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     5     Algorithmics    

  As   soon as an Analytical Engine exists, it will 
necessarily guide the future course of the science. 
Whenever any result is sought by its aid, the 
question will then arise – by what course of 
calculation can these results be arrived at by the 
machine in the shortest time  ? 
 Charles Babbage  1    

  Beginnings 

 What   is an algorithm? The word is derived from the name of the Persian 

scholar Mohammad Al-Khowarizmi (see  B.5.1  and  Fig. 5.1 ).         In   the introduction 

to his classic book  Algorithmics: The Spirit of Computing , computer scientist David 

Harel gives the following defi nition:

  An algorithm is an abstract recipe, prescribing a process that might be carried 

out by a human, by a computer, or by other means. It thus represents a 

very general concept, with numerous applications. Its principal interest and 

use, however, is in those cases where the process is to be carried out by a 

computer  .  2    

 Thus an algorithm can be regarded as a “recipe” detailing the mathe-

matical steps to follow to do a particular task. This could be a numerical 

algorithm for solving a differential equation or an algorithm for completing a 

more abstract task, such as sorting a list of items according to some specifi ed 

property  .   The word  algorithmics  was introduced by J. F. Traub in a textbook in 

1964 and popularized as a key fi eld of study in computer science by Donald 

 B.5.1.      The   word algorithm derives from the name of a ninth-century mathematician, 

Mohammad Al-Khowarizmi. He was a Persian scholar who studied in the House of Wisdom, a 

library and research center in Baghdad  .   Al-Khowarizmi wrote an early text on the rules for carry-

ing out mathematical operations with Hindu-Arabic numbers – the numbers we still use today.   

This book, in its Latin translation  Algoritmi de numero Indorum , was very infl uential in introduc-

ing the use of Hindu-Arabic numerals and the positional representation of numbers through-

out Europe. In Latin, al-Khowarizmi became known as Algoritmi, from which we get the word 

 algorithm . It is also from him that we get the word  algebra  – from the Latin title of another of his 

books.  
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Knuth ( B.5.2 ) and David Harel ( B.5.3 ).   When the steps to defi ne an algorithm 

to carry out a particular task have been identifi ed, the programmer chooses a 

programming language to express the algorithm in a form that the computer 

can understand. 

 The   earliest known algorithm was invented between 400 and 300  B.C.  by 

the Greek mathematician Euclid. Euclid’s algorithm is a method for fi nding 

the greatest common divisor, or GCD, of two positive integers. For example, the 

fraction 8/12 can be reduced to 2/3 by dividing both numerator and denomina-

tor by their GCD, which in this case is 4. The algorithm to fi nd the GCD of two 

numbers, M and N, can be expressed in four steps (see  Fig. 5.2 ):    

     Step 1:  Input values M, N.  

   Step 2:  Divide M by N to fi nd the remainder R.  

   Step 3:  If R is zero then N is the answer, print N.  

   Step 4:  If R is not zero, change the value of M to N and the value of N to R 

and go back to Step 2.    

 How does this algorithm work? Any number that divides both M and N must 

also divide the remainder R. Similarly, any number that divides both N and R 

must also divide M. This means that the GCD of M and N is the same as the 

GCD of N and R. We can see the algorithm in action in  Table 5.1  for fi nding 

the GCD of 65 and 39. We begin by dividing 65 by 39 – we are interested only 

in the remainder, which is 26. We assign M the value of 39 and N the value of 

the remainder 26. In the next iteration we calculate the remainder again and 

assign values to M and N. We repeat the process until the remainder becomes 

zero, in this case the value of GCD will be held in variable N.       

 As   Harel says in the title of his book, algorithms can be regarded as the 

“spirit of computing  .” They are the precise procedures required to get computers 

to do something useful. In this chapter we will look at some examples of differ-

ent types of algorithms. Historically, computers were used to solve numerical 

problems so we will start by looking at algorithms for numerical simulations. 

We will also introduce the idea of using random numbers to derive approximate 

answers to complex simulations. These “Monte Carlo” methods were fi rst used in 

the Manhattan atomic bomb project. We will then look at problems such as fi nd-

ing the quickest way to sort a list of names and fi nding the shortest path from 

one city to another – as we now do routinely with our global positioning system, 

or GPS, navigation systems. This will lead us to a discussion of the effi ciency of 

algorithms and an introduction to computational complexity theory.  

 Fig. 5.1.      A   page from al-Khowarizmi’s 

book on algebra. In this book he 

describes the steps for solving linear 

and quadratic equations and lays down 

the foundations of algebra as a new 

discipline of mathematics. The original 

meaning of the word  algebra  in Arabic 

is “to restore” – this refers to balancing 

out both sides of an equation. It is hard 

to overstate the importance of algebra in 

mathematics  .  

yes

no

print NM = N

N = R

R = O

R = M%N

Input M, N
 Table 5.1.       Euclid’s algorithm for 

GCD of 65 and   39 

 M  N  R 

 Iteration 1  65  39  26 

 Iteration 2  39  26  13 

 Iteration 3  26  13   0 

 Result  GCD = 13 

 Fig. 5.2.      Flowchart   of the GCD   algo-

rithm. The “%” operation calculates the 

remainder when M is divided by N.  
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  Numerical algorithms 

 In    Chapter 1  we saw that the ENIAC computer was originally built to cal-

culate the trajectories of shells for artillery tables. In mathematics, the solu-

tion to this trajectory problem is obtained by solving the differential equation 

that arises from an application of Newton’s laws of motion. On a computer, 

such differential equations must be approximated using some numerical 

method. 

 Let’s   look at a simple example. Suppose we have an object falling under 

the force of gravity. To fi nd the velocity of the object at any given time, we need 

to solve Newton’s law for the rate of change of velocity with time. If we assume 

that the object is dropped from rest, we can calculate the velocity at any later 

time using Newton’s law in the form of a differential equation. Mathematically 

we can treat the velocity and time values as varying “continuously.” However, 

computers can only store individual “discrete” values of the velocities and 

time – such as the velocity after one second, the velocity after two seconds and 

so on. We need to approximate the differential equation by splitting up the 

time variable into very small increments. We can then calculate the approxi-

mate incremental change of velocity for each small increment of time. There 

are many different “numerical methods” that can be used to fi nd such approx-

imate solutions to differential equations on a   computer.   The simplest numeri-

cal approximation is a method devised by the Swiss mathematician Leonhard 

Euler ( B.5.4 ). In practice, Euler’s method is not very precise and there are more 

accurate numerical methods available to solve such differential equations. 

 Figure 5.3  shows how Euler’s method compares to the exact solution for the 

problem of fi nding the velocity of an object falling under gravity through a 

fl uid, and subject to a resistance proportional to the square of the velocity  .   It 

was the FORTRAN programming language that fi rst gave scientists the capabil-

ity of writing their programs as a relatively straightforward translation of their 

mathematical equations, instead of having to program the solutions to these 

problems using low-level machine language or assembly language  .       

 Another   important numerical technique for simulations goes by the name 

of the “Monte Carlo” method.   In 1946, physicists at Los Alamos Laboratory 

were investigating the distance that neutrons can travel through various 

 B.5.3.      David   Harel gave a series of 

lectures on Israeli radio in 1984 

explaining computer algorithms to 

a general audience. This led to his 

famous book  Algorithmics: The Spirit 

of Computing  and to his more recent 

book on computability entitled 

 Computers Ltd: What they really can’t do   .  

 B.5.2.      Donald   Knuth with his series of books called  The Art of Computer Programming  has made a 

major contribution to the cataloging and systematic analysis of algorithms. This book is generally 

accepted as the “gold standard” in the fi eld. Knuth offered a prize of one hexadecimal dollar, that 

is, $2.56, for each error found in his books. These checks are considered to be trophies in aca-

demic circles. While writing his book, Knuth also developed the TeX typesetting software that is 

still very widely used. After winning a programming competition in the 1960s, Knuth was asked 

how he managed it. He replied: “When I learned how to program, you were lucky if you got fi ve 

minutes with the machine a day. If you wanted to get the program going, it just had to be written 

right. So people just learned to program like it was carving in stone. You have to sidle up to it. 

That’s how I learned to program  .”  B1    
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materials.   Polish American mathematician Stanislaw Ulam ( B.5.5 ), who, along 

with Edward Teller, is credited for devising a workable mechanism for the 

hydrogen bomb, came up with the idea of using many random experiments 

to fi nd an approximate answer to the problem  . He recalled his inspiration as 

follows:

  The fi rst thoughts and attempts I made to practice [the Monte Carlo 

method] were suggested by a question which occurred to me in 1946 as I 

was convalescing from an illness and playing solitaires. The question was 

what are the chances that a Canfi eld solitaire laid out with 52 cards will 

come out successfully? After spending a lot of time trying to estimate them 

by pure combinatorial calculations, I wondered whether a more practical 

method than “abstract thinking” might not be to lay it out say one hundred 

times and simply observe and count the number of successful plays. This 

was already possible to envisage with the beginning of the new era of fast 

computers, and I immediately thought of problems of neutron diffusion and 

other questions of mathematical physics, and more generally how to change 

processes described by certain differential equations into an equivalent 

form interpretable as a succession of random operations.   Later [in 1946], 

I described the idea to John von Neumann, and we began to plan actual 

calculations.  3      

 Von Neumann chose the code name Monte Carlo for the new technique in 

reference to the famous casino where Ulam’s uncle used to like to gamble  . 

  The fi rst unclassifi ed paper on Monte Carlo methods, authored by Nicholas 

Metropolis and Ulam, was published in   1949  . 

 We can use the Monte Carlo method to fi nd an approximate value of  π  in 

the following way. Imagine we place a dartboard inside a square as shown in 

 Figure 5.4 . If we throw darts randomly at the square, the number of darts that 

land within the circle is proportional to the area of the circle. By comparing the 

 B.5.4.        Leonhard   Euler (1707–83) was a Swiss mathematician and physicist. Euler was born in 

Basel,   the son of Paul Euler, a pastor of the Reformed Church, and a friend of Johann Bernoulli, 

then Europe’s foremost mathematician. Bernoulli recognized the young Euler’s genius and con-

vinced him to pursue mathematics rather than enter the church  . At the age of thirteen, Leonhard 

was a student at the University of Basel and received his Master of Philosophy in 1723 for his dis-

sertation that compared the philosophies of Descartes and Newton. After he was unable to secure 

a university position in Basel, in 1726 Euler was offered a post at the Russian Academy of Sciences 

in St. Petersburg. In 1741 he took up a position at the Berlin Academy and spent a very creative 

twenty-fi ve years in Germany before returning to St. Petersburg. 

 Euler’s mathematical abilities were supplemented by his having a photographic memory. He 

could recite Virgil’s  Aeneid  from beginning to end and could even remember the fi rst and last lines 

on each page of his edition of the book. Euler worked in almost all areas of mathematics – geome-

try, calculus, algebra, trigonometry, and number theory – as well as in physics and astronomy and 

he introduced and popularized many of the notational conventions in mathematics that we still 

use today. Euler was the fi rst to write  f ( x ) to denote the function  f  applied to the argument  x , as 

well as the modern notation for the trigonometric functions such as sine, cosine, and tangent; the 

letter  e  for the base of the natural logarithm; the Greek letter  Σ  for summations; and the letter  i  

for complex numbers.   Euler is also responsible for what physicist Richard Feynman called “the 

most remarkable formula in mathematics  ,”  B2   Euler’s identity  :  e   i π   + 1 = 0.  
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 Fig. 5.3.      Comparison   of a numerical 

solution of a simple differential equation 

obtained using Euler’s method with the 

exact analytical solution. If we use the 

Corrector-Predictor method, which is 

much more accurate than the simpler 

Euler method, we obtain results that are 

almost indistinguishable from the exact 

solution  .  
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number of darts that land within the square to the number that land within the 

circle of radius R, we can obtain an estimate of  π :  

    (Number of darts inside circle)/(Number of darts inside square) = 
(Area of circle)/(Area of square) =  π R 2 /4R 2  =  π /4    

 In order for this method to give an accurate value of  π , we need the darts 

to be thrown genuinely at random, so that they cover the entire area uniformly. 

We also need a large number of throws.   Because generating large numbers of 

truly random numbers is extremely diffi cult, von Neumann developed a clever 

algorithm to generate “pseudorandom” numbers on the computer. Given an 

initial starting number as a “seed,” these pseudorandom numbers are then gen-

erated deterministically by von Neumann’s algorithm and approximate a truly 

random distribution. This technique has the advantage that the exact sequence 

of numbers can be reproduced by starting with the same seed, and this turns 

out to be very helpful in debugging Monte Carlo simulation programs  . 

 Although we have only given a very simple example here, Monte Carlo 

methods can be used to evaluate complex integrals in a similar manner. These 

methods are now widely used in many areas of science and business – and in 

computer algorithms for playing   games  .  

  Sorting 

 Although   the earliest electronic computers were generally used to fi nd 

numerical solutions to scientifi c problems, it was clear from early on that 

they were capable of solving other types of problems.   During World War II, 

the Colossus computer at Bletchley Park in the United Kingdom was used for 

breaking codes, and soon after the war the LEO computer demonstrated the 

utility of computers for assisting with routine business problems, such as stock 

keeping, distribution, and payroll  . 

 Let’s take a look at how computers handle such nonnumerical tasks. We 

will do so by examining the problem of sorting a list of names into alphabeti-

cal order. We will show how this can be done using two different algorithms, 

  B.5.5.      Stanislav   Ulam was born in 1909 in the city of Lwow in Poland, now the city of Lviv in 

the Ukraine. He studied mathematics at university and was a member of the Lwow School of 

Mathematics. The members met at the Scottish Caf é  in Lwow and recorded their discussions in the 

“Scottish Book.” Ulam met John von Neumann and was invited to visit the institute at Princeton in 

1935. He left Poland in 1939 just before the German invasion and many members of his family died 

in the Holocaust. In 1943 Ulam was an assistant professor at the University of Wisconsin in Madison 

and he asked von Neumann if he could join the war effort. As a result he received a letter from 

Hans Bethe inviting him to join the Manhattan Project, a top-secret project to build the atom bomb, 

based at Los Alamos, near Santa Fe, New Mexico. Because he knew nothing about New Mexico, Ulam 

checked out a guidebook from the university library. On the checkout slip he found the names of 

three colleagues who had mysteriously “disappeared” a few months before! At Los Alamos he worked 

on numerical solutions to the hydrodynamical equations for the plutonium implosion bomb. After 

the war, Ulam returned to Los Alamos to work on the development of the hydrogen bomb. In 1951, 

Ulam and Edward Teller came up with a mechanism for a working fusion bomb using “radiation 

implosion.”    

 Fig. 5.4.      Determination   of  π  using Monte 

Carlo method. The diagram shows a 

circle of radius R inside a square of side 

2R. The area of circle is  π R 2  and the area 

of the square is 4R 2 . Throwing randomly 

distributed darts gives an estimate of 

 π  by comparing the number of darts 

landing inside the circle to the number 

landing inside the square  .  
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called  bubble sort  and  merge sort . Suppose we have the following list of eight 

names that we want to sort alphabetically:    

 Letters   are usually represented in a computer using the so-called ASCII 

scheme, an acronym for the American Standard Code for Information 

Interchange. All of the twenty-six Standard English characters, plus punctua-

tion and other symbols can be represented as a seven-bit ASCII code  . Hence we 

can arrange for the computer to understand what we mean when we ask for 

two numbers to be compared and placed in alphabetical order. 

 Let’s   fi rst examine the bubble sort algorithm. It works by repeatedly com-

paring adjacent names and interchanging them if they are out of alphabetical 

order. We start by considering the bottom two names on the list:    

 Next we move the “bubble” up and consider the next pair on the list:    

 We repeat the process until the bubble of paired names has reached the 

top. We are then guaranteed that the correct fi rst name is at the top of the list. 

The detailed workings of this fi rst iteration are shown in  Figure 5.5 .    

 Now start again, with the bubble again at the bottom of the list. At the 

end of this second pass through all of the names on the list, the second name 

will be in the correct position, second from the top. For sorting all eight items 

correctly we need to repeat this process seven times. You can see why this 

algorithm is called the bubble sort, because the sorted names bubble up to 

the top. 

 The bubble sort algorithm gets the job done, but it is not a very effi cient 

way to sort a large list  . Sorting is such a common task that computer scientists 

have spent a lot of time looking for effi cient sorting algorithms.   One very clever 

and practical algorithm is called merge sort.   It was invented by von Neumann 

 Bob 

 Ted 

 Alice 

 Pat 

 Joe 

 Fred 

 May 

 Eve 

  May 
  swap  

 Eve 

 Eve  May 

Fred 
  swap  

 Eve 

 Eve  Fred 
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in 1945 and uses a fundamental technique of computer science called  divide-

and-conquer   . We begin by splitting our eight-name list into two halves, so that 

we have two lists of four names. We then split each half again into two lists 

of two names. We order each of the pairs of names and then merge the sorted 

pairs. The merge is done by repeatedly comparing the characters at the head of 

each list and sending the alphabetically lower item to the output. We complete 

the sort by merging the two sorted lists of four names in the same way. The dia-

gram in  Figure 5.6  illustrates how the merge sort algorithm works.    

 In programming the merge sort algorithm, we can write the program using 

“recursion” for the divide phase, creating a subroutine calling itself a number 

of times. In this case, we can introduce a subroutine called “Divide” and use it 

to split the list into two halves. If there are only two elements left in the list, it 

returns them in alphabetical order; if there are more than two elements, the 

Divide subroutine calls itself and repeats the process. This carries on until there 

are only one or two elements left in the divided list. The use of recursion is a 

very powerful programming technique much loved by computer scientists. The 

merge phase can also be programmed recursively using a Merge subroutine  . 

We will compare the effi ciencies of some algorithms later in this chapter, in 

the section on complexity theory  .  

  Graph problems 

 We   are familiar with the use of routing algorithms from our GPS navigation 

systems. Indeed the systems are becoming so reliable that we are fast approach-

ing a time when fi nding our way by reading a paper map will be a lost art! All 

we do to fi nd the shortest route from A to B is to enter the start and end points 

in the car navigation system. How do computers solve such problems? The solu-

tion uses another branch of mathematics invented by Euler: “graph theory.” 

 The   city of K ö nigsberg in Prussia – now Kaliningrad, Russia – was famous 

for a long-standing puzzle in mathematics. The city is located on both sides of 

the Pregel River, and there are two large islands in the river connected to the 

mainland by seven bridges ( Fig. 5.7a ). The seven bridges problem was to fi nd a 

walk through the city that would cross each bridge only once. In 1735, Euler 

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7 Step 8

Bob Bob Bob Bob Bob Bob Bob Alice

Ted Ted Ted Ted Ted Ted Alice Bob

Alice Alice Alice Alice Alice Alice Ted Ted

Pat Pat Pat Pat Eve Eve Eve Eve

Joe Joe Joe Eve Pat Pat Pat Pat

Fred Fred Eve Joe Joe Joe Joe Joe

May Eve Fred Fred Fred Fred Fred Fred

Eve May May May May May May May

 Fig. 5.5.      An   example of the bubble 

sort algorithm. This example works by 

exchanging adjacent names if they are 

out of order, starting from the bottom of 

the list, and continuing until the bubble 

of paired names has reached the top. 

This is repeated until all items are sorted 

correctly  .  
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proved that there was no solution, and in so doing he laid the foundations of 

graph theory and the beginnings of the study of topology.  

 Euler solved the problem by reducing it to essentials. The choice of route 

on land is unimportant: only the sequence of bridges crossed is relevant 

( Fig. 5.7b ). The map can be further simplifi ed by replacing each landmass 

with a dot – called a “vertex” or a “node” – and each bridge by a line – called 

an “edge” – joining two vertices ( Fig. 5.7c ). Only the connection information 

in the resulting “graph” is important for this problem, not details of the 

layout of the fi gure. This illustrates one of the key ideas of topology: topol-

ogy is not concerned with the rigid shape of objects or surfaces, just their 

connectivity. 

 Euler then observed that, except for the start and fi nish of the walk, when-

ever one enters a vertex (landmass) by a bridge, one must leave the same land-

mass or vertex by another bridge. If each bridge is crossed only once, except 

M
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A B P T E F M J

A B E F J P T
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B
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A
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E

T
P

B
A

M
J

F

E

 Fig. 5.6.      An   example of the merge sort 

algorithm that uses a divide-and-conquer 

approach to reduce the list to sets of 

pairs of names. These are ordered and 

the different pairs merged together in 

the correct order  .  

 
 Fig. 5.7.      Three   representations of 

the Seven Bridges of Königsberg: (a) 

Königsberg in Euler’s time; (b) a more 

abstract representation of the seven 

bridges; and (c) a graph of the seven 

bridges  .  

(a) (b) (c)
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for the start and fi nish landmasses, the number of bridges connecting any 

other landmass must be an even number – half of the bridges for the walker 

to enter the landmass, and half for the walker to leave it. In the case of the 

bridges in K ö nigsberg, we see that all the four landmasses are connected by 

an odd number of bridges – one by fi ve, the other three by three. Because at 

most two of the landmasses can be the starting and end points, we see imme-

diately that it is not possible to walk through the city crossing each bridge 

exactly once  . 

 Let   us look at another important type of graph problem. This is the prob-

lem of fi nding the minimal spanning tree (MST) – a path that reaches every 

node in a graph with the minimum cost. Consider fi ve well-known communi-

ties in the area around New York City ( Fig. 5.8a ) and represent them as a graph 

( Fig. 5.8b ). In this graph, each community is represented as a vertex, with a 

road joining two communities by an edge. Each edge is assigned a number rep-

resenting the “cost” needed to go between the communities at the ends of each 

edge. This could represent the cost of a cable connection or the time of travel 

between the two places, for example.  

 Imagine that the company wants to connect its offi ces in the fi ve com-

munities using the least amount of optical fi ber. The minimal spanning tree 

(MST) solves this problem.   Finding the MST is a problem that can be solved by 

using a so-called greedy algorithm. Greedy algorithms take the optimal choice 

at each local stage of the algorithm and in general are not guaranteed to fi nd 

the globally best solution but can be proved to do so for the case of the MST. In 

this example, we start with the shortest edge in the graph; then from the two 

vertices at the ends of this edge, we choose the next shortest edge. We continue 

to add to the resulting graph by adding the next shortest edge that has not yet 

been considered. We repeat this procedure until we have visited each city in 

the graph. The result is the MST   shown   in  Figure 5.9 . 

 The   solution illustrates another important structure in computer science: 

trees. Trees are similar to graphs except that they do not contain closed loops. 

Trees are found everywhere in our daily lives, such as in the organization charts 

of companies or in the fi le structures on your computer ( Fig. 5.10 ). Effi cient 

algorithms to traverse and manipulate tree structures are an important area of 

algorithmics   ( Fig. 5.11 ).       
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 Fig. 5.8.      An   illustration of the MST prob-

lem. The fi gure shows (a) fi ve communi-

ties in the New York area: A = Newark; 

B = Manhattan; C = Yonkers; D = The 

Bronx; E = Queens; and (b) a graph of 

the fi ve communities with distances allo-

cated to each edge  .  
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 Let   us look at another important problem. This is the problem of fi nding 

the shortest path through a graph – the sort of algorithm used by our GPS nav-

igation systems. How does the computer embedded in our GPS system solve 

such problems?   It does so by using a variant of the shortest path algorithm 

devised by Edsger Dijkstra, an early computer science pioneer in the area of 

programming languages and software engineering. Dijkstra was asked in an 

interview how he came to invent his shortest path routing algorithm and he 

replied:

  What is the shortest way to travel from Rotterdam to Groningen? It is the 

algorithm for the shortest path which I designed in about 20 minutes. One 

morning I was shopping with my young fi anc é e, and tired, we sat down 

on the caf é  terrace to drink a cup of coffee and I was just thinking about 

whether I could do this, and I then designed the algorithm for the shortest 

path.  4    

 Let   us go back to our company in the New York area. Suppose that the com-

pany’s headquarters are located in Newark (city A) and that it frequently needs 

to deliver supplies from its headquarters to each of its offi ces located in the 

communities of Manhattan (B), Yonkers (C), the Bronx (D), and Queens (E). For 

simplicity’s sake, let’s assume that the edges of our graph are “directed” like 

one-way streets, meaning they can only be traveled in one direction. In addition, 

we need to ensure that there is no possibility of these directed edges forming a 

closed loop or cycle; with our one-way restrictions this is true of the graph in 

 Figure 5.12 . This type of graph occurs in many places in computer science and 

has the intimidating name of a Directed Acyclic Graph, or DAG  .    

 To fi nd the shortest path from the head offi ce in Newark to every other 

offi ce, Dijkstra’s algorithm uses a greedy method. Let us see how Dijkstra’s 

algorithm works in this case:

   The fi rst iteration of the algorithm starts at headquarters A and fi nds • 

the offi ce that has the shortest direct connection to A. In our example 

of  Figure 5.8b , the closest offi ce to A is clearly B, with the a distance of 

10. (Note that because there is no direct connection from city A to offi ce 

C, we set distance to infi nity.)  

  The next step in the algorithm examines the shortest paths to the other • 

offi ces if we start from A as before, but also now allow the option of 

going through B. We see that by going through B, we can now get to C 

and therefore we record the distance as 10 + 50 = 60. For the next step 

in the algorithm we need to add to our set of two locations, A and B, 

the next closest offi ce to A. The next shortest path is now to offi ce D, 

with a distance of 30.  

  For the third iteration we now allow paths from A that can either go • 

directly from A or via locations B or D. With this extra option, we see 

by inspecting the graph ( Fig. 5.8b ) that the shortest path from A to C is 

now through D rather than through B. Similarly, it is now shorter to get 

to E through D than going direct from A. Again, we complete the step 

by looking for the city with the next shortest path from A, which is now 

C with a distance of 50.   

A

E

C

B

D

10

30

10

20

 Fig. 5.9.      The   cheapest solution connect-

ing all fi ve cities with the minimum 

length of optical fi ber is the MST for the 

graph in  Figure 5.8 .b. In this case the 

MST can be found using a simple greedy 

algorithm, as explained in the text  .  

 Fig. 5.10.      An   example of a tree structure 

organization. The tree data structure 

is one of the key concepts of computer 

science and they are the cornerstones 

of all databases. A tree consists of nodes 

and branches. Whenever a node is added 

or removed the tree needs to be adjusted 

in order to make it shorter and more 

“bushy” rather than tall and thin. This 

makes search operations much faster  .  

 Fig. 5.11.        Cartoon of a self-adjusting   tree.  
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  For the next and fi nal iteration, we calculate the shortest paths from • 

A to each other location, but now allowing any of the offi ces B, D, and 

C as possible intermediate destinations. The shortest path to E is now 

through offi ces B and C rather than through D or going direct from A.    

 In this way, we have now found the shortest path from A to all the other loca-

tions in the graph. These iterations of Dijkstra’s algorithm are summarized   in 

 Table 5.2 .    

 There are many other types of routing algorithms that can be applied to 

such shortest path problems. One important method is called  dynamic program-

ming , which is a technique that can be used when simple greedy algorithms do 

not give the best solution. Dynamic programming algorithms allow for long-

range optimizations instead of the purely local optimizations performed in 

Dijkstra’s algorithm  . 

 Before   we leave this section, we want to introduce an important charac-

ter in the study of algorithmics and graph problems – the traveling salesman 

problem, or TSP, which has fascinated mathematicians and computer scientists 

since the 1930s. The problem can be stated as follows: given a list of cities and 

the distances between each of them, what is the shortest route that a traveling 

salesman can take to visit each city and return to his starting point? 

 Obviously one way of solving this problem is just to use brute force and 

enumerate every possible route. For our fi ve-location network in  Figure 5.8b , 

we can calculate how many different routes the salesman could take. The prob-

lem is equivalent to fi nding the number of permutations of the fi ve symbols A, 

B, C, D, and E. Because any shortest route starts and fi nishes at the same city, 

using any of the fi ve cities as the starting point of the route gives the same 

answer. So we can just start with A and look for all the possible routes starting 

with A. There are then four possible choices for the second city, three for the 

third, and two for the fourth, before we are left with only the fi fth city. Thus it 

looks like we need to evaluate 4  ×  3  ×  2  ×  1 = 24 permutations (or 4!, to use the 

common notation for factorials). But there is another simplifi cation. The dis-

tance from B to C is clearly the same as the distance from C to B, and the same 

is true for every pair of cities. Each permutation has a reverse permutation of 

the same length, and it does not matter which direction we travel round the 

tour. We therefore need to consider only 4!/2 = 12 different routes. 

 The shortest path for this problem, ABECDA, is shown in  Figure 5.13 . 

Where is the diffi culty with the TSP? For an N-city problem, we need to exam-

ine (N – 1)!/2 tours, and as the number of cities increases, this brute force 

 Table 5.2       Iterations of Dijkstra’s algorithm. Column S is a set of cities used in the shortest 

path search. D[node] is the distance to a   city 

 Iteration  S  D[B]  D[C]  D[D]  D[E] 

Initial   {A}  10   ∞   30  100 

  #1   {A,B}  10  60  30  100 

  #2   {A,B,D}  10  50  30  90 

  #3   {A,B,D,C}  10  50  30  70 

  #4   {A,B,D,C,E}  10  50  30  70 

A

E

C

B

D

 Fig. 5.12.      An example of a Directed 

Acyclic Graph or DAG.  
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approach rapidly becomes impractical. We can therefore say that such a brute 

force algorithm for the N-city problem is  unreasonable . To understand better 

what we mean by  reasonable  and  unreasonable , we need to look at how we can 

measure the performance of algorithms. Before we do this, we will give a brief 

history of attempts at solving the TSP for large numbers of cities.    

 In 1954,   three researchers at the RAND Corporation in Santa Monica, 

California – George Dantzig ( B.5.6 ), Ray Fulkerson, and Selmer Johnson – looked 

at the problem of fi nding the shortest path for a tour through all the forty-eight 

contiguous U.S. states.  Newsweek  reported their success:    

 Finding the shortest route for a   traveling salesman – starting from a 

given city, visiting each of a series of other cities, and then returning to 

the original point of departure – is more than an after-dinner teaser. For 

years it has baffl ed not only goods- and salesman-routing businessmen but 

mathematicians as well. If a drummer visits 50 cities, for example, he has 10 62  

(62 zeros) possible itineraries. No electronic computer in existence could sort 

out such a large number of routes and fi nd the shortest. 

 Three RAND Corp. mathematicians, using Rand McNally distances between 

the District of Columbia and major cities in each of the 48 states, have fi nally 

produced a solution. By an ingenious application of linear programming – a 

mathematical tool recently used to solve production-scheduling problems – it 

took only a few weeks for the California experts to calculate “by hand” the 

shortest route to cover the 49 cities: 12,345 miles.  5    

 The algorithm the three researchers used to solve the problem was unusual: it 

was just a board with pegs at the city locations and a piece of string to try out 

possible TSP tours. As the  Newsweek  blurb recounts, they found the shortest tour 

by using a powerful technique called  linear programming . Dantzig had devised 

the technique as a method to schedule the training, supply, and deployment of 

military units when he was working at the Pentagon after World War II. 

 Linear programming expresses the problem as an economic model with 

inputs and outputs as variables subject to a set of constraints. These constraints 

can include inequalities, such as requiring some variables to always be greater 

than or equal to zero. As the name implies, the variables were combined in a 

set of linear equations and the goal was to choose the variables to maximize an 

explicit objective.   To fi nd the optimal solution to such a linear programming 

problem, Dantzig developed an algorithm that was named one of “The Top Ten 

Algorithms of the Century” in the year 2000. This is the simplex algorithm, 

which is still widely used in industry where the models can have hundreds of 

thousands of constraints and variables. A detailed discussion of this algorithm 

is beyond the scope of this book, but it still provides the basis for modern anal-

yses of the TSP  . Using linear programming, Dantzig, Fulkerson, and Johnson 

were able to prove that their solution was indeed the shortest path, writing:

  In this context, the tool of choice is linear programming, an amazingly 

effective method for combining a large number of simple rules, satisfi ed by 

all tours, to obtain a single rule of the form “no tour through this point set 

can be shorter than X.” The number X gives an immediate quality measure: if 

we can also produce a tour of length X then we can be sure that it is   optimal.  6    

A

B E

DC

 Fig. 5.13.      The   TSP for our fi ve-city prob-

lem corresponds to fi nding the shortest 

round tour through all of the cities. Note 

that to conform to the usual formula-

tion of the TSP problem with all-to-all 

paths possible between the cities, we 

have added in the missing “direct” paths 

between B and D, B and E, and A and 

C, taking the distances as the shortest 

distances to go between them, going via 

an intermediate node  .  

 B.5.6.      George   Dantzig (1914–2005) 

is credited with the development of 

the simplex algorithm and numer-

ous other contributions to linear pro-

gramming. His algorithm is used to 

solve many real-life problems related 

to air traffi c scheduling, logistics, 

planning processes in oil refi neries, 

circuit design, and many more  .  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core


The Computing Universe96

 Since the pioneering work of these RAND researchers, the challenge of the 

traveling salesman has continued to attract the attention of researchers. The 

record for fi nding the optimal tour has been steadily increased from 48 cities 

( Fig. 5.14 ) in 1954;   to 64 by Michael Held and Richard Karp in 1971  ; to 532,   then 

1,002, and then 2,392 cities by teams led by Martin Grotschel and Manfred 

Padberg in 1987  ;   to tours of 13,509 cities in the United States in 1998 and of 

24,978 cities in Sweden in 2004 by Concorde, the current champion TSP pro-

gram. The Concorde program was developed by David Applegate, Robert Bixby, 

Vasek Chvatal, and William Cook and is available over the Internet. In 2006, 

they used their program to fi nd the shortest travel time for a laser to cut con-

nections in a Bell Labs computer chip. The result was an optimal tour for an 

85,900 “city” problem   ( Fig. 5.15 ). This stands as the record TSP for which the 

optimal tour is known.   Larger problems, such as the 100,000-city Mona Lisa 

problem created by the artist Bob Bosch and shown in  Figure 5.16 , are signifi -

cantly more diffi cult than the computer chip problem, which has many “cities” 

close together on straight lines  . Currently the best solution for a Mona Lisa tour 

is still 0.0026 percent above the bound for the optimal tour!          

 Before we leave the traveling salesman problem we should say that although 

fi nding a provably optimal tour is still computationally challenging, there are 

many practical ways to fi nd very good approximate solutions to the TSP.   Most 

modern algorithms are variants on a method devised by Bell Labs researchers 

Shen Lin and Brian Kernighan in 1973. This systematizes the process of mak-

ing incremental tour improvements on some initial tour. A “2-opt” move is an 

improvement wherein two edges are deleted and the tour reconnected with two 

shorter edges  . Similarly, we can look for 3-opt moves and more.   Danish com-

puter scientist Keld Helsgaun improved on the original Lin-Kernighan method 

in 1998 by explicitly incorporating a search for 5-opt exchanges, reconnect-

ing ten edges at a time  .   Combining Lin-Kernighan with ideas from simulated 

annealing in physics, in 1991 researchers Olivier Martin, Steve Otto, and Ed 

Felten at Caltech developed what is now known as the Chained Lin-Kernighan 

algorithm. In 2000, this method was used on a 25,000,000-city problem to fi nd 

a tour that was only about 0.3 percent greater than the theoretical shortest 

path. This is still the dominant algorithm for use with very large data sets  . The 

TSP is an important optimization problem for many types of problems – from 

various pickups and deliveries, to fi nding markers on genomes, to moving tele-

scopes and manufacturing electronic circuit   boards  .  

  Complexity theory 

 As Charles   Babbage foresaw in the quotation that introduces this chapter, 

now that we have computers, the question of how to fi nd the fastest algorithm 

to solve a particular problem moves to center stage.   In   our discussion on sorting 

 Fig. 5.14.      Optimal   tour around the 

United States visiting forty-eight state 

capitals. Researchers George Dantzig, 

Ray Fulkerson, and Selmer Johnson from 

the RAND Corporation did not actually 

use the forty-eight state capitals in their 

classic 1954 solution of the forty-eight-

city problem  .  

 Fig. 5.15.      Section   of the optimal tour for 

the 85,900-“city” problem  .  
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we looked at two different algorithms – bubble sort and merge sort – and we 

claimed that merge sort was much more effi cient than bubble sort. How can 

we justify such a statement  ? This type of question is the business of complexity 

theory, which examines the computational resources required by an algorithm 

or class of algorithms. Typically these resources are measured as  time  (the num-

ber of computational steps required to solve the problem) or  space  (how much 

memory does it take to solve the problem). Let us look at the time complexity 

of our sorting algorithms. 

 How many operations do we require to sort N objects according to both 

algorithms? In the bubble sort algorithm, we have to go through the entire 

list of N objects and perform (N – 1) comparisons. We then have to repeat this 

process (N – 1) times. To sort a list of length N, we see that for the bubble sort 

algorithm, the number of comparisons we are required to carry out is:  

     (N – 1)  ×  (N – 1) = N 2  – 2N +1  

 Of course there are other statements in the program besides these compari-

sons, but we are only interested in the behavior of the algorithm for large N. 

In this case, it is safe for us just to look at the comparisons because the other 

parts of the program – involving testing and manipulating indices, for exam-

ple – just take a fi xed amount of time. In addition, because for large N, the N 2  

term is much larger than the (–2N + 1) term, we can say that the amount of 

computational work in the bubble sort algorithm applied to N objects grows 

approximately like N 2 .   Complexity theorists write this behavior as  O (N 2 ), where 

the “big- O  notation” specifi es how the running time of the bubble sort algo-

rithm grows with   N  . 

 What   about the time complexity behavior of the merge sort algorithm? In 

this case we used a divide-and-conquer approach and we do not have to cycle 

through the entire list multiple times. For merge sort, we divide the list up 

by repeatedly dividing N by 2 and then make comparisons on just the mul-

tiple lists containing 2 items. How many times can we divide a list of length 

N? In our example, we started with 8 items and went from 8 to 4 to 2 so there 

were three layers and two calls to subroutine Divide. Note that 8 = 2 3  and we 

can write the number of layers in terms of logarithms to the base 2. With our 

more familiar base 10 logarithms, we can write the power of 10 in 1000 as the 

logarithm log 10  1000 = 3. Similarly, we can write the numbers of divisions by 2 

for 8 items as the logarithm to base 2, namely log 2  8 = 3 (very handy for binary 

machines like computers). In general, for N elements we can write the number 

of divisions as log 2  N. 

 Because the number of divisions grows like log 2  N and the number of com-

parisons we need to make grows like N, the complexity of the merge sort algo-

rithm is  O (N log 2  N). This is the beauty of the divide-and-conquer approach  . 

 Table 5.3  shows how the growth rates of N 2  and N log 2  N compare. We see that 

N log 2  N grows much more slowly with N than does N 2  – thus showing the 

importance of a good sorting algorithm.   Any algorithm whose time complexity 

grows slower than some polynomial – in this case N log 2  N grows slower than 

N 2  – is said to be  reasonable .   Any problem for which we can fi nd a low-order poly-

nomial time algorithm is said to be  tractable , meaning that it can be evaluated 

by a computer in an acceptable amount of time  .    

 Fig. 5.16.      In   2009, Robert Bosch from 

Oberlin College generated a set of 

100,000 points and then ran the TSP 

algorithm on this set in order to calcu-

late the minimal path. As the algorithm 

proceeds it connects the dots with lines 

and the outcome resembles Leonardo 

da Vinci’s enigmatic painting of the 

Mona Lisa  .  
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 Now let us go back to the traveling salesman problem. We have seen that 

the brute force method to fi nd the exact solution for the shortest path through 

N cities grows like N!. A factorial grows with N much faster than any polyno-

mial. As we have seen, we can do better than this brute force solution.   Using 

dynamic programming, in 1962 Held and Karp found an algorithm that solves 

an N-city TSP in a time proportional to N 2 2 N   . 2 N    corresponds to an exponen-

tial time complexity. Exponential growth occurs when the rate of growth of a 

function is proportional to its current value. As can be seen from  Figure 5.17 , 

exponential growth rapidly outstrips linear and quadratic growth, and in fact 

outstrips any polynomial growth. This means that even though this algorithm 

to fi nd an exact solution for the traveling salesman problem is much better 

than our brute force method, it is still unreasonable in that any computational 

solution will take a time that grows exponentially with N.   Any problem for 

which we can fi nd only exponential time algorithms is said to be    intractable   .   

  Does P = NP? 

 Before   we leave the subject of algorithmics and complexity, we must intro-

duce one of the most diffi cult unresolved problems in computer science. It 

turns out that the traveling salesman problem is representative of a large class 

of problems that have unreasonable, brute force solutions but for which it can-

not be proved whether much faster, reasonable, algorithms exist. These prob-

lems are as diverse as devising a timetable to allocate teachers and courses to 

classrooms with all sorts of constraints; packing items of varying sizes and 

shapes into fi xed-size bins; and determining possible arrangements of pat-

terned tiles. Finding some acceptable solution to even small versions of these 

problems in real life usually involves much trial and error. After we have made 

a choice that seemed to be the best possible choice at the time it turns out not 

to be and we have to backtrack and try some other choice. All of these problems 

have exponential time solutions, and no one has been able to fi nd an algorithm 

that solves any of these problems in polynomial time. 

 The problems in this class are called  NP-complete .   Computer scientists 

denote the class of all problems that are tractable and have algorithms that 

take only polynomial time by the symbol P  . Besides only having known expo-

nential time solutions, the NP-complete problems have two other important 

properties: they are nondeterministic, which is what N stands for, and they are 

complete  . To understand what these terms mean let us return to the traveling 

salesman and pose the problem slightly differently by asking whether or not 

we can fi nd a tour with a length shorter than a given number of miles. As we 

have seen, it is very diffi cult to fi nd the shortest tour, but if we are given a spe-

cifi c tour, it is very easy to verify whether this tour is shorter than the specifi ed 

length. Where does the nondeterminism come in? Suppose we are trying to 

fi nd the shortest tour and start out at some city. There are some obvious possi-

bilities for the fi rst step so we toss a coin to decide which city we should visit 

fi rst. If there are more than two cities to choose from we will have to toss the 

coin more than once. We now suppose that the coin is not a normal one that 

just gives a random result, but a “magical” one that always leads to the best 

choice. The technical term for this magic is  nondeterminism , and it means that 

 Table 5.3       Growth of operations for 

sorting algorithms   

 N  10  50  100  300 

  N log 2  N   33  282  665  2469 

  N 2    100  2500  10000  90000 
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 Fig. 5.17.      This   graph shows the growth 

with problem size N of four different 

functions: N; N log 2  N; N 2 ; and 2 N . The 

growth of an exponential function like 

2 N  is much faster than any polynomial 

like   N 2 .  

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core


99Algorithmics

we do not have to try all the choices to fi nd the right solution. As we can see 

from the fact that it is easy to check whether or not we have a correct solution, 

this nondeterministic method can fi nd the solution in polynomial time. This is 

why these problems are called NP – since there is a nondeterministic polyno-

mial solution. 

 The second property of NP-complete problems is perhaps the most remark-

able. No one has been able to prove that there does not exist a polynomial time 

algorithm for any of these problems. What the designation  complete  signifi es is 

that if a polynomial time solution were found for one of these problems, then 

there would be a polynomial time algorithm for all of them! How does this 

come about? Let us look at another path-fi nding problem, one that does not 

involve distances. If we are given a graph consisting of points and edges, can 

we fi nd a path that passes through all the points exactly once?   Such   a path is 

called a  Hamiltonian path , after the great Irish mathematician William Hamilton  . 

 Figure 5.18a    shows a Hamiltonian path through fi ve nodes. This problem also 

turns out to be intractable and NP-complete  .   Curiously, if we want a path that 

goes through all the edges exactly once – called an  Eulerian path , as in Euler’s 

solution to the Bridges of K ö nigsberg problem – the situation is very different. 

Euler found a polynomial time algorithm for this problem in 1736  !  

 As we have said, the complete in NP-complete signifi es that all the prob-

lems stand or fall together. Either all NP-complete problems are tractable or 

none of them are. The concept that is used to establish this is to show that 

there is a polynomial time algorithm that reduces one NP-complete problem 

to another. We can see how this works by reducing the Hamiltonian path 

problem to the traveling salesman problem. In  Figure 5.18a  we have a graph 

with fi ve nodes and we have highlighted the Hamiltonian path for this graph. 

We can construct a traveling salesman network from this graph by using the 

same nodes, but also drawing additional edges connecting every two nodes 

as in  Figure 5.18b . We assign cost 1 to an edge if it was originally present and 

cost 2 for each new edge we have added. The new graph has a traveling sales-

man shortest path of length 6 units – in general N + 1 where N is the number 

of nodes in the graph – if the original graph had a Hamiltonian path. Thus 

the answer to whether or not there is a tour no longer than N + 1 is the same 

as asking whether or not the graph contains a Hamiltonian path. Since the 

(a) (b)

1

1 1

1

1

2

1

2

2

2

 Fig. 5.18.      (a) The   Hamiltonian path 

(in bold) connecting fi ve nodes goes 

through each node exactly once. (b) The 

Hamiltonian path problem can be con-

verted into a TSP by adding extra edges 

as described in the text  . The traveling 

salesman tour is shown in bold. (Figure 

courtesy of David Harel.)  

 B.5.7.      Steven   Cook received the 

Turing Award in 1982 for his con-

tribution to algorithmic complex-

ity research  .  
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 transformation between the two problems takes only a polynomial amount of 

time, this leads to the claimed result  . 

 We can now see the signifi cance of the title of this section.  Figure 5.19  

  shows how we can divide the world of algorithmic problems into tractable, 

intractable, and, as we shall see in the next chapter, noncomputable problems. 

The tractable problems are in the class P and have polynomial time solutions; 

the intractable problems do not have reasonable polynomial time   algorithms  . 

The location of the NP-complete problems is unknown.   The question arose 

from the work of the complexity theorists Steven Cook ( B.5.7 ), Leonid Levin 

( B.5.8 ), and Richard Karp ( B.5.9 ) in the early 1970s  . Despite more than thirty 

years of work by computer scientists, the question of whether P = NP is still 

unresolved  .            

  Algorithmics and computability 

 Numerical   simulations of complex physical systems are still a major appli-

cation area for today’s computers. For problems that are very complex, such 

as weather forecasting or global climate modeling, scientists need to use the 

fastest, most expensive machines – supercomputers with multiple processors. 

However, we have also seen how computers can be used to address a variety of 

different types of problems, from sorting to graph problems. It is here that we 

have seen the need to use clever algorithms that enable us to solve these prob-

lems as quickly as possible.   But we have also seen that there are some problems 

The noncomputable

The intractable

The tractable

 B.5.8.      Leonid   Levin discovered the 

class of NP-complete problems inde-

pendently from Stephen Cook  .  

 Fig. 5.19.      This   fi gure from David Harel’s book shows the main problem categories: noncomputable 

problems have no algorithmic solution. Algorithms for intractable problems do exist but only with 

exponential or higher order of complexity: tractable problems can be solved with polynomial time 

algorithms  .  

 B.5.9.      In 1972   Richard M. Karp wrote a groundbreaking paper, “Reducibility among Combinatorial 

Problems,” in which he identifi ed twenty-one combinatorial problems belonging to the class of 

NP-complete problems that can be reduced to a common problem – the so-called satisfi ability 

problem. In 1985 he received the Turing Award for his contribution to algorithmic research  .  
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for which no reasonable algorithms exist: the traveling salesman problem is 

just one of a number of problems for which we know of no polynomial time 

algorithm  . In the next chapter we shall see that there are not only tractable and 

intractable problems, but also those that are  noncomputable  by any algorithm or 

  computer  !  

  Key concepts  

   Algorithms as recipes  �

   Euclid’s algorithm     �

  Numerical methods  �

   Discrete approximation to continuous variables   �

  Monte Carlo method and pseudorandom numbers     �

  Sorting algorithms  �

   Bubble sort   �

  Merge sort     �

  Graph problems  �

   Minimal spanning tree   �

  Dijkstra’s shortest path algorithm   �

  Traveling salesman problem     �

  Complexity theory  �

   Big-O notation   �

  Polynomial time, tractable problems   �

  Exponential time, intractable problems   �

  NP-complete problems              �

    

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:43, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.008
http:/www.cambridge.org/core

