
243

 12 The dark side of the web

 When he later connected the same laptop to the
Internet, the worm broke free and began replicating
itself, a step its designers never anticipated .
 David E. Sanger 1

 Black hats and white hats

 As we have seen in Chapter 10 , the Internet was invented by the academic

research community and originally connected only a relatively small number

of university computers. What is remarkable is that this research project has

turned into a global infrastructure that has scaled from thousands of research-

ers to billions of people with no technical background. However, some of the

problems that plague today’s Internet originate from decisions taken by the

original Internet Engineering Task Force (IETF). This was a small group of

researchers who debated and decided Internet standards in a truly collegial

and academic fashion. For a network connecting a community of like-minded

friends and with a culture of trust between the universities, this was an accept-

able process. However, as the Internet has grown to include many different

types of communities and cultures it is now clear that such a trusting approach

was misplaced.

 One example is the IETF’s defi nition of the Simple Mail Transfer Protocol

(SMTP) for sending and receiving email over the Internet. Unfortunately, the

original SMTP protocol did not check that the sender’s actual Internet address

was what the email packet header claimed it to be. This allows the possibility

of spoofi ng , the creation of Internet Protocol (IP) packets with either a forged

source address or using an unauthorized IP address. Such spoofi ng is now

widely used to mask the source of cyberattacks over the Internet, both by crim-

inal gangs as well as by governments .

 It is diffi cult to predict the consequences of any new technology. Along

with benefi ts there are often some downsides that later emerge. One such

downside was the emergence of spam emails. Spam consists of unsolicited

commercial emails that are now sent out to millions of email users in a bulk

mailing. The email spam costs the spammer very little to send and even if

only a tiny percentage of recipients respond it can be a very profi table busi-

ness. One of the fi rst spam emails was sent to the ARPANET community by

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe244

an overenthusiastic DEC marketing representative in 1978 . Since then, the

volume of email spam has grown enormously. A 2003 study estimated that

more than half the email transmitted over the Internet was spam and that

more than 90 percent of all spam email was sent by just 150 people. By 2011,

according to one estimate, spam emails accounted for more than 80 percent

of all email sent over the Internet. Increasingly, these spam emails are not

sent by identifi able individuals but by zombie computers or botnets (Fig. 12.1) as

we discuss in the following text. Botnets are made up of personal computers

belonging to ordinary users whose machines have been taken over by com-

puter malware that can be instructed to send out spam . Fortunately, spam fi l-

ters are now available that can identify most spam emails and redirect them

straight to the “junk” email folder .

 Malware is short for malicious software and means software that is designed

to gain unauthorized access to computers for a range of purposes, some rela-

tively harmless and others defi nitely criminal . The popularity of the Unix oper-

ating system in universities and businesses in the 1970s and 1980s originally

made Unix a prime target for black hat hackers, clever programmers who use

their skills to gain unauthorized access to computer fi les. Nowadays, because

of the success of the personal computer, Microsoft Windows is the operating

system most under attack. In many cases, the hackers are able to gain control

of the high-level system security privileges of the system administrators , the peo-

ple responsible for keeping the computer system running . On the other side in

this hacking war are the w hite hat hackers. These are ethical computer security

experts who specialize in fi nding security loopholes and in defending com-

puter systems from cyberattacks .

 The techniques used by the black hats are many and varied. We begin

by discussing a selection of the most common techniques before looking at

the recent escalation in the use of malware for cyberwarfare. We then take a

brief look at modern cryptographic systems that are designed to keep Internet

communications secure from eavesdroppers and end with some comments on

cookies, spyware, and privacy.

 Fig. 12.1. An example of worldwide

botnet detections by the Microsoft

Digital Crimes Unit.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

245The dark side of the web

 Cyberespionage

 Clifford Stoll’s (B.12.1) classic book The Cuckoo’s Egg describes the com-

plexity of tracking and prosecuting a black hat hacker (Fig. 12.2). Stoll was

an astronomer turned system administrator for the computers at Lawrence

Berkeley National Laboratory. The lab’s computers ran Berkeley Unix and had

two systems of accounting software for keeping track of the usage of these

machines – one a standard Unix utility program and the other a homegrown

program specifi c to Berkeley. From a seventy-fi ve-cent discrepancy in the com-

puter accounts at Lawrence Berkeley National Laboratory in 1986, Stoll deduced

that someone was hacking into the lab’s system. By sleeping in the lab and

being alerted to every incoming computer connection, Stoll was able to record

the exact keystrokes that had been used when the offense occurred. The results

were surprising.

 The hacker had gained access to one of Stoll’s computers by guessing the

password for an old, inactive user’s account. When in the system, he then used

a bug in the popular GNU-Emacs editor program to trick the computer into

giving him the same privileges as a system administrator, so-called super-user

or root privileges. This bug allowed him to move a fi le from his user area into

what should have been an area of memory restricted to the system manager.

The GNU software did not check whether the area was in the protected system

software memory space . Once in this privileged area, the hacker then ran a

counterfeit version of a standard Unix program, atrun , which runs queued up

jobs at regular intervals. This unauthorized program is the cuckoo’s egg of the

title of the book – named for the cuckoo’s trick of laying its eggs in nests of

other birds. Running the counterfeit program allowed the hacker to gain the

super-user privileges of a system administrator. He then restored the real Unix

atrun program and erased his tracks from the system log so that the systems

administrators would see nothing wrong . He also scanned all email messages

for references to “hacker” and “security” and used his new privileges to kill the

program of any user who he thought might have been monitoring his activity.

 The situation was extremely serious: the hacker could read anyone’s email,

access or delete any fi le, and set up a new, hidden account that could provide

him with a “backdoor” into the computer known only to him. All of the data

stored on the computer was now at risk. Moreover, from his position as super-

user, he was able to explore not only all the other computers at the Berkeley

Lab connected by the Local Area Network (LAN), but also the computer systems

connected to Berkeley through the ARPANET.

 Stoll watched the hacker systematically attempting to break into several

military computer installations by guessing passwords or by using unprotected

guest or visitor accounts . It was surprising how many supposedly secure military

sites still used the standard factory password settings for their super-user system

administrator accounts. After a long chase – and remarkable initial indifference

from the Federal Bureau of Investigation (FBI), the Central Intelligence Agency,

and even the National Security Agency (NSA) – the trail led to West Germany

(Fig. 12.3). The hacker, Markus Hess, was part of a group selling sensitive informa-

tion obtained from these U.S. military computing systems to the Soviet Union.

 B.12.1. Clifford Stoll is a U.S.

astronomer and author who is

probably best known for his book

 The Cuckoo’s Egg . This tracked a

hacker who had broken into Stoll’s

computer at Lawrence Berkeley

Laboratory back to Hanover,

Germany .

 Fig. 12.2. A fascinating detective story

about Cliff Stoll chasing a hacker during

the ARPANET era.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe246

 The Berkeley hacker used another technique to steal passwords: he had

installed a Trojan horse program. In Virgil’s Aeneid , when the Greeks pretended

to abandon their siege of the city of Troy, they left behind a giant wooden horse.

The citizens of Troy took the horse into the city and celebrated the defeat of the

Greeks. In fact, the horse was full of Greek soldiers and the Trojans had brought

the enemy inside their defenses, leading to the sacking of their city. A Trojan

horse program does much the same thing for a computer system. It hides mali-

cious or harmful code inside an apparently harmless program so that it can get

control and do damage. At Berkeley, the hacker produced his own version of

the standard login program to capture users’ passwords. A would-be user was

greeted by what looked like the normal login message:

 WELCOME TO THE LBL UNIX-4 COMPUTER

 PLEASE LOGIN NOW

 Login:

 After the user typed the account name, the system then asked for the password:

 ENTER YOUR PASSWORD:

 The user entered the password, which was copied along with the account name

into a fi le set up by the hacker. The program then responded:

 SORRY, TRY AGAIN

 The user is then returned to the real login page and logs in as usual, unaware

that the account details and password have been stolen. Such Trojan horse

techniques are now widely used to capture private personal information and

bank account details .

 Viruses, rootkits, and worms

 In principle, the damage caused by a Trojan horse program is restricted

to one computer. A computer virus , as the name implies, is nastier in that

it is designed to spread to other computers. The code for a virus is a small

set of instructions incorporated into an application rather than a complete,

stand-alone program. Initially, computer viruses were spread by the exchange

of infected fl oppy disks but are now more typically spread using the Internet

by getting users to click on harmless-looking email attachments like a photo-

graph or a document. One of the fi rst major virus attacks was the “Brain” virus

(Fig. 12.4). Two Pakistani brothers created it in 1986, targeting bootable fl oppy

disks for PCs running MS-DOS. A bootable fl oppy disk was one that held its own

operating system and was usually used to restart a failed system or to install a

new operating system. When the PC was booted (started up) from the infected

disk, the computer loaded the Brain virus before executing the original MS-DOS

code. The virus hid itself from the user by reporting the sectors of the fl oppy

disk on which it was installed as damaged . If the user actually checked the boot

code on the disk, the original uninfected code would be displayed rather than

the modifi ed code including the virus. In this case, the result was relatively

harmless: the virus spread an advertisement for the brothers’ company with its

name and contact details, a genuine example of “viral” advertising.

 Fig. 12.3. The NSA was established in

1952 to handle secret communications

and gather intelligence .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

247The dark side of the web

 After the example of the Brain virus, hackers developed many thousands of

new viruses, often using clever new techniques to help them spread. One of the

most striking was produced in Germany in 1987. It was called the Cascade virus

because it made the characters on the screen appear to fall to the bottom. This

virus also introduced a new level of sophistication by using encryption techniques,

which convert messages into secret code, to hide the details of its internal work-

ings. We will discuss encryption later in this chapter. It was this explosion of

computer viruses in the 1990s that led to the creation of a whole new industry –

with antivirus companies now providing software to combat malware .

 As a footnote, the term computer virus was probably fi rst used by Len Adleman,

a professor at the University of Southern California, well known for his contribu-

tions to cryptography. His student Fred Cohen was studying computer infections

and defi ned a virus as “a computer program that can affect other computer pro-

grams by modifying them in such a way as to include a (possibly evolved) copy of

itself.” 2 In November 1983, Cohen demonstrated a computer virus that infected

the Unix fi le directory program. After some other experiments with program

infections, Cohen examined the theoretical diffi culty of detecting computer

viruses. His PhD thesis in 1986 showed that there is no way of defi nitively detect-

ing a virus. The best we can do is to assemble a collection of tricks and informal

techniques, sometimes known as heuristics , to supplement our guesswork .

 The Brain virus was one of the fi rst to use cloaking techniques to hide

the program from common system administrator and diagnostic utilities . In

Unix, the traditional name for the most privileged account is root , and soft-

ware designed to give a user root privileges is sometimes known as a rootkit .

The term rootkit is now applied more generally to types of malware that use

cloaking techniques to make themselves invisible to antivirus software and

standard system tools. Rootkits came to prominence in 2005 when the Sony

BMG music group installed overaggressive copy protection measures on twenty

million music CDs. When the CD was used, it secretly installed software that

actually modifi ed the operating system to prevent CD copying. Moreover, the

software was very diffi cult to remove and used the same rootkit cloaking tech-

niques as conventional malware to hide its presence. The scandal came to light

when security researcher Mark Russinovich (B.12.2) posted a detailed technical

 Fig. 12.4. A screenshot of the BRAIN

virus in 1984; it was one of the fi rst

PC viruses .

 B.12.2. Mark Russinovich was

a security researcher at his

Winternals company when he

became a victim of Sony BMG’s

CD rootkit. His subsequent blog

post on the technical aspects of

the rootkit showed how it installed

itself and modifi ed the operating

system of an unsuspecting user.

Russinovich is now a Technical

Fellow at Microsoft and the author

of the novels Zero Day and Trojan

Horse .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe248

description of the Sony rootkit on his blog in October 2005. He also discov-

ered that the software created new security loopholes and could lead to system

crashes. Sony BMG’s reaction to this revelation was initially: “Most people don’t

even know what a rootkit is so why should they care about it?” 3 However, the

company eventually recalled and replaced the affected CDs and abandoned its

extended copyright protection software. Mikko Hypponen, chief research offi -

cer at the Finnish-based security company F-Secure, commented:

 [The] Sony rootkit was one of the seminal moments in malware history. Not

only did it bring rootkits into public knowledge, it also gave a good lesson to

media companies on how not to do their DRM [digital rights management]

solutions . 4

 The term computer worm is generally used to describe malware that is

designed to spread from computer to computer but, unlike a virus, which must

attach itself to a program or fi le to spread, a worm is a complete program capa-

ble of replicating all by itself. At Xerox PARC in 1978, John Shoch was experi-

menting with a program that could seek out Alto machines on the Ethernet

that were not being used, boot up the machine to do some work, and replicate

by sending copies of itself to other idle machines on the network. One of his

experiments went wrong and, after leaving his program running overnight,

Shoch was awakened by angry users complaining that he had crashed their

Altos. Eradicating the worm proved very diffi cult, and it was fortunate that he

had equipped his worm program with a “suicide capsule” that he was able to

activate. Shoch called his program a worm , after the idea of the “Tapeworm,”

software that runs by itself in John Brunner’s science fi ction novel The Shockwave

Rider .

 Worms came into public prominence through the “Internet worm” attack

on the ARPANET in 1988. Clifford Stoll, then at Harvard, described this “Internet

worm” attack in graphic detail:

 As fast as I’d kill one program, another would take its place. I stomped them

all out at once: not a minute later, one reappeared. Within three minutes

there were a dozen. 5

 Stoll informed Bob Morris (B.12.3), chief scientist at the NSA, whom he knew

from his investigation of the Berkeley hacker, of the ongoing worm attack.

Stoll was not amused to be called back a few hours later by someone from

the NSA who asked if he was the person who had written the worm program!

While other ARPANET node system administrators across the United States

were decrypting the worm program, Stoll tracked down the place where the

worm had been released. By a supreme irony, the trail led back to Bob Morris Jr.

(B.12.4), a graduate student at Cornell University and the son of Bob Morris Sr.

of the NSA. The Morris worm was not the fi rst worm program, but it was cer-

tainly one of the most damaging. Stoll estimated that it infected two thousand

machines within fi fteen hours .

 Morris’s worm was a signifi cant escalation in malware for two reasons.

First of all, the program automated all sorts of tricks that a hacker might use in

attempting to break into a computer system. Given access to one computer, the

worm would fi rst check if it was automatically given privileges to run programs

 B.12.3. Robert Morris Sr. (1932–

2011) was chief scientist of the

NSA’s National Computer Security

Center at the time of Clifford Stoll’s

cuckoo’s egg experiences with

cyberespionage. Before he joined

the NSA in 1986, Morris had been a

researcher at Bell Labs working on

both the Multics and Unix operating

systems .

 B.12.4. Robert Morris Jr. was a grad-

uate student at Cornell when he cre-

ated the fi rst worm on the ARPANET

in 1988. He was the fi rst person to be

convicted under the USA Computer

Fraud and Abuse Act. He is now a

tenured professor at MIT .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

249The dark side of the web

on other computers; then it would try a long list of common passwords. If these

attempts failed, it would then try some other vulnerability, such as a fl aw in

the Unix Sendmail program, well known to computer experts at the NSA. The

second reason for its importance was that if all these attempts failed, Morris

had exploited a new type of bug called buffer overfl ow . The Unix operating sys-

tem is written in the C programming language, and the fi rst book about C was

written by Bell Labs researchers Brian Kernighan and Dennis Ritchie. The book

shows how to write a program to read a series of input characters into com-

puter memory using an area of memory called a buffer . In their example code,

the size of the buffer was specifi ed but not whether the number of characters

being entered actually exceeded this size . The younger Morris realized that the

extra characters would overwrite the rest of the program’s data and instruc-

tions. By placing judicious machine instructions in these overfl ow characters,

a hacker could use this fl aw to gain the root privileges of a super-user. Morris

also encrypted the virus software to make it more diffi cult to fi nd out what the

program did and also used several techniques to avoid detection. The worm

infected thousands of computers, and system managers took several days to

disinfect their computers. Morris was convicted of a felony in May 1990 and

sentenced to three years of probation, four hundred hours of community ser-

vice, and a $10,000 fi ne (Fig. 12.5).

 The story had a happy ending for Morris. After his conviction, Xerox PARC

invited him to become an intern student there and he is now a professor at MIT.

However, an unfortunate outcome of Morris’s worm was that it demonstrated

a new way of attacking computers . Such unchecked memory buffers occurred

in almost all Unix programs and also in Windows. After a hacker called “Aleph

One” put up a detailed “instruction manual” (Fig. 12.6) on the Web in 1996,

buffer overfl ow became a relatively straightforward technique for black hats to

adapt. In 1992, there were estimated to be around 1,300 viruses or worms; in

1996, more than 10,000; and by 2002, more than 70,000. By 2003, the Slammer

worm had set a record for spreading faster than any previous malware, infect-

ing seventy-fi ve thousand computers in just ten minutes .

 Fig. 12.5. The infamous Morris worm

was only a short C program, yet it shut

down large portions of the ARPANET in

November 1988 .

.oO Phrack 49 Oo.

Volume Seven, Issue Forty-Nine

File 14 of 16

BugTraq, r00t, and Underground.Org

bring you

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

Smashing The Stack For Fun And Profit

XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX

by Aleph One

aleph1@underground.org

 `smash the stack` [C programming] n. On many C implementations it is possible to corrupt

the execution stack by writing past the end of an array declared auto in a routine. Code that does

this is said to smash the stack, and can cause return from the routine to jump to a random address.

 This can produce some of the most insidious data-dependent bugs known to mankind. Variants

include trash the stack, scribble the stack, mangle the stack; the term mung the stack is not used, as

this is never done intentionally. See spam; see also alias bug, fandango on core, memory leak,

precedence lossage, overrun screw.

 Fig. 12.6. Aleph One’s paper on the

buffer overfl ow vulnerability.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe250

 Botnets and zombie computers

 The last decade has seen a dramatic rise of hacking for profi t by criminal

organizations. Botnets are collections of computers that have been taken over

by techniques such as those described above and are controlled by so-called

 bot-herders (see Fig. 12.7). Bot is short for robot program , and sometimes these

enslaved computers are known as zombie computers . The botnets can be used to

conduct denial of service attacks on specifi c websites (see Fig. 12.8) – such attacks

try to shut down a site by bombarding it with so many requests that the system

is forced to shut down, denying service to legitimate users . Botnets can also

be used to send spam or to capture personal details by key logging – capturing a

user’s keystrokes . A recent example is the Confi cker botnet that fi rst appeared

in 2008. It was estimated to have infected more than ten million computers

around the world and to have the capacity to send an incredible ten billion

spam emails per day. Mark Bowden’s book, Worm , details how the white hat

security community collaborated with Microsoft to contain and partially elim-

inate the threat to the Internet posed by Confi cker. However, a 2012 Microsoft

report states that

 … the Confi cker worm was detected approximately 220 million times

worldwide in the past two and a half years, making it one of the biggest

ongoing threats to enterprises. The study also revealed the worm continues

to spread because of weak or stolen passwords and vulnerabilities for which a

security update exists . 6

 Fig. 12.7. Nefarious botnet programs

work by hijacking millions of comput-

ers, usually without their owners’

knowledge .

 Fig. 12.8. This cartoon with the original

caption “… fi libustering destroys com-

munication” captures the essence of a

“denial of service” attack .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

251The dark side of the web

 In another recent example, the Microsoft Digital Crimes Unit worked with the

fi nancial industry and the FBI “to disrupt more than 1,400 Citadel botnets which

are responsible for over half a billion dollars in losses to people and businesses .” 7

 A last example is particularly worrying. In the case of the Nitol botnet (Fig. 12.9),

Microsoft found that nearly 20 percent of brand new PCs purchased through unse-

cure Chinese supply chains were already preinfected with Nitol malware.

 A supply chain between a manufacturer and a consumer becomes unsecure

when a distributor or reseller receives or sells products from unknown or

unauthorized sources. In Operation b70, we discovered that retailers were

selling computers loaded with counterfeit versions of Windows software

embedded with harmful malware. 8

 This malware is particularly worrisome since it can be spread to friends and

colleagues through a USB memory stick .

 Fig. 12.9. A cartoon strip from Microsoft

showing how to evade evil botnets.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe252

 Cyberwarfare

 The latest escalation in malware is the potential to use worms for cyber-

warfare , politically motivated hacking for purposes of spying or sabotage. It is

now believed that the Stuxnet worm discovered in the summer of 2010 was

engineered by U.S. and Israeli computer experts specifi cally to attack centri-

fuges at the Iranian uranium fuel-enrichment plant in Natanz, a site suspected

of being a center for building a uranium-based atomic bomb. A series of high-

speed centrifuges is needed to separate the rare, bomb-grade uranium-235

isotope from the much more common uranium-238 isotope present in ura-

nium ore. An industrial control system manufactured by Siemens AG man-

ages the centrifuges at the Natanz plant. This system uses a special-purpose

computer called a programmable logic controller (PLC) that is programmed using

Siemens software called Step-7. To spread itself throughout the plant, the

Stuxnet worm exploited several previously unknown bugs – known as zero

day bugs – in the Microsoft Windows XP operating system. In this way, the

worm seized control of the PCs and substituted its own version of Siemens’s

Step-7 PLC code. This code modifi ed the operation of the centrifuges yet

reported to the operator that everything was fi ne. Thus the Step-7 malware

used rootkit techniques to conceal its presence . The writers of worm code

needed a very deep knowledge of both Windows and Siemens industrial con-

trol systems as well as detailed information about the centrifuge installation

at the Natanz fuel-enrichment plant. It is likely that the worm was introduced

into the Natanz using a USB memory stick since the plant is believed to be

 air-gapped – not connected to the Internet. A recent book, Confront and Conceal ,

by New York Times reporter David Sanger, describes operation Olympic Games ,

the codename for Stuxnet development and deployment, and details how the

worm escaped to the Internet .

 How much damage did Stuxnet cause? One report suggests that as many

as a thousand centrifuges at Natanz or around 10 percent of the total needed

to be replaced. In the long run, what may be of more signifi cance than the

cyberattack on Natanz is that the Stuxnet worm represents a blueprint for the

construction of malware capable of attacking a wide range of industrial control

systems, which form a key part of the modern world’s critical infrastructure .

 Cryptography and the key distribution problem

 The science of cryptography dates back to ancient times (Fig. 12.10). It

consists of techniques for encoding the information in a message – that is, for

putting the information into a form that can only be read or decoded by the

intended recipient. According to the Roman historian Suetonius, Julius Caesar

used a method called a shift cipher to encode secret government messages:

 If he had anything confi dential to say, he wrote it in cipher, that is, by so

changing the order of the letters of the alphabet, that not a word could be

made out. If anyone wishes to decipher these, and get at their meaning, he

must substitute the fourth letter of the alphabet, namely D, for A, and so with

the others. 9

 Fig. 12.10. The word cryptos (κρυπτός)

in Greek means hidden. This is the

Kryptos sculpture located in front of

CIA headquarter in Langley. There are

four messages on the sculpture; three of

them have been deciphered, the fourth

is so far unbroken .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

253The dark side of the web

 A shift cipher consists of a key or number, known only to sender and receiver,

which tells you how far to shift a second alphabet that is written under the

fi rst one (Fig. 12.11). Alan Turing, with help from Polish intelligence and others

at Bletchley Park in the United Kingdom, built one of the fi rst primitive com-

puters to break the German Navy’s Enigma codes. To break the German High

Command’s more complex Lorenz codes, Tommy Flowers built Colossus, argu-

ably the fi rst serious digital computer . With the advent of modern computers,

cryptographers no longer needed to rely on a mechanical cipher machine to

do the encryption and decryption. A computer can do the work of a com-

plex cipher machine and still operate many times faster than any mechanical

device. Since computers operate on binary numbers, messages must fi rst be

converted into a series of 1s and 0s according to some convention. There are

now standard ways to encode characters and words into binary numbers. Once

the message has been converted into a string of bits, encryption proceeds by

scrambling the bits according to a method specifi ed by a key that is shared by

sender and receiver .

 There are two main classes of cryptosystems, which are distinguished by

whether the encryption key is shared in secret or in public. Gilbert Vernam

(B.12.5) of AT&T proposed the one-time secret-key system in 1918. It is the only

cryptosystem that provides absolute security. However, the system requires a

key that is as long as the message and the keys must never be reused to send

another message. Spies received a fresh set of keys in the form of a tear-off

pad. After sending a message, the sender tore off the sheet with the used key

and destroyed it. For this reason, the system is sometimes known as a one-time

pad . When the Bolivian army captured the Marxist revolutionary Che Guevara

in 1967, they found he had a list of random numbers that allowed him to send

secret messages to Fidel Castro in Cuba. Guevara could do this securely over any

radio link because he and Castro were using Vernam’s one-time pad system .

 In cryptology, the three participants in any discussion of coded messages

are traditionally Alice, Bob, and Eve. Alice is the sender who wants to encrypt

a message and send it securely to Bob. Bob is the receiver, who gets the mes-

sage and wants to decrypt it and discover its meaning. Eve is a potential eaves-

dropper who wants to listen in and break the code. The one-time pad is secure

because Alice encrypts the message using a random number as long as the

message. Bob has the same key and can easily decrypt the message. The par-

ticular random number is only used once. Although this system is perfectly

secure in principle, its weakness in practice lies in the fact that Alice and Bob

have to share the same key and, since the keys are used only once, they need

a great deal of them. The keys have to be distributed to Alice and Bob using

some secure method, such as delivery by courier or a personal meeting. During

World War II, the Russians foolishly reissued some one-time pads. This careless-

ness allowed U.S. cryptanalysts to decrypt a large number of previously unde-

cipherable messages that they had intercepted over the years. This large-scale

decoding effort was code-named the Venona project (Fig. 12.12). It was tran-

scripts from this project that identifi ed the atomic spy code-named CHARLES

as the Los Alamos physicist Klaus Fuchs .

 The weakness of secret-key encryption is the problem of distributing

the keys safely. During World War II, the German military had to distribute

 Fig. 12.11. Cipher disk invented by the

Renaissance artist Leon Battista Alberti

(1404–72). The brass inner disk can be

rotated to align its letters with the let-

ters of the outer circle.

 B.12.5. Gilbert Vernam (1890–1960)

came up with the idea of unbreak-

able encryption using so-called

 one-time pads of secret code numbers.

The system was used by Che

Guevara to communicate with Fidel

Castro in Latin America .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe254

books containing a month’s supply of keys to each operator of the Enigma

code machine. For the U-boat fl eet operating in the North Atlantic Ocean,

this was a major logistical challenge and also a critical vulnerability. Ian

Fleming, creator of James Bond, was a member of the United Kingdom’s Naval

Intelligence Division during the war. He suggested a James Bond–style plan

called “Operation Ruthless” to capture the Enigma codebooks from a German

ship. Although this particular operation was never carried out, the Allies did

manage to capture intact Enigma codebooks from German weather ships and

U-boats, enabling them to learn the locations of the Atlantic U-boat packs

 (Fig. 12.13).

 The United States adopted the Data Encryption Standard (DES), a standard

method of coding messages, in 1976. The DES was based on a system devised

by the German-born cryptographer Horst Feistel, working at IBM’s Thomas J.

Watson Research Center in New York. It is widely believed that the U.S. gov-

ernment only allowed 56-bit keys so that the DES system was safe enough for

normal users but not impossible for the NSA to break . Banks who needed to

send secure messages of detailed transactions to each other were major users

of encryption. To solve the problem of key distribution, banks employed dis-

patch riders who had to be thoroughly investigated and then equipped with

padlocked briefcases. The costs of maintaining such a system rapidly became

a major expense .

 Difi e-Hellman key exchange and one-way functions

 The way out of all these problems was to fi nd a way for Alice and Bob to agree

on a secret key without ever having to meet, in spite of Eve trying to listen in

and discover the key. Remarkably, in 1976, agreeing on a secret key without

meeting was shown to be possible. In his wonderful account of ciphers and

cryptography, The Code Book , Simon Singh says of this new method of exchang-

ing keys, “It is one of the most counterintuitive discoveries in the history of

science” 10 and adds, “This breakthrough is considered to be the greatest cryp-

tographic achievement since the invention of the monoalphabetic cipher, over

two thousand years ago .” 11

 The system that allows Alice and Bob to establish a secret key through

a public discussion is called the Diffi e-Hellman key exchange , after the inven-

tors Whitfi eld Diffi e and Martin Hellman (B.12.6). Hellman was a professor

at Stanford University, and Diffi e enrolled as his graduate student so they

could both study the key distribution problem . Diffi e and Hellman had real-

ized that the solution to the problem required the use of a mathematical

relationship called a one-way function . A two-way mathematical function is

reversible in that it is easy to undo; a one-way function, as the name implies,

is easy to do but very diffi cult to undo. Singh gives the following analogy:

“Mixing yellow and blue paint to make green paint is a one-way function

because it is easy to mix the paint but impossible to unmix it .” 12 We can use

this paint-mixing analogy to explain how Alice and Bob can establish a secret

key without Eve fi nding out, even though she is able to monitor their public

exchanges. We assume that each of the participants has a pot of yellow paint,

and Alice and Bob each have another pot with their own secret color. They

proceed as follows:

 Fig. 12.12. The Venona project was a

U.S. counterintelligence program to

decrypt messages sent by the Soviet

Union’s intelligence agencies. The secret

program was operational for more

than forty years. Its existence was only

revealed in 1995 after the end of the

Cold War. The program identifi ed Klaus

Fuchs as the Manhattan Project spy who

gave the plans for the atomic bomb to

Stalin .

 Fig. 12.13. The Secret Capture tells the

story of how the British destroyer HMS

Bulldog captured the German submarine

U-110. The British sailors were able to

retrieve the codebooks and an Enigma

machine from the submarine and

these were sent to the code breakers at

Bletchley Park .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

255The dark side of the web

 If Alice and Bob want to agree on a secret key, each of them adds one liter

of their own secret color to their own pot of yellow paint. Alice might add

a peculiar shade of purple, while Bob might add crimson. Each sends their

own mixed pot to the other and we assume that Eve can see and even sample

these mixtures as they are sent between Alice and Bob. Finally, Alice takes

Bob’s mixture and adds one liter of her own secret color, and Bob takes

Alice’s mixture and adds one liter of his own secret color. Both pots should

now be the same color, because they both contain one liter of yellow, one

liter of purple and one liter of crimson. It is the exact color of the doubly

contaminated pots that is used as the key.

 Does Eve know the secret key? No, she doesn’t. She saw (and possibly

sampled) the two partial mixtures that passed by her: “yellow and purple” and

“yellow and crimson.” If Eve combines these mixtures – the only operation

she could do on her own – she will only end up with a mixture containing

“yellow and yellow and purple and crimson.” In order to fi nd the secret key

she would need to remove or “unmix” one unit of yellow from this mixture.

Since she cannot unmix one unit of yellow she cannot generate the same

color as Alice and Bob and thus does not know the key. 13

 So although Eve can intercept the pots of paint being exchanged, she can-

not work out Alice’s and Bob’s secret keys because mixing paint is a one-way

function.

 The actual mathematical one-way function used in the Diffi e and Hellman

key exchange proposal was based on modular arithmetic . Calculations in modular

arithmetic are done with a count that resets itself to zero every time a certain

number, known as the modulus , has been reached. Modular arithmetic is like

telling time using the numbers on a clock face. For example, 9 + 7 in normal

arithmetic equals 16. However, in modular arithmetic with a modulus of 12

(“mod 12” arithmetic, also called clock arithmetic), the result of 9 + 7 is 4. If it is

9 o’clock in the morning then seven hours later it will be 4 o’clock in the after-

noon. Because the hour number starts over after it reaches 12, the modulus is

12. In normal arithmetic, the result of adding two numbers grows as the num-

bers being added are larger. With modular arithmetic, the numbers can grow

just to the value of the modulus. Although this key exchange system was a great

breakthrough in cryptography, it still required that Alice and Bob exchange

several messages to establish the shared secret key. The Diffi e-Hellman key

exchange protocol was also fundamentally a two-party protocol rather than

a broadcast protocol that allowed Alice or Bob to communicate securely with

 B.12.6. Whitfi eld Diffi e and Martin Hellman are the inventors of the Diffi e-Hellman key

exchange protocol. This is remarkable process by which Alice and Bob can agree on a

secret key using an open link that is vulnerable to access by an eavesdropper, Eve .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe256

others. Another breakthrough was needed to arrive at a secure and convenient

cryptographic method that eliminated key exchange bottlenecks .

 Up until 1975, all the encryption techniques in history had been symmet-

ric , meaning that the key to unscramble the message was the same as the key

used to scramble it in the fi rst place (Fig. 12.14a). In the summer of 1975, Diffi e

outlined the idea for a new type of cipher that used an asymmetric key pair, one

in which the encryption key and the decryption key were different but math-

ematically related (Fig. 12.14b). Although he showed that such a system could

work in theory, Diffi e was unable to fi nd a suitable one-way function to actu-

ally carry out his idea. If such a system could be found, then it could work as

follows. Alice would have two keys, one for encryption and one for decryption.

She can make her encryption key public, her “public key,” so that everyone has

access to it, but she keeps her decryption key secret as her “private key.” Now if

Bob wants to send a message to Alice, he can encrypt his message using Alice’s

public key. When she receives the message, Alice is able to decrypt the mes-

sage using her private key, secure in the knowledge that Eve, who only knows

Alice’s public key, would be unable to make sense of the message. This is the

essence of the cryptographic system called public-key cryptography .

 RSA encryption and pretty good privacy

 The race to make asymmetric ciphers a reality was won by three research-

ers working in the Laboratory for Computer Science at MIT: Ron Rivest, Adi

Shamir, and Len Adleman (B.12.7). Their resulting scheme is now known as

 RSA encryption , and it depends on modular exponentiation and the diffi culty

of factoring large numbers . The scheme relies on the fact that multiplication

of two large prime numbers, p and q, to get the number N is very easy and

Message

Encoded message

Ciphertext

Encoding

Encryption

Encryption(a)

Message

Encoded message

Ciphertext

Decoding

Decryption

Decryption

Message

Encoded message

Ciphertext

Encoding

Encryption

Encryption

Message

Encoded message

Ciphertext

Decoding

Decryption

Decryption

Public key

Private key

(b)

 Fig. 12.14. (a) Symmetric encryption

shares the same encryption key between

sender and receiver . (b) Asymmetric

 encryption uses a different encryption

key at each end of the communication .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

257The dark side of the web

quick to do with a computer, but the reverse problem of factoring N – deduc-

ing the prime numbers that when multiplied together produce N – is very

diffi cult. Martin Gardner, in his “Mathematical Games” column in Scientifi c

American , explained public-key cryptography and the RSA asymmetric cipher

in August 1977. He issued a challenge to his readers by giving them a cipher-

text to decode that had been encrypted using a public key N, which he pub-

lished. The public key was a 129-digit number known as RSA-129. To decrypt

the message, the readers had to factor (break up) this number into its two

 prime factors , the prime numbers that were multiplied together to produce the

129-digit number. It was almost seventeen years before a team of six hundred

volunteers assembled suffi cient computing power to discover the two prime

number factors (see Fig. 12.15). When at last deciphered, Gardner’s message

read, “The magic words are squeamish ossifrage” (Fig. 12.16). Nowadays, given

the huge increase in computing power since 1977 generated by Moore’s law,

much larger values than RSA-129 need to be used to secure messages and infor-

mation. These numbers are so large that it is estimated it would take all the

computing resources on the planet many thousands of years to factorize such

large numbers. However, as we will see later, such public-key systems could

be vulnerable to attack by a quantum computer if such a computer could be

built.

 In the 1980s, only governments, the military, and large businesses had

computers that were powerful enough to use RSA effi ciently. Phil Zimmermann

(B.12.8), a software engineer specializing in cryptography and data security,

believed that everyone should have the same guarantee of privacy in commu-

nications made possible by RSA encryption. Such a capability is particularly

important for human rights activists operating in countries with repressive

regimes. Even in more open countries, privacy of communications can be

regarded as a basic democratic freedom. The problem is that this same freedom

would also severely limit the ability of governments to monitor communica-

tions between criminals .

 Zimmermann wrote a program that he called Pretty Good Privacy (PGP), a

name inspired by Ralph’s Pretty Good Grocery , a business in Garrison Keillor’s fi c-

tional town of Lake Wobegon. In his PGP program, Zimmermann implemented

a fast version of the RSA public-key system. Unfortunately, he also chose to

ignore the fact that the RSA technology was patented. Zimmerman apparently

 B.12.7. Ron Rivest, Adi Shamir, and Len Adleman are the inventors of RSA public-key

cryptography protocol, which is now in widespread use. In their scheme, Alice now has

two keys – an encryption key that she makes public and her private decryption key .

 Fig. 12.15. The number RSA-129.

Multiplication is computationally “very

easy” whereas factorization of a number

into its constituent prime numbers is

computationally “very hard.” This is the

basis for the security of the RSA Public-

Key Cryptographic system .

 Fig. 12.16. The original encrypted text of

Gardner’s challenge.

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe258

hoped that the patent owner, Public Key Partners, would give him a free license

since PGP was intended for use by individuals and not for commercial use. It

was left to a group of cryptography researchers at MIT to make PGP legal by

removing Zimmerman’s implementation of the RSA algorithm and replacing it

with a legal version with an appropriate RSA license.

 The PGP software also incorporated digital signature authentication.

Digital signature technology addresses the problem that, without a handwrit-

ten signature, it is diffi cult to be sure who actually sent an email message.

Bob can use Alice’s public key to send an encrypted message to her, but so

can Eve, masquerading as Bob. So how can Alice check that the message is

really from Bob? One way of verifying that the message was indeed sent by

Bob goes as follows. Bob fi rst encrypts the message using his private key and

then does a second encryption, encrypting the resulting message using Alice’s

public key. When Alice receives the message, she begins by decrypting it by

fi rst using her private key and then uses Bob’s public key to decrypt the still

encrypted message. This way she can verify that the message came from Bob

 (Fig. 12.17).

 In 1991, Zimmermann became worried that the U.S. Senate would pass a

bill that would outlaw the use of such encryption technology, so he arranged

for his PGP code to be posted on an Internet bulletin board. In response to this,

the U.S. government, concerned about its ability to decipher communications

between criminals or terrorists, accused Zimmermann of illegally exporting

weapons technology. After some diffi cult years for Zimmermann, the govern-

ment eventually dropped the case. Meanwhile, the code for the legal version of

PGP was published in a book from MIT Press and could be legally exported from

the United States. Ron Rivest summarized the basic argument against prosecut-

ing Zimmerman as follows:

 It is poor policy to clamp down indiscriminately on a technology just

because some criminals might be able to use it to their advantage. For

example, any U.S. citizen can freely buy a pair of gloves, even though a

burglar might use them to ransack a house without leaving fi ngerprints.

Cryptography is a data-protection technology, just as gloves are a hand-

protection technology. Cryptography protects data from hackers, corporate

spies, and con artists, whereas gloves protect hands from cuts, scrapes,

heat, cold, and infection. The former can frustrate FBI wire-tapping, and

the latter can thwart FBI fi ngerprint analysis. Cryptography and gloves

 B.12.8. Phil Zimmermann is the

creator of PGP, an email encryp-

tion software package. Originally

designed as a human rights tool,

PGP was published for free on

the Internet in 1991. This made

Zimmermann the target of a three-

year criminal investigation by the

U.S. government, which held that

export restrictions for crypto-

graphic software were violated

when PGP spread worldwide .

Message

Encoded message

Ciphertext

Encoding

Encryption

Encryption

Message digest

Signature

Decryption

Public key

Private key

Verified message

Message

Comparing

Hashing

Message verification

Message digest

 Fig. 12.17. The mechanism of a digital

signature, an electronic signature that

can be used to authenticate the identity

of the sender of a message or the signer

of a document .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

259The dark side of the web

are both dirt-cheap and widely available. In fact, you can download good

cryptographic software from the Internet for less than the price of a good

pair of gloves . 14

 Twenty years after the publication of Zimmermann’s PGP software, strong

encryption technology is now widely available, and governments and police

forces round the world have had to adapt to the new reality .

 Although encryption using PGP software provides a very high level of secu-

rity, it proved too complex for the average Web user. Netscape introduced a

procedure called the secure sockets layer (SSL) to protect e-commerce transactions

over the Internet. Without intervention from the user, the browser and the web

server use the SSL protocol to automatically exchange public keys and to agree

on a third, secret session key to encrypt the information being transmitted only

for the current session . Instead of using the http protocol, the link to the web-

site now uses https (standing for HyperText Transfer Protocol Secure), which just

applies the http protocol on top of a protocol called the Transport Layer Security

(TLS) protocol, the successor to the SSL protocol. All the user sees is a padlock

icon in the browser window. Clicking on the padlock gives the user a security

report, which says, “This connection to the server is encrypted .” The report also

gives details of a digital certifi cate , a credential that certifi es the identity of the

remote computer. The certifi cate verifi es that the public key belongs to the spe-

cifi c organization or owner of the website. An organization called a certifi cate

authority (CA) issues digital certifi cates. The CA is what is called a “trusted third

party” – that is, an organization trusted by both the subject of the certifi cate

and by the user wishing to access that site. The result of all these measures is

that users now have a secure channel by which they can communicate personal

details such as credit card numbers or their Social Security number .

 Cookies, spyware, and privacy

 Web cookies were fi rst used in communications over the Internet by Lou

Montulli, a programmer at Netscape Communications in 1994. The company

was developing e-commerce applications and wanted to fi nd a way to keep

a memory of a user’s transactions so that it would be easy to implement a

virtual shopping cart. A web cookie, also known as an http cookie , is a small

amount of data that is sent from the website a user is visiting and stored in

the browser on the user’s computer. They were designed to provide a way for

websites to remember the user’s browsing activity. Cookies were fi rst intro-

duced into Netscape’s browser in 1994 and into Microsoft Internet Explorer

in 1995. Although the cookies were stored on the user’s computer, users were

not initially notifi ed of their presence. Cookies are convenient in that they

can be used to store passwords and credit card details. When a user revisits a

website, the website can recognize the user through the information stored

in the cookie.

 The real threat to privacy, however, came with the introduction of third-

party tracking cookies (Fig. 12.18). First-party cookies are associated with the IP

address shown in the address bar of the user’s browser. Third-party cookies

are cookies that are downloaded from a different domain than that shown

in the browser. These come about as follows. When a user downloads a web

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe260

page this may contain an advertisement linking back to a different website.

This site sets a cookie that tells the ad broker service that the user clicked on

this web page. When the user visits another website the same thing happens

and another cookie is downloaded. In this way, an ad broker can build up a

complete picture of the user’s browsing history. This information can then

be sold to advertising agencies that can generate targeted, personalized ads,

specifi c to the interests of the user, as revealed by their browsing history .

 Spyware is software that can hide itself on a computer and gather and

transmit information back to a black hat without the owner’s knowledge.

Spyware is different from viruses or worms in that the software does not try to

replicate itself or spread to other computers. The Trojan horse software used

by the Berkeley hacker is a form of spyware, for collecting user login infor-

mation. Spyware can also collect other types of data such as bank and credit

card information. In addition, spyware can track the user’s Internet activity

and serve annoying pop-up ads or change the computer’s security settings and

disable antivirus software. Cookies are a form of spyware and antispyware soft-

ware now usually reports the presence of third-party cookies and offers ways

to remove them .

 Cookies have serious implications for the privacy of Internet users. In

2000, the U.S. government established strict rules for setting cookies, and mod-

ern browsers now offer users the option to block all cookies. In its Directive on

Privacy and Electronic Communications in 2002, the European Union introduced a

policy requiring a user’s consent for setting cookies. It stipulated that storing

data on a user’s computer can only be done if the user is provided with infor-

mation about how this data will be used. This was later relaxed to exempt

fi rst-party cookies – as in virtual shopping carts – from this requirement of

obtaining prior user consent .

 Key concepts

 Buffer overl ow �

 Trojans, viruses, and worms �

 Fig. 12.18. Third-party cookies allow

tracking companies and ad brokers to

track the browsing behavior of web

users. The green circles are the websites

visited by a user and the purple circles

are the companies analyzing the user’s

behavior and selling the information to

the red sites that serve targeted adver-

tisements to the user .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

261The dark side of the web

 Rootkits and botnets �

 Cyberespionage and cyberwarfare �

 Cryptography and key exchange �

 One-way functions and RSA encryption �

 Cookies and spyware �

 Etymology of “spam”

 The name spam derives from a famous 1970 Monty Python sketch about a man and his wife ordering

food in a caf é , where they are offered various menu items all based on SPAM, a trade-named canned meat

product:

 Man: Well, what’ve you got?

 Waitress: Well, there’s egg and bacon; egg sausage and bacon; egg and spam; egg bacon and spam; egg

bacon sausage and spam; spam bacon sausage and spam; spam egg spam spam bacon and spam; spam

sausage spam spam bacon spam tomato and spam …

 Vikings [starting to chant]: Spam spam spam spam …

 Waitress: … spam spam spam egg and spam; spam spam spam spam spam spam baked beans spam spam

spam …

 Vikings [singing]: Spam! Lovely spam! Lovely spam!

 Waitress: … or Lobster Thermidor a Crevette with a mornay sauce served in a Proven ç ale manner with

shallots and aubergines garnished with truffl e pat é , brandy and with a fried egg on top and spam.

 Wife: Have you got anything without spam?

 Waitress: Well, there’s spam egg sausage and spam, that’s not got much spam in it.

 Wife: I don’t want ANY spam ! 15

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

The Computing Universe262

 God rewards fools

 As Whitfi eld Diffi e and Martin Hellman pursued the key distribution problem, they were joined by

graduate student Ralph Merkle, who shared their enthusiasm for solving what seemed to be an impossible

problem. Hellman commented:

 Ralph, like us, was willing to be a fool. And the way to get to the top of the heap in terms of developing original

research is to be a fool, because only fools keep trying. You have idea number 1, you get excited, and it fl ops.

Then you have idea number 2, you get excited, and it fl ops. Then you have idea number 99, you get excited,

and it fl ops. Only a fool would be excited by the 100th idea, but it might take 100 ideas before one really pays

off. Unless you’re foolish enough to be continually excited, you won’t have the motivation, you won’t have the

energy to carry it through. God rewards fools . 16

 A truly cryptic development

 An interesting postscript to the encryp-

tion story takes us back to the secrecy that sur-

rounded the cryptographic work on the Enigma

and Lorenz codes at Bletchley Park during World

War II. After the war, the government of the

United Kingdom concentrated its code-breaking

efforts in a new agency called the Government

Communications Headquarters (GCHQ) in

Cheltenham (Fig. 12.19). By the 1960s, the British

military had recognized the need for secure

communications between troops in the fi eld but

was concerned about the logistics and costs of

key distribution. GCHQ set some of its research-

ers on the problem, and the result was that, as

Simon Singh says: “By 1975, James Ellis, Clifford

Cocks and Malcolm Williamson had discovered

all the fundamental aspects of public-key cryp-

tography, yet they all had to remain silent.” 17 It

was not until 1997 that Cocks was fi nally allowed

to present a brief history of GCHQ’s indepen-

dent discovery of public-key cryptography. The same zeal for secrecy of successive U.K. governments denied

Tommy Flowers meaningful recognition for his pioneering work in building the Colossus computers after

the end of World War II .

 Fig. 12.19. An aerial photo shows the GCHQ, the British agency respon-

sible for communications security, based in Cheltenham, U.K. Two

Colossus computers from Bletchley Park went to GCHQ after the war;

the remaining eight were destroyed on Churchill’s orders .

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.015
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:17, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.015
http:/www.cambridge.org/core

