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Abstract

Using the possibility of computationally determining points on a finite cover of
a unirational variety over a finite field, we determine all possibilities for direct
Gorenstein linkages between general sets of points in P3 over an algebraically
closed field of characteristic 0. As a consequence, we show that a general set
of d points is glicci (that is, in the Gorenstein linkage class of a complete
intersection) if d ≤ 33 or d = 37, 38. Computer algebra plays an essential role
in the proof. The case of 20 points had been an outstanding problem in the area
for a dozen years [8].

For Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

The theory of liaison (linkage) is a powerful tool in the theory of curves in
P3 with applications, for example, to the question of the unirationality of the
moduli spaces of curves (e.g., [3, 26, 29]). One says that two curvesC,D ⊂ P3

(say, reduced and without common components) are directly linked if their
union is a complete intersection, and evenly linked if there is a chain of curves
C = C0, C1, . . . , C2m = D such that Ci is directly linked to Ci+1 for all i.
The first step in the theory is the result of Gaeta that any two arithmetically
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Cohen–Macaulay curves are evenly linked, and in particular are in the linkage
class of a complete intersection, usually written licci. Much later Rao [23]
showed that even linkage classes are in bijection with graded modules of finite
length up to shift, leading to an avalanche of results (reported, e.g., in [19, 20]).
However, in codimension> 2 linkage yields an equivalence relation that seems
to be very fine, and thus not so useful; for example, the scheme consisting of
the four coordinate points in P3 is not licci.

A fundamental paper of Peskine and Szpiro [22] laid the modern foundation
for the theory of linkage. They observed that some of the duality used in liai-
son held more generally in a Gorenstein context, and Schenzel [25] introduced
a full theory of Gorenstein liaison. We say that two schemes X,Y ⊂ Pn that
are reduced and without common components are directly Gorenstein linked
if their union is arithmetically Gorenstein (for general subschemes the right
definition is that IG : IX = IY and IG : IY = IX ). We define Goren-
stein linkage to be the equivalence relation generated by this notion. This does
not change the codimension-2 theory, since, by a result of Serre [27], every
Gorenstein scheme of codimension 2 is a complete intersection.

The first serious study of Gorenstein linkage is in the paper [17], where the
authors observed that Gorenstein linkage in higher codimensions is analogous
to the usual linkage in codimesion 2, and raised the question whether every
arithmetically Cohen–Macaulay subscheme of projective space is Gorenstein
linked to a complete intersection (glicci for short). They verified this in a spe-
cial case by generalizing Gaeta’s theorem from codimension 2 to show that
every standard determinantal scheme in any codimension is glicci.

Since any 0-dimensional scheme is arithmetically Cohen–Macaulay, one
hopes that every finite set of points in Pn is glicci. This was verified by the sec-
ond author in 2001 (see [8]) for general sets of d points in P3 with d < 20, and
he proposed the case of 20 general points in P3 as a “first candidate counterex-
ample.” The question whether 20 general points in P3 is glicci has remained
open since then.

Theorem 1.1 Over an algebraically closed field of characteristic 0, a scheme
consisting of d general points in P3 is glicci when d ≤ 33 and also when
d = 37 or d = 38.

Further, we determine all pairs of numbers d, e such that there exist
“bi-dominant” direct Gorenstein linkage correspondences between the
smoothing components (that is, the components containing reduced sets of
points) of the Hilbert schemes of degree d subschemes and degree e finite sub-
schemes of P3 – see Section 2 for a precise statement. All such bi-dominant
correspondences are indicated by the edges in the graph shown in Figure 1.
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Figure 1 The graph shows all bi-dominant Gorenstein direct linkage corre-
spondences for collections of points in P3 over an algebraically closed field
of characteristic 0. A vertex d represents a set of d points, and an edge d − e
represents linkage by an arithmetically Gorenstein set of d + e points with a
particular h-vector. Thus two edges are shown where two different h-vectors
are possible.

Our approach makes essential use of computation, done in Macaulay2 [6] by
the package GlicciPointsInP3 [5]. It passes by way of characteristic p > 0, and
we get the same results in all the characteristics we have tested.

Paradoxically, though our method proves that almost all sets of points of
the given degrees are glicci, and uses computation, it is not constructive: we
prove that a general set of 20 points in P3 is linked to a set of 10 points by a
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Gorenstein scheme of length 30. But if you give us a set of 20 points, we have
no way of producing a Gorenstein scheme of length 30 containing it.

This paper is one of the few studies to make explicit use of linkages by
Gorenstein schemes that are not divisors of the form mH−K on some arith-
metically Cohen–Macaulay scheme of one larger dimension (see Section 6).

2 Basic definitions and outline of the argument

For simplicity, we work throughout this paper over a perfect (but not necessar-
ily algebraically closed) field k. Given a closed subscheme X ⊂ Pn, we write
SX for the homogeneous coordinate ring of X and OX for the structure sheaf
of X . Similarly, we write IX and IX for the homogeneous ideal and the ideal
sheaf of X .

We write HX for the union of the components of the Hilbert scheme of
subschemes of Pn that contain X; and we write HCX for the union of the
components of the Hilbert scheme of cones in An+1 that contain the cone over
X (see [7]). For example, if X is a reduced set of points then HX is smooth at
X of dimension nd, but HCX may be more complicated.

The reason for considering these cones is the following. While, for a set
of general points X ⊂ Pn, the deformation theory and Hilbert schemes HX

and HCX are naturally isomorphic, this is not so for other subschemes. Also,
if G is an arithmetically Gorenstein set of points in Pn, then deformations
of G will not in general be arithmetically Gorenstein. On the other hand, the
deformations of the cone over G in HCG are again cones over arithmetically
Gorenstein schemes, and this is the way one normally defines the scheme struc-
ture (called PGor(H) in [16]) on the subset of the Hilbert scheme of points in
Pn consisting of arithmetically Gorenstein subschemes with Hilbert function
H . In particular, the tangent space to HCG at the point corresponding to G is
HomS(IG, S/IG)0.

We say that a finite scheme of degree d in Pn has generic Hilbert function
if the maps H0(OPn(�)) → H0(OX(�)) are either injective or surjective for
each d. This is the case, for example, when X consists of d general reduced
points. In any case, such a generic Hilbert function is determined by d alone.
Moreover, any nearby set of points will also have a generic Hilbert function,
so the Hilbert scheme HX is naturally isomorphic, in a neighborhood of X ,
to the Hilbert scheme HCX , and in particular the latter is also smooth and of
dimension nd at X .

By [1], any arithmetically Gorenstein scheme G of codimension 3 in Pn

is defined by the Pfaffians of a skew-symmetric matrix of homogeneous
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forms. From this description and Macaulay’s growth conditions, Stanley [28]
derived a characterization of the possible Hilbert functions of such schemes,
and [4, 16] showed that the family HCG is smooth and irreducible. To sim-
plify our discussion, we use the term Gorenstein Hilbert function in this paper
to refer to a Hilbert function of some arithmetically Gorenstein scheme of
codimension 3 in P3.

Given two positive integers d, e, we ask whether there exists a 0-dimensional
arithmetically Gorenstein scheme G of degree d+e in P3 that “could” provide
a direct Gorenstein linkage between a set X of d points with generic Hilbert
function and a set Y of e points with generic Hilbert function. It turns out that
there is only a finite number of possibilities for the Hilbert function of such a
scheme, and we can list them.

If G is a finite reduced Gorenstein scheme in P3 containing a subscheme X
with complement Y , we let

HCX∪Y=G = {(X ′, Y ′, G′) ∈ HCX ×HCY ×HCG |
X ′ ∪ Y ′ = G′ and X ′ ∩ Y ′ = ∅}

be the incidence correspondence, and we ask when HCX∪Y=G projects dom-
inantly onto HX and HY via HCX and HCY ; in this case we say that the
correspondence is bi-dominant. Of course for this to happen, the family HCG
must have dimension at least max(3d, 3e). We will show that no bi-dominant
correspondence is possible unless the numbers d, e are both ≤ 47.

Given d, e and an appropriate Gorenstein Hilbert function, we search for
an example of a reduced Gorenstein scheme G ⊂ P3 with the given Hilbert
function such that G contains a degree d subscheme X with generic Hilbert
function whose complement Y also has generic Hilbert function. We do not
know how to find such examples directly in characteristic 0. It is perhaps the
most surprising part of this work that one can find examples of the type above
by computer over a finite field. We can then lift the examples of pairs X ⊂ G

to characteristic 0. The success of the method in finite characteristic is based on
the observation that, given integers d, e, a random polynomial of degree d+ e

over a large finite field “often” has a factor of degree e. This phenomenon is
explored in Section 3.

Set

HCX⊂G = {(X ′, G′) ∈ HCX ×HCG | X ′ ⊂ G′}.

Near a triple (X,Y,G) as above, the natural projection HCX∪Y=G→HCX⊂G
is an isomorphism, with inverse defined from the family, over HCX⊂G, of
residual subschemes to X in G, and the universal property of HCX∪Y=G.
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We use a deformation-theoretic argument given in Section 4, together with
machine computation, to test whether HCX⊂G is smooth at the pair (X,G)
and projects dominantly onto HX , and similarly for Y . If our example passes
both these tests, it follows that the incidence correspondence HCX∪Y=G is
bi-dominant.

If HCX∪Y=G is bi-dominant then for any dense open set V ⊂ HCY there
exists a dense open set U ⊂ HCX such that each point X ′ ∈ U can be directly
Gorenstein linked to a point Y ′ ∈ V . In particular, if a general point Y ′ ∈ HCY
is glicci, then a general point X ′ ∈ HCX is glicci as well.

Figure 1 presents a graph (produced by the program Graphviz) of all
bi-dominant correspondences. A node numbered d is connected to a node num-
bered e if, for a general set of d points X , there exists a Gorenstein scheme
of degree d + e containing X with complement Y such that the scheme
HCX∪Y=G dominates both HCX and HCY . By the remark above, a gen-
eral set of d points is glicci if d lies in the connected component of 1 in this
graph.

Larger numbers of points? The degree of the smallest collection of general
points in P3 that is still not known to be glicci is 34. Here is a possible attack
on this case that might extend to larger cases as well.

A general set of 34 points can be linked (using a five-dimensional fam-
ily of Gorenstein schemes whose existence follows as in the computations
below) to a 5-dimensional family F of sets of 34 points. On the other hand,
the schemes in H34 that can be directly Gorenstein linked to 21 points form
a subfamily of codimension only 3. Hence it is plausible that the family F
meets this stratum. If this does indeed happen then, since we know that a set
of 21 general points is glicci, it would follow that a set of 34 general points is
glicci.

This argument makes it very plausible that general sets of 34 points are
glicci. A proof along these lines seems to require a good compactification of
HCG on which one could do intersection theory.

3 Split polynomials over finite fields

In this section we describe the philosophy leading us to believe that the com-
putations underlying this paper could be successful. In a nutshell: Q-rational
points on varieties over Q are very hard to find, but Fp-rational points on vari-
eties over a finite field Fp are much more accessible. No new result is proven
in this section, and none of the results mentioned will be used in the rest of the
paper.
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By a result of Buchsbaum and Eisenbud [1], the homogeneous ideal of an
arithmetically Gorenstein subscheme G of codimension 3 in projective space
has a minimal presentation matrix that is homogeneous and skew-symmetric.
The degrees of the elements in this matrix (the degree matrix) determine the
Hilbert function of G. For the arithmetically Gorenstein schemes in an open
dense subset of the Hilbert scheme, the degree matrix is also determined (up
to permutation of the rows and columns) by the Hilbert function.

Our method thus requires that we find a reduced arithmetically Gorenstein
scheme with given degree matrix that contains a union of components of given
total degree that is sufficiently general so that its Hilbert function is “generic.”
We do this by choosing a random skew-symmetric matrix with appropriate
degrees over a moderately large finite field. We then hope that the associated
Gorenstein scheme contains a reduced subscheme of the right degree, and we
check whether it does by projecting (in a random direction) to a line and fac-
toring the polynomial in one variable that corresponds to the subscheme of the
line. Once we have such an example, we can proceed with the computations of
tangent spaces described in the next sections.

For instance, to show that a set of 20 points in P3 is directly Gorenstein
linked to a set of 10 Gorenstein points, we will choose a random arithmetically
Gorenstein, 0-dimensional scheme G ⊂ P3 such that the presentation matrix
of IG is a 9 × 9 skew-symmetric matrix of linear forms (this choice of a 9 × 9
matrix of linear forms is determined by considerations to be described later).
If M is a sufficiently general matrix of this kind over a polynomial ring in four
variables then the cokernel ofM will be the homogeneous ideal of a reduced 0-
dimensional scheme of degree 30 in P3. We then decomposeG into irreducible
components, and search for a combination of components that has total degree
20. We check to see whether the union of these components has generic Hilbert
function.

If we carried out this procedure over the rational numbers, we would expect
G to be irreducible. However suppose that the ground field k is a moderately
large finite field, and we choose such a matrix randomly (say by choosing
each coefficient of each linear form in the upper half of the matrix uniformly
at random from k). What will be the chance that it contains a subscheme of
length 20 defined over k? That is, how many random examples should one
expect to investigate before finding a good one?

The answer was surprising to us: Taking k to be a field with 10,007 elements,
and making 10,000 random trials, we found that the desired subscheme occurs
in 3868 examples – about 38% of the time. For the worst case needed for this
paper, where the Gorenstein scheme has degree 90 and the desired subscheme
has degree 45, the proportion is about 17% in our experiments.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.011
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:04:44, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.011
http:/www.cambridge.org/core


Twenty points in P3 187

The proportion of Gorenstein schemes of degree 30 that are reduced and
have a subscheme of degree 20 defined over k turns out to be quite close to the
proportion of polynomials of degree 30 that have a factor of degree 20 over k.
That proportion can be computed explicitly as a rational function in the size of
the ground field; for |k| = 10, 007 it is approximately 0.385426.

Thus, to consider applications of this random search technique it is worth-
while to know something about the proportion of polynomials of degree n in
one variable over a finite field Fq that are square-free and have a factor of given
degree k.

This proportion can be computed explicitly (for small n and k). Gauss
showed that the number of irreducible monic polynomials in Fq[x] of
degree � is

N(�, q) =
1
�

∑
d|�

μ(�/d)qd,

where μ denotes the Möbius function. Thus the number of square-free
polynomials of degree n is

∑
λ�n

r∏
i=1

(
N(λi, q)

ti

)
,

where ti denotes the frequency of λi in the partition λ = (λt11 , λ
t2
2 , . . . , λ

tr
r ).

(This number, rather amazingly, can also be written as qn− qn−1; for a simple
proof see [24].)

The number of square-free polynomials of degree n with a factor of degree
k is

A(n, k, q) =
∑
λ�n

with subpartition of size k

r∏
i=1

(
N(λi, q)

ti

)
.

For small n and k the polynomial in q can be evaluated explicitly. For example

A(6, 3, q) =
29
80
q6 − 11

16
q5 +

5
16
q4 − 5

16
q3 +

13
40
q2

and

A(30, 20, q)/q30 .= 0.385481 − 0.550631q−1 +O(q−2).

Since

lim
q→∞N(�, q)/q� =

1
�
,
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188 D. Eisenbud, R. Hartshorne, and F.-O. Schreyer

the relative size of the contribution of a partition λ converges to

lim
q→∞

r∏
i=1

(
N(λi, q)

ti

)
/qn =

1∏r
i=1 ti!λ

ti
i

= |Cλ|/n!,

which is also the relative size of the conjugacy classCλ in the symmetric group
Sn. Thus the sum

p(n, k) =
∑
λ�n

with subpartition of size k

|Cλ|/n!

can serve as an approximation for A(n, k, q)/qn for large q.
For fixed k, Cameron (unpublished) proved that the limit limn→∞ p(n, k)

exists and is positive. For example,

lim
n→∞ p(n, 1) = 1 − exp(−1)

was established by Montmort around 1708 [21].
Indeed, over a finite field F with q elements the fraction of polynomials with

a root in F is about 63% nearly independently of q and n. Experimentally we
find that

A(n, 1, q)/qn .= 0.632121 − 0.81606q−1 +O(q−2).

4 Deformation theory

We are interested in pairs of schemes X ⊂ G such that the projection

HCX⊂G → HCX

is dominant, meaning geometrically that each small deformation of X is still
contained in a small deformation of G that is still arithmetically Gorenstein.
We will check this condition by showing that the map of tangent spaces is
surjective at some smooth point of HCX⊂G.

We thus begin by recalling the construction of the tangent space to HCX⊂G.
Though the case of interest to us has to do with finite schemes in Pn, the
(well-known) result is quite general:

Lemma 4.1 Suppose that X ⊂ G are closed subschemes of a scheme Z,
and let

TX/Z = H0HomZ(IX ,OX), TG/Z = H0HomZ(IG,OG)
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Twenty points in P3 189

be the tangent spaces to the functors of embedded flat deformations ofX andG
in Z. The functor of pairs of embedded flat deformations of X and G in Z that
preserve the inclusion relation X ⊂ G has Zariski tangent space T(X⊂G)/Z

at X ⊂ G equal to H0T(X⊂G)/Z , where T := T(X⊂G)/Z is defined by the
fibered product diagram

HomZ(IG,OG) � HomZ(IG,OX)

T

�

� HomZ(IX ,OX)

�

In particular, if the restriction map H0Hom(IX ,OX) → H0Hom(IG,OX)
is an isomorphism then T(X⊂G)/Z

∼= TG/Z .

Proof (See also [11, Ex. 6.8].) It suffices to prove the lemma in the affine
case, so we suppose that Z = SpecR and that X ⊂ G are defined by
ideals I ⊃ J in R. The first-order deformation of I corresponding to a
homomorphism φ : I → R/I is the ideal

Iφ := {i+ εφ(i) | i ∈ I} + εI ⊂ R[ε]/(ε2),

and similarly for Jψ , so we have

T = {(ψ : J → R/J, φ : I → R/I) | ψ(j) ≡ φ(j)(mod I) for all j ∈ J}.

If ψ(j) ≡ φ(j)(mod I) for all j ∈ J then every element j+εψ(j) is obviously
in Iφ. Conversely, if j + εψ(j) = i + εφ(i) + εi′ with i′ ∈ I , then i = j, so
ψ(j) = φ(j) + i′. This proves that T is the fibered product. The last statement
of the lemma is an immediate consequence.

Recall from Section 2 that if X is reduced and has generic Hilbert func-
tion, then HCX and the Hilbert scheme HX coincide in a neighborhood of X .
Moreover, HCX and HX are irreducible.

Theorem 4.2 Let G ⊂ Pn be a finite scheme such that the cone over G
is a smooth point on HCG. Suppose that X ⊂ G is a union of some of the
components of G that are reduced, and that X has generic Hilbert function.
Let d = degX . If

dimk HomS(IG, SG)0 − dimk HomS(IG, IX/IG)0 = nd,

then the projection map HCX⊂G → HX is dominant.
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Proof Consider the diagram with exact row

0 � HomS(IG, IX/IG) � HomS(IG, SG) � HomS(IG, SX)

HomS(IX , SX)

φ

�

We begin by computing the dimension of HomS(IX , SX)0, the degree 0 part
of HomS(IX , SX). We may interpret this space as the space of first-order
infinitesimal deformations ofX as a cone – that is, as the tangent space to HCX
at the pointX . The computation of this space commutes with base change, and
since we have assumed that the ground field k is perfect, the base change to k
remains reduced. Thus to compute dim HomS(IX , SX)0 we may assume that
X consists of d distinct k-rational points.

The sheaf HomS(IX ,OX) is the sheafification of HomS(IX , SX), so there
is a natural map

α : HomS(IX , SX)0 → H0(HomS(IX ,OX)).

The source of α may be identified with the tangent space to a Hilbert
scheme of cones near X , while the target may be identified with the Hilbert
scheme of collections of points near X , and α is the map induced by for-
getting the cone structure. Since, by assumption, X has generic Hilbert
function, these Hilbert schemes coincide and α is an isomorphism. Thus
dim HomS(IX , SX)0 = nd.

Though the map φ : HomS(IX , SX) → HomS(IG, SX) in the diagram
above is generally not an isomorphism, we will next show that it induces an
isomorphism between the components of degree 0. Using the fact that SX is
reduced, so that HomS(IG, SX) has depth ≥ 1, we see that the natural map

β : HomS(IG, SX)0 → H0Hom(IG,OX)

is an injection. On the other hand, any section of Hom(IG,OX) is supported
on X . Because X is a union of the components of G, this implies that

H0Hom(IG,OX) = H0Hom(IX ,OX).

Together with the equality HomS(IX , SX)0 = H0Hom(IX ,OX), this
implies that the map

φ0 : HomS(IX , SX)0 → HomS(IG, SX)0

is an isomorphism, as claimed.
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Twenty points in P3 191

Let coneX ⊂ coneG ⊂ An+1 be the cones over X and G respectively.
We may apply Lemma 4.1, which tells us that the space of first-order deforma-
tions of the pair coneX ⊂ coneG is the fibered product of HomS(IX , SX)
and HomS(IG, SG) over HomS(IG, SX). Since we wish to look only at defor-
mations as cones, we take the degree 0 parts of these spaces, and we see that
the tangent space to HCX⊂G is the fibered product of HomS(IX , SX)0 and
HomS(IG, SG)0 over HomS(IG, SX)0. Since φ0 is an isomorphism, the tan-
gent space to HCX⊂G is isomorphic, via the projection, to HomS(IG, SG)0,
the tangent space to HCG at G.

Since coneX consists of a subset of the irreducible components of coneG,
and X has generic Hilbert function, it follows that the map HCX⊂G → HCG
is surjective. Since HCG is smooth at G, and the map of tangent spaces is an
isomorphism, it follows that HCX⊂G is smooth at the pair (X ⊂ G).

To prove that the other projection map HCX⊂G → HCX is dominant, it
now suffices to show that the map on tangent spaces

TX⊂GHCX⊂G = TGHCG → TXHCX = HomS(IG, SX)0

is onto or, equivalently, that the right-hand map in the sequence

0 → HomS(IG, IX/IG)0 → HomS(IG, SG)0 → HomS(IG, SX)0

is surjective. Since the right-hand vector space has dimension nd, this follows
from our hypothesis on dimensions.

Corollary 4.3 Let G ⊂ Pn be a finite scheme. Suppose that X ⊂ G is a
union of some of the components ofG that are reduced, and thatX has generic
Hilbert function. Let d = degX . If

dimk HomS(IG, IX/IG)0 = dimGHCG − nd,

then HCG and HCX⊂G are smooth in G and X ⊂ G respectively and the
projection map HCX⊂G → HCX is dominant.

Proof Since

dimGHCG ≤ dimTGHCG = dim HomS(IG, SG)0
≤ dim HomS(IG, IX/IG)0 + dim HomS(IG, SX)0
= dim HomS(IG, IX/IG)0 + nd,

equality holds by our assumption and HCG is smooth at G. Now the theorem
applies.
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5 Computational approach

To classify the possible bi-dominant direct Gorenstein linkage correspon-
dences we make use of h-vectors [28], which are defined as follows. See [14]
for further details.

Let R = S/I be a homogeneous Cohen–Macaulay factor ring of a polyno-
mial ring S with dimR = k. The h-vector of R (or of X in case I = IX ) is
defined to be the kth difference of the Hilbert function of R. If �1, . . . , �k is
an R-sequence of linear forms, then R/(�1, . . . , �k) is artinian, and its Hilbert
function is equal to the h-vector of R. It follows in particular that the h-vector
consists of a finite sequence of positive integers followed by zeros. Over a
small field such anR-sequence may not exist, but the h-vector does not change
under extension of scalars, so the conclusion remains true. We often specify
an h-vector by giving just the list of nonzero values.We can make a similar
construction for any Cohen–Macaulay module. If X is a finite scheme then
the sum of the terms in the h-vector is the degree of X . The h-vector of a
Gorenstein ideal is symmetric.

From the definition it follows at once that the h-vector of a set of points X
with general Hilbert function is equal to the Hilbert function of the polynomial
ring in three variables except (possibly) for the last nonzero term, and thus has
the form

1, 3, 6, . . . ,
(
s+ 1

2

)
, a, 0, . . . with 0 ≤ a <

(
s+2
2

)

where s is the least degree of a surface containingX . For example, the h-vector
of a general collection of 21 points in P3 is {1, 3, 6, 10, 1}.

We will make use of the well-known observation that if IX and IY in S are
directly Gorenstein linked via IG then the h-vector of X , plus some shift of
the reverse of the h-vector of Y , is equal to the h-vector of G (see [14, 2.14]).
One way to see this is to reduce all three of IX , IY , IG modulo a general linear
form �. The relation of linkage is preserved, and ωX/ ∼= IY /IG (up to a shift).
Since the Hilbert function of ωX mod � is the reverse of the Hilbert function
of S/IX mod �, this gives the desired relation.

For example, our computations show that a general collection of 21 points
in P3, with h-vector {1, 3, 6, 10, 1} as above, is directly Gorenstein linked
to a collection of nine points with general Hilbert function, and thus h-
vector {1, 3, 5}. The Gorenstein ideal that links them will have h-vector
{1, 3, 6, 10, 6, 3, 1}, and we have

1 3 6 10 1

+ 5 3 1

= 1 3 6 10 6 3 1
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The additivity of h-vectors in 0-dimensional Gorenstein liaison can be traced
back to Macaulay (see [18, p. 112]) as Tony Iarrobino pointed out to us.

We return to the problem of linking general sets of points. Consider the
irreducible component Hd ⊂ Hilbd(P3) whose general point corresponds to
a collection of d distinct points. Consider an (irreducible) direct Gorenstein
linkage correspondence

HCX∪Y=G → Hd ×He.

Recall that HCX∪Y=G is said to be bi-dominant if it dominates both Hd and
He. The h-vector of a general point G = X ∪ Y of a bi-dominant correspon-
dence is rather special. Most of the following proposition can be found in [14,
7.2]; we repeat it for the reader’s convenience.

Proposition 5.1 Let G = X ∪ Y be a general point of a bi-dominant
correspondence. Then the h-vector of G is one of the following:

(I) {1, 3, 6, . . . ,
(
s+1
2

)
,
(
s+1
2

)
+ c,

(
s+1
2

)
, . . . , 3, 1} with 0 ≤ c ≤ s+ 1, or

(II) {1, 3, 6, . . . ,
(
s+1
2

)
,
(
s+1
2

)
+ c,

(
s+1
2

)
+ c,

(
s+1
2

)
, . . . , 3, 1} with 0 ≤ c ≤

s+ 1.

Proof We may assume that d ≥ e. A collection of d general points has
generic Hilbert function. Thus X has h-vector of shape

hX = {1, 3, . . . ,
(
t+ 1

2

)
, a},

where d =
(
t+2
3

)
+ a is the unique expression with 0 ≤ a <

(
t+2
2

)
. Similarly,

we have hY = {1, 3, . . . ,
(
t′+1

2

)
, a′}, where e =

(
t′+1

3

)
+ a′. On the other

hand, since G is arithmetically Gorenstein, the h-vector of G is symmetric. As
explained above, the difference hG − hX coincides, after a suitable shift, with
the h-vector of Y read backwards. Since the h-vector of G coincides with the
h-vector of X up to position t, we have only the possibilities

1. t = t′ and a = a′ = 0 with hG = {1, 3, . . . ,
(
t+1
2

)
,
(
t+1
2

)
, . . . , 3, 1} of type

(II) with s = t− 1 and c = s+ 1.
2. t = t′ + 1 and a = a′ = 0 with hG = {1, 3, . . . ,

(
s+2
2

)
,
(
s+1
2

)
, . . . , 3, 1} of

type (I) with s = t− 1 = t′ and c = s+ 1.
3. t = t′ +1 and a+a′ =

(
s+2
2

)
with hG = {1, 3, . . . ,

(
s+2
2

)
,
(
s+2
2

)
, . . . , 3, 1}

of type (II) with s = t− 1 = t′ and c = s+ 1.
4. t = t′ +2 and a+a′ =

(
s+1
2

)
with hG = {1, 3, . . . ,

(
s+2
2

)
,
(
s+1
2

)
, . . . , 3, 1}

of type (I) with s = t− 1 = t′ + 1 and c = s+ 1.
5. s = t = t′ and hG = {1, 3, . . . ,

(
s+1
2

)
, a+ a′,

(
s+1
2

)
, . . . , 3, 1} of type (I).

6. s = t = t′, a = a′ with hG = {1, 3, . . . ,
(
s+1
2

)
, a, a,

(
s+1
2

)
, . . . , 3, 1} of

type (II).
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By Stanley’s theorem [28, 4.2] the difference function of the first half of hG is
non-negative, so we have a + a′ ≥

(
s+1
2

)
and a = a′ ≥

(
s+1
2

)
respectively in

the last two cases.

Proposition 5.2 Let G be an arithmetically Gorenstein set of points in P3

with h-vector h as in Proposition 5.1, and let g(h) be the dimension of HCG.

• In case I, g(h) = 4s(s+ 1) + 4c− 1.
• In case II, g(h) = 9

2s(s+ 1) + 1
2c(c+ 13) − cs− 1.

Proof Case I is type 3 of [14, 7.2]. Case II is proved analogously, by induc-
tion on s, using [14, 5.3] starting with the cases of h-vectors {1, 1, 1, 1} and
{1, 2, 2, 1}. Note that when c ≥ 2, case II will at some point reduce to type 2
of [14, 7.2].

Corollary 5.3 There are only finitely many bi-dominant correspondences.

Proof If HCh → HCd is dominant then we must have g(h) ≥ dimHd =
3d. But examining the Hilbert functions in the different cases we find that
d ≥

(
s+2
3

)
, which is cubic in s, while the functions g(h) are quadratic in s, so

the inequality cannot hold for large s. Calculation shows that s ≤ 5, and that
d = 47 is the maximal degree possible [5]. (See also [14, 7.2, 7.3].)

Theorem 5.4 The bi-dominant correspondences are precisely those indic-
tated in Figure 1.

Proof To prove existence of a bi-dominant correspondence it suffices to find
a smooth point (X,Y ) ∈ HCX∪Y=G and to verify that both maps on tangent
spaces

TX⊂GHCX⊂G → TXHd and TY⊂GHCY⊂G → TYHe

are surjective. We test [5] each of the finitely many triples consisting of an
h-vector h = {h0, . . . , hn} and integers (d, e) satisfying g(h) ≥ max(3d, 3e)
and

∑
hi = d + e and subject to the condition that h can be expressed as the

sum of the h-vector of a general set of d points and the reverse of the h-vector
of a general set of e points, as follows:

1. Using the probabilistic method of Section 2, find a pair X ⊂ G over a finite
field Fp.

2. Let Y be the scheme defined by IY = IG : IX . Test whether G is reduced,
and whether X and Y have generic Hilbert functions.

3. Test whether

dim Hom(IG, IX/IG)0 = dimG HCG − 3d
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and

dim Hom(IG, IY /IG)0 = dimG HCG − 3e.

If the example X ⊂ G and Y passes the tests in steps 2 and 3 then, by Corol-
lary 4.3, (X,Y ) ∈ HCX∪Y=G is a point on a bi-dominant correspondence
over Fp. Since we may regard our example as the reduction mod p of an exam-
ple defined over some number field, this shows the existence of a bi-dominant
correspondence in characteristic 0.

There are nine pairs (d, h), involving six different h-vectors, where the pro-
cedure above did not, in our experiments, lead to a proof of bi-dominance.
They are given in the following table:

Degrees h-Vector Buchsbaum–Eisenbud matrix

7 {1, 3, 3, 3, 1} S2(−3) ⊕ S3(−6) → S2(−5) ⊕ S3(−2)
7 {1, 3, 3, 3, 3, 1} S2(−3) ⊕ S3(−5) → S2(−4) ⊕ S3(−2)
13, 14, 15 {1, 3, 6, 6, 6, 3, 1} S3(−4) ⊕ S4(−6) → S3(−5) ⊕ S4(−3)
16 {1, 3, 6, 6, 6, 6, 3, 1} S3(−4) ⊕ S4(−7) → S3(−6) ⊕ S4(−3)
17 {1, 3, 6, 7, 7, 6, 3, 1} S(−4) ⊕ S(−5) ⊕ S3(−7) →

S(−6) ⊕ S(−5) ⊕ S3(−3)
25, 26 {1, 3, 6, 10, 10, 10, 6, 3, 1} S4(−5) ⊕ S5(−7) → S4(−6) ⊕ S5(−4)

It remains to show that, in these numerical cases, there really is no bi-dominant
family. In each of these cases the Buchsbaum–Eisenbud matrix (the skew-
symmetric presentation matrix of the IG) has a relatively large block of zeros,
since the maps between the first summands of the free modules shown in the
table are zero for degree reasons. (In case d = 17 the map from the first two
summands in the source to the first two summands in the target is zero, as
the matrix is skew symmetric.) Thus, among the Pfaffians of this matrix are
the minors of an n × (n + 1) matrix, for a certain value of n. These minors
generate the ideal of an arithmetically Cohen–Macaulay (ACM) curve. In the
given cases, the general such curve will be smooth. Thus, in these cases, the
Gorenstein points lie on smooth ACM curves of degree c, the maximal integer
in the h-vector ofG (so c ∈ {3, 6, 7, 10}). For example if c = 3 there are seven
points, but a twisted cubic curve can contain at most six general points. More
generally, for a curve C moving in its Hilbert scheme HC to contain d general
points we must have 2d ≤ dimHC . In all cases listed above, dimHC = 4c
and 2d ≤ 4c is not satisfied.

The method discussed above can be used to show more generally that having
certain h-vectors forces a 0-dimensional Gorenstein scheme to be a divisor on
an ACM curve. Here is a special case:
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Proposition 5.5 If Z is a 0-dimensional AG scheme with h-vector h of type
I with c = 0 or type II with c = 0, 1 in Proposition 5.1, then Z is a divisor
in a class of the form mH−K on some ACM curve whose h-vector is the first
half of h.

We sketch an alternative proof.

Proof For the cases with c = 0 this is a consequence of [14, 3.4] (see also [15,
Theorem 5.77a]). For type II with c = 1 we use induction on s. Using results
5.3 and 5.5 of [14] we compare h to the h-vector h′ defined there, which is
the same thing with s replaced by s− 1, and we compute that the dimension
of HCh is equal to the dimension of the family of those Z ∼ mH − K on a
C, computed as dimHhC

+ dimC |mH −K|. The induction starts with h =
{1, 3, 4, 4, 3, 1}, where the corresponding scheme Z is a complete intersection
of type (2, 2, 3) and the result is obvious.

Remark 5.6 In some cases the projection HCX⊂G → HX is finite. This
happens for the following degrees d and h-vectors of G:

Degree h-Vector

7 {1, 3, 3, 1}
17 {1, 3, 6, 7, 6, 3, 1}
21 {1, 3, 6, 10, 6, 3, 1}
25 {1, 3, 6, 10, 10, 6, 3, 1}
29 {1, 3, 6, 10, 12, 10, 6, 3, 1}
32 {1, 3, 6, 10, 12, 12, 10, 6, 3, 1}
33 {1, 3, 6, 10, 15, 10, 6, 3, 1}
38 {1, 3, 6, 10, 15, 15, 10, 6, 3, 1}
45 {1, 3, 6, 10, 15, 19, 15, 10, 6, 3, 1}

It would be interesting to compute the degree of the projection in these cases.
When G is a complete intersection the projection is one-to-one.

Corollary 5.7 A general collection of d points in P3 over an algebraically
closed field of characteristic 0 is glicci if 1 ≤ d ≤ 33 or d = 37 or 38.

Proof Since the correspondences are bi-dominant, a general collection of d
points will be Gorenstein linked to a general collection of degree e. Thus we
may repeat, and the result follows, because these degrees form a connected
component of the graph in Figure 1.
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6 Strict Gorenstein linkage

One way to obtain an arithmetically Gorenstein (AG) subscheme of any projec-
tive space Pn is to take an ACM subscheme S satisfying the condition, called
G1, of being Gorenstein in codimension 1, and a divisorX on it that is linearly
equivalent to mH−K, where H is the hyperplane class and K is the canon-
ical divisor of S (see [17, 5.4]). A slight variation of this construction allows
one to reduce the condition G1 to G0 (Gorenstein in codimension 0; see [10,
3.3]). A direct linkage using one of these AG schemes is called a strict direct
Gorenstein link, and the equivalence relation generated by these is called strict
Gorenstein linkage [10].

Nearly all of the proofs in the literature that certain classes of schemes are
glicci use this more restrictive notion of Gorenstein linkage. (See [20] for a
survey, and [8–10, 12–14, 17] for some of the results). In fact, the one paper we
are aware of that actually makes use of the general notion for this purpose is [2,
7.1], which uses general Gorenstein linkages to show that any AG subscheme
of Pn is glicci.

By contrast, some of the direct linkages established in this paper cannot
be strict direct Gorenstein links. We do not know whether such links can be
achieved by a sequence of strict Gorenstein links, but one can show that if this
is possible then some of the links must be to larger sets of points, and some of
the intermediate sets of points must fail to be general.

Proposition 6.1 A general arithmetically Gorenstein scheme of 30 points in
P3 cannot be written as a divisor of the form mH−K on any ACM curve
C ⊂ P3, where H is the hyperplane class and K the canonical class of C. The
linkages 20–10 and 21–9 in Figure 1 are not strict direct Gorenstein links.

Proof The h-vector of a Gorenstein scheme Z of 30 points, of which 20 or 21
are general, is necessarily h = {1, 3, 6, 10, 6, 3, 1}. If Z lay on an ACM curve
in the class mH −K, then the h-vector of the curve would be {1, 2, 3, 4} ([14,
3.1]). This is a curve of degree 10 and genus 11. The Hilbert scheme of such
curves has dimension 40, so such a curve can contain at most 20 general points.
On the contrary, our Theorem 1.1 shows that there are Gorenstein schemes with
h-vector h containing 21 general points. In particular, the linkage 21–9 is not
strict.

If the link 20–10 were a strict Gorenstein link, then a set of 20 general points
X would lie in an AG scheme of 30 points in the class 5H − K on a curve
C as above. Since the Hilbert scheme of X and the incidence correspondence
HX⊂C both have dimension 60, a general X would be contained in a general,
and thus smooth and integral, curve C. But the family of pairs Z ⊂ C of this
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type has dimension only 59 [14, 6.8] and thus there is no such Z containing 20
general points.

Some of the direct Gorenstein links in Figure 1 can be obtained by direct
strict Gorenstein links (e.g., the cases d ≤ 19 are treated in [9]). However, for
d = 20, 24 ≤ d ≤ 33, and d = 37, 38 this is not the case.
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