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Threefold divisorial contractions to singularities
of cE type

J. A. Chena

National Taiwan University

Abstract

We survey some recent progress in the classification of three-dimensional divi-
sorial contractions to cE points. In particular, we introduce a new structure of
three-dimensional cE singularity and use this structure to explain the work of
Hayakawa. We also provide some new examples.

Dedicated to Rob Lazarsfeld on the occasion of his sixtieth birthday

1 Introduction

The minimal model program has been one of the main tools in the study of
birational algebraic geometry. After some recent advances in the study of the
geometry of complex 3-folds, one might hope to build up an explicit classifi-
cation theory for 3-folds similar to the theory of surfaces by using the minimal
model program.

In the minimal model program, divisorial contractions, flips, and flops are
considered to be elementary maps. Any birational map obtained from the
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Threefold singularities of cE type 103

minimal model program consists of a combination of the above-mentioned
maps. Let us briefly recall some known results about three-dimensional bira-
tional maps. First of all, Mori and then Cutkosky classified birational maps
from nonsingular 3-folds and Gorenstein 3-folds respectively [4, 20]. Tzio-
las has produced a series of work on divisorial contractions to curves passing
through Gorenstein singularities (cf. [23–25]). The recent project of Mori and
Prokhorov (cf. [21, 22]) on extremal contractions provides a treatment which
is valid for divisorial contractions to curves and for conic bundles. They classi-
fied completely divisorial contractions to curves of type IA, IC, and IIB. Flops
are studied in Kollár’s article [16]. Flips are still quite mysterious, except for
some examples in [2, 18].

Divisorial contractions to points are probably the best understood, due
mainly to the works of Kawamata, Hayakawa, Markushevich, and Kawakita
(cf. [5–7, 10–15, 19]). Divisorial contractions to points of index > 1 are
now completely classified and realized as weighted blow-ups. Therefore, it
remains to consider contractions to points of index 1, i.e., terminal Gorenstein
singularities. The description of contractions to index 1 points can be found
in [13]. In fact, contractions to cA points are classified completely in [13].
Recently, Hayakawa started a project to classify contractions to cD and cE
points [8, 9]. The project is not yet complete. Especially, the existence of divi-
sorial contractions with discrepancy > 1 listed in [13, Table 3, e2, e3, e7] is
unknown.

The purpose of this paper is to analyze the known examples in [9] and give
the structure of various weighted blow-ups. We introduce a new structure of
three-dimensional cE singularities and use this structure to explain the work of
Hayakawa. We also provide some new examples in the last section.

2 Normal form of cE singularities

For any F ∈ C{x1, . . . , xn} the set (F = 0) is a germ of a complex analytic
set. For F ∈ C[[x1, . . . xn]], by the singularity (F = 0), we mean the scheme
SpecC[[x1, . . . , xn]]/(F).

F,G ∈ C[[x1, . . . , xn]] (resp. C{x1, . . . , xn}) are called equivalent if there
is an automorphism of C[[x1, . . . , xn]] (resp. C{x1, . . . , xn}) given by xi �→
φi(x1, . . . , xn) and a unit u(x1, . . . , xn) such that

u(x1, . . . , xn)G(x1, . . . , xn) = F(φ1, . . . , φn).

Note that if F,G ∈ C{x1, . . . , xn} have isolated singularities at the origin, then
F and G are equivalent in C{x1, . . . , xn} if and only if they are equivalent in
C[[x1, . . . , xn]] (see, e.g., [1, 17]).
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104 J. A. Chen

For a power series F, Fd denotes the degree-d homogeneous part and F≥d

(resp. F>d) denotes the part of degree ≥ d (resp. > d).

Theorem 2.1 ([17]) Assume that F(x, y, z, u) defines a terminal singularity
of type cE. Then F is equivalent to one of the following:

• cE6 : x2 + y3 + yg≥3(z, u) + h≥4(z, u), where h4 � 0.
• cE7 : x2 + y3 + yg≥3(z, u) + h≥5(z, u), where g3 � 0.
• cE8 : x2 + y3 + yg≥4(z, u) + h≥5(z, u), where h5 � 0.

We call such a form a normal form of F.

The following consequence is immediate:

Lemma 2.2 Normal forms are equivalent if and only if there exists an
automorphism of the form ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x �→ x;
y �→ y;
z �→ φ3(z, u);
u �→ φ4(z, u).

Therefore, changing z, u by a linear transformation and up to a constant, we
may and do assume that in the case of cE6,

h4 ∈ {z4, z3(z + u), (z2 + zu)2, z2(z2 + u2), z(z3 + u3)}.

In particular, z4 ∈ h4.
In the case of cE7, g3 � 0, we may and do assume that

g3 ∈ {z3, z2(z + u), z(z2 + u2)}.

In particular, z3 ∈ g3.
In the case of cE8, h5 � 0, we may and do assume that

h5 ∈
{

z5, z4(z + u), z3(z + u)2, z3(z2 + u2),
z2(z + u)2(z − u), z2(z3 + u3), z(z4 + u4)

}
.

In particular, z5 ∈ h5.

Remark 2.3 Consider

F = x2 + y3 + yg(z, u) + h(z, u),

which possibly contains lower-degree terms in g or h. An isolated singularity
with the above description is called a cE-like singularity.

An isolated cE-like singularity is at worst of type cD (resp. cE6, cE7, cE8)
if gm � 0 for some m ≤ 2 or hm � 0 for some m ≤ 3 (resp. hm � 0 for some
m ≤ 4, gm � 0 for some m ≤ 3, hm � 0 for some m ≤ 5).
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Threefold singularities of cE type 105

3 Admissible weights and canonical form

Given a three-dimensional terminal Gorenstein singularity (P ∈ X), it is known
that there exists a divisorial contraction to (P ∈ X) with discrepancy 1, which
is realized as a weighted blow-up (cf. [19]). In this section we consider weights
that might be admissible for a weighted blow-up with discrepancy 1.

Given a terminal Gorenstein singularity (P ∈ X), we always identify it with
(F = 0) ⊂ C4 for some F of normal form. We consider a weighted blow-up
wBlw : Y → X = C4 with weight w = (a, b, c, d). Let E be the exceptional
divisor and write Y = ∪4

i=1Ui. Let Qi denote the origin of Ui. There is an
induced map wBlw : Y → X, where Y is realized as the proper transform of X
in the weighted blow-up of C4. Let E := E ∩ Y .

In considering weighted blow-ups wBlw : Y → X, we have the following
questions:

1. Is E irreducible and reduced? If so, then E gives rise to a valuation with
discrepancy a+ b+ c+ d −wtw(F)− 1. In other words, KY = wBl∗wKX + αE
with α = a + b + c + d − wtw(F) − 1, whenever it makes sense. We thus call
wBlw a divisorial blow-up in this situation.

2. Does Y have only isolated singularities? If not, then clearly Y is not
terminal.

3. Does Y have terminal singularities? If so, then wBlw : Y → X is indeed a
divisorial contraction.

Since divisorial contractions with minimal discrepancy 1 play a pivotal role
in the study of geometry over terminal Gorenstein points, we would like to first
consider all possible weights such that α = a+b+c+d−wtw(F)−1 = 1, which
we call admissible weights of F. However, we exclude the weights (2, 1, 1, 1)
and (1, 1, 1, 1) because E ∩ Y is never reduced, even though α = 1 is satisfied.

Proposition 3.1 The admissible weights for cE6 are

(6, 4, 3, 1), (4, 3, 2, 1), (3, 2, 2, 1), (2, 2, 1, 1).

The admissible weights for cE7 are

(9, 6, 4, 1), (7, 5, 3, 1), (6, 4, 3, 1), (5, 4, 2, 1), (5, 3, 2, 1),

(4, 3, 2, 1), (3, 2, 2, 1), (3, 3, 1, 1), (3, 2, 1, 1), (2, 2, 1, 1).

The admissible weights for cE8 are

(15, 10, 6, 1), (12, 8, 5, 1), (10, 7, 4, 1), (9, 6, 4, 1), (8, 5, 3, 1), (7, 5, 3, 1),

(6, 4, 3, 1), (5, 4, 2, 1), (5, 3, 2, 1), (4, 3, 2, 1), (3, 2, 2, 1), (3, 2, 1, 1), (2, 2, 1, 1).
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106 J. A. Chen

Proof We first consider the cE6 case. We have{
wt(x2), wt(y3), wt(z4) ≥ wt(F),
wt(xyzu) − wt(F) − 2 = 0.

It follows that

wt(xyz) ≥
(

1
2
+

1
3
+

1
4

)
wt(F)

and therefore

2 ≥ 1
12

wt(F) + wt(u).

It is then straightforward to solve for the admissible weights.
We next consider the cE7 case. We have{

wt(x2), wt(y3), wt(yz3) ≥ wt(F),
wt(xyzu) − wt(F) − 2 = 0.

It follows that

wt(x3y3z3) = wt(x3 · y2 · yz3) ≥
(

3
2
+

2
3
+ 1

)
wt(F)

and therefore

2 ≥ 1
18

wt(F) + wt(u).

It is then straightforward to solve for the admissible weights.
The case of cE8 is similar to the case of cE6. We have

2 ≥ 1
30

wt(F) + wt(u).

Definition 3.2 Given an admissible weight w of the form (a, b, k, 1) with
a ≥ b ≥ k ≥ 1, we define the following notions:

• The level of w, denoted lev(w), is k.
• σ(w) := a + b + k − 1.
• σy(w) := a + k − 1.
• A weight denoted by wσ(w), e.g., w12 = (6, 4, 3, 1). There are two weights

with σ = 6: w6 = (3, 2, 2, 1) and w′6 = (3, 3, 1, 1).
• w is in the main series, or of stage 0, if w = (3k − 3, 2k − 2, k, 1). This

consists of wt30 = (15, 10, 6, 1), w24 = (12, 8, 5, 1), w18 = (9, 6, 4, 1), w12 =

(6, 4, 3, 1), w6 = (3, 2, 2, 1).
Note that σ = 6k − 6, σy = 4k − 4 in this situation.
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Threefold singularities of cE type 107

• w is in series I, or of stage 1, if w = (3k − 2, 2k − 1, k, 1).
This consists of w20 = (10, 7, 4, 1), w14 = (7, 5, 3, 1), w8 = (4, 3, 2, 1).
Note that σ = 6k − 4, σy = 4k − 3 in this situation.

• w is in series II, or of stage 2, if w = (3k − 1, 2k − 1, k, 1).
This consists of w15 = (8, 5, 3, 1), w9 = (5, 3, 2, 1).
Note that σ = 6k − 3, σy = 4k − 2 in this situation.

• w is in series III, or of stage 3, if w = (3k − 1, 2k, k, 1).
This consists of w10 = (5, 4, 2, 1), w4 = (2, 2, 1, 1).
Note that σ = 6k − 2, σy = 4k − 2 in this situation.

• w is in series IV , or of stage 4, if w = (3k, 2k, k, 1).
This consists of w5 = (3, 2, 1, 1).
Note that σ = 6k − 1, σy = 4k − 1 in this situation.

• w is in series V , or of stage 5, if w = (3k, 2k + 1, k, 1).
This consists of w′6 = (3, 3, 1, 1).
Note that σ = 6k, σy = 4k − 1 in this situation and this only happens in the
case of cE7.

Definition 3.3 Given a normal form F, we say that F is of level ≥ k if
wtw(F) ≥ σ(w) for weight w of level k ≥ 2 in the main series. Otherwise,
we say that F is of level 1.

Lemma 3.4 If F is of level ≥ k1, then F is of level ≥ k2 for any k1 ≥ k2 ≥ 1.

Proof We write g =
∑

ai jziu j, h =
∑

bi jziu j and let Ig := {(i, j)|ai j � 0},
Ih := {(i, j)|bi j � 0}.

If F is of level ≥ k1, then for (i, j) ∈ Ih (resp. Ig), k1i + j ≥ 6(k1 − 1) (resp.
4(k1 − 1)). It follows that for (i, j) ∈ Ih

k2i + j ≥ k2

k1
(k1i + j) ≥ k2

k1
6(k1 − 1) ≥ 6(k2 − 1).

Similarly, for (i, j) ∈ Ig, one has k2i + j ≥ 4(k2 − 1). Therefore, F is of
level ≥ k2.

Definition 3.5 Fix a normal form F of level k, we say that F is of stage
≥ m if wtw(F) ≥ σ(w) for the admissible weight w of level k of stage m ≥ 1.
Otherwise, we say that F is of level k of stage 0.

Lemma 3.6 If F is of stage ≥ m1, then F is of stage ≥ m2 for any m1 ≥ m2.

Proof Notice that weights of level k and stage 0 consist of v0 = (3k − 3, 2k −
2, k, 1) with σ = 6k − 6. Hence F is of level k stage 0 if and only if wtv0 (g) ≥
4k − 4 and wtv0 (h) ≥ 6k − 6.
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108 J. A. Chen

Weights of stage 1 consist of v1 = (3k−2, 2k−1, k, 1) with σ = 6k−4. Hence
F is of level k stage ≥ 1 if and only if wtv1 (g) ≥ 4k − 3 and wtv1 (h) ≥ 6k − 4.
Since wtv0 (g) = wtv1 (g) and wtv0 (h) = wtv1 (h), it follows immediately that if F
is of stage ≥ 1 then F is of stage 0.

Similarly, weights of stage 2 consist of v2 = (3k − 1, 2k − 1, k, 1) with
σ = 6k − 3. Hence F is of level k stage ≥ 2 if and only if wtv2 (g) ≥ 4k − 2
and wtv2 (h) ≥ 6k − 3. It follows immediately that if F is of stage ≥ 2 then F is
of stage ≥ 1.

The comparisons of other stages are similar.

Definition 3.7 Given F, we say that F is of level k if it is of level ≥ k but not
of level ≥ k+ 1. We say that F is of stage 0 if it is not of stage ≥ 1 and of stage
m if it is of stage ≥ m but not of stage ≥ m + 1.

A normal form F is said to be a canonical form if it admits the highest level
and then the highest stage among all equivalent normal forms.

Given a cE singularity P ∈ X, we associate a canonical form F so that
(P ∈ X) � o ∈ (F = 0) ⊂ C4. We define the level and stage of P ∈ X to be the
level and stage of its canonical form F.

Therefore, we may classify isolated cE points P ∈ X � o ∈ (F = 0) ⊂ C4

according to their level and stage.

4 Admissible weighted blow-ups

In this section we study weighted blow-ups of cE singularities by admissible
weights. Let us first fix some notation. Fix an admissible weight w = (a, b, k, 1)
such that wtw(F) ≥ σ(w). We may write

F = Fw
σ + Fw

>σ or simply Fσ + F>σ,

where Fσ (resp. F>σ ) denotes the homogeneous part of weighted degree =
σ(w) (resp. the part of weighted degree > σ(w)). More explicitly, we may also
similarly write

F = x2 + y3 + ygσy
+ yg>σy

+ hσ + h>σ

or

F = x2 + y3 + y
∑

ki+ j≥σy

ai jz
iu j +

∑
ki+ j≥σ

bi jz
iu j.

We set Ig := {(i, j)|ai j � 0} and Ih := {(i, j)|bi j � 0}.

Lemma 4.1 Let F be of level k1. Let wBlw : Y → X be a weighted blow-up
of weight w of level k2 such that k1 > k2 ≥ 2 and wtw(F) ≥ σ(w).
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Threefold singularities of cE type 109

Suppose that

• w is of stage 0, 1, 2, or
• w is of stage 3 (hence k2 = 2 or 1) and k1 ≥ k2 + 2, or
• w is of stage 4 (hence k2 = 1) and k1 ≥ 3.

Then Y is not terminal.

Proof We shall prove that Q4 ∈ Y ∩U4 is not terminal. Since F is of level k1,
we have k1i + j ≥ 6k1 − 6 (resp. 4k1 − 4) for (i, j) ∈ Ih (resp. Ig).

Let w be a weight of level k2, then Y ∩ U4 is given by

F̃ = x2uwtw(x2)−σ(w) + y3uwtw(y3)−σ(w) + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ ,

where {
j′ = k2i + j − σy(w);
j′′ = k2i + j − σ(w).

Therefore, if (i, j) ∈ Ig, then

i + j′ +σy(w) = (k2 + 1)i + j ≥ k2 + 1
k1

(k1i + j) ≥ k2 + 1
k1

4(k1 − 1) ≥ 4k2. (†g)

Similarly, if (i, j) ∈ Ih, then

i + j′′ + σ(w) ≥ 6k2. (†h)

Case 1 w is of stage 0.
Note that we have σ(w) = 6k2 − 6, σy(w) = 4k2 − 4. By †g, †h, F̃ is of the form

x2 + y3 + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ ,

with i + j′ ≥ 4 and i + j′′ ≥ 6. Hence Q4 is not terminal.

Case 2 w is of stage 1.
Now we have σ(w) = 6k2 − 4, σy(w) = 4k2 − 3.

By †g, †h, Y ∩ U4 is given by

F̃ = x2 + y3u + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ ,

with i + j′ ≥ 3 and i + j′′ ≥ 4. Hence Q4 is not terminal.

Case 3 w is of stage 2.
Now we have σ(w) = 6k2 − 3, σy(w) = 4k2 − 2. Note that Y ∩ U4 is given by

F̃ = x2u + y3 + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ .

By †g, †h, i + j′ ≥ 2 and i + j′′ ≥ 3. Hence Q4 is not terminal.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.008
http:/www.cambridge.org/core


110 J. A. Chen

Case 4 w is of stage 3 and k2 = 2.
Now w = (5, 4, 2, 1) with σ = 10, σy = 6 and

F̃ = x2 + y3u2 + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ .

Note that †g shows that i + j′ + σy(w) ≥ 12 k1−1
k1

and hence i + j′ ≥ 3 if k1 ≥ 4.

Similarly, †h shows that i + j′′ +σ(w) ≥ 18 k1−1
k1

and hence i + j′′ ≥ 4 if k1 ≥ 4.
Hence Q4 is not terminal if k1 ≥ 4.

Case 5 w is of stage 3 and k2 = 1.
Now w = (2, 2, 1, 1) with σ = 4, σy = 2 and

F̃ = x2 + y3u2 + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ .

Note that †g shows that i + j′ + σy(w) ≥ 8 k1−1
k1

and hence i + j′ ≥ 3 if k1 ≥ 3.

Similarly, †h shows that i + j′′ +σ(w) ≥ 12 k1−1
k1

and hence i + j′′ ≥ 4 if k1 ≥ 3.
Hence Q4 is not terminal if k1 ≥ 3.

Case 6 w is of stage 4 and k2 = 1.
Now w = (3, 2, 1, 1) with σ = 5, σy = 3 and

F̃ = x2u + y3u + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ .

Note that †g shows that i + j′ + σy(w) ≥ 8 k1−1
k1

and hence i + j′ ≥ 2 if k1 ≥ 3.

Similarly, †h shows that i + j′′ +σ(w) ≥ 12 k1−1
k1

and hence i + j′′ ≥ 3 if k1 ≥ 3.
Hence Q4 is not terminal if k1 ≥ 3.

We will need the following useful criterion, due to Hayakawa (cf. [7]), to
determine whether a weighted blow-up is a divisorial contraction or not. For
the reader’s convenience, we reproduce the proof.

Theorem 4.2 Given P ∈ X � o ∈ (F = 0) ⊂ C4 the germ of a terminal
singularity of cE type, where F is a normal form, let f = wBlv : Y → X be
the weighted blow-up with weight v = (a, b, k, 1) and exceptional divisor E.
Suppose that

• E is irreducible;

• a + b + k − wtv(F) = 1;

• Y ∩ U4 is terminal.

Then Y → X is a divisorial contraction.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.008
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.008
http:/www.cambridge.org/core


Threefold singularities of cE type 111

Proof Suppose that E is irreducible, then KY = f ∗KX + a(E, X)E with
a(E, X) = a + b + k − wtv(F) − 1. Let D = (u = 0) ⊂ Div(X) and DY be
its proper transform in Y . One has f ∗D = DY + E. Hence

f ∗(KX + D) = KY + DY

and DY ∼X −KY .
Let g : Z → Y be a resolution of Y . For any exceptional divisor F in Z such

that g(Z) ⊂ DY , one has g∗DY = DZ +mF + . . . for some m > 0. It follows that
a(F, Y) = m > 0. Therefore, it remains to consider exceptional divisors whose
center in Y is not contained in DY . Hence Y is terminal if Y − DY = Y ∩ U4 is
terminal. Once Y is terminal, it is then easy to see that Y → X is a divisorial
contraction.

Lemma 4.3 Let Y → X ' P be a divisorial contraction with discrepancy 1
to a terminal Gorenstein singularity P ∈ X. Let E be its exceptional divisor.
Then for any divisor F with discrepancy 1 over P, its center in Y is a singular
point of index > 1 and contained in E.

Therefore, to search for exceptional divisors over P with discrepancy 1, it
suffices to search for exceptional divisors over singular points of index > 1 in
E. We denote by Sing(Y)>1 the set of singular points of index > 1 on Y (which
is contained in E).

4.1 Weights of stage 0

Proposition 4.4 Let (F = 0) be a cE singularity of level ≥ k. We consider a
weighted blow-up with weight w = (3k − 3, 2k − 2, k, 1) of level k of stage 0.
Then the exceptional divisor is irreducible.

Proof This is clear since the exceptional divisor is defined by (Fw
σ = 0) and

Fw
σ contains x2, y3.

Now suppose that F is of level k. Fix a weight w = (3k − 3, 2k − 2, k, 1). We
may write

F = x2 + y3 + ygσy
+ ygσy+1 + yg>σy+1 + hσ + hσ+1 + h>σ+1.

Lemma 4.5 Suppose that F is of level k. Consider Y → X the weighted
blow-up with weight w = (3k − 3, 2k − 2, k, 1). Then Sing(Y) ∩ U4 is isolated
unless:

∃ s(z, u) s.t.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
gσy
= −3s(z, u)2,

hσ = 2s(z, u)3,

hσ+1 = −s(z, u)gσy+1.

�
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Proof It is clear that Sing(Y)∩U1 = ∅. Hence we have Sing(Y)∩U4 ⊂ (x = 0).
Moreover, Sing(Y) ⊂ E. Hence we have Sing(Y) ∩ U4 ⊂ (u = 0).

Therefore, let F̃ be the defining equation of Y ∩ U4. We have

Sing(Y) ∩ U4 ⊂ (x = u = 0) ∩ (F̃ = F̃y = F̃u = 0)
⊂ (x = u = 0) ∩ Σ,

where Σ is defined as ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
y3 + ygσy

+ hσ = 0,
3y2 + gσy

= 0,
ygσy+1 + hσ+1 = 0.

If gσy
is not a perfect square, then 3y2 + gσy

is irreducible and hence Σ is finite.
If gσy

is a perfect square, then we write it as gσy
= −3s2. One sees that Σ is

finite unless y − s or y + s divides the above three polynomials. The statement
now follows.

Once we know that Sing(Y)∩U4 is isolated, then it is easy to check whether
the singularities in Y ∩ U4 are terminal or not. Notice that F̃ is of the form
x2 + y3 + yg̃ + h̃. It is straightforward to see that F̃ is at worst of cE type at
Q4 ∈ U4 if and only if F is not of level k + 1.

Next we study (0, 0, γ, 0) ∈ U4. We rewrite

F = x2 + y3 + y
∑

a′i j(z − γuk)iu j +
∑

b′i j(z − γuk)iu j

and correspondingly

F̃ = x2 + y3 + y
∑

a′i j(z − γ)iu j′ +
∑

b′i j(z − γ)iu j′′ ,

with j′ = ki + j − σy and j′′ = ki + j − σ.
If F̃ has a non-terminal singularity at (0, 0, γ, 0) ∈ U4, then i + j′ ≥ 4 and

i + j′′ ≥ 6. It follows that F has level ≥ k + 1, a contradiction. Notice also that
singularity the at (α, β, γ, δ) ∈ U4 with (α, β) � (0, 0) is at worst of cA type. We
thus conclude the following:

Theorem 4.6 Given a canonical form F, suppose that F is of level k stage 0.
Then the weighted blow-up with weight w = (3k− 3, 2k− 2, k, 1) is a divisorial
contraction if � does not hold.

Suppose that � holds. Then by considering a change of coordinate ȳ = y −
s(z, u), one sees that F is equivalent to

G := x2 + y3 + s(z, u)y2 + yg>σy+1 + h>σ+1.
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Threefold singularities of cE type 113

Note that wtw(s(z, u)) = 2k − 2. Hence consider w1 = (3k − 2, 2k − 1, k, 1) the
weight of level k of stage 1. One sees that wtw1 (G) ≥ 6k − 4 = σ(w1), that is, G
is of level k of stage ≥ 1. Therefore, we may say that G is a stage lifting of F.

5 Divisorial contractions to cE points with discrepancy 1

We classify divisorial contractions to cE points with discrepancy 1 of higher
level in this section. Moreover, we determine the number of exceptional
divisors with discrepancy 1 over cE6 points.

5.1 cE Singularity of level 6

Proposition 5.1 Suppose that (P ∈ X) is of level 6, then there are eight
different valuations with discrepancy 1 corresponding to weighted blow-ups
of different weights. Among them, there is only one divisorial contraction with
discrepancy 1 over (P ∈ X), which is given by wBlw30 .

Proof Let F be a canonical form of (P ∈ X). If F is of level 6, then wtw30 (F) ≥
30. This only happens in cE8 singularity and h5 = z5.

1. Let f = wBlw30 : Y → X, where w30 = (15, 10, 6, 1). It follows from
Theorem 4.6 that Y is terminal.
2. Sing(Y)>1 = {R23, R13, R12}, where Ri j is a quotient singularity in (xi = x j =

0) ⊂ E of index gcd(ai, a j).
3. Take an economic resolution Z → Y . We have exceptional divisors F1,

G1, G2, H1, . . . , H4 with discrepancy 1, where Fi (resp. Gi, Hi) denotes the
exceptional divisor over R23 (resp. R13, R12). Computation shows that all these
divisors are of discrepancy 1 over X. Together with E, there are eight divisors
with discrepancy 1.

Take F1 for example, obtained by a Kawamata blow-up of weights 1
2 (1, 1, 1)

over R23. In fact, this can be realized as a weighted blow-up with vector w15.
More precisely, let X1 → X0 be the weighted blow-up with vector w30 and let
g : X2 → X1 be the weighted blow-up with vector w15. Since w15 =

1
2w30 +

1
2 e1 +

1
2 e4, the map g is obtained by subdivision of σ2 = 〈e1, w30, e3, e4〉 and

σ3 = 〈e1, e2, w30, e4〉 along w15. One sees that g is the weighted blow-up along
the curve (y = z = 0) ⊂ E, which is singular of type 1

2 (1, 1, 1) × P1. The proper
transform of Y in X2, denoted Z, and its induced map g : Z → Y then gives the
Kawamata blow-up.

One can consider the exceptional divisors G1, . . . , H4 similarly. The compu-
tation can be summarized as follows:
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Div centerY a(Z/Y) wtY a(Z/X) wtX

F1 R23 1/2 1
2 (1, 1, 1) 1 (8, 5, 3, 1) = w15

G1 R13 1/3 1
3 (1, 1, 2) 1 (10, 7, 4, 1) = w20

G2 R13 2/3 1
3 (2, 2, 1) 1 (5, 4, 2, 1) = w10

H1 R12 1/5 1
5 (1, 1, 4) 1 (12, 8, 5, 1) = w24

H2 R12 2/5 1
5 (2, 2, 3) 1 (9, 6, 4, 1) = w18

H3 R12 3/5 1
5 (3, 3, 2) 1 (6, 4, 3, 1) = w12

H4 R12 4/5 1
5 (4, 4, 1) 1 (3, 2, 2, 1) = w6

where centerY denotes the center in Y , a(Z/Y) (resp. a(Z/X)) denotes the dis-
crepancy over Y (resp. over X), and wtY (resp. wtX) denotes the weights over Y
(resp. over X).
4. wBlv(X) is not terminal if v = w24, w18, w12, w6, w20, w10, w15. By
Lemma 4.1, it is straightforward to see that any of these blow-ups is a divisorial
blow-up, i.e., its exceptional divisor is irreducible.
5. wBlw30 is the unique divisorial contraction with discrepancy 1. Suppose that
f ′ : Y ′ → X is another divisorial contraction to P with discrepancy 1. Let E′

be its exceptional divisor. Then E′ ∈ {F1,G1,G2, H1, . . . , H4} as valuations.
If E′ = F1, then we consider f ′′ = wBlw24 : Y ′′ → X for the corresponding
vector w24 = (12, 8, 5, 1). One sees that E′′ is irreducible and hence by [10,
Lemma 4.3], f ′′ � f ′ and Y ′′ � Y ′. However, this is absurd since Y ′′ is not
terminal.

As we have seen, all exceptional divisors with discrepancy 1 (other than E)
correspond to a weighted blow-up with the weights given above and none of
these weighted blow-ups is a divisorial contraction. We thus conclude that
there is no divisorial contraction other than wBlw30 .

5.2 cE Singularity of level 5

Proposition 5.2 Suppose that P ∈ X is of level 5, then there are seven dif-
ferent valuations with discrepancy 1 corresponding to weighted blow-ups of
different weights. Among them, there is only one divisorial contraction over
P ∈ X which is given by wBlw24 .

Proof Let F be the canonical form. If F is of level 5, then it can only happen
for a cE8 singularity and h5 = z5.

1. Let f = wBlw24 : Y → X, where w24 = (12, 8, 5, 1). Since z5 ∈ h, one sees
that � does not hold. It follows from Theorem 4.6 that Y → X is a divisorial
contraction.
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Threefold singularities of cE type 115

2. Sing(Y)>1 = {R12, Q3}, where R12 is a point in (x = y = 0) ⊂ E of index 4
and Q3 is quotient of index 5.
3. Take an economic resolution Z → Y . We have exceptional divisors {Fi}i≤3

and {G j}i≤4 over R12 and Q3 respectively. Computation yields the following:

Div centerY a(Z/Y) wtY a(Z/X) wtX

F1 R12 1/4 1
4 (3, 1, 1) 1 (9, 6, 4, 1) = w18

F2 R12 2/4 1
4 (2, 2, 2) 1 (6, 4, 3, 1) = w12

F3 R12 3/4 1
4 (1, 3, 3) 1 (3, 2, 2, 1) = w6

G1 Q3 1/5 1
5 (2, 3, 4, 1) 1 (10, 7, 4, 1) = w20

G2 Q3 2/5 1
5 (4, 1, 3, 2) 1 (8, 5, 3, 1) = w15

G3 Q3 3/5 1
5 (1, 4, 2, 3) 1 (5, 4, 2, 1) = w10

G4 Q3 4/5 1
5 (3, 2, 6, 4) 2

4. wBlv(X) is a divisorial blow-up but not terminal if v is one of w18, w12, w6,

w20, w15, w10 by Lemma 4.1.
We conclude that wBlw24 is the unique divisorial contraction with discrep-

ancy 1.

5.3 cE Singularity of level 4

We need to consider different stages.

Stage 1 Weights w20 = (10, 7, 4, 1).

Proposition 5.3 Suppose that F is of level 4 of stage 1, then there are six
different valuations with discrepancy 1 corresponding to weighted blow-ups of
different weights. Among them, there is only one divisorial contraction over
P ∈ X which is given by wBlw20 .

Proof This only happens in cE8 singularity.

1. Let f = wBlw20 : Y → X, where w20 = (10, 7, 4, 1). Since z5 ∈ h,
one sees that the exceptional divisor of f is irreducible. Since F is not of
level 5, it is straightforward to check that Y → X is a divisorial contraction.
Sing(Y)>1 = {R13, Q2}, where R13 is a point of index 2 and Q2 is a quotient of
index 7.
2. Take an economic resolution Z → Y . We have exceptional divisors F1 and
{G j}i≤6 over R13 and Q2 respectively. Computation shows that F1,G1,G2, G3,

G5 are with discrepancy 1 and G4,G6 are with discrepancy 2. Hence there are
six divisors with discrepancy 1.
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3. Similarly, the exceptional divisors F1,G1,G2,G3,G5 correspond to vec-
tors w10, w18, w15, w12, w6 respectively. Clearly, a weighted blow-up with any
of these weights has irreducible exceptional divisor. Moreover, wBlv(X) is not
terminal if v is one of w10, w15, w12, w6 by Lemma 4.1.
4. We consider wBlw18 . Since � holds, one sees that wBlw18 (X) is not terminal
for it contains non-isolated singularities.

We conclude that wBlw20 is the unique divisorial contraction with discrep-
ancy 1 and there are six divisors with discrepancy 1, realized by weighted
blow-ups.

Stage 0 w18 = (9, 6, 4, 1).

Case 1 F is of type cE7.
Since z3 ∈ g, � does not hold. By Theorem 4.6, the weighted blow-up with
weight w18 is a divisorial contraction. There are singularities R12, R23, Q3 of
quotient type of index 3, 2, 4 respectively. An economic resolution produces
exceptional divisors F1, F2,G1, H1, H2, H3. All of these are of discrepancy
1 over X. They correspond to weights w12, w6, w9, w14, w10, w

′
6 respectively.

Clearly, w12, w6, w14, w10 give rise to divisorial blow-ups which are not terminal
by Lemma 4.1.

It is clear that wBlw′6 has an irreducible exceptional divisor. Note that Y ∩U4

is given by

F̃ = x2 + y3u3 + y
∑

ai jz
iu j′ +

∑
bi jz

iu j′′ .

One has

i + j′′ = 2i + j − 6 ≥ 1
2 (4i + j) − 6 ≥ 3, if (i, j) ∈ Ih;

i + j′ = 2i + j − 3 ≥ 1
2 (4i + j) − 3 ≥ 3, if (i, j) ∈ Ig.

In fact 4i + 2 j > 18 if 4i + j = 18. Hence i + j′′ > 3 if (i, j) ∈ Ih and therefore
Q4 is not terminal.

We now consider w9 = (5, 3, 2, 1). The weighted blow-up with weight w9

has irreducible exceptional divisor if there is some ziu j ∈ h with 2i + j = 9.
However, this can not happen since 4i + j ≥ 18. Hence the exceptional divisor
defined by y3 + yz3 is reducible. We need to consider an isomorphism P′ ∈
X′ ⊂ C5 such that

P′ ∈ X′ =

(
x2 + yt + yg>σy(w9) + h≥σ(w9) = 0,
t = y2 + z3

)
⊂ C5.

We take wBlv : Y ′ → X with v = (5, 3, 2, 1, 7). One sees that wBlv has irre-
ducible exceptional divisor. Note that Y ′ is non-terminal, since Y ′ ∩ U4 is not
a hypersurface singularity.
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Threefold singularities of cE type 117

Hence there are seven divisors with discrepancy 1 realized by weighted
blow-ups and there is exactly one divisorial contraction with discrepancy 1
among these weighted blow-ups.

Case 2 F is of type cE8 and � holds.
Then we need to consider its stage lifting G. Now G is of level 4 of stage 1. The
same argument in stage 1 holds for G. We conclude that there is a unique divi-
sorial contraction and six divisors with discrepancy 1. All of them are realized
by weighted blow-ups.

Case 3 F is of type cE8 and � does not hold.
Then one sees that the weighted blow-up of weight w18 is a divisorial contrac-
tion. There are singularities R12, Q3, where R12 is of quotient type of index 3
and Q3 is of type cAx/4 with axial weight 2. By resolving R12 as in Case 1
of cE7, there are two exceptional divisors with discrepancy 1 corresponding to
w12 and w6 respectively.

It remains to consider Q3, whose nature varies depending on the appearance
of z4u2.

If z4u2 � F, then Y ∩ U3 is given by

(F̃ = x2 + y3 + z2 + . . . = 0) ⊂ C4/
1
4

(1, 2, 3, 1).

We thus have a resolution over Q3 given by the following vectors:

a(Z/Y) wtY a(Z/X) wtX

1/4 1
4 (5, 2, 3, 1) 1 (8, 5, 3, 1) = w15

1/2 1
2 (3, 2, 3, 1) 2

1/2 1
2 (1, 2, 1, 1) 1 (5, 4, 2, 1) = w10

3/4 1
4 (3, 2, 5, 3) 2

1 (1, 1, 1, 1) 2

Clearly, w15, w10 give rise to divisorial blow-ups which are not terminal by
Lemma 4.1.

If z4u2 ∈ F, then we change coordinates by x̄ = x + z2u to get

G = x̄2 − 2z2ux̄ + y3 + . . .

Then Y ∩ U3 is given by

(G̃ = x̄2 − 2ux̄ + y3 + . . . = 0) ⊂ C4/
1
4

(1, 2, 3, 1).
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We thus have resolution over Q3 given by the following vectors:

a(Z/Y) wtY a(Z/X) wtX

1/4 1
4 (5, 2, 3, 1) 1 (8, 5, 3, 1) = w15

1/4 1
4 (1, 2, 3, 1) 1 (7, 5, 3, 1) = w14

1/2 1
2 (1, 2, 1, 1) 1 (5, 4, 2, 1) = w10

3/4 1
4 (3, 2, 5, 3) 2

1 (1, 1, 1, 1) 2

Clearly, w15, w10 give rise to divisorial blow-ups which are not terminal by
Lemma 4.1. Indeed,

G = x̄2 − 2z2ux̄ + y3 + yg>σy(w14) + h>σ(w14).

We need to consider an isomorphism P′ ∈ X′ ⊂ C5:

P′ ∈ X′ =

(
x̄t + y3 + yg>σy(w14) + h>σ(w14) = 0,
t = x̄ − 2z2u

)
⊂ C5.

The weighted blow-up with weight (7, 5, 3, 1, 8), which is clearly a diviso-
rial blow-up but not a divisorial contraction, realizes the exceptional divisor
corresponding to w14.

We thus conclude that there are six (resp. five) exceptional divisors with
discrepancy 1 if z4u2 ∈ F (resp. z4u2 � F). In any event, there is exactly one
divisorial contraction with discrepancy 1.

5.4 cE6 Singularities

We consider cE6 singularities in this subsection. Instead of providing a
detailed classification, we are interested in determining the number of divi-
sorial contractions and exceptional divisors with discrepancy 1 over a given
singularity.

Level 3 It is clear that w12 = (6, 4, 3, 1) is the only admissible weight of
level 3. Since h4 = z4, � does not hold and therefore the weighted blow-up
wBlw12 : Y → X with weight w12 is a divisorial contraction. There are two
singularities of type 1

3 (1, 2, 1) and one singularity of type 1
2 (1, 1, 1). Let Z → Y

be the economic resolution over these singular points. One sees that there are
six exceptional divisors with discrepancy 1, say F11, F12, F21, F22,G1, and E.

Then G1 corresponds to the divisorial weighted blow-up of weight
(3, 2, 2, 1), which is not a divisorial contraction by Lemma 4.1. Next, we
consider the coordinate change x̄ = x ± z2 to get

G = x̄2 ∓ 2x̄z2 + y3 + yg≥3 + h≥5.
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Threefold singularities of cE type 119

Take weighted blow-ups with weight (5, 3, 2, 1) so that the exceptional set is
irreducible. This realizes two more divisors.

Since wt(3,1)g3 ≥ 8 (resp. wt(3,1)h5 ≥ 12), it is clear that g3 = z2g′ (resp.
h5 = z2h′) for some g′ (resp. h′). The singularity is also isomorphic to(

x̄2 + y3 + z2t + yg≥4 + h≥6 = 0
t = ∓2x̄ + yg′ + h′

)
.

Take weighted blow-ups with weight (3, 2, 1, 1, 4) so that the exceptional set
is irreducible. Then one realizes two more divisors with discrepancy 1. These
five additional weighted blow-ups do not produce divisorial contractions.

Level 2 and Stage 1 Now we consider w8 = (4, 3, 2, 1). Since F is not of
level 3, one sees that wBlw8 : Y → X is a divisorial contraction if its excep-
tional divisor is irreducible. There are two singularities of type 1

2 (1, 1, 1) and
one singularity of type 1

3 (1, 2, 1). Let Z → Y be the economic resolution over
these singular points. One sees that there are four exceptional divisors with dis-
crepancy 1, say F1, F2,G1, and E. G1 corresponds to the weighted blow-up of
weight (3, 2, 2, 1), which is clearly not a divisorial contraction by Lemma 4.1.
To realize the other two divisors, a similar argument as in Level 3 shows that
weighted blow-ups with weight (3, 2, 1, 1, 4) realize the other two divisors.

Level 2 and Stage 0 Suppose that � holds for F, then we can consider its
stage lifting G. The situation is then exactly the same as in the above level 2
and stage 1 case. That is, there are four exceptional divisors with discrepancy 1.

Suppose that � doesn’t hold. Then wBlw6 is a divisorial contraction, where
Q3 is the only singularity of index > 1.

If h4 is not a square, then Q3 is of type cA/2 with axial weight 3 and τ-
wt = 1 (cf. [7, Section 8]), hence there is only one exceptional divisor F1 with
discrepancy 1

2 over Y by weighted blow-up with weight 1
2 (1, 2, 1, 1). This is a

divisor with discrepancy 1 over X corresponding to a weighted blow-up with
weight (2, 2, 1, 1).

If h4 = −q(z, u)2 is a square, then we change coordinates by x̄ = x − q(z, u).
Now F is equivalent to

G = x̄2 ∓ 2x̄q(z, u) + y3 + yg≥3 + h≥5.

By considering wBlw6 : Y → X, one sees that Q3 is of type cA/2 with axial
weight 3 and τ-wt = 2 or 3. Computation shows that there are two or three
exceptional divisors with discrepancy 1

2 over Q3, however there is only one
divisor with discrepancy 1 over P ∈ X. This divisor corresponds to divisorial
weighted blow-up of G with weights (3, 2, 1, 1) and (4, 2, 1, 1) respectively.

In any case, there are two divisors with discrepancy 1.
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Level 1 If h4 = −q(z, u)2 is a square, then we consider another stage lifting
by x̄ = x ± q(z, u),

G = x̄2 ∓ 2x̄q(z, u) + y3 + yg≥3 + h≥5.

Now G has level 1 of stage 4, and hence we consider the admissible weighted
blow-up wBlw5 : Y → X with weight w5 = (3, 2, 1, 1). Since F is of level 1,
there exists yu3 or u5 in F. One can thus check that Y is terminal by considering
Y ∩ U4. There are singularities Q1, Q2 of type 1

3 (2, 1, 1) and 1
2 (1, 1, 1) respec-

tively. Let Z → Y be the economic resolution. We have exceptional divisors
F1, F2,G1. Computation shows that a(F1, X) = 1 and a(F2, X) = a(G1, X) = 2.

Indeed, F1 corresponds to the weight (2, 2, 1, 1). To realize this valuation
as an exceptional divisor of a weighted blow-up, we proceed as in the level 3
case. The singularity is isomorphic to(

x̄t + y3 + yg≥3 + h≥5

t = x̄ ∓ 2q(z, u)

)
.

Take weighted blow-ups with weight (2, 2, 1, 1, 3). We thus conclude that there
are exactly two divisors with discrepancy 1 in this case.

If h4 is not a square, then we consider w4 = (2, 2, 1, 1). One sees that
wBlw4 : Y → X is a divisorial contraction. The higher-index singular point is
Q2 of type cAx/2, given by

x2 + y2 + h4 + other terms = 0 ⊂ C4/
1
2

(2, 1, 1, 1).

By [5, Theorem 8.4], the only exceptional divisor of discrepancy 1
2 is given by

a weighted blow-up of weight 1
2 (2, 3, 1, 1). Hence its discrepancy over X is 2.

We thus conclude that there is a unique divisorial contraction and unique
exceptional divisor of discrepancy 1 in this case.

We thus have the following observation:

Corollary 5.4 Let F be a canonical form of cE6. Suppose that F has exactly
one exceptional divisor with discrepancy 1. Then F is of level 1 and h4 is not a
square.

6 Divisorial contractions with higher discrepancies

By the classification of Kawakita [13, Theorem 1.2.ii], divisorial contractions
to a cE point with discrepancy > 1 are not of ordinary type and a brief
description was given in [13, Table 3]. The purpose of this section is to give
some more examples which were not previously known and also to provide
some characterization of cE singularities admitting divisorial contractions with
higher discrepancy.
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The only previously known example with higher discrepancy is the
following:

Example 6.1 ([13, Example 8.9]) Let P ∈ X be the germ

o ∈ (x2 + y3 + yz3 + u7 = 0) ⊂ C4.

P is of type cE7. Take the weighted blow-up with weight (7, 5, 3, 2). Then it is
a divisorial contraction with discrepancy 2.

Let P ∈ X be the germ

o ∈ (x2 + y3 + z5 + u7 = 0) ⊂ C4.

P is of type cE8. Take the weighted blow-up with weight (7, 5, 3, 2). Then it is
a divisorial contraction with discrepancy 2.

We provide another example:

Example 6.2 Let P ∈ X be the germ

o ∈
(

x2 + yt + u5 = 0
t = y2 + z3

)
⊂ C5.

P is of type cE7. Take the weighted blow-up with weight (5, 3, 2, 2, 7). Then it
is a divisorial contraction with discrepancy 2.

In fact, by the studies in [3, Case IIc], it is known that there is only one
exceptional divisor with discrepancy 1 over P ∈ X. The unique divisorial
contraction with discrepancy 1 is given by a weighted blow-up with weight
(3, 2, 1, 1, 3).

Example 6.3 If P ∈ X is a germ of cE6 such that it admits a divisorial
contraction Y → X ' P of discrepancy 3, then a singularity of higher index
in Y is a cAx/4 point of axial weight 2. By [3, Case IId], there is exactly one
exceptional divisor with discrepancy 1 over P ∈ X. By Corollary 5.4, one see
that its canonical form must be of level 1 and h4 is not a square. However, we
do not know if such an example exists or not.
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