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Abstract

Let S be the (minimal) Enriques surface obtained from the symmetric quartic
surface (

∑
i< j xix j)2 = kx1x2x3x4 in P3 with k � 0, 4, 36 by taking a quotient

of the Cremona action (xi) �→ (1/xi). The automorphism group of S is a semi-
direct product of a free product F of four involutions and the symmetric group
S4. Up to action of F , there are exactly 29 elliptic pencils on S .

Dedicated to Prof. Robert Lazarsfeld on his 60th birthday

The automorphism groups of very general Enriques surfaces, namely those
corresponding to very general points in moduli, were computed by Barth and
Peters [1] as an explicitly described infinite arithmetic group. Also, many
authors [1, 3, 5, 9] have studied Enriques surfaces with only finitely many
automorphisms. The article [1] also includes an example whose automorphism
group is infinite but still virtually abelian. In this paper we give a concrete
example of an Enriques surface whose automorphism group is not virtually
abelian. Moreover, the automorphism group is described explicitly in terms of
generators and relations. See also Remark 5.

We work over any algebraically closed field whose characteristic is not 2.
Let us introduce the quartic surface with parameters k and l,

X : {s2
2 = ks4 + ls1s3} ⊂ P3, (1)
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308 S. Mukai and H. Ohashi

where sd are the fundamental symmetric polynomials of degree d in the homo-
geneous coordinates x1, . . . , x4. It is singular at the four coordinate points
(1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1) and has an action of the symmetric group S4.
It also admits the action of the standard Cremona transformation

ε : (x1 : · · · : x4) �→
(

1
x1

: · · · : 1
x4

)
which commutes with S4. After taking the minimal resolution X, the quotient
surface S = X/ε becomes an Enriques surface, whenever X avoids the eight
fixed points (±1 : ±1 : ±1 : 1) of ε. This condition is equivalent to k + 16l �
36, k � 4, and 4l + k � 0.

The projection from one of four coordinate points exhibits X as a double
cover of the projective plane P2. The associated covering involution commutes
with ε and defines an involution of the Enriques surface S . In this way we
obtain four involutions σi (i = 1, . . . , 4). The action of S4 also descends
to S . Therefore, by mapping the generators of C∗42 to σi, we obtain a group
homomorphism

S4 � (C∗42 )→ Aut(S ), (2)

where S4 acts on the free product as a permutation of the four factors.
In this paper we study the automorphism group and elliptic fibrations of S

in the case l = 0. Our main result is as follows:

Theorem 1 (= Theorem 3.7) In equation (1), let l = 0 and k � 0, 4, 36. Then
(2) is an isomorphism. Namely, Aut(S ) is isomorphic to the semi-direct product
of the free product F of four involutions σi (i = 1, . . . , 4) and the symmetric
group S4.

In the proof of this theorem, we also obtain the following results on elliptic
pencils and smooth rational curves. Let S be as in Theorem 1.

Theorem 2 (= Theorem 3.4) Up to the action of the free product F 	 C∗42 ,
there are exactly 29 elliptic pencils on S . They are classified into five types and
the main properties are as follows:

Singular fibers Mordell–Weil rank Number

(1) Ẽ7 + Ã1 0 12
(2) Ẽ6 + Ã2 0 4
(3) D̃6 + Ã1 1 6
(4) Ã7 + Ã1 0 3
(5) 2Ã5 + Ã2 + Ã1 0 4
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Automorphism groups of Enriques surfaces 309

Here 2Ãn denotes the multiple singular fiber of type Ãn and the Mordell–Weil
rank stands for that of its Jacobian fibration.

Theorem 3 (= Theorem 3.3) Up to the action of the free product F 	 C∗42 ,
there are exactly 16 smooth rational curves on S . They are represented by the
curves in the configuration 10A + 6B (see below).

The proof of Theorem 1 uses some 16 smooth rational curves on S and the
fact that four involutions σ1, . . . , σ4 are numerically reflective. First using the
four singularities of type D4 and four tropes on X, we find 10 smooth rational
curves on S with the dual graph as in Figure 1 (Section 1). We call this the 10A
configuration.

Also, by looking at some other plane sections, we find six further smooth
rational curves on S with the dual graph as in Figure 2. This is called the 6B
configuration.

We denote by NS (S ) f the Néron–Severi lattice of S modulo torsion. The
action of involutions σ1, . . . , σ4 on NS (S ) f is the reflection in (−2) classes
G1, . . . ,G4 ∈ NS (S ) f , respectively. For instance, the class G1 is E2 + E23 +

E3+E34+E4+E24−E1 in terms of Figure 1 (Proposition 2.1). The dual graph
of these four (−2) classes is the complete graph in four vertices with doubled
edges. This is called the 4C configuration.

Figure 1 The 10A configuration.

Figure 2 The 6B configuration.
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310 S. Mukai and H. Ohashi

We can check that the 20 (−2) classes Ei, Ei j, Fi j,Gi define a convex poly-
hedron whose Coxeter diagram satisfies Vinberg’s condition [12]. Namely,
the subgroup W(10A + 6B + 4C) generated by reflections in these 20 classes
has finite index in the orthogonal group O(NS (S ) f ). In fact, the limit of our
Enriques surfaces as k → ∞ is of type V in Kondo [5] (see Remark 2.3),
and our diagram coincides with Kondo’s. Although in his case the classes
G1, . . . ,G4 were also represented by smooth rational curves, in our case they
appear just as the center of the reflective involutions σ1, . . . , σ4 and are not
effective (Corollary 2.2).

To prove our Theorem 1, we divide the generators of W(10A + 6B + 4C)
into two parts, those coming from 10A+6B and those from 4C. By a lemma of
Vinberg [11], W(10A+6B+4C) is the semi-direct product W(4C)�N(W(10A+
6B)), where N denotes the normal closure. Since the whole 10A + 6B + 4C
configuration has only S4-symmetry, we obtain our Theorem 1 and the others
(Section 3).

Remark 4 There are some interesting cases in l � 0 too.
(1) When (k − 4)(l − 4) = 16, the surface X is Kummer’s quartic surface

Km(J(C)) written in Hutchinson’s form. It has 16 nodes. Our four involu-
tions σi are called projections. As is shown in [7], S is an Enriques surface
of Hutchinson–Göpel type and the four involutions are numerically reflective.
Especially in the case (k, l) = (−4, 2), the hyperelliptic curve C branches over
the vertices of a regular octahedron and the equation of X becomes

(x2
1x2

2 + x2
3x2

4) + (x2
1x2

3 + x2
2x2

4) + (x2
1x2

4 + x2
2x2

3) + 2x1x2x3x4 = 0.

This is the case of the octahedral Enriques surface [8] and S is isomorphic to
the normalization of the singular sextic surface

x2
1 + x2

2 + x2
3 + x2

4 +
√
−1

⎛⎜⎜⎜⎜⎝ 1

x2
1

+
1

x2
2

+
1

x2
3

+
1

x2
4

⎞⎟⎟⎟⎟⎠ x1x2x3x4 = 0.

In these cases we know that there exist automorphisms on S induced
from X other than projections, namely some switches and correlations. The
automorphism group of the octahedral Enriques surface will be discussed
elsewhere.

(2) The quartic surface X : ks4 + ls1s3 = 0 is the Hessian of the cubic
surface

k(x3
1 + x3

2 + x3
3 + x3

4) + l(x1 + x2 + x3 + x4)3 = 0.

The case (k : l) = (1 : −1) is most symmetric among this 1-parameter family. In
this special case, the Enriques surface S = X/ε is of type VI in Kondo [5] and
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Automorphism groups of Enriques surfaces 311

the automorphism group is isomorphic toS5. In particular, the homomorphism
(2) is neither injective nor surjective.

Remark 5 In terms of virtual cohomological dimensions of discrete groups
[10], our example can be located in the following way. The virtual cohomolog-
ical dimension is equal to 0 for finite groups. At the other extreme, the discrete
group Aut(S ) for very general Enriques surfaces S has the virtual cohomo-
logical dimension 8. See [2]. In our case, the automorphism group has virtual
cohomological dimension 1.

1 Smooth rational curves

Under the condition l = 0, equation (1) becomes

X : (x1x2 + x1x3 + x1x4 + x2x3 + x2x4 + x3x4)2 = kx1x2x3x4. (3)

This surface has four rational double points of type D4 at the four coordinate
points (1 : 0 : 0 : 0), . . . , (0 : 0 : 0 : 1) and by taking the quotient of the
minimal resolution X by the standard Cremona involution

ε : (x1 : · · · : x4) �→
(

1
x1

: · · · : 1
x4

)
,

we obtain an Enriques surface S = X/ε. We begin with a study of the
configuration of smooth rational curves on the surfaces.

The desingularization X has 16 smooth rational curves as the exceptional
curves of the four D4 singularities. Also, each coordinate plane cuts the quartic
doubly along a conic, which defines a smooth rational curve on X. These are
called tropes. The configuration of these 20 curves is shown in Figure 3, which
depicts the dual graph. Black vertices come from the singularities and white
ones are tropes.

The standard Cremona involution ε acts on Figure 3 by point symmetry.
Therefore, the Enriques surface S has 10 smooth rational curves whose dual

Figure 3 The quartic surface with four D4 singularities.
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312 S. Mukai and H. Ohashi

graph is that in Figure 1. In what follows, we call these 10 curves on S the 10A
configuration. The indexing is given as follows. Since a vertex of the tetra-
hedron corresponds to two curves on X, namely the trope {xi = 0} and the
central component of the exceptional curves at (0 : · · · : 1 : · · · : 0) (the ith
coordinate is 1), we denote the curve at the vertex by Ei (i = 1, . . . , 4). Also,
if a vertex at the middle of an edge is connected to two vertices, say Ei and
E j, then we denote the curve by Ei j. This is the first configuration of smooth
rational curves on S of interest. It is convenient to note that the 10 curves
{Ei, Ei j} generate NS (S ) f over the rationals; the Gram matrix of these curves
has determinant −64.

Next let us consider the six plane sections {xi + x j = 0} (i = 1, . . . , 4). In
equation (3), we see that each plane section decomposes into two conics which
are disjoint on X and exchanged by ε. Thus we obtain six further smooth ratio-
nal curves on S , naturally indexed as Fi j. The intersection relation between
these curves is shown in Figure 2. We call it the 6B configuration. Moreover,
we can clarify the intersection relations between the configurations as follows:

(Ek, Fi j) = 0; (Ekl, Fi j) =

⎧⎪⎪⎨⎪⎪⎩2 if {k, l} = {i, j},
0 otherwise.

The configuration of 16 curves thus obtained is denoted by 10A + 6B.

2 Numerically reflective involutions

The quartic surface (3) can be exhibited as a double cover of P2 by the projec-
tion from one of the coordinate points, say (0 : 0 : 0 : 1). The branch B ⊂ P2

is the sextic plane curve defined by

x1x2x3

{
4(x1 + x2 + x3)

(
1
x1
+

1
x2
+

1
x3

)
x1x2x3 − kx1x2x3

}
= 0. (4)

It is the union of the coordinate triangle {x1x2x3 = 0} and the cubic curve

C : 4(x1 + x2 + x3)

(
1
x1
+

1
x2
+

1
x3

)
− k = 0, (5)

which is invariant under the Cremona transformation (xi) �→ (1/xi) of P2. See
Figure 4. In this double-plane picture, the 20 rational curves in Figure 3 can
be seen as the 12 rational curves above the three triple points of B, three ratio-
nal curves above the three nodes of B, three tropes as the inverse image of
the coordinate triangle, and some components of inverse images of the curves
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Figure 4 The branch sextic B.

L : {x1 + x2 + x3 = 0} and Q : { 1
x1
+ 1

x2
+ 1

x3
= 0}. (We note that the line L

must pass through the three simple intersection points of C with the triangle in
Figure 4, although it is not visible.)

The covering transformation of this double cover X → P2 is called the pro-
jection. It is an antisymplectic involution acting on X. It stabilizes all the curves
above the branch curve B (including those above the singularities of B). In par-
ticular, in Figure 3, if E′′4 is the trope {x4 = 0}, then the projection stabilizes
all the curves except for E′′4 and its antipodal E′4 (coming from the singularity
at (0 : 0 : 0 : 1)). It is easy to determine the fixed curves of the projection,
consisting of six rational curves (vertices of the cube except for E′4 and E′′4 )
and the inverse image of the elliptic curve C.

Since the projection commutes with the Cremona involution of P3, we obtain
an involution of the Enriques surface S . It is denoted by σ4, where the index is
in accordance with the center of the projection (0 : 0 : 0 : 1).

Proposition 2.1 The involution σ4 ∈ Aut(S ) is numerically reflective. More-
over, its action on the Néron–Severi lattice NS (S ) f is the reflection in the
divisor G4 = E1 + E12 + E2 + E23 + E3 + E13 − E4 of self-intersection (−2). In
Figure 1, the six positive components in G4 are just the cycle of curves disjoint
from E4.

Proof From our description of fixed curves of the projection as above, we see
that σ4 preserves all the curves Ei and Ei j except for E4. Compare Figures 1
and 3.

Consider the elliptic fibration f : S → P1 defined by the divisor 2Df =

2(E1 + E12 + E2 + E23 + E3 + E13). It gives the multiple fiber of type 2I6

in Kodaira’s notation. From Figure 1, we see that the curve E4 sits inside a
reducible fiber which we denote by D′. In comparison with Figure 4, f corre-
sponds to the pencilL of cubics on P2 spanned by the triangle {x1x2x3 = 0} and
the cubic curve C of (5). Thus we see that the multiple fibers of f are exactly
the transform of the triangle, which is nothing but the divisor 2Df of type 2I6,
and the transform of C, namely some irreducible fiber of type 2I0. On the other
hand, the cubic
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314 S. Mukai and H. Ohashi

C∞ := L + Q ∈ L (6)

corresponds to the reducible fiber of f which contains E4. Therefore, the fiber
D′ = E4 + B is of Dynkin type Ã1 and is not multiple. (More precisely, it is of
type III in characteristic 3 and otherwise I2.) Since the Cremona involution of
P2 interchanges L and Q, we see that σ4 interchanges E4 and B.

From the linear equivalence E4 + B ∼ 2(E1 + E12 + E2 + E23 + E3 + E13),
we see that the action is

σ4 : E4 �→ B = 2(E1 + E12 + E2 + E23 + E3 + E13) − E4.

By taking the first paragraph into account, we see that σ4 is numerically
reflective and acts on NS (S ) f by the reflection in the divisor

G4 = E1 + E12 + E2 + E23 + E3 + E13 − E4.

By symmetry, we obtain divisors Gi (i = 1, . . . , 4) which describe the numer-
ically reflective involutions σi in a similar manner. We see that (Gi,G j) = 2
for i � j, so that the intersection diagram associated with divisors G1, . . . ,G4

is the complete graph in four vertices with all edges doubled. In what follows
we denote this configuration by 4C.

We note that the automorphism σi sends Gi to its negative. It implies the
following corollary:

Corollary 2.2 The numerical classes of Gi are not effective.

We can compute the intersections of Gi and the 10A+ 6B configuration. We
have the following:

(Gi, E j) =

⎧⎪⎪⎨⎪⎪⎩2 if i = j,

0 otherwise,
(Gi, Ekl) = 0, (Gi, Fkl) =

⎧⎪⎪⎨⎪⎪⎩2 if i � {k, l},
0 if i ∈ {k, l}.

Remark 2.3 The limit of our quartic surface X in (3) as k → ∞ is the double
P2 with branch the union of the coordinate triangle and the reducible cubic C∞
in (6). Hence the limit of our Enriques surfaces is of type V in Kondo [5]. (See
[6] also.) In this limit our divisor class G4 becomes effective and corresponds to
the new singular point coming from the intersection L ∩ Q in (6). Thus G4 can
be regarded as the vanishing cycle of this specialization k → ∞. Furthermore,
the numerically reflective involution σ4 becomes numerically trivial in this
limit. More precisely, the limit of its graph as k → ∞ is the union of that of the
limit involution and the product C4 × C4, where C4 is the unique (−2) curve
representing G4 in the limiting Enriques surface.
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3 Proof of the theorems

In the previous two sections, we obtained 16 smooth rational curves with the
configuration 10A + 6B and four numerically reflective involutions σi whose
centers Gi have the configuration 4C. We begin with consideration of the
natural representation r : Aut(S )→ O(NS (S ) f ).

Proposition 3.1 The homomorphism r is injective, namely there are no
nontrivial numerically trivial automorphisms on S .

Proof Let g be a numerically trivial automorphism of S , which is tame by
virtue of Dolgachev [4]. It preserves each (−2) curve, in particular in the 10A+
6B configuration. The curves E1, . . . , E4 in Figure 1 must be pointwise fixed,
since Aut(P1) is sharply triply transitive and since each Ei has three distinct
intersections with its neighbors.

We again focus on the elliptic fibration f : S → P1 defined by Df =

E1 + E12 + E2 + E23 + E3 + E13 as in Proposition 2.1. We saw that E4 + B =
E4 +σ4(E4) is a non-multiple fiber of f . Therefore the bisections E14, E24, E34

of f must intersect B. By a suitable choice of a bisection C f ∈ {E14, E24, E34},
we can assume that C f does not pass through the intersection E4 ∩ B. Then,
since g preserves all (−2) curves, the curve C f has three distinct fixed points
E4 ∩C f , B ∩C f , and Ei ∩C f , where Ei is another vertex of the edge contain-
ing C f in Figure 1. It follows that g fixes C f pointwise, hence the singular
curve E4 + C f too. It follows that g = idS , since g is tame and of finite
order.

In what follows we denote the hyperbolic lattice NS (S ) f by L. Let us denote
by O′(L) the group of integral isometries whose R-extensions preserve the pos-
itive cone of L ⊗ R. We denote by Λ the 9-dimensional Lobachevsky space
associated with the positive cone. Then O′(L) acts on Λ as a discrete group of
motions. We refer the reader to [12] for the theory of discrete groups generated
by reflections acting on Lobachevsky spaces.

We let

Pc = {R+x ∈ PS (L) | (x, E) ≥ 0 for all E ∈ {Ei, Ei j, Fi j,Gi}}

be the convex polyhedron defined by the 20 roots from the 10A + 6B + 4C
configuration in the projective sphere PS (L) = (L − {0})/R+ (see [12, Section
2]). We have seen that every intersection number of two distinct divisors in
10A+ 6B+ 4C is between 0 and 2, hence the Coxeter diagram associated with
these 20 roots has no dotted lines or Lanner’s subdiagrams. Also, by an easy
check of the 10A + 6B + 4C configuration, we have the following:
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316 S. Mukai and H. Ohashi

Lemma 3.2 The Coxeter diagram of the polyhedron P = Pc ∩ Λ has exactly
29 parabolic subdiagrams of maximal rank 8. They are as follows:

Subdiagram Number 10A 6B 4C

(1) Ẽ7 + Ã1 12 8 1 1
(2) Ẽ6 + Ã2 4 7 3 0
(3) D̃6 + Ã1 + Ã1 6 8 1 2
(4) Ã7 + Ã1 3 8 2 0
(5) Ã5 + Ã2 + Ã1 4 7 3 1

Here, each column 10A, 6B, 4C shows the number of vertices used from the
configuration.

It is easy to check that every connected parabolic subdiagram is a connected
component of some parabolic subdiagram of rank 8, using the previous table.
By Theorem 2.6 of [12], we see that P has finite volume and we obtain Pc ⊂
Λ. This polyhedron gives the fundamental domain of the associated discrete
reflection group generated by 20 reflections in the 20 roots {Ei, Ei j, Fi j,Gi},
which we denote by W = W(10A + 6B + 4C). Algebro-geometrically, 16 of
the generators are the Picard–Lefschetz transformations in (−2) curves in the
10A + 6B configuration and the remaining four are the involutions σi (i =
1, . . . , 4) corresponding to 4C. As an abstract group, we see that W has the
structure of a Coxeter group whose fundamental relations are given by the
Coxeter diagram (see [12]) of P. We note that the quasi-polarization (namely
a nef and big divisor)

H =
∑

i

Ei +
∑
i< j

Ei j

defines an element R+H in P.
Now let W(4C) be the subgroup of W generated by four reflections in Gi.

Via the homomorphism r : Aut(S ) → O(NS (S ) f ), the subgroup F ⊂ Aut(S )
generated by the four numerically reflective involutions σi is mapped onto
this Coxeter subgroup W(4C) 	 C∗42 . It follows that F 	 W(4C). Let
W(10A + 6B) be the subgroup generated by 16 reflections in Ei, Ei j and Fi j,
and let N(W(10A + 6B)) be the minimal normal subgroup of W which con-
tains W(10A + 6B). Since the intersection numbers between elements of 4C
and 10A + 6B are all even, by [11, Proposition] we have the exact sequence

1 −→ N(W(10A + 6B)) −→ W −→ W(4C) −→ 1. (7)
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The kernel is exactly the subgroup generated by the conjugates

{σgσ−1 | σ ∈ W(4C), g a generator of W(10A + 6B))}.

We have the corresponding geometric consequence as follows:

Theorem 3.3 There are exactly 16 smooth rational curves on S up to the
action of F :

Proof Let E be a smooth rational curve on S . We consider the orbit F .E.
Since the divisor H above is nef, we can choose E0 ∈ F .E such that the degree
(E0, H) is minimal. We show that E0 is one of 16 curves in 10A + 6B.

In fact, by the automorphism σi, we have

(E0, H) ≤ (σi(E0), H) = (E0, H) + (E0,Gi)(Gi, H),

and 0 ≤ (E0,Gi) for all i. Suppose that E0 intersects non-negatively all 16
curves in 10A + 6B. Then we have R+E0 ∈ Pc. But from Pc ⊂ Λ we obtain
(E2

0) ≥ 0, which is a contradiction. Hence E0 is negative on some curve in
10A + 6B and we see that E0 is one of them.

Next let us show that two distinct curves E, E′ in the 10A+6B configuration
are inequivalent under F . For the six curves Ei j from 10A, we have (Ei j,Gk) =
0 for all i < j and k. Therefore, by an easy induction, we see that the sextuple
((Ei j, E))1≤i< j≤4 consisting of intersection numbers is an invariant of the orbit
F .E. Suppose that (Ei j, E) = (Ei j, E′) for all i < j. Since E and E′ are both
in the 10A + 6B configuration, we see easily that E = E′. This shows that the
orbits F .E and F .E′ are disjoint.

In other words, the group N(W(10A+ 6B)) is nothing but the Weyl group of
S generated by Picard–Lefschetz reflections in all (−2) curves. We can proceed
to elliptic pencils.

Theorem 3.4 There are exactly 29 elliptic pencils on S up to the action of
F . Their properties are as in the table of Theorem 2.

Proof Let 2 f be a fiber class of an elliptic pencil on S . As before, we choose
an element f0 ∈ F . f such that the degree ( f0, H) is minimal. We have

( f0, H) ≤ (σi( f0), H) = ( f0, H) + ( f0,Gi)(Gi, H),

hence ( f0,Gi) ≥ 0 for all i. Moreover, since f0 is nef we have ( f0, E) ≥ 0
for all E in the 10A + 6B configuration. Therefore, f0 ∈ Pc. This shows
that f0 corresponds to one of the maximal parabolic subdiagrams classified
in Lemma 3.2.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.017
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:55, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.017
http:/www.cambridge.org/core


318 S. Mukai and H. Ohashi

Conversely, we can construct 29 elliptic pencils from the 29 subdiagrams
in Lemma 3.2 as follows. The two types (2) and (4) in the lemma are easiest
since they do not contain a class in 4C. The elliptic pencils of types (2) and (4)
have singular fibers of type Ẽ6 + Ã2 and Ã7 + Ã1, respectively as in the case of
[5, Table 2].

In the case of type (1) (resp. (5)), one component of the parabolic subdia-
gram is Ã1 consisting of a (−2) curve E in 6B (resp. 10A) and (−2) class G in
4C. Moreover, the sum E + G is half of Ẽ7 (resp. Ã2). Hence E + σ(E) is a
non-multiple fiber of type Ã1 since it is linearly equivalent to 2(E +G), where
σ is the reflection in G.

In the case of type (3), one component is Ã1 consisting of two classes G
and G′ in 4C. But the other two components consist of (−2) curves. Therefore,
the Mordell–Weil group is of rank 1 since neither G nor G′ is effective. (The
composite σσ′ of two reflections in G and G′ is the translation by a generator
of the Mordell–Weil group.)

That these 29 pencils are inequivalent under F follows from the previous
result for rational curves.

To study the image of the representation r : Aut(S )→ O(NS (S ) f ), we need
some lemma. We denote by 4A′ the set of four roots {Ei} and by 6A′′ the set
{Ei j}. Recall that by Theorem 3.3, all (−2) curves on S are in the F -orbit of
the three sets 4A′, 6A′′, and 6B.

Lemma 3.5 Let τ be any automorphism of S . Then τ preserves each of the
three orbits of rational curves F .(4A′), F .(6A′′), and F .(6B).

Proof Any automorphism τ permutes smooth rational curves on S , and hence
induces a symmetry of the dual graph of the set of rational curves. Thus, for
the proof, it suffices to give a characterization of each orbit in terms of this
infinite graph. We use the (full) subgraphs which are isomorphic to the dual
graph of reducible fibers of elliptic fibrations.

Consider a vertex v in F .(6B). Then there exists a subgraph of fiber type I3

passing through v. Conversely, if for a vertex v there is a subgraph of fiber type
I3, by Theorem 3.4, it is equivalent to a vertex in 6B under F . Thus the vertices
in F .(6B) are characterized by the property that there exists a subgraph of fiber
type I3 passing through them.

Similarly, vertices in F .(10A) are characterized by subgraphs of type I8.
Moreover, the vertices v in F .(4A′) are characterized by the property that there
exists a subgraph of type IV∗ which has v as its end. In the opposite way,
vertices in F .(6A′′) are those which do not have such IV∗ subgraphs. Thus the
three orbits are all characterized and τ preserves these orbits.
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Corollary 3.6 The set of six curves {Ei j} is preserved under any
automorphism.

Proof In fact, for any Ekl and any σi we have σi(Ekl) = Ekl. HenceF .(6A′′) =
{Ei j}.

Recall that S has action by S4 from the symmetry of the defining equation
of X. Explicitly, it acts on the curves in the 10A + 6B configuration by the
permutation of indices. For involutions σi, the same holds true if we regard the
action as taking conjugates. It is easy to see that this groupS4 can be identified
with the symmetry group Sym(P) of the polyhedron P ⊂ Λ via r. We can also
regard this group as acting on the reflection group W and the exact sequence
(7) is preserved under this action. In particular, W(4C) and Sym(P) generate a
group isomorphic to S4 �C∗42 .

Theorem 3.7 The representation r induces an isomorphism of Aut(S ) onto
the group generated by W(4C) and Sym(P), hence we obtain Aut(S ) 	
S4 �C∗42 .

Proof Since r maps F onto W(4C), the image of r includes the groups W(4C)
and Sym(P).

Conversely, let us pick up an arbitrary automorphism τ. We consider the
image τ(H) of H. We use the elliptic fibration defined by the divisor f =
H − E12 − E34 of type I8. By Theorem 3.4, the image τ( f ) is equivalent to one
of three elliptic pencils described in item (4) under F . Moreover, sinceS4 acts
transitively on these three pencils, we can assume that τ( f ) = f by composing
τ with some elements of F and S4. Thus we have τ(H) = f + τ(E12)+ τ(E34).
By the previous corollary, τ(E12) and τ(E34) are in the set {Ei j}. By an easy
check of intersection numbers, we see that τ(E12) + τ(E34) = E12 + E34.
In particular we obtain τ(H) = H as divisors. Since any permutation of the
10A configuration can be induced from the automorphism group S4, this
shows that the image of r is contained in the group generated by W(4C)
and Sym(P).
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