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Abstract

We generalize to all normal complex algebraic varieties the valuative charac-
terization of multiplier ideals due to Boucksom–Favre–Jonsson in the smooth
case. To that end, we extend the log discrepancy function to the space of all real
valuations, and prove that it satisfies an adequate properness property, building
upon previous work by Jonsson and Mustaţă. We next give an alternative defi-
nition of the concept of numerically Cartier divisors previously introduced by
the first three authors, and prove that numerically Q-Cartier divisors coincide
with Q-Cartier divisors for rational singularities. These ideas naturally lead
to the notion of numerically Q-Gorenstein varieties, for which our valuative
characterization of multiplier ideals takes a particularly simple form.
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1 Introduction

Multiplier ideal sheaves are a fundamental tool both in complex algebraic and
complex analytic geometry. They provide a way to approximate a “singularity
data,” which can take the form of a (coherent) ideal sheaf, a graded sequence of
ideal sheaves, a plurisubharmonic function, a nef b-divisor, etc., by a coherent
ideal sheaf satisfying a powerful cohomology vanishing theorem. For the sake
of simplicity, we will focus on the case of ideals and graded sequences of ideals
in the present paper.

On a smooth (complex) algebraic variety X, the very definition of the
multiplier ideal sheaf J(X, ac) of an ideal sheaf a ⊂ OX with exponent c > 0 is
valuative in nature: a germ f ∈ OX belongs to J(X, ac) iff it satisfies

ν( f ) > cν(a) − AX(ν)

for all divisorial valuations ν, i.e., all valuations of the form ν = ordE (up to
a multiplicative constant) with E a prime divisor on a birational model X′,
proper over X. Further, it is enough to test these conditions with X′ a fixed
log resolution of a (which shows that J(X, ac) is coherent, as the direct image
of a certain coherent fractional ideal sheaf on X′). Here we have set as usual
ν(a) := min f∈ax ν( f ) with x = cX(ν) the center of ν in X, and

AX(ν) := 1 + ordE
(
KX′/X

)
is the log discrepancy (with respect to X) of the divisorial valuation ν.

The multiplier ideal sheaf J(X, ac•) of a graded sequence of ideal sheaves
a• = (am)m∈N is defined as the stationary value of J(X, ac/m

m ) for m large and
divisible, but a direct valuative characterization was provided in [6] in the
2-dimensional case, in [3] for all non-singular varieties, and in [7, 8] for the
general case of regular excellent noetherian Q-schemes. More specifically, for
each divisorial valuation ν, subadditivity of m �→ ν(am) allows us to define

ν(a•) := lim
m→∞

m−1ν(am) = inf
m≥1

m−1ν(am)

in [0,+∞). By [3], a germ f ∈ OX belongs toJ(X, ac•) iff there exists 0 < ε � 1
such that

ν( f ) ≥ (c + ε)ν(a•) − AX(ν)

for all divisorial valuations ν.1 In other words, the latter condition is shown
to imply the existence of m � 1 such that ν( f ) > cm−1ν(am) − AX(ν) for all
divisorial valuations ν.
1 In statements of this kind, if f is a germ at x ∈ X, it is implicitly understood that we are only

considering those ν such that x ∈ {cX(ν)}, so that we can make sense of ν( f ).
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Valuation spaces and multiplier ideals on singular varieties 31

The definition of multiplier ideals was extended to the case of an arbitrary
normal algebraic variety X in [5]. If Δ is an effective Q-Weil divisor on X such
that KX + Δ is Q-Cartier (i.e., an effective Q-boundary in MMP terminology),
the log discrepancy function A(X,Δ) is a by now classical object (see, e.g., [11]).
It allows us to define the multiplier ideal sheaf J((X,Δ); ac) just as before for
an ideal sheaf a ⊂ OX , and then J (

(X,Δ); ac•
)

for a graded sequence of ideals
a• as the largest element in the family J((X,Δ); ac/m

m ). It is proven in [5] that
there is a unique maximal element in the family of ideals J((X,Δ); ac•) with
Δ ranging over all effective Q-boundaries, which coincides with the multiplier
ideal J(X, ac•) as defined in [5].

Note in particular that J(X,OX) = OX iff there exists an effective
Q-boundary Δ such that the pair (X,Δ) is klt – which simply means that X itself
is log terminal when X is already Q-Gorenstein (i.e., when KX is Q-Cartier).

In order to give a direct valuative description of these generalized multiplier
ideals, one first needs to provide an adequate notion of log discrepancy for a
divisorial valuation. As in [5], this is done by setting for ν = ordE with E a
prime divisor on a birational model X′ proper over X,

AX(ν) := 1 + ordE(KX′ ) − lim
m→∞

m−1 ordE OX (−mKX) ,

where KX is now an actual canonical Weil divisor on X (as opposed to a linear
equivalence class), KX′ is the corresponding canonical Weil divisor on X′, and
OX (−mKX) is viewed as a fractional ideal sheaf on X. The definition is easily
seen to be independent of the choices made.

Our first main result is as follows:

Theorem 1.1 Let a• be a graded sequence of ideal sheaves on a normal
algebraic variety, and pick c > 0. For every closed subscheme N ⊂ X contain-
ing both Sing(X) and the zero locus of a1 (and hence of am for all m) and every
0 < ε � 1, we have

J(X, ac•) = { f ∈ OX | ν( f ) ≥ c ν(a•) − AX(ν) + εν(IN)

for all divisorial valuations ν},

with IN ⊂ OX denoting the ideal sheaf defining N.

The key point in our approach is to construct an appropriate extension of
AX to the space ValX of all real valuations on X, and to prove that it satis-
fies an adequate properness property, building upon [8]. Once this is done,
the last ingredient is a variant of Dini’s lemma. The argument will also
prove:
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32 S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati

Theorem 1.2 Let a• be a graded sequence of ideal sheaves on a normal
algebraic variety, and pick c > 0. Then

J(X, ac•) = { f ∈ OX | ν( f ) > cν(a•) − AX(ν) for all real valuations ν} .

In the special case a• = OX , this last result shows that there exists an
effective Q-boundary Δ with (X,Δ) klt iff AX(ν) > 0 for all nontrivial real
valuations ν. When X admits an effective Q-boundary Δ with (X,Δ) log canon-
ical, one easily sees that AX ≥ 0. However, the converse already fails in
dimension three, as was shown recently by Yuchen Zhang for a normal isolated
cone singularity [16].

In the last part of this paper we will provide an alternative approach to
the notion of numerically Cartier divisors introduced in [2]. A Weil divi-
sor on X is said to be numerically (Q-)Cartier if it is the push-forward of
a π-numerically trivial (Q-)divisor for some (equivalently, any) resolution of
singularities π : X′ → X. This naturally leads to the definition of a group
of numerical divisor classes Clnum(X), defined as the quotient of the group
of Weil divisors by numerically Cartier divisors. We prove that the abelian
group Clnum(X) is always finitely generated. The Q-vector space Clnum(X)Q
is trivial when X is either Q-factorial or has dimension two, thanks to Mum-
ford’s numerical pull-back. Building on an argument of Kawamata, we further
prove that every numericallyQ-Cartier divisor is alreadyQ-Cartier when X has
rational singularities.

We say that X is numerically Q-Gorenstein when KX is numerically
Q-Cartier. This means that for some (equivalently, any) resolution of singular-
ities π : X′ → X, KX′ is π-numerically equivalent to a π-exceptional Q-divisor,
which is necessarily unique, and denoted by Knum

X′/X . It is related to the log
discrepancy function by

AX(ordE) = 1 + ordE

(
Knum

X′/X

)
for all prime divisors E ⊂ X′. As a consequence of Theorem 1.1, we show:

Theorem 1.3 Assume that X is numerically Q-Gorenstein, and let a ⊂ OX

be an ideal sheaf. Let also π : X′ → X be a log resolution of (X, a), so that
π−1a · OX′ = OX′ (−D) with D an effective Cartier divisor. For each exponent
c > 0 we then have

J(ac) = π∗OX′
(
�Knum

X′/X − cD�
)
.

In dimension two, this result says that the multiplier ideals introduced in [5]
agree with the numerical multiplier ideals defined using Mumford’s numerical
pull-back.
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Valuation spaces and multiplier ideals on singular varieties 33

Since the underlying variety of any klt pair has rational singularities,
Theorem 1.3 applied to a = OX yields:

Corollary 1.4 Let X be a normal algebraic variety. The following conditions
are equivalent:

(a) X is Q-Gorenstein and log terminal;
(b) X is numerically Q-Gorenstein and AX(ordE) > 0 for all prime divisors E

on some (equivalently, any) log resolution X′ of X.

2 Valuation spaces

Throughout this paper we work over the field C of complex numbers. In this
section we review some properties of valuation spaces, mostly following [8].

2.1 The space of real valuations

Let X be an algebraic variety. By a valuation on X we mean a real-valued
valuation ν on the function field of X that is trivial on the base field and admits
a center on X. Recall that the latter is characterized as the unique scheme point
cX(ν) = ξ ∈ X such that ν ≥ 0 on OX,ξ and ν > 0 on its maximal ideal. We
denote by ValX the space of valuations on X, endowed with the topology of
pointwise convergence.

The trivial valuation, which is identically zero on all nonzero rational func-
tions, is the unique valuation on X centered at its generic point. Following [8],
we denote by

Val∗X ⊂ ValX

the set of nontrivial valuations. Mapping a valuation to its center defines an
anticontinuous2 map

cX : ValX → X.

Every prime divisor E over X (i.e., in a normal birational model X′, proper over
X) determines a valuation ordE ∈ ValX given by the order of vanishing at the
generic point of E. A divisorial valuation is a valuation of the form ν = c ordE

for some prime divisor E over X and some c ∈ R∗+. We denote by

DivValX ⊂ ValX

the set of divisorial valuations.
2 That is, the inverse image of an open subset is closed.
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2.2 Normalized valuation spaces

For every (coherent) ideal sheaf a ⊂ OX and every ν ∈ ValX , we set as usual

ν(a) := min
{
ν( f ) | f ∈ acX (ν)

} ∈ [0,+∞).

Definition 2.1 A normalizing subscheme is a (nontrivial) closed subscheme
of X containing Sing(X). The normalized valuation space defined by N is

ValN
X := {ν ∈ ValX | ν(IN) = 1} ,

with IN denoting the ideal sheaf defining N.

Note that

R∗+ · ValN
X = {ν ∈ ValX | ν(IN) > 0} = c−1

X (N),

which is thus open in ValX and only depends on the Zariski closed set Nred. We
also clearly have

Val∗X =
⋃
N⊂X

R∗+ · ValN
X , (2.1)

with N ranging over all normalizing subschemes.
The point of introducing this terminology is that the normalized valuation

space ValN
X admits a simple description as a limit of simplicial complexes.

Definition 2.2 A good resolution of a normalizing subscheme N ⊂ X is a
proper birational morphism π : Xπ → X such that

• Xπ smooth;
• π is an isomorphism over X \ N;
• π−1(N) ⊃ Exc(π) both have pure codimension one, and π−1(N)red is a simple

normal crossing divisor
∑

i∈I Ei such that EJ :=
⋂

j∈J E j is irreducible (or
empty) for all J ⊂ I.

Let π be a good resolution of N, and assume that EJ as above is non-empty.
At its generic point ηJ , the normal crossing condition guarantees that any
choice of local equations z j ∈ OXπ,ηJ for E j, j ∈ J yields a regular system
of parameters. By Cohen’s theorem we thus have

ÔXπ,ηJ � C(ηJ)[[z j, j ∈ J]],

with C(ηJ) denoting the residue field at ηJ . To every weight w = (w j) j∈J ∈ RJ
+,

we associate the monomial valuation νw defined by

νw

⎛⎜⎜⎜⎜⎜⎜⎝∑
α∈NJ

aαzα
⎞⎟⎟⎟⎟⎟⎟⎠ := min

⎧⎪⎪⎨⎪⎪⎩
∑

i

wiαi | aα � 0

⎫⎪⎪⎬⎪⎪⎭ . (2.2)
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Valuation spaces and multiplier ideals on singular varieties 35

Viewed as a valuation on X, νw is called a quasi-monomial valuation. The con-
struction is independent of the choice of the local equations z j, j ∈ J (see [8,
Sections 3–4] for more details).

Note that νw ∈ ValN
X iff

∑
j∈J w j ordE j (N) = 1. If we denote by ΔN

π ⊂ ValN
X

the set of all normalized quasi-monomial valuations so obtained, then ΔN
π is a

geometric realization of the dual complex of
∑

i Ei, i.e., the simplicial complex
whose vertices are in bijection with I and that contains one simplicial face σJ

joining all vertices j ∈ J for any subset J ⊂ I such that EJ � ∅.
Further, there is a natural continuous retraction

rN
π : ValN

X → Δ
N
π ,

defined by letting rN
π (ν) be the unique monomial valuation taking the value

ν(E j) on E j. Note that rN
π (ν) belongs to the relative interior of the face σJ , with

J :=
{
j ∈ I | cXπ

(ν) ∈ E j

}
.

If π′ factors through π (in which case we write π′ ≥ π), then there is a natural
inclusion ΔN

π ↪→ ΔN
π′ . We then have:

Theorem 2.3 ([1, 15])

ValN
X =

⋃
π

ΔN
π ,

where π runs over all good resolutions of N. More precisely, limπ rN
π (ν) = ν for

each ν ∈ ValX.

A subset σ ⊂ ValN
X is said to be a face if σ is a face of ΔN

π for some π. A face
of ΔN

π is also called a π-face, and it can be endowed with a canonical affine
structure induced from ΔN

π . A real-valued function on ValN
X is said to be affine

(resp., convex) on a face if it is so in terms of the variable w as in (2.2). We
say that a property holds on small faces if there exists π such that the property
holds on the faces of Δπ′ for all π′ ≥ π.

2.3 Functions defined by ideals

Proposition 2.4 Let N ⊂ X be a normalizing subscheme and a ⊂ OX be a
nonzero coherent ideal sheaf. Then:

(a) ν �→ ν(a) is a continuous function ValX → [0,+∞), and concave on each
face of ValN

X ;

(b) for each good resolution π of N we have rN
π (ν)(a) ≥ ν(a) on ValN

X .
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If N further contains the zero locus of a, and π is a good resolution of N
dominating the blow-up of a, then ν �→ ν(a) is affine on the faces of ΔN

π and
rN
π (ν)(a) = ν(a) on ValN

X . In particular, ν �→ ν(a) is bounded on ValN
X .

Proof The proof is basically contained in [3, 8]. We briefly recall the
argument. Using the same notation introduced in Section 2.2, a valuation cor-
responding to a point in a face σ of some ΔN

π is parametrized by w = (w j) j∈J

with w j ≥ 0 and
∑

j∈J w j ordE j (N) = 1. For every local function f on X we
have νw( f ) = min {∑i wiαi | aα � 0} with f ◦ π =

∑
α aαzα. Since w �→ νw(h)

is the minimum of a collection of affine functions, it is concave. It follows
that ν(a) = min {ν( f ) | f ∈ a} is a concave function of ν ∈ σ. Moreover, if
N contains the zero locus of a and π dominates the blow-up of a, then this
function is affine on σ.

Finally, applying [8, Lemma 4.7] to a fixed resolution of singularities of X
shows that rN

π (ν)(a) ≥ ν(a) for each valuation ν, with equality if π dominates
the blow-up of a. This concludes the proof.

More generally, recall that a graded sequence of ideals a• = (am)m≥0 is a
sequence of coherent ideal sheaves such that am ·an ⊂ am+n for all m, n. We will
always assume that a1 � 0, and hence am � 0 for all m ≥ 1. Since ν(am) is a
subadditive sequence for each ν ∈ ValX , we can set

ν(a•) = lim
m→∞

m−1ν(am) = inf
m≥1

m−1ν(am).

Proposition 2.4 generalizes to

Proposition 2.5 Let N ⊂ X be a normalizing subscheme and let π be a
good resolution of N. For any graded sequence of ideal sheaves a• = (am)m≥0,
ν �→ ν(a•) defines an upper semicontinuous function ValX → [0,+∞) such that

(a) ν �→ ν(a•) is concave and continuous on each face of ValN
X ;

(b) rN
π (ν)(a•) ≥ ν(a•) on ValN

X for each good resolution π of N.

Furthermore, if N contains the zero locus of a1 (or, equivalently, of am for all
m), then ν �→ ν(a•) is also bounded on ValN

X .

Proof Only the continuity on the faces is not a direct consequence of Propo-
sition 2.4. But since each face σ of ValN

X is a simplex, it follows from an
elementary fact in convex analysis [13, Theorem 10.2] that ν �→ ν(a), being
concave and usc, is automatically continuous on σ.

Remark 2.6 As a consequence of [4, Theorem B], one can show the following
uniform Lipschitz property: assume that a given face σ of ValN

X has the property
that the closure Z ⊂ X of the center of some (equivalently, any) valuation of
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Valuation spaces and multiplier ideals on singular varieties 37

the relative interior of σ is proper over C. Then there exists C > 0 such that for
any graded sequence of ideal sheaves a• the function ν �→ ν(a•) is Lipschitz
continuous on σ with Lipschitz constant ≤ C ordZ(a•).

3 The log discrepancy function

Throughout this section, X denotes a normal algebraic variety.

3.1 The log discrepancy of a divisorial valuation

Let KX be a canonical Weil divisor on X, i.e., the closure in X of the divisor
of a given rational form of top degree on Xreg. The choice of KX induces on
the one hand a graded sequence of fractional ideal sheaves (OX(−mKX))m∈N,
and on the other hand a canonical Weil divisor KX′ for each birational model
X′ of X.

Following [2, 5], we define for all m ≥ 1 the m-limiting log discrepancy
function as the unique homogeneous function A(m)

X : DivValX → R such that

A(m)
X (ordE) = 1 + ordE(KX′ ) − m−1 ordE OX(−mKX)

for each prime divisor E on a birational model X′. Here ordE(KX′ ) simply
means the coefficient of E in KX′ viewed as a cycle of codimension one. The
definition is independent of the choices made, and the subadditivity of the
sequence ordE OX(−mKX) shows that A(m)

X converges pointwise to a function
AX : DivValX → R, the log discrepancy function, with AX = supm≥1 A(m)

X .

3.2 The log discrepancy of a real valuation

Theorem 3.1 There is a unique way to extend AX and A(m)
X (m ≥ 1) to

homogeneous, lower semicontinuous functions ValX → R ∪ {+∞} such that
the following properties hold for each normalizing subscheme N ⊂ X:

(i) A(m)
X and AX are convex and continuous on all faces of ValN

X , and A(m)
X is

even affine on small faces;
(ii) on ValN

X we have

A(m)
X = sup

π
A(m)

X ◦ rN
π and AX = lim

π
AX ◦ rN

π ,

where π runs over all good resolutions of N and rN
π : ValN

X → ΔN
π is the

corresponding retraction;
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(iii) for each a ∈ R,
{
A(1)

X ≤ a
}

is a compact subset of ValX, and A(m)
X converges

uniformly to AX on this set.

Further, we have AX = supm≥1 A(m)
X on ValX.

Remark 3.2 Combined with Remark 2.6, our proof will show that AX is in fact
Lipschitz continuous on any face of ValN

X containing valuations with proper
center in X.

Remark 3.3 We do not know whether AX ≥ AX ◦ rN
π holds on ValN

X for π large
enough in general.

Theorem 3.1 will be proved by reduction to the smooth case. The next result
summarizes the required properties for X smooth, all of which are contained
in [8].

Lemma 3.4 Assume that X is smooth. Then Theorem 3.1 holds; further, if a•
is a graded sequence of ideal sheaves on X and N is a normalizing subscheme
containing the zero locus of a1 (and hence of am for all m), m−1ν(am) → ν(a•)
uniformly for ν ∈ {AX ≤ a} ∩ ValN

X , for each a ∈ R.

Proof When X is smooth, properties (i) and (ii) of Theorem 3.1 follow
from [8, Proposition 5.1, Corollary 5.8]. The compactness of {AX ≤ a} is a
consequence of the Skoda–Izumi inequality, just as in the proof of [8, Propo-
sition 5.9]. By Dini’s lemma and the subadditivity of (ν(am))m∈N, the uniform
convergence is equivalent to the continuity of ν �→ ν(a•) on {AX ≤ a}, which is
[8, Corollary 6.4].

Proof of Theorem 3.1 Uniqueness is clear: since the rational points of each
dual complex ΔN

π consist of divisorial valuations, AX and A(m)
X are uniquely

determined on ΔN
π by (i), and hence on ValN

X by (ii). By homogeneity, they are
also uniquely determined on

Val∗X =
⋃

N

R∗+ · ValN
X .

In order to prove existence, we fix the choice of a projective birational mor-
phism μ : X′ → X such that X′ is smooth and μ is an isomorphism over Xreg.

We claim that there exists a μ-exceptional effective divisor D on X′ such that
the graded sequence of fractional ideal sheaves

am := μ−1OX(−mKX) · OX′ (mKX′ ) · OX′ (−mD)
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Valuation spaces and multiplier ideals on singular varieties 39

is a sequence of actual ideal sheaves. To see this, it is enough to choose D such
that a1 ⊂ OX′ . But we may add a Cartier divisor Z to KX so that KX + Z is
effective. The divisorial part of the ideal sheaf

μ−1OX(−KX − Z) · OX′

coincides with OX′ (−KX′ − μ∗Z) up to a μ-exceptional divisor D, and we get
a1 ⊂ OX′ as desired for this choice of D.

Note that we have by definition

A(m)
X (ν) = AX′ (ν) + ν(D) − m−1ν(am)

and

AX(ν) = AX′ (ν) + ν(D) − ν(a•)

for all ν ∈ DivValX 	 DivValX′ . Using the canonical homeomorphism
ValX 	 ValX′ , we can now use these formulas to define AX and A(m)

X on ValX .
Propositions 2.4 and 2.5 already show that AX and A(m)

X are homogeneous and
lsc on ValX . It remains to see that they satisfy (i), (ii) and (iii) of Theorem 3.1.

Let N ⊂ X be a given normalizing subscheme. Each good resolution
π′ : X′π′ → X′ of N′ := μ−1(N) induces a good resolution π := μ ◦ π′ of N
such that ΔN′

π′ = Δ
N
π , and the retractions rN

π : ValN
X → ΔN

π and rN′
π′ : ValN′

X′ → ΔN′
π′

identify modulo the canonical homeomorphism ValX′ 	 ValX .
Since N′ contains the support of D and the zero locus of a1, Proposition 2.4

shows that ν �→ ν(D) − ν(a•) is bounded and lower semicontinuous on ValN′
X′ ,

and continuous and convex on the faces of ValN′
X′ , while ν �→ ν(D) − m−1ν(am)

is affine on small faces. It follows that AX and A(m)
X satisfy (i).

Now pick a ∈ R, and set for simplicity

K := {A(1)
X ≤ a} ∩ ValN

X .

Since ν(D)−ν(a1) is bounded for ν ∈ ValN
X , K is contained in {AX′ ≤ a′}∩ValN′

X′

for some a′ ∈ R, and hence is compact by Lemma 3.4 and the lower semicon-
tinuity of A(1)

X . Lemma 3.4 also shows that m−1ν(am) → ν(a•) uniformly for
ν ∈ K, which proves (iii).

Let ν ∈ ValN
X . If AX(ν) is finite, then so is AX′ (ν), and rN′

π′ (ν) stays in the
compact set

{AX′ ≤ AX′ (ν)} ∩ ValN′
X′

since AX′ ≥ AX′ ◦ rN′
π′ . For each m fixed we have, by Proposition 2.4,

ν(am) = rN′
π′ (ν)(am)
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for π′ large enough, which proves that A(m)
X satisfies (ii). By uniform

convergence of m−1ν′(am) to ν′(a•) for ν′ ∈ {AX′ ≤ AX′ (ν)} ∩ ValN′
X′ , we infer

ν(a•) = lim
π′

rN′
π′ (ν)(a•),

so that AX satisfies (ii) on the locus of ValN
X where it is finite. If now ν ∈ ValN

X

has AX(ν) = +∞, then

lim
π′

AX′ (r
N′
π′ (ν)) = AX′ (ν) = +∞,

while rN′
π′ (ν)(a•) remains bounded, and we thus get (ii) at ν as well. The same

argument also proves the last assertion of Theorem 3.1.

4 Valuative characterization of multiplier ideals

4.1 Multiplier ideal sheaves

We briefly recall the definition of multiplier ideals in the context of a normal
variety, as introduced in [5]. We follow the presentation of [2, Section 3], which
is phrased in the language of b-divisors, and therefore closer to our present
valuative point of view. Indeed, it suffices to recall that a b-divisor is nothing
but a homogeneous function on DivValX , with the extra property that it is non-
zero on only finitely many prime divisors of X (and hence on every model X′

over X, since X′ → X has only finitely many exceptional prime divisors).
If a ⊂ OX is a coherent ideal sheaf and c is a positive real number, the

m-limiting multiplier ideal sheaf of ac is defined as

Jm(X, ac) :=
{
f ∈ OX | ν( f ) > cν(a) − A(m)

X (ν) for all ν ∈ DivValX

}
,

where A(m)
X is the m-limiting log discrepancy function from Section 3. This

is a reformulation of [2, Definition 3.7], which is phrased in the equiva-
lent language of b-divisors. It is proved in [2] that Jm(X, ac) is actually
coherent.

We have Jm(X, ac) ⊂ Jl(X, ac) whenever m divides l, and the multiplier
ideal sheaf J(X, ac) can thus be defined as the unique maximal element of
the family (Jm(X, ac))m∈N. By [2, Theorem 3.8], J(X, ac) is also the largest
element in the family of “classical” multiplier ideals J((X,Δ); ac), where Δ
runs over all effective Q-Weil divisors on X such that KX + Δ is Q-Cartier (so
that (X,Δ) is a pair in the sense of Mori theory).

More generally, when a• = (am)m∈N is a graded sequence of (coherent) ideal
sheaves, the multiplier ideal J(X, ac•) is defined as the maximal element of the
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familyJ(X, ac/m
m ) [2, Definition 3.12]. Equivalently,J(X, ac•) is also the largest

element in the family Jm

(
X, ac/m

m

)
, cf. [2, Lemma 3.13].

4.2 Valuative characterization

Theorems 1.1 and 1.2 are restated together in the following result:

Theorem 4.1 Let X be a normal variety. Let a• be a graded sequence of
(coherent) ideal sheaves on X, and let c > 0 be a real number. Then the
following two characterizations of the multiplier ideal sheaf J(X, ac•) ⊂ OX

hold:

(a)

J(X, ac•) = { f ∈ OX | ν( f ) > cν(a•) − AX(ν) for all ν ∈ ValX} ;

(b) for every normalizing subscheme N ⊂ X containing the zero locus of a1
(and hence of am for all m) and every 0 < ε � 1 we have

J(X, ac•) = { f ∈ OX | ν( f ) ≥ cν(a•) − AX(ν) + εν(IN)

for all ν ∈ DivValX}.

A key ingredient in the proof is the following simple variant of Dini’s
lemma:

Lemma 4.2 Let Z be a Hausdorff topological space, and let φm : Z →
R ∪ {+∞} be a non-decreasing sequence of lower semicontinuous functions
converging to φ. Assume also that each sublevel set {φ1 ≤ a} with a ∈ R is
compact. Then infZ φm → infZ φ.

Proof Note that infZ φm ≤ infZ φ, just because φm is non-decreasing. Assume
first that infZ φ < +∞ (which is the only case we shall actually use), and let
ε > 0. Setting

Km :=
{
φm ≤ inf

Z
φ − ε

}
defines a decreasing sequence of compact sets, by lower semicontinuity of φm

and the compactness of sublevel sets of φ1. Since⋂
m∈N

Km =

{
φ ≤ inf

Z
φ − ε

}
= ∅,

it follows that Km = ∅ for all m � 1, i.e., infZ φm > infZ φ − ε for all m � 1.
In case φ ≡ +∞, the same argument applies, fixing A > 0 instead of ε and
replacing Km with K′m := {φm ≤ A}.
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Proof of Theorem 4.1 Let N ⊂ X be a normalizing subscheme containing the
zero locus of a1. Let also U ⊂ X be an affine open set and pick f ∈ O(U). The
theorem will follow from the equivalence between the following properties:

(i) f ∈ J(X, ac•)(U);
(ii) ν( f ) > cm−1ν(am) − A(m)

X (ν) on DivValN
U for all m large and divisible;

(iii) ν( f ) > cm−1ν(am) − A(m)
X (ν) on ValN

U for all m large and divisible;
(iv) ν( f ) > cν(a•) − AX(ν) on ValN

U ;
(v) ν( f ) ≥ cν(a•) − AX(ν) + ε on ValN

U for some 0 < ε � 1;
(vi) ν( f ) ≥ cν(a•) − AX(ν) + ε on DivValN

U for some 0 < ε � 1;
(vii) ν( f ) ≥ cν(a•) − AX(ν) + εν(IN) on DivValU for some 0 < ε � 1.

Let us first check (i)⇐⇒(ii). Since U is affine, J(X, ac•)(U) is the largest ele-
ment in the family of ideals Jm(X, ac/m

m )(U) of O(U), and (i) thus amounts to
ν( f ) > cm−1ν(am) − A(m)

X (ν) on DivValU for all m large and divisible, which
implies (ii). Conversely, (ii) implies (i) since for any ν ∈ DivValU centered
outside N ⊃ Sing(X) we have A(m)

X (ν) = AX(ν) > 0 (since U is smooth at the
center of ν) while ν(am) = 0.

Next, consider the functions φ, φm : ValN
U → R ∪ {+∞} defined by

φ(ν) := ν( f ) − cν(a•) + AX(ν)

and

φm(ν) := ν( f ) − cm−1ν(am) + A(m)
X (ν).

For each m fixed, Proposition 2.4 and Theorem 3.1 show that φm is lower semi-
continuous, affine on small faces of ValN

U , and satisfies φm ≥ φm ◦ rN
π for all π

large enough. This shows that φm > 0 on DivValN
U iff φm > 0 on ValN

U , i.e.,
(ii)⇐⇒(iii).

Further, each sublevel set {φ1 ≤ a} with a ∈ R is compact by Theo-
rem 3.1, and Lemma 4.2 thus yields (iv)⇒(iii), while the converse follows
from AX ≥ A(m)

X .
Since φ is lower semicontinuous and has compact sublevel sets, it achieves

its infimum on ValN
U , which proves (iv)⇐⇒(v). Next, (v) trivially implies (vi),

while the converse holds since φ is continuous on each dual complex ΔN
π and

satisfies φ = limπ φ ◦ rN
π on ValN

U , again by Theorem 3.1.
As to (vi)⇐⇒(vii), it holds because ν(IN) = −1 on ValN

U by definition of the
latter, while we have just as above ν( f )− cν(a•)+ AX(ν)− εν(IN) ≥ AX(ν) ≥ 0
on any ν ∈ DivValU centered outside N.

To get (b) in Theorem 4.1 from (vii), note that the ideals

{ f ∈ O(U) | ν( f ) ≥ cν(a•) − AX(ν) + εν(IN) on DivValU}

are independent of 0 < ε � 1, by the Noetherian property of O(U).
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5 Numerically Cartier divisors

5.1 The group of numerical divisor classes

In this section, we provide an alternative and more concrete approach to the
notion of numerically Cartier divisors introduced in [2, Section 2].

As a matter of notation, we respectively denote by Car(X) and Z1(X) the
groups of Cartier and Weil divisors of a normal variety X. We define the local
class group of X as

Clloc(X) := Z1(X)/ Car(X).

By definition, Clloc(X) is trivial iff X is (locally) factorial. Since the usual divi-
sor class group Cl(X) is defined as the quotient of Z1(X) by the subgroup of
principal divisors, we have an exact sequence

0→ Pic(X)→ Cl(X)→ Clloc(X)→ 0.

Remark 5.1 When X only has an isolated singularity at 0 ∈ X, Clloc(X)
coincides with the divisor class group of the local ring OX,0.

Definition 5.2 Let X be a normal variety.

(i) A Weil divisor D ∈ Z1(X) is numerically Cartier if there exists a reso-
lution of singularities μ : X′ → X (i.e., a projective birational morphism
with X′ smooth) and a μ-numerically trivial Cartier divisor D′ on X′ such
that D = μ∗D′.

(ii) We denote by NumCar(X) ⊂ Z1(X) the subgroup of numerically Cartier
divisors, and elements of NumCar(X)Q ⊂ Z1(X′)Q are called numerically
Q-Cartier.

(iii) The group of numerical divisor classes of X is defined as the quotient

Clnum(X) := Z1(X)/ NumCar(X).

(iv) We say that X is numerically factorial (resp. numerically Q-factorial) if
Clnum(X) = 0 (resp. Clnum(X)Q = 0).

By definition, Clnum(X) is a quotient of Clloc(X), and it is in fact much
smaller in general. Indeed, as we shall see shortly, Clnum(X) is always finitely
generated as an abelian group.

In order to analyze further numerically Cartier divisors, we first show that it
is enough to work with a fixed resolution of singularities.

Proposition 5.3 Let μ : X′ → X be a projective birational morphism.

(i) If X′ is factorial, every D ∈ NumCar(X) can be written as D = μ∗D′ for a
unique μ-numerically trivial D′ ∈ Car(X′).
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(ii) If X′ is Q-factorial, every D ∈ NumCar(X)Q is of the form D = μ∗D′ for a
unique μ-numerically trivial D′ ∈ Car(X′)Q.

In both cases, we set μ∗numD := D′ and call it the numerical pull-back of D.

Proof The kernel of μ∗ : Z1(X′) → Z1(X) is exactly the space of
μ-exceptional divisors. By the negativity lemma, there is no nontrivial divisor
on X′ that is both μ-numerically trivial and μ-exceptional, which proves the
uniqueness part in both cases.

Now pick D ∈ NumCar(X). By definition, there exists a resolution
μ′′ : X′′ → X such that D = μ′′∗ D′′ for some μ′′-numerically trivial D′′ ∈
Car(X′′). Since the pull-back of D′′ to a higher resolution remains relatively
numerically trivial, we may assume that μ′′ dominates μ, i.e., μ′′ = μ ◦
ρ for a birational morphism ρ : X′′ → X′. Since X′ is factorial (resp.
Q-factorial), D′ := ρ∗D′′ belongs to Car(X′) (resp. Car(X′)Q), and D′′ − ρ∗D′

is both ρ-exceptional and ρ-numerically trivial, hence trivial. By the projection
formula, it follows that D′ is μ′-numerically trivial and D = μ′∗D

′.

Corollary 5.4 With the same assumption as in Proposition 5.3, μ∗ : Z1(X′)→
Z1(X) induces:

(i) an exact sequence of abelian groups

0→ Exc1(μ)→ N1(X′/X)→ Clnum(X)→ 0

if X′ is factorial, where Exc1(μ) is the (free abelian) group of μ-exceptional
divisors and N1(X′/X) is the group of μ-numerical equivalence classes;

(ii) an exact sequence of Q-vector spaces

0→ Exc1(μ)Q → N1(X′/X)Q → Clnum(X)Q → 0

if X′ is Q-factorial.

In particular, Clnum(X) is a finitely generated abelian group.

Proof The exact sequences in (i) and (ii) follow immediately from Propo-
sition 5.3. The last assertion is a consequence of the relative version of
the theorem of the base [10, p. 334, Proposition 3], which guarantees that
N1(X′/X) is finitely generated.

Remark 5.5 As a special case of (ii) above, if X′ isQ-factorial and (Ei) denotes
the μ-exceptional prime divisors, then X is numericallyQ-factorial iff for every
D′ ∈ Car(X′) there exist ai ∈ Q such that⎛⎜⎜⎜⎜⎜⎝D′ +∑

i

aiEi

⎞⎟⎟⎟⎟⎟⎠ ·C = 0 (5.1)
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holds for all curves C ⊂ X′ contained in a μ-fiber.

Example 5.6 If X is an affine cone over a smooth projective polarized variety
(Y, L), then

Clloc(X) 	 Pic(Y)/ZL

and

Clnum(X) 	 NS(Y)/Zc1(L).

In particular, X is numerically Q-factorial iff ρ(Y) = 1.

Example 5.7 Every surface is numericallyQ-factorial. This is directly related
to the existence of Mumford’s numerical pull-back. Indeed, let μ : X′ → X be
a resolution of singularities, with exceptional divisor

∑
i Ei. Since the intersec-

tion matrix (Ei · E j) is negative definite, for D′ ∈ Car(X′) we can find ai ∈ Q
such that (5.3) holds for each curve C = E j.

Note that Clnum(X) is however nontrivial in general, even for a surface.
For instance, it follows from Example 5.6 that Clnum(X) = Z/2Z for an
A1-singularity.

Example 5.8 If X is log terminal in the sense of [5], i.e., if (X,Δ) is klt for
some effective Q-Weil divisor Δ, it follows from the current knowledge in the
minimal model program that there exists a small projective birational mor-
phism μ : X′ → X such that X′ is Q-factorial. By (ii) of Corollary 5.4, we then
have N1(X′/X)Q 	 Clnum(X)Q, which is thus trivial iff μ is an isomorphism.
In other words, X is numerically Q-factorial iff X is Q-factorial. Since X has
rational singularities, the previous conclusion will also follow from Theorem
5.11 below.

Let us now check that Definition 5.2 is indeed compatible with [2, Defini-
tion 2.26, Remark 2.27].3 Since this result is not strictly necessary in the rest of
the paper, we simply refer to [2, Section 2] for details about the notions used.

Proposition 5.9 A Weil divisor D on X is numerically Q-Cartier in the sense
of Definition 5.2 iff

ν (OX(−mD)) = −ν (OX(mD)) + o(m) (5.2)

for all ν ∈ DivValX.
For each projective birational morphism μ : X′ → X with X′ Q-factorial, we

then have

lim
m→∞

m−1ν (OX(−mD)) = ν
(
μ∗numD

)
(5.3)

3 More precisely, numerically Q-Cartier divisors in the present sense correspond to numerically
Cartier divisors in the sense of [2].

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.004
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.004
http:/www.cambridge.org/core


46 S. Boucksom, T. de Fernex, C. Favre, and S. Urbinati

for all ν ∈ DivValX. In particular, the limit on the left-hand side is rational.

Proof In the terminology of [2, Section 2], (5.2) reads

EnvX(−D) = −EnvX(D),

where EnvX(D) is the nef envelope of D, i.e., the b-divisor over X characterized
by

ν (EnvX(D)) = lim
m→∞

m−1ν (OX(mD))

for all ν ∈ DivValX . Assume first that D ∈ Z1(X) is numerically Q-Cartier.
Let μ : X′ → X be a projective birational morphism with X′ Q-factorial and
set D′ := μ∗numD. The Cartier b-divisor D

′
induced by pulling back D′ is then

relatively nef over X and satisfies D
′
X = D, and hence

D
′ ≤ EnvX(D)

by [2, Proposition 2.12]. Since −D
′

is also relatively nef, we similarly get

−D
′ ≤ EnvX(−D).

Summing up these two inequalities and using the trivial inequality

EnvX(D) + EnvX(−D) ≤ EnvX(D − D) = 0,

we infer

EnvX(D) = D
′

and

EnvX(−D) = −D
′
,

which proves (5.2) and (5.3).
Conversely, assume that D ∈ Z1(X) satisfies EnvX(−D) = −EnvX(D). By

[2, Lemma 2.10], it follows that D′ := EnvX(D)X′ ∈ Car(X′)R is μ-numerically
trivial. Since μ∗D′ = D belongs to Z1(X)Q and μ∗ is defined over Q, the
injectivity of μ∗ on μ-numerically trivial divisors implies that D′ is in fact a
Q-divisor, and hence that D is numerically Q-Cartier with D′ = μ∗numD.

Remark 5.10 In particular, this result shows that the envelope EnvX(D) of a
Weil divisor D ∈ Z1(X) such that EnvX(−D) = −EnvX(D) is a Q-Cartier
b-divisor (the rationality of the coefficients being in particular not obvious
from the definition). In fact, the whole point of the present view is to high-
light the fact that the R-vector space of R-Weil divisors D ∈ Z1(X)R with
EnvX(−D) = −EnvX(D) is in fact defined over Q.
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5.2 The case of rational singularities

In this section we prove:

Theorem 5.11 Let X be a normal variety with at most rational singularities.
Then

NumCar(X)Q = Car(X)Q,

i.e., a Weil divisor is numerically Q-Cartier iff it is Q-Cartier. In particular, X
is numerically Q-factorial iff X is Q-factorial.

The proof is inspired by that of [9, Lemma 1.1], which states that the
Q-vector space Z1(X)Q/ Car(X)Q is finite dimensional when X has rational
singularities. We will need the following two results:

Lemma 5.12 ([14, Proposition 1]) A Weil divisor on a normal variety X is
locally Cartier at a point x ∈ X iff its restriction to the formal completion of X
at x is Cartier.

Lemma 5.13 If Y is a (possibly reducible) projective complex variety, a line
bundle L on Y is numerically trivial, i.e., L · C = 0 for all curves C ⊂ Y, iff
c1(L) = 0 in H2(Y,Q).

Proof When Y is nonsingular, the result is well known and amounts to
the Hodge conjecture for 1-dimensional cycles (which follows from the
1-codimensional case via the Hard Lefschetz theorem). However, we haven’t
been able to locate a reference in the literature in the general singular case; we
are very grateful to Claire Voisin for having shown us the following argument.
Let π : Y ′ → Y be a resolution of singularities. Since π∗L is also numerically
trivial, we have π∗c1(L) = 0 in H2(Y ′,Q), by the result in the smooth case. By
[12, Corollary 5.42], this means that c1(L) ∈ W1H2(Y,Q), where W• denotes
the weight filtration of the mixed Hodge structure. The problem is thus to show
that W1H2(Y,Q) only meets the image of Pic(Y) at 0.

To see this, note that there exists a morphism f : Y → Z to a smooth
projective variety Z such that L = f ∗M for some line bundle M on Z; indeed,
this is true with Z a projective space when L is very ample, and writing L as a
difference of very ample line bundles gives the general case, with Z a product
of two projective spaces.

Since f ∗ : H2(Z,Q) → H2(Y,Q) is a morphism of mixed Hodge structures,
it is strict with respect to weight filtrations, and we get

c1(L) ∈ f ∗H2(Z,Q) ∩W1H2(Y,Q) = f ∗
(
W1H2(Z,Q)

)
,

which is zero since Z is smooth.
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Proof of Theorem 5.11 Let μ : X′ → X be a resolution of singularities and
let D′ ∈ Car(X′) be μ-numerically trivial. Our goal is to show that D := μ∗D′

is Q-Cartier. By Lemma 5.12, it is enough to show that every (closed) point
x ∈ X has an analytic neighborhood U on which Dan is Q-Cartier.

The exponential exact sequence on the associated complex analytic variety
X′an yields an exact sequence

R1μan
∗ O → R1μan

∗ O∗ → R2μ∗Z→ R2μan
∗ O

of sheaves on Xan, where the two extreme terms coincide by GAGA with the
analytifications of Rqμ∗O for q = 1, 2, and hence vanish since X has rational
singularities. We thus have an isomorphism(

R1μan
∗ O∗

)
x
	
(
R2μan

∗ Z
)

x
= H2

(
μ−1(x),Z

)
,

where the right-hand equality holds by properness of μan (which again follows
from (the easy direction of) GAGA). Since D′ has degree 0 on each projective
curve C ⊂ μ−1(x), its image in H2

(
μ−1(x),Q

)
is trivial by Lemma 5.13. By the

above isomorphism, the image of D′an in
(
R1μan

∗ O∗
)

x
⊗ Q is also trivial, which

means that D′an is Q-linearly equivalent to 0 on (μan)−1(U) for a small enough
analytic neighborhood U of x. Since the morphism (μan)−1(U)→ U is a proper
modification, it follows as desired that Dan is Q-Cartier on U.

5.3 Multiplier ideals in the numerically Q-Gorenstein case

Definition 5.14 A normal variety X is numerically Q-Gorenstein if KX is
numerically Q-Cartier.

Given a resolution of singularities μ : X′ → X, Corollary 5.4 shows
that X is numerically Q-Gorenstein iff KX′ is μ-numerically equivalent to a
μ-exceptional Q-divisor, which is then uniquely determined and denoted by
Knum

X′/X . In other words, we set

Knum
X′/X := KX′ − μ∗numKX .

By Proposition 5.9, for each prime divisor E ⊂ X′ we then have

AX(ordE) = 1 + ordE

(
Knum

X′/X

)
. (5.4)

Lemma 5.15 Assume that X is numerically Q-Gorenstein, and let N ⊂ X be
a normalizing subscheme. For each good resolution π of N, the log discrepancy
function A : ValX → R ∪ {+∞} is then affine on the faces of the dual complex
ΔN

π , and

AX = sup
π

AX ◦ rN
π
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on ValN
X , where π ranges over all good resolutions of N.

Proof Write

Knum
X′/X = KX′ − π∗numKX =

∑
i

aiEi

with ai ∈ Q and Ei π-exceptional and prime. Modulo the canonical homeomor-
phism ValX′ 	 ValX , (5.4) yields

AX(ν) = AX′ (ν) +
∑

i

aiν(Ei)

on ValX . Since X′ is smooth, AX′ is affine on the faces of ΔN
π and satisfies

AX′ ≥ AX′ ≥ rN
π . Since Proposition 2.4 shows that ν �→ ν(Ei) is also affine on

the faces ΔN
π , and satisfies rN

π (ν)(Ei) = ν(Ei), the result follows.

The next result is Theorem 1.3 from the Introduction:

Theorem 5.16 Assume that X is numerically Q-Gorenstein, and let a ⊂ OX

be an ideal sheaf. Let also μ : X′ → X be a log resolution of (X, a), so that
μ−1a · OX′ = OX′ (−D) with D an effective Cartier divisor. For each exponent
c > 0 we then have

J(X, ac) = μ∗OX′
(
�Knum

X′/X − cD�
)
.

Proof Let N be a normalizing subscheme containing the zero locus of a, and
pick a good resolution π of N factoring as π = μ ◦ ρ. Using Lemma 5.15 and
arguing as in the proof of Theorem 4.1, we easily get

J(X, ac) = π∗OXπ

(
�Knum

Xπ/X − cD�
)
.

Also, we have

Knum
Xπ/X = ρ∗Knum

X′/X + KXπ/X′ ,

since both sides of the equality are π-exceptional and π-numerically equivalent
to KXπ

. Since KXπ/X′ is effective and π-exceptional, we obtain as desired

π∗OXπ

(
�Knum

Xπ/X − cD�
)
= μ∗OX′

(
�Knum

X′/X − cD�
)
.

Corollary 5.17 Assume that X is numerically Q-Gorenstein. Then X has log
terminal singularities (in the usual sense, i.e., with KX Q-Cartier) iff AX > 0
on DivValX.
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Proof By Theorem 5.16, we have AX > 0 on DivValX iff J(X,OX) = OX ,
which is the case iff there exists an effectiveQ-Weil divisor Δ such that the pair
(X,Δ) is klt [5] (see also [2]). But this implies that X has rational singularities,
and Theorem 5.11 thus shows that KX is Q-Cartier. Since (X,Δ) is klt, so is
(X, 0), which means that X is log terminal in the classical sense.

Acknowledgments We are very grateful to Claire Voisin for providing a proof
of Lemma 5.13. We would also like to thank Mattias Jonsson for a key
observation that helped us simplify the statements of the main results.
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