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Abstract

We analyze (complex) prime Fano fourfolds of degree 10 and index 2. Mukai
gave in [M1] a complete geometric description; in particular, most of them are
contained in a Grassmannian G(2, 5). As in the case of cubic fourfolds, they
are unirational and some are rational, as already remarked by Roth in 1949.

We show that their middle cohomology is of K3 type and that their period
map is dominant, with smooth 4-dimensional fibers, onto a 20-dimensional
bounded symmetric period domain of type IV. Following Hassett, we say that
such a fourfold is special if it contains a surface whose cohomology class does
not come from the Grassmannian G(2, 5). Special fourfolds correspond to a
countable union of hypersurfaces (the Noether–Lefschetz locus) in the period
domain, labelled by a positive integer d. We describe special fourfolds for
some low values of d. We also characterize those integers d for which special
fourfolds do exist.

Dedicated to Robert Lazarsfeld on the occasion of his sixtieth birthday

1 Introduction

One of the most vexing classical questions in complex algebraic geometry is
whether there exist irrational smooth cubic hypersurfaces in P5. They are all
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unirational, and rational examples are easy to construct (such as Pfaffian cubic
fourfolds) but no smooth cubic fourfold has yet been proven to be irrational.
The general feeling seems to be that the question should have an affirmative
answer but, despite numerous attempts, it is still open.

In a couple of very interesting articles on cubic fourfolds ([H1], [H2]),
Hassett adopted a Hodge-theoretic approach and, using the period map (proven
to be injective by Voisin in [V]) and the geometry of the period domain, a
20-dimensional bounded symmetric domain of type IV, he related geometric
properties of a cubic fourfold to arithmetical properties of its period point.

We do not solve the rationality question in this paper, but investigate instead
similar questions for another family of Fano fourfolds (see Section 2 for their
definition). Again, they are all unirational (see Section 3) and rational examples
were found by Roth (see [R]; also [P] and Section 7), but no irrational examples
are known.

We prove in Section 4 that the moduli stack X10 associated with these
fourfolds is smooth of dimension 24 (Proposition 4.1) and that the period map
is smooth and dominant onto, again, a 20-dimensional bounded symmetric
domain of type IV (Theorem 4.3). We identify the underlying lattice in Sec-
tion 5. Then, following [H1], we define in Section 6.1 hypersurfaces in the
period domain which parametrize “special” fourfolds X, whose period point
satisfies a nontrivial arithmetical property depending on a positive integer d,
the discriminant. As in [H1], we characterize in Proposition 6.6 those integers
d for which the nonspecial cohomology of a special X of discriminant d is
essentially the primitive cohomology of a K3 surface; we say that this K3 sur-
face is associated with X. Similarly, we characterize in Proposition 6.7 those
d for which the nonspecial cohomology of a special X of discriminant d is the
nonspecial cohomology of a cubic fourfold in the sense of [H1].

In Section 7, we give geometric constructions of special fourfolds X for d ∈
{8, 10, 12}; in particular, we discuss some rational examples (already present
in [R] and [P]). When d = 10, the associated K3 surface (in the sense of
Proposition 6.6) does appear in the construction of X; when d = 12, so does the
associated cubic fourfold (in the sense of Proposition 6.7) and it is birationally
isomorphic to X.

In Section 8, we characterize the positive integers d for which there exist
(smooth) special fourfolds of discriminant d. As in [H1], our construction
relies on the surjectivity of the period map for K3 surfaces. Finally, in
Section 9, we ask a question about the image of the period map.

So in some sense, the picture is very similar to what we have for cubic
fourfolds, with one big difference: the Torelli theorem does not hold. In a
forthcoming article, building on the link between our fourfolds and EPW
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Special prime Fano fourfolds of degree 10 and index 2 125

sextics discovered in [IM], we will analyze the (4-dimensional) fibers of the
period map.

2 Prime Fano fourfolds of degree 10 and index 2

Let X be a (smooth) prime Fano fourfold of degree 10 (i.e. , of “genus” 6) and
index 2; this means that Pic(X) is generated by the class of an ample divisor H
such that H4 = 10 and −KX ≡

lin
2H. Then H is very ample and embeds X in P8

as follows ([M2]; [IP], Theorem 5.2.3).
Let V5 be a 5-dimensional vector space (our running notation is Vk for any

k-dimensional vector space). Let G(2, V5) ⊂ P(∧2V5) be the Grassmannian in
its Plücker embedding and let CG ⊂ P(C ⊕ ∧2V5) 	 P10 be the cone, with
vertex v = P(C), over G(2, V5). Then

X = CG ∩ P8 ∩ Q,

where Q is a quadric. There are two cases:

• either v � P8, in which case X is isomorphic to the intersection of G(2, V5) ⊂
P(∧2V5) with a hyperplane (the projection of P8 to P(∧2V5)) and a quadric;

• or v ∈ P8, in which case P8 is a cone over a P7 ⊂ P(∧2V5) and X is a double
cover of G(2, V5) ∩ P7 branched along its intersection with a quadric.

The varieties obtained by the second construction will be called “of Gushel
type” (after Gushel, who studied the 3-dimensional case in [G]). They are
specializations of varieties obtained by the first construction.

Let X10 be the irreducible moduli stack for (smooth) prime Fano fourfolds
of degree 10 and index 2, let X G

10 be the (irreducible closed) substack of those
which are of Gushel type, and let X 0

10 :=X10 X G
10 . We have

dim(X10) = 24, dim(X G
10 ) = 22.

3 Unirationality

Let G := G(2, V5) and let X := G∩P8∩Q be a fourfold of type X 0
10. We prove

in this section that X is unirational.
The hyperplane P8 is defined by a nonzero skew-symmetric form ω on V5,

and the singular locus of Gω := G ∩ P8 is isomorphic to G(2, Ker(ω)). Since
X is smooth, this singular locus must be finite, hence ω must be of maximal
rank and Gω is also smooth. The variety Gω is the unique del Pezzo fivefold
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of degree 5 ([IP], Theorem 3.3.1); it parameterizes isotropic 2-planes for the
form ω.

If Vω
1 ⊂ V5 is the kernel of ω, the 3-plane P3

0 := P(Vω
1 ∧ V5) of lines passing

through [Vω
1 ] ∈ P(V5) is contained in Gω, hence X contains Σ0 := P3

0 ∩ Q, a
“σ-quadric” surface,1 possibly reducible. Any irreducible σ-quadric contained
in X is Σ0.

Proposition 3.1 Any fourfold X of type X 0
10 is unirational. More precisely,

there is a rational double cover P4 � X.

Proof If p ∈ Σ0, the associated V2,p ⊂ V5 contains Vω
1 , hence its ω-orthogonal

complement is a hyperplane V⊥2,p ⊂ V5 containing V2,p. Then

Y :=
⋃
p∈Σ0

P(V2,p) × P(V⊥2,p/V2,p)

is the fiber product of the projectivizations of two vector bundles over Σ0, hence
is rational.

A general point of Y defines a flag Vω
1 ⊂ V2,p ⊂ V3 ⊂ V⊥2,p ⊂ V5, hence a line

in G(2, V5) passing through p and contained in P8. This line meets X Σ0 at a
unique point, and this defines a rational map Y � X.

This map has degree 2: if x is general in X, lines in G(2, V5) through x meet
P(Vω

1 ∧ V5) in points p such that V2,p = Vω
1 ⊕ V1, with V1 ⊂ V2,x, hence

the intersection is P(Vω
1 ∧ V2,x). This is a line, therefore it meets Σ0 in two

points.

4 Cohomology and the local period map

This section contains more or less standard computations of various cohomol-
ogy groups of fourfolds of type X10.

As in Section 3, we set G := G(2, V5) and let Gω := G ∩ P8 be a smooth
hyperplane section of G.

4.1 The Hodge diamond of X

The inclusion Gω ⊂ G induces isomorphisms

Hk(G, Z)
∼→Hk(Gω, Z) for all k ∈ {0, . . . , 5}. (1)

1 This means that the lines in P(V5) parameterized by Σ0 all pass through a fixed point. Since X
is smooth, it contains no 3-planes by the Lefschetz theorem, hence Σ0 is indeed a surface.
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The Hodge diamond for a fourfold X := Gω ∩Q of type X 0
10 was computed in

[IM], Lemma 4.1; its upper half is as follows:

1
0 0

0 1 0
0 0 0 0

0 1 22 1 0

(2)

When X is of Gushel type, the Hodge diamond remains the same. In all cases,
the rank-2 lattice H4(G, Z) embeds into H4(X, Z) and we define the vanishing
cohomology H4(X, Z)van as the orthogonal complement (for the intersection
form) of the image of H4(G, Z) in H4(X, Z). It is a lattice of rank 22.

4.2 The local deformation space

We compute the cohomology groups of the tangent sheaf TX of a fourfold X of
type X10.

Proposition 4.1 For any fourfold X of type X10, we have

Hp(X, TX) = 0 for p � 1

and h1(X, TX) = 24. In particular, the group of automorphisms of X is finite
and the local deformation space Def(X) is smooth of dimension 24.

Proof For p ≥ 2, the conclusion follows from the Kodaira–Akizuki–Nakano
theorem since TX 	 Ω3

X(2). We assume that X = Gω ∩ Q is not of Gushel
type (the proof in the case where X is of Gushel type is similar, and left to the
reader).

Let us prove H0(X, TX) = 0. We have inclusions X ⊂ Gω ⊂ G. The conormal
exact sequence 0→ OX(−2)→ Ω1

Gω |X → Ω1
X → 0 induces an exact sequence

0→ Ω2
X → Ω3

Gω (2)|X → TX → 0.

Since H1(X,Ω2
X) vanishes, it is enough to show H0(X,Ω3

Gω (2)|X) = 0. Since
H1(Gω,Ω3

Gω ) = 0, it is enough to show that H0(Gω,Ω3
Gω (2)), or equivalently

its Serre dual H5(Gω,Ω2
Gω (−2)), vanishes.

The conormal exact sequence of Gω in G induces an exact sequence

0→ Ω1
Gω (−3)→ Ω2

G(−2)|Gω → Ω2
Gω (−2)→ 0.

The desired vanishing follows since H5(G,Ω2
G(−2)) = H6(G,Ω2

G(−3)) = 0 by
Bott’s theorem. Since X is (anti)canonically polarized, this vanishing implies
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that its group of automorphisms is a discrete subgroup of PGL(9, C), hence is
finite.

We also leave the computation of h1(X, TX) = −χ(X, TX) = −χ(X,Ω1
X(−2))

to the reader.

4.3 The local period map

Let X be a fourfold of type X10 and let Λ be a fixed lattice isomorphic to
H4(X, Z)van. By Proposition 4.1, X has a smooth (simply connected) local
deformation space Def(X) of dimension 24. By (2), the Hodge structure of
H4(X)van is of K3 type, hence we can define a morphism

Def(X)→ P(Λ ⊗ C)

with values in the smooth 20-dimensional quadric

Q := {ω ∈ P(Λ ⊗ C) | (ω · ω) = 0}.

We show below (Theorem 4.3) that the restriction p : Def(X) → Q, the local
period map, is a submersion.

Recall from Section 3 that the hyperplane P8 is defined by a skew-symmetric
form on V5 whose kernel is a 1-dimensional subspace Vω

1 of V5.

Lemma 4.2 There is an isomorphism H1(Gω,Ω3
Gω (2)) 	 V5/Vω

1 .

Proof From the normal exact sequence of the embedding Gω ⊂ G, we deduce
the exact sequences

0→ Ω1
Gω → Ω2

G(1)|Gω → Ω2
Gω (1)→ 0, (3)

0→ Ω2
Gω (1)→ Ω3

G(2)|Gω → Ω3
Gω (2)→ 0. (4)

By Bott’s theorem, Ω2
G(1) is acyclic, so we have

Hq(Gω,Ω2
G(1)|Gω ) 	 Hq+1(G,Ω2

G) 	 δq,1C2.

On the other hand, by (1), we have Hq(Gω,Ω1
Gω ) 	 δq,1C. Therefore, we also

get, by (3), Hq(Gω,Ω2
Gω (1)) 	 δq,1Vω

1 .

By Bott’s theorem again, Ω3
G(1) is acyclic, hence using (4) we obtain

Hq(Gω,Ω3
G(2)|Gω ) 	 Hq(G,Ω3

G(2)) 	 δq,1V5.

This finishes the proof of the lemma.

Theorem 4.3 For any fourfold X of type X10, the local period map
p : Def(X)→ Q is a submersion.
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Special prime Fano fourfolds of degree 10 and index 2 129

Proof The tangent map to p at the point [X] defined by X has the same kernel
as the morphism

T : H1(X, TX)→ Hom(H3,1(X), H3,1(X)⊥/H3,1(X))

	 Hom(H1(X,Ω3
X), H2(X,Ω2

X))

defined by the natural pairing H1(X, TX) ⊗ H1(X,Ω3
X) → H2(X,Ω2

X) (by (2),
H1(X,Ω3

X) is 1-dimensional).
Again, we will only explain the proof when X is not of Gushel type, i.e. ,

when it is a smooth quadratic section of Gω, leaving the Gushel case to
the reader. Recall the isomorphism TX 	 Ω3

X(2). The normal exact sequence
of the embedding X ⊂ Gω yields the exact sequence 0 → Ω2

X → Ω3
Gω (2)|X →

TX → 0.
Moreover, the induced coboundary map

H1(X, TX)→ H2(X,Ω2
X)

coincides with the cup product by a generator of H1(X,Ω3
X) 	 C, hence is

the morphism T . Since H2,1(X) = 0 (see (2)), its kernel K is isomorphic to
H1(X,Ω3

Gω (2)|X).
In order to compute this cohomology group, we consider the exact sequence

0 → Ω3
Gω → Ω3

Gω (2) → Ω3
Gω (2)|X → 0. Since, by (1), we have H1(Gω,Ω3

Gω ) =
H2(Gω,Ω3

Gω ) = 0, we get

K 	 H1(X,Ω3
Gω (2)|X) 	 H1(Gω,Ω3

Gω (2)) 	 V5/Vω
1

by Lemma 4.2. Since Def(X) is smooth of dimension 24 and Q is smooth of
dimension 20, this concludes the proof of the theorem in this case.

The fact that the period map is dominant implies a Noether–Lefschetz-type
result.

Corollary 4.4 If X is a very general fourfold of type X10, we have H2,2(X)∩
H4(X, Q) = H4(G, Q) and the Hodge structure H4(X, Q)van is simple.

Proof For H2,2(X) ∩ H4(X, Q)van to be nonzero, the corresponding period
must be in one of the (countably many) hypersurfaces α⊥ ∩Q, for some α ∈
P(Λ ⊗Q). Since the local period map is dominant, this does not happen for X
very general.

For any X, a standard argument (see, e.g., [Z], Theorem 1.4.1) shows that the
transcendental lattice

(
H4(X, Z)van∩H2,2(X)

)⊥ inherits a simple rational Hodge
structure. For X very general, the transcendental lattice is H4(X, Z)van.

Remark 4.5 If X is of Gushel type, we may consider, inside Def(X), the
locus DefG(X) where the deformation of X remains of Gushel type and the
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restriction pG : DefG(X) → Q of the local period map. One can show that the
kernel of TpG ,[X] is 2-dimensional. In particular, pG is a submersion at [X].

Also, the conclusion of Corollary 4.4 remains valid for very general
fourfolds of Gushel type.

5 The period domain and the period map

5.1 The vanishing cohomology lattice

Let (L, ·) be a lattice; we denote by L∨ its dual HomZ(L, Z). The symmetric
bilinear form on L defines an embedding L ⊂ L∨. The discriminant group is the
finite abelian group D(L) := L∨/L; it is endowed with the symmetric bilinear
form bL : D(L) × D(L) → Q/Z defined by bL([w], [w′]) := w ·Q w′ (mod Z)
([N], Section 1, 3o). We define the divisibility div(w) of a nonzero element w of
L as the positive generator of the ideal w · L ⊂ Z, so that w/ div(w) is primitive
in L∨. We set w∗ := [w/ div(w)] ∈ D(L). If w is primitive, div(w) is the order of
w∗ in D(L).

Proposition 5.1 Let X be a fourfold of type X10. The vanishing cohomology
lattice H4(X, Z)van is even and has signature (20, 2) and discriminant group
(Z/2Z)2. It is isometric to

Λ := 2E8 ⊕ 2U ⊕ 2A1. (5)

Proof By (2), the Hodge structure on H4(X) has weight 2 and the unimodu-
lar lattice ΛX := H4(X, Z), endowed with the intersection form, has signature
(22, 2). Since 22−2 is not divisible by 8, this lattice must be odd, hence of type
22〈1〉 ⊕ 2〈−1〉, often denoted by I22,2 ([S], Chapitre V, Section 2, Corollaire 1
of Théorème 2 and Théorème 4).

The intersection form on the lattice ΛG := H4(G(2, V5), Z)|X has matrix(
2 2
2 4

)
in the basis (σ1,1|X , σ2|X). It is of type 2〈1〉 and embeds as a primitive

sublattice in H4(X, Z). The vanishing cohomology lattice Λ0
X := H4(X, Z)van =

Λ⊥G therefore has signature (20, 2) and D(Λ0
X) 	 D(ΛG) 	 (Z/2Z)2 ([N],

Proposition 1.6.1).
An element x of I22,2 is characteristic if

∀y ∈ I22,2 x · y ≡ y2 (mod 2).

The lattice x⊥ is then even. One has from [BH], Section 16.2,

c1(TX) = 2σ1|X ,
c2(TX) = 4σ2

1|X − σ2|X .
(6)
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Special prime Fano fourfolds of degree 10 and index 2 131

Wu’s formula (see [W]) then gives

∀y ∈ ΛX y2 ≡ y · (c2
1 + c2) ≡ y · σ2|X (mod 2). (7)

In other words, σ2|X is characteristic, hence Λ0
X is an even lattice. As one can

see from Table 15.4 in [CS], there is only one genus of even lattices with
signature (20, 2) and discriminant group (Z/2Z)2 (it is denoted by II20,2(22

I )
in that table); moreover, there is only one isometry class in that genus ([CS],
Theorem 21). In other words, any lattice with these characteristics, such as the
one defined in (5), is isometric to Λ0

X .

One can also check thatΛ is the orthogonal complement in I22,2 of the lattice
generated by the vectors

u := e1 + e2 and v′ := e1 + · · · + e22 − 3 f1 − 3 f2

in the canonical basis (e1, . . . , e22, f1, f2) for I22,2. Putting everything together,
we see that there is an isometry γ : ΛX

∼→ I22,2 such that

γ(σ1,1|X) = u, γ(σ2|X) = v′, γ(Λ0
X) 	 Λ. (8)

We let Λ2 ⊂ I22,2 be the rank-2 sublattice 〈u, v′〉 = 〈u, v〉, where v := v′ − u.
Then u and v both have divisibility 2, D(Λ2) = 〈u∗, v∗〉, and the matrix of bΛ2

associated with these generators is

(
1/2 0
0 1/2

)
.

5.2 Lattice automorphisms

One can construct I20,2 as an overlattice of Λ as follows. Let e and f be
respective generators for the last two A1-factors of Λ (see (5)). They both have
divisibility 2 and D(Λ) 	 (Z/2Z)2, with generators e∗ and f∗; the form bΛ has

matrix

(
1/2 0
0 1/2

)
. In particular, e∗+ f∗ is the only isotropic nonzero element in

D(Λ). By [N], Proposition 1.4.1, this implies that there is a unique unimodular
overlattice of Λ. Since there is just one isometry class of unimodular lattices
of signature (20, 2), this is I20,2.

Note that Λ is an even sublattice of index 2 of I20,2, so it is the maximal even
sublattice {x ∈ I20,2 | x2 even} (it is contained in that sublattice, and has the
same index in I20,2).

Every automorphism of I20,2 will preserve the maximal even sublattice, so
O(I20,2) is a subgroup of O(Λ). On the other hand, the group O(D(Λ)) has order
2 and fixes e∗ + f∗. It follows that every automorphism of Λ fixes I20,2, and we
obtain O(I20,2) 	 O(Λ).
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Now let us try to extend to I22,2 an automorphism Id⊕h ofΛ2⊕Λ. Again, this
automorphism permutes the overlattices ofΛ2⊕Λ, such as I22,2, according to its
action on D(Λ2)⊕D(Λ). By [N], overlattices correspond to isotropic subgroups
of D(Λ2)⊕D(Λ) that map injectively to both factors. Among them is I22,2; after
perhaps permuting e and f , it corresponds to the (maximal isotropic) subgroup

{0, u∗ + e∗, v∗ + f∗, u∗ + v∗ + e∗ + f∗}.

Any automorphism of Λ leaves e∗ + f∗ fixed. So either h acts trivially on D(Λ),
in which case Id⊕h leaves I22,2 fixed, hence extends to an automorphism of
I22,2; or h switches the other two nonzero elements, in which case Id⊕h does
not extend to I22,2.

In other words, the image of the restriction map

{g ∈ O(I22,2) | g|Λ2 = Id} ↪→ O(Λ)

is the stable orthogonal group

Õ(Λ) := Ker(O(Λ)→ O(D(Λ)). (9)

It has index 2 in O(Λ) and a generator for the quotient is the involution
r ∈ O(Λ) that exchanges e and f and is the identity on 〈e, f 〉⊥. Let r2 be the
involution of Λ2 that exchanges u and v. It follows from the discussion above
that the involution r2 ⊕ r of Λ2 ⊕ Λ extends to an involution rI of I22,2.

5.3 The period domain and the period map

Fix a lattice Λ as in (5); it has signature (20, 2). The manifold

Ω := {ω ∈ P(Λ ⊗ C) | (ω · ω) = 0 , (ω · ω̄) < 0}

is a homogeneous space for the real Lie group SO(Λ ⊗ R) 	 SO(20, 2).
This group has two components, and one of them reverses the orientation on
the negative definite part of Λ ⊗ R. It follows that Ω has two components,
Ω+ and Ω−, both isomorphic to the 20-dimensional open complex manifold
SO0(20, 2)/ SO(20) × SO(2), a bounded symmetric domain of type IV.

Let U be a smooth (irreducible) quasi-projective variety parameterizing all
fourfolds of type X10. Let u be a general point of U and let X be the corre-
sponding fourfold. The group π1(U , u) acts on the lattice ΛX := H4(X, Z) by
isometries and the image ΓX of the morphism π1(U , u)→ O(ΛX) is called the
monodromy group. The group ΓX is contained in the subgroup (see (9))

Õ(ΛX) := {g ∈ O(ΛX) | g|ΛG = Id}.
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Choose an isometry γ : ΛX
∼→ I22,2 satisfying (8). It induces an isomorphism

Õ(ΛX) 	 Õ(Λ). The group Õ(Λ) acts on the manifold Ω defined above and,
by a theorem of Baily and Borel, the quotient D := Õ(Λ)\Ω has the structure
of an irreducible quasi-projective variety. One defines as usual a period map
U → D by sending a variety to its period; it is an algebraic morphism. It
descends to “the” period map

℘ : X10 → D .

By Theorem 4.3 (and Remark 4.5), ℘ is dominant with 4-dimensional smooth
fibers as a map of stacks.

Remark 5.2 As in the 3-dimensional case ([DIM1]), we do not know whether
our fourfolds have a coarse moduli space, even in the category of algebraic
spaces (the main unresolved issue is whether the corresponding moduli functor
is separated). If such a space X10 exists, note however that it is singular along
the Gushel locus: any fourfold X of Gushel type has a canonical involution; if
X has no other nontrivial automorphisms, X10 is then locally around [X] the
product of a smooth 22-dimensional germ and the germ of a surface node. The
fiber of the period map X10 → D then has multiplicity 2 along the surface
corresponding to Gushel fourfolds (see Remark 4.5).

6 Special fourfolds

Following [H1], Section 3, we say that a fourfold X of type X10 is special if
it contains a surface whose cohomology class “does not come” from G(2, V5).
Since the Hodge conjecture is true (over Q) for Fano fourfolds (more gener-
ally, by [CM], for all uniruled fourfolds), this is equivalent to saying that the
rank of the (positive definite) lattice H2,2(X) ∩ H4(X, Z) is at least 3, hence by
Corollary 4.4, a very general X is not special. The set of special fourfolds is
sometimes called the Noether–Lefschetz locus.

6.1 Special loci

For each primitive, positive definite, rank-3 sublattice K ⊂ I22,2 containing
the lattice Λ2 defined at the end of Section 5.1, we define an irreducible
hypersurface of Ω+ by setting

ΩK := {ω ∈ Ω+ | K ⊂ ω⊥}.

A fourfold X is special if and only if its period is in one of these (countably
many) hypersurfaces. We now investigate these lattices K.
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Lemma 6.1 The discriminant d of K is positive and d ≡ 0, 2, or 4 (mod 8).

Proof Since K is positive definite, d must be positive. Completing the basis
(u, v) of Λ2 from Section 5.1 to a basis of K, we see that the matrix of the

intersection form in that basis is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 a
0 2 b
a b c

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, whose determinant is d = 4c −

2(a2 + b2). By Wu’s formula (7) (or equivalently, since v is characteristic),
we have c ≡ a + b (mod 2), hence d ≡ 2(a2 + b2) (mod 8). This proves the
lemma.

We keep the notation of Section 5.

Proposition 6.2 Let d be a positive integer such that d ≡ 0, 2, or 4 (mod 8)
and let Od be the set of orbits for the action of the group

Õ(Λ) = {g ∈ O(I22,2) | g|Λ2 = Id} ⊂ O(Λ)

on the set of primitive, positive definite, rank-3, discriminant-d, sublattices
K ⊂ I22,2 containing Λ2. Then:

(a) if d ≡ 0 (mod 8), Od has one element and K 	

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 0
0 0 d/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠;
(b) if d ≡ 2 (mod 8), Od has two elements, which are interchanged by the

involution rI of I22,2, and K 	

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 1
0 1 (d + 2)/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠;

(c) if d ≡ 4 (mod 8), Od has one element and K 	

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 1
0 2 1
1 1 (d + 4)/4

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
In case (b), one orbit is characterized by the properties K · u = Z and K · v =

2Z, and the other by K · u = 2Z and K · v = Z.

Proof By a theorem of Eichler (see, e.g., [GHS], Lemma 3.5), the Õ(Λ)-orbit
of a primitive vector w in the even lattice Λ is determined by its length w2 and
its class w∗ ∈ D(Λ).

If div(w) = 1, we have w∗ = 0 and the orbit is determined by w2. The lattice
Λ2 ⊕ Zw is primitive: if αu + βv + γw = mw′, and if w · w′′ = 1, we obtain
γ = mw′ · w′′, hence αu + βv = m((w′ · w′′)w − w′) and m divides α, β, and γ.
Its discriminant is 4w2 ≡ 0 (mod 8).

If div(w) = 2, we have w∗ ∈ {e∗, f∗, e∗ + f∗}. Recall from Section 5.2 that
1
2 (u + e), 1

2 (v + f ), and 1
2 (u + v + e + f ) are all in I22,2. It follows that exactly
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one of 1
2 (u + w), 1

2 (v + w), and 1
2 (u + v + w) is in I22,2, and Λ2 ⊕Zw has index 2

in its saturation K in I22,2. In particular, K has discriminant w2. If w∗ ∈ {e∗, f∗},
this is ≡ 2 (mod 8); if w∗ = e∗ + f∗, this is ≡ 4 (mod 8).

Now if K is a lattice as in the statement of the proposition, we let K⊥ be its
orthogonal complement in I22,2, so that the rank-1 lattice K0 := K ∩ Λ is the
orthogonal complement of K⊥ in Λ. From K0 ⊂ Λ, we can therefore recover
K⊥, then K ⊃ Λ2. The preceding discussion applied to a generator w of K0

gives the statement, except that we still have to prove that there are indeed
elements w of the various types for all d, i.e., we need to construct elements in
each orbit to show they are not empty.

Let u1 and u2 be standard generators for a hyperbolic factor U of Λ. For any
integer m, set wm := u1 + mu2. We have w2

m = 2m and div(wm) = 1. The lattice
Λ2 ⊕ Zwm is saturated with discriminant 8m.

We have (e + 2wm)2 = 8m + 2 and div(e + 2wm) = 2. The saturation of
the lattice Λ2 ⊕ Z(e + 2wm) has discriminant d = 8m + 2, and similarly upon
replacing e with f (same d) or e + f (d = 8m + 4).

Let K be a lattice as above. The image in D = Õ(Λ)\Ω of the hypersurface
ΩK ⊂ Ω+ depends only on the Õ(Λ)-orbit of K. Also, the involution r ∈ O(Λ)
induces a nontrivial involution rD of D .

Corollary 6.3 The periods of the special fourfolds of discriminant d are
contained in

(a) if d ≡ 0 (mod 4), an irreducible hypersurface Dd ⊂ D;

(b) if d ≡ 2 (mod 8), the union of two irreducible hypersurfaces D ′d and D ′′d ,
which are interchanged by the involution rD .

Assume d ≡ 2 (mod 8) (case (b)). Then, D ′d (resp. D ′′d ) corresponds to
lattices K with K · u = Z (resp. K · v = Z). In other words, given a fourfold X
of type X10 whose period point is in Dd = D ′d ∪D ′′d , it is in D ′d if K ·σ2

1 ⊂ 2Z,
and it is in D ′′d if K · σ1,1 ⊂ 2Z.

Remark 6.4 The divisors Dd appear in the theory of modular forms under
the name of Heegner divisors. In the notation of [B]:

• when d ≡ 0 (mod 8), we have Dd = hd/8,0;

• when d ≡ 2 (mod 8), we have D ′d = hd/2,e∗ and D ′′d = hd/2, f∗ ;

• when d ≡ 4 (mod 8), we have Dd = hd/2,e∗+ f∗ .

Remark 6.5 Zarhin’s argument, already used in the proof of Corollary 4.4,
proves that if X is a fourfold whose period is very general in any given Dd,
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the lattice K = H4(X, Z) ∩ H2,2(X) has rank exactly 3 and the rational Hodge
structure K⊥ ⊗Q is simple.

6.2 Associated K3 surface

As we will see in the next section, K3 surfaces sometimes occur in the geo-
metric description of special fourfolds X of type X10. This is related to the
fact that, for some values of d, the nonspecial cohomology of X looks like the
primitive cohomology of a K3 surface.

Following [H1], we determine, in each case of Proposition 6.2, the discrim-
inant group of the nonspecial lattice K⊥ and the symmetric form bK⊥ = −bK .
We then find all cases when the nonspecial lattice of X is isomorphic (with
a change of sign) to the primitive cohomology lattice of a (pseudo-polarized,
degree-d) K3 surface. Although this property is only lattice-theoretic, the sur-
jectivity of the period map for K3 surfaces then produces an actual K3 surface,
which is said to be “associated with X.” For d = 10, we will see in Sections 7.1
and 7.3 geometric constructions of the associated K3 surface.

Finally, there are other cases where geometry provides an “associated” K3
surface S (see Section 7.6), but not in the sense considered here: the Hodge
structure of S is only isogeneous to that of the fourfold. So there might be
integers d not in the list provided by the proposition below, for which special
fourfolds of discriminant d are still related in some way to K3 surfaces (of
degree different from d).

Proposition 6.6 Let d be a positive integer such that d ≡ 0, 2, or 4 (mod 8)
and let (X, K) be a special fourfold of type X10 with discriminant d. Then:

(a) if d ≡ 0 (mod 8), we have D(K⊥) 	 (Z/2Z)2 × (Z/(d/4)Z);
(b) if d ≡ 2 (mod 8), we have D(K⊥) 	 Z/dZ and we may choose this

isomorphism so that bK⊥ (1, 1) = − d+8
2d (mod Z);

(c) if d ≡ 4 (mod 8), we have D(K⊥) 	 Z/dZ and we may choose this
isomorphism so that bK⊥ (1, 1) = − d+2

2d (mod Z).

The lattice K⊥ is isomorphic to the opposite of the primitive cohomology lattice
of a pseudo-polarized K3 surface (necessarily of degree d) if and only if we are
in case (b) or (c) and the only odd primes that divide d are ≡ 1 (mod 4).

In these cases, there exists a pseudo-polarized, degree-d, K3 surface S such
that the Hodge structure H2(S , Z)0(−1) is isomorphic to K⊥. Moreover, if the
period point of X is not in D8, the pseudo-polarization is a polarization.

The first values of d that satisfy the conditions for the existence of an
associated K3 surface are: 2, 4, 10, 20, 26, 34, 50, 52, 58, 68, 74, 82, 100, . . .
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Proof Since I22,2 is unimodular, we have (D(K⊥), bK⊥) 	 (D(K),−bK) ([N],
Proposition 1.6.1). Case (a) follows from Proposition 6.2.

Let e, f , and g be the generators of K corresponding to the matrix given in
Proposition 6.2. The matrix of bK⊥ in the dual basis (e∨, f ∨, g∨) of K⊥ is the
inverse of that matrix.

In case (b), one checks that e∨ + g∨ generates D(K), which is isomorphic to
Z/dZ. Its square is 1

2 +
4
d =

d+8
2d .

In case (c), one checks that e∨ generates D(K), which is isomorphic to Z/dZ.
Its square is d+2

2d .
The opposite of the primitive cohomology lattice of a pseudo-polarized K3

surface of degree d has discriminant group Z/dZ and the square of a generator
is 1

d . So case (a) is impossible.

In case (b), the forms are conjugate if and only if − d+8
2d ≡

n2

d (mod Z) for
some integer n prime to d, or − d+8

2 ≡ n2 (mod d). Set d = 2d′ (so that d′ ≡
1 (mod 4)); then this is equivalent to saying that d′ − 4 is a square in the
ring Z/dZ. Since d′ is odd, this ring is isomorphic to Z/2Z × Z/d′Z, hence
this is equivalent to asking that −4, or equivalently −1, is a square in Z/d′Z.
This happens if and only if the only odd primes that divide d′ (or d) are ≡ 1
(mod 4).

In case (c), the reasoning is similar: we need − d+2
2d ≡

n2

d (mod Z) for some
integer n prime to d. Set d = 4d′, with d′ odd. This is equivalent to −2 ≡ 2n2

(mod d′), and we conclude as above.
As already explained, the existence of the polarized K3 surface (S , f ) fol-

lows from the surjectivity of the period map for K3 surfaces. Finally, if ℘([X])
is not in D8, there are no classes of type (2, 2) with square 2 in H4(X, Z)van,
hence no (−2)-curves on S orthogonal to f , so f is a polarization.

6.3 Associated cubic fourfold

Cubic fourfolds also sometimes occur in the geometric description of special
fourfolds X of type X10 (see Section 7.2). We determine for which values of d
the nonspecial cohomology of X is isomorphic to the nonspecial cohomology
of a special cubic fourfold. Again, this is only a lattice-theoretic association,
but the surjectivity of the period map for cubic fourfolds then produces a
(possibly singular) actual cubic. We will see in Section 7.2 that some spe-
cial fourfolds X of discriminant 12 are actually birationally isomorphic to their
associated special cubic fourfold.

Proposition 6.7 Let d be a positive integer such that d ≡ 0, 2, or 4 (mod 8)
and let (X, K) be a special fourfold of type X10 with discriminant d. The lattice
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K⊥ is isomorphic to the nonspecial cohomology lattice of a (possibly singular)
special cubic fourfold (necessarily of discriminant d) if and only if:

(a) either d ≡ 2 or 20 (mod 24), and the only odd primes that divide d are ≡
±1 (mod 12);

(b) or d ≡ 12 or 66 (mod 72), and the only primes ≥ 5 that divide d are ≡ ±1
(mod 12).

In these cases, if moreover the period point of X is general in Dd and d � 2,
there exists a smooth special cubic fourfold whose nonspecial Hodge structure
is isomorphic to K⊥.

The first values of d that satisfy the conditions for the existence of
an associated cubic fourfold are: 2, 12, 26, 44, 66, 74, 92, 122, 138, 146, 156,
194, . . .

Proof Recall from [H1], Section 4.3, that (possibly singular) special cubic
fourfolds of positive discriminant d exist for d ≡ 0 or 2 (mod 6) (for d = 2,
the associated cubic fourfold is the (singular) determinantal cubic; for d = 6,
it is nodal). Combining that condition with that of Lemma 6.1, we obtain the
necessary condition d ≡ 0, 2, 8, 12, 18, 20 (mod 24). Write d = 24d′ + e, with
e ∈ {0, 2, 8, 12, 18, 20}.

Then, one needs to check whether the discriminant forms are isomorphic.
Recall from [H1], Proposition 3.2.5, that the discriminant group of the non-
special lattice of a special cubic fourfold of discriminant d is isomorphic to
(Z/3Z) × (Z/(d/3)Z) if d ≡ 0 (mod 6), and to Z/dZ if d ≡ 2 (mod 6). This
excludes e = 0 or 8; for e = 12, we need d′ � 1 (mod 3) and for e = 18, we
need d′ � 0 (mod 3). In all these cases, the discriminant group is cyclic.

When e = 2, the discriminant forms are conjugate if and only if − d+8
2d ≡

n2 2d−1
3d (mod Z) for some integer n prime to d (Proposition 6.6 and [H1],

Proposition 3.2.5), or equivalently, since 3 is invertible modulo d, if and only
if d

2 + 12 ≡ 3 d+8
2 ≡ n2 (mod d). This is equivalent to saying that 12d′ + 13

is a square in Z/dZ 	 (Z/(12d′ + 1)Z) × (Z/2Z), or that 3 is a square in
Z/(12d′ + 1)Z. Using quadratic reciprocity, we see that this is equivalent to
saying that the only odd primes that divide d are ≡ ±1 (mod 12).

When e = 20, we need − d+2
2d ≡ n2 2d−1

3d (mod Z) for some integer n prime
to d, or equivalently, d

2 + 3 ≡ n2 (mod d). Again, we get the same condition.

When e = 12, we need 9 � d and − d+2
2d ≡ n2

(
2
3 −

3
d

)
(mod Z) for some

integer n prime to d, or equivalently, −12d′−7 ≡ n2(16d′+5) (mod d). Modulo
3, we get that 1 − d′ must be a nonzero square, hence 3 | d′. Modulo 4, there
are no conditions. Then we need 1 ≡ 3n2 (mod 2d′ + 1) and we conclude as
above.
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Finally, when e = 18, we need 9 � d and − d+8
2d ≡ n2

(
2
3 −

3
d

)
(mod Z) for

some n prime to d, or equivalently, −12d′−13 ≡ n2(16d′+9) (mod d). Modulo
3, we get d′ ≡ 2 (mod 3), and then 4 ≡ 3n2 (mod 4d′ + 3) and we conclude
as above.

At this point, we have a Hodge structure on K⊥ which is, as a lattice, isomor-
phic to the nonspecial cohomology of a special cubic fourfold. It corresponds
to a point in the period domain C of cubic fourfolds. To make sure that it cor-
responds to a (then unique) smooth cubic fourfold, we need to check that it is
not in the special loci C2 ∪ C6 ([La], Theorem 1.1). If the period point of X is
general in Dd, the period point in C is general in Cd, hence is not in C2 ∪C6 if
d � {2, 6}.

Remark 6.8 One can be more precise and figure out explicit conditions on
℘([X]) for the associated cubic fourfold to be smooth (but calculations are
complicated). For example, when d = 12, we find that it is enough to assume
℘([X]) � D2 ∪D4 ∪D8 ∪D16 ∪D28 ∪D60 ∪D112 ∪D240.

7 Examples of special fourfolds

Assume that a fourfold X of type X10 contains a smooth surface S .
Then, by (6),

c(TX)|S = 1 + 2σ1|S + (4σ2
1|S − σ2|S ) = c(TS )c(NS/X).

This implies c1(TS ) + c1(NS/X) = 2σ1|S and

4σ2
1|S − σ2|S = c1(TS )c1(NS/X) + c2(TS ) + c2(NS/X).

We obtain

(S )2
X = c2(NS/X) = 4σ2

1|S − σ2|S − c1(TS )(2σ1|S − c1(TS )) − c2(TS ).

Write [S ] = aσ3,1 + bσ2,2 in G(2, V5). Using Noether’s formula, we obtain

(S )2
X = 3a + 4b + 2KS · σ1|S + 2K2

S − 12χ(OS ). (10)

The determinant of the intersection matrix in the basis (σ1,1|X , σ2|X −
σ1,1|X , [S ]) is then

d = 4(S )2
X − 2(b2 + (a − b)2). (11)

We remark that σ2|X − σ1,1|X is the class of the unique σ-quadric surface Σ0

contained in X (see Section 3).
The results of this section are summarized in Section 7.7.
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7.1 Fourfolds containing a σ-plane (divisor D ′′10)

A σ-plane is a 2-plane in G(2, V5) of the form P(V1 ∧ V4); its class in G(2, V5)
is σ3,1. Fourfolds of type X 0

10 containing such a 2-plane were already studied
by Roth ([R], Section 4) and Prokhorov ([P], Section 3).

Proposition 7.1 Inside X10, the family Xσ-plane of fourfolds containing a
σ-plane is irreducible of codimension 2. The period map induces a dominant
map Xσ-plane → D ′′10 whose general fiber has dimension 3 and is rationally
dominated by a P1-bundle over a degree-10 K3 surface.

A general member of Xσ-plane is rational.

During the proof, we present an explicit geometric construction of a general
member X of Xσ-plane, starting from a general degree-10 K3 surface S ⊂ P6, a
general point p on S , and a smooth quadric Y containing the projection S̃ ⊂ P5

from p. The birational isomorphism Y � X is given by the linear system of
cubics containing S̃ .

Proof A parameter count ([IM], Lemma 3.6) shows that Xσ-plane is irreducible
of codimension 2 in X10. Let P ⊂ X be a σ-plane. From (10), we obtain
(P)2

X = 3 and from (11), d = 10. Since σ2
1 · P is odd, we are in D ′′10.

For X general in Xσ-plane (see [P], Section 3, for the precise condition), the
image of the projection πP : X � P5 from P is a smooth quadric Y ⊂ P5 and,
if X̃ → X is the blow-up of P, the projection πP induces a birational morphism
X̃ → Y which is the blow-up of a smooth degree-9 surface S̃ , itself the blow-up
of a smooth degree-10 K3 surface S at one point ([P], Proposition 2).

Conversely, let S ⊂ P6 be a degree-10 K3 surface. When S is general, the
projection from a general point p on S induces an embedding S̃ ⊂ P5 of the
blow-up of S at p. Given any smooth quadric Y containing S̃ , one can reverse
the construction above and produce a fourfold X containing a σ-plane (we will
give more details about this construction and explicit genericity assumptions
during the proof of Theorem 8.1).

There are isomorphisms of polarized integral Hodge structures

H4(X̃, Z) 	 H4(X, Z) ⊕ H2(P, Z)(−1)

	 H4(Y, Z) ⊕ H2(S̃ , Z)(−1)

	 H4(Y, Z) ⊕ H2(S , Z)(−1) ⊕ Z(−2).

For S very general, the Hodge structure H2(S , Q)0 is simple, hence it is iso-
morphic to the nonspecial cohomology K⊥ ⊗Q (where K is the lattice spanned
by H4(G(2, V5), Z) and [P] in H4(X, Z)). Moreover, the lattice H2(S , Z)0(−1)
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embeds isometrically into K⊥. Since they both have rank 21 and discrimi-
nant 10, they are isomorphic. The surface S is thus the (polarized) K3 surface
associated with X as in Proposition 6.6.

Since the period map for polarized degree-10 K3 surfaces is dominant onto
their period domain, the period map for Xσ-plane is dominant onto D ′′10 as well.
Since the Torelli theorem for K3 surfaces holds, S is determined by the period
point of X, hence the fiber ℘−1([X]) is rationally dominated by the family
of pairs (p, Y), where p ∈ S and Y belongs to the pencil of quadrics in P5

containing S̃ .

With the notation above, the inverse image of the quadric Y ⊂ P5 by the
projection P8 � P5 from P is a rank-6 non-Plücker quadric in P8 containing
X, with vertex P. We show in Section 7.5 that Xσ-plane is contained in the irre-
ducible hypersurface of X10 parameterizing the fourfolds X contained in such
a quadric.

7.2 Fourfolds containing a ρ-plane (divisor D12)

A ρ-plane is a 2-plane in G(2, V5) of the form P(∧2V3); its class in G(2, V5) is
σ2,2. Fourfolds of type X10 containing such a 2-plane were already studied by
Roth ([R], Section 4).

Proposition 7.2 Inside X10, the family Xρ-plane of fourfolds containing a
ρ-plane is irreducible of codimension 3. The period map induces a dominant
map Xρ-plane → D12 whose general fiber is the union of two rational surfaces.

A general member of Xρ-plane is birationally isomorphic to a cubic fourfold
containing a smooth cubic surface scroll.

The proof presents a geometric construction of a general member of Xρ-plane,
starting from any smooth cubic fourfold Y ⊂ P5 containing a smooth cubic
surface scroll T . The birational isomorphism Y � X is given by the linear
system of quadrics containing T .

Proof A parameter count ([IM], Lemma 3.6) shows that Xρ-plane is irreducible
of codimension 3 in X10. Let P = P(∧2V3) ⊂ X be a ρ-plane. From (10), we
obtain (P)2

X = 4. From (11), we obtain d = 12 and we are in D12.
As shown in [R], Section 4, the image of the projection πP : X � P5 from

P is a cubic hypersurface Y and the image of the intersection of X with the
Schubert hypersurface

ΣP = {V2 ⊂ V5 | V2 ∩ V3 � 0} ⊂ G(2, V5)
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is a cubic surface scroll T (contained in Y). If X̃ → X is the blow-up of
P, with exceptional divisor EP, the projection πP induces a birational mor-
phism π̃P : X̃ → Y . One checks (with the same arguments as in [P], Section 3)
that all fibers have dimension ≤ 1 and hence that π̃P is the blow-up of the
smooth surface T . The image π̃P(EP) is the (singular) hyperplane section
Y0 := Y ∩ 〈T 〉.

Conversely, a general cubic fourfold Y containing a smooth cubic scroll con-
tains two families (each parameterized by P2) of such surfaces (see [HT1]
and [HT2], Example 7.12). For each such smooth cubic scroll, one can
reverse the construction above and produce a smooth fourfold X containing a
ρ-plane.

As in Section 7.1, there are isomorphisms of polarized integral Hodge
structures

H4(X̃, Z) 	 H4(X, Z) ⊕ H2(P, Z)(−1) 	 H4(Y, Z) ⊕ H2(T, Z)(−1).

Let K be the lattice spanned by H4(G(2, V5), Z) and [P] in H4(X, Z). For X
very general in Xρ-plane, the Hodge structure K⊥ ⊗ Q is simple (Remark 6.5),
hence it is isomorphic to the Hodge structure 〈h2, [T ]〉⊥ ⊂ H4(Y, Q). More-
over, the lattices K⊥ and 〈h2, [T ]〉⊥ ⊂ H4(Y, Z), which both have rank 21
and discriminant 12 (see [H1], Section 4.1.1), are isomorphic. This case fits
into the setting of Proposition 6.7: the special cubic fourfold Y is associated
with X.

Finally, since the period map for cubic fourfolds containing a cubic scroll
surface is dominant onto the corresponding hypersurface in their period
domain, the period map for Xρ-plane is dominant onto D12 as well. Since the
Torelli theorem holds for cubic fourfolds ([V]), Y is determined by the period
point of X, hence the fiber ℘−1([X]) is rationally dominated by the family of
smooth cubic scrolls contained in Y . It is therefore the union of two rational
surfaces.

With the notation above, let V4 ⊂ V5 be a general hyperplane containing V3.
Then G(2, V4) ∩ X is the union of P and a cubic scroll surface.

7.3 Fourfolds containing a τ-quadric surface (divisor D ′10)

A τ-quadric surface in G(2, V5) is a linear section of G(2, V4); its class in
G(2, V5) is σ2

1 · σ1,1 = σ3,1 + σ2,2.

Proposition 7.3 The closure X τ-quadric ⊂ X10 of the family of fourfolds con-
taining a τ-quadric surface is an irreducible component of ℘−1(D ′10). The
period map induces a dominant map Xτ-quadric → D ′10 whose general fiber
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is birationally isomorphic to the quotient by an involution of the symmetric
square of a degree-10 K3 surface.

A general member of Xτ-quadric is rational.

During the proof, we present a geometric construction of a general member
of Xτ-quadric, starting from a general degree-10 K3 surface S ⊂ P6 and two
general points on S : if S 0 ⊂ P4 is the (singular) projection of S from these
two points, the birational isomorphism P4 � X is given by the linear system
of quartics containing S 0.

Proof A parameter count shows that Xτ-quadric is irreducible of codimension
1 in X10 (one can also use the parameter count at the end of the proof). Let
Σ ⊂ X be a smooth τ-quadric surface. From (10), we obtain (Σ)2

X = 3 and from
(11), d = 10. Since σ2

1 ·Σ is even, we are in D ′10. The family Xτ-quadric is therefore
a component of the divisor ℘−1(D ′10).

The projection from the 3-plane 〈Σ〉 induces a birational map X � P4 (in
particular, X is rational!). If ε : X̃ → X is the blow-up of Σ, one checks that
it induces a birational morphism π : X̃ → P4 which is more complicated than
just the blow-up of a smooth surface (compare with Section 7.1).

In the first part of the proof, we analyze the birational structure of π by
factorizing it into a composition of blow-ups with smooth centers and their
inverses (see diagram (12)). This gives an explicit construction of X, and in the
second part of the proof we prove that any such construction does give an X
containing a τ-quadric surface.

Since Σ is contained in a G(2, V4), the quartic surface X ∩ G(2, V4) is the
union of Σ and another τ-quadric surface Σ�. The two 3-planes 〈Σ〉 and 〈Σ�〉
meet along a 2-plane, hence (the strict transform of) Σ� is contracted by π to a
point. Generically, the only quadric surfaces contained in X are the σ-quadric
surface Σ0 (defined in Section 3) and the τ-quadric surfaces Σ and Σ�. Using
the fact that X is an intersection of quadrics, one checks that Σ� is the only
surface contracted (to a point) by π.

Let �′ ⊂ X̃ be a line contracted by ε. If � ⊂ X̃ is (the strict transform of) a line
contained in Σ�, it meets Σ and is contracted by π. Since X̃ has Picard number
2, the rays R+[�] and R+[�′] are extremal, hence span the cone of curves of X̃.
These two classes have (−KX̃)-degree 1, hence X̃ is a Fano fourfold. Extremal
contractions on smooth fourfolds have been classified ([AM], Theorem 4.1.3).
In our case, we have:

• π is a divisorial contraction, its (irreducible) exceptional divisor D contains
Σ�, and D ≡

lin
3H − 4E;
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• S 0 := π(D) is a surface with a single singular point s := π(Σ�), where it is
locally the union of two smooth 2-dimensional germs meeting transversely;

• outside of s, the map π is the blow-up of S 0 in P4.

Let X̂ → X̃ be the blow-up of Σ�, with exceptional divisor Ê, and let P̂4 → P4

be the blow-up of s, with exceptional divisor P3
s . The strict transform Ŝ 0 ⊂ P̂

4

of S 0 is the blow-up of its (smooth) normalization S ′0 at the two points lying
over s and meets P3

s along the disjoint union of the two exceptional curves L1

and L2. There is an induced morphism X̂ → P̂
4

which is an extremal con-
traction ([AM], Theorem 4.1.3), hence is the blow-up of the smooth surface
Ŝ 0, with exceptional divisor the strict transform D̂ ⊂ X̂ of D; it induces by
restriction a morphism Ê → P3

s which is the blow-up of L1 * L2.
It follows that we have isomorphisms of polarized Hodge structures

H4(X̂, Z) 	 H4(X, Z) ⊕ H2(Σ, Z)(−1) ⊕ H2(Σ�, Z)(−1)

	 H4(P4, Z) ⊕ H2(P3
s , Z)(−1) ⊕ Z[L1] ⊕ Z[L2] ⊕ H2(S ′0, Z)(−1).

In particular, we have b2(S ′0) = 24 + 2 + 2 − 1 − 1 − 1 − 1 = 24 and h2,0(S ′0) =
h3,1(X̂) = 1; moreover, the Picard number of S ′0 is 3 for X general. The situation
is as follows:

(12)

To compute the degree d of S 0, we consider the (smooth) inverse image P ⊂ X̃
of a 2-plane in P4. It is isomorphic to the blow-up of P2 at d points, hence
K2

P = 9 − d. On the other hand, we have by adjunction

KP ≡
lin

(KX̃ + 2(H − E))|P ≡
lin

(−2H + E + 2(H − E))|P = −E|P,

hence K2
P = E2 · (H − E)2 = 1 and d = 8.

Consider now a general hyperplane h ⊂ P4. Its intersection with S 0 is
a smooth connected curve C of degree 8, and its inverse image in X̃ is the
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blow-up of h along C, with exceptional divisor its intersection with D. From
[IP], Lemma 2.2.14, we obtain

D3 · (H − E) = −2g(C) + 2 + Kh ·C = −2g(C) + 2 − 4 deg(C) = −2g(C) − 30,

from which we get g(C) = 6. In particular, c1(S ′0) · h = 2. On the other hand,
using a variant of the formula for smooth surfaces in P4, we obtain

d2 − 2 = 10d + c2
1(S ′0) − c2(S ′0) + 5c1(S ′0) · h,

hence c2
1(S ′0) − c2(S ′0) = −28. We then use a formula from [P], Lemma 2:

D̂4 = (c2(P̂
4
) − c2

1(P̂
4
)) · Ŝ 0 + c1(P̂

4
)|Ŝ 0
· c1(Ŝ 0) − c2(Ŝ 0)

= (−15h2 − 7[P3
s]2) · Ŝ 0 + (−5h2 + 3[P3

s])|Ŝ 0
· c1(Ŝ 0) − c2(Ŝ 0)

= (−15h2 − 7[P3
s]2) · Ŝ 0 + (−5h2 + 3[P3

s])|Ŝ 0
· c1(Ŝ 0) − c2(Ŝ 0)

= −120 + 14 − 10 − 6 − c2(Ŝ 0).

Since D̂4 = D4 = (3H − 4E)4 = −150, we obtain c2(Ŝ 0) = 28, hence
c2(S ′0) = 26 and c2

1(S ′0) = −2. Noether’s formula implies χ(S ′0,OS ′0
) = 2,

hence h1(S ′0,OS ′0
) = 0. The classification of surfaces implies that S ′0 is the

blow-up at two points of a K3 surface S of degree 10. By the simplicity
argument used before, the integral polarized Hodge structures H2(S , Z)0(−1)
and K⊥ are isomorphic: S is the (polarized) K3 surface associated with X via
Proposition 6.6.

What happens if we start from the τ-quadric Σ� instead of Σ? Blowing up
Σ and then the strict transform of Σ� is not the same as doing it in the reverse
order, but the end products have a common open subset X̃0 (whose comple-

ments have codimension 2). The morphisms X̃0 → P̃
4
→ P3 (where the second

morphism is induced by projection from s) are then the same, because they are
induced by the projection of X from the 4-plane 〈Σ,Σ�〉, and the locus where
they are not smooth is the common projection S 1 in P3 of the surfaces S 0 ⊂ P4

and S �
0 ⊂ P4 from their singular points.

This surface S 1 is also the projection of the K3 surface S ⊂ P6 from the
2-plane spanned by p, p′, q, q′. The end result is therefore the same K3 sur-
face S (as it should be, because its period is determined by that of X), but
the pair of points is now q, q′. We let ιS denote the birational involution on
S [2] defined by p + p′ �→ q + q′ (in [O], Proposition 5.20, O’Grady proves
that for S general, the involution ιS is biregular on the complement of a
2-plane).

Conversely, let S = G(2, V5) ∩ Q′ ∩ P6 be a general K3 surface of degree
10 and let p (corresponding to V2 ⊂ V5) and p′ (corresponding to V ′2 ⊂ V5)
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be two general points on S . If V4 := V2 ⊕ V ′2, the intersection S ∩ G(2, V4)
is a set of four points p, p′, q, q′ in the 2-plane P(∧2V4) ∩ P6. Projecting S
from the line pp′ gives a nonnormal degree-8 surface S 0 := S pp′ ⊂ P4, where
q and q′ have been identified. Its normalization S ′0 is the blow-up of S at p

and p′. Now let P̂
4
→ P4 be the blow-up of the singular point of S 0, and

let X̂ → P̂
4

be the blow-up of the strict transform of S 0 in P̂
4
. The strict

transform in X̂ of the exceptional divisor P3
s ⊂ P̂

4
can be blown down by

X̂ → X̃.
The resulting smooth fourfold X̃ is a Fano variety with Picard number 2.

One extremal contraction is π : X̃ → P4. The other extremal contraction gives
the desired X. This construction depends on 23 parameters (19 for the surface
S and 4 for p, p′ ∈ S ).

All this implies (as in the proofs of Propositions 7.1 and 7.2) that the period
map for Xρ-plane is dominant onto D ′10, with fiber birationally isomorphic to
S [2]/ιS .

7.4 Fourfolds containing a cubic scroll (divisor D12)

We consider rational cubic scroll surfaces obtained as smooth hyperplane
sections of the image of a morphism P(V2) × P(V3) → G(2, V5), where
V5 = V2 ⊕ V3; their class in G(2, V5) is σ2

1 · σ2 = 2σ3,1 + σ2,2.

Proposition 7.4 The closure X cubic scroll ⊂ X10 of the family of fourfolds con-
taining a cubic scroll surface is the irreducible component of ℘−1(D12) that
contains the family Xρ-plane.

Proof Let us count parameters. We have 6 + 6 = 12 parameters for the
choice of V2 and V3, hence a priori 12 parameters for cubic scroll surfaces
in the isotropic Grassmannian Gω(2, V5). However, one checks that there is a
1-dimensional family of V3 which all give the same cubic scroll, so there are
actually only 11 parameters. Then, for X to contain a given cubic scroll F rep-
resents h0(F,OF(2, 2)) = 12 conditions. It follows that Xcubic scroll is irreducible
of codimension 12 − 11 = 1 in X10.

Let F ⊂ X be a cubic scroll. Since KF has type (−1,−2), we obtain (F)2
X = 4

from (10). From (11), we obtain d = 12 and we are in D12. The family X cubic scroll

is therefore a component of the hypersurface ℘−1(D12).
In the degenerate situation where V4 = V2+V3 is a hyperplane, the associated

rational cubic scroll is contained in G(2, V4) and is a cubic scroll surface as in
the comment at the end of Section 7.2. It follows that Xρ-plane is contained in
X cubic scroll.
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7.5 Fourfolds containing a quintic del Pezzo surface (divisor D ′′10)

We consider quintic del Pezzo surfaces obtained as the intersection of G(2, V5)
with a P5; their class is σ4

1 = 3σ3,1 + 2σ2,2 in G(2, V5). Fourfolds of type X10

containing such a surface were already studied by Roth ([R], Section 4).

Proposition 7.5 The closure X quintic ⊂X10 of the family of fourfolds contain-
ing a quintic del Pezzo surface is the irreducible component of ℘−1(D ′′10) that
contains Xσ-plane.

A general member of Xquintic is rational.

Proof Let us count parameters. We have dim G(5, P8) = 18 parameters for
the choice of the P5 that defines a del Pezzo surface T . Then, for X to contain
a given quintic del Pezzo surface T represents h0(P5,O(2)) − h0(P5,IT (2)) =
21 − 5 = 16 conditions.

Since h0(P8,IX(2)) = 6 = h0(P5,IT (2)) + 1, there exists a unique (non-
Plücker) quadric Q ⊂ P8 containing X and P5. This quadric has rank ≤ 6,
hence it is a cone with vertex a 2-plane over a (in general) smooth quadric
in P5. Such a quadric contains two 3-dimensional families of 5-planes. The
intersection of such a 5-plane with X is, in general, a quintic del Pezzo surface,
hence X contains (two) 3-dimensional families of quintic del Pezzo surfaces.
It follows that Xquintic has codimension 16 − 18 + 3 = 1 in X10.

Let T ⊂ X be a quintic del Pezzo surface. From (10), we obtain (T )2
X = 5

and from (11), d = 10. Since σ1,1 · T is odd, we are in D ′′10. The family X quintic

is therefore a component of the divisor ℘−1(D ′′10).
The lattice spanned by H4(G(2, V5), Z) and [T ] in H4(X, Z) is the same as for

fourfolds containing a σ-plane P, and [T ] = σ2|X − [P]. We will now explain
this fact geometrically.

If X contains a quintic del Pezzo surface, we saw that X is contained in a
(non-Plücker) quadric Q ⊂ P8 of rank ≤ 6. Conversely, if X is contained in
such a quadric, this quadric contains 5-planes and the intersection of such a
5-plane with X is, in general, a quintic del Pezzo surface.

If follows that Xquintic has the same closure in X10 as the set of X contained
in a non-Plücker rank-6 quadric Q. When the vertex of Q is contained in X, it
is a σ-plane, hence X quintic contains Xσ-plane.

Finally, note after [R], Section 5.(5), that the general fibers of the projection
X � P2 from 〈T 〉 are again degree-5 del Pezzo surfaces (they are residual
surfaces to T in the intersection of X with a 6-plane 〈T, x〉, and this intersection
is contained in 〈T, x〉 ∩ Q, which is the union of two hyperplanes). It follows
from a theorem of Enriques that X is rational ([E], [SB]).
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7.6 Nodal fourfolds (divisor D8)

Let X be a general prime nodal Fano fourfold of index 2 and degree 10. As in
the 3-dimensional case ([DIM2], Lemma 4.1), X is the intersection of a smooth
Gω := G(2, V5)∩P8 with a nodal quadric Q, singular at a point O general in Gω.

One checks that, as in the case of cubic fourfolds (see [V], Section 4; [H1],
Proposition 4.2.1), the limiting Hodge structure is pure, and the period map
extends to the moduli stack X10 of our fourfolds with at most one node as

℘ : X10 → D .

Proposition 7.6 The closure X nodal ⊂X10 of the family of nodal fourfolds is
an irreducible component of ℘−1(D8).

Proof Let X be a prime nodal Fano fourfold with a node at O, obtained as
above. If X̃ → X is the blow-up of O, the (pure) limiting Hodge structure is the
direct sum of 〈δ〉, where δ is the vanishing cycle, with self-intersection 2, and
H4(X̃, Z). In the basis (σ1,1|X , σ2|X −σ1,1|X , δ), the corresponding lattice K has

intersection matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 0
0 0 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠, hence we are in D8.

The point O defines a pencil of Plücker quadrics, singular at O, and the
image Gω

O of Gω by the projection pO : P8 � P7
O is the base-locus of a pencil

of rank-6 quadrics (see [DIM2], Section 3). One checks that Gω
O contains

the 4-plane P4
O := pO(TGω,O) and that Gω

O is singular along a cubic surface

contained in P4
O. If P̃

7
O → P7

O is the blow-up of P4
O, the strict transform

G̃ω
O ⊂ P̃

7
O ⊂ P7

O×P2 of Gω
O is smooth and the projection G̃ω

O → P2 is a P3-bundle
(this can be checked by explicit computations as in [DIM2], Section 9.2).

The image XO := pO(X) is thus the base locus in P7
O of a net of quadrics

P, containing a special line of rank-6 Plücker quadrics. The strict transform
X̃O ⊂ G̃ω

O of XO is smooth. The induced projection X̃O → P2 is a quadric bun-
dle, with discriminant a smooth sextic curve Γ�6 ⊂ P2 (compare with [DIM2],
Proposition 4.2) and associated double cover S → P2 ramified along Γ�6 . It
follows that S is a (smooth) K3 surface with a degree-2 polarization. By [L],
Theorem II.3.1, there is an exact sequence

0 −→ H4(X̃O, Z)0
Φ−→ H2(S , Z)0(−1) −→ Z/2Z −→ 0.

Both desingularizations X̃ → XO and X̃O → XO are small and their fibers all
have dimension ≤ 1; by [FW], Proposition 3.1, the graph of the rational map
X̃ � X̃O induces an isomorphism H4(X̃O, Z)

∼→H4(X̃, Z) of polarized Hodge
structures. The usual simplicity argument implies that this isomorphism sends
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H4(X̃O, Z)0 onto the nonspecial cohomology K⊥, which therefore has index 2
in H2(S , Z)0(−1).

When X is general, so is S among degree-2 K3 surfaces, hence the image
℘(Xnodal) has dimension 19. It follows that Xnodal is an irreducible component
of ℘−1(D8).

7.7 Summary of results

We summarize the results of this section in the table below. Please refer to the
corresponding subsections for exact statements.

X contains a Dimension
of family

Image in period
domain

Fiber of period
map

General X
birational to

σ-plane 22 D ′′10 P1-bundle over
K3

P4

quintic del Pezzo 23 D ′′10 ? P4

τ-quadric 23 D ′10 K3[2]/inv. P4

ρ-plane 21 D12 2 rational
surfaces

cubic

cubic scroll 23 D12 ?
node 23 D8 ? int. of 3

quadrics

8 Construction of special fourfolds

Again following Hassett (particularly [H1], Section 4.3), we construct special
fourfolds with given discriminant. Hassett’s idea was to construct, using the
surjectivity of the (extended) period map for K3 surfaces, nodal cubic fourfolds
whose Picard group also contains a rank-2 lattice with discriminant d and to
smooth them using the fact that the period map remains a submersion on the
nodal locus ([V], p. 597). This method should work in our case, but would
require first making the construction of Section 7.6 of a nodal fourfold X of
type X10 from a given degree-2 K3 surface more explicit, and second proving
that the extended period map remains submersive at any point of the nodal
locus.

We prefer here to use the simpler construction of Section 7.1 to prove the
following:

Theorem 8.1 The image of the period map ℘ : X 0
10 → D meets all divisors

Dd, for d ≡ 0 (mod 4) and d ≥ 12, and all divisors D ′d and D ′′d , for d ≡ 2
(mod 8) and d ≥ 10, except possibly D ′′18.
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Actually, the divisor D ′′18 also meets the image of the period map: in a forth-
coming article, we construct birational transformations that take elements of
℘−1(D ′d) to elements of ℘−1(D ′′d ).

Proof Our starting point is Lemma 4.3.3 of [H1]: let Γ be a rank-2 indefinite
even lattice containing a primitive element h with h2 = 10, and assume there is
no c ∈ Γ with

• either c2 = −2 and c · h = 0;
• or c2 = 0 and c · h = 1;
• or c2 = 0 and c · h = 2.

Then there exists a K3 surface S with Pic(S ) = Γ and h is very ample on S ,
hence embeds it in P6. Assuming moreover that S is not trigonal, e.g., that
there are no classes c ∈ Γ with c2 = 0 and c · h = 3, it has Clifford index 2 and
is therefore obtained as the intersection of a Fano threefold Z := G(2, V5) ∩ P6

with a quadric ([M3], (3.9); [JK], Theorem 10.3 and Proposition 10.5).
In particular, S is an intersection of quadrics, and since a general point p of

S is not on a line contained in S , the projection from p of S is a (degree-9)
smooth surface S̃ p ⊂ P5.

On the other hand, if Π ⊂ P(∧2V∨5 ) is the 2-plane of hyperplanes that cut out
P6 in P(∧2V5), one has ([PV], Corollary 1.6)

Sing(Z) = Π⊥ ∩
⋃

[ω]∈Π
G(2, Ker(ω)).

Since S is smooth, Sing(Z) is finite. If Sing(Z) � ∅, some [ω0] ∈ Π must
have rank 2 and one checks that there exists V2 ⊂ Ker(ω0) such that Z contains
a family of lines through [V2], parameterized by a rational cubic curve. The
intersection of the cone swept out by these lines and the quadric that defines
S in Z is a sextic curve of genus 2 in S . Its class c′ thus satisfies c′2 = 2 and
c′ · h = 6, hence (h − c′)2 = 0 and (h − c′) · h = 4.

So if we assume finally that there are no classes c ∈ Γ with c2 = 0
and c · h = 4, the threefold Z is smooth. It is then known ([PV], Theo-
rem 7.5 and Proposition 7.6) that Aut(Z) is isomorphic to PGL(2, C) and
acts on Z with three (rational) orbits of respective dimensions 3, 2, and 1.
Since S is not rational, it must meet the open orbit. Take p ∈ S in that
orbit.

It is then classical ([PV], Section 7) that Z contains three lines passing
through p, so that the projection Z̃p ⊂ P5 from p of Z has exactly three sin-
gular points, which are also on the smooth surface S̃ p. One then checks on
explicit equations of Z̃p ([I], Section 3.1) that Z̃p is contained in a smooth
quadric Y ⊂ P5. Consider the blow-up Ỹ → Y of S̃ p. The inverse image
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E ⊂ Ỹ of Z̃p is then a small resolution, which is isomorphic to the blow-up of
p in Z.

The morphism E → Z̃p is in particular independent of the choice of S , p,
and Y and it follows from the description of the general case in the proof of
Proposition 7.1 that E is a P1-bundle over P2. More precisely, the linear system
|H| on Ỹ given by cubics containing S̃ p induces on E a morphism E → P2

with P1-fibers (in the notation of that proof, E is the exceptional divisor of the
blow-up X̃ → X of the plane P).

The linear system |H| is base-point-free and injective outside of E (because
Z̃p is a quadratic section of Y which contains S̃ p) and base-point-free on E as
we just saw. Since H4 = 10 and h0(Ỹ , H) = 9, it defines a birational morphism
Ỹ � X ⊂ P8 which maps E onto a 2-plane P ⊂ X. This morphism is one
of the two KỸ -negative extremal contractions of Ỹ (the other one being the
blow-up Ỹ → Y); its fibers all have dimension ≤ 1, hence X is smooth and the
contraction is the blow-up of P ([AM], Theorem 4.1.3).

It is then easy to check that X is a (special) Fano fourfold of type X 0
10

containing P as a σ-plane. As explained in the proof of Proposition
7.1, its nonspecial cohomology is isomorphic to the primitive cohomo-
logy of S .

We will now apply this construction with various lattices Γ to produce exam-
ples of smooth fourfolds X which will all be in Xσ-plane, hence with period point
in D ′′10, but whose lattice H2,2(X) ∩ H4(X, Z) will contain other sublattices of
rank 3 with various discriminants.

Apply first Hassett’s lemma with the rank-2 lattice Γ with matrix

(
10 0
0 −2e

)
in a basis (h, w). When e > 1, the conditions we need on Γ are satisfied and
we obtain a K3 surface S and a smooth fourfold X containing a σ-plane P,
such that H4(X, Z) ∩ H2,2(X) contains a lattice K10 = 〈u, v, w′′10〉 with matrix⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 1
0 1 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and discriminant 10 (here w′′10 = [P]; see proof of Proposition 7.1).

Moreover, H2(S , Z)0(−1) 	 K⊥10 as polarized integral Hodge structures. The
element w ∈ Γ ∩ H2(S , Z)0 corresponds to wX ∈ K⊥10 ∩ H2,2(X), and w2

X =

−w2 = 2e. Therefore, H4(X, Z) ∩ H2,2(X) is the lattice 〈u, v, w′′10, wX〉, with
matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0 0
0 2 1 0
0 1 3 0
0 0 0 2e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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It contains the lattice 〈u, v, wX〉, with matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 0
0 0 2e

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠. Therefore, the period

point of X belongs to D8e, and this proves the theorem when d ≡ 0 (mod 8).

It also contains the lattice 〈u, v, w′′10 + wX〉, with matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0
0 2 1
0 1 2e + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and

discriminant 8e + 10, hence we are also in D ′′8e+10.
Now let e ≥ 0 and apply Hassett’s lemma with the lattice Γ with matrix(

10 5
5 −2e

)
in a basis (h, g). The orthogonal complement of h is spanned by

w := h − 2g. One checks that primitive classes c ∈ Γ such that c2 = 0 satisfy
c · h ≡ 0 (mod 5). All the conditions we need are thus satisfied and we obtain
a K3 surface S and a smooth fourfold X such that H4(X, Z)∩H2,2(X) contains
a lattice K10 of discriminant 10 and H2(S , Z)0(−1) 	 K⊥10 as polarized Hodge
structures. Again, w corresponds to wX ∈ K⊥10 ∩ H2,2(X) with w2

X = −w2 =

8e + 10. Set

K := (Λ2 ⊕ ZwX)sat.

To compute the discriminant of K, we need to know the ideal wX ·Λ. As in the
proof of Proposition 6.2, let w10 be a generator of K10∩Λ; it satisfies w2

10 = 10.
Then K⊥10 ⊕Zw10 is a sublattice of Λ and, taking discriminants, we find that the
index is 5. Let u be an element of Λ whose class generates the quotient. We
have

wX ·Λ = ZwX ·u+wX ·(K⊥10⊕Zw10) = ZwX ·u+wX ·K⊥10 = ZwX ·u+w ·H2(S , Z)0.

One checks directly on the K3 lattice that w · H2(S , Z)0 = 2Z. Since 5u ∈
K⊥10⊕Zw10, we have 5wX ·u ∈ 2Z, hence wX ·u ∈ 2Z. All in all, we have proved
wX · Λ = 2Z, hence the proof of Proposition 6.2 implies that the discriminant
of K is w2

X = 8e + 10. Therefore, the period point of X belongs to D8e+10.
Since the period point of X is in D ′′10, we saw in the proof of Proposition

6.2 that w′′10 := 1
2 (v + w10) is in H4(X, Z). Similarly, either w′X := 1

2 (u + wX) or
w′′X := 1

2 (v+wX) is in K. Taking intersections with w′′10 (and recalling wX ·w10 = 0
and v · w10 = 1), we see that we are in the first case, hence the period point of
X is actually in D ′8e+10.

More precisely, H4(X, Z) ∩ H2,2(X) is the lattice 〈u, v, w′′10, w
′
X〉, with matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 0 1
0 2 1 0
0 1 3 0
1 0 0 2e + 3

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .
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This lattice also contains the lattice 〈u, v, w′′10+w
′
X〉, with matrix

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
2 0 1
0 2 1
1 1 2e + 6

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and discriminant 8e + 20, hence we are also in D8e+20.

Since we know from Section 7.2 that the period points of some smooth
fourfolds X of type X 0

10 lie in D12, this proves the theorem when d ≡ 4
(mod 8).

9 A question

It would be very interesting, as Laza did for cubic fourfolds ([La], Theorem
1.1), to determine the exact image in the period domain D of the period map
for our fourfolds.

Question 9.1 Is the image of the period map equal to D D2 D4 D8?

Answering this question seems far from our present possibilities; to start
with, inspired by the results of [H1], one could ask (see Theorem 8.1) whether
the image of the period map is disjoint from the hypersurfaces D2, D4, and D8.
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