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     16     The third age of computing    

  Every   30 years there is a new wave of things that 
computers do. Around 1950 they began to model 
events in the world ( simulation ), and around 1980 
to connect people ( communication ). Since 2010 they 
have begun to engage with the physical world in a 
non-trivial way ( embodiment   ). 
 Butler Lampson  1    

  The next revolution 

 The   fi rst age of computing was concerned with using computers for  simula-

tion . As we have seen, the fi rst computers were built to do complex calculations. 

The initial motivation for building the ENIAC was to calculate artillery tables 

showing the angles at which guns should be fi red based on the distance to the 

target and other conditions. After World War II, scientists used the ENIAC to 

explore possible designs for a hydrogen bomb. More generally, computers were 

used to simulate complex systems defi ned in terms of a mathematical model 

that captured the essential characteristics of the system under study. During 

the fi rst thirty years of computing, from about 1950 until the early 1980s, 

researchers increasingly used computers for simulations of all sorts of complex 

systems. Computer simulations have transformed our lives, from designing 

cars and planes to making weather forecasts and fi nancial models. At the same 

time, businesses used computers for performing the many, relatively simple 

calculations needed to manage inventories, payroll systems, and bank transac-

tions. Even these very early computers could perform numerical calculations 

much, much faster than humans  . 

 The second age of computing was about using computers for  communica-

tion . The last thirty years, from the early 1980s until today, have seen computers 

become personal, not only for scientists and businesses but also for consumers. 

We now routinely use laptops, mobile phones, and tablets for a variety of activi-

ties, such as word processing, sending emails, searching the web, sharing photos, 

reading ebooks, and watching videos. Huge improvements in processing power 

together with astonishing miniaturization have come from the steady advance 

of computer technology predicted by Moore’s law. It is these dramatic improve-

ments in power and size during the last thirty years that have made possible 

the wide range of compact, portable computing devices we have available today. 

But this miniaturization of computing has been accompanied by an equally dra-

matic increase in  connectivity , the ability to communicate with other computers. 
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319The third age of computing

Today’s global Internet emerged, along with the increasing availability of wire-

less networks, from early experiments with the ARPANET, a computer network 

created by the U.S. Department of Defense in the late 1960s and the 1970s as a 

means of communication between research laboratories and universities.   And 

by the 1990s, the World Wide Web had arrived to transform our online lives. 

The web made it possible for people with little computer profi ciency to surf the 

Internet. It also enabled electronic commerce sites such as Amazon to emerge as 

serious competitors to bricks-and-mortar businesses. The increasing connectivity 

of our computing and communication devices has also led to the rise of social 

networking sites like Facebook and Twitter and the emergence of  crowdsourcing , 

the practice of gathering services, ideas, information, or money by soliciting con-

tributions from a large group of people online. Crowdsourcing websites include 

Amazon’s Mechanical Turk, a service that uses humans to perform tasks that 

people do better than computers, such as comparing colors or translating for-

eign languages. Another is Wikipedia, a free encyclopedia that permits anyone 

to write and edit almost all its articles. Still another is Galaxy Zoo, an astronomy 

project that invites people to help classify large numbers of   galaxies. 

 Butler Lampson’s   third age of computing is about using computers for 

 embodiment  – that is, using computers to interact with people in new and 

intelligent ways:

  The most exciting applications of computing in the next 30 years will  engage  

with the physical world in a non-trivial way. Put another way, computers will 

become  embodied.   2    

 He asserts that the present state of computer applications, such as robotic sur-

gery, remote-controlled drones, robotic vacuum cleaners, and cruise controls 

for cars, are still in their infancy. In the next few decades, Lampson predicts, 

medical science will develop prosthetic eyes and ears that will enable people to 

really see and hear; cars will drive themselves; sensors in our homes and bodies 

will continuously monitor our health and well-being; and we will have intelli-

gent, robot personal assistants to help us both at work and at home. 

 For computer systems to achieve such engagement, Lampson believes, 

they will have to handle uncertainty and probability as well as they now han-

dle facts:

  Probability is also essential, since the machine’s model of the physical world 

is necessarily uncertain. We are just beginning to learn how to write programs 

that can handle uncertainty. They use the techniques of statistics, Bayesian 

inference and machine learning to combine models of the connections among 

random variables, both observable and hidden, with observed data to learn 

parameters of the models and then to infer hidden variables such as the 

location of vehicles on a road from observations such as the image data from 

a camera  .  3    

 In addition to managing uncertainty, many of the applications of embodi-

ment will need to be much more dependable than today’s computer systems. 

Computers driving cars or performing surgical procedures are obvious exam-

ples of applications in which reliability is critical for safety. We need methods 
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for specifying the desired behavior of a computer program and proving that the 

resulting code actually fulfi lls these specifi cations. Today, such methods work 

only for small-scale systems, and there is still much research needed to scale 

these methods up to handle the large, critical safety applications of tomorrow. 

 In this chapter we will look at two key trends – the coming robotics revolu-

tion and the “Internet of Things” – and end the chapter with some words about 

consciousness and realistic neural networks.  

  The rise of the robots 

 The   word    robot  was introduced to the world by the Czech author Karel 

 Č apek in his play  R.U.R. , an abbreviation for Rossum’s Universal Robots. The 

play, fi rst performed in 1921, portrayed mass-produced artifi cial humans that 

could manufacture products much more cheaply than real people could. The 

word  robot  is derived from the Czech word  robota , meaning  labor . The theme of 

 R.U.R.  is now a familiar one in science fi ction, a revolt by the robots  . Another 

science fi ction writer, Isaac Asimov, introduced the word  robotics  to mean 

the science and technology of robots. Robotics is now an established fi eld 

of research and requires a combination of many different disciplines, rang-

ing from mechanical engineering and power systems to computer vision and 

machine learning. 

 The fi rst industrial robot was a far cry from the humanoid robots imag-

ined by  Č apek and Asimov.   In 1954, George Devol ( B.16.1 ) invented a static, 

immobile machine with a programmable arm. His patent on a device for “pro-

grammed article transfer” issued in 1961 laid the foundation for the modern 

robotics industry ( Fig. 16.1 ). In his patent application he wrote, “The present 

invention makes available for the fi rst time a more or less general purpose 

machine that has universal application to a vast diversity of applications where 

cyclic digital control is desired.”  4     

 Devol   coined the phrase  universal automation  to describe a robot that could 

be programmed to perform a variety of tasks, and he called his fi rst product 

the Unimate. The fi rst Unimate machine was sold to General Motors in 1960. 

General Motors installed it at the auto-body plant in Ewing Township, New 

Jersey, to lift and stack hot pieces of metal from a die-casting machine. Devol’s 

next product was a robotic arm for spot welding. The early industrial robots did 

not look anything like the humanoid robots of science fi ction; many consisted 

of little more than a mechanical arm. Other automobile companies soon fol-

lowed General Motors’s lead, using robots to do jobs that were tedious, hard, 

or dangerous for people  . 

 Around twenty thousand robots are now sold each year in North America. 

Although the U.S. automotive industry is still the dominant sector, sales also 

grew in the life sciences and pharmaceutical industry. Japan leads the world 

with an installed base of several hundred thousand industrial robots. These 

modern industrial robots are far more sophisticated than their early ancestors. 

On the new Tesla electric car assembly line in California, for example, at each 

station there are up to eight robots, some more than eight feet tall, each with 

a single arm with multiple joints, and each capable of multiple functions, such 

as welding, riveting, and bonding different components (see  Fig. 16.2 ). Since 

 B.16.1.      George   Devol (1912–2011) 

was the inventor of robotic arm. This 

programmable device became very 

successful and revolutionized the 

manufacturing industry  .  

 Fig. 16.1.      George   Devol’s original patent 

for the fi rst programmable robotic arm 

in 1954 was the foundation for the mod-

ern robotics industry  .  
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321The third age of computing

the introduction of the early industrial robots  , the number and type of robots 

have increased dramatically. We will look at four examples: humanoid robots, 

robotic laboratories, driverless vehicles, and drones.  

 Japanese   companies have pioneered the development of animal-like and 

humanoid robots.   In the 1990s, after a suggestion by a Canadian researcher, Alan 

Mackworth, Japanese researchers in artifi cial intelligence (AI) started an annual 

soccer competition for robots called the Robot World Cup, or RoboCup ( Fig. 16.3 ). 

The aim of the RoboCup was to promote robotics and AI research. Playing soccer 

requires the robots not only to move and act independently but also to collab-

orate and follow a team strategy to beat the opposing team. As the robots play, 

they have to process many different types of sensor input and make real-time 

decisions based on this input  . In 1999, Sony Corporation produced the   AIBO – 

Artifi cial Intelligence roBOt – a four-legged, doglike robot designed to serve as a 

household pet. Teams of AIBOs have regularly competed in the RoboCup.  

 In   2000, the Honda Motor Company produced a humanoid robot called 

ASIMO (Advanced Step in Innovative Mobility), an acronym chosen to give hom-

age to Isaac Asimov ( Fig. 16.4 ). The robot is about four feet high and can detect 

movements of objects and recognize distance and direction using two camera 

“eyes.” ASIMO can also understand some voice commands and gestures, such 

as when a person offers to shake hands. In 2006, at the International Consumer 

Electronics Show in Las Vegas, Nevada, ASIMO demonstrated its ability to walk, 

run, and kick a football. Such experiments are not just research stunts. Because 

Japan has an aging population, robots of all sorts may serve as one possible way 

of assisting the   elderly  .  

 The   National Aeronautics and Space Association (NASA) uses robotic geolo-

gists for its exploration of the surface of Mars. The Mars Exploration Rovers – 

Spirit and Opportunity – landed on Mars in 2004 and examined rocks and soils 

to fi nd out the role that water has played in the history of Mars. These robots 

could drive up to forty meters a day and carried a range of scientifi c instru-

ments, including a panoramic camera, various types of spectrometers, mag-

nets, a microscope, and an abrasion tool for scratching rock surfaces. Curiosity, 

a much more ambitious mobile robotic laboratory, successfully landed on Mars 

in August 2012 (see  Fig. 16.5 ). The Curiosity rover is about three meters long and 

fi ve times as heavy as the previous rovers. Unlike the earlier vehicles, Curiosity 

can gather samples of rocks and soil and distribute them to onboard analytical 

instruments. Its mission is to investigate whether conditions on Mars have ever 

supported microbial life  .  

 Fig. 16.3.      Sony’s   doglike AIBO robots 

playing soccer at the 2005 RoboCup 

competition  .  

 Fig. 16.4.      Honda’s   ASIMO robot has 

appeared at conferences and toured the 

world since 2000  .  

  Fig. 16.2.      Robots   handling the delicate 

operation of glass panel unloading  .  
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 The   fi rst   Defense Advanced Research Projects Agency (DARPA) Grand 

Challenge, held in the United States in 2004, was a competition for driverless 

vehicles funded by DARPA. The goal was to successfully navigate a 150-mile 

course in the Mojave Desert in California. No team successfully completed 

the course in the fi rst Grand Challenge. The vehicle that traveled farthest was 

Sandstorm, a converted Humvee built by a research team from Carnegie Mellon 

University. Sandstorm covered more than seven miles before it caught fi re and 

ended up stranded on a rock. No prize was given that year, and the organiz-

ers scheduled a second event a year later. That time, fi ve vehicles fi nished the 

course. The winner was Stanley, built by a team from Stanford University led by 

Sebastian Thrun. Stanley completed the course in about seven hours, closely fol-

lowed by two entries from Carnegie Mellon, Sandstorm and Highlander, led by 

the roboticist Red Whittaker ( Fig. 16.6 ). In 2007, DARPA organized a third driver-

less car competition, this time on a sixty-mile course called the Urban Challenge 

that required driving through inhabited areas. The robotic vehicles had to avoid 

other vehicles and obstacles in a crowded urban environment, obeying all traf-

fi c regulations. The challenge was won by Tartan Racing, a team from Carnegie 

Mellon University, driving a modifi ed Chevy Tahoe SUV named Boss  .  

 The   robotic vehicles most in the news are undoubtedly  unmanned aerial 

vehicles , also called  drones  ( Fig. 16.7 ). The military increasingly uses drones for 

surveillance and battlefi eld exploration. These military drones are typically 

large and expensive. Just as we saw the PC movement emerge from the hobby-

ist community, today we are seeing explosive growth of a low-cost “hobbyist” 

drone movement. A key ingredient for a drone is an autopilot. When autopi-

lots were originally introduced in the 1930s, the control systems merely kept 

the aircraft level and fl ying on a preset course. Nowadays, autopilots can be 

used to automate the whole fl ight plan, as well as the takeoff and landing. 

What has changed in the last ten years is that all the components needed 

to construct an autopilot have become much smaller and cheaper. These 

devices include  gyroscopes  to measure rates of rotation;  magnetometers  to act 

as a digital compass;  barometric pressure sensors  to determine altitude; and 

 Fig. 16.5.      NASA   rovers began the robotic exploration of Mars in   2004.  

 Fig. 16.6.      Carnegie   Mellon University’s 

driverless vehicle Sandstorm competed 

in the 2004 and 2005 DARPA Grand 

Challenges  .  

 Fig. 16.7.      The   Northrop Grumman 

Global Hawk drone can fl y at sixty 

thousand feet for fl ights as long as thirty 

hours  .  
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 accelerometers  to measure changes in motion. Chips with all these function-

alities now cost less than $20. Similarly, the demand for smaller global posi-

tioning system chips to provide navigation systems in phones has brought 

the price down from thousands of dollars to as little as $10. Finally, the 

demand for better mobile phone cameras has led to the availability of cheap, 

powerful imaging chips. As a result, there is now a thriving do-it-yourself 

drone community. Hobbyist drone builders employ smart phone technology, 

including low-cost sensors, cameras, low-power processors, and batteries. 

Drone enthusiasts exchange information on DIYdrones.com, a website set up 

by Chris Anderson of  Wired  magazine ( Fig. 16.8 ). The site lists a large number 

of nonmilitary, nonpolice uses of drones – including agriculture, search and 

rescue, home movies, coverage of sports events, environmental monitoring, 

and   delivering   medicines  .    

  The Internet of Things 

 The   growth of the Internet over the last thirty years has been dramatic. 

From connecting a few thousand computers at research centers, the Internet 

now connects billions of people through their personal computers, smart 

phones, and tablets. Yet this is only the fi rst step in connectivity. We can now 

attach cheap electronic tags and sensors to objects and connect them to create 

an even larger global network called the “Internet of Things.”   The MIT engineer 

Kevin Ashton fi rst used the term in 1999. In his original defi nition, he said:

  Today computers – and, therefore, the Internet – are almost wholly dependent 

on human beings for information. Nearly all of the roughly 50 petabytes (a 

petabyte is 1,024 terabytes [trillion bytes]) of data available on the Internet 

were fi rst captured and created by human beings – by typing, pressing a 

record button, taking a digital picture or scanning a bar code.… The problem 

is, people have limited time, attention and accuracy – all of which means they 

are not very good at capturing data about things in the real world.… If we 

had computers that knew everything there was to know about things – using 

data they gathered without any help from us – we would be able to track and 

count everything, and greatly reduce waste, loss and cost. We would know 

when things needed replacing, repairing or recalling, and whether they were 

fresh or past their best. The Internet of Things has the potential to change the 

world, just as the Internet did. Maybe even more so  .  5    

 After the revolutions caused by the World Wide Web and mobile, networked, 

wireless devices, the Internet of Things represents the next disruptive technol-

ogy on the horizon. With more than fi fty billion objects predicted to be con-

nected to the Internet by 2020, we will see a world in which everyday objects, 

such as books, cars, and refrigerators, can be interrogated for information. 

Some of the smart devices will not only use sensors to get information but also 

use  actuators , devices that move or control things, to modify the environment. 

“Intelligent houses” will be able to check on their inhabitants; water drainage 

systems will know about storm threats and adjust accordingly; and businesses 

will actively monitor supply chains so that they no longer run out of stock or 

generate wasteful surpluses. 

 Fig. 16.8.      The   MeCam quadcoptor is a 

miniature drone that can follow and 

photograph you wherever you go and 

then upload the video images to your 

smart phone  .  
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 How   will we be able to cope with the immense complexity of this new 

world? The computer entrepreneur Ray Ozzie has painted a vision of what he 

calls “a world of continuous services and connected devices”:  6    

  To cope with the inherent complexity of a world of devices, a world of 

websites, and a world of apps and personal data that is spread across myriad 

devices and websites, a simple conceptual model is taking shape that brings it 

all together.   We’re moving toward a world of 1) cloud-based  continuous services  

that connect us and do our bidding, and 2) appliance-like  connected devices  

enabling us to interact with those cloud-based services  .  7    

 Cloud computing  is a way of sharing computing resources by linking large num-

bers of computers and other devices over the Internet with massive data cen-

ters where huge amounts of information can be stored together with massive, 

on-demand, computational capacity. Websites will use these cloud resources 

to provide continuous services that are always available and can be scaled to 

meet any fl uctuation in demand. These services will constantly gather and ana-

lyze data from both the real and online worlds. Users will interact with these 

services using “apps” – software applications – on a range of connected devices. 

Increasingly, as the Internet of Things grows, these devices will include many 

types of embedded systems, from webcams in our homes to sensors on our 

  highways  .  

  Strong AI and the mind-body problem 

 WARNING: In the remaining sections of this chapter, we enter into areas 

in which there is no clear consensus among researchers, computer scientists, 

neuroscientists, and philosophers. There are many different opinions and often 

little agreement even about defi nitions. 

 In   their book  Artifi cial Intelligence , Stuart Russell and Peter Norvig defi ne the 

terms  weak AI  and  strong AI  as follows:

  The assertion that machines could act  as if  they were intelligent is called the 

 weak AI  hypothesis by philosophers, and the assertion that machines that do 

so are actually thinking (not just simulating thinking) is called the  strong AI  

hypothesis.  8    

 The   proposal for John McCarthy’s 1956 workshop that introduced the term  AI  

confi dently asserted that weak AI was possible, saying, “Every aspect of learn-

ing or any other feature of intelligence can be so precisely described that a 

machine can be made to simulate it  .”  9   

 In their book, Russell and Norvig take the view that “intelligence is con-

cerned mainly with rational action.”  10     They introduce the idea of building 

intelligent systems in terms of  agents , subsystems that can perceive their envir-

onment through sensors and can act on the environment through actuators. A 

rational agent is one that selects an action that maximizes its performance for 

every possible sequence of inputs. The agent can also learn from experience to 

improve its performance. Russell and Norvig identify different types of agents, 

including refl ex agents, goal-based agents, and utility-based agents.  Refl ex agents  

respond only to their last input.  Goal-based agents  act to achieve a well-defi ned 
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goal, and  utility-based agents  try to maximize some specifi c measure of perform-

ance. Such rational agent-based systems have had considerable success during 

the last twenty years in robotics, speech recognition, planning and schedul-

ing, game playing, spam fi ghting, and machine translation, to list only a few 

examples  . Because of such progress, Russell and Norvig declare:

  Most AI researchers take the weak AI hypothesis for granted, and don’t care 

about the strong AI hypothesis – as long as their program works, they don’t 

care whether you call it a simulation of intelligence or real intelligence  .  11    

 In spite of this very pragmatic approach from the majority of AI practi tioners, 

intelligent machines have continued to be an active topic of discussion by 

philosophers since Alan Turing devised his Universal Turing Machine in 1950. 

  Francis Crick, one of the discoverers of DNA, has said that the scientifi c study 

of the brain during the twentieth century has led to the acceptance of con-

sciousness as a valid subject for scientifi c investigation. In his 1994 book  The 

Astonishing Hypothesis , Crick suggests that “a person’s mental activities are 

entirely due to the behavior of nerve cells, glial cells, and the atoms, ions and 

molecules that make up and infl uence them.”  12   In other words, the human 

mind arises entirely from the actions of billions of neurons in the brain  . 

 Ever   since the days of Plato and Aristotle, philosophers have been con-

cerned with the  mind-body  problem, which examines the relationship between 

mind and matter.   Ren é  Descartes, in the seventeenth century, viewed the activ-

ity of thinking and the physical processes of the body as distinct – a philosophy 

known as  dualism . By contrast,  monism  maintains that the mind and brain are 

not separate and that mental states are just physical states – a viewpoint some-

times described as  physicalism   . 

 Many   philosophers and computer scientists are attracted to the idea of 

 functionalism , in which a mental state is defi ned solely by its function – that 

is, its relation to sensory inputs, other mental states, and behavior. There are 

many varieties of functionalism, but we shall focus on Hilary Putnam’s idea of 

 machine functionalism , which makes an analogy between the states of a Turing 

machine and the mental states of the brain  .   As we have seen, the output of a 

Turing machine is determined by the initial state of the machine and the tape 

input. This is the basis of  computationalism , the theory that mental states are 

just computational states and the transition from one mental state to another 

depends only on its inputs and is independent of the particular physical imple-

mentation  . This viewpoint leads naturally to the question “Can machines 

think?” and to questions about strong AI. 

 The dominant trend in psychology in the fi rst half of the twentieth cen-

tury was an approach called    behaviorism , championed by John Watson and 

B. F. Skinner  . This movement maintained that psychology should be concerned 

only with observable behavior of people and animals and not with untestable, 

unobservable events that may or may not be taking place in their minds. Alan 

Turing’s famous Turing Test, which we discussed in  Chapter 13 , is a behavioral 

test for intelligence. In a response to this type of intelligence test, in 1980 phi-

losopher John Searle introduced his famous “Chinese room” experiment to 

show that behavior is not enough for understanding and strong AI.   We intro-

duced Searle’s Chinese room experiment in  Chapter 14  in the context of IBM’s 

http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781139032643.019
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:18:16, subject to the Cambridge Core terms of use, available at

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781139032643.019
http:/www.cambridge.org/core


The Computing Universe326

Watson’s victory on  Jeopardy!  In more detail, his thought experiment tests the 

thesis that human  cognition  – thinking, understanding, and feeling – is nothing 

more than computation. Searle’s argument is very simple:

  Because it is impossible to know whether anyone else but myself cognizes 

(thinks, understands, feels) I cannot say whether that computer over there, 

successfully passing the Turing Test [TT] in Chinese, is really cognizing (i.e. 

understanding Chinese). However, because computation is implementation-

independent – which means that every implementation of the same computer 

program should have the same properties, if the properties are truly just 

computational ones – then I, Searle, can become an implementation of the 

Chinese-TT-passing program too. Yet it is evident, even without doing the 

experiment, that if I did so, I would not be understanding Chinese: I would 

just be manipulating meaningless symbols, according to the formal rules I 

had memorized – squiggles and squoggles.… So whereas I still cannot say 

whether the TT-passing computer understands Chinese, I can say for sure 

that if it is understanding Chinese, it is not because it is implementing 

the right computer program. This is because I am implementing the same 

computer program, and I am defi nitely not understanding Chinese. So 

computationalism (strong AI) is false (or incomplete).  13    

 The   cognitive scientist Stevan Harnad ( B.16.2 ) argues further that there is some-

thing else missing in the Chinese room, besides the question of Searle’s under-

standing of Chinese:

  Not only does he not understand the meaning of the symbols he is 

manipulating, but he also cannot pick out their referents. If you ask him 

what “BanMa” (“zebra” in Chinese) means, he will not only say, correctly, 

that he has no idea (even though he has just got done stating,  in Chinese,  that 

“A BanMa looks like a striped horse”). But apart from the missing feeling 

of understanding, Searle  also cannot pick out the thing that BanMa refers to in the 

world : the symbols are  ungrounded.  Grounding (for which you need more than 

computation – you need robotic sensorimotor interactions with the world, to 

learn what symbol refers to what object) is necessary, though not suffi cient, for 

meaning. In addition, it also  feels like something  to mean   (or understand) BanMa.  14      

 Harnad’s introduction of the  symbol grounding problem  is based on the following 

argument. Computation is the manipulation of symbols based on the symbols’ 

shapes, not their meanings. Computation alone does not and cannot connect 

symbols to their meanings, as it would have to do for computation to be cog-

nition. Harnad believes that some of the symbols have to be grounded in the 

sensory and motor capacity to pick out their corresponding objects in the 

world.   He has therefore proposed extending the traditional Turing Test to the 

 Total Turing Test , which includes a test of the computer’s perceptual and manip-

ulative abilities that are not purely computational  . From this point of view, 

Searle’s Chinese room merely shows that computation alone is insuffi cient for 

  cognition. 

 The   British mathematician Roger Penrose has put forward another objec-

tion to strong AI and computationalism. Penrose’s argument is based on the 

logician Kurt G ö del’s fi nding that there are “nonalgorithmic truths,” statements 

 B.16.2.      Stevan   Harnad was born in 

Budapest, Hungary. He currently 

holds a Canadian Research Chair in 

cognitive science at the Universite 

du Quebec in Montreal and is also 

professor of cognitive science at the 

University of Southampton, England. 

He has championed the need for 

a  Total Turing Test  for which the 

standard Turing Test is extended to 

include the computer’s perceptual 

and manipulative abilities  .  
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that humans know to be true but that cannot be proved within a formal system 

based on a set of axioms. Penrose claims that this fi nding shows that comput-

ers, which can only operate by following algorithms, are therefore necessar-

ily more limited than humans. This argument has been the subject of much 

debate by many people, including Turing. He observed that such results from 

mathematical logic could have implications for the Turing Test:

  There are certain things that [any digital computer] cannot do. If it is rigged 

up to give answers to questions as in the imitation game, there will be some 

questions to which it will either give a wrong answer, or fail to give an answer 

at all however much time is allowed for a reply  .  15    

 In the context of the Turing Test, the existence of such nonalgorithmic truths 

implies the existence of a class of “unanswerable” questions. However, Turing 

asserted that these questions are only a concern for the Turing Test if humans 

are able to answer the same questions  .  

  Neural networks revisited 

 Rather   than delve deeper into these hotly contested, largely philosophical 

issues, we shall look again at what the brain might tell us about intelligence 

and consciousness. We start with another look at neural networks. In the body, 

a neural network consists of interconnected nerve cells that work together, 

such as in the brain. In computer science, a neural network is a network of 

electronic components loosely modeled on the operation of the brain. As we 

have seen, the artifi cial neural networks (ANNs) described in  Chapter 13  have 

successfully performed many pattern recognition tasks. 

 These   ANNs, however, are very far from functioning like a realistic neural 

network in a living organism. Besides the huge difference in the numbers of 

neurons and connections, the primary element lacking is that of  feedback , in 

which information is sent back into the system to adjust behavior. The favored 

method of training the ANN is  back propagation , in which the initial output is 

compared to the desired output, and the system is adjusted until the difference 

between the two is minimized. However, the ANN was purely a  feed-forward  

network that produced a specifi c output for each given set of inputs. In real 

brains, nerve cells not only feed forward but also send information back to 

other neurons  . 

 An   example of an ANN that allows feedback is the  Hopfi eld network  ( Fig. 16.9 ), 

named after the multidisciplinary scientist John Hopfi eld ( B.16.3 ). This net-

work introduces bidirectional connections between the artifi cial neurons and 

assumes that the weights for each connection are the same in each direction  . 

  Such neural networks are able to function as  auto-associative memories  – that is, 

when a pattern of activity is presented to the network, the neurons and con-

nections form a memory of this pattern. Even if you only input a part of the 

original pattern, the auto-associative memory can retrieve the entire original 

pattern. It is also possible to design these networks to store temporal sequences 

of patterns, capturing the order in time in which they occur. Feeding in only 

a part of this sequence generates the whole sequence, just as hearing the fi rst 

few notes of a song brings back the whole song  .   The computer architect Jeff 

 Fig. 16.9.      A   four-node Hopfi eld network 

with feedback loops  .  

 B.16.3.      John   Hopfi eld was originally 

trained as a physicist but is most 

widely known for his research on 

ANNs. He was responsible for setting 

up the Computation and Neural 

Systems PhD program at Caltech and 

is now the Howard A. Prior Professor 

of Molecular Biology at Princeton  .  
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Hawkins ( B.16.4 ) has built on these ideas of neurons and memory and proposed 

an alternative model of the brain to the computationalist view discussed in the 

preceding text. We briefl y outline some of the key ideas of his  memory-prediction 

theory  of intelligence.    

 Hawkins believes that any model of the brain and intelligence needs to 

incorporate neurons with feedback and be able to respond to rapidly chang-

ing streams of information. He focuses his attention on the architecture of the 

human cortex, the part of the brain responsible for higher functions, such as 

voluntary movement, learning, and memory  .   As we described in  Chapter 15 , the 

cortex is about 2.5 millimeters deep and is made up of six layers, each about as 

thick as a playing card. The cortex is estimated to contain around thirty billion 

neurons, each with thousands of connections making a total of more than thirty 

trillion synapses, the junctions at which nerve impulses pass from one neuron 

to another. Neurologists have found that the cortex consists of many different 

functional regions, each semiindependent and specialized for certain aspects of 

thought and perception. Each region is arranged in a hierarchy, with “lower” 

areas feeding information up the hierarchy and “higher” areas sending feed-

back back down toward the lower layers, although the terms  higher  and  lower  are 

not necessarily related to their physical arrangement in the brain. The lowest 

areas are the primary sensory areas, where sensory information arrives. The cor-

tex has regions to process sensations from the eyes, the ears, and the skin and 

internal organs, and each region has its own hierarchies of regions. The cortex 

also has “association” areas where inputs from more than one sense can be com-

bined. There is also a motor system in the frontal lobes of the brain that sends 

signals to the spinal cord and thus moves muscles. The hierarchies of all these 

sensory areas look very similar  .   This similarity led Vernon Mountcastle ( B.16.5 ), a 

neuroscientist from Johns Hopkins University in Baltimore, to propose a model 

for the basic structure of the cortex in a paper titled “An Organizing Principle 

for Cerebral Function.” 

 In 1950, Mountcastle had discovered that the cortex was organized into 

vertical columns of neurons, with each column having a particular function. 

In 1978, he proposed that all parts of the cortex operate on a common prin-

ciple, with the cortical column being the fundamental computational unit 

( Fig. 16.10 ). All the inputs from our primary sensory areas arrive at the cortex as 

patterns of partly chemical and partly electrical signals. We rely on our brains 

to make sense of this stream of data and to produce a consistent and stable 

view of the world. For example, several times a second, our eyes make sudden 

movements called  saccades . With these saccades, the focus of our eyes moves 

around, locating interesting parts of the scene so that our brain can build up 

a three-dimensional model of what we are seeing ( Fig. 16.11 ). Our impression 

of a stable world with objects and people moving in a continuous way is only 

possible because our brain has the processing capability to make sense of this 

continuous stream of changing retinal patterns ( Fig. 16.12 ). Mountcastle spec-

ulated that all neurons in the cortex use the same basic algorithm to process 

the different input patterns arriving at the different sensory input regions – 

those for vision, hearing, language, motor control, touch, and so on. In other 

words, the brain processes patterns and constructs a model of the world that 

it then holds in memory made up of neurons and their synapses  .     

 B.16.4.      Jeff   Hawkins is a computer 

entrepreneur most known for 

his work on handheld computing 

devices such as the Palm Pilot and 

the Treo. He invented the handwrit-

ing character recognition system 

known as  Graffi ti  for use with such 

devices. In addition to his success-

ful career in the computer industry 

Hawkins has a deep interest in the 

function of the brain and wrote the 

book  On Intelligence  describing his 

 memory-prediction framework  of how 

the brain works  .  

 B.16.5.      Vernon   Mountcastle is 

Professor Emeritus at Johns Hopkins 

University. He is best known for his 

discovery of the columnar organ-

ization of the cerebral cortex in the 

1950s. In 1978 he proposed that 

all parts of the cortex operate on a 

common principle based on these 

cortical columns  .  
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 Fig. 16.11.      The   human brain uses the 

tracks of saccades, sudden movements 

made by the eyes when observing a face, 

to build up a three-dimensional model of 

what the eyes see  .  

 Fig. 16.12.      A   one-day-old baby, appro-

priately called Ada, is building up her 

picture of the world, three images per 

second, every second of her waking life  .  

 Up to now, we have considered Turing’s behavioral test for intelligence as 

the basis for the computationalist model of the brain, which views the brain as 

a computer running programs.   Hawkins makes two points in criticism of this 

viewpoint. First, there is what he calls the  input-output fallacy : the behaviorist 

view that you present the brain with a given input and observe what output 

you get. In fact, when our brains receive input, we may indeed process that 

data and perform a visible action, but we do not necessarily respond that way. 

The input can just lead to thoughts that are not expressed in actions. Actions 

are optional, and this aspect of intelligence is not captured by a purely behav-

ioral test  . The second criticism concerns what Hawkins calls the  one hundred–

step rule . In the computer analogy of the brain, it is customary to contrast the 

one hundred billion neurons in a human brain with the few billion transistors 

on a chip. By contrast, a typical neuron takes about 5  ×  10 –3  seconds (5 milli-

seconds) to fi re and reset compared to the cycle time for a modern chip which 

can be as short as 5  ×  10 –9  seconds, about a million times faster than a neuron. 

To account for the amazing power of our brain, given the relative slowness 

of the individual neurons, computationalists point to the fact that billions of 

neurons can be computing at the same time, as in a parallel computer that 

uses more than one CPU to execute a program, making it run faster. But con-

sider the problem of looking at a photograph to determine whether there is a 

cat in the image. A human can pick out any cat in the photograph in less than 

a second. However, in that second, because neurons operate so slowly, the 

visual information entering the brain can only cross a chain of about a hun-

dred neurons or so from the visual sensory input region. Thus the brain must 

“compute” its answer using only a tiny fraction of its billions of neurons. By 

contrast, to solve such a cat recognition problem on a digital computer would 

take many billions of steps. 

 How can a brain perform a diffi cult recognition task in only a hundred steps 

that would take a supercomputer many billions of steps? Hawkins suggests:

  The answer is the brain doesn’t “compute” the answers to problems; it 

retrieves the answers from memory. In essence, the answers were stored in 

memory a long time ago. It takes only a few steps to retrieve something from 

memory. Slow neurons are not only fast enough to do this, but they constitute 

the memory themselves. The entire cortex is a memory system. It isn’t a 

computer at all.  16    

 Let us give one last example to show how the brain handles the task of catch-

ing a ball. Someone throws a ball toward you and less than a second later 

you catch it. If we want to program a robot arm to catch the same ball, the 

program requires an enormous amount of computation. First, you have to 

estimate the trajectory of the ball and calculate it numerically by solving 

Newton’s laws of motion. This calculation tells you roughly where to position 

the robot arm to catch the ball. Because the fi rst calculation of the ball’s trajec-

tory was only an estimate, the whole calculation needs to be repeated several 

times as the ball gets nearer. Finally, the fi ngers of the robotic arm need to be 

programmed to actually close around the ball when it arrives. To accomplish 

all this, a computer requires many millions of steps to solve the numerous 

mathematical equations involved. Yet our brain uses its neurons to catch the 

 Fig. 16.10.      Visualization   of cortical col-

umnar structure discovered by Vernon 

Mountcastle. Jeff Hawkins describes 

Mountcastle’s 1978 paper proposing 

that all cortical columns operate on a 

common principle as the  rosetta stone  of 

neuroscience  .  
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ball in only about a hundred steps. The brain clearly solves the problem a dif-

ferent way than relying on conventional computation.   According to Hawkins, 

it uses memory:

  How do you catch the ball using memory? Your brain has a stored memory 

of the muscle commands required to catch a ball (along with many other 

learned behaviors). When a ball is thrown, three things happen. First, the 

appropriate memory is automatically recalled by the sight of the ball. Second, 

the memory actually recalls a temporal sequence of muscle commands. And 

third, the retrieved memory is adjusted as it is recalled to accommodate the 

particulars of the moment, such as the ball’s actual path and the position of 

your body. The memory of how to catch a ball was not programmed into your 

brain; it was learned over years of repetitive practice, and it is stored, not 

calculated in your neurons.  17    

 To account for the fact that the position of the ball needs to be constantly 

adjusted as the ball comes toward us, Hawkins uses the idea that the mem-

ories stored in the cortex are actually  invariant representations . Artifi cial auto-

associative memories can recall complete patterns when given only a partial 

image as input. But ANNs have a hard time recognizing a pattern if the pat-

tern has been rescaled, rotated, or viewed from a different angle – a task our 

brains can handle with ease. If you are reading a book, you can change your 

position, rotate the book, or adjust the lighting, so that the visual input of 

the book to your brain can be constantly changing. Yet your brain knows 

that the book is the same, and its internal representation of “this book” does 

not change. The brain’s internal representation is therefore called an  invari-

ant representation . The brain combines such invariant representations with 

changing data to make predictions of how to perform tasks, such as catching 

a ball. 

 Our understanding of the world is tied to our ability to make such predic-

tions. Our brain receives a constant stream of patterns from the outside world, 

stores them as memories, and makes predictions by combining what it has 

seen before with the incoming stream of information. Hawkins says:

  Thus intelligence and understanding started as a memory system that fed 

predictions into the sensory stream. These predictions are the essence of 

understanding. To know something means that you can make predictions 

about it.  18    

 This idea is the basis of Hawkins’s  memory-prediction framework  of intelligence: 

“Prediction not behavior is proof of intelligence.”  19   According to this view of 

intelligence, intelligent machines could be built that have just the equivalent 

of a cortex and a set of input sensors. There is no need to connect to the emo-

tional systems of the other, older regions of the brain. Such intelligent sys-

tems will not resemble the humanoid robots of science fi ction but would be 

able to develop an understanding of their world and make intelligent predic-

tions  . However, the technical challenges of building such systems in silicon still 

remain formidable, both in terms of the number of neurons required and their 

vast connectivity requirements  .  

 B.16.6.      Daniel   Dennett is a philoso-

pher and cognitive scientist who has 

written popular books on evolu-

tion and consciousness –  Darwin’s 

Dangerous Idea  and  Consciousness 

Explained . He is codirector of the 

Center for Cognitive Studies at Tufts 

University in Massachusetts  .  
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  Consciousness? 

 In their discussions of consciousness, philosophers often introduce the 

idea of a “zombie” as a category of imaginary human being.   The philosopher 

Daniel Dennett ( B.16.6 ) says:

  According to common agreement among philosophers, a zombie would be 

a human being who exhibits perfectly natural, alert, loquacious, vivacious 

behavior but is in fact not conscious at all, but rather some sort of automaton. 

The whole point of the philosopher’s notion of a zombie is that you can’t tell 

a zombie from a normal person by examining external behaviors  .  20      

 Philosophers   also frequently introduce the idea of  qualia , the plural of  quale , 

into their discussions of consciousness. Neuroscientist Christof Koch ( B.16.7 ) 

explains the concept of qualia as follows:

  What it feels like to have a particular experience is the quale of that 

experience: The quale of the color red is what is common to such disparate 

percepts as seeing a red sunset, the red fl ag of China, arterial blood, a ruby 

gemstone, and Homer’s wine-dark sea. The common denominator of all these 

subjects is “redness.” Qualia are the raw feelings, the elements that make up 

any one conscious experience  .  21      

 In   his attempt to move the debate about consciousness from a philosophical 

level to a legitimate topic for scientifi c investigation, Koch introduces four dif-

ferent defi nitions of consciousness: 

 A  commonsense defi nition  equates consciousness with our inner, mental life … 

 A  behavioral defi nition  of consciousness constitutes a checklist of actions or 

behaviors that would certify as conscious any organism that could do one or 

more of them … 

 A  neuronal defi nition  of consciousness specifi es the minimal physiologic 

mechanisms required for any one conscious sensation … 

 A  philosopher  [will] give you a fourth defi nition, “consciousness is what it 

is like to feel something  .”  22    

 However,   Dennett, in his book  Consciousness Explained , takes a different approach 

and explicitly abandons the arguments and debates about qualia and avoids 

this concept in his own discussion of consciousness. 

 It is the ability to be self-aware that probably embodies what most people 

think is the essence of consciousness. Nevertheless, as we have seen, there 

is still a long way to go before computer scientists, cognitive scientists, and 

neuroscientists are ready to reach a consensus about strong AI, the mind-body 

problem, and consciousness. As philosopher Dennett has said, “Human con-

sciousness is just about the last surviving   mystery.”  23    

  Key concepts  

    �    Humanoid robots  

  Unmanned aerial vehicles   �

 B.16.7.      Christof   Koch was a profes-
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