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1.1 Variable Expressions

Learning Objectives

• Evaluate algebraic expressions.
• Evaluate algebraic expressions with exponents.

Introduction - The Language of Algebra

No one likes doing the same problem over and over again—that’s why mathematicians invented algebra. Algebra
takes the basic principles of math and makes them more general, so we can solve a problem once and then use that
solution to solve a group of similar problems.

In arithmetic, you’ve dealt with numbers and their arithmetical operations (such as +, −, ×, ÷). In algebra, we use
symbols called variables (which are usually letters, such as x, y, a, b, c, . . .) to represent numbers and sometimes
processes.

For example, we might use the letter x to represent some number we don’t know yet, which we might need to
figure out in the course of a problem. Or we might use two letters, like x and y, to show a relationship between
two numbers without needing to know what the actual numbers are. The same letters can represent a wide range
of possible numbers, and the same letter may represent completely different numbers when used in two different
problems.

Using variables offers advantages over solving each problem “from scratch.” With variables, we can:

• Formulate arithmetical laws such as a+b = b+a for all real numbers a and b.
• Refer to “unknown” numbers. For instance: find a number x such that 3x+1 = 10.
• Write more compactly about functional relationships such as, “If you sell x tickets, then your profit will be

3x−10 dollars, or “ f (x) = 3x−10,” where “ f ” is the profit function, and x is the input (i.e. how many tickets
you sell).

Example 1

Write an algebraic expression for the perimeter and area of the rectangle below.

To find the perimeter, we add the lengths of all 4 sides. We can still do this even if we don’t know the side lengths
in numbers, because we can use variables like l and w to represent the unknown length and width. If we start at the
top left and work clockwise, and if we use the letter P to represent the perimeter, then we can say:

2

http://www.ck12.org


www.ck12.org Chapter 1. Equations and Functions

P = l +w+ l +w

We are adding 2 l’s and 2 w’s, so we can say that:

P = 2 · l +2 ·w

It’s customary in algebra to omit multiplication symbols whenever possible. For example, 11x means the same thing
as 11 · x or 11× x. We can therefore also write:

P = 2l +2w

Area is length multiplied by width. In algebraic terms we get:

A = l×w→ A = l ·w→ A = lw

Note: 2l+2w by itself is an example of a variable expression; P = 2l+2w is an example of an equation. The main
difference between expressions and equations is the presence of an equals sign (=).

In the above example, we found the simplest possible ways to express the perimeter and area of a rectangle when we
don’t yet know what its length and width actually are. Now, when we encounter a rectangle whose dimensions we do
know, we can simply substitute (or plug in) those values in the above equations. In this chapter, we will encounter
many expressions that we can evaluate by plugging in values for the variables involved.

Evaluate Algebraic Expressions

When we are given an algebraic expression, one of the most common things we might have to do with it is evaluate
it for some given value of the variable. The following example illustrates this process.

Example 2

Let x = 12. Find the value of 2x−7.

To find the solution, we substitute 12 for x in the given expression. Every time we see x, we replace it with 12.

2x−7 = 2(12)−7

= 24−7

= 17

Note: At this stage of the problem, we place the substituted value in parentheses. We do this to make the written-out
problem easier to follow, and to avoid mistakes. (If we didn’t use parentheses and also forgot to add a multiplication
sign, we would end up turning 2x into 212 instead of 2 times 12!)

Example 3

Let y =−2. Find the value of 7
y −11y+2.

3
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Solution

7
(−2)

−11(−2)+2 =−3
1
2
+22+2

= 24−3
1
2

= 20
1
2

Many expressions have more than one variable in them. For example, the formula for the perimeter of a rectangle in
the introduction has two variables: length (l) and width (w). In these cases, be careful to substitute the appropriate
value in the appropriate place.

Example 4

The area of a trapezoid is given by the equation A = h
2(a+ b). Find the area of a trapezoid with bases a = 10 cm

and b = 15 cm and height h = 8 cm.

To find the solution to this problem, we simply take the values given for the variables a, b, and h, and plug them in
to the expression for A:

A =
h
2
(a+b) Substitute 10 for a, 15 for b, and 8 for h.

A =
8
2
(10+15) Evaluate piece by piece. 10+15 = 25;

8
2
= 4.

A = 4(25) = 100

Solution: The area of the trapezoid is 100 square centimeters.

Evaluate Algebraic Expressions with Exponents

Many formulas and equations in mathematics contain exponents. Exponents are used as a short-hand notation for
repeated multiplication. For example:

2 ·2 = 22

2 ·2 ·2 = 23

4
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The exponent stands for how many times the number is used as a factor (multiplied). When we deal with integers, it
is usually easiest to simplify the expression. We simplify:

22 = 4

23 = 8

However, we need exponents when we work with variables, because it is much easier to write x8 than x · x · x · x · x ·
x · x · x.

To evaluate expressions with exponents, substitute the values you are given for each variable and simplify. It is
especially important in this case to substitute using parentheses in order to make sure that the simplification is done
correctly.

For a more detailed review of exponents and their properties, check out the video at http://www.mathvids.com/less
on/mathhelp/863-exponents—basics.

Example 5

The area of a circle is given by the formula A = πr2. Find the area of a circle with radius r = 17 inches.

Substitute values into the equation.

A = πr2 Substitute 17 for r.

A = π(17)2
π ·17 ·17≈ 907.9202 . . . Round to 2 decimal places.

The area is approximately 907.92 square inches.

Example 6

Find the value of x2y3

x3+y2 , for x = 2 and y =−4.

Substitute the values of x and y in the following.

x2y3

x3 + y2 =
(2)2(−4)3

(2)3 +(−4)2 Substitute 2 for x and −4 for y.

4(−64)
8+16

=
−256

24
=
−32

3
Evaluate expressions: (2)2 = (2)(2) = 4 and

(2)3 = (2)(2)(2) = 8. (−4)2 = (−4)(−4) = 16 and

(−4)3 = (−4)(−4)(−4) =−64.

Example 7

5
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The height (h) of a ball in flight is given by the formula h =−32t2 +60t +20, where the height is given in feet and
the time (t) is given in seconds. Find the height of the ball at time t = 2 seconds.

Solution

h =−32t2 +60t +20

=−32(2)2 +60(2)+20 Substitute 2 for t.

=−32(4)+60(2)+20

= 12

The height of the ball is 12 feet.

Review Questions

1. Write the following in a more condensed form by leaving out a multiplication symbol.

a. 2×11x
b. 1.35 · y
c. 3× 1

4
d. 1

4 · z
2. Evaluate the following expressions for a =−3, b = 2, c = 5, and d =−4.

a. 2a+3b
b. 4c+d
c. 5ac−2b
d. 2a

c−d
e. 3b

d
f. a−4b

3c+2d
g. 1

a+b
h. ab

cd

3. Evaluate the following expressions for x =−1, y = 2, z =−3, and w = 4.

a. 8x3

b. 5x2

6z3

c. 3z2−5w2

d. x2− y2

e. z3+w3

z3−w3

f. 2x3−3x2 +5x−4
g. 4w3 +3w2−w+2
h. 3+ 1

z2

4. The weekly cost C of manufacturing x remote controls is given by the formula C = 2000+3x, where the cost
is given in dollars.

a. What is the cost of producing 1000 remote controls?
b. What is the cost of producing 2000 remote controls?
c. What is the cost of producing 2500 remote controls?

5. The volume of a box without a lid is given by the formula V = 4x(10− x)2, where x is a length in inches and
V is the volume in cubic inches.

6
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a. What is the volume when x = 2?
b. What is the volume when x = 3?

7
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1.2 Order of Operations

Learning Objectives

• Evaluate algebraic expressions with grouping symbols.
• Evaluate algebraic expressions with fraction bars.
• Evaluate algebraic expressions using a graphing calculator.

Introduction

Look at and evaluate the following expression:

2+4×7−1 =?

How many different ways can we interpret this problem, and how many different answers could someone possibly
find for it?

The simplest way to evaluate the expression is simply to start at the left and work your way across:

2+4×7−1

= 6×7−1

= 42−1

= 41

This is the answer you would get if you entered the expression into an ordinary calculator. But if you entered the
expression into a scientific calculator or a graphing calculator you would probably get 29 as the answer.

In mathematics, the order in which we perform the various operations (such as adding, multiplying, etc.) is
important. In the expression above, the operation of multiplication takes precedence over addition, so we evaluate
it first. Let’s re-write the expression, but put the multiplication in brackets to show that it is to be evaluated first.

2+(4×7)−1 =?

First evaluate the brackets: 4×7 = 28. Our expression becomes:

2+(28)−1 =?

When we have only addition and subtraction, we start at the left and work across:

8
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2+28−1

= 30−1

= 29

Algebra students often use the word “PEMDAS” to help remember the order in which we evaluate the mathematical
expressions: Parentheses, Exponents, Multiplication, Division, Addition and Subtraction.

Order of Operations

1. Evaluate expressions within Parentheses (also all brackets [ ] and braces { }) first.
2. Evaluate all Exponents (terms such as 32 or x3) next.
3. Multiplication and Division is next - work from left to right completing both multiplication and division in

the order that they appear.
4. Finally, evaluate Addition and Subtraction - work from left to right completing both addition and subtraction

in the order that they appear.

Evaluate Algebraic Expressions with Grouping Symbols

The first step in the order of operations is called parentheses, but we include all grouping symbols in this step—not
just parentheses (), but also square brackets [ ] and curly braces { }.

Example 1

Evaluate the following:

a) 4−7−11+2

b) 4− (7−11)+2

c) 4− [7− (11+2)]

Each of these expressions has the same numbers and the same mathematical operations, in the same order. The
placement of the various grouping symbols means, however, that we must evaluate everything in a different order
each time. Let’s look at how we evaluate each of these examples.

a) This expression doesn’t have parentheses, exponents, multiplication, or division. PEMDAS states that we treat
addition and subtraction as they appear, starting at the left and working right (it’s NOT addition then subtraction).

4−7−11+2 =−3−11+2

=−14+2

=−12

b) This expression has parentheses, so we first evaluate 7−11 =−4. Remember that when we subtract a negative it
is equivalent to adding a positive:

9
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4− (7−11)+2 = 4− (−4)+2

= 8+2

= 10

c) An expression can contain any number of sets of parentheses. Sometimes expressions will have sets of parentheses
inside other sets of parentheses. When faced with nested parentheses, start at the innermost parentheses and work
outward.

Brackets may also be used to group expressions which already contain parentheses. This expression has both
brackets and parentheses. We start with the innermost group: 11+ 2 = 13. Then we complete the operation in
the brackets.

4− [7− (11+2)] = 4− [7− (13)]

= 4− [−6]

= 10

Example 2

Evaluate the following:

a) 3×5−7÷2

b) 3× (5−7)÷2

c) (3×5)− (7÷2)

a) There are no grouping symbols. PEMDAS dictates that we multiply and divide first, working from left to right:
3×5 = 15 and 7÷2 = 3.5. (NOTE: It’s not multiplication then division.) Next we subtract:

3×5−7÷2 = 15−3.5

= 11.5

b) First, we evaluate the expression inside the parentheses: 5−7 =−2. Then work from left to right:

3× (5−7)÷2 = 3× (−2)÷2

= (−6)÷2

=−3

c) First, we evaluate the expressions inside parentheses: 3×5 = 15 and 7÷2 = 3.5. Then work from left to right:

(3×5)− (7÷2) = 15−3.5

= 11.5

Note that adding parentheses didn’t change the expression in part c, but did make it easier to read. Parentheses can
be used to change the order of operations in an expression, but they can also be used simply to make it easier to
understand.

10
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We can also use the order of operations to simplify an expression that has variables in it, after we substitute specific
values for those variables.

Example 3

Use the order of operations to evaluate the following:

a) 2− (3x+2) when x = 2

b) 3y2 +2y+1 when y =−3

c) 2− (t−7)2× (u3− v) when t = 19, u = 4, and v = 2

a) The first step is to substitute the value for x into the expression. We can put it in parentheses to clarify the resulting
expression.

2− (3(2)+2)

(Note: 3(2) is the same as 3×2.)

Follow PEMDAS - first parentheses. Inside parentheses follow PEMDAS again.

2− (3×2+2) = 2− (6+2) Inside the parentheses, we multiply first.

2−8 =−6 Next we add inside the parentheses, and finally we subtract.

b) The first step is to substitute the value for y into the expression.

3× (−3)2 +2× (−3)−1

Follow PEMDAS: we cannot simplify the expressions in parentheses, so exponents come next.

3× (−3)2 +2× (−3)−1 Evaluate exponents: (−3)2 = 9

= 3×9+2× (−3)−1 Evaluate multiplication: 3×9 = 27; 2×−3 =−6

= 27+(−6)−1 Add and subtract in order from left to right.

= 27−6−1

= 20

c) The first step is to substitute the values for t, u, and v into the expression.

2− (19−7)2× (43−2)

Follow PEMDAS:

2− (19−7)2× (43−2) Evaluate parentheses: (19−7) = 12; (43−2) = (64−2) = 62

= 2−122×62 Evaluate exponents: 122 = 144

= 2−144×62 Multiply: 144×62 = 8928

= 2−8928 Subtract.

=−8926
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In parts (b) and (c) we left the parentheses around the negative numbers to clarify the problem. They did not affect
the order of operations, but they did help avoid confusion when we were multiplying negative numbers.

Part (c) in the last example shows another interesting point. When we have an expression inside the parentheses, we
use PEMDAS to determine the order in which we evaluate the contents.

Evaluate Algebraic Expressions with Fraction Bars

Fraction bars count as grouping symbols for PEMDAS, so we evaluate them in the first step of solving an expression.
All numerators and all denominators can be treated as if they have invisible parentheses around them. When real
parentheses are also present, remember that the innermost grouping symbols come first. If, for example, parentheses
appear on a numerator, they would take precedence over the fraction bar. If the parentheses appear outside of the
fraction, then the fraction bar takes precedence.

Example 4

Use the order of operations to evaluate the following expressions:

a) z+3
4 −1 when z = 2

b)
(a+2

b+4 −1
)
+b when a = 3 and b = 1

c) 2×
(

w+(x−2z)
(y+2)2 −1

)
when w = 11,x = 3,y = 1, and z =−2

a) We substitute the value for z into the expression.

2+3
4
−1

Although this expression has no parentheses, the fraction bar is also a grouping symbol—it has the same effect as a
set of parentheses. We can write in the “invisible parentheses” for clarity:

(2+3)
4
−1

Using PEMDAS, we first evaluate the numerator:

5
4
−1

We can convert 5
4 to a mixed number:

5
4
= 1

1
4

Then evaluate the expression:

5
4
−1 = 1

1
4
−1 =

1
4

12
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b) We substitute the values for a and b into the expression:

(
3+2
1+4

−1
)
+1

This expression has nested parentheses (remember the effect of the fraction bar). The innermost grouping symbol is
provided by the fraction bar. We evaluate the numerator (3+2) and denominator (1+4) first.

(
3+2
1+4

−1
)
+1 =

(
5
5
−1
)
+1 Next we evaluate the inside of the parentheses. First we divide.

= (1−1)+1 Next we subtract.

= 0+1 = 1

c) We substitute the values for w,x,y, and z into the expression:

2×
(

11+(3−2(−2))
(1+2)2 −1

)
This complicated expression has several layers of nested parentheses. One method for ensuring that we start with
the innermost parentheses is to use more than one type of parentheses. Working from the outside, we can leave the
outermost brackets as parentheses (). Next will be the “invisible brackets” from the fraction bar; we will write these
as [ ]. The third level of nested parentheses will be the { }. We will leave negative numbers in round brackets.

2×

 [11+{3−2(−2)}][
{1+2}2

] −1

 Start with the innermost grouping sign: {} .

{1+2}= 3; {3−2(−2)}= 3+4 = 7

= 2
(
[11+7]
[32]

−1
)

Next, evaluate the square brackets.

= 2
(

18
9
−1
)

Next, evaluate the round brackets. Start with division.

= 2(2−1) Finally, do the addition and subtraction.

= 2(1) = 2

Evaluate Algebraic Expressions with a TI-83/84 Family Graphing Calculator

A graphing calculator is a very useful tool in evaluating algebraic expressions. Like a scientific calculator, a graphing
calculator follows PEMDAS. In this section we will explain two ways of evaluating expressions with the graphing
calculator.

Example 5

Evaluate
[
3(x2−1)2− x4 +12

]
+5x3−1 when x =−3.

Method 1: Substitute for the variable first. Then evaluate the numerical expression with the calculator.

Substitute the value x =−3 into the expression.

[
3((−3)2−1)2− (−3)4 +12

]
+5(−3)3−1
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Input this in the calculator just as it is and press [ENTER]. (Note: use ∧ to enter exponents)

The answer is -13.

Method 2: Input the original expression in the calculator first and then evaluate.

First, store the value x = −3 in the calculator. Type -3 [STO] x (The letter x can be entered using the x−[VAR]
button or [ALPHA] + [STO]). Then type the original expression in the calculator and press [ENTER].

The answer is -13.

The second method is better because you can easily evaluate the same expression for any value you want. For
example, let’s evaluate the same expression using the values x = 2 and x = 2

3 .

For x= 2, store the value of x in the calculator: 2[STO] x. Press [2nd] [ENTER] twice to get the previous expression
you typed in on the screen without having to enter it again. Press [ENTER] to evaluate the expression.

The answer is 62.

For x = 2
3 , store the value of x in the calculator: 2

3 [STO] x. Press [2nd] [ENTER] twice to get the expression on the
screen without having to enter it again. Press [ENTER] to evaluate.

The answer is 13.21, or 1070
81 in fraction form.

Note: On graphing calculators there is a difference between the minus sign and the negative sign. When we stored
the value negative three, we needed to use the negative sign which is to the left of the [ENTER] button on the
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calculator. On the other hand, to perform the subtraction operation in the expression we used the minus sign. The
minus sign is right above the plus sign on the right.

You can also use a graphing calculator to evaluate expressions with more than one variable.

Example 7

Evaluate the expression 3x2−4y2+x4

(x+y)
1
2

for x = 2, y =−1.

Solution

Store the values of x and y: 2 [STO] x, -1 [STO] y. (The letters x and y can be entered using [ALPHA] +
[KEY].) Input the expression in the calculator. When an expression includes a fraction, be sure to use parentheses:
(numerator)

(denominator) .

Press [ENTER] to obtain the answer 24.

Additional Resources

For more practice, you can play an algebra game involving order of operations online at http://www.funbrain.com/
algebra/index.html.

Review Questions

1. Use the order of operations to evaluate the following expressions.

a. 8− (19− (2+5)−7)
b. 2+7×11−12÷3
c. (3+7)÷ (7−12)
d. 2·(3+(2−1))

4−(6+2) − (3−5)

e. 4+7(3)
9−4 + 12−3·2

2
f. (4−1)2 +32 ·2
g. (22+5)2

52−42 ÷ (2+1)

2. Evaluate the following expressions involving variables.

a. jk
j+k when j = 6 and k = 12

b. 2y2 when x = 1 and y = 5
c. 3x2 +2x+1 when x = 5
d. (y2− x)2 when x = 2 and y = 1
e. x+y2

y−x when x = 2 and y = 3
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3. Evaluate the following expressions involving variables.

a. 4x
9x2−3x+1 when x = 2

b. z2

x+y +
x2

x−y when x = 1, y =−2, and z = 4

c. 4xyz
y2−x2 when x = 3, y = 2, and z = 5

d. x2−z2

xz−2x(z−x) when x =−1 and z = 3

4. Insert parentheses in each expression to make a true equation.

a. 5−2×6−5+2 = 5
b. 12÷4+10−3×3+7 = 11
c. 22−32−5×3−6 = 30
d. 12−8−4×5 =−8

5. Evaluate each expression using a graphing calculator.

a. x2 +2x− xy when x = 250 and y =−120
b. (xy− y4)2 when x = 0.02 and y =−0.025
c. x+y−z

xy+yz+xz when x = 1
2 , y = 3

2 , and z =−1

d. (x+y)2

4x2−y2 when x = 3 and y =−5

e. (x−y)3

x3−y + (x+y)2

x+y4 when x = 4 and y =−2
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1.3 Patterns and Equations

Learning Objectives

• Write an equation.
• Use a verbal model to write an equation.
• Solve problems using equations.

Introduction

In mathematics, and especially in algebra, we look for patterns in the numbers we see. The tools of algebra help
us describe these patterns with words and with equations (formulas or functions). An equation is a mathematical
recipe that gives the value of one variable in terms of another.

For example, if a theme park charges $12 admission, then the number of people who enter the park every day and
the amount of money taken in by the ticket office are related mathematically, and we can write a rule to find the
amount of money taken in by the ticket office.

In words, we might say “The amount of money taken in is equal to twelve times the number of people who enter the
park.”

We could also make a table. The following table relates the number of people who visit the park and the total money
taken in by the ticket office.

Number of visitors 1 2 3 4 5 6 7

Money taken in ($) 12 24 36 48 60 72 84

Clearly, we would need a big table to cope with a busy day in the middle of a school vacation!

A third way we might relate the two quantities (visitors and money) is with a graph. If we plot the money taken in
on the vertical axis and the number of visitors on the horizontal axis, then we would have a graph that looks like
the one shown below. Note that this graph shows a smooth line that includes non-whole number values of x (e.g.
x = 2.5). In real life this would not make sense, because fractions of people can’t visit a park. This is an issue of
domain and range, something we will talk about later.
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The method we will examine in detail in this lesson is closer to the first way we chose to describe the relationship.
In words we said that “The amount of money taken in is twelve times the number of people who enter the park.” In
mathematical terms we can describe this sort of relationship with variables. A variable is a letter used to represent
an unknown quantity. We can see the beginning of a mathematical formula in the words:

The amount of money taken in is twelve times the number of people who enter the park.

This can be translated to:

the amount of money taken in = 12× (the number of people who enter the park)

We can now see which quantities can be assigned to letters. First we must state which letters (or variables) relate
to which quantities. We call this defining the variables:

Let x = the number of people who enter the theme park.

Let y = the total amount of money taken in at the ticket office.

We now have a fourth way to describe the relationship: with an algebraic equation.

y = 12x

Writing a mathematical equation using variables is very convenient. You can perform all of the operations necessary
to solve this problem without having to write out the known and unknown quantities over and over again. At the end
of the problem, you just need to remember which quantities x and y represent.

Write an Equation

An equation is a term used to describe a collection of numbers and variables related through mathematical oper-
ators. An algebraic equation will contain letters that represent real quantities. For example, if we wanted to use
the algebraic equation in the example above to find the money taken in for a certain number of visitors, we would
substitute that number for x and then solve the resulting equation for y.

Example 1
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A theme park charges $12 entry to visitors. Find the money taken in if 1296 people visit the park.

Let’s break the solution to this problem down into steps. This will be a useful strategy for all the problems in this
lesson.

Step 1: Extract the important information.

(number of dollars taken in) = 12× (number of visitors)

(number of visitors) = 1296

Step 2: Translate into a mathematical equation. To do this, we pick variables to stand for the numbers.

Let y = (number of dollars taken in).

Let x = (number of visitors).

(number of dollars taken in) = 12× (number of visitors)

y = 12× x

Step 3: Substitute in any known values for the variables.

y = 12× x

x = 1296

∴

y = 12×1296

Step 4: Solve the equation.

y = 12×1296 = 15552

The amount of money taken in is $15552.

Step 5: Check the result.

If $15552 is taken at the ticket office and tickets are $12, then we can divide the total amount of money collected by
the price per individual ticket.

(number of people) =
15552

12
= 1296

1296 is indeed the number of people who entered the park. The answer checks out.

Example 2

The following table shows the relationship between two quantities. First, write an equation that describes the
relationship. Then, find out the value of b when a is 750.
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a 0 10 20 30 40 50

b 20 40 60 80 100 120

Step 1: Extract the important information.

We can see from the table that every time a increases by 10, b increases by 20. However, b is not simply twice the
value of a. We can see that when a = 0, b = 20, and this gives a clue as to what rule the pattern follows. The rule
linking a and b is:

“To find b, double the value of a and add 20.”

Step 2: Translate into a mathematical equation:

TABLE 1.1:

Text Translates to Mathematical Expression
“To find b” → b =
“double the value of a” → 2a
“add 20” → + 20

Our equation is b = 2a+20.

Step 3: Solve the equation.

The original problem asks for the value of b when a is 750. When a is 750, b = 2a+20 becomes b = 2(750)+20.
Following the order of operations, we get:

b = 2(750)+20

= 1500+20

= 1520

Step 4: Check the result.

In some cases you can check the result by plugging it back into the original equation. Other times you must simply
double-check your math. In either case, checking your answer is always a good idea. In this case, we can plug our
answer for b into the equation, along with the value for a, and see what comes out. 1520 = 2(750)+ 20 is TRUE
because both sides of the equation are equal. A true statement means that the answer checks out.

Use a Verbal Model to Write an Equation

In the last example we developed a rule, written in words, as a way to develop an algebraic equation. We will
develop this further in the next few examples.

Example 3

The following table shows the values of two related quantities. Write an equation that describes the relationship
mathematically.
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TABLE 1.2:

x−value y−value
-2 10
0 0
2 -10
4 -20
6 -30

Step 1: Extract the important information.

We can see from the table that y is five times bigger than x. The value for y is negative when x is positive, and it is
positive when x is negative. Here is the rule that links x and y:

“y is the negative of five times the value of x”

Step 2: Translate this statement into a mathematical equation.

TABLE 1.3:

Text Translates to Mathematical Expression
“y is” → y =
“negative 5 times the value of x” → −5x

Our equation is y =−5x.

Step 3: There is nothing in this problem to solve for. We can move to Step 4.

Step 4: Check the result.

In this case, the way we would check our answer is to use the equation to generate our own xy pairs. If they match
the values in the table, then we know our equation is correct. We will plug in -2, 0, 2, 4, and 6 for x and solve for y:

TABLE 1.4:

x y
-2 −5(−2) = 10
0 −5(0) = 0
2 −5(2) =−10
4 −5(4) =−20
6 −5(6) =−30

The y−values in this table match the ones in the earlier table. The answer checks out.

Example 4

Zarina has a $100 gift card, and she has been spending money on the card in small regular amounts. She checks the
balance on the card weekly and records it in the following table.

TABLE 1.5:

Week Number Balance ($)
1 100
2 78
3 56
4 34
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Write an equation for the money remaining on the card in any given week.

Step 1: Extract the important information.

The balance remaining on the card is not just a constant multiple of the week number; 100 is 100 times 1, but 78 is
not 100 times 2. But there is still a pattern: the balance decreases by 22 whenever the week number increases by 1.
This suggests that the balance is somehow related to the amount “-22 times the week number.”

In fact, the balance equals “-22 times the week number, plus something.” To determine what that something is, we
can look at the values in one row on the table—for example, the first row, where we have a balance of $100 for week
number 1.

Step 2: Translate into a mathematical equation.

First, we define our variables. Let n stand for the week number and b for the balance.

Then we can translate our verbal expression as follows:

TABLE 1.6:

Text Translates to Mathematical Expression
Balance equals -22 times the week
number, plus something.

→ b =−22n+?

To find out what that ? represents, we can plug in the values from that first row of the table, where b = 100 and
n = 1. This gives us 100 =−22(1)+?.

So what number gives 100 when you add -22 to it? The answer is 122, so that is the number the ? stands for. Now
our final equation is:

b =−22n+122

Step 3: All we were asked to find was the expression. We weren’t asked to solve it, so we can move to Step 4.

Step 4: Check the result.

To check that this equation is correct, we see if it really reproduces the data in the table. To do that we plug in values
for n:

n = 1→ b =−22(1)+122 = 122−22 = 100

n = 2→ b =−22(2)+122 = 122−44 = 78

n = 3→ b =−22(3)+122 = 122−66 = 56

n = 4→ b =−22(4)+122 = 122−88 = 34

The equation perfectly reproduces the data in the table. The answer checks out.

Solve Problems Using Equations

Let’s solve the following real-world problem by using the given information to write a mathematical equation that
can be solved for a solution.

Example 5
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A group of students are in a room. After 25 students leave, it is found that 2
3 of the original group is left in the room.

How many students were in the room at the start?

Step 1: Extract the important information

We know that 25 students leave the room.

We know that 2
3 of the original number of students are left in the room.

We need to find how many students were in the room at the start.

Step 2: Translate into a mathematical equation. Initially we have an unknown number of students in the room. We
can refer to this as the original number.

Let’s define the variable x = the original number of students in the room. After 25 students leave the room, the
number of students in the room is x−25. We also know that the number of students left is 2

3 of x. So we have two
expressions for the number of students left, and those two expressions are equal because they represent the same
number. That means our equation is:

2
3

x = x−25

Step 3: Solve the equation.

Add 25 to both sides.

x−25 =
2
3

x

x−25+25 =
2
3

x+25

x =
2
3

x+25

Subtract 2
3 x from both sides.

x− 2
3

x =
2
3

x− 2
3

x+25

1
3

x = 25

Multiply both sides by 3.

3 · 1
3

x = 3 ·25

x = 75

Remember that x represents the original number of students in the room. So, there were 75 students in the room to
start with.

Step 4: Check the answer:

If we start with 75 students in the room and 25 of them leave, then there are 75−25 = 50 students left in the room.
2
3 of the original number is 2

3 ·75 = 50.
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This means that the number of students who are left over equals 2
3 of the original number. The answer checks out.

The method of defining variables and writing a mathematical equation is the method you will use the most in an
algebra course. This method is often used together with other techniques such as making a table of values, creating
a graph, drawing a diagram and looking for a pattern.

Review Questions

TABLE 1.7:

Day Profit
1 20
2 40
3 60
4 80
5 100

1. The above table depicts the profit in dollars taken in by a store each day.

a. Write a mathematical equation that describes the relationship between the variables in the table.
b. What is the profit on day 10?
c. If the profit on a certain day is $200, what is the profit on the next day?

1. Write a mathematical equation that describes the situation: A full cookie jar has 24 cookies. How many
cookies are left in the jar after you have eaten some?

2. How many cookies are in the jar after you have eaten 9 cookies?
3. How many cookies are in the jar after you have eaten 9 cookies and then eaten 3 more?

2. Write a mathematical equation for the following situations and solve.

a. Seven times a number is 35. What is the number?
b. Three times a number, plus 15, is 24. What is the number?
c. Twice a number is three less than five times another number. Three times the second number is 15. What

are the numbers?
d. One number is 25 more than 2 times another number. If each number were multiplied by five, their sum

would be 350. What are the numbers?
e. The sum of two consecutive integers is 35. What are the numbers?
f. Peter is three times as old as he was six years ago. How old is Peter?

3. How much water should be added to one liter of pure alcohol to make a mixture of 25% alcohol?
4. A mixture of 50% alcohol and 50% water has 4 liters of water added to it. It is now 25% alcohol. What was

the total volume of the original mixture?
5. In Crystal’s silverware drawer there are twice as many spoons as forks. If Crystal adds nine forks to the

drawer, there will be twice as many forks as spoons. How many forks and how many spoons are in the drawer
right now?

1. Mia drove to Javier’s house at 40 miles per hour. Javier’s house is 20 miles away. Mia arrived at Javier’s
house at 2:00 pm. What time did she leave?

2. Mia left Javier’s house at 6:00 pm to drive home. This time she drove 25% faster. What time did she
arrive home?

3. The next day, Mia took the expressway to Javier’s house. This route was 24 miles long, but she was able
to drive at 60 miles per hour. How long did the trip take?

4. When Mia took the same route back, traffic on the expressway was 20% slower. How long did the return
trip take?

24

http://www.ck12.org


www.ck12.org Chapter 1. Equations and Functions

6. The price of an mp3 player decreased by 20% from last year to this year. This year the price of the player is
$120. What was the price last year?

7. SmartCo sells deluxe widgets for $60 each, which includes the cost of manufacture plus a 20% markup. What
does it cost SmartCo to manufacture each widget?

8. Jae just took a math test with 20 questions, each worth an equal number of points. The test is worth 100 points
total.

a. Write an equation relating the number of questions Jae got right to the total score he will get on the test.
b. If a score of 70 points earns a grade of C−, how many questions would Jae need to get right to get a C−

on the test?
c. If a score of 83 points earns a grade of B, how many questions would Jae need to get right to get a B on

the test?
d. Suppose Jae got a score of 60% and then was allowed to retake the test. On the retake, he got all the

questions right that he got right the first time, and also got half the questions right that he got wrong the
first time. What is his new score?
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1.4 Equations and Inequalities

Learning Objectives

• Write equations and inequalities.
• Check solutions to equations.
• Check solutions to inequalities.
• Solve real-world problems using an equation.

Introduction

In algebra, an equation is a mathematical expression that contains an equals sign. It tells us that two expressions
represent the same number. For example, y = 12x is an equation. An inequality is a mathematical expression
that contains inequality signs. For example, y ≤ 12x is an inequality. Inequalities are used to tell us that an
expression is either larger or smaller than another expression. Equations and inequalities can contain both variables
and constants.

Variables are usually given a letter and they are used to represent unknown values. These quantities can change
because they depend on other numbers in the problem.

Constants are quantities that remain unchanged. Ordinary numbers like 2, −3, 3
4 , and π are constants.

Equations and inequalities are used as a shorthand notation for situations that involve numerical data. They are very
useful because most problems require several steps to arrive at a solution, and it becomes tedious to repeatedly write
out the situation in words.

Write Equations and Inequalities

Here are some examples of equations:

3x−2 = 5 x+9 = 2x+5
x
3
= 15 x2 +1 = 10

To write an inequality, we use the following symbols:

>greater than

≥greater than or equal to

<less than

≤less than or equal to

6=not equal to

Here are some examples of inequalities:
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3x < 5 4− x≤ 2x x2 +2x−1 > 0
3x
4
≥ x

2
−3

The most important skill in algebra is the ability to translate a word problem into the correct equation or inequality
so you can find the solution easily. The first two steps are defining the variables and translating the word problem
into a mathematical equation.

Defining the variables means that we assign letters to any unknown quantities in the problem.

Translating means that we change the word expression into a mathematical expression containing variables and
mathematical operations with an equal sign or an inequality sign.

Example 1

Define the variables and translate the following expressions into equations.

a) A number plus 12 is 20.

b) 9 less than twice a number is 33.

c) $20 was one quarter of the money spent on the pizza.

Solution

a) Define

Let n = the number we are seeking.

Translate

A number plus 12 is 20.

n+12 = 20

b) Define

Let n = the number we are seeking.

Translate

9 less than twice a number is 33.

This means that twice the number, minus 9, is 33.

2n−9 = 33

c) Define

Let m = the money spent on the pizza.

Translate

$20 was one quarter of the money spent on the pizza.

20 =
1
4

m

Often word problems need to be reworded before you can write an equation.
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Example 2

Find the solution to the following problems.

a) Shyam worked for two hours and packed 24 boxes. How much time did he spend on packing one box?

b) After a 20% discount, a book costs $12. How much was the book before the discount?

Solution

a) Define

Let t = time it takes to pack one box.

Translate

Shyam worked for two hours and packed 24 boxes. This means that two hours is 24 times the time it takes to pack
one box.

2 = 24t

Solve

t =
2
24

=
1

12
hours

1
12
×60 minutes = 5 minutes

Answer

Shyam takes 5 minutes to pack a box.

b) Define

Let p = the price of the book before the discount.

Translate

After a 20% discount, the book costs $12. This means that the price minus 20% of the price is $12.

p−0.20p = 12

Solve

p−0.20p = 0.8p, so 0.8p = 12

p =
12
0.8

= 15

Answer

The price of the book before the discount was $15.

Check

If the original price was $15, then the book was discounted by 20% of $15, or $3. $15− 3 = $12. The answer
checks out.
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Example 3

Define the variables and translate the following expressions into inequalities.

a) The sum of 5 and a number is less than or equal to 2.

b) The distance from San Diego to Los Angeles is less than 150 miles.

c) Diego needs to earn more than an 82 on his test to receive a B in his algebra class.

d) A child needs to be 42 inches or more to go on the roller coaster.

Solution

a) Define

Let n = the unknown number.

Translate

5+n≤ 2

b) Define

Let d = the distance from San Diego to Los Angeles in miles.

Translate

d < 150

c) Define

Let x = Diego’s test grade.

Translate

x > 82

d) Define

Let h = the height of child in inches.

Translate:

h≥ 42

Check Solutions to Equations

You will often need to check solutions to equations in order to check your work. In a math class, checking that you
arrived at the correct solution is very good practice. We check the solution to an equation by replacing the variable
in an equation with the value of the solution. A solution should result in a true statement when plugged into the
equation.

Example 4
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Check that the given number is a solution to the corresponding equation.

a) y =−1; 3y+5 =−2y

b) z = 3; z2 +2z = 8

c) x =−1
2 ; 3x+1 = x

Solution

Replace the variable in each equation with the given value.

a)

3(−1)+5 =−2(−1)

−3+5 = 2

2 = 2

This is a true statement. This means that y =−1 is a solution to 3y+5 =−2y.

b)

32 +2(3) = 8

9+6 = 8

15 = 8

This is not a true statement. This means that z = 3 is not a solution to z2 +2z = 8 .

c)

3
(
−1

2

)
+1 =−1

2(
−3

2

)
+1 =−1

2

−1
2
=−1

2

This is a true statement. This means that x =−1
2 is a solution to 3x+1 = x.

Check Solutions to Inequalities

To check the solution to an inequality, we replace the variable in the inequality with the value of the solution. A
solution to an inequality produces a true statement when substituted into the inequality.

Example 5

Check that the given number is a solution to the corresponding inequality.

a) a = 10; 20a≤ 250

b) b =−0.5; 3−b
b >−4

c) x = 3
4 ; 4x+5≤ 8

Solution

Replace the variable in each inequality with the given value.
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a)

20(10)≤ 250

200≤ 250

This statement is true. This means that a = 10 is a solution to the inequality 20a≤ 250.

Note that a = 10 is not the only solution to this inequality. If we divide both sides of the inequality by 20, we can
write it as a≤ 12.5. This means that any number less than or equal to 12.5 is also a solution to the inequality.

b)

3− (−0.5)
(−0.5)

>−4

3+0.5
−0.5

>−4

−3.5
0.5

>−4

−7 >−4

This statement is false. This means that b =−0.5 is not a solution to the inequality 3−b
b >−4 .

c)

4
(

3
4

)
+5≥ 8

3+5≥ 8

8≥ 8

This statement is true. It is true because this inequality includes an equals sign; since 8 is equal to itself, it is also
“greater than or equal to” itself. This means that x = 3

4 is a solution to the inequality 4x+5≤ 8.

Solve Real-World Problems Using an Equation

Let’s use what we have learned about defining variables, writing equations and writing inequalities to solve some
real-world problems.

Example 6

Tomatoes cost $0.50 each and avocados cost $2.00 each. Anne buys six more tomatoes than avocados. Her total bill
is $8. How many tomatoes and how many avocados did Anne buy?

Solution

Define

Let a = the number of avocados Anne buys.

Translate

Anne buys six more tomatoes than avocados. This means that a+6 = the number of tomatoes.

Tomatoes cost $0.50 each and avocados cost $2.00 each. Her total bill is $8. This means that .50 times the number
of tomatoes plus 2 times the number of avocados equals 8.
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0.5(a+6)+2a = 8

0.5a+0.5 ·6+2a = 8

2.5a+3 = 8

2.5a = 5

a = 2

Remember that a= the number of avocados, so Anne buys two avocados. The number of tomatoes is a+6= 2+6=
8.

Answer

Anne bought 2 avocados and 8 tomatoes.

Check

If Anne bought two avocados and eight tomatoes, the total cost is: (2× 2)+ (8× 0.5) = 4+ 4 = 8. The answer
checks out.

Example 7

To organize a picnic Peter needs at least two times as many hamburgers as hot dogs. He has 24 hot dogs. What is
the possible number of hamburgers Peter has?

Solution

Define

Let x = number of hamburgers

Translate

Peter needs at least two times as many hamburgers as hot dogs. He has 24 hot dogs.

This means that twice the number of hot dogs is less than or equal to the number of hamburgers.

2×24≤ x, or 48≤ x

Answer

Peter needs at least 48 hamburgers.

Check

48 hamburgers is twice the number of hot dogs. So more than 48 hamburgers is more than twice the number of hot
dogs. The answer checks out.

Additional Resources

For more practice solving inequalities, check out http://www.aaastudy.com/equ725x7.htm.

Review Questions

1. Define the variables and translate the following expressions into equations.
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a. Peter’s Lawn Mowing Service charges $10 per job and $0.20 per square yard. Peter earns $25 for a job.
b. Renting the ice-skating rink for a birthday party costs $200 plus $4 per person. The rental costs $324 in

total.
c. Renting a car costs $55 per day plus $0.45 per mile. The cost of the rental is $100.
d. Nadia gave Peter 4 more blocks than he already had. He already had 7 blocks.

2. Define the variables and translate the following expressions into inequalities.

a. A bus can seat 65 passengers or fewer.
b. The sum of two consecutive integers is less than 54.
c. The product of a number and 3 is greater than 30.
d. An amount of money is invested at 5% annual interest. The interest earned at the end of the year is

greater than or equal to $250.
e. You buy hamburgers at a fast food restaurant. A hamburger costs $0.49. You have at most $3 to spend.

Write an inequality for the number of hamburgers you can buy.
f. Mariel needs at least 7 extra credit points to improve her grade in English class. Additional book reports

are worth 2 extra credit points each. Write an inequality for the number of book reports Mariel needs to
do.

3. Check whether the given number is a solution to the corresponding equation.

a. a =−3; 4a+3 =−9
b. x = 4

3 ; 3
4 x+ 1

2 = 3
2

c. y = 2; 2.5y−10.0 =−5.0
d. z =−5; 2(5−2z) = 20−2(z−1)

4. Check whether the given number is a solution to the corresponding inequality.

a. x = 12; 2(x+6)≤ 8x
b. z =−9; 1.4z+5.2 > 0.4z
c. y = 40; −5

2 y+ 1
2 <−18

d. t = 0.4; 80≥ 10(3t +2)

5. The cost of a Ford Focus is 27% of the price of a Lexus GS 450h. If the price of the Ford is $15000, what is
the price of the Lexus?

6. On your new job you can be paid in one of two ways. You can either be paid $1000 per month plus 6%
commission of total sales or be paid $1200 per month plus 5% commission on sales over $2000. For what
amount of sales is the first option better than the second option? Assume there are always sales over $2000.

7. A phone company offers a choice of three text-messaging plans. Plan A gives you unlimited text messages for
$10 a month; Plan B gives you 60 text messages for $5 a month and then charges you $0.05 for each additional
message; and Plan C has no monthly fee but charges you $0.10 per message.

a. If m is the number of messages you send per month, write an expression for the monthly cost of each of
the three plans.

b. For what values of m is Plan A cheaper than Plan B?
c. For what values of m is Plan A cheaper than Plan C?
d. For what values of m is Plan B cheaper than Plan C?
e. For what values of m is Plan A the cheapest of all? (Hint: for what values is A both cheaper than B and

cheaper than C?)
f. For what values of m is Plan B the cheapest of all? (Careful—for what values is B cheaper than A?)
g. For what values of m is Plan C the cheapest of all?
h. If you send 30 messages per month, which plan is cheapest?
i. What is the cost of each of the three plans if you send 30 messages per month?
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1.5 Functions as Rules and Tables

Learning Objectives

• Identify the domain and range of a function.
• Make a table for a function.
• Write a function rule.
• Represent a real-world situation with a function.

Introduction

A function is a rule for relating two or more variables. For example, the price you pay for phone service may depend
on the number of minutes you talk on the phone. We would say that the cost of phone service is a function of the
number of minutes you talk. Consider the following situation.

Josh goes to an amusement park where he pays $2 per ride.

There is a relationship between the number of rides Josh goes on and the total amount he spends that day: To figure
out the amount he spends, we multiply the number of rides by two. This rule is an example of a function. Functions
usually—but not always—are rules based on mathematical operations. You can think of a function as a box or a
machine that contains a mathematical operation.

Whatever number we feed into the function box is changed by the given operation, and a new number comes out the
other side of the box. When we input different values for the number of rides Josh goes on, we get different values
for the amount of money he spends.

The input is called the independent variable because its value can be any number. The output is called the
dependent variable because its value depends on the input value.

Functions usually contain more than one mathematical operation. Here is a situation that is slightly more complicated
than the example above.

Jason goes to an amusement park where he pays $8 admission and $2 per ride.

The following function represents the total amount Jason pays. The rule for this function is "multiply the number of
rides by 2 and add 8."
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When we input different values for the number of rides, we arrive at different outputs (costs).

These flow diagrams are useful in visualizing what a function is. However, they are cumbersome to use in practice.
In algebra, we use the following short-hand notation instead:

input

↓
f (x)︸︷︷︸= y← out put

f unction

box

First, we define the variables:

x = the number of rides Jason goes on

y = the total amount of money Jason spends at the amusement park.

So, x represents the input and y represents the output. The notation f () represents the function or the mathematical
operations we use on the input to get the output. In the last example, the cost is 2 times the number of rides plus 8.
This can be written as a function:

f (x) = 2x+8

In algebra, the notations y and f (x) are typically used interchangeably. Technically, though, f (x) represents the
function itself and y represents the output of the function.

Identify the Domain and Range of a Function

In the last example, we saw that we can input the number of rides into the function to give us the total cost for going
to the amusement park. The set of all values that we can use for the input is called the domain of the function, and
the set of all values that the output could turn out to be is called the range of the function. In many situations the
domain and range of a function are both simply the set of all real numbers, but this isn’t always the case. Let’s look
at our amusement park example.

Example 1

Find the domain and range of the function that describes the situation:

Jason goes to an amusement park where he pays $8 admission and $2 per ride.

Solution

Here is the function that describes this situation:
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f (x) = 2x+8 = y

In this function, x is the number of rides and y is the total cost. To find the domain of the function, we need to
determine which numbers make sense to use as the input (x).

• The values have to be zero or positive, because Jason can’t go on a negative number of rides.
• The values have to be integers because, for example, Jason could not go on 2.25 rides.
• Realistically, there must be a maximum number of rides that Jason can go on because the park closes, he runs

out of money, etc. However, since we aren’t given any information about what that maximum might be, we
must consider that all non-negative integers are possible values regardless of how big they are.

Answer For this function, the domain is the set of all non-negative integers.

To find the range of the function we must determine what the values of y will be when we apply the function to the
input values. The domain is the set of all non-negative integers: {0, 1, 2, 3, 4, 5, 6, ...}. Next we plug these values
into the function for x. If we plug in 0, we get 8; if we plug in 1, we get 10; if we plug in 2, we get 12, and so on,
counting by 2s each time. Possible values of y are therefore 8, 10, 12, 14, 16, 18, 20... or in other words all even
integers greater than or equal to 8.

Answer The range of this function is the set of all even integers greater than or equal to 8.

Example 2

Find the domain and range of the following functions.

a) A ball is dropped from a height and it bounces up to 75% of its original height.

b) y = x2

Solution

a) Let’s define the variables:

x = original height

y = bounce height

A function that describes the situation is y = f (x) = 0.75x. x can represent any real value greater than zero, since
you can drop a ball from any height greater than zero. A little thought tells us that y can also represent any real value
greater than zero.

Answer

The domain is the set of all real numbers greater than zero. The range is also the set of all real numbers greater than
zero.

b) Since there is no word problem attached to this equation, we can assume that we can use any real number as a
value of x. When we square a real number, we always get a non-negative answer, so y can be any non-negative real
number.

Answer

The domain of this function is all real numbers. The range of this function is all non-negative real numbers.

In the functions we’ve looked at so far, x is called the independent variable because it can be any of the values from
the domain, and y is called the dependent variable because its value depends on x. However, any letters or symbols
can be used to represent the dependent and independent variables. Here are three different examples:
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y = f (x) = 3x

R = f (w) = 3w

v = f (t) = 3t

These expressions all represent the same function: a function where the dependent variable is three times the
independent variable. Only the symbols are different. In practice, we usually pick symbols for the dependent and
independent variables based on what they represent in the real world—like t for time, d for distance, v for velocity,
and so on. But when the variables don’t represent anything in the real world—or even sometimes when they do—we
traditionally use y for the dependent variable and x for the independent variable.

For another look at the domain of a function, see the following video, where the narrator solves a sample problem
from the California Standards Test about finding the domain of an unusual function: http://www.youtube.com/watch
?v=NRB6s77nx2gI.

Make a Table For a Function

A table is a very useful way of arranging the data represented by a function. We can match the input and output
values and arrange them as a table. For example, the values from Example 1 above can be arranged in a table as
follows:

x 0 1 2 3 4 5 6

y 8 10 12 14 16 18 20

A table lets us organize our data in a compact manner. It also provides an easy reference for looking up data, and it
gives us a set of coordinate points that we can plot to create a graph of the function.

Example 3

Make a table of values for the function f (x) = 1
x . Use the following numbers for input values: -1, -0.5, -0.2, -0.1,

-0.01, 0.01, 0.1, 0.2, 0.5, 1.

Solution

Make a table of values by filling the first row with the input values and the next row with the output values calculated
using the given function.

x −1 −0.5 −0.2 −0.1 −0.01 0.01 0.1 0.2 0.5 1

f (x) =
1
x

1
−1

1
−0.5

1
−0.2

1
−0.1

1
−0.01

1
0.01

1
0.1

1
0.2

1
0.5

1
1

y −1 −2 −5 −10 −100 100 10 5 2 1

When you’re given a function, you won’t usually be told what input values to use; you’ll need to decide for yourself
what values to pick based on what kind of function you’re dealing with. We will discuss how to pick input values
throughout this book.
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Write a Function Rule

In many situations, we collect data by conducting a survey or an experiment, and then organize the data in a table of
values. Most often, we want to find the function rule or formula that fits the set of values in the table, so we can use
the rule to predict what could happen for values that are not in the table.

Example 4

Write a function rule for the following table:

Number of CDs 2 4 6 8 10

Cost in $ 24 48 72 96 120

Solution

You pay $24 for 2 CDs, $48 for 4 CDs, $120 for 10 CDs. That means that each CD costs $12.

We can write a function rule:

Cost = $12 × (number of CDs) or f (x) = 12x

Example 5

Write a function rule for the following table:

x −3 −2 −1 0 1 2 3

y 3 2 1 0 1 2 3

Solution

You can see that a negative number turns into the same number, only positive, while a non-negative number stays
the same. This means that the function being used here is the absolute value function: f (x) =| x |.

Coming up with a function based on a set of values really is as tricky as it looks. There’s no rule that will tell you
the function every time, so you just have to think of all the types of functions you know and guess which one might
be a good fit, and then check if your guess is right. In this book, though, we’ll stick to writing functions for linear
relationships, which are the simplest type of function.

Represent a Real-World Situation with a Function

Let’s look at a few real-world situations that can be represented by a function.

Example 5

Maya has an internet service that currently has a monthly access fee of $11.95 and a connection fee of $0.50 per
hour. Represent her monthly cost as a function of connection time.

Solution

Define

Let x = the number of hours Maya spends on the internet in one month

Let y = Maya’s monthly cost
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Translate

The cost has two parts: the one-time fee of $11.95 and the per-hour charge of $0.50. So the total cost is the flat fee
+ the charge per hour × the number of hours.

Answer

The function is y = f (x) = 11.95+0.50x.

Example 6

Alfredo wants a deck build around his pool. The dimensions of the pool are 12 f eet×24 f eet and the decking costs
$3 per square foot. Write the cost of the deck as a function of the width of the deck.

Solution

Define

Let x = width of the deck

Let y = cost of the deck

Make a sketch and label it

Translate

You can look at the decking as being formed by several rectangles and squares. We can find the areas of all the
separate pieces and add them together:

Area = 12x+12x+24x+24x+ x2 + x2 + x2 + x2 = 72x+4x2

To find the total cost, we then multiply the area by the cost per square foot ($3).

Answer

f (x) = 3(72x+4x2) = 216x+12x2

Example 7

A cell phone company sells two million phones in their first year of business. The number of phones they sell doubles
each year. Write a function that gives the number of phones that are sold per year as a function of how old the
company is.

Solution

Define

Let x = age of company in years

Let y = number of phones that are sold per year
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Make a table

Age (years) 1 2 3 4 5 6 7

Millions of phones 2 4 8 16 32 64 128

Write a function rule

The number of phones sold per year doubles every year, so the first year the company sells 2 million phones, the
next year it sells 2×2 million, the next year it sells 2×2×2 million, and so on. You might remember that when we
multiply a number by itself several times we can use exponential notation: 2 = 21, 2×2 = 22, 2×2×2 = 23, and
so on. In this problem, the exponent just happens to match the company’s age in years, which makes our function
easy to describe.

Answer

y = f (x) = 2x

Review Questions

1. Identify the domain and range of the following functions.

a. Dustin charges $10 per hour for mowing lawns.
b. Maria charges $25 per hour for tutoring math, with a minimum charge of $15.
c. f (x) = 15x−12
d. f (x) = 2x2 +5
e. f (x) = 1

x
f. f (x) =

√
x

2. What is the range of the function y = x2−5 when the domain is -2, -1, 0, 1, 2?
3. What is the range of the function y = 2x− 3

4 when the domain is -2.5, -1.5, 5?
4. What is the domain of the function y = 3x when the range is 9, 12, 15?
5. What is the range of the function y = 3x when the domain is 9, 12, 15?
6. Angie makes $6.50 per hour working as a cashier at the grocery store. Make a table that shows how much she

earns if she works 5, 10, 15, 20, 25, or 30 hours.
7. The area of a triangle is given by the formula A = 1

2 bh. If the base of the triangle measures 8 centimeters,
make a table that shows the area of the triangle for heights 1, 2, 3, 4, 5, and 6 centimeters.

8. Make a table of values for the function f (x) =
√

2x+3 for input values -1, 0, 1, 2, 3, 4, 5.
9. Write a function rule for the following table:

x 3 4 5 6

y 9 16 15 36

10. Write a function rule for the following table:

Hours 0 1 2 3

Cost 15 20 25 30

11. Write a function rule for the following table:

x 0 1 2 3

y 24 12 6 3
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12. Write a function that represents the number of cuts you need to cut a ribbon into x pieces.
13. Write a function that represents the number of cuts you need to divide a pizza into x slices.
14. Solomon charges a $40 flat rate plus $25 per hour to repair a leaky pipe.

a. Write a function that represents the total fee charged as a function of hours worked.
b. How much does Solomon earn for a 3-hour job?
c. How much does he earn for three separate 1-hour jobs?

15. Rochelle has invested $2500 in a jewelry making kit. She makes bracelets that she can sell for $12.50 each.

a. Write a function that shows how much money Rochelle makes from selling b bracelets.
b. Write a function that shows how much money Rochelle has after selling b bracelets, minus her investment

in the kit.
c. How many bracelets does Rochelle need to make before she breaks even?
d. If she buys a $50 display case for her bracelets, how many bracelets does she now need to sell to break

even?
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1.6 Functions as Graphs

Learning Objectives

• Graph a function from a rule or table.
• Write a function rule from a graph.
• Analyze the graph of a real world situation.
• Determine whether a relation is a function.

Introduction

We represent functions graphically by plotting points on a coordinate plane (also sometimes called the Cartesian
plane). The coordinate plane is a grid formed by a horizontal number line and a vertical number line that cross at a
point called the origin. The origin has this name because it is the “starting” location; every other point on the grid is
described in terms of how far it is from the origin.

The horizontal number line is called the x−axis and the vertical line is called the y−axis. We can represent each
value of a function as a point on the plane by representing the x−value as a distance along the x−axis and the
y−value as a distance along the y−axis. For example, if the y−value of a function is 2 when the x−value is 4, we
can represent this pair of values with a point that is 4 units to the right of the origin (that is, 4 units along the x−axis)
and 2 units up (2 units in the y−direction).
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We write the location of this point as (4, 2).

Example 1

Plot the following coordinate points on the Cartesian plane.

a) (5, 3)

b) (-2, 6)

c) (3, -4)

d) (-5, -7)

Solution

Here are all the coordinate points on the same plot.

Notice that we move to the right for a positive x−value and to the left for a negative one, just as we would on a single
number line. Similarly, we move up for a positive y−value and down for a negative one.

The x− and y−axes divide the coordinate plane into four quadrants. The quadrants are numbered counter-clockwise
starting from the upper right, so the plotted point for (a) is in the first quadrant, (b) is in the second quadrant, (c) is
in the fourth quadrant, and (d) is in the third quadrant.

Graph a Function From a Rule or Table

If we know a rule or have a table of values that describes a function, we can draw a graph of the function. A table of
values gives us coordinate points that we can plot on the Cartesian plane.

Example 2

Graph the function that has the following table of values.

x −2 −1 0 1 2

y 6 8 10 12 14

Solution

The table gives us five sets of coordinate points: (-2, 6), (-1, 8), (0, 10), (1, 12), and (2, 14).

To graph the function, we plot all the coordinate points. Since we are not told the domain of the function or given a
real-world context, we can just assume that the domain is the set of all real numbers. To show that the function holds
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for all values in the domain, we connect the points with a smooth line (which, we understand, continues infinitely in
both directions).

Example 3

Graph the function that has the following table of values.

Side of square 0 1 2 3 4

Area of square 0 1 4 9 16

The table gives us five sets of coordinate points: (0, 0), (1, 1), (2, 4), (3, 9), and (4, 16).

To graph the function, we plot all the coordinate points. Since we are not told the domain of the function, we can
assume that the domain is the set of all non-negative real numbers. To show that the function holds for all values in
the domain, we connect the points with a smooth curve. The curve does not make sense for negative values of the
independent variable, so it stops at x = 0, but it continues infinitely in the positive direction.

Example 4

Graph the function that has the following table of values.

Number of balloons 12 13 14 15 16

Cost 41 44 47 50 53

This function represents the total cost of the balloons delivered to your house. Each balloon is $3 and the store
delivers if you buy a dozen balloons or more. The delivery charge is a $5 flat fee.
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Solution

The table gives us five sets of coordinate points: (12, 41), (13, 44), (14, 47), (15, 50), and (16, 53).

To graph the function, we plot all the coordinate points. Since the x−values represent the number of balloons for 12
balloons or more, the domain of this function is all integers greater than or equal to 12. In this problem, the points
are not connected by a line or curve because it doesn’tmake sense to have non-integer values of balloons.

In order to draw a graph of a function given the function rule, we must first make a table of values to give us a set
of points to plot. Choosing good values for the table is a skill you’ll develop throughout this course. When you pick
values, here are some of the things you should keep in mind.

• Pick only values from the domain of the function.
• If the domain is the set of real numbers or a subset of the real numbers, the graph will be a continuous curve.
• If the domain is the set of integers of a subset of the integers, the graph will be a set of points not connected

by a curve.
• Picking integer values is best because it makes calculations easier, but sometimes we need to pick other values

to capture all the details of the function.
• Often we start with one set of values. Then after drawing the graph, we realize that we need to pick different

values and redraw the graph.

Example 5

Graph the following function: f (x) = |x−2|

Solution

Make a table of values. Pick a variety of negative and positive values for x. Use the function rule to find the value of
y for each value of x. Then, graph each of the coordinate points.

TABLE 1.8:

x y = f (x) =| x−2 |
-4 | −4−2 |=| −6 |= 6
-3 | −3−2 |=| −5 |= 5
-2 | −2−2 |=| −4 |= 4
-1 | −1−2 |=| −3 |= 3
0 | 0−2 |=| −2 |= 2
1 | 1−2 |=| −1 |= 1
2 | 2−2 |=| 0 |= 0
3 | 3−2 |=| 1 |= 1
4 | 4−2 |=| 2 |= 2
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TABLE 1.8: (continued)

x y = f (x) =| x−2 |
5 | 5−2 |=| 3 |= 3
6 | 6−2 |=| 4 |= 4
7 | 7−2 |=| 5 |= 5
8 | 8−2 |=| 6 |= 6

It is wise to work with a lot of values when you begin graphing. As you learn about different types of functions, you
will start to only need a few points in the table of values to create an accurate graph.

Example 6

Graph the following function: f (x) =
√

x

Solution

Make a table of values. We know x can’t be negative because we can’t take the square root of a negative number.
The domain is all positive real numbers, so we pick a variety of positive integer values for x. Use the function rule
to find the value of y for each value of x.

TABLE 1.9:

x y = f (x) =
√

x
0

√
0 = 0

1
√

1 = 1
2

√
2≈ 1.41

3
√

3≈ 1.73
4

√
4 = 2

5
√

5≈ 2.24
6

√
6≈ 2.45

7
√

7≈ 2.65
8

√
8≈ 2.83

9
√

9 = 3
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Note that the range is all positive real numbers.

Example 7

The post office charges 41 cents to send a letter that is one ounce or less and an extra 17 cents for each additional
ounce or fraction of an ounce. This rate applies to letters up to 3.5 ounces.

Solution

Make a table of values. We can’t use negative numbers for x because it doesn’t make sense to have negative weight.
We pick a variety of positive values for x, making sure to include some decimal values because prices can be decimals
too. Then we use the function rule to find the value of y for each value of x.

x 0 0.2 0.5 0.8 1 1.2 1.5 1.8 2 2.2 2.5 2.8 3 3.2 3.5

y 0 41 41 41 41 58 58 58 58 75 75 75 75 92 92

Write a Function Rule from a Graph

Sometimes you’ll need to find the equation or rule of a function by looking at the graph of the function. Points that
are on the graph can give you values of dependent and independent variables that are related to each other by the
function rule. However, you must make sure that the rule works for all the points on the curve. In this course you
will learn to recognize different kinds of functions and discover the rules for all of them. For now we’ll look at
some simple examples and find patterns that will help us figure out how the dependent and independent variables
are related.
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Example 8

The graph to the right shows the distance that an ant covers over time. Find the function rule that shows how
distance and time are related to each other.

Solution

Let’s make a table of values of several coordinate points to see if we can spot how they are related to each other.

Time 0 1 2 3 4 5 6

Distance 0 1.5 3 4.5 6 7.5 9

We can see that for every second the distance increases by 1.5 feet. We can write the function rule as

Distance = 1.5× time

The equation of the function is f (x) = 1.5x.

Example 9

Find the function rule that describes the function shown in the graph.

Solution

Again, we can make a table of values of several coordinate points to identify how they are related to each other.

48

http://www.ck12.org


www.ck12.org Chapter 1. Equations and Functions

x −4 −3 −2 −1 0 1 2 3 4

y 8 4.5 2 .5 0 .5 5 4.5 8

Notice that the values of y are half of perfect squares: 8 is half of 16 (which is 4 squared), 4.5 is half of 9 (which is
3 squared), and so on. So the equation of the function is f (x) = 1

2 x2.

Example 10

Find the function rule that shows the volume of a balloon at different times, based on the following graph:

(Notice that the graph shows negative time. The negative time can represent what happened on days before you
started measuring the volume.)

Solution

Once again, we make a table to spot the pattern:

Time −1 0 1 2 3 4 5

Volume 10 5 2.5 1.2 0.6 0.3 0.15

We can see that every day, the volume of the balloon is half what it was the previous day. On day 0, the volume is 5;
on day 1, the volume is 5× 1

2 ; on day 2, it is 5× 1
2 ×

1
2 , and in general, on day x it is 5×

(1
2

)x. The equation of the
function is f (x) = 5×

(1
2

)x.

Determine Whether a Relation is a Function

A function is a special kind of relation. In a function, for each input there is exactly one output; in a relation, there
can be more than one output for a given input.

Consider the relation that shows the heights of all students in a class. The domain is the set of people in the class and
the range is the set of heights. This relation is a function because each person has exactly one height. If any person
had more than one height, the relation would not be a function.

49

http://www.ck12.org


1.6. Functions as Graphs www.ck12.org

Notice that even though the same person can’t have more than one height, it’s okay for more than one person to have
the same height. In a function, more than one input can have the same output, as long as more than one output never
comes from the same input.

Example 11

Determine if the relation is a function.

a) (1, 3), (-1, -2), (3, 5), (2, 5), (3, 4)

b) (-3, 20), (-5, 25), (-1, 5), (7, 12), (9, 2)

c)

x 2 1 0 1 2

y 12 10 8 6 4

Solution

The easiest way to figure out if a relation is a function is to look at all the x−values in the list or the table. If a value
of x appears more than once, and it’s paired up with different y−values, then the relation is not a function.

a) You can see that in this relation there are two different y−values paired with the x−value of 3. This means that
this relation is not a function.

b) Each value of x has exactly one y−value. The relation is a function.

c) In this relation there are two different y−values paired with the x−value of 2 and two y−values paired with the
x−value of 1. The relation is not a function.

When a relation is represented graphically, we can determine if it is a function by using the vertical line test. If you
can draw a vertical line that crosses the graph in more than one place, then the relation is not a function. Here are
some examples.
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Not a function. It fails the vertical line test.

A function. No vertical line will cross more than one point on the graph.

A function. No vertical line will cross more than one point on the graph.
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Not a function. It fails the vertical line test.

Additional Resources

Once you’ve had some practice graphing functions by hand, you may want to use a graphing calculator to make
graphing easier. If you don’t have one, you can also use the applet at http://rechneronline.de/function-graphs/. Just
type a function in the blank and press Enter. You can use the options under Display Properties to zoom in or pan
around to different parts of the graph.

Review Questions

1. Plot the coordinate points on the Cartesian plane.

a. (4, -4)
b. (2, 7)
c. (-3, -5)
d. (6, 3)
e. (-4, 3)

2. Give the coordinates for each point in this Cartesian plane.

3. Graph the function that has the following table of values. (a)

x −10 −5 0 5 10

y −3 −0.5 2 4.5 7
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(b)

Side of cube (in.) 0 1 2 3

Volume (in3) 0 1 8 27

(c)

Time (hours) −2 −1 0 1 2

Distance from town center (miles) 50 25 0 25 50

4. Graph the following functions.

a. Brandon is a member of a movie club. He pays a $50 annual membership and $8 per movie.
b. f (x) = (x−2)2

c. f (x) = 3.2x

5. Determine whether each relation is a function: (a) (1, 7), (2, 7), (3, 8), (4, 8), (5, 9) (b) (1, 1), (1, -1), (4, 2),
(4, -2), (9, 3), (9, -3) (c)

x −4 −3 −2 −1 0

y 16 9 4 1 0

(d)

Age 20 25 25 30 35

Number of jobs by that age 3 4 7 4 2

6. Write the function rule for each graph.

a.

b.

7. The students at a local high school took The Youth Risk Behavior Survey. The graph below shows the
percentage of high school students who reported that they were current smokers. (A current smoker is anyone
who has smoked one or more cigarettes in the past 30 days.) What percentage of high-school students were
current smokers in the following years?
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a. 1991
b. 1996
c. 2004
d. 2005

8. The graph below shows the average life-span of people based on the year in which they were born. This
information comes from the National Vital Statistics Report from the Center for Disease Control. What is the
average life-span of a person born in the following years?

a. 1940
b. 1955
c. 1980
d. 1995

9. The graph below shows the median income of an individual based on his/her number of years of education.
The top curve shows the median income for males and the bottom curve shows the median income for females.
(Source: US Census, 2003.) What is the median income of a male that has the following years of education?

a. 10 years of education
b. 17 years of education

10. What is the median income of a female that has the same years of education?

a. 10 years of education
b. 17 years of education
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11. Use the vertical line test to determine whether each relation is a function.

a.

b.
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1.7 Problem-Solving Plan

Learning Objectives

• Read and understand given problem situations.
• Make a plan to solve the problem.
• Solve the problem and check the results.
• Compare alternative approaches to solving the problem.
• Solve real-world problems using a plan.

Introduction

We always think of mathematics as the subject in school where we solve lots of problems. Problem solving is
necessary in all aspects of life. Buying a house, renting a car, or figuring out which is the better sale are just a few
examples of situations where people use problem-solving techniques. In this book, you will learn different strategies
and approaches to solving problems. In this section, we will introduce a problem-solving plan that will be useful
throughout this book.

Read and Understand a Given Problem Situation

The first step to solving a word problem is to read and understand the problem. Here are a few questions that you
should be asking yourself:

• What am I trying to find out?
• What information have I been given?
• Have I ever solved a similar problem?

This is also a good time to define any variables. When you identify your knowns and unknowns, it is often useful
to assign them a letter to make notation and calculations easier.

Make a Plan to Solve the Problem

The next step in the problem-solving plan is to develop a strategy. How can the information you know assist you
in figuring out the unknowns?

Here are some common strategies that you will learn:

• Drawing a diagram.
• Making a table.
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• Looking for a pattern.
• Using guess and check.
• Working backwards.
• Using a formula.
• Reading and making graphs.
• Writing equations.
• Using linear models.
• Using dimensional analysis.
• Using the right type of function for the situation.

In most problems, you will use a combination of strategies. For example, looking for patterns is a good strategy for
most problems, and making a table and drawing a graph are often used together. The “writing an equation” strategy
is the one you will work with the most in your study of algebra.

Solve the Problem and Check the Results

Once you develop a plan, you can implement it and solve the problem, carrying out all operations to arrive at the
answer you are seeking.

The last step in solving any problem should always be to check and interpret the answer. Ask yourself:

• Does the answer make sense?
• If you plug the answer back into the problem, do all the numbers work out?
• Can you get the same answer through another method?

Compare Alternative Approaches to Solving the Problem

Sometimes one specific method is best for solving a problem. Most problems, however, can be solved by using
several different strategies. When you are familiar with all of the problem-solving strategies, it is up to you to
choose the methods that you are most comfortable with and that make sense to you. In this book, we will often use
more than one method to solve a problem, so we can demonstrate the strengths and weakness of different strategies
for solving different types of problems.

Whichever strategy you are using, you should always implement the problem-solving plan when you are solving
word problems. Here is a summary of the problem-solving plan.

Step 1:

Understand the problem

Read the problem carefully. Once the problem is read, list all the components and data that are involved. This is
where you will be assigning your variables.

Step 2:

Devise a plan - Translate

Come up with a way to solve the problem. Set up an equation, draw a diagram, make a chart or construct a table as
a start to solve your problem solving plan.

Step 3:

Carry out the plan - Solve
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This is where you solve the equation you developed in Step 2.

Step 4:

Look - Check and Interpret

Check to see if you used all your information. Then look to see if the answer makes sense.

Solve Real-World Problems Using a Plan

Let’s now apply this problem solving plan to a problem.

Example 1

A coffee maker is on sale at 50% off the regular ticket price. On the “Sunday Super Sale” the same coffee maker is
on sale at an additional 40% off. If the final price is $21, what was the original price of the coffee maker?

Solution

Step 1: Understand

We know: A coffee maker is discounted 50% and then 40%. The final price is $21.

We want: The original price of the coffee maker.

Step 2: Strategy

Let’s look at the given information and try to find the relationship between the information we know and the
information we are trying to find.

50% off the original price means that the sale price is half of the original or 0.5 × original price.

So, the first sale price = 0.5 × original price

A savings of 40% off the new price means you pay 60% of the new price, or 0.6 × new price.

0.6× (0.5×original price) = 0.3×original price is the price after the second discount.

We know that after two discounts, the final price is $21.

So 0.3×original price = $21.

Step 3: Solve

Since 0.3×original price = $21, we can find the original price by dividing $21 by 0.3.

Original price = $21÷0.3 = $70.

The original price of the coffee maker was $70.

Step 4: Check

We found that the original price of the coffee maker is $70.

To check that this is correct, let’s apply the discounts.

50% of $70 = .5×$70 = $35 savings. So the price after the first discount is original price− savings or $70−35 =
$35.

Then 40% of that is .4×$35 = $14. So after the second discount, the price is $35−14 = $21.

The answer checks out.
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Additional Resources

The problem-solving plan used here is based on the ideas of George Pólya, who describes his useful problem-
solving strategies in more detail in the book How to Solve It. Some of the techniques in the book can also be found
on Wikipedia, in the entry http://en.wikipedia.org/wiki/How_to_Solve_It.

Review Questions

1. A sweatshirt costs $35. Find the total cost if the sales tax is 7.75%.
2. This year you got a 5% raise. If your new salary is $45,000, what was your salary before the raise?
3. Mariana deposits $500 in a savings account that pays 3% simple interest per year. How much will be in her

account after three years?
4. It costs $250 to carpet a room that is 14 ft by 18 ft. How much does it cost to carpet a room that is 9 ft by 10

ft?
5. A department store has a 15% discount for employees. Suppose an employee has a coupon worth $10 off any

item and she wants to buy a $65 purse. What is the final cost of the purse if the employee discount is applied
before the coupon is subtracted?

6. To host a dance at a hotel you must pay $250 plus $20 per guest. How much money would you have to pay
for 25 guests?

7. Yusef’s phone plan costs $10 a month plus $0.05 per minute. If his phone bill for last month was $25.80, how
many minutes did he spend on the phone?

8. It costs $12 to get into the San Diego County Fair and $1.50 per ride.

a. If Rena spent $24 in total, how many rides did she go on?
b. How much would she have spent in total if she had gone on five more rides?

9. An ice cream shop sells a small cone for $2.95, a medium cone for $3.50, and a large cone for $4.25. Last
Saturday, the shop sold 22 small cones, 26 medium cones and 15 large cones. How much money did the store
earn?

10. In Lise’s chemistry class, there are two midterm exams, each worth 30% of her total grade, and a final exam
worth 40%. If Lise scores 90% on both midterms and 80% on the final exam, what is her overall score in the
class?

11. The sum of the angles in a triangle is 180 degrees. If the second angle is twice the size of the first angle and
the third angle is three times the size of the first angle, what are the measures of the angles in the triangle?

12. A television that normally costs $120 goes on sale for 20% off. What is the new price?
13. A cake recipe calls for 1 3

4 cup of flour. Jeremy wants to make four cakes. How many cups of flour will he
need?

14. Casey is twice as old as Marietta, who is two years younger than Jake. If Casey is 14, how old is Jake?
15. Kylie is mowing lawns to earn money for a new bike. After mowing four lawns, she still needs $40 more to

pay for the bike. After mowing three more lawns, she has $5 more than she needs to pay for the bike.

a. How much does she earn per lawn?
b. What is the cost of the bike?

16. Jared goes trick-or-treating with his brother and sister. At the first house they stop at, they collect three pieces
of candy each; at the next three houses, they collect two pieces of candy each. Then they split up and go down
different blocks, where Jared collects 12 pieces of candy and his brother and sister collect 14 each.

a. How many pieces of candy does Jared end up with?
b. How many pieces of candy do all three of them together end up with?
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17. Marco’s daughter Elena has four boxes of toy blocks, with 50 blocks in each one. One day she dumps them
all out on the floor, and some of them get lost. When Marco tries to put them away again, he ends up with 45
blocks in one box, 53 in another, 46 in a third, and 51 in the fourth. How many blocks are missing?

18. A certain hour-long TV show usually includes 16 minutes of commercials. If the season finale is two and a
half hours long, how many minutes of commercials should it include to keep the same ratio of commercial
time to show time?

19. Karen and Chase bet on a baseball game: if the home team wins, Karen owes Chase fifty cents for every run
scored by both teams, and Chase owes Karen the same amount if the visiting team wins. The game runs nine
innings, and the home team scores one run in every odd-numbered inning, while the visiting team scores two
runs in the third inning and two in the sixth. Who owes whom how much?

20. Kelly, Chris, and Morgan are playing a card game. In this game, the first player to empty their hand scores
points for all the cards left in the other players’ hands as follows: aces are worth one point, face cards ten
points, and all other cards are face value. When Kelly empties her hand, Morgan is holding two aces, a king,
and a three; Chris is holding a five, a seven, and a queen. How many points does Kelly score?

21. A local club rents out a social hall to host an event. The hall rents for $350, and they hope to make back the
rental price by charging $15 admission per person. How many people need to attend for the club to break
even?

22. You plan to host a barbecue, and you expect 10 friends, 8 neighbors, and 7relatives to show up.

a. If you expect each person (including yourself) to eat about two ounces of potato salad, how many half-
pound containers of potato salad should you buy?

b. If hot dogs come in ten-packs that cost $4.80 apiece and hot dog buns come in eight-packs that cost
$2.80 apiece, how much will you need to spend to have hot dogs and buns for everyone?
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1.8 Problem-Solving Strategies: Make a Table
and Look for a Pattern

Learning Objectives

• Read and understand given problem situations.
• Develop and use the strategy “make a table.”
• Develop and use the strategy “look for a pattern.”
• Plan and compare alternative approaches to solving a problem.
• Solve real-world problems using the above strategies as part of a plan.

Introduction

In this section, we will apply the problem-solving plan you learned about in the last section to solve several real-
world problems. You will learn how to develop and use the methods make a table and look for a pattern.

Read and Understand Given Problem Situations

The most difficult parts of problem-solving are most often the first two steps in our problem-solving plan. You need
to read the problem and make sure you understand what you are being asked. Once you understand the problem,
you can devise a strategy to solve it.

Let’s apply the first two steps to the following problem.

Example 1:

Six friends are buying pizza together and they are planning to split the check equally. After the pizza was ordered,
one of the friends had to leave suddenly, before the pizza arrived. Everyone left had to pay $1 extra as a result. How
much was the total bill?

Solution

Understand

We want to find how much the pizza cost.

We know that five people had to pay an extra $1 each when one of the original six friends had to leave.

Strategy

We can start by making a list of possible amounts for the total bill.

We divide the amount by six and then by five. The total divided by five should equal $1 more than the total divided
by six.

Look for any patterns in the numbers that might lead you to the correct answer.

In the rest of this section you will learn how to make a table or look for a pattern to figure out a solution for this type
of problem. After you finish reading the rest of the section, you can finish solving this problem for homework.
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Develop and Use the Strategy: Make a Table

The method “Make a Table” is helpful when solving problems involving numerical relationships. When data is
organized in a table, it is easier to recognize patterns and relationships between numbers. Let’s apply this strategy to
the following example.

Example 2

Josie takes up jogging. On the first week she jogs for 10 minutes per day, on the second week she jogs for 12 minutes
per day. Each week, she wants to increase her jogging time by 2 minutes per day. If she jogs six days each week,
what will be her total jogging time on the sixth week?

Solution

Understand

We know in the first week Josie jogs 10 minutes per day for six days.

We know in the second week Josie jogs 12 minutes per day for six days.

Each week, she increases her jogging time by 2 minutes per day and she jogs 6 days per week.

We want to find her total jogging time in week six.

Strategy

A good strategy is to list the data we have been given in a table and use the information we have been given to find
new information.

We are told that Josie jogs 10 minutes per day for six days in the first week and 12 minutes per day for six days in
the second week. We can enter this information in a table:

TABLE 1.10:

Week Minutes per Day Minutes per Week
1 10 60
2 12 72

You are told that each week Josie increases her jogging time by 2 minutes per day and jogs 6 times per week. We
can use this information to continue filling in the table until we get to week six.

TABLE 1.11:

Week Minutes per Day Minutes per Week
1 10 60
2 12 72
3 14 84
4 16 96
5 18 108
6 20 120

Apply strategy/solve

To get the answer we read the entry for week six.

Answer: In week six Josie jogs a total of 120 minutes.

Check
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Josie increases her jogging time by two minutes per day. She jogs six days per week. This means that she increases
her jogging time by 12 minutes per week.

Josie starts at 60 minutes per week and she increases by 12 minutes per week for five weeks.

That means the total jogging time is 60+12×5 = 120 minutes.

The answer checks out.

You can see that making a table helped us organize and clarify the information we were given, and helped guide us
in the next steps of the problem. We solved this problem solely by making a table; in many situations, we would
combine this strategy with others to get a solution.

Develop and Use the Strategy: Look for a Pattern

Looking for a pattern is another strategy that you can use to solve problems. The goal is to look for items or
numbers that are repeated or a series of events that repeat. The following problem can be solved by finding a pattern.

Example 3

You arrange tennis balls in triangular shapes as shown. How many balls will there be in a triangle that has 8 rows?

Solution

Understand

We know that we arrange tennis balls in triangles as shown.

We want to know how many balls there are in a triangle that has 8 rows.

Strategy

A good strategy is to make a table and list how many balls are in triangles of different rows.

One row: It is simple to see that a triangle with one row has only one ball.

Two rows: For a triangle with two rows, we add the balls from the top row to the balls from the bottom row. It is
useful to make a sketch of the separate rows in the triangle.

3 = 1+2
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Three rows: We add the balls from the top triangle to the balls from the bottom row.

6 = 3+3

Now we can fill in the first three rows of a table.

TABLE 1.12:

Number of Rows Number of Balls
1 1
2 3
3 6

We can see a pattern.

To create the next triangle, we add a new bottom row to the existing triangle.

The new bottom row has the same number of balls as there are rows. (For example, a triangle with 3 rows has 3
balls in the bottom row.)

To get the total number of balls for the new triangle, we add the number of balls in the old triangle to the number of
balls in the new bottom row.

Apply strategy/solve:

We can complete the table by following the pattern we discovered.

Number of balls = number of balls in previous triangle + number of rows in the new triangle

TABLE 1.13:

Number of Rows Number of Balls
1 1
2 3
3 6
4 6+4 = 10
5 10+5 = 15
6 15+6 = 21
7 21+7 = 28
8 28+8 = 36

Answer There are 36 balls in a triangle arrangement with 8 rows.

Check

Each row of the triangle has one more ball than the previous one. In a triangle with 8 rows,

row 1 has 1 ball, row 2 has 2 balls, row 3 has 3 balls, row 4 has 4 balls, row 5 has 5 balls, row 6 has 6 balls, row 7
has 7 balls, row 8 has 8 balls.
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When we add these we get: 1+2+3+4+5+6+7+8 = 36 balls

The answer checks out.

Notice that in this example we made tables and drew diagrams to help us organize our information and find a pattern.
Using several methods together is a very common practice and is very useful in solving word problems.

Plan and Compare Alternative Approaches to Solving Problems

In this section, we will compare the methods of “Making a Table” and “Looking for a Pattern” by using each method
in turn to solve a problem.

Example 4

Andrew cashes a $180 check and wants the money in $10 and $20 bills. The bank teller gives him 12 bills. How
many of each kind of bill does he receive?

Solution

Method 1: Making a Table

Understand

Andrew gives the bank teller a $180 check.

The bank teller gives Andrew 12 bills. These bills are a mix of $10 bills and $20 bills.

We want to know how many of each kind of bill Andrew receives.

Strategy

Let’s start by making a table of the different ways Andrew can have twelve bills in tens and twenties.

Andrew could have twelve $10 bills and zero $20 bills, or eleven $10 bills and one $20 bill, and so on.

We can calculate the total amount of money for each case.

Apply strategy/solve

TABLE 1.14:

$10 bills $ 20 bills Total amount
12 0 $10(12)+$20(0) = $120
11 1 $10(11)+$20(1) = $130
10 2 $10(10)+$20(2) = $140
9 3 $10(9)+$20(3) = $150
8 4 $10(8)+$20(4) = $160
7 5 $10(7)+$20(5) = $170
6 6 $10(6)+$20(6) = $180
5 7 $10(5)+$20(7) = $190
4 8 $10(4)+$20(8) = $200
3 9 $10(3)+$20(9) = $210
2 10 $10(2)+$20(10) = $220
1 11 $10(1)+$20(11) = $230
0 12 $10(0)+$20(12) = $240

In the table we listed all the possible ways you can get twelve $10 bills and $20 bills and the total amount of money
for each possibility. The correct amount is given when Andrew has six $10 bills and six $20 bills.
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Answer: Andrew gets six $10 bills and six $20 bills.

Check

Six $10 bills and six $20 bills→ 6($10)+6($20) = $60+$120 = $180

The answer checks out.

Let’s solve the same problem using the method “Look for a Pattern.”

Method 2: Looking for a Pattern

Understand

Andrew gives the bank teller a $180 check.

The bank teller gives Andrew 12 bills. These bills are a mix of $10 bills and $20 bills.

We want to know how many of each kind of bill Andrew receives.

Strategy

Let’s start by making a table just as we did above. However, this time we will look for patterns in the table that can
be used to find the solution.

Apply strategy/solve

Let’s fill in the rows of the table until we see a pattern.

TABLE 1.15:

$10 bills $20 bills Total amount
12 0 $10(12)+$20(0) = $120
11 1 $10(11)+$20(1) = $130
10 2 $10(10)+$20(2) = $140

We see that every time we reduce the number of $10 bills by one and increase the number of $20 bills by one, the
total amount increases by $10. The last entry in the table gives a total amount of $140, so we have $40 to go until
we reach our goal. This means that we should reduce the number of $10 bills by four and increase the number of
$20 bills by four. That would give us six $10 bills and six $20 bills.

6($10)+6($20) = $60+120 = $180

Answer: Andrew gets six $10 bills and six $20 bills.

Check

Six $10 bills and six $20 bills→ 6($10)+6($20) = $60+120 = $180

The answer checks out.

You can see that the second method we used for solving the problem was less tedious. In the first method, we
listed all the possible options and found the answer we were seeking. In the second method, we started by listing
the options, but we found a pattern that helped us find the solution faster. The methods of “Making a Table” and
“Looking for a Pattern” are both more powerful if used alongside other problem-solving methods.

66

http://www.ck12.org


www.ck12.org Chapter 1. Equations and Functions

Solve Real-World Problems Using Selected Strategies as Part of a Plan

Example 5

Anne is making a box without a lid. She starts with a 20 in. square piece of cardboard and cuts out four equal squares
from each corner of the cardboard as shown. She then folds the sides of the box and glues the edges together. How
big does she need to cut the corner squares in order to make the box with the biggest volume?

Solution

Step 1:

Understand

Anne makes a box out of a 20 in×20 in piece of cardboard.

She cuts out four equal squares from the corners of the cardboard.

She folds the sides and glues them to make a box.

How big should the cut out squares be to make the box with the biggest volume?

Step 2:

Strategy

We need to remember the formula for the volume of a box.

Volume = Area of base×height

Volume = width× length×height

Make a table of values by picking different values for the side of the squares that we are cutting out and calculate
the volume.

Step 3:

Apply strategy/solve

Let’s “make” a box by cutting out four corner squares with sides equal to 1 inch. The diagram will look like this:
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You see that when we fold the sides over to make the box, the height becomes 1 inch, the width becomes 18 inches
and the length becomes 18 inches.

Volume = width× length×height

Volume = 18×18×1 = 324 in3

Let’s make a table that shows the value of the box for different square sizes:

TABLE 1.16:

Side of Square Box Height Box Width Box Length Volume
1 1 18 18 18×18×1 = 324
2 2 16 16 16×16×2 = 512
3 3 14 14 14×14×3 = 588
4 4 12 12 12×12×4 = 576
5 5 10 10 10×10×5 = 500
6 6 8 8 8×8×6 = 384
7 7 6 6 6×6×7 = 252
8 8 4 4 4×4×8 = 128
9 9 2 2 2×2×9 = 36
10 10 0 0 0×0×10 = 0

We stop at a square of 10 inches because at this point we have cut out all of the cardboard and we can’t make a box
any more. From the table we see that we can make the biggest box if we cut out squares with a side length of three
inches. This gives us a volume of 588 in3.

Answer The box of greatest volume is made if we cut out squares with a side length of three inches.

Step 4:

Check

We see that 588 in3 is the largest volume appearing in the table. We picked integer values for the sides of the squares
that we are cut out. Is it possible to get a larger value for the volume if we pick non-integer values? Since we get
the largest volume for the side length equal to three inches, let’s make another table with values close to three inches
that is split into smaller increments:

TABLE 1.17:

Side of Square Box Height Box Width Box Length Volume
2.5 2.5 15 15 15 × 15 × 2.5 =

562.5
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TABLE 1.17: (continued)

Side of Square Box Height Box Width Box Length Volume
2.6 2.6 14.8 14.8 14.8× 14.8× 2.6 =

569.5
2.7 2.7 14.6 14.6 14.6× 14.6× 2.7 =

575.5
2.8 2.8 14.4 14.4 14.4× 14.4× 2.8 =

580.6
2.9 2.9 14.2 14.2 14.2× 14.2× 2.9 =

584.8
3 3 14 14 14×14×3 = 588
3.1 3.1 13.8 13.8 13.8× 13.8× 3.1 =

590.4
3.2 3.2 13.6 13.6 13.6× 13.6× 3.2 =

591.9
3.3 3.3 13.4 13.4 13.4× 13.4× 3.3 =

592.5
3.4 3.4 13.2 13.2 13.2× 13.2× 3.4 =

592.4
3.5 3.5 13 13 13 × 13 × 3.5 =

591.5

Notice that the largest volume is not when the side of the square is three inches, but rather when the side of the
square is 3.3 inches.

Our original answer was not incorrect, but it was not as accurate as it could be. We can get an even more accurate
answer if we take even smaller increments of the side length of the square. To do that, we would choose smaller
measurements that are in the neighborhood of 3.3 inches.

Meanwhile, our first answer checks out if we want it rounded to zero decimal places, but a more accurate answer
is 3.3 inches.

Review Questions

1. Go back and find the solution to the problem in Example 1.
2. Britt has $2.25 in nickels and dimes. If she has 40 coins in total, how many of each coin does she have?
3. Jeremy divides a 160-square-foot garden into plots that are either 10 or 12 square feet each. If there are 14

plots in all, how many plots are there of each size?
4. A pattern of squares is put together as shown. How many squares are in the 12th diagram?

5. In Harrisville, local housing laws specify how many people can live in a house or apartment: the maximum
number of people allowed is twice the number of bedrooms, plus one. If Jan, Pat, and their four children want
to rent a house, how many bedrooms must it have?
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6. A restaurant hosts children’s birthday parties for a cost of $120 for the first six children (including the birthday
child) and $30 for each additional child. If Jaden’s parents have a budget of $200 to spend on his birthday
party, how many guests can Jaden invite?

7. A movie theater with 200 seats charges $8 general admission and $5 for students. If the 5:00 showing is sold
out and the theater took in $1468 for that showing, how many of the seats are occupied by students?

8. Oswald is trying to cut down on drinking coffee. His goal is to cut down to 6 cups per week. If he starts with
24 cups the first week, then cuts down to 21 cups the second week and 18 cups the third week, how many
weeks will it take him to reach his goal?

9. Taylor checked out a book from the library and it is now 5 days late. The late fee is 10 cents per day. How
much is the fine?

10. Mikhail is filling a sack with oranges.

a. If each orange weighs 5 ounces and the sack will hold 2 pounds, how many oranges will the sack hold
before it bursts?

b. Mikhail plans to use these oranges to make breakfast smoothies. If each smoothie requires 3
4 cup of

orange juice, and each orange will yield half a cup, how many smoothies can he make?

11. Jessamyn takes out a $150 loan from an agency that charges 12% of the original loan amount in interest each
week. If she takes five weeks to pay off the loan, what is the total amount (loan plus interest) she will need to
pay back?

12. How many hours will a car traveling at 75 miles per hour take to catch up to a car traveling at 55 miles per
hour if the slower car starts two hours before the faster car?

13. Grace starts biking at 12 miles per hour. One hour later, Dan starts biking at 15 miles per hour, following the
same route. How long will it take him to catch up with Grace?

14. A new theme park opens in Milford. On opening day, the park has 120 visitors; on each of the next three days,
the park has 10 more visitors than the day before; and on each of the three days after that, the park has 20
more visitors than the day before.

a. How many visitors does the park have on the seventh day?
b. How many total visitors does the park have all week?

15. Lemuel wants to enclose a rectangular plot of land with a fence. He has 24 feet of fencing. What is the largest
possible area that he could enclose with the fence?

16. Quizzes in Keiko’s history class are worth 20 points each. Keiko scored 15 and 18 points on her last two
quizzes. What score does she need on her third quiz to get an average score of 17 on all three?

17. Tickets to an event go on sale for $20 six weeks before the event, and go up in price by $5 each week. What
is the price of tickets one week before the event?

18. Mark is three years older than Janet, and the sum of their ages is 15. How old are Mark and Janet?
19. In a one-on-one basketball game, Jane scored 1 1

2 times as many points as Russell. If the two of them together
scored 10 points, how many points did Jane score?

20. Scientists are tracking two pods of whales during their migratory season. On the first day of June, one pod is
120 miles north of a certain group of islands, and every day thereafter it gets 15 miles closer to the islands.
The second pod starts out 160 miles east of the islands on June 3, and heads toward the islands at a rate of 20
miles a day.

a. Which pod will arrive at the islands first, and on what day?
b. How long after that will it take the other pod to reach the islands?
c. Suppose the pod that reaches the islands first immediately heads south from the islands at a rate of 15

miles a day, and the pod that gets there second also heads south from there at a rate of 25 miles a day.
On what day will the second pod catch up with the first?

d. How far will both pods be from the islands on that day?
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Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9611.
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2.1 Integers and Rational Numbers

Learning Objectives

• Graph and compare integers.
• Classify and order rational numbers.
• Find opposites of numbers.
• Find absolute values.
• Compare fractions to determine which is bigger.

Introduction

One day, Jason leaves his house and starts walking to school. After three blocks, he stops to tie his shoe and leaves
his lunch bag sitting on the curb. Two blocks farther on, he realizes his lunch is missing and goes back to get it.
After picking up his lunch, he walks six more blocks to arrive at school. How far is the school from Jason’s house?
And how far did Jason actually walk to get there?

Graph and Compare Integers

Integers are the counting numbers (1, 2, 3...), the negative opposites of the counting numbers (-1, -2, -3...), and zero.
There are an infinite number of integers and examples are 0, 3, 76, -2, -11, and 995.

Example 1

Compare the numbers 2 and -5.

When we plot numbers on a number line, the greatest number is farthest to the right, and the least is farthest to the
left.

In the diagram above, we can see that 2 is farther to the right on the number line than -5, so we say that 2 is greater
than -5. We use the symbol “>” to mean “greater than”, so we can write 2 >−5.
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Classifying Rational Numbers

When we divide an integer a by another integer b (as long as b is not zero) we get a rational number. It’s called
this because it is the ratio of one number to another, and we can write it in fraction form as a

b . (You may recall that
the top number in a fraction is called the numerator and the bottom number is called the denominator.)

You can think of a rational number as a fraction of a cake. If you cut the cake into b slices, your share is a of those
slices.

For example, when we see the rational number 1
2 , we can imagine cutting the cake into two parts. Our share is one

of those parts. Visually, the rational number 1
2 looks like this:

With the rational number 3
4 , we cut the cake into four parts and our share is three of those parts. Visually, the rational

number 3
4 looks like this:

The rational number 9
10 represents nine slices of a cake that has been cut into ten pieces. Visually, the rational

number 9
10 looks like this:

Proper fractions are rational numbers where the numerator is less than the denominator. A proper fraction repre-
sents a number less than one.

Improper fractions are rational numbers where the numerator is greater than or equal to the denominator. An
improper fraction can be rewritten as a mixed number – an integer plus a proper fraction. For example, 9

4 can be
written as 2 1

4 . An improper fraction represents a number greater than or equal to one.

Equivalent fractions are two fractions that represent the same amount. For example, look at a visual representation
of the rational number 2

4 , and one of the number 1
2 .
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You can see that the shaded regions are the same size, so the two fractions are equivalent. We can convert one
fraction into the other by reducing the fraction, or writing it in lowest terms. To do this, we write out the prime
factors of both the numerator and the denominator and cancel matching factors that appear in both the numerator
and denominator.

2
4
=

2 ·1
2 ·2 ·1

=
1

2 ·1
=

1
2

Reducing a fraction doesn’t change the value of the fraction—it just simplifies the way we write it. Once we’ve
canceled all common factors, the fraction is in its simplest form.

Example 2

Classify and simplify the following rational numbers

a) 3
7

b) 9
3

c) 50
60

Solution

a) 3 and 7 are both prime, so we can’t factor them. That means 3
7 is already in its simplest form. It is also a proper

fraction.

b) 9
3 is an improper fraction because 9 > 3. To simplify it, we factor the numerator and denominator and cancel:

3·3
3·1 = 3

1 = 3.

c) 50
60 is a proper fraction, and we can simplify it as follows: 50

60 = 5·5·2
5·3·2·2 = 5

3·2 = 5
6 .

Order Rational Numbers

Ordering rational numbers is simply a matter of arranging them by increasing value—least first and greatest last.

Example 3

Put the following fractions in order from least to greatest: 1
2 ,

3
4 ,

2
3

Solution
1
2 < 2

3 < 3
4

Simple fractions are easy to order—we just know, for example, that one-half is greater than one quarter, and that two
thirds is bigger than one-half. But how do we compare more complex fractions?

Example 4

Which is greater, 3
7 or 4

9 ?

In order to determine this, we need to rewrite the fractions so we can compare them more easily. If we rewrite them
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as equivalent fractions that have the same denominators, then we can compare them directly. To do this, we need to
find the lowest common denominator (LCD), or the least common multiple of the two denominators.

The lowest common multiple of 7 and 9 is 63. Our fraction will be represented by a shape divided into 63 sections.
This time we will use a rectangle cut into 9 by 7 = 63 pieces.

7 divides into 63 nine times, so 3
7 = 9·3

9·7 = 27
63 .

We can multiply the numerator and the denominator both by 9 because that’s really just the opposite of reducing the
fraction—to get back from 27

63 to 3
7 , we’d just cancel out the 9’s. Or, to put that in more formal terms:

The fractions a
b and c·a

c·b are equivalent as long as c 6= 0.

Therefore, 27
63 is an equivalent fraction to 3

7 . Here it is shown visually:

9 divides into 63 seven times, so 4
9 = 7·4

7·9 = 28
63 .

28
63 is an equivalent fraction to 4

9 . Here it is shown visually:

By writing the fractions with a common denominator of 63, we can easily compare them. If we take the 28 shaded
boxes out of 63 (from our image of 4

9 above) and arrange them in rows instead of columns, we can see that they take
up more space than the 27 boxes from our image of 3

7 :

Solution

Since 28
63 is greater than 27

63 , 4
9 is greater than 3

7 .

Graph and Order Rational Numbers

To plot non-integer rational numbers (fractions) on the number line, we can convert them to mixed numbers (graph-
ing is one of the few occasions in algebra when it’s better to use mixed numbers than improper fractions), or we can
convert them to decimal form.
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Example 5

Plot the following rational numbers on the number line.

a) 2
3

b) −3
7

c) 17
5

If we divide up the number line into sub-intervals based on the denominator of the fraction, we can look at the
fraction’s numerator to determine how many of these sub-intervals we need to include.

a) 2
3 falls between 0 and 1. Because the denominator is 3, we divide the interval between 0 and 1 into three smaller

units. Because the numerator is 2, we count two units over from 0.

b)−3
7 falls between 0 and -1. We divide the interval into seven units, and move left from zero by three of those units.

c) 17
5 as a mixed number is 3 2

5 and falls between 3 and 4. We divide the interval into five units, and move over two
units.

Another way to graph this fraction would be as a decimal. 3 2
5 is equal to 3.4, so instead of dividing the interval

between 3 and 4 into 5 units, we could divide it into 10 units (each representing a distance of 0.1) and then count
over 4 units. We would end up at the same place on the number line either way.

To make graphing rational numbers easier, try using the number line generator at http://themathworksheetsite.com/
numline.html. You can use it to create a number line divided into whatever units you want, as long as you express
the units in decimal form.

Find the Opposites of Numbers

Every number has an opposite. On the number line, a number and its opposite are, predictably, opposite each other.
In other words, they are the same distance from zero, but on opposite sides of the number line.
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The opposite of zero is defined to be simply zero.

The sum of a number and its opposite is always zero—for example, 3+−3 = 0,4.2+−4.2 = 0, and so on. This is
because adding 3 and -3 is like moving 3 steps to the right along the number line, and then 3 steps back to the left.
The number and its opposite cancel each other out, leaving zero.

Another way to think of the opposite of a number is that it is simply the original number multiplied by -1. The
opposite of 4 is 4×−1 or -4, the opposite of -2.3 is −2.3×−1 or just 2.3, and so on. Another term for the opposite
of a number is the additive inverse.

Example 6

Find the opposite of each of the following:

a) 19.6

b) −4
9

c) x

d) xy2

e) (x−3)

Solution

Since we know that opposite numbers are on opposite sides of zero, we can simply multiply each expression by -1.
This changes the sign of the number to its opposite—if it’s negative, it becomes positive, and vice versa.

a) The opposite of 19.6 is -19.6.

b) The opposite of is −4
9 is 4

9 .

c) The opposite of x is −x.

d) The opposite of xy2 is −xy2.

e) The opposite of (x−3) is −(x−3), or (3− x).

Note: With the last example you must multiply the entire expression by -1. A common mistake in this example is
to assume that the opposite of (x−3) is (x+3). Avoid this mistake!

Find Absolute Values

When we talk about absolute value, we are talking about distances on the number line. For example, the number 7
is 7 units away from zero—and so is the number -7. The absolute value of a number is the distance it is from zero,
so the absolute value of 7 and the absolute value of -7 are both 7.

We write the absolute value of -7 as |−7|. We read the expression |x| as “the absolute value of x.”

• Treat absolute value expressions like parentheses. If there is an operation inside the absolute value symbols,
evaluate that operation first.
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• The absolute value of a number or an expression is always positive or zero. It cannot be negative. With
absolute value, we are only interested in how far a number is from zero, and not in which direction.

Example 7

Evaluate the following absolute value expressions.

a) |5+4|

b) 3−|4−9|

c) |−5−11|

d) −|7−22|

(Remember to treat any expressions inside the absolute value sign as if they were inside parentheses, and evaluate
them first.)

Solution

a) |5+4|= |9|= 9

b) 3−|4−9|= 3−|−5|= 3−5 =−2

c) |−5−11|= |−16|= 16

d) −|7−22|=−|−15|=−(15) =−15

Lesson Summary

• Integers (or whole numbers) are the counting numbers (1, 2, 3, ...), the negative counting numbers (-1, -2,
-3, ...), and zero.

• A rational number is the ratio of one integer to another, like 3
5 or a

b . The top number is called the numerator
and the bottom number (which can’t be zero) is called the denominator.

• Proper fractions are rational numbers where the numerator is less than the denominator.
• Improper fractions are rational numbers where the numerator is greater than the denominator.
• Equivalent fractions are two fractions that equal the same numerical value. The fractions a

b and c·a
c·b are

equivalent as long as c 6= 0.
• To reduce a fraction (write it in simplest form), write out all prime factors of the numerator and denominator,

cancel common factors, then recombine.
• To compare two fractions it helps to write them with a common denominator.
• The absolute value of a number is the distance it is from zero on the number line. The absolute value of any

expression will always be positive or zero.
• Two numbers are opposites if they are the same distance from zero on the number line and on opposite sides

of zero. The opposite of an expression can be found by multiplying the entire expression by -1.

Review Questions

1. Solve the problem posed in the Introduction.
2. The tick-marks on the number line represent evenly spaced integers. Find the values of a,b,c,d and e.
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3. Determine what fraction of the whole each shaded region represents.

a.

b.

c.

4. Place the following sets of rational numbers in order, from least to greatest.

a. 1
2 ,

1
3 ,

1
4

b. 1
10 ,

1
2 ,

2
5 ,

1
4 ,

7
20

c. 39
60 ,

49
80 ,

59
100

d. 7
11 ,

8
13 ,

12
19

e. 9
5 ,

22
15 ,

4
3

5. Find the simplest form of the following rational numbers.

a. 22
44

b. 9
27

c. 12
18

d. 315
420

e. 244
168

6. Find the opposite of each of the following.

a. 1.001
b. (5−11)
c. (x+ y)
d. (x− y)
e. (x+ y−4)
f. (−x+2y)

7. Simplify the following absolute value expressions.

a. 11−|−4|
b. |4−9|−|−5|
c. |−5−11|
d. 7−|22−15−19|
e. −|−7|
f. |−2−88|−|88+2|
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2.2 Adding and Subtracting Rational Numbers

Learning Objectives

• Add and subtract using a number line.
• Add and subtract rational numbers.
• Identify and apply properties of addition and subtraction.
• Solve real-world problems using addition and subtraction of fractions.
• Evaluate change using a variable expression.

Introduction

Ilana buys two identically sized cakes for a party. She cuts the chocolate cake into 24 pieces and the vanilla cake
into 20 pieces, and lets the guests serve themselves. Martin takes three pieces of chocolate cake and one of vanilla,
and Sheena takes one piece of chocolate and two of vanilla. Which of them gets more cake?

Add and Subtract Using a Number Line

In Lesson 1, we learned how to represent numbers on a number line. To add numbers on a number line, we start at
the position of the first number, and then move to the right by a number of units equal to the second number.

Example 1

Represent the sum −2+3 on a number line.

We start at the number -2, and then move 3 units to the right. We thus end at +1.

Solution

−2+3 = 1

Example 2

Represent the sum 2 - 3 on a number line.

Subtracting a number is basically just adding a negative number. Instead of moving to the right, we move to the
left. Starting at the number 2, and then moving 3 to the left, means we end at -1.

Solution

2−3 =−1
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Adding and Subtracting Rational Numbers

When we add or subtract two fractions, the denominators must match before we can find the sum or difference. We
have already seen how to find a common denominator for two rational numbers.

Example 3

Simplify 3
5 +

1
6 .

To combine these fractions, we need to rewrite them over a common denominator. We are looking for the lowest
common denominator (LCD). We need to identify the lowest common multiple or least common multiple (LCM)
of 5 and 6. That is the smallest number that both 5 and 6 divide into evenly (that is, without a remainder).

The lowest number that 5 and 6 both divide into evenly is 30. The LCM of 5 and 6 is 30, so the lowest common
denominator for our fractions is also 30.

We need to rewrite our fractions as new equivalent fractions so that the denominator in each case is 30.

If you think back to our idea of a cake cut into a number of slices, 3
5 means 3 slices of a cake that has been cut into

5 pieces. You can see that if we cut the same cake into 30 pieces (6 times as many) we would need 6 times as many
slices to make up an equivalent fraction of the cake—in other words, 18 slices instead of 3.

3
5 is equivalent to 18

30 .

By a similar argument, we can rewrite the fraction 1
6 as a share of a cake that has been cut into 30 pieces. If we cut

it into 5 times as many pieces, we need 5 times as many slices.

1
6 is equivalent to 5

30 .

Now that both fractions have the same denominator, we can add them. If we add 18 pieces of cake to 5 pieces, we
get a total of 23 pieces. 23 pieces of a cake that has been cut into 30 pieces means that our answer is 23

30 .
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3
5
+

1
6
=

18
30

+
5

30
=

23
30

Notice that when we have fractions with a common denominator, we add the numerators but we leave the
denominators alone. Here is this information in algebraic terms.

When adding fractions: a
c +

b
c = a+b

c

Example 4

Simplify 1
3 −

1
9 .

The lowest common multiple of 9 and 3 is 9, so 9 is our common denominator. That means we don’t have to alter
the second fraction at all.

3 divides into 9 three times, so 1
3 = 3·1

3·3 = 3
9 . Our sum becomes 3

9 −
1
9 . We can subtract fractions with a common

denominator by subtracting their numerators, just like adding. In other words:

When subtracting fractions: a
c −

b
c = a−b

c

Solution
1
3 −

1
9 = 2

9

So far, we’ve only dealt with examples where it’s easy to find the least common multiple of the denominators. With
larger numbers, it isn’t so easy to be sure that we have the LCD. We need a more systematic method. In the next
example, we will use the method of prime factors to find the least common denominator.

Example 5

Simplify 29
90 −

13
126 .

To find the lowest common multiple of 90 and 126, we first find the prime factors of 90 and 126. We do this by
continually dividing the number by factors until we can’t divide any further. You may have seen a factor tree before.
(For practice creating factor trees, try the Factor Tree game at http://www.mathgoodies.com/factors/factor_tree.asp.
)

The factor tree for 90 looks like this:

The factor tree for 126 looks like this:
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The LCM for 90 and 126 is made from the smallest possible collection of primes that enables us to construct either
of the two numbers. We take only enough instances of each prime to make the number with the greater number of
instances of that prime in its factor tree.

TABLE 2.1:

Prime Factors in 90 Factors in 126 We Need
2 1 1 1
3 2 2 2
5 1 0 1
7 0 1 1

So we need one 2, two 3’s, one 5 and one 7. That gives us 2 ·3 ·3 ·5 ·7 = 630 as the lowest common multiple of 90
and 126. So 630 is the LCD for our calculation.

90 divides into 630 seven times (notice that 7 is the only factor in 630 that is missing from 90), so 29
90 = 7·29

7·90 = 203
630 .

126 divides into 630 five times (notice that 5 is the only factor in 630 that is missing from 126), so 13
126 = 5·13

5·126 = 65
630 .

Now we complete the problem: 29
90 −

13
126 = 203

630 −
65
630 = 138

630 .

This fraction simplifies. To be sure of finding the simplest form for 138
630 , we write out the prime factors of the

numerator and denominator. We already know the prime factors of 630. The prime factors of 138 are 2, 3 and 23.
138
630 = 2·3·23

2·3·3·5·7 ; one factor of 2 and one factor of 3 cancels out, leaving 23
3·5·7 or 23

105 as our answer.

Identify and Apply Properties of Addition

Three mathematical properties which involve addition are the commutative, associative, and the additive identity
properties.

Commutative property: When two numbers are added, the sum is the same even if the order of the items being
added changes.

Example: 3+2 = 2+3

Associative Property: When three or more numbers are added, the sum is the same regardless of how they are
grouped.

Example: (2+3)+4 = 2+(3+4)

Additive Identity Property: The sum of any number and zero is the original number.

Example: 5+0 = 5
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Solve Real-World Problems Using Addition and Subtraction

Example 6

Peter is hoping to travel on a school trip to Europe. The ticket costs $2400. Peter has several relatives who have
pledged to help him with the ticket cost. His parents have told him that they will cover half the cost. His grandma
Zenoviea will pay one sixth, and his grandparents in Florida will send him one fourth of the cost. What fraction of
the cost can Peter count on his relatives to provide?

The first thing we need to do is extract the relevant information. Peter’s parents will provide 1
2 the cost; his grandma

Zenoviea will provide 1
6 ; and his grandparents in Florida 1

4 . We need to find the sum of those numbers, or 1
2 +

1
6 +

1
4 .

To determine the sum, we first need to find the LCD. The LCM of 2, 6 and 4 is 12, so that’s our LCD. Now we can
find equivalent fractions:

1
2
=

6 ·1
6 ·2

=
6
12

1
6
=

2 ·1
2 ·6

=
2
12

1
4
=

3 ·1
3 ·4

=
3
12

Putting them all together: 6
12 +

2
12 +

3
12 = 11

12 .

Peter will get 11
12 the cost of the trip, or $2200 out of $2400, from his family.

Example 7

A property management firm is buying parcels of land in order to build a small community of condominiums. It has
just bought three adjacent plots of land. The first is four-fifths of an acre, the second is five-twelfths of an acre, and
the third is nineteen-twentieths of an acre. The firm knows that it must allow one-sixth of an acre for utilities and a
small access road. How much of the remaining land is available for development?

The first thing we need to do is extract the relevant information. The plots of land measure 4
5 ,

5
12 , and 19

20 acres,
and the firm can use all of that land except for 1

6 of an acre. The total amount of land the firm can use is therefore
4
5 +

5
12 +

19
20 −

1
6 acres.

We can add and subtract multiple fractions at once just by finding a common denominator for all of them. The
factors of 5, 9, 20, and 6 are as follows:

5 5

12 2 ·2 ·3
20 2 ·2 ·5
6 2 ·3

We need a 5, two 2’s, and a 3 in our LCD. 2 ·2 ·3 ·5 = 60, so that’s our common denominator. Now to convert the
fractions:
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4
5
=

12 ·4
12 ·5

=
48
60

5
12

=
5 ·5
5 ·12

=
25
60

19
20

=
3 ·19
3 ·20

=
57
60

1
6
=

10 ·1
10 ·6

=
10
60

We can rewrite our sum as 48
60 +

25
60 +

57
60 −

10
60 = 48+25+57−10

60 = 120
60 .

Next, we need to reduce this fraction. We can see immediately that the numerator is twice the denominator, so this
fraction reduces to 2

1 or simply 2. One is sometimes called the invisible denominator, because every whole number
can be thought of as a rational number whose denominator is one.

Solution

The property firm has two acres available for development.

Evaluate Change Using a Variable Expression

When we write algebraic expressions to represent a real quantity, the difference between two values is the change
in that quantity.

Example 8

The intensity of light hitting a detector when it is held a certain distance from a bulb is given by this equation:

Intensity =
3
d2

where d is the distance measured in meters, and intensity is measured in lumens. Calculate the change in intensity
when the detector is moved from two meters to three meters away.

We first find the values of the intensity at distances of two and three meters.

Intensity (2) =
3

(2)2 =
3
4

Intensity (3) =
3

(3)2 =
3
9
=

1
3

The difference in the two values will give the change in the intensity. We move from two meters to three meters
away.

Change = Intensity (3)− Intensity (2) = 1
3 −

3
4
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To find the answer, we will need to write these fractions over a common denominator.

The LCM of 3 and 4 is 12, so we need to rewrite each fraction with a denominator of 12:

1
3
=

4 ·1
4 ·3

=
4
12

3
4
=

3 ·3
3 ·4

=
9
12

So we can rewrite our equation as 4
12 −

9
12 =− 5

12 . The negative value means that the intensity decreases as we move
from 2 to 3 meters away.

Solution

When moving the detector from two meters to three meters, the intensity falls by 5
12 lumens.

Lesson Summary

• Subtracting a number is the same as adding the opposite (or additive inverse) of the number.
• To add fractions, rewrite them over the lowest common denominator (LCD). The lowest common denomi-

nator is the lowest (or least) common multiple (LCM) of the two denominators.
• When adding fractions: a

c +
b
c = a+b

c
• When subtracting fractions: a

c −
b
c = a−b

c
• Commutative property: the sum of two numbers is the same even if the order of the items to be added

changes.
• Associative Property: When three or more numbers are added, the sum is the same regardless of how they

are grouped.
• Additive Identity Property: The sum of any number and zero is the original number.
• The number one is sometimes called the invisible denominator, as every whole number can be thought of as

a rational number whose denominator is one.
• The difference between two values is the change in that quantity.

Further Practice

For more practice adding and subtracting fractions, try playing the math games at http://www.mathplayground.co
m/fractions_add.html and http://www.mathplayground.com/fractions_sub.html, or the one at http://www.aaamath.c
om/fra66kx2.htm.

Review Questions

1. Write the sum that the following moves on a number line represent.

a.
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b.

2. Add the following rational numbers. Write each answer in its simplest form.

a. 3
7 +

2
7

b. 3
10 +

1
5

c. 5
16 +

5
12

d. 3
8 +

9
16

e. 8
25 +

7
10

f. 1
6 +

1
4

g. 7
15 +

2
9

h. 5
19 +

2
27

3. Which property of addition does each situation involve?

a. Whichever order your groceries are scanned at the store, the total will be the same.
b. However many shovel-loads it takes to move 1 ton of gravel, the number of rocks moved is the same.
c. If Julia has no money, then Mark and Julia together have just as much money as Mark by himself has.

4. Solve the problem posed in the Introduction to this lesson.
5. Nadia, Peter and Ian are pooling their money to buy a gallon of ice cream. Nadia is the oldest and gets the

greatest allowance. She contributes half of the cost. Ian is next oldest and contributes one third of the cost.
Peter, the youngest, gets the smallest allowance and contributes one fourth of the cost. They figure that this
will be enough money. When they get to the check-out, they realize that they forgot about sales tax and worry
there will not be enough money. Amazingly, they have exactly the right amount of money. What fraction of
the cost of the ice cream was added as tax?

6. Subtract the following rational numbers. Be sure that your answer is in the simplest form.

a. 5
12 −

9
18

b. 2
3 −

1
4

c. 3
4 −

1
3

d. 15
11 −

9
7

e. 2
13 −

1
11

f. 7
27 −

9
39

g. 6
11 −

3
22

h. 13
64 −

7
40

i. 11
70 −

11
30

7. Consider the equation y = 3x+2. Determine the change in y between x = 3 and x = 7.
8. Consider the equation y = 2

3 x+ 1
2 . Determine the change in y between x = 1 and x = 2.

9. The time taken to commute from San Diego to Los Angeles is given by the equation time = 120
speed where time

is measured in hours and speed is measured in miles per hour (mph). Calculate the change in time that a
rush hour commuter would see when switching from traveling by bus to traveling by train, if the bus averages
40 mph and the train averages 90 mph.
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2.3 Multiplying and Dividing Rational Numbers

Learning Objectives

• Multiply by negative one.
• Multiply rational numbers.
• Identify and apply properties of multiplication.
• Solve real-world problems using multiplication.
• Find multiplicative inverses.
• Divide rational numbers.
• Solve real-world problems using division.

Multiplying Numbers by Negative One

Whenever we multiply a number by negative one, the sign of the number changes. In more mathematical terms,
multiplying by negative one maps a number onto its opposite. The number line below shows two examples: 3 ·−1= 3
and −1 ·−1 = 1.

When we multiply a number by negative one, the absolute value of the new number is the same as the absolute value
of the old number, since both numbers are the same distance from zero.

The product of a number “x” and negative one is −x. This does not mean that −x is necessarily less than zero! If x
itself is negative, then −x will be positive because a negative times a negative (negative one) is a positive.

When you multiply an expression by negative one, remember to multiply the entire expression by negative one.

Example 1

Multiply the following by negative one.

a) 79.5

b) π

c) (x+1)

d) |x|

Solution

a) -79.5

b) −π
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c) −(x+1) or − x−1

d) −|x|

Note that in the last case the negative sign outside the absolute value symbol applies after the absolute value.
Multiplying the argument of an absolute value equation (the term inside the absolute value symbol) does not change
the absolute value. |x| is always positive. |−x| is always positive. −|x| is always negative.

Whenever you are working with expressions, you can check your answers by substituting in numbers for the
variables. For example, you could check part d of Example 1 by letting x = −3. Then you’d see that |−3|6= −|3|,
because |−3|= 3 and −|3|=−3.

Careful, though—plugging in numbers can tell you if your answer is wrong, but it won’t always tell you for sure if
your answer is right!

Multiply Rational Numbers

Example 2

Simplify 1
3 ·

2
5 .

One way to solve this is to think of money. For example, we know that one third of sixty dollars is written as 1
3 ·$60.

We can read the above problem as one-third of two-fifths. Here is a visual picture of the fractions one-third and
two-fifths.

If we divide our rectangle into thirds one way and fifths the other way, here’s what we get:

Here is the intersection of the two shaded regions. The whole has been divided into five pieces width-wise and three
pieces height-wise. We get two pieces out of a total of fifteen pieces.

Solution
1
3 ·

2
5 = 2

15

Notice that 1 · 2 = 2 and 3 · 5 = 15. This turns out to be true in general: when you multiply rational numbers, the
numerators multiply together and the denominators multiply together. Or, to put it more formally:

When multiplying fractions: a
b ·

c
d = ac

bd

This rule doesn’t just hold for the product of two fractions, but for any number of fractions.

Example 4
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Multiply the following rational numbers:

a) 2
5 ·

5
9

b) 1
3 ·

2
7 ·

2
5

c) 1
2 ·

2
3 ·

3
4 ·

4
5

Solution

a) With this problem, we can cancel the fives: 2
5 ·

5
9 = 2·5

5·9 = 2
9 .

b) With this problem, we multiply all the numerators and all the denominators:

1
3
· 2

7
· 2

5
=

1 ·2 ·2
3 ·7 ·5

=
4

105

c) With this problem, we multiply all the numerators and all the denominators, and then we can cancel most of them.
The 2’s, 3’s, and 4’s all cancel out, leaving 1

5 .

With multiplication of fractions, we can simplify before or after we multiply. The next example uses factors to help
simplify before we multiply.

Example 5

Evaluate and simplify 12
25 ·

35
42 .

Solution

We can see that 12 and 42 are both multiples of six, 25 and 35 are both multiples of five, and 35 and 42 are both
multiples of 7. That means we can write the whole product as 6·2

5·5 ·
5·7
6·7 = 6·2·5·7

5·5·6·7 . Then we can cancel out the 5, the 6,
and the 7, leaving 2

5 .

Identify and Apply Properties of Multiplication

The four mathematical properties which involve multiplication are the Commutative, Associative, Multiplicative
Identity and Distributive Properties.

Commutative property: When two numbers are multiplied together, the product is the same regardless of the order
in which they are written.

Example: 4 ·2 = 2 ·4

We can see a geometrical interpretation of The Commutative Property of Multiplication to the right. The Area
of the shape (length×width) is the same no matter which way we draw it.

Associative Property: When three or more numbers are multiplied, the product is the same regardless of their
grouping.

Example: 2 · (3 ·4) = (2 ·3) ·4
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Multiplicative Identity Property: The product of one and any number is that number.

Example: 5 ·1 = 5

Distributive property: The multiplication of a number and the sum of two numbers is equal to the first number
times the second number plus the first number times the third number.

Example: 4(6+3) = 4 ·6+4 ·3

Example 6

A gardener is planting vegetables for the coming growing season. He wishes to plant potatoes and has a choice of a
single 8×7 meter plot, or two smaller plots of 3×7 and 5×7 meters. Which option gives him the largest area for
his potatoes?

Solution

In the first option, the gardener has a total area of (8×7) or 56 square meters.

In the second option, the gardener has (3×7) or 21 square meters, plus (5×7) or 35 square meters. 21+35 = 56,
so the area is the same as in the first option.

Solve Real-World Problems Using Multiplication

Example 7

In the chemistry lab there is a bottle with two liters of a 15% solution of hydrogen peroxide (H2O2). John removes
one-fifth of what is in the bottle, and puts it in a beaker. He measures the amount of H2O2 and adds twice that
amount of water to the beaker. Calculate the following measurements.

a) The amount of H2O2 left in the bottle.

b) The amount of diluted H2O2 in the beaker.

c) The concentration of the H2O2 in the beaker.

Solution

a) To determine the amount of H2O2 left in the bottle, we first determine the amount that was removed. That amount
was 1

5 of the amount in the bottle (2 liters). 1
5 of 2 is 2

5 .

The amount remaining is 2− 2
5 , or 10

5 −
2
5 = 8

5 liter (or 1.6 liters).

There are 1.6 liters left in the bottle.

b) We determined that the amount of the 15% H2O2 solution removed was 2
5 liter. The amount of water added was

twice this amount, or 4
5 liter. So the total amount of solution in the beaker is now 2

5 +
4
5 = 6

5 liter, or 1.2 liters.

There are 1.2 liters of diluted H2O2 in the beaker.

c) The new concentration of H2O2 can be calculated.
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John started with 2
5 liter of 15% H2O2 solution, so the amount of pure H2O2 is 15% of 2

5 liters, or 0.15×0.40 = 0.06
liters.

After he adds the water, there is 1.2 liters of solution in the beaker, so the concentration of H2O2 is 0.06
1.2 = 1

20 or 0.05.
To convert to a percent we multiply this number by 100, so the beaker’s contents are 5% H2O2.

Example 8

Anne has a bar of chocolate and she offers Bill a piece. Bill quickly breaks off 1
4 of the bar and eats it. Another

friend, Cindy, takes 1
3 of what was left. Anne splits the remaining candy bar into two equal pieces which she shares

with a third friend, Dora. How much of the candy bar does each person get?

First, let’s look at this problem visually.

Anne starts with a full candy bar.

Bill breaks off 1
4 of the bar.

Cindy takes 1
3 of what was left.

Dora gets half of the remaining candy bar.

We can see that the candy bar ends up being split four ways, with each person getting an equal amount.

Solution

Each person gets exactly 1
4 of the candy bar.

We can also examine this problem using rational numbers. We keep a running total of what fraction of the bar
remains. Remember, when we read a fraction followed by of in the problem, it means we multiply by that fraction.

We start with 1 bar. Then Bill takes 1
4 of it, so there is 1− 1

4 = 3
4 of a bar left.

Cindy takes 1
3 of what’s left, or 1

3 ·
3
4 = 1

4 of a whole bar. That leaves 3
4 −

1
4 = 2

4 , or 1
2 of a bar.

That half bar gets split between Anne and Dora, so they each get half of a half bar: 1
2 ·

1
2 = 1

4 .

So each person gets exactly 1
4 of the candy bar.

Extension: If each person’s share is 3 oz, how much did the original candy bar weigh?
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Identity Elements

An identity element is a number which, when combined with a mathematical operation on a number, leaves that
number unchanged. For example, the identity element for addition and subtraction is zero, because adding or
subtracting zero to a number doesn’t change the number. And zero is also what you get when you add together a
number and its opposite, like 3 and -3.

The inverse operation of addition is subtraction—when you add a number and then subtract that same number,
you end up back where you started. Also, adding a number’s opposite is the same as subtracting it—for example,
4+(−3) is the same as 4−3.

Multiplication and division are also inverse operations to each other—when you multiply by a number and then
divide by the same number, you end up back where you started. Multiplication and division also have an identity
element: when you multiply or divide a number by one, the number doesn’t change.

Just as the opposite of a number is the number you can add to it to get zero, the reciprocal of a number is the
number you can multiply it by to get one. And finally, just as adding a number’s opposite is the same as subtracting
the number, multiplying by a number’s reciprocal is the same as dividing by the number.

Find Multiplicative Inverses

The reciprocal of a number x is also called the multiplicative inverse. Any number times its own multiplicative
inverse equals one, and the multiplicative inverse of x is written as 1

x .

To find the multiplicative inverse of a rational number, we simply invert the fraction—that is, flip it over. In other
words:

The multiplicative inverse of a
b is b

a , as long as a 6= 0.

You’ll see why in the following exercise.

Example 9

Find the multiplicative inverse of each of the following.

a) 3
7

b) 4
9

c) 3 1
2

d) − x
y

e) 1
11

Solution

a) When we invert the fraction 3
7 , we get 7

3 . Notice that if we multiply 3
7 ·

7
3 , the 3’s and the 7’s both cancel out and

we end up with 1
1 , or just 1.

b) Similarly, the inverse of 4
9 is 9

4 ; if we multiply those two fractions together, the 4’s and the 9’s cancel out and
we’re left with 1. That’s why the rule “invert the fraction to find the multiplicative inverse” works: the numerator
and the denominator always end up canceling out, leaving 1.

c) To find the multiplicative inverse of 3 1
2 we first need to convert it to an improper fraction. Three wholes is six

halves, so 3 1
2 = 6

2 +
1
2 = 7

2 . That means the inverse is 2
7 .

d) Don’t let the negative sign confuse you. The multiplicative inverse of a negative number is also negative! Just
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ignore the negative sign and flip the fraction as usual.

The multiplicative inverse of − x
y is − y

x .

e) The multiplicative inverse of 1
11 is 11

1 , or simply 11.

Look again at the last example. When we took the multiplicative inverse of 1
11 we got a whole number, 11. That’s

because we can treat that whole number like a fraction with a denominator of 1. Any number, even a non-rational
one, can be treated this way, so we can always find a number’s multiplicative inverse using the same method.

Divide Rational Numbers

Earlier, we mentioned that multiplying by a number’s reciprocal is the same as dividing by the number. That’s how
we can divide rational numbers; to divide by a rational number, just multiply by that number’s reciprocal. In more
formal terms:

a
b
÷ c

d
=

a
b
× d

c
.

Example 10

Divide the following rational numbers, giving your answer in the simplest form.

a) 1
2 ÷

1
4

b) 7
3 ÷

2
3

c) x
2 ÷

1
4y

d) 11
2x ÷

(
− x

y

)
Solution

a) Replace 1
4 with 4

1 and multiply: 1
2 ×

4
1 = 4

2 = 2.

b) Replace 2
3 with 3

2 and multiply: 7
3 ×

3
2 = 7·3

3·2 = 7
2 .

c) x
2 ÷

1
4y =

x
2 ×

4y
1 = 4xy

2 = 2xy
1 = 2xy

d) 11
2x ÷

(
− x

y

)
= 11

2x ×
(
− y

x

)
=−11y

2x2

Solve Real-World Problems Using Division

Speed, Distance and Time

An object moving at a certain speed will cover a fixed distance in a set time. The quantities speed, distance and
time are related through the equation Speed = Distance

Time .

Example 11

Andrew is driving down the freeway. He passes mile marker 27 at exactly mid-day. At 12:35 he passes mile marker
69. At what speed, in miles per hour, is Andrew traveling?

Solution
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To find the speed, we need the distance traveled and the time taken. If we want our speed to come out in miles per
hour, we’ll need distance in miles and time in hours.

The distance is 69−27 or 42 miles. The time is 35 minutes, or 35
60 hours, which reduces to 7

12 . Now we can plug in
the values for distance and time into our equation for speed.

Speed =
42
7
12

= 42÷ 7
12

=
42
1
× 12

7
=

6 ·7 ·12
1 ·7

=
6 ·12

1
= 72

Andrew is driving at 72 miles per hour.

Example 12

Anne runs a mile and a half in a quarter hour. What is her speed in miles per hour?

Solution

We already have the distance and time in the correct units (miles and hours), so we just need to write them as
fractions and plug them into the equation.

Speed =
1 1

2
1
4

=
3
2
÷ 1

4
=

3
2
× 4

1
=

3 ·4
2 ·1

=
12
2

= 6

Anne runs at 6 miles per hour.

Example 13 – Newton’s Second Law

Newton’s second law (F = ma) relates the force applied to a body in Newtons (F), the mass of the body in kilograms
(m) and the acceleration in meters per second squared (a). Calculate the resulting acceleration if a Force of 7 1

3
Newtons is applied to a mass of 1

5 kg.

Solution

First, we rearrange our equation to isolate the acceleration, a. If F = ma, dividing both sides by m gives us a = F
m .

Then we substitute in the known values for F and m:

a =
7 1

3
1
5

=
22
3
÷ 1

5
=

22
3
× 5

1
=

110
3

The resultant acceleration is 36 2
3 m/s2.

Lesson Summary

When multiplying an expression by negative one, remember to multiply the entire expression by negative one.

To multiply fractions, multiply the numerators and multiply the denominators: a
b ·

c
d = ac

bd

The multiplicative properties are:

• Commutative Property: The product of two numbers is the same whichever order the items to be multiplied
are written. Example: 2 ·3 = 3 ·2

• Associative Property: When three or more numbers are multiplied, the sum is the same regardless of how
they are grouped. Example: 2 · (3 ·4) = (2 ·3) ·4
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• Multiplicative Identity Property: The product of any number and one is the original number. Example:
2 ·1 = 2

• Distributive property: The multiplication of a number and the sum of two numbers is equal to the first
number times the second number plus the first number times the third number. Example: 4(2+3) = 4(2)+
4(3)

The multiplicative inverse of a number is the number which produces 1 when multiplied by the original number.
The multiplicative inverse of x is the reciprocal 1

x . To find the multiplicative inverse of a fraction, simply invert the
fraction: a

b inverts to b
a .

To divide fractions, invert the divisor and multiply: a
b ÷

c
d = a

b ×
d
c .

Further Practice

For more practice multiplying fractions, try playing the fraction game at http://www.aaamath.com/fra66mx2.htm, or
the one at http://www.mathplayground.com/fractions_mult.html. For more practice dividing fractions, try the game
at http://www.aaamath.com/div66ox2.htm or the one at http://www.mathplayground.com/fractions_div.html.

Review Questions

1. Multiply the following expressions by negative one.

a. 25
b. -105
c. x2

d. (3+ x)
e. (3− x)

2. Multiply the following rational numbers. Write your answer in the simplest form.

a. 5
12 ×

9
10

b. 2
3 ×

1
4

c. 3
4 ×

1
3

d. 15
11 ×

9
7

e. 1
13 ×

1
11

f. 7
27 ×

9
14

g.
(3

5

)2

h. 1
11 ×

22
21 ×

7
10

i. 12
15 ×

35
13 ×

10
2 ×

26
36

3. Find the multiplicative inverse of each of the following.

a. 100
b. 2

8
c. −19

21
d. 7
e. − z3

2xy2

4. Divide the following rational numbers. Write your answer in the simplest form.

a. 5
2 ÷

1
4

b. 1
2 ÷

7
9
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c. 5
11 ÷

6
7

d. 1
2 ÷

1
2

e. − x
2 ÷

5
7

f. 1
2 ÷

x
4y

g.
(
−1

3

)
÷
(
−3

5

)
h. 7

2 ÷
7
4

i. 11÷ −x
4

5. The label on a can of paint says that it will cover 50 square feet per pint. If I buy a 1
8 pint sample, it will cover

a square two feet long by three feet high. Is the coverage I get more, less or the same as that stated on the
label?

6. The world’s largest trench digger, "Bagger 288", moves at 3
8 mph. How long will it take to dig a trench 2

3 mile
long?

7. A 2
7 Newton force applied to a body of unknown mass produces an acceleration of 3

10 m/s2. Calculate the
mass of the body.
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2.4 The Distributive Property

Learning Objectives

• Apply the distributive property.
• Identify parts of an expression.
• Solve real-world problems using the distributive property.

Introduction

At the end of the school year, an elementary school teacher makes a little gift bag for each of his students. Each bag
contains one class photograph, two party favors and five pieces of candy. The teacher will distribute the bags among
his 28 students. How many of each item does the teacher need?

Apply the Distributive Property

When we have a problem like the one posed in the introduction, The Distributive Property can help us solve it.
First, we can write an expression for the contents of each bag: Items = (photo + 2 favors + 5 candies), or simply
I = (p+2 f +5c).

For all 28 students, the teacher will need 28 times that number of items, so I = 28(p+2 f +5c).

Next, the Distributive Property of Multiplication tells us that when we have a single term multiplied by a sum of
several terms, we can rewrite it by multiplying the single term by each of the other terms separately. In other words,
28(p+ 2 f + 5c) = 28(p)+ 28(2 f )+ 28(5c), which simplifies to 28p+ 56 f + 140c. So the teacher needs 28 class
photos, 56 party favors and 140 pieces of candy.

You can see why the Distributive Property works by looking at a simple problem where we just have numbers inside
the parentheses, and considering the Order of Operations.

Example 1

Determine the value of 11(2 - 6) using both the Order of Operations and the Distributive Property.

Solution

Order of Operations tells us to evaluate the amount inside the parentheses first:

11(2−6) = 11(−4) =−44

Now let’s try it with the Distributive Property:

11(2−6) = 11(2)−11(6) = 22−66 =−44
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Note: When applying the Distributive Property you MUST take note of any negative signs!

Example 2

Use the Distributive Property to determine the following.

a) 11(2x+6)

b) 7(3x−5)

c) 2
7(3y2−11)

d) 2x
7

(
3y2− 11

xy

)
Solution

a) 11(2x+6) = 11(2x)+11(6) = 22x+66

b) Note the negative sign on the second term.

7(3x−5) = 21x−35

c) 2
7(3y2−11) = 2

7(3y2)+ 2
7(−11) = 6y2

7 −
22
7 , or 6y2−22

7

d) 2x
7

(
3y2− 11

xy

)
= 2x

7 (3y2)+ 2x
7

(
−11

xy

)
= 6xy2

7 −
22x
7xy

We can simplify this answer by canceling the x’s in the second fraction, so we end up with 6xy2

7 −
22
7y .

Identify Expressions That Involve the Distributive Property

The Distributive Property can also appear in expressions that don’t include parentheses. In Lesson 1.2, we saw how
the fraction bar also acts as a grouping symbol. Now we’ll see how to use the Distributive Property with fractions.

Example 3

Simplify the following expressions.

a) 2x+8
4

b) 9y−2
3

c) z+6
2

Solution

Even though these expressions aren’t written in a form we usually associate with the Distributive Property, remember
that we treat the numerator of a fraction as if it were in parentheses, and that means we can use the Distributive
Property here too.

a) 2x+8
4 can be re-written as 1

4(2x+8). Then we can distribute the 1
4 :

1
4
(2x+8) =

2x
4
+

8
4
=

x
2
+2

b) 9y−2
3 can be re-written as 1

3(9y−2), and then we can distribute the 1
3 :
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1
3
(9y−2) =

9y
3
− 2

3
= 3y− 2

3

c) Rewrite z+6
2 as 1

2(z+6), and distribute the 1
2 :

1
2
(z+6) =

z
2
+

6
2
=

z
2
+3

Solve Real-World Problems Using the Distributive Property

The Distributive Property is one of the most common mathematical properties used in everyday life. Any time we
have two or more groups of objects, the Distributive Property can help us solve for an unknown.

Example 4

Each student on a field trip into a forest is to be given an emergency survival kit. The kit is to contain a flashlight,
a first aid kit, and emergency food rations. Flashlights cost $12 each, first aid kits are $7 each and emergency food
rations cost $2 per day. There is $500 available for the kits and 17 students to provide for. How many days worth of
rations can be provided with each kit?

The unknown quantity in this problem is the number of days’ rations. This will be x in our expression.

Each kit will contain one $12 flashlight, one $7 first aid kit, and x times $2 worth of rations, for a total cost of
(12+7+2x) dollars. With 17 kits, therefore, the total cost will be 17(12+7+2x) dollars.

We can use the Distributive Property on this expression:

17(12+7+2x) = 204+119+34x

Since the total cost can be at most $500, we set the expression equal to 500 and solve for x. (You’ll learn in more
detail how to solve equations like this in the next chapter.)

204+119+34x = 500

323+34x = 500

323+34x−323 = 500−323

34x = 177
34x
34

=
177
34

x≈ 5.206

Since this represents the number of days’ worth of rations that can be bought, we must round to the next lowest
whole number. We wouldn’t have enough money to buy a sixth day of supplies.

Solution

Five days worth of emergency rations can be purchased for each survival kit.
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Lesson Summary

• Distributive Property The product of a number and the sum of two numbers is equal to the first number times
the second number plus the first number times the third number.

• When applying the Distributive Property you MUST take note of any negative signs!

Further Practice

For more practice using the Distributive Property, try playing the Battleship game at http://www.quia.com/ba/15357
.html.

Review Questions

1. Use the Distributive Property to simplify the following expressions.

a. (x+4)−2(x+5)
b. 1

2(4z+6)
c. (4+5)− (5+2)
d. x(x+7)
e. y(x+7)
f. 13x(3y+ z)
g. x

(3
x +5

)
h. xy

(
1
x +

2
y

)
2. Use the Distributive Property to remove the parentheses from the following expressions.

a. 1
2(x− y)−4

b. 0.6(0.2x+0.7)
c. 6+(x−5)+7
d. 6− (x−5)+7
e. 4(m+7)−6(4−m)
f. −5(y−11)+2y
g. −(x−3y)+ 1

2(z+4)
h. a

b

(2
a +

3
b +

b
5

)
3. Use the Distributive Property to simplify the following fractions.

a. 8x+12
4

b. 9x+12
3

c. 11x+12
2

d. 3y+2
6

e. −6z−2
3

f. 7−6p
3

g. 3d−4
6d

h. 12g+8h
4gh

4. A bookcase has five shelves, and each shelf contains seven poetry books and eleven novels. How many of
each type of book does the bookcase contain?
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5. Amar is making giant holiday cookies for his friends at school. He makes each cookie with 6 oz of cookie
dough and decorates them with macadamia nuts. If Amar has 5 lbs of cookie dough (1 lb = 16 oz) and 60
macadamia nuts, calculate the following.

a. How many (full) cookies he can make?
b. How many macadamia nuts he can put on each cookie, if each is to be identical?
c. If 4 cups of flour and 1 cup of sugar went into each pound of cookie dough, how much of each did Amar

use to make the 5 pounds of dough?
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2.5 Square Roots and Real Numbers

Learning Objectives

• Find square roots.
• Approximate square roots.
• Identify irrational numbers.
• Classify real numbers.
• Graph and order real numbers.

Find Square Roots

The square root of a number is a number which, when multiplied by itself, gives the original number. In other
words, if a = b2, we say that b is the square root of a.

Note: Negative numbers and positive numbers both yield positive numbers when squared, so each positive number
has both a positive and a negative square root. (For example, 3 and -3 can both be squared to yield 9.) The positive
square root of a number is called the principal square root.

The square root of a number x is written as
√

x or sometimes as 2√x. The symbol √ is sometimes called a radical
sign.

Numbers with whole-number square roots are called perfect squares. The first five perfect squares (1, 4, 9, 16, and
25) are shown below.

You can determine whether a number is a perfect square by looking at its prime factors. If every number in the factor
tree appears an even number of times, the number is a perfect square. To find the square root of that number, simply
take one of each pair of matching factors and multiply them together.

Example 1

Find the principal square root of each of these perfect squares.

a) 121

b) 225

c) 324

d) 576
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Solution

a) 121 = 11×11, so
√

121 = 11.

b) 225 = (5×5)× (3×3), so
√

225 = 5×3 = 15.

c) 324 = (2×2)× (3×3)× (3×3), so
√

324 = 2×3×3 = 18.

d) 576 = (2×2)× (2×2)× (2×2)× (3×3), so
√

576 = 2×2×2×3 = 24.

For more practice matching numbers with their square roots, try the Flash games at http://www.quia.com/jg/65631
.html.

When the prime factors don’t pair up neatly, we “factor out” the ones that do pair up and leave the rest under a
radical sign. We write the answer as a

√
b, where a is the product of half the paired factors we pulled out and b is

the product of the leftover factors.

Example 2

Find the principal square root of the following numbers.

a) 8

b) 48

c) 75

d) 216

Solution

a) 8 = 2×2×2. This gives us one pair of 2’s and one leftover 2, so
√

8 = 2
√

2.

b) 48 = (2×2)× (2×2)×3, so
√

48 = 2×2×
√

3, or 4
√

3.

c) 75 = (5×5)×3, so
√

75 = 5
√

3.

d) 216 = (2×2)×2× (3×3)×3, so
√

216 = 2×3×
√

2×3, or 6
√

6.

Note that in the last example we collected the paired factors first, then we collected the unpaired ones under a single
radical symbol. Here are the four rules that govern how we treat square roots.

•
√

a×
√

b =
√

ab
• A
√

a×B
√

b = AB
√

ab

•
√

a√
b
=

√
a
b

• A
√

a
B
√

b
= A

B

√
a
b

Example 3

Simplify the following square root problems

a)
√

8×
√

2

b) 3
√

4×4
√

3

c)
√

12 ÷
√

3

d) 12
√

10÷6
√

5

Solution

a)
√

8×
√

2 =
√

16 = 4

b) 3
√

4×4
√

3 = 12
√

12 = 12
√
(2×2)×3 = 12×2

√
3 = 24

√
3
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c)
√

12 ÷
√

3 =

√
12
3

=
√

4 = 2

d) 12
√

10÷6
√

5 = 12
6

√
10
5

= 2
√

2

Approximate Square Roots

Terms like
√

2,
√

3 and
√

7 (square roots of prime numbers) cannot be written as rational numbers. That is to say,
they cannot be expressed as the ratio of two integers. We call them irrational numbers. In decimal form, they have
an unending, seemingly random, string of numbers after the decimal point.

To find approximate values for square roots, we use the √ or
√

x button on a calculator. When the number we
plug in is a perfect square, or the square of a rational number, we will get an exact answer. When the number is a
non-perfect square, the answer will be irrational and will look like a random string of digits. Since the calculator can
only show some of the infinitely many digits that are actually in the answer, it is really showing us an approximate
answer—not exactly the right answer, but as close as it can get.

Example 4

Use a calculator to find the following square roots. Round your answer to three decimal places.

a)
√

99

b)
√

5

c)
√

0.5

d)
√

1.75

Solution

a) ≈ 9.950

b) ≈ 2.236

c) ≈ 0.707

d) ≈ 1.323

You can also work out square roots by hand using a method similar to long division. (See the web page at http://w
ww.homeschoolmath.net/teaching/square-root-algorithm.php for an explanation of this method.)

Identify Irrational Numbers

Not all square roots are irrational, but any square root that can’t be reduced to a form with no radical signs in it is
irrational. For example,

√
49 is rational because it equals 7, but

√
50 can’t be reduced farther than 5

√
2. That factor

of
√

2 is irrational, making the whole expression irrational.

Example 5

Identify which of the following are rational numbers and which are irrational numbers.

a) 23.7

b) 2.8956

c) π
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d)
√

6

e) 3.27

Solution

a) 23.7 can be written as 23 7
10 , so it is rational.

b) 2.8956 can be written as 2 8956
10000 , so it is rational.

c) π = 3.141592654 . . . We know from the definition of π that the decimals do not terminate or repeat, so π is
irrational.

d)
√

6 =
√

2 ×
√

3. We can’t reduce it to a form without radicals in it, so it is irrational.

e) 3.27 = 3.272727272727 . . . This decimal goes on forever, but it’s not random; it repeats in a predictable pattern.
Repeating decimals are always rational; this one can actually be expressed as 36

11 .

You can see from this example that any number whose decimal representation has a finite number of digits is rational,
since each decimal place can be expressed as a fraction. For example, 0.439 can be expressed as 4

10 +
3

100 +
9

1000 , or
just 439

1000 . Also, any decimal that repeats is rational, and can be expressed as a fraction. For example, 0.2538 can be
expressed as 25

100 +
38

9900 , which is equivalent to 2513
9900 .

Classify Real Numbers

We can now see how real numbers fall into one of several categories.

If a real number can be expressed as a rational number, it falls into one of two categories. If the denominator of its
simplest form is one, then it is an integer. If not, it is a fraction (this term also includes decimals, since they can be
written as fractions.)

If the number cannot be expressed as the ratio of two integers (i.e. as a fraction), it is irrational.

Example 6

Classify the following real numbers.

a) 0

b) -1

c) π

3

d)
√

2
3

e)
√

36
9
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Solution

a) Integer

b) Integer

c) Irrational (Although it’s written as a fraction, π is irrational, so any fraction with π in it is also irrational.)

d) Irrational

e) Rational (It simplifies to 6
9 , or 2

3 .)

Lesson Summary

• The square root of a number is a number which gives the original number when multiplied by itself. In
algebraic terms, for two numbers a and b, if a = b2, then b =

√
a.

• A square root can have two possible values: a positive value called the principal square root, and a negative
value (the opposite of the positive value).

• A perfect square is a number whose square root is an integer.
• Some mathematical properties of square roots are:

–
√

a ×
√

b =
√

ab
– A
√

a ×B
√

b = AB
√

ab

–
√

a√
b
=

√
a
b

– A
√

a
B
√

b
= A

B

√
a
b

• Square roots of numbers that are not perfect squares (or ratios of perfect squares) are irrational numbers.
They cannot be written as rational numbers (the ratio of two integers). In decimal form, they have an unending,
seemingly random, string of numbers after the decimal point.

• Computing a square root on a calculator will produce an approximate solution since the calculator only
shows a finite number of digits after the decimal point.

Review Questions

1. Find the following square roots exactly without using a calculator, giving your answer in the simplest form.

a.
√

25
b.
√

24
c.
√

20
d.
√

200
e.
√

2000

f.

√
1
4

(Hint: The division rules you learned can be applied backwards!)

g.

√
9
4

h.
√

0.16
i.
√

0.1
j.
√

0.01

2. Use a calculator to find the following square roots. Round to two decimal places.

a.
√

13
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b.
√

99
c.
√

123
d.
√

2
e.
√

2000
f.
√
.25

g.
√

1.35
h.
√

0.37
i.
√

0.7
j.
√

0.01

3. Classify the following numbers as an integer, a rational number or an irrational number.

a.
√

0.25
b.
√

1.35
c.
√

20
d.
√

25
e.
√

100

4. Place the following numbers in numerical order, from lowest to highest.
√

6
2

61
50

√
1.5 16

13
5. Use the marked points on the number line and identify each proper fraction.

109

http://www.ck12.org


2.6. Problem-Solving Strategies: Guess and Check, Work Backward www.ck12.org

2.6 Problem-Solving Strategies: Guess and
Check, Work Backward

Learning Objectives

• Read and understand given problem situations.
• Develop and use the strategy “Guess and Check.”
• Develop and use the strategy “Work Backward.”
• Plan and compare alternative approaches to solving problems.
• Solve real-world problems using selected strategies as part of a plan.

Introduction

In this section, you will learn about the methods of Guess and Check and Working Backwards. These are very
powerful strategies in problem solving and probably the most commonly used in everyday life. Let’s review our
problem-solving plan.

Step 1

Understand the problem.

Read the problem carefully. Then list all the components and data involved, and assign your variables.

Step 2

Devise a plan – Translate

Come up with a way to solve the problem. Set up an equation, draw a diagram, make a chart or construct a table.

Step 3

Carry out the plan – Solve

This is where you solve the equation you came up with in Step 2.

Step 4

Look – Check and Interpret

Check that the answer makes sense.

Let’s now look at some strategies we can use as part of this plan.

Develop and Use the Strategy “Guess and Check”

The strategy for the method “Guess and Check” is to guess a solution and then plug the guess back into the problem
to see if you get the correct answer. If the answer is too big or too small, make another guess that will get you closer
to the goal, and continue guessing until you arrive at the correct solution. The process might sound long, but often
you will find patterns that you can use to make better guesses along the way.
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Here is an example of how this strategy is used in practice.

Example 1

Nadia takes a ribbon that is 48 inches long and cuts it in two pieces. One piece is three times as long as the other.
How long is each piece?

Solution

Step 1: Understand

We need to find two numbers that add up to 48. One number is three times the other number.

Step 2: Strategy

We guess two random numbers, one three times bigger than the other, and find the sum.

If the sum is too small we guess larger numbers, and if the sum is too large we guess smaller numbers.

Then, we see if any patterns develop from our guesses.

Step 3: Apply Strategy/Solve

Guess 5 and 15 5+15 = 20 sum is too small

Guess 6 and 18 6+18 = 24 sum is too small

Our second guess gives us a sum that is exactly half of 48. What if we double that guess?

12+36 = 48

There’s our answer. The pieces are 12 and 36 inches long.

Step 4: Check

12+36 = 48 The pieces add up to 48 inches.

36 = 3(12) One piece is three times as long as the other.

The answer checks out.

Develop and Use the Strategy “Work Backward”

The “Work Backward” method works well for problems where a series of operations is done on an unknown number
and you’re only given the result. To use this method, start with the result and apply the operations in reverse order
until you find the starting number.

Example 2

Anne has a certain amount of money in her bank account on Friday morning. During the day she writes a check for
$24.50, makes an ATM withdrawal of $80 and deposits a check for $235. At the end of the day she sees that her
balance is $451.25. How much money did she have in the bank at the beginning of the day?

Step 1: Understand

We need to find the money in Anne’s bank account at the beginning of the day on Friday.
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She took out $24.50 and $80 and put in $235.

She ended up with $451.25 at the end of the day.

Step 2: Strategy

We start with an unknown amount, do some operations, and end up with a known amount.

We need to start with the result and apply the operations in reverse.

Step 3: Apply Strategy/Solve

Start with $451.25. Subtract $235, add $80, and then add $24.50.

451.25−235+80+24.50 = 320.75

Anne had $320.75 in her account at the beginning of the day on Friday.

Step 4: Check

Anne starts with $320.75

She writes a check for $24.50. $320.75−24.50 = $296.25

She withdraws $80. $296.25−80 = $216.25

She deposits $235. $216.25+235 = $451.25

The answer checks out.

Plan and Compare Alternative Approaches to Solving Problems

Most word problems can be solved in more than one way. Often one method is more straightforward than others,
but which method is best can depend on what kind of problem you are facing.

Example 3

Nadia’s father is 36. He is 16 years older than four times Nadia’s age. How old is Nadia?

Solution

This problem can be solved with either of the strategies you learned in this section. Let’s solve it using both strategies.

Guess and Check Method

Step 1: Understand

We need to find Nadia’s age.

We know that her father is 16 years older than four times her age, or 4× (Nadia’s age)+16.

We know her father is 36 years old.

Step 2: Strategy

We guess a random number for Nadia’s age.

We multiply the number by 4 and add 16 and check to see if the result equals 36.

If the answer is too small, we guess a larger number, and if the answer is too big, we guess a smaller number.

We keep guessing until we get the answer to be 36.

Step 3: Apply strategy/Solve
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Guess Nadia’s age 10 4(10)+16 = 56 too big for her father’s age

Guess a smaller number 9 4(9)+16 = 52 still too big

Guessing 9 for Nadia’s age gave us a number that is 16 years too great to be her father’s age. But notice that when
we decreased Nadia’s age by one, her father’s age decreased by four. That suggests that we can decrease our final
answer by 16 years if we decrease our guess by 4 years.

4 years less than 9 is 5. 4(5)+16 = 36, which is the right age.

Answer: Nadia is 5 years old.

Step 4: Check

Nadia is 5 years old. Her father’s age is 4(5)+16 = 36. This is correct. The answer checks out.

Work Backward Method

Step 1: Understand

We need to find Nadia’s age.

We know her father is 16 years older than four times her age, or 4× (Nadia’s age)+16.

We know her father is 36 years old.

Step 2: Strategy

To get from Nadia’s age to her father’s age, we multiply Nadia’s age by four and add 16.

Working backwards means we start with the father’s age, subtract 16 and divide by 4.

Step 3: Apply Strategy/Solve

Start with the father’s age 36

Subtract 16 36−16 = 20

Divide by 4 20÷4 = 5

Answer Nadia is 5 years old.

Step 4: Check

Nadia is 5 years old. Her father’s age is 4(5)+16 = 36. This is correct. The answer checks out.

You see that in this problem, the “Work Backward” strategy is more straightforward than the Guess and Check
method. The Work Backward method always works best when we know the result of a series of operations, but not
the starting number. In the next chapter, you will learn algebra methods based on the Work Backward method.

Lesson Summary

The four steps of the problem solving plan are:

• Understand the problem
• Devise a plan – Translate
• Carry out the plan – Solve
• Look – Check and Interpret
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Two common problem solving strategies are:

Guess and Check

Guess a solution and use the guess in the problem to see if you get the correct answer. If the answer is too big or too
small, then make another guess that will get you closer to the goal.

Work Backward

This method works well for problems in which a series of operations is applied to an unknown quantity and you are
given the resulting number. Start with the result and apply the operations in reverse order until you find the unknown.

Review Questions

1. Finish the problem we started in Example 1.
2. Nadia is at home and Peter is at school which is 6 miles away from home. They start traveling towards each

other at the same time. Nadia is walking at 3.5 miles per hour and Peter is skateboarding at 6 miles per hour.
When will they meet and how far from home is their meeting place?

3. Peter bought several notebooks at Staples for $2.25 each; then he bought a few more notebooks at Rite-Aid
for $2 each. He spent the same amount of money in both places and he bought 17 notebooks in all. How many
notebooks did Peter buy in each store?

4. Andrew took a handful of change out of his pocket and noticed that he was only holding dimes and quarters in
his hand. He counted and found that he had 22 coins that amounted to $4. How many quarters and how many
dimes does Andrew have?

5. Anne wants to put a fence around her rose bed that is one and a half times as long as it is wide. She uses 50
feet of fencing. What are the dimensions of the garden?

6. Peter is outside looking at the pigs and chickens in the yard. Nadia is indoors and cannot see the animals.
Peter gives her a puzzle. He tells her that he can see 13 heads and 36 feet and asks her how many pigs and
how many chickens are in the yard. Help Nadia find the answer.

7. Andrew invests $8000 in two types of accounts: a savings account that pays 5.25% interest per year and a
more risky account that pays 9% interest per year. At the end of the year he has $450 in interest from the two
accounts. Find the amount of money invested in each account.

8. 450 tickets are sold for a concert: balcony seats for $35 each and orchestra seats for $25 each. If the total box
office take is $13,000, how many of each kind of ticket were sold?

9. There is a bowl of candy sitting on our kitchen table. One morning Nadia takes one-sixth of the candy. Later
that morning Peter takes one-fourth of the candy that’s left. That afternoon, Andrew takes one-fifth of what’s
left in the bowl and finally Anne takes one-third of what is left in the bowl. If there are 16 candies left in the
bowl at the end of the day, how much candy was there at the beginning of the day?

10. Nadia can completely mow the lawn by herself in 30 minutes. Peter can completely mow the lawn by himself
in 45 minutes. How long does it take both of them to mow the lawn together?

11. Three monkeys spend a day gathering coconuts together. When they have finished, they are very tired and fall
asleep. The following morning, the first monkey wakes up. Not wishing to disturb his friends, he decides to
divide the coconuts into three equal piles. There is one left over, so he throws this odd one away, helps himself
to his share, and goes home. A few minutes later, the second monkey awakes. Not realizing that the first has
already gone, he too divides the coconuts into three equal heaps. He finds one left over, throws the odd one
away, helps himself to his fair share, and goes home. In the morning, the third monkey wakes to find that he is
alone. He spots the two discarded coconuts, and puts them with the pile, giving him a total of twelve coconuts.

a. How many coconuts did the first two monkeys take?
b. How many coconuts did the monkeys gather in all?

12. Two prime numbers have a product of 51. What are the numbers?
13. Two prime numbers have a product of 65. What are the numbers?
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14. The square of a certain positive number is eight more than twice the number. What is the number?
15. Is 91 prime? (Hint: if it’s not prime, what are its prime factors?)
16. Is 73 prime?
17. Alison’s school day starts at 8:30, but today Alison wants to arrive ten minutes early to discuss an assignment

with her English teacher. If she is also giving her friend Sherice a ride to school, and it takes her 12 minutes
to get to Sherice’s house and another 15 minutes to get to school from there, at what time does Alison need to
leave her house?

18. At her retail job, Kelly gets a raise of 10% every six months. After her third raise, she now makes $13.31 per
hour. How much did she make when she first started out?

19. Three years ago, Kevin’s little sister Becky had her fifth birthday. If Kevin was eight when Becky was born,
how old is he now?

20. A warehouse is full of shipping crates; half of them are headed for Boston and the other half for Philadelphia.
A truck arrives to pick up 20 of the Boston-bound crates, and then another truck carries away one third of
the Philadelphia-bound crates. An hour later, half of the remaining crates are moved onto the loading dock
outside. If there are 40 crates left in the warehouse, how many were there originally?

21. Gerald is a bus driver who takes over from another bus driver one day in the middle of his route. He doesn’t
pay attention to how many passengers are on the bus when he starts driving, but he does notice that three
passengers get off at the next stop, a total of eight more get on at the next three stops, two get on and four get
off at the next stop, and at the stop after that, a third of the passengers get off.

a. If there are now 14 passengers on the bus, how many were there when Gerald first took over the route?
b. If half the passengers who got on while Gerald was driving paid the full adult fare of $1.50, and the other

half were students or seniors who paid a discounted fare of $1.00, how much cash was in the bus’s fare
box at the beginning of Gerald’s shift if there is now $73.50 in it?

c. When Gerald took over the route, all the passengers currently on the bus had paid full fare. However,
some of the passengers who had previously gotten on and off the bus were students or seniors who had
paid the discounted fare. Based on the amount of money that was in the cash box, if 28 passengers had
gotten on the bus and gotten off before Gerald arrived (in addition to the passengers who had gotten on
and were still there when he arrived), how many of those passengers paid the discounted fare?

d. How much money would currently be in the cash box if all the passengers throughout the day had paid
the full fare?

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9612.
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3.1 One-Step Equations

Learning Objectives

• Solve an equation using addition.
• Solve an equation using subtraction.
• Solve an equation using multiplication.
• Solve an equation using division.

Introduction

Nadia is buying a new mp3 player. Peter watches her pay for the player with a $100 bill. She receives $22.00 in
change, and from only this information, Peter works out how much the player cost. How much was the player?

In algebra, we can solve problems like this using an equation. An equation is an algebraic expression that involves
an equals sign. If we use the letter x to represent the cost of the mp3 player, we can write the equation x+22 = 100.
This tells us that the value of the player plus the value of the change received is equal to the $100 that Nadia paid.

Another way we could write the equation would be x = 100−22. This tells us that the value of the player is equal
to the total amount of money Nadia paid (100−22). This equation is mathematically equivalent to the first one, but
it is easier to solve.

In this chapter, we will learn how to solve for the variable in a one-variable linear equation. Linear equations are
equations in which each term is either a constant, or a constant times a single variable (raised to the first power). The
term linear comes from the word line, because the graph of a linear equation is always a line.

We’ll start with simple problems like the one in the last example.

Solving Equations Using Addition and Subtraction

When we work with an algebraic equation, it’s important to remember that the two sides have to stay equal for the
equation to stay true. We can change the equation around however we want, but whatever we do to one side of the
equation, we have to do to the other side. In the introduction above, for example, we could get from the first equation
to the second equation by subtracting 22 from both sides:

x+22 = 100

x+22−22 = 100−22

x = 100−22

Similarly, we can add numbers to each side of an equation to help solve for our unknown.

Example 1
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Solve x−3 = 9.

Solution

To solve an equation for x, we need to isolate x−that is, we need to get it by itself on one side of the equals sign.
Right now our x has a 3 subtracted from it. To reverse this, we’ll add 3—but we must add 3 to both sides.

x−3 = 9

x−3+3 = 9+3

x+0 = 9+3

x = 12

Example 2

Solve z−9.7 =−1.026

Solution

It doesn’t matter what the variable is—the solving process is the same.

z−9.7 =−1.026

z−9.7+9.7 =−1.026+9.7

z = 8.674

Make sure you understand the addition of decimals in this example!

Example 3

Solve x+ 4
7 = 9

5 .

Solution

To isolate x, we need to subtract 4
7 from both sides.

x+
4
7
=

9
5

x+
4
7
− 4

7
=

9
5
− 4

7

x =
9
5
− 4

7

Now we have to subtract fractions, which means we need to find the LCD. Since 5 and 7 are both prime, their lowest
common multiple is just their product, 35.

x =
9
5
− 4

7

x =
7 ·9
7 ·5
− 4 ·5

7 ·5

x =
63
35
− 20

35

x =
63−20

35

x =
43
35
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Make sure you’re comfortable with decimals and fractions! To master algebra, you’ll need to work with them
frequently.

Solving Equations Using Multiplication and Division

Suppose you are selling pizza for $1.50 a slice and you can get eight slices out of a single pizza. How much money
do you get for a single pizza? It shouldn’t take you long to figure out that you get 8×$1.50 = $12.00. You solved
this problem by multiplying. Here’s how to do the same thing algebraically, using x to stand for the cost in dollars
of the whole pizza.

Example 4

Solve 1
8 · x = 1.5.

Our x is being multiplied by one-eighth. To cancel that out and get x by itself, we have to multiply by the reciprocal,
8. Don’t forget to multiply both sides of the equation.

8
(

1
8
· x
)
= 8(1.5)

x = 12

Example 5

Solve 9x
5 = 5.

9x
5 is equivalent to 9

5 · x, so to cancel out that 9
5 , we multiply by the reciprocal, 5

9 .

5
9

(
9x
5

)
=

5
9
(5)

x =
25
9

Example 6

Solve 0.25x = 5.25.

0.25 is the decimal equivalent of one fourth, so to cancel out the 0.25 factor we would multiply by 4.

4(0.25x) = 4(5.25)

x = 21
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Solving by division is another way to isolate x. Suppose you buy five identical candy bars, and you are charged
$3.25. How much did each candy bar cost? You might just divide $3.25 by 5, but let’s see how this problem looks
in algebra.

Example 7

Solve 5x = 3.25.

To cancel the 5, we divide both sides by 5.

5x
5

=
3.25

5
x = 0.65

Example 8

Solve 7x = 5
11 .

Divide both sides by 7.

x =
5

11.7

x =
5
77

Example 9

Solve 1.375x = 1.2.

Divide by 1.375

x =
1.2

1.375
x = 0.872

Notice the bar above the final two decimals; it means that those digits recur, or repeat. The full answer is 0.872727272727272....

To see more examples of one - and two-step equation solving, watch the Khan Academy video series starting at http
://www.youtube.com/watch?v=bAerID24QJ0.

Solve Real-World Problems Using Equations

Example 10

In the year 2017, Anne will be 45years old. In what year was Anne born?

The unknown here is the year Anne was born, so that’s our variable x. Here’s our equation:

x+45 = 2017

x+45−45 = 2017−45

x = 1972
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Anne was born in 1972.

Example 11

A mail order electronics company stocks a new mini DVD player and is using a balance to determine the shipping
weight. Using only one-pound weights, the shipping department found that the following arrangement balances:

How much does each DVD player weigh?

Solution

Since the system balances, the total weight on each side must be equal. To write our equation, we’ll use x for the
weight of one DVD player, which is unknown. There are two DVD players, weighing a total of 2x pounds, on the
left side of the balance, and on the right side are 5 1-pound weights, weighing a total of 5 pounds. So our equation
is 2x = 5. Dividing both sides by 2 gives us x = 2.5.

Each DVD player weighs 2.5 pounds.

Example 12

In 2004, Takeru Kobayashi of Nagano, Japan, ate 53.5 hot dogs in 12 minutes. This was 3 more hot dogs than his
own previous world record, set in 2002. Calculate:

a) How many minutes it took him to eat one hot dog.

b) How many hot dogs he ate per minute.

c) What his old record was.

Solution

a) We know that the total time for 53.5 hot dogs is 12 minutes. We want to know the time for one hot dog, so that’s
x. Our equation is 53.5x = 12. Then we divide both sides by 53.5 to get x = 12

53.5 , or x = 0.224 minutes.

We can also multiply by 60 to get the time in seconds; 0.224 minutes is about 13.5 seconds. So that’s how long it
took Takeru to eat one hot dog.

b) Now we’re looking for hot dogs per minute instead of minutes per hot dog. We’ll use the variable y instead of x
this time so we don’t get the two confused. 12 minutes, times the number of hot dogs per minute, equals the total
number of hot dogs, so 12y = 53.5. Dividing both sides by 12 gives us y = 53.5

12 , or y = 4.458 hot dogs per minute.

c) We know that his new record is 53.5, and we know that’s three more than his old record. If we call his old record
z, we can write the following equation: z+3 = 53.5. Subtracting 3 from both sides gives us z = 50.5. So Takeru’s
old record was 50.5 hot dogs in 12 minutes.

Lesson Summary

• An equation in which each term is either a constant or the product of a constant and a single variable is a
linear equation.

• We can add, subtract, multiply, or divide both sides of an equation by the same value and still have an
equivalent equation.
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• To solve an equation, isolate the unknown variable on one side of the equation by applying one or more
arithmetic operations to both sides.

Review Questions

1. Solve the following equations for x.

a. x = 11 = 7
b. x−1.1 = 3.2
c. 7x = 21
d. 4x = 1
e. 5x

12 = 2
3

f. x+ 5
2 = 2

3
g. x− 5

6 = 3
8

h. 0.01x = 11

2. Solve the following equations for the unknown variable.

a. q−13 =−13
b. z+1.1 = 3.0001
c. 21s = 3
d. t + 1

2 = 1
3

e. 7 f
11 = 7

11
f. 3

4 =−1
2 − y

g. 6r = 3
8

h. 9b
16 = 3

8

3. Peter is collecting tokens on breakfast cereal packets in order to get a model boat. In eight weeks he has
collected 10 tokens. He needs 25 tokens for the boat. Write an equation and determine the following
information.

a. How many more tokens he needs to collect, n.
b. How many tokens he collects per week, w.
c. How many more weeks remain until he can send off for his boat, r.

4. Juan has baked a cake and wants to sell it in his bakery. He is going to cut it into 12 slices and sell them
individually. He wants to sell it for three times the cost of making it. The ingredients cost him $8.50, and he
allowed $1.25 to cover the cost of electricity to bake it. Write equations that describe the following statements

a. The amount of money that he sells the cake for (u).
b. The amount of money he charges for each slice (c).
c. The total profit he makes on the cake (w).

5. Jane is baking cookies for a large party. She has a recipe that will make one batch of two dozen cookies, and
she decides to make five batches. To make five batches, she finds that she will need 12.5 cups of flour and 15
eggs.

a. How many cookies will she make in all?
b. How many cups of flour go into one batch?
c. How many eggs go into one batch?
d. If Jane only has a dozen eggs on hand, how many more does she need to make five batches?
e. If she doesn’t go out to get more eggs, how many batches can she make? How many cookies will that

be?
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3.2 Two-Step Equations

Learning Objectives

• Solve a two-step equation using addition, subtraction, multiplication, and division.
• Solve a two-step equation by combining like terms.
• Solve real-world problems using two-step equations.

Solve a Two-Step Equation

We’ve seen how to solve for an unknown by isolating it on one side of an equation and then evaluating the other
side. Now we’ll see how to solve equations where the variable takes more than one step to isolate.

Example 1

Rebecca has three bags containing the same number of marbles, plus two marbles left over. She places them on one
side of a balance. Chris, who has more marbles than Rebecca, adds marbles to the other side of the balance. He
finds that with 29 marbles, the scales balance. How many marbles are in each bag? Assume the bags weigh nothing.

Solution

We know that the system balances, so the weights on each side must be equal. If we use x to represent the number of
marbles in each bag, then we can see that on the left side of the scale we have three bags (each containing x marbles)
plus two extra marbles, and on the right side of the scale we have 29 marbles. The balancing of the scales is similar
to the balancing of the following equation.

3x+2 = 29

“Three bags plus two marbles equals 29 marbles”

To solve for x, we need to first get all the variables (terms containing an x) alone on one side of the equation. We’ve
already got all the x’s on one side; now we just need to isolate them.
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3x+2 = 29

3x+2−2 = 29−2 Get rid of the 2 on the left by subtracting it from both sides.

3x = 27
3x
3

=
27
3

Divide both sides by 3.

x = 9

There are nine marbles in each bag.

We can do the same with the real objects as we did with the equation. Just as we subtracted 2 from both sides of the
equals sign, we could remove two marbles from each side of the scale. Because we removed the same number of
marbles from each side, we know the scales will still balance.

Then, because there are three bags of marbles on the left-hand side of the scale, we can divide the marbles on the
right-hand side into three equal piles. You can see that there are nine marbles in each.

Three bags of marbles balances three piles of nine marbles.

So each bag of marbles balances nine marbles, meaning that each bag contains nine marbles.

Check out http://www.mste.uiuc.edu/pavel/java/balance/ for more interactive balance beam activities!

Example 2

Solve 6(x+4) = 12.

This equation has the x buried in parentheses. To dig it out, we can proceed in one of two ways: we can either
distribute the six on the left, or divide both sides by six to remove it from the left. Since the right-hand side of the
equation is a multiple of six, it makes sense to divide. That gives us x+ 4 = 2. Then we can subtract 4 from both
sides to get x =−2.

Example 3

Solve x−3
5 = 7.

It’s always a good idea to get rid of fractions first. Multiplying both sides by 5 gives us x−3 = 35, and then we can
add 3 to both sides to get x = 38.

Example 4

Solve 5
9(x+1) = 2

7 .
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First, we’ll cancel the fraction on the left by multiplying by the reciprocal (the multiplicative inverse).

9
5
· 5

9
(x+1) =

9
5
· 2

7

(x+1) =
18
35

Then we subtract 1 from both sides. ( 35
35 is equivalent to 1.)

x+1 =
18
35

x+1−1 =
18
35
− 35

35

x =
18−35

35

x =
−17
35

These examples are called two-step equations, because we need to perform two separate operations on the equation
to isolate the variable.

Solve a Two-Step Equation by Combining Like Terms

When we look at a linear equation we see two kinds of terms: those that contain the unknown variable, and those
that don’t. When we look at an equation that has an x on both sides, we know that in order to solve it, we need to
get all the x−terms on one side of the equation. This is called combining like terms. The terms with an x in them
are like terms because they contain the same variable (or, as you will see in later chapters, the same combination of
variables).

TABLE 3.1:

Like Terms Unlike Terms
4x,10x,−3.5x, and x

12 3x and 3y
3y,0.000001y, and y 4xy and 4x
xy,6xy, and 2.39xy 0.5x and 0.5

To add or subtract like terms, we can use the Distributive Property of Multiplication.

3x+4x = (3+4)x = 7x

0.03xy−0.01xy = (0.03−0.01)xy = 0.02xy

−y+16y+5y = (−1+16+5)y = 10y

5z+2z−7z = (5+2−7)z = 0z = 0

To solve an equation with two or more like terms, we need to combine the terms first.

Example 5
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Solve (x+5)− (2x−3) = 6.

There are two like terms: the x and the −2x (don’t forget that the negative sign applies to everything in the
parentheses). So we need to get those terms together. The associative and distributive properties let us rewrite
the equation as x + 5− 2x + 3 = 6, and then the commutative property lets us switch around the terms to get
x−2x+5+3 = 6, or (x−2x)+(5+3) = 6.

(x−2x) is the same as (1−2)x, or −x, so our equation becomes −x+8 = 6

Subtracting 8 from both sides gives us −x =−2.

And finally, multiplying both sides by -1 gives us x = 2.

Example 6

Solve x
2 −

x
3 = 6.

This problem requires us to deal with fractions. We need to write all the terms on the left over a common denominator
of six.

3x
6
− 2x

6
= 6

Then we subtract the fractions to get x
6 = 6.

Finally we multiply both sides by 6 to get x = 36.

Solve Real-World Problems Using Two-Step Equations

The hardest part of solving word problems is translating from words to an equation. First, you need to look to see
what the equation is asking. What is the unknown for which you have to solve? That will be what your variable
stands for. Then, follow what is going on with your variable all the way through the problem.

Example 7

An emergency plumber charges $65 as a call-out fee plus an additional $75 per hour. He arrives at a house at 9:30
and works to repair a water tank. If the total repair bill is $196.25, at what time was the repair completed?

In order to solve this problem, we collect the information from the text and convert it to an equation.

Unknown: time taken in hours – this will be our x

The bill is made up of two parts: a call out fee and a per-hour fee. The call out is a flat fee, and independent of
x—it’s the same no matter how many hours the plumber works. The per-hour part depends on the number of hours
(x). So the total fee is $65 (no matter what) plus $75x (where x is the number of hours), or 65+75x.

Looking at the problem again, we also can see that the total bill is $196.25. So our final equation is 196.25 =
65+75x.
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Solving for x:

196.25 = 65+75x Subtract 65 from both sides.

131.25 = 75x Divide both sides by 75.

1.75 = x The job took 1.75 hours.

Solution

The repair job was completed 1.75 hours after 9:30, so it was completed at 11:15AM.

Example 8

When Asia was young her Daddy marked her height on the door frame every month. Asia’s Daddy noticed that
between the ages of one and three, he could predict her height (in inches) by taking her age in months, adding 75
inches and multiplying the result by one-third. Use this information to answer the following:

a) Write an equation linking her predicted height, h, with her age in months, m.

b) Determine her predicted height on her second birthday.

c) Determine at what age she is predicted to reach three feet tall.

Solution

a) To convert the text to an equation, first determine the type of equation we have. We are going to have an equation
that links two variables. Our unknown will change, depending on the information we are given. For example, we
could solve for height given age, or solve for age given height. However, the text gives us a way to determine height.
Our equation will start with “h =”.

The text tells us that we can predict her height by taking her age in months, adding 75, and multiplying by 1
3 . So our

equation is h = (m+75) · 1
3 , or h = 1

3(m+75).

b) To predict Asia’s height on her second birthday, we substitute m = 24 into our equation (because 2 years is 24
months) and solve for h.

h =
1
3
(24+75)

h =
1
3
(99)

h = 33

Asia’s height on her second birthday was predicted to be 33 inches.

c) To determine the predicted age when she reached three feet, substitute h = 36 into the equation and solve for m.

36 =
1
3
(m+75)

108 = m+75

33 = m

Asia was predicted to be 33 months old when her height was three feet.

Example 9

To convert temperatures in Fahrenheit to temperatures in Celsius, follow the following steps: Take the temperature in
degrees Fahrenheit and subtract 32. Then divide the result by 1.8 and this gives the temperature in degrees Celsius.
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a) Write an equation that shows the conversion process.

b) Convert 50 degrees Fahrenheit to degrees Celsius.

c) Convert 25 degrees Celsius to degrees Fahrenheit.

d) Convert -40 degrees Celsius to degrees Fahrenheit.

a) The text gives the process to convert Fahrenheit to Celsius. We can write an equation using two variables. We
will use f for temperature in Fahrenheit, and c for temperature in Celsius.

First we take the temperature in Fahrenheit and subtract 32. f −32

Then divide by 1.8.
f −32

1.8

This equals the temperature in Celsius. c =
f −32

1.8

In order to convert from one temperature scale to another, simply substitute in for whichever temperature you know,
and solve for the one you don’t know.

b) To convert 50 degrees Fahrenheit to degrees Celsius, substitute f = 50 into the equation.

c =
50−32

1.8

c =
18
1.8

c = 10

50 degrees Fahrenheit is equal to 10 degrees Celsius.

c) To convert 25 degrees Celsius to degrees Fahrenheit, substitute c = 25 into the equation:

25 =
f −32

1.8
45 = f −32

77 = f

25 degrees Celsius is equal to 77 degrees Fahrenheit.

d) To convert -40 degrees Celsius to degrees Fahrenheit, substitute c =−40 into the equation.

−40 =
f −32

1.8
−72 = f −32

−40 = f

-40 degrees Celsius is equal to -40 degrees Fahrenheit. (No, that’s not a mistake! This is the one temperature where
they are equal.)
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Lesson Summary

• Some equations require more than one operation to solve. Generally it, is good to go from the outside in. If
there are parentheses around an expression with a variable in it, cancel what is outside the parentheses first.

• Terms with the same variable in them (or no variable in them) are like terms. Combine like terms (adding
or subtracting them from each other) to simplify the expression and solve for the unknown.

Review Questions

1. Solve the following equations for the unknown variable.

a. 1.3x−0.7x = 12
b. 6x−1.3 = 3.2
c. 5x− (3x+2) = 1
d. 4(x+3) = 1
e. 5q−7 = 2

3
f. 3

5 x+ 5
2 = 2

3
g. s− 3s

8 = 5
6

h. 0.1y+11 = 0
i. 5q−7

12 = 2
3

j. 5(q−7)
12 = 2

3
k. 33t−99 = 0
l. 5p−2 = 32

m. 10y+5 = 10
n. 10(y+5) = 10
o. 10y+5y = 10
p. 10(y+5y) = 10

2. Jade is stranded downtown with only $10 to get home. Taxis cost $0.75 per mile, but there is an additional
$2.35 hire charge. Write a formula and use it to calculate how many miles she can travel with her money.

3. Jasmin’s Dad is planning a surprise birthday party for her. He will hire a bouncy castle, and will provide party
food for all the guests. The bouncy castle costs $150 for the afternoon, and the food will cost $3 per person.
Andrew, Jasmin’s Dad, has a budget of $300. Write an equation and use it to determine the maximum number
of guests he can invite.

4. The local amusement park sells summer memberships for $50 each. Normal admission to the park costs $25;
admission for members costs $15.

a. If Darren wants to spend no more than $100 on trips to the amusement park this summer, how many
visits can he make if he buys a membership with part of that money?

b. How many visits can he make if he does not?
c. If he increases his budget to $160, how many visits can he make as a member?
d. And how many as a non-member?

5. For an upcoming school field trip, there must be one adult supervisor for every five children.

a. If the bus seats 40 people, how many children can go on the trip?
b. How many children can go if a second 40-person bus is added?
c. Four of the adult chaperones decide to arrive separately by car. Now how many children can go in the

two buses?
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3.3 Multi-Step Equations

Learning Objectives

• Solve a multi-step equation by combining like terms.
• Solve a multi-step equation using the distributive property.
• Solve real-world problems using multi-step equations.

Solving Multi-Step Equations by Combining Like Terms

We’ve seen that when we solve for an unknown variable, it can take just one or two steps to get the terms in the right
places. Now we’ll look at solving equations that take several steps to isolate the unknown variable. Such equations
are referred to as multi-step equations.

In this section, we’ll simply be combining the steps we already know how to do. Our goal is to end up with all the
constants on one side of the equation and all the variables on the other side. We’ll do this by collecting like terms.
Don’t forget, like terms have the same combination of variables in them.

Example 1

Solve 3x+4
3 −5x = 6.

Before we can combine the variable terms, we need to get rid of that fraction.

First let’s put all the terms on the left over a common denominator of three: 3x+4
3 −

15x
3 = 6.

Combining the fractions then gives us 3x+4−15x
3 = 6.

Combining like terms in the numerator gives us 4−12x
3 = 6.

Multiplying both sides by 3 gives us 4−12x = 18.

Subtracting 4 from both sides gives us −12x = 14.

And finally, dividing both sides by -12 gives us x =−14
12 , which reduces to x =−7

6 .

Solving Multi-Step Equations Using the Distributive Property

You may have noticed that when one side of the equation is multiplied by a constant term, we can either distribute
it or just divide it out. If we can divide it out without getting awkward fractions as a result, then that’s usually the
better choice, because it gives us smaller numbers to work with. But if dividing would result in messy fractions, then
it’s usually better to distribute the constant and go from there.

Example 2

Solve 7(2x−5) = 21.

The first thing we want to do here is get rid of the parentheses. We could use the Distributive Property, but it just
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so happens that 7 divides evenly into 21. That suggests that dividing both sides by 7 is the easiest way to solve this
problem.

If we do that, we get 2x−5 = 21
7 or just 2x−5 = 3. Then all we need to do is add 5 to both sides to get 2x = 8, and

then divide by 2 to get x = 4.

Example 3

Solve 17(3x+4) = 7.

Once again, we want to get rid of those parentheses. We could divide both sides by 17, but that would give us an
inconvenient fraction on the right-hand side. In this case, distributing is the easier way to go.

Distributing the 17 gives us 51x+ 68 = 7. Then we subtract 68 from both sides to get 51x = −61, and then we
divide by 51 to get x = −61

51 . (Yes, that’s a messy fraction too, but since it’s our final answer and we don’t have to do
anything else with it, we don’t really care how messy it is.)

Example 4

Solve 4(3x−4)−7(2x+3) = 3.

Before we can collect like terms, we need to get rid of the parentheses using the Distributive Property. That gives
us 12x− 16− 14x− 21 = 3, which we can rewrite as (12x− 14x) + (−16− 21) = 3. This in turn simplifies to
−2x−37 = 3.

Next we add 37 to both sides to get −2x = 40.

And finally, we divide both sides by -2 to get x =−20.

Example 5

Solve the following equation for x: 0.1(3.2+2x)+ 1
2

(
3− x

5

)
= 0

This function contains both fractions and decimals. We should convert all terms to one or the other. It’s often easier
to convert decimals to fractions, but in this equation the fractions are easy to convert to decimals—and with decimals
we don’t need to find a common denominator!

In decimal form, our equation becomes 0.1(3.2+2x)+0.5(3−0.2x) = 0.

Distributing to get rid of the parentheses, we get 0.32+0.2x+1.5−0.1x = 0.

Collecting and combining like terms gives us 0.1x+1.82 = 0.

Then we can subtract 1.82 from both sides to get 0.1x =−1.82, and finally divide by 0.1 (or multiply by 10) to get
x =−18.2.

Solving Real-World Problems Using Multi-Step Equations

Example 6

A growers’ cooperative has a farmer’s market in the town center every Saturday. They sell what they have grown
and split the money into several categories. 8.5% of all the money taken in is set aside for sales tax. $150 goes to
pay the rent on the space they occupy. What remains is split evenly between the seven growers. How much total
money is taken in if each grower receives a $175 share?

Let’s translate the text above into an equation. The unknown is going to be the total money taken in dollars. We’ll
call this x.

“8.5% of all the money taken in is set aside for sales tax." This means that 91.5% of the money remains. This is
0.915x.
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“$150 goes to pay the rent on the space they occupy.” This means that what’s left is 0.915x−150.

“What remains is split evenly between the 7 growers.” That means each grower gets 0.915x−150
7 .

If each grower’s share is $175, then our equation to find x is 0.915x−150
7 = 175.

First we multiply both sides by 7 to get 0.915x−150 = 1225.

Then add 150 to both sides to get 0.915x = 1375.

Finally divide by 0.915 to get x ≈ 1502.7322. Since we want our answer in dollars and cents, we round to two
decimal places, or $1502.73.

The workers take in a total of $1502.73.

Example 7

A factory manager is packing engine components into wooden crates to be shipped on a small truck. The truck is
designed to hold sixteen crates, and will safely carry a 1200 lb cargo. Each crate weighs 12 lbs empty. How much
weight should the manager instruct the workers to put in each crate in order to get the shipment weight as close as
possible to 1200 lbs?

The unknown quantity is the weight to put in each box, so we’ll call that x.

Each crate when full will weigh x+12 lbs, so all 16 crates together will weigh 16(x+12) lbs.

We also know that all 16 crates together should weigh 1200 lbs, so we can say that 16(x+12) = 1200.

To solve this equation, we can start by dividing both sides by 16: x+12 = 1200
16 = 75.

Then subtract 12 from both sides: x = 63.

The manager should tell the workers to put 63 lbs of components in each crate.

Ohm’s Law

The electrical current, I (amps), passing through an electronic component varies directly with the applied voltage, V
(volts), according to the relationship V = I ·R where R is the resistance measured in Ohms (Ω).

Example 8

A scientist is trying to deduce the resistance of an unknown component. He labels the resistance of the unknown
component x Ω. The resistance of a circuit containing a number of these components is (5x + 20)Ω. If a 120
volt potential difference across the circuit produces a current of 2.5 amps, calculate the resistance of the unknown
component.

Solution

To solve this, we need to start with the equation V = I ·R and substitute in V = 120, I = 2.5, and R = 5x+20. That
gives us 120 = 2.5(5x+20).

Distribute the 2.5 to get 120 = 12.5x+50.

Subtract 50 from both sides to get 70 = 12.5x.

Finally, divide by 12.5 to get 5.6 = x.

The unknown components have a resistance of 5.6 Ω.
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Distance, Speed and Time

The speed of a body is the distance it travels per unit of time. That means that we can also find out how far an object
moves in a certain amount of time if we know its speed: we use the equation “distance = speed× time.”

Example 8

Shanice’s car is traveling 10 miles per hour slower than twice the speed of Brandon’s car. She covers 93 miles in 1
hour 30 minutes. How fast is Brandon driving?

Solution

Here, we don’t know either Brandon’s speed or Shanice’s, but since the question asks for Brandon’s speed, that’s
what we’ll use as our variable x.

The distance Shanice covers in miles is 93, and the time in hours is 1.5. Her speed is 10 less than twice Brandon’s
speed, or 2x−10 miles per hour. Putting those numbers into the equation gives us 93 = 1.5(2x−10).

First we distribute, to get 93 = 3x−15.

Then we add 15 to both sides to get 108 = 3x.

Finally we divide by 3 to get 36 = x.

Brandon is driving at 36 miles per hour.

We can check this answer by considering the situation another way: we can solve for Shanice’s speed instead of
Brandon’s and then check that against Brandon’s speed. We’ll use y for Shanice’s speed since we already used x for
Brandon’s.

The equation for Shanice’s speed is simply 93 = 1.5y. We can divide both sides by 1.5 to get 62 = y, so Shanice is
traveling at 62 miles per hour.

The problem tells us that Shanice is traveling 10 mph slower than twice Brandon’s speed; that would mean that 62
is equal to 2 times 36 minus 10. Is that true? Well, 2 times 36 is 72, minus 10 is 62. The answer checks out.

In algebra, there’s almost always more than one method of solving a problem. If time allows, it’s always a good idea
to try to solve the problem using two different methods just to confirm that you’ve got the answer right.

Speed of Sound

The speed of sound in dry air, v, is given by the equation v = 331+0.6T , where T is the temperature in Celsius and
v is the speed of sound in meters per second.

Example 9

Tashi hits a drainpipe with a hammer and 250 meters away Minh hears the sound and hits his own drainpipe.
Unfortunately, there is a one second delay between him hearing the sound and hitting his own pipe. Tashi accurately
measures the time between her hitting the pipe and hearing Mihn’s pipe at 2.46 seconds. What is the temperature of
the air?

This is a complex problem and we need to be careful in writing our equations. First of all, the distance the sound
travels is equal to the speed of sound multiplied by the time, and the speed is given by the equation above. So
the distance equals (331+ 0.6T )× time, and the time is 2.46− 1 (because for 1 second out of the 2.46 seconds
measured, there was no sound actually traveling). We also know that the distance is 250× 2 (because the sound
traveled from Tashi to Minh and back again), so our equation is 250×2 = (331+0.6T )(2.46−1), which simplifies
to 500 = 1.46(331+0.6T ).
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Distributing gives us 500= 483.26+0.876T , and subtracting 483.26 from both sides gives us 16.74= 0.876T . Then
we divide by 0.876 to get T ≈ 19.1.

The temperature is about 19.1 degrees Celsius.

Lesson Summary

• Multi-step equations are slightly more complex than one - and two-step equations, but use the same basic
techniques.

• If dividing a number outside of parentheses will produce fractions, it is often better to use the Distributive
Property to expand the terms and then combine like terms to solve the equation.

Review Questions

1. Solve the following equations for the unknown variable.

a. 3(x−1)−2(x+3) = 0
b. 3(x+3)−2(x−1) = 0
c. 7(w+20)−w = 5
d. 5(w+20)−10w = 5
e. 9(x−2)−3x = 3
f. 12(t−5)+5 = 0
g. 2(2d +1) = 2

3
h. 2

(
5a− 1

3

)
= 2

7
i. 2

9

(
i+ 2

3

)
= 2

5
j. 4

(
v+ 1

4

)
= 35

2
k. g

10 = 6
3

l. s−4
11 = 2

5
m. 2k

7 = 3
8

n. 7x+4
3 = 9

2
o. 9y−3

6 = 5
2

p. r
3 +

r
2 = 7

q. p
16 −

2p
3 = 1

9
r. m+3

2 −
m
4 = 1

3
s. 5

( k
3 +2

)
= 32

3
t. 3

z =
2
5

u. 2
r +2 = 10

3
v. 12

5 = 3+z
z

2. An engineer is building a suspended platform to raise bags of cement. The platform has a mass of 200 kg, and
each bag of cement is 40 kg. He is using two steel cables, each capable of holding 250 kg. Write an equation
for the number of bags he can put on the platform at once, and solve it.

3. A scientist is testing a number of identical components of unknown resistance which he labels xΩ. He connects
a circuit with resistance (3x+4)Ω to a steady 12 volt supply and finds that this produces a current of 1.2 amps.
What is the value of the unknown resistance?

4. Lydia inherited a sum of money. She split it into five equal parts. She invested three parts of the money in
a high-interest bank account which added 10% to the value. She placed the rest of her inheritance plus $500
in the stock market but lost 20% on that money. If the two accounts end up with exactly the same amount of
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money in them, how much did she inherit?
5. Pang drove to his mother’s house to drop off her new TV. He drove at 50 miles per hour there and back, and

spent 10 minutes dropping off the TV. The entire journey took him 94 minutes. How far away does his mother
live?

135

http://www.ck12.org


3.4. Equations with Variables on Both Sides www.ck12.org

3.4 Equations with Variables on Both Sides

Learning Objectives

• Solve an equation with variables on both sides.
• Solve an equation with grouping symbols.
• Solve real-world problems using equations with variables on both sides.

Solve an Equation with Variables on Both Sides

When a variable appears on both sides of the equation, we need to manipulate the equation so that all variable terms
appear on one side, and only constants are left on the other.

Example 1

Dwayne was told by his chemistry teacher to measure the weight of an empty beaker using a balance. Dwayne found
only one lb weights, and so devised the following way of balancing the scales.

Knowing that each weight is one lb, calculate the weight of one beaker.

Solution

We know that the system balances, so the weights on each side must be equal. We can write an algebraic expression
based on this fact. The unknown quantity, the weight of the beaker, will be our x. We can see that on the left
hand scale we have one beaker and four weights. On the right scale, we have four beakers and three weights. The
balancing of the scales is analogous to the balancing of the following equation:

x+4 = 4x+3

“One beaker plus 4 lbs equals 4 beakers plus 3 lbs”

To solve for the weight of the beaker, we want all the constants (numbers) on one side and all the variables (terms
with x in them) on the other side. Since there are more beakers on the right and more weights on the left, we’ll try to
move all the x terms (beakers) to the right, and the constants (weights) to the left.

First we subtract 3 from both sides to get x+1 = 4x.

Then we subtract x from both sides to get 1 = 3x.
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Finally we divide by 3 to get 1
3 = x.

The weight of the beaker is one-third of a pound.

We can do the same with the real objects as we did with the equation. Just as we subtracted amounts from each side
of the equation, we could remove a certain number of weights or beakers from each scale. Because we remove the
same number of objects from each side, we know the scales will still balance.

First, we could remove three weights from each scale. This would leave one beaker and one weight on the left and
four beakers on the right (in other words x+1 = 4x ):

Then we could remove one beaker from each scale, leaving only one weight on the left and three beakers on the
right, to get 1 = 3x:

Looking at the balance, it is clear that the weight of one beaker is one-third of a pound.

Example 2

Sven was told to find the weight of an empty box with a balance. Sven found some one lb weights and five lb weights.
He placed two one lb weights in three of the boxes and with a fourth empty box found the following way of balancing
the scales:

Knowing that small weights are one lb and big weights are five lbs, calculate the weight of one box.

We know that the system balances, so the weights on each side must be equal. We can write an algebraic expression
based on this equality. The unknown quantity—the weight of each empty box, in pounds—will be our x. A box with
two 1 lb weights in it weighs (x+2) pounds. Our equation, based on the picture, is 3(x+2) = x+3(5).

Distributing the 3 and simplifying, we get 3x+6 = x+15.

Subtracting x from both sides, we get 2x+6 = 15.
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Subtracting 6 from both sides, we get 2x = 9.

And finally we can divide by 2 to get x = 9
2 , or x = 4.5.

Each box weighs 4.5 lbs.

To see more examples of solving equations with variables on both sides of the equation, see the Khan Academy
video at http://www.youtube.com/watch?v=Zn-GbH2S0Dk.

Solve an Equation with Grouping Symbols

As you’ve seen, we can solve equations with variables on both sides even when some of the variables are in
parentheses; we just have to get rid of the parentheses, and then we can start combining like terms. We use the
same technique when dealing with fractions: first we multiply to get rid of the fractions, and then we can shuffle the
terms around by adding and subtracting.

Example 3

Solve 3x+2 = 5x
3 .

Solution

The first thing we’ll do is get rid of the fraction. We can do this by multiplying both sides by 3, leaving 3(3x+2)= 5x.

Then we distribute to get rid of the parentheses, leaving 9x+6 = 5x.

We’ve already got all the constants on the left side, so we’ll move the variables to the right side by subtracting 9x
from both sides. That leaves us with 6 =−4x.

And finally, we divide by -4 to get −3
2 = x, or x =−1.5.

Example 4

Solve 7x+2 = 5x−3
6 .

Solution

Again we start by eliminating the fraction. Multiplying both sides by 6 gives us 6(7x+2) = 5x−3, and distributing
gives us 42x+12 = 5x−3.

Subtracting 5x from both sides gives us 37x+12 =−3.

Subtracting 12 from both sides gives us 37x =−15.

Finally, dividing by 37 gives us x =−15
37 .

Example 5

Solve the following equation for x: 14x
(x+3) = 7

Solution

The form of the left hand side of this equation is known as a rational function because it is the ratio of two other
functions: 14x and (x+3). But we can solve it just like any other equation involving fractions.

First we multiply both sides by (x+3) to get rid of the fraction. Now our equation is 14x = 7(x+3).

Then we distribute: 14x = 7x+21.

Then subtract 7x from both sides: 7x = 21.

And divide by 7: x = 3.
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Solve Real-World Problems Using Equations with Variables on Both Sides

Here’s another chance to practice translating problems from words to equations. What is the equation asking? What
is the unknown variable? What quantity will we use for our variable?

The text explains what’s happening. Break it down into small, manageable chunks, and follow what’s going on with
our variable all the way through the problem.

More on Ohm’s Law

Recall that the electrical current, I (amps), passing through an electronic component varies directly with the applied
voltage, V (volts), according to the relationship V = I ·R where R is the resistance measured in Ohms (Ω).

The resistance R of a number of components wired in a series (one after the other) is simply the sum of all the
resistances of the individual components.

Example 6

In an attempt to find the resistance of a new component, a scientist tests it in series with standard resistors. A fixed
voltage causes a 4.8 amp current in a circuit made up from the new component plus a 15Ω resistor in series. When
the component is placed in a series circuit with a 50Ω resistor, the same voltage causes a 2.0 amp current to flow.
Calculate the resistance of the new component.

This is a complex problem to translate, but once we convert the information into equations it’s relatively straightfor-
ward to solve. First, we are trying to find the resistance of the new component (in Ohms, Ω). This is our x. We don’t
know the voltage that is being used, but we can leave that as a variable, V . Our first situation has a total resistance
that equals the unknown resistance plus 15Ω. The current is 4.8 amps. Substituting into the formula V = I ·R, we
get V = 4.8(x+15).

Our second situation has a total resistance that equals the unknown resistance plus 50Ω. The current is 2.0 amps.
Substituting into the same equation, this time we get V = 2(x+50).

We know the voltage is fixed, so the V in the first equation must equal the V in the second. That means we can set
the right-hand sides of the two equations equal to each other: 4.8(x+15) = 2(x+50). Then we can solve for x.

Distribute the constants first: 4.8x+72 = 2x+100.

Subtract 2x from both sides: 2.8x+72 = 100.

Subtract 72 from both sides: 2.8x = 28.

Divide by 2.8: x = 10.

The resistance of the component is 10Ω.

Lesson Summary

If an unknown variable appears on both sides of an equation, distribute as necessary. Then simplify the equation to
have the unknown on only one side.

Review Questions

1. Solve the following equations for the unknown variable.

a. 3(x−1) = 2(x+3)
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b. 7(x+20) = x+5
c. 9(x−2) = 3x+3
d. 2

(
a− 1

3

)
= 2

5

(
a+ 2

3

)
e. 2

7

(
t + 2

3

)
= 1

5

(
t− 2

3

)
f. 1

7

(
v+ 1

4

)
= 2

(3v
2 −

5
2

)
g. y−4

11 = 2
5 ·

2y+1
3

h. z
16 = 2(3z+1)

9

i. q
16 +

q
6 = (3q+1)

9 + 3
2

j. 3
x = 2

x+1
k. 5

2+p = 3
p−8

2. Manoj and Tamar are arguing about a number trick they heard. Tamar tells Andrew to think of a number,
multiply it by five and subtract three from the result. Then Manoj tells Andrew to think of a number, add five
and multiply the result by three. Andrew says that whichever way he does the trick he gets the same answer.

a. What was the number Andrew started with?
b. What was the result Andrew got both times?
c. Name another set of steps that would have resulted in the same answer if Andrew started with the same

number.

3. Manoj and Tamar try to come up with a harder trick. Manoj tells Andrew to think of a number, double it, add
six, and then divide the result by two. Tamar tells Andrew to think of a number, add five, triple the result,
subtract six, and then divide the result by three.

a. Andrew tries the trick both ways and gets an answer of 10 each time. What number did he start out with?
b. He tries again and gets 2 both times. What number did he start out with?
c. Is there a number Andrew can start with that will not give him the same answer both ways?
d. Bonus: Name another set of steps that would give Andrew the same answer every time as he would get

from Manoj’s and Tamar’s steps.

4. I have enough money to buy five regular priced CDs and have $6 left over. However, all CDs are on sale today,
for $4 less than usual. If I borrow $2, I can afford nine of them.

a. How much are CDs on sale for today?
b. How much would I have to borrow to afford nine of them if they weren’t on sale?

5. Five identical electronics components were connected in series. A fixed but unknown voltage placed across
them caused a 2.3 amp current to flow. When two of the components were replaced with standard 10Ω

resistors, the current dropped to 1.9 amps. What is the resistance of each component?
6. Solve the following resistance problems. Assume the same voltage is applied to all circuits.

a. Three unknown resistors plus 20Ω give the same current as one unknown resistor plus 70Ω.
b. One unknown resistor gives a current of 1.5 amps and a 15Ω resistor gives a current of 3.0 amps.
c. Seven unknown resistors plus 18Ω gives twice the current of two unknown resistors plus 150Ω.
d. Three unknown resistors plus 1.5Ω gives a current of 3.6 amps and seven unknown resistors plus seven

12Ω resistors gives a current of 0.2 amps.
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3.5 Ratios and Proportions

Learning Objectives

• Write and understand a ratio.
• Write and solve a proportion.
• Solve proportions using cross products.
• Solve problems using scale drawings.

Introduction

Nadia is counting out money with her little brother. She gives her brother all the nickels and pennies. She keeps
the quarters and dimes for herself. Nadia has four quarters and six dimes. Her brother has fifteen nickels and five
pennies and is happy because he has more coins than his big sister. How would you explain to him that he is actually
getting a bad deal?

Write a ratio

A ratio is a way to compare two numbers, measurements or quantities. When we write a ratio, we divide one number
by another and express the answer as a fraction. There are two distinct ratios in the problem above. For example,
the ratio of the number of Nadia’s coins to her brother’s is 4+6

15+5 , or 10
20 = 1

2 . (Ratios should always be simplified.)
In other words, Nadia has half as many coins as her brother.

Another ratio we could look at is the value of the coins. The value of Nadia’s coins is (4×25)+(6×10)= 160 cents.
The value of her brother’s coins is (15× 5)+ (5× 1) = 80 cents. The ratio of the value of Nadia’s coins to her
brother’s is 160

80 = 2
1 . So the value of Nadia’s money is twice the value of her brother’s.

Notice that even though the denominator is one, we still write it out and leave the ratio as a fraction instead of a
whole number. A ratio with a denominator of one is called a unit rate.

Example 1

The price of a Harry Potter Book on Amazon.com is $10.00. The same book is also available used for $6.50. Find
two ways to compare these prices.

Solution

We could compare the numbers by expressing the difference between them: $10.00−$6.50 = $3.50.

We can also use a ratio to compare them: 10.00
6.50 = 100

65 = 20
13 (after multiplying by 10 to remove the decimals, and then

simplifying).

So we can say that the new book is $3.50 more than the used book, or we can say that the new book costs 20
13 times

as much as the used book.

Example 2
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A tournament size shuffleboard table measures 30 inches wide by 14 feet long. Compare the length of the table to its
width and express the answer as a ratio.

Solution

We could just write the ratio as 14 f eet
30 inches . But since we’re comparing two lengths, it makes more sense to convert all

the measurements to the same units. 14 feet is 14×12 = 168 inches, so our new ratio is 168
30 = 28

5 .

Example 3

A family car is being tested for fuel efficiency. It drives non-stop for 100 miles and uses 3.2 gallons of gasoline.
Write the ratio of distance traveled to fuel used as a unit rate.

Solution

The ratio of distance to fuel is 100 miles
3.2 gallons . But a unit rate has to have a denominator of one, so to make this ratio a unit

rate we need to divide both numerator and denominator by 3.2.
100
3.2 miles

3.2
3.2 gallons

= 31.25 miles
1 gallon or 31.25 miles per gallon.

Write and Solve a Proportion

When two ratios are equal to each other, we call it a proportion. For example, the equation 10
5 = 6

9 is a proportion.
We know it’s true because we can reduce both fractions to 2

3 .

(Check this yourself to make sure!)

We often use proportions in science and business—for example, when scaling up the size of something. We generally
use them to solve for an unknown, so we use algebra and label the unknown variable x.

Example 4

A small fast food chain operates 60 stores and makes $1.2 million profit every year. How much profit would the chain
make if it operated 250 stores?

Solution

First, we need to write a ratio: the ratio of profit to number of stores. That would be $1,200,000
60 .

Now we want to know how much profit 250 stores would make. If we label that profit x, then the ratio of profit to
stores in that case is x

250 .

Since we’re assuming the profit is proportional to the number of stores, the ratios are equal and our proportion is
1,200,000

60 = x
250 .

(Note that we can drop the units – not because they are the same in the numerator and denominator, but because they
are the same on both sides of the equation.)

To solve this equation, first we simplify the left-hand fraction to get 20,000 = x
250 . Then we multiply both sides by

250 to get 5,000,000 = x.

If the chain operated 250 stores, the annual profit would be 5 million dollars.

Example 5

A chemical company makes up batches of copper sulfate solution by adding 250 kg of copper sulfate powder to 1000
liters of water. A laboratory chemist wants to make a solution of identical concentration, but only needs 350 mL
(0.35 liters) of solution. How much copper sulfate powder should the chemist add to the water?

Solution

The ratio of powder to water in the first case, in kilograms per liter, is 250
1000 , which reduces to 1

4 . In the second case,
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the unknown amount is how much powder to add. If we label that amount x, the ratio is x
0.35 . So our proportion is

1
4 = x

0.35 .

To solve for x, first we multiply both sides by 0.35 to get 0.35
4 = x, or x = 0.0875.

The mass of copper sulfate that the chemist should add is 0.0875 kg, or 87.5 grams.

Solve Proportions Using Cross Products

One neat way to simplify proportions is to cross multiply. Consider the following proportion:

16
4

=
20
5

If we want to eliminate the fractions, we could multiply both sides by 4 and then multiply both sides by 5. But
suppose we just do both at once?

4×5× 16
4

= 4×5× 20
5

5×16 = 4×20

Now comparing this to the proportion we started with, we see that the denominator from the left hand side ends up
being multiplied by the numerator on the right hand side. You can also see that the denominator from the right hand
side ends up multiplying the numerator on the left hand side.

In effect the two denominators have multiplied across the equal sign:

becomes 5×16 = 4×20.

This movement of denominators is known as cross multiplying. It is extremely useful in solving proportions,
especially when the unknown variable is in the denominator.

Example 6

Solve this proportion for x: 4
3 = 9

x

Solution

Cross multiply to get 4x = 9×3, or 4x = 27. Then divide both sides by 4 to get x = 27
4 , or x = 6.75.

Example 7

Solve the following proportion for x: 0.5
3 = 56

x

Solution

Cross multiply to get 0.5x = 56×3, or 0.5x = 168. Then divide both sides by 0.5 to get x = 336.

Solve Real-World Problems Using Proportions

Example 8
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A cross-country train travels at a steady speed. It covers 15 miles in 20 minutes. How far will it travel in 7 hours
assuming it continues at the same speed?

Solution

We’ve done speed problems before; remember that speed is just the ratio distance
time , so that ratio is the one we’ll use

for our proportion. We can see that the speed is 15 miles
20 minutes , and that speed is also equal to x miles

7 hours .

To set up a proportion, we first have to get the units the same. 20 minutes is 1
3 of an hour, so our proportion will be

15
1
3
= x

7 . This is a very awkward looking ratio, but since we’ll be cross multiplying, we can leave it as it is.

Cross multiplying gives us 7×15 = 1
3 x. Multiplying both sides by 3 then gives us 3×7×15 = x, or x = 315.

The train will travel 315 miles in 7 hours.

Example 9

In the United Kingdom, Alzheimer’s disease is said to affect one in fifty people over 65 years of age. If approximately
250000 people over 65 are affected in the UK, how many people over 65 are there in total?

Solution

The fixed ratio in this case is the 1 person in 50. The unknown quantity x is the total number of people over 65. Note
that in this case we don’t need to include the units, as they will cancel between the numerator and denominator.

Our proportion is 1
50 = 250000

x . Each ratio represents people with Alzheimer’s
total people .

Cross multiplying, we get 1 · x = 250000 ·50, or x = 12,500,000.

There are approximately 12.5 million people over the age of 65 in the UK.

For some more advanced ratio problems and applications, watch the Khan Academy video at http://www.youtube.c
om/watch?v=PASSD2OcU0c.

Scale and Indirect Measurement

One place where ratios are often used is in making maps. The scale of a map describes the relationship between
distances on a map and the corresponding distances on the earth’s surface. These measurements are expressed as a
fraction or a ratio.

So far we have only written ratios as fractions, but outside of mathematics books, ratios are often written as two
numbers separated by a colon (:). For example, instead of 2

3 , we would write 2:3.

Ratios written this way are used to express the relationship between a map and the area it represents. For example, a
map with a scale of 1:1000 would be a map where one unit of measurement (such as a centimeter) on the map would
represent 1000 of the same unit (1000 centimeters, or 10 meters) in real life.

Example 10

Anne is visiting a friend in London, and is using a map to navigate from Fleet Street to Borough Road. She is using
a 1:100,000 scale map, where 1 cm on the map represents 1 km in real life. Using a ruler, she measures the distance
on the map from Fleet Street to Borough Road as 8.8 cm. How far is the real distance from the start of her journey
to the end?

Solution

The scale is the ratio of distance on the map to the corresponding distance in real life. Written as a fraction, it is
1

100000 . We can also write an equivalent ratio for the distance Anne measures on the map and the distance in real life
that she is trying to find: 8.8

x . Setting these two ratios equal gives us our proportion: 1
100000 = 8.8

x . Then we can cross
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multiply to get x = 880000.

That’s how many centimeters it is from Fleet Street to Borough Road; now we need to convert to kilometers. There
are 100000 cm in a km, so we have to divide our answer by 100000.

880000
100000

= 8.8.

The distance from Fleet Street to Borough Road is 8.8 km.

In this problem, we could have just used our intuition: the 1 cm = 1 km scale tells us that any number of cm on the
map is equal to the same number of km in real life. But not all maps have a scale this simple. You’ll usually need to
refer to the map scale to convert between measurements on the map and distances in real life!

Example 11

Antonio is drawing a map of his school for a project in math. He has drawn out the following map of the school
buildings and the surrounding area

He is trying to determine the scale of his figure. He knows that the distance from the point marked A on the baseball
diamond to the point marked B on the athletics track is 183 meters. Use the dimensions marked on the drawing to
determine the scale of his map.

Solution

We know that the real-life distance is 183 m, and the scale is the ratio distance on map
distance in real life .

To find the distance on the map, we use Pythagoras’ Theorem: a2 + b2 = c2, where a and b are the horizontal and
vertical lengths and c is the diagonal between points A and B.

82 +142 = c2

64+196 = c2

260 = c2

√
260 = c

16.12≈ c

So the distance on the map is about 16.12 cm. The distance in real life is 183 m, which is 18300 cm. Now we can
divide:
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Scale =
16.12
18300

≈ 1
1135.23

The scale of Antonio’s map is approximately 1:1100.

Another visual use of ratio and proportion is in scale drawings. Scale drawings (often called plans) are used
extensively by architects. The equations governing scale are the same as for maps; the scale of a drawing is the ratio
distance on diagram
distance in real life .

Example 12

Oscar is trying to make a scale drawing of the Titanic, which he knows was 883 ft long. He would like his drawing
to be at a 1:500 scale. How many inches long does his sheet of paper need to be?

Solution

We can reason intuitively that since the scale is 1:500, the paper must be 883
500 = 1.766 f eet long. Converting to inches

means the length is 12(1.766) = 21.192 inches.

Oscar’s paper should be at least 22 inches long.

Example 13

The Rose Bowl stadium in Pasadena, California measures 880 feet from north to south and 695 feet from east to
west. A scale diagram of the stadium is to be made. If 1 inch represents 100 feet, what would be the dimensions of
the stadium drawn on a sheet of paper? Will it fit on a standard 8.5×11 inch sheet of paper?

Solution

Instead of using a proportion, we can simply use the following equation: (distance on diagram) = (distance in real

life) × (scale). (We can derive this from the fact that scale = distance on diagram
distance in real life .)

Plugging in, we get

height on paper = 880 f eet× 1 inch
100 f eet = 8.8 inches

width on paper = 695 f eet× 1 inch
100 f eet = 6.95 inches

The scale diagram will be 8.8 in×6.95 in. It will fit on a standard sheet of paper.

Lesson Summary

• A ratio is a way to compare two numbers, measurements or quantities by dividing one number by the other
and expressing the answer as a fraction.

• A proportion is formed when two ratios are set equal to each other.
• Cross multiplication is useful for solving equations in the form of proportions. To cross multiply, multiply

the bottom of each ratio by the top of the other ratio and set them equal. For instance, cross multiplying

results in 11×3 = 5x.
• Scale is a proportion that relates map distance to real life distance.
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Review Questions

1. Write the following comparisons as ratios. Simplify fractions where possible.

a. $150 to $3
b. 150 boys to 175 girls
c. 200 minutes to 1 hour
d. 10 days to 2 weeks

2. Write the following ratios as a unit rate.

a. 54 hotdogs to 12 minutes
b. 5000 lbs to 250 square inches
c. 20 computers to 80 students
d. 180 students to 6 teachers
e. 12 meters to 4 floors
f. 18 minutes to 15 appointments

3. Solve the following proportions.

a. 13
6 = 5

x
b. 1.25

7 = 3.6
x

c. 6
19 = x

11
d. 1

x = 0.01
5

e. 300
4 = x

99
f. 2.75

9 = x
( 2

9)
g. 1.3

4 = x
1.3

h. 0.1
1.01 = 1.9

x

4. A restaurant serves 100 people per day and takes in $908. If the restaurant were to serve 250 people per day,
how much money would it take in?

5. The highest mountain in Canada is Mount Yukon. It is 298
67 the size of Ben Nevis, the highest peak in Scotland.

Mount Elbert in Colorado is the highest peak in the Rocky Mountains. Mount Elbert is 220
67 the height of Ben

Nevis and 11
12 the size of Mont Blanc in France. Mont Blanc is 4800 meters high. How high is Mount Yukon?

6. At a large high school it is estimated that two out of every three students have a cell phone, and one in five
of all students have a cell phone that is one year old or less. Out of the students who own a cell phone, what
proportion owns a phone that is more than one year old?

7. Use the map in Example 10. Using the scale printed on the map, determine the distances (rounded to the
nearest half km) between:

a. Points 1 and 4
b. Points 22 and 25
c. Points 18 and 13
d. Tower Bridge and London Bridge

147

http://www.ck12.org


3.6. Percent Problems www.ck12.org

3.6 Percent Problems

Learning Objectives

• Find a percent of a number.
• Use the percent equation.
• Find the percent of change.

Introduction

A percent is simply a ratio with a base unit of 100. When we write a ratio as a fraction, the percentage we want to
represent is the numerator, and the denominator is 100. For example, 43% is another way of writing 43

100 . 43
1000 , on

the other hand, is equal to 4.3
100 , so it would be equivalent to 4.3%. 2

5 is equal to 40
100 , or 40%. To convert any fraction

to a percent, just convert it to an equivalent fraction with a denominator of 100, and then take the numerator as your
percent value.

To convert a percent to a decimal, just move the decimal point two spaces to the right:

67% = 0.67

0.2% = 0.002

150% = 1.5

And to convert a decimal to a percent, just move the decimal point two spaces to the left:

2.3 = 230%

0.97 = 97%

0.00002 = 0.002%

Finding and Converting Percentages

Before we work with percentages, we need to know how to convert between percentages, decimals and fractions.

Converting percentages to fractions is the easiest. The word “percent” simply means “per 100”—so, for example,
55% means 55 per 100, or 55

100 . This fraction can then be simplified to 11
20 .

Example 1

Convert 32.5% to a fraction.

Solution
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32.5% is equal to 32.5 per 100, or 32.5
100 . To reduce this fraction, we first need to multiply it by 10

10 to get rid of the
decimal point. 325

1000 then reduces to 13
40 .

Converting fractions to percentages can be a little harder. To convert a fraction directly to a percentage, you need to
express it as an equivalent fraction with a denominator of 100.

Example 2

Convert 7
8 to a percent.

Solution

To get the denominator of this fraction equal to 100, we have to multiply it by 12.5. Multiplying the numerator by
12.5 also, we get 87.5

100 , which is equivalent to 87.5%.

But what about a fraction like 1
6 , where there’s no convenient number to multiply the denominator by to get 100?

In a case like this, it’s easier to do the division problem suggested by the fraction in order to convert the fraction to
a decimal, and then convert the decimal to a percent. 1 divided by 6 works out to 0.166666.... Moving the decimal
two spaces to the right tells us that this is equivalent to about 16.7%.

Why can we convert from decimals to percents just by moving the decimal point? Because of what decimal places
represent. 0.1 is another way of representing one tenth, and 0.01 is equal to one hundredth—and one hundredth is
one percent. By the same logic, 0.02 is 2 percent, 0.35 is 35 percent, and so on.

Example 3

Convert 2.64 to a percent.

Solution

To convert to a percent, simply move the decimal two places to the right. 2.64 = 264%.

Does a percentage greater than 100 even make sense? Sure it does—percentages greater than 100 come up in real
life all the time. For example, a business that made 10 million dollars last year and 13 million dollars this year would
have made 130% as much money this year as it did last year.

The only situation where a percentage greater than 100 doesn’t make sense is when you’re talking about dividing
up something that you only have a fixed amount of—for example, if you took a survey and found that 56% of the
respondents gave one answer and 72% gave another answer (for a total of 128%), you’d know something went
wrong with your math somewhere, because there’s no way you could have gotten answers from more than 100% of
the people you surveyed.

Converting percentages to decimals is just as easy as converting decimals to percentages—simply move the decimal
to the left instead of to the right.

Example 4

Convert 58% to a decimal.

Solution

The decimal point here is invisible—it’s right after the 8. So moving it to the left two places gives us 0.58.

It can be hard to remember which way to move the decimal point when converting from decimals to percents or vice
versa. One way to check if you’re moving it the right way is to check whether your answer is a bigger or smaller
number than you started out with. If you’re converting from percents to decimals, you should end up with a smaller
number—just think of how a number like 50 percent, where 50 is greater than 1, represents a fraction like 1

2 (or 0.50
in decimal form), where 1

2 is less than 1. Conversely, if you’re converting from decimals to percents, you should end
up with a bigger number.

One way you might remember this is by remembering that a percent sign is bigger than a decimal point—so percents
should be bigger numbers than decimals.

149

http://www.ck12.org


3.6. Percent Problems www.ck12.org

Example 5

Convert 3.4 to a percent.

Solution

If you move the decimal point to the left, you get 0.034%. That’s a smaller number than you started out with, but
you’re moving from decimals to percents, so you want the number to get bigger, not smaller. Move it to the right
instead to get 340%.

Now let’s try another fraction.

Example 6

Convert 2
7 to a percent.

Solution
2
7 doesn’t convert easily unless you change it to a decimal first. 2 divided by 7 is approximately 0.285714..., and
moving the decimal and rounding gives us 28.6%.

The following Khan Academy video shows several more examples of finding percents and might be useful for further
practice: http://www.youtube.com/watch?v=_SpE4hQ8D_o.

Use the Percent Equation

The percent equation is often used to solve problems. It goes like this:

Rate×Total = Part

or

R% of Total is Part

Rate is the ratio that the percent represents (R% in the second version).

Total is often called the base unit.

Part is the amount we are comparing with the base unit.

Example 7

Find 25% of $80.

Solution

We are looking for the part. The total is $80. ’of’ means multiply. R% is 25%, so we can use the second form of the
equation: 25% of $80 is Part, or 0.25×80 = Part.

0.25×80 = 20, so the Part we are looking for is $20.

Example 8

Express $90 as a percentage of $160.

Solution

This time we are looking for the rate. We are given the part ($90) and the total ($160). Using the rate equation, we
get Rate×160 = 90. Dividing both sides by 160 tells us that the rate is 0.5625, or 56.25%.

Example 9

$50 is 15% of what total sum?
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This time we are looking for the total. We are given the part ($50) and the rate (15%, or 0.15). Using the rate
equation, we get 0.15×Total = $50. Dividing both sides by 0.15, we get Total = 50

0.15 ≈ 333.33. So $50 is 15% of
$333.33.

Find Percent of Change

A useful way to express changes in quantities is through percents. You’ve probably seen signs such as “20% extra
free,” or “save 35% today.” When we use percents to represent a change, we generally use the formula

Percent change =
final amount - original amount

original amount
×100%

or

percent change
100

=
actual change

original amount

This means that a positive percent change is an increase, while a negative change is a decrease.

Example 10

A school of 500 students is expecting a 20% increase in students next year. How many students will the school have?

Solution

First let’s solve this using the first formula. Since the 20% change is an increase, we represent it in the formula as
20 (if it were a decrease, it would be -20.) Plugging in all the numbers, we get

20% =
final amount−500

500
×100%

Dividing both sides by 100%, we get 0.2 = final amount−500
500 .

Multiplying both sides by 500 gives us 100 = final amount−500.

Then adding 500 to both sides gives us 600 as the final number of students.

How about if we use the second formula? Then we get 20
100 =

actual change
500 . (Reducing the first fraction to 1

5 will

make the problem easier, so let’s rewrite the equation as 1
5 =

actual change
500

Cross multiplying is our next step; that gives us 500 = 5×(actual change). Dividing by 5 tells us the change is equal
to 100. We were told this was an increase, so if we start out with 500 students, after an increase of 100 we know
there will be a total of 600.

Markup

A markup is an increase from the price a store pays for an item from its supplier to the retail price it charges to the
public. For example, a 100% mark-up (commonly known in business as keystone) means that the price is doubled.
Half of the retail price covers the cost of the item from the supplier, half is profit.

Example 11

A furniture store places a 30% markup on everything it sells. It offers its employees a 20% discount from the sales
price. The employees are demanding a 25% discount, saying that the store would still make a profit. The manager
says that at a 25% discount from the sales price would cause the store to lose money. Who is right?
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Solution

We’ll consider this problem two ways. First, let’s consider an item that the store buys from its supplier for a certain
price, say $1000. The markup would be 30% of 1000, or $300, so the item would sell for $1300 and the store would
make a $300 profit.

And what if an employee buys the product? With a discount of 20%, the employee would pay 80% of the $1300
retail price, or 0.8×$1300 = $1040.

But with a 25% discount, the employee would pay 75% of the retail price, or 0.75×$1300 = $975.

So with a 20% employee discount, the store still makes a $40 profit on the item they bought for $1000—but with a
25% employee discount, the store loses $25 on the item.

Now let’s use algebra to see how this works for an item of any price. If x is the price of an item, then the store’s
markup is 30% of x, or 0.3x, and the retail price of the item is x+0.3x, or 1.3x. An employee buying the item at a
20% discount would pay 0.8×1.3x= 1.04x, while an employee buying it at a 25% discount would pay 0.75×1.3x=
0.975x.

So the manager is right: a 20% employee discount still allows the store to make a profit, while a 25% employee
discount would cause the store to lose money.

It may not seem to make sense that the store would lose money after applying a 30% markup and only a 25%
discount. The reason it does work out that way is that the discount is bigger in absolute dollars after the markup is
factored in. That is, an employee getting 25% off an item is getting 25% off the original price plus 25% off the 30%
markup, and those two numbers together add up to more than 30% of the original price.

Solve Real-World Problems Using Percents

Example 12

In 2004 the US Department of Agriculture had 112071 employees, of which 87846 were Caucasian. Of the remaining
minorities, African-American and Hispanic employees had the two largest demographic groups, with 11754 and
6899 employees respectively.∗

a) Calculate the total percentage of minority (non-Caucasian) employees at the USDA.

b) Calculate the percentage of African-American employees at the USDA.

c) Calculate the percentage of minority employees who were neither African-American nor Hispanic.

Solution

a) Use the percent equation Rate×Total = Part.

The total number of employees is 112071. We know that the number of Caucasian employees is 87846, which means
that there must be 112071− 87646 = 24225 non-Caucasian employees. This is the part. Plugging in the total and
the part, we get Rate×112071 = 24225.

Divide both sides by 112071 to get Rate = 24225
112071 ≈ 0.216. Multiply by 100 to get this as a percent: 21.6%.

21.6% of USDA employees in 2004 were from minority groups.

b) Here, the total is still 112071 and the part is 11754, so we have Rate× 112071 = 11754. Dividing, we get
Rate = 11754

112071 ≈ 0.105, or 10.5%.

10.5% of USDA employees in 2004 were African-American.

c) Here, our total is just the number of non-Caucasian employees, which we found out is 24225. Subtracting the
African-American and Hispanic employees leaves 24225− 11754− 6899 = 5572 employees in the group we’re
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looking at.

So with 24225 for the whole and 5572 for the part, our equation is Rate×24225 = 5572, or Rate = 5572
24225 ≈ 0.230,

or 23%.

23% of USDA minority employees in 2004 were neither African-American nor Hispanic.

Example 13

In 1995 New York had 18136000 residents. There were 827025 reported crimes, of which 152683 were violent. By
2005 the population was 19254630 and there were 85839 violent crimes out of a total of 491829 reported crimes.
(Source: New York Law Enforcement Agency Uniform Crime Reports.) Calculate the percentage change from 1995
to 2005 in:

a) Population of New York

b) Total reported crimes

c) violent crimes

Solution

This is a percentage change problem. Remember the formula for percentage change:

Percent change =
final amount - original amount

original amount
×100%

In these problems, the final amount is the 2005 statistic, and the initial amount is the 1995 statistic.

a) Population:

Percent change =
19254630−18136000

18136000
×100%

=
1118630
18136000

×100%

≈ 0.0617×100%

= 6.17%

The population grew by 6.17%.

b) Total reported crimes:

Percent change =
491829−827025

827025
×100%

=
−335196
827025

×100%

≈−0.4053×100%

=−40.53%

The total number of reported crimes fell by 40.53%.

c) Violent crimes:
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Percent change =
85839−152683

152683
×100%

=
−66844
152683

×100%

≈−0.4377×100%

=−43.77%

The total number of violent crimes fell by 43.77%.

Lesson Summary

• A percent is simply a ratio with a base unit of 100—for example, 13% = 13
100 .

• The percent equation is Rate×Total = Part, or R% of Total is Part.
• The percent change equation is Percent change = final amount - original amount

original amount ×100%. A positive percent
change means the value increased, while a negative percent change means the value decreased.

Review Questions

1. Express the following decimals as a percent.

a. 0.011
b. 0.001
c. 0.91
d. 1.75
e. 20

2. Express the following percentages in decimal form.

a. 15%
b. 0.08%
c. 222%
d. 3.5%
e. 341.9%

3. Express the following fractions as a percent (round to two decimal places when necessary).

a. 1
6

b. 5
24

c. 6
7

d. 11
7

e. 13
97

4. Express the following percentages as a reduced fraction.

a. 11%
b. 65%
c. 16%
d. 12.5%
e. 87.5%
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5. Find the following.

a. 30% of 90
b. 16.7% of 199
c. 11.5% of 10.01
d. y% of 3x

6. A TV is advertised on sale. It is 35% off and now costs $195. What was the pre-sale price?
7. An employee at a store is currently paid $9.50 per hour. If she works a full year she gets a 12% pay raise.

What will her new hourly rate be after the raise?
8. Store A and Store B both sell bikes, and both buy bikes from the same supplier at the same prices. Store A

has a 40% mark-up for their prices, while store B has a 250% mark-up. Store B has a permanent sale and will
always sell at 60% off the marked-up prices. Which store offers the better deal?

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9613.
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CHAPTER 4 Graphs of Equations and
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4.1 The Coordinate Plane

Learning Objectives

• Identify coordinates of points.
• Plot points in a coordinate plane.
• Graph a function given a table.
• Graph a function given a rule.

Introduction

Lydia lives 2 blocks north and one block east of school; Travis lives three blocks south and two blocks west of
school. What’s the shortest line connecting their houses?

The Coordinate Plane

We’ve seen how to represent numbers using number lines; now we’ll see how to represent sets of numbers using
a coordinate plane. The coordinate plane can be thought of as two number lines that meet at right angles. The
horizontal line is called the x−axis and the vertical line is the y−axis. Together the lines are called the axes, and the
point at which they cross is called the origin. The axes split the coordinate plane into four quadrants, which are
numbered sequentially (I, II, III, IV) moving counter-clockwise from the upper right.

Identify Coordinates of Points

When given a point on a coordinate plane, it’s easy to determine its coordinates. The coordinates of a point are two
numbers - written together they are called an ordered pair. The numbers describe how far along the x−axis and
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y−axis the point is. The ordered pair is written in parentheses, with the x−coordinate (also called the abscissa) first
and the y−coordinate (or the ordinate) second.

(1,7) An ordered pair with an x−value of one and a y−value of seven

(0,5) An ordered pair with an x−value of zero and a y−value of five

(−2.5,4) An ordered pair with an x−value of -2.5 and a y−value of four

(−107.2,−.005) An ordered pair with an x−value of -107.2 and a y−value of − .005

Identifying coordinates is just like reading points on a number line, except that now the points do not actually lie on
the number line! Look at the following example.

Example 1

Find the coordinates of the point labeled P in the diagram above

Solution

Imagine you are standing at the origin (the point where the x−axis meets the y−axis). In order to move to a position
where P was directly above you, you would move 3 units to the right (we say this is in the positive x−direction).

The x−coordinate of P is +3.

Now if you were standing at the 3 marker on the x−axis, point P would be 7 units above you (above the axis means
it is in the positive y direction).

The y−coordinate of P is +7.

The coordinates of point P are (3, 7).

Example 2
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Find the coordinates of the points labeled Q and R in the diagram to the right.

Solution

In order to get to Q we move three units to the right, in the positive x−direction, then two units down. This time we
are moving in the negative y−direction. The x−coordinate of Q is +3, the y−coordinate of Q is −2.

The coordinates of R are found in a similar way. The x−coordinate is +5 (five units in the positive x−direction) and
the y−coordinate is again −2.

The coordinates of Q are (3, −2). The coordinates of R are (5, −2).

Example 3

Triangle ABC is shown in the diagram to the right. Find the coordinates of the vertices A,B and C.

Point A:

x− coordinate =−2

y− coordinate =+5

Point B:

x− coordinate =+3

y− coordinate =−3

Point C:

x− coordinate =−4
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y− coordinate =−1

Solution

A(−2,5)

B(3,−3)

C(−4,−1)

Plot Points in a Coordinate Plane

Plotting points is simple, once you understand how to read coordinates and read the scale on a graph. As a note on
scale, in the next two examples pay close attention to the labels on the axes.

Example 4

Plot the following points on the coordinate plane.

A(2,7) B(−4,6) D(−3,−3) E(0,2) F(7,−5)

Point A(2,7) is 2 units right, 7 units up. It is in Quadrant I.

Point B(−4,6) is 4 units left, 6 units up. It is in Quadrant II.

Point D(−3,−3) is 3 units left, 3 units down. It is in Quadrant III.

Point E(0,2) is 2 units up from the origin. It is right on the y−axis, between Quadrants I and II.

Point F(7,−5) is 7 units right, 5 units down. It is in Quadrant IV.

Example 5

Plot the following points on the coordinate plane.

A(2.5,0.5) B(π,1.2) C(2,1.75) D(0.1,1.2) E(0,0)
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Here we see the importance of choosing the right scale and range for the graph. In Example 4, our points were
scattered throughout the four quadrants. In this case, all the coordinates are positive, so we don’t need to show the
negative values of x or y. Also, there are no x−values bigger than about 3.14, and 1.75 is the largest value of y. We
can therefore show just the part of the coordinate plane where 0≤ x≤ 3.5 and 0≤ y≤ 2.

Here are some other important things to notice about this graph:

• The tick marks on the axes don’t correspond to unit increments (i.e. the numbers do not go up by one each
time). This is so that we can plot the points more precisely.

• The scale on the x−axis is different than the scale on the y−axis, so distances that look the same on both axes
are actually greater in the x−direction. Stretching or shrinking the scale in one direction can be useful when
the points we want to plot are farther apart in one direction than the other.

For more practice locating and naming points on the coordinate plane, try playing the Coordinate Plane Game at http
://www.math-play.com/Coordinate%20Plane%20Game/Coordinate%20Plane%20Game.html.

Graph a Function Given a Table

Once we know how to plot points on a coordinate plane, we can think about how we’d go about plotting a relationship
between x−and y−values. So far we’ve just been plotting sets of ordered pairs. A set like that is a relation, and there
isn’t necessarily a relationship between the x−values and y−values. If there is a relationship between the x−and
y−values, and each x−value corresponds to exactly one y−value, then the relation is called a function. Remember
that a function is a particular way to relate one quantity to another.

If you’re reading a book and can read twenty pages an hour, there is a relationship between how many hours you read
and how many pages you read. You may even know that you could write the formula as either n = 20h or h = n

20 ,
where h is the number of hours you spend reading and n is the number of pages you read. To find out, for example,
how many pages you could read in 3 1

2 hours, or how many hours it would take you to read 46 pages, you could use
one of those formulas. Or, you could make a graph of the function:
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Once you know how to graph a function like this, you can simply read the relationship between the x−and y−values
off the graph. You can see in this case that you could read 70 pages in 3 1

2 hours, and it would take you about 2 1
3

hours to read 46 pages.

Generally, the graph of a function appears as a line or curve that goes through all points that have the relationship
that the function describes. If the domain of the function (the set of x−values we can plug into the function) is all
real numbers, then we call it a continuous function. If the domain of the function is a particular set of values (such
as whole numbers only), then it is called a discrete function. The graph will be a series of dots, but they will still
often fall along a line or curve.

In graphing equations, we assume the domain is all real numbers, unless otherwise stated. Often, though, when
we look at data in a table, the domain will be whole numbers (number of presents, number of days, etc.) and the
function will be discrete. But sometimes we’ll still draw the graph as a continuous line to make it easier to interpret.
Be aware of the difference between discrete and continuous functions as you work through the examples.

Example 6

Sarah is thinking of the number of presents she receives as a function of the number of friends who come to her
birthday party. She knows she will get a present from her parents, one from her grandparents and one each from
her uncle and aunt. She wants to invite up to ten of her friends, who will each bring one present. She makes a
table of how many presents she will get if one, two, three, four or five friends come to the party. Plot the points on
a coordinate plane and graph the function that links the number of presents with the number of friends. Use your
graph to determine how many presents she would get if eight friends show up.

TABLE 4.1:

Number of Friends Number of Presents
0 4
1 5
2 6
3 7
4 8
5 9

The first thing we need to do is decide how our graph should appear. We need to decide what the independent
variable is, and what the dependant variable is. Clearly in this case, the number of friends can vary independently,
but the number of presents must depend on the number of friends who show up.

So we’ll plot friends on the x−axis and presents on the y−axis. Let’s add another column to our table containing the
coordinates that each (friends, presents) ordered pair gives us.
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TABLE 4.2:

Friends (x) Presents (y) Coordinates (x,y)
0 4 (0, 4)
1 5 (1, 5)
2 6 (2, 6)
3 7 (3, 7)
4 8 (4, 8)
5 9 (5, 9)

Next we need to set up our axes. It is clear that the number of friends and number of presents both must be positive,
so we only need to show points in Quadrant I. Now we need to choose a suitable scale for the x− and y−axes. We
only need to consider eight friends (look again at the question to confirm this), but it always pays to allow a little
extra room on your graph. We also need the y−scale to accommodate the presents for eight people. We can see that
this is still going to be under 20!

The scale of this graph has room for up to 12 friends and 15 presents. This will be fine, but there are many other
scales that would be equally good!

Now we proceed to plot the points. The first five points are the coordinates from our table. You can see they all lie on
a straight line, so the function that describes the relationship between x and y will be linear. To graph the function,
we simply draw a line that goes through all five points. This line represents the function.

This is a discrete problem since Sarah can only invite a positive whole number of friends. For instance, it would be
impossible for 2.4 or -3 friends to show up. So although the line helps us see where the other values of the function
are, the only points on the line that actually are values of the function are the ones with positive whole-number
coordinates.

The graph easily lets us find other values for the function. For example, the question asks how many presents Sarah
would get if eight friends come to her party. Don’t forget that x represents the number of friends and y represents
the number of presents. If we look at the graph where x = 8, we can see that the function has a y−value of 12.

Solution

If 8 friends show up, Sarah will receive a total of 12 presents.
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Graph a Function Given a Rule

If we are given a rule instead of a table, we can proceed to graph the function in either of two ways. We will use the
following example to show each way.

Example 7

Ali is trying to work out a trick that his friend showed him. His friend started by asking him to think of a number,
then double it, then add five to the result. Ali has written down a rule to describe the first part of the trick. He is
using the letter x to stand for the number he thought of and the letter y to represent the final result of applying the
rule. He wrote his rule in the form of an equation: y = 2x+5.

Help him visualize what is going on by graphing the function that this rule describes.

Method One - Construct a Table of Values

If we wish to plot a few points to see what is going on with this function, then the best way is to construct a table
and populate it with a few (x,y) pairs. We’ll use 0, 1, 2 and 3 for x−values.

TABLE 4.3:

x y
0 5
1 7
2 9
3 11

Next, we plot the points and join them with a line.

This method is nice and simple—especially with linear relationships, where we don’t need to plot more than two
or three points to see the shape of the graph. In this case, the function is continuous because the domain is all
real numbers—that is, Ali could think of any real number, even though he may only be thinking of positive whole
numbers.

Method Two - Intercept and Slope
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Another way to graph this function (one that we’ll learn in more detail in a later lesson) is the slope-intercept method.
To use this method, follow these steps:

1. Find the y value when y = 0.

y(0) = 2 ·0+5 = 5, so our y−intercept is (0, 5).

2. Look at the coefficient multiplying the x.

Every time we increase x by one, y increases by two, so our slope is +2.

3. Plot the line with the given slope that goes through the intercept. We start at the point (0, 5) and move over
one in the x−direction, then up two in the y−direction. This gives the slope for our line, which we extend in both
directions.

We will properly examine this last method later in this chapter!

Lesson Summary

• The coordinate plane is a two-dimensional space defined by a horizontal number line (the x−axis) and
a vertical number line (the y−axis). The origin is the point where these two lines meet. Four areas, or
quadrants, are formed as shown in the diagram above.

• Each point on the coordinate plane has a set of coordinates, two numbers written as an ordered pair which
describe how far along the x−axis and y−axis the point is. The x−coordinate is always written first, then the
y−coordinate, in the form (x,y).
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• Functions are a way that we can relate one quantity to another. Functions can be plotted on the coordinate
plane.

Review Questions

1. Identify the coordinates of each point, A−F , on the graph below.

2. Draw a line on the above graph connecting point B with the origin. Where does that line intersect the line
connecting points C and D?

3. Plot the following points on a graph and identify which quadrant each point lies in:

a. (4, 2)
b. (-3, 5.5)
c. (4, -4)
d. (-2, -3)

4. Without graphing the following points, identify which quadrant each lies in:

a. (5, 3)
b. (-3, -5)
c. (-4, 2)
d. (2, -4)

5. Consider the graph of the equation y = 3. Which quadrants does it pass through?
6. Consider the graph of the equation y = x. Which quadrants does it pass through?
7. Consider the graph of the equation y = x+3. Which quadrants does it pass through?
8. The point (4, 0) is on the boundary between which two quadrants?
9. The point (0, -5) is on the boundary between which two quadrants?

10. If you moved the point (3, 2) five units to the left, what quadrant would it be in?
11. The following three points are three vertices of square ABCD. Plot them on a graph, then determine what the

coordinates of the fourth point, D, would be. Plot that point and label it.

A(−4,−4) B(3,−4) C(3,3)

12. In what quadrant is the center of the square from problem 10? (You can find the center by drawing the square’s
diagonals.)

13. What point is halfway between (1, 3) and (1, 5)?
14. What point is halfway between (2, 8) and (6, 8)?
15. What point is halfway between the origin and (10, 4)?
16. What point is halfway between (3, -2) and (-3, 2)?

166

http://www.ck12.org


www.ck12.org Chapter 4. Graphs of Equations and Functions

17. Becky has a large bag of MMs that she knows she should share with Jaeyun. Jaeyun has a packet of Starburst.
Becky tells Jaeyun that for every Starburst he gives her, she will give him three MMs in return. If x is the
number of Starburst that Jaeyun gives Becky, and y is the number of MMs he gets in return, then complete
each of the following.

a. Write an algebraic rule for y in terms of x.
b. Make a table of values for y with x-values of 0, 1, 2, 3, 4, 5.
c. Plot the function linking x and y on the following scale: 0≤ x≤ 10, 0≤ y≤ 10.
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4.2 Graphs of Linear Equations

Learning Objectives

• Graph a linear function using an equation.
• Write equations and graph horizontal and vertical lines.
• Analyze graphs of linear functions and read conversion graphs.

Introduction

You’re stranded downtown late at night with only $8 in your pocket, and your home is 6 miles away. Two cab
companies serve this area; one charges $1.20 per mile with an additional $1 fee, and the other charges $0.90 per
mile with an additional $2.50 fee. Which cab will be able to get you home?

Graph a Linear Equation

At the end of Lesson 4.1 we looked at ways to graph a function from a rule. A rule is a way of writing the relationship
between the two quantities we are graphing. In mathematics, we tend to use the words formula and equation to
describe the rules we get when we express relationships algebraically. Interpreting and graphing these equations is
an important skill that you’ll use frequently in math.

Example 1

A taxi costs more the further you travel. Taxis usually charge a fee on top of the per-mile charge to cover hire of the
vehicle. In this case, the taxi charges $3 as a set fee and $0.80 per mile traveled. Here is the equation linking the
cost in dollars (y) to hire a taxi and the distance traveled in miles (x).

y = 0.8x+3

Graph the equation and use your graph to estimate the cost of a seven-mile taxi ride.

Solution

We’ll start by making a table of values. We will take a few values for x (0, 1, 2, 3, and 4), find the corresponding
y−values, and then plot them. Since the question asks us to find the cost for a seven-mile journey, we need to choose
a scale that can accommodate this.

First, here’s our table of values:

TABLE 4.4:

x y
0 3
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TABLE 4.4: (continued)

x y
1 3.8
2 4.6
3 5.4
4 6.2

And here’s our graph:

To find the cost of a seven-mile journey, first we find x = 7 on the horizontal axis and draw a line up to our graph.
Next, we draw a horizontal line across to the y−axis and read where it hits. It appears to hit around half way between
y = 8 and y = 9. Let’s call it 8.5.

A seven mile taxi ride would cost approximately $8.50 ($8.60 exactly).

Here are some things you should notice about this graph and the formula that generated it:

• The graph is a straight line (this means that the equation is linear), although the function is discrete and really
just consists of a series of points.

• The graph crosses the y−axis at y = 3 (notice that there’s a+ 3 in the equation—that’s not a coincidence!).
This is the base cost of the taxi.

• Every time we move over by one square we move up by 0.8 squares (notice that that’s also the coefficient of
x in the equation). This is the rate of charge of the taxi (cost per mile).

• If we move over by three squares, we move up by 3×0.8 squares.

Example 2

A small business has a debt of $500,000 incurred from start-up costs. It predicts that it can pay off the debt at a
rate of $85,000 per year according to the following equation governing years in business (x) and debt measured in
thousands of dollars (y).

y =−85x+500

Graph the above equation and use your graph to predict when the debt will be fully paid.

Solution

First, we start with our table of values:
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TABLE 4.5:

x y
0 500
1 415
2 330
3 245
4 160

Then we plot our points and draw the line that goes through them:

Notice the scale we’ve chosen here. There’s no need to include any points above y = 500, but it’s still wise to allow
a little extra.

Next we need to determine how many years it takes the debt to reach zero, or in other words, what x−value will
make the y−value equal 0. We know it’s greater than four (since at x = 4 the y−value is still positive), so we need
an x−scale that goes well past x = 4. Here we’ve chosen to show the x−values from 0 to 12, though there are many
other places we could have chosen to stop.

To read the time that the debt is paid off, we simply read the point where the line hits y = 0 (the x−axis). It looks as
if the line hits pretty close to x = 6. So the debt will definitely be paid off in six years.

To see more simple examples of graphing linear equations by hand, see the Khan Academy video on graphing lines at
http://www.youtube.com/watch?v=2UrcUfBizyw. The narrator shows how to graph several linear equations, using
a table of values to plot points and then connecting the points with a line.

Graphs and Equations of Horizontal and Vertical Lines

Example 3

“Mad-cabs” have an unusual offer going on. They are charging $7.50 for a taxi ride of any length within the city
limits. Graph the function that relates the cost of hiring the taxi (y) to the length of the journey in miles (x).

To proceed, the first thing we need is an equation. You can see from the problem that the cost of a journey doesn’t
depend on the length of the journey. It should come as no surprise that the equation then, does not have x in it. Since
any value of x results in the same value of y(7.5), the value you choose for x doesn’t matter, so it isn’t included in
the equation. Here is the equation:

y = 7.5
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The graph of this function is shown below. You can see that it’s simply a horizontal line.

Any time you see an equation of the form “y = constant,” the graph is a horizontal line that intercepts the y−axis at
the value of the constant.

Similarly, when you see an equation of the form x = constant, then the graph is a vertical line that intercepts the
x−axis at the value of the constant. (Notice that that kind of equation is a relation, and not a function, because each
x−value (there’s only one in this case) corresponds to many (actually an infinite number) y−values.)

Example 4

Plot the following graphs.

(a) y = 4

(b) y =−4

(c) x = 4

(d) x =−4

(a) y = 4 is a horizontal line that crosses the y−axis at 4.

(b) y =−4 is a horizontal line that crosses the y−axis at −4.

(c) x = 4 is a vertical line that crosses the x−axis at 4.

(d) x =−4 is a vertical line that crosses the x−axis at −4.
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Example 5

Find an equation for the x−axis and the y−axis.

Look at the axes on any of the graphs from previous examples. We have already said that they intersect at the origin
(the point where x = 0 and y = 0). The following definition could easily work for each axis.

x−axis: A horizontal line crossing the y−axis at zero.

y−axis: A vertical line crossing the x−axis at zero.

So using example 3 as our guide, we could define the x−axis as the line y = 0 and the y−axis as the line x = 0.

Analyze Graphs of Linear Functions

We often use graphs to represent relationships between two linked quantities. It’s useful to be able to interpret the
information that graphs convey. For example, the chart below shows a fluctuating stock price over ten weeks. You
can read that the index closed the first week at about $68, and at the end of the third week it was at about $62. You
may also see that in the first five weeks it lost about 20% of its value, and that it made about 20% gain between
weeks seven and ten. Notice that this relationship is discrete, although the dots are connected to make the graph
easier to interpret.

Analyzing graphs is a part of life - whether you are trying to decide to buy stock, figure out if your blog readership
is increasing, or predict the temperature from a weather report. Many graphs are very complicated, so for now
we’ll start off with some simple linear conversion graphs. Algebra starts with basic relationships and builds to more
complicated tasks, like reading the graph above.

Example 6

Below is a graph for converting marked prices in a downtown store into prices that include sales tax. Use the graph
to determine the cost including sales tax for a $6.00 pen in the store.
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To find the relevant price with tax, first find the correct pre-tax price on the x−axis. This is the point x = 6.

Draw the line x = 6 up until it meets the function, then draw a horizontal line to the y−axis. This line hits at y≈ 6.75
(about three fourths of the way from y = 6 to y = 7).

The approximate cost including tax is $6.75.

Example 7

The chart for converting temperature from Fahrenheit to Celsius is shown to the right. Use the graph to convert the
following:

a) 70◦ Fahrenheit to Celsius

b) 0◦ Fahrenheit to Celsius

c) 30◦ Celsius to Fahrenheit

d) 0◦ Celsius to Fahrenheit

Solution

a) To find 70◦ Fahrenheit, we look along the Fahrenheit-axis (in other words the x−axis) and draw the line x = 70
up to the function. Then we draw a horizontal line to the Celsius-axis (y−axis). The horizontal line hits the axis at a
little over 20 (21 or 22).

70◦ Fahrenheit is approximately equivalent to 21◦ Celsius.

b) To find 0◦ Fahrenheit, we just look at the y−axis. (Don’t forget that this axis is simply the line x = 0.) The line
hits the y−axis just below the half way point between −15 and −20.
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0◦ Fahrenheit is approximately equivalent to −18◦ Celsius.

c) To find 30◦ Celsius, we look up the Celsius-axis and draw the line y = 30 along to the function. When this
horizontal line hits the function, we draw a line straight down to the Fahrenheit-axis. The line hits the axis at
approximately 85.

30◦ Celsius is approximately equivalent to 85◦ Fahrenheit.

d) To find 0◦ Celsius, we look at the Fahrenheit-axis (the line y = 0). The function hits the x−axis just right of 30.

0◦ Celsius is equivalent to 32◦ Fahrenheit.

Lesson Summary

• Equations with the variables y and x can be graphed by making a chart of values that fit the equation and then
plotting the values on a coordinate plane. This graph is simply another representation of the equation and can
be analyzed to solve problems.

• Horizontal lines are defined by the equation y = constant and vertical lines are defined by the equation x =
constant.

• Be aware that although we graph the function as a line to make it easier to interpret, the function may actually
be discrete.

Review Questions

1. Make a table of values for the following equations and then graph them.

a. y = 2x+7
b. y = 0.7x−4
c. y = 6−1.25x

2. “Think of a number. Multiply it by 20, divide the answer by 9, and then subtract seven from the result.”

a. Make a table of values and plot the function that represents this sentence.
b. If you picked 0 as your starting number, what number would you end up with?
c. To end up with 12, what number would you have to start out with?

3. Write the equations for the five lines (A through E) plotted in the graph below.

4. In the graph above, at what points do the following lines intersect?
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a. A and E
b. A and D
c. C and D
d. B and the y−axis
e. E and the x−axis
f. C and the line y = x
g. E and the line y = 1

2 x
h. A and the line y = x+3

5. At the airport, you can change your money from dollars into euros. The service costs $5, and for every
additional dollar you get 0.7 euros.

a. Make a table for this and plot the function on a graph.
b. Use your graph to determine how many euros you would get if you give the office $50.
c. To get 35 euros, how many dollars would you have to pay?
d. The exchange rate drops so that you can only get 0.5 euros per additional dollar. Now how many dollars

do you have to pay for 35 euros?

6. The graph below shows a conversion chart for converting between weight in kilograms and weight in pounds.
Use it to convert the following measurements.

a. 4 kilograms into weight in pounds
b. 9 kilograms into weight in pounds
c. 12 pounds into weight in kilograms
d. 17 pounds into weight in kilograms

7. Use the graph from problem 6 to answer the following questions.

a. An employee at a sporting goods store is packing 3-pound weights into a box that can hold 8 kilograms.
How many weights can she place in the box?

b. After packing those weights, there is some extra space in the box that she wants to fill with one-pound
weights. How many of those can she add?

c. After packing those, she realizes she misread the label and the box can actually hold 9 kilograms. How
many more one-pound weights can she add?
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4.3 Graphing Using Intercepts

Learning Objectives

• Find intercepts of the graph of an equation.
• Use intercepts to graph an equation.
• Solve real-world problems using intercepts of a graph

Introduction

Sanjit’s office is 25 miles from home, and in traffic he expects the trip home to take him an hour if he starts at 5 PM.
Today he hopes to stop at the post office along the way. If the post office is 6 miles from his office, when will Sanjit
get there?

If you know just one of the points on a line, you’ll find that isn’t enough information to plot the line on a graph.
As you can see in the graph above, there are many lines—in fact, infinitely many lines—that pass through a single
point. But what if you know two points that are both on the line? Then there’s only one way to graph that line; all
you need to do is plot the two points and use a ruler to draw the line that passes through both of them.

There are a lot of options for choosing which two points on the line you use to plot it. In this lesson, we’ll focus
on two points that are rather convenient for graphing: the points where our line crosses the x−and y−axes, or
intercepts. We’ll see how to find intercepts algebraically and use them to quickly plot graphs.
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Look at the graph above. The y−intercept occurs at the point where the graph crosses the y−axis. The y−value at
this point is 8, and the x−value is 0.

Similarly, the x−intercept occurs at the point where the graph crosses the x−axis. The x−value at this point is 6,
and the y−value is 0.

So we know the coordinates of two points on the graph: (0, 8) and (6, 0). If we’d just been given those two
coordinates out of the blue, we could quickly plot those points and join them with a line to recreate the above graph.

Note: Not all lines will have both an x−and a y−intercept, but most do. However, horizontal lines never cross the
x−axis and vertical lines never cross the y−axis.

For examples of these special cases, see the graph below.

Finding Intercepts by Substitution

Example 1

Find the intercepts of the line y = 13− x and use them to graph the function.

Solution

The first intercept is easy to find. The y−intercept occurs when x = 0. Substituting gives us y = 13−0 = 13, so the
y−intercept is (0, 13).

Similarly, the x−intercept occurs when y = 0. Plugging in 0 for y gives us 0 = 13− x, and adding x to both sides
gives us x = 13. So (13, 0) is the x−intercept.
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To draw the graph, simply plot these points and join them with a line.

Example 2

Graph the following functions by finding intercepts.

a) y = 2x+3

b) y = 7−2x

c) 4x−2y = 8

d) 2x+3y =−6

Solution

a) Find the y−intercept by plugging in x = 0 :

y = 2 ·0+3 = 3 − the y− intercept is (0,3)

Find the x−intercept by plugging in y = 0 :

0 = 2x+3 − subtract 3 f rom both sides :

−3 = 2x −divide by 2 :

−3
2
= x − the x− intercept is (−1.5,0)
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b) Find the y−intercept by plugging in x = 0 :

y = 7−2 ·0 = 7 − the y− intercept is (0,7)

Find the x−intercept by plugging in y = 0 :

0 = 7−2x − subtract 7 f rom both sides :

−7 =−2x −divide by −2 :
7
2
= x − the x− intercept is (3.5,0)

c) Find the y−intercept by plugging in x = 0 :

4 ·0−2y = 8

−2y = 8 −divide by −2

y =−4 − the y− intercept is (0,−4)

Find the x−intercept by plugging in y = 0 :

4x−2 ·0 = 8

4x = 8 −divide by 4 :

x = 2 − the x− intercept is (2,0)
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d) Find the y−intercept by plugging in x = 0 :

2 ·0+3y =−6

3y =−6 −divide by 3 :

y =−2 − the y− intercept is (0,−2)

Find the x−intercept by plugging in y = 0 :

2x+3 ·0 =−6

2x =−6 −divide by 2 :

x =−3 − the x− intercept is (−3,0)

Finding Intercepts for Standard Form Equations Using the Cover-Up Method

Look at the last two equations in example 2. These equations are written in standard form. Standard form equations
are always written “coefficient times x plus (or minus) coefficient times y equals value”. In other words, they look
like this:
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ax+by = c

where a has to be positive, but b and c do not.

There is a neat method for finding intercepts in standard form, often referred to as the cover-up method.

Example 3

Find the intercepts of the following equations:

a) 7x−3y = 21

b) 12x−10y =−15

c) x+3y = 6

Solution

To solve for each intercept, we realize that at the intercepts the value of either xor y is zero, and so any terms that
contain that variable effectively drop out of the equation. To make a term disappear, simply cover it (a finger is an
excellent way to cover up terms) and solve the resulting equation.

a) To solve for the y−intercept we set x = 0 and cover up the x−term:

−3y = 21
y =−7 (0,−7) is the y− intercept.

Now we solve for the x−intercept:

7x = 21
x = 3 (3,0) is the x− intercept.

b) To solve for the y−intercept (x = 0), cover up the x−term:

−10y =−15
y = 1.5 (0,1.5) is the y− intercept.

Now solve for the x−intercept (y = 0):
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12x =−15
x =−5

4 (−1.25,0) is the x− intercept.

c) To solve for the y−intercept (x = 0), cover up the x−term:

3y = 6
y = 2 (0,2) is the y− intercept.

Solve for the y−intercept:

x = 6 (6,0) is the x− intercept.

The graph of these functions and the intercepts is below:

To learn more about equations in standard form, try the Java applet at http://www.analyzemath.com/line/line.htm
(scroll down and click the “click here to start” button.) You can use the sliders to change the values of a,b, and c

and see how that affects the graph.

Solving Real-World Problems Using Intercepts of a Graph

Example 4

Jesus has $30 to spend on food for a class barbecue. Hot dogs cost $0.75 each (including the bun) and burgers cost
$1.25 (including the bun). Plot a graph that shows all the combinations of hot dogs and burgers he could buy for
the barbecue, without spending more than $30.

This time we will find an equation first, and then we can think logically about finding the intercepts.

If the number of burgers that Jesus buys is x, then the money he spends on burgers is 1.25x

If the number of hot dogs he buys is y, then the money he spends on hot dogs is 0.75y
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So the total cost of the food is 1.25x+0.75y.

The total amount of money he has to spend is $30, so if he is to spend it ALL, we can use the following equation:

1.25x+0.75y = 30

We can solve for the intercepts using the cover-up method. First the y−intercept (x = 0):

0.75y = 30
y = 40 y− intercept: (0,40)

Then the x−intercept (y = 0):

1.25x = 30
x = 24 x− intercept: (24,0)

Now we plot those two points and join them to create our graph, shown here:

We could also have created this graph without needing to come up with an equation. We know that if John were to
spend ALL the money on hot dogs, he could buy 30

.75 = 40 hot dogs. And if he were to buy only burgers he could
buy 30

1.25 = 24 burgers. From those numbers, we can get 2 intercepts: (0 burgers, 40 hot dogs) and (24 burgers, 0 hot
dogs). We could plot these just as we did above and obtain our graph that way.

As a final note, we should realize that Jesus’ problem is really an example of an inequality. He can, in fact, spend
any amount up to $30. The only thing he cannot do is spend more than $30. The graph above reflects this: the line is
the set of solutions that involve spending exactly $30, and the shaded region shows solutions that involve spending
less than $30. We’ll work with inequalities some more in Chapter 6.
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Lesson Summary

• A y−intercept occurs at the point where a graph crosses the y−axis (where x = 0) and an x−intercept occurs
at the point where a graph crosses the x−axis (where y = 0).

• The y−intercept can be found by substituting x = 0 into the equation and solving for y. Likewise, the
x−intercept can be found by substituting y = 0 into the equation and solving for x.

• A linear equation is in standard form if it is written as “positive coefficient times x plus coefficient times y
equals value”. Equations in standard form can be solved for the intercepts by covering up the x (or y) term and
solving the equation that remains.

Review Questions

1. Find the intercepts for the following equations using substitution.

a. y = 3x−6
b. y =−2x+4
c. y = 14x−21
d. y = 7−3x
e. y = 2.5x−4
f. y = 1.1x+2.2
g. y = 3

8 x+7
h. y = 5

9 −
2
7 x

2. Find the intercepts of the following equations using the cover-up method.

a. 5x−6y = 15
b. 3x−4y =−5
c. 2x+7y =−11
d. 5x+10y = 25
e. 5x−1.3y = 12
f. 1.4x−3.5y = 7
g. 3

5 x+2y = 2
5

h. 3
4 x− 2

3 y = 1
5

3. Use any method to find the intercepts and then graph the following equations.

a. y = 2x+3
b. 6(x−1) = 2(y+3)
c. x− y = 5
d. x+ y = 8

4. At the local grocery store strawberries cost $3.00 per pound and bananas cost $1.00 per pound.

a. If I have $10 to spend on strawberries and bananas, draw a graph to show what combinations of each I
can buy and spend exactly $10.

b. Plot the point representing 3 pounds of strawberries and 2 pounds of bananas. Will that cost more or less
than $10?

c. Do the same for the point representing 1 pound of strawberries and 5 pounds of bananas.

5. A movie theater charges $7.50 for adult tickets and $4.50 for children. If the theater takes in $900 in ticket
sales for a particular screening, draw a graph which depicts the possibilities for the number of adult tickets
and the number of child tickets sold.

6. Why can’t we use the intercept method to graph the following equation? 3(x+2) = 2(y+3)
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7. Name two more equations that we can’t use the intercept method to graph.
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4.4 Slope and Rate of Change

Learning Objectives

• Find positive and negative slopes.
• Recognize and find slopes for horizontal and vertical lines.
• Understand rates of change.
• Interpret graphs and compare rates of change.

Introduction

Wheelchair ramps at building entrances must have a slope between 1
16 and 1

20 . If the entrance to a new office building
is 28 inches off the ground, how long does the wheelchair ramp need to be?

We come across many examples of slope in everyday life. For example, a slope is in the pitch of a roof, the grade or
incline of a road, or the slant of a ladder leaning on a wall. In math, we use the word slope to define steepness in a
particular way.

Slope =
distance moved vertically

distance moved horizontally

To make it easier to remember, we often word it like this:

Slope =
rise
run

In the picture above, the slope would be the ratio of the height of the hill to the horizontal length of the hill. In other
words, it would be 3

4 , or 0.75.

If the car were driving to the right it would climb the hill - we say this is a positive slope. Any time you see the
graph of a line that goes up as you move to the right, the slope is positive.

If the car kept driving after it reached the top of the hill, it might go down the other side. If the car is driving to the
right and descending, then we would say that the slope is negative.
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Here’s where it gets tricky: If the car turned around instead and drove back down the left side of the hill, the slope
of that side would still be positive. This is because the rise would be -3, but the run would be -4 (think of the x−axis
- if you move from right to left you are moving in the negative x−direction). That means our slope ratio would be
−3
−4 , and the negatives cancel out to leave 0.75, the same slope as before. In other words, the slope of a line is the
same no matter which direction you travel along it.

Find the Slope of a Line

A simple way to find a value for the slope of a line is to draw a right triangle whose hypotenuse runs along the line.
Then we just need to measure the distances on the triangle that correspond to the rise (the vertical dimension) and
the run (the horizontal dimension).

Example 1

Find the slopes for the three graphs shown.

Solution

There are already right triangles drawn for each of the lines - in future problems you’ll do this part yourself. Note
that it is easiest to make triangles whose vertices are lattice points (i.e. points whose coordinates are all integers).

a) The rise shown in this triangle is 4 units; the run is 2 units. The slope is 4
2 = 2.

b) The rise shown in this triangle is 4 units, and the run is also 4 units. The slope is 4
4 = 1.

c) The rise shown in this triangle is 2 units, and the run is 4 units. The slope is 2
4 = 1

2 .

Example 2

Find the slope of the line that passes through the points (1, 2) and (4, 7).

Solution

We already know how to graph a line if we’re given two points: we simply plot the points and connect them with a
line. Here’s the graph:
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Since we already have coordinates for the vertices of our right triangle, we can quickly work out that the rise is
7−2 = 5 and the run is 4−1 = 3 (see diagram). So the slope is 7−2

4−1 = 5
3 .

If you look again at the calculations for the slope, you’ll notice that the 7 and 2 are the y−coordinates of the two
points and the 4 and 1 are the x−coordinates. This suggests a pattern we can follow to get a general formula for the
slope between two points (x1,y1) and (x2,y2):

Slope between (x1,y1) and (x2,y2) =
y2−y1
x2−x1

or m = ∆y
∆x

In the second equation the letter m denotes the slope (this is a mathematical convention you’ll see often) and the
Greek letter delta (∆) means change. So another way to express slope is change in y divided by change in x. In the
next section, you’ll see that it doesn’t matter which point you choose as point 1 and which you choose as point 2.

Example 3

Find the slopes of the lines on the graph below.

Solution

Look at the lines - they both slant down (or decrease) as we move from left to right. Both these lines have negative
slope.

The lines don’t pass through very many convenient lattice points, but by looking carefully you can see a few points
that look to have integer coordinates. These points have been circled on the graph, and we’ll use them to determine
the slope. We’ll also do our calculations twice, to show that we get the same slope whichever way we choose point
1 and point 2.
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For Line A:

(x1,y1) = (−6,3) (x2,y2) = (5,−1) (x1,y1) = (5,−1) (x2,y2) = (−6,3)

m =
y2− y1

x2− x1
=

(−1)− (3)
(5)− (−6)

=
−4
11
≈−0.364 m =

y2− y1

x2− x1
=

(3)− (−1)
(−6)− (5)

=
4
−11

≈−0.364

For Line B

(x1,y1) = (−4,6) (x2,y2) = (4,−5) (x1,y1) = (4,−5) (x2,y2) = (−4,6)

m =
y2− y1

x2− x1
=

(−5)− (6)
(4)− (−4)

=
−11

8
=−1.375 m =

y2− y1

x2− x1
=

(6)− (−5)
(−4)− (4)

=
11
−8

=−1.375

You can see that whichever way round you pick the points, the answers are the same. Either way, Line A has slope
-0.364, and Line B has slope -1.375.

Khan Academy has a series of videos on finding the slope of a line, starting at http://www.youtube.com/watch?v=h
XP1Gv9IMBo.

Find the Slopes of Horizontal and Vertical lines

Example 4

Determine the slopes of the two lines on the graph below.

Solution

There are 2 lines on the graph: A(y = 3) and B(x = 5).

Let’s pick 2 points on line A—say, (x1,y1) = (−4,3) and (x2,y2) = (5,3)—and use our equation for slope:

m =
y2− y1

x2− x1
=

(3)− (3)
(5)− (−4)

=
0
9
= 0.

If you think about it, this makes sense - if y doesn’t change as x increases then there is no slope, or rather, the slope
is zero. You can see that this must be true for all horizontal lines.
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Horizontal lines (y = constant) all have a slope of 0.

Now let’s consider line B. If we pick the points (x1,y1) = (5,−3) and (x2,y2) = (5,4), our slope equation is
m = y2−y1

x2−x1
= (4)−(−3)

(5)−(5) = 7
0 . But dividing by zero isn’t allowed!

In math we often say that a term which involves division by zero is undefined. (Technically, the answer can also be
said to be infinitely large—or infinitely small, depending on the problem.)

Vertical lines (x = constant) all have an infinite (or undefined) slope.

Find a Rate of Change

The slope of a function that describes real, measurable quantities is often called a rate of change. In that case the
slope refers to a change in one quantity (y)per unit change in another quantity (x). (This is where the equation
m = ∆y

∆x comes in—remember that ∆y and ∆x represent the change in y and x respectively.)

Example 5

A candle has a starting length of 10 inches. 30 minutes after lighting it, the length is 7 inches. Determine the rate of
change in length of the candle as it burns. Determine how long the candle takes to completely burn to nothing.

Solution

First we’ll graph the function to visualize what is happening. We have 2 points to start with: we know that at the
moment the candle is lit (time = 0) the length of the candle is 10 inches, and after 30 minutes (time = 30) the length
is 7 inches. Since the candle length depends on the time, we’ll plot time on the horizontal axis, and candle length on
the vertical axis.

The rate of change of the candle’s length is simply the slope of the line. Since we have our 2 points (x1,y1) = (0,10)
and (x2,y2) = (30,7), we can use the familiar version of the slope formula:

Rate of change =
y2− y1

x2− x1
=

(7 inches)− (10 inches)
(30 minutes)− (0 minutes)

=
−3 inches
30 minutes

=−0.1 inches per minute

Note that the slope is negative. A negative rate of change means that the quantity is decreasing with time—just as
we would expect the length of a burning candle to do.

To find the point when the candle reaches zero length, we can simply read the x−intercept off the graph (100
minutes). We can use the rate equation to verify this algebraically:
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Length burned = rate× time

10 = 0.1×100

Since the candle length was originally 10 inches, our equation confirms that 100 minutes is the time taken.

Example 6

The population of fish in a certain lake increased from 370 to 420 over the months of March and April. At what rate
is the population increasing?

Solution

Here we don’t have two points from which we can get x− and y−coordinates for the slope formula. Instead, we’ll
need to use the alternate formula, m = ∆y

∆x .

The change in y−values, or ∆y, is the change in the number of fish, which is 420− 370 = 50. The change in
x−values, ∆x, is the amount of time over which this change took place: two months. So ∆y

∆x = 50 fish
2 months , or 25 fish

per month.

Interpret a Graph to Compare Rates of Change

Example 7

The graph below represents a trip made by a large delivery truck on a particular day. During the day the truck made
two deliveries, one taking an hour and the other taking two hours. Identify what is happening at each stage of the
trip (stages A through E).

Solution

Here are the stages of the trip:

a) The truck sets off and travels 80 miles in 2 hours.

b) The truck covers no distance for 2 hours.

c) The truck covers (120−80) = 40 miles in 1 hour.

d) The truck covers no distance for 1 hour.

e) The truck covers -120 miles in 2 hours.
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Let’s look at each section more closely.

A. Rate of change = ∆y
∆x =

80 miles
2 hours = 40 miles per hour

Notice that the rate of change is a speed—or rather, a velocity. (The difference between the two is that velocity has
a direction, and speed does not. In other words, velocity can be either positive or negative, with negative velocity
representing travel in the opposite direction. You’ll see the difference more clearly in part E.)

Since velocity equals distance divided by time, the slope (or rate of change) of a distance-time graph is always a
velocity.

So during the first part of the trip, the truck travels at a constant speed of 40 mph for 2 hours, covering a distance of
80 miles.

B. The slope here is 0, so the rate of change is 0 mph. The truck is stationary for one hour. This is the first delivery
stop.

C. Rate of change = ∆y
∆x =

(120−80) miles
(4−3) hours = 40 miles per hour. The truck is traveling at 40 mph.

D. Once again the slope is 0, so the rate of change is 0 mph. The truck is stationary for two hours. This is the second
delivery stop. At this point the truck is 120 miles from the start position.

E. Rate of change = ∆y
∆x = (0−120) miles

(8−6) hours = −120 miles
2 hours = −60 miles per hour. The truck is traveling at negative 60

mph.

Wait – a negative speed? Does that mean that the truck is reversing? Well, probably not. It’s actually the velocity
and not the speed that is negative, and a negative velocity simply means that the distance from the starting position
is decreasing with time. The truck is driving in the opposite direction – back to where it started from. Since it no
longer has 2 heavy loads, it travels faster (60 mph instead of 40 mph), covering the 120 mile return trip in 2 hours.
Its speed is 60 mph, and its velocity is -60 mph, because it is traveling in the opposite direction from when it started
out.

Lesson Summary

• Slope is a measure of change in the vertical direction for each step in the horizontal direction. Slope is often
represented as “m”.

• Slope can be expressed as rise
run , or ∆y

∆x .
• The slope between two points (x1,y1) and (x2,y2) is equal to y2−y1

x2−x1
.

• Horizontal lines (where y = a constant) all have a slope of 0.
• Vertical lines (where x = a constant) all have an infinite (or undefined) slope.
• The slope (or rate of change) of a distance-time graph is a velocity.

Review Questions

1. Use the slope formula to find the slope of the line that passes through each pair of points.

a. (-5, 7) and (0, 0)
b. (-3, -5) and (3, 11)
c. (3, -5) and (-2, 9)
d. (-5, 7) and (-5, 11)
e. (9, 9) and (-9, -9)
f. (3, 5) and (-2, 7)
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g. (2.5, 3) and (8, 3.5)

2. For each line in the graphs below, use the points indicated to determine the slope.

3. For each line in the graphs above, imagine another line with the same slope that passes through the point (1,
1), and name one more point on that line.

4. The graph below is a distance-time graph for Mark’s three and a half mile cycle ride to school. During this
ride, he rode on cycle paths but the terrain was hilly. He rode slower up hills and faster down them. He stopped
once at a traffic light and at one point he stopped to mend a punctured tire. The graph shows his distance from
home at any given time. Identify each section of the graph accordingly.
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4.5 Graphs Using Slope-Intercept Form

Learning Objectives

• Identify the slope and y−intercept of equations and graphs.
• Graph an equation in slope-intercept form.
• Understand what happens when you change the slope or intercept of a line.
• Identify parallel lines from their equations.

Introduction

The total profit of a business is described by the equation y = 15000x−80000, where x is the number of months the
business has been running. How much profit is the business making per month, and what were its start-up costs?
How much profit will it have made in a year?

Identify Slope and

So far, we’ve been writing a lot of our equations in slope-intercept form—that is, we’ve been writing them in the
form y = mx+b, where m and b are both constants. It just so happens that m is the slope and the point (0,b) is the
y−intercept of the graph of the equation, which gives us enough information to draw the graph quickly.

Example 1

Identify the slope and y−intercept of the following equations.

a) y = 3x+2

b) y = 0.5x−3

c) y =−7x

d) y =−4

Solution

a) Comparing

, we can see that m = 3 and b = 2. So y = 3x+2 has a slope of 3 and a y−intercept of (0, 2).

b)
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has a slope of 0.5 and a y−intercept of (0, -3).

Notice that the intercept is negative. The b−term includes the sign of the operator (plus or minus) in front of the
number—for example, y = 0.5x−3 is identical to y = 0.5x+(−3), and that means that b is -3, not just 3.

c) At first glance, this equation doesn’t look like it’s in slope-intercept form. But we can rewrite it as y = −7x+0,
and that means it has a slope of -7 and a y−intercept of (0, 0). Notice that the slope is negative and the line passes
through the origin.

d) We can rewrite this one as y = 0x− 4, giving us a slope of 0 and a y−intercept of (0, -4). This is a horizontal
line.

Example 2

Identify the slope and y−intercept of the lines on the graph shown below.

The intercepts have been marked, as well as some convenient lattice points that the lines pass through.

Solution

a) The y−intercept is (0, 5). The line also passes through (2, 3), so the slope is ∆y
∆x =

−2
2 =−1.

b) The y−intercept is (0, 2). The line also passes through (1, 5), so the slope is ∆y
∆x =

3
1 = 3.

c) The y−intercept is (0, -1). The line also passes through (2, 3), so the slope is ∆y
∆x =

4
2 = 2.

d) The y−intercept is (0, -3). The line also passes through (4, -4), so the slope is ∆y
∆x =

−1
4 =−1

4 or -0.25.

Graph an Equation in Slope-Intercept Form

Once we know the slope and intercept of a line, it’s easy to graph it. Just remember what slope means. Let’s look
back at this example from Lesson 4.1.

Ali is trying to work out a trick that his friend showed him. His friend started by asking him to think of a number,
then double it, then add five to the result. Ali has written down a rule to describe the first part of the trick. He is
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using the letter x to stand for the number he thought of and the letter y to represent the final result of applying the
rule. He wrote his rule in the form of an equation: y = 2x+5.

Help him visualize what is going on by graphing the function that this rule describes.

In that example, we constructed a table of values, and used that table to plot some points to create our graph.

We also saw another way to graph this equation. Just by looking at the equation, we could see that the y−intercept
was (0, 5), so we could start by plotting that point. Then we could also see that the slope was 2, so we could find
another point on the graph by going over 1 unit and up 2 units. The graph would then be the line between those two
points.

Here’s another problem where we can use the same method.

Example 3

Graph the following function: y =−3x+5

Solution

To graph the function without making a table, follow these steps:

1. Identify the y−intercept: b = 5
2. Plot the intercept: (0, 5)
3. Identify the slope: m =−3. (This is equal to −3

1 , so the rise is -3 and the run is 1.)
4. Move over 1 unit and down 3 units to find another point on the line: (1, 2)
5. Draw the line through the points (0, 5) and (1, 2).
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Notice that to graph this equation based on its slope, we had to find the rise and run—and it was easiest to do that
when the slope was expressed as a fraction. That’s true in general: to graph a line with a particular slope, it’s easiest
to first express the slope as a fraction in simplest form, and then read off the numerator and the denominator of the
fraction to get the rise and run of the graph.

Example 4

Find integer values for the rise and run of the following slopes, then graph lines with corresponding slopes.

a) m = 3

b) m =−2

c) m = 0.75

d) m =−0.375

Solution

a)

b)
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c)

d)

Changing the Slope or Intercept of a Line

The following graph shows a number of lines with different slopes, but all with the same y−intercept: (0, 3).
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You can see that all the functions with positive slopes increase as we move from left to right, while all functions
with negative slopes decrease as we move from left to right. Another thing to notice is that the greater the slope, the
steeper the graph.

This graph shows a number of lines with the same slope, but different y−intercepts.

Notice that changing the intercept simply translates (shifts) the graph up or down. Take a point on the graph of
y = 2x, such as (1, 2). The corresponding point on y = 2x+3 would be (1, 5). Adding 3 to the y−intercept means
we also add 3 to every other y−value on the graph. Similarly, the corresponding point on the y = 2x−3 line would
be (1, -1); we would subtract 3 from the y−value and from every other y−value.

Notice also that these lines all appear to be parallel. Are they truly parallel?

To answer that question, we’ll use a technique that you’ll learn more about in a later chapter. We’ll take 2 of the
equations—say, y = 2x and y = 2x+ 3—and solve for values of x and y that satisfy both equations. That will tell
us at what point those two lines intersect, if any. (Remember that parallel lines, by definition, are lines that don’t
intersect.)

So what values would satisfy both y = 2x and y = 2x+3? Well, if both of those equations were true, then y would
be equal to both 2x and 2x+3, which means those two expressions would also be equal to each other. So we can get
our answer by solving the equation 2x = 2x+3.

But what happens when we try to solve that equation? If we subtract 2x from both sides, we end up with 0 = 3. That
can’t be true no matter what x equals. And that means that there just isn’t any value for x that will make both of the
equations we started out with true. In other words, there isn’t any point where those two lines intersect. They are
parallel, just as we thought.
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And we’d find out the same thing no matter which two lines we’d chosen. In general, since changing the intercept
of a line just results in shifting the graph up or down, the new line will always be parallel to the old line as long as
the slope stays the same.

Any two lines with identical slopes are parallel.

Further Practice

To get a better understanding of what happens when you change the slope or the y−intercept of a linear equation,
try playing with the Java applet at http://standards.nctm.org/document/eexamples/chap7/7.5/index.htm.

Lesson Summary

• A common form of a line (linear equation) is slope-intercept form: y = mx+b, where m is the slope and the
point (0,b) is the y−intercept

• Graphing a line in slope-intercept form is a matter of first plotting the y−intercept (0,b), then finding a second
point based on the slope, and using those two points to graph the line.

• Any two lines with identical slopes are parallel.

Review Questions

1. Identify the slope and y−intercept for the following equations.

a. y = 2x+5
b. y =−0.2x+7
c. y = x
d. y = 3.75

2. Identify the slope of the following lines.

3. Identify the slope and y−intercept for the following functions.
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4. Plot the following functions on a graph.

a. y = 2x+5
b. y =−0.2x+7
c. y = x
d. y = 3.75

5. Which two of the following lines are parallel?

a. y = 2x+5
b. y =−0.2x+7
c. y = x
d. y = 3.75
e. y =−1

5 x−11
f. y =−5x+5
g. y =−3x+11
h. y = 3x+3.5

6. What is the y−intercept of the line passing through (1, -4) and (3, 2)?
7. What is the y−intercept of the line with slope -2 that passes through (3, 1)?
8. Line A passes through the points (2, 6) and (-4, 3). Line B passes through the point (3, 2.5), and is parallel to

line A

a. Write an equation for line A in slope-intercept form.
b. Write an equation for line B in slope-intercept form.

9. Line C passes through the points (2, 5) and (1, 3.5). Line D is parallel to line C, and passes through the point
(2, 6). Name another point on line D. (Hint: you can do this without graphing or finding an equation for either
line.)
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4.6 Direct Variation Models

Learning Objectives

• Identify direct variation.
• Graph direct variation equations.
• Solve real-world problems using direct variation models.

Introduction

Suppose you see someone buy five pounds of strawberries at the grocery store. The clerk weighs the strawberries
and charges $12.50 for them. Now suppose you wanted two pounds of strawberries for yourself. How much would
you expect to pay for them?

Identify Direct Variation

The preceding problem is an example of a direct variation. We would expect that the strawberries are priced on a
“per pound” basis, and that if you buy two-fifths the amount of strawberries, you would pay two-fifths of $12.50 for
your strawberries, or $5.00.

Similarly, if you bought 10 pounds of strawberries (twice the amount) you would pay twice $12.50, and if you did
not buy any strawberries you would pay nothing.

If variable y varies directly with variable x, then we write the relationship as y = k · x. k is called the constant of
proportionality.

If we were to graph this function, you can see that it would pass through the origin, because y = 0 when x =
0,whatever the value of k. So we know that a direct variation, when graphed, has a single intercept at (0, 0).

Example 1

If y varies directly with x according to the relationship y = k ·x, and y = 7.5 when x = 2.5, determine the constant of
proportionality, k.

Solution

We can solve for the constant of proportionality using substitution. Substitute x = 2.5 and y = 7.5 into the equation
y = k · x to get 7.5 = k(2.5). Then divide both sides by 2.5 to get k = 7.5

2.5 = 3. The constant of proportionality, k,
is 3.

We can graph the relationship quickly, using the intercept (0, 0) and the point (2.5, 7.5). The graph is shown below.
It is a straight line with slope 3.
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The graph of a direct variation always passes through the origin, and always has a slope that is equal to the constant
of proportionality, k.

Example 2

The volume of water in a fish-tank, V , varies directly with depth, d. If there are 15 gallons in the tank when the depth
is 8 inches, calculate how much water is in the tank when the depth is 20 inches.

Solution

This is a good example of a direct variation, but for this problem we’ll have to determine the equation of the variation
ourselves. Since the volume, V , depends on depth, d, we’ll use an equation of the form y = k · x, but in place of y
we’ll use V and in place of x we’ll use d:

V = k ·d

We know that when the depth is 8 inches the volume is 15 gallons, so to solve for k, we plug in 15 for V and 8 for d
to get 15 = k(8). Dividing by 8 gives us k = 15

8 = 1.875.

Now to find the volume of water at the final depth, we use V = k · d again, but this time we can plug in our new d
and the value we found for k:

V = 1.875×20

V = 37.5

At a depth of 20 inches, the volume of water in the tank is 37.5 gallons.

Example 3

The graph shown below is a conversion chart used to convert U.S. dollars (US$) to British pounds (GB£) in a bank
on a particular day. Use the chart to determine:

a) the number of pounds you could buy for $600

b) the number of dollars it would cost to buy £200

c) the exchange rate in pounds per dollar
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Solution

We can read the answers to a) and b) right off the graph. It looks as if at x = 600 the graph is about one fifth of the
way between £350 and £400. So $600 would buy £360.

Similarly, the line y = 200 appears to intersect the graph about a third of the way between $300 and $400. We can
round this to $330, so it would cost approximately $330 to buy £200.

To solve for the exchange rate, we should note that as this is a direct variation - the graph is a straight line passing
through the origin. The slope of the line gives the constant of proportionality (in this case the exchange rate) and it
is equal to the ratio of the y−value to x−value at any point. Looking closely at the graph, we can see that the line
passes through one convenient lattice point: (500, 300). This will give us the most accurate value for the slope and
so the exchange rate.

y = k · x⇒=
y
x

And so rate =
300 pounds
500 dollors

= 0.60 pounds per dollar

Graph Direct Variation Equations

We know that all direct variation graphs pass through the origin, and also that the slope of the line is equal to the
constant of proportionality, k. Graphing is a simple matter of using the point-slope or point-point methods discussed
earlier in this chapter.

Example 4

Plot the following direct variations on the same graph.

a) y = 3x

b) y =−2x

c) y =−0.2x

d) y = 2
9 x

Solution
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a) The line passes through (0, 0), as will all these functions. This function has a slope of 3. When we move across
by one unit, the function increases by three units.

b) The line has a slope of -2. When we move across the graph by one unit, the function falls by two units.

c) The line has a slope of -0.2. As a fraction this is equal to −1
5 . When we move across by five units, the function

falls by one unit.

d) The line passes through (0, 0) and has a slope of 2
9 . When we move across the graph by 9 units, the function

increases by two units.

For more examples of how to plot and identify direct variation functions, see the video at http://neaportal.k12.ar.us/i
ndex.php/2010/06/slope-and-direct-variation/.

Solve Real-World Problems Using Direct Variation Models

Direct variations are seen everywhere in everyday life. Any time one quantity increases at the same rate another
quantity increases (for example, doubling when it doubles and tripling when it triples), we say that they follow a
direct variation.

Newton’s Second Law

In 1687 Sir Isaac Newton published the famous Principia Mathematica. It contained, among other things, his second
law of motion. This law is often written as F = m ·a, where a force of F Newtons applied to a mass of m kilograms
results in acceleration of a meters per second2. Notice that if the mass stays constant, then this formula is basically
the same as the direct variation equation, just with different variables—and m is the constant of proportionality.

Example 5

If a 175 Newton force causes a shopping cart to accelerate down the aisle with an acceleration of 2.5 m/s2, calculate:

a) The mass of the shopping cart.

b) The force needed to accelerate the same cart at 6 m/s2.

Solution

a) We can solve for m (the mass) by plugging in our given values for force and acceleration. F = m · a becomes
175 = m(2.5), and then we divide both sides by 2.5 to get 70 = m.

So the mass of the shopping cart is 70 kg.

b) Once we have solved for the mass, we simply substitute that value, plus our required acceleration, back into the
formula F = m ·a and solve for F . We get F = 70×6 = 420.
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So the force needed to accelerate the cart at 6 m/s2 is 420 Newtons.

Ohm’s Law

The electrical current, I (amps), passing through an electronic component varies directly with the applied voltage,
V (volts), according to the relationship V = I ·R, where R is the resistance (measured in Ohms). The resistance is
considered to be a constant for all values of V and I, so once again, this formula is a version of the direct variation
formula, with R as the constant of proportionality.

Example 6

A certain electronics component was found to pass a current of 1.3 amps at a voltage of 2.6 volts. When the voltage
was increased to 12.0 volts the current was found to be 6.0 amps.

a) Does the component obey Ohm’s law?

b) What would the current be at 6 volts?

Solution

Ohm’s law is a simple direct proportionality law, with the resistance R as our constant of proportionality. To know
if this component obeys Ohm’s law, we need to know if it follows a direct proportionality rule. In other words, is V
directly proportional to I?

We can determine this in two different ways.

Graph It: If we plot our two points on a graph and join them with a line, does the line pass through (0, 0)?

Voltage is the independent variable and current is the dependent variable, so normally we would graph V on the
horizontal axis and I on the vertical axis. However, if we swap the variables around just this once, we’ll get a graph
whose slope conveniently happens to be equal to the resistance, R. So we’ll treat I as the independent variable, and
our two points will be (1.3, 2.6) and (6, 12).

Plotting those points and joining them gives the following graph:

The graph does appear to pass through the origin, so yes, the component obeys Ohm’s law.

Solve for R: If this component does obey Ohm’s law, the constant of proportionality (R) should be the same when
we plug in the second set of values as when we plug in the first set. Let’s see if it is. (We can quickly find the value
of R in each case; since V = I ·R, that means R = V

I .)
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Case 1: R =
V
I
=

2.6
1.3

= 2 Ohms

Case 2: R =
V
I
=

12
6

= 2 Ohms

The values for R agree! This means that we are indeed looking at a direct variation. The component obeys Ohm’s
law.

b) Now to find the current at 6 volts, simply substitute the values for V and R into V = I ·R. We found that R = 2, so
we plug in 2 for R and 6 for V to get 6 = I(2), and divide both sides by 2 to get 3 = I.

So the current through the component at a voltage of 6 volts is 3 amps.

Lesson Summary

• If a variable y varies directly with variable x, then we write the relationship as y = k · x, where k is a constant
called the constant of proportionality.

• Direct variation is very common in many areas of science.

Review Questions

1. Plot the following direct variations on the same graph.

a. y = 4
3 x

b. y =−2
3 x

c. y =−1
6 x

d. y = 1.75x

2. Dasan’s mom takes him to the video arcade for his birthday.

a. In the first 10 minutes, he spends $3.50 playing games. If his allowance for the day is $20, how long can
he keep playing games before his money is gone?

b. He spends the next 15 minutes playing Alien Invaders. In the first two minutes, he shoots 130 aliens. If
he keeps going at this rate, how many aliens will he shoot in fifteen minutes?

c. The high score on this machine is 120000 points. If each alien is worth 100 points, will Dasan beat the
high score? What if he keeps playing for five more minutes?

3. The current standard for low-flow showerheads is 2.5 gallons per minute.

a. How long would it take to fill a 30-gallon bathtub using such a showerhead to supply the water?
b. If the bathtub drain were not plugged all the way, so that every minute 0.5 gallons ran out as 2.5 gallons

ran in, how long would it take to fill the tub?
c. After the tub was full and the showerhead was turned off, how long would it take the tub to empty

through the partly unplugged drain?
d. If the drain were immediately unplugged all the way when the showerhead was turned off, so that it

drained at a rate of 1.5 gallons per minute, how long would it take to empty?

4. Amin is using a hose to fill his new swimming pool for the first time. He starts the hose at 10 PM and leaves
it running all night.

a. At 6 AM he measures the depth and calculates that the pool is four sevenths full. At what time will his
new pool be full?

208

http://www.ck12.org


www.ck12.org Chapter 4. Graphs of Equations and Functions

b. At 10 AM he measures again and realizes his earlier calculations were wrong. The pool is still only three
quarters full. When will it actually be full?

c. After filling the pool, he needs to chlorinate it to a level of 2.0 ppm (parts per million). He adds two
gallons of chlorine solution and finds that the chlorine level is now 0.7 ppm. How many more gallons
does he need to add?

d. If the chlorine level in the pool decreases by 0.05 ppm per day, how much solution will he need to add
each week?

5. Land in Wisconsin is for sale to property investors. A 232-acre lot is listed for sale for $200,500.

a. Assuming the same price per acre, how much would a 60-acre lot sell for?
b. Again assuming the same price, what size lot could you purchase for $100,000?

6. The force (F) needed to stretch a spring by a distance x is given by the equation F = k ·x, where k is the spring
constant (measured in Newtons per centimeter, or N/cm). If a 12 Newton force stretches a certain spring by
10 cm, calculate:

a. The spring constant, k
b. The force needed to stretch the spring by 7 cm.
c. The distance the spring would stretch with a 23 Newton force.

7. Angela’s cell phone is completely out of power when she puts it on the charger at 3 PM. An hour later, it is
30% charged. When will it be completely charged?

8. It costs $100 to rent a recreation hall for three hours and $150 to rent it for five hours.

a. Is this a direct variation?
b. Based on the cost to rent the hall for three hours, what would it cost to rent it for six hours, assuming it

is a direct variation?
c. Based on the cost to rent the hall for five hours, what would it cost to rent it for six hours, assuming it is

a direct variation?
d. Plot the costs given for three and five hours and graph the line through those points. Based on that graph,

what would you expect the cost to be for a six-hour rental?
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4.7 Linear Function Graphs

Learning Objectives

• Recognize and use function notation.
• Graph a linear function.
• Analyze arithmetic progressions.

Introduction

The highly exclusive Fellowship of the Green Mantle allows in only a limited number of new members a year. In its
third year of membership it has 28 members, in its fourth year it has 33, and in its fifth year it has 38. How many
members are admitted a year, and how many founding members were there?

Functions

So far we’ve used the term function to describe many of the equations we’ve been graphing, but in mathematics it’s
important to remember that not all equations are functions. In order to be a function, a relationship between two
variables, x and y, must map each x−value to exactly one y−value.

Visually this means the graph of y versus x must pass the vertical line test, meaning that a vertical line drawn through
the graph of the function must never intersect the graph in more than one place:

Use Function Notation

When we write functions we often use the notation “ f (x) =” in place of “y =”. f (x) is pronounced “ f of x”.

Example 1

Rewrite the following equations so that y is a function of x and is written f (x):

a) y = 2x+5

b) y =−0.2x+7
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c) x = 4y−5

d) 9x+3y = 6

Solution

a) Simply replace y with f (x) : f (x) = 2x+5

b) Again, replace y with f (x) : f (x) =−0.2x+7

c) First we need to solve for y. Starting with x = 4y−5, we add 5 to both sides to get x+5 = 4y, divide by 4 to get
x+5

4 = y, and then replace y with f (x) : f (x) = x+5
4 .

d) Solve for y : take 9x+3y = 6, subtract 9x from both sides to get 3y = 6−9x, divide by 3 to get y = 6−9x
3 = 2−3x,

and express as a function: f (x) = 2−3x.

Using the functional notation in an equation gives us more information. For instance, the expression f (x) = mx+b
shows clearly that x is the independent variable because you plug in values of x into the function and perform a
series of operations on the value of x in order to calculate the values of the dependent variable, y.

We can also plug in expressions rather than just numbers. For example, if our function is f (x) = x+2, we can plug
in the expression (x+5). We would express this as f (x+5) = (x+5)+2 = x+7.

Example 2

A function is defined as f (x) = 6x−36. Evaluate the following:

a) f (2)

b) f (0)

c) f (z)

d) f (x+3)

e) f (2r−1)

Solution

a) Substitute x = 2 into the function f (x) : f (2) = 6 ·2−36 = 12−36 =−24

b) Substitute x = 0 into the function f (x) : f (0) = 6 ·0−36 = 0−36 =−36

c) Substitute x = z into the function f (x) : f (z) = 6z+36

d) Substitute x = (x+3) into the function f (x) : f (x+3) = 6(x+3)+36 = 6x+18+36 = 6x+54

e) Substitute x = (2r+1) into the function f (x) : f (2r+1) = 6(2r+1)+36 = 12r+6+36 = 12r+42

Graph a Linear Function

Since the notations “ f (x) =” and “y =” are interchangeable, we can use all the concepts we have learned so far to
graph functions.

Example 3

Graph the function f (x) = 3x+5
4 .

Solution

We can write this function in slope-intercept form:
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f (x) =
3
4

x+
5
4
= 0.75x+1.25

So our graph will have a y−intercept of (0, 1.25) and a slope of 0.75.

Example 4

Graph the function f (x) = 7(5−x)
5 .

Solution

This time we’ll solve for the x− and y−intercepts.

To solve for the y−intercept, plug in x = 0 : f (0) = 7(5−0)
5 = 35

5 = 7, so the x−intercept is (0, 7).

To solve for the x−intercept, set f (x) = 0 : 0 = 7(5−x)
5 , so 0 = 35−7x, therefore 7x = 35 and x = 5. The y−intercept

is (5, 0).

We can graph the function from those two points:

Arithmetic Progressions

You may have noticed that with linear functions, when you increase the x−value by 1 unit, the y−value increases by
a fixed amount, equal to the slope. For example, if we were to make a table of values for the function f (x) = 2x+3,
we might start at x = 0 and then add 1 to x for each row:

TABLE 4.6:

x f (x)
0 3
1 5
2 7
3 9
4 11
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Notice that the values for f (x) go up by 2 (the slope) each time. When we repeatedly add a fixed value to a starting
number, we get a sequence like {3, 5, 7, 9, 11....}. We call this an arithmetic progression, and it is characterized by
the fact that each number is bigger (or smaller) than the preceding number by a fixed amount. This amount is called
the common difference. We can find the common difference for a given sequence by taking 2 consecutive terms in
the sequence and subtracting the first from the second.

Example 5

Find the common difference for the following arithmetic progressions:

a) {7, 11, 15, 19, ...}

b) {12, 1, -10, -21, ...}

c) {7, __, 12, __, 17, ...}

Solution

a) 11−7 = 4; 15−11 = 4; 19−15 = 4. The common difference is 4.

b) 1−12 =−11. The common difference is -11.

c) There are not 2 consecutive terms here, but we know that to get the term after 7 we would add the common
difference, and then to get to 12 we would add the common difference again. So twice the common difference is
12−7 = 5, and so the common difference is 2.5.

Arithmetic sequences and linear functions are very closely related. To get to the next term in a arithmetic sequence,
you add the common difference to the last term; similarly, when the x−value of a linear function increases by one,
the y−value increases by the amount of the slope. So arithmetic sequences are very much like linear functions, with
the common difference playing the same role as the slope.

The graph below shows the arithmetic progression {-2, 0, 2, 4, 6...} along with the function y = 2x− 4. The
only major difference between the two graphs is that an arithmetic sequence is discrete while a linear function is
continuous.

We can write a formula for an arithmetic progression: if we define the first term as a1 and d as the common difference,
then the other terms are as follows:

a1 a2 a3 a4 a5 an

a1 a1 +d a1 +2d a1 +3d a1 +4d . . . a1 +(n−1) ·d

The online calculator at http://planetcalc.com/177/ will tell you the nth term in an arithmetic progression if you tell
it the first term, the common difference, and what value to use for n (in other words, which term in the sequence you
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want to know). It will also tell you the sum of all the terms up to that point. Finding sums of sequences is something
you will learn to do in future math classes.

Lesson Summary

• In order for an equation to be a function, the relationship between the two variables, x and y, must map each
x−value to exactly one y−value.

• The graph of a function of y versus x must pass the vertical line test: any vertical line will only cross the
graph of the function in one place.

• Functions can be expressed in function notation using f (x) = in place of y =.
• The sequence of f (x) values for a linear function form an arithmetic progression. Each number is greater than

(or less than) the preceding number by a fixed amount, or common difference.

Review Questions

1. When an object falls under gravity, it gains speed at a constant rate of 9.8 m/s every second. An item dropped
from the top of the Eiffel Tower, which is 300 meters tall, takes 7.8 seconds to hit the ground. How fast is it
moving on impact?

2. A prepaid phone card comes with $20 worth of calls on it. Calls cost a flat rate of $0.16 per minute.

a. Write the value left on the card as a function of minutes used so far.
b. Use the function to determine how many minutes of calls you can make with the card.

3. For each of the following functions evaluate:

a. f (x) =−2x+3
b. f (x) = 0.7x+3.2
c. f (x) = 5(2−x)

11

a. f (−3)
b. f (0)
c. f (z)
d. f (x+3)
e. f (2n)
f. f (3y+8)
g. f

(q
2

)
4. Determine whether the following could be graphs of functions.

a.
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b.

c.

d.

5. The roasting guide for a turkey suggests cooking for 100 minutes plus an additional 8 minutes per pound.

a. Write a function for the roasting time the given the turkey weight in pounds (x).
b. Determine the time needed to roast a 10 lb turkey.
c. Determine the time needed to roast a 27 lb turkey.
d. Determine the maximum size turkey you could roast in 4.5 hours.

6. Determine the missing terms in the following arithmetic progressions.

a. {-11, 17, __, 73}
b. {2, __, -4}
c. {13, __, __, __, 0}
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4.8 Problem-Solving Strategies - Graphs

Learning Objectives

• Read and understand given problem situations.
• Use the strategy “Read a Graph.”
• Use the strategy “Make a Graph.”
• Solve real-world problems using selected strategies as part of a plan.

Introduction

In this chapter, we’ve been solving problems where quantities are linearly related to each other. In this section, we’ll
look at a few examples of linear relationships that occur in real-world problems, and see how we can solve them
using graphs. Remember back to our Problem Solving Plan:

1. Understand the Problem
2. Devise a Plan—Translate
3. Carry Out the Plan—Solve
4. Look—Check and Interpret

Example 1

A cell phone company is offering its costumers the following deal: You can buy a new cell phone for $60 and pay a
monthly flat rate of $40 per month for unlimited calls. How much money will this deal cost you after 9 months?

Solution

Let’s follow the problem solving plan.

Step 1: The phone costs $60; the calling plan costs $40 per month.

Let x = number of months.

Let y = total cost.

Step 2: We can solve this problem by making a graph that shows the number of months on the horizontal axis and
the cost on the vertical axis.

Since you pay $60 when you get the phone, the y−intercept is (0, 60).

You pay $40 for each month, so the cost rises by $40 for 1 month, so the slope is 40.

We can graph this line using the slope-intercept method.
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Step 3: The question was “How much will this deal cost after 9 months?” We can now read the answer from the
graph. We draw a vertical line from 9 months until it meets the graph, and then draw a horizontal line until it meets
the vertical axis.

We see that after 9 months you pay approximately $420.

Step 4: To check if this is correct, let’s think of the deal again.

Originally, you pay $60 and then $40 a month for 9 months.

Phone = $60

Calling plan = $40×9 = $360

Total cost = $420.

The answer checks out.

Example 2

A stretched spring has a length of 12 inches when a weight of 2 lbs is attached to the spring. The same spring has a
length of 18 inches when a weight of 5 lbs is attached to the spring. What is the length of the spring when no weights
are attached?
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Solution

Step 1: We know: the length of the spring = 12 inches when weight = 2 lbs

the length of the spring = 18 inches when weight = 5 lbs

We want: the length of the spring when weight = 0 lbs

Let x = the weight attached to the spring.

Let y = the length of the spring.

Step 2: We can solve this problem by making a graph that shows the weight on the horizontal axis and the length of
the spring on the vertical axis.

We have two points we can graph:

When the weight is 2 lbs, the length of the spring is 12 inches. This gives point (2, 12).

When the weight is 5 lbs, the length of the spring is 18 inches. This gives point (5, 18).

Graphing those two points and connecting them gives us our line.

Step 3: The question was: “What is the length of the spring when no weights are attached?

We can answer this question by reading the graph we just made. When there is no weight on the spring, the x−value
equals zero, so we are just looking for the y−intercept of the graph. On the graph, the y−intercept appears to be
approximately 8 inches.

Step 4: To check if this correct, let’s think of the problem again.
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You can see that the length of the spring goes up by 6 inches when the weight is increased by 3 lbs, so the slope of
the line is 6 inches

3 lbs = 2 inches/lb.

To find the length of the spring when there is no weight attached, we can look at the spring when there are 2 lbs
attached. For each pound we take off, the spring will shorten by 2 inches. If we take off 2 lbs, the spring will be
shorter by 4 inches. So, the length of the spring with no weights is 12 inches - 4 inches = 8 inches.

The answer checks out.

Example 3

Christine took 1 hour to read 22 pages of Harry Potter. She has 100 pages left to read in order to finish the book.
How much time should she expect to spend reading in order to finish the book?

Solution

Step 1: We know - Christine takes 1 hour to read 22 pages.

We want - How much time it takes to read 100 pages.

Let x = the time expressed in hours.

Let y = the number of pages.

Step 2: We can solve this problem by making a graph that shows the number of hours spent reading on the horizontal
axis and the number of pages on the vertical axis.

We have two points we can graph:

Christine takes 1 hour to read 22 pages. This gives point (1, 22).

A second point is not given, but we know that Christine would take 0 hours to read 0 pages. This gives point (0, 0).

Graphing those two points and connecting them gives us our line.

Step 3: The question was: “How much time should Christine expect to spend reading 100 pages?” We can find the
answer from reading the graph - we draw a horizontal line from 100 pages until it meets the graph and then we draw
the vertical until it meets the horizontal axis. We see that it takes approximately 4.5 hours to read the remaining
100 pages.

Step 4: To check if this correct, let’s think of the problem again.

We know that Christine reads 22 pages per hour - this is the slope of the line or the rate at which she is reading.
To find how many hours it takes her to read 100 pages, we divide the number of pages by the rate. In this case,

100 pages
22 pages/hour = 4.54 hours. This is very close to the answer we got from reading the graph.

The answer checks out.
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Example 4

Aatif wants to buy a surfboard that costs $249. He was given a birthday present of $50 and he has a summer job
that pays him $6.50 per hour. To be able to buy the surfboard, how many hours does he need to work?

Solution

Step 1: We know - The surfboard costs $249.

Aatif has $50.

His job pays $6.50 per hour.

We want - How many hours Aatif needs to work to buy the surfboard.

Let x = the time expressed in hours

Let y = Aatif’s earnings

Step 2: We can solve this problem by making a graph that shows the number of hours spent working on the horizontal
axis and Aatif’s earnings on the vertical axis.

Aatif has $50 at the beginning. This is the y−intercept: (0, 50).

He earns $6.50 per hour. This is the slope of the line.

We can graph this line using the slope-intercept method. We graph the y−intercept of (0, 50), and we know that for
each unit in the horizontal direction, the line rises by 6.5 units in the vertical direction. Here is the line that describes
this situation.

Step 3: The question was: “How many hours does Aatif need to work to buy the surfboard?”

We find the answer from reading the graph - since the surfboard costs $249, we draw a horizontal line from $249
on the vertical axis until it meets the graph and then we draw a vertical line downwards until it meets the horizontal
axis. We see that it takes approximately 31 hours to earn the money.

Step 4: To check if this correct, let’s think of the problem again.

We know that Aatif has $50 and needs $249 to buy the surfboard. So, he needs to earn $249−$50 = $199 from his
job.

His job pays $6.50 per hour. To find how many hours he need to work we divide: $199
$6.50/hour = 30.6 hours. This is

very close to the answer we got from reading the graph.

The answer checks out.
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Lesson Summary

The four steps of the problem solving plan when using graphs are:

1. Understand the Problem
2. Devise a Plan—Translate: Make a graph.
3. Carry Out the Plan—Solve: Use the graph to answer the question asked.
4. Look—Check and Interpret

Review Questions

Solve the following problems by making a graph and reading it.

1. A gym is offering a deal to new members. Customers can sign up by paying a registration fee of $200 and a
monthly fee of $39.

a. How much will this membership cost a member by the end of the year?
b. The old membership rate was $49 a month with a registration fee of $100. How much more would a

year’s membership cost at that rate?
c. Bonus: For what number of months would the two membership rates be the same?

2. A candle is burning at a linear rate. The candle measures five inches two minutes after it was lit. It measures
three inches eight minutes after it was lit.

a. What was the original length of the candle?
b. How long will it take to burn down to a half-inch stub?
c. Six half-inch stubs of candle can be melted together to make a new candle measuring 2 5

6 inches (a little
wax gets lost in the process). How many stubs would it take to make three candles the size of the original
candle?

3. A dipped candle is made by taking a wick and dipping it repeatedly in melted wax. The candle gets a little bit
thicker with each added layer of wax. After it has been dipped three times, the candle is 6.5 mm thick. After
it has been dipped six times, it is 11 mm thick.

a. How thick is the wick before the wax is added?
b. How many times does the wick need to be dipped to create a candle 2 cm thick?

4. Tali is trying to find the thickness of a page of his telephone book. In order to do this, he takes a measurement
and finds out that 55 pages measures 1

8 inch. What is the thickness of one page of the phone book?
5. Bobby and Petra are running a lemonade stand and they charge 45 cents for each glass of lemonade. In order

to break even they must make $25.

a. How many glasses of lemonade must they sell to break even?
b. When they’ve sold $18 worth of lemonade, they realize that they only have enough lemons left to make

10 more glasses. To break even now, they’ll need to sell those last 10 glasses at a higher price. What
does the new price need to be?

6. Dale is making cookies using a recipe that calls for 2.5 cups of flour for two dozen cookies. How many cups
of flour does he need to make five dozen cookies?

7. To buy a car, Jason makes a down payment of $1500 and pays $350 per month in installments.

a. How much money has Jason paid at the end of one year?
b. If the total cost of the car is $8500, how long will it take Jason to finish paying it off?
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c. The resale value of the car decreases by $100 each month from the original purchase price. If Jason sells
the car as soon as he finishes paying it off, how much will he get for it?

8. Anne transplants a rose seedling in her garden. She wants to track the growth of the rose so she measures its
height every week. On the third week, she finds that the rose is 10 inches tall and on the eleventh week she
finds that the rose is 14 inches tall. Assuming the rose grows linearly with time, what was the height of the
rose when Anne planted it?

9. Ravi hangs from a giant spring whose length is 5 m. When his child Nimi hangs from the spring its length is 2
m. Ravi weighs 160 lbs and Nimi weighs 40 lbs. Write the equation for this problem in slope-intercept form.
What should we expect the length of the spring to be when his wife Amardeep, who weighs 140 lbs, hangs
from it?

10. Nadia is placing different weights on a spring and measuring the length of the stretched spring. She finds that
for a 100 gram weight the length of the stretched spring is 20 cm and for a 300 gram weight the length of the
stretched spring is 25 cm.

a. What is the unstretched length of the spring?
b. If the spring can only stretch to twice its unstretched length before it breaks, how much weight can it

hold?

11. Andrew is a submarine commander. He decides to surface his submarine to periscope depth. It takes him 20
minutes to get from a depth of 400 feet to a depth of 50 feet.

a. What was the submarine’s depth five minutes after it started surfacing?
b. How much longer would it take at that rate to get all the way to the surface?

12. Kiersta’s phone has completely run out of battery power when she puts it on the charger. Ten minutes later,
when the phone is 40% recharged, Kiersta’s friend Danielle calls and Kiersta takes the phone off the charger
to talk to her. When she hangs up 45 minutes later, her phone has 10% of its charge left. Then she gets another
call from her friend Kwan.

a. How long can she spend talking to Kwan before the battery runs out again?
b. If she puts the phone back on the charger afterward, how long will it take to recharge completely?

13. Marji is painting a 75-foot fence. She starts applying the first coat of paint at 2 PM, and by 2:10 she has
painted 30 feet of the fence. At 2:15, her husband, who paints about 2

3 as fast as she does, comes to join her.

a. How much of the fence has Marji painted when her husband joins in?
b. When will they have painted the whole fence?
c. How long will it take them to apply the second coat of paint if they work together the whole time?

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9614.
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5.1 Forms of Linear Equations

Learning Objectives

• Write equations in slope-intercept form.
• Write equations in point-slope form.
• Write equations in standard form.
• Solve real-world problems using linear models in all three forms.

Introduction

We saw in the last chapter that many real-world situations can be described with linear graphs and equations. In this
chapter, we’ll see how to find those equations in a variety of situations.

Write an Equation Given Slope and

You’ve already learned how to write an equation in slope–intercept form: simply start with the general equation for
the slope-intercept form of a line, y = mx+ b, and then plug the given values of m and b into the equation. For
example, a line with a slope of 4 and a y−intercept of -3 would have the equation y = 4x−3.

If you are given just the graph of a line, you can read off the slope and y−intercept from the graph and write the
equation from there. For example, on the graph below you can see that the line rises by 1 unit as it moves 2 units to
the right, so its slope is 1

2 . Also, you can see that the y−intercept is -2, so the equation of the line is y = 1
2 x−2.

224

http://www.ck12.org


www.ck12.org Chapter 5. Writing Linear Equations

Write an Equation Given the Slope and a Point

Often, we don’t know the value of the y−intercept, but we know the value of y for a non-zero value of x. In this case,
it’s often easier to write an equation of the line in point-slope form. An equation in point-slope form is written as
y− y0 = m(x− x0), where m is the slope and (x0,y0) is a point on the line.

Example 1

A line has a slope of 3
5 , and the point (2, 6) is on the line. Write the equation of the line in point-slope form.

Solution

Start with the formula y− y0 = m(x− x0).

Plug in 3
5 for m, 2 for x0 and 6 for y0.

The equation in point-slope form is y−6 = 3
5(x−2).

Notice that the equation in point-slope form is not solved for y. If we did solve it for y, we’d have it in y−intercept
form. To do that, we would just need to distribute the 3

5 and add 6 to both sides. That means that the equation of this
line in slope-intercept form is y = 3

5 x− 6
5 +6, or simply y = 3

5 x+ 24
5 .

Write an Equation Given Two Points

Point-slope form also comes in useful when we need to find an equation given just two points on a line.

For example, suppose we are told that the line passes through the points (-2, 3) and (5, 2). To find the equation of
the line, we can start by finding the slope.

Starting with the slope formula, m= y2−y1
x2−x1

, we plug in the x− and y−values of the two points to get m= 2−3
5−(−2) =

−1
7 .

We can plug that value of m into the point-slope formula to get y− y0 =−1
7(x− x0).

Now we just need to pick one of the two points to plug into the formula. Let’s use (5, 2); that gives us y− 2 =
−1

7(x−5).

What if we’d picked the other point instead? Then we’d have ended up with the equation y−3 =−1
7(x+2), which

doesn’t look the same. That’s because there’s more than one way to write an equation for a given line in point-slope
form. But let’s see what happens if we solve each of those equations for y.

Starting with y− 2 = −1
7(x− 5), we distribute the −1

7 and add 2 to both sides. That gives us y = −1
7 x+ 5

7 + 2, or
y =−1

7 x+ 19
7 .

On the other hand, if we start with y− 3 = −1
7(x+ 2), we need to distribute the −1

7 and add 3 to both sides. That
gives us y =−1

7 x− 2
7 +3, which also simplifies to y =−1

7 x+ 19
7 .

So whichever point we choose to get an equation in point-slope form, the equation is still mathematically the same,
and we can see this when we convert it to y−intercept form.

Example 2

A line contains the points (3, 2) and (-2, 4). Write an equation for the line in point-slope form; then write an equation
in y−intercept form.

Solution

Find the slope of the line: m = y2−y1
x2−x1

= 4−2
−2−3 =−2

5

Plug in the value of the slope: y− y0 =−2
5(x− x0).
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Plug point (3, 2) into the equation: y−2 =−2
5(x−3).

The equation in point-slope form is y−2 =−2
5(x−3).

To convert to y−intercept form, simply solve for y:

y−2 =−2
5
(x−3)→ y−2 =−2

5
x− 6

5
→ y =−2

5
x− 6

5
+2 =−2

5
x+

4
5
.

The equation in y−intercept form is y =−2
5 x+ 4

5 .

Graph an Equation in Point-Slope Form

Another useful thing about point-slope form is that you can use it to graph an equation without having to convert
it to slope-intercept form. From the equation y− y0 = m(x− x0), you can just read off the slope m and the point
(x0,y0). To draw the graph, all you have to do is plot the point, and then use the slope to figure out how many units
up and over you should move to find another point on the line.

Example 5

Make a graph of the line given by the equation y+2 = 2
3(x−2).

Solution

To read off the right values, we need to rewrite the equation slightly: y− (−2) = 2
3(x− 2). Now we see that point

(2, -2) is on the line and that the slope is 2
3 .

First plot point (2, -2) on the graph:

A slope of 2
3 tells you that from that point you should move 2 units up and 3 units to the right and draw another

point:
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Now draw a line through the two points and extend it in both directions:

Linear Equations in Standard Form

You’ve already encountered another useful form for writing linear equations: standard form. An equation in
standard form is written ax+ by = c, where a,b, and c are all integers and a is positive. (Note that the b in the
standard form is different than the b in the slope-intercept form.)

One useful thing about standard form is that it allows us to write equations for vertical lines, which we can’t do in
slope-intercept form.

For example, let’s look at the line that passes through points (2, 6) and (2, 9). How would we find an equation for
that line in slope-intercept form?

First we’d need to find the slope: m = 9−6
0−0 = 3

0 . But that slope is undefined because we can’t divide by zero. And if
we can’t find the slope, we can’t use point-slope form either.

If we just graph the line, we can see that x equals 2 no matter what y is. There’s no way to express that in slope-
intercept or point-slope form, but in standard form we can just say that x+0y = 2, or simply x = 2.
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Converting to Standard Form

To convert an equation from another form to standard form, all you need to do is rewrite the equation so that all the
variables are on one side of the equation and the coefficient of x is not negative.

Example 1

Rewrite the following equations in standard form:

a) y = 5x−7

b) y−2 =−3(x+3)

c) y = 2
3 x+ 1

2

Solution

We need to rewrite each equation so that all the variables are on one side and the coefficient of x is not negative.

a) y = 5x−7

Subtract y from both sides to get 0 = 5x− y−7.

Add 7 to both sides to get 7 = 5x− y.

Flip the equation around to put it in standard form: 5x− y = 7.

b) y−2 =−3(x+3)

Distribute the –3 on the right-hand-side to get y−2 =−3x−9.

Add 3x to both sides to get y+3x−2 =−9.

Add 2 to both sides to get y+3x =−7. Flip that around to get 3x+ y =−7.

c) y = 2
3 x+ 1

2

Find the common denominator for all terms in the equation – in this case that would be 6.

Multiply all terms in the equation by 6: 6
(
y = 2

3 x+ 1
2

)
⇒ 6y = 4x+3

Subtract 6y from both sides: 0 = 4x−6y+3

Subtract 3 from both sides: −3 = 4x−6y

The equation in standard form is 4x−6y =−3.

Graphing Equations in Standard Form

When an equation is in slope-intercept form or point-slope form, you can tell right away what the slope is. How do
you find the slope when an equation is in standard form?

Well, you could rewrite the equation in slope-intercept form and read off the slope. But there’s an even easier way.
Let’s look at what happens when we rewrite an equation in standard form.

Starting with the equation ax+by = c, we would subtract ax from both sides to get by = −ax+ c. Then we would
divide all terms by b and end up with y =−a

b x+ c
b .

That means that the slope is −a
b and the y−intercept is c

b . So next time we look at an equation in standard form, we
don’t have to rewrite it to find the slope; we know the slope is just −a

b , where a and b are the coefficients of x and y
in the equation.

Example 2
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Find the slope and the y−intercept of the following equations written in standard form.

a) 3x+5y = 6

b) 2x−3y =−8

c) x−5y = 10

Solution

a) a = 3,b = 5, and c = 6, so the slope is −a
b =−3

5 , and the y−intercept is c
b = 6

5 .

b) a = 2,b =−3, and c =−8, so the slope is −a
b = 2

3 , and the y−intercept is c
b = 8

3 .

c) a = 1,b =−5, and c = 10, so the slope is −a
b = 1

5 , and the y−intercept is c
b = 10

−5 =−2.

Once we’ve found the slope and y−intercept of an equation in standard form, we can graph it easily. But if we start
with a graph, how do we find an equation of that line in standard form?

First, remember that we can also use the cover-up method to graph an equation in standard form, by finding the
intercepts of the line. For example, let’s graph the line given by the equation 3x−2y = 6.

To find the x−intercept, cover up the y term (remember, the x−intercept is where y = 0):

3x = 6⇒ x = 2

The x− intercept is (2, 0).

To find the y−intercept, cover up the x term (remember, the y−intercept is where x = 0):

−2y = 6⇒ y =−3

The y−intercept is (0, -3).

We plot the intercepts and draw a line through them that extends in both directions:
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Now we want to apply this process in reverse—to start with the graph of the line and write the equation of the line
in standard form.

Example 3

Find the equation of each line and write it in standard form.

a)

b)

c)
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Solution

a) We see that the x−intercept is (3,0)⇒ x = 3 and the y−intercept is (0,−4)⇒ y =−4

We saw that in standard form ax+ by = c: if we “cover up” the y term, we get ax = c, and if we “cover up” the x
term, we get by = c.

So we need to find values for a and b so that we can plug in 3 for x and -4 for y and get the same value for c in both
cases. This is like finding the least common multiple of the x− and y−intercepts.

In this case, we see that multiplying x = 3 by 4 and multiplying y =−4 by –3 gives the same result:

(x = 3)×4⇒ 4x = 12 and (y =−4)× (−3)⇒−3y = 12

Therefore, a = 4,b =−3 and c = 12 and the equation in standard form is 4x−3y = 12.

b) We see that the x−intercept is (3,0)⇒ x = 3 and the y−intercept is (0,3)⇒ y = 3

The values of the intercept equations are already the same, so a = 1,b = 1 and c = 3. The equation in standard
form is x+ y = 3.

c) We see that the x−intercept is
(3

2 ,0
)
⇒ x = 3

2 and the y−intercept is (0,4)⇒ y = 4

Let’s multiply the x−intercept equation by 2⇒ 2x = 3

Then we see we can multiply the x−intercept again by 4 and the y−intercept by 3, so we end up with 8x = 12 and
3y = 12.

The equation in standard form is 8x+3y = 12.

Solving Real-World Problems Using Linear Models in Point-Slope Form

Let’s solve some word problems where we need to write the equation of a straight line in point-slope form.

Example 4

Marciel rented a moving truck for the day. Marciel only remembers that the rental truck company charges $40 per
day and some number of cents per mile. Marciel drives 46 miles and the final amount of the bill (before tax) is $63.
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What is the amount per mile the truck rental company charges? Write an equation in point-slope form that describes
this situation. How much would it cost to rent this truck if Marciel drove 220 miles?

Solution

Let’s define our variables:

x = distance in miles
y = cost of the rental truck

Peter pays a flat fee of $40 for the day; this is the y−intercept.

He pays $63 for 46 miles; this is the coordinate point (46,63).

Start with the point-slope form of the line: y− y0 = m(x− x0)

Plug in the coordinate point: 63− y0 = m(46− x0)

Plug in the point (0, 40): 63−40 = m(46−0)

Solve for the slope: 23 = 46m→ m = 23
46 = 0.5

The slope is 0.5 dollars per mile, so the truck company charges 50 cents per mile ($0.5 = 50 cents). Plugging in the
slope and the y−intercept, the equation of the line is y = 0.5x+40.

To find out the cost of driving the truck 220 miles, we plug in x = 220 to get y−40 = 0.5(220)⇒ y = $150.

Driving 220 miles would cost $150.

Example 5

Anne got a job selling window shades. She receives a monthly base salary and a $6 commission for each window
shade she sells. At the end of the month she adds up sales and she figures out that she sold 200 window shades and
made $2500. Write an equation in point-slope form that describes this situation. How much is Anne’s monthly base
salary?

Solution

Let’s define our variables:

x = number of window shades sold
y = Anne’s earnings

We see that we are given the slope and a point on the line:

Nadia gets $6 for each shade, so the slope is 6.

She made $2500 when she sold 200 shades, so the point is (200, 2500).

Start with the point-slope form of the line: y− y0 = m(x− x0)

Plug in the slope: y− y0 = 6(x− x0)

Plug in the point (200, 2500): y−2500 = 6(x−200)

To find Anne’s base salary, we plug in x = 0 and get y−2500 =−1200⇒ y = $1300.

Anne’s monthly base salary is $1300.

Solving Real-World Problems Using Linear Models in Standard Form

Here are two examples of real-world problems where the standard form of an equation is useful.

Example 6
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Nadia buys fruit at her local farmer’s market. This Saturday, oranges cost $2 per pound and cherries cost $3 per
pound. She has $12 to spend on fruit. Write an equation in standard form that describes this situation. If she buys 4
pounds of oranges, how many pounds of cherries can she buy?

Solution

Let’s define our variables:

x = pounds of oranges
y = pounds of cherries

The equation that describes this situation is 2x+3y = 12.

If she buys 4 pounds of oranges, we can plug x = 4 into the equation and solve for y:

2(4)+3y = 12⇒ 3y = 12−8⇒ 3y = 4⇒ y =
4
3

Nadia can buy 1 1
3 pounds of cherries.

Example 7

Peter skateboards part of the way to school and walks the rest of the way. He can skateboard at 7 miles per hour and
he can walk at 3 miles per hour. The distance to school is 6 miles. Write an equation in standard form that describes
this situation. If he skateboards for 1

2 an hour, how long does he need to walk to get to school?

Solution

Let’s define our variables:

x = time Peter skateboards
y = time Peter walks

The equation that describes this situation is: 7x+3y = 6

If Peter skateboards 1
2 an hour, we can plug x = 0.5 into the equation and solve for y:

7(0.5)+3y = 6⇒ 3y = 6−3.5⇒ 3y = 2.5⇒ y =
5
6

Peter must walk 5
6 of an hour.

Further Practice

Now that you’ve worked with equations in all three basic forms, check out the Java applet at http://www.ronblond.
com/M10/lineAP/index.html. You can use it to manipulate graphs of equations in all three forms, and see how the
graphs change when you vary the terms of the equations.

Another applet at http://www.cut-the-knot.org/Curriculum/Calculus/StraightLine.shtml lets you create multiple lines
and see how they intersect. Each line is defined by two points; you can change the slope of a line by moving either of
the points, or just drag the whole line around without changing its slope. To create another line, just click Duplicate
and then drag one of the lines that are already there.
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Review Questions

Find the equation of each line in slope–intercept form.

1. The line has a slope of 7 and a y−intercept of -2.
2. The line has a slope of -5 and a y−intercept of 6.
3. The line has a slope of −1

4 and contains the point (4, -1).
4. The line has a slope of 2

3 and contains the point
(1

2 ,1
)
.

5. The line has a slope of -1 and contains the point
(4

5 ,0
)
.

6. The line contains points (2, 6) and (5, 0).
7. The line contains points (5, -2) and (8, 4).
8. The line contains points (3, 5) and (-3, 0).
9. The line contains points (10, 15) and (12, 20).

Write the equation of each line in slope-intercept form.

10.

11.

Find the equation of each linear function in slope–intercept form.

12. m = 5, f (0) =−3
13. m =−7, f (2) =−1
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14. m = 1
3 , f (−1) = 2

3
15. m = 4.2, f (−3) = 7.1
16. f

(1
4

)
= 3

4 , f (0) = 5
4

17. f (1.5) =−3, f (−1) = 2

Write the equation of each line in point-slope form.

18. The line has slope − 1
10 and goes through the point (10, 2).

19. The line has slope -75 and goes through the point (0, 125).
20. The line has slope 10 and goes through the point (8, -2).
21. The line goes through the points (-2, 3) and (-1, -2).
22. The line contains the points (10, 12) and (5, 25).
23. The line goes through the points (2, 3) and (0, 3).
24. The line has a slope of 3

5 and a y−intercept of -3.
25. The line has a slope of -6 and a y−intercept of 0.5.

Write the equation of each linear function in point-slope form.

26. m =−1
5 and f (0) = 7

27. m =−12 and f (−2) = 5
28. f (−7) = 5 and f (3) =−4
29. f (6) = 0 and f (0) = 6
30. m = 3 and f (2) =−9
31. m =−9

5 and f (0) = 32

Rewrite the following equations in standard form.

32. y = 3x−8
33. y−7 =−5(x−12)
34. 2y = 6x+9
35. y = 9

4 x+ 1
4

36. y+ 3
5 = 2

3(x−2)
37. 3y+5 = 4(x−9)

Find the slope and y−intercept of the following lines.

38. 5x−2y = 15
39. 3x+6y = 25
40. x−8y = 12
41. 3x−7y = 20
42. 9x−9y = 4
43. 6x+ y = 3

Find the equation of each line and write it in standard form.
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44.

45.

46.
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47.
48. Andrew has two part time jobs. One pays $6 per hour and the other pays $10 per hour. He wants to make

$366 per week. Write an equation in standard form that describes this situation. If he is only allowed to work
15 hours per week at the $10 per hour job, how many hours does he need to work per week in his $6 per hour
job in order to achieve his goal?

49. Anne invests money in two accounts. One account returns 5% annual interest and the other returns 7% annual
interest. In order not to incur a tax penalty, she can make no more than $400 in interest per year. Write an
equation in standard form that describes this problem. If she invests $5000 in the 5% interest account, how
much money does she need to invest in the other account?
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5.2 Equations of Parallel and Perpendicular
Lines

Learning Objectives

• Determine whether lines are parallel or perpendicular
• Write equations of perpendicular lines
• Write equations of parallel lines
• Investigate families of lines

Introduction

In this section you will learn how parallel lines and perpendicular lines are related to each other on the coordinate
plane. Let’s start by looking at a graph of two parallel lines.

We can clearly see that the two lines have different y−intercepts: 6 and –4.

How about the slopes of the lines? The slope of line A is 6−2
0−(−2) =

4
2 = 2, and the slope of line B is 0−(−4)

2−0 = 4
2 = 2.

The slopes are the same.

Is that significant? Yes. By definition, parallel lines never meet. That means that when one of them slopes up by a
certain amount, the other one has to slope up by the same amount so the lines will stay the same distance apart. If
you look at the graph above, you can see that for any x−value you pick, the y−values of lines A and B are the same
vertical distance apart—which means that both lines go up by the same vertical distance every time they go across
by the same horizontal distance. In order to stay parallel, their slopes must stay the same.

All parallel lines have the same slopes and different y−intercepts.

Now let’s look at a graph of two perpendicular lines.
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We can’t really say anything about the y−intercepts. In this example, the y−intercepts are different, but if we moved
the lines four units to the right, they would both intercept the y−axis at (0, -2). So perpendicular lines can have the
same or different y−intercepts.

What about the relationship between the slopes of the two lines?

To find the slope of line A, we pick two points on the line and draw the blue (upper) right triangle. The legs of the
triangle represent the rise and the run. We can see that the slope is 8

4 , or 2.

To find the slope of line B, we pick two points on the line and draw the red (lower) right triangle. Notice that the two
triangles are identical, only rotated by 90◦. Where line A goes 8 units up and 4 units right, line B goes 8 units right
and 4 units down. Its slope is −4

8 , or −1
2 .

This is always true for perpendicular lines; where one line goes a units up and b units right, the other line will go a
units right and b units down, so the slope of one line will be a

b and the slope of the other line will be −b
a .

The slopes of perpendicular lines are always negative reciprocals of each other.

The Java applet at http://members.shaw.ca/ron.blond/perp.APPLET/index.html lets you drag around a pair of per-
pendicular lines to see how their slopes change. Click “Show Grid” to see the x− and y−axes, and click “Show
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Constructors” to see the triangles that are being used to calculate the slopes of the lines (you can then drag the circle
to make it bigger or smaller, and click on a triangle to see the slope calculations in detail.)

Determine When Lines are Parallel or Perpendicular

You can find whether lines are parallel or perpendicular by comparing the slopes of the lines. If you are given points
on the lines, you can find their slopes using the formula. If you are given the equations of the lines, re-write each
equation in a form that makes it easy to read the slope, such as the slope-intercept form.

Example 1

Determine whether the lines are parallel or perpendicular or neither.

a) One line passes through the points (2, 11) and (-1, 2); another line passes through the points (0, -4) and (-2, -10).

b) One line passes through the points (-2, -7) and (1, 5); another line passes through the points (4, 1) and (-8, 4).

c) One lines passes through the points (3, 1) and (-2, -2); another line passes through the points (5, 5) and (4, -6).

Solution

Find the slope of each line and compare them.

a) m1 =
2−11
−1−2 = −9

−3 = 3 and m2 =
−10−(−4)
−2−0 = −6

−2 = 3

The slopes are equal, so the lines are parallel.

b) m1 =
5−(−7)
1−(−2) =

12
3 = 4 and m2 =

4−1
−8−4 = 3

−12 =−1
4

The slopes are negative reciprocals of each other, so the lines are perpendicular.

c) m1 =
−2−1
−2−3 = −3

−5 = 3
5 and m2 =

−6−5
4−5 = −13

−1 = 13

The slopes are not the same or negative reciprocals of each other, so the lines are neither parallel nor perpendic-
ular.

Example 2

Determine whether the lines are parallel or perpendicular or neither:

a) 3x+4y = 2 and 8x−6y = 5

b) 2x = y−10 and y =−2x+5

c) 7y+1 = 7x and x+5 = y

Solution

Write each equation in slope-intercept form:

a) line 1: 3x+4y = 2⇒ 4y =−3x+2⇒ y =−3
4 x+ 1

2 ⇒ slope =−3
4

line 2: 8x−6y = 5⇒ 8x−5 = 6y⇒ y = 8
6 x− 5

6 ⇒ y = 4
3 x− 5

6 ⇒ slope = 4
3

The slopes are negative reciprocals of each other, so the lines are perpendicular.

b) line 1: 2x = y−10⇒ y = 2x+10⇒ slope = 2

line 2: y =−2x+5⇒ slope =−2

The slopes are not the same or negative reciprocals of each other, so the lines are neither parallel nor perpendic-
ular.

c) line 1: 7y+1 = 7x⇒ 7y = 7x−1⇒ y = x− 1
7 ⇒ slope = 1
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line 2: x+5 = y⇒ y = x+5⇒ slope = 1

The slopes are the same, so the lines are parallel.

Write Equations of Parallel and Perpendicular Lines

We can use the properties of parallel and perpendicular lines to write an equation of a line parallel or perpendicular
to a given line. You might be given a line and a point, and asked to find the line that goes through the given point
and is parallel or perpendicular to the given line. Here’s how to do this:

1. Find the slope of the given line from its equation. (You might need to re-write the equation in a form such as
the slope-intercept form.)

2. Find the slope of the parallel or perpendicular line—which is either the same as the slope you found in step 1
(if it’s parallel), or the negative reciprocal of the slope you found in step 1 (if it’s perpendicular).

3. Use the slope you found in step 2, along with the point you were given, to write an equation of the new line in
slope-intercept form or point-slope form.

Example 3

Find an equation of the line perpendicular to the line y =−3x+5 that passes through the point (2, 6).

Solution

The slope of the given line is -3, so the perpendicular line will have a slope of 1
3 .

Now to find the equation of a line with slope 1
3 that passes through (2, 6):

Start with the slope-intercept form: y = mx+b.

Plug in the slope: y = 1
3 x+b.

Plug in the point (2, 6) to find b: 6 = 1
3(2)+b⇒ b = 6− 2

3 ⇒ b = 20
3 .

The equation of the line is y = 1
3 x+ 20

3 .

Example 4

Find the equation of the line perpendicular to x−5y = 15 that passes through the point (-2, 5).

Solution

Re-write the equation in slope-intercept form: x−5y = 15⇒−5y =−x+15⇒ y = 1
5 x−3.

The slope of the given line is 1
5 , so we’re looking for a line with slope -5.

Start with the slope-intercept form: y = mx+b.

Plug in the slope: y =−5x+b.

Plug in the point (-2, 5): 5 =−5(−2)+b⇒ b = 5−10⇒ b =−5

The equation of the line is y =−5x−5.

Example 5

Find the equation of the line parallel to 6x−5y = 12 that passes through the point (-5, -3).

Solution

Rewrite the equation in slope-intercept form: 6x−5y = 12⇒ 5y = 6x−12⇒ y = 6
5 x− 12

5 .

The slope of the given line is 6
5 , so we are looking for a line with slope 6

5 that passes through the point (-5, -3).

Start with the slope-intercept form: y = mx+b.
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Plug in the slope: y = 6
5 x+b.

Plug in the point (-5, -3): n−3 = 6
5(−5)+b⇒−3 =−6+b⇒ b = 3

The equation of the line is y = 6
5 x+3.

Investigate Families of Lines

A family of lines is a set of lines that have something in common with each other. Straight lines can belong to two
types of families: one where the slope is the same and one where the y−intercept is the same.

Family 1: Keep the slope unchanged and vary the y−intercept.

The figure below shows the family of lines with equations of the form y =−2x+b:

All the lines have a slope of –2, but the value of b is different for each line.

Notice that in such a family all the lines are parallel. All the lines look the same, except that they are shifted up
and down the y−axis. As b gets larger the line rises on the y−axis, and as b gets smaller the line goes lower on the
y−axis. This behavior is often called a vertical shift.

Family 2: Keep the y−intercept unchanged and vary the slope.

The figure below shows the family of lines with equations of the form y = mx+2:
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All the lines have a y−intercept of two, but the slope is different for each line. The steeper lines have higher values
of m.

Example 6

Write the equation of the family of lines satisfying the given condition.

a) parallel to the x−axis

b) through the point (0, -1)

c) perpendicular to 2x+7y−9 = 0

d) parallel to x+4y−12 = 0

Solution

a) All lines parallel to the x−axis have a slope of zero; the y−intercept can be anything. So the family of lines is
y = 0x+b or just y = b.

b) All lines passing through the point (0, -1) have the same y−intercept, b =−1. The family of lines is: y = mx−1.
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c) First we need to find the slope of the given line. Rewriting 2x + 7y− 9 = 0 in slope-intercept form, we get
y =−2

7 x+ 9
7 . The slope of the line is −2

7 , so we’re looking for the family of lines with slope 7
2 .

The family of lines is y = 7
2 x+b.

d) Rewrite x+ 4y− 12 = 0 in slope-intercept form: y = −1
4 x+ 3. The slope is −1

4 , so that’s also the slope of the
family of lines we are looking for.

The family of lines is y =−1
4 x+b.
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Review Questions

For questions 1-10, determine whether the lines are parallel, perpendicular or neither.

1. One line passes through the points (-1, 4) and (2, 6); another line passes through the points (2, -3) and (8, 1).
2. One line passes through the points (4, -3) and (-8, 0); another line passes through the points (-1, -1) and (-2,

6).
3. One line passes through the points (-3, 14) and (1, -2); another line passes through the points (0, -3) and (-2,

5).
4. One line passes through the points (3, 3) and (-6, -3); another line passes through the points (2, -8) and (-6, 4).
5. One line passes through the points (2, 8) and (6, 0); another line has the equation x−2y = 5.
6. One line passes through the points (-5, 3) and (2, -1); another line has the equation 2x+3y = 6.
7. Both lines pass through the point (2, 8); one line also passes through (3, 5), and the other line has slope 3.
8. Line 1: 4y+ x = 8 Line 2: 12y+3x = 1
9. Line 1: 5y+3x = 1 Line 2: 6y+10x =−3

10. Line 1: 2y−3x+5 = 0 Line 2: y+6x =−3
11. Lines A,B,C,D, and E all pass through the point (3, 6). Line A also passes through (7, 12); line B passes

through (8, 4); line C passes through (-1, -3); line D passes through (1, 1); and line E passes through (6, 12).

a. Are any of these lines perpendicular? If so, which ones? If not, why not?
b. Are any of these lines parallel? If so, which ones? If not, why not?

12. Find the equation of the line parallel to 5x−2y = 2 that passes through point (3, -2).
13. Find the equation of the line perpendicular to y =−2

5 x−3 that passes through point (2, 8).
14. Find the equation of the line parallel to 7y+2x−10 = 0 that passes through the point (2, 2).
15. Find the equation of the line perpendicular to y+5 = 3(x−2) that passes through the point (6, 2).
16. Line S passes through the points (2, 3) and (4, 7). Line T passes through the point (2, 5). If Lines S and T are

parallel, name one more point on line T . (Hint: you don’t need to find the slope of either line.)
17. Lines P and Q both pass through (-1, 5). Line P also passes through (-3, -1). If P and Q are perpendicular,

name one more point on line Q. (This time you will have to find the slopes of both lines.)
18. Write the equation of the family of lines satisfying the given condition.

a. All lines that pass through point (0, 4).
b. All lines that are perpendicular to 4x+3y−1 = 0.
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c. All lines that are parallel to y−3 = 4x+2.
d. All lines that pass through the point (0, -1).

19. Name two lines that pass through the point (3, -1) and are perpendicular to each other.
20. Name two lines that are each perpendicular to y =−4x−2. What is the relationship of those two lines to each

other?
21. Name two perpendicular lines that both pass through the point (3, -2). Then name a line parallel to one of

them that passes through the point (-2, 5).
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5.3 Fitting a Line to Data

Learning Objectives

• Make a scatter plot.
• Fit a line to data and write an equation for that line.
• Perform linear regression with a graphing calculator.
• Solve real-world problems using linear models of scattered data.

Introduction

Katja has noticed that sales are falling off at her store lately. She plots her sales figures for each week on a graph and
sees that the points are trending downward, but they don’t quite make a straight line. How can she predict what her
sales figures will be over the next few weeks?

In real-world problems, the relationship between our dependent and independent variables is linear, but not perfectly
so. We may have a number of data points that don’t quite fit on a straight line, but we may still want to find an
equation representing those points. In this lesson, we’ll learn how to find linear equations to fit real-world data.

Make a Scatter Plot

A scatter plot is a plot of all the ordered pairs in a table. Even when we expect the relationship we’re analyzing to
be linear, we usually can’t expect that all the points will fit perfectly on a straight line. Instead, the points will be
“scattered” about a straight line.

There are many reasons why the data might not fall perfectly on a line. Small errors in measurement are one reason;
another reason is that the real world isn’t always as simple as a mathematical abstraction, and sometimes math can
only describe it approximately.

Example 1

Make a scatter plot of the following ordered pairs:

(0, 2); (1, 4.5); (2, 9); (3, 11); (4, 13); (5, 18); (6, 19.5)

Solution

We make a scatter plot by graphing all the ordered pairs on the coordinate axis:
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Fit a Line to Data

Notice that the points look like they might be part of a straight line, although they wouldn’t fit perfectly on a straight
line. If the points were perfectly lined up, we could just draw a line through any two of them, and that line would go
right through all the other points as well. When the points aren’t lined up perfectly, we just have to find a line that is
as close to all the points as possible.

Here you can see that we could draw many lines through the points in our data set. However, the red line A is the
line that best fits the points. To prove this mathematically, we would measure all the distances from each data point
to line A: and then we would show that the sum of all those distances—or rather, the square root of the sum of the
squares of the distances—is less than it would be for any other line.

248

http://www.ck12.org


www.ck12.org Chapter 5. Writing Linear Equations

Actually proving this is a lesson for a much more advanced course, so we won’t do it here. And finding the best
fit line in the first place is even more complex; instead of doing it by hand, we’ll use a graphing calculator or just
“eyeball” the line, as we did above—using our visual sense to guess what line fits best.

For more practice eyeballing lines of best fit, try the Java applet at http://mste.illinois.edu/activity/regression/. Click
on the green field to place up to 50 points on it, then use the slider to adjust the slope of the red line to try and make
it fit the points. (The thermometer shows how far away the line is from the points, so you want to try to make the
thermometer reading as low as possible.) Then click “Show Best Fit” to show the actual best fit line in blue. Refresh
the page or click “Reset” if you want to try again. For more of a challenge, try scattering the points in a less obvious
pattern.

Write an Equation For a Line of Best Fit

Once you draw the line of best fit, you can find its equation by using two points on the line. Finding the equation of
the line of best fit is also called linear regression.

Caution: Make sure you don’t get caught making a common mistake. Sometimes the line of best fit won’t pass
straight through any of the points in the original data set. This means that you can’t just use two points from the data
set – you need to use two points that are on the line, which might not be in the data set at all.

In Example 1, it happens that two of the data points are very close to the line of best fit, so we can just use these
points to find the equation of the line: (1, 4.5) and (3, 11).

Start with the slope-intercept form of a line: y = mx+b
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Find the slope: m = 11−4.5
3−1 = 6.5

2 = 3.25.

So y = 3.25x+b.

Plug (3, 11) into the equation: 11 = 3.25(3)+b⇒ b = 1.25

So the equation for the line that fits the data best is y = 3.25x+1.25.

Perform Linear Regression With a Graphing Calculator

The problem with eyeballing a line of best fit, of course, is that you can’t be sure how accurate your guess is. To get
the most accurate equation for the line, we can use a graphing calculator instead. The calculator uses a mathematical
algorithm to find the line that minimizes the sum of the squares.

Example 2

Use a graphing calculator to find the equation of the line of best fit for the following data:

(3, 12), (8, 20), (1, 7), (10, 23), (5, 18), (8, 24), (11, 30), (2, 10)

Solution

Step 1: Input the data in your calculator.

Press [STAT] and choose the [EDIT] option. Input the data into the table by entering the x−values in the first
column and the y−values in the second column.

Step 2: Find the equation of the line of best fit.

Press [STAT] again use right arrow to select [CALC] at the top of the screen.

Chose option number 4, LinReg(ax+b), and press [ENTER]

The calculator will display LinReg(ax+b).

Press [ENTER] and you will be given the a− and b−values.

Here a represents the slope and b represents the y−intercept of the equation. The linear regression line is y =
2.01x+5.94.
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Step 3. Draw the scatter plot.

To draw the scatter plot press [STATPLOT] [2nd] [Y=].

Choose Plot 1 and press [ENTER].

Press the On option and set the Type as scatter plot (the one highlighted in black).

Make sure that the X list and Y list names match the names of the columns of the table in Step 1.

Choose the box or plus as the mark, since the simple dot may make it difficult to see the points.

Press [GRAPH] and adjust the window size so you can see all the points in the scatter plot.

Step 4. Draw the line of best fit through the scatter plot.

Press [Y=]

Enter the equation of the line of best fit that you just found: y = 2.01x+5.94.

Press [GRAPH].

Solve Real-World Problems Using Linear Models of Scattered Data

Once we’ve found the line of best fit for a data set, we can use the equation of that line to predict other data points.

Example 3

251

http://www.ck12.org


5.3. Fitting a Line to Data www.ck12.org

Nadia is training for a 5K race. The following table shows her times for each month of her training program. Find
an equation of a line of fit. Predict her running time if her race is in August.

TABLE 5.1:

Month Month number Average time (minutes)
January 0 40
February 1 38
March 2 39
April 3 38
May 4 33
June 5 30

Solution

Let’s make a scatter plot of Nadia’s running times. The independent variable, x, is the month number and the
dependent variable, y, is the running time. We plot all the points in the table on the coordinate plane, and then sketch
a line of fit.

Two points on the line are (0, 42) and (4, 34). We’ll use them to find the equation of the line:

m =
34−42
4−0

=−8
4
=−2

y =−2x+b

42 =−2(0)+b⇒ b = 42

y =−2x+42

In a real-world problem, the slope and y−intercept have a physical significance. In this case, the slope tells us how
Nadia’s running time changes each month she trains. Specifically, it decreases by 2 minutes per month. Meanwhile,
the y−intercept tells us that when Nadia started training, she ran a distance of 5K in 42 minutes.

The problem asks us to predict Nadia’s running time in August. Since June is defined as month number 5, August
will be month number 7. We plug x = 7 into the equation of the line of best fit:
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y =−2(7)+42 =−14+42 = 28

The equation predicts that Nadia will run the 5K race in 28 minutes.

In this solution, we eyeballed a line of fit. Using a graphing calculator, we can find this equation for a line of fit
instead: y =−2.2x+43.7

If we plug x = 7 into this equation, we get y =−2.2(7)+43.7 = 28.3. This means that Nadia will run her race in
28.3 minutes. You see that the graphing calculator gives a different equation and a different answer to the question.
The graphing calculator result is more accurate, but the line we drew by hand still gives a good approximation to the
result. And of course, there’s no guarantee that Nadia will actually finish the race in that exact time; both answers
are estimates, it’s just that the calculator’s estimate is slightly more likely to be right.

Example 4

Peter is testing the burning time of “BriteGlo” candles. The following table shows how long it takes to burn candles
of different weights. Assume it’s a linear relation, so we can use a line to fit the data. If a candle burns for 95 hours,
what must be its weight in ounces?

TABLE 5.2:

Candle weight (oz) Time (hours)
2 15
3 20
4 35
5 36
10 80
16 100
22 120
26 180

Solution

Let’s make a scatter plot of the data. The independent variable, x, is the candle weight and the dependent variable,
y, is the time it takes the candle to burn. We plot all the points in the table on the coordinate plane, and draw a line
of fit.
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Two convenient points on the line are (0,0) and (30, 200). Find the equation of the line:

m =
200
30

=
20
3

y =
20
3

x+b

0 =
20
3
(0)+b⇒ b = 0

y =
20
3

x

A slope of 20
3 = 6 2

3 tells us that for each extra ounce of candle weight, the burning time increases by 6 2
3 hours. A

y−intercept of zero tells us that a candle of weight 0 oz will burn for 0 hours.

The problem asks for the weight of a candle that burns 95 hours; in other words, what’s the x−value that gives a
y−value of 95? Plugging in y = 95:

y =
20
3

x⇒ 95 =
20
3

x⇒ x =
285
20

=
57
4

= 14
1
4

A candle that burns 95 hours weighs 14.25 oz.

A graphing calculator gives the linear regression equation as y = 6.1x+5.9 and a result of 14.6 oz.

Review Questions

For problems 1-4, draw the scatter plot and find an equation that fits the data set by hand.

1. (57, 45); (65, 61); (34, 30); (87, 78); (42, 41); (35, 36); (59, 35); (61, 57); (25, 23); (35, 34)
2. (32, 43); (54, 61); (89, 94); (25, 34); (43, 56); (58, 67); (38, 46); (47, 56); (39, 48)
3. (12, 18); (5, 24); (15, 16); (11, 19); (9, 12); (7, 13); (6, 17); (12, 14)
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4. (3, 12); (8, 20); (1, 7); (10, 23); (5, 18); (8, 24); (2, 10)
5. Use the graph from problem 1 to predict the y−values for two x−values of your choice that are not in the data

set.
6. Use the graph from problem 2 to predict the x−values for two y−values of your choice that are not in the data

set.
7. Use the equation from problem 3 to predict the y−values for two x−values of your choice that are not in the

data set.
8. Use the equation from problem 4 to predict the x−values for two y−values of your choice that are not in the

data set.

For problems 9-11, use a graphing calculator to find the equation of the line of best fit for the data set.

9. (57, 45); (65, 61); (34, 30); (87, 78); (42, 41); (35, 36); (59, 35); (61, 57); (25, 23); (35, 34)
10. (32, 43); (54, 61); (89, 94); (25, 34); (43, 56); (58, 67); (38, 46); (47, 56); (95, 105); (39, 48)
11. (12, 18); (3, 26); (5, 24); (15, 16); (11, 19); (0, 27); (9, 12); (7, 13); (6, 17); (12, 14)
12. Graph the best fit line on top of the scatter plot for problem 10. Then pick a data point that’s close to the line,

and change its y−value to move it much farther from the line.

a. Calculate the new best fit line with that one point changed; write the equation of that line along with the
coordinates of the new point.

b. How much did the slope of the best fit line change when you changed that point?

13. Graph the scatter plot from problem 11 and change one point as you did in the previous problem.

a. Calculate the new best fit line with that one point changed; write the equation of that line along with the
coordinates of the new point.

b. Did changing that one point seem to affect the slope of the best fit line more or less than it did in the
previous problem? What might account for this difference?

14. Shiva is trying to beat the samosa-eating record. The current record is 53.5 samosas in 12 minutes. Each
day he practices and the following table shows how many samosas he eats each day for the first week of his
training.

TABLE 5.3:

Day No. of samosas
1 30
2 34
3 36
4 36
5 40
6 43
7 45

(a) Draw a scatter plot and find an equation to fit the data.

(b) Will he be ready for the contest if it occurs two weeks from the day he started training?

(c) What are the meanings of the slope and the y−intercept in this problem?

15. Anne is trying to find the elasticity coefficient of a Superball. She drops the ball from different heights and
measures the maximum height of the ball after the bounce. The table below shows the data she collected.
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TABLE 5.4:

Initial height (cm) Bounce height (cm)
30 22
35 26
40 29
45 34
50 38
55 40
60 45
65 50
70 52

(a) Draw a scatter plot and find the equation.

(b) What height would she have to drop the ball from for it to bounce 65 cm?

(c) What are the meanings of the slope and the y−intercept in this problem?

(d) Does the y−intercept make sense? Why isn’t it (0, 0)?

16. The following table shows the median California family income from 1995 to 2002 as reported by the US
Census Bureau.

TABLE 5.5:

Year Income
1995 53,807
1996 55,217
1997 55,209
1998 55,415
1999 63,100
2000 63,206
2001 63,761
2002 65,766

(a) Draw a scatter plot and find the equation.

(b) What would you expect the median annual income of a Californian family to be in year 2010?

(c) What are the meanings of the slope and the y−intercept in this problem?

(d) Inflation in the U.S. is measured by the Consumer Price Index, which increased by 20% between 1995 and 2002.
Did the median income of California families keep up with inflation over that time period? (In other words, did it
increase by at least 20%?)
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5.4 Predicting with Linear Models

Learning Objectives

• Interpolate using an equation.
• Extrapolate using an equation.
• Predict using an equation.

Introduction

Katja’s sales figures were trending downward quickly at first, and she used a line of best fit to describe the numbers.
But now they seem to be decreasing more slowly, and fitting the line less and less accurately. How can she make a
more accurate prediction of what next week’s sales will be?

In the last lesson we saw how to find the equation of a line of best fit and how to use this equation to make predictions.
The line of “best fit” is a good method if the relationship between the dependent and the independent variables is
linear. In this section you will learn other methods that are useful even when the relationship isn’t linear.

Linear Interpolation

We use linear interpolation to fill in gaps in our data—that is, to estimate values that fall in between the values we
already know. To do this, we use a straight line to connect the known data points on either side of the unknown
point, and use the equation of that line to estimate the value we are looking for.

Example 1

The following table shows the median ages of first marriage for men and women, as gathered by the U.S. Census
Bureau.

TABLE 5.6:

Year Median age of males Median age of females
1890 26.1 22.0
1900 25.9 21.9
1910 25.1 21.6
1920 24.6 21.2
1930 24.3 21.3
1940 24.3 21.5
1950 22.8 20.3
1960 22.8 20.3
1970 23.2 20.8
1980 24.7 22.0
1990 26.1 23.9
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TABLE 5.6: (continued)

Year Median age of males Median age of females
2000 26.8 25.1

Estimate the median age for the first marriage of a male in the year 1946.

Solution

We connect the two points on either side of 1946 with a straight line and find its equation. Here’s how that looks on
a scatter plot:

We find the equation by plugging in the two data points:

m =
22.8−24.3
1950−1940

=
−1.5

10
=−0.15

y =−0.15x+b

24.3 =−0.15(1940)+b

b = 315.3

Our equation is y =−0.15x+315.3.

To estimate the median age of marriage of males in the year 1946, we plug x = 1946 into the equation we just found:

y =−0.15(1946)+315.3 = 23.4years old

Example 2

The Center for Disease Control collects information about the health of the American people and behaviors that
might lead to bad health. The following table shows the percent of women who smoke during pregnancy.

TABLE 5.7:

Year Percent of pregnant women smokers
1990 18.4
1991 17.7
1992 16.9
1993 15.8
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TABLE 5.7: (continued)

Year Percent of pregnant women smokers
1994 14.6
1995 13.9
1996 13.6
2000 12.2
2002 11.4
2003 10.4
2004 10.2

Estimate the percentage of pregnant women that were smoking in the year 1998.

Solution

We connect the two points on either side of 1998 with a straight line and find its equation. Here’s how that looks on
a scatter plot:

We find the equation by plugging in the two data points:

m =
12.2−13.6
2000−1996

=
−1.4

4
=−0.35

y =−0.35x+b

12.2 =−0.35(2000)+b

b = 712.2

Our equation is y =−0.35x+712.2.

To estimate the percentage of pregnant women who smoked in the year 1998, we plug x = 1998 into the equation
we just found:

y =−0.35(1998)+712.2 = 12.9%
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For non-linear data, linear interpolation is often not accurate enough for our purposes. If the points in the data set
change by a large amount in the interval you’re interested in, then linear interpolation may not give a good estimate.
In that case, it can be replaced by polynomial interpolation, which uses a curve instead of a straight line to estimate
values between points. But that’s beyond the scope of this lesson.

Linear Extrapolation

Linear extrapolation can help us estimate values that are outside the range of our data set. The strategy is similar to
linear interpolation: we pick the two data points that are closest to the one we’re looking for, find the equation of the
line between them, and use that equation to estimate the coordinates of the missing point.

Example 3

The winning times for the women’s 100 meter race are given in the following table. Estimate the winning time in the
year 2010. Is this a good estimate?

TABLE 5.8:

Winner Country Year Time (seconds)
Mary Lines UK 1922 12.8
Leni Schmidt Germany 1925 12.4
Gerturd Glasitsch Germany 1927 12.1
Tollien Schuurman Netherlands 1930 12.0
Helen Stephens USA 1935 11.8
Lulu Mae Hymes USA 1939 11.5
Fanny Blankers-Koen Netherlands 1943 11.5
Marjorie Jackson Australia 1952 11.4
Vera Krepkina Soviet Union 1958 11.3
Wyomia Tyus USA 1964 11.2
Barbara Ferrell USA 1968 11.1
Ellen Strophal East Germany 1972 11.0
Inge Helten West Germany 1976 11.0
Marlies Gohr East Germany 1982 10.9
Florence Griffith Joyner USA 1988 10.5

Solution

We start by making a scatter plot of the data; then we connect the last two points on the graph and find the equation
of the line.
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m =
10.5−10.9
1988−1982

=
−0.4

6
=−0.067

y =−0.067x+b

10.5 =−0.067(1988)+b

b = 143.7

Our equation is y =−0.067x+143.7.

The winning time in year 2010 is estimated to be:

y =−0.067(2010)+143.7 = 9.03seconds.

Unfortunately, this estimate actually isn’t very accurate. This example demonstrates the weakness of linear extrap-
olation; it uses only a couple of points, instead of using all the points like the best fit line method, so it doesn’t give
as accurate results when the data points follow a linear pattern. In this particular example, the last data point clearly
doesn’t fit in with the general trend of the data, so the slope of the extrapolation line is much steeper than it would be
if we’d used a line of best fit. (As a historical note, the last data point corresponds to the winning time for Florence
Griffith Joyner in 1988. After her race she was accused of using performance-enhancing drugs, but this fact was
never proven. In addition, there was a question about the accuracy of the timing: some officials said that tail-wind
was not accounted for in this race, even though all the other races of the day were affected by a strong wind.)

Here’s an example of a problem where linear extrapolation does work better than the line of best fit method.

Example 4

A cylinder is filled with water to a height of 73 centimeters. The water is drained through a hole in the bottom of the
cylinder and measurements are taken at 2 second intervals. The following table shows the height of the water level
in the cylinder at different times.

TABLE 5.9:

Time (seconds) Water level (cm)
0.0 73
2.0 63.9
4.0 55.5
6.0 47.2
8.0 40.0
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TABLE 5.9: (continued)

Time (seconds) Water level (cm)
10.0 33.4
12.0 27.4
14.0 21.9
16.0 17.1
18.0 12.9
20.0 9.4
22.0 6.3
24.0 3.9
26.0 2.0
28.0 0.7
30.0 0.1

a) Find the water level at time 15 seconds.

b) Find the water level at time 27 seconds

c) What would be the original height of the water in the cylinder if the water takes 5 extra seconds to drain? (Find
the height at time of –5 seconds.)

Solution

Here’s what the line of best fit would look like for this data set:

Notice that the data points don’t really make a line, and so the line of best fit still isn’t a terribly good fit. Just a
glance tells us that we’d estimate the water level at 15 seconds to be about 27 cm, which is more than the water level
at 14 seconds. That’s clearly not possible! Similarly, at 27 seconds we’d estimate the water to have all drained out,
which it clearly hasn’t yet.

So let’s see what happens if we use linear extrapolation and interpolation instead. First, here are the lines we’d use
to interpolate between 14 and 16 seconds, and between 26 and 28 seconds.
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a) The slope of the line between points (14, 21.9) and (16, 17.1) is m = 17.1−21.9
16−14 = −4.8

2 =−2.4. So y =−2.4x+b⇒
21.9 =−2.4(14)+b⇒ b = 55.5, and the equation is y =−2.4x+55.5.

Plugging in x = 15 gives us y =−2.4(15)+55.5 = 19.5 cm.

b) The slope of the line between points (26, 2) and (28, 0.7) is m = 0.7−2
28−26 = −1.3

2 =−.65, so y =−.65x+b⇒ 2 =
−.65(26)+b⇒ b = 18.9, and the equation is y =−.65x+18.9.

Plugging in x = 27, we get y =−.65(27)+18.9 = 1.35 cm.

c) Finally, we can use extrapolation to estimate the height of the water at -5 seconds. The slope of the line between
points (0, 73) and (2, 63.9) is m = 63.9−73

2−0 = −9.1
2 =−4.55, so the equation of the line is y =−4.55x+73.

Plugging in x =−5 gives us y =−4.55(−5)+73 = 95.75 cm.

To make linear interpolation easier in the future, you might want to use the calculator at http://www.ajdesigner.co
m/phpinterpolation/linear_interpolation_equation.php. Plug in the coordinates of the first known data point in the
blanks labeled x1 and y1, and the coordinates of the second point in the blanks labeled x3 and y3; then enter the
x−coordinate of the point in between in the blank labeled x2, and the y−coordinate will be displayed below when
you click “Calculate.”

Review Questions

1. Use the data from Example 1 (Median age at first marriage) to estimate the age at marriage for females in
1946. Fit a line, by hand, to the data before 1970.

2. Use the data from Example 1 (Median age at first marriage) to estimate the age at marriage for females in
1984. Fit a line, by hand, to the data from 1970 on in order to estimate this accurately.

3. Use the data from Example 1 (Median age at first marriage) to estimate the age at marriage for males in 1995.
Use linear interpolation between the 1990 and 2000 data points.

4. Use the data from Example 2 (Pregnant women and smoking) to estimate the percentage of pregnant smokers
in 1997. Use linear interpolation between the 1996 and 2000 data points.

5. Use the data from Example 2 (Pregnant women and smoking) to estimate the percentage of pregnant smokers
in 2006. Use linear extrapolation with the final two data points.
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6. Use the data from Example 3 (Winning times) to estimate the winning time for the female 100-meter race in
1920. Use linear extrapolation because the first two or three data points have a different slope than the rest of
the data.

7. The table below shows the highest temperature vs. the hours of daylight for the 15th day of each month in the
year 2006 in San Diego, California.

TABLE 5.10:

Hours of daylight High temperature (F)
10.25 60
11.0 62
12 62
13 66
13.8 68
14.3 73
14 86
13.4 75
12.4 71
11.4 66
10.5 73
10 61

(a) What would be a better way to organize this table if you want to make the relationship between daylight hours
and temperature easier to see?

(b) Estimate the high temperature for a day with 13.2 hours of daylight using linear interpolation.

(c) Estimate the high temperature for a day with 9 hours of daylight using linear extrapolation. Is the prediction
accurate?

(d) Estimate the high temperature for a day with 9 hours of daylight using a line of best fit.

The table below lists expected life expectancies based on year of birth (US Census Bureau). Use it to answer
questions 8-15.

TABLE 5.11:

Birth year Life expectancy in years
1930 59.7
1940 62.9
1950 68.2
1960 69.7
1970 70.8
1980 73.7
1990 75.4
2000 77

8. Make a scatter plot of the data.
9. Use a line of best fit to estimate the life expectancy of a person born in 1955.

10. Use linear interpolation to estimate the life expectancy of a person born in 1955.
11. Use a line of best fit to estimate the life expectancy of a person born in 1976.
12. Use linear interpolation to estimate the life expectancy of a person born in 1976.
13. Use a line of best fit to estimate the life expectancy of a person born in 2012.
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14. Use linear extrapolation to estimate the life expectancy of a person born in 2012.
15. Which method gives better estimates for this data set? Why?

The table below lists the high temperature for the fist day of the month for the year 2006 in San Diego, California
(Weather Underground). Use it to answer questions 16-21.

TABLE 5.12:

Month number Temperature (F)
1 63
2 66
3 61
4 64
5 71
6 78
7 88
8 78
9 81
10 75
11 68
12 69

16. Draw a scatter plot of the data.
17. Use a line of best fit to estimate the temperature in the middle of the 4th month (month 4.5).
18. Use linear interpolation to estimate the temperature in the middle of the 4th month (month 4.5).
19. Use a line of best fit to estimate the temperature for month 13 (January 2007).
20. Use linear extrapolation to estimate the temperature for month 13 (January 2007).
21. Which method gives better estimates for this data set? Why?
22. Name a real-world situation where you might want to make predictions based on available data. Would linear

extrapolation/interpolation or the best fit method be better to use in that situation? Why?

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9615.
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6.1 Solving Inequalities

Learning Objectives

• Write and graph inequalities in one variable on a number line.
• Solve inequalities using addition and subtraction.
• Solve inequalities using multiplication and division.
• Solve multi-step inequalities.

Introduction

Dita has a budget of $350 to spend on a rental car for an upcoming trip, but she wants to spend as little of that money
as possible. If the trip will last five days, what range of daily rental rates should she be willing to consider?

Like equations, inequalities show a relationship between two expressions. We solve and graph inequalities in a
similar way to equations—but when we solve an inequality, the answer is usually a set of values instead of just one
value.

When writing inequalities we use the following symbols:

>is greater than

≥ is greater than or equal to

<is less than

≤ is less than or equal to

Write and Graph Inequalities in One Variable on a Number Line

Let’s start with the simple inequality x > 3.

We read this inequality as “x is greater than 3.” The solution is the set of all real numbers that are greater than three.
We often represent the solution set of an inequality with a number line graph.

Consider another simple inequality: x≤ 4.

We read this inequality as “x is less than or equal to 4.” The solution is the set of all real numbers that are equal to
four or less than four. We can graph this solution set on the number line.
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Notice that we use an empty circle for the endpoint of a strict inequality (like x > 3), and a filled circle for one where
the equals sign is included (like x≤ 4).

Example 1

Graph the following inequalities on the number line.

a) x <−3

b) x≥ 6

c) x > 0

d) x≤ 8

Solution

a) The inequality x <−3 represents all numbers that are less than -3. The number -3 is not included in the solution,
so it is represented by an open circle on the graph.

b) The inequality x ≥ 6 represents all numbers that are greater than or equal to 6. The number 6 is included in the
solution, so it is represented by a closed circle on the graph.

c) The inequality x > 0 represents all numbers that are greater than 0. The number 0 is not included in the solution,
so it is represented by an open circle on the graph.

d) The inequality x ≤ 8 represents all numbers that are less than or equal to 8. The number 8 is included in the
solution, so it is represented by a closed circle on the graph.

Example 2

Write the inequality that is represented by each graph.

a)

b)

c)
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d)

Solution

a) x≤−12

b) x > 540

c) x < 6.5

d) x≥ 85

Inequalities appear everywhere in real life. Here are some simple examples of real-world applications.

Example 3

Write each statement as an inequality and graph it on the number line.

a) You must maintain a balance of at least $2500 in your checking account to get free checking.

b) You must be at least 48 inches tall to ride the “Thunderbolt” Rollercoaster.

c) You must be younger than 3 years old to get free admission at the San Diego Zoo.

d) The speed limit on the interstate is 65 miles per hour or less.

Solution

a) The words “at least” imply that the value of $2500 is included in the solution set, so the inequality is written as
x≥ 2500.

b) The words “at least” imply that the value of 48 inches is included in the solution set, so the inequality is written
as x≥ 48.

c) The inequality is written as x < 3.

d) Speed limit means the highest allowable speed, so the inequality is written as x≤ 65.

Solving Inequalities Using Addition and Subtraction

To solve an inequality we must isolate the variable on one side of the inequality sign. To isolate the variable, we use
the same basic techniques used in solving equations.

We can solve some inequalities by adding or subtracting a constant from one side of the inequality.
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Example 4

Solve each inequality and graph the solution set.

a) x−3 < 10

b) x−20≥ 14

c) x+8≤−7

d) x+4 > 13

Solution

a) Starting inequality: x−3 < 10

Add 3 to both sides of the inequality: x−3+3 < 10+3

Simplify: x < 13

b) Starting inequality: x−20≤ 14

Add 20 to both sides of the inequality: x−20+20≤ 14+20

Simplify: x≤ 34

c) Starting inequality: x+8≤−7

Subtract 8 from both sides of the inequality: x+8−8≤−7−8

Simplify: x≤−15

d) Starting inequality: x+4 > 13

Subtract 4 from both sides of the inequality: x+4−4 > 13−4

Simplify: x > 9

Solving Inequalities Using Multiplication and Division

We can also solve inequalities by multiplying or dividing both sides by a constant. For example, to solve the
inequality 5x < 3, we would divide both sides by 5 to get x < 3

5 .

However, something different happens when we multiply or divide by a negative number. We know, for example,
that 5 is greater than 3. But if we multiply both sides of the inequality 5 > 3 by -2, we get −10 >−6. And we know
that’s not true; -10 is less than -6.
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This happens whenever we multiply or divide an inequality by a negative number, and so we have to flip the sign
around to make the inequality true. For example, to multiply 2 < 4 by -3, first we multiply the 2 and the 4 each by
-3, and then we change the <sign to a >sign, so we end up with −6 >−12.

The same principle applies when the inequality contains variables.

Example 5

Solve each inequality.

a) 4x < 24

b) −5x≤ 21

c) x
25 < 3

2

d) x
−7 ≥ 9

Solution

a) Original problem: 4x < 24

Divide both sides by 4: 4x
4 < 24

4

Simplify: x < 6

b) Original problem: −5x≤ 21

Divide both sides by -5 : −5x
−5 ≥

21
−5 Flip the inequality sign.

Simplify: x≥−21
5

c) Original problem: x
25 < 3

2

Multiply both sides by 25: 25 · x
25 < 3

2 ·25

Simplify: x < 75
2 or x < 37.5

d) Original problem: x
−7 ≥ 9

Multiply both sides by -7: −7 · x
−7 ≤ 9 · (−7)Flip the inequality sign.

Simplify: x≤−63

Solving Multi-Step Inequalities

In the last two sections, we considered very simple inequalities which required one step to obtain the solution.
However, most inequalities require several steps to arrive at the solution. As with solving equations, we must use
the order of operations to find the correct solution. In addition, remember that when we multiply or divide the
inequality by a negative number, the direction of the inequality changes.

The general procedure for solving multi-step inequalities is almost exactly like the procedure for solving multi-step
equations:

1. Clear parentheses on both sides of the inequality and collect like terms.
2. Add or subtract terms so the variable is on one side and the constant is on the other side of the inequality sign.
3. Multiply and divide by whatever constants are attached to the variable. Remember to change the direction of

the inequality if you multiply or divide by a negative number.

Example 6

Solve each of the following inequalities and graph the solution set.
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a) 9x
5 −7≥−3x+12

b) −25x+12≤−10x−12

Solution

a) Original problem: 9x
5 −7≥−3x+12

Add 3x to both sides: 9x
5 +3x−7≥−3x+3x+12

Simplify: 24x
5 −7≥ 12

Add 7 to both sides: 24x
5 −7+7≥ 12+7

Simplify: 24x
5 ≥ 19

Multiply 5 to both sides: 5 · 24x
5 ≥ 5 ·19

Simplify: 24x≥ 95

Divide both sides by 24: 24x
24 ≥

95
24

Simplify: x≥ 95
24 Answer

Graph:

b) Original problem: −25x+12≤−10x−12

Add 10x to both sides: −25x+10x+12≤−10x+10x−12

Simplify: −15x+12≤−12

Subtract 12: −15x+12−12≤−12−12

Simplify: −15x≤−24

Divide both sides by -15: −15x
−15 ≥

−24
−15 flip the inequality sign

Simplify: x≥ 8
5 Answer

Graph:

Example 7

Solve the following inequalities.

a) 4x−2(3x−9)≤−4(2x−9)

b) 5x−1
4 >−2(x+5)

Solution

a) Original problem: 4x−2(3x−9)≤−4(2x−9)

Simplify parentheses: 4x−6x+18≤−8x+36

Collect like terms: −2x+18≤−8x+36

Add 8x to both sides: −2x+8x+18≤−8x+8x+36

Simplify: 6x+18≤ 36

Subtract 18: 6x+18−18≤ 36−18
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Simplify: 6x≤ 18

Divide both sides by 6: 6x
6 ≤

18
6

Simplify: x≤ 3Answer

b) Original problem: 5x−1
4 >−2(x+5)

Simplify parenthesis: 5x−1
4 >−2x−10

Multiply both sides by 4: 4 · 5x−1
4 > 4(−2x−10)

Simplify: 5x−1 >−8x−40

Add 8x to both sides: 5x+8x−1 >−8x+8x−40

Simplify: 13x−1 >−40

Add 1 to both sides: 13x−1+1 >−40+1

Simplify: 13x >−39

Divide both sides by 13: 13x
13 >−39

13

Simplify: x >−3Answer

Further Practice

For additional practice solving inequalities, try the online game at http://www.aaamath.com/equ725x7.htm#section2
. If you’re having a hard time with multi-step inequalities, the video at http://www.schooltube.com/video/aa66df49
e0af4f85a5e9/MultiStep-Inequalities will walk you through a few.

Lesson Summary

• The answer to an inequality is usually an interval of values.
• Solving inequalities works just like solving an equation. To solve, we isolate the variable on one side of the

equation.
• When multiplying or dividing both sides of an inequality by a negative number, you need to reverse the

inequality.

Review Questions

1. Write the inequality represented by the graph.

2. Write the inequality represented by the graph.

3. Write the inequality represented by the graph.
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4. Write the inequality represented by the graph.

Graph each inequality on the number line.

5. x <−35
6. x >−17
7. x≥ 20
8. x≤ 3

Solve each inequality and graph the solution on the number line.

9. x−5 < 35
10. x+15≥−60
11. x−2≤ 1
12. x−8 >−20
13. x+11 > 13
14. x+65 < 100
15. x−32≤ 0
16. x+68≥ 75

Solve each inequality. Write the solution as an inequality and graph it.

17. 3x≤ 6
18. x

5 >− 3
10

19. −10x > 250
20. x

−7 ≥−5

Solve each multi-step inequality.

21. x−5 > 2x+3
22. 2(x−3)≤ 3x−2
23. x

3 < x+7
24. 3(x−4)

12 ≤ 2x
3

25. 2
( x

4 +3
)
> 6(x−1)

26. 9x+4≤−2
(
x+ 1

2

)
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6.2 Using Inequalities

Learning Objectives

• Express answers to inequalities in a variety of ways.
• Identify the number of solutions of an inequality.
• Solve real-world problems using inequalities.

Introduction

Ms. Jerome wants to buy identical boxes of art supplies for her 25 students. If she can spend no more than $375 on
art supplies, what inequality describes the price can she afford for each individual box of supplies?

Expressing Solutions of an Inequality

The solution of an inequality can be expressed in four different ways:

1. Inequality notation The answer is simply expressed as x < 15.
2. Set notation The answer is expressed as a set: {x|x < 15}. The brackets indicate a set and the vertical line

means “such that,” so we read this expression as “the set of all values of x such that x is a real number less
than 15”.

3. Interval notation uses brackets to indicate the range of values in the solution. For example, the answer to our
problem would be expressed as (−∞, 15), meaning “the interval containing all the numbers from −∞ to 15
but not actually including −∞ or 15”.

a. Square or closed brackets “[” and “]” indicate that the number next to the bracket is included in the
solution set.

b. Round or open brackets “(” and “)” indicate that the number next to the bracket is not included in
the solution set. When using infinity and negative infinity (∞ and −∞), we always use open brackets,
because infinity isn’t an actual number and so it can’t ever really be included in an interval.

4. Solution graph shows the solution on the real number line. A closed circle on a number indicates that the
number is included in the solution set, while an open circle indicates that the number is not included in the set.
For our example, the solution graph is:

Example 1

a) [-4, 6] means that the solutions is all numbers between -4 and 6 including -4 and 6.

b) (8, 24) means that the solution is all numbers between 8 and 24 not including the numbers 8 and 24.

c) [3, 12) means that the solution is all numbers between 3 and 12, including 3 but not including 12.
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d) (−10,∞) means that the solution is all numbers greater than -10, not including -10.

e) (−∞,∞) means that the solution is all real numbers.

Identify the Number of Solutions of an Inequality

Inequalities can have:

• A set that has an infinite number of solutions.
• A set that has a discrete number of solutions.
• No solutions.

The inequalities we have solved so far all have an infinite number of solutions, at least in theory. For example, the
inequality 5x−1

4 >−2(x+5) has the solution x >−3. This solution says that all real numbers greater than -3 make
this inequality true, and there are infinitely many such numbers.

However, in real life, sometimes we are trying to solve a problem that can only have positive integer answers, because
the answers describe numbers of discrete objects.

For example, suppose you are trying to figure out how many $8 CDs you can buy if you want to spend less than $50.
An inequality to describe this situation would be 8x < 50, and if you solved that inequality you would get x < 50

8 , or
x < 6.25.

But could you really buy any number of CDs as long as it’s less than 6.25? No; you couldn’t really buy 6.1 CDs, or
-5 CDs, or any other fractional or negative number of CDs. So if we wanted to express our solution in set notation,
we couldn’t express it as the set of all numbers less than 6.25, or {x|x < 6.25}. Instead, the solution is just the set
containing all the nonnegative whole numbers less than 6.25, or {0, 1, 2, 3, 4, 5, 6}. When we’re solving a real-world
problem dealing with discrete objects like CDs, our solution set will often be a finite set of numbers instead of an
infinite interval.

An inequality can also have no solutions at all. For example, consider the inequality x−5 > x+6. When we subtract
x from both sides, we end up with −5 > 6, which is not true for any value of x. We say that this inequality has no
solution.

The opposite can also be true. If we flip the inequality sign in the above inequality, we get x− 5 < x+ 6, which
simplifies to −5 < 6. That’s always true no matter what x is, so the solution to that inequality would be all real
numbers, or (−∞,∞).

Solve Real-World Problems Using Inequalities

Solving real-world problems that involve inequalities is very much like solving problems that involve equations.

Example 2

In order to get a bonus this month, Leon must sell at least 120 newspaper subscriptions. He sold 85 subscriptions in
the first three weeks of the month. How many subscriptions must Leon sell in the last week of the month?

Solution

Let x = the number of subscriptions Leon sells in the last week of the month. The total number of subscriptions for
the month must be greater than 120, so we write 85+ x≥ 120. We solve the inequality by subtracting 85 from both
sides: x≥ 35.

Leon must sell 35 or more subscriptions in the last week to get his bonus.
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To check the answer, we see that 85+35= 120. If he sells 35 or more subscriptions, the total number of subscriptions
he sells that month will be 120 or more. The answer checks out.

Example 3

Virena’s Scout troop is trying to raise at least $650 this spring. How many boxes of cookies must they sell at $4.50
per box in order to reach their goal?

Solution

Let x = number of boxes sold. Then the inequality describing this problem is 4.50x≥ 650.

We solve the inequality by dividing both sides by 4.50: x≥ 144.44.

We round up the answer to 145 since only whole boxes can be sold.

Virena’s troop must sell at least 145 boxes.

If we multiply 145 by $4.50 we obtain $652.50, so if Virena’s troop sells more than 145 boxes they will raise more
than $650. But if they sell 144 boxes, they will only raise $648, which is not enough. So they must indeed sell at
least 145 boxes. The answer checks out.

Example 4

The width of a rectangle is 20 inches. What must the length be if the perimeter is at least 180 inches?

Solution

Let x = length of the rectangle. The formula for perimeter is

Perimeter = 2× length+2×width

Since the perimeter must be at least 180 inches, we have 2x+2(20)≥ 180.

Simplify: 2x+40≥ 180

Subtract 40 from both sides: 2x≥ 140

Divide both sides by 2: x≥ 70

The length must be at least 70 inches.

If the length is at least 70 inches and the width is 20 inches, then the perimeter is at least 2(70)+2(20) = 180 inches.
The answer checks out.

Further Practice

The videos at http://www.youtube.com/watch?v=k9JSbMfFZ9U&feature=related and http://www.youtube.com/w
atch?v=ArzPkaqym50 contain more examples of real-world problems using inequalities.

Lesson Summary

• Inequalities can have infinite solutions, no solutions, or discrete solutions.
• There are four ways to represent an inequality: Equation notation, set notation, interval notation, and solution

graph.
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Review Questions

Solve each inequality. Give the solution in inequality notation and interval notation.

1. x+15 < 12
2. x−4≥ 13
3. 9x >−3

4
4. − x

15 ≤ 5
5. 620x > 2400
6. x

20 ≥−
7

40
7. 3x

5 > 3
5

8. x+3 > x−2

Solve each inequality. Give the solution in inequality notation and set notation.

9. x+17 < 3
10. x−12≥ 80
11. −0.5x≤ 7.5
12. 75x≥ 125
13. x

−3 >−10
9

14. x
−15 < 8

15. x
4 > 5

4
16. 3x−7≥ 3(x−7)

Solve the following inequalities, give the solution in set notation, and show the solution graph.

17. 4x+3 <−1
18. 2x < 7x−36
19. 5x > 8x+27
20. 5− x < 9+ x
21. 4−6x≤ 2(2x+3)
22. 5(4x+3)≥ 9(x−2)− x
23. 2(2x−1)+3 < 5(x+3)−2x
24. 8x−5(4x+1)≥−1+2(4x−3)
25. 9. 2(7x−2)−3(x+2)< 4x− (3x+4)
26. 2

3 x− 1
2(4x−1)≥ x+2(x−3)

27. At the San Diego Zoo you can either pay $22.75 for the entrance fee or $71 for the yearly pass which entitles
you to unlimited admission.

a. At most how many times can you enter the zoo for the $22.75 entrance fee before spending more than
the cost of a yearly membership?

b. Are there infinitely many or finitely many solutions to this inequality?

28. Proteek’s scores for four tests were 82, 95, 86, and 88. What will he have to score on his fifth and last test to
average at least 90 for the term?

278

http://www.ck12.org


www.ck12.org Chapter 6. Linear Inequalities

6.3 Compound Inequalities

Learning Objectives

• Write and graph compound inequalities on a number line.
• Solve compound inequalities with “and.”
• Solve compound inequalities with “or.”
• Solve compound inequalities using a graphing calculator (TI family).
• Solve real-world problems using compound inequalities.

Introduction

In this section, we’ll solve compound inequalities—inequalities with more than one constraint on the possible values
the solution can have.

There are two types of compound inequalities:

1. Inequalities joined by the word “and,” where the solution is a set of values greater than a number and less
than another number. We can write these inequalities in the form “x > a and x < b,” but usually we just write
“a < x < b.” Possible values for x are ones that will make both inequalities true.

2. Inequalities joined by the word “or,” where the solution is a set of values greater than a number or less than
another number. We write these inequalities in the form “x > a or x < b.” Possible values for x are ones that
will make at least one of the inequalities true.

You might wonder why the variable x has to be greater than one number and/or less than the other number; why
can’t it be greater than both numbers, or less than both numbers? To see why, let’s take an example.

Consider the compound inequality “x > 5 and x > 3.” Are there any numbers greater than 5 that are not greater than
3? No! Since 5 is greater than 3, everything greater than 5 is also greater than 3. If we say x is greater than both
5 and 3, that doesn’t tell us any more than if we just said x is greater than 5. So this compound inequality isn’t
really compound; it’s equivalent to the simple inequality x > 5. And that’s what would happen no matter which two
numbers we used; saying that x is greater than both numbers is just the same as saying that x is greater than the
bigger number, and saying that x is less than both numbers is just the same as saying that x is less than the smaller
number.

Compound inequalities with “or” work much the same way. Every number that’s greater than 3 or greater than 5 is
also just plain greater than 3, and every number that’s greater than 3 is certainly greater than 3 or greater than 5—so
if we say “x > 5 or x > 3,” that’s the same as saying just “x > 3.” Saying that x is greater than at least one of two
numbers is just the same as saying that x is greater than the smaller number, and saying that x is less than at least one
of two numbers is just the same as saying that x is less than the greater number.
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Write and Graph Compound Inequalities on a Number Line

Example 1

Write the inequalities represented by the following number line graphs.

a)

b)

c)

d)

Solution

a) The solution graph shows that the solution is any value between -40 and 60, including -40 but not 60.

Any value in the solution set satisfies both x≥−40 and x < 60.

This is usually written as −40≤ x < 60.

b) The solution graph shows that the solution is any value greater than 1 (not including 1) or any value less than -2
(not including -2). You can see that there can be no values that can satisfy both these conditions at the same time.
We write: x > 1 or x <−2.

c) The solution graph shows that the solution is any value greater than 4 (including 4) or any value less than -1
(including - 1). We write: x≥ 4 or x≤−1.

d) The solution graph shows that the solution is any value that is both less than 25 (not including 25) and greater
than -25 (not including -25). Any value in the solution set satisfies both x >−25 and x < 25.

This is usually written as −25 < x < 25.

Example 2

Graph the following compound inequalities on a number line.

a) −4≤ x≤ 6

b) x < 0 or x > 2

c) x≥−8 or x≤−20

d) −15 < x≤ 85

Solution

a) The solution is all numbers between -4 and 6, including both -4 and 6.
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b) The solution is all numbers less than 0 or greater than 2, not including 0 or 2.

c) The solution is all numbers greater than or equal to -8 or less than or equal to -20.

d) The solution is all numbers between -15 and 85, not including -15 but including 85.

Solve a Compound Inequality With “and” or “or”

When we solve compound inequalities, we separate the inequalities and solve each of them separately. Then, we
combine the solutions at the end.

Example 3

Solve the following compound inequalities and graph the solution set.

a) −2 < 4x−5≤ 11

b) 3x−5 < x+9≤ 5x+13

Solution

a) First we re-write the compound inequality as two separate inequalities with and. Then solve each inequality
separately.

−2 < 4x−5 4x−5≤ 11

3 < 4x and 4x≤ 16
3
4
< x x≤ 4

Answer: 3
4 < x and x≤ 4. This can be written as 3

4 < x≤ 4.

b) Re-write the compound inequality as two separate inequalities with and. Then solve each inequality separately.

3x−5 < x+9 x+9≤ 5x+13

2x < 14 and −4≤ 4x

x < 7 −1≤ x

Answer: x < 7 and x≥−1. This can be written as: −1≤ x < 7.

281

http://www.ck12.org


6.3. Compound Inequalities www.ck12.org

Example 4

Solve the following compound inequalities and graph the solution set.

a) 9−2x≤ 3 or 3x+10≤ 6− x

b) x−2
6 ≤ 2x−4 or x−2

6 > x+5

Solution

a) Solve each inequality separately:

9−2x≤ 3 3x+10≤ 6− x

−2x≤−6 or 4x≤−4

x≥ 3 x≤−1

Answer: x≥ 3 or x≤−1

b) Solve each inequality separately:

x−2
6
≤ 2x−4

x−2
6

> x+5

x−2≤ 6(2x−4) x−2 > 6(x+5)

x−2≤ 12x−24 or x−2 > 6x+30

22≤ 11x −32 > 5x

2≤ x −6.4 > x

Answer: x≥ 2 or x <−6.4

The video at http://www.math-videos-online.com/solve-compound-inequality.html shows the process of solving and
graphing compound inequalities in more detail. One thing you may notice in this video is that in the second problem,
the two solutions joined with “or” overlap, and so the solution ends up being the set of all real numbers, or (−∞,∞).
This happens sometimes with compound inequalities that involve “or”; for example, if the solution to an inequality
ended up being “x < 5 or x > 1,” the solution set would be all real numbers. This makes sense if you think about it:
all real numbers are either a) less than 5, or b) greater than or equal to 5, and the ones that are greater than or equal
to 5 are also greater than 1—so all real numbers are either a) less than 5 or b) greater than 1.

Compound inequalities with “and,” meanwhile, can turn out to have no solutions. For example, the inequality “x < 3
and x > 4” has no solutions: no number is both greater than 4 and less than 3. If we write it as 4 < x < 3 it’s even
more obvious that it has no solutions; 4 < x < 3 implies that 4 < 3, which is false.
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Solve Compound Inequalities Using a Graphing Calculator (TI-83/84 family)

Graphing calculators can show you the solution to an inequality in the form of a graph. This can be especially useful
when dealing with compound inequalities.

Example 5

Solve the following inequalities using a graphing calculator.

a) 5x+2(x−3)≥ 2

b) 7x−2 < 10x+1 < 9x+5

c) 3x+2≤ 10 or 3x+2≥ 15

Solution

a) Press the [Y=] button and enter the inequality on the first line of the screen.

(To get the ≥ symbol, press [TEST] [2nd] [MATH] and choose option 4.)

Then press the [GRAPH] button.

Because the calculator uses the number 1 to mean “true” and 0 to mean “false,” you will see a step function with the
y−value jumping from 0 to 1.

The solution set is the values of x for which the graph shows y = 1—in other words, the set of x−values that make
the inequality true.
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Note: You may need to press the [WINDOW] key or the [ZOOM] key to adjust the window to see the full graph.

The solution is x > 8
7 , which is why you can see the y−value changing from 0 to 1 at about 1.14.

b) This is a compound inequality: 7x−2 < 10x+1 and 10x+1 < 9x+5. You enter it like this:

(To find the [AND] symbol, press [TEST], choose [LOGIC] on the top row and choose option 1.)

The resulting graph should look like this:

The solution are the values of x for which y = 1; in this case that would be −1 < x < 4.

c) This is another compound inequality.

(To enter the [OR] symbol, press [TEST], choose [LOGIC] on the top row and choose option 2.)

The resulting graph should look like this:
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The solution are the values of x for which y = 1–in this case, x≤ 2.7 or x≥ 4.3.

Solve Real-World Problems Using Compound Inequalities

Many application problems require the use of compound inequalities to find the solution.

Example 6

The speed of a golf ball in the air is given by the formula v =−32t+80. When is the ball traveling between 20 ft/sec
and 30 ft/sec?

Solution

First we set up the inequality 20≤ v≤ 30, and then replace v with the formula v=−32t+80 to get 20≤−32t+80≤
30.

Then we separate the compound inequality and solve each separate inequality:

20≤−32t +80 −32t +80≤ 30

32t ≤ 60 and 50≤ 32t

t ≤ 1.875 1.56≤ t

Answer: 1.56≤ t ≤ 1.875

To check the answer, we plug in the minimum and maximum values of t into the formula for the speed.

For t = 1.56, v =−32t +80 =−32(1.56)+80 = 30 f t/sec

For t = 1.875, v =−32t +80 =−32(1.875)+80 = 20 f t/sec

So the speed is between 20 and 30 ft/sec. The answer checks out.

Example 7

William’s pick-up truck gets between 18 to 22 miles per gallon of gasoline. His gas tank can hold 15 gallons of
gasoline. If he drives at an average speed of 40 miles per hour, how much driving time does he get on a full tank of
gas?

Solution

Let t = driving time. We can use dimensional analysis to get from time per tank to miles per gallon:

t hours
1 tank

× 1 tank
15 gallons

× 40 miles
1 hour

× 40t
15

miles
gallon

Since the truck gets between 18 and 22 miles/gallon, we set up the compound inequality 18 ≤ 40t
15 ≤ 22. Then we

separate the compound inequality and solve each inequality separately:
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18≤ 40t
15

40t
15
≤ 22

270≤ 40t and 40t ≤ 330

6.75≤ t t ≤ 8.25

Answer: 6.75≤ t ≤ 8.25.

Andrew can drive between 6.75 and 8.25 hours on a full tank of gas.

If we plug in t = 6.75 we get 40t
15 = 40(6.75)

15 = 18 miles per gallon.

If we plug in t = 8.25 we get 40t
15 = 40(8.25)

15 = 22 miles per gallon.

The answer checks out.

Lesson Summary

• Compound inequalities combine two or more inequalities with “and” or “or.”
• “And” combinations mean that only solutions for both inequalities will be solutions to the compound inequal-

ity.
• “Or” combinations mean solutions to either inequality will also be solutions to the compound inequality.

Review Questions

Write the compound inequalities represented by the following graphs.

1.

2.

3.

4.

Solve the following compound inequalities and graph the solution on a number line.

5. −5≤ x−4≤ 13
6. 1≤ 3x+5≤ 4
7. −12≤ 2−5x≤ 7
8. 3

4 ≤ 2x+9≤ 3
2

9. −2≤ 2x−1
3 <−1

10. 4x−1≥ 7 or 9x
2 < 3

11. 3− x <−4 or 3− x > 10
12. 2x+3

4 < 2 or − x
5 +3 < 2

5
13. 2x−7≤−3 or 2x−3 > 11
14. 4x+3 < 9 or −5x+4≤−12
15. How would you express the answer to problem 5 as a set?
16. How would you express the answer to problem 5 as an interval?
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17. How would you express the answer to problem 10 as a set?

1. Could you express the answer to problem 10 as a single interval? Why or why not?
2. How would you express the first part of the solution in interval form?
3. How would you express the second part of the solution in interval form?

18. Express the answers to problems 1 and 3 in interval notation.
19. Express the answers to problems 6 through 9 in interval notation.
20. Solve the inequality “x≥−3 or x < 1” and express the answer in interval notation.
21. How many solutions does the inequality “x≥ 2 and x≤ 2” have?
22. To get a grade of B in her Algebra class, Stacey must have an average grade greater than or equal to 80 and

less than 90. She received the grades of 92, 78, 85 on her first three tests.

a. Between which scores must her grade on the final test fall if she is to receive a grade of B for the class?
(Assume all four tests are weighted the same.)

b. What range of scores on the final test would give her an overall grade of C, if a C grade requires an
average score greater than or equal to 70 and less than 80?

c. If an A grade requires a score of at least 90, and the maximum score on a single test is 100, is it possible
for her to get an A in this class? (Hint: look again at your answer to part a.)
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6.4 Absolute Value Equations and Inequalities

Learning Objectives

• Solve an absolute value equation.
• Analyze solutions to absolute value equations.
• Graph absolute value functions.
• Solve absolute value inequalities.
• Rewrite and solve absolute value inequalities as compound inequalities.
• Solve real-world problems using absolute value equations and inequalities.

Introduction

Timmy is trying out his new roller skates. He’s not allowed to cross the street yet, so he skates back and forth in
front of his house. If he skates 20 yards east and then 10 yards west, how far is he from where he started? What if
he skates 20 yards west and then 10 yards east?

The absolute value of a number is its distance from zero on a number line. There are always two numbers on the
number line that are the same distance from zero. For instance, the numbers 4 and -4 are each a distance of 4 units
away from zero.

|4| represents the distance from 4 to zero, which equals 4.

|−4| represents the distance from -4 to zero, which also equals 4.

In fact, for any real number x:

|x|= x if x is not negative, and |x|=−x if x is negative.

Absolute value has no effect on a positive number, but changes a negative number into its positive inverse.

Example 1

Evaluate the following absolute values.

a) |25|

b) |−120|

c) |−3|

d) |55|

e)
∣∣−5

4

∣∣
Solution
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a) |25|= 25 Since 25 is a positive number, the absolute value does not change it.

b) |−120|= 120 Since -120 is a negative number, the absolute value makes it positive.

c) |−3|= 3 Since -3 is a negative number, the absolute value makes it positive.

d) |55|= 55 Since 55 is a positive number, the absolute value does not change it.

e)
∣∣−5

4

∣∣= 5
4 Since −5

4 is a negative number, the absolute value makes it positive.

Absolute value is very useful in finding the distance between two points on the number line. The distance between
any two points a and b on the number line is |a−b| or |b−a|.

For example, the distance from 3 to -1 on the number line is |3− (−1)|= |4|= 4.

We could have also found the distance by subtracting in the opposite order: |−1−3|= |−4|= 4. This makes sense
because the distance is the same whether you are going from 3 to -1 or from -1 to 3.

Example 2

Find the distance between the following points on the number line.

a) 6 and 15

b) -5 and 8

c) -3 and -12

Solution

Distance is the absolute value of the difference between the two points.

a) distance = |6−15|= |−9|= 9

b) distance = |−5−8|= |−13|= 13

c) distance = |−3− (−12)|= |9|= 9

Remember: When we computed the change in x and the change in y as part of the slope computation, these values
were positive or negative, depending on the direction of movement. In this discussion, “distance” means a positive
distance only.

Solve an Absolute Value Equation

We now want to solve equations involving absolute values. Consider the following equation:

|x|= 8

This means that the distance from the number x to zero is 8. There are two numbers that satisfy this condition: 8 and
-8.
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When we solve absolute value equations we always consider two possibilities:

1. The expression inside the absolute value sign is not negative.
2. The expression inside the absolute value sign is negative.

Then we solve each equation separately.

Example 3

Solve the following absolute value equations.

a) |x|= 3

b) |x|= 10

Solution

a) There are two possibilities: x = 3 and x =−3.

b) There are two possibilities: x = 10 and x =−10.

Analyze Solutions to Absolute Value Equations

Example 4

Solve the equation |x−4|= 5 and interpret the answers.

Solution

We consider two possibilities: the expression inside the absolute value sign is nonnegative or is negative. Then we
solve each equation separately.

x−4 = 5 and x−4 =−5

x = 9 x =−1

x = 9 and x =−1 are the solutions.

The equation |x−4|= 5 can be interpreted as “what numbers on the number line are 5 units away from the number
4?” If we draw the number line we see that there are two possibilities: 9 and -1.

Example 5

Solve the equation |x+3|= 2 and interpret the answers.

Solution

Solve the two equations:

x+3 = 2 and x+3 =−2

x =−1 x =−5
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x =−5 and x =−1 are the answers.

The equation |x+3|= 2 can be re-written as: |x− (−3)|= 2. We can interpret this as “what numbers on the number
line are 2 units away from -3?” There are two possibilities: -5 and -1.

Example 6

Solve the equation |2x−7|= 6 and interpret the answers.

Solution

Solve the two equations:

2x−7 = 6 2x−7 =−6

2x = 13 and 2x = 1

x =
13
2

x =
1
2

Answer: x = 13
2 and x = 1

2 .

The interpretation of this problem is clearer if the equation |2x−7|= 6 is divided by 2 on both sides to get 1
2 |2x−7|=

3. Because 1
2 is nonnegative, we can distribute it over the absolute value sign to get

∣∣x− 7
2

∣∣ = 3. The question then
becomes “What numbers on the number line are 3 units away from 7

2 ?” There are two answers: 13
2 and 1

2 .

Graph Absolute Value Functions

Now let’s look at how to graph absolute value functions.

Consider the function y = |x−1|. We can graph this function by making a table of values:

TABLE 6.1:

x y = |x−1|
-2 y = |−2−1|= |−3|= 3
-1 y = |−1−1|= |−2|= 2
0 y = |0−1|= |−1|= 1
1 y = |1−1|= |0|= 0
2 y = |2−1|= |1|= 1
3 y = |3−1|= |2|= 2
4 y = |4−1|= |3|= 3
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You can see that the graph of an absolute value function makes a big “V”. It consists of two line rays (or line
segments), one with positive slope and one with negative slope, joined at the vertex or cusp.

We’ve already seen that to solve an absolute value equation we need to consider two options:

1. The expression inside the absolute value is not negative.
2. The expression inside the absolute value is negative.

Combining these two options gives us the two parts of the graph.

For instance, in the above example, the expression inside the absolute value sign is x− 1. By definition, this
expression is nonnegative when x− 1 ≥ 0, which is to say when x ≥ 1. When the expression inside the absolute
value sign is nonnegative, we can just drop the absolute value sign. So for all values of x greater than or equal to 1,
the equation is just y = x−1.

On the other hand, when x− 1 < 0 — in other words, when x < 1 — the expression inside the absolute value sign
is negative. That means we have to drop the absolute value sign but also multiply the expression by -1. So for all
values of x less than 1, the equation is y =−(x−1), or y =−x+1.

These are both graphs of straight lines, as shown above. They meet at the point where x−1 = 0 — that is, at x = 1.

We can graph absolute value functions by breaking them down algebraically as we just did, or we can graph them
using a table of values. However, when the absolute value equation is linear, the easiest way to graph it is to combine
those two techniques, as follows:

1. Find the vertex of the graph by setting the expression inside the absolute value equal to zero and solving for x.
2. Make a table of values that includes the vertex, a value smaller than the vertex, and a value larger than the

vertex. Calculate the corresponding values of y using the equation of the function.
3. Plot the points and connect them with two straight lines that meet at the vertex.

Example 7

Graph the absolute value function y = |x+5|.

Solution

Step 1: Find the vertex by solving x+5 = 0. The vertex is at x =−5.

Step 2: Make a table of values:
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TABLE 6.2:

x y = |x+5|
-8 y = |−8+5|= |−3|= 3
-5 y = |−5+5|= |0|= 0
-2 y = |−2+5|= |3|= 3

Step 3: Plot the points and draw two straight lines that meet at the vertex:

Example 8

Graph the absolute value function: y = |3x−12|

Solution

Step 1: Find the vertex by solving 3x−12 = 0. The vertex is at x = 4.

Step 2: Make a table of values:

TABLE 6.3:

x y = |3x−12|
0 y = |3(0)−12|= |−12|= 12
4 y = |3(4)−12|= |0|= 0
8 y = |3(8)−12|= |12|= 12

Step 3: Plot the points and draw two straight lines that meet at the vertex.
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Solve Real-World Problems Using Absolute Value Equations

Example 9

A company packs coffee beans in airtight bags. Each bag should weigh 16 ounces, but it is hard to fill each bag to
the exact weight. After being filled, each bag is weighed; if it is more than 0.25 ounces overweight or underweight,
it is emptied and repacked. What are the lightest and heaviest acceptable bags?

Solution

The weight of each bag is allowed to be 0.25 ounces away from 16 ounces; in other words, the difference between
the bag’s weight and 16 ounces is allowed to be 0.25 ounces. So if x is the weight of a bag in ounces, then the
equation that describes this problem is |x−16|= 0.25.

Now we must consider the positive and negative options and solve each equation separately:

x−16 = 0.25 and x−16 =−0.25

x = 16.25 x = 15.75

The lightest acceptable bag weighs 15.75 ounces and the heaviest weighs 16.25 ounces.

We see that 16.25− 16 = 0.25 ounces and 16− 15.75 = 0.25 ounces. The answers are 0.25 ounces bigger and
smaller than 16 ounces respectively.

The answer checks out.

The answer you just found describes the lightest and heaviest acceptable bags of coffee beans. But how do we
describe the total possible range of acceptable weights? That’s where inequalities become useful once again.

Absolute Value Inequalities

Absolute value inequalities are solved in a similar way to absolute value equations. In both cases, you must consider
the same two options:

1. The expression inside the absolute value is not negative.
2. The expression inside the absolute value is negative.
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Then you must solve each inequality separately.

Solve Absolute Value Inequalities

Consider the inequality |x|≤ 3. Since the absolute value of x represents the distance from zero, the solutions to this
inequality are those numbers whose distance from zero is less than or equal to 3. The following graph shows this
solution:

Notice that this is also the graph for the compound inequality −3≤ x≤ 3.

Now consider the inequality |x|> 2. Since the absolute value of x represents the distance from zero, the solutions
to this inequality are those numbers whose distance from zero are more than 2. The following graph shows this
solution.

Notice that this is also the graph for the compound inequality x <−2 or x > 2.

Example 1

Solve the following inequalities and show the solution graph.

a) |x|< 5

b) |x|≥ 2.5

Solution

a) |x|< 5 represents all numbers whose distance from zero is less than 5.

This answer can be written as “−5 < x < 5”.

b) |x|≥ 2.5 represents all numbers whose distance from zero is more than or equal to 2.5

This answer can be written as “x≤−2.5 or x≥ 2.5”.

Rewrite and Solve Absolute Value Inequalities as Compound Inequalities

In the last section you saw that absolute value inequalities are compound inequalities.

Inequalities of the type |x|< a can be rewritten as “−a < x < a”.

Inequalities of the type |x|> b can be rewritten as “x <−b or x > b.”
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To solve an absolute value inequality, we separate the expression into two inequalities and solve each of them
individually.

Example 2

Solve the inequality |x−3|< 7 and show the solution graph.

Solution

Re-write as a compound inequality: −7 < x−3 < 7

Write as two separate inequalities: x−3 < 7 and x−3 >−7

Solve each inequality: x < 10 and x >−4

Re-write solution: −4 < x < 10

The solution graph is

We can think of the question being asked here as “What numbers are within 7 units of 3?”; the answer can then be
expressed as “All the numbers between -4 and 10.”

Example 3

Solve the inequality |4x+5|≤ 13 and show the solution graph.

Solution

Re-write as a compound inequality: −13≤ 4x+5≤ 13

Write as two separate inequalities: 4x+5≤ 13 and 4x+5≥−13

Solve each inequality: 4x≤ 8 and 4x≥−18

x≤ 2 and x≥−9
2

Re-write solution: −9
2 ≤ x≤ 2

The solution graph is

Example 4

Solve the inequality |x+12|> 2 and show the solution graph.

Solution

Re-write as a compound inequality: x+12 <−2 or x+12 > 2

Solve each inequality: x <−14 or x >−10

The solution graph is

Example 5

Solve the inequality |8x−15|≥ 9 and show the solution graph.

Solution

Re-write as a compound inequality: 8x−15≤−9 or 8x−15≥ 9
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Solve each inequality: 8x≤ 6 or 8x≥ 24

x≤ 3
4 or x≥ 3

The solution graph is

Solve Real-World Problems Using Absolute Value Inequalities

Absolute value inequalities are useful in problems where we are dealing with a range of values.

Example 6

The velocity of an object is given by the formula v = 25t−80, where the time is expressed in seconds and the velocity
is expressed in feet per second. Find the times for which the magnitude of the velocity is greater than or equal to 60
feet per second.

Solution

The magnitude of the velocity is the absolute value of the velocity. If the velocity is 25t−80 feet per second, then
its magnitude is |25t−80| feet per second. We want to find out when that magnitude is greater than or equal to 60,
so we need to solve |25t−80|≥ 60 for t.

First we have to split it up: 25t−80≥ 60 or 25t−80≤−60

Then solve: 25t ≥ 140 or 25t ≤ 20

t ≥ 5.6 or t ≤ 0.8

The magnitude of the velocity is greater than 60 ft/sec for times less than 0.8 seconds and for times greater than
5.6 seconds.

When t = 0.8 seconds, v = 25(0.8)− 80 = −60 f t/sec. The magnitude of the velocity is 60 ft/sec. (The negative
sign in the answer means that the object is moving backwards.)

When t = 5.6 seconds, v = 25(5.6)−80 = 60 f t/sec.

To find where the magnitude of the velocity is greater than 60 ft/sec, check some arbitrary values in each of the
following time intervals: t ≤ 0.8, 0.8≤ t ≤ 5.6 and t ≥ 5.6.

Check t = 0.5 : v = 25(0.5)−80 =−67.5 f t/sec

Check t = 2 : v = 25(2)−80 =−30 f t/sec

Check t = 6 : v = 25(6)−80 =−70 f t/sec

You can see that the magnitude of the velocity is greater than 60 ft/sec only when t ≥ 5.6 or when t ≤ 0.8.

The answer checks out.

Further Resources

For a multimedia presentation on absolute value equations and inequalities, see http://www.teachertube.com/viewV
ideo.php?video_id=124516.
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Lesson Summary

• The absolute value of a number is its distance from zero on a number line.
• |x|= x if x is not negative, and |x|=−x if x is negative.
• An equation or inequality with an absolute value in it splits into two equations, one where the expression

inside the absolute value sign is positive and one where it is negative. When the expression within the absolute
value is positive, then the absolute value signs do nothing and can be omitted. When the expression within
the absolute value is negative, then the expression within the absolute value signs must be negated before
removing the signs.

• Inequalities of the type |x|< a can be rewritten as “−a < x < a.”
• Inequalities of the type |x|> b can be rewritten as “x <−b or x > b.”

Review Questions

Evaluate the absolute values.

1. |250|
2. |−12|
3.
∣∣−2

5

∣∣
4.
∣∣ 1

10

∣∣
Find the distance between the points.

5. 12 and -11
6. 5 and 22
7. -9 and -18
8. -2 and 3

Solve the absolute value equations and interpret the results by graphing the solutions on the number line.

9. |x−5|= 10
10. |x+2|= 6
11. |5x−2|= 3
12. |x−4|=−3

Graph the absolute value functions.

13. y = |x+3|
14. y = |x−6|
15. y = |4x+2|
16. y =

∣∣ x
3 −4

∣∣
Solve the following inequalities and show the solution graph.

13. |x|≤ 6
14. |x|> 3.5
15. |x|< 12
16. |x|> 10
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17. |7x|≥ 21
18. |x−5|> 8
19. |x+7|< 3
20.

∣∣x− 3
4

∣∣≤ 1
2

21. |2x−5|≥ 13
22. |5x+3|< 7
23.

∣∣ x
3 −4

∣∣≤ 2
24.

∣∣2x
7 +9

∣∣> 5
7

1. How many solutions does the inequality |x|≤ 0 have?
2. How about the inequality |x|≥ 0?

25. A company manufactures rulers. Their 12-inch rulers pass quality control if they are within 1
32 inches of the

ideal length. What is the longest and shortest ruler that can leave the factory?
26. A three month old baby boy weighs an average of 13 pounds. He is considered healthy if he is at most 2.5

lbs. more or less than the average weight. Find the weight range that is considered healthy for three month
old boys.
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6.5 Linear Inequalities in Two Variables

Learning Objectives

• Graph linear inequalities in one variable on the coordinate plane.
• Graph linear inequalities in two variables.
• Solve real-world problems using linear inequalities.

Introduction

Yasmeen is selling handmade bracelets for $5 each and necklaces for $7 each. How many of both does she need to
sell to make at least $100?

A linear inequality in two variables takes the form y > mx+b or y < mx+b. Linear inequalities are closely related
to graphs of straight lines; recall that a straight line has the equation y = mx+b.

When we graph a line in the coordinate plane, we can see that it divides the plane in half:

The solution to a linear inequality includes all the points in one half of the plane. We can tell which half by looking
at the inequality sign:

>The solution set is the half plane above the line.

≥ The solution set is the half plane above the line and also all the points on the line.

<The solution set is the half plane below the line.

≤ The solution set is the half plane below the line and also all the points on the line.

For a strict inequality, we draw a dashed line to show that the points in the line are not part of the solution. For
an inequality that includes the equals sign, we draw a solid line to show that the points on the line are part of the
solution.
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Here are some examples of linear inequality graphs. This is a graph of y ≥ mx+ b; the solution set is the line and
the half plane above the line.

This is a graph of y < mx+b; the solution set is the half plane above the line, not including the line itself.

Graph Linear Inequalities in One Variable in the Coordinate Plane

In the last few sections we graphed inequalities in one variable on the number line. We can also graph inequalities
in one variable on the coordinate plane. We just need to remember that when we graph an equation of the type x = a
we get a vertical line, and when we graph an equation of the type y = b we get a horizontal line.

Example 1

Graph the inequality x > 4 on the coordinate plane.

Solution

First let’s remember what the solution to x > 4 looks like on the number line.
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The solution to this inequality is the set of all real numbers x that are bigger than 4, not including 4. The solution is
represented by a line.

In two dimensions, the solution still consists of all the points to the right of x = 4, but for all possible y−values as
well. This solution is represented by the half plane to the right of x = 4. (You can think of it as being like the solution
graphed on the number line, only stretched out vertically.)

The line x = 4 is dashed because the equals sign is not included in the inequality, meaning that points on the line are
not included in the solution.

Example 2

Graph the inequality |x|≥ 2.

Solution

The absolute value inequality |x|≥ 2 can be re-written as a compound inequality:

x≤−2 or x≥ 2

In other words, the solution is all the coordinate points for which the value of x is smaller than or equal to -2 or
greater than or equal to 2. The solution is represented by the plane to the left of the vertical line x = −2 and the
plane to the right of line x = 2.
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Both vertical lines are solid because points on the lines are included in the solution.

Example 3

Graph the inequality |y|< 5

Solution

The absolute value inequality |y|< 5 can be re-written as −5 < y < 5. This is a compound inequality which can be
expressed as

y >−5 and y < 5

In other words, the solution is all the coordinate points for which the value of y is larger than -5 and smaller than 5.
The solution is represented by the plane between the horizontal lines y =−5 and y = 5.

Both horizontal lines are dashed because points on the lines are not included in the solution.

Graph Linear Inequalities in Two Variables

The general procedure for graphing inequalities in two variables is as follows:

1. Re-write the inequality in slope-intercept form: y = mx+b. Writing the inequality in this form lets you know
the direction of the inequality.

2. Graph the line of the equation y = mx+ b using your favorite method (plotting two points, using slope and
y−intercept, using y−intercept and another point, or whatever is easiest). Draw the line as a dashed line if the
equals sign is not included and a solid line if the equals sign is included.

3. Shade the half plane above the line if the inequality is “greater than.” Shade the half plane under the line if the
inequality is “less than.”

Example 4

Graph the inequality y≥ 2x−3.

Solution

The inequality is already written in slope-intercept form, so it’s easy to graph. First we graph the line y = 2x− 3;
then we shade the half-plane above the line. The line is solid because the inequality includes the equals sign.
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Example 5

Graph the inequality 5x−2y > 4.

Solution

First we need to rewrite the inequality in slope-intercept form:

−2y >−5x+4

y <
5
2

x−2

Notice that the inequality sign changed direction because we divided by a negative number.

To graph the equation, we can make a table of values:

TABLE 6.4:

x y
-2 5

2(−2)−2 =−7
0 5

2(0)−2 =−2
2 5

2(2)−2 = 3

After graphing the line, we shade the plane below the line because the inequality in slope-intercept form is less than.
The line is dashed because the inequality does not include an equals sign.
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Solve Real-World Problems Using Linear Inequalities

In this section, we see how linear inequalities can be used to solve real-world applications.

Example 8

A retailer sells two types of coffee beans. One type costs $9 per pound and the other type costs $7 per pound. Find
all the possible amounts of the two different coffee beans that can be mixed together to get a quantity of coffee beans
costing $8.50 or less.

Solution

Let x = weight of $9 per pound coffee beans in pounds.

Let y = weight of $7 per pound coffee beans in pounds.

The cost of a pound of coffee blend is given by 9x+7y.

We are looking for the mixtures that cost $8.50 or less. We write the inequality 9x+7y≤ 8.50.

Since this inequality is in standard form, it’s easiest to graph it by finding the x− and y−intercepts. When x = 0, we
have 7y = 8.50 or y = 8.50

7 ≈ 1.21. When y = 0, we have 9x = 8.50 or x = 8.50
9 ≈ 0.94. We can then graph the line

that includes those two points.

Now we have to figure out which side of the line to shade. In y−intercept form, we shade the area below the line
when the inequality is “less than.” But in standard form that’s not always true. We could convert the inequality to
y−intercept form to find out which side to shade, but there is another way that can be easier.

The other method, which works for any linear inequality in any form, is to plug a random point into the inequality
and see if it makes the inequality true. Any point that’s not on the line will do; the point (0, 0) is usually the most
convenient.

In this case, plugging in 0 for x and y would give us 9(0)+7(0)≤ 8.50, which is true. That means we should shade
the half of the plane that includes (0, 0). If plugging in (0, 0) gave us a false inequality, that would mean that the
solution set is the part of the plane that does not contain (0, 0).
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Notice also that in this graph we show only the first quadrant of the coordinate plane. That’s because weight values
in the real world are always nonnegative, so points outside the first quadrant don’t represent real-world solutions to
this problem.

Example 9

Julius has a job as an appliance salesman. He earns a commission of $60 for each washing machine he sells and
$130 for each refrigerator he sells. How many washing machines and refrigerators must Julius sell in order to make
$1000 or more in commissions?

Solution

Let x = number of washing machines Julius sells.

Let y = number of refrigerators Julius sells.

The total commission is 60x+130y.

We’re looking for a total commission of $1000 or more, so we write the inequality 60x+130y≥ 1000.

Once again, we can do this most easily by finding the x− and y−intercepts. When x = 0, we have 130y = 1000, or
y = 1000

30 ≈ 7.69. When y = 0, we have 60x = 1000, or x = 1000
60 ≈ 16.67.

We draw a solid line connecting those points, and shade above the line because the inequality is “greater than.” We
can check this by plugging in the point (0, 0): selling 0 washing machines and 0 refrigerators would give Julius a
commission of $0, which is not greater than or equal to $1000, so the point (0, 0) is not part of the solution; instead,
we want to shade the side of the line that does not include it.

306

http://www.ck12.org


www.ck12.org Chapter 6. Linear Inequalities

Notice also that we show only the first quadrant of the coordinate plane, because Julius’s commission should be
nonnegative.

The video at http://www.youtube.com/watch?v=7629PsZLP1A&feature=related contains more examples of real-
world problems using inequalities in two variables.

Review Questions

Graph the following inequalities on the coordinate plane.

1. x < 20
2. y≥−5
3. |x|> 10
4. |y|≤ 7
5. y≤ 4x+3
6. y >− x

2 −6
7. 3x−4y≥ 12
8. x+7y < 5
9. 6x+5y > 1

10. y+5≤−4x+10
11. x− 1

2 y≥ 5
12. 6x+ y < 20
13. 30x+5y < 100
14. Remember what you learned in the last chapter about families of lines.

a. What do the graphs of y > x+2 and y < x+5 have in common?
b. What do you think the graph of x+2 < y < x+5 would look like?

15. How would the answer to problem 6 change if you subtracted 2 from the right-hand side of the inequality?
16. How would the answer to problem 7 change if you added 12 to the right-hand side?
17. How would the answer to problem 8 change if you flipped the inequality sign?
18. A phone company charges 50 cents per minute during the daytime and 10 cents per minute at night. How

many daytime minutes and nighttime minutes could you use in one week if you wanted to pay less than $20?
19. Suppose you are graphing the inequality y > 5x.

a. Why can’t you plug in the point (0, 0) to tell you which side of the line to shade?
b. What happens if you do plug it in?
c. Try plugging in the point (0, 1) instead. Now which side of the line should you shade?

20. A theater wants to take in at least $2000 for a certain matinee. Children’s tickets cost $5 each and adult tickets
cost $10 each.

a. If x represents the number of adult tickets sold and y represents the number of children’s tickets, write
an inequality describing the number of tickets that will allow the theater to meet their minimum take.

b. If 100 children’s tickets and 100 adult tickets have already been sold, what inequality describes how
many more tickets of both types the theater needs to sell?

c. If the theater has only 300 seats (so only 100 are still available), what inequality describes the maximum
number of additional tickets of both types the theater can sell?
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Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9616.
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7.1 Linear Systems by Graphing

Learning Objectives

• Determine whether an ordered pair is a solution to a system of equations.
• Solve a system of equations graphically.
• Solve a system of equations graphically with a graphing calculator.
• Solve word problems using systems of equations.

Introduction

In this lesson, we’ll discover methods to determine if an ordered pair is a solution to a system of two equations.
Then we’ll learn to solve the two equations graphically and confirm that the solution is the point where the two lines
intersect. Finally, we’ll look at real-world problems that can be solved using the methods described in this chapter.

Determine Whether an Ordered Pair is a Solution to a System of Equations

A linear system of equations is a set of equations that must be solved together to find the one solution that fits them
both.

Consider this system of equations:

y = x+2

y =−2x+1

Since the two lines are in a system, we deal with them together by graphing them on the same coordinate axes. We
can use any method to graph them; let’s do it by making a table of values for each line.

Line 1: y = x+2

TABLE 7.1:

x y
0 2
1 3

Line 2: y =−2x+1
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TABLE 7.2:

x y
0 1
1 -1

We already know that any point that lies on a line is a solution to the equation for that line. That means that any
point that lies on both lines in a system is a solution to both equations.

So in this system:

• Point A is not a solution to the system because it does not lie on either of the lines.
• Point B is not a solution to the system because it lies only on the blue line but not on the red line.
• Point C is a solution to the system because it lies on both lines at the same time.

In fact, point C is the only solution to the system, because it is the only point that lies on both lines. For a system
of equations, the geometrical solution is the intersection of the two lines in the system. The algebraic solution is the
ordered pair that solves both equations—in other words, the coordinates of that intersection point.

You can confirm the solution by plugging it into the system of equations, and checking that the solution works in
each equation.

Example 1

Determine which of the points (1, 3), (0, 2), or (2, 7) is a solution to the following system of equations:

y = 4x−1

y = 2x+3

Solution

To check if a coordinate point is a solution to the system of equations, we plug each of the x and y values into the
equations to see if they work.

Point (1, 3):
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y = 4x−1

3 ? = ? 4(1)−1

3 = 3 solution checks

y = 2x+3

3 ? = ? 2(1)+3

3 6= 5 solution does not check

Point (1, 3) is on the line y = 4x−1, but it is not on the line y = 2x+3, so it is not a solution to the system.

Point (0, 2):

y = 4x−1

2 ? = ? 4(0)−1

2 6=−1 solution does not check

Point (0, 2) is not on the line y = 4x−1, so it is not a solution to the system. Note that it is not necessary to check
the second equation because the point needs to be on both lines for it to be a solution to the system.

Point (2, 7):

y = 4x−1

7 ? = ? 4(2)−1

7 = 7 solution checks

y = 2x+3

7 ? = ? 2(2)+3

7 = 7 solution checks

Point (2, 7) is a solution to the system since it lies on both lines.

The solution to the system is the point (2, 7).

Determine the Solution to a Linear System by Graphing

The solution to a linear system of equations is the point, (if there is one) that lies on both lines. In other words, the
solution is the point where the two lines intersect.

We can solve a system of equations by graphing the lines on the same coordinate plane and reading the intersection
point from the graph.

This method most often offers only approximate solutions, so it’s not sufficient when you need an exact answer.
However, graphing the system of equations can be a good way to get a sense of what’s really going on in the
problem you’re trying to solve, especially when it’s a real-world problem.
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Example 2

Solve the following system of equations by graphing:

y = 3x−5

y =−2x+5

Solution

Graph both lines on the same coordinate axis using any method you like.

In this case, let’s make a table of values for each line.

Line 1: y = 3x−5

TABLE 7.3:

x y
1 -2
2 1

Line 2: y =−2x+5

TABLE 7.4:

x y
1 3
2 1

The solution to the system is given by the intersection point of the two lines. The graph shows that the lines intersect
at point (2, 1). So the solution is x = 2,y = 1or (2, 1).

Example 3

Solve the following system of equations by graphing:

2x+3y = 6

4x− y =−2
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Solution

Since the equations are in standard form, this time we’ll graph them by finding the x− and y−intercepts of each of
the lines.

Line 1: 2x+3y = 6

x−intercept: set y = 0⇒ 2x = 6⇒ x = 3 so the intercept is (3, 0)

y−intercept: set x = 0⇒ 3y = 6⇒ y = 2 so the intercept is (0, 2)

Line 2: −4x+ y = 2

x−intercept: set y = 0⇒−4x = 2⇒ x =−1
2 so the intercept is

(
−1

2 ,0
)

y−intercept: set x = 0⇒ y = 2 so the intercept is (0, 2)

The graph shows that the lines intersect at (0, 2). Therefore, the solution to the system of equations is x = 0,y = 2.

Solving a System of Equations Using a Graphing Calculator

As an alternative to graphing by hand, you can use a graphing calculator to find or check solutions to a system of
equations.

Example 4

Solve the following system of equations using a graphing calculator.

x−3y = 4

2x+5y = 8

To input the equations into the calculator, you need to rewrite them in slope-intercept form (that is, y = mx+b form).

x−3y = 4 y = 1
3 x− 4

3
⇒

2x+5y = 8 y =−2
5 x+ 8

5

Press the [y=] button on the graphing calculator and enter the two functions as:
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Y1 =
x
3
− 4

3

Y2 =
−2x

5
+

8
5

Now press [GRAPH]. Here’s what the graph should look like on a TI-83 family graphing calculator with the window
set to −5≤ x≤ 10 and −5≤ y≤ 5.

There are a few different ways to find the intersection point.

Option 1: Use [TRACE] and move the cursor with the arrows until it is on top of the intersection point. The values
of the coordinate point will be shown on the bottom of the screen. The second screen above shows the values to be
X = 4.0957447 and Y = 0.03191489.

Use the [ZOOM] function to zoom into the intersection point and find a more accurate result. The third screen
above shows the system of equations after zooming in several times. A more accurate solution appears to be X = 4
and Y = 0.

Option 2 Look at the table of values by pressing [2nd] [GRAPH]. The first screen below shows a table of values for
this system of equations. Scroll down until the Y−values for the two functions are the same. In this case this occurs
at X = 4 and Y = 0.

(Use the [TBLSET] function to change the starting value for your table of values so that it is close to the intersection
point and you don’t have to scroll too long. You can also improve the accuracy of the solution by setting the value
of ∆ Table smaller.)

Option 3 Using the [2nd] [TRACE] function gives the second screen shown above.

Scroll down and select “intersect.”

The calculator will display the graph with the question [FIRSTCURVE]? Move the cursor along the first curve until
it is close to the intersection and press [ENTER].

The calculator now shows [SECONDCURVE]?

Move the cursor to the second line (if necessary) and press [ENTER].

The calculator displays [GUESS]?

Press [ENTER] and the calculator displays the solution at the bottom of the screen (see the third screen above).

The point of intersection is X = 4 and Y = 0. Note that with this method, the calculator works out the intersection
point for you, which is generally more accurate than your own visual estimate.

Solve Real-World Problems Using Graphs of Linear Systems

Consider the following problem:

315

http://www.ck12.org


7.1. Linear Systems by Graphing www.ck12.org

Peter and Nadia like to race each other. Peter can run at a speed of 5 feet per second and Nadia can run at a speed
of 6 feet per second. To be a good sport, Nadia likes to give Peter a head start of 20 feet. How long does Nadia take
to catch up with Peter? At what distance from the start does Nadia catch up with Peter?

Let’s start by drawing a sketch. Here’s what the race looks like when Nadia starts running; we’ll call this time t = 0.

Now let’s define two variables in this problem:

t = the time from when Nadia starts running

d = the distance of the runners from the starting point.

Since there are two runners, we need to write equations for each of them. That will be the system of equations for
this problem.

For each equation, we use the formula: distance = speed× time

Nadia’s equation: d = 6t

Peter’s equation: d = 5t +20

(Remember that Peter was already 20 feet from the starting point when Nadia started running.)

Let’s graph these two equations on the same coordinate axes.

Time should be on the horizontal axis since it is the independent variable. Distance should be on the vertical axis
since it is the dependent variable.

We can use any method for graphing the lines, but in this case we’ll use the slope–intercept method since it makes
more sense physically.

To graph the line that describes Nadia’s run, start by graphing the y−intercept: (0, 0). (If you don’t see that this is
the y−intercept, try plugging in the test-value of x = 0.)

The slope tells us that Nadia runs 6 feet every one second, so another point on the line is (1, 6). Connecting these
points gives us Nadia’s line:

316

http://www.ck12.org


www.ck12.org Chapter 7. Solving Systems of Equations and Inequalities

To graph the line that describes Peter’s run, again start with the y−intercept. In this case this is the point (0, 20).

The slope tells us that Peter runs 5 feet every one second, so another point on the line is (1, 25). Connecting these
points gives us Peter’s line:

In order to find when and where Nadia and Peter meet, we’ll graph both lines on the same graph and extend the lines
until they cross. The crossing point is the solution to this problem.
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The graph shows that Nadia and Peter meet 20 seconds after Nadia starts running, and 120 feet from the starting
point.

These examples are great at demonstrating that the solution to a system of linear equations means the point at which
the lines intersect. This is, in fact, the greatest strength of the graphing method because it offers a very visual
representation of system of equations and its solution. You can also see, though, that finding the solution from a
graph requires very careful graphing of the lines, and is really only practical when you’re sure that the solution gives
integer values for x and y. Usually, this method can only offer approximate solutions to systems of equations, so we
need to use other methods to get an exact solution.

Review Questions

Determine which ordered pair satisfies the system of linear equations.

1. y = 3x−2
y =−x

a. (1, 4)
b. (2, 9)
c.
(1

2 ,
−1
2

)
2. y = 2x−3

y = x+5

a. (8, 13)
b. (-7, 6)
c. (0, 4)

3. 2x+ y = 8
5x+2y = 10

a. (-9, 1)
b. (-6, 20)
c. (14, 2)

4. 3x+2y = 6
y = 1

2 x−3

a.
(
3, −3

2

)
b. (-4, 3)
c.
(1

2 ,4
)

5. 2x− y = 10
3x+ y =−5

a. (4, -2)
b. (1, -8)
c. (-2, 5)

Solve the following systems using the graphing method.

6. y = x+3
y =−x+3

7. y = 3x−6
y =−x+6
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8. 2x = 4
y =−3

9. y =−x+5
− x+ y = 1

10. x+2y = 8
5x+2y = 0

11. 3x+2y = 12
4x− y = 5

12. 5x+2y =−4
x− y = 2

13. 2x+4 = 3y
x−2y+4 = 0

14. y = 1
2 x−3

2x−5y = 5
15. y = 4

x = 8−3y
16. Try to solve the following system using the graphing method: y = 3

5 x+5
y =−2x− 1

2 .

a. What does it look like the x−coordinate of the solution should be?
b. Does that coordinate really give the same y−value when you plug it into both equations?
c. Why is it difficult to find the real solution to this system?

17. Try to solve the following system using the graphing method: y = 4x+8
y = 5x+1. Use a grid with x−values and y−values ranging from -10 to 10.

a. Do these lines appear to intersect?
b. Based on their equations, are they parallel?
c. What would we have to do to find their intersection point?

18. Try to solve the following system using the graphing method: y = 1
2 x+4

y = 4
9 x+ 9

2 . Use the same grid as before.

a. Can you tell exactly where the lines cross?
b. What would we have to do to make it clearer?

Solve the following problems by using the graphing method.

19. Mary’s car has broken down and it will cost her $1200 to get it fixed—or, for $4500, she can buy a new, more
efficient car instead. Her present car uses about $2000 worth of gas per year, while gas for the new car would
cost about $1500 per year. After how many years would the total cost of fixing the car equal the total cost of
replacing it?

20. Juan is considering two cell phone plans. The first company charges $120 for the phone and $30 per month
for the calling plan that Juan wants. The second company charges $40 for the same phone but charges $45 per
month for the calling plan that Juan wants. After how many months would the total cost of the two plans be
the same?

21. A tortoise and hare decide to race 30 feet. The hare, being much faster, decides to give the tortoise a 20 foot
head start. The tortoise runs at 0.5 feet/sec and the hare runs at 5.5 feet per second. How long until the hare
catches the tortoise?
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7.2 Solving Linear Systems by Substitution

Learning Objectives

• Solve systems of equations with two variables by substituting for either variable.
• Manipulate standard form equations to isolate a single variable.
• Solve real-world problems using systems of equations.
• Solve mixture problems using systems of equations.

Introduction

In this lesson, we’ll learn to solve a system of two equations using the method of substitution.

Solving Linear Systems Using Substitution of Variable Expressions

Let’s look again at the problem about Peter and Nadia racing.

Peter and Nadia like to race each other. Peter can run at a speed of 5 feet per second and Nadia can run at a speed
of 6 feet per second. To be a good sport, Nadia likes to give Peter a head start of 20 feet. How long does Nadia take
to catch up with Peter? At what distance from the start does Nadia catch up with Peter?

In that example we came up with two equations:

Nadia’s equation: d = 6t

Peter’s equation: d = 5t +20

Each equation produced its own line on a graph, and to solve the system we found the point at which the lines
intersected—the point where the values for d and t satisfied both relationships. When the values for d and t are
equal, that means that Peter and Nadia are at the same place at the same time.

But there’s a faster way than graphing to solve this system of equations. Since we want the value of d to be the
same in both equations, we could just set the two right-hand sides of the equations equal to each other to solve for
t. That is, if d = 6t and d = 5t +20, and the two d’s are equal to each other, then by the transitive property we have
6t = 5t +20. We can solve this for t:

6t = 5t +20 subtract 5t f rom both sides :

t = 20 substitute this value f or t into Nadia′s equation :

d = 6 ·20 = 120

Even if the equations weren’t so obvious, we could use simple algebraic manipulation to find an expression for one
variable in terms of the other. If we rearrange Peter’s equation to isolate t:
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d = 5t +20 subtract 20 f rom both sides :

d−20 = 5t divide by 5 :
d−20

5
= t

We can now substitute this expression for t into Nadia’s equation (d = 6t) to solve:

d = 6
(

d−20
5

)
multiply both sides by 5 :

5d = 6(d−20) distribute the 6 :

5d = 6d−120 subtract 6d f rom both sides :

−d =−120 divide by −1 :

d = 120 substitute value f or d into our expression f or t :

t =
120−20

5
=

100
5

= 20

So we find that Nadia and Peter meet 20 seconds after they start racing, at a distance of 120 feet away.

The method we just used is called the Substitution Method. In this lesson you’ll learn several techniques for
isolating variables in a system of equations, and for using those expressions to solve systems of equations that
describe situations like this one.

Example 1

Let’s look at an example where the equations are written in standard form.

Solve the system

2x+3y = 6

−4x+ y = 2

Again, we start by looking to isolate one variable in either equation. If you look at the second equation, you should
see that the coefficient of y is 1. So the easiest way to start is to use this equation to solve for y.

Solve the second equation for y:

−4x+ y = 2 add 4x to both sides :

y = 2+4x

Substitute this expression into the first equation:

2x+3(2+4x) = 6 distribute the 3 :

2x+6+12x = 6 collect like terms :

14x+6 = 6 subtract 6 f rom both sides :

14x = 0 and hence :

x = 0
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Substitute back into our expression for y:

y = 2+4 ·0 = 2

As you can see, we end up with the same solution (x = 0,y = 2) that we found when we graphed these functions
back in Lesson 7.1. So long as you are careful with the algebra, the substitution method can be a very efficient way
to solve systems.

Next, let’s look at a more complicated example. Here, the values of x and y we end up with aren’t whole numbers,
so they would be difficult to read off a graph!

Example 2

Solve the system

2x+3y = 3

2x−3y =−1

Again, we start by looking to isolate one variable in either equation. In this case it doesn’t matter which equation we
use—all the variables look about equally easy to solve for.

So let’s solve the first equation for x:

2x+3y = 3 subtract 3y f rom both sides :

2x = 3−3y divide both sides by 2 :

x =
1
2
(3−3y)

Substitute this expression into the second equation:

�2 ·
1
2
(3−3y)−3y =−1 cancel the f raction and re−write terms :

3−3y−3y =−1 collect like terms :

3−6y =−1 subtract 3 f rom both sides :

−6y =−4 divide by −6 :

y =
2
3

Substitute into the expression we got for x:

x =
1
2

(
3− �3

(
2
�3

))
x =

1
2

So our solution is x = 1
2 ,y = 2

3 . You can see how the graphical solution
(1

2 ,
2
3

)
might have been difficult to read

accurately off a graph!
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Solving Real-World Problems Using Linear Systems

Simultaneous equations can help us solve many real-world problems. We may be considering a purchase—for
example, trying to decide whether it’s cheaper to buy an item online where you pay shipping or at the store where
you do not. Or you may wish to join a CD music club, but aren’t sure if you would really save any money by buying
a new CD every month in that way. Or you might be considering two different phone contracts. Let’s look at an
example of that now.

Example 3

Anne is trying to choose between two phone plans. The first plan, with Vendafone, costs $20 per month, with calls
costing an additional 25 cents per minute. The second company, Sellnet, charges $40 per month, but calls cost only
8 cents per minute. Which should she choose?

You should see that Anne’s choice will depend upon how many minutes of calls she expects to use each month. We
start by writing two equations for the cost in dollars in terms of the minutes used. Since the number of minutes is the
independent variable, it will be our x. Cost is dependent on minutes – the cost per month is the dependent variable
and will be assigned y.

For Vendafone: y = 0.25x+20

For Sellnet: y = 0.08x+40

By writing the equations in slope-intercept form (y = mx+b), you can sketch a graph to visualize the situation:

The line for Vendafone has an intercept of 20 and a slope of 0.25. The Sellnet line has an intercept of 40 and a slope
of 0.08 (which is roughly a third of the Vendafone line’s slope). In order to help Anne decide which to choose, we’ll
find where the two lines cross, by solving the two equations as a system.

Since equation 1 gives us an expression for y(0.25x+20), we can substitute this expression directly into equation 2:

0.25x+20 = 0.08x+40 subtract 20 f rom both sides :

0.25x = 0.08x+20 subtract 0.08x f rom both sides :

0.17x = 20 divide both sides by 0.17 :

x = 117.65 minutes rounded to 2 decimal places.

So if Anne uses 117.65 minutes a month (although she can’t really do exactly that, because phone plans only count
whole numbers of minutes), the phone plans will cost the same. Now we need to look at the graph to see which
plan is better if she uses more minutes than that, and which plan is better if she uses fewer. You can see that the
Vendafone plan costs more when she uses more minutes, and the Sellnet plan costs more with fewer minutes.
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So, if Anne will use 117 minutes or less every month she should choose Vendafone. If she plans on using 118
or more minutes she should choose Sellnet.

Mixture Problems

Systems of equations crop up frequently in problems that deal with mixtures of two things—chemicals in a solution,
nuts and raisins, or even the change in your pocket! Let’s look at some examples of these.

Example 4

Janine empties her purse and finds that it contains only nickels (worth 5 cents each) and dimes (worth 10 cents
each). If she has a total of 7 coins and they have a combined value of 45 cents, how many of each coin does she
have?

Since we have 2 types of coins, let’s call the number of nickels x and the number of dimes y. We are given two key
pieces of information to make our equations: the number of coins and their value.

of coins equation: x+ y = 7 (number o f nickels)+(number o f dimes)

value equation: 5x+10y = 55 (since nickels are worth 5c and dimes 10c)

We can quickly rearrange the first equation to isolate x:

x = 7− y now substitute into equation 2 :

5(7− y)+10y = 55 distribute the 5 :

35−5y+10y = 55 collect like terms :

35+5y = 55 subtract 35 f rom both sides :

5y = 20 divide by 5 :

y = 4 substitute back into equation 1 :

x+4 = 7 subtract 4 f rom both sides :

x = 3

Janine has 3 nickels and 4 dimes.

Sometimes a question asks you to determine (from concentrations) how much of a particular substance to use. The
substance in question could be something like coins as above, or it could be a chemical in solution, or even heat.
In such a case, you need to know the amount of whatever substance is in each part. There are several common
situations where to get one equation you simply add two given quantities, but to get the second equation you need
to use a product. Three examples are below.

TABLE 7.5:

Type of mixture First equation Second equation
Coins (items with $ value) total number of items (n1 +n2) total value (item value × no. of

items)
Chemical solutions total solution volume (V1 +V2) amount of solute (vol × concentra-

tion)
Density of two substances total amount or volume of mix total mass (volume × density)
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For example, when considering mixing chemical solutions, we will most likely need to consider the total amount
of solute in the individual parts and in the final mixture. (A solute is the chemical that is dissolved in a solution.
An example of a solute is salt when added to water to make a brine.) To find the total amount, simply multiply the
amount of the mixture by the fractional concentration. To illustrate, let’s look at an example where you are given
amounts relative to the whole.

Example 5

A chemist needs to prepare 500 ml of copper-sulfate solution with a 15% concentration. She wishes to use a high
concentration solution (60%) and dilute it with a low concentration solution (5%) in order to do this. How much of
each solution should she use?

Solution

To set this problem up, we first need to define our variables. Our unknowns are the amount of concentrated solution
(x) and the amount of dilute solution (y). We will also convert the percentages (60%, 15% and 5%) into decimals
(0.6, 0.15 and 0.05). The two pieces of critical information are the final volume (500 ml) and the final amount of
solute (15% of 500 ml = 75 ml). Our equations will look like this:

Volume equation: x+ y = 500

Solute equation: 0.6x+0.05y = 75

To isolate a variable for substitution, we can see it’s easier to start with equation 1:

x+ y = 500 subtract y f rom both sides :

x = 500− y now substitute into equation 2 :

0.6(500− y)+0.05y = 75 distribute the 0.6 :

300−0.6y+0.05y = 75 collect like terms :

300−0.55y = 75 subtract 300 f rom both sides :

−0.55y =−225 divide both sides by −0.55 :

y = 409 ml substitute back into equation f or x :

x = 500−409 = 91 ml

So the chemist should mix 91 ml of the 60% solution with 409 ml of the 5% solution.

Further Practice

For lots more practice solving linear systems, check out this web page: http://www.algebra.com/algebra/homework/
coordinate/practice-linear-system.epl

After clicking to see the solution to a problem, you can click the back button and then click Try Another Practice
Linear System to see another problem.

Review Questions

1. Solve the system: x+2y = 9
3x+5y = 20
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2. Solve the system: x−3y = 10
2x+ y = 13

3. Solve the system: 2x+0.5y =−10
x− y =−10

4. Solve the system: 2x+0.5y = 3
x+2y = 8.5

5. Solve the system: 3x+5y =−1
x+2y =−1

6. Solve the system: 3x+5y =−3
x+2y =−4

3
7. Solve the system: x− y =−12

5
2x+5y =−2

8. Of the two non-right angles in a right angled triangle, one measures twice as many degrees as the other. What
are the angles?

9. The sum of two numbers is 70. They differ by 11. What are the numbers?
10. A number plus half of another number equals 6; twice the first number minus three times the second number

equals 4. What are the numbers?
11. A rectangular field is enclosed by a fence on three sides and a wall on the fourth side. The total length of the

fence is 320 yards. If the field has a total perimeter of 400 yards, what are the dimensions of the field?

12. A ray cuts a line forming two angles. The difference between the two angles is 18◦. What does each angle
measure?

13. I have $15 and wish to buy five pounds of mixed nuts for a party. Peanuts cost $2.20 per pound. Cashews cost
$4.70 per pound.

a. How many pounds of each should I buy?
b. If I suddenly realize I need to set aside $5 to buy chips, can I still buy 5 pounds of nuts with the remaining

$10?
c. What’s the greatest amount of nuts I can buy?
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14. A chemistry experiment calls for one liter of sulfuric acid at a 15% concentration, but the supply room only
stocks sulfuric acid in concentrations of 10% and 35%.

a. How many liters of each should be mixed to give the acid needed for the experiment?
b. How many liters should be mixed to give two liters at a 15% concentration?

15. Bachelle wants to know the density of her bracelet, which is a mix of gold and silver. Density is total mass
divided by total volume. The density of gold is 19.3 g/cc and the density of silver is 10.5 g/cc. The jeweler told
her that the volume of silver in the bracelet was 10 cc and the volume of gold was 20 cc. Find the combined
density of her bracelet.

16. Jason is five years older than Becky, and the sum of their ages is 23. What are their ages?
17. Tickets to a show cost $10 in advance and $15 at the door. If 120 tickets are sold for a total of $1390, how

many of the tickets were bought in advance?
18. The multiple-choice questions on a test are worth 2 points each, and the short-answer questions are worth 5

points each.

a. If the whole test is worth 100 points and has 35 questions, how many of the questions are multiple-choice
and how many are short-answer?

b. If Kwan gets 31 questions right and ends up with a score of 86 on the test, how many questions of each
type did she get right? (Assume there is no partial credit.)

c. If Ashok gets 5 questions wrong and ends up with a score of 87 on the test, how many questions of each
type did he get wrong? (Careful!)

d. What are two ways you could have set up the equations for part c?
e. How could you have set up part b differently?
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7.3 Solving Linear Systems by Elimination

Learning Objectives

• Solve a linear system of equations using elimination by addition.
• Solve a linear system of equations using elimination by subtraction.
• Solve a linear system of equations by multiplication and then addition or subtraction.
• Compare methods for solving linear systems.
• Solve real-world problems using linear systems by any method.

Introduction

In this lesson, we’ll see how to use simple addition and subtraction to simplify our system of equations to a single
equation involving a single variable. Because we go from two unknowns (x and y) to a single unknown (either x
or y), this method is often referred to by solving by elimination. We eliminate one variable in order to make our
equations solvable! To illustrate this idea, let’s look at the simple example of buying apples and bananas.

Example 1

If one apple plus one banana costs $1.25 and one apple plus 2 bananas costs $2.00, how much does one banana
cost? One apple?

It shouldn’t take too long to discover that each banana costs $0.75. After all, the second purchase just contains 1
more banana than the first, and costs $0.75 more, so that one banana must cost $0.75.

Here’s what we get when we describe this situation with algebra:

a+b = 1.25

a+2b = 2.00

Now we can subtract the number of apples and bananas in the first equation from the number in the second equation,
and also subtract the cost in the first equation from the cost in the second equation, to get the difference in cost that
corresponds to the difference in items purchased.

(a+2b)− (a+b) = 2.00−1.25→ b = 0.75

That gives us the cost of one banana. To find out how much one apple costs, we subtract $0.75 from the total cost of
one apple and one banana.

a+0.75 = 1.25→ a = 1.25−0.75→ a = 0.50

So an apple costs 50 cents.
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To solve systems using addition and subtraction, we’ll be using exactly this idea – by looking at the sum or difference
of the two equations we can determine a value for one of the unknowns.

Solving Linear Systems Using Addition of Equations

Often considered the easiest and most powerful method of solving systems of equations, the addition (or elimination)
method lets us combine two equations in such a way that the resulting equation has only one variable. We can then
use simple algebra to solve for that variable. Then, if we need to, we can substitute the value we get for that variable
back into either one of the original equations to solve for the other variable.

Example 2

Solve this system by addition:

3x+2y = 11

5x−2y = 13

Solution

We will add everything on the left of the equals sign from both equations, and this will be equal to the sum of
everything on the right:

(3x+2y)+(5x−2y) = 11+13→ 8x = 24→ x = 3

A simpler way to visualize this is to keep the equations as they appear above, and to add them together vertically,
going down the columns. However, just like when you add units, tens and hundreds, you MUST be sure to keep the
x′s and y′s in their own columns. You may also wish to use terms like “0y′′ as a placeholder!

3x+2y = 11

+ (5x−2y) = 13

8x+0y = 24

Again we get 8x = 24, or x = 3. To find a value for y, we simply substitute our value for x back in.

Substitute x = 3 into the second equation:

5 ·3−2y = 13 since 5×3 = 15, we subtract 15 f rom both sides :

−2y =−2 divide by −2 to get :

y = 1

The reason this method worked is that the y−coefficients of the two equations were opposites of each other: 2 and
-2. Because they were opposites, they canceled each other out when we added the two equations together, so our
final equation had no y−term in it and we could just solve it for x.

In a little while we’ll see how to use the addition method when the coefficients are not opposites, but for now let’s
look at another example where they are.
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Example 3

Andrew is paddling his canoe down a fast-moving river. Paddling downstream he travels at 7 miles per hour, relative
to the river bank. Paddling upstream, he moves slower, traveling at 1.5 miles per hour. If he paddles equally hard in
both directions, how fast is the current? How fast would Andrew travel in calm water?

Solution

First we convert our problem into equations. We have two unknowns to solve for, so we’ll call the speed that Andrew
paddles at x, and the speed of the river y. When traveling downstream, Andrew speed is boosted by the river current,
so his total speed is his paddling speed plus the speed of the river (x+ y). Traveling upstream, the river is working
against him, so his total speed is his paddling speed minus the speed of the river (x− y).

Downstream Equation: x+ y = 7

Upstream Equation: x− y = 1.5

Next we’ll eliminate one of the variables. If you look at the two equations, you can see that the coefficient of y is +1
in the first equation and -1 in the second. Clearly (+1)+ (−1) = 0, so this is the variable we will eliminate. To do
this we simply add equation 1 to equation 2. We must be careful to collect like terms, and make sure that everything
on the left of the equals sign stays on the left, and everything on the right stays on the right:

(x+ y)+(x− y) = 7+1.5⇒ 2x = 8.5⇒ x = 4.25

Or, using the column method we used in example 2:

x+ y = 7

+ x− y = 1.5

2x+0y = 8.5

Again we get 2x = 8.5, or x = 4.25. To find a corresponding value for y, we plug our value for x into either equation
and isolate our unknown. In this example, we’ll plug it into the first equation:

4.25+ y = 7 subtract 4.25 f rom both sides :

y = 2.75

Andrew paddles at 4.25 miles per hour. The river moves at 2.75 miles per hour.

Solving Linear Systems Using Subtraction of Equations

Another, very similar method for solving systems is subtraction. When the x− or y−coefficients in both equations
are the same (including the sign) instead of being opposites, you can subtract one equation from the other.

If you look again at Example 3, you can see that the coefficient for x in both equations is +1. Instead of adding the
two equations together to get rid of the y′s, you could have subtracted to get rid of the x′s:
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(x+ y)− (x− y) = 7−1.5⇒ 2y = 5.5⇒ y = 2.75

or...

x+ y = 7

− (x− y) =−1.5

0x+2y = 5.5

So again we get y = 2.75, and we can plug that back in to determine x.

The method of subtraction is just as straightforward as addition, so long as you remember the following:

• Always put the equation you are subtracting in parentheses, and distribute the negative.
• Don’t forget to subtract the numbers on the right-hand side.
• Always remember that subtracting a negative is the same as adding a positive.

Example 4

Peter examines the coins in the fountain at the mall. He counts 107 coins, all of which are either pennies or nickels.
The total value of the coins is $3.47. How many of each coin did he see?

Solution

We have 2 types of coins, so let’s call the number of pennies x and the number of nickels y. The total value of all the
pennies is just x, since they are worth 1�c each. The total value of the nickels is 5y. We are given two key pieces of
information to make our equations: the number of coins and their value in cents.

of coins equation : x+ y = 107 (number o f pennies)+(number o f nickels)

value equation : x+5y = 347 pennies are worth 1�c, nickels are worth 5�c.

We’ll jump straight to subtracting the two equations:

x+ y = 107

− (x+5y) =−347

−4y =−240

y = 60

Substituting this value back into the first equation:

x+60 = 107 subtract 60 f rom both sides :

x = 47

So Peter saw 47 pennies (worth 47 cents) and 60 nickels (worth $3.00) making a total of $3.47.

Solving Linear Systems Using Multiplication

So far, we’ve seen that the elimination method works well when the coefficient of one variable happens to be the
same (or opposite) in the two equations. But what if the two equations don’t have any coefficients the same?
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It turns out that we can still use the elimination method; we just have to make one of the coefficients match. We can
accomplish this by multiplying one or both of the equations by a constant.

Here’s a quick review of how to do that. Consider the following questions:

1. If 10 apples cost $5, how much would 30 apples cost?
2. If 3 bananas plus 2 carrots cost $4, how mush would 6 bananas plus 4 carrots cost?

If you look at the first equation, it should be obvious that each apple costs $0.50. So 30 apples should cost $15.00.

The second equation is trickier; it isn’t obvious what the individual price for either bananas or carrots is. Yet we
know that the answer to question 2 is $8.00. How?

If we look again at question 1, we see that we can write an equation: 10a = 5 (a being the cost of 1 apple). So to
find the cost of 30 apples, we could solve for a and then multiply by 30—but we could also just multiply both sides
of the equation by 3. We would get 30a = 15, and that tells us that 30 apples cost $15.

And we can do the same thing with the second question. The equation for this situation is 3b+ 2c = 4, and we
can see that we need to solve for (6b+ 4c), which is simply 2 times (3b+ 2c)! So algebraically, we are simply
multiplying the entire equation by 2:

2(3b+2c) = 2 ·4 distribute and multiply :

6b+4c = 8

So when we multiply an equation, all we are doing is multiplying every term in the equation by a fixed amount.

Solving a Linear System by Multiplying One Equation

If we can multiply every term in an equation by a fixed number (a scalar), that means we can use the addition method
on a whole new set of linear systems. We can manipulate the equations in a system to ensure that the coefficients of
one of the variables match.

This is easiest to do when the coefficient as a variable in one equation is a multiple of the coefficient in the other
equation.

Example 5

Solve the system:

7x+4y = 17

5x−2y = 11

Solution

You can easily see that if we multiply the second equation by 2, the coefficients of y will be +4 and -4, allowing us
to solve the system by addition:

2 times equation 2:
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10x−4y = 22 now add to equation one :

+ (7x+4y) = 17

17x = 34

divide by 17 to get : x = 2

Now simply substitute this value for x back into equation 1:

7 ·2+4y = 17 since 7×2 = 14, subtract 14 f rom both sides :

4y = 3 divide by 4 :

y = 0.75

Example 6

Anne is rowing her boat along a river. Rowing downstream, it takes her 2 minutes to cover 400 yards. Rowing
upstream, it takes her 8 minutes to travel the same 400 yards. If she was rowing equally hard in both directions,
calculate, in yards per minute, the speed of the river and the speed Anne would travel in calm water.

Solution

Step one: first we convert our problem into equations. We know that distance traveled is equal to speed × time.
We have two unknowns, so we’ll call the speed of the river x, and the speed that Anne rows at y. When traveling
downstream, her total speed is her rowing speed plus the speed of the river, or (x+ y). Going upstream, her speed is
hindered by the speed of the river, so her speed upstream is (x− y).

Downstream Equation: 2(x+ y) = 400

Upstream Equation: 8(x− y) = 400

Distributing gives us the following system:

2x+2y = 400

8x−8y = 400

Right now, we can’t use the method of elimination because none of the coefficients match. But if we multiplied the
top equation by 4, the coefficients of y would be +8 and -8. Let’s do that:

8x+8y = 1,600

+ (8x−8y) = 400

16x = 2,000

Now we divide by 16 to obtain x = 125.

Substitute this value back into the first equation:

2(125+ y) = 400 divide both sides by 2 :

125+ y = 200 subtract 125 f rom both sides :

y = 75
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Anne rows at 125 yards per minute, and the river flows at 75 yards per minute.

Solving a Linear System by Multiplying Both Equations

So what do we do if none of the coefficients match and none of them are simple multiples of each other? We do the
same thing we do when we’re adding fractions whose denominators aren’t simple multiples of each other. Remember
that when we add fractions, we have to find a lowest common denominator—that is, the lowest common multiple
of the two denominators—and sometimes we have to rewrite not just one, but both fractions to get them to have a
common denominator. Similarly, sometimes we have to multiply both equations by different constants in order to
get one of the coefficients to match.

Example 7

Andrew and Anne both use the I-Haul truck rental company to move their belongings from home to the dorm rooms
on the University of Chicago campus. I-Haul has a charge per day and an additional charge per mile. Andrew
travels from San Diego, California, a distance of 2060 miles in five days. Anne travels 880 miles from Norfolk,
Virginia, and it takes her three days. If Anne pays $840 and Andrew pays $1845, what does I-Haul charge

a) per day?

b) per mile traveled?

Solution

First, we’ll set up our equations. Again we have 2 unknowns: the daily rate (we’ll call this x), and the per-mile rate
(we’ll call this y).

Anne’s equation: 3x+880y = 840

Andrew’s Equation: 5x+2060y = 1845

We can’t just multiply a single equation by an integer number in order to arrive at matching coefficients. But if we
look at the coefficients of x (as they are easier to deal with than the coefficients of y), we see that they both have a
common multiple of 15 (in fact 15 is the lowest common multiple). So we can multiply both equations.

Multiply the top equation by 5:

15x+4400y = 4200

Multiply the lower equation by 3:

15x+6180y = 5535

Subtract:

15x+4400y = 4200

− (15x+6180y) = 5535

−1780y =−1335

Divide by −1780 : y = 0.75
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Substitute this back into the top equation:

3x+880(0.75) = 840 since 880×0.75 = 660, subtract 660 f rom both sides :

3x = 180 divide both sides by 3

x = 60

I-Haul charges $60 per day plus $0.75 per mile.

Comparing Methods for Solving Linear Systems

Now that we’ve covered the major methods for solving linear equations, let’s review them. For simplicity, we’ll look
at them in table form. This should help you decide which method would be best for a given situation.

TABLE 7.6:

Method: Best used when you... Advantages: Comment:
Graphing ...don’t need an accurate

answer.
Often easier to see num-
ber and quality of inter-
sections on a graph. With
a graphing calculator, it
can be the fastest method
since you don’t have to do
any computation.

Can lead to imprecise an-
swers with non-integer so-
lutions.

Substitution ...have an explicit equa-
tion for one variable (e.g.
y = 14x+2)

Works on all systems. Re-
duces the system to one
variable, making it easier
to solve.

You are not often given
explicit functions in sys-
tems problems, so you
may have to do extra work
to get one of the equations
into that form.

Elimination by Addition
or Subtraction

...have matching coeffi-
cients for one variable in
both equations.

Easy to combine equa-
tions to eliminate one
variable. Quick to solve.

It is not very likely that
a given system will have
matching coefficients.

Elimination by Multipli-
cation and then Addition
and Subtraction

...do not have any vari-
ables defined explicitly or
any matching coefficients.

Works on all systems.
Makes it possible to com-
bine equations to elimi-
nate one variable.

Often more algebraic ma-
nipulation is needed to
prepare the equations.

The table above is only a guide. You might prefer to use the graphical method for every system in order to better
understand what is happening, or you might prefer to use the multiplication method even when a substitution would
work just as well.

Example 8

Two angles are complementary when the sum of their angles is 90◦. Angles A and B are complementary angles, and
twice the measure of angle A is 9◦ more than three times the measure of angle B. Find the measure of each angle.

Solution

First we write out our 2 equations. We will use x to be the measure of angle A and y to be the measure of angle B.
We get the following system:
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x+ y = 90

2x = 3y+9

First, we’ll solve this system with the graphical method. For this, we need to convert the two equations to y = mx+b
form:

x+ y = 90 ⇒ y =−x+90

2x = 3y+9 ⇒ y =
2
3

x−3

The first line has a slope of -1 and a y−intercept of 90, and the second line has a slope of 2
3 and a y−intercept of -3.

The graph looks like this:

In the graph, it appears that the lines cross at around x = 55,y = 35, but it is difficult to tell exactly! Graphing by
hand is not the best method in this case!

Next, we’ll try solving by substitution. Let’s look again at the system:

x+ y = 90

2x = 3y+9

We’ve already seen that we can start by solving either equation for y, so let’s start with the first one:

y = 90− x

Substitute into the second equation:

2x = 3(90− x)+9 distribute the 3 :

2x = 270−3x+9 add 3x to both sides :

5x = 270+9 = 279 divide by 5 :

x = 55.8◦
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Substitute back into our expression for y:

y = 90−55.8 = 34.2◦

Angle Ameasures 55.8◦; angle Bmeasures 34.2◦.

Finally, we’ll try solving by elimination (with multiplication):

Rearrange equation one to standard form:

x+ y = 90 ⇒ 2x+2y = 180

Multiply equation two by 2:

2x = 3y+9 ⇒ 2x−3y = 9

Subtract:

2x+2y = 180

− (2x−3y) =−9

5y = 171

Divide by 5 to obtain y = 34.2◦

Substitute this value into the very first equation:

x+34.2 = 90 subtract 34.2 f rom both sides :

x = 55.8◦

Angle A measures 55.8◦; angle B measures 34.2◦.

Even though this system looked ideal for substitution, the method of multiplication worked well too. Once the
equations were rearranged properly, the solution was quick to find. You’ll need to decide yourself which method
to use in each case you see from now on. Try to master all the techniques, and recognize which one will be most
efficient for each system you are asked to solve.

The following Khan Academy video contains three examples of solving systems of equations using addition and
subtraction as well as multiplication (which is the next topic): http://www.youtube.com/watch?v=nok99JOhcjo
(9:57). (Note that the narrator is not always careful about showing his work, and you should try to be neater in

your mathematical writing.)

For even more practice, we have this video. One common type of problem involving systems of equations (especially
on standardized tests) is “age problems." In the following video the narrator shows two examples of age problems,
one involving a single person and one involving two people. Khan Academy Age Problems (7:13)
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Review Questions

1. Solve the system: 3x+4y = 2.5
5x−4y = 25.5

2. Solve the system: 5x+7y =−31
5x−9y = 17

3. Solve the system: 3y−4x =−33
5x−3y = 40.5

4. Nadia and Peter visit the candy store. Nadia buys three candy bars and four fruit roll-ups for $2.84. Peter also
buys three candy bars, but can only afford one additional fruit roll-up. His purchase costs $1.79. What is the
cost of a candy bar and a fruit roll-up individually?

5. A small plane flies from Los Angeles to Denver with a tail wind (the wind blows in the same direction as the
plane) and an air-traffic controller reads its ground-speed (speed measured relative to the ground) at 275 miles
per hour. Another, identical plane, moving in the opposite direction has a ground-speed of 227 miles per hour.
Assuming both planes are flying with identical air-speeds, calculate the speed of the wind.

6. An airport taxi firm charges a pick-up fee, plus an additional per-mile fee for any rides taken. If a 12-mile
journey costs $14.29 and a 17-mile journey costs $19.91, calculate:

a. the pick-up fee
b. the per-mile rate
c. the cost of a seven mile trip

7. Calls from a call-box are charged per minute at one rate for the first five minutes, then a different rate for each
additional minute. If a 7-minute call costs $4.25 and a 12-minute call costs $5.50, find each rate.

8. A plumber and a builder were employed to fit a new bath, each working a different number of hours. The
plumber earns $35 per hour, and the builder earns $28 per hour. Together they were paid $330.75, but the
plumber earned $106.75 more than the builder. How many hours did each work?

9. Paul has a part time job selling computers at a local electronics store. He earns a fixed hourly wage, but can
earn a bonus by selling warranties for the computers he sells. He works 20 hours per week. In his first week,
he sold eight warranties and earned $220. In his second week, he managed to sell 13 warranties and earned
$280. What is Paul’s hourly rate, and how much extra does he get for selling each warranty?

Solve the following systems using multiplication.

10. 5x−10y = 15
3x−2y = 3

11. 5x− y = 10
3x−2y =−1

12. 5x+7y = 15
7x−3y = 5

13. 9x+5y = 9
12x+8y = 12.8

14. 4x−3y = 1
3x−4y = 4

15. 7x−3y =−3
6x+4y = 3

Solve the following systems using any method.

16. x = 3y
x−2y =−3
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17. y = 3x+2
y =−2x+7

18. 5x−5y = 5
5x+5y = 35

19. y =−3x−3
3x−2y+12 = 0

20. 3x−4y = 3
4y+5x = 10

21. 9x−2y =−4
2x−6y = 1

22. Supplementary angles are two angles whose sum is 180◦. Angles A and B are supplementary angles. The
measure of Angle A is 18◦ less than twice the measure of Angle B. Find the measure of each angle.

23. A farmer has fertilizer in 5% and 15% solutions. How much of each type should he mix to obtain 100 liters
of fertilizer in a 12% solution?

24. A 150-yard pipe is cut to provide drainage for two fields. If the length of one piece is three yards less that
twice the length of the second piece, what are the lengths of the two pieces?

25. Mr. Stein invested a total of $100,000 in two companies for a year. Company A’s stock showed a 13% annual
gain, while Company B showed a 3% loss for the year. Mr. Stein made an 8% return on his investment over
the year. How much money did he invest in each company?

26. A baker sells plain cakes for $7 and decorated cakes for $11. On a busy Saturday the baker started with 120
cakes, and sold all but three. His takings for the day were $991. How many plain cakes did he sell that day,
and how many were decorated before they were sold?

27. Twice John’s age plus five times Claire’s age is 204. Nine times John’s age minus three times Claire’s age is
also 204. How old are John and Claire?
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7.4 Special Types of Linear Systems

Learning Objectives

• Identify and understand what is meant by an inconsistent linear system.
• Identify and understand what is meant by a consistent linear system.
• Identify and understand what is meant by a dependent linear system.

Introduction

As we saw in Section 7.1, a system of linear equations is a set of linear equations which must be solved together.
The lines in the system can be graphed together on the same coordinate graph and the solution to the system is the
point at which the two lines intersect.

Or at least that’s what usually happens. But what if the lines turn out to be parallel when we graph them?

If the lines are parallel, they won’t ever intersect. That means that the system of equations they represent has no
solution. A system with no solutions is called an inconsistent system.

And what if the lines turn out to be identical?
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If the two lines are the same, then every point on one line is also on the other line, so every point on the line is
a solution to the system. The system has an infinite number of solutions, and the two equations are really just
different forms of the same equation. Such a system is called a dependent system.

But usually, two lines cross at exactly one point and the system has exactly one solution:

A system with exactly one solution is called a consistent system.

To identify a system as consistent, inconsistent, or dependent, we can graph the two lines on the same graph and
see if they intersect, are parallel, or are the same line. But sometimes it is hard to tell whether two lines are parallel
just by looking at a roughly sketched graph.

Another option is to write each line in slope-intercept form and compare the slopes and y− intercepts of the two
lines. To do this we must remember that:

• Lines with different slopes always intersect.
• Lines with the same slope but different y−intercepts are parallel.
• Lines with the same slope and the same y−intercepts are identical.

Example 1

Determine whether the following system has exactly one solution, no solutions, or an infinite number of solutions.

2x−5y = 2

4x+ y = 5

Solution

We must rewrite the equations so they are in slope-intercept form

2x−5y = 2 −5y =−2x+2 y = 2
5 x− 2

5
⇒ ⇒

x+ y = 5 y =−4x+5 y =−4x+5

The slopes of the two equations are different; therefore the lines must cross at a single point and the system has
exactly one solution. This is a consistent system.

Example 2

Determine whether the following system has exactly one solution, no solutions, or an infinite number of solutions.

3x = 5−4y

6x+8y = 7
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Solution

We must rewrite the equations so they are in slope-intercept form

3x = 5−4y 4y =−3x+5 y =−3
4 x+ 5

4
⇒ ⇒

6x+8y = 7 8y =−6x+7 y =−3
4 x+ 7

8

The slopes of the two equations are the same but the y−intercepts are different; therefore the lines are parallel and
the system has no solutions. This is an inconsistent system.

Example 3

Determine whether the following system has exactly one solution, no solutions, or an infinite number of solutions.

x+ y = 3

3x+3y = 9

Solution

We must rewrite the equations so they are in slope-intercept form

x+ y = 3 y =−x+3 y =−x+3
⇒ ⇒

x+3y = 9 3y =−3x+9 y =−x+3

The lines are identical; therefore the system has an infinite number of solutions. It is a dependent system.

Determining the Type of System Algebraically

A third option for identifying systems as consistent, inconsistent or dependent is to just solve the system and use the
result as a guide.

Example 4

Solve the following system of equations. Identify the system as consistent, inconsistent or dependent.

10x−3y = 3

2x+ y = 9

Solution

Let’s solve this system using the substitution method.

Solve the second equation for y:

2x+ y = 9⇒ y =−2x+9

Substitute that expression for y in the first equation:
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10x−3y = 3

10x−3(−2x+9) = 3

10x+6x−27 = 3

16x = 30

x =
15
8

Substitute the value of x back into the second equation and solve for y:

2x+ y = 9⇒ y =−2x+9⇒ y =−2 · 15
8
+9⇒ y =

21
4

The solution to the system is
(15

8 ,
21
4

)
. The system is consistent since it has only one solution.

Example 5

Solve the following system of equations. Identify the system as consistent, inconsistent or dependent.

3x−2y = 4

9x−6y = 1

Solution

Let’s solve this system by the method of multiplication.

Multiply the first equation by 3:

3(3x−2y = 4) 9x−6y = 12
⇒

9x−6y = 1 9x−6y = 1

Add the two equations:

9x−6y = 4

9x−6y = 1

0 = 13 This statement is not true.

If our solution to a system turns out to be a statement that is not true, then the system doesn’t really have a solution;
it is inconsistent.

Example 6

Solve the following system of equations. Identify the system as consistent, inconsistent or dependent.

4x+ y = 3

12x+3y = 9

Solution
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Let’s solve this system by substitution.

Solve the first equation for y:

4x+ y = 3⇒ y =−4x+3

Substitute this expression for y in the second equation:

12x+3y = 9

12x+3(−4x+3) = 9

12x−12x+9 = 9

9 = 9

This statement is always true.

If our solution to a system turns out to be a statement that is always true, then the system is dependent.

A second glance at the system in this example reveals that the second equation is three times the first equation, so
the two lines are identical. The system has an infinite number of solutions because they are really the same equation
and trace out the same line.

Let’s clarify this statement. An infinite number of solutions does not mean that any ordered pair (x,y) satisfies the
system of equations. Only ordered pairs that solve the equation in the system (either one of the equations) are also
solutions to the system. There are infinitely many of these solutions to the system because there are infinitely many
points on any one line.

For example, (1, -1) is a solution to the system in this example, and so is (-1, 7). Each of them fits both the equations
because both equations are really the same equation. But (3, 5) doesn’t fit either equation and is not a solution to the
system.

In fact, for every x−value there is just one y−value that fits both equations, and for every y−value there is exactly
one x−value—just as there is for a single line.

Let’s summarize how to determine the type of system we are dealing with algebraically.

• A consistent system will always give exactly one solution.
• An inconsistent system will yield a statement that is always false (like 0 = 13).
• A dependent system will yield a statement that is always true (like 9 = 9).

Applications

In this section, we’ll see how consistent, inconsistent and dependent systems might arise in real life.

Example 7

The movie rental store CineStar offers customers two choices. Customers can pay a yearly membership of $45 and
then rent each movie for $2 or they can choose not to pay the membership fee and rent each movie for $3.50. How
many movies would you have to rent before the membership becomes the cheaper option?

Solution

Let’s translate this problem into algebra. Since there are two different options to consider, we can write two different
equations and form a system.
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The choices are “membership” and “no membership.” We’ll call the number of movies you rent x and the total cost
of renting movies for a year y.

TABLE 7.7:

flat fee rental fee total
membership $45 2x y = 45+2x
no membership $0 3.50x y = 3.5x

The flat fee is the dollar amount you pay per year and the rental fee is the dollar amount you pay when you rent a
movie. For the membership option the rental fee is 2x, since you would pay $2 for each movie you rented; for the
no membership option the rental fee is 3.50x, since you would pay $3.50 for each movie you rented.

Our system of equations is:

y = 45+2x
y = 3.50x

Here’s a graph of the system:

Now we need to find the exact intersection point. Since each equation is already solved for y, we can easily solve
the system with substitution. Substitute the second equation into the first one:

y = 45+2x
⇒ 3.50x = 45+2x⇒ 1.50x = 45⇒ x = 30 movies

y = 3.50x

You would have to rent 30 movies per year before the membership becomes the better option.

This example shows a real situation where a consistent system of equations is useful in finding a solution. Remember
that for a consistent system, the lines that make up the system intersect at single point. In other words, the lines are
not parallel or the slopes are different.

In this case, the slopes of the lines represent the price of a rental per movie. The lines cross because the price of
rental per movie is different for the two options in the problem

Now let’s look at a situation where the system is inconsistent. From the previous explanation, we can conclude that
the lines will not intersect if the slopes are the same (and the y−intercept is different). Let’s change the previous
problem so that this is the case.

Example 8
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Two movie rental stores are in competition. Movie House charges an annual membership of $30 and charges $3 per
movie rental. Flicks for Cheap charges an annual membership of $15 and charges $3 per movie rental. After how
many movie rentals would Movie House become the better option?

Solution

It should already be clear to see that Movie House will never become the better option, since its membership is more
expensive and it charges the same amount per movie as Flicks for Cheap.

The lines on a graph that describe each option have different y−intercepts—namely 30 for Movie House and 15 for
Flicks for Cheap—but the same slope: 3 dollars per movie. This means that the lines are parallel and so the system
is inconsistent.

Now let’s see how this works algebraically. Once again, we’ll call the number of movies you rent x and the total cost
of renting movies for a year y.

TABLE 7.8:

flat fee rental fee total
Movie House $30 3x y = 30+3x
Flicks for Cheap $15 3x y = 15+3x

The system of equations that describes this problem is:

y = 30+3x
y = 15+3x

Let’s solve this system by substituting the second equation into the first equation:

y = 30+3x
⇒ 15+3x = 30+3x⇒ 15 = 30 This statement is always false.

y = 15+3x

This means that the system is inconsistent.

Example 9

Peter buys two apples and three bananas for $4. Nadia buys four apples and six bananas for $8 from the same store.
How much does one banana and one apple costs?

Solution

We must write two equations: one for Peter’s purchase and one for Nadia’s purchase.

Let’s say a is the cost of one apple and b is the cost of one banana.

TABLE 7.9:

cost of apples cost of bananas total cost
Peter 2a 3b 2a+3b = 4
Nadia 4a 6b 4a+6b = 8

The system of equations that describes this problem is:

2a+3b = 4
4a+6b = 8

Let’s solve this system by multiplying the first equation by -2 and adding the two equations:

−2(2a+3b = 4) −4a−6b =−8
⇒
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4a+6b = 8 4a+6b = 8
0+0 = 0

This statement is always true. This means that the system is dependent.

Looking at the problem again, we can see that we were given exactly the same information in both statements. If
Peter buys two apples and three bananas for $4, it makes sense that if Nadia buys twice as many apples (four apples)
and twice as many bananas (six bananas) she will pay twice the price ($8). Since the second equation doesn’t give
us any new information, it doesn’t make it possible to find out the price of each fruit.

Review Questions

Express each equation in slope-intercept form. Without graphing, state whether the system of equations is consistent,
inconsistent or dependent.

1. 3x−4y = 13
y =−3x−7

2. 3
5 x+ y = 3
1.2x+2y = 6

3. 3x−4y = 13
y =−3x−7

4. 3x−3y = 3
x− y = 1

5. 0.5x− y = 30
0.5x− y =−30

6. 4x−2y =−2
3x+2y =−12

7. 3x+ y = 4
y = 5−3x

8. x−2y = 7
4y−2x = 14

Find the solution of each system of equations using the method of your choice. State if the system is inconsistent or
dependent.

9. 3x+2y = 4
−2x+2y = 24

10. 5x−2y = 3
2x−3y = 10

11. 3x−4y = 13
y =−3x−7

12. 5x−4y = 1
−10x+8y =−30

13. 4x+5y = 0
3x = 6y+4.5

14. −2y+4x = 8
y−2x =−4

15. x− 1
2 y = 3

2
3x+ y = 6

16. 0.05x+0.25y = 6
x+ y = 24
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17. x+ 2
3 y = 6

3x+2y = 2
18. A movie theater charges $4.50 for children and $8.00 for adults.

a. On a certain day, 1200 people enter the theater and $8375 is collected. How many children and how
many adults attended?

b. The next day, the manager announces that she wants to see them take in $10000 in tickets. If there are
240 seats in the house and only five movie showings planned that day, is it possible to meet that goal?

c. At the same theater, a 16-ounce soda costs $3 and a 32-ounce soda costs $5. If the theater sells 12,480
ounces of soda for $2100, how many people bought soda? (Note: Be careful in setting up this problem!)

19. Jamal placed two orders with an internet clothing store. The first order was for 13 ties and 4 pairs of
suspenders, and totaled $487. The second order was for 6 ties and 2 pairs of suspenders, and totaled $232.
The bill does not list the per-item price, but all ties have the same price and all suspenders have the same price.
What is the cost of one tie and of one pair of suspenders?

20. An airplane took four hours to fly 2400 miles in the direction of the jet-stream. The return trip against the
jet-stream took five hours. What were the airplane’s speed in still air and the jet-stream’s speed?

21. Nadia told Peter that she went to the farmer’s market and bought two apples and one banana, and that it cost
her $2.50. She thought that Peter might like some fruit, so she went back to the seller and bought four more
apples and two more bananas. Peter thanked Nadia, but told her that he did not like bananas, so he would only
pay her for four apples. Nadia told him that the second time she paid $6.00 for the fruit.

a. What did Peter find when he tried to figure out the price of four apples?
b. Nadia then told Peter she had made a mistake, and she actually paid $5.00 on her second trip. Now what

answer did Peter get when he tried to figure out how much to pay her?
c. Alicia then showed up and told them she had just bought 3 apples and 2 bananas from the same seller

for $4.25. Now how much should Peter pay Nadia for four apples?
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7.5 Systems of Linear Inequalities

Learning Objectives

• Graph linear inequalities in two variables.
• Solve systems of linear inequalities.
• Solve optimization problems.

Introduction

In the last chapter you learned how to graph a linear inequality in two variables. To do that, you graphed the equation
of the straight line on the coordinate plane. The line was solid for ≤ or ≥ signs (where the equals sign is included),
and the line was dashed for <or >signs (where the equals sign is not included). Then you shaded above the line (if
the inequality began with y > or y≥) or below the line (if it began with y < or y≤).

In this section, we’ll see how to graph two or more linear inequalities on the same coordinate plane. The inequalities
are graphed separately on the same graph, and the solution for the system is the common shaded region between
all the inequalities in the system. One linear inequality in two variables divides the plane into two half-planes. A
system of two or more linear inequalities can divide the plane into more complex shapes.

Let’s start by solving a system of two inequalities.

Graph a System of Two Linear Inequalities

Example 1

Solve the following system:

2x+3y≤ 18

x−4y≤ 12

Solution

Solving systems of linear inequalities means graphing and finding the intersections. So we graph each inequality,
and then find the intersection regions of the solution.

First, let’s rewrite each equation in slope-intercept form. (Remember that this form makes it easier to tell which
region of the coordinate plane to shade.) Our system becomes

3y≤−2x+18 y≤−2
3 x+6

⇒
−4y≤−x+12 y≥ x

4 −3

Notice that the inequality sign in the second equation changed because we divided by a negative number!
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For this first example, we’ll graph each inequality separately and then combine the results.

Here’s the graph of the first inequality:

The line is solid because the equals sign is included in the inequality. Since the inequality is less than or equal to,
we shade below the line.

And here’s the graph of the second inequality:
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The line is solid again because the equals sign is included in the inequality. We now shade above the line because y
is greater than or equal to.

When we combine the graphs, we see that the blue and red shaded regions overlap. The area where they overlap is
the area where both inequalities are true. Thus that area (shown below in purple) is the solution of the system.
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The kind of solution displayed in this example is called unbounded, because it continues forever in at least one
direction (in this case, forever upward and to the left).

Example 2

There are also situations where a system of inequalities has no solution. For example, let’s solve this system.

y≤ 2x−4

y > 2x+6

Solution

We start by graphing the first line. The line will be solid because the equals sign is included in the inequality. We
must shade downwards because y is less than.
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Next we graph the second line on the same coordinate axis. This line will be dashed because the equals sign is not
included in the inequality. We must shade upward because y is greater than.

It doesn’t look like the two shaded regions overlap at all. The two lines have the same slope, so we know they are
parallel; that means that the regions indeed won’t ever overlap since the lines won’t ever cross. So this system of
inequalities has no solution.

But a system of inequalities can sometimes have a solution even if the lines are parallel. For example, what happens
if we swap the directions of the inequality signs in the system we just graphed?

To graph the system

y≥ 2x−4
y < 2x+6,

we draw the same lines we drew for the previous system, but we shade upward for the first inequality and downward
for the second inequality. Here is the result:
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You can see that this time the shaded regions overlap. The area between the two lines is the solution to the system.

Graph a System of More Than Two Linear Inequalities

When we solve a system of just two linear inequalities, the solution is always an unbounded region—one that
continues infinitely in at least one direction. But if we put together a system of more than two inequalities, sometimes
we can get a solution that is bounded—a finite region with three or more sides.

Let’s look at a simple example.

Example 3

Find the solution to the following system of inequalities.

3x− y < 4

4y+9x < 8

x≥ 0

y≥ 0

Solution

Let’s start by writing our inequalities in slope-intercept form.

y > 3x−4

y <−9
4

x+2

x≥ 0

y≥ 0

Now we can graph each line and shade appropriately. First we graph y > 3x−4 :
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Next we graph y <−9
4 x+2 :

Finally we graph x≥ 0 and y≥ 0, and we’re left with the region below; this is where all four inequalities overlap.
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The solution is bounded because there are lines on all sides of the solution region. In other words, the solution
region is a bounded geometric figure, in this case a triangle.

Notice, too, that only three of the lines we graphed actually form the boundaries of the region. Sometimes when we
graph multiple inequalities, it turns out that some of them don’t affect the overall solution; in this case, the solution
would be the same even if we’d left out the inequality y > 3x−4. That’s because the solution region of the system
formed by the other three inequalities is completely contained within the solution region of that fourth inequality;
in other words, any solution to the other three inequalities is automatically a solution to that one too, so adding that
inequality doesn’t narrow down the solution set at all.

But that wasn’t obvious until we actually drew the graph!

Solve Real-World Problems Using Systems of Linear Inequalities

A lot of interesting real-world problems can be solved with systems of linear inequalities.

For example, you go to your favorite restaurant and you want to be served by your best friend who happens to work
there. However, your friend only waits tables in a certain region of the restaurant. The restaurant is also known for
its great views, so you want to sit in a certain area of the restaurant that offers a good view. Solving a system of linear
inequalities will allow you to find the area in the restaurant where you can sit to get the best view and be served by
your friend.

Often, systems of linear inequalities deal with problems where you are trying to find the best possible situation given
a set of constraints. Most of these application problems fall in a category called linear programming problems.

Linear programming is the process of taking various linear inequalities relating to some situation, and finding the
best possible value under those conditions. A typical example would be taking the limitations of materials and labor
at a factory, then determining the best production levels for maximal profits under those conditions. These kinds of
problems are used every day in the organization and allocation of resources. These real-life systems can have dozens
or hundreds of variables, or more. In this section, we’ll only work with the simple two-variable linear case.

The general process is to:

• Graph the inequalities (called constraints) to form a bounded area on the coordinate plane (called the feasi-
bility region).
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• Figure out the coordinates of the corners (or vertices) of this feasibility region by solving the system of
equations that applies to each of the intersection points.

• Test these corner points in the formula (called the optimization equation) for which you’re trying to find the
maximum or minimum value.

Example 4

If z = 2x+5y, find the maximum and minimum values of z given these constraints:

2x− y≤ 12

4x+3y≥ 0

x− y≤ 6

Solution

First, we need to find the solution to this system of linear inequalities by graphing and shading appropriately. To
graph the inequalities, we rewrite them in slope-intercept form:

y≥ 2x−12

y≥−4
3

x

y≥ x−6

These three linear inequalities are called the constraints, and here is their graph:

The shaded region in the graph is called the feasibility region. All possible solutions to the system occur in that
region; now we must try to find the maximum and minimum values of the variable z within that region. In other
words, which values of x and y within the feasibility region will give us the greatest and smallest overall values for
the expression 2x+5y?
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Fortunately, we don’t have to test every point in the region to find that out. It just so happens that the minimum or
maximum value of the optimization equation in a linear system like this will always be found at one of the vertices
(the corners) of the feasibility region; we just have to figure out which vertices. So for each vertex—each point
where two of the lines on the graph cross—we need to solve the system of just those two equations, and then find
the value of z at that point.

The first system consists of the equations y = 2x−12 and y =−4
3 x. We can solve this system by substitution:

−4
3

x = 2x−12⇒−4x = 6x−36⇒−10x =−36⇒ x = 3.6

y = 2x−12⇒ y = 2(3.6)−12⇒ y =−4.8

The lines intersect at the point (3.6, -4.8).

The second system consists of the equations y = 2x−12 and y = x−6. Solving this system by substitution:

x−6 = 2x−12⇒ 6 = x⇒ x = 6

y = x−6⇒ y = 6−6⇒ y = 6

The lines intersect at the point (6, 6).

The third system consists of the equations y =−4
3 x and y = x−6. Solving this system by substitution:

x−6 =−4
3

x⇒ 3x−18 =−4x⇒ 7x = 18⇒ x = 2.57

y = x−6⇒ y = 2.57−6⇒ y =−3.43

The lines intersect at the point (2.57, -3.43).

So now we have three different points that might give us the maximum and minimum values for z. To find out which
ones actually do give the maximum and minimum values, we can plug the points into the optimization equation
z = 2x+5y.

When we plug in (3.6, -4.8), we get z = 2(3.6)+5(−4.8) =−16.8.

When we plug in (6, 0), we get z = 2(6)+5(0) = 12.

When we plug in (2.57, -3.43), we get z = 2(2.57)+5(−3.43) =−12.01.

So we can see that the point (6, 0) gives us the maximum possible value for z and the point (3.6, –4.8) gives us
the minimum value.

In the previous example, we learned how to apply the method of linear programming in the abstract. In the next
example, we’ll look at a real-life application.

Example 5

You have $10,000 to invest, and three different funds to choose from. The municipal bond fund has a 5% return, the
local bank’s CDs have a 7% return, and a high-risk account has an expected 10% return. To minimize risk, you
decide not to invest any more than $1,000 in the high-risk account. For tax reasons, you need to invest at least three
times as much in the municipal bonds as in the bank CDs. What’s the best way to distribute your money given these
constraints?

Solution

Let’s define our variables:
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x is the amount of money invested in the municipal bond at 5% return

y is the amount of money invested in the bank’s CD at 7% return

10000− x− y is the amount of money invested in the high-risk account at 10% return

z is the total interest returned from all the investments, so z = .05x+ .07y+ .1(10000−x−y) or z = 1000−0.05x−
0.03y. This is the amount that we are trying to maximize. Our goal is to find the values of x and y that maximizes
the value of z.

Now, let’s write inequalities for the constraints:

You decide not to invest more than $1000 in the high-risk account—that means:

10000− x− y≤ 1000

You need to invest at least three times as much in the municipal bonds as in the bank CDs—that means:

3y≤ x

Also, you can’t invest less than zero dollars in each account, so:

x≥ 0

y≥ 0

10000− x− y≥ 0

To summarize, we must maximize the expression z = 1000− .05x− .03y using the constraints:

10000− x− y≤ 1000 y≥ 9000− x

3y≤ x y≤ x
3

x≥ 0 Or in slope-intercept form: x≥ 0

y≥ 0 y≥ 0

10000− x− y≥ 0 y≤ 10000− x

Step 1: Find the solution region to the set of inequalities by graphing each line and shading appropriately. The
following figure shows the overlapping region:
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The purple region is the feasibility region where all the possible solutions can occur.

Step 2: Next we need to find the corner points of the feasibility region. Notice that there are four corners. To find
their coordinates, we must pair up the relevant equations and solve each resulting system.

System 1:

y = x
3

y = 10000− x

Substitute the first equation into the second equation:

x
3
= 10000− x⇒ x = 30000−3x⇒ 4x = 30000⇒ x = 7500

y =
x
3
⇒ y =

7500
3
⇒ y = 2500

The intersection point is (7500, 2500).

System 2:

y = x
3

y = 9000− x

Substitute the first equation into the second equation:

x
3
= 9000− x⇒ x = 27000−3x⇒ 4x = 27000⇒ x = 6750

y =
x
3
⇒ y =

6750
3
⇒ y = 2250

The intersection point is (6750, 2250).

System 3:

y = 0
y = 10000− x.

The intersection point is (10000, 0).

360

http://www.ck12.org


www.ck12.org Chapter 7. Solving Systems of Equations and Inequalities

System 4:

y = 0
y = 9000− x.

The intersection point is (9000, 0).

Step 3: In order to find the maximum value for z, we need to plug all the intersection points into the equation for z
and find which one yields the largest number.

(7500, 2500): z = 1000−0.05(7500)−0.03(2500) = 550

(6750, 2250): z = 1000−0.05(6750)−0.03(2250) = 595

(10000, 0): z = 1000−0.05(10000)−0.03(0) = 500

(9000, 0): z = 1000−0.05(9000)−0.03(0) = 550

The maximum return on the investment of $595 occurs at the point (6750, 2250). This means that:

$6,750 is invested in the municipal bonds.

$2,250 is invested in the bank CDs.

$1,000 is invested in the high-risk account.

Graphing calculators can be very useful for problems that involve this many inequalities. The video at http://www.y
outube.com/watch?v=__wAxkYmhvY shows a real-world linear programming problem worked through in detail on
a graphing calculator, although the methods used there can also be used for pencil-and paper solving.

Review Questions

1. Consider the system y < 3x−5
y > 3x−5. Is it consistent or inconsistent? Why?

2. Consider the system y≤ 2x+3
y≥ 2x+3. Is it consistent or inconsistent? Why?

3. Consider the system y≤−x+1
y >−x+1. Is it consistent or inconsistent? Why?

4. In example 3 in this lesson, we solved a system of four inequalities and saw that one of the inequalities,
y > 3x−4, didn’t affect the solution set of the system.

a. What would happen if we changed that inequality to y < 3x−4?
b. What’s another inequality that we could add to the original system without changing it? Show how by

sketching a graph of that inequality along with the rest of the system.
c. What’s another inequality that we could add to the original system to make it inconsistent? Show how

by sketching a graph of that inequality along with the rest of the system.

5. Recall the compound inequalities in one variable that we worked with back in chapter 6. Compound inequal-
ities with “and” are simply systems like the ones we are working with here, except with one variable instead
of two.

a. Graph the inequality x > 3 in two dimensions. What’s another inequality that could be combined with it
to make an inconsistent system?

b. Graph the inequality x ≤ 4 on a number line. What two-dimensional system would have a graph that
looks just like this one?

Find the solution region of the following systems of inequalities.
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6. x− y <−6
2y≥ 3x+17

7. 4y−5x < 8
−5x≥ 16−8y

8. 5x− y≥ 5
2y− x≥−10

9. 5x+2y≥−25
3x−2y≤ 17
x−6y≥ 27

10. 2x−3y≤ 21
x+4y≤ 6
3x+ y≥−4

11. 12x−7y < 120
7x−8y≥ 36
5x+ y≥ 12

Solve the following linear programming problems.

12. Given the following constraints, find the maximum and minimum values of z =−x+5y: x+3y≤ 0
x− y≥ 0
3x−7y≤ 16

13. Santa Claus is assigning elves to work an eight-hour shift making toy trucks. Apprentice elves draw a wage
of five candy canes per hour worked, but can only make four trucks an hour. Senior elves can make six trucks
an hour and are paid eight candy canes per hour. There’s only room for nine elves in the truck shop, and due
to a candy-makers’ strike, Santa Claus can only pay out 480 candy canes for the whole 8-hour shift.

a. How many senior elves and how many apprentice elves should work this shift to maximize the number
of trucks that get made?

b. How many trucks will be made?
c. Just before the shift begins, the apprentice elves demand a wage increase; they insist on being paid seven

candy canes an hour. Now how many apprentice elves and how many senior elves should Santa assign
to this shift?

d. How many trucks will now get made, and how many candy canes will Santa have left over?

14. In Adrian’s Furniture Shop, Adrian assembles both bookcases and TV cabinets. Each type of furniture takes
her about the same time to assemble. She figures she has time to make at most 18 pieces of furniture by this
Saturday. The materials for each bookcase cost her $20 and the materials for each TV stand costs her $45.
She has $600 to spend on materials. Adrian makes a profit of $60 on each bookcase and a profit of $100 on
each TV stand.

a. Set up a system of inequalities. What x− and y−values do you get for the point where Adrian’s profit is
maximized? Does this solution make sense in the real world?

b. What two possible real-world x−values and what two possible real-world y−values would be closest to
the values in that solution?

c. With two choices each for x and y, there are four possible combinations of x− and y−values. Of those
four combinations, which ones actually fall within the feasibility region of the problem?

d. Which one of those feasible combinations seems like it would generate the most profit? Test out each
one to confirm your guess. How much profit will Adrian make with that combination?

e. Based on Adrian’s previous sales figures, she doesn’t think she can sell more than 8 TV stands. Now
how many of each piece of furniture should she make, and what will her profit be?

f. Suppose Adrian is confident she can sell all the furniture she can make, but she doesn’t have room to
display more than 7 bookcases in her shop. Now how many of each piece of furniture should she make,
and what will her profit be?
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15. Here’s a “linear programming” problem on a line instead of a plane: Given the constraints x≤ 5 and x≥−2,
maximize the value of y where y = x+3.

Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9617.
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8.1 Exponent Properties Involving Products

Learning Objectives

• Use the product of a power property.
• Use the power of a product property.
• Simplify expressions involving product properties of exponents.

Introduction

Back in chapter 1, we briefly covered expressions involving exponents, like 35 or x3. In these expressions, the
number on the bottom is called the base and the number on top is the power or exponent. The whole expression is
equal to the base multiplied by itself a number of times equal to the exponent; in other words, the exponent tells us
how many copies of the base number to multiply together.

Example 1

Write in exponential form.

a) 2 ·2

b) (−3)(−3)(−3)

c) y · y · y · y · y

d) (3a)(3a)(3a)(3a)

Solution

a) 2 ·2 = 22 because we have 2 factors of 2

b) (−3)(−3)(−3) = (−3)3 because we have 3 factors of (-3)

c) y · y · y · y · y = y5 because we have 5 factors of y

d) (3a)(3a)(3a)(3a) = (3a)4 because we have 4 factors of 3a

When the base is a variable, it’s convenient to leave the expression in exponential form; if we didn’t write x7, we’d
have to write x · x · x · x · x · x · x instead. But when the base is a number, we can simplify the expression further than
that; for example, 27 equals 2 ·2 ·2 ·2 ·2 ·2 ·2, but we can multiply all those 2’s to get 128.

Let’s simplify the expressions from Example 1.

Example 2

Simplify.

a) 22

b) (−3)3

c) y5

d) (3a)4
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Solution

a) 22 = 2 ·2 = 4

b) (−3)3 = (−3)(−3)(−3) =−27

c) y5 is already simplified

d) (3a)4 = (3a)(3a)(3a)(3a) = 3 ·3 ·3 ·3 ·a ·a ·a ·a = 81a4

Be careful when taking powers of negative numbers. Remember these rules:

(negative number) · (positive number) = negative number
(negative number) · (negative number) = positive number

So even powers of negative numbers are always positive. Since there are an even number of factors, we pair up the
negative numbers and all the negatives cancel out.

(−2)6 = (−2)(−2)(−2)(−2)(−2)(−2) = (−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

=+64

And odd powers of negative numbers are always negative. Since there are an odd number of factors, we can still
pair up negative numbers to get positive numbers, but there will always be one negative factor left over, so the answer
is negative:

(−2)5 = (−2)(−2)(−2)(−2)(−2) = (−2)(−2)︸        ︷︷        ︸
+4

·(−2)(−2)︸        ︷︷        ︸
+4

·(−2)︸ ︷︷ ︸
−2

=−32

Use the Product of Powers Property

So what happens when we multiply one power of x by another? Let’s see what happens when we multiply x to the
power of 5 by x cubed. To illustrate better, we’ll use the full factored form for each:

(x · x · x · x · x)︸            ︷︷            ︸
x5

·(x · x · x)︸     ︷︷     ︸
x3

= (x · x · x · x · x · x · x · x)︸                       ︷︷                       ︸
x8

So x5× x3 = x8. You may already see the pattern to multiplying powers, but let’s confirm it with another example.
We’ll multiply x squared by x to the power of 4:

(x · x)︸  ︷︷  ︸
x2

·(x · x · x · x)︸         ︷︷         ︸
x4

= (x · x · x · x · x · x)︸                ︷︷                ︸
x6

So x2× x4 = x6. Look carefully at the powers and how many factors there are in each calculation. 5 x’s times 3 x’s
equals (5+3) = 8 x’s. 2 x’s times 4 x’s equals (2+4) = 6 x’s.

You should see that when we take the product of two powers of x, the number of x’s in the answer is the total number
of x’s in all the terms you are multiplying. In other words, the exponent in the answer is the sum of the exponents in
the product.
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Product Rule for Exponents: xn · xm = x(n+m)

There are some easy mistakes you can make with this rule, however. Let’s see how to avoid them.

Example 3

Multiply 22 ·23.

Solution

22 ·23 = 25 = 32

Note that when you use the product rule you don’t multiply the bases. In other words, you must avoid the common
error of writing 22 ·23 = 45. You can see this is true if you multiply out each expression: 4 times 8 is definitely 32,
not 1024.

Example 4

Multiply 22 ·33.

Solution

22 ·33 = 4 ·27 = 108

In this case, we can’t actually use the product rule at all, because it only applies to terms that have the same base. In
a case like this, where the bases are different, we just have to multiply out the numbers by hand—the answer is not
25 or 35 or 65 or anything simple like that.

Use the Power of a Product Property

What happens when we raise a whole expression to a power? Let’s take x to the power of 4 and cube it. Again we’ll
use the full factored form for each expression:

(x4)3 = x4× x4× x4 3 f actors o f {x to the power 4}
(x · x · x · x) · (x · x · x · x) · (x · x · x · x) = x · x · x · x · x · x · x · x · x · x · x · x = x12

So (x4)3 = x12. You can see that when we raise a power of x to a new power, the powers multiply.

Power Rule for Exponents: (xn)m = x(n·m)

If we have a product of more than one term inside the parentheses, then we have to distribute the exponent over all
the factors, like distributing multiplication over addition. For example:

(x2y)4 = (x2)4 · (y)4 = x8y4.

Or, writing it out the long way:

(x2y)4 = (x2y)(x2y)(x2y)(x2y) = (x · x · y)(x · x · y)(x · x · y)(x · x · y)
= x · x · x · x · x · x · x · x · y · y · y · y = x8y4

Note that this does NOT work if you have a sum or difference inside the parentheses! For example, (x+y)2 6= x2+y2.
This is an easy mistake to make, but you can avoid it if you remember what an exponent means: if you multiply out
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(x+y)2 it becomes (x+y)(x+y), and that’s not the same as x2+y2. We’ll learn how we can simplify this expression
in a later chapter.

The following video from YourTeacher.com may make it clearer how the power rule works for a variety of exponen-
tial expressions:

http://www.youtube.com/watch?v=Mm4y_I8-hoU

Example 5

Simplify the following expressions.

a) 35 ·37

b) 26 ·2

c) (42)3

Solution

When we’re just working with numbers instead of variables, we can use the product rule and the power rule, or we
can just do the multiplication and then simplify.

a) We can use the product rule first and then evaluate the result: 35 ·37 = 312 = 531441.

OR we can evaluate each part separately and then multiply them: 35 ·37 = 243 ·2187 = 531441.

b) We can use the product rule first and then evaluate the result: 26 ·2 = 27 = 128.

OR we can evaluate each part separately and then multiply them: 26 ·2 = 64 ·2 = 128.

c) We can use the power rule first and then evaluate the result: (42)3 = 46 = 4096.

OR we can evaluate the expression inside the parentheses first, and then apply the exponent outside the parentheses:
(42)3 = (16)3 = 4096.

Example 6

Simplify the following expressions.

a) x2 · x7

b) (y3)5

Solution

When we’re just working with variables, all we can do is simplify as much as possible using the product and power
rules.

a) x2 · x7 = x2+7 = x9

b) (y3)5 = y3×5 = y15

Example 7

Simplify the following expressions.

a) (3x2y3) · (4xy2)

b) (4xyz) · (x2y3) · (2yz4)

c) (2a3b3)2

Solution

When we have a mix of numbers and variables, we apply the rules to each number and variable separately.

a) First we group like terms together: (3x2y3) · (4xy2) = (3 ·4) · (x2 · x) · (y3 · y2)

Then we multiply the numbers or apply the product rule on each grouping: = 12x3y5

368

http://www.ck12.org
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU
http://www.youtube.com/watch?v=Mm4y_I8-hoU


www.ck12.org Chapter 8. Exponential Functions

b) Group like terms together: (4xyz) · (x2y3) · (2yz4) = (4 ·2) · (x · x2) · (y · y3 · y) · (z · z4)

Multiply the numbers or apply the product rule on each grouping: = 8x3y5z5

c) Apply the power rule for each separate term in the parentheses: (2a3b3)2 = 22 · (a3)2 · (b3)2

Multiply the numbers or apply the power rule for each term = 4a6b6

Example 8

Simplify the following expressions.

a) (x2)2 · x3

b) (2x2y) · (3xy2)3

c) (4a2b3)2 · (2ab4)3

Solution

In problems where we need to apply the product and power rules together, we must keep in mind the order of
operations. Exponent operations take precedence over multiplication.

a) We apply the power rule first: (x2)2 · x3 = x4 · x3

Then apply the product rule to combine the two terms: x4 · x3 = x7

b) Apply the power rule first: (2x2y) · (3xy2)3 = (2x2y) · (27x3y6)

Then apply the product rule to combine the two terms: (2x2y) · (27x3y6) = 54x5y7

c) Apply the power rule on each of the terms separately: (4a2b3)2 · (2ab4)3 = (16a4b6) · (8a3b12)

Then apply the product rule to combine the two terms: (16a4b6) · (8a3b12) = 128a7b18

Review Questions

Write in exponential notation:

1. 4 ·4 ·4 ·4 ·4
2. 3x ·3x ·3x
3. (−2a)(−2a)(−2a)(−2a)
4. 6 ·6 ·6 · x · x · y · y · y · y
5. 2 · x · y ·2 ·2 · y · x

Find each number.

6. 54

7. (−2)6

8. (0.1)5

9. (−0.6)3

10. (1.2)2 +53

11. 32 · (0.2)3

Multiply and simplify:

12. 63 ·66

13. 22 ·24 ·26

14. 32 ·43
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15. x2 · x4

16. (−2y4)(−3y)
17. (4a2)(−3a)(−5a4)

Simplify:

18. (a3)4

19. (xy)2

20. (3a2b3)4

21. (−2xy4z2)5

22. (−8x)3(5x)2

23. (4a2)(−2a3)4

24. (12xy)(12xy)2

25. (2xy2)(−x2y)2(3x2y2)
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8.2 Exponent Properties Involving Quotients

Learning Objectives

• Use the quotient of powers property.
• Use the power of a quotient property.
• Simplify expressions involving quotient properties of exponents.

Use the Quotient of Powers Property

The rules for simplifying quotients of exponents are a lot like the rules for simplifying products. Let’s look at what
happens when we divide x7 by x4:

x7

x4 = �
x ·�x ·�x ·�x · x · x · x
�x ·�x ·�x ·�x

=
x · x · x

1
= x3

You can see that when we divide two powers of x, the number of x’s in the solution is the number of x’s in the top of
the fraction minus the number of x’s in the bottom. In other words, when dividing expressions with the same base,
we keep the same base and simply subtract the exponent in the denominator from the exponent in the numerator.

Quotient Rule for Exponents: xn

xm = x(n−m)

When we have expressions with more than one base, we apply the quotient rule separately for each base:

x5y3

x3y2 = �
x ·�x ·�x · x · x
�x ·�x ·�x

· �y ·�y · y
�y ·�y

=
x · x
1
· y

1
= x2y OR

x5y3

x3y2 = x5−3 · y3−2 = x2y

Example 1

Simplify each of the following expressions using the quotient rule.

a) x10

x5

b) a6

a

c) a5b4

a3b2

Solution

a) x10

x5 = x10−5 = x5

b) a6

a = a6−1 = a5

c) a5b4

a3b2 = a5−3 ·b4−2 = a2b2

Now let’s see what happens if the exponent in the denominator is bigger than the exponent in the numerator. For
example, what happens when we apply the quotient rule to x4

x7 ?
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The quotient rule tells us to subtract the exponents. 4 minus 7 is -3, so our answer is x−3. A negative exponent!
What does that mean?

Well, let’s look at what we get when we do the division longhand by writing each term in factored form:

x4

x7 = �x ·�x ·�x ·�x
�x ·�x ·�x ·�x · x · x · x

=
1

x · x · x
=

1
x3

Even when the exponent in the denominator is bigger than the exponent in the numerator, we can still subtract the
powers. The x’s that are left over after the others have been canceled out just end up in the denominator instead of
the numerator. Just as x7

x4 would be equal to x3

1 (or simply x3), x4

x7 is equal to 1
x3 . And you can also see that 1

x3 is equal
to x−3. We’ll learn more about negative exponents shortly.

Example 2

Simplify the following expressions, leaving all exponents positive.

a) x2

x6

b) a2b6

a5b

Solution

a) Subtract the exponent in the numerator from the exponent in the denominator and leave the x’s in the denominator:
x2

x6 =
1

x6−2 =
1
x4

b) Apply the rule to each variable separately: a2b6

a5b = 1
a5−2 · b6−1

1 = b5

a3

The Power of a Quotient Property

When we raise a whole quotient to a power, another special rule applies. Here is an example:

(
x3

y2

)4

=

(
x3

y2

)
·
(

x3

y2

)
·
(

x3

y2

)
·
(

x3

y2

)
=

(x · x · x) · (x · x · x) · (x · x · x) · (x · x · x)
(y · y) · (y · y) · (y · y) · (y · y)

=
x12

y8

Notice that the exponent outside the parentheses is multiplied by the exponent in the numerator and the exponent in
the denominator, separately. This is called the power of a quotient rule:

Power Rule for Quotients:
(

xn

ym

)p
= xn·p

ym·p

Let’s apply these new rules to a few examples.

Example 3

Simplify the following expressions.

a) 45

42

b) 53

57

c)
(

34

52

)2

Solution

Since there are just numbers and no variables, we can evaluate the expressions and get rid of the exponents com-
pletely.
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a) We can use the quotient rule first and then evaluate the result: 45

42 = 45−2 = 43 = 64

OR we can evaluate each part separately and then divide: 45

42 =
1024
16 = 64

b) Use the quotient rule first and hen evaluate the result: 53

57 =
1
54 =

1
625

OR evaluate each part separately and then reduce: 53

57 =
125

78125 = 1
625

Notice that it makes more sense to apply the quotient rule first for examples (a) and (b). Applying the exponent rules
to simplify the expression before plugging in actual numbers means that we end up with smaller, easier numbers to
work with.

c) Use the power rule for quotients first and then evaluate the result:
(

34

52

)2
= 38

54 =
6561
625

OR evaluate inside the parentheses first and then apply the exponent:
(

34

52

)2
=
(81

25

)2
= 6561

625

Example 4

Simplify the following expressions:

a) x12

x5

b)
(

x4

x

)5

Solution

a) Use the quotient rule: x12

x5 = x12−5 = x7

b) Use the power rule for quotients and then the quotient rule:
(

x4

x

)5
= x20

x5 = x15

OR use the quotient rule inside the parentheses first, then apply the power rule:
(

x4

x

)5
= (x3)5 = x15

Example 5

Simplify the following expressions.

a) 6x2y3

2xy2

b)
(

2a3b3

8a7b

)2

Solution

When we have a mix of numbers and variables, we apply the rules to each number or each variable separately.

a) Group like terms together: 6x2y3

2xy2 = 6
2 ·

x2

x ·
y3

y2

Then reduce the numbers and apply the quotient rule on each fraction to get 3xy.

b) Apply the quotient rule inside the parentheses first:
(

2a3b3

8a7b

)2
=
(

b2

4a4

)2

Then apply the power rule for quotients:
(

b2

4a4

)2
= b4

16a8

Example 6

Simplify the following expressions.

a) (x2)2 · x6

x4

b)
(

16a2

4b5

)3
· b2

a16

Solution
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In problems where we need to apply several rules together, we must keep the order of operations in mind.

a) We apply the power rule first on the first term:

(x2)2 · x
6

x4 = x4 · x
6

x4

Then apply the quotient rule to simplify the fraction:

x4 · x
6

x4 = x4 · x2

And finally simplify with the product rule:

x4 · x2 = x6

b)
(

16a2

4b5

)3
· b2

a16

Simplify inside the parentheses by reducing the numbers:

(
4a2

b5

)3

· b2

a16

Then apply the power rule to the first fraction:

(
4a2

b5

)3

· b2

a16 =
64a6

b15 ·
b2

a16

Group like terms together:

64a6

b15 ·
b2

a16 = 64 · a6

a16 ·
b2

b15

And apply the quotient rule to each fraction:

64 · a6

a16 ·
b2

b15 =
64

a10b13

Review Questions

Evaluate the following expressions.

1. 56

52
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2. 67

63

3. 34

310

4.
(3

8

)2

5.
(

22

33

)3

6. 22·32

52

7. 33·52

37

8.
(

23·42

24

)2

Simplify the following expressions.

9. a3

a2

10. x5

x9

11.
(

a3b4

a2b

)3

12. x6y2

x2y5

13. 6a3

2a2

14. 15x5

5x

15.
(

18a4

15a10

)4

16. 25yx6

20y5x2

17.
(

x6y2

x4y4

)3

18.
(

6a2

4b4

)2
· 5b

3a

19. (3ab)2(4a3b4)3

(6a2b)4

20. (2a2bc2)(6abc3)
4ab2c

21. (2a2bc2)(6abc3)
4ab2c for a = 2,b = 1, and c = 3

22.
(

3x2y
2z

)3
· z2

x for x = 1,y = 2, and z =−1

23. 2x3

xy2 ·
(

x
2y

)2
for x = 2,y =−3

24. 2x3

xy2 ·
(

x
2y

)2
for x = 0,y = 6

25. If a = 2 and b = 3, simplify (a2b)(bc)3

a3c2 as much as possible.
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8.3 Zero, Negative, and Fractional Exponents

Learning Objectives

• Simplify expressions with negative exponents.
• Simplify expressions with zero exponents.
• Simplify expression with fractional exponents.
• Evaluate exponential expressions.

Introduction

The product and quotient rules for exponents lead to many interesting concepts. For example, so far we’ve mostly
just considered positive, whole numbers as exponents, but you might be wondering what happens when the exponent
isn’t a positive whole number. What does it mean to raise something to the power of zero, or -1, or 1

2 ? In this lesson,
we’ll find out.

Simplify Expressions With Negative Exponents

When we learned the quotient rule for exponents
( xn

xm = x(n−m)
)
, we saw that it applies even when the exponent in

the denominator is bigger than the one in the numerator. Canceling out the factors in the numerator and denominator
leaves the leftover factors in the denominator, and subtracting the exponents leaves a negative number. So negative
exponents simply represent fractions with exponents in the denominator. This can be summarized in a rule:

Negative Power Rule for Exponents: x−n = 1
xn , where x 6= 0

Negative exponents can be applied to products and quotients also. Here’s an example of a negative exponent being
applied to a product:

(x3y)−2 = x−6y−2 using the power rule

x−6y−2 =
1
x6 ·

1
y2 =

1
x6y2 using the negative power rule separately on each variable

And here’s one applied to a quotient:
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(a
b

)−3
=

a−3

b−3 using the power rule for quotients

a−3

b−3 =
a−3

1
· 1

b−3 =
1
a3 ·

b3

1
using the negative power rule on each variable separately

1
a3 ·

b3

1
=

b3

a3 simplifying the division of fractions

b3

a3 =

(
b
a

)3

using the power rule for quotients in reverse.

That last step wasn’t really necessary, but putting the answer in that form shows us something useful:
(a

b

)−3 is equal

to
(b

a

)3
. This is an example of a rule we can apply more generally:

Negative Power Rule for Fractions:
(

x
y

)−n
=
( y

x

)n, where x 6= 0,y 6= 0

This rule can be useful when you want to write out an expression without using fractions.

Example 1

Write the following expressions without fractions.

a) 1
x

b) 2
x2

c) x2

y3

d) 3
xy

Solution

a) 1
x = x−1

b) 2
x2 = 2x−2

c) x2

y3 = x2y−3

d) 3
xy = 3x−1y−1

Example 2

Simplify the following expressions and write them without fractions.

a) 4a2b3

2a5b

b)
(

x
3y2

)3
· x2y

4

Solution

a) Reduce the numbers and apply the quotient rule to each variable separately:

4a2b3

2a5b
= 2 ·a2−5 ·b3−1 = 2a−3b2

b) Apply the power rule for quotients first:

(
2x
y2

)3

· x
2y
4

=
8x3

y6 ·
x2y
4
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Then simplify the numbers, and use the product rule on the x’s and the quotient rule on the y’s:

8x3

y6 ·
x2y
4

= 2 · x3+2 · y1−6 = 2x5y−5

You can also use the negative power rule the other way around if you want to write an expression without negative
exponents.

Example 3

Write the following expressions without negative exponents.

a) 3x−3

b) a2b−3c−1

c) 4x−1y3

d) 2x−2

y−3

Solution

a) 3x−3 = 3
x3

b) a2b−3c−1 = a2

b3c

c) 4x−1y3 = 4y3

x

d) 2x−2

y−3 = 2y3

x2

Example 4

Simplify the following expressions and write the answers without negative powers.

a)
(

ab−2

b3

)2

b) x−3y2

x2y−2

Solution

a) Apply the quotient rule inside the parentheses:
(

ab−2

b3

)2
= (ab−5)2

Then apply the power rule: (ab−5)2 = a2b−10 = a2

b10

b) Apply the quotient rule to each variable separately: x−3y2

x2y−2 = x−3−2y2−(−2) = x−5y4 = y4

x5

Simplify Expressions with Exponents of Zero

Let’s look again at the quotient rule for exponents
( xn

xm = x(n−m)
)

and consider what happens when n = m. For
example, what happens when we divide x4 by x4? Applying the quotient rule tells us that x4

x4 = x(4−4) = x0—so what
does that zero mean?

Well, we first discovered the quotient rule by considering how the factors of x cancel in such a fraction. Let’s do that
again with our example of x4 divided by x4:

x4

x4 = �
x ·�x ·�x ·�x
�x ·�x ·�x ·�x

= 1
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So x0 = 1! You can see that this works for any value of the exponent, not just 4:

xn

xn = x(n−n) = x0

Since there is the same number of x’s in the numerator as in the denominator, they cancel each other out and we get
x0 = 1. This rule applies for all expressions:

Zero Rule for Exponents: x0 = 1, where x 6= 0

For more on zero and negative exponents, watch the following video at squidoo.com: http://www.google.com/url?sa
=t&source=video&cd=4&ved=0CFMQtwIwAw&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D9svq
GWwyN8Q&rct=j&q=negative%20exponents%20applet&ei=1fH6TP2IGoX4sAOnlbT3DQ&usg=AFQjCNHzLF4_-
2aeo0dMWsa2wJ_CwzckXNA&cad=rja.

Simplify Expressions With Fractional Exponents

So far we’ve only looked at expressions where the exponents are positive and negative integers. The rules we’ve
learned work exactly the same if the powers are fractions or irrational numbers—but what does a fractional exponent
even mean? Let’s see if we can figure that out by using the rules we already know.

Suppose we have an expression like 9
1
2 —how can we relate this expression to one that we already know how to work

with? For example, how could we turn it into an expression that doesn’t have any fractional exponents?

Well, the power rule tells us that if we raise an exponential expression to a power, we can multiply the exponents.

For example, if we raise 9
1
2 to the power of 2, we get

(
9

1
2

)2
= 92· 12 = 91 = 9.

So if 9
1
2 squared equals 9, what does 9

1
2 itself equal? Well, 3 is the number whose square is 9 (that is, it’s the square

root of 9), so 9
1
2 must equal 3. And that’s true for all numbers and variables: a number raised to the power of 1

2 is
just the square root of the number. We can write that as

√
x = x

1
2 , and then we can see that’s true because

(√
x
)2

= x

just as
(

x
1
2

)2
= x.

Similarly, a number to the power of 1
3 is just the cube root of the number, and so on. In general, x

1
n = n√x. And

when we raise a number to a power and then take the root of it, we still get a fractional exponent; for example,
3√

x4 =
(
x4
) 1

3 = x
4
3 . In general, the rule is as follows:

Rule for Fractional Exponents: m√an = a
n
m and

(
m√a
)n

= a
n
m

We’ll examine roots and radicals in detail in a later chapter. In this section, we’ll focus on how exponent rules apply
to fractional exponents.

Example 5

Simplify the following expressions.

a) a
1
2 ·a 1

3

b)
(

a
1
3

)2

c) a
5
2

a
1
2

d)
(

x2

y3

) 1
3

Solution
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a) Apply the product rule: a
1
2 ·a 1

3 = a
1
2+

1
3 = a

5
6

b) Apply the power rule:
(

a
1
3

)2
= a

2
3

c) Apply the quotient rule: a
5
2

a
1
2
= a

5
2−

1
2 = a

4
2 = a2

d) Apply the power rule for quotients:
(

x2

y3

) 1
3
= x

2
3

y

Evaluate Exponential Expressions

When evaluating expressions we must keep in mind the order of operations. You must remember PEMDAS:

1. Evaluate inside the Parentheses.
2. Evaluate Exponents.
3. Perform Multiplication and Division operations from left to right.
4. Perform Addition and Subtraction operations from left to right.

Example 6

Evaluate the following expressions.

a) 50

b)
(2

3

)3

c) 16
1
2

d) 8−
1
3

Solution

a) 50 = 1 A number raised to the power 0 is always 1.

b)
(2

3

)3
= 23

33 =
8

27

c) 16
1
2 =
√

16 = 4 Remember that an exponent of 1
2 means taking the square root.

d) 8−
1
3 = 1

8
1
3
= 1

3√8
= 1

2 Remember that an exponent of 1
3 means taking the cube root.

Example 7

Evaluate the following expressions.

a) 3 ·52−10 ·5+1

b) 2·42−3·52

32−22

c)
(

33

22

)−2
· 3

4

Solution

a) Evaluate the exponent: 3 ·52−10 ·5+1 = 3 ·25−10 ·5+1

Perform multiplications from left to right: 3 ·25−10 ·5+1 = 75−50+1

Perform additions and subtractions from left to right: 75−50+1 = 26

b) Treat the expressions in the numerator and denominator of the fraction like they are in parentheses: (2·42−3·52)
(32−22)

=
(2·16−3·25)

(9−4) = (32−75)
5 = −43

5
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c)
(

33

22

)−2
· 3

4 =
(

22

33

)2
· 3

4 = 24

36 · 3
4 = 24

36 · 3
22 =

22

35 =
4

243

Example 8

Evaluate the following expressions for x = 2,y =−1,z = 3.

a) 2x2−3y3 +4z

b) (x2− y2)2

c)
(

3x2y5

4z

)−2

Solution

a) 2x2−3y3 +4z = 2 ·22−3 · (−1)3 +4 ·3 = 2 ·4−3 · (−1)+4 ·3 = 8+3+12 = 23

b) (x2− y2)2 = (22− (−1)2)2 = (4−1)2 = 32 = 9

c)
(

3x2y5

4z

)−2
=
(

3·22·(−1)5

4·3

)−2
=
(

3·4·(−1)
12

)−2
=
(−12

12

)−2
=
(−1

1

)−2
=
( 1
−1

)2
= (−1)2 = 1

Review Questions

Simplify the following expressions in such a way that there aren’t any negative exponents in the answer.

1. x−1y2

2. x−4

3. x−3

x−7

4. x−3y−5

z−7

5. (x
1
2 y
−2
3 )(x2y

1
3 )

6.
(a

b

)−2

7. (3a−2b2c3)3

8. x−3 · x3

Simplify the following expressions in such a way that there aren’t any fractions in the answer.

9. a−3(a5)
a−6

10. 5x6y2

x8y

11. (4ab6)3

(ab)5

12.
(

3x

y
1
3

)3

13. 3x2y
3
2

xy
1
2

14. (3x3)(4x4)
(2y)2

15. a−2b−3

c−1

16. x
1
2 y

5
2

x
3
2 y

3
2

Evaluate the following expressions to a single number.

17. 3−2

18. (6.2)0
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19. 8−4 ·86

20.
(

16
1
2

)3

21. x2 ·4x3 · y4 ·4y2, if x = 2 and y =−1
22. a4(b2)3 +2ab, if a =−2 and b = 1
23. 5x2−2y3 +3z, if x = 3,y = 2, and z = 4

24.
(

a2

b3

)−2
, if a = 5 and b = 3

25.
(

x−2

y4

) 1
2
, if x =−3 and y = 2
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8.4 Scientific Notation

Learning Objectives

• Write numbers in scientific notation.
• Evaluate expressions in scientific notation.
• Evaluate expressions in scientific notation using a graphing calculator.

Introduction

Consider the number six hundred and forty three thousand, two hundred and ninety seven. We write it as 643,297
and each digit’s position has a “value” assigned to it. You may have seen a table like this before:

hundred-thousands ten-thousands thousands hundreds tens units

6 4 3 2 9 7

We’ve seen that when we write an exponent above a number, it means that we have to multiply a certain number of
copies of that number together. We’ve also seen that a zero exponent always gives us 1, and negative exponents give
us fractional answers.

Look carefully at the table above. Do you notice that all the column headings are powers of ten? Here they are listed:

100,000 = 105

10,000 = 104

1,000 = 103

100 = 102

10 = 101

Even the “units” column is really just a power of ten. Unit means 1, and 1 is 100.

If we divide 643,297 by 100,000 we get 6.43297; if we multiply 6.43297 by 100,000 we get 643, 297. But we have
just seen that 100,000 is the same as 105, so if we multiply 6.43297 by 105 we should also get 643,297. In other
words,

643,297 = 6.43297×105
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Writing Numbers in Scientific Notation

In scientific notation, numbers are always written in the form a×10b , where b is an integer and a is between 1 and
10 (that is, it has exactly 1 nonzero digit before the decimal). This notation is especially useful for numbers that are
either very small or very large.

Here’s a set of examples:

1.07×104 = 10,700

1.07×103 = 1,070

1.07×102 = 107

1.07×101 = 10.7

1.07×100 = 1.07

1.07×10−1 = 0.107

1.07×10−2 = 0.0107

1.07×10−3 = 0.00107

1.07×10−4 = 0.000107

Look at the first example and notice where the decimal point is in both expressions.

So the exponent on the ten acts to move the decimal point over to the right. An exponent of 4 moves it 4 places and
an exponent of 3 would move it 3 places.

This makes sense because each time you multiply by 10, you move the decimal point one place to the right. 1.07
times 10 is 10.7, times 10 again is 107.0, and so on.

Similarly, if you look at the later examples in the table, you can see that a negative exponent on the 10 means the
decimal point moves that many places to the left. This is because multiplying by 10−1 is the same as multiplying by
1
10 , which is like dividing by 10. So instead of moving the decimal point one place to the right for every multiple of
10, we move it one place to the left for every multiple of 1

10 .

That’s how to convert numbers from scientific notation to standard form. When we’re converting numbers to
scientific notation, however, we have to apply the whole process backwards. First we move the decimal point
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until it’s immediately after the first nonzero digit; then we count how many places we moved it. If we moved it to
the left, the exponent on the 10 is positive; if we moved it to the right, it’s negative.

So, for example, to write 0.000032 in scientific notation, we’d first move the decimal five places to the right to get
3.2; then, since we moved it right, the exponent on the 10 should be negative five, so the number in scientific notation
is 3.2×10−5.

You can double-check whether you’ve got the right direction by comparing the number in scientific notation with the
number in standard form, and thinking “Does this represent a big number or a small number?” A positive exponent
on the 10 represents a number bigger than 10 and a negative exponent represents a number smaller than 10, and you
can easily tell if the number in standard form is bigger or smaller than 10 just by looking at it.

For more practice, try the online tool at http://hotmath.com/util/hm_flash_movie.html?movie=/learning_activities/i
nteractivities/sciNotation.swf. Click the arrow buttons to move the decimal point until the number in the middle is
written in proper scientific notation, and see how the exponent changes as you move the decimal point.

Example 1

Write the following numbers in scientific notation.

a) 63

b) 9,654

c) 653,937,000

d) 0.003

e) 0.000056

f) 0.00005007

Solution

a) 63 = 6.3×10 = 6.3×101

b) 9,654 = 9.654×1,000 = 9.654×103

c) 653,937,000 = 6.53937000×100,000,000 = 6.53937×108

d) 0.003 = 3× 1
1000 = 3×10−3

e) 0.000056 = 5.6× 1
100,000 = 5.6×10−5

f) 0.00005007 = 5.007× 1
100,000 = 5.007×10−5

Evaluating Expressions in Scientific Notation

When we are faced with products and quotients involving scientific notation, we need to remember the rules for
exponents that we learned earlier. It’s relatively straightforward to work with scientific notation problems if you
remember to combine all the powers of 10 together. The following examples illustrate this.

Example 2

Evaluate the following expressions and write your answer in scientific notation.

a) (3.2×106) · (8.7×1011)

b) (5.2×10−4) · (3.8×10−19)

c) (1.7×106) · (2.7×10−11)

Solution
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The key to evaluating expressions involving scientific notation is to group the powers of 10 together and deal with
them separately.

a) (3.2× 106)(8.7× 1011) = 3.2×8.7︸       ︷︷       ︸
27.84

×106×1011︸         ︷︷         ︸
1017

= 27.84× 1017. But 27.84× 1017 isn’t in proper scientific

notation, because it has more than one digit before the decimal point. We need to move the decimal point one
more place to the left and add 1 to the exponent, which gives us 2.784×1018.

b) (5.2×10−4)(3.8×10−19) = 5.2×3.8︸       ︷︷       ︸
19.76

×10−4×10−19︸             ︷︷             ︸
10−23

= 19.76×10−23 = 1.976×10−22

c) (1.7×106)(2.7×10−11) = 1.7×2.7︸       ︷︷       ︸
4.59

×106×10−11︸           ︷︷           ︸
10−5

= 4.59×10−5

When we use scientific notation in the real world, we often round off our calculations. Since we’re often dealing
with very big or very small numbers, it can be easier to round off so that we don’t have to keep track of as many
digits—and scientific notation helps us with that by saving us from writing out all the extra zeros. For example, if
we round off 4,227, 457,903 to 4,200,000,000, we can then write it in scientific notation as simply 4.2×109.

When rounding, we often talk of significant figures or significant digits. Significant figures include

• all nonzero digits
• all zeros that come before a nonzero digit and after either a decimal point or another nonzero digit

For example, the number 4000 has one significant digit; the zeros don’t count because there’s no nonzero digit after
them. But the number 4000.5 has five significant digits: the 4, the 5, and all the zeros in between. And the number
0.003 has three significant digits: the 3 and the two zeros that come between the 3 and the decimal point.

Example 3

Evaluate the following expressions. Round to 3 significant figures and write your answer in scientific notation.

a) (3.2×106)÷ (8.7×1011)

b) (5.2×10−4)÷ (3.8×10−19)

c) (1.7×106)÷ (2.7×10−11)

Solution

It’s easier if we convert to fractions and THEN separate out the powers of 10.

a)

(3.2×106)÷ (8.7×1011) =
3.2×106

8.7×1011 − separate out the powers o f 10 :

=
3.2
8.7
× 106

1011 − evaluate each f raction (round to 3 s. f .) :

= 0.368×10(6−11)

= 0.368×10−5 − remember how to write scienti f ic notation!

= 3.68×10−6
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b)

(5.2×10−4)÷ (3.8×10−19) =
5.2×10−4

3.8×10−19 − separate the powers o f 10 :

=
5.2
3.8
× 10−4

10−19 − evaluate each f raction (round to 3 s. f .)

= 1.37×10((−4)−(−19))

= 1.37×1015

c)

(1.7×106)÷ (2.7×10−11) =
1.7×106

2.7×10−11 −next we separate the powers o f 10 :

=
1.7
2.7
× 106

10−11 − evaluate each f raction (round to 3 s. f .)

= 0.630×10(6−(−11))

= 0.630×1017

= 6.30×1016

Note that we have to leave in the final zero to indicate that the result has been rounded.

Evaluate Expressions in Scientific Notation Using a Graphing Calculator

All scientific and graphing calculators can use scientific notation, and it’s very useful to know how.

To insert a number in scientific notation, use the [EE] button. This is [2nd] [,] on some TI models.

For example, to enter 2.6×105, enter 2.6 [EE] 5. When you hit [ENTER] the calculator displays 2.6E5 if it’s set in
Scientific mode, or 260000 if it’s set in Normal mode.

(To change the mode, press the ’Mode’ key.)

Example 4

Evaluate (2.3×106)× (4.9×10−10) using a graphing calculator.

Solution

Enter 2.3 [EE] 6×4.9[EE] - 10 and press [ENTER].
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The calculator displays 6.296296296E16 whether it’s in Normal mode or Scientific mode. That’s because the number
is so big that even in Normal mode it won’t fit on the screen. The answer displayed instead isn’t the precisely correct
answer; it’s rounded off to 10 significant figures.

Since it’s a repeating decimal, though, we can write it more efficiently and more precisely as 6.296×1016.

Example 5

Evaluate (4.5×1014)3 using a graphing calculator.

Solution

Enter (4.5 [EE] 14)∧3 and press [ENTER].

The calculator displays 9.1125E43. The answer is 9.1125×1043.

Solve Real-World Problems Using Scientific Notation

Example 6

The mass of a single lithium atom is approximately one percent of one millionth of one billionth of one billionth of
one kilogram. Express this mass in scientific notation.

Solution

We know that a percent is 1
100 , and so our calculation for the mass (in kg) is:

1
100
× 1

1,000,000
× 1

1,000,000,000
× 1

1,000,000,000
= 10−2×10−6×10−9×10−9

Next we use the product of powers rule we learned earlier:

10−2×10−6×10−9×10−9 = 10((−2)+(−6)+(−9)+(−9)) = 10−26 kg.
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The mass of one lithium atom is approximately 1×10−26 kg.

Example 7

You could fit about 3 million E. coli bacteria on the head of a pin. If the size of the pin head in question is
1.2×10−5 m2, calculate the area taken up by one E. coli bacterium. Express your answer in scientific notation

Solution

Since we need our answer in scientific notation, it makes sense to convert 3 million to that format first:

3,000,000 = 3×106

Next we need an expression involving our unknown, the area taken up by one bacterium. Call this A.

3×106 ·A = 1.2×10−5 − since 3 million o f them make up the area o f the pin−head

Isolate A:

A =
1

3×106 ·1.2×10−5 − rearranging the terms gives :

A =
1.2
3
· 1

106 ×10−5 − then using the de f inition o f a negative exponent :

A =
1.2
3
·10−6×10−5 − evaluate & combine exponents using the product rule :

A = 0.4×10−11 −but we can′t leave our answer like this, so . . .

The area of one bacterium is 4.0×10−12 m2.

(Notice that we had to move the decimal point over one place to the right, subtracting 1 from the exponent on the
10.)

Review Questions

Write the numerical value of the following.

1. 3.102×102

2. 7.4×104

3. 1.75×10−3

4. 2.9×10−5

5. 9.99×10−9

Write the following numbers in scientific notation.

6. 120,000
7. 1,765,244
8. 12
9. 0.00281
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10. 0.000000027

How many significant digits are in each of the following?

11. 38553000
12. 2754000.23
13. 0.0000222
14. 0.0002000079

Round each of the following to two significant digits.

15. 3.0132
16. 82.9913

Perform the following operations and write your answer in scientific notation.

17. (3.5×104) · (2.2×107)

18. 2.1×109

3×102

19. (3.1×10−3) · (1.2×10−5)

20. 7.4×10−5

3.7×10−2

21. 12,000,000×400,000
22. 3,000,000×0.00000000022
23. 17,000

680,000,000

24. 25,000,000
0.000000005

25. 0.0000000000042
0.00014

26. The moon is approximately a sphere with radius r = 1.08×103 miles. Use the formula Surface Area = 4πr2

to determine the surface area of the moon, in square miles. Express your answer in scientific notation, rounded
to two significant figures.

27. The charge on one electron is approximately 1.60×1019 coulombs. One Faraday is equal to the total charge
on 6.02×1023 electrons. What, in coulombs, is the charge on one Faraday?

28. Proxima Centauri, the next closest star to our Sun, is approximately 2.5× 1013 miles away. If light from
Proxima Centauri takes 3.7×104 hours to reach us from there, calculate the speed of light in miles per hour.
Express your answer in scientific notation, rounded to 2 significant figures.
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8.5 Geometric Sequences

Learning Objectives

• Identify a geometric sequence
• Graph a geometric sequence.
• Solve real-world problems involving geometric sequences.

Introduction

Consider the following question:

Which would you prefer, being given one million dollars, or one penny the first day, double that penny the next day,
and then double the previous day’s pennies and so on for a month?

At first glance it’s easy to say "Give me the million!" But why don’t we do a few calculations to see how the other
choice stacks up?

You start with a penny the first day and keep doubling each day. Doubling means that we keep multiplying by 2 each
day for one month (30 days).

On the first day, you get 1 penny, or 20 pennies.

On the second day, you get 2 pennies, or 21 pennies.

On the third day, you get 4 pennies, or 22 pennies. Do you see the pattern yet?

On the fourth day, you get 8 pennies, or 23 pennies. Each day, the exponent is one less than the number of that day.

So on the thirtieth day, you get 229 pennies, which is 536,870,912 pennies, or $5,368,709.12. That’s a lot more than
a million dollars, even just counting the amount you get on that one day!

This problem is an example of a geometric sequence. In this section, we’ll find out what a geometric sequence is
and how to solve problems involving geometric sequences.

Identify a Geometric Sequence

A geometric sequence is a sequence of numbers in which each number in the sequence is found by multiplying
the previous number by a fixed amount called the common ratio. In other words, the ratio between any term and
the term before it is always the same. In the previous example the common ratio was 2, as the number of pennies
doubled each day.

The common ratio, r, in any geometric sequence can be found by dividing any term by the preceding term.

Here are some examples of geometric sequences and their common ratios.
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4,16,64,256, . . . r = 4 (divide 16 by 4 to get 4)

15,30,60,120, . . . r = 2 (divide 30 by 15 to get 2)

11,
11
2
,
11
4
,
11
8
,
11
16

, . . . r =
1
2

(
divide

11
2

by 11 to get
1
2

)
25,−5,1,−1

5
,

1
25

, . . . r =−1
5

(
divide 1 by -5 to get− 1

5

)
If we know the common ratio r, we can find the next term in the sequence just by multiplying the last term by r.
Also, if there are any terms missing in the sequence, we can find them by multiplying the term before each missing
term by the common ratio.

Example 1

Fill is the missing terms in each geometric sequence.

a) 1, ___, 25, 125, ___

b) 20, ___, 5, ___, 1.25

Solution

a) First we can find the common ratio by dividing 125 by 25 to obtain r = 5.

To find the first missing term, we multiply 1 by the common ratio: 1 ·5 = 5

To find the second missing term, we multiply 125 by the common ratio: 125 ·5 = 625

Sequence (a) becomes: 1, 5, 25, 125, 625,...

b) We need to find the common ratio first, but how do we do that when we have no terms next to each other that we
can divide?

Well, we know that to get from 20 to 5 in the sequence we must multiply 20 by the common ratio twice: once to get
to the second term in the sequence, and again to get to five. So we can say 20 · r · r = 5, or 20 · r2 = 5.

Dividing both sides by 20, we get r2 = 5
20 = 1

4 , or r = 1
2 (because 1

2 ·
1
2 = 1

4 ).

To get the first missing term, we multiply 20 by 1
2 and get 10.

To get the second missing term, we multiply 5 by 1
2 and get 2.5.

Sequence (b) becomes: 20, 10, 5, 2.5, 1.25,...

You can see that if we keep multiplying by the common ratio, we can find any term in the sequence that we want—the
tenth term, the fiftieth term, the thousandth term.... However, it would be awfully tedious to keep multiplying over
and over again in order to find a term that is a long way from the start. What could we do instead of just multiplying
repeatedly?

Let’s look at a geometric sequence that starts with the number 7 and has common ratio of 2.

The 1st term is: 7 or 7 ·20

We obtain the 2nd term by multiplying by 2 : 7 ·2 or 7 ·21

We obtain the 3rd term by multiplying by 2 again: 7 ·2 ·2 or 7 ·22

We obtain the 4th term by multiplying by 2 again: 7 ·2 ·2 ·2 or 7 ·23

We obtain the 5th term by multiplying by 2 again: 7 ·2 ·2 ·2 ·2 or 7 ·24

The nth term would be: 7 ·2n−1
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The nth term is 7 ·2n−1 because the 7 is multiplied by 2 once for the 2nd term, twice for the third term, and so on—for
each term, one less time than the term’s place in the sequence. In general, we write a geometric sequence with n
terms like this:

a,ar,ar2,ar3, . . . ,arn−1

The formula for finding a specific term in a geometric sequence is:

nth term in a geometric sequence: an = a1rn−1

(a1 = first term, r = common ratio)

Example 2

For each of these geometric sequences, find the eighth term in the sequence.

a) 1, 2, 4,...

b) 16, -8, 4, -2, 1,...

Solution

a) First we need to find the common ratio: r = 2
1 = 2.

The eighth term is given by the formula a8 = a1r7 = 1 ·27 = 128

In other words, to get the eighth term we start with the first term, which is 1, and then multiply by 2 seven times.

b) The common ratio is r = −8
16 = −1

2

The eighth term in the sequence is a8 = a1r7 = 16 ·
(−1

2

)7
= 16 · (−1)7

27 = 16 · −1
27 = −16

128 =−1
8

Let’s take another look at the terms in that second sequence. Notice that they alternate positive, negative, positive,
negative all the way down the list. When you see this pattern, you know the common ratio is negative; multiplying
by a negative number each time means that the sign of each term is opposite the sign of the previous term.

Solve Real-World Problems Involving Geometric Sequences

Let’s solve two application problems involving geometric sequences.

Example 3

A courtier presented the Indian king with a beautiful, hand-made chessboard. The king asked what he would like in
return for his gift and the courtier surprised the king by asking for one grain of rice on the first square, two grains
on the second, four grains on the third, etc. The king readily agreed and asked for the rice to be brought. (From
Meadows et al. 1972, via Porritt 2005) How many grains of rice does the king have to put on the last square?

Solution

A chessboard is an 8×8 square grid, so it contains a total of 64 squares.

The courtier asked for one grain of rice on the first square, 2 grains of rice on the second square, 4 grains of rice on
the third square and so on. We can write this as a geometric sequence:

1, 2, 4,...

The numbers double each time, so the common ratio is r = 2.

The problem asks how many grains of rice the king needs to put on the last square, so we need to find the 64th term
in the sequence. Let’s use our formula:
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an = a1rn−1, where an is the nth term, a1 is the first term and r is the common ratio.

a64 = 1 ·263 = 9,223,372,036,854,775,808grains of rice.

The problem we just solved has real applications in business and technology. In technology strategy, the Second
Half of the Chessboard is a phrase, coined by a man named Ray Kurzweil, in reference to the point where an
exponentially growing factor begins to have a significant economic impact on an organization’s overall business
strategy.

The total number of grains of rice on the first half of the chessboard is 1+2+4+8+16+32+64+128+256+
512+1024 . . .+2,147,483,648, for a total of exactly 4,294,967,295 grains of rice, or about 100,000 kg of rice (the
mass of one grain of rice being roughly 25 mg). This total amount is about 1

1,000,000th of total rice production in India
in the year 2005 and is an amount the king could surely have afforded.

The total number of grains of rice on the second half of the chessboard is 232 + 233 + 234 . . .+ 263, for a total of
18, 446, 744, 069, 414, 584, 320 grains of rice. This is about 460 billion tons, or 6 times the entire weight of all
living matter on Earth. The king didn’t realize what he was agreeing to—perhaps he should have studied algebra!
[Wikipedia; GNU-FDL]

Example 4

A super-ball has a 75% rebound ratio—that is, when it bounces repeatedly, each bounce is 75% as high as the
previous bounce. When you drop it from a height of 20 feet:

a) how high does the ball bounce after it strikes the ground for the third time?

b) how high does the ball bounce after it strikes the ground for the seventeenth time?

Solution

We can write a geometric sequence that gives the height of each bounce with the common ratio of r = 3
4 :

20,20 · 3
4
,20 ·

(
3
4

)2

,20 ·
(

3
4

)3

. . .

a) The ball starts at a height of 20 feet; after the first bounce it reaches a height of 20 · 3
4 = 15 f eet.

After the second bounce it reaches a height of 20 ·
(3

4

)2
= 11.25 f eet.

After the third bounce it reaches a height of 20 ·
(3

4

)3
= 8.44 f eet.

b) Notice that the height after the first bounce corresponds to the second term in the sequence, the height after the
second bounce corresponds to the third term in the sequence and so on.

This means that the height after the seventeenth bounce corresponds to the 18th term in the sequence. You can find
the height by using the formula for the 18th term:

a18 = 20 ·
(

3
4

)17

= 0.15 f eet.

Here is a graph that represents this information. (The heights at points other than the top of each bounce are just
approximations.)
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For more practice finding the terms in geometric sequences, try the browser game at http://www.ies.co.jp/math/ja
va/misc/sum/sum.html.

Review Questions

Determine the first five terms of each geometric sequence.

1. a1 = 2,r = 3
2. a1 = 90,r =−1

3
3. a1 = 6,r =−2
4. a1 = 1,r = 5
5. a1 = 5,r = 5
6. a1 = 25,r = 5
7. What do you notice about the last three sequences?

Find the missing terms in each geometric sequence.

8. 3, __ , 48, 192, __
9. 81, __ , __ , __ , 1

10. 9
4 , , , 2

3 ,
11. 2, __ , __ , -54, 162

Find the indicated term of each geometric sequence.

12. a1 = 4,r = 2; find a6
13. a1 =−7,r =−3

4 ; find a4
14. a1 =−10,r =−3; find a10
15. In a geometric sequence, a3 = 28 and a5 = 112; find r and a1.
16. In a geometric sequence, a2 = 28 and a5 = 112; find r and a1.
17. As you can see from the previous two questions, the same terms can show up in sequences with different

ratios.

a. Write a geometric sequence that has 1 and 9 as two of the terms (not necessarily the first two).
b. Write a different geometric sequence that also has 1 and 9 as two of the terms.
c. Write a geometric sequence that has 6 and 24 as two of the terms.
d. Write a different geometric sequence that also has 6 and 24 as two of the terms.
e. What is the common ratio of the sequence whose first three terms are 2, 6, 18?
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f. What is the common ratio of the sequence whose first three terms are 18, 6, 2?
g. What is the relationship between those ratios?

18. Anne goes bungee jumping off a bridge above water. On the initial jump, the bungee cord stretches by 120
feet. On the next bounce the stretch is 60% of the original jump and each additional bounce the rope stretches
by 60% of the previous stretch.

a. What will the rope stretch be on the third bounce?
b. What will be the rope stretch be on the 12th bounce?
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8.6 Exponential Functions

Learning Objectives

• Graph an exponential function.
• Compare graphs of exponential functions.
• Analyze the properties of exponential functions.

Introduction

A colony of bacteria has a population of three thousand at noon on Monday. During the next week, the colony’s
population doubles every day. What is the population of the bacteria colony just before midnight on Saturday?

At first glance, this seems like a problem you could solve using a geometric sequence. And you could, if the bacteria
population doubled all at once every day; since it doubled every day for five days, the final population would be
3000 times 25.

But bacteria don’t reproduce all at once; their population grows slowly over the course of an entire day. So how do
we figure out the population after five and a half days?

Exponential Functions

Exponential functions are a lot like geometrical sequences. The main difference between them is that a geometric
sequence is discrete while an exponential function is continuous.

Discrete means that the sequence has values only at distinct points (the 1st term, 2nd term, etc.)

Continuous means that the function has values for all possible values of x. The integers are included, but also all
the numbers in between.

The problem with the bacteria is an example of a continuous function. Here’s an example of a discrete function:

An ant walks past several stacks of Lego blocks. There is one block in the first stack, 3 blocks in the 2nd stack and
9 blocks in the 3rd stack. In fact, in each successive stack there are triple the number of blocks than in the previous
stack.

In this example, each stack has a distinct number of blocks and the next stack is made by adding a certain number of
whole pieces all at once. More importantly, however, there are no values of the sequence between the stacks. You
can’t ask how high the stack is between the 2nd and 3rd stack, as no stack exists at that position!

As a result of this difference, we use a geometric series to describe quantities that have values at discrete points, and
we use exponential functions to describe quantities that have values that change continuously.

When we graph an exponential function, we draw the graph with a solid curve to show that the function has values
at any time during the day. On the other hand, when we graph a geometric sequence, we draw discrete points to
signify that the sequence only has value at those points but not in between.
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Here are graphs for the two examples above:

The formula for an exponential function is similar to the formula for finding the terms in a geometric sequence. An
exponential function takes the form

y = A ·bx

where A is the starting amount and b is the amount by which the total is multiplied every time. For example, the
bacteria problem above would have the equation y = 3000 ·2x.

Compare Graphs of Exponential Functions

Let’s graph a few exponential functions and see what happens as we change the constants in the formula. The basic
shape of the exponential function should stay the same—but it may become steeper or shallower depending on the
constants we are using.

First, let’s see what happens when we change the value of A.

Example 1

Compare the graphs of y = 2x and y = 3 ·2x.

Solution

Let’s make a table of values for both functions.

TABLE 8.1:

x y = 2x y = 3 ·2x

-3 1
8 y = 3 ·2−3 = 3 · 1

23 =
3
8

-2 1
4 y = 3 ·2−2 = 3 · 1

22 =
3
4

-1 1
2 y = 3 ·2−1 = 3 · 1

21 =
3
2

0 1 y = 3 ·20 = 3
1 2 y = 3 ·21 = 6
2 4 y = 3 ·22 = 3 ·4 = 12
3 8 y = 3 ·23 = 3 ·8 = 24
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Now let’s use this table to graph the functions.

We can see that the function y = 3 · 2x is bigger than the function y = 2x. In both functions, the value of y doubles
every time x increases by one. However, y = 3 ·2x “starts” with a value of 3, while y = 2x “starts” with a value of 1,
so it makes sense that y = 3 ·2x would be bigger as its values of y keep getting doubled.

Similarly, if the starting value of A is smaller, the values of the entire function will be smaller.

Example 2

Compare the graphs of y = 2x and y = 1
3 ·2

x.

Solution

Let’s make a table of values for both functions.

TABLE 8.2:

x y = 2x y = 1
3 ·2

x

-3 1
8 y = 1

3 ·2
−3 = 1

3 ·
1
23 =

1
24

-2 1
4 y = 1

3 ·2
−2 = 1

3 ·
1
22 =

1
12

-1 1
2 y = 1

3 ·2
−1 = 1

3 ·
1
21 =

1
6

0 1 y = 1
3 ·2

0 = 1
3

1 2 y = 1
3 ·2

1 = 2
3

2 4 y = 1
3 ·2

2 = 1
3 ·4 = 4

3
3 8 y = 1

3 ·2
3 = 1

3 ·8 = 8
3

Now let’s use this table to graph the functions.
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As we expected, the exponential function y = 1
3 ·2

x is smaller than the exponential function y = 2x.

So what happens if the starting value of A is negative? Let’s find out.

Example 3

Graph the exponential function y =−5 ·2x.

Solution

Let’s make a table of values:

TABLE 8.3:

x y =−5 ·2x

-2 −5
4

-1 −5
2

0 -5
1 -10
2 -20
3 -40

Now let’s graph the function:
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This result shouldn’t be unexpected. Since the starting value is negative and keeps doubling over time, it makes
sense that the value of y gets farther from zero, but in a negative direction. The graph is basically just like the graph
of y = 5 ·2x, only mirror-reversed about the x−axis.

Now, let’s compare exponential functions whose bases (b) are different.

Example 4

Graph the following exponential functions on the same graph: y = 2x,y = 3x,y = 5x,y = 10x.

Solution

First we’ll make a table of values for all four functions.

TABLE 8.4:

x y = 2x y = 3x y = 5x y = 10x

-2 1
4

1
9

1
25

1
100

-1 1
2

1
3

1
5

1
10

0 1 1 1 1
1 2 3 5 10
2 4 9 25 100
3 8 27 125 1000

Now let’s graph the functions.

Notice that for x = 0, all four functions equal 1. They all “start out” at the same point, but the ones with higher
values for b grow faster when x is positive—and also shrink faster when x is negative.

Finally, let’s explore what happens for values of b that are less than 1.

Example 5

Graph the exponential function y = 5 ·
(1

2

)x.

Solution

Let’s start by making a table of values. (Remember that a fraction to a negative power is equivalent to its reciprocal
to the same positive power.)
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TABLE 8.5:

x y = 5 ·
(1

2

)x

-3 y = 5 ·
(1

2

)−3
= 5 ·23 = 40

-2 y = 5 ·
(1

2

)−2
= 5 ·22 = 20

-1 y = 5 ·
(1

2

)−1
= 5 ·21 = 10

0 y = 5 ·
(1

2

)0
= 5 ·1 = 5

1 y = 5 ·
(1

2

)1
= 5

2

2 y = 5 ·
(1

2

)2
= 5

4

Now let’s graph the function.

This graph looks very different than the graphs from the previous example! What’s going on here?

When we raise a number greater than 1 to the power of x, it gets bigger as x gets bigger. But when we raise a number
smaller than 1 to the power of x, it gets smaller as x gets bigger—as you can see from the table of values above. This
makes sense because multiplying any number by a quantity less than 1 always makes it smaller.

So, when the base b of an exponential function is between 0 and 1, the graph is like an ordinary exponential graph,
only decreasing instead of increasing. Graphs like this represent exponential decay instead of exponential growth.
Exponential decay functions are used to describe quantities that decrease over a period of time.

When b can be written as a fraction, we can use the Property of Negative Exponents to write the function in a
different form. For instance, y = 5 ·

(1
2

)x is equivalent to 5 ·2−x. These two forms are both commonly used, so it’s
important to know that they are equivalent.

Example 6

Graph the exponential function y = 8 ·3−x.

Solution

Here is our table of values and the graph of the function.
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TABLE 8.6:

x y = 8 ·3−x

-3 y = 8 ·3−(−3) = 8 ·33 = 216
-2 y = 8 ·3−(−2) = 8 ·32 = 72
-1 y = 8 ·3−(−1) = 8 ·31 = 24
0 y = 8 ·30 = 8
1 y = 8 ·3−1 = 8

3
2 y = 8 ·3−2 = 8

9

Example 7

Graph the functions y = 4x and y = 4−x on the same coordinate axes.

Solution

Here is the table of values for the two functions. Looking at the values in the table, we can see that the two functions
are “backwards” of each other, in the sense that the values for the two functions are reciprocals.

TABLE 8.7:

x y = 4x y = 4−x

-3 y = 4−3 = 1
64 y = 4−(−3) = 64

-2 y = 4−2 = 1
16 y = 4−(−2) = 16

-1 y = 4−1 = 1
4 y = 4−(−1) = 4

0 y = 40 = 1 y = 40 = 1
1 y = 41 = 4 y = 4−1 = 1

4
2 y = 42 = 16 y = 4−2 = 1

16
3 y = 43 = 1

64 y = 4−3 = 1
64

Here is the graph of the two functions. Notice that the two functions are mirror images of each other if the mirror is
placed vertically on the y−axis.
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In the next lesson, you’ll see how exponential growth and decay functions can be used to represent situations in the
real world.

Review Questions

Graph the following exponential functions by making a table of values.

1. y = 3x

2. y = 5 ·3x

3. y = 40 ·4x

4. y = 3 ·10x

Graph the following exponential functions.

5. y =
(1

5

)x

6. y = 4 ·
(2

3

)x

7. y = 3−x

8. y = 3
4 ·6

−x

9. Which two of the eight graphs above are mirror images of each other?
10. What function would produce a graph that is the mirror image of the one in problem 4?
11. How else might you write the exponential function in problem 5?
12. How else might you write the function in problem 6?

Solve the following problems.

13. A chain letter is sent out to 10 people telling everyone to make 10 copies of the letter and send each one to a
new person.

a. Assume that everyone who receives the letter sends it to ten new people and that each cycle takes a week.
How many people receive the letter on the sixth week?

b. What if everyone only sends the letter to 9 new people? How many people will then get letters on the
sixth week?

14. Nadia received $200 for her 10th birthday. If she saves it in a bank account with 7.5% interest compounded
yearly, how much money will she have in the bank by her 21st birthday?
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8.7 Applications of Exponential Functions

Learning Objectives

• Apply the problem-solving plan to problems involving exponential functions.
• Solve real-world problems involving exponential growth.
• Solve real-world problems involving exponential decay.

Introduction

For her eighth birthday, Shelley’s grandmother gave her a full bag of candy. Shelley counted her candy and found
out that there were 160 pieces in the bag. As you might suspect, Shelley loves candy, so she ate half the candy on the
first day. Then her mother told her that if she eats it at that rate, the candy will only last one more day—so Shelley
devised a clever plan. She will always eat half of the candy that is left in the bag each day. She thinks that this way
she can eat candy every day and never run out.

How much candy does Shelley have at the end of the week? Will the candy really last forever?

Let’s make a table of values for this problem.

Day 0 1 2 3 4 5 6 7

of candies 160 80 40 20 10 5 2.5 1.25

You can see that if Shelley eats half the candies each day, then by the end of the week she only has 1.25 candies left
in her bag.

Let’s write an equation for this exponential function. Using the formula y = A · bx, we can see that A is 160 (the
number of candies she starts out with and b is 1

2 , so our equation is y = 160 ·
(1

2

)x.)

Now let’s graph this function. The resulting graph is shown below.

405

http://www.ck12.org


8.7. Applications of Exponential Functions www.ck12.org

So, will Shelley’s candy last forever? We saw that by the end of the week she has 1.25 candies left, so there doesn’t
seem to be much hope for that. But if you look at the graph, you’ll see that the graph never really gets to zero.
Theoretically there will always be some candy left, but Shelley will be eating very tiny fractions of a candy every
day after the first week!

This is a fundamental feature of an exponential decay function. Its values get smaller and smaller but never quite
reach zero. In mathematics, we say that the function has an asymptote at y = 0; in other words, it gets closer and
closer to the line y = 0 but never quite meets it.

Problem-Solving Strategies

Remember our problem-solving plan from earlier?

1. Understand the problem.
2. Devise a plan – Translate.
3. Carry out the plan – Solve.
4. Look – Check and Interpret.

We can use this plan to solve application problems involving exponential functions. Compound interest, loudness of
sound, population increase, population decrease or radioactive decay are all applications of exponential functions.
In these problems, we’ll use the methods of constructing a table and identifying a pattern to help us devise a plan for
solving the problems.

Example 1

Suppose $4000 is invested at 6% interest compounded annually. How much money will there be in the bank at the
end of 5 years? At the end of 20 years?

Solution

Step 1: Read the problem and summarize the information.

$4000 is invested at 6% interest compounded annually; we want to know how much money we have in five years.

Assign variables:

Let x = time in years

406

http://www.ck12.org


www.ck12.org Chapter 8. Exponential Functions

Let y = amount of money in investment account

Step 2: Look for a pattern.

We start with $4000 and each year we add 6% interest to the amount in the bank.

Start: $4000

1st year: Interest = 4000× (0.06) = $240

This is added to the previous amount: $4000+$4000× (0.06)

= $4000(1+0.06)

= $4000(1.06)

= $4240

2nd year Previous amount+ interest on the previous amount

= $4240(1+0.06)

= $4240(1.06)

= $4494.40

The pattern is that each year we multiply the previous amount by the factor of 1.06.

Let’s fill in a table of values:

Time (years) 0 1 2 3 4 5

Investments amount($) 4000 4240 4494.4 4764.06 5049.90 5352.9

We see that at the end of five years we have $5352.90 in the investment account.

Step 3: Find a formula.

We were able to find the amount after 5 years just by following the pattern, but rather than follow that pattern for
another 15 years, it’s easier to use it to find a general formula. Since the original investment is multiplied by 1.06
each year, we can use exponential notation. Our formula is y = 4000 · (1.06)x, where x is the number of years since
the investment.

To find the amount after 5 years we plug x = 5 into the equation:

y = 4000 · (1.06)5 = $5352.90

To find the amount after 20 years we plug x = 20 into the equation:

y = 4000 · (1.06)20 = $12828.54

Step 4: Check.

Looking back over the solution, we see that we obtained the answers to the questions we were asked and the answers
make sense.

To check our answers, we can plug some low values of x into the formula to see if they match the values in the table:

x = 0 : y = 4000 · (1.06)0 = 4000
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x = 1 : y = 4000 · (1.06)1 = 4240

x = 2 : y = 4000 · (1.06)2 = 4494.4

The answers match the values we found earlier. The amount of increase gets larger each year, and that makes sense
because the interest is 6% of an amount that is larger every year.

Example 2

In 2002 the population of schoolchildren in a city was 90,000. This population decreases at a rate of 5% each year.
What will be the population of school children in year 2010?

Solution

Step 1: Read the problem and summarize the information.

The population is 90,000; the rate of decrease is 5% each year; we want the population after 8 years.

Assign variables:

Let x = time since 2002 (in years)

Let y = population of school children

Step 2: Look for a pattern.

Let’s start in 2002, when the population is 90,000.

The rate of decrease is 5% each year, so the amount in 2003 is 90,000 minus 5% of 90,000, or 95% of 90,000.

In 2003 : Population = 90,000×0.95

In 2004 : Population = 90,000×0.95×0.95

The pattern is that for each year we multiply by a factor of 0.95

Let’s fill in a table of values:

Year 2002 2003 2004 2005 2006 2007

Population 90,000 85,500 81,225 77,164 73,306 69,640

Step 3: Find a formula.

Since we multiply by 0.95 every year, our exponential formula is y = 90000 · (0.95)x, where x is the number of years
since 2002. To find the population in 2010 (8 years after 2002), we plug in x = 8:

y = 90000 · (0.95)8 = 59,708 schoolchildren.

Step 4: Check.

Looking back over the solution, we see that we answered the question we were asked and that it makes sense. The
answer makes sense because the numbers decrease each year as we expected. We can check that the formula is
correct by plugging in the values of x from the table to see if the values match those given by the formula.

Year 2002,x = 0 : Population = y = 90000 · (0.95)0 = 90,000

Year 2003,x = 1 : Population = y = 90000 · (0.95)1 = 85,500

Year 2004,x = 2 : Population = y = 90000 · (0.95)2 = 81,225
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Solve Real-World Problems Involving Exponential Growth

Now we’ll look at some more real-world problems involving exponential functions. We’ll start with situations
involving exponential growth.

Example 3

The population of a town is estimated to increase by 15% per year. The population today is 20 thousand. Make a
graph of the population function and find out what the population will be ten years from now.

Solution

First, we need to write a function that describes the population of the town.

The general form of an exponential function is y = A ·bx.

Define y as the population of the town.

Define x as the number of years from now.

A is the initial population, so A = 20 (thousand).

Finally we must find what b is. We are told that the population increases by 15% each year. To calculate percents
we have to change them into decimals: 15% is equivalent to 0.15. So each year, the population increases by 15% of
A, or 0.15A.

To find the total population for the following year, we must add the current population to the increase in population.
In other words, A+0.15A = 1.15A. So the population must be multiplied by a factor of 1.15 each year. This means
that the base of the exponential is b = 1.15.

The formula that describes this problem is y = 20 · (1.15)x.

Now let’s make a table of values.

TABLE 8.8:

x y = 20 · (1.15)x

-10 4.9
-5 9.9
0 20
5 40.2
10 80.9

Now we can graph the function.
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Notice that we used negative values of x in our table of values. Does it make sense to think of negative time? Yes;
negative time can represent time in the past. For example, x = −5 in this problem represents the population from
five years ago.

The question asked in the problem was: what will be the population of the town ten years from now? To find that
number, we plug x = 10 into the equation we found: y = 20 · (1.15)10 = 80,911.

The town will have 80,911 people ten years from now.

Example 4

Peter earned $1500 last summer. If he deposited the money in a bank account that earns 5% interest compounded
yearly, how much money will he have after five years?

Solution

This problem deals with interest which is compounded yearly. This means that each year the interest is calculated on
the amount of money you have in the bank. That interest is added to the original amount and next year the interest is
calculated on this new amount, so you get paid interest on the interest.

Let’s write a function that describes the amount of money in the bank.

The general form of an exponential function is y = A ·bx.

Define y as the amount of money in the bank.

Define x as the number of years from now.

A is the initial amount, so A = 1500.

Now we have to find what b is.

We’re told that the interest is 5% each year, which is 0.05 in decimal form. When we add 0.05A to A, we get 1.05A,
so that is the factor we multiply by each year. The base of the exponential is b = 1.05.

The formula that describes this problem is y = 1500 ·1.05x. To find the total amount of money in the bank at the end
of five years, we simply plug in x = 5.

y = 1500 · (1.05)5 = $1914.42
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Solve Real-World Problems Involving Exponential Decay

Exponential decay problems appear in several application problems. Some examples of these are half-life problems
and depreciation problems. Let’s solve an example of each of these problems.

Example 5

A radioactive substance has a half-life of one week. In other words, at the end of every week the level of radioactivity
is half of its value at the beginning of the week. The initial level of radioactivity is 20 counts per second.

Draw the graph of the amount of radioactivity against time in weeks.

Find the formula that gives the radioactivity in terms of time.

Find the radioactivity left after three weeks.

Solution

Let’s start by making a table of values and then draw the graph.

TABLE 8.9:

Time Radioactivity
0 20
1 10
2 5
3 2.5
4 1.25
5 0.625

Exponential decay fits the general formula y = A ·bx. In this case:

y is the amount of radioactivity

x is the time in weeks

A = 20 is the starting amount

b = 1
2 since the substance losses half its value each week
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The formula for this problem is y = 20 ·
(1

2

)x or y = 20 · 2−x. To find out how much radioactivity is left after three
weeks, we plug x = 3 into this formula.

y = 20 ·
(

1
2

)3

= 20 ·
(

1
8

)
= 2.5

Example 6

The cost of a new car is $32,000. It depreciates at a rate of 15% per year. This means that it loses 15% of each value
each year.

Draw the graph of the car’s value against time in year.

Find the formula that gives the value of the car in terms of time.

Find the value of the car when it is four years old.

Solution

Let’s start by making a table of values. To fill in the values we start with 32,000 at time t = 0. Then we multiply the
value of the car by 85% for each passing year. (Since the car loses 15% of its value, that means it keeps 85% of its
value). Remember that 85% means that we multiply by the decimal .85.

TABLE 8.10:

Time Value (thousands)
0 32
1 27.2
2 23.1
3 19.7
4 16.7
5 14.2

Now draw the graph:

Let’s start with the general formula y = A ·bx

In this case:
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y is the value of the car,

x is the time in years,

A = 32 is the starting amount in thousands,

b = 0.85 since we multiply the amount by this factor to get the value of the car next year

The formula for this problem is y = 32 · (0.85)x.

Finally, to find the value of the car when it is four years old, we plug x = 4 into that formula: y = 32 · (0.85)4 = 16.7
thousand dollars, or $16,704 if we don’t round.

Review Questions

Solve the following application problems.

1. Half-life: Suppose a radioactive substance decays at a rate of 3.5% per hour.

a. What percent of the substance is left after 6 hours?
b. What percent is left after 12 hours?
c. The substance is safe to handle when at least 50% of it has decayed. Make a guess as to how many hours

this will take.
d. Test your guess. How close were you?

2. Population decrease: In 1990 a rural area has 1200 bird species.

a. If species of birds are becoming extinct at the rate of 1.5% per decade (ten years), how many bird species
will be left in the year 2020?

b. At that same rate, how many were there in 1980?

3. Growth: Janine owns a chain of fast food restaurants that operated 200 stores in 1999. If the rate of increase
is 8% annually, how many stores does the restaurant operate in 2007?

4. Investment: Paul invests $360 in an account that pays 7.25% compounded annually.

a. What is the total amount in the account after 12 years?
b. If Paul invests an equal amount in an account that pays 5% compounded quarterly (four times a year),

what will be the amount in that account after 12 years?
c. Which is the better investment?

5. The cost of a new ATV (all-terrain vehicle) is $7200. It depreciates at 18% per year.

a. Draw the graph of the vehicle’s value against time in years.
b. Find the formula that gives the value of the ATV in terms of time.
c. Find the value of the ATV when it is ten years old.

6. A person is infected by a certain bacterial infection. When he goes to the doctor the population of bacteria is
2 million. The doctor prescribes an antibiotic that reduces the bacteria population to 1

4 of its size each day.

a. Draw the graph of the size of the bacteria population against time in days.
b. Find the formula that gives the size of the bacteria population in terms of time.
c. Find the size of the bacteria population ten days after the drug was first taken.
d. Find the size of the bacteria population after 2 weeks (14 days).
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Texas Instruments Resources

In the CK-12 Texas Instruments Algebra I FlexBook, there are graphing calculator activities designed to supple-
ment the objectives for some of the lessons in this chapter. See http://www.ck12.org/flexr/chapter/9618.
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CHAPTER 9 Polynomials
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9.1 Addition and Subtraction of Polynomials

Learning Objectives

• Write a polynomial expression in standard form.
• Classify polynomial expression by degree.
• Add and subtract polynomials.
• Solve problems using addition and subtraction of polynomials.

Introduction

So far we’ve seen functions described by straight lines (linear functions) and functions where the variable appeared
in the exponent (exponential functions). In this section we’ll introduce polynomial functions. A polynomial is made
up of different terms that contain positive integer powers of the variables. Here is an example of a polynomial:

4x3 +2x2−3x+1

Each part of the polynomial that is added or subtracted is called a term of the polynomial. The example above is a
polynomial with four terms.

The numbers appearing in each term in front of the variable are called the coefficients. The number appearing all by
itself without a variable is called a constant.

In this case the coefficient of x3 is 4, the coefficient of x2 is 2, the coefficient of x is -3 and the constant is 1.

Degrees of Polynomials and Standard Form

Each term in the polynomial has a different degree. The degree of the term is the power of the variable in that term.

4x3 has degree 3 and is called a cubic term or 3rd order term.

2x2 has degree 2 and is called a quadratic term or 2nd order term.

−3x has degree 1 and is called a linear term or 1st order term.

1 has degree 0 and is called the constant.

416

http://www.ck12.org


www.ck12.org Chapter 9. Polynomials

By definition, the degree of the polynomial is the same as the degree of the term with the highest degree. This
example is a polynomial of degree 3, which is also called a “cubic” polynomial. (Why do you think it is called a
cubic?).

Polynomials can have more than one variable. Here is another example of a polynomial:

t4−6s3t2−12st +4s4−5

This is a polynomial because all the exponents on the variables are positive integers. This polynomial has five terms.
Let’s look at each term more closely.

Note: The degree of a term is the sum of the powers on each variable in the term. In other words, the degree of
each term is the number of variables that are multiplied together in that term, whether those variables are the same
or different.

t4 has a degree of 4, so it’s a 4th order term

−6s3t2 has a degree of 5, so it’s a 5th order term.

−12st has a degree of 2, so it’s a 2nd order term.

4s4 has a degree of 4, so it’s a 4th order term.

−5 is a constant, so its degree is 0.

Since the highest degree of a term in this polynomial is 5, then this is polynomial of degree 5th or a 5th order
polynomial.

A polynomial that has only one term has a special name. It is called a monomial (mono means one). A monomial
can be a constant, a variable, or a product of a constant and one or more variables. You can see that each term in
a polynomial is a monomial, so a polynomial is just the sum of several monomials. Here are some examples of
monomials:

b2 −2ab2 8
1
4

x4 −29xy

Example 1

For the following polynomials, identify the coefficient of each term, the constant, the degree of each term and the
degree of the polynomial.

a) x5−3x3 +4x2−5x+7

b) x4−3x3y2 +8x−12

Solution

a) x5−3x3 +4x2−5x+7

The coefficients of each term in order are 1, -3, 4, and -5 and the constant is 7.

The degrees of each term are 5, 3, 2, 1, and 0. Therefore the degree of the polynomial is 5.

b) x4−3x3y2 +8x−12

The coefficients of each term in order are 1, -3, and 8 and the constant is -12.

The degrees of each term are 4, 5, 1, and 0. Therefore the degree of the polynomial is 5.
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Example 2

Identify the following expressions as polynomials or non-polynomials.

a) 5x5−2x

b) 3x2−2x−2

c) x
√

x−1

d) 5
x3+1

e) 4x
1
3

f) 4xy2−2x2y−3+ y3−3x3

Solution

a) This is a polynomial.

b) This is not a polynomial because it has a negative exponent.

c) This is not a polynomial because it has a radical.

d) This is not a polynomial because the power of x appears in the denominator of a fraction (and there is no way to
rewrite it so that it does not).

e) This is not a polynomial because it has a fractional exponent.

f) This is a polynomial.

Often, we arrange the terms in a polynomial in order of decreasing power. This is called standard form.

The following polynomials are in standard form:

4x4−3x3 +2x2− x+1

a4b3−2a3b3 +3a4b−5ab2 +2

The first term of a polynomial in standard form is called the leading term, and the coefficient of the leading term is
called the leading coefficient.

The first polynomial above has the leading term 4x4, and the leading coefficient is 4.

The second polynomial above has the leading term a4b3, and the leading coefficient is 1.

Example 3

Rearrange the terms in the following polynomials so that they are in standard form. Indicate the leading term and
leading coefficient of each polynomial.

a) 7−3x3 +4x

b) ab−a3 +2b

c) −4b+4+b2

Solution

a) 7−3x3 +4x becomes −3x3 +4x+7. Leading term is −3x3; leading coefficient is -3.

b) ab−a3 +2b becomes −a3 +ab+2b. Leading term is −a3; leading coefficient is -1.

c) −4b+4+b2 becomes b2−4b+4. Leading term is b2; leading coefficient is 1.
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Simplifying Polynomials

A polynomial is simplified if it has no terms that are alike. Like terms are terms in the polynomial that have the
same variable(s) with the same exponents, whether they have the same or different coefficients.

For example, 2x2y and 5x2y are like terms, but 6x2y and 6xy2 are not like terms.

When a polynomial has like terms, we can simplify it by combining those terms.

x2 +6xy−4xy+ y2

↗ ↖
Like terms

We can simplify this polynomial by combining the like terms 6xy and −4xy into (6− 4)xy, or 2xy. The new
polynomial is x2 +2xy+ y2.

Example 4

Simplify the following polynomials by collecting like terms and combining them.

a) 2x−4x2 +6+ x2−4+4x

b) a3b3−5ab4 +2a3b−a3b3 +3ab4−a2b

Solution

a) Rearrange the terms so that like terms are grouped together: (−4x2 + x2)+(2x+4x)+(6−4)

Combine each set of like terms: −3x2 +6x+2

b) Rearrange the terms so that like terms are grouped together: (a3b3−a3b3)+(−5ab4 +3ab4)+2a3b−a2b

Combine each set of like terms: 0−2ab4 +2a3b−a2b =−2ab4 +2a3b−a2b

Adding and Subtracting Polynomials

To add two or more polynomials, write their sum and then simplify by combining like terms.

Example 5

Add and simplify the resulting polynomials.

a) Add 3x2−4x+7 and 2x3−4x2−6x+5

b) Add x2−2xy+ y2 and 2y2−3x2 and 10xy+ y3

Solution

a)

(3x2−4x+7)+(2x3−4x2−6x+5)

Group like terms: = 2x3 +(3x2−4x2)+(−4x−6x)+(7+5)

Simplify: = 2x3− x2−10x+12
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b)

(x2−2xy+ y2)+(2y2−3x2)+(10xy+ y3)

Group like terms: = (x2−3x2)+(y2 +2y2)+(−2xy+10xy)+ y3

Simplify: =−2x2 +3y2 +8xy+ y3

To subtract one polynomial from another, add the opposite of each term of the polynomial you are subtracting.

Example 6

a) Subtract x3−3x2 +8x+12 from 4x2 +5x−9

b) Subtract 5b2−2a2 from 4a2−8ab−9b2

Solution

a)

(4x2 +5x−9)− (x3−3x2 +8x+12) = (4x2 +5x−9)+(−x3 +3x2−8x−12)

Group like terms: =−x3 +(4x2 +3x2)+(5x−8x)+(−9−12)

Simplify: =−x3 +7x2−3x−21

b)

(4a2−8ab−9b2)− (5b2−2a2) = (4a2−8ab−9b2)+(−5b2 +2a2)

Group like terms: = (4a2 +2a2)+(−9b2−5b2)−8ab

Simplify: = 6a2−14b2−8ab

Note: An easy way to check your work after adding or subtracting polynomials is to substitute a convenient value
in for the variable, and check that your answer and the problem both give the same value. For example, in part (b)
above, if we let a = 2 and b = 3, then we can check as follows:

Given Solution

(4a2−8ab−9b2)− (5b2−2a2) 6a2−14b2−8ab

(4(2)2−8(2)(3)−9(3)2)− (5(3)2−2(2)2) 6(2)2−14(3)2−8(2)(3)

(4(4)−8(2)(3)−9(9))− (5(9)−2(4)) 6(4)−14(9)−8(2)(3)

(−113)−37 24−126−48

−150 −150

Since both expressions evaluate to the same number when we substitute in arbitrary values for the variables, we can
be reasonably sure that our answer is correct.

Note: When you use this method, do not choose 0 or 1 for checking since these can lead to common problems.

Problem Solving Using Addition or Subtraction of Polynomials

One way we can use polynomials is to find the area of a geometric figure.

Example 7
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Write a polynomial that represents the area of each figure shown.

a)

b)

c)

d)

Solution

a) This shape is formed by two squares and two rectangles.

The blue square has area y× y = y2.

The yellow square has area x× x = x2.

The pink rectangles each have area x× y = xy.
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To find the total area of the figure we add all the separate areas:

Total area = y2 + x2 + xy+ xy

= y2 + x2 +2xy

b) This shape is formed by two squares and one rectangle.

The yellow squares each have area a×a = a2.

The orange rectangle has area 2a×b = 2ab.

To find the total area of the figure we add all the separate areas:

Total area = a2 +a2 +2ab

= 2a2 +2ab

c) To find the area of the green region we find the area of the big square and subtract the area of the little square.

The big square has area : y× y = y2.

The little square has area : x× x = x2.

Area o f the green region = y2− x2

d) To find the area of the figure we can find the area of the big rectangle and add the areas of the pink squares.

The pink squares each have area a×a = a2.

The blue rectangle has area 3a×a = 3a2.

To find the total area of the figure we add all the separate areas:

Total area = a2 +a2 +a2 +3a2 = 6a2

Another way to find this area is to find the area of the big square and subtract the areas of the three yellow squares:
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The big square has area 3a×3a = 9a2.

The yellow squares each have area a×a = a2.

To find the total area of the figure we subtract:

Area = 9a2− (a2 +a2 +a2)

= 9a2−3a2

= 6a2

Further Practice

For more practice adding and subtracting polynomials, try playing the Battleship game at http://www.quia.com/ba/2
8820.html. (The problems get harder as you play; watch out for trick questions!)

Review Questions

Indicate whether each expression is a polynomial.

1. x2 +3x
1
2

2. 1
3 x2y−9y2

3. 3x−3

4. 2
3 t2− 1

t2

5.
√

x−2x

6.
(

x
3
2

)2

Express each polynomial in standard form. Give the degree of each polynomial.

7. 3−2x
8. 8−4x+3x3

9. −5+2x−5x2 +8x3

10. x2−9x4 +12
11. 5x+2x2−3x

Add and simplify.

12. (x+8)+(−3x−5)
13. (−2x2 +4x−12)+(7x+ x2)
14. (2a2b−2a+9)+(5a2b−4b+5)
15. (6.9a2−2.3b2 +2ab)+(3.1a−2.5b2 +b)
16.

(3
5 x2− 1

4 x+4
)
+
( 1

10 x2 + 1
2 x−2 1

5

)
Subtract and simplify.

423

http://www.ck12.org
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html
http://www.quia.com/ba/28820.html


9.1. Addition and Subtraction of Polynomials www.ck12.org

17. (−t +5t2)− (5t2 +2t−9)
18. (−y2 +4y−5)− (5y2 +2y+7)
19. (−5m2−m)− (3m2 +4m−5)
20. (2a2b−3ab2 +5a2b2)− (2a2b2 +4a2b−5b2)
21. (3.5x2y−6xy+4x)− (1.2x2y− xy+2y−3)

Find the area of the following figures.

22.

23.

24.

25.
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9.2 Multiplication of Polynomials

Learning Objectives

• Multiply a polynomial by a monomial.
• Multiply a polynomial by a binomial.
• Solve problems using multiplication of polynomials.

Introduction

Just as we can add and subtract polynomials, we can also multiply them. The Distributive Property and the techniques
you’ve learned for dealing with exponents will be useful here.

Multiplying a Polynomial by a Monomial

When multiplying polynomials, we must remember the exponent rules that we learned in the last chapter. Especially
important is the product rule: xn · xm = xn+m.

If the expressions we are multiplying have coefficients and more than one variable, we multiply the coefficients just
as we would any number and we apply the product rule on each variable separately.

Example 1

Multiply the following monomials.

a) (2x2)(5x3)

b) (−3y4)(2y2)

c) (3xy5)(−6x4y2)

d) (−12a2b3c4)(−3a2b2)

Solution

a) (2x2)(5x3) = (2 ·5) · (x2 · x3) = 10x2+3 = 10x5

b) (−3y4)(2y2) = (−3 ·2) · (y4 · y2) =−6y4+2 =−6y6

c) (3xy5)(−6x4y2) =−18x1+4y5+2 =−18x5y7

d) (−12a2b3c4)(−3a2b2) = 36a2+2b3+2c4 = 36a4b5c4

To multiply a polynomial by a monomial, we have to use the Distributive Property. Remember, that property says
that a(b+ c) = ab+ac.

Example 2

Multiply:
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a) 3(x2 +3x−5)

b) 4x(3x2−7)

c) −7y(4y2−2y+1)

Solution

a) 3(x2 +3x−5) = 3(x2)+3(3x)−3(5) = 3x2 +9x−15

b) 4x(3x2−7) = (4x)(3x2)+(4x)(−7) = 12x3−28x

c) −7y(4y2−2y+1) = (−7y)(4y2)+(−7y)(−2y)+(−7y)(1) =−28y3 +14y2−7y

Notice that when we use the Distributive Property, the problem becomes a matter of just multiplying monomials by
monomials and adding all the separate parts together.

Example 3

Multiply:

a) 2x3(−3x4 +2x3−10x2 +7x+9)

b) −7a2bc3(5a2−3b2−9c2)

Solution

a)

2x3(−3x4 +2x3−10x2 +7x+9) = (2x3)(−3x4)+(2x3)(2x3)+(2x3)(−10x2)+(2x3)(7x)+(2x3)(9)

=−6x7 +4x6−20x5 +14x4 +18x3

b)

−7a2bc3(5a2−3b2−9c2) = (−7a2bc3)(5a2)+(−7a2bc3)(−3b2)+(−7a2bc3)(−9c2)

=−35a4bc3 +21a2b3c3 +63a2bc5

Multiplying Two Polynomials

Let’s start by multiplying two binomials together. A binomial is a polynomial with two terms, so a product of two
binomials will take the form (a+b)(c+d).

We can still use the Distributive Property here if we do it cleverly. First, let’s think of the first set of parentheses as
one term. The Distributive Property says that we can multiply that term by c, multiply it by d, and then add those
two products together: (a+b)(c+d) = (a+b) · c+(a+b) ·d.

We can rewrite this expression as c(a+ b)+ d(a+ b). Now let’s look at each half separately. We can apply the
distributive property again to each set of parentheses in turn, and that gives us c(a+b)+d(a+b)= ca+cb+da+db.

What you should notice is that when multiplying any two polynomials, every term in one polynomial is multiplied
by every term in the other polynomial.

Example 4

Multiply and simplify: (2x+1)(x+3)

Solution

We must multiply each term in the first polynomial by each term in the second polynomial. Let’s try to be systematic
to make sure that we get all the products.

First, multiply the first term in the first set of parentheses by all the terms in the second set of parentheses.
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Now we’re done with the first term. Next we multiply the second term in the first parenthesis by all terms in the
second parenthesis and add them to the previous terms.

Now we’re done with the multiplication and we can simplify:

(2x)(x)+(2x)(3)+(1)(x)+(1)(3) = 2x2 +6x+ x+3 = 2x2 +7x+3

This way of multiplying polynomials is called in-line multiplication or horizontal multiplication. Another method
for multiplying polynomials is to use vertical multiplication, similar to the vertical multiplication you learned with
regular numbers.

Example 5

Multiply and simplify:

a) (4x−5)(x−20)

b) (3x−2)(3x+2)

c) (3x2 +2x−5)(2x−3)

d) (x2−9)(4x4 +5x2−2)

Solution

a) With horizontal multiplication this would be

(4x−5)(x−20) = (4x)(x)+(4x)(−20)+(−5)(x)+(−5)(−20) = 4x2−80x−5x+100 = 4x2−85x+100

To do vertical multiplication instead, we arrange the polynomials on top of each other with like terms in the same
columns:

4x−5

x−20

−80x+100

4x2−5x

4x2−85x+100

Both techniques result in the same answer: 4x2−85x+100. We’ll use vertical multiplication for the other problems.

b)

3x−2

3x+2

6x−4

9x2−6x

9x2 +0x−4
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The answer is 9x2−4.

c) It’s better to place the smaller polynomial on the bottom:

3x2 +2x−5

2x−3

−9x2−6x+15

6x3 +4x2−10x

6x3−5x2−16x+15

The answer is 6x3−5x2−16x+15.

d) Set up the multiplication vertically and leave gaps for missing powers of x:

4x4 +5x2−2

x2−9

−36x4−45x2 +18

4x6 + 5x4 − 2x2

4x6−31x4−47x2 +18

The answer is 4x6−31x4−47x2 +18.

The Khan Academy video at http://www.youtube.com/watch?v=Sc0e6xrRJYY shows how multiplying two binomi-
als together is related to the distributive property.

Solve Real-World Problems Using Multiplication of Polynomials

In this section, we’ll see how multiplication of polynomials is applied to finding the areas and volumes of geometric
shapes.

Example 6

Find the areas of the following figures:

a)

b)

428

http://www.ck12.org
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY
http://www.youtube.com/watch?v=Sc0e6xrRJYY


www.ck12.org Chapter 9. Polynomials

Find the volumes of the following figures:

c)

d)

Solution

a) We use the formula for the area of a rectangle: Area = length×width.

For the big rectangle:

Length = b+3, Width = b+2

Area = (b+3)(b+2)

= b2 +2b+3b+6

= b2 +5b+6

b) We could add up the areas of the blue and orange rectangles, but it’s easier to just find the area of the whole big
rectangle and subtract the area of the yellow rectangle.
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Area of big rectangle = 20(12) = 240

Area of yellow rectangle = (12− x)(20−2x)

= 240−24x−20x+2x2

= 240−44x+2x2

= 2x2−44x+240

The desired area is the difference between the two:

Area = 240− (2x2−44x+240)

= 240+(−2x2 +44x−240)

= 240−2x2 +44x−240

=−2x2 +44x

c) The volume of this shape = (area of the base)(height).

Area of the base = x(x+2)

= x2 +2x

Height = 2x+1

Volume = (x2 +2x)(2x+1)

= 2x3 + x2 +4x2 +2x

= 2x3 +5x2 +2x

d) The volume of this shape = (area of the base)(height).

Area of the base = (4a−3)(2a+1)

= 8a2 +4a−6a−3

= 8a2−2a−3

Height = a+4

Volume = (8a2−2a−3)(a+4)

Let’s multiply using the vertical method:

8a2−2a−3

a+4

32a2−8a−12

8a3 − 2a2 −3a

8a3 + 30a2−11a−12

The volume is 8a3 +30a2−11a−12.
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Review Questions

Multiply the following monomials.

1. (2x)(−7x)
2. (10x)(3xy)
3. (4mn)(0.5nm2)
4. (−5a2b)(−12a3b3)
5. (3xy2z2)(15x2yz3)

Multiply and simplify.

6. 17(8x−10)
7. 2x(4x−5)
8. 9x3(3x2−2x+7)
9. 3x(2y2 + y−5)

10. 10q(3q2r+5r)
11. −3a2b(9a2−4b2)
12. (x−3)(x+2)
13. (a+b)(a−5)
14. (x+2)(x2−3)
15. (a2 +2)(3a2−4)
16. (7x−2)(9x−5)
17. (2x−1)(2x2− x+3)
18. (3x+2)(9x2−6x+4)
19. (a2 +2a−3)(a2−3a+4)
20. 3(x−5)(2x+7)
21. 5x(x+4)(2x−3)

Find the areas of the following figures.

22.

23.

Find the volumes of the following figures.

24.
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25.
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9.3 Special Products of Polynomials

Learning Objectives

• Find the square of a binomial
• Find the product of binomials using sum and difference formula
• Solve problems using special products of polynomials

Introduction

We saw that when we multiply two binomials we need to make sure to multiply each term in the first binomial with
each term in the second binomial. Let’s look at another example.

Multiply two linear binomials (binomials whose degree is 1):

(2x+3)(x+4)

When we multiply, we obtain a quadratic polynomial (one with degree 2) with four terms:

2x2 +8x+3x+12

The middle terms are like terms and we can combine them. We simplify and get 2x2 +11x+12. This is a quadratic,
or second-degree, trinomial (polynomial with three terms).

You can see that every time we multiply two linear binomials with one variable, we will obtain a quadratic polyno-
mial. In this section we’ll talk about some special products of binomials.

Find the Square of a Binomial

One special binomial product is the square of a binomial. Consider the product (x+4)(x+4).

Since we are multiplying the same expression by itself, that means we are squaring the expression. (x+4)(x+4) is
the same as (x+4)2.

When we multiply it out, we get x2 +4x+4x+16, which simplifies to x2 +8x+16.

Notice that the two middle terms—the ones we added together to get 8x—were the same. Is this a coincidence? In
order to find that out, let’s square a general linear binomial.

(a+b)2 = (a+b)(a+b) = a2 +ab+ab+b2

= a2 +2ab+b2
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Sure enough, the middle terms are the same. How about if the expression we square is a difference instead of a sum?

(a−b)2 = (a−b)(a−b) = a2−ab−ab+b2

= a2−2ab+b2

It looks like the middle two terms are the same in general whenever we square a binomial. The general pattern is: to
square a binomial, take the square of the first term, add or subtract twice the product of the terms, and add the square
of the second term. You should remember these formulas:

(a+b)2 = a2 +2ab+b2

and

(a−b)2 = a2−2ab+b2

Remember! Raising a polynomial to a power means that we multiply the polynomial by itself however many times
the exponent indicates. For instance, (a+b)2 = (a+b)(a+b). Don’t make the common mistake of thinking that
(a+b)2 = a2 +b2! To see why that’s not true, try substituting numbers for a and b into the equation (for example,
a = 4 and b = 3), and you will see that it is not a true statement. The middle term, 2ab, is needed to make the
equation work.

We can apply the formulas for squaring binomials to any number of problems.

Example 1

Square each binomial and simplify.

a) (x+10)2

b) (2x−3)2

c) (x2 +4)2

d) (5x−2y)2

Solution

Let’s use the square of a binomial formula to multiply each expression.

a) (x+10)2

If we let a = x and b = 10, then our formula (a+ b)2 = a2 + 2ab+ b2 becomes (x+ 10)2 = x2 + 2(x)(10)+ 102,
which simplifies to x2 +20x+100.

b) (2x−3)2

If we let a = 2x and b = 3, then our formula (a−b)2 = a2−2ab+b2 becomes (2x−3)2 = (2x2)−2(2x)(3)+(3)2,
which simplifies to 4x2−12x+9.

c) (x2 +4)2

If we let a = x2 and b = 4, then

(x2 +4)2 = (x2)2 +2(x2)(4)+(4)2

= x4 +8x2 +16

d) (5x−2y)2
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If we let a = 5x and b = 2y, then

(5x−2y)2 = (5x)2−2(5x)(2y)+(2y)2

= 25x2−20xy+4y2

Find the Product of Binomials Using Sum and Difference Patterns

Another special binomial product is the product of a sum and a difference of terms. For example, let’s multiply the
following binomials.

(x+4)(x−4) = x2−4x+4x−16

= x2−16

Notice that the middle terms are opposites of each other, so they cancel out when we collect like terms. This is not
a coincidence. This always happens when we multiply a sum and difference of the same terms. In general,

(a+b)(a−b) = a2−ab+ab−b2

= a2−b2

When multiplying a sum and difference of the same two terms, the middle terms cancel out. We get the square of
the first term minus the square of the second term. You should remember this formula.

Sum and Difference Formula: (a+b)(a−b) = a2−b2

Let’s apply this formula to a few examples.

Example 2

Multiply the following binomials and simplify.

a) (x+3)(x−3)

b) (5x+9)(5x−9)

c) (2x3 +7)(2x3−7)

d) (4x+5y)(4x−5y)

Solution

a) Let a = x and b = 3, then:

(a+b)(a−b) = a2−b2

(x+3)(x−3) = x2−32

= x2−9

b) Let a = 5x and b = 9, then:
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(a+b)(a−b) = a2−b2

(5x+9)(5x−9) = (5x)2−92

= 25x2−81

c) Let a = 2x3 and b = 7, then:

(2x3 +7)(2x3−7) = (2x3)2− (7)2

= 4x6−49

d) Let a = 4x and b = 5y, then:

(4x+5y)(4x−5y) = (4x)2− (5y)2

= 16x2−25y2

Solve Real-World Problems Using Special Products of Polynomials

Now let’s see how special products of polynomials apply to geometry problems and to mental arithmetic.

Example 3

Find the area of the following square:

Solution

The length of each side is (a+b), so the area is (a+b)(a+b).

Notice that this gives a visual explanation of the square of a binomial. The blue square has area a2, the red square
has area b2, and each rectangle has area ab, so added all together, the area (a+b)(a+b) is equal to a2 +2ab+b2.

The next example shows how you can use the special products to do fast mental calculations.

Example 4

Use the difference of squares and the binomial square formulas to find the products of the following numbers without
using a calculator.

a) 43×57

b) 112×88
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c) 452

d) 481×319

Solution

The key to these mental “tricks” is to rewrite each number as a sum or difference of numbers you know how to
square easily.

a) Rewrite 43 as (50−7) and 57 as (50+7).

Then 43×57 = (50−7)(50+7) = (50)2− (7)2 = 2500−49 = 2451

b) Rewrite 112 as (100+12) and 88 as (100−12).

Then 112×88 = (100+12)(100−12) = (100)2− (12)2 = 10000−144 = 9856

c) 452 = (40+5)2 = (40)2 +2(40)(5)+(5)2 = 1600+400+25 = 2025

d) Rewrite 481 as (400+81) and 319 as (400−81).

Then 481×319 = (400+81)(400−81) = (400)2− (81)2

(400)2 is easy - it equals 160000.

(81)2 is not easy to do mentally, so let’s rewrite 81 as 80+1.

(81)2 = (80+1)2 = (80)2 +2(80)(1)+(1)2 = 6400+160+1 = 6561

Then 481×319 = (400)2− (81)2 = 160000−6561 = 153439

Review Questions

Use the special product rule for squaring binomials to multiply these expressions.

1. (x+9)2

2. (3x−7)2

3. (5x− y)2

4. (2x3−3)2

5. (4x2 + y2)2

6. (8x−3)2

7. (2x+5)(5+2x)
8. (xy− y)2

Use the special product of a sum and difference to multiply these expressions.

9. (2x−1)(2x+1)
10. (x−12)(x+12)
11. (5a−2b)(5a+2b)
12. (ab−1)(ab+1)
13. (z2 + y)(z2− y)
14. (2q3 + r2)(2q3− r2)
15. (7s− t)(t +7s)
16. (x2y+ xy2)(x2y− xy2)

Find the area of the lower right square in the following figure.
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17.

Multiply the following numbers using special products.

18. 45×55
19. 562

20. 1002×998
21. 36×44
22. 10.5×9.5
23. 100.2×9.8
24. −95×−105
25. 2×−2
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9.4 Polynomial Equations in Factored Form

Learning Objectives

• Use the zero-product property.
• Find greatest common monomial factors.
• Solve simple polynomial equations by factoring.

Introduction

In the last few sections, we learned how to multiply polynomials by using the Distributive Property. All the terms
in one polynomial had to be multiplied by all the terms in the other polynomial. In this section, you’ll start learning
how to do this process in reverse. The reverse of distribution is called factoring.

The total area of the figure above can be found in two ways.

We could find the areas of all the small rectangles and add them: ab+ac+ad +ae+2a.

Or, we could find the area of the big rectangle all at once. Its width is a and its length is b+c+d+e+2, so its area
is a(b+ c+d + e+2).

Since the area of the rectangle is the same no matter what method we use, those two expressions must be equal.

ab+ac+ad +ae+2a = a(b+ c+d + e+2)

To turn the right-hand side of this equation into the left-hand side, we would use the distributive property. To turn
the left-hand side into the right-hand side, we would need to factor it. Since polynomials can be multiplied just like
numbers, they can also be factored just like numbers—and we’ll see later how this can help us solve problems.
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Find the Greatest Common Monomial Factor

You will be learning several factoring methods in the next few sections. In most cases, factoring takes several steps
to complete because we want to factor completely. That means that we factor until we can’t factor any more.

Let’s start with the simplest step: finding the greatest monomial factor. When we want to factor, we always look for
common monomials first. Consider the following polynomial, written in expanded form:

ax+bx+ cx+dx

A common factor is any factor that appears in all terms of the polynomial; it can be a number, a variable or a
combination of numbers and variables. Notice that in our example, the factor x appears in all terms, so it is a
common factor.

To factor out the x, we write it outside a set of parentheses. Inside the parentheses, we write what’s left when we
divide each term by x:

x(a+b+ c+d)

Let’s look at more examples.

Example 1

Factor:

a) 2x+8

b) 15x−25

c) 3a+9b+6

Solution

a) We see that the factor 2 divides evenly into both terms: 2x+8 = 2(x)+2(4)

We factor out the 2 by writing it in front of a parenthesis: 2( )

Inside the parenthesis we write what is left of each term when we divide by 2: 2(x+4)

b) We see that the factor of 5 divides evenly into all terms: 15x−25 = 5(3x)−5(5)

Factor out the 5 to get: 5(3x−5)

c) We see that the factor of 3 divides evenly into all terms: 3a+9b+6 = 3(a)+3(3b)+3(2)

Factor 3 to get: 3(a+3b+2)

Example 2

Find the greatest common factor:

a) a3−3a2 +4a

b) 12a4−5a3 +7a2

Solution

a) Notice that the factor a appears in all terms of a3−3a2 +4a, but each term has a raised to a different power. The
greatest common factor of all the terms is simply a.

So first we rewrite a3−3a2 +4a as a(a2)+a(−3a)+a(4).
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Then we factor out the a to get a(a2−3a+4).

b) The factor a appears in all the terms, and it’s always raised to at least the second power. So the greatest common
factor of all the terms is a2.

We rewrite the expression 12a4−5a3 +7a2 as (12a2 ·a2)− (5a ·a2)+(7 ·a2)

Factor out the a2 to get a2(12a2−5a+7).

Example 3

Factor completely:

a) 3ax+9a

b) x3y+ xy

c) 5x3y−15x2y2 +25xy3

Solution

a) Both terms have a common factor of 3, but they also have a common factor of a. It’s simplest to factor these both
out at once, which gives us 3a(x+3).

b) Both x and y are common factors. When we factor them both out at once, we get xy(x2 +1).

c) The common factors are 5, x, and y. Factoring out 5xy gives us 5xy(x2−3xy+5xy2).

Use the Zero-Product Property

The most useful thing about factoring is that we can use it to help solve polynomial equations.

For example, consider an equation like 2x2 + 5x− 42 = 0. There’s no good way to isolate x in this equation, so
we can’t solve it using any of the techniques we’ve already learned. But the left-hand side of the equation can be
factored, making the equation (x+6)(2x−7) = 0.

How is this helpful? The answer lies in a useful property of multiplication: if two numbers multiply to zero, then at
least one of those numbers must be zero. This is called the Zero-Product Property.

What does this mean for our polynomial equation? Since the product equals 0, then at least one of the factors on
the left-hand side must equal zero. So we can find the two solutions by setting each factor equal to zero and solving
each equation separately.

Setting the factors equal to zero gives us:

(x+6) = 0 OR (2x−7) = 0

Solving both of those equations gives us:

x+6 = 0 2x−7 = 0

x =−6 OR 2x = 7

x =
7
2

Notice that the solution is x =−6OR x = 7
2 . The OR means that either of these values of x would make the product

of the two factors equal to zero. Let’s plug the solutions back into the equation and check that this is correct.
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Check : x =−6; Check : x =
7
2

(x+6)(2x−7) = (x+6)(2x−7) =

(−6+6)(2(−6)−7) =
(

7
2
+6
)(

2 · 7
2
−7
)
=

(0)(−19) = 0
(

19
2

)
(7−7) =(

19
2

)
(0) = 0

Both solutions check out.

Factoring a polynomial is very useful because the Zero-Product Property allows us to break up the problem into
simpler separate steps. When we can’t factor a polynomial, the problem becomes harder and we must use other
methods that you will learn later.

As a last note in this section, keep in mind that the Zero-Product Property only works when a product equals zero.
For example, if you multiplied two numbers and the answer was nine, that wouldn’t mean that one or both of the
numbers must be nine. In order to use the property, the factored polynomial must be equal to zero.

Example 4

Solve each equation:

a) (x−9)(3x+4) = 0

b) x(5x−4) = 0

c) 4x(x+6)(4x−9) = 0

Solution

Since all the polynomials are in factored form, we can just set each factor equal to zero and solve the simpler
equations separately

a) (x−9)(3x+4) = 0 can be split up into two linear equations:

x−9 = 0 3x+4 = 0

x = 9 or 3x =−4

x =−4
3

b) x(5x−4) = 0 can be split up into two linear equations:

5x−4 = 0

x = 0 or 5x = 4

x =
4
5

c) 4x(x+6)(4x−9) = 0 can be split up into three linear equations:
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4x = 0 x+6 = 0 4x−9 = 0

x =
0
4

or x =−6 or 4x = 9

x = 0 x =
9
4

Solve Simple Polynomial Equations by Factoring

Now that we know the basics of factoring, we can solve some simple polynomial equations. We already saw how we
can use the Zero-Product Property to solve polynomials in factored form—now we can use that knowledge to solve
polynomials by factoring them first. Here are the steps:

a) If necessary, rewrite the equation in standard form so that the right-hand side equals zero.

b) Factor the polynomial completely.

c) Use the zero-product rule to set each factor equal to zero.

d) Solve each equation from step 3.

e) Check your answers by substituting your solutions into the original equation

Example 5

Solve the following polynomial equations.

a) x2−2x = 0

b) 2x2 = 5x

c) 9x2y−6xy = 0

Solution

a) x2−2x = 0

Rewrite: this is not necessary since the equation is in the correct form.

Factor: The common factor is x, so this factors as x(x−2) = 0.

Set each factor equal to zero:

x = 0 or x−2 = 0

Solve:

x = 0 or x = 2

Check: Substitute each solution back into the original equation.

x = 0⇒ (0)2−2(0) = 0 works out

x = 2⇒ (2)2−2(2) = 4−4 = 0 works out
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Answer: x = 0,x = 2

b) 2x2 = 5x

Rewrite: 2x2 = 5x⇒ 2x2−5x = 0

Factor: The common factor is x, so this factors as x(2x−5) = 0.

Set each factor equal to zero:

x = 0 or 2x−5 = 0

Solve:

x = 0 or 2x = 5

x =
5
2

Check: Substitute each solution back into the original equation.

x = 0⇒ 2(0)2 = 5(0)⇒ 0 = 0 works out

x =
5
2
⇒ 2

(
5
2

)2

= 5 · 5
2
⇒ 2 · 25

4
=

25
2
⇒ 25

2
=

25
2

works out

Answer: x = 0,x = 5
2

c) 9x2y−6xy = 0

Rewrite: not necessary

Factor: The common factor is 3xy, so this factors as 3xy(3x−2) = 0.

Set each factor equal to zero:

3 = 0 is never true, so this part does not give a solution. The factors we have left give us:

x = 0 or y = 0 or 3x−2 = 0

Solve:

x = 0 or y = 0 or 3x = 2

x =
2
3

Check: Substitute each solution back into the original equation.

x = 0⇒ 9(0)y−6(0)y = 0−0 = 0 works out

y = 0⇒ 9x2(0)−6x(0) = 0−0 = 0 works out

x =
2
3
⇒ 9 ·

(
2
3

)2

y−6 · 2
3

y = 9 · 4
9

y−4y = 4y−4y = 0 works out

Answer: x = 0,y = 0,x = 2
3
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Review Questions

Factor out the greatest common factor in the following polynomials.

1. 2x2−5x
2. 3x3−21x
3. 5x6 +15x4

4. 4x3 +10x2−2x
5. −10x6 +12x5−4x4

6. 12xy+24xy2 +36xy3

7. 5a3−7a
8. 3y+6z
9. 10a3−4ab

10. 45y12 +30y10

11. 16xy2z+4x3y
12. 2a−4a2 +6
13. 5xy2−10xy+5y2

Solve the following polynomial equations.

14. x(x+12) = 0
15. (2x+1)(2x−1) = 0
16. (x−5)(2x+7)(3x−4) = 0
17. 2x(x+9)(7x−20) = 0
18. x(3+ y) = 0
19. x(x−2y) = 0
20. 18y−3y2 = 0
21. 9x2 = 27x
22. 4a2 +a = 0
23. b2− 5

3 b = 0
24. 4x2 = 36
25. x3−5x2 = 0
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9.5 Factoring Quadratic Expressions

Learning Objectives

• Write quadratic equations in standard form.
• Factor quadratic expressions for different coefficient values.

Write Quadratic Expressions in Standard Form

Quadratic polynomials are polynomials of the 2nd degree. The standard form of a quadratic polynomial is written
as

ax2 +bx+ c

where a,b, and c stand for constant numbers. Factoring these polynomials depends on the values of these constants.
In this section we’ll learn how to factor quadratic polynomials for different values of a,b, and c. (When none of the
coefficients are zero, these expressions are also called quadratic trinomials, since they are polynomials with three
terms.)

You’ve already learned how to factor quadratic polynomials where c = 0. For example, for the quadratic ax2 + bx,
the common factor is x and this expression is factored as x(ax+b). Now we’ll see how to factor quadratics where c
is nonzero.

Factor when a = 1, b is Positive, and c is Positive

First, let’s consider the case where a = 1,b is positive and c is positive. The quadratic trinomials will take the form

x2 +bx+ c

You know from multiplying binomials that when you multiply two factors (x + m)(x + n), you get a quadratic
polynomial. Let’s look at this process in more detail. First we use distribution:

(x+m)(x+n) = x2 +nx+mx+mn

Then we simplify by combining the like terms in the middle. We get:

(x+m)(x+n) = x2 +(n+m)x+mn
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So to factor a quadratic, we just need to do this process in reverse.

We see that x2 +(n+m)x+mn

is the same form as x2 +bx+ c

This means that we need to find two numbers m and n where

n+m = b and mn = c

The factors of x2 +bx+ c are always two binomials

(x+m)(x+n)

such that n+m = b and mn = c.

Example 1

Factor x2 +5x+6.

Solution

We are looking for an answer that is a product of two binomials in parentheses:

(x )(x )

We want two numbers m and n that multiply to 6 and add up to 5. A good strategy is to list the possible ways we can
multiply two numbers to get 6 and then see which of these numbers add up to 5:

6 = 1 ·6 and 1+6 = 7

6 = 2 ·3 and 2+3 = 5 T his is the correct choice.

So the answer is (x+2)(x+3).

We can check to see if this is correct by multiplying (x+2)(x+3):

x+2

x+3

3x+6

x2 +2x

x2 +5x+6

The answer checks out.

Example 2

Factor x2 +7x+12.
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Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number 12 can be written as the product of the following numbers:

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8

12 = 3 ·4 and 3+4 = 7 T his is the correct choice.

The answer is (x+3)(x+4).

Example 3

Factor x2 +8x+12.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number 12 can be written as the product of the following numbers:

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8 T his is the correct choice.

12 = 3 ·4 and 3+4 = 7

The answer is (x+2)(x+6).

Example 4

Factor x2 +12x+36.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number 36 can be written as the product of the following numbers:

36 = 1 ·36 and 1+36 = 37

36 = 2 ·18 and 2+18 = 20

36 = 3 ·12 and 3+12 = 15

36 = 4 ·9 and 4+9 = 13

36 = 6 ·6 and 6+6 = 12 T his is the correct choice.

The answer is (x+6)(x+6).

Factor when a = 1, b is Negative and c is Positive

Now let’s see how this method works if the middle coefficient is negative.

Example 5
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Factor x2−6x+8.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

When negative coefficients are involved, we have to remember that negative factors may be involved also. The
number 8 can be written as the product of the following numbers:

8 = 1 ·8 and 1+8 = 9

but also

8 = (−1) · (−8) and −1+(−8) =−9

and

8 = 2 ·4 and 2+4 = 6

but also

8 = (−2) · (−4) and −2+(−4) =−6 T his is the correct choice.

The answer is (x−2)(x−4). We can check to see if this is correct by multiplying (x−2)(x−4):

x−2

x−4

− 4x+8

x2− 2x

x2− 6x+8

The answer checks out.

Example 6

Factor x2−17x+16.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number 16 can be written as the product of the following numbers:

16 = 1 ·16 and 1+16 = 17

16 = (−1) · (−16) and −1+(−16) =−17 T his is the correct choice.

16 = 2 ·8 and 2+8 = 10

16 = (−2) · (−8) and −2+(−8) =−10

16 = 4 ·4 and 4+4 = 8

16 = (−4) · (−4) and −4+(−4) =−8
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The answer is (x−1)(x−16).

In general, whenever b is negative and a and c are positive, the two binomial factors will have minus signs instead
of plus signs.

Factor when a = 1 and c is Negative

Now let’s see how this method works if the constant term is negative.

Example 7

Factor x2 +2x−15.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

Once again, we must take the negative sign into account. The number -15 can be written as the product of the
following numbers:

−15 =−1 ·15 and −1+15 = 14

−15 = 1 · (−15) and 1+(−15) =−14

−15 =−3 ·5 and −3+5 = 2 T his is the correct choice.

−15 = 3 · (−5) and 3+(−5) =−2

The answer is (x−3)(x+5).

We can check to see if this is correct by multiplying:

x− 3

x+ 5

5x−15

x2−3x

x2 +2x−15

The answer checks out.

Example 8

Factor x2−10x−24.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number -24 can be written as the product of the following numbers:
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−24 =−1 ·24 and −1+24 = 23

−24 = 1 · (−24) and 1+(−24) =−23

−24 =−2 ·12 and −2+12 = 10

−24 = 2 · (−12) and 2+(−12) =−10 T his is the correct choice.

−24 =−3 ·8 and −3+8 = 5

−24 = 3 · (−8) and 3+(−8) =−5

−24 =−4 ·6 and −4+6 = 2

−24 = 4 · (−6) and 4+(−6) =−2

The answer is (x−12)(x+2).

Example 9

Factor x2 +34x−35.

Solution

We are looking for an answer that is a product of two binomials in parentheses: (x )(x )

The number -35 can be written as the product of the following numbers:

−35 =−1 ·35 and −1+35 = 34 T his is the correct choice.

−35 = 1 · (−35) and 1+(−35) =−34

−35 =−5 ·7 and −5+7 = 2

−35 = 5 · (−7) and 5+(−7) =−2

The answer is (x−1)(x+35).

Factor when a = - 1

When a =−1, the best strategy is to factor the common factor of -1 from all the terms in the quadratic polynomial
and then apply the methods you learned so far in this section

Example 10

Factor −x2 + x+6.

Solution

First factor the common factor of -1 from each term in the trinomial. Factoring -1 just changes the signs of each
term in the expression:

−x2 + x+6 =−(x2− x−6)

We’re looking for a product of two binomials in parentheses: −(x )(x )

Now our job is to factor x2− x−6.

The number -6 can be written as the product of the following numbers:
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−6 =−1 ·6 and −1+6 = 5

−6 = 1 · (−6) and 1+(−6) =−5

−6 =−2 ·3 and −2+3 = 1

−6 = 2 · (−3) and 2+(−3) =−1 T his is the correct choice.

The answer is −(x−3)(x+2).

Lesson Summary

• A quadratic of the form x2 +bx+ c factors as a product of two binomials in parentheses: (x+m)(x+n)
• If b and c are positive, then both m and n are positive.

Example: x2 +8x+12 factors as (x+6)(x+2).

• If b is negative and c is positive, then both m and n are negative.

Example: x2−6x+8 factors as (x−2)(x−4).

• If c is negative, then either m is positive and n is negative or vice-versa.

Example: x2 +2x−15 factors as (x+5)(x−3).

Example: x2 +34x−35 factors as (x+35)(x−1).

• If a = −1, factor out -1 from each term in the trinomial and then factor as usual. The answer will have the
form: −(x+m)(x+n)

Example: −x2 + x+6 factors as −(x−3)(x+2).

Review Questions

Factor the following quadratic polynomials.

1. x2 +10x+9
2. x2 +15x+50
3. x2 +10x+21
4. x2 +16x+48
5. x2−11x+24
6. x2−13x+42
7. x2−14x+33
8. x2−9x+20
9. x2 +5x−14

10. x2 +6x−27
11. x2 +7x−78
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12. x2 +4x−32
13. x2−12x−45
14. x2−5x−50
15. x2−3x−40
16. x2− x−56
17. −x2−2x−1
18. −x2−5x+24
19. −x2 +18x−72
20. −x2 +25x−150
21. x2 +21x+108
22. −x2 +11x−30
23. x2 +12x−64
24. x2−17x−60
25. x2 +5x−36
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9.6 Factoring Special Products

Learning Objectives

• Factor the difference of two squares.
• Factor perfect square trinomials.
• Solve quadratic polynomial equation by factoring.

Introduction

When you learned how to multiply binomials we talked about two special products.

The sum and difference formula: (a+b)(a−b) = a2−b2

The square of a binomial formulas: (a+b)2 = a2 +2ab+b2

(a−b)2 = a2−2ab+b2

In this section we’ll learn how to recognize and factor these special products.

Factor the Difference of Two Squares

We use the sum and difference formula to factor a difference of two squares. A difference of two squares is any
quadratic polynomial in the form a2−b2, where a and b can be variables, constants, or just about anything else. The
factors of a2−b2 are always (a+b)(a−b); the key is figuring out what the a and b terms are.

Example 1

Factor the difference of squares:

a) x2−9

b) x2−100

c) x2−1

Solution

a) Rewrite x2−9 as x2−32. Now it is obvious that it is a difference of squares.

The difference of squares formula is: a2−b2 = (a+b)(a−b)

Let’s see how our problem matches with the formula: x2−32 = (x+3)(x−3)

The answer is: x2−9 = (x+3)(x−3)
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We can check to see if this is correct by multiplying (x+3)(x−3):

x+3

x−3

−3x−9

x2 +3x

x2 +0x−9

The answer checks out.

Note: We could factor this polynomial without recognizing it as a difference of squares. With the methods we
learned in the last section we know that a quadratic polynomial factors into the product of two binomials:

(x )(x )

We need to find two numbers that multiply to -9 and add to 0 (since there is no x−term, that’s the same as if the
x−term had a coefficient of 0). We can write -9 as the following products:

−9 =−1 ·9 and −1+9 = 8

−9 = 1 · (−9) and 1+(−9) =−8

−9 = 3 · (−3) and 3+(−3) = 0 T hese are the correct numbers.

We can factor x2−9 as (x+3)(x−3), which is the same answer as before. You can always factor using the methods
you learned in the previous section, but recognizing special products helps you factor them faster.

b) Rewrite x2−100 as x2−102. This factors as (x+10)(x−10).

c) Rewrite x2−1 as x2−12. This factors as (x+1)(x−1).

Example 2

Factor the difference of squares:

a) 16x2−25

b) 4x2−81

c) 49x2−64

Solution

a) Rewrite 16x2−25 as (4x)2−52. This factors as (4x+5)(4x−5).

b) Rewrite 4x2−81 as (2x)2−92. This factors as (2x+9)(2x−9).

c) Rewrite 49x2−64 as (7x)2−82. This factors as (7x+8)(7x−8).

Example 3

Factor the difference of squares:

a) x2− y2

b) 9x2−4y2

c) x2y2−1
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Solution

a) x2− y2 factors as (x+ y)(x− y).

b) Rewrite 9x2−4y2 as (3x)2− (2y)2. This factors as (3x+2y)(3x−2y).

c) Rewrite x2y2−1 as (xy)2−12. This factors as (xy+1)(xy−1).

Example 4

Factor the difference of squares:

a) x4−25

b) 16x4− y2

c) x2y8−64z2

Solution

a) Rewrite x4−25 as (x2)2−52. This factors as (x2 +5)(x2−5).

b) Rewrite 16x4− y2 as (4x2)2− y2. This factors as (4x2 + y)(4x2− y).

c) Rewrite x2y4−64z2 as (xy2)2− (8z)2. This factors as (xy2 +8z)(xy2−8z).

Factor Perfect Square Trinomials

We use the square of a binomial formula to factor perfect square trinomials. A perfect square trinomial has the form
a2 +2ab+b2 or a2−2ab+b2.

In these special kinds of trinomials, the first and last terms are perfect squares and the middle term is twice the
product of the square roots of the first and last terms. In a case like this, the polynomial factors into perfect squares:

a2 +2ab+b2 = (a+b)2

a2−2ab+b2 = (a−b)2

Once again, the key is figuring out what the a and b terms are.

Example 5

Factor the following perfect square trinomials:

a) x2 +8x+16

b) x2−4x+4

c) x2 +14x+49

Solution

a) The first step is to recognize that this expression is a perfect square trinomial.

First, we can see that the first term and the last term are perfect squares. We can rewrite x2 +8x+16 as x2 +8x+42.

Next, we check that the middle term is twice the product of the square roots of the first and the last terms. This is
true also since we can rewrite x2 +8x+16 as x2 +2 ·4 · x+42.

This means we can factor x2 +8x+16 as (x+4)2. We can check to see if this is correct by multiplying (x+4)2 =
(x+4)(x+4) :
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x+4

x+4

4x+16

x2 +4x

x2 +8x+16

The answer checks out.

Note: We could factor this trinomial without recognizing it as a perfect square. We know that a trinomial factors as
a product of two binomials:

(x )(x )

We need to find two numbers that multiply to 16 and add to 8. We can write 16 as the following products:

16 = 1 ·16 and 1+16 = 17

16 = 2 ·8 and 2+8 = 10

16 = 4 ·4 and 4+4 = 8 T hese are the correct numbers

So we can factor x2 +8x+16 as (x+4)(x+4), which is the same as (x+4)2.

Once again, you can factor perfect square trinomials the normal way, but recognizing them as perfect squares gives
you a useful shortcut.

b) Rewrite x2 +4x+4 as x2 +2 · (−2) · x+(−2)2.

We notice that this is a perfect square trinomial, so we can factor it as (x−2)2.

c) Rewrite x2 +14x+49 as x2 +2 ·7 · x+72.

We notice that this is a perfect square trinomial, so we can factor it as (x+7)2.

Example 6

Factor the following perfect square trinomials:

a) 4x2 +20x+25

b) 9x2−24x+16

c) x2 +2xy+ y2

Solution

a) Rewrite 4x2 +20x+25 as (2x)2 +2 ·5 · (2x)+52.

We notice that this is a perfect square trinomial and we can factor it as (2x+5)2.

b) Rewrite 9x2−24x+16 as (3x)2 +2 · (−4) · (3x)+(−4)2.

We notice that this is a perfect square trinomial and we can factor it as (3x−4)2.

We can check to see if this is correct by multiplying (3x−4)2 = (3x−4)(3x−4):
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3x−4

3x−4

−12x+16

9x2−12x

9x2−24x+16

The answer checks out.

c) x2 +2xy+ y2

We notice that this is a perfect square trinomial and we can factor it as (x+ y)2.

For more examples of factoring perfect square trinomials, watch the videos at http://www.onlinemathlearning.co
m/perfect-square-trinomial.html.

Solve Quadratic Polynomial Equations by Factoring

With the methods we’ve learned in the last two sections, we can factor many kinds of quadratic polynomials. This
is very helpful when we want to solve them. Remember the process we learned earlier:

1. If necessary, rewrite the equation in standard form so that the right-hand side equals zero.
2. Factor the polynomial completely.
3. Use the zero-product rule to set each factor equal to zero.
4. Solve each equation from step 3.
5. Check your answers by substituting your solutions into the original equation

We can use this process to solve quadratic polynomials using the factoring methods we just learned.

Example 7

Solve the following polynomial equations.

a) x2 +7x+6 = 0

b) x2−8x =−12

c) x2 = 2x+15

Solution

a) Rewrite: We can skip this since the equation is in the correct form already.

Factor: We can write 6 as a product of the following numbers:

6 = 1 ·6 and 1+6 = 7 T his is the correct choice.

6 = 2 ·3 and 2+3 = 5

x2 +7x+6 = 0 factors as (x+1)(x+6) = 0.

Set each factor equal to zero:

x+1 = 0 or x+6 = 0
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Solve:

x =−1 or x =−6

Check: Substitute each solution back into the original equation.

x =−1 (−1)2 +7(−1)+6 = 1−7+6 = 0 checks out

x =−6 (−6)2 +7(−6)+6 = 36−42+6 = 0 checks out

b) Rewrite: x2−8x =−12 is rewritten as x2−8x+12 = 0

Factor: We can write 12 as a product of the following numbers:

12 = 1 ·12 and 1+12 = 13

12 =−1 · (−12) and −1+(−12) =−13

12 = 2 ·6 and 2+6 = 8

12 =−2 · (−6) and −2+(−6) =−8 T his is the correct choice.

12 = 3 ·4 and 3+4 = 7

12 =−3 · (−4) and −3+(−4) =−7

x2 +8x+12 = 0 factors as (x−2)(x−6) = 0.

Set each factor equal to zero:

x−2 = 0 or x−6 = 0

Solve:

x = 2 or x = 6

Check: Substitute each solution back into the original equation.

x = 2 (2)2−8(2) = 4−16 =−12 checks out

x = 6 (6)2−8(6) = 36−48 =−12 checks out

c) Rewrite: x2 = 2x+15 is rewritten as x2−2x−15 = 0

Factor: We can write -15 as a product of the following numbers:

−15 = 1 · (−15) and 1+(−15) =−14

−15 =−1 · (15) and −1+(15) = 14

−15 =−3 ·5 and −3+5 = 2

−15 = 3 · (−5) and 3+(−5) =−2 T his is the correct choice.
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x2−2x−15 = 0 factors as (x+3)(x−5) = 0

Set each factor equal to zero:

x+3 = 0 or x−5 = 0

Solve:

x =−3 or x = 5

Check: Substitute each solution back into the original equation.

x =−3 (−3)2 = 2(−3)+15⇒ 9 = 9 checks out

x = 5 (5)2 = 2(5)+15⇒ 25 = 25 checks out

Example 8

Solve the following polynomial equations:

a) x2−12x+36 = 0

b) x2−81 = 0

c) x2 +20x+100 = 0

Solution

a) x2−12x+36 = 0

Rewrite: The equation is in the correct form already.

Factor: Rewrite x2−12x+36 = 0 as x2−2 · (−6)x+(−6)2.

We recognize this as a perfect square. This factors as (x−6)2 = 0 or (x−6)(x−6) = 0

Set each factor equal to zero:

x−6 = 0 or x−6 = 0

Solve:

x = 6 or x = 6

Notice that for a perfect square the two solutions are the same. This is called a double root.

Check: Substitute each solution back into the original equation.

x = 6 62−12(6)+36 = 36−72+36 = 0 checks out

b) x2−81 = 0
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Rewrite: this is not necessary since the equation is in the correct form already

Factor: Rewrite x2−81 as x2−92.

We recognize this as a difference of squares. This factors as (x−9)(x+9) = 0.

Set each factor equal to zero:

x−9 = 0 or x+9 = 0

Solve:

x = 9 or x =−9

Check: Substitute each solution back into the original equation.

x = 9 92−81 = 81−81 = 0 checks out

x =−9 (−9)2−81 = 81−81 = 0 checks out

c) x2 +20x+100 = 0

Rewrite: this is not necessary since the equation is in the correct form already

Factor: Rewrite x2 +20x+100 as x2 +2 ·10 · x+102.

We recognize this as a perfect square. This factors as (x+10)2 = 0 or (x+10)(x+10) = 0

Set each factor equal to zero:

x+10 = 0 or x+10 = 0

Solve:

x =−10 or x =−10 This is a double root.

Check: Substitute each solution back into the original equation.

x = 10 (−10)2 +20(−10)+100 = 100−200+100 = 0 checks out

Review Questions

Factor the following perfect square trinomials.

1. x2 +8x+16
2. x2−18x+81
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3. −x2 +24x−144
4. x2 +14x+49
5. 4x2−4x+1
6. 25x2 +60x+36
7. 4x2−12xy+9y2

8. x4 +22x2 +121

Factor the following differences of squares.

9. x2−4
10. x2−36
11. −x2 +100
12. x2−400
13. 9x2−4
14. 25x2−49
15. −36x2 +25
16. 4x2− y2

17. 16x2−81y2

Solve the following quadratic equations using factoring.

18. x2−11x+30 = 0
19. x2 +4x = 21
20. x2 +49 = 14x
21. x2−64 = 0
22. x2−24x+144 = 0
23. 4x2−25 = 0
24. x2 +26x =−169
25. −x2−16x−60 = 0
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9.7 Factoring Polynomials Completely

Learning Objectives

• Factor out a common binomial.
• Factor by grouping.
• Factor a quadratic trinomial where a 6= 1.
• Solve real world problems using polynomial equations.

Introduction

We say that a polynomial is factored completely when we can’t factor it any more. Here are some suggestions that
you should follow to make sure that you factor completely:

• Factor all common monomials first.
• Identify special products such as difference of squares or the square of a binomial. Factor according to their

formulas.
• If there are no special products, factor using the methods we learned in the previous sections.
• Look at each factor and see if any of these can be factored further.

Example 1

Factor the following polynomials completely.

a) 6x2−30x+24

b) 2x2−8

c) x3 +6x2 +9x

Solution

a) Factor out the common monomial. In this case 6 can be divided from each term:

6(x2−5x−6)

There are no special products. We factor x2−5x+6 as a product of two binomials: (x )(x )

The two numbers that multiply to 6 and add to -5 are -2 and -3, so:

6(x2−5x+6) = 6(x−2)(x−3)

If we look at each factor we see that we can factor no more.

The answer is 6(x−2)(x−3).
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b) Factor out common monomials: 2x2−8 = 2(x2−4)

We recognize x2−4 as a difference of squares. We factor it as (x+2)(x−2).

If we look at each factor we see that we can factor no more.

The answer is 2(x+2)(x−2).

c) Factor out common monomials: x3 +6x2 +9x = x(x2 +6x+9)

We recognize x2 +6x+9 as a perfect square and factor it as (x+3)2.

If we look at each factor we see that we can factor no more.

The answer is x(x+3)2.

Example 2

Factor the following polynomials completely:

a) −2x4 +162

b) x5−8x3 +16x

Solution

a) Factor out the common monomial. In this case, factor out -2 rather than 2. (It’s always easier to factor out the
negative number so that the highest degree term is positive.)

−2x4 +162 =−2(x4−81)

We recognize expression in parenthesis as a difference of squares. We factor and get:

−2(x2−9)(x2 +9)

If we look at each factor we see that the first parenthesis is a difference of squares. We factor and get:

−2(x+3)(x−3)(x2 +9)

If we look at each factor now we see that we can factor no more.

The answer is −2(x+3)(x−3)(x2 +9).

b) Factor out the common monomial: x5−8x3 +14x = x(x4−8x2 +16)

We recognize x4−8x2 +16 as a perfect square and we factor it as x(x2−4)2.

We look at each term and recognize that the term in parentheses is a difference of squares.

We factor it and get ((x+2)(x−2))2, which we can rewrite as (x+2)2(x−2)2.

If we look at each factor now we see that we can factor no more.

The final answer is x(x+2)2(x−2)2.

Factor out a Common Binomial

The first step in the factoring process is often factoring out the common monomials from a polynomial. But
sometimes polynomials have common terms that are binomials. For example, consider the following expression:
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x(3x+2)−5(3x+2)

Since the term (3x+2) appears in both terms of the polynomial, we can factor it out. We write that term in front of
a set of parentheses containing the terms that are left over:

(3x+2)(x−5)

This expression is now completely factored.

Let’s look at some more examples.

Example 3

Factor out the common binomials.

a) 3x(x−1)+4(x−1)

b) x(4x+5)+(4x+5)

Solution

a) 3x(x−1)+4(x−1) has a common binomial of (x−1).

When we factor out the common binomial we get (x−1)(3x+4).

b) x(4x+5)+(4x+5) has a common binomial of (4x+5).

When we factor out the common binomial we get (4x+5)(x+1).

Factor by Grouping

Sometimes, we can factor a polynomial containing four or more terms by factoring common monomials from groups
of terms. This method is called factor by grouping.

The next example illustrates how this process works.

Example 4

Factor 2x+2y+ax+ay.

Solution

There is no factor common to all the terms. However, the first two terms have a common factor of 2 and the last two
terms have a common factor of a. Factor 2 from the first two terms and factor a from the last two terms:

2x+2y+ax+ay = 2(x+ y)+a(x+ y)

Now we notice that the binomial (x+ y) is common to both terms. We factor the common binomial and get:

(x+ y)(2+a)

Example 5
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Factor 3x2 +6x+4x+8.

Solution

We factor 3 from the first two terms and factor 4 from the last two terms:

3x(x+2)+4(x+2)

Now factor (x+2) from both terms: (x+2)(3x+4).

Now the polynomial is factored completely.

Factor Quadratic Trinomials Where a 6= 1

Factoring by grouping is a very useful method for factoring quadratic trinomials of the form ax2 + bx+ c, where
a 6= 1.

A quadratic like this doesn’t factor as (x±m)(x±n), so it’s not as simple as looking for two numbers that multiply
to c and add up to b. Instead, we also have to take into account the coefficient in the first term.

To factor a quadratic polynomial where a 6= 1, we follow these steps:

1. We find the product ac.
2. We look for two numbers that multiply to ac and add up to b.
3. We rewrite the middle term using the two numbers we just found.
4. We factor the expression by grouping.

Let’s apply this method to the following examples.

Example 6

Factor the following quadratic trinomials by grouping.

a) 3x2 +8x+4

b) 6x2−11x+4

c) 5x2−6x+1

Solution

Let’s follow the steps outlined above:

a) 3x2 +8x+4

Step 1: ac = 3 ·4 = 12

Step 2: The number 12 can be written as a product of two numbers in any of these ways:

12 = 1 ·12 and 1+12 = 13

12 = 2 ·6 and 2+6 = 8 T his is the correct choice.

12 = 3 ·4 and 3+4 = 7

Step 3: Re-write the middle term: 8x = 2x+6x, so the problem becomes:
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3x2 +8x+4 = 3x2 +2x+6x+4

Step 4: Factor an x from the first two terms and a 2 from the last two terms:

x(3x+2)+2(3x+2)

Now factor the common binomial (3x+2):

(3x+2)(x+2) T his is the answer.

To check if this is correct we multiply (3x+2)(x+2):

3x+2

x+2

6x+4

3x2 +2x

3x2 +8x+4

The solution checks out.

b) 6x2−11x+4

Step 1: ac = 6 ·4 = 24

Step 2: The number 24 can be written as a product of two numbers in any of these ways:

24 = 1 ·24 and 1+24 = 25

24 =−1 · (−24) and −1+(−24) =−25

24 = 2 ·12 and 2+12 = 14

24 =−2 · (−12) and −2+(−12) =−14

24 = 3 ·8 and 3+8 = 11

24 =−3 · (−8) and −3+(−8) =−11 T his is the correct choice.

24 = 4 ·6 and 4+6 = 10

24 =−4 · (−6) and −4+(−6) =−10

Step 3: Re-write the middle term: −11x =−3x−8x, so the problem becomes:

6x2−11x+4 = 6x2−3x−8x+4

Step 4: Factor by grouping: factor a 3x from the first two terms and a -4 from the last two terms:

3x(2x−1)−4(2x−1)
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Now factor the common binomial (2x−1):

(2x−1)(3x−4) T his is the answer.

c) 5x2−6x+1

Step 1: ac = 5 ·1 = 5

Step 2: The number 5 can be written as a product of two numbers in any of these ways:

5 = 1 ·5 and 1+5 = 6

5 =−1 · (−5) and −1+(−5) =−6 T his is the correct choice.

Step 3: Re-write the middle term: −6x =−x−5x, so the problem becomes:

5x2−6x+1 = 5x2− x−5x+1

Step 4: Factor by grouping: factor an x from the first two terms and a−1 from the last two terms:

x(5x−1)−1(5x−1)

Now factor the common binomial (5x−1):

(5x−1)(x−1) T his is the answer.

Solve Real-World Problems Using Polynomial Equations

Now that we know most of the factoring strategies for quadratic polynomials, we can apply these methods to solving
real world problems.

Example 7

One leg of a right triangle is 3 feet longer than the other leg. The hypotenuse is 15 feet. Find the dimensions of the
triangle.

Solution

Let x = the length of the short leg of the triangle; then the other leg will measure x+3.
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Use the Pythagorean Theorem: a2 + b2 = c2, where a and b are the lengths of the legs and c is the length of the
hypotenuse. When we substitute the values from the diagram, we get x2 +(x+3)2 = 152.

In order to solve this equation, we need to get the polynomial in standard form. We must first distribute, collect like
terms and rewrite in the form “polynomial = 0.”

x2 + x2 +6x+9 = 225

2x2 +6x+9 = 225

2x2 +6x−216 = 0

Factor out the common monomial: 2(x2 +3x−108) = 0

To factor the trinomial inside the parentheses, we need two numbers that multiply to -108 and add to 3. It would
take a long time to go through all the options, so let’s start by trying some of the bigger factors:

−108 =−12 ·9 and −12+9 =−3

−108 = 12 · (−9) and 12+(−9) = 3 T his is the correct choice.

We factor the expression as 2(x−9)(x+12) = 0.

Set each term equal to zero and solve:

x−9 = 0 x+12 = 0

or

x = 9 x =−12

It makes no sense to have a negative answer for the length of a side of the triangle, so the answer must be x = 9. That
means the short leg is 9 feet and the long leg is 12 feet.

Check: 92 +122 = 81+144 = 225 = 152, so the answer checks.

Example 8

The product of two positive numbers is 60. Find the two numbers if one numbers is 4 more than the other.

Solution

Let x = one of the numbers; then x+4 is the other number.

The product of these two numbers is 60, so we can write the equation x(x+4) = 60.

In order to solve we must write the polynomial in standard form. Distribute, collect like terms and rewrite:

x2 +4x = 60

x2 +4x−60 = 0

Factor by finding two numbers that multiply to -60 and add to 4. List some numbers that multiply to -60:
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−60 =−4 ·15 and −4+15 = 11

−60 = 4 · (−15) and 4+(−15) =−11

−60 =−5 ·12 and −5+12 = 7

−60 = 5 · (−12) and 5+(−12) =−7

−60 =−6 ·10 and −6+10 = 4 T his is the correct choice.

−60 = 6 · (−10) and 6+(−10) =−4

The expression factors as (x+10)(x−6) = 0.

Set each term equal to zero and solve:

x+10 = 0 x−6 = 0

or

x =−10 x = 6

Since we are looking for positive numbers, the answer must be x = 6. One number is 6, and the other number is
10.

Check: 6 ·10 = 60, so the answer checks.

Example 9

A rectangle has sides of length x+5 and x−3. What is x if the area of the rectangle is 48?

Solution

Make a sketch of this situation:

Using the formula Area = length × width, we have (x+5)(x−3) = 48.

In order to solve, we must write the polynomial in standard form. Distribute, collect like terms and rewrite:

x2 +2x−15 = 48

x2 +2x−63 = 0

Factor by finding two numbers that multiply to -63 and add to 2. List some numbers that multiply to -63:

−63 =−7 ·9 and −7+9 = 2 T his is the correct choice.

−63 = 7 · (−9) and 7+(−9) =−2
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The expression factors as (x+9)(x−7) = 0.

Set each term equal to zero and solve:

x+9 = 0 x−7 = 0

or

x =−9 x = 7

Since we are looking for positive numbers the answer must be x = 7. So the width is x− 3 = 4and the length is
x+5 = 12.

Check: 4 ·12 = 48, so the answer checks.

Resources

The WTAMU Virtual Math Lab has a detailed page on factoring polynomials here: http://www.wtamu.edu/academi
c/anns/mps/math/mathlab/col_algebra/col_alg_tut7_factor.htm. This page contains many videos showing example
problems being solved.

Review Questions

Factor completely.

1. 2x2 +16x+30
2. 5x2−70x+245
3. −x3 +17x2−70x
4. 2x4−512
5. 25x4−20x3 +4x2

6. 12x3 +12x2 +3x

Factor by grouping.

7. 6x2−9x+10x−15
8. 5x2−35x+ x−7
9. 9x2−9x− x+1

10. 4x2 +32x−5x−40
11. 2a2−6ab+3ab−9b2

12. 5x2 +15x−2xy−6y

Factor the following quadratic trinomials by grouping.

13. 4x2 +25x−21
14. 6x2 +7x+1
15. 4x2 +8x−5
16. 3x2 +16x+21
17. 6x2−2x−4
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18. 8x2−14x−15

Solve the following application problems:

19. One leg of a right triangle is 7 feet longer than the other leg. The hypotenuse is 13. Find the dimensions of
the right triangle.

20. A rectangle has sides of x+2 and x−1. What value of x gives an area of 108?
21. The product of two positive numbers is 120. Find the two numbers if one numbers is 7 more than the other.
22. A rectangle has a 50-foot diagonal. What are the dimensions of the rectangle if it is 34 feet longer than it is

wide?
23. Two positive numbers have a sum of 8, and their product is equal to the larger number plus 10. What are the

numbers?
24. Two positive numbers have a sum of 8, and their product is equal to the smaller number plus 10. What are the

numbers?
25. Framing Warehouse offers a picture framing service. The cost for framing a picture is made up of two parts:

glass costs $1 per square foot and the frame costs $2 per foot. If the frame has to be a square, what size picture
can you get framed for $20?
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CHAPTER 10 Quadratic Equations and
Quadratic Functions

Chapter Outline
10.1 GRAPHS OF QUADRATIC FUNCTIONS

10.2 QUADRATIC EQUATIONS BY GRAPHING

10.3 QUADRATIC EQUATIONS BY SQUARE ROOTS

10.4 SOLVING QUADRATIC EQUATIONS BY COMPLETING THE SQUARE

10.5 SOLVING QUADRATIC EQUATIONS BY THE QUADRATIC FORMULA

10.6 THE DISCRIMINANT

10.7 LINEAR, EXPONENTIAL AND QUADRATIC MODELS
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10.1 Graphs of Quadratic Functions

Learning Objectives

• Graph quadratic functions.
• Compare graphs of quadratic functions.
• Graph quadratic functions in intercept form.
• Analyze graphs of real-world quadratic functions.

Introduction

The graphs of quadratic functions are curved lines called parabolas. You don’t have to look hard to find parabolic
shapes around you. Here are a few examples:

• The path that a ball or a rocket takes through the air.
• Water flowing out of a drinking fountain.
• The shape of a satellite dish.
• The shape of the mirror in car headlights or a flashlight.
• The cables in a suspension bridge.

Graph Quadratic Functions

Let’s see what a parabola looks like by graphing the simplest quadratic function, y = x2.

We’ll graph this function by making a table of values. Since the graph will be curved, we need to plot a fair number
of points to make it accurate.

TABLE 10.1:

x y = x2

−3 (−3)2 = 9
–2 (−2)2 = 4
–1 (−1)2 = 1
0 (0)2 = 0
1 (1)2 = 1
2 (2)2 = 4
3 (3)2 = 9

Here are the points plotted on a coordinate graph:
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To draw the parabola, draw a smooth curve through all the points. (Do not connect the points with straight lines).

Let’s graph a few more examples.

Example 1

Graph the following parabolas.

a) y = 2x2 +4x+1

b) y =−x2 +3

c) y = x2−8x+3

Solution

a) y = 2x2 +4x+1

Make a table of values:

TABLE 10.2:

x y = 2x2 +4x+1
−3 2(−3)2 +4(−3)+1 = 7
–2 2(−2)2 +4(−2)+1 = 1
–1 2(−1)2 +4(−1)+1 =−1
0 2(0)2 +4(0)+1 = 1
1 2(1)2 +4(1)+1 = 7
2 2(2)2 +4(2)+1 = 17
3 2(3)2 +4(3)+1 = 31
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Notice that the last two points have very large y−values. Since we don’t want to make our y−scale too big, we’ll
just skip graphing those two points. But we’ll plot the remaining points and join them with a smooth curve.

b) y =−x2 +3

Make a table of values:

TABLE 10.3:

x y =−x2 +3
−3 −(−3)2 +3 =−6
–2 −(−2)2 +3 =−1
–1 −(−1)2 +3 = 2
0 −(0)2 +3 = 3
1 −(1)2 +3 = 2
2 −(2)2 +3 =−1
3 −(3)2 +3 =−6

Plot the points and join them with a smooth curve.

Notice that this time we get an “upside down” parabola. That’s because our equation has a negative sign in front
of the x2 term. The sign of the coefficient of the x2 term determines whether the parabola turns up or down: the
parabola turns up if it’s positive and down if it’s negative.

c) y = x2−8x+3
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Make a table of values:

TABLE 10.4:

x y = x2−8x+3
−3 (−3)2−8(−3)+3 = 36
–2 (−2)2−8(−2)+3 = 23
–1 (−1)2−8(−1)+3 = 12
0 (0)2−8(0)+3 = 3
1 (1)2−8(1)+3 =−4
2 (2)2−8(2)+3 =−9
3 (3)2−8(3)+3 =−12

Let’s not graph the first two points in the table since the values are so big. Plot the remaining points and join them
with a smooth curve.

Wait—this doesn’t look like a parabola. What’s going on here?

Maybe if we graph more points, the curve will look more familiar. For negative values of x it looks like the values
of y are just getting bigger and bigger, so let’s pick more positive values of x beyond x = 3.

TABLE 10.5:

x y = x2−8x+3
−1 (−1)2−8(−1)+3 = 12
0 (0)2−8(0)+3 = 3
1 (1)2−8(1)+3 =−4
2 (2)2−8(2)+3 =−9
3 (3)2−8(3)+3 =−12
4 (4)2−8(4)+3 =−13
5 (5)2−8(5)+3 =−12
6 (6)2−8(6)+3 =−9
7 (7)2−8(7)+3 =−4
8 (8)2−8(8)+3 = 3

Plot the points again and join them with a smooth curve.
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Now we can see the familiar parabolic shape. And now we can see the drawback to graphing quadratics by making
a table of values—if we don’t pick the right values, we won’t get to see the important parts of the graph.

In the next couple of lessons, we’ll find out how to graph quadratic equations more efficiently—but first we need to
learn more about the properties of parabolas.

Compare Graphs of Quadratic Functions

The general form (or standard form) of a quadratic function is:

y = ax2 +bx+ c

Here a,b and c are the coefficients. Remember, a coefficient is just a number (a constant term) that can go before a
variable or appear alone.

Although the graph of a quadratic equation in standard form is always a parabola, the shape of the parabola depends
on the values of the coefficients a,b and c. Let’s explore some of the ways the coefficients can affect the graph.

Dilation

Changing the value of a makes the graph “fatter” or “skinnier”. Let’s look at how graphs compare for different
positive values of a. The plot on the left shows the graphs of y = x2 and y = 3x2. The plot on the right shows the
graphs of y = x2 and y = 1

3 x2.

Notice that the larger the value of a is, the skinnier the graph is – for example, in the first plot, the graph of y = 3x2

is skinnier than the graph of y = x2. Also, the smaller a is, the fatter the graph is – for example, in the second plot,
the graph of y = 1

3 x2 is fatter than the graph of y = x2. This might seem counterintuitive, but if you think about it, it
should make sense. Let’s look at a table of values of these graphs and see if we can explain why this happens.
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TABLE 10.6:

x y = x2 y = 3x2 y = 1
3 x2

−3 (−3)2 = 9 3(−3)2 = 27 (−3)2

3 = 3
–2 (−2)2 = 4 3(−2)2 = 12 (−2)2

3 = 4
3

–1 (−1)2 = 1 3(−1)2 = 3 (−1)2

3 = 1
3

0 (0)2 = 0 3(0)2 = 0 (0)2

3 = 0
1 (1)2 = 1 3(1)2 = 3 (1)2

3 = 1
3

2 (2)2 = 4 3(2)2 = 12 (2)2

3 = 4
3

3 (3)2 = 9 3(3)2 = 27 (3)2

3 = 3

From the table, you can see that the values of y = 3x2 are bigger than the values of y = x2. This is because each value
of y gets multiplied by 3. As a result the parabola will be skinnier because it grows three times faster than y = x2.
On the other hand, you can see that the values of y = 1

3 x2 are smaller than the values of y = x2, because each value
of y gets divided by 3. As a result the parabola will be fatter because it grows at one third the rate of y = x2.

Orientation

As the value of a gets smaller and smaller, then, the parabola gets wider and flatter. What happens when a gets all
the way down to zero? What happens when it’s negative?

Well, when a = 0, the x2 term drops out of the equation entirely, so the equation becomes linear and the graph is
just a straight line. For example, we just saw what happens to y = ax2 when we change the value of a; if we tried to
graph y = 0x2, we would just be graphing y = 0, which would be a horizontal line.

So as a gets smaller and smaller, the graph of y = ax2 gets flattened all the way out into a horizontal line. Then,
when a becomes negative, the graph of y = ax2 starts to curve again, only it curves downward instead of upward.
This fits with what you’ve already learned: the graph opens upward if a is positive and downward if a is negative.

For example, here are the graphs of y = x2 and y = −x2. You can see that the parabola has the same shape in both
graphs, but the graph of y = x2 is right-side-up and the graph of y =−x2 is upside-down.

Vertical Shift

Changing the constant c just shifts the parabola up or down. The following plot shows the graphs of y = x2,y =
x2 +1,y = x2−1,y = x2 +2, and y = x2−2.
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You can see that when c is positive, the graph shifts up, and when c is negative the graph shifts down; in either case,
it shifts by |c| units. In one of the later sections we’ll learn about horizontal shift (i.e. moving to the right or to the
left). Before we can do that, though, we need to learn how to rewrite quadratic equations in different forms.

Meanwhile, if you want to explore further what happens when you change the coefficients of a quadratic equation,
the page at http://www.analyzemath.com/quadraticg/quadraticg.htm has an applet you can use. Click on the “Click
here to start” button in section A, and then use the sliders to change the values of a,b, and c.

Graph Quadratic Functions in Intercept Form

Now it’s time to learn how to graph a parabola without having to use a table with a large number of points.

Let’s look at the graph of y = x2−6x+8.

There are several things we can notice:

• The parabola crosses the x−axis at two points: x = 2 and x = 4. These points are called the x−intercepts of
the parabola.
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• The lowest point of the parabola occurs at (3, -1).

– This point is called the vertex of the parabola.
– The vertex is the lowest point in any parabola that turns upward, or the highest point in any parabola that

turns downward.
– The vertex is exactly halfway between the two x−intercepts. This will always be the case, and you can

find the vertex using that property.

• The parabola is symmetric. If you draw a vertical line through the vertex, you see that the two halves of the
parabola are mirror images of each other. This vertical line is called the line of symmetry.

We said that the general form of a quadratic function is y = ax2+bx+c. When we can factor a quadratic expression,
we can rewrite the function in intercept form:

y = a(x−m)(x−n)

This form is very useful because it makes it easy for us to find the x−intercepts and the vertex of the parabola. The
x−intercepts are the values of x where the graph crosses the x−axis; in other words, they are the values of x when
y = 0. To find the x−intercepts from the quadratic function, we set y = 0 and solve:

0 = a(x−m)(x−n)

Since the equation is already factored, we use the zero-product property to set each factor equal to zero and solve
the individual linear equations:

x−m = 0 x−n = 0

or

x = m x = n

So the x−intercepts are at points (m,0) and (n,0).

Once we find the x−intercepts, it’s simple to find the vertex. The x−value of the vertex is halfway between the two
x−intercepts, so we can find it by taking the average of the two values: m+n

2 . Then we can find the y−value by
plugging the value of x back into the equation of the function.

Example 2

Find the x−intercepts and the vertex of the following quadratic functions:

a) y = x2−8x+15

b) y = 3x2 +6x−24

Solution

a) y = x2−8x+15

Write the quadratic function in intercept form by factoring the right hand side of the equation. Remember, to factor
we need two numbers whose product is 15 and whose sum is –8. These numbers are –5 and –3.

The function in intercept form is y = (x−5)(x−3)

We find the x−intercepts by setting y = 0.

We have:
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0 = (x−5)(x−3)

x−5 = 0 x−3 = 0

or

x = 5 x = 3

So the x−intercepts are (5, 0) and (3, 0).

The vertex is halfway between the two x−intercepts. We find the x−value by taking the average of the two
x−intercepts: x = 5+3

2 = 4

We find the y−value by plugging the x−value we just found into the original equation:

y = x2−8x+15⇒ y = 42−8(4)+15 = 16−32+15 =−1

So the vertex is (4, -1).

b) y = 3x2 +6x−24

Re-write the function in intercept form.

Factor the common term of 3 first: y = 3(x2 +2x−8)

Then factor completely: y = 3(x+4)(x−2)

Set y = 0 and solve:

x+4 = 0 x−2 = 0

0 = 3(x+4)(x−2)⇒ or

x =−4 x = 2

The x−intercepts are (-4, 0) and (2, 0).

For the vertex,

x = −4+2
2 =−1 and y = 3(−1)2 +6(−1)−24 = 3−6−24 =−27

The vertex is: (-1, -27)

Knowing the vertex and x−intercepts is a useful first step toward being able to graph quadratic functions more easily.
Knowing the vertex tells us where the middle of the parabola is. When making a table of values, we can make sure
to pick the vertex as a point in the table. Then we choose just a few smaller and larger values of x. In this way, we
get an accurate graph of the quadratic function without having to have too many points in our table.

Example 3

Find the x− intercepts and vertex. Use these points to create a table of values and graph each function.

a) y = x2−4

b) y =−x2 +14x−48

Solution

a) y = x2−4

Let’s find the x−intercepts and the vertex:
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Factor the right-hand side of the function to put the equation in intercept form:

y = (x−2)(x+2)

Set y = 0 and solve:

0 = (x−2)(x+2)

x−2 = 0 x+2 = 0

or

x = 2 x =−2

The x−intercepts are (2, 0) and (-2, 0).

Find the vertex:

x =
2−2

2
= 0 y = (0)2−4 =−4

The vertex is (0, -4).

Make a table of values using the vertex as the middle point. Pick a few values of x smaller and larger than x = 0.
Include the x−intercepts in the table.

TABLE 10.7:

x y = x2−4
−3 y = (−3)2−4 = 5
–2 y = (−2)2−4 = 0 x−intercept
–1 y = (−1)2−4 =−3
0 y = (0)2−4 =−4 vertex
1 y = (1)2−4 =−3
2 y = (2)2−4 = 0 x−intercept
3 y = (3)2−4 = 5

Then plot the graph:
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b) y =−x2 +14x−48

Let’s find the x−intercepts and the vertex:

Factor the right-hand-side of the function to put the equation in intercept form:

y =−(x2−14x+48) =−(x−6)(x−8)

Set y = 0 and solve:

0 =−(x−6)(x−8)

x−6 = 0 x−8 = 0

or

x = 6 x = 8

The x−intercepts are (6, 0) and (8, 0).

Find the vertex:

x =
6+8

2
= 7 y =−(7)2 +14(7)−48 = 1

The vertex is (7, 1).

Make a table of values using the vertex as the middle point. Pick a few values of x smaller and larger than x = 7.
Include the x−intercepts in the table.

TABLE 10.8:

x y =−x2 +14x−48
4 y =−(4)2 +14(4)−48 =−8
5 y =−(5)2 +14(5)−48 =−3
6 y =−(6)2 +14(6)−48 = 0
7 y =−(7)2 +14(7)−48 = 1
8 y =−(8)2 +14(8)−48 = 0
9 y =−(9)2 +14(9)−48 =−3
10 y =−(10)2 +14(10)−48 =−8

Then plot the graph:
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Analyze Graphs of Real-World Quadratic Functions.

As we mentioned at the beginning of this section, parabolic curves are common in real-world applications. Here we
will look at a few graphs that represent some examples of real-life application of quadratic functions.

Example 4

Andrew has 100 feet of fence to enclose a rectangular tomato patch. What should the dimensions of the rectangle be
in order for the rectangle to have the greatest possible area?

Solution

Drawing a picture will help us find an equation to describe this situation:

If the length of the rectangle is x, then the width is 50− x. (The length and the width add up to 50, not 100, because
two lengths and two widths together add up to 100.)

If we let y be the area of the triangle, then we know that the area is length × width, so y = x(50− x) = 50x− x2.

Here’s the graph of that function, so we can see how the area of the rectangle depends on the length of the rectangle:
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We can see from the graph that the highest value of the area occurs when the length of the rectangle is 25. The area
of the rectangle for this side length equals 625. (Notice that the width is also 25, which makes the shape a square
with side length 25.)

This is an example of an optimization problem. These problems show up often in the real world, and if you ever
study calculus, you’ll learn how to solve them without graphs.

Example 5

Anne is playing golf. On the 4th tee, she hits a slow shot down the level fairway. The ball follows a parabolic path
described by the equation y = x− 0.04x2, where y is the ball’s height in the air and x is the horizontal distance it
has traveled from the tee. The distances are measured in feet. How far from the tee does the ball hit the ground? At
what distance from the tee does the ball attain its maximum height? What is the maximum height?

Solution

Let’s graph the equation of the path of the ball:

x(1−0.04x) = 0 has solutions x = 0 and x = 25.

From the graph, we see that the ball hits the ground 25 feet from the tee. (The other x−intercept, x = 0, tells us that
the ball was also on the ground when it was on the tee!)

We can also see that the ball reaches its maximum height of about 6.25 feet when it is 12.5 feet from the tee.
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Review Questions

Rewrite the following functions in intercept form. Find the x−intercepts and the vertex.

1. y = x2−2x−8
2. y =−x2 +10x−21
3. y = 2x2 +6x+4
4. y = 3(x+5)(x−2)

Does the graph of the parabola turn up or down?

5. y =−2x2−2x−3
6. y = 3x2

7. y = 16−4x2

8. y = 3x2−2x−4x2 +3

The vertex of which parabola is higher?

9. y = x2 +4 or y = x2 +1
10. y =−2x2 or y =−2x2−2
11. y = 3x2−3 or y = 3x2−6
12. y = 5−2x2 or y = 8−2x2

Which parabola is wider?

13. y = x2 or y = 4x2

14. y = 2x2 +4 or y = 1
2 x2 +4

15. y =−2x2−2 or y =−x2−2
16. y = x2 +3x2 or y = x2 +3

Graph the following functions by making a table of values. Use the vertex and x−intercepts to help you pick values
for the table.

17. y = 4x2−4
18. y =−x2 + x+12
19. y = 2x2 +10x+8
20. y = 1

2 x2−2x
21. y = x−2x2

22. y = 4x2−8x+4
23. Nadia is throwing a ball to Peter. Peter does not catch the ball and it hits the ground. The graph shows the path

of the ball as it flies through the air. The equation that describes the path of the ball is y = 4+ 2x− 0.16x2.
Here y is the height of the ball and x is the horizontal distance from Nadia. Both distances are measured in
feet.

a. How far from Nadia does the ball hit the ground?
b. At what distance x from Nadia, does the ball attain its maximum height?
c. What is the maximum height?

24. Jasreel wants to enclose a vegetable patch with 120 feet of fencing. He wants to put the vegetable against an
existing wall, so he only needs fence for three of the sides. The equation for the area is given by A = 120x−x2.
From the graph, find what dimensions of the rectangle would give him the greatest area.
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10.2 Quadratic Equations by Graphing

Learning Objectives

• Identify the number of solutions of a quadratic equation.
• Solve quadratic equations by graphing.
• Analyze quadratic functions using a graphing calculator.
• Solve real-world problems by graphing quadratic functions.

Introduction

Solving a quadratic equation means finding the x−values that will make the quadratic function equal zero; in other
words, it means finding the points where the graph of the function crosses the x−axis. The solutions to a quadratic
equation are also called the roots or zeros of the function, and in this section we’ll learn how to find them by
graphing the function.

Identify the Number of Solutions of a Quadratic Equation

Three different situations can occur when graphing a quadratic function:

Case 1: The parabola crosses the x−axis at two points. An example of this is y = x2 + x−6:

Looking at the graph, we see that the parabola crosses the x−axis at x =−3 and x = 2.

We can also find the solutions to the equation x2 + x−6 = 0 by setting y = 0. We solve the equation by factoring:

(x+3)(x−2) = 0, so x =−3 or x = 2.

When the graph of a quadratic function crosses the x−axis at two points, we get two distinct solutions to the
quadratic equation.
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Case 2: The parabola touches the x−axis at one point. An example of this is y = x2−2x+1:

We can see that the graph touches the x−axis at x = 1.

We can also solve this equation by factoring. If we set y = 0 and factor, we obtain (x−1)2 = 0, so x = 1. Since the
quadratic function is a perfect square, we get only one solution for the equation—it’s just the same solution repeated
twice over.

When the graph of a quadratic function touches the x−axis at one point, the quadratic equation has one solution and
the solution is called a double root.

Case 3: The parabola does not cross or touch the x−axis. An example of this is y = x2 +4:

If we set y = 0 we get x2 +4 = 0. This quadratic polynomial does not factor.

When the graph of a quadratic function does not cross or touch the x−axis, the quadratic equation has no real
solutions.

Solve Quadratic Equations by Graphing

So far we’ve found the solutions to quadratic equations using factoring. However, in real life very few functions
factor easily. As you just saw, graphing a function gives a lot of information about the solutions. We can find exact
or approximate solutions to a quadratic equation by graphing the function associated with it.
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Example 1

Find the solutions to the following quadratic equations by graphing.

a) −x2 +3 = 0

b) 2x2 +5x−7 = 0

c) −x2 + x−3 = 0

d) y =−x2 +4x−4

Solution

Since we can’t factor any of these equations, we won’t be able to graph them using intercept form (if we could, we
wouldn’t need to use the graphs to find the intercepts!) We’ll just have to make a table of arbitrary values to graph
each one.

a)

TABLE 10.9:

x y =−x2 +3
−3 y =−(−3)2 +3 =−6
–2 y =−(−2)2 +3 =−1
–1 y =−(−1)2 +3 = 2
0 y =−(0)2 +3 = 3
1 y =−(1)2 +3 = 2
2 y =−(2)2 +3 =−1
3 y =−(3)2 +3 =−6

We plot the points and get the following graph:

From the graph we can read that the x−intercepts are approximately x = 1.7and x =−1.7. These are the solutions
to the equation.

b)

TABLE 10.10:

x y = 2x2 +5x−7
−5 y = 2(−5)2 +5(−5)−7 = 18
–4 y = 2(−4)2 +5(−4)−7 = 5
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TABLE 10.10: (continued)

x y = 2x2 +5x−7
–3 y = 2(−3)2 +5(−3)−7 =−4
–2 y = 2(−2)2 +5(−2)−7 =−9
–1 y = 2(−1)2 +5(−1)−7 =−10
0 y = 2(0)2 +5(0)−7 =−7
1 y = 2(1)2 +5(1)−7 = 0
2 y = 2(2)2 +5(2)−7 = 11
3 y = 2(3)2 +5(3)−7 = 26

We plot the points and get the following graph:

From the graph we can read that the x−intercepts are x = 1and x =−3.5. These are the solutions to the equation.

c)

TABLE 10.11:

x y =−x2 + x−3
−3 y =−(−3)2 +(−3)−3 =−15
–2 y =−(−2)2 +(−2)−3 =−9
–1 y =−(−1)2 +(−1)−3 =−5
0 y =−(0)2 +(0)−3 =−3
1 y =−(1)2 +(1)−3 =−3
2 y =−(2)2 +(2)−3 =−5
3 y =−(3)2 +(3)−3 =−9

We plot the points and get the following graph:
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The graph curves up toward the x−axis and then back down without ever reaching it. This means that the graph
never intercepts the x−axis, and so the corresponding equation has no real solutions.

d)

TABLE 10.12:

x y =−x2 +4x−4
−3 y =−(−3)2 +4(−3)−4 =−25
–2 y =−(−2)2 +4(−2)−4 =−16
–1 y =−(−1)2 +4(−1)−4 =−9
0 y =−(0)2 +4(0)−4 =−4
1 y =−(1)2 +4(1)−4 =−1
2 y =−(2)2 +4(2)−4 = 0
3 y =−(3)2 +4(3)−4 =−1
4 y =−(4)2 +4(4)−4 =−4
5 y =−(5)2 +4(5)−4 =−9

Here is the graph of this function:

The graph just touches the x−axis at x = 2, so the function has a double root there. x = 2 is the only solution to the
equation.
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Analyze Quadratic Functions Using a Graphing Calculator

A graphing calculator is very useful for graphing quadratic functions. Once the function is graphed, we can use the
calculator to find important information such as the roots or the vertex of the function.

Example 2

Use a graphing calculator to analyze the graph of y = x2−20x+35.

Solution

1. Graph the function.

Press the [Y=] button and enter “x2− 20x+ 35” next to [Y1 =]. Press the [GRAPH] button. This is the plot you
should see:

If this is not what you see, press the [WINDOW] button to change the window size. For the graph shown here, the
x−values should range from -10 to 30 and the y−values from -80 to 50.

2. Find the roots.

There are at least three ways to find the roots:

Use [TRACE] to scroll over the x−intercepts. The approximate value of the roots will be shown on the screen. You
can improve your estimate by zooming in.

OR

Use [TABLE] and scroll through the values until you find values of y equal to zero. You can change the accuracy of
the solution by setting the step size with the [TBLSET] function.

OR

Use [2nd] [TRACE] (i.e. ’calc’ button) and use option ’zero’.

Move the cursor to the left of one of the roots and press [ENTER].

Move the cursor to the right of the same root and press [ENTER].

Move the cursor close to the root and press [ENTER].

The screen will show the value of the root. Repeat the procedure for the other root.

Whichever technique you use, you should get about x = 1.9and x = 18 for the two roots.

3. Find the vertex.
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There are three ways to find the vertex:

Use [TRACE] to scroll over the highest or lowest point on the graph. The approximate value of the roots will be
shown on the screen.

OR

Use [TABLE] and scroll through the values until you find values the lowest or highest value of y. You can change
the accuracy of the solution by setting the step size with the [TBLSET] function.

OR

Use [2nd] [TRACE] and use the option ’maximum’ if the vertex is a maximum or ’minimum’ if the vertex is a
minimum.

Move the cursor to the left of the vertex and press [ENTER].

Move the cursor to the right of the vertex and press [ENTER].

Move the cursor close to the vertex and press [ENTER].

The screen will show the x− and y−values of the vertex.

Whichever method you use, you should find that the vertex is at (10, -65).

Solve Real-World Problems by Graphing Quadratic Functions

Here’s a real-world problem we can solve using the graphing methods we’ve learned.

Example 3

Andrew is an avid archer. He launches an arrow that takes a parabolic path. The equation of the height of the ball
with respect to time is y = −4.9t2 + 48t, where y is the height of the arrow in meters and t is the time in seconds
since Andrew shot the arrow. Find how long it takes the arrow to come back to the ground.

Solution

Let’s graph the equation by making a table of values.

TABLE 10.13:

t y =−4.9t2 +48t
0 y =−4.9(0)2 +48(0) = 0
1 y =−4.9(1)2 +48(1) = 43.1
2 y =−4.9(2)2 +48(2) = 76.4
3 y =−4.9(3)2 +48(3) = 99.9
4 y =−4.9(4)2 +48(4) = 113.6
5 y =−4.9(5)2 +48(5) = 117.6
6 y =−4.9(6)2 +48(6) = 111.6
7 y =−4.9(7)2 +48(7) = 95.9
8 y =−4.9(8)2 +48(8) = 70.4
9 y =−4.9(9)2 +48(9) = 35.1
10 y =−4.9(10)2 +48(10) =−10

Here’s the graph of the function:
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The roots of the function are approximately x = 0 sec and x = 9.8 sec. The first root tells us that the height of the
arrow was 0 meters when Andrew first shot it. The second root says that it takes approximately 9.8 seconds for the
arrow to return to the ground.

Further Practice

Now that you’ve learned how to solve quadratic equations by graphing them, you can sharpen your skills even more
by learning how to find an equation from the graph alone. Go to the page linked in the previous section, http://w
ww.analyzemath.com/quadraticg/quadraticg.htm, and scroll down to section E. Read the example there to learn how
to find the equation of a quadratic function by reading off a few key values from the graph; then click the “Click here
to start” button to try a problem yourself. The “New graph” button will give you a new problem when you finish the
first one.

Review Questions

Find the solutions of the following equations by graphing.

1. x2 +3x+6 = 0
2. −2x2 + x+4 = 0
3. x2−9 = 0
4. x2 +6x+9 = 0
5. 10x−3x2 = 0
6. 1

2 x2−2x+3 = 0

Find the roots of the following quadratic functions by graphing.

7. y =−3x2 +4x−1
8. y = 9−4x2

9. y = x2 +7x+2
10. y =−x2−10x−25
11. y = 2x2−3x
12. y = x2−2x+5
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Using your graphing calculator, find the roots and the vertex of each polynomial.

13. y = x2 +12x+5
14. y = x2 +3x+6
15. y =−x2−3x+9
16. y =−x2 +4x−12
17. y = 2x2−4x+8
18. y =−5x2−3x+2
19. Graph the equations y = 2x2−4x+8 and y = x2−2x+4 on the same screen. Find their roots and vertices.

a. What is the same about the graphs? What is different?
b. How are the two equations related to each other? (Hint: factor them.)
c. What might be another equation with the same roots? Graph it and see.

20. Graph the equations y = x2−2x+2 and y = x2−2x+4 on the same screen. Find their roots and vertices.

a. What is the same about the graphs? What is different?
b. How are the two equations related to each other?

21. Phillip throws a ball and it takes a parabolic path. The equation of the height of the ball with respect to time
is y =−16t2 +60t, where y is the height in feet and t is the time in seconds. Find how long it takes the ball to
come back to the ground.

22. Use your graphing calculator to solve Ex. 3. You should get the same answers as we did graphing by hand,
but a lot quicker!
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10.3 Quadratic Equations by Square Roots

Learning Objectives

• Solve quadratic equations involving perfect squares.
• Approximate solutions of quadratic equations.
• Solve real-world problems using quadratic functions and square roots.

Introduction

So far you know how to solve quadratic equations by factoring. However, this method works only if a quadratic
polynomial can be factored. In the real world, most quadratics can’t be factored, so now we’ll start to learn other
methods we can use to solve them. In this lesson, we’ll examine equations in which we can take the square root of
both sides of the equation in order to arrive at the result.

Solve Quadratic Equations Involving Perfect Squares

Let’s first examine quadratic equations of the type

x2− c = 0

We can solve this equation by isolating the x2 term: x2 = c

Once the x2 term is isolated we can take the square root of both sides of the equation. Remember that when we take
the square root we get two answers: the positive square root and the negative square root:

x =
√

c and x =−
√

c

Often this is written as x =±
√

c.

Example 1

Solve the following quadratic equations:

a) x2−4 = 0

b) x2−25 = 0

Solution

a) x2−4 = 0

Isolate the x2: x2 = 4
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Take the square root of both sides: x =
√

4 and x =−
√

4

The solutions are x = 2and x =−2.

b) x2−25 = 0

Isolate the x2: x2 = 25

Take the square root of both sides: x =
√

25 and x =−
√

25

The solutions are x = 5and x =−5.

We can also find the solution using the square root when the x2 term is multiplied by a constant—in other words,
when the equation takes the form

ax2− c = 0

We just have to isolate the x2:

ax2 = b

x2 =
b
a

Then we can take the square root of both sides of the equation:

x =

√
b
a

and x =−
√

b
a

Often this is written as: x =±
√

b
a

.

Example 2

Solve the following quadratic equations.

a) 9x2−16 = 0

b) 81x2−1 = 0

Solution

a) 9x2−16 = 0

Isolate the x2:

9x2 = 16

x2 =
16
9

Take the square root of both sides: x =

√
16
9

and x =−
√

16
9

Answer: x = 4
3 and x =−4

3

b) 81x2−1 = 0
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Isolate the x2:

81x2 = 1

x2 =
1
81

Take the square root of both sides: x =

√
1
81

and x =−
√

1
81

Answer: x = 1
9 and x =−1

9

As you’ve seen previously, some quadratic equations have no real solutions.

Example 3

Solve the following quadratic equations.

a) x2 +1 = 0

b) 4x2 +9 = 0

Solution

a) x2 +1 = 0

Isolate the x2: x2 =−1

Take the square root of both sides: x =
√
−1 and x =−

√
−1

Square roots of negative numbers do not give real number results, so there are no real solutions to this equation.

b) 4x2 +9 = 0

Isolate the x2:

4x2 =−9

x2 =−9
4

Take the square root of both sides: x =

√
−9

4
and x =−

√
−9

4
There are no real solutions.

We can also use the square root function in some quadratic equations where one side of the equation is a perfect
square. This is true if an equation is of this form:

(x−2)2 = 9

Both sides of the equation are perfect squares. We take the square root of both sides and end up with two equations:
x−2 = 3 and x−2 =−3.

Solving both equations gives us x = 5 and x =−1.

Example 4

Solve the following quadratic equations.

a) (x−1)2 = 4
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b) (x+3)2 = 1

Solution

a) (x−1)2 = 4

Take the square root of both sides : x−1 = 2 and x−1 =−2

Solve each equation : x = 3 and x =−1

Answer: x = 3 and x =−1

b) (x+3)2 = 1

Take the square root of both sides : x+3 = 1 and x+3 =−1

Solve each equation : x =−2 and x =−4

Answer: x =−2 and x =−4

It might be necessary to factor the right-hand side of the equation as a perfect square before applying the method
outlined above.

Example 5

Solve the following quadratic equations.

a) x2 +8x+16 = 25

b) 4x2−40x+25 = 9

Solution

a) x2 +8x+16 = 25

Factor the right-hand-side : x2 +8x+16 = (x+4)2 so (x+4)2 = 25

Take the square root of both sides : x+4 = 5 and x+4 =−5

Solve each equation : x = 1 and x =−9

Answer: x = 1 and x =−9

b) 4x2−20x+25 = 9

Factor the right-hand-side : 4x2−20x+25 = (2x−5)2 so (2x−5)2 = 9

Take the square root of both sides : 2x−5 = 3 and 2x−5 =−3

Solve each equation : 2x = 8 and 2x = 2

Answer: x = 4 and x = 1

Approximate Solutions of Quadratic Equations

We can use the methods we’ve learned so far in this section to find approximate solutions to quadratic equations,
when taking the square root doesn’t give an exact answer.
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Example 6

Solve the following quadratic equations.

a) x2−3 = 0

b) 2x2−9 = 0

Solution

a) Isolate the x2 : x2 = 3
Take the square root of both sides : x =

√
3 and x =−

√
3

Answer: x≈ 1.73 and x≈−1.73

b) Isolate the x2 : 2x2 = 9 so x2 = 9
2

Take the square root of both sides : x =

√
9
2

and x =−
√

9
2

Answer: x≈ 2.12 and x≈−2.12

Example 7

Solve the following quadratic equations.

a) (2x+5)2 = 10

b) x2−2x+1 = 5

Solution

a)

Take the square root of both sides : 2x+5 =
√

10 and 2x+5 =−
√

10

Solve both equations : x =
−5+

√
10

2
and x =

−5−
√

10
2

Answer: x≈−0.92 and x≈−4.08

b)

Factor the right-hand-side : (x−1)2 = 5

Take the square root of both sides : x−1 =
√

5 and x−1 =−
√

5

Solve each equation : x = 1+
√

5 and x = 1−
√

5

Answer: x≈ 3.24 and x≈−1.24

Solve Real-World Problems Using Quadratic Functions and Square Roots

Quadratic equations are needed to solve many real-world problems. In this section, we’ll examine problems about
objects falling under the influence of gravity. When objects are dropped from a height, they have no initial velocity;
the force that makes them move towards the ground is due to gravity. The acceleration of gravity on earth is given
by the equation

g =−9.8 m/s2 or g =−32 f t/s2
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The negative sign indicates a downward direction. We can assume that gravity is constant for the problems we’ll be
examining, because we will be staying close to the surface of the earth. The acceleration of gravity decreases as an
object moves very far from the earth. It is also different on other celestial bodies such as the moon.

The equation that shows the height of an object in free fall is

y =
1
2

gt2 + y0

The term y0 represents the initial height of the object, t is time, and g is the constant representing the force of gravity.
You then plug in one of the two values for g above, depending on whether you want the answer in feet or meters.
Thus the equation works out to y =−4.9t2 + y0 if you want the height in meters, and y =−16t2 + y0 if you want it
in feet.

Example 8

How long does it take a ball to fall from a roof to the ground 25 feet below?

Solution

Since we are given the height in feet, use equation : y =−16t2 + y0

The initial height is y0 = 25 f eet, so : y =−16t2 +25

The height when the ball hits the ground is y = 0, so : 0 =−16t2 +25

Solve for t : 16t2 = 25

t2 =
25
16

t =
5
4

or t =−5
4

Since only positive time makes sense in this case, it takes the ball 1.25 seconds to fall to the ground.

Example 9

A rock is dropped from the top of a cliff and strikes the ground 7.2 seconds later. How high is the cliff in meters?

Solution

Since we want the height in meters, use equation : y =−4.9t2 + y0

The time of flight is t = 7.2 seconds : y =−4.9(7.2)2 + y0

The height when the ball hits the ground is y = 0, so : 0 =−4.9(7.2)2 + y0

Simplify : 0 =−254+ y0 so y0 = 254

The cliff is 254 meters high.

Example 10

Victor throws an apple out of a window on the 10th floor which is 120 feet above ground. One second later Juan
throws an orange out of a 6th floor window which is 72 feet above the ground. Which fruit reaches the ground first,
and how much faster does it get there?

Solution

Let’s find the time of flight for each piece of fruit.
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Apple:

Since we have the height in feet, use this equation : y =−16t2 + y0

The initial height is y0 = 120 f eet : y =−16t2 +120

The height when the ball hits the ground is y = 0, so : 0 =−16t2 +120

Solve for t : 16t2 = 120

t2 =
120
16

= 7.5

t = 2.74 or t =−2.74 seconds

Orange:

The initial height is y0 = 72 f eet : 0 =−16t2 +72

Solve for t : 16t2 = 72

t2 =
72
16

= 4.5

t = 2.12 or t =−2.12 seconds

The orange was thrown one second later, so add 1 second to the time of the orange: t = 3.12 seconds

The apple hits the ground first. It gets there 0.38 seconds faster than the orange.

Review Questions

Solve the following quadratic equations.

1. x2−1 = 0
2. x2−100 = 0
3. x2 +16 = 0
4. 9x2−1 = 0
5. 4x2−49 = 0
6. 64x2−9 = 0
7. x2−81 = 0
8. 25x2−36 = 0
9. x2 +9 = 0

10. x2−16 = 0
11. x2−36 = 0
12. 16x2−49 = 0
13. (x−2)2 = 1
14. (x+5)2 = 16
15. (2x−1)2−4 = 0
16. (3x+4)2 = 9
17. (x−3)2 +25 = 0
18. x2−6 = 0
19. x2−20 = 0
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20. 3x2 +14 = 0
21. (x−6)2 = 5
22. (4x+1)2−8 = 0
23. x2−10x+25 = 9
24. x2 +18x+81 = 1
25. 4x2−12x+9 = 16
26. (x+10)2 = 2
27. x2 +14x+49 = 3
28. 2(x+3)2 = 8
29. Susan drops her camera in the river from a bridge that is 400 feet high. How long is it before she hears the

splash?
30. It takes a rock 5.3 seconds to splash in the water when it is dropped from the top of a cliff. How high is the

cliff in meters?
31. Nisha drops a rock from the roof of a building 50 feet high. Ashaan drops a quarter from the top story window,

40 feet high, exactly half a second after Nisha drops the rock. Which hits the ground first?
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10.4 Solving Quadratic Equations by Complet-
ing the Square

Learning Objectives

• Complete the square of a quadratic expression.
• Solve quadratic equations by completing the square.
• Solve quadratic equations in standard form.
• Graph quadratic equations in vertex form.
• Solve real-world problems using functions by completing the square.

Introduction

You saw in the last section that if you have a quadratic equation of the form (x−2)2 = 5, you can easily solve it by
taking the square root of each side:

x−2 =
√

5 and x−2 =−
√

5

Simplify to get:

x = 2+
√

5≈ 4.24 and x = 2−
√

5≈−0.24

So what do you do with an equation that isn’t written in this nice form? In this section, you’ll learn how to rewrite
any quadratic equation in this form by completing the square.

Complete the Square of a Quadratic Expression

Completing the square lets you rewrite a quadratic expression so that it contains a perfect square trinomial that you
can factor as the square of a binomial.

Remember that the square of a binomial takes one of the following forms:

(x+a)2 = x2 +2ax+a2

(x−a)2 = x2−2ax+a2

So in order to have a perfect square trinomial, we need two terms that are perfect squares and one term that is twice
the product of the square roots of the other terms.

Example 1
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Complete the square for the quadratic expression x2 +4x.

Solution

To complete the square we need a constant term that turns the expression into a perfect square trinomial. Since the
middle term in a perfect square trinomial is always 2 times the product of the square roots of the other two terms,
we re-write our expression as:

x2 +2(2)(x)

We see that the constant we are seeking must be 22:

x2 +2(2)(x)+22

Answer: By adding 4 to both sides, this can be factored as: (x+2)2

Notice, though, that we just changed the value of the whole expression by adding 4 to it. If it had been an equation,
we would have needed to add 4 to the other side as well to make up for this.

Also, this was a relatively easy example because a, the coefficient of the x2 term, was 1. When that coefficient
doesn’t equal 1, we have to factor it out from the whole expression before completing the square.

Example 2

Complete the square for the quadratic expression 4x2 +32x.

Solution

Factor the coefficient of the x2 term : 4(x2 +8x)

Now complete the square of the expression in parentheses.

Re-write the expression : 4(x2 +2(4)(x))

We complete the square by adding the constant 42 : 4(x2 +2(4)(x)+42)

Factor the perfect square trinomial inside the parenthesis : 4(x+4)2 Answer

The expression “completing the square” comes from a geometric interpretation of this situation. Let’s revisit the
quadratic expression in Example 1: x2 +4x.

We can think of this expression as the sum of three areas. The first term represents the area of a square of side x.
The second expression represents the areas of two rectangles with a length of 2 and a width of x:

We can combine these shapes as follows:
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We obtain a square that is not quite complete. To complete the square, we need to add a smaller square of side length
2.

We end up with a square of side length (x+2); its area is therefore (x+2)2.

Solve Quadratic Equations by Completing the Square

Let’s demonstrate the method of completing the square with an example.

Example 3

Solve the following quadratic equation: 3x2−10x =−1

Solution

Divide all terms by the coefficient of the x2 term:

x2− 10
3

x =−1
3

Rewrite: x2−2
(5

3

)
(x) =−1

3

In order to have a perfect square trinomial on the right-hand-side we need to add the constant
(5

3

)2
. Add this constant

to both sides of the equation:

x2−2
(

5
3

)
(x)+

(
5
3

)2

=−1
3
+

(
5
3

)2

Factor the perfect square trinomial and simplify:
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(
x− 5

3

)2

=−1
3
+

25
9(

x− 5
3

)2

=
22
9

Take the square root of both sides:

x− 5
3
=

√
22
9

and x− 5
3
=−

√
22
9

x =
5
3
+

√
22
9
≈ 3.23 and x =

5
3
−
√

22
9
≈ 0.1

Answer: x = 3.23 and x = 0.1

If an equation is in standard form (ax2 +bx+ c = 0), we can still solve it by the method of completing the square.
All we have to do is start by moving the constant term to the right-hand-side of the equation.

Example 4

Solve the following quadratic equation: x2 +15x+12 = 0

Solution

Move the constant to the other side of the equation:

x2 +15x =−12

Rewrite: x2 +2
(15

2

)
(x) =−12

Add the constant
(15

2

)2
to both sides of the equation:

x2 +2
(

15
2

)
(x)+

(
15
2

)2

=−12+
(

15
2

)2

Factor the perfect square trinomial and simplify:

(
x+

15
2

)2

=−12+
225

4(
x+

15
2

)2

=
177
4

Take the square root of both sides:

x+
15
2

=

√
177
4

and x+
15
2

=−
√

177
4

x =−15
2
+

√
177
4
≈−0.85 and x =−15

2
−
√

177
4
≈−14.15

Answer: x =−0.85 and x =−14.15
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Graph Quadratic Functions in Vertex Form

Probably one of the best applications of the method of completing the square is using it to rewrite a quadratic function
in vertex form. The vertex form of a quadratic function is

y− k = a(x−h)2

This form is very useful for graphing because it gives the vertex of the parabola explicitly. The vertex is at the point
(h,k).

It is also simple to find the x−intercepts from the vertex form: just set y = 0 and take the square root of both sides
of the resulting equation.

To find the y−intercept, set x = 0 and simplify.

Example 5

Find the vertex, the x− intercepts and the y− intercept of the following parabolas:

a) y−2 = (x−1)2

b) y+8 = 2(x−3)2

Solution

a) y−2 = (x−1)2

Vertex: (1, 2)

To find the x−intercepts,

Set y = 0 : −2 = (x−1)2

Take the square root of both sides :
√
−2 = x−1 and −

√
−2 = x−1

The solutions are not real so there are no x−intercepts.

To find the y−intercept,

Set x = 0 : y−2 = (−1)2

Simplify : y−2 = 1⇒ y = 3

b) y+8 = 2(x−3)2

Rewrite : y− (−8) = 2(x−3)2

Vertex : (3,−8)

To find the x−intercepts,
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Set y = 0 : 8 = 2(x−3)2

Divide both sides by 2 : 4 = (x−3)2

Take the square root of both sides : 4 = x−3 and −4 = x−3

Simplify : x = 7 and x =−1

To find the y−intercept,

Set x = 0 : y+8 = 2(−3)2

Simplify : y+8 = 18⇒ y = 10

To graph a parabola, we only need to know the following information:

• the vertex
• the x−intercepts
• the y−intercept
• whether the parabola turns up or down (remember that it turns up if a > 0 and down if a < 0)

Example 6

Graph the parabola given by the function y+1 = (x+3)2.

Solution

Rewrite : y− (−1) = (x− (−3))2

Vertex : (−3,−1) vertex : (−3,−1)

To find the x−intercepts,

Set y = 0 : 1 = (x+3)2

Take the square root of both sides : 1 = x+3 and −1 = x+3

Simplify : x =−2 and x =−4

x− intercepts : (−2,0) and (−4,0)

To find the y−intercept,

Set x = 0 : y+1 = (3)2

Simplify: y = 8 y− intercept : (0,8)

And since a > 0, the parabola turns up.

Graph all the points and connect them with a smooth curve:

510

http://www.ck12.org


www.ck12.org Chapter 10. Quadratic Equations and Quadratic Functions

Example 7

Graph the parabola given by the function y =−1
2(x−2)2.

Solution:

Rewrite y− (0) =−1
2
(x−2)2

Vertex: (2,0) vertex:(2,0)

To find the x−intercepts,

Set y = 0 : 0 =−1
2
(x−2)2

Multiply both sides by −2 : 0 = (x−2)2

Take the square root of both sides : 0 = x−2

Simplify : x = 2 x− intercept:(2,0)

Note: there is only one x−intercept, indicating that the vertex is located at this point, (2, 0).

To find the y−intercept,

Set x = 0 : y =−1
2
(−2)2

Simplify: y =−1
2
(4)⇒ y =−2 y− intercept:(0,−2)

Since a < 0, the parabola turns down.

Graph all the points and connect them with a smooth curve:
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Solve Real-World Problems Using Quadratic Functions by Completing the Square

In the last section you learned that an object that is dropped falls under the influence of gravity. The equation for its
height with respect to time is given by y = 1

2 gt2 + y0, where y0 represents the initial height of the object and g is the
coefficient of gravity on earth, which equals −9.8 m/s2 or −32 f t/s2.

On the other hand, if an object is thrown straight up or straight down in the air, it has an initial vertical velocity.
This term is usually represented by the notation v0y. Its value is positive if the object is thrown up in the air and is
negative if the object is thrown down. The equation for the height of the object in this case is

y =
1
2

gt2 + v0yt + y0

Plugging in the appropriate value for g turns this equation into

y =−4.9t2 + v0yt + y0 if you wish to have the height in meters

y =−16t2 + v0yt + y0 if you wish to have the height in feet

Example 8

An arrow is shot straight up from a height of 2 meters with a velocity of 50 m/s.

a) How high will the arrow be 4 seconds after being shot? After 8 seconds?

b) At what time will the arrow hit the ground again?

c) What is the maximum height that the arrow will reach and at what time will that happen?

Solution

Since we are given the velocity in m/s, use: y =−4.9t2 + v0yt + y0

We know v0y = 50 m/s and y0 = 2 meters so: y =−4.9t2 +50t +2

a) To find how high the arrow will be 4 seconds after being shot we plug in t = 4:
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y =−4.9(4)2 +50(4)+2

=−4.9(16)+200+2 = 123.6 f eet

we plug in t = 8:

y =−4.9(8)2 +50(8)+2

=−4.9(64)+400+2 = 88.4 f eet

b) The height of the ball arrow on the ground is y = 0, so: 0 =−4.9t2 +50t +2

Solve for t by completing the square:

−4.9t2 +50t =−2

−4.9(t2−10.2t) =−2

t2−10.2t = 0.41

t2−2(5.1)t +(5.1)2 = 0.41+(5.1)2

(t−5.1)2 = 26.43

t−5.1 = 5.14 and t−5.1 =−5.14

t = 10.2 sec and t =−0.04 sec

The arrow will hit the ground about 10.2 seconds after it is shot.

c) If we graph the height of the arrow with respect to time we would get an upside down parabola (a < 0). The
maximum height and the time when this occurs is really the vertex of this parabola: (t,h).

We re-write the equation in vertex form: y =−4.9t2 +50t +2

y−2 =−4.9t2 +50t

y−2 =−4.9(t2−10.2t)

Complete the square: y−2−4.9(5.1)2 =−4.9
(
t2−10.2t +(5.1)2)

y−129.45 =−4.9(t−5.1)2

The vertex is at (5.1, 129.45). In other words, when t = 5.1 seconds, the height is y = 129 meters.

Another type of application problem that can be solved using quadratic equations is one where two objects are
moving away from each other in perpendicular directions. Here is an example of this type of problem.

Example 9

Two cars leave an intersection. One car travels north; the other travels east. When the car traveling north had gone
30 miles, the distance between the cars was 10 miles more than twice the distance traveled by the car heading east.
Find the distance between the cars at that time.

Solution

Let x = the distance traveled by the car heading east

Then 2x+10 = the distance between the two cars

Let’s make a sketch:
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We can use the Pythagorean Theorem to find an equation for x:

x2 +302 = (2x+10)2

Expand parentheses and simplify:

x2 +900 = 4x2 +40x+100

800 = 3x2 +40x

Solve by completing the square:

800
3

= x2 +
40
3

x

800
3

+

(
20
3

)2

= x2 +2
(

20
3

)
x+
(

20
3

)2

2800
9

=

(
x+

20
3

)2

x+
20
3

= 17.6 and x+
20
3

=−17.6

x = 11 and x =−24.3

Since only positive distances make sense here, the distance between the two cars is: 2(11)+10 = 32 miles

Review Questions

Complete the square for each expression.

1. x2 +5x
2. x2−2x
3. x2 +3x
4. x2−4x
5. 3x2 +18x
6. 2x2−22x
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7. 8x2−10x
8. 5x2 +12x

Solve each quadratic equation by completing the square.

9. x2−4x = 5
10. x2−5x = 10
11. x2 +10x+15 = 0
12. x2 +15x+20 = 0
13. 2x2−18x = 3
14. 4x2 +5x =−1
15. 10x2−30x−8 = 0
16. 5x2 +15x−40 = 0

Rewrite each quadratic function in vertex form.

17. y = x2−6x
18. y+1 =−2x2− x
19. y = 9x2 +3x−10
20. y =−32x2 +60x+10

For each parabola, find the vertex; the x− and y−intercepts; and if it turns up or down. Then graph the parabola.

21. y−4 = x2 +8x
22. y =−4x2 +20x−24
23. y = 3x2 +15x
24. y+6 =−x2 + x
25. Sam throws an egg straight down from a height of 25 feet. The initial velocity of the egg is 16 ft/sec. How

long does it take the egg to reach the ground?
26. Amanda and Dolvin leave their house at the same time. Amanda walks south and Dolvin bikes east. Half an

hour later they are 5.5 miles away from each other and Dolvin has covered three miles more than the distance
that Amanda covered. How far did Amanda walk and how far did Dolvin bike?
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10.5 Solving Quadratic Equations by the
Quadratic Formula

Learning Objectives

• Solve quadratic equations using the quadratic formula.
• Identify and choose methods for solving quadratic equations.
• Solve real-world problems using functions by completing the square.

Introduction

The Quadratic Formula is probably the most used method for solving quadratic equations. For a quadratic equation
in standard form, ax2 +bx+ c = 0, the quadratic formula looks like this:

x =
−b±

√
b2−4ac

2a

This formula is derived by solving a general quadratic equation using the method of completing the square that you
learned in the previous section.

We start with a general quadratic equation: ax2 +bx+ c = 0

Subtract the constant term from both sides: ax2 +bx =−c

Divide by the coefficient of the x2 term: x2 +
b
a

x =− c
a

Rewrite: x2 +2
(

b
2a

)
x =− c

a

Add the constant
(

b
2a

)2

to both sides: x2 +2
(

b
2a

)
x+
(

b
2a

)2

=− c
a
+

b2

4a2

Factor the perfect square trinomial:
(

x+
b
2a

)2

=−4ac
4a2 +

b2

4a2

Simplify:
(

x+
b
2a

)2

=
b2−4ac

4a2

Take the square root of both sides: x+
b

2a
=

√
b2−4ac

4a2 and x+
b
2a

=−
√

b2−4ac
4a2

Simplify: x+
b

2a
=

√
b2−4ac

2a
and x+

b
2a

=−
√

b2−4ac
2a

x =− b
2a

+

√
b2−4ac

2a
and x =− b

2a
−
√

b2−4ac
2a

x =
−b+

√
b2−4ac

2a
and x =

−b−
√

b2−4ac
2a
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This can be written more compactly as x = −b±
√

b2−4ac
2a .

You can see that the familiar formula comes directly from applying the method of completing the square. Applying
the method of completing the square to solve quadratic equations can be tedious, so the quadratic formula is a more
straightforward way of finding the solutions.

Solve Quadratic Equations Using the Quadratic Formula

To use the quadratic formula, just plug in the values of a,b, and c.

Example 1

Solve the following quadratic equations using the quadratic formula.

a) 2x2 +3x+1 = 0

b) x2−6x+5 = 0

c) −4x2 + x+1 = 0

Solution

Start with the quadratic formula and plug in the values of a,b and c.

a)

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a = 2, b = 3, c = 1 x =
−3±

√
(3)2−4(2)(1)
2(2)

Simplify: x =
−3±

√
9−8

4
=
−3±

√
1

4

Separate the two options: x =
−3+1

4
and x =

−3−1
4

Solve: x =
−2
4

=−1
2

and x =
−4
4

=−1

Answer: x =−1
2 and x =−1

b)

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a = 1, b =−6, c = 5 x =
−(−6)±

√
(−6)2−4(1)(5)
2(1)

Simplify: x =
6±
√

36−20
2

=
6±
√

16
2

Separate the two options: x =
6+4

2
and x =

6−4
2

Solve: x =
10
2

= 5 and x =
2
2
= 1

Answer: x = 5 and x = 1
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c)

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a =−4, b = 1, c = 1 x =
−1±

√
(1)2−4(−4)(1)
2(−4)

Simplify: x =
−1±

√
1+16

−8
=
−1±

√
17

−8

Separate the two options: x =
−1+

√
17

−8
and x =

−1−
√

17
−8

Solve: x =−.39 and x = .64

Answer: x =−.39 and x = .64

Often when we plug the values of the coefficients into the quadratic formula, we end up with a negative number
inside the square root. Since the square root of a negative number does not give real answers, we say that the equation
has no real solutions. In more advanced math classes, you’ll learn how to work with “complex” (or “imaginary”)
solutions to quadratic equations.

Example 2

Use the quadratic formula to solve the equation x2 +2x+7 = 0.

Solution

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a = 1, b = 2, c = 7 x =
−2±

√
(2)2−4(1)(7)
2(1)

Simplify: x =
−2±

√
4−28

2
=
−2±

√
−24

2

Answer: There are no real solutions.

To apply the quadratic formula, we must make sure that the equation is written in standard form. For some problems,
that means we have to start by rewriting the equation.

Example 3

Solve the following equations using the quadratic formula.

a) x2−6x = 10

b) −8x2 = 5x+6

Solution
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a)

Re-write the equation in standard form: x2−6x−10 = 0

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a = 1, b =−6, c =−10 x =
−(−6)±

√
(−6)2−4(1)(−10)

2(1)

Simplify: x =
6±
√

36+40
2

=
6±
√

76
2

Separate the two options: x =
6+
√

76
2

and x =
6−
√

76
2

Solve: x = 7.36 and x =−1.36

Answer: x = 7.36 and x =−1.36

b)

Re-write the equation in standard form: 8x2 +5x+6 = 0

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a = 8, b = 5, c = 6 x =
−5±

√
(5)2−4(8)(6)
2(8)

Simplify: x =
−5±

√
25−192

16
=
−5±

√
−167

16

Answer: no real solutions

For more examples of solving quadratic equations using the quadratic formula, see the Khan Academy video at

MEDIA
Click image to the left for more content.

. This video isn’t necessarily different from the examples above, but it does help reinforce the procedure of using
the quadratic formula to solve equations.

Finding the Vertex of a Parabola with the Quadratic Formula

Sometimes a formula gives you even more information than you were looking for. For example, the quadratic
formula also gives us an easy way to locate the vertex of a parabola.

Remember that the quadratic formula tells us the roots or solutions of the equation ax2 + bx+ c = 0. Those roots

are x = −b±
√

b2−4ac
2a , and we can rewrite that as x = −b

2a ±
√

b2−4ac
2a

Recall that the roots are symmetric about the vertex. In the form above, we can see that the roots of a quadratic

equation are symmetric around the x−coordinate −b
2a , because they are

√
b2−4ac

2a units to the left and right (recall
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the ± sign) from the vertical line x = −b
2a . For example, in the equation x2−2x−3 = 0, the roots -1 and 3 are both 2

units from the vertical line x = 1, as you can see in the graph below:

Identify and Choose Methods for Solving Quadratic Equations.

In mathematics, you’ll need to solve quadratic equations that describe application problems or that are part of more
complicated problems. You’ve learned four ways of solving a quadratic equation:

• Factoring
• Taking the square root
• Completing the square
• Quadratic formula

Usually you’ll have to decide for yourself which method to use. However, here are some guidelines as to which
methods are better in different situations.

Factoring is always best if the quadratic expression is easily factorable. It is always worthwhile to check if you can
factor because this is the fastest method. Many expressions are not factorable so this method is not used very often
in practice.

Taking the square root is best used when there is no x−term in the equation.

Completing the square can be used to solve any quadratic equation. This is usually not any better than using the
quadratic formula (in terms of difficult computations), but it is very useful if you need to rewrite a quadratic function
in vertex form. It’s also used to rewrite the equations of circles, ellipses and hyperbolas in standard form (something
you’ll do in algebra II, trigonometry, physics, calculus, and beyond).

Quadratic formula is the method that is used most often for solving a quadratic equation. When solving directly
by taking square root and factoring does not work, this is the method that most people prefer to use.

If you are using factoring or the quadratic formula, make sure that the equation is in standard form.

Example 4

Solve each quadratic equation.

a) x2−4x−5 = 0

b) x2 = 8
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c) −4x2 + x = 2

d) 25x2−9 = 0

e) 3x2 = 8x

Solution

a) This expression if easily factorable so we can factor and apply the zero-product property:

Factor: (x−5)(x+1) = 0

Apply zero-product property: x−5 = 0 and x+1 = 0

Solve: x = 5 and x =−1

Answer: x = 5 and x =−1

b) Since the expression is missing the x term we can take the square root:

Take the square root of both sides: x =
√

8 and x =−
√

8

Answer: x = 2.83 and x =−2.83

c) Re-write the equation in standard form: −4x2 + x−2 = 0

It is not apparent right away if the expression is factorable so we will use the quadratic formula:

Quadratic formula: x =
−b±

√
b2−4ac

2a

Plug in the values a =−4, b = 1, c =−2 : x =
−1±

√
12−4(−4)(−2)
2(−4)

Simplify: x =
−1±

√
1−32

−8
=
−1±

√
−31

−8

Answer: no real solution

d) This problem can be solved easily either with factoring or taking the square root. Let’s take the square root in this
case:

Add 9 to both sides of the equation: 25x2 = 9

Divide both sides by 25 : x2 =
9
25

Take the square root of both sides: x =

√
9
25

and x =−
√

9
25

Simplify: x =
3
5

and x =−3
5

Answer: x = 3
5 and x =−3

5

e)

Re-write the equation in standard form: 3x2−8x = 0

Factor out common x term: x(3x−8) = 0

Set both terms to zero: x = 0 and 3x = 8

Solve: x = 0 and x =
8
3
= 2.67
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Answer: x = 0 and x = 2.67

Solve Real-World Problems Using Quadratic Functions by any Method

Here are some application problems that arise from number relationships and geometry applications.

Example 5

The product of two positive consecutive integers is 156. Find the integers.

Solution

Define: Let x = the smaller integer

Then x+1 = the next integer

Translate: The product of the two numbers is 156. We can write the equation:

x(x+1) = 156

Solve:

x2 + x = 156

x2 + x−156 = 0

Apply the quadratic formula with: a = 1, b = 1, c =−156

x =
−1±

√
12−4(1)(−156)

2(1)

x =
−1±

√
625

2
=
−1±25

2

x =
−1+25

2
and x =

−1−25
2

x =
24
2

= 12 and x =
−26

2
=−13

Since we are looking for positive integers, we want x = 12. So the numbers are 12 and 13.

Check: 12×13 = 156. The answer checks out.

Example 6

The length of a rectangular pool is 10 meters more than its width. The area of the pool is 875 square meters. Find
the dimensions of the pool.

Solution

Draw a sketch:
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Define: Let x = the width of the pool

Then x+10 = the length of the pool

Translate: The area of a rectangle is A = length×width, so we have x(x+10) = 875.

Solve:

x2 +10x = 875

x2 +10x−875 = 0

Apply the quadratic formula with a = 1, b = 10 and c =−875

x =
−10±

√
(10)2−4(1)(−875)

2(1)

x =
−10±

√
100+3500
2

x =
−10±

√
3600

2
=
−10±60

2

x =
−10+60

2
and x =

−10−60
2

x =
50
2

= 25 and x =
−70

2
=−35

Since the dimensions of the pool should be positive, we want x = 25 meters. So the pool is 25 meters×35 meters.

Check: 25×35 = 875 m2. The answer checks out.

Example 7

Suzie wants to build a garden that has three separate rectangular sections. She wants to fence around the whole
garden and between each section as shown. The plot is twice as long as it is wide and the total area is 200 f t2. How
much fencing does Suzie need?

Solution

Define: Let x = the width of the plot

Then 2x = the length of the plot

Translate: area of a rectangle is A = length×width, so

x(2x) = 200

Solve: 2x2 = 200

Solve by taking the square root:

x2 = 100

x =
√

100 and x =−
√

100

x = 10 and x =−10
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We take x = 10 since only positive dimensions make sense.

The plot of land is 10 f eet×20 f eet.

To fence the garden the way Suzie wants, we need 2 lengths and 4 widths = 2(20)+4(10) = 80feet of fence.

Check: 10×20 = 200 f t2 and 2(20)+4(10) = 80 f eet. The answer checks out.

Example 8

An isosceles triangle is enclosed in a square so that its base coincides with one of the sides of the square and the tip
of the triangle touches the opposite side of the square. If the area of the triangle is 20 in2 what is the length of one
side of the square?

Solution

Draw a sketch:

Define: Let x = base of the triangle

Then x = height of the triangle

Translate: Area of a triangle is 1
2 ×base×height, so 1

2 · x · x = 20

Solve: 1
2 x2 = 20

Solve by taking the square root:

x2 = 40

x =
√

40 and x =−
√

40

x = 6.32 and x =−6.32

The side of the square is 6.32 inches. That means the area of the square is (6.32)2 = 40 in2, twice as big as the area
of the triangle.

Check: It makes sense that the area of the square will be twice that of the triangle. If you look at the figure you can
see that you could fit two triangles inside the square.

Review Questions

Solve the following quadratic equations using the quadratic formula.

1. x2 +4x−21 = 0
2. x2−6x = 12
3. 3x2− 1

2 x = 3
8

4. 2x2 + x−3 = 0
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5. −x2−7x+12 = 0
6. −3x2 +5x = 2
7. 4x2 = x
8. x2 +2x+6 = 0

Solve the following quadratic equations using the method of your choice.

9. x2− x = 6
10. x2−12 = 0
11. −2x2 +5x−3 = 0
12. x2 +7x−18 = 0
13. 3x2 +6x =−10
14. −4x2 +4000x = 0
15. −3x2 +12x+1 = 0
16. x2 +6x+9 = 0
17. 81x2 +1 = 0
18. −4x2 +4x = 9
19. 36x2−21 = 0
20. x2−2x−3 = 0
21. The product of two consecutive integers is 72. Find the two numbers.
22. The product of two consecutive odd integers is 1 less than 3 times their sum. Find the integers.
23. The length of a rectangle exceeds its width by 3 inches. The area of the rectangle is 70 square inches, find its

dimensions.
24. Angel wants to cut off a square piece from the corner of a rectangular piece of plywood. The larger piece of

wood is 4 f eet×8 f eet and the cut off part is 1
3 of the total area of the plywood sheet. What is the length of

the side of the square?
25. Mike wants to fence three sides of a rectangular patio that is adjacent the back of his house. The area of the

patio is 192 f t2 and the length is 4 feet longer than the width.

Find how much fencing Mike will need.
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10.6 The Discriminant

Learning Objectives

• Find the discriminant of a quadratic equation.
• Interpret the discriminant of a quadratic equation.
• Solve real-world problems using quadratic functions and interpreting the discriminant.

Introduction

In the quadratic formula, x = −b±
√

b2−4ac
2a , the expression inside the square root is called the discriminant. The

discriminant can be used to analyze the types of solutions to a quadratic equation without actually solving the
equation. Here’s how:

• If b2−4ac > 0, the equation has two separate real solutions.
• If b2−4ac < 0, the equation has only non-real solutions.
• If b2−4ac = 0, the equation has one real solution, a double root.

Find the Discriminant of a Quadratic Equation

To find the discriminant of a quadratic equation we calculate D = b2−4ac.

Example 1

Find the discriminant of each quadratic equation. Then tell how many solutions there will be to the quadratic
equation without solving.

a) x2−5x+3 = 0

b) 4x2−4x+1 = 0

c) −2x2 + x = 4

Solution

a) Plug a = 1, b = −5 and c = 3 into the discriminant formula: D = (−5)2−4(1)(3) = 13D > 0, so there are two
real solutions.

b) Plug a = 4, b =−4 and c = 1 into the discriminant formula: D = (−4)2−4(4)(1) = 0D = 0, so there is one real
solution.

c) Rewrite the equation in standard form: −2x2 + x−4 = 0

Plug a =−2, b = 1 and c =−4 into the discriminant formula: D = (1)2−4(−2)(−4) =−31D < 0, so there are no
real solutions.
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Interpret the Discriminant of a Quadratic Equation

The sign of the discriminant tells us the nature of the solutions (or roots) of a quadratic equation. We can obtain two
distinct real solutions if D > 0, two non-real solutions if D < 0 or one solution (called a double root) if D = 0. Recall
that the number of solutions of a quadratic equation tells us how many times its graph crosses the x−axis. If D > 0,
the graph crosses the x−axis in two places; if D = 0 it crosses in one place; if D < 0 it doesn’t cross at all:

Example 2

Determine the nature of the solutions of each quadratic equation.

a) 4x2−1 = 0

b) 10x2−3x =−4

c) x2−10x+25 = 0

Solution

Use the value of the discriminant to determine the nature of the solutions to the quadratic equation.

a) Plug a = 4, b = 0 and c =−1 into the discriminant formula: D = (0)2−4(4)(−1) = 16

The discriminant is positive, so the equation has two distinct real solutions.

The solutions to the equation are: 0±
√

16
8 =±4

8 =±1
2

b) Re-write the equation in standard form: 10x2−3x+4 = 0

Plug a = 10, b =−3 and c = 4 into the discriminant formula: D = (−3)2−4(10)(4) =−151

The discriminant is negative, so the equation has two non-real solutions.

c) Plug a = 1, b =−10 and c = 25 into the discriminant formula: D = (−10)2−4(1)(25) = 0

The discriminant is 0, so the equation has a double root.

The solution to the equation is: 10±
√

0
2 = 10

2 = 5

If the discriminant is a perfect square, then the solutions to the equation are not only real, but also rational. If the
discriminant is positive but not a perfect square, then the solutions to the equation are real but irrational.

Example 3

Determine the nature of the solutions to each quadratic equation.

a) 2x2 + x−3 = 0

b) 5x2− x−1 = 0

Solution

Use the discriminant to determine the nature of the solutions.

527

http://www.ck12.org


10.6. The Discriminant www.ck12.org

a) Plug a = 2, b = 1 and c =−3 into the discriminant formula: D = (1)2−4(2)(−3) = 25

The discriminant is a positive perfect square, so the solutions are two real rational numbers.

The solutions to the equation are: −1±
√

25
4 = −1±5

4 , so x = 1 and x =−3
2 .

b) Plug a = 5, b =−1 and c =−1 into the discriminant formula: D = (−1)2−4(5)(−1) = 21

The discriminant is positive but not a perfect square, so the solutions are two real irrational numbers.

The solutions to the equation are: 1±
√

21
10 , so x≈ 0.56 and x≈−0.36.

Solve Real-World Problems Using Quadratic Functions and Interpreting the Dis-
criminant

You’ve seen that calculating the discriminant shows what types of solutions a quadratic equation possesses. Knowing
the types of solutions is very useful in applied problems. Consider the following situation.

Example 4

Marcus kicks a football in order to score a field goal. The height of the ball is given by the equation y =− 32
6400 x2+x.

If the goalpost is 10 feet high, can Marcus kick the ball high enough to go over the goalpost? What is the farthest
distance that Marcus can kick the ball from and still make it over the goalpost?

Solution

Define: Let y = height of the ball in feet.

Let x = distance from the ball to the goalpost.

Translate: We want to know if it is possible for the height of the ball to equal 10 feet at some real distance from the
goalpost.

Solve:

Write the equation in standard form: − 32
6400

x2 + x−10 = 0

Simplify: −0.005x2 + x−10 = 0

Find the discriminant: D = (1)2−4(−0.005)(−10) = 0.8

Since the discriminant is positive, we know that it is possible for the ball to go over the goal post, if Marcus kicks it
from an acceptable distance x from the goalpost.

To find the value of x that will work, we need to use the quadratic formula:

x =
−1±

√
0.8

−0.01
= 189.4 f eet or 10.56 f eet

What does this answer mean? It means that if Marcus is exactly 189.4 feet or exactly 10.56 feet from the goalposts,
the ball will just barely go over them. Are these the only distances that will work? No; those are just the distances at
which the ball will be exactly 10 feet high, but between those two distances, the ball will go even higher than that.
(It travels in a downward-opening parabola from the place where it is kicked to the spot where it hits the ground.)
This means that Marcus will make the goal if he is anywhere between 10.56 and 189.4 feet from the goalposts.

Example 5
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Emma and Bradon own a factory that produces bike helmets. Their accountant says that their profit per year is given
by the function P = −0.003x2 + 12x+ 27760, where x is the number of helmets produced. Their goal is to make a
profit of $40,000 this year. Is this possible?

Solution

We want to know if it is possible for the profit to equal $40,000.

40000 =−0.003x2 +12x+27760

Write the equation in standard form: −0.003x2 +12x−12240 = 0

Find the discriminant: D = (12)2−4(−0.003)(−12240) =−2.88

Since the discriminant is negative, we know that it is not possible for Emma and Bradon to make a profit of $40,000
this year no matter how many helmets they make.

Review Questions

Find the discriminant of each quadratic equation.

1. 2x2−4x+5 = 0
2. x2−5x = 8
3. 4x2−12x+9 = 0
4. x2 +3x+2 = 0
5. x2−16x = 32
6. −5x2 +5x−6 = 0
7. x2 +4x = 2
8. −3x2 +2x+5 = 0

Determine the nature of the solutions of each quadratic equation.

9. −x2 +3x−6 = 0
10. 5x2 = 6x
11. 41x2−31x−52 = 0
12. x2−8x+16 = 0
13. −x2 +3x−10 = 0
14. x2−64 = 0
15. 3x2 = 7
16. x2 +30+225 = 0

Without solving the equation, determine whether the solutions will be rational or irrational.

17. x2 =−4x+20
18. x2 +2x−3 = 0
19. 3x2−11x = 10
20. 1

2 x2 +2x+ 2
3 = 0

21. x2−10x+25 = 0
22. x2 = 5x
23. 2x2−5x = 12
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24. Marty is outside his apartment building. He needs to give his roommate Yolanda her cell phone but he does
not have time to run upstairs to the third floor to give it to her. He throws it straight up with a vertical
velocity of 55 feet/second. Will the phone reach her if she is 36 feet up? (Hint: the equation for the height is
y =−32t2 +55t +4.)

25. Bryson owns a business that manufactures and sells tires. The revenue from selling the tires in the month of
July is given by the function R = x(200− 0.4x) where x is the number of tires sold. Can Bryson’s business
generate revenue of $20,000 in the month of July?
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10.7 Linear, Exponential and Quadratic Models

Learning Objectives

• Identify functions using differences and ratios.
• Write equations for functions.
• Perform exponential and quadratic regressions with a graphing calculator.
• Solve real-world problems by comparing function models.

Introduction

In this course we’ve learned about three types of functions, linear, quadratic and exponential.

• Linear functions take the form y = mx+b.
• Quadratic functions take the form y = ax2 +bx+ c.
• Exponential functions take the form y = a ·bx.

In real-world applications, the function that describes some physical situation is not given; it has to be found before
the problem can be solved. For example, scientific data such as observations of planetary motion are often collected
as a set of measurements given in a table. Part of the scientist’s job is to figure out which function best fits the data.
In this section, you’ll learn some methods that are used to identify which function describes the relationship between
the variables in a problem.

Identify Functions Using Differences or Ratios

One method for identifying functions is to look at the difference or the ratio of different values of the dependent
variable. For example, if the difference between values of the dependent variable is the same each time we
change the independent variable by the same amount, then the function is linear.

Example 1

Determine if the function represented by the following table of values is linear.

TABLE 10.14:

x y
−2 –4
–1 –1
0 2
1 5
2 8

531

http://www.ck12.org


10.7. Linear, Exponential and Quadratic Models www.ck12.org

If we take the difference between consecutive y−values, we see that each time the x−value increases by one, the
y−value always increases by 3.

Since the difference is always the same, the function is linear.

When we look at the difference of the y−values, we have to make sure that we examine entries for which the
x−values increase by the same amount.

For example, examine the values in this table:

TABLE 10.15:

x y
0 5
1 10
3 20
4 25
6 35

At first glance this function might not look linear, because the difference in the y−values is not always the same. But
if we look closer, we can see that when the y−value increases by 10 instead of 5, it’s because the x−value increased
by 2 instead of 1. Whenever the x−value increases by the same amount, the y−value does too, so the function is
linear.

Another way to think of this is in mathematical notation. We can say that a function is linear if y2−y1
x2−x1

is always the
same for any two pairs of x− and y−values. Notice that the expression we used here is simply the definition of the
slope of a line.

Differences can also be used to identify quadratic functions. For a quadratic function, when we increase the
x−values by the same amount, the difference between y−values will not be the same. However, the difference
of the differences of the y−values will be the same.

Here are some examples of quadratic relationships represented by tables of values:

In this quadratic function, y = x2, when we increase the x−value by one, the value of y increases by different values.
However, it increases at a constant rate, so the difference of the difference is always 2.
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In this quadratic function, y = 2x2− 3x+ 1, when we increase the x−value by one, the value of y increases by
different values. However, the increase is constant: the difference of the difference is always 4.

To identify exponential functions, we use ratios instead of differences. If the ratio between values of the dependent
variable is the same each time we change the independent variable by the same amount, then the function is
exponential.

Example 2

Determine if the function represented by each table of values is exponential.

a)

b)
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a) If we take the ratio of consecutive y−values, we see that each time the x−value increases by one, the y−value is
multiplied by 3. Since the ratio is always the same, the function is exponential.

b) If we take the ratio of consecutive y−values, we see that each time the x−value increases by one, the y−value is
multiplied by 1

2 . Since the ratio is always the same, the function is exponential.

Write Equations for Functions

Once we identify which type of function fits the given values, we can write an equation for the function by starting
with the general form for that type of function.

Example 3

Determine what type of function represents the values in the following table.

TABLE 10.16:

x y
0 5
1 1
2 -3
3 -7
4 -11

Solution

Let’s first check the difference of consecutive values of y.
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If we take the difference between consecutive y−values, we see that each time the x−value increases by one, the
y−value always decreases by 4. Since the difference is always the same, the function is linear.

To find the equation for the function, we start with the general form of a linear function: y = mx+b. Since m is the
slope of the line, it’s also the quantity by which y increases every time the value of x increases by one. The constant
b is the value of the function when x = 0. Therefore, the function is y =−4x+5.

Example 4

Determine what type of function represents the values in the following table.

TABLE 10.17:

x y
0 0
1 5
2 20
3 45
4 80
5 125
6 180

Solution

Here, the difference between consecutive y−values isn’t constant, so the function is not linear. Let’s look at those
differences more closely.

TABLE 10.18:

x y
0 0
1 5 5−0 = 5
2 20 20−5 = 15
3 45 45−20 = 25
4 80 80−45 = 35
5 125 125−80 = 45
6 180 180−125 = 55
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When the x−value increases by one, the difference between the y−values increases by 10 every time. Since the
difference of the differences is constant, the function describing this set of values is quadratic.

To find the equation for the function that represents these values, we start with the general form of a quadratic
function: y = ax2 +bx+ c.

We need to use the values in the table to find the values of the constants: a,b and c.

The value of c represents the value of the function when x = 0, so c = 0.

Plug in the point (1,5) : 5 = a+b

Plug in the point (2,20) : 20 = 4a+2b⇒ 10 = 2a+b

To find a and b,we solve the system of equations: 5 = a+b

10 = 2a+b

Solve the first equation for b : 5 = a+b⇒ b = 5−a

Plug the first equation into the second: 10 = 2a+5−a

Solve for a and b a = 5 and b = 0

Therefore the equation of the quadratic function is y = 5x2.

Example 5

Determine what type of function represents the values in the following table.

TABLE 10.19:

x y
0 400
1 500
2 25
3 6.25
4 1.5625

Solution

The differences between consecutive y−values aren’t the same, and the differences between those differences aren’t
the same either. So let’s check the ratios instead.
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Each time the x−value increases by one, the y−value is multiplied by 1
4 . Since the ratio is always the same, the

function is exponential.

To find the equation for the function that represents these values, we start with the general form of an exponential
function, y = a ·bx.

Here b is the ratio between the values of y each time x is increased by one. The constant a is the value of the function
when x = 0. Therefore, the function is y = 400

(1
4

)x.

Perform Exponential and Quadratic Regressions with a Graphing Calculator

Earlier, you learned how to perform linear regression with a graphing calculator to find the equation of a straight line
that fits a linear data set. In this section, you’ll learn how to perform exponential and quadratic regression to find
equations for curves that fit non-linear data sets.

Example 6

The following table shows how many miles per gallon a car gets at different speeds.

TABLE 10.20:

Speed (mph) Miles per gallon
30 18
35 20
40 23
45 25
50 28
55 30
60 29
65 25
70 25

Using a graphing calculator:

a) Draw the scatterplot of the data.

b) Find the quadratic function of best fit.

c) Draw the quadratic function of best fit on the scatterplot.

d) Find the speed that maximizes the miles per gallon.

e) Predict the miles per gallon of the car if you drive at a speed of 48 mph.

Solution

Step 1: Input the data.

Press [STAT] and choose the [EDIT] option.

Input the values of x in the first column (L1) and the values of y in the second column (L2). (Note: in order to clear
a list, move the cursor to the top so that L1 or L2 is highlighted. Then press [CLEAR] and then [ENTER].)

Step 2: Draw the scatterplot.

First press [Y=] and clear any function on the screen by pressing [CLEAR] when the old function is highlighted.

Press [STATPLOT] [STAT] and [Y=] and choose option 1.
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Choose the ON option; after TYPE, choose the first graph type (scatterplot) and make sure that the Xlist and Ylist
names match the names on top of the columns in the input table.

Press [GRAPH] and make sure that the window is set so you see all the points in the scatterplot. In this case, the
settings should be 30≤ x≤ 80 and 0≤ y≤ 40. You can set the window size by pressing the [WINDOW] key at the
top.

Step 3: Perform quadratic regression.

Press [STAT] and use the right arrow to choose [CALC].

Choose Option 5 (QuadReg) and press [ENTER]. You will see “QuadReg” on the screen.

Type in L1,L2 after ’QuadReg’ and press [ENTER]. The calculator shows the quadratic function: y = −0.017x2 +
1.9x−25

Step 4: Graph the function.

Press [Y=] and input the function you just found.

Press [GRAPH] and you will see the curve fit drawn over the data points.

To find the speed that maximizes the miles per gallon, use [TRACE] and move the cursor to the top of the parabola.
You can also use [CALC] [2nd] [TRACE] and option 4:Maximum, for a more accurate answer. The speed that
maximizes miles per gallon is 56 mph.

Finally, plug x = 48 into the equation you found: y =−0.017(48)2 +1.9(48)−25 = 27.032 miles per gallon.

Note: The image above shows our function plotted on the same graph as the data points from the table. One thing
that is clear from this graph is that predictions made with this function won’t make sense for all values of x. For
example, if x < 15, this graph predicts that we will get negative mileage, which is impossible. Part of the skill of
using regression on your calculator is being aware of the strengths and limitations of this method of fitting functions
to data.

Example 7

The following table shows the amount of money an investor has in an account each year for 10 years.
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TABLE 10.21:

Year Value of account
1996 $5000
1997 $5400
1998 $5800
1999 $6300
2000 $6800
2001 $7300
2002 $7900
2003 $8600
2004 $9300
2005 $10000
2006 $11000

Using a graphing calculator:

a) Draw a scatterplot of the value of the account as the dependent variable, and the number of years since 1996 as
the independent variable.

b) Find the exponential function that fits the data.

c) Draw the exponential function on the scatterplot.

d) What will be the value of the account in 2020?

Solution

Step 1: Input the data.

Press [STAT] and choose the [EDIT] option.

Input the values of x in the first column (L1) and the values of y in the second column (L2).

Step 2: Draw the scatterplot.

First press [Y=] and clear any function on the screen.

Press [GRAPH] and choose Option 1.

Choose the ON option and make sure that the Xlist and Ylist names match the names on top of the columns in the
input table.

Press [GRAPH] make sure that the window is set so you see all the points in the scatterplot. In this case the settings
should be 0≤ x≤ 10 and 0≤ y≤ 11000.

Step 3: Perform exponential regression.

Press [STAT] and use the right arrow to choose [CALC].

Choose Option 0 and press [ENTER]. You will see “ExpReg” on the screen.

Press [ENTER]. The calculator shows the exponential function: y = 4975.7(1.08)x

Step 4: Graph the function.

Press [Y=] and input the function you just found. Press [GRAPH].

Finally, plug x = 2020−1996 = 24 into the function: y = 4975.7(1.08)24 = $31551.81

In 2020, the account will have a value of $31551.81.

Note: The function above is the curve that comes closest to all the data points. It won’t return y−values that are
exactly the same as in the data table, but they will be close. It is actually more accurate to use the curve fit values
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than the data points.

If you don’t have a graphing calculator, there are resources available on the Internet for finding lines and curves
of best fit. For example, the applet at http://science.kennesaw.edu/ plaval/applets/LRegression.html does linear
regression on a set of data points; the one at http://science.kennesaw.edu/ plaval/applets/QRegression.html does
quadratic regression; and the one at http://science.kennesaw.edu/ plaval/applets/ERegression.html does exponential
regression. Also, programs like Microsoft Office or OpenOffice have the ability to create graphs and charts that
include lines and curves of best fit.

Solve Real-World Problems by Comparing Function Models

Example 8

The following table shows the number of students enrolled in public elementary schools in the US (source: US
Census Bureau). Make a scatterplot with the number of students as the dependent variable, and the number of years
since 1990 as the independent variable. Find which curve fits this data the best and predict the school enrollment in
the year 2007.

TABLE 10.22:

Year Number of students (millions)
1990 26.6
1991 26.6
1992 27.1
1993 27.7
1994 28.1
1995 28.4
1996 28.1
1997 29.1
1998 29.3
2003 32.5

Solution

We need to perform linear, quadratic and exponential regression on this data set to see which function represents the
values in the table the best.

Step 1: Input the data.

Input the values of x in the first column (L1) and the values of y in the second column (L2).

Step 2: Draw the scatterplot.

Set the window size: 0≤ x≤ 10 and 20≤ y≤ 40.

Here is the scatterplot:
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Step 3: Perform Regression.

Linear Regression

The function of the line of best fit is y = 0.51x+26.1. Here is the graph of the function on the scatterplot:

Quadratic Regression

The quadratic function of best fit is y = 0.064x2− .067x+26.84. Here is the graph of the function on the scatterplot:

541

http://www.ck12.org


10.7. Linear, Exponential and Quadratic Models www.ck12.org

Exponential Regression

The exponential function of best fit is y = 26.2(1.018)x. Here is the graph of the function on the scatterplot:

From the graphs, it looks like the quadratic function is the best fit for this data set. We’ll use this function to predict
school enrollment in 2007.

Plug in x = 2007−1990 = 17 : y = 0.064(17)2− .067(17)+26.84 = 44.2 million students.
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Review Questions

Determine whether the data in the following tables can be represented by a linear function.

TABLE 10.23:

x y
−4 10
-3 7
-2 4
-1 1
0 -2
1 -5

TABLE 10.24:

x y
−2 4
-1 3
0 2
1 3
2 6
3 11

TABLE 10.25:

x y
0 50
1 75
2 100
3 125
4 150
5 175

Determine whether the data in the following tables can be represented by a quadratic function.

TABLE 10.26:

x y
−10 10
-5 2.5
0 0
5 2.5
10 10
15 22.5
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TABLE 10.27:

x y
1 4
2 6
3 6
4 4
5 0
6 -6

TABLE 10.28:

x y
−3 -27
-2 -8
-1 -1
0 0
1 1
2 8
3 27

Determine whether the data in the following tables can be represented by an exponential function.

TABLE 10.29:

x y
0 200
1 300
2 1800
3 8300
4 25800
5 62700

TABLE 10.30:

x y
0 120
1 180
2 270
3 405
4 607.5
5 911.25

TABLE 10.31:

x y
0 4000
1 2400
2 1440
3 864
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TABLE 10.31: (continued)

x y
4 518.4
5 311.04

Determine what type of function represents the values in the following tables and find the equation of each function.

TABLE 10.32:

x y
0 400
1 500
2 625
3 781.25
4 976.5625

TABLE 10.33:

x y
−9 -3
-7 -2
-5 -1
-3 0
-1 1
1 2

TABLE 10.34:

x y
−3 14
-2 4
-1 -2
0 -4
1 -2
2 4
3 14

13. As a ball bounces up and down, the maximum height that the ball reaches continually decreases from one
bounce to the next. For a given bounce, this table shows the height of the ball with respect to time:

TABLE 10.35:

Time (seconds) Height (inches)
2 2
2.2 16
2.4 24
2.6 33
2.8 38
3.0 42
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TABLE 10.35: (continued)

Time (seconds) Height (inches)
3.2 36
3.4 30
3.6 28
3.8 14
4.0 6

Using a graphing calculator:

a) Draw the scatterplot of the data

b) Find the quadratic function of best fit

c) Draw the quadratic function of best fit on the scatterplot

d) Find the maximum height the ball reaches on the bounce

e) Predict how high the ball is at time t = 2.5 seconds

14. A chemist has a 250 gram sample of a radioactive material. She records the amount of radioactive material
remaining in the sample every day for a week and obtains the data in the following table:

TABLE 10.36:

Day Weight (grams)
0 250
1 208
2 158
3 130
4 102
5 80
6 65
7 50

Using a graphing calculator:

a) Draw a scatterplot of the data

b) Find the exponential function of best fit

c) Draw the exponential function of best fit on the scatterplot

d) Predict the amount of material after 10 days.

15. The following table shows the rate of pregnancies (per 1000) for US women aged 15 to 19. (source: US
Census Bureau).

a. Make a scatterplot with the rate of pregnancies as the dependent variable and the number of years since
1990 as the independent variable.

b. Find which type of curve fits this data best.
c. Predict the rate of teen pregnancies in the year 2010.
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TABLE 10.37:

Year Rate of pregnancy (per 1000)
1990 116.9
1991 115.3
1992 111.0
1993 108.0
1994 104.6
1995 99.6
1996 95.6
1997 91.4
1998 88.7
1999 85.7
2000 83.6
2001 79.5
2002 75.4
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11.1 Graphs of Square Root Functions

Learning Objectives

• Graph and compare square root functions.
• Shift graphs of square root functions.
• Graph square root functions using a graphing calculator.
• Solve real-world problems using square root functions.

Introduction

In this chapter you’ll learn about a different kind of function called the square root function. You’ve seen that taking
the square root is very useful in solving quadratic equations. For example, to solve the equation x2 = 25 we take the
square root of both sides:

√
x2 =±

√
25, so x =±5.

A square root function is any function with the form: y = a
√

f (x)+ c —in other words, any function where an
expression in terms of x is found inside a square root sign (also called a “radical” sign), although other terms may
be included as well.

Graph and Compare Square Root Functions

When working with square root functions, you’ll have to consider the domain of the function before graphing.
The domain is very important because the function is undefined when the expression inside the square root sign is
negative, and as a result there will be no graph in whatever region of x−values makes that true.

To discover how the graphs of square root functions behave, let’s make a table of values and plot the points.

Example 1

Graph the function y =
√

x.

Solution

Before we make a table of values, we need to find the domain of this square root function. The domain is found by
realizing that the function is only defined when the expression inside the square root is greater than or equal to zero.
Since the expression inside the square root is just x, that means the domain is all values of x such that x≥ 0.

This means that when we make our table of values, we should pick values of x that are greater than or equal to zero.
It is very useful to include zero itself as the first value in the table and also include many values greater than zero.
This will help us in determining what the shape of the curve will be.

TABLE 11.1:

x y =
√

x
0 y =

√
0 = 0

549

http://www.ck12.org


11.1. Graphs of Square Root Functions www.ck12.org

TABLE 11.1: (continued)

x y =
√

x
1 y =

√
1 = 1

2 y =
√

2 = 1.4
3 y =

√
3 = 1.7

4 y =
√

4 = 2
5 y =

√
5 = 2.2

6 y =
√

6 = 2.4
7 y =

√
7 = 2.6

8 y =
√

8 = 2.8
9 y =

√
9 = 3

Here is what the graph of this table looks like:

The graphs of square root functions are always curved. The curve above looks like half of a parabola lying on its
side, and in fact it is. It’s half of the parabola that you would get if you graphed the expression y2 = x. And the graph
of y =−

√
x is the other half of that parabola:

Notice that if we graph the two separate functions on the same coordinate axes, the combined graph is a parabola
lying on its side.
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Now let’s compare square root functions that are multiples of each other.

Example 2

Graph the functions y =
√

x,y = 2
√

x,y = 3
√

x, and y = 4
√

x on the same graph.

Solution

Here is just the graph without the table of values:

If we multiply the function by a constant bigger than one, the function increases faster the greater the constant is.

Example 3

Graph the functions y =
√

x,y =
√

2x,y =
√

3x, and y =
√

4x on the same graph.

Solution
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Notice that multiplying the expression inside the square root by a constant has the same effect as multiplying by a
constant outside the square root; the function just increases at a slower rate because the entire function is effectively
multiplied by the square root of the constant.

Also note that the graph of
√

4x is the same as the graph of 2
√

x. This makes sense algebraically since
√

4 = 2.

Example 4

Graph the functions y =
√

x,y = 1
2

√
x,y = 1

3

√
x, and y = 1

4

√
x on the same graph.

Solution

If we multiply the function by a constant between 0 and 1, the function increases more slowly the smaller the constant
is.

Example 5

Graph the functions y = 2
√

x and y =−2
√

x on the same graph.

Solution

If we multiply the whole function by -1, the graph is reflected about the x−axis.
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Example 6

Graph the functions y =
√

x and y =
√
−x on the same graph.

Solution

On the other hand, when just the x is multiplied by -1, the graph is reflected about the y−axis. Notice that the
function y =

√
−x has only negative x−values in its domain, because when x is negative, the expression under the

radical sign is positive.

Example 7

Graph the functions y =
√

x,y =
√

x+2 and y =
√

x−2.

Solution
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When we add a constant to the right-hand side of the equation, the graph keeps the same shape, but shifts up for a
positive constant or down for a negative one.

Example 8

Graph the functions y =
√

x,y =
√

x−2, and y =
√

x+2.

Solution

When we add a constant to the argument of the function (the part under the radical sign), the function shifts to the
left for a positive constant and to the right for a negative constant.

Now let’s see how to combine all of the above types of transformations.

Example 9

Graph the function y = 2
√

3x−1+2.

Solution

We can think of this function as a combination of shifts and stretches of the basic square root function y =
√

x. We
know that the graph of that function looks like this:
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If we multiply the argument by 3 to obtain y =
√

3x, this stretches the curve vertically because the value of y
increases faster by a factor of

√
3.

Next, when we subtract 1 from the argument to obtain y =
√

3x−1 this shifts the entire graph to the left by one unit.

Multiplying the function by a factor of 2 to obtain y = 2
√

3x−1 stretches the curve vertically again, because y
increases faster by a factor of 2.

Finally we add 2 to the function to obtain y = 2
√

3x−1+2. This shifts the entire function vertically by 2 units.

Each step of this process is shown in the graph below. The purple line shows the final result.

Now we know how to graph square root functions without making a table of values. If we know what the basic
function looks like, we can use shifts and stretches to transform the function and get to the desired result.

Solve Real-World Problems Using Square Root Functions

Mathematicians and physicists have studied the motion of pendulums in great detail because this motion explains
many other behaviors that occur in nature. This type of motion is called simple harmonic motion and it is
important because it describes anything that repeats periodically. Galileo was the first person to study the motion of
a pendulum, around the year 1600. He found that the time it takes a pendulum to complete a swing doesn’t depend
on its mass or on its angle of swing (as long as the angle of the swing is small). Rather, it depends only on the length
of the pendulum.
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The time it takes a pendulum to complete one whole back-and-forth swing is called the period of the pendulum.
Galileo found that the period of a pendulum is proportional to the square root of its length: T = a

√
L. The

proportionality constant, a, depends on the acceleration of gravity: a = 2π√
g . At sea level on Earth, acceleration

of gravity is g = 9.81 m/s2 (meters per second squared). Using this value of gravity, we find a = 2.0 with units of
s√
m

(seconds divided by the square root of meters).

Up until the mid 20th century, all clocks used pendulums as their central time keeping component.

Example 10

Graph the period of a pendulum of a clock swinging in a house on Earth at sea level as we change the length of the
pendulum. What does the length of the pendulum need to be for its period to be one second?

Solution

The function for the period of a pendulum at sea level is T = 2
√

L.

We start by making a table of values for this function:

TABLE 11.2:

L T = 2
√

L
0 T = 2

√
0 = 0

1 T = 2
√

1 = 2
2 y = 2

√
2 = 2.8

3 y = 2
√

3 = 3.5
4 y = 2

√
4 = 4

5 y = 2
√

5 = 4.5

Now let’s graph the function. It makes sense to let the horizontal axis represent the length of the pendulum and the
vertical axis represent the period of the pendulum.
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We can see from the graph that a length of approximately 1
4 meters gives a period of 1 second. We can confirm this

answer by using our function for the period and plugging in T = 1 second:

T = 2
√

L⇒ 1 = 2
√

L

Square both sides of the equation: 1 = 4L

Solve for L : L =
1
4

meters

For more equations that describe pendulum motion, check out http://hyperphysics.phy-astr.gsu.edu/hbase/pend.html
, where you can also find a tool for calculating the period of a pendulum in different gravities than Earth’s.

Example 11

“Square” TV screens have an aspect ratio of 4:3; in other words, the width of the screen is 4
3 the height. TV “sizes”

are traditionally represented as the length of the diagonal of the television screen. Graph the length of the diagonal
of a screen as a function of the area of the screen. What is the diagonal of a screen with an area of 180 in2?

Solution

Let d = length of the diagonal, x = width

Then 4 × height = 3 × width

Or, height = 3
4 x.
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The area of the screen is: A = length × width or A = 3
4 x2

Find how the diagonal length relates to the width by using the Pythagorean theorem:

x2 +

(
3
4

x
)2

= d2

x2 +
9
16

x2 = d2

25
16

x2 = d2⇒ x2 =
16
25

d2⇒ x =
4
5

d

Therefore, the diagonal length relates to the area as follows: A = 3
4

(4
5 d
)2

= 3
4 ·

16
25 d2 = 12

25 d2.

We can also flip that around to find the diagonal length as a function of the area: d2 = 25
12 A or d = 5

2
√

3

√
A.

Now we can make a graph where the horizontal axis represents the area of the television screen and the vertical axis
is the length of the diagonal. First let’s make a table of values:

TABLE 11.3:

A d = 5

2
√

3

√
A

0 0
25 7.2
50 10.2
75 12.5
100 14.4
125 16.1
150 17.6
175 19
200 20.4

From the graph we can estimate that when the area of a TV screen is 180 in2 the length of the diagonal is approx-
imately 19.5 inches. We can confirm this by plugging in A = 180 into the formula that relates the diagonal to the
area: d = 5

2
√

3

√
A = 5

2
√

3

√
180 = 19.4 inches.
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Review Questions

Graph the following functions on the same coordinate axes.

1. y =
√

x,y = 2.5
√

x and y =−2.5
√

x
2. y =

√
x,y = 0.3

√
x and y = 0.6

√
x

3. y =
√

x,y =
√

x−5 and y =
√

x+5
4. y =

√
x,y =

√
x+8 and y =

√
x−8

Graph the following functions.

5. y =
√

2x−1
6. y =

√
4x+4

7. y =
√

5− x
8. y = 2

√
x+5

9. y = 3−
√

x
10. y = 4+2

√
x

11. y = 2
√

2x+3+1
12. y = 4+

√
2− x

13. y =
√

x+1−
√

4x−5
14. The acceleration of gravity can also given in feet per second squared. It is g = 32 f t/s2 at sea level.

a. Graph the period of a pendulum with respect to its length in feet.
b. For what length in feet will the period of a pendulum be 2 seconds?

15. The acceleration of gravity on the Moon is 1.6 m/s2.

a. Graph the period of a pendulum on the Moon with respect to its length in meters.
b. For what length, in meters, will the period of a pendulum be 10 seconds?

16. The acceleration of gravity on Mars is 3.69 m/s2.

a. Graph the period of a pendulum on the Mars with respect to its length in meters.
b. For what length, in meters, will the period of a pendulum be 3 seconds?

17. The acceleration of gravity on the Earth depends on the latitude and altitude of a place. The value of g is
slightly smaller for places closer to the Equator than places closer to the poles and the value of g is slightly
smaller for places at higher altitudes that it is for places at lower altitudes. In Helsinki the value of g =
9.819 m/s2, in Los Angeles the value of g = 9.796 m/s2 and in Mexico City the value of g = 9.779 m/s2.

a. Graph the period of a pendulum with respect to its length for all three cities on the same graph.
b. Use the formula to find for what length, in meters, will the period of a pendulum be 8 seconds in each of

these cities?

18. The aspect ratio of a wide-screen TV is 2.39:1.

a. Graph the length of the diagonal of a screen as a function of the area of the screen.
b. What is the diagonal of a screen with area 150 in2?

Graph the following functions using a graphing calculator.

19. y =
√

3x−2
20. y = 4+

√
2− x

21. y =
√

x2−9
22. y =

√
x−
√

x+2

559

http://www.ck12.org


11.2. Radical Expressions www.ck12.org

11.2 Radical Expressions

Learning Objectives

• Use the product and quotient properties of radicals.
• Rationalize the denominator.
• Add and subtract radical expressions.
• Multiply radical expressions.
• Solve real-world problems using square root functions.

Introduction

A radical reverses the operation of raising a number to a power. For example, the square of 4 is 42 = 4 ·4 = 16, and
so the square root of 16 is 4. The symbol for a square root is √ . This symbol is also called the radical sign.

In addition to square roots, we can also take cube roots, fourth roots, and so on. For example, since 64 is the cube of
4, 4 is the cube root of 64.

3√
64 = 4 since 43 = 4 ·4 ·4 = 64

We put an index number in the top left corner of the radical sign to show which root of the number we are seeking.
Square roots have an index of 2, but we usually don’t bother to write that out.

2√
36 =

√
36 = 6

The cube root of a number gives a number which when raised to the power three gives the number under the radical
sign. The fourth root of number gives a number which when raised to the power four gives the number under the
radical sign:

4√81 = 3 since 34 = 3 ·3 ·3 ·3 = 81

And so on for any power we can name.

Even and Odd Roots

Radical expressions that have even indices are called even roots and radical expressions that have odd indices are
called odd roots. There is a very important difference between even and odd roots, because they give drastically
different results when the number inside the radical sign is negative.
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Any real number raised to an even power results in a positive answer. Therefore, when the index of a radical is even,
the number inside the radical sign must be non-negative in order to get a real answer.

On the other hand, a positive number raised to an odd power is positive and a negative number raised to an odd power
is negative. Thus, a negative number inside the radical sign is not a problem. It just results in a negative answer.

Example 1

Evaluate each radical expression.

a)
√

121

b)
3√

125

c) 4√−625

d) 5√−32

Solution

a)
√

121 = 11

b)
3√

125 = 5

c) 3√−625 is not a real number

d) 5√−32 =−2

Use the Product and Quotient Properties of Radicals

Radicals can be re-written as rational powers. The radical: m√an is defined as a
n
m .

Example 2

Write each expression as an exponent with a rational value for the exponent.

a)
√

5

b) 4√a

c) 3
√

4xy

d)
6√

x5

Solution

a)
√

5 = 5
1
2

b) 4√a = a
1
4

c) 3
√

4xy = (4xy)
1
3

d)
6√

x5 = x
5
6

As a result of this property, for any non-negative number a we know that n√an = a
n
n = a.

Since roots of numbers can be treated as powers, we can use exponent rules to simplify and evaluate radical
expressions. Let’s review the product and quotient rule of exponents.

Raising a product to a power: (x · y)n = xn · yn

Raising a quotient to a power:
(

x
y

)n

=
xn

yn
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In radical notation, these properties are written as

Raising a product to a power: m
√

x · y = m√x · m
√

y

Raising a quotient to a power: m

√
x
y
=

m
√

x
m
√

y

A very important application of these rules is reducing a radical expression to its simplest form. This means that we
apply the root on all the factors of the number that are perfect roots and leave all factors that are not perfect roots
inside the radical sign.

For example, in the expression
√

16, the number 16 is a perfect square because 16 = 42. This means that we can
simplify it as follows:

√
16 =

√
42 = 4

Thus, the square root disappears completely.

On the other hand, in the expression
√

32, the number 32 is not a perfect square, so we can’t just remove the square
root. However, we notice that 32 = 16 ·2, so we can write 32 as the product of a perfect square and another number.
Thus,

√
32 =

√
16 ·2

If we apply the “raising a product to a power” rule we get:

√
32 =

√
16 ·2 =

√
16 ·
√

2

Since
√

16 = 4, we get:
√

32 = 4 ·
√

2 = 4
√

2

Example 3

Write the following expressions in the simplest radical form.

a)
√

8

b)
√

50

c)

√
125
72

Solution

The strategy is to write the number under the square root as the product of a perfect square and another number. The
goal is to find the highest perfect square possible; if we don’t find it right away, we just repeat the procedure until
we can’t simplify any longer.

a)

We can write 8 = 4 ·2, so
√

8 =
√

4 ·2.
With the “Raising a product to a power” rule, that becomes

√
4 ·
√

2.

Evaluate
√

4 and we’re left with 2
√

2.
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b)

We can write 50 = 25 ·2, so:
√

50 =
√

25 ·2
Use “Raising a product to a power” rule: =

√
25 ·
√

2 = 5
√

2

c)

Use “Raising a quotient to a power” rule to separate the fraction:

√
125
72

=

√
125√
72

Re-write each radical as a product of a perfect square and another number: =

√
25 ·5√
36 ·2

=
5
√

5
6
√

2

The same method can be applied to reduce radicals of different indices to their simplest form.

Example 4

Write the following expression in the simplest radical form.

a) 3√40

b) 4

√
162
80

c)
3√

135

Solution

In these cases we look for the highest possible perfect cube, fourth power, etc. as indicated by the index of the
radical.

a) Here we are looking for the product of the highest perfect cube and another number. We write: 3√40 =
3√

8 ·5 =
3√8 · 3√

5 = 2
3√

5

b) Here we are looking for the product of the highest perfect fourth power and another number.

Re-write as the quotient of two radicals:
4

√
162
80

=
4√162
4√80

Simplify each radical separately: =
4√81 ·2
4√16 ·5

=
4√81 · 4√2
4√16 · 4√5

=
3 4√2
2 4√5

Recombine the fraction under one radical sign: =
3
2

4

√
2
5

c) Here we are looking for the product of the highest perfect cube root and another number. Often it’s not very easy
to identify the perfect root in the expression under the radical sign. In this case, we can factor the number under the
radical sign completely by using a factor tree:
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We see that 135 = 3 ·3 ·3 ·5 = 33 ·5. Therefore
3√

135 =
3√

33 ·5 =
3√

33 · 3√
5 = 3

3√
5.

(You can find a useful tool for creating factor trees at http://www.softschools.com/math/factors/factor_tree/. Click
on “User Number” to type in your own number to factor, or just click “New Number” for a random number if you
want more practice factoring.)

Now let’s see some examples involving variables.

Example 5

Write the following expression in the simplest radical form.

a)
√

12x3y5

b) 4

√
1250x7

405y9

Solution

Treat constants and each variable separately and write each expression as the products of a perfect power as indicated
by the index of the radical and another number.

a)

Re-write as a product of radicals:
√

12x3y5 =
√

12 ·
√

x3 ·
√

y5

Simplify each radical separately:
(√

4 ·3
)
·
(√

x2 · x
)
·
(√

y4 · y
)
=
(

2
√

3
)
·
(
x
√

x
)
·
(
y2√y

)
Combine all terms outside and inside the radical sign: = 2xy2

√
3xy

b)

Re-write as a quotient of radicals: 4

√
1250x7

405y9 =

4√
1250x7

4
√

405y9

Simplify each radical separately: =
4√625 ·2 · 4√

x4 · x3

4√81 ·5 · 4
√

y4 · y4 · y
=

5 4√2 · x · 4√
x3

3 4√5 · y · y · 4
√

y
=

5x
4√

2x3

3y2 4
√

5y

Recombine fraction under one radical sign: =
5x
3y2

4

√
2x3

5y

Add and Subtract Radical Expressions

When we add and subtract radical expressions, we can combine radical terms only when they have the same
expression under the radical sign. This is a lot like combining like terms in variable expressions. For example,

4
√

2+5
√

2 = 9
√

2

or

2
√

3−
√

2+5
√

3+10
√

2 = 7
√

3+9
√

2

It’s important to reduce all radicals to their simplest form in order to make sure that we’re combining all possible
like terms in the expression. For example, the expression

√
8− 2

√
50 looks like it can’t be simplified any more

because it has no like terms. However, when we write each radical in its simplest form we get 2
√

2− 10
√

2, and
we can combine those terms to get −8

√
2.
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Example 6

Simplify the following expressions as much as possible.

a) 4
√

3+2
√

12

b) 10
√

24−
√

28

Solution

a)

Simplify
√

12 to its simplest form: = 4
√

3+2
√

4 ·3 = 4
√

3+6
√

3

Combine like terms: = 10
√

3

b)

Simplify
√

24 and
√

28 to their simplest form: = 10
√

6 ·4−
√

7 ·4 = 20
√

6−2
√

7

There are no like terms.

Example 7

Simplify the following expressions as much as possible.

a) 4 3√128− 3√
250

b) 3
√

x3−4x
√

9x

Solution

a)

Re-write radicals in simplest terms: = 4
3√

2 ·64− 3√
2 ·125 = 16

3√
2−5

3√
2

Combine like terms: = 11
3√

2

b)

Re-write radicals in simplest terms: 3
√

x2 · x−12x
√

x = 3x
√

x−12x
√

x

Combine like terms: =−9x
√

x

Multiply Radical Expressions

When we multiply radical expressions, we use the “raising a product to a power” rule: m
√

x · y = m√x · m
√

y. In this
case we apply this rule in reverse. For example:

√
6 ·
√

8 =
√

6 ·8 =
√

48

Or, in simplest radical form:
√

48 =
√

16 ·3 = 4
√

3.

We’ll also make use of the fact that:
√

a ·
√

a =
√

a2 = a.

When we multiply expressions that have numbers on both the outside and inside the radical sign, we treat the
numbers outside the radical sign and the numbers inside the radical sign separately. For example, a

√
b · c
√

d =
ac
√

bd.
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Example 8

Multiply the following expressions.

a)
√

2
(√

3+
√

5
)

b) 2
√

x
(
3
√

y−
√

x
)

c)
(

2+
√

5
)(

2−
√

6
)

d)
(
2
√

x+1
)(

5−
√

x
)

Solution

In each case we use distribution to eliminate the parentheses.

a)

Distribute
√

2 inside the parentheses:
√

2
(√

3+
√

5
)
=
√

2 ·
√

3+
√

2 ·
√

5

Use the “raising a product to a power” rule: =
√

2 ·3+
√

2 ·5
Simplify: =

√
6+
√

10

b)

Distribute 2
√

x inside the parentheses: = (2 ·3)
(√

x · √y
)
−2 ·

(√
x ·
√

x
)

Multiply: = 6
√

xy−2
√

x2

Simplify: = 6
√

xy−2x

c)

Distribute: (2+
√

5)(2−
√

6) = (2 ·2)−
(

2 ·
√

6
)
+
(

2 ·
√

5
)
−
(√

5 ·
√

6
)

Simplify: = 4−2
√

6+2
√

5−
√

30

d)

Distribute:
(
2
√

x−1
)(

5−
√

x
)
= 10

√
x−2x−5+

√
x

Simplify: = 11
√

x−2x−5

Rationalize the Denominator

Often when we work with radicals, we end up with a radical expression in the denominator of a fraction. It’s
traditional to write our fractions in a form that doesn’t have radicals in the denominator, so we use a process called
rationalizing the denominator to eliminate them.

Rationalizing is easiest when there’s just a radical and nothing else in the denominator, as in the fraction 2√
3

. All

we have to do then is multiply the numerator and denominator by a radical expression that makes the expression
inside the radical into a perfect square, cube, or whatever power is appropriate. In the example above, we multiply
by
√

3:

2√
3
·
√

3√
3
=

2
√

3
3
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Cube roots and higher are a little trickier than square roots. For example, how would we rationalize 7
3√5

? We can’t

just multiply by
3√

5, because then the denominator would be
3√

52. To make the denominator a whole number, we
need to multiply the numerator and the denominator by

3√
52:

7
3√5
·

3√
52

3√
52

=
7 3√25

3√
53

=
7 3√25

5

Trickier still is when the expression in the denominator contains more than one term. For example, consider the
expression 2

2+
√

3
. We can’t just multiply by

√
3, because we’d have to distribute that term and then the denominator

would be 2
√

3+3.

Instead, we multiply by 2−
√

3. This is a good choice because the product
(

2+
√

3
)(

2−
√

3
)

is a product of a
sum and a difference, which means it’s a difference of squares. The radicals cancel each other out when we multiply

out, and the denominator works out to
(

2+
√

3
)(

2−
√

3
)
= 22−

(√
3
)2

= 4−3 = 1.

When we multiply both the numerator and denominator by 2−
√

3, we get:

2
2+
√

3
· 2−

√
3

2−
√

3
=

2
(
2−
√

3
)

4−3
=

4−2
√

3
1

= 4−2
√

3

Now consider the expression
√

x−1√
x−2
√

y
.

In order to eliminate the radical expressions in the denominator we must multiply by
√

x+2
√

y.

We get:
√

x−1√
x−2
√

y
·
√

x+2
√

y√
x+2
√

y
=

(√
x−1

)(√
x+2
√

y
)

(√
x−2
√

y
)(√

x+2
√

y
) = x−2

√
y−
√

x+2
√

xy
x−4y

Solve Real-World Problems Using Radical Expressions

Radicals often arise in problems involving areas and volumes of geometrical figures.

Example 9

A pool is twice as long as it is wide and is surrounded by a walkway of uniform width of 1 foot. The combined area
of the pool and the walkway is 400 square feet. Find the dimensions of the pool and the area of the pool.

Solution

Make a sketch:
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Let x = the width of the pool. Then:

Area = length × width

Combined length of pool and walkway = 2x+2

Combined width of pool and walkway = x+2

Area = (2x+2)(x+2)

Since the combined area of pool and walkway is 400 f t2 we can write the equation

(2x+2)(x+2) = 400

Multiply in order to eliminate the parentheses: 2x2 +4x+2x+4 = 400

Collect like terms: 2x2 +6x+4 = 400

Move all terms to one side of the equation: 2x2 +6x−396 = 0

Divide all terms by 2: x2 +3x−198 = 0

Use the quadratic formula: x =
−b±

√
b2−4ac

2a

x =
−3±

√
32−4(1)(−198)

2(1)

x =
−3±

√
801

2
=
−3±28.3

2
x = 12.65 f eet

(The other answer is negative, so we can throw it out because only a positive number makes sense for the width of a
swimming pool.)

Check by plugging the result in the area formula:

Area = (2(12.65)+2)(12.65+2) = 27.3 ·14.65 = 400 f t2.

The answer checks out.

Example 10

The volume of a soda can is 355 cm3. The height of the can is four times the radius of the base. Find the radius of
the base of the cylinder.

Solution

Make a sketch:

Let x = the radius of the cylinder base. Then the height of the cylinder is 4x.
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The volume of a cylinder is given by V = πR2 ·h; in this case, R is x and h is 4x, and we know the volume is 355.

Solve the equation:

355 = πx2 · (4x)

355 = 4πx3

x3 =
355
4π

x =
3

√
355
4π

= 3.046 cm

Check by substituting the result back into the formula:

V = πR2 ·h = π(3.046)2 · (4 ·3.046) = 355 cm3

So the volume is 355 cm3. The answer checks out.

Review Questions

Evaluate each radical expression.

1.
√

169
2. 4√−81
3. 3√−125
4. 5√1024

Write each expression as a rational exponent.

5.
3√

14
6. 4
√

zw
7.
√

a
8. 9
√

y3

Write the following expressions in simplest radical form.

9.
√

24
10.
√

300
11.

5√
96

12.

√
240
567

13.
3√

500
14.

6√
64x8

15.
3√

48a3b7

16. 3

√
16x5

135y4

Simplify the following expressions as much as possible.
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17. 3
√

8−6
√

32
18.
√

180+
√

405
19.
√

6−
√

27+2
√

54+3
√

48
20.
√

8x3−4x
√

98x
21.
√

48a+
√

27a
22.

3√
4x3 + x · 3√

256

Multiply the following expressions.

23.
√

6
(√

10+
√

8
)

24.
(√

a−
√

b
)(√

a+
√

b
)

25.
(
2
√

x+5
)(

2
√

x+5
)

Rationalize the denominator.

26. 7√
5

27. 9√
10

28. 2x√
5x

29.
√

5√
3y

30. 12

2−
√

5

31. 6+
√

3
4−
√

3

32.
√

x√
2+
√

x
33. 5y

2
√

y−5

34. The volume of a spherical balloon is 950 cm3. Find the radius of the balloon. (Volume of a sphere = 4
3 πR3).

35. A rectangular picture is 9 inches wide and 12 inches long. The picture has a frame of uniform width. If the
combined area of picture and frame is 180 in2, what is the width of the frame?
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11.3 Radical Equations

Learning Objectives

• Solve a radical equation.
• Solve radical equations with radicals on both sides.
• Identify extraneous solutions.
• Solve real-world problems using square root functions.

Introduction

When the variable in an equation appears inside a radical sign, the equation is called a radical equation. To solve a
radical equation, we need to eliminate the radical and change the equation into a polynomial equation.

A common method for solving radical equations is to isolate the most complicated radical on one side of the equation
and raise both sides of the equation to the power that will eliminate the radical sign. If there are any radicals left
in the equation after simplifying, we can repeat this procedure until all radical signs are gone. Once the equation is
changed into a polynomial equation, we can solve it with the methods we already know.

We must be careful when we use this method, because whenever we raise an equation to a power, we could introduce
false solutions that are not in fact solutions to the original problem. These are called extraneous solutions. In order
to make sure we get the correct solutions, we must always check all solutions in the original radical equation.

Solve a Radical Equation

Let’s consider a few simple examples of radical equations where only one radical appears in the equation.

Example 1

Find the real solutions of the equation
√

2x−1 = 5.

Solution

Since the radical expression is already isolated, we can just square both sides of the equation in order to eliminate
the radical sign:

(√
2x−1

)2
= 52

Remember that
√

a2 = a so the equation simplifies to: 2x−1 = 25

Add one to both sides: 2x = 26

Divide both sides by 2: x = 13
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Finally we need to plug the solution in the original equation to see if it is a valid solution.
√

2x−1 =
√

2(13)−1 =
√

26−1 =
√

25 = 5The solution checks out.

Example 2

Find the real solutions of 3√3−7x−3 = 0.

Solution

We isolate the radical on one side of the equation: 3√3−7x = 3

Raise each side of the equation to the third power:
(

3√3−7x
)3

= 33

Simplify: 3−7x = 27

Subtract 3 from each side: −7x = 24

Divide both sides by -7: x =−24
7

Check: 3√3−7x−3 = 3

√
3−7

(
−24

7

)
−3 =

3√3+24−3 =
3√

27−3 = 3−3 = 0. The solution checks out.

Example 3

Find the real solutions of
√

10− x2− x = 2.

Solution

We isolate the radical on one side of the equation:
√

10− x2 = 2+ x

Square each side of the equation:
(√

10− x2
)2

= (2+ x)2

Simplify: 10− x2 = 4+4x+ x2

Move all terms to one side of the equation: 0 = 2x2 +4x−6

Solve using the quadratic formula: x =
−4±

√
42−4(2)(−6)

4

Simplify: x =
−4±

√
64

4

Re-write
√

24 in simplest form: x =
−4±8

4
Reduce all terms by a factor of 2: x = 1 or x =−3

Check:
√

10−12−1 =
√

9−1 = 3−1 = 2 This solution checks out.√
10− (−3)2− (−3) =

√
1+3 = 1+3 = 4 This solution does not check out.

The equation has only one solution, x = 1; the solution x =−3 is extraneous.

Solve Radical Equations with Radicals on Both Sides

Often equations have more than one radical expression. The strategy in this case is to start by isolating the most
complicated radical expression and raise the equation to the appropriate power. We then repeat the process until all
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radical signs are eliminated.

Example 4

Find the real roots of the equation
√

2x+1−
√

x−3 = 2.

Solution

Isolate one of the radical expressions:
√

2x+1 = 2+
√

x−3

Square both sides:
(√

2x+1
)2

=
(

2+
√

x−3
)2

Eliminate parentheses: 2x+1 = 4+4
√

x−3+ x−3

Simplify: x = 4
√

x−3

Square both sides of the equation: x2 =
(

4
√

x−3
)2

Eliminate parentheses: x2 = 16(x−3)

Simplify: x2 = 16x−48

Move all terms to one side of the equation: x2−16x+48 = 0

Factor: (x−12)(x−4) = 0

Solve: x = 12 or x = 4

Check:
√

2(12)+1−
√

12−3 =
√

25−
√

9 = 5−3 = 2. The solution checks out.√
2(4)+1−

√
4−3 =

√
9−
√

1 = 3−1 = 2 The solution checks out.

The equation has two solutions: x = 12 and x = 4.

Identify Extraneous Solutions to Radical Equations

We saw in Example 3 that some of the solutions that we find by solving radical equations do not check out when
we substitute (or “plug in”) those solutions back into the original radical equation. These are called extraneous
solutions. It is very important to check the answers we obtain by plugging them back into the original equation, so
we can tell which of them are real solutions.

Example 5

Find the real solutions of the equation
√

x−3−
√

x = 1.

Solution

Isolate one of the radical expressions:
√

x−3 =
√

x+1

Square both sides:
(√

x−3
)2

=
(√

x+1
)2

Remove parenthesis: x−3 =
(√

x
)2

+2
√

x+1

Simplify: x−3 = x+2
√

x+1

Now isolate the remaining radical: −4 = 2
√

x

Divide all terms by 2: −2 =
√

x

Square both sides: x = 4
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Check:
√

4−3−
√

4 =
√

1−2 = 1−2 =−1 The solution does not check out.

The equation has no real solutions. x = 4 is an extraneous solution.

Solve Real-World Problems using Radical Equations

Radical equations often appear in problems involving areas and volumes of objects.

Example 6

Anita’s square vegetable garden is 21 square feet larger than Fred’s square vegetable garden. Anita and Fred decide
to pool their money together and buy the same kind of fencing for their gardens. If they need 84 feet of fencing, what
is the size of each garden?

Solution

Make a sketch:

Define variables: Let Fred’s area be x; then Anita’s area is x+21.

Find an equation:

Side length of Fred’s garden is
√

x

Side length of Anita’s garden is
√

x+21

The amount of fencing is equal to the combined perimeters of the two squares:

4
√

x+4
√

x+21 = 84

Solve the equation:

Divide all terms by 4:
√

x+
√

x+21 = 21

Isolate one of the radical expressions:
√

x+21 = 21−
√

x

Square both sides:
(√

x+21
)2

=
(
21−

√
x
)2

Eliminate parentheses: x+21 = 441−42
√

x+ x

Isolate the radical expression: 42
√

x = 420

Divide both sides by 42:
√

x = 10

Square both sides: x = 100 f t2

Check: 4
√

100+4
√

100+21 = 40+44 = 84. The solution checks out.

Fred’s garden is 10 f t×10 f t = 100 f t2 and Anita’s garden is 11 f t×11 f t = 121 f t2.
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Example 7

A sphere has a volume of 456 cm3. If the radius of the sphere is increased by 2 cm, what is the new volume of the
sphere?

Solution

Make a sketch:

Define variables: Let R = the radius of the sphere.

Find an equation: The volume of a sphere is given by the formula V = 4
3 πR3.

Solve the equation:

Plug in the value of the volume: 456 =
4
3

πR3

Multiply by 3: 1368 = 4πR3

Divide by 4π : 108.92 = R3

Take the cube root of each side: R =
3√108.92⇒ R = 4.776 cm

The new radius is 2 centimeters more: R = 6.776 cm

The new volume is: V =
4
3

π(6.776)3 = 1302.5 cm3

Check: Let’s plug in the values of the radius into the volume formula:

V = 4
3 πR3 = 4

3 π(4.776)3 = 456 cm3. The solution checks out.

Example 8

The kinetic energy of an object of mass m and velocity v is given by the formula: KE = 1
2 mv2. A baseball has a mass

of 145 kg and its kinetic energy is measured to be 654 Joules (kg ·m2/s2) when it hits the catcher’s glove. What is
the velocity of the ball when it hits the catcher’s glove?

Solution

Start with the formula: KE =
1
2

mv2

Plug in the values for the mass and the kinetic energy: 654
kg ·m2

s2 =
1
2
(145 kg)v2

Multiply both sides by 2: 1308
kg ·m2

s2 = 145 kg · v2

Divide both sides by 145 kg : 9.02
m2

s2 = v2

Take the square root of both sides: v =
√

9.02

√
m2

s2 = 3.003 m/s
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Check: Plug the values for the mass and the velocity into the energy formula:

KE =
1
2

mv2 =
1
2
(145 kg)(3.003 m/s)2 = 654 kg ·m2/s2

(To learn more about kinetic energy, watch the video at

MEDIA
Click image to the left for more content.

.)

Review Questions

Find the solution to each of the following radical equations. Identify extraneous solutions.

1.
√

x+2−2 = 0
2.
√

3x−1 = 5
3. 2
√

4−3x+3 = 0
4. 3√x−3 = 1
5.

4
√

x2−9 = 2
6. 3√−2−5x+3 = 0
7.
√

x2−3 = x−1
8.
√

x = x−6
9.
√

x2−5x−6 = 0
10.

√
(x+1)(x−3) = x

11.
√

x+6 = x+4
12.
√

x =
√

x−9+1
13.
√

x+2 =
√

3x−2
14.
√

3x+4 =−6
15. 5

√
x =
√

x+12+6
16.
√

10−5x+
√

1− x = 7
17.
√

2x−2−2
√

x+2 = 0
18.
√

2x+5−3
√

2x−3 =
√

2− x
19. 3

√
x−9 =

√
2x−14

20.
√

x+7 =
√

x+4+1
21. The area of a triangle is 24 in2 and the height of the triangle is twice as long as the base. What are the base

and the height of the triangle?
22. The length of a rectangle is 7 meters less than twice its width, and its area is 660 m2. What are the length and

width of the rectangle?
23. The area of a circular disk is 124 in2. What is the circumference of the disk? (Area = πR2,Circumference =

2πR).
24. The volume of a cylinder is 245 cm3 and the height of the cylinder is one third of the diameter of the base

of the cylinder. The diameter of the cylinder is kept the same but the height of the cylinder is increased by 2
centimeters. What is the volume of the new cylinder? (Volume = πR2 ·h)
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25. The height of a golf ball as it travels through the air is given by the equation h =−16t2 +256. Find the time
when the ball is at a height of 120 feet.
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11.4 The Pythagorean Theorem and Its Con-
verse

Learning Objectives

• Use the Pythagorean Theorem.
• Use the converse of the Pythagorean Theorem.
• Solve real-world problems using the Pythagorean Theorem and its converse.

Introduction

Teresa wants to string a clothesline across her backyard, from one corner to the opposite corner. If the yard measures
22 feet by 34 feet, how many feet of clothesline does she need?

The Pythagorean Theorem is a statement of how the lengths of the sides of a right triangle are related to each other.
A right triangle is one that contains a 90 degree angle. The side of the triangle opposite the 90 degree angle is called
the hypotenuse and the sides of the triangle adjacent to the 90 degree angle are called the legs.

If we let a and b represent the legs of the right triangle and c represent the hypotenuse then the Pythagorean Theorem
can be stated as:

In a right triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the
legs. That is: a2 +b2 = c2.

This theorem is very useful because if we know the lengths of the legs of a right triangle, we can find the length of
the hypotenuse. Also, if we know the length of the hypotenuse and the length of a leg, we can calculate the length
of the missing leg of the triangle. When you use the Pythagorean Theorem, it does not matter which leg you call a
and which leg you call b, but the hypotenuse is always called c.

Although nowadays we use the Pythagorean Theorem as a statement about the relationship between distances and
lengths, originally the theorem made a statement about areas. If we build squares on each side of a right triangle, the
Pythagorean Theorem says that the area of the square whose side is the hypotenuse is equal to the sum of the areas
of the squares formed by the legs of the triangle.
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Use the Pythagorean Theorem and Its Converse

The Pythagorean Theorem can be used to verify that a triangle is a right triangle. If you can show that the three sides
of a triangle make the equation a2 + b2 = c2 true, then you know that the triangle is a right triangle. This is called
the Converse of the Pythagorean Theorem.

Note: When you use the Converse of the Pythagorean Theorem, you must make sure that you substitute the correct
values for the legs and the hypotenuse. The hypotenuse must be the longest side. The other two sides are the legs,
and the order in which you use them is not important.

Example 1

Determine if a triangle with sides 5, 12 and 13 is a right triangle.

Solution

The triangle is right if its sides satisfy the Pythagorean Theorem.

If it is a right triangle, the longest side has to be the hypotenuse, so we let c = 13.

We then designate the shorter sides as a = 5 and b = 12.

We plug these values into the Pythagorean Theorem:

a2 +b2 = c2⇒ 52 +122 = c2

25+144 = 169 = c2⇒ c = 13

The sides of the triangle satisfy the Pythagorean Theorem, thus the triangle is a right triangle.

Example 2

Determine if a triangle with sides,
√

10,
√

15 and 5 is a right triangle.

Solution

The longest side has to be the hypotenuse, so c = 5.

We designate the shorter sides as a =
√

10 and b =
√

15.

We plug these values into the Pythagorean Theorem:

a2 +b2 = c2⇒
(√

10
)2

+
(√

15
)2

= c2

10+15 = 25 = c2⇒ c = 5
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The sides of the triangle satisfy the Pythagorean Theorem, thus the triangle is a right triangle.

The Pythagorean Theorem can also be used to find the missing hypotenuse of a right triangle if we know the legs of
the triangle. (For a demonstration of this, see

MEDIA
Click image to the left for more content.

.)

Example 3

In a right triangle one leg has length 4 and the other has length 3. Find the length of the hypotenuse.

Solution

Start with the Pythagorean Theorem: a2 +b2 = c2

Plug in the known values of the legs: 32 +42 = c2

Simplify: 9+16 = c2

25 = c2

Take the square root of both sides: c = 5

Use the Pythagorean Theorem with Variables

Example 4

Determine the values of the missing sides. You may assume that each triangle is a right triangle.

a)
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b)

c)

Solution

Apply the Pythagorean Theorem.

a)

a2 +b2 = c2

x2 +152 = 212

x2 +225 = 441

x2 = 216⇒
x =
√

216 = 6
√

6

b)

a2 +b2 = c2

y2 +32 = 72

y2 +9 = 49

y2 = 40⇒
y =
√

40 = 2
√

10

c)

a2 +b2 = c2

182 +152 = z2

324+225 = z

z2 = 549⇒
z =
√

549 = 3
√

61
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Example 5

One leg of a right triangle is 5 units longer than the other leg. The hypotenuse is one unit longer than twice the size
of the short leg. Find the dimensions of the triangle.

Solution

Let x = length of the short leg.

Then x+5 = length of the long leg

And 2x+1 = length of the hypotenuse.

The sides of the triangle must satisfy the Pythagorean Theorem.

Therefore: x2 +(x+5)2 = (2x+1)2

Eliminate the parentheses: x2 + x2 +10x+25 = 4x2 +4x+1

Move all terms to the right hand side of the equation: 0 = 2x2−6x−24

Divide all terms by 2 : 0 = x2−3x−12

Solve using the quadratic formula: x =
3±
√

9+48
2

=
3±
√

57
2

x = 5.27 or x =−2.27

The negative solution doesn’t make sense when we are looking for a physical distance, so we can discard it. Using
the positive solution, we get: short leg = 5.27, long leg = 10.27 and hypotenuse = 11.54.

Solve Real-World Problems Using the Pythagorean Theorem and Its Converse

The Pythagorean Theorem and its converse have many applications for finding lengths and distances.

Example 6

Maria has a rectangular cookie sheet that measures 10 inches× 14 inches. Find the length of the diagonal of the
cookie sheet.

Solution

Draw a sketch:

Define variables: Let c = length of the diagonal.

Write a formula: Use the Pythagorean Theorem: a2 +b2 = c2

Solve the equation:
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102 +142 = c2

100+196 = c2

c2 = 296⇒ c =
√

296⇒ c = 2
√

74 or c = 17.2 inches

Check: 102 +142 = 100+196 = 296 and c2 = 17.22 = 296. The solution checks out.

Example 7

Find the area of the shaded region in the following diagram:

Solution

Draw the diagonal of the square in the figure:

Notice that the diagonal of the square is also the diameter of the circle.

Define variables: Let c = diameter of the circle.

Write the formula: Use the Pythagorean Theorem: a2 +b2 = c2.

Solve the equation:

22 +22 = c2

4+4 = c2

c2 = 8⇒ c =
√

8⇒ c = 2
√

2

The diameter of the circle is 2
√

2, therefore the radius R =
√

2.

Area of a circle formula: A = π ·R2 = π

(√
2
)2

= 2π.

The area of the shaded region is therefore 2π−4 = 2.28.
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Example 8

In a right triangle, one leg is twice as long as the other and the perimeter is 28. What are the measures of the sides
of the triangle?

Solution

Make a sketch and define variables:

Let: a = length of the short leg

2a = length of the long leg

c = length of the hypotenuse

Write formulas:

The sides of the triangle are related in two different ways.

The perimeter is 28, so a+2a+ c = 28⇒ 3a+ c = 28

The triangle is a right triangle, so the measures of the sides must satisfy the Pythagorean Theorem:

a2 +(2a)2 = c2⇒ a2 +4a2 = c2⇒ 5a2 = c2

or c = a
√

5 = 2.236a

Solve the equation:

Plug the value of c we just obtained into the perimeter equation: 3a+ c = 28

3a+2.236a = 28⇒ 5.236a = 28⇒ a = 5.35

The short leg is: a = 5.35

The long leg is: 2a = 10.70

The hypotenuse is: c = 11.95

Check: The legs of the triangle should satisfy the Pythagorean Theorem:

a2 +b2 = 5.352 +10.702 = 143.1,c2 = 11.952 = 142.80. The results are approximately the same.

The perimeter of the triangle should be 28:

a+b+ c = 5.35+10.70+11.95 = 28The answer checks out.

Example 9

Mike is loading a moving van by walking up a ramp. The ramp is 10 feet long and the bed of the van is 2.5 feet
above the ground. How far does the ramp extend past the back of the van?

Solution
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Make a sketch:

Define variables: Let x = how far the ramp extends past the back of the van.

Write a formula: Use the Pythagorean Theorem: x2 +2.52 = 102

Solve the equation:

x2 +6.25 = 100

x2 = 93.5

x =
√

93.5 = 9.7 f t

Check by plugging the result in the Pythagorean Theorem:

9.72 +2.52 = 94.09+6.25 = 100.34≈ 100. So the ramp is 10 feet long. The answer checks out.

Review Questions

Verify that each triangle is a right triangle.

1. a = 12,b = 9,c = 15
2. a = 6,b = 6,c = 6

√
2

3. a = 8,b = 8
√

3,c = 16
4. a = 2

√
14,b = 5,c = 9

Find the missing length of each right triangle.

5. a = 12,b = 16,c =?
6. a =? ,b = 20,c = 30
7. a = 4,b =? ,c = 11

8.
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9.

10.
11. One leg of a right triangle is 4 feet less than the hypotenuse. The other leg is 12 feet. Find the lengths of the

three sides of the triangle.
12. One leg of a right triangle is 3 more than twice the length of the other. The hypotenuse is 3 times the length

of the short leg. Find the lengths of the three legs of the triangle.
13. Two sides of a right triangle are 5 units and 8 units respectively. Those sides could be the legs, or they could

be one leg and the hypotenuse. What are the possible lengths of the third side?
14. A regulation baseball diamond is a square with 90 feet between bases. How far is second base from home

plate?
15. Emanuel has a cardboard box that measures 20 cm long × 10 cm wide × 8 cm deep.

a. What is the length of the diagonal across the bottom of the box?
b. What is the length of the diagonal from a bottom corner to the opposite top corner?

16. Samuel places a ladder against his house. The base of the ladder is 6 feet from the house and the ladder is 10
feet long.

a. How high above the ground does the ladder touch the wall of the house?
b. If the edge of the roof is 10 feet off the ground and sticks out 1.5 feet beyond the wall, how far is it from

the edge of the roof to the top of the ladder?

17. Find the area of the triangle below if the area of a triangle is defined as A = 1
2 base×height:

18. Instead of walking along the two sides of a rectangular field, Mario decided to cut across the diagonal. He
thus saves a distance that is half of the long side of the field.

a. Find the length of the long side of the field given that the short side is 123 feet.
b. Find the length of the diagonal.

19. Marcus sails due north and Sandra sails due east from the same starting point. In two hours Marcus’ boat is
35 miles from the starting point and Sandra’s boat is 28 miles from the starting point.

a. How far are the boats from each other?
b. Sandra then sails 21 miles due north while Marcus stays put. How far is Sandra from the original starting

point?
c. How far is Sandra from Marcus now?
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20. Determine the area of the circle below. (Hint: the hypotenuse of the triangle is the diameter of the circle.)
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11.5 Distance and Midpoint Formulas

Learning Objectives

• Find the distance between two points in the coordinate plane.
• Find the missing coordinate of a point given the distance from another known point.
• Find the midpoint of a line segment.
• Solve real-world problems using distance and midpoint formulas.

Introduction

In the last section, we saw how to use the Pythagorean Theorem to find lengths. In this section, you’ll learn how to
use the Pythagorean Theorem to find the distance between two coordinate points.

Example 1

Find the distance between points A = (1,4) and B = (5,2).

Solution

Plot the two points on the coordinate plane.

In order to get from point A = (1,4) to point B = (5,2), we need to move 4 units to the right and 2 units down. These
lines make the legs of a right triangle.

To find the distance between A and B we find the value of the hypotenuse, d, using the Pythagorean Theorem.

d2 = 22 +42 = 20

d =
√

20 = 2
√

5 = 4.47

Example 2
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Find the distance between points C = (2,−1) and D = (−3,−4).

Solution

We plot the two points on the graph above.

In order to get from point C to point D, we need to move 3 units down and 5 units to the left.

We find the distance from C to D by finding the length of d with the Pythagorean Theorem.

d2 = 32 +52 = 34

d =
√

34 = 5.83

The Distance Formula

The procedure we just used can be generalized by using the Pythagorean Theorem to derive a formula for the distance
between any two points on the coordinate plane.

Let’s find the distance between two general points A = (x1,y1) and B = (x2,y2).

Start by plotting the points on the coordinate plane:

In order to move from point A to point B in the coordinate plane, we move x2−x1 units to the right and y2−y1 units
up.

We can find the length d by using the Pythagorean Theorem:

d2 = (x1− x2)
2 +(y1− y2)

2

Therefore, d =
√

(x1− x2)2 +(y1− y2)2. This is called the Distance Formula. More formally:

Given any two points (x1,y1) and (x2,y2), the distance between them is d =
√

(x1− x2)2 +(y1− y2)2.

We can use this formula to find the distance between any two points on the coordinate plane. Notice that the distance
is the same whether you are going from point A to point B or from point B to point A, so it does not matter which
order you plug the points into the distance formula.
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Let’s now apply the distance formula to the following examples.

Example 2

Find the distance between the following points.

a) (-3, 5) and (4, -2)

b) (12, 16) and (19, 21)

c) (11.5, 2.3) and (-4.2, -3.9)

Solution

Plug the values of the two points into the distance formula. Be sure to simplify if possible.

a) d =
√
(−3−4)2 +(5− (−2))2 =

√
(−7)2 +(7)2 =

√
49+49 =

√
98 = 7

√
2

b) d =
√
(12−19)2 +(16−21)2 =

√
(−7)2 +(−5)2 =

√
49+25 =

√
74

c) d =
√
(11.5+4.2)2 +(2.3+3.9)2 =

√
(15.7)2 +(6.2)2 =

√
284.93 = 16.88

We can also use the Pythagorean Theorem

Example 3

Find all points on the line y = 2 that are exactly 8 units away from the point (-3, 7).

Solution

Let’s make a sketch of the given situation.

Draw line segments from the point (-3, 7) to the line y = 2.

Let k be the missing value of x we are seeking.

Let’s use the distance formula: 8 =
√

(−3− k)2 +(7−2)2

Square both sides of the equation: 64 = (−3− k)2 +25

Therefore: 0 = 9+6k+ k2−39 or 0 = k2 +6k−30

Use the quadratic formula: k =
−6±

√
36+120
2

=
−6±

√
156

2
Therefore: k = 3.24 or k =−9.24

The points are (-9.24, 2) and (3.24, 2).
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Find the Midpoint of a Line Segment

Example 4

Find the coordinates of the point that is in the middle of the line segment connecting the points A = (−7,−2) and
B = (3,−8).

Solution

Let’s start by graphing the two points:

We see that to get from point A to point B we move 6 units down and 10 units to the right.

In order to get to the point that is halfway between the two points, it makes sense that we should move half the
vertical distance and half the horizontal distance—that is, 3 units down and 5 units to the right from point A.

The midpoint is M = (−7+5,−2−3) = (−2,−5).

The Midpoint Formula

We now want to generalize this method in order to find a formula for the midpoint of a line segment.

Let’s take two general points A = (x1,y1) and B = (x2,y2) and mark them on the coordinate plane:

We see that to get from A to B, we move x2− x1 units to the right and y2− y1 units up.

In order to get to the half-way point, we need to move x2−x1
2 units to the right and y2−y1

2 up from point A. Thus the
midpoint M is at

(
x1 +

x2−x1
2 ,y1 +

y2−y1
2

)
.
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This simplifies to M =
( x1+x2

2 , y1+y2
2

)
. This is the Midpoint Formula:

The midpoint of the line segment connecting the points (x1,y1) and (x2,y2) is
( x1+x2

2 , y1+y2
2

)
.

It should hopefully make sense that the midpoint of a line is found by taking the average values of the x and y−values
of the endpoints.

For a graphic demonstration of the midpoint formula, watch this video:

MEDIA
Click image to the left for more content.

.

Example 5

Find the midpoint between the following points.

a) (-10, 2) and (3, 5)

b) (3, 6) and (7, 6)

c) (4, -5) and (-4, 5)

Solution

Let’s apply the Midpoint Formula:
( x1+x2

2 , y1+y2
2

)
a) the midpoint of (-10, 2) and (3, 5) is

(−10+3
2 , 2+5

2

)
=
(−7

2 , 7
2

)
= (−3.5,3.5)

b) the midpoint of (3, 6) and (7, 6) is
(3+7

2 , 6+6
2

)
=
(10

2 ,
12
2

)
= (5,6)

c) the midpoint of (4, -5) and (-4, 5) is
(4−4

2 , −5+5
2

)
=
(0

2 ,
0
2

)
= (0,0)

Example 6

A line segment whose midpoint is (2, -6) has an endpoint of (9, -2). What is the other endpoint?

Solution

In this problem we know the midpoint and we are looking for the missing endpoint.

The midpoint is (2, -6).

One endpoint is (x1,x2) = (9,−2).

Let’s call the missing point (x,y).

We know that the x−coordinate of the midpoint is 2, so: 2 = 9+x2
2 ⇒ 4 = 9+ x2⇒ x2 =−5

We know that the y−coordinate of the midpoint is -6, so:

−6 =
−2+ y2

2
⇒−12 =−2+ y2⇒ y2 =−10

The missing endpoint is (-5, -10).

Here’s another way to look at this problem: To get from the endpoint (9, -2) to the midpoint (2, [U+2011]6), we
had to go 7 units left and 4 units down. To get from the midpoint to the other endpoint, then, we would need to go 7
more units left and 4 more units down, which takes us to (-5, -10).
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Solve Real-World Problems Using Distance and Midpoint Formulas

The distance and midpoint formula are useful in geometry situations where we want to find the distance between
two points or the point halfway between two points.

Example 7

Plot the points A = (4,−2),B = (5,5), and C = (−1,3) and connect them to make a triangle. Show that the triangle
is isosceles.

Solution

Let’s start by plotting the three points on the coordinate plane and making a triangle:

We use the distance formula three times to find the lengths of the three sides of the triangle.

AB =
√
(4−5)2 +(−2−5)2 =

√
(−1)2 +(−7)2 =

√
1+49 =

√
50 = 5

√
2

BC =
√
(5+1)2 +(5−3)2 =

√
(6)2 +(2)2 =

√
36+4 =

√
40 = 2

√
10

AC =
√

(4+1)2 +(−2−3)2 =
√
(5)2 +(−5)2 =

√
25+25 =

√
50 = 5

√
2

Notice that AB = AC, therefore triangle ABC is isosceles.

Example 8

At 8 AM one day, Amir decides to walk in a straight line on the beach. After two hours of making no turns and
traveling at a steady rate, Amir is two miles east and four miles north of his starting point. How far did Amir walk
and what was his walking speed?

Solution

Let’s start by plotting Amir’s route on a coordinate graph. We can place his starting point at the origin: A = (0,0).
Then his ending point will be at B = (2,4).
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The distance can be found with the distance formula:

d =
√
(2−0)2 +(4−0)2 =

√
(2)2 +(4)2 =

√
4+16 =

√
20

d = 4.47 miles

Since Amir walked 4.47 miles in 2 hours, his speed is s = 4.47 miles
2 hours = 2.24 mi/h.

Review Questions

Find the distance between the two points.

1. (3, -4) and (6, 0)
2. (-1, 0) and (4, 2)
3. (-3, 2) and (6, 2)
4. (0.5, -2.5) and (4, -4)
5. (12, -10) and (0, -6)
6. (-5, -3) and (-2, 11)
7. (2.3, 4.5) and (-3.4, -5.2)
8. Find all points having an x−coordinate of -4 whose distance from the point (4, 2) is 10.
9. Find all points having a y−coordinate of 3 whose distance from the point (-2, 5) is 8.

10. Find three points that are each 13 units away from the point (3, 2) but do not have an x−coordinate of 3 or a
y−coordinate of 2.

Find the midpoint of the line segment joining the two points.

11. (3, -4) and (6, 1)
12. (2, -3) and (2, 4)
13. (4, -5) and (8, 2)
14. (1.8, -3.4) and (-0.4, 1.4)
15. (5, -1) and (-4, 0)
16. (10, 2) and (2, -4)
17. (3, -3) and (2, 5)
18. An endpoint of a line segment is (4, 5) and the midpoint of the line segment is (3, -2). Find the other endpoint.
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19. An endpoint of a line segment is (-10, -2) and the midpoint of the line segment is (0, 4). Find the other
endpoint.

20. Find a point that is the same distance from (4, 5) as it is from (-2, -1), but is not the midpoint of the line
segment connecting them.

21. Plot the points A = (1,0),B = (6,4),C = (9,−2) and D = (−6,−4),E = (−1,0),F = (2,−6). Prove that
triangles ABC and DEF are congruent.

22. Plot the points A = (4,−3),B = (3,4),C = (−2,−1),D = (−1,−8). Show that ABCD is a rhombus (all sides
are equal)

23. Plot points A = (−5,3),B = (6,0),C = (5,5). Find the length of each side. Show that ABC is a right triangle.
Find its area.

24. Find the area of the circle with center (-5, 4) and the point on the circle (3, 2).
25. Michelle decides to ride her bike one day. First she rides her bike due south for 12 miles and then the direction

of the bike trail changes and she rides in the new direction for a while longer. When she stops Michelle is 2
miles south and 10 miles west from her starting point. Find the total distance that Michelle covered from her
starting point.
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12.1 Inverse Variation Models

Learning Objectives

• Distinguish direct and inverse variation.
• Graph inverse variation equations.
• Write inverse variation equations.
• Solve real-world problems using inverse variation equations.

Introduction

Many variables in real-world problems are related to each other by variations. A variation is an equation that relates
a variable to one or more other variables by the operations of multiplication and division. There are three different
kinds of variation: direct variation, inverse variation and joint variation.

Distinguish Direct and Inverse Variation

In direct variation relationships, the related variables will either increase together or decrease together at a steady
rate. For instance, consider a person walking at three miles per hour. As time increases, the distance covered by the
person walking also increases, at the rate of three miles each hour. The distance and time are related to each other
by a direct variation:

distance = speed× time

Since the speed is a constant 3 miles per hour, we can write: d = 3t.

The general equation for a direct variation is y = kx, where k is called the constant of proportionality.

You can see from the equation that a direct variation is a linear equation with a y−intercept of zero. The graph
of a direct variation relationship is a straight line passing through the origin whose slope is k, the constant of
proportionality.
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A second type of variation is inverse variation. When two quantities are related to each other inversely, one quantity
increases as the other one decreases, and vice versa.

For instance, if we look at the formula distance = speed× time again and solve for time, we obtain:

time =
distance

speed

If we keep the distance constant, we see that as the speed of an object increases, then the time it takes to cover that
distance decreases. Consider a car traveling a distance of 90 miles, then the formula relating time and speed is:
t = 90

s .

The general equation for inverse variation is y = k
x , where k is the constant of proportionality.

In this chapter, we’ll investigate how the graphs of these relationships behave.

Another type of variation is a joint variation. In this type of relationship, one variable may vary as a product of two
or more variables.

For example, the volume of a cylinder is given by:

V = πR2 ·h

In this example the volume varies directly as the product of the square of the radius of the base and the height of the
cylinder. The constant of proportionality here is the number π.

In many application problems, the relationship between the variables is a combination of variations. For instance
Newton’s Law of Gravitation states that the force of attraction between two spherical bodies varies jointly as the
masses of the objects and inversely as the square of the distance between them:

F = G
m1m2

d2

In this example the constant of proportionality is called the gravitational constant, and its value is given by G =
6.673×10−11 N ·m2/kg2.
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Graph Inverse Variation Equations

We saw that the general equation for inverse variation is given by the formula y = k
x , where k is a constant of

proportionality. We will now show how the graphs of such relationships behave. We start by making a table of
values. In most applications, x and y are positive, so in our table we’ll choose only positive values of x.

Example 1

Graph an inverse variation relationship with the proportionality constant k = 1.

Solution

TABLE 12.1:

x y = 1
x

0 y = 1
0 = undefined

1
4 y = 1

1
4
= 4

1
2 y = 1

1
2
= 2

3
4 y = 1

3
4
= 1.33

1 y = 1
1 = 1

3
2 y = 1

3
2
= 0.67

2 y = 1
2 = 0.5

3 y = 1
3 = 0.33

4 y = 1
4 = 0.25

5 y = 1
5 = 0.2

10 y = 1
10 = 0.1

Here is a graph showing these points connected with a smooth curve.

Both the table and the graph demonstrate the relationship between variables in an inverse variation. As one variable
increases, the other variable decreases and vice versa.

Notice that when x = 0, the value of y is undefined. The graph shows that when the value of x is very small, the
value of y is very big—so it approaches infinity as x gets closer and closer to zero.

Similarly, as the value of x gets very large, the value of y gets smaller and smaller but never reaches zero. We will
investigate this behavior in detail throughout this chapter.
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Write Inverse Variation Equations

As we saw, an inverse variation fulfills the equation y = k
x . In general, we need to know the value of y at a particular

value of x in order to find the proportionality constant. Once we know the proportionality constant, we can then find
the value of y for any given value of x.

Example 2

If y is inversely proportional to x, and if y = 10 when x = 5, find y when x = 2.

Solution

Since y is inversely proportional to x, then: y = k
x

Plug in the values y = 10 and x = 5 : 10 = k
5

Solve for k by multiplying both sides of the equation by 5 : k = 50

The inverse relationship is given by: y = 50
x

When x = 2 : y = 50
2 or y = 25

Example 3

If p is inversely proportional to the square of q, and p = 64 when q = 3, find p when q = 5.

Solution

Since p is inversely proportional to q2, then: p = k
q2

Plug in the values p = 64 and q = 3 : 64 = k
32 or 64 = k

9

Solve for k by multiplying both sides of the equation by 9 : k = 576

The inverse relationship is given by: p = 576
q2

When q = 5 : p = 576
25 or y = 23.04

To see some more variation problems worked out, including problems involving joint variation, watch the video at

MEDIA
Click image to the left for more content.

.
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Solve Real-World Problems Using Inverse Variation Equations

Many formulas in physics are described by variations. In this section we’ll investigate some problems that are
described by inverse variations.

Example 4

The frequency, f , of sound varies inversely with wavelength, λ. A sound signal that has a wavelength of 34 meters
has a frequency of 10 hertz. What frequency does a sound signal of 120 meters have?

Solution

The inverse variation relationship is: f = k
λ

Plug in the values: λ = 34 and f = 10 : 10 = k
34

Multiply both sides by 34 : k = 340

Thus, the relationship is given by: f = 340
λ

Plug in λ = 120 meters: f = 340
120 ⇒ f = 2.83 Hertz

Example 5

Electrostatic force is the force of attraction or repulsion between two charges. The electrostatic force is given by
the formula F = Kq1q2

d2 , where q1 and q2 are the charges of the charged particles, d is the distance between the
charges and k is a proportionality constant. The charges do not change, so they too are constants; that means we
can combine them with the other constant k to form a new constant K, so we can rewrite the equation as F = K

d2 .

If the electrostatic force is F = 740 Newtons when the distance between charges is 5.3× 10−11 meters, what is F
when d = 2.0×10−10 meters?

Solution

The inverse variation relationship is: F = K
d2

Plug in the values F = 740 and d = 5.3×10−11 : 740 = K
(5.3 × 10−11)

2

Multiply both sides by (5.3×10−11)2 : K = 740
(
5.3×10−11

)2

K = 2.08×10−18

The electrostatic force is given by: F = 2.08 × 10−18

d2

When d = 2.0×10−10 : F = 2.08 × 10−18

(2.0 × 10−10)
2

Use scientific notation to simplify: F = 52 Newtons

Review Questions

Graph the following inverse variation relationships.

1. y = 3
x
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2. y = 10
x

3. y = 1
4x

4. y = 5
6x

5. If z is inversely proportional to w and z = 81 when w = 9, find w when z = 24.
6. If y is inversely proportional to x and y = 2 when x = 8, find y when x = 12.
7. If a is inversely proportional to the square root of b, and a = 32 when b = 9, find b when a = 6.
8. If w is inversely proportional to the square of u and w = 4 when u = 2, find w when u = 8.
9. If a is proportional to both b and c and a = 7 when b = 2 and c = 6, find a when b = 4 and c = 3.

10. If x is proportional to y and inversely proportional to z, and x = 2 when y = 10 and z = 25, find x when y = 8
and z = 35.

11. If a varies directly with b and inversely with the square of c, and a = 10 when b = 5 and c = 2, find the value
of a when b = 3 and c = 6.

12. If x varies directly with y and z varies inversely with x, and z = 3 when y = 5, find z when y = 10.
13. The intensity of light is inversely proportional to the square of the distance between the light source and the

object being illuminated.

a. A light meter that is 10 meters from a light source registers 35 lux. What intensity would it register 25
meters from the light source?

b. A light meter that is registering 40 lux is moved twice as far away from the light source illuminating it.
What intensity does it now register? (Hint: let x be the original distance from the light source.)

c. The same light meter is moved twice as far away again (so it is now four times as far from the light
source as it started out). What intensity does it register now?

14. Ohm’s Law states that current flowing in a wire is inversely proportional to the resistance of the wire. If the
current is 2.5 Amperes when the resistance is 20 ohms, find the resistance when the current is 5 Amperes.

15. The volume of a gas varies directly with its temperature and inversely with its pressure. At 273 degrees Kelvin
and pressure of 2 atmospheres, the volume of a certain gas is 24 liters.

a. Find the volume of the gas when the temperature is 220 Kelvin and the pressure is 1.2 atmospheres.
b. Find the temperature when the volume is 24 liters and the pressure is 3 atmospheres.

16. The volume of a square pyramid varies jointly with the height and the square of the side length of the base. A
pyramid whose height is 4 inches and whose base has a side length of 3 inches has a volume of 12 in3.

a. Find the volume of a square pyramid that has a height of 9 inches and whose base has a side length of 5
inches.

b. Find the height of a square pyramid that has a volume of 49 in3 and whose base has a side length of 7
inches.

c. A square pyramid has a volume of 72 in3 and its base has a side length equal to its height. Find the height
of the pyramid.
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12.2 Graphs of Rational Functions

Learning Objectives

• Compare graphs of inverse variation equations.
• Graph rational functions.
• Solve real-world problems using rational functions.

Introduction

In this section, you’ll learn how to graph rational functions. Graphs of rational functions are very distinctive, because
they get closer and closer to certain values but never reach those values. This behavior is called asymptotic behavior,
and we will see that rational functions can have horizontal asymptotes, vertical asymptotes or oblique (or slant)
asymptotes.

Compare Graphs of Inverse Variation Equations

Inverse variation problems are the simplest example of rational functions. We saw that an inverse variation has the
general equation: y = k

x . In most real-world problems, x and y take only positive values. Below, we will show graphs
of three inverse variation functions.

Example 1

On the same coordinate grid, graph inverse variation relationships with the proportionality constants k = 1,k = 2,
and k = 1

2 .

Solution

We’ll skip the table of values for this problem, and just show the graphs of the three functions on the same coordinate
axes. Notice that for larger constants of proportionality, the curve decreases at a slower rate than for smaller constants
of proportionality. This makes sense because the value of y is related directly to the proportionality constants, so we
should expect larger values of y for larger values of k.
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Graph Rational Functions

Now we’ll extend the domain and range of rational equations to include negative values of x and y. First we’ll plot
a few rational functions by using a table of values, and then we’ll talk about the distinguishing characteristics of
rational functions that can help us make better graphs.

As we graph rational functions, we need to always pay attention to values of x that will cause us to divide by 0.
Remember that dividing by 0 doesn’t give us an actual number as a result.

Example 2

Graph the function y = 1
x .

Solution

Before we make a table of values, we should notice that the function is not defined for x = 0. This means that the
graph of the function won’t have a value at that point. Since the value of x = 0 is special, we should make sure to
pick enough values close to x = 0 in order to get a good idea how the graph behaves.

Let’s make two tables: one for x−values smaller than zero and one for x−values larger than zero.

TABLE 12.2:

x y = 1
x x y = 1

x
−5 y = 1

−5 =−0.2 0.1 y = 1
0.1 = 10

-4 y = 1
−4 =−0.25 0.2 y = 1

0.2 = 5
-3 y = 1

−3 =−0.33 0.3 y = 1
0.3 = 3.3

-2 y = 1
−2 =−0.5 0.4 y = 1

0.4 = 2.5
-1 y = 1

−1 =−1 0.5 y = 1
0.5 = 2

-0.5 y = 1
−0.5 =−2 1 y = 1

1 = 1
-0.4 y = 1

−0.4 =−2.5 2 y = 1
2 = 0.5

-0.3 y = 1
−0.3 =−3.3 3 y = 1

3 = 0.33
-0.2 y = 1

−0.2 =−5 4 y = 1
4 = 0.25

-0.1 y = 1
−0.1 =−10 5 y = 1

5 = 0.2

We can see that as we pick positive values of x closer and closer to zero, y gets larger, and as we pick negative values
of x closer and closer to zero, y gets smaller (or more and more negative).
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Notice on the graph that for values of x near 0, the points on the graph get closer and closer to the vertical line x = 0.
The line x = 0 is called a vertical asymptote of the function y = 1

x .

We also notice that as the absolute values of x get larger in the positive direction or in the negative direction, the
value of y gets closer and closer to y = 0 but will never gain that value. Since y = 1

x , we can see that there are no
values of x that will give us the value y = 0. The horizontal line y = 0 is called a horizontal asymptote of the
function y = 1

x

Asymptotes are usually denoted as dashed lines on a graph. They are not part of the function; instead, they show
values that the function approaches, but never gets to. A horizontal asymptote shows the value of y that the function
approaches (but never reaches) as the absolute value of x gets larger and larger. A vertical asymptote shows that the
absolute value of y gets larger and larger as x gets closer to a certain value which it can never actually reach.

Now we’ll show the graph of a rational function that has a vertical asymptote at a non-zero value of x.

Example 3

Graph the function y = 1
(x−2)2 .

Solution

We can see that the function is not defined for x = 2, because that would make the denominator of the fraction equal
zero. This tells us that there should be a vertical asymptote at x = 2, so we can start graphing the function by drawing
the vertical asymptote.
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Now let’s make a table of values.

TABLE 12.3:

x y = 1
(x−2)2

0 y = 1
(0−2)2 =

1
4

1 y = 1
(1−2)2 = 1

1.5 y = 1
(1.5−2)2 = 4

2 undefined
2.5 y = 1

(2.5−2)2 = 4
3 y = 1

(3−2)2 = 1
4 y = 1

(4−2)2 =
1
4

Here’s the resulting graph:

Notice that we didn’t pick as many values for our table this time, because by now we have a pretty good idea what
happens near the vertical asymptote.

We also know that for large values of |x|, the value of y could approach a constant value. In this case that value is
y = 0: this is the horizontal asymptote.

A rational function doesn’t have to have a vertical or horizontal asymptote. The next example shows a rational
function with no vertical asymptotes.
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Example 4

Graph the function y = x2

x2+1 .

Solution

We can see that this function will have no vertical asymptotes because the denominator of the fraction will never be
zero. Let’s make a table of values to see if the value of y approaches a particular value for large values of x, both
positive and negative.

TABLE 12.4:

x y = x2

x2+1

−3 y = (−3)2

(−3)2+1 = 9
10 = 0.9

-2 y = (−2)2

(−2)2+1 = 4
5 = 0.8

-1 y = (−1)2

(−1)2+1 = 1
2 = 0.5

0 y = (0)2

(0)2+1 = 0
1 = 0

1 y = (1)2

(1)2+1 = 1
2 = 0.5

2 y = (2)2

(2)2+1 = 4
5 = 0.8

3 y = (3)2

(3)2+1 = 9
10 = 0.9

Below is the graph of this function.

The function has no vertical asymptote. However, we can see that as the values of |x| get larger, the value of y gets
closer and closer to 1, so the function has a horizontal asymptote at y = 1.

Finding Horizontal Asymptotes

We said that a horizontal asymptote is the value of y that the function approaches for large values of |x|. When we
plug in large values of x in our function, higher powers of x get larger much quickly than lower powers of x. For
example, consider:

y =
2x2 + x−1
3x2−4x+3
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If we plug in a large value of x, say x = 100, we get:

y =
2(100)2 +(100)−1
3(100)2−4(100)+3

=
20000+100−1
30000−400+2

We can see that the beginning terms in the numerator and denominator are much bigger than the other terms in each
expression. One way to find the horizontal asymptote of a rational function is to ignore all terms in the numerator
and denominator except for the highest powers.

In this example the horizontal asymptote is y = 2x2

3x2 , which simplifies to y = 2
3 .

In the function above, the highest power of x was the same in the numerator as in the denominator. Now consider a
function where the power in the numerator is less than the power in the denominator:

y =
x

x2 +3

As before, we ignore all the terms except the highest power of x in the numerator and the denominator. That gives
us y = x

x2 , which simplifies to y = 1
x .

For large values of x, the value of y gets closer and closer to zero. Therefore the horizontal asymptote is y = 0.

To summarize:

• Find vertical asymptotes by setting the denominator equal to zero and solving for x.
• For horizontal asymptotes, we must consider several cases:

– If the highest power of x in the numerator is less than the highest power of x in the denominator, then the
horizontal asymptote is at y = 0.

– If the highest power of x in the numerator is the same as the highest power of x in the denominator, then
the horizontal asymptote is at y = coe f f icient o f highest power o f x

coe f f icient o f highest power o f x .
– If the highest power of x in the numerator is greater than the highest power of x in the denominator, then

we don’t have a horizontal asymptote; we could have what is called an oblique (slant) asymptote, or no
asymptote at all.

Example 5

Find the vertical and horizontal asymptotes for the following functions.

a) y = 1
x−1

b) y = 3x
4x+2

c) y = x2−2
2x2+3

d) y = x3

x2−3x+2

Solution

a) Vertical asymptotes:

Set the denominator equal to zero. x−1 = 0⇒ x = 1 is the vertical asymptote.

Horizontal asymptote:

Keep only the highest powers of x. y = 1
x ⇒ y = 0 is the horizontal asymptote.

b) Vertical asymptotes:

Set the denominator equal to zero. 4x+2 = 0⇒ x =−1
2 is the vertical asymptote.
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Horizontal asymptote:

Keep only the highest powers of x. y = 3x
4x ⇒ y = 3

4 is the horizontal asymptote.

c) Vertical asymptotes:

Set the denominator equal to zero: 2x2+3= 0⇒ 2x2 =−3⇒ x2 =−3
2 . Since there are no solutions to this equation,

there is no vertical asymptote.

Horizontal asymptote:

Keep only the highest powers of x. y = x2

2x2 ⇒ y = 1
2 is the horizontal asymptote.

d) Vertical asymptotes:

Set the denominator equal to zero: x2−3x+2 = 0

Factor: (x−2)(x−1) = 0

Solve: x = 2 and x = 1 are the vertical asymptotes.

Horizontal asymptote. There is no horizontal asymptote because the power of the numerator is larger than the
power of the denominator.

Notice the function in part d had more than one vertical asymptote. Here’s another function with two vertical
asymptotes.

Example 6

Graph the function y = −x2

x2−4 .

Solution

Let’s set the denominator equal to zero: x2−4 = 0

Factor: (x−2)(x+2) = 0

Solve: x = 2,x =−2

We find that the function is undefined for x = 2and x = −2, so we know that there are vertical asymptotes at these
values of x.

We can also find the horizontal asymptote by the method we outlined above. It’s at y = −x2

x2 , or y =−1.

So, we start plotting the function by drawing the vertical and horizontal asymptotes on the graph.

Now, let’s make a table of values. Because our function has a lot of detail we must make sure that we pick enough
values for our table to determine the behavior of the function accurately. We must make sure especially that we pick
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values close to the vertical asymptotes.

TABLE 12.5:

x y = −x2

x2−4

−5 y = −(−5)2

(−5)2−4 = −25
21 =−1.19

-4 y = −(−4)2

(−4)2−4 = −16
12 =−1.33

-3 y = −(−3)2

(−3)2−4 = −9
5 =−1.8

-2.5 y = −(−2.5)2

(−2.5)2−4 = −6.25
2.25 =−2.8

-1.5 y = −(−1.5)2

(−1.5)2−4 = −2.25
−1.75 = 1.3

-1 y = −(−1)2

(−1)2−4 = −1
−3 = 0.33

0 y = −02

(0)2−4 = 0
−4 = 0

1 y = −12

(1)2−4 = −1
−3 = 0.33

1.5 y = −1.52

(1.5)2−4 = −2.25
−1.75 = 1.3

2.5 y = −2.52

(2.5)2−4 = −6.25
2.25 =−2.8

3 y = −32

(3)2−4 = −9
5 =−1.8

4 y = −42

(4)2−4 = −16
12 =−1.33

5 y = −52

(5)2−4 = −25
21 =−1.19

Here is the resulting graph.

To explore more graphs of rational functions, try the applets available at http://www.analyzemath.com/rational/rati
onal1.html.

Solve Real-World Problems Using Rational Functions

Electrical circuits are commonplace is everyday life—for example, they’re in all the electrical appliances in your
home. The figure below shows an example of a simple electrical circuit. It consists of a battery which provides a
voltage (V , measured in Volts, V ), a resistor (R, measured in ohms, Ω) which resists the flow of electricity and an
ammeter that measures the current (I, measured in amperes, A) in the circuit.
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Ohm’s Law gives a relationship between current, voltage and resistance. It states that

I =
V
R

Your light bulbs, toaster and hairdryer are all basically simple resistors. In addition, resistors are used in an electrical
circuit to control the amount of current flowing through a circuit and to regulate voltage levels. One important reason
to do this is to prevent sensitive electrical components from burning out due to too much current or too high a voltage
level. Resistors can be arranged in series or in parallel.

For resistors placed in a series:

the total resistance is just the sum of the resistances of the individual resistors:

Rtot = R1 +R2

For resistors placed in parallel:

the reciprocal of the total resistance is the sum of the reciprocals of the resistances of the individual resistors:

1
Rc

=
1

R1
+

1
R2

Example 7

Find the quantity labeled x in the following circuit.
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Solution

We use the formula I = V
R .

Plug in the known values:I = 2 A,V = 12 V : 2 = 12
R

Multiply both sides by R : 2R = 12

Divide both sides by 2 : R = 6Ω Answer

Example 8

Find the quantity labeled x in the following circuit.

Solution

Ohm’s Law also tells us that Itotal =
Vtotal
Rtotal

Plug in the values we know, I = 2.5 A and E = 9 V : 2.5 = 9
Rtot

Multiply both sides by R : 2.5Rtot = 9

Divide both sides by 2.5 : Rtot = 3.6Ω

Since the resistors are placed in parallel, the total resistance is given by: 1
Rtot

= 1
X + 1

20

⇒ 1
36 = 1

X + 1
20

Multiply all terms by 72X : 1
3.6(72X) = 1

X (72X)+ 1
20(72X)

Cancel common factors: 20X = 72+3.6X

Solve: 16.4X = 72

Divide both sides by 16.4 : X = 4.39Ω Answer
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Review Questions

Find all the vertical and horizontal asymptotes of the following rational functions.

1. y = 4
x+2

2. y = 5x−1
2x−6

3. y = 10
x

4. y = x+1
x2

5. y = 4x2

4x2+1
6. y = 2x

x2−9

7. y = 3x2

x2−4
8. y = 1

x2+4x+3
9. y = 2x+5

x2−2x−8

Graph the following rational functions. Draw dashed vertical and horizontal lines on the graph to denote asymptotes.

10. y = 2
x−3

11. y = 3
x2

12. y = x
x−1

13. y = 2x
x+1

14. y = −1
x2+2

15. y = x
x2+9

16. y = x2

x2+1
17. y = 1

x2−1
18. y = 2x

x2−9

19. y = x2

x2−16
20. y = 3

x2−4x+4
21. y = x

x2−x−6

Find the quantity labeled x in each of the following circuits.

22.

23.
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24.

25.
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12.3 Division of Polynomials

Learning Objectives

• Divide a polynomial by a monomial.
• Divide a polynomial by a binomial.
• Rewrite and graph rational functions.

Introduction

A rational expression is formed by taking the quotient of two polynomials.

Some examples of rational expressions are

2x
x2−1

4x2−3x+4
2x

9x2 +4x−5
x2 +5x−1

2x3

2x+3

Just as with rational numbers, the expression on the top is called the numerator and the expression on the bottom
is called the denominator. In special cases we can simplify a rational expression by dividing the numerator by the
denominator.

Divide a Polynomial by a Monomial

We’ll start by dividing a polynomial by a monomial. To do this, we divide each term of the polynomial by the
monomial. When the numerator has more than one term, the monomial on the bottom of the fraction serves as the
common denominator to all the terms in the numerator.

Example 1

Divide.

a) 8x2−4x+16
2

b) 3x2+6x−1
x

c) −3x2−18x+6
9x

Solution

a) 8x2−4x+16
2 = 8x2

2 −
4x
2 + 16

2 = 4x2−2x+8

b) 3x3+6x−1
x = 3x3

x + 6x
x −

1
x = 3x2 +6− 1

x

c) −3x2−18x+6
9x =−3x2

9x −
18x
9x + 6

9x =−
x
3 −2+ 2

3x

A common error is to cancel the denominator with just one term in the numerator.
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Consider the quotient 3x+4
4 .

Remember that the denominator of 4 is common to both the terms in the numerator. In other words we are dividing
both of the terms in the numerator by the number 4.

The correct way to simplify is:

3x+4
4

=
3x
4
+

4
4
=

3x
4
+1

A common mistake is to cross out the number 4 from the numerator and the denominator, leaving just 3x. This is
incorrect, because the entire numerator needs to be divided by 4.

Example 2

Divide 5x3−10x2+x−25
−5x2 .

Solution

5x3−10x2 + x−25
−5x2 =

5x3

−5x2 −
10x2

−5x2 +
x
−5x2 −

25
−5x2

The negative sign in the denominator changes all the signs of the fractions:

−5x3

5x2 +
10x2

5x2 −
x

5x2 +
25
5x2 =−x+2− 1

5x
+

5
x2

Divide a Polynomial by a Binomial

We divide polynomials using a method that’s a lot like long division with numbers. We’ll explain the method by
doing an example.

Example 3

Divide x2+4x+5
x+3 .

Solution

When we perform division, the expression in the numerator is called the dividend and the expression in the
denominator is called the divisor.

To start the division we rewrite the problem in the following form:

x+3)x2 +4x+5

We start by dividing the first term in the dividend by the first term in the divisor: x2

x = x.

We place the answer on the line above the x term:

x

x+3)x2+4x+5
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Next, we multiply the x term in the answer by the divisor, x+ 3, and place the result under the dividend, matching
like terms. x times (x+3) is x2 +3x, so we put that under the divisor:

x

x+3)x2+4x+5

x2 +3x

Now we subtract x2 + 3x from x2 + 4x+ 5. It is useful to change the signs of the terms of x2 + 3x to −x2− 3x and
add like terms vertically:

x

x+3)x2+4x+5

−x2−3x

x

Now, we bring down the 5, the next term in the dividend.

x

x+3)x2+4x+5

−x2−3x

x+5

And now we go through that procedure once more. First we divide the first term of x+ 5 by the first term of the
divisor. x divided by x is 1, so we place this answer on the line above the constant term of the dividend:

x + 1

x+3)x2+4x+5

−x2−3x

x+5

Multiply 1 by the divisor, x+3, and write the answer below x+5, matching like terms.

x + 1

x+3)x2+4x+5

−x2−3x

x+5

x+3

Subtract x+3 from x+5 by changing the signs of x+3 to −x−3 and adding like terms:

x + 1

x+3)x2+4x+5

−x2−3x

x+5

−x−3

2
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Since there are no more terms from the dividend to bring down, we are done. The quotient is x+1 and the remainder
is 2.

Remember that for a division with a remainder the answer is quotient+ remainder
divisor . So the answer to this division

problem is x2+4x+5
x+3 = x+1+ 2

x+3 .

Check

To check the answer to a long division problem we use the fact that

(divisor×quotient)+ remainder = dividend

For the problem above, here’s how we apply that fact to check our solution:

(x+3)(x+1)+2 = x2 +4x+3+2

= x2 +4x+5

The answer checks out.

To check your answers to long division problems involving polynomials, try the solver at http://calc101.com/webMa
thematica/long-divide.jsp. It shows the long division steps so you can tell where you may have made a mistake.

Rewrite and Graph Rational Functions

In the last section we saw how to find vertical and horizontal asymptotes. Remember, the horizontal asymptote
shows the value of y that the function approaches for large values of x. Let’s review the method for finding horizontal
asymptotes and see how it’s related to polynomial division.

When it comes to finding asymptotes, there are basically four different types of rational functions.

Case 1: The polynomial in the numerator has a lower degree than the polynomial in the denominator.

Take, for example, y = 2
x−1 . We can’t reduce this fraction, and as x gets larger the denominator of the fraction gets

much bigger than the numerator, so the whole fraction approaches zero.

The horizontal asymptote is y = 0.

Case 2: The polynomial in the numerator has the same degree as the polynomial in the denominator.

Take, for example, y = 3x+2
x−1 . In this case we can divide the two polynomials:

3

x−1)3x+2

−3x+3

5

So the expression can be written as y = 3+ 5
x−1 .

Because the denominator of the remainder is bigger than the numerator of the remainder, the remainder will approach
zero for large values of x. Adding the 3 to that 0 means the whole expression will approach 3.

The horizontal asymptote is y = 3.
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Case 3: The polynomial in the numerator has a degree that is one more than the polynomial in the denominator.

Take, for example, y = 4x2+3x+2
x−1 . We can do long division once again and rewrite the expression as y = 4x+7+ 9

x−1 .
The fraction here approaches zero for large values of x, so the whole expression approaches 4x+7.

When the rational function approaches a straight line for large values of x, we say that the rational function has an
oblique asymptote. In this case, then, the oblique asymptote is y = 4x+7.

Case 4: The polynomial in the numerator has a degree that in two or more than the degree in the denominator. For
example: y = x3

x−1 .

This is actually the simplest case of all: the polynomial has no horizontal or oblique asymptotes.

Example 5

Find the horizontal or oblique asymptotes of the following rational functions.

a) y = 3x2

x2+4

b) y = x−1
3x2−6

c) y = x4+1
x−5

d) y = x3−3x2+4x−1
x2−2

Solution

a) When we simplify the function, we get y = 3− 12
x2+4 . There is a horizontal asymptote at y = 3.

b) We cannot divide the two polynomials. There is a horizontal asymptote at y = 0.

c) The power of the numerator is 3 more than the power of the denominator. There are no horizontal or oblique
asymptotes.

d) When we simplify the function, we get y = x−3+ 6x−7
x2−2 . There is an oblique asymptote at y = x−3.

Notice that a rational function will either have a horizontal asymptote, an oblique asymptote or neither kind. In other
words, a function can’t have both; in fact, it can’t have more than one of either kind. On the other hand, a rational
function can have any number of vertical asymptotes at the same time that it has horizontal or oblique asymptotes.

Review Questions

Divide the following polynomials:

1. 2x+4
2

2. x−4
x

3. 5x−35
5x

4. x2+2x−5
x

5. 4x2+12x−36
−4x

6. 2x2+10x+7
2x2

7. x3−x
−2x2

8. 5x4−9
3x

9. x3−12x2+3x−4
12x2

10. 3−6x+x3

−9x3

11. x2+3x+6
x+1

12. x2−9x+6
x−1
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13. x2+5x+4
x+4

14. x2−10x+25
x−5

15. x2−20x+12
x−3

16. 3x2−x+5
x−2

17. 9x2+2x−8
x+4

18. 3x2−4
3x+1

19. 5x2+2x−9
2x−1

20. x2−6x−12
5x4

Find all asymptotes of the following rational functions:

21. x2

x−2
22. 1

x+4

23. x2−1
x2+1

24. x−4
x2−9

25. x2+2x+1
4x−1

26. x3+1
4x−1

27. x−x3

x2−6x−7

28. x4−2x
8x+24

Graph the following rational functions. Indicate all asymptotes on the graph:

29. x2

x+2

30. x3−1
x2−4

31. x2+1
2x−4

32. x−x2

3x+2
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12.4 Rational Expressions

Learning Objectives

• Simplify rational expressions.
• Find excluded values of rational expressions.

Introduction

A simplified rational expression is one where the numerator and denominator have no common factors. In order to
simplify an expression to lowest terms, we factor the numerator and denominator as much as we can and cancel
common factors from the numerator and the denominator.

Simplify Rational Expressions

Example 1

Reduce each rational expression to simplest terms.

a) 4x−2
2x2+x−1

b) x2−2x+1
8x−8

c) x2−4
x2−5x+6

Solution

a) Factor the numerator and denominator completely: 2(2x−1)
(2x−1)(x+1)

Cancel the common factor (2x−1) : 2
x+1

b) Factor the numerator and denominator completely: (x−1)(x−1)
8(x−1)

Cancel the common factor (x−1) : x−1
8

c) Factor the numerator and denominator completely: (x−2)(x+2)
(x−2)(x−3)

Cancel the common factor(x−2) : x+2
x−3

When reducing fractions, you are only allowed to cancel common factors from the denominator but NOT common
terms. For example, in the expression (x+1)·(x−3)

(x+2)·(x−3) , we can cross out the (x−3) factor because (x−3)
(x−3) = 1. But in the

expression x2+1
x2−5 we can’t just cross out the x2 terms.

Why can’t we do that? When we cross out terms that are part of a sum or a difference, we’re violating the order
of operations (PEMDAS). Remember, the fraction bar means division. When we perform the operation x2+1

x2−5 , we’re
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really performing the division (x2 + 1)÷ (x2− 5) — and the order of operations says that we must perform the
operations inside the parentheses before we can perform the division.

Using numbers instead of variables makes it more obvious that canceling individual terms doesn’t work. You can
see that 9+1

9−5 = 10
4 = 2.5 — but if we canceled out the 9’s first, we’d get 1

−5 , or -0.2, instead.

For more examples of how to simplify rational expressions, watch the video at

MEDIA
Click image to the left for more content.

.

Find Excluded Values of Rational Expressions

Whenever there’s a variable expression in the denominator of a fraction, we must remember that the denominator
could be zero when the independent variable takes on certain values. Those values, corresponding to the vertical
asymptotes of the function, are called excluded values. To find the excluded values, we simply set the denominator
equal to zero and solve the resulting equation.

Example 2

Find the excluded values of the following expressions.

a) x
x+4

b) 2x+1
x2−x−6

c) 4
x2−5x

Solution

a) When we set the denominator equal to zero we obtain: x+4 = 0⇒ x =−4

So −4 is the excluded value.

b) When we set the denominator equal to zero we obtain: x2− x−6 = 0

Solve by factoring: (x−3)(x+2) = 0

⇒ x = 3 and x =−2

So 3 and −2 are the excluded values.

c) When we set the denominator equal to zero we obtain: x2−5x = 0

Solve by factoring: x(x−5) = 0

⇒ x = 0 and x = 5

So 0 and 5 are the excluded values.
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Removable Zeros

Notice that in the expressions in Example 1, we removed a division by zero when we simplified the problem. For
instance, we rewrote 4x−2

2x2+x−1 as 2(2x−1)
(2x−1)(x+1) . The denominator of this expression is zero when x = 1

2 or when x =−1.

However, when we cancel common factors, we simplify the expression to 2
x+1 . This reduced form allows the value

x = 1
2 , so x =−1 is its only excluded value.

Technically the original expression and the simplified expression are not the same. When we reduce a radical
expression to its simplest form, we should specify the removed excluded value. In other words, we should write our
final answer as 4x−2

2x2+x−1 = 2
x+1 ,x 6=

1
2 .

Similarly, we should write the answer from Example 1, part b as x2−2x+1
8x−8 = x−1

8 ,x 6= 1 and the answer from Example

1, part c as x2−4
x2−5x+6 = x+2

x−3 ,x 6= 2.

Review Questions

Reduce each fraction to lowest terms.

1. 4
2x−8

2. x2+2x
x

3. 9x+3
12x+4

4. 6x2+2x
4x

5. x−2
x2−4x+4

6. x2−9
5x+15

7. x2+6x+8
x2+4x

8. 2x2+10x
x2+10x+25

9. x2+6x+5
x2−x−2

10. x2−16
x2+2x−8

11. 3x2+3x−18
2x2+5x−3

12. x3+x2−20x
6x2+6x−120

Find the excluded values for each rational expression.

13. 2
x

14. 4
x+2

15. 2x−1
(x−1)2

16. 3x+1
x2−4

17. x2

x2+9

18. 2x2+3x−1
x2−3x−28

19. 5x3−4
x2+3x

20. 9
x3+11x2+30x

21. 4x−1
x2+3x−5

22. 5x+11
3x2−2x−4

23. x2−1
2x2+x+3
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24. 12
x2+6x+1

25. In an electrical circuit with resistors placed in parallel, the reciprocal of the total resistance is equal to the sum
of the reciprocals of each resistance. 1

Rc
= 1

R1
+ 1

R2
. If R1 = 25 Ω and the total resistance is Rc = 10 Ω, what is

the resistance R2?
26. Suppose that two objects attract each other with a gravitational force of 20 Newtons. If the distance between

the two objects is doubled, what is the new force of attraction between the two objects?
27. Suppose that two objects attract each other with a gravitational force of 36 Newtons. If the mass of both

objects was doubled, and if the distance between the objects was doubled, then what would be the new force
of attraction between the two objects?

28. A sphere with radius R has a volume of 4
3 πR3 and a surface area of 4πR2. Find the ratio the surface area to the

volume of a sphere.
29. The side of a cube is increased by a factor of 2. Find the ratio of the old volume to the new volume.
30. The radius of a sphere is decreased by 4 units. Find the ratio of the old volume to the new volume.
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12.5 Multiplying and Dividing Rational Expres-
sions

Learning Objectives

• Multiply rational expressions involving monomials.
• Multiply rational expressions involving polynomials.
• Multiply a rational expression by a polynomial.
• Divide rational expressions involving polynomials.
• Divide a rational expression by a polynomial.
• Solve real-world problems involving multiplication and division of rational expressions.

Introduction

The rules for multiplying and dividing rational expressions are the same as the rules for multiplying and dividing
rational numbers, so let’s start by reviewing multiplication and division of fractions. When we multiply two fractions
we multiply the numerators and denominators separately:

a
b
· c

d
=

a · c
b ·d

When we divide two fractions, we replace the second fraction with its reciprocal and multiply, since that’s mathe-
matically the same operation:

a
b
÷ c

d
=

a
b
· d

c
=

a ·d
b · c

Multiply Rational Expressions Involving Monomials

Example 1

Multiply the following: a
16b8 · 4b3

5a2 .

Solution

Cancel common factors from the numerator and denominator. The common factors are 4, a, and b3. Canceling them
out leaves 1

4b5 · 1
5a = 1

20ab5 .

Example 2

Multiply 9x2 · 4y2

21x4 .

Solution
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Rewrite the problem as a product of two fractions: 9x2

1 ·
4y2

21x4 Then cancel common factors from the numerator and
denominator.

The common factors are 3 and x2. Canceling them out leaves 3
1 ·

4y2

7x2 =
12y2

7x2 .

Multiply Rational Expressions Involving Polynomials

When multiplying rational expressions involving polynomials, first we need to factor all polynomial expressions as
much as we can. Then we follow the same procedure as before.

Example 3

Multiply 4x+12
3x2 · x

x2−9 .

Solution

Factor all polynomial expressions as much as possible: 4(x+3)
3x2 · x

(x+3)(x−3)

The common factors are x and (x+3). Canceling them leaves 4
3x ·

1
(x−3) =

4
3x(x−3) =

4
3x2−9x .

Example 4

Multiply 12x2−x−6
x2−1 · x2+7x+6

4x2−27x+18 .

Solution

Factor polynomials: (3x+2)(4x−3)
(x+1)(x−1) ·

(x+1)(x+6)
(4x−3)(x−6) .

The common factors are (x+1) and (4x−3). Canceling them leaves (3x+2)
(x−1) ·

(x+6)
(x−6) =

(3x+2)(x+6)
(x−1)(x−6) = 3x2+20x+12

x2−7x+6

Multiply a Rational Expression by a Polynomial

When we multiply a rational expression by a whole number or a polynomial, we can write the whole number (or
polynomial) as a fraction with denominator equal to one. We then proceed the same way as in the previous examples.

Example 5

Multiply 3x+18
4x2+19x−5 · (x

2 +3x−10).

Solution

Rewrite the expression as a product of fractions: 3x+18
4x2+19x−5 ·

x2+3x−10
1

Factor polynomials: 3(x+6)
(x+5)(4x−1) ·

(x−2)(x+5)
1

The common factor is (x+5). Canceling it leaves 3(x+6)
(4x−1) ·

(x−2)
1 = 3(x+6)(x−2)

(4x−1) = 3x2+12x−36
4x−1

Divide Rational Expressions Involving Polynomials

Just as with ordinary fractions, we first rewrite the division problem as a multiplication problem and then proceed
with the multiplication as outlined in the previous example.

Note: Remember that a
b ÷

c
d = a

b ·
d
c . The first fraction remains the same and you take the reciprocal of the second

fraction. Do not fall into the common trap of flipping the first fraction.
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Example 6

Divide 4x2

15 ÷
6x
5 .

Solution

First convert into a multiplication problem by flipping the second fraction and then simplify as usual:

4x2

15
÷ 6x

5
=

4x2

15
· 5

6x
=

2x
3
· 1

3
=

2x
9

Example 7

Divide 3x2−15x
2x2+3x−14 ÷

x2−25
2x2+13x+21 .

Solution

3x2−15x
2x2 +3x−14

· 2x2 +13x+21
x2−25

=
3x(x−5)

(2x+7)(x−2)
· (2x+7)(x+3)
(x−5)(x+5)

=
3x

(x−2)
· (x+3)
(x+5)

=
3x2 +9x

x2 +3x−10

Divide a Rational Expression by a Polynomial

When we divide a rational expression by a whole number or a polynomial, we can write the whole number (or
polynomial) as a fraction with denominator equal to one, and then proceed the same way as in the previous examples.

Example 8

Divide 9x2−4
2x−2 ÷ (21x2−2x−8).

Solution

Rewrite the expression as a division of fractions, and then convert into a multiplication problem by taking the
reciprocal of the divisor:

9x2−4
2x−2

÷ 21x2−2x−8
1

=
9x2−4
2x−2

· 1
21x2−2x−8

Then factor and solve:

9x2−4
2x−2

· 1
21x2−2x−8

=
(3x−2)(3x+2)

2(x−1)
· 1
(3x−2)(7x+4)

=
(3x+2)
2(x−1)

· 1
(7x+4)

=
3x+2

14x2−6x−8

For more examples of how to multiply and divide rational expressions, watch the video at

MEDIA
Click image to the left for more content.

.
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Solve Real-World Problems Involving Multiplication and Division of Rational Ex-
pressions

Example 9

Suppose Marciel is training for a running race. Marciel’s speed (in miles per hour) of his training run each morning
is given by the function x3− 9x, where x is the number of bowls of cereal he had for breakfast. Marciel’s training
distance (in miles), if he eats x bowls of cereal, is 3x2− 9x. What is the function for Marciel’s time, and how long
does it take Marciel to do his training run if he eats five bowls of cereal on Tuesday morning?

Solution

time = distance
speed

time = 3x2−9x
x3−9x = 3x(x−3)

x(x2−9) =
3x(x−3)

x(x+3)(x−3)

time = 3
x+3

If x = 5, then

time = 3
5+3 = 3

8

Marciel will run for 3
8 of an hour.

Review Questions

Perform the indicated operation and reduce the answer to lowest terms.

1. x3

2y3 · 2y2

x

2. 2xy÷ 2x2

y

3. 2x
y2 · 4y

5x

4. 2x3

y ÷3x2

5. 2xy · 2y2

x3

6. 3x+6
y−4 ÷

3y+9
x−1

7. 4y2−1
y2−9 ·

y−3
2y−1

8. 6ab
a2 · a3b

3b2

9. x2

x−1 ÷
x

x2+x−2

10. 33a2

−5 ·
20

11a3

11. a2+2ab+b2

ab2−a2b ÷ (a+b)

12. 2x2+2x−24
x2+3x · x2+x−6

x+4

13. 3−x
3x−5 ÷

x2−9
2x2−8x−10

14. x2−25
x+3 ÷ (x−5)

15. 2x+1
2x−1 ÷

4x2−1
1−2x

16. x
x−5 ·

x2−8x+15
x2−3x

17. 3x2+5x−12
x2−9 ÷ 3x−4

3x+4
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18. 5x2+16x+3
36x2−25 · (6x2 +5x)

19. x2+7x+10
x2−9 · x2−3x

3x2+4x−4

20. x2+x−12
x2+4x+4 ÷

x−3
x+2

21. x4−16
x2−9 ÷

x2+4
x2+6x+9

22. x2+8x+16
7x2+9x+2 ·

7x+2
x2+4x

23. Maria’s recipe asks for 2 1
2 times more flour than sugar. How many cups of flour should she mix in if she uses

3 1
3 cups of sugar?

24. George drives from San Diego to Los Angeles. On the return trip he increases his driving speed by 15 miles
per hour. In terms of his initial speed, by what factor is the driving time decreased on the return trip?

25. Ohm’s Law states that in an electrical circuit I = V
Rc

. The total resistance for resistors placed in parallel is
given by: 1

Rtot
= 1

R1
+ 1

R2
. Write the formula for the electric current in term of the component resistances: R1

and R2.
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12.6 Adding and Subtracting Rational Expres-
sions

Learning Objectives

• Add and subtract rational expressions with the same denominator.
• Find the least common denominator of rational expressions.
• Add and subtract rational expressions with different denominators.
• Solve real-world problems involving addition and subtraction of rational expressions.

Introduction

Like fractions, rational expressions represent a portion of a quantity. Remember that when we add or subtract frac-
tions we must first make sure that they have the same denominator. Once the fractions have the same denominator,
we combine the different portions by adding or subtracting the numerators and writing that answer over the common
denominator.

Add and Subtract Rational Expressions with the Same Denominator

Fractions with common denominators combine in the following manner:

a
c
+

b
c
=

a+b
c

and
a
c
− b

c
=

a−b
c

Example 1

Simplify.

a) 8
7 −

2
7 +

4
7

b) 4x2−3
x+5 + 2x2−1

x+5

c) x2−2x+1
2x+3 −

3x2−3x+5
2x+3

Solution

a) Since the denominators are the same we combine the numerators:

8
7
− 2

7
+

4
7
=

8−2+4
7

=
10
7

b) Since the denominators are the same we combine the numerators: 4x2−3+2x2−1
x+5

Simplify by collecting like terms: 6x2−4
x+5
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c) Since the denominators are the same we combine the numerators. Make sure the subtraction sign is distributed to
all terms in the second expression:

x2−2x+1− (3x2−3x+5)
2x+3

=
x2−2x+1−3x2 +3x−5

2x+3
=
−2x2 + x−4

2x+3

Find the Least Common Denominator of Rational Expressions

To add and subtract fractions with different denominators, we must first rewrite all fractions so that they have
the same denominator. In general, we want to find the least common denominator. To find the least common
denominator, we find the least common multiple (LCM) of the expressions in the denominators of the different
fractions. Remember that the least common multiple of two or more integers is the least positive integer that has all
of those integers as factors.

The procedure for finding the lowest common multiple of polynomials is similar. We rewrite each polynomial in
factored form and we form the LCM by taking each factor to the highest power it appears in any of the separate
expressions.

Example 2

Find the LCM of 48x2y and 60xy3z.

Solution

First rewrite the integers in their prime factorization.

48 = 24 ·3
60 = 22 ·3 ·5

The two expressions can be written as:

48x2y = 24 ·3 · x2 · y
60xy3z = 22 ·3 ·5 · x · y3 · z

To find the LCM, take the highest power of each factor that appears in either expression.

LCM = 24 ·3 ·5 · x2 · y3 · z = 240x2y3z

Example 3

Find the LCM of 2x2 +8x+8 and x3−4x2−12x

Solution

Factor the polynomials completely:

2x2 +8x+8 = 2(x2 +4x+4)

= 2(x+2)2
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x3−4x2−12x = x(x2−4x−12)

= x(x+2)(x−6)

To find the LCM, take the highest power of each factor that appears in either expression.

LCM = 2x(x+2)2(x−6)

It’s customary to leave the LCM in factored form, because this form is useful in simplifying rational expressions and
finding any excluded values.

Example 4

Find the LCM of x2−25 and x2 +3x+2

Solution

Factor the polynomials completely:

x2−25 = (x−5)(x+5)

x2 +3x+2 = (x+1)(x+2)

Since the two expressions have no common factors, the LCM is just the product of the two expressions.

LCM = (x−5)(x+5)(x+1)(x+2)

Add and Subtract Rational Expressions with Different Denominators

Now we’re ready to add and subtract rational expressions. We use the following procedure.

1. Find the least common denominator (LCD) of the fractions.
2. Express each fraction as an equivalent fraction with the LCD as the denominator.
3. Add or subtract and simplify the result.

Example 5

Perform the following operation and simplify: 2
x+2 −

3
2x−5

Solution

The denominators can’t be factored any further, so the LCD is just the product of the separate denominators: (x+
2)(2x−5). That means the first fraction needs to be multiplied by the factor (2x−5) and the second fraction needs
to be multiplied by the factor (x+2):

2
x+2

· (2x−5)
(2x−5)

− 3
2x−5

· (x+2)
(x+2)
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Combine the numerators and simplify: 2(2x−5)−3(x+2)
(x+2)(2x−5) = 4x−10−3x−6

(x+2)(2x−5)

Combine like terms in the numerator: x−16
(x+2)(2x−5) Answer

Example 6

Perform the following operation and simplify: 4x
x−5 −

3x
5−x .

Solution

Notice that the denominators are almost the same; they just differ by a factor of -1.

Factor out -1 from the second denominator: 4x
x−5 −

3x
−(x−5)

The two negative signs in the second fraction cancel: 4x
x−5 +

3x
(x−5)

Since the denominators are the same we combine the numerators: 7x
x−5 Answer

Example 7

Perform the following operation and simplify: 2x−1
x2−6x+9 −

3x+4
x2−9 .

Solution

We factor the denominators: 2x−1
(x−3)2 − 3x+4

(x+3)(x−3)

The LCD is the product of all the different factors, each taken to the highest power they have in either denominator:
(x−3)2(x+3).

The first fraction needs to be multiplied by a factor of (x+ 3) and the second fraction needs to be multiplied by a
factor of (x−3):

2x−1
(x−3)2 ·

(x+3)
(x+3)

− 3x+4
(x+3)(x−3)

· (x−3)
(x−3)

Combine the numerators by subtracting: (2x−1)(x+3)−(3x+4)(x−3)
(x−3)2(x+3)

Eliminate parentheses in the numerator: 2x2+5x−3−(3x2−5x−12)
(x−3)2(x+3)

Distribute the negative sign: 2x2+5x−3−3x2+5x+12
(x−3)2(x+3)

Combine like terms in the numerator: −x2+10x+9
(x−3)2(x+3) Answer

For more examples of how to add and subtract rational expressions, watch the video at

MEDIA
Click image to the left for more content.

.
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Solve Real-World Problems by Adding and Subtracting Rational Expressions

Example 8

In an electrical circuit with two resistors placed in parallel, the reciprocal of the total resistance is equal to the sum
of the reciprocals of each resistance: 1

Rtot
= 1

R1
+ 1

R2
. Find an expression for the total resistance, Rtot .

Solution

Let’s simplify the expression 1
R1

+ 1
R2
.

The lowest common denominator is R1R2, so we multiply the first fraction by R2
R2

and the

second fraction by R1
R1

: R2
R2
· 1

R1
+ R1

R1
· 1

R2

Simplify: R2+R1
R1R2

The total resistance is the reciprocal of this expression: Rtot =
R1R2

R1+R2
Answer

Example 9

The sum of a number and its reciprocal is 53
14 . Find the numbers.

Solution

Define variables:

Let x be the number; then its reciprocal is 1
x .

Set up an equation:

The equation that describes the relationship between the numbers is x+ 1
x = 53

14

Solve the equation:

Find the lowest common denominator: LCM = 14x

Multiply all terms by 14x : 14x · x+14x · 1
x = 14x · 53

14

(Notice that we’re multiplying the terms by 14x instead of by 14x
14x . We can do this because we’re multiplying both

sides of the equation by the same thing, so we don’t have to keep the actual values of the terms the same. We could
also multiply by 14x

14x , but then the denominators would just cancel out a couple of steps later.)

Cancel common factors in each term: 14x · x+14x · 1
x = 14x · 53

14

Simplify: 14x2 +14 = 53x

Write all terms on one side of the equation: 14x2−53x+14 = 0

Factor: (7x−2)(2x−7) = 0

x = 2
7 and x = 7

2

Notice there are two answers for x, but they are really parts of the same solution. One answer represents the number
and the other answer represents its reciprocal.

Check:
2
7 +

7
2 = 4+49

14 = 53
14 . The answer checks out.
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Work problems are problems where two people or two machines work together to complete a job. Work problems
often contain rational expressions. Typically we set up such problems by looking at the part of the task completed
by each person or machine. The completed task is the sum of the parts of the tasks completed by each individual or
each machine.

To determine the part of the task completed by each person or machine we use the following fact:

Part of the task completed = rate of work× time spent on the task

It’s usually useful to set up a table where we can list all the known and unknown variables for each person or machine
and then combine the parts of the task completed by each person or machine at the end.

Example 10

Mary can paint a house by herself in 12 hours. John can paint a house by himself in 16 hours. How long would it
take them to paint the house if they worked together?

Solution

Define variables:

Let t = the time it takes Mary and John to paint the house together.

Construct a table:

Since Mary takes 12 hours to paint the house by herself, in one hour she paints 1
12 of the house.

Since John takes 16 hours to pain the house by himself, in one hour he paints 1
16 of the house.

Mary and John work together for t hours to paint the house together. Using

Part o f the task completed = rate o f work · time spent on the task

we can write that Mary completed t
12 of the house and John completed t

16 of the house in this time.

This information is nicely summarized in the table below:

TABLE 12.6:

Painter Rate of work (per hour) Time worked Part of task
Mary 1

12 t t
12

John 1
16 t t

16

Set up an equation:

In t hours, Mary painted t
12 of the house and John painted t

16 of the house, and together they painted 1 whole house.
So our equation is t

12 +
t

16 = 1.

Solve the equation:

Find the lowest common denominator: LCM = 48

Multiply all terms in the equation by the LCM: 48 · t
12 +48 · t

16 = 48 ·1

Cancel common factors in each term: 4 · t
1 +3 · t

1 = 48 ·1

Simplify: 4t +3t = 48
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7t = 48⇒ t = 48
7 = 6.86 hours

Check: The answer is reasonable. We’d expect the job to take more than half the time Mary would take by herself
but less than half the time John would take, since Mary works faster than John.

Example 11

Suzie and Mike take two hours to mow a lawn when they work together. It takes Suzie 3.5 hours to mow the same
lawn if she works by herself. How long would it take Mike to mow the same lawn if he worked alone?

Solution

Define variables:

Let t = the time it takes Mike to mow the lawn by himself.

Construct a table:

TABLE 12.7:

Painter Rate of work (per hour) Time worked Part of Task
Suzie 1

3.5 = 2
7 2 4

7
Mike 1

t 2 2
t

Set up an equation:

Since Suzie completed 4
7 of the lawn and Mike completed 2

t of the lawn and together they mowed the lawn in 2
hours, we can write the equation: 4

7 +
2
t = 1

Solve the equation:

Find the lowest common denominator: LCM = 7t

Multiply all terms in the equation by the LCM: 7t · 4
7 +7t · 2

t = 7t ·1

Cancel common factors in each term: t · 4
1 +7 · 2

1 = 7t ·1

Simplify: 4t +14 = 7t

3t = 14⇒ t = 14
3 = 4 2

3 hours

Check: The answer is reasonable. We’d expect Mike to work slower than Suzie, because working by herself it takes
her less than twice the time it takes them to work together.

Review Questions

Perform the indicated operation and simplify. Leave the denominator in factored form.

1. 5
24 −

7
24

2. 10
21 +

9
35

3. 5
2x+3 +

3
2x+3

4. 3x−1
x+9 −

4x+3
x+9

5. 4x+7
2x2 − 3x−4

2x2

6. x2

x+5 −
25

x+5
7. 2x

x−4 +
x

4−x
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8. 10
3x−1 −

7
1−3x

9. 5
2x+3 −3

10. 5x+1
x+4 +2

11. 1
x +

2
3x

12. 4
5x2 − 2

7x3

13. 4x
x+1 −

2
2(x+1)

14. 10
x+5 +

2
x+2

15. 2x
x−3 −

3x
x+4

16. 4x−3
2x+1 +

x+2
x−9

17. x2

x+4 −
3x2

4x−1
18. 2

5x+2 −
x+1
x2

19. x+4
2x + 2

9x
20. 5x+3

x2+x +
2x+1

x
21. 4

(x+1)(x−1) −
5

(x+1)(x+2)

22. 2x
(x+2)(3x−4) +

7x
(3x−4)2

23. 3x+5
x(x−1) −

9x−1
(x−1)2

24. 1
(x−2)(x−3) +

4
(2x+5)(x−6)

25. 3x−2
x−2 + 1

x2−4x+4

26. −x3

x2−7x+6 + x−4
27. 2x

x2+10x+25 −
3x

2x2+7x−15
28. 1

x2−9 +
2

x2+5x+6
29. −x+4

2x2−x−15 +
x

4x2+8x−5
30. 4

9x2−49 −
1

3x2+5x−28
31. One number is 5 less than another. The sum of their reciprocals is 13

36 . Find the two numbers.
32. One number is 8 times more than another. The difference in their reciprocals is 21

20 . Find the two numbers.
33. A pipe can fill a tank full of Kool-Aid in 4 hours and another pipe can empty the tank in 8 hours. If the valves

to both pipes are open, how long will it take to fill the tank?
34. Stefan and Misha have a lot full of cars to wash. Stefan could wash the cars by himself in 6 hours and Misha

could wash the cars by himself in 5 hours. Stefan starts washing the cars by himself, but he has to leave after
2.5 hours. Misha continues the task by himself. How long does it take Misha to finish washing the cars?

35. Amanda and her sister Chyna are shoveling snow to clear their driveway. Amanda can clear the snow by
herself in 3 hours and Chyna can clear the snow by herself in 4 hours. After Amanda has been working by
herself for one hour, Chyna joins her and they finish the job together. How long does it take to clear the snow
from the driveway?

36. At a soda bottling plant one bottling machine can fulfill the daily quota in 10 hours and a second machine
can fill the daily quota in 14 hours. The two machines start working together, but after four hours the slower
machine breaks and the faster machine has to complete the job by itself. How many more hours does the fast
machine take to finish the job?
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12.7 Solutions of Rational Equations

Learning Objectives

• Solve rational equations using cross products.
• Solve rational equations using lowest common denominators.
• Solve real-world problems with rational equations.

Introduction

A rational equation is one that contains rational expressions. It can be an equation that contains rational coefficients
or an equation that contains rational terms where the variable appears in the denominator.

An example of the first kind of equation is: 3
5 x+ 1

2 = 4.

An example of the second kind of equation is: x
x−1 +1 = 4

2x+3 .

The first aim in solving a rational equation is to eliminate all denominators. That way, we can change a rational
equation to a polynomial equation which we can solve with the methods we have learned this far.

Solve Rational Equations Using Cross Products

A rational equation that contains just one term on each side is easy to solve by cross multiplication. Consider the
following equation:

x
5
=

x+1
2

Our first goal is to eliminate the denominators of both rational expressions. In order to remove the 5 from the
denominator of the first fraction, we multiply both sides of the equation by 5:

5 · x
5
= 5 · x+1

2

x =
5(x+1)

2

Now, we remove the 2 from the denominator of the second fraction by multiplying both sides of the equation by 2:

2 · x = 2 · 5(x+1)
2

2x = 5(x+1)

Then we can solve this equation for x.
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Notice that this equation is what we would get if we simply multiplied each numerator in the original equation by
the denominator from the opposite side of the equation. It turns out that we can always simplify a rational equation
with just two terms by multiplying each numerator by the opposite denominator; this is called cross multiplication.

Example 1

Solve the equation 2x
x+4 = 5

x .

Solution

Cross-multiply. The equation simplifies to: 2x2 = 5(x+4)

Simplify: 2x2 = 5x+20

Move all terms to one side of the equation: 2x2−5x−20 = 0

Solve using the quadratic formula: x = 5±
√

185
4 ⇒ x =−2.15 or x = 4.65

It’s important to plug the answer back into the original equation when the variable appears in any denominator of the
equation, because the answer might be an excluded value of one of the rational expressions. If the answer obtained
makes any denominator equal to zero, that value is not really a solution to the equation.

Check: 2x
x+4 = 5

x ⇒
2(−2.15)
−2.15+4

?
= 5
−2.15 ⇒

−4.30
1.85

?
=−2.3⇒−2.3 =−2.3. The answer checks out.

2x
x+4 = 5

x ⇒
2(4.65)
4.65+4

?
= 5

4.65 ⇒
9.3

8.65
?
=1.08⇒ 1.08 = 1.08. The answer checks out.

Solve Rational Equations Using Lowest Common Denominators

Another way of eliminating the denominators in a rational equation is to multiply all the terms in the equation by the
lowest common denominator. You can use this method even when there are more than two terms in the equation.

Example 2

Solve 3
x+2 −

4
x−5 = 2

x2−3x−10 .

Solution

Factor all denominators: 3
x+2 −

4
x−5 = 2

(x+2)(x−5)

Find the lowest common denominator: LCD = (x+2)(x−5)

Multiply all terms in the equation by the LCD:

(x+2)(x−5) · 3
x+2

− (x+2)(x−5) · 4
x−5

= (x+2)(x−5) · 2
(x+2)(x−5)

The equation simplifies to: 3(x−5)−4(x+2) = 2

Simplify: 3x−15−4x−8 = 2

x =−25

Check: 3
x+2 −

4
x−5 = 2

x2−3x−10 ⇒
3

−25+2 −
4

−25−5
?
= 2

(−25)2−3(−25)−10 ⇒ .003 = .003. The answer checks out.

Example 3
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Solve 2x
2x+1 +

x
x+4 = 1.

Solution

Find the lowest common denominator: LCD = (2x+1)(x+4)

Multiply all terms in the equation by the LCD:

(2x+1)(x+4) · 2x
2x+1

+(2x+1)(x+4) · x
x+4

= (2x+1)(x+4)

Cancel all common terms. 2x(x+4)+ x(2x+1) = (2x+1)(x+4)
The simplified equation is:

Eliminate parentheses: 2x2 +8x+2x2 + x = 2x2 +9x+4

Collect like terms: 2x2 = 4

x2 = 2⇒ x =±
√

2

Check: 2x
2x+1 +

x
x+4 = 2

√
2

2
√

2+1
+

√
2√

2+4
= 0.739+0.261 = 1. The answer checks out.

2x
2x+1 +

x
x+4 =

2
(
−
√

2
)

2
(
−
√

2
)
+1

+ −
√

2
−
√

2+4
= 1.547−0.547 = 1. The answer checks out.

Solve Real-World Problems Using Rational Equations

A motion problem with no acceleration is described by the formula distance = speed× time. These problems can
involve the addition and subtraction of rational expressions.

Example 4

Last weekend Nadia went canoeing on the Snake River. The current of the river is three miles per hour. It took Nadia
the same amount of time to travel 12 miles downstream as it did to travel 3 miles upstream. Determine how fast
Nadia’s canoe would travel in still water.

Solution

Define variables:

Let s = speed of the canoe in still water

Then, s+3 = the speed of the canoe traveling downstream

s−3 = the speed of the canoe traveling upstream

Construct a table:

TABLE 12.8:

Direction Distance (miles) Rate Time
Downstream 12 s+3 t
Upstream 3 s−3 t
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Write an equation:

Since distance = rate× time, we can say that time = distance
rate .

The time to go downstream is: t = 12
s+3

The time to go upstream is: t = 3
s−3

Since the time it takes to go upstream and downstream are the same, we have: 3
s−3 = 12

s+3

Solve the equation:

Cross-multiply: 3(s+3) = 12(s−3)

Simplify: 3s+9 = 12s−36

Solve: s = 5 mi/h

Check: Upstream: t = 12
8 = 1 1

2 hour; downstream: t = 3
2 = 1 1

2 hour. The answer checks out.

Example 5

Peter rides his bicycle. When he pedals uphill he averages a speed of eight miles per hour, when he pedals downhill
he averages 14 miles per hour. If the total distance he travels is 40 miles and the total time he rides is four hours,
how long did he ride at each speed?

Solution

Define variables:

Let t = time Peter bikes at 8 miles per hour.

Construct a table:

TABLE 12.9:

Direction Distance (miles) Rate (mph) Time (hours)
Uphill d 8 t1
Downhill 40−d 14 t2

Write an equation:

We know that time = distance
rate .

The time to go uphill is: t1 = d
8

The time to go downhill is: t2 = 40−d
14

We also know that the total time is 4 hours: d
8 +

40−d
14 = 4

Solve the equation:

Find the lowest common denominator: LCD = 56

Multiply all terms by the common denominator: 7d +160−4d = 224

Solve: d = 21.3 mi

Check: Uphill: t = 21.3
8 = 2.67 hours; downhill: t = 40−21.3

14 = 1.33 hours. The answer checks out.

Example 6
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A group of friends decided to pool together and buy a birthday gift that cost $200. Later 12 of the friends decided
not to participate any more. This meant that each person paid $15 more than their original share. How many people
were in the group to begin with?

Solution

Define variables:

Let x = the number of friends in the original group.

Make a table:

TABLE 12.10:

Number of people Gift price Share amount
Original group x 200 200

x
Later group x−12 200 200

x−12

Write an equation:

Since each person’s share went up by $15 after 2 people refused to pay, we write the equation 200
x−12 = 200

x +15

Solve the equation:

Find the lowest common denominator: LCD = x(x−12)

Multiply all terms by the LCD: x(x−12) · 200
x−12 = x(x−12) · 200

x + x(x−12) ·15

Cancel common factors and simplify: 200x = 200(x−12)+15x(x−12)

Eliminate parentheses: 200x = 200x−2400+15x2−180x

Get all terms on one side of the equation: 0 = 15x2 = 180x−2400

Divide all terms by 15 : 0 = x2−12x−160

Factor: 0 = (x−20)(x+8)

Solve: x = 20,x =−8

The answer that makes sense is x = 20people.

Check: Originally $200 shared among 20 people is $10 each. After 12 people leave, $200 shared among 8 people
is $25 each. So each person pays $15 more. The answer checks out.

Review Questions

Solve the following equations.

1. 2x+1
4 = x−3

10
2. 4x

x+2 = 5
9

3. 5
3x−4 = 2

x+1
4. 7

x+3 = x+1
2x−3

5. 7x
x−5 = x+3

x
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6. 2
x+3 −

1
x+4 = 0

7. 3x2+2x−1
x2−1 =−2

8. x+ 1
x = 2

9. −3+ 1
x+1 = 2

x
10. 1

x −
x

x−2 = 2
11. 3

2x−1 +
2

x+4 = 2
12. 2x

x−1 −
x

3x+4 = 3
13. x+1

x−1 +
x−4
x+4 = 3

14. x
x−2 +

x
x+3 = 1

x2+x−6
15. 2

x2+4x+3 = 2+ x−2
x+3

16. 1
x+5 −

1
x−5 = 1−x

x+5
17. x

x2−36 +
1

x−6 = 1
x+6

18. 2x
3x+3 −

1
4x+4 = 2

x+1
19. −x

x−2 +
3x−1
x+4 = 1

x2+2x−8
20. Juan jogs a certain distance and then walks a certain distance. When he jogs he averages 7 miles/hour and

when he walks he averages 3.5 miles per hour. If he walks and jogs a total of 6 miles in a total of 1.2 hours,
how far does he jog and how far does he walk?

21. A boat travels 60 miles downstream in the same time as it takes it to travel 40 miles upstream. The boat’s
speed in still water is 20 miles per hour. Find the speed of the current.

22. Paul leaves San Diego driving at 50 miles per hour. Two hours later, his mother realizes that he forgot
something and drives in the same direction at 70 miles per hour. How long does it take her to catch up to
Paul?

23. On a trip, an airplane flies at a steady speed against the wind and on the return trip the airplane flies with the
wind. The airplane takes the same amount of time to fly 300 miles against the wind as it takes to fly 420 miles
with the wind. The wind is blowing at 30 miles per hour. What is the speed of the airplane when there is no
wind?

24. A debt of $420 is shared equally by a group of friends. When five of the friends decide not to pay, the share
of the other friends goes up by $25. How many friends were in the group originally?

25. A non-profit organization collected $2250 in equal donations from their members to share the cost of im-
proving a park. If there were thirty more members, then each member could contribute $20 less. How many
members does this organization have?
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13.1 Theoretical and Experimental Probability

Learning Objectives

• Find a sample space.
• Find theoretical probability of an event.
• Perform a probability simulation.
• Find experimental probability of an event.
• Find odds for and against an event.

Find a Sample Space

A sample space is the set of all possible outcomes for an event. In tossing a coin, the sample space consists of 2
outcomes – getting heads, and getting tails. Each of these outcomes (heads and tails) could be considered an event.
Each event has 1 matching element in the sample space.

For example, the roll of a single die has 6 possible outcomes: the die can show any number from 1 to 6. We can say
that the sample space for rolling a single die contains 6 outcomes: {1, 2, 3, 4, 5, 6}. If we say we are interested in
rolling a six, then rolling a six is our event and this event has 1 matching element in the sample space: {6}. If, on
the other hand, we are interested in rolling an even number, then rolling an even number is our event, and this event
has 3 matching elements in the sample space: {2, 4, 6}.

Example 1

A pair of standard, 6-sided dice are rolled, and the total of the numbers that come up determines a player’s score.
Find the sample space of possible outcomes, and determine how many outcomes result in a score of 5.

Solution

The scores a player can get are those in the following set: {2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12}. But the sample space
isn’t just this set of 11 events. For example, there’s only one way to score 12: the player has to roll a six on each of
the dice. But to score 5, the player can roll a 1 and a 4, or a 2 and a 3. Furthermore, there are 2 possibilities for each
of these combinations (imagine one die is red, and 1 die is green: we could roll 1 on the red die and 4 on the green
or we could roll 4 on the red die and 1 on the green). Even though the dice we actually use may appear identical,
they’re still separate entities, and it does make a difference which one rolls which number. So there are 4 ways a
player can score 5:

(1&4) (2&3) (3&2) (4&1)

To find the full sample space, we must consider all possible outcomes. The best way to do this is with a table (the
outcomes that give a score of 5 are highlighted):
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The sample space (shown above) has 36 outcomes, 4 of which result in a score of five.

Notice that the number of outcomes in the sample space when you roll 2 dice is the product of the number of
outcomes when you roll one die and the number of outcomes when you roll the other die. That is, there are 6
possible outcomes for one die and 6 outcomes for the other die, so there are 6×6 = 36 possible outcomes when you
roll both dice together. This property will be important later.

Find Theoretical Probability of an Event

The theoretical probability of an event is a measure of how likely a given outcome (the event) is for a particular
experiment, such as tossing a coin. If the experiment were carried out a nearly infinite number of times, the
probability of a particular event would be the ratio of how many times a particular outcome occurred to how many
times the experiment was performed.

We write the probability that a particular event, E, occurs as:

P(E)

For example, when tossing a coin we may only be interested in getting heads. We could denote that probability as:

P(Heads) or simply P(H)

We know that the sample space for tossing a single coin has two elements: Heads and Tails (or H and T ). Each is as
likely as the other to occur, so we know that:

P(H) =
1
2

To find the probability of a particular event, we look at how many possible outcomes would contribute to that event,
and divide that number by the total number of outcomes in the sample space.
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P(E) =
EventSpace

SampleSpace

When we roll a single 6-sided die, we know that the chances of rolling a 3 are 1 in 6. This is, in effect, the probability
of rolling 3:

P(3) =
1
6

Example 2

Determine the probability of scoring 5 as the combined score of a roll of 2 dice.

Solution

We have just seen (in example 2) that there are 4 ways we can score 5 if we roll 2 dice: {(1 & 4), (2 & 3), (3 &
2), (4 & 1)}. The sample space consists of 6× 6 = 36 elements, so the probability of rolling a 5 with 2 dice is
P(5) = 4

36 = 1
9

Example 3

Four coins are tossed simultaneously. What is the probability of getting three or more heads?

Solution

We’ll start by listing all the possible outcomes in a table. But how many elements will the table have?

Remember that when we rolled 2 dice together, we found the number of outcomes by multiplying the number of
outcomes for one die by the number of outcomes for the other die. So if we’re flipping four coins, it makes sense to
multiply the number of outcomes for each of the four coins together. There are 2 outcomes for each coin, so when
all four coins are flipped there should be 2×2×2×2 = 16 outcomes. Let’s organize them as follows:

Once we fill out the table, we see that there are indeed 16 possible outcomes, and 5 of those outcomes match our
event. So the probability of getting three or more heads is P(3 or more heads) = 5

16 .

Perform a Probability Simulation

A probability simulation is an experiment designed to determine a probability from many trials. By looking at the
number of favorable outcomes and dividing by the number of trials, we can get an estimate of the true probability.
The more trials we can do, the better our estimate of the true probability will be, but given that we can’t do infinitely
many trials, the result we get will always be just an estimate of the true probability. Often we perform probability
simulations because we can’t determine theoretical probability from looking at the sample space.
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Example 4

A cable TV company sends out a repair technician to replace faulty receiver boxes. The company has boxes made by
Panasonic and Scientific Atlanta, both in equal quantities. The technician carries 3 of each type of box in his van,
and always replaces a box with one of the same brand. If the technician visits 4 homes before returning back to the
depot, determine the probability that he will not have enough of one box type to make all the needed replacements.

Solution

This is a situation that we can model far more easily than we could conduct a real-life experiment. Since there are
equal numbers of both boxes, we need to set up a model with a probability of 1

2 for each element, like a coin toss.
Visiting four houses where each house has an equal chance of needing one type of box or the other is like flipping a
coin four times. Getting four heads or four tails is like needing four of one type of box, which is the only situation
where the technician would not have enough of one type.

So let’s suppose we flip four coins 50 times and record the results, and they look like this:

Out of 50 trials, it’s as if the technician required four of the same type of box 6 times. So we can say that the
probability that the technician will run out of one box type is approximately 3

25 or 0.12.

Notice that instead of actually flipping the coins a lot of times, we could have used our earlier knowledge of the
sample space for four coin flips:

Here, we can see that we would expect the technician to run out of one type of box about 2 times out of 16, so the
probability is about 1

8 or 0.125. But if we hadn’t known for sure what the odds of getting heads or tails on each flip
were, we wouldn’t have been able to calculate the odds of getting four heads or tails this way, so we would have had
to find out by experiment instead.

We also can check probability calculations like this against actual experimental data to see for ourselves whether
something happens as often as we’d expect it to. If it doesn’t, something might be going on that we need to
investigate.

648

http://www.ck12.org


www.ck12.org Chapter 13. Probability and Statistics

Find Experimental Probability of an Event

We’ve just seen, in the last example, how we can model one system with another. We also used a results table to
approximate the probability of a certain event occurring (the technician running out of either type of box). We can
approximate the probability of an event by using:

P(E)≈ number of matching events
total number of trials

Randomness in the results will mean that we always get an approximation of the true probability, but the more trials
we do, the more accurately our experimental probability will match the theoretical probability.

Example 5

Nadia and Peter are playing dice, but Peter keeps winning and Nadia suspects him of cheating. She is suspicious
about the number of times Peter rolls a six, and so she conducts the following experiment: She rolls the suspect die
100 times, writing down the result each time. The results are:

4,1,4,5,3,6,2,5,1,6,2,6,4,5,1,6,4,3,6,3,2,1,1,3,4,

5,5,2,3,1,1,2,3,1,2,2,1,6,6,3,4,6,3,6,6,2,2,3,4,6,

1,6,6,2,6,4,3,3,2,5,3,3,2,6,6,6,6,6,1,4,1,2,6,6,6,

3,6,4,5,6,3,5,4,6,6,4,6,6,6,6,6,2,6,6,1,1,5,1,4,6.

Organize the data in a table and determine if 6 is more likely to come up then the other numbers.

Solution

Here’s what we get if we tally up all the results in a table:

TABLE 13.1:

Number Tally Total P(number)
1 @@||||@@||||@@|||| 15 P(1) = 15

100 ≈ 0.15
2 @@||||@@|||| |||| 14 P(2) = 14

100 ≈ 0.14
3 @@||||@@||||@@|||| 15 P(3) = 15

100 ≈ 0.15
4 @@||||@@|||| ||| 13 P(4) = 13

100 ≈ 0.13
5 @@|||| |||| 9 P(5) = 9

100 ≈ 0.09
6 @@||||@@||||@@||||@@||||@@||||@@|||| |||| 34 P(6) = 34

100 ≈ 0.34

It’s clear looking at the table that something strange is going on with the die in question – 6 occurs approximately
twice as often as the other numbers, so we could reasonably assume that the die is weighted unfairly. However, we
still can’t be 100% certain that the results we are seeing are not just due to chance. We must therefore talk only in
terms of likelihood, and not certainty.
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Find Odds For and Against an Event

When we talk of probability, we generally think (as we’ve seen in this lesson) of the ratio of the number of times
our event occurs to the number of times the experiment was carried out.

Another way to talk about the chances of an event occurring is with odds. You may have heard of the phrases
“fifty-fifty” or “even odds” to describe an unpredictable situation like the chances of getting heads when you toss
a coin. The phrase means that the coin is as likely to come up tails as it is heads (each event occurring 50% of the
time). The odds of an event are given by the ratio of the number of times the event occurs to the number of times
the event does not occur. In sample space terms it means:

Odds =
number of matching events in sample place

number of non-matching events in sample place

whereas we would describe probability as

Probability =
number of matching events in sample place

number of total events in sample place

To avoid confusion with probability, odds are usually left as a ratio such as 1:5, which would be read as “one to
five”. When probability is read as a ratio, it’s usually written as a fraction like 1

5 , which would usually be read as
“one in five.”

Example 6

Find the odds of the following events:

a) Tossing a coin and getting heads.

b) Rolling a die and getting a 3.

c) Tossing 4 coins and getting exactly 3 tails.

Solution

The key to finding odds is looking at how many outcomes result in the event and how many do not:

a) The sample space consists of 2 outcomes: 1 heads, 1 not-heads. The odds of getting heads are 1 : 1 (one to one,
or even).

b) The sample space consists of 6 outcomes: 1 three and 5 not-three. The odds of getting three are 1 : 5 (one to
five).

c) Look back at example 4, where we found the sample space for tossing 4 coins. The sample space consists of 4
outcomes where exactly 3 tails came up and 12 outcomes when they did not. So the odds of getting 3 tails are 3 : 12
= 1 : 4 (one to four).

Look carefully at part b above. This illustrates the need to avoid confusion between odds and probability. We know
that the probability of getting a 3 is P(3) = 1

6 or “one in six,” but the odds describes the same event with the ratio 1
: 5 or “one to five”.

Review Questions

1. Find the number of outcomes in the sample space of:
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a. Tossing 3 coins simultaneously.
b. Rolling 3 dice and summing the score.
c. Rolling 3 dice and interpreting the result as a 3 digit number.
d. Pulling a card from a standard 52-card deck.

2. Find the theoretical probability of

a. Tossing 3 coins simultaneously and getting 2 or more heads.
b. Rolling 3 dice, summing the score and getting 17.
c. Rolling 3 dice and interpreting the result as a 3 digit number, and getting 333.
d. Pulling a club from a standard 52-card deck.

3. Find the odds of

a. Tossing 3 coins simultaneously and getting 2 or more heads.
b. Rolling 3 dice, summing the score and getting 12.
c. Rolling 3 dice and interpreting the result as a 3 digit number, and not getting 333.
d. Pulling a club from a standard 52-card deck.

4. Peter and Andrew each visit the hardware store in the high street every week. The store is open 6 days a week
(it is closed on Sundays) and Peter and Andrew visit the store on random days when it is open.

a. Use a pair of dice to simulate what day Andrew and Peter each visit the store, and determine experimen-
tally the probability that they both visit the store on the same day.

b. What would you expect the theoretical probability to be?

5. Find experimentally both the probability and odds for the next car passing a stoplight being red if the previous
25 car colors were: red, blue, white, blue, silver, red, black, black, white, red, green, red, black, blue, white,
red, silver, white, red, black, white, blue, silver, red, black.

6. In each of the following situations, determine whether you could calculate the theoretical probability of the
given event based on your knowledge of the possible outcomes, or whether you would have to do a test (or get
more real-world information some other way) to find the experimental probability:

a. Flipping a coin three times in a row and getting three heads.
b. Pulling a nickel from your pocket when you know you have three nickels and five dimes in your pocket.
c. Pulling a nickel from your pocket when you know you have ten coins in your pocket but can’t remember

what they are.
d. Guessing the right answer on a multiple-choice question.
e. Guessing the right answer on a free-response question.
f. Getting a perfect score on a twenty-question multiple-choice test.
g. Getting a perfect score on a test that has ten multiple-choice questions and ten free-response questions.
h. Guessing a randomly chosen high school student’s age correctly.
i. Sharing a birthday with one of your three best friends.
j. Getting a flat tire while driving home.
k. Having your left front tire be the one that goes flat, whenever you do get your next flat tire.
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13.2 Probability and Permutations

Learning Objectives

• Identify, list and count permutations.
• Recognize factorial notation and use factorials to count permutations
• Find permutations using a formula.
• Find probability in simple cases using permutations.

Introduction

In this lesson we’ll be looking at ways of arranging things. To illustrate what we mean by this, let’s look at a simple
example. Think about choosing your favorite color from the following list of choices; red, blue, green, yellow, pink,
purple, orange, brown, black. Clearly there are nine different colors, so there are nine possible choices you could
make.

Now think about choosing your top three colors in order of preference. There are many different ways you can
choose the top three. You might choose red as your favorite, followed by black, then green. Someone else might
choose the same three colors as you, but in a different order! When you are choosing items from a list and the
order in which you choose them is important, the arrangement is called a permutation. How many different
permutations do you think there are in this situation?

In this lesson, we’ll use counting methods to determine how many permutations a given situation has. We’ll also
discover a formula to calculate permutations when counting alone is impractical.

Counting Permutations

In simple cases, sometimes it’s easiest to calculate permutations by just listing all the possibilities and counting
them. Let’s examine a situation where it is relatively straightforward to do that.

Example 1

Nadia and Peter are going to watch two movies on a rainy Saturday. Nadia will choose the first movie, and Peter
gets to choose the second. The four movies they have to choose from are The Lion King, Aladdin, Toy Story and
Pinocchio. Given that Peter will choose a different movie than Nadia, how many permutations are there for the
movies they watch?

Solution

Since the order in which they watch the movies is important, and they don’t plan to choose the same movie twice,
we can list all the different possibilities in a table:
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TABLE 13.2:

First Movie Second Movie
Lion King Aladdin
Lion King Toy Story
Lion King Pinocchio
Aladdin Lion King
Aladdin Toy Story
Aladdin Pinocchio
Toy Story Lion King
Toy Story Aladdin
Toy Story Pinocchio
Pinocchio Lion King
Pinocchio Aladdin
Pinocchio Toy Story

You can see that this table contains all the possibilities for the situation. There are four movies for Nadia to choose
from. For every movie that Nadia chooses first, Peter has three choices left for his movie. By simply counting the
rows in the table you can see that there are 12 permutations in this situation.

Example 2

I have 5 cards with the numbers 1 through 5 on them. I take three cards and arrange them to form a 3-digit number.
How many 3-digit numbers can I make?

Since the numbers we can make fit a numerical ordering pattern, we can list the possibilities in increasing order:

123 124 125 132 134 135 142 143 145 152 153 154

213 214 215 231 234 235 241 243 245 251 253 254

312 314 315 321 324 325 341 342 345 351 352 354

412 413 415 421 423 425 431 432 435 451 452 453

512 513 514 521 523 524 531 532 534 541 542 543

By arranging the table this way, you can see how the number of remaining choices decreases as we choose numbers.
There are five choices for the first number, four choices for the second number and three choices for the third
number. Counting the table entries gives a total of 60 permutations.

If we look closely at the last two examples we can see a pattern start to appear. Mathematicians love patterns—they
tend to lead to formulas, which make life much easier! After all, why spend hours counting possibilities when a
formula can calculate them in seconds?

In example 1, Nadia had four choices and Peter had three. The number of permutations was 4×3 = 12.

In example 2 there were 5 choices for the first digit, followed by 4 for the second digit, and then 3 for the third digit.
The total number of permutations was 5×4×3 = 60.

In the introduction, we thought about picking our top three choices from a list of nine colors. You should now be
able to do that. Even without listing all the possibilities, you can see that you have 9 choices for your favorite, 8
choices for your second favorite, and 7 choices for your third. The number of permutations is thus 9×8×7 = 504.

653

http://www.ck12.org


13.2. Probability and Permutations www.ck12.org

Factorial Notation

Look again at the color list in the introduction, and think this time about writing down every color in order of
preference. You would have 9 choices for your favorite, followed by 8 choices for your second favorite, then 7, then
6, then 5, and so on. To determine the number of permutations for any possible list, we would perform the following
calculation:

Color Permutations = 9×8×7×6×5×4×3×2×1

This sort of pattern crops up a great deal in statistics, probability and number theory. It’s so common that it has its
own notation: 4×3×2×1 is written as 4! and is called four factorial. So the number of color permutations above
is nine factorial = 9! = 362,880.

So what happens when we only want the first few terms in a factorial? For example, the number of permutations for
arranging ALL the colors is 362,880, but the number of permutation for the top three is 504.

One way to get this result is to divide one factorial by another. Look at nine factorial divided by six factorial:

9!
6!

=
9×8×7× �6× �5× �4× �3× �2× �1

�6× �5× �4× �3× �2× �1
= 9×8×7 = 504

The terms in six factorial cancel out all but the first three terms in nine factorial. You should see that if we wanted
the first four terms we would divide by 5!, or for only the first two terms we would divide by 7!. In general, however
many terms we want to keep, we divide by the factorial of the quantity:

(number o f items in list)− (number o f items we are choosing)

So to get the first five terms in twelve factorial we would use the formula 12!
(12−5)! =

12!
7! .

Formulas like this are useful if you have a calculator that can handle factorials: you can just type in 12!
7! instead of

12× 11× 10× 9× 8. However, some factorials are too big for some calculators to handle, so in those cases you
would need to simplify the fraction and do the multiplication by hand.

Example 3

How many ways can Dale choose his favorite 5 songs from the current Billboard Hot 100T M?

Solution

To find the answer, consider how many choices he has at each stage. For his first choice he has 100 songs to choose
from, then 99, then 98 and so on. We need the first 5 terms only, so our calculation is:

Permutations =
100!

(100−5)!
=

100!
95!

= 100×99×98×97×96 = 9,034,502,400

Notice that that’s a pretty big number – far too large to count in a table! This is why we need formulas to help us
count permutations.

Finding Permutations Using a Formula

We’ve just seen that a formula for determining the number of permutations for choosing 3 objects from a list of 9
objects is:
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9!
6!

=
9×8×7× �6× �5× �4× �3× �2× �1

�6× �5× �4× �3× �2× �1
= 9×8×7 = 504 permutations

Now we’re ready to come up with a general formula for determining permutations. When we are choosing r ordered
items from a group of n items, the number of permutations is given by the first r terms in n! We use the notation nPr

for this, and the general form for calculating permutations is:

nPr =
n!

(n− r)!

Example 4

How many ways are there to choose a 5-song mix from a CD containing 12 tracks?

Solution

Choosing 5 from 12: 12P5 =
12!

(12−5)! =
12!
7! = 12×11×10×9×8 = 95,040 ways

Example 5

How many 3-letter “words” can be made from the letters in “computer”? (The words do NOT need to be real, or
even pronounceable – for example “rtp” would count as a word)

Solution

Choosing 3 from 8: 8P3 =
8!

(8−3)! =
8!
5! = 8×7×6 = 336 words

Find Probability Using Permutations

When we talk about probability, we are talking about chance. We may use words like ’possible’ to indicate something
has a low to medium chance of happening, or ’probable’ to indicate something has a high chance of happening.

When we perform calculations in probability we are generally looking at a situation to find the number of favorable
outcomes in relation to the total number of all possible outcomes. In mathematics, a favorable outcome simply
means the outcome we are looking to solve for. Over the course of 100 days a child may get ice-cream on 25 of those
days. A mathematician would look at that data and conclude that the fraction of days when the child gets ice-cream
is one-fourth. He may also conclude that on any day the child has a “one in four chance” of receiving ice-cream.
This is one way to think about probability: the number of times something favorable happens divided by the total
number of outcomes. We have no way of knowing for sure if the child is going to get ice-cream today, but we can
estimate the chance that he will by looking at the number of times he did get ice-cream and the number of times he
did not.

Example 6

If Nadia and Peter have chosen their movies as in example 1, what is the probability that Aladdin is the second movie
they will watch?

Solution

If we look back at example 1, we see that there are a total of 12 possible outcomes. Out of those 12, Aladdin was
the second movie 3 times. So the probability is as follows:

P(Aladdin being second) = 3
12 = 1

4 =one in four or 25%

Example 7
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The card game “21 hearts” consists of dealing two cards to a player and counting the points as follows: face cards
(King, Queen, Jack) are worth 10 points, and number cards are worth their face value except for aces, which are
worth 11. The maximum score is 21. If the game is played only with the 13 cards in the hearts suit, what is the
probability that a player will score 21?

Solution

To find the answer, we need to know two pieces of information: 1) the total number of permutations it’s possible to
get in the game and 2) the number of permutations that will score 21.

To find the total number of permutations for the game, use the formula nPr with n = 13 and r = 2:

13P2 =
13!

(13−2)!
=

13!
11!

= 13×12 = 132 permutations

Now we need to determine how many of those permutations score 21. We can do that by simply listing all ways to
score 21. Remember, of course, that as we are talking about permutations, the combinations (ace, king) and (king,
ace) each count as separate hands! The winning permutations are:

(ace, king) (king, ace) (ace, queen) (queen, ace)

(ace, jack) (jack, ace) (ace,10) (10,ace)

There are 8 winning hands, so the probability of scoring 21 is given by:

P(21) = 8
132 = 2

33 =two in thirty-three or approximately 6%.

Sometimes when looking at probability (especially in games of chance), there are too many wining permutations to
calculate directly. In such circumstances it can be useful to remember that a player must either win or lose – it’s
impossible to do both! In these circumstances remember that:

P(winning)+P(losing) = 1

Since it’s certain that you’ll either win or lose, the probability that you’ll win and the probability that you’ll lose add
up to 1.

So to calculate the probability of losing we can use:

P(winning) = 1−P(losing)

Example 8

A funfair game consists of throwing three darts at a board with 16 numbered squares in a 4× 4 grid. The squares
are numbered 1 through 16 and no number is repeated or omitted. In order to win a player needs to score 9 or more.
If a dart hits a square that has already been taken or if a dart misses the board the player must throw the dart again.
What are the chances of winning the game?

There are too many winning permutations to list easily, but there are only a few losing permutations. If you need a
score of 9 or more to win, then you’ll lose with a score of 8 or less. There are only four combinations of numbers
that add up to 8 or less (remember that you can’t repeat a number), and they can occur in any of the following orders:
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1,2,3(= 6) 1,3,2 2,1,3 2,3,1 3,1,2 3,2,1

1,2,4(= 7) 1,4,2 2,1,4 2,4,1 4,1,2 4,2,1

1,2,5(= 8) 1,5,2 2,1,5 2,5,1 5,1,2 5,2,1

1,3,4(= 8) 1,4,3 3,1,4 3,4,1 4,1,3 4,3,1

So there are 24 permutations totaling less than 9.

The total number of ways to choose 3 numbers out of 16 is

16P3 =
16!

16−3!
=

20!
13!

= 16×15×14 = 3360 permutations

So the probability of losing the game is 24
3360 , or 1

140 . That means the probability of winning is:

P(winning) = 1−P(losing) = 1− 24
3360 = 1− 1

140 = 139
140 or approximately 99.3%.

Review Questions

1. In how many ways can the letters a,b,c,d,e be arranged?
2. In how many ways can the digits 1, 2, 3, 4, 5, 6, 7, 8, 9 be arranged?
3. From a collection of 12 books, 5 are to be selected and placed in a particular order on a shelf. How many

arrangements are possible?
4. 3 cards are taken at random from a deck of 52 cards and laid in a row. How many possible outcomes are there

for the card arrangements?
5. How many distinct 3-letter permutations can you make from the letters in the word HEXAGON?
6. How many distinct 2-letter permutations can you make from the letters in the word GEESE?
7. A jukebox has 50 songs on it. If $1.00 pays for three songs, how many permutations are there for choosing 3

different songs?
8. Evaluate the following:

a. 3P1
b. 7P1
c. 6P2
d. 8P8
e. 9P3
f. 7P3
g. 19P7
h. 99P3
i. 3P0

9. What is the probability that a randomly generated 3-letter arrangement of the letters in the word SPIN ends
with the letter N?

10. A bag contains eight chips numbered 1 through 8. Two chips are drawn randomly from the bag and laid down
in the order they were drawn. What is the probability that the 2-digit number formed is divisible by 3?

11. A prepaid telephone calling card comes with a randomly selected 4-digit PIN, using the digits 1 through 9
without repeating any digits. What is the probability that the PIN for a card chosen at random does not contain
the number 7?
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13.3 Probability and Combinations

Learning Objectives

• Identify, list and count combinations.
• Use permutations to help calculate combinations
• Find combinations using a formula.
• Find probability in simple cases using combinations.

Introduction

In the previous lesson we looked at situations where the order of an arrangement is important. For example, when
looking at 3-digit numbers, the number 123 is very different from the number 312, even though it contains the
same 3 digits. But in some situations, the order is not important – for example, when looking at cards in a hand of
poker, or choosing toppings to put on a pizza. In these situations, when order is not important, we are looking
at combinations of items. For example, if you are a poker player you might want to know the probability of being
dealt four aces in a hand of five cards. You don’t care in which order you receive the ace cards – only the fact that
you have four of them is important.

Counting Combinations

Just as with permutations, it’s sometimes easiest to calculate combinations by listing all the possibilities available,
and counting them. The only difference is, when we list one combination, we automatically exclude a larger number
of permutations. For example a poker hand that is (ace, ace, ace, ace, king♣) is identical to (ace, ace, ace, king♣,
ace), (ace, ace, king♣, ace, ace), (ace, king♣, ace, ace, ace) and (king♣, ace, ace, ace, ace). So we must be careful
to use a listing method that includes all combinations without repeating ones that are really the same. Let’s examine
a situation where it’s relatively straightforward to do that.

Example 1

Anne wishes to knit herself a striped sweater. She has 4 colors of yarn available; red, blue, green and yellow. How
many different combinations of two colors does she have to choose from?

Solution

When we just choose color pairs, there will be fewer combinations than we would have if we were counting
permutations as in the previous lesson. For example red and blue is equivalent to blue and red, and we should
only count one as a unique pairing. We start by listing the color pairs but we will also write down equivalent pairings
at the same time. This will help prevent us from repeating combinations:

TABLE 13.3:

Pairing Equivalent pairings (do not count)
Red & blue blue & red
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TABLE 13.3: (continued)

Pairing Equivalent pairings (do not count)
Red & green green & red
Red & yellow yellow & red
Green & blue blue & green
Green & yellow yellow & green
Yellow & blue blue & yellow

So there are 6 distinct combinations. There are also 6 “repeat” pairings – for every pair of colors we choose there is
1 combination but 2 permutations. Anne can choose from six distinct color pairs for her sweater.

Example 2

Triominoes Pizza Company specializes in 3-topping pizzas. If the available toppings are cheese, pepperoni, mush-
room, pineapple and olives, how many different 3-topping combinations can customers choose from?

Solution

We’ll start by making a table and list first choice, second choice and third choice:

TABLE 13.4:

1st topping 2nd topping 3rd topping
cheese pepperoni mushroom
cheese pepperoni pineapple
cheese pepperoni olives
cheese mushroom pineapple
cheese mushroom olives
cheese pineapple olives
pepperoni mushroom pineapple
pepperoni mushroom olives
pepperoni pineapple olives
mushroom pineapple olives

Note that as we progress through the choices for first topping, the number of combinations we have for the second
and third toppings get fewer. This is because some combinations have already been used, in a different order.

By counting the table entries we see that there are 10 possibilities for a 3-topping pizza.

Determining Combinations by Looking at Permutations

You can see that there are always fewer combinations than permutations in a given situation – but you should also
see that knowing which combinations have already been used is important to avoid counting combinations twice.
One combination can give rise to several permutations of the same objects.

Another way to calculate combinations is this: If we know how many permutations there are in a system and
how many permutations there are for each combination, then we can divide the number of permutations by the
number of permutations for each combination to get the number of combinations.

To illustrate this, look again at the Triominoes Pizza menu. If we were to look at permutations of toppings, we
could quickly calculate that there are 5×4×3 = 60 permutations. But for every 3-topping choice there are several
permutations which are all equivalent. For example, the following all give identical pizzas:
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Cheese, pepperoni & mushroom Cheese, mushroom & pepperoni

Pepperoni, cheese & mushroom Pepperoni, mushroom & cheese

Mushroom, cheese & pepperoni Mushroom, pepperoni & cheese

So for every different combination there are 6 distinct permutations. Since we have a formula for counting permuta-
tions, we can use it to find out how many total permutations there are and simply divide that number by 6:

Combinations =
1
6
·5 P3 =

1
6
· 5!

2!
=

1
6
· 5×4×3× �2× �1

�2× �1
=

60
6

= 10

Find Combinations Using a Formula

If you look back at examples 1 and 2 you can see that the number of permutations is a simple multiple of the number
of combinations. In example 1 there are two times as many permutations as combinations. In example 2 there are
six times as many permutations as combinations. One question you might be asking is: “How do I know how the
number of combinations is related to the number of permutations?”

A more important question might be “where did the numbers two and six come from?” If you think carefully you
should realize that any time you’ve chosen 2 objects, there are only 2 ways of ordering them, while if you’ve chosen
3 objects there are 3! ways of ordering them (6 ways). Similarly, if you choose 7 objects, there will be 7! ways of
arranging them. We can make use of this fact when calculating combinations. The number of combinations is the
number of permutations divided by the number of ways of arranging the items you choose. If you choose r objects
from a collection of n objects there are r! ways of arranging what you choose. In equation form, the number of
combinations is therefore:

nCr =
n!

(n− r)!r!

In other words, the number of combinations is equal to the number of permutations divided by r! (because r! is
the number of permutations for each combination). We can use this new formula to quickly calculate combinations
without listing them all.

Example 3

Andrew is packing for a vacation. He owns twelve shirts and wants to pack five of them. How many combinations of
shirts does he have to choose from?

Solution

Since the order he packs his shirts in is not important, we are looking at a combination. He is choosing five shirts
from a total of twelve:

Choosing 5 from 12: 12C5 =
12!

(12−5)!5! =
12!
7!5! =

12×11×10×9×8
5×4×3×2×1 = 792 combinations.

Find Probability Using Combinations

Just as with permutations, combinations crop up frequently in probability. In many card games the objective is to
acquire a winning hand. In order to do that, it’s useful for players to know how likely a given hand is to arise, and
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also the probability that another player has a better hand. Mathematicians have been studying such games of chance
for centuries.

Example 4

A word game requires players to select 4 tiles from a bag containing 26 tiles, each with one of the letters A through
Z written on it. If each letter appears once and only once, what is the probability that a player will be able to spell
CATS with his tiles?

Solution

Since a player needs a C, an A, a T and an S in any order, we are looking at a combination calculation. We first
need to determine how many combinations there are, choosing 5 letters from a total of 26:

Choosing 4 from 26: 26C4 =
26!

(26−4)!4! =
26!

22!4! =
26×25×24×23

4×3×2×1 = 59,800 combinations.

Since only one combination allows a player to spell CATS, the probability of getting that combination is 1
59,800 .

Example 5

A funfair game consists of pulling numbered chips from a bag. The game starts with nine chips numbered 1 through
9, and players are allowed to pull out three chips. A player wins by drawing the number 7 chip. What is the
probability that a player will win?

Solution

To find the probability for winning this game we need to know two pieces of information: 1) the total number of
combinations for the game and 2) the number of combinations that contain a 7.

To find the total number of combinations for the game, use the formula nCr with n = 9 and r = 3:

9C2 =
9!

(9−3)!3!
=

9!
6!3!

=
9×8×7
3×2×1

= 84 combinations

Now we need to determine how many combinations contain a 7. We can figure this out by reasoning as follows:
given that there MUST be a 7 in the list, the number of combinations that contain a seven is the same as the number
of combinations of choosing any two numbers out of the eight chips that don’t include the 7. In other words, if we
imagine that we got to pick the 7 chip on purpose, how many ways would there be of picking the other two chips?

To find that number, we use the formula nCr with n = 8 and r = 2:

8C2 =
8!

(8−2)!2!
=

8!
6!2!

=
8×7
2×1

= 28 combinations

So the probability is given by:

P(getting a 7) =
84
28

=
1
3
= or one in three.

Example 6

Calculate the probability of being dealt four aces in a five card poker hand.

Solution

The first thing we need to know to solve this problem is the total number of unique hands. Since players can arrange
their cards however they wish, the order of the cards is unimportant. So we will calculate, using the formula, the
number of combinations for choosing 5 cards from a 52 card deck.
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Choosing 5 from 52: 52C5 =
52!

(52−5)!5! =
52!

47!5! =
52×51×50×49×48

5×4×3×2×1 = 2,598,960 unique hands

Next we need to calculate how many hands there are that contain four aces. This sounds difficult, but we can think
about it like this:

• If a hand contains four aces, it must also contain exactly ONE other card.
• Since the four aces are accounted for, there are 48 (that’s 52 – 4) cards left in the deck.

Since a unique hand is independent of the order in which the cards are dealt, there must be 48 unique hands that
contain four aces (one unique hand for every non-ace card in the deck).

There are 48 possible hands that contain four aces. So the probability of being dealt four aces in poker is:

P(four aces) =
48

2,598,690
=

1
54,145

Review Questions

1. How many combinations are possible in the following situations?

a. Buying a hot-dog with two of the following toppings: ketchup, mustard, chili, cheese, pickles
b. Choosing 5 CDs from a selection of 8.
c. Selecting 3 games from a box containing Scrabble, Twister, Connect-4, Snap Mousetrap.
d. What do you notice about the answers to parts a and c? How might this be explained by the formula for

finding numbers of combinations?

2. Evaluate the following:

a. 3C1
b. 7C1
c. 6C2
d. 8C8
e. 9C3
f. 9C6
g. 7C3
h. 17C4
i. 30C11
j. 10C0

3. A bag contains 13 dominoes. Each domino has a different number of dots on it, and the numbers of dots are 0,
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, and 12. Peter selects 2 dominos at random from the bag. What is the probability
that the total number of dots on the two dominoes he selects is 7?

4. A town lottery requires players to choose three different numbers from the numbers 1 through 36.

a. How many different combinations are there?
b. What is the probability that a player’s numbers match all three numbers chosen by the computer?
c. What is the probability that two of a player’s numbers match the numbers chosen by the computer?
d. What is the probability that one of a player’s numbers matches the numbers chosen by the computer?
e. What is the probability that none of a player’s numbers match the numbers chosen by the computer?

5. Looking at the odds that you came up with in question 4, devise a sensible payout plan for the lottery—in
other words, how big should the prizes be for players who match 1, 2, or all 3 numbers? Assume that tickets
cost $1. Don’t forget to take into account the following:
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a. The town uses the lottery to raise money for schools and sports clubs.
b. Selling tickets costs the town a certain amount of money.
c. If payouts are too low, nobody will play!
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13.4 Probability of Compound Events

Learning Objectives

• Find the probability of mutually exclusive events.
• Find the probability of overlapping events.
• Find the probability of independent events.
• Find the probability of dependent events.

Introduction

Imagine you are going to see a movie. Your friend has just bought the tickets, and you are not sure which movie you
are seeing. There are 4 movies playing. Harry Potter (which you have already seen, but your friend has not) is one
of them.

• What are the chances you will be seeing Harry Potter?
• What are the chances you will NOT be seeing Harry Potter?

This is an easy example of a mutually exclusive event: you will either see Harry Potter, or you will not. You cannot
do both!

Finding the probability of mutually exclusive events is easy; what’s not as easy is finding the probability of events
that can overlap depend on each other. In this lesson, you’ll learn how to find the probability of any two events that
can be related to each other.

Find the Probability of Mutually Exclusive Events

In probability, when two events are mutually exclusive, the probability of both happening together is zero.

Examples of mutually exclusive events in probability include:

• Flipping a coin and:

– getting heads
– getting tails

• Picking a single card from a deck and:

– getting an ace
– getting a 7
– getting a queen
– etc...

• Picking a single colored marble from a bag and:
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– getting a red marble
– getting a blue marble
– getting a green marble
– etc..

What this means mathematically is two-fold. If our two mutually exclusive events are A and B:

• P(A and B) = 0 There is no possibility of both events happening.
• P(A or B) = P(A)+P(B) To find the probability of either event happening, sum the individual probabilities.

Example 1

There are 7 marbles in a bag: 4 green, 2 blue and 1 red. Peter reaches into the bag and blindly picks a single marble.
The following letters refer to these events:

• A – the marble is red
• B – the marble is blue
• C – the marble is green

Find the following:

a. P(A)

b. P(B)

c. P(C)

d. P(B or A)

e. P(C or A)

f. P(C or B or A)

g. P(A and C)

Solution

Look at the 3 events A,B and C. They must be mutually exclusive: if we pick a single marble from the bag then it
must be either red or blue or green. There is no possibility of it being both blue and green!

a) There are 7 marbles and only one is red, so P(A) = 1
7 .

b) There are 7 marbles and 2 are blue, so P(B) = 2
7 .

c) There are 7 marbles and 4 are green, so P(C) = 4
7 .

d) The events are mutually exclusive, therefore P(B or A) = P(B)+P(A) = 2
7 +

1
7 = 3

7 .

e) The events are mutually exclusive, therefore P(C or A) = P(C)+P(A) = 4
7 +

1
7 = 5

7 .

f) The events are mutually exclusive, therefore P(C or B or A) = P(C)+P(B)+P(A) = 4
7 +

2
7 +

1
7 = 7

7 = 1.

g) The events are mutually exclusive, so P(A and C) = 0.

The last two results make sense: P(C or B or A) means the probability of the marble being green blue or red. It
must be one of these. And P(A and C) is the probability of the marble being both red and green. There are no such
marbles in the bag!

Earlier we learned about permutations and combinations. We often have to use these calculations when determining
the probability of mutually exclusive events.

Example 2

There are 7 marbles in a bag: 4 green, 2 blue and 1 red. Peter reaches into the bag and blindly picks out 4 marbles.
Find the probability that he removes at least 3 green marbles.
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Solution

There are 2 distinct ways this could occur:

a) Peter picks 3 green marbles and 1 other.

b) Peter picks 4 green marbles.

These events are mutually exclusive – he cannot remove (three green and one other) and (four green) at once. If we
find P(A) and P(B) we know that the total probability P(A or B) = P(A)+P(B).

We are choosing 4 marbles from a bag containing 7 marbles. The total number of marble combinations there are is
7C4 =

7!
4!3! = 35 possible combinations.

a) The number of combinations that contain 3 green marbles +1 other:

First, the 3 greens. We are choosing 3 green marbles out of a total of 4: 4C3 =
4!

3!1! = 4

Now to choose 1 other – we’re picking 1 marble out of the 3 non-green ones: 3C1 =
3!

2!1! = 3

The total number of combinations of 3 greens and 1 other = 4C3×3 C1 = 4×3 = 12

So P(A) = 12
35 .

b) The number of combinations that contain 4 green balls:

We are choosing 4 from 4 possible green balls: 4C4 = 1 possible combination

So P(B) = 1
35

P(A or B) = P(A)+P(B), so the probability of getting at least 3 green balls is 12
35 +

1
35 = 13

35 or slightly better than
1 in 3.

Find the Probability of Overlapping Events

Sometimes we wish to look at overlapping events. In essence, this means two events that are NOT mutually
exclusive. For instance, if you pick a card at random from a standard deck, what is the probability that you’ll
get a card which is either a seven or a diamond? Let’s use this as our next example:

Example 3

If you pick a card at random from a standard 52-card deck, what is the probability that you get a card which is either
a seven or a diamond?

Solution

One thing we can say for certain is that these two events are not mutually exclusive (it is possible to get a card which
both a seven and a diamond). First of all, let’s look at the information we have:

• There are 52 cards – the chances of picking any particular one is 1
52 .

• There are 4 sevens (diamond, heart, club, spade) – the chances of picking a seven is 4
52 = 1

13 .
• There are 13 diamonds (ace through king) – the chances of picking a diamond is 13

52 = 1
4 .

• The chances of picking the seven of diamonds is 1
52 .

So there are 4 sevens, 13 diamonds and 1 card that is both (the seven of diamonds). That means we can’t just add up
the number of sevens and the number of diamonds, because if we did that, we’d be counting the seven of diamonds
twice. Instead, we have to add up the number of sevens and the number of diamonds, and then subtract the number
of cards that fit in both categories. That means there are (4+ 13− 1) = 16 cards that are seven or diamond. The
probability of getting a seven or a diamond is therefore 16

52 = 4
13 .

We can check this by listing all the cards in the deck and highlighting those that are sevens or diamonds:
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You can see that there are 16 cards that fit, not the 17 we’d get if we just added up the sevens and the diamonds.

Look again at the numbers: the number of cards that are seven or diamond is (number of sevens) plus (number of
diamonds) minus (number of seven and diamond). In probability terms we can write this as:

P(seven or diamonds) = P(seven)+P(diamonds)−P(seven and diamonds)

This leads to a general formula:

For overlapping events : P(A or B) = P(A)+P(B)−P(A and B)

Find the Probability of Independent Events

If the result of one event has no bearing on the probability of the second event, we call them independent events.
For example, if you flip a coin 3 times and get heads 3 times, what is the probability that the next flip will result in
tails? Many people think that the previous run of heads somehow influences the flip to make tails more likely, but in
reality the previous flips have no bearing on the outcome of the new flip – how could they? The coin doesn’t have a
brain or a memory.

(The idea that tails is more likely after a run of heads is called the Gambler’s Fallacy, and it probably arises from
people getting confused about something called prior probability. Now that you’ve learned a little about probability,
you know that getting three heads and one tail is a little more likely than getting four heads on four coin flips, so
before you flip the coin, you’d expect that it’s more likely you’ll get three heads than four heads. But after you’ve
already flipped the coin three times, the chances of getting heads on the first three flips don’t matter any more,
because you already got those three heads; the probability of getting those first three heads has gone from 12.5% to
100%! So the only probability that still matters is the probability of getting heads on the one flip remaining, which
is just the same as it always is on a single coin flip: 50%.)

Because one flip of the coin has no effect on the outcome of any other flips, each flip of the coin counts as an
independent event.

To find the probability of multiple independent events happening together, we multiply the individual probabilities:

For independent events : P(A and B) = P(A) ·P(B)

Example 4

Find the probability of rolling a 5 on a 6-sided die and getting heads if you flip a coin at the same time.

Solution

Clearly the outcome of rolling a die has no effect on flipping a coin, so the two events are independent. So
P(5 and heads) = P(5) ·P(heads) = 1

6 ×
1
2 = 1

12 .
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Example 5

Out of the 480 students in a school, 40 have art first period; also, 96 students have math first period. Find the
probability that a student picked at random will either have math or art in first period.

Solution

A student cannot take both math and art during the same period, so the events are not overlapping. If event A is
having art first period and event B is having math first period, P(A and B) = 0. We want to find P(A or B).

P(A or B) = P(A)+P(B)−P(A and B)

P(A or B) = 40
480 +

96
480 −0

P(A or B) = 96
480

P(A or B) = 1
5 = 20%

Find the Probability of Dependent Events

If the result of one event influences the probability of the second, we call them dependent events. For example, if
you pick two cards from a deck, the chances of getting an ace on the first pick is 4

52 = 1
13 . If you keep that ace and

draw again, the chance of getting another ace on your second pick is less: there are now only 3 aces left in the deck
(of 51 cards), so the chance of getting an ace is 3

51 = 1
17 . To find the probability of getting two aces we multiply the

two individual probabilities: 1
13 ×

1
17 = 1

221 .

Example 6

Three cards are picked from a standard 52 card deck. The cards are not replaced. Find the probability of picking 3
queens.

Solution

There are 52 cards and 4 of them are queens, so the chance of getting a queen on the first pick is 4
52 = 1

13 .

Assuming you get a queen on the first pick, there are 51 cards remaining of which 3 are queens, so the chance of
getting a queen on the second pick is 3

51 = 1
17 .

If you were successful on the second pick, there will be 50 cards remaining of which 2 are queens, so the chance of
getting a queen on the third pick is 2

50 = 1
25 .

The probability of picking 3 queens in a row is 1
13 ×

1
17 ×

1
25 = 1

5525 or 1 in 5,525.

Example 7

100 raffle tickets were sold and Peter bought 4 of them. There are 3 prizes, and winners are selected randomly from
a hat containing all the numbers. Find the probability that Peter wins all 3 prizes.

Solution

For the first draw, Peter’s numbers account for 4 tickets out of 100: 4
100 = 1

25

For the second draw, Peter’s remaining numbers (assuming he won the first draw) account for 3 tickets out of 99:
3
99 = 1

33

For the first draw, Peter’s remaining numbers (assuming he won the first two draws) account for 2 tickets out of 98:
2
98 = 1

49

The probability that Peter wins all 3 prizes is 1
25 ×

1
33 ×

1
49 = 1

40425 or 1 in 40, 425.
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Review Questions

1. Determine whether the following pairs of events are mutually exclusive or overlapping:

a. The next car you see being red; the next car you see being a Ford.
b. A train being on time; the train being full.
c. Flipping a coin and getting heads; flipping a coin and getting tails.
d. Selecting 3 cards and getting an ace; selecting 3 cards and getting a king.
e. Selecting 3 cards and getting 2 aces; selecting 3 cards and getting 2 kings.
f. A person’s age is an even number; a person’s age is a prime number.

2. Determine whether the events are dependent or independent.

a. Driving at night and falling asleep at the wheel.
b. Visiting the zoo and seeing a giraffe.
c. The next 2 cars you see are both red.
d. A coin tossed twice comes up heads both times.
e. Being dealt 4 aces in a hand of poker.
f. It is your birthday and it is a windy day.

3. A cooler contains 6 cans of Sprite, 9 cans of Coke, 4 cans of Dr Pepper and 7 cans of Pepsi. If a can is selected
at random, calculate the probability that it is either Pepsi or Coke.

4. A bag contains 10 colored marbles – 4 red, 4 blue and 2 green. Calculate the probability of:

a. Removing 2 green marbles in a row if you replace the marble each time.
b. Removing 2 green marbles in a row if you do not replace the marble each time.
c. Removing 3 marbles without replacing and getting all blue.
d. Removing 4 marbles without replacing and getting exactly 3 blue.

5. A card is selected at random from a standard 52 card deck. Calculate the probability that:

a. The card is either a red card or an even number (2, 4, 6, 8 or 10).
b. The card is both a red card and an even number.
c. The card is red or even but not both.
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13.5 Measures of Central Tendency and Disper-
sion

Learning Objectives

• Compare measures of central tendency.
• Measure the dispersion of a collection of data.
• Calculate and interpret measures of central tendency and dispersion for real-world situations.

Comparing Measures of Central Tendency

The word “average” is often used to describe the general characteristics of a group of unequal objects. Mathe-
matically, an average is a single number which can be used to summarize a collection of numerical values. In
mathematics, there are several types of “averages” with the most common being the mean, the median and the
mode.

Mean

The arithmetic mean of a group of numbers is found by dividing the sum of the numbers by the number of values
in the group. In other words, we add all the numbers together and divide by the number of numbers.

Example 1

Find the mean of the numbers 11, 16, 9, 15, 5, 18.

Solution

There are six separate numbers, so the mean = 11+16+9+15+5+18
6 = 74

6 = 12 1
3 .

The arithmetic mean is what most people automatically think of when the word average is used with numbers. It’s
generally a good way to take an average, but it can be misleading when a small number of the values lie very far
away from the rest. A classic example would be when calculating average income. If one person (such as former
Microsoft Corporation chairman Bill Gates) earns a great deal more than everyone else who is surveyed, then that
one value can sway the mean significantly away from what the majority of people earn.

Example 2

The annual incomes for 8 professions are shown below. Form the data, calculate the mean annual income of the 8
professions.

TABLE 13.5:

Profession Annual Income
Farming, Fishing, and Forestry $19,630
Sales and Related $28,920
Architecture and Engineering $56,330
Healthcare Practitioners $49,930
Legal $69,030
Teaching & Education $39,130
Construction $35,460
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TABLE 13.5: (continued)

Profession Annual Income
Professional Baseball Player* $2,476,590

(Source: Bureau of Labor Statistics, except (*)-The Baseball Players’ Association (playbpa.com)).

Solution

There are 8 values listed, so the mean is
19630+28920+56330+49930+69030+39130+35460+2476590

8 = $346,877.50

As you can see, the mean annual income is substantially larger than the income of 7 out of the 8 professions. The
effect of the single outlier (the baseball player) has a dramatic effect on the mean, so the mean is not a good method
for representing the ’average’ salary in this case.

Median

The median is another type of average. It is defined as the value in the middle of a group of numbers. To find the
median, we must first list all the numbers in order from least to greatest.

Example 3

Find the median of the numbers 11, 21, 6, 17, 9.

Solution

We first list the numbers in ascending order: 6, 9, 11, 17, 21.

The median is the value in the middle of the set (in bold).

The median is 11. There are two values higher than 11 and two values lower than 11.

If there is an even number of values, then the median is the arithmetic mean of the two numbers in the middle (in
other words, the number halfway between them).

Example 4

Find the median of the numbers 2, 17, 1, -3, 12, 8, 12, 16.

Solution

We first list the numbers in ascending order: -3, 1, 2, 8, 12, 12, 16, 17.

The median is the value in the middle of the set, so the median lies between 8 and 12. Halfway between 8 and 12 is
10, so 10 is the median.

A useful formula for finding the middle value is as follows: if there are n values in the data set, the median is the
n+1

2
th value.

The median is a useful measure of average when the data set is highly skewed by a small number of points that are
extremely large or extremely small. Such outliers will have a large effect on the mean, but will leave the median
relatively unchanged.

Mode

The mode can be a useful measure of data when that data falls into a small number of categories. It is simply a
measure of the most common number, or sometimes the most popular choice. The mode is an especially useful
concept for data sets that contains non-numerical information, such as surveys of eye color or favorite ice-cream
flavor.

Of course, a data set can contain more than one mode; when it does, it is called multimodal. In fact, every value in
a data set could be a mode, if every value appears an equal number of times. However, this situation is quite rare.
You might encounter data sets with two or even three modes, but more than that would be unlikely unless you are
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working with very small sample sets.

Example 5

Jim is helping to raise money at his church bake sale by doing face painting for children. He collects the ages of his
customers, and displays the data in the graph below. Find the mean, median and mode for the ages represented.

Solution

By reading the graph we can see that there was one 2-year-old, three 3-year-olds, four 4-year-olds, etc. In total, there
were 1+3+4+5+6+7+3+1 = 30 customers.

The mean age is found by adding up all the ages multiplied by the number of times each age appears, and then
dividing by 30:

2(1)+3(3)+4(4)+5(5)+6(6)+7(7)+8(3)+9(1)
30

=
170
30

= 5
2
3

Since there are 30 children, the median is half way between the 15th and 16th oldest (that way there will be 15
younger and 15 older than the median age). Both the 15th and 16th oldest fall in the 6-year-old range, therefore the
median is 6.

The mode is given by the age group with the highest frequency. Reading directly from the graph, we see that the
mode is 7; there are more 7-year-olds than any other age.

The following video is an introduction to the mean, median, and mode: http://www.youtube.com/watch?v=uhxtU
t_-GyM.

The narrator models finding the mean, median, and mode of a set of numbers. While this is similar to the content
above, you may find it to be a helpful comparison of what the three measures of central tendency show.

Measures of Dispersion

Look at the graphs below. Each represents a collection of many data points and shows how the individual values
(solid line) compare to the mean of the data set (dashed line). You can see that even though all three graphs have
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a common mean, the spread of the data differs from graph to graph. In statistics we use the word dispersion as a
measure of how spread out the data is.

Range

Range is the simplest measure of dispersion. It is simply the total spread in the data, calculated by subtracting the
smallest number in the group from the largest number.

Example 6

Find the range and the median of the following data:

223, 121, 227, 433, 122, 193, 397, 276, 303, 199, 197, 265, 366, 401, 222

Solution

The first thing to do in this case is to order the data, listing all values in ascending order:

121, 122, 193, 197, 199, 222, 223, 227, 265, 276, 303, 366, 397, 401, 433

Note: It is extremely important to make sure that you don’t skip any values when you reorder the list. Two ways to
do this are (i) cross out the numbers in the original list as you write them in the second list, and (ii) count the number
of values in both lists when you are done. In this example, both lists contain 15 values, so we can be sure we didn’t
miss any (as long as we didn’t count any twice!)

The range is found by subtracting the lowest value from the highest: 433−122 = 311.

And now that the list is ordered, we can see that the median is the 8th value: 227.

Variance

The range is not a particularly good measure of dispersion, as it does not eliminate points that have unusually high
or low values when compared to the rest of the data (the outliers). A better method involves measuring the distance
each data point lies from a central average.

Look at the following data values:

11, 13, 14, 15, 19, 22, 24, 26

The mean of these values is 18; of course, the values all differ from 18 by varying amounts. Here’s a list of the
values’ deviations from the mean:

-7, -5, -4, -3, 1, 4, 6, 8

If we take the mean of these deviations, we find that it is zero:

−7−5−4−3+1+4+6+8
8

=
0
8
= 0

This comes as no surprise. You can see that some of the values are positive and some are negative, as the mean
lies somewhere near the middle of the range. You can use algebra to prove (try it!) that the sum of the deviations
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will always be zero, no matter what numbers are in the list. So, the sum of the deviations is not a useful tool for
measuring variance.

But if we square the differences, all the negative differences become positive, and then we can tell how great the
average deviation is. If we do that for this data set, we get the following list:

49, 25, 16, 9, 1, 16, 36, 64

The sum of those squares is 216, so their average is 216
8 = 27.

We call this averaging of the square of the differences from the mean (the mean squared deviation) the variance.
The variance is a measure of the dispersion, and its value is lower for tightly grouped data than for widely spread
data. In the example above, the variance is 27.

What does it mean to say that tightly grouped data will have a low variance? You can probably already imagine
that the size of the variance also depends on the size of the data itself. Mathematicians have tried to standardize the
definition of variance in various ways; the standard deviation is one of the most commonly used.

Standard Deviation

You can see from the previous example that using variance gives us a measure of the spread of the data (you should
hopefully see that tightly grouped data would have a smaller mean squared deviation and so a smaller variance) but it
is not immediately clear what a number like 27 actually refers to. Since it is the mean of the squares of the deviation,
however, it seems logical that taking its square root would be a better way to make sense of it. The root mean square
(i.e. square root of the variance) is called the standard deviation, and is given the symbol s.

Example 7

Find the mean, the variance and the standard deviation of the following values.

121, 122, 193, 197, 199, 222, 223, 227, 265, 276, 303, 366, 397, 401, 433

Solution

The mean will be needed to find the variance, and from the variance we can determine the standard deviation. The
sum of all fifteen values is 3945, so their mean is 3945

15 = 263.

The variance and standard deviation are often best calculated by constructing a table. Using this method, we enter
the deviation and the square of the deviation for each separate data point.

TABLE 13.6:

Value Deviation Deviation2

121 –142 20,164
122 –141 19,881
193 –70 4,900
197 –66 4,356
199 –64 4,096
222 –41 1,681
223 –40 1,600
227 –36 1,296
265 2 4
276 13 169
303 40 1,600
366 103 10,609
397 134 17,956
401 138 19,044
433 170 28,900
sum: 0 136,256
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The variance is the mean of the squares of the deviations, so it is 136,256
15 = 9083.733. The standard deviation is the

square root of the variance, or approximately 95.31.

If you look at the second column of the table, you can see that the standard deviation is a good measure of the spread.
It looks to be a reasonable estimate of the average distance that each point lies from the mean.

Calculate and Interpret Measures of Central Tendency and Dispersion for Real-
World Situations

Example 8

A number of house sales in a town in Arizona are listed below. Calculate the mean and median house price. Also
calculate the standard deviation in sale price.

TABLE 13.7:

Address Sale Price
518 CLEVELAND AVE $117, 424
1808 MARKESE AVE $128, 000
1770 WHITE AVE $132, 485
1459 LINCOLN AVE $77, 900
1462 ANNE AVE $60, 000
2414 DIX HWY $250, 000
1523 ANNE AVE $110, 205
1763 MARKESE AVE $70, 000
1460 CLEVELAND AVE $111, 710
1478 MILL ST $102, 646

Solution

The sum of all ten values is $1,160,370, so their mean is $116,037.

The median is halfway between the 5th and 6th highest values. Those two middle values (if we reorder the list by
price) are $110,205 and $111,710, so the median is $110,957.50.

Now we can rewrite the table with the deviations and their squares added in:

TABLE 13.8:

Value ($) Deviation Deviation2

60,000 -56037 3140145369
70,000 -46037 2119405369
77,900 -38137 1454430769
102,646 -13391 179318881
110,205 -5832 34012224
111,710 -4327 18722929
117,424 1387 1923769
128,000 11963 14311369
132,485 16448 270536704
250,000 133963 17946085369

SUM: 25178892752
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The variation is 25178892752
10 = 2517889275.2, and the square root of that is about 50179. So the standard deviation is

$50,179.

In this case, the mean and the median are close to each other, indicating that the house prices in this area of Mesa are
spread fairly symmetrically about the mean. Although there is one house that is significantly more expensive than
the others, there are also a number that are cheaper to balance out the spread.

Example 9

James and John both own fields in which they plant cabbages. James plants cabbages by hand, while John uses
a machine to carefully control the distance between the cabbages. The diameters of each grower’s cabbages are
measured. James’s cabbages have an average (mean) diameter of 7.10 inches with a standard deviation of 2.75
inches; John’s have a mean diameter of 6.85 inches with a standard deviation of 0.60 inches.

John claims his method of machine planting is better. James insists it is better to plant by hand. Use the data to
provide a reason to justify both sides of the argument.

Solution

• James’s cabbages have a larger mean diameter, so on average they are larger than John’s. The larger standard
deviation also means that there will be a number of cabbages which are significantly bigger than most of
John’s.

• John’s cabbages are smaller on average, but only by a little bit (one quarter inch). Meanwhile, the smaller
standard deviation means that the sizes of his cabbages are much more predictable. The spread of sizes is
much less, so they all end up being closer to the mean. While he may not have many extra large cabbages,
he will not have any that are excessively small either, which may be better for any stores to which he sells his
cabbages.

Review Questions

1. Find the median of the salaries given in Example 2.
2. Find the mean, median and standard deviation of the following numbers. Which, of the mean and median,

will give the best average? 15, 19, 15, 16, 11, 11, 18, 21, 165, 9, 11, 20, 16, 8, 17, 10, 12, 11, 16, 14
3. Ten house sales in Encinitas, California are shown in the table below. Find the mean, median and standard

deviation for the sale prices. Explain, using the data, why the median house price is most often used as a
measure of the house prices in an area.

TABLE 13.9:

Address Sale Price Date Of Sale
643 3RD ST $1,137,000 6/5/2007
911 CORNISH DR $879,000 6/5/2007
911 ARDEN DR $950,000 6/13/2007
715 S VULCAN AVE $875,000 4/30/2007
510 4TH ST $1,499,000 4/26/2007
415 ARDEN DR $875,000 5/11/2007
226 5TH ST $4,000,000 5/3/2007
710 3RD ST $975,000 3/13/2007
68 LA VETA AVE $796,793 2/8/2007
207 WEST D ST $2,100,000 3/15/2007
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4. Determine which average (mean, median or mode) would be most appropriate for the following.

a. The life expectancy of store-bought goldfish.
b. The age in years of audience for a kids TV program.
c. The weight of potato sacks that a store labels as “5 pound bag.”

5. Two bus companies run services between Los Angeles and San Francisco. Inter-Cal Express takes a mean
time of 9.5 hours to make the trip, with a standard deviation of 0.25 hours. Fast-Dog Travel takes 8.75 hours
on average, with a standard deviation of 2.5 hours. If Samantha needs to travel between the cities, which
company should she choose if:

a. She needs to be on time for a meeting in San Francisco.
b. She travels weekly to visit friends who live in San Francisco and wishes to minimize the time she spends

on a bus over the entire year.

6. Suppose you have a collection of data points for which you have already found the mean, median, mode,
range, variance, and standard deviation. Then, you collect two new data points—one that is higher than any
of the values in the original set, and one that is lower than any of the values in the original set.

a. Based on just this information, can you tell what will happen to the mean value of the data set when
these new points are added? (In other words, can you say anything at all about whether the mean will
or won’t increase, decrease, or stay the same, or do you not have enough information to tell—and if not,
what additional information would you need?)

b. Can you tell what will happen to the median value?
c. Can you tell what will happen to the mode? (Assume the original data set has only one mode.)
d. Can you tell what will happen to the range?
e. Can you tell what will happen to the variance and standard deviation?

7. Now suppose that instead of collecting two new values for your data set above, you have only collected one
new value—one that is higher than all the values in the original set.

a. Now can you tell what will happen to the mean value?
b. Can you tell what will happen to the median value?
c. Can you tell what will happen to the mode?
d. Can you tell what will happen to the range?
e. Can you tell what will happen to the variance and standard deviation?

8. Finally, suppose that instead of being higher than all the values in the original data set, your new value is
somewhere in the middle of the original data set. Specifically, suppose it is higher than the mean, lower than
the median, and equal to the mode.

a. Now can you tell what will happen to the mean?
b. Can you tell what will happen to the median?
c. Can you tell what will happen to the mode?
d. Can you tell what will happen to the range?
e. Can you tell what will happen to the variance and standard deviation?
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13.6 Stem-and-Leaf Plots and Histograms

Learning Objectives

• Make and interpret stem-and-leaf plots.
• Make and interpret histograms.
• Make histograms using a graphing calculator.

Introduction-Grouping and Visualizing Data

Imagine asking a class of 20 algebra students how many brothers and sisters they had. You would probably get a
range of answers from zero on up. Some students would have no siblings, but most would have at least one. The
results might look like this:

1, 4, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 2, 3, 1, 1, 3, 6

We could organize this information in many ways. The first way might just be to create an ordered list, relisting all
the numbers in order, starting with the smallest:

0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 4, 6

Another way to list the results is in a table:

TABLE 13.10:

Number of siblings Number of matching students
0 4
1 7
2 5
3 2
4 1
5 0
6 1

We could also make a visual representation of the data by making categories for the number of siblings on the
x−axis, and stacking representations of each student above the category marker. We could use crosses, stick-men or
even photographs of the students to show how many students are in each category.
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Make and Interpret Stem-and-Leaf Plots

Another useful way to display data is with a stem-and-leaf plot. Stem-and-leaf plots are especially useful because
they give a visual representation of how the data is clustered, but preserve all of the numerical information. A stem-
and-leaf plot consists of a vertical “stem” containing the first digit of each number, with the rest of each number
written to the right of the stem like a “leaf.” In the stem and leaf plot below, the first number represented is 21. It
is the only number with a stem of 2, so that makes it the only number in the 20’s. The next two numbers have a
common stem of 3. They are 33 and 36. The next numbers are 40, 46 and 47.

Stem-and-leaf plots have a number of advantages over simply listing the data in a single line.

• They show how data is distributed, and whether it is symmetric around the center.
• They can be used as the data is being collected.
• They make it easy to determine the median and mode.

Stem-and-leaf plots are not ideal for all situations; in particular they are not practical when the data is too tightly
clustered. For example, with the data above about students’ siblings, all the data points would occupy the same stem
(zero). In that case, no additional information could be gained from a stem-and-leaf plot.

Example 1

While traveling on a long train journey, Rowena collected the ages of all the passengers traveling in her carriage.
The ages for the passengers are shown below. Arrange the data into a stem-and-leaf plot, and use the plot to find
the median and mode ages.

35, 42, 38, 57, 2, 24, 27, 36, 45, 60, 38, 40, 40, 44, 1, 44, 48, 84, 38, 20, 4, 2, 48, 58, 3, 20, 6, 40, 22, 26, 17, 18, 40,
51, 62, 31, 27, 48, 35, 27, 37, 58, 21

Solution
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The first step is to determine a sensible stem. Since all the values fall between 1 and 84, the stem should represent
the tens column, and run from 0 to 8 so that the numbers represented can range from 00 (which we would represent
by placing a leaf of 0 next to the 0 on the stem) to 89 (a leaf of 9 next to the 8 on the stem). We then go through the
data and fill out our plot:

You can see immediately that the interval with the most number of passengers is the 40-49 group. In order to
correctly determine the median and the mode, it is helpful to construct a second, ordered stem and leaf plot,
placing the leaves on each branch in ascending order

The mode is now apparent—there are 4 zeros in a row on the 4-branch, so the mode is 40. The median is the middle
value; since there are 43 data points, the median is the 22nd value. (Using our formula from earlier, 43+1

2 = 22.) So
the median is 37.

Make and Interpret Histograms

Look again at the example of the algebra students and their siblings. The data was collected in the following list.

1, 4, 2, 1, 0, 2, 1, 0, 1, 2, 1, 0, 0, 2, 2, 3, 1, 1, 3, 6

We were able to organize the data into a table. Here is the table again, but this time we will use the word frequency
as a header to indicate the number of times each value occurs in the list.
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TABLE 13.11:

Number of siblings Frequency
0 4
1 7
2 5
3 2
4 1
5 0
6 1

Now we could use this table as an (x,y) coordinate list to plot a line diagram like this one:

While this diagram does indeed show the data, it is somewhat misleading. For example, the continuous line joining
the number of students with one and two siblings makes it look like we know something about how many students
have 1.5 siblings (which of course, is impossible). In this case, where the data points are all integers, it’s wrong to
suggest that the function is continuous between the points!

When the data we are representing falls into well defined categories (such as the integers 1, 2, 3, 4, 5 & 6) it is more
appropriate to use a histogram to display that data. A histogram for this data is shown below.
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Each number on the x−axis has an associated column, whose height shows how many students have that number of
siblings. For example, the column at x = 2 is 5 units high, indicating that there are 5 students with 2 siblings.

The categories on the x−axis are called bins. Histograms differ from bar charts in that they don’t necessarily have
fixed widths for the bins. They are also useful for displaying continuous data (data that varies continuously rather
than in integer amounts). To illustrate this, here are some examples.

Example 2

Rowena made a survey of the ages of passengers in a train carriage, and collected the results in a table. Display the
results as a histogram.

TABLE 13.12:

Age range Frequency
0 – 9 6
10 – 19 2
20 – 29 9
30 – 39 8
40 – 49 11
50 – 59 4
60 – 69 2
70 – 79 0
80 – 89 1

Solution

Since the data is already collected into intervals we will use these as our bins for the histogram. Even though the top
end of the first interval is 9, the bin on our histogram will extend to 10. This is because, as we move to continuous
data, we have a range of numbers that goes right up to the lower end of the following bin, even if it doesn’t include
that number. The range of values for the first bin would therefore be 0 ≤ x < 10, and all the other bins would have
similarly described ranges.
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Example 3

Monthly rainfall (in millimeters) for Beaver Creek Oregon was collected over a five year period, and the data is
shown below. Display the data in a histogram.

41.1, 254.7, 91.6, 60.9, 75.6, 36.0, 16.5, 10.6, 62.2, 89.4, 124.9, 176.7, 121.6, 135.6, 141.6, 77.0, 82.8, 28.9, 6.7,
22.1, 29.9, 110.0, 179.3, 97.6, 176.8, 143.5, 129.8, 94.9, 77.0, 60.8, 60.0, 32.5, 61.7, 117.2, 194.5, 208.6, 176.8,
143.5, 129.8, 94.9, 77.0, 60.8, 20.0, 32.5, 61.7, 117.2, 194.5, 208.6, 133.1, 105.2, 92.0, 60.7, 52.8, 37.8, 14.8, 23.1,
41.3, 75.7, 134.6, 148.8

Solution

Notice the similarity between histograms and stem-and-leaf plots. A stem-and-leaf plot resembles a histogram on
its side. We could start by making a stem-and-leaf plot of our data.

For our data above our stem would be the tens, and run from 1 to 25. Instead of rounding the decimals in the data,
we truncate them, meaning we simply remove the decimal. For example, 165.7 would have a stem of 16 and a leaf
of 5, and we would just leave out the seven tenths.
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By outlining the numbers on the stem and leaf plot, we can see what a histogram with a bin-width of 10 would look
like. You can see that with so many bins, the histogram looks random, with no clear pattern visible. In a situation
like this we need to reduce the number of bins. We will increase the bin width to 25 and collect the data in a table:

TABLE 13.13:

Rainfall (mm) Frequency
0≤ x < 25 7
25≤ x < 50 8
50≤ x < 75 9
75≤ x < 100 12
100≤ x < 125 6
125≤ x < 150 9
150≤ x < 175 0
175≤ x < 200 6
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TABLE 13.13: (continued)

Rainfall (mm) Frequency
200≤ x < 225 2
225≤ x < 250 0
250≤ x < 275 1

The histogram associated with this bin width is below.

The pattern in the distribution is far more apparent with fewer bins. So let’s look at what the histogram would look
like with even fewer bins. We will combine bins by pairs to give 6 bins with a bin-width of 50. Our table and
histogram now looks like this.

TABLE 13.14:

Rainfall (mm) Frequency
0≤ x < 50 15
50≤ x < 100 21
100≤ x < 150 15
150≤ x < 200 6
200≤ x < 250 2
250≤ x < 300 1
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The pattern is much clearer now. The normal monthly rainfall is around 75 mm, but sometimes it will be a very wet
month and be higher (even much higher).

You can see that although it may be counter-intuitive, sometimes you can see more information by reducing the
number of intervals (or bins) in a histogram. It’s a bit like zooming out on a picture; you can’t see as many of the
details, but the overall shape of what you are looking at may become clearer.

Make Histograms Using a Graphing Calculator

Look again at the data from Example 1. We’ve seen how to manipulate raw data to give a stem-and-leaf plot and
a histogram. Now let’s take some of the tedious sorting work out of the process by using a graphing calculator to
automatically sort our data into bins.

Example 4

The following unordered data represents the ages of passengers on a train carriage.

35, 42, 38, 57, 2, 24, 27, 36, 45, 60, 38, 40, 40, 44, 1, 44, 48, 84, 38, 20, 4, 2, 48, 58, 3, 20, 6, 40, 22, 26, 17, 18, 40,
51, 62, 31, 27, 48, 35, 27, 37, 58, 21.

Use a graphing calculator to display the data as a histogram with bin-widths of 10, 5 and 20.
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Solution

Input the data in your calculator:

Press [START] and choose the [EDIT] option.

Input all 43 data points into the table in column L1.

Select plot type:

Bring up the [STATPLOT] option by pressing [2nd], [Y=].

Highlight 1:Plot1 and press [ENTER]. This will bring up the plot options screen. Highlight the histogram and press
[ENTER]. Make sure the Xlist is the list that contains your data.

Select bin widths and plot:

Press [WINDOW] and ensure that Xmin and Xmax allow for all data points to be shown. The Xscl value determines
the bin width.

Press [GRAPH] to display the histogram.

You can change bin widths and see how the histogram changes, by varying Xscl. Below are histograms with bin
widths of 10, 5 and 20. (In this example Xmin = 0 and Xmax = 100 will work whatever bin width we choose, but
notice that to display the histogram correctly we need to use a different Ymax value for each.)
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Review Questions

1. Create a stem-and-leaf plot for the following data. Use the first digit (hundreds) as the stem, and the second
(tens) as the leaf. Truncate any units and decimals. Order the plot to find the median and the mode. data:
607.4, 886.0, 822.2, 755.7, 900.6, 770.9, 780.8, 760.1, 936.9, 962.9, 859.9, 848.3, 898.7, 670.9, 946.7, 817.8,
868.1, 887.1, 881.3, 744.6, 984.9, 941.5, 851.8, 905.4, 810.6, 765.3, 881.9, 851.6, 815.7, 989.7, 723.4, 869.3,
951.0, 794.7, 807.6, 841.3, 741.5, 822.2, 966.2, 950.1.

2. Make a frequency table for the data in Question 1. Use a bin width of 50.
3. Plot the data from Question 1 as a histogram with a bin width of

a. 50
b. 100

4. The following stem-and-leaf plot shows data collected for the speed of 40 cars in a 35 mph limit zone in
Culver City, California.

a. Find the mean, median and mode speed.
b. Complete the frequency table, starting at 25 mph with a bin width of 5 mph.
c. Use the table to construct a histogram with the intervals from your frequency table.

5. The histogram shown below displays the results of a larger scale survey of the subjects’ number of siblings.
Use it to find:

a. The median of the data.
b. The mean of the data.
c. The mode of the data.
d. The number of people who have an odd number of siblings.
e. The percentage of the people surveyed who have 4 or more siblings.
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13.7 Box-and-Whisker Plots

Learning Objectives

• Make and interpret box-and-whisker plots.
• Analyze effects of outliers.
• Make box-and-whisker plots using a graphing calculator.

Making and Interpreting Box-and-Whisker Plots

Consider the following list of numbers: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10.

The median is the
(n+1

2

)
th value. There are 10 values, so the median lies halfway between the 5th and the 6th value.

The median is therefore 5.5. This splits the list cleanly into two halves.

The lower list is: 1, 2, 3, 4, 5

And the upper list is: 6, 7, 8, 9, 10

The median of the lower half is 3. The median of the upper half is 8. These numbers, together with the median,
cut the list into four quarters. We call the division between the lower two quarters the first quartile. The division
between the upper two quarters is the third quartile (the second quartile is, of course, the median).

A box-and-whisker plot is formed by placing vertical lines at five positions, corresponding to the smallest value,
the first quartile, the median, the third quartile and the greatest value. (These five numbers are often referred to as
the five number summary.) A box is drawn between the position of the first and third quartiles, and horizontal line
segments (the whiskers) connect the box with the two extreme values.

The box-and-whisker plot for the integers 1 through 10 is shown below.
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With a box-and-whisker plot, a simple measure of dispersion can be gained from the distance from the first quartile
to the third quartile. This inter-quartile range is a measure of the spread of the middle half of the data.

Example 1

Forty students took a college algebra entrance test and the results are summarized in the box-and-whisker plot below.
How many students would be allowed to enroll in the class if the pass mark was set at

a) 65%

b) 60%

Solution

From the plot, we can see the following information:

Lowest score = 52%

First quartile = 60%

Median score = 65%

Third quartile = 77%

Highest score = 97%

Since the pass marks given in the question correspond with the median and the first quartile, the question is really
asking how many students there are in: a) the upper half and b) the upper 3 quartiles.

a) Since there are 40 students, there are 20 in the upper half; that is, 20 students scored above 65%.

b) Similarly, there are 30 students in the upper 3 quartiles, so 30 students scored above 60%.

Example 2

Harika is rolling 3 dice and adding the numbers together. She records the total score for each of 50 rolls, and
the scores she gets are shown below. Display the data in a box-and-whisker plot, and find both the range and the
inter-quartile range.

9, 10, 12, 13, 10, 14, 8, 10, 12, 6, 8, 11, 12, 12, 9, 11, 10, 15, 10, 8, 8, 12, 10, 14, 10, 9, 7, 5, 11, 15, 8, 9, 17, 12, 12,
13, 7, 14, 6, 17, 11, 15, 10, 13, 9, 7, 12, 13, 10, 12

Solution

First we’ll put the list in order. Since there are 50 data points,
(n+1

2

)
= 26.5, so the median will be the mean of the

25th and 26th values. The median will split the data into two lists of 25 values; we can write them as two distinct
lists.

5,6,6,7,7,7,8,8,8,8,8,9, 9 ,9,9,9,10,10,10,10,10,10,10,10, 10 , 11 ,11,

11,11,12,12,12,12,12,12,12,12,12, 13 ,13,13,13,14,14,14,15,15,15,17,17

Since each sub-list has 25 values, the first and third quartiles of the entire data set can be found from the median
of each smaller list. For 25 values,

(n+1
2

)
= 13, and so the quartiles are given by the 13th value from each smaller

sub-list.

From the ordered list we can see the five number summary:
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• The lowest value is 5
• The first quartile is 9
• The median is 10.5
• The third quartile is 13
• The highest value is 17.

The box-and-whisker plot therefore looks like this:

The range is given by subtracting the smallest value from the largest value: 17−5 = 12.

The inter-quartile range is given by subtracting the first quartile from the third quartile: 13−9 = 4.

Example 3

The box-and-whisker plots below represent the times taken by a school class to complete an obstacle course. The
times have been separated into boys and girls. The boys and the girls each think that they did best. Determine the
five number summary for both the boys and the girls and give a convincing argument for each of them.

Solution

Comparing two sets of data with a box-and-whisker plot is relatively straightforward. For example, you can see that
the data for the boys is more spread out, both in terms of the range and the inter-quartile range.

The five number summary for each is shown in the table below.

TABLE 13.15:

Boys Girls
Lowest value 1:30 1:40
First Quartile 2:00 2:30
Median 2:30 2:55
Third Quartile 3:30 3:20
Highest value 5:10 4:10

Here are some points each side could use in their argument:

Boys:

• The boys had the fastest time (1 minute 30 seconds), so the fastest individual was a boy.
• The boys also had the smaller median (2 minutes 30 seconds), meaning half of the boys were finished when

only one fourth of the girls were finished (since the girls’ first quartile is also 2:30). In other words, the boys’
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average time was faster.

Girls:

• The boys had the slowest time (5 minutes 10 seconds), so by the time all the girls were finished there was still
at least one boy completing the course.

• The girls had the smaller third quartile (3 min 20 seconds), meaning that even without taking the slowest
fourth of each group into account, the girls were still quickest.

Representing Outliers in a Box-and-Whisker Plot

Box-and-whisker plots can be misleading if we don’t take outliers into account. An outlier is a data point that does
not fit well with the other data in the list. For box-and-whisker plots, we can define which points are outliers by
how far they are from the box part of the diagram. Defining which data are outliers is somewhat arbitrary, but many
books use the norm that follows. Our basic measure of distance will be the inter-quartile range (IQR).

• A mild outlier is a point that falls more than 1.5 times the IQR outside of the box.
• An extreme outlier is a point that falls more than 3 times the IQR outside of the box.

When we draw a box-and-whisker plot, we don’t include the outliers in the “whisker” part of the plot; instead, we
draw them as separate points.

Example 3

Draw a box-and-whisker plot for the following ordered list of data:

1,2,5, 9 ,10,10, 11, 12 ,13,13, 14 ,19,25,30

Solution

From the ordered list we see:

• The lowest value is 1.
• The first quartile (Q1) is 9.
• The median is 11.5.
• The third quartile (Q3) is 14.
• The highest value is 30.

Before we start to draw our box-and-whisker plot, we can determine the IQR:

IQR = Q3−Q1 = 14−9 = 5

Outliers are points that fall more than 1.5 times the IQR outside of the box—in other words, values that are more
than 7.5 units less than 9 or greater than 14. So any values less than 1.5 or greater than 21.5 are outliers.

Looking back at the data we see:

• The value of 1 is less than 1.5, so it is a mild outlier.
• The value 2 is the lowest value that falls within the included range.
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• The value 30 is greater than 21.5. In fact, it’s not just more than 7.5 units outside the box, it’s more than twice
that far outside the box. Since it falls more than 3 times the IQR above the third quartile, it’s an extreme
outlier.

• The value 25 is also greater than 21.5, so it is a mild outlier.
• The value 19 is the highest value that falls within the included range.

So when we draw our box-and-whisker plot, the whiskers will only go out as far as 2 and 19 respectively. The points
outside of that range are all outliers. Here is the plot:

Making Box-and-Whisker Plots Using a Graphing Calculator

Graphing calculators make analyzing large lists of data easy. They have built-in algorithms for finding the median
and the quartiles, and can be used to display box-and-whisker plots.

Example 4

The ages of all the passengers traveling in a train carriage are shown below.

35, 42, 38, 57, 2, 24, 27, 36, 45, 60, 38, 40, 40, 44, 1, 44, 48, 84, 38, 20, 4, 2, 48, 58, 3, 20, 6, 40, 22, 26, 17, 18, 40,
51, 62, 31, 27, 48, 35, 27, 37, 58, 21

Use a graphing calculator to:

a) obtain the 5 number summary for the data.

b) create a box-and-whisker plot.

c) determine if any of the points are outliers.

Solution

Enter the data in your calculator:

Press [START] then choose [EDIT].

Enter all 43 data points in list L1.

Find the 5 number summary:
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Press [START] again. Use the right arrow to choose [CALU].

Highlight the 1-Var Stats option. Press [EDIT].

The single variable statistics summary appears.

Note the mean (x̄) is the first item given.

Use the down arrow to bring up the data for the five number summary. n is the number of data points, and the final
fie numbers in the screen are the numbers we require.

TABLE 13.16:

Symbol Value
Lowest Value minX 1
First Quartile Q2 21
Median Med 37
Third Quartile Q3 45
Highest Value maxX 84

Display the box-and-whisker plot:

Bring up the [STARTPLOT] option by pressing [2nd]. [Y=].

Highlight 1:Plot1 and press [ENTER].

There are two types of box-and-whisker plots available. The first automatically identifies outliers. Highlight it and
press [ENTER].

Press [WINDOW] and ensure that Xmin and Xmax allow for all data points to be shown. In this example, Xmin= 0
and Xmax = 100.

Press [GRAPH] and the box-and-whisker plot should appear.

The calculator will automatically identify outliers and plot them as such. You can use the [TRACE] function along
with the arrows to identify outlier values. In this case there is one outlier: 84.
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Review Questions

1. Draw a box-and-whisker plot for the following unordered data: 49, 57, 53, 54, 57, 49, 67, 51, 57, 56, 59, 57,
50, 49, 52, 53, 50, 58

2. A simulation of a large number of runs of rolling 3 dice and adding the numbers results in the following 5-
number summary: 3, 8, 10.5, 13, 18. Make a box-and-whisker plot for the data and comment on the differences
between it and the plot in example 2.

3. The box-and-whisker plots below represent the percentage of people living below the poverty line by county
in both Texas and California. Determine the 5-number summary for each state, and comment on the spread of
each distribution.

4. The 5-number summary for the average daily temperature in Atlantic City, NJ1 (given in ◦F) is: 31, 39, 52,
68, 76. Draw the box-and-whisker plot for this data and use it to determine which of the following, if any,
would be considered outliers if they were included in the data:

a. January’s record high temperature of 78◦

b. January’s record low temperature of −8◦

c. April’s record high temperature of 94◦

d. The all time record high of 106◦

5. In 1887 Albert Michelson and Edward Morley conducted an experiment to determine the speed of light. The
data for the first 10 runs (5 results in each run) is given below. Each value represents how many kilometers
per second over 299,000 km/s was measured. Create a box-and-whisker plot of the data. Be sure to identify
outliers and plot them as such. 850, 740, 900, 1070, 930, 850, 950, 980, 980, 880, 960, 940, 960, 940, 880,
800, 850, 880, 900, 840, 880, 880, 800, 860, 720, 720, 620, 860, 970, 950, 890, 810, 810, 820, 800, 770, 760,
740, 750, 760, 890, 840, 780, 810, 760, 810, 790, 810, 820, 850

6. Is it possible to have outliers on both ends of a data set? Explain.
7. Is it possible for more than half the values in a data set to be outliers? Explain.
8. Is it possible for more than a quarter of the values in a data set to be outliers? Explain.
9. Is it possible for either of the whiskers in a box-and-whisker plot to be of zero length? Explain.

10. Is it possible for either of the whiskers in a box-and-whisker plot to be longer than the box? Explain.
11. Is it possible for either of the whiskers in a box-and-whisker plot to be twice as long as the box? Explain.

1Information taken from data published by Rutgers University Climate Lab (http://climate.rutgers.edu)
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13.8 Surveys and Samples

Learning Objectives

• Classify sampling methods.
• Identify biased samples.
• Identify biased questions.
• Design and conduct a survey.
• Display, analyze, and interpret statistical survey data.

Introduction

One of the most important applications of statistics is collecting information. Statistical studies are done for many
purposes: A government agency may want to collect data on weather patterns. An advertising firm might seek
information about what people buy. A consumer group could conduct a statistical study on gas consumption of cars,
or a biologist might study primates to find out more about animal behaviors. All of these applications and many
more rely on the collection and analysis of information.

One method to collect information is to conduct a census. In a census, information is collected on all the members
of the population of interest. For example, when voting for a class president at school every person in the class
votes, so this is an example of a census. With this method, the whole population is polled.

It’s sensible to include everyone’s opinion when the population is small, like that of a high school. But conducting
a census on a very large population can be very time-consuming and expensive. An alternate method for collecting
information is by using a sampling method. This means that information is collected from a small sample that
represents the population with which the study is concerned. The information from the sample is then extrapolated
to the population—that is, we assume the results for the whole population would be about the same as the results for
the sample.

Sampling Methods

The word population in statistics means the group of people we wish to study, as opposed to the population at large.
When we use sampling to conduct a statistical study, first we need to decide how to choose the sample population.
It is essential that the sample is a representative sample of the population we are studying. For example, if we are
trying to determine the effect of a drug on teenage girls, it would make no sense to include males or older women in
our sample population.

There are several ways to choose a population sample from a larger group. The two main types of sampling are
random sampling and stratified sampling.

Random Sampling

This method simply involves picking people at random from the population we wish to poll. However, this doesn’t
mean we can simply ask the first fifty people who walk by in the street. For instance, if you were conducting a
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survey on people’s eating habits, you’d get different results if you were standing in front of a fast-food restaurant
than if you were standing in front of a health food store. In a true random sample, everyone in the population must
have the same chance of being chosen. Calling people on the phone, for example, might be a better way of getting a
random sample for a survey about eating habits.

Stratified Sampling

This method of sampling actively seeks to poll people from many different backgrounds. The population is first
divided into different categories (or strata) and the number of members in each category is determined. Gender and
age groups are commonly used strata, but others could include salary, education level or even hair color. Then, a
sample is made up by picking members from each category in the same proportion as they are in the population. For
example, imagine you are conducting a survey that calls for a sample size of 100 people. If you know that 10% of
the population you’re studying are males between the ages of 10 and 25, then you would seek 10 males in that age
group to be part of your sample. Once those 10 have responded, no more males between 10 and 25 may take part in
the survey.

Sample Size

In order for sampling to work well, the sample size must be large enough to lessen the effect of a biased sample. For
example, if you randomly sample 6 children, there is a fairly good chance that most or all of them will be boys. If
you randomly sample 6000 children, it’s far more likely that they will be approximately equally spread between boys
and girls. Even in stratified sampling (when we would likely poll equal numbers of boys and girls) it’s important to
have a large enough sample to include other kinds of different viewpoints.

The sample size is determined by the precision desired for the population. The larger the sample size is, the more
precise the estimate is. However, the larger the sample size, the more expensive and time consuming the statistical
study becomes. In more advanced statistics classes you’ll learn how to use statistical methods to determine the best
sample size for a given survey.

Example 1

For a class assignment you have been asked to find if students in your school are planning to attend university
after graduating high-school. Students can respond with “yes”, “no” or “undecided”. How will you choose which
students to interview if you want your results to be reliable?

Solution

The best method for obtaining a representative sample would be stratified sampling. Students in the upper grades
might be more sure of their post-graduation plans than students in the lower grades, so it makes sense to divide your
sample by grade level. You’ll need to find out what proportion of the total student population is included in each
grade, then interview the same proportion of students from each grade when conducting the survey.

Identify Biased Samples

Once we have identified our population, it is important that the sample we choose accurately reflect the spread of
people present in the population. If the sample we choose ends up with one or more sub-groups that are either
over-represented or under-represented, then the sample is biased. The results of a biased sample might not really
represent the entire population, so we want to avoid selecting one. Stratified sampling helps, but it doesn’t always
eliminate bias in a sample. Even with a large sample size, we may be consistently picking one group over another.

Some samples may deliberately seek a biased sample in order to bolster a particular viewpoint. For example, if a
group of students were trying to petition the school to allow eating candy in the classroom, they might try to show
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that a lot of students support this idea by surveying students immediately before lunchtime when they are all hungry.
The practice of polling only those who you believe will support your cause is sometimes referred to as cherry
picking.

Many surveys may have a non-response bias. For example, if researchers simply hand out questionnaires on a street
corner and ask people to fill them out and then mail them in, most people will just throw the questionnaires away.
Only people who are really interested in the subject will bother to send them in, and those might also be the people
who are more likely to answer the questions a certain way. (Imagine if the questionnaire asked “Do you care a lot
about surveys?” People who cared about surveys would answer it, people who didn’t care wouldn’t bother, and a
researcher just looking at the surveys that got sent in would conclude that everybody cares about surveys, because
everybody who actually answered the survey said yes!)

Non-response bias may be reduced by conducting face-to-face interviews. When you talk to people in person, you
can get them to agree to answer a question before you tell them what it is, and then the people you get answers from
won’t just be the people who care a lot about the question.

Self-selected respondents tend to have stronger opinions on subjects than others and are more motivated to respond.
For this reason, phone-in and online polls also tend to be poor representations of the overall population. Even if it
looks like both sides are responding, the poll may disproportionately represent extreme viewpoints from both sides,
while ignoring more moderate opinions which may, in fact, be the majority view. Self-selected polls are generally
regarded as unscientific.

A classic example of a biased sample occurred in the 1948 Presidential Election. On Election night, the Chicago
Tribune printed the headline DEWEY DEFEATS TRUMAN, which turned out to be mistaken. The reason the paper
was mistaken is that their editor trusted the results of a phone survey. Telephones were still relatively new at the time,
so the people who had them tended to be wealthier than average; therefore, a sample of people who had telephones
was not a representative sample of the population at large.

(The above text is adapted from Wikipedia http://www.wikipedia.org/wiki/Biased_sample.)

Example 2

Identify each sample as biased or unbiased. If the sample is biased explain how you would improve your sampling
method.

a) Asking people shopping at a farmer’s market if they think locally grown fruit and vegetables are healthier than
supermarket fruits and vegetables.

b) You want to find out public opinion on whether teachers get paid a sufficient salary by interviewing the teachers
in your school.

c) You want to find out if your school needs to improve its communications with parents by sending home a survey
written in English.

Solution

a) This would be a biased sample because people who shop at farmer’s markets are more likely than the average
person to think that locally grown produce is better. The study could be improved by interviewing an equal number
of people coming out of a supermarket, or by interviewing people in a more neutral environment such as the post
office.

b) This is a biased sample because teachers probably would think they should get a higher salary, but that doesn’t
mean everybody else would agree. A better sample could be obtained by constructing a stratified sample with people
in different income categories.

c) This is a biased sample because only English-speaking parents would understand the survey, and parents who
don’t speak English would be more likely to find that the school doesn’t communicate with them well. The study
could be improved by sending different versions of the survey written in languages spoken at the students’ homes.
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Identify Biased Questions

When you are creating a survey, you must think very carefully about the questions you should ask, how many
questions are appropriate and even the order in which the questions should be asked. A biased question is a
question that is worded in such a way (whether intentional or not) that it causes a swing in the way people answer
it. Biased questions can lead even a representative, non-biased population sample to answer in a way that does not
accurately reflect the larger population.

While biased questions are a bad way to judge the overall mood of a population, they are sometimes used by
politicians or advertising companies to falsely suggest that a product or policy is more or less popular than it really
is.

There are several ways to spot biased questions:

• They may use polarizing language, words and phrases that people associate with emotions:

– Is it right that farmers murder animals to feed people?
– How much of your time do you waste on TV every week?
– Should we be able to remove a person’s freedom of choice over cigarette smoking?

• They may refer to a majority or to a supposed authority:

– Would you agree with the American Heart and Lung Association that smoking is bad for your health?
– The president believes that criminals should serve longer prison sentences. Do you agree?
– Do you agree with 90% of the public that the car on the right looks better?

• The question may be phrased so as to suggest the person asking the question already knows the answer:

– It’s OK to smoke so long as you do it on your own, right?
– You shouldn’t be forced to give your money to the government, should you?
– You wouldn’t want criminals free to roam the streets, would you?

• The question may be phrased in ambiguous way (often with double negatives) which may confuse
people:

– Do you reject the possibility that the moon landings never took place?
– Do you disagree with people who oppose the ban on smoking in public places?

In addition to biased questions, the overall design of a survey can be biased in other ways. In particular, question
order can play a role. For example, a survey may contain several questions on people’s attitudes to cigarette
smoking. Then, if the question “What, in your opinion, are the three biggest threats to public health today?” is
asked at the end of the survey, people will be more likely to give “smoking” as one of their answers than they would
be if that question had been asked as part of a different survey, or if it had been placed at the beginning of this survey
instead of at the end.

Design and Conduct a Survey

A survey is a way to ask a lot of people a few well-constructed questions. The survey is a series of unbiased questions
that the subject must answer. Some advantages of surveys are that they are efficient ways of collecting information
from a large number of people, they are relatively easy to administer, a wide variety of information can be collected
and they can be focused (researchers can stick to just the questions that interest them.) Some disadvantages of
surveys arise from the fact that they depend on the subjects’ motivation, honesty, memory and ability to respond.
Moreover, answer choices to survey questions could lead to vague data. For example, the choice “moderately agree”
may mean different things to different people or to whoever ends up interpreting the data.
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Conducting a Survey

There are various methods for administering a survey. It can be done as a face-to face interview or a phone interview
where the researcher is questioning the subject. A different option is to have a self-administered survey where the
subject can complete a survey on paper and mail it back, or complete the survey online. There are advantages and
disadvantages to each of these methods.

The advantages of face-to-face interviews include fewer misunderstood questions, fewer incomplete responses,
higher response rates, and greater control over the environment in which the survey is administered; also, the
researcher can collect additional information if any of the respondents’ answers need clarifying. The disadvantages
of face-to-face interviews are that they can be expensive and time-consuming and may require a large staff of trained
interviewers. In addition, the response can be biased by the appearance or attitude of the interviewer.

The advantages of self-administered surveys are that they are less expensive than interviews, do not require a large
staff of experienced interviewers and can be administered in large numbers. In addition, anonymity and privacy
encourage more candid and honest responses, and there is less pressure on respondents. The disadvantages of
self-administered surveys are that responders are more likely to stop participating mid-way through the survey and
respondents cannot ask them to clarify their answers. In addition, there are lower response rates than in personal
interviews, and often the respondents who bother to return surveys represent extremes of the population – those
people who care about the issue strongly, whichever way their opinion leans.

Designing a Survey

Surveys can take different forms. They can be used to ask only one question or they can ask a series of questions.
We can use surveys to test out people’s opinions or to test a hypothesis.

When designing a survey, the following steps are useful:

1. Determine the goal of your survey: What question do you want to answer?
2. Identify the sample population: Whom will you interview?
3. Choose an interviewing method: face-to-face interview, phone interview, self-administered paper survey, or

internet survey.
4. Decide what questions you will ask in what order, and how to phrase them. (This is important if there is more

than one piece of information you are looking for.)
5. Conduct the interview and collect the information.
6. Analyze the results by making graphs and drawing conclusions.

Example 3

Martha wants to construct a survey that shows which sports students at her school like to play the most.

a) List the goal of the survey.

b) What population sample should she interview?

c) How should she administer the survey?

d) Create a data collection sheet that she can use to record her results.

Solution

a) The goal of the survey is to find the answer to the question: “Which sports do students at Martha’s school like to
play the most?”

b) A sample of the population would include a random sample of the student population in Martha’s school. A
good strategy would be to randomly select students (using dice or a random number generator) as they walk into an
all-school assembly.

c) Face-to-face interviews are a good choice in this case. Interviews will be easy to conduct since the survey consists
of only one question which can be quickly answered and recorded, and asking the question face to face will help
eliminate non-response bias.
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d) In order to collect the data to this simple survey Martha can design a data collection sheet such as the one below:

TABLE 13.17:

Sport Tally
baseball
basketball
football
soccer
volleyball
swimming

This is a good, simple data collection sheet because:

• Plenty of space is left for the tally marks.
• Only one question is being asked.
• Many possibilities are included, but space is left at the bottom in case students give answers that Martha didn’t

think of.
• The answer from each interviewee can be quickly collected and then the data collector can move on to the

next person.

Once the data has been collected, suitable graphs can be made to display the results.

Example 4

Raoul wants to construct a survey that shows how many hours per week the average student at his school works.

a) List the goal of the survey.

b) What population sample will he interview?

c) How would he administer the survey?

d) Create a data collection sheet that Raoul can use to record his results.

Solution

a) The goal of the survey is to find the answer to the question “How many hours per week do you work?”

b) Raoul suspects that older students might work more hours per week than younger students. He decides that a
stratified sample of the student population would be appropriate in this case. The strata are grade levels 9th through
12th. He would need to find out what proportion of the students in his school are in each grade level, and then include
the same proportions in his sample.

c) Face-to-face interviews are a good choice in this case since the survey consists of two short questions which can
be quickly answered and recorded.

d) In order to collect the data for this survey Raoul designed the data collection sheet shown below:

TABLE 13.18:

Grade Level Number of Hours Worked Total number of students
9th grade
10th grade
11th grade
12th grade

This data collection sheet allows Raoul to write down the actual numbers of hours worked per week by students as
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opposed to just collecting tally marks for several categories.

Display, Analyze, and Interpret Statistical Survey Data

In the previous section we considered two examples of surveys you might conduct in your school. The first one was
designed to find the sport that students like to play the most. The second survey was designed to find out how many
hours per week students worked.

For the first survey, students’ choices fit neatly into separate categories. Appropriate ways to display the data might
be a pie chart or a bar graph. Let’s revisit this example.

Example 5

In Example 3 Martha interviewed 112 students and obtained the following results.

TABLE 13.19:

Sport Tally
baseball @@||||@@||||@@||||@@||||@@||||@@|||| | 31
basketball @@||||@@||||@@|||| || 17
football @@||||@@|||| |||| 14
soccer @@||||@@||||@@||||@@||||@@|||| ||| 28
volleyball @@|||| |||| 9
swimming @@|||| ||| 8
gymnastics ||| 3
fencing || 2

Total: 112

a) Make a bar graph of the results showing the percentage of students in each category.

b) Make a pie chart of the collected information, showing the percentage of students in each category.

Solution

a) To make a bar graph, we list the sport categories on the x−axis and let the percentage of students be represented
by the y−axis.

To find the percentage of students in each category, we divide the number of students in each category by the total
number of students surveyed:

TABLE 13.20:

Sport Percentage
baseball 31

112 = .28 = 28%
basketball 17

112 = .15 = 15%
football 14

112 = .125 = 12.5%
soccer 28

112 = .25 = 25%
volleyball 9

112 = .08 = 8%
swimming 8

112 = .07 = 7%
gymnastic 3

112 = .025 = 2.5%
fencing 2

112 = .02 = 2%

Now we can make a graph where the height of each bar represents the percentage of students in each category:
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b. To make a pie chart, we find the percentage of the students in each category by dividing the number of students
in each category as in part a. The central angle of each slice of the pie is found by multiplying the percentage of
students in each category by 360 degrees (the total number of degrees in a circle). To draw a pie-chart by hand, you
can use a protractor to measure the central angles that you find for each category.

TABLE 13.21:

Sport Percentage Central angle
baseball 31

112 = .28 = 28% .28×360◦ = 101◦

basketball 17
112 = .15 = 15% .15×360◦ = 54◦

football 14
112 = .125 = 12.5% .125×360◦ = 45◦

soccer 28
112 = .25 = 25% .25×360◦ = 90◦

volleyball 9
112 = .08 = 8% .08×360◦ = 29◦

swimming 8
112 = .07 = 7% .07×360◦ = 25◦

gymnastics 3
112 = .025 = 2.5% .025×360◦ = 9◦

fencing 2
112 = .02 = 2% .02×360◦ = 7◦

Here is the pie-chart that represents the percentage of students in each category:
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For the second survey, actual numerical data can be collected from each student. In this case we can display the data
using a stem-and-leaf plot, a frequency table, a histogram, or a box-and-whisker plot.

Example 6

In Example 4 Raoul found that that 30% of the students at his school are in 9th grade, 26% of the students are in the
10th grade, 24% of the students are in 11th grade and 20% of the students are in the 12th grade. He surveyed a total
of 60 students using these proportions as a guide for the number of students he interviewed from each grade. Raoul
recorded the following data:

TABLE 13.22:

Grade Level Number of hours worked Total number of students
9th grade 0, 5, 4, 0, 0, 10, 5, 6, 0,

0, 2, 4, 0, 8, 0, 5, 7, 0
18

10th grade 6, 10, 12, 0, 10, 15, 0, 0,
8, 5, 0, 7, 10, 12, 0, 0

16

11th grade 0, 12, 15, 18, 10, 0, 0,
20, 8, 15, 10, 15, 0, 5

14

12th grade 22, 15, 12, 15, 10, 0,
18, 20, 10, 0, 12, 16

12

a) Construct a stem-and-leaf plot of the collected data.

b) Construct a frequency table with bin size of 5.

c) Draw a histogram of the data.

d) Find the five number summary of the data and draw a box-and-whisker plot.

Solution

a) The ordered stem-and-leaf plot looks as follows:
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0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 4 4 5 5 5 5 5 6 6 7 7 8 8 8

1 0 0 0 0 0 0 0 0 2 2 2 2 2 5 5 5 5 5 5 6 8 8

2 0 0 2

We can easily see from the stem-and-leaf plot that the mode of the data is 0. This makes sense because many students
do not work in high school.

b) We construct the frequency table by counting how many students fit in each category.

TABLE 13.23:

Hours worked Frequency
0≤ x < 5 23
5≤ x < 10 12
10≤ x < 15 13
15≤ x < 20 9
20≤ x < 25 3

c) The histogram associated with this frequency table is shown below.

d) The five number summary is as follows:

smallest number = 0

largest number = 22

Since there are 60 data points,
(n+1

2

)
= 30.5. The median is the mean of the 30th and the 31st values:

median = 6.5

Since each half of the list has 30 values in it, then the first and third quartiles are the medians of each of the smaller
lists. The first quartile is the mean of the 15th and 16th values:

first quartile = 0
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The third quartile is the mean of the 45th and 46th values:

third quartile = 12

The associated box-and-whisker plot is shown below.

Review Questions

1. For a class assignment, you have been asked to find out how students get to school. Do they take public
transportation, drive themselves, get a ride from their parents, carpool, walk, or bike? You decide to interview
a sample of students. How will you choose those you wish to interview if you want your results to be reliable?

2. Comment on the way the following samples have been chosen. For the unsatisfactory cases, suggest a way to
improve the sample choice.

a. You want to find whether wealthier people have more nutritious diets by interviewing people coming out
of a five-star restaurant.

b. You want to find if there is there a pedestrian crossing needed at a certain intersection by interviewing
people walking by that intersection.

c. You want to find out if women talk more than men by interviewing an equal number of men and women.
d. You want to find whether students in your school get too much homework by interviewing a stratified

sample of students from each grade level.
e. You want to find out whether there should be more public busses running during rush hour by interview-

ing people getting off the bus.
f. You want to find out whether children should be allowed to listen to music while doing their homework

by interviewing a stratified sample of male and female students in your school.

3. Melissa conducted a survey to answer the question “What sport do high school students like to watch on TV
the most?” She collected the following information on her data collection sheet.

TABLE 13.24:

Sport Tally
baseball @@||||@@||||@@||||@@||||@@||||@@|||| || 32
basketball @@||||@@||||@@||||@@||||@@|||| ||| 28
football @@||||@@||||@@||||@@|||| |||| 24
soccer @@||||@@||||@@|||| ||| 18
gymnastics @@||||@@||||@@|||| |||| 19
figure skating @@|||| ||| 8
hockey @@||||@@||||@@|||| ||| 18

Total: 147

a) Make a pie-chart of the results showing the percentage of people in each category.

b) Make a bar-graph of the results.

4. Samuel conducted a survey to answer the following question: “What is the favorite kind of pie of the people

706

http://www.ck12.org


www.ck12.org Chapter 13. Probability and Statistics

living in my town?” By standing in front of his grocery store, he collected the following information on his
data collection sheet:

TABLE 13.25:

Type of pie Tally
apple @@||||@@||||@@||||@@||||@@||||@@||||@@|||| || 37
pumpkin @@||||@@|||| ||| 13
lemon meringue @@|||| || 7
chocolate mousse @@||||@@||||@@||||@@|||| ||| 23
cherry |||| 4
chicken pot pie @@||||@@||||@@||||@@||||@@||||@@|||| | 31
other @@|||| || 7

Total: 122

a) Make a pie chart of the results showing the percentage of people in each category.

b) Make a bar graph of the results.

5. Myra conducted a survey of people at her school to see “In which month does a person’s birthday fall?” She
collected the following information in her data collection sheet:

TABLE 13.26:

Month Tally
January @@||||@@||||@@|||| | 16
February @@||||@@|||| ||| 13
March @@||||@@|||| || 12
April @@||||@@|||| | 11
May @@||||@@|||| ||| 13
June @@||||@@|||| || 12
July @@|||| |||| 9
August @@|||| || 7
September @@|||| |||| 9
October @@|||| ||| 8
November @@||||@@|||| ||| 13
December @@||||@@|||| ||| 13

Total: 136

a) Make a pie chart of the results showing the percentage of people whose birthday falls in each month.

b) Make a bar graph of the results.

6. Nam-Ling conducted a survey that answers the question “Which student would you vote for in your school’s
elections?” She collected the following information:

TABLE 13.27:

Candidate 9th graders 10th graders 11th graders 12th graders Total
Susan Cho @@||||@@|||| || | @@|||| | 19
Margarita Mar-
tinez

@@|||| || @@||||@@||||@@||||@@|||| |||| 31
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TABLE 13.27: (continued)

Candidate 9th graders 10th graders 11th graders 12th graders Total
Steve Coogan @@|||| |||| || @@|||| 16
Solomon
Duning

@@|||| | | @@||||@@||||@@|||| ||| | 26

Juan Rios @@|||| ||| ||| @@|||| @@||||@@|||| || 28
Total 36 30 30 24 120

a) Make a pie chart of the results showing the percentage of people planning to vote for each candidate.

b) Make a bar graph of the results.

7. Graham conducted a survey to find how many hours of TV teenagers watch each week in the United States.
He collaborated with three friends that lived in different parts of the US and found the following information:

TABLE 13.28:

Part of the country Number of hours of TV watched
per week

Total number of teens

West Coast 10, 12, 8, 20, 6, 0, 15, 18, 12, 22, 9,
5, 16, 12, 10, 18, 10, 20, 24, 8

20

Mid West 20, 12, 24, 10, 8, 26, 34, 15, 18, 6,
22, 16, 10, 20, 15, 25, 32, 12, 18, 22

20

New England 16, 9, 12, 0, 6, 10, 15, 24, 20, 30,
15, 10, 12, 8, 28, 32, 24, 12, 10, 10

20

South 24, 22, 12, 32, 30, 20, 25, 15, 10,
14, 10, 12, 24, 28, 32, 38, 20, 25,
15, 12

20

a) Make a stem-and-leaf plot of the data.

b) Decide on an appropriate bin size and construct a frequency table.

c) Make a histogram of the results.

d) Find the five-number summary of the data and construct a box-and-whisker plot.

In exercises 8-11, consider the following survey questions.

8. “What do students in your high-school like to spend their money on?”

a. Which categories would you include on your data collection sheet?
b. Design the data collection sheet that can be used to collect this information.
c. Conduct the survey. This activity is best done as a group with each person contributing at least 20 results.
d. Make a pie chart of the results showing the percentage of people in each category.
e. Make a bar graph of the results.

9. “What is the height of students in your class?”

a. Design the data collection sheet that can be used to collect this information.
b. Conduct the survey. This activity is best done as a group with each person contributing at least 20 results.
c. Make a stem-and-leaf plot of the data.
d. Decide on an appropriate bin size and construct a frequency table.
e. Make a histogram of the results.
f. Find the five-number summary of the data and construct a box-and-whisker plot.
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10. “How much allowance money do students in your school get per week?”

a. Design the data collection sheet that can be used to collect this information,
b. Conduct the survey. This activity is best done as a group with each person contributing at least 20 results.
c. Make a stem-and-leaf plot of the data.
d. Decide on an appropriate bin size and construct a frequency table.
e. Make a histogram of the results.
f. Find the five-number summary of the data and construct a box-and-whisker plot.

11. “What time do students in your school get up in the morning during the school week?”

a. Design the data collection sheet that can be used to collect this information.
b. Conduct the survey. This activity is best done as a group with each person contributing at least 20 results.
c. Make a stem-and-leaf plot of the data.
d. Decide on an appropriate bin size and construct a frequency table.
e. Make a histogram of the results.
f. Find the five-number summary of the data and construct a box-and-whisker plot.
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