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Abstract

We study curves consisting of unions of projective lines whose intersections
are given by graphs. Under suitable hypotheses on the graph, these so-called
graph curves can be embedded in projective space as line arrangements. We
discuss property Np for these embeddings and are able to obtain products of
linear forms that generate the ideal in certain cases. We also briefly discuss
questions regarding the higher-dimensional subspace arrangements obtained
by taking the secant varieties of graph curves.

1 Introduction

An arrangement of linear subspaces, or subspace arrangement, is the union of a
finite collection of linear subspaces of projective space. In this paper we study
arrangements of lines called graph curves with high degree relative to genus.
We are particularly interested in the defining equations and syzygies of these
subspace arrangements. We will assume an algebraically closed ground field
of characteristic zero throughout.
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Line arrangements modeling curves of high degree 53

Let G = (V, E) be a simple, connected graph with vertex set V and edge set
E. Following [9], we assume that G is subtrivalent, meaning that each vertex
has degree at most three. The (abstract) graph curve CG associated with G is
constructed by taking the union of {Lv | v ∈ V}, where each Lv is a copy of P1

and lines Lu and Lv intersect in a node if and only if there is an edge between
u and v in G. (Note that if we think of the nodes of CG as vertices and the
lines Lv as edges, then CG is the graph dual to G.) Since we are assuming that
each vertex has degree less than or equal to three, CG is specified by purely
combinatorial data; we may assume that on each component of CG the nodes
are at 0, 1 or∞. Note that if each vertex of G is trivalent, then each copy of P1

in CG contains three nodes, and CG is stable (see [4, 9]).
The motivation for the work presented here was to see if the syzygies of

a high-degree graph curve and its secant varieties would behave as they are
expected to when the curve is smooth. The kth secant variety, Σk, of a smooth
curve in Pr has expected dimension min{2k + 1, r}. Thus, we expect the kth
secant variety of CG to be an arrangement of subspaces of dimension 2k + 1.

Many authors [10, 16, 22, 25] have given generalizations of the results
for smooth curves to higher-dimensional varieties, showing that embeddings
via line bundles satisfying various positivity conditions will also satisfy prop-
erty Np. However, recent work of Ein and Lazarsfeld [10] shows that these
results describe only a small portion of the minimal free resolution of a
higher-dimensional variety, and what happens in the remaining piece is quite
complicated, contrary to the belief that positivity of an embedding simplifies
syzygies.

One can view the conjecture of [29], which says that we should expect prop-
erty Nk+2,p (ideal generators of degree k + 2 and linear syzygies through stage
p) for the kth secant variety of a smooth curve of genus g embedded via a
complete linear series of degree at least 2g + 2k + 1 + p, as an alternate way
of generalizing property Np for curves to higher-dimensional varieties. Some
progress was made for first secant varieties, using geometric methods in [27],
but the recursive nature of these methods makes generalizing those techniques
to higher secant varieties daunting. If a similar result were true for the secant
varieties of graph curves, the proof methods would necessarily be very differ-
ent and the hope is that they would shed new light on understanding secant
varieties of smooth curves.

Based on many examples computed with Macaulay2 [18], the situation
looks promising. However, when g > 2, the combinatorics can be intricate
even if we only consider curves and not secant varieties. We will focus on
curves in Sections 2 and 3 and turn to a discussion of the syzygies of secant
varieties of graph curves in Section 4.
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54 G. Burnham, Z. Rosen, J. Sidman, and P. Vermeire

We begin by setting some assumptions and notation. Let d be the number of
vertices in G. The topology of G determines the arithmetic genus of CG as we
may view G as a 1-dimensional simplicial complex, from which it follows that
pa(CG) = h1(G, k) if G is connected (see Proposition 1.1 in [4]). We refer to
this quantity as the genus g of G, and |E| = d + g − 1. Note that g is not the
genus of G in the usual graph-theoretic sense.

The story that we wish to generalize to the setting of graph curves began
with Green and Lazarsfeld [19] in the early 1980s, who showed that if C is a
smooth and irreducible curve of genus g embedded in projective space via a
complete linear series of degree d ≥ 2g+1+ p, then C satisfies property Np. In
other words, its ideal is generated by quadrics with syzygy modules generated
by linear forms through the pth stage of the resolution.

We conjecture that if G satisfies Assumption 1.1, then property Np will hold
for CG embedded as a line arrangement in Pd−g.

Assumption 1.1 Fix p ≥ 0 and let G be a simple, connected, subtrivalent
graph with d ≥ 2g + 1 + p. Assume that if G′ is a connected subgraph induced
on V ′ ⊂ V, d′ = |V ′|, and g′ is the genus of G′, then d′ ≥ 2g′ + 1 + p if g′ ≥ 1.

To see that the recursive hypotheses are necessary, note that a graph may
satisfy d ≥ 2g + 2, but if it contains a triangle, then the ideal of CG cannot be
generated by quadrics.

If Assumption 1.1 is satisfied for some p ≥ 0, then CG embeds in Pd−g

as a line arrangement via [7] and is arithmetically Cohen–Macaulay by [15].
If CG is arithmetically Cohen–Macaulay, we may proceed as in [19] and
property Np for CG will follow if property Np holds for a general hyper-
plane section. In [19], Green and Lazarsfeld deduce property Np for points
in linearly general position, and conjecture that the failure of property Np for
a set of 2r + 1 + p points implies the existence of a subset of 2k + 2 − p
points on a Pk. As shown in [14, 20], this conjecture for point sets is a
consequence of the linear syzygy conjecture of Eisenbud, Koh, and Still-
man [13]. Green proved the linear syzygy conjecture in [20], and for graph
curves of degree g ≤ 2 we can show that an embedding of CG as a line
arrangement via a complete linear series must satisfy Np if Assumption 1.1
is satisfied.

Graph curves associated with graphs in which every vertex is trivalent are
canonical curves, and have been studied in several different contexts. For
example, Ciliberto, Harris, and Miranda [8] used graph curves to understand
the surjectivity of the Wahl map, Ciliberto and Miranda [9] related graph
curves to graph colorings, and Bayer and Eisenbud [4] studied graph curves
in connection with Green’s conjecture. In fact, Proposition 3.1 in [4] gives an
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explicit description of generators of the ideal of a canonical graph curve using
the combinatorics of G. More recently, Ballico has written several papers about
graph curves [1, 2].

We present an explicit embedding of CG into projective space in Section 3.
If the ideal of CG is generated by quadrics, this allows us to show that ICG may
be generated by products of linear forms (Theorem 3.7).

Although a subspace arrangement may always be cut from products of linear
forms set-theoretically, we do not generally expect the ideal of a subspace
arrangement to be generated by products of linear forms, cf. Propositions 5.4
and 5.7 in [5]. The most interesting examples of subspace arrangements with
ideals generated by products of linear forms occur when the intersections
among the subspaces have a rich combinatorial structure [5, 23, 24]. If G is
a path or a cycle, then CG can be embedded in projective space so that its ideal
is generated by square-free monomials. In both cases, the ideals of the nontriv-
ial secant varieties of these curves are also generated by square-free monomials
and are examples of “combinatorial secant varieties” [28].

In addition to viewing graph curves and their secant varieties as com-
binatorial models of smooth curves and their secant varieties, we can also
think of them as a new way of generating arrangements of linear subspaces
with interesting interactions between the combinatorics of the arrangements,
the geometry of the embeddings, and their defining equations. We present
conjectures and questions for further work in this direction in Section 5.

2 Regularity and property Np

In this section we will show that if g ≤ 2, then the ideal of a linearly nor-
mal embedding of CG as a line arrangement satisfies property Np if G satisfies
Assumption 1.1 for some p ≥ 0, following the idea of the “quick” proof that a
smooth and irreducible curve of degree d ≥ 2g+1+p satisfies Np given in [19].

A key assumption in [19] is that a hyperplane section of a smooth curve of
degree d ≥ 2g + 1 + p will consist of points in linearly general position. This
fact is used to show that the points in a hyperplane section of the curve impose
independent conditions on quadrics.

Using Lemma 2.1 we can show that this is not the case for a graph curve if
G contains a cycle as a proper subgraph.

Lemma 2.1 If G is a cycle on d vertices, then a hyperplane section of CG has
a 1-dimensional space of linear dependence relations and all of the points are
contained in the support of the relation.
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Proof A cycle of length d embeds into Pd−1, so the hyperplane section
consists of d points in Pd−2. A set of d points spanning Pd−2 must satisfy a
unique relation up to scalar.

Therefore, if we have a cycle as a proper subset of a graph G, the points of a
hyperplane section must fail to be in linearly general position. Because Np fails
if G contains a cycle of length p + 2, it will often be impossible to reproduce
the graded Betti diagrams of a smooth curve with the graded Betti diagrams
of a graph curve. For instance, for genus g = 2 and degree d, the length of the
smallest cycle has an upper bound of ! 2d−1

3 " + 1.
Nevertheless, we will show that if G satisfies Assumption 1.1 for g ≤ 2,

then a general hyperplane section of CG imposes independent conditions on
quadrics. This follows from the weaker assumption that no 2k+ 2 of the points
lie on a Pk using ideas from [14].

Theorem 2.2 Suppose that G satisfies Assumption 1.1 for some p ≥ 0, g ≤ 2,
and CG is embedded in Pd−g as a line arrangement via a complete linear series.
If H is a general hyperplane and X = H ∩CG, then there is no set of 2k+ 2− p
dependent points of X lying on a Pk.

Proof Let Y ⊂ X. Suppose for contradiction that |Y | = 2k+ 2− p and Y spans
a Pk. This means that there is a 2k+2− p− (k+1) = k+1− p = m-dimensional
space of dependence relations on Y. Since g ≤ 2, we know that m ≤ 2. If m = 0,
then the points are independent, which contradicts our hypotheses.

If m = 1, then k = p. Either the support of the unique dependence relation
on Y contains a cycle of points, or the relation is a linear combination of depen-
dence relations on two cycles in which at least one point has been eliminated
from their support. If {γi} form a basis for H1(G;R), the corresponding depen-
dence relations {Ri} form a basis for the space of linear relations on X, and
Assumption 1.1 implies that γ1 ∪ γ2 contains at least 5 + p points. The cycles
γ1 and γ2 can be combined in H1(G;R) to form a distinct cycle γ3, which also
supports a unique linear dependence. Therefore, if we fix the coefficient of R1

there is a unique multiple of R2 that eliminates the shared points in the interior
of their common path to create a dependence relation with support on γ3. Con-
sequently, we see that we cannot simultaneously eliminate the endpoints of
this path and the points between them from the support. Therefore, if a linear
combination of R1 and R2 is not supported on a full cycle, it contains at least
2 · 2 + 1 + p − 2 = 2 + 1 + p = 3 + p points, implying that Y spans a projective
space of dimension at least p + 1, which is a contradiction as k = p.
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Line arrangements modeling curves of high degree 57

If m = 2, then k = p + 1. In this case g = 2, and Y must contain the support
of both cycles of G, in which case 2k + 2 − p ≥ 2 · 2 + 1 + p, or 2k ≥ 2p + 3,
which contradicts k = p + 1.

Remark We conjecture that if G satisfies Assumption 1.1 and CG is embedded
via a complete linear series, then Theorem 2.2 holds for all g. The idea is that
if there is an m-dimensional space of dependence relations on Y , then we need
at least m independent cycles of G to span this space. The support of m cycles
contains at least 2m+1+ p points. If more than m cycles are needed to span the
space of dependence relations of Y , then we may have eliminated some points
from the support, but we will always have at least 2m+1+ p points remaining.

Theorem 2.3 If G satisfies Assumption 1.1 for some p ≥ 0, and no 2k+ 2− p
points of X lie on a Pk, then a general hyperplane section of CG has a 3-regular
ideal and satisfies property Np.

Proof The proposition on p. 169 of [14] states that X imposes independent
conditions on quadrics if X does not contain a subset of 2k + 2 points on a
projective k-plane. This implies that the ideal of X is 3-regular by Lemma 2 of
[14]. The ideal of X satisfies Np as a consequence of Theorem 2.1 in [20].

Theorem 2.4 Suppose that G satisfies Assumption 1.1 for some p ≥ 0, d ≥
2g + 1 + p, and CG is embedded in Pd−g as a line arrangement via a complete
linear series. If no 2k + 2 − p points of a general hyperplane section lie on
a Pk, then this embedding is arithmetically Cohen–Macualay, 3-regular, and
satisfies Np.

Proof For 3-regularity we need H1(ICG (2)) = H2(ICG (1)) = 0. We know
that H1(OCG (1)) = 0 by Serre duality and our hypothesis that d ≥ 2g + 2.
This implies that H2(ICG (1)) = 0. To see the vanishing of H1(ICG (2)), note
via Theorem 2.3 the regularity of the ideal of a general hyperplane section X
of CG is 3, which implies that H1(IX(2)) = 0. Since CG is embedded via a
complete linear series, H1(ICG (1)) = 0, and we conclude that H1(ICG (2)) = 0.

The curve CG ⊂ Pd−g is arithmetically Cohen–Macaulay if its homogeneous
coordinate ring is Cohen–Macaulay. Equivalently, the hypersurfaces of degree
m are a complete linear series, which holds if and only if H1(ICG (m)) = 0
for all m ≥ 0 (see Section 8A of [11]). When m = 0, this follows because
CG is connected. We know that H1(ICG (1)) = 0 from the linear normality
of the embedding, and H1(ICG (k)) = 0 for all k ≥ 2 by the 3-regularity of
the ideal.
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Corollary 2.5 If G satisfies Assumption 1.1 for some p ≥ 0, and g ≤ 2,
then an embedding of CG as a line arrangement via a complete linear series is
arithmetically Cohen–Macualay, 3-regular, and satisfies Np.

Proof Theorem 2.2 implies that the hypotheses of Theorems 2.3 and 2.4 are
satisfied.

Note that by Theorem 4.2 of [15], we know that if Assumption 1.1 holds for
some p ≥ 0, then an embedding of CG as a line arrangement is always Cohen–
Macaulay, as our singularities are planar. Moreover, Ballico and Franciosi [3]
proved that a line bundle L on a reduced curve C satisfies property Np under
certain numerical conditions on the positivity of L with respect to subcurves
constructed from an ordering of the irreducible components of C. Their hypoth-
esis on the degree of L restricted to an irreducible component fails if G contains
a cycle or if p > 0, and L has degree 1 on each line. However, if G is a tree,
then Assumption 1.1 is automatically satisfied, so we expect that the ideal of
CG is 2-regular in this case. In fact, this follows from [12] because the lines
in CG can be ordered in such a way that the ith line intersects the span of the
previous lines in a single point.

3 Line arrangements generated by products
of linear forms

In this section we present an embedding of CG into projective space if its edges
can be labeled according to certain rules described below. If the ideal of CG is
generated by quadrics, then we identify conditions on the labeling that guar-
antee the existence of generators of the ideal of CG that are monomial and
binomial products of linear forms.

Given a graph G satisfying Assumption 1.1, construct G̃ from G by adding
a loop to each vertex of degree 1 so that vertices of degree 1 in G are incident
to two edges in G̃. For the induction in Theorem 3.7 we also need to allow the
possibility of the addition of a loop at vertices with degree 2 in G. We describe
the embedding of CG ⊂ Pd−g by labeling the edges of G̃ with monomial and
binomial linear forms in S [x0, . . . , xd−g] that indicate how coordinates of Pd−g

parameterize each line Lv.

Label each edge of G̃ with a monomial xi or a binomial xi − x j subject to the
following rules:

1. We require that each variable xi appears as a monomial edge label exactly
once.

2. Binomials only appear on non-loop edges.
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3. Each edge labeled with a binomial is incident to a vertex with three incident
edges.

4. If v has three incident edges, then they are labeled x j, xk, and x j − xk, where
j � k ∈ {0, . . . , d − g}.

For a fixed graph G, it may be the case that some G̃ can be labeled according
to these rules and others can not.

To define the ideal of Lv, let Ωv be the set defined by deleting all of the
variables appearing on the edges incident to v from the set of variables of S
and then adding in the binomial edge label incident to v if v has only two
incident edges in G̃. We let Iv = 〈Ωv〉 be the ideal of Lv. Thus, the line Lv is
parameterized by the coordinates on the incident edges, with coordinates i and
j equal if xi − x j appears at v but xi and x j do not.

Example 3.1 The graph G below has g = 2 and d = 5.

x0 x1

x2x2 − x3

x0 − x1

x3

The ideals of the five lines are:

〈x2, x3〉
〈x1, x2 − x3〉

〈x0, x3〉
〈x0 − x1, x2〉
〈x0, x1〉.

Via Macaulay2 [18], the ideal of the arrangement is

〈x0x2 − x0x3 + x1x3, x1x2x3, x0x1x3 − x2
1x3〉.

The labeling gives rise to an embedding of CG, but the ideal of this embedding
is not generated by products of linear forms and is not generated by quadrics.

Theorem 3.2 If G satisfies Assumption 1.1 for p ≥ 0 and G̃ is labeled as
described above, then I = ∩v∈V Iv is the ideal of an embedding of CG into Pd−g.

Proof If u and v are connected by an edge in G and � is the linear form on the
edge that joins them, then the lines Lu and Lv intersect at the point of Pd−g that
has coordinates appearing in � set to 1 and all other coordinates set to 0.

To see that a labeling defines an embedding of CG we must show that if u
and v are not connected by an edge, then Lu and Lv do not intersect. If they
intersect then a variable appearing on an edge incident to u must also appear
on an edge incident to v. If xi is an edge label at u, and v is incident to an edge
with a label containing xi, we must have the configuration on the left in Figure
1. But then the only coordinates of Lv with xi nonzero also have x j nonzero,
and Lu does not contain any points with x j nonzero unless w is trivalent and
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Figure 1

there is an edge labeled x j − xk incident to u. However, this is not possible,
because G does not contain any triangles. Hence, the lines cannot intersect.

The only other possibility is that xi appears in a binomial at u and at v as in
the diagram on the right in Figure 1. But then if the lines Lu and Lv intersect, the
three coordinates xi, x j, xk must all be nonzero and equal. This means that the
edge labeled xk must be incident to u and the edge labeled x j must be incident
to v. But this is forbidden because d ≥ 2g+ 1 for all subgraphs of genus g.

Our method of labeling edges with linear forms is similar in spirit to the
description of the generators of the ideal of a canonical graph curve (corre-
sponding to a trivalent graph) in [4]. Bayer and Eisenbud label the edges in G
with a basis for the space of 1-cochains of G and intersect an ideal generated
by monomials in this basis with the ring generated by the 1-cocycles.

In order to describe the generators of ICG explicitly, we must make some
further assumptions on the relative placement of labels.

Assumption 3.3 The labeling on G̃ satisfies the following conditions:

1. Incident edges never both have binomial labels. In other words, the labeling
below never appears:

xi − x j

v

xk − x�

2. If v is a vertex of degree 2 as depicted below (with i, j, k distinct), then there
are no other edges with labels containing xi that are incident to edges with
labels containing x j or xk:

u
xi

v

x j − xk

w

3. The vertices of G are ordered v1, . . . , vd, Gi is the graph induced on
v1, . . . , vi, and G̃i−1 is obtained from G̃i by removing vi and replacing any
non-loop edge uvi labeled with a monomial by a loop at u labeled with the
same monomial:
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(a) Gi is connected;
(b) vi has at most two incident edges in G̃i;
(c) if vi is connected to a vertex u in Gi−1 via an edge labeled with a bino-

mial, then u is incident to three edges in Gi. (i.e., Lu has a monomial
ideal).

In what follows, let Gv̂ denote the subgraph of G obtained by removing v

and all of its incident edges. If CG is embedded in Pd−g, we let CGv̂
be the cor-

responding subcurve. Note that if deg v = 1 in G and we remove the line Lv

from CG embedded as above, then CGv̂
is embedded as a line arrangement via a

complete linear series in a hyperplane. If deg v = 2 in G and v is contained in a
cycle, then Gv̂ is still connected, the genus drops by 1, and the remaining sub-
curve is embedded via a complete linear series. We do not allow the removal of
vertices of degree 3 because if deg v = 3, and Gv̂ is connected, then the genus
drops by 2 and CGv̂

is not embedded via a complete linear series.

Lemma 3.4 Suppose that Assumption 1.1 holds for some p ≥ 1 and Assump-
tion 3.3 also holds. If the configuration in part 2 of Assumption 3.3 appears in
a labeling of G̃, then xi(x j − xk) is in the ideal of CG and xix j, xixk are in the
ideal of CGv̂

.

Proof To see that xi(x j − xk) is in the ideal of CG, note that x j − xk is in the
ideal of Lv. Our hypotheses imply that for any vertex v′ � v, if xi appears on an
incident edge, neither x j nor xk do, so x j − xk is in the ideal of Lv′ . Otherwise,
xi is in the ideal of Lv′ . Hence, xi(x j − xk) is in the ideal of each line.

It is easy to see that neither xix j nor xixk vanish on Lv. Since this is the only
line where the coordinate xi is paired with x j or xk, it follows that these two
monomials are contained in the ideal of CGv̂

.

Example 3.5 If g = 2, G has precisely two trivalent vertices, and it sat-
isfies Assumption 1.1 for some p ≥ 1, then it can be labeled according to
Assumption 3.3. If the cycles are disjoint, then G must consists of two cycles
and a bridge between them. Putting one binomial label in each cycle satisfies
Assumption 3.3 because each cycle has length at least 4.

If the cycles overlap, then we have three paths between trivalent vertices
u and v. Label the shortest path with monomials and put one binomial label
on each of the remaining paths. For example, the graph in Figure 2 satisfies
Assumption 3.3 and has defining ideal 〈x3x4, x0x4 − x2x4, x0x3 − x1x3, x1x2〉.

Theorem 3.6 Suppose that G satisfies Assumption 1.1 with p = 1. Fix a G̃
and a labeling that gives an embedding of CG into Pd−g as a line arrange-
ment. If Assumption 3.3 is satisfied, and ICGi

is generated by quadrics for all
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Figure 2

i ≥ 2, then ICG is generated by elements of the form xix j, xi(x j − xk), where the
variables in each product are distinct.

Proof of Theorem 3.7 We proceed by induction on d. The result is easy to
check when d = 2. Assume the result for all graphs on d− 1 vertices satisfying
our hypotheses. Our hypotheses hold for Gi and G̃i for all i ≥ 2. Let v = vi+1.

We may assume that G = Gi+1 and Gi = Gv̂.

Case 1 v has degree 1 in G. The vertex v is incident to exactly one vertex
u ∈ Gv̂ with u � v. We may assume that Lv is spanned by a point p in CGv̂

and
the point [0 : · · · : 0 : 1]. (By Assumption 3.3 part 3, all loops are labeled by
monomials.) Then ICGv̂

= Q + 〈xd−g〉, where Q is generated by elements of the
form xix j and xi(x j − xk) in which no term is divisible by xd−g.

We argue that Q ⊂ ILv
. Let q = f h be one of the generators of Q fixed

above where f and h are linear forms. Since q must vanish at p, without loss
of generality we may assume that f vanishes at p. Since xd−g does not appear
in f , then f must also vanish on [0 : · · · : 1]. Thus, f is a linear form vanishing
at two points of Lv; hence it must vanish on all of Lv. Therefore, Q ⊂ ILv

. Thus,
we see that ICG = Q + 〈xd−g〉 · ILv

. Moreover, we see that ICG is generated by
the generators of Q and elements of the form xd−gxi and xd−g(x j − xk).

Case 2 v has degree 2 in G. By Assumption 3.3 part 3, there cannot be a loop
at v. Then there are two cases: without loss of generality, either the labels on
the edges incident to v have the form x0 and x1 or they have the form x0 and
x1 − x2.

In the first case, we claim that x0x1 ∈ ICGv̂
. Indeed, we have the configuration

u
x0

v

x1

w

If z is a vertex in Gv̂ such that x0 does not vanish on Lz, then x0 must appear in
a label on an edge incident at z. If z = u, then x1 cannot appear in a binomial
on any edge incident at z via Assumption 3.3 part 2, and so x1 vanishes on Lz.
If z � u, then x0 − x j must appear on an edge incident at z. Again, if x1 does
not vanish on Lz, then it must appear on an edge incident at z. It cannot appear
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in a binomial by Assumption 3.3 part 1, in which case z must be equal to w,
which creates a triangle. We conclude that either x0 or x1 vanishes on every
irreducible component in CGv̂

, and hence that x0x1 ∈ ICGv̂
.

Define a binomial minimal generator of ICGv̂
to be a binomial quadric in the

ideal such that neither of its monomials is in ICGv̂
. If x0(x1 − xi) is in ICGv̂

, then
so is x0xi. Hence we may assume that we have no minimal binomial generators
of the form x0(x1 − xi). Similarly, we may assume that we have no generators
of the form x1(x0 − xi).

The ideal of ICG is the intersection of ICGv̂
with Iv = 〈x2, . . . , xd−g〉,

and it is generated by quadrics. The only monomial quadrics not contained
in 〈x2, . . . , xd−g〉 are x2

0, x2
1, x0x1. The monomials x2

0, x2
1 do not appear in any

minimal generator of ICGv̂
. Since x0(x1 − xi) and x1(x0 − xi) are not generators

of ICGv̂
, every generator of the form xix j and xi(x j− xk) must be in Iv, except for

x0x1. Therefore, since ICG is generated by a space of quadrics whose dimension
must be less than the dimension of the space of quadrics generating ICGv̂

, we
conclude that ICG is generated by the generators of ICGv̂

minus x0x1.
In the second case, x0x1 and x0x2 are in ICGv̂

but not ICG by Lemma 3.4 and
ICG is the intersection of ICGv̂

with Iv = 〈x1 − x2, . . . , xd−g〉. We can find gener-
ators of ICGv̂

that have the form xix j and xi(x j − xk). Note that all square-free
monomials xix j are in Iv except for x0x1, x0x2, and x1x2. The monomial x1x2

cannot be in the ideal of CGv̂
because it contains the line parameterized by x1

and x2.

We claim that all of the binomial minimal generators of ICGv̂
are contained

in Iv. If xi(x j − xk) is not contained in Iv, then i must be 0, 1, or 2. If it is 0, then
exactly one of j and k is in the set {1, 2}. But then x0x1 and x0x2 are already in
ICGv̂

, so x0(x j − xk) is not a binomial minimal generator.
So, without loss of generality, assume i = 1. Let w be the trivalent vertex

with Lw parameterized by x1 and x2, and note that w ∈ Gv̂. If neither of j or
k is in the set {0, 2}, then xi(x j − xk) is in Iv. If one of them is equal to 0,
then x1(x0 − xk) is not a binomial minimal generator because x0x1 ∈ ICGv̂

. So
assume that we have x1(x2 − xk) with k � 0, 1, 2. Then x1xk is in the ideal of
Lw. If x1(x2 − xk) were in ICGv̂

it would also have to be in the ideal of Lw. But
x1xk, x1(x2 − xk) in the ideal of Lw would imply that x1x2 would also be in the
ideal of Lw, which is a contradiction. Therefore, we have no generators of the
form x1(x2 − xk).

We conclude that all of the monomial and binomial minimal generators
of ICGv̂

are in ICG except for x0x1 and x0x2. But x0(x1 − x2) ∈ ICG , and the
conclusion follows as in the first case since we have identified a space of
quadrics in ICG of dimension exactly one less than the dimension of the space
of quadrics in ICGv̂

.
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Figure 3

Via Corollary 2.5, if g ≤ 2, we know that each ICGi
is generated by quadrics

and we obtain the following:

Corollary 3.7 Suppose that G satisfies Assumption 1.1 for p = 1. Fix a G̃
and a labeling that gives an embedding of CG into Pd−g as a line arrangement.
If Assumption 3.3 is satisfied, and g ≤ 2, then ICG is generated by elements of
the form xix j, xi(x j − xk), where the variables in each product are distinct.

The result in Corollary 3.7 is sharp, as witnessed by the following example.

Example 3.8 Let G be the graph in Figure 3, where d = 6 and g = 2. Both
of the vertices on the left fail part 1 of Assumption 3.3.

The ideal of the embedding corresponding to this labeling is

(x3x4, x0x4, x0x3 − x1x3 − x2x3, x1x2).

The terms in the trinomial do not appear in any other generators of the ideal.
Therefore, it is impossible to find a set of minimal generators that does not
contain an element with at least three terms.

Corollary 3.9 If G satisfies Assumption 1.1 for p = 1, g ≤ 2, and G has at
most two trivalent vertices, then there exists an embedding of CG ⊂ Pd−g so
that ICG is generated by elements of the form xix j and xi(x j − xk).

Proof Let the vertices of degree 2 with an incident edge labeled by a binomial
be the last vertices in the order (so the first to get stripped off in the induction).
Combine Corollary 2.5 with Example 3.5 and Corollary 3.7.

4 Secant varieties and property Nk,p

In this section we show when N3,p must fail for the secant line variety Σ1. The
key idea of the proof comes from [12], whose authors state that their Theo-
rem 1.1 has a natural generalization for higher-degree forms. We give a precise
statement of a special case below:
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Theorem 4.1 Suppose that X ⊂ P n is a variety that satisfies Nk,p. Let W be a
linear subspace of dimension p with Z = X ∩W. If dim Z = 0, then Z contains
at most

(
p+k−1

p

)
points.

Proof It follows from the proof of Theorem 1.1 from [12] that the ideal of
Z in the homogeneous coordinate ring of W is k-regular. Via Theorem 4.2 in
[11], the degree in which the Hilbert function and the Hilbert polynomial of
S Z agree is the regularity of S Z . We know that the Hilbert polynomial of S Z

is constant, equal to the number of points in Z. If I(Z) is k-regular then S Z is
k − 1-regular.

If dim(S Z)k−1 is equal to the size of Z, then dim S k−1 must be at least the size
of Z. Hence, |Z| ≤

(
p+k−1

p

)
.

Corollary 4.2 If CG contains a cycle of m lines, then N3,m−4 fails for the
secant variety of CG.

Proof Since the m lines in the cycle are contained in a Pm−1, so is the span
of any subset of these lines. Thus, each 3-plane obtained by taking the span of
non-adjacent lines in the cycle is contained in this Pm−1. There are

(
m
2

)
− m =

1
2 m(m − 3) such 3-planes.

A general plane of dimension m − 4 intersects a 3-plane in Pm−1 in a point.
Therefore, a general (m − 4)-plane in this Pm−1 intersects the secant variety of
X in 1

2 m(m − 3) points. However,
(

m−4+3−1
m−4

)
=
(

m−2
2

)
= 1

2 (m − 2)(m − 3). Thus,
N3,m−4 fails.

5 Questions and conjectures

Computations with Macaulay 2 [18] were essential in all of our computations
of embeddings of graph curves. In addition to the results proved in this paper
we have several questions and conjectures regarding the defining equations and
syzygies of graph curves and their secant varieties motivated by the examples
that we have seen.

In Section 3 we saw that under certain hypotheses ICG is generated by
products of linear forms that can be described explicitly in terms of the com-
binatorics of the graph G. The combinatorics of the kth secant variety of CG is
encoded in an intersection lattice whose elements are constructed by intersect-
ing subsets of the subspaces. From the intersection lattice of an arrangement,
we get a partially ordered set ordered by reverse inclusion of subspaces.
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Question 1 Does the partially ordered set associated with the kth secant
variety have any interesting combinatorial features? We conjecture that Σk is
Cohen–Macaulay, so will the corresponding poset be shellable?

It is also natural to ask if there is an analogue of Theorem 3.7 for secant
varieties, perhaps requiring additional hypotheses on the intersection lattice of
the secant varieties of CG.

Question 2 Are the secant varieties of CG defined by products of linear forms?

Finding generators of IΣk that are products of linear forms is equivalent to
finding an explicit and special basis for the ideal that may have combinatorial
interest. Of course, a module does not typically have a unique generating set
or a unique minimal free graded resolution. However, the number of minimal
generators of degree j of the ith syzygy module is invariant under a change of
basis. Given a finitely generated graded module M, the graded Betti number
βi, j is the number of minimal generators of degree j required at the ith stage
of a minimal free graded resolution of M. A standard way of displaying the
graded Betti numbers of a module is with a graded Betti diagram organized as
follows:

0 1 2
0 β0,0 β1,1 β2,2 · · ·
1 β0,1 β1,2 β2,3 · · ·

Bounds on the number of rows and columns of the graded Betti diagram of
a module give a rough sense of how complicated it is. Specifically, recall that
the regularity of a finitely generated graded module M is equal to sup{ j − i |
βi, j � 0 for some i}, and thus regularity gives a bound on the number of rows
of the graded Betti diagram of M. Additionally, by the Auslander–Buchsbaum
formula, a variety X ⊂ Pn is arithmetically Cohen–Macaulay if sup{i | βi, j �
0 for some i} = codim X, which bounds the number of columns of the graded
Betti diagram off M. The following conjecture is the graph curve analogue of
Conjecture 1.4 in [27], which refines conjectures from [29].

Conjecture 1 If Assumption 1.1 holds for some p ≥ 2k, then the kth
secant variety of CG has regularity equal to 2k + 1 and is arithmetically
Cohen–Macaulay.

Note that as the secant varieties of CG are not normal, we cannot expect
projective normality.

In addition to bounding the length and width of the graded Betti diagram,
we conjecture that under certain conditions one particular graded Betti number
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Line arrangements modeling curves of high degree 67

counts the number of cycles of minimal length in the graph. Recall that the
girth of a graph is the length of its smallest cycle.

Conjecture 2 Let G be a graph on d vertices, embedded as in Theorem 1.3.
Let n denote the girth of G. Assume that d = 2g + 1 + p and n − 2 ≤ p. Then
property Np fails and βn−2,n is equal to the number of cycles of length n in G.

Example 5.1 gives an illustration of the properties discussed in Conjec-
tures 1, 2.

Example 5.1 (g = 2, d = 10) Let G be as given in Figure 4.
The ideal of CG corresponding to this labeling is given below:

ICG =

(x5x8, x4x8, x3x8, x2x8, x1x8, x6x7, x5x7,

x2x7, x1x7, x0x7, x4x6, x3x6, x2x6, x1x6,

x3x5, x2x5, x1x5, x0x5, x2x4, x1x4, x0x4,

x1x3, x0x3, x0x2, x3x7 − x4x7, x0x8 − x6x8).

The graded Betti diagram of S/ICG shows that N2,5 fails as β5,7 = 2. As
Conjecture 2 predicts, the girth of G is 7, and G contains precisely two cycles
of length 7:

0 1 2 3 4 5 6 7
total: 1 26 98 168 154 72 15 2

0: 1 . . . . . . .
1: . 26 98 168 154 70 8 .
2: . . . . . 2 7 2

.

Figure 4
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We can also compute the ideal of Σ:

I(Σ) =

(x3x5x8, x2x5x8, x1x5x8, x0x4x8 − x4x6x8,

x2x4x8, x1x4x8, x1x3x8, x0x3x8 − x3x6x8,

x2x6x7, x1x6x7, x2x5x7, x0x2x8 − x2x6x8,

x1x5x7, x0x5x7, x0x2x7, x3x6x7 − x4x6x7,

x2x4x6, x1x4x6, x1x3x6, x1x3x7 − x1x4x7,

x1x3x5, x0x3x5, x0x2x5, x0x3x7 − x0x4x7,

x0x2x4)

and its graded Betti diagram

0 1 2 3 4 5
total: 1 25 58 43 12 3

0: 1 . . . . .
1: . . . . . .
2: . 25 58 41 . .
3: . . . . 7 .
4: . . . 2 5 3

.

We see that N3,3 fails for Σ and that β3,7 = 2, which is the number of cycles of
length equal to the girth of G. We can also see from the graded Betti diagram
that Σ is arithmetically Cohen–Macaulay and that I(Σ) has regularity 5.

It is natural to ask if combinatorics can be used to compute other values of
the βi, j. One result that gives the flavor of what might be possible is due to
Gasharov, Peeva, and Welker [17], who used the lcm lattice of a monomial
ideal to compute graded Betti numbers of monomial ideals.

Question 3 Is there an analogue of the lcm lattice for graph curves and their
secant varieties that would allow us to compute (or estimate) the graded Betti
numbers of graph curves?

Further work on understanding the graded Betti numbers of graph curves
has been done in [6].

It is also interesting to consider CG as a deformation of a smooth curve. In
Example 5.1, CG has a 7-secant P5 while a smooth curve of genus 2 in P8 has
no such P5. As any strictly subtrivalent graph curve CG ⊂ Pn is smoothable in
Pn [21, 29.9], it is our expectation that we have a family of seven 6-secant P5s
to smooth curves that collapse to the 7-secant P5 in the singular limit CG. It
also seems reasonable to believe that the secant varieties to embedded curves
in a flat family themselves form a flat family, and so the secant varieties to CG

should, in particular, have the same dimension and degree as those to smooth
curves. In fact, since each pair of disjoint lines in CG spans a P3, we have a
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3-dimensional secant plane for each edge in the complement of the graph G. If
CG has degree d and genus g, then G has d vertices and d + g − 1 edges. Thus,
the number of edges in the complement of G is

(
d
2

)
−d−g+1 =

(
d−1

2

)
−g, which

is the degree of the secant variety of a smooth curve of degree d and genus g.
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