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Rational equivalence of 0-cycles on K3 surfaces
and conjectures of Huybrechts and O’Grady

C. Voisin
CNRS and École Polytechnique

Abstract

We give a new interpretation of O’Grady’s filtration on the CH0 group of a K3
surface X. In particular, we get a new characterization of the canonical 0-cycles
kcX: given k ≥ 0, kcX is the only 0-cycle of degree k on X whose orbit under
rational equivalence is of dimension k. Using this, we extend the results of
Huybrechts and O’Grady concerning Chern classes of simple vector bundles
on K3 surfaces.

1 Introduction

Let X be a projective K3 surface. In [1], Beauville and the author proved that
X carries a canonical 0-cycle cX of degree 1, which is the class in CH0(X) of
any point of X lying on a (possibly singular) rational curve on X. This cycle
has the property that for any divisors D, D′ on X, we have

D · D′ = deg(D · D′) cX in CH0(X).

In recent works of Huybrechts [5] and O’Grady [11], this 0-cycle appeared to
have other characterizations. Huybrechts proves, for example, the following
result (which is proved in [5] to have much more general consequences on
spherical objects and autoequivalences of the derived category of X):

Theorem 1 (Huybrechts [5]) Let X be a projective complex K3 surface. Let
F be a simple vector bundle on X such that H1(End F) = 0 (such an F is
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Rational equivalence of 0-cycles on K3 surfaces 423

called spherical in [5]). Then c2(F) is proportional to cX in CH0(X) if one of
the following conditions holds:

(1) The Picard number of X is at least 2.
(2) The Picard group of X is ZH and the determinant of F is equal to kH with

k = ±1 mod r := rank F.

This result is extended in the following way by O’Grady. In [11], he
introduces the following increasing filtration of CH0(X):

S 0(X) ⊂ S 1(X) ⊂ · · · ⊂ S d(X) ⊂ · · · ⊂ CH0(X),

where S d(X) is defined as the set of classes of cycles of the form z + z′, with
z effective of degree d and z′ a multiple of cX . It is also convenient to introduce
S k

d(X), which will by definition be the set of degree-k 0-cycles on X which lie
in S d(X). Thus by definition

S k
d(X) = {z ∈ CH0(X), z = z′ + (k − d)cX},

where z′ is effective of degree d.
Consider a torsion-free or more generally a pure sheaf F on X which is

H-stable with respect to a polarization H. Let 2d(vF ) be the dimension of the
space of deformations of F , where vF is the Mukai vector of F (cf. [6]). We
recall that vF ∈ H∗(X, Z) is the triple

(r, l, s) ∈ H0(X, Z) ⊕ H2(X, Z) ⊕ H4(X, Z),

with r = rankF , l = ctop
1 (detF ), and s ∈ H4(X, Z) is defined as

vF = ch(F )
√

td(X). (1)

With this notation we get, by the Riemann–Roch formula, that∑
i

(−1)idim Exti(F ,F ) =< vF , v
∗
F >= 2rs − l2 = 2 − 2d(vF ),

where < , > is the intersection pairing on H∗(X, Z), and v∗ = (r,−l, s) is the
Mukai vector of F ∗ (if F is locally free).

In particular d(vF ) = 0 if F satisfies EndF = C and Ext1(F ,F ) = 0, so
that F is spherical as in Huybrechts’ theorem. Noticing that S 0(X) = ZcX ,
one can then rephrase Huybrechts’ statement by saying that if F satisfies
End (F ) = C, d(vF ) = 0, then c2(F ) ∈ S 0(X), assuming the Picard number
of X is at least 2.

O’Grady then extends Huybrechts’ results as follows:

Theorem 2 (O’Grady [11]) Assuming F is H-stable, one has c2(F ) ∈
S d(vF )(X), vF = (r, l, s), if furthermore one of the following conditions holds:
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424 C. Voisin

(1) l = H, l is primitive and s ≥ 0.

(2) The Picard number of X is at least 2, r is coprime to the divisibility of l,
and H is v-generic.

(3) r ≤ 2 and moreover H is v-generic if r = 2.

In fact, O’Grady’s result is stronger, as he also shows that S k
d(v)(X), k =

deg c2(v), is equal to the set of classes c2(G) with G a deformation of F .
O’Grady indeed proves, by a nice argument involving the rank of the Mukai
holomorphic 2-form on the moduli space of deformations of F , the following
result:

Proposition 3 (O’Grady [11, Proposition 1.3]) If there is a H-stable torsion-
free sheaf F with v = v(F ), and the conclusion of Theorem 2 holds for the
deformations of F , then

{c2(G), G ∈ Mst(X, H, v) } = S k
d(v)(X), k = deg c2(F ).

In this statement,Mst(X, H, v) is any smooth completion of the moduli space
of H-stable sheaves with Mukai vector v.

Our results in this paper are of two kinds: First of all we provide another
description of S k

d(X) for any d ≥ 0, k ≥ d. In order to state this result, let
us introduce the following notation: Given an integer k ≥ 0, and a cycle
z ∈ CH0(X) of degree k, the subset Oz of X(k) consisting of effective cycles
z′ ∈ X(k) which are rationally equivalent to z is a countable union of closed
algebraic subsets of X(k) (see [13, Lemma 10.7]). This is the “effective orbit” of
z under rational equivalence, and the analogue of |D| for a divisor D ∈ CH1(W)
on any variety W. We define dim Oz as the supremum of the dimensions of
the components of Oz. This is the analogue of r(D) = dim |D| for a divisor
D ∈ CH1(W) on any variety W. We will prove the following:

Theorem 4 Let X be a projective K3 surface. Let k ≥ d ≥ 0. We have the
following characterization of S k

d(X):

S k
d(X) = {z ∈ CH0(X), Oz non-empty, dim Oz ≥ k − d}.

Remark 1 The inclusion S k
d(X) ⊂ {z ∈ CH0(X), Oz non-empty, dim Oz ≥

k − d} is easy since the cycle (k − d)cX has its orbit of dimension ≥ k − d
(e.g., C(k−d) ⊂ X(k−d), for any rational curve C ⊂ X, is contained in the orbit of
(k − d)cX). Hence any cycle of the form z+ (k − d)cX with z effective of degree
d has an orbit of dimension ≥ k − d.

A particular case of the theorem above is the case where d(v) = 0. By
definition, S 0(X) is the subgroup ZcX ⊂ CH0(X). We thus have:
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Rational equivalence of 0-cycles on K3 surfaces 425

Corollary 5 For k > 0, the cycle kcX is the unique 0-cycle z of degree k on X
such that dim Oz ≥ k.

Remark 2 We have in fact dim Oz = k, z = kcX since by Mumford’s theorem
[10], any component L of Oz is Lagrangian for the holomorphic symplectic
form on S (k)

reg, hence of dimension ≤ k if L intersects S (k)
reg. If L is contained

in the singular locus of S (k), we can consider the minimal multiplicity-
stratum of S (k) containing L, which is determined by the multiplicities ni of
the general cycle

∑
i nixi, xi distinct, parametrized by L and apply the same

argument.

Remark 3 We will give in Section 2 an alternative proof of Corollary 5, using
the remark above, and the fact that any Lagrangian subvariety of Xk intersects
a product D1 × . . . × Dk of ample divisors on X.

Our main application of Theorem 4 is the following result, which general-
izes O’Grady’s and Huybrechts’ Theorems 2, 1 in the case of simple vector
bundles (instead of semistable torsion-free sheaves). We do not need any of
the assumptions appearing in Theorems 2, 1, but our results, unlike those of
O’Grady, are restricted to the locally free case.

Theorem 6 Let X be a projective K3 surface. Let F be a simple vector bundle
on X with Mukai vector v = v(F). Then

c2(F) ∈ S d(v)(X).

A particular case of this statement is the case where d = 0. The corol-
lary below proves Huybrechts’ Theorem 1 without any assumption on the
Picard group of the K3 surface or on the determinant of F. It is conjectured
in [5].

Corollary 7 Let F be a simple rigid vector bundle on a K3 surface. Then the
class c2(F) in CH0(X) is a multiple of cX.

We also deduce the following corollary, in the same spirit (and with
essentially the same proof) as Proposition 3:

Corollary 8 Let v ∈ H∗(X, Z) be a Mukai vector, with k = c2(v). Assume
there exists a simple vector bundle F on X with Mukai vector v. Then

S k
d(X) = {c2(G), G a simple vector bundle on X, vG = v},

where k = c2(v) := ctop
2 (F) = deg c2(F).

These results answer, for simple vector bundles on K3 surfaces, questions
asked by O’Grady (see [11, Section 5]) for simple sheaves.
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426 C. Voisin

The paper is organized as follows: in Section 2, we prove Theorem 4. We
also show a variant concerning a family of subschemes (rather than 0-cycles) of
given length in a constant rational equivalence class. In Section 3, Theorem 6
and Corollary 8 are proved.

2 An alternative description of O’Grady’s filtration

This section is devoted to the proof of Theorem 4, which we state in the
following form:

Theorem 9 Let k ≥ d and let Z ⊂ X(k) be a Zariski closed irreducible
algebraic subset of dimension k − d. Assume that all cycles of X parameter-
ized by Z are rationally equivalent in X. Then the class of these cycles belongs
to S k

d(X).

We will need for the proof the following simple lemma, which already
appears in [12]:

Lemma 10 Let X be a projective K3 surface and let C ⊂ S be a (possibly
singular) curve such that all points of C are rationally equivalent in X. Then
any point of C is rationally equivalent to cX.

Proof Let L be an ample line bundle on X. Then c1(L)|C is a 0-cycle on C and
our assumptions imply that j∗(c1(L)|C) = deg (c1(L)|C) c, for any point c of C.

Furthermore, we have

j∗(c1(L)|C) = c1(L) ·C in CH0(X)

and thus, by [1], j∗(c1(L)|C) = deg (c1(L)|C) cX in CH0(X). Hence we have

deg (c1(L)|C) c = deg (c1(L)|C) cX in CH0(X).

This concludes the proof, since c is arbitrary, deg (c1(L)|C) � 0, and CH0(X)
has no torsion.

Lemma 11 The union of curves C satisfying the property stated in Lemma 10
is Zariski dense in X.

Proof The 0-cycle cX is represented by any point lying on a (singular) rational
curve C ⊂ X (see [1]), so the result is clear if one knows that there are infinitely
many distinct rational curves contained in X. This result is to our knowledge
known only for general K3 surfaces but not for all K3 surfaces (see however
[2] for results in this direction). In any case, we can use the following argument
which already appears in [8]. By [9], there is a 1-parameter family of (singular)

terms of use, available at http:/www.cambridge.org/core/terms. http://dx.doi.org/10.1017/CBO9781107416000.021
Downloaded from http:/www.cambridge.org/core. National Library of the Philippines, on 06 Oct 2016 at 09:41:56, subject to the Cambridge Core

http:/www.cambridge.org/core/terms
http://dx.doi.org/10.1017/CBO9781107416000.021
http:/www.cambridge.org/core


Rational equivalence of 0-cycles on K3 surfaces 427

elliptic curves Et on X. Let C be a rational curve on X which meets the fibers
Et. For any integer N, and any point t, consider the points y ∈ Ẽt (the desin-
gularization of Et), which are rationally equivalent in Ẽt to the sum of a point
xt ∈ Et ∩C (hence rationally equivalent to cX) and an N-torsion 0-cycle on Ẽt.

As CH0(X) has no torsion, the images yt of these points in X are all rationally
equivalent to cX in X. Their images are clearly parameterized for N large
enough by a (maybe reducible) curve CN ⊂ X. Finally, the union over all N of
the points yt above is Zariski dense in each Ẽt, hence the union of the curves
CN is Zariski dense in X.

Proof of Theorem 9 The proof is by induction on k, the case k = 1, d = 0
being Lemma 10 (the case k = 1, d = 1 is trivial). Let Z′ be an irreducible
component of the inverse image of Z in Xk. Let p : Z′ → X be the first
projection. We distinguish two cases and note that they exhaust all possibil-
ities, up to replacing Z′ by another component Z′′ deduced from Z′ by letting
the symmetric group Sk act.

Case 1. The morphism p : Z′ → X is dominant. For a curve C ⊂ X
parameterizing points rationally equivalent to cX , consider the hypersurface

Z′C := p−1(C) ⊂ Z′.

Let q : Z′ → Xk−1 be the projection on the product of the k − 1 last factors.
Assume first that dim q(Z′C) = dim Z′C = k − d − 1. Note that all cycles of X
parameterized by q(Z′C) are rationally equivalent in X. Indeed, an element z of
Z′C is of the form (c, z′) with c ∈ C so that c = cX in CH0(X). So, the rational
equivalence class of z′ is equal to z − cX and is independent of z′ ∈ Z′C . Thus
the induction assumption applies and the cycles of degree k − 1 parameterized
by Im q belong to S k−1

d (X). It follows in turn that the classes of the cycles
parameterized by Z′ (or Z) belong to S k

d(X). Indeed, as just mentioned above,
a 0-cycle z parameterized by Z′ is rationally equivalent to z = cX + z′ where
z′ ∈ S k−1

d (X), so z′ is rationally equivalent to (k − d − 1)cX + z′′, z′′ ∈ X(d).
Hence z is rationally equivalent in X to (k−d)cX + z′′, for some z′′ ∈ X(d). Thus
z ∈ S k

d(X).
Assume to the contrary that dim q(Z′C) < dim Z′C = k− d− 1 for any curve C

as above. We use now the fact (see Lemma 11) that these curves C are Zariski
dense in X. We can thus assume that there is a point x ∈ Z′C which is generic in
Z′, so that both Z′ and Z′C are smooth at x, of respective dimensions k − d and
k − d − 1. The fact that dim q(Z′C) < k − d − 1 implies that q is not of maximal
rank k − d at x and as x is generic in Z′, we conclude that q is of rank < k − d
everywhere on Z′reg, so that dim Im q ≤ k − d − 1.
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428 C. Voisin

Now recall that all 0-cycles parameterized by Z′ are rationally equivalent.
It follows that for any fiber F of q, all points in p(F) are rationally equivalent
in X. This implies that all these points are rationally equivalent to cX by Lemma
10. This contradicts the fact that p is surjective.

Case 2. None of the projections pri, i = 1, . . . , k, from Xk to its factors restricts
to a dominant map pi : Z′ → X. Let Ci := Im pi ⊂ X if Im pri is a curve,
and any curve containing Im pi if Im pi is a point. Thus Z′ is contained in
C1 × · · · ×Ck.

Let C be a non-necessarily irreducible ample curve such that all points in C
are rationally equivalent to cX . Observe that the line bundle pr∗1OX(C) ⊗ · · · ⊗
pr∗kOX(C) on Xk has its restriction to C1 × · · · ×Ck ample and that its (k − d)th
self-intersection on C1 × . . . × Ck is a complete intersection of ample divisors
and is equal to

W := (k − d)!
∑

i1<...<ik−d

p∗i1OC1 (C) · . . . · p∗ik−d
OCk−d (C) (2)

in CHk−d(C1 × . . . × Ck), where the pi are the projections from
∏

i Ci to its
factors.

The cycle W of (2) is also the restriction to C1 × . . . × Ck of the effective
cycle

W ′ := (k − d)!
∑

i1<...<ik−d

pr∗i1C · . . . · pr∗ik−d
C. (3)

As the (k−d)-dimensional subvariety Z′ of C1×· · ·×Ck has a nonzero intersec-
tion with W, it follows that the intersection number of Z′ with W ′ is nonzero
in Xk, hence that

Z′ ∩ pr∗i1C · . . . · pr∗ik−d
C � ∅

for some choice of indices i1 < · · · < ik−d. This means that there exists a cycle
in Z which is of the form

z = z′ + z′′

with z′ ∈ C(k−d) and z′′ ∈ X(d). As z′ is supported on C, it is equal to (k − d)cX

in CH0(X) and we conclude that z ∈ S k
d(X).

Let us now prove the following variant of Theorem 9. Instead of a family of
0-cycles (that is, elements of X(k)), we now consider families of 0-dimensional
subschemes (that is, elements of X[k]):

Variant 12 Let k ≥ d and let Z ⊂ X[k] be a Zariski closed irreducible alge-
braic subset of dimension k−d. Assume that all cycles of X parameterized by Z
are rationally equivalent in X. Then the class of these cycles belongs to S k

d(X).
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Rational equivalence of 0-cycles on K3 surfaces 429

Proof Let z ∈ Z be a general point. The cycle c(z) of z, where c : X[k] → X(k)

is the Hilbert–Chow morphism, is of the form
∑

i kixi, with
∑

i ki = k, where xi

are k′ distinct points of X. We have of course

k′ = k −
∑

i

(ki − 1). (4)

The fiber of c over a cycle of the form
∑

i kixi as above is of dimension∑
i(ki−1) (see, e.g., [3]). It follows that the image Z1 of Z in X(k) is of dimension
≥ k − d − ∑i(ki − 1). By definition, Z1 is contained in a multiplicity-stratum
of X(k) where the support of the considered cycles has cardinality ≤ k′. Let
Z′1 ⊂ Xk′ be the set of (x1, . . . , xk′ ) such that

∑
i kixi ∈ c(Z). Then the morphism

Z′1 → Z1, (x1, . . . , xk′ ) �→
∑

i

kixi

is finite and surjective, so that

dim Z′1 = dim Z1 ≥ k − d −
∑

i

(ki − 1), (5)

which by (4) can be rewritten as

dim Z′1 = dim Z1 ≥ k′ − d.

Note that by construction, Z′1 parameterizes k′-uples (x1, . . . , xk′ ) with the
property that

∑
i kixi is rationally equivalent to a constant cycle.

The proof of Variant 12 then concludes with the following statement:

Proposition 13 Let l be a positive integer, k1 > 0, . . . , kl > 0 be positive
multiplicities. Let Z be a closed algebraic subset of Xl. Assume that dim Z ≥
l − d and the cycles

∑
i kixi, (x1, . . . , xl) ∈ Z, are all rationally equivalent in X.

Then the class of the cycles
∑

i kixi, (x1, . . . , xl) ∈ Z, belongs to S k
d(X), where

k =
∑

i ki.

For the proof of Proposition 13, we have to start with the following lemma:

Lemma 14 Let x1, . . . , xd ∈ X and let ki ∈ Z. Then
∑

i kixi ∈ S k
d(X), k =

∑
i ki.

Proof We use the following characterization of S d(X) given by O’Grady:

Proposition 15 (O’Grady [11]) A cycle z ∈ CH0(X) belongs to S d(X) if and
only if there exists a (possibly singular, possibly reducible) curve j : C ⊂ X,
such that the genus of the desingularization of C (or the sum of the genera
of its components if C is reducible) is not greater than d and z belongs to
Im ( j∗ : CH0(C)→ CH0(X)).
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430 C. Voisin

Let now x1, . . . , xd be as above. There exists by [9] a curve C ⊂ X, whose
desingularization has genus ≤ d and containing x1, . . . , xd. Thus for any ki, the
cycle

∑
i kixi is supported on C, which proves the lemma by Proposition 15.

Proof of Proposition 13 Proposition 13 is proved exactly as Theorem 9, by
induction on l. In case 1 considered in the induction step, we apply the same
argument as in that proof. In case 2 considered in the induction step, using
the same notation as in that proof, we conclude that there is in Z an l-uple
(x1, . . . , xl) satisfying (up to permutation of the indices)

xd+1 . . . , xl ∈ C,

and as any point of C is rationally equivalent to cX , we find that∑
i

kixi = (
∑
i>d

ki)cX +
∑
l≤i≤d

kixi.

By Lemma 14,
∑

1≤i≤d kixi ∈ S d(X), so that
∑

i kixi ∈ S d(X).

As mentioned in the Introduction, Theorem 9 in the case d = 0 provides
the following characterization of the cycle kcX , k > 0: it is the only degree-k
0-cycle z of X, whose orbit Oz ⊂ X(k) is k-dimensional (cf. Corollary 5). Let us
give a slightly more direct proof in this case. We use the following Lemma 16.
Let V be a 2-dimensional complex vector space. Let η ∈ ∧2 V∗ be a nonzero
generator, and let ω ∈ ∧1,1

R (V∗) be a positive real (1, 1)-form on V .

Lemma 16 Let W ⊂ Vk be a k-dimensional complex vector subspace
which is Lagrangian for the nondegenerate 2-form ηk :=

∑
i pr∗i η on Vk,

where the pris are the projections from Vk to V. Then
∏

i pr∗i ω restricts to
a volume form on W.

Proof The proof is by induction on k. Let π : W → Vk−1 be the projector
on the product of the last k − 1 summands. We can clearly assume, up to
changing the order of factors, that dim Ker π < 2. As dim Ker π ≤ 1, we can
choose a linear form μ on V such that the (k − 1)-dimensional vector space
Wμ := ker pr∗1μ|W is sent injectively by π to a (k − 1)-dimensional subspace
W ′ of Vk−1. Furthermore, since W is Lagrangian for ηk, W ′ is Lagrangian for
ηk−1 because Wμ ⊂ Ker μ × Vk−1, and on Ker μ × Vk−1, ηk = π∗ηk−1. By the
induction hypothesis, the form

∏
i>1 pr∗i ω restricts to a volume form on W ′,

where the projections here are considered as restricted to 0 × Vk−1, and it
follows that

pr∗1(
√
−1μ ∧ μ) ∧

∏
i>1

pr∗i ω
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Rational equivalence of 0-cycles on K3 surfaces 431

restricts to a volume form on W. It follows immediately that
∏

i≥1 pr∗i ω
restricts to a volume form on W since for a positive number α, we have

ω ≥ α
√
−1μ ∧ μ

as real (1, 1)-forms on V .

Proof of Corollary 5 Let z ∈ CH0(X) be a cycle of degree k such that
dim Oz ≥ k. Let Γ ⊂ Xk be an irreducible component of the inverse image
of a k-dimensional component of Oz ⊂ X(k) via the map Xk → X(k). By Mum-
ford’s theorem [10], using the fact that all the 0-cycles parameterized by Γ are
rationally equivalent in X, Γ is Lagrangian for the symplectic form

∑
i pr∗i ηX on

Xk, where ηX ∈ H2,0(X) is a generator. Let L be an ample line bundle on X such
that there is a curve D ⊂ X in the linear system |L|, all of whose components
are rational. We claim that

Γ ∩ Dk � ∅.

Indeed, it suffices to prove that the intersection number

[Γ] · [Dk] (6)

is positive. Let ωL ∈ H1,1(X) be a positive representative of c1(L). Then (6) is
equal to ∫

Γreg

∏
i

pr∗i ωL. (7)

By Lemma 16, the form
∏

i pr∗i ωL restricts to a volume form on Γ at any
smooth point of Γ and the integral (7) is thus positive.

3 Second Chern class of simple vector bundles

This section is devoted to the proof of Theorem 6. Recall first from [11] that,
in order to prove the result for a vector bundle F on X, it suffices to prove it for
F ⊗ L, where L is a line bundle on X. Choosing L sufficiently ample, we can
thus assume that F is generated by global sections, and furthermore that

H1(X, F∗) = 0. (8)

Let r = rank F. Choose a general (r−1)-dimensional subspace W of H0(X, F),
and consider the evaluation morphism

eW : W ⊗ OX → F.

The following result is well known (cf. [6, 5.1]):
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432 C. Voisin

Lemma 17 The morphism eW is generically injective, and the locus Z ⊂ X
where its rank is < r−1 consists of k distinct reduced points, where k = ctop

2 (F).

Proof Let G = Grass(r − 1, H0(X, F)) be the Grassmannian of (r − 1)-
dimension subspaces of H0(X, F). Consider the following universal subvariety
of G × X:

Gdeg := {(W, x) ∈ G × X, rank eW,x < r − 1}.

Since F is generated by sections, Gdeg is a fibration over X, with fibers smooth
away from the singular locus

Gsing
deg := {(W, x) ∈ G × X, rank eW,x < r − 2}.

Furthermore, we have

dim Gdeg = dim (G × X) − 2 = dim G

and dim Gsing
deg < dim G.

Consider the first projection: p1 : Gdeg → G. It follows from the obser-
vations above and from Sard’s theorem that for general W ∈ G, p−1

1 (W)
avoids Gsing

deg and consists of finitely many reduced points in X. The statement
concerning the number k of points follows from [4, 14.3], or from the follow-
ing argument that we will need later on. Given W such that the morphism eW

is generically injective, and the locus ZW where its rank is < r − 1 consists of k
distinct reduced points, we have an exact sequence

0→ W ⊗ OX → F → IZW ⊗ L → 0, (9)

where L = det F. Hence c2(F) = c2(IZ ⊗ L) = c2(IZ) = Z, and in particular
ctop

2 (F) = deg Z. This proves the lemma.

By Lemma 17, we have a rational map

φ : G � X(k), W �→ c(ZW ),

where c : X[k] → X(k) is the Hilbert–Chow morphism.

Proposition 18 If F is simple and satisfies assumption (8), the rational map
φ is generically one-to-one on its image.

Proof Let G0 ⊂ G be the Zariski open set parameterizing the subspaces
W ⊂ H0(X, F) of dimension r − 1 satisfying the conclusions of Lemma 17.
Note that c is a local isomorphism at a point ZW of X[k] consisting of k distinct
points, so that the dimension of the image of φ is equal to the dimension of the
image of the rational map G � X[k], W �→ ZW , which we will also denote by
φ. This φ is a morphism on G0 and it suffices to show that the map φ0 := φ|G0
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is injective. Let W ∈ G0, Z := φ(W). For any W ′ ∈ φ0−1
(Z), we have an exact

sequence as in (9):

0→ W′ ⊗ OX → F → IZ ⊗ L → 0, (10)

so that W ′ determines a morphism

tW′ : F → IZ ⊗ L,

and conversely, we recover W ′ from the data of tW′ up to a scalar as the space
of sections of Ker tW′ ⊂ F. We thus have an injection of the fiber φ0−1

(Z) into
P(Hom (F,IZ ⊗ L)).

In order to compute Hom (F,IZ ⊗ L), we tensor by F∗ the exact sequence
(9). We then get the long exact sequence

· · · → Hom (F, F)→ Hom (F,IZ ⊗ L)→ H1(X, F∗ ⊗W). (11)

By the vanishing (8), we conclude that the map

Hom (F, F)→ Hom (F,IZ ⊗ L)

is surjective. As F is simple, the LHS is generated by IdF , so the RHS is
generated by tW . The fiber φ0−1

(Z) thus consists of one point.

Proof of Theorem 6 Let F be a simple nontrivial globally generated vector
bundle of rank r, with h1(F) = 0 and with Mukai vector

v = vF = (r, l, s) ∈ H∗(X, Z).

This means that r = rank F, l = ctop
1 (F) ∈ H2(X, Z), and

χ(X, End F) =< v, v∗ >= 2rs − l2. (12)

The Riemann–Roch formula applied to End F gives

χ(X, End F) = 2r2 + (r − 1)l2 − 2rctop
2 (F), (13)

hence we get the formula (which can also be derived from the definition (1))

s = r +
l2

2
− ctop

2 (F). (14)

We have by definition of d(v)

χ(X, End F) = 2 − 2d(v),

and thus by (12)

d(v) = 1 − rs +
l2

2
. (15)
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The Riemann–Roch formula applied to F gives, furthermore,

χ(X, F) = 2r +
l2

2
− ctop

2 (F) (16)

which by (14) gives

χ(X, F) = r + s. (17)

As we assume h1(F) = 0 and we have h2(F) = 0, since F is nontrivial,
generated by sections and simple, we thus get

h0(X, F) = r + s. (18)

With the notation introduced above, we conclude that

dim G = (r − 1)(s + 1).

By Proposition 18, as all cycles parameterized by Im φ are rationally equivalent
in X, the orbit under rational equivalence of c2(F) in X(k), k = ctop

2 (F), has
dimension greater than or equal to

(r − 1)(s + 1) = rs − s + r − 1.

But we have by (14) and (15):

k − d(v) = r − s + rs − 1.

By Theorem 9, we conclude that c2(F) ∈ S k
d(v)(X).

Remark 4 Instead of proving that the general ZW is reduced and apply-
ing Theorem 9, we could as well apply Variant 12 directly to the family of
subschemes ZW .

For completeness, we conclude this section with the proof of Corollary 8,
although a large part of it mimics the proof of Proposition 3 in [11].

We recall for convenience the statement:

Corollary 19 Let v ∈ H∗(X, Z) be a Mukai vector. Assume there exists a
simple vector bundle F on X with Mukai vector v. Then

S k
d(X) = {c2(G), G a simple vector bundle on X, vG = v},

where d = d(v), k = c2(v) := ctop
2 (F), vF = v.

Proof The inclusion

{c2(G), G a simple vector bundle on X, vG = v} ⊂ S k
d(X) (19)

is the content of Theorem 6.
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For the reverse inclusion, we first prove that there exists a Zariski open set
U ⊂ X(d) such that

cl(U) + (k − d(v))cX ⊂ {c2(G), G a simple (20)

vector bundle on X, vG = v}

where cl : X(d) → CH0(X) is the cycle map.
As F is simple, the local deformations of F are unobstructed. Hence

there exist a smooth connected quasi-projective variety Y , a locally free sheaf
F on Y×X, and a point y0 ∈ Y such that Fy0 � F and the Kodaira–Spencer map

ρ : TY,y0 → H1(X, End F)

is an isomorphism.
As Fy0 is simple, so is Fy for y in a dense Zariski open set of Y . Shrinking

Y if necessary, Fy is simple for all y ∈ Y . By Theorem 6, we have c2(Fy) ∈
S d(v)(X) for all y ∈ Y .

Let Γ := c2(F ) ∈ CH2(Y × X). Consider the following set R ⊂ Y × X(d(v))

R = {(y, z), Γ∗(y) = c2(Fy) = cl(z) + (k − d(v))cX in CH0(X)},

where cl : X(d(v)) → CH0(X) is the cycle map and k = c2(v).
R is a countable union of closed algebraic subsets of Y × X(d) and by the

above inclusion (19), the first projection

R→ Y

is surjective. By a Baire category argument, it follows that for some component
R0 ⊂ R, the first projection is dominant.

We claim that the second projection R0 → X(d(v)) is also dominant. This
follows from the fact that by Mumford’s theorem, the pull-backs to R0 of the
holomorphic 2-forms on Y and X(d(v)) are equal. As the first projection is domi-
nant and the Mukai form on Y has rank 2d(v), the same is true for its pull-back
to R0 (or rather its smooth locus). Hence the pull-back to R0 of the symplectic
form on X(d(v)) by the second projection also has rank 2d(v). This implies that
the second projection is dominant, and hence that its image contains a Zariski
open set. Thus (20) is proved. The proof of Corollary 19 is then concluded with
Lemma 20 below.

Lemma 20 Let X be a K3 surface and d > 0 an integer. Then for any open
set (in the analytic or Zariski topology) U ⊂ X(d), we have

cl(U) = cl(X(d)) ⊂ CH0(X).
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436 C. Voisin

Proof It clearly suffices to prove the result for d = 1. It is proved in [8] that
for any point x ∈ X, the set of points y ∈ X rationally equivalent to x in X is
dense in X for the usual topology. This set thus meets U, so x ∈ cl(U).
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