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Gaussian maps and generic vanishing I:
Subvarieties of abelian varieties

G. Pareschi
Università di Roma, Tor Vergata

Abstract

The aim of this paper is to present an approach to Green–Lazarsfeld’s
generic vanishing combining Gaussian maps and the Fourier–Mukai transform
associated with the Poincaré line bundle. As an application, we prove the
generic vanishing theorem for all normal Cohen–Macaulay subvarieties of
abelian varieties over an algebraically closed field.

Dedicated to my teacher, Rob Lazarsfeld, on the occasion of his 60th birthday

1 Introduction

We work with irreducible projective varieties on an algebraically closed field of
any characteristic, henceforth called varieties. The contents of this paper are:

(1) A general criterion expressing the vanishing of the higher cohomology of a
line bundle on a Cohen–Macaulay variety in terms of certain first-order condi-
tions on hyperplane sections (Theorem 2). Such conditions involve Gaussian
maps and the criterion is a generalization of well-known results on hyperplane
sections of K3 and abelian surfaces.
(2) Using a relative version of the above, we prove the vanishing of higher
direct images of Poincaré line bundles of normal Cohen–Macaulay subvarieties
of abelian varieties1 (Theorem 5). As is well known, this is equivalent to
Green–Lazarsfeld’s generic vanishing, a condition satisfied by all irregular
compact Kahler manifolds [5]. This implies in turn a Kodaira-type vanishing

1 By the Poincaré line bundle of a subvariety X of an abelian variety A we mean the pull-back to
X × Pic0 A of a Poincaré line bundle on A × Pic0 A.
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Gaussian maps and generic vanishing I 371

for line bundles which are restrictions to normal Cohen–Macaulay subvarieties
of abelian varieties, of ample line bundles on the abelian variety (Corollary 6).

Concerning point (2), it should be mentioned that at present we are not
able to extend this approach efficiently to the general generic vanishing
theorem (GVT), i.e., for varieties mapping to abelian varieties, even for smooth
projective varieties over the complex numbers (where it is well known by the
work of Green and Lazarsfeld). This will be the object of further research.
However, concerning possible extensions of the general GVT to singular vari-
eties and/or to positive characteristic, one should keep in mind the work of
Hacon and Kovacs [8] where – by exploiting the relation between GVT and the
Grauert–Riemenschneider vanishing theorem – they show examples of failure
of the GVT for mildly singular varieties (over C) and even smooth varieties (in
characteristic p > 0) of dimension ≥ 3, with a (separable) generically finite
map to an abelian variety. This disproved an erroneous theorem of a previous
preprint of the author.

Now we turn to a more detailed presentation of the above topics.

1.1 Motivation: Gaussian maps on curves and vanishing
of the H1 of line bundles on surfaces

We introduce part (1) starting from a particular case, where the essence of
the story becomes apparent: the vanishing of the H1 of a line bundle on a
surface in terms of Gaussian maps on a sufficiently positive hyperplane section
(Theorem 1 below).

To begin with, let us recall what Gaussian maps are. Given a curve C and a
line bundle A on C, denote by MA the kernel of the evaluation map of global
sections of A:

0→ MA → H0(C, A) ⊗ OC → A.

This comes equipped with a natural OC-linear differentiation map

MA → Ω1
C ⊗ A

defined as

MA = p∗(IΔ ⊗ q∗A)→ p∗((IΔ ⊗ A)|Δ) = Ω1
C ⊗ A,

where p, q, and Δ are the projections and the diagonal of the product C × C.
Twisting with another line bundle B and taking global sections, one gets the
Gaussian map (or Wahl map [21]) of A and B:
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372 G. Pareschi

γA,B : Rel(A, B) := H0(C, MA ⊗ B)→ H0(C,Ω1
C ⊗ A ⊗ B) .2

In our treatment it is more natural to set A = N ⊗ P and B = ωC ⊗ P∨

for suitable line bundles N and P on the curve C, and to consider the
dual map

gN,P : Ext1C(Ω1
C ⊗ N,OC)→ Ext1C(MN⊗P, P). (1)

Note that gN,P can be defined directly (even if ωC is not a line bundle) as
Ext1C( · , P) of the differentiation map of MN⊗P.

The relation with the vanishing of the H1 of line bundles on surfaces lies
in the following result, whose proof follows closely arguments contained
in the papers of Beaville and Mérindol [2] and Colombo et al. [3]. Let X be
a Cohen–Macaulay surface and Q a line bundle on X. Let L be a base-point-
free line bundle on X such that L ⊗ Q is also base-point-free, and let C be a
(reduced and irreducible) Cartier divisor in |L|, not contained in the singular
locus of X. Let NC = L|C be the normal bundle of C. We have the extension
class

e ∈ Ext1C(Ω1
C ⊗ NC ,OC)

of the normal sequence

0→ N∨C → (Ω1
X)|C → Ω1

C → 0.

We consider the (dual) Gaussian map

gNC ,Q|C : Ext1C(Ω1
C ⊗ NC ,OC)→ Ext1C(MNC⊗Q, Q|C). (2)

Theorem 1 (a) If H1(X, Q) = 0, then e ∈ ker(gNC ,Q|C ).

(b) If L is sufficiently positive,3 then the converse also holds: if e ∈ ker(gNC ,Q|C ),
then H1(X, Q) = 0.

(Note that e is nonzero if L is sufficiently positive.) For example, if X is a
smooth surface with trivial canonical bundle and Q = OX , then (a) says that
if X is a K3 then e ∈ ker(gKC ,OC ). This is a result of [2]. Conversely, (b) says
that if X is abelian and C is sufficiently positive then e � ker(gKC ,OC ). This is a
result of [3].

2 The source is denoted Rel(A, B), as it is the kernel of the multiplication of global sections of A
and B.

3 By this we mean that L is a sufficiently high multiple of a fixed ample line bundle on X.

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.019
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.019
http:/www.cambridge.org/core


Gaussian maps and generic vanishing I 373

1.2

The proof is a calculation with extension classes whose geometric motivation
is as follows. Suppose that C is a curve in a surface X and that C is embedded
in an ambient variety Z. From the cotangent sequence

0→ I/I2 → (Ω1
Z)|C → Ω1

C → 0

(where I is the ideal of C in Z), one gets the long cohomology sequence

· · · → HomC(I/I2, N∨C )
HZ→ Ext1C(Ω1

C , N∨C )
GZ→ Ext1C((Ω1

Z)|C , N∨C )→ · · · (3)

The problem of extending the embedding C ↪→ Z to the surface X has a natural
first-order obstruction, namely the class e must belong to ker GZ = Im HZ .
Indeed, as is well known, if the divisor 2C on X, seen as a scheme, is embedded
in Z, then it lives (as an embedded first-order deformation) in the Hom on the
left.4 The forgetful map HZ , disregarding the embedding, takes it to the class
of the normal sequence e ∈ Ext1C(Ω1

C , N∨C ).
Now we specialize this to the case where the ambient variety is a projective

space, specifically:

Z = P(H0(C, NC ⊗ Q)∨) := PQ

(in this informal discussion we are assuming, for simplicity, that the line bundle
L⊗Q is very ample). By the Euler sequence, the map GPQ is the (dual) Gaussian
map gNC ,Q|C of (2). Notice that in this case there is a special feature that our
extension problem can be relaxed to the problem of extending the embedding
of C in PQ to an embedding of the surface X in a possibly bigger projective
space P, containing PQ as a linear subspace. However, since the restriction
to PQ of the conormal sheaf of C in P splits, this has the same first-order
obstruction, namely e ∈ ker(gNC ,Q|C ).

The relation of all that with the vanishing of the H1 is classical: the
embedding of C in PQ can be extended (in the above relaxed sense) to an
embedding of X if and only if the restriction map ρX : H0(X, L ⊗ Q) →
H0(C, NC ⊗ Q) is surjective. This is implied by the vanishing of H1(X, Q),
so we get (a). The converse is a bit more complicated: by Serre vanishing, if L
is sufficiently positive then the vanishing of H1(X, Q) is equivalent to the sur-
jectivity of the restriction map ρX , and also to the surjectivity of the restriction
map ρ2C : H0(2C, (L ⊗ Q)|2C) → H0(C, NC ⊗ Q), hence to the fact that 2C
“lives” in HomC(I/I2, N∨C ). Now if e is in the kernel of gNC ,Q|C = GPQ , then
e comes from some embedded deformations in HomC(I/I2, N∨C ). However,

4 More precisely, the ideal of 2C in Z induces the morphism of OZ -modules I/I2 → NC whose
kernel is I2C/Z/I2 (see, e.g., [1] or [4]).
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374 G. Pareschi

these do not necessarily include 2C. A more refined analysis proves that this is
indeed the case as soon as L is sufficiently positive.

1.3 Gaussian maps on hyperplane sections and vanishing

The criterion of part (1) above is a generalization of the previous theorem to a
higher dimension and to a relative (flat) setting. The relevant case deals with
the vanishing of the Hn of a line bundle on a variety of dimension n + 1.5,6 To
this end, we consider “hybrid” Gaussian maps as follows: let C be a curve in
an n-dimensional variety Y and let AC be a line bundle on C. The Lazarsfeld
sheaf (see [7]), denoted FY

AC
, is the kernel of the evaluation map of AC , seen as

a sheaf on Y:

0→ FY
AC
→ H0(AC) ⊗ OY → AC

(note that FY
AC

is never locally free if dim Y ≥ 3). As above, it comes equipped
with a OY -linear differentiation map

FY
AC
→ Ω1

Y ⊗ AC .

If B is a line bundle on Y , we define the Gaussian map of AC and B as

γY
AC ,B : Rel(AC , B) = H0(Y, FAC ⊗ B)→ H0(Y,Ω1

Y ⊗ AC ⊗ B).

As above, we rather use the dual map

gY
MC ,R : ExtnY (Ω1

Y ⊗ MC ,OY )→ ExtnY (FMC⊗R, R),

where MC and R are line bundles respectively on C and Y such that AC =

MC ⊗ R and B = ωY ⊗ R∨. Again, this map can be defined directly (even if
ωY is not a line bundle) as Ext1C( · , R) of the differentiation map of FY

MC⊗R. The
case n = 1 is recovered by taking Y = C.

These maps can be extended to a relative flat setting. In this paper we
consider only the simplest case, namely a family of line bundles on a fixed
variety Y , as this is the only case needed in subsequent applications. In the
notation above, let T be another projective CM variety (or scheme), and let R
be a line bundle on Y × T . Let ν and π denote the two projections, respectively

5 In fact, for all positive k, with k < n, the vanishing of Hk can be reduced to this case, as it is
equivalent (by Serre vanishing) to the vanishing of Hk of the restriction of the given line
bundle to a sufficiently positive (k + 1)-dimensional hyperplane section.

6 Note: One could think of using the equality hn(X, Q) = h1(X, ωX ⊗ Q∨) and then reducing, as
in the previous footnote, to a surface. However, this is not possible in the relative case, since in
general there is no Serre duality isomorphism of the direct images. Even in the non-relative
case, the resulting criterion is usually more difficult to apply.
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Gaussian maps and generic vanishing I 375

on Y and T . We can consider the relative Lazarsfeld sheaf F Y
MC ,R, kernel of the

relative evaluation map

0→ F Y
MC ,R → π∗π∗(R ⊗ ν∗MC)→ R ⊗ ν∗MC

where, as above, we see MC as a sheaf on Y . The OY×T -module F Y
MC ,R is

equipped with its OY×T -linear differentiation map (see Section 2.1 below)

F Y
MC ,R → ν∗(Ω1

Y ⊗ MC) ⊗ R. (4)

Applying ExtnY×T ( · ,R) and restricting to the direct summand Extn
Y (Ω1

Y ⊗
MC ,OY ), we get the (dual) Gaussian map

gY
MC ,R : ExtnY (Ω1

Y ⊗ MC ,OY )→ ExtnY×T (F Y
MC ,R ,R).

The announced generalization of Theorem 1 is as follows. Let X be an
(n + 1)-dimensional Cohen–Macaulay variety, let T be a CM variety, and let Q
be a line bundle on X×T . In order to avoid heavy notation, we still denote by ν

and π the two projections of X×T (however, see Notation 1 in Section 2.1). Let
L be a line bundle on X, with n irreducible effective divisors Y1, . . . , Yn ∈ |L|
such that their intersection is an integral curve C not contained in the singular
locus of X. We assume also that the line bundle Q ⊗ ν∗L⊗n is relatively base-
point-free, namely the relative evaluation map π∗π∗(Q ⊗ ν∗L⊗n) → Q ⊗ ν∗L⊗n

is surjective. We choose a divisor among Y1, . . . , Yn, say Y = Y1, such that C is
not contained in the singular locus of Y . Let NC denote the line bundle L|C . We
consider the “restricted normal sequence”

0→ N∨C → (Ω1
X)|C → (Ω1

Y )|C → 0. (5)

Via the canonical isomorphism

Ext1C(Ω1
Y ⊗ NC ,OC) � ExtnY (Ω1

Y ⊗ N⊗n
C ,OY ) (6)

(see Section 2.1 below), we see that the class e of (5) belongs to ExtnY (Ω1
Y ⊗

N⊗n
C ,OY ). Finally, we consider the (dual) Gaussian map

gY
N⊗n

C ,Q|Y×T
: ExtnY

(
Ω1

Y ⊗ N⊗n
C ,OY

)→ ExtnY×T

(
F Y

N⊗n
C ,Q|Y×T

,Q|Y×T

)
. (7)

Then we have the following result, recovering part (b) of Theorem 1 as the
case n = 1 and T = {point}:

Theorem 2 If L is sufficiently positive and e is an element of ker
(
gY

N⊗n
C ,Q|Y×T

)
,

then Rnπ∗Q = 0.

The following version is technically easier to apply:
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376 G. Pareschi

Corollary 3 Keeping the notation of Theorem 2, if the line bundle L is suffi-
ciently positive, then the kernel of the map gY

N⊗n
C ,Q|Y×T

is at most 1-dimensional

(spanned by e). Therefore, if gY
N⊗n

C ,Q|Y×T
is non-injective, then Rnπ∗Q = 0.

Concerning the other implication, what we can prove is:

Proposition 4 (a) Assume that T = {point}. If Hn(X,Q) = 0, then e ∈
ker(gN⊗n

C ,Q|Y ).
(b) In general, assume that Riπ∗(Q|Y×T ) = 0 for i < n. If also Rnπ∗Q = 0, then

e ∈ ker(gY
N⊗n

C ,Q|Y×T
).

1.4

To motivate these statements, let us go back to the informal discussion of
Section 1.2. We assume for simplicity that T = {point}. Let X be an (n + 1)-
dimensional variety and C a curve in X as above. It is easily seen, using the
Koszul resolution of the ideal of C and Serre vanishing, that the vanishing of
Hn(X, Q) implies the surjectivity of the restriction map ρX : H0(X, L⊗n ⊗Q)→
H0(C, N⊗n

C ⊗ Q), and in fact the two conditions are equivalent as soon as
L is sufficiently positive. Hence it is natural to look for first-order obstruc-
tions to extend to X an embedding of the curve C (a 1-dimensional complete
intersection of linearly equivalent divisors of X) into

PQ := P(H0(C, N⊗n
C ⊗ Q)∨) .

More generally, we can consider the same problem for any given ambient
variety Z, rather than projective space.

To find a first-order obstruction one can no longer replace X by the first-order
neighborhood of C in X. We rather have to pick a divisor in |L| containing C,
say Y = Y1, and replace X by the scheme 2Y ∩ Y2 ∩ · · · ∩ Yn. In analogy with
the case of curves on surfaces, it is natural to consider the long cohomology
sequence

· · · → HomC IY/I2
Y , N∨C )

HY
Z→ Ext1C((Ω1

Y )|C , N∨C )
GY

Z→ Ext1C((Ω1
Z)|C , N∨C )→ · · ·

(8)
(where IY is the ideal of Y in Z). As above, a necessary condition for the lifting
to X of the embedding of C ↪→ Z is that the “restricted normal class” e of (5)
belongs to ker(GY

Z ).
However, looking for sufficient conditions for lifting (in the relaxed sense,

as in Section 1.2) the embedding C ↪→ PQ to X, one cannot assume that the
divisor Y is already embedded in PQ. This is the reason why, differently from
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Gaussian maps and generic vanishing I 377

the case when X is a surface, the map gN⊗n
C ,Q|Y appearing in the statement of

Theorem 2 and Corollary 3 is not the map GY
Z with Z = PQ, but rather a

slightly more complicated “hybrid” version of a (dual) Gaussian map. After
this modification, the geometric motivation for Theorem 2 is similar to that of
Section 1.2.

1.5 Generic vanishing for subvarieties of abelian varieties

Although difficult – if not impossible – to use in most cases, the above results
can be applied in some very special circumstances. For example, in analogy
with the literature on curves sitting on K3 surfaces and Fano threefolds, Propo-
sition 4 can supply nontrivial necessary conditions for an n-dimensional variety
to sit in some very special (n + 1)-dimensional varieties.

However, in this paper we rather focus on the sufficient condition for
vanishing provided by Theorem 2 and Corollary 3, as it provides an approach
to generic vanishing, a far-reaching concept introduced by Green and Lazars-
feld [5, 6]. Namely, we consider a variety X with a map to an abelian variety,
generically finite onto its image

a : X → A. (9)

Denoting by Pic0 A = Â the dual variety, we consider the pull-back to X × Â of
a Poincaré line bundle P on A × Â:

Q = (a × idÂ)∗P. (10)

We keep the notation of the previous section. In particular, we denote by ν and
π the projections of X × Â. A way of expressing generic vanishing is the
vanishing of higher direct images

Riπ∗Q = 0 for i < dim X. (11)

For smooth varieties over the complex numbers, (11) was proved (as a
particular case of a more general statement) by Hacon [7], settling a conjec-
ture of Green and Lazarsfeld. Another way of expressing the generic vanishing
condition involves the cohomological support loci

Vi
a(X) = {α ∈ Pic0 A | hi(X, a∗α) > 0}.

Green and Lazarsfeld’s theorem [5, 6] is that, if the map a is generically finite,
then

codimÂ Vi
a(X) ≥ dim X − i.7 (12)

7 In general, if the map a is not generically finite, Hacon’s and Green and Lazarsfeld’s theorems
are respectively Riπ∗Q = 0 for i < dim a(X) and codimPic0 A Vi

a(X) ≥ dim a(X) − i. However,
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It is easy to see that (11) implies (12). Subsequently, it has been observed in
[16, 17] that (11) is in fact equivalent to (12).8 The heart of Hacon’s proof
of (11) consists of a clever reduction to Kodaira–Kawamata–Viehweg vanish-
ing, while the argument of Green and Lazarsfeld for (12) uses Hodge theory.
Both need characteristic 0, and that the variety X is smooth (or with rational
singularities).

On the contrary, a characteristic-free example of both (11) and (12) is given
by abelian varieties themselves [15, p. 127]. Here we extend this by proving
that (11) (and, therefore, (12)) holds for normal Cohen–Macaulay subvarieties
of abelian varieties on an algebraically closed field of any characteristic.

Theorem 5 In the above notation, assume that X is normal Cohen–Macaulay
and the morphism a is an embedding. Then Riπ∗Q = 0 for all i < dim X.

The strategy of the proof consists of applying Theorem 2 to the Poincaré
line bundle Q. In order to do so we take a general complete intersection
C = Y ∩ Y2 ∩ · · · ∩ Yn of X, with Yi ∈ |L|, where, as above, L is a suffi-
ciently positive line bundle on X and n + 1 = dim X. The main issue of the
argument consists of comparing two spaces of first-order deformations: the
first is the kernel of the (dual) Gaussian map gN⊗n

C ,QY×Â
. The second is the kernel

of the map GY
Z of (8) with Z equal to the ambient abelian variety A9 (by (6),

the two maps have the same source). As in the discussion of Section 1.4, the
variety X ⊂ A induces naturally, via the restricted normal extension class e, a
nontrivial element of ker GY

A. Hence, to get the vanishing of Rnπ∗Q, it would be
enough to prove that ker GY

A is contained in ker gN⊗n
C ,QY×Â

, or at least – in view of
Corollary 3 – that the intersection of ker GY

A and ker gN⊗n
C ,Q|Y×Â

is nonzero. This
analysis is accomplished by means of the Fourier–Mukai transform associated
with the Poincaré line bundle.10 In doing this we were inspired by the classi-
cal papers [10, 13] where the conceptually related problem of comparing the
first-order embedded deformations of a curve in its Jacobian and the first-order
deformations of the Picard bundle on the dual was solved.

The vanishing of Riπ∗Q for i < n follows from this step, after reducing to a
sufficiently positive (i + 1)-dimensional hyperplane section.

Note that conditions (12) can be expressed dually as

codimPic0 A
{
α ∈ Pic0 A | hi(ωX ⊗ α) > 0

} ≥ i for all i > 0.

they can be reduced to the case of generically finite a by taking sufficiently positive
hyperplane sections of dimension equal to the rank of a.

8 In [17] this is stated only in the smooth case, but this hypothesis is unnecessary.
9 This is simply the dual of the multiplication map V ⊗ H0(NC ⊗ ωC)→ H0(Ω1

Y ⊗ NC ⊗ ωC),
where V is the cotangent space of A at the origin.

10 We remark, incidentally, that (11) for abelian varieties (Mumford’s theorem) is the key point
assuring that the Fourier–Mukai transform is an equivalence of categories.
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Gaussian maps and generic vanishing I 379

According to the terminology of [17], this is stated by saying that the dualizing
sheaf ωX is a GV-sheaf. As a first application of Theorem 2 we note that,
combined with Proposition 3.1 of [18] (“GV tensor IT0 ⇒ IT0”), we get the
following Kodaira-type vanishing:

Corollary 6 Let X be a normal Cohen–Macaulay subvariety of an abelian
variety A, and let L be an ample line bundle on A. Then Hi(X, ωX ⊗ L) = 0 for
all i > 0.

The rest of this paper is organized as follows: in Section 2 we prove
Theorem 2 (and Proposition 4). Section 3 contains the proof of Corollary 3.
In Sections 4 and 5 we establish the setup of the argument for Theorem 5.
In particular, we interpret Gaussian maps in terms of the Fourier–Mukai
transform. The conclusion of the proof of Theorem 5 takes up Section 6.

It seems possible that these methods can find application in wider generality.

2 Proof of Theorem 2 and Proposition 4

2.1 Preliminaries

The argument consists of a computation with extension classes. The geomet-
ric motivation is outlined in the Introduction (Sections 1.2 and 1.4). To get a
first idea of the argument, it could be helpful to have a look at the proof of
Lemma 3.1 of [3].

Notation 1 In the first place, some warning about the notation. We have the
three varieties C ⊂ Y ⊂ X (respectively of dimension 1, n, and n + 1). The
projections of X × T onto X and T are denoted respectively by ν and π. It will
be different to consider the relative evaluation maps of a sheaf A on C × T
seen as a sheaf on Y × T , or on X × T , or on C × T itself: their kernels are the
various relative Lazarsfeld sheaves attached toA in different ambient varieties
(see Section 1.3). Therefore, we denote

πY = π|Y×T , πC = π|C×T .

For example, on Y × T we have

0→ F Y
A,Q|Y×T

→ π∗Yπ∗(Q ⊗ ν∗A)→ Q ⊗ ν∗A (13)

while on X × T

0→ F X
A,Q → π∗π∗(Q ⊗ ν∗A)→ Q ⊗ ν∗A. (14)

Next, we clarify a few points appearing in the Introduction.
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380 G. Pareschi

The differentiation map (4). We describe explicitly the differentiation map
(4). We keep the notation there: MC is a line bundle on the curve C while R is
a line bundle on Y × T . Now let p, q, and Δ̃ denote the two projections and the
diagonal of the fibered product (Y × T ) ×T (Y × T ). Concerning the Lazarsfeld
sheaf F Y

MC ,R, we claim that there is a canonical isomorphism

F Y
MC ,R � p∗(IΔ̃ ⊗ q∗(R ⊗ ν∗MC)). (15)

Admitting the claim, the differentiation map (4) is defined as usual, as p∗ of the
restriction to Δ̃. The isomorphism (15): in the first place p∗(IΔ̃⊗q∗(R⊗ν∗MC))
is the kernel of the map (p∗ of the restriction map)

p∗q
∗(R ⊗ ν∗MC)→ p∗q

∗((R ⊗ ν∗MC)|Δ̃) � R ⊗ ν∗MC (16)

(it is easily seen that the sequence 0→ I
Δ̃
→ OY×T Y → OΔ̃ → 0 remains exact

when restricted to (Y × T ) ×T (C × T )). To prove (15) we note that, by a flat
base change,

π∗Yπ∗(R ⊗ ν∗MC) � p∗q
∗(R ⊗ ν∗MC)

and, via such an isomorphism, the map (16) is identified with the relative
evaluation map.

The isomorphism (6). This follows from the spectral sequence

ExtiC(Ω1
Y ⊗ N⊗n

C , Ext j
Y (OC ,OY ))⇒ Exti+ j

Y (Ω1
Y ⊗ N⊗n

C ,OY )

using the fact that, C being the complete intersection of n − 1 divisors in the
linear system |L|Y |, we have Ext j

Y (OC ,OY ) = N⊗n−1
C if j = n − 1 and zero

otherwise. Seeing the elements of Ext-groups as higher extension classes with
their natural multiplicative structure (Yoneda Exts; see, e.g., [12, Chapter III]),
we denote by

κ ∈ Extn−1
Y (OC , L⊗−(n−1)

|Y ) (17)

the extension class of the Koszul resolution of OC as a OY -module:

0→ L⊗−(n−1)
|Y → · · · → (L⊗−1

|Y )
⊕n−1 → OY → OC → 0 . (18)

Then the multiplication by κ,

Ext1C(Ω1
Y ⊗ NC ,OC)

·κ→ ExtnY (Ω1
Y ⊗ NC , L⊗−(n−1)

|Y ) � ExtnY (Ω1
Y ⊗ N⊗n

C ,OY ),

is an isomorphism coinciding, up to scalar, with (6).
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2.2 First step (statement)

Notation 2 From this point on we will adopt the hypotheses and notation of
Theorem 2. We also adopt the following typographical abbreviations:

F Y = F Y
N⊗n

C ,Q|Y×T
F X = F X

N⊗n
C ,Q g = gN⊗n

C ,Q|Y×T

The first, and most important, step of the proof of Theorem 2 and Proposition
4 consists of an explicit calculation of the class g(e). This is the content of
Lemma 7 below. The strategy is as follows. Applying ExtnY×Y ( · ,Q|Y×T ) to the
basic sequence

0→ F Y → π∗Yπ∗(Q ⊗ ν∗N⊗n
C )→ Q ⊗ ν∗N⊗n

C → 0

(namely (13) for A = N⊗n
C and R = Q|Y×T

11), we get the following diagram
with exact (in the middle) column

(19)

In Definition 8 below we produce a certain class b in the source of f , namely

b ∈ ExtnY×T (π∗Yπ∗(Q ⊗ ν∗N⊗n
C ),Q|Y×T ) (20)

such that its coboundary map

δb : π∗(Q ⊗ ν∗N⊗n
C )→ Rnπ∗(Q|Y×T )

is the composition

(21)

where the horizontal map α is the coboundary map of the natural extension of
OX×T -modules

0→ Q → · · · → (Q ⊗ ν∗L⊗n−1)⊕n → Q ⊗ ν∗L⊗n → Q ⊗ ν∗N⊗n
C → 0 (22)

(ν∗ of the Koszul resolution of OC as an OX-module, twisted by Q⊗ ν∗L⊗n) and
the vertical map β is simply Rnπ∗ of the restriction map Q → Q|Y×T . The main
lemma is:
11 The surjectivity on the right follows from the hypotheses of Theorem 2.
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382 G. Pareschi

Lemma 7 f (b) = g(e).

Note that this will already prove Proposition 4. Indeed, if T = {point} then
the vector space of (20) is

ExtnY (H0(Q ⊗ ν∗N⊗n
C ) ⊗ OY ,Q|Y ) � Homk(H0(Q ⊗ ν∗N⊗n

C ), Hn(Y,Q|Y )). (23)

Hence the class b coincides, up to scalar, with its coboundary map δb. From the
description of δb we have that δb = 0 if Hn(X,Q) = 0. If this is the case, then
Lemma 7 says that g(e) = 0, proving Proposition 4 in this case. If dim T > 0,
we consider the spectral sequence

ExtiT (π∗(Q ⊗ N⊗n
C ), Rjπ∗(Q|Y×T ))

⇒ Exti+ j
Y×T (π∗Yπ∗(p∗(Q ⊗ ν∗N⊗n

C )),Q|Y×T )

coming from the isomorphism

R HomT (π∗(Q ⊗ N⊗n
C ), Rπ∗(Q|Y×T ))

� R HomY×T (π∗Yπ∗(p∗(Q ⊗ ν∗N⊗n
C )),Q|Y×T ).

Since we are assuming that Riπ∗(Q|Y×T ) = 0 for i < n, the spectral sequence
degenerates, providing an isomorphism as (23), and Proposition 4 follows in
the same way.

Next, we give a definition of the class b of (20). In order to do so, we
introduce some additional notation.

Notation 3 We denote by K•C,X (resp. H•C,Y ) the ν∗ of the Koszul resolution of
the ideal of C in X tensored withQ⊗ν∗L⊗n (resp. the ν∗ of the Koszul resolution
of OC as an OY -module, tensored with Q ⊗ ν∗L⊗n−1

|Y ):

K•C,X 0→ Q → · · · → (Q ⊗ ν∗L⊗n−2)⊕(
n
2) → (Q ⊗ ν∗L⊗n−1)⊕n

H•C,Y 0→ Q|Y×T → · · · → (Q ⊗ ν∗L⊗n−2
|Y )⊕n−1 → Q ⊗ ν∗L⊗n−1

|Y

(note that they have the same length). For example, with this notation the exact
complex of OX×T -modules (22) is written as

K•C,X → Q ⊗ L⊗n → Q ⊗ ν∗N⊗n
C → 0. (24)

Definition 8 (The class b of (20)) Composing (24) with the relative
evaluation map of Q ⊗ ν∗N⊗n

C (seen as a sheaf on X × T ),

π∗π∗(Q ⊗ ν∗N⊗n
C )→ Q ⊗ ν∗N⊗n

C ,
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we get the commutative exact diagram

K•C,X → E → π∗π∗(Q ⊗ ν∗N⊗n
C ) → 0

‖ ↓ ↓
K•C,X → Q ⊗ L⊗n → Q ⊗ ν∗N⊗n

C → 0
(25)

where E is an OX×T -module. Since tori
X×T (π∗π∗(Q ⊗ ν∗N⊗n

C ), ν∗OY ) = 0 for
i > 0, restricting the top row of (25) to Y × T we get an exact complex of
OY×T -modules

(K•C,X)|Y×T → E|Y×T → π∗Yπ∗(Q ⊗ ν∗N⊗n
C )→ 0. (26)

We define the class b ∈ ExtnY×T (π∗Yπ∗(Q ⊗ ν∗N⊗n
C ),Q|Y×T ) of (20) as the exten-

sion class of the exact complex (26). The assertion about its coboundary map
follows from its definition.

We will need the following:

Lemma 9 The row of the following diagram

(27)

is an exact complex having the same extension class as (26), namely b ∈
ExtnY×T (π∗Yπ∗(Q ⊗ ν∗N⊗n

C ),Q|Y×T ).

Proof For n = 1, i.e., C = Y , there is nothing to prove. For n > 1, recall that,
by its definition, the top row of (25) is

Recalling that the curve C is the complete intersection Y1 ∩ · · · ∩ Yn, with Yi ∈
|L|, and that Y = Y1, restricting the ideal sheaf IC/X to Y one gets IC/Y ⊕ N−1

C .
Accordingly the Koszul resolution of IC/X , restricted to Y , splits as the direct
sum of the Koszul resolution of IC/Y and the Koszul resolution of OC , as an
OY -module, tensored with L−1

|Y :

0→
0
⊕

L−n
|Y

→ · · · →
(L−2
|Y )⊕(

n−1
2 )

⊕
(L−2
|Y )⊕n−1

→
(L−1
|Y )⊕n−1

⊕
L−1
|Y

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
IC/Y

→ ⊕ → 0
N−1

C

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.019
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.019
http:/www.cambridge.org/core


384 G. Pareschi

Now, restricting the exact complex (25) to Y one gets the exact complex (26)
whose “tail,” namely the exact complex (K•C,X)|Y×T , splits as above. Therefore,
deleting the exact complex corresponding to the above upper row one gets the
equivalent – as an extension – exact complex (27). This proves the claim.

2.3 First step (proof)

In this section we prove Lemma 7. We first compute g(e).12 The exact
sequences defining F X and F Y (see Notation 2) fit into the commutative
diagram

0→ F X → π∗π∗(Q ⊗ ν∗N⊗n
C ) → Q ⊗ ν∗N⊗n

C → 0
↓ ↓ ‖

0→ F Y → π∗Yπ∗(Q ⊗ ν∗N⊗n
C ) → Q ⊗ ν∗N⊗n

C → 0

yielding, after restricting the top row to Y × T , the exact sequence

0→ Q ⊗ ν∗N⊗n−1
C → (F X)|Y×T → F Y → 0 (28)

where the sheaf on the left is torOX×T

1 (Q ⊗ ν∗N⊗n
C ,OY×T ).

This sequence in turn fits into the commutative diagram with exact rows

0→ Q ⊗ ν∗N⊗n−1
C → (F X)|Y×T → F Y → 0
‖ ↓ ↓

0→ Q ⊗ ν∗N⊗n−1
C → Q ⊗ ν∗(Ω1

X ⊗ N⊗n
C ) → Q ⊗ ν∗(Ω1

Y ⊗ N⊗n
C )→ 0

where the class of the bottow row is ν∗(e) ∈ ν∗ Ext1C(Ω1
Y ⊗ NC ,OC). It follows

that g(e) (where now e is seen in ExtnY (Ω1
Y ⊗N⊗n

C ,OY ), see (6) and Section 2.1))
is the class of the sequence (28) with H•C,Y attached on the left:

H•C,Y → (F X)|Y×T → F Y → 0 . (29)

Next, we compute f (b). The exact complex (25) is the middle row of the
commutative exact diagram

0 0
↓ ↓
F X = F X

↓ ↓
K•C,X → E → π∗π∗(Q ⊗ ν∗N⊗n

C ) → 0
‖ ↓ ↓

K•C,X → Q ⊗ ν∗L⊗n → Q ⊗ ν∗N⊗n
C → 0

↓ ↓
0 0

(30)

12 This argument follows [20, p. 252].

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.019
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.019
http:/www.cambridge.org/core


Gaussian maps and generic vanishing I 385

This provides us with the commutative exact diagram

0 0
↓ ↓

H•C,Y → (F X)|Y×T → F Y → 0
↓ ↓
E|Y×T → π∗Yπ∗(Q ⊗ ν∗N⊗n

C ) → 0

where the long row is (29), whose class is g(e). By Lemma 9, we can complete
the above diagram as follows:

H•C,Y → (F X)|Y×T → F Y → 0
‖ ↓ ↓

H•C,Y → E|Y×T → π∗Yπ∗(Q ⊗ ν∗N⊗n
C ) → 0

and the class of the bottow row is b. By definition, the class of the top row is
f (b), and it is equal to g(e). This proves Lemma 7.

2.4 Conclusion of the proof of Theorem 2

The last step is:

Lemma 10 We keep the notation and setting of Lemma 7. Assume that the
line bundle L on X is sufficiently positive. If f (b) = 0 then b = 0.

Assuming this, Theorem 2 follows: if g(e) = 0 then, by Lemmas 7 and 10,
it follows that b = 0, hence its coboundary map δb = β ◦ α is zero (see (21)).
Taking L sufficiently positive, Serre vanishing yields that α is surjective and β

is injective. Therefore the target of δb, namely Rnπ∗Q, is zero.

Proof (of Lemma 10) The proof is a somewhat tedious repeated application
of Serre vanishing. Going back to diagram (19), we have that if f (b) = 0 then
there is a c ∈ ExtnY×T (Q ⊗ ν∗N⊗n

|C ,Q|Y×T ) such that

h(c) = b . (31)

Now we consider the commutative diagram

(32)
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where:
(a) h is as above and h′ is the analogous map ExtnX(evX ,Q|Y×T ), where evX is
the relative evaluation map on X × T : π∗π∗(Q ⊗ ν∗L⊗n)→ Q ⊗ ν∗L⊗n.
(b) μ is the map taking an extension to its coboundary map. Consequently,
the map μ ◦ h takes an extension class e ∈ ExtnY×T (Q ⊗ ν∗N⊗n

C ,Q|Y×T ) to its
coboundary map

π∗(Q ⊗ ν∗N⊗n
C )→ Rnπ∗(Q|Y×T ).

The map μ′ ◦ h′ operates in the same way.
(c) Notice that the target of r is simply Hn(ν∗L⊗−n

|Y×T ), i.e., ExtnY×T (ν∗L⊗n
|Y , OY×T ).

Via this identification, the map r is defined as the natural map

ExtnY×T (ν∗L⊗n
|C ,OY×T )→ ExtnY×T (ν∗L⊗n

|Y ,OY×T ).

(d) s and t are the natural maps.
We know that the coboundary map of the extension class b factorizes

through the natural coboundary map α : π∗(Q ⊗ ν∗N⊗n
C ) → Rnπ∗(Q). This

implies that (t ◦ μ)(b) = 0. Therefore, by (31) and (32), we have that
(μ′ ◦ h′ ◦ r)(c) = 0. The lemma will follow from the fact that both r and μ′ ◦ h′

are injective.
Injectivity of r: In the case n = 1, i.e. Y = C, the map r is just the
identity (cf. (c) above). Assume that n > 1. Chasing in the Koszul reso-
lution of OC as an OY -module one finds that the injectivity of r holds as
soon as Extn−i

Y×T (ν∗L⊗n−i
|Y ,OY×T ) = 0 for i = 1, . . . , n − 1. But these are

simply Hn−i(Y × T, L⊗i−n
|Y � OT ) and the result follows easily from Künneth

decomposition, Serre vanishing, and Serre duality.
Injectivity of μ′ ◦ h′: We have that ExtnX×T (Q ⊗ ν∗L⊗n,Q|Y×T ) �
� Hn(Y × T, L−n

|Y � OT ). If L is sufficiently positive, it follows as above that
this is isomorphic to Hn(Y, L−n

|Y ) ⊗ H0(T,OT ). Therefore, the map μ′ ◦ h′ is
identified with H0 of the following map of OT -modules:

Hn(Y, L−n
|Y ) ⊗ OT → HomT (π∗(Q ⊗ ν∗L⊗n), Rnπ∗Q|Y×T ). (33)

Hence the injectivity of μ′ ◦ h′ holds as soon as (33) is injective at a general
fiber. For a closed point t ∈ T , let Qt = Q|X×{t}. By base change, the map (33)
at a general fiber X × {t} is

Hn(Y, L⊗−n
|Y )→ H0(X, Qt ⊗ L⊗n)∨ ⊗ Hn(Y,Qt |Y ), (34)

which is the Serre dual of the multiplication map of global sections

H0(X,Qt ⊗ L⊗n) ⊗ H0(Y, (ωX ⊗ Q−1
t ⊗ L)|Y )→ H0(Y, (ωX ⊗ L⊗n+1)|Y ). (35)
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At this point a standard argument with Serre vanishing shows that (35) is
surjective as soon as L is sufficiently positive.13 This proves the injectivity
of μ′ ◦ h′ and concludes also the proof of the lemma.

3 Proof of Corollary 3

The deduction of Corollary 3 from Theorem 2 is a standard argument with
Serre vanishing. However, there are some complications due to the weakness
of the assumptions on the singularities of the variety X.

A Gaussian map on the ambient variety X × T. The argument makes
use of a (dual) Gaussian map defined on the ambient variety X × T itself.
Namely, for a line bundle A on X we defineMX

A,Q as the kernel of the relative
evaluation map

π∗π∗(Q ⊗ ν∗A)→ Q ⊗ ν∗A.

As in (4) and Section 2.1, there is the isomorphism

MX
A,Q � pX∗(IΔ̃X

⊗ q∗X(Q ⊗ ν∗A)) (36)

(where pX , qX , and Δ̃X denote the projections and the diagonal of (X × Y) ×T

(X × T )). There is also the differentiation mapMX
A,Q → Q ⊗ ν∗(Ω1

X ⊗ A).

Now, taking as A = L⊗n and taking Extn+1
X×T ( · ,Q ⊗ ν∗L∨), we get the desired

dual Gaussian map on X:

gX : Extn+1
X (Ω1

X ⊗ L⊗n+1,OX)→ Extn+1
X×T (ML⊗n,Q , Q ⊗ ν∗L∨).

Note that there are natural mapsML⊗n,Q → F X → F Y (see Notation 2).

First step. We consider the commutative diagram

(37)

where, as in the previous section, g denotes the main character, namely the
(dual) Gaussian map gN⊗n

C ,QY×T
. The maps μ and η are the natural ones, and the

13 In brief, one shows that the desired surjectivity follows from the surjectivity of
H0(X,Qt ⊗ L⊗n) ⊗ H0(X, ωX ⊗ Q−1

t ⊗ L)→ H0(X, ωX ⊗ L⊗n+1). This in turn is proved by
interpreting such a multiplication map as the H0 of a restriction-to-diagonal map of
OX×X-modules.
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definition is left to the reader.14 However such maps are more easily under-
stood by considering the following commutative diagram, whose maps are the
natural ones:

(38)
where d = dim T . (Note that, since X is Cohen–Macaulay, adjunction formulas
for dualizing sheaves do hold.) Notice also that, if X and T are Gorenstein, then
(38) is the dual of diagram (37).

As is easy to see, after tensoring with ωC⊗NC the restricted normal sequence
(5) remains exact:

0→ ωC → Ω1
X ⊗ L ⊗ ωC → Ω1

Y ⊗ NC ⊗ ωC → 0. (39)

Therefore e defines naturally a linear functional on H0(Ω1
Y ⊗NC ⊗ωC) (cf. (44)

below), still denoted by e. We have

Claim 11 If L is sufficiently positive, then the map g′X is surjective, while
cokerμ′ is 1-dimensional, with (cokerμ′)∨ spanned by e.

Proof Serre vanishing ensures the surjectivity of the restriction

H0(Ω1
X ⊗ L⊗n+1 ⊗ ωX)→ H0(Ω1

X ⊗ L ⊗ ωC).

Since the map μ′ is the composition of the above map with H0 of the right
arrow of sequence (39), the claim for μ′ follows.

Concerning the surjectivity of the map g′X , we first note that by Serre
vanishing,

Ri p∗(IΔ̃X
⊗ q∗X(ν∗L⊗n ⊗ Q)) =

⎧⎪⎪⎨⎪⎪⎩0 for i > 0,

locally free for i = 0.
(40)

Now we project on T . A standard computation using (40), base change, Serre
vanishing, Leray spectral sequence, and Künneth decomposition shows that
the map g′X is identified as

14 For example, μ is defined by sending ExtnY (Ω1
Y ⊗ N⊗n

C ,OY ) to ExtnX(Ω1
Y ⊗ N⊗n

C ,OY ) and then
composing with the natural map Ω1

X ⊗ L⊗n → Ω1
Y ⊗ N⊗n

C on the left, and with the natural
extension 0→ L∨ → OX → OY → 0 on the right.
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Hd(T, π∗
(
p∗
(I
Δ̃X
⊗ q∗(ν∗L⊗n ⊗ Q)

) ⊗ Q∨ ⊗ ((L ⊗ ωX) � ωT )
))

→ Hd(T, H0(X,Ω1
X ⊗ L⊗n+1 ⊗ ωX) ⊗ ωT ). (41)

This is the Hd of a map of coherent sheaves on the q-dimensional variety T .
Hence the surjectivity of (41) is implied by the generic surjectivity of the map
of sheaves itself. By base change, at a generic fiber X × t the map of sheaves is
the Gaussian map

γt : H0(X, p∗(IΔX ⊗ q∗(L⊗n ⊗ Qt)) ⊗ L ⊗ Q∨t ⊗ ωX)

→ H0(X,Ω1
X ⊗ L⊗n+1 ⊗ ωX).

The map γt is defined by restriction to the diagonal in the usual way. Once
again it follows from relative Serre vanishing (on (X × T ) ×T (X × T )) that,
as soon as L is sufficiently positive, γt is surjective for all t. This proves the
surjectivity of the g′X and concludes the proof of the claim.

Last step. If C is Gorenstein, Claim 11 achieves the proof of Corollary 3.
Indeed, diagram (37) is dual to diagram (38) and it follows that the kernel of
our map g = gY

N⊗n
C ,Q is at most 1-dimensional, spanned by e. In the general case,

Corollary 3 follows in the same way once we have proved the following:

Claim 12 As soon as L is sufficiently positive, the maps g′X and μ′ are
respectively Serre duals of the maps gX and μ.

Proof To prove this assertion for g′X we note that, concerning its source, the
sheafMX

L⊗n,Q is locally free by (40). Therefore,

Extn+1
X×T (MX

L⊗n,Q,Q ⊗ ν∗L∨) � Hn+1((MX
L⊗n,Q)∨ ⊗ Q ⊗ ν∗L∨)

� Hd(MX
L⊗n,Q ⊗ Q

∨ ⊗ ((L ⊗ ωX) � ωT ))∨. (42)

Next, we show the Serre duality

H0(X,Ω1
X ⊗ ωX ⊗ L⊗n+1)∨ � Extn+1

X (Ω1
X ⊗ L⊗n, L∨). (43)

By definition of a dualizing complex (see, e.g., [9, Chapter V, Section 2,
Proposition 2.1 on p. 258]), in the derived category of X we have that OX =

RHom(ωX , ωX). Therefore it follows that

RHomX(Ω1
X ⊗ L⊗n+1,OX) = RHomX(Ω1

X ⊗ L⊗n+1, RHom(ωX , ωX))

= RHomX(Ω1
X ⊗ OX⊗LωX ⊗ L⊗n+1, ωX).

By Serre–Grothendieck duality, this is isomorphic to

RHomk(RΓ(X,Ω1
X⊗LωX ⊗ L⊗n+1[n + 1]), k).
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390 G. Pareschi

The spectral sequence computing RΓ(X,Ω1
X⊗LωX ⊗ L⊗n+1) degenerates to the

isomorphisms

Hi(X,Ω1
X⊗LωX ⊗ L⊗n+1) �

⊕
i

H0(X, torX
i (Ω1

X , ωX) ⊗ L⊗n+1)

(if L is sufficiently positive, by Serre vanishing there are only H0s). There-
fore, (43) follows. By (42) and (43) we have proved the part of the claim
concerning g′X .

Concerning μ′, at this point it is enough to prove the Serre duality

ExtnY (Ω1
X |C ⊗ Ln,OY ) � Ext1C(Ω1

Y |C ⊗ L,OC) � H0(Ω1
C ⊗ N ⊗ ωC)∨ (44)

where the first isomorphism is (6). Arguing as above, it is enough to prove that
the OC-modules

tori
C((Ω1

Y )|C , ωC) ⊗ NC

have vanishing higher cohomology for all i. For i > 0 this follows simply
because they are supported on points. For i = 0 note that, by the exact sequence
(39), it is enough to show that

H1(Ω1
X ⊗ NC ⊗ ωC) = 0. (45)

To prove this, we tensor the Koszul resolution of OC as an OX-module with
Ω1

X ⊗ ωX ⊗ L⊗n+1, getting a complex (exact at the last step on the right)

0→ Ω1
X ⊗ ωX ⊗ L→ · · · → (Ω1

X ⊗ ωX ⊗ L⊗n)⊕n

→ Ω1
X ⊗ ωX ⊗ L⊗n+1 → Ω1

X ⊗ ωC ⊗ NC → 0.

Since C is not contained in the singular locus of X, the cohomology sheaves
are supported on points. Therefore the required vanishing (45) follows from
Serre vanishing via a diagram chase. This concludes the proof of Claim 12 and
of Corollary 3.

4 Gaussian maps and the Fourier–Mukai transform

In this section we describe the setup of the proof of Theorem 5. We show
that when the variety X is a subvariety of an abelian variety A, the parameter
variety T is the dual abelian variety Â, and the line bundle Q is the restriction
to X × Â of the Poincaré line bundle then the (dual) Gaussian map gN⊗n

C ,Q|Y×T
of

the Introduction can naturally be interpreted as a piece of a (relative version
of) the classical Fourier–Mukai transform associated with the Poincaré line
bundle, applied to a certain space of morphisms.
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Notation/Assumptions 1 We keep all the notation and hypotheses of the
Introduction. Explicitly:

• Let X be an (n + 1)-dimensional normal Cohen–Macaulay subvariety of a
d-dimensional abelian variety A. As usual we choose an ample line bundle
L on X such that we can find n irreducible divisors Y = Y1, Y2, . . . , Yn ∈ X
such that their intersection is an irreducible curve C. We assume also that
C is not contained in the singular loci of X and Y . The line bundle L|C is
denoted NC .

• Let P be a Poincaré line bundle on A × Â. We denote

Q = P|X×Â and R = P|Y×Â.

• ν and π are the projections of Y × Â.
• We assume that the line bundle ν∗L⊗n ⊗ Q is relatively base-point-free,

namely the evaluation map π∗π∗(ν∗L⊗n ⊗Q)→ ν∗L⊗n ⊗Q is surjective (here
ν and π denote also the projection of X × Â→ Â).

• p, q, and Δ̃ are the projections and the diagonal of (Y × Â) ×Â (Y × Â).
• The Gaussian map of the Introduction (see (7)) is

g = gN⊗n
C ,R : ExtnY (Ω1

Y⊗N⊗n
C ,OY )→ Extn

Y×Â
(p∗(q

∗(I
Δ̃
⊗R⊗ν∗N⊗n

C )),R) (46)

obtained as (the restriction to the relevant Künneth direct summand
of) Extn

Y×Â
( · ,R) of the differentiation (i.e., restriction to the diagonal) map

(see Section 2.1). We recall also the identification of the source:

ExtnY (Ω1
Y ⊗ N⊗n

C ,OY ) � Ext1C(Ω1
Y ⊗ NC ,OC)

(see (6) and Section 2.1).
• The projections of Y × A will be denoted p1 and p2.

Remark 1 Since the variety X is assumed to be smooth in codimension 1,
and our arguments concern a sufficiently positive line bundle L, we could have
assumed from the beginning that the curve C is smooth and the divisor Y is
smooth along C. However, we preferred to assume the smoothness of C only
where needed, namely at the end of the proof. See also Remarks 2 and 5 below.

Fourier–Mukai transform. Now we consider the trivial abelian scheme
Y × A→ Y and its dual Y × Â→ Y . The Poincaré line bundle P induces natu-
rally a Poincaré line bundle P̃ on (Y × A) ×Y (Y × Â) (namely the pull-back of
P to Y × A × Â) and we consider the functors

RΦ : D(Y × A)→ D(Y × Â) and RΨ : D(Y × Â)→ D(Y × A)
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392 G. Pareschi

defined respectively by RπY×Â∗(π
∗
Y×A( · ) ⊗ P̃) and RπY×A∗(π∗Y×Â

( · ) ⊗ P̃). By
Mukai’s theorem [14, Theorem 1.1] they are equivalences of categories, more
precisely

RΨ ◦ RΦ � (−1)∗[−q] and RΦ ◦ RΨ � (−1)∗[−q]. (47)

In particular it follows that, given OY×A-modules F and G, we have the
functorial isomorphism

FMi : ExtiY×A(F ,G)
�−→ Exti

Y×Â
(RΦ(F ), RΦ(G)) (48)

(note that the Ext-spaces on the right are usually hyperexts).

The Gaussian map. Now we focus on the target of the Gaussian map (46).
Let ΔY ⊂ Y × A be the graph of the embedding Y ↪→ A. In other words, ΔY

is the diagonal of Y × Y , seen as a subscheme of Y × A. It follows from the
definitions that

RΦ(OΔY ) = P|Y×Â = R. (49)

Moreover, we have that

p∗(q
∗(I
Δ̃
⊗ R ⊗ ν∗N⊗n

C )) � R0Φ(IΔY ⊗ p∗2N⊗n
C ). (50)

This is because of the natural isomorphisms

(Y × Y) ×Y (Y × Â) � Y × Y × Â � (Y × Â) ×Â (Y × Â)

yielding the identifications P̃|(Y×Y)×Y (Y×Â) � q∗(P|Y×Â) = q∗(R). Moreover, for
any sheaf F supported on Y × C (as IΔY ⊗ p∗2N⊗n

C ), we have that RiΦ(F ) = 0
for i > 1. Therefore the fourth-quadrant spectral sequence

Extp

Y×Â
(RqΦ(F ),R)⇒ Extp−q(RΦ(F ),R)

is reduced to a long exact sequence

· · · → Exti−1
Y×Â

(R0Φ(F ),R)→ Exti+1
Y×Â

(R1Φ(F ),R)

→ Exti
Y×Â

(RΦ(F ),R)→ Exti
Y×Â

(R0Φ(F ),R)→ · · · (51)
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Putting all that together we get the following diagram, with right column exact
in the middle:

(52)

where u is the natural map (see also (65) below). In conclusion, the kernel of
the Gaussian map can be described as follows:

Lemma 13 The Gaussian map g = gN⊗n
C ,R of (46) is the composition

β ◦ FMn ◦ u. Therefore

ker(g) � Im(FMn ◦ u) ∩ Im(α).

Proof The identification of the two maps follows using (50), simply because
they are defined in the same way.

5 Cohomological computations on Y × A

In this section we describe the source of the Fourier–Mukai map FMn of
diagram (52) above, together with other related cohomology groups. We use
the Grothendieck duality (or change of rings) spectral sequence

ExtiY×C(F ,Ext j
Y×A(OY×C ,OΔY ))⇒ Exti+ j

Y×A(F ,OΔY ). (53)

With this in mind, we compute the sheaves Exti
Y×A(OY×C ,OΔY ) in Proposition

14 below.

5.1 Preliminaries

The following standard identifications will be useful:⊕
i

Exti
Y×A(OΔY ,OΔY ) �

⊕
i

δ∗(Λ
iTA,0 ⊗ OY ) (54)
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394 G. Pareschi

(as graded algebras), where TA,0 is the tangent space of A at 0 and δ denotes
the diagonal embedding

δ : Y ↪→ Y × A.

This holds because ΔY is the pre-image of 0 via the difference map Y ×A→ A,
(y, x) �→ y − x (which is flat), and Ext•A(k(0), k(0)) is Λ•TA,0 ⊗ k(0).

Moreover, letting ΔC ⊂ Y × C ⊂ Y × A the diagonal of C × C (seen as a
subscheme of Y × A), we have⊕

i

Exti
Y×A(OΔC ,OΔY ) �

⊕
i

δ∗(Λ
i−n+1TA,0 ⊗ N⊗n−1

C ) (55)

(as graded modules on the above algebra). This is seen as follows: since C
is the complete intersection of n − 1 divisors of Y , all of them in |L|Y |, then
Ext j
ΔY

(OΔC ,OΔY ) = 0 if j � n − 1 and Extn−1
ΔY

(OΔC ,OΔY ) = δ∗N⊗n−1
C . Therefore

(55) follows from (54) and the spectral sequence

Exth
ΔY

(OΔC ,Ext j
Y×A(OΔY ,OΔY ))⇒ Exth+ j

Y×A(OΔC ,OΔY ).

5.2 The (equisingular) restricted normal sheaf

We consider the OC-module N′ defined by the sequence

0→ (TY )|C → (TA)|C → N′ → 0. (56)

When Y = C the sheaf N′ is usually called the equisingular normal sheaf
[19, Proposition 1.1.9]. Therefore we refer to N′ as the restricted equisingular
normal sheaf.

Remark 2 Note that, since X is non-singular in codimension 1, the curve
C can be taken to be smooth and the divisor Y smooth along C so that N′ is
locally free and it is the restriction to C of the normal sheaf of Y . Eventually
we will make this assumption in the last section. However, the computations
of the present section work in the more general setting.

The sheaves Ext j
Y×A(OY×C ,OΔY ) appearing in (53) are described as follows:

Proposition 14 (a)
⊕

i Exti
Y×A(OY×C ,OΔY ) �

⊕
i δ∗(

i−n+1
Λ N′ ⊗ N⊗n−1

C )
(as graded modules on the algebra (54)). In particular, the LHS is zero
for i < n − 1.

(b) Extd−1
Y×A(OY×C ,OΔY ) � δ∗ωC.

Proof (a) We applyHomY×A( · ,OΔY ) to the basic exact sequence

0→ IΔC/Y×C → OY×C → OΔC → 0 (57)
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where IΔC/Y×C denotes the ideal of ΔC in Y × C. Since ΔC is the intersection
(in Y × A) of ΔY and Y × C, the resulting long exact sequence is chopped into
short exact sequences (where we plug in the isomorphism (55))

0→ Exti−1
Y×A(IΔC/Y×C ,OΔY )→ δ∗(

i−n+1
Λ TA,0 ⊗ N⊗n−1

C )

→ Exti
Y×A(OY×C ,OΔY )→ 0. (58)

This proves that

Exti
Y×A(OY×C ,OΔY ) =

⎧⎪⎪⎨⎪⎪⎩0 if i < n − 1,

δ∗N⊗n−1
C if i = n − 1.

(59)

For i = n it follows from (59) and the spectral sequence (53) applied to IΔC/Y×C

that

Extn−1
Y×A(IΔC/Y×C ,OΔY )

� HomY×C(IΔC/Y×C ,Extn−1
Y×A(OY×C ,ΔY )) � δ∗(TY ⊗ N⊗n−1

C )

and that δ∗ identifies (58) with (56), tensored with Nn−1
|C , i.e.,

0→ TY ⊗ N⊗n−1
C → TA,0 ⊗ N⊗n−1

C → N′ ⊗ N⊗n−1
C → 0. (60)

This proves the statement for i = n. For i > n, Proposition 14 follows by
induction. Indeed Ext•Y×A(OY×C ,OΔY ) is naturally a graded module over the
exterior algebra Ext•Y×A(OΔY ,OΔY ) � δ∗

(
Λ•TA,0 ⊗ OY

)
(see (54)). Assume that

the statement of the present proposition holds for the positive integer i − 1.
Because of the action of the exterior algebra, sequences (58) and (60) yield
that the kernel of the map

δ∗(
i−n+1
Λ TA,0 ⊗ N⊗n−1

C )→ Exti
Y×A(OY×C ,OΔ)→ 0

is surjected (up to twisting with N⊗n−1
C ) by δ∗(Λi−nTA,0 ⊗ (TY )|C). This

presentation yields that Exti
Y×A(OY×C ,OΔ) is equal to δ∗

(
(
i−n+1
Λ N′) ⊗ N⊗n−1

C

)
.

This proves (a).
(b) If Y is smooth along C thenN′ is locally free (coinciding with the restricted
normal bundle) (see Remark 2). In this case (b) follows at once from (a). In the
general case the proof is as follows. We claim that for each i the LHS of (a)
can alternatively be described as

Exti
Y×A(OY×C ,OΔY ) � T orY×A

d−1−i(p∗2ωC ,OΔY ).

This is proved by means of the isomorphism of functors

R HomY×A(OY×C ,OΔY ) � R HomY×A(OY×C ,OY×A)⊗L
Y×AOΔY
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396 G. Pareschi

and the corresponding spectral sequences. In fact, since C is Cohen–Macaulay,
we have that Exti

Y×A(OY×C ,OY×A) = 0 for i � d − 1 and equal to p∗2ωC for
i = d−1. Thus the spectral sequence computing the RHS degenerates, proving
the claim. In particular, for i = d − 1, we have Extd−1

Y×A(OY×C ,OΔY ) � (p∗2ωC) ⊗
OΔY � δ∗ωC .

5.3 Reduction of the statement of Theorem 5

As a first application of Proposition 14, we reduce the statement of Theorem
5 – in the equivalent formulation provided by Lemma 13 – to a simpler one.
This will involve the issue of comparing two spaces of first-order deforma-
tions mentioned in the Introduction (Section 1.5), and it will be the content of
Proposition 15 and Corollary 16 below.

Notation 4 We consider the first spectral sequence (53) applied to F =
p∗2N⊗n

C , rather than to IΔ ⊗ p∗2N⊗n
C . Plugging the identification provided by

Lemma 14, we get

H j(C,Λi−n+1N′ ⊗ N−1
C )⇒ Ext j+i

Y×A(p∗2N⊗n
C ,OΔY ).

Since the His on the left are zero for i � 0, 1, the spectral sequence is reduced
to short exact sequences

0→ H1(C,Λi−nN′ ⊗ N−1
C )

vi−→ ExtiY×A(p∗2N⊗n
C ,OΔY )

wi−→ H0(C,Λi−n+1N′ ⊗ N−1
C )→ 0. (61)

In particular, for i = n we have the exact sequence

0→ H1(C, N−1
C )

vn→ ExtnY×A(p∗2N⊗n
C ,OΔY )

wn→ H0(C,N′ ⊗ N−1
C )→ 0.

Combining with the exact sequence coming from the spectral sequence (51),
applied to F = p∗2N⊗n−1

C we get

(62)

Remark 3 Note that, as shown by the exact sequence (56) defining the
restricted equisingular normal sheaf, we get that

H0(C,N′ ⊗ N∨C ) = ker(H1(C,TY ⊗ N∨C )
G→ H1(C,TA ⊗ N∨C )).
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This map G is the restriction to H1(C,TY ⊗ N∨C ) of the map GY
A of (8) in the

Introduction (see also Remark 4 below).

Proposition 15 In diagram (62), if the map an is nonzero then the map wn ◦
FM−1

n ◦ an is nonzero and its image is contained in the kernel of the Gaussian
map (46).

Combining with Theorem 2, and noting that the assumptions in
Notation/Assumptions 1 are certainly satisfied by a sufficiently positive line
bundle L on the variety X, we get

Corollary 16 If the map an is nonzero then Rn−1π∗Q = 0.

Proof of Proposition 15 We apply ExtnY×A( · ,OΔY ) to the usual exact sequence

0→ IΔC/Y×C ⊗ p∗2N⊗n
C → p∗2N⊗n

C → δ∗N
⊗n
C → 0. (63)

Using the spectral sequence (53) and the isomorphisms provided by
Proposition 14, we get the commutative exact diagram

(64)

where:

• We have used (55) to compute

ExtiY×A(δC∗N
⊗n
C ,OΔY ) � H1(C, N−1

C ) ⊗ Λi−n+1TA.

• For typographical brevity we have denoted

I := IΔC/Y×C

and the map

u : H1(TY ⊗ N−1
C )� ExtnY×A(I ⊗ p∗2N⊗n

C ,OΔY ) (65)

is the composition of the natural inclusion

H1(TY ⊗ N−1
C ) = H1(Hom(I ⊗ p∗2NC , OΔC )) ↪→ Ext1Y×C(I , δC∗N

−1
C )

� Ext1Y×C(I ⊗ p∗2N⊗n
C ,Extn−1

Y×A(OY×C ,OΔY ))
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and of the natural injection, arising (by Proposition 14, as the last isomorph-
ism) in the beginning of the spectral sequence (53),

Ext1Y×C(IΔC/Y×C ⊗ p∗2N⊗n
C ,Extn−1

Y×A(OY×C ,OΔY ))

→ ExtnY×A(IΔC/Y×C ⊗ p∗2N⊗n
C ,OΔY ) .

Next, we look at the Fourier–Mukai image of the central column of (64).
In order to do so, we first apply the Fourier–Mukai transform RΦ to sequence
(63). Then we apply RHomY×Â(· , R) and the spectral sequence on the Y × Â
side, namely (51).

We claim that applying the Fourier–Mukai transform RΦ to sequence (63),
we get the exact sequence

0→ R0Φ(I ⊗ p∗2N⊗n
C )→ R0Φ(p∗2N⊗n

C )→ ν∗(N⊗n
C ) ⊗ R → 0 (66)

and the isomorphism

R1Φ(I ⊗ p∗2N⊗n
C )

∼→ R1Φ(p∗2N⊗n
C ). (67)

Indeed we have that RiΦ(δ∗(N⊗n
C )) = ν∗(N⊗n

C )⊗R for i = 0 and zero otherwise.
The map R0Φ(p∗2N⊗n

C )→ ν∗(N⊗n
C )⊗R is nothing else but the relative evaluation

map

π∗π∗(ν
∗(N⊗n

C ) ⊗ R)→ ν∗(N⊗n
C ) ⊗ R

and its surjectivity follows from the assumptions (see Notation/Assumptions 1).
This proves what was claimed.

Eventually we get the following exact diagram, whose central column is
the Fourier–Mukai transform of the central column of (64) and whose right
column is (part of) the long cohomology sequence of RHomY×Â(· , R) applied
to the exact sequence (66):

(68)
For brevity, at the place on the left of the third row we have plugged the isomor-
phism (67). From (66) and (67) it follows, in particular, that the map FMn( f )
induces the isomorphism of the images of an and α:
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FMn( f ) : im(an)
�−→ im(α). (69)

An easy diagram chase in (64) and (68) proves the first part of the proposition,
namely that if the map an is nonzero then the map wn ◦ FM−1

n ◦ an is nonzero.
The second part follows at once from the first one, (69), and Lemma 13.

6 Proof of Theorem 5

The strategy of proof of Theorem 5 is to see the two vertical exact sequences of
diagram (62) as the first homogeneous pieces of two exact sequences of graded
modules over the exterior algebra. Namely, for each i ≥ n we have

(70)

The exterior algebra acts on the LHS as Λ•TA,0 ↪→ Ext•Y×A(OΔY ,OΔY ) (see
(54) and (55)). After the Fourier–Mukai transform, it acts on the RHS as
Λ•H1(OÂ) ↪→ Ext•

Y×Â
(R,R).

6.1 Computations in degree d−1

In this section we will make some explicit calculations in degree d − 1, where
we have the special feature that the Hom space at the bottom of the left column
is naturally isomorphic to Hom(N⊗n

C , ωC) (Proposition 14, part (b)). The fol-
lowing proposition shows that what we want to prove in degree n, namely that
the map wn ◦ FM−1

n ◦ an is nonzero, is true, in strong form, in degree d − 1.

Proposition 17 The map wd−1 has a canonical (up to scalar) section σ

and the injective map (FMd−1)|Im(σ) factorizes through ad−1. Summarizing,
in degree i = d − 1 diagram (70) specializes to

(71)
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400 G. Pareschi

Proof The section σ is given (up to scalar) by the product map

Extd−1
Y×A(p∗2N⊗n

C ,OY×A) ⊗ HomY×A(OY×A,OΔY )
σ→ Extd−1

Y×A(p∗2N⊗n
C ,OΔY ). (72)

In fact, note that Extd−1
Y×A(p∗2N⊗n

C ,OY×A) � p∗1H0(OY ) ⊗ p∗2 Extd−1
A (N⊗n

C ,OA) �
p∗1H0(OY ) ⊗ p∗2HomC(N⊗n

C , ωC). The fact that s is a section of wq−1 is clear, as
the latter is the natural map

Extd−1
Y×A(p∗2N⊗n

C ,OΔY )→ H0(Extd−1
Y×A(p∗2N⊗n

C ),OΔY ) �

� H0(Extd−1
Y×A(p∗2N⊗n

C ,OY×A) ⊗ OΔY ) � Extd−1
Y×A(p∗2N⊗n

C ,OY×A) ⊗ H0(OΔY ).

Next, we prove the second part of the statement. On the Y × Â side, we
consider the following product map:

(73)

where the vertical isomorphism comes from the usual spectral sequence (51).
By (47) the inverse of the Fourier–Mukai transform is (−1)∗A ◦ RΨ[q]. By (49)
we have that

(−1)∗A ◦ RΨ(OY×0̂) = (−1)∗A ◦ R0Ψ(OY×0̂) = OY×A,

(−1)∗A ◦ RΨ(R) = (−1)∗A ◦ RdΨ(R)[−d] = OΔY .

Therefore, thanks to Mukai’s inversion theorem (47), the Fourier–Mukai trans-
form identifies – on the Y×A side – the sources of both rows in diagram (73) to

Ext−1
Y×A(p∗2N⊗n

C [−d],OY×A) ⊗ Extd(OY×A,OΔY [−d])

� Extd−1
Y×A(p∗2N⊗n

C ,OY×A) ⊗ HomY×A(OY×A,OΔY ).

This concludes the proof of the proposition.

6.2 Conclusion of the proof of Theorem 5

Notation 5 We introduce the following typographical abbreviations on dia-
gram (70): the isomorphic (via the Fourier–Mukai transform) spaces of the
central row of diagram (70) are identified to vector spaces Ei, and we denote
by Vi, Ei, Wi the spaces appearing in the left column of diagram (70) (from top
to bottom), and by Ai, Ei, Bi the spaces appearing in the right column (from top
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Gaussian maps and generic vanishing I 401

to bottom). We denote also by Λ•TA,0 the acting exterior algebra. The struc-
ture of Λ•TA,0-graded modules induces a natural map of diagrams (we focus
on degrees n and d − 1 as they are the relevant ones in our argument)

(74)

where we have denoted ṽd−1 = id ⊗ vd−1 and so on. We denote also

φAn : An →
d−1−n
Λ T∨A,0 ⊗ Ad−1

and, similarly, φBn , φVn , φWn , φEn .

At this point we make the following assumption:
(*) The extension class e of the restricted cotangent sequence

0→ N∨C → (Ω1
X)|C → (Ω1

Y )|C → 0 (75)

belongs to the subspace H1(TY⊗N∨C ) of Ext1C(Ω1
Y⊗NC ,OC).15 Note that if C is

smooth and Y is smooth along C this is obvious, since the two spaces coincide.

Remark 4 Note that, if (*) holds then e belongs to the subspace H0(N′⊗N∨C )
of H1(TY ⊗ N∨C ): as mentioned in Remark 3, from the exact sequence defining
the restricted equisingular normal sheaf (56) we get that

H0(C,N′ ⊗ N∨C ) = ker
(

H1(C,TY ⊗ N∨C )
G→ H1(C,TA ⊗ N∨C )

)
.

15 These are the locally trivial first-order deformations.
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402 G. Pareschi

The fact that e belongs to H0(N′ ⊗ N∨C ) essentially follows from the
deformation-theoretic interpretation of this map G (it is the restriction (to
H1(C,TY ⊗ N∨C )) of the map GY

Z of (8) in the Introduction, with Z = A). More
formally: the target of G is Homk(Ω1

A,0, H1(C, N∨C )) and G takes an extension
class f to the map Ω1

A,0 → H1(N−1
C ) obtained by composing the coboundary

map of f with the map Ω1
A,0 → H0((Ω1

Y )|C). If the extension class is (75) then
this map factorizes through H0((Ω1

X)|C), hence e ∈ ker G.

From diagram (74) we have the map

φWn : H0(C,N′ ⊗ N∨C ) = ker(G)→ Hom(
d−1−n
Λ TA,0, H0(ωC ⊗ N⊗−n

C )).

Lemma 18 φWn (e) � 0.

Proof We make the identification
d−1−n
Λ TA,0 �

n+1
ΛΩ1

A,0. Accordingly φWn (e) is
identified with a map

φWn (e) :
n+1
ΛΩ1

A,0 → H0(ωC ⊗ N⊗−n
C ).

We consider the map

n+1
ΛΩ1

A,0 → H0((
n+1
ΛΩ1

X)|C) (76)

obtained as H0 of Λn+1 of the codifferential Ω1
A,0 ⊗ OC → (Ω1

X)|C . Since the
codifferential is surjective, the map (76) is nonzero. If C is smooth and X and Y
are smooth along C then the target of (76) is H0((ωX)|C) = H0(ωC ⊗N⊗−n

C ). Via
the above identifications, the map φWn (e) coincides, up to a scalar, with (76).
The lemma follows in this case. Even if X is not smooth along C, φWn (e) is the
composition of the map (76) and the H0 of the canonical map Λn+1((Ω1

X)|C)→
(ωX)|C � ωC ⊗ N⊗−n

C . Such a composition is clearly nonzero and the lemma
follows as above.

At this point, the line of the argument is clear. The class φWn (e) is nonzero,
and, in the splitting of Proposition 17, it belongs to the direct summand (of En)
σ(Wn) ⊂ Im (ād−1). Therefore the projection of Im (φEn ) onto σ(Wn) is nonzero.
This implies that Im (an) is nonzero, since otherwise En would be isomorphic
to a subspace of Bn and Im (φEn ) would be contained in the direct summand
complementary to σ(Wn).

By Corollary 16 this proves that Rnπ∗Q = 0.
To prove the vanishing of Riπ∗Q for 0 < i < n one takes a sufficiently

positive ample line bundle M on X and an (i + 1)-dimensional complete inter-
section of divisors in |M|, say X′. It follows from relative Serre vanishing that
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Gaussian maps and generic vanishing I 403

Riπ∗(Q) = Riπ∗(Q|X′×Â). Therefore the desired vanishing follows by the pre-
vious step. The vanishing of R0π∗Q is standard: as it is a torsion-free sheaf,
it is enough to show that its support is a proper subvariety of Â. By a base
change, this is contained in the locus of α ∈ Â such that h0(X, α|X) > 0, i.e.,
the kernel of the homomorphism Pic0 A → PicX, which is easily seen to be a
proper subvariety of Pic0 A.16 This concludes the proof of Theorem 5.

Remark 5 The hypothesis that X is smooth in codimension 1 is used to
ensure that assumption (*) can be made.
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