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     14     Machine learning and natural 

language processing    

  …   one naturally wonders if the problem of 
translation could conceivably be treated as a 
problem in cryptography. When I look at an 
article in Russian, I say “This is really written in 
English, but it has been coded in some strange 
symbols  .” 
 Warren Weaver  1    

  Ideas of probability: The frequentists and the 
Bayesians 

 We are all familiar with the idea that a fair coin has an equal chance of 

coming down as heads or tails when tossed. Mathematicians say that the coin 

has a probability of 0.5 to be heads and 0.5 to be tails. Because heads or tails 

are the only possible outcomes, the probability for either heads or tails must 

add up to one. A coin toss is an example of  physical probability , probability that 

occurs in a physical process, such as rolling a pair of dice or the decay of a radio-

active atom. Physical probability means that in such systems, any given event, 

such as the dice landing on snake eyes, tends to occur at a persistent rate or 

relative frequency in a long run of trials. We are also familiar with the idea of 

probabilities as a result of repeated experiments or measurements. When we 

make repeated measurements of some quantity, we do not get the same answer 

each time because there may be small random errors for each measurement. 

  Given a set of measurements, classical or  frequentist  statisticians have developed 

a powerful collection of statistical tools to estimate the most probable value of 

the variable and to give an indication of its likely error  . 

 An   alternative view of probability refl ects the strength of our belief that the 

coin is fair and not what statisticians call  biased , tending to give one result more 

frequently than the other. For example, perhaps we have reason to think that 

the coin being fair, with a 50 percent probability of coming up heads, is only 

one possibility. Maybe we think there is an equal chance that the coin is biased 

and will come up as heads 80 percent of the time. Before tossing the coin, we 

suppose that each of these two options is equally likely. But after tossing the 

coin ten times and observing eight heads, we will want to modify our beliefs. It 

now makes sense for us to believe that there is a greater than fi fty-fi fty chance 
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281Machine learning and natural language processing

that the coin is biased toward heads  . The assumptions we had before tossing 

the coin are called  prior beliefs  – or just  priors  – because we form them prior to 

gathering any evidence about the situation.   After incorporating the results of 

observations, we modify our beliefs. These modifi ed beliefs are called  posterior 

beliefs  or  posteriors .     The technology of  Bayesian inference  that we explain in this 

section determines – in a precise, mathematical way – how we should change 

our prior beliefs. Bayesian inference is a decision-making technique that takes 

into account both observed data and prior beliefs and allows us to eliminate 

the least likely options.   The frequentist interpretation of probability is fi ne 

for problems where we can make repeatable experiments and measurements. 

But such a frequentist approach cannot make predictions about nonrepeatable 

events, such as “What is the probability of an earthquake in Seattle next year?” 

or, more commonly, “What is the probability of rain in Seattle tomorrow?  ” The 

Bayesian approach can provide a mathematical basis for such predictions. 

 An   English clergyman named Thomas Bayes ( B.14.1 ) introduced what we 

now call the Bayesian approach in the 1700s. His goal was to learn the probabil-

ity of a future event given only the number of times such an event had or had 

not occurred in the past. His paper “An Essay towards Solving a Problem in the 

Doctrine of Chances” contains the following example:

  Picture a newborn witnessing his fi rst sunset. Being new to this world, he 

doesn’t know if the sun will rise again. Making a guess, he gives the chance 

of a sunrise even odds and places in a bag a black marble, representing no 

sunrise, and a white marble, representing a sunrise. As each day passes, the 

child places in the bag a marble based on the evidence he witnesses – in this 

case, a white marble for each sunrise. Over time, the black marble becomes 

lost in a sea of white, and the child can say with near certainty that the sun 

will rise each day.  2      

 This example illustrates the basic Bayesian approach. The newborn has an ini-

tial   degree of belief in whether or not the sun will rise that is just a fi fty-fi fty 

guess. This belief is the baby’s  prior . As the child gathers more data, he or she 

can update this belief to obtain a more accurate prediction for the probability 

of a sunrise, the  posterior   . 

 In   his paper, Bayes describes a  thought experiment  in laborious detail, an 

experiment that we could now simulate very easily with a computer. He ima-

gines that he turns his back to a square table and asks his assistant to throw a 

ball onto the table. The ball has just as much chance of landing at any place on 

the table as anywhere else. Bayes cannot see the table and has no idea where 

 B.14.1.      Thomas   Bayes (1701–61) was an English clergyman who did pioneering work in probabil-

ity theory. In fact, his major work was published after his death and his papers were edited by 

the Welsh scientist, clergyman, and philosopher William Price. Bayes’ paper, “An Essay towards 

Solving a Problem in the Doctrine of Chances,” containing the famous result now known as Bayes 

Theorem, was published in  Philosophical Transactions of the Royal Society  in 1763. William Price had 

a remarkable career, was a personal friend of many of the founding fathers of the United States, 

and, with George Washington, received an honorary doctorate from Yale in 1781  .  
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the ball has landed. The assistant now throws a second ball onto the table and 

reports to Bayes only that it landed to the left or right of the original ball. If it 

landed to the left, Bayes can deduce that the initial ball is slightly more likely 

to be in the right half of the table than in the left. The friend tosses another 

ball and reports that it lands to the right of the fi rst ball. From this information, 

Bayes knows that the original ball cannot be at the extreme right of the table. 

With more and more throws, Bayes can narrow down the range of positions for 

the fi rst ball and assign relative probabilities for different ranges. Bayes showed 

how it was possible to modify his initial guess for the position of the fi rst ball, 

his prior probability, and to produce a new posterior probability by taking into 

account the additional data he had been given  . 

 Although Bayes was fi rst to suggest the use of probability to represent 

belief, it was the   French mathematician Pierre-Simon Laplace ( B.14.2 ) who 

developed this idea into a useful tool for many different types of problems. 

Laplace had become interested in probability through reading a book on gam-

bling and did not initially know of Bayes’ work. Laplace published his fi rst 

paper on this subject in 1774 with the title “M é moire sur la probabilit é  des 

causes par les  é v é nements” (Memoir on the Probability of the Causes of Events), 

so that his method is often abbreviated as just the “probability of causes.” One 

of the fi rst major applications of his new theory was to an analysis of the data 

on births in London and Paris. He wanted to know whether the data supported 

the suggestion of Englishman John Graunt that slightly more boys were born 

than girls. Using the christening records from London and Paris, Laplace con-

cluded that he was “willing to bet that boys would outnumber girls for the next 

179 years in Paris and for the next 8,605 years in London.”  3   Later in his life, 

Laplace turned to frequentist techniques to deal with the large quantities of 

reliable data on all sorts of subjects. In 1810, he proved what is now called the 

 central limit theorem , which justifi es the taking of the average of many measure-

ments to arrive at the most probable value for a quantity. When the French 

government published detailed data on such events as thefts, murders, and 

suicides, all the governments in Europe started studying statistical data on a 

whole range of subjects. Bayes’ idea that the probability of future events could 

be calculated by determining their earlier frequency was lost in a welter of 

numbers. As the nineteenth century progressed, few people regarded the idea 

that the uncertainty of some prediction could be modifi ed by something as 

subjective as “belief” as a serious scientifi c approach  . Apart from a few isolated 

instances, it was not until the middle of the twentieth century that mathema-

ticians and scientists again took seriously a Bayesian interpretation of proba-

bility and considered it a valid tool for research. Today, the Bayesian approach 

has a wide variety of uses. For example, doctors employ it to diagnose diseases, 

and genetic researchers use it to identify the particular genes responsible for 

certain traits  .   

  Bayes’ Rule and some applications 

 The   modern revival of Bayesian thinking began in the 1940s. In 1946, 

Richard Cox, a physicist at Johns Hopkins University, looked again at the fun-

damentals of the Bayesian view of probability. In particular, he wanted to fi nd 

 B.14.2.      Pierre-Simon   Laplace 

(1749–1827) was one of the giants 

of mathematics and science. He 

is often referred to as the “French 

Newton” because his works made a 

major contribution to many areas 

of knowledge including astronomy, 

mechanics, calculus, statistics, and 

philosophy. One of his tasks as a 

member of the French Academy was 

to standardize European weights and 

measures and, in 1799, the meter 

and the kilogram were introduced as 

standards  .  
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a consistent set of rules for reasoning about beliefs. First, he had to decide how 

to rank degrees of belief, such as whether the coin we talked about earlier was 

a fair coin with a 50 percent probability of coming up heads or a biased coin 

with an 80 percent probability of coming up heads. He proposed ranking how 

much we believe these possibilities by assigning a real number to each proposi-

tion such that the larger the number, the more we believe the proposition.   He 

put forward two  axioms  (established rules) as being necessary for logical consis-

tency. The fi rst was that if we specify how much we believe something is true, 

we are also implicitly specifying how much we believe it is false. Using a scale 

of real numbers from 0 to 1 to specify beliefs, this axiom says that the belief 

that something is true plus the belief that the same thing is false must add up 

to one. This is the same as the usual  sum rule  for probabilities, which holds that 

the probabilities for all possible outcomes must add up to one. 

 Cox’s second axiom is more complicated. If we specify how much we 

believe proposition Y is true, and then state how much we believe proposi-

tion X is true given that Y is true, then we must implicitly have specifi ed how 

much we believe that both X and Y are true. Assuming some initial background 

information that we denote by B, we can write this belief relationship as an 

equation as follows:  

      Prob (X and Y | B) = Prob (X | Y and B)  ×  Prob (Y | B)   

 In words, this equation says that the probability that both X and Y are true, 

given background information B, is equal to the probability that X is true given 

that Y and B are true, times the probability that Y is true given B, regardless of 

proposition X. The vertical bar “|” separates the different propositions in these 

probabilities. This equation is the usual  product rule  for probabilities, which 

states that the probability of two independent events occurring simultaneously 

is the result of multiplying the individual probabilities together. The product 

rule is easy to derive from a frequentist approach. Note that all probabilities are 

conditional on the same background information B  . 

 We   can now derive the mathematical formula representing Bayes’ Rule for 

probabilities. It is obvious that the probability that X and Y are both true does 

not depend on the ordering of X and Y on the left-hand side of our equation. 

We therefore have:  

      Prob (X and Y | B) = Prob (Y and X | B)   

 By expanding each side and doing a little rearrangement, we arrive at 

Bayes rule:  

      Prob (X | Y and B) = Prob (Y | X and B)  ×  Prob (X | B) / Prob (Y | B)   

 Put into words, Bayes’ Rule states that the probability of your initial estimate 

X, given the original data B and some new evidence Y, is proportional to the 

probability of the new evidence, given the original data B and the assumption 

X, and to the probability of the estimate X, based only on the original data B. 

For example, the probability of drawing an ace from a deck of cards is 0.077 
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(4 cards divided by 52). If two cards are drawn at random, the probability of the 

second card being an ace depends on whether the fi rst card was an ace. If it was, 

then the probability of the second card being an ace is 0.058 (3 divided by 52). 

If it wasn’t, then the probability remains at 0.077. 

 Cox showed that quantifying beliefs numerically and requiring logical and 

consistent reasoning leads to exactly the same rules for beliefs as for physical 

probabilities  . So there was no dispute about the validity of Bayes’ Rule between 

frequentists and Bayesians. Instead, the controversy was about using subjec-

tive beliefs in data analysis rather than just using frequentist probabilities. The 

importance of Bayes’ Rule for data analysis is apparent if proposition X is a 

 hypothesis  – that is, an idea or explanation – and Y is experimental  data :  

     Prob (hypothesis | data and B) ~ Prob (data | hypothesis and B)  ×  
Prob (hypothesis |B)   

 The symbol ~ means that the left-hand side is proportional to the right-hand 

side of the equation. In other words, the probability of the hypothesis being 

true given the data is proportional to the probability that we would have 

observed the measured data if the hypothesis was true. The second factor on 

the right-hand side is the probability of our hypothesis,  Prob (hypothesis 

| B) . This is the prior probability and represents our state of belief before 

we have included the measured data.   By Bayes’ Rule, we see that this prior 

probability is modifi ed by the experimental measurements using the quan-

tity  Prob (data | hypothesis and B)    – known as the  likelihood function . This 

gives us the posterior probability,  Prob (hypothesis | data and B) , which is 

our new belief in the hypothesis, after taking into account the new data. The 

likelihood function uses a statistical model that gives the probability of the 

observed data for various values of some unknown parameter. For estimating 

the parameters of a model we can ignore the denominator,  Prob (data | B) , 

because it is just a scaling factor that does not depend explicitly on the 

hypothesis. However, for model comparisons, the denominator is important 

and is called the  evidence   . 

 As   Sharon   McGrayne shows in her book  The Theory That Would Not Die , 

Bayesian reasoning about uncertainty persisted in some unlikely places, even in 

times when the frequentists were in the ascendancy. In 1918, Albert Whitney, 

who had taught insurance mathematics at the University of California, Berkeley, 

invented  credibility theory , a Bayesian method for pricing insurance premiums 

by assigning weights to the available evidence based on its believability. In the 

1930s, Cambridge geophysicist Harold Jeffreys studied earthquakes and tsuna-

mis from a Bayesian point of view and published a classic text on the  Theory of 

Probability  in 1939, just before World War II broke out  . 

 During   World War II, a Bayesian approach to uncertainty played a deci-

sive role in winning the battle against the German U-boats that were sinking 

vital U.K. supply ships in the North Atlantic. Alan Turing, working at the top-

secret Bletchley Park code-breaking site, introduced Bayesian methods to help 

decipher the German Navy’s messages encrypted using the Enigma machine. 

Soon after his arrival at Bletchley Park, Turing helped automate the process 

of searching through the huge number of possible Enigma settings.   With 
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mathematician Gordon Welchman and engineer Harold Keen, Turing designed 

a machine called the  bombe , a high-speed electromechanical machine that 

tested possible Enigma wheel arrangements ( Fig. 14.1 ), saving time by reduc-

ing the number of possible solutions  . However, in the worst case it could still 

take up to four days to try all the 336 possible wheel positions, and such a 

delay meant that the information was of no use for rerouting ships away from 

the U-boat packs. In an attempt to reduce the number of wheel positions that 

needed to be searched, Turing and the team looked for what they called  cribs , 

German words that they thought likely to occur in the unencrypted text. Many 

of these came from German weather ships, which often repeated phrases like 

“weather for the night” and “beacons lit as ordered.” In addition, because the 

German operators spelled out numbers, the word  ein  (one) appeared in 90 per-

cent of Enigma messages. Armed with such cribs, Turing invented a manual sys-

tem that could reduce the number of wheel settings to be tested by the bombes 

from 336 to as few as 18. He called his system  Banburismus , after the nearby 

town of Banbury where a printing shop produced the six-foot strips of card-

board needed to put his system into practice. To use the Banburismus system, 

staff at Bletchley punched holes corresponding to each intercepted message 

into a Banbury sheet. By putting one of the sheets on top of another, they could 

see when letter holes coincided on both sheets. This enabled Turing’s team to 

guess a stretch of letters. They could update this guess as more data arrived, 

using Bayesian inference, which uses a combination of new information and 

prior beliefs to eliminate the least likely choices. To compare the probabilities 

of his guesses, Turing introduced a unit of measurement he called a  ban  – short 

for Banburismus.   A tenth of a ban was called a  deciban  and, according to Jack 

Good, Turing’s colleague at Bletchley, “A deciban is about the smallest weight 

of evidence perceptible to the intuition  .”  4   By June 1941, the Bletchley Park team 

could read messages to the German U-boats within an hour of their arrival  .  

 After   the war, the applications of Bayesian inference multiplied rapidly. 

Jerome Cornfi eld, working at the U.S. National Institutes of Health (NIH), 

introduced Bayesian methods into epidemiology, the branch of medicine that 

studies the incidence and distribution of diseases. Using Bayes’ Rule, Cornfi eld 

combined research showing the probability that someone with lung cancer 

was a cigarette smoker with NIH data to answer the opposite question, “What 

is the probability that someone who smokes will develop lung cancer?” His 

results showed that smokers are many times more likely to develop lung can-

cer than nonsmokers  .   At the RAND Corporation in Santa Monica, California, 

Fred Ikl é  and Albert Madansky used a Bayesian approach to estimate the prob-

ability of an accident involving nuclear weapons. Because there had only been 

“harmless” accidents with nuclear bombs, there was nothing that could be 

said about this question from a frequentist viewpoint. Their report was com-

pleted in 1958 but remained classifi ed for more than forty years. However, the 

report persuaded General Curtis LeMay of the Strategic Air Command to issue 

orders that two people should be required to arm a nuclear weapon and also 

that combination locks should be installed on the warheads.   A third applica-

tion area was in business,   where executives routinely have to make critical 

decisions with incomplete data and much uncertainty. At the Harvard Business 

School, Robert Schlaifer and Howard Raiffa introduced Bayesian methods to 

 Fig. 14.1.      A   functioning replica of the 

 bombe  code-breaking machine rebuilt at 

Bletchley Park  .  
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decision theory. Their 1961 book,  Applied Statistical Decision Theory , contained a 

detailed account of Bayesian analytical   methods  . 

 The   modern recognition of how Bayesian and frequentist methods can 

work together began in the 1980s. In 1984, Adrian Smith, a professor of statis-

tics at the University of Nottingham in England, wrote that “effi cient numerical 

integration procedures are the key to more widespread use of Bayesian meth-

ods.”  5   Six years later, with Alan Gelfand from the University of Connecticut, 

Smith wrote a very infl uential paper showing that the diffi cult calculations 

required to apply Bayesian methods to realistic problems could be estimated 

using the  Monte Carlo method . The Monte Carlo method is a forecasting tech-

nique applied in situations where statistical analysis is too diffi cult due to the 

complexity of the problem. As we have seen in  Chapter 5 , the method involves 

running multiple trials using random variables: the larger the number of tri-

als, the better the predictions work. A technique related to the Monte Carlo 

method that mathematicians call a  Markov chain , employs probability to predict 

sequences of events. A Markov chain, named for the Russian mathematician 

Andrei Markov, is a sequence of events where the probability for each event 

only depends on the event just before it. The combination of the two methods 

is known as Markov chain Monte Carlo (MCMC)  . 

 A   former student of Adrian Smith’s, David Spiegelhalter, working for the 

Medical Research Council, a government research funding agency in the United 

Kingdom, wrote a program for the analysis of complex statistical models using 

MCMC methods. Spiegelhalter’s program generated random samples using a 

method called  Gibbs sampling . He released his BUGS program – an acronym for 

Bayesian Inference Using Gibbs Sampling – in 1991. BUGS has since become 

one of the most widely used Bayesian software packages with more than thirty 

thousand downloads and applications in many different research areas rang-

ing from geology and genetics to sociology and archaeology. Spiegelhalter has 

applied the Bayesian approach to clinical trials and epidemiology  . 

 The   startling growth in Bayesian applications was due both to the availabil-

ity of manageable numerical methods for estimating posteriors using MCMC 

sampling and the widespread availability of powerful desktop computers. In 

our examples, we have only considered simple problems with few variables. 

In real problems, statisticians typically look to fi nd relationships among large 

numbers of variables. At the end of the 1980s, there was a breakthrough in 

applying Bayesian methods. Turing Award recipient Judea Pearl ( B.14.3 ) showed 

that  Bayesian networks , graphical representations of a set of random variables 

and the probability of two events occurring together, were a powerful tool 

for performing complex Bayesian analyses. A very simple Bayesian network is 

shown   in  Figure 14.2 .   

 As   a fi nal example of the advances made by Bayesian analysis,   David 

Heckerman, a machine-learning researcher at Microsoft Research, says, “The 

whole thing about being a Bayesian is that all probability represents uncer-

tainty and, anytime you see uncertainty, you represent it with probability. 

And that’s a whole lot bigger than Bayes’ theorem.”  6   For his PhD thesis at 

Stanford University, Heckerman introduced Bayesian methods and graphical 

networks into expert systems to capture the uncertainties of expert knowl-

edge. His “probabilistic expert system” was called Pathfi nder and was used to 

assist medical professionals in diagnosing lymph node disease. At Microsoft 

 B.14.3.      Judea Pearl received the 

Turing Award in 2011 for develop-

ing a calculus for casual reasoning 

based on Bayesian belief networks. 

This new approach allowed the prob-

abilistic prediction of future events 

and also the selection of a sequence 

of actions to achieve a given goal. 

His theoretical framework has given 

strong momentum to the renewed 

interest in AI among the computer 

science community.  

SPRINKLER RAIN

GRASS WET

 Fig. 14.2.      A   simple Bayesian network 

showing the structure of the joint prob-

ability distribution for rain, sprinkler, 

and grass. The diagram captures the fact 

that rain infl uences whether the sprin-

kler is activated, and both rain and the 

sprinkler infl uence whether the grass 

is wet. This is an example of a directed 

acyclic graph  .  
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Research, Heckerman has applied Bayesian techniques to problems such as 

spam detection in email and troubleshooting failures in computing systems. 

He now leads a research team analyzing genetic data to better understand the 

causes of diseases such as HIV/AIDS and diabetes. His team recently performed 

an examination of the genomes (complete sets of DNA) of many people to 

fi nd the genetic variants associated with particular diseases, using data from 

a Wellcome Trust study of the British population. For each of seven major 

diseases, the data includes genetic information about two thousand individu-

als with that disease. The data also include similar information for thirteen 

thousand individuals without any of the diseases. Using a new, computation-

ally effi cient algorithm that Heckerman’s team has developed to remove false 

correlations, the researchers analyzed 63,524,915,020 pairs of genetic markers 

looking for interactions among these markers for bipolar disease, coronary 

artery disease, hypertension, infl ammatory bowel disease (Crohn’s disease), 

rheumatoid arthritis, and type I and type II diabetes.   They processed the data 

from this study using twenty-seven thousand computers in the Microsoft cloud 

computing platform, an Internet-based service in which large numbers of pro-

cessors located in a data center can be used on a pay-as-go basis  . The comput-

ers ran for seventy-two hours and completed one million tasks, the equivalent 

of approximately 1.9 million computer hours. If the same computation had 

run on a typical desktop computer, the analysis would have taken twenty-fi ve 

years to complete. The result was the discovery of new associations between 

the genome and these diseases, discoveries that could lead to breakthroughs 

in   prevention   and treatment  .  

  Computer vision and machine learning: 
A state-of-the-art application 

 Humans   fi nd vision easy and can look at a scene and rapidly understand the 

objects in the scene and the context in which these objects coexist. Computer 

vision still has a long way to go to match human vision even though this has 

been a key research area in computer science since the mid-1960s. Although 

progress has been slow, there are now many commercial applications of com-

puter vision algorithms, ranging from industrial inspection systems to license-

plate number recognition. In the early 1990s, computer scientists developed 

vision-based systems to capture three-dimensional human motions. One such 

system could recover the three-dimensional body positions of a person moving 

in a special studio wearing clothing with special refl ective markers, by collect-

ing images from multiple cameras. Research also continued on algorithms that 

could recover three-dimensional information from video footage. However, the 

problems of image understanding and general object recognition remain huge 

challenges for computer science. Some progress has been made ( Fig. 14.3 ), but 

for major advances to occur, software models of each object need to be gen-

erated from the data rather than handcrafted by the programmer. Machine 

learning is now recognized to be a key technology for effective object recogni-

tion.   In 2001, Paul Viola and Michael Jones used machine-learning technologies 

to build the fi rst object-detection framework that could provide useful detec-

tion accuracy for a variety of features. Although their system could be trained 

to recognize different classes of objects, they were motivated to design their 
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framework to solve the problem of face detection. Their system is now widely 

used in the face detection software in digital cameras  .  

 In 2008,   the   team working on the Microsoft Xbox game console met with 

vision researchers at Microsoft Research’s laboratory in Cambridge, England. 

The Xbox team’s ambitious goal was to develop human body–tracking software 

that was powerful enough to be used for playing computer games without using 

a game controller.   Alex Kipman, from the Xbox team, had taken a new approach 

to the problem of three-dimensional motion capture by using depth informa-

tion from an infrared three-dimensional camera  . The infrared camera worked 

at a resolution of 320  ×  240 pixels and generated images at thirty frames per 

second ( Figs. 14.4  and  14.5 ).   Cambridge researcher Jamie Shotton wrote:

  The depth accuracy really got me excited – you could even make out the nose 

and eyes on your face. Having depth information really helps for human pose 

Object at

depth d
2

Object at

depth d
1

Optic centre

of IR laser

Baseline

Imaging

plane

Optic centre

of camera

x

z

y

 Fig. 14.3.      In   the last decade, progress in 

object recognition in natural images has 

been achieved with machine-learning 

algorithms and very large labeled 

training sets  .  

 Fig. 14.4.      The   diagram illustrates the 

operation of a Kinect 3D Camera. An 

infrared laser illuminates the scene 

with a random dot pattern. By using the 

images of these dots, the camera sensor 

can determine the relative distance of 

objects in the scene  .  
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289Machine learning and natural language processing

estimation by removing a few big problems. You no longer have to worry 

about what is in the background since it is just further away. The color and 

texture of clothing, skin and hair are all normalized away. The size of the 

person is known, as the depth camera is calibrated in meters.  7       

 The Xbox team had built an impressive human body–tracking system using 

the three-dimensional information but had been unable to make the system 

powerful enough for realistic game-playing situations. Shotton described the 

problem as follows:

  The Xbox group also came to us with a prototype human tracking algorithm 

they had developed. It worked by assuming it knew where you were and 

how fast you were moving at time t, estimating where you were going to be 

at time t + 1, and then refi ning this prediction by repeatedly comparing a 

computer graphics model of the human body at the prediction, to the actual 

observed depth image on the camera and making small adjustments. The 

results of this system were incredibly impressive: it could smoothly track your 

movements in real-time, but it had three limitations. First, you had to stand in 

a particular “T”-pose so it could lock on to you initially. Second, if you moved 

too unpredictably, it would lose track, and as soon as that happened all bets 

were off until you returned to the T-pose. In practice this would typically 

happen every fi ve or ten seconds. Third, it only worked well if you had a 

similar body size and shape as the programmer who had originally designed it. 

Unfortunately, these limitations were all show-stoppers for a possible product.  8    

 Shotton,   with his colleagues Andrew Fitzgibbon and Andrew Blake, brain-

stormed about how they might solve these problems. The researchers knew 

that they needed to avoid making the assumption that, given the body posi-

tion or “pose” in the previous video frame just 1/30 of a second ago, one could 

fi nd the current body position by trying “nearby” poses  . With rapid motions, 

this assumption just does not work. What was needed was a detection algo-

rithm for a single three-dimensional image that could take the raw depth mea-

surements and convert them into numbers that represented the body pose. 

However, to include all possible combinations of poses, shapes, and sizes the 

researchers estimated it would require approximately 10 13  different images. 

This number was far too large for any matching process to run in real time on 

the Xbox hardware. Shotton had the idea that instead of recognizing entire 

natural objects, his team would create an algorithm that recognized the dif-

ferent body parts, such as “left hand” or “right ankle.” The team designed a 

pattern of thirty-one different body parts and then used a  decision forest –  a 

collection of  decision trees  – as a classifi cation technique to predict the proba-

bility that a given pixel belonged to a specifi c part of the body ( Fig. 14.6 ). By 

 Fig. 14.5.      Some   example images from 

the Kinect camera. Nearby points are 

dark gray, and farther points are light 

gray. In the green areas, no infrared data 

was captured  .  

 Fig. 14.6.      Color-coded   pattern of 

thirty-one different body parts used by 

the body pose algorithm developed by 

Microsoft researchers for the Kinect 

Xbox application  .  
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predicting these “part probabilities” from a single depth image, they were able 

to fi nd accurate predictions of the three-dimensional locations of the differ-

ent joints in the body. The Xbox team was then able to take these predictions 

and stitch them into a coherent three-dimensional “skeletal” representation 

of the body.  

 Decision trees work like the guessing game Twenty Questions ( Fig. 14.7 ), 

where each question reduces the number of possible answers. For every pixel in 

the image, the computer asks a series of questions, such as “Is that point on the 

right of the image more than twelve centimeters farther away than the point 

under this pixel?” Based on the answer to questions like these, the program pro-

ceeds farther down the tree, asking additional questions until it can assign the 

pixel to a specifi c body part. The challenge was how best to determine the ques-

tions in the tree; the decision trees used in the fi nal system had a depth of around 

twenty levels and contained nearly a million nodes. The answer was to train the 

system on a very large set of examples. With the Xbox team, the researchers 

recorded hours of video footage of actors at a motion capture studio. They fi lmed 

the actors performing actions that would be useful for gaming, such as dancing, 

running, fi ghting, driving, and so on. These data were then used to automatically 

animate computer graphic models of different human shapes and sizes. They 

then simulated the readings that the Kinect sensor would get in a simulation of 

these actions. The resulting training set contained millions of synthetically gen-

erated depth images and the simulated true body positions ( Fig. 14.8 ).   

 The fi nal challenge was computational. Shotton’s previous work on object 

recognition in photographs had used training sets of only a few hundred images, 

and the training phase took less than a day on a single machine   ( Fig. 14.9 ). With 

millions of training images, the Microsoft researchers had to work out how 

to distribute the training on a cluster of one hundred or so computers. This 

distributed processing enabled them to keep the training time down to less 

than a day. With these advances, the researchers and the Xbox team developed 

very powerful skeletal tracking software and used it to create a whole variety 

of “controller-free” games. Microsoft launched Xbox Kinect in November 2010 

with the marketing slogan “You Are the Controller.” Kinect rapidly became 

the fastest-selling consumer electronics device in history, according to    Guinness 

World   Records   .   

 Fig. 14.7.      The   20q game from Radica 

uses AI technologies to guess the item 

you are thinking of in twenty questions 

or less. The game was runner-up for 

“Game of the Year” in   2005.  

Depth image Body parts 3D joint proposals

front

front

side

side

top

top

 Fig. 14.8.      Illustration   of three-dimen-

sional image recognition by body parts. 

The system learns to convert the raw 

depth images on the left into body part 

images, and then convert them to a 

three-dimensional stick version of the 

body joints  .  
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291Machine learning and natural language processing

  Speech and language processing 

 The   idea of using computers to process and understand human language 

dates back to Turing and Shannon, two of the earliest pioneers of computing. 

Research into speech and language processing now covers a wide range of sub-

disciplines ranging from computational linguistics and natural language pro-

cessing in computer science, to speech recognition and speech synthesis in 

electrical engineering.   In the 1950s, building on earlier work on language gram-

mars by Shannon, Noam Chomsky ( B.14.4 ) introduced the idea of a “context-

free grammar” – a mathematically precise formalism to describe how phrases 

in a natural language are built from smaller “blocks.” Chomsky’s grammar was 

able to capture the way in which clauses nest inside other clauses and how 

adjectives and adverbs are associated to nouns and verbs. Chomsky’s most fam-

ous proposal is that knowledge of the formal grammar of a language explains 

the ability of a human to produce and interpret an infi nite number of sen-

tences from a limited set of rules and words.     A second research direction in this 

early period was the development of probabilistic algorithms for speech and 

language processing. In 1952, researchers at Bell Labs built the fi rst Automatic 

Speech Recognizer (ASR) system. This was a statistical system that could recog-

nize the fi rst ten digits with 97 percent to 99 percent accuracy – provided the 

speaker was male, spoke with a 350 millisecond delay between words, and the 

machine had been tuned to the speaker’s voice profi le. Otherwise the accuracy 

of the system fell to about 60 percent.    

 During the 1960s and 1970s, speech and language processing followed both 

these directions of research – the formal symbolic approach of Chomsky and 

the statistical approach of ASR systems. The symbolic approach was typically 

picked up by the emerging artifi cial intelligence (AI) community while the stat-

istical approach was mainly followed by electrical engineers and statisticians. 

Two examples illustrate the different approaches of these two paradigms.   As an 

example application from the symbolic research community, we can take Terry 

Winograd’s SHRDLU system, written in 1972. This system was able to simulate 

the behavior of a robot interacting with a world of toy blocks. The program was 

able to accept sophisticated text commands in natural language such as “Find 

a block which is taller than the one you are holding and put it into the box.” 

 Fig. 14.9.      The   Kinect tracking system 

needs to cope with a huge variety of 

body poses, shapes, and sizes  .  

 B.14.4.      Noam   Chomsky is a linguist, 

philosopher, cognitive scientist, and 

an outspoken defender of democ-

racy and human rights. Since 1955 

he has been a professor at MIT. 

Chomsky is a prolifi c author who 

has published more than a hundred 

books. His idea that children have 

an innate body of linguistic knowl-

edge – the  Universal Grammar  – has 

been immensely infl uential in 

linguistics. His books about politics, 

economy, and society have often 

been controversial  .  
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Although SHRDLU was a great step forward in natural language understand-

ing, it also showed how diffi cult it was to build up a computer’s understanding 

of even a very limited world  . Meanwhile, the statistical research   community 

was making impressive improvements in speech recognition systems using 

Hidden Markov Models (HMM). As we have seen, a Markov model is a mathem-

atical system with a set of possible states that undergo random transitions from 

one state to another, with the new state only depending on the parameters of 

the previous state. HMMs are systems in which the system being modeled is 

assumed to have an underlying Markov process but the actual Markov state 

transitions are not observed directly. The probabilities of the states of the hid-

den Markov variables have to be deduced from indirect observations. An HMM 

is one of the simplest Bayesian networks  . 

 By the mid-1990s probabilistic and data-driven models had become the 

norm for many natural language processing applications. This trend contin-

ued in the 2000s with machine-learning techniques delivering results that 

were clearly superior to those of rule-based systems for almost every aspect 

of speech and language processing.   One important example is machine trans-

lation. Instead of developing a system based on a complex set of hand-coded 

rules, it is now more effective to use large volumes of existing “parallel text” – 

the same text in both languages – as training data, and have the computer learn 

how words, phrases, and structures translate in context. Furthermore, with the 

addition of more human-produced translated text, machine translation systems 

continue to improve and their quality now exceeds that of the best rule-based 

systems. With a suffi cient corpus of parallel text it is now possible to produce 

a machine translation system in days rather than the months it would have 

taken to build a rule-based system.   For example, at the time of the Haiti earth-

quake in 2010, an English-Creole translation system for emergency aid workers 

was produced in less than fi ve days by the Microsoft Research machine trans-

lation team ( Fig. 14.10 ). It is now possible for endangered language communi-

ties to  crowdsource  their own translation system by providing enough parallel 

text. In this way, Microsoft’s Translator Hub service has been used to produce 

machine translation systems for languages ranging from Hmong and Mayan, to 

 Star Trek ’s Klingon language, as well as translation systems using vocabularies 

specifi c to a particular industry – such as the Russian fashion   industry  .  

 The   last example of advances in natural language processing concerns 

speech processing. HMMs enabled us to make great progress in the 1990s. 

 Figure 14.11  shows the reduction in the Word Error Rate (WER) of such systems 

on a standard benchmark from the U.S. National Institute of Standards and 

Technology. On the “Switchboard” test data, the WER has fallen from more 

than 80 percent at the beginning of the 1990s to less than 30 percent by the 

year 2000. However, for the next decade, despite much research effort by the 

community, the word accuracy has remained stubbornly the same – until 2009. 

It was in 2009 that Geoffrey Hinton and colleagues from Toronto and Microsoft 

Research showed that HMMs that were pretrained using Deep Neural Networks 

could produce a dramatic reduction in the WER. By 2012 the WER had fallen 

to less than 10 percent – which is signifi cant, because it means that computer 

speech processing systems are now approaching human error rates in their 

  accuracy  .   
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293Machine learning and natural language processing

  IBM’s Watson and  Jeopardy!  

 After   IBM’s success with Deep Blue and computer chess in 1997, the com-

pany had been looking for an equally audacious challenge with which to cap-

ture the public’s imagination ( Fig. 14.12 ).   In 2005,   after a suggestion from IBM 

manager Charles Lickel, the director of IBM Research  , Paul Horn, tried to inter-

est his researchers in building a machine to beat humans on  Jeopardy!  The game 

attracted many millions of viewers, and as Horn said, “People associated it with 

intelligence.”  9    

 The American TV quiz show  Jeopardy!  debuted on the NBC network in 1964. 

It is a quiz game with contestants competing to match questions to answers on 

a wide variety of topics.   The U.S. television host Merv Griffi n devised the game. 

He credits its strange reverse answering style, in which contestants receive 

clues in the form of answers and must frame their responses as questions, to a 

conversation with his wife:

  My wife Julann just came up with the idea one day when we were in a plane 

bringing us back to New York from Duluth. I was mulling over game show 

ideas, when she noted that there had not been a successful “question and 

answer” game on the air since the quiz show scandals. Why not do a switch, 

and give the answers to the contestant and let them come up with the 

question? She fi red a couple of answers to me: “5,280” – and the question of 

 

(a)

(b)

 

 Fig. 14.10.      The   Haiti earthquake in 2010 

reduced much of the capital, Port au 

Prince, to rubble. Using machine learn-

ing on the available “parallel” corpus of 

Creole-English texts – such as the Bible – 

it was possible to build a translator in 

less than fi ve days. The National Palace 

in Port au Prince (a) before and (b) after 

the earthquake.    
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 Fig. 14.11.      The   change in the WER with 

time for the U.S. National Institute of 

Standards “Switchboard” test. This 

shows the dramatic improvement made 

in the last few years using Deep Neural 

Network techniques  .  
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course was “How many feet in a mile?” … I loved the idea, went straight to 

NBC with the idea, and they bought it without even looking at a pilot show  .  10    

 Each round of the game has six categories, each with fi ve clues for a differ-

ent amount of money ( Fig. 14.13 ). The categories ranged from standard top-

ics such as history, science, literature, and geography to popular culture and 

word games, such as puns. An example in the category of “U.S. Presidents” 

could be the clue “The Father of Our Country; he didn’t really chop down a 

cherry tree.” The contestant would have to reply “Who is George Washington?” 

As an example of wordplay, under the category “Military Ranks” could be 

the clue “Painful punishment practice,” to which the answer is “What is cor-

poral?” The fi rst contestant to “buzz” after the host has read the entire clue 

wins the chance to have the fi rst guess. With a correct reply, he or she wins 

the designated amount for the clue; a wrong reply loses the amount of the clue 

and allows the other contestants a chance to buzz in. The game also has three 

“Daily Double” clues, which allow contestants to wager a minimum of $5 up to 

the maximum of all their winnings, and a “Final Jeopardy!” round where the 

contestants write down their answer and may gamble all their winnings. If they 

answer correctly, they win their bet, and a successful gamble can transform the 

result of the game. The contestant with the highest total after the fi nal round 

is the winner.  

 The   fi rst  Jeopardy!  superstar contestant was Ken Jennings, a computer pro-

grammer from Salt Lake City, Utah. From June until November 2004, Jennings 

had an amazing seventy-four-game winning streak and won more than 2.5 mil-

lion dollars. Instead of the audience becoming bored, ratings for the show jumped 

by more than 50 percent. A key factor in Jennings’s dominance was his lightning 

fast refl exes: he won the race to the buzzer on more than half the clues  . 

 Paul   Horn’s suggestion for IBM to produce a machine to play  Jeopardy!  was 

controversial.   It was not until a year later that he was able to persuade David 

Ferrucci ( B.14.5 ), head of the Semantic Analysis and Integration Department at 

IBM Research, to take on the challenge. Ferrucci had many reasons for his skep-

ticism. One of the teams he led was developing a question-answering system 

called Piquant, short for Practical Intelligent Question Answering Technology. 

Each year, there was a contest at the Text Retrieval Conference, a gathering of 

researchers focusing on information retrieval, in which competing teams were 

given a million documents on which to train their system. In these competi-

tions, based on this very restricted knowledge base, the IBM Piquant system 

got two out of three questions wrong. In an initial six-month trial period, the 

Piquant team was trained to answer  Jeopardy!  questions using fi ve hundred spec-

imen clues. Although Piquant did better than a search engine–based approach 

that used the Web and Wikipedia, it succeeded only 30 percent of the time. 

From this fi rst disappointing trial, Ferrucci concluded that he needed to adopt a 

much broader approach that made use of multiple AI technologies. He therefore 

assembled machine-learning and natural language processing experts from IBM 

Research and reached out to university researchers at Carnegie Mellon and MIT. 

Undaunted by the result of the trial, Ferucci told Horn that he would deliver a 

 Jeopardy!  machine that could compete with humans within twenty-four months. 

He gave the project the code name Blue-J. A year later, the resulting machine 

was christened “Watson” for IBM’s fi rst president, Thomas J. Watson  .  

 Fig. 14.12.      The   Watson computer at IBM 

laboratory in Yorktown Heights, New 

York, with the Watson logo  .  

 Fig. 14.13.      A typical  Jeopardy!  

game board  

 B.14.5.      David   Ferrucci graduated 

with a degree in biology and a PhD 

in computer science. His main 

research areas are natural language 

processing, knowledge representa-

tion, and discovery. He joined IBM in 

1995 and led the “Watson/ Jeopardy! ” 

project from its inception in 2007. 

After an initial feasibility study, 

Ferucci assembled a twenty-fi ve-

member team that, in four years, 

developed a system that not only 

could “understand” spoken language 

but also could beat the superstar 

winners of the question-answering 

game  Jeopardy  !   
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295Machine learning and natural language processing

 In   July 2007, Ferrucci and some IBM colleagues fl ew down to the Sony 

Pictures Studios in Culver City, California, to meet with Harry Friedman, pro-

ducer of  Jeopardy!  The result was a provisional go-ahead for a human-machine 

match in late 2010 or early 2011. Friedman had also agreed that clues with 

audio or visual clips would not be used  . The IBM team now had a deadline to 

work toward, and they began the process of “educating” Watson. They had 

access to twenty years of  Jeopardy!  clues from a fan website called J!Archive. 

From an analysis of twenty thousand clues, the team determined how often 

particular categories turned up.   They could also study individual games, and 

they analyzed the seventy-four winning games of Jennings’s to understand his 

strategy. In their “War Room” at IBM Research in Hawthorne, New York, the 

team plotted this information on a chart they called the “Jennings arc.” He 

averaged more than 90 percent correct answers, and in one game Jennings won 

the buzzer on 75 percent of the clues. They calculated that, to beat Jennings, 

Watson would need to match his precision and win the race to the buzzer at 

least 50 percent of the time  . 

 One of the early conclusions was that Watson did not need to know litera-

ture, music, and TV in great depth to answer the  Jeopardy!  clues. Instead, it needed 

to know the major facts about famous novels, brief biographies of major compos-

ers, and the stars and plotlines of popular TV shows. However, because it could 

not search the Web during the match, all of this information had to be loaded 

into Watson’s memory from sources such as Wikipedia, encyclopedias, dictionar-

ies, and newspaper articles, all in a form that the machine could understand. 

 The biggest obstacle for the researchers was teaching the machine to 

“understand” what it was supposed to look for from the cryptic  Jeopardy!  clues, 

which were often worded in a puzzling manner. The fi rst algorithm to be 

applied was a grammatical analysis identifying nouns, verbs, adjectives, and 

pronouns. However, there were many possible key words that could be rele-

vant to fi nding the answer, and Ferrucci and his team had to search through all 

the many different interpretations. Then, by using a variety of machine-learn-

ing methods and cross-checks, they assigned probabilities to a list of possible 

answers. All of these searches and tests took vital time, and in the game they 

had to come up with an answer in just a few seconds. Toward the end of 2008, 

Ferrucci recruited a fi ve-person hardware team to devise a way to speed up the 

processing time more than a thousand-fold. How was this to be achieved? The 

answer was to distribute the calculations over more than two thousand proces-

sors so that Watson could explore all these paths simultaneously. 

 During the buildup to the contest, Watson moved on from training on sets 

of  Jeopardy!  clues to practice matches with previous  Jeopardy!  winners. By May 

2010, Watson won against human players 65 percent of the time. The team 

used Watson’s failures to improve and tune up their algorithms and  selection 

criteria. They also had to insert a “profanity fi lter” to help Watson distinguish 

between polite language and profanity. After numerous glitches and many 

amusing mistakes, Watson’s performance had climbed up the Jennings arc so 

that it approached the performance of experienced  Jeopardy!  winners.   However, 

the televised match was to pit Watson against two of the very best  Jeopardy!  

champions, Jennings and Brad Rutter, who had beaten Jennings in the show’s 

“Ultimate Tournament of Champions” competition in 2005  . 
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 For   the actual game, Friedman and the  Jeopardy!  team insisted that to 

counter Watson’s advantage in electronically “pressing the buzzer,” IBM would 

have to provide Watson with a mechanical fi nger to physically press a button. 

In addition, IBM decided that Watson needed a graphical representation for 

the virtual “face” of Watson  . Ferrucci, mindful of the rogue AI computer HAL 

in Stanley Kubrick’s  2001: A Space Odyssey , suggested, “You probably want to 

avoid that red-eye look because when it’s pulsating, it looks like HAL.”  11   IBM 

had just launched its “Smarter Planet” initiative, a campaign to explore how 

information technology could promote economic growth, sustainable develop-

ment, and social progress. The icon for the campaign showed planet earth with 

fi ve bars, representing intelligence, radiating from it, and IBM decided that this 

image would be the public face of Watson. To make the game more interesting, 

an answer panel showed the audience – but not the other players, Watson’s top 

fi ve candidate answers, and the confi dence the machine assigned to each one. 

According to Ferrucci, “This gives you a look into Watson’s brain.”  12   

 The match took place at IBM’s research center at Yorktown Heights in New 

York. The producers recorded the show in January and swore the audience and 

contestants to secrecy until after the match was broadcast in February. The match 

consisted of two games, and after the fi rst game Watson had the lead.   Jennings 

and Rutter did better in the second game, but Watson won the last Daily Double 

and thus won the game. In his written answer to the Final Jeopardy clue, Jennings 

added a postscript: “I, for one, welcome our new computer overlords  .”  13   

 Watson won the game, but is Watson really intelligent? Ferrucci took the 

view that “teaching a machine to answer complex questions on a broad range of 

subjects would represent a notable advance, whatever the method  .”  14     Prior to the 

achievements of Deep Blue and Watson, most people would have said that activ-

ities like playing chess or competing on  Jeopardy!  required intelligence  . However, 

just as Deep Blue playing chess employed massive computational power to search 

out the best chess moves, Watson used massively parallel processing to explore 

and rank a huge number of possible answers to the questions. The IBM Watson 

team did not try to model the architecture of the human brain, but instead used 

a host of algorithms for natural language processing and machine learning that 

gave the machine the ability to (mostly) correctly answer complicated questions. 

It made no attempt to “understand” the questions as a human would. However, 

from the point of view of an operational defi nition of intelligence as in the 

Turing Test, one might say that both Deep Blue and Watson are intelligent. Most 

experts, however, would say that Deep Blue and Watson are machines that just 

simulate   intelligence  .   Such systems, sometimes called  weak AI , can match human 

intelligence in a narrow fi eld but not in broader ones. Are such systems a step on 

the road to  strong AI  – machines that can really think, know, and learn – or are 

they irrelevant to this goal? This is a question that has generated heated debate 

among the philosophy and computer science communities  . 

 In   a famous thought experiment called the “Chinese Room” ( Fig. 14.14 ), 

philosopher John Searle argues ( B.14.6 ) against the possibility of strong AI. In 

the thought experiment, Searle imagines someone who does not know Chinese 

sitting alone in a room, following directions for stringing together Chinese char-

acters so that people outside the room think that someone inside  understands 

and speaks Chinese. Searle explains:

 Fig. 14.14.      John   Searle’s “Chinese room” 

thought experiment showed that a 

human can follow instructions like a 

computer and appear to external observ-

ers to understand Chinese, without the 

human having any knowledge of the 

language  .  

 B.14.6.      John   Searle is a professor of 

philosophy at Berkeley in California. 

Within the computer science com-

munity he is best known for his con-

troversial “Chinese room” scenario 

as an argument against “strong AI  .”  
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297Machine learning and natural language processing

  Imagine a native English speaker who knows no Chinese locked in a room full 

of boxes of Chinese symbols (a data base) together with a book of instructions 

for manipulating the symbols (the program). Imagine that people outside the 

room send in other Chinese symbols which, unknown to the person in the 

room, are questions in Chinese (the input). And imagine that by following 

the instructions in the program the man in the room is able to pass out 

Chinese symbols which are the correct answers to the questions (the output). 

The program enables the person in the room to pass the Turing Test for 

understanding Chinese but he does not understand a word of Chinese.  15       

 Searle fi rst introduced his argument in 1980, and it has generated an enormous 

number of responses, rebuttals, and counterrebuttals ever since.   In a 2011 arti-

cle, written after Watson’s victory on  Jeopardy!  Searle restates his case and con-

cludes, “Watson did not understand the questions, nor its answers, nor that 

some of its answers were right and some wrong, nor that it was playing a game, 

nor that it won – because it doesn’t understand   anything  .”  16    

  Key concepts  

   Bayesian network   >
  Bayesian inference   >
  Posterior beliefs   >
  Casual reasoning   >
  Human body tracking   >
  Universal grammar   >
  Statistical language translation   >
  Strong AI   >
  Chinese room            >
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