




Mining Heterogeneous
Information Networks
Principles and Methodologies



Synthesis Lectures on Data
Mining and Knowledge

Discovery

Editors
Jiawei Han, University of Illinois at Urbana-Champaign
Lise Getoor, University of Maryland
Wei Wang, University of North Carolina, Chapel Hill
Johannes Gehrke, Cornell University
Robert Grossman, University of Chicago

Synthesis Lectures on Data Mining and Knowledge Discovery is edited by Jiawei Han, Lise
Getoor, Wei Wang, Johannes Gehrke, and Robert Grossman. The series publishes 50- to 150-page
publications on topics pertaining to data mining, web mining, text mining, and knowledge
discovery, including tutorials and case studies. The scope will largely follow the purview of premier
computer science conferences, such as KDD. Potential topics include, but not limited to, data
mining algorithms, innovative data mining applications, data mining systems, mining text, web
and semi-structured data, high performance and parallel/distributed data mining, data mining
standards, data mining and knowledge discovery framework and process, data mining foundations,
mining data streams and sensor data, mining multi-media data, mining social networks and graph
data, mining spatial and temporal data, pre-processing and post-processing in data mining, robust
and scalable statistical methods, security, privacy, and adversarial data mining, visual data mining,
visual analytics, and data visualization.

Mining Heterogeneous Information Networks: Principles and Methodologies
Yizhou Sun and Jiawei Han
2012

Privacy in Social Networks
Elena Zheleva, Evimaria Terzi, and Lise Getoor
2012

Community Detection and Mining in Social Media
Lei Tang and Huan Liu
2010



iii

Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions
Giovanni Seni and John F. Elder
2010

Modeling and Data Mining in Blogosphere
Nitin Agarwal and Huan Liu
2009



Copyright © 2012 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Mining Heterogeneous Information Networks: Principles and Methodologies

Yizhou Sun and Jiawei Han

www.morganclaypool.com

ISBN: 9781608458806 paperback
ISBN: 9781608458813 ebook

DOI 10.2200/S00433ED1V01Y201207DMK005

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY

Lecture #5
Series Editors: Jiawei Han, University of Illinois at Urbana-Champaign

Lise Getoor, University of Maryland

Wei Wang, University of North Carolina, Chapel Hill

Johannes Gehrke, Cornell University

Robert Grossman, University of Chicago

Series ISSN
Synthesis Lectures on Data Mining and Knowledge Discovery
Print 2151-0067 Electronic 2151-0075

www.morganclaypool.com


Mining Heterogeneous
Information Networks
Principles and Methodologies

Yizhou Sun and Jiawei Han
University of Illinois at Urbana-Champaign

SYNTHESIS LECTURES ON DATA MINING AND KNOWLEDGE DISCOVERY
#5

CM& cLaypoolMorgan publishers&



ABSTRACT
Real-world physical and abstract data objects are interconnected, forming gigantic, interconnected
networks. By structuring these data objects and interactions between these objects into multiple
types, such networks become semi-structured heterogeneous information networks. Most real-world
applications that handle big data, including interconnected social media and social networks, scien-
tific, engineering, or medical information systems, online e-commerce systems, and most database
systems, can be structured into heterogeneous information networks. Therefore, effective analysis of
large-scale heterogeneous information networks poses an interesting but critical challenge.

In this book, we investigate the principles and methodologies of mining heterogeneous infor-
mation networks. Departing from many existing network models that view interconnected data as
homogeneous graphs or networks, our semi-structured heterogeneous information network model
leverages the rich semantics of typed nodes and links in a network and uncovers surprisingly rich
knowledge from the network.This semi-structured heterogeneous network modeling leads to a series
of new principles and powerful methodologies for mining interconnected data, including: (1) rank-
based clustering and classification; (2) meta-path-based similarity search and mining; (3) relation
strength-aware mining, and many other potential developments. This book introduces this new
research frontier and points out some promising research directions.

KEYWORDS
information network mining, heterogeneous information networks, link analysis, clus-
tering, classification, ranking, similarity search, relationship prediction, user-guided
clustering, probabilistic models, real-world applications, efficient and scalable algo-
rithms
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C H A P T E R 1

Introduction
We are living in an interconnected world. Most of data or informational objects, individual agents,
groups, or components are interconnected or interact with each other, forming numerous, large, in-
terconnected, and sophisticated networks. Without loss of generality, such interconnected networks
are called information networks in this book. Examples of information networks include social net-
works, the World Wide Web, research publication networks [22], biological networks [55], highway
networks [32], public health systems, electrical power grids, and so on. Clearly, information networks
are ubiquitous and form a critical component of modern information infrastructure. The analysis
of information networks, or their special kinds, such as social networks and the Web, has gained
extremely wide attentions nowadays from researchers in computer science, social science, physics,
economics, biology, and so on, with exciting discoveries and successful applications across all the
disciplines.

In most of the current research on network science, social and information networks are
usually assumed to be homogeneous, where nodes are objects of the same entity type (e.g., person)
and links are relationships from the same relation type (e.g., friendship). Interesting results have
been generated from such studies with numerous influential applications, such as the well-known
PageRank algorithm [10] and community detection methods. However, most real-world networks
are heterogeneous, where nodes and relations are of different types. For example, in a healthcare
network, nodes can be patients, doctors, medical tests, diseases, medicines, hospitals, treatments,
and so on. Treating all the nodes as of the same type may miss important semantic information.
On the other hand, treating every node as of a distinct type may also lose valuable information. It
is important to know that patients are of the same kind, comparing with some other kinds, such as
doctors or diseases. Thus, a typed, semi-structured heterogeneous network modeling may capture essential
semantics of the real world.

Typed, semi-structured heterogeneous information networks are ubiquitous. For example, the
network of Facebook consists of persons as well as objects of other types, such as photos, posts,
companies, movies, and so on; in addition to friendship between persons, there are relationships of
other types, such as person-photo tagging relationships, person-movie liking relationships, person-
post publishing relationships, post-post replying relationships, and so on. A university network may
consist of several types of objects like students, professors, courses, and departments, as well as their
interactions, such as teaching, course registration or departmental association relationships between
objects. Similar kinds of examples are everywhere, from social media to scientific, engineering or
medical systems, and to online e-commerce systems.Therefore,heterogeneous information networks
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are powerful and expressive representations of general real-world interactions between different kinds
of network entities in diverse domains.

In this book, we investigate the principles and methodologies for mining heterogeneous
information networks, by leveraging the semantic meaning of the types of nodes and links in a
network,and propose models and algorithms that can exploit such rich semantics and solve real-world
problems. Heterogeneous information networks often imply rather different semantic structures
from that in homogeneous networks. Links in heterogeneous networks indicate the interactions
between various types of objects in a network, and usually imply similarity or influence among these
objects, that can be difficult to be expressed by traditional features. Information is propagated across
various kinds of objects in a network, via various kinds of relationships (i.e., heterogeneous links),
carrying different semantics and having different strengths in determining the “influence” across
linked objects. These principles have laid the foundation for methodologies of handling various
mining tasks in heterogeneous information networks, including ranking, clustering, classification,
similarity search, relationship prediction, and relation strength learning. We will introduce these
mining tasks and their associated new principles and methodologies chapter by chapter.

1.1 WHAT ARE HETEROGENEOUS INFORMATION
NETWORKS?

An information network represents an abstraction of the real world, focusing on the objects and the
interactions between the objects. It turns out that this level of abstraction has great power in not
only representing and storing the essential information about the real world, but also providing a
useful tool to mining knowledge from it, by exploring the power of links. Formally, we define an
information network as follows.

Definition 1.1 (Information network) An information network is defined as a directed graph
G = (V, E) with an object type mapping function τ : V → A and a link type mapping function
φ : E → R, where each object v ∈ V belongs to one particular object type τ(v) ∈ A, each link e ∈ E
belongs to a particular relation φ(e) ∈ R, and if two links belong to the same relation type, the two
links share the same starting object type as well as the ending object type.

Different from the traditional network definition, we explicitly distinguish object types and
relationship types in the network. Note that, if a relation exists from type A to type B, denoted as
A R B, the inverse relation R−1 holds naturally for B R−1 A. R and its inverse R−1 are usually not
equal, unless the two types are the same and R is symmetric.When the types of objects |A| > 1 or the
types of relations |R| > 1, the network is called heterogeneous information network; otherwise,
it is a homogeneous information network.

Given a complex heterogeneous information network, it is necessary to provide its meta
level (i.e., schema-level) description for better understanding the object types and link types in the
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network. Therefore, we propose the concept of network schema to describe the meta structure of a
network.

Definition 1.2 (Network schema) The network schema, denoted as TG = (A,R), is a meta tem-
plate for a heterogeneous network G = (V, E) with the object type mapping τ : V → A and the
link mapping φ : E → R, which is a directed graph defined over object types A, with edges as
relations from R.

The network schema of a heterogeneous information network has specified type constraints
on the sets of objects and relationships between the objects.These constraints make a heterogeneous
information network semi-structured, guiding the exploration of the semantics of the network.

Heterogeneous information networks can be constructed from many interconnected, large-
scale datasets, ranging from social, scientific, engineering, to business applications. Here are a few
examples of such networks.

1. Bibliographic information network. A bibliographic information network, such as the com-
puter science bibliographic information network derived from DBLP, is a typical hetero-
geneous network, containing objects in four types of entities: paper (P), venue (i.e., confer-
ence/journal) (V), author (A), and term (T). For each paper p ∈ P , it has links to a set of
authors, a venue, and a set of terms, belonging to a set of link types. It may also contain ci-
tation information for some papers, that is, these papers have links to a set of papers cited by
the paper and a set of papers citing the paper.

The network schema for a bibliographic network and an instance of such a network are shown
in Figure 1.1.

2. Twitter information network. Twitter as a social media can also be considered as an informa-
tion network, containing objects types such as user, tweet, hashtag, and term, and relation (or
link) types such as follow between users, post between users and tweets, reply between tweets,
use between tweets and terms, and contain between tweets and hashtags.

3. Flickr information network. The photo sharing website Flickr can be viewed as an informa-
tion network, containing a set of object types: image, user, tag, group, and comment, and a set
of relation types, such as upload between users and images, contain between images and tags,
belong to between images and groups, post between users and comments, and comment between
comments and images.

4. Healthcare information network. A healthcare system can be modeled as a healthcare in-
formation network, containing a set of object types, such as doctor, patient, disease, treatment,
and device, and a set of relation types, such as used-for between treatments and diseases, have
between patients and diseases, and visit between patients and doctors.
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Paper

Author

VenueTerm

(a) Schema of a bibliographic net-
work

Venue Paper Author

(b) A bibliographic network

Figure 1.1: A bibliographic network schema and a bibliographic network instance following the schema
(only papers, venues, and authors are shown).

Heterogeneous information networks can be constructed almost in any domain, such as so-
cial networks (e.g., Facebook), e-commerce (e.g., Amazon and eBay), online movie databases (e.g.,
IMDB), and numerous database applications. Heterogeneous information networks can also be con-
structed from text data, such as news collections, by entity and relationship extraction using natural
language processing and other advanced techniques.

Diverse information can be associated with information networks. Attributes can be attached
to the nodes or links in an information network. For example, location attributes, either categorical
or numerical, are often associated with some users and tweets in a Twitter information network.
Also, temporal information is often associated with nodes and links to reflect the dynamics of an
information network. For example, in a bibliographic information network, new papers and authors
emerge every year, as well as their associated links. Such issues will be addressed in some tasks on
mining information networks.

1.2 WHY IS MINING HETEROGENEOUS NETWORKS A
NEW GAME?

Numerous methods have been developed for the analysis of homogeneous information networks,
especially on social networks [1], such as ranking, community detection, link prediction, and influ-
ence analysis. However, most of these methods cannot be directly applied to mining heterogeneous
information networks. This is not only because heterogeneous links across entities of different types
may carry rather different semantic meaning but also because a heterogeneous information network
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in general captures much richer information than its homogeneous network counterpart. A homo-
geneous information network is usually obtained by projection from a heterogeneous information
network, but with significant information loss. For example, a co-author network can be obtained
by projection on co-author information from a more complete heterogeneous bibliographic net-
work. However, such projection will lose valuable information on what subjects and which papers
the authors were collaborating on. Moreover, with rich heterogeneous information preserved in an
original heterogeneous information network, many powerful and novel data mining functions can
be developed to explore the rich information hidden in the heterogeneous links across entities.

Why is mining heterogeneous networks a new game? Clearly, information propagation across
heterogeneous node and links can be very different from that across homogeneous nodes and links.
Based on our research into mining heterogeneous information networks, especially our studies on
ranking-based clustering [66; 69], ranking-based classification [30; 31], meta-path-based similar-
ity search [65], relationship prediction [62; 63], relation strength learning [61; 67], and network
evolution [68], we believe there are a set of new principles that may guide systematic analysis of
heterogeneous information networks. We summarize these principles as follows.

1. Information propagation across heterogeneous links. Similar to most of the network ana-
lytic studies, links should be used for information propagation. However, the new game is how
to propagate information across heterogeneous types of nodes and links, in particular,how to compute
ranking scores, similarity scores, and clusters, and how to make good use of class labels, across
heterogeneous nodes and links. No matter how we work out new, delicate measures, defini-
tions, and methodologies, a golden principle is that objects in the networks are interdependent
and knowledge can only be mined using the holistic information in a network.

2. Search and mining by exploring network meta structures. Different from homogeneous
information networks where objects and links are being treated either as of the same type or
as of un-typed nodes or links, heterogeneous information networks in our model are semi-
structured and typed, that is, associated with nodes and links structured by a set of types,
forming a network schema. The network schema provides a meta structure of the information
network. It provides guidance of search and mining of the network and helps analyze and
understand the semantic meaning of the objects and relations in the network. Meta-path-
based similarity search and mining introduced in this book demonstrate the usefulness and
the power of exploring network meta structures.

3. User-guided exploration of information networks. In a heterogeneous information network,
there often exist numerous semantic relationships across multiple types of objects, carrying
subtly different semantic meanings. A certain weighted combination of relations or meta-
paths may best fit a specific application for a particular user. Therefore, it is often desirable to
automatically select the right relation (or meta-path) combinations with appropriate weights
for a particular search or mining task based on user’s guidance or feedback. User-guided or
feedback-based network exploration is a useful strategy.
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1.3 ORGANIZATION OF THE BOOK
The first chapter introduces the problem of mining heterogeneous information networks. After
that, the book is organized into three parts, each containing two chapters that present principles and
methodologies for mining heterogeneous information networks, organized according to different
mining tasks. Finally, Chapter 8 outlines a few open research themes in this domain. The major
contents of Chapters 2–7 are summarized as follows.

In Part I: Ranking-Based Clustering and Classification, we introduce several studies on ba-
sic mining tasks such as clustering and classification in heterogeneous information networks, by
distinguishing the information propagation across different types of links.

• Chapter 2: Ranking-based clustering. For link-based clustering of heterogeneous informa-
tion networks, we need to explore links across heterogeneous types of data. Recent studies
develop a ranking-based clustering approach (e.g., RankClus [66] and NetClus [69]) that
generates both clustering and ranking results efficiently. This approach is based on the ob-
servation that ranking and clustering can mutually enhance each other because objects highly
ranked in each cluster may contribute more towards unambiguous clustering, and objects more
dedicated to a cluster will be more likely to be highly ranked in the same cluster.

• Chapter 3: Classification of heterogeneous information networks. Classification can also
take advantage of links in heterogeneous information networks. Knowledge can be effectively
propagated across a heterogeneous network because the nodes of the same type that are linked
similarly via the same typed links are likely to be similar. Moreover, following the idea of
ranking-based clustering, one can explore ranking-based classification since objects highly
ranked in a class are likely to play a more important role in classification. These ideas lead to
effective algorithms, such as GNetMine [31] and RankClass [30].

In Part II: Meta-Path-Based Similarity Search and Mining, we introduce a systematic approach
for dealing with general heterogeneous information networks with a specified network schema,
using a meta-path-based methodology. Under this framework, similarity search and other mining
tasks such as relationship prediction can be addressed by systematic exploration of the network meta
structure.

• Chapter 4: Meta-path-based similarity search. Similarity search plays an important role in
the analysis of networks. By considering different linkage paths (i.e., meta-path) in a network,
one can derive various semantics on similarity in a heterogeneous information network. A
meta-path-based similarity measure, PathSim, is introduced in [65], which aims at finding
peer objects in the network. PathSim turns out to be more meaningful in many scenarios
compared with random-walk-based similarity measures.

• Chapter 5: Meta-path-based relationship prediction. Heterogeneous information network
brings interactions among multiple types of objects and hence the possibility of predicting re-
lationships across heterogeneous typed objects. By systematically designing meta-path-based
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topological features and measures in the network, supervised models can be used to learn appro-
priate weights associated with different topological features in relationship prediction [62; 63].

In Part III: Relation Strength-Aware Mining, we address the issue that the heterogeneity of
relations between object types often leads to different mining results that can be chosen by users.
With user guidance, the strength of each relation can be automatically learned for improved mining.

• Chapter 6: Relation strength-aware clustering with incomplete attributes. By specifying
a set of attributes, the strengths of different relations in heterogeneous information networks
can be automatically learned to help network clustering [61].

• Chapter 7: Integrating user-guided clustering with meta-path selection. Different meta-
paths in a heterogeneous information network represent different relations and carry different
semantic meanings. User guidance, such as providing a small set of training examples for some
object types, can indicate user preference on the clustering results.Then a preferred meta-path
or a weighted meta-paths combination can be learned to achieve better consistency between
mining results and the training examples [67].





PART I

Ranking-Based Clustering and
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C H A P T E R 2

Ranking-Based Clustering
For link-based clustering of heterogeneous information networks, we need to explore links across
heterogeneous types of data. In this chapter,we study how ranking can be computed for different types
of objects using different types of links, and show how ranking and clustering mutually enhance each
other and finally achieve reasonable ranking and clustering results.Two special cases of heterogeneous
information networks, the bi-typed networks and the star networks, are studied.

2.1 OVERVIEW
A great many analytical techniques have been proposed toward a better understanding of information
networks, though largely on homogeneous information networks, among which are two prominent
ones: ranking and clustering. On one hand, ranking evaluates objects of information networks based
on some ranking function that mathematically demonstrates characteristics of objects. With such
functions, two objects can be compared, either qualitatively or quantitatively, in a partial order.
PageRank [10] and HITS [34], among others, are perhaps the most well-known ranking algorithms
over information networks. On the other hand, clustering groups objects based on a certain proximity
measure so that similar objects are in the same cluster,whereas dissimilar ones are in different clusters.
After all, as two fundamental analytical tools, ranking and clustering can be used to show the overall
views of an information network, and hence have been be widely used in various applications.

Clustering and ranking are often regarded as orthogonal techniques, each applied indepen-
dently to information network analysis. However, applying only one of them over an information
network often leads to incomplete, or sometimes rather biased, analytical results. For instance, rank-
ing objects over a whole information network without considering which clusters they belong to
often leads to dumb results, e.g., ranking database and computer architecture venues or authors to-
gether may not make much sense; alternatively, clustering a large number of objects (e.g., thousands
of authors) into one cluster without distinction is dull as well. However, integrating two functions
together may lead to more comprehensible results, as shown in Example 2.1.

Example 2.1 (Ranking without/with clustering) Consider a set of venues from two areas of (1)
DB/DM (i.e., Database and Data Mining) and HW/CA (i.e., Hardware and Computer Architecture),
each having 10 venues, as shown in Table 2.1. We choose top 100 authors in each area from DBLP,
according to their number of publications in the selected venues.With the authority ranking function
specified in Section 2.2.1, our ranking-only algorithm gives top-10 ranked results in Table 2.2.
Clearly, the results are rather dumb (because of the mixture of the areas) and are biased towards
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(i.e., ranked higher for) the HW/CA area. Moreover, such biased ranking result is caused not by the
specific ranking function we chose, but by the inherent incomparability between the two areas.

Still consider the same dataset. If we cluster the venues in the DB/DM area and rank both
venues and the authors relative to this cluster, the ranking results are shown in Table 2.3.

Table 2.1: A set of venues from two research areas
DB/DM {SIGMOD, VLDB, PODS, ICDE, ICDT, KDD, ICDM, CIKM,

PAKDD, PKDD}
HW/CA {ASPLOS, ISCA, DAC, MICRO, ICCAD, HPCA, ISLPED,

CODES, DATE, VTS }

Table 2.2: Top-10 ranked venues and authors without clustering
Rank Venue Rank Authors

1 DAC 1 Alberto L. Sangiovanni-Vincentelli
2 ICCAD 2 Robert K. Brayton
3 DATE 3 Massoud Pedram
4 ISLPED 4 Miodrag Potkonjak
5 VTS 5 Andrew B. Kahng
6 CODES 6 Kwang-Ting Cheng
7 ISCA 7 Lawrence T. Pileggi
8 VLDB 8 David Blaauw
9 SIGMOD 9 Jason Cong
10 ICDE 10 D. F. Wong

This example shows that good clustering indeed enhances ranking results. Furthermore, as-
signing ranks to objects often leads to better understanding of each cluster. By integrating both
clustering and ranking, one can get more comprehensible results on networks.

In this chapter,we introduce two ranking-based clustering algorithms,RankClus and NetClus,
for two special cases of heterogeneous information networks, namely bi-typed networks and star
networks, respectively. For both cases, we need to use heterogeneous links to calculate ranking as well
as ranking-derived clusters.

2.2 RANKCLUS
Let’s first examine the task of clustering one type of objects (target objects) using other types of objects
(attribute objects) and the links in the network. For example, given a bi-typed bibliographic network
containing venues and authors, where links exist between venues and authors, and between authors
and authors, we are interested in clustering venues into different clusters representing different
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Table 2.3: Top-10 ranked venues and authors in
DB/DM cluster
Rank Venue Rank Authors

1 VLDB 1 H. V. Jagadish
2 SIGMOD 2 Surajit Chaudhuri
3 ICDE 3 Divesh Srivastava
4 PODS 4 Michael Stonebraker
5 KDD 5 Hector Garcia-Molina
6 CIKM 6 Jeffrey F. Naughton
7 ICDM 7 David J. DeWitt
8 PAKDD 8 Jiawei Han
9 ICDT 9 Rakesh Agrawal
10 PKDD 10 Raghu Ramakrishnan

research communities, using the authors and links in the network. In this section, we introduce an
algorithm, RankClus, based on the bi-typed bibliographic network.

Figure 2.1 illustrates a bi-typed bibliographic network, which contains two types of objects,
venues (X) and authors (Y ). Two types of links exist in this network: the author-venue publication
links, with the weight indicating the number of papers an author has published in a venue, and the
author-author co-authorship links, with the weight indicating the number of times two authors have
collaborated. The bi-typed network can be represented by a block-wise adjacency matrix:

W =
(

WXX WXY

WYX WYY

)
,

where WXX, WXY , WYX, and WYY each denotes a type of relation between types of the subscripts.
Formally, a bi-typed information network can be defined as follows.

Definition 2.2 (Bi-typed information network) Given two types of object sets X and Y , where
X = {x1, x2, . . . , xm}, and Y = {y1, y2, . . . , yn}, the graph G = (V, E) is called a bi-typed infor-
mation network on types X and Y , if V = X ∪ Y and E ⊆ V × V .

The biggest issue in clustering target objects in a network is that unlike in traditional attribute-
based dataset, the features for those objects are not explicitly given here. A straightforward way to
generate clusters for target objects in a heterogeneous network is to first evaluate the similarity
between target objects using a link-based approach, such as SimRank [28], and then apply graph
clustering methods [44; 58] to generate clusters. However, to evaluate pair-wise similarity between
objects in an information network is a space and time consuming task. Instead, RankClus ex-
plores rank distribution for each cluster to generate new measures for target objects, which are
low-dimensional. The clusters are improved under the new measure space. More importantly, this
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Figure 2.1: A bi-typed bibliographic network.

measure can be further enhanced during the iterations of the algorithm, because better clustering
leads to better ranking, and better ranking gives better ranking-based features thus better clustering
results. That is, different from combining ranking and clustering in a two-stage procedure like facet
ranking [16; 79], the quality of clustering and ranking can be mutually enhanced in RankClus.

2.2.1 RANKING FUNCTIONS
Ranking function is critical in our ranking-based clustering algorithms, which not only provides
rank scores for objects to distinguish their importance in a cluster, but also serves as a new feature
extraction tool to improve the clustering quality. Current ranking functions are mostly defined
on homogeneous networks, such as PageRank [10] and HITS [34]. In this section, we introduce
two ranking functions based on the bi-typed bibliographic network: Simple Ranking and Authority
Ranking. Ranking functions on more complex heterogeneous networks are discussed at the end of
this section.

Simple Ranking
The simplest ranking of venues and authors is based on the number of publications, which is pro-
portional to the numbers of papers accepted by a venue or published by an author.
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Formally, given the bi-typed information network with types X and Y , and the adjacency
matrix W , simple ranking generates the rank score of type X and type Y as follows:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

�rX(x) =
∑n

j=1 WXY (x, j)∑m
i=1

∑n
j=1 WXY (i, j)

�rY (y) =
∑n

i=1 WXY (i, y)∑m
i=1

∑n
j=1 WXY (i, j)

. (2.1)

The time complexity of Simple Ranking is O(|E |), where |E | is the number of links. According
to simple ranking, authors publishing more papers will have higher rank score, even these papers
are all in junk venues. In fact, simple ranking evaluates importance of each object according to the
number of their immediate neighbors.

Authority Ranking
A more useful ranking function we propose here is authority ranking,which gives an object higher
rank score if it has more authority. Ranking authority merely with publication information seems
impossible at the first glance, as citation information could be unavailable or incomplete (such as
in the DBLP data, where there is no citation information imported from Citeseer, ACM Digital
Library, or Google Scholars). However, two simple empirical rules give us the first clues.

• Rule 1: Highly ranked authors publish many papers in highly ranked venues.

• Rule 2: Highly ranked venues attract many papers from highly ranked authors.

Note that these empirical rules are domain dependent and are usually given by the domain experts
who know both the field and the dataset well. From the above heuristics, we define the iterative rank
score formulas for authors and venues according to each other as follows.

According to Rule 1, each author’s score is determined by the number of papers and their
publication forums:

�rY (j) =
m∑

i=1

WYX(j, i)�rX(i) . (2.2)

When author j publishes more papers, there are more nonzero and high weighted WYX(j, i), and
when the author publishes papers in a higher ranked venue i, which means a higher �rX(i), the score
of author j will be higher. At the end of each step, �rY (j) is normalized by �rY (j) ← �rY (j)∑n

j ′=1 �rY (j ′) .

According to Rule 2, the score of each venue is determined by the quantity and quality of
papers in the venue, which is measured by their authors’ rank scores,

�rX(i) =
n∑

j=1

WXY (i, j)�rY (j) . (2.3)
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When there are more papers appearing in venue i, there are more non-zero and high weighted
WXY (i, j), and if the papers are published by a higher ranked author j , which means a higher �rY (j),
the score of venue i will be higher. The score vector is then normalized by �rX(i) ← �rX(i)∑m

i′=1 �rX(i′) .

Note that the normalization will not change the ranking position of an object, but it gives
a relative importance score to each object. And as shown in RankClus [66], the two formulas will
converge to the primary eigenvector of WXY WYX and WYXWXY , respectively.

When considering the co-author information, the scoring function can be further refined by
a third rule.

• Rule 3: The rank of an author is enhanced if he or she co-authors with many highly ranked

authors.

Adding this new rule, we can calculate rank scores for authors by revising Equation (2.2) as

�rY (i) = α

m∑
j=1

WYX(i, j)�rX(j) + (1 − α)

n∑
j=1

WYY (i, j)�rY (j) , (2.4)

where parameter α ∈ [0, 1] determines how much weight to put on each factor, which can be
assigned based on one’s belief or learned by some training dataset.

Similarly, we can prove that �rY should be the primary eigenvector of αWYXWXY + (1 −
α)WYY , and �rX should be the primary eigenvector of αWXY (I − (1 − α)WYY )−1WYX. Since the
iterative process is a power method to calculate primary eigenvectors, the rank score will finally
converge.

For authority ranking, the time complexity is O(t |E |), where t is the iteration number and |E |
is the number of links in the graph. Note that, |E | = O(d|V|) 	 |V|2 in a sparse network, where
|V| is the number of total objects in the network and d is the average link per object.

Different from simple ranking, authority ranking gives an importance measure to each object
based on the whole network, rather than its immediate neighborhoods, by the score propagation
over the whole network.

Alternative Ranking Functions
Although here we illustrate only two ranking functions, general ranking functions are not confined
to them. In practice, a ranking function is not only related to the link property of an information
network, but also depends on domain knowledge. For example, in many science fields, journals
are given higher weights than conferences when evaluating an author. Moreover, although ranking
functions in this section are defined on bi-typed networks, ranking function on heterogeneous
networks with more types of objects can be similarly defined. For example, PopRank [51] is a
possible framework for general heterogeneous network, which takes into account the impact both
from the same type of objects and from the other types of objects, with different impact factors
for different types. When ranking objects in information networks, junk or spam entities are often
ranked higher than deserved. For example, authority ranking can be spammed by some bogus venues
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that accept any submissions due to their large numbers of accepted papers. Techniques that can best
use expert knowledge, such as TrustRank [23], can be used to semi-automatically separate reputable,
good objects from spam ones. Personalized PageRank [86], that can utilize expert ranking as query
and generate rank distributions with respect to such knowledge, can be another choice to integrate
expert knowledge.

2.2.2 FROM CONDITIONAL RANK DISTRIBUTIONS TO NEW
CLUSTERING MEASURES

Given a bi-typed bibliographic network, suppose that we have an initial partition on target type
X (venue type) and have calculated the conditional rank scores of venues and authors for each
clustered network, the next issue becomes how to use the conditional rank scores to further improve
the clustering results. Intuitively, for each venue cluster, which could form a research area, the rank
scores of authors conditional to this cluster (or research area) should be distinct from that of the
authors in other clusters. This implies that these rank scores can be used to derive new features for
objects for better clustering. Further, we treat these rank scores as from a discrete rank distribution,
as they are non-negative values and summing up to 1, which indicates the subjective belief of how
likely one may know an author or a venue according to their authority in each cluster.

Example 2.3 (Conditional rank distribution as cluster feature) Conditional rank distributions
in different clusters are distinct from each other, especially when these clusters are reasonably well
partitioned. Still using the network of the two-research-area example introduced in Section 2.1,
we rank 200 authors based on two venue clusters, and the two conditional rank distributions are
shown in Figure 2.2. From the figure, we can clearly see that DB/DM authors (with IDs from 1 to
100) rank high relative to the DB/DM venues, whereas rank extremely low relative to the HW/CA
venues. A similar situation happens for the HW/CA authors (with IDs from 101 to 200).
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Figure 2.2: Authors’ rank distributions over different clusters.
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From Example 2.3, one can see that conditional rank distributions for attribute type in each
cluster are rather different from each other, and can be used as measures to characterize each cluster.
That is, for each cluster Xk , the conditional rank scores of X’s and Y ’s, �rX|Xk

and �rY |Xk
, can be viewed

as conditional rank distributions of X and Y , which in fact are the features for cluster Xk .

Cluster Membership for Each Target Object
Suppose we now know the clustering results for type X, which are X1, X2, . . . , and XK , where K

is the number of clusters. Also, according to some given ranking function, we have got conditional
rank distribution over Y in each cluster Xk , which is �rY |Xk

(k = 1, 2, . . . , K), and conditional rank
distribution over X, which is �rX|Xk

(k = 1, 2, . . . , K). For simplicity, we use pk(Y ) to denote �rY |Xk

and pk(X) to denote �rX|Xk
in the following. We use πi,k to denote xi ’s cluster membership for cluster

k, which in fact is the posterior probability that xi belongs to cluster k and satisfies
∑K

k=1 πi,k = 1.
According to Bayes’ rule, p(k|xi) ∝ p(xi |k)p(k). Since we already know p(xi |k), the condi-

tional rank of xi in cluster k, the goal is thus to estimate p(k), the cluster size of k. In the DBLP
scenario, the cluster of venue, e.g., the DB venues, can induce a subnetwork of venues and authors in
that area. p(k) can be considered as the proportion of papers belonging to the research area that is
induced by the kth venue cluster, where each paper is represented by a link between a venue and an
author. According to p(k|xi) ∝ p(xi |k)p(k), we can see that in general the higher its conditional
rank in a cluster (p(xi |k)), the higher possibility an object will belong to that cluster (p(k|xi)).
Since the conditional rank scores of X objects are propagated from the conditional rank scores of
Y objects, we can also see that highly ranked attribute object has more impact on determining the
cluster membership of a target object.

Example 2.4 (Cluster membership as object feature) Following Example 2.3, each venue xi is
represented as a two-dimensional cluster membership vector (πi,1, πi,2).We plot 20 venues according
to their cluster membership vectors in Figure 2.3, where different styles of points represent different
areas the venues really belong to. From the figure, we can see that the DB/DM venues (denoted as
∗) and the HW/CA venues (denoted as +) are separated clearly under the new features in terms
of cluster membership vectors, which are derived according to the conditional rank distributions of
venues and authors with respective to the two research areas.

Parameter Estimation Using the EM Algorithm
In order to derive the cluster membership for each target object, we need to estimate the size
proportion for each cluster p(k) correctly, which can be viewed as the proportion of the links issued
by the target objects belonging to cluster k. In our bi-typed bibliographic information network
scenario, this is the proportion of papers belonging to the cluster.

We then build a mixture model for generating links issued by the target objects. Namely, each
link between objects xi and yj is generated with the probability p(xi, yj ) = ∑

k pk(xi, yj )p(k),
where pk(xi, yj ) denotes the probability of generating such a link in cluster k. We also make an
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Figure 2.3: Venues’ scatter plot based on 2-d cluster membership.

independence assumption that an attribute object yj issuing a link is independent to a target object
xi accepting this link, which is pk(xi, yj ) = pk(xi)pk(yj ). This assumption says once an author
writes a paper, he is more likely to submit it to a highly ranked venue to improve his rank; while
for venues, they are more likely to accept papers coming from highly ranked authors to improve its
rank as well. This idea is similar to preferential attachment [4] of link formation for homogeneous
networks, but we are considering more complex rank distributions instead of degrees of objects.

Let � be the K-dimensional parameter vector for p(k)’s. The likelihood of observing all the
links between types X and Y under the parameter setting is then:

L(�|WXY ) = p(WXY |�) =
m∏

i=1

n∏
j=1

p(xi, yj |�)WXY (i,j) , (2.5)

where p(xi, yj |�) is the probability to generate link 〈xi, yj 〉, given current parameter �. The goal
is to find the best � that maximizes the likelihood. We then apply the EM algorithm [8] to solve
the problem. In the E-step, we calculate the conditional distribution p(z = k|yj , xi, �

0) based on
the current value of �0:

p(z = k|yj , xi, �
0) ∝ p(xi, yj |z = k)p(z = k|�0) = pk(xi)pk(yj )p

0(z = k) . (2.6)

In the M-Step, we update � according to the current �0:

p(z = k) =
∑m

i=1
∑n

j=1 WXY (i, j)p(z = k|xi, yj , �
0)∑m

i=1
∑n

j=1 WXY (i, j)
. (2.7)

By setting �0 = �, the whole process can be repeated. At each iteration, updating rules from
Equations (2.6)–(2.7) are applied, and the likelihood function will converge to a local maximum.
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Finally, the cluster membership for each target object xi in each cluster k, πi,k , is calculated
using Bayes’ rule:

πi,k = p(z = k|xi) = pk(xi)p(z = k)∑K
l=1 pl(xi)p(z = l)

. (2.8)

2.2.3 CLUSTER CENTERS AND DISTANCE MEASURE
After we get the estimations for clustering memberships for each target object xi by evaluating
mixture models, xi can be represented as a K dimensional vector �sxi

= (πi,1, πi,2, . . . , πi,K). The
centers for each cluster can thus be calculated accordingly, which is the mean of �sxi

for all xi in
each cluster. Next, the distance between an object and cluster D(x, Xk) is defined by 1 minus cosine
similarity. The cluster label for each target object can be adjusted accordingly.

2.2.4 RANKCLUS: ALGORITHM SUMMARIZATION
To summarize, the input of RankClus is a bi-typed information network G = 〈{X ∪ Y }, W 〉, the
ranking functions for X and Y , and the cluster number K . The output is K clusters of X with
conditional rank scores for each x, and conditional rank scores for each y.The algorithm of RankClus
is illustrated in Figure 2.4 and summarized in the following.
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Figure 2.4: The illustration of the RankClus algorithm.

• Step 0: Initialization.
The initial clusters for target objects are generated, by assigning each target object with a cluster
label from 1 to K randomly.
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• Step 1: Ranking for each cluster.
Based on current clusters, K cluster-induced networks are generated accordingly, and the con-
ditional rank distributions for types Y and X are calculated. In this step, we also need to judge
whether any cluster is empty, which may be caused by the improper initialization of the algorithm.
When some cluster is empty, the algorithm needs to restart in order to generate K clusters.

• Step 2: Estimation of the cluster membership vectors for target objects.
In this step,we need to estimate the parameter � in the mixture model and get new representations
for each target object and centers for each target cluster: �sx and �sXk

. In practice, the number of
iterations t for calculating � only needs to be set to a small number.

• Step 3: Cluster adjustment.
In this step, we calculate the distance from each object to each cluster center and assign it to the
nearest cluster.

Repeat Steps 1, 2 and 3 until clusters change only by a very small ratio ε or the number of iterations
is bigger than a predefined value iterNum. In practice, we can set ε = 0, and iterNum = 20. In
our experiments, the algorithm will converge in less than 5 rounds in most cases for the synthetic
dataset and around 10 rounds for the DBLP dataset.

Example 2.5 (Mutual improvement of clustering and ranking) We now apply our algorithm
to the two-research-area example. The conditional rank distributions for each cluster and cluster
memberships for each venue at each iteration of the running procedure are illustrated in Figure
2.5 (a)–(h). To better explain how our algorithm works, we set an extremely bad initial clustering
as the initial state. In Cluster 1, there are 14 venues, half from the DB/DM area and half from
the HW/CA area. Cluster 2 contains the remaining 6 venues, which are ICDT, CIKM, PKDD,
ASPLOS, ISLPED, and CODES. We can see that the partition is quite unbalanced according
to the size, and quite mixed according to the area. During the first iteration, the conditional rank
distributions for two clusters are very similar to each other (Figure 2.5(a)), and venues are mixed up
and biased to Cluster 2 (Figure 2.5(b)). However, we can still adjust their cluster labels according
to the cluster centers, and most HW/CA venues go to Cluster 2 and most DB/DM venues go to
Cluster 1. At the second iteration, conditional ranking improves somewhat (shown in Figure 2.5(c))
since the clustering (Figure 2.5(b)) is enhanced, and this time clustering results (Figure 2.5(d)) are
enhanced dramatically, although they are still biased to one cluster (Cluster 1). At the third iteration,
ranking results are improved significantly. Clusters and ranks are further adjusted afterwards, both
of which are minor refinements.

At each iteration, the time complexity of RankClus is comprised of three parts: ranking part,
mixture model estimation part, and clustering adjustment part. For ranking, if we use simple ranking,
the time complexity is O(|E |). If we use authority ranking, the time complexity is O(t1|E |), where |E |
is the number of links, and t1 is the number of iterations.For mixture model estimation, at each round,
we need to calculate the conditional probability for each link in each cluster, the time complexity of



22 2. RANKING-BASED CLUSTERING

0 50 100 150 200
0

0.05

0.1
Rank Distribution at Iterations 1, 2, 3, and 4 

0 0.1 0.2 0.3 0.4 0.5
0.4

0.6

0.8

1
Scatter Plot for Venues at Iterations 1, 2, 3, and 4 

 

 

0 50 100 150 200
0

0.02

0.04

0.06
(a)

0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

 

 
(b)

0 50 100 150 200
0

0.02

0.04

0.06
(c)

0 0.2 0.4 0.6 0.8 1
0

0.5

1

 

 
(d)

0 50 100 150 200
0

0.02

0.04

0.06

DB/DM Authors      HW/CA Authors
                              (g)                             

Ra
nk

in
g 

sc
or

e 
fo

r a
ut

ho
rs

(e)

 

 

0 0.2 0.4 0.6 0.8 1
0

0.5

1

Component Coefficient for Cluster 1
                                (h)                                

C
om

po
ne

nt
 C

oe
ffi

ci
en

t f
or

 C
lu

st
er

 2

 

 
(f)

Cluster Center
DB/DM Venue.
HW/CA Venue

Rank on Cluster 2
Rank on Cluster 1

Figure 2.5: Mutual improvement of clusters and ranking through iterations.

which is O(K|E |). For clustering adjustment, we need to compute the distance between each object
(m) and each cluster (K), and the dimension of each object is K , so the time complexity for this
part is O(mK2). So, overall, the time complexity is O(t(t1|E | + t2(K|E |) + mK2)), where t is the
number of iterations of the whole algorithm and t2 is the number of iterations of the mixture model.
If the network is a sparse network, the time is almost linear to the number of objects.

2.2.5 EXPERIMENTAL RESULTS
We now show the effectiveness and efficiency of RankClus algorithm compared with other link-
based algorithms, using both synthetic and real datasets.
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Case Study on the DBLP Dataset We use the DBLP dataset to generate a bi-typed information
network for all the 2676 venues and 20,000 authors with most publications, from the time period
of 1998–2007. Both venue-author relationships and co-author relationships are used. We set the
number of clusters K = 15, and apply RankClus with the authority ranking function, with α = 0.95.
We then pick 5 clusters, and show top-10 venues from each cluster according to the conditional
rank scores. The results are shown in Table 2.4, where the research area labels are manually added
to each cluster.

Table 2.4: Top-10 venues in 5 clusters generated by RankClus in DBLP
Rank DB Network AI Theory IR

1 VLDB INFOCOM AAMAS SODA SIGIR
2 ICDE SIGMETRICS IJCAI STOC ACM Multimedia
3 SIGMOD ICNP AAAI FOCS CIKM
4 KDD SIGCOMM Agents ICALP TREC
5 ICDM MOBICOM AAAI/IAAI CCC JCDL
6 EDBT ICDCS ECAI SPAA CLEF
7 DASFAA NETWORKING RoboCup PODC WWW
8 PODS MobiHoc IAT CRYPTO ECDL
9 SSDBM ISCC ICMAS APPROX-RANDOM ECIR
10 SDM SenSys CP EUROCRYPT CIVR

Please note that the clustering and ranking of venues shown in Tables 2.4 have used neither
keyword nor citation information, which is the information popularly used in most bibliographic
data analysis systems. It is well recognized that citation information is crucial at judging the influence
and impact of a venue or an author in a field. However, by exploring the publication entries only in
the DBLP data, the RankClus algorithm can achieve comparable performance as citation studies
for clustering and ranking venues and authors.This implies that the collection of publication entries
without referring to the keyword and citation information can still tell a lot about the status of venues
and authors in a scientific field.

Accuracy and Efficiency Study on Synthetic Data In order to compare accuracy among differ-
ent clustering algorithms, we generate synthetic bi-typed information networks, which follow the
properties of real information networks similar to DBLP. In our experiments, we first fixed the
scale of the network and the distribution of links, but change configurations to adjust the density
within each cluster and the separateness between different clusters, to obtain 5 different networks
(Dataset1 to Dataset5). We set number of clusters K = 3, number of target objects in each cluster as
Nx = [10, 20, 15], and number of attribute objects in each cluster as Ny = [500, 800, 700], which
are the same for all the 5 datasets. Then we vary the number of links in each cluster (P ) and the
transition matrix of the proportion of links between different clusters (T ), to get the following five
datasets.
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• Dataset1: medium separated and medium density.
P = [1000, 1500, 2000],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset2: medium separated and low density.
P = [800, 1300, 1200],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset3: medium separated and high density.
P = [2000, 3000, 4000],
T = [0.8, 0.05, 0.15; 0.1, 0.8, 0.1; 0.1, 0.05, 0.85]

• Dataset4: highly separated and medium density.
P = [1000, 1500, 2000],
T = [0.9, 0.05, 0.05; 0.05, 0.9, 0.05; 0.1, 0.05, 0.85]

• Dataset5: poorly separated and medium density.
P = [1000, 1500, 2000],
T = [0.7, 0.15, 0.15; 0.15, 0.7, 0.15; 0.15, 0.15, 0.7]

We use the Normalized Mutual Information (NMI) [60] measure to compare the clustering
accuracy among different algorithms. For N objects, K clusters, and two clustering results, let
n(i, j), i, j = 1, 2, . . . , K , be the number of objects that has the cluster label i in the first clustering
result (say generated by the algorithm) and cluster label j in the second clustering result (say the
ground truth). We can then define joint distribution p(i, j) = n(i,j)

N
, row distribution p1(j) =∑K

i=1 p(i, j) and column distribution p2(i) = ∑K
j=1p(i, j), and NMI is defined as:

∑K
i=1

∑K
j=1 p(i, j) log(

p(i,j)
p1(j)p2(i)

)√∑K
j=1 p1(j) log p1(j)

∑K
i=1 p2(i) log p2(i)

. (2.9)

We compare RankClus implemented with two ranking functions: Simple Ranking and
Authority Ranking, with a state-of-the-art spectral clustering algorithm, the k-way N-cut algo-
rithm [58], implemented with two link-based similarity functions, Jaccard Coefficient and Sim-
Rank [28].

Results for accuracy is summarized in Figure 2.6.From the results,we can see that, two versions
of RankClus outperform in the first 4 datasets. RankClus with authority ranking is even better, since
authority ranking gives a better rank distribution by utilizing the information of the whole network.
Through the experiments, we observe that performance of two versions of RankClus and the N-
Cut algorithm based on Jaccard coefficient are highly dependent on the data quality, in terms of
cluster separateness and link density, while SimRank has a more stable performance, especially on
the network that is sparse (Dataset5).
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Figure 2.6: Accuracy comparison with baselines in terms of NMI. Dataset1: medium separated and
medium density; Dataset2: medium separated and low density; Dataset3: medium separated and high
density; Dataset4: highly separated and medium density; and Dataset5: poorly separated and medium
density.
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Figure 2.7: Efficiency comparison with baselines in terms of execution time.

Figure 2.7 summarizes the average execution time of different algorithms over four networks
with different sizes. We can see that compared with the time-consuming SimRank algorithm,
RankClus is very efficient and scalable.

2.3 NETCLUS

The second clustering task we are solving is to soft clustering all types of objects for a more general
type of heterogeneous information networks that involve more types of objects and more types
of links. Among heterogeneous networks, networks with star network schema (called star networks),
such as bibliographic networks centered with papers (see Example 2.6) and tagging networks (e.g.,
http://delicious.com) centered with a tagging event, are popular and important. In fact, any n-nary
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relation set such as records in a relational database can be mapped into a star network, with each
tuple in the relation as the center object and all attribute entities linking to the center object.

Example 2.6 (A star bibliographic information network) A bibliographic network contains rich
information about research publications. It consists of nodes belonging to four types: paper (D),
author (A), term (T ), and venue (V ). Semantically, each paper is written by a group of authors,
using a set of terms, and published in a venue (a conference or a journal). Links exist between papers
and authors by the relation of “write” and “written by,” between papers and terms by the relation of
“contain” and “contained in,” between papers and venues by the relation of “publish” and “published
by.” The topological structure of a bibliographic network is shown in the left part of Figure 2.8,
which forms a star network schema, where paper is a center type and all other types (called attribute
types) of objects are linked via papers. The network can be represented as G = (V, E, W), where
V = A ∪ V ∪ T ∪ D, and the weight of the link 〈xi, xj 〉, wxixj

, is defined as:

wxixj
=

⎧⎨
⎩

1, if xi(xj ) ∈ A ∪ V, xj (xi) ∈ D, and xi has link to xj ,

c, if xi(xj ) ∈ T , xj (xi) ∈ D, and xi(xj ) appears c times in xj (xi),

0, otherwise.

Definition 2.7 (Star network) An information network, G = (V, E, W), with T + 1 types of
objects (i.e.,V = {Xt }Tt=0), is called with star network schema, if ∀e = 〈xi, xj 〉 ∈ E, xi ∈ X0 ∧ xj ∈
Xt(t �= 0), or vice versa. G is then called a star network. Type X0 is the center type (called the
target type) and Xt(t �= 0) are attribute types.

In contrast to traditional cluster definition, we propose NetClus to detect net-clusters that
contain multiple types of objects and follow the schema of the original network, where each object
can softly belong to multiple clusters. A net-cluster example is shown in Example 2.8.

Example 2.8 (The net-cluster of database area) A net-cluster of the database area consists of a set
of database venues, authors, terms, and papers, and these objects belong to the database area with a
(nontrivial) probability. Accordingly, we can present rank scores for attribute objects such as venues,
authors and terms in its own type. With rank distribution, a user can easily grab the important
objects in the area. Table 2.5 shows the top-ranked venues, authors, and terms in the area “database,”
generated from a 20-venue subnetwork from a “four-area” DBLP dataset (i.e., database, data mining,
information retrieval and artificial intelligence) (see Section 2.3.5), using NetClus.

NetClus is designed for a heterogeneous network with the star network schema. It is a ranking-
based iterative method following the idea of RankClus, that is, ranking is a good feature to help
clustering. Different from RankClus, NetClus is able to deal with an arbitrary number of types of
objects as long as the network is a star network, also the clusters generated are not groups of single
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Table 2.5: Rank scores for venues, authors, and terms for the net-cluster of the database
research area

Venue Rank score
SIGMOD 0.315

VLDB 0.306
ICDE 0.194
PODS 0.109
EDBT 0.046
CIKM 0.019

… …

Author Rank score
Michael Stonebraker 0.0063

Surajit Chaudhuri 0.0057
C. Mohan 0.0053

Michael J. Carey 0.0052
David J. DeWitt 0.0051
H. V. Jagadish 0.0043

… …

Term Rank score
database 0.0529
system 0.0322
query 0.0313
data 0.0251

object 0.0138
management 0.0113

… …

typed objects but a set of subnetworks with the same topology as the input network. For a given star
network and a specified number of clusters K , NetClus outputs K net-clusters (Figure 2.8). Each
net-cluster is a sub-layer representing a concept of community of the network, which is an induced
network from the clustered target objects, and attached with statistic information for each object in
the network.
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Figure 2.8: Illustration of clustering on a star bibliographic network into net-clusters.

Instead of generating pairwise similarities between objects, which is time consuming and
difficult to define under a heterogeneous network, NetClus maps each target object, i.e., that from
the center type, into a K-dimensional vector measure, where K is the number of clusters specified
by the user. The probabilistic generative model for the target objects in each net-cluster is ranking-
based, which factorizes a net-cluster into T independent components, where T is the number of
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attribute types. In this section, we use the star bibliographic network introduced in Example 2.6 to
illustrate the NetClus algorithm.

2.3.1 RANKING FUNCTIONS
We have introduced ranking functions in Section 2.2.1, and now we re-examine the two ranking
functions for the bibliographic network with a star network schema and illustrate some properties
of the two ranking functions for a simple 3-(attribute-)typed star network.

Simple Ranking
Simple ranking is namely the simple occurrence counting for each object normalized in its own type.
Given a network G, rank distribution for each attribute type of objects is defined as follows:

p(x|Tx, G) =
∑

y∈NG(x) Wxy∑
x′∈Tx

∑
y∈NG(x′) Wx′y

, (2.10)

where x is an object from type Tx , and NG(x) is the set of neighbors of x in G. For example, in the
bibliographic network, the rank score for a venue using simple ranking will be proportional to the
number of its published papers.

Authority Ranking
Authority ranking for each object is a ranking function that considers the authority propagation of
objects in the whole network. Different from the bi-typed information network, we need to consider
the rank score propagation over a path in a general heterogeneous information network. For a general
star network G, the propagation of authority score from Type X to Type Y through the center type
Z is defined as:

P(Y |TY , G) = WYZWZXP (X|TX, G) , (2.11)

where WYZ and WZX are the weight matrices between the two corresponding types of objects,
and can be normalized when necessary. Generally, authority score of one type of objects could be
a combination of scores from different types of objects, e.g., that proposed in PopRank [51]. It
turns out that the iteration method of calculating rank distribution is the power method to calculate
the primary eigenvector of a square matrix denoting the strength between pairs of objects in that
particular type, which can be achieved by selecting a walking path (or a combination of multiple
paths) in the network. For more systematic definition of such paths, please refer to Chapter 4 for
meta-path-based concepts.

In the DBLP dataset, according to the rules that (1) highly ranked venues accept many good
papers published by highly ranked authors, and (2) highly ranked authors publish many good papers
in highly ranked venues, we determine the iteration equation as:

P(V |TV , G) = WV DD−1
DAWDAP (A|TA, G)

P (A|TA, G) = WADD−1
DV WDV P (V |TV , G) ,

(2.12)
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where DDA and DDV are the diagonal matrices with the diagonal value equaling to row sum of WDA

and WDV , for the normalization purpose. The normalization simply means if a paper was written
by multiple authors, we should consider the average rank score of these authors when calculating
the rank score of a venue. Since all these matrices are sparse, in practice, the rank scores of objects
need only be calculated iteratively according to their limited number of neighbors.

Integrating Ranking Functions with Prior Knowledge
In both ranking functions, prior distributions in different clusters for a certain type of objects can be
integrated. For example, a user may give a few representative objects to serve as priors, like terms and
venues in each research area. Priors for a given type X are represented in the form PP (X|TX, k), k =
1, 2, . . . , K . The prior is first propagated in the network in a Personalized PageRank [86] way,
which propagates scores to objects that are not given in the priors. Then, the propagated prior is
linearly combined with the rank distribution calculated by the given ranking function with parameter
λP ∈ [0, 1]: the bigger the value, the more dependent on the prior is the final conditional rank
distribution.

2.3.2 FRAMEWORK OF NETCLUS ALGORITHM
Here, we first introduce the general framework of NetClus, and each part of the algorithm will be
explained in detail in the following sections. The general idea of the NetClus algorithm given the
number of clusters K is composed of the following steps.

• Step 0:Generate initial partitions for target objects and induce initial net-clusters from the original
network according to these partitions, i.e., {C0

k }Kk=1.

• Step 1:Build ranking-based probabilistic generative model for each net-cluster, i.e.,{P(x|Ct
k)}Kk=1.

• Step 2: Calculate the posterior probabilities for each target object (p(Ct
k|x)) and then adjust their

cluster assignment according to the new measure defined by the posterior probabilities to each
cluster.

• Step 3: Repeat Steps 1 and 2 until the cluster does not change significantly, i.e., {C∗
k }Kk=1 =

{Ct
k}Kk=1 = {Ct−1

k }Kk=1.

• Step 4: Calculate the posterior probabilities for each attribute object (p(C∗
k |x)) in each net-cluster.

In all, the time complexity for NetClus is about linear to |E |, the number of links in the
network. When the network is very sparse, which is the real situation in most applications, the time
complexity is almost linear to the number of objects in the network.

2.3.3 GENERATIVE MODEL FOR TARGET OBJECTS IN A NET-CLUSTER
According to many studies [4; 20; 50], preferential attachment and assortative mixing exist in many
real-world networks, which means an object with a higher degree (i.e., high occurrences) has a
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higher probability to be attached with a link, and objects with higher occurrences tend to link more
to each other. As in the DBLP dataset, 7.64% of the most productive authors publishes 74.2% of
all the papers, among which 56.72% of papers are published in merely 8.62% of the biggest venues,
which means large size venues and productive authors intend to co-appear via papers. We extend
the heuristic by using rank score instead of degree of objects, which denotes the overall importance
of an object in a network. Examples following this intuition include: webpage spammed by many
low rank webpages linking to it (high degree but low rank) will not have too much chance to get
a link from a real important webpage, and authors publishing many papers in junk venues will not
increase his/her chance to publish a paper in highly ranked venues.

Under this observation, we simplify the network structure by proposing a probabilistic gen-
erative model for target objects, where a set of highly ranked attribute objects are more likely to
co-appear to generate a center object. To explain this idea, we take the star bibliographic informa-
tion network as a concrete example and show how the model works, where we assume the number of
distinct objects in each type are |A|, |V |, |T |, and |D|, respectively, objects in each type are denoted as
A = {a1, a2, . . . , a|A|}, V = {v1, v2, . . . , v|V |}, T = {t1, t2, . . . , t|T |}, and D = {d1, d2, . . . , d|D|}.

In order to simplify the complex network with multiple types of objects, we try to factorize
the impact of different types of attribute objects and then model the generative behavior of target
objects. The idea of factorizing a network is: we assume that given a network G, the probability to
visit objects from different attribute types are independent to each other. Also, we make another
independence assumption that within the same type of objects the probability to visit two different
objects is independent to each other:

p(xi, xj |Tx, G) = p(xi |Tx, G) × p(xj |Tx, G) ,

where xi, xj ∈ Tx and Tx is some attribute type.
Now, we build the generative model for target objects given the rank distributions of attribute

objects in the network G. Still using bibliographic network as an example, each paper di is written
by several authors, published in one venue, and comprised of a bag of terms in the title. Therefore,
a paper di is determined by several attribute objects, say xi1, xi2, . . . , xini

, where ni is the number
of links di has. The probability to generate a paper di is equivalent to generating these attribute
objects with the occurrence number indicated by the weight of the edge. Under the independency
assumptions that we have made, the probability to generate a paper di in the network G is defined
as follows:

p(di |G) =
∏

x∈NG(di)

p(x|Tx, G)Wdi ,x ,

where NG(di) is the neighborhood of object di in network G, and Tx is used to denote the type of
object x. Intuitively, a paper is generated in a cluster with high probability, if the venue it is published
in, authors writing this paper and terms appeared in the title all have high probability in that cluster.
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2.3.4 POSTERIOR PROBABILITY FOR TARGET OBJECTS AND ATTRIBUTE
OBJECTS

Once we get the generative model for each net-cluster, we can calculate posterior probabilities for
each target object. Now the problem becomes that suppose we know the generative probabilities for
each target object generated from each cluster k, k = 1, 2, . . . , K , what is the posterior probability
that it is generated from cluster k? Here, K is the number of clusters given by the user. As some
target objects may not belong to any of K net-cluster, we calculate K + 1 posterior probabilities for
each target object instead of K , where the first K posterior probabilities are calculated for each real
existing net-clusters C1, C2, . . . , CK , and the last one in fact is calculated for the original network
G. Now, the generative model for target objects in G plays a role as a background model, and
target objects that are not very related to any clusters will have high posterior probability in the
background model. In this section, we will introduce the method to calculate posterior probabilities
for both target objects and attribute objects.

According to the generative model for target objects, the generative probability for a target
object d in the target type D in a subnetwork Gk is calculated according to the conditional rank
distributions of attribute types in that subnetwork:

p(d|Gk) =
∏

x∈NGk
(d)

p(x|Tx, Gk)
Wd,x , (2.13)

where NGk
(d) denotes the neighborhood of object d in subnetwork Gk . In Equation (2.13), in order

to avoid zero probabilities in conditional rank scores, each conditional rank score should be first
smoothed using global ranking:

PS(X|TX, Gk) = (1 − λS)P (X|TX, Gk) + λSP (X|TX, G) , (2.14)

where λS is a parameter that denotes how much we should utilize the rank distribution from the
global ranking.

Smoothing [82] is a well-known technology in information retrieval. One of the reasons that
smoothing is required in the language model is to deal with the zero probability problem for missing
terms in a document. When calculating generative probabilities of target objects using our ranking-
based generative model, we meet a similar problem. For example, for a paper in a given net-cluster, it
may link to several objects whose rank score is zero in that cluster. If we simply assign the probability
of the target object as zero in that cluster, we will miss the information provided by other objects.
In fact, in initial rounds of clustering, objects may be assigned to wrong clusters, if we do not use
smoothing technique, they may not have the chance to go back to the correct clusters.

Once a clustering is given on the input network G, say C1, C2, . . . , CK , we can calculate the
posterior probability for each target object (say paper di) simply by Bayes’ rule: πi,k ∝ p(di |k) ×
p(k), where πi,k is the probability that paper di is generated from cluster k given current generative
model, and p(k) denotes the relative size of cluster k, i.e., the probability that a paper belongs to
cluster k overall, where k = 1, 2, . . . , K, K + 1.
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In order to get the potential cluster size p(k) for each cluster k, we choose cluster size p(k) that
maximizes log-likelihood to generate the whole collection of papers and then use the EM algorithm
to get the local maximum for p(k):

logL =
|D|∑
i=1

log(p(di)) =
|D|∑
i=1

log
( K+1∑

k=1

p(di |k)p(k)
)
. (2.15)

We use the EM algorithm to get p(k) by simply using the following two iterative formulas, by
initially setting p(0)(k) = 1

K+1 :

π
(t)
i,k ∝ p(di |k)p(t)(k); p(t+1)(k) =

|D|∑
i=1

π
(t)
i,k /|D|.

When posterior probability is calculated for each target object in each cluster Ck , each target
object d can be represented as a K dimensional vector: �v(di) = (πi,1, πi,2, . . . , πi,K). The center
for each cluster Ck can be represented by the mean vector of all the target objects belonging to
the cluster under the new measure. Next, we calculate cosine similarity between each target object
and each center of cluster, and assign the target object into the cluster with the nearest center. A
target object is now only belonging to one cluster, and we denote p(k|di) as 1 if di is assigned to
cluster k, 0 otherwise. A new subnetwork Gk can be induced by current target objects belonging
to cluster k. The adjustment is an iterative process, until target objects do not change their cluster
label significantly under the current measure. Note that, when measuring target objects, we do not
use the posterior probability for background model. We make such choices with two reasons: first,
the absolute value of posterior probability for background model should not affect the similarity
between target objects; second, the sum of the first K posterior probabilities reflects the importance
of an object in determining the cluster center.

The posterior probabilities for attribute objects x ∈ A ∪ V ∪ T can be calculated as follows:

p(k|x) =
∑

d∈NG(x)

p(k, d|x) =
∑

d∈NG(x)

p(k|d)p(d|x) =
∑

d∈NG(x)

p(k|d)
1

|NG(x)| .

This simply implies that the probability of a venue belonging to cluster Ck is equal to the average
posterior probabilities of papers published in the venue; similarly for authors and other attribute
objects.

2.3.5 EXPERIMENTAL RESULTS
We now study the effectiveness of NetClus and compare it with several state-of-the-art baselines.

Dataset We build star bibliographic networks from DBLP according to Example 2.6. Two net-
works of different scales are studied. One is a big dataset (“all-area” dataset) which covers all the
venues, authors, papers, and terms from DBLP. The other is a smaller dataset extracted from DBLP,
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containing 20 venues from four areas (hence called “four-area” dataset): database, data mining, in-
formation retrieval, and artificial intelligence. All authors have ever published papers on any of the
20 venues, and all these papers and terms appeared in the titles of these papers are included in the
network. Using the “four-area” dataset, we are able to compare the clustering accuracy with several
other methods.

Case Studies We first show the rank distributions in net-clusters we discovered using the “all-
area” dataset, which is generated according to authority ranking for venues and authors, by setting
venue type as priors and the cluster number as 8. We show four net-clusters in Table 2.6. Also, we
can recursively apply NetClus to subnetworks derived from clusters and discover finer level net-
clusters. Top-5 authors in a finer level net-cluster about XML area, which is derived from database
subnetwork, are shown in Table 2.7.

Table 2.6: Top-5 venues in 4 net-clusters
Rank DB and IS Theory AI Software Engineering

1 SIGMOD STOC AAAI ITC
2 VLDB FOCS UAI VTS
3 ICDE SIAM J. Comput. IJCAI POPL
4 SIGIR SODA Artif. Intell. IEEE Trans. Computers
5 KDD J. Comput. Syst. Sci. NIPS IEEE Design & Test of Compu.

Table 2.7: Top-5 authors
in “XML” net-cluster
Rank Author

1 Serge Abiteboul
2 Victor Vianu
3 Jerome Simeon
4 Michael J. Carey
5 Sophie Cluet

Study on Ranking Functions In Section 2.3.1, we proposed two ranking functions, namely simple
ranking and authority ranking. Here, we study how low dimensional measure derived from rank
distributions improve clustering and how clustering can improve this new measure in turn (Figure
2.9). In this study, term is always ranked by simple ranking, and venue and author are ranked by
either authority ranking or simple ranking as two different settings.

First, we calculate average KL divergence between each conditional rank distribution and
the global rank distribution for each attribute type X to measure the dissimilarity among different
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Figure 2.9: The change of ranking and clustering quality in terms of different measurements along with
the iterations.

conditional rank distributions, which is denoted as avgKL(X) for type X:

avgKL(X) = 1

K

K∑
k=1

DKL(P (X|TX, Gk)||P(X|TX, G)) .

Second, in order to evaluate how good the new measure is generated in each round for
clustering under the ranking function f , we use the compactness, denoted as Cf , which is defined
as the average ratio between within-cluster similarity and between-cluster similarity using the new
measure:

Cf = 1

|D|
K∑

k=1

|Dk |∑
i=1

s(dki, ck)∑
k′ �=k s(dki, ck′)/(K − 1)

.
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Third, we trace the accuracy of clustering results for target objects in each round of iteration,
which is defined as:

accuracy = 1

|D|
D∑

i=1

Ptrue(·|di) · P(·|di) .

In other words, we calculate the percentage of papers that are assigned to the correct clusters.
However, since |D| is very large even in “four-area” dataset, we manually randomly labeled 100
papers into four clusters and use this paper set to calculate the accuracy.

Fourth,we trace the log-likelihood of the generative model along with the clustering iterations,
which is defined in Equation (2.15). From Figure 2.9, we can see authority ranking is better than
simple ranking in every measurement.

Accuracy Study In this section, we compare our algorithm with two other algorithms: the topic
modeling algorithm PLSA [25] that merely uses term information for documents and RankClus that
can only be applied to bi-typed networks. Since both of them cannot directly apply to heterogeneous
networks with star network schema, we simplify the network when necessary. For PLSA, only the
term type and paper type in the network are used, and we use the same term priors as in NetClus.
The accuracy results for papers are in Table 2.8.

Table 2.8: Accuracy of paper clustering results using
PLSA and NetClus

NetClus (A+V+T+D) PLSA (T+D)
Accuracy 0.7705 0.608

Since RankClus can only cluster venues, we choose to measure the accuracy of venue cluster.
For NetClus, cluster label is obtained according to the largest posterior probability, and Normalized
Mutual Information (NMI) is used to measure the accuracy. Since the majority of the authors publish
only a few papers, which may contain noise for correctly identifying the clustering of venues, we
run RankClus algorithm by setting different thresholds to select subsets of authors. The results are
shown in Table 2.9, where d(a) > n means we select authors that have more than n publications to
build the bi-typed bibliographic network. All the results are based on 20 runs.

Table 2.9: Accuracy of venue clustering results using
RankClus and NetClus

RankClus RankClus RankClus NetClus
d(a) > 0 d(a) > 5 d(a) > 10 d(a) > 0

NMI 0.5232 0.8390 0.7573 0.9753

We can see that by using more types of objects in the network, NetClus performs much better
than the two baselines that can only utilize partial information in the network.
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C H A P T E R 3

Classification of Heterogeneous
Information Networks

Ming Ji, Department of Computer Science, University of Illinois at
Urbana-Champaign

Classification can also take advantage of links in heterogeneous information networks. Knowledge
can be effectively propagated across a heterogeneous network because the nodes of the same type
that are linked similarly via the same typed links are likely to be similar. Moreover, following the idea
of ranking-based clustering, one can explore ranking-based classification since objects highly ranked
in a class are likely to play a more important role in classification. In this chapter, we show that by
distinguishing the types of links in the networks during class label propagation, the classification
accuracy can be significantly enhanced.

3.1 OVERVIEW

In many real-world applications, label information is available for some objects in a heterogeneous
information network. Learning from such labeled and unlabeled data via transductive classification
can lead to good knowledge extraction of the hidden network structure. Although classification
on homogeneous networks has been studied for decades, classification on heterogeneous networks
has not been explored until recently. Moreover, both classification and ranking of the nodes (or
data objects) in such networks are essential for network analysis. But so far these approaches have
generally been performed separately.

We consider the transductive classification problem on heterogeneous networked data objects
which share a common topic. Only some objects in the given network are labeled, and we aim to
predict labels for all types of the remaining objects. Besides, we combine ranking and classification
in order to perform more accurate analysis of a heterogeneous information network. The intuition is
that highly ranked objects within a class should play more important roles in classification. On the
other hand, class membership information is important for determining a high quality ranking over a
dataset. We believe it is therefore beneficial to integrate classification and ranking in a simultaneous,
mutually enhancing process.
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In this chapter, we first introduce GNetMine, a transductive classification framework on
heterogeneous information networks. Then we introduce RankClass, a novel ranking-based classi-
fication framework based on GNetMine.

3.2 GNETMINE
As discussed before, sometimes, label information is available for some data objects in a heteroge-
neous information network.Learning from labeled and unlabeled data is often called semi-supervised
learning [7; 85; 89], which aims to classify the unlabeled data based on known information. Clas-
sification can help discover the hidden structure of the information network, and give deep insight
into understanding different roles played by each object. In fact, applications like research com-
munity discovery, fraud detection and product recommendation can all be cast as a classification
problem [46; 56]. Generally, classification can be categorized into two groups: (1) transductive clas-
sification [45; 46; 77; 85; 89]: to predict labels for the given unlabeled data; and (2) inductive classi-
fication [7; 43; 48; 56; 70]: to construct a decision function in the whole data space. In this chapter,
we focus on transductive classification, which is a common scenario in networked data.

Current studies about transductive classification on networked data [43; 45; 46; 56] mainly
focus on homogeneous information networks, that is, networks composed of a single type of objects,
as mentioned above.But in real life, there could be multiple types of objects which form heterogeneous
information networks. As a natural generalization of classification on homogeneous networked data,
we consider the problem of classifying heterogeneous networked data into classes, each of which
is composed of multi-typed data sharing a common topic. For instance, a research community in
a bibliographic information network contains not only authors, but also papers, venues and terms
all belonging to the same research area. Other examples include movie networks in which movies,
directors, actors and keywords relate to the same genre, and e-commerce networks where sellers,
customers, items and tags belong to the same shopping category.

The general problem of classification has been well studied in the literature. Transductive
classification on strongly-typed heterogeneous information networks, however, is much more chal-
lenging due to the following characteristics of data.

1. Complexity of the network structure. When dealing with the multi-typed network structure
in a heterogeneous information network, one common solution is to transform it into a ho-
mogenous network and apply traditional classification methods [46; 56]. However, this simple
transformation has several drawbacks. For instance, suppose we want to classify papers into dif-
ferent research areas. Existing methods would most likely extract a citation network from the
whole bibliographic network. Then some valuable discriminative information is likely to be lost
(e.g., authors of the paper, and the venue the paper is published in). Another solution to make use
of the whole network is to ignore the type differences between objects and links. Nevertheless,
different types of objects naturally have different data distributions, and different types of links
have different semantic meanings, therefore treating them equally is unlikely to be optimal. It
has been recognized [41; 66] that while mining heterogeneous information networks, the type
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differences among links and objects should be respected in order to generate more meaningful
results.

2. Lack of features. Traditional classification methods usually learn from local features or attributes
of the data. However, there is no natural feature representation for all types of networked data. If
we transform the link information into features, we will likely generate very high dimensional and
sparse data as the number of objects increases. Moreover, even if we have feature representation for
some objects in a heterogeneous information network, the features of different types of objects are
in different spaces and are hardly comparable.This is another reason why traditional feature-based
methods including Support Vector Machines, Naïve Bayes and logistic regression are difficult to
apply in heterogeneous information networks.

3. Lack of labels. Many classification approaches need a reasonable amount of training examples.
However, labels are expensive in many real applications. In a heterogeneous information network,
we may even not be able to have a fully labeled subset of all types of objects for training. Label
information for some types of objects are easy to obtain while labels for some other types are not.
Therefore, a flexible transductive classifier should allow label propagation among different types
of objects.

In this section, we introduce a graph-based regularization framework to address all three challenges,
which simultaneously classifies all of the non-attributed,network-only data with an arbitrary network
topology and number of object/link types, just based on the label information of any type(s) of objects
and the link structure. By preserving consistency over each relation graph corresponding to each type
of links separately, we explicitly respect the type differences in links and objects, thus encoding the
typed information in a more organized way than traditional graph-based transductive classification
on homogeneous networks.

3.2.1 THE CLASSIFICATION PROBLEM DEFINITION
In this section, we introduce several related concepts and notations, and then formally define the
problem.

Given an arbitrary heterogeneous information network G = (V, E, W), suppose it contains
m types of data objects, denoted by X1 = {x11, . . . , x1n1}, . . . ,Xm = {xm1, . . . , xmnm}, we have
V = ⋃m

i=1 Xi . Let E be the set of links between any two data objects of V , and W is the set of
weight values on the links. We use Wxipxjq

denote the weight of the link between any two objects
xip and xjq , represented by 〈xip, xjq〉.

A class in heterogeneous information network is similar to the concept of net-cluster in
NetClus [69], which can be considered as a layer of the original network. Each node belongs to one
class and the links are induced to the class of the network, if both nodes are from the same class.
In other words, a class in a heterogeneous information network is actually a subnetwork containing
multi-typed objects that are closely related to each other.

Now the problem can be formalized as follows.
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Definition 3.1 (Transductive classification on heterogeneous information networks) Given a
heterogeneous information network G = (V, E, W), a subset of data objects V ′ ⊆ V = ⋃m

i=1 Xi ,
which are labeled with values Y denoting which class each object belongs to, the goal is to predict
the class labels for all the unlabeled objects V − V ′.

We design a set of one-versus-all soft classifiers in the multi-class classification task. Suppose
the number of classes is K . For any object type Xi , i ∈ {1, . . . , m}, we try to compute a class indicator
matrix Fi = [f(1)

i , . . . , f(K)
i ] ∈ R

ni×K , where each f(k)
i = [f(k)

i1 , . . . , f(k)
ini

]T measures the confidence
that each object xip ∈ Xi belongs to class k. Then we can assign the p-th object in type Xi to class
cip by finding the maximum value in the p-th row of Fi : cip = arg max1≤k≤K f(k)

ip .
In a heterogeneous information network, a relation graph Gij can be built corresponding to

each type of link relationships between two types of data objects Xi and Xj , i, j ∈ {1, . . . , m}. Note
that it is possible for i = j . Let Rij be an ni × nj relation matrix corresponding to graph Gij . The
element at the p-th row and q-th column of Rij is denoted as Rij,pq , representing the weight on
link 〈xip, xjq〉. There are many ways to define the weights on the links, which can also incorporate
domain knowledge. A simple definition is as follows:

Rij,pq =
{

1 if data objects xip and xjq are linked together
0 otherwise.

Here we consider undirected relation graphs such that Rij = RT
ji . In this way, each heterogeneous

network G can be mathematically represented by a set of relation matrices G = {Rij }mi,j=1.

In order to encode label information, we basically set a vector y(k)
i = [y(k)

i1 , . . . , y
(k)
ini

]T ∈ R
ni

for each data object type Xi such that:

y
(k)
ip =

{
1 if xip is labeled to the k-th class
0 otherwise.

Then for each class k ∈ {1, . . . , K}, our goal is to infer a set of f(k)
i from Rij and y(k)

i , i, j ∈
{1, . . . , m}.

3.2.2 GRAPH-BASED REGULARIZATION FRAMEWORK
This section starts with a description of the intuition of the method,proceeds to the formulation of the
problem using a graph-based regularization framework, and then introduces efficient computational
schemes to solve the optimization problem.

Intuition
Consider a simple bibliographic information network in Figure 3.1. Four types of objects (paper,
author, venue and term) are interconnected by multi-typed links (denoted by solid black lines).
Suppose we want to classify them into research communities. Labeled objects are shaded, whereas
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AuthorA1 Term T1

Venue V2

Venue V1

PaperP1 PaperP2

PaperP3

Class:
Data Mining

Class:
Database

AuthorA4AuthorA4

Term T2

Term T3

AuthorA2 AuthorA3

Figure 3.1: Knowledge propagation in a bibliographic information network.

the labels of unshaded objects are unknown. Given prior knowledge that author A1, paper P1 and
venue V1 belong to the area of data mining, it is easy to infer that author A2 who wrote paper P1,
and term T1 which is contained in P1, are both highly related to data mining. Similarly, author A3,
venue V2, and terms T2 and T3 are likely to belong to the database area, since they link directly to
a database paper P3. For paper P2, things become more complicated because it is linked with both
labeled and unlabeled objects. The confidence of belonging to a certain class may be transferred not
only from labeled objects (venue V1 and author A4), but also from unlabeled ones (authors A2 and A3,
terms T1, T2 and T3). The classification process can be intuitively viewed as a process of knowledge
propagation throughout the network as shown in Figure 3.1, where the thick shaded arrows indicate
possible knowledge flow. The more links between an object x and other objects of class k, the higher
the confidence that x belongs to class k. Accordingly, labeled objects serve as the source of prior
knowledge. Although this intuition is essentially consistency preserving over the network, which is
similar to [45] and [85], the interconnected relationships in heterogeneous information networks
are more complex due to the typed information. Knowledge propagation through different types of links
contains different semantic meaning, and thus should be considered separately.

In this way, the algorithm framework is based on the consistency assumption that the class
assignments of two linked objects are likely to be similar. And the class prediction on labeled objects
should be similar to their pre-assigned labels. In order to respect the type differences between links
and objects, we ensure that such consistency is preserved over each relation graph corresponding to
each type of links separately. The intuition could be formulated as follows.

1. The estimated confidence measure of two objects xip and xjq belonging to class k, f(k)
ip and f(k)

jq ,
should be similar if xip and xjq are linked together, i.e., the weight value Rij,pq > 0.
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2. The confidence estimation f(k)
i should be similar to the ground truth, y(k)

i .

The Algorithm
For each relation matrix Rij , we define a diagonal matrix Dij of size ni × ni .The (p, p)-th element
of Dij is the sum of the p-th row of Rij . Following the above discussion, f(k)

i should be as consistent
as possible with the link information and prior knowledge within each relation graph, so we try to
minimize the following objective function:

J (f(k)
1 , . . . , f(k)

m ) =
m∑

i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( 1√
Dij,pp

f(k)
ip − 1√

Dji,qq

f(k)
jq

)2

+
m∑

i=1

αi(f(k)
i − y(k)

i )T ( f(k)
i − y(k)

i ). (3.1)

where Dij,pp is the (p, p)-th element of Dij , and Dji,qq is the (q, q)-th element of Dji . The first
term in the objective function (3.1) is the smoothness constraints formulating the first intuition. This
term is normalized by

√
Dij,pp and

√
Dji,qq in order to reduce the impact of popularity of nodes.

In other words, we can, to some extent, suppress popular nodes from dominating the confidence
estimations. The normalization technique is adopted in traditional graph-based learning and its
effectiveness is well proved [85]. The second term minimizes the difference between the prediction
results and the labels, reflecting the second intuition.

The trade-off among different terms is controlled by regularization parameters λij and αi ,
where 0 ≤ λij < 1, 0 < αi < 1. For ∀i, j ∈ {1, . . . , m}, λij > 0 indicates that object types Xi and
Xj are linked together and this relationship is taken into consideration. The larger λij , the more
value is placed on the relationship between object types Xi and Xj . For example, in a bibliographic
information network, if a user believes that the links between authors and papers are more trustworthy
and influential than the links between venues and papers, then the λij corresponding to the author-
paper relationship should be set larger than that of venue-paper, and the classification results will
rely more on the author-paper relationship. Similarly, the value of αi , to some extent, measures how
much the user trusts the labels of object type Xi . Similar strategy has been adopted in [41] to control
the weights between different types of relations and objects.

To facilitate algorithm derivation, we define the normalized form of Rij :

Sij = D(−1/2)
ij Rij D(−1/2)

j i , i, j ∈ {1, . . . , m} . (3.2)

With simple algebraic formulations, the first term of (3.1) can be rewritten as:

m∑
i,j=1

λij

ni∑
p=1

nj∑
q=1

Rij,pq

( 1√
Dij,pp

f(k)
ip − 1√

Dji,qq

f(k)
jq

)2

=
m∑

i,j=1

λij

(
(f(k)

i )T f(k)
i + (f(k)

j )T f(k)
j − 2( f(k)

i )T Sij f(k)
j

)
. (3.3)
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Then we can rewrite (3.1) in the following form:

J (f(k)
1 , . . . , f(k)

m ) =
m∑

i,j=1

λij

(
(f(k)

i )T f(k)
i + (f(k)

j )T f(k)
j − 2( f(k)

i )T Sij f(k)
j

)

+
m∑

i=1

αi(f(k)
i − y(k)

i )T ( f(k)
i − y(k)

i ) . (3.4)

Closed Form and Iterative Solution
We first define Lii = Ii − Sii , where Ii is the identity matrix of size ni × ni . Note that Lii is the
normalized graph Laplacian [13] of the homogeneous subnetwork on object type Xi . We can show
that the closed form solution is given by solving the following linear equation system:

f(k)
i =

(
(

m∑
j=1,j �=i

λij + αi)Ii + 2λiiLii

)−1(
αiy(k)

i +
m∑

j=1,j �=i

λij Sij f(k)
j

)
, i ∈ {1, . . . , m} .

It can be proven that
(
(
∑m

j=1,j �=i λij + αi)Ii + 2λiiLii

)
is positive definite and invertible.

Though the closed form solution is obtained, sometimes the iterative solution is preferable.
We derive the iterative form of this algorithm as follows:

• Step 0: For ∀k ∈ {1, . . . , K}, ∀i ∈ {1, . . . , m}, initialize confidence estimates f(k)
i (0) = y(k)

i and
t = 0.

• Step 1: Based on the current f(k)
i (t), compute:

f(k)
i (t + 1) =

∑m
j=1,j �=i λij Sij f(k)

j (t) + 2λiiSii f(k)
i (t) + αiy(k)

i∑m
j=1,j �=i λij + 2λii + αi

,

for ∀k ∈ {1, . . . , K}, ∀i ∈ {1, . . . , m}.
• Step 2: Repeat step 1 with t = t + 1 until convergence, i.e., until f(k)∗

i = f(k)
i (t) do not change

much for all i.

• Step 3: For each i ∈ {1, . . . , m}, assign the class label to the p-th object of type Xi as cip =
arg max1≤k≤K f(k)∗

ip , where f(k)∗
i = [f(k)∗

i1 , . . . , f(k)∗
ini

]T .

Following an analysis similar to [85], the iterative algorithm can be proven to converge to the
closed form solution. The iterative solution can be viewed as a natural extension of [85], where each
object iteratively spreads label information to its neighbors until a global stable state is achieved.
At the same time, we explicitly distinguish the semantic differences between the multi-typed links
and objects by employing different normalized relation graphs corresponding to each type of links
separately rather than a single graph covering all the instances.
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The computational complexity of the iterative solution is O
(
tK(|E | + |V|)), where t is the

number of iterations, |E | is the number of links in the network, and |V| is the number of total objects
in the network.

The time complexity of the closed form solution is dependent on the particular network
structure. In general, the iterative solution is more computationally efficient because it bypasses the
matrix inversion operation.

3.3 RANKCLASS
Classification and ranking are two of the most fundamental analytical techniques. When label infor-
mation is available for some of the data objects, classification makes use of the labeled data as well
as the network structure to predict the class membership of the unlabeled data [46; 56]. On the
other hand, ranking gives a partial ordering to objects in the network by evaluating the node/link
properties using some ranking scheme, such as PageRank [10] or HITS [34]. Both classification
and ranking have been widely studied and found to be applicable in a wide range of problems.

Traditionally, classification and ranking are regarded as orthogonal approaches, computed
independently. However, adhering to such a strict dichotomy has serious downsides. As a concrete
example, suppose we wish to classify the venues in Table 3.1 into two research areas. We wish to
minimize the chance that the top venues are misclassified, not only to improve the classification
results overall, but also because misclassifying a top venue is very likely to increase errors on many
other objects that link to that venue, and are therefore greatly influenced by its label. We would
thus like to more heavily penalize classification mistakes made on highly ranked venues, relative
to a workshop of little influence. Providing a ranking of all venues within a research area can give
users a clearer understanding of that field, rather than simply grouping venues into classes without
noting their relative importance. On the other hand, the class membership of each venue is very
valuable for characterizing that venue. Ranking all venues globally without considering any class
information can often lead to meaningless results and apples-to-oranges comparisons. For instance,
ranking database and information retrieval venues together may not make much sense since the top
venues in these two fields cannot be reasonably compared, as shown in the second column of Table
3.2. These kinds of nonsensical ranking results are not caused by the specific ranking approach, but
are rather due to the inherent incomparability between the two classes of venues. Thus, we suppose
that combining classification with ranking may generate more informative results. The third and
fourth columns in Table 3.2 illustrate this combined approach, showing the more meaningful venue
ranking within each class.

In this study, we introduce RankClass, a new framework that groups objects into several pre-
specified classes, while generating the ranking information for each type of object within each class
simultaneously in a heterogeneous information network. More accurate classification of objects
increases the quality of the ranking within each class, since there is a higher guarantee that the
ranking algorithm used will be comparing only objects of the same class. On the other hand, better
ranking scores improve the performance of the classifier, by correctly identifying which objects
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Table 3.1: Venues from two research areas

Database
SIGMOD, VLDB,

ICDE, EDBT, PODS, ...

Information Retrieval
SIGIR, ECIR,

CIKM, WWW, WSDM, ...

Table 3.2: Top-5 ranked venues in different settings.
Rank Global Ranking Within DB Within IR

1 VLDB VLDB SIGIR
2 SIGIR SIGMOD ECIR
3 SIGMOD ICDE WWW
4 ICDE PODS CIKM
5 ECIR EDBT WSDM

are more important, and should therefore have a higher influence on the classifier’s decisions. We
use the ranking distribution of objects to characterize each class, and we treat each object’s label
information as a prior. By building a graph-based ranking model, different types of objects are ranked
simultaneously within each class. Based on these ranking results, we estimate the relative importance
or visibility of different parts of the network with regard to each class. In order to generate better
within-class ranking, the network structure employed by the ranking model is adjusted so that
the subnetwork composed of objects ranked high in each specific class is emphasized, while the
subnetwork of the rest of the class is gradually weakened. Thus, as the network structure of each
class becomes clearer, the ranking quality improves. Finally, the posterior probability of each object
belonging to each class is estimated to determine each object’s optimal class membership. Instead
of performing ranking after classification, as facet ranking does [16; 79], RankClass essentially
integrates ranking and classification, allowing both approaches to mutually enhance each other.
RankClass iterates over this process until converging to a stable state. Experimental results show
that RankClass both boosts the overall classification accuracy and constructs within-class rankings,
which may be interpreted as meaningful summaries of each class.

Note that we still work on classification in the transductive setting. For convenience, we use
Xi to denote both the set of objects belonging to the i-th type and the type name. In addition
to grouping multi-typed objects into the pre-specified K classes, here we also aim to generate
the ranking distribution of objects within each class k, which can be denoted as P(x|T (x), k),
k = 1, . . . , K . T (x) denotes the type of object x. Note that different types of objects cannot be
compared in a ranking. For example, it is not meaningful to create a ranking of venues and authors
together in a bibliographic information network. Therefore, each ranking distribution is restricted
to a single object type, i.e.,

∑ni

p=1 P(xip|Xi , k) = 1.
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Now the problem can be formalized as follows: given a heterogeneous information network
G = (V, E, W), a subset of data objects V ′ ⊆ V = ⋃m

i=1 Xi , which are labeled with values Y de-
noting which of the K pre-specified classes each object belongs to, predict the class labels for
all the unlabeled objects V − V ′ as well as the ranking distribution of objects within each class,
P(x|T (x), k), x ∈ V , k = 1, . . . , K .

The intuition behind RankClass is to build a graph-based ranking model that ranks multi-
typed objects simultaneously, according to the relative importance of objects within each class. The
initial ranking distribution of each class is determined by the labeled data. During each iteration,
the ranking results are used to modify the network structure to allow the ranking model to generate
higher quality within-class ranking.

3.3.1 THE FRAMEWORK OF RANKCLASS
We first introduce the general framework of RankClass. We will explain each part of the algorithm
in detail in the following subsections.

• Step 0: Initialize the ranking distribution within each class according to the labeled data, i.e.,
{P(x|T (x), k)0}Kk=1. Initialize the set of network structures employed in the ranking model,
{G0

k}Kk=1, as G0
k = G, k = 1, . . . , K . Initialize t = 1.

• Step 1: Using the graph-based ranking model and the current set of network structures {Gt−1
k }Kk=1,

update the ranking distribution within each class k, i.e., {P(x|T (x), k)t }Kk=1.

• Step 2: Based on {P(x|T (x), k)t }Kk=1, adjust the network structure to favor within-class ranking,
i.e., {Gt

k}Kk=1.

• Step 3: Repeat steps 1 and 2, setting t = t + 1 until convergence, i.e., until {P(x|T (x), k)∗}Kk=1 =
{P(x|T (x), k)t }Kk=1 do not change much for all x ∈ V .

• Step 4: Based on {P(x|T (x), k)∗}Kk=1, calculate the posterior probability for each object, i.e.,
{P(k|x, T (x))}Kk=1. Assign the class label to object x as:

C(x) = argmax
1≤k≤K

P (k|x, T (x))

When the number of classes K is given, the computational complexity is generally linear to the
number of links and objects in the network.

3.3.2 GRAPH-BASED RANKING
Ranking is often used to evaluate the relative importance of objects in a collection. Here we rank
objects within their own type and within a specific class. The higher an object x is ranked within
class k, the more important x is for class k, and the more likely it is that x will be visited in class
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k. Clearly, within-class ranking is quite different from global ranking, and will vary throughout
different classes.

The intuitive idea of the ranking scheme is authority propagation throughout the information
network. Taking the bibliographic information network as an example, in a specific research area, it
is natural to observe the following ranking rules that are similar to authority ranking introduced in
Chapter 2.

1. Highly ranked venues publish many high-quality papers.

2. High-quality papers are often written by highly ranked authors.

3. High-quality papers often contain keywords that are highly representative of the papers’ areas.

The above authority ranking rules can be generalized as follows: objects which are linked
together in a network are more likely to share similar ranking scores. Therefore, the ranking of each
object can be iteratively updated by looking at the rankings of its neighbors. The initial ranking
distribution within a class k can be specified by the user. When data objects are labeled without
ranking information in a general classification scenario, we can initialize the ranking as a uniform
distribution over only the labeled data objects:

P(xip|Xi , k)0 =
{

1/lik if xip is labeled to class k

0 otherwise.

where lik denotes the total number of objects of type Xi labeled to class k.
Suppose the current network structure used to estimate the ranking within class k is math-

ematically represented by the set of relation matrices: Gt−1
k = {Rij }mi,j=1. For each relation matrix

Rij , we define a diagonal matrix Dij of size ni × ni . The (p, p)-th element of Dij is the sum of
the p-th row of Rij . Instead of using the original relation matrices in the authority propagation, we
construct the normalized form of the relation matrices as follows:

Sij = D(−1/2)
ij Rij D(−1/2)

j i , i, j ∈ {1, . . . , m} . (3.5)

This normalization technique is adopted in traditional graph-based learning [85] in order to
reduce the impact of node popularity. In other words, we can suppress popular nodes to some extent,
to keep them from completely dominating the authority propagation. Notice that the normalization
is applied separately to each relation matrix corresponding to each type of links, rather than to the
whole network. In this way, the type differences between objects and links are well-preserved [31].
At the t-th iteration, the ranking distribution of object xip with regard to class k is updated as
follows:

P(xip|Xi , k)t ∝
∑m

j=1 λij

∑nj

q=1 Sij,pqP (xjq |Xj , k)t−1 + αiP (xip|Xi , k)0∑m
j=1 λij + αi

. (3.6)



48 3. CLASSIFICATION OF HETEROGENEOUS INFORMATION NETWORKS

The first term of Equation (3.6) updates the ranking score of object xip by the summation of
the ranking scores of its neighbors xjq , weighted by the link strength Sij,pq .The relative importance
of neighbors of different types is controlled by λij ∈ [0, 1]. The larger the value of λij , the more
value is placed on the relationship between object types Xi and Xj . For example, in a bibliographic
information network, if a user believes that the links between authors and papers are more trustworthy
and influential than the links between venues and papers, then the λij corresponding to the author-
paper relationship should be set larger than that of venue-paper. As a result, the rank of a paper will
rely more on the ranks of its authors than the rank of its publication venue. The parameters λij can
also be thought of as performing feature selection in the heterogeneous information network, that
is, selecting which types of links are important in the ranking process.

The second term learns from the initial ranking distribution encoded in the labels, whose
contribution is weighted by αi ∈ [0, 1]. A similar strategy has been adopted in [31; 41] to control
the weights between different types of relations and objects. After each iteration, P(xip|Xi , k)t

is normalized such that
∑ni

p=1 P(xip|Xi , k)t = 1, ∀i = 1, . . . , m, k = 1, . . . , K , in order to stay
consistent with the mathematical definition of a ranking distribution.

We employ the authority propagation scheme in Equation (3.6) to estimate the ranking
distribution instead of other simple measures computed according to the network topology (e.g.,
the degree of each object). This choice was made since we aim to rank objects with regard to each
class by utilizing the current soft classification results. Therefore, if the ranking of an object were
merely based on the network topology, it would be the same for all classes. By learning from the label
information in the graph-based authority propagation method, the ranking of each object within
different classes will be computed differently, which is more suitable for our setting.

Following a similar analysis to [31] and [86], the updating scheme in Equation (3.6) can be
proven to converge to the closed form solution of minimizing the following objective function:

J (P (xip|Xi , k))

=
m∑

i,j=1

λij

ni∑
p=1

nj∑
q=1

Sij,pq

(
P(xip|Xi , k) − P(xjq |Xj , k)

)2

+
m∑

i=1

αi

ni∑
p=1

(P (xip|Xi , k) − P(xip|Xi , k)0)2 , (3.7)

which shares a similar theoretical foundation with GNetMine [31] that preserves consistency over
each relation graph corresponding separately to each link type. However, we extend the graph-based
regularization framework to rank objects within each class, which is conceptually different from
GNetMine.

3.3.3 ADJUSTING THE NETWORK
Although graph-based ranking considers class information by incorporating the labeled data, it still
ranks all object types in the global network. Instead, a within-class ranking should be performed over



3.3. RANKCLASS 49

the subnetwork corresponding to each specific class. The cleaner the network structure, the higher
the ranking quality. Therefore, the ranking within each class should be performed over a different
subnetwork, rather than employing the same global network for every class. The network structure
is mathematically represented by the weight values on the links. Thus, extracting the subnetwork
belonging to class k is equivalent to increasing the weight on the links within the corresponding
subnetwork, and decreasing the weight on the links in the rest of the network. It is straightforward to
verify that multiplying Rij by any positive constant c will not change the value of Sij . So increasing
the weights on the links within a subnetwork should be performed relative to the weight on the links
of other parts of the network. In other words, we can increase or decrease the absolute values of the
weights on the links in the whole network, as long as the weights on the links of the subnetwork
belonging to class k are larger than those on the links belonging to the rest of the network. Let
Gt

k = {Rt
ij (k)}mi,j=1. Here is a simple scheme that updates the network structure so as to favor the

ranking within each class k, given the current ranking distribution P(x|T (x), k)t :

Rt
ij,pq(k) = Rij,pq ×

(
r(t) +

√
P(xip|Xi , k)t

maxp P (xip|Xi , k)t

P (xjq |Xj , k)t

maxq P (xjq |Xj , k)t

)
. (3.8)

Recall that Rij is the relation matrix corresponding to the links between object types Xi and
Xj in the original network. Using the above updating scheme, the weight of each link 〈xip, xjq〉
is increased in proportion to the geometric mean of the ranking scores of xip and xjq , which are
scaled to the interval of [0, 1]. The higher the rankings of xip and xjq , the more important the link
between them (i.e., 〈xip, xjq〉) is in class k. The weight on that link should therefore be increased.
Note that instead of creating hard partitions of the original network into classes, we simply increase
the weights on the links that are important to classes k. This is because at any time in the iteration,
the current classes represented by the ranking distributions are not very accurate, and the results
will be more stable if we consider both the global network structure and the current ranking results.
By gently increasing the weights of links in the subnetwork of class k, we gradually extract the
correct subnetwork from the global network, since the weights of links in the rest of the network
will decrease to very low values. Note that this adjustment of the network structure still respects the
differences among the various types of objects and links.

In Equation (3.8), r(t) is a positive parameter that does not allow the weights of links to
drop to 0 in the first several iterations, when the authority scores have not propagated very far
throughout the network and P(x|T (x), k)t are close to 0 in value for many objects. As discussed
above, multiplying Rij by any positive constant will not change the value of Sij . Therefore, it is

essentially the ratio between r(t) and
√

P(xip |k)t

maxp P (xip |k)t
× P(xjq |k)t

maxq P (xjq |k)t
that determines how much

the original network structure and the current ranking distribution, respectively, contribute to the
adjusted network Gt

k . Since we hope to progressively extract the subnetwork belonging to each class
k, and we want to gradually reduce the weights of links that do not belong to class k down to 0, we
decrease r(t) exponentially by setting r(t) = 1

2t .



50 3. CLASSIFICATION OF HETEROGENEOUS INFORMATION NETWORKS

Equation (3.8) is not the only way to gradually increase the weights of links between highly

ranked objects in class k. For instance, the geometric mean of P(xip |k)t

maxp P (xip |k)t
and P(xjq |k)t

maxq P (xjq |k)t
can

be replaced by the arithmetic mean, and r(t) can be any positive function that decreases with t .
We show that even such simple adjustments as shown above can boost both the classification and
ranking performance of RankClass.

3.3.4 POSTERIOR PROBABILITY CALCULATION
Once the ranking distribution of each class has been computed by the iterative algorithm, we can
calculate the posterior probability of each object of type Xi belonging to class k simply by Bayes’
rule:

P(k|xip,Xi ) ∝ P(xip|Xi , k)P (k|Xi ) ,

where P(xip|Xi , k) = P(xip|Xi , k)∗, and P(k|Xi ) represents the relative size of class k among
type Xi , which should also be estimated. We choose the P(k|Xi ) that maximizes the likelihood of
generating the set of objects of type Xi :

log L(xi1, . . . , xini
|Xi )

=
ni∑

p=1

log P(xip|Xi )

=
ni∑

p=1

log

(
K∑

k=1

P(xip|Xi , k)P (k|Xi )

)
. (3.9)

By employing the EM algorithm, P(k|Xi ) can be iteratively estimated using the following
two equations:

P(k|xip,Xi )
t ∝ P(xip|Xi , k)P (k|Xi )

t

P (k|Xi )
t =

ni∑
p=1

P(k|xip,Xi )
t /ni ,

where P(k|Xi ) is initialized uniformly as P(k|Xi )
0 = 1/K .

3.4 EXPERIMENTAL RESULTS
In this section, we apply the classification algorithm (denoted by GNetMine) and the ranking-
based classification scheme (RankClass) introduced in this chapter, to the DBLP bibliographic
network. We try to classify the bibliographic data into research communities, each of which consists
of multi-typed objects closely related to the same area. The following five classification methods on
information networks are compared:

• Ranking-based classification in heterogeneous information networks (RankClass);
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• Graph-based regularization framework for transductive classification in heterogeneous informa-
tion networks (GNetMine);

• Learning with Local and Global Consistency (LLGC) [85];

• Weighted-vote Relational Neighbor Classifier (wvRN) [45; 46];

• Network-only Link-based Classification (nLB) [46; 56].

LLGC is a graph-based transductive classification algorithm for homogeneous networks,
while GNetMine is its extension, which works on heterogeneous information networks. Weighted-
vote relational neighbor classifier and link-based classification are two popular classification methods
for networked data.Since a feature representation of nodes is not available for our problem,we use the
network-only derivative of the link-based classifier (nLB) [46],which creates a feature vector for each
node based on neighboring information. Note that LLGC, wvRN, and nLB are classifiers which
work with homogeneous networks, and cannot be directly applied to heterogeneous information
networks. In order to compare all of the above algorithms, we can transform the heterogeneous
DBLP network into a homogeneous network in two ways: (1) disregard the type differences between
objects and treat all objects as the same type; or (2) extract a homogeneous subnetwork on one single
type of object, if that object type is partially labeled. We try both approaches in the accuracy study.

3.4.1 DATASET
We use the same “four-area” dataset described in Chapter 2, which is a subnetwork of the DBLP
network. As previously discussed, this heterogeneous information network is composed of four types
of objects: paper, venue, author, and term. Among the four types of objects, we have three types of
link relationships: paper-venue, paper-author, and paper-term.

We randomly choose a subset of labeled objects and use their label information in the learning
process. The classification accuracy is evaluated by comparing with manually labeled results on the
rest of the labeled objects. Since terms are difficult to label even manually, as many terms may belong
to multiple areas, we do not evaluate the accuracy on terms here.

3.4.2 ACCURACY STUDY
In order to address the label scarcity problem in real life, we randomly choose (a%, p%) =
[(0.1%, 0.1%), (0.2%, 0.2%), . . . , (0.5%, 0.5%)] of authors and papers, and use their label in-
formation in the classification task. For each (a%, p%), we average the performance scores over
10 random selections of the labeled set. Note that the very small percentage of labeled objects here
are likely to be disconnected, so we may not even be able to extract a fully labeled subnetwork for
training, making many state-of-the-art algorithms inapplicable.

We set the parameters of LLGC to the optimal values, which were determined experimentally.
For the introduced GNetMine and RankClass method, as discussed above, the parameters λij

are used to select which types of links are important in the classification and ranking processes,
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Table 3.3: Comparison of classification accuracy on authors (%)
(a%, p%) of authors

and papers labeled
nLB

(A-A)
nLB

(A-V-P-T)
wvRN
(A-A)

wvRN
(A-V-P-T)

LLGC
(A-A)

LLGC
(A-V-P-T)

GNetMine
(A-V-P-T)

RankClass
(A-V-P-T)

(0.1%, 0.1%) 25.4 26.0 40.8 34.1 41.4 61.3 82.9 85.4
(0.2%, 0.2%) 28.3 26.0 46.0 41.2 44.7 62.2 83.4 88.0
(0.3%, 0.3%) 28.4 27.4 48.6 42.5 48.8 65.7 86.7 88.5
(0.4%, 0.4%) 30.7 26.7 46.3 45.6 48.7 66.0 87.2 88.4
(0.5%, 0.5%) 29.8 27.3 49.0 51.4 50.6 68.9 87.5 89.2

average 28.5 26.7 46.3 43.0 46.8 64.8 85.5 87.9

Table 3.4: Comparison of classification accuracy on papers (%).
(a%, p%) of authors

and papers labeled
nLB

(P-P)
nLB

(A-V-P-T)
wvRN
(P-P)

wvRN
(A-V-P-T)

LLGC
(P-P)

LLGC
(A-V-P-T)

GNetMine
(A-V-P-T)

RankClass
(A-V-P-T)

(0.1%, 0.1%) 49.8 31.5 62.0 42.0 67.2 62.7 79.2 77.7
(0.2%, 0.2%) 73.1 40.3 71.7 49.7 72.8 65.5 83.5 83.0
(0.3%, 0.3%) 77.9 35.4 77.9 54.3 76.8 66.6 83.2 83.6
(0.4%, 0.4%) 79.1 38.6 78.1 54.4 77.9 70.5 83.7 84.7
(0.5%, 0.5%) 80.7 39.3 77.9 53.5 79.0 73.5 84.1 84.8

average 72.1 37.0 73.5 50.8 74.7 67.8 82.7 82.8

Table 3.5: Comparison of classification accuracy on venues (%).
(a%, p%) of authors

and papers labeled
nLB

(A-V-P-T)
wvRN

(A-V-P-T)
LLGC

(A-V-P-T)
GNetMine
(A-V-P-T)

RankClass
(A-V-P-T)

(0.1%, 0.1%) 25.5 43.5 79.0 81.0 85.0
(0.2%, 0.2%) 22.5 56.0 83.5 85.0 85.5
(0.3%, 0.3%) 25.0 59.0 87.0 87.0 90.0
(0.4%, 0.4%) 25.0 57.0 86.5 89.5 92.0
(0.5%, 0.5%) 25.0 68.0 90.0 94.0 95.0

average 24.6 56.7 85.2 87.3 89.5

respectively. We consider all types of objects and links to be important in the DBLP network, so
we set αi = 0.1, λij = 0.2, ∀i, j ∈ {1, . . . , m}. This may not be the optimal choice, but it is good
enough to demonstrate the effectiveness of the introduced algorithms. Since labels are given for
selected authors and papers, the results on venues of wvRN, nLB, and LLGC can only be obtained
by mining the original heterogeneous information network (denoted by A-V-P-T) and disregarding
the type differences between objects and links. While classifying authors and papers, we also tried
constructing homogeneous author-author (A-A) and paper-paper (P-P) subnetworks in various ways,
where the best results reported for authors are given by the co-author network, and the best results
for papers are generated by linking two papers if they are published in the same venue. Note that
there is no label information given for venues, so we cannot build a venue-venue (V-V) subnetwork
for classification. We show the classification accuracy on authors, papers, and venues in Tables 3.3,



3.4. EXPERIMENTAL RESULTS 53

Table 3.6: Top-5 venues related to each research area generated by GNetMine and RankClass
GNetMine RankClass

Database Data Mining AI IR Database Data Mining AI IR
VLDB SDM IJCAI SIGIR VLDB KDD IJCAI SIGIR
ICDE KDD AAAI ECIR SIGMOD SDM AAAI ECIR

SIGMOD ICDM ICML CIKM ICDE ICDM ICML CIKM
PODS PAKDD CVPR IJCAI PODS PKDD CVPR WWW
CIKM PKDD ECML CVPR EDBT PAKDD ECML WSDM

Table 3.7: Top-5 terms related to each research area generated by GNetMine and RankClass.
GNetMine RankClass

Database Data Mining AI IR Database Data Mining AI IR
interlocking rare failing helps data mining learning retrieval
deindexing extreme interleaved specificity database data knowledge information

seed scan cognition sponsored query clustering reasoning search
bitemporal mining literals relevance system frequent logic web
debugging associations configuration information xml classification model text

3.4 and 3.5, respectively. The last row of each table records the average classification accuracy while
varying the percentage of labeled data.

RankClass outperforms all other algorithms when classifying authors, papers, and venues.
Note that even though the number of authors is much higher than the number of venues, RankClass
achieves comparable accuracy for both of these types of objects.While classifying authors and papers,
it is interesting to note that wvRN and nLB perform better on the author-author and paper-paper
subnetworks than on the whole heterogeneous information network.We observe a similar result when
we use LLGC to classify papers.These results serve to verify that homogeneous classifiers like wvRN,
nLB and LLGC are more suitable for working with homogeneous data. However, transforming the
heterogeneous information network into homogeneous subnetworks inevitably results in information
loss. For example, in the author-author subnetwork, the venues where each author often publishes
papers, and the terms that each author likes to use, are no longer known. Overall, GNetMine
performs the second best by explicitly respecting the type differences in links and objects and thus
encoding the typed information in the heterogeneous network in an organized way. Compared with
GNetMine, RankClass achieves 16.6%, 0.58%, and 17.3% relative error reduction on the average
classification accuracy when classifying authors,papers and venues, respectively.Although RankClass
has a knowledge propagation framework similar to that of GNetMine, RankClass aims to compute
the within-class ranking distribution to characterize each class, and it further employs the ranking
results to iteratively extract the subnetwork corresponding to each specific class, and therefore, leads
to more accurate knowledge propagation for each class.
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3.4.3 CASE STUDY
In this section, we present a simple case study by listing the top-ranked data objects within each class.
Recall that GNetMine performs the second best in the classification accuracy, and can generate a
confidence score for each object related to each class.Thus, we can also rank data objects according to
the confidence scores related to each class as the within-class ranking. In Tables 3.6 and 3.7, we show
the comparison of the ranking lists of venues and terms generated by RankClass and GNetMine,
respectively, with (0.5%, 0.5%) authors and papers labeled.

From comparing the ranking lists of the two types of objects, we can see that RankClass
generates more meaningful ranking results than GNetMine. There is a high degree of consensus
between the ranking list of venues generated by RankClass and the top venues in each research
area. Similarly, the highly ranked terms generated by RankClass are in high agreement with the
most representative keywords in each field. The reason why GNetMine fails to generate meaningful
ranking lists is that the portions of labeled authors and papers are too limited to capture the distri-
bution of the confidence score with regard to each class. In contrast, RankClass boosts the ranking
performance by iteratively obtaining the clean subnetwork corresponding to each class, which favors
the within-class ranking.
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C H A P T E R 4

Meta-Path-Based Similarity
Search

We now introduce a systematic approach for dealing with general heterogeneous information net-
works with a specified but arbitrary network schema, using a meta-path-based methodology. Under
this framework, similarity search (Chapter 4) and other mining tasks such as relationship prediction
(Chapter 5) can be addressed by systematic exploration of the network meta structure.

4.1 OVERVIEW
Similarity search, which aims at locating the most relevant information for a query in a large collection
of datasets, has been widely studied in many applications. For example, in spatial database, people are
interested in finding the k nearest neighbors for a given spatial object [35]; in information retrieval, it
is useful to find similar documents for a given document or a given list of keywords. Object similarity
is also one of the most primitive concepts for object clustering and many other data mining functions.

In a similar context, it is critical to provide effective similarity search functions in information
networks, to find similar entities for a given entity. In a bibliographic network,a user may be interested
in the top-k most similar authors for a given author, or the most similar venues for a given venue.
In a network of tagged images such as Flickr, a user may be interested in search for the most similar
pictures for a given picture. In an e-commerce system, a user would be interested in search for
the most similar products for a given product. Different from the attribute-based similarity search,
links play an essential role for similarity search in information networks, especially when the full
information about attributes for objects is difficult to obtain.

There are a few studies leveraging link information in networks for similarity search, but most
of these studies are focused on homogeneous networks or bipartite networks, such as personalized
PageRank (P-PageRank) [29] and SimRank [28]. These similarity measures disregard the subtlety
of different types among objects and links. Adoption of such measures to heterogeneous networks
has significant drawbacks: even if we just want to compare objects of the same type, going through
link paths of different types leads to rather different semantic meanings, and it makes little sense to
mix them up and measure the similarity without distinguishing their semantics. For example, Table
4.1 shows the top-4 most similar venues for a given venue, DASFAA, based on (a) the common
authors shared by two venues, or (b) the common topics (i.e., terms) shared by two venues. These
two scenarios are represented by two distinct meta-paths: (a) V PAPV , denoting that the similarity
is defined by the connection path “venue-paper-author-paper-venue,” whereas (b) V PT PV , by
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the connection path “venue-paper-topic-paper-venue.” A user can choose either (a) or (b) or their
combination based on the preferred similarity semantics. According to Path (a), DASFAA is closer
to DEXA, WAIM, and APWeb, that is, those that share many common authors, whereas according
to Path (b), it is closer to Data Knowl. Eng., ACM Trans. DB Syst., and Inf. Syst., that is, those that
address many common topics. Obviously, different connection paths lead to different semantics of
similarity definitions, and produce rather different ranking lists even for the same query object.

Table 4.1: Top-4 most similar venues to “DASFAA” with two
meta-paths

Rank path: V PAPV path:V PT PV

1 DASFAA DASFAA
2 DEXA Data Knowl. Eng.
3 WAIM ACM Trans. DB Syst.
4 APWeb Inf. Syst.

To systematically distinguish the semantics among paths connecting two objects, we introduce
a meta-path-based similarity framework for objects of the same type in a heterogeneous network. A
meta-path is a sequence of relations between object types, which defines a new composite relation
between its starting type and ending type.The meta-path framework provides a powerful mechanism
for a user to select an appropriate similarity semantics, by choosing a proper meta-path, or learn it
from a set of training examples of similar objects.

In this chapter, we introduce the meta-path-based similarity framework, and relate it to
two well-known existing link-based similarity functions for homogeneous information networks.
Especially, we define a novel similarity measure, PathSim, that is able to find peer objects that are not
only strongly connected with each other but also share similar visibility in the network. Moreover,
we propose an efficient algorithm to support online top-k queries for such similarity search.

4.2 PATHSIM: A META-PATH-BASED SIMILARITY
MEASURE

The similarity between two objects in a link-based similarity function is determined by how the
objects are connected in a network, which can be described using paths. For example, in a co-author
network, two authors can be connected either directly or via common co-authors, which are length-
1 and length-2 paths, respectively. In a heterogeneous information network, however, due to the
heterogeneity of the types of links, the way to connect two objects can be much more diverse. For
example, in Table 4.2, Column I gives several path instances between authors in a bibliographic
network, indicating whether the two authors have co-written a paper, whereas Column II gives
several path instances between authors following a different connection path, indicating whether
the two authors have ever published papers in the same venue. These two types of connections
represent different relationships between authors, each having some different semantic meaning.
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Table 4.2: Path instance vs. meta-path in heterogeneous information networks
Column I: Connection Type I Column II: Connection Type II

Path instance
Jim-P1-Ann Jim-P1-SIGMOD-P2-Ann
Mike-P2-Ann Mike-P3-SIGMOD-P2-Ann
Mike-P3-Bob Mike-P4-KDD-P5-Bob

Meta-path Author-Paper-Author Author-Paper-Venue-Paper-Author

Now the questions is, given an arbitrary heterogeneous information network, is there any way
to systematically identify all the possible connection types (i.e., relations) between two object types?
In order to do so, we propose two important concepts in the following.

4.2.1 NETWORK SCHEMA AND META-PATH
First, given a complex heterogeneous information network, it is necessary to provide its meta level
(i.e., schema-level) description for better understanding the network. Therefore, we propose the
concept of network schema to describe the meta structure of a network. The formal definition of
network schema has been given in Definition 1.2 in Chapter 1.

The concept of network schema is similar to that of the ER (Entity-Relationship) model in
database systems, but only captures the entity type and their binary relations, without considering
the attributes for each entity type. Network schema serves as a template for a network, and tells
how many types of objects there are in the network and where the possible links exist. Note that
although a relational database can often be transformed into an information network, the latter is
more general and can handle more unstructured and non-normalized data and links, and is also
easier to deal with graph operations such as calculating the number of paths between two objects.

As we illustrated previously, two objects can be connected via different paths in a heterogeneous
information network. For example, two authors can be connected via “author-paper-author” path,
“author-paper-venue-paper-author” path, and so on. Formally, these paths are called meta-paths,
defined as follows.

Definition 4.1 (Meta-path) A meta-path P is a path defined on the graph of network schema

TG = (A,R), and is denoted in the form of A1
R1−→ A2

R2−→ . . .
Rl−→ Al+1, which defines a com-

posite relation R = R1 ◦ R2 ◦ . . . ◦ Rl between types A1 and Al+1, where ◦ denotes the composition
operator on relations.

For the bibliographic network schema shown in Figure 4.1 (a), we list two examples of meta-
paths in Figure 4.1 (b) and (c), where an arrow explicitly shows the direction of a relation. We say a
path p = (a1a2 . . . al+1) between a1 and al+1 in network G follows the meta-path P , if ∀i, ai ∈ Ai

and each link ei = 〈aiai+1〉 belongs to each relation Ri in P . We call these paths as path instances
of P , denoted as p ∈ P . The examples of path instances have been shown in Table 4.2.
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Figure 4.1: Bibliographic network schema and meta-paths.

In addition to pointing out the meta-path we are interested in, we also need to consider how
to quantify the connection between two objects following a given meta-path. Analogously, a meta-
path-based measure in an information network corresponds to a feature in a traditional data set,
which can be used in many mining tasks.

4.2.2 META-PATH-BASED SIMILARITY FRAMEWORK
Given a user-specified meta-path, say P = (A1A2 . . . Al), several similarity measures can be defined
for a pair of objects x ∈ A1 and y ∈ Al , according to the path instances between them following the
meta-path. We use s(x, y) to denote the similarity between x and y, and list several straightforward
measures in the following.

• Path count: the number of path instances p between x and y following P : s(x, y) = |{p : p ∈ P}|.
• Random walk: s(x, y) is the probability of the random walk that starts form x and ends with

y following meta-path P , which is the sum of the probabilities of all the path instances p ∈ P
starting with x and ending with y, denoted as Prob(p): s(x, y) = ∑

p∈P Prob(p).

• Pairwise random walk: for a meta-path P that can be decomposed into two shorter meta-
paths with the same length P = (P1P2), s(x, y) is then the pairwise random walk prob-
ability starting from objects x and y and reaching the same middle object: s(x, y) =∑

(p1p2)∈(P1P2)
P rob(p1)P rob(p−1

2 ), where Prob(p1) and Prob(p−1
2 ) are random walk prob-

abilities of the two path instances.

In general, we can define a meta-path-based similarity framework for two objects x and y as:
s(x, y) = ∑

p∈P f (p), where f (p) is a measure defined on the path instance p between x and y.
Note that P-PageRank and SimRank, two well-known network similarity functions, are weighted
combinations of random walk measure or pairwise random walk measure, respectively, over meta-
paths with different lengths in homogeneous networks. In order to use P-PageRank and SimRank
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in heterogeneous information networks, we need to specify the meta-path(s) we are interested in
and restrict the random walk on the given meta-path(s).

4.2.3 PATHSIM: A NOVEL SIMILARITY MEASURE
Although there have been several similarity measures as presented above, they are biased to either
highly visible objects or highly concentrated objects but cannot capture the semantics of peer sim-
ilarity. For example, the path count and random walk-based similarity always favor objects with
large degrees, and the pairwise random walk-based similarity favors concentrated objects where the
majority of the links goes to a small portion of objects. However, in many scenarios, finding similar
objects in networks is to find similar peers, such as finding similar authors based on their fields and
reputation, finding similar actors based on their movie styles and productivity, and finding similar
products based on their functions and popularity.

This motivated us to propose a new, meta-path-based similarity measure, called PathSim, that
captures the subtlety of peer similarity.The intuition behind it is that two similar peer objects should
not only be strongly connected, but also share comparable visibility. As the relation of peer should be
symmetric, we confine PathSim to symmetric meta-paths. It is easy to see that, round trip meta-paths
in the form of P = (P lP−1

l ) are always symmetric.

Definition 4.2 (PathSim: A meta-path-based similarity measure) Given a symmetric meta-path
P , PathSim between two objects x and y of the same type is:

s(x, y) = 2 × |{px�y : px�y ∈ P}|
|{px�x : px�x ∈ P}| + |{py�y : py�y ∈ P}| ,

where px�y is a path instance between x and y, px�x is that between x and x, and py�y is that
between y and y.

This definition shows that given a meta-path P , s(x, y) is defined in terms of two parts: (1)
their connectivity defined by the number of paths between them following P ; and (2) the balance
of their visibility, where the visibility of an object according P is defined as the number of path
instances between the object itself following P . Note that we do count multiple occurrences of a
path instance as the weight of the path instance, which is the product of weights of all the links in
the path instance.

Table 4.3 presents in three measures the results of finding top-5 similar authors for “Anhai
Doan,” who is an established young researcher in the database field, under the meta-path APV PA

(based on their shared venues), in the database and information system (DBIS) area. P-PageRank
returns the most similar authors as those published substantially in the area, that is, highly ranked
authors; SimRank returns a set of authors that are concentrated on a small number of venues shared
with Doan; whereas PathSim returns Patel, Deshpande, Yang and Miller, who share very similar
publication records and are also rising stars in the database field as Doan. Obviously, PathSim
captures desired semantic similarity as peers in such networks.
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Table 4.3: Top-5 similar authors for “AnHai Doan” in the DBIS area
Rank P-PageRank SimRank PathSim

1 AnHai Doan AnHai Doan AnHai Doan
2 Philip S. Yu Douglas W. Cornell Jignesh M. Patel
3 Jiawei Han Adam Silberstein Amol Deshpande
4 Hector Garcia-Molina Samuel DeFazio Jun Yang
5 Gerhard Weikum Curt Ellmann Renée J. Miller

The calculation of PathSim between any two objects of the same type given a certain meta-
path involves matrix multiplication. Given a network G = (V, E) and its network schema TG, we
call the new adjacency matrix for a meta-path P = (A1A2 . . . Al) a relation matrix, and is defined as
M = WA1A2WA2A3 . . . WAl−1Al

, where WAiAj
is the adjacency matrix between type Ai and type Aj .

M(i, j) represents the number of path instances between object xi ∈ A1 and object yj ∈ Al under
meta-path P .

For example, relation matrix M for the meta-path P = (APA) is a co-author matrix, with
each element representing the number of co-authored papers for the pair of authors. Given a sym-
metric meta-path P , PathSim between two objects xi and xj of the same type can be calculated
as s(xi, xj ) = 2Mij

Mii+Mjj
, where M is the relation matrix for the meta-path P , Mii and Mjj are the

visibility for xi and xj in the network given the meta-path.
It is easy to see that the relation matrix for the reverse meta-path of P l , which is P−1

l , is the
transpose of relation matrix for P l . In this paper,we only consider the meta-path in the round trip form
of P = (PlP−1

l ), to guarantee its symmetry and therefore the symmetry of the PathSim measure.
By viewing PathSim in the meta-path-based similarity framework, f (p) = 2w(a1,a2)...w(al−1,al)

Mii+Mjj
, for

any path instance p starting from xi and ending with xj following the meta-path (a1 = xi and
al = xj ), where w(am, an) is the weight for the link 〈am, an〉 defined in the adjacency matrix.

Some good properties of PathSim, such as symmetric, self-maximum, and balance of visibility,
are shown in Theorem 4.3. For the balance property, we can see that the larger the difference of the
visibility of the two objects, the smaller the upper bound for their PathSim similarity.

Theorem 4.3 (Properties of PathSim)

1. Symmetric. s(xi, xj ) = s(xj , xi).

2. Self-maximum. s(xi, xj ) ∈ [0, 1], and s(xi, xi) = 1.

3. Balance of visibility. s(xi, xj ) ≤ 2√
Mii/Mjj +√

Mjj /Mii
.

Although using meta-path-based similarity we can define similarity between two objects
given any round trip meta-paths, the following theorem tells us a very long meta-path is not very
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meaningful. Indeed, due to the sparsity of real networks, objects that are similar may share no
immediate neighbors, and longer meta-paths will propagate similarities to remote neighborhoods.
For example, as in the DBLP example, if we consider the meta-path APA, only two authors that
are co-authors have a non-zero similarity score; but if we consider longer meta-paths like APV PA

or APT PA, authors will be considered to be similar if they have published papers in a similar set
of venues or sharing a similar set of terms no matter whether they have co-authored. But how far
should we keep going? The following theorem tells us that a very long meta-path may be misleading.
We now use Pk to denote a meta-path repeating k times of the basic meta-path pattern of P , e.g.,
(AV A)2 = (AV AV A).

Theorem 4.4 (Limiting behavior of PathSim under infinity-length meta-path) Let meta-path
P (k) = (PlP−1

l )k , MP be the relation matrix for meta-path Pl , and M(k) = (MPMT

P )k be the

relation matrix for P (k), then by PathSim, the similarity between objects xi and xj as k → ∞ is:

lim
k→∞ s(k)(i, j) = 2r(i)r(j)

r(i)r(i) + r(j)r(j)
= 2

r(i)
r(j)

+ r(j)
r(i)

,

where r is the primary eigenvector of M , and r(i) is the ith item of r.

As primary eigenvectors can be used as authority ranking of objects [66], the similarity between
two objects under an infinite meta-path can be viewed as a measure defined on their rankings (r(i)
is the ranking score for object xi). Two objects with more similar ranking scores will have higher
similarity (e.g., SIGMOD will be similar to AAAI). Later experiments (Table 4.9) will show that
this similarity, with the meaning of global ranking, is not that useful. Note that, the convergence of
PathSim with respect to path length is usually very fast and the length of 10 for networks of the scale
of DBLP can almost achieve the effect of a meta-path with an infinite length. Therefore, in this
paper, we only aim at solving the top-k similarity search problem for a relatively short meta-path.

Even for a relatively short length, it may still be inefficient in both time and space to materialize
all the meta-paths. Thus, we propose in Section 4.3 materializing relation matrices for short length
meta-paths, and concatenating them online to get longer ones for a given query.

4.3 ONLINE QUERY PROCESSING FOR SINGLE
META-PATH

Compared with P-PageRank and SimRank, the calculation for PathSim is much more efficient,
as it is a local graph measure. But it still involves expensive matrix multiplication operations for
top-k search functions, as we need to calculate the similarity between a query and every object of
the same type in the network. One possible solution is to materialize all the meta-paths within a
given length. Unfortunately, it is time and space expensive to materialize all the possible meta-paths.
For example, in the DBLP network, the similarity matrix corresponding to a length-4 meta-path,
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APV PA, for identifying similar authors publishing in common venues is a 710K × 710K matrix,
whose non-empty elements reaches 5G, and requires storage size more than 40GB.

In order to support fast online query processing for large-scale networks,we propose a method-
ology that partially materializes short length meta-paths and then concatenates them online to derive
longer meta-path-based similarity. First, a baseline method (PathSim-baseline) is proposed, which
computes the similarity between query object x and all the candidate objects y of the same type.
Next, a co-clustering based pruning method (PathSim-pruning) is proposed, which prunes candidate
objects that are not promising according to their similarity upper bounds. Both algorithms return
exact top-k results for the given query. Note that the same methodology can be adopted by other
meta-path-based similarity measures, such as random walk and pairwise random walk, by taking a
different definition of similarity matrix accordingly.

4.3.1 SINGLE META-PATH CONCATENATION
Given a meta-path P = (P lP−1

l ), where P l = (A1 · · · Al), the relation matrix for path P l is MP =
WA1A2WA2A3 · · · WAl−1Al

, then the relation matrix for path P is M = MPMT

P . Let n be the number
of objects in A1. For a query object xi ∈ A1, if we compute the top-k most similar objects xj ∈ A1

for xi on-the-fly, without materializing any intermediate results, computing M from scratch would
be very expensive. On the other hand, if we have pre-computed and stored the relation matrix
M = MPMT

P , it would be a trivial problem to get the query results. We only need to locate the
corresponding row in the matrix for the query xi , re-scale it using (Mii + Mjj )/2, and finally sort
the new vector and return the top-k objects. However, fully materializing the relation matrices for
all possible meta-paths is also impractical, since the space complexity (O(n2)) would prevent us
from storing M for every meta-path. Instead of taking the above extremes, we partially materialize
relation matrix MT

P for meta-path P−1
l , and compute top-k results online by concatenating P l and

P−1
l into P without full matrix multiplication.

We now examine the concatenation problem, that is, when the relation matrix M for the full
meta-path P is not pre-computed and stored, but the relation matrix MT

P corresponding to the

partial meta-path P−1
l is available. In this case, we assume the main diagonal of M , that is, D =

(M11, . . . , Mnn), is pre-computed and stored. Since for Mii = MP (i, :)MP (i, :)T , the calculation
only involves MP (i, :) itself, and only O(nd) in time and O(n) in space are required, where d is the
average number of non-zero elements in each row of MP for each object.

In this study, we only consider concatenating the partial paths P l and P−1
l into the form

P = P lP−1
l or P = P−1

l P l . For example, given a pre-stored meta-path APV , we are able to an-
swer queries for meta-paths APV PA and V PAPV . For our DBLP network, to store relation
matrix for partial meta-path APV only needs around 25M space, which is less than 0.1% of the
space for materializing meta-path APV PA. Other concatenation forms that may lead to differ-
ent optimization methods are also possible (e.g., concatenating several short meta-paths). In the
following discussion, we focus on the algorithms using the concatenation form P = P lP−1

l .
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4.3.2 BASELINE
Suppose we know the relation matrix MP for meta-path Pl , and the diagonal vector D = (Mii)

n
i=1,

in order to get top-k objects xj ∈ A1 with the highest similarity for the query xi , we need to compute
s(i, j) for all xj . The straightforward baseline is: (1) first apply vector-matrix multiplication to get
M(i, :) = MP (i, :)MT

P ; (2) calculate s(i, j) = 2M(i,j)
M(i,i)+M(j,j)

for all xj ∈ A1; and (3) sort s(i, j)

to return the top-k list in the final step. When n is very large, the vector-matrix computation
will be too time consuming to check every possible object xj . Therefore, we first select xj ’s that
are not orthogonal to xi in the vector form, by following the links from xi to find 2-step neighbors
in relation matrix MP , that is, xj ∈ CandidateSet = {⋃yk∈MP .neighbors(xi )

MT

P .neighbors(yk)},
where MP .neighbors(xi)= {yk|MP (xi, yk) �= 0},which can be easily obtained in the sparse matrix
form of MP that indexes both rows and columns. This will be much more efficient than pairwise
comparison between the query and all the objects of that type. We call this baseline concatenation
algorithm as PathSim-baseline.

The PathSim-baseline algorithm, however, is still time consuming if the candidate set is large.
Although MP can be relatively sparse given a short length meta-path, after concatenation, M could
be dense, i.e., the CandidateSet could be very large. Still, considering the query object and one
candidate object represented by query vector and candidate vector, the dot product between them is
proportional to the size of their non-zero elements. The time complexity for computing PathSim
for each candidate is O(d) on average and O(m) in the worst case, that is, O(nm) in the worst case
for all the candidates, where n is the row size of MP (i.e., the number of objects in type A1), m the
column size of MP (i.e., the number of objects in type Al), and d the average non-zero element for
each object in MP . We now propose a co-clustering based top-k concatenation algorithm, by which
non-promising target objects are dynamically filtered out to reduce the search space.

4.3.3 CO-CLUSTERING-BASED PRUNING
In the baseline algorithm, the computational costs involve two factors. First, the more candidates to
check, the more time the algorithm will take; second, for each candidate, the dot product of query
vector and candidate vector will at most involve m operations, where m is the vector length. The
intuition to speed up the search is to prune unpromising candidate objects using simpler calculations.
Based on the intuition,we propose a co-clustering-based (i.e., clustering rows and columns of a matrix
simultaneously) path concatenation method, which first generates co-clusters of two types of objects
for partial relation matrix, then stores necessary statistics for each of the blocks corresponding to
different co-cluster pairs, and then uses the block statistics to prune the search space. For better
illustration, we call clusters of type A1 as target clusters, since the objects in A1 are the targets for
the query; and call clusters of type Al as feature clusters, since the objects in Al serve as features to
calculate the similarity between the query and the target objects. By partitioning A1 into different
target clusters, if a whole target cluster is not similar to the query, then all the objects in the target
cluster are likely not in the final top-k lists and can be pruned. By partitioning Al into different
feature clusters, cheaper calculations on the dimension-reduced query vector and candidate vectors
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Figure 4.2: Illustration of pruning strategy. Given the partial relation matrix MT
l and its 3 × 3 co-

clusters, and the query vector Ml(xi, :) for query object xi , first the query vector is compressed into the
aggregated query vector with the length of 3, and the upper bounds of the similarity between the query
and all the 3 target clusters are calculated based on the aggregated query vector and aggregated cluster
vectors; second, for each of the target clusters, if they cannot be pruned, calculate the upper bound of the
similarity between the query and each of the 3 candidates within the cluster using aggregated vectors;
third, if the candidates cannot be pruned, calculate the exact similarity value using the non-aggregated
query vector and candidate vectors.

can be used to derive the similarity upper bounds.This pruning idea is illustrated in Figure 4.2 using
a toy example with 9 target objects and 6 feature objects. The readers may refer to the PathSim
paper [65] for the concrete formulas of the upper bounds and their derivations.

Experiments show that PathSim-Pruning can significantly improve the query processing speed
comparing with the baseline algorithm, without affecting the search quality.

4.4 MULTIPLE META-PATHS COMBINATION
In Section 4.3, we presented algorithms for similarity search using single meta-path. Now, we present
a solution to combine multiple meta-paths. Formally, given r round trip meta-paths from Type A

back to Type A, P1,P2, . . . ,Pr , and their corresponding relation matrix M1, M2, . . . , Mr , with
weights w1, w2, . . . , wr specified by users, the combined similarity between objects xi, xj ∈ A are
defined as: s(xi, xj ) = ∑r

l=1 wlsl(xi, xj ), where sl(xi, xj ) = 2Ml(i,j)
Ml(i,i)+Ml(j,j)

.

Example 4.5 (Multiple meta-paths combination for venue similarity search) Following the
motivating example in the introduction section, Table 4.4 shows the results of combining two meta-
paths P1 = V PAPV and P2 = V PT PV with different weights specified by w1 and w2, for query
“DASFAA.”
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Table 4.4: Top-5 similar venues to “DASFAA” using multiple meta-paths
Rank w1 = 0.2, w2 = 0.8 w1 = 0.5, w2 = 0.5 w1 = 0.8, w2 = 0.2

1 DASFAA DASFAA DASFAA
2 Data Knowl. Eng. DEXA DEXA
3 CIKM CIKM WAIM
4 EDBT Data Knowl. Eng. CIKM
5 Inf. Syst. EDBT APWeb

The reason why we need to combine several meta-paths is that each meta-path provides a
unique angle (or a unique feature space) to view the similarity between objects, and the ground truth
may be a cause of different factors. Some useful guidance of the weight assignment includes: longer
meta-path utilize more remote relationships and thus should be assigned with a smaller weight,
such as in P-PageRank and SimRank; and, meta-paths with more important relationships should
be assigned with a higher weight. For automatically determining the weights, users could provide
training examples of similar objects to learn the weights of different meta-paths using learning
algorithms.

We now evaluate the quality of similarity measure generated by combined meta-paths, accord-
ing to their performance for clustering tasks in the “four-area” dataset. First, two meta-paths for the
venue type, namely,V AV and V T V (short for V PAPV and V PT PV ), are selected and their linear
combinations with different weights are considered. Second, two meta-paths with the same basic
path but different lengths, namely AV A and (AV A)2, are selected and their linear combinations
with different weights are considered. The clustering accuracy measured by NMI for conferences
and authors is shown in Table 4.5, which shows that the combination of multiple meta-paths can
produce better similarity than the single meta-path in terms of clustering accuracy.

Table 4.5: Clustering accuracy for PathSim for meta-path combinations on the “four-area”
dataset

w1 0 0.2 0.4 0.6 0.8 1
w2 1 0.8 0.6 0.4 0.2 0

V AV ; V T V 0.7917 0.7936 0.8299 0.8587 0.8123 0.8116
AV A; (AV A)2 0.6091 0.6219 0.6506 0.6561 0.6508 0.6501

4.5 EXPERIMENTAL RESULTS
To show the effectiveness of the PathSim measure and the efficiency of the proposed algorithms, we
use the bibliographic networks extracted from DBLP and Flickr in the experiments.

We use the DBLP dataset downloaded in November 2009 as the main test dataset. It contains
over 710K authors, 1.2M papers, and 5K venues (conferences/journals). After removing stopwords



68 4. META-PATH-BASED SIMILARITY SEARCH

Table 4.6: Case study of five similarity measures on query “PKDD” on the DBIS dataset
Rank P-PageRank SimRank RW PRW PathSim

1 PKDD PKDD PKDD PKDD PKDD
2 KDD Local Pattern Detection KDD Local Pattern Detection ICDM
3 ICDE KDID ICDM DB Support for DM Appl. SDM
4 VLDB KDD PAKDD Constr. Min. & Induc. DB PAKDD
5 SIGMOD Large-Scale Paral. DM SDM KDID KDD
6 ICDM SDM TKDE MCD DMKD
7 TKDE ICDM SIGKDD Expl. Pattern Detection & Disc. SIGKDD Expl.
8 PAKDD SIGKDD Expl. ICDE RSKD Knowl. Inf. Syst.
9 SIGIR Constr. Min. & Induc. DB SEBD WImBI JIIS
10 CIKM TKDD CIKM Large-Scale Paral. DM KDID

in paper titles, we get around 70K terms appearing more than once. This dataset is referred as the
full-DBLP dataset. Two small subsets of the data (to alleviate the high computational costs of P-
PageRank and SimRank) are used for the comparison with other similarity measures in effectiveness:
(1) the DBIS dataset, which contains all the 464 venues and top-5000 authors from the database
and information system area; and (2) the four-area dataset, which contains 20 venues and top-5000
authors from 4 areas: database, data mining, information retrieval, and artificial intelligence [64], and
cluster labels are given for all the 20 venues and a subset of 1713 authors.

For additional case studies, we construct a Flickr network from a subset of the Flickr data,
which contains four types of objects: images, users, tags, and groups. Links exist between images
and users, images and tags, and images and groups. We use 10,000 images from 20 groups as well
as their related 664 users and 10,284 tags appearing more than once to construct the network.

4.5.1 EFFECTIVENESS
Comparing PathSim with other measures When a meta-path P = (P lP l

−1) is given, other mea-
sures such as random walk (RW) and pairwise random walk (PRW) can be applied to the same
meta-path, and P-PageRank and SimRank can be applied to the sub-network extracted from P .
For example, for the meta-path V PAPV (V AV in short) for finding venues sharing the same set
of authors, the bipartite graph MCA, derived from the relation matrix corresponding to V PA can
be used in both P-PageRank and SimRank algorithms. In our experiments, the damping factor for
P-PageRank is set as 0.9 and that for SimRank is 0.8.

First, a case study is shown inTable 4.6, which is applied to the DBIS dataset, under the meta-
path V AV . One can see that for query “PKDD” (short for “Principles and Practice of Knowledge
Discovery in Databases,” a European data mining conference), P-PageRank favors the venues with
higher visibility, such as KDD and several well-known venues; SimRank prefers more concentrated
venues (i.e., a large portion of publications goes to a small set of authors) and returns many not
well-known venues such as “Local Pattern Detection” and KDID; RW also favors highly visible
objects such as KDD, but brings in fewer irrelevant venues due to that it utilizes merely one short
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Table 4.7: Comparing the accuracy of top-15 query results for five similarity measures
on the DBIS dataset measured by nDCG

P-PageRank SimRank RW PRW PathSim
Accuracy 0.5552 0.6289 0.7061 0.5284 0.7446

meta-path; PRW performs similar to SimRank, but brings in more not so well-known venues due to
the short meta-path it uses; whereas PathSim returns the venues in both the area and the reputation
similar to PKDD, such as ICDM and SDM.

We then labeled top-15 results for 15 queries from the venues in the DBIS dataset (i.e.,
SIGMOD, VLDB, ICDE, PODS, EDBT, DASFAA, KDD, ICDM, PKDD, SDM, PAKDD,
WWW, SIGIR, TREC, and APWeb), to test the quality of the ranking lists given by 5 measures.
We label each result object with a relevance score at one of the three levels: 0 (non-relevant),
1 (somewhat relevant), and 2 (very relevant). Then we use the measure nDCG (i.e., Normalized
Discounted Cumulative Gain, with the value between 0 and 1, the higher the better) [27] to evaluate
the quality of a ranking algorithm by comparing its output ranking results with the labeled ones
(Table 4.7).The results show that PathSim gives the best ranking quality in terms of human intuition,
which is consistent with the previous case study.

Table 4.8: Top-10 similar authors to “Christos Faloutsos” under dif-
ferent meta-paths on the full-DBLP dataset

Rank Author
1 Christos Faloutsos
2 Spiros Papadimitriou
3 Jimeng Sun
4 Jia-Yu Pan
5 Agma J. M. Traina
6 Jure Leskovec
7 Caetano Traina Jr.
8 Hanghang Tong
9 Deepayan Chakrabarti
10 Flip Korn

(a) Path: APA

Rank Author
1 Christos Faloutsos
2 Jiawei Han
3 Rakesh Agrawal
4 Jian Pei
5 Charu C. Aggarwal
6 H. V. Jagadish
7 Raghu Ramakrishnan
8 Nick Koudas
9 Surajit Chaudhuri
10 Divesh Srivastava

(b) Path: APV PA

Semantic meanings of different meta-paths As we pointed out, different meta-paths give differ-
ent semantic meanings, which is one of the reasons that similarity definitions in homogeneous
networks cannot be applied directly to heterogeneous networks. Besides the motivating example
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in the introduction section, Table 4.8 shows the author similarity under two scenarios for author
Christos Faloutsos: co-authoring papers and publishing papers in the same venues, represented by the
meta-paths APA and APV PA, respectively. One can see that the first path returns co-authors who
have strongest connections with Faloutsos (i.e., students and close collaborators) in DBLP, whereas
APV PA returns those publishing papers in the most similar venues.

Table 4.9: Top-10 similar venues to “SIGMOD” under meta-paths with different lengths on the
full-DBLP dataset

Rank Venue Score
1 SIGMOD 1
2 VLDB 0.981
3 ICDE 0.949
4 TKDE 0.650
5 SIGMOD Record 0.630
6 IEEE Data Eng. Bul. 0.530
7 PODS 0.467
8 ACM Trans. DB Sys. 0.429
9 EDBT 0.420
10 CIKM 0.410

(a) Path: (V PAPV )2

Rank Venue Score
1 SIGMOD 1
2 VLDB 0.997
3 ICDE 0.996
4 TKDE 0.787
5 SIGMOD Record 0.686
6 PODS 0.586
7 KDD 0.553
8 CIKM 0.540
9 IEEE Data Eng. Bul. 0.532
10 J. Comp. Sys. Sci. 0.463

(b) Path: (V PAPV )4

Rank Venue Score
1 SIGMOD 1
2 AAAI 0.9999
3 ESA 0.9999
4 ITC 0.9999
5 STACS 0.9997
6 PODC 0.9996
7 NIPS 0.9993
8 Comput. Geom. 0.9992
9 ICC 0.9991
10 ICDE 0.9984

(c) Path: (V PAPV )∞

The impact of path length The next interesting question is how the length of meta-path impacts the
similarity definition. Table 4.9 shows an example of venues similar to “SIGMOD” with three meta-
paths, using exactly the same basic meta-path, but with different repeating times. These meta-paths
are (V PAPV )2, (V PAPV )4, and its infinity form (global ranking-based similarity). Note that in
(V PAPV )2, two venues are similar if they share many similar authors who publish papers in the same
venues; while in (V PAPV )4, the similarity definition of those venues will be further relaxed, namely,
two venues are similar if they share many similar authors who publish papers in similar venues. Since
venue type only contains 5K venues, we are able to get the full materialization relation matrix for
(V PAPV )2. (V PAPV )4 is obtained using meta-path concatenation from (V PAPV )2.The results
are summarized in Table 4.9, where longer paths gradually bring in more remote neighbors, with
higher similarity scores, and finally, it degenerates into global ranking comparison. Through this
study, one can see that a meta-path with relatively short length is good enough to measure similarity,
where a long meta-path may even reduce the quality.

4.5.2 EFFICIENCY COMPARISON
The time complexity for SimRank is O(KN2d2), where K is the number of iterations, N is the
total number of objects, and d is the average neighbor size; the time complexity for calculating P-
PageRank for one query is O(KNd), where K, N, d has the same meaning as in SimRank, whereas
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the time complexity for PathSim using PathSim-baseline for single query is O(nd), where n < N

is the number of objects in the target type, d is the average degree of objects in target type for partial
relation matrix MP l

. The time complexity for RW and PRW are the same as PathSim. We can
see that similarity measure only using one meta-path is much more efficient than those also using
longer meta-paths in the network (e.g., SimRank and P-PageRank).

Two algorithms, PathSim-baseline and PathSim-pruning, introduced in Section 4.3, are com-
pared, for efficiency study under different meta-paths, namely, V PAPV and (V PAPV )2 (denoted
as V AV and V AV AV for short).The results show that the denser the relation matrix corresponding
to the partial meta-path (MV PAPV in comparison with MV PA), the greater the pruning power. The
improvement rates are 18.23% and 68.04% for the 2 meta-paths.
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(b) Meta-path: V AV AV

Figure 4.3: Pruning power denoted by the slope of the fitting line under two meta-paths for type
conference on the full-DBLP dataset. Each dot represents a query under the indicated meta-path.

4.5.3 CASE-STUDY ON FLICKR NETWORK
In this case study, we show that to retrieve similar images for a query image one can explore links in
the network rather than the content information. Let “I” represent images, “T” tags that associated
with each image, and “G” groups that each image belongs to.Two meta-paths are used and compared.
One is IT I , which means common tags are used by two images at evaluation of their similarity. The
results are shown in Figure 4.4. The other is IT IGIT I , which means tags similarities are further
measured by their shared groups, and two images can be similar even if they do not share many exact
same tags as long as these tags are used by many images of the same groups. One can see that the
second meta-path gives better results than the first, as shown in Figure 4.5, where the first image
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is the input query. This is likely due to that the latter meta-path provides additional information
related to image groups, and thus improves the similarity measure between images.

(a) top-1 (b) top-2 (c) top-3 (d) top-4 (e) top-5 (f ) top-6

Figure 4.4: Top-6 images in Flickr network under meta-path IT I .

(a) top-1 (b) top-2 (c) top-3 (d) top-4 (e) top-5 (f ) top-6

Figure 4.5: Top-6 images in Flickr network under meta-path IT IGIT I .
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C H A P T E R 5

Meta-Path-Based Relationship
Prediction

In Chapter 4, we introduced a meta-path-based similarity measure, PathSim, for heterogeneous
information networks. The concept of meta-path serves not only as a basis for similarity search but
also as a key for mining and learning general heterogeneous networks with an arbitrary network
schema, because this notion provides a way to guide us to systematically build link-based features. In
this chapter, we examine a new mining task, relationship prediction in heterogeneous information
networks, by exploring meta-path-based features.

5.1 OVERVIEW

Link prediction, that is, predicting the emergence of links in a network based on certain current or historical
network information, has been a popular theme of research in recent years, thanks to the popularity
of social networks and other online systems. The applications of link prediction range from social
networks to biological networks, as it addresses the fundamental question of whether a link will form
between two nodes in the future. Most of the existing link prediction methods [24; 38; 39; 40; 74]
are designed for homogeneous networks, in which only one type of objects exists in the network.
For example, in a friendship network or a co-author network, a user may like to predict possible new
friendship between two persons or new co-authorship between two authors, based on the existing
links in a network.

In the real world, most networks are heterogeneous, where multiple types of objects and
links exist. In such networks, objects are connected by different types of relationships. Objects are
connected together not only by immediate links, but also by more sophisticated relationships that
follow some meta-path-based relations. Here we extend the link prediction problem in homogeneous
information networks to the relationship prediction problem in heterogeneous information networks,
where a relationship could be an immediate link or a path instance following some meta-paths. Many
real-world problems can be considered as relationship prediction tasks, such as citation prediction
in a bibliographic network, product recommendation in an e-commerce network, and online adver-
tisement click prediction in an online system-based network.

The heterogeneity of objects and links makes it difficult to use well-known topological features
in homogeneous networks for algorithmic design.For example, the number of the common neighbors
is frequently used as a feature for link prediction in homogeneous networks. However, the neighbors
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of an object in a heterogeneous network often are of different types, and a simple measure like the
number of shared neighbors cannot reflect this heterogeneity.

We thus propose a meta-path-based relationship prediction framework to overcome this dif-
ficulty. Instead of treating objects and links of different types equally or extracting homogeneous
subnetworks from the original network, we propose a meta-path-based topological feature frame-
work for heterogeneous networks. The goal is to systematically define the relations between objects
encoded in different paths using the meta structure of these paths, that is, the meta-paths.

Two case studies using the meta-path-based relationship prediction framework are presented
in this chapter. The first is on co-authorship prediction in the DBLP network, whereas the second
proposes a novel prediction model that can predict when a relationship is going to built in a given
heterogeneous information network.

5.2 META-PATH-BASED RELATIONSHIP PREDICTION
FRAMEWORK

Different from traditional link prediction tasks for homogeneous information networks, in a het-
erogeneous information network scenario, it is necessary to specify which type of relationships to
predict. The relationship to be predicted is called the target relation and can be described using a
meta-path. For example, the relation co-authorship can be described as a meta-path A − P − A.
Moreover, in order to build an effective prediction model, one need to examine how to construct the
meta-path-based topological features between two objects for each potential relationship. In this
section, we first examine how to systematically build topological feature space using meta-paths, and
then present a supervised prediction framework where the meta-path-based topological measures
are used as features.

5.2.1 META-PATH-BASED TOPOLOGICAL FEATURE SPACE
Topological features, also known as structural features, reflect the essential connectivity properties for
pairs of objects. Topological feature-based link prediction aims at inferring the future connectivity
by leveraging the current connectivity of the network. There are some frequently used topological
features defined in homogeneous networks, such as the number of common neighbors, preferential
attachment [5; 49], and katzβ [33]. We first review several commonly used topological features
in homogeneous networks, and then propose a systematic meta-path-based methodology to define
topological features in heterogeneous networks.

Existing Topological Features
We introduce several well-known and frequently used topological features in homogeneous networks.
For more topological features, the readers can refer to [39] .
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• Common neighbors. Common neighbors is defined as the number of common neighbors shared
by two objects, ai and aj , namely |
(ai) ∩ 
(aj )|, where 
(a) is the notation for neighbor set of
the object a and | · | denotes the size of a set.

• Jaccard’s coefficient. Jaccard’s coefficient is a measure to evaluate the similarity between two neighbor
sets, which can be viewed as the normalized number of common neighbors, namely |
(ai)∩
(aj )|

|
(ai)∪
(aj )| .

• Katzβ .Katzβ [33] is a weighted summation of counts of paths between two objects with different
lengths, namely

∑∞
l=1 βl|path

〈l〉
ai ,aj

|, where βl is the damping factor for the path with length l.

• PropFlow. In a recent study [40], a random walk-based measure PropFlow is proposed to measure
the topological feature between two objects. This method assigns the weighs to each path (with
fixed length l) using the products of proportions of the flows on the edges.

One can see that most of the existing topological features in homogeneous networks are based on
neighbor sets or paths between two objects. However, as there are multi-typed objects and multi-
typed relations in heterogeneous networks, the neighbors of an object could belong to multiple
types, and the paths between two objects could follow different meta-paths and indicate different
relations. Thus, it is necessary to design a more complex strategy to generate topological features in
heterogeneous networks.

Meta-Path-Based Topological Features
To design topological features in heterogeneous networks, we first define the topology between two
objects using meta-paths, and then define measures on a specific topology. In other words, a meta-
path-based topological feature space is comprised of two parts: the meta-path-based topology and
the measure functions that quantify the topology.

Meta-path-based topology As introduced in Chapter 4,a meta-path is a path defined over a network
schema and denotes a composition relation over a heterogeneous network. By checking the existing
topological features defined in a homogeneous network, we can find that both the neighbor set-based
features and path-based features can be generalized in the heterogeneous information network, by
considering paths following different meta-paths. For example, if we treat each type of neighbors
separately and extend the immediate neighbors to n-hop neighbors (i.e., the distance between one
object and its neighbors are n), the common neighbor feature between two objects then becomes
the count of paths between the two objects following different meta-paths. For path-based features,
such as Katzβ , it can be extended as a combination of paths following different meta-paths, where
each meta-path defines a unique topology between objects, representing a special relation.

Meta-paths between two object types can be obtained by traversing the graph of network
schema, using standard traversal methods such as the BFS (breadth-first search) algorithm. As the
network schema is a much smaller graph compared with the original network, this stage is very fast.
We can enumerate all the meta-paths between two object types by setting a length constraint. For
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Table 5.1: Meta-paths under length 4 between authors in the DBLP network
Meta-path Semantic Meaning of the Relation
A − P − A ai and aj are co-authors

A − P → P − A ai cites aj

A − P ← P − A ai is cited by aj

A − P − V − P − A ai and aj publish in the same venues
A − P − A − P − A ai and aj are co-authors of the same authors
A − P − T − P − A ai and aj write the same topics

A − P → P → P − A ai cites papers that cite aj

A − P ← P ← P − A ai is cited by papers that are cited by aj

A − P → P ← P − A ai and aj cite the same papers
A − P ← P → P − A ai and aj are cited by the same papers

example, in order to predict co-authorship in the DBLP network, we extract all the meta-paths
within a length constraint, say 4, starting and ending with the author type A. The meta-paths
between authors up to length 4 are summarized in Table 5.1, where the semantic meaning of each
relation denoted by each meta-path are given in the second column.

Measure functions on meta-paths Once the topologies given by meta-paths are determined, the
next stage is to propose measures to quantify these meta-paths for pairs of objects. Here we list
four measures along the lines of topological features in homogeneous networks. They are path count,
normalized path count, random walk, and symmetric random walk, defined as follows. Additional
measures can be proposed, such as pairwise random walk mentioned in Chapter 4.

• Path count. Path count measures the number of path instances between two objects following a
given meta-path R, denoted as PCR . Path count can be calculated by the products of adjacency
matrices associated with each relation in the meta-path.

• Normalized path count. Normalized path count is to discount the number of paths between
two objects in the network by their overall connectivity, and is defined as NPCR(ai, aj ) =
PCR(ai ,aj )+PC

R−1 (aj ,ai )

ZR(ai ,aj )
, where R−1 denotes the inverse relation of R, ZR(ai, aj ) is some nor-

malization factor. For example, PathSim [65] is a special case of normalized path count, where
ZR(ai, aj ) = PCR(ai, ai) + PCR(aj , aj ) for symmetric R’s.

• Random walk.Random walk measure along a meta-path is defined as RWR(ai, aj ) = PCR(ai ,aj )

PCR(ai ,·) ,
where PCR(ai, ·) denotes the total number of paths following R starting with ai ,which is a natural
generalization of PropFlow [40].

• Symmetric random walk. Symmetric random walk considers the random walk from two direc-
tions along the meta-path, and defined as SRWR(ai, aj ) = RWR(ai, aj ) + RWR−1(aj , ai).
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Figure 5.1: An example of path instances between two authors following A-P -V -P -A.

Taking the example in Figure 5.1, we show the calculation of these measures. Let R denote the rela-
tion represented by meta-pathA − P − V − P − A. It is easy to check it is symmetric, i.e.,R = R−1.
Let J denote Jim, and M denote Mike. We can see that PCR(J, M) = 7, NPCR(J, M) = 7+7

7+9 =
7/8 (under PathSim), RWR(J, M) = 1/2, RWR(M, J ) = 7/16, and SRWR(J, M) = 15/16.

For each meta-path, we can apply any measure functions on it and obtain a unique topological
feature. So far, we have provided a systematic way to define the topological features in heterogeneous
networks, which is a large space defined over topology × measure. These meta-path-based topo-
logical features can serve a good feature space for mining and learning tasks, such as relationship
prediction.

5.2.2 SUPERVISED RELATIONSHIP PREDICTION FRAMEWORK
The supervised learning framework is summarized in Figure 5.2. Generally, given a past time interval
T0 = [t0, t1), we want to use the topological features extracted from the aggregated network in the
time period T0, to predict the relationship building in a future time interval, say T1 = [t1, t2). In the
training stage, we first sample a set of object pairs in T0, collect their associated topological features
represented as x’s in T0, and record relationship building facts between them represented as y ’s in
the future interval T1. A training model is then built to learn the best coefficients associated with
each topological feature by maximizing the likelihood of relationship building. In the test stage, we
apply the learned coefficients to the topological features for the test pairs, and compare the predicted
relationship with the ground truth. Note that the test stage may have different past interval T ′

0 and
future interval T ′

1 as in the training stage, but we require they have the same lengths as the intervals
in the training stage, namely using the same amount of past information to predict the same length
of future.

For most of the existing link prediction studies, the tasks are predicting whether a new link
will appear in the future. In other words, y is a binary variable and is usually modeled as following
Bernoulli distribution. While in a more general case, y can be variables related to any reasonable
value of the relationship for a pair of objects. For example, in order to predict when a relationship
is going to be built, y could be modeled a positive real value following exponential distribution;
in order to predict the frequency of a relationship (e.g., how many times two authors are going to
collaborate), y could be modeled as a non-negative integer following Poisson distribution. Then
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Figure 5.2: Supervised framework for relationship prediction.

statistical models can be built based on the distribution assumptions of y, such as logistic regression
model for binary variables and generalized linear model for more sophisticated assumptions.

Two case studies of relationship prediction are shown in the following sections, both of which
follow the supervised relationship prediction framework, but with different purposes and thus dif-
ferent assumptions on the response variable y.

5.3 CO-AUTHORSHIP PREDICTION

For the first case study, we study the problem of co-authorship prediction in the DBLP bibliographic
network, that is, whether two authors are going to collaborate in a future interval for the first time.
In this case, the target relation for prediction is co-authorship relation, which can be described using
meta-path A − P − A. For the topological features, we study all the meta-path listed in Table 5.1
other than A − P − A and all the measures listed in the last section.

We next introduce the relationship prediction model which models the probability of co-
authorship between two authors as a function of topological features between them. Given the
training pairs of authors, we first extract the topological features for them, and then build the
prediction model to learn the weights associated with these features.

5.3.1 THE CO-AUTHORSHIP PREDICTION MODEL
In order to predict whether two authors are going to collaborate in a future interval, denoted as
y, we use the logistic regression model as the prediction model. For each training pair of authors
〈ai1, ai2〉, let xi be the (d + 1)-dimensional vector including constant 1 and d topological features
between them, and yi be the label of whether they will be co-authors in the future (yi = 1 if
they will be co-authors, and 0 otherwise), which follows Bernoulli distribution with probability pi

(P(yi = 1) = pi). The probability pi is modeled as follows:

pi = exiβ

exiβ + 1
,
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where β is the d + 1 coefficient weights associated with the constant and each topological feature.
We then use standard MLE (Maximum Likelihood Estimation) to derive β̂, that maximizes the
likelihood of all the training pairs:

L =
∏
i

p
yi

i (1 − pi)
(1−yi) .

In the test stage, for each candidate author pair, we can predict whether they will collabo-

rate according to P(ytest = 1) = extest β̂

extest β̂+1
, where xtest is the (d + 1)-dimensional vector including

constant 1 and d topological features between the candidate pair.

5.3.2 EXPERIMENTAL RESULTS
It turns out that the proposed meta-path-based topological features can improve the co-authorship
prediction accuracy compared with the baselines that only use homogeneous object and link infor-
mation.

We consider three time intervals for the DBLP network, according to the publication year
associated with each paper: T0 = [1989, 1995], T1 = [1996, 2002], and T2 = [2003, 2009]. For the
training stage, we use T0 as the past time interval, and T1 as the future time interval, which is denoted
as T0 − T1 time framework. For the test stage, we consider the same time framework T0 − T1 for
most of the studies, and consider T1 − T2 time framework for the query-based case study.

Let an author pair be 〈ai, aj 〉, we call ai the source author, and aj the target author. Two sets
of source authors are considered. The first set is comprised of highly productive authors, who has
published no less than 16 papers in the past time interval; and the second set is comprised of less
productive authors, with between 5 and 15 publications. The target authors are selected if they are
2-hop co-authors or 3-hop co-authors of a source author. In all, we have four labeled datasets: (1) the
highly productive source authors with 2-hop target authors (denoted as HP 2hop); (2) the highly
productive source authors with 3-hop target authors (denoted as HP 3hop); (3) the less productive
source authors with 2-hop target authors (denoted as LP 2hop); and (4) the less productive source
authors with 3-hop target authors (denoted as LP 3hop).

To evaluate the prediction accuracy, two measures are used. The first measure is the classifi-
cation accuracy rate (accuracy) for binary prediction under the cut-off score as 0.5, and the second
one is the area under ROC (receiver operating characteristic) curve [9], which is denoted as AUC.

Overall Accuracy
We first compare the heterogeneous topological features with the homogeneous ones. For the hetero-
geneous topological features, we use path count measure for 9 meta-paths (denoted as heterogeneous
PC) listed in Table 5.1 (not including the target relation itself ); for homogeneous topological fea-
tures, we use: (1) the number of common co-authors; (2) the rooted PageRank [39] with restart
probability α = 0.2 for the induced co-author network; and (3) the number of paths between two
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Figure 5.3: Homogeneous features vs. heterogeneous Path Count feature. Heterogeneous feature beats
homogeneous features in all of the datasets, which is more significant on 3-hop datasets, where topological
features play a more important role for co-authorship prediction.

authors of length no longer than 4, disregarding their different meta-paths (denoted as homogeneous
PC).The rooted PageRank measure is only calculated for the HP 3hop dataset, due to its inefficiency
in calculation for large number of authors. The comparison results are summarized in Figure 5.3
and Table 5.2. We can see that the heterogeneous topological feature beats the homogeneous ones
in all the four datasets, which validates the necessity to consider the different meta-paths separately
in heterogeneous networks. We also notice that, in general, the co-authorship for highly productive
authors is easier to predict than less productive authors, by looking at the overall prediction accuracy
on the two groups of source authors. Finally, we can see that the prediction accuracy is higher when



5.3. CO-AUTHORSHIP PREDICTION 81

the target authors are 3-hop co-authors, which means the collaboration between closer authors in
the network is more affected by information that is not available from network topology.

Table 5.2: Homogeneous vs. heterogeneous topological features
Dataset Topological features Accuracy AUC

HP 2hop

common neighbor 0.6053 0.6537
homogeneous PC 0.6433 0.7098
heterogeneous PC 0.6545 0.7230

HP 3hop

common neighbor 0.6589 0.7078
homogeneous PC 0.6990 0.7998
rooted PageRank 0.6433 0.7098
heterogeneous PC 0.7173 0.8158

LP 2hop

common neighbor 0.5995 0.6415
homogeneous PC 0.6154 0.6868
heterogeneous PC 0.6300 0.6935

LP 3hop

common neighbor 0.6804 0.7195
homogeneous PC 0.6901 0.7883
heterogeneous PC 0.7147 0.8046

Second, we compare different measures proposed for heterogeneous topological features:
(1) the path count (PC); (2) the normalized path count (NPC, i.e., PathSim in our case); (3) the
random walk (RW ); (4) the symmetric random walk (SRW ); and (5) the hybrid features of (1)–(4)
(hybrid). It turns out that in general we have (see Figure 5.4): (1) all the heterogeneous features
beat the homogeneous features (common neighbor is denoted as PC1, and homogeneous PC is
denoted as PCSum); (2) the normalized path count beats all the other three individual measures;
and (3) the hybrid feature produces the best prediction accuracy.

Case Study
For the case study, we first show the learned importance for each topological feature in deciding
the relationship building in DBLP, and then show the predicted co-author relationships for some
source author in a query mode.

First, we show the learned importance for all the 9 meta-paths with NPC measure, as NPC

is the best measure for co-author relationship prediction overall. We show the p-value for the
feature associated with each meta-path under Wald test and their significance level in Table 5.3.
From the results, we can see that for the HP 3hop dataset, the shared co-authors, shared venues,
shared topics, and co-cited papers for two authors all play very significant roles in determining their
future collaboration(s). For the asymmetric meta-paths that represent the asymmetric relations,
such as citing and cited relations between authors, they have different impacts in determining the
relationship building. For example, for a highly productive source author, the target authors citing
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Figure 5.4: Average accuracy over four datasets for different features.

Table 5.3: Significance of meta-paths with Normalized Path Count
measure for HP 3hop dataset

Meta-path p-value Significance level1

A − P → P − A 0.0378 **
A − P ← P − A 0.0077 ***
A − P − V − P − A 1.2974e-174 ****
A − P − A − P − A 1.1484e-126 ****
A − P − T − P − A 3.4867e-51 ****
A − P → P → P − A 0.7459
A − P ← P ← P − A 0.0647 *
A − P → P ← P − A 9.7641e-11 ****
A − P ← P → P − A 0.0966 *
1 *: p < 0.1; **: p < 0.05; ***: p < 0.01, ****: p < 0.001

her frequently are more likely to be her future co-authors than the target authors being cited by her
frequently.

Second, we study the predicted co-authors for some source author as queries. Note that,
predicting co-authors for a given author is an extremely difficult task, as we have too many candidate
target authors (3-hop candidates are used), while the number of real new relationships are usually
quite small. Table 5.4 shows the top-5 predicted co-authors in time interval T2 (2003–2009) using
the T0 − T1 training framework, for both the proposed hybrid topological features and the shared
co-author feature. We can see that the results generated by heterogeneous features has a higher
accuracy compared with the homogeneous one.
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Table 5.4: Top-5 predicted co-authors for Jian Pei in 2003–2009

Rank Hybrid heterogeneous features # of shared authors as features

1 Philip S. Yu Philip S. Yu
2 Raymond T. Ng Ming-Syan Chen
3 Osmar R. Zaïane Divesh Srivastava
4 Ling Feng Kotagiri Ramamohanarao
5 David Wai-Lok Cheung Jeffrey Xu Yu

∗ Bold font indicates true new co-authors of Jian Pei in the period of 2003-2009.

5.4 RELATIONSHIP PREDICTION WITH TIME

Traditional link prediction studies have been focused on asking whether a link will be built in the
future, such as “whether two people will become friends?” However, in many applications, it may
be more interesting to predict when the link will be built, such as “what is the probability that two
authors will co-write a paper within 5 years?” and “by when will a user in Netflix rent the movie
Avatar with 80% probability?”

In this section, we study the problem of predicting the relationship building time between two
objects, such as when two authors will collaborate for the first in the future, based on the topological
structure in a heterogeneous network, by investigating the citation relationship between authors in
the DBLP network. First, we introduce the concepts of target relation and topological features for
the problem encoded in meta-paths [65].Then, a generalized linear model (GLM) [19] based super-
vised framework is proposed to model the relationship building time. In this framework, the building
time for relationships are treated as independent random variables conditional on their topologi-
cal features, and their expectation is modeled as a function of a linear predictor of the extracted
topological features. We propose and compare models with different distribution assumptions for
relationship building time, where the parameters for each model are learned separately.

5.4.1 META-PATH-BASED TOPOLOGICAL FEATURES FOR AUTHOR
CITATION RELATIONSHIP PREDICTION

In the author citation relationship prediction problem, the target relation is A − P → P − A, which

is short for A
write−→ P

cite−→ P
write−1−→ A, and describes the citation relation between authors. In gen-

eral, for a target relation RT = 〈A, B〉, any meta-paths starting with type A and ending with type
B other than the target relation itself can be used as the topological features for predicting new
relationships. These meta-paths can be obtained by traversing on the network schema, for example,
using BFS (breadth-first search). By reasoning the dynamics of a relationship building, we are in
particular considering three forms of relations as topological features.
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Table 5.5: Meta-paths denoting similarity relations between authors
Meta-path Semantic Meaning of the Relation

A − P − A ai and aj are co-authors
A − P − V − P − A ai and aj publish in the same venues
A − P − A − P − A ai and aj are co-authors of the same authors
A − P − T − P − A ai and aj write the same topics

A − P → P ← P − A ai and aj cite the same papers
A − P ← P → P − A ai and aj are cited by the same papers

1. ARsimART B, where Rsim is a similarity relation defined between type A and RT is the target
relation.The intuition is that if ai in type A is similar to many ak ’s in type A that have relationships
with bj in type B, then ai is likely to build a relationship with bj in the future.

2. ART BRsimB, where RT is the target relation, and Rsim is a similarity relation between type B.
The intuition is that if ai in type A has relationships with many bk ’s in type B that are similar to
bj in type B, then ai is likely to build a relationship with bj in the future.

3. AR1CR2B, where R1 is some relation between A and C and R2 is some relation between C

and B. The intuition is that if ai in type A has relationships with many ck ’s in type C that have
relationships with bj in type B, then ai is likely to build a relationship with bj in the future.
Note that the previous two forms are special cases of this one, which can be viewed as triangle
connectivity property.

For topological features, we confine similarity relations Rsim and other partial relations R1

and R2 to those that can be derived from the network using meta-paths. Moreover, we only consider
similarity relations that are symmetric.

Taking the author citation relation,which is defined as A − P → P − A, as the target relation,
we consider 6 author-author similarity relations defined in Table 5.5. For each similarity relation, we
can concatenate the target relation in its left side or in its right side.We then have 12 topology features
with the form ARsimART B and ART BRsimB in total. Besides, we consider the concatenation of
“author-cites-paper” relation (A − P → P ) and “paper-cites-author” relation (P → P − A) into
(A − P → P → P − A), as well as all the 6 similarity relations listed in Table 5.5, which can be
viewed as the form of AR1CR2B themselves. Now we have 19 topological features in total.

For each type of the meta-paths, we illustrate a concrete example to show the possible rela-
tionship building in Figure 5.5. In Figure 5.5(a), authors a1 and a2 are similar, as they publish papers
containing similar terms, and a2 cites papers published by a3. In the future, a1 is likely to cite papers
published by a3 as well, since she may follow the behavior of her fellows. In Figure 5.5(b), author
a1 cites a2, and a2 and a3 are cited by common papers together (p5, p6, p7). Then a1 is likely to
cite a3 in the future, as she may cite authors similar to a2. In Figure 5.5(c), a1 and a2 publish in the
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same venue, then a1 is likely to cite a2 in the future as they may share similar interests if publishing
in the same conference.

p1 t1a1 p2 a2 p3 p4 a3

t2

p1 t1a1 p2 a2 p3 p4 a3

t2

p5

a1 p1 p2 a2 p3 p5 p4 a4

p6

p7

a1 p1 p2 a2 p3 p5 p4 a4

p6

p7

p8

a1 p1 v1 p2 a3 a1 p1 v1 p2 a3

p3

(a) Meta-Path Type ARsimARTB: A P T P A P A

(b) Meta-Path Type ARTBRsimB: A P P A P P A

(c) Meta-Path Type AR1CR2B: A P C P A

Figure 5.5: Feature meta-path illustration for author citation relationship prediction.

By varying the similarity relations and partial relations, we are able to generate other topo-
logical features in arbitrary heterogeneous networks.

Without loss of generality, we use the count of path instances as the default measure. Thus,
each meta-path corresponds to a measure matrix. For a single relation R ∈ R, the measure matrix is
just the adjacency matrix of the subnetwork extracted by R. Given a composite relation, the measure
matrix can be calculated by the matrix multiplication of the partial relations.

In Figure 5.5(a), the count of path instances between a1 and a3 following the given meta-path
is 2, which are:

(1) a1 − p1 − t1 − p2 − a2 − p3 → p4 − a3, and
(2) a1 − p1 − t2 − p2 − a2 − p3 → p4 − a3.
In Figure 5.5(b), the count of path instances between a1 and a4 following the given meta-path

is 3, which are:
(1) a1 − p1 → p2 − a2 − p3 ← p5 → p4 − a4,
(2) a1 − p1 → p2 − a2 − p3 ← p6 → p4 − a4, and
(3) a1 − p1 → p2 − a2 − p2 ← p7 → p4 − a4.
In Figure 5.5(c), the count of path instances between a1 and a3 following the given meta-path

is 1, which is:
(1) a1 − p1 − v1 − p2 − a3.
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Measures for different meta-paths have different scales. For example, longer meta-paths usu-
ally have more path instances due to the adjacency matrix multiplication. We will normalize the
measure using Z-score for each meta-path.

5.4.2 THE RELATIONSHIP BUILDING TIME PREDICTION MODEL
We now propose the generalized linear model-based prediction model, which directly models the
relationship building time as a function of topological features, and provides methods to learn the
coefficients of each topological feature, under different assumptions for relationship building time
distributions. After that, we introduce how to use the learned model to make inferences.

We model the relationship building time prediction problem in a supervised learning frame-
work. In the training stage, we first collect the topological features xi in the history interval
T0 = [t0, t1) for each sampled object pair 〈ai, bi〉, where types of ai and bi are τ(ai) = A and
τ(bi) = B. Then, we record their relative first relationship building time yi = ti − t1, if ti is in the
future training interval T1 = [t1, t2); record the building time yi ≥ t2 − t1, if no new relationship
has been observed in T1. Note that in the training stage, we are only given limited time to observe
whether and when two objects will build their relationship, it is very possible that two objects build
their relationship after t2, which needs careful handling in the training model. A generalized linear
model (GLM) based relationship building time model is introduced, and the goal is to learn the
best coefficients associated with each topological feature that maximize the current observations of
the relationship building time. In the test stage, we apply the learned coefficients of the topological
features to the test pairs, and compare the predicted relationship building time with the ground
truth.

Different from the existing link prediction task, in the training stage, we are collecting rela-
tionship building time yi for each training pair, which is a variable ranging from 0 to ∞, rather than
a binary value denoting whether there exists a link in the future interval. Similarly, in the test stage,
we are predicting the relationship building time yi for test pairs that range from 0 to ∞, rather than
predicting whether the link exists or not in the given future interval.

The Generalized Linear Model Framework
The main idea of generalized linear model (GLM) [19] is to model the expectation of random
variable Y , E(Y ), as some function (“link function”) of the linear combination of features, that is,
Xβ, where X is the observed feature vector, and β is the coefficient vector.Then the goal is to learn β

according to the training data set using maximum likelihood estimation. Under different distribution
assumptions for Y , usually from the exponential family, E(Y ) has different forms of parameter set,
and the link functions are with different forms too. Note that the most frequently used Least-Square
regression and logistic regression are special cases of GLM, where Y follows Gaussian distribution
and Bernoulli distribution, respectively.

Suppose we have n training pairs for the target relation 〈A, B〉. We denote each labeled pair
as ri = 〈ai, bi〉, and yi as the observed relative relationship building time in the future interval. We
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denote Xi as the d dimensional topological feature vector extracted for ai and bi in the historical
interval plus a constant dimension.

Distributions for Relationship Building Time
The first issue of the prediction model is to select a suitable distribution for the relationship building
time. Intuitively, a relationship building between two objects can be treated as an event, and we are
interested in when this event will happen.

Let Y be the relationship building time relative to the beginning of the future interval (yi =
ti − t1), and let T be the length of future training interval. For training pairs, Y has the observations
in [0, T ) ∪ {T +} in a continuous case, and {0, 1, 2, . . . , T − 1, T +} in a discrete case, where y = T +
means no event happens within the future training interval. For testing pairs, Y has the observations
in [0, ∞) in a continuous case, and nonnegative integers in a discrete case.

We consider three types of distributions for relationship building time, namely exponential,
Weibull and geometric distribution. For each of the distribution assumptions over yi , we set up the
models separately.

The first distribution is exponential distribution, which is the most frequently used distri-
bution in modeling waiting time for an event. The probability density function of an exponential
distribution is:

fY (y) = 1

θ
exp{−y

θ
} , (5.1)

where y ≥ 0, and θ > 0 is the parameter denoting the mean waiting time for the event. The cumu-
lative distribution function is:

FY (y) = Pr(Y ≤ y) = 1 − exp{−y

θ
} . (5.2)

The second distribution is Weibull distribution, which is a generalized version of exponential
distribution and is another standard way to model the waiting time of an event. The probability
density function of a Weibull distribution is:

fY (y) = λyλ−1

θλ
exp{−(

y

θ
)λ} , (5.3)

where y ≥ 0, and θ > 0 and λ > 0 are two parameters related to mean waiting time for the event
and hazard of happening of the event along with the time. λ is also called the shape parameter, as
it affects the shape of probability function. When λ > 1, it indicates an increasing happening rate
along the time (if an event does not happen at an early time, it is getting higher probability to happen
at later time); and when λ < 1, it indicates a decreasing happening rate along the time (if an event
does not happen at an early time, it is getting less possible in happening in later time). Note that
when λ = 1, Weibull distribution becomes exponential distribution with mean waiting time as θ ,
and the happening rate does not change along the time. The cumulative distribution function is:

FY (y) = Pr(Y ≤ y) = 1 − exp{−(
y

θ
)λ} . (5.4)
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The third distribution is the geometric distribution, which is a distribution that models how
many times of failures it needs to take before the first-time success. As in our case, the time of failure
is the discrete time that we need to wait before a relationship is built. The probability mass function
of a geometric distribution is:

Pr(Y = k) = (1 − p)kp , (5.5)

where k = 0, 1, 2, . . ., and p is the probability of the occurrence of the event at each discrete time.
The cumulative distribution function is:

Pr(Y ≤ k) = 1 − (1 − p)k+1 . (5.6)

In our case, each relationship building is an independent event, and each relationship building
time Yi is an independent random variable, following the same distribution family, but with differ-
ent parameters. With the distribution assumptions, we build relationship building time prediction
models in the following.

Model under Exponential and Weibull Distribution Note that, as exponential distribution is a
special case of Weibull distribution (with λ = 1), we only discuss prediction model with Weibull
distribution.

In this case, we assume relationship building time Yi for each training pair is independent of
each other, following the same Weibull distribution family with the same shape parameter λ, but
with different mean waiting time parameters θi . Namely, we assume that different relationships for
the target relation share the same trend of hazard happening along with the time, but with different
expectation in building time.Under this assumption,we can evaluate the expectation for each random
variable Yi as E(Yi) = θi
(1 + 1

λ
). We then use the link function E(Yi) = exp{−Xiβ}
(1 + 1

λ
),

that is log θi = −β0 − ∑d
j=1 Xi,jβj = −Xiβ, where β0 is the constant term. Then we can write

the log-likelihood function:

log L =
n∑

i=1

(fY (yi |θi, λ)I{yi<T } + P(yi ≥ T |θi, λ)I{yi≥T }) ,

where I{yi<T } and I{yi≥T } are indicator functions, which equals to 1 if the predicate holds, or 0
otherwise. It is easy to see that the log-likelihood function includes two parts: if yi is observed in
the future interval, we use its real density in the function; otherwise, we are only able to use the
probability of yi ≥ T in the function.

By plugging in log θi = −Xiβ, we can get the log-likelihood with parameters β and λ:

LLW(β, λ) =
n∑

i=1

I{yi<T } log
λyλ−1

i

e−λXiβ
−

n∑
i=1

(
yi

e−Xiβ
)λ , (5.7)

where LLW denotes the log-likelihood function under Weibull distribution. We refer this model
as Weibull model.
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Model under Geometric Distribution In this case, we assume relationship building time Yi for each
training pair is independent of each other, following the same geometric distribution family, but
with different success probability pi . Under this assumption, we can evaluate the expectation for
each random variable Yi as E(Yi) = 1−pi

pi
. We then let E(Yi) = exp{−Xiβ}, i.e., log 1−pi

pi
= −Xiβ.

The log-likelihood function is then:

LLG(β) =
n∑

i=1

(P r(Yi = yi)I{yi<T } + P(yi ≥ T )I{yi≥T })

=
n∑

i=1

( − I{yi<T }(−Xiβ) + (yi + 1)(−Xiβ − log(e−Xiβ + 1))
)
.

(5.8)

We refer this model as geometric model.
The learning of the models is becoming an optimization problem, which aims at finding β̂

and other parameters (e.g., λ̂ in the Weibull model) that maximize the log-likelihood. As there are
no closed form solutions for Equations (5.7) and (5.8), we use standard Newton-Raphson method
to derive the update formulas, which are based on the first derivative and second derivative (Hessian
matrix) of the log-likelihood function.

Model Inference
Once the parameters such as β and λ are learned from the training data set through MLE, we can
apply the model to the test pairs of objects, as long as their topological features in the historical
network are given. Let the learned parameter values be β̂ and λ̂ for β and λ, and let the topological
feature vector for the test pairs be Xtest (with constant 1 as the first dimension), we now consider
three types of questions people may be interested in for the new relationship building time, and
provide the solutions in the following.

1. Will a new relationship between two test objects be built within t years?

This question is equal to the query for the probability Pr(ytest ≤ t), which can be evaluated by
plugging in the MLE estimators to derive the distribution parameters. Note that for traditional
link prediction tasks, t should be the same as the length of training interval. For our task, t can
be any nonnegative values. For Weibull model, we have:

θ̂test = exp{−Xtest β̂}
Pr(ytest ≤ t) = 1 − exp{−(

t

θ̂test

)λ̂} .
(5.9)

For geometric model, we have:

p̂test = 1

exp {−Xtest β̂} + 1
Pr(ytest ≤ t) = 1 − (1 − p̂test )

t+1 .

(5.10)
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2. What is the average relationship building time for two test objects?

This is simply the query for E(Ytest ). Using the same estimators for θ̂test and p̂test as above, we
can have the estimator for E(Ytest ) as E(Ytest ) = θ̂test
(1 + 1

λ̂
) for Weibull model, where 
(·)

is the Gamma function, and E(Ytest ) = 1−p̂test

p̂test
for geometric model.

3. The quantile: by when a relationship will be built with a probability α?

This is equal to query for the solution of FY (ytest ) = α, and we can get answers as ytest =
θ̂test (− log(1 − α))

1
λ̂ for Weibull model, and ytest = max{ log(1−α)

log(1−p̂test )
− 1, 0} for geometric

model. When α = 0.5, the quantile is just the median.

5.4.3 EXPERIMENTAL RESULTS
We select a subset of authors in the DBLP bibliographic network, who published more than 5
papers in top conferences in the four areas1 that are related to data mining between years 1996
and 2000 (T0 = [1996, 2000]). The total number of the author set is 2721. Then we sampled 7000
pairs of authors in the form of 〈ai, aj 〉 that ai did not cite aj in T0, but have citation relationship
between year 2001 and 2009 (T1 = [2001, 2009] and T = 9) as positive samples; and we sampled
another 7000 pairs of authors that have no citation relationship during either T0 or T1. The citation
relationship is defined if ai cites papers written by aj published before year 2000. Note that we have
this time constraint for papers as we want to infer citation relationship via the historical network.
Nineteen topological features introduced in Section 5.4.1 are calculated for each training pair. The
first (relative) time of the citation relationship is recorded for each pair of authors; and if there is no
citation relationship between them in T1, the time is recorded as a value bigger than 9.

Experimental Setting
In order to show the power of using time-involved model in relationship prediction, we use logistic
regression [52] (denoted as logistic) that is frequently used in binary link prediction tasks as the
baseline. Note that the output of the logistic regression is a probability denoting whether a rela-
tionship will be built in T1 for each test pair. In our models, the output is the parameter set for
the distribution of the relationship building time, from which we can infer much more information
rather than a simple probability. We denote our models with different distribution assumptions as
GLM_geo, GLM_exp, and GLM_weib, respectively.

To compare the four models, we use two sets of measures to evaluate the effectiveness of
each model. First, we measure the effectiveness according to the predicted probability for each
relationship. We define the accuracy of the relationship prediction as the ratio between the number
of correctly predicted relationship (under the cut-off 0.5) and the total number of the test pairs. Also,
another frequently used measure AUC (the area under ROC curve) is used to compare the accuracy.

1Data Mining: KDD, PKDD, ICDM, SDM, PAKDD; Database: SIGMOD Conference, VLDB, ICDE, PODS, EDBT; Infor-
mation Retrieval: SIGIR, ECIR, ACL, WWW, CIKM; and Artificial Intelligence: NIPS, ICML, ECML, AAAI, IJCAI.
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Second, we directly compare the predicted time with the ground truth, among our proposed
models. Mean absolute error (MAE) that is the mean of the absolute error between predicted
relationship building time and the ground truth is used. Also, we use the ratio of the relationships
that occur in some confidence interval derived from the models as another measure to test the
accuracy of the predicted time. Note that relationships yet to happen are not considered in these two
measures.

Prediction Power Study
We now compare our time-involved models with the baseline logistic regression, using the first set
of measures.

We test the generality power for different models, namely, when the training future interval
is not equal to the test future interval (T train �= T test ). On one hand, we may want to know the
probability of relationship building within each year in the training interval (T test < T train); on
the other hand, we may want to infer longer term probability given a short term training interval
(T test > T train). We show the two cases in Tables 5.6 and 5.7. Note that since logistic regression
can only output the probability when T test = T train, we use the same predicted probability for
different test intervals. In Table 5.6, we fix the training interval with length T train = 9, namely,
T train

1 = [2001, 2009], and vary the test intervals with length from 1–4. We can see that when
T test is small, time-involved models can give much better prediction accuracy, especially in terms
of the measure accuracy. In other words, time-involved models carry more information in telling
the probability of relationship building in finer time periods. In Table 5.7, we fix the test interval
with length T test = 9 and vary the training intervals with length from 2–5. We can see that time-
involved models can better utilize the short-term training than logistic regression, and output better
prediction results for longer term relationship building behavior. It is interesting to note that by
using the measure AUC, which does not require users to specify a cut-off value in the predicted
probabilities, the performance of logistic regression is still comparable with other models. This is
due to AUC only uses the ranking order of the predicted values, while accuracy requires that the
absolute values of the predicted probabilities are also correct.

Table 5.6: Prediction generalization power comparison: T test < T train and T train = 9

T test = 1 T test = 2 T test = 3 T test = 4
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.7106 0.7619 0.7246 0.7535 0.7669 0.7347 0.7349 0.7731
GLM-geo 0.9284 0.7626 0.8436 0.7532 0.7829 0.7657 0.7347 0.7696
GLM-exp 0.9290 0.7553 0.8442 0.7464 0.7821 0.7569 0.7328 0.7603

GLM-weib 0.9287 0.7273 0.8441 0.7452 0.7826 0.7559 0.7334 0.7597

In all, for time-involved model, it contains more information and can answer different ques-
tions and with strong generalization power. Logistic regression can only answer the question of
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Table 5.7: Prediction generalization power comparison: T test > T train and T test = 9

T train = 2 T train = 3 T train = 4 T train = 5
Accuracy AUC Accuracy AUC Accuracy AUC Accuracy AUC

logistic 0.5157 0.7810 0.5379 0.7805 0.5599 0.7841 0.5952 0.7896
GLM-geo 0.5942 0.7910 0.6209 0.7926 0.6366 0.7902 0.6522 0.7982
GLM-exp 0.5015 0.7802 0.5214 0.7833 0.6709 0.7841 0.7143 0.7870

GLM-weib 0.7081 0.7816 0.7021 0.7832 0.7002 0.7833 0.7103 0.7862

whether a relationship will happen or not, given a fixed time interval. However, if we are asking
more, it fails in most of the scenarios.

Time Prediction Accuracy Study
We now evaluate the predicted time using different time-involved models. Here, we use the predicted
median time as the predicted time. Table 5.8 shows the MAE (mean average error) between the
predicted median time and the ground truth under different training and test intervals. It turns
out that GLM-exp has the lowest error. Also, both GLM-exp and GLM-weib perform even better
using shorter interval as training, whereas GLM-geo has the opposite behavior, that is, longer term
of training leads to better performance. Note that we only calculate the error for the relationships
indeed happen in the test interval.

In Table 5.9, we infer different confidence intervals from the predicted relationship building
time distribution, and test the ratio of the true relationship in different confidence intervals. A
confidence interval (range) rather than a simple value, say the median time, can give users a better
view of the relationship building time. It is shown that GLM-exp and GLM-weib has a higher ratio
of giving correct confidence intervals for the true relationship building time, especially when using
a small confidence interval. This is very useful in practice as they can give tight bound estimations.

Table 5.8: MAE of predicted time and the ground truth
T train = 5, T test = 9 T train = 9, T test = 9

GLM-geo 4.9883 4.7219
GLM-exp 2.7774 3.0685

GLM-weib 3.1025 3.1692

Case Studies
To better understand the output of our model, we now show a case study of predicting when the
citation relationship will be build for “Philip S. Yu” with other candidates. The model is trained
by GLM-weib using a training interval of 9 years (T train

1 = [2001, 2009]), with the learned pa-
rameter λ = 0.9331, slightly less than 1, which means the citation relationship has a higher hazard
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Table 5.9: Ratio of the true relationship occurring in different confidence intervals:
T test = 9

25%-75% 10%-90% 0%-80%
T train = 9 T train = 5 T train = 9 T train = 5 T train = 9 T train = 5

GLM-geo 0.5489 0.5336 0.8936 0.8947 0.9650 0.9743
GLM-exp 0.7167 0.7246 0.8619 0.8634 0.9880 0.9889

GLM-weib 0.7278 0.7314 0.8680 0.8686 0.9884 0.9896

Table 5.10: Case studies of relationship building time prediction
ai aj Ground Truth Median Mean 25% quant. 75% quant.

Philip S. Yu Ling Liu 1 2.2386 3.4511 0.8549 4.7370
Philip S. Yu Christian Jensen 3 2.7840 4.2919 1.0757 5.8911
Philip S. Yu C. Lee Giles 0 8.3985 12.9474 3.2450 17.7717
Philip S. Yu Stefano Ceri 0 0.5729 0.8833 0.2214 1.2124
Philip S. Yu David Maier 9+ 2.5675 3.9581 0.9920 5.4329
Philip S. Yu Tong Zhang 9+ 9.5371 14.7028 3.6849 20.1811
Philip S. Yu Rudi Studer 9+ 9.7752 15.0698 3.7769 20.6849

happening at an earlier time. The ground truth of the citation building time, and the predicted
median, mean, 25% quantile and 75% quantile for several test pairs are shown in Table 5.10. It
can be seen that the predicted median and confidence interval are very suggestive for predicting
the true citation relationship building time. For those authors whose predicted being cited time is
significantly different from the ground truth, in-depth studies may be needed. For example, David
Maier is a prolific researcher in database area, and by intuition as well as suggested by the model,
Philip should cite him. However, the ground truth says otherwise. Furthermore, this function can
be used to recommend authors to any author in DBLP for citation purpose.

For the above model, the learned top-4 most important topological features with the highest
coefficients are:

1. A − P − T − P − A, that is, if two authors are very similar in terms of writing similar topics,
they tend to cite each other;

2. A − P ← P → P − A, that is, if two authors are very similar in terms of being frequently co-
cited by the common papers, they tend to cite each other;

3. A − P − A − P → P − A, that is, an author tends to cite the authors that are frequently cited
by her co-authors; and

4. A − P − T − P − A − P → P − A, that is, if two authors are similar in terms writing similar
topics, they tend to cite the same authors.
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These topological features provide insightful knowledge for people in understanding the citation
relationship building between authors.



PART III

Relation Strength-Aware Mining
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C H A P T E R 6

Relation Strength-Aware
Clustering with Incomplete

Attributes
A heterogeneous information network contains multiple types of objects as well as multiple types of
links, indicating different sorts of interactions among these objects. The heterogeneity of network
model brings rich semantic information for mining. It also raises the issue of selecting the right type
of information for different mining purposes. For mining different kinds of knowledge, it is desirable
to automatically learn the right information encoded in the network, with limited guidance from
users. In this chapter, we study a special case of such problems: cluster objects in a network, with
user-provided attribute set and relations from the original network schema.

6.1 OVERVIEW

The rapid emergence of online social media, e-commerce, and cyber-physical systems brings the
necessity to study them with the model of heterogeneous networks in which objects (i.e., nodes)
are of different types, and links among objects correspond to different relations, denoting different
interaction semantics. In addition, an object is usually associated with some attributes. For example,
in a YouTube social media network, the object types may include videos, users, and comments; links
between objects correspond to different relations, such as publish and like relations between users and
videos, post relation between users and comments, and friendship and subscribe relations between
users; and attributes may include user’s location, the length of video’s clips, the number of views, and
comments.

Such kinds of heterogeneous information networks are ubiquitous and determining their
underlying clustering structures has many interesting applications. For example, clustering objects
(e.g., customers, products, and comments) in an online shopping network such as eBay is helpful
for customer segmentation in product marketing; and clustering objects (e.g., people, groups, books,
and posts) in an online social network such as Facebook is helpful for voter segmentation in political
campaigns.

The clustering task brings two new challenges in such scenarios. First, an object may contain
only partial or even no observations for a given attribute set that is critical to determine their cluster
labels. That is, a pure attribute-based clustering algorithm cannot correctly detect these clusters.
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Second, although links have been frequently used in networks to detect clusters [2; 14; 44; 69] in
recent research, we consider a more challenging scenario in which the links are of different types
and interpretations, each of which may have its own level of semantic importance in the clustering
process. That is, a pure link-based clustering without any guidance from attribute specification could fail
to meet user demands.

Figure 6.1: A motivating example on clustering political interests in social information networks.

Figure 6.1 shows a toy social information network extracted from a political forum containing
users, blogs written by users, books liked by users, and friendship between users. Now suppose we
want to cluster users in the network according to their political interests, using the text attributes
in user profiles, blogs and books, as well as the link information between objects. On one hand,
since not all the users listed their political interests in their profiles, we cannot judge their political
interests simply according to the text information contained in their profiles directly. On the other
hand, without specifying the purpose of clustering, we cannot decide which types of links to use
for the clustering. Shall we use the friendship links to detect the social communities, or the user-
like-book links to detect the reading groups, or a mix of them? Obviously, to solve such clustering
tasks, we need to use both the incomplete attribute information as well as the link information of
different types with the awareness of their importance weights. In our example, in order to discover
a user’s political interests, we need to learn which link types are more important for our purpose of
clustering, among the relationships between her and blogs, books, and her friends.

Recently, some studies [42; 47; 59; 71; 75; 87] show that the combination of attribute and
link information in a network can improve the clustering quality. However, none of them has ad-
dressed the two challenges simultaneously. Some of them rely on a complete attribute space and
the clustering result is considered as a trade-off between attribute-based measures and link-based
measures. Moreover, none of the current studies has examined the issue that different types of links
have different importance in determining a clustering with a certain purpose.
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Here we explore the interplay between different types of links and the specified attribute set
in the clustering process and design a comprehensive and robust probabilistic clustering model for
heterogeneous information networks.

6.2 THE RELATION STRENGTH-AWARE CLUSTERING
PROBLEM DEFINITION

As defined before, a heterogeneous information network G = (V, E, W) is modeled as a directed
graph, where each node in the network corresponds to an object (or an event) in real life, and each
link corresponds to a relationship between the linked objects. Associated with each link, there is a
binary or positive value, denoting its input weight.

Attributes are associated with objects, such as the location of a user, the text description of
a book, the text information of a blog, and so on. In this setting, we consider attributes across all
different types of objects as a collection of attributes for the network, denoted as X = {X1, . . . , XT },
in which we are interested only in a subset for a certain clustering purpose.Each object v ∈ V contains
a subset of the attributes,with observations denoted as v[X] = {xv,1, xv,2, . . . , xv,NX,v

},where NX,v

is the total number of observations of attribute X attached with object v. Note that some attributes
can be shared by different types of objects, such as the text and the location attribute, while some
other attributes are unique for a certain type of objects, such as the time length for a video clip. We
use VX to denote the object set that contains attribute X.

6.2.1 THE CLUSTERING PROBLEM
The goal of the clustering problem is to map every object in the network into a unified hidden space,
that is, a soft clustering, according to the user-specified subset of attributes in the network, with the
help of links from different types.

There are several new challenges for clustering objects in this new scenario. First, the attributes
are usually incomplete for an object: the attributes specified by a user may be only partially or even
not contained in an object type, and the values for these attributes could be missing even if the
attribute type is contained in the object type. Moreover, the incompleteness of the data cannot
be easily handled by interpolation: the observations for each attribute could be a set or a bag of
values, and the neighbors for an object are from different types of objects, which may not be helpful
for predicting the missing data. For example, it is impossible to get a user’s blog via interpolating
techniques.Therefore, none of the existing clustering algorithms that purely based on attribute space
can solve the clustering problem in this scenario.

Second, with the awareness that links play a critical role to propagate the cluster information
among objects, another challenge is that different link types have different semantic meanings and
therefore have different strengths in the process of passing cluster information around. In other
words, while it is clear that the existence of links between nodes is indicative of clustering similarity,
it is also important to understand that different link types may have a different level of importance in the
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clustering process. In the example of clustering political interests illustrated in Figure 6.1, we expect
a higher importance of the relation user-like-book than the relation friendship in deciding the cluster
membership of a user. Thus, we need to design a clustering model which can learn the importance
of these link types automatically.This will enhance the clustering quality because it marginalizes the
impact of low quality types of neighbors of an object during the clustering process.

We present examples of clustering tasks in two concrete heterogeneous information networks
in the following.

Example 6.1 (Bibliographic information network) A bibliographic network is a typical hetero-
geneous network, containing objects from three types of entities, namely papers, publication venues
(conferences or journals), and authors. Each paper has different link types to its authors and pub-
lication venue. Each paper is associated with the text attribute as a bag of words. Each author and
venue links to a set of papers, but contains no attributes (in our case). The application of a clustering
process according to the text attribute in such a scenario can help detect research areas, and decide
the research areas for authors, venues, and papers.

:Paper

:TextAttributes

:Venue

:Author

Figure 6.2: Illustration of bibliographic information network.

Note that we treat text as attributes of papers in this case instead of term entities as in
previous chapters. Multiple types of objects and links in this network are illustrated in Figure 6.2.
For objects of different types, their cluster memberships may need to be determined by different
kinds of information: for authors and venues, the only available information is from the papers linked
to them; for papers, both text attributes and links of different types are provided. Note that even for
papers that are associated with text attributes, using link information can further help the clustering
quality when the observations of the text data is very limited (e.g., using text merely from titles).
Also, we may expect that the neighbors of an author type play a more important role in deciding a
paper’s cluster compared with the neighbor of a venue type. This needs to be automatically learned
in terms of the underlying relation strengths.

Example 6.2 (Weather sensor network) Weather sensor networks typically contain different kinds
of sensors for detecting different attributes, such as precipitation or temperature. Some sensors may
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have incorrect or no readings because of the inaccuracy or malfunctioning of the instruments. The
links between sensors are generated according to their k nearest neighbors under geo-distances, in
order to incorporate the importance of locality in weather patterns. The clustering of such sensors
according to both precipitation and temperature attributes can be useful in determining regional
weather patterns.
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Tem p.

Precip.Tem p.

Tem p.

Precip.

:tem p.sensor

:precip.sensor

:precip.attribute

:tem p.attributePrecip.

Precip.

Tem p.
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P
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T
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Figure 6.3: Illustration of weather sensor information network.

Figure 6.3 illustrates a weather sensor network containing two types of sensors: temperature
and precipitation. A sensor may sometimes register none or multiple observations. Although it is
desirable to use the complete observations on both temperature and precipitation to determine the
weather pattern of a location, in reality a sensor object may contain only partial attribute (e.g.,
temperature values only for temperature sensors), and both of the attribute and link information are
needed for correctly detecting the clusters. Still, which type of links plays a more important role
needs to be determined in the clustering process.

Formally,given a network G = (V, E, W), a specified subset of its associated attributes X ∈ X ,
the attribute observations {v[X]} for all objects, and the number of clusters K , our goal is:

1. to learn a soft clustering for all the objects v ∈ V , denoted by a membership probability matrix,
�|V|×K = (θv)v∈V , where �(v, k) denotes the probability of object v in cluster k, 0 ≤ �(v, k) ≤
1 and

∑K
k=1 �(v, k) = 1, and θv is the K dimensional cluster membership vector for object v;

and

2. to learn the strengths (importance weights) of different link types in determining the cluster
memberships of the objects, γ|R|×1, where γ(r) is a real number and stands for the importance
weight for the link type r ∈ R.

6.3 THE CLUSTERING FRAMEWORK
We propose a novel probabilistic clustering model in this section and introduce the algorithm that
optimizes the model in Section 6.4.
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6.3.1 MODEL OVERVIEW
Given a network G, with the observations of its links and the observations {v[X]} for the speci-
fied attributes X ∈ X , a good clustering configuration �, which can be viewed as hidden cluster
information for objects, should satisfy two properties.

1. Given the clustering configuration, the observed attributes should be generated with a high
probability. Especially, we model each attribute for each object as a separate mixture model, with
each component representing a cluster.

2. The clustering configuration should be highly consistent with the network structure. In other
words, linked objects should have similar cluster membership probabilities, and larger strength
of a link type requires more similarity between the linked objects of this type.

Overall, we can define the likelihood of the observations of all the attributes X ∈ X as well
as the hidden continuous cluster configuration �, given the underneath network G, the relation
strength vector γ, and the cluster component parameter β, which can be decomposed into two
parts, the generative probability of the observed attributes given � and the probability of � given
the network structure:

p({{v[X]}v∈VX
}X∈X , �|G,γ,β) =

∏
X∈X

p({v[X]}v∈VX
|�,β)p(�|G,γ) . (6.1)

From a generative point of view, this model explains how observations for attributes associated with
objects are generated: first, a hidden layer of variables � is generated according to the probability
p(�|G,γ), given the network structure G and the strength vector γ; second, the observed values of
attributes associated with each object are generated according to mixture models, given the cluster
membership of the object, as well as the cluster component parameter β, with the probability∏

X∈X p({v[X]}v∈VX
|�,β).

The goal is then to find the best parameters γ and β, as well as the best clustering configuration
� that maximize the likelihood.The detailed modeling of the two parts is introduced in the following.

6.3.2 MODELING ATTRIBUTE GENERATION
Given a configuration � for the network G, namely, the membership probability vector θv for each
object v, the attribute observations for each object v are conditionally independent with observations
from other objects. Each attribute X associated with each object v is then assumed following the
same family of mixture models that share the same cluster components, with the component mixing
proportion as the cluster membership vector θv . For simplicity, we first assume that only one attribute
X is specified for the clustering purpose and then briefly discuss a straightforward extension to the
multi-attribute case.
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Single Attribute
Let X be the only attribute we are interested in the network, and let v[X] be the observed values
for object v, which may contain multiple observations. It is natural to consider that the attribute
observation v[X] for each object v is generated from a mixture model, where each component is a
probabilistic model that stands for a cluster, with the parameters to be learned, and the component
weights denoted by θv .Formally, the probability of all the observations {v[X]}v∈VX

given the network
configuration � is modeled as:

p({v[X]}v∈VX
|�,β) =

∏
v∈VX

∏
x∈v[X]

K∑
k=1

θv,kp(x|βk), (6.2)

where K is the number of clusters and βk is the parameter for component k. In this chapter, we
consider two types of attributes, one corresponding to text attributes with categorical distributions,
and the other numerical attributes with Gaussian distributions.

1. Text attribute with categorical distribution. In this case, objects in the network contain
text attributes in the form of a term list, from the vocabulary l = 1 to m. Each cluster
k has a different term distribution following a categorical distribution, with the parameter
βk = (βk,1, . . . , βk,m), where βk,l is the probability of term l appearing in cluster k, that
is, X|k ∼ discrete(βk,1, . . . , βk,m). Following the frequently used topic modeling method
PLSA [25], each term in the term list for an object v is generated from the mixture model,
with each component as a categorical distribution over terms described by βk , and the compo-
nent coefficient is θv . Formally, the probability of observing all the current attribute values is

p({v[X]}v∈VX
|�,β) =

∏
v∈VX

m∏
l=1

(

K∑
k=1

θv,kβk,l)
cv,l , (6.3)

where cv,l denotes the count of term l that object v contains.

2. Numerical attribute with Gaussian distribution. In this case, objects in the network contain
numerical observations in the form of a value list, from the domain R. The kth cluster is a
Gaussian distribution with parameters βk = (μk, σ

2
k ), that is, X|k ∼ N (μk, σ

2
k ), where μk and

σk are mean and standard deviation of normal distribution for component k. Each observation
in the observation list for an object v is generated from the Gaussian mixture model, where each
component is a Gaussian distribution with parameters μk, σ

2
k , and the component coefficient is

θv . The probability density for all the observations for all objects is then:

p({v[X]}v∈VX
|�,β) =

∏
v∈VX

∏
x∈v[X]

K∑
k=1

θv,k

1√
2πσ 2

k

e
− (x−μk)2

2σ2
k . (6.4)



104 6. RELATION STRENGTH-AWARE CLUSTERING WITH INCOMPLETE ATTRIBUTES

Multiple Attributes
As in the weather sensor network example, we are interested in multiple attributes, namely temper-
ature and precipitation. Generally, if multiple attributes in the network are specified by users, say
X1, . . . , XT , the probability density of observed attribute values {v[X1]}, . . . , {v[XT ]} for a given
clustering configuration � is as follows, by assuming the independence among these attributes:

p({v[X1]}v∈VX1
, . . . , {v[XT ]}v∈VXT

|�,β1, . . . ,βT ) =
T∏

t=1

p({v[Xt ]}v∈VXt
|�,βt ) . (6.5)

6.3.3 MODELING STRUCTURAL CONSISTENCY
From the view of links, the more similar the two objects are in terms of cluster memberships, the
more likely they are connected by a link. In order to quantitatively measure the consistency of a
clustering result � with the network structure G, we define a novel probability density function for
observing �.

We assume that linked objects are more likely to be in the same cluster, if the link type is
of importance in determining the clustering process. That is, for two linked objects, vi and vj ,
their membership probability vectors θi and θj should be similar. Within the same type of links,
the higher link weight (w(e)), the more similar θi and θj should be. Further, a certain link type
may be of greater importance, and will influence the similarity to a greater extent. The consistency
of a configuration � with the network G, is evaluated with the use of a composite analysis with
respect to all the links in the network in the form of a probability density value. A more consistent
configuration of � will yield a higher probability density value. In the following, we first introduce
how the consistency of two cluster membership vectors is defined with respect to a single link, and
then show how this analysis can be applied over all links in order to create a probability density value
as a function of �.

For a link e = 〈vi, vj 〉 ∈ E , with type r = φ(e) ∈ R, we denote the importance of the link type
to the clustering process by a real number γ (r). This is different from the weight of the link w(e),
which is specified in the network as input, whereas the value of γ (r) is defined on link types and
needs to be learned. We denote the consistency function of two cluster membership vectors, θi and
θj , with link e under strength weights for each link type γ by a feature function f (θi ,θj , e,γ).
Higher values of this function imply greater consistency with the clustering results. In the following,
we list several desiderata for a good feature function.

1. The value of the feature function f should increase with greater similarity of θi and θj .

2. The value of the feature function f should decrease with greater importance of the link e, either
in terms of its specified weight w(e), or the learned importance γ (r) for its link type. In other
words, for the larger strength of a particular link type, two linked nodes are required to be more
similar in order to claim the same level of consistency.
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3. The feature function should not be symmetric between its first two arguments θi and θj , because
the impact from node vi to node vj could be different from that of vj to vi .

The last criterion may need some further explanation. For example, in a citation network, a
paper i may cite paper j , because i feels that j is relevant to itself, while the reverse may not be
necessarily true. In the experimental section, we will show that asymmetric feature functions produce
higher accuracy in link prediction.

We then propose a cross entropy-based feature function, which satisfies all of the desiderata
listed above. For a link e = 〈vi, vj 〉 ∈ E , with relation type r = φ(e) ∈ R, the feature function
f (θi ,θj , e,γ) is defined as:

f (θi ,θj , e,γ) = −γ (r)w(e)H(θj ,θi ) = γ (r)w(e)

K∑
k=1

θj,k log θi,k , (6.6)

where H(θj ,θi ) = −∑K
k=1 θj,k log θi,k , is the cross entropy from θj to θi , which evaluates the

deviation of vj from vi , in terms of the average coding bits needed if using coding schema based on
the distribution of θi . For a fixed value of γ (r), the value of H(θj ,θi ) is minimal and (therefore) f

is maximal, when the two vectors are identical. It is also evident from Equation (6.6) that the value
of f decreases with increasing learned link type strength γ (r) or input link weight w(e). We require
γ ≥ 0, in the sense that we do not consider links that connect dissimilar objects. The value of f so
defined is a non-positive function, with larger value indicating a higher consistency of the link.

Other distance functions such as KL-divergence could replace the cross entropy in the feature
function. However, as cross entropy favors distributions that concentrate on one cluster (H(θj ,θi )

achieves the lowest distance, when θj = θi and θi,k = 1 for some cluster k), which agrees with our
clustering purpose, we pick it over KL-divergence.

We then propose a log-linear model to model the probability of � given the link type weights
γ, where the probability of one configuration � is defined as the exponential of the summation of
feature functions of all the links in G:

p(�|G,γ) = 1

Z(γ)
exp{

∑
e=〈vi ,vj 〉∈E

f (θi ,θj , e,γ)} , (6.7)

where γ is the strength weight vector for all link types,f (θi ,θj , e,γ) is the feature function defined
on links of different types, and Z(γ) is the partition function that makes the distribution function
sum up to 1: Z(γ) = ∫

�
exp{∑e=〈vi ,vj 〉∈E f (θi ,θj , e,γ)}d�. The partition function Z(γ) is an

integral over the space of all the configurations �, and it is a function of γ.

6.3.4 THE UNIFIED MODEL
The overall goal of the network clustering problem is to determine the best clustering results �,
the link type strengths γ, and the cluster component parameters β that maximize the generative
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probability of attribute observations and the consistency with the network structure, described by
the likelihood function in Equation (6.1).

Further, we add a Gaussian prior to γ as a regularization to avoid overfitting, with the mean
as 0, and the covariance matrix as σ 2I , where σ is the standard deviation of each element in γ, and I

is the identity matrix. We set σ = 0.1 in our experiments, and more complex strategy can be used to
select σ according to labeled clustering results, which will not be discussed here. The new objective
function is then:

g(�,β,γ) = log
∑
X∈X

p({v[X]}v∈VX
|�,β) + log p(�|G,γ) − ||γ||2

2σ 2
. (6.8)

In addition, we have the constraints that γ ≥ 0, and some constraints for β that are dependent on
the attribute distribution type. Also, p({v[X]}v∈VX

|�,β) and p(�|G,γ) need to be replaced by
the specific formulas proposed above for concrete derivations.

6.4 THE CLUSTERING ALGORITHM
This section presents a clustering algorithm that computes the proposed probabilistic clustering
model. Intuitively, we begin with the assumption that all the types of links play an equally important
role in the clustering process, then update the strength for each type according to the average
consistency of links of that type with the current clustering results, and finally achieve a good
clustering as well as a reasonable strength vector for link types. It is an iterative algorithm containing
two steps in that clustering results and strengths of link types mutually enhance each other, which
maximizes the objective function of Equation (6.8) alternatively.

In the first step, we fix the link type weights γ to the best value γ∗, determined in the
last iteration, then the problem becomes that of determining the best clustering results � and the
attribute parameters β for each cluster component. We refer to this step as the cluster optimization
step: [�∗,β∗] = arg max

�,β
g(�,β,γ∗).

In the second step, we fix the clustering configuration parameters � = �∗ and β = β∗,
corresponding to the values determined in the last step, and use it to determine the best value of
γ, which is consistent with current clustering results. We refer to this step as the link type strength
learning step: γ∗ = arg max

γ≥0
g(�∗,β∗,γ).

The two steps are repeated until convergence is achieved.

6.4.1 CLUSTER OPTIMIZATION
In the cluster optimization step, each object has the link information from different types of neigh-
bors, where the strength of each type of link is given, as well as the possible attribute observations.
The goal is to utilize both link and attribute information to get the best clustering result for all the
objects. Since γ is fixed in this step, the partition function and regularizer term become constants,
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and can be discarded for optimization purposes. Therefore, we can construct a simplified objective
function g1(·, ·), which depends only on � and β:

g1(�,β) =
∑

e=〈vi ,vj 〉
f (θi ,θj , e,γ) +

∑
v∈VX

∑
x∈v[X]

log
K∑

k=1

θv,kp(x|βk) . (6.9)

We derived an EM-based algorithm [8; 17] to solve Equation (6.9). In the E-step, the prob-
ability of each observation x for each object v and each attribute X belonging to each cluster, usually
called the hidden cluster label of the observation, zv,x , is derived according to the current parameters
� and β. In the M-step, the parameters � and β are updated according to the new membership for
all the observations in the E-step.The iterative formulas for single text attribute and single Gaussian
attribute are provided below.

1. Single categorical text attribute. Let zv,l denote the hidden cluster label for the lth term in the
vocabulary for object v, �t−1 be the value of � at iteration t − 1, and βt−1 be the value of β
at iteration t − 1. 1{v∈VX} is the indicator function, which is 1 if v contains this attribute, and 0
otherwise. Then, we have:

p(zt
v,l = k|�t−1,βt−1) ∝ θ t−1

v,k βt−1
k,l

θ t
v,k ∝

∑
e=〈v,u〉

γ (φ(e))w(e)θ t−1
u,k + 1{v∈VX}

m∑
l=1

cv,lp(zt
v,l = k|�t−1,βt−1)

βt
k,l ∝

∑
v∈VX

cv,lp(zt
v,l = k|�t−1,βt−1) .

(6.10)

2. Single Gaussian numerical attribute. Let zv,x denote the hidden cluster label for the observation
x for object v,�t be the value of � at iteration t , and μt

k and σ t
k be the values of mean and standard

deviation for kth cluster at iteration t . 1{v∈VX} is the indicator function, which is 1 if v contains
this attribute, and 0 otherwise. Then, we have:

p(zt
v,x = k|�t−1,βt−1) ∝ θ t−1

v,k

1√
2π(σ t−1

k )2
e
− (x−μ

t−1
k

)2

2(σ
t−1
k

)2

θ t
v,k ∝

∑
e=〈v,u〉

γ (φ(e))w(e)θ t−1
u,k + 1{v∈VX}

∑
x∈v[X]

p(zt
v,x = k|�t−1,βt−1)

μt
k =

∑
v∈VX

∑
x∈v[X] xp(zt

v,x = k|�t−1,βt−1)∑
v∈VX

∑
x∈v[X] p(zt

v,x = k|�t−1,βt−1)

(σ 2
k )t =

∑
v∈VX

∑
x∈v[X](x − μt

k)
2p(zt

v,x = k|�t−1,βt−1)∑
v∈VX

∑
x∈v[X] p(zt

v,x = k|�t−1,βt−1)
.

(6.11)

For networks with multiple attributes, the formulae can be derived similarly. The readers can
find the formulae for the case of two Gaussian numerical attributes in [61].
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From the update rules, we can see that the value of the membership probability for an object is
dependent on its neighbors’ memberships, the strength of the link types, the weight of the links, and
the attribute associated with it (if any). When an object contains no attributes in the specified set, or
contains no observations for the specified attributes, the cluster membership is totally determined
by its linked objects, which is a weighted average of their cluster memberships and the weight
is determined by both the weight of the link and the weight of the link type. When an object
contains some observations of the specified attributes, its cluster membership is determined by both
its neighbors and these observations for each possible attribute.

6.4.2 LINK TYPE STRENGTH LEARNING
The link type strength learning step is to find the best strength weight for each type of links that
makes the current clustering result to be generated with the highest probability. By doing so, the
low-quality link types that connect objects not so similar will be punished and assigned with low
strength weights; while the high quality link types will be assigned with high strength weights.

Since the values of � andβ are fixed in this step, the only relevant parts of the objective function
(for optimization purposes) are those which depend on γ. These are the structural consistency
modeling part and the regularizer over γ. Therefore, we can construct the following simplified
objective function g2(·) as a function of γ:

g2(γ) =
∑

e=〈vi ,vj 〉
f (θi ,θj , e,γ) − log Z(γ) − ||γ||2

2σ 2
. (6.12)

In addition, we have the linear constraints as γ ≥ 0.
However,g2 is difficult to be optimized directly, since the partition function Z(γ) is an integral

over the entire space of valid values of �, which is intractable. Instead, we construct an alternate
approximate objective function g′

2, which factorizes log p(�|G) as the sum of log p(θi |θ−i , G),
namely the pseudo-log-likelihood, where p(θi |θ−i , G) is the conditional probability of θi given the
remaining objects’ clustering configurations, which turns out to be dependent only on its neighbors.
The intuition of using pseudo-log-likelihood to approximate the real log-likelihood is that, if the
probability of generating the clustering configuration for each object conditional on its neighbors is
high, the probability of generating the whole clustering configuration should also be high. In other
words, if the local patches of a network are very consistent with the clustering results, the consistency
over the whole network should also be high.

In particular, we choose each local patch of the network as an object and all its out-link
neighbors. In this case, every link is considered exactly once, and the newly designed objective
function g′

2(·) is as follows:

g′
2(γ) =

|V |∑
i=1

( ∑
e=〈vi ,vj 〉

f (θi ,θj , e,γ) − log Zi(γ)
) − ||γ||2

2σ 2
, (6.13)
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where log Zi(γ) = log
∫
θi

e

∑
e=〈vi ,vj 〉 f (θi ,θj ,e,γ)

dθi , the local partition function for object vi , with
the linear constraints γ ≥ 0.

As the joint distribution of � as well as the conditional distribution of θi given its out-link
neighbors are both belonging to exponential families, both g2 and g′

2 are concave functions of γ.
Therefore, the maximum value is either achieved at the global maximum point or at the boundary
of constraints. The Newton-Raphson method is used to solve the optimization problem. It needs to
calculate the first and second derivative of g′

2(γ) with respect to γ, which is non-trivial in our case.
We discuss the computation of these below.

By re-examining p(θi |{θj }∀e=〈vi ,vj 〉, G), the conditional probability for each object i given
its out-link neighbors, we have:

p(θi |{θj }∀e=〈vi ,vj 〉, G) ∝
K∏

k=1

θ

∑
e=〈vi ,vj 〉 γ (φ(e))w(e)θj,k

ik . (6.14)

It is easy to see that p(θi |{θj }∀e=〈vi ,vj 〉, G) is a Dirichlet distribution with parameters αik =∑
e=〈vi ,vj 〉 γ (φ(e))w(e)θj,k + 1, for k = 1 to K .Therefore, the local partition function for each ob-

ject i, Zi(γ), should be the constant B(αi ) as in Dirichlet distribution, where αi = (αi1, . . . , αiK)

and B(αi ) =
∏K

k=1 
(αik)


(
∑K

k=1 αik)
. Then the first and second derivatives (∇g′

2 and Hg′
2) can be calculated

now as each Zi is a function of Gamma functions. Then, we can use the Newton-Raphson method
to determine the value of γ that maximizes g′

2 with the following iterative steps:

1. γ t+1 = γ t − [Hg′
2(γ

t )]−1∇g′
2(γ

t );

2. ∀r ∈ R, if γ (r)t+1 < 0, set γ (r)t+1 = 0.

6.4.3 PUTTING TOGETHER: THE GENCLUS ALGORITHM
We integrate the two steps discussed above to construct a General Heterogeneous Network
Clustering algorithm, GenClus. The algorithm includes an outer iteration that updates � and γ
alternatively, and two inner iterations that optimize � using the EM algorithm and optimize γ
using the Newton-Raphson method, respectively. For the initialization of γ in the outer iteration,
we initialize it as an all-1 vector. This means that all the link types in the network are initially
considered equally important. For the initialization of �′ in the inner iteration for optimizing �,
we can either (1) assign �′0 with random assignments, or (2) start with several random seeds, run
the EM algorithm for a few steps for each random seed, and choose the one with the highest value
of the objective function g1 as the real starting point. The latter approach will produce more stable
results.

The time complexity for the EM algorithm in the first step is O(t1(Kd1|V| + K|E |), where t1

is the number of iterations, d1 is the average number of observations for each object, K is the number
of clusters, |V| is the number of objects, and |E | is the number of links in the network, which is linear
to |V| for sparse networks. The time complexity of the algorithm in the step of maximizing γ is
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dependent on the time for calculating the first derivative and Hessian matrix of g′
2(γ), and the matrix

inversion involved Newton-Raphson algorithm. This is O(K|E | + t2|R|2.376)), where K and |E |
are with the same meaning as before, t2 is the number of iterations, and |R| is the number of relations
in the network. In all, the overall time complexity is O(t(t1(Kd1|V| + K|E |) + t2|R|2.376)), where
t is the number of outer iterations. In other words, for each outer iteration, the time complexity is
approximately linear to the number of objects in the network when the network is sparse. Therefore,
the GenClus algorithm is quite scalable.

6.5 EXPERIMENTAL RESULTS
In this section, we examine the effectiveness of GenClus on several real and synthetic datasets.

6.5.1 DATASETS
Two real networks and one synthetic network are used in this study. We extracted two networks
from the DBLP “four-area” dataset [21; 69], by using different subsets of entities and the links
between them to represent the underlying network structures. This dataset was extracted from 20
major conferences from the 4 areas corresponding to database, data mining, information retrieval,
and artificial intelligence. Besides the real networks, we also generated a synthetic weather sensor
network. We describe these networks below.

(a) DBLP four-area A-V network. This network contains two types of objects, authors (A)
and venues (V); and three types of links depending upon publication behavior, namely
publish_in(A, V ) (short for 〈A, V 〉), published_by(V, A) (short for 〈V, A〉), and co-
author(A, A) (short for 〈A, A〉). The links are associated with a weight corresponding to the
number of papers that an author has published in a venue, a venue is contributed by an author,
and the two authors have co-authored, respectively. The author nodes and venue nodes contain
text corresponding to the text from the titles of all the papers they have ever written or published.

(b) DBLP four-area A-V-P network. This network contains objects corresponding to authors (A),
venues (V), and papers (P); and four types of links depending upon the publication behavior,
namely write(A, P ) (short for 〈A, P 〉), written_by(P, A) (short for 〈P, A〉), publish(V, P )

(short for 〈V, P 〉), and published_by(P, V ) (short for 〈P, V 〉). In this case, the links have binary
weights, corresponding to presence or absence of the link. Only papers contain text attributes that
are from their titles.

(c) Weather sensor network.This network is synthetically generated,containing two types of objects:
temperature (T) and precipitation (P) sensors, and four link types between any two types of sensors
denoting the kNN relationship: 〈T , T 〉, 〈T , P 〉, 〈P, T 〉, and 〈P, P 〉.The links are binary weighted
according to their k-nearest neighbors.The attributes associated with a sensor correspond to either
temperature or precipitation, depend on the type of the sensor. We use the weather network
generator to generate two sets of synthetic climate sensor networks, each containing four clusters,
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and each sensor is linked to five nearest neighbors for each type (ten in total). In each setting, we
vary the number of sensors, by fixing the number of temperature sensors at 1000, and precipitation
sensors as 250, 500, and 1000. For each setting, the number of observations for each object may be
1,5,or 20. In all, for each weather pattern setting,we have 9 networks with different configurations.

6.5.2 EFFECTIVENESS STUDY
We use two measures for our effectiveness study. First, the labels associated with the nodes in the
datasets provide a natural guidance in examining the coherence of the clusters. We use Normalized
Mutual Information (NMI) [60] to compare our clustering result with the ground truth. Second, we
use link prediction accuracy to test the clustering accuracy. The similarity between two objects can
be calculated by similarity function defined on their two membership vectors, such as using cosine
similarity function. Clearly, a better clustering quality will lead to better computation of similarity
(and therefore the accuracy of link prediction). For a certain type of relation 〈A, B〉, we calculate all
the similarity scores between each vA ∈ A and all the objects vB ∈ B, and compare the similarity-
based ranked list with the true ranked list determined by the link weights between them. We use
the measure Mean Average Precision (MAP) [81] to compare the two ranked links.

Clustering Accuracy Test We choose clustering methods that can deal with both the links and
attributes as our baselines. None of these baselines is capable of leveraging different link types of
different impacts to the clustering process. Therefore, we set each link type strength as 1 for these
baselines. Second, we choose different baselines for clustering networks with text attributes and for
clustering networks with numerical attributes, since there are no unified clustering methods (other
than our presented GenClus) that can address both situations in the same framework.

For the DBLP four-area A-V network and the DBLP four-area A-V-P network that are with
text attributes, we use NetPLSA [47] and iTopicModel [64] as baselines, which aim at improving
topic qualities by using link information in homogeneous networks. We compare GenClus with
the baselines by assuming homogeneity of links for the latter algorithms. The mean and standard
deviation of NMI of the 20 running results are shown for the DBLP A-V network and the DBLP
A-V-P network in Figures 6.4 and 6.5, respectively. From the results, we can see that the GenClus
algorithm is much more effective than both the iTopicModel and the NetPLSA methods in both
networks. This is because of the ability of the former algorithms to learn and leverage the strengths
of different link types in the clustering process. Furthermore, the standard deviation of NMI over
different runs is much lower for GenClus, which suggests that the algorithm is more robust to the
initial settings with the learned strength weights for different link types.

The A-V network is the easiest case among the three networks, since it only contains one type
of attribute (the text attribute), and all object types contain this attribute, namely the attribute is
complete for every object. The A-V-P network is a more difficult case than the previous one, because
not every type of objects contain the text attributes. This requires the clustering algorithm to be
more robust to deal with objects with no attributes at all. From the results, we can see that GenClus
is more robust than NetPLSA algorithm, which outputs almost random predictions for authors for
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Figure 6.4: Clustering accuracy comparisons for the A-V network.
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Figure 6.5: Clustering accuracy comparisons for the A-V-P network.

the A-V-P network. Although the homogenous methodology of the iTopicModel algorithm performs
better for objects of type V for A-V network (see Figure 6.5), GenClus still has an overall better
performance. This is because our objective function is over all the objects rather than a particular
type.

We also examined the actual clusters obtained by the algorithm on DBLP A-V network, and list
corresponding cluster membership for several venues and authors in Table 6.1, where the research
area names are given afterwards according the clustering results. We can see that the clustering
results for the GenClus algorithm are consistent with human intuition.

The synthetic weather sensor network is the most difficult case among the three networks,
as it has two types of attributes corresponding to different types of sensors. Furthermore, all sensor
nodes contain incomplete observations of the attributes. Existing algorithms cannot address these
issues well. We compare the clustering results of GenClus with two baselines, by comparing the
cluster labels with maximum probabilities with the ground truth. In this case, we choose the initial
seed for GenClus as one of the tentative running results with the highest objective function, and the
number of iterations is set to five. The first baseline is the k-means algorithm, and the second one is
a spectral clustering method that combines the network structure and attribute similarity as a new
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Table 6.1: Case studies of cluster membership results
Object DB DM IR AI

SIGMOD 0.8577 0.0492 0.0482 0.0449
KDD 0.0786 0.6976 0.1212 0.1026
CIKM 0.2831 0.1370 0.4827 0.0971

Jennifer Widom 0.7396 0.0830 0.1061 0.0713
Jim Gray 0.8359 0.0656 0.0536 0.0449

Christos Faloutsos 0.4268 0.3055 0.1380 0.1296

similarity matrix. We use the framework given in [59], which utilizes modularity objective function
in the network part, but we replace the cosine similarity by Euclidean distance in the attribute part
as in [80] for better clustering results. As both methods cannot handle the problem of incomplete
attributes, we use interpolation to make each sensor have a regular two-dimensional attribute, by
using the mean of all the observations of its neighbors and itself. For the spectral clustering-based
framework, we centralize the data by extracting the mean and then normalize them by the standard
deviation, in order to make the attribute part comparable with the modularity part in the objective
function. Both parts are set to have equal weights.

The results are summarized in Figures 6.6 and 6.7. It is evident that the GenClus algorithm
exhibits superior performance to the two baselines in most of the datasets (17 out of 18 cases).
Furthermore, GenClus can produce more stable clustering results compared with k-means, which is
very sensitive to the number of observations for each object, especially for Setting 2. GenClus is also
highly adaptive in that there is no need of any weight specification for combining the network and
attribute-contributions to the clustering process.This results in greater stability of GenClus. Another
major advantage of GenClus (which is not immediately evident from the presented results) is that we
can directly utilize every observation instead of the mean, while the baselines can only use a biased
mean value because of the interpolation process.
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Figure 6.6: Clustering accuracy comparisons for weather sensor network Setting 1.
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Figure 6.7: Clustering accuracy comparisons for weather sensor network Setting 2.

Link Prediction Accuracy Test Next, the link prediction accuracy measured by MAP is compared
between GenClus and the baselines. For the A-V network, we select the link type 〈A, V 〉 for the
prediction task, namely we want to predict which venues an author is likely to go. For the A-V-P
network,we select the link type 〈P, V 〉 for the prediction task,namely we want to predict which venue
a paper is published in. As the prediction is based on the similarity between the two objects, say query
object vi with clustering membership θi and candidate object vj with clustering membership θj ,
three similarity functions are used here: (1) cosine similarity denoted as cos(θi ,θj ); (2) the negative
of Euclidean distance denoted as −||θi − θj ||; and (3) the negative of cross entropy denoted as
−H(θj ,θi ). The results are summarized in Tables 6.2 and 6.3.

Table 6.2: Prediction accuracy for A-V relation in A-V
network

NetPLSA iTopicModel GenClus
cos(θi ,θj ) 0.4351 0.5117 0.7627
−||θi − θj || 0.4312 0.5010 0.7539
−H(θj ,θi ) 0.4323 0.5088 0.7753

Table 6.3: Prediction accuracy for P-V relation in A-V-P
network

NetPLSA iTopicModel GenClus
cos(θi ,θj ) 0.2762 0.4609 0.5170
−||θi − θj || 0.2759 0.4600 0.5142
−H(θj ,θi ) 0.2760 0.4683 0.5183

For the weather sensor network, we select the link type 〈T , P 〉, namely we want to predict the
P-typed neighbors for T-typed sensors.We test the link prediction in the network with configuration
as in Setting 1,with #T = 1000 and #P = 250.We only output the link prediction results for GenClus
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algorithm, since the other two baselines can only output hard clusters (exact cluster memberships
rather than probabilities). The results are shown in Table 6.4.

Table 6.4: Prediction accuracy for 〈T , P 〉 in weather
sensor network

cos(θi ,θj ) −||θi − θj || −H(θj ,θi )

MAP 0.7285 0.7690 0.8073

From the results, it is evident that the GenClus algorithm has the best link prediction accu-
racy in terms of different similarity functions. Also, the results show that the asymmetric function
−H(θj ,θi ) provides the best link prediction accuracy, especially for better clustering results such
as those obtained by GenClus and in the weather sensor network where the out-link neighbors are
different from the in-link neighbors.

Analysis of Link Type Strength Since the process of learning the semantic importance of relations
is important in a heterogeneous clustering approach, we present the learned relation strengths in
Figure 6.8 for the two DBLP four-area networks. From the figure, it is evident that in the A-V
network, the link type 〈A, V 〉 has greater importance to the clustering process than the link type
〈A, A〉, and thus is more important in deciding an author’s membership.This is because the spectrum
of co-authors is often broad, whereas authors’ publication frequency in each venue can be a more
reliable predictor of clustering behavior. For the A-V-P network, we can see that the link type 〈P, V 〉
has the weight 3.13, whereas the link type 〈P, A〉 has a much higher weight 13.30. This suggests
that the latter link type is more reliable in deciding the cluster for papers, since the venues usually
have a broader research track than the authors. For example, it is difficult to judge the cluster for a
paper if we only know that it is published in the CIKM venue. The ability of our algorithm to learn
such important characteristics of different link types is one of the reasons that it is superior to other
competing methods.

Author Venue
14.46

0.01

10
.9 6

(a) A-V network

PaperAuthor Venue
13.99

13.30

3.13

0.54

(b) A-V-P network

Figure 6.8: Strengths for link types in two DBLP four-area networks.





117

C H A P T E R 7

User-Guided Clustering via
Meta-Path Selection

In this chapter, we study another relation strength-aware mining problem: user-guided clustering
of a certain type of objects, based on their involvement of multiple types of relations, encoded by
meta-paths, in a heterogeneous information network. In an application, a user often has the best
say on the kinds of clusters she would like to get, and such guidance will lead to the selection of
appropriate combination of weighted meta-paths for generation of desired clustering results.

7.1 OVERVIEW

With the advent of massive social and information networks, link-based clustering of objects in
networks becomes increasingly important since it may help discover hidden knowledge in large
networks. Link-based clustering groups objects based on their links instead of attribute values.
This is especially useful when attributes of objects cannot be fully obtained. Most existing link-
based clustering algorithms are on homogeneous networks, where links carry the same semantic
meaning and only differ in their strengths (i.e., weights). However, most real-world networks are
heterogeneous, where objects are of multiple types and are linked via different types of relations or
sequences of relations, forming a set of meta-paths. These meta-paths indicate different relations
among object types and imply diverse semantics, and thus clustering on different meta-paths will
generate rather different results, as shown below.
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Figure 7.1: A toy heterogeneous information network containing organizations, authors, and venues.
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Example 7.1 (Meta-path-based clustering) A toy heterogeneous information network is shown
in Figure 7.1, which contains three types of objects: organization (O), author (A), and venue (V),
and two types of links: the solid line represents the affiliation relation between author and organiza-
tion, whereas the dashed one the publication relation between author and venue. Authors are then
connected (indirectly) via different meta-paths. For example, A − O − A is a meta-path denoting a
relation between authors via organizations (i.e., colleagues), whereas A − V − A denotes a relation
between authors via venues (i.e., publishing in the same venues). A question then arises: which type
of connections should we use to cluster the authors?

Obviously, there is no unique answer to this question: Different meta-paths lead to dif-
ferent author connection graphs, which may lead to different clustering results. In Figure 7.2(a),
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Figure 7.2: Author connection graphs under different meta-paths.

authors are connected via organizations and form two clusters: {1, 2, 3, 4} and {5, 6, 7, 8}; in Figure
7.2(b), authors are connected via venues and form two different clusters: {1, 3, 5, 7} and {2, 4, 6, 8};
whereas in Figure 7.2(c), a connection graph combining both meta-paths generates 4 clusters:
{1, 3}, {2, 4}, {5, 7}, and {6, 8}.

This toy example shows that all the three clusterings look reasonable but they carry diverse
semantics. It should be a user’s responsibility to choose her desired meta-path(s). However, it is often
difficult to ask her to explicitly specify one or a weighted combination of meta-paths. Instead, it is
easier for her to give some guidance in other forms, such as giving one or a couple of examples for
each cluster. For example, it may not be hard to give a few known conferences in each cluster (i.e.,
field) if one wants to cluster them into K research areas (for a user-desired K), or ask a user to name
a few restaurants if one wants to cluster them into different categories in a business review website
(e.g., Yelp).

The new situation is that since we are dealing with heterogeneous networks, the previous work
on user-guided clustering or semi-supervised learning approaches on (homogeneous) graphs [36; 88;
89] cannot apply. We need to explore meta-paths that represent heterogeneous connections across
objects, leading to rich semantic meanings, hence diverse clustering results. With user guidance,
a system will be able to learn the most appropriate meta-paths or their weighted combinations.
The learned meta-paths will in turn provide an insightful view to help understand the underlying
mechanism in the formation of a specific type of clustering, such as which meta-path is more
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important to determine a restaurant’s category?—the meta-path connecting them via customers, the
one connecting them via text in reviews, or the one determined by the nearest spatial locations?

We thus integrate meta-path selection with user-guided clustering in order to better cluster
a user-specified type of objects (i.e., target objects) in a heterogeneous information network. We
assume that user guidance is in the form of a small set of seeds for each cluster. For example, to
cluster authors into two clusters in Example 7.1, a user may seed {1} and {5} for two clusters, which
implies a selection of meta-path A − O − A; or seed {1}, {2}, {5}, and {6} for four clusters, which
implies a combination of both meta-paths A − O − A and A − V − A with about equal weight.
Our goal is to (1) determine the weight of each meta-path for a particular clustering task, which
should be consistent with the clustering results implied by the limited user guidance, and (2) output
the clustering result according to the user guidance and using the learned weights for each meta-path.

We propose a probabilistic model that models the hidden clusters for target objects, the user
guidance, and the quality weights for different meta-paths in a unified framework. An effective and
efficient iterative algorithm PathSelClus is developed to learn the model, where the clustering quality
and the meta-paths quality mutually enhance each other. The experiments with different tasks on
two real networks show our algorithm outperforms the baselines.

7.2 THE META-PATH SELECTION PROBLEM FOR
USER-GUIDED CLUSTERING

Here we illustrate the problem using two heterogeneous information networks: the DBLP network
and the Yelp network.

Paper

Author

VenueTerm

(a) DBLP

Review

User

BusinessTerm

(b) Yelp

Figure 7.3: Examples of heterogeneous information networks.
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Example 7.2 (The DBLP bibliographic network) As introduced before, DBLP is a computer
science bibliographic network (see schema in Figure 7.3(a)) containing 4 types of objects: paper(P),
author (A), term (T), and venue (V) (i.e., conferences and journals). Links exist between authors
and papers by the relation of “write” and “written by,” between papers and terms by “mention” and
“mentioned by,” and between venues and papers by “publish” and “published by.” “Citation” relation
between papers can be added further using other data source, such as Google scholar.

Example 7.3 (The Yelp network) Yelp is a website (http://www.yelp.com/) where users can write
reviews for businesses. The Yelp network (see schema in Figure 7.3(b)) used in this chapter contains
4 types of objects: business (B), user (U), term (T), and review (R). Links exist between users and
reviews by the relation of “write” and “written by,” between reviews and terms by “mention” and
“mentioned by,” between businesses and reviews by “commented by” and “comment,” and between
users by “friendship” (not included in our dataset).

Following our previous discussion, a meta-path is defined by a sequence of relations in the
network schema and can be denoted by a sequence of object types when there is no ambiguity. For
example, A − P − A is a meta-path denoting the co-authorship between authors, and A − P − V

is a meta-path denoting the publication relation between the author and the venue type. Note that
a single relation defined in the network schema can be viewed as a special case of meta-path, such
as the citation relation P → P .

7.2.1 THE META-PATH SELECTION PROBLEM
Link-based clustering is to cluster objects based on their connections to other objects in the network.
In a heterogeneous information network, we need to specify more information for a meaningful
clustering. This includes: (1) the type of objects to be clustered (called the target type); and (2) the
type of connections, that is, meta-path(s), to use for the clustering task, and we call the object type
that the target type is connecting to via the meta-path as the feature type. For example, when
clustering authors based on the venues which they have published papers in, the target type is the
author type, the meta-path to use is A − P − V , and the feature type is venue.

In a heterogeneous information network, target objects could link to many types of feature
objects by multiple meta-paths. For example, authors could connect to other authors via meta-path
A − P − A, or connect to terms via meta-path A − P − T . Meta-path selection is to determine
which meta-paths or their weighted combination to use for a specific clustering task.

7.2.2 USER-GUIDED CLUSTERING
User guidance is critical for clustering objects in the network. In this study, we consider the guidance
as user seeding objects in each cluster. For example, to cluster authors based on their (hidden)
research areas, one can first provide several representative authors in each area. These seeds are used
as guidance for clustering all the target objects in the network. More importantly, they provide
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information for selecting the most relevant meta-paths for the specific clustering task. Note that in
practice, a user may not be able to provide seeds for every cluster, but only for some clusters they are
most familiar with, which should be handled by the algorithm too.

7.2.3 THE PROBLEM DEFINITION
Now we provide the problem definition of user-guided clustering via meta-path selection. Given a
heterogeneous information network G, a user needs to specify the following as inputs for a clustering
task.

1. The target type for clustering, type T .

2. The number of clusters, K , and the object seeds for each cluster, say L1, . . . ,LK , where Lk

denotes the object seeds for cluster k, which could be an empty set. These seeds will be used as
hints to learn the purpose/preference of the clustering task.

3. A set of M meta-paths starting from type T , denoted as P1,P2, . . . ,PM , which might be helpful
for the clustering task. These meta-paths can be determined either according to users’ expert
knowledge, or by traversing the network schema starting from type T with a length constraint.

For each meta-path Pm, we calculate the adjacency matrix Wm, which we call relation matrix,
between the target type T and the feature type Fm, by multiplying adjacency matrices for each relation
along the meta-path. For example, the relation matrix W for meta-path A − P − V , denoting the
number of papers published by an author in a venue, is calculated by W = WAP × WPV , where WAP

and WPV are the adjacency matrices for relation A − P and P − V , respectively.
The output of the algorithm consists of two parts: (1) the weight αm ≥ 0 of each meta-path

Pm for a particular clustering task, which should be consistent with the clustering result implied by
the limited user guidance; and (2) the clustering result according to the user guidance and under
the learned weights for each meta-path, that is, to associate each target object ti in T with a K-
dimensional soft clustering probability vector, θi = (θi1, . . . , θiK), where θik is the probability of ti

belonging to cluster k, i.e., θik ≥ 0 and
∑K

k=1 θik = 1.

7.3 THE PROBABILISTIC MODEL

A good clustering result is determined by several factors: First, the clustering result should be
consistent with the link structure; second, it should also be consistent with the user guidance; and
third, the importance of each meta-path is implied by the user-guided clustering, which should
be modeled and learned to further enhance the clustering quality. In the following, we propose a
probabilistic approach to model the problem in a unified framework, by considering all the three
factors.
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7.3.1 MODELING THE RELATIONSHIP GENERATION
To model the consistency between a clustering result and a relation matrix, we propose a clustering-
based generative model for relationship generation.

For a meta-path Pm, let its corresponding relation matrix between the target type T and the
feature type Fm be Wm. For each target object ti , we model its relationships as generated from a
mixture of multinomial distributions, where the probability of ti ∈ T connecting to fj,m ∈ Fm is
conditionally independent on ti given that the hidden cluster label of the relationship is known. Let
πij,m = P(j |i, m) be the generative probability of the relationship starting from ti and ending at
fj,m, where

∑
j πij,m = 1, then

πij,m = P(j |i, m) =
∑

k

P (k|i)P (j |k, m) =
∑

k

θikβkj,m , (7.1)

where θik = P(k|i) denotes the probability of ti belonging to cluster k and βkj,m = P(j |k, m) de-
notes the probability of fj,m appearing in cluster k. In other words, let πi,m = (πi1,m, . . . , πi|Fm|,m)

be the generative probability vector for target object ti , then each πi,m can be factorized as a weighted
summation of ranking distributions of feature objects in each cluster. The factorization idea is sim-
ilar to that of PLSA [26], PHITS [15], and RankClus [66], but is built on meta-path-encoded
relationships rather than immediate links. This extension will capture more and richer link-based
features for clustering target objects in heterogeneous networks.

By assuming each target object ti is independent with each other and each relationship gener-
ated by ti is independent with each other, the probability of observing all the relationships between
all the target objects and feature objects is the production of the probability of all the relationships
following meta-path Pm:

P(Wm|�m, �, Bm) =
∏
i

P (wi,m|πi,m, �, Bm) =
∏
i

∏
j

(πij,m)wij,m , (7.2)

where �m = �Bm is the probability matrix with cells as πij,m’s, � is the parameter matrix for
θik ’s, Bm is the parameter matrix for βkj,m’s, and wij,m is the weight of the relationship between
ti and fj,m. Note that, to model the relationship generation, each meta-path Pm corresponds to a
different generative probability matrix �m.These probability matrices share the same soft clustering
probabilities �, but they have different ranking distributions Bm in different meta-paths.

7.3.2 MODELING THE GUIDANCE FROM USERS
Further, we take the user guidance in the form of object seeds for some clusters as the prior knowledge
for the clustering result �, by modeling the prior as a Dirichlet distribution rather than treating
them as hard labeled ones.

For each target object ti , its clustering probability vector θi is assumed to be a multinomial
distribution, which is generated from some Dirichlet distribution. If ti is labeled as a seed in cluster
k∗,θi is then modeled as being sampled from a Dirichlet distribution with parameter vector λek∗ + 1,
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where ek∗ is a K-dimensional basis vector, with the k∗th element as 1 and 0 elsewhere. If ti is not a
seed, θi is then assumed as being sampled from a uniform distribution, which can also be viewed as
a Dirichlet distribution with parameter vector 1. The density of θi given such priors is:

P(θi |λ) ∝
{∏

k θ
1{ti∈Lk }λ
ik = θλ

ik∗, if ti is labeled and ti ∈ Lk∗,

1, if ti is not labeled,
(7.3)

where 1{ti∈Lk} is an indicator function, which is 1 if ti ∈ Lk holds, and 0 otherwise.
The hyper-parameter λ is a non-negative value,which controls the strength of users’ confidence

over the object seeds in each cluster. From Equation (7.3), we can find that:

• when λ = 0, the prior for θi of a labeled target object becomes a uniform distribution, which
means no guidance information will be used in the clustering process;

• when λ → ∞, the prior for θi of a labeled target object converges to a point mass, i.e., P(θi =
ek∗) → 1 or θi → ek∗ , which means we will assign k∗ as the hard cluster label for ti .

In general, a larger λ indicates a higher probability that θi is around the point mass ek∗ , and thus a
higher confidence for the user guidance.

7.3.3 MODELING THE QUALITY WEIGHTS FOR META-PATH SELECTION
Different meta-paths may lead to different clustering results, therefore it is desirable to learn the
quality of each meta-path for the specific clustering task. We propose to learn the quality weight
for each meta-path by evaluating the consistency between its relation matrix and the user-guided
clustering result.

In deciding the clustering result for target objects, a meta-path may be of low quality for the
following reasons.

1. The relation matrix derived by the meta-path does not contain an inherent cluster structure. For
example, target objects are connecting to the feature objects randomly.

2. The relation matrix derived by the meta-path itself has a good inherent cluster structure, however,
it is not consistent with the user guidance. For example, in our motivating example, if the user
gives a guidance as: K = 2,L1 = {1},L2 = {2}, then the meta-path A − O − A should have a
lower impact in the clustering process for authors.

The general idea of measuring the quality of each meta-path is to see whether the relation matrix
Wm is consistent with the detected hidden clusters � and thus the generative probability matrix �m,
which is a function of �, i.e., �m = �Bm.

In order to quantify the weight for such quality, we model the weight αm for meta-path Pm

as the relative weight for each relationship between target objects and feature objects following Pm.
In other words, we treat our observations of the relation matrix as αmWm rather than original Wm.
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A larger αm indicates a higher quality and a higher confidence of the observed relationships, and
thus each relationship should count more.

Then, we assume the multinomial distribution πi,m has a prior of Dirichlet distribution
with parameter vector φi . In particular, we consider a discrete uniform prior, which is a special
case of Dirichlet distribution with parameters as an all-one vector, i.e., φi,m = 1. The value of
αm is determined by the consistency between the observed relation matrix Wm and the generative
probability matrix �m, which can be evaluated as how likely we can get �m given the relation matrix
Wm and its quality weight αm.The goal is then to find the α∗

m that maximizes the posterior probability
of πi,m for all the target objects ti , given the observation of relationships wi,m with relative weight
αm:

α∗
m = arg max

αm

∏
i

P (πi,m|αmwi,m,θi , Bm) . (7.4)

We can show that the posterior of πi,m = θiBm is another Dirichlet distribution with the updated
parameter vector as αmwi,m + 1, according to the multinomial-Dirichlet conjugate:

πi,m|αmwi,m,θi , Bm ∼ Dir(αmwij,m + 1, . . . , αmwi|Fm|,m + 1) (7.5)

which has the following density function:

P(πi,m|αmwi,m,θi , Bm) = 
(αmni,m + |Fm|)∏
j 
(αmwij,m + 1)

∏
j

(πij,m)αmwij,m , (7.6)

where ni,m = ∑
j wij,m, the total number of path instances from ti following meta-path Pm. By

modeling αm in such a way, the meaning of αm is quite clear.

• αmwij,m + 1 is the parameter of j th dimension for the new Dirichlet distribution.

• The largerαm, the more likely it will generate aπi,m with a distribution as the observed relationship
distribution, i.e., πi,m → wi,m/ni,m when αm → ∞, where ni,m is the total number of path
instances from ti following meta-path Pm.

• The smaller αm, the more likely it will generate a πi with a uniform distribution (which means
randomly), i.e., πi,m → (1/|Fm|, . . . , 1/|Fm|) when αm → 0, where |Fm| is the total size of
feature objects in meta-path Pm.

Note that we do not consider negative αm’s in this model, which means that the relationships
with a negative impact in the clustering process are not considered, and the extreme case of αm = 0
means that the relationships in a meta-path are totally irrelevant to the clustering process.
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7.3.4 THE UNIFIED MODEL
Putting all the three factors together, we have the joint probability of observing the relation matrices
with relative weights αm’s, and the parameter matrices �m’s and �:

P({αmWm}Mm=1, �1:M, �|B1:M, �1:M, λ)

=
∏
i

(∏
m

P (αmWm|�m,θi , Bm)P (�m|�m)
)
P(θi |λ) , (7.7)

where �m is the Dirichlet prior parameter matrix for �m, and an all-one matrix in our case. We want
to find the maximum a posteriori probability (MAP) estimate for �m’s and �, which maximizes
the logarithm of posterior probability of {�m}Mm=1, given the observations of relation matrices with
relative weights {αmWm}Mm=1 and �, plus a regularization term over θi for each target object denoting
the logarithm of prior density of θi :

J =
∑

i

(∑
m

log P(πi,m|αmwi,m,θi , Bm) +
∑

k

1{ti∈Lk}λ log θik

)
. (7.8)

By substituting the posterior probability formula in Equation (7.6) and the factorization form for
all πi,m, we get the final objective function:

J =
∑

i

(∑
m

(∑
j

αmwij,m log
∑

k

θikβkj,m

+ log 
(αmni,m + |Fm|) −
∑
j

log 
(αmwij,m + 1)
)

+
∑

k

1{ti∈Lk}λ log θik

)
.

(7.9)

7.4 THE LEARNING ALGORITHM
In this section, we introduce the learning algorithm, PathSelClus, for the model (Equation (7.9))
proposed in Section 7.3. It is a two-step iterative algorithm, where the clustering result � and the
weights for each meta-path α mutually enhance each other. In the first step, we fix the weight vector
α, and learn the best clustering results � under this weight. In the second step, we fix the clustering
matrix � and learn the best weight vector α.

7.4.1 OPTIMIZE CLUSTERING RESULT GIVEN META-PATH WEIGHTS
When α is fixed, the terms only involving α can be discarded in the objective function Equation (7.9),
which is then reduced to:

J1 =
∑
m

αm

∑
i

∑
j

wij,m log
∑

k

θikβkj,m +
∑

i

∑
k

1{ti∈Lk}λ log θik . (7.10)
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The new objective function can be viewed as a weighted summation of the log-likelihood for each
relation matrix under each meta-path, where the weight αm indicates the quality of each meta-path,
plus a regularization term over � representing the user guidance. � and the augmented parameter
Bm’s can be learned using the standard EM algorithm, as follows.

• E-step: In each relation matrix, we use zij,m to denote the cluster label for each relationship
between a target object ti and a feature object fj,m. According to the generative process described
in Section 7.3.1, a cluster k is first picked with probability θik , and a feature object fj,m is picked
with probability βkj,m. The conditional probability of the hidden cluster label given the old �t−1

and Bt−1
m values is then:

p(zij,m = k|�t−1, Bt−1
m ) ∝ θ t−1

ik βt−1
kj,m . (7.11)

• M-step: We have the updating formulas for �t and Bt
m as:

θ t
ik ∝

∑
m

αm

∑
j

wij,mp(zij,m = k|�t−1, Bt−1
m ) + 1{ti∈Lk}λ (7.12)

βt
kj,m ∝

∑
i

∑
j

wij,mp(zij,m = k|�t−1, Bt−1
m ) . (7.13)

From Equation (7.12),we can see that the clustering membership vector θi for ti is determined
by the cluster labels of its relationships to all the feature objects in all the relation matrices. Besides,
if ti is labeled as a seed object in some cluster k∗, θi is also determined by the label. The strength of
impacts from these factors is determined by the weight of each meta-path αm, and the strength of
the cluster labels λ, where αm’s are learned automatically by our algorithm, and λ is given by users.

7.4.2 OPTIMIZE META-PATH WEIGHTS GIVEN CLUSTERING RESULT
Once a clustering result � and the augmented parameter Bm’s are given, we can calculate the gen-
erative probability matrix �m for each meta-path Pm by: �m = �Bm. By discarding the irrelevant
terms, the objective function of Equation (7.9) can be reduced to:

J2 =
∑

i

(∑
m

(∑
j

αmwij,m log πij,m + log 
(αmni,m + |Fm|) −
∑
j

log 
(αmwij,m + 1)
))

.

(7.14)
It is easy to check that J2 is a concave function,which means there is a unique α that maximizes

J2. We use gradient descent approach to solve the problem, which is an iterative algorithm with the

updating formula as: αt
m = αt−1

m + ηt
m

∂J2
∂αm

∣∣∣
αm=αt−1

m

. To guarantee the increase of J2, the step size

ηt
m is usually set as a small enough number. By setting ηt

m = αt−1
m

− ∑
i

∑
j wij,m log πij,m

, following the trick

used in non-negative matrix factorization (NMF) [37], we can get updating formula for αm as:

αt
m = αt−1

m

∑
i

(
ψ(αt−1

m nim + |Fm|)ni,m − ∑
j ψ(αt−1

m wij,m + 1)wij,m

)
− ∑

i

∑
j wij,m log πij,m

(7.15)
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which guarantees αt
m a non-negative value,where ψ(x) is the digamma function, the first derivative of

log 
(x). Also, by looking at the denominator of the formula, we can see that a larger log-likelihood
of observing relationships wij,m under model probability πij,m (i.e., a smaller denominator as log-
likelihood is negative) generally leads to a larger αm.This is also consistent with the human intuition.

7.4.3 THE PATHSELCLUS ALGORITHM
Overall, the PathSelClus algorithm is an iterative algorithm that optimizes � and α alternatively.
The optimization of � contains an inner loop of EM-algorithm, and the optimization of α contains
another inner loop of gradient descent algorithm.

The Weight Setting of Relation Matrices Given a heterogeneous information network G, we cal-
culate the relation matrix Wm for each given meta-path Pm by multiplying adjacency matrices along
the meta-path. It can be shown that, scaling Wm by a factor of 1/cm leads to a scaling of the learned
relative weight αm by a factor of cm. Therefore, the performance of the clustering result will not be
affected by the scaling of the relation matrix, which is a good property of our algorithm.

Initialization Issues. For the initial value of α, we set it as an all-one vector, which assumes all the
meta-paths are equally important. For the initial value of � in the clustering step given α, if ti is
not labeled, we assign a random clustering vector to θi , whereas if ti is labeled as a seed for a cluster
k∗, we assign θi = e∗

k .

Time Complexity Analysis. The PathSelClus algorithm is very efficient, as it is proportional to the
number of relationships that are used in the clustering process, which is about linear to the number of
target objects for short meta-paths in sparse networks. Formally, for the inner EM algorithm that op-
timizes �, the time complexity is O(t1(K

∑
m |Em| + K|T | + K

∑
m |Fm|)) = O(t1(K

∑
m |Em|)),

where |Em| is the number of non-empty relationships in relation matrix Wm, |T | and |Fm| are the
numbers of target objects and feature objects in meta-path Pm, which are typically smaller than |Em|,
and t1 is the number of iterations. For the inner gradient descent algorithm, the time complexity is
O(t2(

∑
m |Em|)), where t2 is the number of iterations.The total time complexity for the whole algo-

rithm is then O(t(t1(K
∑

m |Em|) + t2(
∑

m |Em|))), where t is the number of outer iterations, which
usually is a small number. Such a processing efficiency has also been verified by our experiments.

7.5 EXPERIMENTAL RESULTS
In this section, we compare PathSelClus with several baselines and show the effectiveness of our
algorithm.

7.5.1 DATASETS
We use two real information networks for performance test, the DBLP network and the Yelp network.
For each network, we design multiple clustering tasks provided with different user guidance, which
are introduced in the following.
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1. The DBLP Network. For the DBLP network introduced early in the chapter, we design three
clustering tasks in the following.

• DBLP-T1: Cluster conferences in the “four-area” dataset [69], which contains 20 major
conferences and all the related papers, authors and terms in DM, DB, IR, and AI fields,
according to the research areas of the conferences. The candidate meta-paths include: V −
P − A − P − V and V − P − T − P − V .

• DBLP-T2: Cluster top-2000 authors (by their number of publications) in the “four-area”
dataset, according to their research areas. The candidate meta-paths include: A − P − A,
A − P − A − P − A, A − P − V − P − A, and A − P − T − P − A.

• DBLP-T3: Cluster 165 authors who have been ever advised by Christos Faloutsos, Michael
I. Jordan, Jiawei Han, and Dan Roth (including these professors), according to their research
groups. The candidate meta-paths are the same as in DBLP-T2.

2. The Yelp Network. For the Yelp network introduced early in the chapter, we are provided by Yelp
a sub-network1, which include 6900 businesses, 152,327 reviews, and 65,888 users. Hierarchical
categories are provided for each business as well, such as “Restaurants,” “Shopping,” and so on.
For Yelp network, we design three clustering tasks in the following.

• Yelp-T1: We select 4 relatively big categories (“Health and Medical,” “Food,” “Shopping,”
and “Beauty and Spas”), and cluster 2224 businesses with more than one reviews according
to two meta-paths: B − R − U − R − B and B − R − T − R − B.

• Yelp-T2: We select 6 relatively big sub-categories under the first-level category “Restaurant”
(“Sandwiches,” “Thai,” “American (New),” “Mexican,” “Italian,” and “Chinese”), and cluster
554 businesses with more than one reviews according to the same two meta-paths.

• Yelp-T3: We select 6 relatively big sub-categories under the first-level category “Shopping”
(“Eyewear & Opticians,” “Books, Mags, Music and Video,” “Sporting Goods,” “Fashion,”
“Drugstores,” and “Home & Garden”), and cluster 484 businesses with more than one
reviews according to the same two meta-paths.

7.5.2 EFFECTIVENESS STUDY
First, we study the effectiveness of our algorithm under different tasks, and compare it with several
baselines.

Baselines
Three baselines are used for comparison studies. Since none of them has considered the meta-path
selection problem, we will use all the meta-paths as features and prepare them to fit the input of
each of these algorithms. The first is user-guided, information theoretic-based, k-means clustering

1http://www.yelp.com/academic_dataset
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(ITC), which is an adaption of seeded k-means algorithm proposed in [6], by replacing Euclidean
distance to KL-divergence as used in information theoretic-based clustering algorithms [3; 18]. ITC
is a hard clustering algorithm. For the input, we concatenate all the relation matrices side-by-side
into one single relation matrix, and thus we get a very high dimensional feature vector for each target
object.

The second baseline is the label propagation (LP) algorithm proposed in [89], which utilizes
link structure to propagate labels to the rest of the network. For the input, we add all the relation
matrices together to get one single relation matrix. As LP is designed for homogeneous networks,
we confine our meta-paths to ones that start and end both in the target type. LP is a soft clustering
algorithm.

The third baseline is the cluster ensemble algorithm proposed in [53], which can combine
soft clustering results into a consensus, which we call ensemble_soft. Different from the previous
two baselines that directly combine meta-paths at the input level, cluster ensemble combines the
clustering results for different meta-paths at the output level. Besides, we also use majority voting
as another baseline (ensemble_voting), which first maps each clustering result for each target object
into a hard cluster label and then picks the cluster label that is the majority over different meta-paths.
As we can use either ITC or LP as the clustering algorithm for each ensemble method, we get four
ensemble baselines in total: ITC_soft, ITC_voting, LP_soft, and LP_voting.

Evaluation Methods
Two evaluation methods are used to test the clustering result compared with the ground truth, where
the soft clustering is mapped into hard cluster labels.The first measure is accuracy, which is used when
seeds are available for every cluster and is calculated as the percentage of target objects going to the
correct cluster. Note that, in order to measure whether the seeds are indeed attracting objects to the
right cluster, we do not map the outcome cluster labels to the given class labels.The second measure is
normalized mutual information (NMI), which does not require the mapping relation between ground
truth labels and the cluster labels obtained by the clustering algorithm. Both measures are in the
range of 0 to 1, and a higher value indicates a better clustering result in terms of the ground truth.

Full Cluster Seeds
We first test the clustering accuracy when cluster seeds are given for every cluster. In this case, all the
three baselines can be used and compared. Performances under different numbers of seeds in each
cluster are tested. Each result is the average of 10 runs.

The accuracy for all the 6 tasks for two networks are summarized in Tables 7.1–7.3 and
Tables 7.4–7.6, respectively. From the results we can see that, PathSelClus performs the best in most
of the tasks. Even for the task such as DBLP-T3 where other methods give the best clustering result,
PathSelClus still gives clustering results among the top.This means, PathSelClus can give consistently
good results across different tasks in different networks.
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Table 7.1: Clustering accuracy for DBLP-T1 task
#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.9950 0.6500 0.6900 0.6500 0.6650 0.6450 0.5100

NMI 0.9906 0.6181 0.6986 0.6181 0.5801 0.5903 0.5316

2
Accuracy 1 0.7500 0.8450 0.7500 0.8200 0.8950 0.8700

NMI 1 0.6734 0.7752 0.6734 0.7492 0.8321 0.7942

Table 7.2: Clustering accuracy for DBLP-T2 task
#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.7951 0.2122 0.3284 0.2109 0.3529 0.2513 0.2548

NMI 0.6770 0.0312 0.1277 0.0267 0.0301 0.4317 0.4398

5
Accuracy 0.8815 0.2487 0.3223 0.5117 0.3685 0.3311 0.3495

NMI 0.6868 0.0991 0.1102 0.4402 0.0760 0.3092 0.4316

10
Accuracy 0.8863 0.5586 0.3694 0.4297 0.3880 0.4891 0.2969

NMI 0.6947 0.4025 0.1261 0.1788 0.1148 0.4045 0.4204

Table 7.3: Clustering accuracy for DBLP-T3 task
#S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1
Accuracy 0.8067 0.9273 0.5376 0.7091 0.5424 0.4770 0.2358

NMI 0.6050 0.7966 0.5120 0.5870 0.7182 0.3008 0.3416

2
Accuracy 0.9036 0.9394 0.5285 0.7333 0.3267 0.5176 0.4085

NMI 0.7485 0.8283 0.5056 0.5986 0.8087 0.3898 0.3464

4
Accuracy 0.9248 0.9576 0.7624 0.7636 0.9255 0.6370 0.5485

NMI 0.7933 0.8841 0.6280 0.6179 0.9057 0.4437 0.4634

Also, by looking at the clustering accuracy trend along with the number of seeds used in each
cluster, we can see that more seeds generally leads to better clustering results.

Table 7.4: Clustering accuracy for Yelp-T1 task
%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.5384 0.3381 0.2619 0.1632 0.1632 0.2564 0.2769

NMI 0.5826 0.0393 0.0042 0.0399 0.0399 0.1907 0.2435

2%
Accuracy 0.5487 0.3444 0.2798 0.1713 0.1713 0.3581 0.3790

NMI 0.5800 0.0557 0.0062 0.0567 0.0567 0.2281 0.2734

5%
Accuracy 0.5989 0.3732 0.3136 0.1965 0.1965 0.5215 0.5250

NMI 0.5796 0.1004 0.0098 0.0962 0.0962 0.2583 0.2878
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Table 7.5: Clustering accuracy for Yelp-T2 task
%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.7435 0.1137 0.1758 0.2112 0.2112 0.2430 0.2022

NMI 0.6517 0.0323 0.0178 0.0578 0.0578 0.2308 0.2490

2%
Accuracy 0.8004 0.1264 0.1910 0.2202 0.2202 0.2762 0.2792

NMI 0.6803 0.0487 0.0150 0.0801 0.0801 0.2099 0.2907

5%
Accuracy 0.8125 0.2653 0.2200 0.2437 0.2437 0.3049 0.3240

NMI 0.6894 0.1111 0.0220 0.1212 0.1212 0.2252 0.2692

Table 7.6: Clustering accuracy for Yelp-T3 task
%S Measure PathSelClus LP ITC LP_voting LP_soft ITC_voting ITC_soft

1%
Accuracy 0.4736 0.2789 0.1893 0.0682 0.0682 0.2593 0.1775

NMI 0.4304 0.0568 0.0155 0.0626 0.0626 0.1738 0.2065

2%
Accuracy 0.4597 0.4008 0.1948 0.0764 0.0764 0.2318 0.2033

NMI 0.4359 0.0910 0.0172 0.0755 0.0755 0.1835 0.1822

5%
Accuracy 0.4393 0.5351 0.2233 0.1033 0.1033 0.3337 0.3083

NMI 0.4415 0.1761 0.0194 0.1133 0.1133 0.1793 0.2285

Partial Cluster Seeds
We then test the clustering accuracy when cluster seeds are only available for some of the clusters.
We perform this study on DBLP-T3 using PathSelClus, which includes four clusters, and the results
are shown in Figure 7.4. We can see that even if user guidance is only given to some clusters, those
seeds can still be used to improve the clustering accuracy. In general, the fewer number of clusters
with seeds, the worse the clustering accuracy, which is consistent with the human intuition. Note
that label propagation-based methods like LP cannot deal with partial cluster labels. However, in
reality it is quite common that users are only familiar with some of the clusters and are only able to
give good seeds in those clusters. That is another advantage of PathSelClus.
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Figure 7.4: Clustering accuracy under partial guidance on DBLP-T3. Number of seeds provided by user
for each cluster is 1 (#seeds = 1).
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7.5.3 CASE STUDY ON META-PATH WEIGHTS
One of the major contributions of PathSelClus is that it can select the right meta-paths for a user-
guided clustering task. We now show the learned weights of meta-paths for some of the tasks.

In DBLP-T1 task, the total weight αm for meta-path V − P − A − P − V is 1576, and
the average weight per relationship (a concrete path instance following the meta-path) is 0.0017.
The total weight for meta-path V − P − T − P − V is 17,001, whereas the average weight per
relationship is 0.0003. This means that generally the relationships between two conferences that
are connected by an author are more trustable than the ones that are connected by a term, which is
consistent with human intuition since many terms can be used in different research areas and authors
are typically more focused on confined research topics.However, as there are much more relationships
following V − P − T − P − V than following V − P − A − P − V , the former overall provide
more information for clustering.

In the Yelp network, similar to DBLP-T1 task, in terms of the average weight for each rela-
tionship,meta-path B − R − U − R − B is with higher weight than B − R − T − R − B,whereas
in terms of total weight, meta-path B − R − T − R − B is with higher weight. An interesting phe-
nomenon is that, for Yelp-T2 task, which tries to cluster restaurants into different categories, the
average weight for relationships following B − R − U − R − B is 0.1716, much lower than the
value (0.5864) for Yelp-T3 task, which tries to cluster shopping businesses into finer categories.This
simply says that most users actually will try different kinds of food, therefore they will not be served
as a good connection between restaurants as they are in other categories.

7.6 DISCUSSIONS

The Power of Meta-Path Selection Different meta-paths in heterogeneous networks could be
viewed as different sources of information for defining link-based similarity between objects. There
are several ways to handle different meta-paths for a mining task such as clustering: (1) to combine
them at relation matrix level, such as in baselines ITC and LP; (2) to combine the clustering results
at the output level, such as in ensemble baselines; and (3) to learn and improve the quality weights
for each meta-path iteratively, such as in PathSelClus. Only the third approach is able to select
different meta-paths according to different clustering tasks, whereas the other two can only output
an “average” clustering result using all the information. It turns out that, in most cases, the third
approach is more flexible to combine information from different sources, and its advantage has been
shown in the experiment section.

Meta-Paths vs. Path Instances We now only consider the different semantics encoded by different
meta-paths. In practice, different concrete paths (path instances) between two objects may also differ
from each other. For example, two objects may be linked via a “bridge” or via a “hub,” indicating
different meanings.The difference between the two concepts: meta-path and path instance, is similar
to the difference between a source of features and a concrete feature in a vector space. In this chapter,
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we have only discussed the selection of meta-paths. It is possible to select path instance at the object
level, and the concrete method is left for future research.
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C H A P T E R 8

Research Frontiers
In this book, we introduced some general principles and methodologies for mining heterogeneous
information networks. Although homogeneous networks are interesting subjects to study, real-world
objects are usually connected via heterogeneous types of objects in complex ways, carrying critical
information and rich data semantics, as shown in the examples like authors linking with papers and
venues, and patients linking with diseases and treatments. Clearly, heterogeneous information net-
works preserve rich semantic information of the real-world data. Mining directly on heterogeneous
information networks often leads to in-depth understanding of the relationships among different
types of data and their regularities, models, patterns and anomalies, hence a deep insight of the
networks, and fruitful mining results.

Mining heterogeneous information networks is a young and promising research field. There
are many unexplored territories and challenging research issues. We illustrate a few of them here.

Constructing and Refining Heterogeneous Information Networks. Our study in most of the chap-
ters assumes that a heterogeneous information network to be investigated contains a well-defined
network schema and a large set of relatively clean and unambiguous objects and links. However, in
the real world, things are more complicated.

A network extracted from a relational database may contain a well-defined schema which can
be used to define the schema of its corresponding heterogeneous information network. Nevertheless,
objects and links even in such a database-formed information network can still be noisy. For example,
in the DBLP network, different authors may share the same name [76], that is, one node in a network
may refer to multiple real-world entities; whereas in some other cases, different nodes in a network
may refer to the same entity. Entity resolution will need to be integrated with network mining in
order to merge and split objects or links and derive high quality results. Moreover, links in a network,
roles of a node with respect to some other nodes may not be explicitly given. For example, the advisor-
advisee relationship in the DBLP network [73] is not given, but such kind of relationships can be
critical for understanding the growth of a research community or for some other data mining tasks.
Furthermore, sometimes the connections between different nodes may not be reliable or trustable.
For example, the author information for a book provided by an online book store could be erroneous
or inaccurate. Multiple Web-sites may provide conflicting or compensating information for the
properties of certain objects. Trustworthiness modeling [83] could be critically important for data
cleaning, data integration, and quality network construction.

Construction of high-quality heterogeneous information networks becomes increasingly more
challenging when we move away from relational databases towards increasingly more complicated,



136 8. RESEARCH FRONTIERS

unstructured data, from text documents, to online web-based systems, multimedia data, and multi-
lingual data. Information extraction, natural language understanding, and many other information
processing techniques should be integrated with network construction and analysis techniques to
ensure high-quality information networks can be constructed and progressively refined so that quality
mining can be performed on better-quality heterogeneous information networks.

Notice that entity extraction, data cleaning, detection of hidden semantic relationships, and
trustworthiness analysis should be integrated with the network construction and mining processes to
progressively and mutually enhance the quality of construction and mining of information networks.

Diffusion analysis in heterogeneous information networks. Diffusion analysis has been studied on
homogeneous networks extensively, from the innovation diffusion analysis in social science [54] to
obesity diffusion in health science [12]. However, in the real world, pieces of information or diseases
are propagated in more complex ways, where different types of links may play different roles. For
example, diseases could propagate among people, different kinds of animals and food, via different
channels. Comments on a product may propagate among people, companies, and news agencies,
via traditional news feeds, social media, reviews, and so on. It is highly desirable to study the issues
on information diffusion in heterogeneous information networks in order to capture the spreading
models that better represent the real world patterns.

Discovery and mining of hidden information networks. Although a network can be huge, a user at
a time could be only interested in a tiny portion of nodes, links, or subnetworks. Instead of directly
mining the entire network, it is more fruitful to mine hidden networks “extracted” dynamically from
some existing networks, based on user-specified constraints or expected node/link behaviors. For
example, instead of mining an existing social network, it could be more fruitful to mine networks
containing suspects and their associated links; or mine subgraphs with nontrivial nodes and high
connectivity. How to discover such hidden networks and how to mine knowledge (e.g., clusters,
behaviors, and anomalies) from such hidden but non-isolated networks (i.e., still intertwined with
the gigantic network in both network linkages and semantics) could be an interesting but challenging
problem.

Discovery of application-oriented ontological structures in heterogeneous information networks. As
shown in the studies on ranking-based clustering and ranking-based classification, interconnected,
multiple typed objects in a heterogeneous information network often provide critical information
for generating high quality, fine-level concept hierarchies. For example, it is often difficult to identify
researchers just based on their research collaboration networks. However, putting them in a heteroge-
neous network that links researchers with their publication, conferences, terms and research papers,
their roles in the network becomes evidently clear. Moreover, people may have different preferences
over ontological structures at handling different kinds of tasks. For example, some people may be
interested in the research area hierarchy in the DBLP network, whereas others may be interested
in finding the author lineage hierarchy. How to incorporate user’s guidance, and generate adaptable
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ontological structures to meet users’ requirement and expectation, could be an interesting and useful
topic to study.

Online analytical processing of heterogeneous information networks. The power of online analyti-
cal processing (OLAP) has been shown in multidimensional analysis of structured, relational data.
Similarly, users may like to view a heterogeneous information network from different angles, in
different dimension combinations, and at different levels of granularity. For example, in a biblio-
graphic network, by specifying the object type as paper and link type as citation relation, and rolling
up papers into research topics, we can immediately see the citation relationships between different
research topics and figure out which research topic could be the driving force for others. However,
the extension of the concept of online analysis processing (OLAP) to multi-dimensional data anal-
ysis of heterogeneous information networks is nontrivial. Not only many different applications need
different ontological structures and concept hierarchies to summarize information networks but also
multiple pieces of semantic information in heterogeneous networks are intertwined, determined by
multiple nodes and links. There are some preliminary studies on this issue, such as [11; 72; 84], but
the large territories of online analytical processing of information networks are still waiting to be
explored.

Intelligent querying and semantic search in heterogeneous information networks. Given real-world
data are interconnected, forming gigantic and complex heterogeneous information networks, it poses
new challenges to query and search in such networks intelligently and efficiently. Given the enor-
mous size and complexity of a large network, a user is often only interested in a small portion of the
objects and links most relevant to the query. However, objects are connected and inter-dependent
on each other, how to search effectively in a large network for a given user’s query could be a chal-
lenge. Similarity search that returns the most similar objects to a queried object, as studied in this
book [65] and its follow-up [57], will serve as a basic function for semantic search in heterogeneous
networks. Such a kind of similarity search may lead to useful applications, such as product search
in e-commerce networks and patent search in patent networks. Search functions should be further
enhanced and integrated with many other functions. For example, structural search [78], which tries
to find semantically similar structures given a structural query, may be useful for finding pattern in an
e-commerce network involving buyers, sellers, products, and their interactions. Also, a recommenda-
tion system may take advantage of heterogeneous information networks that link among products,
customers and their properties to make improved recommendations. Querying and semantic search
in heterogeneous information networks opens another interesting frontier on research related to
mining heterogeneous information networks.
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