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Subcanonical graded rings which are not
Cohen–Macaulay

F. Catanesea

Universität Bayreuth

Abstract

We answer a question by Jonathan Wahl, giving examples of regular surfaces
(so that the canonical ring is Gorenstein) with the following properties:

(1) the canonical divisor KS ≡ rL is a positive multiple of an ample divisor L;
(2) the graded ring R := R(X, L) associated to L is not Cohen–Macaulay.

In the Appendix, Wahl shows how these examples lead to the existence of
Cohen–Macaulay singularities with KX Q-Cartier which are not Q-Gorenstein,
since their index one cover is not Cohen–Macaulay.

Dedicated to Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

The situation that we consider in this paper is the following: L is an ample
divisor on a complex projective manifold X of complex dimension n, and we
assume that L is subcanonical, i.e., there exists an integer h such that we have
the linear equivalence KX ≡ hL, where h � 0. There are then two cases: h < 0
and X is a Fano manifold, or h > 0 and X is a manifold with ample canonical
divisor (in particular X is of general type). Assume that X is a Fano manifold
and that −KX = rL, with r > 0: then, by Kodaira vanishing,

H j(mL) := H j(OX(mL)) = 0, ∀m ∈ Z,∀1 ≤ j ≤ n − 1.

a The present work took place in the realm of the DFG Forschergruppe 790 “Classification of
algebraic surfaces and compact complex manifolds.”
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Subcanonical rings 93

For m < 0 this follows from Kodaira vanishing (and holds for j ≥ 1), while
for m ≥ 0 Serre duality gives hj(mL) = hn− j(K − mL) = hn− j((−r − m)L) = 0.
At the other extreme, if KX is ample and KX ≡ rL (thus r > 0), by the same
argument we get vanishing outside of the interval

0 ≤ m ≤ r.

We associate to L, as usual, the finitely generated graded C-algebra

R(X, L) := ⊕m≥0H0(X,OX(mL)).

Therefore in the Fano case, the divisor L is arithmetically Cohen–Macaulay
(see [Hart77]) and the above graded ring is a Gorenstein ring. The question is
whether, in the case where KX is ample, one may also hope for such a good
property.

The above graded ring is integral over the canonical ring A := R(X, KX),
which is a Gorenstein ring if and only if we have pluri-regularity, i.e.,
vanishing

H j(OX) = 0, ∀ 1 ≤ j ≤ n − 1.

Jonathan Wahl asked the following question (which makes sense only for
n ≥ 2):

Question 1 (J. Wahl) Are there examples of subcanonical pluri-regular
varieties X such that the graded ring R(X, L) is not Cohen–Macaulay?

We show that the answer is positive, also in the case of regular subcanonical
surfaces with KX ample, where by the assumption we have the vanishing

H1(mL) = 0, ∀m ≤ 0, or r ≤ m

and the question boils down to requiring the vanishing also for 1 ≤ m ≤ r − 1.
The following theorem answers the question by J. Wahl:

Theorem 2 For each r = n − 3, where n ≥ 7 is relatively prime to 30, and
for each m, 1 ≤ m ≤ r − 1, there are Beauville-type surfaces S with q(S ) = 0
(q(S ) := dim H1(S ,OS )) such that KS = rL and H1(mL) � 0 .

We therefore get examples of the following situation: A := R(S , KS ) is
a Gorenstein graded ring, and a subring of the ring R := R(S , L), which
is not arithmetically Cohen–Maculay. Hence, we have constructed exam-
ples of non-Cohen–Macaulay singularities (Spec(R)) with KY Cartier which
are cyclic quasi-étale covers of a Gorenstein singularity (Spec(A)). In the
Appendix, J. Wahl uses these to construct Cohen–Macaulay singularities with
KX Q-Cartier whose index one cover is not Cohen–Macaulay.
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94 F. Catanese

In fact, we can consider three graded rings, two of which are subrings of the
third, and which are cones associated to line bundles on the surface S:

• Y := Spec(R), the cone associated to L, which is not Cohen–Macaulay,
while KY is Cartier;

• Z := Spec(A), the cone associated to KS , which is Gorenstein;
• X := Spec(B), the cone associated to KS +L (for instance), which is Cohen–

Macaulay with KX Q-Cartier, but whose index 1 (or canonical) cover Y =
Spec(R) is not Cohen–Macaulay.

2 The special case of even surfaces

Recall: a smooth projective surface S is said to be even if there is a divisor L
such that KS ≡ 2L. This is a topological condition; it means that the second
Stiefel Whitney class w2(S ) = 0, or, equivalently, the intersection form

H2(S ,Z)→ Z

is even (takes only even values). In particular, an even surface is a minimal
surface. In particular, if S is of general type and even, the self-intersection

K2
S = 4L2 = 8k

for some integer k ≥ 1. The first numerical case is therefore the case K2
S = 8.

Proposition 3 Assume that S is an even surface of general type with K2
S = 8

and pg(S ) = h0(KS ) = 0. Then, if KS ≡ 2L, we have H1(L) = 0.

Proof We have made the assumption that S is even, K ≡ 2L, and pg = 0.
Since the intersection form is even, and K2 ≤ 9 by the Bogomolov–Miyaoka–
Yau inequality, we obtain that L2 = 2. The Riemann–Roch theorem tells us that
χ(L) = 1 + 1

2 L(L − K) = 1 + 1
2 L(−L) = 0. On the other hand, by Serre duality

χ(L) = 2h0(L) − h1(L) , so if H1(L) is different from zero, then H0(L) � 0,
contradicting pg = 0.

Our construction for n = 5 shows in particular that the “Beauville sur-
face,” constructed in [Bea78] (see also [BPHV]) is an even surface with
K2

S = 8, q(S ) = pg(S ) = 0, but with H1(L) = 0.

3 Canonical linearization on Fermat curves

Fix a positive integer n ≥ 5, and let C be the degree-n Fermat curve

C := {(x, y, z) ∈ P2 | f (x, y, z) := xn + yn + zn = 0}.
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Subcanonical rings 95

Let, as usual, μn be the group of n-roots of unity. Then the group

G := μ2
n = μ3

n/μn

acts on C, and we obtain a natural linearization of OC(1) by letting (ζ, η) ∈ μ2
n

act as follows:

z �→ z, x �→ ζx, y �→ ηy.

In other words, H0(OC(1)) splits as a direct sum of 1-dimensional eigen-
spaces (respectively generated by x, y, z) corresponding to the characters
(1, 0), (0, 1), (0, 0) ∈ (Z/n)2 � Hom(G,C∗). Similarly, for m ≤ n − 1, the
monomial xaybzm−a−b ∈ H0(OC(m)) generates the unique eigenspace for the
character (a, b) (we identify here Z/n � {0, 1, . . . , n − 1} and we obviously
require a+ b ≤ m). However, any two linearizations differ (see [Mum70]) by a
character of the group.

Definition 4 Assume that n is not divisible by 3. We call the canoni-
cal linearization on H0(OC(1)) the one obtained from the natural one by
twisting with the character (n − 3)−1(1, 1). Thus x corresponds to the character
v1 := (1, 0) + (n − 3)−1(1, 1) = (−3)−1(−2, 1), y corresponds to the character
v2 := (0, 1)+ (n−3)−1(1, 1) = (−3)−1(1,−2), and z corresponds to the character
v3 := (−3)−1(1, 1).

Remark 5 (I) Observe that v1, v2 are a basis of (Z/n)2 as soon as n is not
divisible by 3. Indeed, v1 + v2 =

1
3 (1, 1) = 3−1(1, 1), hence

(1, 0) = v1 + 3−1(1, 1) = 2v1 + v2, (0, 1) = 2v2 + v1.

(II) Observe that the above linearization induces a linearization on all
multiples of L, and, in the case where m = (n − 3), we obtain the natu-
ral linearization on the canonical divisor of C, OC(n − 3) � Ω1

C . Since, if
we take affine coordinates where z = 1, and we let f be the equation of C,
we have

H0(Ω1
C) =

{
P(x, y)

dx
fy
= −P(x, y)

dy
fx

}

and the monomial P = xayb corresponds under this isomorphism to the
character (a + 1, b + 1).

(III) In particular, Serre duality

H0(OC(m)) × H1(Ω1
C(−m))→ H1(Ω1

C) � C,

where C is the trivial G-representation, is G-invariant.
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96 F. Catanese

From the previous discussion it follows that:

Lemma 6 The monomial xaybzc ∈ H0(OC(m)) (here a, b, c ≥ 0, a+b+c = m)
corresponds to the character χ, equal to

(a, b) + (−3)−1(m, m) = (a − c)v1 + (b − c)v2.

Proof v1 + v2 =
1
3 (1, 1), hence (a, b) + (−3)−1(m, m) = av1 + bv2 + (−m + a +

b)(3)−1(1, 1) = (a − c)v1 + (b − c)v2.

4 Abelian Beauville surfaces and their
subcanonical divisors

We recall now the construction (see also [Cat00], [BCG05], or [Cat08]) of a
Beauville surface with Abelian group G � (Z/n)2, where n is not divisible by
2 and by 3.

Definition 7 (1) Let Σ ⊂ G be the union of the three respective subgroups
generated by (1, 0), (0, 1), (1, 1).

(2) Let ψ : G → G be a homomorphism such that, setting Σ∗ := Σ \ {(0, 0)},
ψ(Σ∗) ∩ Σ∗ = ∅ (equivalently, ψ(Σ) ∩ Σ = {(0, 0)}).

(3) Let C be the degree-n Fermat curve and let

S = (C ×C)/(Id×ψ)(G),

i.e., the quotient of C ×C by the action of G s.t. g(P1, P2) = (g(P1), ψ(g)(P2)).

Remark 8 (i) By property (2), G acts freely and S is a projective smooth
surface with ample canonical divisor.

(ii) The line bundle OC×C(1, 1) is G × G linearized, in particular it is G �
(Id×ψ)(G)-linearized, therefore it descends to S , and we get a divisor L on S
such that the pull-back of OS (L) is the above G-linearized bundle.

(iii) By the previous remarks, we have a linear equivalence

KS ≡ (n − 3)L.

5 Cohomology of multiples of the subcanonical divisor L

We consider now an integer m with

1 ≤ m ≤ n − 4

and determine the space H1(OS (mL)).
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Subcanonical rings 97

Observe first that H1(OS (mL)) � H1(OC×C(m, m))G. By the Künneth
formula

(9) H1(OC×C(m, m))

� [H0(OC(m)) ⊗ H1(OC(m))]
⊕

[H1(OC(m)) ⊗ H0(OC(m))].

We want to decompose the right hand side as a representation of G �
(Id×ψ)(G).

Explicitly, H0(OC(m)) = ⊕χVχ, where if we write the character χ = (a, b) +
(−3)−1(m, m) ( χ = (a − (m − a − b))v1 + (b − (m − a − b))v2 as we saw) then
Vχ has dimension equal to one and corresponds to the monomial xaybzm−a−b,
where a, b ≥ 0, a + b ≤ m. By Serre duality, H1(OC(m)) = ⊕χ′V−χ′ , where
if we write as above χ′ = (a′, b′) + (−3)−1(m′, m′), then V−χ′ is the dual of
Vχ′ , corresponding to the monomial xa′yb′zm′−a′−b′ , where m′ = n − 3 − m, so
1 ≤ m′ ≤ n − 4 also, and where a′, b′ ≥ 0, a′ + b′ ≤ m′.

Now, the homomorphism ψ : G → G induces a dual homomorphism
φ := ψ∨ : G∨ → G∨, therefore we can finally write H1(OC×C(m, m)) as a
representation of G � (Id×ψ)(G):

H1(OC×C(m, m)) =
⊕
χ,χ′

[(Vχ ⊗ V−φ(χ′)) ⊕ (V−χ′ ⊗ Vφ(χ))].

We have proven therefore:

Lemma 10 H1(OS (mL)) � 0 if and only if there are characters χ = (a −
c)v1 + (b − c)v2 and χ′ = (a′ − c′)v1 + (b′ − c′)v2 with a, b ≥ 0, a + b ≤ m,
a′, b′ ≥ 0, a′ + b′ ≤ m′ = n − 3 − m such that

χ = φ(χ′) or χ′ = φ(χ).

Proof of Theorem 2 We now take φ to be given by a diagonal matrix in the
basis v1, v2, i.e., such that

φ(v j) = λ jv j, j = 1, 2, λ j ∈ (Z/n)∗.

For further use we also set λ := λ1, μ := λ2.

Given n relatively prime to 30 and 1 ≤ m ≤ n − 4, we want to find λ1 and μ

such that the equations

(a − c) = λ(a′ − c′)

(b − c) = μ(b′ − c′)

have solutions with a, b, c ≥ 0, a+b+c = m, and a′, b′, c′ ≥ 0, a′+b′+c′ = m′.
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98 F. Catanese

The first idea is simply to take b = c and b′ = c′, so that μ can be taken
arbitrarily. For the first equation some care is needed, since we want that λ be
a unit: for this it suffices that (a − c), (a′ − c′) are both units, for instance they
could be chosen to be equal to one of the three numbers 1, 2, 3, according to
the congruence class of m, respectively m′, modulo 3. With this proviso we
have to verify that we have a free action on the product.

Lemma 11 If n ≥ 7, given λ a unit, there exists a unit μ such that ψ = φ∨

satisfies the condition ψ(Σ) ∩ Σ = {(0, 0)}.

Proof Since (1, 0) = 2v1 + v2 and (0, 1) = v1 + 2v2, the matrix of φ in the
standard basis is the matrix

φ =
1
3

(
4λ − μ 2(λ − μ)

2(μ − λ) 4μ − λ

)

while the matrix of ψ is the matrix

ψ =
1
3

(
A := 4λ − μ B := 2(μ − λ)

C := 2(λ − μ) D := 4μ − λ

)
.

The conditions for a free action boil down to

A, B,C, D, A + B,C + D are units in Z/n

and moreover A � B, C � D, A + B � C + D. These are in turn equivalent to
the condition that

λ, μ, λ − 4μ, λ − μ, μ − 4λ, λ + 2μ, 2λ + μ ∈ (Z/n)∗.

Given λ ∈ (Z/n)∗, consider its direct-sum decomposition given by the
Chinese remainder theorem and the primary factorization of n. For each prime
p dividing n, the residue classes modulo p which are excluded by the above
condition are at most five values inside (Z/p)∗, hence we are done if (Z/p)∗

has at least six elements.
Now, since n is relatively prime to 30, each prime number dividing it is

greater than or equal to p = 7.

Proposition 12 Consider the Beauville surface S constructed in [Bea78],
corresponding to the case n = 5. Then S is an even surface and KS ≡ 2L,
where H1(L) = 0.

Proof We observe that L is unique, because the torsion group of S is of
exponent 5 (see [BC04]). The existence of L follows exactly as in the proof
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Subcanonical rings 99

of the main theorem, where the condition n ≥ 7 was not used. That H1(L) = 0
follows directly from Proposition 3.

Acknowledgments I would like to thank Jonathan Wahl for asking the above
question. In the Appendix below he describes a construction based on our main
result.
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Appendix by J. Wahl: A non-Q-Gorenstein Cohen–Macaulay
cone X with KX Q-Cartier

A germ (X, 0) of an isolated normal complex singularity of dimension n ≥ 2 is
called Q-Gorenstein if:

1. (X, 0) is Cohen–Macaulay.
2. The dualizing sheaf KX is Q-Cartier (i.e., the invertible sheaf ωX−{0} has

finite order r).
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100 J. Wahl

3. The corresponding cyclic index one (or canonical) cover (Y, 0) → (X, 0) is
Cohen–Macaulay, hence Gorenstein.

Alternatively, (X, 0) is the quotient of a Gorenstein singularity by a cyclic group
acting freely off the singular point. Some early definitions did not require the
third condition, which is of course automatic for n = 2.

If (X, 0) is Q-Gorenstein, a 1-parameter deformation (X, 0) → (C, 0) is
called Q-Gorenstein if it is the quotient of a deformation of the index one
cover of (X, 0); this is exactly the condition that (X, 0) is itself Q-Gorenstein.
These notions were introduced by Kollár and Shepherd-Barron [1], who made
extensive use of the author’s explicit smoothings of certain cyclic quotient sur-
face singularities in [2] (5.9); these deformations were patently Q-Gorenstein,
and it was important to name this property.

Recently, the author and others considered rational surface singularities
admitting a rational homology disk smoothing (i.e., with Milnor number 0).
The 3-dimensional total space of the smoothing had a rational singularity
with K Q-Cartier, but it was not initially clear whether the smoothings were
Q-Gorenstein. (This was later established [4] by proving the stronger result
that the total spaces were log-terminal.) In fact, one needs to be careful because
of the example of A. Singh:

Example ([3]) There is a 3-dimensional isolated rational (hence Cohen–
Macaulay) complex singularity (X, 0) with KX Q-Cartier which, however, is
not Q-Gorenstein.

The purpose of this appendix is to use F. Catanese’s result to provide other
examples; they are not rational, but are cones over a smooth projective variety,
which could for instance be assumed to be projectively normal with ideal
generated by quadrics.

Proposition 13 Let S be a surface as in Theorem 2, with h1(S ,OS ) = 0, L
ample, KS = rL (for some r > 1), and h1(mL) � 0 for some m > 0. Let t be
greater than r and relatively prime to it. Then

1. The cone R = R(S , tL) := ⊕m≥0H0(S ,OS (mtL)) is Cohen–Macaulay.
2. The dualizing sheaf of R is torsion, of order t.
3. The index 1 cover is R(S , L) := ⊕m≥0H0(S ,OS (mL)), and is not Cohen–

Macaulay.

In particular, R is not Q-Gorenstein.

Proof The Cohen–Macaulayness for R follows because h1(itL) = 0, for all i,
thanks to Kodaira vanishing. Let π : V → S be the geometric line bundle
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Subcanonical rings 101

corresponding to −tL; then H0(V,OV ) ≡ R. Since KV ≡ π∗(KS + tL), one
has that jKR ≡ ⊕n∈ZH0(S , j(KS + tL) + nL); since tKS = r(tL) with r and
t relatively prime, KR has order t. Making a cyclic t-fold cover and normal-
izing gives that R(S , L) is the index 1 cover, which as Catanese noted is not
Cohen–Macaulay.
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