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Deformations of elliptic Calabi–Yau manifolds

J. Kollár
Princeton University

Abstract

We investigate deformations and characterizations of elliptic Calabi–Yau vari-
eties, building on earlier works of Wilson and Oguiso. We show that if the
second cohomology of the structure sheaf vanishes, then every deformation
is again elliptic. More generally, all non-elliptic deformations derive from
abelian varieties or K3 surfaces. We also give a numerical characterization of
elliptic Calabi–Yau varieties under some positivity assumptions on the second
Todd class. These results lead to a series of conjectures on fibered Calabi–Yau
varieties.

To Robert Lazarsfeld on the occasion of his sixtieth birthday

The aim of this paper is to answer some questions about Calabi–Yau mani-
folds that were raised during the workshop String Theory for Mathematicians,
which was held at the Simons Center for Geometry and Physics.

F-theory posits that the “hidden dimensions” constitute a Calabi–Yau 4-
fold X that has an elliptic structure with a section. That is, there are morphisms
g : X → B whose general fibers are elliptic curves and σ : B → X such that
g ◦ σ = 1B (see [Vaf96, Don98]). In his lecture, Donagi asked the following:

Question 1 Is every small deformation of an elliptic Calabi–Yau manifold
also an elliptic Calabi–Yau manifold?

Question 2 Is there a good numerical characterization of elliptic Calabi–Yau
manifolds?
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Deformations of elliptic Calabi–Yau manifolds 255

Clearly, an answer to Question 2 should give a solution of Question 1. The
answers to these problems are quite sensitive to which variant of the defini-
tion of Calabi–Yau manifolds one uses. For instance, a general deformation of
the product of an Abelian variety and of an elliptic curve has no elliptic fiber
space structure and every elliptic K3 surface has non-elliptic deformations. We
prove in Section 5 that these are essentially the only such examples, even for
singular Calabi–Yau varieties (Theorem 31). In the smooth case, the answer is
especially simple.

Theorem 3 Let X be an elliptic Calabi–Yau manifold such that
H2(X,OX) = 0. Then every small deformation of X is also an elliptic Calabi–
Yau manifold.

In dimension 3 this was proved in [Wil94, Wil98].
Our results on Question 2 are less complete. Let LB ∈ H2(B,Q) be an ample

cohomology class and set L := g∗LB. We interpret Question 2 to mean: Char-
acterize pairs (X, L) that are elliptic fiber spaces. Following [Wil89, Ogu93],
one is led to the following:

Conjecture 4 A Calabi–Yau manifold X is elliptic iff there is a (1, 1)-class
L ∈ H2(X,Q) such that (L·C) ≥ 0 for every algebraic curve C ⊂ X,

(
Ldim X) = 0

and
(
Ldim X−1) � 0.

For threefolds, the more general results of [Ogu93, Wil94] imply Conjecture
4 if L is effective or

(
L·c2(X)

)
� 0. As in the earlier works, in higher dimensions

we study the interrelation of L and of the second Chern class c2(X). By a result
of [Miy88],

(
Ln−2 · c2(X)

) ≥ 0 and we distinguish two cases.

• (Main case) If
(
Ln−2 ·c2(X)

)
> 0 then Conjecture 4 is solved in Corollary 11.

We also check that all elliptic Calabi–Yau manifolds with a section belong
to this class (46).

• (Isotrivial case) If
(
Ln−2 · c2(X)

)
= 0 then there is an elliptic curve E, a finite

subgroup G ⊂ Aut(E), and a Calabi–Yau manifold Y with a G-action such
that X � (E × Y)/G (see Theorem 43). If, in addition, H2(X,OX) = 0 then
by Theorem 39 every deformation of X is obtained by deforming E and Y .

However, I have not been able to prove that the numerical conditions of
Conjecture 4 guarantee the existence of an elliptic structure.

Following [Ogu93] and [MP97, Lecture 10], the plan is to put both questions
in the more general framework of the abundance conjecture [Rei83, 4.6]; see
Conjectures 50 and 51 for the precise formulation.

This approach suggests that the key is to understand the rate of growth of
h0(X, Lm). If (X, L) is elliptic, then h0(X, Lm) grows like mdim X−1. Given a pair
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256 J. Kollár

(X, L), the most important deformation-invariant quantity is the holomorphic
Euler characteristic

χ(X, Lm) = h0(X, Lm) − h1(X, Lm) + h2(X, Lm) · · ·

The difficulty is that in our case h0(X, Lm) and h1(X, Lm) both grow like mdim X−1

and they cancel each other out. That is,

χ(X, Lm) = O
(
mdim X−2).

For the main series χ(X, Lm) does grow like mdim X−2, which implies that
h0(X, Lm) grows at least like mdim X−2.

For the isotrivial series the order of growth of χ(X, Lm) is even smaller; in
fact, χ(X, Lm) can be identically zero.

Several of the ideas of this paper can be traced back to other sources.
Sections 2–4 owe a lot to [Kaw85a, Ogu93, Wil94, Fuj11]; Sections 5 and
6 to [Hor76, KL09]; Sections 7 and 8 to [Kol93, Nak99] and to some old
results of Matsusaka. Ultimately the origin of many of these methods is
the work of Kodaira on elliptic surfaces [Kod63, Section 12]. (See [BPV84,
Sections V.7–13] for a more modern treatment.)

1 Calabi–Yau fiber spaces

For many reasons it is of interest to study proper morphisms with connected
fibers g′ : X′ → B whose general fibers are birational to Calabi–Yau varieties.
A special case of the minimal model conjecture, proved by [Lai11, HX13],
implies that every such fiber space is birational to a projective morphism with
connected fibers g : X → B where X has terminal singularities and its canonical
class KX is relatively trivial, at least rationally. That is, there is a Cartier divisor
F on B such that mKX ∼ g∗F for some m > 0.

We will work with varieties with log terminal singularities, or later even with
klt pairs (X,Δ), but I will state the main results for smooth varieties as well. See
[KM98, Section 2.3] for the definitions and basic properties of the singularities
we use. Note also that, even if one is primarily interested in smooth Calabi–
Yau varieties X, the natural setting is to allow at least canonical singularities on
X and at least log terminal singularities on the base B of the elliptic fibration.

Definition 5 In this paper a Calabi–Yau variety is a projective variety
X with log terminal singularities such that KX ∼Q 0, that is, mKX is linearly
equivalent to 0 for some m > 0. By [Kaw85b] this is equivalent to assuming
that (KX ·C) = 0 for every curve C ⊂ X.
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Deformations of elliptic Calabi–Yau manifolds 257

Note that we allow a rather broad definition of Calabi–Yau varieties. This is
very natural for algebraic geometry but less so for physical considerations.

A Calabi–Yau fiber space is a proper morphism with connected fibers
g : X → B onto a normal variety where X has log terminal singularities and
KXg
∼Q 0 where Xg ⊂ X is a general fiber.

We say that g : X → B is an elliptic (or Abelian, etc.) fiber space if in addi-
tion general fibers are elliptic curves (or Abelian varieties, etc.). Our main
interest is in the elliptic case, but in Sections 7 and 8 we also study the general
setting.

Let X be a projective, log terminal variety and L a Q-Cartier Q-divisor (or
divisor class) on X. We say that (X, L) is a Calabi–Yau fiber space if there is a
Calabi–Yau fiber space g : X → B and an ample Q-Cartier Q-divisor LB on B
such that L ∼Q g∗LB.

In general, a divisor L is called semi-ample if it is the pull-back of an
ample divisor by a morphism and nef if (L · C) ≥ 0 for every irreducible
curve C ⊂ X. Every semi-ample divisor is nef, but the converse usually fails.
However, the hope is that for Calabi–Yau varieties nef and semi-ample are
essentially equivalent; see Conjectures 50 and 51.

We say that a Calabi–Yau fiber space g : X → B is relatively minimal if
KX ∼Q g∗F for some Q-Cartier Q-divisor F on B. This condition is automatic
if X itself is Calabi–Yau. (These are called crepant log structures in [Kol13b].)

If g : X → B is a relatively minimal Calabi–Yau fiber space and X has
canonical (resp. log terminal) singularities, then every other relatively mini-
mal Calabi–Yau fiber space g′ : X′ → B that is birational to g : X → B also has
canonical (resp. log terminal) singularities.

By [Nak88], if X has log terminal singularities then B has rational sin-
gularities; more precisely, there is an effective divisor DB such that (B, DB)
is klt.

6 (Elliptic threefolds) Elliptic threefolds have been studied in detail. The
papers [Wil89, Gra91, Nak91, Gra93, DG94, Gra94, Gro94, Wil94, Gro97,
Nak02a, Nak02b, CL10, HK11, Klo13] give rather complete descriptions of
their local and global structure. However, neither Question 1 nor 2 was fully
answered for threefolds.

By contrast, not even the local structure of elliptic fourfolds is understood.
Double covers of the P1-contractions described in [AW98] give some rather
surprising examples; there are probably much more complicated ones as well.

Definition 7 Let g : X → B be a morphism between normal varieties. A
divisor D ⊂ X is called horizontal if g(D) = B, vertical if g(D) ⊂ B has
codimension ≥ 1, and exceptional if g(D) has codimension ≥ 2 in B.
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258 J. Kollár

If g is birational the latter coincides with the usual notion of exceptional
divisors, but the above version makes sense even if dim X > dim B. (If g is
birational then there are no horizontal divisors.)

8 (Birational models of Calabi–Yau fiber spaces) We see in Lemma 18 that if
X is smooth (orQ-factorial), g is a Calabi–Yau fiber space, and D ⊂ X is excep-
tional then D is not g-nef. Thus, by [Lai11, HX13] the (X, εD) minimal model
program over B (cf. [KM98, Section 3.7]) contracts D. Thus every Calabi–Yau
fiber space g2 : X2 → B2 is birational to a relatively minimal Calabi–Yau fiber
space g1 : X1 → B1 = B2 that has no exceptional divisors. Furthermore, let
B→ B1 be a smallQ-factorialization. Let LB be an effective, ample divisor and
L1 its pull-back to X1 by the rational map X1 � B. Applying [Lai11, HX13]
and Theorem 14 to (X1, εL1), we get a birational model g : X → B where B is
also Q-factorial. (In general, such a model is not unique.) Thus, in birational
geometry, it is reasonable to focus on the study of relatively minimal Calabi–
Yau fiber spaces g : X → B without exceptional divisors, where X and B are
Q-factorial and X is log terminal.

Let φ : X1 � X2 be a birational equivalence of two relatively minimal
Calabi–Yau fiber spaces gi : Xi → B. Thus φ is an isomorphism between dense
open sets φ : X0

1 � X0
2 . If the Xi are smooth (or they have terminal singulari-

ties) then we can choose these sets such that their complements Xi \ X0
i have

codimension ≥ 2 (cf. [KM98, 3.52.2]). More generally, this holds if there are
no exceptional divisors Ei of discrepancy 0 over Xi such that the center of Ei

on Xi is disjoint from X0
i .

Even in the smooth case, φ can be a rather complicated composite of flops.
From the point of view of F-theory it is especially interesting to study the

examples g′ : X′ → B with a section σ′ : B → X′, where X′ itself is Calabi–
Yau. In this case the so-called Weierstrass model is a relatively minimal model
without exceptional divisors that can be constructed explicitly as follows.

Let LB be an ample divisor on B. Then σ′(B)+mg′∗LB is nef and big on X′ for
m � 1, hence a large multiple of it is base point free (cf. [KM98, Section 3.2]).
This gives a morphism h : X′ → X, where X is still Calabi–Yau (usually with
canonical singularities) and g : X → B has a section σ : B → X whose image
is g-ample. Thus every fiber of g has dimension 1 and so g : X → B has no
exceptional divisors.

Furthermore, R1h∗OX′ = 0 which implies that every deformation of X′

comes from a deformation of X (see 53).

The next result says that once g : X → B looks like a relatively mini-
mal Calabi–Yau fiber space outside a subset of codimension ≥ 2, then it is
a relatively minimal Calabi–Yau fiber space.
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Deformations of elliptic Calabi–Yau manifolds 259

Proposition 9 Let g : X → B be a projective fiber space with X log terminal.
Assume the following:

(1) There are no g-exceptional divisors (Definition 7).
(2) There is a closed subset Z ⊂ B of codimension ≥ 2 such that KX is

numerically trivial on the fibers over B \ Z.
(3) B is Q-factorial.

Then g : X → B is a relatively minimal Calabi–Yau fiber space.

Proof First note that, as a very special case of Theorem 14, there is a Q-
Cartier Q-divisor F1 on B \ Z such that

KX |X\g−1(Z) ∼Q g∗F1.

Since B is Q-factorial, F1 extends to a Q-Cartier Q-divisor F on B.
Thus every point b ∈ B has an open neighborhood b ∈ Ub ⊂ B and an

integer mb > 0 such that

OX
(
mbKX

)|g−1(Ub\Z) � g∗OUb

(
mbF|Ub

)
� g∗OUb � Og−1(Ub).

By (1), g−1(Z) has codimension ≥ 2 in g−1(Ub) and hence the constant 1 section
of Og−1(Ub\Z) extends to a global section of OX

(
mbKX

)|g−1(Ub) that has neither
poles nor zeros. Thus

OX
(
mbKX

)|g−1(Ub) � Og−1(Ub).

Since this holds for every b ∈ B, we conclude that KX ∼Q g∗F.

2 The main case

The next theorem gives a characterization of the main series of elliptic Calabi–
Yau fiber spaces. (For the log version, see 54.) The proof is quite short but it
relies on auxiliary results that are proved in the next two sections.

Theorem 10 Let X be a projective variety of dimension n with log terminal
singularities and L a Cartier divisor on X. Assume that KX is nef and

(
Ln−2 ·

td2(X)
)
> 0, where td2(X) is the second Todd class of X (24). Then (X, L) is a

relatively minimal, elliptic fiber space iff

(1) L is nef,
(2) L − εKX is nef for 0 ≤ ε � 1,
(3) (Ln) = 0, and
(4) (Ln−1) is nonzero in H2n−2(X,Q).
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260 J. Kollár

Note that if (X, L) is a relatively minimal elliptic fiber space then L is
semi-ample (Definition 5) and, as we see in 13 below, the only hard part of The-
orem 10 is to show that conditions (1)–(4) imply L is semi-ample. In particular,
Theorem 10 also holds over fields that are not algebraicaly closed.

This immediately yields the following partial answer to Question 1:

Corollary 11 Let X be a smooth, projective variety of dimension n and L a
Cartier divisor on X. Assume that KX ∼Q 0 and

(
Ln−2 · c2(X)

)
> 0. Then (X, L)

is an elliptic fiber space iff

(1) L is nef,

(2) (Ln) = 0, and

(3) (Ln−1) is nonzero in H2n−2(X,Q).

Definition 12 Let Y be a projective variety and D a Cartier divisor on X.
If m > 0 is sufficiently divisible, then, up to birational equivalence, the map
given by global sections of OY (mD)

Y � I(Y, D) bir∼ Im(Y, D) ↪→ P(H0(Y,OY (mD))
)

is independent of m.

It is called the Iitaka fibration of (Y, D). The Kodaira dimension of D (or of
(Y, D)) is κ(D) = κ(Y, D) := dim I(Y, D).

If D is nef, the numerical dimension of D (or of (Y, D)), denoted by ν(D) or
ν(Y, D), is the largest natural number r such that the self-intersection (Dr) ∈
H2r(Y,Q) is nonzero. Equivalently, (Dr · Hn−r) > 0 for some (or every) ample
divisor H.

It is easy to see that κ(D) ≤ ν(D). This was probably first observed by Mat-
susaka as a corollary of his theory of variable intersection cycles (see [Mat72]
or [LM75, p. 515]).

13 (Proof of Theorem 10) First note that κ(L) ≥ n− 2 by Lemma 25. We will
also need this for some perturbations of L.

By Theorem 10, (2) and (3) we have 0 = (Ln) ≥ ε(Ln−1 · KX) ≥ 0, thus
(Ln−1 · KX) = 0.

Set Lm := L − 1
m KX . For m � 1 we see that Lm is nef,

(
Ln−2

m · td2(X)
)
> 0,

and (Ln−1
m ) is nonzero in H2n−2(X,Q). Note that mL = KX + mLm, hence

mn(Ln) =
∑n

i=0 mn−i(Ki
X · Ln−i

m
)
.

Since KX and Lm are both nef, all the terms on the RHS are ≥ 0. Their sum is
zero by assumption, hence

(
Ki

X · Ln−i
m
)
= 0 for every i. Thus Lemma 25 also

applies to Lm and we get that κ(Lm) ≥ n − 2.
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Deformations of elliptic Calabi–Yau manifolds 261

We can now apply Proposition 15 with Δ = 0, D := 2mLm, and KX+2mLm =

2mL2m to conclude that ν(Lm) ≤ κ(L2m). Since we know that ν(Lm) = dim X−1,
we conclude that κ(L2m) = dim X − 1.

Finally, use Theorem 14 with S = (point), 2mL instead of L and a = 1 to
obtain that some multiple of L is semi-ample. That is, there is a morphism with
connected fibers g : X → B and an ample Q-divisor LB such that L ∼Q g∗LB.
Note that

(
Ldim B) � 0 but

(
Ldim B+1) = 0 so, comparing with Theorem 10,

(3) and (4), we see that dim B = dim X − 1. By the adjunction formula, the
canonical class of the general fiber is proportional to (Ln−1 · KX) = 0, thus
g : X → B is an elliptic fiber space.

We have used the following theorem due to [Kaw85a] and [Fuj11]:

Theorem 14 Let (X,Δ) be an irreducible, projective, klt pair and g : X → S a
morphism with generic fiber Xg. Let L be a Q-Cartier Q-divisor on X. Assume
that

(1) L and L − KX − Δ are g-nef and
(2) ν

(
(L − KX − Δ)|Xg

)
= κ

(
(L − KX − Δ)|Xg

)
= ν

(
((1 + a)L − KX − Δ)|Xg

)
=

κ
(
((1 + a)L − KX − Δ)|Xg

)
for some a > 0.

Then there is a factorization g : X
h→ B

π→ S and a π-ample Q-Cartier
Q-divisor LB on B such that L ∼Q h∗LB.

3 Adjoint systems of large Kodaira dimension

The following is modeled on [Ogu93, 2.4]:

Proposition 15 Let (X,Δ) be a projective, klt pair such that KX+Δ is pseudo-
effective, that is, its cohomology class is a limit of effective classes. Let D be an
effective, nef, Q-Cartier Q-divisor on X such that κ(KX + Δ + D) ≥ dim X − 2.

Then ν(D) ≤ κ(KX + Δ + D).

Proof There is nothing to prove if κ(KX + Δ + D) = dim X. Thus assume that
κ(KX +Δ+D) ≤ dim X−1 and let g : X � B be the Iitaka fibration (cf. [Laz04,
2.1.33]). After some blow-ups we may assume in addition that g is a morphism
and X, B are smooth.

The generic fiber of g is a smooth curve or surface (S ,ΔS ) such that KS +ΔS

is pseudo-effective. Since abundance holds for curves and surfaces [Kol92,
Section 11], this implies that κ(KS +ΔS ) ≥ 0. Furthermore, by Iitaka’s theorem
(cf. [Laz04, 2.1.33]), κ(KS + ΔS + D|S ) = 0.
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262 J. Kollár

If D is disjoint from S then, by Lemma 17, (2), ν(D) ≤ dim B = κ(KX+Δ+D)
and we are done. Otherwise D|S is an effective, nonzero, nef divisor on S . We
obtain a contradiction by proving that κ(KS + ΔS + D|S ) ≥ 1.

If S is a curve, then deg D|S > 0 and hence κ(KS + ΔS + D|S ) ≥ κ(D|S ) = 1.
If S is a surface, then κ(KS + ΔS + D|S ) ≥ 1 is proved in Lemma 16.

Lemma 16 Let (S ,ΔS ) be a projective, klt surface such that κ(KS + ΔS ) ≥ 0.
Let D be a nonzero, effective, nef Q-divisor. Then κ(KS + ΔS + D) ≥ 1.

Proof Since κ(KS + ΔS + D) ≥ κ(KS + ΔS ) we only need to consider the
case when κ(KS + ΔS ) = 0. Let π : (S ,ΔS ) → (S m,Δm

S ) be the minimal model.
It is obtained by repeatedly contracting curves that have negative intersection
number with KS + ΔS . These curves also have negative intersection number
with KS + ΔS + εD for 0 < ε � 1. Thus

π : (S ,ΔS + εD)→ (S m,Δm
S + εDm)

is also the minimal model and (S m,Δm + εDm) is klt for 0 < ε � 1. By
the Hodge index theorem, every effective divisor contracted by π has negative
self-intersection, thus D cannot be π-exceptional. So Dm is again a nonzero,
effective, nef Q-divisor.

Since abundance holds for klt surface pairs (cf. [Kol92, Section 11]), we see
that KS m +Δm ∼Q 0 and κ

(
KS m +Δm+εDm) ≥ 1. Since D is effective, we obtain

that κ(KS + ΔS + D) ≥ κ(KS + ΔS + εD) = κ
(
KS m + Δm + εDm) ≥ 1.

Lemma 17 Let g : X → B be a proper morphism with connected general
fiber Xg. Let D be an effective, nef, Q-Cartier Q-divisor on X. Then

(1) either D|Xg
is a nonzero nef divisor,

(2) or D is disjoint from Xg and
(
Ddim B+1) = 0. Thus ν(D) ≤ dim B.

Proof We are done if D|Xg
is nonzero. If it is zero then D is vertical, hence

there is an ample divisor LB such that g∗LB ∼ D+E where E is effective. Then(
g∗Lr

B
) − (Dr) =

∑r−1
i=0

(
E · g∗Li

B · Dr−1−i)
shows that (Dr) ≤ (

g∗Lr
B

)
. Since

(
(g∗LB)dim B+1) = g∗

(
Ldim B+1

B

)
= 0, we

conclude that
(
Ddim B+1) = 0.

Lemma 18 Let g : X → B be a proper morphism with connected fibers and
D an effective, exceptional, Q-Cartier Q-divisor on X. Then D is not g-nef.

Proof Let |H| be a very ample linear system on X and S ⊂ X the intersection
of dim X − 2 general members of |H|. Then g|S : S → B is generically finite
over its image and D ∩ S is g|S -exceptional. By the Hodge index theorem we
conclude that

(
D2 · Hdim X−2) < 0, a contradiction.
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Deformations of elliptic Calabi–Yau manifolds 263

4 Asymptotic estimates for cohomology groups

19 Let X be a smooth variety and g : X → B a Calabi–Yau fiber space of
relative dimension m over a smooth curve B. Assume that KXg

∼ 0, where
Xg denotes a general fiber. It is easy to see that the sheaves Rmg∗OX and
g∗ωX/B are line bundles and dual to each other. For elliptic surfaces these
sheaves were computed by Kodaira. His results were clarified and extended
to higher dimensions by [Fuj78]. We will need the following consequences of
their results.

The degree of g∗ωX/B is ≥ 0 and can be written as a sum of two terms. One
is a global term (determined by the j-invariant of the fibers in the elliptic case)
which is zero iff g : X → B is generically isotrivial, that is, g is an analytically
locally trivial fiber bundle over a dense open set B0 ⊂ B. The other is a local
term, supported at the points where the local monodromy of the local system
Rmg∗QX0 is nontrivial. There is a precise formula for the local term, but we
only need to understand what happens with generically isotrivial families. For
these the local term is positive iff the local monodromy has eigenvalue � 1 on
g∗ωX0/B0 ⊂ OB0 ⊗Q Rmg∗QX0 .

Over higher-dimensional bases, Rmg∗OX and g∗ωX/B are rank 1 sheaves, and
the above considerations describe their codimension 1 behavior. In particular,
we see the following:

(1) c1
(
g∗ωX/B

)
is linearly equivalent to a sum of effective Q-divisors. It is zero

only if g : X → B is isotrivial over a dense open set B0 and the local
monodromy around each irreducible component of B \ B0 has eigenvalue
= 1 on g∗ωX0/B0 ⊂ OB0 ⊗Q Rmg∗QX0 .

(2) c1
(
Rmg∗OX

)
= −c1

(
g∗ωX/B

)
.

Frequently c1
(
g∗ωX/B

)
is denoted by ΔX/B.

Corollary 20 Let g : X → B be an elliptic fiber space of dimension n and L
a line bundle on B. Then

χ
(
X, g∗Lm) = (Ln−2·ΔX/B)

(n−2)! mn−2 + O(mn−3) and

hi(X, g∗Lm) = O(mn−3) for i ≥ 2.

Proof By the Leray spectral sequence,

χ
(
X, g∗Lm) = ∑i(−1)iχ

(
B, Lm ⊗ Rig∗OX

)
.

For i ≥ 2 the support of Rig∗OX has codimension ≥ 2 in B, hence its
cohomologies contribute only to the O(mn−3) term.

Since g has connected fibers, g∗OX � OB and c1
(
R1g∗OX

) ∼Q −ΔX/B by 19,
item (2). We conclude by applying Lemma 23 to both terms.
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264 J. Kollár

21 Similar formulas apply to arbitrary Calabi–Yau fiber spaces g : X → B
with general fiber F. If L is ample on B then, for m � 1, we have

Hi(X, g∗Lm) = H0(B, Lm ⊗ Rig∗OX
)
= χ

(
B, Lm ⊗ Rig∗OX

)
. (21.1)

Setting k = dim B, Lemma 23 computes Hi(X, g∗Lm) as

mk

k!
hi(F,OF)(Lk) +

mk−1

(k − 1)!

(
Lk−1 · (c1(Rig∗OX) − hi(F,OF )

2 KB
))
+ O(mk−2).

These imply that

χ
(
X, g∗Lm) = χ(F,OF) · mk

k!
(Lk) + O(mk−1). (21.2)

If χ(F,OF) � 0 then this describes the asymptotic behavior of χ
(
X, g∗Lm).

However, if χ(F,OF) = 0, which happens for Abelian fibers, then we have to
look at the next term, which gives that

χ
(
X, g∗Lm) = mk−1

(k − 1)!

(
Lk−1 ·∑dim F

i=1 (−1)ic1(Rig∗OX)
)
+ O(mk−2). (21.3)

If F is an elliptic curve then the sum on the RHS has only one nonzero term.
For higher-dimensional Abelian fibers there are usually several nonzero terms
and sometimes they cancel each other.

This is one reason why elliptic fibers are easier to study than higher-
dimensional Abelian fibers. The other difficulty with higher-dimensional fibers
is that the Euler characteristic only tells us that h0 + h2 + h4 + · · · grows as
expected. Proving that h0 � 0 would need additional arguments.

The next result, while stated in all dimensions, is truly equivalent to
Kodaira’s formula [BPV84, V.12.2].

Corollary 22 Let g : X → B be a relatively minimal elliptic fiber space of
dimension n and L a line bundle on B. Then

(
Ln−2 · ΔX/B

)
=
(
g∗Ln−2 · td2(X)

)
.

Proof Expanding the Riemann–Roch formula χ(X, g∗L) =
∫

X
ch(g∗L) · td(X)

and taking into account that (g∗Ln) = (g∗Ln−1 · KX) = 0 gives

χ
(
X, g∗Lm) = (g∗Ln−2 · td2(X))

(n − 2)!
· mn−2 + O(mn−3).

Comparing this with Corollary 20 yields the claim.

We used several versions of the asymptotic Riemann–Roch formula.
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Lemma 23 Let Y be a normal, projective variety of dimension n, L a line bun-
dle on X, and F a coherent sheaf of rank r that is locally free in codimension
1. Then

χ
(
Y, Lm ⊗ F

)
=

(Ln) · r
n!

mn +

(
Ln−1 · (c1(F) − r

2 KY )
)

(n − 1)!
mn−1 + O(mn−2).

24 (Riemann–Roch with rational singularities) The Todd classes of a singular
variety X are not always easy to compute, but if X has rational singularities
then there is a straightforward formula in terms of the Chern classes of any
resolution h : X′ → X.

By definition, rational singularity means that Rih∗OX′ = 0 for i > 0. Thus
χ(X, L) = χ(X′, h∗L) for any line bundle L on X. By the projection formula
this implies that χ(X, L) =

∫
X

ch(L) · h∗ td(X′) and in fact td(X) = h∗ td(X′) (cf.
[Ful98, Theorem 18.2].) In particular, we see that the second Todd class of X is

td2(X) = h∗
(c1(X′)2 + c2(X′)

12

)
.

The following numerical version of Corollary 20 was used in the proof of
Theorem 10.

Lemma 25 Let X be a normal, projective variety of dimension n. Let L be a
nef line bundle on X such that (Ln) = (Ln−1 · KX) = 0 but (Ln−1) � 0. Then

h0(X, Lm) − h1(X, Lm) =
(Ln−2 · td2(X))

(n − 2)!
· mn−2 + O(mn−3).

Proof The assumptions (Ln) = (Ln−1 · KX) = 0 imply that the RHS equals
χ(X, Lm). Thus the equality follows if hi(X, Lm) = O(mn−3) for i ≥ 2. The latter
is a special case of Lemma 26.

Lemma 26 Let X be a projective variety of dimension n and F a torsion-free
coherent sheaf on X. Let L be a nef line bundle on X and set d = ν(X, L). Then

hi(X, F ⊗ Lm) = O(md) for i = 0, . . . , n − d and
hn− j(X, F ⊗ Lm) = O(mj−1) for j = 0, . . . , d − 1.

Note the key feature of the estimate: the order of growth of Hi is md for
i ≤ n− d, then for i = n− d + 1 it drops by 2 to md−2, and then it drops by 1 for
each increase of i. This strengthens [Laz04, 1.4.40] but the proof is essentially
the same.

Proof We use induction on dim X. By Fujita’s theorem (cf. [Laz04, 1.4.35])
we can choose a general very ample divisor A on X such that

hi(X, F ⊗ OX(A) ⊗ Lm) = 0 for all i ≥ 1 and m ≥ 1.
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266 J. Kollár

We get an exact sequence

0→ F ⊗ Lm → F ⊗ OX(A) ⊗ Lm → G ⊗ Lm → 0,

where G is a torsion-free coherent sheaf on A. For i ≥ 1 its long cohomology
sequence gives surjections (even isomorphisms for i ≥ 2)

Hi−1(A,G ⊗ Lm)� Hi(X, F ⊗ Lm).

By induction this shows the claim except for i = 0.
One can realize F as a subsheaf of a sum of line bundles, thus it remains

to prove that H0(X, F ⊗ Lm) = O(md) when F � OX(H) is a very ample line
bundle. The exact sequence

0→ Lm → OX(H) ⊗ Lm → OH(H|H) ⊗ Lm → 0

finally reduces the problem to κ(L) ≤ ν(L), which was discussed in
Definition 12.

5 Deforming morphisms

Here we answer Question 1, but first two technical issues need to be discussed:
the distinction between étale and quasi-étale covers and the existence of non-
Calabi–Yau deformations. Both appear only for singular Calabi–Yau varieties.

Definition 27 Following [Cat07], a finite morphism π : U → V is called
quasi-étale if there is a closed subvariety Z ⊂ V of codimension ≥ 2 such that
π is étale over V \ Z.

If V is a normal variety, then there is a one-to-one correspondence between
quasi-étale covers of V and finite, étale covers of V \ sing V .

In particular, if X is a Calabi–Yau variety then there is a quasi-étale
morphism X1 → X such that KX1 ∼ 0.

Among all such covers X1 → X there is a unique smallest one, called the
index 1 cover of X, which is Galois with cyclic Galois group. We denote it
by Xind → X.

28 (Deformation theory) For a general introduction, see [Har10]. By a defor-
mation of a proper scheme (or analytic space) X we mean a flat, proper
morphism g : X → (0 ∈ S ) to a pointed scheme (or analytic space) together
with a fixed isomorphism X0 � X.

By a deformation of a morphism of proper schemes (or analytic spaces)
f : X → Y we mean a morphism f : X → Y where X is a deformation of X, Y
is a deformation of Y , and f|X0 = f .
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Deformations of elliptic Calabi–Yau manifolds 267

When we say that an assertion holds for all small deformations of X, this
means that for every deformation g : X→ (0 ∈ S ) there is an étale (or analytic)
neighborhood (0 ∈ S ′) → (0 ∈ S ) such that the assertion holds for g′ : X ×S

S ′ → (0 ∈ S ′).

29 (Deformations of Calabi–Yau varieties) Let X be a Calabi–Yau variety. If
X is smooth (or has canonical singularities) then every small deformation of X
is again a Calabi–Yau variety. This, however, fails in general; see Example 47,
where X is a surface with quotient singularities.

Dealing with such unexpected deformations is a basic problem in the moduli
theory of higher-dimensional varieties; see [Kol13a, Section 4], [HK10, Sec-
tion 14B], or [AH11] for a discussion and solutions. For Calabi–Yau varieties
one can use a global trivialization of the canonical bundle to get a much simpler
answer.

We say that a deformation g : X→ (0 ∈ S ) of X over a reduced, local space
S is a Calabi–Yau deformation if the following equivalent conditions hold:

(1) Every fiber of g is a Calabi–Yau variety.
(2) The deformation can be lifted to a deformation gind : Xind → (0 ∈ S ) of

Xind, the index 1 cover of X.

Thus, studying Calabi–Yau deformations of Calabi–Yau varieties is equiv-
alent to studying deformations of Calabi–Yau varieties whose canonical class
is Cartier. As we noted, for the latter every deformation is automatically a
Calabi–Yau deformation. Thus we do not have to deal with this issue at all.

Theorem 30 Let X be a Calabi–Yau variety and g : X → B an elliptic fiber
space. Then at least one of the following holds:

(1) The morphism g extends to every small Calabi–Yau deformation of X.
(2) There is a quasi-étale cover X̃ → X such that the Stein factorization

g̃ : X̃ → B̃ of X̃ → B is one of the following:

(a)
(
g̃ : X̃ → B̃

)
�
(
p1 : B̃ × (elliptic curve) → B̃

)
where p1 is the first

projection or
(b)

(
g̃ : X̃ → B̃

)
�
(
p1 : Z̃ × (elliptic K3) → Z̃ × P1) where Z̃ is a Calabi–

Yau variety of dimension dim X − 2 and p1 is the product of the first
projection with the elliptic pencil map of the K3 surface.

Proof As noted in 29, we may assume that KX ∼ 0.
By [KMM92] there is a unique map (up to birational equivalence) h : B� Z

whose general fiber F is rationally connected and whose target Z is not uniruled
by [GHS03]. (See [Kol96, Chapter IV] for a detailed treatment or [AK03] for
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268 J. Kollár

an introduction.) Next apply [KL09, Theorem 14] to X � Z to conclude that
there is a finite, quasi-étale cover X̃ → X, a product decomposition X̃ � Y × Z̃,
and a generically finite map Z̃ � Z that factors X̃ � Z.

If dim Z = dim B then we are in case (2a). If dim Z = dim B − 1 then the
generic fiber of B̃ → Z̃ is P1. Furthermore, dim Y = 2, hence either Y is an
elliptic K3 surface and we are in case (2b) or Y is an Abelian surface that has
an elliptic pencil and after a further cover we are again in case (2a).

It remains to prove that if dim F ≥ 2 then the assertion of (1) holds. By
Theorem 35 it is sufficient to check that

HomB
(
ΩB, R1g∗OX

)
= 0.

Note that 19 and ωX ∼ OX imply that R1g∗OX �
(
g∗ωX/B

)−1 � ωB, at least
over the smooth locus of B. Since R1g∗OX is reflexive by [Kol86a, 7.8], the
isomorphism holds everywhere. Thus

HomB
(
ΩB, R1g∗OX

)
� HomB

(
ΩB, ωB

)
�
(
Ωdim B−1

B
)∗∗

,

where ( )∗∗ denotes the double dual or reflexive hull. By taking global sections
we get that

HomB
(
ΩB, R1g∗OX

)
= H0(B,

(
Ωdim B−1

B
)∗∗)

.

Let B′ → B be a resolution of singularities such that B′ → Z is a morphism
and F′ ⊂ B′ a general fiber. Since F′ is rationally connected, it is covered by
rational curves C ⊂ F′ such that

TF′ |C �
∑OC(ai) where ai > 0 ∀ i;

see [Kol96, IV.3.9]. Thus TB′ |C is a sum of line bundles OC(ai) where ai > 0
for dim F summands and ai = 0 for the rest. Since dim F ≥ 2 we conclude that

∧dim B−1TB′ |C �
∑OC(bi) where bi > 0 for every i.

By duality this gives that H0(B′,Ωdim B−1
B′

)
= 0. Finally we use that B has log

terminal singularities by [Nak88] and so [GKKP11] shows that

HomB
(
ΩB, R1g∗OX

)
= H0(B,

(
Ωdim B−1

B
)∗∗)
= H0(B′,Ωdim B−1

B′
)
= 0.

We are now ready to answer Question 1.

Theorem 31 Let X be an elliptic Calabi–Yau variety such that H2(X,OX) = 0.
Then every small Calabi–Yau deformation of X is also an elliptic Calabi–Yau
variety.
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Deformations of elliptic Calabi–Yau manifolds 269

Proof Let g : X → B be an elliptic Calabi–Yau variety. By Theorem 30
every small Calabi–Yau deformation of X is also an elliptic Calabi–Yau variety
except possibly when there is a quasi-étale cover X̃ → X such that

(1) either X̃ � Z̃ × (elliptic curve)
(2) or X̃ � Z̃ × (elliptic K3).

In both cases, X̃ can have non-elliptic deformations but we show that these do
not correspond to a deformation of X. Here we use that H2(X,OX) = 0.

Let π : X→ (0 ∈ S ) be a flat deformation of X over a local scheme S . Let L
be the pull-back of an ample line bundle from B to X. Since H2(X,OX) = 0, L
lifts to a line bundle L on X (cf. [Gro62, p. 236–16]) thus we get a line bundle
L̃ on X̃. We need to show that a large multiple of L is base-point-free over
S ; then it gives the required morphism g : X → B. One can check base-point-
freeness of some multiple after a finite surjection, thus it is enough to show
that some multiple of L̃ is base-point-free over S .

The first case (more generally, deformations of products with Abelian
varieties) is treated in Lemma 40.

In the K3 case note first that every small deformation of X̃ is of the form
Z̃ ×S F̃, where F̃ → S is a flat family of K3 surfaces. This is a trivial case of
Theorem 35; see 53 for an elementary argument. Hence we only need to show
that the restriction of L̃ to F̃ is base-point-free over S . Equivalently, that the
elliptic structure of the central K3 surface F̃ is preserved by our deformation.
The restriction of L̃ to every fiber of F̃ → S gives a nonzero, nef line bundle
with self-intersection 0, hence an elliptic pencil.

32 (Deformation of sections) Let g : X → B be an elliptic Calabi–Yau fiber
space with a section S ⊂ X. Let us assume first that S is a Cartier divisor in X.
(This is automatic if X is smooth.) Then S is g-nef, g-big, and S ∼Q,g KX + S
hence Rig∗OX(S ) = 0 for i > 0 (cf. [KM98, Section 2.5]). Thus Hi(X,OX(S )) =
Hi(B, g∗OX(S )) for every i. In order to compute g∗OX(S ) we use the exact
sequence

0→ OB = g∗OX
α→ g∗OX(S )→ g∗OS (S |S ).

A degree-1 line bundle over an elliptic curve has only one section, thus α is an
isomorphism over an open set where the fiber is a smooth elliptic curve. Since
g∗OS (S |S ) � OS (S |S ) is torsion-free we conclude that g∗OX(S ) � OB. Thus

H1(X,OX(S )) = H1(B,OB) ⊂ H1(X,OX).

If H2(X,OX) = 0 then the line bundle OX(S ) lifts to every small deformation
of X and if H1(X,OX) = 0 then the unique section of OX(S ) also lifts.
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270 J. Kollár

The situation is quite different if the section is not assumed Cartier. For
instance, let X0 ⊂ P2 × P2 be a general hypersurface of multidegree (3, 3)
containing S := P2 × {p} for some point p. Then X0 is a Calabi–Yau variety
and the first projection shows that it is elliptic with a section. Note that X0 is
singular, it has nine ordinary nodes along S .

By contrast, if Xt ⊂ P2 × P2 is a smooth hypersurface of multidegree (3, 3)
then the restriction map Pic

(
P2 × P2) → Pic(Xt) is an isomorphism by the

Lefschetz hyperplane theorem. Thus the degree of every divisor D ⊂ Xt on
the general fiber of the first projection Xt → P2 is a multiple of 3. Therefore
Xt → P2 does not even have a rational section.

As an aside, we consider the general question of deforming morphisms
g : X → Y whose target is not uniruled.

There are some obvious examples when not every deformation of X gives a
deformation of g : X → Y . For example, let A1, A2 be positive-dimensional
Abelian varieties and g : A1 × A2 → A2 the second projection. A general
deformation of A1×A2 is a simple Abelian variety which has no maps to lower-
dimensional Abelian varieties. One can now get more complicated examples
by replacing A1 × A2 by say a complete intersection subvariety or by a cyclic
cover. The next result says that this essentially gives all examples.

Theorem 33 Let X be a projective variety with rational singularities, Y a
normal variety, and g : X → Y a surjective morphism with connected fibers.
Assume that Y is not uniruled. Then at least one of the following holds:

(1) Every small deformation of X gives a deformation of (g : X → Y).
(2) There is a quasi-étale cover Ỹ → Y, a normal variety Z, and positive-

dimensional Abelian varieties A1, A2 such that the lifted morphism g̃ : X̃ :=
X ×Y Ỹ → Ỹ factors as

X̃ → Z × A2 × A1

g̃ ↓ ↓
Ỹ � Z × A2

Proof By Theorem 35 every deformation of X gives a deformation of g :
X → Y if

HomY
(
ΩY , R1g∗OX

)
= 0. (3)

Thus we need to show that if Theorem 33, (3) fails then we get a structural
description as in (2).

Assuming that there is a nonzero map φ : ΩY → R1g∗OX , let E ⊂ R1g∗OX

denote its image. Our first aim is to prove that E becomes trivial after a quasi-
étale base change.
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Deformations of elliptic Calabi–Yau manifolds 271

Let C ⊂ Y be a high-degree, general, complete intersection curve. First we
show that E|C is stable and has degree 0.

Since Y is not uniruled, ΩY |C is semi-positive by [Miy88] (see also [Kol92,
Section 9]). Thus E|C is also semi-positive.

Let Y0 ⊂ Y be a dense open set and X0 := g−1(Y0) such that g0 : X0 → Y0

is smooth. Set C0 := Y0 ∩ C. By [Ste76],
(
R1g∗OX

)|C is the (lower) canonical
extension of the top quotient of the variation of Hodge structures R1g0

∗QX0 |C0 .
(Note that [Ste76] works with ωX0/Y0 but the proof is essentially the same;
see [Kol86b, pp. 177–179].) Thus

(
R1g∗OX

)|C is semi-negative by [Ste76] and
so is E|C . Thus E|C is stable of degree 0, hence it corresponds to a unitary
representation ρ of π1(C).

By [Gri70, Section 5], ρ is a subrepresentation of the monodromy repre-
sentation on R1g0

∗QX0 |C0 and by [Del71, Theorem 4.2.6], it is even a direct
summand E. Since we have a polarized variation of Hodge structures, the mon-
odromy representation on E has finite image. Thus E becomes trivial after a
quasi-étale base change and then it corresponds to a direct factor of the relative
Albanese variety of X1 := Y1 ×Y X, giving the Abelian variety A1.

Furthermore, in this case TY1 |C = HomY1

(
ΩY1 ,OY1

)|C has a global section.
Since TY1 is reflexive, the Enriques–Severi–Zariski lemma (as proved, though
not as claimed in [Har77, III.7.8]) implies that H0(Y1, TY1 ) � 0. Therefore
dim Aut(Y1) > 0. Since Y1 is not uniruled, Aut0(Y1) has no linear algebraic
subgroups, thus the connected component Aut0(Y1) is an Abelian variety A2.
By Proposition 34, A2 becomes a direct factor after a suitable étale cover Ỹ →
Y1 → Y .

The following result was known in [Ser01, Ses63]; see [Bri10] for the
general theory.

Proposition 34 Let W → S be a flat, projective morphism with normal fibers
over a field of characteristic 0 and A→ S an Abelian scheme acting faithfully
on W. Then there is a flat, projective morphism with normal fibers Z → S and
an A-equivariant étale morphism A ×S Z → W.

The following is a combination of [Hor76, Theorem 8.1] and the method of
[Hor76, Theorem 8.2] in the smooth case and [BHPS12, Proposition 3.10] in
general.

Theorem 35 Let f : X → Y be a morphism of proper schemes over a field
such that f∗OX = OY and HomY

(
ΩY , R1 f∗OX

)
= 0.

Then for every small deformation X of X there is a small deformation Y of
Y such that f lifts to f : X→ Y.
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272 J. Kollár

6 Smoothings of very singular varieties

One can frequently construct smooth varieties by first exhibiting some very
singular, even reducible schemes with suitable numerical invariants and then
smoothing them. For such Calabi–Yau examples, see [KN94]. Thus it is of
interest to know when an elliptic fiber space structure is preserved by a smooth-
ing. In some cases, when Theorem 31 does not apply, the following result,
relying on Corollary 11, provides a quite satisfactory answer.

Proposition 36 Let X be a projective, reduced, Gorenstein scheme of
pure dimension n such that ωX is numerically trivial and H2(X,OX)= 0. Let
g : X→ B be a morphism whose general fibers (over every irreducible compo-
nent of B) are curves of arithmetic genus 1. Assume also that every irreducible
component of X dominates an irreducible component of B.

Let LB be an ample line bundle on B and assume that χ
(
X, g∗Lm

B

)
is a poly-

nomial of degree dim X − 2. Then every smoothing (and every log terminal
deformation) of X is an elliptic fiber space.

Warning Note that we do not claim that g lifts to every deformation of X.
In Example 49 X has smoothings, which are elliptic, and also other singular
deformations that are not elliptic.

Proof As before, H2(X,OX) = 0 implies that g∗LB lifts to every small defor-
mation [Gro62, p. 236–16]. Thus we have a deformation h :

(
X, L

) → (0 ∈ S )
of (X0, L0) � (X, L = g∗LB).

We claim that L is h-nef and KX is trivial on the fibers of h. This is a some-
what delicate point since being nef is not an open condition in general [Les12].
We get around this problem as follows.

Let
(
Xgen, Lgen

)
be a generic fiber. (Note the difference between generic and

general.) First we show that Lgen is nef and KXgen ≡ 0. Indeed, assume that(
Lgen · Cgen

)
< 0 for some curve Cgen. Let C0 ⊂ X0 be a specialization of Cgen.

Then
(
L0 · C0

)
=
(
Lgen · Cgen

)
< 0 gives a contradiction. A similar argument

shows that
(
KXgen ·Cgen

)
= 0 for every curve Cgen.

Next, the deformation invariance of χ
(
X, g∗Lm

B

)
and Riemann–Roch (cf.

Corollary 22 and 24) show that

(
Ln−2
gen · c2(Xgen)

)
= (n − 2)! · (coefficient of mn−2 in χ

(
X, g∗Lm

B

)
).

Therefore
(
Ln−2
gen · c2(Xgen)

)
> 0 and, as we noted after Theorem 10, this implies

that |mLgen| is base-point-free for some m > 0.
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Thus there is a dense Zariski open subset S 0 ⊂ S such that |mLs| is base-
point-free for s ∈ S 0, hence

(
Xs, Ls

)
is an elliptic fiber space for s ∈ S 0. We

repeat the argument for the generic points of S \S 0 and conclude by Noetherian
induction.

It may be useful to see how to modify the above proof to work in the analytic
case when there are no generic points.

The (Barlet or Douady) space of curves in h : X → (0 ∈ S ) has only
countably many irreducible components, thus there are countably many closed
subspaces S i � S such that every curve Cs ⊂ Xs is deformation equivalent to
a curve C0 ⊂ X0 for s � ∪S i. In particular, Ls is nef and KXs ≡ 0 whenever
s � ∪S i. Thus

(
Xs, Ls

)
is an elliptic fiber space for s � ∪S i.

By semicontinuity, there are closed subvarieties Tm � S such that

h∗OX(mL) ⊗ Cs = H0(Xs,OXs (mLs)
)

for s � Tm.

Thus if s � ∪iS i
⋃∪mTm and OXs (m0Ls) is generated by global sections then

φm0 : h∗
(
h∗OX(m0L)

)→ OX(m0L)

is surjective along Xs. Thus there is a dense Zariski open subset S 0 ⊂ S such
that φm0 is surjective for all s ∈ S 0. Now we can finish by Noetherian induction
as before.

7 Calabi–Yau orbibundles

The techniques of this section are mostly taken from [Kol93, Section 6] and
[Nak99].

Definition 37 A Calabi–Yau fiber space g : X → B is called an orbibundle if
it can be obtained by the following construction.

Let B̃ be a normal variety, F a Calabi–Yau variety, and X̃ := B̃ × F. Let
G be a finite group, ρB : G → Aut(B̃) and ρF : G → Aut(F) two faithful
representations. Set (

g : X → B
)

:=
(
X̃/G→B̃/G

)
;

it is a generically isotrivial Calabi–Yau fiber space with general fiber F.
(It would seem more natural to require the above property only locally on B.

We see in Theorem 43 that in the algebraic case the two versions are equivalent.
However, for complex manifolds, the local and global versions are different.)

For any normal variety Z with non-negative Kodaira dimension, the con-
nected component Aut0(Z) of Aut(Z) is an Abelian variety; we call its
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274 J. Kollár

elements translations. The quotient Aut(Z)/ Aut0(Z) is the discrete part of the
automorphism group.

For G acting on F, let Gt := ρ−1
F Aut0(F) ⊂ G be the normal subgroup of

translations and set Xd := X̃/Gt. Then Gd := G/Gt acts on Xd and X = Xd/Gd.
Thus every orbibundle comes with two covers:

X
τX←− Xd πX←− X̃

g ↓ gd ↓ g̃ ↓
B

τB←− Bd πB←− B̃

(37.1)

We see during the proof of Theorem 43 that the cover X ← Xd corresponding
to the discrete part of the monodromy representation is uniquely determined
by g : X → B. By contrast, the Xd ← X̃ part is not unique. Its group of deck
transformations is Gt ⊂ Aut0(F), hence Abelian. It is not even clear that there
is a natural “smallest” choice of Xd ← X̃.

If F = A is an Abelian variety, then gd : Xd → Bd is a Seifert bundle where
an orbibundle gs : Xs → Bs is called a Seifert bundle if F = A is an Abelian
variety and G acts on A by translation. Note that in this case the A-action on
B̃×A descends to an A-action on Xs and Bs = Xs/A. Thus the reduced structure
of every fiber is a smooth Abelian variety isogenous to A.

Lemma 38 Notation as above. Then

(1) πX and τX are étale in codimension 1 (that is, quasi-étale),

(2) πX and τX are étale in codimension 2 if one of the following holds:

(a) G acts freely on F outside a codimension ≥ 2 subset or

(b) KF ∼ 0 and ΔX/B = 0.

Proof The first claim is clear since both ρF , ρB are faithful.
Since ρF , ρB are faithful, τX fails to be étale in codimension 2 iff some

1 � g ∈ G fixes a divisor D̃B ⊂ B̃ and also a divisor DF ⊂ F. This is
excluded by (2a).

Next we check that (2b) implies (2a). At a general point p ∈ DF choose local
g-equivariant coordinates x1, . . . , xm such that DF = (x1 = 0). Thus ρF(g)∗ acts
on x1 nontrivially but it fixes x2, . . . , xm. Let ω0 be a nonzero section of ωF .
Locally near p we can write

ω0 = f · dx1 ∧ · · · ∧ dxm,

thus ρF(g)∗ acts on H0(F, ωF) with the same eigenvalue as on x1.
Thus, by 19, (1), the image of D̃X gives a positive contribution to ΔX/B. This

contradicts ΔX/B = 0.
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There are some obvious deformations of X obtained by deforming B̃ and
F in a family {(B̃t, Ft)} such that the representations ρB, ρF lift to ρB,t : G →
Aut(B̃t) and ρF,t : G → Aut(Ft).

In general, not every deformation of X arises this way. For instance, let B̃
and F = A be elliptic curves and X the Kummer surface of B̃× A. The obvious
deformations of X form a 2-dimensional family obtained by deforming B̃ and
A. Thus a general deformation of X is not obtained this way and it is not even
elliptic. Even worse, a general elliptic deformation of X is also not Kummer;
thus not every deformation of the morphism (g : X → B) is obtained by the
quotient construction.

Theorem 39 Let g : X → B be a Calabi–Yau orbibundle with general fiber
F. Assume that X has log terminal singularities, H2(X,OX) = 0, κ(X) ≥ 0,
KF ∼ 0, and ΔX/B = 0. Then every flat deformation of X arises from a flat
deformation of

(
B̃, F, ρB, ρF

)
.

Proof Let LB be an ample line bundle on B and set L := g∗LB.
Let h : X → (0 ∈ S ) be a deformation of X0 � X. In the sequel we will

repeatedly replace S by a smaller analytic (or étale) neighborhood of 0 if
necessary.

Since H2(X,OX) = 0, L lifts to a line bundle L on X by [Gro62, p. 236–16].
Since KF ∼ 0 and ΔX/B = 0, Lemma 38 implies that π : X̃ → X is étale in

codimension 2. Since X is log terminal, so is X̃, hence it is Cohen–Macaulay
(see, e.g., [KM98, 5.10 and 5.22]). Thus, by [Kol95, Corollary 12.7], the cover
π lifts to a cover Π : X̃→ X.

Finally we show that the product decomposition X̃ � B̃×F lifts to a product
decomposition

X̃ � B̃ ×S F

where B̃ → S is a flat deformation of B̃ and F → S is a family of Calabi–
Yau varieties over S . After a further étale cover of F̃ → F we may assume that
F̃ � Z×A, where H1(Z,OZ) = 0 and A is an Abelian variety. Set X̂ := B̃×Z×A;
then X̂ → X̃ lifts to a deformation X̂→ X̃→ S .

First we use Lemma 40 and Proposition 34 to show that the product
decomposition X̂ �

(
B̃ × Z

) × A lifts to a product decomposition

X̂ � B̂Z ×S A

where B̂Z → S is a flat deformation of B̃ × Z and A → S is a family of
Abelian varieties over S . The deformation of the product B̃ × Z is much easier
to understand; we discuss it in 53.
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Lemma 40 Let Y → S be a flat, proper morphism whose fibers are normal
and L a line bundle on Y. Let 0 ∈ S be a point such that

(1) Y0 is not birationally ruled,

(2) an Abelian variety A0 ⊂ Aut0(Y0) acts faithfully on Y0,

(3) L0 is nef, L0 is numerically trivial on the A0-orbits but not numerically
trivial on general A′0-orbits for any A0 � A′0 ⊂ Aut0(Y0).

Then, possibly after shrinking S , there is an Abelian scheme A→ S extending
A0 such that A acts faithfully on Y.

Proof By [Mat68, p. 217] (see also [Kol85, p. 392]), possibly after shrinking
S , ga : Aut0(Y/S )→ S is a smooth Abelian scheme, where Aut0(Y/S ) denotes
the identity component of the automorphism scheme Aut(Y/S ). The fibers are
normal, hence Y → S is smooth over a dense subset of every fiber. Since
a smooth morphism has sections étale locally, we may assume after an étale
base change that there is a section Z ⊂ Y . Acting on Z gives a morphism
ρZ : Aut0(Y/S ) → Y . Then ρ∗Z L is a nef line bundle on Aut0(Y/S ). The kernel
of the cup-product map

c1
(
ρ∗Z L

)
: R1ga

∗ Q→ R3ga
∗ Q

is a variation of sub-Hodge structures, hence it corresponds to a smooth
Abelian subfamily A ⊂ Aut0(Y/S ). By (3), this is the required extension of A0.

The quotient then exists by [Ses63].

We will also need to understand the class group of an orbibundle.

41 (Divisors on orbibundles) We use the notation of Definitions 37 and 42.
By [BGS11, 5.3] (see also [HK11, CL10] for the elliptic case), the class

group of the product B̃ × F is

Cl
(
B̃ × F

)
= Cl(B̃) + Cl(F) + Hom

(
Albrat(B̃), Pic0(F)

)
. (41.1)

This comes with a natural G-action and, up to torsion, the class group of the
quotient is

Cl(B) + Cl(F)G + Hom
(
Albrat(B̃), Pic0(F)

)G
. (41.2)

Here Cl(F)G +Hom
(
Albrat(B̃), Pic0(F)

)G can be identified with the class group
of the generic fiber of g. If B̃ has rational singularities, then Albrat(B̃) = Alb(B̃).
Thus the extra component Hom

(
Alb(B̃), Pic0(F)

)
corresponds to divisors that

are pulled back from Alb(B̃) × F, hence they are Cartier.
We will use the following variant of these observations:
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Claim 41.3 Let g : X → B be an orbibundle such that X has log terminal
singularities. Then the natural map

Cl(B)/ Pic(B) +
(
Cl(F)/ Pic(F)

)G → Cl(X)/ Pic(X)

is an isomorphism modulo torsion. In particular, if B and the generic fiber of g

are Q-factorial, then so is X.

Proof By Lemma 38, τX : Xd → X is étale in codimension 1, hence Xd also
has log terminal singularities. As noted in Definition 5, this implies that Bd has
rational singularities.

Let us now study more carefully the RHS of (41.2). Let Gt ⊂ G denote the
subgroup of translations. Then

Hom
(
Albrat(B̃), Pic0(F)

)G ⊂ Hom
(
Albrat(B̃), Pic0(F)

)Gt .

Since translations act trivially on Pic0(F), the latter can be identified (up to
torsion) as

Hom
(
Albrat(B̃), Pic0(F)

)Gt ⊗ Q � Hom
(
Albrat(B̃)Gt , Pic0(F)

) ⊗ Q
� Hom

(
Albrat(Bd), Pic0(F)

) ⊗ Q
� Hom

(
Alb(Bd), Pic0(F)

) ⊗ Q.
Thus this extra term gives only Q-Cartier divisors on Xd and hence also on X.

The following local example shows that it is not enough to assume that B has
rational singularities. Set B̃ = (u3+v3+w3 = 0) ⊂ A3 and E = (x3+y3+z3 = 0)
⊂ P2. On both factors, Z/3 acts by weights (0, 0, 1). Then B = B̃/ 1

3 (0, 0, 1) �
A2 is even smooth, but

X = B̃ × E/ 1
3 (0, 0, 1) × (0, 0, 1)

is not Q-factorial. For instance, the closure of the graph of the natural
projection B̃� E gives a non-Q-Cartier divisor on X.

Definition 42 (Albanese varieties) For a smooth projective variety V let
Alb(V) denote the Albanese variety, that is, the target of the universal mor-
phism from V to an Abelian variety. (See [BPV84, Section I.13] or [Gro62,
p. 236–16] for introductions.)

There are two ways to generalize this concept to normal varieties.
The above definition yields what we again call the Albanese variety Alb(V).

Alternatively, the rational Albanese variety Albrat(V) is defined as the target
of the universal rational map from V to an Abelian variety. One can identify
Albrat(V) = Alb(V ′), where V ′ → V is any resolution of singularities.
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278 J. Kollár

It is easy to see that if V has log terminal (more generally rational)
singularities, then Albrat(V) = Alb(V).

8 Generically isotrivial Calabi–Yau fiber spaces

In this section we prove that all generically isotrivial Calabi–Yau fiber spaces
are essentially Calabi–Yau orbibundles.

Theorem 43 Let g : X → B be a projective, generically isotrivial, Calabi–
Yau fiber space with general fiber F. Then

(1) g : X → B is birational to an orbibundle
(
gorb : Xorb → B

)
.

(2) g : X → B is isomorphic to
(
gorb : Xorb → B

)
if

(a) X is Q-factorial, log terminal,
(b) g : X → B is relatively minimal, without exceptional divisors,
(c) B is Q-factorial, and
(d) one of the following holds:

(i) KF ∼ 0 and ΔX/B = 0, or
(ii) there is a closed subset ZB ⊂ B of codimension ≥ 2 such that

g : X → B is locally an orbibundle over B \ ZB.

Proof Let B0 ⊂ B be a Zariski open subset over which X0 → B0 is isotrivial
with general fiber F. This gives a well-defined representation

ρ : π1(B0)→ Aut(F)/ Aut0(F).

Let B(d,0) → B0 be the corresponding étale, Galois cover with group Gd and
Bd → B its extension to a (usually ramified) Galois cover of B with group Gd.
This gives the well-defined cover in (37.1).

The trivialization of the translation part is more subtle and it depends on
additional choices.

A general Aut0(F)-orbit AF ⊂ F defines an isotrivial Abelian family X(d,0) ⊃
A(d,0)

X → B(d,0). By assumption there is a g-ample line bundle L on X. It pulls
back to a relatively ample line bundle LA on A(d,0)

X . We may assume that its
degree on the general fiber is at least 3. Let T (d,0) ⊂ A(d,0)

X be the subscheme
as in 44. Since LA is Gd-invariant, T (d,0) is Gd-equivariant hence it defines a
monodromy representation of π1(B(d,0)) → Aut0(F). Let Γ ⊂ π1(B(d,0)) be a
finite-index subgroup that is normal in π1(B0) and B̃0 → B0 the corresponding
étale, Galois cover with group G = π1(B0)/Γ. Let B̃ → B denote its extension
to a (usually ramified) Galois cover of B with group G.
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By pull-back we obtain an isotrivial, Abelian fiber space Ã0
X → B̃0 with a

trivialization of the m-torsion points. For m ≥ 3 this implies that Ã0
X � B̃0 × A.

(This is quite elementary, cf. [ACG11, p. 513].) Thus the same pull-back also
trivializes X0 → B0. We can compactify X̃0 as X̃ := B̃ × F.

The G-action on X̃ can be given as

γ : (b̃, c) �→ (
ρB(γ) · b̃, ρF,b̃(γ) · c).

Note that ρF,b̃ preserves the m-torsion points and the automorphisms of an
Abelian torsor that preserve any finite non-empty set form a discrete group.
Thus in fact ρF,b̃ is independent of b̃ and hence the G-action on X̃ is given by

γ : (b̃, c) �→ (
ρB(γ) · b̃, ρF(γ) · c)

for some isomorphism ρB : G � Gal
(
B̃/B

)
and homomorphism ρF : G →

Aut(F). We can replace B̃ by B̃/ ker ρF , hence we may assume that ρF is
faithful.

Thus we have gorb : Xorb := X̃/G → B and a birational map

φ : X � Xorb such that g = gorb ◦ φ.

Assume next that conditions (2a–d) hold. First we use (2d) to prove that φ

extends to an isomorphism over codimension 1 points of B. Then we use
conditions (2a–c) to show that φ is an isomorphism everywhere.

In order to understand the codimension 1 behavior, we can take a transversal
curve section (or localize at a codimension 1 point). Thus we may assume that
B = (0 ∈ D) is a unit disc (or the spectrum of a DVR) and g : X → D is
isotrivial on D \ {0}. Thus Xorb is of the form

Xorb � (F × D)/(ρ, e2πi/m),

where ρ is an automorphism of order m of F.
In case (2d(i)) ρ acts trivially on H0(F, ωF) by 19, (1), thus the canonical

class of F0 := F/〈ρ〉 is trivial and so F0 has canonical singularities. By inver-
sion of adjunction [Kol13b, Theorem 4.9], the pair

(
Xorb, F0

)
is also canonical.

It is clear that a(E, Xorb) > a(E, Xorb, F0) ≥ 0 for every divisor over Xorb

dominating 0 ∈ D; cf. [KM98, 2.27]. Thus, as we noted in 8, φ restricts to
a birational map of the central fibers φ0 : X0 � F0.

Now let H be a relatively ample divisor on X → D. Then φ∗H is a divisor on
Xorb that is Cartier and ample outside F0. Since every curve on F0 is the spe-
cialization of a curve in F, we see that φ∗H isQ-Cartier and ample everywhere.
Thus φ is an isomorphism by Lemma 45.

In case (2d(ii)), let gi : Xi → D be two orbibundles and φ : X1 � X2 a
birational map that is an isomorphism over D0 := D \ {0}. Let Γ ⊂ X1 ×D X2
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280 J. Kollár

denote the closure of the graph of φ. We need to prove that the coordinate
projections Γ → Xi are finite. It is enough to check this after a finite base
change. Thus we may assume that Xi � F × D. Then φ can be identified with
a map D0 → Aut(F) and this extends to D → Aut(F) since every connected
component of Aut(F) is proper. Thus φ is an isomorphism.

Now we return to the general case. We have shown that there is a subset
ZB ⊂ B of codimension ≥ 2 such that φ : X � Xorb is an isomorphism over
B \ ZB. By assumption (2b), the pre-image g−1(ZB) has codimension ≥ 2 and
the pre-image (gorb)−1(ZB) has codimension ≥ 2 by construction. Since X is Q-
factorial, so is the generic fiber of g, hence Xorb is Q-factorial by Claim 41.3.
Thus the assumptions of Lemma 45, part (2) are satisfied and hence φ is an
isomorphism.

44 (Multisections of Abelian families) Let E be a smooth projective curve of
genus 1 and L a line bundle of degree m on E. If m = 1 then L has a unique
section, thus we can associate a point p ∈ E to L. If m ≥ 2, then sections define
a linear equivalence class |L| of m points. If we fix a point 0 ∈ E to be the
origin, then we can add these m points together and get a well-defined point of
E associated with L. This, however, depends on the choice of the origin.

To get something invariant, let us look at the points p ∈ E such that m · p
∈ |L|. There are m2 such points, together forming a translate of the subgroup of
m-torsion points. This construction also works in families.

Let g : X → B be a smooth, projective morphism whose fibers Eb are curves
of genus 1. Let L be a line bundle on X that has degree m on each fiber. Then
there is a closed subscheme T ⊂ X such that g|T : T → B is étale of degree m2

and every fiber Tb ⊂ Eb is a translate of the subgroup of m-torsion points.
There is a similar construction for higher-dimensional Abelian varieties. For

clarity, I say Abelian torsor when talking about an Abelian variety without a
specified origin.

Thus let A be an Abelian torsor of dimension d and L an ample line bundle
on A. It has a first Chern class c̃1(L) in the Chow group and we get c̃1(L)d as an
element of the Chow group of 0-cycles. (It is important to use the Chow group,
the Chern class in cohomology is not sufficient.) Let its degree be m.

Fix a base point 0 ∈ A. This defines a map from the Chow group of 0-cycles
to (A, 0); let α

(
c̃1(L)d) denote the image.

Finally let T ⊂ A be the set of points t ∈ A such that m · t = α
(
c̃1(L)d). This

T is a translate of the subgroup of m-torsion points. As before, the key point
is that T is independent of the choice of the base point 0 ∈ A. Indeed, if we
change 0 by a translation by c ∈ A then α

(
c̃1(L)d) is changed by translation by

m · c so T is changed by translation by c.
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Furthermore, if (Ab, Lb) is a family of polarized Abelian torsors that varies
analytically (or algebraically) with b then Tb ⊂ Ab is a family of sub-
schemes that also vary analytically (or algebraically) with b. Thus we obtain
the following.

Let g : X → B be a smooth, projective morphism whose fibers are Abelian
torsors. Then there is a closed subscheme T ⊂ X such that g|T : T → B is
étale and every fiber Tb ⊂ Ab is a translate of the subgroup of m-torsion points
(where deg T/B = m2d).

Lemma 45 Let gi : Xi → B be projective fiber spaces, the Xi normal and
φ : X1 � X2 a rational map. Assume that there are closed subsets Zi ⊂ Xi such
that codimXi Zi ≥ 2 and φ induces an isomorphism X1 \ Z1 � X2 \ Z2. Let H1

be a g1-ample divisor on X1 and set H2 := φ∗H1.

(1) φ is an isomorphism iff H2 is g2-ample.

(2) If φ induces an isomorphism of the generic fibers, X2 is Q-factorial and
every curve C ⊂ X2 contracted by g2 is Q-homologous to a curve in a
general fiber, then H2 is g2-ample.

Proof The first claim is a lemma of Matsusaka and Mumford [MM64]; see
[KSC04, 5.6] or [Kol10, Exercise 75] for the variant used here.

It follows from assumption (2) that H2 is Q-Cartier and strictly positive on
the cone of curves, hence it is g2-ample.

46 (F-theory examples) Let X be a smooth, projective variety and g : X → B
a relatively minimal elliptic fiber space with a section σ : B → X. Since X is
smooth, so is B.

Assume that ΔX/S = 0. Then, by Lemma 38, it can have only multi-
ple smooth fibers at codimension-1 points, but then the section shows that
there are no multiple fibers. Thus there is an open subset B0 ⊂ B such that
codimB(B \ B0) ≥ 2 and X0 → X is a fiber bundle with fiber a pointed elliptic
curve (E, 0). Thus X0 is given by the data(

B0, E, ρ : π1(B0)→ Aut(E, 0)
)
.

Note that π1(B0) = π1(B) since B is smooth and codimB(B \ B0) ≥ 2. Thus X
is birational to a fiber bundle g′ : X′ → B given by the data(

B, E, ρ : π1(B)→ Aut(E, 0)
)
.

All the fibers of g′ are elliptic curves, but the exceptional locus of a flip or a
flop is always covered by rational curves (cf. [Kol96, VI.1.10]). Thus in fact
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X � X′, hence g : X → B is a locally trivial fiber bundle. The image of the mon-
odromy representation ρ : π1(B) → Aut(E, 0) is usually Z/2, but for elliptic
curves with extra automorphisms it can also be Z/3,Z/4, or Z/6.

It is easy to write down examples where KX ∼ 0 and Hi(X,OX) = 0 for
0 < i < dim X. However, π1(X) is always infinite, so such an X cannot be a
“true” Calabi–Yau manifold.

By Theorem 39, if H2(X,OX) = 0 then every small deformation of X is
obtained by deforming B and, if the image of ρ is Z/2, also deforming E.

9 Examples

The first example is an elliptic Calabi–Yau surface with quotient singularities
that has a flat smoothing which is neither Calabi–Yau nor elliptic.

Example 47 We start with a surface S ∗F which is the quotient of the square
of the Fermat cubic curve by Z/3:

S ∗F �
(
u3

1 = v3
1 + w3

1
) × (u3

2 = v3
2 + w3

2
)
/ 1

3 (1, 0, 0; 1, 0, 0).

To describe the deformation, we need a different representation of it.
In P3 consider two lines L1 = (x0 = x1 = 0) and L2 = (x2 = x3 = 0). The

linear system
∣∣∣OP2 (2)(−L1 − L2)

∣∣∣ is spanned by the four reducible quadrics xix j

for i ∈ {0, 1} and j ∈ {2, 3}. They satisfy a relation (x0x2)(x1x3) = (x0x3)(x1x2).
Thus we get a morphism

π : BL1+L2P
3 → P1 × P1,

which is a P1-bundle whose fibers are the birational transforms of lines that
intersect both of the Li.

Let S ⊂ P3 be a cubic surface such that p := S ∩ (L1 + L2) is six distinct
points. Then we get πS : BpS → P1 × P1.

In general, none of the lines connecting two points of p is contained in S .
Thus in this case πS is a finite triple cover.

Both of the lines Li determine an elliptic pencil on BpS but if we move the
six points p into general position, we lose both elliptic pencils.

At the other extreme we have the Fermat-type surface

S F :=
(
x3

0 + x3
1 = x3

2 + x3
3
) ⊂ P3.

We can factor both sides and write its equation as m1m2m3 = n1n2n3. The nine
lines Li j := (mi = n j = 0) are all contained in S F . Let L′i j ⊂ BpS F denote
their birational transforms. Then the self-intersections

(
L′i j · L′i j

)
equal −3 and
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πS F contracts these nine curves L′i j. Thus the Stein factorization of πS F gives a

triple cover S ∗F → P1 × P1 and S ∗F has nine singular points of type A2/ 1
3 (1, 1).

We see furthermore that

−3KS F ∼
∑

i jLi j and − 3KBPS F ∼
∑

i jL
′
i j.

Thus −3KS ∗F
∼ 0.

To see that this is the same S ∗F , note that the morphism of the original S ∗F to
P1 × P1 is given by

(u1:v1:w1) × (u2:v2:w2) �→ (v1:w1) × (v2:w2)

and the rational map to the cubic surface is given by

(u1:v1:w1) × (u2:v2:w2) �→ (
v2u1u2

2:u1u2
2:v1u3

2:u3
2
)
.

Varying S gives a flat deformation whose central fiber is S ∗F , a surface with
quotient singularities and torsion canonical class and whose general fiber is a
cubic surface blown up at six general points, hence rational and without elliptic
pencils.

The next example gives local models of generically isotrivial elliptic
orbibundles that have a crepant resolution.

Example 48 Let Z ⊂ PN be an anticanonically embedded Fano variety and
X ⊂ AN+1

x the cone over Z. Let 0 ∈ E be an elliptic curve with a marked point.
Consider the elliptic fiber space

Y := X × E/(−1,−1)→ X/(−1).

We claim that Y has a crepant resolution.
First we blow up the vertex of X. We get B0X → X with exceptional divisor

F � Z. Note further that B0X → X is crepant. The involution lifts to B0X ×
E/(−1,−1). The fixed point set of this action is F ×{0}; a smooth subvariety of
codimension 2. Thus B0X × E/(−1,−1) is resolved by blowing up the singular
locus.

The next example shows that for surfaces with normal crossing singularities,
a deformation may lose the elliptic structure.

Example 49 Let S ⊂ P1×P2 be a smooth surface of bi-degree (1, 3). The first
projection π : S → P1 is an elliptic fiber space. The other projection τ : S → P2

exhibits it as the blow-up of P2 at nine base points of an elliptic pencil. Let
F1, . . . , F9 ⊂ S denote the nine exceptional curves. Thus S is an elliptic dP9.
In particular, specifying π : S → P1 plus a fiber of π is equivalent to a pair
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(
E ⊂ P2) plus nine points P1, . . . , P9 ∈ E such that P1 + · · · + P9 ∼ OP2 (3)|E .

The elliptic pencils are given by π∗OP1 (1) � τ∗OP2 (3)(−F1 − · · · − F9).
Let us now vary the points on E in a family Pi(t) : t ∈ C. The line bundle

giving the elliptic pencil deforms as τ∗OP2 (3)(−F1(t) − · · · − F9(t)) but the
elliptic pencil deforms only if P1(t) + · · · + P9(t) ∼ OP2 (3)|E holds for every t.

Let X ⊂ P2×P2 be a smooth threefold of bi-degree (1, 3). The first projection
π : X → P2 is an elliptic fiber space.

If C ⊂ P2 is a conic, its pre-image XC → C is an elliptic K3 surface. If C is
general then XC is smooth.

If C = L1 ∪ L2 is a pair of general lines then XC = S 1 ∪ S 2 is a singular
K3 surface which is a union of two smooth dP9 that intersect along a smooth
elliptic curve E.

We can thus think of XC as obtained from two pairs
(
Ei ⊂ P2) (i = 1, 2) with

an isomorphism φ : E1 → E2 by blowing up nine points Pi
j ⊂ Ei ( j = 1, . . . , 9)

and gluing the resulting surfaces along the birational transforms of E1 and E2.
Let us now vary the points on both curves P1

i (t) and P2
i (t). We get two

families S 1(t), S 2(t) and this induces a deformation XC(t) = S 1(t) ∪ S 2(t).
Although the line bundle π∗OC(1) giving the elliptic pencil XC → C deforms

on both of the S i(t), in general we do not get a line bundle on XC(t) unless

P1
1(t) + · · · + P1

9(t) ∼ φ∗
(
P2

1(t) + · · · + P2
9(t)

)
holds for every t. We can thus arrange that π∗OC(1) deforms along XC(t) but
we lose the elliptic pencil.

10 General conjectures

A straightforward generalization of Conjecture 4 is the following (cf. [Ogu93]
and [MP97, Lecture 10]):

Conjecture 50 (Strong abundance for Calabi–Yau manifolds) Let X be a
Calabi–Yau manifold and L ∈ H2(X,Q) a (1, 1)-class such that (L · C) ≥ 0 for
every algebraic curve C ⊂ X. Then there is a unique morphism with connected
fibers g : X → B onto a normal variety B and an ample LB ∈ H2(B,Q) such
that L = g∗LB.

The usual abundance conjecture assumes that L is effective, but this may not
be necessary.

One expects Conjecture 50 to get harder as dim X − dim B increases. The
easiest case, when dim X − dim B = 1, corresponds to Questions 1 and 2.
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From the point of view of higher-dimensional birational geometry, it is
natural to consider a more general setting.

A log Calabi–Yau fiber space is a proper morphism with connected fibers
g : (X,Δ) → B onto a normal variety where (X,Δ) is klt (or possibly lc) and
(KX + Δ)|Xg

∼Q 0, where Xg ⊂ X is a general fiber.
Let (X,Δ) be a proper klt pair such that KX + Δ is nef and g : (X,Δ) → B a

relatively minimal Calabi–Yau fiber space. Let LB be an ample Q-divisor on B
and set L := g∗LB. Then L− ε(KX +Δ) is nef for 0 ≤ ε � 1. The converse fails
in some rather simple cases, for instance when X = B × E for an elliptic curve
E and we twist L by a degree-0 non-torsion line bundle on E.

It is natural to expect that the above are essentially the only exceptions.

Conjecture 51 Let (X,Δ) be a proper klt pair such that KX + Δ is nef and
H1(X,OX) = 0. Let L be a Cartier divisor on X such that L − ε(KX + Δ) is nef
for 0 ≤ ε � 1.

Then there is a relatively minimal log Calabi–Yau fiber space structure
g : (X,Δ)→ B and an ample Q-divisor LB on B such that L ∼Q g∗LB.

If L− ε(KX +Δ) is effective then Conjecture 51 is implied by the abundance
conjecture. Note also that Example 49 shows that Conjecture 51 fails if (X,Δ)
is log canonical.

Conjecture 52 Let g0 : (X0,Δ0) → B0 be a relatively minimal log Calabi–
Yau fiber space where (X0,Δ0) is a proper klt pair and H2(X0,OX0 ) = 0.

Let (X,Δ) be a klt pair and h : (X,Δ) → (0 ∈ S ) a flat proper morphism
whose central fiber is (X0,Δ0).

Then, after passing to an analytic or étale neighborhood of 0 ∈ S , there is
a proper, flat morphism B → (0 ∈ S ) whose central fiber is B0 such that g0

extends to a log Calabi–Yau fiber space g : (X,Δ)→ B.1

53 Although Conjecture 52 looks much more general than Theorem 31, it
seems that Abelian fibrations comprise the only unknown case.

Indeed, let X0, B0 be projective varieties with rational singularities and
g0 : X0 → B0 a morphism with connected general fiber F0. Assume that
H1(F0,OF0

)
= 0. Then R1(g0)∗OX0 is a torsion sheaf. On the contrary, it is

reflexive by [Kol86a, 7.8]. Thus R1(g0)∗OX0 = 0.
We could use Theorem 35, but there is an even simpler argument.

Let LB0 be a sufficiently ample line bundle on B0 and set L0 := g∗0LB0 . Then
H1(X0, L0

)
= 0 by (21.1). Thus, if h : X → (0 ∈ S ) is a deformation of X0

such that L0 lifts to a line bundle L on X then every section of L0 lifts to a

1 Recent work of Katzarkov, Kontsevich, and Pantev establishes this in case X0 is smooth.
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286 J. Kollár

section of L (after passing to an analytic or étale neighborhood of 0 ∈ S ). Thus
Conjecture 52 holds in this case.

Furthermore, the method of Theorem 30 suggests that the most difficult case
is Abelian pencils over P1.

Note also that it is easy to write down examples of Abelian Calabi–Yau fiber
spaces f : X → B = P1 such that HomB

(
ΩB, R1 f∗OX

)
� 0, thus Theorem 35

does not seem to be sufficient to prove Conjecture 52.

54 (Log elliptic fiber spaces) As before, g : (X,Δ) → B is a log elliptic fiber
space iff

(
Ldim X) = 0 but

(
Ldim X−1) � 0. There are three cases to consider.

(1) If
(
Ldim X−1 · Δ) > 0 then Riemann–Roch shows that h0(X, Lm) grows like

mdim X−1 and we get Conjecture 51 as in Theorem 10. In this case the
general fiber of g is F � P1 and

(
F · Δ) = 2.

(2) If
(
Ldim X−1 · Δ) = 0 but

(
Ln−2 · td2(X)

)
> 0 then the proof of Theorem 10

works with minor changes.
(3) The hard and unresolved case is again when

(
Ldim X−1 · Δ) = 0 and

(
Ln−2 ·

td2(X)
)
= 0, so χ(X, Lm) = O

(
mdim X−3).
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