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Lower-order asymptotics for Szegö and Toeplitz
kernels under Hamiltonian circle actions

R. Paoletti
Università degli Studi di Milano Bicocca

Abstract

We consider a natural variant of Berezin–Toeplitz quantization of compact
Kähler manifolds, in the presence of a Hamiltonian circle action lifting to the
quantizing line bundle. Assuming that the moment map is positive, we study
the diagonal asymptotics of the associated Szegö and Toeplitz operators, and
specifically their relation to the moment map and to the geometry of a cer-
tain symplectic quotient. When the underlying action is trivial and the moment
map is taken to be identically equal to one, this scheme coincides with the
usual Berezin–Toeplitz quantization. This continues previous work on near-
diagonal scaling asymptotics of equivariant Szegö kernels in the presence of
Hamiltonian torus actions.

Dedicated to Rob Lazarsfeld on the occasion of his 60th birthday

1 Introduction

The object of this paper are the asymptotics of Szegö and Toeplitz operators
in a non-standard version of the Berezin–Toeplitz quantization of a complex
projective Kähler manifold (M, J, ω).

In Berezin–Toeplitz quantization, one typically adopts as “quantum spaces”
the Hermitian spaces H0

(
M, A⊗k

)
of global holomorphic sections of higher

powers of the polarizing line bundle (A, h); here (A, h) is a positive, hence
ample, Hermitian holomorphic line bundle on M. Quantum observables,
on the contrary, correspond to Toeplitz operators associated with real C∞
functions on M.
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322 R. Paoletti

Here we assume given a Hamiltonian action μM of the circle group U(1) =
T1 on M, with positive moment map Φ, and admitting a metric-preserving
linearization to A. It is then natural to replace the spaces H0

(
M, A⊗k

)
with

certain new “quantum spaces” which arise by decomposing the Hardy space
associated with A into isotypes for the action; these are generally not spaces
of sections of powers of A. One is thus led to consider analogues of the
usual constructs of Berezin–Toeplitz quantization. In particular, it is inter-
esting to investigate how the symplectic geometry of the underlying action,
encapsulated inΦ, influences the semiclassical asymptotics in this quantization
scheme.

This picture generalizes the usual Berezin–Toeplitz quantization of
(M, J, ω), for one falls back on the standard case by considering the trivial
action of T1 on M with moment map Φ = 1. Then the lifted action is essen-
tially fiberwise scalar multiplication, and the corresponding equivariant spaces
are the usual spaces of global holomorphic sections.

This theme was considered in [28] for general Hamiltonian torus actions; the
focus there was on near-diagonal scaling asymptotics of the associated equiv-
ariant Szegö kernels. Here we shall restrict our analysis to circle actions, and
investigate the lower-order terms of these asymptotic expansions, as well as
their analogues for Toeplitz operators.

In the usual standard setting of Berezin–Toeplitz quantization, a huge
amount of work has been devoted to these themes, involving a variety of
approaches and techniques; see for example (obviously with no pretense of
being exhaustive) [1, 2, 4, 5, 7, 8, 10–12, 14, 22, 25, 26, 29–31, 34, 35] and
references cited therein.

In the present paper, we follow the general approach to quantization based
on the microlocal analysis of the Szegö kernel on the circle bundle X of A∨; this
train of thought was first introduced in the grounding work [5], and afterwards
explored by many authors. We shall also specifically build on ideas and results
from [13, 17, 19]; in fact, the present paper was inspired considerably by the
concise approach in [19] to the derivation of the lower-order terms in the TYZ
expansion for real-analytic metrics.

Now let us make our discussion more precise. Let (M, J) be a con-
nected complex d-dimensional projective manifold, and let A be an ample
holomorphic line bundle on M, with dual line bundle A∨ and projection
π̂ : A∨ → M.

There is an Hermitian metric �A on A such that the unique covariant deriva-
tive ∇A on A compatible with �A and the holomorphic structure has curvature
ΘA = −2i ω, where ω is a Kähler form on M. Then dVM =: ω∧d/d! is a volume
form on M.
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Szegö Kernel asymptotics and Hamiltonian circle actions 323

Let X ⊆ A∨ be the unit circle bundle, with projection π = π̂
∣∣∣
X

: X → M.
Then ∇ corresponds to a connection contact form α ∈ Ω1(X), such that dα =
2 π∗(ω) and dVX =: (1/2π) α ∧ π∗(dVM) is a volume form on X. Let L2(X) =:
L2(X, dVX), and identify functions with densities and half-densities on X. Also,
let H(X) =: ker

(
∂b
)∩ L2(X) be the Hardy space of X, where ∂b is the Cauchy–

Riemann operator on X.
Suppose that the action μM : T1 × M → M is holomorphic with respect to J

and Hamiltonian with respect to 2 ω, with moment map Φ : M → R; suppose
furthermore that (μM ,Φ) can be linearized to a holomorphic action μA on A
leaving �A invariant. Then T1 acts on X as a group of contactomorphisms under
the naturally induced action μX : T1 × X → X lifting μM .

Infinitesimally, the relation between μM and μX is as follows. Let ∂/∂θ ∈
X(X) be the infinitesimal generator of the action of T1 on X given by fiber-
wise scalar multiplication, mult :

(
eiθ, x

) �→ eiθ · x; also, let ξM ∈ X(M)
be the infinitesimal generator of μM , with horizontal lift ξ

 
M to X. Then the

infinitesimal generator ξX ∈ X(X) of μX is given by

ξX = ξ
 
M − Φ

∂

∂θ
, (1)

where we write Φ for Φ ◦ π. Thus μX depends crucially on the choice of Φ;
for example, when μM is trivial, choosing Φ = 0 yields the trivial action on X,
while if Φ = 1 we obtain the action

νX : T1 × X → X,
(
eiθ, x

) �→ e−iθ · x. (2)

Since μX preserves α and is a lifting of the holomorphic action μM , it leaves
H(X) invariant; therefore, it determines a unitary action of T1 on H(X). Thus
H(X) equivariantly and unitarily decomposes into the Hilbert direct sum of its
isotypes,

Hμ
k (X) =:

{
f ∈ H(X) : f

(
μX
g−1 (x)

)
= gk f (x) ∀ (g, x) ∈ T1 × X

}
, (3)

where k ∈ Z. If μM is trivial and Φ = 1, (3) is the standard kth equivariant
Szegö kernel Hk(X), which is unitarily isomorphic to H0

(
M, A⊗k

)
in a natural

manner. However, in general Hμ
k (X) is not a space of sections of powers of A,

and may even be infinite-dimensional. For example, if μM is trivial and Φ = 0
then Hμ

0 (X) = H(X), while Hμ
k (X) is the null space for k � 0.

Nonetheless, if Φ > 0 then Hμ
k (X) is finite-dimensional for any k ∈ Z,

and is the null space if k < 0 [28]; in particular, the orthogonal projector
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324 R. Paoletti

Π
μ
k : L2(X) → Hμ

k (X) is a smoothing operator, with Schwartz kernel Πμ
k (·, ·) ∈

C∞(X × X) given by

Π
μ
k (x, y) =

∑
j

s(k)
j (x) · s(k)

j (y) (x, y ∈ X) (4)

for any choice of an orthonormal basis
(
s(k)

j

)
of Hμ

k (X). The diagonal restriction
x �→ Πμ

k (x, x) descends to a well-defined C∞ function on M.
Also, if Φ > 0 then ξX(x) � 0 for every x ∈ X by (1); hence μX is locally

free, and every x ∈ X has finite stabilizer Tx ⊆ T1. As μX commutes with scalar
multiplication, Tx only depends on m = π(x) ∈ M; we shall emphasize this by
denoting Tx by Tm. For instance, Tm = {1} for every m ∈ M if μM is trivial
and Φ = 1. While Tm is generally not constant on M, it equals a fixed finite
subgroup Tgen ⊆ T1 on a dense open subset M′ ⊆ M. Then Tgen stabilizes every
x ∈ X; after passing to the quotient, we may reduce to the case Tgen = {1}. By
Corollary 1.1 of [28], at a point x ∈ X where Tm is trivial, Πμ

k (x, x) satisfies an
asymptotic expansion as k → +∞ of the form

Π
μ
k (x, x) ∼

(
k
π

)d ∑
j≥0

k− j S μ
j (m), (5)

where S μ
0(m) = Φ(m)−(d+1). Here we shall focus on the lower-order terms S μ

j .
More generally, given a real f ∈ C∞(M), one can consider the associated

Toeplitz operators T μ
k [ f ] =: Πμ

k ◦ Mf ◦ Πμ
k , viewed as self-adjoint endo-

morphisms of Hμ
k (X); here Mf : L2(X) → L2(X) is multiplication by f ◦ π.

AssumingΦ > 0, this is also a smoothing operator, whose distributional kernel
may be expressed as

T μ
k [ f ](x, x′) =

∫
X
Π

μ
k (x, y) f (y)Πμ

k (y, x′) dVX(y)

=
∑

j

T μ
k [ f ]

(
s(k)

j

)
(x) · s(k)

j (y) (x, y ∈ X), (6)

where we write f (y) for f
(
π(y)

)
. The diagonal restriction x �→ T μ

k [ f ](x, x)
also descends to M. We shall see that T μ

k [ f ](x, x′) has near diagonal scaling
asymptotics (that is, for x → x′) analogous to those of Πμ

k in Theorem 1 of
[28], and investigate the lower-order terms in the asymptotics of the diagonal
restriction T μ

k [ f ](x, x). We shall then derive from this an asymptotic expan-
sion for an “equivariant Berezin transform,” and consider the relation between
commutators of Toeplitz operators and Poisson brackets of the corresponding
Hamiltonians. Before describing our results in detail, we need to specify the
geometric setting somewhat.
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Szegö Kernel asymptotics and Hamiltonian circle actions 325

We shall assume without loss that Tgen is trivial; then μX is free on a dense
νX × μX-invariant open subset X′ ⊆ X (since νX – given by (2) – and μX com-
mute, we may consider the product action). Thus M′ =: π(X′) ⊆ M is also
open and dense.

The quotient N = X/T1 is an orbifold, and the dense open subset N′ =:
X′/T1 ⊆ N is a manifold; the restricted projection κ : X′ → N′ is a circle
bundle, and passing from π to κ the roles of μX and νX get interchanged.

More precisely, β =: α/Φ is a connection 1-form for κ, defining the same
horizontal distribution as α, and there is on N′ a naturally induced Kähler
structure (N′, I, η) with dβ = 2 κ∗(η), and if ω is real-analytic then so is η.
Furthermore, νX descends to an action νN : T1 × N′ → N′, which turns out
to be holomorphic with respect to I and Hamiltonian with respect to 2 η. If as
generating Hamiltonian for νN we choose Φ−1, descended to a function on N′,
νX is the corresponding contact lift of νN to (X′, β) in the sense of (1).

Every μM-invariant C∞ function f = f (m) on M lifts to a νX × μX-invariant
function f = f (x) on X, and then descends to a νN-invariant C∞ function
f = f (n) on N′. In the reverse direction, a C∞ νN-invariant function f = f (n)
on N′ yields a μM-invariant C∞ function f = f (m) on M′. We thus have a
natural algebraic isomorphism between spaces of invariant smooth functions:

C∞(M′)μ � C∞(N′)ν.

If ω is real-analytic, this restricts to an isomorphism between the corresponding
subspaces of invariant real-analytic functions:

C!(M′)μ � C!(N′)ν.

With this understanding, we shall think of Φ as being defined on M, X, or N
according to the context, and drop the symbols of pull-back or push-forward.
Similarly, let "N be the scalar curvature of the Kähler structure (N′, I, 2 η); then
"N is νN-invariant, and may be viewed as a μM-invariant function on M′. By
the same principle, the Laplace–Beltrami operator ΔN of (N′, I, 2 η) acts on
μM-invariant functions on M′ (see Section 2.1 for precise definitions).

An important ingredient of the present analysis is the study by Engliš of the
asymptotics of Laplace integrals on a real-analytic Kähler manifold. Namely,
let (gkl) be a real-analytic Kähler metric on an open subset U ⊆ Cd, and sup-
pose that Ξ is a Kähler potential for (gkl) on U. Let Ξ̃ be a sesquiholomorphic
extension of Ξ to some open neighborhood Û ⊆ U×U of the diagonal. Calabi’s
diastasis function is given by

D(z, w) =: Ξ(z) + Ξ(w) − Ξ̃(z, w) − Ξ̃(w, z)
(
(z, w) ∈ Û

)
; (7)
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326 R. Paoletti

it is an intrinsic attribute of (gkl), that is, it does not depend on the choice of Ξ,
and it satisfiesD(z, z) = 0 andD(z, w) > 0 if z � w [9] (see also the discussions
in [8] and [20]).

In [13], Engliš considers the asymptotics as λ→ +∞ of integrals of the form

I(λ, y) =:
∫

U
e−λD(x,y) f (x) g(x) dx, (8)

where g =: det[gkl] and dx denotes the Lebesgue measure on Cd. By Theorem
3 of [13], there is an asymptotic expansion of the form

I(λ, y) ∼
(
π

λ

)d ∑
j≥0

λ− j RU
j ( f )

∣∣∣
y
, (9)

where the RU
j s are covariant differential operators, that may be expressed in a

universal manner in terms of the metric, the curvature tensor, and their covari-
ant derivatives; in particular, R0 = id and R1 = ΔN − "N/2 (the opposite
sign convention is used in [13] for the curvature tensor and for "N). Engliš
also provided an explicit description of RU

j for j ≤ 3; the higher RU
j s and

their differential geometric significance were investigated further in [20], and
a graph-theoretic formula for them was given in [33]. Because D and the RU

l s
are intrinsically defined, the expansion (9) holds globally on any real-analytic
Kähler manifold (S , g), in which case we shall denote the covariant operators
by RS

j .

Theorem 1 With the notation above, suppose that ω is real-analytic, Φ >

0, and Tgen is trivial. Then the invariant functions S μ
j : M′ → R in (5) are

determined as follows. First, S μ
0 = Φ

−(d+1). Next, for some j ≥ 0 suppose
inductively that

S μ
0 , . . . , S μ

j ∈ C
!(M′)μ � C!(N′)ν

have been constructed, and let S̃ μ
0 , . . . , S̃ μ

j be their respective sesquiholomor-
phic extensions as elements of C!(N′)ν. Define

Zj(n0, n) =: Φ(n)d+1
∑

a+b= j

S̃ μ
a(n0, n) S̃ μ

b(n, n0). (10)

Then, thinking of the RN
r s as acting on the variable n and of n0 as a parameter,

S μ
j+1(n0) = −Φ(n0)d+1

j∑
l=1

S μ
l (n0) S μ

j+1−l(n0)

−
j+1∑
r=1

RN
r
(
Zj+1−r(n0, ·)

)
|n=n0 . (11)
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Szegö Kernel asymptotics and Hamiltonian circle actions 327

Since the RN
r s are universal intrinsic attributes of the Kähler manifold

(N, K, η), (11) expresses the S μ
j s as a universal intrinsic attribute of the Hamil-

tonian action, through the geometry of its quotient. As mentioned, the RN
r s

were computed in Section 4 of [13], in [20] and [33]; thus, in principle, (11)
determines S μ

l explicitly in terms of the geometry of the quotient N′. Let us
consider S μ

1:

Corollary 2 Under the assumptions of Theorem 1, we have

S μ
1 =

1
2
"N Φ

−(d+1)

+(d + 1)Φ(n0)−(d+2)

[
1

2Φ

∥∥∥gradN(Φ)
∥∥∥2 − ΔN(Φ)

]
.

Here "N , the gradient gradNΦ of Φ as a function on N′, and the Laplacian
ΔN(Φ) are taken with respect to the Kähler structure (N, I, 2η), and ‖ · ‖N is the
norm in the same metric. Their relation to the corresponding objects on M is
explained in Sections 2.2 and 2.8 (see (34) and (71)). IfΦ = 1, we recover Lu’s
subprincipal term [22].

Remark 3 A notational remark is in order. If, working in a system of local
holomorphic coordinates, γab is a Kähler form, the corresponding Kähler met-
ric here is ρab = −i γab (see the discussion in Section 2.1 and (17)). In the
literature, often a factor 1/2 (or 1/(2π)) is included on the LHS of the previous
relation; with this convention, the previous invariants would be associated with
(N, I, η) [22, 32].

Next let us dwell on the local asymptotics of the Toeplitz kernels T μ
k [ f ](·, ·).

Firstly, by Theorem 1 of [28] we have Πμ
k (x′, x′′) = O (k−∞) uniformly for

distX

(
T1 · x′, x′′

)
≥ C kε−1/2, for any given ε > 0. In view of (6), the same

holds of T μ
k [ f ]. We can then focus on the local asymptotics of T μ

k [ f ](x′, x′′)
for x′′ → T1 · x′. In view of (3) and (4), for any eiϑ ∈ T1 we have

T μ
k [ f ]

(
μX

e−iϑ(x′), x′′
)
= eikϑ T μ

k [ f ]
(
x′, x′′

)
= T μ

k [ f ]
(
x′, μX

eiϑ (x′′)
)
. (12)

Therefore, we need only consider the asymptotics of T μ
k [ f ](x′, x′′) for x′′ → x′.

Predictably, these exhibit the same kind of scaling behavior as the asymptotics
of Πμ

k (x′, x′′) for x′ → x′′ (Theorem 2 of [28]).
This is best expressed in terms of Heisenberg local coordinates (in the fol-

lowing: HLC for short) x + (θ, v) centered at a given x ∈ X; here (θ, v) ∈
(−π, π) × B2d(0, δ), where B2d(0, δ) ⊆ Cd is the open ball centered at the origin
and of radius δ > 0. It is in these coordinates that the near-diagonal scaling
asymptotics of the standard equivariant Szegö kernels Πk exhibit their univer-
sal nature [3, 30], and by [28] the same holds of theΠμ

k s. While we refer to [30]
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328 R. Paoletti

for a precise definition, let us recall that Heisenberg local coordinates enjoy the
following properties.

Firstly, the parameterized submanifold γx : v �→ x + (0, v) is horizontal, that
is, tangent to ker(α) ⊆ T X, at v = 0. In view of (1), and given that Φ > 0, γx is
transverse to the μX-orbit T1 · x; hence for v ∼ 0 we have

D2 ‖v‖ ≥ distX

(
T1 · x, x + v

)
≥ D1 ‖v‖, (13)

for some fixed D1, D2 > 0.
Since HLC centered at x ∈ X come with a built-in unitary isomorphism

TmM � Cd, where m = π(x) ∈ X, we may use the expression x + (θ, v) when
v ∈ TmM has sufficiently small norm.

Finally, scalar multiplication by eiϑ ∈ T1 is expressed in HLC by a
translation in the angular coordinate: where both terms are defined, we have

eiϑ · (x + (θ, v)
)
= x + (ϑ + θ, v). (14)

We shall set x + v =: x + (0, v).
Given (12) and the previous transversality argument, we need only consider

the asymptotics of T μ
k [ f ](x + v, x + w) for v, w → 0. Following [30], let us

define, for v, w ∈ TmM,

ψ2(v, w) =: −i ωm(v, w) − 1
2
‖v − w‖2m, (15)

where ‖ · ‖m is the Euclidean norm on the unitary vector space (TmM, ωm, Jm).

Theorem 4 Assume as above thatΦ > 0. Then for any f ∈ C∞(M)μ we have

(1) T μ
k [ f ] = 0 for any k ≤ 0.

(2) For any C, ε > 0, we have T μ
k [ f ]

(
x′, x′′

)
= O (k−∞) as k → +∞, uniformly

for distX

(
T1 · x′, x′′

)
≥ C kε−1/2.

(3) Suppose x ∈ X and fix a system of HLC on X centered at x. Set m =: π(x).
Then uniformly for v, w ∈ TmM with ‖v‖, ‖w‖ ≤ C k1/9, as k → +∞ we
have an asymptotic expansion of the form

T μ
k [ f ]

(
x +

v
√

k
, x +

w
√

k

)

=

(
k
π

)d ∑
t∈Tm

tk e
ψ2

(
dmμM

t−1 (v),w
)
/Φ(m) · At(m, v, w),

with

At(m, v, w, f ) ∼
∑
j≥0

k− j/2 Rj

(
m, dmμM

t−1 (v), w, f
)
,
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Szegö Kernel asymptotics and Hamiltonian circle actions 329

where the Rj(·, ·, ·, ·)’s are polynomial in v and w and differential operators
in f . In particular,

R0

(
m, dmμM

t−1 (v), w, f
)
= Φ(m)−(d+1) f (m).

(4) The previous asymptotic expansion goes down by integer steps when v =
w = 0 (that is, only powers of k−1 appear in the diagonal asymptotics).

Theorem 4 might be proven by a microlocal argument along the lines of that
used for Theorem 1 of [28]; to avoid introducing too much machinery, we shall
instead deduce it as a consequence of Theorem 1 of [28], by inserting in (6)
the near-diagonal scaling asymptotics for Πμ

k .

Corollary 5 In the situation of Theorem 4, suppose in addition that Tgen is
trivial. If x ∈ X′, then as k → +∞ there is an asymptotic expansion

T μ
k [ f ] (x, x) ∼

(
k
π

)d ∑
j≥0

k− j S μ
j [ f ] (m) ,

where m = π(x) and every S μ
j [ f ] ∈ C∞(M′)μ. In particular, we have

S μ
0[ f ] = Φ−(d+1) · f .

When Φ = 1, corresponding results were obtained in Lemma 4.6 of [24]
and Lemma 7.2.4 of [23], covering the case of symplectic manifolds in the
presence of a twisting vector bundle.

Let us consider the lower-order S μ
j [ f ]s.

Theorem 6 Under the assumptions of Corollary 5, assume also that ω is
real-analytic. Then for every j = 0, 1, 2, . . . we have S μ

j [ f ] = Pμ
j ( f ), where

each Pμ
j is a differential operator of degree ≤ 2 j. More precisely, viewed as a

νN-invariant function on N, S μ
j [ f ] is given by

S μ
j [ f ](n0) = Pμ

j ( f )(n0) =
∑

r+s= j

RN
r
(
f (·) Zs(n0, ·)

)∣∣∣
n=n0

.

Remark 7 Clearly, S μ
j = S μ

j [1] for every j ≥ 0.

Corollary 8 In the situation of Theorem 6,

S μ
1[ f ] = Φ−(d+1) ΔN( f ) + S μ

1 · f .

For Φ = 1, the corresponding result to Corollary 8 was obtained in (0.13)
of [26].

For a general discussion of the Berezin transform in the Kähler context, we
refer, say, to [1, 7, 13, 21, 29]. Here we adopt the following natural adjustment:
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330 R. Paoletti

Definition 9 If f ∈ C∞(M) and k = 0, 1, 2, . . ., let the kth μ-equivariant
Berezin transform of f be given by

Berμk [ f ](m) =:
T μ

k [ f ](x, x)

Π
μ
k (x, x)

(m ∈ M)

for any choice of x ∈ π−1(m).

Corollary 10 Assume that ω is real-analytic, Φ > 0, and Tgen = {1}. If
f ∈ C∞(M)μ, then as k → +∞ on M′, uniformly on compact subsets of M′,
there is an asymptotic expansion of the form

Berμ
k [ f ] ∼

∑
j≥0

k− j Bμ
j ( f ),

where every Bμ
j is a differential operator of degree 2 j. In particular, Bμ

0 = id
and Bμ

1 = ΔN.

A corresponding result for Φ = 1 was given in [13].
The following analogue of the Heisenberg correspondence relates the com-

mutator of two equivariant Toeplitz operators to the Poisson brackets of the
corresponding Hamiltonians. Let {·, ·}M and {·, ·}N denote, respectively, Poisson
brackets on (M, 2 ω) and (N′, 2 η). By restriction, they yield maps

{·, ·}M , {·, ·}N : C∞(M′)μ × C∞(M′)μ → C∞(M′)μ.

Theorem 11 Assume that ω is real-analytic, Φ > 0, and Tgen = {1}. Let
f , g ∈ C∞(M)μ be real-valued, and denote by Eμ

k [ f , g](·, ·) ∈ C∞(X × X) the
Schwartz kernel of the composition T μ

k [ f ] ◦ T μ
k [g]. Then uniformly on compact

subsets of M′ as k → +∞ we have

Eμ
k [ f , g](x, x) − Eμ

k [ f , g](x, x)

=

(
k
π

)d [
− i

k
Φ(m)−(d+1) { f , g

}
N(m) + O

(
k−2

)]

=

(
k
π

)d [
− i

k
Φ(m)−d { f , g

}
M(m) + O

(
k−2

)]
,

for any x ∈ π−1(m).

In the course of the proof, one actually establishes an asymptotic expansion
for Eμ

k [ f , g](x, x) (see (118)):

Eμ
k [ f , g](x, x) ∼

(
k
π

)d ∑
j

k− j A j[ f , g](x), (16)
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where A0[ f , g] = Φ−(d+1) · f g and

A1[ f , g] = Φ−(d+1)
[
f ΔNg + gΔN f +

〈
gradN( f )(0,1), gradN(g)(1,0)

〉]
+S μ

1 · f g

(we leave the explicit computation to the reader). When Φ = 1, the formula for
A1[ f , g] was obtained in (0.16) of [26].

As explained in the references above for the standard case, this expansion
can be used to define in a natural manner a ∗-product on C∞(M′)μ (depending
on Φ), but we won’t discuss this here.

2 Preliminaries

2.1 Some notation and recalls from Kähler geometry

Let (P, K) be a d-dimensional complex manifold and let (P, K, γ) be a Käh-
ler structure on it, with associated covariant metric tensor ρ(·, ·) =: γ

(·, K(·));
also, let � =: ρ − i γ be the associated Hermitian metric. Given holomor-
phic local coordinates (za) on P, we shall let ∂a =: ∂/∂za and ∂a =: ∂/∂za,
ρab =: ρ(∂a, ∂b), γab =: γ(∂a, ∂b). �ab =: �(∂a, ∂b). Then locally

γ =
∑
a,b

γab dza ∧ dzb = i
∑
a,b

ρab dza ∧ dzb =
i
2

∑
a,b

�ab dza ∧ dzb. (17)

Consider the real local frame B = (
∂/∂x1, . . . , ∂/∂xd, ∂/∂y1, . . . , ∂/∂yd

)
,

where z j = x j + i y j is the decomposition in real and imaginary parts, and
denote by MB(ρ) the matrix representing ρ in this frame. Then

det MB(ρ) = 4d det
(
[ρab]

)2
.

Therefore, the Riemannian volume form of (P, ρ) is

dVP =
1
d!

γ∧d =
√

det (MB(ρ)) · dx1 ∧ · · · dxd ∧ dy1 · · · ∧ dyd

= 2d det
(
[ρkl]

) · dx1 ∧ · · · dxd ∧ dy1 · · · ∧ dyd

= det
(
[2 ρkl]

) · dx1 ∧ · · · dxd ∧ dy1 · · · ∧ dyd. (18)

Let R be the covariant curvature tensor of the Riemannian manifold (P, ρ),
with components Rabcd = R

(
∂a, ∂b, ∂c, ∂d

)
[32].

We shall set (leaving the metric understood and adopting Einstein notation)

"P =: ρba ρdc Rabcd; (19)

this is 1/2 of the ordinary Riemannian scalar curvature scalP.
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332 R. Paoletti

Similarly, for f ∈ C∞, we shall let

ΔP( f ) =: ρba ∂a∂b f , (20)

which is 1/2 times the ordinary Riemannian Laplace–Beltrami operator.
The gradient of f is locally given by

gradP( f ) = ρba (∂b f ) ∂a + ρba (∂a f ) ∂b, (21)

and its square norm is given by∥∥∥gradP( f )
∥∥∥2
= 2 ρba (∂a f ) (∂b f ). (22)

Since ΔP here is 1/2 times the ordinary Laplace–Beltrami operator, we have
for any f1, f2 ∈ C∞(P):

ΔP( f1 · f2) = f1 ΔP( f2) + ρ
(
gradP( f1), gradP( f2)

)
+ f2 ΔP( f1).

It follows inductively that for any f ∈ C∞(P) and l ≥ 0, we have

ΔP

(
f l
)
= l f l−1 ΔP( f ) +

(l − 1) l
2

f l−2
∥∥∥gradP( f )

∥∥∥2
. (23)

Let us now consider the Poisson brackets { f , g}P = γ(Hf , Hg) of two real
functions f , g ∈ C∞(P) in the symplectic structure (P, γ); here Hf is the Hamil-
tonian vector field of f with respect to γ. We have Hf = −K

(
gradP( f )

)
, hence

given (21)

{ f , g}P = γ
(
K
(
gradP( f )

)
, K

(
gradP(g)

))
= γ

(
gradP( f ), gradP(g)

)
= ρ

(
K
(
gradP( f )

)
, gradP(g)

)
= i ρ

(
ρba (∂b f ) ∂a − ρba (∂a f ) ∂b, ρ

dc (∂dg) ∂c + ρdc (∂cg) ∂d

)
=

1
i
ρdc

[
(∂c f ) (∂dg) − (∂cg) (∂d f )

]
. (24)

Lemma 12 Let (P, K, γ) be a Kähler manifold, with γ real-analytic. Let
Φ : P → R be a real C∞(M) function whose Hamiltonian flow with respect
to γ is holomorphic with respect to K. Then Φ is real-analytic.

Proof Let T cP = T P ⊗ C be the complexified tangent bundle of P, and
T cP = T ′P⊕T ′′P its decomposition into ±i-eigenbundles of K. Let υΦ ∈ X(P)
be the Hamiltonian vector field of Φ with respect to γ. If υΦ = υ′Φ ⊕ υ′′Φ, with
υ′Φ ∈ T ′P and υ′′Φ = υ′Φ ∈ T ′′P, then υ′Φ is holomorphic, whence real-analytic.
Then clearly υΦ is real-analytic as well, and therefore so is its differential
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dυΦ = ι(υΦ) γ. This forces Φ itself to be real-analytic (say by Proposition
2.2.10 of [18]).

The Laplacian and sesquiholomorphic extensions
We give here a couple of technical lemmas that will be handy in the proof of
Corollary 2.

Lemma 13 Let (P, K, γ) be a Kähler manifold, and consider f ∈ C!(P)
with f > 0. Let f̃ (·, ·) be the sesquiholomorphic extension of f to an open
neighborhood P̃ ⊆ P × P of the diagonal (thus f̃ (·, ·) is holomorphic in the
first entry and antiholomorphic in the second, and f̃ (p, p) = f (p) for all p ∈
P). Given p0 ∈ P, let P′ ⊆ P be an open neighborhood of p0 so small that
P′ × P′ ⊆ P̃ and f̃ (p0, p) � 0 for all p ∈ P′. Define f1, f2, F f ∈ C!(P′) by
setting for p ∈ P′:

f1(p) =: f (p0, p), f2(p) =: f (p, p0) = f1(p), F f (p) =
f (p)

f1(p) f2(p)
.

Thus f1 is antiholomorphic, f2 is holomorphic, and F f > 0. Then

ΔP(F f )(p0) =
1

f (p0)2

[
ΔP( f )(p0) − 1

2 f (p0)

∥∥∥gradP( f )(p0)
∥∥∥2
]
, (25)

where the terms involved are given by (20) and (22).

Remark 14 To be precise, we should really write F f ,p0 for F f , since the latter
also depends on the reference point.

Proof As above, let ρ be the metric tensor. In a local holomorphic chart (za)
for P centered at p0, given that ∂a∂b f j = 0 we have

ΔP(F) = ρba ∂a∂b

(
f

f1 f2

)

= ρba ∂a

⎛⎜⎜⎜⎜⎝ 1
f1 f2

∂b f − f

f 2
1 f2

∂b f1

⎞⎟⎟⎟⎟⎠
= ρba

⎛⎜⎜⎜⎜⎝− 1

f1 f 2
2

∂a f2 ∂b f +
1

f1 f2
∂a ∂b f − 1

f 2
1 f2

∂a f ∂b f1

+
f

f 2
1 f 2

2

∂a f2 ∂b f1

⎞⎟⎟⎟⎟⎠ . (26)

At p0, ∂a f2(p0) = ∂a f (p0), ∂b f1(p0) = ∂b f (p0), and f1(p0) = f2(p0) = f (p0).
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334 R. Paoletti

Thus, (26) yields

ΔP(F)(p0) = ρba(p0)

(
− 1

f (p0)3
∂a f (p0) ∂b f (p0) +

1
f (p0)2

∂a ∂b f (p0)

− 1
f (p0)3

∂a f (p0) ∂b f (p0) +
1

f (p0)3
∂a f (p0) ∂b f (p0)

)

=
1

f (p0)2

[
ρba(p0) ∂a ∂b f (p0) − 1

f (p0)
ρba(p0) ∂a f (p0) ∂b f (p0)

]

=
1

f (p0)2

[
ΔP( f )(p0) − 1

2 f (p0)

∥∥∥gradP( f )(p0)
∥∥∥2

P

]
.

Lemma 15 With the hypothesis and notation of Lemma 13, we have

gradP(F f )(p0) = 0.

Proof Let again (za) be a local holomorphic coordinate chart for P centered
at p0. Then for every a we have

∂a(F f )(p0) =
1

f1(p0)
∂a

(
f
f2

)
(p0)

=
f2(p0) ∂a f (p0) − f (p0) ∂a f2(p0)

f1(p0) f2(p0)2
=

f (p0) ∂a f (p0) − f (p0) ∂a f (p0)
f (p0)3

= 0.

Similarly, ∂aF f (p0) = 0 for every a.

2.2 The Kähler structure on N′

We are assuming Φ > 0 and Tgen trivial. Then the two projections

M′
π←− X′

κ−→ N′

are circle bundle structures; the fibers of π are the orbits in X′ of νX and those
of κ are the orbits in X′ of μX .

Let H = ker(α) ⊆ T X be the horizontal distribution for π. Since α is
μX-invariant, so is H . In addition, by (1) H is transverse to every μX-orbit.
Therefore, it may be viewed as an invariant horizontal distribution for κ as
well.

Let JH be the complex structure thatH inherits from J by the isomorphism
dπ|H : H � π∗(T M). Since μM is holomorphic, JH is μX-invariant. Therefore,
given the isomorphism dκ|H : H � κ∗(T N′), it descends to an almost complex
structure I on N′.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.018
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.018
http:/www.cambridge.org/core
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Proposition 16 I is a complex structure.

Proof Let J be the complex distribution on M associated with J. Thus

J = {v − i J(v) : v ∈ T M
}
= ker(J − i id) ⊆ T M ⊗ C.

As J is integrable, J is involutive.
Similarly, let

JH =
{
h − i JH (h) : h ∈ H}

= ker(JH − i id) ⊆ H ⊗ C.

Evidently, JH is the horizontal lift of JM .

Lemma 17 JH is involutive.

Proof If V ∈ X(M) is a real vector field on M, then U =: V − i J(V) is a
complex vector field on X tangent to JH , and its horizontal lift

U = V − i J(V) = V − i JH
(
V 
)

is a complex vector field on X tangent to JH . It is clear that JH is locally
spanned by vector fields of this form, so it suffices to show that

[
U 

1, U 
2

]
is tangent to JH , for any pair of complex vector fields U1, U2 on M
tangent to JM .

Since JM is involutive, [U1, U2] is tangent to JM . Given that
[
U 

1, U 
2

]
is

π-correlated to [U1, U2], to show that
[
U 

1, U 
2

]
is tangent to JH it suffices to

show that it is horizontal.
On the one hand, by compatibility of ω and J and because by construction

J(Ul) = i Ul, we have

ω(U1, U2) = ω
(
J(U1), J(U2)

)
= i2 ω(U1, U2),

so that ω(U1, U2) = 0. On the other hand, since U 
l is horizontal we have

α
(
U 

l

)
= 0; therefore, given that dα = 2 π∗(ω), we get

0 = 2 ω(U1, U2) = 2 π∗(ω)
(
U 

1, U 
2

)
= dα

(
U 

1, U 
2

)
= U 

1 · α
(
U 

2

)
− U 

2 · α
(
U 

1

)
− α

([
U 

1, U 
2

])
= −α

([
U 

1, U 
2

])
.

Finally, let us set

I = {s − i I(s) : s ∈ T N′
}
= ker(I − i id) ⊆ T N′ ⊗ C.

We need to prove that I is an involutive complex distribution. Let S 1, S 2 ∈
X(N′) ⊗ C be complex vector fields on N′ tangent to I, and let Ŝ 1, Ŝ 2 be their
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336 R. Paoletti

horizontal lifts to X. By definition of I, it follows that the restriction of JH
to X′ is the horizontal lift of I under κ. Therefore, Ŝ l is tangent to JH and
μX-invariant. Then the same holds of their commutator

[
Ŝ 1, Ŝ 2

]
because JH

is involutive and μX-invariant. Since
[
Ŝ 1, Ŝ 2

]
is κ-correlated to [S 1, S 2], we

conclude that [S 1, S 2] is tangent to I.

Let us define

β =:
1
Φ

α. (27)

Lemma 18 β is a connection form for κ : X′ → N′, with respect to which the
horizontal tangent bundle isH (the horizontal tangent bundle of π).

Proof Since μX preserves α and lifts μM , which is a Hamiltonian action with
moment map Φ, β is μX-invariant. Furthermore, we see from (1) and (27) that
β(ξX) = −1.

Thus H ⊆ T X′ is the horizontal tangent space for both π and κ. If V is a
vector field on M, we shall denote by V its horizontal lift to X under π; it is a
νX-invariant section ofH on X. Similarly, if U is a vector field on N′, we shall
denote by Û its horizontal lift to X′ under κ; it is a μX-invariant section of H
on X′. Clearly, vector fields on M are the same as νX-invariant sections of H
on X, and vector fields on N′ are the same as μX-invariant sections ofH on X.

Lemma 19 There exists a unique Kähler form η on N′ such that dβ = 2 κ∗(η).

Proof We have

dβ =
1
Φ

dα − 1
Φ2

dΦ ∧ α =
2
Φ

π∗(ω) − 1
Φ2

dΦ ∧ α, (28)

and direct inspection using (1) shows that ι(ξ 
X)dβ = 0. Since dβ is μX-invariant,

it follows that there exists a necessarily unique 2-form η on N′ such that dβ =
κ∗(2 η).

Thus, η is a closed 2-form on N′. To see that it is in fact a Kähler form,
we need to check that it is compatible with the complex structure and non-
degenerate. To this end, we fix an arbitrary n ∈ M′, choose an arbitrary x ∈
κ−1(n), and set m = π(x). Our construction then yields natural complex-linear
isomorphisms (TmM, Jm) � (Hx, JHx ) � (TnN′, In). To see that ηn is non-
degenerate on TnN′ and compatible with In, it then suffices to see that the
restriction of dβ is non-degenerate onHx, and compatible with JHx .

By (28), under the complex-linear isomorphism (TmM, Jm) � (Hx, JHx ), the
restriction of dβ onHx may be identified with 2ωm/Φ(m) on TmM. Since ω is
Kähler on (M, J), it is non-degenerate on TmM and compatible with Jm, and
this completes the proof.
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Suppose f ∈ C∞(M′)μ � C∞(N′)ν, and let Hf be its Hamiltonian vector field

on (M′, 2 ω). Since f is μM-invariant, so is Hf . Let H 
f be the horizontal lift of

Hf to X′. Then H 
f is a μX × νX-invariant horizontal vector field on X′, and

therefore it descends to a νN-invariant vector field H f , respectively.

Lemma 20 Let Kf be the Hamiltonian vector field of f ∈ C∞(M′)μ �
C∞(N′)ν on (N, 2 η). Then Kf = ΦH f .

Proof We need to show that for any n ∈ N′ and u ∈ TnN′ we have

2Φ(n) · ηn
(
H f (n), u

)
= dN

n f (u), (29)

where dN f is the differential of f when f is viewed as a function on N.
Choose as before x ∈ κ−1(n) and let m =: π(x) ∈ M′. Let û ∈ Hx be

the horizontal lift of u under κ, and set v = dxπ(̂u). Thus û = v . Since f is
invariant, on X we have f ◦ π = f ◦ κ; thus,

dM
m f (v) = dX

x f
(
v 
)
= dX

x f
(̂
u
)
= dN

n f (u). (30)

On the contrary, since H 
f = Ĥ f , we have

2Φ(n) · ηn

(
H f (n), u

)
(31)

= Φ(m) · dxβ
(
Hf (m) , v 

)
= Φ(m) · 1

Φ(m)
dxα

(
Hf (m) , v 

)
= 2 ωm

(
Hf (m), v

)
= dM

m f (v).

(29) follows from (30) and (31).

Suppose f , g ∈ C∞(M)μ. Since C∞(M′)μ � C∞(N′)ν, we have Poisson
brackets { f , g}M ∈ C∞(M′)μ and { f , g}N ∈ C∞(N′)ν on (M′, 2 ω) and (N′, 2 η),
respectively. The relation between them under the previous isomorphism is as
follows:

Corollary 21 For any f , g ∈ C∞(M′)μ � C∞(N′)ν, we have { f , g}N =
Φ { f , g}M.

Proof We have, omitting symbols of pull-back,

{ f , g}N = 2 η
(
Kf , Kg

)
= Φ2 dβ

(
H 

f .H
 
g

)
= Φ2 1

Φ
dα

(
H 

f .H
 
g

)
= Φ · 2 ω(Hf , Hg)

= Φ · { f , g}M . (32)
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We can similarly relate the gradients gradM( f ) and gradN( f ) of an invariant
f on (M′, 2 g) and (N′, 2 h), where g(·, ·) = ω

(·, J(·)) and h = η
(·, I(·)) are the

Riemannian metrics on M and N, respectively. We have

gradN( f ) = I
(
Kf

)
= Φ I

(
H f

)
= Φ J(Hf ) = Φ gradM( f ). (33)

Passing to square norms, we get∥∥∥gradN( f )‖2N = 2 h
(
gradN( f ), gradN( f )

)
= 2 η

(
gradN( f ), I

(
gradN( f )

))
= 2Φ2 η

(
gradM( f ), J

(
gradM( f )

))
= 2Φ2 dβ

(
gradM( f ) , J

(
gradM( f ) 

)
= 2Φ dα

(
gradM( f ) , J

(
gradM( f ) 

)
= Φ · 2 ω

(
gradM( f ), J

(
gradM( f )

)
= Φ

∥∥∥gradM( f )‖2M . (34)

2.3 The descended action on N

Let us dwell on the Hamiltonian nature of the descended action νN . Recall
that the action νX given by (2), that is, scalar multiplication composed with
inversion, commutes with μX , hence it descends to an action νN : T1 ×N → N.

Lemma 22 νN is an holomorphic action on (N′, I).

Proof Choose n ∈ N′ and x ∈ κ−1(n), and let m =: π(x). Fix t = eiθ ∈ T1. By
construction, we have complex-linear isomorphisms TnN′ � Hx � TmM that
inter-twine dnν

N
t : TnN′ → TνN

t (n)N
′ with dxν

X
t : Hx → HνX

t (x) = He−iθ ·x, hence
with the identity map of TmM. The statement follows.

Lemma 23 νN is a symplectic action on (N′, η).

Proof This follows as for Lemma 22, since in view of (28) under the previous
isomorphism ηn corresponds to ωm/Φ(m).

Thus νN
t is an automorphism of the Kähler manifold (N′, I, η), for each

t ∈ T1.

Lemma 24 νN is a Hamiltonian action on (N′, 2 η), with moment map 1/Φ
(viewed as a function on N).

Proof The vector field −∂/∂θ on X is μX-invariant, hence it descends to a
vector field υ on N, which is the infinitesimal generator of νX . We need to
show that 2 ι(υ) η = dN(1/Φ), that is, for any n ∈ N′ and any u ∈ TnN′ we have

2 ηn(υ, u) = −Φ(n)−2 dN
n Φ(u). (35)
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Szegö Kernel asymptotics and Hamiltonian circle actions 339

As before, let û be the horizontal lift of u with respect to κ, and set v =:
dxπ

(̂
u
)
, so that û = v . Thus

− Φ(n)−2 dN
n Φ(u) = −Φ(x)−2 dX

xΦ
(̂
u
)

(36)

= −Φ(x)−2 dX
xΦ

(
v 
)
= −Φ(m)−2 dM

mΦ (v) .

On the contrary, since κ∗(2 η) = dβ, we have

dxβ

(
− ∂

∂θ
, v 

)
= dxβ

(
− ∂

∂θ
, û
)
= 2 ηn(υ, u). (37)

Then (35) is equivalent to the equality

dxβ

(
∂

∂θ
, v 

)
=

1
Φ(m)2

dM
mΦ (v) , (38)

for any m ∈ M, v ∈ TmM, and x ∈ π−1(x). The latter is an immediate
consequence of (28).

Now β is a connection 1-form for the circle bundle κ : X′ → N′ and is
preserved by νX; therefore, for an appropriate constant c, νX is a contact lift to
(X′, β) of νN , with respect to the Hamiltonian c + 1/Φ.

Lemma 25 The correct choice is c = 0. Furthermore, the horizontal lift of υ
with respect to κ is

υ̂ = − 1
Φ

ξ
 
M .

Proof We want to give a decomposition of −∂/∂θ analogous to (1), but
referred to the circle bundle structure κ : X′ → N′. To this end, let β be a
locally defined angular coordinate on X′ referred to κ, so that ξX = −∂/∂β.
Since the horizontal component of −∂/∂θ with respect to κ is υ̂, the analogue
of (1) is

− ∂

∂θ
= υ̂ −

(
c +

1
Φ

)
∂

∂β

= υ̂ +

(
c +

1
Φ

) (
ξ
 
M − Φ

∂

∂θ

)

=

[̂
υ +

(
c +

1
Φ

)
ξ
 
M

]
− (1 + cΦ)

∂

∂θ
, (39)

where the latter is a decomposition into horizontal and vertical components
with respect to π. The latter equality is equivalent to the claimed statement.
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340 R. Paoletti

2.4 The complexified action on A∨0
The action μM : T1 × M → M complexifies to a holomorphic action μ̃M : T1 ×
M → M, where T1 = GL(1,C) � C∗ (see, for instance, the discussion in
Section 4 of [16]). Let (ρ, ϑ) be polar coordinates on C∗, and let ξ =: ∂/∂ϑ,
η =: −ρ ∂/∂ρ; then η = J0(ξ) (J0 being the complex structure on C∗). By
holomorphicity, if ξM and ηM are the induced vector fields on M, then ηM =

JM(ξM).
On the contrary, the contact lift μX : T1×X → X of μM extends to a linearized

action μA∨ : T1 × A∨0 → A∨0 . There is a natural diffeomorphism X × R+ � A∨0 ,
given by (x, r) �→ r · x; as a function on A∨0 , r is simply the norm for the
given Hermitian structure. If θ is a locally defined angular coordinate on X,
depending on the choice of a local unitary frame of A∨, then (r, θ) restrict to
polar coordinates along the fibers of A∨0 . Thus, if JA∨ is the complex structure
of A∨, then the globally defined vertical vector fields ∂/∂θ and ∂/∂r on A∨0 are
related by JA∨ (∂/∂θ) = −r ∂/∂r. By (1), the infinitesimal generator of μA∨ is

ξA∨ = ξ
 
M − Φ

∂

∂θ
, (40)

where the horizontal lift is now taken in the tangent bundle of A∨, with respect
to the extended connection.

The action μA∨ : T1 × A∨0 → A∨0 again extends to a holomorphic action
μ̃A∨ : T1 × A∨0 → A∨0 , which is of course a linearization of μ̃M (see the dis-
cussion in Section 5 of [16]). By holomorphicity, the induced vector fields ξA∨

and ηA∨ , with ξA∨ given by (40), satisfy

ηA∨ = JA∨ (ξA∨ ) = η
 
M + Φ r

∂

∂r
. (41)

Let NA : A∨0 → R be the square norm function; thus NA = r2 under the
previous diffeomorphism A∨0 � X × R+. Then

ξA∨ (NA) = 0, ηA∨ (NA) = 2ΦNA > 0. (42)

Lemma 26 Let a =: min |Φ|, A =: max |Φ|. Then, for every λ ∈ A∨0 , we have

e2a tNA(λ) ≤ NA

(̃
μA∨

e−t (λ)
)
≤ e2A tNA(λ)

if t ≥ 0, and

e2A tNA(λ) ≤ NA

(̃
μA∨

e−t (λ)
)
≤ e2a tNA(λ)

if t < 0.
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Proof The invariant vector field η = −ρ ∂/∂ρ on C∗ is associated with the
1-parameter subgroup t �→ e−t. Therefore, if given λ ∈ A∨0 we define

Nλ
A(t) =: NA

(̃
μA∨

(
e−t, λ

))
(t ∈ R)

then by (42)

d
dt
Nλ

A(t) = ηA∨
(NA

) (̃
μA∨

(
e−t, λ

))
= 2Φ

(̃
μA∨

e−t (λ)
)
Nλ

A(t),

which can be rewritten

d
dt

ln(Nλ
A)
∣∣∣∣∣
t=t0
= 2Φ

(̃
μA∨

e−t0 (λ)
)

(43)

for any t0 ∈ R. We deduce from (43) that

2 a ≤ d
dt

ln(Nλ
A) ≤ 2 A, (44)

which easily implies the claim.

Let us set, for (z, λ) ∈ C∗ × A∨0 :

z • λ =: μ̃A∨
(
z−1, λ

)
= μ̃A∨

z−1 (λ) . (45)

Corollary 27 If |z| ≥ 1, then

|z|2aNA(λ) ≤ NA (z • λ) ≤ |z|2ANA(λ).

If 0 < |z| < 1, then

|z|2ANA(λ) ≤ NA (z • λ) ≤ |z|2aNA(λ).

Proof If z = et+is, with t, s ∈ R and |z| = et, then because the action of
eis ∈ T1 is metric-preserving we have

NA (z • λ) = NA

(
et • λ

)
= NA

(̃
μA∨

e−t (λ)
)
.

Thus the corollary is just a restatement of Lemma 26.

Corollary 28 The C∞ map Υ : R+ × X′ → A∨0
′ given by (t, x) �→ t • x is a

bijection.

Proof By Corollary 27, NA(t • λ) → +∞ as t → +∞, and NA(t • λ) → 0+

as t → 0+; thus for any λ ∈ A∨0
′ there exists tλ ∈ R+ such that t−1

λ • λ ∈ X′.
Corollary 27 also implies that NA (t • x) > NA (x) for any t > 1 and x ∈ X′.
Therefore, t �→ NA (t • λ) is a strictly increasing function, since if t1 < t2 then
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342 R. Paoletti

NA (t2 • λ) = NA

((
t2
t1

t1

)
• λ

)

= NA

((
t2
t1

)
• (t1 • λ)

)
> NA (t1 • λ) . (46)

Hence tλ is in fact unique.

Remark 29 More is true. Since X′ ⊆ A∨0 is a real-analytic submanifold (see
Corollary 33), R+ × X′ is a real-analytic submanifold of C∗ × A∨0 . Being the
restriction of the holomorphic map (45), Υ is then a real-analytic bijection
of real-analytic manifolds. It is in fact also a local diffeomorphism, for its
differential has everywhere maximal rank; by the real-analytic inverse function
theorem (Theorem 2.5.1 of [18]), Υ is a real-analytic equivalence between R+×
X′ and A∨0

′

Recall that a Lie group action on a manifold P is called proper if the asso-
ciated action map G × P→ P × P, (g, p) �→ (g · p, p), is proper (Definition B2
of [15]).

Let A∨0
′ ⊆ A∨0 be the inverse image of M′; in other words, in terms of the

diffeomorphism A∨0 � X × R+, we have A∨0
′ � X′ × R+.

Corollary 30 The complexified action μ̃A∨ : T1 × A∨0 → A∨0 is proper. In
addition, its restriction to A∨0

′ is free.

Proof LetΥ : T1×A∨0 → A∨0×A∨0 be the action map of μ̃A∨ , and let R ⊂ A∨0×A∨0
be a compact subset. If π j : A∨0 × A∨0 → A∨0 is the projection onto the jth factor,
let Rj =: π j(R). Then Rj is compact and R ⊂ R1 × R2. Therefore, to prove that
Υ is proper, it suffices to show that Υ−1(R1 × R2) is compact, for any pair of
compact subsets R1, R2 ⊂ A∨0 . Clearly, Υ−1(R1 × R2) ⊆ T1 × R2. For j = 1, 2
let � j =: minRj NA and Lj =: maxRj NA.

Suppose (w, λ) ∈ Υ−1(R1 × R2), and set z = w−1, so that μ̃A∨ (w, λ) = z • λ.
If |w| ≤ 1, then |z| ≥ 1 and so by Corollary 27

|z|2aNA(λ) ≤ NA(z • λ) ≤ |z|2ANA(λ).

Since λ ∈ R2, we have l2 ≤ NA(λ), and since z•λ ∈ R1, we haveNA(z•λ) ≤ L1.
Therefore, if |z| ≥ 1 then

�2 |z|2a ≤ L1 =⇒ |z| ≤
(

L1

l2

)1/2a

.

In other words, if |w| ≤ 1 then (�2/L1)1/2a ≤ |w|. Similarly, one sees that if
|w| ≥ 1 then |w| ≤ (L2/�1)1/2a.
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Szegö Kernel asymptotics and Hamiltonian circle actions 343

Therefore, if p : T1 × A∨0 → A∨0 is the projection onto the first factor, then

S
(
Υ−1(R1 × R2)

)
is compact. Hence, Υ−1(R1 × R2) ⊆ S × R2 is also compact,

and this completes the proof that the action is proper.
The statement about the freeness of the action follows immediately from

(44) and the definition of X′.

2.5 The circle bundle structures

Let us view κ : X′ → N′ as a circle bundle over N′, with the action of T1 on
X′ given by

(
eiθ, x

)
�→ eiθ • x; the latter is defined in (45). On N′, associated

with the Kähler structure we have the volume form dVN = η∧d/d!; thus on
X′, viewed as a circle bundle over N′, we have the natural choice of a volume
form dWX = (1/2π) β ∧ κ∗(dVN). Algebraically, L2(X, dVX) = L2(X′, dVX) =
L2(X′, dWX), although the metrics are different. Explicitly,

dWX =
1

2π
β ∧ κ∗(dVN)

=
1

2π
α

Φ
∧ 1

d!

(
1
Φ

π∗(ω) − 1
2Φ2

dΦ ∧ α

)∧d

= Φ−(d+1)

[
1

2π
α ∧ π∗(ω)∧d

]
= Φ−(d+1) dVX . (47)

Furthermore, the two circle bundles π and κ have different CR structures,
because they do not have the same vertical tangent bundle. However, by con-
struction they share the same horizontal distribution, and the same horizontal
complex structure JH . Let H (0,1) ⊆ H ⊗ C be the −i-eigenbundle of JH ; then
the boundary CR operator of either X or X′ is defined by setting ∂b f = d f |H (0,1) ,
for any C∞ function f on X or X′, respectively. Therefore, the boundary CR
operator of X,

∂b : C∞(X)→ C∞
(
X,H (0,1)∨

)
,

restricts to the corresponding operator of X′. It follows that there is a natural
algebraic (non-isometric) inclusion of corresponding Hardy spaces, H(X) ↪→
H(X′). The latter is an algebraic isomorphism if codimC

(
M \ M′, M

) ≥ 2.
The action μX plays the role of the structure circle action of T1 with respect

to κ. Let H̃k(X′) be the kth isotype for the latter action. Condition (3) for s ∈
L2(X) to belong to Hμ

k (X) may be rewritten s
(
eiθ • x

)
= eikθ s(x), for any eiθ ∈

T1 and x ∈ X. Therefore, the previous inclusion of Hardy spaces yields for
every k = 0, 1, 2, . . . an algebraic inclusion Hμ

k (X) ↪→ H̃k(X′).
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344 R. Paoletti

2.6 The line bundle on N′

Let B be the complex line bundle on N′ associated with κ and the tautolog-
ical action of T1 = U(1) on C, and let B∨ be its dual; thus, B (resp. B∨)
is the quotient of X′ × C by the equivalence relation (x, w) ∼

(
eiθ • x, eiθ w

)
(resp. (x, w) ∼

(
eiθ • x, e−iθ w

)
). We can embed j : X′ ↪→ B∨ by x �→ [x, 1].

Then B and B∨ inherit natural Hermitian structures, that we shall denote by
�B, uniquely determined by imposing j : X′ ↪→ B∨ to embed as the unit circle
bundle. We shall denote by κ̂ : B∨ → N′ the projection, so that κ = κ̂ ◦ j.

The connection form β on X determines a unique metric covariant derivative
∇B on B, with curvature ΘB = −2i κ∗(η). Since η is a Kähler form on N′,
there is a uniquely determined holomorphic structure on B, such that ∇B is the
only covariant derivative on B compatible with both the metric and the latter
holomorphic structure. A local section σ of B is holomorphic for this structure
if and only if the connection matrix with respect to σ is of type (1, 0).

Lemma 31 There is a natural biholomorphism Γ : B∨0 � A∨0
′ of bundles over

N′; when we view X′ as a submanifold of A∨0
′ and B∨0 in the natural manner, Γ

restricts to the identity X′ → X′ (that is, Γ
(
j(x)

)
= x for any x ∈ X′). Further-

more, Γ preserves the horizontal distributions, and maps biholomorphically
the fibers of the bundle projection κ̂ : B∨ → N′ onto the orbits of the action
μ̃A∨ : T1 × A∨0 → A∨0 .

Proof We have B∨0 = X′ × C∗/ ∼, where (x, w) ∼
(
eiθ • x, e−iθ w

)
, for any

eiθ ∈ T1. If Ψ : X′ × C∗ → B∨0 is the quotient map, Ψ (x, w) = [x, w], for any
(x, w) ∈ X′ × C∗ the differential d(x,w)Ψ induces a C-linear isomorphism

Hx ⊕ C ⊂ T(x,w)
(
X′ × C∗) � TΨ (x,w)B

∨
0 ,

which mapsHx ⊕ (0) and (0)⊕C, respectively, onto the horizontal and vertical
tangent spaces of B∨ at Ψ (x, w).

Let us consider the map

Γ : X′ × C∗ → A∨0
′
, (x, w) �→ w • x.

Holomorphicity of the complexified action μ̃ implies that the differential d(x,w)Γ

induces a C-linear isomorphism

Hx ⊕ C ⊂ T(x,w)
(
X′ × C∗) � TΓ(x,w)A

∨
0 , (48)

under whichHx ⊕C maps onto the horizontal tangent space of A∨ and (0) ⊕C
onto the tangent space to the complex orbit μ̃A∨ at Γ(x, w).

On the other hand, for any (x, w) ∈ X′ × C∗ and eiθ ∈ T1, we have

Γ(x, w) = w • x =
(
w e−iθ

)
•
(
eiθ x

)
= Γ

(
eiθ x, e−iθ w

)
. (49)
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Szegö Kernel asymptotics and Hamiltonian circle actions 345

Therefore, Γ passes to the quotient under Ψ , that is, there exists a C∞ map
Γ : B∨0 → A∨0

′ such that Γ = Γ ◦ Ψ :

Γ([x, w]) = Γ(x, w)
(
(x, w) ∈ X′ × C∗) ;

the previous discussion implies that Γ is holomorphic.
Corollary 28 evidently implies that Γ is surjective, and therefore so is Γ.

To see that Γ is also injective, suppose that λ j = Ψ (x j, w j), j = 1, 2, satisfy
Γ(λ1) = Γ(λ2). Thus w1 • x1 = Γ(x1, w1) = Γ2(x2, w2) = w2 • x2, whence(
w−1

2 w1

)
• x1 = x2. This evidently implies NA

((
w−1

2 w1

)
• x1

)
= NA(x1) =

NA(x2) = 1. Since by Corollary 27 the map t �→ NA(t•x1) is strictly increasing,
this forces |w1| = |w2|. If w−1

2 w1 = eiθ, we then have w2 = e−iθ w1, x2 = eiθ • x1;

hence (x2, w2) =
(
eiθ • x1, e−iθ • w1

)
∼ (x1, w1). Therefore, λ1 = λ2.

Finally, any x ∈ X′ ⊂ A∨0
′ corresponds to [x, 1] ∈ B∨0 , and Γ([x, 1]) =

1 • x = x. Therefore, with the previous identification Γ induces the identity
map on X′.

Remark 32 Γ interwines fiberwise scalar multiplication ·B on B∨0 and the map
(45). In fact, if b = [x, w] ∈ B∨0 and z ∈ C∗, then z ·B b = [x, z w]. Therefore,

Γ(z ·B b) = Γ
(
[x, z w]

)
= (z w) • x = z • (w • x) = z • Γ(x).

LetNB : A∨0 → R be the norm function associated with the Hermitian struc-
ture of B∨, viewed as a function on A∨0 by means of the biholomorphism of
Lemma 31. Then NB(z • λ) = |z|2 ‖λ‖2.

Corollary 33 X′ ⊆ A∨0 is a real-analytic submanifold, and the projection
κ : X′ → N′ is real-analytic.

Proof Since the Hermitian metric h on A∨ is real-analytic by assumption, the
norm function NA : A∨0 → R is a positive real-analytic function. Therefore,
X′ = N−1

A (1) ∩ A∨0
′ is a real-analytic submanifold of A∨0

′ (see Section 2.7 of
[18]). On the contrary, we have

κ = κ̂ ◦ j = κ̂ ◦ Γ−1
∣∣∣∣
X
.

Thus κ is the restriction of a holomorphic map to a real-analytic submanifold,
hence it is real-analytic.

Proposition 34 The Kähler form η on N′ is real-analytic.

Proof It suffices to prove that for any n ∈ N′ there is a real-analytic chart
for N′, defined on an open neighborhood V ⊆ N′ of n, such that the local
expression of η in that chart is real-analytic. To this end, choose x ∈ κ−1(n) and
let m =: π(x) ∈ M′. On some open neighborhood U ⊆ M of m, we can find
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346 R. Paoletti

a local holomorphic frame ϕ on A∨ such that ϕ(m) = x. We can also suppose,
without loss of generality, that ϕ is horizontal at m, that it, its differential at m
maps isomorphically TmM to the horizontal tangent space Hx. If we assume,
as we may, that U is the domain of a holomorphic local coordinate chart (z j)
centered at m, this means that NA ◦ ϕ = h(ϕ, ϕ) = 1 + O

(
‖z‖2

)
.

Let us write ‖ϕ‖ =:
√

h(ϕ, ϕ), so that ζ =: ϕ/‖ϕ‖ : U → X′ is a local unitary
frame. Since h is real-analytic, ζ is real-analytic. The previous remark shows,
in addition, that

dmζ = dmϕ : TmM −→ TxX ⊆ TxA∨;

therefore ζ is also horizontal at m, whence it is transverse at m to the μX-orbit
through x, in view of (1) and the positivity of Φ. Since the latter orbit is the
fiber through x of the projection κ : X′ → N′, this implies that the compo-
sition κ ◦ ζ : U → N′ is a real-analytic local diffeomorphism at m; we have
κ ◦ ζ(m) = κ(x) = n. Therefore, perhaps after replacing U with a smaller open
neighborhood of m, we may assume that κ ◦ ζ induces a real-analytic equiva-
lence U � V , where V =: κ ◦ ζ(U) is an open neighborhood of n (see Theorem
2.5.1 of [18]). Given the holomorphic chart on U, we may then interpret κ ◦ ζ
as a real-analytic chart for N′ in the neighborhood of n.

Let θ∨ζ = i ζ∗(α) be the connection form of A∨ in the local frame ζ. Then
under our assumptions, θ∨ζ is a real-analytic imaginary 1-form. The local
expression of 2 η in this chart, by (28), is

(κ ◦ ζ)∗(2η) = ζ∗ (κ∗(2 η))

= ζ∗
(

2
Φ

π∗(ω) − 1
Φ2

dΦ ∧ α

)

=
2
Φ

ω +
i
Φ2

dΦ ∧ θ∨ζ . (50)

In view of Lemma 12, we conclude that (50) is real-analytic, and this completes
the proof.

This also follows from

Lemma 35 The Hermitian metric h on B∨ is real-analytic.

Proof It suffices to show that the norm function NB : B∨0 → R+ is
real-analytic. To this end, it is equivalent to show that the composition

NB ◦ Γ
−1

: A∨0 → R+ is real-analytic. Again, let us simplify our discussion

by biholomorphically identifying A∨0 with B∨0 , and leaving Γ
−1

implicit. Then
fiberwise scalar multiplication on B∨0 corresponds to the map (45). Thus if
(t, x) ∈ R+ × X′, then NB(t • x) = t2.
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Let Υ : R+ × X′ → A∨0
′ be as in Corollary 28; then Υ is a real-analytic

equivalence by Remark 29, and the previous remark implies that

NB ◦ Υ : R+ × X′ → R+

is real-analytic. Therefore, so is NB =
(NB ◦ Υ

) ◦ Υ−1.

We can consider the equivariant distortion function Kμ
k : M → R defined by

setting

Kμ
k (m) =: Πμ

k (x, x) =
∑

j

∣∣∣∣s(k)
j (x)

∣∣∣∣2 , (51)

for m ∈ M and any choice of x ∈ π−1(m) ⊆ X, where the s(k)
j s are an orthonor-

mal basis of Hμ
k (X) (see (4)). That Kμ

k is well-defined follows from the fact that
μX and νX commute (Lemma 2.1 of [28]). For any m ∈ M and t ∈ T1, given
x ∈ π−1(m) by (3) we have

Kμ
k

(
μM

t−1 (m)
)
= Π

μ
k

(
μX

t−1 (x), μX
t−1 (x)

)
=
∑

j

∣∣∣∣s(k)
j

(
μX

t−1 (x)
)∣∣∣∣2

=
∑

j

∣∣∣∣s(k)
j (x)

∣∣∣∣2 = Πμ
k (x, x) = Kμ

k (m).

Therefore, Kμ
k ∈ C

∞(M)μ; it may thus be regarded as a function on N′ in a
natural manner. We have in fact:

Lemma 36 Kμ
k ∈ C

!(M)μ. As a function on N′, Kμ
k ∈ C

!(N′)ν.

Proof By its very definition,Πμ
k ∈ C

∞(X×X) restricts to a sesquiholomorphic
complex function on A∨0 × A∨0 , which is then a fortiori real-analytic. Since
X × X is a real-analytic submanifold of A∨0 × A∨0 by Corollary 33, we have
Π

μ
k ∈ C

!(X × X). If now ϕ is a local holomorphic frame on an open subset
U ⊂ M, the unitarization ϕu = ϕ/‖ϕ‖A : U → X is real-analytic, where ‖ϕ‖A =:(NA ◦ ϕ

)1/2. Therefore,

Kμ
k (m) = Πμ

k

(
ϕu(m), ϕu(m)

)
(m ∈ U)

is real-analytic on U. The second statement is proved similarly (Lemma 35).

2.7 Asymptotics of sesquiholomorphic extensions

Every s ∈ Hμ
k (X) extends uniquely to a holomorphic function s̃ : A∨0 → C.

Holomorphicity of the extended action μ̃A∨ implies, in view of (3) and (45),
that for every (z, λ) ∈ C∗ × A∨0 we have
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348 R. Paoletti

s̃(z • λ) = zk s̃(λ). (52)

Given this and (4), we see that Πμ
k : X × X → C extends uniquely to a

sesquiholomorphic function Pμ
k : A∨0 × A∨0 → C, given by

Pμ
k

(
λ, λ′

)
=
∑

j

s̃(k)
j (λ) · s̃(k)

j (λ′)
(
λ, λ′ ∈ A∨0

)
, (53)

and satisfying, by (52),

Pμ
k

(
z • λ, w • λ′) = zk wk Pμ

k

(
λ, λ′

)
, (54)

for every z, w ∈ C∗.
Let σ be a local holomorphic frame of B∨ on an open subset V ⊆ N′. Then

Pμ
k ◦ (σ × σ) : V × V → C, (n, n′) �→ Pμ

k

(
σ(n), σ(n′)

)
is sesquiholomorphic. The unitarization σu =: (1/‖σ‖B) • σ : V → X′ (see
Remark 32) is a real-analytic section. Given (54), we have

Π
μ
k

(
σu(n), σu(n′)

)
= Pμ

k

(
1

‖σ(n)‖B
• σ(n),

1
‖σ(n′)‖B

• σ(n′)

)

=
1

‖σ(n)‖kB

1

‖σ(n′)‖kB
Pμ

k

(
σ(n), σ(n′)

)
= e−

k
2

(
Ξ(n)+Ξ(n′)

)
Pμ

k

(
σ(n), σ(n′)

)
, (55)

where we have set, for n ∈ V ,

Ξ(n) = ln
(
‖σ(n)‖2B

)
= ln

(
�B

(
σ(n), σ(n)

))
. (56)

Then Ξ is real-analytic by Lemma 35, and furthermore ∂N∂NΞ = ΘB, where
ΘB = −2i η ∈ Ω2(N′) is the curvature form of B. In any given local coordinate
chart (zk) for N′ this means that

∂2Ξ

∂zk ∂zl

= ΘBkl = −2i ηkl = 2 hkl,

where h is the Riemannian metric of (N′, I, η). In other words, Ξ is a Kähler
potential for 2 h.

Being real-analytic, Ξ has a unique sesquiholomorphic extension Ξ̃ to an
open neighborhood of the diagonal Ṽ ⊆ V × V . Similarly, by Lemma 36, Kμ

k

also has a unique sesquiholomorphic extension K̃μ
k to an open neighborhood of

the diagonal in N′ × N′.
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Lemma 37 Let Ṽ ⊆ V × V be an appropriate open neighborhood of the
diagonal. Then for every (n, n′) ∈ Ṽ, we have

Pμ
k

(
σ(n), σ(n′)

)
= ek Ξ̃(n,n′) K̃μ

k (n, n′). (57)

Proof Both sides being sesquiholomorphic, it suffices to show that they have
equal restrictions on the diagonal. If n = n′, by (55) we have

Pμ
k (σ(n), σ(n)) = ek Ξ(n) Π

μ
k

(
σu(n), σu(n)

)
(58)

= ek Ξ̃(n,n) Kμ
k (n) = ek Ξ̃(n,n) K̃μ

k (n, n).

Inserting (57) in (55), we obtain for (n, n′) ∈ Ṽ:

Π
μ
k

(
σu(n), σu(n′)

)
= ek

[
Ξ̃(n,n′)− 1

2 Ξ(n)− 1
2 Ξ(n′)

]
K̃μ

k (n, n′). (59)

As discussed in the Introduction, by [28] if m ∈ M′ and x ∈ π−1(m)
there is an asymptotic expansion (5), smoothly varying on M′ and uniform on
compact subsets of M′, with leading coefficient S μ

0 = Φ
−(d+1). Since Πμ

k (x, x)
is μM-invariant, so is every S μ

j . Therefore, viewing Kμ
k as defined on N′,

the expansion may naturally be interpreted as holding on N′ (see (51) and
Lemma 36)):

Kμ
k (n) ∼

(
k
π

)d ∑
j≥0

k− j S μ
j (n), (60)

where S μ
0 = Φ

−(d+1). This suggest, heuristically, that K̃μ
k (n, n′) should satisfy

a similar expansion, with coefficients the sesquiholomorphic extensions of the
S μ

j s. This is indeed the case.
To see this, let us consider first the asymptotics of Πμ

k

(
σu(n), σu(n′)

)
for

(n, n′) ∈ Ṽ . Let

Π(x, y) =
∫ +∞

0
eit ψ(x,y) s(x, y, t) dt (61)

be the usual Fourier integral representation of the Szegö kernel of X determined
in [6]; here we think of X as the unit circle bundle of A∨, with volume form
dVX . In particular, .(ψ) ≥ 0, and s is a semiclassical symbol admitting an
asymptotic expansion of the form

s(x, y, t) ∼
∑
j≥0

td− j s j(x, y) (62)

(see also the discussion in [30] and [35]). For some ε > 0, let "1 ∈ C∞0 (−2ε, 2ε)
be a bump function identically equal to 1 on (−ε, ε). For some C > 0, let
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350 R. Paoletti

"2 ∈ C∞0
(
1/(2C), 2C

)
be a bump function identically equal to 1 on (1/C,C).

Let us write μX
−ϑ for μX

e−iϑ . Then, arguing as in the proof of Theorem 1 of [28],

Π
μ
k

(
σu(n), σu(n′)

)
=

1
2π

∫ π

−π
e−ikϑ Π

(
μX
−ϑ
(
σu(n)

)
, σu(n′)

)
dϑ (63)

∼ 1
2π

∫ +∞

0

∫ π

−π
e
−ikϑ+it ψ

(
μX
−ϑ

(
σu(n)

)
,σu(n′)

)
s
(
μX
−ϑ
(
σu(n)

)
, σu(n′), t

)
"1(ϑ) dt dϑ

∼ k
2π

∫ +∞

0

∫ π

−π
eikΨ(n,n′,t,ϑ) s

(
μX
−ϑ
(
σu(n)

)
, σu(n′), kt

)
"1(ϑ) "2(t) dt dϑ,

where

Ψ(n, n′, t, ϑ) =: t ψ
(
μX
−ϑ
(
σu(n)

)
, σu(n′)

)
− ϑ.

The last line of (63) is an oscillatory integral with phase Ψ(n, n′, t, ϑ), and
.(ψ) ≥ 0 implies .(Ψ) ≥ 0.

Suppose first n = n′. Then one can see by (a slight adaptation of) the argu-
ment in the proof of Theorem 1 of [28] that the phase Ψ(n, n, t, ϑ) has a unique
stationary point P(n, n) = (t0, ϑ0) =

(
1/Φ(n), 0

)
, where as usual we think of the

invariant function Φ as descended on N. Since ψ(x, x) = 0 identically, we have
Ψ(n, n, t0, ϑ0) = 0. Furthermore, the Hessian matrix at P0 is

HP0 (Ψ) =

(
0 Φ(n)
Φ(n) ∂2

ϑϑΨ(P0)

)
.

Therefore, P0 is a non-degenerate critical point, and by applying the stationary
phase lemma to it we obtain the asymptotic expansion (60).

By the theory of [27], the stationary point and the asymptotic expansion will
deform smoothly with (n, n′) ∈ Ṽ , although the stationary point may cease to
be real when n � n′ (and should then be regarded as the stationary point of
an almost analytic extension of Ψ). More precisely, if Ψ̃

(̃
n, ñ′, t̃, ϑ̃

)
denotes

an almost analytic extension of Ψ (n, n′, t, ϑ), then the condition that P
(̃
n, ñ′

)
=(̃

t
(̃
n, ñ′

)
, ϑ̃
(̃
n, ñ′

))
be a stationary point of Ψ̃ (̃n, ñ′, ·, ·) defines an almost analytic

manifold
(̃
t, ϑ̃

)
=
(̃
t
(̃
n, ñ′

)
, ϑ̃
(̃
n, ñ′

))
.

Applying to (63) the stationary phase lemma for complex phase functions
from Section 2 of [27] for (n, n′) ∈ Ṽ we obtain a smoothly varying asymptotic
expansion

Π
μ
k

(
σu(n), σu(n′)

) ∼ ( k
π

)d

eik Ψ̃
(
n,n′,P(n,n′)

) ∑
j≥0

k− j S j(n, n′), (64)

for appropriate smooth functions S j(·, ·) on Ṽ ⊆ V × V .
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Given (55) and (64), we get

Pμ
k

(
σ(n), σ(n′)

)
(65)

∼ e
k
[

1
2

(
Ξ(n)+Ξ(n′)

)
+i Ψ̃

(
n,n′,P(n,n′)

)] (
k
π

)d ∑
j≥0

k− j S j(n, n′).

Since the expansion holds in C j-norm for every j and the LHS is sesqui-
holomorphic, so is every term on the RHS. Therefore, each term

e
k
[

1
2

(
Ξ(n)+Ξ(n′)

)
+i Ψ̃

(
n,n′,P(n,n′)

)]
S j(n, n′)

is the sesquiholomorphic extension of its diagonal restriction.
On the contrary, on the diagonal (65) restricts to the uniquely determined

asymptotic expansion for (58), and so we need to have S j(n, n) = S μ
j (n),

whence S j(n, n′) = S̃ μ
j (n, n′). Furthermore, we see that

1
2
(
Ξ(n) + Ξ(n′)

)
+ i Ψ̃

(
n, n′, P(n, n′)

)
= Ξ̃(n, n′).

Inserting this in (64), we obtain

Π
μ
k

(
σu(n), σu(n′)

) ∼ ( k
π

)d

e
k
[
Ξ̃(n,n′)− 1

2

(
Ξ(n)+Ξ(n′)

)]
·
∑
j≥0

k− j S̃ μ
j (n, n′). (66)

Now (59) and (55) imply

K̃μ
k (n, n′) ∼

(
k
π

)d ∑
j≥0

k− j S̃ μ
j (n, n′) (67)

(see [17] and [35] for analogues in the standard case Φ = 1).
Analogous considerations hold for Toeplitz operators; see Section 9.

2.8 The Laplacian on invariant functions

Let us now dwell on the relation between the Laplacian operators ΔN and ΔM

of (M, J, ω) and (N′, I, η) acting on invariant functions. Thus let f ∈ C∞(M)μ,
so that f determines in a natural manner functions on X and N′, respectively.
It is convenient in the present argument to explicitly distinguish the domain
of definition of the function in point, so we shall write f = fM , and fX

and fN to denote the induced functions on X and N′, respectively. It is also
notationally convenient to leave Γ implicit, and to identify B∨0 with A∨0

′ (see
Lemma 31). Thus we have holomorphic line bundle structures π̂ : A∨ → M
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352 R. Paoletti

and κ̂ : A∨ → N′, where we write κ̂ for κ̂ ◦ Γ−1
. The fibers of the latter are the

orbits of the complexified action μ̃A∨ .
Suppose m ∈ M′, x ∈ π−1(m) ∈ X ⊂ A∨0 , and set n =: κ(x). Choose a local

holomorphic frame ϕ for A∨ on an open neighborhood U ⊂ M′ of m, such that
ϕ(m) = x and which is horizontal at m, in the sense of the proof of Proposition
34. Then, as remarked in the same proof, ϕ : U → A∨ is transverse at m to
the orbit of μX through x. In fact, in view of (41), ϕ : U → A∨ is transverse
at m to the full orbit of μ̃A∨ through x. Thus, the composition κ̂ ◦ ϕ : U → N′

is holomorphic, has maximal rank at m, and satisfies κ̂ ◦ ϕ(m) = n. Therefore,
there exists an open neighborhood U ⊆ M′ of m such that V =: κ̂ ◦ ϕ(U) is
open, and the induced map κ̂ ◦ ϕ : U → N′ is a biholomorphism.

Let us set Z =: ϕ(U) ⊆ A∨0 . Then Z is a complex submanifold of A∨0 , and
the restrictions of π̂ and κ̂ to Z determine biholomorphic maps πZ : Z → U and
κZ : Z → V . The invariance hypothesis on f implies that fM ◦ πZ = fN ◦ κZ ; let
us write fZ for this function.

Furthermore, if K is the complex structure on Z then by holomorphicity we
can pull back the Kähler structures (M, J, ω) and (N, I, η) under πZ and κZ ,
respectively, to Kähler structures (Z, K, ω′) and (Z, K, η′). Clearly

ΔM( fM) ◦ πZ = Δ1( fZ), ΔN( fN) ◦ κZ = Δ2( fZ),

whereΔ1 andΔ2 are the Laplacian operators in the Kähler structures (Z, K, 2ω′)
and (Z, K, 2η′), respectively. Therefore,

ΔM( fM)(m) = Δ1( fZ)(x), ΔN( fN)(n) = Δ2( fZ)(x). (68)

Recall that g(·, ·) = ω
(·, J(·)) and h = η

(·, I(·)) are the Riemannian metrics
on (M, J, ω) and (N, I, η), and by pull-back we view them as the Riemannian
metrics of (Z, K, ω′) and (Z, K, η′), respectively. Perhaps after restricting U to
a smaller open neighborhood of m in M′, we may assume without loss that
on Z there is a global holomorphic coordinate chart (z j). Let gab = g

(
∂a, ∂b)

and hab = h
(
∂a, ∂b) be the respective covariant metric tensors, with associated

contravariant tensors
(
gba) and

(
hba).

In particular, (TxZ, Kx, ω
′
x) = (Hx, JH ,x, ωx), where ωx is ωm pulled back

to Hx under dxπ. Similarly, with the same abuse of language, (TxZ, Kx, η
′
x) =

(Hx, JH ,x, ηx). By horizontality, expression (28) for κ∗(2η) implies that ηx =

ωx/Φ(m). Hence hab(x) = gab(x)/Φ(m), and so hba(x) = Φ(m) gba(x). Thus we
conclude that

Δ2( fZ)(x) =
1
2

hba(x) ∂a ∂b fZ(x)

=
1
2
Φ(m) gba(x) ∂a ∂b fZ(x) = Φ(m)Δ1( fZ)(x). (69)
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Szegö Kernel asymptotics and Hamiltonian circle actions 353

Given (68) and (69), we conclude that

ΔN( fN)(n) = Φ(m)ΔM( fM)(m). (70)

Interpreting ΔM and ΔN as endomorphisms of C∞(M′)μ, we can restate (70)
by writing

ΔN = Φ · ΔM . (71)

2.9 μ-Adapted Heisenberg local coordinates

As mentioned in the Introduction, HLC for X centered at some x ∈ X were
defined in [30]; it is in these local coordinates that near-diagonal Szegö kernel
scaling asymptotics exhibit their universal nature. While we refer to [30] for a
detailed discussion, let us recall that they consist of the choice of an adapted
local coordinate chart for M centered at m = π(x), intertwining the unitary
structure on TmM with the standard one on Cd, and a preferred local frame of
A∨ on a neighborhood of m, having a prescribed second-order jet at m.

Let r : (−π, π) × B2d(0, ε)→ X, r(θ, v) = x + (θ, v), be a system of HLC cen-
tered at x. Then r∗(dVX)(θ, 0) = (2π)−1 |dθ| dL(v), where dL(v) is the Lebesgue
measure on R2d. For v ∈ B2d(0, ε), let us set x + v =: r(0, v).

It is natural here to modify the previous prescription so as to incorporate μX

into an “equivariant” HLC system. Namely, let us define y′ : T1×B2d(0, ε)→ X
by letting

y′
(
eiϑ, w

)
=: eiϑ • (x + w). (72)

Working in coordinates on T1, this yields a map y : (−π, π)× B2d(0, ε)→ X by
setting

y
(
ϑ, w) =: eiϑ • (x + w). (73)

If H(m) ∈ R2d is the local coordinate expression of ξM(m) ∈ TmM (viewed as
a column vector) then the local HLC expression of ξX(x) is

(
H(m),−Φ(m)

) ∈
R2d × R. If (θ, v) ∼ (0, 0), then by (1)

y
(
ϑ, w) = x +

(
w + ϑ H(m),−ϑΦ(m)

)
+ O

(
‖(w, ϑ)‖2

)
. (74)

The Jacobian matrix at the origin of r−1 ◦ y is then

Jac(0,0)

(
r−1 ◦ y

)
=

(
I2d Hm

0t −Φ(m)

)
. (75)

Since Φ > 0, y′ is a local diffeomorphism at (1, 0) ∈ T1 × B2d(0, ε). There-
fore, if Tδ =:

{
eiϑ : − δ < ϑ < δ

}
⊆ T1 then for all sufficiently small δ, ε > 0,

the restriction of y′ to Tδ × B2d(0, ε) is a diffeomorphism onto its image.
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354 R. Paoletti

Lemma 38 Suppose x ∈ X′. Then, for all sufficiently small ε > 0, the restric-
tion y′ : T1 × B2d(0, ε) → X is injective. Its image is a μX-invariant tubular
neighborhood of the μX-orbit of x.

Proof If not, there exists ε j → 0+ and for every j a choice of distinct pairs(
eiϑ j , w j

)
,
(
eiϑ′j , w′j

) ∈ T1 × B2d(0, ε j),

and such that, if λ j =: ϑ′j − ϑ j,

eiϑ j • (x + w j) = eiϑ′j • (x + w′j) =⇒ x + w j = eiλ j • (x + w′j). (76)

If eiλ j ∈ Tδ, the previous considerations imply that eiλ j = 1, whence eiϑ j = eiϑ′j ,
and w j = w′j, against the assumptions. Therefore, it follows from (76) that
eiλ j ∈ T1 \ Tδ, a compact subset of T1. Perhaps after passing to a subsequence,
we may therefore assume without loss that eiλ j → eiλ∞ ∈ T1 \ Tδ as j → +∞.
Since obviously x+w j, x+w′j → x as j→ +∞, passing to the limit in (76) we
obtain eiλ∞ • x = x. But this is absurd by definition of X′, given that eiλ∞ � 1
and x ∈ X′.

It follows easily that if x ∈ X′ then y′ : T1 × B2d(0, ε) → X is a diffeo-
morphism onto its image for all sufficiently small ε > 0, and therefore that
y : (−π, π) × B2d(0, ε) → X is a local coordinate chart. We shall say that η is a
system of μ-adapted HLC.

In general, y′ : T1 × B2d(0, ε) → X is an l : 1-covering, where l = |Tm|. To
see this, let us consider the following generalization of Lemma 38:

Lemma 39 Suppose l = |Tm|, where m = π(x). Then, for all sufficiently small
ε > 0, the restriction y′ : T1 × B2d(0, ε) → X is an l : 1-covering. Its image is
a μX-invariant tubular neighborhood of the μX-orbit of x.

Proof Suppose x′ = eiϑ0 • x ∈ T1 · x. Then, for any g ∈ Tm, we have that
y
(
(eiϑ0 g, 0)

)
= x′. Therefore, the inverse image y′−1(x′) contains l distinct

elements (eiϑ0 g, 0) (g ∈ Tm), and at each of these y′ is a local diffeomorphism.
It follows that any x′′ sufficiently close to the orbit T1 · x has at least l inverse
images under y′, and that at each of these the latter is a local diffeomorphism.

I claim that in fact any x′′ sufficiently close to the orbit T1 · x has exactly
l inverse images under y′. If not, there exist ε j → 0+ and for every j distinct
pairs (

g(a)
j , v(a)

j

) ∈ T1 × B2d(0, ε), 1 ≤ a ≤ l + 1,

such that g(a)
j •v

(a)
j = g(b)

j •v
(b)
j , for every 1 ≤ a, b ≤ l+1. Arguing as in the proof

of Lemma 38, we conclude that g(a)
j g(b)

j

−1
� Tδ for any 1 ≤ b < a ≤ l + 1 and
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j � 0. In particular, perhaps after passing to a subsequence, for a = 2, . . . , l+1

we have g(a)
j g(1)

j

−1 → λ(a)
∞ ∈ Tm \ Tδ.

Suppose λ(a)
∞ = λ(b)

∞ for 2 ≤ a < b ≤ l + 1. Then g(a)
j g(b)

j

−1 → 1 ∈ Tδ

as j → +∞, absurd. Therefore, Tm contains the l + 1 distinct elements
{1, λ(2)

∞ , . . . , λ(l+1)
∞ }, a contradiction.

Lemma 40 For any ϑ ∈ (−π, π), we have

y∗(dVX)(ϑ, 0) =
1

2π
Φ(m) |dϑ| dL(w),

where dL(w) is the Lebesgue measure on R2d.

Proof Let us write r∗(dVX) = V(θ, v) |dθ| dL(v), so that V(θ, 0) = (2π)−1.
Then

y∗(dVX) =
(
r ◦ r−1 ◦ y

)∗ (
dVX

)
=
(
r−1 ◦ y

)∗ (
r∗
(
dVX

))
=
(
r−1 ◦ y

)∗ (
V(θ, v) dθ dL(v)

=
(
V ◦

(
r−1 ◦ y

) )
·
∣∣∣∣det

(
Jac

(
r−1 ◦ y

) )∣∣∣∣ |dϑ| dL(w).

At (0, 0), in view of (75) and since Φ > 0, we get

y∗(dVX)(0, 0) =
1

2π
Φ(m) |dϑ| dL(w). (77)

This proves the claim at (0, 0). To prove it at (ϑ0, 0), we replace ϑ ∼ ϑ0 by
ϑ + ϑ0 with ϑ ∼ 0 and note that ei(ϑ+ϑ0) • (x + v) = eiϑ • (eiϑ0 • (x + v)

)
. Since

rϑ0 (θ, v) = eiθ · (eiϑ0 • (x + v)
)

is a system of HLC centered at eiϑ0 • x, one can
argue as in the previous case.

Corollary 41 Under the assumptions of Lemma 39, if ε > 0 is sufficiently
small let Vε = y

′(T1 × B2d(0, ε)
)
. Then for any continuous function on X, we

have∫
Vε

f dVX =
1

2π |Tm|

∫ π

−π

∫
B2d(0,ε)

f ◦ y · (Φ(m) + A(w)
) |dϑ| dL(w),

where A(w) = O(‖w‖).

3 Proof of Theorem 1

Proof As the orthogonal projector Πμ
k : L2(X, dVX) → Hμ

k (X), Πμ
k is idem-

potent, then for every x ∈ X the Schwartz kernel Πμ
k ∈ C∞(X × X)

satisfies
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356 R. Paoletti

Π
μ
k (x, x) =

∫
X
Π

μ
k (x, y)Πμ

k (y, x) dVX(y). (78)

Let us fix x0 ∈ X′ and set m0 =: π(x0) ∈ M′, n0 =: κ(x0) ∈ N′, and
apply (78) with x = x0. Let σ be a local holomorphic frame of B∨ on an open
neighborhood V ⊆ N′ of n0; as usual we implicitly identify B∨0 with A∨0 by
means of Γ (Lemma 31). We may assume without loss that σ(n0) = x0. Let
‖σ‖B =: (NB ◦ σ)1/2. Then ‖σ‖B is a positive real-analytic function on V by
Lemma 35. Therefore, the unitarization σu =: (1/‖σ‖B) • σ : V → X′ (see
Remark 32) is a real-analytic section and σu(n0) = x0.

There exists ε > 0 such that distX
(
x0, T1 · y) ≥ δ for every y ∈ X \ κ−1(V).

Therefore, by Theorem 1 of [28] we have Πμ
k (x0, ·) = O (k−∞) uniformly on

X \ κ−1(V). If ∼ stands for “has the same asymptotics as,” we see from this and
(78) for x = x0 that

Π
μ
k (x0, x0) ∼

∫
κ−1(V)

Π
μ
k (x0, y)Πμ

k (y, x0) dVX(y). (79)

We can parameterize the invariant open neighborhood κ−1(V) ⊆ X′ by
setting

" : T1 × V → κ−1(V),
(
eiϑ, n

)
�→ eiϑ • σu(n). (80)

Then

"∗(dWX) =
1

2π
dϑ ∧ dVN (81)

where dVN = (1/d!) η∧d (see Section 2.5). Now (3) means that s
(
eiϑ • x

)
=

eikϑ s(x), for every eiϑ ∈ T1 and x ∈ X. Therefore, given (4), we have

Π
μ
k

(
x0, eiϑ • σu(n)

)
Π

μ
k

(
eiϑ • σu(n), x

)
=
[
e−ikϑ Π

μ
k (x0, σu(n))

] [
eikϑ Π

μ
k (σu(n), x0)

]
= Π

μ
k (x0, σu(n)) Πμ

k (σu(n), x0) .

Inserting this and (47) into (79), we obtain

Π
μ
k (x0, x0)

∼ 1
2π

∫ π

−π

∫
V
Π

μ
k (x0, σu(n)) Πμ

k (σu(n), x0) Φ(n)d+1 dϑ dVN(n)

=

∫
V
Π

μ
k (σu(n0), σu(n)) Πμ

k (σu(n), σu(n0)) Φ(n)d+1 dVN(n). (82)

If we use (59) in (82) we get
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Π
μ
k (x0, x0)

∼
∫

V
e−kDN (n0,n) K̃μ

k (n0, n) K̃μ
k (n, n0)Φ(n)d+1 dVN(n), (83)

whereD is Calabi’s diastasis function of (N′, I, 2η), defined in (7).
Let us set, for simplicity, η′ = 2 η. Also, suppose without loss that V is the

domain of a holomorphic local coordinate chart (za) for N′. If za + i ya, with
xa, ya real-valued, then by (18) we have

dVN = det
(
[2 ηkl]

) · dx1 ∧ · · · dxd ∧ dy1 · · · ∧ dyd

= det
(
[η′

kl
]
) · dx1 ∧ · · · dxd ∧ dy1 · · · ∧ dyd. (84)

In view of (67), we can thus rewrite (83) as follows:

Π
μ
k (x0, x0) (85)

∼
(

k
π

)2d ∑
j≥0

k− j
∫

B
e−kDN (n0,n) Zj(n0, n) det

(
[η′

kl
]
)

dx dy,

where now B ⊆ Cd is some open ball centered at the origin, and for every j ≥ 0
we have

Zj(n, n′) =: Φ(n′)d+1
∑

a+b= j

S̃ μ
a(n, n′) S̃ μ

b(n′, n)
(
(n, n′) ∈ V × V

)
. (86)

In particular, since S μ
0 = Φ

−(d+1), for j = 0 we get from (86):

Z0(n, n′) = Φ(n′)d+1 Φ̃(n, n′)−(d+1) Φ̃(n′, n)−(d+1) (87)

=

(
Φ(n′)

Φ̃(n, n′) Φ̃(n′, n)

)d+1

= FΦ(n′)d+1,

with the notation of Lemma 13, taking p0 = n, and where Φ̃ is the sesqui-
holomorphic extension of Φ (as a function on N′) to some open neighborhood
Ñ of the diagonal (and we assume V × V ⊆ Ñ). On the diagonal, Z0(n, n) =
Φ(n)−(d+1).

On the contrary, for j ≥ 1 we get

Zj(n, n′) = Φ(n′)d+1
[
Φ̃(n, n′)−(d+1) S̃ μ

j (n
′, n) + S̃ μ

j (n, n′) Φ̃(n′, n)−(d+1)
]

+Φ(n′)d+1
∑

0<a< j

S̃ μ
a(n, n′) S̃ μ

j−a(n′, n). (88)

On the diagonal,

Zj(n, n) = 2 S μ
j (n) + Φ(n)d+1

∑
0<a< j

S μ
a(n) S μ

j−a(n). (89)
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358 R. Paoletti

Let us now consider the asymptotics of the jth summand in (85). Because
DN is the diastasis function of η′, we can apply Theorem 3 of [13], and obtain
an asymptotic expansion of the form∫

B
e−kDN (n0,n) Zj(n0, n) det

(
[η′

kl
]
)

dx dy

∼
(
π

k

)d ∑
l≥0

k−l RN
l

(
Zj(n0, ·)

)∣∣∣
n=n0

, (90)

where the RN
j s are Engliš operators for the Kähler manifold (N, I, η′).

Using (90) within (85), we get

Π
μ
k (x0, x0) ∼

(
k
π

)d ∑
j,l≥0

k− j−l RN
l

(
Zj(n0, ·)

)∣∣∣
n=n0

=

(
k
π

)d ∑
j≥0

k− j
∑

a+b= j

RN
a
(
Zb(n0, ·)

)∣∣∣
n=n0

. (91)

It follows from (5) and (91) that

S μ
j (n0) =

∑
a+b= j

RN
a
(
Zb(n0, ·)

)∣∣∣
n=n0

= Zj(n0, n0) +
j∑

a=1

RN
a
(
Zj−a(n0, ·)

)∣∣∣
n=n0

. (92)

Given (89), the latter relation may be rewritten

S μ
j (n0) = 2 S μ

j (n0) + Φ(n0)d+1
∑

0<a< j

S μ
a(n0) S μ

j−a(n0) (93)

+

j∑
a=1

RN
a
(
Zj−a(n0, ·)

)∣∣∣
n=n0

.

It follows that

S μ
j (n0) = −Φ(n0)d+1

∑
0<a< j

S μ
a(n0) S μ

j−a(n0)

−
j∑

a=1

RN
a
(
Zj−a(n0, ·)

)∣∣∣
n=n0

, (94)

which determines S μ
j for any j ≥ 1 in terms of the S μ

k s with 0 ≤ k < j and their
sesquiholomorphic extensions. The proof is complete, for (94) is (11), with j
in place of j + 1.
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4 Proof of Corollary 2

Proof Let us apply (94) with j = 1. We get

S μ
1(n0) = − RN

1

(
Z0(n0, ·)

)∣∣∣
n=n0

= −
(
ΔN −

1
2
"N

) (
Z0(n0, ·)

)∣∣∣∣∣∣
n=n0

, (95)

where Z0 is defined by (87), and ΔN and "N are defined by (20) and (19),
respectively, with reference to the Kähler manifold (P, K, γ) = (N, I, η′), where
η′ = 2 η.

We have, by (87),

Z0(n0, n) =

(
Φ(n)

Φ̃(n0, n) Φ̃(n, n0)

)d+1

= FΦ(n)d+1, (96)

where FΦ is defined as in Lemma 13, with f = Φ and n0 = p0. Applying (23)
with l = d + 1 and f = FΦ, we get

ΔN
(
Z0(n0, ·)

)∣∣∣
n=n0
= ΔN

(
Fd+1
Φ

)
(n0)

= (d + 1) FΦ(n0)d · ΔN(FΦ)(n0) +
d(d + 1)

2
FΦ(n0)d−1

∥∥∥gradN(FΦ)(n0)
∥∥∥2

= (d + 1)Φ(n0)−d · ΔN(FΦ)(n0), (97)

where the gradient and the norm are taken with respect to the Riemannian
metric h′ = 2 h, and in the last equation we have made use of Lemma 15.

Let us apply Lemma 13 with (P, K, γ) = (N′, I, η′), f = Φd+1 ∈ C!(N′), and
p0 = n0, so that in the statement we have F = Z0(n0, ·). We obtain

ΔN
(
Z0(n0, ·)

)∣∣∣
n=n0

(98)

= (d + 1)Φ(n0)−(d+2)

[
ΔP(Φ)(n0) − 1

2Φ(n0)

∥∥∥gradN(Φ)(n0)
∥∥∥2
]
.

Inserting (98) into (95),

S μ
1(n0) =

1
2
"N(n0)Φ(n0)−(d+1)

+(d + 1)Φ(n0)−(d+2)

[
1

2Φ(n0)

∥∥∥gradN(Φ)(n0)
∥∥∥2 − ΔP(Φ)(n0)

]
.
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360 R. Paoletti

5 Proof of Theorem 4

Proof Statements (1) and (2) follow quite straightforwardly by using the
corresponding properties of Πμ

k in Theorem 1 of [28] in the first line of (6).
To prove (3), we start from the relation

T μ
k ( f )

(
x +

v
√

k
, x +

w
√

k

)
(99)

=

∫
X
Π

μ
k

(
x +

v
√

k
, y

)
f (y)Πμ

k

(
y, x +

w
√

k

)
dVX(y).

If integration in dVX(y) in (99) is restricted to a given invariant tubular neigh-
borhood V of the orbit T1 · x, only a negligible contribution to the asymptotics
is lost. On the contrary, on V we can introduce μ-adapted HLC as in Sec-
tion 2.9, so as to write y = eiθ • (x + u). Applying Corollary 41 (with V = Vε),
we get

T μ
k ( f )

(
x +

v
√

k
, x +

w
√

k

)
(100)

∼ 1
2π |Tm|

∫ π

−π

∫
B2d(0,ε)

(
Φ(m) + A(u)

)
·Πμ

k

(
x +

v
√

k
, eiθ • (x + u)

)
f (m + u)Πμ

k

(
eiθ • (x + u), x +

w
√

k

)
·|dϑ| dL(u),

where we used the fact that f ∈ C∞(M)μ.
Let D1, D2 > 0 be as in (13). Since ‖v‖, ‖w‖ ≤ C k1/9, we have

distX

(
T1 · x, x +

v
√

k

)
≤ D2 C k−7/18. (101)

If distX

(
T1 · x, y

)
≥ 2 D2 C k−7/18, then by (101) we have

distX

(
T1 · y, x +

v
√

k

)
≥ D2 C k−7/18,

and similarly for w. It follows from this and statement (2). (with ε = 1/9)
that the contribution to (99) and (100) coming from the locus where distX

(
T1 ·

x, y
) ≥ 2 D2 C k−7/18 is rapidly decreasing. By (13), this means that in (100) the

contribution of the locus where ‖u‖ ≥ (2D2/D1) C k−7/18 is rapidly decreas-
ing. Therefore, only a negligible contribution is lost in (100) if the integrand
is multiplied by "

(
k7/18 w

)
, where " is an appropriate radial bump function,

identically equal to 1 near the origin.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.018
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.018
http:/www.cambridge.org/core


Szegö Kernel asymptotics and Hamiltonian circle actions 361

Furthermore, using (3) and (45), for any x, x′, x′′ ∈ X and eiθ ∈ T1

we have

Π
μ
k

(
x′, eiθ • x′′

)
= e−ikθ Π

μ
k

(
x′, x′′

)
= Π

μ
k

(
eiθ • x′′, x′

)
.

Inserting this in (100), and applying the rescaling u �→ u/
√

k, we obtain

T μ
k ( f )

(
x +

v
√

k
, x +

w
√

k

)
(102)

∼ k−d

|Tm|

∫
Cd

(
Φ(m) + A

(
u
√

k

))

·Πμ
k

(
x +

v
√

k
, x +

u
√

k

)
f

(
m +

u
√

k

)
Π

μ
k

(
x +

u
√

k
, x +

w
√

k

)
·"
(
k−1/9 u

)
dL(u);

integration in du is really over an expanding ball of radius O
(
k1/9) in Cd.

Now by (3) of Theorem 1 of [28] (and the remark immediately following
the statement of that theorem) with υ1 = (0, v) and υ2 = (0, w), the sought
expansion holds for Πμ

k (that is, for f = 1). Thus

Π
μ
k

(
x +

v
√

k
, x +

u
√

k

)
∼
(

k
π

)d

·
∑
t∈Tm

tk e
ψ2

(
dmμM

t−1 (v),u
)
/Φ(m)

(103)

·
⎛⎜⎜⎜⎜⎜⎜⎝Φ(m)−(d+1) +

∑
j≥1

k− j/2 Rj

(
m, dmμM

t−1 (v), u
)⎞⎟⎟⎟⎟⎟⎟⎠ ,

where ψ2 is as in (15), and Rj(m, v, u) is a polynomial function of v and u.
Clearly,

1
Φ(m)

ψ2(v, u) = ψ2

(
1

√
Φ(m)

v,
1

√
Φ(m)

u
)
= ψ2

(
v′, u′

)
,

where for any p ∈ Cd we set p′ = p/
√
Φ(m).

Using this and the Taylor expansion for f (m + u/
√

k) at m, we get for (102)
an asymptotic expansion in descending powers of k1/2, whose leading term is
given by

k−d

|Tm|
Φ(m)−2d−1 f (m)

(
k
π

)2d

(104)

·
∑

t,s∈Tm

(s t)k
∫
Cd

e
ψ2

(
dmμM

t−1 (v′),u′
)
+ψ2(u′,dmμM

s (w′)) dL(u).
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Applying the change of variable u =
√
Φ(m) s, (104) becomes

1
|Tm|
Φ(m)−(d+1) f (m)

kd

π2d
(105)

·
∑

t,s∈Tm

(s t)k
∫
Cd

e
ψ2

(
dmμM

t−1 (v′),s
)
+ψ2(s,dmμM

s (w′)) dL(s).

=
1
|Tm|
Φ(m)−(d+1) f (m)

kd

π2d
πd

∑
t,s∈Tm

(s t)k e
ψ2

(
dmμM

t−1 (v′),dmμM
s (w′)

)

=
1
|Tm|
Φ(m)−(d+1) f (m)

(
k
π

)d ∑
t,s∈Tm

(s t)k e
ψ2

(
dmμM

(st)−1 (v′),w′
)

= Φ(m)−(d+1) f (m)

(
k
π

)d ∑
t∈Tm

tk e
ψ2

(
dmμM

t−1 (v′),w′
)

= Φ(m)−(d+1) f (m)

(
k
π

)d ∑
t∈Tm

tk e
ψ2

(
dmμM

t−1 (v),w
)
/Φ(m)

.

We have used the fact that if A : Cd → Cd is unitary, then

ψ2(u, At) = ψ2

(
A−1u, t

)
for any u, t ∈ Cd, and the relation∫

Cd
eψ2(v,u)+ψ2(u,w) dL(u) = πd eψ2(v,w).

Finally, when v = w = 0 the appearance of descending powers of k in the
asymptotic expansion for (102) originates from Taylor expanding the integrand
in u/

√
k; half-integer powers of k are thus associated with odd homogeneous

polynomials in u, and therefore the corresponding contributions to the integral
vanish by parity considerations.

6 Proof of Theorem 6

Proof The proof of Theorem 6 is an adaptation of the proof of Theorem 1,
so we’ll be very sketchy. Adopting the same setup, rather than (78), (79), and
(83) we now have

T μ
k [ f ] (x0, x0) =

∫
X
Π

μ
k (x0, y) f (y)Πμ

k (y, x0) dVX(y) (106)

∼
∫

κ−1(V)
Π

μ
k (x0, y) f (y)Πμ

k (y, x0) dVX(y)

=

∫
V

e−kDN (n0,n) K̃μ
k (n0, n) K̃μ

k (n, n0) f (n)Φ(n)d+1 dVN(n).
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Therefore, we get in place of (85) and (91):

T μ
k [ f ] (x0, x0)

∼
(

k
π

)2d ∑
j≥0

k− j
∫

B
e−kDN (n0,n) Zj(n0, n) f (n) det

(
[η′

kl
]
)

dx dy

∼
(

k
π

)d ∑
j≥0

k− j
∑

a+b= j

RN
a

(
Zb(n0, ·) f (·)

)∣∣∣∣
n=n0

, (107)

which proves the claim (and reproves Corollary 5).

7 Proof of Corollary 8

Proof Let us simplify notation in the following arguments by setting f μ
j =:

S μ
j [ f ]. To begin with, we have from (88) that Z1(n0) = 2 S μ

1(n0). We see from
(107) that

f μ
1 (n0) = RN

0

(
Z1(n0, ·) f (·)

)∣∣∣∣
n=n0

+ RN
1

(
Z0(n0, ·) f (·)

)∣∣∣∣
n=n0

= Z1(n0, n0) f (n0) +

(
ΔN −

1
2
"N

) (
Z0(n0, ·) f (·)

)∣∣∣∣∣∣
n=n0

=

[
2 S μ

1(n0) − 1
2
"N(n0)Φ(n0)−(d+1)

]
f (n0)

+ ΔN

(
Z0(n0, ·) f (·)

)∣∣∣∣
n=n0

. (108)

Now in view of Lemma 15 we have

ΔN

(
Z0(n0, ·) f (·)

)∣∣∣∣
n=n0

= ΔN

(
Z0(n0, ·)

)∣∣∣∣
n=n0

f (n0) + Φ(n0)−(d+1) ΔN

(
f (·)

)∣∣∣∣
n=n0

.

Inserting this in (108), and recalling (95), we obtain

f μ
1 (n0) = Φ(n0)−(d+1) ΔN

(
f (·)

)∣∣∣∣
n=n0

+ 2 S μ
1(n0) f (n0)

+

(
−1

2
"N(n0)Φ(n0)−(d+1) + ΔN

(
Z0(n0, ·)

)∣∣∣∣
n=n0

)
f (n0)

= Φ(n0)−(d+1) ΔN

(
f (·)

)∣∣∣∣
n=n0

+ S μ
1(n0) f (n0). (109)
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8 Proof of Corollary 10

Proof Notation being as in Definition 9 and the proof of Corollary 8, by
Corollaries 2 and 8 we have on M′:

Berμk [ f ] =
f μ
0 + k−1 f μ

1 + O
(
k−2

)
S μ

0 + k−1 S μ
1 + O

(
k−2

) = f μ
0

S μ
0

·
1 + k−1 ( f μ

1 / f μ
0 ) + O

(
k−2

)
1 + k−1 (S μ

1/S μ
0) + O

(
k−2

)
= f + k−1 f ·

⎛⎜⎜⎜⎜⎝ f μ
1

f μ
0

−
S μ

1

S μ
0

⎞⎟⎟⎟⎟⎠ + O
(
k−2

)
.

Thus Bμ
0( f ) = f ; furthermore, by Corollary 8 we have

Bμ
1( f ) = f ·

⎛⎜⎜⎜⎜⎝ f μ
1

f μ
0

−
S μ

1

S μ
0

⎞⎟⎟⎟⎟⎠ = Φd+1 f μ
1 − f Φd+1 S μ

1

= ΔN( f ) + Φd+1 S μ
1 · f − f · Φd+1 S μ

1 = ΔN( f ).

9 Proof of Theorem 11

Before tackling the proof, let us remark that considerations similar to those
in Section 2.7 hold for Toeplitz operators. Namely, if f ∈ C∞(M)μ let
T μ

k [ f ] : Hμ
k (X) → Hμ

k (X) and T μ
k [ f ] ∈ C∞(X × X) denote both the induced

operator and its Schwartz kernel, given by (6). The latter extends uniquely to
a sesquiholomorphic function T μ

k [ f ] : A∨0 × A∨0 → C, which is the Toeplitz
analogue of (53); explicitly, it is given by

T μ
k [ f ]

(
λ, λ′

)
=
∑

j

˜T μ
k [ f ]

(
s(k)

j

)
(λ) · s̃(k)

j (λ′)
(
λ, λ′ ∈ A∨0

)
, (110)

and satisfies the equivariance law (54). Corresponding to (55) we now have

T μ
k [ f ]

(
σu(n), σu(n′)

)
= e−

k
2

(
Ξ(n)+Ξ(n′)

)
T μ

k [ f ]
(
σ(n), σ(n′)

)
. (111)

Let us define Kμ
k [ f ] : X → R, the Toeplitz analogue of (51), by setting

Kμ
k [ f ](x) =: T μ

k [ f ](x, x) =
∑

j

T μ
k [ f ]

(
s(k)

j

)
(x) s(k)

j (x) (x ∈ X); (112)

since f is real, T μ
k [ f ] : Hμ

k (X)→ Hμ
k (X) is self-adjoint, and so

T μ
k [ f ](x, x) ∈ R.

Then Kμ
k [ f ] descends to a ν-invariant C! function on N, by an obvious ana-

logue of Lemma 36, and so we can consider its unique sesquiholomorphic
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extension K̃μ
k [ f ] to a neighborhood of the diagonal in N × N. In place of (57)

we now have that

T μ
k [ f ]

(
σ(n), σ(n′)

)
= ek Ξ̃(n,n′) K̃μ

k [ f ](n, n′). (113)

Finally, a Toeplitz operator T [ f ] = Π ◦ Mf ◦ Π is a zeroth-order FIO asso-
ciated with the same almost complex Lagrangian relation as Π, and therefore
also has a microlocal structure of the form (61), with an amplitude having
an asymptotic expansion as in (62). Repeating the arguments following (63),
therefore, leads to the Toeplitz generalization of the asymptotic expansion (66)
and (67):

T μ
k [ f ]

(
σu(n), σu(n′)

) ∼ ( k
π

)d

e
k
[
Ξ̃(n,n′)− 1

2

(
Ξ(n)+Ξ(n′)

)]
·
∑
j≥0

k− j S̃ μ
j [ f ](n, n′); (114)

K̃μ
k [ f ](n, n′) ∼

(
k
π

)d ∑
j≥0

k− j S̃ μ
j [ f ](n, n′). (115)

Let us prove Theorem 11.

Proof We adopt the notation and setting of the proof of Theorem 1. Given
(114), arguing as in the derivation of (85) we now obtain

Eμ
k [ f , g](x0, x0) =

(
T μ

k [ f ] ◦ T μ
k [g]

)
(x0, x0) (116)

∼
(

k
π

)2d ∑
j≥0

k− j
∫

B
e−kDN (n0,n) Zj[ f , g](n0, n) det

(
[η′

kl
]
)

dx dy,

where

Zj[ f , g](n, n′) (117)

=: Φ(n′)d+1
∑

a+b= j

S̃ μ
a[ f ](n, n′) S̃ μ

b[g](n′, n)
(
(n, n′) ∈ V × V

)
.

Corresponding to (91), we have

Eμ
k [ f , g](x0, x0) ∼

(
k
π

)d ∑
j,l≥0

k− j−l RN
l

(
Zj[ f , g](n0, ·)

)∣∣∣∣
n=n0

(118)

=

(
k
π

)d ∑
j≥0

k− j
∑

a+b= j

RN
a

(
Zj[ f , g](n0, ·)

)∣∣∣∣
n=n0

=

(
k
π

)d {
Z0[ f , g](n0, n0) + k−1 A1[ f , g](n0) + O

(
k−2

) }
,
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where

A1[ f , g](n0) =: RN
1

(
Z0[ f , g](n0, ·)

)∣∣∣∣
n=n0

+ Z1[ f , g](n0, n0). (119)

By (117), we have

Z0[ f , g](n0, n0) = Φ(n0)d+1 S μ
a[ f ](n0) S μ

b[g](n0)

= Φ(n0)−(d+1) f (n0) g(n0)

= Z0[g, f ](n0, n0); (120)

therefore,

Eμ
k [ f , g](x0, x0) − Eμ

k [g, f ](x0, x0)

=

(
k
π

)d [
k−1

(
A1[ f , g](n0) − A1[g, f ](n0)

)
+ O

(
k−2

)]
. (121)

Furthermore, by (117) we have

Z1[ f , g](n0, n0) = Φ(n0)d+1
[
S μ

0[ f ](n0) S μ
1[g](n0) + S μ

1[ f ](n0) S μ
0[g](n0)

]
= Z1[g, f ](n0, n0). (122)

We see from (119) and (122) that

A1[ f , g](n0) − A1[g, f ](n0) (123)

= RN
1

(
Z0[ f , g](n0, ·)

)∣∣∣∣
n=n0

− RN
1

(
Z0[g, f ](n0, ·)

)∣∣∣∣
n=n0

= ΔN

(
Z0[ f , g](n0, ·)

)∣∣∣∣
n=n0

− ΔN

(
Z0[g, f ](n0, ·)

)∣∣∣∣
n=n0

;

in the latter equality, we have used the fact that RN
1 = ΔN − "N/2 and (120).

To compute the latter commutator, let us remark that

Z0[ f , g](n0, n) = Φ(n)d+1 S̃ μ
0[ f ](n0, n) S̃ μ

0[g](n, n0)

= Z0(n0, n) f̃ (n0, n) g̃(n, n0), (124)

where Z0(n0, n) is as in (87).
It follows from (124) and Lemma 15 that

ΔN

(
Z0[ f , g](n0, ·)

)∣∣∣∣
n=n0

= ΔN

(
Z0(n0, ·)

)∣∣∣∣
n=n0

· f (n0) g(n0) (125)

+Z0(n0, n0) ΔN

(
f̃ (n0, ·) g̃(·, n0)

)∣∣∣∣
n=n0

.

Let
(
h′rs) be the contravariant metric tensor of (N′, I, η′), where η′ = 2 η

(thus h′rs = hrs/2). Since the former summand on the RHS of (125) is
symmetric in f and g, we have
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A1[ f , g](n0) − A1[g, f ](n0)

= Φ(n0)−(d+1)
[
ΔN

(
f̃ (n0, ·) g̃(·, n0)

)∣∣∣∣
n=n0

− ΔN

(̃
g(n0, ·) f̃ (·, n0)

)∣∣∣∣
n=n0

]
= Φ(n0)−(d+1) h′rs

(
∂r f (n0) ∂sg(n0) − ∂rg(n0) ∂s f (n0)

)
= −iΦ(n0)−(d+1) { f , g}N , (126)

where in the latter step we have used (24). The last equality in the statement
now follows from (126) and Corollary 21.
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