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1 Introduction

The slope of a vector bundle on a smooth projective curve C defines the fam-
ilies of stable and semi-stable bundles (of fixed degree and rank) that are
coarsely represented by projective moduli spaces [17]. On a smooth projec-
tive polarized surface S , Mumford’s H-slope defines H-stable and semi-stable
torsion-free sheaves, but this is only the infinitessimal tip of the stability ice-
berg for S , in which slopes and compatible t-structures on the bounded derived
category of coherent sheaves on S are the points of a complex manifold
Stab(S ) of stability conditions [14]. This gives rise to variations of determinant
line bundles on moduli spaces of stable objects as the notion of stability varies.
The stability conditions that are “closest” to the geometry of coherent sheaves
on S are traditionally given in terms of a central charge (see e.g. [15]). Here
I want to describe them in terms of a positive cohomology class α on S , my
excuse being that the relationship with the determinant line bundles on moduli
becomes linear in this coordinate system, and therefore the connection with
moduli of (Gieseker) H-stable sheaves (and the classical moduli constructed
by geometric invariant theory [16]) becomes more transparent.

The Chern character of a vector bundle E on C is the cohomology class
ch(E) = rk(E) + c1(E) ∈ H0(C,Z) ⊕H2(C,Z), and the slope of E can therefore
be written in terms of the Chern character as

μ(E) :=
deg(E)
rk(E)

=
〈ch(E), 1〉
〈ch(E), H〉
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14 A. Bertram

where H ∈ H2(C,Z) is the positive generator and 〈·, ·〉 is the standard pairing
on cohomology.

Mumford’s H-slope on a surface S may similarly be defined as

μH(E) :=
〈ch(E), H〉
〈ch(E), H2〉

where H is an ample divisor class on S . The slopes we wish to consider here,
however, have the form

μα(E) :=
〈ch(E), α〉
〈ch(E), α · H〉

where α = α0 + α1 + α2 ∈ H2∗(S ,Q) is positive in a different sense:

α0 > 0 and 〈α1, α1〉 ≥ 2〈α0, α2〉.

By a theorem of Bogomolov, these are the inequalities that hold for the
Chern characters of an H-stable vector bundle on S . The ample divisor H itself
is not, of course, positive in this sense since it lacks the inequality α0 > 0. It is,
however, a limit of positive classes ε · td(S )+H′ as ε → 0 if td(S ) is taken to be
the Todd class. This is roughly the difference between Mumford and Gieseker
stability.

Expressing the slope in terms of α amounts to a change of coordinates from
Bridgeland’s description of the slope in terms of a central charge defined via a
divisor D and an ample class tH (as modified in [4]):

ZD,tH(E) = −
∫

S
e−(D+itH) ch(E) and μZ(E) := −Re(Z(E))/Im(Z(E))

since with this definition

μZ(E) =
〈ch(E), 1 − D + 1

2

(
D2 − t2H2

)
〉

〈ch(E), t(H − D · H)〉 =
〈ch(E), α〉

〈ch(E), α · (tH)〉 .

In the α coordinates, the orthogonal complement c⊥ of a Chern class maps
linearly via the determinant line bundle to H2(M(c),Q), for moduli M(c) of
stable objects of class c. The recent positivity result of Bayer and Macrí [7]
relates critical stability conditions (for which there exist strictly semi-stable
objects) with critical values in the variation of the determinant line bundles.
This relates the “wall and chamber structures” for the birational geometry of
M(c) with wall and chambers defined on the stability manifold [12]. The choice
of a base point in c⊥ ∩ {α0 = 1} will allow us to identify rays in the ample cone
of S with rays in the stability manifold that “point toward Gieseker stability.”
We will consider Chern classes of torsion-free sheaves, and then revisit the
Serre map for surfaces in the context of torsion sheaves. This evokes fond
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Some remarks on surface moduli and determinants 15

memories for me, since Rob gave me my start with a question about the Serre
map for curves.

2 Slopes and stabilities

A slope function on an abelian categoryA, expressed as a ratio

μ(A) =
λd(A)
λr(A)

; λd, λr : K(A)R → R

of R-linear functions defines a pre-stability condition onA if

• λr(A) ≥ 0 for all objects A ofA, and
• λd(A) > 0 for all objects (other than zero) for which λr(A) = 0.

IfA is the heart of a bounded t-structure on a triangulated categoryD, then
the pre-stability condition extends toD in the obvious way.

Definition An object A ofA is μ-stable if μ(B) < μ(A) for all B ⊂ A.

It follows immediately from the two bullet points that:

Schur’s Lemma 1 Let A and B be μ-stable objects ofA. Then

(i) Hom(A, B) = 0 if μ(A) > μ(B).
(ii) Each nonzero φ ∈ Hom(A, B) is an isomorphism if μ(A) = μ(B).

If the abelian category is the heart of a bounded t-structure on a triangulated
category D, then the pre-slope extends to a Bridgeland pre-stability condition
on D. A different sort of boundedness is also required for the promotion of a
pre-stability condition to a stability condition.

Definition Given a slope function μ on an abelian category A, a bounded
Harder–Narasimhan filtration on an object A has the form

0 = A0 ⊂ A1 ⊂ · · · ⊂ An = A

where μi := μ(Ai/Ai−1) are strictly decreasing, and each Bi = Ai/Ai−1 admits a
finite Jordan–Holder filtration

0 = B0
i ⊂ B1

i ⊂ · · · ⊂ Bmi
i = Bi

where each C j
i = Bj

i /Bj−1
i is stable of the same slope μi = μ(Bi).

Objects B that admit Jordan–Holder filtrations are called semi-stable. It is
a consequence of Schur’s Lemma 1 that the Harder–Narasimhan filtration of
each A is unique but that the Jordan–Holder filtrations, while not necessarily
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16 A. Bertram

unique, do have associated graded objects ⊕C j
i that are unique up to isomor-

phism and reordering of the summands. Two semi-stable objects B and B′ with
isomorphic associated grades are said to be s-equivalent.

Definition A pre-stability condition is a stability condition if bounded
Harder–Narasimhan filtrations exist for all nonzero objects ofA.

Our main example Let X be a smooth complex projective variety andD(X)
be the bounded derived category of coherent sheaves on X. We will only con-
sider stability conditions that factor through the Chern character, i.e., slope
functions or central charges of the form

μ(E) =
〈ch(E), α〉
〈ch(E), β〉 or equivalently Z(E) = −〈ch(E), α〉 + i〈ch(E), β〉

on the hearts A of compatible t-structures. Bridgeland proved that the locus
of stability conditions has the structure of a complex manifold Stab(X) locally
homeomorphic to a finite-dimensional complex vector space via the map

stability condition σ = (μσ,Aσ) �→ Z ∈ Hom(K(X)/ ≡,C)

where ≡ is numerical equivalence.

In this main example, we also have:

Schur’s Lemma 2 If E is stable, then Hom(E, E) = C · idE.

Consider the case X = C. Evidently, the slope function

μ(E) =
〈ch(E), 1〉
〈ch(E), H〉 =

deg(E)
rk(E)

on the categoryA of coherent sheaves satisfies the bullet points, since

• the rank of a coherent sheaf on C is non-negative, and
• the length of a rank-zero coherent sheaf is its length

and the only sheaf of rank zero and length zero is the zero sheaf.

The stable coherent sheaves on a curve are either skyscraper sheaves (infinite
slope) or stable vector bundles (finite slope). Geometric invariant theory can be
used to show that s-equivalence classes of semi-stable bundles (of fixed rank
and degree) have projective coarse moduli. The s-equivalence classes of semi-
stable sheaves of rank zero also have projective moduli since they are points
of the symmetric powers of C. Projectivity of moduli is certainly not a direct
consequence of the definition of stability and begs the following:

Question Given a stability condition σ = (μσ,Aσ) on D(X), when are the
coarse moduli spaces of semi-stable objects ofAσ projective?
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Some remarks on surface moduli and determinants 17

Definition A torsion-free sheaf E on a polarized smooth projective surface
S is H-stable if μH(F) < μH(E) for all subsheaves F ⊂ E such that the support
of E/F has codimension ≤ 1.

The problem with H-stability is that it violates the second bullet:

μH(Cx) =
0
0

for skyscraper (and finite-length) sheaves.
In spite of this problem, Harder–Narasimhan filtrations exist, commencing

with the torsion subsheaf Etor ⊂ E and continuing with a filtration on E/Etor

with H-semi-stable quotients Bi of strictly decreasing H-slope. As in the curve
case the s-equivalence classes of H-semi-stable torsion-free sheaves B on S
have projective coarse moduli (although the Gieseker slope is better suited for
the contruction of moduli spaces by geometric invariant theory [16]).

There is one important new feature of H-stability:

Theorem (Bogomolov [13]) The Chern classes of an H-stable sheaf E satisfy
the following inequality:

〈c1(E), c1(E)〉 ≥ 2〈rk(E), ch2(E)〉.

This inequality allows us to implement Bridgeland’s tilting construction to
produce t-structures that are compatible with slope functions of the form

μα(E) =
〈ch(E), α〉
〈ch(E), α · H〉

for α = α0 + α1 + α2 ∈ H∗(S ,Q) satisfying 〈α1, α1〉 > 2〈α0, α2〉.

Lemma 1 If E is an H-stable sheaf and 〈ch(E), α · H〉 = 0, then

〈ch(E), α〉 < 0.

Proof The inequalities at our disposal are

α0 > 0, rk(E) > 0, 〈α1, α1〉 > 2α0α2, 〈c1(E), c1(E)〉 ≥ 2 rk(E) ch2(E).

The vanishing assumption 〈ch(E), αH〉 = 〈α0c1(E) + α1 rk(E), H〉 = 0 (i.e.,
the class D = α0c1(E) + α1 rk(E) is perpendicular to H), together with the
inequalities, gives
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18 A. Bertram

〈ch(E), α〉 = α0 ch2(E) + 〈α1, ch1(E)〉 + α2 rk(E) <
1

2α0 rk(E)
〈D, D〉 ≤ 0

by the Hodge index theorem.

Bridgeland’s tilting construction requires the data of a torsion pair. This con-
sists of a pair of full subcategories (F ,T ) of the category of coherent sheaves
on S with the property that

(i) Hom(T, F) = 0 for all objects T of T and F of F .

(ii) Each coherent sheaf E fits into an exact sequence

0→ T → E → F → 0.

These produce a t-structure on the derived category D(S ) whose heart con-
sists of the complexes that have cohomologies only in two degrees: −1 (and
belonging to F ) and 0 (and belonging to T ). That is, the tilted abelian cate-
gory consists of objects E· of the derived category that admit a cohomology
sequence

0→ F[1]→ E· → T → 0; F ∈ F , T ∈ T .

These are determined by T and F and a second extension class ε ∈ Ext2(T, F)
in the abelian category of coherent sheaves which is a first extension class
ε ∈ Ext1(T, F[1]) in the new tilted abelian categoryA#.

The particular torsion pair associated with α is defined as follows:

• The objects of Fα are all torsion-free sheaves F such that

〈ch(F′), α · H〉 ≤ 0 for all subsheaves F′ ⊆ F.

• The objects of Tα are all coherent sheaves T such that

〈ch(T ′′), α · H〉 > 0 or len(T ′′) < ∞ for all quotients T → T ′′ → 0.

Observation The pair (Fα,Tα) satisfies (i) by definition, and (ii) by the
Harder–Narasimhan filtrations defined above for a H-slope. The tilted abelian
category with respect to this pair will be denoted byAα.

Corollary 2 The slope function μα satisfies the bullet points for a pre-stability
condition on the tilted abelian categoryAα.

Proof The objects ofAα are complexes of the form

0→ F[1]→ E· → T → 0.
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Some remarks on surface moduli and determinants 19

By definition, objects of T all satisfy 〈ch(T ), α · H〉 > 0 with the exception of
torsion sheaves of finite length. But these sheaves satisfy

〈ch(T ), α〉 = α0 len(T ) > 0.

Objects of F[1] satisfy 〈ch(F[1]), α ·H〉 = −〈ch(F), α · H〉 > 0 with the excep-
tion of H-semi-stable torsion-free sheaves that pair to 0. But by the key lemma
(and linearity), such sheaves satisfy

〈ch(F[1]), α〉 = −〈ch(F), α〉 > 0

and hence the bullet points are satisfied for objects ofAα.

Remark The finiteness of Harder–Narasimhan filtrations is not difficult to
prove since we are restricting to rational coefficients [6]. It is curious that it
is much more difficult to prove when the coefficients are real, even though
the rational stability conditions are dense. Generalizations of the Bogomolov
inequality to third Chern classes of stable complexes on threefolds have had
some success [2, 9, 10, 18–21], although a useful such inequality for any
projective Calabi–Yau threefold has yet to be found.

3 Determinants and moduli

In this section, B is always a “reasonable” base scheme (e.g., of finite type and
quasi-projective over C) and S × B is equipped with projections

p : S × B→ S and π : S × B→ B.

A family of derived objects on S is a (not necessarily flat) coherent sheaf EB

on S ×B, or more generally an object of the derived category of S ×B. Families
can be pushed forward to B (in the derived category), and the associated line
bundle on the base

Δ(EB) := c1(Rπ∗EB)

is the determinant of the family. This will not, in general, define a line bundle
on coarse moduli spaces of isomorphism classes of sheaves or derived objects.
However, in the case where the Euler characteristic of the (derived) fibers over
closed points vanishes:

χ(S b, Eb) := χ(S × {b}, Li∗bEB) = 0

then the determinant satisfies Δ(EB) = Δ(EB ⊗ π∗L) for any line bundle L on B
and therefore descends to isomorphism classes of simple objects (i.e., objects
with minimal automorphism group C · id).
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20 A. Bertram

In other words, in light of the Schur lemmas, the χ = 0 condition on families
is the precise condition that ought to result in a line bundle that descends to the
coarse moduli spaces of σ-stable objects for any given stability condition σ.

A family of vector bundles EB of rank r and degree d on a curve C of genus g

can be transformed into a family of χ = 0 vector bundles by choosing a vector
F bundle on C with the property that

μ(Eb) + μ(F) = g − 1

and replacing EB with the family EB ⊗ p∗F.
This not only gives a determinant line bundle, but also a pseudo-divisor on

B associated with each family, with support

ΘF(EB) := {b ∈ B |H1(Cb, Eb ⊗ F) � 0}.

That is, the locus where the cohomology (in either degree) is nonzero.
The coarse moduli spacesMC(s, L) of semi-stable vector bundles of rank s

and fixed determinant ∧sF = L are unirational and their Picard groups are gen-
erated by a single line bundle. It follows that the determinant line bundles ΔF

on MC(r, d) are independent of the choice of semi-stable bundle F ∈ MC(s, L)
(in each rank) and therefore that the pseudo-divisors ΘF are linearly equiva-
lent. Moreover, the line bundles ΔF are ample, which can be proved directly
or else by appealing to the fact that the ΔF coincide with the ample line bun-
dles (up to scaling) arising from the geometric invariant theory construction of
moduli.

When we look for analogous polarizations on the moduli spaces of σ-stable
objects on a surface S , we immediately run into the following:

Observation Orthogonal classes to ch(E) are not unique. Let

ÑS(S )Q = H0(S ,Q) ⊕ NS(S )Q ⊕ H4(S ,Q)

be the extended Néron–Severi vector space, of rank ρ + 2 over Q, with the
induced inner product from cohomology and let

c⊥ = {α ∈ ÑS(S )Q | 〈c, α〉 = 0}

be the orthogonal complement of a Chern class c = c0 + c1 + c2.

Now suppose α ∈ c⊥ and that F is an H-stable vector bundle with

ch(F) · td(S ) = α ∈ ÑS(S )Q.

By the Hirzebruch–Riemann–Roch theorem, χ(S , E· ⊗F) = 0 for any object E·

with ch(E·) = c. Thus any family E·B of such objects gives rise to a determinant
line bundle ΔF(E·B) on the base of the family with the desired invariance under
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Some remarks on surface moduli and determinants 21

tensoring by a line bundle from B. This is the candidate for the line bundle on
coarse moduli of stable objects of class c, but it is important to notice that both
the coarse moduli space (of α-stable objects of Aα) and the determinant line
bundle on that moduli space depend upon the choice of α ∈ c⊥.

The dependence of the line bundles ΔF on the class α ∈ c⊥ is linear. Indeed,
the Grothendieck–Riemann–Roch theorem gives

c1(Rπ∗(E
·
B ⊗ p∗F)) = π∗

(
ch1(E·B)p∗α2 + ch2(E·B)p∗α1 + ch3(E·B)p∗α0

)
1

where π∗ is the push-forward on Chern classes.
Consider, for example, the Hilbert schemes S [n] with universal ideal sheaf

IZ ⊂ OS×S [n] . This is a deceptively nice example. Since Hilbert schemes
are smooth and projective of the right dimension 2n, they are defined inde-
pendently of the choice of ample class H and have a preferred universal
family IZ.

The Chern character of the ideal sheaf IZ of n points is c = (1, 0,−n). Since
c⊥ = {α | nα0 = α2}, we have

c⊥ ∩ {α0 = 1} = {α = (1, D, n) | D ∈ NS(S )}

and the positivity condition on α means that α determines a stability condition
on S when

〈D, D〉 > 2n.

Let Dt = − 1
2 KS + tH′ and αt = (1, Dt, n) where H′ is a second choice

of ample divisor class (this will be important in later examples). For integer
values of t, the resulting α is of the form

ch(IW (tH′))td(S ) = αt

for a subscheme W ⊂ S of the appropriate length. Thus, in this case, we may
let F = IW (tH′) in the computation of the determinant line bundle (keeping in
mind that this is torsion free and not locally free). Notice that for sufficiently
large and small values of t, the class αt defines stability conditions. When t >>

0, the second cohomology vanishes:

H2(S ,IZ ⊗ F) = H2(S ,IZ ⊗ IW ⊗ OS (tH′)) = 0

and it follows that for such values of t, the pseudo-divisors

ΘF = {Z | H1(S ,IZ ⊗ F) � 0}

represent the line bundle ΔF . Its class is easily computed [3]:

ΔF = π∗
(
ch2(IZ)p∗Dt + ch3(IZ)

)
= −q∗(D(n)

t ) +
1
2

E
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22 A. Bertram

where q : S [n] → S n/Σn is the Hilbert–Chow morphism from the Hilbert
scheme to the symmetric product, E is the exceptional divisor, and D(n) is the
symmetric divisor on S n/Σn associated with D.

Notice that this class is anti-ample for t >> 0. This is a consequence of the
fact that the determinant line bundle is the divisor class given by the support of
the sheaf R1π∗(IZ ⊗ F), which has odd degree.

When t << 0, there is a similar result. The family of derived objects to con-
sider in this case is the shift of the derived dual I∨Z [1] in the derived category
of S × S [n]. This is a family of objects of the derived category of S with Chern
character invariants −c = (−1, 0, n). In this case, the determinant line bundle
is the same as above but with opposite sign, reflecting the fact that in this case
the pseudo-divisor gives the support of the sheaf R2π∗(I∨Z[1] ⊗ F), which has
even degree.

Turning to a more general example, suppose c = (c0, c1, c2) = ch(E) where
E is a Gieseker H-stable torsion-free sheaf on S . Gieseker stability is given in
terms of the Hilbert polynomial, but can be defined for polarized surfaces as
follows:

Definition A torsion-free sheaf E on S is Gieseker H-unstable if there is a
subsheaf F ⊂ E such that either

(i) μH(F) > μH(E) (i.e., E is Mumford H-unstable), or else
(ii) μH(F) = μH(E) and χ(S ,F)

rk(F) > χ(S ,E)
rk(E) .

It is Gieseker H-stable if for every subsheaf F ⊂ E, either

(i) μH(F) < μH(E), or else
(ii) μH(F) = μH(E) and χ(S ,F)

rk(F) < χ(S ,E)
rk(E)

and Gieseker H-semi-stable is defined in the usual way.

The moduli of Gieseker semi-stable equivalence classes have a natural
construction via geometric invariant theory. This is also reflected in their natu-
ralness from the point of view of α-stability conditions. As with the Hilbert
scheme, consider the one-parameter family of elements of c⊥, defined by
another ample divisor class H′ via

αt = (1, Dt, dt), where Dt = −
KS

2
+ tH′, dt = −

1
c0

(Dt · c1 + c2) .

Remark For large t, we have the required positivity

〈Dt, Dt〉 > 2dt

since the left side grows quadratically with t and the right grows linearly.
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Some remarks on surface moduli and determinants 23

Lemma 3 Suppose ch(E·) = c and E· is αt-stable for all t > t0. Then

(i) H−1(E·) = 0, i.e., E· = E = H0(E·) is a coherent sheaf.

(ii) E is Mumford H′-semi-stable.

(iii) E is Gieseker H′-semi-stable.

Proof Let F = H−1(E·). For F[1] to belong to the tilted category Aαt , it is
required that F be a torsion-free sheaf and that

〈F, αt · H〉 = 〈c1(F), H〉 +
〈
ch0(F),

(
−KS

2
+ tH′

)
· H

〉
≤ 0.

But this is positive when t is sufficiently large, proving (i).
Next, suppose E is H′-unstable, i.e., that there is an F ⊂ E such that

〈c1(F), H′〉
ch0(F)

>
〈c1(E), H′〉

ch0(E)
.

Then

〈ch(F), αt〉 = t

[
−ch0(F)〈H′, c1(E)〉

ch0(E)
+ 〈c1(F), H′〉

]
+ constant

and this is positive when t is large. But 〈ch(E), αt〉 = 0 by construction, so
μαt (F) > 0 = μαt (F) when t is large. Similarly, if E is Gieseker H′-unstable,
then either it is Mumford unstable (already done) or else there is an F ⊂ E with
μH(F) = μH(E) and χ(S ,F)

ch0(F) > χ(S ,E)
ch0(E) . In this case the linear term in 〈ch(F), αt〉

vanishes, but the constant term is

−ch0(F)
ch0(E)

〈ch(E), td(S )〉 + 〈ch(F), td(S )〉 > 0

by the Riemann–Roch theorem.

Remark There is little dependence here upon the choice of H. In fact,
because 〈ch(E·), αt〉 = 0 for all t, it follows that E· is αt-stable if and only
if 〈ch(F ·), αt〉 < 0 for all F · ⊂ E·. The only dependence upon H is in
the categories Aαt in which the inclusions F · ⊂ E· take place. Since these
categories Aαt eventually include any given coherent sheaf and exclude the
shift of any given coherent sheaf, it is unsurprising that H disappears in
the limit.
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24 A. Bertram

A converse to the lemma is also easy:

Lemma 4 Suppose E is a Gieseker H′-semi-stable torsion-free sheaf with
ch(E) = c and E ∈ Aαt0

. Any αt0 -destabilizing subobject F · ⊂ E will fail to
destabilize E for large t.

Proof From the long exact sequence in cohomology, it follows that a sub-
object F · ⊂ E is a coherent sheaf (though it may not be a subsheaf). If Q· =
E/F is the quotient inAt0 , then

0→ H−1(Q·)→ F → E → H0(Q·)→ 0

is a long exact sequence of coherent sheaves. Now, as in the previous lemma, if
H−1(Q·) � 0 then it is eventually not in the categoryAαt , and the inclusion F ⊂
E is destroyed (even though both coherent sheaves are in the categoryAαt ). On
the contrary, if H−1(Q·) = 0 then F ⊂ E is a subsheaf, and it follows that the
Gieseker slope of F is either smaller than that of E, in which case the αt-slope
is also eventually smaller, or else they are equal, in which case 〈ch(F), αt〉 = 0
for all t and F ⊂ E was not a destabilizing subobject at t = t0.

This is evidence that the coarse moduli spaces MH′ (c) of Gieseker semi-
stable sheaves should be the moduli of αt-semi-stable objects ofAαt for large t.
More evidence is also available in the positivity of the determinant line bundle
on the moduli spaceMH′ (c):

Theorem ([1]) The determinant line bundles ΔF for large t and F semi-stable
with ch(F) · td(S ) = λαt are positive on families of Gieseker H′-stable sheaves,
nef on families of semi-stable sheaves and descend to a positive line bundle on
the coarse moduli spaceMH′ (c).

This is, at least, consistent with the theorem of Bayer–Macrí [7], which
comes to the same conclusion for the determinant line bundle on the moduli of
αt-stable objects. It is hard to see how to make this into a proof, however, with-
out uniform versions of the lemmas. That is, we are faced with the following:

Problems (a) How to show that there is a uniform bound T for all H′-semi-
stable sheaves E such that for t > T , all “objections” to αt-stability (in the form
of nontrivial Harder–Narasimhan filtrations) disappear?

(b) How to show that there is a uniform bound T such that for all t > T , all
objects other than semi-stable sheaves fail to be αt-stable?

In special cases, these problems have been solved (e.g., [3, 4, 11] and notably
[8], in which essentially everything is done for K3 surfaces), but there is not
(to my knowledge) a one-size-fits-all-surfaces solution.

To sum up, we have an attractive picture in these α coordinates.
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The picture For each Chern class c = ch(E), there is a base point

α0 =

(
1,−1

2
KS , d0

)
∈ c⊥ ∩ {α0 = 1}

in the affine space, from which rays emanate in ample directions

αt :=

(
1,−1

2
KS + tH′, d0 − t

(
c1 · H′

c0

))
; t ≥ 0

with the following properties:

(i) Each ray eventually enters the stability manifold.
(ii) Gieseker H′-semi-stable sheaves are eventually αt-semi-stable.

(iii) Everything else is eventually αt-unstable.

And it is expected that:

(iv) The moduli of αt-stable sheaves for t > T coincide withMH′ (c).

In any case, Gieseker H′-semi-stable sheaves are identified with rays in the
affine space c⊥ ∩ {α0 = 1} emanating from the base point α0. The choice of
base point is actually quite important. If, for example, H′ is a critical value
for Gieseker moduli, in which there are strictly semi-stable sheaves although
the invariants c = (c0, c1, c2) are primitive (meaning that for “nearby” ample
classes H, semi-stability and stability coincide), then we expect to detect the
intermediate variations in moduli, discovered by Matsuki and Wentworth [22],
by varying the base point while continuing to point the ray in the direction H′.

4 The Serre map

One case remains, namely that of Gieseker-stable torsion sheaves on a
surface S . Several examples have been studied recently in the context of
Bridgeland stability, but I want to focus on one case, namely that of sheaves E
with the following invariants:

c1(E) = 2H − KS , χ(S ,E) = 0

where H is an ample divisor class (for which 2H − KS is effective).
One example of such sheaves are the quotients of maps

0→ L−1 ⊗ ωS → L→ E → 0

when L = OS (H) and ωS = OS (KS ).
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26 A. Bertram

As before, we consider stability conditions αt along a ray:

αt =

(
1,−1

2
KS ,−t

)
∈ c⊥ ∩ {α0 = 1}

although in this case the variation is entirely concentrated in H4(S ,Q). There
are several interesting properties of these stability conditions αt:

(i) The ray enters the stability manifold for some t ≤ 1
8 K2

S .
(ii) The tilted categoriesAαt are constant, since

〈ch(E), αt · H〉 = ch0(E)

(
−1

2
KS · H

)
+ ch1(E) · H

is independent of t. Recall that extensions 0 → F[1] → E· → T → 0
give the elements of Aαt , where the semi-stable pieces of the Harder–
Narasimhan filtration of F satisfy c1(E)·H

rk(E) ≤
1
2 KS ·H and those of the sheaf

T (other than the torsion) satisfy c1(E)·H
rk(F) > 1

2 KS · H.

In particular, there is a Serre map for surfaces, analogous to the family of
vector bundles on a curve parametrized by

P(Ext1(L, ωC)) = P(H0(C, L)∗)

via the “lines” {λε : 0→ ωC → E → L→ 0; λ ∈ C∗} of extensions. Recall that
the generic such extension gives a stable vector bundle of rank two provided
that deg(L) > deg(KC).

On a surface, a family of objects ofAαt is parametrized by

P(Ext2(L, L−1 ⊗ ωS )) = P(H0(S , L⊗2))

via the “lines” {λε : 0 → L−1 ⊗ ωS [1] → E· → L → 0; λ ∈ C∗} of extensions
provided that 〈H, H〉 > 〈 1

2 KS , H〉. Each value of t gives a different stability
criterion for the objects E·. By the computation μαt (L) = 0 = μαt (KS − L) ⇔
t1 = 〈H − KS , H〉 it follows that if L and L−1 ⊗ ωS [1] are both stable at t1 (a
nontrivial assertion! [5]), then

• each of the E· parametrized by ε ∈ P(Ext2(L, L−1 ⊗ ωS )) and
• each of the sheaves E parametrized by δ ∈ P(Hom(L−1 ⊗ ωS , L))

are strictly semi-stable objects, with Jordan–Hölder filtrations

0→ L−1 ⊗ ωS [1]→ E· → L→ 0 and 0→ L→ E → L−1 ⊗ ωS [1]→ 0

respectively. This suggests that for t2 < t < t1, a general extension ε will
parametrize an αt-stable object of Aαt , while for t > t1 one suspects (and it
is proved in many cases) that already the moduli of Gieseker-stable sheaves
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coincides with the moduli of αt-stable objects, i.e., that T is the uniform bound
sought in the previous section. My student, Christian Martinez, has recently
proven that the closure of the image of the Serre map has a particularly nice
property:

Theorem 5 ([21]) The involution on the derived category

E· �→ (E·)∨ ⊗ ωS [1]

induces an involution on the moduli of αt-stable objects of Chern class c =
ch(L)− ch(L−1 ⊗ωS ) and this involution fixes objects in the image of the Serre
map.
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