
1

The effect of points fattening in dimension three

Th. Bauera

Philipps-Universität Marburg

T. Szembergb

Instytut Matematyki UP

Abstract

There has recently been increased interest in understanding the relationship
between the symbolic powers of an ideal and the geometric properties of the
corresponding variety. While a number of results are available for the two-
dimensional case, higher dimensions are largely unexplored. In the present
paper we study a natural conjecture arising from a result by Bocci and Chi-
antini. As a first step toward understanding the higher-dimensional picture, we
show that this conjecture is true in dimension three. Also, we provide examples
showing that the hypotheses of the conjecture may not be weakened.

Dedicated to Robert Lazarsfeld on the occasion of his sixtieth birthday

1 Introduction

The study of the effect of points fattening was initiated by Bocci and Chiantini
[3]. Roughly speaking, they considered the radical ideal I of a finite set Z of
points in the projective plane, its second symbolic power I(2), and deduced
from the comparison of algebraic invariants of these two ideals various geo-
metric properties of the set Z. Along these lines, Dumnicki et al. [7] studied
higher symbolic powers of I. Similar problems were studied in [1] in the
bi-homogeneous setting of ideals defining finite sets of points in P1 × P1.

It is a natural task to try to generalize the result of Bocci and Chiantini
[3, Theorem 1.1] to the higher-dimensional setting. Denoting by α(I) the initial
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2 Th. Bauer and T. Szemberg

degree of a homogeneous ideal I, i.e., the least degree k such that (I)k � 0, a
natural generalization reads as follows:

Conjecture 1.1 Let Z be a finite set of points in projective space Pn and let I
be the radical ideal defining Z. If

d := α(I(n)) = α(I) + n − 1 , (1)

then either

α(I) = 1, i.e., Z is contained in a single hyperplane H in Pn

or

Z consists of all intersection points (i.e., points where n hyperplanes meet)
of a general configuration of d hyperplanes in Pn, i.e., Z is a star configura-
tion. For any polynomial in I(n) of degree d, the corresponding hypersurface
decomposes into d such hyperplanes.

The term general configuration in the conjecture means simply that no more
than n hyperplanes meet in one point. This is equivalent to the general linear
position for points in the dual projective space corresponding to the hyper-
planes in the configuration. The result of Bocci and Chiantini is the case n = 2
of this conjecture. As a first step toward understanding the higher-dimensional
picture, we show in the present paper:

Theorem 1.2 The conjecture is true for n = 3.

The assumption on the ideal I in the theorem amounts to the two equalities

α(I(2)) = α(I) + 1

α(I(3)) = α(I(2)) + 1

and one might be tempted to relax the assumptions to only one of them. In
Section 6 we provide examples showing, however, that neither is sufficient by
itself to reach the conclusion of the theorem.

Star configurations are interesting objects of study in their own right. They
are defined in [10] as unions of linear subspaces of fixed codimension c in
projective space Pn that result as subspaces where exactly c of a fixed finite set
of general hyperplanes in Pn intersect. The case described in Conjecture 1.1
corresponds thus to the c = n situation. It is natural to wonder if the following
further generalization of Conjecture 1.1 might be true: If Z is a finite collection
of linear subspaces of codimension c � n in Pn with the radical ideal I and such
that

d = α(I(c)) = α(I) + c − 1 ,
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The effect of points fattening in dimension three 3

then Z is either contained in a hyperplane or forms a star configuration of
codimension c subspaces. Janssen’s recent preprint [12] deals with lines in P3

and shows that such a simple generalization would be too naive. Nevertheless
we expect that there are some undiscovered patterns lurking beneath, and we
hope to come back to this subject in the near future.

Throughout this paper we work over the complex numbers, and we use
standard notation in algebraic geometry as in [13].

2 Initial degrees of symbolic powers

Definition 2.1 (Symbolic power) Let I be a homogeneous ideal in the
polynomial ring R = C[Pn]. For a positive integer k, the ideal

I(k) = R ∩
⎛⎜⎜⎜⎜⎜⎜⎝ ⋂
p∈Ass(I)

IkRp

⎞⎟⎟⎟⎟⎟⎟⎠ ,
where the intersection is taken in the field of fractions of R, is the kth symbolic
power of I.

Definition 2.2 (Differential power) Let I be a radical homogeneous ideal and
let V ⊂ Pn be the corresponding subvariety. For a positive integer k, the ideal

I〈k〉 =
⋂
P∈V
mk

P ,

where mP denotes the maximal ideal defining the point P ∈ Pn, is the kth
differential power of I.

In other words, the kth differential power of an ideal consists of all homo-
geneous polynomials vanishing to order at least k along the underlying variety.
For radical ideals these two concepts fall together due to a result of Nagata
and Zariski, see [8, Theorem 3.14] for prime ideals and [14, Corollary 2.9] for
radical ideals:

Theorem 2.3 (Nagata–Zariski) If I is a radical ideal in a polynomial ring
over an algebraically closed field, then

I〈k〉 = I(k)

for all k � 1.

We will make use of the following observation on symbolic powers:
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4 Th. Bauer and T. Szemberg

Lemma 2.4 Let I be an arbitrary radical homogeneous ideal. Then we have
the inequality

α(I(k+1)) − α(I(k)) � 1

for all k � 1.

Proof Let Z be the subscheme of Pn defined by I. The claim of the lemma
follows immediately from the interpretation of symbolic powers as differential
powers, Theorem 2.3, and the observation that if a polynomial f vanishes along
Z to order at least k + 1, then any of its partial derivatives vanishes along Z to
order at least k.

3 The P2 case revisited

As a warm-up, we give here a new proof of the result of Bocci and Chiantini.
This proof has the advantage that it does not make use of the Plücker formulas.

Theorem 3.1 (Bocci–Chiantini) Let Z be a finite set of points in the projective
plane P2 and let I be its radical ideal. If

d = α(I(2)) = α(I) + 1 ,

then either Z consists of collinear points or Z is the set of all intersection points
of a general configuration of d lines in P2.

Proof If d = 2, then we are done. So we assume d � 3.
By Lemma 4.2 below we may assume that Z consists of exactly

(
d
2

)
points.

Let X2 be a divisor of degree d that is singular in all points of Z. Let P be one
of the points in Z. Then there exists a divisor WP of degree d − 2 vanishing at
all points in Z \ {P} (and not vanishing at P).

We claim that WP is contained in X2. To see this, we begin by showing
that they must have a common component. Indeed, this follows from Bézout’s
theorem, since otherwise we would get

d(d − 2) = X2 ·WP � 2

((
d
2

)
− 1

)
= d(d − 1) − 2 ,

which is equivalent to d � 2 and contradicts our initial assumption in this
proof.

Now let Γ be the greatest common divisor of X2 and WP, and let e be the
degree of the divisor W ′P = WP − Γ (so that deg(Γ) = d − 2 − e). There must

be at least
(

e+2
2

)
− 1 points from Z \ {P} on W ′P (otherwise there would be a

pencil of such divisors W ′P and one could choose an element in this pencil
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The effect of points fattening in dimension three 5

passing through P, but then W ′P + Γ would be an element of degree d − 2 in I
contradicting the assumption on α(I)).

Then we intersect again X2 − Γ with W ′
P and obtain

(e + 2)e = (X2 − Γ) ·W ′
P � 2

((
e + 2

2

)
− 1

)
= (e + 2)(e + 1) − 2 ,

which gives e = 0.
It follows that X2 − WP is a divisor of degree 2 with a double point at P.

Hence, X2 contains two lines intersecting in P. This holds for every point
P ∈ Z. Since X2 can contain at most d lines, we see that this is only possible if
Z consists of the intersection points of a general configuration of d lines.

4 A reduction result

We begin with a lemma concerning star configurations of points. We include
the proof, since we were not able to trace it in the literature.

Lemma 4.1 Let Z be a star configuration of points defined by hyperplanes
H1, . . . , Hd in Pn. For d � n + 1 the union

H1 ∪ . . . ∪ Hd

is the only hypersurface F of degree d with the property

multP F � n for all P ∈ Z. (2)

Proof We proceed by induction on the dimension n � 2. The initial case of
P2 is dealt with simply by a Bézout-type argument. Indeed, assuming that there
exists a curve F of degree d passing through all points in Z with multiplicity
� 2 and taking a configuration line Hi, Bézout’s theorem implies that Hi is a
component of F. Since this holds for all lines in the configuration and deg(F) =
d, we are done.

For the induction step we assume that the lemma holds for dimension n − 1
and all d � n. We want to conclude that it holds for Pn and all d � n + 1. Of
course we may assume that n � 3.

To this end let F by a hypersurface of degree d in Pn satisfying (2). Suppose
that there exists a hyperplane H among H1, . . . , Hd, which is not a component
of F. Then the restriction G = F ∩ H is a hypersurface of degree d in H 	
Pn−1 with multP G � n for all P ∈ ZH = Z ∩ H. Note that ZH is itself a star
configuration of points in H, defined by hyperplanes obtained as intersections
Hi ∩ H. So it is a star configuration of d − 1 hyperplanes in Pn−1. The polar
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6 Th. Bauer and T. Szemberg

system of G (i.e., the linear system defined by all first-order derivatives of the
equation of G) is of dimension n − 1 � 2, and every element K in this system
satisfies

multP K � n − 1 for all P ∈ ZH .

This contradicts the induction assumption.

The following lemma allows us to assume #Z =
(

d
n

)
when proving the

theorem (or when working on the conjecture).

Lemma 4.2 Suppose that the set Z ⊂ Pn satisfies the assumptions of Conjec-
ture 1.1 and that α(I) � 2. Then there is a subset W ⊂ Z with the following
properties:

(i) W is of cardinality
(

d
n

)
.

(ii) For the ideal J of W we have α(J(k)) = α(I(k)) for k = 1, . . . , n.
(iii) If W is a star configuration, then W = Z.

Proof To begin with, note that the equality in (1) together with Lemma 2.4
implies α(I(k)) = d − n + k for k = 1, . . . , n.

The assumption α(I) � 2 implies d � n+ 1. Since there is no form of degree
� d − n vanishing along Z, there must be at least

s :=

(
d
n

)
(3)

points in Z.
Now we choose exactly s points P1, . . . , Ps from Z that impose independent

conditions on forms of degree d−n. (This can be done, since vanishing at each
point in Z gives a linear equation on the coefficients of a form of degree d − n,
so that we obtain a system of #Z linear equations of rank s =

(
d
n

)
(which is

the maximal possible rank). Then we choose a subsystem of s equations with
maximal rank.) Let W := {P1, . . . , Ps} and let J be the radical ideal of W. Since
W ⊂ Z, we certainly have

α(J(k)) � α(I(k))

for all k � 0. On the other hand, we have

α(J) = d − n + 1 = α(I)

by the selection of W. Lemma 2.4 then implies that in fact

α(J(k)) = α(I(k))

for k = 1, . . . , n. This shows that conditions (i) and (ii) are satisfied.
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The effect of points fattening in dimension three 7

As for (iii): Suppose that W is a star configuration. By (ii) we have α(I(n)) =
α(J(n)), hence it follows from Lemma 4.1 that W = Z.

Further, we need the following elementary lemma on hypersurfaces that are
obtained by taking derivatives.

Lemma 4.3 Let X ⊂ Pn be a hypersurface defined by a polynomial f of
degree d with a point P of multiplicity m such that 2 � m < d. Then there exists
a direction v such that the hypersurface Λ defined by the directional derivative
of f in direction v has multiplicity m at P.

Proof After a projective change of coordinates, we may assume P = (1 : 0 :
. . . : 0). Then we can write

f (x0 : x1 : . . . : xn) = xd−m
0 gm(x1 : . . . : xn)

+ xd−m−1
0 gm+1(x1 : . . . : xn)

+ . . .

+ gd(x1 : . . . : xn)

with homogeneous polynomials gi of degree i for i = m, . . . , d. Since d > m,
the divisor defined by ∂ f

∂x0
= 0 has multiplicity m at P.

5 Dimension three

In this section we give the

Proof of Theorem 1.2 We proceed by induction on d. For d � 3 the statement
of the theorem is trivially satisfied, so we assume d � 4. By Lemma 4.2 we
may assume that Z is of cardinality

(
d
3

)
. Let X3 ⊂ P3 be the divisor defined by

a polynomial of degree d in I(3). We assert that

X3 is reducible. (*)

To see this, we first note that thanks to m = 3 < 4 � d there is, by Lemma 4.3,
for any P ∈ Z a directional derivative surfaceΛP of degree d−1 with multiplic-
ity at least 3 at P. Arguing by contradiction, we assume that X3 is irreducible,
which implies that X3 and ΛP intersect properly, i.e., in a curve. Adapting the
proof of [11, Proposition 3.1] to dimension 3, we see that the linear system of
forms of degree d − 2 vanishing along Z has only Z as its base locus. (This is
due to the fact that the regularity of I is d− 2.) We can therefore choose an ele-
ment Y in this system that does not contain any component of the intersection
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8 Th. Bauer and T. Szemberg

curve of X3 and ΛP. Then the three surfaces X3, ΛP and Y intersect in points
only, and we can apply Bézout’s theorem to get

d(d − 1)(d − 2) = X · ΛP · Y � 6

((
d
3

)
− 1

)
+ 9 .

But this implies 0 � 3, a contradiction. So (*) is established.
Now let Γ be an irreducible component of X3 of smallest degree. Set γ =

deg Γ and X′3 = X3 − Γ. Our aim is to apply induction on X′3. To this end we
consider the set

Z′ = Z \ Γ .

It is non-empty, as otherwise Z would be contained in Γ and then α(I) would
be less than d − 2. Indeed, we would have α(I) � γ �

⌊
d
2

⌋
, which is less than

d − 2 if d � 5; and if d = 4, then γ = 2, so X3 consists of two quadrics, which
implies that it can have only two triple points – but then α(I) = 1.

As Z′ is non-empty, there is in particular a triple point on X′3, and hence
d − γ = deg X′3 � 3.

We claim that

α(IZ′) � d − γ − 2 . (4)

In fact, there is otherwise a surface S of degree d − γ − 3 passing through Z′,
and then S +Γ is a divisor of degree d−3 passing through Z, which contradicts
the assumption α(I) = d − 2.

Next, note that

α(I(3)
Z′ ) � deg X′3 = d − γ . (5)

In fact, as Γ does not pass through any of the points of Z′, we know that X′3 has
multiplicity at least 3 on Z′.

By Lemma 2.4, we obtain from (5) the inequality

α(IZ′) � d − γ − 2 (6)

and this shows with (4) that equality holds in (6). From (5) we see, again with
Lemma 2.4, that equality holds in (5) as well. We have thus established that
the assumptions of the theorem are satisfied for the set Z′. By induction we
conclude therefore that Z′ is a star configuration and that X′3 decomposes into
planes, or Z′ is contained in a hyperplane and then the support of X′3 is that
hyperplane. As Γwas chosen of minimal degree, it must be a plane as well, and
hence X3 decomposes entirely into planes. We can then run the above induction
argument for any plane component Π of X3 to see that the surface X3 − Π
yields a star configuration. This shows immediately that there are no triple
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The effect of points fattening in dimension three 9

intersection lines among these planes and we conclude by just counting points
with multiplicity at least 3 (in fact, exactly 3) that Z is a star configuration.

6 Further results and examples

Recall that the Waldschmidt constant of a homogeneous ideal I ⊂ Pn is the
asymptotic counterpart of the initial degree, defined as

α̂(I) = lim
k→∞

α(I(k))
k
= inf

k�1

α(I(k))
k

.

This invariant is indeed well defined, see [4] for this fact and some basic prop-
erties of α̂. The Waldschmidt constants are interesting invariants that were
recently rediscovered and studied by Bocci and Harbourne, see e.g. [5]. While
Harbourne introduced the notation γ(I), we propose here the notation α̂(I), as
the Waldschmidt constant is the asymptotic version of the initial degree α(I),
and the notation is then consistent with [9].

We state now a corollary of Theorem 1.2 dealing with the case where there
is just one more α-jump by 1.

Corollary 6.1 Let Z be a finite set of points in projective three-space P3 and
let I be the radical ideal defining Z. If

d := α(I(4)) = α(I) + 3 , (7)

then α(I) = 1, i.e., Z is contained in a single plane in P3.

Proof Using Theorem 1.2 we need to exclude the possibility that Z forms a
star configuration. To this end we apply in the case n = 3 the inequality

α̂(I) �
α(I) + n − 1

n
, (8)

which was proved by Demailly [6, Proposition 6]. The assumptions of his
result are satisfied by our Theorem 1.4. Combining (8) with the fact that
α̂(I) � α(I(n+1))

n+1 yields in our situation

α(I) + n − 1
n

�
α(I) + n

n + 1
,

which gives immediately α(I) = 1.

Remark 6.2 (Waldschmidt constant of star configuration) Note that there is
equality in (8) for star configurations of points by [4, Proof of Theorem 2.4.3].

Remark 6.3 If Conjecture 1.1 holds for any n, then the proof of the above
corollary shows that if α(I(n+1)) = α(I) + n, then α(I) = 1.
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10 Th. Bauer and T. Szemberg

We next provide examples showing that a single α-jump by 1 is not sufficient
to reach the conclusion of Theorem 1.2.

Example 6.4 (Kummer surface) In this example we show that in general the
assumption

α(I(2)) = α(I) + 1 (9)

for an ideal I of a set of points Z in P3 is not sufficient to conclude that the
points in Z are coplanar or form a star configuration.

To this end, let X ⊂ P3 be the classical Kummer surface associated with
an irreducible principally polarized abelian surface, and let Z be the set of the
16 double points on X. It is well known (see e.g. [2, Section 10.2]) that these
16 points form a 166 configuration, i.e., there are 16 planes Πi in P3 such that
each plane Πi contains exactly 6 double points of X (and exactly 6 planes pass
through every point in Z). We claim that

α(I) = 3 and α(I(2)) = 4 ,

where I is the radical ideal of Z.
Granting this for a moment, we see immediately that the points in Z are

neither coplanar nor form a star configuration, whereas the assumption in (9)
is satisfied.

Turning to the proof, assume that there exists a surface S defined by an
element of degree 3 in I(3). Let Π be one of the 16 planes Πi. Then

1 · 3 · 4 = Π · S · X � 6 · 1 · 2 · 2

implies that Π is a component of S . As the same argument works for all 16
planes, we get a contradiction. Hence α(I(2)) = 4.

A similar argument excludes the possibility that Z is contained in a quadric.
We leave the details to the reader.

The following simpler example exhibiting the same phenomenon has been
suggested by the referee.

Example 6.5 Let L1, L2, L3 be mutually distinct and not coplanar lines in
P3 intersecting at a point P. Let A, B ∈ L1, C, D ∈ L2 and E ∈ L3 be points
on these lines different from their intersection point P. Obviously the set Z =
{A, B,C, D, E} is not a star configuration. Let I be the radical ideal of Z. Then
it is elementary to check that

α(I) = 2 and α(I(2)) = 3.

Note that 5 is the minimal number of non-coplanar points that can give
α(I(2)) = α(I) + 1 and not form a star configuration.
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The effect of points fattening in dimension three 11

The next example has also been suggested by the referee and replaces a
much more complicated example of our original draft.

Example 6.6 (Five general points in P3) In this example we show that in
general the assumption

α(I(3)) = α(I(2)) + 1 (10)

for an ideal I of a set of points Z in P3 is also not sufficient to conclude that the
points in Z are coplanar or form a star configuration.

To this end let Z = {A, B,C, D, E} consist of 5 points in general linear
position in P3. For the radical ideal I of Z one then has

α(I(3)) = α(I(2)) + 1.

In fact, in this case one has

α(I) = 2, α(I(2)) = 4 and α(I(3)) = 5.
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