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Abstract

We give an overview of partial positivity conditions for line bundles, mostly
from a cohomological point of view. Although the current work is to a large
extent expository in nature, we present some minor improvements on the exist-
ing literature and a new result: a Kodaira-type vanishing theorem for effective
q-ample Du Bois divisors and log canonical pairs.

To Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

Ampleness is one of the central notions of algebraic geometry, possessing the
extremely useful feature that it has geometric, numerical, and cohomological
characterizations. Here we will concentrate on its cohomological side. The fun-
damental result in this direction is the theorem of Cartan–Serre–Grothendieck
(see [Laz04, Theorem 1.2.6]): for a complete projective scheme X, and a line
bundle L on X, the following are equivalent to L being ample:

1. There exists a positive integer m0 = m0(X,L) such that L⊗m is very ample
for all m ≥ m0.

2. For every coherent sheaf F on X, there exists a positive integer m1 =

m1(X,F,L) for which F ⊗ L⊗m is globally generated for all m ≥ m1.
3. For every coherent sheaf F on X, there exists a positive integer m2 =

m2(X,F,L) such that
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208 D. Greb and A. Küronya

Hi
(
X,F ⊗ L⊗m

)
= {0}

for all i ≥ 1 and all m ≥ m2.

We will focus on the direction pointed out by Serre’s vanishing theorem, part
3 above, and concentrate on line bundles with vanishing cohomology above a
certain degree.

Historically, the first result in this direction is due to Andreotti and Grauert
[AG62]. They prove that given a compact complex manifold X of dimension
n, and a holomorphic line bundle L on X equipped with a Hermitian metric
whose curvature is a (1, 1)-form with at least n − q positive eigenvalues at
every point of X, then for every coherent sheaf F on X, there exists a natural
number m0(L,F) such that

Hi
(
X,F ⊗ L⊗m

)
= {0} for all m ≥ m0(L,F) and for all i > q. (1)

In [DPS96], Demailly, Peternell, and Schneider posed the question of under
what circumstances the converse does hold. That is, they asked: assume that
for every coherent sheaf F there exists m = m0(L,F) such that the vanish-
ing (1) holds. Does L admit a Hermitian metric with the expected number of
positive eigenvalues? In dimension two, Demailly [Dem11] proved an asymp-
totic version of this converse to the Andreotti–Grauert theorem using tools
related to asymptotic cohomology; subsequently, Matsumura [Mat13] gave
a positive answer to the question for surfaces. However, there exist higher-
dimensional counterexamples to the converse Andreotti–Grauert problem in
the range dim X

2 − 1 < q < dim X − 2, constructed by Ottem [Ott12].
We study line bundles with the property of the conclusion of the Andreotti–

Grauert theorem; let X be a complete scheme of dimension n, 0 ≤ q ≤ n an
integer. A line bundle L is called naively q-ample, or simply q-ample if for
every coherent sheaf F on X there exists an integer m0 = m0(L,F) for which

Hi
(
X,F ⊗ L⊗m

)
= {0}

for m ≥ m0 and for all i > q.
It is a consequence of the Cartan–Grothendieck–Serre result discussed

above that 0-ampleness reduces to the usual notion of ampleness. In [DPS96],
the authors studied naive q-ampleness along with various other notions of par-
tial cohomological positivity. Part of their approach is to look at positivity of
restrictions to elements of a complete flag, and they use it to give a partial
vanishing theorem similar to that of Andreotti–Grauert.

In a beautiful paper [Tot13], Totaro proves that the competing partial posi-
tivity concepts are in fact all equivalent in characteristic 0, thus laying down
the foundations for a very satisfactory theory. His result goes as follows: let X
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Partial positivity: q-ample line bundles 209

be a projective scheme of dimension n, A a sufficiently ample line bundle on
X, 0 ≤ q ≤ n a natural number. Then for all line bundles L on X, the following
are equivalent:

1. L is naively q-ample.
2. L is uniformly q-ample, that is, there exists a constant λ > 0 such that

Hi
(
X,L⊗m ⊗A⊗− j

)
= {0}

for all i > q, j > 0, and m ≥ λ j.
3. There exists a positive integer m1 = m1(L,A) such that

Hq+i
(
X,L⊗m1 ⊗A⊗−(n+i)

)
= {0}

for all 1 ≤ i ≤ n − q.

As an outcome, Totaro can prove that on the one hand, for a given q, the set
of q-ample line bundles forms an open cone in the Néron–Severi space, and on
the other hand, q-ampleness is an open property in families as well.

In his recent article [Ott12], Ottem works out other basic properties of q-
ample divisors and employs them to study subvarieties of higher codimension.
We will give an overview of his results in Section 2.4.

Interestingly enough, prior to [DPS96], Sommese [Som78] defined a geo-
metric version of partial ampleness by studying the dimensions of the fibers of
the morphism associated with a given line bundle. In the case of semi-ample
line bundles, where Sommese’s notion is defined, he proves his condition to be
equivalent to naive q-ampleness. Although more limited in scope, Sommese’s
geometric notion extends naturally to vector bundles as well.

One of the major technical vanishing theorems for ample divisors that does
not follow directly from the definition is Kodaira’s vanishing theorem if X
is a smooth projective variety, defined over an algebraically closed field of
characteristic 0, and L is an ample line bundle on X, then

H j (X, ωX ⊗ L) = {0} for all j > 0.

We refer the reader to [Kod53] for the original analytic proof, to [DI87] for a
subsequent algebraic proof, to [Ray78] for a counterexample in characteristic
p, and to [Kol95, Chapter 9] as well as to [EV92] for a general discussion
of vanishing theorems. It is a natural question to ask whether an analogous
vanishing holds for q-ample divisors. While one of the ingredients of classical
proofs of Kodaira vanishing, namely Lefschetz’ hyperplane section theorem,
has been generalized to the q-ample setup by Ottem [Ott12, Corollary 5.2],
at the same time he gives a counterexample to the Kodaira vanishing theorem
for q-ample divisors, which we recall in Section 2.4. In Ottem’s example, the
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210 D. Greb and A. Küronya

chosen q-ample divisor is not pseudo-effective. In Section 3 we show that there
is a good reason for this: we prove that q-Kodaira vanishing holds for reduced
effective divisors which are not too singular; more precisely, we prove two
versions of q-Kodaira vanishing which are related to log canonicity and the Du
Bois condition.

Theorem (= Theorem 3.4) Let X be a normal proper variety, D ⊂ X a
reduced effective (Cartier) divisor such that

1. OX(D) is q-ample;
2. X \ D is smooth, and D (with its reduced subscheme structure) is Du Bois.

Then, we have

H j (X, ωX ⊗ OX(D)) = {0} for all j > q

as well as

H j (X,OX(−D)) = {0} for all j < dim X − q.

Theorem (= Theorem 3.8) Let X be a proper Cohen–Macaulay variety, L

a q-ample line bundle on X, and Di different irreducible Weil divisors on
X. Assume that Lm � OX(

∑
d jDj) for some integers 1 ≤ d j < m. Set

mj := m/gcd(m, d j). Assume furthermore that the pair
(
X,
∑

(1 − 1
mj

)Dj
)

is
log canonical. Then, we have

H j (X, ωX ⊗ L) = {0} for all j > q

as well as

H j
(
X,L−1

)
= {0} for all j < dim X − q.

Global conventions If not mentioned otherwise, we work over the complex
numbers, and all divisors are assumed to be Cartier.

2 Overview of the theory of q-ample line bundles

2.1 Vanishing of cohomology groups and partial ampleness

Starting with the pioneering work [DPS96] of Demailly, Peternell, and Schnei-
der related to the Andreotti–Grauert problem, there has been a certain interest
in studying line bundles with vanishing cohomology above a given degree. Just
as big line bundles are a generalization of ample ones along its geometric side,
these so-called q-ample bundles focus on a weakening of the cohomological
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Partial positivity: q-ample line bundles 211

characterization of ampleness. In general, there exist competing definitions
of various flavors, which were shown to be equivalent in characteristic 0 in
[Tot13].

Definition 2.1 (Definitions of partial ampleness) Let X be a complete scheme
of dimension n over an algebraically closed field of arbitrary characteristic, L

an invertible sheaf on X, q a natural number.

1. The invertible sheaf L is called naively q-ample if for every coherent sheaf
F on X there exists a natural number m0 = m0(L,F) having the property
that

Hi
(
X,F ⊗ L⊗m

)
= {0} for all i > q and m ≥ m0.

2. Fix a very ample invertible sheaf A on X. We call L uniformly q-ample if
there exists a constant λ = λ(A,L) such that

Hi
(
X,L⊗m ⊗A⊗− j

)
= {0} for all i > q, j > 0, and m ≥ λ · j.

3. Fix a Koszul-ample invertible sheaf A on X. We say that L is q-T-ample if
there exists a positive integer m1 = m1(A,L) satisfying

Hq+1
(
X,L⊗m1 ⊗A⊗−(n+1)

)
= Hq+2

(
X,L⊗m1 ⊗A⊗−(n+2)

)
. . . = Hn

(
X,L⊗m1 ⊗A⊗−2n+q

)
= {0}.

An integral Cartier divisor is called naively q-ample/uniformly q-ample/q-T-
ample if the invertible sheaf OX(D) has the appropriate property.

Remark 2.2 (Koszul-ampleness) We recall that a connected locally finite1

graded ring R• = ⊕∞i=0Ri is called N-Koszul for a positive integer N if the field
k = R0 has a resolution

. . . −→ M1 −→ M0 −→ k −→ 0

as a graded R•-module, where for all i ≥ N the module Mi is free and generated
in degree i.

In turn, a very ample line bundle A on a projective scheme X (taken to

be connected and reduced to arrange that the ring of its regular functions k
def
=

OX(X) is a field) is called N-Koszul if the section ring R(X,A) is N-Koszul. The
line bundle A is said to be Koszul-ample if it is N-Koszul with N = 2 dim X. It
is important to point out that Castelnuovo–Mumford regularity with respect to
a Koszul-ample line bundle has favorable properties.

1 In this context locally finite means that dim Ri < ∞ for all graded pieces.
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212 D. Greb and A. Küronya

If A is an arbitrary ample line bundle on X, then Backelin [Bac86] showed
that there exists a positive integer k0 ∈ N having the property that A⊗k is
Koszul-ample for all k ≥ k0.

Remark 2.3 The idea of naive q-ampleness is the immediate extension of
the Grothendieck–Cartan–Serre vanishing criterion for ampleness. Uniform
q-ampleness first appeared in [DPS96]; the term q-T -ampleness was coined
by Totaro in [Tot13, Section 7], extending the idea of Castelnuovo–Mumford
regularity.

A line bundle is ample if and only if it is naively 0-ample, while all line
bundles are n = dim X-ample.

Example 2.4 One source of examples of q-ample divisors comes from ample
vector bundles: according to [Ott12, Proposition 4.5], if E is an ample vector

bundle of rank r ≤ dim X on a scheme X, s ∈ H0 (X,E), then Y
def
= Z(s) ⊆ X

is an ample subvariety. By definition, this means that OX′ (E) is (r − 1)-ample,
where π : X′ → X is the blow-up of X along Y with exceptional divisor E,
cf. Definition 2.48.

Remark 2.5 A straightforward sufficient condition for (naive) q-ampleness
can be obtained by studying restrictions of L to general complete intersection
subvarieties. More specifically, the following claim is shown in [Kür10, Theo-
rem A]: let X be a projective variety over the complex numbers, L a Cartier
divisor, A1, . . . , Aq very ample Cartier divisors on X such that L|E1∩···∩Eq is
ample for general E j ∈ |Aj|. Then, for any coherent sheaf F on X there exists
an integer m(L, A1, . . . , Aq,F) such that

Hi(X,F ⊗ OX(mL + N +
q∑

j=1

k jA j)) = {0}

for all i > q, m ≥ m(L, A1, . . . , Aq,F), k j ≥ 0, and all nef divisors N. In
particular, the conditions of the above claim ensure that L is q-ample.

Remark 2.6 There are various implications among the three definitions over
an arbitrary field. As was verified in [DPS96, Proposition 1.2] via an argument
resolving coherent sheaves by direct sums of ample line bundles,2 a uniformly
q-ample line bundle is necessarily naively q-ample. On the other hand, naive
q-ampleness implies q-T -ampleness by definition.

2 Note that the resulting resolution is not guaranteed to be finite; see [Laz04, Example 1.2.21]
for a discussion of this possibility.
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Partial positivity: q-ample line bundles 213

Remark 2.7 The idea behind the definition of q-T -ampleness is to reduce the
question of q-ampleness to the vanishing of finitely many cohomology groups.
It is not known whether the three definitions coincide in positive characteristic.

The following result of Totaro compares the three different approaches to
q-ampleness in characteristic 0.

Theorem 2.8 (Totaro; [Tot13, Theorem 8.1]) Over a field of characteristic 0,
the three definitions of partial ampleness are equivalent.

The proof uses methods from positive characteristics to generalize a vanish-
ing result of Arapura [Ara06, Theorem 5.4], at the same time it relies on earlier
work of Orlov and Kawamata on resolutions of the diagonal via Koszul-ample
line bundles.

Remark 2.9 (Resolution of the diagonal) One of the main building blocks of
[Tot13] is an explicit resolution of the diagonal as a sheaf on X × X depending
on an ample line bundle A on X. This is used as a tool to prove an important
result on the regularity of tensor products of sheaves (see Theorem 2.10 below,
itself an improvement over a statement of Arapura [Ara06, Corollary 1.12]),
which in turn is instrumental in showing that q-T-ampleness implies uniform
q-ampleness, the nontrivial part of Totaro’s theorem on the equivalence of the
various definitions of partial vanishing.

The resolution in question – which exists over an arbitrary field – had first
been constructed by Orlov [Orl97, Proposition A.1] under the assumption that
A is sufficiently ample, and subsequently improved by Kawamata [Kaw04]
by making the more precise assumption that the coordinate ring R(X,A) is a
Koszul algebra.

Totaro reproves Kawamata’s result under the weaker hypothesis that for A,
the section ring R(X,A) is N-Koszul for some positive integer N (for the most
of [Tot13] one will set N = 2 dim X).

To construct the Kawamata–Orlov–Totaro resolution of the diagonal, we
will proceed as follows. First, we define a sequence of k-vector spaces Bi by
setting

Bi
def
=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
k if i = 0,

H0 (X,A) if i = 1,

ker
(
Bi−1 ⊗ H0 (X,A) −→ Bi−2 ⊗ H0

(
X,A2

))
if i ≥ 2 .

Note that A is N-Koszul precisely if the following sequence of graded R(X,A)-
modules cooked up from the Bis is exact:

BN ⊗ R(X,A)(−N) −→ . . . −→ B1 ⊗ R(X,A)(−1) −→ R(X,A) −→ k −→ 0 .
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214 D. Greb and A. Küronya

Next, set

Ri
def
=

⎧⎪⎪⎨⎪⎪⎩OX if i = 0 ,

ker (Bi ⊗ OX −→ Bi−1 ⊗A) if i > 0 .

Totaro’s claim [Tot13, Theorem 2.1] goes as follows: if A is an N-Koszul line
bundle on X, then there exists an exact sequence

RN−1 �A−N+1 −→ · · · −→ R1 �A−1 −→ R0 � OX −→ OΔ −→ 0 ,

where � denotes the external tensor product on X × X, and Δ ⊂ X × X stands
for the diagonal.

The above construction leads to a statement of independent interest about
the regularity of tensor products of sheaves, which had already appeared in
some form in [Ara06].

Theorem 2.10 (Totaro; [Tot13, Theorem 3.4]) Let X be a connected and
reduced projective scheme of dimension n, A a 2n-Koszul line bundle, E a
vector bundle, F a coherent sheaf on X. Then,

reg(E ⊗ F) ≤ reg(E) + reg(F) .

Remark 2.11 In the case of X = Pn
C

the above theorem is a simple application
of Koszul complexes (see [Laz04, Proposition 1.8.9], for instance).

Remark 2.12 (Positive characteristic methods) Another crucial point in the
proof of the equivalence of the various definitions of q-ampleness is a van-
ishing result in positive characteristic originating in the work of Arapura in
the smooth case [Ara06, Theorem 5.3] that was extended to possibly singular
schemes by Totaro [Tot13, Theorem 5.1] exploiting a flatness property of the
Frobenius over arbitrary schemes over fields of prime cardinality.

The statement is essentially as follows: let X be a connected and reduced
projective scheme of dimension n over a field of positive characteristic p, A a
Koszul-ample line bundle on X, q a natural number. Let L be a line bundle on
X satisfying

Hq+1
(
X,L ⊗A⊗(−n−1)

)
= Hq+2

(
X,L ⊗A⊗(−n−2)

)
= . . . = {0} .

Then, for any coherent sheaf F on X one has

Hi
(
X,L⊗pm ⊗ F

)
= {0} for all i > q and pm ≥ regA(F).
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Partial positivity: q-ample line bundles 215

2.2 Basic properties of q-ampleness

From now on we return to our blanket assumption and work over the com-
plex number field; we will immediately see that the equivalence of the various
definitions brings all sorts of perks.

First, we point out that q-ampleness enjoys many formal properties analo-
gous to ampleness. The following statements have been part of the folklore;
for precise proofs we refer the reader to [Ott12, Proposition 2.3] and [DPS96,
Lemma 1.5].

Lemma 2.13 Let X be a projective scheme, L a line bundle on X, q a natural
number. Then, the following hold:

1. L is q-ample if and only if L|Xred is q-ample on Xred.

2. L is q-ample precisely if L|Xi is q-ample on Xi for every irreducible
component Xi of X.

3. For a finite morphism f : Y → X, if L on X is q-ample then so is f ∗L.
Conversely, if f is surjective as well, then the q-ampleness of f ∗L implies
the q-ampleness of L.

The respective proofs of the ample case go through with minimal modifica-
tions. Another feature surviving in an unchanged form is the fact that to check
(naive) q-ampleness we can restrict our attention to line bundles.

Lemma 2.14 Let X be a projective scheme, L a line bundle, A an arbitrary
ample line bundle on X. Then, L is q-ample precisely if there exists a natural
number m0 = m0(A,L) having the property that

Hi
(
X,L⊗m ⊗A⊗−k

)
= {0}

for all i > q, k ≥ 0, and m ≥ m0k.

Proof Follows immediately by decreasing induction on q from the fact
that every coherent sheaf F on X has a possibly infinite resolution by finite
direct sums of non-positive powers of the ample line bundle A ([Laz04,
Example 1.2.21]).

Ample line bundles are good to work with for many reasons, but the fact
that they are open both in families and in the Néron–Severi space contributes
considerably. As it turns out, the same properties are valid for q-ample line
bundles as well.

Theorem 2.15 (Totaro; [Tot13, Theorem 9.1]) Let π : X → B be a flat pro-
jective morphism of schemes (over Z) with connected fibers, L a line bundle
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216 D. Greb and A. Küronya

on X, q a natural number. Then, the subset of points b of B having the property
that L|Xb is q-ample is Zariski open.

Sketch of proof This is one point where q-T -ampleness plays a role, since
in that formulation one only needs to check vanishing for a finite number of
cohomology groups.

Assume that L|Xb is q-T -ample for a given point b ∈ B; let U be an affine
open neighborhood on b ∈ B, and A a line bundle on π−1(U) ⊆ X, whose
restriction to Xb is Koszul-ample. Since Koszul-ampleness is a Zariski-open
property, A|Xb′ is again Koszul-ample for an open subset of points b′ ∈ U;
without loss of generality we can assume that this holds on the whole of U.

We will use the line bundle A|Xb′ to check q-T -ampleness of LXb′ in an open
neighborhood on b ∈ U. By the q-T -ampleness of L|Xb there exists a positive
integer m0 satisfying

Hq+1
(
Xb,L

⊗m0 ⊗A⊗−n−1
)
= . . . = Hn

(
Xb,L

⊗m0 ⊗A⊗−2n+q
)
= {0} .

It follows from the semicontinuity theorem that the same vanishing holds true
for points in an open neighborhood of b.

In a different direction, Demailly, Peternell, and Schneider proved that uni-
form q-ampleness is open in the Néron–Severi space. To make this precise
we need the fact that uniform q-ampleness is a numerical property; once this
is behind us, we can define q-ampleness for numerical equivalence classes of
R-divisors.

Remark 2.16 Note that a line bundle L is q-ample if and only if L⊗m is
q-ample for some positive integer m. Therefore it makes sense to talk about
q-ampleness of Q-Cartier divisors; a Q-divisor D is said to be q-ample if it has
a multiple mD that is integral and OX(mD) is q-ample.

Theorem 2.17 (q-ampleness is a numerical property) Let D and D′ be numer-
ically equivalent integral Cartier divisors on an irreducible complex projective
variety X, q a natural number. Then,

D is q-ample ⇔ D′ is q-ample.

Demailly, Peternell, and Schneider [DPS96, Proposition 1.4] only prove this
claim for smooth projective varieties. The proof in [DPS96] cites the complete-
ness of Pic0(X), hence it is far from obvious how to extend it. Here we give a
proof that is valid under the more general given hypothesis. Instead of dealing
with uniform q-ampleness, we use the naive formulation.
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Proof Let N′ be a numerically trivial line bundle, L a q-ample line bundle on
X. This means that for a given coherent sheaf F, we have

Hi
(
X,L⊗m ⊗ F

)
= {0} for i > q and m0 = m0(L,F).

We need to prove that

Hi
(
X, (L ⊗N′)⊗m ⊗ F

)
= {0}

holds for all i > q, and for suitable m ≥ m1(L,N′,F). To this end, we will
study the function

f (m)
i : N �→ hi

(
X,L⊗m ⊗N ⊗ F

)
as a function on the closed points of the subscheme X of the Picard scheme
that parameterizes numerically trivial line bundles on X, which is a scheme
of finite type by the boundedness of numerically trivial line bundles [Laz04,
Theorem 1.4.37]. We know that

f (m)
i (OX) = hi

(
X,L⊗m ⊗ F

)
= {0}

for i > q, and m ≥ m0. By the semicontinuity theorem, f (m)
i attains the same

value on a dense open subset of X.
By applying Noetherian induction and semicontinuity on the irreducible

components of the complement (on each of which we apply the q-ampleness
of L for coherent sheaves of the shape F ⊗ N, N numerically trivial) we will
eventually find a value m′0 = m′0(L,F) such that

f (m)
i ≡ 0

for all i > q and m ≥ m′0.
But this implies that

Hi
(
X, (L ⊗N′)⊗m ⊗ F

)
= Hi

(
X,L⊗m ⊗ ((N′)⊗m) ⊗ F

)
= {0}

for m ≥ m′0, since the required vanishing holds for an arbitrary numerically
trivial divisor in place of (N′)⊗m.

Remark 2.18 As a result, we are in a position to extend the definition
of q-ampleness elements of N1(X)Q: if α is a numerical equivalence class
of Q-divisors, then we will call it q-ample if one (equivalently all) of its
representatives are q-ample.

Remark 2.19 Since Fujita’s vanishing theorem also holds over algebraically
closed fields of positive characteristic (see [Fuj83] or [Laz04, Remark 1.4.36]),
the boundedness of numerically trivial line bundles holds again in this case by
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218 D. Greb and A. Küronya

[Laz04, Proposition 1.4.37] and we can conclude that naive q-ampleness is
invariant with respect to numerical equivalence in that situation as well.

Definition 2.20 (q-ampleness for R-divisors) An R-divisor D on a complex
projective variety is q-ample if

D = D′ + A ,

where D′ is a q-ample Q-divisor, A an ample R-divisor.

The result that q-ample R-divisors form an open cone in N1(X)R was proved
in [DPS96]. Here we face the same issue as with Theorem 2.17: in the article
[DPS96] only the smooth case is considered, and the proof given there does not
seem to generalize to general varieties. Here we present a proof of the general
case.

Definition 2.21 Given α ∈ N1(X)R, we set

q(α)
def
= min

{
q ∈ N |α is q-ample

}
.

Theorem 2.22 (Upper-semicontinuity of q-ampleness) Let X be an irre-
ducible projective variety over the complex numbers. Then, the function

q : N1(X)R −→ N

is upper-semicontinuous. In particular, for a given q ∈ N, the set of q-ample
classes forms an open cone.

In order to be able to prove this result, we need some auxiliary statements.
To this end, Demailly, Peternell, and Schneider introduce the concept of height
of coherent sheaves with respect to a given ample divisor. Roughly speaking,
the height of a coherent sheaf tells us, what multiples of the given ample divisor
we need to obtain a linear resolution.

Definition 2.23 (Height) Let X be an irreducible projective variety, F a
coherent sheaf, A an ample line bundle. Consider the set R of all resolutions

. . .→
⊕

1≤l≤mk

A⊗−dk,l → . . .→
⊕

1≤l≤m0

A⊗−d0,l → F → 0

of F by non-positive powers of A (that is, dk,l ≥ 0). Then,

htA(F)
def
= min

R
max

0≤k≤dim X,1≤l≤mk

dk,l .

Remark 2.24 One could define the height by looking at resolutions without
truncating, that is, by

h̃tA(F)
def
= min

R
max

0≤k, 1≤l≤mk

dk,l .
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On a general projective variety there might be sheaves that do not possess
finite locally free resolutions at all, and it can happen that the height of a sheaf
is infinite if we do not truncate resolutions.

A result of Arapura [Ara04, Corollary 3.2] gives effective estimates on the
height of a coherent sheaf in terms of its Castelnuovo–Mumford regularity.

Lemma 2.25 Let X be an irreducible projective variety, A an ample and
globally generated line bundle, F a coherent sheaf on X. Given a natural
number k, there exist vector spaces Vi for 1 ≤ i ≤ k and a resolution

Vk ⊗A⊗−rF−krX → . . .→ V1 ⊗A⊗−rF−rX → V0 ⊗A⊗−rF → F → 0 ,

where

rF
def
= regA(F) and rX

def
= max

{
1, regA(OX)

}
.

Proof Without loss of generality we can assume that F is 0-regular by replac-
ing F by F ⊗ ArF , thus we can assume rF = 0. Consequently, F is globally

generated by Mumford’s theorem; set V0
def
= H0 (X,F), and

K0
def
= F ⊗A⊗−rX , K1

def
= ker

(
V0 ⊗ OX � K0 ⊗A⊗rX

)
.

A quick cohomology computation [Ara06, Lemma 3.1] shows that K1 is rX-
regular, hence we can repeat the above process for K1 in place of F. This
leads to a sequence of vector spaces Vi, and sheaves Ki which fit into the exact
sequences

0 −→ Ki+1 −→ Vi ⊗ OX −→ Ki ⊗A⊗rX −→ 0

or, equivalently,

0 −→ Ki+1 ⊗A⊗−irX −→ Vi ⊗A⊗−irX −→ Ki ⊗A⊗(1−i)rX −→ 0 .

We obtain the statement of the lemma by combining these sequences into the
required resolution.

Corollary 2.26 With notation as above, the height of an rF-regular coherent
sheaf F is

htA(F) ≤ rF + rX · dim X .

Proposition 2.27 (Properties of height) Let X be an irreducible projective
variety of dimension n, A an ample line bundle. Then, the following hold:

1. For coherent sheaves F1 and F2 we have

htA(F1 ⊗ F2) ≤ htA(F1) + htA(F2) .
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220 D. Greb and A. Küronya

2. There exists a positive constant M = M(X,A) having the property that

htA(N) ≤ M

for all numerically trivial line bundles N on X.

Proof The first statement is an immediate consequence of the fact that the
tensor product of appropriate resolutions of F1 and F2 is a resolution of F1⊗F2

of the required type.
The second claim is a consequence of the fact that numerically trivial divi-

sors on a projective variety are parameterized by a quasi-projective variety.
Indeed, it follows by Lemma 2.28 and the Noetherian property of the Zariski
topology that there exists a constant M′ satisfying

regA(N) ≤ M′

for all numerically trivial line bundles N. By the Corollary of Lemma 2.25,

htA(N) ≤ M
def
= M′ + rX · dim X ,

as required.

Lemma 2.28 (Upper-semicontinuity of Castelnuovo–Mumford regularity)
Let X be an irreducible projective variety, A an ample and globally generated
line bundle on X. Given a flat family of line bundles L on X parameterized by
a quasi-projective variety T , the function

T ' t �→ regA(Lt)

is upper-semicontinuous.

Proof Since Castelnuovo–Mumford regularity is checked by the vanishing of
finitely many cohomology groups of line bundles, the statement follows from
the semicontinuity theorem for cohomology.

Example 2.29 (Height and regularity on projective spaces) Here we dis-
cuss the relationship between height and regularity with respect to O(1) on
an n-dimensional projective space P. We claim that

ht(F) = reg(F) + n

holds for an arbitrary coherent sheaf F on P.
For the inequality

ht(F) ≤ reg(F) + n
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observe that by [Laz04, Proposition 1.8.8] there must exist a long exact
sequence

. . . −→
⊕

OP(−reg(F) − 1) −→
⊕

OP(−reg(F)) −→ F −→ 0 ,

hence we are done by the definition of height.
To see the reverse inequality, let

. . . −→ F2 −→ F1 −→ F0 −→ F −→ 0

be a resolution of F with

Fk =

k⊕
i=1

OP(−dk,i) .

Since dk,i ≤ ht(F) by definition, we obtain that Fk is ht(F) − k regular for all
n ≥ k ≥ 0, therefore

reg(F) ≤ ht(F) − n

according to [Laz04, Example 1.8.7].

Remark 2.30 (Height and Serre vanishing with estimates) The introduc-
tion of the height of a coherent sheaf leads to an effective version of Serre’s
vanishing theorem. With the notation of the Introduction, we have

m0(A,F) ≤ m0(A,A) + htA(F) .

Lemma 2.31 (Demailly–Peternell–Schneider; [DPS96, Proposition 1.2]) Let
L be a uniformly q-ample line bundle on X with respect to an ample line bundle
A for a given constant λ = λ(A,L). Given a coherent sheaf F on X,

Hi
(
X,L⊗m ⊗ F

)
= {0}

for all i > q and m ≥ λ · (htA(F) + 1).

Proof Let

. . .→
⊕

1≤l≤mk

A⊗−dk,l → . . .→
⊕

1≤l≤m0

A⊗−d0,l → F → 0

be a resolution where the value of htA(F) is attained, and write Fk for the
image sheaf of the kth differential in the above sequence (note that F0 = F).
Chopping up the resolution of F into short exact sequences yields
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222 D. Greb and A. Küronya

0 −→ Fk+1 −→
⊕

1≤l≤mk

A⊗−dk,l −→ Fk −→ 0

for all 0 ≤ k ≤ dim X. By the uniform q-ampleness assumption on L we obtain
that

Hi
(
X,L⊗m ⊗A⊗−dk,l

)
= {0} for all i > q and m ≥ λ(dk,l + 1).

By induction on k we arrive at

Hi
(
X,L⊗m ⊗ F

)
	 . . . 	 Hi+k

(
X,L⊗m ⊗ Fk

)
	 Hi+k+1

(
X,L⊗m ⊗ Fk+1

)
for all i > q and m ≥ λ(htA(F) + 1). The statement of the lemma follows by
taking k = dim X.

The idea for the following modification of the proof of [DPS96, Proposition
1.4] was suggested to us by Burt Totaro.

Proof of Theorem 2.22 Fix an integral ample divisor A, as well as integral
Cartier divisors B1, . . . , Bρ whose numerical equivalence classes form a basis
of the rational Néron–Severi space. Let D be an integral uniformly q-ample
divisor (for a constant λ = λ(D, A)), D′ a Q-Cartier divisor, and write

D′ ≡ D +
ρ∑

i=1

λiBi

for rational numbers λi. Let k be a positive integer clearing all denominators,
then

kD′ = kD +
ρ∑

i=1

kλiBi + N

for a numerically trivial (integral) divisor N. We want to show that

Hi (X, mkD′ − pA
)
= {0}

whenever m ≥ λ(D′, A) · p for a suitable positive constant λ. By Lemma 2.31
applied with

L = OX(D) , A = OX(A) , and F = OX(
ρ∑

i=1

mkλiBi + mN − pA) ,

this will happen whenever

m ≥ λ(D, A) · htA(
ρ∑

i=1

mkλiBi + mN − pA) .
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Observe that

htA(
ρ∑

i=1

mkλiBi + mN − pA) =
ρ∑

i=1

htA(mkλiBi) + htA(mN) + htA(−pA)

≤
ρ∑

i=1

mk|λi| ·max {htA(Bi), htA(−Bi)} + M + p ,

where M is the constant from Proposition 2.27; note that htA(−pA) = p for
p ≥ 0. Therefore, if the λis are close enough to zero so that

λ ·
ρ∑

i=1

k|λi| ·max {htA(Bi), htA(−Bi)} <
1
2

,

then it suffices to require

m ≥ 2λ(M + p) ,

and D′ will be q-ample. This shows the upper-semicontinuity of uniform
q-ampleness.

Remark 2.32 If D1 is a q-ample and D′ is an r-ample divisor, then their sum
D+D′ can only be guaranteed to be q+ r-ample; this bound is sharp, as shown
in [Tot13, Section 8]. As a consequence, the cone of q-ample R-divisor classes
is not necessarily convex. We denote this cone by Ampq(X).

Interestingly enough, if we restrict our attention to semi-ample divisors, then
Sommese proves in [Som78] (see also Corollary 2.45 below) that the sum of
q-ample divisors retains this property.

It is an interesting question how to characterize the cone of q-ample divisors
for a given integer q. If q = 0, then the Cartan–Serre–Grothendieck theorem
implies that Amp0(X) equals the ample cone.

Totaro describes the (n − 1)-ample cone with the help of duality theory.

Theorem 2.33 (Totaro; [Tot13, Theorem 10.1]) For an irreducible projective
variety X we have

Ampn−1(X) = N1(X)R \ (−Eff(X)) .

Corollary 2.34 (1-ampleness on surfaces) If X is a surface, then a divisor D
on X is 1-ample if and only if (D · A) > 0 for some ample divisor A on X.

Remark 2.35 The cone of q-ample divisors on a Q-factorial projective toric
variety has been shown to be polyhedral (more precisely, to be the interior
of the union of finitely many rational polyhedral cones) by Broomhead and
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224 D. Greb and A. Küronya

Prendergast-Smith [BPS12, Theorem 3.3]. Nevertheless, an explicit combina-
torial description in terms of the fan of the underlying toric variety along the
lines of [HKP06] is not yet known.

Totaro links partial positivity to the vanishing of higher asymptotic coho-
mology. Generalizing the main result of [dFKL07] (see also [Kür06] for
terminology), he asks the following question:

Question 2.36 (Totaro) Let D be an R-divisor class on a complex projective
variety, 0 ≤ q ≤ n an integer. Assume that ĥi (X, D′) = 0 for all i > q and all
D′ ∈ N1(X)R in a neighborhood of D. Is is true that D is q-ample?

Remark 2.37 Broomhead and Prendergast-Smith [BPS12, Theorem 5.1]
answered Totaro’s question positively for toric varieties.

It is expected the q-ampleness should have more significance in the case
of big line bundles. A first move in this direction comes from the following
Fujita-type vanishing statement (see [Fuj83] or [Laz04, Theorem 1.4.35] for
Fujita’s original statement).

Theorem 2.38 ([Kür10], Theorem C) Let X be a complex projective scheme,
L a big Cartier divisor, F a coherent sheaf on X. Then there exists a positive
integer m0(L,F) such that

Hi (X,F ⊗ OX(mL + D)) = {0}

for all i > dim B+(L), m ≥ m0(L,F), and all nef divisors D on X.

Remark 2.39 (Augmented base loci on schemes) The augmented base locus
of a Q-Cartier divisor L is defined in [ELM+06] via

B+(L)
def
=
⋂

A

B(L − A),

where A runs through all ample Q-Cartier divisors. As opposed to the stable
base locus of a divisor, the augmented base locus is invariant with respect to
numerical equivalence of divisors. The augmented base locus of a Q-divisor L
is empty precisely if L is ample.

Although it is customary to define the stable base locus and the augmented
base locus of a divisor in the setting of projective varieties, as pointed out in
[Kür10, Section 3], these notions make perfect sense on more general schemes.

For an invertible sheaf L on an arbitrary scheme X, let us denote by FL the
quasi-coherent subsheaf of L generated by H0 (X,L). Then we can set

b(L)
def
= annOX (L/FL) ,
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and define Bs(L) to be the closed subscheme corresponding to b(L). Further-
more, we define

B(L)
def
=

∞⋂
m=1

Bs(L⊗m)red ⊆ X

as a closed subset of the topological space associated with X. All basic prop-
erties of the stable base locus are retained (see again [Kür10, Section 3]), in
particular, if X is complete and algebraic over C (by which we mean separated,
and of finite type over C), then we recover the original definition of stable base
loci.

Assuming X to be projective and algebraic over C, we define the augmented
base locus of a Q-Cartier divisor L via

B+(L)
def
=
⋂

A

B(L − A),

where A runs through all ample Q-Cartier divisors. Again, basic properties
are preserved, and in the case of projective varieties we recover the original
definition.

An interesting further step in this direction is provided by Brown’s work,
where he connects q-ampleness of a big line bundle to its behavior when
restricted to its augmented base locus.

Theorem 2.40 (Brown; [Bro12, Theorem 1.1]) Let L be a big line bundle on
a complex projective scheme X, denote by B+(L) the augmented base locus of
L. For a given integer 0 ≤ q ≤ n, L is q-ample if and only if L|B+(L) is q-ample.

We give a very rough outline of the proof of Brown’s result. First, if L is
q-ample on X and Y ⊆ X denotes B+(L) with the reduced induced scheme
structure, then the projection formula and the preservation of cohomology
groups under push-forward by closed immersions imply that L|B+(L) is q-ample
as well.

The other implication comes from the following useful observation from
[Bro12], a restriction theorem for line bundles that are not q-ample [Bro12,
Theorem 2.1]: let L be a line bundle on a reduced projective scheme X, which
is not q-ample, and let L′ be a line bundle on X with a nonzero section s having
the property that L⊗a ⊗ L′⊗−b is ample for some positive integers a, b. Then,
L|Z(s) is not q-ample.
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2.3 Sommese’s geometric q-ampleness

In this section, we will discuss Sommese’s geometric notion of q-ampleness,
and relate it to the more cohomologically oriented discussion in the previous
sections.

Definition 2.41 (Sommese; [Som78, Definition 1.3]) Let X be a projective
variety, L a line bundle on X. We say that L is geometrically q-ample for a
natural number q if

1. L is semi-ample, i.e., L⊗m is globally generated for some natural number
m ≥ 1;

2. the maximal fiber dimension of φ|L⊗m | is at most q.

More generally, Sommese defines a vector bundle E over X to be geometri-
cally q-ample if OP(E)(1) is geometrically q-ample, and goes on to prove many
interesting results for vector bundles (see [Som78, Proposition 1.7 or 1.12], for
instance). In this paper we will only treat the line bundle case.

Remark 2.42 (Iitaka fibration) We briefly recall the semi-ample or Iitaka
fibration associated with a semi-ample line bundle L on a normal projective
variety X [Laz04, Theorem 2.1.27]: there exists an algebraic fiber space (a
surjective projective morphism with connected fibers) φ : X → Y with the
property that for any sufficiently large and divisible m ∈ N one has

φ|L⊗m | = φ and Ym = Y ,

where Ym denotes the image of X under φ|L⊗m |.
In addition there exists an ample line bundle A on X such that

φ∗A = L⊗k

for a suitable positive integer k.

Remark 2.43 If X is a normal variety then Sommese’s conditions are equiv-
alent to requiring that L is semi-ample and its semi-ample fibration has fiber
dimension at most q. In the case when X is not normal, it is a priori not clear
if the set of integers q for which L is q-ample depends on the choice of m; a
posteriori this follows from Sommese’s theorem. Nevertheless, for this reason
the definition via the Iitaka fibration is cleaner in the case of normal varieties.

We summarize Sommese’s results in this direction.

Theorem 2.44 (Sommese; [Som78, Proposition 1.7]) Let X be a projective
variety, L a semi-ample line bundle over X with Iitaka fibration φL. For a
natural number q, the following are equivalent:
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(i) The line bundle L is geometrically q-ample.
(ii) The maximal dimension of an irreducible subvariety Z ⊆ X with the

property that L|Z is trivial is at most q.
(iii) If ψ : Z → X is a morphism from a projective variety Z such that φ∗L is

trivial, then dim Z ≤ q.
(iv) The line bundle L is naively q-ample, that is, for every coherent sheaf F

on X there exists a natural number m0 = m0(L,F) with the property that

Hi
(
X,F ⊗ L⊗m

)
= 0 for all i > q and m ≥ m0.

Proof All equivalences are treated in [Som78]. Here we describe the equiv-
alence between (i) and (iv), that is, we prove that for semi-ample line bundles
geometric and cohomological q-ampleness agree.

Let m0 ≥ 1 be an integer for which L⊗m0 is globally generated, and let
φ : X → Y ⊆ P denote the associated morphism. Then there exists an ample
line bundle A on Y and a positive integer k such that L⊗k = φ∗A. Fix a coherent
sheaf F on X, and consider the Leray spectral sequence

Hp
(
Y, Rrφ∗(F ⊗ L⊗m)

)
=⇒ Hp+r

(
X,F ⊗ L⊗m

)
.

Let us write m = sk + t with 0 ≤ t < k and s ≥ 0 integers. For the cohomology
groups on the LHS

Hp
(
Y, Rrφ∗(F ⊗ L⊗m)

)
= Hp

(
Y, Rrφ∗(F ⊗ (L⊗k)⊗s ⊗ L⊗t)

)
= Hp

(
Y, Rrφ∗(F ⊗ L⊗t) ⊗A⊗s

)
by the projection formula. Serre’s vanishing theorem yields

Hp
(
Y, Rrφ∗(F ⊗ L⊗t) ⊗A⊗s

)
= 0 for all p ≥ 1, s � 0 and all 0 ≤ t < k,

hence

H0
(
Y, Rrφ∗(F ⊗ L⊗m)

)
	 Hr

(
X,F ⊗ L⊗m

)
for m � 0. On the other hand, if the maximal fiber dimension of φ is q, then
Rrφ∗(F ⊗ L⊗m) = 0 for all r > q and therefore

Hr
(
X,F ⊗ L⊗m

)
= 0 for all m � 0 and r > q.

Consequently, L is naively q-ample as claimed.
For the other implication assume that L is not geometrically q-ample, hence

has a fiber F ⊆ X of dimension f > q. Starting from here one constructs a
coherent sheaf F on F having the property that Rf φ∗F is a skyscraper sheaf,
which, by the Leray spectral sequence above, would imply that

H f
(
X,F ⊗ L⊗ks

)
� 0 for all s ≥ 1.
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Without loss of generality we can assume that F is irreducible, otherwise we
replace it by one of its top-dimensional irreducible components. Let π : F̃ → F
denote a resolution of singularities of F, and consider the Grauert–Riemen–
Schneider canonical sheaf

F
def
= KF̃/F

def
= π∗ωF̃ .

By Grauert–Riemenschneider [GR70]

Rf (φ|F)∗F 	 H f (F,F) � 0

as φ|F maps F to a point.

Corollary 2.45 Let D1 and D2 be geometrically q-ample divisors on a
smooth variety. Then so is D1 + D2.

Proof This is [Som78, Corollary 1.10.2].

Additionally, Kodaira–Akizuki–Nakano vanishing continues to hold for the
expected range of cohomology groups and degrees of differential forms.

Theorem 2.46 (Kodaira–Akizuki–Nakano for geometrically q-ample bundles)
Let L be a geometrically q-ample line bundle on a smooth projective variety
X. Then,

Hi
(
X,∧ jΩX ⊗ L

)
= {0} for all i + j > dim X + q.

In particular, the following q-Kodaira vanishing holds:

Hi (X, ωX ⊗ L) = {0} for all i > q.

Proof This is proven in [Som78, Proposition 1.12].

Remark 2.47 Sommese’s version of the Kodaira–Akizuki–Nakano vanish-
ing was later shown by Esnault and Viehweg to hold for an even larger range
of values for i and j, see [EV89] and [EV92, Corollary 6.6].

In Example 2.54 and Section 3 below we discuss the question of whether
Kodaira vanishing still continues to hold when one drops the semi-ampleness
condition, i.e., for general q-ample line bundles.

2.4 Ample subschemes and a Lefschetz hyperplane theorem for
q-ample divisors

Building upon the theory of q-ample line bundles and Hartshorne’s classical
work [Har70], Ottem [Ott12] defines the notion of an ample subvariety (or
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subscheme) and goes on to verify that ample subvarieties share many of the sig-
nificant algebro-geometric and topological properties of their codimension-1
counterparts. One of the highlights of his work is a Lefschetz-type hyperplane
theorem, which we will use for a proof of Kodaira’s vanishing theorem for
effective q-ample Du Bois divisors in Section 3 below. Here we briefly recall
the theory obtained in [Ott12].

Definition 2.48 (Ample subschemes) Let X be a projective scheme, Y ⊆
X a closed subscheme of codimension r, π : X̃ → X the blow-up of Y with
exceptional divisor E. Then, Y is called ample if E is (r − 1)-ample on X̃.

The idea behind this notion is classical: it has been known for a long time
that positivity properties of Y can often be read off from the geometry of the
complement X − Y 	 X̃ − E. In spite of this, the concept has not been defined
until recently.

Example 2.49 As can be expected, linear subspaces of projective spaces are
ample.

Remark 2.50 (Cohomological dimension of the complement of an ample
subscheme) An important geometric feature of ample divisors is that their
complement is affine. In terms of cohomology, this is equivalent to requiring

Hi (X,F) = {0} for all i > 0, F coherent sheaf on X.

If we denote as customary the cohomological dimension of a subset Y ⊆ X by
cd(Y), then we can phrase Ottem’s generalization [Ott12, Proposition 5.1] to
the q-ample case as follows: if U ⊆ X is an open subset of a projective scheme
X having the property that X \ U is the support of a q-ample divisor, then

cd(U) ≤ q .

The observation on cohomological dimensions of complements leads to the
following Lefschetz-type statement:

Theorem 2.51 (Generalized Lefschetz hyperplane theorem, Ottem; [Ott12,
Corollary 5.2]) Let D be an effective q-ample divisor on a projective variety
X with smooth complement. Then, the restriction morphism

Hi (X,Q) −→ Hi (D,Q) is

⎧⎪⎪⎨⎪⎪⎩an isomorphism for 0 ≤ i ≤ n − q − 1,

injective for i = n − q − 1.

We give Ottem’s proof to show the principles at work.
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Proof Via the long exact sequence for relative cohomology and Lefschetz
duality, the statement reduces to the claim that

Hi (X \ D,C) = {0} for i > n + q.

This latter follows from the Frölicher spectral sequence

Est
1 = Hs

(
X \ D,Ωt

X\D

)
=⇒ Hs+t (X \ D,C) ,

as

Hs
(
X \ D,Ωt

X\D

)
= {0} for all s + t > n + q

by Remark 2.50.

Corollary 2.52 (Lefschetz hyperplane theorem for ample subvarieties; [Ott12,
Corollary 5.3]) Let Y be an ample local complete intersection subscheme in
a smooth complex projective variety X. Then, the restriction morphism

Hi (X,Q) −→ Hi (Y,Q) is

⎧⎪⎪⎨⎪⎪⎩an isomorphism if i < dim Y,

injective if i = dim Y.

The following is a summary of properties of smooth ample subschemes:

Theorem 2.53 (Properties of smooth ample subschemes; [Ott12, Corollary
5.6 and Theorem 6.6]) Let X be a smooth projective variety, Y ⊆ X a
non-singular ample subscheme of dimension d ≥ 1. Then, the following hold:

1. The normal bundle NY/X of Y is an ample vector bundle.
2. For every irreducible (dim X − d)-dimensional subvariety Z ⊆ X one has

(Y · Z) > 0. In particular, Y meets every divisor.
3. The Lefschetz hyperplane theorem holds for rational cohomology on Y:

Hi (X,Q) −→ Hi (Y,Q) is

⎧⎪⎪⎨⎪⎪⎩an isomorphism if i < dim Y,

injective if i = dim Y.

4. Let X̂ denote the completion of X with respect to Y. For any coherent sheaf
F on X one has

Hi (X,F) −→ Hi
(
X̂,F

)
is

⎧⎪⎪⎨⎪⎪⎩an isomorphism if i < dim Y,

injective if i = dim Y.

5. The inclusion Y ↪→ X induces a surjection

π1(Y)� π1(X)

on the level of fundamental groups.
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Proof We will only discuss point 5, since it is the only statement that is
slightly different from its original source. Because Y is smooth over a reduced
base, it is automatically reduced and by smoothness again, it is irreducible
exactly when it is connected. But point 3 in the case of i = 0 implies that Y is
connected. The rest follows from Ottem’s proof.

Based on the fact that a Lefschetz-type theorem holds for q-ample divisors,
as seen in Theorem 2.51, and that this forms one of the ingredients of the
proof of the Kodaira vanishing theorem in the classical setup, cf. [Laz04, Sec-
tion 4.2], as well as on the fact that q-Kodaira vanishing continues to hold for
geometrically q-ample divisors, Theorem 2.46, one might hope that there is
a q-Kodaira vanishing theorem for q-ample divisors. The following example
shows that this is not true in general.

Example 2.54 (Counterexample to Kodaira vanishing for non-pseudo-
effective q-ample divisors, Ottem; [Ott12, Section 9]) Let G = S L3(C),
B � G be the Borel subgroup consisting of upper triangular matrices, and
consider the homogeneous space G/B. By the Bott–Borel–Weil theorem and
a brief computation, Ottem shows the existence of a non-pseudo-effective line
bundle L on G/B, which is 1-ample, but for which the cohomology group
H2 (G/B, ωG/B ⊗ L

)
does not vanish.

It turns out, however, that by putting geometric restrictions on the q-ample
divisor in question, one can in fact prove Kodaira-style vanishing theorems.
We will do this in the next section.

3 q-Kodaira vanishing for Du Bois divisors and log
canonical pairs

This section contains the proofs of various versions of Kodaira’s vanishing
theorem for q-ample divisors. First we present the argument in the smooth
case, where the reasoning is particularly transparent and simple.

Theorem 3.1 Let X be a smooth projective variety, D a smooth reduced
effective q-ample divisor on X. Then,

Hi (X,OX(KX + D)) = {0} for all i > q.

Proof By Serre duality, it suffices to show

Hi (X,OX(−D)) = {0} for all i ≤ n − q − 1 .
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To this end, follow the proof of Kodaira vanishing in [Laz04, Section 4.2] with
minor modifications. Ottem’s generalized Lefschetz hyperplane theorem for
effective q-ample divisors, Theorem 2.51, asserts that

Hi (X,C) −→ Hi (D,C)

is an isomorphism for 0 ≤ i < n − q − 1 and an injection for i = n − q − 1.
The Hodge decomposition then gives rise to homomorphisms

rk,l : Hl
(
X,Ωk

X

)
−→ Hl

(
D,Ωk

D

)
(1)

for which rk,l is an isomorphism for 0 ≤ k + l < n − q − 1, and an injection for
k + l = n − q − 1.

Consequently, one has that ro,l : Hl (X,OX)→ Hl (D,OD) is an isomorphism
for l < n − q − 1, and is injective for l = n − q − 1.

Finally, consider the exact sequence

0→ OX(−D)→ OX → OD → 0 .

The properties of r0,l applied to the associated long exact sequence imply
that

Hi (X,OX(−D)) = {0} for all i ≤ n − q − 1

as we wished.

Remark 3.2 Our proof here should also be compared with the discussion
in [EV92, Section 4], where bounds on the cohomological dimension of the
complement of a smooth divisor are also used to derive vanishing theorems of
the type considered here.

Remark 3.3 Note that we have used only part of the information provided by
the homomorphisms (1). The remaining instances lead to an Akizuki–Nakano-
type vanishing result for effective reduced smooth q-ample divisors; cf. the
discussion in [Laz04, Section 4.2]. Note however that a generalization to the
singular setup cannot be expected, as already for ample divisors on Kawamata
log terminal varieties the natural generalization of Kodaira–Akizuki–Nakano
vanishing does not hold in general; we refer the reader to [GKP12, Section 4]
for a discussion and for explicit counterexamples.

One of the original contributions of our work is the observation that the
argument in the proof of Theorem 3.1 can be modified to go through in the Du
Bois case, in particular, for log canonical pairs on smooth projective varieties.
Our discussion here is very much influenced by “Kollár’s principle,” cf. [Rei97,
Section 3.12], that vanishing occurs when a coherent cohomology group has a
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topological interpretation, see [Kol86, Section 5]. For this, we depend heavily
on the discussion of vanishing theorems in [Kol95].

Theorem 3.4 (q-Kodaira vanishing for reduced effective Du Bois divisors)
Let X be a normal proper variety, D ⊂ X a reduced effective (Cartier) divisor
such that

1. OX(D) is q-ample,

2. X \ D is smooth,

3. D (with its reduced subscheme structure) is Du Bois.

Then, we have

H j (X, ωX ⊗ OX(D)) = {0} for all j > q (2)

as well as

H j (X,OX(−D)) = {0} for all j < dim X − q. (3)

We refer the reader to [KS11] and [Kol95, Chapter 12] for introductions to
the theory of Du Bois singularities, as well as to [Kov12] for a simple char-
acterization of the Du Bois property for projective varieties, related to the
properties of Du Bois singularities used here.

Proof Since D is effective and q-ample, and X \ D is smooth, Theorem 2.51
states that the restriction morphism

H j (X,C) H j (D,C)

is an isomorphism for 0 ≤ j < n − q − 1, and injective for j = n − q − 1. If F•

denotes Deligne’s Hodge filtration on H j (D,C) with associated graded pieces
Gr•F , then without any assumption on D, the natural map α j : H j (D,C) →
Gr0

F

(
H j (D,C)

)
factors as

(4)

for each j.
Moreover, since D is assumed to be Du Bois, the map γ j is an isomorphism,

see [Kov12, Section 1]. By abuse of notation, the Hodge filtration on H j (X,C)
will likewise be denoted by F•. By standard results of Hodge theory (e.g., see
[PS08, Theorem 5.33.iii)], the map Φ j is a morphism of Hodge structures; in
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particular it is compatible with the filtrations F• on H j (X,C) and H j (D,C).
Hence, for each j, we obtain a natural commutative diagram

SinceΦ j is an isomorphism for 0 ≤ j < n−q−1, and injective for j = n−q−1,
Hodge theory [PS08, Corollaries 3.6 and 3.7] implies that the same is true for
φ j; i.e., φ j is an isomorphism for 0 ≤ j < n−q−1, and injective for j = n−q−1.
Looking at the long exact cohomology sequence associated with

0→ OX(−D)→ OX → OD → 0

we conclude that

H j (X,OX(−D)) = {0} for 0 ≤ j ≤ n − q − 1, (5)

as claimed in equation (3).
Now, as X \D is smooth and D is Du Bois, X itself has rational singularities

by a result of Schwede [Sch07, Theorem 5.1], see also [KS11, Section 12]. In
particular, X is Cohen–Macaulay, [KM98, Theorem 5.10], and hence we may
apply Serre duality [KM98, Theorem 5.71] to equation (5) to obtain

H j (X, ωX ⊗ OX(D)) = {0} for all j > q,

as claimed in equation (2).

Corollary 3.5 (q-Kodaira vanishing for reduced log canonical pairs) Let X
be a smooth projective variety, D ⊂ X a reduced effective (Cartier) divisor
such that

1. OX(D) is q-ample,
2. the pair (X, D) is log canonical.

Then, we have

H j (X, ωX ⊗ OX(D)) = {0} for all j > q (6)

as well as

H j (X,OX(−D)) = {0} for all j < dim X − q. (7)
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Proof Since D is a union of log canonical centers of the pair (X, D), it is Du
Bois by [KK10, Theorem 1.4]. Hence, the claim follows immediately from
Theorem 3.4.

Example 3.6 To give an example of a q-ample divisor that satisfies the
assumptions of Theorems 3.4 and 3.1 above, and for which the desired van-
ishing does not follow directly from Sommese’s results, let Z ⊂ X be a smooth
ample subscheme of pure codimension r in a projective manifold X, and OX̂(E)
the corresponding (r − 1)-ample line bundle on the blow-up X̂ of X along
Z, cf. Example 2.4. Then, OX̂(E) is clearly not semi-ample, and hence not
geometrically q-ample in the sense of Definition 2.41. However, E is effec-
tive, reduced, and smooth, and hence fulfills the assumptions of Theorems 3.4
and 3.1. In this special case, the desired vanishing can also be derived from the
results presented in [EV92, Section 4].

Finally, we will prove a version of the above for line bundles that are
only Q-effective. We start with the following slight generalization of [Kol95,
Theorem 12.10]:

Proposition 3.7 Let X be a normal and proper variety, L a rank 1 reflexive
sheaf on X, and Di different irreducible Weil divisors on X. Assume that L[m] :=(
L⊗m)∗∗ � OX(

∑
d jDj) for some integers 1 ≤ d j < m. Set mj := m/gcd(m, d j).

Assume furthermore that the pair
(
X,
∑

(1 − 1
mj

)Dj

)
is log canonical. Then, for

every i ≥ 0 and n j ≥ 0, the natural map

Hi
(
X,L[−1](−∑ n jDj)

)
→ Hi

(
X,L[−1]

)
is surjective.

Proof Let p : Y → X be the normalization of the cyclic cover corresponding
to the isomorphism L[m] � OX(

∑
d jDj). By [Kol92, Proposition 20.2], we have

KY = p∗
(
KX +

∑
(1 − 1

mj
)Dj

)
,

and therefore Y is log canonical by [Kol92, Proposition 20.3]. Hence, Y is Du
Bois by [KK10, Theorem 1.4], and the natural map H j (Y,C) → H j (Y,OY ) is
surjective, cf. the discussion in the proof of Theorem 3.4. Consequently, the
assumptions of [Kol95, Theorem 9.12] are fulfilled. This implies the claim.

We are now in a position to prove a version of q-Kodaira vanishing that
works for Q-effective line bundles.
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Theorem 3.8 (q-Kodaira vanishing for effective log canonical Q-divisors)
Let X be a proper, normal, Cohen–Macaulay variety, L a q-ample line bun-
dle on X, and Di different irreducible Weil divisors on X. Assume that Lm �
OX(

∑
d jDj) for some integers 1 ≤ d j < m. Set mj := m/gcd(m, d j). Assume

furthermore that the pair
(
X,
∑

(1 − 1
mj

)Dj
)

is log canonical. Then, we have

H j (X, ωX ⊗ OX(D)) = {0} for all j > q (8)

as well as

H j (X,OX(−D)) = {0} for all j < dim X − q. (9)

Proof With Proposition 3.7 at hand, the proof is the same as in the klt case,
cf. [Kol95, Chapter 10]. By Proposition 3.7, for all i ≥ 0 and for all k ∈ N>0

such that k − 1 is divisible by m, we obtain a surjection

Hi
(
X,L−k

)
� Hi

(
X,L−1

)
.

Since X is Cohen–Macaulay, by Serre duality [KM98, Theorem 5.71], this
surjection is dual to an injection

Hn−i (X, ωX ⊗ L) ↪→ Hn−i
(
X, ωX ⊗ Lk

)
for all k as above. (10)

As L is q-ample, there exists a k � 0 such that

Hn−i
(
X, ωX ⊗ Lk

)
= {0} for all n − i > q.

Hence, owing to the injection (10), we obtain

H j (X, ωX ⊗ L) = {0} for all j > q,

as claimed in equation (8). The dual vanishing (9) then follows from a further
application of Serre duality.

Remark 3.9 For related work discussing ample divisors on (semi)-log
canonical varieties, the reader is referred to [KSS10].

Remark 3.10 (Necessity of assumptions on the singularities) To see that
some assumption on the singularities of the pair (X, D) is necessary in The-
orems 3.4 and 3.8, we note that Kodaira vanishing may fail already for ample
line bundles on Gorenstein varieties with worse than log canonical singulari-
ties, see [BS95, Example 2.2.10]. Moreover, we note that for the dual form (9)
of Kodaira vanishing the Cohen–Macaulay condition is strictly necessary. If X
is a projective variety with ample (Cartier) divisor D for which (9) holds (with
q = 0), then X is Cohen–Macaulay by [KM98, Corollary 5.72].
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