
A
 P

R
IN

C
E

T
O

N
 U

N
IV

E
R

SI
T

Y
 P

R
E

SS
 E
-B
O
O
K

Heavenly Mathematics
The Forgotten Art  of Spherical 

Trigonometry

Glen Van Brummelen



Heavenly
Mathematics





Heavenly
Mathematics
The Forgotten Art of 

Spherical Trigonometry

✩✩✩✩✩

Glen Van Brummelen

PRINCETON UNIVERSITY PRESS
PRINCETON AND OXFORD



Copyright © 2013 by Princeton University Press
Published by Princeton University Press, 41 William Street, 

Princeton, New Jersey 08540
In the United Kingdom: Princeton University Press, 6 Oxford Street, 

Woodstock, Oxfordshire OX20 1TW

Jacket art: Painting of Euclid by Justus von Ghent. © Bettmann/Corbis

press.princeton.edu

All Rights Reserved

Library of Congress Cataloging-in-Publication Data

Van Brummelen, Glen
Heavenly mathematics : the forgotten art of spherical 

trigonometry / Glen Van Brummelen.
p.   cm.

Includes bibliographical references and index.
ISBN 978-0-691-14892-2 (hardcover : alk. paper)

1. Spherical trigonometry. 2. Trigonometry. I. Title.
QA535.V36 2013

516.24—dc23
2012023216

British Library Cataloging-  in-  Publication Data is available

Th is book has been composed in Minion Pro

Printed on acid-  free paper. ∞

Printed in the United States of America

1 3 5 7 9 10 8 6 4 2



Contents
✩✩✩✩✩

Preface vii

1 Heavenly Mathematics 1

2 Exploring the Sphere 23

3 Th e Ancient Approach 42

4 Th e Medieval Approach 59

5 Th e Modern Approach: Right-  Angled Triangles 73

6 Th e Modern Approach: Oblique Triangles 94

7 Areas, Angles, and Polyhedra 110

8 Stereographic Projection 129

9 Navigating by the Stars 151

Appendix A. Ptolemy’s Determination of the Sun’s Position 173
Appendix B. Textbooks 179

Appendix C. Further Reading 182
Index 189





Preface
✩✩✩✩✩

Mathematical subjects come and go. If you glance at a textbook from a 
century ago you may recognize some of the contents, but some will be 
unfamiliar or even baffl  ing. A high school text in analytic geometry, for 
instance, once contained topics like involutes of circles, hypocycloids, 
and auxiliary circles of ellipses: topics that most college students today 
will never see. But spherical trigonometry may be the most spectacular 
example of changing fashions in the 20th-  century mathematics class-
room. Born of the need to locate stars and planets in the heavens, for 
more than 1500 years it was the big brother to the plane trigonometry 
that high school students slog through today. Navigators on the open 
seas relied on spherical trigonometry to fi nd their way; lives were lost 
when their skills failed them. Its dominance continued through the early 
20th century: editions of Euclid’s Elements that were designed for class-
rooms oft en included appendices devoted to this now-  forgotten subject.

During World War II the popularity of spherical trigonometry re-
mained high. Applications in naval and military settings were touted as 
motivations, and were given a prominent place in the exercises. Th rough 
the early 1950s textbooks continued to be published, although gradually 
spherical trigonometry found itself relegated to the last major section 
in a textbook mostly devoted to plane trigonometry. Suddenly, mid- 
decade, it disappeared, dropped in a pedagogical tide that was heading 
in other directions. Today almost no trigonometry texts even mention 
the existence of a spherical counterpart. Th e only book on the subject 
continuously in print (Clough-  Smith 1966) is diffi  cult to obtain and 
available only from nautical booksellers. Th is paucity comes strangely 
at a time when new applications of spherical trigonometry are being 
found. GPS devices have some of its formulas built in. It’s amusing to see 
bibliographies of research papers in computer graphics and animation 
(for use in movies like those made by Pixar) referring to nothing older 
than last week, except for that stodgy old spherical trig text.

So if mathematics teachers have long since given up on spherical trig-
onometry, why bring it back? I’m not advocating that everyone should 
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dust off  the covers of their grandparents’ textbooks (although, come to 
think of it . . . ), but a treasure would be lost if no one did. Th e applications 
are interesting and substantial: fi nding the distance between two points 
on the Earth’s surface, such as how far the Titanic sailed before it sank; 
navigating a sailboat or airplane by the stars; predicting the Sun’s altitude 
so that a faithful Muslim will know when to perform his daily prayers. 
Much better, and much more genuine, than the obviously contrived ex-
amples found in today’s plane trigonometry classroom: fi nding heights 
of trees, or distances of motorboats as they speed across unnamed lakes.

But I admit that for me, the navigation, astronomy, and geography are 
only the icing on the cake. I appreciate spherical trigonometry mostly be-
cause it’s beautiful. Th e theorems are elegant and oft en surprising. Even 
the ordinary results deepen our understanding of the trigonometry that 
we already know; many of the identities in plane trigonometry are only 
fl attened images of their spherical counterparts. Th e proofs, especially 
the geometric ones, can be unexpected and are sometimes breathtaking.

Figure 0.1. Image from the title page of Bonnycastle’s Treatise on Plane and Spherical 
Trigonometry. In the drawing, one gentleman is measuring the height of a church spire 
presumably in preparation for a plane trigonometry problem; the other is measuring 
the altitude of the sun for a spherical problem. Western Archives, Western University.
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Shocking as it may sound, spherical trigonometry was not always a 
charming mathematical diversion. Early 20th-  century Canadian hu-
morist Stephen Leacock seems to have had a special relationship with 
it, mentioning it four times in his writings. His experience seems not 
to have been pleasant. In his story “Th e Man of Asbestos” (Nonsense 
 Novels) Leacock imagines a future where education happens not in 
schools, but by brain surgery. Even this method seems to have been dis-
tasteful for the ingestion of several subjects, our favorite among them:

“It was a mere nothing; an operation of a few minutes would suffi  ce to let 
in poetry or foreign languages or history or anything else that one cared to 
have. Here, for instance,” he added, pushing back the hair at the side of his 
head and showing a scar beneath it, “is the mark where I had my spherical 
trigonometry let in. Th at was, I admit, rather painful, but other things, such 
as English poetry or history, can be inserted absolutely without the least 

Figure 0.2. Title page of John 
Keill’s Elements of Plain and 
Spherical Trigonometry, 3rd 
edition, 1726. Th e Th omas 
Fisher Rare Book Library, 
University of Toronto.
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suff ering. When I think of your painful, barbarous methods of education 
through the ear, I shudder at it. Oddly enough, we have found lately that for 
a great many things there is no need to use the head. We lodge them—things 
like philosophy and metaphysics, and so on—in what used to be the diges-
tive apparatus. Th ey fi ll it admirably.”

Now, I have no wish to cut a hole in anyone’s scalp. Sometimes, though, 
there is benefi t to be gained by struggling with a text for a little while. 
If education were always a downhill journey, the pearls grown by the 
irritation of a properly placed grain of sand would never exist. Leacock 
imagined such schooling:

Within recent years it is becoming clear that a university is now a super-
fl uous institution. College teaching is being replaced by such excellent 
little manuals as the Fireside University Series, the World’s Tiniest Books, 
the Boys Own Conic Sections, and the Little Folks Spherical Trigonometry. 
Th anks to books such as these no young man in any station of life need 
suff er from an unsatisfi ed desire for learning. He can get rid of it in a day. 
In the same way any business man who wishes to follow the main currents 
of history, philosophy and radio-  activity may do so while changing his 
shirt for dinner.

Figure 0.3. Frontispiece of Kells/Kern/Bland’s 1942 Spherical Trigonometry with Naval 
and Military Applications. Courtesy Lockheed Martin Corporation.
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Within these pages you will fi nd what might have been expected in 
Little Folks Spherical Trigonometry, but also plenty of room for math-
ematical brain surgery. Th e experience of wrestling with mathematics 
(provided that it meets with at least occasional success) can be one of 
the world’s greatest pleasures. At the diffi  cult moments the reader may at 
least be consoled that I have not speculated on the nature of the “cubular 
trigonometry” that tortures the school boy residents in David Foster 
Wallace’s Infi nite Jest.

How to Read Th is Book

Although this is not a coff ee table book, I hope that it has enough visual 
interest for some simply to thumb through it and enjoy the fi gures from 
old textbooks, the photographs of historical teaching aids, and other im-
ages. Many readers will want to follow some of the mathematics and 
science between the pictures. It is not necessary for the casual reader to 
understand every detail. Proofs may be skipped over and most applica-
tions omitted without losing the general fl ow of ideas. Th e key is to enjoy 
the journey. To this end, arrows have been inserted in the margins, like 
this →, to let the reader know when it is safe to leap across a particularly 
challenging chasm and pick up again on the other side.

I presume that the reader who ventures into the mathematics is con-
versant with the basics of plane trigonometry. Th e most important as-
sumptions made here are knowledge of the geometric meanings of sine, 
cosine, and tangent; the basic identities; the laws of sines and cosines; 
and some of the simplest symmetries of the graphs of trigonometric 
functions. If anything else comes up, you will be warned.

Th e exercises at the end of each chapter may be slaved over with great 
care, read casually for their interest, or skipped completely. Many of 
them are taken from historical textbooks, and the accompanying dia-
grams copied here, so that readers may appreciate the style and depth of 
previous generations’ mathematical experiences. It’s sobering to realize 
that high school students were expected to solve these problems. Th ere 
are a few that would cause ulcers for undergraduate students or even 
college professors, as I’ve discovered myself. (Th e exercises have been 
altered in one minor way. Th e texts usually give angles in degrees, min-
utes, and seconds; but with modern calculators this can be tedious, so 
angles have been converted to decimal form.)
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I confess to a geometric, rather than algebraic, inclination. Although 
algebraic proofs can be powerful, oft en their mechanics force me to 
accept theorems without really understanding in my gut why they are 
true. Th ere are some cases where geometry is a stretch or the algebra is 
unavoidable, but generally we shall prefer the beautiful over the merely 
eff ective. As Th omas Keith said in the introduction of his 1826 text,

Should any person attempt to teach the elementary principles of the science 
by the assistance of algebraical characters, and algebraical formulae alone, 
without the aid of Geometry, he would most assuredly deceive both himself 
and his pupils.

In an eff ort to represent faithfully the intuitive fl ow of an argument, 
sometimes I will state a theorem as the conclusion of an exploration, 
rather than announcing the punch line in its full glory at the outset and 
then proving it. Finally, to readers who notice that theorems sometimes 
are not stated or proved in full generality, and hope for more precision: 
this book is intended to introduce readers to the joy of spherical trigo-
nometry. If you wish to see “i”s dotted and “t”s crossed, a list of over 40 
textbooks is given in appendix B.

Mathematics teachers may wish to use some of this material in their 
classes. Th e core of the book is chapters 1, 2, 5, and 6, although chapter 
1 can stand on its own. Chapters 3 and 4 provide an interesting histori-
cal contrast to the modern theory, but may be skipped if the instruc-
tor wishes a briefer journey; my own course covers chapters 1 through 
6. Th e remaining chapters evolved from student projects. I can vouch 
personally that the fi rst six chapters work well in a class setting with an 
enthusiastic group. Participation and engagement are important, espe-
cially in small groups. Even strong students sometimes are not familiar 
with deductive reasoning. Be prepared to spend time explaining the ba-
sics, such as similar triangles, and have students explain their reasoning 
to their groups or to the entire class.

What Else to Have with You

I’ve done my best to make the book self-  contained. Sometimes, how-
ever, visualizing properties of great circles on spheres is easier if one can 
work on an actual sphere. If available, the following tools are helpful:
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• A Lénart sphere, a transparent plastic ball around eight inches in 
diameter. It comes with hemispherical transparency sheets and pens, 
and a spherical ruler and protractor. It is the modern equivalent of the 
spherical blackboard (see plate 2), and is ideal for this book. It can be 
obtained at a reasonable price.

• A dynamic geometry program for working on the surface of a 
sphere, akin to GeoGebra or Geometer’s Sketchpad. At the time of writ-
ing, Spherical Easel was available for free download (http://merganser
.math.gvsu.edu/easel/).

• For astronomical applications a computer simulation of the night 
sky is almost essential. Th e astronomical snapshots in this book were 
taken with the highly-  recommended open source planetarium soft ware 
Stellarium (www.stellarium.org).

A fi nal note to my academic colleagues: this is not a scholarly work 
in the history of mathematics. It does not contain footnotes, does not 
profess to tell the whole story, and is not intended for you. Well, not for 
you only. Th is is simply an appreciation of a beautiful lost subject, with 

Figure 0.4. A Lénart sphere.
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historical overtones and a few subtly placed messages that I’m sure you 
will recognize. Take it for what it is, and enjoy.
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Heavenly Mathematics

We’re not ancient anymore. Th e birth and development of modern sci-
ence have brought us to a point where we know much more about how 
the universe works. Not only do we know more; we also have reasons to 
believe what we know. We no longer take statements on faith. Experi-
ments and logical arguments support us in our inferences and prevent 
us from straying into falsehood.

But how true is this, really? Do we really know, for instance, why the 
trajectory of a projectile is a parabola? In fact, anyone who has seen a 
soccer goalkeeper kick a ball downfi eld is aware that the ball’s path is 
anything but symmetric. And yet, students accept their physics teachers’ 
pronouncements about parabolas at face value—on authority. We trust 
our teachers to tell us the truth, just as we imagine medieval church-
goers accepting with blind faith the word of their priests. If we thought 
about it a little, we might recognize that air resistance is the culprit in the 
ball’s divergence from a parabolic path. But do we know even this? Has 
anyone ever seen a soccer ball kicked in a vacuum?

It’s impossible to live in our society (or any other) without taking 
some body of knowledge on authority. No one has the energy, or capac-
ity, to check everything. We accept that the earth is a sphere (well, most 
of us anyway), without really knowing why. Only in one discipline—
mathematics—is the “why” question asked at every stage, with the ex-
pectation of a clear and indisputable answer. Now, this is not the case in 
a lot of mathematics training in high school these days. Very few text-
books ask why ( )sin sin cos cos sinα β α β α β+ = + . But this is the fault 
of modern textbooks and pedagogy, not of the subject itself. Th ere is an 
explanation for this equation, and we’ll see it in this chapter.

Th e goal of this chapter is twofold. Firstly, we will revisit topics in 
plane trigonometry in order to prepare for our passage to the sphere. 
But our second purpose takes precedence: to explore and learn without 
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taking anything on faith that we cannot ascertain with our own eyes 
and minds. Th is is how mathematics works, and by necessity it was how 
ancient scientists worked. Th ey had no one to build on. Our mission is 
as follows:

Accepting nothing but the evidence of our senses and simple measure-
ments we can take ourselves, determine the distance to the Moon.

Turning our eyes upward on a cloudless night, within a few hours 
we come to realize a couple of simple facts. Th e sky is a dome, perhaps 
the top half of a sphere, and we are at its center. (Don’t forget, in this 
exercise we are not to accept the word of dissenting teachers and scien-
tists!) Th e points of light on this hemisphere revolve in perfect circles 
around Polaris, the North Star, at a rate of one complete revolution 
per day (see plate 1).* By the disappearance of constellations below the 
horizon and their reappearance hours later, we may infer that the sky 
is an entire sphere (the celestial sphere), of which we can see only half 
at any one time.

But this observation does not narrow the possibilities regarding the 
shape of the Earth. Any planet that is suffi  ciently large with respect to its 
inhabitants will appear to be fl at from their vantage point, discounting 
minor irregularities such as mountains and canyons. Th e most natural 
hypothesis is that the Earth is a fl at surface (fi gure 1.1); it is also possible 
(although harder to imagine at fi rst) that the Earth is a sphere or some 
other solid. How are we to choose?

Many of us have heard in school stories of those who believed in the 
fl at Earth, perhaps even seen images from past sailors’ nightmares: a ship 
sailing off  an infi nite waterfall at the edge of the Earth’s disc. Th ese oft en 
accompany tales of Christopher Columbus heroically attempting to con-
vince the conservative Spanish court that the Earth is a sphere rather than 
a disc, making it possible to sail westward from Portugal to India. When 
I was a child, my teacher told me how a young Columbus, coincidentally 
about my age, discovered the curvature of the Earth. While watching a 
ship sail away from shore, Columbus noticed that its hull would be the 
fi rst part to disappear, and eventually just before it vanished altogether, 
the only part left  visible was the top of its mast (fi gure 1.2).

* You don’t need to wait until nightfall. Several computer simulations of the night sky are available, 
including the free open source, multi- platform Stellarium (www.stellarium.org). Th e snapshots of 
the night sky in this book are generated using this program.
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All of this is fi ction. Columbus was trying to convince the Spanish 
court of the Earth’s size, not its shape. In fact, Columbus thought the 
Earth was smaller than it actually is, and he fortuitously came upon the 
West Indies approximately where he thought the East Indies were sup-
posed to be. His error was caused, in part, by his use of an Arabic es-
timate for the length of a degree of latitude, which he assumed was in 

Figure 1.1. Engraving from Camille Flammarion’s L’Atmosphère Météorologie Populaire, 
1888. Source: http://en.wikipedia.org/wiki/File:Flammarion.jpg.

Figure 1.2. Columbus’s line of sight as a ship sails away.
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Roman miles, but in fact was in Arabic miles. Moral of this story: watch 
your units. Th e story of the ship disappearing below the horizon that my 
teacher attributed to Columbus is actually 1500 years older, in the Greek 
scientist Strabo’s writings around the time of the birth of Christ. Centu-
ries before that, Aristotle had given several arguments for the sphericity 
of the Earth, including the observation that the shadow cast by the Earth 
on the Moon during a lunar eclipse is always a circle.

I should have known that my teacher was telling a story. Who else but 
sailors would be the fi rst to notice how ships disappear below the hori-
zon? Ever since Aristotle, hardly any observant people, whether naviga-
tors, theologians, or scholars, have considered the Earth to be fl at. Th e 
modern myth of ancient belief in the fl at Earth was popularized by the 
19th- century novelist Washington Irving in an imaginative biography of 
Columbus (fi gure 1.3). Historians of science have been trying (mostly 

Figure 1.3. Columbus 
arrives at the New World, in 
Washington Irving’s Th e Lives 
and Voyages of Christopher 
Columbus, Chicago: Donohue, 
Henneberry & Co.
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unsuccessfully) to curb its spread ever since. So we shall accept what we 
now know are ancient ideas that the Earth is round, and turn our explo-
ration of the universe away from shape and toward size.

How Large Is the Earth?

Obviously we cannot determine the dimensions of the Earth by measuring 
it directly, but there are several indirect approaches. Th e most renowned 
historical method, by 3rd- century BC astronomer and mathematician 
Eratosthenes of Cyrene, involves observing rays of sunlight penetrating 
well shaft s in diff erent locations. We shall follow instead a scheme devised 
by the great scholar Abū al- Rayh>ān Muh>ammad ibn Ah>mad al- Bīrūnī 
(AD 973–1050?; fi gure 1.4). One of the most prolifi c authors of the medi-
eval period, al- Bīrūnī wrote at least 146 treatises on almost every area of 
science known in his time, including mechanics, medicine, and mineral-
ogy in addition to mathematics and astronomy. One of his most famous 
works describes social and religious practices, geography, and philosophy 
in India. His Kitāb Tah>dīd al- Amākin (or Book on the Determination of the 
Coordinates of Cities) was inspired originally by the problem of fi nding 
the qibla—the direction of Mecca, toward which Muslims must face to 
pray. Since it’s just as easy to fi nd the direction to some location other than 
Mecca, the book is actually a comprehensive description of mathematical 
techniques of locating cities on the Earth’s surface. Since our goal, here 

Figure 1.4. A portrait of al-Bīrūnī on 
a Soviet postage stamp.
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and elsewhere, is not primarily to represent the historical text faithfully 
but rather to clarify the argument, we will simplify the mathematics and 
use modern functions and notation.

Bīrūnī begins by determining the height of a nearby mountain (near 
Nandana, in northern Pakistan). Th is isn’t as easy as it sounds, since the 
point at the mountain’s base is buried under tons of rock (fi gure 1.5). He 
builds a square ABGD; since he does not tell us how big it was, we set the 
square’s side length equal to 1 meter for the sake of convenience. He then 
lines up the square so that the sight line along its bottom, GB, touches 
the top of the mountain E. Let H be the perpendicular projection of D 
onto the ground, and let T be the intersection of AB with DE. Using our 
meter stick we measure .GH 5 028=  cm and .AT 0 01648=  cm. Clearly 
it’s impossible to measure such a short distance with such accuracy; the 
fact that Bīrūnī was able to get a reasonable value for the Earth’s size sug-
gests that his square must have been huge.

Now we use similar triangles. From //G D AD ATE G =  we compute 
6067.96GE =  meters, and from / /EZ GE GH DG=  we fi nd the moun-

tain’s height to be 305.1EZ =  meters. Not exactly a colossus, which is 
just as well, since our next task is to climb it.

Once we have reached the top of the mountain, we look to the hori-
zon. With good enough instruments we should notice that the horizon 
is not precisely horizontal to us, but dips slightly downward (fi gure 1.6). 
Bīrūnī tells us that he measured the value 34 34 60 0.56667/ c cθ= = =l  for 
this angle, which is very small, but likely just within his capacity to mea-
sure. We know that θ is also TOZ\  at the center of the Earth, and that 
the radius is r OT OZ= = . Now, since ΔOTE is a right triangle, we have

 305.1cos OE
OT

r
r

mθ = =
+

.

Figure 1.5. Al-Bīrūnī’s determination of the height of a mountain.
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But we know θ, so the left  side of the equation is 0.56667cos c, and the 
only unknown on the right side is r. Solving for r, we fi nd that the Earth’s 
radius is 6238 km. (Th ere is a delicate matter hidden in this solution, 
however: a minute change in the value for θ results in a large change in 
the value of r. One wonders how al- Bīrūnī pulled off  the accuracy that he 
did.) Multiplying by 2π, we get a value for the Earth’s circumference of 
39,194 km. Its actual value is about 40,000 km. Not bad (in fact, maybe a 
little too good) for a process with its share of crude measurements!

Building a Sine Table with Our Bare Hands

Th ere’s a problem in the last step of our procedure. Our goal was to work 
without relying on anyone or anything, and at the end we likely relied 
on Texas Instruments to tell us the value of 0.56667cos c. Th is violates 
our rules, so to do this properly we must fi nd a way to compute trigono-
metric values without technological assistance. Again we will follow the 
ancient and medieval astronomers (adopting a few modern simplifi ca-
tions). Our mission is to compute a table of sines, since every other trig-
onometric function can be calculated once we have a sine table. So, we 
must fi nd the sine of every whole- numbered angle between 1c and 90c. 

E

θ

θ

Z

O

T

Figure 1.6. Al-Bīrūnī’s determination 
of the radius of the Earth.
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If an angle that we come across in our astronomical explorations isn’t a 
whole number, we’ll just trust that we can interpolate within our table.

Th e fi rst person whose trigonometric table comes down to us today 
was the 2nd- century AD Alexandrian scientist Claudius Ptolemy. His 
astronomical masterpiece, the Mathematical Collection, contains a re-
markable collection of models for the motions of the heavenly bodies. It 
is known today mostly for being wrong—it places the Earth at the center 
of the universe. But it was one of the most successful scientifi c theories 
of all time, dominating astronomy for a millennium and a half under its 
Arabic title Kitāb al- majistī (“Th e Great Book”), the Almagest.

Th e fi rst of the Almagest’s 13 books contains a description of how one 
can build a trigonometric table with one’s bare hands. (Ptolemy actually 
used another function called the chord, but the chord is so similar to 
the sine that we won’t distort much by sticking with the sine.) Several 
sine values, the ones we remember from memorizing the unit circle in 
high school, may be found immediately. Figure 1.7 shows how to fi nd 

30sin c and 45sin c. For 30sin c we notice that the triangle obtained by 
refl ecting the original triangle about the horizontal axis is equilateral, 
which makes 30 0.5sin c= . For 45sin c, note that the horizontal and verti-
cal sides of the key triangle are equal; applying Pythagoras gives us the 
result 45 / 0.7071sin 1 2c= = .

We now have two of the 90 values we need for our sine table; if we 
count 90 1sin c= , we have three. Th ere is a long way to go. But the Py-
thagorean Th eorem tells us that

30° si
n 

30
°

si
n 

45
°1 1

45°

Figure 1.7. Th e sines of 30c and 45c.
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 (90 ) 1sin sin2 2 cθ θ+ − = ,

so we can always fi nd (90 )sin c θ−  if we know sinθ. Th is fact eff ectively 
cuts our task in half . . . but half of a huge task is still daunting.

For readers in a hurry, this arrow means that the mathematics 
contained here may be bypassed without losing the thread of the 
story.

→Our next value, sin36c, does not come from the memorized 
unit circle. Ptolemy fi nds it using Euclid’s construction of a regular 
pentagon; we will use the same shape, but a slightly diff erent path. 
Consider the “star” confi guration in fi gure 1.8. Let’s assume that 
the sides of the regular pentagon have length 1. Since the shape in-
scribed in the circle is a regular pentagon, B\  in ΔABC is 108c. (To 
see this, note that a pentagon can be partitioned into three trian-
gles, so the sum of the fi ve equal pentagon angles is 3 180 540# c c= .) 
But by symmetry the other two angles in this triangle are equal 
to each other, so 36cα β= = . Th is means that our goal, sin36c, is 
BF. By symmetry, 36ABD\ c= , which leaves 108cγ= , 72cδ= , and 

A

B

α γ δ β
CD EF

y

ε

Figure 1.8. Th e derivation of sin 36c.
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72cε= . So ΔBCD is isosceles, and ΔABD is similar to ΔABC. Th is 
allows us to determine length y BD= , since

.AB
BD y

AC
AB

AD y1 1
1

1
1= = =

+
=

+
c m

By cross multiplication 1y y2 + = , and this quadratic equation 
surprisingly produces 0.61803y = , the golden ratio! From here it’s 
downhill to sin36c. We know that ( )DF AC AD y y12

1
2
1= − = + −

.0 19098= , and so from Pythagoras, 36 0.58779sinBF c= = .→
We now have the sines of 30c, 36c, 45c, 54c (by Pythagoras), 60c, and 

90c. It’s time to accelerate things a bit. Can we come up with a systematic 
tool that fi nds more than one sine value at a time? Th e sine addition law 
is just the ticket, and Ptolemy demonstrates an equivalent to it next.

Th eorem: If α, 90< cβ , then ( )sin sin cos cos sinα β α β α β+ = + .

Th e condition in this theorem isn’t really necessary, but we won’t 
bother generalizing. (Another way of saying this is that we leave that 
task to the reader.) And of course, in the process of discovery we never 
know the result in advance. So we’ll proceed as if the above had never 
been written and simply seek a formula for ( )sin βα+ , following the 
proof that was included in most trigonometry textbooks in the fi rst half 
of the 20th century.

→Proof: In fi gure 1.9, since 1OD= , the quantity we’re aft er is 
( )sinGD α β= + . It is conveniently broken into two parts, GF and 

FD. Now from ΔOCD we know that cosOC β=  and sinCD β= . 
So, in ΔOCE we now know the hypotenuse. Th us /sin cosECα β= , 
so sin cosEC α β= . Since EC FG= , we’re halfway there: we’ve 
found one of the two line segments comprising GD.

We can fi nd FD by noticing fi rst that ΔOCE is similar to ΔDCF. 
Th is statement is true because FCO\ α= , so 90FCD\ c α= − , and 
the two triangles share two angles, so they must share the third. So 

FDC\ α=  . . . and we already know the hypotenuse CD of ΔDCF. 
So /cos sinFDα β= , which gives cos sinFD α β= , and fi nally we 
have ( )sin sin cos cos sinα β α β α β+ = + . QED→
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Perhaps for the fi rst time in our mathematics education, we have 
a reason to believe the sine addition law. Th at is valuable in itself, but 
more important is the use to which we will put it. Just as Ptolemy did, we 
may use this theorem to calculate the sine of the sum of two angles for 
which we already know the sines. For instance, from 30sin c and 45sin c 
we can calculate 75sin c, or by substituting 36sin c for both α and β, we 
have 72sin c.

A similar process (explored in the exercises) allows us to derive the 
formula for the sine of the diff erence between two angles,

 ( ) .sin sin cos cos sinα β α β α β− = −

So we can, for instance, use our values for 72sin c and 75sin c to fi nd 
3sin c. And from this step, using the sine addition law repeatedly, we can 

fi nd the sines of all multiples of 3c. But now Ptolemy reaches an impasse. 
Even with an extra theorem—the sine half- angle identity ( /sin 2α =

( )/cos1 2α− , explored in the exercises)—he is unable to fi nd the sine 
of any whole- numbered angle that is not a multiple of 3c!

Th e problem of passing from sin3c to 1sin c, an example of the famous 
Greek conundrum of trisecting the angle with ruler and compass, trou-
bled many astronomers aft er Ptolemy. In fact, getting an accurate value 
for 1sin c was more important than fi nding a value for π. Aft er all, while 
π comes up every once in a while when predicting the movements of the 

α

β

O G E

CF

D

1 Figure 1.9. Th e proof of the sine 
addition law.
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stars and planets, sine values appear all the time. So the entire edifi ce of 
predictive astronomy relied mathematically on this one, geometrically 
unattainable, value.

Since Ptolemy was unable to use geometry, he turned to approxima-
tion. If you consider the sines of 1c and 3c (drawn, not to scale, in fi gure 
1.10), it’s clear that sin3c is greater than 1sin c, but it’s not three times as 
big. Due to the gradual leveling off  of the circle as one works upward 
from its rightmost point, the sine increases at a slower and slower rate as 
the angle increases. Said more generally:

Th eorem: If 90< < cβ α , then sin
sin>

β
α

β
α.

Now, using the half- angle formula we can follow in Ptolemy’s foot-
steps and calculate from sin3c the values of sin 2

3c and sin 3
4c. Th ese num-

bers are the key, for now we can apply our new theorem to get bounds 
on sin1c: fi rst, substitute 1cα=  and 3

4cβ= ; this produces >1 1
sin
sin

4
3

4
3c

c

c

c, which 
simplifi es to 1 0.01745279sin sin< 3

4
4
3$c c= . Next, substitute 2

3cα=  and 
1cβ= ; this gives the lower bound 1 0.01745130sin sin> 3

2 3
2$c c= . Com-

bine the results, and we get

 0.01745130 1 0.01745279sin< <c .

If we hope for our table to be accurate to fi ve decimal places, then we 
have our sought- aft er value: 0.01745. (If we need more precision, then 
we have a problem, although medieval astronomers did fi nd ways of 

1°

3°

si
n 

1°

si
n 

3°

1

Figure 1.10. sin 3c < 3 sin 1c.
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extending Ptolemy’s method to generate more accuracy.) From this 
point we can fi ll in the rest of our table, just by applying the sine addi-
tion and subtraction laws to sin1c and the sines of the multiples of 3c.

Ptolemy does not tell us what he thought of being forced into the sor-
did world of approximation to fi nd sin1c. But we do know that at least 
two later scientists objected strenuously to bringing numerical methods 
into the pure, unsullied world of geometry. Th e 12th- century Iranian Ibn 
Yah.ya al- Maghribī al- Samaw�al was so aggrieved by it that he included 
Ptolemy in his Exposure of the Errors of the Astronomers, and actually 
constructed his own sine table with 480c in a circle rather than 360c. 
Giordano Bruno, the 16th- century theologian and philosopher who was 
eventually burned at the stake (although not for this reason), felt that 
the entire discipline of trigonometry was undermined and proclaimed, 
“Away with the useless tables of sines!”

As odious as approximation was to these two scientists, the  methods 
we have just seen were the mathematical basis of all trigonometric ta-
bles through the 16th century. Th e most prodigious set of trigonometric 
tables in early Europe, the Opus palatinum, was composed by Georg 
Rheticus, who had been the leading early champion of Nicolas Coper-
nicus’s Sun- centered universe. Rheticus died in 1574 before his work 
was completed, but the tables were completed and published in 1596 by 
Lucius Valentin Otho. Th e 700 large pages comprising the second half 
of Rheticus and Otho’s massive volume contain tables of all six trigono-
metric functions to ten decimal places for every 10″ of arc (fi gure 1.11). 
In modifi ed form, they were the dominant trigonometric tables used by 
scientists until they were replaced, fi nally, in 1915. But the methods Rhe-
ticus used to generate these tables were at heart no diff erent from those 
of Claudius Ptolemy, one and a half millennia before.

Th is is not to say that better methods had not been considered. Only 
150 years before Rheticus but in a diff erent culture, the Persian as-
tronomer Jamshīd al- Kāshī had considered the sin 1c problem in a very 
diff erent way. Al- Kāshī was a natural for this attack: he was a master cal-
culator, and his fame rests partly on computing π to the equivalent of 14 
decimal places—twice as many as any of his predecessors. He didn’t stop 
there. His fi rst attempt on sin 1c was an extension of Ptolemy’s method, 
but later he took an entirely diff erent tack. It begins with a consideration 
of the sine triple- angle formula,
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 3 3 4sin sin sin3θ θ θ= − ,

which we leave to the interested reader to verify (use the sine addition 
law on ( )sin θ θ θ+ + ). Substitute 1cθ= , and we have a cubic equation 
whose solution is the sought- aft er 1sin c:

 3 3 1 4 1sin sin sin3c c c= − .

But the cubic would not be solved for another 125 years and far from 
Persia, by Gerolamo Cardano in 1545. Clearly, al- Kāshī could not wait 
that long.

Instead, he found a way to determine the solution one digit at a time, 
not descending brazenly into approximation but bypassing geometry 
altogether, using a method something like the following.

→Let 1sinx c= ; then 3 3 4sin x x3c= − . With a little rearrange-
ment, we arrive at x 3 4sin x

3
3

= c+ . Now visually, what we’re looking 
for is the place where the graphs y x=  and y 3 4sin x

3
3

= c+  cross each 
other (fi gure 1.12). Take an initial guess at the solution; an obvious 

Figure 1.11. Th e fi rst of 700 pages of Rheticus and Otho’s trigonometric tables in the 
Opus palatinum. Each pair of columns represents one of the six major trigonometric 
functions. Courtesy of the Burndy Library, MIT.
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choice is 3 0.017445319sinx0 3
1 c= = . Plug it into the right side of 

our equation and we get 0.017452397, corresponding to the verti-
cal distance from x0 to A on the graph. We treat this new value as 
our next guess x1. On the graph, this means that we must convert 
the height x A0  into an x- coordinate. We can take this step by mov-
ing horizontally from A to B, where we know that y x= ; then we 
move down to x1.→

From here we simply repeat the process as many times as desired. 
Plugging x1 into the right side of the equation yields 0.017452406x2 = ; 
another iteration yields an identical value for x3, to nine decimal places. 
So already we have nine decimal places for 1sin c, with an easy method 
at hand to generate as much accuracy as any numerical stickler may 
demand. Al- Kāshī stopped at the equivalent of 16 decimal places. Th is 
technique, today called fi xed point iteration, is not guaranteed to work 
with every equation of this sort, but fortunately it works extremely ef-
fi ciently in our case. And from our value of 1sin c, we may now fi ll in the 
rest of the sine table, with as much precision as we have patience.

Th e Distance to the Moon

Th e computational energy required to construct a sine table using the 
above methods is hardly a trivial matter; we caution the reader not to 

Figure 1.12. Fixed point iteration 
to fi nd sin 1c.

x0 x1 sin 1°
x

y

B
A
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try this at home without a lot of free time. Now that we know how to 
do it, we shall assume that the reader has put in the required years of 
drudgery, and lying before us is a complete set of trigonometric tables, 
ready to be used for our astronomy. We have taken a long diversion to 
determine the single cosine value that al- Bīrūnī needed to complete his 
determination of the circumference of the Earth, but the good news is 
that the diversion is needed only once. We may now press on, assured 
that whenever we need a trigonometric value, we may simply look it up.

It is one thing to calculate the size of the Earth, but another task en-
tirely to venture beyond the Earth’s surface to fi nd the distance to the 
Moon. In fact this feat has been accomplished frequently; Ptolemy him-
self came to an accurate value already in the 2nd century AD. We men-
tion only in passing that he also calculated the distance to the Sun, and 
came up with a value about 19 times too small. His method was sound, 
even if his result was not.

Th e key is parallax: the fact that two observers, in diff erent places, 
will see the same object in diff erent positions with respect to a distant 
background. In the case of the Moon the distances are vast, but the prin-
ciple still applies. Figure 1.13 shows the Moon in the night sky at the 
same moment from two diff erent locations; the change in its position 
within the constellation Scorpius is clear. Th is is the sort of observation 
that Ptolemy used. (In his calculation of the Sun’s distance, the error 
was his assumption that the Sun’s parallax was just on the edge of being 

Moon Moon

Figure 1.13a and 1.13b. Th e Moon as seen from Vancouver, Canada in (a) and from 
London, England in (b) on April 30, 2010. In Vancouver the Moon is on the middle of 
the three claws of Scorpius, in London it is on the upper claw.
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observable with the naked eye. Actually, the parallax is much smaller 
than that.)

Although our method is simpler than Ptolemy’s, the idea is the same. 
We assume that for one observer, E in fi gure 1.14, the Moon is directly 
overhead; so, its altitude is 90c. For a second observer, 300 km away at 
B, the Moon’s altitude is 87.201cα= . Now, without telephones it would 
be diffi  cult to make sure that the two observations take place at the 
same moment. One way around this is to observe during a lunar eclipse, 
which takes place simultaneously for all Earthly observers.

→Th ese are all the observations we need. Since the value we found 
earlier for the Earth’s radius is 6238 km, we know that angle β is 
300/(2π $ 6238) of a circle, or 2.7555c. Next we work our way up 
the fi gure. Using ΔABC we fi nd that 300.23tanBC AB β= =  km, 
and that /( ) cosr r CE β+ = , from which we fi nd 7.2209CE =  km. 
Next, using ΔBCF, we calculate 299.87sinCF BC α= =  km. Th e 
most important observation follows: since the three angles at C 
add up to 180c, we know that 89.957DCF\ cα β= + = . Now we 
can use ΔCDF to fi nd / 89.957 395,160cosCD CF c= =  km. Add to 
this the inconsequential 7 km that is CE, and our value for the 
Moon’s distance is 395,167 km. (Th e correct distance is around 
384,400 km).→

B

A

E

C
F

D

α

β

Figure 1.14. Finding the distance to 
the Moon.
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Just for fun, let’s see what we can determine from this result about 
the dimensions of the solar system. If we were to shrink the universe so 
that the Earth is the size of a soccer ball, its radius would be about 11 cm. 
Since we know that the Moon’s distance is 395,167 km and the Earth’s 
radius is 6238 km, the Moon’s distance in our soccer ball universe is 
11 395,167 6238 695/$ =  cm, or about 7 meters—about half the distance 
across a typical classroom. Th e Moon would be about the size of a ten-
nis ball, with a radius of 3 cm. Let’s step for a moment beyond what 
the ancients were capable of observing. In this scale, the Sun’s diameter 
would be about 24 m, about the height of an eight- story building, and 
would be about 2.6 km away. Th e nearest star, Proxima Centauri, would 
have a diameter of only 3.5 m, about one story high. It would be about 
700,000 km away, almost twice the actual distance from the Earth to the 
Moon. Our galaxy consists almost entirely of empty space.

We have completed our mission to fi nd the distance to the Moon 
using only simple measurements. At the same time we’ve refreshed our 
plane trigonometry and become accustomed to the “prove it to me” atti-
tude that mathematics requires. With these experiences under our belts, 
it is time to turn to the sphere.

Exercises

 1.  Using only a basic pocket calculator (no scientifi c 
calculators, although you may take square roots), 
determine the value of 3sin c in the most effi  cient way 
that you can. Include in your work the computation 
of any sine values you need along the way.

 2.  Th e sine subtraction law is 
( )sin sin cos cos sinα β α β α β− = − .

(a) Derive this result by replacing 
β with −β in the addition law.
(b) Now attempt the more 
interesting task: prove it geometrically using fi gure E- 1.2.

 3.  (a) Show by construction that 2 2sin sinA A> .
(b) Given two angles A and B (A B+  being less than 90c), show that 

( )sin sin sinA B A B<+ + .
  [Wentworth 1894, p. 8]

O A

B

D E

C

1

β

α

Figure E-1.2.
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 4.  Th e cosine addition and subtraction laws 
are ( )cos cos cos! "α β α β=  sin sinα β. 
Demonstrate them from the same 
diagrams we used to derive the sine 
addition and subtraction laws.

 5.  (a) Derive a formula for sin 2
α given 

the values of sinα and cosα, 
using fi gure E- 1.5. (Th ere are 
diff erent forms of the 
half- angle formula; the 
most common is 

/sin 2α = ( )/cos1 2α− . 
Th is demonstration will start geometrically, but will require some 
algebra.)
(b) Th ere is an easier way to arrive at this formula algebraically. First, 
using the cosine addition law, derive 2 1 2cos sin2α α= − . Th en, from this 
result, derive the sine half- angle identity in (a). [courtesy of Raymond N. 
Greenwell]

 6.  (a) Use the sine and cosine addition and subtraction laws to prove the 
sine triple- angle formula, (3 ) 3 4sin sin sin3θ θ θ= − .
(b) Perform al- Kāshī’s iteration procedure to get a value of 1sin c to as 
many decimal places as your technology permits. If you have a computer 
algebra system, set its precision to a large number of digits, say, 100. How 
many extra decimal places of accuracy do you get with each iteration?
(c) Use fi xed point iteration to attempt to solve the equation 2x x3= . Th e 
solution is /x 1 2= . Try several diff erent values of x0. What is it about 
the function 2y x3=  that prevents fi xed point iteration from working in 
this case?

 7.  We have seen that Ptolemy eff ectively used the following inequality to 
estimate 1sin c:

 1sin sin sin< <3
2 3

3
4

4
3

2c c c

   Medieval Muslim astronomers used sines of arcs that were closer to 1c 
than Ptolemy’s 3

2c and 4
3c, yet were still geometrically accessible. Any sine 

of the form (3 /2 )m n c is computable using the methods in this chapter.
(a) In the late 10th century AD, Abū ’l- Wafā� used the equivalent of csin 32

30  
and csin 32

33 . How does the magnitude of error in Abū ’l- Wafā�’s approxima-
tion compare with Ptolemy’s?

α/2

α/2
O

E

C

B

AD

1

Figure E-1.5.
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(b) Th ere’s no reason to stop at 32nds of a degree. Th e 14th- century En-
glish astronomer Richard of Wallingford used csin 3

64
6  and csin 64

66 . How does 
his magnitude of error compare with the results of the other two?
(c) Richard goes on to use csin 256

255  and csin 256
258 . Before calculating the ap-

proximation, use your results from (a) and (b) to predict the magnitude 
of error that you should expect. Th en do the approximation, to see if you 
were correct.

 8.  (a) How high above the earth must one be in order to see a point located 
on the surface 50 miles away?

  [Rothrock 1911, p. 29]
(b) Prove in general that for small elevations the distance of the “visible 
horizon” varies as the square root of the observer’s elevation.

  [Crawley 1914, p. 18]
 9.  (a) Aristarchus (3rd century BC) estimated the ratio of the Earth- Sun 

distance to the Earth- Moon distance by observing that when the Moon is 
half full, the angle from the Earth to the Moon to the Sun must be a right 
angle. He measured the angular displacement of the Moon from the Sun, 
seen from the Earth, in this confi guration to be 29/30 of a right angle. Use 
this measurement to estimate the ratio of the Earth- Sun distance to the 
Earth- Moon distance.
(b) Look up the values for the distance from the Earth to the Moon 
and to the Sun, and calculate the actual ratio between the two. Give 
possible reasons why Aristarchus’s estimate was so far off . [courtesy of 
 Raymond N. Greenwell]

 10.  (a) Eratosthenes (3rd century BC) estimated the circumference of the Earth 
by observing that at the summer solstice, the sun was directly overhead in 
Syene, Egypt (now called Aswan). In the town of Alexandria, Egypt, which 
(he estimated) was 5000 stadia further north and (he believed) on the same 
meridian of longitude, the Sun was 1/50 of a complete circle to the south. 
He estimated the Sun to be suffi  ciently far away that the lines from the 
observers in each of the two cities to the Sun were roughly parallel, so that 
the angle between them represented 1/50 of the angle around the entire 
Earth. It is not completely clear how long Eratosthenes’s stadion was, but a 
common value given for 5000 stadia is 800 km. Based on this, estimate the 
circumference of the Earth. Compare with the actual value.
(b) Look up the latitude and longitude of Alexandria and Aswan. Are 
they on the same meridian of longitude? Look up the distance between 
them. Is it close to the value of 800 km given in part (a)? Also look up 
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the latitude of the Sun at the summer solstice. Is it directly overhead in 
Aswan? Given these facts, what do you think of Eratosthenes’s estimate of 
the Earth’s circumference? [courtesy of Raymond N. Greenwell]

 11.  Th e latitude of New York City is 40.75c. Find the velocity of New York in 
space due to the rotation of the Earth on its axis.

  [Welchons/Krickenberger 1954, p. 43]
 12.  A mountain peak C is 4135 ft . above sea level, and from C the angle of el-

evation of a second peak B is 5c. An aviator at A directly over peak C fi nds 
that angle CAB is 43.867c when his altimeter shows that he is 8460 ft . 
above sea level. Find the height of peak B. (See fi gure E- 1.12.)

  [Kells/Kern/Bland 1935, p. 88]

 13.  Now that we know the distance to the Moon, we can determine its size. 
Th e Moon subtends an arc of about 0.52c when seen from the Earth. Esti-
mate its diameter.

 14.  A method for fi nding the distance to the Moon that does not require it to 
be at the zenith of one of the observers. In order to measure the distance 
of the Moon from the Earth, two points of observation O1 and O2 (fi gure 
E- 1.14) on the same meridian of longitude are chosen. When the Moon is 
in the plane of the common meridian of the two points, the zenith angles 
θ and ϕ are measured. Point O1 is in latitude 54.355c N (near Danzig) 
and point O2 is in latitude 33.934c S (near Cape Town). It is found that 

43.441cθ=  and 46.188cϕ= . With this information the distance CM can 

Figure E-1.12. 
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be found, and the distance PM from the Moon to the Earth is equal to 
CM r− , where r is the radius of the Earth. Find the distance PM.

  [Muhly/Saslaw 1946, p. 64]
   (Hint: (i) Draw O O1 2, and fi nd its length using the Law of Cosines. 

(ii) Determine the angles of ΔO O1 2M, and use the Law of Sines to fi nd the 
length of O M1 . (iii) Use the Law of Cosines on ΔO1CM to fi nd CM.)

M

C
P

O1

O2

θ

φ

r

r

Figure E-1.14.



✩ 2 ✩

Exploring the Sphere

At fi rst glance there’s not much to see on a sphere; every point on its 
surface looks the same as any other. But give it some physical meaning—
call it the celestial sphere, or the Earth’s surface—place some identifying 
marks on it, and set it in motion, and visualizing what’s happening can 
become rather complicated. Th is is one reason why armillary spheres 
(plate 3, fi gure 2.1), movable models of the celestial sphere with vari-
ous signposts labeled, were invented by the ancient Greeks. Rotating 
the sphere simulates the motions of the heavens and provides a tactile 
experience that cannot easily be substituted by staring at a fi gure in a 

Betelgeuse

Tropic of Cancer

Ecliptic

Equator

Tropic of
Capricorn

Figure 2.1. An armillary sphere kit constructed from cardboard and wood (James 
Evans, 1979).
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textbook. So if a sphere or planetarium soft ware is available, the reader 
is encouraged to bring it out now.

Introducing the Celestial Sphere

We’ve already seen the most obvious feature of the celestial sphere, 
namely its daily rotation around us. Given the sphere’s unfathomably 
large size, rendering the Earth as an infi nitesimal pin prick at its center, 
one can only imagine how quickly it is actually moving. (Of course the 
rotation eff ect is caused by our motion rather than the sphere’s; we are 
simply continuing our “ancient eyes” thought experiment.) Th is rota-
tion has a North Pole very close to the star Polaris, and also a celestial 
equator that rises from the east point of the horizon and sets in the west. 
Both the celestial North Pole and the celestial equator may be thought 
of as projections outward from Earth’s North Pole and equator. Watch-
ing the stars’ rotation over the course of a night gives us ample evidence 
for three features of celestial motion that came to be associated with 
Aristotle:

• all objects move in circles;

• they travel at constant speeds on those circles;

• the Earth is at the center of the celestial sphere.

Let’s look more closely at the brightest and most important of all ob-
jects, the Sun. At fi rst glance it appears to follow the same rules as all 
the other stars: it behaves as if it were attached to the celestial sphere, 
and moves accordingly. But if we watch it carefully over the course of 
several days (without looking directly at it!), we notice that it is not fi xed 
in place: its position with respect to the background stars drift s a little 
every day. One might wonder how this drift  can be observed, since the 
Sun is so bright that it is impossible to see any of the stars nearby. One 
way is to wait until sunset, and observe the point on the horizon pre-
cisely opposite the Sun. With a good enough star globe or chart we can 
determine the Sun’s position and over several days plot its course as it 
wanders through the fi xed stars.

Imagine that a year has passed with startlingly good weather, so that 
we have been able to mark the Sun’s position every day. In this time 
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we have witnessed the Sun make a complete circuit around the celestial 
sphere. Th is path is called the ecliptic, the circle on the armillary sphere 
(see fi gure 2.1) that is tilted with respect to the others. Th is tilt is called 
the obliquity of the ecliptic ε; its value in ancient times was about 23.7c 
and is now about 23.44c. From a modern point of view, the obliquity 
is equal to the tilt of the Earth’s rotational axis. It is likely no coinci-
dence that the Sun travels almost exactly 1c per day on the ecliptic. Th e 
ancient Babylonians were the fi rst to divide the ecliptic into 360 parts. 
Since they had used the base 60 (sexagesimal) number system, 360 parts 
would have been a convenient choice: it is a multiple of 60, and it is close 
to the number of days in a year.

Just like any other pair of great circles on a sphere, the celestial equa-
tor and the ecliptic intersect twice. When the Sun is at one of the inter-
section points, day and night are of equal length, so these two points are 
called equinoxes. Th e point that the Sun crosses in March is the spring 
equinox, labelled ^ (see fi gure 2.2; this is the astrological sign for the 
nearby constellation Aries); the other is the autumnal equinox. When 
the Sun is above the equator in the summer, days are longer than nights. 
Th e days are longest when the Sun reaches its most northerly point on 
the ecliptic 90c removed from the equinoxes, the summer solstice.

Now, we’re interested in the movements of stars and planets on the 
sphere’s surface; so we need to be able to say where, for instance, the star 
Algol happens to be at the moment. Th is means setting up a coordinate 

Figure 2.2. Th e ecliptic and celestial equator.
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system, like the system of latitudes and longitudes on the Earth’s surface. 
On the Earth, the equator is featureless; none of its points stand out as 
special. So longitudes are measured with respect to an arbitrarily chosen 
point, namely the point on the equator due south of the observatory 
at Greenwich, England, the working home of many famous historical 
scientists and astronomers. Th e celestial equator, on the other hand, has 
two special points: namely, the two places where it is crossed by the 
ecliptic. So we gratefully choose the spring equinox ̂  as our zero point.

Once this choice has been made, we may set coordinates to positions 
on the celestial sphere just as we do with longitude and latitude on the 
Earth. Take any star and drop it perpendicularly downward (or upward) 
along the sphere’s surface to the equator (fi gure 2.3). Its right ascension α 
is the distance along the equator from ^ to the base of the perpendicu-
lar (heading fi rst in the direction where the ecliptic is north of the equa-
tor); its declination δ is the length of the perpendicular itself (considered 
to be negative if the star is below the equator). For instance, Algol’s posi-
tion is 47.04cα= , .40 96cδ=+ .

Since the celestial equator is intrinsic to the daily rotation of the heav-
ens, this equatorial coordinate system is the most commonly used. But 
on other occasions it is useful to begin with another base circle. For 
studying the planets, which always stay within a few degrees of the eclip-
tic, a system of coordinates based on the ecliptic is favored. Th e ecliptic 
longitude and latitude λ and β (fi gure 2.4) are defi ned in the same way 
as were α and δ, again starting from ^ but this time moving along 

α

δ
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Horizon
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Ecliptic
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Figure 2.3. Th e equatorial coordinate system.
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the ecliptic rather than the equator. In this system, a planet’s latitude 
β always remains small. Of course, this does not apply to stars; Algol’s 
ecliptic position is 56.87cλ= , 22.43cβ= .

Finally, for actually locating objects in the heavens, it’s most helpful 
to have a coordinate system that works from the horizon circle, rather 
than the equator or the ecliptic. Th e azimuth (fi gure 2.4) functions like 
a longitude; it is measured along the horizon eastward from the north 
point. Th e altitude is measured upward from the horizon. Clearly, being 
able to convert between these three coordinate systems would be a vital 
skill for any astronomer to have. Unfortunately, while the ecliptic and 
equatorial systems remain fi xed with respect to each other, the horizon 
does not, so there is no single pair of horizontal coordinates for Algol. 
Aft er all, it does move over the course of the night.

Now let’s set the celestial sphere in motion through the day, preferably 
with a simulation such as planetarium soft ware, a celestial globe, or an 
armillary sphere. As the sphere carries some stars above the horizon in 
the east and other stars below the horizon in the west, the ecliptic’s posi-
tion changes continuously. But the equator does not change its position; 
it simply rotates into itself at a rate of 360c per day, or 15c per hour. Th is 
stately motion makes the equator the universe’s clock. Th e right ascen-
sion α is measured along the equator, so it is usually given not in degrees, 
but in units of time. For Algol, then, . ( / )47 04 1 15 3 08h h m$c cα= = .

Th e 2nd century BC scientist Hipparchus of Rhodes knew all these 
heavenly motions; in fact, so did the Babylonians before him. However, he 

Figure 2.4. Celestial coordinate systems.
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broke new ground (as far as we know) when he examined the Sun’s motion 
more carefully. We already know that the Sun travels along the ecliptic. It 
appears to move at constant speed, as Aristotle would have expected. But 
if you measure the length of time it takes the Sun to travel from the spring 
equinox to the autumn equinox, you get about 186 days, which leaves only 
about 179 days for the other half of the Sun’s orbit. So on average, the Sun 
travels more slowly between March and September than over the other 
six months of the year. Th e diff erence isn’t much, but it doesn’t take much 
to cause a crisis: any change in speed violates the laws of celestial motion.

One of the laws had to go. Th e law that Hipparchus chose to break 
might seem surprising at fi rst. He could not set the Sun in motion along 
a course other than a circle, nor could he slow it down and speed it up; 
he did not have the mathematics to cope with such modifi cations. So, 
he moved the Earth away from the center of the Sun’s orbit. He knew 
that spring was 94½ days long, and that summer was 92½ days. (Today, 
two millennia later, the numbers have changed; summer has become the 
longest season for those in the northern hemisphere.) By moving the 
Earth away from the center of the orbit circle in a direction away from 
the Sun’s position in the spring, he eff ectively prolonged the season: the 
arc of spring increases from 90c of the Sun’s orbit to the arc indicated by 
the dotted lines in fi gure 2.5. Th e Sun still travels at a constant speed, but 
it takes more time in the spring because it has further to travel.

Spring
Equinox

Summer
Solstice

Autumnal
Equinox

94½ days
92½ days

C

Earth

Figure 2.5. Hipparchus’s solar model.
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But how far should Hipparchus move the Sun from the center? Th is 
question was why he invented the chord function (which, later in India, 
morphed into the sine), and thereby founded the science of trigonom-
etry. Once he had converted the season day lengths to degrees, a couple 
of chord lengths and elementary geometry were all he needed to fi nd the 
Earth’s distance from the center. It was the determination of this quan-
tity, the eccentricity of the Sun’s orbit, that may have been the world’s 
fi rst trigonometric problem. Th e reader is invited to solve it in the fi rst 
exercise at the end of this chapter.

Spherical Geometry

Now that we have two working physical manifestations of the sphere 
(the Earth and the heavens), let’s turn our attention instead to questions 
of geometry. Clearly there are no straight lines on the sphere’s surface, 
at least in the conventional meaning of the phrase. But if you walk along 
the Earth’s surface, you certainly can imagine traveling along a “straight” 
line. Of course, if you were to be able to continue indefi nitely, your path 
would loop around the Earth and form a circle. Now, not all circles on 
the sphere are “straight line” paths. For instance, if you were to walk 
counterclockwise along a circle of radius 1 meter around the North Pole, 
you would clearly be turning to your left  as you circled the pole.

Th e straight line paths are the great circles; they can be formed by cut-
ting the sphere with a plane that passes through the sphere’s center. For 
instance, in the armillary sphere in fi gure 2.1 the plane of the celestial 
equator cuts through the center, but the planes of the Tropics of Cancer 
and Capricorn above and below the equator do not. Th us, if you were to 
walk eastward along the Tropic of Cancer, you would be slowly turning 
ever so slightly to your left . Nevertheless the Tropics are circles, even if 
they’re not great. Th is raises a question: is it possible to cut a sphere with 
a plane somehow, and get a cross- section that is not a perfect circle?

→Th e answer is “no.” Consider the cross- section in fi gure 2.6. Let 
D be any point on the cross- section, and let OC be the perpendicu-
lar line dropped from O onto the intersecting plane. Th en OCD\  
is right, and the Pythagorean Th eorem applies: OD OC CD2 2 2= + . 
But OD is constant regardless of D’s position on the cross- section, 
since it is the radius of the sphere; and clearly OC doesn’t depend 
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on where D is either. Th erefore CD2 cannot change as we move D 
around the cross- section, and so neither does CD. We conclude:→

Th eorem: Every cross- section of the sphere by a plane is a circle.

So circles occupy a special place in spherical geometry, which is no 
great shock. But great circles are particularly special, since they take 
the role of straight lines. Hence the shortest distance between any two 
points, a “line segment,” is actually an arc of a great circle. Defi ning what 
we mean by “angle” also requires a little thought, although not much. 
When two great circles cross, one might think of the angle between 
them as the angle between the two cross- section planes that defi ne the 
great circles; or more intuitively, as the angle between the tangent lines 
to the great circles at the intersection point.

Lunes and Triangles on the Sphere

If great circles take the place of straight lines in spherical geometry, then 
great circle arcs must take the place of line segments. One might wonder, 
then, what sorts of shapes (like triangles, rectangles, pentagons and so 
forth) may be formed on a sphere’s surface using great circle arcs as their 
sides. Here we reach our fi rst truly curious fact about spherical geom-
etry: it is possible to build a spherical polygon with only two sides. Th is 
shape, called a lune, is constructed by joining two great semicircles at 
their ends (fi gure 2.7). One might prefer the name “orange peel.” But the 
illuminated part of the Moon is also a lune, so the name is well chosen.

O

C D

Figure 2.6. A cross-section of a sphere.
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Th ere is not much variety within the family of lunes. Since their 
sides are semicircles, their perimeters will always be 2πr, where r is the 
sphere’s radius (usually taken to be 1). Th e two angles in a lune are both 
equal to the angle between the two planes that contain the lune’s sides.

Triangles, on the other hand, are much more interesting creatures. Of 
course, they come in much more variety than lunes, but there is much 
more depth here than that. Our fi rst sign that we are no longer in the 
comfortable world of plane geometry is that a spherical triangle can 
have three right angles: imagine the triangle formed by two travelers 
departing the North Pole at right angles to each other, and turning to-
ward each other when they reach the equator. Another curiosity is that 
a triangle’s sides, as well as its angles, are measured in degrees. In fi gure 
2.8 each side corresponds to an angle at the center O of the sphere, so for 
instance, the arc c is equal to AOB\ .

Th is leads to an important corollary:

Any angle on the surface of the sphere can be transformed into an arc by 
moving 90c away along both legs and joining the endpoints.

For instance, in the armillary sphere of fi gure 2.1, the ecliptic and equator 
form the angle 23.44cε= . So if we move 90c along both circles and join 

Figure 2.7. A lune, illustrated in Benjamin Martin’s Th e Young Trigonometer’s Compleat 
Guide, vol. 2, London: J. Noon, 1736, p. 208. Th is item is reproduced by permission of 
Th e Huntington Library, San Marino, California.
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the endpoints (forming the arc containing the star Betelgeuse), the joining 
arc will have length 23.44cε= . Th is relation can be seen from fi gure 2.9. 
Let A be the pole of the great circle that, from our point of view, appears as 
the edge of the sphere. Th en both arcs joining A to the edge are 90c long, 
and they intersect the great circle at right angles. Imagine looking down 
on the sphere from directly above A, so that the arcs appear as straight line 
segments. Th en the angle θ at the center of the diagram will be equal to 
the arc θ on the great circle. We will use this fact frequently.

In the rest of this chapter, we consider the possible dimensions of 
spherical triangles.

A

90°

90°
90°

90°

Aθ
θ

θ θ

Figure 2.9. Converting between arcs and angles. Th e two spheres are identical. Th e 
second sphere is viewed from directly above A, so the two semicircles appear to be 
straight lines.
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Figure 2.8. A spherical triangle.
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What Is the Smallest and Largest Possible 
Perimeter of a Spherical Triangle?

At fi rst glance, each side of a triangle might be as long as 360c. But 
almost all authors restrict side lengths to 180c for two reasons: fi rstly, 
one can always replace a triangle with a side greater than 180c with an-
other triangle with a side less than 180c, simply by joining the endpoints 
around the other side of the sphere. (One does get bizarre and inter-
esting geometry by ignoring this restriction though; see Todhunter/
Leathem 1901, Chapter 19.) Secondly, many of the theorems we are going 
to demonstrate about triangles would be more complicated to express if 
we allowed such strange beasts as triangles with sides greater than 180c. 
Th is is the same reason that number theorists exclude 1 from the list of 
prime numbers, and if they can redefi ne a concept so as to make their 
lives easier, then so can we.

Th e sum of sides on a spherical triangle can become as small as we 
can draw, so we care only about the maximum perimeter. If a sphere is 
available, it’s a good exercise to attempt to draw triangles with as large 
a perimeter as possible. You’ll soon discover that you can get nowhere 
near the obvious upper limit, 3 180 540$ c c= .

We need an intermediate result:

Lemma: Th e third side of any spherical triangle cannot exceed the sum 
of other two.

→We may see why this is true as follows. Examine the angles at O 
corresponding to the sides in fi gure 2.8. Imagine allowing segment 
OA to fall onto the plane OBC, leaving O in place but bringing A 
downward. Th en two of the angles would fi t perfectly within the 
third. But if we lift  A back into its original position, the two angles 
at O that rise with it become larger. So their sum must be greater 
than \BOC on the plane.→

If you are not happy with the informality of this argument, I can 
bring none other than Euclid to my defense. Th e planar equivalent of 
this statement, that the third side of any plane triangle cannot exceed 
the sum of the other two sides, is Proposition 20 in the fi rst book of the 
Elements. Curiously, Euclid’s proof works for spherical triangles just as 
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well, and there’s an interesting side story here. What made the Elements 
so important to the Greeks was that it exemplifi ed how one should think 
in mathematics: start with a few simple axioms, and reason from them 
step by step until a grand edifi ce of unshakable theorems is established. 
However, there was a problem. To prove many of the interesting propo-
sitions, Euclid was forced to accept this rather ungainly statement with-
out proof:

Th at, if a straight line falling on two straight lines make the interior angles 
on the same side less than two right angles, the two straight lines, if pro-
duced indefi nitely, meet on that side on which are the angles less than the 
two right angles.

Th is assertion turns out to be equivalent to either an implication of 
Euclid’s Proposition 31, “there is only one line through a given point 
that is parallel to another given line,” or Proposition 32, “the angles in 
a triangle sum to two right angles.” Th is latter statement should give us 
pause, since we know now that it’s not true for spherical triangles. No 
one was ever able to prove the parallel postulate from the other axioms, 
and for good reason: it simply cannot be done. Euclid avoided it as long 
as he possibly could, until fi nally he was forced to use it in Proposition 
29. Now, it turns out that spherical geometry is one of the non- Euclidean 
geometries that is consistent with Euclid’s other axioms, but not with the 
parallel postulate. Since Proposition 20 comes before 29, Euclid’s proof 
works on the sphere as well as it does on the plane.

We are now in a position to fi nd an upper bound for the perimeter of 
any spherical triangle.

Th eorem: Th e sum of sides in a spherical triangle cannot exceed 360c.

→Proof: In fi gure 2.8, join A, B, and C with straight lines, 
forming a tetrahedron with O. Th e nine angles in the  tetrahedron, 
excluding the angles in face ABC, must add up to 3 180 540# c c= , 
since they form three triangles. Now, the sum of the two of those 
nine angles that are located at A exceeds \A in the plane tri-
angle ABC (by the same argument that led to the lemma a few 
moments ago), and likewise for the pairs of angles at B and C. 
Th erefore,
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QED→

What Are the Smallest and Largest Possible 
Sums of Angles in Spherical Triangles?

We’ll take a surprising path to answer this question, but we’ll start off  
with a stroll in the park. Just as we did with side lengths, we can restrict 
any angle of a spherical triangle to a maximum of 180c, since if we have 
a triangle with a larger angle, we can simply reverse the roles of the “in-
side” and “outside” of the triangle to get an angle less than 180c. Th en 
we can reach the theoretical maximum of 540c simply by taking three 
points along the equator, spaced equally 120c apart, and calling them 
the vertices of a triangle. Or, if you’re uncomfortable with triangle sides 
being collinear, raise all three of the vertices slightly above the equator.

We approach the question of the minimum sum of angles from a side 
issue, to catch it by surprise. Th e great Muslim scientist al- Bīrūnī, who 
showed us how to fi nd the size of the Earth in chapter 1, had an almost 
equally illustrious teacher, Abū Nas .r Mans .ūr ibn �Alī ibn �Irāq, near the 
turn of the fi rst millennium. Th e two men lived in an astonishing time. 
Muslim science was exploding, re- inventing itself in a number of ways 
and outstripping its Greek heritage in much the same way that the En-
lightenment did in Europe. We shall see in chapter 4 that plane and 
spherical trigonometry were aff ected dramatically. But we are getting 
ahead of ourselves.

Abū Nas.r Mans.ūr suggested the following construction. In any 
spherical triangle ABC, extend side AB (fi gure 2.10; see fi gures 2.11 and 
2.12 for historical illustrations of the same diagram). Th ink of it as an 
equator, and let Cl be the pole that is on the same side of AB as the origi-
nal triangle is. Repeat this step for the other two sides, defi ning Al and 
Bl. Join Al, Bl, and Cl, and we have formed the polar triangle of ΔABC.

At fi rst glance this construction seems mystifying. Th e two triangles 
have no obvious geometric relation to each other; sometimes they inter-
sect and sometimes they don’t. Sometimes one triangle entirely encloses 



36 • Chapter 2

the other (although on a sphere the notion of “inside” and “outside” is 
more than a little slippery). But the polar triangle harbors a secret. First, 
a preliminary result.

Th eorem: Th e polar triangle of a polar triangle is the original triangle.

→Proof: In fi gure 2.10, extend the arcs of the original triangle to 
intersect the sides of the polar triangle (indicated by dashed lines). 
Since Cl is a pole of AB and Al is a pole of BC, both Cl and Al are 
90c removed from B. So B must be a pole of ACl l. Likewise for the 
other arcs. QED→

Th is sort of situation is not uncommon in mathematics. If an object 
is transformed in some way, and the same transformation applied to the 
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Figure 2.10. Th e polar triangle.

Figure 2.11. An image from the third edition of Encyclopaedia Britannica, 1795. Figure 
11 in the image shows the construction of the polar triangle.



Exploring the Sphere • 37

resulting object returns us to the original, the objects are said to be in 
a dual relation to each other. Duality shows up in many mathematical 
corners. For instance, consider the Platonic solids (regular polyhedra; 
see diagrams in fi gure 7.4). If we join the center points of each face of a 
cube with line segments, we form an octahedron within the cube. If we 
repeat the operation on the octahedron, we get a cube within the octa-
hedron. Th e same applies to dodecahedra and icosahedra. (Th e tetra-
hedron is self- dual, since the transformation simply produces another 
tetrahedron.) Oft en something new can be learned about the original 
object by studying its dual, and that is our happy situation here. In fact, 
there’s a case to be made that we have arrived at the most important 
theorem of this book.

Figure 2.12. One of a number of paper models constructed by A. Harold Wheeler 
(1873–1950) to illustrate mathematical ideas. Th is model represents the polar triangle. 
Courtesy of the Smithsonian Institution, Washington, DC.
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Polar Duality Th eorem: Th e sides of a polar triangle are the supple-
ments of the angles of the original triangle, and the angles of a polar 
triangle are the supplements of the sides of the original.

→Proof: In fi gure 2.10 both D and E (extensions of the sides 
of the original triangle to the sides of the polar triangle) are 90c re-
moved from A; therefore \A = DE. Now since Cl is a pole of ABD 
and Bl is a pole of ACE, both C Dl  and B El  are 90c. Th erefore

 .B C B E C D DE DE A180 180c c \= + − = − = −l l l l

Similarly for the other sides of the polar triangle; we have now dis-
patched the fi rst half of the theorem. Th e second half follows im-
mediately from the duality relation: simply apply the result we have 
just established to the polar triangle and its polar (i.e., the original 
triangle), rather than the original and the polar triangle. QED→

Why is this theorem being championed so strongly? Its remarkable 
power lies in the fact that it can be used as a theorem- doubling machine. 
From now on, any time we discover something about the sides of a tri-
angle, we shall immediately know something about its angles, and vice 
versa. Th ere may not be such a thing as a free lunch, but polar triangles 
get us two theorems for the price of one. We shall cash in on this bargain 
immediately.

Th eorem: Th e angle sum of a triangle must exceed 180c.

Proof: We know that the sum of the sides of the polar triangle must be 
< 360c. Since the sides of the polar triangle are the supplements of the 
angles of the original,

 ( ) ( ) ( ) ,A B C180 180 180 360<c c c c− + − + −

so 180A B C > c+ + . QED

In this sneaky way, we have accomplished our goal of determining 
bounds on the sides and angles of a spherical triangle. Th e sum of the 
sides must lie between 0c and 360c, while the sum of the angles must 
lie between 180c and 540c. And now, fi nally, we have enough spherical 
geometry under our belts to tackle some spherical trigonometry.
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Exercises

 1.  (a) Following Hipparchus’s model in fi gure 2.5, determine the eccentric-
ity of the solar orbit. You may use modern trigonometric functions, and 
assume that the radius of the circle is 1. (Hint: fi rst convert the lengths of 
spring and summer—94½ days and 92½ days—to degree measurement, 
using the fact that the year is 365¼ days long. Th en, using both of the 
resulting arcs, determine the values of both of the two small angles that 
represent the excess of the spring arc over 90c.)
(b) Use the same diagram to determine the arc length from the spring 
equinox to the Sun’s apogee (its furthest distance from the Earth). Th is is 
the longitude of the Sun’s apogee.

 2.  Show that the area of a lune with angles θ is πr2θ/90, where r is the radius 
of the sphere.

 3.  Th e altitude of the North Star above the horizon is equal to the terrestrial 
latitude of the observer. Why? Draw a picture to demonstrate.

 4.  In the Almagest, Ptolemy shows how to determine the obliquity of the 
ecliptic ε. One begins by placing a stick exactly 1 meter long vertically 
into the ground (see fi gure E- 2.4). Th is stick was called a gnomon. On an 
equinox, at high noon, measure the length of its shadow.
(a) Th e arc from the zenith down to the Sun is equal to your terrestrial 
latitude. Explain why, with an appropriate picture.
(b) At your location at an equinox at high noon, how long will the 
shadow be? (Calculate, don’t estimate.)
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solstice
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Figure E-2.4.
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(c) Th e function you needed in (b) was eventually called the “shadow 
function.” Which of the six trigonometric functions is it?

 5.  In the previous question there was as yet no sign of ε, so we continue. At 
high noon on the winter solstice, the Sun will be lower in the sky that it 
was at the equinox; on the summer solstice it will be higher.
(a) Th e diff erence in the Sun’s altitude between the equinox and either 
solstice is ε. Why?
(b) At a latitude of 49c N, we measure the winter solstice shadow length 
to be 3.1601 meters. Determine the value of ε.

 6.  Th ere are certain stars that never set below the horizon, called circum-
polar stars. Th e Big Dipper is an example; in the middle latitudes of the 
northern hemisphere it is visible every night of the year. Likewise, there 
are certain stars that are never visible for an observer at a given terres-
trial latitude. How close does a star have to be to the North Pole to be 
circumpolar? How close does a star have to be to the South Pole to be not 
visible? Th e answer will depend on your latitude.

 7.  (a) A bear hunter walks one km south, then one km east, then one km 
north, and ends up back where he started. What color is the bear?
(b) Th e puzzle in (a) has a particular location in mind, but there are actu-
ally many locations where this journey is possible. Identify the others, 
and say what animal must replace the bear in the story.

 8.  How many miles is 1c of longitude on the equator? At New York City? 
[courtesy of Raymond N. Greenwell]

 9.  A nautical mile is equal to one minute of arc, or c60
1 , on the Earth’s surface. 

Th is value works out to 1.1508 miles, or 1.852 km. Traveling one degree 
of longitude eastward along a circle of some fi xed latitude will be less than 
sixty times this distance, because a latitude circle is smaller than a great 
circle. Th e table in fi gure E- 2.9, from Bernard’s 1958 Nautical Star Chart 
(plate 11), gives a table of this distance in nautical miles as a function of 
terrestrial latitude. Determine the formula that was used to compute it.

 10.  Prove that if a spherical triangle has three right angles, then it is its own 
polar triangle. [Moritz 1913, p. 12]

 11.  If the restriction on angles being no larger than 180c is dropped, what is 
the upper limit on the sum of the angles of a spherical triangle? [courtesy 
of Raymond N. Greenwell]

 12.  Show that a spherical polygon with n sides (each 180c) has a sum of 
 interior angles greater than 180 360n$c c− . [paraphrased from Cresswell 
1816, p. 54]
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 13.  Show that a spherical triangle with two equal sides has two equal angles. 
[paraphrased from Stanley 1854, p. 26] (Hint: draw tangents at B and C in 
fi gure 2.8.)

 14.  Show that in any spherical triangle, the diff erence between any angle and 
the sum of the other two is less than 180c. [paraphrased from Moritz 
1913, p. 12] (Hint: use the polar triangle.)

Figure E-2.9. A table from Bernard’s Nautical Star Chart, 1958. Reproduced with the 
permission of Brown, Son & Ferguson, Ltd., Scotland.
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The Ancient Approach

We tend to think of the growth of mathematical knowledge like that of a 
glacier. Th e boundaries spread outward gradually as new bits of knowl-
edge are added to the existing structure. But a fl ag planted at a particular 
spot will stay there, and the features of its immediate environment stay 
essentially unchanged. Other than the accretion of new functions and 
identities, the basic theory remains the same. Aft er all, how could trigo-
nometry look any diff erent from how it looks today?

Part of the goal of the next couple of chapters is to refute this charge of 
intellectual lifelessness. Spherical trigonometry, one of the oldest math-
ematical subjects, has undergone at least two major transformations—
not at its periphery, but at its foundation. Now, existing theorems didn’t 
suddenly become false. Rather, the nature of the fundamental functions 
changed, as did the tools used by practitioners to solve problems. Th is is 
a glacier with a couple of depth charges planted in its surface.

Our story begins with Hipparchus of Rhodes, the founder of trigo-
nometry. We have said little about him yet, for the obvious reason that 
we know almost nothing about him. His life, like that of most Greek 
scientists, is a blank to us. Since he was an astronomer we can use the 
observations he made that survive, and the references his successors 
made to him, to reconstruct when and where he must have lived. Th ese 
sources don’t give us much: he was born early in the 2nd century BC in 
Bithynia (today, northwest Turkey) and spent the last part of his career 
on the island of Rhodes, just south of the southwest tip of Turkey. Even 
his written work remains mostly a mystery: all that survives is an astro-
nomical commentary on a poem by Aratus. We have had to reconstruct 
most of our knowledge of Hipparchus’s accomplishments through pass-
ing references to them within the works of others. Chief among his an-
cient admirers was Claudius Ptolemy (2nd century AD), who describes 
some of Hipparchus’s achievements in the Almagest.
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But the Almagest was not written as a work of history. Although his-
torians have used Ptolemy’s work to make some ingenious inferences 
about earlier Greek astronomy, what exactly happened during the period 
from Hipparchus to Ptolemy is still a minefi eld of conjecture. We are 
starting to learn more by studying garbage. Th e ancient Egyptian town 
of Oxyrhynchus, about 100 miles up the Nile from Cairo, happened to 
locate its rubbish heaps far enough away from the river to avoid the an-
nual fl ooding. Th ousands of discarded scraps of papyrus are still some-
what intact today. It is our good fortune that at least a few Oxyrhynchans 
found their astronomical texts not riveting enough to keep, and those 
papyri are being reconstructed today.

However, Hipparchus remains a shadowy fi gure. Th e question of in-
terest to us here, whether or not Hipparchus applied his study of chord 
lengths in a circle beyond his solar and lunar models to the celestial 
sphere, is fi ercely debated. Clues gathered from the data Hipparchus is 
known to have collected and the calculations he made suggest that he 
might have done some mathematical work on the sphere. But neither 
Ptolemy nor Oxyrhynchus supply a conclusive smoking gun.

Menelaus and His Th eorems

We must therefore move more than two centuries ahead, to a fi gure al-
most as elusive as Hipparchus. We are aware that Menelaus of Alexan-
dria lived in Rome in the late fi rst century AD because Ptolemy tells 
us he made some observations there, but that is all we know. All but a 
couple of fragments of his writings are lost, except fortunately for the 
one that most concerns us. Although Menelaus’s Sphaerica no longer 
exists in the original Greek, it found a way to survive in several Arabic 
and Latin translations (fi gure 3.1). “Translation” might be too strong a 
word here, because these later authors—not concerned with histori-
cal accuracy —altered the text signifi cantly to make it more useful to 
their readers. Th eir most obvious innovation was the replacement of the 
chord function with the sine, which had been introduced to the Mus-
lim world from India. Nevertheless, we do have a clear idea of what the 
Sphaerica originally contained.

It is a remarkable book. It was not the fi rst work of its kind or the 
fi rst by that title. However, unless part of the story of trigonometry is 
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missing, which is almost a sure bet, the Sphaerica completely reinvented 
the mathematical study of the sphere. For several centuries Greek 
 scholars had investigated the geometry of the sphere. Th eir interest was 
super fi cially mathematical, but astronomy was always just behind the 
curtain. One of the earliest of these scientists was Autolycus of Pitane in 
the 4th century BC (On a Moving Sphere); one of the latest was Th eo-
dosius of Bithynia (Spherics), writing just aft er Hipparchus; the most 
famous was Euclid himself (Phaenomena). Each of these books shared 
one crucial, yet unavoidable shortcoming: they were not quantitative. 

Figure 3.1. Th e fi rst page of Book III of Edmund Halley’s edition of Menelaus’s 
Sphaerica. © Burndy Library, MIT. Th is item is reproduced by permission of Th e 
Huntington Library, San Marino, California.
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Th ey described general properties of arcs and demonstrated that certain 
arcs were longer than others, but they did not calculate the length of 
anything. How could they? Trigonometry had not yet been born. But in 
the last of the three books of his Sphaerica, Menelaus changed all that.

We begin with the theorem that is named aft er Menelaus today, a 
statement from plane geometry (in fi gure 3.2) that we shall extend to the 
sphere (fi gures 3.1 and 3.4, or the left most of the old English demonstra-
tion spheres in plate 4). Curiously, Menelaus himself does not prove the 
planar statement, so he must have thought his readers already knew it.

Menelaus’s Plane Th eorem: In fi gure 3.2, KB
AK

TD
AT

LB
DL$= .

Proof: Draw DX parallel to TLK; then ΔXAD + ΔKAT and ΔDBX + 
ΔLBK. Th erefore

 KB
AK

XK
AK

KB
XK

TD
AT

LB
DL$ $= = . QED

Menelaus is interested in this theorem only to piggyback from it to a 
statement about arcs confi gured similarly on a sphere. At fi rst blush 
though, it seems a bit strange to deal with this peculiar diagram, which 
we shall call the Menelaus confi guration (the collection of boldface arcs in 
fi gure 3.4). How could such a statement be of much use to astronomers?

In the previous chapter we saw that converting between diff er-
ent spherical coordinate systems was the most important task that 

A

D

T

L
K

B

X Figure 3.2. Th e plane Menelaus 
Th eorem.
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astronomers required of mathematics. Consider the Sun traveling along 
the ecliptic in fi gure 3.3. Clearly its ecliptic latitude β is zero; its ecliptic 
longitude λ is determined by the time of year. (To see precisely how 
to fi nd λ, see appendix A.) Our goal is to convert a given value of λ to 
the corresponding equatorial coordinates, i.e., the right ascension α and 
declination δ. It doesn’t look like Menelaus’s confi guration will help us 
to solve the right- angled triangle ^RA. But if one adds the solstitial 
colure (the circle on the outside of the fi gure, through the two solstices 
and the North Pole) to the diagram, suddenly a Menelaus confi guration 
appears—^ABCNR. It’s not the only one in the fi gure, but it’s the one 
we’ll use.

Th e diagram Menelaus uses to establish his theorem, fi gure 3.4 (see 
also Edmund Halley’s rendition in fi gure 3.1), is a challenging exercise 
in visualization. H is the center of the sphere. Th e curves are the great 
circle arcs that form the spherical confi guration, and the dashed lines 
are the planar Menelaus confi guration from which we begin. Point K is 
inside of the sphere, and T is outside of it. Now, notice that for each of 
the three ratios in Menelaus’s planar theorem, the points to which that 
ratio refers lie on a single line segment. We wish to “pop” out these three 
ratios of line segments to ratios on the corresponding arcs. So AKB will 
transform to something in terms of AZB

(

, ADT will transform to some-
thing in terms of ADG

)

, and DLB will transform to something in terms 
of DEB(.

α

δ

ε

ε

λ
Equator

Ecliptic

A

B

C

N

Figure 3.3. Finding equatorial 
coordinates using Menelaus’s 
Th eorem.
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Although we have just identifi ed three arcs, they fall into two cat-
egories. For both AZB

(

 and DEB(, the corresponding line segment is a 
chord within the sphere; but for ADG

)

, the corresponding segment is 
partly within the sphere and partly outside it. We will deal with both 
situations by imagining the cross- section of the sphere through each 
relevant arc. In the fi rst situation (i.e., the fi rst two of our three arcs) the 
cross- sections look like fi gure 3.5. We’ll make the letter names generic, 
so that the lemma will apply to both cases.

Lemma A: In fi gure 3.5, sin
sin

BC
AB

β
α= .

Proof: Project A and C perpendicularly onto the vertical diameter. Since 
the circle has radius 1, the two dotted line segments have lengths sinα 
and sinβ. Th e two right triangles are similar, so the ratio holds. QED

A

D

G

E Z

B

K

L

HT

Figure 3.4. Proving Menelaus’s 
Th eorem.

α
β

A

B

Csin β

sin α

Figure 3.5.
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For the last cross- section, the segment is partly inside and partly out-
side of the circle (fi gure 3.6). Since there is only one instance of this 
construction in our Menelaus confi guration, we have no excuse to make 
the letter names generic, other than good mathematical form. However, 
that reason is good enough for us; and in any case, we will have the op-
portunity to re- use this lemma in an exercise at the end of the chapter.

Lemma B: In fi gure 3.6, sin
sin

AB
AC

β
α= .

Proof: Project B and C perpendicularly onto the horizontal diameter. 
Th e result follows immediately from the fact that the two right triangles 
are similar. QED

Menelaus’s spherical theorem is now upon us. Since every ratio of line 
segments in Menelaus’s planar theorem may be replaced by the sines of 
the corresponding arcs in fi gure 3.4, we conclude

Menelaus’s Th eorem A: 
sin
sin

sin
sin

sin
sin

BZ
AZ

GD
AG

EB
DE$=$

%

%

%

$

%

.

Now if there is a Th eorem A, then there must be a Th eorem B. Ptolemy 
states and uses a second theorem in the Almagest, but he doesn’t prove 
it, and as far as we know, neither does Menelaus. It is possible to prove 
it directly, but instead we shall follow the footsteps of the 9th- century 
scientist, translator, and commentator Th ābit ibn Qurra, who arrived 
at it by piggybacking on Th eorem A. Perhaps Th ābit’s commentary on 

Figure 3.6. 
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Ptolemy’s Almagest sparked his interest in these matters, but his proof of 
Th eorem B comes from another treatise (On the Sector Figure).

→Figure 3.7 begins with the same confi guration as before. Ex-
tend BA

%

 and BD% to form two semicircles connecting B to its antip-
odal point X. Th is action leads us to a new Menelaus confi guration 
XAZEGD, to which we can apply Th eorem A:

 
sin
sin

sin
sin

sin
sinAZ

G
GZ DE

AX E DX
$=%

%

%

%

%

%

.

But since BZAX
*

 is a semicircle, (180 )sin sin sinAX AB ABc= − =
% % %

; 
likewise, sin sinDX BD=

% %. Substituting and shuffl  ing a bit gives us →

Menelaus’s Th eorem B: 
sin
sin

sin
sin

sin
sin

Z
A

DE
E

A
B BD

GZ
G$=%

%

%

%

%

%

.

Th ese two theorems had several names during the medieval period. 
Th e name “Regula sex quantitatem,” or Rule of Six Quantities, explains 
itself. In medieval Islam it was called the “Sector” or “Transversal” fi g-
ure. Th e theorem is awkward to remember and use in the form given 
above, so we shall express it more simply (fi gure 3.8).

Disjunction: ( )
sin
sin

sin
sin

sin
sin

b
a

d
c d

h
g

$=
+ .

Conjunction: ( ) ( )
( )sin

sin
sin

sin
sin

sin
a

a b
g

fg h
e f$

+
=

+
+

.

X
A

D

G E B

Z
Figure 3.7. Proving Menelaus’s Th eorem B.
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Th ese names were chosen from the arcs in the ratios on the left  sides of 
the equal signs. In disjunction the two arcs are disjoint, while in con-
junction they overlap.

For readers familiar with graph theory, another way to remember 
these theorems (suggested by John Holte) is to rewrite them in the fol-
lowing form:

 1 1.
sin
sin

sin
sin

sin
sin

sin
sin

sin
sin

sin
sinA

A GE DGD
G

EB
DE

AZ
BZ

Z
BA ZG

B
EDand$ $ $ $= =%

%

$

%

%

$

%

%

%

%

%

%

Strangely, in both cases, reading the arcs in these formulas one ratio at 
a time from left  to right produces a Hamilton circuit of the Menelaus 
diagram—a path that passes through each vertex precisely once (not 
counting the midpoints of arcs traversed in one step from top to bottom 
or vice versa), and ends where it began.

Example: We revisit the problem of fi nding the Sun’s equatorial co-
ordinates. Remember that in fi gure 3.3, we knew λ from today’s date 
(see appendix A); and 23.44BC cε= =

$

, since both B and C are 90c away 
from the spring equinox .̂ We have already found the Menelaus con-
fi guration ^ABCNR, constructed by adding the solstitial colure BCN

(

 
to the diagram. Our goal is to determine the declination δ and right 
ascension α.

Th ere are actually four diff erent ways to apply Menelaus to any given 
confi guration: we have both disjunction and conjunction, and both 
theorems can be applied by assigning the arcs as they appear on the 

a

b

c

d

e

f

g

h

Figure 3.8. 
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diagram, or according to a mirror image of the diagram. In our case we 
use conjunction by rotating fi gure 3.8 clockwise 90c and applying it to 
fi gure 3.3. We get

 90
90sin

sin
sin

sin
sin
sin90 $c c

cε δ
λ=

since 90BN AN C^ c= = =
% & '

, or more simply, sin sin sin$δ λ ε= . Th is is 
the fi rst time we have seen a formula with this form, but it will appear 
again and again. In fact, during medieval times and the Renaissance, 
large tables of the function sin sin sinz x y$=  were compiled in order to 
solve all sorts of problems in spherical astronomy.

We can generate a formula for α that doesn’t involve δ: apply dis-
junction, this time rotating the mirror image of fi gure 3.8 clockwise 
90c. We get

 ( )
(90 )

90 (90 )
sin

sin
sin

sin
sin

sin90
$

c

c
c c

α
α

ε λ
λ−

=
−

− ,

which we can simplify by recalling that (90 )sin cosx xc− = . A little 
bookkeeping leaves us with tan tan cosα λ ε= .

Abū Sahl al- Kūhī and the Winds of Change

Menelaus’s Th eorem became the standard tool of spherical astronomy 
for the next 900 years. Menelaus may have Claudius Ptolemy to thank 
for his fame. Ptolemy’s Almagest uses his theorem exclusively to solve all 
his spherical astronomical problems, and early medieval writers faith-
fully followed his lead. Th ere are a couple of ironies in this. Firstly, Ptol-
emy doesn’t give credit to Menelaus for this theorem in the Almagest, 
referring to him only as an astronomical observer. So it’s possible, that 
Menelaus didn’t even discover his own theorem. One point in favor of 
this suggestion is that Book III of his Sphaerica begins using the theo-
rem as a foundation on which to prove a number of other results. And 
herein lies the second irony: these new results, which we will see in the 
next chapter, would eventually unseat his original theorem. In a sense, 
Menelaus was the maker of his own undoing.

Th e revolution in spherical trigonometry came about during the 
Islamic Enlightenment around the turn of the fi rst millennium in our 
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calendar. We’ll see more of the nature of this upheaval later. For now we 
focus on a conservative Islamic scholar who fought against the revolu-
tion by defending the astronomical power of Menelaus. Abū Sahl al- Kūhī 
lived in Baghdad during the last few decades of the 10th century. His 
journey to higher learning was somewhat unusual; he worked originally 
as a juggler of glass bottles in a marketplace. One wonders whether this 
might have sparked his later interest in fi nding the centers of gravity of 
various shapes. Eventually he came to be sponsored by the Būyid kings, 
especially �Ad.ud al- Daula (“Arm of the State”), who also sponsored the 
great astronomer Abū ’l- Wafā�. Al- Kūhī was interested mostly in geom-
etry, and his work favored the style of the ancient Greeks, especially Eu-
clid, Archimedes, and Apollonius. Although today he is considered to 
be the foremost geometer of the 10th century, he is also remembered for 
an unfortunate mistake: trusting too much a geometric analogy that he 
had discovered between certain shapes in his work on centers of gravity, 
he concluded that 3 9

1π= .
Many of the mathematical documents that survive from the medieval 

period are straightforward theorems and proofs, with little of the per-
sonal touch. However, one of al- Kūhī’s missives, several pages long, has 
dramatic fl air. He begins:

Some of our colleagues who are well- advanced in this art of ours asked us at 
the Royal Palace, in the presence of some honorable members of this art at-
tached to the Noble [i.e., the King’s] Service about fi nding the rising time of 
a known arc of the ecliptic in a town of known latitude . . . And he requested 
us to do that for him using [only] our knowledge of the Transversal Figure, 
which is in Ptolemy’s Almagest, and no other theorem. And he claimed that 
he can derive that by a way that is shorter, easier and involves less work than 
that of the people who know [only] the Transversal Figure, and that that is 
not only because of his acuity in this art, but because of another theorem 
not known as “Th e Transversal.” And his support is it alone, nothing else. 
And he claimed that he and others were freed by it [the new theorem] from 
knowing the Transversal Figure in these operations, or from looking into it. 
But it is my opinion that, although his judgment might be allowable for him-
self, it is not so for others. Nevertheless, the problem merits an investigation.

We do not know who the interloper was, although we’ll take a guess in 
the next chapter. Al- Kūhī, primarily a geometer, was an unlikely fi gure to 
leap to Ptolemy’s and Menelaus’s astronomical defense; we are not sure 
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why he took an interest in this problem. We’ve noticed before that the 
ecliptic’s position in the sky changes as it is carried by the daily rotation 
of the celestial sphere. For a given arc of the ecliptic, its rising time is the 
length of time it takes between the moment that the top of the arc fi rst 
emerges above the horizon to the moment when the entire arc has fully 
risen. Since the Sun is on the ecliptic, rising times are connected with 
changes in the length of daylight throughout the year; ancient scientists 
were also interested in rising times for their astrological signifi cance.

Th e heart of al- Kūhī’s defense of Menelaus is extremely brief, as if 
he were trying to impress upon his readers the compactness and effi  -
ciency of his method. In just four sentences he solves the problem of 
rising times, and also knocks off  three other important astronomical 
problems along the way. In fi gure 3.9 (also plate 5) the arc in question is 
^R with longitude λ, which has just fi nished rising above the horizon. 
Some hours earlier (the precise length of time is what we need to fi nd), 
^ had been on the horizon at the east point E. Since we know where 
we are on the Earth’s surface we know the value of ϕ, which is both our 
terrestrial latitude and the altitude of the North Pole above the horizon 
(see chapter 2, exercise 3). Draw NGZ

(

, the equator to ^’s pole. Since all 
the points on this great circle are 90c removed from ,̂ we know that 

GZε=
%

.
So we know λ (from the time of year), ϕ, and ε. Our goal is to deter-

mine a time interval, but how do we do that geometrically? Recall that 
the celestial equator is our astronomical clock, rotating at a rate of 15c 
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Figure 3.9. Rising times of arcs 
of the ecliptic.
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per hour. As the ecliptic arc ^R rose above the horizon, the equatorial 
arc that rose was Êθ=

&

. So once we’ve found θ, we simply divide it by 
15 to get the rising time in hours.

Al- Kūhī does not specify exactly how the Menelaus theorems apply; 
he simply states the results. We’ll be a little more helpful.

Step 1: Apply the conjunction theorem to confi guration NGZM^R as 
we did earlier, to get sin sin sin$δ λ ε= .

Step 2: Next fi nd what in medieval times was called the ortive or ris-
ing amplitude ERη=

&

, the distance along the horizon between R and 
the east point E. Th is quantity determines where the Sun rises above 
the horizon. For this al- Kūhī uses another Menelaus confi guration, 
NHQMER. Applying conjunction we get

 ( )sin
sin

sin
sin

sin
sin

90
90 90

90$
c
c c

cϕ δ
η

−
= ,

or /sin sin cosη δ ϕ= .

Step 3: Return to the Menelaus confi guration of the previous step and 
apply conjunction again, but this time assign the arcs the other way:

 90
(90 )

90
90

(90 )
sin
sin

sin
sin

sin
sin

MQ
$c

c
c

c

c

η
δ

=
−

−
& ,

or /sin cos cosMQ η δ=
&

. Th e signifi cance of MQ
&

 is that it is the comple-
ment of n EM=

&, known to Muslim astronomers as the ascensional dif-
ference or equation of daylight. One may think of it as the diff erence 
between the rising time of the arc for an observer at our location and the 
rising time if the observer were at the terrestrial equator, in which case 

EM^
*

 would be a vertical arc.

Step 4: Our fi nal step is a return to confi guration NGZM^R from 
Step 1, again applying conjunction but assigning the arcs the other way. 
Th e result is

 90
(90 )

90
90

(90 )
sin
sin

sin
sin

sin
sin

MZ
$c

c
c

c

c

λ
δ

=
−

−
& ,

or /sin cos cosMZ λ δ=
&

.
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At this point al- Kūhī is done. Consider Q^
'

: removing 90Z^ c=
'

 
from it leaves ZQ

%

, but removing 90EQ c=
%

 leaves Êθ=
&

. So ZQθ= =
%

MQ MZ−
& &

.
A question remains: why did al- Kūhī feel the need to derive again 

a result already found in the Almagest? One possibility suggests itself: 
the unnamed modernist arrived with a single new theorem on which 
he claimed to base all of spherical astronomy. Menelaus’s Th eorem is 
really two statements. Al- Kūhī’s derivation uses only one of them— 
conjunction—in order to determine all four astronomical quantities. It 
is a marvel of compact mathematics.

One detects a certain smugness in al- Kūhī’s voice as he summarizes 
the implications:

Now, we found by this [small number] of operations all these things [decli-
nation, ortive amplitude, equation of daylight, right ascension] . . . all from 
our knowledge of the Transversal Figure, which is in the Almagest, with-
out anything else. Th us we know that to abandon these things which follow 
from this Th eorem and depend on anything else, and praising one of them 
and blaming the other, is impossible until we have investigated the matter 
completely, and have realized the superiority of one of them over the other 
and the distinction between the two (if there is between them any distinc-
tion at all, as he claims there is).

As confi dent as al- Kūhī may have been in the superiority—or at least 
equality—of the ancient methods, there was little time left  for them. 
Several new theorems were circulating, each with the intent of sweeping 
the ancient approach away. Th e forces of change were at the gate, and 
al- Kūhī could not hold them for long.

Exercises

 1.  (a) Pick a random location λ (celestial longitude) on the ecliptic, and use 
Menelaus’s Th eorem to compute values for the equatorial coordinates α 
(right ascension) and δ (declination) of that point. Use 23.4cε= .
(b) Th e equatorial coordinates of the Sun on the ecliptic are 

126.31 8.421hcα= =  and 19.22cδ= . What day of the year is it? (Hint: use 
the table in appendix A.)
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 2.  Choose a particular date (say, May 20), and a particular latitude (say, 
49.3c N). Use Menelaus’s Th eorem to calculate the following quantities:
(a) the Sun’s declination δ
(b) the ortive amplitude η
(c) the equation of daylight n
(d) the rising time θ.

 3.  In this and the following question, we will demonstrate the conjunction 
version of Menelaus’s Th eorem directly, rather than piggyback on the 
disjunction theorem. For our fi rst step, demonstrate the following result 
related to the plane Menelaus Th eorem (fi gure 3.2):

 AK
AB

LD
BD

TK
LT$= .

  (Hint: draw a line segment KY, parallel to BD.)
 4.  (Continued from question 3.) To move from the plane to the sphere we 

will need a slightly diff erent diagram than before. In fi gure E- 3.4, begin 
with the original spherical confi guration. Th en extend BZ and HA until 
they meet at a point X outside of the sphere. Next extend ZE and HG 
until they meet at point Y. Finally, join BE and extend to W on the line 
connecting X and Y. From this diagram, prove the conjunction version of 
Menelaus’s Th eorem.

 5.  (a) In fi gure 3.3 we applied Menelaus’s Th eorem in two of the four 
possible ways, to get formulas that convert from ecliptic to equatorial 

A

D

G

E

Z

B

X

W

HY

Figure E-3.4.
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coordinates. What formulas do you get if you apply Menelaus’s Th eorem 
the other two ways? Are these formulas useful?
(b) Use astronomical soft ware or appendix A to determine the Sun’s 
longitude on your birthday. Use this information to calculate the Sun’s 
right ascension and declination on that day, and confi rm your result with 
astronomical soft ware (if available).

 6.  In this problem we shall follow Ptolemy’s method to determine the ortive 
amplitude of the Sun. In fi gure E- 3.6 the Sun is rising, and will continue 
to rise in the direction indicated until it reaches a point just below B on 
the left  edge of the diagram. \ANB is equal to t/2, where t is the length 
of daylight (converted to degrees using 15 1hc= ), since that is the amount 
that NAS

(

 rotates as the Sun rises from daybreak to noon.

(a) Derive a formula for the ortive amplitude η in terms of δ and t/2.
(b) At Rhodes, where Hipparchus lived for part of his life, the shortest day 
(the winter solstice) is 9.5 hours long. Where will the Sun rise that day? 
(Hint: What is the value of the Sun’s declination at the winter solstice?)
(c) Ptolemy does not take into account the eff ect of atmospheric refraction 
in the above calculation. Refraction has the eff ect of making the Sun ap-
pear higher in the sky than it actually is. What eff ect will this have on our 
answer to (b): will the Sun rise closer to the east point, or further away?

 7.  If you decide that staying up late to measure the altitude of the North 
Star is not your cup of tea, it is also possible to determine your terrestrial 
latitude using the length of the longest day of the year. In fi gure E- 3.6, our 
latitude is DNϕ=

&

.

Figure E-3.6.
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(a) Use one of Menelaus’s Th eorems to derive a formula for ϕ in terms of 
the ortive amplitude η and half the length of daylight t/2.
(b) Our result from (a) isn’t enough, because typically we don’t know the 
ortive amplitude. Use the results of question 6 to get ϕ in terms of the 
Sun’s declination δ and t/2.
(c) Th is result still isn’t enough, because typically we don’t know the Sun’s 
declination either. But we do on the longest day of the year. Take this fact 
into account in your fi nal reckoning of the formula.
(d) Confi rm that your formula is correct by plugging in the value of 
the longest day of the year in Hipparchus’s home town of Rhodes (14.5 
hours). You should get about 36c.
(e) You might get a negative value for Rhodes’s latitude, even though it is 
in the northern hemisphere. What happened?



✩ 4 ✩

The Medieval Approach

Reading al- Kūhī’s statement defending the advantages of Menelaus’s 
Th eorem in the previous chapter is a bit like eavesdropping on some-
one holding a telephone conversation. We have a rough idea of what 
was said, but important parts of the debate are a blank to us. We are 
never told the name of the advocate of the new theorem, nor even what 
the new theorem was. Th ere is one hint. Th e traveling theorem sales-
man claimed that his result “freed” him from having to know Menelaus’s 
Th eorem to solve astronomical problems. Th is is precisely the word and 
meaning that became attached to several related propositions, each of 
which claimed to be easier to remember and use than Menelaus.

Th e new theorems must have been in the air, because they appear 
almost simultaneously in several places and in the hands of several 
people. One of the claimants to priority of the new discoveries was 
Abū Mah.mūd al- Khujandī, an astronomer most famous for building a 
30- foot- high sextant for solar observations in Rayy, near today’s Tehran. 
Just as with modern telescopes, in theory a larger instrument produces 
more accurate results. Th e problem, as al- Bīrūnī later pointed out when 
the sextant did not live up to expectations, is that heavy building materi-
als tend to sag under their own weight. It is possible that al- Khujandī’s 
proof of his new theorem suff ered a similar fate. Other demonstrations 
were more elegant and gained a higher billing.

Our second claimant is a familiar face: Abū Nas .r Mans .ūr ibn �Alī ibn 
�Irāq, al- Bīrūnī’s teacher and discoverer of the polar triangle. His origi-
nal work on the subject, the Book of the Azimuth, is preserved only by 
a quotation in al- Bīrūnī’s Keys to Astronomy. In it he proposes two new 
theorems, both based on the same diagram (fi gure 4.1):

Rule of Four Quantities: 
sin
sin

sin
sin

CE
BD

AE
AD=$

%

%

%

 .
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Abū Nas ̣r’s Second Th eorem: 
sin
sin

sin
sin

EF
DF

AB
AD=$

%

%

%

 .

At fi rst it appears that these theorems are nothing more than corollar-
ies to Menelaus, and in a mathematical sense they are.

Proof of the Rule of Four Quantities: Apply Menelaus’s conjunction 
theorem to fi gure 4.1; we get sin sin sin

sin
CE BD AE

AD1 1 $=$ % %

%

.

But it is not mathematical depth that permitted the Rule of Four 
Quantities to take over astronomy; rather, it was its ease of use in new 
contexts. By breaking off  one of the arms of the Menelaus confi guration, 
Abū Nas.r presented astronomers with a tool that extended their work-
ing lives by decreasing their mathematical labors. A Rule of Four Quan-
tities confi guration is just two nested right- angled triangles; to apply it 
to a diagram is child’s play compared to the confusing morass of arcs we 
fi nd in Menelaus.

Th e Rule of Four Quantities is also our fi rst example of the principle 
of locality. Imagine a spherical triangle shrinking in size until it almost 
vanishes. As it gets smaller it begins to resemble a plane triangle; and 
when it is very small, it almost becomes one. Th erefore any statement 
about a spherical triangle, applied to a triangle shrinking to nothingness, 

Figure 4.1. Th e Rule of Four Quantities and Abū Nas .r’s second theorem.
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becomes a statement about a plane triangle. In our case, imagine the 
confi guration of fi gure 4.1 shrinking until it is so small that the sides are 
almost straight. In radian measure, as 0x " , the value of sin x essentially 
becomes x itself. (Th is, in fact, is why radian measure is so useful. If we 
use degree measure, a multiplicative factor of π/180 emerges, but since 
we are here considering a ratio of sines, this factor cancels out.) So, re-
placing the sines of the arcs in the Rule of Four Quantities with the arcs 
themselves, we fi nd that for two nested right triangles, the ratios of the 
altitudes to the hypotenuses are equal. It’s similar triangles.

Since the Book of the Azimuth is lost, we cannot witness the death of 
Menelaus by Abū Nas.r’s hand directly. Happily Abū Nas.r’s sequel, Th e 
Determination of Spherical Arcs, is still with us, and in it he solves al- 
Kūhī’s rising times problem using both his new theorems. We shall do 
even better here, challenging al- Kūhī as Abū Nas .r might have done by 
using only the Rule of Four Quantities. For ease of reference we bring 
back the diagram from the previous chapter as fi gure 4.2.

(1) We begin with fi gure ^RGZM, from which we fi nd sin
sin sin

1=λ
δ ε, or 

sin sin sinδ λ ε= .
(2) Use fi gure ERHQM, from which we have (90 )

sin
sin sin

1= c

η
δ ϕ− , or sinη= 

/sin cosϕδ .
(3) Use fi gure NRMQH, which gives (90 )

(90 )
sin
sin sinMQ

1=c

c

δ
η

−
−

&

, or sinMQ =
&

/cos cosη δ.
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Figure 4.2. Rising times, this time with the Rule of Four Quantities.
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(4) Finally, use fi gure NGZMR to get (90 )
90( )

sin
sin sin MZ

1=c

c λ
δ−

− &

, or sinMZ =
&

/cos cosδλ .

Just as before, MQ MZθ= −
& &

, and we are done. Th ere is no doubt about 
it: the Rule of Four Quantities is much easier to apply, and we get results 
much more quickly. Menelaus and al- Kūhī didn’t stand a chance.

But there was more to come. Th e Rule of Four Quantities is related to 
a theorem more well known today—the spherical Law of Sines—and this 
latter theorem did not slip by Muslim scientists unnoticed. Once again 
controversy erupted over who deserved credit for its discovery, between 
two disputants we have met before: Abū Nas.r and Abū ’l- Wafā�. Al- 
Bīrūnī reported on the exchange in his aptly- named Keys to Astronomy, 
favoring Abū Nas.r and frowning on Abū ’l- Wafā�’s moral character —
but since the former was al- Bīrūnī’s teacher and Abū ’l- Wafā� may have 
died by the time the Keys was written, one wonders how much we can 
trust al- Bīrūnī’s claim.

Abū ’l- Wafā� was not shy about his accomplishments; he named his 
masterwork on the subject the Almagest—the “majestic,” the same title 
as Ptolemy’s magnum opus. In this case he had at least a little justifi ca-
tion to the exalted title. Th e new Almagest is an astonishing book: com-
prehensive and thorough, yet completely new and strikingly elegant. 
Among its many innovations, Abū ’l- Wafā�’s Almagest introduced the 
tangent and the minor trigonometric functions (secant, cosecant, cotan-
gent) into astronomical practice. Until this time the tangent had been 
available, but used mostly with gnomonics, the study and construction 
of sundials. As can be seen from exercises 4 and 5 of chapter 2, the tan-
gent arises naturally in that context—so naturally in fact that its recipro-
cal, the cotangent, was called the “shadow.”

Although the Law of Sines was more integral to Abū Nas .r’s work than 
to Abū ’l- Wafā�’s, we have already spent some time with Abū Nas .r, so we 
shall inspect Abū ’l- Wafā�’s proof in his Almagest. Figure 4.3 shows Abū 
’l- Wafā�’s diagram. Th e power of the Law of Sines comes from the fact 
that it applies to any triangle, regardless of its confi guration; in the case 
of our fi gure it is ΔABC.

→Choose C to be one of the vertices, so that its perpendicular 
projection onto the opposite side AB

%

 lands between A and B, at 
D. Let EZ

$

 be the equator corresponding to pole A, and let HT
%

 be 
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the equator for pole B; extend the sides of the original triangle 
to touch both equators as shown. Th en apply the Rule of Four 
Quantities to two confi gurations, both involving CD

%

. Firstly, on 
ACZED we get

 , .sin
sin

sin
sin sin sin sinb

CD
AZ
EZ CD A bor $= =

%

%

$

%

Secondly, on BCTHD we get

 , .sin
sin

sin
sin sin sin sinCD CDa TB

TH B aor $= =
%

$

%

%

Combine the two equations and eliminate the shared term sin CD
%

. 
A little juggling results in

 .sin
sin

sin
sin

A
a

B
b=

But we could have started the argument equally well with any of 
the three vertices, not just C. (Th is isn’t quite true; in some trian-
gles the perpendicular doesn’t fall on the opposite side. We sweep 
this diffi  culty under the carpet by relegating it to the exercises.) If 
we had applied it to A, for instance, we would have ended up with 

H

T

C

Z

E
BDA

ab

c

Figure 4.3. Abū ’l- Wafā�’s proof of the spherical Law of Sines.
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sin
sin

sin
sin

B
b

C
c= . Combining these two results, we are left  with the breath-

takingly simple →

Spherical Law of Sines: sin
sin

sin
sin

sin
sin

A
a

B
b

C
c= =  .

Th e spherical Law of Sines is also amenable to the principle of local-
ity. If a spherical triangle shrinks downward to a point, just as before the 
sines of the side lengths approach the values of side lengths themselves. 
(Again, if we are measuring in degrees a multiplicative constant emerges 
in each ratio, but again it can be canceled out immediately.) So, reduced 
to the plane, the spherical Law of Sines becomes the

Planar Law of Sines: sin sin sinA
a

B
b

C
c= =  .

One would expect the Law of Sines, with its simplicity and complete 
generality, to have transformed medieval astronomy even more than did 
the Rule of Four Quantities. But science is not always predictable. Th e 
Rule of Four Quantities, with its more complicated and specifi ed dia-
gram, went on to dominate mathematical astronomy while the Law of 
Sines languished as a tool used only rarely in special circumstances. Th is 
unlikely defeat was because of the quantities that astronomers wanted to 
compute. Th ey cared about arcs: distances between objects, positions of 
planets, arcs of rising times, and so on. Angles meant little to them. Of 
course an angle can always be converted to an arc by moving 90c along 
both legs of the angle, but the whole point of the new theorems was 
to avoid drawing extraneous arcs on the diagram. So the Law of Sines 
would become a major tool only later, in Renaissance Europe.

Consider, for instance, the rising times problem. In fi gure 4.2 the Law 
of Sines may be applied to M^R

*

 to give us the fundamental relation 
sin sin sinδ λ ε= . But then what? It is possible to make more progress 
with the Law of Sines, but the path forward with the Rule of Four Quan-
tities is a lot more obvious.

Delving Beneath the Surface: 
Indian Spherical Astronomy

Up to now we have been assuming that medieval mathematics and as-
tronomy is equal to Islamic mathematics and astronomy, but that isn’t 
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really fair. We can skip over Europe, since until the end of the medi-
eval period much of the work that went on there was based on Islamic 
sources. But we cannot safely ignore India. As we saw earlier it was in 
India that the sine function was invented, some time aft er the Greeks 
invented the chord and centuries before the birth of Islam. Th e extent to 
which Indian trigonometry was inspired by Greek texts is deeply con-
troversial. Some writers claim that Indian scientists developed their the-
ory entirely on their own, which is a diffi  cult position to maintain given 
the striking similarities in many of the basic concepts and conventions.

But the other extreme, stating that Indian trigonometry is entirely 
derivative of Greek methods, is not fair either. Th is is especially true 
in spherical astronomy, where India developed a set of techniques that 
diff ered fundamentally from the Greek system based on Menelaus. Up 
to now, once Menelaus has been established, all of our subsequent math-
ematical work occurs on the surface of the sphere. Th is approach did not 
hold in India. In fact, the great Nīlakan .t≥ha once stated that

[t]he whole of the planetary mathematics is pervaded by two theorems, 
namely the so- called Pythagorean Th eorem and the Rule of Th ree (the pro-
portionality of sides in similar triangles).

It’s hard to imagine how either of these tools could play much of a role in 
Greek spherical astronomy. So the fi rst word of this chapter’s title is un-
dermined: the Indian approach is genuinely diff erent from the Greek/
Islamic tradition.

For a sample of an Indian approach, let’s reconsider the problem of 
fi nding the equatorial coordinates α and δ of the Sun (which we as-
sume has longitude λ on the ecliptic, fi gure 4.4). O is the center of the 
sphere, and all the labeled points on the interior of the sphere are on the 
horizontal plane through the equator. Th e two right triangles RED and 
COK, called the “krānki- s .etras” or “declination triangles,” are similar 
since they share the angle ε between the planes of the equator and the 
ecliptic. Th erefore

 E
D

CO
CK

R
R = .

But sinDR δ=  (to see why, consider the vertical circular segment 
ODAR), and similarly sinER λ=  and sinCK ε= . CO is the radius, so it 
is equal to 1, and the standard formula sin sin sinδ λ ε=  follows. We leave 
the determination of α as an exercise.
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Finding the Direction of Mecca

Until now we have always looked to the heavens for inspiration or con-
text for spherical trigonometry. Ironically, it was a religious concern that 
diverted the eyes of trigonometers downward to the Earth. Th e practice 
of Islam requires the faithful to perform fi ve tasks, known as the “Five 
Pillars.” Astronomers cannot help much with three of them (profession 
of faith, alms, and the hajj—the pilgrimage to Mecca). Th e other two—
fasting during daylight hours during the month of Ramadan, and the 
fi ve daily prayers—require technical assistance if they are to be obeyed 
strictly. Consider the monthly fast. Th e Arabic calendar is lunar, so each 
month begins when the lunar crescent reappears from behind the Sun 
aft er New Moon. Miss the crescent on a particular day, and you may 
end up violating the fasting requirement unawares. Muslim scientists 
worked hard attempting to predict the fi rst appearance of the lunar cres-
cent, with varying degrees of success.

But scientists were really able to justify their incomes with the times 
of prayer, which are regulated by the position of the Sun in the sky. 
When the moment occurs, worshippers are enjoined to face the Ka�ba, 
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Figure 4.4. Th e Indian approach to fi nding declinations of arcs of the ecliptic.
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the most sacred site of Islam. Th e Ka�ba, a cubical building (fi gure 4.5) 
that houses the Black Stone, is the destination of the pilgrimage that 
Muslims are asked to embark upon once in their lives. Th e direction of 
the Ka�ba—the qibla—serves several purposes besides the daily prayers, 
including determining the direction in which Muslims should face when 
they are buried. Modern technology is challenging the meaning of the 
qibla; a conference met in 2006 to decide the direction of prayer while 
in space. In practice, however, the injunction to face Mecca has not been 
taken as seriously as the scientists might have liked. Legal scholars oft en 
carried more weight than scientists, which may account for the wide 
variety of mosques’ actual orientations.

On the face of it the qibla does not seem diffi  cult to calculate. Since 
the positions of both Mecca and the worshipper are given, we know 
the local latitude Lϕ , 21.67M cϕ = , and the diff erence in longitude. So we 
would seem to have a right triangle on the Earth’s surface with values 
for the lengths of the two sides adjacent to the right angle (fi gure 4.6). 
Unfortunately, the bottom side representing the diff erence in longitude 

Figure 4.5. Th e Ka�ba, the most sacred site in Islam and destination of the hajj 
(pilgrimage). © iStockphoto.com / Aidar Ayazbayev.
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is not a great circle arc, but rather an arc of a circle of latitude. Th us the 
shape in fi gure 4.6 is not even a triangle.

Th e earliest solutions to the qibla problem were approximate, even as 
crude as assuming that fi gure 4.6 is actually a planar right- angled trian-
gle. Around AD 900 precise solutions based on spherical trigonometry 
(originally, Menelaus’s Th eorem) started to appear. As one might expect, 
al- Bīrūnī’s classic work of mathematical geography, Determination of the 
Coordinates of Cities (from which we took his measure of the circumfer-
ence of the Earth), goes into the matter in some depth. He gives no less 
than four precise solutions. Two of them apply constructions that go 
beneath the surface of the sphere, and so might be infl uenced by Indian 
methods. Th e other two probably use the latest spherical trigonometric 
methods of al- Bīrūnī’s time, such as the Rule of Four Quantities and the 
Law of Sines. We’re not quite sure of this assertion because al- Bīrūnī 
simply states the relations needed to solve the problem, not telling us 
precisely what theorems he used to get there.

All four of al- Bīrūnī’s methods determine the qibla for the city of 
Ghazna, now Ghazni in eastern Afghanistan. In his time Ghazna was one 
of the most important cities in the world: the capital of the Ghaznavid 
Empire, a Persian dynasty that lasted two centuries and at its peak incor-
porated most of modern- day Iran, Afghanistan, Pakistan, and several 
surrounding countries. To give the reader a taste of ancient and medi-
eval diagrams, we have reproduced al- Bīrūnī’s diagram (with a couple of 
trivial modifi cations) in fi gure 4.7. Although it looks two- dimensional, 
appearances are deceiving. Imagine that you are looking directly down 
on Ghazna from above the celestial sphere. All the curves on the fi gure 
(even the two straight lines) are great circle arcs on the celestial sphere 

Mecca
ϕM = 21.67°

Ghazna
ϕL = 33.58°

Δλ = 27.37°

Figure 4.6. Th e qibla problem.
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seen from above, so G is the zenith directly above Ghazna. Th e line con-
necting north and south through G, actually a great circle called the 
meridian of Ghazna, passes through the north pole P; the outer circle is 
Ghazna’s horizon. M is the point on the celestial sphere that an observer 
at Mecca would perceive as the zenith. WM( connects the west point on 
the horizon to M, and extends to A on the meridian. MBP( is the merid-
ian of Mecca.

→Al- Bīrūnī’s geographical coordinates for Ghazna and Mecca 
were 33.58L cϕ = , 21.67M cϕ = , and a longitude diff erence of λΔ =

.27 37c. Now Lϕ  is the altitude NP% of the North Pole, the north-
ernmost segment of Ghazna’s meridian; but both NG

%

 and PC
$

 are 
90c, so 33.58GC L cϕ= =

%

. So the arc from the worshipper’s zenith 
perpendicularly down to the equator is the local latitude. Th is fact 
must also apply to the zenith of Mecca, so 21.67MB M cϕ= =

& . Fi-
nally, the diff erence in longitude is equal to the angle at the North 
Pole between the two zeniths, so \MPG 27.37BC c= =

$

. Now that 
we have transferred all the data onto arcs in the diagram, we are 
ready to begin the actual mathematics.
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Figure 4.7. Graphic of al-Bīrūnī’s determination of the qibla.
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We shall use nothing but the Rule of Four Quantities. Starting with 
confi guration CAPMB we have

 , ( )
sin
sin

sin
sin

sin
sin

sinMA
P

BC
PB

MA
M 90 1or Mc ϕ

λΔ
=

−
=&

&

$

$

& ,

so sin cos sinMA Mϕ λΔ=
&

, which gives the “modifi ed longitude” 
25.29MA c=

&

. Our second confi guration is WMACB, from which 
we get

 ( )
sin

sin
sin

sin
sin

sin
sinMB

WM
AC
WA MA

AC
90 1or

M

c

ϕ
=

−
=&

(

$

&
&

$ ,

so /sin sin cosAC MAMϕ=
% &

, and we have the “modifi ed latitude” 
24.11AC c=

$

. Th en 24.11 9.47G GC ACA L c cϕ= − = − =
% % $

.

With the modifi ed longitude and latitude in hand, we turn our at-
tention to the outer horizon circle for Ghazna, which is where the 
qibla resides. It will take two steps. Firstly, from WMASD,

 ( )
( )sin

sin
sin

sin
sin

sin
sinMD

WM
AS
WA

MD
MA

GA
90

90
1or c

c
=

−
=

−
&

(

$

&

&

&

% ,

so sin cos cosMD MA GA=
& & %

, which gives 63.10MD c=
& . Our fi nal 

step applies the Rule of Four Quantities to fi gure GMDSA:

 ( )
sin
sin

sin
sin

sin
sin

sinM
M G

MA
M

DSA
G

DS
D D90 1or c

=
−

=&

&

$

%

&

&

$ ,

so /sin sin cosMA MDDS =
$ & &. Th is gives us the qibla, because DS =

$

 
70.79c is the number of degrees west of south that we must turn to 
face Mecca.→

Th ere is nothing special about Mecca in the above calculations. We 
could use the same reasoning to fi nd the direction to any destination. So 
scientists now had a means to determine the direction from any place 
on the Earth’s surface to any other. Granted, the calculations are not 
simple, but once they are automated they work quite smoothly. Never-
theless a small industry arose to generate tables of the qibla for any lo-
cation within the Arabic- speaking world, so that the faithful would be 
spared the pain of lengthy trigonometric calculation. Th e best of these 
tables was a set composed by Shams al- Dīn al- Khalīlī, an astronomical 
timekeeper employed by the Umayyad mosque in Damascus. Its sixteen 



The Medieval Approach • 71

pages contain almost 3000 entries of the qibla for every degree of lati-
tude and diff erence in longitude for all Earthly locations that mattered. 
Th e eff ort involved must have been Herculean.

Exercises

 1. Repeat question 1 of chapter 3, but use only the Rule of Four Quantities.
 2. Repeat question 2 of chapter 3, but use only the Rule of Four Quantities.
 3. Prove Abū Nas .r’s second theorem using Menelaus.
 4.  In our proof of the spherical Law of Sines we assumed that perpendicu-

lars dropped from all three vertices will lie within the triangle rather than 
outside of it. Of course, this is not always true. Demonstrate the Law of 
Sines for a triangle where one of the perpendiculars lies outside of the 
triangle.

 5.  (a) Another important discovery in Abū ’l- Wafā�’s Almagest is the Law of 
Tangents: in fi gure 4.1, 

 
sin
sin

tan
tan

AC
AB

CE
BD=$

%

$

%

 .

  Prove this identity using Menelaus’s Th eorem.
(b) Th e Law of Tangents is a powerful tool in spherical astronomy. Use 
it to derive an identity for the right ascension α of an arc of the ecliptic, 
given its declination δ and the obliquity of the ecliptic ε.

 6.  Use fi gure 4.4 and similar triangles to reconstruct an Indian formula for 
the right ascension, /sin sin cos cosα λ ε δ= . (Hint: you will need a second 
pair of similar triangles, in addition to the pair RED and COK.)

 7.  Repeat question 4 of chapter 3, on Ptolemy’s determination of the ortive 
amplitude, but this time use only the Rule of Four Quantities. (Recall that 
the east point E is 90c removed from all points on the meridian, the circle 
forming the outer border of the diagram.)

 8.  Repeat question 5 of chapter 3, on fi nding one’s terrestrial latitude from 
the length of the longest day, using only the Rule of Four Quantities.

 9.  In this question we shall work through another of al- Bīrūnī’s methods 
for fi nding the qibla of Ghazna in Th e Determination of the Coordinates 
of Cities. Th e diagram (fi gure E- 4.9) is identical to fi gure 4.7, except that 
AMW
*

 is omitted, and GFH
(

 is drawn from G perpendicular to PM. Recall 
that 27.37BC cλΔ= =

$

, .GC 33 58L cϕ= =
%

, and 21.67MB M cϕ= =
& .
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(a) Use the Rule of Four Quantities on fi gure PGCBF to fi nd FG
$

.
(b) Use the Rule of Four Quantities on fi gure EFPNH to fi nd PE$, and 
from it fi nd ME&.
(c) Use the Rule of Four Quantities on fi gure EMFHD to fi nd MD&.
(d) Finally, use the spherical Law of Sines on ΔPGM to fi nd \PGM, the 
direction of the qibla.

Equator

P

G

CB
D

M

N
(north)

S
(south)

E

F

H

Figure E-4.9.
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The Modern Approach: 

Right- Angled Triangles

Th e word “trigonometry” means “triangle measurement,” which is how 
we’ve thought of the subject for the past several centuries. Th e term 
comes from Bartholomew Pitiscus’s 1600 book Trigonometria (fi gure 
5.1), a variant of the phrase “the science of triangles” that had been used 
for a number of decades previously. But considering a triangle on its 
own, as millions of high school students do every day in trigonometry 
classes, is a relatively recent idea. From what we’ve seen so far of ancient 
and medieval trigonometry only the spherical Law of Sines works this 
way, and it wasn’t used particularly oft en. Th ere was simply no need 
for alternatives. When you’re blessed with a system that works as well 
as it did for ancient and medieval scientists, you don’t go hunting for 
innovations.

As we’ve seen, the Menelaus confi guration was replaced with simpler 
fi gures during the 10th and 11th centuries. Simplifying even further to 
just a triangle may seem obvious to us, but it wasn’t at the time. Th e 
tangent was only starting to be recognized as a trigonometric function, 
breaking out from its limited role in the theory of sundials and altimetry, 
and it hadn’t really been incorporated fully into spherical astronomy. 
Unfortunately, the potency of considering the triangle as its own en-
tity only becomes clear once we have in our possession the six- function 
wonder that we call trigonometry today.

So, the approach that we fi nd in almost all modern textbooks of 
spherical trigonometry is a product of European science. Much of it 
was conceived already quite early in the 17th century, long before the 
industrial revolution, calculus, or even coordinate geometry. A few of 
the formulas we’ll see in this chapter go back to medieval or ancient 
astronomers, but much of what we’re about to see was systematized in 
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Scotland by a man who wasn’t even a mathematician. Even the math-
ematical accomplishment for which he is most famous is seemingly un-
related to trigonometry.

Th e friends and associates of John Napier (1550–1617) might be taken 
aback to hear of his reputation as a major scientifi c fi gure today. For 

Figure 5.1. Th e cover page of Pitiscus’s Trigonometria, the fi rst appearance of the word 
“trigonometry.” Th is item is reproduced by permission of Th e Huntington Library, San 
Marino, California.
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Napier and most of his colleagues science was a hobby; it had not yet de-
veloped into a full- fl edged profession. A landholder, Napier was widely 
known for his passionate commitment to Protestant causes against the 
Catholics. His fi rst major publication, A Plaine Discovery of the Whole 
Revelation of Saint John, exhorted the Scottish king to take a fi rm po-
sition against Pope Clement VIII, whose identity as the Anti- Christ 
Napier believed he had demonstrated through calculation. Napier also 
followed Archimedes’s lead in applying his scientifi c eff orts to invent 
engines of war, to defend both his nation and his faith.

Napier’s interest in the sphere was well- timed; it would not be long 
before spherical trigonometry became an indispensable part of fi nding 
one’s way around the open seas as well as among the stars. In his trigo-
nometric work, whether astronomical or purely mathematical, he re-
ferred mostly to right- angled spherical triangles. Working in this way is 
not much of a limitation, since it is exactly how we work in plane trigo-
nometry today. Once the theorems for right triangles have been estab-
lished, we move on to consider an oblique triangle simply by dropping a 
perpendicular from an appropriate vertex, splitting the oblique triangle 
into two right triangles. Napier was fully aware of this possibility; in 
fact, as we shall see in chapter 6, one of the achievements for which he is 
known today relies on handling oblique triangles in this manner.

Deriving the Basic Identities

Th e standard naming convention for right- angled triangles is to let C be 
the vertex where the right angle resides, and to use lower- case letters for 
sides opposite the upper- case angles (see fi gure 5.2). So c will always be 
our hypotenuse. We can convert our side lengths a, b, and c into angles 
easily enough: if we join the three vertices to the center O of the sphere, 
the angles formed at O will be equal to the triangle’s sides. To generate 
new theorems we’re going to have to convert \A and \B from spherical 
to plane angles as well, and it’s not quite as obvious how to do that. One 
way is to think of \A as the angle between the “fl oor” plane OAC and the 
diagonal face OAB; similarly, \B is the angle between the vertical back 
wall OBC and the fl oor OAC.

We’d like to piggyback on ordinary trigonometry to get some new re-
sults, so we need to express \A and \B as angles between line segments 
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rather than between planes. To make this transition, pick any point D on 
OB. Drop a perpendicular to E on OC; next, drop another perpendicular 
from E to F on OA, forming right triangle DEF inside the sphere. ΔODE, 
ΔDEF, and ΔOEF are clearly right triangles. But although ΔODF looks 
right- angled as well, how can we tell for sure?

→Pythagoras comes to our rescue. Consider the square of the 
hoped- for hypotenuse OD:

 
( ) ( ) .

OD OE ED
OF EF DF EF OF DF

2 2 2

2 2 2 2 2 2
= +

= + + − = +

So, by the converse of the Pythagorean Th eorem, ΔOFD is a right- 
angled triangle as well as the other three faces of tetrahedron 
ODEF. Th us DF is perpendicular to OA. So, since FD and FE are 
both perpendicular to OA, \DFE is equal to the angle between the 
two planes OAC and OAB, which in turn is equal to \A.→

Applying trigonometry to fi gure 5.2 produces magical results. From 
this diagram alone, we may derive no less than seven formulas relat-
ing elements of the right- angled spherical triangle. Th e key is to con-
sider the four corners of tetrahedron ODEF. Each vertex is the shared 
terminus of three line segments. Pick any vertex and identify a ratio 
consisting of two of the three line segments that may be interpreted as a 
trigonometric function; for instance, at D,

 sina OD
DE= .

Figure 5.2. Th e right-angled spherical triangle.
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Now insert the third line segment into the ratio, as follows, and interpret 
the two new ratios as trigonometric expressions:

 sin sin sina DF
DE

OD
DF A c$= = .

Th ree other identities may be found by choosing the three other vertices 
of ODEF:

 
.

sin tan cot
cos tan cot
cos cos cos

b a A
A b c
c a b

=
=

=

(Th e latter identity was known as early as the 10th century to Arabic 
scientists al- Nayrīzī and al- Khāzin.)

Now, since A and B are just two arbitrary vertices there’s no math-
ematical distinction between them; similarly for a and b. (C is diff erent 
because it is designated as the location of the right angle.) So we may 
switch A with B, and a with b, to generate three new theorems:

 
.

sin sin sin
sin tan cot
cos tan cot

b B c
a b B
B a c

=
=
=

Flipping the a and b in cos c = cos a cos b doesn’t actually get us anything 
new, so for the moment we are stuck with a mere seven theorems.

We’re not fi nished yet. So far, because of the way we’ve constructed 
the diagram, we have not been able to generate any identities that refer 
to both A and B. It’s easy, but somehow unsporting, to get such theorems 
by combining our seven identities algebraically in various ways. Instead, 
we’ll stick with geometry.

→We need to add \B to our diagram, so we adapt the process 
that we used to construct \A (fi gure 5.3). Choose a point G on OA 
so that a perpendicular dropped onto OC lands at E; next, drop a 
perpendicular from E onto OB, landing at H. Join GH; by the same 
reasoning as before, ΔOHG is right, and \B = \EHG.

Each of the three planes containing O now contains several similar 
triangles, drawn separately in fi gure 5.4. Th ese triangles will un-
lock the new identities. Th e idea is to start with some trigonomet-
ric ratio, say /cosc OF OD= , and interpose line segments as we did 
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before. Next, use the similar triangles of fi gure 5.4 to convert the 
new ratios into trigonometric functions of other known angles. 
For instance:

 cos cot cotc OD
OF

OE
OF

OD
OE

EG
EF

DE
EH

DE
EF

EG
EH A B$ $ $= = = = = .→

Two more identities, related to each other by fl ipping A and a with 
B and b, may be proved with the same diagram (although we leave the 
geometric fun to the exercises):

 cos cos sin cos cos sinA a B B b Aand= = .

Th ese results are known as Geber’s Th eorem, aft er the early 12th cen-
tury Spanish Arabic astronomer Jābir ibn Afl ah>. His most well- known 
work, Correction of the Almagest, was such a fi erce attack that Coper-
nicus later called him an “egregious calumniator of Ptolemy.” Jābir was 
not an outstanding scientist, but he happened to be in the right place at 
the right time for his work to fi nd its way into the hands of infl uential 
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Figure 5.3. Continuing the derivations.

Figure 5.4. Th e three planes of fi gure 5.3.
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astronomers in late medieval Europe, thereby cementing his place in 
history.

We have fi nally arrived at the ten fundamental identities of a right- 
angled spherical triangle:

  I II
  sin tan cotb a A=  sin sin sina A c=
  cos cot cotc A B=  cos sin cosA B a=
  sin cot tana B b=  cos cos sinB b A=
  cos tan cotA b c=  sin sin sinb c B=
  cos cot tanB c a=  .cos cos cosc a b=

Applying the Locality Principle

We have noted before that when spherical triangles become smaller and 
smaller (i.e., a, b, and c approach zero), their curvature diminishes and 
they become almost planar. So if we take a statement about spherical 
triangles and allow a, b, c " 0, we should arrive at a related statement 
about plane triangles. Consider these examples:

 Spherical Formula Planar Equivalent

 sin sin
sinA c

a=  sinA c
a=

 cos tan
tanA c

b=  cosA c
b=

 tan sin
tanA b

a=  tanA b
a=  .

Th ese inferences all hold because for small angles the ratios of sines 
and tangents approach the ratios of the angles themselves. We get simi-
lar equivalences for most of the other identities. For instance, cos A = 
sin B cos a becomes the planar statement cos A = sin B; and since for 
a planar triangle 90B Ac= − , this statement is correct—if not very 
enlightening.

One theorem requires a bit more digging to fi nd its planar equivalent, 
but the extra eff ort is worth it. If we take cos c = cos a cos b and let a, b, 
c " 0, it’s unclear at fi rst how anything can result other than the bor-
ing 1 1 1# = . However, we may use a tool from introductory calculus to 
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discover something much more interesting. Th e Maclaurin series ex-
pansion for the cosine is

 ! ! ! ... .cosx x x x1 2 4 6
2 4 6

= − + − +

If x is very small, then we may approximate cos x by just 1 /x 22− , since 
the other terms will be vanishingly small by comparison. Substituting 
this approximation into cos c = cos a cos b three times, we have

 1 .c a b
2 1 2 1 2

2 2 2
− = − −c cm m

Expanding and simplifying takes us to

 ,c a b a b
2

2 2 2
2 2

= + +

but the last term is infi nitesimal compared to the others. So when we let 
a, b, c " 0, cos c = cos a cos b becomes none other than the Pythagorean 
Th eorem; or put another way, c a b2 2 2= +  is simply the planar special 
case of our new spherical Pythagorean Th eorem.

Applying our Knowledge to the Sky and Sea

It is time to put our new streamlined identities to the test. We begin 
with the problem we have already seen twice now in Greece and Islam, 
namely, converting ecliptic to equatorial coordinates. In fi gure 5.5 it is a 
day in late May, and the Sun has traveled 60cλ=  along the ecliptic since 
it passed ^ roughly two months ago, at the spring equinox. Our goal is 
to fi nd the right ascension α and the declination δ.

ε = 23.44°
α

δ
ecliptic

equator

λ = 60°

Figure 5.5. Converting between celestial coordinate systems again.
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Th ere are several possible paths. Th e easiest fi rst step is to apply the fi rst 
identity of column II in our table, which gives immediately the familiar

 sin sin sinδ λ ε= .

Substituting our numeric values, we get ( . )sin sin sin60 23 441 $c cδ= =−

.20 15c+ . Next apply the fi rst identity in column I; we arrive at

 sin tan cotα δ ε= .

So ( 20.15 23.44 ) 57.81sin tan cot1 $c c cα= =− , or (dividing by 15c per 
hour) 3 51h m. We have found a much smoother solution to the coordi-
nate conversion problem than either Menelaus or his Muslim successors 
were able to come up with.

Th ere is one fl y in this ointment, which has been there all along. 
Suppose we substitute 130cλ=  into our conversion formulas, a day in 
early August. Th en 17.74cδ= , about what we expected; but from sinα=
0.8668 we might too quickly conclude that 60.09cα= , corresponding 
to a day in late May. But there are two values of α between 0 and 180c 
whose sine in 0.8668, the other being 180 60.09 119.91c c c− =  (see fi g-
ure 5.6). So we must be careful when applying inverse sines. It’s better 
to avoid the problem altogether if possible by preferring formulas that 
require only inverse cosines, because the cosine function is one- to- one 
between 0c and 180c.

For our next application we turn away from the sky, and toward the 
sea. Consider this problem from an old textbook (Brink 1942, 17):

A ship leaves Halifax (position, 44.67c N, 63.58c W), starting due east and 
continuing on the great circle. Find its position and direction aft er it has 
sailed 1000 nautical miles.

y = sin x

0.8668

60.09° 119.91°

Figure 5.6. Th e inverse sine problem. If sin α = 0.8668, then α might be either 60.09c 
or 119.91c.
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Our ship would begin heading due east, but its direction would alter 
gradually southwards (fi gure 5.7). Th e triangle to consider is the one 
that joins both the ship’s departure point and destination with the North 
Pole. Th en 90 44.67 45.33b AC c c c= = − = . If we recall that one nautical 
mile (1.1508 miles, or 1.852 km) is equal to one minute of arc on a great 
circle, we know also that 1000 16.67a BC c= = =l .

We begin by fi nding the ship’s fi nal latitude, the complement of AB. 
Since we already know two sides, the spherical Pythagorean Th eorem 
gives us the third:

 ( 45.33 16.67 ) 47.66cos cos cosc AB 1 $c c c= = =− .

So the latitude is 90 47.66 42.34c c c− = . Turning to the ship’s longitude: 
in fi gure 5.7, we see that \A at the North Pole is the diff erence in lon-
gitude between the departure point and the destination. We fi nd A 
using cos A = tan b cot c; the result is 22.81c. So the ship’s longitude is 
63.58c W − 22.81c W = 40.77c W, placing it in the middle of the ocean 
well on its way from Halifax to the Azores.

We fi nd the ship’s direction of travel at B by calculating \B and recall-
ing that AB runs north- south. Th is time we use cos B = cos b sin A and 
arrive at 74.18B c= . Th us the ship is traveling 74.18c east of south.

Napier and the Birth of Logarithms

If you tried to solve either of the two problems above on your own, you 
likely made two discoveries: fi rstly, with ten identities at our disposal 

Figure 5.7. A navigation problem.

A  (North Pole)
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there are oft en many paths to the solution, and part of the challenge lies 
simply in recalling all the identities. More on this later. Secondly, the 
arithmetic frequently requires that we multiply and divide messy trigo-
nometric quantities. While this doesn’t bother us too much in the age 
of Microsoft , it was a major annoyance to astronomers in the early 17th 
century, including our friend John Napier.

If science had existed as a profession back then, Napier might have 
spurned it for engineering. His mathematical dalliances and devices 
were concocted not for their own sakes, but with a specifi c practical goal 
in mind. His second most famous invention, Napier’s “rods” or “bones,” 
was a set of strips of wood or metal engraved with numbers and mark-
ings that allowed users to multiply numbers quickly. As we have just 
seen, this device might have found immediate use in astronomy and 
seafaring. But if the numbers to be multiplied contain fi ve or more deci-
mal places, Napier’s bones become cumbersome.

Napier’s breakthrough in his eff orts to bypass the tedium of multi-
plication was the simple observation that products of powers of 10 may 
be found by adding the exponents: for instance, 10 10 103 4 7$ = . Faced 
with a time- consuming multiplication problem such as we encounter in 
spherical astronomy, we might save time by rewriting the multiplicands 
as powers of 10, adding the powers, and calculating 10 to the power of 
the sum. Th is process might strike modern readers as awkward, but as 
long as we can move easily back and forth between raw numbers and 
their representations as powers of 10, this approach can reduce pencil- 
and- paper work by an order of magnitude. Adding long numbers to-
gether is much easier than multiplying them.

Th us was born the logarithm: the function that converts any number 
x into the power to which 10 must be raised to get x. (Napier’s logarithms 
actually took a slightly diff erent form, but the modern form arose very 
quickly aft er Napier’s death.) If one has at hand a table of logarithms (see 
fi gure 5.8), ugly multiplications are a thing of the past. For instance, in 
our calculation of the declination of the Sun, we avoid multiplication as 
follows:

 ( ) ( ) ( )log sin log sin log sinδ λ ε= + .

Th e form of this equation explains why many logarithm tables (includ-
ing Napier’s) did not display pure logarithms, but rather logarithms 
of sines. Solving the problem then reduces to looking up and adding 
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( )log sin λ  and ( )log sinε , fi nding their sum within the table’s entries, and 
reading backward to get δ.

Napier announced his discovery to the world in his 1614 Mirifi ci loga-
rithmorum canonis descriptio (fi gure 5.9). Few people today realize the 
extent to which his work on logarithms was devoted to trigonometry: 
aft er the introductory chapter laying out the basic defi nitions, all the 
remaining pages of his book (other than the table itself) described ap-
plications to the science of triangles, particularly the spherical variety. 
Logarithms have outgrown their original purpose; most students today 
are completely unaware of the existence of the subject that, to a great 
degree, gave them birth.

Modern technology has erased the problem that logarithms were de-
signed to solve, so other than an exercise or two we will not clutter this 
book with more detail on the subject. Nevertheless it is good to be aware, 
especially when one ventures into the pages of historical textbooks, that 
logarithms usually were taught alongside spherical trigonometry. Th eir 
eff ect was so powerful that the famed mathematical astronomer Pierre 

Figure 5.8. A typical table of logarithms used by students at the beginning of the 20th 
century.
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Figure 5.9. A 1620 edition of Napier’s Mirifi ci logarithmorum canonis descriptio. Th is 
item is reproduced by permission of Th e Huntington Library, San Marino, California.
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Siméon de Laplace praised them two centuries aft er Napier’s death by 
saying: “by shortening the labours, [logarithms] doubled the life of the 
astronomer.”

Symmetries Codifi ed: Th e “Pentagramma mirifi cum”

Before we move on to oblique triangles, we will profi t by revisiting some 
startling symmetries in our set of ten identities. Here is the list again:

 I II
 sin b = tan a cot A sin a = sin A sin c
 cos c = cot A cot B cos A = sin B cos a
 sin a = cot B tan b cos B = cos b sin A
 cos A = tan b cot c sin b = sin c sin B
 cos B = cot c tan a cos c = cos a cos b.

Closer inspection reveals some patterns. Th e identities in the left  col-
umn are all of the form “co/sine equals co/tangent times co/tangent,” 
while those on the right consist entirely of co/sines. But there is much 
more going on, and readers who wish to test themselves may want to 
cover up the following paragraph (or turn to the same list of identities 
given several pages back) and hunt for themselves.

Notice that the variables reading downward in any vertical column 
follow the sequence a, A, B, b, c (starting at diff erent places in the se-
quence). Th e trigonometric functions in the formulas also follow a pat-
tern. In fact, the entire table can be recalled using a pair of simple rules 
named aft er Napier, in conjunction with the following diagram.

a b

co-c

co-B co-A
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Napier’s Rule I: Th e sine of any circular part is equal to the product of 
the tangents of the two parts adjacent to it.

Napier’s Rule II: Th e sine of any circular part is equal to the product of 
the cosines of the two parts opposite to it.

Th e term “circular part” refers to any one of the fi ve slices in the circle 
diagram. Th e “co- ” notation in the circle should be read as a switch from 
sine/tangent to cosine/cotangent or vice versa (two co- ’s cancel each 
other out). With this reading, Rule I applied to each circular part in turn 
generates all fi ve identities in column I; similarly, Rule II generates the 
identities in column II! Th is remarkable symmetry became how most 
students remembered the formulas. Figure 5.10 shows a handheld paper 
device, designed by 18th- century astronomical instrument maker Ben-
jamin Martin for his delightful Young Trigonometer’s Compleat Guide 
(1736), which captures the Rules in physical form. Th e idea must have 

Figure 5.10. Benjamin Martin’s physical rendering of Napier’s Rules. Th is item is 
reproduced by permission of Th e Huntington Library, San Marino, California.
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come from an almost identical medal designed about fi ft y years earlier 
by John Sellar (plate 7). Figure 5.11 shows another scheme devised to 
represent the symmetries in Napier’s Rules from an early 19th- century 
textbook employing triple- branched equal signs, apparently without 
much success. Th e author, Oliver Byrne, later became famous for his 
unique edition of Euclid’s Elements, where points, angles, and line seg-
ments were represented not with letters or symbols, but visually as they 
appear in the diagram, printed in bright colors (plate 8). Modern aids to 
memory were just as colorful, if not quite as creative. Th e 1940s “Trig- 
Easy” (plate 6), for instance, was a cardboard device with an inner ring 
that could be rotated to reveal identities through a window.

Th e inordinate degree of symmetry in these formulas is deeply mys-
terious and invites question, but due to the superfi cial manner in which 

Figure 5.11. A novel method of presenting the identities of Napier’s Rules, in Oliver 
Byrne’s A Short Practical Treatise on Spherical Trigonometry (London: A. J. Valpy, 
1835). Th e symbols linking various parts of the formulas together are triple-branched 
equal signs. Image courtesy www.archive.org.
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Napier’s Rules were portrayed in the textbooks, they met with disdain 
from many mathematicians and astronomers. Renowned  scholars pub-
licly sneered at Napier’s Rules as mere mnemonic devices to aid those 
incapable of memorizing the identities themselves. Augustus De Morgan 
asserted that they “only create confusion instead of assisting the mem-
ory,” and Florian Cajori dismissed them as merely “the happiest exam-
ple of artifi cial memory that is known.” An early 19th- century textbook 
writer responded fairly:

An eminent French Astronomer [probably Delambre] has however avowed, 
that it has always been less irksome for him to retain the theorems them-
selves, than to call to mind, and apply, Napier’s rules. . . . It may, neverthe-
less, be doubted, whether a person who, from constant practice, cannot fail 
to have the theorems themselves fi xed in his memory, be a fair judge of the 
value of the rules, which, to him at least, must necessarily be useless. [Cress-
well 1816, 257–258]

We can blame the textbook authors for the harsh reactions. An explana-
tion for the symmetries had been known for centuries; in fact, it had 
been reported already in Napier’s miraculous 1614 announcement of 
logarithms, Mirifi ci logarithmorum canonis descriptio. Over the years, 
presumably in misguided attempts to simplify the presentation, this 
wonderful piece of mathematics was oft en omitted and gradually for-
gotten. It appears in only a couple of modern textbooks (Todhunter 1859 
and Moritz 1913).

Consider any right triangle ABC (see fi gure 5.12). Extend all three sides 
as shown, and draw two new arcs SVWU

*

 and RXWT
*

 with poles A and B 
respectively. Th e resulting fi gure is the “pentagramma mirifi cum”: a pen-
tagon in the middle that happens to be self- polar, and fi ve triangles com-
prising the “points” of the pentagram. Th e outer corners of all four of the 
new triangles are places where a great circle drawn from some pole inter-
sects the corresponding equator, so all fi ve outer corners are right angles.

→But there is much more to discover. For instance, we know 
that 90AS c=

$

 since it connects pole A with equator SVWU
*

, so  
90c cSB c= = −r

$

; similarly RA c= r
%

. Now consider what would have 
happened if we had begun the construction of the pentagram with 
ΔBVS rather than ΔABC. Th e two arcs departing from S would be 
the same as they are now, as would the hypotenuse CBVT

*

. TRXW
*

, 
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the equator of pole B, would also be identical. Th e last arc of the 
pentagram, CAXU

*

, requires a short argument: CV
%

 and UV& rise 
perpendicularly from it and meet at V, which implies that V is a 
pole of CAXU

*

. We have arrived at a powerful conclusion: if we 
had started with ΔBVS (or any other of the fi ve corner triangles) 
rather than ΔABC, we would have ended up with exactly the same 
diagram.

Th is symmetry gives much information. For starters, two adjacent 
segments of any of the arcs in the fi gure sum to 90c, just as the seg-
ments in RABS

*

 do. Th is allows us to fi ll in quickly the lengths of all 
the segments in the fi gure, except those on TRXW

*

 and SVWU
*

—
and they’re not far behind. Consider AW

&

 drawn through the 
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Figure 5.12. Th e pentagramma mirifi cum.
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pentagon. Since (by symmetry) W is a pole of RABS
*

, \RAW = 90c, 
so UAW A\ = r . But since A is a pole of SVWU

*

, UW UAW A\= = r' . 
From here (and applying the same argument on the other side of the 
pentagon), the values of all the remaining arcs in fi gure 5.12 may be 
determined.

Now all that is left  to identify are the angles of the four new trian-
gles. W is a pole of RABS

*

, so 2 180RWS RABS c c c\ c= = + = −r
*

. But 
\RWS and \XWU sum to 180c, so XWU c\ = . Symmetry allows us 
to fi ll in the remaining angles, and fi gure 5.12 is now completed.→

How does this relate to Napier’s Rules? Choose any arc or angle on 
any of the triangles, and examine the corresponding arcs/angles as you 
work your way clockwise through the other triangles around the penta-
gram. One of these two cycles will appear:

 , , , , , , , , .a A B b c a A B b corr r r r r

(Th e second cycle is just the barred version of the fi rst.) Th ese cycles 
are identical to the patterns we saw earlier in the identities themselves. 
Looking more closely, we see that the bars, interpreted as “co- s,” also 
match the pattern in the identities.

So, the pentagram’s unique symmetry allows us to generate fi ve iden-
tities for the price of one. For instance, pick the fi rst identity in column 
II, sin sin sina A c= , and apply it to the next triangle in clockwise order 
from the original. We replace a with Ar  (the bar changing the sine to a 
cosine), A with B, and c with ar. Th e result, cos sin cosA B a= , is the sec-
ond identity in the column. Repeat the process on successive triangles 
in clockwise order, and we get all of column II.

Th e same pattern works with the left  column. Starting with sin b = 
tan a cot A, each time we move one triangle clockwise on the pentagram 
we generate the next identity in the column. Th us our diagram explains 
all the astonishing symmetries we’ve seen. It is surely entitled to bear the 
name “pentagramma mirifi cum.”

Exercises

 1.  Using fi gure 5.2, derive the identities sin b = tan a cot A, cos A = tan b cot c, 
and cos c = cos a cos b, in the same manner as we derived sin a = sin A sin c.
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 2.  Generate the three identities that involve both A and B (cos c = 
cot A cot B, cos A = cos a sin B, cos B = cos b sin A) by combining some 
of the other seven identities algebraically.

 3.  Demonstrate Geber’s Th eorem (cos A = cos a sin B) geometrically using 
fi gures 5.3 and 5.4.

 4.  From the given data, solve each of the following right spherical triangles. 
[Brink 1942, 15]
(a) A = 72.72c, c = 109.8c
(b) a = 51.45c, b = 78.73c
(c) a = 63.48c, B = 80.57c
(d) a = 69.72c, c = 78.42c
(e) A = 52.4c, B = 122.27c

 5.  (a) If the sides of an equilateral spherical triangle are 63c, what are the 
angles? [Crawley 1914, 49] (Hint: divide the triangle into two right 
triangles.)
(b) Prove that in an equilateral spherical triangle, sin sec2 A a

2 2= . [Casey 
1889, 37]

 6.  (a) Is there a right spherical triangle in which b = 30c and B = 100c? 
 Explain. [Seymour/Smith 1948, 175]
(b) Show that no isosceles right spherical triangle can have its hypotenuse 
greater than 90c nor its acute angle less than 45c. [Moritz 1913, 63]

 7.  (a) From the relation cos c = cos a cos b show that if a right spherical tri-
angle has only one right angle, the three sides are either all acute, or one 
is acute and two obtuse. [Moritz 1913, 20]
(b) Prove that a side and the hypotenuse of a right spherical triangle are 
of the same or opposite quadrants accordingly as the angle included be-
tween them is less than or greater than 90c. [Muhly/Saslaw 1950, 150]

 8.  A quadrantal triangle has one of its sides (not one of its angles) equal to 90c.
(a) In general, how might the identities of Napier’s Rules be used to solve 
quadrantal triangles?
(b) Solve the triangle A = 69c; C = 78c; c = 90c.
(c) Explain why a spherical triangle with three right angles must have all 
three sides equal to 90c as well.

 9. Prove the following relations for the right triangle ABC: [Moritz 1913, 20]
(a) 2 2sin sin sin sinA b c B=
(b) sin cos cos cosA c a B=
(c) sin sin sin sin sina b c a b2 2 2 2 2+ − = .

 10. Determine the planar equivalents of the following identities:
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(a) sin sin sinb B c=
(b) cos cos sinB b A=  (Geber’s Th eorem)
(c) cos cot cotc A B= .

 11.  Pick some value of the celestial longitude λ, and calculate the equatorial 
coordinates of that point on the ecliptic in the following two ways. Use a 
stopwatch to time how long each process takes.
(a) Use your calculator to evaluate co/sines and their inverses, storing 
the results to fi ve decimal places of accuracy. Perform the multiplication 
by hand.
(b) Use the logarithmic versions of the conversion formulas. Use your 
calculator to evaluate logarithms, co/sines, and their inverses. Store each 
result to fi ve places and perform the additions/subtractions by hand.

 12.  Th e mouth of the Amazon River and the city of Quito, Ecuador are situ-
ated on the equator approximately 28 30c l apart. Th e port of Charleston, 
South Carolina is directly north of Quito by approximately 32 48c l. Find to 
the nearest ten nautical miles the distance of the port of Charleston to the 
mouth of the Amazon. [Seymour/Smith 1948, 175]

 13.  Mintaka, one of the stars in Orion’s Belt, is very close to the celestial 
equator. Suppose that it is exactly on the equator, with 5 32 83h m cα= = . 
At 7:30 PM Eastern time on Feb. 3, 2009, the Moon was at coordinates 

3 55 58.75h m cα= = ; 24 55cδ=+ l. Calculate the distance from Mintaka 
to the Moon. If you have access to Stellarium or some other planetarium 
soft ware, check visually whether your result makes sense.



✩ 6 ✩

The Modern Approach: 

Oblique Triangles

So far spherical trigonometry hasn’t looked much like the plane theory 
we learned in high school. However, the parallels oft en lie just below the 
surface. For instance, cos cos cosc a b=  doesn’t resemble the Pythago-
rean Th eorem c a b2 2 2= + , but the latter is just the planar special case of 
the former. Th e similarities also apply at the larger scale of the develop-
ment of the theory. Plane trigonometry begins with a study of right- 
angled triangles, and when we turn to oblique triangles, we piggyback 
our analysis on what we have learned already about right- angled tri-
angles (usually by breaking the oblique triangle into two right triangles). 
We shall do the same on the sphere. Our goal in this chapter mirrors the 
goal of plane trigonometry on oblique triangles: to solve triangles, that 
is, given values for certain sides and angles, to fi nd values for the other 
sides and angles. We begin with a brief exploration of the fundamental 
theorem of planar oblique triangles, and its extension to the sphere.

Most students encounter two important theorems about planar 
oblique triangles: the Law of Sines, which we saw in chapter 4 in both its 
planar and spherical incarnations; and its more powerful sibling the Law 
of Cosines, which we shall fi nd profi table to revisit for a few moments:

 2 .cosc a b ab C2 2 2= + −

Written in this way, we see that this statement is an extension of the 
Pythagorean Th eorem applied to oblique triangles. Before extending the 
Law of Cosines to the sphere we should understand why the planar ver-
sion is true; and since the beginning, this connection to Pythagoras has 
been the proof ’s starting point.

But when was the beginning for the Law of Cosines? I’ve been asked 
this question before, and it sounds like the answer should be a simple 
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fi ll- in- the- blank. Th e answer, however, turns out to be anything but 
straightforward. As a historian of mathematics, my fi rst instinct in an-
swering many questions is to turn to Euclid. As a compendium of much 
of the mathematics up to its composition in the 3rd century BC, the 
Elements is an amazingly rich source of answers to historical questions, 
even (paradoxically) for subjects that came along later like trigonom-
etry. Th is time, Euclid again comes through.

Th e Pythagorean Th eorem (Proposition 47) and its converse (Proposi-
tion 48) are the climax of the Elements’ opening book. Th e much shorter 
Book II is also the most controversial. Its theorems, which appear to be 
statements about squares and rectangles, may be translated directly into 
various algebraic statements, such as 2a b a ab b2 2 2+ = + +^ h . For this 
reason, some of Euclid’s readers have referred to Book II as “geomet-
ric algebra.” Historians of mathematics bridle at this interpretation; it 
imposes a modern layer of understanding on the book that the ancient 
Greeks could not possibly have intended. If you want to treat the Ele-
ments as a textbook of modern mathematics, then “geometric algebra” is 
fi ne. But if you want to treat it as a historical record, thinking of Book II 
as modern algebra is a serious distortion.

With this caution in mind, we turn to two of the last three theorems 
of Book II. Proposition 12 deals with obtuse- angled triangles; we will 
examine Proposition 13, which handles acute- angled triangles. Euclid 
asserts the following (fi gure 6.1):

In acute- angled triangles the square on the side subtending the acute angle 
is less than the squares on the sides containing the acute angle by twice the 

A

C
D

B

cb

x

a

Figure 6.1. Euclid’s proof of the Law of Cosines.
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rectangle contained by one of the sides about the acute angle, namely that 
on which the perpendicular falls, and the straight line cut off  within by the 
perpendicular towards the acute angle.

Th is is a perfect moment to refl ect on the wonderful advance in clarity 
that modern mathematical symbolism has brought to us. As anachro-
nistic as it is to restate the theorem in modern terms, we proceed boldly:

In ΔABC with an acute angle at C and a perpendicular dropped from A onto 
BC (defi ning D), 2c a b AD BC2 2 2 $= + − .

But BC a=  and cosAD b C= , so what Euclid is “really” saying is: c2 = 
a2 + cosb ab C22− . Our transition from Euclid to modern mathematics 
has led us to the startling conclusion that Euclid had the Law of Co-
sines in his possession, more than a century before Hipparchus invented 
trigonometry!

Is this reasonable? It depends on what you mean by the “Law of Co-
sines.” Euclid certainly knew the geometric fact and found a rather nice 
proof of it that we shall see in a moment. But he did not have the need or 
capacity to use the theorem as high school students do today to calcu-
late the values of sides and angles in triangles. Medieval trigonometers 
used the Law of Cosines in essentially the same way that we do, but they 
quoted Euclid in a way that would have been completely novel to the 
man himself.

→At the risk of even more anachronism, let’s paraphrase Euclid’s 
proof. Let x CD= , which we remember is equal to cosb C. Th en 
Euclid asserts

 2 ,a x ax a x2 2 2+ = + −^ h

which we may verify with a little algebra, as long as we close our 
ears to the historians’ howls of protest. (Euclid himself appealed to 
a previous geometric theorem at this point.) We add DA2 to both 
sides:

 2 .a x DA ax a x DA2 2 2 2 2+ + = + − +^ h

Apply the Pythagorean Th eorem to both sides; we get

 2 .a b ax c2 2 2+ = +

Finally, a bit of rearrangement takes us to



Plate 1. A time exposure revealing the nightly revolutions of the stars in the celestial 
sphere. The two non-circular arcs are caused by planes or satellites. Photo by Michael 
van Steenbergen.



Plate 2. A classroom spherical blackboard. Courtesy of the Smithsonian Institution, 
Washington, DC.



Plate 3. An armillary sphere. Copyright © Stanley London 2012.



Plate 4. Trigonometrical demonstration spheres, probably from England 
around 1700. © Museum of the History of Science, Oxford.

Plate 5. Heather Harden’s painting of the problem of rising 
times. Reproduced with her permission.



Plate 6. Trig-Easy. The “Trig-Easy” was a set of cardboard tools marketed to students 
in the 1940s as an aid to remember trigonometric formulas. An inner ring rotates, 
revealing in a window the formula needed to calculate the quantity displayed at the 
top. This spherical Trig-Easy, for right triangles on the front and oblique triangles on 
the back, is currently set up to display (in our notation) cosA = tanbcotc.

Plate 7. A medal designed by John Sellar in 1681, called an “aide-memoire,” to display 
Napier’s Rules for spherical right-angled triangles. The volvelle (a rotatable circular 
disc) on the top rotates to reveal the various identities. Courtesy of the Whipple Mu-
seum of the History of Science, Cambridge, UK.



Plate 8. The first part of the proof of the Pythagorean Theorem from Oliver 
Byrne’s 1847 edition of Euclid’s Elements. Photo by William Casselmann; cour-
tesy The Thomas Fisher Rare Book Library, University of Toronto.



Plate 9. An astrolabe. Museum of Islamic Art, Doha, Qatar.

Plate 10. The original cover of Donnay’s Spherical Trigonometry After 
the Cesàro Method (1945).
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 2 ,c a b ax2 2 2= + −

which is what we wanted to prove.→
Turning next to the spherical Law of Cosines, we’ll use a diagram 

equivalent to Euclid’s (fi gure 6.2), and we’ll try the same idea as before: 
apply Pythagoras to both the left  and the right triangles.

→Th is time Pythagoras looks a bit diff erent:

 ( ).cos cos cos cos cos cosb h x c h a xand= = −

Solving both expressions for cos h and setting them equal to each 
other has the advantage of removing the reference to the undesir-
able h:

 ( ) .cos
cos

cos
cos

x
b

a x
c=
−

From here we solve for cos c, apply the cosine subtraction law, and 
let the algebra run its course:

 ( )cos cos cos cos cos sin sinc x b a x a x= +

 .cos cos cos sin cos tanc a b a b x= +

To get rid of the tan x term we apply identity four in the fi rst col-
umn of the Napier’s Rules theorems. Th is takes us directly to the 
spherical Law of Cosines:→

A

C B

D

b

c
h

x

a

Figure 6.2. Proving the spherical Law of Cosines.
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 .cos cos cos sin sin cosc a b a b C= +

Just as with the planar Law, our theorem takes the form of a generaliza-
tion of the Pythagorean Th eorem (the spherical version this time). Even 
the latter term of the sum is reminiscent of the corresponding term in 
the planar Law, if not identical.

Having been warned once already about bold statements regarding 
ownership of theorems, the reader may be wary about asking who dis-
covered this gem. Th is caution is well placed. Several medieval scientists 
solved astronomical problems in a way that appears to be a direct ap-
plication of the Law of Cosines, if only the astronomical content were 
to be stripped away. Th e earliest of this group is 9th- century Muslim 
scholar al- Khwārizmī, whose name is the origin of the word “algorithm” 
and one of whose books gave us the word “algebra.” Also among the big 
names of Law of Cosines fame are al- Battānī (AD 900), known to Star 
Trek fans as the namesake of Kathryn Janeway’s fi rst deep space posting, 
and the great 15th- century Indian astronomer Nīlakan.t≥ha. But none of 
these luminaries took the step of posing the theorem independently of 
the astronomy. Th ey didn’t need to; they had already solved the prob-
lems they were interested in.

Using the Law of Cosines

Since the Law of Cosines refers to all three sides and one angle of a 
triangle, it is especially useful in dealing with astronomical and geo-
graphical problems, which tend to emphasize distances over angles. In 
their chapters on the Law of Cosines, most textbooks pose problems 
requiring the reader to compute distances on the Earth’s surface, oft en 
on common sea routes. One textbook (Wheeler 1895, 38–39) asks stu-
dents to fi nd the distance traveled by steamers of the White Star Line 
from Queenstown, Ireland (now Cobh, latitude 51.78c N, longitude 
8.18c W), to Sandy Hook, New York Harbor (latitude 40.47c N, longi-
tude 74.13c W). Th is is the route taken by the RMS Titanic on its fateful 
maiden voyage in 1912.

Th e key to the problem is to join both New York (Y in fi gure 6.3) and 
Queenstown (Q) to the North Pole (N). Th en 90 40.47 49.53YN c c c= − =

%  
and 90 51.78 38.22QN c c c= − =

&

, while the angle at N is the diff erence 
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between the two longitudes, 65.95c. We now apply the Law of Cosines, 
letting the C in the formula be the angle at the North Pole, and we fi nd

 38.22 49.53 38.22 49.53 65.95 .cos cos cos sin sin cosQY c c c c c= +
%

Th us 45.43QY c=
%

, which we multiply by 60 to get 2726 nautical miles, 
or (using the 1.15078 conversion factor) 3137 statute miles. Th e textbook 
helpfully points out that the routes actually taken by the White Star Line 
varied from 2783 to 2889 nautical miles, so the ships were traveling not 
quite along a great circle. If they had, they may have found Newfound-
land and Nova Scotia to be a bit of a barrier.

Next, we turn to triangles where two angles and the side between 
them are known. In plane trigonometry this situation does not lend it-
self to the Law of Cosines, which refers to only one angle. Th e best ap-
proach to these plane triangles is to notice that we can fi nd the third 
angle since the angles of a triangle sum to 180c, and then apply the Law 
of Sines. Unfortunately, on the sphere we do not have such easy access 
to the third angle. However, we do have a tool that we have not used in 
some while.

Polar Duality Th eorem: Th e sides of a polar triangle are the supple-
ments of the angles of the original, and the angles of a polar triangle are 
the supplements of the sides of the original.

When we fi rst encountered this result, we described it as a “theorem 
doubling machine” for its ability to translate statements about sides into 

Q
Y

N

Figure 6.3. Calculating the distance of the 
voyage planned by the RMS Titanic.
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statements about angles and vice versa. Th ere is no better time to use it 
than now. Apply the Law of Cosines to the polar triangle; we get

 (180 ) (180 ) (180 )
(180 ) (180 ) (180 ),

cos cos cos
sin sin cos

C A B
A B c

c c c

c c c

− = − −
+ − − −

which simplifi es nicely to the Law of Cosines for Angles:

 .cos cos cos sin sin cosC A B A B c= − +

Th is is the tool we need to deal with triangles when two angles and the 
side between them are given.

A fanciful illustration of the use of this theorem is the following au-
dacious, but extremely ineffi  cient way of determining the locations of 
two cities. Suppose we fl y from Vancouver to Edmonton on a great circle 
route, measuring the distance we travel as well as the headings at de-
parture and arrival. From this information alone, an application of the 
Law of Cosines for Angles gives us the diff erence in longitude between 
the two cities, and the values of both latitudes follow immediately. Th e 
distance from Vancouver to Edmonton (fi gure 6.4) is 507VE =

%  statute 
miles, or 440.9 nautical miles, which corresponds to 7.35c. We leave Van-
couver with a heading 50.7c east of north, and arrive in Edmonton with 
a heading 58.22c east of north. Joining our two cities to the North Pole as 
before, we have \V = 50.7c and \E = 121.78c. Apply the Law of Cosines 
for Angles, letting c be the journey from Vancouver to Edmonton:

 .cos cos cos sin sin cosN V E V E VE= − +
%

N

V

E

507 miles50.7°

121.78°

Figure 6.4. Th e journey from 
Vancouver to Edmonton.
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Th is gives us \N = 9.6c, the diff erence in longitude between Vancouver 
and Edmonton. Now that we have all three angles, we leave it as an ex-
ercise to calculate the two latitudes using the Law of Sines; Vancouver 
works out to 49.3c, and Edmonton to 53.6c.

With the Laws of Sines and Cosines at our command, it looks like 
we might be able to solve all triangles. In fact, we can go further than is 
possible in plane trigonometry: the Law of Cosines for Angles allows us 
to solve triangles uniquely when all three angles are known, whereas in 
plane trigonometry these triangles can only be known up to similarity. 
But there is another skeleton in the closet of plane trigonometry, from 
which the sphere provides no escape: if two sides and an angle not en-
closed by these sides are known, there may be more than one triangle 
that satisfi es the givens. Consider the following navigational problem:

A ship leaves Honolulu (latitude 21.31c N) traveling towards Tokyo (latitude 
35.7c N) on a great circle route with a heading of 60.5c west of north. What 
will be the length of the voyage, in miles?

From fi gure 6.5 we see that we are in a side- side- angle situation. Un-
fortunately, there are two endpoints that satisfy the givens. Th e fi rst is 
X, a spot in the middle of the Pacifi c Ocean. If you extend BX% past X, it 
will eventually reach its northmost point, and then start heading slightly 
southward, crossing the 35.7c N latitude circle again at Tokyo. Without 

B
(Honolulu)

(North Pole)
C

A
(Tokyo)

68.69°54
.3

° 54.3°

60.5°
X

Figure 6.5. Th e ambiguous journey from Honolulu to Tokyo.
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care, a navigator might compute a distance that would leave us hun-
dreds of miles short of our destination!

Th e mathematical face of this ambiguity appears immediately when 
we use the Law of Sines to fi nd \A: / 0.9985sin sin sin sinA a B b= = , so 

86.84A c=  or 180 86.84 93.16c c c− = . We can tell from our diagram that 
we want the smaller angle 86.84c, but if the ambiguity had passed with-
out notice, we might have run out of fuel at X, with no land in sight.

We now know a, b, A, and B; but fi nding c and C proves surprisingly 
awkward. Th e Law of Sines doesn’t help since there is no way to apply it 
without leaving two unknowns in the equation. It is possible to use the 
Law of Cosines (rearranging the letters in the diagram appropriately), 
but only by changing sin c into cos c1 2− , eventually requiring us to 
solve a quadratic equation for cos c. A cleaner approach would be nice. 
Fortunately, there are several possibilities.

Delambre’s and Napier’s Analogies

It’s surprisingly common, and rather eerie, when mathematical discov-
eries are made almost simultaneously by two or more people working 
on their own. Th e invention of calculus by Isaac Newton and Gottfried 
Wilhelm Leibniz is the most famous episode of this kind, followed by 
the birth of non- Euclidean geometry in the works of János Bolyai, Nico-
lai Lobachevsky, and Carl Friedrich Gauss in the early 19th century. 
Bolyai’s father wrote to Gauss of his son’s breakthrough, only to receive 
the disheartening reply from an impressed Gauss that he had done it all 
already, but had not bothered to publish it.

Th is incident was not the fi rst of Gauss’s experiences with simulta-
neous discovery. Th e theorems we are about to describe were known 
fi rst as Gauss’s formulas, appearing in his 1809 Th eoria motus corporum 
coelestium, a monumental two- volume treatise on the motions of celes-
tial bodies. But this time it was Gauss who had been scooped, by mere 
months; and not once, but twice. In the previous year German scientist 
Karl Brandon Mollweide had published the same results in Leipzig, and 
he in turn referred to their appearance in a book by Antonio Cagnoli. 
However, in a rare case when a name actually changed when a prior dis-
covery was verifi ed, the theorems are now known as Delambre’s analo-
gies aft er the astronomer Jean- Baptiste Joseph Delambre, who came up 
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briefl y in chapter 5 for maligning Napier’s Rules. Delambre likely would 
prefer to be remembered for his contributions to celestial mechanics, his 
work on determining the length of the meter, and his books on the his-
tory of astronomy. But his discovery and publication of the analogies in 
1807 in the long- running French astronomical journal Connaissance des 
Temps (oddly the volume was dated 1809, leading to some of the confu-
sion) grant him a measure of additional fame by crossing the fi nish line 
only months before his unwitting rivals.

→Delambre’s analogies are usually demonstrated disappoint-
ingly through algebraic manipulation of various known identities. 
It is not easy to approach them geometrically, but at least one text-
book (Isaac Todhunter’s classic) gives it a go. Th e argument, based 
on Delambre’s original demonstration, begins with ΔABC in fi gure 
6.6. We begin by bisecting AB

$

 at M and drawing a perpendicular 
upward. Next bisect \BCP to form CV

%

. Drop arcs perpendicular 
to CP
$

 and CB
$

, defi ning P and Q respectively. Finally, join AV
%

 and 
BV%. We show fi rst that ΔAVP and ΔBVQ are equal, by matching 
three elements of the triangles. Th ey both contain a right angle; 
since VM& is perpendicular to AB

$

 we know that AV
%

 = BV%; fi nally, 
since \BCP was bisected by CV

%

 we know that VP% = QV
%

. So the 
two triangles are equal.*

Th is fact allows us to label the angles at A and B as we have done 
in the diagram. Th e angles at the base of the original triangle are 

A y x\ = +  and B y x\ = − ; a little algebra yields ( )/2x A B= −  
and ( )/A By 2= + . We are in a similar algebraic situation with re-
spect to sides a and b of the original triangle: a BQ CQ= +

% %

 and 
Cb AP P= −

% $

, but BQ AP=
% %

 (since triangles AVP and BVQ are 
equal) and CQ CP=

% $

, so ( )/BQ a b 2= +
%

 and ( )/2CQ a b= −
%

. Turn-
ing to the angles at the top of the diagram, we know that \AVB =
\PVQ since both are composed of \AVQ and equal angles. Cut-
ting these angles in half, we have \AVM = \PVC.

* As my students gleefully pointed out, there is an error in the argument here. Th e two triangles are 
asserted to be equal by side- side- angle equivalence, but side- side- angle is the ambiguous case. Th e 
fact that the angle is right seems to allow the argument to escape unscathed from the ambiguity, but 
this turns out not to be quite true on the sphere. I leave it to my eagle- eyed students and readers to 
explore the fl aw and discover how to patch it.
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We’re in the home stretch of the proof. Consider the two right- 
angled triangles ΔAVM and ΔPVC, with equal angles at V. Apply 
Geber’s Th eorem to both and bring the results together:

 sin cos cos sin cosVAM AM AVM PCV CP\ \ \= =
& $

.

Substituting each of the angles for their values from the elements 
of the original triangle and rearranging the terms, we fi nally arrive 
at Delambre’s fi rst analogy: →

 
( ) ( )

cos
sin

cos
cos

C
A B

c
a b

2
1

2
1

2
1

2
1+

=
−

.

Admittedly this argument, as clever as it is, is not much of an advertise-
ment for geometric over algebraic proofs. We shall explore an algebraic 
derivation in the exercises. Delambre’s other three analogies,

 
( ) ( )

cos
sin

sin
sin

C
A B

c
a b

2
1

2
1

2
1

2
1−

=
−

,

 
( ) ( )

sin
cos

cos
cos

C
A B

c
a b

2
1

2
1

2
1

2
1+

=
+

, and

 
( ) ( )

sin
cos

sin
sin

C
A B

c
a b

2
1

2
1

2
1

2
1−

=
+

,

may be demonstrated similarly.

B
M A

Q

V

P

C

x

y
x

y

Figure 6.6. Th e proof of Delambre’s 
fi rst analogy.
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Th e word “analogy” might seem strange here. We use it in what is 
now an obsolete mathematical sense that goes back to the original Greek 
meaning of the word: a ratio, or an equality between ratios. Even today, 
one might think of a ratio as a comparison, or an “analogy,” between two 
quantities.

It has taken some work to secure these identities, apparently for the 
purpose of dealing with oblique triangles when a, b, A, and B are known. 
But each of these identities refers to all six of the triangle’s elements, and 
so can be used only if fi ve elements are known, not four! In fact, in most 
textbooks Delambre’s identities are used only as a tool to check the cor-
rectness of completed solutions to triangles. Has our eff ort gone to waste?

Th ankfully not. We are on the verge of another set of analogies, 
named aft er John Napier (although Napier’s friend and successor Henry 
Briggs actually contributed two of the four). Several terms appear more 
than once in Delambre’s analogies; this suggests that we might combine 
the analogies by eliminating the common terms. For instance, the fi rst 
and third of Delambre’s analogies both contain cos c2

1 , so if we divide one 
by the other, we get

 
( )

( )
( )

cot
tan

cos
cos

C
A B

a b
a b

2
1

2
1

2
1
2
1+

=
+
−

.

We arrive at three other identities in a similar fashion:

 
( )

( )
( )

cot
tan

sin
sin

C
A B

a b
a b

2
1

2
1

2
1
2
1−

=
+
−

,

 
( )

( )
( )

tan
tan

cos
cos

c
a b

A B
A B

2
1

2
1

2
1
2
1+

=
+
−

, and

 
( )

( )
( )

tan
tan

sin
sin

c
a b

A B
A B

2
1

2
1

2
1
2
1−

=
+
−

.

Napier’s analogies each contain only fi ve triangle elements, not six. So 
for our ambiguous triangle, once we know a, b, A, and B, any one of 
these four identities will give us either c or C. For instance, for our Ho-
nolulu to Tokyo trip, we substitute into Napier’s third analogy to get

 
(68.69 54.3 )

(86.84 60.5 )
(86.84 60.5 )

tan
tan

cos
cos

c2
1

2
1

2
1
2
1c c

c c

c c+
=

+
−

,

from which we have 0.5317tan c2
1 = , and so 28c c= , equal to 1680 nau-

tical miles or 1933 statute miles. And if we’re really interested, we can 
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calculate the last unknown C using almost any of the identities we’ve 
seen in this chapter.

Th ere is plenty more to spherical trigonometry than we’ve seen so far, 
but this concludes the basic theory needed for solving triangles. In the 
remaining three chapters we’ll see some special topics and applications.

Exercises

 1. Solve the following triangles:
(a) a = 135c, b = 120c, c = 45c
(b) A = 68.72c, B = 104.35c, C = 47.62c
(c) b = 48.62c, c = 78.85c, C = 128.77c.

  [Brink 1942, 26 # 1 and 4, 43 # 3]
 2.  Find the perimeter of a spherical triangle with angles 69c, 84c, 100c, upon 

a sphere whose radius is 10 inches. [Rothrock 1911, 136]
 3.  Find the length of the shortest air route between Cape Town (33.93c S, 

18.47c E) and Dakar (14.67c N, 17.42c W). What is the bearing of this 
journey as the plane leaves Cape Town?

 4.  A ship sailing on a great circle from Ceylon to Madagascar crosses the 
meridian of 79c east longitude bearing S 50c W. Aft er sailing 2060 nautical 
miles farther, it crosses the meridian of 52c east longitude. Find its lati-
tude and the bearing of its course at this point and its latitude at the fi rst 
point. [Brink 1942, 41]

 5.  Charles A. Lindbergh fl ew his plane Th e Spirit of St. Louis on the great 
circle route from New York (40.75c N, 73.97c W) to Paris (48.83c N, 
2.33c E). He left  New York at 7:52 AM (Eastern Standard Time) on May 
20, 1927, and arrived at Paris the next day at 5:24 PM (Eastern Standard 
Time). What was his average speed for the fl ight? [Rosenbach/Whitman/
Moskovitz 1937, 332]

 6.  We are at the southwest corner of an open fi eld. We walk across the fi eld 
to the northeast corner, departing with a heading 49c east of north and 
traveling exactly one nautical mile to the northeast corner. At the end of 
our journey, our heading is now 49.01c east of north. What is our terres-
trial latitude? (Warning: use as many digits of precision as your calculator 
allows.)

 7.  Given the latitudes and longitudes of two places on the earth’s surface, show 
how to fi nd the shortest distance between them. [Anderegg/Roe 1896, 107]
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 8.  From Napier’s third analogy,

 
( )
( ) ( )

cos
cos

tan
tan

A B
A B

c
a b

2
1
2
1

2
1

2
1

+
−

=
+

,

   show that in any spherical triangle, one- half the sum of two angles is in the 
same quadrant as one- half the sum of the opposite sides, that is, ( )a b2

1 +  
and ( )A B2

1 +  are in the same quadrant. [Kells/Kern/Bland 1942, 81 # 4]
 9.  We are going to develop an alternate solution to an oblique spherical 

triangle in the side- side- angle (SSA) case using right- angled triangles. Say 
we are given sides a, b, and the angle A. Drop a perpendicular from C to 
a point D on side c. (Note: there are two diff erent possible confi gurations. 
You may just solve the case where the perpendicular falls on the side.) 
Solve the right- angled triangles and show how this will give the solution 
to the original triangle. [Casey 1889, 60]

 10.  Develop an alternate proof of the Law of Cosines using fi gure E- 6.10, 
where \OEF and \OEG are right angles by construction (but \EFG is 
not necessarily a right angle). Hint: Apply the planar Law of Cosines to 
triangles OGF and GFE to solve for their common side and combine the 
two statements. Simplify the new statement using the Pythagorean theo-
rem on OFE and OEG. Th en solve for cos a. [Moritz 1913, 38–39 # 5]

 11.  Derive the Law of Sines algebraically from the Law of Cosines. (Hint: 
Solve for cos A in the equation cos cos cos sin sin cosa b c b c A= + , form 
sin A2 , and reduce the numerator to a form involving cosines only. Th en 
show that /sin sinA a2 2  is symmetrical in a, b, c.) [Kells/Kern/Bland 1942, 
73 # 4]

Figure E-6.10.

A

C

B

G

F
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O

a

c

b

A
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 12.  When the polar duality theorem is applied to one of Delambre’s analogies, 
another of Delambre’s analogies results. Which pair? What happens if you 
apply the polar duality theorem to the other two analogies?

 13.  Napier’s analogies were sometimes used as a method of solving geograph-
ical problems. Suppose that we know the latitudes of Edmonton (53.6c N) 
and Vancouver (49.3c N), as well as their diff erence in longitude (9.6c). 
Th e Law of Cosines is the obvious choice here, but instead use Napier’s 
analogies to determine the headings of a great circle path between the 
cities, and then use some other identity to determine the distance.

 14.  Here we shall construct an algebraic proof of Napier’s fi rst analogy. First, 
notice from the Law of Sines that sin

sin
sin
sin

sin sin
sin sin

a
A

b
B

a b
A B= = +

+ . Call this ratio m.
(a) Use the Law of Cosines for Angles, twice (once expressed for cos A, 
once for cos B) to derive the expression 

 (cos A + cos B)(1 + cos C ) = m sin C sin(a + b).

(b) Divide the Law of Sines expression above by your result from (a), to get

 ( )cos cos
sin sin

sin
sin sin

sin
cos

A B
A B

a b
a b

C
C1$

+
+ =

+
+ + .

(c) Transform each of the terms in your expression from (b) using the 
following identities from plane trigonometry:

 2 ( ) ( )sin sin sin cosx y x y x y2
1

2
1+ = + −

 2 ( ) ( )cos cos cos cosx y x y x y2
1

2
1+ = + −

 2 2sin sin cosx x x=

 ( / )cos cosx x1 2 22+ = .

(d) Simplify. [Clough- Smith 1978, 76]
 15.  Although it is possible to derive Delambre’s analogies algebraically on 

their own, it is easier to derive them algebraically from Napier’s analogies.
(a) Square Napier’s fi rst analogy; solve for the tangent- squared term, and 
add one to both sides. Th is should leave you with 

 ( )
( )

( ) ( )
sec

cos sin

cos cos cos sin
A B

a b C

a b C a b C

2
1

2
1

2
2
1

2
2
1 2

2
2
1 2

2
1 2

2
1 2

+ =
+

− + +
.

(b) Apply the cosine half- angle formula (1 )cos cos2
2 2

1 θ= +θ  to two of the 
terms in the numerator. Th en continue to simplify the numerator, until 
you arrive at (1 )cos cos sin sin cosa b a b C2

1 + + .
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(c) Th e result of (b) should look familiar. Exploit this; then apply the 
cosine half- angle formula to the numerator again. Th is will give you 
Delambre’s third analogy.

 16. (a) Show that cot sin cos cos cot sina b b C A C= + .
(b) Use the above result (with the variables rearranged appropriately) in 
conjunction with ΔAVP and ΔCVP in the derivation of Delambre’s fi rst 
analogy (fi gure 6.6) to demonstrate Napier’s second analogy.



✩ 7 ✩

Areas, Angles, and Polyhedra

Th e fi rst goal of trigonometry—to solve any triangle given some infor-
mation about its sides and angles—has been accomplished, so it is at this 
point that most textbooks stop. Th is is a pity, because while the straight-
forward practical work has been completed, a wealth of mathematical 
pleasures that might have spurred a lot of curiosity lies just around the 
corner. Fortunately we are not bound by early 20th- century mathemat-
ics curricula, so we shall press onward and taste some of these delights.

We begin with a seemingly practical problem that we have so far 
carefully ignored: to fi nd the area of a spherical triangle or polygon. In 
fact, the applications of fi nding areas on the sphere are somewhat lim-
ited. Hardly anyone has ever needed to calculate areas of tracts of land 
or ocean so vast that the curvature of the Earth needed to be accounted 
for. And in astronomy, predicting the positions of the Sun, Moon, and 
planets does not rely on knowledge of areas of sections of the sky. So his-
torically, scientists simply didn’t care. However, there is a mathematical 
motive: an exploration of areas leads quickly, and rather unexpectedly, 
to a tour of some of the greatest geometrical theorems ever discovered. 
So for this chapter we shall depart from our usual physical contexts and 
take a journey for the sake of pure geometric pleasure.

Recall from chapter 2 that it is possible to form a spherical polygon 
with only two sides. A lune is the part of a sphere captured between two 
great semicircles joined at their ends (fi gure 7.1), named because of its 
resemblance to a crescent moon. Its area is easy to fi nd, since the ratio 
of the angle θ between the two great circles to 360c is equal to the ratio 
of the area of the lune to the surface area of the sphere. In the standard 
unit sphere the surface area is 4 4r2π π= , so

 4 360
area of lune

cπ
θ= .
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Th us, measuring θ in degrees,

 90area of lune πθ= .

Th e formula for the area of a spherical triangle is named aft er Al-
bert Girard (1595–1632), a French mathematician whose Protestant faith 
likely forced him to fl ee his home country and settle in the Netherlands. 
He appears to have struggled to make a living there, with no patron 
and eleven children. Whether or not this diffi  cult circumstance led to 
his early death is left  to the reader to speculate. Girard lived at a time 
when the symbols we use today for algebra were in the process of being 
formulated. He was one of the fi rst to use the abbreviations “sin,” “tan,” 
and “sec,” and in his Invention nouvelle en l’algebre (1629) he invented 
the 3  notation for cube roots. Surprisingly, his theorem on the areas 
of spherical triangles is found not in his Trigonométrie (1626), but in the 
Invention nouvelle. He was not happy with his own demonstration; a full 
proof written by Bonaventura Cavalieri would eventually appear three 
years later.

→Girard’s idea is simple: extend all three sides of the given 
triangle into great circles and consider the triangles and lunes that 
result. In fi gure 7.2 the original triangle is ΔABC, and the l sym-
bols represent antipodal points. Th e triangle may be extended in 
three diff erent ways to form lunes (colunar triangles): extend the 
sides departing from A all the way to the antipodal point Al, form-
ing ABACl ; or extend the sides from B; or extend the sides from C. 
If we add these three lunes together, we get

θ
Figure 7.1. Finding the area of a lune.
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 2 ( )ABC ABC A BC AB C ABCΔ Δ Δ Δ Δ+ + + +l l l .

By symmetry we can replace ΔA BCl  with ΔAB Cl l; then the four 
triangles grouped in parentheses will form the hemisphere at the 
front of fi gure 7.2, with area 2π. But the areas of the three lunes, 
considered separately, may be found using the area formula we de-
rived a few moments ago. So

 2 2 ( )ABC A B C90π πΔ + = + + ,

which simplifi es to

 ( 180 )ABC A B C180 cπΔ = + + − .→

In other words, the area of a spherical triangle is proportional to the 
amount by which the sum of its angles exceeds 180c. Th is spherical ex-
cess, which we call 2E in anticipation of events to come in the next chap-
ter, thus plays a meaningful role here, and its signifi cance will continue 
to grow.

We can extend this result to fi nd the area of any convex spherical 
polygon. Choose any point in the polygon’s interior (fi gure 7.3) and con-
nect it with each vertex, thereby breaking the polygon into triangles. Let 
n be the number of sides, and add up the areas of the triangles:

 ( ) 180n180Area Sum of triangles’ angles $ cπ= −6 @

A

A´ B

B´

C

C´

Figure 7.2. Proving Girard’s Th eorem.
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 ( )

( ) .

n

n

180 360 180

180 2 180

Sum of polygon’s angles

Sum of polygon’s angles

$

$

c c

c

π

π

= + −

= − −^ h

6

6

@

@

Since the angles of a planar polygon sum to ( 2) 180n $ c− , it makes sense 
to refer to the square- bracketed quantity as the spherical excess of the 
polygon.

Euler’s Polyhedral Formula

Here our subject takes a surprising turn, apparently away from spheres 
altogether. Consider any convex polyhedron, that is, a solid consisting 
of polygons as faces and having no inward “dents.” Five such polyhe-
dra can be constructed using identical regular polygons for each face: 
using triangles, we get the tetrahedron, octahedron, and icosahedron; 
using squares, the cube; and using pentagons, the dodecahedron (fi g-
ure 7.4). Th ese are known as the regular polyhedra. But there are plenty 
other polyhedra that are not regular, such as the square pyramid and the 
cuboctahedron in fi gure 7.5. Pick any of these shapes, say, the cubocta-
hedron. It has 12V =  vertices, 24E =  edges, and 14F =  faces (six squares 
and eight triangles). So 2V E F− + = . Try this for the other polyhedra 
shown here, or indeed any convex polyhedron whatever, and you will 
always get 2V E F− + = .

Th is curious fact is known today as Euler’s polyhedral formula, 
named aft er the dominant 18th century mathematician Leonhard Euler 
(1707–1783). Much of the notation and form of the algebra that we use 

Figure 7.3. Decomposing a spherical 
polygon into triangles.
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today in calculus, such as functions and exponentials, was formulated 
by Euler. His accomplishments are incredibly varied: from geometry 
and number theory to calculus and diff erential equations, and onward 
to astronomy, optics, and navigation, including spherical trigonometry. 
Th ere is scarcely an area of 18th- century mathematics that Euler did not 
aff ect deeply. During his life he wrote an average of almost three pages 
of published mathematics per day—not including the huge volume of 
work that was released aft er his death. Th e onset of blindness in his later 
life did not slow him down; he simply continued to dictate his math-
ematics, fully formed, to his assistants.

In 1750 Euler wrote to his colleague Christian Goldbach about the 
relation 2V E F− + = . Eventually he produced an argument that this 
equation must hold for any convex polyhedron, but his reasoning did not 
meet the mettle of a full- scale proof. Today, there are at least 19 diff erent 
proofs. Perhaps the most common approach uses graph theory, an area 

Figure 7.5. Two non-regular polyhedra—the square pyramid and the cuboctahedron.

Figure 7.4. Th e fi ve regular polyhedra—tetrahedron, octahedron, icosahedron, cube, 
dodecahedron.
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of mathematics sometimes attributed (mostly falsely) to Euler. Th e story 
goes that the citizens of Königsberg enjoyed weekend strolls through 
their town, which is located along a river with two islands (fi gure 7.6). 
Naturally, they wished for a journey that took them across each bridge 
exactly once without retracing their path, making for a more interesting 
walk. We begin our search for the ideal path by considering each location 
(the two river banks and the two islands) to be just a single point called a 
node, and each bridge to be an edge. Th is leads to the graph in fi gure 7.7. 
We may verify quickly that departing from each of the four nodes is an 

C

A

B

D
Figure 7.7. A graph representing the 
Bridges of Königsberg problem.

Figure 7.6. Th e bridges of Königsberg as they appeared in Euler’s paper on the subject. 
See the original paper at the Euler Archive (http://eulerarchive.maa.org/pages/E053
.html).
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odd number of edges. Imagine that the ideal path exists; if so, the citizen 
would both enter and depart each node (other than the start and fi nish) 
some number of times; therefore only the start and fi nish may have an 
odd number of departing edges. But all four nodes in our graph have an 
odd number of departing edges; therefore, the ideal path cannot exist. 
Euler’s argument was something like this, although it would be more 
than a century before diagrams such as fi gure 7.7 were drawn.

Th e proof of 2V E F− + =  using graph theory works as follows. Re-
move one face of the polyhedron, and stretch out the edges to produce 
a graph on a fl at surface (so that the edges of the missing face form 
the outer boundary). For instance, in fi gure 7.8(a) we have removed the 
square base of the pyramid. Since one face has been removed, we must 
show that 1V E F− + =  for this graph. For each face that is not a tri-
angle, add an edge to the graph by joining two non- adjacent vertices; 
continue doing this until only triangles remain. Each time we add an 
edge, E and F increase by one, leaving V E F− +  unchanged. (In our 
case each face is already a triangle, so we do not have to perform this 
procedure.) Now choose a triangle on the outer boundary of the graph. 
If only one of the triangle’s edges is on the boundary, then remove that 
edge (fi gure 7.8(b)). Th en E decreases by one and F decreases by one, 
leaving V E F− +  unchanged. If two of the triangle’s edges are on the 
boundary, remove them and their shared vertex (fi gure 7.8(c)). Th is ac-
tion decreases E by two, V by one, and F by one, again leaving V E F− +  
unchanged. Repeat these steps until all that remains is a single triangle. 
For that triangle, 3 3 1 1V E F− + = − + = , and the theorem is proved.

Oddly, however, the fi rst rigorous proof of Euler’s polyhedral for-
mula came from an entirely diff erent and seemingly unrelated corner 

(a) (b) (c)

Figure 7.8. Decomposing the square pyramid to show that V E F 2− + = .
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of mathematics: spherical trigonometry. Forty- four years aft er Euler’s 
letter to Goldbach, the great French analyst Adrien- Marie Legendre 
(1752–1833) published his Éléments de Géométrie, one of the most suc-
cessful textbooks ever written. In various versions and translations it 
swept through Europe and America, in many cases replacing Euclid’s 
Elements, and became the standard geometry text for over a century. It 
contains the fi rst proof that π2 is irrational, as well as the fi rst proof that 

2V E F− + = .
Th e argument appears in the middle of Legendre’s Book 7 entitled 

“Th e Sphere” (fi gure 7.9), where no one would think to look for it. 

Figure 7.9. Th e beginning of the proof of V E F 2− + =  in the fi rst edition of 
Legendre’s Éléments de Géométrie, the fi rst time a correct proof appeared in print. Th is 
item is reproduced by permission of Th e Huntington Library, San Marino, California.
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Legendre begins in a manner similar to the proof we just saw, by project-
ing the polyhedron—but not onto a fl at surface, rather outwards onto an 
enclosing sphere (fi gure 7.10). Imagine a point source of light within the 
polyhedron, with each vertex casting its shadow on the sphere. Connect 
the “shadowed” vertices on the surface of the sphere with great circle 
arcs; we now have a spherical polyhedron.

→Assuming that the sphere has a unit radius, its surface area is 4π. 
But we can fi nd the surface area another way, by adding together 
the areas of each face of the spherical polyhedron. We happen to 
have a formula for these areas. In our notation,

 ( ) ( 2) 180 4n180 Sum of polygon’s angles $ cπ π− − =6 @/ .

Cleaning up a bit and expanding out the sum produces

 ( ) n F180 2 180 720Sum of all angles $ $c c c− + =/ .

But the angles encompass each of the vertices, so the sum of the 
angles is just 360V $ c. And since every edge is counted as part of 
exactly two polygons, 2n E=/ . So

 360 2 180 2 180 720V E F$ $ $c c c c− + = .

Figure 7.10. Legendre’s projection of a polyhedron outward onto the surface of a 
sphere, in this case a cube. Th e projected cube is the entire sphere; only the projections 
of the edges and vertices facing forward are visible.
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Canceling 360c brings us to our goal:

 2V E F− + = .→

Th e Regular Polyhedra

Having Euler’s polyhedral formula in our possession brings us very 
close to yet another of the most famous theorems in mathematics: that 
the fi ve regular polyhedra in fi gure 7.4 are the only regular polyhedra. 
Th is fact has been known since ancient Greece; it is demonstrated by 
Euclid (in a manner entirely diff erent from what we shall see here) as 
the culmination of the thirteenth and last book of the Elements. Euclid’s 
masterpiece is not a mere logically- ordered listing of theorems; it is ar-
ranged to cultivate a sense of suspense. We saw in the previous chapter 
that Euclid builds Book I to a climax in the Pythagorean Th eorem and 
its converse. He maintains a similar sense of drama with his last three 
books on solid geometry. As he goes into the home stretch, Euclid shows 
how to construct each of the fi ve regular polyhedra embedded within a 
sphere, and gives their dimensions. Finally, just aft er the last numbered 
proposition, he concludes with a fl ourish: there can be no regular poly-
hedra other than the fi ve he has just constructed.

Th e regular polyhedra are sometimes called the Platonic solids, re-
ferring to their appearance in Plato’s dialogue, Timaeus. In this cosmo-
logical work Plato identifi es each of the regular polyhedra with one of 
the Greek elements: fi re with the tetrahedron, air with the octahedron, 
water with the icosahedron, earth with the cube, and the celestial fi rma-
ment with the dodecahedron. Euclid’s proof, then, demonstrated that 
the analogy between the cosmological elements and the polyhedra was 
perfect.

Of course Euclid did not have access to 2V E F− + = , but we do. Its 
use makes the path to the conclusion that there are only fi ve regular 
polyhedra quite short.

→Let m be the number of sides in a face of a regular polyhedron, 
and let n be the number of faces that meet at each vertex. Th en the 
number of edges E is equal to mF/2, since each edge is the side of 
two faces; and E is also equal to nV/2, since each edge touches two 
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vertices. From 2V E F− + =  and / /E mF nV2 2= = , a little algebra 
gets us to

          

( ) , 2( ) , 2( )V m n mn
m E m n mn

mn F m n mn
n

2
4 2 4and=

+ −
=

+ −
=

+ −
.

Th e denominator of this expression must be positive, so 2(m + n) 
> mn, or (dividing through by 2mn) >m n

1 1
2
1+ . But both m and n 

must be greater than 2. A bit of plugging and chugging quickly re-
veals that the only possible pairs m, n that satisfy the inequality are 
3,3 (tetrahedron); 3,4 (octahedron); 4,3 (cube); 3,5 (icosahedron); 
and 5,3 (dodecahedron).→

Th e mysticism associated with the regular polyhedra didn’t stop 
with the Greeks. Consider late 16th- century astronomer Johannes Kep-
ler, known today as one of the fathers of modern science for having 
demonstrated that the planets travel around the Sun in ellipses rather 
than in combinations of circles. None of the 17th- century natural phi-
losophers really fi t the impassive, objective lab- coated image that we 
conjure when we think of scientists today. Kepler was a deeply commit-
ted Christian, and he believed that harmonies were encoded in God’s 
mathematically- inspired creation of the universe. He took the word 
“harmony” both fi guratively and literally: in his Harmonices mundi 
(Harmony of the World) he tried to fi nd resonances between musical 
chords and astronomical ratios. His earlier astronomical work, Mys-
terium cosmographicum (Cosmic Mystery), brought to light a peculiar 
relation between the fi ve regular polyhedra and the six then- known 
planets. If we nest the fi ve regular polyhedra within spheres, one inside 
of the other, in just the right order, the ratios of their distances from the 
center mirror (more or less) the ratios of the distances of the planets 
from the Sun. Kepler’s cosmology, illustrated in the famous drawing 
of fi gure 7.11, cannot work beyond the planets visible to the naked eye 
(for one, there are no more regular polyhedra left  to nest), but of course 
he was not to know that. Uranus would be discovered by Sir William 
Herschel almost two centuries later.

It doesn’t sound easy to work out the dimensions of planetary orbits 
by calculating the sizes of polyhedra nested in spheres. But by now, it 
should come as no surprise that spherical trigonometry is the key to a 
manageable solution. Imagine a regular polyhedron enclosed within a 
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unit sphere, meeting the polyhedron at the vertices. Th en a sphere in-
scribed within the polyhedron will contact the polyhedron at the center 
of each face. What is the radius, r, of this inscribed sphere?

→Figure 7.12 illustrates one face (portrayed here as a triangle, 
but it could be a square or pentagon) of a regular polyhedron, with 
O at the center. 1OA= , and since the inscribed sphere touches 
the polyhedron at C, OC r= . Let E be the end of the perpendicu-
lar dropped from C to the midpoint of AB. Imagine OC and OE 
extended to Cl and El on the circumscribed sphere, forming the 
right- angled spherical triangle AC El l. Th en since \OCA is right,

Figure 7.11. Kepler’s polyhedral model of the solar system. Courtesy Wikimedia 
Commons.
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 cos cosr AOC AC\= = l
&

.

But from the second of the identities in the fi rst column of Napier’s 
Rules,

 cos cot cotAC AC E C AE\ \=l l l l l
&

.

Now, imagine dropping perpendiculars from C to every side of the 
face we’re considering, not just AB. We end up with 2m identical 
angles around Cl, each equal to AC E\ l l. So /AC E m360 2\ c= =l l

/m180c . Similarly, if we imagine arcs drawn from A to the centers 
of each of the faces containing A as a vertex, we end up with 2n 
identical angles around A, each equal to C AE\ l l. But C AE\ =l l

/ /n n360 2 180c c= . We are left  with the pleasingly compact relation

 180cot cotr m n
180c c= c cm m.→

Th e values of r for the regular polyhedra are tabulated in fi gure 7.13. 
Notice that the symmetry of our formula with respect to m and n implies 
that the inscribed spheres for the octahedron and cube, and likewise for 
the dodecahedron and icosahedron, are identical. Th is relation is one 
aspect of the duality of these respective pairs of polyhedra. Another, 
more commonly expressed aspect of this same duality was discussed in 
chapter 2: within a regular polyhedron if you connect the central points 
C of each face, you generate a smaller copy of its dual polyhedron inside.

Kepler ordered his planets and polyhedra, from inside to out, as fol-
lows: Mercury- icosahedron- Venus- octahedron- Earth- dodecahedron- 

A

B

C

E
E´

C´O

Figure 7.12. Determining the radius of a sphere inscribed within a regular polyhedron.



Areas, Angles, and Polyhedra • 123

Mars- tetrahedron- Jupiter- cube- Saturn. From our modern point of view 
we can see that the large gap caused by the tetrahedron’s relatively small 
value of r nicely fi lls the space in the solar system occupied by the aster-
oids between Mars and Jupiter. In fact, if we allow for a small fudge in 
the gap between Mercury and Venus, the diff erences between Kepler’s 
polyhedral distances and the planetary distances based on Copernicus’s 
data were on average only about 3%. Given the observational accuracy 
of this era, that is an impressive match.

Let’s follow in Euclid’s footsteps in the Elements and consider the di-
mensions of regular polyhedra inscribed in a unit sphere. In particular, 
what are the lengths a of the edges? It turns out that fi rst we must con-
sider a related question: what is the angular inclination i between two 
faces of a regular polyhedron?

→In fi gure 7.14 one face of the polyhedron is drawn as a pen-
tagon (although, as before, a square or a triangle are also possible). 
Th e adjoining face below edge AB (not drawn) has DE on its sur-
face. C is the center of the face above AB, and we drop CE per-
pendicularly onto AB. Segment DE is the result of doing the same 
thing to the face below AB. So, the inclination between the two 
faces is i = \CED, and \CEO = i/2.

As before, the spherical trigonometry arises by “popping” ΔACE 
outwards onto the circumscribed sphere, producing the spherical 

 m n r i a Volume

Tetrahedron 3 3 1/3 70.529c 1.633 0.5132
      (12.3%)

Cube 4 3 / .3 3 0 5774=  90c .1 1553
2 3 =  1.5397

      (36.8%)

Octahedron 3 4 / .3 3 0 5774=  109.471c .4142 1=  1.3333
      (31.8%)

Dodecahedron 5 3 ( ) .
6 5 5

5 6 0 79471
−

=
+  116.565c 0.7136 2.7852

      (66.5%)

Icosahedron 3 5 ( ) .
6 5 5

5 6 0 79471
−

=
+  138.190c 1.052 2.5362

      (60.5%) 

Figure 7.13. Th e dimensions of regular polyhedra inscribed within the unit sphere.
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right triangle AC El l. From the second identity in column II of Na-
pier’s Rules,

 cos sin cosC AE AC E C E\ \=l l l l l l
'

.

But if we consider (as before) the same sorts of constructions drawn 
on all faces with a vertex at A, we see that C AE\ l l = 360c/2n = 
180c/n. And considering arcs drawn from Cl to every vertex and 
the midpoint of every edge of the visible face, we see that AC E\ l l = 
360c/2m = 180c/m. Finally C E COE\=l l

'

; but \OCE is right, so 
90 /C E i 2c= −l l

'

. Putting all these results into our Napier’s Rule for-
mula above, we get

 180 (90 /2)cos sin cosn m i180c c c= − .

A bit of algebraic cleanup provides a pleasing formula for the incli-
nation between two faces:

 (180 / )
( / )sin sin

cosi
m
n

2
180

c

c
= .→

Th e various angles of inclination are tabulated in fi gure 7.13. Th e fact 
that the octahedron’s angle of 109.471c is the same as the “tetrahedral” 
bond angle at the center of several molecules, including methane, is no 
coincidence. We leave it to the interested reader to discover why.

Figure 7.14. Determining the inclination between two faces of a regular polyhedron.
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→We are now ready to determine a, the length of a side of a regular 
polyhedron inscribed in a unit sphere. We can reuse fi gure 7.14. 
Consider ΔACE; we notice that

 cot cotAE
CE ACE m

180\ c= = .

But AE = a/2, so cotCE a
m2

180= c. On the other hand, from ΔCEO 
we have

 /2tan tanr CE CEO CE i\= = .

Combining these two results gives us cot tanr a
m

i
2

180
2= c . But we al-

ready know that cot cotr m n
180 180= c c. Setting these two equations 

equal to each other and solving for a brings us home:

 2cot cota n
i180
2

c= .→

Once again, the side lengths a are tabulated in fi gure 7.13.
We fi nd irresistible one last excursion into the geometry of the regu-

lar polyhedra. Exactly what proportion of the volume of the unit sphere 
do the various regular polyhedra occupy?

→Th is problem turns out to be relatively simple. Connect the cen-
ter of the sphere to each of the vertices of the polyhedron. Th is 
splits the polyhedron into F pyramids with the faces as bases. Th e 
volume of each pyramid is 3

1(area of base)(height). Th e height of 
the pyramid is just the radius r of the inscribed sphere. Th e area of 
the base, i.e., a face of the polyhedron, may be found by joining the 
face’s central point to each of the vertices. We leave it as an exercise 
to show that the area of the base is cotma

m4
1802 c. By combining this 

information, we arrive at

 cotmFra
m12

180Volume
2 c= .→

Divide by 3
4 π (the volume of the unit sphere), and we have the pro-

portion of the sphere fi lled by the polyhedron. Th e tabulations in fi gure 
7.13 reveal a surprising fact: although the icosahedron appears to adhere 
most closely to its circumscribed sphere, the dodecahedron actually fi lls 
about 10% more of the sphere’s volume. Sometimes, appearances can be 
deceiving.
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Exercises

 1.  (a) Find the area of a spherical triangle whose angles are 63c, 84.35c, and 
79c, if the radius of the sphere is 10 inches.
(b) Th e sides of a spherical triangle are 6.47 in., 8.39 in., and 9.43 in. If 
the radius of the sphere is 25 in., fi nd the area of the triangle. [Granville 
1908, 230]

 2.  Verify that a spherical equilateral triangle with 60c angles has no area, 
and that the largest possible triangle is a hemisphere.

 3.  Th e state of Colorado is close to a spherical rectangle, ranging from 37c N 
to 41c N latitude and from 102.05c W to 109.05c W. Find Colorado’s area.

    (Th ere are two reasons why Colorado is not quite a spherical rectangle. 
Firstly, its northern and southern boundaries are actually circles of lati-
tude rather than great circle arcs, i.e., they bend slightly to the left  as you 
walk eastward along them. Secondly, surveying errors led to some small 
irregularities in the legal borders.)

 4.  Th e Bermuda triangle is a region of the Atlantic Ocean traditionally 
formed by vertices at Puerto Rico (18.5c N, 66c W), Bermuda (32.3c N, 
64.9c W), and the southern tip of Florida (25c N, 80.5c W). It holds a repu-
tation, deserved or not, for being the location of an inordinate number of 
disappearances of ships and planes. Th e Earth’s radius is 3960 miles. As-
suming it is a sphere, how many square miles does the Bermuda triangle 
enclose? (Hint: Join all three vertices to the North Pole.)

 5.  Th e area of an isosceles right- angled spherical triangle is 12
1  of the surface 

of the sphere: calculate the hypotenuse. [Todhunter/Leathem 1907, 107]
 6.  Prove that in a right- angled spherical triangle tan tan tanE a b2

1
2
1= . 

[Casey 1889, 90]
 7.  Prove the following analogy from Breitschneider:

 
( ) ( )

sin
sin cos

cos
sin sin

A
E A E

a
s s a

2
1

2
1

2
1

2
1

2
1

2
1−

=
−

,

   where s is the half perimeter of the triangle. [Casey 1889, 47] (Enterpris-
ing readers may look up a hint and Breitschneider’s other seven analogies 
on page 47 of Casey’s book, available online, all derivable from Delambre’s 
analogies.)

 8.  If E, EA, EB, and EC denote the half spherical excesses of a spheri-
cal triangle and its three colunar triangles respectively, show that 
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180E E E EA B C c+ + + = , and hence that the sum of the areas of these 
triangles is equal to half the area of the sphere. [Moritz 1913, 50]

 9.  Problem 4 would have been easier if we had had a formula for the area of 
a triangle in terms of its sides, rather than in terms of its angles. Fortu-
nately there is such a formula, named aft er Simon Lhuilier (1750–1840), 
who among other achievements corrected Euler’s solution to the Königs-
berg bridge problem and worked on Euler’s polyhedral formula and its 
exceptions. We shall derive Lhuilier’s formula in stages.
(a) Deduce the following identity from Delambre’s fi rst analogy:

 
( )
( )

( )
( )

cos cos
cos cos

cos cos
cos cos

C C
C C

a b c
a b c

E

E

2
1

2 2
1

2
1

2 2
1

2
1

2
1

2
1

2
1

− +
− −

=
− +
− −

.

(b) Use the cosine sum- to- product formulas from plane trigonometry, i.e.,

 2cos cos cos
sin

cos
sinx y x y x y

2 2! !=
+ −

c cm m,

to derive

 ( ) ( ) ( )tan tan tan tanE C E s a s b2
1

2
1

2
1

2
1− = − − ,

where s is the half perimeter of the triangle.
(c) Apply the process of (a) and (b) to Delambre’s third analogy, instead 
of the fi rst. Combine your results to obtain Lhuilier’s formula:

 ( ) ( ) ( )tan tan tan tan tanE s s a s b s c2
1

2
1

2
1

2
1

2
1= − − − .

We may now calculate E directly from the side lengths, and from this fi nd 
the area using Girard’s Th eorem. [Todhunter/Leathem 1907, 101–102]

 10.  (a) If a and b are the radii of the spheres inscribed in and described about 
a regular tetrahedron, show that 3b a= .
(b) If a is the radius of a sphere inscribed in a regular tetrahedron, and R 
the radius of the sphere that touches (i.e., is tangent to) the edges, show 
that 3R a2 2= . [Todhunter/Leathem 1907, 216]

 11.  In any convex polyhedron (regular or irregular), prove that the number 
of faces having an odd number of sides is even, and that the number of 
vertices having an odd number of edges is odd. [Casey 1889, 131]

 12.  If a dodecahedron and an icosahedron were each described about a given 
sphere, the sphere described about these polyhedra will be the same. 
[Todhunter/Leathen 1907, 216]
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 13.  A regular octahedron is inscribed in a cube so that the corners of the 
 octahedron are at the centers of the faces of the cube: show that the vol-
ume of the cube is six times that of the octahedron. [Todhunter/Leathem 
1907, 217]

 14.  Derive precise expressions (that is, containing no decimal approxima-
tions) for the volumes of the regular polyhedra in terms of their side 
lengths a. [Hann 1849, 65–67]
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Stereographic Projection

Astronomers needed to compute and observe long before the computer 
and the telescope. Before time- saving devices like logarithms and slide 
rules rescued astronomers from hours of drudgery, calculations were 
done by hand and were simply part of the job description. In fact, the 
word “computer” referred originally to a person, not a machine. But 
even in ancient times there were still tools that could aid the weary 
scientist by generating at least approximate solutions to astronomical 
problems. We have already seen the armillary sphere, a model of the 
celestial sphere that rotates in the same way the heavens do. By position-
ing the armillary sphere to match the conditions of the problem, an as-
tronomer could read the desired quantity on an angular scale engraved 
on the frame of the instrument.

However, it is not easy to carry around a three- dimensional repre-
sentation of the universe, and so the astrolabe was born (plate 9). As an 
Arab author once described it, an astrolabe is what you get if a camel 
steps on your armillary sphere, making it easier to store. We shall see 
that it would require a camel with considerable mathematical knowl-
edge and physical dexterity to step on the sphere in just the right way, 
but this colorful description is a decent fi rst approximation to the truth. 
Th e oldest astrolabes that still exist today are Islamic, from around AD 
900 onwards; a number also survive from early modern Europe. Th e 
fi rst technical manual composed in the English language was for the 
astrolabe, written by none other than Geoff rey Chaucer. Usually made 
of brass, the astrolabe became a highly sought instrument not just for its 
utility, but also as an object with artistic merit. In fact, some of the more 
elaborate astrolabes were likely on display much more oft en than they 
were used.

Th ere are two main parts to the astrolabe, corresponding to two sets 
of circles in the sky. Th e fi rst component, the latitude plate (fi gure 8.1), 
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resides inside a circular frame (the mater), and contains all celestial ob-
jects that do not move with respect to time: the horizon, the zenith, the 
North Pole, the celestial equator, and various other curves. Now, some 
of these objects do change their positions with respect to the observer’s 
latitude, so some astrolabes came with removable latitude plates to allow 
them to function at diff erent locations. Th e second component, the rete 
(fi gure 8.2), contains all the objects that move with the daily rotation of 
the celestial sphere, such as the ecliptic and the stars. Th e pointers that 
give the astrolabe its exotic appearance, and the rete its less common 
name of spider, indicate the locations of the brightest stars. By attach-
ing the rete to the latitude plate through a pinhole at the North Pole, 
the astronomer could set in motion the daily rotation of the heavens by 
turning the rete. Solving astronomical problems becomes relatively sim-
ple: position the rete appropriately and read the desired quantity off  the 
plate, using the appropriate scales and rulers attached to the astrolabe.

Now, one cannot hope that the camel will step on the armillary 
sphere in just the right manner to preserve the relative positions of 
celestial objects. We need a projection of the celestial sphere onto a fl at 
surface so that objects stay in their proper places with respect to each 
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Figure 8.1. Some of the important curves on the latitude plate of an astrolabe.
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other. It would be a signifi cant bonus if the projection were to render 
the transformed curves so that an instrument maker could construct 
the device easily.

Several diff erent projections of the sphere were attempted, but by 
far the most common (in fact, the only type preserved in surviving in-
struments) was stereographic projection. Imagine a transparent celestial 
globe, with all points and curves of interest drawn onto it (fi gure 8.3). 
We construct a horizontal plane cutting through the sphere at the ce-
lestial equator, and we place a light source at the South Pole. Curves on 
the southern hemisphere, such as the Tropic of Capricorn, cast shadows 
on the part of the plane outside the equator. For curves on the northern 
hemisphere such as the Tropic of Cancer, imagine shadows being cast 
backwards (from the curves on the sphere’s surface downward to the 
South Pole); the shadows land on the part of the plane within the equa-
tor. Points near the North Pole end up near the center of the equator, 
while points near the South Pole land very far away. Th e result is a pro-
jection that maps the entire sphere, minus the South Pole, onto the en-
tire plane through the equator. Of course, in practice we cannot build an 
infi nitely large plane, so most astrolabes extended their representations 

Ecliptic
North Pole

Altair

Vega
Arcturus Spica

Regulus

Aldebaran
Betelgeuse

Rigel

Sirius

Figure 8.2. Some important curves on the rete of an astrolabe.
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of the celestial sphere southward only as far as the Tropic of Capricorn 
(see fi gure 8.1). Stereographic projection distorts areas dramatically; if 
the sphere to be projected is the Earth’s surface, Antarctica would be an 
infi nitely vast land mass surrounding the rest of the planet. Incidentally, 
this is just how many members of the Flat Earth Society consider Ant-
arctica to situate itself in real life.

Why, then, is this projection better than any other? Th ere are two 
reasons: fi rstly, all circles on the sphere transform to circles on the plane 
(apart from circles passing through the South Pole, which transform to 
lines). Th is fact gave instrument makers a huge advantage; they could 
engrave circles easily enough with compasses, but would have struggled 
to produce other curves accurately. Th e earliest text we have on stereo-
graphic projection, Ptolemy’s Planisphere, oddly uses but does not prove 
the circle- preserving property; perhaps it was common knowledge at 
the time. Ptolemy does go into detail on how to use stereographic pro-
jection to solve problems involving rising times, which suggests that the 
astrolabe may have existed already. Th e second reason for the superior-
ity of stereographic projection is that it preserves angles, which makes 
it a conformal map. Th is property has clear astronomical advantages; 
it also gives the projection unique properties in the mathematical fi eld 
of complex analysis and several scientifi c disciplines, including geology 
and crystallography. Both the angle- preserving and circle- preserving 
properties are demonstrated in the exercises.

Tropic of CapricornEquator

Tropic of Cancer

Figure 8.3. Stereographic projection. Th e labels refer to the projections of the equator 
and the Tropics onto the plane.
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Using Stereographic Projection to Solve Triangles

One might wonder why we are discussing stereographic projection at 
all, since it seems to share little with spherical trigonometry beyond 
the use of the sphere. But projections have been at the heart of geom-
etry and trigonometry for many centuries. Another kind of projective 
technique—the analemma—may have developed in ancient Greece as a 
means to reduce spherical problems to the plane before spherical trigo-
nometry came along. In a nutshell, the analemma involved cutting the 
sphere along the plane of some great circle, rotating relevant arcs onto 
this plane, and performing plane geometry and trigonometry on the re-
sulting diagram. For stereographic projection in particular, at least two 
major contacts with trigonometry impacted the textbooks: fi rst in the 
17th through 19th centuries, and again in 1945—a mere ten years before 
spherical trigonometry vanished from the curriculum.

Many European textbooks solved spherical triangles much as we 
have in chapters 5 and 6, using Napier’s Rules, the Law of Cosines, and 
the various analogies. However, several texts approached triangles in a 
way that today feels rather odd, if not downright misguided. Th e idea 
was to use the given information about the triangle to draw its stereo-
graphic projection on a piece of paper. Once the projected triangle was 
drawn, the missing elements of the triangle could be computed by mea-
suring the dimensions of the projected triangle and performing some 
simple calculations to convert the measurements back to arcs on the 
spherical triangle. Th e use of physical measurement in a mathemati-
cal process might seem foreign to us, but this approach stood beside 
the conventional methods with most authors feeling no need for com-
ment. Our favorite author Benjamin Martin, in his Young Trigonom-
eter’s Compleat Guide, could not let the method pass without a remark 
in his typical style:

Th is way is (generally speaking) more artful than useful; not but that to a 
person well versed in spherics, it is of particular use and service; for this 
method dispels all ambiguity, and errors, which attend the solution by most 
other methods; and by a little use, is very practicable and easy. So that if the 
ingenuity, certainty, ease, and expeditiousness, of any method, be suffi  cient 
to recommend it, this cannot fail of acceptance with all those who have the 
least genius and taste for this science.
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Th e modern student reading Martin’s text might despair of having “the 
least genius and taste for this science,” since Martin makes a number of 
assumptions that, while perhaps acceptable to a young trigonometer in 
1736, are almost certain to perplex us. We shall follow Martin through 
his fi rst triangle solution, fi lling in a number of gaps as we go.

A couple of preliminary defi nitions are needed before we begin. Sup-
pose that we wish to project great circle AG

%

 onto the plane (fi gure 8.4). 
Th e intersection DEFG of the plane and the sphere is called the primitive 
circle. Connect antipodal points E and G where our great circle crosses 
the primitive circle; diameter DF perpendicular to this line is called the 
line of measures. As we shall see, this line plays a pivotal role. Recall from 
chapter 2 that AF

$

 is equal to the angle of inclination between the two 
great circles, and since S is the point of sight for our projection, A pro-
jects to Al. (In historical texts, oft en no distinction is made between the 
original point and the projected point, which can make for entertaining 
reading.)

→Supposing that we know the angle of inclination, how do we 
know where to draw Al? Consider fi gure 8.5, a view of the vertical 
cross- section of fi gure 8.4 through the center of the sphere, parallel 
to the page. Th en / tanCA CS CSA\=l l. But 1CS= , and because of a 
theorem from Euclid’s Elements (III.20) that everyone once knew 
but few people today remember, CSA NCA2

1\ \=l . We’ll prove this 

Figure 8.4. Projecting a great circle.
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theorem in the exercises. \NCA is the complement of the inclina-
tion between the two great circles, so

 ( )tanCA 90 angle of inclination2
1 c= −l .

Since we already know that the projected circle passes through E 
and G, we have located three points on this circle, which is enough 
to determine its position.

Our next task is to locate the projection of a pole of great circle 
AG. Although it would be easy enough to add the pole to fi gure 
8.4 and simply connect it with S, it was preferred that construc-
tions remained on the primitive circle, to avoid having to draw in 
three dimensions. Th e portion of the projected circle that is within 
the primitive circle is EAGl

(

 (fi gure 8.6). Now imagine rotating the 
primitive circle out of the page, holding DCF in place but bringing E 
upward so it is directly above C. Some of the points no longer refer 
to the same thing; for instance, G is now the point of projection 
S, at the South Pole. But all points on the line of measures DCA Fl  
remain the same.

Now that we have rotated our circle, we can draw a line from the 
point of projection, now at G, through Al to reconstruct A. But we 
know our pole a is 90c removed from A along this circle, so we 
trace out a 90c arc to locate a. Finally, connect a with G to deter-
mine the position of the projected pole al. Since al is on the line 

D
C

F

S

N

A

A´
Figure 8.5. Vertical cross-section 
of fi gure 8.4.
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of measures, rotating our circle back to its original position at the 
primitive circle does not move al, and we have successfully con-
structed the projected pole.→

We are now ready to follow Benjamin Martin as he poses his fi rst 
triangle problem. Interested readers may follow along with Martin by 
looking up pages 150 to 152 in volume 2 of Th e Young Trigonometer’s 
Compleat Guide, available online. Within these pages Martin deals with 
two ways of drawing the projected triangle. Th e fi rst situates one of the 
triangle’s vertices at the North Pole in the center of the diagram, while 
the second situates the triangle on the periphery of the primitive cir-
cle. We shall describe here only the fi rst case, and leave the second for 
the exercises. Our problem is to solve ΔABC in fi gure 8.7 with a right 
angle at A (Martin does not follow our convention of calling C the right 
angle), hypotenuse 44 52BC c= l, and 56 57C\ c= l.

→Figure 8.7 is Martin’s original diagram. As before, DEFG is 
the primitive circle, DF is the line of measures, and the point of 
projection S is assumed to lie underneath the diagram, directly be-
low C. Th e triangle is situated at the top of the sphere, with vertex 
C at the North Pole above the page. Th e shaded region is our goal, 
the projection of ΔABC onto the primitive circle.

Figure 8.6. Constructing the projected pole of a great circle. Th e dashed lines indicate 
the lines and arc involved in the construction.

D C F

G

E

A

A´

a

a´
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Since side CA is located on semicircle DCAF that rises vertically 
above the page, in fi gure 8.7 it appears as a straight line segment. 
Drawing the appropriate angle corresponding to \ACB is easy; 
since we are projecting directly downward from the North Pole, 
\ACB is the same on the projected triangle as it is on the spherical 
triangle. So Martin instructs us to draw HCI at an angle of 56 57c l 
to the line of measures. Determining where B should fall along CI 
requires an extra step: rather than setting off  a length directly cor-
responding to 544 2c l, Martin tells us to draw ( 44 52 )tanCB 2

1 $ c= l . 
(To understand why this is the right thing to do, recall the dis-
cussion of fi gure 8.5.) Identifying the location of our point B un-
locks the problem of drawing the third side AB: we now have three 
points on the circle containing that side, namely, E, B, and G. With 
these three points we can draw the circle, which defi nes A into 
existence. Th e entire triangle has been drawn.

Figure 8.7. Martin’s diagram illustrating his construction of the projection of a right 
triangle. Th is item is reproduced by permission of Th e Huntington Library, San 
Marino, California.
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But we are only half done. Next, from our newly drawn triangle, 
we must reconstruct the values of the three missing elements AB

%

, 
AC
$

, and \B on the original triangle. We begin with AB
%

. Draw pole 
a of circle EBAG onto the primitive circle, using the construction 
we saw earlier. Th en extend line aB to the edge of the primitive cir-
cle, defi ning b in one direction and m in the other. Martin asserts 
that bF

$

, which he measures to be 36 15c l, is the value of AB
%

 on the 
sphere (as opposed to the projected AB

%

 in the diagram). But why? 
Consider the line maBb on the primitive circle. Th is line (or any 
line for that matter) is the projection of some circle on the surface 
of the sphere, namely, the one obtained by cutting a plane through 
the sphere along this line and through the projection point. Th is 
circle contains a pole of the primitive circle (the projection point) 
and a pole a of the great circle containing AB

%

. Th us it is situated 
symmetrically with respect to both great circles. Hence our new 
circle cuts EA

$

 and EF$ at equal angles, making spherical triangle 
EBb isosceles. So EB Eb=

$ $

, and by subtraction from 90c, AB bF=
% $

.

Leg AC
$

 is the easiest of our three unknowns to determine. Since 
the length of the projected AC is the tangent of half of AC

$

, we sim-
ply measure AC, take the inverse tangent, and double the result. 
Martin gets 28 30AC c= l

$

, correct to the nearest minute. One won-
ders whether he really went through this process or just borrowed 
the numbers from calculations, since it seems implausible that he 
could get such an accurate value while relying on a length mea-
sured with a ruler.

Our third and last unknown is \B. Draw M, the endpoint of the 
diameter perpendicular to HCBI; notice that M is the pole of the 
great circle projected as HCBI. Th en 42 34Mm B\ c= = l

' . Again 
Martin owes us a justifi cation, but he is not forthcoming. In fact 
the explanation is simpler than one might expect. \B is the angle 
of inclination between great circles EBAG

*

 and HCBI
*

, and the angle 
of inclination between two great circles is equal to the distance 
between their poles. So we are really aft er Ma%. But B, lying on both 
great circles, is 90c removed from both M and a, so it is a pole 
of Ma%. And now the whole situation reduces to the situation dis-
cussed two paragraphs before this: to determine Ma%, extend lines 
from the projected pole B through the endpoints of Ma% to the edge 
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of the primitive circle. (Th e fact that M is already on the edge is a 
convenience, and is no obstacle to the argument.) Th en, as we saw 
above, Mm' will measure the length of Ma%.→

Th is example is just the fi rst of a variety of constructions that Martin 
and other textbook authors provided to deal with the various cases of 
both right and oblique- angled triangles. As “artful” as this subject is, 
the solution of spherical triangles by stereographic projection seems to 
have vanished quietly some time in the 19th century. Presumably the 
mathematical overhead required to understand the procedures was too 
much to demand of young students, and the use of physical measure-
ments rendered the method less accurate than the standard formulas. Its 
ingenuity, however, is wondrous.

A Crystallographic Breakthrough: 
Th e Cesàro Method

Mathematics oft en advances in fi ts and starts with intervening periods 
of stability. Some new insight comes along and the fi eld leaps forward, 
causing some of the existing ground to be disturbed. Generally, though, 
we expect mathematical progress to move forward more or less con-
tinuously. We certainly wouldn’t expect that an effi  cient and beautiful 
approach to a ubiquitous mathematical subject like trigonometry could 
possibly remain hidden for centuries. If such a strange event were to 
occur, it seems oddly fi tting that the magic trap door would be discov-
ered by someone outside of the mathematical profession.

Giuseppe Cesàro (1849–1939) was a crystallographer at the Univer-
sity of Liège in Belgium, the older brother of mathematician Ernesto 
Cesàro who achieved fame for his discovery of the method for handling 
infi nite series known as “Cesàro summability.” Presumably Giuseppe 
came upon his method through his work in crystallography, which uses 
stereographic projection to deal with orientations and inclinations of 
faces of crystals. He wrote a pair of articles on the subject in the Bulletin 
de l’Academie Royale de Belgique in 1905, but they seem to have attracted 
little attention. Very late in life he shared his method with his colleague 
J. D. H. Donnay, who taught the method to his students at Johns Hop-
kins and Laval Universities, and eventually preserved it for posterity in 
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a slim volume in 1945 (plate 10), six years aft er Cesàro’s death. Th at the 
subject as a whole had only a decade of life remaining in the public eye 
is a misfortune that consigned Donnay’s book, and Cesàro’s method, to 
obscurity.

Cesàro’s idea, like all the great ones, is simple: project an arbitrary 
triangle ABC onto a plane using stereographic projection. Apply some 
identity from plane trigonometry to the projected triangle, and map the 
identity backward to the original spherical triangle ABC. We begin by 
placing one of the vertices, say A, at the North Pole. Th en the two sides 
departing from A will project onto straight lines departing from the 
center Al (fi gure 8.8), while the third side will project to a circular arc, 
forming fi gure A B Cl l l. Th is fi gure is not a plane triangle, so we connect 
Bl and Cl with a straight line. Th e angles of the new triangle A B Cl l l may 
now be found.

→In the projection, extend tangent lines to the arc from Bl and 
Cl, meeting at D. Since stereographic projection preserves angles, 

A B D\ l l  is equal to \B on the original triangle, and A DC\ l l  is equal 
to \C. Since the angles of quadrilateral A B DCl l l sum to 360c, we have

 360
360 180 2 180 2 ,

B DC ABC
E E

angle f sphericalsum o\ c

c c c

Δ= −
= − + = −

l l ^

^

h

h

recalling that 2E is the triangle’s spherical excess. By symme-
try C B D B C D E\ \= =l l l l , which leads us to A B C B E\ = −l l l  and 
AC B C E= −l l l .→

A´

B´

C´

D

Figure 8.8. Constructing Cesàro’s 
triangle of elements.
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Here, fi nally, we see why in the previous chapter we defi ned the spheri-
cal excess to be 2E, rather than just E.

We now know the angles in ΔA B Cl l l, which Cesàro calls the triangle 
of elements. What about the side lengths? Observing our sphere from 
the outside, once again we recognize the confi guration of fi gure 8.5 in 
the cross- sections SB BAAl l  and A SC CA l l  of fi gure 8.9, giving us two of 
the three sides right away:

 tan tanb b c c
2 2and= =l l .

→Finding al is a nice geometrical exercise, which we solve 
diff erently from Donnay. Since ΔABS is inscribed in a semicircle, 
it has a right angle at B. Th us ΔABS is similar to ΔB A Sl l , since 
they share two angles (although we must be careful, since the 
similarity does not relate the vertices in the way suggested by the 
letter names). Th us / /SB SA SA SB= l l, or SA SA SB SB$ $=l l. Like-
wise, on the right side of the fi gure we arrive at SA SA SC SC$ $=l l. 
So SB SB SC SC$ $=l l or / /SB SC SC SB= l l, which implies that ΔSBC 
and ΔSC Bl l are similar since they share an angle at S. Combining 
these results, we have

 BC
B C

SB
SC=l l l.

A

B

C

A´

B´

C´

S

Figure 8.9. Deriving the side lengths 
in the triangle of elements.
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Now we must interpret each of the quantities in these ratios. Th e 
fi rst is easy: B C a=l l l. To fi nd BC, connect both B and C to Al 
and drop a perpendicular from Al to BC to discover that BC = 
2sin(a/2). For SCl, consider right triangle SA Cl l, which has 1SA =l  
and \S = b/2, from which we have 1/ ( /2)cosSC b=l . Finally, for SB 
consider right triangle SAB; we leave to the reader the conclusion 
that ( /2)cosSB c= .→

Putting everything together gives us the cumbersome expression

 ( / ) ( / )
( / )

cos cos
sina b c

a
2 2

2
=l .

To make things a bit simpler Cesàro multiplies all three sides of his tri-
angle of elements by cos(b/2)cos(c/2). We now have the values displayed 
in the triangle at the top left  of fi gure 8.10, a diagram so crucial that it 
takes up much of the space on the book’s cover (plate 10).

Cesàro goes on to defi ne three other key triangles. Th e fi rst, the de-
rived triangle, is obtained by constructing the colunar triangle to ΔABC 
that extends sides BA

%

 and BC
$

 across to B’s antipodal point. Th e triangle 
of elements corresponding to the angle at A in this colunar triangle is 

sin _ cos _c
2

b
2

sin _ cos _c
2

b
2

a
2

sin _ 

cos _ cos _c
2

b
2

sin _ sin _c
2

b
2

a
2

cos _ 

cos _ sin _C
2

B
2

cos _ sin _C
2

B
2

cos _ 

sin _ sin _C
2

B
2

cos _ cos _C
2

B
2

A
2

sin _ 

A
180°– A

180°– a
a

B – E E

s – b 180°– s

C – E A – E

s – c s – a

Triangle of elements Derived triangle

Triangle of elements of polar triangle Derived triangle of polar triangle

A
2

Figure 8.10. Cesàro’s four key triangles.
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the derived triangle shown in fi gure 8.10; the derivation of its elements 
is the subject of an exercise at the end of this chapter. Th e reader with 
a long memory may anticipate the defi nitions of the last two triangles: 
they are the triangle of elements and the derived triangle of ΔABC’s 
polar triangle (also in fi gure 8.10; s is the half perimeter of ΔABC).

Th e reader may be forgiven for some skepticism at this point; we 
have gone through a fair amount of geometrical apparatus for a method 
advertised as an elegant royal road to spherical trigonometry. But the 
wait is over, and the entire subject lies within our grasp. Virtually every 
important formula we have seen in this book, and a good many others, 
may now be derived by applying some identity of plane trigonometry 
to one of the four key triangles. Curiously, the more advanced formulas 
follow immediately, while the fundamental formulas oft en require a bit 
of cleanup. A few examples will suffi  ce.

Law of Cosines: Apply the planar Law of Cosines to the triangle of ele-
ments; we get the ungainly result

 sin sin cos sin cos sin cos sin cos cosa c b b c b b c c A2 2 2 2 2 2 2 2 2 2
2 2 2 2 2= + − .

But the identities ( /2) (1 )sin cos2
2
1θ θ= −  and ( /2) (1 )cos cos2

2
1θ θ= +  re-

turn us to references to the sides themselves rather than their halves:

 
( ) ( )( ) ( )( )

( )( )( )( ) .
cos cos cos cos cos

cos cos cos cos cos
a c b b c

b b c c A
1 1 1 1 1

1 1 1 1
2
1

4
1

4
1

2
1

− = − − + − −

− − + − +

As ugly as this appears, a bit of tidying up takes us quickly to the familiar

 cos cos cos sin sin cosa b c b c A= + .

Law of Sines: Apply the planar Law of Sines to the derived triangle; 
we get

 ( / ) ( / ) ( / )
sin

cos
sin

sin sin
A

a
E

b c2 2 2
= .

Multiply both sides of this equation by 2 sin(a/2), and we get

 ( / ) ( / ) ( / )
sin
sin

sin
sin sin sin

A
a

E
a b c2 2 2 2

= .
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Since the right side of this equation is symmetric with respect to a, b, 
and c, it must also be equal to sin b/sin B and sin c/sin C.

Th e next set of identities is obtained even more easily.

Napier’s Analogies: Apply the planar Law of Tangents, ( )
( )

tan
tan

a b
a b

2
1
2
1

=α β

α β

+

−

+
− , to 

the triangle of elements, setting α and β equal to the two angles at the 
bottom of the triangle:

 
( 2 )

( )
( / ) ( / ) ( / ) ( / )
( / ) ( / ) ( / ) ( / )

tan
tan

sin cos sin cos
sin cos sin cos

B C E
B C

b c c b
b c c b

2 2 2 2
2 2 2 2

2
1

2
1

+ −
−

=
+
− .

But 2 180B C E Ac+ − = − , so

 
( )

( )
( )

cot
tan

sin
sin

A
B C

b c
b c

2
1

2
1

2
1
2
1−

=
+
−

,

which is Napier’s second analogy. Th e other three of Napier’s analogies 
may be obtained by applying the same technique to the other three tri-
angles; we’ll leave this task to the exercises.

Delambre’s Analogies: Apply the planar Law of Sines to the triangle of 
elements:

 ( / )
( )

( / ) ( / )
( )

( / ) ( / )
sin

sin
sin

sin cos
sin

sin cos
A

a
B E

b c
C E

c b2 2 2 2 2
=

−
=

−
.

Numerators and denominators of equal ratios may be added together 
or subtracted without disturbing the ratio. So we may combine the lat-
ter two ratios to take advantage of the resemblance of the terms in the 
numerators to the sine sum and diff erence formulas:

 ( / )
( ) ( )

( )
( ) ( )

( )
sin

sin
sin sin

sin
sin sin

sin
A

a
B E C E

b c
B E C E

b c2 2
1

2
1

=
− + −

+
=

− − −
−

.

Th e denominators may now be simplifi ed using sin sin!α β=
( ) ( )2cos

sin
sin
cos

2
1

2
1α β α β+ − , identities mostly forgotten by today’s students:

 
2

( / )
2 ( )

( )
2 ( )

( )
.

sin cos
sin

cos cos
sin

sin sin
sin

A A
a

A B C
b c

A B C
b c2

2
1

2
1

2
1

2
1

2
1

2
1

2
1

2
1

=
−

+
=

−
−

From this step Delambre’s second and fourth analogies follow immedi-
ately. Th e other two analogies follow by applying the same technique to 
the derived triangle.
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So much for the standard formulas. More derivations may be found 
in the exercises, but we cannot resist showing one beautiful new result.

Euler’s Formula: No, not that Euler’s formula, but rather the one that 
determines a triangle’s spherical excess from its side lengths:

 ( / ) ( / ) ( / )cos cos cos cos
cos cos cosE a b c

a b c
4 2 2 2

1= + + + .

To prove it, apply the planar Law of Cosines to the derived triangle:

 2sin sin cos cos cos cos cos cos cosb c a b c a b c E2 2 2 2 2 2 2 2
2 2 2 2 2= + −

Double this expression and solve for the rightmost term; then factor 
the rest:

 
,

cos cos cos cos cos cos cos sin sin

cos cos sin sin

a b c E a b c b b

b c b c
2 2 2 2 2 2 2 2

2 2 2 2

2= + +

−

c

c

m

m

or

 2cos cos cos cos cos cos cosa b c E a b c b c
2 2 2 2 2 2

2= + − + .

Apply the identities cos2(θ/2) = (1 + cos θ)/2 and cos α cos β = 
(cos(α + β) + cos(α − β))/2. Shuffl  e the terms, and we’re done.

Th e divergent reactions to Donnay’s book in the 1940s American 
mathematical community strike a familiar chord today, split between 
commitment to the practical payoff  of the subject and appreciation for 
its intellectual elegance. In the Mathematical Gazette the pragmatic 
B. M. Brown took a dim view of Cesàro:

Th is approach does not commend itself for the purpose of introducing stu-
dents to spherical trigonometry . . . the total amount of preliminary work to 
be done more than off sets any subsequent advantage over the normal method. 
Spherical trigonometry is a subject whose purpose is largely utilitarian, and 
what a student requires above all else is a clear understanding of the meaning 
of sides and angles of a spherical triangle, and a knowledge of the sine, cosine, 
polar cosine and four parts formulae, together with Napier’s rules.
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Indeed, if the point of the study of mathematics is to generate answers to 
problems for engineers and scientists, then the overhead required by the 
theorems of stereographic projection is simply extra baggage. Extending 
this thought further, even the original proofs are just a burdensome ne-
cessity to get on to the business of solving triangles in examinations and 
other practical situations. A cursory inspection of modern trigonometry 
textbooks reveals the prevalence of Brown’s point of view today, although 
proofs have evolved from burdensome necessities to optional extras.

In the American Mathematical Monthly H. V. Craig was more appre-
ciative, opening with a familiar complaint against pragmatism:

Among the sundry ills of the teaching of elementary mathematics, there are 
two which in the reviewer’s opinion are serious, widespread, and chronic. 
One is the occurrence of rote methods including, of course, emphasis on the 
mere acquisition of manipulative techniques. Th e other is essentially a frame 
of mind—a rigid and reactionary orthodoxy that insists on the strict segre-
gation of mathematical concepts into compartments in accordance with well 
established custom.

Although Craig’s fi rst charge undermines Brown’s review by objecting 
implicitly to a utilitarian view of the subject, Craig was more concerned 
with his second complaint. Cesàro’s unorthodox combination of stereo-
graphic projection and spherical trigonometry defi es the standard divi-
sion of mathematics into its subdisciplines, and the result is a success: 
“the method presented is far superior to the usual procedure.” A student 
lucky enough to follow Cesàro’s approach “will not only have a more in-
teresting trip through the subject but he will gain more in mathematical 
maturity—and mathematical maturity makes up perhaps a major por-
tion of the profi t derived from studying mathematics.” Today’s debates 
on the value of mathematics in education—whether it is primarily a tool 
for science and commerce, or rather a journey of mental and conceptual 
cultivation—have long and deep roots.

Exercises

Th e fi rst two exercises take the reader through demonstrations of the 
two fundamental properties of stereographic projection: angle preserva-
tion and circle preservation.
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 1.  Show that the stereographic image of an angle on the sphere is the same 
angle on the primitive plane. (In fi gure E- 8.1, the angle in question is on 
the surface of the sphere at M. MtT and MrR are tangents to the great 
circles that form the angle at M; these tangents are drawn to meet the 
tangent plane to the sphere through S. Triangle mrt is on the plane of pro-
jection. Prove that \RMT = \rmt. Hint: Notice that TM and TS are both 
tangents to the sphere through T, and are therefore equal.) [Brown 1913, 
105–106]

 2.  Show that the stereographic image of a circle that does not pass through 
the point of projection is also a circle, as follows. In fi gure E- 8.2(a) QR 
is the circle on the sphere, with point Q chosen arbitrarily on the circle. 
PQR is a cone tangent to the sphere along the circle. PQ is extended to T, 
where it intersects a horizontal line drawn from S. PK is drawn horizon-
tally from P, parallel to ST, and P Ql l is the stereographic image of PQ.
(a) Figure E- 8.2(b) represents the plane containing PKQST. On this dia-
gram, show that PK = PQ.
(b) Show that P Ql l is always the same length, regardless of the choice of Q 
on the original circle. [Brown 1913, 103–104]

 3.  Draw a chord within a circle. Connect the endpoints of that chord to 
the center of the circle, forming angle A at the center; then connect the 

M

R

T

S

m

r

t

Figure E-8.1. Stereographic image of an angle on a sphere.
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endpoints of the chord to some point on the far side of the circle, forming 
angle B at that far point. Show that A = 2B.

 4.  Solve the right- angled triangle A = 90c, 63.2BC c=
$

, and \C = 42.5c using 
stereographic projection, according to Martin’s method.

Th e following three exercises work toward understanding Benjamin 
Martin’s second right triangle construction in pp. 150–152 of Th e Young 
Trigonometer’s Compleat Guide, vol. 2.

 5.  Let C be a point on the edge of the primitive circle. Show how to con-
struct the stereographic projection of a circle with center C and a given 
radius.

 6.  Martin’s goal in the second construction is to draw the projection of a 
triangle with the same elements as before (right angle at A, \C = 56c57l, 
and 44 52BC c= l

$

), but this time at the edge of the primitive circle rather 
than at the center. See fi gure E- 8.6, taken from Martin’s text.
(a) First draw primitive circle DFCE and diameters CD and EF. Now, de-
termine how to draw CBGD

*

, the image of the great circle through C and 
D drawn at an angle of 56c57l from the primitive circle.
(b) Use the construction of question 5 to draw the image of IBH', a circle 
with center C and radius 44c52l. Finally, draw a line through the center 
and B, defi ning A and K.

(a)

(b)
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Q

T S

Q´ P´

Figure E-8.2.
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 7.  (a) Measure AB on the diagram from question 6, and use this value to 
determine AB

%

.
(b) Determine AC

%

. (Th is is a simple measurement.)
(c) Find \B, in a manner similar to how Martin found the same angle in 
the problem solved in this chapter.

 8.  When working out the side lengths of the triangle of elements and the 
derived triangle, Cesàro chooses A to be at the North Pole. What would 
happen if we chose B or C to be at the North Pole instead?

 9.  (a) Consider the colunar spherical triangle that one gets by extending BA
%

 
and BC

$

 to a point D antipodal to B, and fi nd the angles and sides of the 
triangle of elements of ΔADC. Th is is Cesàro’s derived triangle.
(b) Find the angles and sides of the triangle of elements, and of the 
 derived triangle, of the spherical triangle polar to ΔABC.

 10.  Show that the area of the triangle of elements and that of the derived 
triangle are both equal to

 ( ) ( ) ( )sin sin sin sins s a s b s c4
1 − − − .

  [Donnay 1945, 21]

Figure E-8.6. Th is item is reproduced by permission of Th e Huntington Library, San 
Marino, California.
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 11.  Prove Cagnoli’s formula for the spherical excess in terms of the sides and 
the semiperimeter:

 ( / ) ( / ) ( / )
( ) ( ) ( )sin cos cos cos

sin sin sin sinE a b c
s s a s b s c

2 2 2 2=
− − − .

   Hint: See the previous question and consider the derived triangle. 
[ Donnay 1945, 25]

 12.  Derive the fi rst, third, and fourth of Napier’s analogies using Cesàro’s 
method.

 13.  Derive Delambre’s fi rst and third analogies by applying the technique we 
used for fi nding Delambre’s second and fourth analogies, replacing the 
triangle of elements with the derived triangle.
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Navigating by the Stars

B. M. Brown’s complaint in the previous chapter against Cesàro’s re-
markable approach to spherical trigonometry might have been made by 
an astronomer or navigator. For the practitioner already in command 
of the important theorems and looking ahead to their uses in science, 
a pit stop to examine elegant alternative approaches is a restless, impa-
tient exercise. While we may value the charm of beautiful mathematics 
on its own, its charm can only be enhanced by witnessing what it can 
do in some physical realization. Th us, it seems appropriate to conclude 
this book with an account of the life- and- death application that gave the 
subject much of its vitality in the past couple of centuries: fi nding one’s 
position on the Earth while in a ship at sea (fi gure 9.1).

As far as we know, trigonometry was fi rst used for navigation by Ve-
netian merchant ships in the 14th century. Plying their trade through 
the Mediterranean and as far away as the Black Sea, Venetians used their 
shipping routes to establish themselves as a dominant economic power. 
Navigators’ personal notebooks, of which several survive, recorded sev-
eral navigational techniques. One of these—the table of marteloio—was 
essentially an application of plane trigonometry. How sailors managed 
to pick up this theory remains a mystery, although some suggest that it 
was altered from some of the mathematical writings of Fibonacci.

Th e marteloio is not celestial navigation; there is nothing celestial 
about it. It was part of a group of methods known today as “dead” (short 
for “deduced”) reckoning, which use information about the ship’s speed, 
direction, and time of travel to update from a previously known posi-
tion to the current one. Oft en dead reckoning was not nearly accurate 
enough. During the Age of Exploration, an error of several miles easily 
could be the diff erence between a successful passage and death, either 
by sailing past an island containing needed provisions, or by contending 
with dangerous rocks off  shore.
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Finding one’s terrestrial latitude at sea is relatively easy: measure the 
altitude of the North Star above the horizon. (A more advanced and 
more precise technique, which uses the altitude of the Sun at noon, will 
be explored in the exercises.) On the other hand, the problem of deter-
mining longitude was studied already in the 16th century and would not 
be resolved for hundreds of years. Since longitude is measured with re-
spect to a position chosen arbitrarily on the Earth’s surface (Greenwich, 
England for us), any method must refer somehow to that place. Until 
the 18th century there was no known way to make this reference while 
at sea. A common navigational workaround was “parallel sailing”: since 
one’s latitude may be found via the North Star, the ship could sail along 
a parallel of latitude and be reasonably certain to reach the shore close 
to some target location.

But parallel sailing is ineffi  cient, and where trade routes and marine 
power are concerned, effi  ciency is the key to success. So the problem of 
longitude remained vital to western European nations’ prosperity and 

Figure 9.1. Th e Flying Cloud (1851–1874), which set the record for sailing from New 
York to San Francisco around Cape Horn in less than 90 days. Th e record stood until 
1989. Drawing by Ariel Van Brummelen, based on a painting by Efren Erese.



Navigating by the Stars • 153

security. Several astronomical approaches were attempted, especially 
using distances measured from the center of the Moon to the Sun, a 
planet, or some reference star. Th e navigator could look up these dis-
tances in the Nautical Almanac (fi rst published in 1767) as they would be 
seen by an observer at Greenwich, and thereby determine the time of day 
at Greenwich. Comparing this result with his local time gave the longi-
tude, simply by multiplying the diff erence by / r360 24 15hc = . Navigators 
were lucky to have the Moon for this purpose; it was the only celestial 
object that moved fast enough to achieve the accuracy that was required.

However, the only person who can be said (in a sense) to have won 
the Longitude Prize—off ered by the British government in 1714 for the 
fi rst practical solution—was not a scientist, but a clockmaker. Between 
1730 and 1759 John Harrison constructed a series of four chronometers 
capable of keeping astonishingly accurate time, even on a ship tossed 
by waves. Set the clock to the correct time at Greenwich; when at sea, 
simply use the diff erence between local time and Greenwich time to fi nd 
the longitude. Th e story of Harrison’s tribulations fi rst in building the 
instruments, and then in convincing the government of his success (he 
was eventually awarded half of the money in 1765 but never offi  cially 
won the prize), is so dramatic that it has been turned into a popular 
book and an A&E miniseries.

As successful as Harrison’s timepieces were, those made by his com-
petitors were not as reliable as his own inventions; and the best chronom-
eters took months or even years to produce. Th rough the fi rst half of the 
19th century navigators usually preferred the lunar distances method. 
However, its use of involved mathematics taxed seamen’s abilities, and 
nautical academies were called upon to train them in the delicate op-
erations required to make the method work. Up to the fi rst half of the 
20th century, numerical tables were designed more and more cleverly to 
remove as much as possible the mathematical burden.

Preparing to Navigate: Th e Observations

We conclude our voyage through spherical trigonometry by exploring 
one of the most common techniques of determining one’s position at 
sea, the Method of Saint Hilaire (also known as the intercept, cosine- 
haversine, or Davis’s method), which revolutionized navigation in the 
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late 19th century. To prepare, we must fi rst take some observations to 
give us the data we need. We measure the altitude of two celestial objects 
above the horizon; oft en, but not always, one of them is the Sun. Th e 
observation usually must be made at dawn or dusk: during the day oft en 
only the Sun is visible; and at night the horizon is not visible—a bit of a 
hindrance when measuring altitude. Making suffi  ciently accurate obser-
vations on the pitching and rolling deck of a ship became possible in the 
17th and early 18th centuries with improvements to sextants and quad-
rants. It is best to make both observations at the same time and place. 
Otherwise, a more complicated “running fi x” procedure is required.

It is early in the evening of June 22, 2010, and we are sailing our ship 
eastward to the west coast of North America (fi gure 9.2). By dead reck-
oning we have a rough idea of our current position, known today as the 
assumed position or AP. In our case it is 47 30cφ= l N, 126 45cλ= l W. We 
have encountered strong winds and may be dozens of miles away from 
there, but for the upcoming method to work our estimate needs to be 
accurate only to within about 50 nautical miles. If our AP is correct, we 
must travel about 100 nautical miles roughly northeast to enter the Juan 
de Fuca Strait between Washington state and Vancouver Island. But an 
error in our AP might cause us to miss the Strait’s entrance altogether, 
so our navigational skills are required.

Figure 9.2. Our ship’s assumed position. Copyright 2012 TerraMetrics, Inc. 
www.terrametrics.com. © 2012 Google.
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Th e sun has just set, and Venus is a bright evening star trailing the 
Sun in the western sky. Meanwhile, just west of south, Spica is shining 
brightly. So their azimuths (the direction of the object along the horizon 
measured from the north point; see fi gure 9.3) diff er by about 90c. We 
shall see later that this is a great advantage. We check our chronometer 
set to Greenwich Mean Time; conveniently, it reads exactly 5:00 AM 
on June 23, 2010. Using our handy sextant, we measure the altitudes 
of our two celestial bodies; for Venus we get 16 25.1hO c= l and for Spica 

.h 128 14O c= l. We are a bit fortunate with Venus, because atmospheric 
refraction makes it hard to measure accurately when the object’s altitude 
is less than 15c. Under good conditions an experienced sextant operator 
can measure the altitude to within 0.1 minutes of arc, so we may trust 
our observations to the given precision.

Now, since we are very unlikely to be exactly at the AP, our values for 
hO will not quite match the altitudes at the AP; it is these diff erences that 
will allow us to fi x the ship’s position. So our next task is to compute the 
altitudes hC of Venus and Spica at the AP, as well as their azimuths Z. In 
theory it is possible to observe Z directly. But in practice this can’t be 
done accurately enough: there is no visible surface feature from which 
to measure either at the north point of the horizon or below the star on 
the horizon. Z is also an angle on the surface of the celestial sphere at 
the zenith, but navigational instruments measure only arcs, not angles 
of triangles. So we have no choice but to compute Z.

As navigators not interested in trigonometry for its own sake, we 
could calculate hC and Z using nautical tables designed for this purpose. 
But as mathematicians, we would like to know what is going on. We 
appeal to the astronomical triangle, defi ned by connecting our star, the 
North Pole P, and the zenith Z (fi gure 9.4). Th e sides of this fundamen-
tal triangle are all familiar quantities: the complement of our known 
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Figure 9.3. Th e altitude and azimuth of a star.
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latitude ϕr , the complement of the star’s known declination δr, and the 
complement of the star’s sought altitude hc

r . Two of the angles are useful 
as well: Z is equal to the star’s azimuth, which becomes clear if we extend 
both of the sides departing from Z down to the horizon; and the angle 
at P is the star’s local hour angle t. (Th e third angle, called the parallactic 
angle, will not concern us here.)

We may fi nd the hour angle with the help of the Nautical Almanac, 
which gives us the information needed to construct an hour angle dia-
gram. For Venus (as well as the Sun, Moon, and other planets), con-
sider fi gure 9.5. Place point M at the top of the circle, representing the 
local meridian, and draw a radius connecting M to the center. Next 
place Greenwich G on our diagram; since our assumed longitude is 

126 45cλ= l W, Greenwich’s meridian is 126 45c l east of ours. We turn 
next to the Nautical Almanac (see fi gure 9.6); it tells us that the Green-
wich hour angle GHA of Venus at our time is 212 58.2c l. (For an online 
equivalent to the Nautical Almanac, see appendix C.) So we place Venus 
212 58.2c l counter- clockwise from Greenwich. From the diagram, then, 
we see that the local hour angle is 212 58.2 126 45 86 13.2t c c c= − =l l l.

For Spica (or any star) the hour angle process involves an extra step. 
In fi gure 9.7, draw M and G as before. Th e Nautical Almanac tells us that 
the Greenwich hour angle GHA of the vernal equinox ,̂ the fi rst point 
of Aries, is 346 15.9c l; so we place ^ 346 15.9c l counter- clockwise from 
G. Finally, we must position the star itself on the diagram. Th e Nautical 
Almanac gives Spica’s displacement from ̂ , its sidereal hour angle SHA, 

Figure 9.4. Th e astronomical triangle.
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as 158 33.4c l. So, measured westward from M, Spica’s local hour angle t is 
. . .126 45 346 15 9 158 33 4 360 18 04 3c c c c c− + + − =l l l l.

A Digression: Th e Haversine

Now that we know three quantities in our astronomical triangle (δr, ϕr , 
and t), solving for hC should be a direct application of the Law of Cosines,

 cos cos cos sin sin cosh tδ ϕ δ ϕ= +r r r r r .

But at sea in the early 20th century, prior to the advent of the pocket 
calculator, the navigator had to rely on numerical tables and hand cal-
culation. We have seen before that logarithms were extremely useful 
here—they could convert the multiplication of messy trigonometric 
values to the much simpler task of adding them. Unfortunately, the Law 
of Cosines does not lend itself to logarithms. Since there is no formula 
for the logarithm of the sum of two quantities, the logarithm of the right 
side of our equation does not simplify. In practice, oft en the astronomi-
cal triangle was divided into two right triangles so that Napier’s Rules 
could be applied in place of the Law of Cosines. Th ese so- called “short 
methods” played well with logarithms since the Napier formulas contain 
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Figure 9.5. Hour angle diagram for Venus off  the coast of Washington state, 5:00 a.m. 
GMT, June 23, 2010.
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Figure 9.6. A page from the Nautical Almanac, 2010. © British Crown copyright 
and/or database rights. Reproduced by permission of the Controller of Her Majesty’s 
Stationery Offi  ce and the UK Hydrographic Offi  ce (www.ukho.gov.uk).
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no sums. Th e lack of logarithms wasn’t the only problem with the Law 
of Cosines. If hr happens to be small, then cos hr changes very slowly with 
respect to changes in hr. Th e implication is that computing backward 
from cos hr to hr causes small rounding errors in cos hr to be magnifi ed 
greatly when hr is found.

Necessity, the mother of invention, presses us into action. Historical 
navigators had more trigonometric functions available to them than we 
have today, and some of them have very nice properties. A few have an 
ancient pedigree. In addition to the sine, ancient Indian astronomers 
invented the “versed” (short for “reversed”) sine,

 1 cosvers θ θ= − .

Its Latin name, sagitta or “arrow,” comes from its geometric defi nition 
(fi gure 9.8): if the chord of an arc is the string of a bow, the sagitta is the 
tip of the arrow.

One might imagine that introducing this function might simplify the 
trigonometry only a little, since the versed sine is just 1 minus the cosine. 
However, a hidden advantage comes into play with the application of a 
well- known identity:
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Figure 9.7. Hour angle diagram for Spica off  the coast of Washington state on June 23, 
2010 at 5:00 a.m. GMT.
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 1 2cos sin 2vers 2θ θ θ= − = ;

or, altering the defi nition slightly by dividing by 2,

 cos sin1 2hav 2
1 2θ θ θ= − =^ h .

Th is half versed sine, or haversine, fi rst tabulated by James Andrew in 
1805, eventually became a favorite among seamen. A natural advantage 
of the haversine is that its values, the squares of sines, are always posi-
tive. Th is property means that a navigator never needs to worry whether 
the value of the haversine is positive or negative. Even better, since the 
haversine rises from 0 to 1 for arguments from 0c to 180c, the function 
is invertible in this range. So, taking the inverse of a haversine does not 
cause the same problems we saw in previous chapters when taking the 
inverse of a sine.

Another feature of the haversine recommends itself to scientists. 
Astronomers oft en work with very small arcs, for instance between 
two nearby stars. Imagine using the Law of Cosines on a small tri-
angle. A quantity something like cos(0.01c) might arise; its value is 
0.999999984769. If your calculator rounds to seven decimal places, it 
will record the cosine as 1. When the inverse cosine is taken, it will an-
nounce that the angular separation is zero! On the other hand, the ha-
versine of 0.01c is 7.615 10 9# − —a very small number, but not one where 
the rounding of signifi cant fi gures will cause a problem.

Figure 9.8. Th e versed sine.θ
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Th e Method of Saint Hilaire

While we ventured briefl y into the world of haversines, we had left  our 
ship somewhere off  the coast of Washington state needing to compute 
the altitude hC of Venus and Spica. We shall follow the method of Saint 
Hilaire as it was updated and used in the 20th century. A career offi  cer 
in the French navy, Adolphe Laurent Anatole Marcq de Blond de Saint 
Hilaire was captain of the School Ship Renomée from 1873 to 1875 when 
he published the papers that led to his method. He would eventually rise 
to Rear Admiral, and he died in 1889 while serving as Commandant of 
Marines in Algeria. His method is inspired by the work of his predeces-
sor Th omas Sumner, which we shall explore in an extended exercise at 
the end of this chapter. Saint Hilaire’s “New Navigation” was developed 
in the decades following the appearance of his papers. It had become 
established, especially in France but soon everywhere else, by the early 
20th century. If one is to judge success by popularity, the New Naviga-
tion was the best of all methods; it was the standard procedure until new 
technologies gradually replaced all celestial methods of navigation in 
the second half of the 20th century.

We have enough information to fi nd hC, since we know three quan-
tities in the astronomical triangle: the local hour angle 86 13.2t c= l, 
 Venus’s declination 19 32.4cδ=+ l (from the Nautical Almanac), and at 
least a dead reckoning value for the local latitude, 47 30cφ=+ l. We could 
apply the Law of Cosines, but we shall make things easier for the naviga-
tor. With haversine tables in our possession, we can manipulate the Law 
of Cosines into a form amenable to their use.

→We start with

 cos cos cos sin sin cosh tC δ ϕ δ ϕ= +r r r r r .

Applying the formula 1 2cos havθ θ= −  to cos hC
r  and cos t, we get 

the ungainly

 1 2 2cos cos sin sin sin sinh thav havC δ ϕ δ ϕ δ ϕ− = + −r r r r r r r .

But ( ) ( )cos cos sin sin cos cosδ ϕ δ ϕ δ ϕ ϕ δ+ = − = −r r r r r r . If we replace 
this latter expression with its haversine equivalent and clean up a 
bit, we arrive at the haversine formula of navigation:
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 ( ) cos cosh thav hav havC ϕ δ ϕ δ= − +r .→

In our case, the formula gives us 16 46.3hC c= l for Venus (compared to 
16 25.1hO c= l), and 29 06.9hC c= l for Spica (compared to 28 14.1hO c= l). 

Of course, the reader following along with one of those rare calcula-
tors lacking a haversine button may feel free to use the Law of Cosines 
instead.

Now that we know all three sides and one angle of our astronomical 
triangle, getting the azimuth Z is just a matter of applying the Law of 
Sines:

 sin
sin

sin
sin

t
h

Z
δ=

r r
.

Th e ambiguity that arises from needing to evaluate an arc sine is of 
no importance here; we have been looking at the star, and we know in 
what quadrant it lies. So for Venus, from sin Z = 0.98214 we deduce that 
Z = 79c09.3l west of North; and for Spica, from sin Z = 0.34829 we de-
duce that Z = 20c22.9l west of South.

Now that Z is known, we can imagine moving forward or backward 
in that direction on the water’s surface along the azimuth line (fi gure 
9.9). As we move, only Venus’s altitude (not its azimuth) will change; 
and if we move forward far enough, we will reach Venus—or rather, we 
will reach the place where Venus would land if it fell directly toward the 
Earth’s center. Th is point is called Venus’s geographical position, or GP. 
As we move along the azimuth line, Venus’s altitude will increase if we 
move toward Venus, or decrease if we walk away.

Assumed
position

Line of      position

Azim
uth lin

e

Intercept

Figure 9.9. Th e line of position.
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At some point in our journey back and forth along the azimuth line, 
Venus’s altitude will match our observed altitude 16 25.1hO c= l exactly. 
Th is point might be our true position. But we’re not quite sure of Z, and 
if we turn 90c to the left  or right and take a few steps, Venus will remain 
at the same altitude in the sky without changing Z much. In fact, we 
could take more than a few steps; we could travel in a giant circle cen-
tered at Venus’s GP, and Venus’s altitude would remain the same. (As 
huge as this circle is, it’s not a great circle, so it’s called a small circle.) Of 
course, we don’t expect to need to travel very far to adjust our position, 
so we will assume that our true position is somewhere on the straight 
line perpendicular to the place on the line of azimuth where Venus’s alti-
tude matches hO. We then draw the line of position, or LP, at right angles 
to the azimuth line, and we know that we are somewhere on that line. 
But how far from our AP should we travel to reach the LP?

Th e intercept, the distance from the AP to the LP, is where our method 
derives one of its names, and it is surprisingly easy to fi nd. Figure 9.10 
is the cross section of the universe through the center of the Earth that 
contains Venus. Since Venus is so far away, the lines of sight from both 
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Figure 9.10. Finding the intercept.
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our assumed and true positions are essentially parallel; it is the diff er-
ence in position on the Earth’s surface that causes hO to diff er from hC. 
Form a right triangle by drawing a tangent to the circle at the AP and 
joining it to the line of sight from the Earth’s center to Venus. Th e angles 
in this triangle will be 90c, hC, and hC

r . Do the same from the true posi-
tion. Th e angle at the center of the Earth between the assumed and true 
positions will be h h h hO C C O− = −r r . But this angle, measured in minutes 
of arc, is equal to the distance on the surface measured in nautical miles! 
So to calculate the intercept, we need only determine 60( )h hC O− . In 
Venus’s case the intercept is 21.2 nautical miles; for Spica it is 52.8 nauti-
cal miles.

We are now ready to use a plotting chart, a simple version of which is 
shown in fi gure 9.11. Our assumed position is at the center of the circle, 
so we may mark 126 45cλ= l W, 47 30cφ= l N on the chart as in fi gure 
9.12. Since the two vertical radii are marked off  in units of 60, it is con-
venient to assume that the circle has a radius of 60 nautical miles (if 
the intercepts had been smaller, we could have used a smaller scale). So 
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we mark the top and bottom vertical lines 60 nautical miles above and 
below 47 30c l, at 4 308cφ= l and 4 306cφ= l. Th e longitude scale, however, 
is diff erent. From exercise 9 of chapter 2, recall that the east- west dis-
tance corresponding to one degree of longitude decreases as one moves 
north, according to the cosine of the latitude. We can work out this scale 
cleverly without a needing a calculator to compute the cosine: mark two 
places on the circle 47 30c l up and down from the rightmost point of the 
circle, and draw a vertical line. Do the same on the left . Th e three verti-
cal lines will each be 1c apart in longitude.

Earlier we calculated Venus’s azimuth to be 79 09.3c l west of North, 
so we draw the azimuth line onto our chart. Th e intercept is 21.2 nauti-
cal miles, so we must move that distance away from the center of the 
circle. But in which direction? In this case we must travel away from 
(rather than toward) Venus or disaster will ensue. As seen on fi gure 
9.10, if h h>C O then we must move away from Venus, and if h h<C O we 
must move toward it. Navigators remember this rule by memorizing 
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the phrase “computed greater away.” Now that we have located Venus’s 
intercept (to the right of and a little below the center), we draw a per-
pendicular. Th is marks Venus’s line of position (LP), and we know that 
our ship is somewhere along it.

Of course, one LP isn’t enough to pin down our location, but we had 
the foresight to make two observations. So we leave the reader to repeat 
the process for Spica and get a second LP. Th e intersection of the two 
LP’s is our fi x, our best estimate of our true position. Occasionally navi-
gators make three observations and draw three LP’s. Since the three LP’s 
are unlikely to intersect at precisely the same point but instead form a 
small triangle, the navigator assumes that the ship is located at the most 
dangerous point within the triangle. Better safe than sorry.

Figure 9.12 shows our resulting fi x. We can now see why taking ob-
servations of two objects with azimuths diff ering by about 90c was such 
a good idea: our LP’s are almost at right angles to each other, produc-
ing a much more precise intersection point than if the LP’s had been 
nearly parallel. In our chart, we fi nd that our ship is actually around 55 
nautical miles northeast of the AP, at about 48 15cφ= l N, 126 00cλ= l W; 
this position is indicated in fi gure 9.13. We are much closer to Juan de 
Fuca Strait than we thought (less than 50 nautical miles rather than 100), 
and we need to approach the Strait heading almost due east, rather than 
northeast. It’s a good thing we have a navigator on board.

Figure 9.13. Th e assumed position of our ship, and the true position northeast of it. 
Copyright 2012 TerraMetrics, Inc. www.terrametrics.com. © 2012 Google.
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Now the secret may be revealed. Th e true position in this example, 
from which the altitude observations were obtained using astronomical 
soft ware, is exactly 48 15cφ= l N, 126 00cλ= l W. Th e true position is so 
close to our fi x that the thickness of the lines at the intersection of the 
two LP’s covers both locations. We have pinpointed our ship to a dis-
tance of less than 1000 feet.

Exercises

 1.  Finding one’s terrestrial latitude is as easy as measuring the altitude of 
the North Star, but sailors oft en used a more accurate method called 
the “noon sight.” Near local noon in the northern hemisphere, the Sun 
crosses the meridian (the great circle through the north and south points 
of the horizon and the zenith) in the south, reaching its maximum 
altitude. For a number of minutes around noon its altitude is almost 
constant. Th e sailor repeatedly measures the Sun’s altitude near noon, and 
considers the noon sight to be the largest measured value.
(a) Use the concepts from chapter 2 to explain how this measurement 
determines the local latitude. One quantity from the Nautical Almanac is 
needed; which one?
(b) On June 23, 2011, a sailor gets a noon solar altitude of 60 25.1c l. What 
is the local latitude? (Use the Nautical Almanac, paper or online, to get 
the quantity you need.)

 2.  Make an hour angle diagram for Mars and Altair using your local lon-
gitude, for June 22, 2010 at 0900 GMT. Use the page from the Nautical 
Almanac reproduced in fi gure 9.6.

 3.  (a) Since the haversine formula is an alternate formulation of the Law of 
Cosines, it clearly applies to any triangle, not just the astronomical one. 
Express the formula in terms of a general triangle with sides a, b, c and 
angles A, B, C.
(b) Solve 52a c= , 39b c= , 44c c=  using the haversine formula.

 4.  (a) Show that ( ) ( )sin sina b a b a bhav hav= + − − . (Hint: Use the cosine 
addition and subtraction formulas.)
(b) Substitute this result into the equation you generated in question 3(a), 
to obtain the following formula that involves only haversines:

 ( ) [ ( ) ( )]c a b a b a b Chav hav hav hav hav= − + + − − .

  [Nielsen/Vanlonkhuyzen 1944, 119]
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 5.  Th e formula derived in the previous exercise may be used to build a 
device called the haversine nomogram, capable of solving some spherical 
triangles visually. Make a scale as in fi gure E- 9.5.1, where the position of 
each tick mark corresponds to the haversine of that angle. (Th e more tick 
marks you can make, the more accurate your result.) Align three of these 
scales in a rectangle opened at the top, as in fi gure E- 9.5.2. Imagine that 
the triangle has sides a 87c= , b 52c= , and c 106c= . Th en 35a b c− =  and 

139a b c+ = . Draw a diagonal line from 35c on the left  scale to 139c on the 
right scale. Th en draw a horizontal line from the 106c point on the right 
scale and move down to the bottom scale when you reach the diagonal 
line. Th e angle at that place, 115c, is the value of C.
(a) Solve the triangle of question 3(b) using a haversine nomogram.
(b) Explain why this method produces the correct answer. (Hint: use the 
formula of question 4(b), solved for hav C.)
(c) Devise a method to use a haversine nomogram to fi nd the third side 
if two sides and their included angle are given. [Nielsen/Vanlonkhuyzen 
1944, 120–121]
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Figure E-9.5.2. Finding an angle in a triangle with three known sides using a haversine 
nomogram.

Figure E-9.5.1. Th e haversine nomogram.
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 6.  It is early evening on June 22, 2010 and you are somewhere southeast of 
the coast of Long Island, NY, hoping to sail toward Rhode Island. Your 
chronometer reads June 23, 2010, 1:00 AM GMT, and your assumed 
position is 40 05cφ= l, 70 33cλ= l. A little west of south you spot Antares, 
and with your sextant you measure it to be 16 34.0c l above the horizon. 
Just north of west is Venus, with an altitude of 18 40.1c l. Use Saint Hilaire’s 
method to determine your position. (Figure 9.6 contains the appropriate 
page from the Nautical Almanac. Th e solution is 40 52cφ= l, 71 14cλ= l.)

 7.  Make up your own navigation problem. Do this with astronomical soft -
ware as follows: choose true and assumed positions with values of ϕ and λ 
less than one degree apart. In your soft ware, set your location to the true 
position, fi nd a time near sunrise or sunset when two objects are visible 
with azimuths separated by around 90c, record their altitudes, and note 
the time in GMT. Now discard the true position, and proceed with Saint 
Hilaire’s method. You may use the online Nautical Almanac if necessary. 
When you are fi nished, compare your fi x with the true position.

 8.  Perform the Saint Hilaire calculations in this chapter, but use the Law of 
Cosines directly on the astronomical triangle rather than the haversine 
formula. Round all trigonometric quantities to three decimal places for 
both methods. Assuming that you have a haversine button on your calcu-
lator, which method is faster? Does one give a more accurate result than 
the other?

 9.  (Assumes calculus) Find the derivative of the Sun’s altitude with respect 
to local hour angle. Explain from the result why solar observations taken 
when the Sun is in the East or West were preferred to when the Sun is in 
the South (near noon). [courtesy of Joel Silverberg]

 10.  Sumner’s method: In the late morning of December 17, 1837 Th omas 
Hubbard Sumner was approaching St. George’s Channel between Ireland 
and Wales on his way to Scotland, having departed three weeks earlier 
from South Carolina. Unsure of his position since his last fi x 600 miles 
back and dealing with bad weather conditions, he was fearful of encoun-
tering the dangerous rocks on the southeast tip of Ireland. Th e critical 
checkpoint that Sumner needed to locate was Small’s Light just off  the 
coast of Wales; if he could sail toward it, he would be able to fi nd safe 
passage through the channel (fi gure E- 9.10). Suddenly the clouds parted 
momentarily and gave him a brief opportunity to measure the Sun’s 
altitude. Spurred by necessity, he had a fl ash of insight that led to his new 
method of navigation, and eventually inspired Saint Hilaire’s method as 
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well. In this exercise we shall reproduce his discovery as he described it 
in 1843.
(a) Sumner’s fundamental formula on the astronomical triangle is equiva-
lent to the Law of Cosines, but it is in a form that makes logarithmic 
calculation easier:

 1 { ( ) }cos cos sin sec sect t hvers φ δ φ δ= − = − − .

Explain why this formula is easier to use with logarithms, and derive it 
from the Law of Cosines.
(b) By dead reckoning Sumner believed his latitude to be somewhere 
around 51 37cφ= l N. Decrease this to 51c. From the Almanac we know 
the Sun’s declination to be 23 23cδ=− l. At the moment when the clouds 
parted, Sumner observed the Sun’s altitude to be 12 10h c= l. Use this data 
and the formula in (a) to determine the hour angle t. You do not need to 
use logarithms.
(c) In time units, you should have found that t 1 43 59h m s= , which repre-
sents the time before local noon. However, Sumner needed to account for 
the equation of time, a small eff ect that accounts for the fact that the Sun 
does not quite travel through the celestial sphere at a constant speed. On 
the date of Sumner’s observation the equation of time was 3 37m s, which 
implied that the apparent time had to be adjusted 3 37m s earlier. Sumner’s 
chronometer told him that the time was 10:47:13 AM in Greenwich. 

Figure E-9.10. Sumner’s Method.
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What is the diff erence between local time and Greenwich time? Multiply 
by 15 to get the ship’s longitude. Plot the resulting ship’s position on the 
map and call it point A.
(d) Th e above calculations are based on a latitude of 51c, which is 37l less 
than Sumner’s best estimate. Repeat the calculations of (b) and (c), this 
time for a latitude of 52c. Plot the new position as point B.
(e) Draw a line through A and B. Drawn correctly, the line should pass 
through or very close to Small’s Light. Since the Sun’s altitude is the same 
at both A and B, it will also be the same at every point on the line joining 
A and B. (To be precise, A and B both lie on the line of position, a very 
large—but not great—circle containing all the points on the Earth’s sur-
face where the Sun’s altitude is 12c10l.) In what direction is the azimuth of 
the Sun with respect to this line?

    Sumner reasoned correctly that whatever his true latitude was, he 
had to be somewhere on the line of position. Since (luckily) the line 
passes through Small’s Light, Sumner simply sailed in the direction of 
his line. He soon encountered Small’s Light, passed safely through St. 
George’s Channel, and changed the history of navigation. [thanks to Joel 
Silverberg]

Where to Go from Here

Our tour through the world of spherical trigonometry has ended, but 
there are countless journeys that may be taken from here. Todhunter 
and Leathem’s 1907 textbook and Casey’s 1889 treatise are particularly 
rich sources for further exploration of mathematical topics:

• the properties of small circles (not necessarily small in stature, 
but not great circles) on their own, or inscribed in and circumscribed 
around spherical triangles;

• a duality between theorems on small circles and on great circles;

• Hart’s Circle, a spherical analog to the nine point circle in plane 
geometry;

• approximate formulas and the use of calculus to determine varia-
tions in quantities when certain other quantities are varied (useful in 
geodesy and other practical applications).
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Also in the nineteenth century, spherical trigonometry became sub-
sumed into a more general trigonometry that included non-Euclidean 
spaces. Although this did not aff ect the classroom and we have chosen to 
skip over it here, the interested reader will fi nd the theory both power ful 
and fascinating. Seth Braver’s Lobachevski Illuminated is an extensively 
annotated translation of one of the earliest works in this area.

Th e reader may wish to explore extensions of spherical trigonometry 
in astronomy and navigation; in the literature of those subjects you will 
fi nd many variants to the procedures shown here and even entirely new 
approaches. In astronomy, consider W. M. Smart’s Textbook on Spherical 
Astronomy or Simon Newcomb’s Compendium of Spherical Astronomy; 
in navigation, consult Charles Cotter’s History of Nautical Astronomy. If 
you care to linger a while in these dusty old textbooks, you will fi nd that 
the playground of spherical trigonometry contains many more forgot-
ten delights.



Appendix A. Ptolemy’s Determination 
of the Sun’s Position

✩ ✩ ✩

Ptolemy’s Almagest contains many detailed mathematical models used 
to compute the location of any celestial object at any time. Th e model for 
the Sun, borrowed from Hipparchus, is the simplest: set the Sun in mo-
tion on a circle, called the ecliptic, with the Earth near its center. During 
spring and summer the Sun appears to travel more slowly than in fall and 
winter. We saw in chapter 2 how Hipparchus handled this: he put the Sun 
in motion at a constant speed, but moved the Earth away from the center 
of the circle in the direction of the Sun’s location in fall and winter. So, 
as the Sun moves along the ecliptic approaching and receding from us, it 
remains at the same speed but appears to speed up and slow down.

Ecliptic coordinates are the natural choice for working with the Sun’s 
position in the celestial sphere: since the Sun is on the ecliptic its latitude 
β is always zero, and we need only fi nd its distance λ from the spring 
equinox. We have a few parameters at our disposal. Since the radius of 
the circle cannot be measured, we assert that it is equal to one very large 
unit—the predecessor to today’s astronomical unit. (Actually, since he 
was working in a base 60 number system, Ptolemy used 60 units; we will 
avoid this trivial complication.) In chapter 2 we calculated the eccentric-
ity of the Sun’s orbit, 0.041367e=  units; and found that the Sun’s apogee 
is located at 65.429cλ= . We are now ready to begin.

In fi gure A.1 the apogee A is at the top of the circle, so the spring equi-
nox ^ is 65.429c clockwise to the right. Since the Sun travels at a con-
stant speed, its mean anomaly am increases at a constant rate. Th e word 
“anomaly,” which actually means an irregularity in motion, had many 
diff erent uses in ancient astronomy; here it is used to represent a motion 
with no irregularities at all. We are aft er the true anomaly a, which is the 
Sun’s position as seen from the Earth E. We fi nd it by calculating angle q, 
the solar equation. We leave it to the reader to show that a a qm= −  when 
the Sun is on the left  side of the diagram, and a a qm= +  when it is on 
the right side. It is unfortunate that we have two diff erent formulas for 
diff erent sides of the diagram. In practice this led to errors: astronomers 
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sometimes added when they should have subtracted, or vice versa. We 
could solve this bifurcation problem by letting q be negative when the 
Sun is on the right, but negative quantities were many centuries in Ptol-
emy’s future.

Let t be the number of days since the spring equinox. Th en, since am 
increases at a constant rate and is equal to zero at the spring equinox,

 
365

65.429 .a t 360
daysm

4
1$ c c= −

Now we need a formula for the solar equation. Extend RC so that a 
perpendicular dropped from the earth E touches RC at X. Th en 

cosCX e am=  and sinEX e am= . Th us, in ΔREX we know the side EX 
opposite to q, as well as the side RX = 1 + CX adjacent to q. So

 tan cos
sinq X

EX
e a

e a
1R m

m= =
+

.

(Ptolemy’s method here was slightly more complicated; with his limited 
trigonometric table he was unable to perform the equivalent of an in-
verse tangent.) To fi nd the position of the Sun, calculate a from the value 
of am and q, and add 65.429c to account for the longitude of the apogee.

Th e following table gives the approximate longitude of the Sun for 
every day of the calendar year. It does not agree perfectly with modern 

Figure A.1. Calculating the Sun’s longitude given the time of year.
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positions because the longitude of the apogee has changed since Ptolemy’s 
time, but it has the pedagogical advantage of having come directly from 
our calculations. We chose the most common date for the spring equinox, 
March 20. Keen readers will notice a slight break in the pattern between 
March 19 and 20; this is because we are assuming a non- leap year, and so 
there is a ¼ day gap aft er March 19, the last day of the table. A better table 
would include a full four- year cycle between consecutive leap years.

Avid readers who attempt to recompute this table should be alert to 
one catch. When the Sun is at the spring equinox, this implies that a, 
rather than am, is equal to 360 65.429c c− . Th is should make your task a 
little more interesting.

Date λ Date λ Date λ

Jan. 1 282.1 Feb. 1 313.5 Mar. 1 341.2
Jan. 2 283.2 Feb. 2 314.5 Mar. 2 342.2
Jan. 3 284.2 Feb. 3 315.5 Mar. 3 343.2
Jan. 4 285.2 Feb. 4 316.5 Mar. 4 344.2
Jan. 5 286.2 Feb. 5 317.5 Mar. 5 345.1
Jan. 6 287.2 Feb. 6 318.5 Mar. 6 346.1
Jan. 7 288.2 Feb. 7 319.5 Mar. 7 347.1
Jan. 8 289.3 Feb. 8 320.5 Mar. 8 348.1
Jan. 9 290.3 Feb. 9 321.5 Mar. 9 349.1
Jan. 10 291.3 Feb. 10 322.5 Mar. 10 350.0
Jan. 11 292.3 Feb. 11 323.4 Mar. 11 351.0
Jan. 12 293.3 Feb. 12 324.4 Mar. 12 352.0
Jan. 13 294.3 Feb. 13 325.4 Mar. 13 353.0
Jan. 14 295.3 Feb. 14 326.4 Mar. 14 353.9
Jan. 15 296.4 Feb. 15 327.4 Mar. 15 354.9
Jan. 16 297.4 Feb. 16 328.4 Mar. 16 355.9
Jan. 17 298.4 Feb. 17 329.4 Mar. 17 356.8
Jan. 18 299.4 Feb. 18 330.4 Mar. 18 357.8
Jan. 19 300.4 Feb. 19 331.4 Mar. 19 358.8
Jan. 20 301.4 Feb. 20 332.4 Mar. 20 0.0
Jan. 21 302.4 Feb. 21 333.4 Mar. 21 1.0
Jan. 22 303.4 Feb. 22 334.3 Mar. 22 1.9
Jan. 23 304.4 Feb. 23 335.3 Mar. 23 2.9
Jan. 24 305.4 Feb. 24 336.3 Mar. 24 3.9
Jan. 25 306.4 Feb. 25 337.3 Mar. 25 4.8
Jan. 26 307.5 Feb. 26 338.3 Mar. 26 5.8
Jan. 27 308.5 Feb. 27 339.3 Mar. 27 6.8
Jan. 28 309.5 Feb. 28 340.2 Mar. 28 7.7
Jan. 29 310.5   Mar. 29 8.7
Jan. 30 311.5   Mar. 30 9.7
Jan. 31 312.5   Mar. 31 10.6
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Date λ Date λ Date λ

Apr. 1 11.6 May 1 40.2 June 1 69.6
Apr. 2 12.5 May 2 41.2 June 2 70.6
Apr. 3 13.5 May 3 42.1 June 3 71.5
Apr. 4 14.5 May 4 43.1 June 4 72.5
Apr. 5 15.4 May 5 44.0 June 5 73.4
Apr. 6 16.4 May 6 45.0 June 6 74.4
Apr. 7 17.3 May 7 45.9 June 7 75.3
Apr. 8 18.3 May 8 46.9 June 8 76.2
Apr. 9 19.3 May 9 47.8 June 9 77.2
Apr. 10 20.2 May 10 48.8 June 10 78.1
Apr. 11 21.2 May 11 49.7 June 11 79.1
Apr. 12 22.1 May 12 50.7 June 12 80.0
Apr. 13 23.1 May 13 51.6 June 13 81.0
Apr. 14 24.1 May 14 52.6 June 14 81.9
Apr. 15 25.0 May 15 53.5 June 15 82.9
Apr. 16 26.0 May 16 54.5 June 16 83.8
Apr. 17 26.9 May 17 55.4 June 17 84.8
Apr. 18 27.9 May 18 56.4 June 18 85.7
Apr. 19 28.8 May 19 57.3 June 19 86.7
Apr. 20 29.8 May 20 58.3 June 20 87.6
Apr. 21 30.7 May 21 59.2 June 21 88.6
Apr. 22 31.7 May 22 60.2 June 22 89.5
Apr. 23 32.6 May 23 61.1 June 23 90.5
Apr. 24 33.6 May 24 62.0 June 24 91.4
Apr. 25 34.5 May 25 63.0 June 25 92.4
Apr. 26 35.5 May 26 63.9 June 26 93.3
Apr. 27 36.4 May 27 64.9 June 27 94.3
Apr. 28 37.4 May 28 65.8 June 28 95.2
Apr. 29 38.3 May 29 66.8 June 29 96.2
Apr. 30 39.3 May 30 67.7 June 30 97.1
  May 31 68.7  
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Date λ Date λ Date λ

July 1 98.1 Aug. 1 127.8 Sept. 1 158.1
July 2 99.0 Aug. 2 128.8 Sept. 2 159.1
July 3 100.0 Aug. 3 129.8 Sept. 3 160.1
July 4 100.9 Aug. 4 130.7 Sept. 4 161.1
July 5 101.9 Aug. 5 131.7 Sept. 5 162.1
July 6 102.9 Aug. 6 132.7 Sept. 6 163.1
July 7 103.8 Aug. 7 133.6 Sept. 7 164.0
July 8 104.8 Aug. 8 134.6 Sept. 8 165.0
July 9 105.7 Aug. 9 135.6 Sept. 9 166.0
July 10 106.7 Aug. 10 136.5 Sept. 10 167.0
July 11 107.6 Aug. 11 137.5 Sept. 11 168.0
July 12 108.6 Aug. 12 138.5 Sept. 12 169.0
July 13 109.5 Aug. 13 139.5 Sept. 13 170.0
July 14 110.5 Aug. 14 140.4 Sept. 14 171.0
July 15 111.5 Aug. 15 141.4 Sept. 15 172.0
July 16 112.4 Aug. 16 142.4 Sept. 16 173.0
July 17 113.4 Aug. 17 143.4 Sept. 17 174.0
July 18 114.3 Aug. 18 144.3 Sept. 18 175.0
July 19 115.3 Aug. 19 145.3 Sept. 19 176.0
July 20 116.3 Aug. 20 146.3 Sept. 20 177.0
July 21 117.2 Aug. 21 147.3 Sept. 21 178.0
July 22 118.2 Aug. 22 148.3 Sept. 22 179.0
July 23 119.1 Aug. 23 149.2 Sept. 23 180.0
July 24 120.1 Aug. 24 150.2 Sept. 24 181.0
July 25 121.1 Aug. 25 151.2 Sept. 25 182.0
July 26 122.0 Aug. 26 152.2 Sept. 26 183.0
July 27 123.0 Aug. 27 153.2 Sept. 27 184.0
July 28 124.0 Aug. 28 154.2 Sept. 28 185.0
July 29 124.9 Aug. 29 155.1 Sept. 29 186.0
July 30 125.9 Aug. 30 156.1 Sept. 30 187.0
July 31 126.9 Aug. 31 157.1  
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Date λ Date λ Date λ

Oct. 1 188.0 Nov. 1 219.6 Dec. 1 250.4
Oct. 2 189.1 Nov. 2 220.6 Dec. 2 251.4
Oct. 3 190.1 Nov. 3 221.6 Dec. 3 252.4
Oct. 4 191.1 Nov. 4 222.6 Dec. 4 253.5
Oct. 5 192.1 Nov. 5 223.7 Dec. 5 254.5
Oct. 6 193.1 Nov. 6 224.7 Dec. 6 255.5
Oct. 7 194.1 Nov. 7 225.7 Dec. 7 256.5
Oct. 8 195.1 Nov. 8 226.7 Dec. 8 257.6
Oct. 9 196.1 Nov. 9 227.8 Dec. 9 258.6
Oct. 10 197.1 Nov. 10 228.8 Dec. 10 259.6
Oct. 11 198.2 Nov. 11 229.8 Dec. 11 260.6
Oct. 12 199.2 Nov. 12 230.8 Dec. 12 261.7
Oct. 13 200.2 Nov. 13 231.9 Dec. 13 262.7
Oct. 14 201.2 Nov. 14 232.9 Dec. 14 263.7
Oct. 15 202.2 Nov. 15 233.9 Dec. 15 264.7
Oct. 16 203.2 Nov. 16 234.9 Dec. 16 265.8
Oct. 17 204.3 Nov. 17 236.0 Dec. 17 266.8
Oct. 18 205.3 Nov. 18 237.0 Dec. 18 267.8
Oct. 19 206.3 Nov. 19 238.0 Dec. 19 268.8
Oct. 20 207.3 Nov. 20 239.1 Dec. 20 269.9
Oct. 21 208.3 Nov. 21 240.1 Dec. 21 270.9
Oct. 22 209.3 Nov. 22 241.1 Dec. 22 271.9
Oct. 23 210.4 Nov. 23 242.1 Dec. 23 272.9
Oct. 24 211.4 Nov. 24 243.2 Dec. 24 274.0
Oct. 25 212.4 Nov. 25 244.2 Dec. 25 275.0
Oct. 26 213.4 Nov. 26 245.2 Dec. 26 276.0
Oct. 27 214.4 Nov. 27 246.3 Dec. 27 277.0
Oct. 28 215.5 Nov. 28 247.3 Dec. 28 278.1
Oct. 29 216.5 Nov. 29 248.3 Dec. 29 279.1
Oct. 30 217.5 Nov. 30 249.3 Dec. 30 280.1
Oct. 31 218.5   Dec. 31 281.1



Appendix B. Textbooks

✩ ✩ ✩

Trawling through historical mathematics textbooks can be both mad-
dening and enlightening, but is always entertaining. Th ese books are 
among the better sources in English, and include the exercises quoted 
at the ends of the chapters in this book. Although there are plenty of 
other books on spherical trigonometry, this list should serve as a good 
starting point. Th e miracle of on- demand publishing and Google Books 
has rescued many of these books from out- of- print obscurity aft er long 
absences; they are indicated with a _. However, there is no satisfying 
alternative to leafi ng through an original paper volume in your own 
hands. Many are available on eBay, ironically for close to their original 
prices.

_ Anderegg, Frederick; and Roe, Edward Drake. Trigonometry for 
Schools and Colleges, Boston: Ginn, 1896.

_ Bell, Herbert. A Course in the Solution of Spherical Triangles for the 
Mathematical Laboratory, London: G. Bell & Sons, 1915.

_ Bonnycastle, John. A Treatise on Plane and Spherical Trigonometry, 
3rd edition, London: Cadell and Davies, 1818.

Brenke, W. C. Spherical Trigonometry with Tables, New York: Th e 
Dryden Press, 1943.

Brink, Raymond M. Spherical Trigonometry, New York: Appleton- 
Century- Croft s, 1942.

_ Brown, Stimson. Trigonometry and Stereographic Projections, Balti-
more: Th e Lord Baltimore Press, 1913.

_ Byrne, Oliver. A Short Practical Treatise on Spherical Trigonometry, 
London: A. J. Valpy, 1835.

_ Casey, John. A Treatise on Spherical Trigonometry and its Applica-
tion to Geodesy and Astronomy with Numerous Examples, Dublin: 
Hodges, Figgis, & Co., 1889.

_ Chauvenet, William. A Treatise on Plane and Spherical Trigonometry, 
9th edition, Philadelphia: Lippincott: 1883.
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_ Clough- Smith, J. H. An Introduction to Spherical Trigonometry, 
Glasgow: Brown, Son & Ferguson, 1966. Second edition, 1978.

Crawley, Edwin S. One Th ousand Exercises in Plane and Spherical 
Trigonometry, Philadelphia: University of Pennsylvania, 1914.

_ Cresswell, D. A Treatise on Spherics, Comprising the Elements of 
Spherical Geometry, and of Plane and Spherical Trigonometry, 
Cambridge, UK: J. Mawman, 1816.

_ Donnay, J. D. H. Spherical Trigonometry aft er the Cesàro Method, 
New York: Interscience, 1945.

_ Emerson, William. Th e Projection of the Sphere, London: J. Nourse, 1769.
_ Granville, William Anthony. Plane and Spherical Trigonometry, 

Boston: Ginn, 1908.
_ Hackley, Charles W. On Trigonometry, Plane and Spherical, New 

York: Putnam, 1853.
_ Hann, James. Th e Elements of Spherical Trigonometry, London: John 

Weale, 1849.
Hartley, Miles C. Trigonometry: Plane and Spherical, enlarged edition, 

New York: Th e Odyssey Press, 1942.
_ Keith, Th omas. An Introduction to the Th eory and Practice of Plane 

and Spherical Trigonometry, 5th edition, London: Longman, Rees, 
Orme, Brown, and Green, 1826.

Kells, Lyman M.; Kern, Willis F.; and Bland, James R. Plane and Spheri-
cal Trigonometry, New York: McGraw- Hill, 1935.

Kells, Lyman M.; Kern, Willis F.; and Bland, James R. Spherical 
Trigonometry with Naval and Military Applications, New York: 
MacGraw- Hill, 1942.

_ Lardner, Dionysius. An Analytical Treatise on Plane and Spherical 
Trigonometry, London: John Taylor, 1828.

_ Loomis, Elias. Elements of Plane and Spherical Trigonometry, New 
York: Harper & Brothers, 1890.

_ Martin, Benjamin. Th e Young Trigonometer’s Compleat Guide, vol. II 
Being the Mystery and Rationale of Spherical Trigonometry Made 
Clear and Easy, London: J. Noon, 1736.

_ Mauduit, Antoine- René. A New and Complete Treatise of Spherical 
Trigonometry, London: Adlard, 1768.

_ McClelland, William J.; and Preston, Th omas. A Treatise on Spheri-
cal Trigonometry, Part I: To the End of the Solution of Triangles, 
London: Macmillan, 1886.
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_ Moritz, Robert E. A Textbook on Spherical Trigonometry, New York: 
Wiley, 1913.

Muhly, H. T.; and Saslaw, S. S. Plane and Spherical Trigonometry 
Prepared for the Department of Mathematics, United States Naval 
Academy, Annapolis: US Naval Academy, 1946.
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Trigonometry, New York: Barnes and Noble, 1944.

_ Peirce, Benjamin. An Elementary Treatise on Spherical Trigonometry, 
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_ Phillips, Andrew W.; and Strong, Wendell M. Elements of Trigonom-
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1898.
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Plane and Spherical Trigonometry, Boston: Ginn, 1937.

Rothrock, David A. Elements of Plane and Spherical Trigonometry, New 
York: Macmillan, 1910.

Seymour, F. Eugene; and Smith, Paul James. Plane and Spherical Trigo-
nometry, New York: Macmillan, 1948.
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✩ ✩ ✩

Th is appendix contains a list of sources for readers interested in spe-
cifi c topics. For historical inquiries consult my Th e Mathematics of the 
Heavens and the Earth: Th e Early History of Trigonometry (Princeton 
University Press, 2009), which provides a scholarly background to most 
of the topics in this book.

Chapter 1. Heavenly Mathematics

Aaboe, Asger. Episodes from the Early History of Mathematics, Washington: 
Mathematical Association of America, 1963.

 Chapter 4 is a thorough account of Ptolemy’s instructions in the Almagest 
for building a table of chords.

Berggren, J. L. Episodes in the Mathematics of Medieval Islam, New York: 
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Rey, H. A. Th e Stars: A New Way to See Th em, enlarged world- wide edition, 
Boston: Houghton Miffl  in, 1952.

 Th e classic introduction to naked- eye astronomy, by the author of the 
 Curious George series. Still the best aid to fi nd one’s way around the 
night sky.

Chapter 3. Th e Ancient Approach
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as a paperback reprint from the University of Michigan Library.

Napier, John. A Description of the Admirable Table of Logarithmes, London: 
Nicholas Okes, 1616.
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(and possibly Girard’s Th eorem), three books delve into polyhedra: 
Hann 1849, Casey 1889, and Todhunter/Leathem 1907 (not the original 
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Maine: International Marine, 1994.
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Cotter, Charles. A History of Nautical Astronomy. New York: Elsevier, 1968.
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ing time, the use of instruments to measure altitude, and the use of tables, as 
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