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Abstract

We study the GIT-quotient of the Cartesian power of projective space modulo
the projective orthogonal group. A classical isomorphism of this group with
the inversive group of birational transformations of the projective space of one
dimension less allows us to interpret these spaces as configuration spaces of
complex or real spheres.

To Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

In this paper we study the moduli space of configurations of points in complex
projective space with respect to the group of projective transformations leaving
invariant a nondegenerate quadric. More precisely, if Pn = P(V) denotes the
projective space of lines in a linear complex space V equipped with a non-
degenerate symmetric form 〈v, w〉, we study the GIT-quotient

Om
n := P(V)m//PO(V) = Proj

( ∞⊕
d=0

H0(P(V)m,OP(V)(d)�m)O(V)

� Proj
( ∞⊕

d=0

(S d(V∗)⊗m)O(V)
.
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Configuration spaces of complex and real spheres 157

If m ≥ n+1 = dim(V) then generic point configurations have 0-dimensional
isotropy subgroups in O(V), and since dim O(n+1) = 1

2 n(n+1) we expect that
dim Om

n = mn − 1
2 n(n + 1) when m ≥ n + 1.

Let

R(n; m) =
∞⊕

d=0

(S d(V∗)⊗m)O(V)
.

It is a finitely generated graded algebra with graded part R(n; m)d of degree d
equal to (S d(V∗)⊗m)O(V). After polarization, R(n; m)d becomes isomorphic to
the linear space C[Vm]O(V)

d,...,d of O(V)-invariant polynomials on Vm which are
homogeneous of degree d in each vector variable. The first fundamental the-
orem (FFT) of invariant theory for the orthogonal group [19, Chapter 2,
Section 9] asserts that C[Vm]O(V) is generated by the bracket functions [i j] :
(v1, . . . , vm) �→ 〈vi, v j〉. Using this theorem, our first result is the following:

Theorem 1.1 Let Symm be the space of symmetric matrices of size m with
the torus T m−1 = {(z1, . . . , zm) ∈ (C∗)m : z1 · · · zm = 1} acting by scaling each
ith row and ith column by zi. Let Sm be the toric variety P(Symm)//T m−1. Then
Om

n is isomorphic to a closed subvariety of Sm defined by the rank condition
r ≤ n + 1.

For example, when m ≤ n+1, we obtain that Om
n is a toric variety of dimension

1
2 n(n + 1).

The varieties Om
1 are special since the connected component of the identity

of O(2) is isomorphic to SO(2) � C∗. This implies that Om
1 admits a double

cover isomorphic to a toric variety (P1)m// SO(2). We compare this variety
with the toric variety X(Am−1) associated with the root system of type Am−1

(see [2, 15]). The variety X(Am−1) admits a natural involution defined by the
standard Cremona transformation of Pm−1 and the quotient by this involution is
a generalized Cayley 4-nodal cubic surface Caym−1 (equal to the Cayley cubic
surface if m = 3). We prove that Om

1 is isomorphic to Caym−1 for odd m and
equal to some blow-down of Caym−1 when m is even.

The main geometric motivation for our work is the study of configuration
spaces of complex and real spheres. It has been known since F. Klein and S.
Lie that the inversive group1 defining the geometry of spheres in dimension
n is isomorphic to the projective orthogonal group PO(n + 1) (see, e.g., [8,
Section 25]). Thus any problem about configurations of m spheres in Pn is
equivalent to the same problem about configurations of m points in Pn+1 with

1 Also called the inversion group or the Laguerre group. It is a subgroup of the Cremona group
of Pn generated by the projective affine orthogonal group PAO(n + 1) and the inversion
transformation [x0, . . . , xn] �→ [x2

1 + . . . + x2
n, x0 x1, . . . , x0 xn].
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158 I. Dolgachev and B. Howard

respect to PO(n+1). The last two sections of this paper give some applications
to the geometry of spheres.

2 The first fundamental theorem of invariant theory

Let V be an (n + 1)-dimensional vector quadratic space, i.e., a vector space
together with a nondegenerate symmetric bilinear form whose values we
denote by 〈v, w〉. Let G = O(V) be the orthogonal group of V and PO(V) =
O(V)/{±I}. Consider the diagonal action of G on Vm. The first fundamental
theorem of invariant theory for the orthogonal group (see [14, Chapter 11, 2.1;
19, Chapter 2, Section 9]) asserts that any G-invariant polynomial function on
Vm is a polynomial in the bracket functions

[i j] : Vm → C, (v1, . . . , vm) �→ 〈vi, v j〉, 1 ≤ i, j ≤ m.

The algebra of G-invariant polynomial functionsC[Vm]G has a natural multi-
grading by Nm with homogeneous part C[Vm]G

(d1,...,dm) equal to the linear space
of polynomials which are homogeneous of degree di in each ith vector variable.
This grading corresponds to the natural action of the torus C∗m by scaling the
vectors in each factor. The N-graded ring R(n; m) in which we are interested is
the subring ⊕∞d=0C[Vm]G

(d,...,d). We have

R(n; m) � C[Vm]O(V)×T ,

where T = {(z1, . . . , zm) ∈ C∗m : z1 · · · zm = 1}.
Let Symm denote the linear space of complex symmetric m × m matrices.

If we view Vm as the space of linear functions L(Cm, V), then we can define a
quadratic map

Φ : Vm → Symm, (v1, . . . , vm) �→ (〈vi, v j〉)

by composing

Cm φ
−→ V

b−→ V∗
tφ
−→ (Cm)∗,

where the middle map is defined by the symmetric bilinear form b associated
with q. It is easy to see that, considering the domain and the range ofΦ as affine
spaces over C, the image of φ is the closed subvariety Symm(n+ 1) ⊂ Symm of
symmetric matrices of rank ≤ n + 1. Passing to the rings of regular functions,
we get a homomorphism of rings

Φ : C[Symm] :→ C[Vm]. (2.1)
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Configuration spaces of complex and real spheres 159

The map Φ is obviously T -equivariant if we make (z1, . . . , zm) act by multiply-
ing the entry xi j of a symmetric matrix by ziz j. By passing to invariants, we
obtain a homomorphism of graded rings

ΦT : C[Symm]T → C[Vm]T . (2.2)

The FTT can be restated by saying that the image of this homomorphism is
equal to the ring R(n; m).

We identify C[Symm] with the polynomial ring in entries Xi j of a gen-
eral symmetric matrix X = (Xi j) of size m × m. Note that the action of
(z1, . . . , zm) ∈ (C∗)m on a symmetric matrix (Xi j) is by multiplying each entry
Xi j by ziz j. The graded part C[Symm]d of C[Symm] consists of functions which
under this action are multiplied by (z1 · · · zm)d. They are obviously contained in
C[Symm]T and define the grading of the ring C[Symm]T . The homomorphism
Φ∗ is a homomorphism of graded rings from C[Symm]T to R(n; m).

Let

det X =
∑
σ∈Sm

ε(σ)Xσ(1)1 · · · Xσ(N)N

be the determinant of X. The monomials dσ = Xσ(1)1 · · · Xσ(N)N will be called
the determinantal terms. Note that the number k(m) of different determinantal
terms is less than m!. It was known since the 19th century [16, p. 46] that the
generating function for the numbers k(m) is equal to

1 +
∞∑

m=1

1
m!

k(m)tm =
e

1
2 t+ 1

4 t2

√
1 − t

.

For example, k(3) = 5, k(4) = 17, k(5) = 73, k(6) = 338.
Each permutation σ decomposes into disjoint oriented cycles. Consider the

directed graph on m vertices which consists of the oriented cycles in σ; i.e., we
take a directed edge i→ σ(i) for each vertex i. Suppose there is a cycle τ in σ

of length ≥ 3. Write σ = τυ = υτ, and define σ′ = τ−1υ. Since our matrix is
symmetric, the determinantal term dσ′ corresponding to σ′ has the same value
as dσ, and furthermore σ′ has the same sign as σ (so there is no canceling),
and so we may drop the orientation on each cycle. We may therefore envision
the determinantal terms as 2-regular undirected graphs on m vertices (where 2-
cycles and loops are admitted). Thus for each 2-regular graph having k cycles
of length ≥ 3, there correspond 2k determinantal terms.

Proposition 2.1 The ring ⊕∞d=0C[Symm]T
2d is generated by the determinantal

terms.

Proof A monomial Xi1 j1 · · · Xik jk belongs to C[Symm]T
d if and only if

zi1 · · · zik z j1 · · · z jk = (z1 · · · zm)d
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160 I. Dolgachev and B. Howard

for any z1, . . . , zm ∈ C∗. This happens if and only if each i ∈ {1, . . . , m} occurs
exactly d times among i1, . . . , ik, j1, . . . , jk. Consider the graph with set of
vertices equal to {1, . . . , m} and an edge from i to j if Xi j enters into the mono-
mial. The above property is equivalent to the graph being a regular graph of
valency d. The multiplication of monomials corresponds to the operation of
adding graphs (in the sense that we add the sets of the edges). It remains to use
the fact that any regular graph of valency 2d is equal to the union of regular
graphs of valency 2 (this is sometimes called a “2-factorization” or Petersen’s
factorization theorem) [13, Section 9].

Corollary 2.2 A set ([v1], . . . , [vm]) is semi-stable for the action of O(V) on
(Pn)m if and only if there exists σ ∈ Sm such that 〈vσ(1), v1〉 · · · 〈vσ(m), vm〉 is not
equal to zero.

We can make it more explicit.

Proposition 2.3 A point set ([v1], . . . , [vm]) is unstable if and only if there
exists I ⊆ J ⊆ {1, . . . , m} such that |I| + |J| = m + 1 and 〈vi, v j〉 = 0 for all i ∈ I
and j ∈ J.

Proof Since (C[Symm](2))T is generated by determinantal terms, we obtain
that a matrix A = (ai j) has all determinantal terms equal to zero if and only
if it represents an unstable point in P(Symm) with respect to the torus action.
Now the assertion becomes a simple consequence of the Hilbert–Mumford
numerical criterion of stability.

It is obvious that if such subsets I and J exist then all determinantal terms
vanish. So we are left with proving the existence of the subsets I and J if we
have an unstable matrix.

Let r : t �→ (tr1 , . . . , trm ) be a nontrivial 1-parameter subgroup of the torus T .
Permuting the points, we may assume that r1 ≤ r2 ≤ . . . ≤ rm. We also have
r1 + . . . + rm = 0. We claim that there exist i, j such that i + j = m + 1 and
ri + r j ≤ 0. If not, then each of r1 + rm, r2 + rm−1, . . . , r! m+1

2 "
+ r� m+1

2 �
is strictly

positive, which contradicts
∑

i ri = 0.
Since our symmetric matrix A = (ai j) is unstable, by the Hilbert–Mumford

criterion there must exist r such that min{ri + r j : ai j � 0} > 0. Permute the
points if necessary so that r1 ≤ r2 ≤ · · · ≤ rn. Let i0, j0 be such that ri0 + r j0 ≤ 0
and i0 + j0 = m + 1. We may assume that i0 ≤ j0 since the above condition
is symmetric in i0, j0. Now, since the entries of r are increasing, we have that
ri + r j ≤ 0 for all i ≤ i0 and j ≤ j0. Hence ai j = 0 for all i ≤ i0 and j ≤ j0. Now
let I = {1, . . . , i0} and J = {1, . . . , j0}.
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Configuration spaces of complex and real spheres 161

Similarly, we can prove the following:

Proposition 2.4 A point set ([v1], . . . , [vm]) is semi-stable but not stable if and
only if

m = max{|I| + |J| : I ⊆ J ⊆ {1, . . . , m} and 〈vi, v j〉 = 0 for all i ∈ I, j ∈ J}.

Proof Suppose that A = (ai j = 〈vi, v j〉). Let

m′(A) = max{|I| + |J| : I ⊆ J ⊆ {1, . . . , m} and 〈vi, v j〉 = 0 for all i ∈ I, j ∈ J}.

Suppose that A is semi-stable but not stable. Since A is not unstable, we
know by the prior proposition that m′(A) ≤ m. So we are left with showing that
m′(A) = m.

Since A is not stable, there is a 1-parameter subgroup r : t �→ (tr1 , . . . , trm )
such that ri + r j ≥ 0 whenever ai j � 0. We shall reorder the points so that r1 ≤
r2 ≤ · · · ≤ rn. Recall also that

∑
i ri = 0. Since some ri � 0, we know that r1 <

0 < rn. We claim there is some i, j such that i+ j = m and ri+r j < 0. Otherwise,
each of r1 + rm−1, r2 + rm−3,. . . , r! m

2 " + r� m
2 � would be non-negative. This implies

that r1 + · · · + rm−1 ≥ 0. But since rn > 0, we have that r1 + · · · rm > 0, a
contradiction. Hence, the claim is true. Now, take i0 ≤ j0 such that i0 + j0 = m
and ri0 + r j0 < 0. Now, we must have that ai j = 0 for all i ≤ i0 and j ≤ j0. Let
I = {1, . . . , i0} and J = {1, . . . , j0}. Then I ⊆ J ⊆ {1, . . . , m}, |I| + |J| = m, and
ai j = 0 for all i ∈ I, j ∈ J. Thus m′(A) = m.

Conversely, suppose that m′(A) = m. Then A is not unstable (if A were
unstable, Proposition 2.3 implies that m′(A) ≥ m + 1). Let I ⊆ J ⊆ {1, . . . , m},
such that |I| + |J| = m, and ai j = 0 for all i ∈ I, j ∈ J. Reorder points if
necessary so that I = {1, . . . , i0} and J = {1, . . . , j0}. Let r : t �→ (tr1 , . . . , trm )
be defined as follows. Let ri = −1 for i ≤ i0, let ri = 1 for i > m − i0, and let
ri = 0 otherwise. The sum

∑
i ri is zero and not all ri are zero, so this defines a

1-parameter subgroup of the torus T . Also, if ri + r j < 0 and i ≤ j, then i ≤ i0
and j ≤ j0, which implies that ai j = 0. Thus ri + r j ≥ 0 whenever ai j � 0.
Hence A is not stable.

The second fundamental theorem (SFT) of invariant theory for the group
O(V) describes the kernel of the homomorphism (2.1) (see [14, p. 407; 19,
Chapter 2, Section 17]).

Consider the ideal I(n, m) in C[Vn]O(V) generated by the Gram functions

γI,J : (v1, . . . , vm) �→ det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈vi1 , v j1〉 . . . 〈vin+2 , v jn+2〉

...
...

...

〈vin+2 , v j1〉 . . . 〈vin+2 , v jn+2〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
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162 I. Dolgachev and B. Howard

where I = (1 < i1 · · · < in+2), J = (1 < j1 · · · < jn+2) are subsets of [1, m]. We
set γI = γI,I .

The pre-image of this ideal in C[Sym2(V∗)] � C[Symm] is the determinant
ideal Dm(n+1) of matrices of rank ≤ n+1. The SFT asserts that it is the kernel
of the homomorphism (2.1). Then

Ker(ΦT ) = Dm(n + 1) ∩ C[Symm]T

and it is finitely generated by polynomials of the form mΔI,J , where m is a
monomial in Xi j of degree (k, k, . . . , k) − deg(ΔI,J) for some k ≥ 2.

Our naive hope was that Ker(ΦT ) is generated only by polynomials of the
form mΔI,J , for m having degree (2, 2, . . . , 2)− deg(ΔI,J). This is not true even
if we restrict it to the open subset of semi-stable points in Symm with respect
to the torus action. The symmetric matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 1 1
0 0 1 1 1
1 1 1 0 0
1 1 0 1 0
1 1 0 0 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
has rank 4, but for any (i, j) the product ai jAi j (where Ai j is the complementary
minor) is equal to zero. Thus our naive relations make it appear that A has rank
3. Also, a31a42a13a24a55 � 0, so the matrix represents a semi-stable point. It
can be shown that no counterexample exists with m < 5.

The following T -invariant polynomial vanishes on rank 3 matrices and is
nonzero when evaluated on the matrix A above:

a2
13a2

14a2
25Δ{2,3,4,5},{2,3,4,5}.

Hence we need to consider higher-degree relations. We can at least give
a bound on the degree of such relations, again appealing to Petersen’s
factorization theorem.

Proposition 2.5 The ideal Ker(ΦT ) is generated by polynomials of the form
mΔI,J, for m having degree at most (2(n+2), 2(n+2), . . . , 2(n+2))−deg(ΔI,J).

Proof It is clear that Ker(ΦT ) is generated by relations of the form mΔI,J

where m is a monomial of degree (2k, 2k, . . . , 2k) − deg(ΔI,J), for arbitrary k.
Suppose that k > n + 2. The monomial m corresponds to the multigraph Γ′

with edges i j for each Xi j dividing m, counting multiplicity. Choose any term
from ΔI,J; similarly this term corresponds to a multigraph Γ′′. The graph Γ′′

has exactly n + 2 edges.
The union Γ = Γ′ * Γ′′ is a 2k-regular graph. By Petersen’s factorization

theorem, we know that Γ completely factors into k disjoint 2-factors. Since
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Configuration spaces of complex and real spheres 163

k > n + 2, at least one of these 2-factors is disjoint from Γ′′. Hence, this
2-factor must be a factor of Γ′. This means that the monomial m is divisible by
the T -invariant monomial m0 corresponding to the 2-factor of Γ′:

m = m0 ·m′.

Hence, the relation mΔI,J is equal to m0 · (m′ΔI,J), where m′ΔI,J ∈ Ker(ΦT )
has smaller degree.

Conjecture 2.6 A recent conjecture of Andrew Snowden (informal commu-
nication) implies that there is a bound d0(n) such that R(n; m) is generated in
degree ≤ d0(n) for all m. Further, after choosing a minimal set of generators
(each of degree ≤ d0(n)), his conjecture also implies that there is a bound d1(n)
such that the ideal of relations is generated in degree ≤ d1(n) for all m. His
conjecture applies to all GIT quotients of the form Xm//G, where G is linearly
reductive and X is a G-polarized projective variety.

One of our goals was to prove (or perhaps disprove) his conjecture for this
case of P(V)m//PO(V). We were not able to do so. However, we have shown
that the second Veronese subring is generated in lowest degree, providing small
evidence of the first part of his conjecture. Furthermore, Proposition 2.5 is a
small step toward proving an m-independent degree bound on the generating
set of the ideal (again for the second Veronese subring only).

3 A toric variety

The variety Sm = Symm //T = Proj C[Symm)]T is a toric variety of dimension
m(m−1)/2. We identify the character lattice of C∗m with Zm. We have Symm =

⊕CXi j, where Xi j is an eigenvector with the character ei + e j. The lattice M of
characters of the torus (C∗)m(m−1)/2 acting on Sm is equal to the kernel of the
homomorphism Zm(m+1)/2 → Zm, ei j �→ ei + e j. It is defined by the matrix A
with (i j)-spot in a kth row equal:

ak,i j =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 if k � i, j;

1 if k = i � j, or k = j � i;

2 if k = i = j.

Let

S = {x ∈ Zm(m+1)/2
≥0 : Ax = 2d(e1 + . . . + em), for some d ≥ 0}

be the graded semigroup. Then

C[Symm]T = C[S ].

In other words, the toric variety Sm is equal to the toric space PΔ, where Δm

is the convex polytope in {x ∈ Rm(m+1)/2 : Ax = (2, . . . , 2)} spanned by the
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164 I. Dolgachev and B. Howard

vectors vσ, σ ∈ Sm, such that ai j is equal to the number of edges from i to j in
the regular graph corresponding to the determinantal term dσ. For example, if
m = 3, σ = (12) defines the vσ with a12 = 2, a33 = 1 and ai j = 0 otherwise.
Thus the number of lattice points in the polytope Δ is equal to the number k(m)
of determinantal terms in a general symmetric matrix.

Proposition 3.1

#(dΔm) ∩ M = #{regular graphs with valency 2d}.

Proof This follows easily from Proposition 2.1.

4 Examples

Example 4.1 Let n = 2 and m = 3. We are interested in the moduli space of
3-points in P2 modulo the group of projective transformations leaving invariant
a nonsingular conic. The group PO(3) � PSL2 is a 3-dimensional group. So,
we expect a 3-dimensional variety of configurations.

We have five determinantal terms given by the following graphs:

Let t0, t1, t2, t3, t4 be generators of the ring R(2; 3) corresponding, respec-
tively, to the triangle, to the three graphs of the second type, and the one graph
of the third type. We have the cubic relation

t1t2t3 − t2
0t4 = 0.

Thus our variety is a cubic threefold in P4. Its singular locus consists of three
lines

t0 = t1 = t2 = 0, t0 = t1 = t3 = 0, t0 = t2 = t3 = 0.

Let Hi be the hyperplane section of the cubic by the coordinate hyperplane
ti = 0. Then

• H0: point sets with two points conjugate with respect to the fundamental
conic. H0 is the union of three planes Λi : t0 = ti = 0, i = 1, 2, 3.

• H4: one of the points lies on the fundamental conic. It is the union of three
planes Πi : t4 = ti = 0, i = 1, 2, 3.

• Hi is the union of two planes Λi and Πi, i = 1, 2, 3.
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Configuration spaces of complex and real spheres 165

• Λi∩Λ j is a singular line on S3, the locus of point sets where one point is the
intersection point of the polar lines of two other points.

• Πi ∩ Π j: two points are on the fundamental conic.
• Πi ∩ Λi: two points are conjugate, the third point is on the conic.
• Πi∩Λ j, i � j: one point is on the conic, and another point lies on the tangent

to the conic at this point.
• Λ1 ∩ Λ2 ∩ Λ3 is the point representing the orbit of ordered self-conjugate

triangles.
• Π1 ∩ Π2 ∩ Π3 is the point representing the orbit of ordered sets of points on

the fundamental conic.

The singular point Λ1 ∩ Λ2 ∩ Λ3 = [0, 0, 0, 0, 1] represents the orbit of
ordered self-polar triangles. Recall that unordered self-conjugate triangles are
parameterized by the homogeneous space PO(3)/S4. It admits a smooth com-
pactification isomorphic to the Fano threefold of degree 5 and index 2 [11,
Theorem (2.1) and Lemma (3.3)] (see also [1, 2.1.3]).

Example 4.2 Let us look at the variety O3
1. It is isomorphic to the subvariety

of O3
2 representing collinear triples of points. The equation of the determinant

of the Gram matrix of three points is

2t0 − t1 − t2 − t3 + t4 = 0. (4.1)

It is a hyperplane section of S3 isomorphic to a cubic surface S in P3 with
equation

t1t2t3 + 2t3
0 − t2

0t1 − t2
0t2 − t2

0t3 = 0. (4.2)

The surface is projectively isomorphic to the 4-nodal Cayley cubic surface
given by the equation

x0x1x2 + x0x2x3 + x0x1x3 + x1x2x3 = 0.

Its singular points are [t0, t1, t2, t3] = [1, 1, 1, 1], [0, 0, 0, 1], [0, 0, 1, 0], [0, 1, 0, 0].
Since the surface is irreducible, and all collinear sets of points satisfy (4.1),
we obtain that the surface represents the locus of collinear point sets. It is
also isomorphic to the variety O3

1 of 3-points on P1. The additional singu-
lar point [1, 1, 1, 1] not inherited from the singular locus of O3

2 is the orbit
of three collinear points [v1], [v2], [v3] such that the determinantal terms of the
Gram matrix G(v1, v2, v3) are all equal. This is equivalent to all principal minors
being equal to zero and the squares of the discriminant terms d(123) and d(321)

being equal. This gives two possible points [t0, t1, t2, t3] = [±1, 1, 1, 1]. We
check that the point [−1, 1, 1, 1] does not satisfy (4.2). Thus the point [1, 1, 1, 1]
is determined by the condition that the principal minors of the Gram matrix
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166 I. Dolgachev and B. Howard

G(v1, v2, v3) are equal to zero. This implies that [v1] = [v2] = [v3]. It follows
from the stability criterion that this point is not one of the two isotropic points.

It is immediate that R(1; 2)(2) is freely generated by two determinantal terms
and hence O2

1 � P
1. The three projections O3

1 to O2
1 are a regular map. If

we realize S3 as the image of the anticanonical system of the blow-up of six
vertices of a complete quadrilateral in the plane, then the three maps are defined
by the linear system of conics through three subsets of four vertices, no three
lying on one side of the quadrilateral. We can show that these are the only
regular maps from S3 to P1.

Finally, observe that we can use the conic to identify the plane with its dual
plane. In this interpretation a triple of points becomes a triple of lines, the
polar lines of the points with respect to the conic. Intersecting each line with
the conic, we obtain three ordered pairs of points on a conic.

Note that a set of six distinct points on a nonsingular conic can be viewed
as the set of Weierstrass points of a hyperelliptic curve C of genus 2. An order
on this set defines a symplectic basis of the F2-symplectic space Jac(C)[2] of
2-torsion points of its Jacobian variety Jac(C). The GIT-quotient of the sub-
variety of (P2)6 of ordered points on a conic by the group SL3 is isomorphic
to the Igusa quartic in P4 (see [3, Chapter 1, Example 3]). A partition of the
set of Weierstrass points in three pairs defines a maximal isotropic subspace in
Jac(C)[2]. An order of the three pairs chooses a basis in this space. The moduli
space of principally polarized abelian surfaces A equipped with a symplectic
basis in A[2] is isomorphic to the quotient of the Siegel space Z2 = {X ∈
Sym4 : Im(X) > 0} by the group Γ(2) = {M ∈ Sp(4,Z) : A ≡ I4 mod 2}. The
moduli space of principally polarized abelian surfaces, together with a choice
of a basis in a maximal isotropic subspace of 2-torsion points, is isomorphic to

the quotient of Z2 by the group Γ1(2) = {M =
(
A B
C D

)
: A− I2 ≡ C ≡ 0 mod 2}.

Thus, we obtain that our variety O3
2 is naturally birationally isomorphic to the

quotient Z2/Γ1(2) and this variety is isomorphic to the quotient of Z2/Γ(2) by
the group G = S2×S2×S2. The Satake compactification of Z2/Γ(2) is isomor-
phic to the Igusa quartic. In [12], Mukai shows that the Satake compactification
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of Z2/Γ1(2) is isomorphic to the double cover of P3 branched along the union
of 4-coordinate hyperplanes. It is easy to see that it is birationally isomorphic
to the cubic hypersurface defining O3

2. A remarkable result of Mukai is that the
Satake compactifications of Z2/Γ(2) and Z2/Γ1(2) are isomorphic.

Remark 4.3 Assume m = n+ 1. Fix a volume form on V and use it to identify
the linear spaces V∗ and

∧n V . This identification is equivariant with respect
to the action of O(V) on V and O(V∗), where the orthogonal group of V∗ is
with respect to the dual quadratic form on V∗. Passing to the configuration
spaces, we obtain a natural birational involution F : On+1

n � On+1
n . If G is the

Gram matrix of vectors v1, . . . , vn+1, then the Gram matrix G∗ of the vectors
wi = v1∧· · ·∧vi−1∧vi+1∧· · ·∧vn+1 ∈ V∗ is equal to the adjugate matrix of G (see
[1, Lemma 10.3.2]). In the case n = 2, the birational involution corresponds to
the involution defined by conjugate triangles (see [1, 2.1.4]). Using the modular
interpretation of O3

2 from the previous example, the involution F corresponds
to the Fricke (or Richelot) involution of Z2/Γ1(2) (see [12, Theorem 2]).

Example 4.4 Now let us consider the variety O4
1 of 4-points in P1 modulo

PO(2) � C∗ × Z/2Z. It is another threefold. First we get the 5-dimensional
toric variety of symmetric matrices of size 4. The coordinate ring is generated
by 17 (3+4+6+3+1) determinantal terms:

Let x1, x2, x3, y1, y2, y3, y4, z1, . . . , z6, u1, u2, u3, v be the variables. We have
additional equations expressing the condition that the rank of matrices is less
than or equal to 2. We can show that the equations are all linear:

ai j det Ai j = 0.

Their number is equal to 10 but there are three linear dependencies found by
expanding the determinant expression along columns.

We may also consider the spaces SOm
n = P(V)m//O+(V), where O+(V) =

O(V) ∩ SL(V) is the special orthogonal group. Note that PO(V) � PO+(V) if
dim V is odd. Thus we will be interested only in the case when dim V is even.
In this case PO+(V) is a subgroup of index 2 in PO(V), so the variety SOm

n is a
double cover of Om

n . We have

SOm
n = Proj R+(n; m),
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168 I. Dolgachev and B. Howard

where R+(n; m) = ⊕∞d=0(S d(V)∗⊗m)O+(V). There are more invariants now. The
additional invariants in C[Vm]O+(V) are the Plücker brackets

pi1,...,in+1 : (v1, . . . , vm) �→ vi1 ∧ . . . ∧ vin+1 ,

where we have fixed a volume form on V . There are additional basic relations
(see [19, Chapter 2, Section 17])

pi1,...,in+1 p j1,..., jn+1 − det([iα, iβ])1≤α,β≤n+1 = 0, (4.3)
n+1∑
j=1

(−1) j
∑

pi1,...,î j,...,in+1
[i j, in+2] = 0. (4.4)

The graded part R+(n; m)d is spanned by the monomials pI1 · · · pIk [i1 j1] · · ·
[is, js], where each index j ∈ [1, m] appears exactly d times. Using the first
relation in (4.3), we may assume that at most one Plücker coordinate pI

appears. Also, we see that the product of any two elements in R+(n; m)d belongs
to R(N; m)2d.

5 Points in P1 and generalized Cayley cubics

The group SO(2) is isomorphic to the 1-dimensional complex torus C∗. We
choose projective coordinates in P1 to identify a quadric in P1 with the set
Q = {0,∞} so that SO(2) acts by λ : [t0, t1] �→ [λt0, λ−1t1]. The points on Q
are the fixed points of SO(2). The group O(2) is generated by SO(2) and the
transformation [t0, t1] �→ [t1, t0].

Recall that there is a Chow quotient (P1)m//C∗ defined by the quotient fan
of the toric variety (P1)m (see [6]).

Lemma 5.1 Consider (P1)m as a toric variety, the Cartesian product of the
toric varieties P1. Then the Chow quotient (P1)m// SO(2) is isomorphic to the
toric variety X(Am−1) associated with the root system of type Am−1 defined by
the fan in the dual lattice of the root lattice of type Am−1 formed by the Weyl
chambers.

Proof The toric variety (P1)m is defined by the complete fan Σ in the lattice
Zm with 1-skeleton formed by the rays R≥0ei and R≤0ei, i = 1, . . . , m. The
action of SO(2) on the torus (C∗)m ⊂ (P1)m is defined by the surjection of the
lattices Zm → Z given by the map ei → e1, i = 1, . . . , m. Thus the lattice M of
characters of the torus (C∗)m−1 acting on (C∗)m/C∗ can be identified with the
sublattice of Zm spanned by the vectors α1 = e1 − e2, . . . , αm−1 = em−1 − em.
This is the root lattice of type Am−1. The dual lattice N is the lattice Zm/Ze,
where e = e1 + . . . + em. The quotient fan is defined as follows. For any coset
y ∈ NR = Rm/Re, one considers the set
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N(y) = {σ ∈ Σ : y + Re ∩ σ � ∅}.

A coset y + Re ∈ NR is called admissible if N(φ) � ∅. Two admissible cosets
y + Re and y′ + Re are called equivalent if N(y) = N(y′). The closure of each
equivalence class of admissible cosets is a rational polyhedral convex cone in
NR and the set of such cones defines a fan Σ′ in NR which is the quotient fan.

In our case, Σ consists of open faces σI of the 2m m-dimensional cones

σI,J = {(x1, . . . , xm) ∈ Rm : (−1)δI xi ≥ 0, (−1)δJ xi ≤ 0},

where I, J are subsets of [1, m] such that I ∪ J = [1, m] and δK is a delta-
function of a subset K of [1, m]. The cones of maximal dimension correspond
to pairs of complementary subsets I, J. The k-dimensional cones correspond
to the pairs I, J with #I ∩ J = m − k.

Let y = (y1, . . . , ym) ∈ Rm with yi � y j, i � j and let s ∈ Sm be a unique
permutation such that ys(1) > ys(2) > . . . > yσ(m). Then y + Re intersects σI,J if
and only if s(I) = {1, . . . , k} for some k ≤ m or ∅ and J = [1, m] \ I. Since Sm

has only one orbit on the set of pairs of complementary subsets of [1, m], we
see that the interiors of maximal cones in the quotient fan are obtained from
the image of the subset

{y ∈ Rm : y · (ei − ei+1) ≥ 0, i = 1, . . . , m − 1}

in NR. This is exactly one of the Weyl chambers in NR. All other cones in
the quotient fan are translates of the faces of the closure of this chamber. This
proves the assertion.

It is known that the toric variety X(Am−1) is isomorphic to the blow-up of
Pm−1 of the faces of the coordinate simplex (see, e.g., [2, Lemma 5.1]). Let

τm−1 : Pm−1 � Pm−1, [t0, . . . , tm−1] �→ [1/t0, . . . , 1/tm−1]

be the standard Cremona transformation of Pm−1. The variety X(Am−1) is
isomorphic to a minimal resolution of indeterminacy points of the standard
involution (see [1, Example 7.2.5]). Equivalently, X(Am−1) is isomorphic to the
closure of the graph of τm−1 in Pm−1 × Pm−1. It is given by the 2 × 2-minors of
the matrix (

F0(x) F1(x) . . . Fm−1(x)
y0 y1 . . . ym−1

)
,

where Fi(x) = (x0 · · · xm−1)/xi. It follows from this formula that the standard
involution τm−1 of X(Am−1) is induced by the switching involution ι of the fac-
tors of Pm−1 × Pm−1. The image of composition of the embedding X(Am−1) in
Pm−1 × Pm−1 and the Segre embedding Pm−1 × Pm−1 ↪→ Pm2−1 is equal to the
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intersection of the Segre variety with the linear subspace of dimension m − 1
defined by

t00 = t11 = . . . = tm−1m−1, (5.1)

where we use the coordinates ti j = xiy j in Pm2−1. So X(Am−1) is isomorphic to
a closed smooth subvariety of Pm(m−1) of degree

(
2(m−1)

m−1

)
.

Consider the embedding of (Pm−1 × Pm−1)/〈ι〉 in P
1
2 (m+2)(m−1) given by the

linear system of symmetric divisors of type (1, 1). Its image is equal to the
secant variety of the Veronese variety v2(Pm−1) isomorphic to the symmetric

square Sym2 Pm−1 of Pm−1. The image of X(Am−1)/〈τm−1〉 in P
1
2 (m+2)(m−1) is

equal to the intersection of the secant variety with a linear subspace L of codi-
mension m − 1 given by (5.1). It is known that the singular locus of the secant
variety is equal to the Veronese variety. The singular locus of the embedded
X(Am−1)/〈τm−1〉 is equal to the intersection of L with the Veronese subvari-
ety v2(Pm−1) and consists of 2m−1 points. We have dim L = 1

2 m(m − 1) and

deg Sym2 Pm−1) = 1
2

(
2(m−1)

m−1

)
. So X(Am−1)/〈τm−1〉 embeds into P

1
2 m(m−1) as a sub-

variety of degree 1
2

(
2(m−1)

m−1

)
with 2m−1 singular points locally isomorphic to the

singular point of the cone over the Veronese variety v2(Pm−2). We call it the
generalized Cayley cubic and denote it by Caym−1.

It follows from above that Caym−1 is isomorphic to the subvariety of the
projective space of symmetric m×m matrices with the conditions that the rank
is equal to 2 and the diagonal elements are equal.

In the case when m = 3, the variety X(A2) is a del Pezzo surface of degree
6, the blow-up of three non-collinear points in P2, and Cay2 is isomorphic to
the Cayley 4-nodal cubic surface in P3. The variety Cay3 is a 3-dimensional
subvariety of P6 of degree 10 with eight singular points locally isomorphic to
the cone over the Veronese surface.

It is known that the Chow quotient birationally dominates all the GIT-
quotients [7, Theorem (0.4.3)]. So we have a Sm-equivariant birational
morphism

Φm : X(Am−1)→ SOm
1

which, after dividing by the involution τm−1, defines a Sm-equivariant bira-
tional morphism

Φc
m : Caym−1 → Om

1 .

For example, take m = 3. The variety Cay2 is the Cayley 4-nodal cubic, the
morphism Φm is an isomorphism. Take m = 4. We know from Proposition
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2.4 that the variety SO4
1 has six singular points corresponding to strictly semi-

stable points defined by vanishing of two complementary principal matrices of
the Gram matrix. They are represented by the point sets of the form (a, a, b, b),
where a, b ∈ {0,∞}. The morphism Φ4 resolves these points with the excep-
tional divisors equal to the exceptional divisors of X(A3) → P3 over the edges
of the coordinate tetrahedron. The morphism Φc

4 resolves three singular points
of O1

4 and leaves unresolved the eight singular points coming from the fixed
points of τ3. Altogether, the variety O1

4 has 11 singular points: eight points
locally isomorphic to the cones of the Veronese surface and three conical dou-
ble points. The latter three singular points correspond to strictly semi-stable
orbits.

It is known that X(Am−1) is isomorphic to the closure of a general maximal
torus orbit in PGLm /B, where B is a Borel subgroup [9, Theorem 1]. Let P be
a parabolic subgroup containing B defined by a subset S of the set of simple
roots, and WS be the subgroup of the Weil groupSm generated by simple roots
in S . Let φS : PGLm /B] → PGLm /P be the natural projection. The image
of X(Am−1) in PGLm /P is a toric variety X(Am−1)S defined by the fan whose
maximal cones are Sm-translates of the cone WS σ, where σ is a fundamental
chamber ([4, Theorem 1]). The morphism φS : X(Am−1) → X(Am−1)S is a
birational morphism which is easy to describe.

We believe, but could not find a proof, that for odd m, the morphism Φm

and Φc
m are isomorphisms. If m is even, then the morphism Φm is equal to the

morphism φS , where S is the complement of the central vertex of the Dynkin
diagram of type Am−1.

6 Rational functions

First we shall prove the rationality of our moduli spaces.

Theorem 6.1 The varieties Om
n are rational varieties.

Proof The assertion is trivial when m = n+ 1 because in this case the variety
is isomorphic to the toric variety Sm. If m < n + 1, a general point set spans
P(W), where W is a subspace of P(V) of dimension m. Since O(V) acts transi-
tively on a dense orbit of the Grassmannian G(m, V) (the subspaces containing
an orthogonal basis), we may transform a general set to a subset of a fixed
P(W). This shows that the varieties Om

n and Om
m−1 are birationally isomorphic.

If m > n+1, we use the projection map Om
n � Om−1

n onto the first m−1 factors.
It is a rational map with general fiber isomorphic to Pn. Its geometric generic
fiber is isomorphic to the projective space over the algebraic closure of the field
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K of rational functions of Om−1
n . In other words, the generic fiber is a Severi–

Brauer variety over K (see [17, Chapter X, Section 6]). The rational map has
a rational section (x1, . . . , xm−1) �→ (x1, . . . , xm−1, xm−1). Thus the generic fiber
is a Severi–Brauer variety with a rational point, hence isomorphic to the pro-
jective space over K (see [17, Exercise 1]). Thus the field of rational functions
on Om

n is a purely transcendental extension of K, and by induction on m, we
obtain that Om

n is rational.

We know that the ring R(n; m)(2) is generated by determinantal terms dσ of
the Gram matrix of m points. If we take σ to be a transposition (ab), then the
ratio dσ/d(12...m) is equal to

Rab = [ab]2/[aa][bb]. (6.1)

More generally, for any cyclic permutation σ = (a1 . . . ak) we can do the same
to obtain the rational invariant function

Ra1...ak =
[a1a2] · · · [ak−1ak][ak−1ak][aka1]

[a1a1] · · · [akak]
. (6.2)

Writing any permutation as a product of cycles, we see that the field of rational
functions on Om

n is generated by functions Ra1...ak . Note that

R2
a1...ak

= Ra1a2 · · ·Raka1 .

We do not know whether a transcendental basis of the field can be chosen
among the functions Ra1...ak or their ratios.

7 Complex spheres

An (n − 1)-dimensional sphere is given by an equation in Rn of the form

n∑
i=1

(xi − ai)
2 = R2.

After homogenizing, we get the equation in Pn(R):

Q :
n∑

i=1

(xi − aix0)2 − R2x2
0 = 0. (7.1)

The hyperplane section x0 = 0 is a sphere in Pn−1(R) with equation

Q0 :
n∑

i=1

x2
i = 0. (7.2)
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The quadric has no real points, and for this reason it is called the imaginary
sphere. Now we abandon the real space and replace R with C. Equation (7.1)
defines a complex sphere. A coordinate-free definition of a complex sphere is
a nonsingular quadric hypersurface Q in Pn intersecting a fixed hyperplane H0

along a fixed nonsingular quadric Q0 in H0. In the real case, we additionally
assume that Q0(R) = ∅. If we choose coordinates such that Q0 is given by
equation (7.2), then a quadric in Pn+1(C) containing the imaginary sphere has
an equation

b

⎛⎜⎜⎜⎜⎜⎝ n∑
i=1

x2
i

⎞⎟⎟⎟⎟⎟⎠ − 2x0

⎛⎜⎜⎜⎜⎜⎝ n∑
i=0

aixi

⎞⎟⎟⎟⎟⎟⎠ = 0.

If b � 0, we may assume that b = 1 and rewrite the equation in the form
n∑

i=1

(xi − aix0)2 − (2a0 +

n∑
i=1

a2
i )x2

0 = 0,

so it is a complex sphere. Consider the rational map given by the linear system
of quadrics in Pn containing the fixed quadric Q0 with equation (7.2). We can
choose a basis formed by the quadric Q0 and the quadrics V(x0xi), i = 0, . . . , n.
This defines a rational map Pn � Pn+1 given by the formulas

[x0, . . . , xn] �→ [t0, . . . , tn+1] =

⎡⎢⎢⎢⎢⎢⎣ n∑
i=1

x2
i , x0x1, . . . , x0xn, x2

0

⎤⎥⎥⎥⎥⎥⎦ .
The image of this map is a nonsingular quadric in Pn+1 given by the equation
Q = V(q), where

q = −t0tn+1 +

n+1∑
i=1

t2
i = 0. (7.3)

We call Q the fundamental quadric. The quadratic form q defines a symmet-
ric bilinear form on V whose value on vectors v, w ∈ V is denoted by 〈v, w〉.
The pre-image of a hyperplane section

∑
Aiti = 0 is a complex sphere, or its

degeneration. For example, the sphere corresponding to a hyperplane which
is tangent to the quadric has zero radius, and hence it is defined by a singular
quadric.

The idea of replacing a quadratic equation of a sphere by a linear equation
goes back to Moebius and Chasles in 1850, but was developed by Klein and
Lie 20 years later. The spherical geometry, as it is understood in Klein’s Erlan-
gen program, becomes isomorphic to the orthogonal geometry. More precisely,
the inversive group of birational transformations of Pn sending spheres to
spheres or their degenerations is isomorphic to the projective orthogonal group
PO(n + 2).
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174 I. Dolgachev and B. Howard

Let us use the quadric Q to define a polarity duality between points and
hyperplanes in Pn+1. If we use the equation of Q to define a symmetric bilinear
form in Cn+2, the polarity is just the orthogonality of lines and hyperplanes
with respect to this form. Under the polarity, hyperplanes become points, and
hence spheres in Pn can be identified with points in Pn+1.

Explicitly, a point α = [α0, . . . , αn+1] ∈ Pn+1 defines the sphere

S (α) : α0(
n∑

i=1

x2
i ) − 2

∑
i=1

αi x0xi + αn+1x2
0 = 0. (7.4)

By definition, its center is the point c = [α0, α1, . . . , αn], its radius square R2

is defined by the formula

α2
0R2 =

n∑
i=1

α2
i − α0αn+1 = q0(α0, . . . , αn+1). (7.5)

Computing the discriminant D of the quadratic form in (7.4), we find

D = αn−1
0 (α0αn+1 −

n∑
i=1

α2
i ) = αn−1

0 q0. (7.6)

This proves the following:

Proposition 7.1 A complex sphere S (α) is singular if and only if its radius-
square is equal to zero, or, equivalently, the point α ∈ Pn+1 lies on the
fundamental quadric Q. The center of a singular complex sphere is its unique
singular point.

Remark 7.2 Spheres of radius zero are points on the fundamental quadric.
Thus the spaces Om

n contain as its closed subsets the moduli space of m points
on the fundamental quadric modulo the automorphism group of the quadric.
For example, when n = 2, this is the moduli space Pm

1 = (P1)m// SL(2) studied
intensively in many papers (see, e.g., [3, 5]).

Many geometrically mutual properties of complex spheres are expressed by
vanishing of some orthogonal invariant of point sets in Pn+1. We give here only
some simple examples.

We define two complex spheres in Pn to be orthogonal to each other if the
corresponding points in Pn+1 are conjugate in the sense that one point lies on
the polar hyperplane to another point.

Proposition 7.3 Two real spheres in Rn are orthogonal to each other (i.e.,
the radius-vectors at their intersection points are orthogonal) if and only if
the corresponding complex spheres are orthogonal in the sense of the previous
definition.
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Proof Let
n∑

i=1

(xi − ai)
2 = r2,

n∑
i=1

(xi − bi)
2 = r′2

be two orthogonal spheres. Let (c1, . . . , cn) be their intersection point. Then we
have

0 =
n∑

i=1

(ci − ai)(ci − bi) =
n∑

i=1

c2
i −

n∑
i=1

(ai + bi)ci +

n∑
i=1

aibi,

n∑
i=1

(ci − ai)
2 = r2,

n∑
i=1

(ci − bi)
2 = r′2.

This gives the equality

2
n∑

i=1

aibi −
n∑

i=1

a2
i −

n∑
i=1

b2
i + r2 + r′2 = 0.

It gives a necessary and sufficient condition that two spheres intersect orthog-
onally. It is clear that the condition does not depend on the choice of
intersection point. The corresponding complex spheres correspond to points
[1, a1, . . . , an,

1
2 (r2 −∑ a2

i )] and [1, b1, . . . , bn,
1
2 (r2 −∑ b2

i )]. The condition that
two points [α0, . . . , αn+1] and [β0, . . . , βn+1] are conjugate is

α0βn+1 + αn+1β0 +

n∑
i=1

αiβi = 0.

So we see that the two conditions agree.

For convenience of notation, we denote x = Cv ∈ Pn by [v]. We use the
symmetric form 〈v, w〉 in V defined by the fundamental quadric.

We have learnt the statements of the following two propositions from [10].

Proposition 7.4 Two complex spheres S ([v]) and S ([w]) are tangent at some
point if and only if

det

(
〈v, v〉 〈v, w〉
〈w, v〉 〈w, w〉

)
= 0.

Proof Let λφ1 + μφ2 be a 1-dimensional space of quadratic forms in V and
V(λφ1 + μφ2) be the corresponding pencil of quadrics in Pn. We assume that
it contains a nonsingular quadric. Then the equation discr(λφ1 + μφ2) = 0 is a
homogeneous form of degree n+ 1 whose zeros define singular quadrics in the
pencil. The quadrics V(φ1) and V(φ2) are tangent at some point p if and only
if p is a singular point of some member of the pencil. It is well known that the
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176 I. Dolgachev and B. Howard

corresponding root [λ, μ] of the discriminant equation is of higher multiplicity.
If V(φ1) = S ([v]) and V(φ2) = S ([w]) are nonsingular complex spheres, then
the pencil V(λq1 + μq2) corresponds to the line x, y in Pn+1 spanned by the
points x and y. A point [λv + μw] on the line defines a singular quadric if and
only if

D(λv + μw) = (λαn+1 + μβn+1)n−1q0(λv + μw) = 0.

Our condition for quadrics V(φ1) and V(φ2) to be tangent to each other is that
the equation q0(λv + μw) = 0 has a double root. We have

q0(λv + μw) = λ2〈v, v〉 + 2λμ〈v, w〉 + μ2〈w, w〉.

Thus the condition becomes

det

(
〈v, v〉 〈v, w〉
〈w, v〉 〈w, w〉

)
= 0.

Proposition 7.5 n + 1 complex spheres S ([vi]) in Pn have a common point if
and only if

det

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
〈w1, w1〉 . . . 〈w1, wn+1〉
〈w2, w1〉 . . . 〈w2, wn+1

...
...

...

〈wn+1, w1〉 . . . 〈wn+1, wn+1〉

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
= 0,

where wi are the vectors of coordinates of the polar hyperplane of [vi].

Proof We use the following known identity in the theory of determinants
(see, e.g., [1, Lemma 10.3.2]). Let A = (ai j), B = (bi j) be two matrices of sizes
k×m and m× k with k ≤ m. Let |AI |, |BI |, I = (i1, . . . , ik), 1 ≤ i1 < . . . < ik ≤ m,

be maximal minors of A and B. Then

|A · B| =
∑

I

|AI ||BI |. (7.7)

Let Hi :=
∑n+1

j=0 a(i)
j t j = 0 be the polar hyperplanes of the complex spheres. We

may assume that they are linearly independent, i.e., the vectors wi are linearly
independent in V . Otherwise the determinant is obviously equal to zero. Thus
the hyperplanes intersect at one point. The spheres have a common point if
and only if the intersection point of the hyperplanes Hi lies on the fundamental
quadric. Let X be the matrix with rows equal to vectors wi = (a(i)

0 , . . . , a(i)
n+1).

The intersection point has projective coordinates [C1,−C2, . . . , (−1)n+1Cn+2],
where C j is the maximal minor obtained from X by deleting the jth column.
Let G be the symmetric matrix defining the fundamental quadric. We take in
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the above formula A = X · G, B = tX. Then the product A · B is equal to the
LHS of the formula in the assertion of the proposition. The RHS is equal to
±(C1Cn+2−

∑n+1
i=2 C2

i ). It is equal to zero if and only if the intersection point lies
on the fundamental quadric.

We refer to [18] for many other mutual geometrical properties of circles
expressed in terms of invariants of the orthogonal group O(4).

8 Real points

We choose V to be a real vector space equipped with a positive definite inner
product 〈−,−〉. A real point in P(V) is represented by a nonzero vector v ∈ V .
Since 〈v, v〉 > 0, we obtain from Propositions 2.3 and 2.4 that all real point
sets (x1, . . . , xm) are stable points. Another nice feature of real point sets is the
criterion for vanishing of the Gram functions: det G(v1, . . . , vk) = 0 if and only
if v1, . . . , vk are linear dependent vectors in V .

It follows from the FFT and SFT that the varieties Om
n are defined over Q. In

particular, we may speak about the set Om
N(R) of their real points.

Theorem 8.1 Let V be a real inner-product space. Consider the open subset
U of linear independent point sets (x1, . . . , xm) in P(V)(R). Then the map

U → Om
n (R)

is injective.

Proof To show the injectivity of the map, it suffices to show that

(g(x1), . . . , g(xm)) = (y1, . . . , ym) (8.1)

for g ∈ PO(VC) implies that (g(x1), . . . , g(xm) = (y1, . . . , ym) for some
g′ ∈ PO(V). Choose an orthonormal basis in V to identify V with the Euclidean
real space Rn+1. The transformation g is represented by a complex orthogonal
matrix. If (8.1) holds, we can find some representatives vi and wi of points xi, yi,
respectively, and a matrix A ∈ O(VC) such that A · vi = wi, i = 1, . . . , m. This
is an inhomogeneous system of linear equations in the entries of A. Since the
rank of the matrix [v1, . . . , vn] with columns vi is maximal, there is a unique
solution for A and it is real. Thus g is represented by a transformation from
O(n + 1,R).

Let us look at the rational invariants Ra1,...,ak . Let φi j, π−φi j, denote the angles
between basis vectors of the lines xi = Rvi. Obviously,

Ri j = cos2 φi j
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178 I. Dolgachev and B. Howard

is well defined and does not depend on the choice of the bases. Also,

Ri j...k = cos φi j · · · cos φki

are well defined too. Applying the previous theorem, we see that the cyclic
products of the cosines determine uniquely the orbit of a linearly independent
point set.

Finally, let us discuss configuration spaces of real spheres. For this we have
to choose V = Rn+2 to be a real space with quadratic form q0 of signature
(1, n) defined in (7.3). A real sphere with nonzero radius is defined by formula
(7.4), where the coefficients (α0, . . . , αn+1) belong to the set q−1

0 (R>0). It con-
sists of two connected components corresponding to the choice of the sign of
α0. Choose the component V+ where α0 > 0. The image V+/R>0 of V+ in the
projective space P(V+) is, by definition, the hyperbolic space Hn+1. Each point
in Hn+1 can be uniquely represented by a unique vector v = (α0, . . . , αn+1) with

〈v, v〉 =
n+1∑
i=1

α2
i − α0αn+1 = 1, α0 > 0.

Each v ∈ Hn+1 defines the orthogonal hyperplane

Hv = {x ∈ Hn+1 : 〈x, v〉 = 0, q(x) = 1}.

The cosine of the angle between the hyperplanes Hv and Hw is defined by

cos φ = −〈v, w〉.

If |〈v, w〉| > 1, the hyperplanes are divergent, i.e., they do not intersect in the
hyperbolic space. In this case cosh(|〈v, w〉|) is equal to the distance between
the two divergent hyperplanes. If 〈v, w〉 = 1, the hyperplanes are parallel. By
Proposition 2.1, the corresponding real spheres S (v) and S (w) are tangent to
each other.

References

[1] Dolgachev, I. Classical Algebraic Geometry. A modern view. Cambridge:
Cambridge University Press, 2012.

[2] Dolgachev, I. and Lunts, V. A character formula for the representation of a Weyl
group in the cohomology of the associated toric variety. J. Algebra 168 (1994)
741–772.

[3] Dolgachev, I. Ortland, D. Point sets in projective spaces and theta functions.
Astérisque 165 (1988), 210 pp.

[4] Flaschka, H. Haine, L. Torus orbits in G/P. Pacific J. Math. 149 (1991) 251–292.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.010
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:04:44, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.010
http:/www.cambridge.org/core


Configuration spaces of complex and real spheres 179

[5] Howard, B. Millson, J. Snowden, A. and Vakil, R. The equations for the moduli
space of n points on the line. Duke Math. J. 146 (2009) 175–226.

[6] Kapranov, M. Sturmfels, B. and Zelevinsky, A. Quotients of toric varieties. Math.
Ann. 290 (1991) 643–655.

[7] Kapranov, M. Chow quotients of Grassmannians. I. I. M. Gelfand Seminar. Adv.
Soviet Math. 16(2) (1993) 29–110.

[8] Klein, F. Vorlesungen über höhere Geometrie. Dritte Auflage. Bearbeitet und
herausgegeben von W. Blaschke. Die Grundlehren der mathematischen Wis-
senschaften, Band 22. Berlin: Springer-Verlag, 1968.

[9] Klyachko, A. A. Orbits of a maximal torus on a flag space. Funktsional. Anal.
i Prilozhen. 19 (1985) 77–78 [English transl.: Functional Analysis and its
Applications, 19 (1985) 65–66].

[10] Kranser, E. The invariant theory of the inversion group geometry upon a quadric
surface. Trans. Amer. Math. Soc. 1 (1900) 430–498.

[11] Mukai, S. Umemura, H. Minimal rational threefolds. Algebraic Geometry
(Tokyo/Kyoto, 1982), pp. 490–518. Lecture Notes in Math., Vol. 1016. Berlin:
Springer-Verlag, 1983.

[12] Mukai, S. Igusa quartic and Steiner surfaces. In Compact Moduli Spaces and Vec-
tor Bundles, pp. 205–210. Contemporary Mathematics, Vol. 564. Providence, RI:
American Mathematical Society, 2012.

[13] Petersen, J. Die Theorie der regulären graphs. Acta Math. 15 (1891) 193–220.
[14] Procesi, C. Lie Groups: An approach through invariants and representations.

Berlin: Springer-Verlag, 2007.
[15] Procesi, C. The Toric Variety Associated to Weyl Chambers, pp. 153–161. Paris:

Hermès, 1990.
[16] Salmon, G. Lessons Introductory to the Modern Higher Algebra. London: Hodges

and Smith, 1859 (reprinted by Chelsea Publishing Co., 1964).
[17] Serre, J.-P. Local Fields. Berlin: Springer-Verlag, 1979.
[18] Study, E. Das Apollonische Problem, Math. Ann. 49 (1897) 497–542.
[19] Weyl, H. The Classical Groups, their Invariants and Representations. Princeton,

NJ: Princeton University Press, 1939.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.010
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:04:44, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.010
http:/www.cambridge.org/core

