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The Betti table of a high-degree curve is
asymptotically pure
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Dedicated to Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

Syzygies can encode subtle geometric information about an algebraic variety,
with the most famous examples coming from the study of smooth algebraic
curves. Though little is known about the syzygies of higher-dimensional vari-
eties, Ein and Lazarsfeld have shown that at least the asymptotic behavior is
uniform [1]. More precisely, given a projective variety X ⊆ Pn embedded by
the very ample bundle A, Ein and Lazarsfeld ask: which graded Betti num-
bers are nonzero for X re-embedded by dA? They prove that, asymptotically
in d, the answer (or at least the main term of the answer) only depends on the
dimension of X.

Boij–Söderberg theory [4] provides refined invariants of a graded Betti table,
and it is natural to ask about the asymptotic behavior of these Boij–Söderberg
decompositions. In fact, this problem is explicitly posed by Ein and Lazars-
feld [1, Problem 7.4], and we answer their question for smooth curves in
Theorem 3.

Fix a smooth curve C and a sequence {Ad} of increasingly positive divisors
on C. We show that, as d → ∞, the Boij–Söderberg decomposition of the
Betti table of C embedded by |Ad | is increasingly dominated by a single pure
diagram that depends only on the genus of the curve. The proof combines an
explicit computation about the numerics of pure diagrams with known facts
about when an embedded curve satisfies Mark Green’s Np-condition.
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2 Setup

We work over an arbitrary field k. Throughout, we will fix a smooth curve
C of genus g and a sequence {Ad} of line bundles of increasing degree. Since
we are interested in asymptotics, we assume that for all d, deg Ad ≥ 2g + 1.
Let rd := dim H0(C, Ad) − 1 = deg Ad − g so that the complete linear series
|Ad | embeds C ⊆ Prd . For each d, we consider the homogeneous coordinate
ring R(C, Ad) := ⊕e≥0H0(C, eAd) of this embedding. We may then consider
R(C, Ad) as a graded module over the polynomial ring Sym(H0(C, Ad)).

If F = [F0 ← F1 ← · · · ← Fn ← 0] is a minimal graded free resolution
of R(C, Ad), then we will use βi, j(OC , Ad) to denote the number of minimal
generators of Fi of degree j. Equivalently, we have

βi, j(OC , Ad) = dimk TorSym(H0(C,Ad))
i (R(C, Ad), k) j.

We define the graded Betti table β(OC , Ad) as the vector with coordinates
βi, j(OC , Ad) in the vector space V =

⊕n
i=0

⊕
j∈Z Q.

We use the standard Macaulay2 notation for displaying Betti tables, where

β =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
β0,0 β1,1 β2,2 . . .

β0,1 β1,2 β2,3 . . .

β0,2 β1,3 β2,4 . . .
...

...
...

. . .

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

Boij–Söderberg theory focuses on the rational cone spanned by all graded
Betti tables in V. The extremal rays of this cone correspond to certain pure
diagrams, and hence every graded Betti table can be written as a positive ratio-
nal sum of pure diagrams; this decomposition is known as a Boij–Söderberg
decomposition. For a good introduction to the theory, see either [5] or [6]. We
introduce only the notation and results that we need.

For a given d and some i ∈ [0, g], we define the (degree) sequence e =
e(i, d) := (0, 2, 3, 4, . . . , rd − i, rd − i + 2, rd − i + 3, . . . , rd + 1) ∈ Zrd−1, and we
define the pure diagram πi,d ∈ V by the formula

βp,q(πi,d) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
(rd − 1)! ·

(∏
��p

1
|e�−ep |

)
if p ∈ [0, rd − 1] and q = ep

0 else.
(1)

Note that the shape of πi,d is the following, where ∗ indicates a nonzero entry:

πi,d =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 . . . rd − i − 1 rd − i . . . rd − 1

∗ 0 . . . 0 0 . . . 0
0 ∗ . . . ∗ 0 . . . 0
0 0 . . . 0 ∗ . . . ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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202 D. Erman

It turns out that these are the only pure diagrams that appear in the Boij–
Södergberg decomposition of the Betti tables β(C, Ad) (see Lemma 2 below).

We next recall the notion of a (reduced) Hilbert numerator, which will be
central to our proof. If S = k[x0, . . . , xn] is a polynomial ring, and M is a
graded S -module, then the Hilbert series of a finitely generated, graded mod-
ule M is the power series HSM(t) :=

∑
i∈Z dimk Mi · ti ∈ Q[[t]]. The Hilbert

series can be written uniquely as a rational function of the form

HSM(t) =
HNM(t)

(1 − t)dim M

and we define the Hilbert numerator of M as the polynomial HNM(t). The
multiplicity of M is HNM(1).

As is standard in Boij–Söderberg theory, we allow formal rescaling of Betti
tables by rational numbers. Note the Hilbert numerator is invariant under mod-
ding out by a regular linear form or adjoining an extra variable; also, the Hilbert
numerator is computable entirely in terms of the graded Betti table (see [2,
Section 1]). Similar statements hold for the codimension of a module. Thus we
may and do formally extend the notions of Hilbert numerator, codimension,
and multiplicity to all elements of the vector space V.

Lemma 1 For any i, d, the diagram πi,d has multiplicity 1.

Proof By (1) we have β0,0(πi,d) = (rd−1)!
2·3···(rd−i)·(rd−i+2)···(rd+1) . Up to a positive

scalar multiple, the diagram πi,d equals the graded Betti table of a Cohen–
Macaulay module by [4, Theorem 0.1]. Then by Huneke and Miller’s multi-
plicity computation for Cohen–Macaulay modules with a pure resolution1 [9,
Proof of Theorem 1.2], it follows that the multiplicity of πi,d equals

β0,0(πi,d) · 2 · 3 · · · (rd − i) · (rd − i + 2) · · · (rd + 1)
(rd − 1)!

= β0,0(πi,d) · (β0,0(πi,d))−1

= 1.

3 Main result and proof

To make sensible comparisons between the graded Betti tables β(OC , Ad) for
different values of d, we will rescale by the degree of the curve so that we are
always considering Betti tables of (formal) multiplicity equal to 1. Namely, we
define
1 Strictly speaking, Huneke and Miller’s computation is for graded algebras. But by including a

β0,0 factor, the argument goes through unchanged for a graded Cohen–Macaulay module
generated in degree 0 and with a pure resolution.
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The Betti table of a high-degree curve is asymptotically pure 203

β(OC , Ad) := 1
deg Ad

· β(OC , Ad).

The Boij–Söderberg decomposition of β(OC , Ad) has a relatively simple form.

Lemma 2 For any d, the Boij–Söderberg decomposition of β(OC , Ad) has the
form

β(OC , Ad) =
g∑

i=0

ci,d · πi,d, (2)

where ci,d ∈ Q≥0 and
∑

i ci,d = 1.

The above lemma shows that the number of potential pure diagrams appear-
ing in the decomposition of β(C, Ad) is at most g + 1. Note that the precise
number of summands with a nonzero coefficient is closely related to Green
and Lazarsfeld’s gonality conjecture [8, Conjecture 3.7], and hence will vary
even among curves of the same genus. However our main result, which we
now state, shows that this variance plays a minor role in the asymptotics.

Theorem 3 The Betti table β(OC , Ad) converges to the pure diagram πg,d in
the sense that

ci,d →
⎧⎪⎪⎨⎪⎪⎩0 i � g

1 i = g
as d → ∞.

In particular, the limiting pure diagram only depends on the genus of the
curve. A nearly equivalent statement of the theorem is: asymptotically in d,
the main term of the Boij–Söderberg decomposition of the (unscaled) Betti
table β(C, Ad) is the πg,d summand.

Proof of Lemma 2 Since the homogeneous coordinate ring of C ⊆ Prd is
Cohen–Macaulay (see [2, Section 8A] for a proof and the history of this fact),
it follows from [4, Theorem 0.2] that β(OC , Ad) can be written as a positive
rational sum of pure diagrams of codimension rd − 1. Since C ⊆ Prd satisfies
the Np condition for p = rd − g − 1 by [7, Theorem 4.a.1], it follows that the
shape of β(OC , Ad) is

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
0 1 2 . . . rd − g − 1 rd − g . . . rd − 1

∗ − . . . − − − . . . −
− ∗ ∗ . . . ∗ ∗ . . . ∗
− − − . . . − ∗ . . . ∗

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠.
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204 D. Erman

Thus the pure diagrams πi,d for i = 0, 1, . . . , g are the only diagrams that can
appear in the Boij–Söderberg decomposition of β(C, Ad), and so we may write

β(OC , Ad) =
g∑

i=0

ci,d · πi,d

with ci,d ∈ Q≥0. The (formal) multiplicity of β(C, Ad) is 1 by construction, and
the same holds for the πi,d by Lemma 1, so it follows that

∑
ci,d = 1.

Lemma 4 The Hilbert numerator of the pure diagram πi,d is

HNπi,d (t) =

(
rd − i + 1
rd(rd + 1)

)
t0 +

(
(rd − 1)(rd − i + 1)

rd(rd + 1)

)
t1 +

(
i

rd + 1

)
t2.

The Hilbert numerator of the rescaled Betti table β(OC , Ad) is(
1

rd + g

)
t0 +

(
rd − 1
rd + g

)
t1 +

(
g

rd + g

)
t2.

Proof We prove the first statement by direct computation. Since πi,d repre-
sents, up to scalar multiple, the Betti table of a Cohen–Macaulay module M,
we may assume by Artinian reduction that the module M has finite length. For
a finite-length module, the Hilbert numerator equals the Hilbert series. Since
the Betti table πi,d has two rows, it follows that the Castelnuovo–Mumford reg-
ularity of M equals 2 (except for π0,d, which has regularity 1). The coefficient
of t0 is thus the value of the Hilbert function in degree 0, which is the 0th Betti
number of the pure diagram πi,d. By (1), this equals

β0,0(πi,d) =
(rd − 1)!

2 · 3 · · · (rd − i) · (rd − i + 2) · · · (rd + 1)
=

rd + 1 − i
rd(rd + 1)

.

Similarly, the coefficient of t2 is given by the bottom-right Betti number of πi,d,
which is

βrd−1,rd+1(πi,d) =
i

rd + 1
.

Finally, since πi,d has multiplicity 1 by Lemma 1, it follows that HNπi,d (1) =
1 and hence the coefficient of t1 equals 1 minus the coefficients of t0 and t2:

1 −
(

rd + 1 − i
rd(rd + 1)

)
−
(

i
rd + 1

)
=

rd(rd + 1) − (rd − i + 1) − i · rd

rd(rd + 1)

=
(rd − 1)(rd − i + 1)

rd(rd + 1)
.

For the Hilbert numerator of β(OC , Ad) statement, we note that deg Ad =

rd + g, yielding

β(OC , Ad) = 1
rd+g
· β(OC , Ad).
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As above, we can compute the t0 and t2 coefficients via the first and last
entries in the Betti table, and these are thus 1

rd+g
and g

rd+g
respectively (see [2,

Section 8A], for instance). Since β(OC , Ad) has multiplicity 1, the t1 coeffi-
cient is again 1 minus the t0 and t2 coefficients, and the statement follows
immediately.

Proof of Theorem 3 Note that rd → ∞ as d → ∞. We rewrite the Hilbert
numerator of πi,d as

HNπi,d (t) =

(
1
rd
+ ε0,i,d

)
t0 +

(
1 +

1
rd
+ ε1,i,d

)
t1 +

(
i

rd
+ ε2,i,d

)
t2,

where rdε j,i,d → 0 as d → ∞ for all j = 0, 1, 2 and i = 0, . . . , g. For instance

ε0,i,d =
rd − i + 1
rd(rd + 1)

− 1
rd
=

−i
rd(rd + 1)

.

We may similarly rewrite the Hilbert numerator of β(OC , Ad) as(
1
rd
+ δ0,d

)
t0 +

(
1 − g+1

rd
+ δ1,d

)
t1 +

(
g
rd
+ δ2,d

)
t2

where for j = 0, 1, 2 we have rdδ j,d → 0 as d → ∞.
Since the Hilbert numerator is additive with respect to the Betti table decom-

position of (2), combining the above computations with our Boij–Söderberg
decomposition from (2), we see that the t2 coefficient of the Hilbert numerator
of β(OC , Ad) may be written as

g
rd
+ δ2,d =

g∑
i=0

ci,d ·
(

i
rd
+ ε2,i,d

)
.

We multiply through by rd and take the limit as d → ∞. Since rdδ j,d and rdε j,i,d

both go to 0 as d → ∞, this yields

g = lim
d→∞

g∑
i=0

ci,d · i.

But ci,d ≥ 0 and
∑

i ci,d = 1. Hence, as d → ∞, we obtain ci,d → 0 for all i � g

and cg,d → 1.

Remark If X is a variety with dim X > 1, then our argument fails in sev-
eral important ways. To begin with, Ein and Lazarsfeld’s nonvanishing syzygy
results from [1] show that the number of potential pure diagrams for the
Boij–Söderberg decomposition of β(X, Ad) is unbounded.

Moreover, in the case of curves, the Hilbert numerator of the embedded
curves converged to the Hilbert numerator of one of the potential pure dia-
grams; the Np condition then implied that this pure diagram had the largest
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206 D. Erman

degree sequence of any potential pure diagram. Our result then followed by
the semicontinuous behavior of the Hilbert numerators of pure diagrams (for a
related semicontinuity phenomenon, see [3, monotonicity principle, p. 758]).
Ein and Lazarsfeld’s asymptotic nonvanishing results imply that, even for
P2, the limit of the Hilbert numerator will fail to correspond to an extremal
potential pure diagram, and so the semicontinuity does not obviously help.
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