
58

 4 Programming languages and

software engineering

 The major cause of the software crisis is that the
machines have become several orders of magnitude
more powerful! To put it quite bluntly: as long as
there were no machines, programming was no
problem at all; when we had a few weak computers,
programming became a mild problem, and now we
have gigantic computers, programming has become
an equally gigantic problem .
 Edsger Dijkstra 1

 The software crisis

 The term software engineering originated in the early 1960s, and the North

Atlantic Treaty Organization sponsored the fi rst conference on the “software

crisis” in 1968 in Garmisch-Partenkirchen, West Germany. It was at this confer-

ence that the term software engineering fi rst appeared . The conference refl ected

on the sad fact that many large software projects ran over budget or came in

late, if at all. Tony Hoare, a recipient of the Turing Award for his contributions

to computing, ruefully remembers his experience of a failed software project:

 There was no escape: The entire Elliott 503 Mark II software project had to

be abandoned, and with it, over thirty man-years of programming effort,

equivalent to nearly one man’s active working life, and I was responsible,

both as designer and as manager, for wasting it . 2

 In his classic book The Mythical Man-Month , Fred Brooks (B.4.1) of IBM draws on

his experience developing the operating system for IBM’s massive System/360

project. Brooks makes some sobering refl ections on software engineering, say-

ing, “It is a very humbling experience to make a multimillion-dollar mistake,

but it is also very memorable .” 3

 In this chapter we will explore two aspects of the way the software indus-

try has addressed this crisis: the evolution of programming languages (Fig. 4.1)

and the emergence of software engineering methodologies. We will see how

two major ideas provide the basis for modern software development: (1) struc-

tured programming , in which the statements are organized in a specifi c way to

minimize error ; and (2) object-oriented software , which is organized around the

 B.4.1. Fred Brooks made a major

contribution to the design of

IBM/360 computers. His famous

book The Mythical Man-Month

describes his experiences in software

development .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

59Programming languages and software engineering

objects the programmer wants to manipulate rather than the logic required to

do individual operations. To computer scientists, an object is any item that can

be individually selected and handled. In object-oriented programming, an object

consists of not only the data but also the methods employed to operate on that

type of data . In addition, the introduction of engineering practices in the speci-

fi cation, design, coding, and testing of software has helped the software indus-

try make progress toward taming the software crisis. However, it is important

to remember that even with the best software engineering practices of today,

software systems contain somewhere between ten and ten thousand errors per

million lines of code. It is therefore not surprising that testing and bug fi xing

play a large role in the life cycle of software . Lastly, we shall take a look at an

alternative model of software development. This model is based on crowdsourc-

ing , which incorporates contributions from a large group of people, and the

free sharing of the source code , the program instructions in their original form.

Such sharing of source code is called the open-source approach. One of its major

advantages is that it permits rapid fi nding of bugs. Eric Raymond has memora-

bly summarized this idea as “Given enough eyeballs, all bugs are shallow.” 4 In

other words, the more people who see and test a set of code, the more likely any

fl aws will be caught and fi xed quickly. Raymond called this “Linus’s Law” after

Linus Torvalds, creator of the open-source Linux operating system . However,

other experienced software engineers would contest this statement !

 Elements of modern programming languages

 Before the introduction of FORTRAN in the 1950s, programmers had to

work in machine code, made up of binary commands (Fig. 4.2), or in assembly

languages, composed of symbolic expressions, both of which were diffi cult and

time-consuming to write. FORTRAN was the fi rst commercially successful high-

level language . That is, it resembled natural human language, was easy to learn,

and required less knowledge of the computer on which it would be run . Many

people expected that FORTRAN would make software easy to create and sim-

ple to fi x. It is amusing to look back at the optimism expressed in the original

FORTRAN proposal from John W. Backus in 1954:

 Since FORTRAN should virtually eliminate coding and debugging, it should be

possible to solve problems for less than half the cost that would be required

without such a system. Furthermore, since it will be possible to devote nearly

all usable machine time to problem solution instead of only half the usable

machine time, the output of a given machine should be almost doubled . 5

 So how did software production reach such a crisis point only a decade later?

Part of the answer lies in the features of early languages.

 We will begin by looking at some early programming languages and three

concepts that led to better programming: (1) type checking , which checks and

enforces certain rules to help prevent one major category of errors; (2) recursion ,

where a function can call itself ; and (3) dynamic data structures . A data structure

is any organized form, such as a list or fi le, in which connected data items are

held in a computer. A dynamic data structure provides a way of organizing data

that allows more effi cient use of computer memory .

 Fig. 4.1. Some popular programming

languages. Wikipedia lists more than

seven hundred programming languages

but only a few of these have attained

widespread use .

 Fig. 4.2. In the early days of computing,

programming was done in binary. It was

only with the introduction of assembly

language that programming became

slightly more intuitive. High-level pro-

gramming languages like FORTRAN and

COBOL only became popular with the

development of effi cient compilers that

produced performance close enough to

assembly language programs .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe60

 Programming languages are artifi cial languages designed to communicate

instructions to a computer. FORTRAN and most other programming languages

consist of sequences of text, including words, numbers, and punctuation

marks. Programming languages may be divided into two broad categories,

 imperative and declarative languages (Fig. 4.3). Roughly speaking, imperative lan-

guages specify how a computation is to be done, while declarative languages

focus on what the computer is supposed to do. FORTRAN was the fi rst commer-

cial example of an imperative language. A year later, in 1958, John McCarthy

and his students at the Massachusetts Institute of Technology (MIT) developed

LISP, standing for LISt Processing, a programming language targeted at artifi -

cial intelligence (AI) applications. LISP was the fi rst attempt at creating a type of

declarative language in which computation proceeds by evaluating functions .

 In computer programming, a variable is a symbol or name that stands

for a location in the computer’s memory where data can be stored. Variables

are important because they enable programmers to write fl exible programs.

Rather than putting data directly into the program, the programmer can use

variables to represent the data, allowing the same program to process different

sets of information, depending on what is stored in the computer’s memory .

 Instructions known as declaration statements specify the sort of information each

variable can contain, called the data type .

 Many of the main ideas of the original FORTRAN language are still used in

programming languages today. Features of early versions of FORTRAN were:

 Variable names in a FORTRAN program could be up to six characters •

long and could change their values during execution of the program.

 Variable names beginning with the letters I, J, K, L, M, or N represented •

 integers , that is, whole numbers with no fractional parts. All other vari-

ables represented real numbers , which could be any positive or negative

numbers, including integers.

 Boolean variables, variables that have the value of either true or false, •

could be specifi ed with a logical declaration statement .

 Five basic arithmetic operations were supported: + for addition; – for •

subtraction; * for multiplication; / for division; and ** for exponentia-

tion, raising one quantity to the power of another .

FORTRAN

Simula67

LISP

1
9

7
0

s
1

9
6

0
s

1
9

5
0

s
1

9
8

0
s

1
9

9
0

s

Common LISP

ML

Basic

SNOBOL

ALGOL60

COBOL

PL/I

PASCAL

Modula 2

ALGOL68

C

Ada

Smalltalk

C++

JavaPython

 Fig. 4.3. A simplifi ed evolutionary graph

of popular programming languages. The

language styles are marked by different

color frames: red – declarative, blue –

imperative (procedural), and green –

object oriented .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

61Programming languages and software engineering

 Another important feature of FORTRAN was that it introduced a data structure

called an array that was especially useful for scientifi c computations. An array

is a group of logically related elements stored in an ordered arrangement in the

computer’s memory. Individual elements in the array may be located using one

or more indexes. The dimension of an array is the number of indexes needed to

fi nd an element. For example, a list is a one-dimensional array, and a block of

data could be a two- or three-dimensional array. An instruction called a dimension

statement instructs the compiler to assign storage space for each array and gives it

a symbolic name and dimension specifi cations. For example, a one-dimensional

array of numbers called a vector may be specifi ed by the dimension statement

VEC(10) or a three-dimensional fi eld of values by MAGFLD(64, 64, 64).

 Modern programming languages have improved on the minimal specifi -

cation of data types in FORTRAN. Many languages today employ strong typing –

strict enforcement of type rules with no exceptions. Checking that a large,

complex software system correctly uses appropriate data types greatly reduces

the number of bugs in the resulting code .

 For effi ciency reasons, the development of FORTRAN was closely aligned

to the hardware architecture of the computer. Thus FORTRAN assignment state-

ments , instructions that assign values to the variables, are actually descriptions

of how the data moves in the machine. In FORTRAN, assignment statements

are written using the “equal” sign, but these statements do not mean mathe-

matical equality. Consider the assignment statement

 A B C+B()2 0

 In FORTRAN, this statement means, “Replace the value at address A by the

result of the calculation 2.0*(B+C).” Similarly, the odd-looking statement

 J J +J 1

 means, “Read the value from address J, add 1 to this value, and then store the

result at the same address.”

 The original FORTRAN specifi cation provided three kinds of control state-

ments , instructions that switch the computer from automatically reading the

next line of code to reading a different one:

 The DO statement was used to allow the program to perform a • loop , a

sequence of instructions that repeats either a specifi ed number of times

or until a particular condition is met.

 The IF statement was employed for • branches , instructions that tell the

computer to go to some other part of the program, depending on the

result of some test.

 The GO TO statement was used to direct the computer to jump to a spe-•

cifi c numbered statement .

 Forms of the basic do loop and if statement constructs are available in most

modern programming languages. We can write the general form of these con-

trol statements in pseudocode , an informal, high-level description of a program

that is intended to be read by humans. A computer could not directly execute

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe62

it, however, because the pseudocode version of the program omits details not

essential for understanding by people but necessary for a machine to run the

program . Thus we can write a do loop using the for keyword

 for <var> in <sequence>

 <statements>

 The variable <var> after the keyword for is called the loop index , and the state-

ments in the body of the for loop – <statements> – are executed according to

the number of times specifi ed in the <sequence> portion of the loop heading.

After completing the loop the required number of times, the program goes to

the program statement after the last statement in the body of the loop .

 Similarly, we can write an if statement as:

 if <condition>:

 <statements#1>

 else:

 <statements#2>

 If the Boolean condition <condition> is true, the program executes the fi rst set

of statements – <statements#1> – and then jumps to the statement after the

second block of statements – <statements#2>. If the condition is false, the pro-

gram jumps over the fi rst block of statements and executes the second block

of code <statements#2> under the else keyword, before carrying on with the

next statement of the program. It is sometimes helpful to visualize these con-

trol structures as diagrams called fl owcharts , fi rst introduced into computing

by Herman Goldstine and John von Neumann in 1947. Flowcharts use boxes

to represent the different parts of the program with arrows between the boxes

showing the sequence of events. Flowcharts representing the for loop and the

 if-then-else fl owcharts are shown in Fig. 4.4 .

 Modern programming languages generally do not encourage use of the go

to statement. Undisciplined use of go to statements often led to very complex

“spaghetti” code that was diffi cult to understand and debug. In 1968, Edsger

Dijkstra (B.4.2) wrote a famous article titled “Go To Statement Considered

Harmful”:

Condition

true?

Statements#1 Statements#2

yes noMore

iterations?

Statements

yes

no

(b)(a) Fig. 4.4. Flowcharts for the “for” loop (a)

and “if-then-else” (b). They illustrate the

decision points in the program where

a branch can be made depending on a

check of some condition. The “for” loop

performs a set number of iterations

through the same piece of code that

use different data. The “if-then-else”

branch executes a different piece of

code depending on the result of a test

condition .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

63Programming languages and software engineering

 For a number of years I have been familiar with the observation that the

quality of programmers is a decreasing function of the density of go to

statements in the programs they produce. More recently I discovered why

the use of the go to statement has such disastrous effects, and I became

convinced that the go to statement should be abolished from all “higher

level” programming languages (i.e. everything except, perhaps, plain machine

code). 6

 Criticism about the undisciplined use of go to statements was one of the fac-

tors that led to the structured programming movement of the 1970s . Structured

programming aims to improve the clarity, quality, and development time of

software by identifying coherent blocks of code and using subroutines , standard

sets of instructions to perform frequently used operations within a program.

Structured programming uses for loops and if-then-else constructs as the only

control and decision structures .

 Recursion and dynamic data structures

 Since the beginning of computer programming, most programming lan-

guages have been imperative languages that tell the machine how to do some-

thing. It is remarkable, however, that one of the earliest high-level programming

languages to be developed was a declarative language, which told the computer

what the programmer would like to have happen and let the machine deter-

mine how to do it. This declarative language was LISP, the brainchild of John

McCarthy, who had spent the summer of 1958 as a visiting researcher in the

IBM Information Research Department. In addition to becoming frustrated with

batch processing and wanting to pursue time-sharing systems, he investigated

the requirements for a programming language to support symbolic rather than

purely numeric computations. These requirements included recursion , the ability

 B.4.2. Edsger Dijkstra (1930–2002) was one of the pioneers of computer science. From the early

days he was championing a mathematically rigorous approach to programming. In 1972 he

received the Turing Award for his fundamental contributions to the development of programming

languages. He was well known for his forthright opinions on programming and programming

languages.

 On FORTRAN:

 FORTRAN, “the infantile disorder”, by now nearly 20 years old, is hopelessly inadequate for

whatever computer application you have in mind today: it is now too clumsy, too risky, and

too expensive to use . B1

 On COBOL:

 The use of COBOL cripples the mind; its teaching should, therefore, be regarded as a

criminal offense . B2

 On BASIC:

 It is practically impossible to teach good programming to students that have had a prior

exposure to BASIC: as potential programmers they are mentally mutilated beyond hope of

 regeneration. B3

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe64

for a program or subroutine to call itself, and dynamic data structures , for which

the memory space required is not set in advance but can change size as the

program runs. The newly developed FORTRAN language did not support either

of these requirements .

 When he returned to MIT, McCarthy set about devising a language suitable

for the types of symbolic and AI applications he had in mind. His LISP language

focused on the manipulation of dynamic lists that could grow or shrink as the

program was running. The style of programming was very different from that

of an imperative language like FORTRAN. There were no assignment statements

in LISP and no implicit model of state in the background, tied to the physical

implementation of a “pigeonhole” model of computer memory. Instead, in LISP

everything is a mathematical function. For example, the expression x 2 is a func-

tion : applying this function to the variable x returns the value of x 2 . In LISP, com-

putation is achieved by just applying functions to arguments. This feature makes

it easier to reason mathematically about the behavior and correctness of LISP

programs. It removes the possibility of dangerous “side effects” – situations in an

imperative program where, unsuspected by the programmer, some part of the

program has altered the value of a variable in memory from the value that the

programmer had intended . Memory allocation for McCarthy’s dynamic lists was

not performed in advance of running the program. It was therefore necessary

to regularly clean up the memory space by removing from the list of assigned

storage locations any locations that were no longer being used. McCarthy’s team

called this process of reclaiming memory space garbage collection . These ideas

have been infl uential in the implementation of modern languages like Java and

C# (C Sharp).

 McCarthy’s ideas about recursion and dynamic data structures are not

limited to declarative languages like LISP . They are now essential compo-

nents of almost all imperative languages, such as FORTRAN, BASIC, and C.

We can illustrate the idea of recursion through the problem of calculating

the factorial of the number n – that is, the product of the whole number n

and all the whole numbers below it. The factorial of n is written as n! and is

defi ned to be the product n × (n – 1) × (n – 2) . . . × 2 × 1. We could calculate

this using a for loop, but we can also perform the calculation using recur-

sion, a process in which the function repeatedly calls itself with smaller and

smaller arguments until it reaches a termination condition , a state in which

it will stop calling itself. The pseudocode for the recursive calculation of

factorial n is:

 factorial (n)

 if n <= 1:

 return 1

 else:

 return n * factorial (n – 1)

The expression “n <= 1” is an integer check to see if the value of n is less than

(<) or equal (=) to 1. The calculation of the factorial starts with n and multiplies

this by factorial (n – 1). This repetition continues until (n – 1) equals 1 .

 As an example of dynamic data structures we consider linked lists . In scien-

tifi c calculations, the size of the array structures that store related groups of

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

65Programming languages and software engineering

items can usually be specifi ed in advance. The same is not true for most types of

lists. The membership list for a sports club, for example, will grow and shrink as

new members join and old members leave. If we store a list of names in an array

of fi xed length using sequential memory locations in the computer, removing

or adding names becomes very laborious because the data in the list must be fre-

quently reshuffl ed to keep them in the right order in memory. These problems

can be avoided if we do not store items in the list in a sequential memory block

but just in any convenient area of memory. To store the contents of the list,

each name in the list is stored in some location along with a pointer – a memory

address – to the location of the next name on the list (Fig. 4.5a). Deleting or

adding names is now straightforward because it just requires changing a single

pointer (Fig. 4.5b). With pointers, the address of the data storage location can

be kept separately from the actual data . Retrieving the data is thus a two-step

process – getting the address of the storage location and then going to that

location to get the data. Other common dynamic data structures are LIFO (Last-

In-First-Out) stacks, collections of items in which only the most recently added

item may be removed, and FIFO (First-In-First-Out) queues, collections of items

in which only the earliest added item may be removed.

 Programming with objects: from SIMULA to C++

 An important idea in object-oriented programming is data abstraction ,

which focuses on classes, objects, and types of data in terms of how they

function and how they can be manipulated, while hiding details of how the

work is carried out. The idea of data abstraction can be traced back to two

Norwegian computer scientists, Kristen Nygaard and Ole-Johan Dahl (B.4.3).

 They fi rst presented their programming language SIMULA 67 in March 1967 .

They were interested in using computers to run simulations and needed the

language to support subprograms that could stop and later restart at the place

they had stopped. To do this, Nygaard and Dahl introduced the idea of a class .

The key property of a class is that a data structure and the routines that

manipulate that data structure are packaged together . This led to the impor-

tant idea of abstract data types , sets of objects that share a common structure

and behavior.

 Abstract data types were actually present in the original FORTRAN

language. There was a built-in fl oating-point data type, which represented

Name Pointer Name Pointer Name NIL
Head

Pointer

Name Pointer Name Pointer Name NIL
Head

Pointer

Old Pointer

Removed

New Pointer

(a)

(b)

 Fig. 4.5. A linked list is an example of

a dynamic data structure that makes

it easy to remove or add items to a list.

(a) This shows the structure of a linked

list with each entry in the list having a

 pointer to the memory location of the

next element. (b) This illustrates how

easy it is to delete a node from the

linked list by just changing the pointer .

 B.4.3. Ole- Johan Dahl (1931–2002)

(left) and Kristen Nygaard (1926–

2002) were fi rst to introduce classes

and objects in their Simula program-

ming language .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe66

numeric values with fractional parts, and a set of arithmetic operations

that were allowed to act on fl oating-point variables . How FORTRAN included

these data types is an example of one of the key ideas of data abstraction,

namely, information hiding . The details of the actual way a fl oating-point num-

ber is represented in the computer are hidden from the user and cannot be

accessed by the programmer. In addition, the programmer can only create

new operations on this type of data by using the built-in operations already

supported on fl oating-point variables. Because of such information hiding,

FORTRAN programs could run on many different machines, even though

fl oating-point variables were frequently implemented very differently on dif-

ferent machines .

 Modern object-oriented (O-O) programming languages allow program-

mers to create their own abstract data types . Consider again the problem of

writing a program to manipulate a list containing the names of members

in a sports club. In an imperative programming language, the list is just

a collection of data and we need to write separate software procedures to

add, delete, and sort items in the list. In an O-O language, the list is con-

structed as an object consisting of both the list data and the collection of

procedures – called methods in O-O speak – for manipulating this data. Thus

an O-O program to sort the list would not contain a separate sorting proce-

dure but make use of the methods already built in for the list object. What

is the relationship between a class and an object? A class is a template for all

the objects with the same data type and methods. The list class applies to all

list objects with data in the form of a list and the methods to operate on the

list. As a slightly more complicated example, let us defi ne a bank account

class. The abstract data type for a bank account consists of the name of the

client, the number of the account, and the balance of money in the account.

The class consists of bank account data of this type plus methods that defi ne

the different operations that can be carried out on the account – withdraw-

als, deposits, transfers, and so on. Accounts belonging to different custom-

ers obviously contain different data and are called objects or instances of this

class. The methods that act on the data within an object are usually small

imperative programs .

 Two other important properties of O-O languages are inheritance and encap-

sulation . The idea of inheritance is that a class can be extended to create another

class that inherits the properties of the original class. Thus the class “bank

account” could be extended to create a new class “savings bank account” that

inherits the same data structure and methods as the original class but with

additional properties and methods (Fig. 4.6). Encapsulation means that there

are certain properties of an object that are not accessible to other parts of the

program. Only the object is able to access these properties .

 Canadian computer scientist David Parnas (B.4.4) was one of the pioneers

of information hiding. Turing Award recipient Alan Kay and his research team

at the Xerox PARC (Palo Alto Research Center) in Silicon Valley in the 1970s fi rst

introduced the term object-oriented programming . They developed the Smalltalk

language, which was based on the idea of building programs with objects that

communicated by sending messages .

 B.4.4. David Parnas is a Canadian

computer scientist who pioneered

ideas of “information hiding.” These

ideas are now an integral part of

data abstraction in object-oriented

 programming.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

67Programming languages and software engineering

 One of the most widely used O-O languages today is the C++ program-

ming language. Bell Labs researcher Bjarne Stroustrup (B.4.5) was familiar with

SIMULA and had found the class feature to be useful in large software devel-

opment projects . When he started working at Bell Labs, he explored ways of

enhancing Dennis Ritchie’s C language, which was both fast and portable (see

section on C and Unix at the end of this chapter). In 1979, Stroustrup started

by adding classes to C to create what he called “C with Classes.” Over the next

few years, Stroustrup added several other features and renamed the language

“C++.” There is now a C++ software library called the Standard Template Library

(STL) that contains predefi ned, useful classes that are provided as part of the

C++ programming environment. By incorporating the STL library of classes

into a program, the programmer does not have to explicitly specify these data

structures . Two other examples of widely used object-oriented programming

languages are Java (B.4.6) and C# .

 Why do we need software engineering?

 As we have seen, computer scientists originally hoped that programming

in a high-level language would, as Backus said, “virtually eliminate coding and

debugging .” 7 For small scientifi c programs written by one or two researchers,

programming certainly became much easier, with the hard work of converting

a FORTRAN program into effi cient assembly code delegated to a computer pro-

gram, the compiler. However, many scientifi c programs nowadays are complex

simulation codes incorporating many different aspects of the problem under

investigation. Writing and debugging such programs has become much more

Account

Properties:

Account_Number <integer>

Client name <string>

Balance <real>

Methods:

Withdrawal (real)

Deposit (real)

Transfer (real)

Savings_Account

Properties:

Interest <real>

Methods:

AddInterest ()

 Fig. 4.6. This fi gure illustrates the con-

cept of class inheritance. The properties

of the Account class are the data items.

The methods represent the actions that

we can carry out on the data. For the

Savings_Account class, in addition to

the properties and methods inherited

from the Account class, there is also a

new data item called interest and a new

AddInterest method. In this way we can

construct more complex classes from

simpler ones .

 B.4.5. Bjarne Stroustrup designed

and implemented the C++ program-

ming language. Over the last two

decades, C++ has become the most

widely used language supporting

object-oriented programming and

has made abstraction techniques

affordable and manageable for main-

stream projects .

 B.4.6. James Gosling is credited with the development of Java programming language. The name

can be traced back to the brand of coffee fueling the programming effort. A distinguishing feature

of a Java program is that it does not run directly on the hardware but on software called a “virtual

machine.” This “architecture-independent” implementation enables that movement of the code

from one computer to another without recompiling the code. Thanks to this “write once, run

anywhere” principle Java has become one the most popular programming languages especially for

web applications .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe68

diffi cult. An additional challenge is that new researchers, who were not the

authors of the original program, may need to extend and modify the code.

 Similarly, as the software for business applications became larger and more

complicated, it was no longer possible for a small team of talented program-

mers to write all the code. Teams of hundreds or even thousands of program-

mers now work on software systems consisting of hundreds of thousands or

millions of lines of code, and programmers now have to coordinate their work.

Accurate estimates of the time and cost of writing a complex software system

have become vitally important for software companies. Brooks discusses these

issues in his book on the “mythical” man-month unit of programming effort.

As a result of his experience, he formulated “Brooks Law,” which says, “Adding

manpower to a late software project makes it later .” 8

 Software companies have an urgent need for reliable answers to the

questions: How many lines of code will it take to provide the desired func-

tionality? How many programmers will be needed? How long will it take? If a

software project is behind schedule, what should you do? Software engineering

attempts to defi ne methodologies and frameworks to answer these questions.

 The Institute of Electrical and Electronics Engineers (IEEE), a professional orga-

nization devoted to promoting technological innovation, defi nes software engi-

neering in its Standard 610.12 as “The application of a systematic, disciplined,

quantifi able approach to the development, operation, and maintenance of soft-

ware; that is, the application of engineering to software .” 9

 One of the earliest attempts to apply engineering methodologies to soft-

ware development was the “waterfall” model (Fig. 4.7). This identifi ed four

distinct phases of software development – requirements analysis, design,

implementation, and testing. The waterfall method calls for completing each

phase before proceeding to the next, which requires the systematic description

and documentation of both the requirements and the design of the software

to be completed before any actual coding begins. In practice, the phases are

rarely completely separate. Software developers often fi nd in later phases that

they must go back and change things in earlier phases. Backtracking and mul-

tiple versions of each phase are common. David Parnas says about the design

process:

 Even if we knew the requirements, there are many other facts that we need

to know to design the software. Many of the details only become known to us

as we progress in the implementation. Some of the things we learn invalidate

our design and we must backtrack . 10

 The recognition that software development is not a linear process has led to

a philosophy called agile software development . Agile methods break the task of

writing the whole system into smaller segments or “sprints,” each of which

involves all the four phases of software development – analyzing requirements,

designing, implementing, and testing. Based on the results of testing the lat-

est version of a design, the developers make changes and improvements. The

sprints typically last around four weeks, and the goal is to have a working

prototype with some of the functionality required of the fi nal product by the

end of each sprint. One of the main motivations for these more fl exible soft-

ware engineering methodologies is that customers often do not know all their

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

69Programming languages and software engineering

requirements at the beginning of a project. To incorporate changes in require-

ments makes a less rigid approach than the formal approach of the waterfall

model essential .

 The fi rst stage of the software life cycle is requirements analysis and speci-

fi cation. One of the earliest tools for documenting computer programs was the

 fl owchart , a diagram representing the sequence of operations in a program. We

have already seen examples of fl owcharts for for loops and if-then-else control

statements (see Fig. 4.4). However, in the production of large, complex software

systems, fl owcharts have proved to be of limited value. In the 1980s, computer

scientist David Harel was working with avionics engineers trying to specify the

behavior of a software system to control a modern jet aircraft. An avionics sys-

tem is reactive – a term coined by Harel and his colleague the late Amir Pnueli –

in the sense that it has to respond predictably to a wide variety of different types

of events . Harel eventually converged on a diagrammatic way to specify the

responses and transitions of the avionics system, which he called statecharts –

“the only unused combination of ‘state’ or ‘fl ow’ with ‘chart’ or ‘diagram.’” 11

By 1986, Harel and his colleagues had built the Statemate tool, which not only

allowed users to construct statecharts but was also able to automatically gener-

ate code to fully execute them . In the 1990s, they developed an O-O version of

statecharts, which later became the heart of the Unifi ed Modeling Language, or

UML. UML was devised in 1996 by Grady Booch (B.4.7), James Rumbaugh, and

Ivar Jacobson. It is a collection of visual languages for specifying, constructing,

and documenting complex software designs. Booch comments, “If you look

across the whole history of software engineering, it’s one of trying to mitigate

complexity by increasing levels of abstraction.” 12 The UML approach (Fig. 4.8) is

yet one more attempt to reduce the complexity of software production .

 The fi nal phase of the software life cycle is testing and maintenance. For

complex software systems, it is impossible to test all branches of the code under

all possible combinations of input data and initial states. According to Dijkstra,

“Program testing can be a very effective way to show the presence of bugs, but

is hopelessly inadequate for showing their absence .” 13 A 2002 report from the

National Institute of Standards and Technology, a U.S. government agency that

works to promote innovation and industrial competitiveness, estimated that

inadequate software testing cost the U.S. economy nearly $60 billion per year.

The report also stated, “In fact, the process of identifying and correcting defects

during the software development process represents approximately 80 percent

of development costs.” 14

 Testing a modern software system involves the application of a variety of

different tools. Dynamic software testing involves running the code using a set of

Requirements

Design

Implementation

Verification

 Fig. 4.7. The waterfall model is one of the earliest methods used to systematize software development.

In principle, the model consists of several independent stages with each stage feeding to a subsequent

stage. This approach is sometimes referred to as “Big Design Up Front” – because a new stage can only

start if the preceding one has been fully completed. This is the strength of the method – but also its

weakness. In reality, software development is not a linear process and many issues cannot be foreseen

until later stages in the project. So, in practice, the individual stages are not fully isolated from each

other: often we need to backtrack to make revisions and changes in the previous stages .

 B.4.7. Grady Booch is an evangelist

of the systematic approach to soft-

ware design. In one of the interviews

he referred to his mission with the

following words: “if I had not dis-

covered software I would have been

a musician or a priest.” He is one of

the authors of the UML, which repre-

sents a framework for constructing

and reasoning about the software.

UML is a collection of diagrams and

tools that allows programmers to

cope with complex systems by rais-

ing the level of abstraction .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe70

test cases. White-box testing is designed to test the internal structures of a pro-

gram. The tester attempts to choose sets of inputs that exercise all the different

possible paths through the code. Black-box testing takes the view of the user

rather than the software developer. The tester checks the software’s function-

ality with no knowledge of the system’s internal structure. Another important

type of evaluation is fuzz testing , in which valid input data sets are modifi ed with

random mutations and then fed into the program . Providing such invalid and

unexpected inputs to the system allows the tester to determine how a program

handles exceptions – unpredictable conditions or situations that can cause a pro-

gram to crash or possibly create a security risk in the software (Fig. 4.9).

 Empirical software engineering

 The increasing complexity of modern software development is indicated

by the numbers of programmers and lines of code in three releases of the

Microsoft Windows operating system (Fig. 4.10). Here the programmers are

divided into “developers,” who write the code, and “testers,” who systemati-

cally check the code for bugs. To allow such large numbers of programmers

to work on different parts of the software system simultaneously, Microsoft

developed a synchronize-and-stabilize approach to writing software. Breaking up

the software into several different “branches” that can be worked on at the

same time allows “large teams to work like small teams.” Much of the com-

plexity now lies in the process of correctly joining the branches back together.

Microsoft solved the problem using “daily synchronizations through product

builds, periodic milestone stabilizations, and continual testing. ” 15 Microsoft

also developed an error-reporting tool so that users could inform the company

of any software problems. Analysis of the data led to some interesting conclu-

sions, as summarized by former Microsoft CEO Steve Ballmer:

 One really exciting thing we learned is how, among all the software bugs

involved in reports, a relatively small proportion causes most of the errors.

About 20 percent of the bugs cause 80 percent of all errors, and – this is

stunning to me – one percent of bugs cause half of all errors . 16

 Fig. 4.8. UML is a general methodology

that allows a systematic “step-by-step”

approach to software design. UML is a

unifi cation of three software techniques

developed by Grady Booch (Booch),

Ivar Jacobson (Objectory), and James

Rumbaugh (OMT); although UML also

has roots in David Harel’s statecharts.

In software engineering circles Booch,

Jacobson, and Rumbaugh are often

referred to as the “three amigos.” UML

diagrams allow evaluation of various

implementation options prior to actual

program coding .

 Fig. 4.9. A screenshot of the dreaded

moment when a computer crashes. In

programmer circles such an event is

known as “the blue screen of death.”

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

71Programming languages and software engineering

 In his book Code Complete , Steve McConnell estimates the extent of the bug

problem:

 Industry average experience is about 1–25 errors per 1000 lines of code for

delivered software. The Applications Division at Microsoft experiences about

10– 20 defects per 1000 lines of code during in-house testing and 0.5 defects

per 1000 lines of code in released product . 17

 The problem of deciding which bugs to fi x and which are likely to generate

new errors is complex. This is an area where the new fi eld of empirical soft-

ware engineering aims to help. The Journal of Empirical Software Engineering says:

 Over the last decade, it has become clear that empirical studies are a

fundamental component of software engineering research and practice:

Software development practices and technologies must be investigated by

empirical means in order to be understood, evaluated, and deployed in proper

contexts. This stems from the observation that higher software quality and

productivity have more chances to be achieved if well-understood, tested

practices and technologies are introduced in software development. Empirical

studies usually involve the collection and analysis of data and experience

that can be used to characterize, evaluate and reveal relationships between

software development deliverables, practices, and technologies. 18

 This statement has now been adopted as part of the manifesto of the

International Software Engineering Research Network.

 One example of this empirical approach to software engineering is the

CRANE tool developed by researchers at Microsoft – where CRANE is an acro-

nym formed from Change Risk ANalysis and impact Estimation. The CRANE

project looked at the challenges of providing support for multiple versions of

Windows, running on a wide variety of computers, with a user base of more

than a billion. One immediate challenge is that software maintenance for a

released product is done by different teams of software engineers than those

who developed the software. The goal of the CRANE project was to use his-

torical information about the software being serviced to build risk-prediction

models using advanced statistical techniques that could guide bug fi xing and

testing. For every bug in any software component, the tool provides the fol-

lowing information: what has happened to the component so far in servicing;

what exactly is being changed with the proposed fi x; which fi xes carry more

than average risk of causing more bugs; which tests to run after the change;

which other components to test in addition to the changed component; and

Ship Date Product
Development

Team Size

Test Team

Size

Lines of

Code (LOC)

July 1993 Windows NT 200 140 5 million

December

1999

Windows

2000
1,400 1,700 30 million

October

2001
Windows XP 1,800 2,200 40 million

 Fig. 4.10. Size and scale of the program-

ming teams and code base for versions

of the Microsoft Windows operating

system .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe72

which applications are potentially impacted by the change . Such empirical

software engineering tools are enabling maintenance software engineers to

make informed, data-driven decisions about their priorities .

 Open-source software

 A very different model of software development is the philosophy pro-

moted by the open-source software movement. One of the origins of this move-

ment was the decision of AT&T to allow the distribution of the Unix source

code under a “free” license (see section on Unix and C). Bell Labs researchers

Ken Thompson and Dennis Ritchie wrote the Unix operating system in the

early 1970s. It was the fi rst operating system to be written in a high-level

language, the C programming language developed by Ritchie . The source

code for the C compiler developed by Bell Labs researcher Stephen Johnson

was also freely distributed with the Unix code . For only a few-hundred-dollar

licensing fee, the university research community could obtain not only a

functional operating system but also a platform for teaching and research . In

1956, AT&T had settled an antitrust monopoly suit with the U.S. Department

of Justice, and AT&T’s lawyers interpreted the agreement as forbidding the

company to enter new markets not related to telephones. The AT&T license

agreement for Unix was intended to make it crystal clear that the company

was not creating a new business with computers:

 The terms of the early Unix licenses were minimal: The software came “as is”

with no royalties to AT&T, but also no support and no bug fi xes. 19

 One immediate result of this license agreement was to encourage the research

community to set up self-help networks and share information on bug fi xes.

This set the style for the development of a global Unix support and development

community with developers freely sharing their suggested code changes. The

most signifi cant research collaboration focused on Unix was between the origi-

nal Bell Labs team of Richie and Thompson and the Computer Systems Research

Group (CSRG) at the University of California, Berkeley . In 1983, the CSRG team

released the latest version of their “Berkeley Unix” software, known as 4.2 BSD.

This software incorporated the new Internet protocols and allowed Unix systems

to be easily connected to the rapidly growing Internet. The initials BSD stand for

Berkeley Software Distribution, which included an open-source software license

 B.4.8. Richard Stallman is the originator of the free software movement. In 1979 he was working in

the AI lab at MIT when the lab installed a new laser printer from Xerox. The printer suffered from

paper jams and Stallman wanted access to the source code of the printer driver so he could modify

it and fi x the problem. Xerox would not give him the source code and he ended up being very

frustrated. In 1984 Stallman resigned from MIT to set up the Free Software Foundation. Stallman

was very explicit in his explanation of “free”: “Since free refers to freedom, not to price, there is no

contradiction between selling copies and free software.” B4 He called his project to build a free oper-

ating system by the recursive acronym GNU – standing for GNU’s Not Unix. He also devised the GPL

source license that was designed to ensure that any modifi cations to the source code were covered

by the same license, including combinations of GPL software with commercial software .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

73Programming languages and software engineering

that allowed free use of the source code. Importantly, the license allowed the

possibility of incorporating all or part of the Berkeley software in a closed-source

commercial product. The license only required that any copyright notices in the

code were maintained along with the disclaimer of any warranty.

 The 1980s were a confusing time for the Unix community. By this time,

AT&T had realized that Unix was a very valuable software product and, under

the terms of a new antitrust settlement in 1984, the company began charging for

the Unix software. By 1992, friction between AT&T’s new, commercially focused

Unix Systems Laboratories division and the freewheeling Berkeley open-source

community had come to a head. AT&T began a court case against the University

of California. In addition to these legal problems, many different and incom-

patible variants of Unix had been spun-off – “forked” – from the original open-

source Unix code, leading to a very fragmented Unix development community.

 Meanwhile, at MIT, a software developer in the AI lab named Richard Stallman

(B.4.8) had become concerned about the loss of community that happened when

software could not be freely shared. In 1984, Stallman founded the Free Software

Foundation (B.4.9) with the goal of developing “an entirely free operating sys-

tem that anyone could download, use, modify, and distribute freely.” 20 He named

his project GNU, standing for “GNU’s Not Unix.” To ensure that the source code

remained open and freely shareable, Stallman devised the GNU Public License

(GPL) that is very different from the permissive Berkeley BSD open-source license.

The GPL license requires that any modifi cations of the software must be released

under the same GPL open-source license. More important for commercial soft-

ware companies was the “viral” requirement that any software formed by com-

bining free, GPL-licensed software with commercial software must all be released

under a free GPL license. Under the GNU umbrella, Stallman created some very

popular tools for writing software that are still widely used by the computer

science community – the GNU Emacs text editor, the GCC compiler, and the GDB

debugger . However, it was left to a young Finnish graduate student named Linus

Torvalds (B.4.10) to reunite the Unix community around his version of the Unix

kernel, the core component of the Unix operating system .

 In 1991, Torvalds was a graduate student at the University of Helsinki and

had bought himself a new personal computer (PC) based on Intel’s 386 micro-

processor. Because he wanted to run Unix on his PC, he bought and installed

Minix, a version of Unix suitable for teaching that had been created by Andy

Tanenbaum at the Vrije Universiteit in Amsterdam. Inspired by the Minix soft-

ware, Torvalds started creating his own version of the Unix kernel for the PC .

 B.4.9. Hal Abelson is a professor of electrical engineering and computer science at MIT. He is pas-

sionate about both open-source software and open courseware, and has been a champion for the

right to open access for publicly funded research publications. Abelson was one of the founders

of the Free Software Foundation and the Creative Commons movements. In addition, Abelson has

long believed in the potential for using computation as a conceptual framework in teaching. He is

the author of several infl uential textbooks and implemented the Logo programming language on

Apple II computers. Logo is widely regarded as one of the best programming languages for intro-

ducing computing to children. His pioneering work in education was recognized in 2012 by his

receiving the ACM SIGCSE Award for Outstanding Contributions to Computer Science Education .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe74

In 1991, he made the source code of his new operating system, called Linux

(Fig. 4.11), available on the Internet with the following announcement:

 I’m working on a free version of a Minix look-alike for AT-386 computers. It

has fi nally reached the stage where it’s even usable (though it may not be,

depending on what you want), and I am willing to put out the sources for

wider distribution. . . . This is a program for hackers by a hacker. I’ve enjoyed

doing it, and somebody might enjoy looking at it and even modifying it for

their own needs. It is still small enough to understand, use and modify, and

I’m looking forward to any comments you might have. I’m also interested in

hearing from anybody who has written any of the utilities/library functions

for Minix. If your efforts are freely distributable (under copyright or even

public domain) I’d like to hear from you so I can add them to the system. 21

 Torvalds was surprised by the response to his invitation from the worldwide

Unix community. Within a couple of years, hundreds of developers had joined

his Internet newsgroup and were contributing bug fi xes, improvements, and

new features to Linux. By 1994, Torvalds was able to release the fi rst complete

version of his operating system, Linux version 1.0. This listed nearly eighty

developers as contributors, from a dozen different countries. From these mod-

est beginnings, Linux has become much more than a hobbyist’s PC operating

system. By 1999, Red Hat and VA Linux were established as public companies

offering “Linux support” – although the basic code was still freely available .

By 2000, Linux had received offi cial recognition from IBM, which announced

it would offer enterprise support for Red Hat Linux on their mainframe com-

puters. Major software companies such as Oracle Corporation and SAP soon

followed, and by 2013 Linux had become established as a major component of

both university and business software environments.

 Who are the developers who contribute to Linux? One recent study found

that there were more software developers from industry than from universities

and research organizations. It is also probably true that, over the last decade

or so, several hundred professional software engineers from companies like

IBM and Intel have participated in major open-source projects. Another survey

found that 10 percent of the developers are credited on more than 70 percent

of the code. In his book The Success of Open Source , Steven Weber concludes:

 B.4.10. Linus Torvalds is credited with the development and maintenance of the Linux kernel,

which has become the basis for most popular open-source operating systems. In the programmer

community he is considered as a “benevolent dictator” who makes sure that the released code is

always in perfect shape. Despite the fact that it took him eight years to get his master’s degree at

the University of Helsinki, he turned out to be a very successful programmer. He described the

development of the Linux kernel in a book Just for Fun . Most of his concern is not the technical

side of Linux but the software patents that are notoriously diffi cult to deal with .

 Fig. 4.11. Linux celebrates twenty years

with release 3.0. Tux is the offi cial mas-

cot of the Linux community. According

to legend, Torvalds was looking for

something fun and sympathetic to

associate with Linux, and a slightly fat

penguin sitting down after having had a

great meal perfectly fi t the bill .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

75Programming languages and software engineering

 These numbers count only the major contributors to the Linux kernel. Other

active developers report and patch bugs, write small utilities and other

applications, and contribute in less elaborate but still important ways to the

project. The credit for these kinds of contributions is given in change logs and

source code comments, far too many to read and count in a serious way. It is

a reasonable guess that there are at least several thousand, and probably in

the tens of thousands, of developers who make these smaller contributions to

Linux . 22

 How is the work of these volunteer contributors organized? Unlike the formal

software engineering frameworks described earlier, with open-source software

development there is no authority other than consensus. In the case of Linux,

Torvalds still acts as a sort of benevolent dictator supported by a small number of

key lieutenants. Other open-source efforts have a small core team who make the

decisions about what code to accept. This informal model of software development

has produced a complex modern operating system consisting of millions of lines

of code with a quality and stability that can rival that of commercial software .

 There are now thousands of open-source software projects addressing a

large number of different application areas. For many university computer sci-

ence departments, the use of open-source software for research is the standard

way of working. In 2013, SourceForge, a popular site for open-source software

projects, stated, “3.4 million developers create powerful software in over

324,000 projects,” 23 which works out as an average of about ten developers per

project. In addition, the SourceForge directory “connects more than 46 million

consumers with these open source projects and serves more than 4,000,000

downloads a day .” 24 Even though only a very small number of these projects

attract a critical mass of developers and attain widespread use, the open-source

software development model has clearly proved to be a viable alternative to

traditional software development methodologies .

 Scripting languages

 Another type of programming language that is increasing in popularity

is a group of languages known as scripting languages , high-level programming

languages that are interpreted by another program at runtime rather than

needing a compiler to transform the source code into an executable program.

 A shell script in Unix was a sequence of commands that could be read from a

fi le and executed in sequence, as if they had been typed in using a keyboard .

By extension, the term script has become used to describe a set of instructions

executed directly by the computer rather than needing a compiler like a tra-

ditional programming language. Today, scripting languages have become much

more powerful than these early examples because of the addition of standard

programming language concepts, such as loops and branches. There are two

main uses for scripting languages. The fi rst is as a “glue” language that allows

applications to connect off-the-shelf software components that are written in

a conventional programming language. The second exploits the functionality

and ease of use of scripting languages to employ them as an alternative to con-

ventional languages for a range of general programming tasks.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe76

 A major characteristic of modern scripting languages is their interactivity,

sometimes referred to as a REPL programming environment. REPL stands for

“Read-Eval-Print Loop” and has its origins in the early work on LISP at MIT. When

a user enters an expression, it is immediately evaluated and displayed. In this

sense, scripting languages behave as if they were “interpreted,” meaning that

they operate on an immediate line-by-line execution basis. This is in contrast to

traditional “compiled” languages, which generate a binary object fi le that needs

to be explicitly linked to the required set of program libraries – the traditional

“edit-compile-link-run” cycle of programming. Because of the increasing power

of today’s computer chips, the ease of use of scripting languages is often more

important than the increase in program effi ciency that can be achieved with a

compiled language. For example, in scripting languages, to minimize the com-

plexity of programs, declaration of variable types to designate the sort of informa-

tion each variable can contain is often optional. The variable types are declared

implicitly by their usage context and initialized to be something sensible when

fi rst used. However, as scripting language programs have become longer and

more complex, the benefi ts of type declarations have been recognized, and most

scripting languages now provide an option to make explicit type declarations.

 The development of Perl (Practical Extraction and Report Language) in the

late 1980s (B.4.11) was one of the defi ning events in the evolution of scripting

languages (Fig. 4.12). David Barron in his book The World of Scripting Languages

remarks that:

 Perl rapidly developed from being a fairly simple text-processing language to

a fully-featured language with extensive capabilities for interacting with the

system to manipulate fi les and processes, establish network connections and

other similar system-programming tasks. 25

 From its origins in the Unix world, Perl scripts are now able to run unchanged

on all the popular operating system platforms . Other popular scripting lan-

guages are VBScript (Visual Basic Scripting Edition) for the Microsoft platform

and JavaScript for web applications . The characteristics of ease of use and

immediate execution with a REPL environment are sometimes taken as the

defi nition of a scripting language. Under this defi nition, the Python program-

ming language, which is growing rapidly in popularity, would be regarded as a

 scripting language .

 B.4.11. Larry Wall developed Perl in 1987 as a general-purpose Unix scripting language. Since

then both the portability and the features in Perl have been expanded greatly and now include

support for O-O programming. It is one of the world’s most popular programming languages.

Wall continues to oversee the evolution of Perl and his role is summarized by the so-called 2

Rules , taken from the offi cial Perl documentation:

 1. Larry is always by defi nition right about how Perl should behave. This means he has fi nal veto

power on the core functionality.

 2. Larry is allowed to change his mind about any matter at a later date, regardless of whether he

previously invoked Rule 1.

 Fig. 4.12. A guide to programming in

Perl by its creator, Larry Wall, with Tom

Christiansen, and Jon Orwant, widely

known as the “Camel” book .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

77Programming languages and software engineering

 Key concepts

 Strong typing �

 Control structures – for loops and if-then-else �

 Recursion �

 Dynamic data structures – linked lists, stacks, and queues �

 Data abstraction and information hiding �

 Object-oriented programming �

 Classes and objects �

 Inheritance and encapsulation �

 Software life cycle �

 Requirements analysis �

 Design �

 Implementation �

 Testing �

 Waterfall method and agile methods for software engineering �

 Empirical software engineering �

 Formal methods �

 Open-source software development �

 Scripting languages �

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe78

 Some more background on software topics

 Unix and C

 The origins of time-sharing operating systems can be traced back to MIT, with John McCarthy’s

early prototype and Fernando Corbató’s Compatible Time-Sharing System in 1961 . These beginnings led to

Licklider’s very ambitious project MAC and the Multiplexed Information and Computing Service – Multics –

time-sharing operating system. Bell Labs were partners in the project but became frustrated by its size,

complexity, and slow progress. When Bell Labs withdrew from the project in 1969 , Thompson and Ritchie

(B.4.12) and some colleagues from Bell Labs decided to produce their own stripped down version of a time-

sharing operating system and to try to create a community around the new code base :

 What we wanted to preserve was not just a good environment in which to do programming, but a system

around which a fellowship could form. We knew from experience that the essence of communal computing,

as supplied by remote-access, time-shared machines, is not just to type programs into a terminal instead of a

key-punch, but to encourage close communication . 26

 They were unable to get funding from Bell Labs management to buy a new computer for their project so

they found an old and little-used PDP-7 minicomputer to begin their entirely unfunded skunkworks pro-

ject. In the course of this work they developed a hierarchical fi le system, the concept of treating devices

as fi les and the notion of processes. They also created a set of utilities giving users the ability to print,

copy, delete, and edit fi les plus a simple command interpreter or shell . The Unix operating system then

consisted of a set of utilities under the control of a small and effi cient operating system kernel . The ker-

nel provided services to start and stop programs, handle the fi le system, and schedule access to resources

and devices avoiding confl icts . By promising to create a system specifi cally designed for editing and for-

matting text, in 1970 they fi nally managed to get funding to buy a modern PDP-11 computer. It was also

in 1970 that their colleague Brian Kernighan suggested the name Unix, as a play on the name Multics .

 In 1972 Unix pipes were introduced that enabled small utility programs to be combined to create more

powerful programs. Using such pipes to create a powerful system utility rather than developing a sin-

gle monolithic program with the same combined functionality became known as the Unix philosophy –

“the idea that the power of a system comes more from the relationships among programs than from the

programs themselves .” 27 Every program in Unix had originally been written in assembly language but

 Thompson had developed a defi nition and compiler for a new language for the PDP-7 that he called B. The

language was a stripped down and modifi ed version of the BCPL language developed in Cambridge, U.K.,

by Martin Richards. With the arrival of the more powerful PDP-11 in 1970, Ritchie took Thompson’s B

language and developed the C programming language to take advantage

of the new machine’s byte addressability and other features. By 1973 the

new language was powerful enough for much of the Unix kernel to be

rewritten in C. In 1977, with further changes to the language, Ritchie

and Steven Johnson were able to produce a portable version of the Unix

operating system. Johnson’s Portable C Compiler then allowed both C

and Unix to spread to other platforms . In 1978 Kernighan and Ritchie

published the fi rst edition of The C Programming Language , which served

for many years as the informal specifi cation of the standard (Fig. 4.13).

 Thompson and Ritchie’s Unix operating system has been enor-

mously infl uential . Because AT&T was a regulated telephone monop-

oly it was barred from doing signifi cant commercial developments in

 B.4.12. Ken Thompson and Dennis

Ritchie (1941–2011), the developers of

C programming language and the Unix

operating system .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

79Programming languages and software engineering

the computing arena. Universities were therefore able to order the data

tapes from Bell Labs for a nominal charge of $150 for materials. For that

they received the entire source code for the fi rst general-purpose operat-

ing system for minicomputers. This along with the portable C compiler

was all that university researchers needed to produce their own ver-

sions. After July 1974, when a written version of their work appeared in

 Communications of the ACM , orders came fl ooding in and fi rst hundreds,

and then thousands of minicomputer users started porting Unix to their

machines. Thompson spent a sabbatical year in Berkeley in 1975 and

a graduate student named Bill Joy became an enthusiastic promoter of

Unix. By the early 1980s, the Berkeley System Distribution 4.2 Unix was

the de facto standard in the university research community. Joy and his

team were then commissioned by ARPA, the Advanced Research Projects

Agency, to integrate the newly defi ned networking protocol TCP/IP into

Unix . This was a very signifi cant development for the birth of the Internet

as we shall see in Chapter 10 .

 Formal methods

 Software engineering involves many disciplines, including mathematics. In the context of software

development the fi eld of formal methods uses a variety of mathematical techniques to specify and verify soft-

ware (B.4.13). A formal specifi cation of the system can be used to prove that the program has the desired

properties. Automated theorem proving systems attempt to prove that the software does what it was intended

to do by using its formal specifi cation, a set of logical axioms and a set of inference rules to produce a formal

mathematical proof. An alternative approach uses model checking , which verifi es properties of the system by

an exhaustive search of all the possible states that the system could enter during its execution . It is probably

fair to say that formal methods have not so far delivered major benefi ts for assisting the creation of bug-free

code in large software systems. However, there are now some examples of such methods being used to solve

real software problems. In 2002 Bill Gates said:

 Things like even software verifi cation, this has been the Holy Grail of computer science for many decades

but now in some very key areas, for example, driver verifi cation we’re building tools that can do actual proof

about the software and how it works in order to guarantee the reliability. 28

 Gates was referring to the SLAM verifi cation engine that checks that soft-

ware correctly satisfi es the behavioral properties of the interfaces that it

uses. The SLAM tool is now applied regularly to all Microsoft device drivers

and has helped fi nd more than three hundred bugs in the sample drivers

that were supplied to developers.

 Databases

 The main purpose of databases is to store and manage large

volumes of data. Database software plays a vital role in our modern

society. No bank transactions, online shopping, airline reservations,

or even a checking out at the local supermarket would be possible

without databases. Database software is now a multibillion dollar

business.

 Fig. 4.13. The fi rst edition of Kernighan

and Ritchie’s C programming language

 book.

 B.4.13. Three pioneers of structured

programming and formal methods in

software development: Tony Hoare,

Edsger Dijkstra, and Niklaus Wirth seen

here at an Alpine resort .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe80

 The relational data model that forms the basis of modern data-

bases is undoubtedly one of the great abstractions of the twentieth cen-

tury. Historically, there were approaches for handling large volumes of

data based on hierarchical, treelike structures or more general network

structures. An early example of the hierarchical approach was the IBM’s

Information Management System. One diffi culty with this approach is

that not all data relationships fi t well into a tree structure. A more gen-

eral network structure can provide a more fl exible solution, but now

the user has to know the exact path leading to the data item in order

to access or update it. This approach also did not scale well – with the

growth of data, programmers found it diffi cult to navigate through a

complicated web of data relationships.

The real breakthrough for database software came with the idea

of the relational data model, suggested by a British mathematician Edgar

“Ted” Codd (B.4.14). In 1970 he published his groundbreaking paper

“A Relational Model of Data for Large Shared Data Banks.” The ideas

described in this paper became the foundation of modern databases.

Ironically, his own company, IBM, was initially not very supportive of

his ideas. There were many skeptics and a strong resistance toward rela-

tional databases even in professional circles. In the dedication of his book The Relational Model for Database

Management he refers to this struggle:

To fellow pilots and aircrew in the Royal Air Force during World War II and the dons at Oxford. These people

were the source of my determination to fi ght for what I believed was right during the ten or more years in

which government, industry and commerce were strongly opposed to the relational approach to database

management . 29

 The idea of a relational database is simple, yet very powerful. All the data, including the relations between

data, is stored in tables that are linked together. The link is established when the same column of data is

shared between two or more tables. This column is called a key. The main advantage of the relational data

model is that it provides a systematic way to create the interconnections between tables. It is much easier to

access data and there is no need to know the path leading to the data (B.4.15). This model is also supported

by a powerful mathematical set theory and a declarative programming language called SQL – structured query

language .

 B.4.14. Edgar “ Ted” Codd (1923–2003)

graduated from Oxford with a degree in

mathematics and chemistry and was an

RAF fi ghter pilot during the war. After

the war he joined IBM and moved to the

United States. In 1981 he received the

Turing Award for his contribution to the

development of relational databases .

 B.4.15. Jim Gray (1944–2007) on board his boat Tenacious . In 1988 Gray received the Turing Award

for his contributions to database design and transaction processing. After gaining a PhD in com-

puter science from Berkeley, he worked for IBM, Tandem Computers, and DEC. From 1995 Gray

was a Technical Fellow at Microsoft Research. He was fi rst to develop a website that displayed

geographic data – the Terraserver – and that could deliver data to users using a web service. Gray

spent the last decade of his life working with scientists with “Big Data” problems. With astron-

omer Alex Szalay, he pioneered the hosting of the Sloan Digital Survey astronomical data by

creating the SkyServer website. Gray also coined the term Fourth Paradigm to refl ect the increase

in importance of data-intensive science. He was lost at sea, west of San Francisco Bay, in January

2007. Despite a massive collaborative effort by the emergency services and the computer science

community, in searching for signs of Tenacious , no trace was ever found .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

81Programming languages and software engineering

 Design patterns

 The advances of structured and O-O programming still underpin

the way in which systems are written today. However, as the software

industry grew, the task of teaching each new wave of programmers how

to program effi ciently has led to a new level of abstraction. In 1995, four

software engineers – Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides – got together and identifi ed what they called “design pat-

terns” (B.4.16). These are standard patterns in software that everybody

uses to perform a number of simple tasks.

 One example is the “Observer pattern.” This ensures that when one

object changes its state, all of its dependents are notifi ed and updated

automatically. They identifi ed twenty-two patterns they called by easy-to-remember names. Apart from

 Observer , other example patterns are Factory , Decorator , Interpreter , and Visitor . Their book on design patterns

has become one of the best-selling and most-cited books in computer science. It established a fi xed vocab-

ulary for talking about O-O software at a level above program code, so that programs – and programmers –

became more transferable, understandable, and accurate .

 B.4.16. The “Gang of Four”: Ralph

Johnson, Erich Gamma, Richard Helm,

and John Vlissides.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

The Computing Universe82

 Three expensive software errors

 NASA’s Mariner 1 Space Probe (1962)

 A bug in the fl ight software for the Mariner 1 (Fig. 4.14)

mission caused the rocket to divert from its intended path on

launch. Mission control destroyed the rocket over the Atlantic

Ocean 293 seconds after launch. NASA’s website says the problem

was caused by a combination of two factors. Improper operation

of the Atlas airborne beacon equipment resulted in a loss of the

rate signal from the vehicle. The airborne beacon used for obtain-

ing rate data was inoperative for four periods ranging from 1.5

to 61 seconds in duration. Additionally, the Mariner 1 Post Flight

Review Board determined that the omission of a hyphen in the

data-editing program allowed transmission of incorrect guidance

signals to the spacecraft. During the periods the airborne beacon

was inoperative, the missing hyphen in the data-editing program

caused the computer to incorrectly accept the sweep frequency

of the ground receiver as it sought the vehicle beacon signal and

combined this data with the tracking data sent to the guidance

computation. This caused the computer to automatically gener-

ate a series of unnecessary course corrections using the errone-

ous steering commands and these fi nally threw the spacecraft off

course. The science fi ction author Arthur C. Clarke wrote several

years later that Mariner 1 was “wrecked by the most expensive

hyphen in history .” 30

 Ariane 5 Flight 501 Launch (1996)

 In his Turing Award lecture, Tony Hoare warned of the dangers of the complexities of the ADA pro-

gramming language:

 And so, the best of my advice to the originators and designers of ADA has been ignored. In this last resort, I

appeal to you, representatives of the programming profession in the United States, and citizens concerned

with the welfare and safety of your own country and of mankind: Do not allow this language in its present

state to be used in applications where reliability is critical, i.e., nuclear power stations, cruise missiles, early

warning systems, anti-ballistic missile defense systems. The next rocket to go astray as a result of a program-

ming language error may not be an exploratory space rocket on a harmless trip to Venus: It may be a nuclear

warhead exploding over one of our own cities. An unreliable programming language generating unreliable

programs constitutes a far greater risk to our environment and to our society than unsafe cars, toxic pesti-

cides, or accidents at nuclear power stations. Be vigilant to reduce that risk, not to increase it. 31

 Some of the ADA code for the Ariane 4 rocket was reused in the Ariane 5’s control software. The error was

in the code that converts a 64-bit fl oating-point number to a 16-bit signed integer. The faster engines caused

the 64-bit numbers to be larger in the Ariane 5 than in the Ariane 4. This triggered an overfl ow condition

that resulted in the fl ight computer crashing. The backup computer then also crashed, followed 0.05 seconds

later by a crash of the primary computer. As a result of these software crashes, the mission was terminated

thirty-seven seconds after launch (Fig. 4.15).

 Fig. 4.14. Mariner 1 Space probe to Venus was

the fi rst interplanetary mission aiming to put a

satellite around Venus. There are various stories

about the reason why this mission had to be

aborted. Most of them fi rmly point at a bug

in the FORTRAN code of the guidance system

that unexpectedly changed the trajectory of

the rocket. A hyphen (overbar) missed in a

mathematical expression led to the $80 million

failure. Five months later the Mariner 2 was suc-

cessfully launched and completed the mission .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

83Programming languages and software engineering

 NASA’s Mars Climate Orbiter (1999)

 The root cause for the loss of the Mars Climate Orbiter (Fig. 4.16) spacecraft was the failure to use met-

ric units in the coding of the software fi le, “Small Forces,” used in trajectory models. Instead of reporting the

thruster data in metric units of Newtonseconds (N-s), the data was reported in English units of pound-seconds

(lbf-s). Subsequent processing of this thruster data by the navigation software algorithm underestimated the

effect on the spacecraft trajectory by a factor of 4.45, which is the required conversion factor from force in

pounds to Newtons. An erroneous trajectory was then computed using this incorrect data .

 Fig. 4.15. Photo of the destruction of the fi rst launch of the Ariane 5 Flight 501 rocket. Just

thirty-seven seconds into the launch, the trajectory suddenly tilted by almost 90 degrees

and the rocket self-destructed. The software error occurred during data conversion from a

64-bit fl oating-point number to a 16-bit signed integer. This led to a sequence of events that

resulted in a complete loss of the guidance system .

 Fig. 4.16. Artist’s impression of the Mars Climate Orbiter. The space probe was lost at

the fi rst attempt to enter the orbit around Mars on 3 September 1999. Putting a probe

into a fi nal planetary orbit is a long process during which the initial orbit is gradually

reduced until the probe reaches its permanent orbit. Because of a software error the

orbiter entered the Martian atmosphere at too high a velocity and consequently burnt

up. The cost of this failure was $125 million .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.007
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.007
http:/www.cambridge.org/core

