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Abstract

We prove a few cases of a conjecture on the invariance of cohomological sup-
port loci under derived equivalence by establishing a concrete connection with
the related problem of the invariance of Hodge numbers. We use the main case
in order to study the derived behavior of fibrations over curves.

Dedicated to Rob Lazarsfeld on the occasion of his 60th birthday, with
warmth and gratitude

1 Introduction

This paper is concerned with the following conjecture made in [11] on the
behavior of the non-vanishing loci for the cohomology of deformations of the
canonical bundle under derived equivalence. We recall that given a smooth
projective X these loci, more commonly called cohomological support loci,
are the closed algebraic subsets of the Picard variety defined as

Vi(ωX) := {α | Hi(X, ωX ⊗ α) � 0} ⊆ Pic0(X).

All varieties we consider are defined over the complex numbers. We denote by
D(X) the bounded derived category of coherent sheaves Db(Coh(X)).

Conjecture 1 ([11]) Let X and Y be smooth projective varieties with D(X) 	
D(Y) as triangulated categories. Then

Vi(ωX)0 	 Vi(ωY )0 for all i ≥ 0,
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292 L. Lombardi and M. Popa

where Vi(ωX)0 denotes the union of the irreducible components of Vi(ωX)
passing through the origin, and similarly for Y.

We refer to [10] and [11] for a general discussion of this conjecture and its
applications, and of the cases in which it has been known to hold (recovered
below as well). The main point of this paper is to relate Conjecture 1 directly
to part of the well-known problem of the invariance of Hodge numbers under
derived equivalence; we state only the special case we need.

Conjecture 2 Let X and Y be smooth projective varieties with D(X) 	 D(Y).
Then

h0,i(X) = h0,i(Y) for all i ≥ 0.

Our main result is the following:

Theorem 3 Conjecture 2 implies Conjecture 1. More precisely, Conjecture 1
for a given i is implied by Conjecture 2 for n − i, where n = dim X.

This leads to a verification of Conjecture 1 in a few important cases, cor-
responding to the values of i for which Conjecture 2 is already known to
hold.

Corollary 4 Let X and Y be smooth projective varieties of dimension n, with
D(X) 	 D(Y). Then

Vi(ωX)0 	 Vi(ωY )0 for i = 0, 1, n − 1, n.

Proof According to Theorem 3, we need to know that derived equivalence
implies the invariance of h0,n, h0,n−1, and h0,1. The first two are well-known
consequences of the invariance of Hochschild homology, while the last is the
main result of [12].

A stronger result than Theorem 3 and Corollary 4, involving the dimension
of cohomology groups related via the isomorphism, is in fact proved in Sec-
tion 3 (see Conjecture 11 and Theorem 12). For i = 0, 1 this was proved in [10]
by means of a twisted version of Hochschild homology. We note also that the
corollary above recovers a result first proved in [10, Section 4], namely that
Conjecture 1 holds for varieties of dimension up to 3. We can also conclude
that it holds for an important class of irregular fourfolds.

Corollary 5 Conjecture 1 holds in dimension up to three, and for fourfolds
of maximal Albanese dimension.

Proof The first part follows immediately from Corollary 4. For the second
part, according to Corollary 4 and Theorem 3 it suffices to have h0,2(X) =
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Derived equivalence and non-vanishing loci II 293

h0,2(Y), which is proved for derived equivalent fourfolds of maximal Albanese
dimension in [10, Corollary 1.8].1

Overall, besides the unified approach, from the point of view of Conjecture
1 the key new result and applications here are in the case i = n − 1. By the-
orems of Beauville [2] and Green–Lazarsfeld [7], the cohomological support
loci Vn−1(ωX) are the most “geometric” among the Vi, corresponding in a quite
precise way to fibrations of X over curves. This leads to the following struc-
tural application; note that while Fourier–Mukai equivalences between smooth
projective surfaces are completely classified [4, 9], in higher dimension few
results toward classification are available (see, e.g., [16]).

Theorem 6 Let X and Y be smooth projective varieties with D(X) 	 D(Y),
such that X admits a surjective morphism to a smooth projective curve C of
genus g ≥ 2. Then:

(i) Y admits a surjective morphism to a curve of genus ≥ g.
(ii) If X has a Fano fibration structure over C, then so does Y, and X and Y

are K-equivalent.2 In particular, if X is a Mori fiber space over C, then X
and Y are isomorphic.

A slightly stronger statement is given in Theorem 14. We remark that it is
known from results of Beauville and Siu that X admits a surjective morphism to
a curve of genus ≥ g if and only if π1(X) has a surjective homomorphism onto
Γg, the fundamental group of a Riemann surface of genus g (see the Appendix
to [6]). On the other hand, it is also known that derived equivalent varieties
do not necessarily have isomorphic fundamental groups (see [1, 14]), so this
would not suffice in order to deduce Theorem 6 (i). A more precise version of
(i) can be found in the Remark on p. 302; see also Question 13. The refinement
we give in (ii) in the case of Fano fibrations answers a question posed to us by
Y. Kawamata; for this, the method of proof is completely independent of the
study of Vi(ωX), relying instead on Kawamata’s kernel technique [9] and on
the structure of the Albanese map for varieties with nef anticanonical bundle
[17]. The result, however, fits naturally in the present context.

Going back to the main results, the isomorphism between the Vi
0 is realized,

as in [10], via the Rouquier isomorphism associated to a Fourier–Mukai equiv-
alence (see Section 2). To relate this to the behavior of Hodge numbers of type
h0,i as in Theorem 3, the main new ingredients are Simpson’s result describing

1 Note that the same holds for fourfolds of non-negative Kodaira dimension whose Albanese
image has dimension 3, and for those with non-affine Aut0(X).

2 Recall that this means there exist a smooth projective Z and birational morphisms f : Z → X
and g : Z → Y such that f ∗ωX 	 g∗ωY .
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294 L. Lombardi and M. Popa

the components of all Vi(ωX) as torsion translates of abelian subvarieties of
Pic0(X), used via a density argument involving torsion points of special prime
order, and the comparison of the derived categories of cyclic covers associated
to torsion line bundles mapped to each other via the Rouquier isomorphism,
modeled after and slightly extending results of Bridgeland–Maciocia [3] on
equivalences of canonical covers.

2 Derived equivalences of cyclic covers

Cyclic covers. Let X be a complex smooth projective variety and α be a
d-torsion element of Pic0(X). We denote by

πα : Xα → X

the étale cyclic cover of order d associated to α (see, e.g., [8, Section 7.3]).
Then

πα∗OXα
	

d−1⊕
i=0

α−i (1)

and there is a free action of the group G := Z/dZ on Xα such that
Xα/G 	 X. The following lemma is analogous to [3, Proposition 2.5(b)].
We include a proof for completeness, entirely inspired by the approach in [3,
Proposition 2.5(a)].

Lemma 7 Let E be an object of D(X). There is an object Eα in D(Xα) such
that πα∗Eα 	 E if and only if E ⊗ α 	 E.

Proof For the nontrivial implication, let

s : E
	−→ E ⊗ α

be an isomorphism. We proceed by induction on the number r of nonzero coho-
mology sheaves of E. If E is a sheaf concentrated in degree zero, then the
lemma is a standard fact. Indeed, it is well known that

πα∗ : Coh(Xα)→ Coh(A)

is an equivalence between the category of coherent OXα
-modules and the cat-

egory of coherent A := (
⊕d−1

i=0 αi)-algebras, while a coherent sheaf E on X
belongs to Coh(A) if and only if E ⊗ α 	 E.

Suppose now that the lemma is true for all objects having at most r − 1
nonzero cohomology sheaves, and consider an object E with r nonzero
cohomology sheaves. By shifting E, we can assume that H i(E) = 0 for
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i � [−(r − 1), 0]. Since E ⊗ α 	 E, we also have H0(E)⊗α 	 H0(E).
Therefore, by the above, there exists a coherent sheaf Mα on Xα such that

πα∗Mα 	 H0(E). Now the natural morphism E
j
→ H0(E) induces a

distinguished triangle

E
j
→ H0(E)

f
→ F → E[1]

such that the object F has r − 1 nonzero cohomology sheaves. By the
commutativity of the following diagram:

we obtain an isomorphism F 	 F ⊗α, and therefore by induction an object Fα

in D(Xα) such that πα∗Fα 	 F.
To show the existence of an object Eα in D(Xα) such that πα∗Eα 	 E,

we assume for a moment that there exists a morphism fα : Mα → Fα such
that πα∗ fα = f . This is enough to conclude, since by completing fα to a
distinguished triangle

Mα

fα→ Fα → Eα[1]→ Mα[1]

and applying πα∗, we obtain πα∗Eα 	 E.
We are left with showing the existence of fα. Let λα : πα∗Mα → πα∗Mα ⊗ α

and μα : πα∗Fα → πα∗Fα ⊗ α be the isomorphisms determined by the diagram
above. Note that

μα ◦ f = ( f ⊗ α) ◦ λα in D(X). (2)

We can replace Fα by an injective resolution

· · · → I−1
α

d−1

→ I0
α

d0

→ I1
α

d1

→ · · · ,

so that f is represented (up to homotopy) by a morphism of OX-modules

u : πα∗Mα → πα∗I0
α.

Let V be the image of the map

Hom(πα∗Mα,−) : Hom(πα∗Mα, πα∗I−1
α )→ Hom(πα∗Mα, πα∗I0

α).

By (2), we have isomorphisms of OX-modules a1 : πα∗Mα → πα∗Mα ⊗ α and
b1 : πα∗I0

α → πα∗I0
α ⊗ α such that
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b1 ◦ u = (u ⊗ α) ◦ a1 up to homotopy. (3)

By setting ai := (a1 ⊗ αi−1) ◦ · · · ◦ (a1 ⊗ α) ◦ a1 (for i ≥ 2) and similarly for bi,
we define an action of G := Z/dZ on V as

gi · (−) := b−1
i ◦ (− ⊗ αi) ◦ ai,

where g is a generator of G. Moreover, we define operators A and B on V as

A :=
d−1∑
i=0

gi · (−), B := 1 − g · (−).

Since AB = 0, we note that Ker A = Im B.
By (3), we have that B(u) = u − b−1

1 ◦ (u ⊗ α) ◦ a1 is null-homotopic, and
therefore B(u) ∈ V . Since Ker A = Im B, there exists a morphism η ∈ V such
that B(η) = B(u). Consider the morphism t := u−η ∈ Hom(πα∗Mα, πα∗I0

α). It is
easy to check that t is homotopic to u and therefore it represents f as well. But
now B(t) = 0, so t = πα∗(v) for some morphism v : Mα → I0

α, which concludes
the proof.

Rouquier isomorphism. It is well known by Orlov’s criterion that every
equivalence Φ : D(X) → D(Y) is of Fourier–Mukai type, i.e., induced by an
object E ∈ D(X × Y), unique up to isomorphism, via

Φ = ΦE : D(X)→ D(Y), ΦE(−) = RpY ∗
(
p∗X(−)

L
⊗ E).

For every such equivalence, Rouquier [13, Théorème 4.18] showed that there
is an induced isomorphism of algebraic groups

FE : Aut0(X) × Pic0(X)→ Aut0(Y) × Pic0(Y)

which usually mixes the two factors. A concrete formula for FE was worked
out in [12, Lemma 3.1], namely

FE(ϕ, α) = (ψ, β) ⇐⇒ p∗Xα ⊗ (ϕ × idY )∗E 	 p∗Yβ ⊗ (idX ×ψ)∗E. (4)

Derived equivalences of cyclic covers. Before stating the main theorem of
this section, we recall two definitions from [3] (see also [8, Section 7.3]). Let
X̃ and Ỹ be two smooth projective varieties on which the group G := Z/dZ
acts freely. Denote by πX : X̃ → X and πY : Ỹ → Y the quotient maps of X̃ and
Ỹ respectively.

Definition 8 A functor Φ̃ : D(X̃) → D(Ỹ) is equivariant if there exist an
automorphism μ of G and isomorphisms of functors

g∗ ◦ Φ̃ 	 Φ̃ ◦ μ(g)∗ for all g ∈ G.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.016
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.016
http:/www.cambridge.org/core


Derived equivalence and non-vanishing loci II 297

Definition 9 Let Φ : D(X) → D(Y) be a functor. A lift of Φ is a functor
Φ̃ : D(X̃)→ D(Ỹ) inducing isomorphisms

πY∗ ◦ Φ̃ 	 Φ ◦ πX∗, (5)

π∗Y ◦ Φ 	 Φ̃ ◦ π∗X . (6)

Remark If Φ : D(X)→ D(Y) and Φ̃ : D(X̃)→ D(Ỹ) are equivalences, then by
taking the adjoints (5) holds if and only if (6) holds.

Now we are ready to prove the main result of this section. It is a slight
extension of the result of [3] on canonical covers, whose proof almost entirely
follows the one given there, and which serves as a technical tool for our main
theorem.

Theorem 10 Let X and Y be smooth projective varieties, and α ∈ Pic0(X)
and β ∈ Pic0(Y) d-torsion elements. Denote by πα : Xα → X and
πβ : Yβ → Y the cyclic covers associated to α and β respectively.

(i) Suppose that ΦE : D(X) → D(Y) is an equivalence, and that FE(idX , α) =
(idY , β). Then there exists an equivariant equivalenceΦẼ : D(Xα)→ D(Yβ)
lifting ΦE.

(ii) Suppose that ΦF̃ : D(Xα) → D(Yβ) is an equivariant equivalence. Then
ΦF̃ is the lift of some equivalence ΦF : D(X)→ D(Y).

Proof To see (i), consider the following commutative diagram, where p1, p2,
r1 and r2 are projection maps:

By (4), the condition FE(idX , α) = (idY , β) is equivalent to the isomorphism in
D(X × Y):

p∗1α ⊗ E 	 p∗2β ⊗ E. (7)

Pulling (7) back via the map (πα × idY ), we get an isomorphism

(πα × idY )∗E 	 r∗2β ⊗ (πα × idY )∗E

as π∗αα 	 OXα
. As the map (idXα

×πβ) : Xα × Yβ → Xα × Y is the étale cyclic
cover associated to the line bundle r∗2β, by Lemma 7 there exists an object Ẽ
such that

(idXα
×πβ)∗Ẽ 	 (πα × idY )∗E.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.016
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.016
http:/www.cambridge.org/core


298 L. Lombardi and M. Popa

By [3, Lemma 4.4], there is an isomorphism

πβ∗ ◦ ΦẼ 	 ΦE ◦ πα∗. (8)

We now show that ΦẼ is an equivalence. Let ΨE′ : D(Y) → D(X) be a
quasi-inverse of ΦE. Since FE′ = F−1

E , we have that FE′ (idX , β) = (idY , α).
By repeating the previous argument, one then sees that there exists an object
Ẽ′ such that

(πα × idYβ
)∗Ẽ′ 	 (idX ×πβ)∗E′

and an isomorphism of functors

πα∗ ◦ ΨẼ′ 	 ΨE′ ◦ πβ∗. (9)

Since ΨE′ ◦ ΦE 	 idD(X), using (8) and (9) we get an isomorphism

πα∗ ◦ ΨẼ′ ◦ ΦẼ 	 ΨE′ ◦ πβ∗ ◦ ΦẼ 	 ΨE′ ◦ ΦE ◦ πα∗ 	 πα∗. (10)

Hence, following the proof of [3, Lemma 4.3], we have that
ΨẼ′ ◦ ΦẼ 	 g∗(L ⊗ −) for some g ∈ G and L ∈ Pic(Xα). By taking left adjoints
in (10), we obtain on the other hand that

(L−1 ⊗ −) ◦ g∗ ◦ π∗α 	 π∗α,

which applied to OX yields L 	 OXα
. This gives ΨẼ′ ◦ ΦẼ 	 g∗. Similarly,

we can show that ΦẼ ◦ ΨẼ′ 	 h∗ for some h ∈ G, and hence that g∗ ◦ ΨẼ′ , or
equivalently ΨẼ′ ◦ h∗, is a quasi-inverse of ΦẼ. Finally, Remark 2 implies that
ΦẼ is a lift of ΦE.

The proofs of the fact that ΦẼ is equivariant and of (ii) are now completely
analogous to those of the corresponding statements in [3, Theorem 4.5].

3 Comparison of cohomological support loci

A more precise statement than that of Conjecture 1 naturally involves the
dimension of the cohomology groups of the line bundles mapped to each
other via the Rouquier isomorphism. Such a statement was proved in [10]
when i = 0, 1. The concrete statement, which also contains Conjecture 2 by
specializing at the origin, is the following:

Conjecture 11 Let X and Y be smooth projective varieties of dimension n,
and letΦE be a Fourier–Mukai equivalence between D(X) and D(Y). If F = FE
is the induced Rouquier isomorphism, then

F
(
idX , Vi(ωX)0

)
=
(
idY , Vi(ωY )0

)
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for all i, so that Vi(ωX)0 	 Vi(ωY )0. Moreover if α ∈ Vi(ωX)0 and
F(idX , α) = (idY , β), then

hi(X, ωX ⊗ α) = hi(Y, ωY ⊗ β).

In order to address this statement, we consider for each m ≥ 1 the more
refined cohomological support loci

Vi
m(ωX) := {α ∈ Pic0(X) | hi(X, ωX ⊗ α) ≥ m}.

In this notation, Vi(ωX) becomes Vi
1(ωX). The following result is a strengthen-

ing of Theorem 3 in the Introduction.3

Theorem 12 Conjecture 2 is equivalent to Conjecture 11. Specifically, if n =
dim X, Conjecture 2 for n − i implies

F
(
idX , Vi

m(ωX)0

)
=
(
idY , Vi

m(ωY )0

)
for all m ≥ 1.

Proof Note first that F induces an isomorphism on the locus of line bundles
α ∈ Pic0(X) with the property that F(idX , α) = (idY , β) for some β ∈ Pic0(Y), so
indeed the first assertion in the statement follows from the second one, which
we prove in a few steps.
Step 1. We first show that if α ∈ Vi(ωX)0, then it does satisfy the property
above, namely there exists β ∈ Pic0(Y) such that

F(idX , α) = (idY , β).

A more general statement has already been proved in [10, Theorem 3.2]. We
extract the argument we need here in order to keep the proof self-contained,
following [12, Section 3] as well. The Rouquier isomorphism F induces a
morphism

π : Pic0(Y)→ Aut0(X), π(β) = p1
(
F−1(idY , β)

)
,

whose image is an abelian variety A and where p1 is the projection from
Aut0(X) × Pic0(X) onto the first factor. If A is trivial there is nothing to prove,
so we can assume that A is positive-dimensional.

As A is an abelian variety of automorphisms of X, according to [5, Section 3]
there exists a finite subgroup H ⊂ A and an étale locally trivial fibration

3 We are grateful to the referee, who suggested that our original argument for m = 1 applies in
fact to all m. This was crucial for deducing this more refined statement, as opposed to just that
of Conjecture 1, from Conjecture 2.
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p : X → A/H which is trivialized by base change to A. In other words, there is
a cartesian diagram

where Z = p−1(0). Restricting g to the fiber A × {z0}, where z0 is an arbitrary
point in Z, we obtain a morphism f : A → X, which is in fact an orbit of the
action of A on X. It is shown in the proof of [12, Theorem A] that Ker( f ∗)0 	
Ker(π)0, where (·)0 denotes the connected component of the identity; this is
based on a theorem of Matsumura–Nishi, essentially saying that the induced
f ∗ : Pic0(X)→ Pic0(A) is surjective. Consequently, we only need to show that
α ∈ Ker( f ∗); it will then automatically be in Ker( f ∗)0, since it lives in Vi(ωX)0,
which is a union of abelian subvarieties.

To this end, note that α ∈ Vi(ωX)0 implies that

Hi (A × Z, g∗(ωX ⊗ α)) 	 Hi (A × Z, f ∗α � (ωZ ⊗ α|Z)
)
� 0.

Applying the Künneth formula, we conclude that we must have

Hk(A, f ∗α) � 0 for some 0 ≤ k ≤ i,

which implies that f ∗α 	 OA.
Step 2. Since one can repeat the argument in Step 1 for F−1, it is enough to
show that if α ∈ Vi

m(ωX)0 and F(idX , α) = (idY , β), then β ∈ Vi
m(ωY )0 as well.

In this step we show that it is enough to prove this assertion in the case when
α ∈ Pic0(X) is a torsion point of (special) prime order. First, since F is a group
isomorphism, α is torsion of some order if and only if β is torsion of the same
order.

According to a well-known theorem of Simpson [15], every irreducible com-
ponent Z of Vi

m(ωY ) is a torsion translate τZ + AZ of an abelian subvariety of
Pic0(Y). We consider the set Pi of all prime numbers that do not divide ord(τZ)
for any such component Z. As Vi

m(ωY ) is an algebraic set by the semicontinuity
theorem, we are only throwing away a finite set of primes. We will show that
it is enough to prove the assertion above when α is torsion with order in Pi.
First note that it is a standard fact that torsion points of prime order are Zariski
dense in a complex abelian variety.4 Consequently, torsion points with order in
the set Pi are dense as well.

4 This follows for instance from the fact that real numbers can be approximated by rational
numbers with prime denominators.
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Now let W be a component of Vi
m(ωX)0. It suffices to show that

Z := p2 (F(idX , W)) ⊂ Vi
m(ωY )0,

where p2 is the projection onto the second component of Aut0(Y) × Pic0(Y).
Indeed, since one can repeat the same argument for the inverse homomorphism
F−1, this implies that Z has to be a component of Vi

m(ωY )0, isomorphic to W via
F. Now Z is an abelian variety, and therefore by the discussion above torsion
points β of order in Pi are dense in Z. By semicontinuity, it suffices to show
that β ∈ Vi

m(ωY )0. These βs are precisely the images of α ∈ W of order in Pi,
which concludes our reduction step.
Step 3. Now let α ∈ Vi

m(ωX)0 be a torsion point of order belonging to the set
Pi, and F(idX , α) = (idY , β). Denote

p = ord(α) = ord(β).

Consider the cyclic covers πα : Xα → X and πβ : Yβ → Y associated to α

and β respectively. We can apply Theorem 10 to conclude that there exists a
Fourier–Mukai equivalence

ΦẼ : D(Xα)→ D(Yβ)

lifting ΦE. Assuming Conjecture 2, we have in particular that

h0,n−i(X) = h0,n−i(Y) and h0,n−i(Xα) = h0,n−i(Yβ).

On the other hand, using (1), we have

Hn−i(Xα,OXα
) 	

p−1⊕
j=0

Hn−i(X, α− j) and

Hn−i(Yβ,OYβ
) 	

p−1⊕
j=0

Hn−i(Y, β− j).

The terms on the left hand side and the terms corresponding to j = 0 on
the right hand side have the same dimension. On the other hand, since every
component of Vi

m(ωX)0 is an abelian subvariety of Pic0(X), we have that
α j ∈ Vi

m(ωX)0 for all j, so

hn−i(X, α− j) ≥ m for all j.

We conclude that

hn−i(Y, β−k) ≥ m for some 1 ≤ k ≤ p − 1.

This says that βk ∈ Vi
m(ωY ). We claim that in fact βk ∈ Vi

m(ωY )0. Assuming
that this is the case, we can conclude the argument. Indeed, pick a component
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T ⊂ Vi
m(ωY )0 such that βk ∈ T . But βk generates the cyclic group of prime

order {1, β, . . . , βp−1}, so β ∈ T as well, since T is an abelian variety.
We are left with proving that βk ∈ Vi

m(ωY )0. Pick any component S in
Vi

m(ωY ) containing βk. By the Simpson theorem mentioned above, we have that
S = τ+ B, where τ is a torsion point and B is an abelian subvariety of Pic0(Y).
We claim that we must have τ ∈ B, so that S = B, confirming our statement.5

To this end, switching abusively to additive notation, say kβ = τ+b with b ∈ B,
and denote the torsion order of τ by r. Since the order p of β is assumed to be in
the set Pi, we have that r and p are coprime. Now on the one hand rτ = 0 ∈ B,
while on the other hand pτ + pb = kpβ = 0, so pτ ∈ B as well. Since r and p
are coprime, one easily concludes that τ ∈ B.

4 Fibrations over curves

Fibration structure via derived equivalence. We now apply the derived
invariance of Vn−1(ωX)0 to deduce Theorem 6 (i) in the Introduction.

Proof of Theorem 6 (i) Let f : X → C be a surjective morphism onto a
smooth projective curve of genus g ≥ 2. Using Stein factorization, we can
assume that f has connected fibers. We have that f ∗ Pic0(C) ⊂ Vn−1(ωX)0.
Since by Corollary 4 we have Vn−1(ωX)0 	 Vn−1(ωY )0, there exists a compo-
nent T of Vn−1(ωY )0 of dimension at least g. By [2, Corollaire 2.3], there exists
a smooth projective curve D and a surjective morphism with connected fibers
g : Y → D such that T = g∗ Pic0(D). Note that g(D) = dim T ≥ g.

Remark The discussion above shows in fact the following more refined
statement. For a smooth projective variety Z, define

AZ := {g ∈ N | g = dim T for some irreducible component T ⊂ Vn−1(ωZ)0}.

Then if D(X) 	 D(Y), we have AX = AY . Denoting this set by A, for each g ∈ A
both X and Y have surjective maps onto curves of genus g. The maximal genus
of a curve admitting a surjective map from X (or Y) is max(A).

Question 13 If D(X) 	 D(Y), is the set of curves of genus at least 2 admitting
non-constant maps from X the same as that for Y? Or at least the set of curves
corresponding to irreducible components of Vn−1(ωX)0?

Fano fibrations. The following is a slightly more precise version of Theorem
6 (ii) in the Introduction.

5 Note that in fact we are proving something stronger: βk belongs only to components of
Vi

m(ωY ) passing through the origin.
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Theorem 14 Let X and Y be smooth projective complex varieties such that
D(X) 	 D(Y). Assume that there is an algebraic fiber space f : X → C such
that C is a smooth projective curve of genus at least 2 and the general fiber of
f is Fano. Then:

(i) X and Y are K-equivalent.

(ii) There is an algebraic fiber space g : Y → C such that for c ∈ C where the
fibers Xc and Yc are smooth, with Xc Fano, one has Yc 	 Xc.

(iii) If ω−1
X is f -ample (e.g., if f is a Mori fiber space), then X 	 Y.

Proof Let p and q be the projections of X × Y onto the first and second factor
respectively. Consider the unique-up-to-isomorphism E ∈ D(X × Y) such that
the given equivalence is the Fourier–Mukai functor ΦE. Then by [8, Corollary
6.5], there exists a component Z of Supp(E) such that p|Z : Z → X is surjective.
We first claim that dim Z = dim X.

Assuming by contradiction that dim Z > dim X, we show that ω−1
X is

nef. We denote by F the general fiber of f , which is Fano. We also define
ZF := p−1

Z (F) ⊂ Z, while qF : ZF → Y is the projection obtained by restricting
q to ZF . Since ω−1

F is ample, we obtain that qF is finite onto its image; see [8,
Corollary 6.8]. On the other hand, the assumption that dim Z > dim X implies
that dim ZF ≥ dim X = dim Y , so qF must be surjective (and consequently
dim ZF = dim X).

By passing to its normalization if necessary, we can assume without loss of
generality that ZF is normal. Denoting by pF the projection of ZF to X, by [8,
Corollary 6.9] we have that there exists r > 0 such that

p∗F ω−r
X 	 q∗F ω−r

Y .

Now since pF factors through F and ω−1
F is ample, we have that p∗Fω

−1
X is nef,

hence by the isomorphism above so is q∗F ω−1
Y . Finally, since qF is finite and

surjective, we obtain that ω−1
Y is nef, so by [9, Theorem 1.4], ω−1

X is nef as well.
We can now conclude the proof of the claim using the main result of Zhang

[17] (part of a conjecture of Demailly–Peternell–Schneider), saying that a
smooth projective variety with nef anticanonical bundle has surjective
Albanese map. In our case, since the general fiber of f is Fano, the Albanese
map of X is obtained by composing f with the Abel–Jacobi embedding of
C. But this implies that C has genus at most 1, a contradiction. The claim is
proved, so

dim Z = dim X = dim Y.

At this stage, the K-equivalence statement follows from Lemma 15 below.
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For statements (ii) and (iii) we emphasize that, once we know that X and Y
are K-equivalent, the argument is standard and independent of derived equiv-
alence.6 Note first that smooth birational varieties have the same Albanese
variety and Albanese image. Since f is the Albanese map of X, it follows that
the Albanese map of Y is a surjective morphism g : Y → C. Furthermore, C is
the Albanese image of any other birational model as well, hence any smooth
model Z inducing a K-equivalence between X and Y sits in a commutative
diagram

Note that in particular g has connected fibers since f does.
For a point c ∈ C, denote by Xc, Yc, Zc the fibers of f , g, h over c. By

adjunction, Zc realizes a K-equivalence between Xc and Yc. First, assuming
that c is chosen such that Xc and Yc are smooth, with Xc Fano, we show that
Xc 	 Yc.

To this end, if we assume that the induced rational map ϕc : Yc → Xc is not
a morphism, there must be a curve B ⊂ Zc which is contracted by qc but not
by pc. Then q∗cωYc · B = 0, and so p∗cωXc · B = 0 as well. On the other hand
ω−1

Xc
· pc(B) < 0, which is a contradiction. Therefore we obtain that ϕc is a

birational morphism with the property that ϕ∗cωXc 	 ωYc , which implies that ϕc

is an isomorphism.
If in fact ω−1

X is f -ample, this argument can be globalized: indeed, assuming
that the rational map ϕ : Y → X is not a morphism, there exists a curve B ⊂ Z
which is contracted by q and hence h, but not by p. Since B lives in a fiber of f
(by the commutativity of the diagram), we again obtain a contradiction. Once
we know that ϕ is a morphism, the same argument as above implies that it is
an isomorphism.

The following lemma used in the proof above is due to Kawamata, and
can be extracted from his argument leading to the fact that derived equiva-
lent varieties of general type are K-equivalent [9]; we sketch the argument for
convenience.

6 We thank Alessio Corti for pointing this out to us.
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Lemma 15 Let ΦE : D(X) → D(Y) be a derived equivalence, and assume
that there exists a component Z of the support of E such that dim Z = dim X
and Z dominates X. Then X and Y are K-equivalent.

Proof Denote by p and q the projections of Z to X and Y . Since p is surjective,
[8, Corollary 6.12] tells us that p is birational, and Z is the unique component
of Supp(E) dominating X. We claim that q is also surjective, in which case by
the same reasoning q is birational as well. Since (on the normalization of Z)
we have p∗ωr

X 	 q∗ωr
Y for some r ≥ 1, this suffices to conclude that X and Y

are K-equivalent as in [9, Theorem 2.3] (see also [8, p. 149]).
Assuming that q is not surjective, we can find general points x1 and x2

in X such that p−1(x1) and p−1(x2) consist of one point, and q(p−1(x1)) =
q(p−1(x2)) = y for some y ∈ Y . One then sees that

Supp ΦE(Ox1 ) = Supp ΦE(Ox2 ) = {y}.

This implies in standard fashion that

Hom•D(X)(Ox1 ,Ox2 ) 	 Hom•D(Y)(ΦE(Ox1 ),ΦE(Ox2 )) � 0,

a contradiction.
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