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1 Introduction

In recent years there has been considerable interest in understanding the geom-
etry of irregular varieties, i.e., varieties admitting a nontrivial morphism to an
abelian variety. One of the central results in the area is the following, conjec-
tured by M. Green and R. Lazarsfeld (cf. [GL91, 6.2]) and proven in [Hac04]
and [PP09].

Theorem 1.1 Let λ : X → A be a generically finite (onto its image) morphism
from a compact Kähler manifold to a complex torus. If L → X × Pic0(A) is
the universal family of topologically trivial line bundles, then

RiπPic0(A)∗L = 0 for i < n.

At first sight the above result appears to be quite technical, however it has
many concrete applications (see, e.g., [CH11], [JLT11], and [PP09]). In this
paper we will show that Theorem 1.1 does not generalize to characteristic
p > 0 or to singular varieties in characteristic 0.
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On the failure of generic vanishing 241

Notation 1.2 Let A be an abelian variety over an algebraically closed field
k, Â its dual abelian variety, P the normalized Poincaré bundle on A × Â,
and pÂ : A × Â → Â the projection. Let λ : X → A be a projective morphism,
πÂ : X× Â→ Â the projection, and L := (λ×idÂ)∗P where (λ×idÂ) : X× Â→
A × Â is the product morphism.

Theorem 1.3 Let k be an algebraically closed field. Then, using Notation 1.2,
there exists a projective variety X over k such that

• if char k = p > 0, then X is smooth and
• if char k = 0, then X has isolated Gorenstein log canonical singularities

and a separated projective morphism to an abelian variety λ : X → A which is
generically finite onto its image such that

RiπÂ∗L � 0 for some 0 ≤ i < n.

Remark 1.4 Owing to the birational nature of the statement, Theorem 1.1
generalizes trivially to the case of X having only rational singularities.
Arguably, Gorenstein log canonical singularities are the simplest examples of
singularities that are not rational. Therefore, the characteristic 0 part of Theo-
rem 1.3 may be interpreted as saying that generic vanishing does not extend to
singular varieties in a nontrivial way.

Remark 1.5 Note that Theorem 1.3 seems to contradict the main result of
[Par03].

2 Preliminaries

Let A be a g-dimensional abelian variety over an algebraically closed field k,
Â its dual abelian variety, pA and pÂ the projections of A × Â onto A and Â,
and P the normalized Poincaré bundle on A × Â. We denote by RŜ : D(A)→
D(Â) the usual Fourier–Mukai functor given by RŜ (F ) = RpÂ∗(p∗AF ⊗P)

(cf. [Muk81]). There is a corresponding functor RS : D(Â) → D(A) such
that

RS ◦ RŜ = (−1A)∗[−g] and RŜ ◦ RS = (−1Â)∗[−g].

Definition 2.1 An object F ∈ D(A) is called WIT-i if RjŜ (F) = 0 for all j � i.
In this case we use the notation F̂ = RiŜ (F).

Notice that if F is a WIT-i coherent sheaf (in degree 0), then F̂ is a WIT-(g−i)
coherent sheaf (in degree i) and F 	 (−1A)∗Rg−iS (F̂).
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242 C. D. Hacon and S. J. Kovács

One easily sees that if F and G are arbitrary objects, then

HomD(A)(F,G) = HomD(Â)(RŜ F, RŜ G).

An easy consequence (cf. [Muk81, 2.5]) is that if F is a WIT-i sheaf and G is
a WIT- j sheaf (or if F is a WIT-i locally free sheaf and G is a WIT- j object –
not necessarily a sheaf), then

ExtkOA
(F,G) 	 HomD(A)(F,G[k])

	 HomD(Â)(RŜ F, RŜ G[k])

= HomD(Â)(F̂[−i], Ĝ[k − j]) 	 Extk+i− j
OÂ

(F̂, Ĝ). (1)

Let L be any ample line bundle on Â, then RS (L) = R0S (L) = L̂ is a vector
bundle on A of rank h0(L). For any x ∈ A, let tx : A → A be the translation
by x and let φL : Â → A be the isogeny determined by φL(x̂) = t∗x̂L ⊗ L∨, then

φ∗L(L̂) =
⊕

h0(L) L∨.
Let λ : X → A be a projective morphism of normal varieties, and L =

(λ × idÂ)∗P . We let RΦ : D(X) → D(Â) be the functor defined by RΦ(F) =
RπÂ∗(π

∗
XF ⊗ L ), where πX and πÂ denote the projections of X × Â onto the

first and second factor. Note that

RΦ(F) = RπÂ∗(π
∗
XF ⊗L )

	1 RpÂ∗R(λ × idÂ)∗(π
∗
XF ⊗ (λ × idÂ)∗P)

	2 RpÂ∗

(
R(λ × idÂ)∗(π

∗
XF) ⊗P

)
	3 RpÂ∗(p∗ARλ∗F ⊗P) 	 RŜ (Rλ∗F), (2)

where 	1 follows by composition of derived functors [Har66, II.5.1], 	2 fol-
lows by the projection formula [Har66, II.5.6], and 	3 follows by flat base
change [Har66, II.5.12].

We also define RΨ : D(Â) → D(X) by RΨ(F) = RπX∗(π∗ÂF ⊗ L ). Notice
that if F is a locally free sheaf, then π∗

Â
F ⊗L is also a locally free sheaf. In

particular, for any i ∈ Z, we have that

RiΨ(F) 	 RiπX∗(π
∗
Â

F ⊗L ). (3)

We will need the following fact (which is also proven during the proof of
Theorem B of [PP11]):

Lemma 2.2 Let L be an ample line bundle on Â, then

RΨ(L∨) = RgΨ(L∨) = λ∗L̂∨.
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On the failure of generic vanishing 243

Proof Since L is ample, Hi(Â, L∨ ⊗Lx) = Hi(Â, L∨ ⊗Pλ(x)) = 0 for i � g,
where Pλ(x) = P |λ(x)×Â and Lx = L |x×Â are isomorphic. By cohomology

and base change, RΨ(L∨) = RgΨ(L∨) (resp. L̂∨) is a vector bundle of rank
hg(Â, L∨) on X (resp. on A).

The natural transformation idA×Â → (λ × idÂ)∗(λ × idÂ)∗ induces a natural
morphism

L̂∨ = RgpA∗(p∗
Â

L∨ ⊗P)→ RgpA∗(λ × idÂ)∗(π
∗
Â

L∨ ⊗L ).

Let σ = pA ◦ (λ × idÂ) = λ ◦ πX . By the Grothendieck spectral sequence
associated with pA∗ ◦ (λ × idÂ)∗ there exists a natural morphism

RgpA∗(λ × idÂ)∗(π
∗
Â

L∨ ⊗L )→ Rgσ∗(π
∗
Â

L∨ ⊗L ),

and similarly by the Grothendieck spectral sequence associated with λ∗ ◦ πX∗
there exists a natural morphism

Rgσ∗(π
∗
Â

L∨ ⊗L )→ λ∗R
gπX∗(π

∗
Â

L∨ ⊗L ).

Combining the above three morphisms gives a natural morphism

L̂∨ → λ∗R
gπX∗(π

∗
Â

L∨ ⊗L ) = λ∗R
gΨ(L∨),

and hence by adjointness a natural morphism

η : λ∗L̂∨ → RgΨ(L∨).

For any point x ∈ X, by cohomology and base change, the induced morphism
on the fiber over x is an isomorphism:

ηx : λ∗L̂∨ ⊗ κ(x) 	 Hg(λ(x) × Â, L∨ ⊗Pλ(x))
	−→ Hg(x × Â, L∨ ⊗Lx) 	 RgΨ(L∨) ⊗ κ(x).

Therefore ηx is an isomorphism for all x ∈ X and hence η is an
isomorphism.

3 Examples

Notation 3.1 Let T ⊆ Pn be a projective variety. The cone over T inAn+1 will
be denoted by C(T ). In other words, if T 	 Proj S , then C(T ) 	 Spec S .

Linear equivalence between (Weil) divisors is denoted by ∼ and strict trans-
form of a subvariety T by the inverse of a birational morphism σ is denoted by
σ−1
∗ T .
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244 C. D. Hacon and S. J. Kovács

Example 3.2 Let k be an algebraically closed field, V ⊆ Pn and W ⊆ Pm two
smooth projective varieties over k, and p ∈ V a closed point. Let x0, . . . , xn and
y0, . . . , ym be homogeneous coordinates on Pn and Pm respectively.

Consider the embedding V × W ⊂ PN induced by the Segre embedding
of Pn × Pm. We may choose homogeneous coordinates zi j for i = 0, . . . , n and
j = 0, . . . , m on PN , and in these coordinates Pn×Pm is defined by the equations
zαγzβδ − zαδzβγ for all 0 ≤ α, β ≤ n and 0 ≤ γ, δ ≤ m.

Next let H ⊂ W such that {p} × H ⊂ {p} × W is a hyperplane section of
{p} × W in PN . Let Y = C(V × W) ⊂ AN+1 and Z = C(V × H) ⊂ Y , and let
v ∈ Z ⊂ Y denote the common vertex of Y and Z. If dim W = 0, then H = ∅. In
this case let Z = {v}, the vertex of Y . Finally, let mv denote the ideal of v in the
affine coordinate ring of Y . It is generated by all the variables zi j.

Proposition 3.3 Let f : X → Y be the blowing up of Y along Z. Then f is
an isomorphism over Y \ {v} and the scheme-theoretic pre-image of v (whose
support is the exceptional locus) is isomorphic to V:

f −1(v) 	 V.

Proof As Z is of codimension 1 in Y and Y \ {v} is smooth, it follows that
Z \ {v} is a Cartier divisor in Y \ {v} and hence f is indeed an isomorphism over
Y \ {v}.

To prove the statement about the exceptional locus of f , first assume that
V = Pn, W = Pm, p = [1 : 0 : · · · : 0], and {p} × H = (z0m = 0) ∩ ({p} ×W).
Then H = (ym = 0) ⊆ W and hence I = I(Z), the ideal of Z in the affine
coordinate ring of Y , is generated by {zim|i = 0, . . . , n}. Then by the definition
of blowing up, X = Proj⊕d≥0Id and f −1v 	 Proj⊕d≥0Id/Idmv.

Notice that Id/Idmv is a k-vector space generated by the degree-d monomials
in the variables {zim|i = 0, . . . , n}. It follows that the graded ring ⊕d≥0Id/Idmv

is nothing else but k[zim|i = 0, . . . , n] and hence f −1v 	 Pn = V , so the claim is
proved in this case.

Next consider the case when V ⊆ Pn is arbitrary, but W = Pm. In this case the
calculation is similar, except that we have to account for the defining equations
of V . They show up in the definition of the coordinate ring of Y in the following
way. If a homogeneous polynomial g ∈ k[x0, . . . , xn] vanishes on V (i.e., g ∈
I(V)h), then define gγ ∈ k[zi j] for any 0 ≤ γ ≤ m by replacing xα with zαγ for
each 0 ≤ α ≤ n. Then {gγ|0 ≤ γ ≤ m, g ∈ I(V)h} generates the ideal of Y in
the affine coordinate ring of C(Pn × Pm). It follows that the above computation
goes through in the same way, except that the variables {zim|i = 0, . . . , n} on
the exceptional Pn are subject to the equations {gm|g ∈ I(V)h}. However, this
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On the failure of generic vanishing 245

simply means that the exceptional locus of f , i.e., f −1v, is cut out from Pn by
these equations and hence it is isomorphic to V .

Finally, consider the general case. The way W changes the setup is the same
as what we described for V . If a homogeneous polynomial h ∈ k[y0, . . . , ym]
vanishes on W (i.e., h ∈ I(W)h), then define hα ∈ k[zi j] for any 0 ≤ α ≤ n by
replacing yγ with zαγ for each 0 ≤ γ ≤ m. Then {hα|0 ≤ α ≤ n, h ∈ I(W)h}
generates the ideal of Y in the affine coordinate ring of C(V × Pm).

However, in this case, differently from the case of V , we do not get any
additional equations. Indeed, we chose the coordinates so that H = (ym =

0) and hence ym � I(W), which means that we may choose the rest of the
coordinates such that [0 : · · · : 0 : 1] ∈ W. This implies that no polynomial
in the ideal of W may have a monomial term that is a constant multiple of
a power of ym. It follows that, since I = I(Z) is generated by the elements
{zim|i = 0, . . . , n}, any monomial term of any polynomial in the ideal of Y in
the affine coordinate ring of C(V × Pm) that lies in Id for some d > 0 also lies
in Idmv. Therefore, these new equations do not change the ring ⊕Id/Idmv and
so f −1v is still isomorphic to V .

Notation 3.4 We will use the notation introduced in Proposition 3.3 for X,
Y , Z, and f . We will also use XP, YP, ZP, and fP : XP → YP to denote the same
objects in the case W = Pm, i.e., YP = C(V×Pm), ZP = C(V×H), where H ⊂ Pm

is such that {p} × H ⊂ {p} × Pm is a hyperplane section of {p} × Pm in PN .

Corollary 3.5 fP is an isomorphism over YP \ {v} and the scheme-theoretic
pre-image of v (whose support is the exceptional locus) via fP is isomorphic
to V:

f −1
P v 	 V.

Proof This was proven as an intermediate step in Proposition 3.3, and is also
straightforward by taking W = Pm.

Proposition 3.6 Assume that V and W are both positive dimensional, W ⊆
Pm is a complete intersection, and the embedding V × Pr ⊂ PN for any linear
subvariety Pr ⊆ Pm induced by the Segre embedding of Pn × Pm is projectively
normal. Then X is Gorenstein.

Proof First note that the projective normality assumption implies that YP =
C(V × Pm) is normal and hence we may consider divisors and their linear
equivalences.

Let H′ ⊂ Pm be an arbitrary hypersurface (different from H and not neces-
sarily linear). Observe that H′ ∼ d ·H with d = deg H′, so V ×H′ ∼ d · (V ×H),
and hence C(V × H′) ∼ d ·C(V × H) as divisors on YP.
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246 C. D. Hacon and S. J. Kovács

Since fP is a small morphism it follows that the strict transforms of these
divisors on XP are also linearly equivalent: f −1

∗ C(V × H′) ∼ d · f −1
∗ C(V × H)

(where by abuse of notation we let f = fP). By the basic properties of blowing
up, the (scheme-theoretic) pre-image of C(V × H) is a Cartier divisor on X
which coincides with f −1

∗ C(V×H) (as f is small). However, then f −1
∗ C(V×H′)

is also a Cartier divisor and hence it is Gorenstein if and only if XP is. Note that
f −1
∗ C(V×H′) is nothing else but the blow-up of C(V×H′) along C(V×(H′∩H)).

By assumption W is a complete intersection, so applying the above argument
for the intersection of the hypersurfaces cutting out W shows that X is Goren-
stein if and only if XP is Gorenstein. In other words, it is enough to prove the
statement with the additional assumption that W = Pm. In particular, we have
X = XP, etc.

In this case the same argument as above shows that the statement holds for
m if and only if it holds for m − 1, so we only need to prove it for m = 1. In
that case H ∈ P1 is a single point. Choose another point H′ ∈ P1. As above,
f −1
∗ C(V ×H′) is a Cartier divisor in X and it is the blow-up of C(V ×H′) along

the intersection C(V × H′) ∩C(V × H).
We claim that this intersection is just the vertex of C(V). To see this, view

Y = YP = C(V × P1) as a subscheme of C(Pn × P1). Inside C(Pn × P1) the
cones C(Pn × H) and C(Pn × H′) are just linear subspaces of dimension n + 1
whose scheme-theoretic intersection is the single reduced point v. Therefore
we have that

C(V × H′) ∩C(V × H) ⊆ C(Pm × H′) ∩C(Pm × H) = {v},

proving the same for this intersection.
Finally then f −1

∗ C(V × H′), the blow-up of C(V × H′) along the intersection
C(V × H′) ∩C(V × H), is just the blow-up of C(V) at its vertex and hence it is
smooth and in particular Gorenstein. This completes the proof.

Lemma 3.7 Let V ⊆ Pn and W ⊆ Pm be two normal complete intersection
varieties of positive dimension. Assume that either dim V + dim W > 2 or if
dim V = dim W = 1, then n = m = 2. The embedding V ×W ⊂ PN induced by
the Segre embedding of Pn × Pm is then projectively normal.

Proof It follows easily from the definition of the Segre embedding that it is
itself projectively normal and hence it is enough to prove that

H0(Pn × Pm,OPN (d)|Pn×Pm )→ H0(V ×W,OPN (d)|V×W ) (1)

is surjective for all d ∈ N.
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On the failure of generic vanishing 247

We prove this by induction on the combined number of hypersurfaces
cutting out V and W. When this number is 0, then V = Pn and W = Pm so
we are done.

Otherwise, assume that dim V ≤ dim W and if dim V = dim W = 1 then
deg V = e ≥ deg W. Let V ′ ⊆ Pn be a complete intersection variety of dimen-
sion dim V+1 such that V = V ′∩H′, where H′ ⊂ Pn is a hypersurface of degree
e. Then V ×W ⊂ V ′ ×W is a Cartier divisor with ideal sheaf I 	 π∗1OV ′(−e),
where π1 : V ′ ×W → V ′ is the projection to the first factor. It follows that for
every d ∈ N there exists a short exact sequence

0→ OPN (d)|V ′×W ⊗ π∗1OV ′(−e)→ OPN (d)|V ′×W → OPN (d)|V×W → 0,

and hence an induced exact sequence of cohomology

H0(V ′ ×W,OPN (d)|V ′×W )→ H0(V ×W,OPN (d)|V×W )

→ H1(V ′ ×W, π∗1OV ′ (d − e) ⊗ π∗2OW (d)),

where π2 : V ′ ×W → W is the projection to the second factor.
Since by assumption V ′ is a complete intersection variety of dimension at

least 2, it follows that H1(V ′,OV ′ (d − e)) = 0.
If dim W > 1, then it follows similarly that H1(W,OW (d)) = 0.
If dim W = 1, then since 0 < dim V ≤ dim W we also have dim V = 1.

By assumption V and W are normal and hence regular, and in this case
we assumed earlier that deg V = e ≥ deg W. It follows that as long as
e > d, then H0(V ′,OV ′ (d − e)) = 0 and if e ≤ d, then d ≥ deg W and hence
H1(W,OW (d)) = 0.

In both cases we obtain that by the Künneth formula (cf. [EGAIII2, (6.7.8)],
[Kem93, 9.2.4]),

H1(V ′ ×W, π∗1OV ′ (d − e) ⊗ π∗2OW (d)) = 0

and hence

H0(V ′ ×W,OPN (d)|V ′×W )→ H0(V ×W,OPN (d)|V×W )

is surjective. By induction we may assume that

H0(Pn × Pm,OPN (d)|Pn×Pm )→ H0(V ′ ×W,OPN (d)|V ′×W )

is surjective, so it follows that the desired map in (1) is surjective as well and
the statement is proven.

Corollary 3.8 Let V ⊆ Pn and W ⊆ Pm be two positive-dimensional normal
complete intersection varieties and assume that if dim V = 1, then n = 2. X is
then Gorenstein.
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248 C. D. Hacon and S. J. Kovács

Proof Follows by combining Proposition 3.6 and Lemma 3.7. Note that in
Proposition 3.6 the embedding V ×W ↪→ PN does not need to be projectively
normal, only V × Pr ↪→ PN does, which indeed follows from Lemma 3.7.

Example 3.9 Let k be an algebraically closed field. We will construct a bira-
tional projective morphism f : X → Y such that X is Gorenstein (and log
canonical) and R1 f∗ωX � 0.

Let E1, E2 ⊆ P2 be two smooth projective cubic curves. Consider the con-
struction in Example 3.2 with V = E1, W = E2. As in that construction let
f : X → Y be the blow-up of Y = C(E1 × E2) along Z = C(E1 × H), where
H ⊆ E2 is a hyperplane section. The common vertex of Y and Z will still be
denoted by v ∈ Z ⊂ Y . The map f is an isomorphism over Y \{v} and f −1v 	 E1

by Proposition 3.3.

Proposition 3.10 Both X and Y are smooth in codimension 1 with trivial
canonical divisor and X is Gorenstein and hence Cohen–Macaulay.

Proof By construction Y \ {v} 	 X \ f −1v is smooth, so the first statement
follows. Furthermore, Y \ {v} 	 X \ f −1v is an affine bundle over E1 ×E2, so by
the choice of E1 and E2, the canonical divisor of Y \ {v} 	 X \ f −1v is trivial.
However, the complement of this set has codimension at least 2 in both X and
Y and hence their canonical divisors are trivial as well. Since E1, E2 ⊂ P2 are
hypersurfaces, X is Gorenstein by Corollary 3.8.

Let E denote f −1v, so we have that E 	 E1 and there is a short exact
sequence

0→ IE → OX → OE → 0.

Pushing this forward via f we obtain a homomorphism φ : R1 f∗OX → R1 f∗OE .
Since the maximum dimension of any fiber of f is 1, we have R2 f∗IE = 0.
It follows that R1 f∗ωX = R1 f∗OX � 0, because R1 f∗OE � 0 (it is a sheaf
supported on v of length h1(OE) = 1).

Example 3.11 Let k be an algebraically closed field of characteristic p � 0.
Then there exists a birational morphism f : X → Y of varieties (defined
over k) such that X is smooth of dimension 7 and Ri f∗ωX � 0, for some
i ∈ {1, 2, 3, 4, 5}.

Let Z be a smooth 6-dimensional variety and L a very ample line bundle such
that H1(Z, ωZ ⊗ L) � 0 (such varieties exist by [LR97]). By Serre vanishing,
Hi(Z, ωZ ⊗ L j) = 0 for all i > 0 and j � 0. Let m be the largest positive integer
such that Hi(Z, ωZ ⊗ Lm) � 0 for some i > 0.
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On the failure of generic vanishing 249

After replacing L by Lm we may assume that there exists a q > 0 such that
Hq(Z, ωZ ⊗ L) � 0, but Hi(Z, ωZ ⊗ L j) = 0 for all i > 0 and j ≥ 2. Note that
q < 6, because H6(Z, ωZ ⊗ L) is dual to H0(Z, L−1) = 0.

Let Y be the cone over the embedding of Z given by L, f : X → Y the
blow-up of the vertex v ∈ Y , and E = f −1v the exceptional divisor of f . Note
that E 	 Z and ωE(− jE) 	 ωZ ⊗ L j for any j.

For j ≥ 1 consider the short exact sequence

0→ ωX(− jE)→ ωX(−( j − 1)E)→ ωE(− jE)→ 0.

Claim Ri f∗ωX(−E) = 0 for all i > 0 and Ri f∗ωX = 0 for all i > 0, such that
Hi(Z, ωZ ⊗ L) = 0.

Proof of claim As −E is f -ample we have, by Serre vanishing again, that
Ri f∗ωX(− jE) = 0 for all i > 0 and some j > 0. If either j > 1 or j = 1 and
Hi(Z, ωZ ⊗ L) = 0, then Ri f∗ωE(− jE) = Hi(Z, ωZ ⊗ L j) = 0 by the choice of L.
Therefore, the exact sequence

0 = Ri f∗ωX(− jE)→ Ri f∗ωX(−( j − 1)E)→ Ri f∗ωE(− jE) = 0

gives that Ri f∗ωX(−( j − 1)E) = 0. The claim follows by induction.

From the above claim it follows that

0 = Rq f∗ωX(−E)→ Rq f∗ωX → Rq f∗ωE(−E)→ Rq+1 f∗ωX(−E) = 0.

Since Rq f∗ωE(−E) = Hq(Z, ωZ⊗L) � 0, we obtain that Rq f∗ωX � 0 as claimed.

Remark 3.12 The above example is certainly well known (see, e.g., [CR11b,
4.7.2]) and one can easily construct examples in dimension ≥ 3 (using, e.g.,
the results of [Ray78] and [Muk79]). We have chosen to include the above
example because of its elementary nature.

Proposition 3.13 There exists a variety T and a generically finite projec-
tive separable morphism to an abelian variety λ : T → A defined over an
algebraically closed field k such that:

• if char k = 0, then T is Gorenstein (and hence Cohen–Macaulay) with a
single isolated log canonical singularity and R1λ∗ωT � 0;

• if char k = p > 0, then T is smooth and Riλ∗ωT � 0 for some i > 0.

Proof First assume that char k = 0 and let f : X → Y be as in Example 3.9.
We may assume that X and Y are projective. Let X′ → X and Y ′ → Y be
birational morphisms that are isomorphisms near f −1(v) and v respectively
such that there is a birational morphism f ′ : X′ → Y ′ and a generically finite
morphism g : Y ′ → Pn. Let v′ ∈ Y ′ be the inverse image of v ∈ Y and p ∈ Pn

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.014
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 03 Nov 2016 at 06:04:44, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.014
http:/www.cambridge.org/core


250 C. D. Hacon and S. J. Kovács

its image. We may assume that there is an open subset Pn
0 ⊂ P

n such that g|Y ′0
is finite, where Y ′0 = g−1(Pn

0). Note that if we let X′0 be the inverse image of Y ′0
and g′ = g ◦ f ′, then we have Rig′∗ωX′0

= g∗Ri f ′∗ωX′0
.

Let A be an n-dimensional abelian variety, A′ → A a birational morphism of
smooth varieties, and A′ → Pn a generically finite morphism. We may assume
that there are points a′ ∈ A′ and a ∈ A such that (A′, a′) → (A, a) is locally an
isomorphism and (A′, a′)→ (Pn, p) is locally étale.

Let U be the normalization of the main component of X′ ×Pn A′ and
h : U → X′ the corresponding morphism. We let E ⊂ ( f ′ ◦ h)−1(v′) ⊂ U
be the component corresponding to (v′, a′) ∈ Y ′ ×Pn A′. Then, the morphism
(U, E)→ (Y ′ ×Pn A′, (v′, a′))→ (A, a) is étale locally (on the base) isomorphic
to (X, f −1(v))→ (Y, v)→ (Pn, p).

Let ν : T → U be a birational morphism such that ν is an isomorphism over
a neighborhood of E ⊂ U and T \ ν−1(E) is smooth. Let λ : T → A be the
induced morphism. It is clear from what we have observed above that λ(E) is
one of the components of the support of R1λ∗ωT � 0 and T has the required
singularities.

Assume now that char k = p > 0 and let f : X → Y be a birational morphism
of varieties such that X is smooth and Ri f∗ωX � 0 for some i > 0. This i
will be fixed for the rest of the proof. The existence of such morphisms is
well known (see Remark 3.12), and Example 3.11 is explicit in dimension 7.
Further, let A be an abelian variety of the same dimension as X and Y and set
n = dim A = dim X = dim Y . There are embeddings Y ⊂ Pm1 , A ⊂ Pm2 , and
Pm1 × Pm2 ⊂ PM . Let H be a very ample divisor on PM and U ⊂ Y × A the
intersection of n general members H1, . . . , Hn ∈ |H| with Y × A. By choice, the
induced maps h : U → Y and a : U → A are generically finite, U intersects v×A
transversely so that V = U ∩ (v× A) is a finite set of reduced points, and U \ V
is smooth by Bertini’s theorem (cf. [Har77, II.8.18] and its proof). It follows
that any singular point u ∈ U is a point in V and (U, u) is locally isomorphic
to (Y, v). We claim that a is finite in a neighborhood of u ∈ U. Consider any
contracted curve, i.e., any curve C ⊂ U ∩ (Y × a(u)). We must show that u � C.
Let ν : T → U be the blow-up of U along V and C̃ the strict transform of C on
T . We let μ : BlVPM → PM , E = μ−1(u) � PM−1 and we denote by hi = μ−1

∗ Hi|E
the corresponding hyperplanes. To verify the claim it suffices to check that
ν−1(u) ∩ C̃ = ∅. But this is now clear, as ν−1(u) � Z ⊂ PM−1 and the hi are
general hyperplanes so that Z ∩ h1 ∩ . . . ∩ hn = ∅ as Z is (n − 1)-dimensional.

Let λ = a ◦ ν : T → A be the induced morphism. By construction, the sup-
port of the sheaf Riν∗ωT is V . Since a is finite on a neighborhood of u ∈ U,
it follows that 0 � a∗Riν∗ωT ⊂ Riλ∗ωT and hence Riλ∗ωT � 0 for the
same i > 0.
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4 Main result

Proposition 4.1 Assume that λ : X → A is generically finite onto its image,
where X is a projective Cohen–Macaulay variety and A is an abelian variety.
If char(k) = p > 0, then we assume that there is an ample line bundle L on A
whose degree is not divisible by p. If RiπÂ∗L = 0 for all i < n, then Riλ∗ωX = 0
for all i > 0.

Proof By Theorem A of [PP11], RiΦ(OX) = RiπÂ∗L = 0 for all i < n is
equivalent to

Hi(X, ωX ⊗ RgΨ(L∨)) = 0 ∀ i > 0,

where L is sufficiently ample on Â and RgΨ(L∨) = λ∗L̂∨ (cf. Lemma 2.2). It is
easy to see that this in turn is equivalent to

Hi(X, ωX ⊗ λ∗(t̂∗
â
L∨)) = 0 ∀ i > 0, ∀ â ∈ Â,

where L is sufficiently ample on Â. By [Muk81, 3.1], we have t̂∗
â
L∨ = L̂∨ ⊗P−̂a

and hence Hi(X, ωX ⊗ λ∗(L̂∨ ⊗ P−̂a)) = 0. Thus, by cohomology and base
change, we have that

RŜ (Rλ∗ωX ⊗ L̂∨) =(2) RΦ(ωX ⊗ λ∗L̂∨) = R0Φ(ωX ⊗ λ∗L̂∨).

In particular, Rλ∗ωX ⊗ L̂∨ is WIT-0.

Claim 4.2 For any ample line bundle M on A, we have that

Hi(X, ωX ⊗ λ∗(L̂∨ ⊗ M ⊗ P−̂a)) = 0 ∀ i > 0, ∀ â ∈ Â.

Proof We follow the argument in [PP03, 2.9]. For any P = P−̂a,

Hi(X, ωX ⊗ λ∗(L̂∨ ⊗ M ⊗ P)) = RiΓ(X, ωX ⊗ λ∗(L̂∨ ⊗ M ⊗ P))

=P.F. RiΓ(A, Rλ∗ωX ⊗ L̂∨ ⊗ M ⊗ P) = ExtiD(A)((M ⊗ P)∨, Rλ∗ωX ⊗ L̂∨)

=(1) Exti+g
D(Â)

(RgŜ ((M ⊗ P)∨), R0Φ(ωX ⊗ λ∗L̂∨))

= Hi+g(Â, R0Φ(ωX ⊗ λ∗L̂∨) ⊗ RgŜ ((M ⊗ P)∨)∨) = 0 i > 0.

(The third equality follows as M⊗P is free, the fifth follows since RgŜ (M ⊗ P)∨

is free, and the last one since i + g > g = dim Â.)

Let φL : Â → A be the isogeny induced by φL(x̂) = t∗x̂L ⊗ L∨, then φ∗LL̂∨ =

L⊕h0(L). We may assume that the characteristic does not divide the degree of
L, so that φL is separable. Let X′ = X ×A Â, φ : X′ → X, and λ′ : X′ → Â
be the induced morphisms. Note that φ∗OX′ = λ∗(φL∗OÂ) = λ∗(⊕Pαi ), where
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the αi are the elements in K ⊂ Â, the kernel of the induced homomorphism
φL : Â→ A. By the above equation and a flat base change,

Hi(X′, ωX′ ⊗ λ′∗φ∗L(L̂∨ ⊗ M)) =
⊕
α∈K

Hi(X, ωX ⊗ λ∗(L̂∨ ⊗ M ⊗ Pα)) = 0

for all i > 0. But then Hi(X′, ωX′ ⊗ λ′∗(L⊗ φ∗LM)) = 0 for all i > 0. Note that if
M is sufficiently ample on A then so is L⊗φ∗LM on Â. It follows by an easy (and
standard) spectral sequence argument that Riλ′∗ωX′ = 0 for i > 0. Since ωX is a
summand of φ∗ωX′ = Rφ∗ωX′ , and Rλ∗Rφ∗ωX′ = RφL∗Rλ′∗ωX′ , it follows that
Riλ∗ωX is a summand of Riλ∗φ∗ωX′ = φL∗R

iλ′∗ωX′ and hence Riλ∗ωX = 0 for
all i > 0.

Proof of Theorem 1.3 Immediate from Propositions 3.13 and 4.1.
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