
102

 6 Mr. Turing’s amazing machines

 Electronic computers are intended to carry out
any defi nite rule of thumb process which could
have been done by a human operator working in a
disciplined but unintelligent manner .
 Alan Turing 1

 WARNING: This chapter is more mathematical in character than the rest of the

book. It may therefore be hard going for some readers, and they are strongly

advised either to skip or skim through this chapter and proceed to the next

chapter. This chapter describes the theoretical basis for much of formal com-

puter science.

 Hilbert’s challenge

 Are there limits to what we can, in principle, compute? If we build a big

enough computer, surely it can compute anything we want it to? Or are there

some questions that computers can never answer, no matter how big and pow-

erful a computer we build. These fundamental questions for computer science

were being addressed long before computers were built!

 In the early part of the twentieth century, mathematicians were struggling

to come to terms with many new concepts including the theory of infi nite

numbers and the puzzling paradoxes of set theory. The great German mathe-

matician David Hilbert (B.6.1) had put forward this challenge to the mathemat-

ics community: put mathematics on a consistent logical foundation. It is now

diffi cult to imagine, but in the early twentieth century, mathematics was in as

great a turmoil as physics was at that time. In physics, the new theories of rel-

ativity and quantum mechanics were overturning all our classical assumptions

about nature. What was happening in mathematics that could be comparable

to these revolutions in physics?

 In the late nineteenth century, mathematics was becoming liberated from

its traditional role in just having application to counting and measurement. In

high school algebra, letters started to be used as symbols for numerical quan-

tities. By the twentieth century, a more abstract view had emerged in which

an “obvious” numerical rule of algebra such as x + y = y + x, was taken to be

just a rule about how symbols could be moved around, and not necessarily

to be interpreted in terms of numbers. Hilbert was one of the leaders of the

formalistic approach to mathematics, which transformed mathematics into a

 B.6.1. David Hilbert (1862–1943)

believed that in mathematics all

problems could be solved, provided

we work hard enough. The writing

on his tombstone reads “Wir m ü ssen

wissen, wir werden wissen” – or in

English “We must know, we will

know.”

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

103Mr. Turing’s amazing machines

more abstract formulation that allowed the exploration of new kinds of algebra

with different rules and symbols. This led to the development of new fi elds of

research such as “group theory” and “Hilbert spaces,” both of which ultimately

found application in physics. However, attempts to show that the whole edifi ce

of this more formal approach to mathematics was consistent and free from

contradictions had run into trouble. The key challenge was to show that manip-

ulating the symbols according to the agreed rules always made sense and did

not lead to contradictions such as being able to prove that 2 + 2 = 5 .

 The German logician Gottlob Frege (B.6.2) and the Welsh mathematician

Bertrand Russell (B.6.3) had independently approached the problem of prov-

ing the consistency of mathematics using the ideas of set theory. A set is just

a collection of objects characterized by a particular property. For example, we

can defi ne a set that contains all the men in a town. We can also defi ne a sub-

set of this set that comprises all the men in the town with red hair, and so on.

However, in 1901, Russell noticed that logical contradictions arose when he

tried to use “sets of all sets” in his arguments. He explained his paradox with

the example of a town that had only one male barber and where all the men

were clean shaven (Fig. 6.1). The paradox can then be stated as: The barber in

this town shaves only men who do not shave themselves. In this case, we have the set

of all men in the town, and within this set there are two subsets – men who

shave themselves and men who are shaved by the barber. The paradox is into

which subset do we put the barber? Since these sets were taken to be abstract

entities there was no way of resolving the contradiction by asking what the

symbols really meant. The whole idea of Frege and Russell’s program was “to

derive arithmetic from the most primitive logical ideas in an automatic, water-

tight, depersonalized way.” 2 Russell wrote a letter about this paradox to Frege

in 1902 and Frege’s reply gives some idea of the consternation that Russell’s

letter caused:

 Your discovery of the contradiction has surprised me beyond words and, I

should almost like to say, left me thunderstruck, because it has rocked the

ground on which I meant to build arithmetic. Your discovery is at any rate

a very remarkable one and it may perhaps lead to a great advance in logic,

undesirable as it may seem at fi rst sight . 3

 By 1928, the focus had moved on from Frege and Russell’s ambitious attempts

to determine what mathematics really was . Instead, Hilbert was asking deep

questions about the logical foundations of mathematics. In 1899 he had suc-

ceeded in fi nding a set of axioms – a small number of self-evident truths –

from which he could prove all the theorems of Euclidean geometry without

any need to relate his proofs to the geometry of the actual physical world.

A year later, at a conference in Paris, Hilbert proposed a list of twenty-three

important unsolved mathematical problems. The number two question on his

list was “the compatibility of the arithmetical axioms.” Of the many ques-

tions that could be asked about these axioms, he said that the most important

question was:

 To prove that they are not contradictory, that is, that a defi nite number of

logical steps based upon them can never lead to contradictory results. 4

 B.6.2. Gottlob Frege (1848–1925)

was working on the axiomatization

of mathematics trying to derive a

logical system that is complete and

has no contradictions. His pioneer-

ing work had a signifi cant impact on

later discoveries in mathematics .

 B.6.3. Bertrand Russell (1872–1970)

mathematician and philosopher.

With Alfred Whitehead in 1910

he published Principia Mathematica

with more than a thousand pages in

which they tried to put mathemat-

ics on solid foundations. They soon

learned that mathematics is not

“perfect” because there are many

paradoxes that mathematics cannot

answer .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe104

 Many years later, at the Bologna International Conference of Mathematicians

in 1928, Hilbert made this question more precise. In Andrew Hodges’s words,

Hilbert’s three questions were the following:

 First, was mathematics complete, in the technical sense that every statement

(such as “every integer is the sum of four squares”) could either be proved or

disproved? Second, was mathematics consistent, in the sense that the statement

“2+2 = 5” could not be arrived at by a sequence of valid steps of proof? And

thirdly, was mathematics decidable? By this he meant, did there exist a defi nite

method which could, in principle, be applied to any assertion, and which was

guaranteed to produce a correct decision as to whether that assertion was true . 5

 This last question came to be known as the decision problem – more often

known by its more intimidating German name as the Entscheidungsproblem.

Hilbert clearly believed that the answer to all of these questions would be

“yes” – but within a few years, Kurt G ö del (B.6.4) had dealt Hilbert’s newly

announced program a fatal blow .

 G ö del was known for being extremely meticulous – in his secondary

school he was famous for never making a single grammatical error. He went

to the University of Vienna in 1924 and wrote his famous paper on the incom-

pleteness of mathematics in 1931. In that paper G ö del proved a startling result.

 He showed that mathematics must be incomplete – in that there are statements

that can neither be proved nor disproved starting from a given set of axioms.

In order to prove this result, G ö del fi rst showed how the rules of procedure of

any formal mathematical system, and the use of its axioms, could be encoded

as purely arithmetical operations. Having done this, G ö del was able to reduce

things like the property of “being a proof” or of “being provable” to arithmetic

statements. He could then construct arithmetical statements that referred to

themselves, rather like Russell’s use of “sets of all sets” arguments. In particu-

lar, G ö del was able to construct a mathematical statement that effectively said

“This statement is unprovable.” The statement cannot be proved true , for this

would immediately be a contradiction. But similarly, it cannot be proved false ,

because this also leads to a contradiction. This is reminiscent of the famous liar

paradox: when a man says “I am lying,” is he telling the truth or not ?

 G ö del was also able to show that arithmetic could not be proved to be con-

sistent with just the use of its own axioms. In one remarkable paper, G ö del had

answered the fi rst two questions of Hilbert’s program in the negative! This left

 Fig. 6.1. Who is going to shave the bar-

ber? Illustration of barber’s paradox.

 B.6.4. Kurt G ö del (1906–78) with Albert Einstein in Princeton. John von Neumann had a

very high respect for G ö del and at Princeton he helped him to get a permanent position.

Allegedly he said “How can any of us be called professor when G ö del is not?” B1 Despite

their age difference, Einstein and G ö del were close friends. They used to walk together to

the Institute for Advanced Studies every morning and toward the end of his life, Einstein

remarked that “his own work no longer meant much, that he came to the Institute

merely to have the privilege of walking home with G ö del .” B2

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

105Mr. Turing’s amazing machines

just the last question – Hilbert’s Entscheidungsproblem (the decision problem).

Enter Alan Turing and his amazing machines .

 Turing machines

 At the age of nineteen, Turing (B.6.5) went to King’s College, Cambridge in

1931 to study mathematics. He passed his fi nal mathematics examinations at

Cambridge in 1934 with a distinction and was awarded the title of “Wrangler,”

a title still used at Cambridge to denote the top mathematics students each

year. In the spring of 1935, Turing attended a lecture course given by Max

Newman on “The Foundations of Mathematics.” Unusual for mathematicians at

Cambridge at that time, Newman was an expert in the emerging fi eld of topol-

ogy and had also followed the progress of mathematical logic and set theory

since the efforts of Frege and Russell. In particular, Newman had attended the

1928 international congress at which Hilbert had announced his challenge to

 B.6.5. Computer- generated image of Alan Turing. Alan Mathison Turing (1912–54) was one

of the founders of computer science. His name is mainly associated with Turing machines,

universality, the Church-Turing thesis, and artifi cial intelligence and the Turing Test. After

attending Sherbourne “public school” – in England this means a private school – Turing

went to King’s College, Cambridge in 1931 to study mathematics. He was twenty-four when

he wrote his groundbreaking paper, “On Computable Numbers, with an Application to the

Entscheidungsproblem.” Turing was a good long-distance runner – his best time for the marathon

was only eleven minutes slower than the winning time at the 1948 Olympics – and, for recreation,

he liked to go running in the countryside around Cambridge. He said later that he conceived

the idea of how to answer Hilbert’s third question while lying in the meadow at Grantchester, a

village near Cambridge, at a break in one of his runs. It is no exaggeration to say that this paper is

one of the cornerstones of computer science.

 During the war he worked on code breaking at Bletchley Park, for which he was honored as an

Offi cer of the British Empire . After the war, Turing returned to his ideas of building a physical real-

ization of his abstract machine. At the U.K. National Physical laboratory (NPL) in 1945 he designed

the Automatic Computing Engine (ACE) which could have been the fi rst stored-program computer.

Because of bureaucratic delays for the ACE project, Turing became frustrated and left NPL . In 1949

he started to work at the computing laboratory in Manchester where he developed programs for

the Manchester Mark I computer .

 The following year Turing published the paper “Computing Machinery and Intelligence” in

which he speculated about whether computers can think. In this paper he described what has

become known as the Turing test. This is a purely operational defi nition of intelligence. A human

interrogator poses questions to a closed room containing either a computer or a person. If the

interrogator is unable to tell which is the computer and which is the person from the responses

the computer is deemed to have Turing’s test for intelligence .

 In 1952 homosexuality was still illegal in Britain and Turing was charged with committing

a homosexual act by Manchester police. As an alternative to prison Turing opted for hormone

therapy which had some unpleasant side effects. Turing died in 1954 after eating an apple contain-

ing cyanide; an inquest ruled his death to be suicide. Details of his school days, his foundational

research on computability, his work on the German Enigma machine at Bletchley Park, and the

tensions caused by his homosexuality are contained in a wonderful biography by Andrew Hodges,

 Alan Turing: The Enigma of Intelligence . In September 2009, after an Internet campaign, the then

British prime minister Gordon Brown issued an offi cial public apology “for the appalling way he

[Turing] was treated.” Finally on the 24 December 2013, Turing was given a posthumous pardon by

the Queen .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe106

clarify the foundations of mathematics. Newman’s 1935 lectures fi nished with

an account of G ö del’s theorem and made clear that the third of Hilbert’s ques-

tions – the Entscheidungsproblem – remained unanswered. In his biography of

Turing, Hodges highlights the question asked by Newman that started Turing

on his journey to Turing machines in the following way:

 Was there a defi nite method, or as Newman put it, a mechanical process which

could be applied to a mathematical statement, and which would come up

with the answer as to whether it was provable ? 6

 By using the phrase “mechanical process,” Newman probably meant nothing

more than an algorithm – a set of detailed instructions that leads to the solution

of a problem. However, the phrase must have struck a chord with Turing. He

decided to work on Hilbert’s problem that summer but characteristically did not

ask Newman for advice or even tell him about his intentions, nor did he read up

on all the available research literature . This isolation from any of the accepted

modes of thinking about the problem was undoubtedly one of the reasons that

Turing followed such a strikingly unconventional approach to Hilbert’s problem .

 Turing equated the concept of “computability” with the ability of a very

simple machine to perform a computation. His idea was to imagine a machine

that worked like a human “computer” who just had to follow a set of rules

(Fig. 6.2). Instead of a standard sheet of paper, Turing idealized his computer –

who we shall take as female – as using a long strip of paper or “tape” on which

to do her calculations. The tape is broken up into square “boxes,” in each of

which she can read or write a symbol. Using a tape with only one row of sym-

bols to do the calculations – rather than a piece of paper that could accom-

modate multiple rows – would undoubtedly be a very tedious restriction for

a real human computer but it is perfectly possible to arrange to perform the

calculation in this way. Turing imagined that his human calculator would have

a number of different “states of mind” that tell her how she should use the

information that she reads in each box of the tape. Thus our female computer

starts off in one specifi c state of mind and examines the content of one of the

boxes on the tape. After reading the symbol in the box, she can overwrite the

symbol in the box, change to a new state of mind, and move to consider the

symbol in the next square – to the left or the right. It is her state of mind that

tells her what to do with the symbol she has read – whether it should be used as

part of the process of addition or of multiplication, for example. Turing envis-

aged that a human computer would need only a fi nite number of states of mind

to complete any given calculation. Having broken down how a human would

actually go about performing the calculation into these simple steps, Turing

then proposed a very simple machine that could mimic all the actions of the

human computer and so work through the algorithmic steps to complete the

same calculation (Fig. 6.3).

 Fig. 6.2. Turing designed his machine

to mimic the behavior of a human

 computer.

 Fig. 6.3. This fi gure illustrates the con-

cept of a Turing machine as “a human

in a box.” The box has no bottom so

the human can read the symbol under

the box .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

107Mr. Turing’s amazing machines

 Fig. 6.4. The photograph shows a

 working model of a Turing machine.

 To summarize, Turing machines were to be provided with paper in the form

of a tape. The tape is marked off into boxes and each box can contain at most one

symbol (Fig. 6.4). At each step of the algorithm, the head of this “super-typewriter”

machine can move one space, to the adjacent box on the left or on the right. The

paper tape is assumed to be unlimited in length so that although the machine

has a fi nite number of symbols and states, it is allowed an unlimited space for

its calculations. This is not to say that the amount of paper attached to such a

machine actually is infi nite. At any given stage in any calculation the length of

tape will be fi nite but we have the option of adding more tape when we need to.

Turing’s machine is therefore able to read and write, move left or right along the

tape, as specifi ed by its set of states. The action of the machine is simple: it starts

off in a certain state and looks at the contents of the fi rst box. Depending on the

state and the box contents, it will either erase the contents of the box and write

something new, or leave the box as it is. Whatever it does, it next moves one box

to the left or the right and changes to a new internal state. A simple example of a

“Parity Counter” Turing Machine – which determines if the number of 1s or 0s in

a binary string is even or odd – is described in detail at the end of this chapter .

 Computable numbers and computability

 With this simple machine, Turing was able to defi ne what was meant by

“computability.” To illustrate this we shall look at the question of “computable

numbers.” We begin by defi ning what we mean by the term real numbers .

 The natural numbers are the whole numbers (no fractions or decimal points)

starting from zero:

 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 . . .

 Natural numbers can be added or multiplied together to produce new natural

numbers . If we want to allow for subtraction, however, we need to include neg-

ative numbers as well. We defi ne the integers as:

 . . . , –6, –5, –4, –3, –2, –1, 0, 1, 2, 3, 4, 5, 6, 7 . . .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe108

 If we also want to include division, the integers are still too limited . We need to

include fractions or rational numbers :

 0, 1, –1, 1/2, –1/2, 2, –2, 3/2, –3/2, 1/3, –1/3, . . .

 The rational numbers are nice and neat but they leave out important quan-

tities such as π or 2 . These are called irrational numbers because they

cannot be expressed as integers or fractions of integers. Both π and 2

can only be expressed as infi nite series – as a sum of an infi nite num-

ber of terms. In practice, for a useful approximate value of π or 2 ,

we need only to sum up a few terms of the series. For example, for π , we could

use the so-called Gregory-Leibniz expansion:

 π = 4(1 – 1/3 + 1/5 – 1/7 + 1/9 – 1/11 + . . .)

 and for 2 , we could use the Taylor expansion

2 / / / / . . ./ / +() () ()× ()× ()×2 1− × −) (× × ×

 There are many other methods for calculating π and for taking square roots. All

these methods lead to the well-known decimal approximations for π and 2

 π = 3.14159265 . . .

 and

 2 1 41421356. .. .

 In the struggle to understand what could and could not be proved, the ques-

tion arose of what numbers could be calculated. This led to the concept of

an “effective procedure” – a set of rules telling you, step-by-step, what to do

to complete a calculation. In other words, if there is an effective procedure

for some computational problem it means that there is an algorithm that

can be executed to solve the problem. These methods for calculating π and

2 are examples of effective procedures. They may not be the most effi cient

way to calculate π or 2 but these algorithms will work and will produce an

answer .

 The number system that includes irrational numbers like these is the sys-

tem of real numbers. In everyday life, we use approximations to real numbers

and do our calculations accurate to a specifi c number of decimal places.

 How many real numbers are there? Georg Cantor (B.6.6), who developed

the theory of infi nite numbers in the late 1800s, showed that the number of

integers is the same as the number of natural numbers. He did this by setting

up a one-to-one correspondence as follows:

 Integers 0 –1 1 –2 2 –3 3 –4 . . .

 Natural numbers 0 1 2 3 4 5 6 7 . . .

 Although it may seem that there are more integers than natural numbers,

Cantor showed that the integers could in principle be counted off against the

natural numbers in this way. Although both were infi nite, the existence of such

 B.6.6. The name of Georg Cantor

(1845–1918) is associated with

set theory and with tackling the

problem of infi nity in a mathemat-

ically rigorous way. Cantor came

to the conclusion that the infi nite

set of real numbers is larger than

the infi nite set of natural numbers.

Furthermore, he was able to show

that there is an infi nite number of

infi nities. Cantor’s ideas met with

considerable resistance from fellow

mathematicians. The great German

mathematician, David Hilbert, was

an exception and was early to rec-

ognize the signifi cance of Cantor’s

work. Hilbert later said: “No one

shall expel us from the Paradise that

Cantor has created .” B3

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

109Mr. Turing’s amazing machines

a one-to-one correspondence in Cantor’s theory of infi nities establishes that in

a technical sense the number of objects in the top row is the same as the num-

ber of objects in the bottom row. Thus the number of integers is the same as

the number of natural numbers, although both are infi nite. Sets that can be

put into one-to-one correspondence with the natural numbers are said to be

“countable.” Similarly, we can arrange for all the rational numbers to be in a

one-to-one correspondence with the natural numbers so they, too, are count-

ably infi nite. But what about the real numbers? Here the situation is very dif-

ferent and Cantor proved this using his “diagonal slash” method that was later

used by both G ö del and Turing. Using this technique Cantor was able to show

that the number of real numbers must be greater than the number of natural

numbers and is therefore not countable .

 Let us see how the technique works. We begin by assuming the opposite –

namely that we can pair off the real numbers with the natural numbers in

some way. We make a list of all the real numbers we can think of and associate

each decimal number with a natural number as follows:

 Natural Real

 0 0. 1 24 . . .

 1 0.0 1 5 . . .

 2 0.53 6 92 . . .

 3 0.800 3 444 . . .

 4 0.3341 0 5011 . . .

 5 0.34256 7 8 . . .

 The exact assignment of real numbers to the natural numbers is arbitrary:

all we need to do is to assign one real number per natural number so that all the

real numbers are accounted for. But this cannot be so! To see why, Cantor showed

how to fi nd another real number that cannot be already on our list . In the pre-

ceding list, we underline the fi rst digit of the fi rst number, the second digit of the

second, the third of the third, and so on. This gives us the sequence:

 1, 1, 6, 3, 0, 7, . . .

 The diagonal slash procedure is to construct a new real number from this

sequence that differs from the digits of this number in each corresponding

place. We make this new number by ensuring that the nth digit of this new

number differs from the nth digit in this sequence . For example we can defi ne

a new real number by adding one to each of the underlined digits (with the rule

that 9 + 1 = 0) to get:

 0.227418 . . .

 What have we achieved? By construction, this number differs from the fi rst

number in the fi rst decimal place, from the second number in the second

place, from the third number in the third place, and so on. By construction

this number is different from any of the real numbers on our original list.

Hence we have found a real number that cannot be on our list. This contra-

diction establishes the fact that there cannot be a one-to-one correspondence

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe110

between the real numbers and the natural numbers and that the real numbers

are not countably infi nite .

 How does this argument relate to Turing machines and computable num-

bers? We can obviously construct a machine to calculate the decimal expan-

sion of π by using one of the many algorithms for determining π . This just

requires a set of rules for adding, multiplying, and so on. However, because

 π is an infi nite decimal, the work of the machine would never end and the

machine would need an unlimited amount of working space on its tape. A

legitimate Turing machine must halt, so we need to set up the machine to

calculate each successive decimal place of π as a separate calculation. Each

number in the decimal expansion would then use only a fi nite amount of tape

and take some fi nite time for the machine to compute. So a Turing machine

for producing the decimal expansion of π to any number of decimal digits does

exist in this sense, although it would be a little complicated to set up. And we

can obviously do the same for a real number like the square root of two. The

real numbers that can be generated in this way Turing called “computable

numbers.”

 In his paper Turing showed that the number of his machines was countable.

To see this, we specify any given Turing machine by the “quintuple” descrip-

tion of the machine as we see in our detailed discussion of the Parity Counter

Turing Machine at the end of this chapter. The quintuple description is just an

explicit labeling of the actions of the Turing machine in terms of fi ve items: the

initial state and the symbol that is read plus the new state, the symbol written,

and the motion of the head to the left or right. The machine is specifi ed by

a set of quintuples describing exactly what happens for each initial state and

symbol read. This set of quintuples may be written out as a binary string . The

resulting binary number can now be used to uniquely label the machine by a

one-to-one correspondence with the set of natural numbers. In principle then

we can now make a list with a natural number specifying each Turing machine

and the corresponding number the machine computes. The resulting infi nite

list now includes every number that is computable! Turing now made use of

Cantor’s diagonal slash method to add one to each of the computable numbers

on the diagonal as we did in the preceding text to generate a new real number .

In this way Turing showed that there are real numbers that are noncomput-

able . The details of Turing’s proof are a bit more complicated, but this is the

basic argument that convinced Turing that the answer to Hilbert’s third ques-

tion was “no.”

 Universality and the Church-Turing thesis

 Before we return to the Entscheidungsproblem , we need to look at another

marvelously original idea in Turing’s paper – the Universal Turing Machine.

This is a Turing machine that can do anything that any specifi c, special-purpose

Turing machine can do, albeit more slowly and less effi ciently. Suppose we have

a specifi c Turing machine T that acts on a tape t to produce its result. What

Turing showed was that it was possible to construct another Turing machine U

that, if we give it as input the specifi cation of T and the tape t , will output the

result that machine T would have produced acting on tape t . The behavior of

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

111Mr. Turing’s amazing machines

 U is simple to describe but complicated to write down in detail. The Universal

Turing Machine U must imitate T step-by-step, keeping a record of the state of

 T ’s tape at each stage. By examining its simulated input tape t , the machine can

see what T would read at any given stage. Then, by looking at the description

it has of T , U can fi nd out what T is supposed to do next. This is essentially just

what we would do when using a list of quintuples and a tape to fi gure out what

a Turing machine does. Turing’s universal machine U is just a slower version

of us!

 Turing went into great detail to prove the existence of a Universal Turing

Machine and, as you can see in Figure 6.5 , the resulting state transition dia-

gram for U is much more complicated than that for our simple Parity Counter

(Fig. 6.10) that we describe in detail later. This example, from MIT computer

scientist Marvin Minsky, makes use of eight symbols and twenty-three states .

Most digital computers built today are effectively universal computers. With

the right program, enough time, and enough memory, any universal computer

can simulate any other computer .

 If we ignore the slowness and ineffi ciency of using a Turing machine,

we can ask this fundamental question: what problems can be solved by

such a machine? The answer is very surprising. Everything that is algorith-

mically computable is computable by a Turing machine . Why should we

believe this? At around the same time as Turing was devising his ingenious

machines, Alonzo Church (B.6.7), a U.S. mathematician based in Princeton,

New Jersey, had defi ned a formalism of logic and propositions that he called

 lambda calculus (Fig. 6.6). Church argued that any “effectively calculable”

problem corresponded to a lambda calculus expression. He had also been

able to use his formalism to show that the problem of deciding whether

one string of symbols could be converted into another string was unsolv-

able, in the sense that there was no lambda expression that could do this.

 In this way Church had been able to show that Hilbert’s third question, the

 Entscheidungsproblem , was also unsolvable . Although coming at the problem

from very different perspectives, Turing and Church had both proved the

problem’s insolvability.

 The statement – that anything effectively computable is computable by

a Turing machine – is known as the Church-Turing thesis . It is called a the-

sis rather than a theorem because it involves the informal concept of effec-

tive computability. The thesis equates the mathematically precise statement,

“computable by a Turing machine,” with the informal, intuitive idea of a

problem being solvable by some algorithm on any machine whatsoever. It

applies to all computable problems written in any programming language on

any computer!

 The Church-Turing thesis is only a thesis but the majority of computer sci-

entists accept its validity because many people besides Church and Turing have

arrived at an equivalent result . At about the same time as Church and Turing’s

 work, mathematicians Stephen Kleene and Emil Post devised alternative for-

malisms that led to similar notions of computability . Many others have looked

at variants of the simple Turing machine such as machines with multiple tapes

or machines with two-dimensional tapes. None of these machines can solve

problems that cannot be solved by the basic Turing machine.

 Fig. 6.6. The “Knights of the Lambda

Calculus,” the unoffi cial badge of LISP

programmers at MIT.

HALT

START

B

B

B

B

B

B

L

L

L
A

A

A

A

A

A
A

A

1

1

1

1

1

0

00

0

0

0

0

0

0

0

0 1

11

1

1

1

1

1

A

A

A B

B

BB

B

B

0

0

0

0

0

0

MM

MM

M M

Y

YY

Y

Y

X

X

X

X

X

X

A
S

S S

S

R

L

L

L

L

L

L

R

R

R

R

R

R

R

R

R

R

R

L L

 Fig. 6.5. A representation of a Universal

Turing Machine due to Marvin Minsky .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe112

 The halting problem and the Entscheidungsproblem

 Using Turing’s universal machine, it is possible to prove that there is no

way to tell, in general, whether the execution of a given program will termi-

nate on any given input. If we have a program to calculate the square of x we

can be confi dent that, after we input x into the machine, we will be able to read

x 2 on the tape when the machine halts. Termination is not always so obvious.

 Suppose we have a program that takes a number as input and either divides it

by two, if the number is even, or triples it and adds one, if it is odd. The pro-

gram then takes this new number as input and repeats the process. When the

output is one, the program halts. Can we be sure that this will happen? This is

known as the 3x + 1 problem – what computer scientist David Harel calls the

“simplest-to-describe open problem in mathematics.” 7 If we try this with the

starting value of x = 7 we get the sequence 7, 22, 11, 34, 17, 52, 26, 13, 40, 20,

10, 5, 16, 8, 4, 2, 1 and the sequence terminates. With other values of x we fi nd

that the program sometimes terminates but for some values of x it just keeps

on generating numbers with no repeating pattern until we decide we have seen

enough. This is one specifi c instance of the “halting problem” – a program for

which we cannot determine whether it terminates or not. More generally, the

halting problem is concerned with the termination of any program for any

input .

 How can this result be proved? If we have a Turing machine T that calcu-

lates some function F , can we fi nd a computable function that predicts whether

or not the machine T will halt or not? If there is such a function, we know that

it too must be describable by another Turing machine. This concept, of Turing

machines telling us about other Turing machines, is a very powerful tool. This

device can be used to prove that the halting problem is noncomputable. The

trick is to assume the existence of a machine that can predict whether a pro-

gram halts and then show that this leads to a contradiction, meaning that the

original assumption that such a machine exists is incorrect .

 We begin our sketch of a proof by supposing we have a machine D that

takes as input a tape that contains a description d T of the machine T – these

are just the quintuples that defi ne T – as well as T ’s input tape t . Machine D is

required to tell us whether T will halt or not and then come to a halt (Fig. 6.7.a).

We now introduce another machine Z which takes the machine description d T

and uses this as the input tape for the machine D . This machine Z reacts to the

output from D in the following way:

 If T halts (D says “yes”), then Z does not halt.

 If T does not halt (D says “no”), then Z halts.

 We can arrange this to happen by introducing two new states in the “yes”

branch. The machine now oscillates between them indefi nitely and this pre-

vents our Z machine from halting if D halts (says “yes”) as in Figure 6.7b . Now

we arrive at the crux of the argument. We get Z to operate on itself by taking

as input the quintuples d Z that defi ne the Z machine and substitute Z for T in

the above argument. We fi nd:

 Z applied to d Z halts if and only if Z applied to d Z does not halt.

dT, t

D

No Yes

Halt Halt

d
T
, t

D

No Yes

Halt Halt

 Fig. 6.7a. A hypothetical Turing machine

for the halting problem.

ZZ

dT, dT

D

No Yes

dT

R L

ZZ

dT, dT

D

No Yes

Halt

dT

R L

 Fig. 6.7b. A paradoxical Turing machine

to demonstrate the halting problem.

 B.6.7. Alonzo Church (1903–95) was

very supportive of Turing’s ideas

and he was fi rst to use the term

 Turing machine . This, along with the

Church-Turing thesis on computabil-

ity, is now one of the cornerstones of

computer science .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

113Mr. Turing’s amazing machines

 The origin of this contradiction can be traced back to our assumption that

machine D exists. Therefore no such machine can exist and this shows that the

halting problem is not decidable. Using such techniques, Turing was able to

demonstrate an unsolvable problem: in so doing, he had shown that Hilbert’s

 Entscheidungsproblem has no solution .

 The halting problem has a number of important implications. In writing

programs we would naturally like to be able to check whether our program

actually does do what it is supposed to do. This turns out to be a decision

problem. We need to input a description of the algorithmic problem and the

text of our program implementing an algorithm that we think solves the

problem. We want a “yes” if, for all of the legal inputs for the problem, our

algorithm will terminate and give the correct solution; and we want a “no” if

there is any input for which our program fails to terminate or gives the wrong

result. Now we know about the halting problem we can see immediately that

such an automatic verifi er is not possible. However, although we cannot guar-

antee that our program will halt for all inputs, it is still possible to produce

formal verifi cation tools that can deliver useful results most of the time!

 In another application, Fred Cohen, in 1986 in his doctoral thesis for

the University of Southern California, showed that the problem of detecting

the presence of a computer virus was an instance of the halting problem.

Unfortunately this means that the general problem of identifying a virus cannot

be solved. We will have more to say about computer viruses in a later chapter.

 Key concepts

 Hilbert’s � Entscheidungsproblem (decision problem)

 Turing machines �

 Natural, integer, and rational numbers �

 Irrational numbers and effective procedures �

 Computable and noncomputable numbers �

 Universal Turing Machines �

 Church-Turing thesis �

 The halting problem �

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe114

 More on Turing machines

 Turing’s super-typewriter

 According to Andrew Hodges, as a boy, Turing dreamed of inventing ways of improving typewriters,

and this might have provided him with the starting point for his later ideas about computation. In any case,

the way that typewriters manipulate symbols serves as a good introduction to Turing machines. A typewriter

is mechanical in that its response to any action of the operator is built in. However, the specifi c response

will depend on whether it was set to type lowercase or uppercase letters; this is the confi guration – or state –

of the machine. Turing machines generalize this idea to include a larger but still fi nite number of possible

states. A typewriter keyboard contains only a fi nite number of symbols – the letters of the alphabet and the

numbers 0 to 9, plus a few special symbols. Similarly, Turing assumed that his machine was only allowed a

fi nite number of possible operations. Together with the description of the allowed states, this allowed him

to write a complete description of the behavior of his machine. The other relevant feature of the typewriter

is that the typing point – the point where the typewriter’s “head” strikes the paper – can move relative to

the page. Turing incorporated this feature – albeit with symbols written on a tape rather than on a page of

paper – into his idea for a primitive computing machine.

 The typewriter analogy is limited in that a typewriter can only write symbols on a page when they

are selected by a human operator, who also decides when to change confi guration and where to type the

symbol on the page. Turing wanted a much more general kind of machine to manipulate symbols. In addi-

tion to writing, Turing wanted his machine to be able to “scan” (that is, read) a symbol on the tape as well

as to write or erase a symbol. Such a “super-typewriter” would retain the property of a typewriter in having

a fi nite number of states and an exactly determined behavior for each operation. In addition, unlike in our

typewriter analogy, instead of human-operated machines, Turing was interested in investigating what he

called automatic machines, for which no human intervention would be necessary.

Turing machines in detail

 Let us look in more detail at how we can defi ne a Turing machine to do a particular job. We shall

label the various possible states of the machine by the symbol Q, and any particular state “i” as the state Q i .

Similarly, we will label the entries on the tape by the symbol S and a particular symbol “i” as the symbol

S i . When we start, only a fi nite part of the tape has any writing on it: either side of this region, the tape is

blank. We start the machine to the left of the writing on the tape at time T. It then proceeds to march along,

step-by-step, in uniform time steps, as if following the ticks of a clock. What the state of the machine and

the tape is at step T + 1 will then be determined by three functions, each of which will depend on the initial

state Q i at step T and the symbol S i the head has just read. These three functions defi ne what its new state,

Q j will be; what symbol, S j , it has written on the tape in the original box; and what was the direction, D, of

its subsequent motion after writing the new symbol. In mathematical notation, we can write this behavior

in terms of three functions – F, G, and D, each depending on the initial Q i and S i :

 Q j = F (Q i , S i)

 S j = G (Q i , S i)

 D j = D (Q i , S i)

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

115Mr. Turing’s amazing machines

 The Turing machine is fully defi ned by these three functions, which can be written out as a table of quintuples .

This is just a fancy name for the set of these two variables and three functions we have defi ned: Q i and S i

at time T and Q j , S j , and D j at time T + 1 . All we have to do now is write some data on the tape and start the

machine at the right position. The machine will then calculate away and print out the result of its calcula-

tion somewhere on the tape for us to look at when the machine has fi nished. Note that we have to explicitly

instruct the machine when to halt. This sounds pretty trivial but we will see later that the issue of whether

a machine will halt or not leads to a profound issue in the theory of computation.

 Let’s try to construct a very simple Turing

machine that measures the parity of any string

of 0s and 1s. The parity of a string is defi ned to

be whether the number of 1s is even or odd. We

are given the string 1101101, and begin by writ-

ing this binary string as input data on the tape as

shown in Figure 6.8 , with one symbol in each box.

The reading head of the machine starts at the far

left of the string, on the fi rst digit. The end of the

string is designated by the letter E. On either side

of the string there are only zeros on the tape.

 Before it has read any symbols, the machine starts off in state Q 0 , corresponding to even parity. If

the machine encounters a 0, it stays in the state Q 0 – because the parity has not changed – and then moves

one space to the right. If the symbol it reads is a 1, the machine erases this, replaces it with a 0, moves one

space to the right and changes to the state Q 1 . This is the state for odd parity. Continuing, if the machine

now hits a 0, it stays in the state Q 1 and moves another space to the right. If it hits a 1, it erases it, prints a

0, and moves another cell to the right, changing the state back to Q 0 . The machine continues working along

the string in this way, changing state whenever it encounters a 1, and leaving a string of 0s behind. If the

machine is in the state Q 0 after it has read the last symbol, the string has even parity; if it is in the state Q 1 ,

the parity is odd.

 How does the machine tell us the parity and the result of its calcu-

lation? We need to include a rule that tells the machine what to do when

it meets the end symbol E. If it is in state Q 0 and reads E, it erases the E

and writes a 0 meaning that the string had even parity. If it is the state

Q 1 , it replaces E by a 1 meaning the string had odd parity. In both cases

the machines enter a new state Q H , meaning “halt.” It does not need to

move to the right or the left: the answer can be observed by looking at

the box on the tape where the machine halted (Fig. 6.9).

 To understand what happens, we have pains-

takingly described the operation of this Parity

Counter Turing Machine in words. In practice, it

is more economical to summarize the machine’s

behavior as a table of quintuples. We can summa-

rize this table of quintuples in a diagram (Fig. 6.10).

Here we have indicated the states Q 0 and Q 1 – Even

and Odd – by the circles and the direction of motion

after reading the box, by R, for right which we also

write in the circle. The directed arcs, starting with

either a 0 or 1 on them, indicate what happens to

… 0 0 0 1 …… 0 0 0 1 …

{Even (0), or Odd (1)}

 Fig. 6.9. Output tape from the Parity

Counter Turing Machine.

Even

1
E

Start

{0, R}

E

{0, R}

Odd

{0, R}

0

Halt
E

{0, R}

0

EvenEven

1
E

Start

{0, R}

E

{0, R}

Odd

{0, R}

0

Odd

{0, R}

0

1

HaltHalt
E

{0, R}

0

 Fig. 6.10. Diagram of a Parity Counter Turing Machine.

… 0 0 1 1 0 1 1 0 1 E 0 0 …… 0 0 1 1 0 1 1 0 1 E 0 0 …

Start

 Fig. 6.8. Input tape for the Parity Counter Turing Machine.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe116

the machine if this is the symbol that is read. The symbol on the arc indicates what the head overwrites in

the box. Thus reading a 0 from the state Q 0 = Even just takes us to the same state: reading a 1, takes us to

the other circle corresponding to Q 1 = Odd. We have also indicated the start and the halt conditions in the

diagram .

 Similar diagrams are used to describe the behavior of “Finite State Machines” or FSMs that are often

used to summarize the behavior of devices whose actions depend not just on the current input but also on

the previous inputs. The FSM has enough memory to store a summary of a fi nite number of past inputs. A

combination lock is an example of an FSM. The lock cannot remember all the numbers dialed into the lock

but it remembers enough to know whether the would-be user has entered the correct small sequence of

numbers to open the lock. A Turing machine is just an FSM with an infi nitely long tape that serves the same

function as memory in a computer .

 We can now go on to construct Turing machines for adding, multiplying, copying, and so on. To build

up more complex machines it is convenient to reuse these simpler machines as components of the complex

machine, rather like subroutines in a software program. This greatly simplifi es the construction of such

machines .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

117Mr. Turing’s amazing machines

 G ö del, von Neumann, Turing, and Church

 G ö del and the U.S. Constitution

 After Austria’s annexation by Germany in 1938, G ö del lost his posi-

tion at the University of Vienna and was found fi t for conscription into

the German army. With the outbreak of World War II in 1939, G ö del and

his wife set out for Princeton in the United States. Because of the dangers

of a North Atlantic crossing, they traveled via the trans-Siberian railway

and then by ship across the Pacifi c. He ran out of money in Japan and had

to telegraph to Princeton for a loan (Fig. 6.11).

After the war, G ö del wanted to become an American citizen, and

he asked Albert Einstein and economist Oskar Morgenstern to be his wit-

nesses. Of course, G ö del took his preparation for the citizenship hearing

very seriously and studied the history of North America, and of Princeton,

as well as the U.S. Constitution. At this point, Morgenstern recounts:

 [G ö del] rather excitedly told me that in looking at the Constitution, to

his distress, he had found some inner contradictions and that he could show how in a perfectly legal manner

it would be possible for somebody to become a dictator and set up a Fascist regime, never intended by those

who drew up the Constitution. 8

 Einstein and Morgenstern went with G ö del to the citizenship ceremony, and the three of them sat

down before the examiner. The examiner fi rst asked Einstein and Morgenstern whether they thought G ö del

would make a good citizen, to which they assured him that this would be the case. The examiner then

turned to G ö del.

 Examiner: Now Mr G ö del, where do you come from?

 G ö del: Where do I come from? Austria.

 Examiner: What kind of government did you have in Austria?

 G ö del: It was a republic, but the constitution was such that it fi nally was changed into a dictatorship.

 Examiner: Oh! This is very bad. This could not happen in this country.

 G ö del: Oh yes [it can], I can prove it! 9

 Fortunately, the examiner was a wise man and refrained from following up on G ö del’s new inconsistency

proof of the U.S. Constitution!

Turing and the conceptual foundation of computers

 Although John von Neumann did not refer explicitly to Turing’s paper on computability and Turing machines

when he wrote the famous “First Draft of a Report on the EDVAC,” he was well aware of the importance

of Turing’s work and even offered him a post as his research assistant at Princeton. The mathematician

Stanislaw Ulam, who later worked at Los Alamos on the Manhattan Project, recalled that “von Neumann

mentioned to [him] Turing’s name several times in 1939 . . . concerning mechanical ways to develop formal

mathematical systems.” 10 Similarly, another physicist who worked at Los Alamos, Stanley Frankel, remem-

bers von Neumann’s enthusiasm for Turing’s work in 1943 or 1944:

 Von Neumann introduced me to that paper and at his urging I studied it with care. Many people have acclaimed

von Neumann as the “father of the computer” . . . but I am sure that he would never have made that mistake

 Fig. 6.11. Telegram from G ö del in

Yokohama, Japan, to the Institute for

Advanced Study in Princeton, requesting

$200 for emergency travel expenses.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

The Computing Universe118

himself. He might well be called the midwife, perhaps, but he fi rmly emphasized to me, and to others I am

sure, that the fundamental conception is owing to Turing – insofar as not anticipated by Babbage, Lovelace, and

others. In my view von Neumann’s essential role was in making the world aware of these fundamental con-

cepts introduced by Turing and of the development work carried out in the Moore school and elsewhere. 11

 And in 1946, von Neumann wrote to his friend Norbert Wiener of “the great positive contribution of

Turing . . . one, defi nite mechanism can be ‘universal.’” 12

Some of the early pioneers of computers did not recognize that they were, in essence, building a vari-

ant of a universal Turing Machine. In 1956 Howard Aiken said:

 [If] it should turn out that the basic logics of a machine designed for the numerical solution of differential

equations coincide with the logics of a machine intended to make bills for a department store, I would regard

this as the most amazing coincidence I have ever encountered. 13

 Alan Turing himself, in contrast with Howard Aiken’s remarks, said in 1950:

 This special property of digital computers, that they can mimic any discrete state machine, is described by

saying that they are universal machines. The existence of machines with this property has the important con-

sequence that, considerations of speed apart, it is unnecessary to design various new machines to do various

computing processes. They can all be done with one digital computer, suitably programmed for each case. It

will be seen that as a consequence of this all digital computers are in a sense equivalent. 14

 In 1945 Turing produced a report for the construction of his ACE Automatic Computing Engine. Compared to

von Neumann’s EDVAC Report, which “is a draft and is unfi nished,” the ACE Report “is a complete descrip-

tion of a computer, right down to the logical circuit diagrams.” In contrast to the computer designs based on

the EDVAC ideas – which were focused on delivering fast numerical calculations – Turing’s design recognized

the full power of digital computers as all-purpose machines, capable of manipulating symbols and playing

chess as well as performing numerical operations. To characterize these designs as merely embodying the

“stored-program concept” is to underappreciate the breadth of Turing’s vision – of which von Neumann was

well aware.

Turing and Church

 In April 1936, Turing had just delivered his paper to Max Newman, much to Newman’s surprise.

Newman read the paper and realized the signifi cance of Turing’s work. He encouraged Turing to publish the

paper in the Proceedings of the London Mathematical Society . As Turing was tidying up his paper for publication,

in mid-May Newman received a copy of Church’s paper. Since the subject matter of the two papers had much

overlap and Church had priority in terms of publication, there was some doubt as to whether Turing’s paper

could be published. Newman wrote to the editor of the journal:

 I think you know the history of Turing’s paper on Computable numbers. Just as it was reaching its fi nal state

an offprint arrived, from Alonzo Church of Princeton, of a paper anticipating Turing’s results to a large extent.

I hope it will nevertheless be possible to publish the paper. The methods are to a large extent different, and

the result is so important that different treatments of it should be of interest. 15

 Fortunately, the editor agreed, and Turing’s paper with his machines was published in the Proceedings .

Newman also wrote to Church in Princeton:

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

119Mr. Turing’s amazing machines

 Dear Professor Church, 31 May 1936

 An offprint which you kindly sent me recently of your paper in which you defi ne ‘calculable numbers’,

and show that the Entscheidungsproblem for Hilbert logic is insoluble, had a rather painful interest

for a young man, A. M. Turing, here, who was just about to send in for publication a paper in which he

had used a defi nition of ‘Computable numbers’ for the same purpose. His treatment – which consists in

describing a machine which will grind out any computable sequence – is rather different from yours,

but seems to be of great merit, and I think it is of great importance that he should come and work with

you next year if that is at all possible. He is sending you the typescript of his paper for your criticisms. . . .

I should mention that Turing’s work is entirely independent: he has been working without any supervi-

sion or criticism from anyone. This makes it all the more important that he should come into contact as

soon as possible with the leading workers on this line, so that he should not develop into a confi rmed

solitary. 16

 Turing read Church’s paper in the summer and added an appendix to his paper that demonstrated

that his defi nition of ‘computable’ – meaning anything that could be computed by a Turing machine – was

equivalent to what Church had called “effectively calculable” – meaning anything that could be described

by a formula using the lambda calculus. When Turing’s paper was published in January 1937, Church gen-

erously reviewed it very positively in the well-known Journal of Symbolic Logic . He also used the description

“Turing machine” in print for the fi rst time, writing that “a human calculator, provided with pencil and

paper and explicit instructions, can be regarded as a type of Turing machine.” 17

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.009
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:13:42, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.009
http:/www.cambridge.org/core

