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     13     Artii cial intelligence and neural networks    

  It   is not my aim to shock you – if indeed that were 
possible in an age of nuclear fi ssion and prospective 
interplanetary travel. But the simplest way I can 
summarize the situation is to say that there are 
now in the world machines that think, that learn 
and that create. Moreover, their ability to do these 
things is going to increase rapidly until – in a visible 
future – the range of problems they can handle will 
be coextensive with the range to which the human 
mind has been applied  . 
 Herbert Simon and Allen Newell  1    

  Cybernetics and the Turing Test 

 One of the major fi gures at MIT before World War II was   the mathemati-
cian Norbert Wiener ( B.13.1 ). In 1918, Wiener had worked at the U.S. Army’s 
Aberdeen Proving Ground, where the army tested weapons. Wiener calculated 
artillery trajectories by hand, the same problem that led to the construction 
of the ENIAC nearly thirty years later. After World War II, Wiener used to hold 
a series of “supper seminars” at MIT, where scientists and engineers from a 
variety of fi elds would gather to eat dinner and discuss scientifi c questions. 
J. C. R. Licklider usually attended. At some of these seminars, Wiener put for-
ward his vision of the future, arguing that the technologies of the twentieth 
century could respond to their environment and modify their actions:

  The machines of which we are now speaking are not the dream of the 
sensationalist nor the hope of some future time. They already exist as 
thermostats, automatic gyrocompass ship-steering systems, self-propelled 
missiles – especially such as seek their target – anti-aircraft fi re-control 
systems, automatically controlled oil-cracking stills, ultra-rapid computing 
machines, and the like  .…  2      

 All   these applications rely on feedback for their ability to learn and adapt. To 
see how such environmental feedback works, consider a simple thermostat. A 
bimetallic thermostat has a strip made of two metals fastened together that 
expand and contract at different rates when the temperature rises and falls. As 
a result, the thermostat bends when cold and straightens out when warmed 
( Fig. 13.1 ). When the temperature drops low enough, the thermostat bends far 
enough to close an electrical circuit that causes the heating to come on. When 

 B.13.1.      Norbert   Wiener’s 

(1894–1964) name is mainly asso-

ciated with the term  cybernetics . 

Cybernetics is an interdisciplinary 

theory describing how complex 

systems regulate themselves using 

feedback mechanisms. Wiener was 

only eighteen when he earned his 

PhD degree in mathematics from 

Harvard University. During World 

War II, he worked on automatic con-

trol of antiaircraft guns  .  
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the temperature is too hot, the strip straightens, the circuit is broken, and the 
heating goes off. Nowadays, sensitive temperature sensors have replaced most 
metal thermostats, but the principle of how they control the heating system 
using feedback from the environment remains the same  .  

 Wiener   argued that although the physical sciences had been the dominant 
sciences of the past, the future would be more concerned with communication 
and control, and he believed that the computer would play a major role in such a 
future. He called his new science  cybernetics  from the Greek word  kybernetes , mean-
ing  steersman . Wiener used the name to refer to the control of complex systems, 
but the prefi x  cyber-  has acquired a variety of computer-related meanings. For 
example, we now talk about  cyberspace , meaning the online world of computer 
networks, and  cyberwarfare , for attacks on an enemy’s information systems  . 

 Scientists   at a neurophysiology meeting in New York in 1942 took the fi rst 
steps toward defi ning the fi eld of artifi cial intelligence (AI). Wiener, with his col-
leagues Julian Bigelow and Arturo Rosenblueth, argued that an animal’s nervous 
system could be thought of in engineering terms as a complicated network of 
 neurons , the cells in the brain that process information, with feedback loops. They 
suggested we can think of computing systems in biological terms in the same 
way. It was through feedback, they concluded, that an engineering system could 
have a “defi nite purpose.” This discussion marked the beginning of the fi elds of AI 
and  cognitive science  – the study of thinking, learning, and intelligence – although 
these terms were not introduced until more than a decade later. Cognitive sci-
ence is now seen as bringing together computer modeling, neurophysiology, and 
psychology to try to understand how the human mind works  . 

 Wiener and von Neumann were not the only ones thinking about the pos-
sibility of AI.   In 1941, during World War II, Alan Turing had been exploring 
ideas about what he called “machine intelligence.”   Turing had helped design 
the  bombe , a mechanical device used in the British code-breaking center at 
Bletchley Park to decrypt secret messages generated by the German Enigma 
machine. The bombe had demonstrated the value of performing “guided 
searches” to save time by reducing a large range of possible solutions to a man-
ageable number  .   Turing and his fellow code breaker Donald Michie ( B.13.2 ) 
had many discussions about how similar ideas could be used to create a com-
puter chess program  . In 1950, in his famous paper “Computing Machinery and 
Intelligence,” he introduces the idea of what is now known as the  Turing Test . 
In the Turing Test, if a human being cannot consistently tell whether questions 
are being answered by a computer or by another human being, then the com-
puter has passed the test. In his paper, Turing considered the question “Can 
machines think?” He proposed replacing this question by another, more prac-
tical question based on what he called the  imitation game . The essence of the 
game is that there are three people in different rooms – a man A, a woman 
B, and an interrogator C. The three people can communicate only by sending 
typewritten messages. The object of the game is for the interrogator C to deter-
mine whether A or B is the woman by asking questions of each of them. Turing 
now asks the question:

  “What will happen when a machine takes the part of A in this game?” Will 
the interrogator decide wrongly as often when the game is played like this 

Electrical contact

Electrical contact

 Fig. 13.1.      Bimetallic   thermostat made 

from iron (blue) and copper (orange). In 

cold, the copper contracts more and it 

bends the bimetal strip downward  .  

 B.13.2.      Donald   Michie (1923–2007) 

worked in the British code-breaking 

center at Bletchley Park during 

World War II. He was one of the 

pioneers of AI in the U.K. computer 

science research community  .  
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265Artii cial intelligence and neural networks

as he does when the game is played between a man and a woman? These 
questions replace our original, “Can machines think?”  3      

 The Turing Test is often taken as an operational defi nition of intelligence. In 
its modern form, it reads, “A computer passes the test if a human interrogator, 
after posing some written questions, cannot tell whether the written responses 
come from a person or from a computer.”  4   To pass the test, computers will need 
to complete the following tasks: to understand natural language; reason about 
the information expressed by words and sentences; and learn from experience. 
In 1950, Turing was cautiously optimistic:

  I believe that in about fi fty years’ time it will be possible, to programme 
computers, with a storage capacity of about 10 9 , to make them play the 
imitation game so well that an average interrogator will not have more than 
70 per cent chance of making the right identifi cation after fi ve minutes of 
questioning. The original question, “Can machines think?” I believe to be 
too meaningless to deserve discussion. Nevertheless I believe that at the 
end of the century the use of words and general educated opinion will have 
altered so much that one will be able to speak of machines thinking without 
expecting to be contradicted.  5    

 Turing also gave a famous example of the type of conversation that he imagined 
it would be possible to have with a “sonnet-writing” machine in the future. It 
would be diffi cult to learn whether the machine has really understood some-
thing or whether, as he says, it has just “learnt it parrot fashion”:  6    

  Interrogator:     In the fi rst line of your sonnet which reads “Shall I compare 
thee to a summer’s day”, would not “a spring day” do as well or better? 

 Witness:     It wouldn’t scan. 
 Interrogator:     How about “a winter’s day”? That would scan all right. 
 Witness:     Yes, but nobody wants to be compared to a winter’s day. 
 Interrogator:     Would you say that Mr. Pickwick reminded you of 

Christmas? 
 Witness:     In a way. 
 Interrogator:     Yet Christmas is a winter’s day, and I do not think Mr. 

Pickwick would mind the comparison. 
 Witness:     I don’t think you are serious. By a winter’s day one means a 

typical winter’s day, rather than a special one like Christmas.  7      

 If a computer were capable of such a sophisticated dialog, requiring knowledge 
both of literature and Mr. Pickwick as well as of the signifi cance of Christmas, 
it would be hard to make a distinction between “real” and artifi cial thinking. 
  At present, we still seem to be far from this goal. ELIZA, one of the earliest 
“chatbot” programs, simulated an interview with psychotherapist and could be 
superfi cially very convincing (see the short summary of ELIZA at the end of this 
chapter, for an example). Its author, Joseph Weizenbaum, chose the psycho-
therapy model precisely because it would not require a signifi cant knowledge 
base. ELIZA imitated client-centered therapy, a form of psychotherapy that 
tries to increase the patient’s insight and self-understanding by restating the 
patient’s feelings and thoughts  . 
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 Since   1991, a New York businessman, Hugh Loebner ( Fig. 13.2 ), has 
 sponsored an annual Turing Test competition; and in 2012, the centenary of 
Turing’s birth, the contest was held at Bletchley Park. In more than twenty 
years of competition, no chatbot program has come close to deceiving a sophis-
ticated judge  .  

 An   everyday demonstration of a computer’s inability to pass something like 
a Turing Test is a reverse version based on recognizing distorted letter shapes. 
To pass this reverse Turing Test, a computer would need highly developed per-
ceptual abilities that are currently beyond the capability of the most advanced 
computer vision algorithms. These puzzles were called CAPTCHAs ( Fig. 13.3 ) 
by Luis von Ahn ( B.13.3 ), an acronym standing for “Completely Automated 
Public Turing test to tell Computers and Humans Apart.” Humans can easily 
recognize the distorted letters, so CAPTCHAs enable websites to distinguish 
between human users and automated “robot” programs trying to access the 
site. It is estimated that more than two hundred million CAPTCHAs are solved 
every   day  .    

  From logic theorist to DENDRAL 

 The   term  artifi cial intelligence  was coined by John McCarthy ( B.13.4 ) in a 
workshop at Dartmouth College in New Hampshire in 1956. McCarthy and 
fellow AI pioneers Marvin Minsky, Claude Shannon, and Nathaniel Rochester 
wrote a proposal for the workshop stating:

  The study is to proceed on the basis of the conjecture that every aspect of 
learning or any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it. An attempt will be made 
to fi nd how to make machines use language, form abstractions and concepts, 
solve kinds of problems now reserved for humans, and improve themselves. 
We think that signifi cant advance can be made in one or more of these 
problems if a carefully selected group of scientists work on it together for a 
summer  .  8      

 The   highlight of the Dartmouth workshop was a reasoning program developed 
by Allen Newell and Herbert Simon ( B.13.5 ) from Carnegie Tech, now Carnegie 
Mellon University.   Their “Logic Theorist” program was able to prove theorems 
using simple symbolic logic. It represented each problem as a tree structure 
with the root being the initial  hypothesis , a tentative explanation that could 
be tested by further investigation. Each branch of the tree was a deduction 
based on the rules of logic. To prevent the tree from growing uncontrollably, 
Newell and Simon needed a way to remove unwanted branches. To do so, they 
introduced  heuristics , rules of thumb that enabled the program to select only 
those branches of the overall search tree that seemed most promising  . They 
said, “Logic Theorist’s success does not depend on the ‘brute force’ use of the 
computer’s speed, but on the use of heuristic processes like those employed by 
humans.”  9    

 In   their monumental work  Principia Mathematica , Alfred Whitehead and 
Bertrand Russell had attempted to systematize the principles of mathematical 

 Fig. 13.2.      The   Loebner Prize for $100,000 

was established in 1990 for the AI sys-

tem that fi rst passes the Turing   Test.  

 Fig. 13.3.        CAPTCHAs can be easily 

read by a human, but not by a com-

puter. This is one commonly used 

mechanism to distinguish between 

human visitors to websites and robotic 

crawlers  .  

 B.13.3.      Luis   von Ahn is an asso-

ciate professor at Carnegie Mellon 

University in Pittsburgh. He is per-

haps best known for his invention of 

CAPTCHAs, those annoying distorted

characters that only humans, not 

computers, are supposed to be able

to read  . 
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267Artii cial intelligence and neural networks

logic. Newell and Simon attempted to use Logic Theorist to reproduce the 
proofs of fi fty-two theorems in Whitehead and Russell’s book:

  Let us consider more specifi cally whether we should regard the Logic Theorist 
as creative. When the Logic Theorist is presented with a purported theorem 
in elementary symbolic logic, it attempts to fi nd a proof. In the problems 
we have actually posed it, which were theorems drawn from  Chapter 2  of 
Whitehead and Russell’s  Principia Mathematica , it has found the proof about 
three times out of four.  10    

 On being told that the program had found a shorter proof for one of their 
theorems, Bertrand Russell was reportedly delighted. Newell, Shaw, and Simon 
attempted – unsuccessfully – to publish their result in the  Journal of Symbolic 

Logic  with the Logic Theorist program listed as a   co-author  . 
 McCarthy   moved from Dartmouth to MIT in 1958 and in the same year made 

three major contributions to computer science. One was the suggestion for time-
sharing systems, as we have seen in  Chapter 3 .   A second was his invention of the 
Lisp programming language, an acronym derived from LISt Processing. Lisp was 
the dominant language for AI applications for the next thirty years  .   McCarthy’s 
third major contribution was to lay out a research agenda for the AI community in 
a paper called “Programs with Common Sense.” In the paper, McCarthy described 
a hypothetical AI program he called Advice Taker  . Like Newell and Simon’s Logic 
Theorist and their ambitious follow-up, the General Problem Solver, Advice Taker 
would not only use logic and  symbol manipulation , the manipulation of characters 
rather than numbers, but also incorporate general knowledge about the world to 
assist in its deductive process:

  The main advantages we expect the advice taker to have is that its behavior will 
be improvable merely by making statements to it, telling it about its symbolic 

 B.13.4.      A famous   photograph of four of the founding fathers of AI. From left to right 

they are Claude Shannon, John McCarthy, Ed Fredkin, and Joseph Weizenbaum  .  

 B.13.5.      Herbert   Simon (1916–2001) and Allen Newell (1927–92) were pioneers in the fi eld 

of AI. They were awarded the Turing Award in 1975 for their work in AI, and Simon also won the 

Nobel Prize in economics in 1978 for his theory of decision making  .  
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environment and what is wanted from it. To make these statements will require 
little if any knowledge of the program or the previous knowledge of the advice 
taker. One will be able to assume that the advice taker will have available to it a 
fairly wide class of immediate logical consequences of anything it is told and its 
previous knowledge. This property is expected to have much in common with 
what makes us describe certain humans as having common sense. We shall 
therefore say that a program has common sense if it automatically deduces for 
itself a suffi ciently wide class of immediate consequences of anything it is told 
and what it already knows.  11    

 Advice Taker embodied the idea that an AI system needed an explicit represen-
tation of the world and the ability to manipulate this knowledge with logical 
deductive processes. This vision set the agenda for AI research for the next few 
decades  . 

 Marvin   Minsky ( B.13.6 ) arrived at MIT at the same time as McCarthy, 
and together they set up the MIT Artifi cial Intelligence Laboratory. Their 
research collaboration lasted only a few years before their approaches to 
AI diverged. Minsky concentrated on just getting systems to do interesting 
things – “scruffy AI.” Minsky’s students focused on solving problems in very 
limited  domains , application areas not requiring a broad general knowledge  . 
  Successful examples included the domains of integral calculus, geometry, 
and algebra as well as a famous series of problems in the “blocks world” 
( Fig. 13.4 ), a simplifi ed world consisting of some toy blocks sitting on a table. 
SHRDLU, developed by Terry Winograd, was a computer program that could 
understand instructions and carry on conversations about the blocks world  . 
  Unlike Minsky, McCarthy emphasized knowledge representations and rea-
soning using formal logic. In 1963 McCarthy left MIT to start the Stanford 
Artifi cial Intelligence Laboratory  .   

 As   computers became more powerful and as computer memories became 
larger, there was a movement for researchers to explicitly build “knowledge” 
into AI applications and to develop  expert systems , computer programs that imi-
tate the decision making of a human expert.   One of the pioneers of the expert-
systems approach to AI was Ed Feigenbaum ( B.13.7 ) at Stanford University. In 
1969, with Bruce Buchanan and Joshua Lederberg, a geneticist and recipient of 
the Nobel Prize, Feigenbaum developed the DENDRAL program that attempted 
to capture the expert knowledge of chemists and to apply that knowledge by 
employing a set of rules. The name DENDRAL was an abbreviation of  dendritic 

algorithm ,  dendritic  referring to the branching fi bers of neurons that pick up nerve 
impulses. The problem that DENDRAL attempted to solve was that of determin-
ing the molecular structure of a substance using data provided by a mass spec-
trometer, an instrument that separates particles of different masses in a similar 
way to light spread out into different colors by a prism. To identify the precise 
structure of a compound, a chemist must deduce its chemical elements from the 
set of masses of fragments of the compound. For large molecules, this generates 
a huge number of possible structures. To make the problem manageable, expert 
chemists use their own rules of thumb – in other words,  heuristics  – to recognize 
well-known substructures and thereby reduce the number of possibilities for the 
overall structure of the compound. DENDRAL combined a knowledge base, writ-
ten in the form of rules, with a reasoning engine written in Lisp. DENDRAL was 

 B.13.6.      Marvin   Minsky is one of 

the original pioneers of AI. He is 

also credited with the invention of 

the fi rst head-mounted graphical 

display in 1963. He also acted as 

a scientifi c adviser for Stanley 

Kubrick’s fi lm  2001: A Space Odyssey . 

Science fi ction writer Isaac Asimov 

described Minsky as one of only 

two people he would admit were 

smarter than he was. The other 

was cosmologist and astronomer 

Carl Sagan  .  

 Fig. 13.4.      The   SHRDLU “blocks world” 

program was written by Terry Winograd 

at MIT. The program could understand 

and execute instructions given in natu-

ral language to move different types of 

blocks around in a virtual box  .  
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269Artii cial intelligence and neural networks

thus the fi rst successful “knowledge-intensive” AI system because it automated 
the decision-making and problem-solving processes of experts in a fi eld.  

 Feigenbaum   looked at other domains where this approach could be 
applied. With Bruce Buchanan and Edward Shortliffe, he developed the MYCIN 
expert system to diagnose and treat blood infections   ( Fig. 13.5 ). Using about 450 
rules developed from interviews with experts, MYCIN performed better than 
many doctors. The success of DENDRAL, MYCIN, and other expert systems led 
to an overenthusiastic rush to produce commercial systems in the 1970s and 
1980s  . Although the high hopes of the pioneers were not fully realized, knowl-
edge-based expert systems are still used for applications ranging from straight-
forward help-desk and technical support to manufacturing and robotics. For 
narrow, well-defi ned problems, expert systems can be successful. However, a 
major limitation of this rule-based approach to knowledge is that these systems 
do not generalize well to larger, broader problems. In addition, the develop-
ment and capture of the knowledge rules are very labor intensive and usually 
very specifi c to the case at hand. Because almost nothing in real life is simply 
true or false in the way that abstract logic requires, for any commonsense rule 
about the world there must also be a large number of exceptions  .  

 The   creation   of taxonomies and classifi cations dates back to the 300s  B.C. , 
when Aristotle wrote his  Organon , a collection of his works on logic. This included 
a section on categories that we would now call a type of  ontology , the study of 
what kinds of things exist. It was the Swedish biologist Carolus Linnaeus who 
invented our present system of biological classifi cation in the 1700s   ( Fig. 13.6 ). 
Computer scientists have borrowed the word  ontology  from the philosophers to 
describe a structural framework for organizing knowledge. An ontology speci-
fi es a set of concepts within a domain that a computer can use to reason about 
objects in the domain and about the relationships between them. AI researchers 
have long believed that useful ontologies are essential for effective AI systems. 
One response to this need is therefore to expand the knowledge base of the 
computer by producing a comprehensive vocabulary of all of the important con-
cepts in a given domain, including the objects in the domain and the properties, 
relations, and functions needed to defi ne the objects and specify their actions.  

 One   of the most ambitious ontology projects is the Cyc project, started 
by Douglas Lenat in 1984. The name Cyc is a shortened form of  encyclopedia . 
The project is an attempt to build a knowledge base containing much of the 
everyday, commonsense knowledge of a human being. Typical pieces of knowl-
edge represented in the database are statements such as “Every tree is a plant” 
and “Plants die eventually.” After more than twenty-fi ve years, Cyc’s knowl-
edge base contains more than one million assertions, rules, or commonsense 
ideas. However, its creators estimate that it will need more than one hundred 
times that many entries before Cyc can begin to learn for itself from written 
material  . 

 The   DBPedia ( Fig. 13.7 ) project has taken a different approach and uses a 
method called  crowdsourcing , soliciting content from a large group of people, to 
extract structured data from Wikipedia. DBPedia’s 2012 release contained an 
  ontology with more than two million concepts together with about one hundred 
facts per concept. The researchers hope that the Cyc and DBPedia  projects will 
help realize Tim Berners-Lee’s vision of the Semantic Web, in which machines 

 B.13.7.      Ed   Feigenbaum received 

the Turing Award for his work in 

expert systems in 1994. He is often 

known as the “father of expert sys-

tems.” He also served as chief sci-

entifi c adviser for the U.S. Air Force 

and received their Exceptional 

Civilian Service Award in 1997  .  

 Fig. 13.5.      The   MYCIN project was an 

expert system designed to diagnose and 

treat blood infections. It was developed 

at Stanford by Edward Shortliffe with 

Bruce Buchanan and Ed Feigenbaum  .  
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can process and understand the actual data on the web. This vision will become 
reality when web search engines have access to machine-readable knowledge 
that enables them to reason and make “intelligent”   decisions  .  

 The early optimism of the Dartmouth workshop attendees – Allen Newell, 
Herbert Simon, John MacCarthy, and Marvin Minsky – was typifi ed by the 
quotation that introduces this chapter. A more realistic perspective has now 
replaced this optimism.   As the computer scientist David McAllester said in a 
1998 paper on machine learning:

  In the early period of AI it seemed plausible that new forms of symbolic 
computation … made much of classical theory obsolete. This led to a form of 
isolationism in which AI became largely separated from the rest of computer 
science. This isolationism is currently being abandoned. There is a recognition 
that machine learning should not be isolated from information theory, that 
uncertain reasoning should not be isolated from stochastic modeling, that 
search should not be isolated from classical optimization and control, and 
that automated reasoning should not be isolated from formal methods and 
static analysis  .  12      

  Computer chess and Deep Blue 

 In   the early days of computing, most people thought that computers were 
just machines that were capable of carrying out complex arithmetic calcula-
tions very rapidly.   A few of the early pioneers, like Turing and Shannon, spec-
ulated that computers one day would be able to play chess, a task that had 
always up until then been considered to require human intelligence  .   Donald 
Michie summarized the interest of chess for AI as follows:

  Computer chess has been described as the “Drosophila melanogaster” of 
machine intelligence. Just as Thomas Hunt Morgan and his colleagues were 
able to exploit the special limitations and conveniences of the “Drosophila” 
fruit fl y to develop a methodology of genetic mapping, so the game of chess 
holds special interest for the study of the representation of human knowledge 
in machines. Its chief advantages are: (1) chess constitutes a fully defi ned and 
well-formalized domain; (2) the game challenges the highest levels of human 
intellectual capacity; (3) the challenge extends over the full range of cognitive 
functions such as logical calculation, rote learning, concept-formation, 
analogical thinking, imagination, deductive and inductive reasoning; (4) a 
massive and detailed corpus of chess knowledge has accumulated over the 
centuries in the form of chess instructional works and commentaries; (5) a 
generally accepted numerical scale of performance is available in the form of 
the U.S. Chess Federation and International ELO rating system  .  13    

 Claude   Shannon’s   1950 article “Programming a Computer for Playing Chess” 
that spelled out a complete set of ideas for computer chess, including how to 
represent board positions, searching the “game tree” of possible moves, and 
using procedures called  evaluation functions , by which players use knowledge of 
the game to judge each possible move and choose the best ones. In game the-
ory, a  game tree  is a graphical representation of a sequential game consisting of 

 Fig. 13.6.      Swedish   botanist, physician, 

and zoologist, Carolus Linnaeus, pub-

lished his classifi cation of living things 

in 1735. This was an early attempt at 

constructing a knowledge representation 

for species of animals and plants  .  

 Fig. 13.7.      The   DBpedia project is trying 

to structure the content of Wikipedia 

by using an army of volunteers – 

‘crowdsourcing’ – to perform the work 

required  .  
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271Artii cial intelligence and neural networks

 nodes , the points at which players can take actions, and  branches , which represent 
the possible moves at each node  . In 1951,   Dietrich Prinz wrote the fi rst chess 
program able to solve simple endgame problems. Prinz worked for Ferranti, a 
British computer company marketing the Manchester Mark I machine, the fi rst 
commercially available general-purpose computer  .   Five years later, Stan Ulam 
and a group at Los Alamos National Laboratory wrote a program that could play 
a full game of chess, but only on a reduced board of 6  ×  6 squares and no bish-
ops  .   It was not until 1957 that IBM programmer Alex Bernstein wrote the fi rst 
complete chess program for the IBM 704 computer, one of the last vacuum-tube 
computers. The chess program took about eight minutes to make a move after 
completing a search that could look about two moves ahead  . Before we exam-
ine how a chess program works, let us look at a simpler problem, a computer 
program for the game called tic-tac-toe or noughts and crosses. 

 We shall label the two players MAX, who makes the X moves, and MIN, 
who makes the O moves. The total game tree consists of all the legal moves 
from all the possible confi gurations of Xs and Os. MAX moves fi rst, and from 
the top node of the tree, MAX can make nine possible moves – a branching fac-
tor of nine (see  Fig. 13.8 ). Then it is MIN’s turn to make one of the eight remain-
ing moves. This alternation continues until either a line of Xs or Os is achieved 
or all spaces on the board are fi lled. There are 9  ×  8  ×  7  ×  6  ×  5  ×  4  ×  3  ×  2  ×  1 
nodes, or 362,880 nodes, in the tree. The game has a simple evaluation function 
by which a player chooses the best move: +1 for a win for MAX,  ½  for a draw, 
and 0 for a win for MIN. A computer program can easily evaluate all possible 
paths and positions leading to the fi nal move of the game.  

 For the fi rst move in chess, there are twenty possible moves, sixteen with 
the eight pawns and four with the two knights. A typical game is around forty 
moves, and for each position there is an average of thirty to thirty-fi ve possible 
moves to explore. Because the entire chess game tree would contain more than 
10 40  nodes, an exhaustive search strategy looking at all the fi nal positions is 
not possible. Because we cannot get to the fi nal positions, the evaluation func-
tion for chess is also much more complicated. For example, a chess evaluation 
function usually has a weighted sum of the various factors that are thought to 

 Fig. 13.8.      A (partial) game tree for tic-tac-

toe or noughts and crosses.  
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infl uence the value of a position. These include factors such as the power of 
each piece and its possible mobility, control of the center of the chess board, 
and the safety of the king. A program therefore needs to fi nd strategies that 
optimize moves for the player MAX, at the same time assuming that the 
opponent, MIN, will make an optimum move in response.   Such a strategy is 
provided by the  minimax algorithm , a procedure that minimizes the risk for a 
player. Because the number of moves that need to be examined by the mini-
max algorithm grows at an increasingly rapid rate with the depth of the tree, 
computer chess programs can only afford to evaluate several moves ahead, 
not all the way to the fi nal result node  .   In their 1958 chess program dubbed 
NSS from their initials, Allen Newell and Herbert Simon from Carnegie Mellon 
University and Cliff Shaw from the RAND Corporation introduced an optimiza-
tion technique called  alpha-beta pruning  ( Fig. 13.9 ) for the minimax search algo-
rithm. Alpha-beta pruning decreases the search time by stopping evaluation 
of a move when at least one possibility has been found that proves the move 
to be worse than a previously examined move. In this way, several branches 
of the search tree can be “pruned” and the search time devoted to deeper 
exploration of more promising branches. In addition to such pruning tech-
niques, modern chess programs also include tables of the standard openings 
and   endgames  .  

 The   fi rst computer versus computer chess match featured the Kotok-
McCarthy program written by Alan Kotok, John McCarthy, and their colleagues 
from MIT pitted against the Russian ITEP program written by scientists at the 
Institute of Theoretical and Experimental Physics in Moscow ( Fig. 13.10 ). Playing 
by telegraph in 1967, the match ended in a 3 to 1 victory for ITEP  .   In the same 
year, MIT’s Mac Hack, written by Richard Greenblatt and colleagues, became 
the fi rst chess program to play in a tournament with humans. Its Elo rating was 
1400, well above the novice level of 1000 on the chess rating system developed 
by the Hungarian-born physicist  Á rp á d  É l ő   .   In 1968, the international chess 
master David Levy made a famous bet with John McCarthy that no computer 
would beat him at chess in the next ten years, saying:

  Clearly, I shall win my … bet in 1978, and I would still win if the period were 
to be extended for another ten years. Prompted by the lack of conceptual 
progress over more than two decades, I am tempted to speculate that a 
computer program will not gain the title of International Master before the 
turn of the century and that the idea of an electronic world champion belongs 
only in the pages of a science fi ction book.  14      

 Levy played his 1978 match against the Chess 4.7 program, the strongest com-
puter chess program of the time, written by Larry Atkin and David Slate from 
Northwestern University. Levy won by 4.5 to 1.5 but he said later, “I had proved 
that my 1968 assessment had been correct, but on the other hand my opponent 
in this match was very, very much stronger than I had thought possible when 
I started the bet  .”  15   

 In   1980, the celebrated MIT computer scientist Ed Fredkin offered prizes 
for successive milestones in computer chess. The smallest prize of $5,000 went 
to Ken Thompson, inventor of the Unix operating system, and Joe Condon, 
when their Belle chess program earned a U.S. Master rating in 1983. Belle was 
the fi rst computer chess system to use custom-designed chips, and it won the 
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 Fig. 13.9.      In   this example of alpha-beta 

pruning, the moves of the game are 

represented by a binary min-max tree. 

The algorithm traverses the tree starting 

from the bottom left and chooses the 

maximum of the fi rst two values. The 

algorithm then moves to the red branch 

and fi nds that the fi rst value is six. Thus 

what must be passed on to the min node 

must be more or equal to six. Because 

we already know that there is a lower 

value of two at the min node we do not 

need to evaluate branch B of the red 

node because the algorithm will never 

use this part of the tree. We proceed in 

the same way to eliminate branch C  .  

 Fig. 13.10.      A photograph of the Institute 

of Theoretical and Experimental Physics 

in Moscow.  
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world computer chess championship in 1980. The U.S. Department of State 
temporarily confi scated Belle in 1982 as it was heading to the Soviet Union to 
participate in a computer chess tournament. The State Department claimed it 
was a violation of U.S. technology transfer law to ship a high-technology com-
puter to a foreign country  .   The next prize of $10,000 for the fi rst program to 
achieve an Elo rating of 2500 was awarded to a computer called Deep Thought 
in August 1989. Deep Thought was a computer specifi cally designed to play 
chess by Feng-hsiung Hsu and his fellow graduate student Murray Campbell at 
Carnegie Mellon University. IBM then recruited Hsu and Campbell to develop a 
successor to Deep Thought  .   The result was Deep Blue, a parallel computer with 
thirty processors, enhanced by 480 special-purpose chess chips ( Fig. 13.11 ). 
Deep Blue was capable of evaluating two hundred million positions a second 
and could typically search six to eight moves ahead, and sometimes more. A 
team of three chess grand masters provided its opening library, and its end-
game database included many six-piece endgames as well as those with fi ve 
pieces and fewer. In May 1997, world champion Garry Kasparov took on Deep 
Blue in a six-game match held in New York ( Fig. 13.12 ). The computer won a 
close match with two wins for Deep Blue, one for Kasparov, and three draws. 
The $100,000 Fredkin Prize went to Feng-hsiung Hsu, Murray Campbell, and 
Joseph Hone from IBM. After the match, Kasparov wrote:

  The decisive game of the match was Game 2, which left a scar in my 
memory … we saw something that went well beyond our wildest expectations 
of how well a computer would be able to foresee the long-term positional 
consequences of its decisions. The machine refused to move to a position that 
had a decisive short-term advantage – showing a very human sense of   danger  .  16        

  Neural networks 

 In   the   audience for Norbert Weiner’s neurophysiology talk in 1942 was 
Warren McCulloch ( B.13.8 ), a professor of psychiatry in Chicago. With a pre-
cocious eighteen-year-old mathematician called Walter Pitts, McCulloch devel-
oped the fi rst model of the brain as an electrical network of interconnected 
neurons. They argued that their idealized “neural network” model captured 
the key features of the brain’s physiology. Von Neumann was so impressed by 
this work that, together with Wiener and Howard Aiken from Harvard, he orga-
nized a small workshop at Princeton in January 1945 at which McCulloch and 
Pitts were invited to present their neural network model. Ideas from neural 
networks were fresh in von Neumann’s mind when he wrote his “Draft Report 
on the EDVAC” later that year – in which he referred to the basic functional 
units of the computer as “organs” and made comparisons of the functions of 
these units with the biological functions of neurons  .  

 The   importance   of the brain in determining human emotions was rec-
ognized by Hippocrates, the “Father of Medicine,” as long ago as 400  B.C.  He 
said, “Men ought to know that from nothing else but the brain come joys, 
delights, laughter and sports, and sorrows, griefs, despondency, and lamenta-
tions  .”  17   The human brain has a similar structure to brains of other mammals 
but is signifi cantly larger in relation to body size compared to most animals. The 
relative increase in size of the human brain is mainly due to the greater size of 

 Fig. 13.11.      IBM’s   Deep Blue chess com-

puter fi rst played Kasparov in 1996. 

On that occasion the world champion 

managed to beat the machine. Kasparov 

famously lost the rematch a year later  .  

 Fig. 13.12.      The   newspapers and other 

media portrayed the 1997 match 

between World Chess Champion Garry 

Kasparov and IBM’s Deep Blue computer 

as a battle between human and machine. 

The cover of  Newsweek  proclaimed it “The 

Brain’s Last Stand  .”  
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the  cerebral cortex , a thick layer of neural tissue that covers most of the brain (see 
 Fig. 13.13 ). The name  cortex  comes from the Latin word for the bark of a tree, but 
in this case it means the outer layer of an organ. The cortex is deeply folded and 
ribbed because such folding maximizes the amount of brain surface that can fi t 
into the limited space of the skull. More than two-thirds of the surface area of a 
human brain is buried in these folds, called  sulci . The cerebral cortex plays a key 
role in memory, perception, thought, language, and consciousness.  

 The   nineteenth century brought rapid progress in biological science thanks 
to the wide use of microscopes. Theodor Schwann and Matthias Schleiden had 
suggested cell theory, according to which all living organisms are made up of 
cells, in 1838. But not all scientists were convinced that cell theory applied to 
brain tissue. As a result, many scientists experimented with different chemi-
cal substances for coloring the brain tissue so that individual cells would be 
made visible  .   A Spanish physician, Santiago Ram ó n y Cajal improved on a cell-
staining method originally developed by the Italian doctor Camillo Golgi, and 
used this new technique to investigate the central nervous system of many 
living creatures. It was Ram ó n y Cajal’s work that fi rst revealed the complexity 
of biological neural networks. He wrote:

  What beauty is shown in the preparations obtained by the precipitation of 
silver dichromate deposited exclusively onto the nervous elements! But, on 
the other hand, what dense forests are revealed, in which it is diffi cult to 
discover the terminal endings of its intricate branching.… Given that the 
adult jungle is impenetrable and indefi nable, why not study the young forest, 
as we would say in its nursery stage  .  18    

 We now know that neurons consist of a cell body or  soma  with two types of 
nerve fi ber growing from the cell,  dendrites  and  axons . The cell body contains 
the genetic information and the molecular machinery required for the func-
tioning of the neuron. The role of the dendrites is to receive electrical or chem-
ical signals from other neurons and provide the input to the cell of the neuron. 
The axon, usually much longer than the dendrites, carries nerve impulses from 
the cell body to other neurons.   Ram ó n y Cajal also suggested that these signals 
always fl ow in one direction, from the dendrites of the cell to the axon, and that 
the axon is connected to dendrites of other cells by structures called  syn apses  
(see  Fig. 13.14 ). The word  synapse  comes from the Greek words  syn , meaning 
 together , and  haptein , meaning  to clasp . Golgi and Ram ó n y Cajal were awarded 
the 1906 Nobel Prize in physiology or medicine “in recognition of their work 
on the structure of the nervous system  .”  19    

 The number of neurons in the brain varies widely from species to species. 
The human brain is believed to contain more than eighty-fi ve billion neurons, 
while the brain of a cat has only one billion and a chimpanzee about seven bil-
lion neurons. In addition to these vast numbers of neurons, the brain has an 
even larger number of synapses. Each human neuron has, on average, seven 
thousand synaptic connections to other neurons. There are many different 
types of neurons, and we will describe only how a “typical” neuron functions. 
The incoming signals reaching a neuron from all of its dendrites are collected 
and processed inside the cell body. Any output signal resulting from this input 

 Fig. 13.13.      A   diagram of the cerebral 

lobes of a human brain: frontal lobes 

in pink, parietal lobe in green, and the 

occipital lobe in blue  .  

 B.13.8.        Warren McCulloch (1898–

1969) was an early pioneer of AI. 

With Walter Pitts he proposed the 

fi rst mathematical model of a neural 

network. John von Neumann was 

very impressed by the McCulloch-

Pitts model and the paper and its 

physics terminology infl uenced him 

as he wrote the EDVAC draft report  .  
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275Artii cial intelligence and neural networks

travels down the axon and is passed on to the dendrites of neighboring neurons 
through the synapses (see  Fig. 13.15 ). A typical neuron operates on a “thresh-
old” or “all-or-none” principle meaning that the input stimulation, represented 
by the sum of all the incoming signals, must be above a certain threshold for 
the cell to produce an output signal.  

 The cerebral cortex consists of up to six horizontal layers of neurons and 
is about 2.5 millimeters or one-tenth of an inch thick. The neurons in each of 
these layers connect vertically to neurons in adjacent layers.   With these new 
discoveries about the brain in the fi rst half of the twentieth century, Nobel 
Prize recipient Charles Sherrington poetically imagined how the workings of 
the brain would look as it woke up from sleep:

  The great topmost sheet of the mass, that where hardly a light had twinkled 
or moved, becomes now a sparkling fi eld of rhythmic fl ashing points with 
trains of traveling sparks hurrying hither and thither. The brain is waking 
and with it the mind is returning. It is as if the Milky Way entered upon 
some cosmic dance. Swiftly the head mass becomes an enchanted loom 
where millions of fl ashing shuttles weave a dissolving pattern, always a 
meaningful pattern though never an abiding one; a shifting harmony of 
  subpatterns  .  20    

 As we have seen, Wiener, von Neumann, Turing, and other early computer pio-
neers were fascinated with the possibility of computers performing operations 
that would normally be classifi ed as requiring intelligence.   Warren   McCulloch 
and Walter Pitts had produced a simple mathematical model of a neuron that 
only “fi red” when the combination of its input signal exceeded a certain thresh-
old value (see  Fig. 13.16 ). In their famous 1943 paper “A Logical Calculus of 
the Ideas Immanent in Nervous Activity,” they showed that a network of such 
neurons could carry out logical functions. They also suggested that, much like 
a human brain, these artifi cial neural networks (ANNs) could learn by forming 
new connections and by modifying the neural thresholds  .   Alan Turing put for-
ward similar ideas in an unpublished paper on “Intelligent Machinery” in 1948. 
Turing suggested, “The cortex of an infant is an unorganised machine, which 
can be organised by suitable interfering training  .”  21    

 The   basis   of modern ANNs is a mathematical model of the neuron called 
the  perceptron  introduced by Frank Rosenblatt in 1957.   In the original model 

Nucleus

Axon

Cell body

Dendrite

Node of

Ranvier

Myelin sheath

Schwann cell

Axon Terminal

 Fig. 13.15.      Sketch of   a biological neural 

network showing dendrites, axons, and 

synapses  .  

 

(a)

(b)

 
 Fig. 13.14.      Santiago   Ram ó n y Cajal’s 

drawing of: (a) a Golgi-stained cortex of 

a six-week-old human infant and (b) cells 

of the chick cerebellum  .  
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of McCulloch and Pitts, the input could only be either 0 or 1. In addition, 
each input “dendrite” had an associated “weight” that was either +1 or –1 to 
represent inputs that tended either to excite the neuron to fi re or to inhibit 
the neuron from fi ring, respectively. The model calculated the weighted 
sum of the inputs – the sum of each input multiplied by its weight – and 
checked whether this sum was greater or smaller than the threshold value. 
If the weighted sum was greater than the threshold, the model neuron fi red 
and emitted a 1 on its axon. Otherwise, the output remained 0  . Rosenblatt’s 
perceptron model allowed both the inputs to the neurons and the weights to 
take on any value. In addition, the simple activation threshold was replaced 
by a smoother  activation function , a mathematical function used to transform 
the activation level of the neuron into an output signal, such as the function 
shown in  Figure 13.17 . ANNs are just interconnected layers of perceptrons as 
shown   in  Figure 13.18 .   

 For numerical calculations, computers are very much faster than 
humans at performing arithmetic. For tasks involving  pattern recognition –  
the automatic identifi cation of fi gures, shapes, forms, or patterns to recog-
nize faces, speech, handwriting, objects, and so on – even young children 
are still very much better than the most powerful computers. The hope for 
ANN research is that by mimicking how our brains learn, these artifi cial 
networks can be trained to recognize patterns. The study of ANNs is some-
times called  connectionism . 

 The   publication of a famous book  Perceptrons  in 1969 by Marvin Minsky 
and Seymour Papert from MIT dashed early hopes for progress with neural net-
works. Minsky and Papert showed that a simple two-layer perceptron network 
was incapable of learning some very simple patterns. While they did not rule 
out the usefulness of multilayer perceptron networks with what they called 
“hidden” layers, they pointed out “the lack of effective learning algorithms”  22   
for such networks  .   This situation changed in the 1980s with the discovery of 
just such an effective learning algorithm.   A very infl uential paper in the jour-
nal  Nature  gave the algorithm its name: “Learning Representations by Back-
Propagating Errors” by David Rumelhart, Geoffrey Hinton ( B.13.9 ), and Ronald 
Williams  . Let us see how this  back-propagation  algorithm enables neural net-
works to learn  .  
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 Fig. 13.16.      Representation   of an artifi cial 

neuron with inputs, connection weights, 

and the output subject to a threshold 

function  .  
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 Fig. 13.17.      A   simple threshold function 

for an artifi cial neuron. The strength of 

the output signal depends on the magni-

tude of the sum of the input signals  .  
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 Imagine a simple three-layer neural network: a layer of input neurons, 
 connected to a second hidden layer of neurons, which in turn is linked to a 
layer of output neurons ( Fig. 13.18 ). Each neuron converts its inputs into a sin-
gle output, which it transmits to neurons in the next layer. The conversion 
process has two stages. First, each incoming signal is multiplied by the weight 
of the connection, and then all these weighted inputs are added together to 
give a total weighted input. In the second stage, this combined input is passed 
through an activation function, such as the function of  Figure 13.17 , to generate 
the output signal for the neuron  . To train the network to perform a particular 
task, we must set the weights on the connections appropriately. The amount of 
weight on a connection determines the strength of the infl uence between the 
two neurons. The network is trained by using patterns of activity for the input 
neurons together with the desired pattern of activities for the output neurons. 
After assigning the initial weights randomly, say to be between –1.0 to +1.0, 
then, by calculating the weighted input signals and outputs of the neurons in 
each layer of the network, we can determine the strength of the signals at the 
output neurons. For each input pattern, we know what pattern we want to 
see at the output layer, so we can see how closely our model output matches 
the desired output. We now have to adjust each of the weights so that the net-
work produces a closer approximation to our desired output. We do this by 
fi rst calculating the error, defi ned as the square of the difference between the 
actual and desired outputs. We want to change the weight of each connection 
to reduce this error by an amount that is proportional to the rate at which the 
error changes as the weight is altered. We fi rst make such changes for all the 
neurons in the output layer. We then repeat the calculation to fi nd the sensitiv-
ity to the weights connecting each layer, working backward layer by layer from 
the output to the input. The idea is that each hidden node contributes some 
fraction of the error at each of the output nodes to which it is connected. This 
type of network is known as a  feed-forward  network because the signals between 
the neurons travel in only one direction, from the input nodes, through the 
hidden nodes, to the output nodes. The learning algorithm to train the neu-
ral network is called  back propagation  because the error at the output layer is 
 propagated  – that is, passed along – backward through the hidden layer of the 
network   (see  Fig. 13.18 ). 

 In the 1990s, researchers found it hard to train neural networks with 
more than one hidden layer and two layers of weights. The problem was that 
the weights on any extra layers could not be adapted to produce signifi cant 
improvements in learning.   However, within the last few years, Geoffrey Hinton 
and colleagues from the University of Toronto, and researchers Li Deng and 
Dong Yu from Microsoft Research have shown that much deeper layered net-
works can not only be trained effi ciently but can also deliver signifi cantly 
improved learning outcomes. This  deep learning  approach is currently causing 
great excitement in the machine-learning community and is already leading to 
new commercial   applications  .  

 B.13.9.      Geoffrey   Hinton is a com-

puter scientist based in Toronto 

who was one of the fi rst computer 

scientists to show how to make com-

puters “learn” more like a human 

brain. He has recently participated 

in exciting advances using so-called 

deep neural networks. His start-up 

company on such approaches to 

computer learning and recognition 

problems was bought by Google 

in 2013. Hinton is the great-great-

grandson of logician George Boole  . 

Photo by Emma Hinton  
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 Fig. 13.18.      An   example of a three-layer 

ANN, with all connections between 

layers. The output of the neural network 

is specifi ed by the connectivity of the 

neurons, the weights on the connec-

tions, the input signals, and the thresh-

old function  .  
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    ELIZA 

 The   quest for a program that can imitate a human dates from the earliest days of computing. One of 
the earliest “chatbot” programs was written by Joseph Weizenbaum at MIT in 1964. The program was called 
ELIZA and was designed to create the impression that the user was having a conversation with a psychother-
apist. Weizenbaum named the program ELIZA after Eliza Doolitle, a working-class character who learns to 
speak with an upper-class accent in George Bernard Shaw’s play  Pygmalion . ELIZA uses an open-ended style 
of questioning similar to the client-centered psychotherapy introduced by psychologist Carl Rogers in the 
1940s. This style of therapy aims to increase a patient’s understanding and insight by asking questions about 
the person’s thoughts and feelings and by rephrasing the responses. ELIZA has no understanding of the 
meaning of the conversation, but the program does “pattern matching” and follows some simple rules for 
formulating questions. The style of conversation that results can be seen from the following example script 
from an ELIZA session:  

   Person :     Men are all alike. 
  ELIZA :     In what way? 
  Person :     They’re always bugging us about something or other. 
  ELIZA :     Can you think of a specifi c example? 
  Person :     Well, my boyfriend made me come here. 
  ELIZA :     Your boyfriend made you come here? 
  Person :     He says I’m depressed much of the time. 
  ELIZA :     I am sorry to hear that you are depressed. 
  Person :     It’s true. I am unhappy. 
  ELIZA :     Do you think coming here will help you not to be unhappy? 
  Person :     I need some help, that much seems certain. 
  ELIZA :     What would it mean to you if you got some help? 
  Person :     Perhaps I could learn to get along with my mother. 
  ELIZA :     Tell me more about your family.   

 Weizenbaum has said that ELIZA provided a parody of the responses of a nondirectional psychotherapist 
in an initial psychiatric interview. He also said that he chose the context of psychotherapy to “sidestep the 
problem of giving the program a data-base of real-world knowledge”  23   because the therapeutic situation 
is one of the few human situations in which a human being can reply to a statement with a question that 
indicates very little specifi c knowledge of the topic under discussion. The dialog could sometimes be so con-
vincing that some users thought they were dealing with a human therapist instead of a machine, and there 
are many anecdotes about people becoming emotionally engaged with the ELIZA program  . 
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