
84

 5 Algorithmics

 As soon as an Analytical Engine exists, it will
necessarily guide the future course of the science.
Whenever any result is sought by its aid, the
question will then arise – by what course of
calculation can these results be arrived at by the
machine in the shortest time ?
 Charles Babbage 1

 Beginnings

 What is an algorithm? The word is derived from the name of the Persian

scholar Mohammad Al-Khowarizmi (see B.5.1 and Fig. 5.1). In the introduction

to his classic book Algorithmics: The Spirit of Computing , computer scientist David

Harel gives the following defi nition:

 An algorithm is an abstract recipe, prescribing a process that might be carried

out by a human, by a computer, or by other means. It thus represents a

very general concept, with numerous applications. Its principal interest and

use, however, is in those cases where the process is to be carried out by a

computer . 2

 Thus an algorithm can be regarded as a “recipe” detailing the mathe-

matical steps to follow to do a particular task. This could be a numerical

algorithm for solving a differential equation or an algorithm for completing a

more abstract task, such as sorting a list of items according to some specifi ed

property . The word algorithmics was introduced by J. F. Traub in a textbook in

1964 and popularized as a key fi eld of study in computer science by Donald

 B.5.1. The word algorithm derives from the name of a ninth-century mathematician,

Mohammad Al-Khowarizmi. He was a Persian scholar who studied in the House of Wisdom, a

library and research center in Baghdad . Al-Khowarizmi wrote an early text on the rules for carry-

ing out mathematical operations with Hindu-Arabic numbers – the numbers we still use today.

This book, in its Latin translation Algoritmi de numero Indorum , was very infl uential in introduc-

ing the use of Hindu-Arabic numerals and the positional representation of numbers through-

out Europe. In Latin, al-Khowarizmi became known as Algoritmi, from which we get the word

 algorithm . It is also from him that we get the word algebra – from the Latin title of another of his

books.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

85Algorithmics

Knuth (B.5.2) and David Harel (B.5.3). When the steps to defi ne an algorithm

to carry out a particular task have been identifi ed, the programmer chooses a

programming language to express the algorithm in a form that the computer

can understand.

 The earliest known algorithm was invented between 400 and 300 B.C. by

the Greek mathematician Euclid. Euclid’s algorithm is a method for fi nding

the greatest common divisor, or GCD, of two positive integers. For example, the

fraction 8/12 can be reduced to 2/3 by dividing both numerator and denomina-

tor by their GCD, which in this case is 4. The algorithm to fi nd the GCD of two

numbers, M and N, can be expressed in four steps (see Fig. 5.2):

 Step 1: Input values M, N.

 Step 2: Divide M by N to fi nd the remainder R.

 Step 3: If R is zero then N is the answer, print N.

 Step 4: If R is not zero, change the value of M to N and the value of N to R

and go back to Step 2.

 How does this algorithm work? Any number that divides both M and N must

also divide the remainder R. Similarly, any number that divides both N and R

must also divide M. This means that the GCD of M and N is the same as the

GCD of N and R. We can see the algorithm in action in Table 5.1 for fi nding

the GCD of 65 and 39. We begin by dividing 65 by 39 – we are interested only

in the remainder, which is 26. We assign M the value of 39 and N the value of

the remainder 26. In the next iteration we calculate the remainder again and

assign values to M and N. We repeat the process until the remainder becomes

zero, in this case the value of GCD will be held in variable N.

 As Harel says in the title of his book, algorithms can be regarded as the

“spirit of computing .” They are the precise procedures required to get computers

to do something useful. In this chapter we will look at some examples of differ-

ent types of algorithms. Historically, computers were used to solve numerical

problems so we will start by looking at algorithms for numerical simulations.

We will also introduce the idea of using random numbers to derive approximate

answers to complex simulations. These “Monte Carlo” methods were fi rst used in

the Manhattan atomic bomb project. We will then look at problems such as fi nd-

ing the quickest way to sort a list of names and fi nding the shortest path from

one city to another – as we now do routinely with our global positioning system,

or GPS, navigation systems. This will lead us to a discussion of the effi ciency of

algorithms and an introduction to computational complexity theory.

 Fig. 5.1. A page from al-Khowarizmi’s

book on algebra. In this book he

describes the steps for solving linear

and quadratic equations and lays down

the foundations of algebra as a new

discipline of mathematics. The original

meaning of the word algebra in Arabic

is “to restore” – this refers to balancing

out both sides of an equation. It is hard

to overstate the importance of algebra in

mathematics .

yes

no

print NM = N

N = R

R = O

R = M%N

Input M, N
 Table 5.1. Euclid’s algorithm for

GCD of 65 and 39

 M N R

 Iteration 1 65 39 26

 Iteration 2 39 26 13

 Iteration 3 26 13 0

 Result GCD = 13

 Fig. 5.2. Flowchart of the GCD algo-

rithm. The “%” operation calculates the

remainder when M is divided by N.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe86

 Numerical algorithms

 In Chapter 1 we saw that the ENIAC computer was originally built to cal-

culate the trajectories of shells for artillery tables. In mathematics, the solu-

tion to this trajectory problem is obtained by solving the differential equation

that arises from an application of Newton’s laws of motion. On a computer,

such differential equations must be approximated using some numerical

method.

 Let’s look at a simple example. Suppose we have an object falling under

the force of gravity. To fi nd the velocity of the object at any given time, we need

to solve Newton’s law for the rate of change of velocity with time. If we assume

that the object is dropped from rest, we can calculate the velocity at any later

time using Newton’s law in the form of a differential equation. Mathematically

we can treat the velocity and time values as varying “continuously.” However,

computers can only store individual “discrete” values of the velocities and

time – such as the velocity after one second, the velocity after two seconds and

so on. We need to approximate the differential equation by splitting up the

time variable into very small increments. We can then calculate the approxi-

mate incremental change of velocity for each small increment of time. There

are many different “numerical methods” that can be used to fi nd such approx-

imate solutions to differential equations on a computer. The simplest numeri-

cal approximation is a method devised by the Swiss mathematician Leonhard

Euler (B.5.4). In practice, Euler’s method is not very precise and there are more

accurate numerical methods available to solve such differential equations.

 Figure 5.3 shows how Euler’s method compares to the exact solution for the

problem of fi nding the velocity of an object falling under gravity through a

fl uid, and subject to a resistance proportional to the square of the velocity . It

was the FORTRAN programming language that fi rst gave scientists the capabil-

ity of writing their programs as a relatively straightforward translation of their

mathematical equations, instead of having to program the solutions to these

problems using low-level machine language or assembly language .

 Another important numerical technique for simulations goes by the name

of the “Monte Carlo” method. In 1946, physicists at Los Alamos Laboratory

were investigating the distance that neutrons can travel through various

 B.5.3. David Harel gave a series of

lectures on Israeli radio in 1984

explaining computer algorithms to

a general audience. This led to his

famous book Algorithmics: The Spirit

of Computing and to his more recent

book on computability entitled

 Computers Ltd: What they really can’t do .

 B.5.2. Donald Knuth with his series of books called The Art of Computer Programming has made a

major contribution to the cataloging and systematic analysis of algorithms. This book is generally

accepted as the “gold standard” in the fi eld. Knuth offered a prize of one hexadecimal dollar, that

is, $2.56, for each error found in his books. These checks are considered to be trophies in aca-

demic circles. While writing his book, Knuth also developed the TeX typesetting software that is

still very widely used. After winning a programming competition in the 1960s, Knuth was asked

how he managed it. He replied: “When I learned how to program, you were lucky if you got fi ve

minutes with the machine a day. If you wanted to get the program going, it just had to be written

right. So people just learned to program like it was carving in stone. You have to sidle up to it.

That’s how I learned to program .” B1

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

87Algorithmics

materials. Polish American mathematician Stanislaw Ulam (B.5.5), who, along

with Edward Teller, is credited for devising a workable mechanism for the

hydrogen bomb, came up with the idea of using many random experiments

to fi nd an approximate answer to the problem . He recalled his inspiration as

follows:

 The fi rst thoughts and attempts I made to practice [the Monte Carlo

method] were suggested by a question which occurred to me in 1946 as I

was convalescing from an illness and playing solitaires. The question was

what are the chances that a Canfi eld solitaire laid out with 52 cards will

come out successfully? After spending a lot of time trying to estimate them

by pure combinatorial calculations, I wondered whether a more practical

method than “abstract thinking” might not be to lay it out say one hundred

times and simply observe and count the number of successful plays. This

was already possible to envisage with the beginning of the new era of fast

computers, and I immediately thought of problems of neutron diffusion and

other questions of mathematical physics, and more generally how to change

processes described by certain differential equations into an equivalent

form interpretable as a succession of random operations. Later [in 1946],

I described the idea to John von Neumann, and we began to plan actual

calculations. 3

 Von Neumann chose the code name Monte Carlo for the new technique in

reference to the famous casino where Ulam’s uncle used to like to gamble .

 The fi rst unclassifi ed paper on Monte Carlo methods, authored by Nicholas

Metropolis and Ulam, was published in 1949 .

 We can use the Monte Carlo method to fi nd an approximate value of π in

the following way. Imagine we place a dartboard inside a square as shown in

 Figure 5.4 . If we throw darts randomly at the square, the number of darts that

land within the circle is proportional to the area of the circle. By comparing the

 B.5.4. Leonhard Euler (1707–83) was a Swiss mathematician and physicist. Euler was born in

Basel, the son of Paul Euler, a pastor of the Reformed Church, and a friend of Johann Bernoulli,

then Europe’s foremost mathematician. Bernoulli recognized the young Euler’s genius and con-

vinced him to pursue mathematics rather than enter the church . At the age of thirteen, Leonhard

was a student at the University of Basel and received his Master of Philosophy in 1723 for his dis-

sertation that compared the philosophies of Descartes and Newton. After he was unable to secure

a university position in Basel, in 1726 Euler was offered a post at the Russian Academy of Sciences

in St. Petersburg. In 1741 he took up a position at the Berlin Academy and spent a very creative

twenty-fi ve years in Germany before returning to St. Petersburg.

 Euler’s mathematical abilities were supplemented by his having a photographic memory. He

could recite Virgil’s Aeneid from beginning to end and could even remember the fi rst and last lines

on each page of his edition of the book. Euler worked in almost all areas of mathematics – geome-

try, calculus, algebra, trigonometry, and number theory – as well as in physics and astronomy and

he introduced and popularized many of the notational conventions in mathematics that we still

use today. Euler was the fi rst to write f (x) to denote the function f applied to the argument x , as

well as the modern notation for the trigonometric functions such as sine, cosine, and tangent; the

letter e for the base of the natural logarithm; the Greek letter Σ for summations; and the letter i

for complex numbers. Euler is also responsible for what physicist Richard Feynman called “the

most remarkable formula in mathematics ,” B2 Euler’s identity : e i π + 1 = 0.

0

2

4

6

8

10

0 0.5 1 1.5 2

time,s

ve
lo

ci
ty

,
m

/s
Euler method

Exact method

 Fig. 5.3. Comparison of a numerical

solution of a simple differential equation

obtained using Euler’s method with the

exact analytical solution. If we use the

Corrector-Predictor method, which is

much more accurate than the simpler

Euler method, we obtain results that are

almost indistinguishable from the exact

solution .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe88

number of darts that land within the square to the number that land within the

circle of radius R, we can obtain an estimate of π :

 (Number of darts inside circle)/(Number of darts inside square) =
(Area of circle)/(Area of square) = π R 2 /4R 2 = π /4

 In order for this method to give an accurate value of π , we need the darts

to be thrown genuinely at random, so that they cover the entire area uniformly.

We also need a large number of throws. Because generating large numbers of

truly random numbers is extremely diffi cult, von Neumann developed a clever

algorithm to generate “pseudorandom” numbers on the computer. Given an

initial starting number as a “seed,” these pseudorandom numbers are then gen-

erated deterministically by von Neumann’s algorithm and approximate a truly

random distribution. This technique has the advantage that the exact sequence

of numbers can be reproduced by starting with the same seed, and this turns

out to be very helpful in debugging Monte Carlo simulation programs .

 Although we have only given a very simple example here, Monte Carlo

methods can be used to evaluate complex integrals in a similar manner. These

methods are now widely used in many areas of science and business – and in

computer algorithms for playing games .

 Sorting

 Although the earliest electronic computers were generally used to fi nd

numerical solutions to scientifi c problems, it was clear from early on that

they were capable of solving other types of problems. During World War II,

the Colossus computer at Bletchley Park in the United Kingdom was used for

breaking codes, and soon after the war the LEO computer demonstrated the

utility of computers for assisting with routine business problems, such as stock

keeping, distribution, and payroll .

 Let’s take a look at how computers handle such nonnumerical tasks. We

will do so by examining the problem of sorting a list of names into alphabeti-

cal order. We will show how this can be done using two different algorithms,

 B.5.5. Stanislav Ulam was born in 1909 in the city of Lwow in Poland, now the city of Lviv in

the Ukraine. He studied mathematics at university and was a member of the Lwow School of

Mathematics. The members met at the Scottish Caf é in Lwow and recorded their discussions in the

“Scottish Book.” Ulam met John von Neumann and was invited to visit the institute at Princeton in

1935. He left Poland in 1939 just before the German invasion and many members of his family died

in the Holocaust. In 1943 Ulam was an assistant professor at the University of Wisconsin in Madison

and he asked von Neumann if he could join the war effort. As a result he received a letter from

Hans Bethe inviting him to join the Manhattan Project, a top-secret project to build the atom bomb,

based at Los Alamos, near Santa Fe, New Mexico. Because he knew nothing about New Mexico, Ulam

checked out a guidebook from the university library. On the checkout slip he found the names of

three colleagues who had mysteriously “disappeared” a few months before! At Los Alamos he worked

on numerical solutions to the hydrodynamical equations for the plutonium implosion bomb. After

the war, Ulam returned to Los Alamos to work on the development of the hydrogen bomb. In 1951,

Ulam and Edward Teller came up with a mechanism for a working fusion bomb using “radiation

implosion.”

 Fig. 5.4. Determination of π using Monte

Carlo method. The diagram shows a

circle of radius R inside a square of side

2R. The area of circle is π R 2 and the area

of the square is 4R 2 . Throwing randomly

distributed darts gives an estimate of

 π by comparing the number of darts

landing inside the circle to the number

landing inside the square .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

89Algorithmics

called bubble sort and merge sort . Suppose we have the following list of eight

names that we want to sort alphabetically:

 Letters are usually represented in a computer using the so-called ASCII

scheme, an acronym for the American Standard Code for Information

Interchange. All of the twenty-six Standard English characters, plus punctua-

tion and other symbols can be represented as a seven-bit ASCII code . Hence we

can arrange for the computer to understand what we mean when we ask for

two numbers to be compared and placed in alphabetical order.

 Let’s fi rst examine the bubble sort algorithm. It works by repeatedly com-

paring adjacent names and interchanging them if they are out of alphabetical

order. We start by considering the bottom two names on the list:

 Next we move the “bubble” up and consider the next pair on the list:

 We repeat the process until the bubble of paired names has reached the

top. We are then guaranteed that the correct fi rst name is at the top of the list.

The detailed workings of this fi rst iteration are shown in Figure 5.5 .

 Now start again, with the bubble again at the bottom of the list. At the

end of this second pass through all of the names on the list, the second name

will be in the correct position, second from the top. For sorting all eight items

correctly we need to repeat this process seven times. You can see why this

algorithm is called the bubble sort, because the sorted names bubble up to

the top.

 The bubble sort algorithm gets the job done, but it is not a very effi cient

way to sort a large list . Sorting is such a common task that computer scientists

have spent a lot of time looking for effi cient sorting algorithms. One very clever

and practical algorithm is called merge sort. It was invented by von Neumann

 Bob

 Ted

 Alice

 Pat

 Joe

 Fred

 May

 Eve

 May
 swap

 Eve

 Eve May

Fred
 swap

 Eve

 Eve Fred

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe90

in 1945 and uses a fundamental technique of computer science called divide-

and-conquer . We begin by splitting our eight-name list into two halves, so that

we have two lists of four names. We then split each half again into two lists

of two names. We order each of the pairs of names and then merge the sorted

pairs. The merge is done by repeatedly comparing the characters at the head of

each list and sending the alphabetically lower item to the output. We complete

the sort by merging the two sorted lists of four names in the same way. The dia-

gram in Figure 5.6 illustrates how the merge sort algorithm works.

 In programming the merge sort algorithm, we can write the program using

“recursion” for the divide phase, creating a subroutine calling itself a number

of times. In this case, we can introduce a subroutine called “Divide” and use it

to split the list into two halves. If there are only two elements left in the list, it

returns them in alphabetical order; if there are more than two elements, the

Divide subroutine calls itself and repeats the process. This carries on until there

are only one or two elements left in the divided list. The use of recursion is a

very powerful programming technique much loved by computer scientists. The

merge phase can also be programmed recursively using a Merge subroutine .

We will compare the effi ciencies of some algorithms later in this chapter, in

the section on complexity theory .

 Graph problems

 We are familiar with the use of routing algorithms from our GPS navigation

systems. Indeed the systems are becoming so reliable that we are fast approach-

ing a time when fi nding our way by reading a paper map will be a lost art! All

we do to fi nd the shortest route from A to B is to enter the start and end points

in the car navigation system. How do computers solve such problems? The solu-

tion uses another branch of mathematics invented by Euler: “graph theory.”

 The city of K ö nigsberg in Prussia – now Kaliningrad, Russia – was famous

for a long-standing puzzle in mathematics. The city is located on both sides of

the Pregel River, and there are two large islands in the river connected to the

mainland by seven bridges (Fig. 5.7a). The seven bridges problem was to fi nd a

walk through the city that would cross each bridge only once. In 1735, Euler

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Bob Bob Bob Bob Bob Bob Bob Alice

Ted Ted Ted Ted Ted Ted Alice Bob

Alice Alice Alice Alice Alice Alice Ted Ted

Pat Pat Pat Pat Eve Eve Eve Eve

Joe Joe Joe Eve Pat Pat Pat Pat

Fred Fred Eve Joe Joe Joe Joe Joe

May Eve Fred Fred Fred Fred Fred Fred

Eve May May May May May May May

 Fig. 5.5. An example of the bubble

sort algorithm. This example works by

exchanging adjacent names if they are

out of order, starting from the bottom of

the list, and continuing until the bubble

of paired names has reached the top.

This is repeated until all items are sorted

correctly .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

91Algorithmics

proved that there was no solution, and in so doing he laid the foundations of

graph theory and the beginnings of the study of topology.

 Euler solved the problem by reducing it to essentials. The choice of route

on land is unimportant: only the sequence of bridges crossed is relevant

(Fig. 5.7b). The map can be further simplifi ed by replacing each landmass

with a dot – called a “vertex” or a “node” – and each bridge by a line – called

an “edge” – joining two vertices (Fig. 5.7c). Only the connection information

in the resulting “graph” is important for this problem, not details of the

layout of the fi gure. This illustrates one of the key ideas of topology: topol-

ogy is not concerned with the rigid shape of objects or surfaces, just their

connectivity.

 Euler then observed that, except for the start and fi nish of the walk, when-

ever one enters a vertex (landmass) by a bridge, one must leave the same land-

mass or vertex by another bridge. If each bridge is crossed only once, except

M

B T A P J F M E

B T A P J F M E

B T A P J F M E

B T A P F J E M

A B P T E F M J

A B E F J P T

T

B
P

A
J

F

M

E

T
P

B
A

M
J

F

E

 Fig. 5.6. An example of the merge sort

algorithm that uses a divide-and-conquer

approach to reduce the list to sets of

pairs of names. These are ordered and

the different pairs merged together in

the correct order .

 Fig. 5.7. Three representations of

the Seven Bridges of Königsberg: (a)

Königsberg in Euler’s time; (b) a more

abstract representation of the seven

bridges; and (c) a graph of the seven

bridges .

(a) (b) (c)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe92

for the start and fi nish landmasses, the number of bridges connecting any

other landmass must be an even number – half of the bridges for the walker

to enter the landmass, and half for the walker to leave it. In the case of the

bridges in K ö nigsberg, we see that all the four landmasses are connected by

an odd number of bridges – one by fi ve, the other three by three. Because at

most two of the landmasses can be the starting and end points, we see imme-

diately that it is not possible to walk through the city crossing each bridge

exactly once .

 Let us look at another important type of graph problem. This is the prob-

lem of fi nding the minimal spanning tree (MST) – a path that reaches every

node in a graph with the minimum cost. Consider fi ve well-known communi-

ties in the area around New York City (Fig. 5.8a) and represent them as a graph

(Fig. 5.8b). In this graph, each community is represented as a vertex, with a

road joining two communities by an edge. Each edge is assigned a number rep-

resenting the “cost” needed to go between the communities at the ends of each

edge. This could represent the cost of a cable connection or the time of travel

between the two places, for example.

 Imagine that the company wants to connect its offi ces in the fi ve com-

munities using the least amount of optical fi ber. The minimal spanning tree

(MST) solves this problem. Finding the MST is a problem that can be solved by

using a so-called greedy algorithm. Greedy algorithms take the optimal choice

at each local stage of the algorithm and in general are not guaranteed to fi nd

the globally best solution but can be proved to do so for the case of the MST. In

this example, we start with the shortest edge in the graph; then from the two

vertices at the ends of this edge, we choose the next shortest edge. We continue

to add to the resulting graph by adding the next shortest edge that has not yet

been considered. We repeat this procedure until we have visited each city in

the graph. The result is the MST shown in Figure 5.9 .

 The solution illustrates another important structure in computer science:

trees. Trees are similar to graphs except that they do not contain closed loops.

Trees are found everywhere in our daily lives, such as in the organization charts

of companies or in the fi le structures on your computer (Fig. 5.10). Effi cient

algorithms to traverse and manipulate tree structures are an important area of

algorithmics (Fig. 5.11).

A

E

C

B

D

100

6010

20

50

10

(a) (b)

30

 Fig. 5.8. An illustration of the MST prob-

lem. The fi gure shows (a) fi ve communi-

ties in the New York area: A = Newark;

B = Manhattan; C = Yonkers; D = The

Bronx; E = Queens; and (b) a graph of

the fi ve communities with distances allo-

cated to each edge .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

93Algorithmics

 Let us look at another important problem. This is the problem of fi nding

the shortest path through a graph – the sort of algorithm used by our GPS nav-

igation systems. How does the computer embedded in our GPS system solve

such problems? It does so by using a variant of the shortest path algorithm

devised by Edsger Dijkstra, an early computer science pioneer in the area of

programming languages and software engineering. Dijkstra was asked in an

interview how he came to invent his shortest path routing algorithm and he

replied:

 What is the shortest way to travel from Rotterdam to Groningen? It is the

algorithm for the shortest path which I designed in about 20 minutes. One

morning I was shopping with my young fi anc é e, and tired, we sat down

on the caf é terrace to drink a cup of coffee and I was just thinking about

whether I could do this, and I then designed the algorithm for the shortest

path. 4

 Let us go back to our company in the New York area. Suppose that the com-

pany’s headquarters are located in Newark (city A) and that it frequently needs

to deliver supplies from its headquarters to each of its offi ces located in the

communities of Manhattan (B), Yonkers (C), the Bronx (D), and Queens (E). For

simplicity’s sake, let’s assume that the edges of our graph are “directed” like

one-way streets, meaning they can only be traveled in one direction. In addition,

we need to ensure that there is no possibility of these directed edges forming a

closed loop or cycle; with our one-way restrictions this is true of the graph in

 Figure 5.12 . This type of graph occurs in many places in computer science and

has the intimidating name of a Directed Acyclic Graph, or DAG .

 To fi nd the shortest path from the head offi ce in Newark to every other

offi ce, Dijkstra’s algorithm uses a greedy method. Let us see how Dijkstra’s

algorithm works in this case:

 The fi rst iteration of the algorithm starts at headquarters A and fi nds •

the offi ce that has the shortest direct connection to A. In our example

of Figure 5.8b , the closest offi ce to A is clearly B, with the a distance of

10. (Note that because there is no direct connection from city A to offi ce

C, we set distance to infi nity.)

 The next step in the algorithm examines the shortest paths to the other •

offi ces if we start from A as before, but also now allow the option of

going through B. We see that by going through B, we can now get to C

and therefore we record the distance as 10 + 50 = 60. For the next step

in the algorithm we need to add to our set of two locations, A and B,

the next closest offi ce to A. The next shortest path is now to offi ce D,

with a distance of 30.

 For the third iteration we now allow paths from A that can either go •

directly from A or via locations B or D. With this extra option, we see

by inspecting the graph (Fig. 5.8b) that the shortest path from A to C is

now through D rather than through B. Similarly, it is now shorter to get

to E through D than going direct from A. Again, we complete the step

by looking for the city with the next shortest path from A, which is now

C with a distance of 50.

A

E

C

B

D

10

30

10

20

 Fig. 5.9. The cheapest solution connect-

ing all fi ve cities with the minimum

length of optical fi ber is the MST for the

graph in Figure 5.8 .b. In this case the

MST can be found using a simple greedy

algorithm, as explained in the text .

 Fig. 5.10. An example of a tree structure

organization. The tree data structure

is one of the key concepts of computer

science and they are the cornerstones

of all databases. A tree consists of nodes

and branches. Whenever a node is added

or removed the tree needs to be adjusted

in order to make it shorter and more

“bushy” rather than tall and thin. This

makes search operations much faster .

 Fig. 5.11. Cartoon of a self-adjusting tree.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe94

 For the next and fi nal iteration, we calculate the shortest paths from •

A to each other location, but now allowing any of the offi ces B, D, and

C as possible intermediate destinations. The shortest path to E is now

through offi ces B and C rather than through D or going direct from A.

 In this way, we have now found the shortest path from A to all the other loca-

tions in the graph. These iterations of Dijkstra’s algorithm are summarized in

 Table 5.2 .

 There are many other types of routing algorithms that can be applied to

such shortest path problems. One important method is called dynamic program-

ming , which is a technique that can be used when simple greedy algorithms do

not give the best solution. Dynamic programming algorithms allow for long-

range optimizations instead of the purely local optimizations performed in

Dijkstra’s algorithm .

 Before we leave this section, we want to introduce an important charac-

ter in the study of algorithmics and graph problems – the traveling salesman

problem, or TSP, which has fascinated mathematicians and computer scientists

since the 1930s. The problem can be stated as follows: given a list of cities and

the distances between each of them, what is the shortest route that a traveling

salesman can take to visit each city and return to his starting point?

 Obviously one way of solving this problem is just to use brute force and

enumerate every possible route. For our fi ve-location network in Figure 5.8b ,

we can calculate how many different routes the salesman could take. The prob-

lem is equivalent to fi nding the number of permutations of the fi ve symbols A,

B, C, D, and E. Because any shortest route starts and fi nishes at the same city,

using any of the fi ve cities as the starting point of the route gives the same

answer. So we can just start with A and look for all the possible routes starting

with A. There are then four possible choices for the second city, three for the

third, and two for the fourth, before we are left with only the fi fth city. Thus it

looks like we need to evaluate 4 × 3 × 2 × 1 = 24 permutations (or 4!, to use the

common notation for factorials). But there is another simplifi cation. The dis-

tance from B to C is clearly the same as the distance from C to B, and the same

is true for every pair of cities. Each permutation has a reverse permutation of

the same length, and it does not matter which direction we travel round the

tour. We therefore need to consider only 4!/2 = 12 different routes.

 The shortest path for this problem, ABECDA, is shown in Figure 5.13 .

Where is the diffi culty with the TSP? For an N-city problem, we need to exam-

ine (N – 1)!/2 tours, and as the number of cities increases, this brute force

 Table 5.2 Iterations of Dijkstra’s algorithm. Column S is a set of cities used in the shortest

path search. D[node] is the distance to a city

 Iteration S D[B] D[C] D[D] D[E]

Initial {A} 10 ∞ 30 100

 #1 {A,B} 10 60 30 100

 #2 {A,B,D} 10 50 30 90

 #3 {A,B,D,C} 10 50 30 70

 #4 {A,B,D,C,E} 10 50 30 70

A

E

C

B

D

 Fig. 5.12. An example of a Directed

Acyclic Graph or DAG.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

95Algorithmics

approach rapidly becomes impractical. We can therefore say that such a brute

force algorithm for the N-city problem is unreasonable . To understand better

what we mean by reasonable and unreasonable , we need to look at how we can

measure the performance of algorithms. Before we do this, we will give a brief

history of attempts at solving the TSP for large numbers of cities.

 In 1954, three researchers at the RAND Corporation in Santa Monica,

California – George Dantzig (B.5.6), Ray Fulkerson, and Selmer Johnson – looked

at the problem of fi nding the shortest path for a tour through all the forty-eight

contiguous U.S. states. Newsweek reported their success:

 Finding the shortest route for a traveling salesman – starting from a

given city, visiting each of a series of other cities, and then returning to

the original point of departure – is more than an after-dinner teaser. For

years it has baffl ed not only goods- and salesman-routing businessmen but

mathematicians as well. If a drummer visits 50 cities, for example, he has 10 62

(62 zeros) possible itineraries. No electronic computer in existence could sort

out such a large number of routes and fi nd the shortest.

 Three RAND Corp. mathematicians, using Rand McNally distances between

the District of Columbia and major cities in each of the 48 states, have fi nally

produced a solution. By an ingenious application of linear programming – a

mathematical tool recently used to solve production-scheduling problems – it

took only a few weeks for the California experts to calculate “by hand” the

shortest route to cover the 49 cities: 12,345 miles. 5

 The algorithm the three researchers used to solve the problem was unusual: it

was just a board with pegs at the city locations and a piece of string to try out

possible TSP tours. As the Newsweek blurb recounts, they found the shortest tour

by using a powerful technique called linear programming . Dantzig had devised

the technique as a method to schedule the training, supply, and deployment of

military units when he was working at the Pentagon after World War II.

 Linear programming expresses the problem as an economic model with

inputs and outputs as variables subject to a set of constraints. These constraints

can include inequalities, such as requiring some variables to always be greater

than or equal to zero. As the name implies, the variables were combined in a

set of linear equations and the goal was to choose the variables to maximize an

explicit objective. To fi nd the optimal solution to such a linear programming

problem, Dantzig developed an algorithm that was named one of “The Top Ten

Algorithms of the Century” in the year 2000. This is the simplex algorithm,

which is still widely used in industry where the models can have hundreds of

thousands of constraints and variables. A detailed discussion of this algorithm

is beyond the scope of this book, but it still provides the basis for modern anal-

yses of the TSP . Using linear programming, Dantzig, Fulkerson, and Johnson

were able to prove that their solution was indeed the shortest path, writing:

 In this context, the tool of choice is linear programming, an amazingly

effective method for combining a large number of simple rules, satisfi ed by

all tours, to obtain a single rule of the form “no tour through this point set

can be shorter than X.” The number X gives an immediate quality measure: if

we can also produce a tour of length X then we can be sure that it is optimal. 6

A

B E

DC

 Fig. 5.13. The TSP for our fi ve-city prob-

lem corresponds to fi nding the shortest

round tour through all of the cities. Note

that to conform to the usual formula-

tion of the TSP problem with all-to-all

paths possible between the cities, we

have added in the missing “direct” paths

between B and D, B and E, and A and

C, taking the distances as the shortest

distances to go between them, going via

an intermediate node .

 B.5.6. George Dantzig (1914–2005)

is credited with the development of

the simplex algorithm and numer-

ous other contributions to linear pro-

gramming. His algorithm is used to

solve many real-life problems related

to air traffi c scheduling, logistics,

planning processes in oil refi neries,

circuit design, and many more .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe96

 Since the pioneering work of these RAND researchers, the challenge of the

traveling salesman has continued to attract the attention of researchers. The

record for fi nding the optimal tour has been steadily increased from 48 cities

(Fig. 5.14) in 1954; to 64 by Michael Held and Richard Karp in 1971 ; to 532, then

1,002, and then 2,392 cities by teams led by Martin Grotschel and Manfred

Padberg in 1987 ; to tours of 13,509 cities in the United States in 1998 and of

24,978 cities in Sweden in 2004 by Concorde, the current champion TSP pro-

gram. The Concorde program was developed by David Applegate, Robert Bixby,

Vasek Chvatal, and William Cook and is available over the Internet. In 2006,

they used their program to fi nd the shortest travel time for a laser to cut con-

nections in a Bell Labs computer chip. The result was an optimal tour for an

85,900 “city” problem (Fig. 5.15). This stands as the record TSP for which the

optimal tour is known. Larger problems, such as the 100,000-city Mona Lisa

problem created by the artist Bob Bosch and shown in Figure 5.16 , are signifi -

cantly more diffi cult than the computer chip problem, which has many “cities”

close together on straight lines . Currently the best solution for a Mona Lisa tour

is still 0.0026 percent above the bound for the optimal tour!

 Before we leave the traveling salesman problem we should say that although

fi nding a provably optimal tour is still computationally challenging, there are

many practical ways to fi nd very good approximate solutions to the TSP. Most

modern algorithms are variants on a method devised by Bell Labs researchers

Shen Lin and Brian Kernighan in 1973. This systematizes the process of mak-

ing incremental tour improvements on some initial tour. A “2-opt” move is an

improvement wherein two edges are deleted and the tour reconnected with two

shorter edges . Similarly, we can look for 3-opt moves and more. Danish com-

puter scientist Keld Helsgaun improved on the original Lin-Kernighan method

in 1998 by explicitly incorporating a search for 5-opt exchanges, reconnect-

ing ten edges at a time . Combining Lin-Kernighan with ideas from simulated

annealing in physics, in 1991 researchers Olivier Martin, Steve Otto, and Ed

Felten at Caltech developed what is now known as the Chained Lin-Kernighan

algorithm. In 2000, this method was used on a 25,000,000-city problem to fi nd

a tour that was only about 0.3 percent greater than the theoretical shortest

path. This is still the dominant algorithm for use with very large data sets . The

TSP is an important optimization problem for many types of problems – from

various pickups and deliveries, to fi nding markers on genomes, to moving tele-

scopes and manufacturing electronic circuit boards .

 Complexity theory

 As Charles Babbage foresaw in the quotation that introduces this chapter,

now that we have computers, the question of how to fi nd the fastest algorithm

to solve a particular problem moves to center stage. In our discussion on sorting

 Fig. 5.14. Optimal tour around the

United States visiting forty-eight state

capitals. Researchers George Dantzig,

Ray Fulkerson, and Selmer Johnson from

the RAND Corporation did not actually

use the forty-eight state capitals in their

classic 1954 solution of the forty-eight-

city problem .

 Fig. 5.15. Section of the optimal tour for

the 85,900-“city” problem .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

97Algorithmics

we looked at two different algorithms – bubble sort and merge sort – and we

claimed that merge sort was much more effi cient than bubble sort. How can

we justify such a statement ? This type of question is the business of complexity

theory, which examines the computational resources required by an algorithm

or class of algorithms. Typically these resources are measured as time (the num-

ber of computational steps required to solve the problem) or space (how much

memory does it take to solve the problem). Let us look at the time complexity

of our sorting algorithms.

 How many operations do we require to sort N objects according to both

algorithms? In the bubble sort algorithm, we have to go through the entire

list of N objects and perform (N – 1) comparisons. We then have to repeat this

process (N – 1) times. To sort a list of length N, we see that for the bubble sort

algorithm, the number of comparisons we are required to carry out is:

 (N – 1) × (N – 1) = N 2 – 2N +1

 Of course there are other statements in the program besides these compari-

sons, but we are only interested in the behavior of the algorithm for large N.

In this case, it is safe for us just to look at the comparisons because the other

parts of the program – involving testing and manipulating indices, for exam-

ple – just take a fi xed amount of time. In addition, because for large N, the N 2

term is much larger than the (–2N + 1) term, we can say that the amount of

computational work in the bubble sort algorithm applied to N objects grows

approximately like N 2 . Complexity theorists write this behavior as O (N 2), where

the “big- O notation” specifi es how the running time of the bubble sort algo-

rithm grows with N .

 What about the time complexity behavior of the merge sort algorithm? In

this case we used a divide-and-conquer approach and we do not have to cycle

through the entire list multiple times. For merge sort, we divide the list up

by repeatedly dividing N by 2 and then make comparisons on just the mul-

tiple lists containing 2 items. How many times can we divide a list of length

N? In our example, we started with 8 items and went from 8 to 4 to 2 so there

were three layers and two calls to subroutine Divide. Note that 8 = 2 3 and we

can write the number of layers in terms of logarithms to the base 2. With our

more familiar base 10 logarithms, we can write the power of 10 in 1000 as the

logarithm log 10 1000 = 3. Similarly, we can write the numbers of divisions by 2

for 8 items as the logarithm to base 2, namely log 2 8 = 3 (very handy for binary

machines like computers). In general, for N elements we can write the number

of divisions as log 2 N.

 Because the number of divisions grows like log 2 N and the number of com-

parisons we need to make grows like N, the complexity of the merge sort algo-

rithm is O (N log 2 N). This is the beauty of the divide-and-conquer approach .

 Table 5.3 shows how the growth rates of N 2 and N log 2 N compare. We see that

N log 2 N grows much more slowly with N than does N 2 – thus showing the

importance of a good sorting algorithm. Any algorithm whose time complexity

grows slower than some polynomial – in this case N log 2 N grows slower than

N 2 – is said to be reasonable . Any problem for which we can fi nd a low-order poly-

nomial time algorithm is said to be tractable , meaning that it can be evaluated

by a computer in an acceptable amount of time .

 Fig. 5.16. In 2009, Robert Bosch from

Oberlin College generated a set of

100,000 points and then ran the TSP

algorithm on this set in order to calcu-

late the minimal path. As the algorithm

proceeds it connects the dots with lines

and the outcome resembles Leonardo

da Vinci’s enigmatic painting of the

Mona Lisa .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe98

 Now let us go back to the traveling salesman problem. We have seen that

the brute force method to fi nd the exact solution for the shortest path through

N cities grows like N!. A factorial grows with N much faster than any polyno-

mial. As we have seen, we can do better than this brute force solution. Using

dynamic programming, in 1962 Held and Karp found an algorithm that solves

an N-city TSP in a time proportional to N 2 2 N . 2 N corresponds to an exponen-

tial time complexity. Exponential growth occurs when the rate of growth of a

function is proportional to its current value. As can be seen from Figure 5.17 ,

exponential growth rapidly outstrips linear and quadratic growth, and in fact

outstrips any polynomial growth. This means that even though this algorithm

to fi nd an exact solution for the traveling salesman problem is much better

than our brute force method, it is still unreasonable in that any computational

solution will take a time that grows exponentially with N. Any problem for

which we can fi nd only exponential time algorithms is said to be intractable .

 Does P = NP?

 Before we leave the subject of algorithmics and complexity, we must intro-

duce one of the most diffi cult unresolved problems in computer science. It

turns out that the traveling salesman problem is representative of a large class

of problems that have unreasonable, brute force solutions but for which it can-

not be proved whether much faster, reasonable, algorithms exist. These prob-

lems are as diverse as devising a timetable to allocate teachers and courses to

classrooms with all sorts of constraints; packing items of varying sizes and

shapes into fi xed-size bins; and determining possible arrangements of pat-

terned tiles. Finding some acceptable solution to even small versions of these

problems in real life usually involves much trial and error. After we have made

a choice that seemed to be the best possible choice at the time it turns out not

to be and we have to backtrack and try some other choice. All of these problems

have exponential time solutions, and no one has been able to fi nd an algorithm

that solves any of these problems in polynomial time.

 The problems in this class are called NP-complete . Computer scientists

denote the class of all problems that are tractable and have algorithms that

take only polynomial time by the symbol P . Besides only having known expo-

nential time solutions, the NP-complete problems have two other important

properties: they are nondeterministic, which is what N stands for, and they are

complete . To understand what these terms mean let us return to the traveling

salesman and pose the problem slightly differently by asking whether or not

we can fi nd a tour with a length shorter than a given number of miles. As we

have seen, it is very diffi cult to fi nd the shortest tour, but if we are given a spe-

cifi c tour, it is very easy to verify whether this tour is shorter than the specifi ed

length. Where does the nondeterminism come in? Suppose we are trying to

fi nd the shortest tour and start out at some city. There are some obvious possi-

bilities for the fi rst step so we toss a coin to decide which city we should visit

fi rst. If there are more than two cities to choose from we will have to toss the

coin more than once. We now suppose that the coin is not a normal one that

just gives a random result, but a “magical” one that always leads to the best

choice. The technical term for this magic is nondeterminism , and it means that

 Table 5.3 Growth of operations for

sorting algorithms

 N 10 50 100 300

 N log 2 N 33 282 665 2469

 N 2 100 2500 10000 90000

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10

Problem size

N
u
m

b
e

r
o
f

o
p
e

ra
ti
o
n
s

2
N

N
2

N log
2
N

N

 Fig. 5.17. This graph shows the growth

with problem size N of four different

functions: N; N log 2 N; N 2 ; and 2 N . The

growth of an exponential function like

2 N is much faster than any polynomial

like N 2 .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

99Algorithmics

we do not have to try all the choices to fi nd the right solution. As we can see

from the fact that it is easy to check whether or not we have a correct solution,

this nondeterministic method can fi nd the solution in polynomial time. This is

why these problems are called NP – since there is a nondeterministic polyno-

mial solution.

 The second property of NP-complete problems is perhaps the most remark-

able. No one has been able to prove that there does not exist a polynomial time

algorithm for any of these problems. What the designation complete signifi es is

that if a polynomial time solution were found for one of these problems, then

there would be a polynomial time algorithm for all of them! How does this

come about? Let us look at another path-fi nding problem, one that does not

involve distances. If we are given a graph consisting of points and edges, can

we fi nd a path that passes through all the points exactly once? Such a path is

called a Hamiltonian path , after the great Irish mathematician William Hamilton .

 Figure 5.18a shows a Hamiltonian path through fi ve nodes. This problem also

turns out to be intractable and NP-complete . Curiously, if we want a path that

goes through all the edges exactly once – called an Eulerian path , as in Euler’s

solution to the Bridges of K ö nigsberg problem – the situation is very different.

Euler found a polynomial time algorithm for this problem in 1736 !

 As we have said, the complete in NP-complete signifi es that all the prob-

lems stand or fall together. Either all NP-complete problems are tractable or

none of them are. The concept that is used to establish this is to show that

there is a polynomial time algorithm that reduces one NP-complete problem

to another. We can see how this works by reducing the Hamiltonian path

problem to the traveling salesman problem. In Figure 5.18a we have a graph

with fi ve nodes and we have highlighted the Hamiltonian path for this graph.

We can construct a traveling salesman network from this graph by using the

same nodes, but also drawing additional edges connecting every two nodes

as in Figure 5.18b . We assign cost 1 to an edge if it was originally present and

cost 2 for each new edge we have added. The new graph has a traveling sales-

man shortest path of length 6 units – in general N + 1 where N is the number

of nodes in the graph – if the original graph had a Hamiltonian path. Thus

the answer to whether or not there is a tour no longer than N + 1 is the same

as asking whether or not the graph contains a Hamiltonian path. Since the

(a) (b)

1

1 1

1

1

2

1

2

2

2

 Fig. 5.18. (a) The Hamiltonian path

(in bold) connecting fi ve nodes goes

through each node exactly once. (b) The

Hamiltonian path problem can be con-

verted into a TSP by adding extra edges

as described in the text . The traveling

salesman tour is shown in bold. (Figure

courtesy of David Harel.)

 B.5.7. Steven Cook received the

Turing Award in 1982 for his con-

tribution to algorithmic complex-

ity research .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

The Computing Universe100

 transformation between the two problems takes only a polynomial amount of

time, this leads to the claimed result .

 We can now see the signifi cance of the title of this section. Figure 5.19

 shows how we can divide the world of algorithmic problems into tractable,

intractable, and, as we shall see in the next chapter, noncomputable problems.

The tractable problems are in the class P and have polynomial time solutions;

the intractable problems do not have reasonable polynomial time algorithms .

The location of the NP-complete problems is unknown. The question arose

from the work of the complexity theorists Steven Cook (B.5.7), Leonid Levin

(B.5.8), and Richard Karp (B.5.9) in the early 1970s . Despite more than thirty

years of work by computer scientists, the question of whether P = NP is still

unresolved .

 Algorithmics and computability

 Numerical simulations of complex physical systems are still a major appli-

cation area for today’s computers. For problems that are very complex, such

as weather forecasting or global climate modeling, scientists need to use the

fastest, most expensive machines – supercomputers with multiple processors.

However, we have also seen how computers can be used to address a variety of

different types of problems, from sorting to graph problems. It is here that we

have seen the need to use clever algorithms that enable us to solve these prob-

lems as quickly as possible. But we have also seen that there are some problems

The noncomputable

The intractable

The tractable

 B.5.8. Leonid Levin discovered the

class of NP-complete problems inde-

pendently from Stephen Cook .

 Fig. 5.19. This fi gure from David Harel’s book shows the main problem categories: noncomputable

problems have no algorithmic solution. Algorithms for intractable problems do exist but only with

exponential or higher order of complexity: tractable problems can be solved with polynomial time

algorithms .

 B.5.9. In 1972 Richard M. Karp wrote a groundbreaking paper, “Reducibility among Combinatorial

Problems,” in which he identifi ed twenty-one combinatorial problems belonging to the class of

NP-complete problems that can be reduced to a common problem – the so-called satisfi ability

problem. In 1985 he received the Turing Award for his contribution to algorithmic research .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

101Algorithmics

for which no reasonable algorithms exist: the traveling salesman problem is

just one of a number of problems for which we know of no polynomial time

algorithm . In the next chapter we shall see that there are not only tractable and

intractable problems, but also those that are noncomputable by any algorithm or

 computer !

 Key concepts

 Algorithms as recipes �

 Euclid’s algorithm �

 Numerical methods �

 Discrete approximation to continuous variables �

 Monte Carlo method and pseudorandom numbers �

 Sorting algorithms �

 Bubble sort �

 Merge sort �

 Graph problems �

 Minimal spanning tree �

 Dijkstra’s shortest path algorithm �

 Traveling salesman problem �

 Complexity theory �

 Big-O notation �

 Polynomial time, tractable problems �

 Exponential time, intractable problems �

 NP-complete problems �

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

