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     4     Programming languages and 

software engineering    

  The   major cause of the software crisis is that the 
machines have become several orders of magnitude 
more powerful! To put it quite bluntly: as long as 
there were no machines, programming was no 
problem at all; when we had a few weak computers, 
programming became a mild problem, and now we 
have gigantic computers, programming has become 
an equally gigantic problem  . 
 Edsger Dijkstra  1    

  The software crisis 

 The   term    software   engineering  originated in the early 1960s, and the North 

Atlantic Treaty Organization sponsored the fi rst conference on the “software 

crisis” in 1968 in Garmisch-Partenkirchen, West Germany. It was at this confer-

ence that the term  software engineering  fi rst appeared  . The conference refl ected 

on the sad fact that many large software projects ran over budget or came in 

late, if at all.   Tony Hoare, a recipient of the Turing Award for his contributions 

to computing, ruefully remembers his experience of a failed software project:

  There was no escape: The entire Elliott 503 Mark II software project had to 

be abandoned, and with it, over thirty man-years of programming effort, 

equivalent to nearly one man’s active working life, and I was responsible, 

both as designer and as manager, for wasting it  .  2    

 In   his classic book  The Mythical Man-Month , Fred Brooks ( B.4.1 ) of IBM draws on 

his experience developing the operating system for IBM’s massive System/360 

project. Brooks makes some sobering refl ections on software engineering, say-

ing, “It is a very humbling experience to make a multimillion-dollar mistake, 

but it is also very memorable  .”  3    

 In this chapter we will explore two aspects of the way the software indus-

try has addressed this crisis: the evolution of programming languages ( Fig. 4.1 ) 

and the emergence of software engineering methodologies. We will see how 

two major ideas provide the basis for modern software development: (1  )  struc-

tured programming , in which the statements are organized in a specifi c way to 

minimize error  ; and (2)    object-oriented software , which is organized around the 

 B.4.1.      Fred   Brooks made a major 

contribution to the design of 

IBM/360 computers. His famous 

book  The Mythical Man-Month  

describes his experiences in software 

development  .  
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59Programming languages and software engineering

objects the programmer wants to manipulate rather than the logic required to 

do individual operations. To computer scientists, an  object  is any item that can 

be individually selected and handled. In object-oriented programming, an  object  

consists of not only the data but also the  methods  employed to operate on that 

type of data  . In addition, the introduction of engineering practices in the speci-

fi cation, design, coding, and testing of software has helped the software indus-

try make progress toward taming the software crisis.   However, it is important 

to remember that even with the best software engineering practices of today, 

software systems contain somewhere between ten and ten thousand errors per 

million lines of code. It is therefore not surprising that testing and bug fi xing 

play a large role in the life cycle of software  .   Lastly, we shall take a look at an 

alternative model of software development. This model is based on  crowdsourc-

ing , which incorporates contributions from a large group of people, and the 

free sharing of the  source code , the program instructions in their original form. 

Such sharing of source code is called the  open-source  approach. One of its major 

advantages is that it permits rapid fi nding of bugs.   Eric Raymond has memora-

bly summarized this idea as “Given enough eyeballs, all bugs are shallow.”  4   In 

other words, the more people who see and test a set of code, the more likely any 

fl aws will be caught and fi xed quickly. Raymond called this “Linus’s Law” after 

Linus Torvalds, creator of the open-source Linux operating system  . However, 

other experienced software engineers would contest this   statement  !   

  Elements of modern programming languages 

 Before   the introduction of FORTRAN in the 1950s, programmers had to 

work in machine code, made up of binary commands ( Fig. 4.2 ), or in assembly 

languages, composed of symbolic expressions, both of which were diffi cult and 

time-consuming to write.   FORTRAN was the fi rst commercially successful  high-

level language . That is, it resembled natural human language,   was easy to learn, 

and required less knowledge of the computer on which it would be run  . Many 

people expected that FORTRAN would make software easy to create and sim-

ple to fi x.   It is amusing to look back at the optimism expressed in the original 

FORTRAN proposal from John W. Backus in 1954:

  Since FORTRAN should virtually eliminate coding and debugging, it should be 

possible to solve problems for less than half the cost that would be required 

without such a system. Furthermore, since it will be possible to devote nearly 

all usable machine time to problem solution instead of only half the usable 

machine time, the output of a given machine should be almost doubled  .  5      

 So how did software production reach such a crisis point only a decade later? 

Part of the answer lies in the features of early languages. 

 We will begin by looking at some early programming languages and three 

concepts that led to better programming: (1)  type checking , which checks and 

enforces certain rules to help prevent one major category of errors; (2)    recursion , 

where a function can call itself  ; and (3)    dynamic data structures . A  data structure  

is any organized form, such as a list or fi le, in which connected data items are 

held in a computer. A dynamic data structure provides a way of organizing data 

that allows more effi cient use of computer memory  . 

 Fig. 4.1.      Some   popular programming 

languages. Wikipedia lists more than 

seven hundred programming languages 

but only a few of these have attained 

widespread use  .  

 Fig. 4.2.      In   the early days of computing, 

programming was done in binary. It was 

only with the introduction of assembly 

language that programming became 

slightly more intuitive. High-level pro-

gramming languages like FORTRAN and 

COBOL only became popular with the 

development of effi cient compilers that 

produced performance close enough to 

assembly language programs  .  
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The Computing Universe60

 Programming languages are artifi cial languages designed to communicate 

instructions to a computer. FORTRAN and most other programming languages 

consist of sequences of text, including words, numbers, and punctuation 

marks.   Programming languages may be divided into two broad categories, 

 imperative  and  declarative  languages ( Fig. 4.3 ). Roughly speaking, imperative lan-

guages specify  how  a computation is to be done, while declarative languages 

focus on  what  the computer is supposed to do. FORTRAN was the fi rst commer-

cial example of an imperative language.   A year later, in 1958, John McCarthy 

and his students at the Massachusetts Institute of Technology (MIT) developed 

LISP, standing for LISt Processing, a programming language targeted at artifi -

cial intelligence (AI) applications. LISP was the fi rst attempt at creating a type of 

declarative language in which computation proceeds by evaluating   functions  .  

 In computer programming,   a  variable  is a symbol or name that stands 

for a location in the computer’s memory where data can be stored. Variables 

are important because they enable programmers to write fl exible programs. 

Rather than putting data directly into the program, the programmer can use 

variables to represent the data, allowing the same program to process different 

sets of information, depending on what is stored in the computer’s memory  . 

  Instructions known as  declaration statements  specify the sort of information each 

variable can contain, called the  data type   . 

 Many   of the main ideas of the original FORTRAN language are still used in 

programming languages today. Features of early versions of FORTRAN were:

   Variable names in a FORTRAN program could be up to six characters • 

long and could change their values during execution of the program.  

  Variable names beginning with the letters I, J, K, L, M, or N represented • 

 integers , that is, whole numbers with no fractional parts. All other vari-

ables represented  real numbers , which could be any positive or negative 

numbers, including integers.  

  Boolean   variables, variables that have the value of either true or false, • 

could be specifi ed with a  logical  declaration statement  .  

  Five basic arithmetic operations were supported: + for addition; – for • 

subtraction; * for multiplication; / for division; and ** for exponentia-

tion, raising one quantity to the power of another  .    

FORTRAN

Simula67

LISP

1
9

7
0

s
1

9
6

0
s

1
9

5
0

s
1

9
8

0
s

1
9

9
0

s

Common LISP

ML

Basic

SNOBOL

ALGOL60

COBOL

PL/I

PASCAL

Modula 2

ALGOL68

C

Ada

Smalltalk

C++

JavaPython

 Fig. 4.3.      A   simplifi ed evolutionary graph 

of popular programming languages. The 

language styles are marked by different 

color frames: red – declarative, blue – 

imperative (procedural), and green – 

object oriented  .  
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61Programming languages and software engineering

 Another   important feature of FORTRAN was that it introduced a data structure 

called an  array  that was especially useful for scientifi c computations. An array 

is a group of logically related elements stored in an ordered arrangement in the 

computer’s memory. Individual elements in the array may be located using one 

or more indexes. The  dimension  of an array is the number of indexes needed to 

fi nd an element. For example, a list is a one-dimensional array, and a block of 

data could be a two- or three-dimensional array. An instruction called a  dimension 

statement  instructs the compiler to assign storage space for each array and gives it 

a symbolic name and dimension specifi cations. For example, a one-dimensional 

array of numbers called a  vector  may be specifi ed by the dimension statement 

VEC(10) or a three-dimensional fi eld of values by MAGFLD(64, 64, 64  ). 

 Modern   programming languages have improved on the minimal specifi -

cation of data types in FORTRAN. Many languages today employ  strong typing  – 

strict enforcement of type rules with no exceptions. Checking that a large, 

complex software system correctly uses appropriate data types greatly reduces 

the number of bugs in the resulting code  . 

 For   effi ciency reasons, the development of FORTRAN was closely aligned 

to the hardware architecture of the computer. Thus FORTRAN  assignment state-

ments , instructions that assign values to the variables, are actually descriptions 

of how the data moves in the machine. In FORTRAN, assignment statements 

are written using the “equal” sign, but these statements do not mean mathe-

matical equality. Consider the assignment statement  

    A B C+B( )2 0  

 In FORTRAN, this statement means, “Replace the value at address A by the 

result of the calculation 2.0*(B+C).” Similarly, the odd-looking statement

    J J +J 1

 means, “Read the value from address J, add 1 to this value, and then store the 

result at the same address.” 

 The   original FORTRAN specifi cation provided three kinds of  control state-

ments , instructions that switch the computer from automatically reading the 

next line of code to reading a different one:

   The DO statement was used to allow the program to perform a  • loop , a 

sequence of instructions that repeats either a specifi ed number of times 

or until a particular condition is met.  

  The IF statement was employed for  • branches , instructions that tell the 

computer to go to some other part of the program, depending on the 

result of some test.  

  The GO TO statement was used to direct the computer to jump to a spe-• 

cifi c numbered   statement  .   

 Forms   of the basic  do  loop and  if  statement constructs are available in most 

modern programming languages. We can write the general form of these con-

trol statements in  pseudocode , an informal, high-level description of a program 

that is intended to be read by humans. A computer could not directly execute 
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The Computing Universe62

it, however, because the pseudocode version of the program omits details not 

essential for understanding by people but necessary for a machine to run the 

program  .   Thus we can write a  do  loop using the  for  keyword   

 for <var> in <sequence> 

 <statements>   

 The variable <var> after the keyword  for  is called the  loop index , and the state-

ments in the body of the  for  loop – <statements> – are executed according to 

the number of times specifi ed in the <sequence> portion of the loop heading. 

After completing the loop the required number of times, the program goes to 

the program statement after the last statement in the body of the loop  . 

 Similarly, we can write an  if  statement as: 

 if <condition>: 

 <statements#1> 

 else: 

 <statements#2>   

 If the Boolean condition <condition> is true, the program executes the fi rst set 

of statements – <statements#1> – and then jumps to the statement after the 

second block of statements – <statements#2>. If the condition is false, the pro-

gram jumps over the fi rst block of statements and executes the second block 

of code <statements#2> under the  else  keyword, before carrying on with the 

next statement of the program.   It is sometimes helpful to visualize these con-

trol structures as diagrams called  fl owcharts , fi rst introduced into computing 

by Herman Goldstine and John von Neumann in 1947. Flowcharts use boxes 

to represent the different parts of the program with arrows between the boxes 

showing the sequence of events. Flowcharts representing the  for  loop and the 

 if-then-else  fl owcharts are shown   in  Fig. 4.4 .  

 Modern   programming languages generally do not encourage use of the  go 

to  statement. Undisciplined use of  go to  statements often led to very complex 

“spaghetti” code that was diffi cult to understand and debug. In 1968, Edsger 

Dijkstra ( B.4.2 ) wrote a famous article titled “Go To Statement Considered 

Harmful”:

Condition 

true?

Statements#1 Statements#2

yes noMore 

iterations?

Statements

yes

no

(b)(a) Fig. 4.4.      Flowcharts   for the “for” loop (a) 

and “if-then-else” (b). They illustrate the 

decision points in the program where 

a branch can be made depending on a 

check of some condition. The “for” loop 

performs a set number of iterations 

through the same piece of code that 

use different data. The “if-then-else” 

branch executes a different piece of 

code depending on the result of a test 

condition  .  
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63Programming languages and software engineering

  For a number of years I have been familiar with the observation that the 

quality of programmers is a decreasing function of the density of go to 

statements in the programs they produce. More recently I discovered why 

the use of the go to statement has such disastrous effects, and I became 

convinced that the go to statement should be abolished from all “higher 

level” programming languages (i.e. everything except, perhaps, plain machine 

code).  6    

 Criticism   about the undisciplined use of  go to  statements was one of the fac-

tors that led to the  structured programming  movement of the 1970s  . Structured 

programming aims to improve the clarity, quality, and development time of 

software by identifying coherent blocks of code and using  subroutines , standard 

sets of instructions to perform frequently used operations within a program. 

Structured programming uses  for  loops and  if-then-else  constructs as the only 

control and decision   structures  .   

  Recursion and dynamic data structures 

 Since the beginning of computer programming, most programming lan-

guages have been imperative languages that tell the machine how to do some-

thing.   It is remarkable, however, that one of the earliest high-level programming 

languages to be developed was a declarative language, which told the computer 

what the programmer would like to have happen and let the machine deter-

mine how to do it.   This declarative language was LISP,   the brainchild of John 

McCarthy, who had spent the summer of 1958 as a visiting researcher in the 

IBM Information Research Department.   In addition to becoming frustrated with 

batch processing and wanting to pursue time-sharing systems, he investigated 

the requirements for a programming language to support symbolic rather than 

purely numeric computations. These requirements included  recursion , the ability 

 B.4.2.        Edsger Dijkstra (1930–2002) was one of the pioneers of computer science. From the early 

days he was championing a mathematically rigorous approach to programming. In 1972 he 

received the Turing Award for his fundamental contributions to the development of programming 

languages. He was well known for his forthright opinions on programming and programming 

languages. 

 On FORTRAN:

    FORTRAN, “the infantile disorder”, by now nearly 20 years old, is hopelessly inadequate for 

whatever computer application you have in mind today: it is now too clumsy, too risky, and 

too expensive to use  .  B1    

 On COBOL:

  The   use of COBOL cripples the mind; its teaching should, therefore, be regarded as a 

criminal offense  .  B2    

 On BASIC:

  It   is practically impossible to teach good programming to students that have had a prior 

exposure to BASIC: as potential programmers they are mentally mutilated beyond hope   of 

  regeneration.  B3      
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The Computing Universe64

for a program or subroutine to  call  itself,   and  dynamic data structures , for which 

the memory space required is not set in advance but can change size as the 

program runs. The newly developed FORTRAN language did not support either 

of these requirements  . 

 When he returned to MIT, McCarthy set about devising a language suitable 

for the types of symbolic and AI applications he had in mind. His LISP language 

focused on the manipulation of  dynamic lists  that could grow or shrink as the 

program was running. The style of programming was very different from that 

of an imperative language like FORTRAN. There were no assignment statements 

in LISP and no implicit model of state in the background, tied to the physical 

implementation of a “pigeonhole” model of computer memory. Instead, in LISP 

everything is a mathematical function. For example, the expression x 2  is a  func-

tion : applying this function to the variable x returns the value of x 2 . In LISP, com-

putation is achieved by just applying functions to arguments. This feature makes 

it easier to reason mathematically about the behavior and correctness of LISP 

programs.   It removes the possibility of dangerous “side effects” – situations in an 

imperative program where, unsuspected by the programmer, some part of the 

program has altered the value of a variable in memory from the value that the 

programmer had intended  . Memory allocation for McCarthy’s dynamic lists was 

not performed in advance of running the program.   It was therefore necessary 

to regularly clean up the memory space by removing from the list of assigned 

storage locations any locations that were no longer being used. McCarthy’s team 

called this process of reclaiming memory space  garbage collection   . These ideas 

have been infl uential in the implementation of modern languages like Java and 

C# (C Sharp). 

 McCarthy’s   ideas about recursion and dynamic data structures are not 

limited to declarative languages like LISP  . They are now essential compo-

nents of almost all imperative languages, such as FORTRAN, BASIC, and C. 

We can illustrate the idea of recursion through the problem of calculating 

the factorial of the number  n  – that is, the product of the whole number  n  

and all the whole numbers below it. The factorial of  n  is written as  n!  and is 

defi ned to be the product n  ×  (n – 1)  ×  (n – 2) . . .  ×  2  ×  1. We could calculate 

this using a  for  loop, but we can also perform the calculation using recur-

sion, a process in which the function repeatedly calls itself with smaller and 

smaller arguments until it reaches a  termination condition , a state in which 

it will stop calling itself. The pseudocode for the recursive calculation of 

factorial  n  is: 

 factorial (n) 

 if n <= 1: 

 return 1 

 else: 

 return n * factorial (n – 1)  

The expression “n <= 1” is an integer check to see if the value of n is less than 

(<) or equal (=) to 1. The calculation of the factorial starts with  n  and multiplies 

this by factorial (n – 1). This repetition continues until (n – 1) equals 1  . 

 As   an example of dynamic data structures we consider  linked lists . In scien-

tifi c calculations, the size of the array structures that store related groups of 
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65Programming languages and software engineering

items can usually be specifi ed in advance. The same is not true for most types of 

lists. The membership list for a sports club, for example, will grow and shrink as 

new members join and old members leave. If we store a list of names in an array 

of fi xed length using sequential memory locations in the computer, removing 

or adding names becomes very laborious because the data in the list must be fre-

quently reshuffl ed to keep them in the right order in memory. These problems 

can be avoided if we do not store items in the list in a sequential memory block 

but just in any convenient area of memory.   To store the contents of the list, 

each name in the list is stored in some location along with a  pointer  – a memory 

address – to the location of the next name on the list ( Fig. 4.5a ). Deleting or 

adding names is now straightforward because it just requires changing a single 

pointer ( Fig. 4.5b ). With pointers, the address of the data storage location can 

be kept separately from the actual data  . Retrieving the data is thus a two-step 

process – getting the address of the storage location and then going to that 

location to get the data.   Other common dynamic data structures are LIFO (Last-

In-First-Out) stacks, collections of items in which only the most recently added 

item may be removed, and FIFO (First-In-First-Out) queues, collections of items 

in which only the earliest added item   may   be   removed.   

  Programming with objects: from SIMULA to C++ 

 An   important   idea in object-oriented programming is  data abstraction , 

which focuses on classes, objects, and types of data in terms of how they 

function and how they can be manipulated, while hiding details of how the 

work is carried out.   The idea of data abstraction can be traced back to two 

Norwegian computer scientists, Kristen Nygaard and Ole-Johan Dahl ( B.4.3 ). 

  They fi rst presented their programming language SIMULA 67 in March 1967  . 

They were interested in using computers to run simulations and needed the 

language to support subprograms that could stop and later restart at the place 

they had stopped.   To do this, Nygaard and Dahl introduced the idea of a  class   . 

The key property of a class is that a data structure and the routines that 

manipulate that data structure are packaged together  .   This led to the impor-

tant idea of  abstract data types , sets of objects that share a common structure 

and behavior.  

 Abstract   data types were actually present in the original FORTRAN 

language.   There was a built-in  fl oating-point  data type, which represented 

Name Pointer Name Pointer Name NIL
Head 

Pointer

Name Pointer Name Pointer Name NIL
Head 

Pointer

Old Pointer 

Removed

New Pointer

(a)

(b)

 Fig. 4.5.      A   linked list is an example of 

a dynamic data structure that makes 

it easy to remove or add items to a list. 

(a) This shows the structure of a linked 

list with each entry in the list having a 

 pointer  to the memory location of the 

next element. (b) This illustrates how 

easy it is to delete a node from the 

linked list by just changing the pointer  .  

 B.4.3.      Ole-  Johan Dahl (1931–2002) 

(left) and Kristen Nygaard (1926–

2002) were fi rst to introduce classes 

and objects in their Simula program-

ming language  .  
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The Computing Universe66

numeric values with fractional parts, and a set of arithmetic operations 

that were allowed to act on fl oating-point variables  . How FORTRAN included 

these data types is an example of one of the key ideas of data abstraction, 

namely,  information hiding . The details of the actual way a fl oating-point num-

ber is represented in the computer are hidden from the user and cannot be 

accessed by the programmer. In addition, the programmer can only create 

new operations on this type of data by using the built-in operations already 

supported on fl oating-point variables. Because of such information hiding, 

FORTRAN programs could run on many different machines, even though 

fl oating-point variables were frequently implemented very differently on dif-

ferent   machines  . 

 Modern object-oriented (O-O) programming languages allow program-

mers to create their own abstract data types  . Consider again the problem of 

writing a program to manipulate a list containing the names of members 

in a sports club. In an imperative programming language, the list is just 

a collection of data and we need to write separate software procedures to 

add, delete, and sort items in the list.   In an O-O language, the list is con-

structed as an  object  consisting of both the list data and the collection of 

procedures – called  methods  in O-O speak – for manipulating this data. Thus 

an O-O program to sort the list would not contain a separate sorting proce-

dure but make use of the methods already built in for the list object. What 

is the relationship between a class and an object? A  class  is a template for all 

the objects with the same data type and methods. The list class applies to all 

list objects with data in the form of a list and the methods to operate on the 

list. As a slightly more complicated example, let us defi ne a bank account 

class. The abstract data type for a bank account consists of the name of the 

client, the number of the account, and the balance of money in the account. 

The class consists of bank account data of this type plus methods that defi ne 

the different operations that can be carried out on the account – withdraw-

als, deposits, transfers, and so on. Accounts belonging to different custom-

ers obviously contain different data and are called  objects  or  instances  of this 

class. The methods that act on the data within an object are usually small 

imperative programs  . 

 Two   other important properties of O-O languages are  inheritance  and  encap-

sulation . The idea of inheritance is that a class can be extended to create another 

class that inherits the properties of the original class. Thus the class “bank 

account” could be extended to create a new class “savings bank account” that 

inherits the same data structure and methods as the original class but with 

additional properties and methods ( Fig. 4.6 ). Encapsulation means that there 

are certain properties of an object that are not accessible to other parts of the 

program. Only the object is able to access these properties  .  

 Canadian   computer scientist David Parnas ( B.4.4 ) was one of the pioneers 

of information hiding. Turing Award recipient Alan Kay and his research team 

at the Xerox PARC (Palo Alto Research Center) in Silicon Valley in the 1970s fi rst 

introduced the term  object-oriented programming . They developed the Smalltalk 

language, which was based on the idea of building programs with objects that 

communicated by sending messages  .  

 B.4.4.      David   Parnas is a Canadian 

computer scientist who pioneered 

ideas of “information hiding.” These 

ideas are now an integral part of 

data abstraction in object-oriented 

  programming.  
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67Programming languages and software engineering

 One   of the most widely used O-O languages today is the C++ program-

ming language.   Bell Labs researcher Bjarne Stroustrup ( B.4.5 ) was familiar with 

SIMULA and had found the class feature to be useful in large software devel-

opment projects  . When he started working at Bell Labs, he explored ways of 

enhancing Dennis Ritchie’s C language, which was both fast and portable (see 

section on C and Unix at the end of this chapter). In 1979, Stroustrup started 

by adding classes to C to create what he called “C with Classes.” Over the next 

few years, Stroustrup added several other features and renamed the language 

“C++.” There is now a C++ software library called the Standard Template Library 

(STL) that contains predefi ned, useful classes that are provided as part of the 

C++ programming environment. By incorporating the STL library of classes 

into a program, the programmer does not have to explicitly specify these data 

structures  .   Two other examples of widely used object-oriented programming 

languages are Java ( B.4.6 ) and   C#  .    

  Why do we need software engineering? 

 As   we   have seen, computer scientists originally hoped that programming 

in a high-level language would, as Backus said, “virtually eliminate coding and 

debugging  .”  7   For small scientifi c programs written by one or two researchers, 

programming certainly became much easier, with the hard work of converting 

a FORTRAN program into effi cient assembly code delegated to a computer pro-

gram, the compiler. However, many scientifi c programs nowadays are complex 

simulation codes incorporating many different aspects of the problem under 

investigation. Writing and debugging such programs has become much more 

Account

Properties:

Account_Number <integer>

Client name <string>

Balance <real>

Methods:

Withdrawal (real)

Deposit (real)

Transfer (real)

Savings_Account

Properties:

Interest <real>

Methods:

AddInterest ()

 Fig. 4.6.      This   fi gure illustrates the con-

cept of class inheritance. The properties 

of the Account class are the data items. 

The methods represent the actions that 

we can carry out on the data. For the 

Savings_Account class, in addition to 

the properties and methods inherited 

from the Account class, there is also a 

new data item called interest and a new 

AddInterest method. In this way we can 

construct more complex classes from 

simpler ones  .  

 B.4.5.      Bjarne   Stroustrup designed 

and implemented the C++ program-

ming language. Over the last two 

decades, C++ has become the most 

widely used language supporting 

object-oriented programming and 

has made abstraction techniques 

affordable and manageable for main-

stream projects  .  

 B.4.6.      James   Gosling is credited with the development of Java programming language. The name 

can be traced back to the brand of coffee fueling the programming effort. A distinguishing feature 

of a Java program is that it does not run directly on the hardware but on software called a “virtual 

machine.” This “architecture-independent” implementation enables that movement of the code 

from one computer to another without recompiling the code. Thanks to this “write once, run 

anywhere” principle Java has become one the most popular programming languages especially for 

web applications  .  
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diffi cult. An additional challenge is that new researchers, who were not the 

authors of the original program, may need to extend and modify the code. 

 Similarly, as the software for business applications became larger and more 

complicated, it was no longer possible for a small team of talented program-

mers to write all the code. Teams of hundreds or even thousands of program-

mers now work on software systems consisting of hundreds of thousands or 

millions of lines of code, and programmers now have to coordinate their work. 

Accurate estimates of the time and cost of writing a complex software system 

have become vitally important for software companies.   Brooks discusses these 

issues in his book on the “mythical” man-month unit of programming effort. 

As a result of his experience, he formulated “Brooks Law,” which says, “Adding 

manpower to a late software project makes it later  .”  8   

 Software companies have an urgent need for reliable answers to the 

questions: How many lines of code will it take to provide the desired func-

tionality? How many programmers will be needed? How long will it take? If a 

software project is behind schedule, what should you do? Software engineering 

attempts to defi ne methodologies and frameworks to answer these questions. 

  The Institute of Electrical and Electronics Engineers (IEEE), a professional orga-

nization devoted to promoting technological innovation, defi nes software engi-

neering in its Standard 610.12 as “The application of a systematic, disciplined, 

quantifi able approach to the development, operation, and maintenance of soft-

ware; that is, the application of engineering to software  .”  9   

 One   of the earliest attempts to apply engineering methodologies to soft-

ware development was the “waterfall” model ( Fig. 4.7 ). This identifi ed four 

distinct phases of software development – requirements analysis, design, 

implementation, and testing. The waterfall method calls for completing each 

phase before proceeding to the next, which requires the systematic description 

and documentation of both the requirements and the design of the software 

to be completed before any actual coding begins. In practice, the phases are 

rarely completely separate. Software developers often fi nd in later phases that 

they must go back and change things in earlier phases. Backtracking and mul-

tiple versions of each phase are common.   David Parnas says about the design 

process:  

  Even if we knew the requirements, there are many other facts that we need 

to know to design the software. Many of the details only become known to us 

as we progress in the implementation. Some of the things we learn invalidate 

our design and we must   backtrack  .  10      

 The   recognition that software development is not a linear process has led to 

a philosophy called  agile software development . Agile methods break the task of 

writing the whole system into smaller segments or “sprints,” each of which 

involves all the four phases of software development – analyzing requirements, 

designing, implementing, and testing. Based on the results of testing the lat-

est version of a design, the developers make changes and improvements. The 

sprints typically last around four weeks, and the goal is to have a working 

prototype with some of the functionality required of the fi nal product by the 

end of each sprint. One of the main motivations for these more fl exible soft-

ware engineering methodologies is that customers often do not know all their 
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69Programming languages and software engineering

requirements at the beginning of a project. To incorporate changes in require-

ments makes a less rigid approach than the formal approach of the waterfall 

model essential  . 

 The   fi rst   stage of the software life cycle is requirements analysis and speci-

fi cation.   One of the earliest tools for documenting computer programs was the 

 fl owchart , a diagram representing the sequence of operations in a program. We 

have already seen examples of fl owcharts for  for  loops and  if-then-else  control 

statements (see  Fig. 4.4 ). However, in the production of large, complex software 

systems, fl owcharts have proved to be of limited value.   In the 1980s, computer 

scientist David Harel was working with avionics engineers trying to specify the 

behavior of a software system to control a modern jet aircraft. An avionics sys-

tem is  reactive  – a term coined by Harel and his colleague the late Amir Pnueli – 

in the sense that it has to respond predictably to a wide variety of different types 

of events  . Harel eventually converged on a diagrammatic way to specify the 

responses and transitions of the avionics system, which he called  statecharts  – 

“the only unused combination of ‘state’ or ‘fl ow’ with ‘chart’ or ‘diagram.’”  11   

By 1986, Harel and his colleagues had built the  Statemate  tool, which not only 

allowed users to construct statecharts but was also able to automatically gener-

ate code to fully execute them  .   In the 1990s, they developed an O-O version of 

statecharts, which later became the heart of the Unifi ed Modeling Language, or 

UML. UML was devised in 1996 by Grady Booch ( B.4.7 ), James Rumbaugh, and 

Ivar Jacobson. It is a collection of visual languages for specifying, constructing, 

and documenting complex software designs. Booch comments, “If you look 

across the whole history of software engineering, it’s one of trying to mitigate 

complexity by increasing levels of abstraction.”  12   The UML approach ( Fig. 4.8 ) is 

yet one more attempt to reduce the complexity of software   production  .   

 The   fi nal phase of the software life cycle is testing and maintenance. For 

complex software systems, it is impossible to test all branches of the code under 

all possible combinations of input data and initial states.   According to Dijkstra, 

“Program testing can be a very effective way to show the presence of bugs, but 

is hopelessly inadequate for showing their absence  .”  13   A 2002 report from the 

National Institute of Standards and Technology, a U.S. government agency that 

works to promote innovation and industrial competitiveness, estimated that 

inadequate software testing cost the U.S. economy nearly $60 billion per year. 

The report also stated, “In fact, the process of identifying and correcting defects 

during the software development process represents approximately 80 percent 

of development costs.”  14   

 Testing a modern software system involves the application of a variety of 

different tools.    Dynamic software testing  involves running the code using a set of 

Requirements

Design

Implementation

Verification

 Fig. 4.7.      The   waterfall model is one of the earliest methods used to systematize software development. 

In principle, the model consists of several independent stages with each stage feeding to a subsequent 

stage. This approach is sometimes referred to as “Big Design Up Front” – because a new stage can only 

start if the preceding one has been fully completed. This is the strength of the method – but also its 

weakness. In reality, software development is not a linear process and many issues cannot be foreseen 

until later stages in the project. So, in practice, the individual stages are not fully isolated from each 

other: often we need to backtrack to make revisions and changes in the previous stages  .  

 B.4.7.      Grady   Booch is an evangelist 

of the systematic approach to soft-

ware design. In one of the interviews 

he referred to his mission with the 

following words: “if I had not dis-

covered software I would have been 

a musician or a priest.” He is one of 

the authors of the UML, which repre-

sents a framework for constructing 

and reasoning about the software. 

UML is a collection of diagrams and 

tools that allows programmers to 

cope with complex systems by rais-

ing the level of abstraction  .  
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test cases.  White-box  testing is designed to test the internal structures of a pro-

gram. The tester attempts to choose sets of inputs that exercise all the different 

possible paths through the code.  Black-box  testing takes the view of the user 

rather than the software developer. The tester checks the software’s function-

ality with no knowledge of the system’s internal structure. Another important 

type of evaluation is  fuzz testing , in which valid input data sets are modifi ed with 

random mutations and then fed into the program  . Providing such invalid and 

unexpected inputs to the system allows the tester to determine how a program 

handles  exceptions  – unpredictable conditions or situations that can cause a pro-

gram to crash or possibly create a security risk in   the   software   ( Fig. 4.9 ).   

  Empirical software engineering 

 The   increasing   complexity of modern software development is indicated 

by the numbers of programmers and lines of code in three releases of the 

Microsoft Windows operating system   ( Fig. 4.10 ). Here the programmers are 

divided into “developers,” who write the code, and “testers,” who systemati-

cally check the code for bugs.   To allow such large numbers of programmers 

to work on different parts of the software system simultaneously, Microsoft 

developed a  synchronize-and-stabilize  approach to writing software. Breaking up 

the software into several different “branches” that can be worked on at the 

same time allows “large teams to work like small teams.” Much of the com-

plexity now lies in the process of correctly joining the branches back together. 

Microsoft solved the problem using “daily synchronizations through product 

builds, periodic milestone stabilizations, and continual testing.  ”  15     Microsoft 

also developed an error-reporting tool so that users could inform the company 

of any software problems. Analysis of the data led to some interesting conclu-

sions, as summarized by former Microsoft CEO Steve Ballmer:  

  One really exciting thing we learned is how, among all the software bugs 

involved in reports, a relatively small proportion causes most of the errors. 

About 20 percent of the bugs cause 80 percent of all errors, and – this is 

stunning to me – one percent of bugs cause half of all errors  .  16      

 Fig. 4.8.        UML is a general methodology 

that allows a systematic “step-by-step” 

approach to software design. UML is a 

unifi cation of three software techniques 

developed by Grady Booch (Booch), 

Ivar Jacobson (Objectory), and James 

Rumbaugh (OMT); although UML also 

has roots in David Harel’s statecharts. 

In software engineering circles Booch, 

Jacobson, and Rumbaugh are often 

referred to as the “three amigos.” UML 

diagrams allow evaluation of various 

implementation options prior to actual 

program coding  .  

 Fig. 4.9.      A screenshot of the dreaded 

moment when a computer crashes. In 

programmer circles such an event is 

known as “the blue screen of death.”  
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71Programming languages and software engineering

 In   his book  Code Complete , Steve McConnell estimates the extent of the bug 

problem:

  Industry average experience is about 1–25 errors per 1000 lines of code for 

delivered software. The Applications Division at Microsoft experiences about 

10– 20 defects per 1000 lines of code during in-house testing and 0.5 defects 

per 1000 lines of code in released product  .  17    

 The problem of deciding which bugs to fi x and which are likely to generate 

new errors is complex. This is an area where the new fi eld of empirical soft-

ware engineering aims to help. The  Journal of Empirical Software Engineering  says:

  Over the last decade, it has become clear that empirical studies are a 

fundamental component of software engineering research and practice: 

Software development practices and technologies must be investigated by 

empirical means in order to be understood, evaluated, and deployed in proper 

contexts. This stems from the observation that higher software quality and 

productivity have more chances to be achieved if well-understood, tested 

practices and technologies are introduced in software development. Empirical 

studies usually involve the collection and analysis of data and experience 

that can be used to characterize, evaluate and reveal relationships between 

software development deliverables, practices, and technologies.  18    

 This statement has now been adopted as part of the manifesto of the 

International Software Engineering Research Network. 

 One example   of this empirical approach to software engineering is the 

CRANE tool developed by researchers at Microsoft – where CRANE is an acro-

nym formed from Change Risk ANalysis and impact Estimation. The CRANE 

project looked at the challenges of providing support for multiple versions of 

Windows, running on a wide variety of computers, with a user base of more 

than a billion. One immediate challenge is that software maintenance for a 

released product is done by different teams of software engineers than those 

who developed the software. The goal of the CRANE project was to use his-

torical information about the software being serviced to build risk-prediction 

models using advanced statistical techniques that could guide bug fi xing and 

testing. For every bug in any software component, the tool provides the fol-

lowing information: what has happened to the component so far in servicing; 

what exactly is being changed with the proposed fi x; which fi xes carry more 

than average risk of causing more bugs; which tests to run after the change; 

which other components to test in addition to the changed component; and 

Ship Date Product
Development

Team Size

Test Team 

Size

Lines of 

Code (LOC)

July 1993 Windows NT 200 140 5 million

December 

1999

Windows 

2000
1,400 1,700 30 million

October 

2001
Windows XP 1,800 2,200 40 million

 Fig. 4.10.      Size   and scale of the program-

ming teams and code base for versions 

of the Microsoft Windows operating 

system  .  
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which applications are potentially impacted by the change  . Such empirical 

software engineering tools are enabling maintenance software engineers to 

make informed, data-driven decisions about their priorities  .  

  Open-source software 

 A   very different model of software development is the philosophy pro-

moted by the  open-source software  movement.   One of the origins of this move-

ment was the decision of AT&T to allow the distribution of the Unix source 

code under a “free” license (see section on Unix and C).   Bell Labs researchers 

Ken Thompson and Dennis Ritchie wrote the Unix operating system in the 

early 1970s.   It was the fi rst operating system to be written in a high-level 

language, the C programming language developed by Ritchie  .   The source 

code for the C compiler developed by Bell Labs researcher Stephen Johnson 

was also freely distributed with the Unix code  . For only a few-hundred-dollar 

licensing fee, the university research community could obtain not only a 

functional operating system but also a platform for teaching and research  . In 

1956, AT&T had settled an antitrust monopoly suit with the U.S. Department 

of Justice, and AT&T’s lawyers interpreted the agreement as forbidding the 

company to enter new markets not related to telephones. The AT&T license 

agreement for Unix was intended to make it crystal clear that the company 

was not creating a new business with computers:

  The terms of the early Unix licenses were minimal: The software came “as is” 

with no royalties to AT&T, but also no support and no bug fi xes.  19    

 One immediate result of this license agreement was to encourage the research 

community to set up self-help networks and share information on bug fi xes. 

This set the style for the development of a global Unix support and development 

community with developers freely sharing their suggested code changes.   The 

most signifi cant research collaboration focused on Unix was between the origi-

nal Bell Labs team of Richie and Thompson and the Computer Systems Research 

Group (CSRG) at the University of California, Berkeley  . In 1983, the CSRG team 

released the latest version of their “Berkeley Unix” software, known as 4.2 BSD. 

This software incorporated the new Internet protocols and allowed Unix systems 

to be easily connected to the rapidly growing Internet. The initials BSD stand for 

Berkeley Software Distribution, which included an open-source software license 

 B.4.8.      Richard   Stallman is the originator of the free software movement. In 1979 he was working in 

the AI lab at MIT when the lab installed a new laser printer from Xerox. The printer suffered from 

paper jams and Stallman wanted access to the source code of the printer driver so he could modify 

it and fi x the problem. Xerox would not give him the source code and he ended up being very 

frustrated. In 1984 Stallman resigned from MIT to set up the Free Software Foundation. Stallman 

was very explicit in his explanation of “free”: “Since free refers to freedom, not to price, there is no 

contradiction between selling copies and free software.”  B4   He called his project to build a free oper-

ating system by the recursive acronym GNU – standing for GNU’s Not Unix. He also devised the GPL 

source license that was designed to ensure that any modifi cations to the source code were covered 

by the same license, including combinations of GPL software with commercial software  .  
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that allowed free use of the source code. Importantly, the license allowed the 

possibility of incorporating all or part of the Berkeley software in a closed-source 

commercial product. The license only required that any copyright notices in the 

code were maintained along with the disclaimer of any warranty. 

 The 1980s were a confusing time for the Unix community. By this time, 

AT&T had realized that Unix was a very valuable software product and, under 

the terms of a new antitrust settlement in 1984, the company began charging for 

the Unix software. By 1992, friction between AT&T’s new, commercially focused 

Unix Systems Laboratories division and the freewheeling Berkeley open-source 

community had come to a head. AT&T began a court case against the University 

of California. In addition to these legal problems, many different and incom-

patible variants of Unix had been spun-off – “forked” – from the original open-

source Unix code, leading to a very fragmented Unix development community. 

  Meanwhile, at MIT, a software developer in the AI lab named Richard Stallman 

( B.4.8 ) had become concerned about the loss of community that happened when 

software could not be freely shared. In 1984, Stallman founded the Free Software 

Foundation ( B.4.9 ) with the goal of developing “an entirely free operating sys-

tem that anyone could download, use, modify, and distribute freely.”  20   He named 

his project GNU, standing for “GNU’s Not Unix.” To ensure that the source code 

remained open and freely shareable, Stallman devised the GNU Public License 

(GPL) that is very different from the permissive Berkeley BSD open-source license. 

The GPL license requires that any modifi cations of the software must be released 

under the same GPL open-source license. More important for commercial soft-

ware companies was the “viral” requirement that any software formed by com-

bining free, GPL-licensed software with commercial software must all be released 

under a free GPL license.   Under the GNU umbrella, Stallman created some very 

popular tools for writing software that are still widely used by the computer 

science community – the  GNU Emacs  text editor, the  GCC  compiler, and the  GDB  

debugger  . However, it was left to a young Finnish graduate student named Linus 

Torvalds ( B.4.10 ) to reunite the Unix community around his version of the Unix 

kernel, the core component of the Unix operating system  .    

 In   1991, Torvalds was a graduate student at the University of Helsinki and 

had bought himself a new personal computer (PC) based on Intel’s 386 micro-

processor. Because he wanted to run Unix on his PC,   he bought and installed 

Minix, a version of Unix suitable for teaching that had been created by Andy 

Tanenbaum at the Vrije Universiteit in Amsterdam.   Inspired by the Minix soft-

ware, Torvalds started creating his own version of the Unix kernel for the   PC  . 

 B.4.9.      Hal   Abelson is a professor of electrical engineering and computer science at MIT. He is pas-

sionate about both open-source software and open courseware, and has been a champion for the 

right to open access for publicly funded research publications. Abelson was one of the founders 

of the Free Software Foundation and the Creative Commons movements. In addition, Abelson has 

long believed in the potential for using computation as a conceptual framework in teaching. He is 

the author of several infl uential textbooks and implemented the Logo programming language on 

Apple II computers. Logo is widely regarded as one of the best programming languages for intro-

ducing computing to children. His pioneering work in education was recognized in 2012 by his 

receiving the ACM SIGCSE Award for Outstanding Contributions to Computer Science Education  .  
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In 1991, he made the source code of his new operating system, called Linux 

( Fig. 4.11 ), available on the Internet with the following announcement:  

  I’m working on a free version of a Minix look-alike for AT-386 computers. It 

has fi nally reached the stage where it’s even usable (though it may not be, 

depending on what you want), and I am willing to put out the sources for 

wider distribution. . . . This is a program for hackers by a hacker. I’ve enjoyed 

doing it, and somebody might enjoy looking at it and even modifying it for 

their own needs. It is still small enough to understand, use and modify, and 

I’m looking forward to any comments you might have. I’m also interested in 

hearing from anybody who has written any of the utilities/library functions 

for Minix. If your efforts are freely distributable (under copyright or even 

public domain) I’d like to hear from you so I can add them to the system.  21      

 Torvalds was surprised by the response to his invitation from the worldwide 

Unix community. Within a couple of years, hundreds of developers had joined 

his Internet newsgroup and were contributing bug fi xes, improvements, and 

new features to Linux. By 1994, Torvalds was able to release the fi rst complete 

version of his operating system, Linux version 1.0. This listed nearly eighty 

developers as contributors, from a dozen different countries. From these mod-

est beginnings, Linux has become much more than a hobbyist’s PC operating 

system.   By 1999, Red Hat and VA Linux were established as public companies 

offering “Linux support” – although the basic code was still freely available  . 

By 2000, Linux had received offi cial recognition from IBM, which announced 

it would offer enterprise support for Red Hat Linux on their mainframe com-

puters. Major software companies such as Oracle Corporation and SAP soon 

followed, and by 2013 Linux had become established as a major component of 

both university and business software environments. 

 Who are the developers who contribute to Linux? One recent study found 

that there were more software developers from industry than from universities 

and research organizations. It is also probably true that, over the last decade 

or so, several hundred professional software engineers from companies like 

IBM and Intel have participated in major open-source projects. Another survey 

found that 10 percent of the developers are credited on more than 70 percent 

of the code.   In his book  The Success of Open Source , Steven Weber concludes:

 B.4.10.      Linus   Torvalds is credited with the development and maintenance of  the Linux kernel, 

which has become the basis for most popular open-source operating systems. In the programmer 

community he is considered as a “benevolent dictator” who makes sure that the released code is 

always in perfect shape. Despite the fact that it took him eight years to get his master’s degree at 

the University of Helsinki, he turned out to be a very successful programmer. He described the 

development of the Linux kernel in a book  Just for Fun . Most of his concern is not the technical 

side of Linux but the software patents that are notoriously diffi cult to deal with  .  

 Fig. 4.11.      Linux   celebrates twenty years 

with release 3.0. Tux is the offi cial mas-

cot of the Linux community. According 

to legend, Torvalds was looking for 

something fun and sympathetic to 

associate with Linux, and a slightly fat 

penguin sitting down after having had a 

great meal perfectly fi t the bill  .  
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  These numbers count only the major contributors to the Linux kernel. Other 

active developers report and patch bugs, write small utilities and other 

applications, and contribute in less elaborate but still important ways to the 

project. The credit for these kinds of contributions is given in change logs and 

source code comments, far too many to read and count in a serious way. It is 

a reasonable guess that there are at least several thousand, and probably in 

the tens of thousands, of developers who make these smaller contributions to 

Linux  .  22    

 How is the work of these volunteer contributors organized? Unlike the formal 

software engineering frameworks described earlier, with open-source software 

development there is no authority other than consensus. In the case of Linux, 

Torvalds still acts as a sort of benevolent dictator supported by a small number of 

key lieutenants. Other open-source efforts have a small core team who make the 

decisions about what code to accept. This informal model of software development 

has produced a complex modern operating system consisting of millions of lines 

of code with a quality and stability that can rival that of commercial   software  . 

 There are now thousands of open-source software projects addressing a 

large number of different application areas. For many university computer sci-

ence departments, the use of open-source software for research is the standard 

way of working.   In 2013, SourceForge, a popular site for open-source software 

projects, stated, “3.4 million developers create powerful software in over 

324,000 projects,”  23   which works out as an average of about ten developers per 

project. In addition, the SourceForge directory “connects more than 46 million 

consumers with these open source projects and serves more than 4,000,000 

downloads a day  .”  24   Even though only a very small number of these projects 

attract a critical mass of developers and attain widespread use, the open-source 

software development model has clearly proved to be a viable alternative to 

traditional software development methodologies  .  

  Scripting languages 

 Another   type of programming language that is increasing in popularity 

is a group of languages known as  scripting languages , high-level programming 

languages that are interpreted by another program at runtime rather than 

needing a compiler to transform the source code into an executable program. 

    A  shell script  in Unix was a sequence of commands that could be read from a 

fi le and executed in sequence, as if they had been typed in using a keyboard  . 

By extension, the term  script  has become used to describe a set of instructions 

executed directly by the computer rather than needing a compiler like a tra-

ditional programming language. Today, scripting languages have become much 

more powerful than these early examples because of the addition of standard 

programming language concepts, such as loops and branches. There are two 

main uses for scripting languages. The fi rst is as a “glue” language that allows 

applications to connect off-the-shelf software components that are written in 

a conventional programming language. The second exploits the functionality 

and ease of use of scripting languages to employ them as an alternative to con-

ventional languages for a range of general programming tasks. 
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 A major characteristic of modern scripting languages is their interactivity, 

sometimes referred to as a  REPL  programming environment. REPL stands for 

“Read-Eval-Print Loop” and has its origins in the early work on LISP at MIT. When 

a user enters an expression, it is immediately evaluated and displayed. In this 

sense, scripting languages behave as if they were “interpreted,” meaning that 

they operate on an immediate line-by-line execution basis. This is in contrast to 

traditional “compiled” languages, which generate a binary object fi le that needs 

to be explicitly linked to the required set of program libraries – the traditional 

“edit-compile-link-run” cycle of programming. Because of the increasing power 

of today’s computer chips, the ease of use of scripting languages is often more 

important than the increase in program effi ciency that can be achieved with a 

compiled language. For example, in scripting languages, to minimize the com-

plexity of programs, declaration of variable types to designate the sort of informa-

tion each variable can contain is often optional. The variable types are declared 

implicitly by their usage context and initialized to be something sensible when 

fi rst used. However, as scripting language programs have become longer and 

more complex, the benefi ts of type declarations have been recognized, and most 

scripting languages now provide an option to make explicit type declarations. 

 The   development of Perl (Practical Extraction and Report Language) in the 

late 1980s ( B.4.11 ) was one of the defi ning events in the evolution of scripting 

languages ( Fig. 4.12 ). David Barron in his book  The World of Scripting Languages  

remarks that:  

  Perl rapidly developed from being a fairly simple text-processing language to 

a fully-featured language with extensive capabilities for interacting with the 

system to manipulate fi les and processes, establish network connections and 

other similar system-programming tasks.  25       

 From its origins in the Unix world, Perl scripts are now able to run unchanged 

on all the popular operating system platforms  .   Other popular scripting lan-

guages are VBScript (Visual Basic Scripting Edition) for the Microsoft platform 

and JavaScript for web applications  . The characteristics of ease of use and 

immediate execution with a REPL environment are sometimes taken as the 

defi nition of a scripting language.   Under this defi nition, the Python program-

ming language, which is growing rapidly in popularity, would be regarded as a 

  scripting   language  .  

 B.4.11.      Larry   Wall developed Perl in 1987 as a general-purpose Unix scripting language. Since 

then both the portability and the features in Perl have been expanded greatly and now include 

support for O-O programming. It is one of the world’s most popular programming languages. 

Wall continues to oversee the evolution of Perl and his role is summarized by the so-called  2 

Rules , taken from the offi cial Perl documentation:

   1.      Larry is always by defi nition right about how Perl should behave. This means he has fi nal veto 

power on the core functionality.  

  2.      Larry is allowed to change his mind about any matter at a later date, regardless of whether he 

previously invoked Rule   1.     

 Fig. 4.12.      A   guide to programming in 

Perl by its creator, Larry Wall, with Tom 

Christiansen, and Jon Orwant, widely 

known as the “Camel” book  .  
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  Key concepts  

   Strong typing   �

  Control structures – for loops and if-then-else   �

  Recursion   �

  Dynamic data structures – linked lists, stacks, and queues   �

  Data abstraction and information hiding   �

  Object-oriented programming  �

   Classes and objects   �

  Inheritance and encapsulation     �

  Software life cycle   �

  Requirements analysis   �

  Design   �

  Implementation   �

  Testing   �

  Waterfall method and agile methods for software engineering   �

  Empirical software engineering   �

  Formal methods   �

  Open-source software development   �

  Scripting languages    �    
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    Some more background on software topics 

  Unix and C 

 The   origins   of time-sharing operating systems can be traced back to MIT, with John McCarthy’s 

early prototype and Fernando Corbató’s Compatible Time-Sharing System in 1961  .   These beginnings led to 

Licklider’s very ambitious project MAC and the Multiplexed Information and Computing Service – Multics – 

time-sharing operating system. Bell Labs were partners in the project but became frustrated by its size, 

complexity, and slow progress.   When Bell Labs withdrew from the project in 1969  , Thompson and Ritchie 

( B.4.12 ) and some colleagues from Bell Labs decided to produce their own stripped down version of a time-

sharing operating system and to try to create a community around the new code base  :

  What we wanted to preserve was not just a good environment in which to do programming, but a system 

around which a fellowship could form. We knew from experience that the essence of communal computing, 

as supplied by remote-access, time-shared machines, is not just to type programs into a terminal instead of a 

key-punch, but to encourage close communication  .  26    

 They   were unable to get funding from Bell Labs management to buy a new computer for their project so 

they found an old and little-used PDP-7 minicomputer to begin their entirely unfunded  skunkworks  pro-

ject. In the course of this work they developed a hierarchical fi le system, the concept of treating devices 

as fi les and the notion of processes.   They also created a set of utilities giving users the ability to print, 

copy, delete, and edit fi les plus a simple command interpreter or  shell . The Unix operating system then 

consisted of a set of utilities under the control of a small and effi cient operating system  kernel . The ker-

nel provided services to start and stop programs, handle the fi le system, and schedule access to resources 

and devices avoiding confl icts  .    By promising to create a system specifi cally designed for editing and for-

matting text, in 1970 they fi nally managed to get funding to buy a modern PDP-11 computer.   It was also 

in 1970 that their colleague Brian Kernighan suggested the name Unix, as a play on the name Multics  . 

  In 1972  Unix pipes  were introduced that enabled small utility programs to be combined to create more 

powerful programs. Using such pipes to create a powerful system utility rather than developing a sin-

gle monolithic program with the same combined functionality became known as the Unix  philosophy  –  

“the idea that the power of a system comes more from the relationships among programs than from the 

programs themselves  .”  27     Every   program in Unix had originally been written in assembly language but 

  Thompson had developed a defi nition and compiler for a new language for the PDP-7 that he called B. The 

language was a stripped down and modifi ed version of the BCPL language developed in Cambridge, U.K., 

by Martin Richards.   With the arrival of the more powerful PDP-11 in 1970, Ritchie took Thompson’s B 

language   and developed the C programming language to take advantage 

of the new machine’s byte addressability and other features. By 1973 the 

new language was powerful enough for much of the Unix kernel to be 

rewritten in C.   In 1977, with further changes to the language, Ritchie 

and Steven Johnson were able to produce a portable version of the Unix 

operating system. Johnson’s Portable C Compiler then allowed both C 

and Unix to spread to other platforms  .   In 1978 Kernighan and Ritchie 

published the fi rst edition of  The C Programming Language , which served 

for many years as the informal specifi cation of the   standard   ( Fig. 4.13 ).

   Thompson and Ritchie’s Unix operating system has been enor-

mously infl uential  . Because AT&T was a regulated telephone monop-

oly it was barred from doing signifi cant commercial developments in 

 B.4.12.      Ken   Thompson and Dennis 

Ritchie (1941–2011), the developers of 

C programming language and the Unix 

operating system  .  
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the computing arena. Universities were therefore able to order the data 

tapes from Bell Labs for a nominal charge of $150 for materials. For that 

they received the entire source code for the fi rst general-purpose operat-

ing system for minicomputers. This along with the portable C compiler 

was all that university researchers needed to produce their own ver-

sions. After July 1974, when a written version of their work appeared in 

 Communications of the ACM , orders came fl ooding in and fi rst hundreds, 

and then thousands of minicomputer users started porting Unix to their 

machines.   Thompson spent a sabbatical year in Berkeley in 1975 and 

a graduate student named Bill Joy became an enthusiastic promoter of 

Unix. By the early 1980s, the Berkeley System Distribution 4.2 Unix was 

the de facto standard in the university research community. Joy and his 

team were then commissioned by ARPA, the Advanced Research Projects 

Agency, to integrate the newly defi ned networking protocol TCP/IP into 

Unix  . This was a very signifi cant development for the birth of the Internet 

as we shall see in  Chapter 10   .   

 Formal methods 

 Software   engineering involves many disciplines, including mathematics. In the context of software 

development the fi eld of  formal methods  uses a variety of mathematical techniques to specify and verify soft-

ware ( B.4.13 ). A formal specifi cation of the system can be used to prove that the program has the desired 

properties. Automated  theorem proving  systems attempt to prove that the software does what it was intended 

to do by using its formal specifi cation, a set of logical axioms and a set of inference rules to produce a formal 

mathematical proof.   An alternative approach uses  model checking , which verifi es properties of the system by 

an exhaustive search of all the possible states that the system could enter during its execution  . It is probably 

fair to say that formal methods have not so far delivered major benefi ts for assisting the creation of bug-free 

code in large software systems. However, there are now some examples of such methods being used to solve 

real software problems.   In 2002 Bill Gates said:

  Things like even software verifi cation, this has been the Holy Grail of computer science for many decades 

but now in some very key areas, for example, driver verifi cation we’re building tools that can do actual proof 

about the software and how it works in order to guarantee the reliability.  28    

   Gates   was referring to   the SLAM verifi cation engine that checks that soft-

ware correctly satisfi es the behavioral properties of the interfaces that it 

uses. The SLAM tool is now applied regularly to all Microsoft device drivers 

and has helped fi nd more than three hundred bugs in the sample drivers 

that were supplied   to   developers.   

 Databases 

 The   main purpose of databases is to store and manage large 

volumes of data. Database software plays a vital role in our modern 

society. No bank transactions, online shopping, airline reservations, 

or even a checking out at the local supermarket would be possible 

without databases. Database software is now a multibillion dollar 

business. 

 Fig. 4.13.      The   fi rst edition of Kernighan 

and Ritchie’s C programming language 

  book.  

 B.4.13.      Three   pioneers of structured 

programming and formal methods in 

software development: Tony Hoare, 

Edsger   Dijkstra, and Niklaus Wirth seen 

here at an Alpine resort  .  
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 The   relational data model that forms the basis of modern data-

bases is undoubtedly one of the great abstractions of the twentieth cen-

tury. Historically, there were approaches for handling large volumes of 

data based on hierarchical, treelike structures or more general network 

structures. An early example of the hierarchical approach was the IBM’s 

Information Management System. One diffi culty with this approach is 

that not all data relationships fi t well into a tree structure. A more gen-

eral network structure can provide a more fl exible solution, but now 

the user has to know the exact path leading to the data item in order 

to access or update it. This approach also did not scale well – with the 

growth of data, programmers found it diffi cult to navigate through a 

complicated web of data relationships.  

The real   breakthrough for database software came with the idea 

of the relational data model, suggested by a British mathematician Edgar 

“Ted” Codd ( B.4.14 ). In 1970 he published his groundbreaking paper 

“A Relational Model of Data for Large Shared Data Banks.” The ideas 

described in this paper became the foundation of modern databases. 

Ironically, his own company, IBM, was initially not very supportive of 

his ideas. There were many skeptics and a strong resistance toward rela-

tional databases even in professional circles. In the dedication of his book  The Relational Model for Database 

Management  he refers to this struggle:   

To fellow pilots and aircrew in the Royal Air Force during World War II and the dons at Oxford. These people 

were the source of my determination to fi ght for what I believed was right during the ten or more years in 

which government, industry and commerce were strongly opposed to the relational approach to database 

management  .  29        

 The idea of a relational database is simple, yet very powerful. All the data, including the relations between 

data, is stored in tables that are linked together. The link is established when the same column of data is 

shared between two or more tables. This column is called a key. The main advantage of the relational data 

model is that it provides a systematic way to create the interconnections between tables. It is much easier to 

access data and there is no need to know the path leading to the data ( B.4.15 ).   This model is also supported 

by a powerful mathematical set theory and a declarative programming language called SQL   –  structured query   

language   .   

 B.4.14.      Edgar “  Ted” Codd (1923–2003) 

graduated from Oxford with a degree in 

mathematics and chemistry and was an 

RAF fi ghter pilot during the war. After 

the war he joined IBM and moved to the 

United States. In 1981 he received the 

Turing Award for his contribution to the 

development of relational databases  .  

 B.4.15.      Jim   Gray (1944–2007) on board his boat  Tenacious . In 1988 Gray received the Turing Award 

for his contributions to database design and transaction processing. After gaining a PhD in com-

puter science from Berkeley, he worked for IBM, Tandem Computers, and DEC. From 1995 Gray 

was a Technical Fellow at Microsoft Research. He was fi rst to develop a website that displayed 

geographic data – the Terraserver – and that could deliver data to users using a web service. Gray 

spent the last decade of his life working with scientists with “Big Data” problems. With astron-

omer Alex Szalay, he pioneered the hosting of the Sloan Digital Survey astronomical data by 

creating the SkyServer website. Gray also coined the term  Fourth Paradigm  to refl ect the increase 

in importance of data-intensive science. He was lost at sea, west of San Francisco Bay, in January 

2007. Despite a massive collaborative effort by the emergency services and the computer science 

community, in searching for signs of  Tenacious , no trace was ever found  .  
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 Design patterns 

 The   advances of structured and O-O programming still underpin 

the way in which systems are written today. However, as the software 

industry grew, the task of teaching each new wave of programmers how 

to program effi ciently has led to a new level of abstraction. In 1995, four 

software engineers – Erich Gamma, Richard Helm, Ralph Johnson, and 

John Vlissides – got together and identifi ed what they called “design pat-

terns” ( B.4.16 ). These are standard patterns in software that everybody 

uses to perform a number of simple tasks.  

 One example is the “Observer pattern.” This ensures that when one 

object changes its state, all of its dependents are notifi ed and updated 

automatically. They identifi ed twenty-two patterns they called by easy-to-remember names. Apart from 

 Observer , other example patterns are  Factory ,  Decorator ,  Interpreter , and  Visitor . Their book on design patterns 

has become one of the best-selling and most-cited books in computer science. It established a fi xed vocab-

ulary for talking about O-O software at a level above program code, so that programs – and programmers – 

became more transferable, understandable, and accurate  .    

 B.4.16.      The   “Gang of Four”: Ralph 

Johnson, Erich Gamma, Richard Helm, 

and John   Vlissides.  
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 Three expensive software errors 

  NASA’s Mariner 1 Space Probe (1962) 

 A   bug in the fl ight software for the Mariner 1 ( Fig. 4.14 ) 

mission caused the rocket to divert from its intended path on 

launch. Mission control destroyed the rocket over the Atlantic 

Ocean 293 seconds after launch. NASA’s website says the problem 

was caused by a combination of two factors. Improper operation 

of the Atlas airborne beacon equipment resulted in a loss of the 

rate signal from the vehicle. The airborne beacon used for obtain-

ing rate data was inoperative for four periods ranging from 1.5 

to 61 seconds in duration. Additionally, the Mariner 1 Post Flight 

Review Board determined that the omission of a hyphen in the 

data-editing program allowed transmission of incorrect guidance 

signals to the spacecraft. During the periods the airborne beacon 

was inoperative, the missing hyphen in the data-editing program 

caused the computer to incorrectly accept the sweep frequency 

of the ground receiver as it sought the vehicle beacon signal and 

combined this data with the tracking data sent to the guidance 

computation. This caused the computer to automatically gener-

ate a series of unnecessary course corrections using the errone-

ous steering commands and these fi nally threw the spacecraft off 

course.   The science fi ction author Arthur C. Clarke wrote several 

years later that Mariner 1 was “wrecked by the most expensive 

hyphen in   history  .”  30      

 Ariane 5 Flight 501 Launch (1996) 

 In   his Turing Award lecture, Tony Hoare warned of the dangers of the complexities of the ADA pro-

gramming language:

  And so, the best of my advice to the originators and designers of ADA has been ignored. In this last resort, I 

appeal to you, representatives of the programming profession in the United States, and citizens concerned 

with the welfare and safety of your own country and of mankind: Do not allow this language in its present 

state to be used in applications where reliability is critical, i.e., nuclear power stations, cruise missiles, early 

warning systems, anti-ballistic missile defense systems. The next rocket to go astray as a result of a program-

ming language error may not be an exploratory space rocket on a harmless trip to Venus: It may be a nuclear 

warhead exploding over one of our own cities. An unreliable programming language generating unreliable 

programs constitutes a far greater risk to our environment and to our society than unsafe cars, toxic pesti-

cides, or accidents at nuclear power stations. Be vigilant to reduce that risk, not to increase it.  31    

 Some of the ADA code for the Ariane 4 rocket was reused in the Ariane 5’s control software. The error was 

in the code that converts a 64-bit fl oating-point number to a 16-bit signed integer. The faster engines caused 

the 64-bit numbers to be larger in the Ariane 5 than in the Ariane 4. This triggered an overfl ow condition 

that resulted in the fl ight computer crashing. The backup computer then also crashed, followed 0.05 seconds 

later by a crash of the primary computer. As a result of these software crashes, the mission was terminated  

thirty-seven seconds after launch   ( Fig. 4.15 ).   

 Fig. 4.14.        Mariner 1 Space probe to Venus was 

the fi rst interplanetary mission aiming to put a 

satellite around Venus. There are various stories 

about the reason why this mission had to be 

aborted. Most of them fi rmly point at a bug 

in the FORTRAN code of the guidance system 

that unexpectedly changed the trajectory of 

the rocket. A hyphen (overbar) missed in a 

mathematical expression led to the $80 million 

failure. Five months later the Mariner 2 was suc-

cessfully launched and completed the mission  .  
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  NASA’s Mars Climate Orbiter (1999) 

 The   root cause for the loss of the Mars Climate Orbiter ( Fig. 4.16 ) spacecraft was the failure to use met-

ric units in the coding of the software fi le, “Small Forces,” used in trajectory models. Instead of reporting the 

thruster data in metric units of Newtonseconds (N-s), the data was reported in English units of pound-seconds 

(lbf-s). Subsequent processing of this thruster data by the navigation software algorithm underestimated the 

effect on the spacecraft trajectory by a factor of 4.45, which is the required conversion factor from force in 

pounds to Newtons. An erroneous trajectory was then computed using this incorrect data  .       

 Fig. 4.15.        Photo of the destruction of the fi rst launch of the Ariane 5 Flight 501 rocket. Just 

thirty-seven seconds into the launch, the trajectory suddenly tilted by almost 90 degrees 

and the rocket self-destructed. The software error occurred during data conversion from a 

64-bit fl oating-point number to a 16-bit signed integer. This led to a sequence of events that 

resulted in a complete loss of the guidance system  .  

 Fig. 4.16.      Artist’s   impression of the Mars Climate Orbiter. The space probe was lost at 

the fi rst attempt to enter the orbit around Mars on 3 September 1999. Putting a probe 

into a fi nal planetary orbit is a long process during which the initial orbit is gradually 

reduced until the probe reaches its permanent orbit. Because of a software error the 

orbiter entered the Martian atmosphere at too high a velocity and consequently burnt 

up. The cost of this failure was $125 million  .  
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