3.11. A computer’s operating

system can be pictured in layers. The

bottom layer consists of hardware , the

mechanical, electronic, and electrical

parts that make up the machine. Higher

layers represent the main functions

of the operating system, including the

CPU that does the actual computing,

management of the computer’s memory,

and device drivers that operate devices

attached to the computer. Higher still

is the I/O layer, which enables users to

communicate with the computer. At the

top are the applications that perform

specifi c tasks, such as word processing

and managing databases .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe54

what the current contents of the CPU registers are, what addresses are in the

program counter and the memory stack, and so on. When a process becomes

active, the operating system loads all of this information into the CPU and

restarts the program from where it left off. The operating system also needs

to have some “scheduling policy” to decide which should be the next process

to become active. There are many such scheduling policies that attempt to

ensure “fair” process selection – but most users would argue that none of

them are perfect !

 Hardware interrupts

 The next problem for the operating system is fundamental. Because the oper-

ating system is also a program and the CPU can only run one program at a

time, how can the operating system hand the CPU over to one process and

then get back control of the CPU so it can schedule another process? This is

done by a different type of interrupt, one that switches not between a pro-

cess and the operating system but between the actual computer hardware

and the operating system. It is called a hardware interrupt . Such an interrupt

happens when some event like a keyboard entry or mouse movement occurs.

The hardware interrupt changes the computer’s operation from user mode

to supervisor mode . Supervisor mode is a method of operation in which the

operating system can access and use all of the computer’s hardware and

instructions. By contrast, in user mode only a restricted set of hardware and

instructions are accessible to the program. At a hardware interrupt, the com-

puter jumps to the scheduler program. This software fi nds out what event has

happened and decides which user process should next gain control of the

CPU (Fig. 3.12).

 System calls

 In addition to hiding the complexity of devices through standard interfaces

with device drivers (Fig. 3.13) and scheduling user processes, the operating

system manages how programs request services from the hardware. When

user programs need to access and control devices directly, the role of the

operating system is to make sure they do so safely without causing damage

to the hardware. The operating system ensures the safety of the entire com-

puter system through a set of special-purpose functions called system calls.

System calls are the means by which programs request a service from the

operating system .

 File management

 One special class of system calls has come to symbolize the entire operat-

ing system. These are the calls that create and manipulate the fi le system.

Computers store data in a hierarchical arrangement of fi les or folders that are

accessed through “directories” on a hard disk. The hard disk , housed in a unit

called a hard drive consists of magnetic plates called platters that store infor-

mation. The computer reads and writes data to the disk. The operating system

has to keep track of the fi le names and be able to map them to their physical

location on the disk .

CPU

Process5

Process4

Process3

Process2

Process1

 Fig. 3.12. Perhaps the most important

task for an operating system is allocating

time on the CPU to different processes.

Each process is allowed to use the CPU

for a limited time.

Printer

driver

Camera

driver

CD

driver

Operating system

User programs

 Fig. 3.13. A signifi cant portion of the

code of an operating system is made up

of device drivers. These are programs

that operate various devices attached

to the computer, such as a printer, a

camcorder, or a CD player .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

55The software is in the holes

 Virtual memory

 Besides managing the fi le store, where the fi les are kept on the hard disk, the

operating system also manages the computer’s main memory. Computer mem-

ory is expensive, and typically a computer has much less main memory than

its address space can support. A computer’s address space represents the range

of numbers that can be used for addressing memory locations. For example, if

the CPU registers are 32 bits wide, they can hold 2 32 different bit patterns. This

is the largest possible address space and is usually referred to as 4 gigabytes,

because 2 32 is 4,294,967,296, or just more than four billion (a thousand million).

G stands for giga , a prefi x that means one billion . Nowadays users can write

programs without worrying about the limitations of main memory. Clever vir-

tual memory software allows user programs to assume they can employ all of

the addressable memory even though the main memory supports far fewer

real addresses. The virtual memory creates this illusion by moving blocks of

memory called “pages” back and forth between the hard disk and the main

memory. This leads to a new type of interrupt called a page fault , which occurs

when the page that the program needs is not yet in main memory. The oper-

ating system then must suspend the program so that the required page can be

copied into main memory from the hard disk. To make room for this page in

main memory, another page must be swapped out . Memory mismanagement

is one of the most common causes of “crashes” and there are many elaborate

strategies for deciding which page is best to move out .

 Security

 One vital function that an operating system must provide is security (Fig. 3.14).

For each user the operating system must maintain the confi dentiality and

integrity of the information they have stored on the computer. A fi rst step

toward this goal is to identify permitted users by a password so that they must

use this password to log into the computer before they are allowed access to

any of its resources. The operating system must keep track of the users and

passwords and ensure that only those fi les associated with an authorized user

can be accessed and manipulated by that user. Alas there is now a thriving

subculture of hackers , skilled programmers who try to subvert these security

 Fig. 3.14. With the widespread use of

the Internet, online security is becoming

one of the most important aspects of

present-day computing.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

The Computing Universe56

measures. Suppliers of operating systems are locked into an escalating strug-

gle to develop effective countermeasures to foil hackers .

 We will return to the problem of hackers later in this book when we come

to the creation of the Internet and the personal computer. In the next chapter we

look at the continued development of programming languages and of the attempt

to turn the business of writing programs into a real engineering discipline .

 Key concepts

 Instruction set �

 File clerk model of computer �

 Machine code and assembly language �

 Subroutines, loops, and branches �

 FORTRAN and COBOL �

 Operating system concepts �

 Batch processing and time sharing �

 Device drivers �

 Interrupts �

 System calls �

 Memory management �

 Security �

 Microcode �

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

57The software is in the holes

 Microcode

 In 1951, at a ceremony to inaugurate

the Manchester University computer,

Maurice Wilkes argued that “the best

way to design an automatic calculating

machine” 15 was to build its control sec-

tion as a stored-program computer of its

own . Each control operation, such as the

command to add two numbers, is broken

down into a series of micro-operations that

are stored in a microprogram . This method

had the advantage of allowing the hard-

ware design of the control unit to be sim-

plifi ed while still allowing fl exibility in

the choice of instruction set .

 The microcode approach turned out

to be the key insight that enabled IBM to successfully implement its ambitious

“360” project (Fig. 3.15). The 360 project was an attempt by IBM in the mid-1960s

to make all IBM computers compatible with one another, simplifying what

many people saw as the confusing tangle of the company’s machines. Thomas

Watson Jr. (B.3.9), then president of IBM, set up a group called the SPREAD

(Systems Programming, Research Engineering and Development) Committee

to investigate how this goal could be achieved. At one stage, two key architects of the System/360 family

of mainframe computers, Fred Brooks and Eugene Amdahl, argued that it couldn’t be done. However, an

English engineer called John Fairclough (B.3.10), who was a member of SPREAD , had studied electrical engi-

neering at Manchester and learned about the advantages of Wilkes’s microprogramming and microcode . It

was through him that IBM realized

that microcode offered a solution

to the problem of offering a com-

mon instruction set across the

System/360 family of computers.

Microcode also gave engineers

the possibility of offering back-

ward compatibility , which would

enable a new computer to run the

same software as previous ver-

sions of the machine. By install-

ing microcode that implemented

instructions written for programs

developed for earlier machines,

the older programs would still be

able to run on the new 360 com-

puter . Fairclough later became

director of IBM’s UK Develop-

ment Laboratory at Hursley, near

Winchester (Fig. 3.16).

 Fig. 3.16. IBM Hursley Laboratories near

Winchester, U.K. The Lab developed

several IBM computers and much

important software. The software

produced by Hursley includes one of

the best-selling software products of all-

time, CICS, for transaction processing –

the day-to-day transactions of banking,

airline ticket systems, and so on.

 B.3.10. John Fairclough (1930–2003) played

an important role in the British computing

industry. He was a member of the IBM 360

team and, in 1974, he became managing

director of IBM Hursley Laboratory near

Winchester in England. In the 1980s,

Fairclough served as chief scientifi c adviser to

the British government. He strongly supported

close collaboration between universities and

computer designers and manufacturers .

 B.3.9. Thomas Watson Jr.

(1914–93), then president of IBM,

took an unprecedented gamble

by putting huge resources into

the IBM 360 project to unify

IBM’s many different computing

systems. The gamble paid

off and changed the history

of computing. From 1979 to

1981, Watson served as the U.S.

ambassador in Moscow .

 Fig. 3.15. The IBM System/360 was a

family of general-purpose mainframe

computers delivered in 1965. It was the

fi rst line of computers designed to be

compatible with one another.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.006
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.006
http:/www.cambridge.org/core

