

Data Management in the Cloud
Challenges and Opportunities

Synthesis Lectures on Data
Management

Editor
M. Tamer Özsu, University of Waterloo

Synthesis Lectures on Data Management is edited by Tamer Özsu of the University of Waterloo.
The series will publish 50- to 125-page publications on topics pertaining to data management. The
scope will largely follow the purview of premier information and computer science conferences,
such as ACM SIGMOD, VLDB, ICDE, PODS, ICDT, and ACM KDD. Potential topics
include, but not are limited to: query languages, database system architectures, transaction
management, data warehousing, XML and databases, data stream systems, wide scale data
distribution, multimedia data management, data mining, and related subjects.

Data Management in the Cloud: Challenges and Opportunities
Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
2012

Semantics Empowered Web 3.0: Managing Enterprise, Social, Sensor, and Cloud Based Data
Services for Advanced Applications
Amit Sheth and Krishnaprasad Thirunarayan
2012

Foundations of Data Quality Management
Wenfei Fan and Floris Geerts
2012

Incomplete Data and Data Dependencies in Relational Databases
Sergio Greco, Cristian Molinaro, and Francesca Spezzano
2012

Business Processes: A Database Perspective
Daniel Deutch and Tova Milo
2012

Data Protection from Insider Threats
Elisa Bertino
2012

iii

Deep Web Query Interface Understanding and Integration
Eduard C. Dragut, Weiyi Meng, and Clement T. Yu
2012

P2P Techniques for Decentralized Applications
Esther Pacitti, Reza Akbarinia, and Manal El-Dick
2012

Query Answer Authentication
HweeHwa Pang and Kian-Lee Tan
2012

Declarative Networking
Boon Thau Loo and Wenchao Zhou
2012

Full-Text (Substring) Indexes in External Memory
Marina Barsky, Ulrike Stege, and Alex Thomo
2011

Spatial Data Management
Nikos Mamoulis
2011

Database Repairing and Consistent Query Answering
Leopoldo Bertossi
2011

Managing Event Information: Modeling, Retrieval, and Applications
Amarnath Gupta and Ramesh Jain
2011

Fundamentals of Physical Design and Query Compilation
David Toman and Grant Weddell
2011

Methods for Mining and Summarizing Text Conversations
Giuseppe Carenini, Gabriel Murray, and Raymond Ng
2011

Probabilistic Databases
Dan Suciu, Dan Olteanu, Christopher Ré, and Christoph Koch
2011

Peer-to-Peer Data Management
Karl Aberer
2011

iv

Probabilistic Ranking Techniques in Relational Databases
Ihab F. Ilyas and Mohamed A. Soliman
2011

Uncertain Schema Matching
Avigdor Gal
2011

Fundamentals of Object Databases: Object-Oriented and Object-Relational Design
Suzanne W. Dietrich and Susan D. Urban
2010

Advanced Metasearch Engine Technology
Weiyi Meng and Clement T. Yu
2010

Web Page Recommendation Models: Theory and Algorithms
Sule Gündüz-Ögüdücü
2010

Multidimensional Databases and Data Warehousing
Christian S. Jensen, Torben Bach Pedersen, and Christian Thomsen
2010

Database Replication
Bettina Kemme, Ricardo Jimenez-Peris, and Marta Patino-Martinez
2010

Relational and XML Data Exchange
Marcelo Arenas, Pablo Barcelo, Leonid Libkin, and Filip Murlak
2010

User-Centered Data Management
Tiziana Catarci, Alan Dix, Stephen Kimani, and Giuseppe Santucci
2010

Data Stream Management
Lukasz Golab and M. Tamer Özsu
2010

Access Control in Data Management Systems
Elena Ferrari
2010

v

An Introduction to Duplicate Detection
Felix Naumann and Melanie Herschel
2010

Privacy-Preserving Data Publishing: An Overview
Raymond Chi-Wing Wong and Ada Wai-Chee Fu
2010

Keyword Search in Databases
Jeffrey Xu Yu, Lu Qin, and Lijun Chang
2009

Copyright © 2013 by Morgan & Claypool

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted in
any form or by any means—electronic, mechanical, photocopy, recording, or any other except for brief quotations in
printed reviews, without the prior permission of the publisher.

Data Management in the Cloud: Challenges and Opportunities

Divyakant Agrawal, Sudipto Das, and Amr El Abbadi

www.morganclaypool.com

ISBN: 9781608459247 paperback
ISBN: 9781608459254 ebook

DOI 10.2200/S00456ED1V01Y201211DTM032

A Publication in the Morgan & Claypool Publishers series
SYNTHESIS LECTURES ON DATA MANAGEMENT

Lecture #32
Series Editor: M. Tamer Özsu, University of Waterloo

Series ISSN
Synthesis Lectures on Data Management
Print 2153-5418 Electronic 2153-5426

www.morganclaypool.com

Data Management in the Cloud
Challenges and Opportunities

Divyakant Agrawal
University of California, Santa Barbara

Sudipto Das
Microsoft Research

Amr El Abbadi
University of California, Santa Barbara

SYNTHESIS LECTURES ON DATA MANAGEMENT #32

CM& cLaypoolMorgan publishers&

ABSTRACT
Cloud computing has emerged as a successful paradigm of service-oriented computing and has
revolutionized the way computing infrastructure is used. This success has seen a proliferation in
the number of applications that are being deployed in various cloud platforms. There has also
been an increase in the scale of the data generated as well as consumed by such applications. Scalable
database management systems form a critical part of the cloud infrastructure.The attempt to address
the challenges posed by the management of big data has led to a plethora of systems.This book aims
to clarify some of the important concepts in the design space of scalable data management in cloud
computing infrastructures. Some of the questions that this book aims to answer are: the appropriate
systems for a specific set of application requirements, the research challenges in data management for
the cloud, and what is novel in the cloud for database researchers? We also aim to address one basic
question: whether cloud computing poses new challenges in scalable data management or it is just
a reincarnation of old problems? We provide a comprehensive background study of state-of-the-art
systems for scalable data management and analysis. We also identify important aspects in the design
of different systems and the applicability and scope of these systems. A thorough understanding
of current solutions and a precise characterization of the design space are essential for clearing the
“cloudy skies of data management” and ensuring the success of DBMSs in the cloud, thus emulating
the success enjoyed by relational databases in traditional enterprise settings.

KEYWORDS
Cloud computing, database management systems, scalability, elasticity, self-
manageability, multitenancy, transactions, consistency

ix

To Shubra.
- Divyakant Agrawal

To Pamela Bhattacharya, my friend of all times and my constant source of
inspiration.

- Sudipto Das

To Janet Head.
- Amr El Abbadi

xi

Contents

Preface . xv

Acknowledgments . xvii

1 Introduction .1

2 Distributed Data Management .7

2.1 Distributed Systems . 7
2.1.1 Logical Time and Lamport Clocks . 8
2.1.2 Vector Clocks . 9
2.1.3 Mutual Exclusion and Quorums . 10
2.1.4 Leader Election . 12
2.1.5 Group Communication through Broadcast and Multicast 12
2.1.6 The Consensus Problem . 15
2.1.7 CAP Theorem . 16

2.2 Peer to Peer Systems . 17
2.3 Database Systems . 18

2.3.1 Preliminaries . 19
2.3.2 Concurrency Control . 20
2.3.3 Recovery and Commitment . 21

3 Cloud Data Management: Early Trends . 25

3.1 Overview of Key-value Stores . 25
3.2 Design Choices and their Implications . 26

3.2.1 Data Model . 27
3.2.2 Data Distribution and Request Routing . 27
3.2.3 Cluster Management . 28
3.2.4 Fault-tolerance and Data Replication . 29

3.3 Key-Value Store System Examples . 30
3.3.1 Bigtable . 31
3.3.2 PNUTS . 33
3.3.3 Dynamo . 35

3.4 Discussion . 36

xii

4 Transactions on Co-located Data . 39

4.1 Data or Ownership Co-location . 40
4.1.1 Leveraging Schema Patterns . 40
4.1.2 Access-driven Database Partitioning . 44
4.1.3 Application-specified Dynamic Partitioning . 45

4.2 Transaction Execution . 48
4.3 Data Storage . 48

4.3.1 Coupled Storage . 48
4.3.2 Decoupled Storage . 49

4.4 Replication . 50
4.4.1 Explicit Replication . 51
4.4.2 Implicit Replication . 51

4.5 A Survey of the Systems . 52
4.5.1 G-Store . 52
4.5.2 ElasTraS . 56
4.5.3 Cloud SQL Server . 58
4.5.4 Megastore . 60
4.5.5 Relational Cloud . 64
4.5.6 Hyder . 65
4.5.7 Deuteronomy . 68

5 Transactions on Distributed Data . 71

5.1 Database-like Functionality on Cloud Storage . 71
5.2 Transactional support for Geo-replicated Data . 75
5.3 Incremental Update Processing using Distributed Transactions 77
5.4 Scalable Distributed Synchronization using Minitransactions 79
5.5 Discussion . 81

6 Multi-tenant Database Systems . 83

6.1 Multi-tenancy Models . 84
6.1.1 Shared Hardware . 84
6.1.2 Shared Process . 85
6.1.3 Shared Table . 86
6.1.4 Analyzing the Models . 86

6.2 Database Elasticity in the Cloud . 88
6.2.1 Albatross: Live Migration for Shared Storage Data Stores 89
6.2.2 Zephyr: Live Migration For Shared Nothing Data Stores 92

xiii

6.2.3 Slacker: Live DBMS Instance Migration in Shared-nothing Model 98
6.3 Autonomic Control for Database Workloads in the Cloud 100
6.4 Discussion . 104

7 Concluding Remarks . 105

Bibliography . 107

Authors’ Biographies . 118

xv

Preface
Big data and cloud computing are two heavily used terms in the research literature and popular
media. As we stepped into this era of cloud computing and the associated data deluge, one question
continually asked was: “What are the new challenges in cloud data management?” This book evolved
as a result of our quest to answer this question and educate ourselves with a deeper understanding of
this problem-space. The journey toward this book started with an initial survey paper summarizing
the major design principles that allowed key-value stores, such as Google’s Bigtable, Amazon’s
Dynamo, and Yahoo!’s PNUTS, to achieve unprecedented scale by spanning thousands of servers
within a data center and potentially to multiple data centers in different parts of the world. As this
area caught the attention of more researchers in academia and industry alike, the field advanced
beyond key-value stores into scalable data stores supporting richer guarantees such as transactions,
or schema beyond the simple key-value model. As such, it was time for us to extend our brief survey
of three systems into a three hour-long tutorial presented at VLDB 2010 in Singapore and then at
EDBT 2011 in Uppsala, Sweden. Numerous presentations of related material have followed since
these tutorials and our understanding of this space also evolved with time. Many more systems were
also proposed in the meanwhile. This book summarizes much of our learning from over the course
of these years and many interesting discussions that have resulted from our presentations.

Similar to the classical divide between transaction processing and data analysis systems in the
traditional data management landscape, cloud data management also has a similar divide. On one
hand, are systems targeted mainly at data storage and for serving Internet-facing applications.These
systems resemble classical transaction processing systems, although with many different character-
istics. On the other, hand are data analysis systems, similar to data warehouses, that analyze massive
amounts of data to glean knowledge and intelligence from them. As enterprises aggressively collect
data about their users and combine data collected from various different sources, MapReduce-based
systems, such as Hadoop and its ecosystem, have democratized this space of data analysis and ware-
housing. With tens of open-source offering and potentially hundreds of research papers in related
areas, the data analysis space in the cloud is a thriving research area. This area will see continued
proliferation given the quest for enterprises to obtain competitive advantages by obtaining insights
from their data repositories.

Our study, analysis, and surveys have focused on the first class of systems, namely the data
management and storage systems. Therefore, this book will only focus on such systems. This book
will delve into the challenges in designing these update-intensive systems that must provide quick
response to queries/updates that access small portions of the database. In this class, we further sub-
divide our study into two classes of systems. In the first class, the challenge is in scaling the systems to
serve large applications with thousands of concurrent requests and hundreds of gigabytes to terabytes

xvi PREFACE

of frequently accessed data. The second class comprises the scenario where a cloud service provider
must efficiently serve hundreds of thousands of applications each with a small footprint in terms of
query load and resource requirements.

Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
December 2012

xvii

Acknowledgments
Our journey toward this book started a few years back with a desire to better understand the design
space of cloud data management. The result is a manifestation of our evolving understanding of
this space. This evolution was made possible with help from many people around us, too numerous
to name. However, we would like to take this opportunity to thank some of those who played an
important role in its synthesis.

First, we would like to thank our series editor M. Tamer Özsu who gave us the opportunity
to write this book and provided us with continuous support and feedback throughout the process.
He meticulously read earlier drafts and made copious comments and corrections that considerably
improved the document. Diane Cerra provided us the necessary administrative support as the Ex-
ecutive Editor with our publisher, Morgan & Claypool. Without this help and support from Tamer
and Diane, this book would not have materialized.

Much of the material in this book has been presented in various forms at different venues
across the world. During the course of these presentations, we have received feedback from many
attendees that have directly or indirectly improved our presentations and often provided a different
perspective.We are extremely thankful to all who have provided this generous feedback.We have also
benefited from the numerous discussions with Shyam Anthony, Philip Bernstein, Selcuk Candan,
Aaron Elmore, Wen-syan Li, Klaus Schauser, and Junichi Tatemura. We would like to thank them
all.We (Agrawal and El Abbadi) would also like to acknowledge the contributions of all our graduate
students from our graduate courses (CMPSC 271 and CMPSC 274) from 2008–2012.

Finally, we would like to thank our respective families for bearing with us for the countless
hours that have gone into preparing this book and related material. Without their constant support
and understanding, this book would not have seen the light of the day.

Divyakant Agrawal, Sudipto Das, and Amr El Abbadi
December 2012

1

C H A P T E R 1

Introduction
Current technology trends have resulted in an increase in the number of user applications, services,
and data that are hosted in large-scale data centers, metaphorically referred to as the cloud. Cloud
computing has commoditized computing infrastructure similar to many other utilities in our life
and has considerably reduced the infrastructure barrier between an innovative application and its
deployment to reach a large number of users dispersed geographically in any part of the world.
Prior to the advent of cloud, market validation of a new application with a vast user base amounted
to huge upfront investments on computing infrastructures to make the application available. With
pay-as-you-go pricing in cloud infrastructure and elasticity, i.e., dynamically provisioning or removal
of servers depending on the load, many of these infrastructure risks have been transferred to the
cloud infrastructure providers, thus allowing an application or service to reach a global user commu-
nity and impact many users. Consider the examples of applications such as Foursquare, Instagram,
Pinterest, and many more which are being accessed by millions of users worldwide; such large-scale
deployments are made possible by cloud computing infrastructures.

While the cloud platforms simplify application deployment, the service providers now face
unprecedented technological and research challenges to develop server-centric application platforms
that are available to a virtually unlimited number of users 24/7 over the Internet. Experiences gained
in the last decade from some of the technology leaders that provide services over the Internet (e.g.,
Google, Amazon, and Ebay) indicate that application infrastructures in the cloud context should be
highly reliable, available, and scalable. Reliability is a key requirement to ensure continuous access to
a service. Similarly, availability is the percentage of times that a given system will be functioning as
required.The scalability requirement indicates the system’s ability to either handle growing amounts
of work in a graceful manner or its ability to improve throughput when additional resources (typically
hardware) are added. Scalability has, in fact emerged both as a critical requirement as well as a
fundamental challenge in the context of cloud computing.

In general, a computing system whose performance improves after adding hardware, propor-
tionally to the capacity added, is said to be a scalable system. There are typically two ways in which a
system can scale by adding hardware resources.The first approach is when the system scales vertically
and is referred to as scale-up. To scale vertically (or to scale-up) means to add resources to a single
server, or replace a server with one with more resources, typically involving more processors, memory,
and I/O capacity in a single server. Vertical scaling up is quite effective in providing more resources
to the existing set of operating systems and application modules, but does require the replacement
of hardware components. Furthermore, beyond a certain scale, a linear increase in a server’s capacity
results in super-linear increase in costs, thus considerably increasing the infrastructure costs. The

2 1. INTRODUCTION

alternative approach of scaling a system is by adding hardware resources horizontally referred to as
scale-out.To scale horizontally (or scale-out) means to seamlessly add more servers, and distribute the
load. New servers can be incrementally added to the system, thus allowing the infrastructure costs
to increase (almost) linearly, thus making it more economically feasible to build large capacity com-
puting infrastructures. However, such horizontal scaling requires efficient software methodologies
to seamlessly manage these distributed systems.

As server prices drop and performance demand continues to increase, low-cost “commodity”
systems can be used to build large computing infrastructures to deploy high-performance applica-
tions such as web search and other web-based services. Hundreds of commodity servers may be
configured in a cluster to obtain aggregate computing power which often exceeds that of many pow-
erful supercomputers. This model has been further fueled by the availability of high performance
interconnects. The scale-out model also creates an increased demand for shared data storage with
high I/O performance especially where processing of large amounts of data is required. In addi-
tion to these hardware and infrastructure trends, virtualization has provided an elegant solution to
managing and sharing such large infrastructures even at the granularity of sharing single servers.
This scale-out paradigm is fundamental to today’s large-scale data centers, which form the essential
infrastructure for cloud computing. Technology leaders such as Google, Amazon, and Microsoft
have demonstrated that data centers provide unprecedented economies-of-scale since multiple ap-
plications can share a common infrastructure. All three companies have taken this notion of sharing
beyond their internal applications and provide frameworks such as Amazon Web Services (AWS),
Google AppEngine, and Microsoft Azure for hosting third-party applications in their respective
data center infrastructures, called public cloud.

Figure 1.1 presents a simplified view of the software stack of web-based applications deployed
in a cloud infrastructure. The clients of the applications connect to the application (or service) over
the Internet. The interface to the application is typically through an application gateway or a load
balancer that routes the requests to the appropriate servers in the web and application server tier.
The web tier processes the requests and encapsulates the application logic. For fast access, frequently
accessed data items are typically stored on a set of servers that comprise the caching tier. Such
application caches are typically distributed and are explicitly managed by the application tier. The
application’s persistent data are stored on one or more database servers that comprise the database
tier. Data stored in the database management systems (DBMSs) typically comprise the ground truth,
i.e., data that the application relies on for its normal operation. Most applications deployed in these
large cloud infrastructures are data driven. Data and therefore DBMSs are an integral technology
component in the overall cloud software stack. Since the DBMS is such a critical component of the
stack, data is often replicated (shown in broken lines in the figure). Such replication provides high
availability in the event of one DBMS server failing. Another challenge is to handle the growing
scale of data and the number of requests. In this book, we will focus on these challenges in designing
the database tier of the cloud software stack.

3

Figure 1.1: A simplified view of the software stack of a typical web-based application deployed in a
cloud infrastructure.

The reason for the proliferation of DBMSs in the cloud computing space is due to the success
of DBMSs, and in particular relational DBMSs (RDBMSs), have had in meeting the data modeling,
storage, retrieval, and querying requirements of a wide variety of applications.The key ingredients to
this success are due to many features DBMSs offer: overall functionality (modeling diverse types of
applications using the relational model which is intuitive and relatively simple), consistency (dealing
with concurrent workloads without worrying about data becoming out-of-sync), performance (both
high-throughput, low-latency and more than 25 years of engineering), and reliability (ensuring safety
and persistence of data in the presence of different types of failures).

In spite of this success, during the past decade there has been a growing concern that DBMSs
and RDBMSs are not cloud-friendly. This is because, unlike other technology components for cloud
service such as the web-servers and application servers (which can easily scale from a few machines
to hundreds or even thousands of machines), DBMSs cannot be scaled very easily. In fact, current
DBMS technology fails to provide adequate tools and guidance if an existing database deployment
needs to scale-out from a few machines to a large number of machines.

The requirement of making web-based applications scalable in cloud computing platforms
arises primarily to support virtually unlimited numbers of end-users. Scalability of a system is a

4 1. INTRODUCTION

static property in that it only provides the guarantee that a system can scale to large numbers
of servers or user requests. That is, scalability does not specify whether the system’s scale can be
dynamically adapted to fluctuations in user load. Elasticity, on the other hand, is a dynamic property
which allows the system to dynamically scale-up by adding more servers or scale-down by removing
servers without incurring any downtime. Elasticity is a crucial property of a system to benefit from
the elasticity of the underlying cloud infrastructures.

Driven by need to scale-out to thousands of servers, being elastic, spanning multiple geo-
graphical regions, and being always available, many technology leaders have developed proprietary
data management technologies. Historically, the task of data management has been broadly divided
into two classes with very different requirements.The first class comprises on-line transaction process-
ing (OLTP) or in general data serving workloads which is concerned with the execution of typically
short and simple read/write operations or transactions. The second class comprises decision support
systems (DSS) or in general data analysis workloads which is typically concerned with long duration,
read only, and complex analytical processing operations.These different classes of workload pose dif-
ferent requirements on the systems and there has also been a historical divide in system architectures
tuned for each class of workloads. Not surprisingly, two parallel lines of technologies have evolved
targeting these different workload classes.This book focuses on how the former problem, i.e., OLTP,
has been approached in the cloud context. Analytical processing has also gained significant traction
related to cloud-based data management and has resulted in important paradigms and systems. In
particular, the MapReduce paradigm was proposed within Google [Dean and Ghemawat, 2004] as
a programming model, which is particularly suitable for large analytical problems on large data sets
executed on clusters of computers. The paradigm, in its simplest form, partitions a large input data
set and maps each partition to a different server. Each such server solves the original problem on
the smaller subset, and passes the result to a reducer, who collects all the results from the various
mappers, combines its inputs to produce the final output. Evangelized by Google and popularized
by its open source counterpart Hadoop [Apache Hadoop], the MapReduce paradigm is one of the
most notable new technologies in the cloud era. While the debate on MapReduce versus RDBMSs
tuned for data analysis continues [Dean and Ghemawat, 2010, Stonebraker et al., 2010] and a vi-
brant research activity advances the state-of-the-art in MapReduce and Hadoop-based analytical
platforms for the cloud, our focus for the rest of this book will be on data-serving systems in the
context of cloud.

An early trend in scalable data-serving systems designed for the cloud were a class of systems
called the key-value stores. Systems such as Bigtable [Chang et al., 2006], Dynamo [DeCandia et al.,
2007], and PNUTS [Cooper et al., 2008] set the trend and were closely followed by a slew of
open-source systems that either replicated the design of these in-house systems or were inspired by
these. The main distinction of key-value stores when compared to RDBMSs is that in traditional
RDBMSs, all data within a database is treated as a “whole” and it is the responsibility of the DBMS
to guarantee the consistency of the entire data. However, in key-value stores, this relationship is
completely severed into keys and their associated values where each key-value pair is treated an

5

independent unit of data or information. The atomicity and consistency of application and user
accesses are guaranteed only at a single-key level. This fine-grained consistency allowed the key-
value stores to horizontally partition the database, freely moved data from one machine to the other,
distribute data across thousands of servers while obviating heavy-weight distributed synchronization,
and continue serving user requests while certain fragments of the database might be unavailable as a
result of failures. Furthermore, key-value stores were designed to be elastic while traditional DBMSs
were in general intended for an enterprise infrastructure that is statically provisioned and the primary
goal was to realize the highest level of performance for a given hardware and server infrastructure.

All the initial in-house systems were custom designed with well-specified requirements to
cater to certain application characteristics. For instance, Bigtable was designed to support building
and serving the index structure that powered the Google search engine. Similarly, the shopping cart
of Amazon.com’s e-commerce website was the primary motivation for Dynamo and Yahoo!’s social
properties drove the design of PNUTS. As a result, even though these systems are grouped in the
broad category of key-value stores, each system makes some crucial design choices that differentiate
them. Later in this book, we analyze each of these systems in detail to understand these design
choices and their associated trade-offs. However, the key properties of scalability, elasticity, and high
availability made these systems highly popular within their respective applications and in the broader
community through their open source alternatives such as HBase, Cassandra, Voldemort, and many
more. This resulted in widespread adoption of these systems which was heralded in popular media
as the NoSQL movement [NoSQL]. While atomicity and consistency at the granularity of single
key-value pairs was adequate in the applications that motivated the design of such key-value stores, in
many other application scenarios this access-pattern is not enough. In such cases, the responsibility
to ensure atomicity and consistency of multiple data entities is on the application developers. This
results in the duplication of multi-entity synchronization mechanisms many times across different
application stacks. The realization of providing access guarantees beyond single entities was widely
discussed in developer blogs [Obasanjo, 2009] and elsewhere [Agrawal et al., 2010, Dean, 2010,
Hamilton, 2010].

In general, the main challenge is the ability to support atomic access to multiple data frag-
ments in the database while still ensuring efficient performance, scalability, and elasticity. Hence,
it became clear that the classical notion of transactions [Eswaran et al., 1976, Gray, 1978] needed
to be supported in the context of large data centers. Distributed transactions have been well stud-
ied [Özsu and Valduriez, 2011], however, the traditional and practical wisdom has been that they do
not ensure high performance, and result in slowing down the entire system, especially in the presence
of failures, which are common in large clusters of servers. This fundamental design trade-off and
the various proposed design alternatives form the crux of the discussion in the subsequent chapters
of this book. In particular, we analyze various systems and approaches either proposed as academic
prototypes or as industrial-strength offerings. These approaches often exploit subtle properties and
access patterns of the applications or restrict the functionality provided to the application layer. The
challenge is to provide increased functionality, while not sacrificing performance, scalability, and

6 1. INTRODUCTION

elasticity of key-value stores. In fact, at this point in time, it can be argued that the success of cloud
platforms seems to be critically contingent on at least making data management expressive, scalable,
consistent, and elastic in a cloud setting.

While scaling the DBMSs to the requirements of a single large application with large numbers
of concurrent users remains a challenge, many cloud platforms also face the challenge of serving large
numbers of small applications that are deployed in such platforms. For instance, cloud platforms
such as Microsoft Windows Azure, Google AppEngine, and Salesforce.com, serve hundreds of
thousands of applications many of which have a small footprint in terms of data storage or the
number of concurrent requests that must be served. A major challenge is to support these applications
in a cost-effective manner. This has given rise to multi-tenancy where multiple tenants share a
common set of resources and co-exist within the system. Multi-tenant databases are emerging as an
important and critical component in the software stack of a cloud platform. These tenant databases
typically are not that large, and hence, can reside exclusively in a single server. As a result, the entire
functionality of a DBMS can be easily supported,namely,both SQL as well as transactions.However,
the problem of elasticity, effective resource sharing among the tenants, and efficiently consolidating
large numbers of small tenants are still quite significant. This has resulted in various approaches to
virtualization in the database tier. The concept of virtualizing the hardware and system software has
been predominantly proposed and used in sharing and managing large data center infrastructures.
However, virtualization within the database to support and isolate multiple independent tenant
databases has recently garnered significant interest both in the database research community as
well as the commercial offerings. Toward the latter part of this book, we discuss the fundamental
challenges in designing such elastic multi-tenant database systems.

Cloud computing and data management in large-scale data centers build on fundamental
computer science research in both distributed systems and database management. In Chapter 2, we
provide some basic background material in both distributed computing and databases, especially
distributed databases. Many of the topics covered in Chapter 2 are fundamental and are needed to
understand some of the advanced concepts discussed in later chapters. However, a reader familiar
with the literature in these areas can skip to Chapter 3 which covers some of the early work in data
management in a cloud setting, namely, key-value stores. In particular, we cover some of the basic
trends and lessons learned from that experience, and highlight some particular systems.We then start
our discussion on how to support atomic operations (transactions) in a cloud setting. In Chapter 4,
we discuss some of the first attempts which concentrated on co-locating required data on a single
site, which then could be accessed atomically on that site without resorting to complex distributed
synchronization protocols. Chapter 5 then provides more general solutions where transactions are
truly distributed and access data that is dispersed across multiple sites or even data centers. In
Chapter 6, we discuss the topic of multi-tenancy and explore different approaches for supporting
live migration in a cloud setting. Chapter 7 concludes with some lessons learned and directions for
the future.

7

C H A P T E R 2

Distributed Data Management
The foundations of cloud computing are based on many of the fundamental concepts, protocols and
models developed over the years in Computer Science, and especially in distributed computing and
distributed data management. In this chapter, we cover some of the basic background in distributed
systems and data management,which forms the foundation of many cloud database systems.Our goal
is to provide the reader with enough context to help understand some ideas used in latter chapters.The
informed reader can skip the familiar parts. We also refer the reader to standard texts on distributed
database systems [Gray and Reuter, 1992, Özsu and Valduriez, 2011, Weikum and Vossen, 2001]
for additional details. This chapter starts with a coverage of the foundations of distributed systems
in Section 2.1, which include the causal model of computation, time, and various logical clocks;
distributed mutual exclusion and the notion of quorums; leader election; multicast protocols; and
a discussion of consensus, Paxos, and the CAP Theorem. This is followed in Section 2.2 with an
overview of Peer-to-Peer Systems, which have been extensively used to manage data in clustered data
centers. In Section 2.3, we provide an overview of fundamental concurrency control and distributed
recovery protocols in distributed database systems.

2.1 DISTRIBUTED SYSTEMS
We now provide a brief overview of some of the fundamental concepts that provide the underpinning
of distributed systems, and that lay the foundations for many of the concepts and protocols used in
cloud computing and data centers.The main abstraction of a distributed system is that it is a collection
of independent computing processes or processors, often referred to as nodes, that communicate
with each other through a communication network using message passing. This abstraction implies
that the processes on nodes do not share any memory, have independent failure modes, and share
no common clock. Nodes may fail by crashing, fail-stop, or even maliciously. The network may
have link failures. In general, the system might suffer from partitioning failure, i.e., is divided into
several sub-partitions, where nodes in a single partition can communicate with each other, but no
communication occurs across partitions. Partitioning failures may occur due to both link as well as
node failures, as in the case of a gateway failure.

Distributed systems are also classified into synchronous and asynchronous systems. In an asyn-
chronous distributed system, no bounds are known on the times for message transmission, processor
processing, or on local clock drifts. In a synchronous system, such bounds are known, and hence
timeout can be used to detect failures, and when needed, act accordingly.

8 2. DISTRIBUTED DATA MANAGEMENT

Figure 2.1: Events and messages

2.1.1 LOGICAL TIME AND LAMPORT CLOCKS
In his landmark paper in 1978, Lamport proposed a simple model for distributed systems [Lamport,
1978]. In this model, a process is modeled as a sequence of totally ordered events. Events are of
three kinds: local, send, and receive events. A send event sends a message, which is received by a
corresponding receive event. A local event can be a non-communication event, e.g., put or get
in memory, multiply two matrices, etc. Figure 2.1 illustrates an example of a distributed system
consisting of four processes: p1, p2, p3, and p4. Events e2 and e4 are executed on process p1, events
e1, e3, and e9 are executed on process p2, and so on. Event e3 is a local event on process p2, while
event e1 is a send event, and e2 is the corresponding receive event.

An event e happens before event f , denoted e → f if

1. The same process executes e before f

2. e is send(m) and f is receive(m) where m is a message

3. There exists event g so that e → g and g → f .

The happens before relationship captures the potential causal dependency between any two events.
Furthermore,we say that two events e and f are concurrent if neither e → f nor f → e. In Figure 2.1,
event e4 happens-before event e6, while event e3 is concurrent with both events e2 and e4.

The notion of time, and its relationship to events is critical for many distributed systems
protocols. Often, real (or even approximately real) time clocks are not needed, rather, a notion of
time that captures potential causality suffices. Lamport introduced a notion of logical clocks that do
capture potential causal relationships between events. Namely, a logical clock assigns a value clock(e)

to each event, e, such that for any two events e and f :

• if e → f then clock(e) < clock(f).

In order to implement such a logical clock, Lamport proposed assigning each process a clock
counter.This counter must be incremented between any two events in the same process.Furthermore,

2.1. DISTRIBUTED SYSTEMS 9

Figure 2.2: Lamport clocks.

each message carries the sender’s clock value. When a message arrives at a destination, the local clock
counter is set to the maximum of the local value and the message timestamp + 1. It is easy to show
that this implementation satisfies the above logical clock condition.

In Figure 2.2, we use the same example of Figure 2.1, and assign logical times with all events
in the system.

Since the happens-before relationship is a partial order, several events can be assigned the same
logical time clock. In many protocols it is convenient to have unique values associated with events.
In this case, and in order to break ties, time value is considered a pair 〈t, p〉, where t is the logical
time given by the local clock counter, and p is the process identifier of the process where the event
was executed. It is typical to assume that processes have associated with them unique totally ordered
process-IDs. The process ids are used to break ties between events that share the same logical time.

2.1.2 VECTOR CLOCKS
Logical clocks capture potential causality, however, they do not imply causality, i.e., the logical clock
condition is only a necessary condition, and not necessarily sufficient. A stronger clock condition
would be one that requires for all events in the distributed system e and f :

• e → f if and only if clock(e) < clock(f)

This condition can be implemented by associating with each process i a vector Vi of length
n, where n is the number of processes in the system. Each event is assigned the value of the local
vector, when it is executed.

Each vector is initialized to 0, i.e., Vi[j] = 0 for i, j = 1, · · · N . A process i increments its
element of the vector in local vector before each event, Vi[i] = Vi[i] + 1. When process i sends a
message, it piggy-backs the message with the local vector, Vi . When a process j receives a message,

10 2. DISTRIBUTED DATA MANAGEMENT

Figure 2.3: Vector clocks.

it compares the received vector and its local vector element by element and sets its local vector to
the higher of two values, i.e., Vj [i] = max(Vi[i], Vj [i]) for all i = 1, · · · , N .

Now for two vectors V and V ′, V = V ′ iff V [i] = V ′[i] for all i = 1 · · · N and V ≤ V ′ iff
V [i] ≤ V ′[i] for i = 1 · · · N . Note that V < V ′ if there exists at least one j (1 ≤ j ≤ N) such that
V [j] < V ′[j] and for all i �= j , where 1 ≤ i ≤ N , V [i] ≤ V ′[i]. For any two events e, f , e → f if
and only if V (e) < V (f), and two events are concurrent if neither V (e) < V (f) nor V (f) < V (e).

In Figure 2.3, we assign vector time values to all events in the example of Figure 2.1.
Although vector clocks exactly capture causality, their size is a function of the size of the

network, which can be quite big, and every message must carry this additional vector.

2.1.3 MUTUAL EXCLUSION AND QUORUMS
Mutual exclusion is a basic concept that arises whenever concurrent processes access shared resources.
It is a fundamental operation in operating systems, and is generalized to locking in databases. Mutual
exclusion can be defined as follows: given a set of processes and a single resource, develop a protocol
to ensure exclusive access to the resource by a single process at a time. Many solutions have been
proposed, both for centralized as well as distributed systems. A simple centralized solution for the
distributed mutual exclusion problem is to designate one process as the coordinator, and when a
process needs to access the resource, it sends a request message to the coordinator. The coordinator
maintains a queue of pending requests. When the coordinator receives a request message, it checks if
the queue is empty, in which case it sends a reply message to the requesting client, who accesses the
shared resource. Otherwise, the request message is appended to the queue. Once a process finishes
its execution on the shared resource, it sends a release message to coordinator. On receipt of a release
message, the coordinator removes that request from the queue, and checks queue for any pending

2.1. DISTRIBUTED SYSTEMS 11

(a) Mutual exclusion quorum (b) Read/Write quorums

Figure 2.4: Quorums.

requests. This protocol has been generalized to a distributed protocol, with no central coordinator
by Lamport [1978], and optimized by many other researchers.

The straightforward generalization of this basic protocol requires the participation of all
processes in the system. To overcome failures, the notion of quorums was proposed by Gifford
[1979]. The crucial observation was that any two requests should have a common process to act as
an arbitrator. Let process pi (pj) request permission from a set qi (qj), where qi and qj is a quorum,
and can be a subset of all the processes in the system. Then the intersection of qi and qj must be
non-empty. For example, a set which contains a majority of the processes in the system forms a
quorum. Using quorums, instead of all the processes in the system, the basic protocol still works,
however, it may suffer from deadlocks [Maekawa, 1985]. Figure 2.4(a) shows an example of a system
with seven processes, any set of size 4 or more must intersect with any other set of size 4 or more,
i.e., any two quorums, each containing a majority of sites must have a non-empty intersection.

In the context of databases, the notion of quorums was generalized as the standard operations
are read and write, and read operations do not need mutual exclusion.Rather,multiple read operations
can execute concurrently, but a write operation still needs exclusive access to the data item. Hence,
two types of quorums were developed: read quorums and write quorums, where two write quorums
must have a non-empty intersection, and a read and a write quorum must also have a non-empty
intersection, but no read quorum intersection is mandated. Figure 2.4(b) shows an example of a
system with six processes, where a write quorum is any set of size 4, and a read quorum is any set
of size 3. Note that any read and write quorums must intersect, and any two write quorums must
intersect. However, read quorums do not necessarily intersect, and hence multiple read operations
can be executed concurrently.

12 2. DISTRIBUTED DATA MANAGEMENT

2.1.4 LEADER ELECTION
Many distributed algorithms need one process to act as coordinator, and typically, it does not matter
which process is actually chosen. This problem is often referred to as leader election, and the critical
aspect is to ensure that a single unique coordinator is chosen. The protocols are fairly simple, and
typically require that each process has a process-id, and all process-ids are unique and totally ordered.
We illustrate the protocols using the representative Bully Algorithm [Garcia-Molina, 1982], which
for simplicity assumes that communication is reliable. The key idea is to try and select the process
with the highest process-id. Any process can initiate an election if it just recovered from a failure or
if it suspects that the current coordinator has failed. Three types of messages are used: election, ok,
and I won.

Processes can initiate elections simultaneously. An initiating process p sends election messages
to all processes with higher IDs and awaits for ok messages. If no ok messages are received, p becomes
the coordinator and sends I won to all processes with lower IDs. If it receives any ok messages, it drops
out and waits for an I won message. If a process receives an election message, it returns an ok message
and starts an election. If a process receives an I won message, then the sender is the coordinator. It
is easy to argue the correctness of the Bully Algorithm. Election protocols have also been proposed
that use a logical communication structure or overlay, such as a ring. Chang and Roberts [1979]
proposed one such protocol that arranges the nodes in a logical ring where each process knows its
neighbors, and the goal is again to select the process with highest ID as coordinator. A process
starts an election if it just recovered or detects that the coordinator has failed. This process sends an
election message to the closest downstream node that is alive by sequentially polling each successor
until a live node is found. Each process that receives the election message tags its ID on the message,
and passes it along the ring. Once the message reaches back to the initiator, it picks the node with
highest ID and sends a special coordinator message along the ring, announcing it is the leader. Note
that multiple elections can be executed concurrently.

2.1.5 GROUP COMMUNICATION THROUGH BROADCAST AND
MULTICAST

When data are replicated among several nodes, updates need to be sent to all copies. A simple
communication primitive is the broadcast or multicast operator. Typically, a broadcast sends the same
message to all sites in the system, while a multicast restricts it to a subset. Without loss of generality,
we will use the term multicast to refer to sending the message to a specific set of nodes. We now
describe various primitives that have been proposed and have been used in different contexts in
distributed systems as well as data centers.

FIFO or sender ordered multicast: Messages are delivered in the order they were sent (by any single
sender)

2.1. DISTRIBUTED SYSTEMS 13

Figure 2.5: Causal ordering.

Causal order multicast: If two messages m1 and m2 are sent, such that the send event of m1 happens
before the send event of m2 then the delivery of m1 must occur before the delivery of m2 at
all common destinations.

Total order (or atomic) multicast: Messages are delivered in the same order at all recipients.

The main challenge when implementing these various multicast protocols is to develop a
method that ensures the ordering constraints. The underlying network is assumed to only support
point-to-point communication, and does not support any multicast primitive. Furthermore, we
distinguish between the receipt of a message through the network, and the actual delivery of the
message to the application layer. When a message is received, it is inserted in a queue, until the
ordering conditions are satisfied, and the message is ready for delivery. We now provide high-level
descriptions of some protocols that implement these primitives. Figure 2.5 shows an example of
three causally related broadcasts e1, e2, and e3. If these broadcasts are causal broadcasts, then the
delivery of some messages must be delayed until the causal order condition is satisfied. So, for example,
although broadcast e2 is received by process r before the receipt of broadcast e1, since e1 happens
before e2, then the delivery of e2 at r is delayed till after e1 is received and delivered. Similarly, e3 is
delivered at all processes after both e1 and e2 are delivered. As another example, consider Figure 2.6,
also with three broadcasts e1, e2, and e3. Even though e1 and e2 are not causally related and are
broadcast from two different processes, p and q, if they are total order broadcasts, then all sites must
deliver them in the same order, irrespective of the order in which they are received. So, for example,

14 2. DISTRIBUTED DATA MANAGEMENT

Figure 2.6: Total ordering.

although broadcast e2 is received by process r before the receipt of broadcast e1, and at process s the
order is reversed, all sites must deliver the two broadcasts in the same order, e.g., all sites deliver e2

before e1. Note that even if the send operations are causally related, total order does not require the
causal order to be observed—e.g., e2 and e3 are causally related, and even though e2 happens before
e3, the delivery could be to have all processes deliver e3 before e2.

FIFO multicast are easily implemented using a simple TCP-like delivery protocol, i.e., using
ordered message identifiers that are ordered by the sender, and each message waits until all previously
ordered messages are received and delivered. If a message is found missing, the recipient can send
to the sender requesting the missing message.

Causal multicast can be implemented by requiring each broadcast message to carry all causally
preceding messages. Before delivery, the recipient ensures causality by delivering any missed causally
preceding messages. However, the overhead of such a protocol is significant. Alternatively, the
following protocol (used in ISIS [Birman, 1985]), uses vector clocks to delay the delivery of a
message until all causally preceding messages are delivered. Each process maintains a vector clock,
V , of size n, where n is the number of nodes in the system. Initially entries in V are set to 0. When a
node i sends a new message m, the entry corresponding to node i is incremented by 1. Each message
is piggy-backed with the local vector of the sender. When a node delivers a message, it updates its
vector by replacing each entry by the maximum of its local value and that of the vector that arrived
with the message. A node i delivers a message m with vector V T , if the entry corresponding to the
sender in V T is exactly one more than the entry for the sender in the local vector at the receiver

2.1. DISTRIBUTED SYSTEMS 15

Figure 2.7: Rounds of Communication in the Paxos Protocol.

(i.e., this is the next message), and that all entries in the local vector are greater than or equal to the
corresponding entries in V T , i.e., the receiver has received all causally preceding messages.

Total order multicasts can be implemented using a centralized approach, for example a fixed
coordinator (used in Amoeba [Kaashoek et al., 1989]), or even a moving token [Défago et al., 2004].
Alternatively, a distributed protocol such as used in ISIS [Birman, 1985] has been proposed. In the
ISIS distributed protocol, processes collectively agree on sequence numbers (or priority) in three
rounds. The sender sends the message m with a unique identifier to all receivers. Receivers suggest
priority (sequence number) and reply to sender with the proposed priority. The sender collects all
proposed priorities; decides on the final priority (breaking ties with process ids), and re-sends the
agreed final priority for message m. Receivers deliver message m according to the decided final
priority.

2.1.6 THE CONSENSUS PROBLEM
Consensus is a fundamental distributed systems problem that involves several processes agreeing on
a value in the presence of failure [Pease et al., 1980]. The problem is often posed in a context where
communication is reliable, but sites may fail either by crashing or even maliciously, i.e., responding
in ways that do not follow designated protocol or code. In general, the problem can be defined to
involve a single coordinator, or General, which sends a binary value to n − 1 participants such that
the following conditions are satisfied:

Agreement. All correct participants agree on same value.

16 2. DISTRIBUTED DATA MANAGEMENT

Validity. If the general is correct, every participant agrees on the value the general has sent.

We start with two impossibility results. In an asynchronous system, Fischer et al. [1983, 1985]
proved that consensus is impossible to solve if one process fails even by crashing and processes
communicate by message passing. On the other hand, in a synchronous system with malicious
failures, Dolev [1982] proved that no solution exists for a system with fewer than 3f + 1 processes
where f is the maximum number of faulty (malicious) processes.

Several protocols have been proposed to solve the consensus problem in synchronous and
asynchronous systems. Synchronous systems specify an upper bound on the maximum number of
failed malicious sites, i.e., one third. On the other hand, asynchronous systems may not guarantee
termination. Recently, the Paxos protocol proposed by Lamport [1998, 2001] for asynchronous
systems has gained much popularity. Abstractly, Paxos is a leader-based protocol where each process
has an estimate of who the current leader is. When a process desires to achieve consensus on a
value, it sends it to the current leader. The leader sequences the operation and launches a consensus
algorithm to ensure agreement. In general, the protocol proceeds in two phases. In each phase the
leader contacts a majority of sites, and in general, there may be multiple concurrent leaders.Ballots are
used to distinguish among values proposed by different leaders. The two phases can be summarized
as follows: Phase 1, or the prepare phase, where a node that believes it is the leader chooses a new
unique ballot number, which is sent to all sites, and waits to learn the outcome of all smaller ballots
from a majority of sites. Phase 2, or the accept phase, where the leader proposes a value with its
ballot number. If the leader gets the majority to accept its proposal then the value is accepted and
sites decide on that value with the corresponding ballot number. In Figure 2.7, we illustrate the
communication patterns in Paxos between the different processes.

2.1.7 CAP THEOREM
Brewer [2000] proposed the following theorem,which was later proven by Gilbert and Lynch [2002]:
A distributed shared data system can have at most two of following three properties:

1. Consistency (C)

2. Availability (A)

3. Tolerance to network Partitions (P)

This theorem has became known as the CAP theorem. In general, the common wisdom in large cloud-
based data centers requires that for large scale operations the distributed system should tolerate
partitioning, and hence the CAP theorem implies that during a network partition, a choice has
to be made between consistency and availability. Traditional database systems choose consistency,
while often, more recent data repositories, such as key-value stores, prefer availability. Brewer [2012]
evaluates the ramifications of the CAP theorem, and emphasizes several of the nuances of that two-
out-of-three aspect of the theorem. In particular, given that partitioning failures are not common,
it is possible to design the system that allows both consistency and availability most of the time,

2.2. PEER TO PEER SYSTEMS 17

and when a partitioning failure occurs, a strategy would be used to detect the partitioning, and then
develop the most appropriate strategy to deal with the situation. Another important aspect that is
emphasized is the strong relationship between latency and partitioning, namely, that the partitioning
is assumed due to timeout, and hence from a practical point of view partitioning failures are assumed
in a time bounded manner. This aspect is further amplified by Gilbert and Lynch [2012], where
the CAP theorem is used as an illustration of the general trade-off between safety and liveness in
an unreliable distributed system, and thus its close relationship to the impossibility of distributed
consensus in an asynchronous system in the presence of failures [Fischer et al., 1983].

2.2 PEER TO PEER SYSTEMS

As an alternative to the traditional client-server model, the peer-to-peer (P2P) architecture presents
a viable approach, and many of the techniques developed in P2P systems have been used quite
successfully in data centers. The main goal in P2P systems is to make billions of objects available to
millions of concurrent users, e.g., music files. To achieve this, a virtual or logical overlay is imposed
on the physical network. Abstractly, an overlay organizes the way different sites communicate with
each other as well as the storing of data objects at the different sites. In its simplest form, an object
is viewed as a key-value pair. Overlays provide a method for retrieving objects, and typically support
two basic operations: Given a key and a value, insert the key-value tuple in the overlay, and given a key,
lookup and return the corresponding value. Overlays are typically represented as a graph, with sites
as nodes, and edges connecting these sites, and can be categorized into unstructured and structured
overlays.

Unstructured overlays impose no specific structure on the logical graph between the
peers. The simplest such P2P design is the centralized approach, first used by Nap-
ster [Carlsson and Gustavsson, 2001], where a centralized server stores a database of all keys and
the identities of the network nodes where these keys are located. This centralized server is consulted
whenever searching for a key-value tuple. Napster was launched in 1999, peaked at 1.5 million
simultaneous users, and then was shut down in July 2001 due to legal reasons.

Alternatively, a distributed design was used by Gnutella (http://en.wikipedia.org/
wiki/Gnutella),where each node has several neighbors, and stores several keys in its local database.
When asked to find a key k, a site checks in its local database if k is locally available. If yes, then
return the corresponding value, if not, the site asks its neighbors recursively. Typically, a limiting
threshold is used to limit unbounded propagation of the messages.

Structured overlays, on the other hand, impose a well-defined data structure on the various
peers. Such a data structure is often referred to as a Distributed Hash Tables (DHTs), which maps
objects to sites, and provides methods for efficiently retrieving an object, given its corresponding
key. In particular, in a structured overlay, edges are chosen according to some rule, and data is stored
at pre-defined sites. Typically, each site also maintains a table that defines the next-hop for lookup
operations. We will illustrate structured overlays with one of the most popular P2P systems called
Chord [Stoica et al., 2001]. In Chord, each node is hashed using a consistent hash function, e.g., SHA-

http://en.wikipedia.org/wiki/Gnutella
http://en.wikipedia.org/wiki/Gnutella

18 2. DISTRIBUTED DATA MANAGEMENT

Figure 2.8: Finger table pointers in Chord.

1, to an m-bit identifier space (2m IDs), where m is typically 160. Sites are then organized in a logical
ring according to their IDs. Keys are also hashed into the same identifier space, and the key (and
the corresponding value) is stored at its successor, i.e., the node with next higher ID.

Consistent hashing guarantees that for any set of n nodes and k keys, a node is responsible for
at most (1 + ε)k/n keys. Furthermore, when a node joins or leaves, the responsibility for O(k/n)

keys are moved.To support efficient and scalable lookups, each node in the system maintains a finger
table. The ith entry in the finger table of node n is the first node that succeeds or equals n + 2i .
Figure 2.8 illustrates the pointers of a given node in its finger table, with respect to the size of the
network. In other words, the ith finger points 1/2(n−i) way around the ring. Upon receiving a query
for item id, a node checks whether it stores the item locally. If not, it forwards the query to the
largest node in its finger table that does not exceed id. Assuming uniform node distribution around
the Chord ring, the number of nodes in the search space is halved at each step. Hence, the expected
number of hops is O(log n) where n is the number of nodes in the Chord ring.

2.3 DATABASE SYSTEMS
In this section we provide a fairly abstract, succinct, and high-level description of some basic
background on some of the main concepts developed in database systems. Our formalism fol-
lows Bernstein et al. [1987]. A database knowledgeable reader can skip this section.

2.3. DATABASE SYSTEMS 19

2.3.1 PRELIMINARIES
A database consists of a set of objects referred to as x, y, z. We assume each object has a value and
the values of all the objects form the state of the database. Typically, these states must satisfy the
database integrity constraints. Database objects support two atomic operations: read of x and write
of x, or r[x] and w[x].The notion of a transaction is critical in database systems. A transaction is a set
of operations executed in some partial order. The operations executed by transaction ti are referred
to as ri[x] and wi[x]. A transaction is assumed to be correct, i.e., if executed alone on a consistent
database, it transforms it into another consistent state.

Transaction execution must be atomic, i.e., it must ensure the following two properties:

1. No interference among transactions.

2. Either all its operations are executed or none.

A transaction ti ends with a commit (ci) or an abort (ai) operation. A concurrency control protocol
ensures that concurrent transactions do not interfere with each other. A recovery protocol ensures the
all-or-nothing property.

Two operations are said to conflict if the order of execution is important, i.e., if one of them
is a write. Given a set of transactions T , a history H over T is a partial order over all transaction
operations and the order reflects the operation execution order (transaction order and conflicting
operations order).

A database management system must ensure the so-called ACID properties, i.e.,

ATOMICITY. All-or-none property of each transaction

CONSISTENCY. Each transaction is a consistent unit of execution

ISOLATION. Transactions are isolated from the side-effects of other transactions

DURABILITY. Effects of transactions are persistent forever

The notion of correctness when a set of concurrent transactions is executed is premised on the
fact that each transaction is consistent (C in ACID), and therefore, if executed in isolation, will take
the database from a consistent state to another consistent state. Hence, give a set of transactions, we
are guaranteed correctness if they are executed serially. In particular, a history H is serial if for any
two transactions ti and tj in H , all operations of ti are ordered in H before all operations of tj or
vice-versa.

To allow some degree of concurrency among transactions, the notion of serializability was
developed.A history is serializable if it is equivalent to a serial history over the same set of transactions.

Two histories are view equivalent if they have the same effects, i.e., same values are written by all
transactions.Since we do not know what transactions write, transactions are required to read from the
same transactions and final written values are the same. Unfortunately, recognizing view serializable

20 2. DISTRIBUTED DATA MANAGEMENT

Figure 2.9: The two phases of Two-phase locking.

histories is NP-Complete [Papadimitriou, 1979]. Hence, a stronger notion of serializability was
developed, namely, conflict serializability.

Recall that two operations on the same object conflict if at least one of them is write operation.
Two histories H1 and H2 are conflict equivalent if they are defined over the same set of operations
(and therefore same set of transactions) and they order the conflicting operations in the same order
in both histories. A history H is conflict serializable if it is conflict equivalent to some serial history
HS . Since serial execution is correct, this ensures that a conflict serializable history is correct.

2.3.2 CONCURRENCY CONTROL
A concurrency control protocol must ensure conflict serializability. Concurrency control protocols
are, in general, divided into pessimistic protocols, which use locking to avoid incorrect executions,
and optimistic protocols, which use certifiers or validator at commit time to ensure correctness. In
general, from a technical point of view, any concurrency control protocol can be easily extended for
the distributed setting.

Locking Protocols
For each operation the transaction (or a concurrency control scheduler on its behalf) requests a lock.
Each lock is requested in a specific mode: read or write. Two read locks are compatible, however,
two write locks, as well as a read and a write lock are not compatible. If the data item is not
locked in an incompatible mode the lock is granted. Otherwise, there is a lock conflict and the
transaction becomes blocked (suffers a lock wait) until the current lock holder releases the lock. After
an operation is executed, the lock is released. Locking by itself is not enough to ensure correctness.
The two phase locking protocol add the following condition, which is sufficient to ensure conflict
serializability [Eswaran et al., 1976]:

2.3. DATABASE SYSTEMS 21

• Once a transaction has released a lock, it may not subsequently obtain any more locks on any
data item.

Figure 2.9 provides an illustration of the increasing number of locks a transaction acquires during
its growing phase, and the decreasing number of locks during the decreasing phase.

Two phase locking is very popular commercially, especially its strict version, which keeps all
locks until the end of the transaction, i.e., until it commits or aborts. Two phase lock however does
suffer from deadlocks. Also, data contention can arise due to queues on the data items, which form
due to conflicting operations. Such contention may cause locking to result in thrashing (in regular
multiprogramming systems, resource contention arises over memory, processors, I/O channels, etc.,
but not on data).

Optimistic Protocols
As mentioned above, locking may block resources for long periods. Optimistic concurrency control
tries to avoid such blocking by allowing transactions to execute all their operations, and then uses a
certification method to check if any conflicting operations had been executed by other transactions.
In its simplest case, a transaction t1 executes all its operations (write operations result in local
cache updates). At commit, the scheduler checks if any active transaction has executed a conflicting
operation, if so, abort t1.

Kung and Robinson [1981] expanded on this simple idea by executing each transaction t1 in
three phases:

Read phase. During this phase transactions are allowed unrestricted reading of any object, writes
are all local.

Validation phase. During this phase the scheduler ensures that no conflicts occurred by checking
all concurrent transactions t2, i.e., by checking whether the set of objects written by t2 during
its write phase overlap with the set of objects read by t1 during its read phase. If so, t1 is aborted.

Write phase. After successful validation, write values are written into the database.

A simple correctness argument can be used to demonstrate that optimistic concurrency control ensure
serializable execution of transactions. Numerous variants of this protocol have been proposed, and
optimistic protocol is being increasingly used in the cloud computing environments since it does not
result in exclusive locks on data resources.

2.3.3 RECOVERY AND COMMITMENT
Centralized Recovery
Recovery from failures is an integral part of database management systems. The problem of central-
ized recovery, i.e., ensuring persistence or durability in the case of a single site database is handled
by storing all data on disk. To recover from failures while ensuring atomicity, various mechanisms

22 2. DISTRIBUTED DATA MANAGEMENT

have been developed, all of which use the persistent storage device, i.e., the disk, during transaction
execution to ensure the all-or-nothing property. The three main approaches are:

1. Shadow paging: where two copies of the database are kept on disk, one to be updated by the
transaction, and when it commits, an atomic pointer switches to the new database copy.

2. Before images: where a disk log is used to store the before-images of all updated data items, and
the transaction update the physical database immediately. If failure occurs and the transaction
has not committed, then the database is restored to its original state based on log.

3. After images: where all updates are performed in a log of after images. If the transaction
commits, then all the after images are installed in the database from the log.

Various recovery methods have been proposed based on these basic concepts.These methods combine
before and after image logging in different ways for better performance for either committed or
aborted transactions [Bernstein and Newcomer, 2009, Gray and Reuter, 1992,Weikum and Vossen,
2001].

The main challenge when moving from a centralized database to a distributed database, i.e.,
one where the objects may reside on different sites, is to ensure atomicity across different sites in the
presence of failure. We now provide highlights of the main distributed commitment protocols.

Atomic Commitment
The fundamental problem of commitment arises due to the fact that transactions operate on multiple
servers. Global commit needs unanimous local commits of all participants. Distributed systems may
fail partially, in particular, the server may crash, and in the more extreme case, the network may
fail, causing network partitioning. This may potentially result in inconsistent decisions, namely, a
transaction commits at some servers but is aborted at some other servers.

The basic atomic commitment protocol is a simple distributed handshake protocol known as
two-phase commit (2PC) [Gray, 1978]. In this protocol, a coordinator (the transaction manager) takes
the responsibility of the unanimous decision: COMMIT or ABORT. All other database servers,
which are executing the transaction are the participants in this protocol and become dependent
on the coordinator. At commit time, the coordinator requests votes from all participants. Atomic
commitment requires that all processes reach the same decision, in particular the transaction is
committed only if all processes vote yes. Hence, if there are no failures and all processes vote yes, the
decision will be to commit.

The protocol is executed as follows. The coordinator sends a vote-request to all participants.
When a participant receives a vote-request message, it responds with either a yes or a no message,
depending on whether it can locally commit or needs to abort the transaction (due to deadlock or
failure to write on disk its local operations).The coordinator collects all votes. If all votes are yes then
the transaction is considered committed, else it is aborted. The coordinator then sends the decision
to all participants, who accordingly commit or abort the transaction locally.

2.3. DATABASE SYSTEMS 23

What does a site do if it does not receive a message it is expecting? Note that this protocol
assumes that the distributed system is synchronous, and hence there is a timeout mechanism. There
are three cases to consider.

1. Participant waiting for a vote-request. In this case, it is safe for the participant to locally abort
the transaction.

2. Coordinator waiting for a vote. In this case, the coordinator can also safely abort the transaction.

3. Participant waiting for a decision. This is a problematic case, and the participant is said to be
uncertain as the transaction may have been either committed or aborted, and this particu-
lar participant might not be aware of the actual decision. It is interesting to note that the
coordinator is never uncertain.

We now explore the case of the uncertain participant in more detail. In fact, this participant
might be able to find help from the other participants by sending them a request for the decision.
If any participant has committed or aborted, then it sends it the commit or abort decision. If a
participant has not yet voted then it is safe to abort the transaction and send abort decision to all
other participants. However, if all participants voted yes then all live participants are uncertain. In
this case, the transaction is considered blocked, and all live participants need to wait until enough
sites recover for the decision on this transaction to be recovered. The basic intuition is that a live
participant is in an uncertain state, some other (failed) participants may be in commit and others in
abort states. In general, the two phase commit protocol may suffer from blocking even in the case
of simple crash failures.

To overcome the problem of blocking, an intermediate buffer state can be introduced so that
if any operational site is uncertain, no process can have decided to commit [Skeen and Stonebraker,
1983]. The resulting protocol, called three phase commit is nonblocking in the presence of site fail-
ures. However, three phase commit cannot tolerate partitioning failures. In fact, it can be proven
that there is no non-blocking atomic commitment protocol in the presence of partitioning fail-
ures [Skeen and Stonebraker, 1983].

In conclusion, commit protocols in distributed databases cause both significant complexity, as
well as the potential for blocking. In fact, the failures of other sites may cause local data to become
unavailable. Overall, distributed databases require significant overhead in managing correct execu-
tions. This reliance on a global synchronization mechanism limits scalability and has a significant
impact on fault-tolerance and data availability. A combination of all these factors as well as others
(related to authority over data at different sites) has led to the lack of significant commercial adoption
of distributed databases.

25

C H A P T E R 3

Cloud Data Management: Early
Trends

With the growing popularity of the Internet, many applications and services started being deliv-
ered over the Internet and the scale of these applications also increased rapidly. As a result, many
Internet companies, such as Google, Yahoo!, and Amazon, faced the challenge of serving hun-
dreds of thousands to millions of concurrent users with ever increasing demands for data. Classical
RDBMS technologies could not scale to these workloads while using commodity hardware, hence
they were no longer viable for hosting such applications. The need for low cost scalable DBMSs re-
sulted in the advent of the key-value stores such as Google’s Bigtable [Chang et al., 2006], Yahoo!’s
PNUTS [Cooper et al., 2008], and Amazon’s Dynamo [DeCandia et al., 2007].1 These systems
were designed to scale out to thousands of commodity servers, replicate data across geographically
remote data centers, and ensure high availability of user data in the presence of failures, which is
the norm in such large infrastructures of commodity hardware. These requirements were a higher
priority for the designers of the Key-value stores than rich functionality. Key-value stores support
a simple key-value-based data model and single atomic key-value access guarantees, which were
enough for their initial target applications [Vogels, 2007].

In this chapter, we discuss the design of these three systems and analyze the implications of the
various design choices made by these systems.We start the chapter with a brief high-level overview of
Bigtable, PNUTS, and Dynamo to familiarize the reader with their basic design. Section 3.2 distills
some of the common design principles among different Key-value stores and the ramifications
of these principles on different implementation approaches. Section 3.3 presents a more detailed
description of the three main Key-value stores, discussing how these systems use the different design
alternatives and principles to implement the end-to-end system.

3.1 OVERVIEW OF KEY-VALUE STORES
Bigtable [Chang et al., 2006] was designed to support Google’s crawl and indexing infrastructure.
A Bigtable cluster consists of a set of servers that serve the data; each such server (called a tablet
server) is responsible for parts of the tables (known as a tablet). A tablet is logically represented
as a key range and physically represented as a set of SSTables. A tablet is the unit of distribution
and load balancing. Each tablet server has unique read-write access to a given tablet. Data from
1At the time of writing, various other Key-value stores (such as HBase, Cassandra, Voldemort, MongoDB etc.) exist in the
open-source domain. However, most of these systems are variants of the three in-house systems discussed in this book.

26 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

the tables are persistently stored in the Google File System (GFS) [Ghemawat et al., 2003] that
provides the abstraction of a scalable, consistent, fault-tolerant storage. There is no replication of
user data inside Bigtable; all replication is handled by the underlying GFS layer. Coordination and
synchronization between the tablet servers and metadata management is handled by a master and
a Chubby cluster [Burrows, 2006]. Chubby provides the abstraction of a synchronization service
via exclusive timed leases. Chubby guarantees fault-tolerance through log-based replication, and
consistency amongst the replicas is guaranteed through the Paxos protocol [Chandra et al., 2007].
The Paxos protocol [Lamport, 1998] guarantees safety in the presence of different types of failures
and ensures that the replicas are all consistent even when some replicas fail. But the high consistency
comes at a cost: the limited scalability of Chubby due to the high cost of the Paxos protocol. Bigtable,
therefore, limits interactions with Chubby to only the metadata operations.

PNUTS [Cooper et al., 2008] was designed by Yahoo! with the goal of providing efficient read
access to geographically distributed clients. Data organization in PNUTS is also in terms of range-
partitioned tables.PNUTS performs explicit replication across different data centers.This replication
is handled by a guaranteed ordered delivery publish/subscribe systems called the Yahoo! Message
Broker (YMB). PNUTS uses per record mastering and the master is responsible for processing the
updates; the master is the publisher to YMB and the replicas are the subscribers. An update is first
published to the YMB associated to the record’s master. YMB ensures that updates to a record are
delivered to the replicas in the order they were executed at the master, thus guaranteeing single object
timeline consistency. PNUTS allows clients to specify the freshness requirements for reads. A read
that does not have freshness constraints can be satisfied from any replica copy. Any read request that
requires data that is more up-to-date than that of a local replica must be forwarded to the master.

Dynamo [DeCandia et al., 2007] was designed by Amazon to support the shopping carts
for Amazon’s e-commerce business. In addition to scalability, high write availability, even in the
presence of network partitions, is a key requirement for Amazon’s shopping cart application. In
Dynamo data are organized using a distributed hash table, similar to Chord [Stoica et al., 2001]
ring structure. Consistent hashing is used to distribute the data among the various servers on the
ring. Dynamo explicitly replicates data, and a write request can be processed by any of the replicas.
It uses a quorum of servers for serving the read and writes. A write request is acknowledged to the
client when a quorum of replicas has acknowledged the write. To support high availability, the write
quorum size can be set to one. Since updates are propagated asynchronously without any ordering
guarantees, Dynamo only supports eventual replica consistency [Vogels, 2009] with the possibility
that the replicas might diverge. Dynamo relies on application-level reconciliation based on vector
clocks [Lamport, 1978].

3.2 DESIGN CHOICES AND THEIR IMPLICATIONS

Even though all three Key-value stores share some common goals, they differ significantly in some
fundamental aspects of their designs. We now discuss these differences, the rationale for these

3.2. DESIGN CHOICES AND THEIR IMPLICATIONS 27

decisions, and their implications. We focus on the design aspects. The performance implications of
these difference are discussed elsewhere by Cooper et al. [2010].

3.2.1 DATA MODEL
The distinguishing feature of the Key-value stores is their simple data model.The primary abstraction
is a table of items (or records) where each item is a key-value pair or a row. In this abstraction, each
record is identified by a unique key, and the value can vary in its structure. The simplest, Blob
Data Model, is one where the value is an uninterpreted binary string object, i.e., a blob. A more
structured Relational Data Model approach for the value is a flat row-like structure similar to the
relational model, where the value is structured into multiple columns, each with its own attribute
(or key) name. Finally, the Column Family Data Model is one where the columns in the value field
are grouped together into column families, each consisting of a set of columns. Multiple versions of
each record in the key-value store can be maintained and indexed by a system or a user-defined
timestamp. Furthermore, the table can be replicated in its entirety across multiple servers. Read
and write (get and put) operations are typically supported in an atomic manner on each record in
the key-value store. In some cases atomic read-modify-writes are also supported. In systems with a
relational or a column family data store, some relational operations are supported such as selection
and projection, but are restricted to a single table, and typically updates and deletes need to specify
the primary key of the relevant key-value record. In general, no guarantees are provided for accesses
spanning multiple key-value pairs.

In general, these systems allow large rows, thus allowing the logical entity to be represented as
a single row. However, a single row typically can reside in a single server. Restricting data accesses to a
single key provides designers the flexibility of operating at a much finer granularity. In the presence of
such restrictions, application-level data manipulation is restricted to a single compute node boundary
and thus obviates the need for multi-node coordination and synchronization [Helland, 2007]. As a
result, these systems can scale to billions of key-value pairs using horizontal partitioning or sharding,
where the rows of the key-value store are distributed among multiple servers. The rows stored at
a server are often referred to as shards or em chunks. The rationale is that even though there can
be potentially millions of requests, the requests are generally distributed throughout the data set.
Moreover, the single key operation semantics limits the impact of failure to only the data that
were being served by the failed node; the rest of the nodes in the system can continue to serve
requests. Furthermore, single-key operation semantics allow fine-grained partitioning and load-
balancing. This is different from RDBMSs that consider data as a cohesive whole and a failure in
one component results in overall system unavailability.

3.2.2 DATA DISTRIBUTION AND REQUEST ROUTING
To ensure flexible scaling out to multiple servers, a key-value store needs to partition the data to
distribute it over a cluster of servers. In general, a table is partitioned into tablets (similar to shards
or chunks), which form the units of distribution and load balancing. The two main approaches

28 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

for partitioning are range partitioning and hash partitioning. Range partitioning typically orders all
records lexicographically based on the key, and then divides the objects on different servers in that
order. Hash partitioning hashes the records based on the key to linear address space, which is then
divided among the different servers. A typical hashing approach can use a distributed hash table
(DHT) such as Chord [Stoica et al., 2001], as discussed in Chapter 2.

To retrieve a particular key-value record, the system must also have a routing mechanism to
determine which server is serving the particular record. In general, the approach can be divided
into centralized and distributed solutions. In a centralized approach, specialized mechanisms are
needed to route the client requests, for example, the routing logic can be stored in a client library
that is provided to each client, or is stored in a specialized set of routing servers to which requests are
routed. Irrespective of the partitioning method, the domain can be divided into intervals (the original
domain in the case of range partitioning and the hash domain in the case of hash partition). The
routing logic can then either contain the entire mapping of key intervals to the servers, or can have
a pointer to an index structure, typically a hierarchical or B-Tree-like structure. In the decentralized
approach, the client requests are routed using consistent hashing among a distributed peer-to-peer
organization of the servers.

3.2.3 CLUSTER MANAGEMENT
Key-value stores are designed to store large data sets on clusters of servers in large data centers. As
the scale of the system increases, managing such clusters without human intervention becomes a
challenge.Specifically,detecting and recovering from failures, and basic load balancing functionalities
are critical to the system’s proper operation. Different key-value stores use different approaches for
managing clusters of servers, however, in general, there are two main design approaches: a centralized
master-based approach, and a decentralized distributed approach.

In the master-based approach, a designated server is chosen as a master.This master keeps track
of all data servers using a highly available fault-tolerant service. This service helps manage the data
servers and keeps track of the data stored at the different servers. A data server obtains leases with
this service for the data it manages. When a data server fails, its leases are lost, and the service reports
this failure. On the detection of a failure, the master can reassign the data to new servers. Finally, if
the master fails, a new master is elected to take over.

In the decentralized approach, gossip messages are typically used to enable each server to learn
about the failure or recovery of a server. Gossip messages are typically messages that are communi-
cated among servers on a continuous basis, and contain relevant performance measurements. The
failure of a server is detected when a gossip message from that server is missing. The centralized
approach is more vulnerable to unavailability in the presence of failures of some critical components,
while the decentralized approach allows the system to be less susceptible to specific failures, but at
the cost of a more complex design as well as increase in message overhead.

3.2. DESIGN CHOICES AND THEIR IMPLICATIONS 29

3.2.4 FAULT-TOLERANCE AND DATA REPLICATION
Key-value stores are typically stored in large data centers containing thousands of commodity servers.
Such servers are prone to failures. Key-value stores were therefore designed to handle failures grace-
fully to ensure high data availability. In general, fault-tolerance is handled by replicating data on
multiple servers. To ensure fault-tolerance in the presence of catastrophic, large-scale failures, such
as earthquakes, tsunamis, etc, geographic replication is used, i.e., copies of the data are stored at
different data centers, which are geographically separated. In general, replication is either implicit
or explicit.

In the implicit replication approach, data management is separated from the storage component.
The data management component is in charge of accessing the data or records, i.e., controls read
and write accesses. The actual reading and writing of the data is managed by an independent entity,
typically a distributed file system. The distributed file system manages the data blocks, which are
replicated and managed by the file system, while providing APIs to the data management component
to allow the reading and writing of the data.

In the explicit replication approach the management of the various copies of a data item is
managed explicitly by the data management component, i.e., by the component that executes the
read and write operations. Depending on where the copies are located and the degree of consistency
that is supported by the system, different mechanisms have been proposed.Typically, for each object,
a copy is designated as the master, and is used for reading and writing. For write operations, once the
master is updated, the rest of the copies are updated asynchronously. Alternatively, read and write
quorums can be defined on the copies. If both read and write quorums intersect, as well as if any two
write quorums intersect, then the data is always consistent, and readers access the most up-to-date
copies. However, for efficiency, quorums might not intersect, in which case inconsistencies may arise.
Detecting and fixing such inconsistent data copies is an interesting topic, and various proposals have
been made.Typically, they use a version vector, with an entry corresponding to the number of updates
for a given copy. If there is a divergence in the version vectors, they are considered inconsistent, and
the application needs to be consulted to reconcile the different copies.

When replication is supported, various models have been proposed:

• Strong Consistency, where all copies of a given record have identical values as far as read or get
operations are concerned.

• Weak Consistency, where different copies might have different and conflicting values. In this
case, reconciliation methods need to be developed to allow the application or the system to
determine the correct value of the record. One simple mechanism for detecting inconsistencies
is vector clocks, where each copy has a vector associated with it, and each entry in the vector
reflects the number of updates corresponding to that copy. If the vector of one copy is greater
than or equal to another vector, then the copies are consistent, otherwise, there is a conflict
and reconciliation is needed.

30 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

Figure 3.1: Bigtable data model.

• Timeline Consistency, which ensures that all copies of a record apply all updates in the same
order. Using this consistency model, read operations can be specified to return any version of
the record, the most up-to-date version, or even a specific version.

• Eventual Consistency, where updates are eventually propagated to all the copies, and eventually,
all copies have the same values, but in the meantime, older or stale versions might be accessible
for reading.

Typically, scalability and high availability are the foremost requirements for Key-value stores.
As we discussed before, the CAP theorem states that a distributed system can only choose two
of consistency, availability, and partition tolerance. For systems spanning large infrastructures or
geographically separated data centers, network partitions are inevitable. In the event of a network
partition, these systems usually choose availability over replica consistency.

3.3 KEY-VALUE STORE SYSTEM EXAMPLES

We now discuss in more detail three different key-value stores, namely, Bigtable, PNUTS, and
Dynamo, and highlight how the different design principles discussed in the previous section were
implemented.

3.3. KEY-VALUE STORE SYSTEM EXAMPLES 31

3.3.1 BIGTABLE
Bigtable [Chang et al., 2006] was developed by Google as a data store for many of its applications
including web indexing, Google Earth, and Google Finance. Bigtable is arguably the first large-scale
key-value store used in a commercial setting. Its data model is a Column Family Data Model which is
quite general, and can be viewed as a sparse multi-dimensional sorted map where a single data item is
identified by a row identifier, a column family, a column, and a timestamp.The row keys are arbitrary
strings, which can be up to 64K bytes, although most keys are typically in the 10 to 100 bytes size
range. A column family is a set of column keys, and they form the unit of data co-location and access
at the storage layer. All data stored in a column family are usually of the same type. Furthermore, a
column family must be created before any data are inserted in the column value. Each cell in Bigtable
can contain multiple versions of the same data and these versions are indexed by timestamp, which
can be assigned by Bigtable, or explicitly by the client. Figure 3.1 shows an example of Bigtable that
shows a row corresponding to an entry referring to the web page of cnn.com. This example has two
column families: one for contents and another for anchors. The cnn row has two anchor columns:
one for Sports Illustrated and another for My-look home pages. Also note that the contents column
has three timestamped versions.

Bigtable provides APIs for creating and deleting tables and column families, as well as their
metadata, e.g., access control rights. It also provides clients with primitives to lookup, write, and
delete values, as well as iterate over a subset of the records. Every read and write operation of a value
defined by a single key is atomic, irrespective of the number of columns being read. In addition, single
row transactions that atomically read-modify-write a single row are supported, but not multi-row
transactions.

Bigtable orders the data lexicographically based on the row key, and divides the data into
tablets, which are the unit of distribution and load balancing. These tablets are assigned to tablet
servers, which handle all read and write requests to its tablets. A special master server assigns tablets
to these tablet servers and is responsible for tablet server load balancing, as well as for detecting the
addition and deletion of tablet servers. The tablet servers are responsible for managing accesses to
the tablets, which are physically stored as SSTables in Google’s distributed file systems, Google File
System (GFS). GFS provides Bigtable with a strongly consistent replicated storage abstraction. The
GFS design, however, is optimized for replication within a data center. As a result, a large-scale data
center level outage results in data unavailability in Bigtable.

Bigtable uses a highly available, fault-tolerant lock service called Chubby for managing the
tablet servers.Chubby provides a namespace that consists of directories and small files.Each directory
or file can be used as a lock, and reads and writes to a file are atomic. A Chubby service consists of
five active replicas, which are kept consistent using Paxos. The service is live when a majority of the
replicas are running and can communicate with each other.

The master server uses the Chubby service to perform cluster management. The master and
every tablet server in the system obtains a timed lease with Chubby that must be periodically
renewed. A server in a Bigtable cluster can carry out its responsibilities only if it has an active lease

32 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

Figure 3.2: Request routing in Bigtable (adapted from [Chang et al., 2006]).

from Chubby. Every tablet server periodically reports to the master using heartbeat messages that
also contain the load statistics. These heartbeat messages and the leases with Chubby form the basis
for failure detection and recovery. After a tablet server failure is detected by the master, the state of
the failed server can be recovered from GFS at another live tablet servers.

Bigtable uses the hierarchical approach to locate data: it uses a three-level B+-tree structure
(called the ROOT tablet, the META tablets, and the USER tables) that stores the interval mapping, and
which is illustrated in 3.2. The first level is a file stored in Chubby that contains the location of the
root tablet. The root tablet has the locations of the metadata tablets, which points to the locations
of the user tablets. Each Bigtable client maintains a client library that caches tablet locations. If the
data is stale, the client uses the hierarchical structure to retrieve the tablet locations.

Client updates are committed to a write ahead log that stores redo records and is stored in
GFS. Recently committed updates are stored in an in-memory buffer called a memtable. A write
operation is executed by first checking if the client has privileges for the write operation (from
Chubby). A log record is then generated to the commit log file of redo records. Once the write
commits, its contents are inserted into the memtable. A read operation also first checks that the
client has the correct privileges, then the read is performed on a merged view of the SSTables that
constitute the tablet, and the recent updates in memtable.

3.3. KEY-VALUE STORE SYSTEM EXAMPLES 33

Figure 3.3: Per-record timeline used to provide timeline consistency for updates.

3.3.2 PNUTS
PNUTS [Cooper et al., 2008] was built to provide database support for Yahoo!’s web applications.
PNUTS provides a traditional flat row-like database structure similar to the relational model.
Schemas are flexible and allow new attributes to be added at any time, and records do not need
to have values for all attributes. PNUTS exposes to the users a simple relational model with single
table scans restricted with predicates. Hence, compared to the relational query model, PNUTS only
supports selections and projections on a single table, and does not enforce any referential integrity
constraints. Also, updates and deletes must specify the primary key. As with similar early key-value
stores, atomicity and isolation are supported at the granularity of a single key-value pair, i.e. atomic
read/write and atomic read-modify-write are possible to only individual key-value pairs. No guar-
antees are provided for accesses spanning multiple data key-value pairs. PNUTS provides per-record
timeline consistency, which ensures that when a record is replicated on multiple sites (often geograph-
ically dispersed), all copies of a record apply all updates in the same order. Using this consistency
model, read operations can be specified to return any version of the record, the most up to date
version, or even a specific version. For example, in Figure 3.3, a record is created, as version V1.0,
and is then updated multiple times resulting in the creation of versions V1.1, V1.2 and V1.3. A read
operation that requires the latest version would read version V1.3, otherwise, a specific version can
be specified. Furthermore, PNUTS provides an atomic test-and-set operation which ensures that
the write operation is executed only if a desired version on the object is the current version.

A PNUTS system is divided into regions, where each region has a full copy of all the data
(Figure 3.4). Typically, regions are geographically distributed to ensure fault-tolerance in the face of
catastrophic failures at a single data center. Data tables are horizontally partitioned based on their
primary key into tablets, which are stored in storage units. Data can be either hashed to the different
tablets, or ranged partitioned. A special router keeps track of which tablet stores a given record by
storing a mapping from intervals to servers. The interval mappings easily fit into memory, making
them very efficient to search. Routers contain only a cached copy of the interval mapping. The
mapping is owned by the tablet controller, and routers periodically poll the tablet controller to get any
changes to the mapping. The tablet controller is responsible for detecting failures as well as deciding
when to move tablets between storage units for load balancing or recovery, and when a large tablet
must be split.

34 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

Figure 3.4: PNUTS architecture.

PNUTS uses the Yahoo! Message Broker (YMB) to update the different copies. An update
is acknowledged to the client only after it has been replicated within YMB. PNUTS uses YMB
as a fault-tolerant replicated log and leverages YMB’s guaranteed ordered delivery for replication;
and guarantees single record timeline consistency for the replicas. YMB ensures that all messages
published by a given client are delivered to all regions in the same order, however, messages published
concurrently by different clients may be delivered in different orders at different regions. To ensure
timeline consistency, PNUTS uses a per-record mastering approach, where each record has a master,
and different records in a table may have masters in different regions. All updates are directed to
the master record, and then YMB is used to asynchronously propagate to the other copies. This
approach was chosen to ensure low latency, as the master copy is chosen to be in the region with
most update operations, and most web applications seem to exhibit significant write locality. If a
record’s master fails, another replica can be elected as the master once all updates from the original
master’s YMB have been applied to the replica, a mechanism called re-mastering. However, in the
event of a data center outage resulting in YMB unavailability, similar to any asynchronous log-based
replication protocol, the tail of the log that has not propagated to other data centers will be lost

3.3. KEY-VALUE STORE SYSTEM EXAMPLES 35

Figure 3.5: The P2P core of Dynamo with four virtual nodes.

if the records are re-mastered. Therefore, PNUTS presents a trade-off between data loss and data
unavailability in the event of a catastrophic failure.

3.3.3 DYNAMO
Amazon runs large-scale e-commerce applications, and needs highly available storage. Dy-
namo [DeCandia et al., 2007] is one of its first key-value store systems. Compared to other proposals,
Dynamo provides the simplest data model where each record is identified by a unique key, and the
value is a binary object, i.e., a blob. Dynamo provides a put and a get operation, and provides no
support for operations that span multiple objects. Dynamo uses a distributed peer-to-peer (P2P)
approach for partitioning the data across different data storage servers. Its approach uses consistent
hashing [Karger et al., 1997], where the output range of the hash function is a circular ring space,
as in Chord [Stoica et al., 2001]. To ensure load balancing, instead of assigning each node to a
single location in the ring, Dynamo introduces a notion of virtual nodes, where each physical node
is mapped to multiple locations in the ring, thus providing better load distribution on the various
physical servers (see Figure 3.5). By using consistent hashing to route the client requests, Dynamo
obviates the need for explicit routing mechanisms.

To ensure high availability and durability, Dynamo replicates each data item on N storage
nodes, namely, the node where the item is hashed to, and the N − 1 clockwise successive nodes

36 3. CLOUD DATA MANAGEMENT: EARLY TRENDS

on the ring. The node handling a put or a get request is referred to as the coordinator, which is the
node designated by the consistent hashing—typically the first of the n copies, but in the presence
of failures, this might not be the case. Dynamo provides eventual consistency, where a put operation
is executed on the coordinator node, and then asynchronously updates are propagated to the rest
of the copies. Dynamo associates read and write quorums with get and put operations. When a
put operation propagates its updates to the N copies, it waits for W nodes to acknowledge before
considering the put operation successful. Likewise, a get operation sends its read request to all N

copies and waits for R copies to respond before deciding which version to return as the value of
the item being read. If R + W is greater than N , then strong consistency is ensured. However,
for high performance, Dynamo often does not require the intersection of read and write quorums
(also referred to as sloppy quorums). As a result of sloppy quorums, multiple concurrent updates
might be executed on the same object, giving rise to divergent versions of the same data item. To
detect such inconsistencies, Dynamo uses vector clocks, and the application is passed these vector
clocks to resolve any inconsistencies. Vector clocks capture causal dependencies between versions
by associating a vector with each copy, consisting of a list of pairs, one for each replica, and the
associated version number. Inconsistencies can be detected by comparing the vectors associated with
any two versions or copies. For more permanent failures, and to detect and remedy more persistent
failures, Dynamo uses Merkel trees. Merkel trees are hash trees where leaves hash to individual keys,
and parents hash to their children allowing for fast and efficient detection of divergence between
different replicas.

To handle the failure or addition of a node, Dynamo allows an administrator to explicitly issue
a command to a Dynamo server to join or be removed from the system. When a new server joins
the system it is assigned a random set of key-value items. Dynamo then depends on decentralized
failure detection protocols that use simple gossip-based mechanisms that enable each server to learn
about the arrival and departure of other servers. The gossip-based protocol requires each node to
randomly pick another node with which to reconcile its membership changes histories. This ensure
eventual consistency of view membership at the various nodes in the system.

3.4 DISCUSSION

In this chapter, we covered three key-value stores which represent three different approaches to
designing such scalable data stores needed to serve applications storing and serving ever-growing
amounts of data. All these systems were designed as in-house solutions by some large Internet compa-
nies. From the time these respective architectures were publicized, a number of open source projects
have gained in maturity and popularity. The architecture of many of these open source projects were
inspired by Bigtable and Dynamo. Examples of these systems include: HBase, Cassandra, Volde-
mort, Riak, CouchDB, MongoDB, and many more. Such systems have been broadly classified as
key-value stores, where the value can be an un-interpreted stream of bytes (such as Voldemort) or can
have a flexible and extensible structure (such as HBase and Cassandra) or document stores, where
the values represent complex data such as JSON or other document formats. While many of the

3.4. DISCUSSION 37

architectural features resemble the in-house systems, these open source systems often optimize their
architectures based on the requirements posed by the applications these systems aim to serve. Cattell
[2011] presents a thorough survey of the design space of such scalable key-value and document
stores, collectively called NoSQL stores. Cooper et al. [2010] presents a performance analysis of a
subset of these key-value stores to highlight some of the architectural difference and their impact
on the performance of these systems.

Main memory object stores, such as Memcached [Danga Interactive Inc., 2012], form another
class of key-value stores whose primary goal is to cache data in memory to minimize the response
time for data accesses. For instance, when the key-value stores are not optimized for accesses based
on secondary attributes. However, if an application issues certain queries that access these secondary
attributes, results of such queries can be materialized in a caching service such as Memcached. In
principle, many of the techniques used to design general purpose key-value stores can be used to build
such distributed main memory key-value stores. With the decreasing cost of main memory, it is also
conceivable to have the entire database in memory to allow fast access to large volumes of data. The
RAMClouds project [Ousterhout et al., 2009] aims to develop such a distributed main memory
database. Some interesting challenges arise when designing systems optimized to be resident in
main memory. Ongaro et al. [2011] discuss one such challenge: fast recovery from node failure in
a main memory database without full data replication. As data center networks become faster and
memory becomes cheaper, such main memory database systems are expected to become mainstream
for storing and serving big data.

39

C H A P T E R 4

Transactions on Co-located
Data

Key-value stores, such as Bigtable, PNUTS, and Dynamo, were designed to support single-operation
and single data item transactions. Such operational semantics were sufficient for the initial set of
applications for which these systems were designed. As these early data management platforms for
the cloud became mature, an expanded set of applications used these systems, which naturally re-
sulted in demands for greater accessibility to multiple data items. Furthermore, the logic of many
applications is often expressed as multiple operations accessing multiple data items. The absence of
transactional abstractions spanning multiple data items and operations considerably increased the
application software complexity as well as the overhead on the application developers [Hamilton,
2010, Obasanjo, 2009]. Transactional access to data has been an important abstraction ever since
the early days of relational database management systems. The transaction abstraction consider-
ably simplifies application logic and reasoning about data integrity and correctness. As a result, the
need for transactional abstractions increased at the same time as the need for scalable data manage-
ment systems increased. Many systems have therefore been proposed and built that provide richer
transactional semantics.

It is well understood that flexible general-purpose transactions would prevent the systems from
scaling out to large numbers of nodes or span geographically distributed data centers. Therefore,
most of the first attempts at incorporating transactional access resulted in systems that make a choice
between limiting the granularity of transactional access (i.e., limit the scope of the data items that
are accessed by a single transaction) or relaxing some transactional guarantees (such as supporting
isolation levels weaker than serializability).

We broadly divide these systems into two classes. One class limits the execution of most (and
if possible all) transactions to a single node. Such systems allow efficient non-distributed transaction
execution, but often at the cost of constraining the application schema or data access patterns.These
systems rely on co-locating data items that are frequently accessed together within a transaction.
Another class of systems allows transactions to span multiple nodes. These systems often expose a
more flexible transactional interface to the applications, though at the cost of making transaction
execution more expensive. In this chapter, we survey the approaches and mechanisms for the former
class of systems; we will cover the latter class of systems in the next chapter.

In addition to efficient transaction execution, limiting transactions to a single node results
in a number of other benefits. First, it allows the system to scale-out by adding more servers and

40 4. TRANSACTIONS ON CO-LOCATED DATA

distributing the transactional load across the servers. Minimizing distributed synchronization is
critical to ensuring linear scalability. Second, it limits the effect of a failure to only the transactions
executing on the failed nodes and minimizes the impact on the remaining nodes, thus allowing
graceful performance degradation in the event of failures. Finally, with transaction executions limited
to a single node, many techniques developed for optimizing transaction execution performance can
be potentially applied.

In this chapter, we first analyze how the different schema and data access patterns can be
leveraged to co-locate data or ownership to execute transactions locally at a single node (§ 4.1);
Ownership refers to a node’s exclusive read and write access to data items. This partitioning and
co-location of data or ownership is the critical first step toward efficient non-distributed transaction
execution. We then focus our discussion on the different techniques for transaction execution (§ 4.2),
physical data storage (§ 4.3), and data replication (§ 4.4). Finally, we discuss several of the systems
that use these design principles for scale-out transaction processing (§ 4.5).

4.1 DATA OR OWNERSHIP CO-LOCATION
Co-locating data frequently accessed together within a transaction allows the system to execute
the transactions efficiently without incurring distributed synchronization. One design option is to
leverage specific schema patterns and design applications conforming to these patterns by limiting
the data items a transaction can access. Partitioning the data by analyzing the applications’ access
patterns and physically co-locating a partition’s data at a single node is another design option. Both
the aforementioned design options statically define the granule of transactional access and co-locate
the data that form this granule. An alternative design option is to allow the application to dynamically
specify the granule of transactional access while the system re-organizes ownership based on the
application-specified partitions to allow transactions to execute locally within a node. In this section,
we discuss all these design options in greater detail.

4.1.1 LEVERAGING SCHEMA PATTERNS
A common schema pattern that is amenable to data co-location and partitioning is a hierarchy of
objects or tables where transactions access the data items forming this hierarchy. In this section, we
present three variants of such schema patterns and describe how transaction accesses can be limited
to a single node.

Tree Schema
A common example of a hierarchical schema is the tree schema illustrated in Figure 4.1. This schema
supports three types of tables: the primary table, secondary tables, and global tables. The primary
table forms the root of the tree; a schema has one primary table whose primary key also acts as the
partitioning key. However, there can be multiple secondary and global tables. Every secondary table
in a database schema will have the primary table’s key as a foreign key. Referring to Figure 4.1(a),
the key kp of the primary table appears as a foreign key in each of the secondary tables. In contrast

4.1. DATA OR OWNERSHIP CO-LOCATION 41

(a) Tree Schema (b) TPC-C Schema as a Tree

Figure 4.1: The Tree schema is a representative hierarchical schema. The schema used in the TPC-C
benchmark conforms to this tree structure.

to the two table types, global tables are look-up tables that are mostly read-only. Since global tables
are updated infrequently, these tables can be replicated in all the partitions.

This tree structure implies that corresponding to every row in the primary table, there are a
group of related rows in the secondary tables. We refer to these rows that reference the same key in
the root table as a row group; all rows in the same row group can be co-located within a database
partition. By limiting transactions to only access rows that have the same root table key, this design
can ensure that transactions execute within a single node. Since global tables are replicated in all
partitions, a transaction can also read any data item from a global table.The set of rows that reference
the same database partition is a collection of such groups of related rows.

Figure 4.1(b) shows a representation of the TPC-C schema [TPC-C] as a tree schema. In
the TPC-C schema, the Warehouse table is the root of the schema with its primary key (w_id)
being the partition key that is part of all other secondary tables. As can be seen in Figure 4.1(b),
the TPC-C schema has seven secondary tables forming a tree of depth five. The Item table is the
global table in the schema. According to the TPC-C benchmark specifications, a vast majority of the
transactions (about 85%) access rows that are part of the same warehouse, and hence can be limited
to a single partition. The TATP benchmark [Neuvonen et al., 2009] is another example conforming
to the tree schema.The tree schema is amenable to partitioning using the partition key that is shared
by all the tables in the schema. Such a pattern has been used for data partitioning in systems such
as ElasTraS [Das et al., 2010a] and H-Store [Kallman et al., 2008].

42 4. TRANSACTIONS ON CO-LOCATED DATA

(a) Entity group (b) An example entity group

Figure 4.2: Entity groups are another example of a hierarchical schema pattern.

Entity Groups
Another example of a hierarchical schema is an entity group (shown in Figure 4.2(a)) where each
schema has a set of tables and each table is comprised of a set of entities. Each entity contains a set
of properties which are named and typed values; a set of columns together form the primary key of
the table. In the classical relational sense, entities are equivalent to rows in a table and properties
are equivalent to strongly typed columns. Each table is either an entity group root table or a child
table. Each child table has a foreign key relationship with the root table. Therefore, each child entity
references exactly one entity in the root table, called the root entity. A root entity along with all child
entities that reference it form an entity group. Evidently, all entities comprising an entity group can
be physically co-located, thus allowing transactions accessing only a single entity group to execute
non-distributed. This schema pattern is exploited in Megastore [Baker et al., 2011] to partition the
database while ensuring that the data items frequently accessed together are co-located.

Figure 4.2(b) shows an example schema for a photo sharing application where User is the root
table and Photo is a child table; a user and its collection of all photos forms an entity group. Email
accounts, blogs, and geographic data form natural examples of applications that can be modeled
using the entity group abstraction.

Table Groups
While the tree schema and entity group impose a hierarchical structure, a generalization to this
design pattern of schema-imposed data co-location is the notion of a table group which consists of a
set of tables. A table group can have a partition key (equivalent to the key of the root table in the tree
schema and entity group) in which case it is known as a keyed table group. However, a table group
can also be keyless, which makes the table group structure more amorphous and generic compared to
the tree schema and entity group. All tables in a keyed table group have a column named partition
key which need not be unique in a given table. That is, a partition key need not be the primary key
of any table. All rows in a table group that have the same partition key form a row group. In a keyed
table group, a database partition can be formed as a set of row groups.

4.1. DATA OR OWNERSHIP CO-LOCATION 43

Figure 4.3: A keyed table group with a partition column (Id). All rows with the same partition key form
a row group; different row groups are denoted with different background shades.

All data items part of a table group can be co-located. By requiring that transactions access
only the data items within a single entity group, a system can eliminate distributed transactions.
Such an abstraction forms the logical data model of Cloud SQL Server [Bernstein et al., 2011b]
which is the data back-end for Microsoft’s SQL Azure. In addition to restricting transactions to
access a single table group, for a keyed table group, Cloud SQL Server requires that transactions
access only a single row group. Figure 4.3 illustrates a keyed table group with three tables. As noted
earlier, a keyed table group has a hierarchical structures, however, a table group is not required to
have this hierarchical structure.

Discussion
The three schema patterns represent approaches that allow data co-location and limit access of most,
if not all, transactions to data within a partition. Note that transactions spanning multiple partitions
can still be supported, though at the cost of requiring distributed synchronization and thus higher
execution cost. Except in a keyless table group, the remaining schema patterns define a small unit of
data—-row group and entity group—-that constitutes the granule of consistent transactional access.
There is tight coupling of data items within these granules, while different granules couple only
loosely. A database partition combines a set of these granules, except in a keyless table group where
the table group itself forms a partition.

In designs based on the keyed data granules, the key is also part of the granule’s identity.
The database can be partitioned by partitioning these keys by hashing, range partitioning, or using a
lookup table to determine the partition a key belongs to. Furthermore, the loose coupling between the
individual granules allows the system to dynamically split partitions or merge partitions correspond-
ing to contiguous ranges. If rows are physically stored in the order by their partitioning key, such a
split or merge is efficient and requires minimal data movement. For instance, in a range-partitioned

44 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.4: Partitioning the database leveraging the application’s access patterns by modeling the data
and accesses using a weighted undirected graph.

database, if a range is split, the key that determines the logical split point directly corresponds to the
boundary at which the partition is also physically split.

4.1.2 ACCESS-DRIVEN DATABASE PARTITIONING
While many applications can conform to a specified schema and access pattern, others are not
amenable to such partitioning. An alternative design is to analyze the applications’ access patterns
to identify the data items which, when co-located within a partition, will limit most transactions
to access only a single partition. The key idea is to partition an application’s data by analyzing its
workload. Curino et al. [2010] propose one such approach that models the application’s data accesses
as a graph and then uses well-known graph partitioning techniques to partition the graph, and hence
the database.

The applications database and the workload is represented as a weighted undirected graph.
We explain the steps for forming the graph using a simple application illustrated in Figure 4.4. Each
tuple is represented as a node in the graph, edges connect tuples that are accessed within the same
transaction, and edge weights account for the number of transactions that co-access a pair of tuples.
For example, in Figure 4.4, tuples with id 1 and 3 are co-accessed by a single transaction and hence the
edge between them has a weight of 1. Replication is represented by replacing a node by n + 1 nodes,
where n is the number of transactions that update the tuple. For example, considering Figure 4.4,
tuple id 2 is accessed by five transactions and is therefore represented by six nodes. The weights of
the replication edges connecting each replica to the central node represent the cost of replicating the
tuple. This cost is the number of transactions that update the tuple in the workload. The rationale

4.1. DATA OR OWNERSHIP CO-LOCATION 45

for using updates as the weights for the replication edges is that when replicating a tuple, each read
can be performed locally, but each update becomes a distributed transaction. This graph structure
allows the partitioning algorithm to naturally balance the costs and the benefits of replication by
minimizing the weight of edges that cross the partition boundaries. The graph partitioning strategy
heuristically minimizes the cost of a graph cut, while balancing the weight of each partition. The
weight of a partition is computed as the sum of the weights of the nodes assigned to that partition.

Once the database and the interactions are modeled as a graph, well-known graph partitioning
algorithms can be used to cut this graph into k non-overlapping partitions such that the overall
cost of the cut edges (i.e., the edges that cross the different cuts) is minimized. Essentially, this
formulates partitioning as a variant of the minimum k-cut problem [Goldschmidt and Hochbaum,
1988]. The graph cut algorithm also keeps the weight of partitions within a constant factor of
perfect balance where the degree of imbalance is a parameter. Since the weight of edges represent
the number of accesses, this graph partition operation approximates minimizing the number of
distributed transactions while balancing data size evenly across the partitions.

Contrary to range or hash-based partitioning, where the ranges or the hash function can be
used to route the incoming requests to the correct partition that stores the data item, graph-based
partitioning requires an additional step to establish the routing mechanism. One approach is to
store a lookup table which is output by the partitioner. While a lookup table allows fine-grained
partitioning, the overhead for storing, looking up, and maintaining this lookup table often becomes
expensive, especially for very large databases. An alternative is to learn the mappings between a
row to partitions as a compact model, such as decision trees. Partition discovery for a data item
can be posed as a classification problem where the data item is the input and the partition label
is the output. The training phase of the classifier determines the rules for partition discovery and
represents it as a compact model. Given an unlabeled value, a label can be found by descending
the tree, applying predicates at each node until a labeled leaf is reached. While the lookup table-
based approach allows fine-grained partitioning, the decision tree-based approach results in coarse-
grained partitioning which might result in a greater fraction of distributed transactions. A final
validation phase determines the best strategy for a given workload. Curino et al. [2010] present
various optimizations for scaling, such as sampling tuples and transactions, coalescing tuples that
are always accessed together, and rejecting large scans that access a large fraction of the database.

4.1.3 APPLICATION-SPECIFIED DYNAMIC PARTITIONING
Many applications have static access patterns and hence are amenable to static partitioning of their
databases. In the previous sections, we discussed approaches to statically partition the database,
that is, the data items to be co-located within a partition are known upfront. Many applications,
however, have fast evolving access patterns, thus negating the benefits of static partitioning based on
access patterns. Consider the example of an online multi-player game, such as an online casino. An
instance of the game has multiple players and the gaming application requires transactional access
to the player profiles while the game is in progress. For example, every player profile might have an

46 4. TRANSACTIONS ON CO-LOCATED DATA

associated balance (in a real or virtual currency) and the balance of all players must be transactionally
updated as the game proceeds.

To ensure the efficient execution of these transactions, it is imperative that the data items
corresponding to the profiles are co-located within a database partition. However, a game instance
lasts for small periods of time as players move from one game to another. Furthermore, over a period
of time, a player might participate in game instances involving different groups of players.Therefore,
the group of data items on which the application requires transactional access changes rapidly over
time. In a statically partitioned system, the profiles of the players participating in a game instance
might belong to different partitions. Providing transaction guarantees across these groups of player
profiles will result in distributed transactions.

Efficient transactional access on such dynamically defined partitions requires an abstrac-
tion for lightweight ownership (or data) re-organization that minimizes distributed synchroniza-
tion. Das et al. [2010b] propose one such design using the key group abstraction. Key group is a
powerful yet flexible abstraction for applications to dynamically define the granules of transactional
access. Any data item (or key) in the data store can be selected as part of a key group.The key groups
are transient; the application can dynamically create (and dissolve) the groups. For instance, in the
multi-player gaming application, a key group is created at the start of a game instance and deleted
at its completion. At any instant of time, a given key is part of a single group. However, a key can
participate in multiple groups whose lifetimes are temporally separated. For instance, a player can
participate in a single game at any instant of time, but can be part of multiple game instances that
do not temporally overlap.

Transactional guarantees are provided only for keys that are part of a group, and only during
the lifetime of the group. All keys in the data store need not be part of groups. At any instant,
multiple keys might not be part of any group; they conceptually form one-member groups. Every
group has a leader selected from one of the member keys in the group; the remaining members
are called the followers. The leader is part of the group’s identity. However, from an application’s
perspective, the operations on the leader are no different from those supported for the followers. For
ease of exposition, we will use the terms “leader” and “follower” to refer to the data items as well as
the nodes where the data items are stored.

Leveraging the application’s semantics that once a key group is formed, the application will
execute a number of transactions during the lifetime of the group, the system can re-organize to
co-locate ownership of all keys in a key group at a single node. For example, one strategy is that
all followers can yield ownership to the leader. This dynamic co-location allows transactions to
efficiently execute at a single node. In essence, once the application specifies a key group, the group
creation phase makes an upfront investment (in terms of distributed synchronization needed to create
the group) with the hope of breaking even and potentially benefitting from the efficient execution
of transactions during the group’s lifetime. Note that keys in a key group are co-located by choice
leveraging the explicit intent expressed by the application.

4.1. DATA OR OWNERSHIP CO-LOCATION 47

Figure 4.5: The Key Group abstraction.

Group creation is initiated by an application client (or a client) sending a group create request
with the group id and the members. The group id is a combination of a unique system-generated
id and the leader key. Group creation can either be atomic or best effort. Atomic group creation
implies that either all members join the group or else the group is automatically deleted if one of the
followers did not join. Best effort creation forms the group with whatever keys that joined the group.
A data item might not join a group either if it is part of another group (since we require groups
to be disjoint), or if the data item’s follower node is not reachable. Das et al. [2010b] propose the
key grouping protocol that allows safe group creating in the presence of failures. In the key grouping
protocol, the leader is the coordinator and the followers are the participants or cohorts. The leader key
can either be specified by the client or is selected by the system.The group create request is routed to
the node which owns the leader key.The leader logs the member list, and sends a Join Request (〈J〉) to
all the followers (i.e., each node that owns a follower key). Once the group creation phase terminates
successfully, the client can issue operations on the group.When the client wants to disband the group,
it initiates the group deletion phase with a group delete request. Figure 4.5 illustrates the key group
abstraction where the keys that form the key group can be physically distributed across a number of
nodes, but are logically co-located and owned by the leader. The key grouping protocol allows this
dynamic ownership transfer while ensuring safety and correctness in the presence of failures.

Critical for the correctness of dynamic ownership re-organization is the protocol that manages
this ownership transfer in the presence of failures. Conceptually, such transfers from followers to
the leader are equivalent to the leader acquiring locks on the followers. Similarly, the reverse process
is equivalent to releasing the locks. Details depend on the specific implementation, but in general,
the key grouping protocol is reminiscent of the locking protocols for transaction concurrency con-

48 4. TRANSACTIONS ON CO-LOCATED DATA

trol [Eswaran et al., 1976, Weikum and Vossen, 2001]. The difference is that in a key group, the
locks are held by the key groups (i.e., the system) whereas in classical lock-based schedulers, the
locks are held by the transactions.

4.2 TRANSACTION EXECUTION
In the previous section, we explained different techniques to co-locate data or ownership for data
items that a transaction accesses. Once ownership is co-located, classical transaction processing
techniques (discussed in § 2.3) can be used for efficient transaction execution. Different systems
however differ in their choice of concurrency control and recovery techniques. On one hand, some
systems (such as Cloud SQL Server, Deuteronomy [Levandoski et al., 2011], and Relational Cloud)
use lock-based concurrency control techniques, such as two-phase locking (2PL). On the other hand,
some other systems (such as G-Store and ElasTraS) use optimistic concurrency control (OCC).
Various other systems, such as Megastore and Hyder [Bernstein et al., 2011a], use multi-version
concurrency control techniques. Recovery is commonly performed by logging the operations before
a transaction commits, and replaying the logged operations during recovery which are based on
ARIES-style recovery algorithms [Mohan et al., 1992].

4.3 DATA STORAGE
Conceptually, efficient non-distributed transaction execution only requires that read/write access to
data items accessed by a transaction be co-located at a node. The actual physical data storage can
either be coupled (or co-located) or decoupled. In this section, we discuss the different alternatives
for designing the storage layer.

4.3.1 COUPLED STORAGE
Coupling storage with computation has been the classical design choice for data intensive systems.
The rationale is that this coupling of data and execution improves performance by eliminating the
need to transfer data over a network. To further improve performance, many RDBMS engines even
couple the transaction execution logic with the access methods and the recovery managers. For
instance, in systems using ARIES-style recovery [Mohan et al., 1992], such as many commercial as
well as open-source RDBMSs, a log sequence number is assigned to the updated pages, thus linking
the database pages to the corresponding log entry.

As a side effect of co-locating ownership of data items co-accessed within a transaction, the
data storage can also be coupled with the ownership. That is, the data items co-located within a
transaction are also physically co-located at the server serving transactions on the partition. This
design option is often used in systems that re-engineer and scale-out classical RDBMSs, such as
in Cloud SQL Server or Relational Cloud, thus requiring minimal changes to the transaction and
resource managers.

4.3. DATA STORAGE 49

4.3.2 DECOUPLED STORAGE
The growing main memory sizes in commodity servers and the broader availability of low latency
and high throughput data center networks allow an alternative design where the data ownership
is decoupled from the physical storage of data. The rationale for such decoupling is that for most
high-performance transaction processing systems, the working set is most likely cached and served
from memory. For infrequent accesses to the storage layer to service cache misses, the fast networks
make the difference between local disk access and remote disk access almost intangible.

On the other hand, decoupling storage from ownership and transaction processing logic has
multiple benefits: (i) it results in a simplified design allowing the storage layer to focus on fault-
tolerance while the ownership layer can guarantee higher-level guarantees such as transactional access
without worrying about the need for replication; (ii) depending on the application’s requirements it
allows independent scaling of the ownership layer and the data storage layer; and (iii) it allows for
lightweight control migration for elastic scaling and load balancing, it is enough to safely migrate
only the ownership without the need to migrate data.

Two alternative decoupled storage designs have been explored in the literature. In the first
class of systems, the transaction management layer controls the physical layout and format of data
and the storage layer exposes an abstraction of a distributed and replicated block storage device.
The alternative design is where the storage layer is self-managed, in terms of the physical data
layout, format, and access paths and hides these details from the transaction management layer that
interfaces with the storage layer at a logical level.

Managed Storage Layer
One alternative design option is to treat the decoupled storage layer as a distributed and repli-
cated block storage abstraction, similar to a distributed file system such as the Google File Sys-
tem [Ghemawat et al., 2003] and Amazon S3. Such a design divides the design complexity between
the transaction management and the storage layers. While the transaction management layer need
not be aware of the physical data distribution and partitioning, or data replication, access methods,
concurrency control, and recovery must be handled by the transaction management. On the other
hand, the storage layer can efficiently handle replication, geo-distribution, fault-tolerance, and load
balancing of data accesses and storage without possessing any knowledge of transactions or index
structures.

A number of systems proposed in the literature chose this design option. Examples of such
systems include ElasTraS, G-Store, and Megastore. In all these systems, ownership is co-located
at a server which has the unique read/write access to the data items. To allow efficient and non-
distributed transaction execution, the number of interactions with the decoupled storage layer is
further reduced in these systems by caching data as well as updates locally at the node executing
the transaction. These updates are asynchronously propagated to the storage layer, potentially in
batches. Figure 4.6 provides a high-level architectural overview of such a system. As depicted in the
figure, the storage layer is treated equivalent to a set of distributed disks managed by the transaction

50 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.6: Update propagation in decoupled storage architectures.

management layer. Different systems use different approaches for update propagation depending
on the logging mechanisms used during transaction execution and the recovery guarantees sought.
For instance, if all updates are cached locally at the node executing the transactions, then a failure of
that node might result in unavailability of the most recent updates or complete loss if the node does
not recover. On the other hand, if the updates are stored in a replicated log, thus making normal
operation expensive, no updates will be lost even if the transaction manager node never recovers.
Such trade-offs are discussed in detail later in this chapter when we discuss the individual systems.

Self-managed Storage Layer
Another alternative design choice is to provide more autonomy to the storage layer to decide the
physical layout,access methods,etc.One major benefit of making the transaction layer oblivious of the
physical data layout and structures is that the transaction management layer can span different storage
formats. The transaction manager operates at the granularity of logical data units. For instance, a
transaction can access one data item stored in a relational store and another stored in a graph store.To
allow such flexibility and physical data independence, the transaction layer and the storage layer must
interface using a clean and well-defined API exposing the logical data units. Deuteronomy presents
an example of such an self-managing decoupled architecture, where the storage layer (called the
data component) performs its own concurrency control and recovery of the physical data structures,
while the transaction layer (called the transaction component) is responsible for transaction execution,
transaction-level locking, and logical recovery.

4.4 REPLICATION
Transaction execution is often orthogonal to data replication; the way a system handles data repli-
cation adds another dimension to the design space. For instance, replication can be synchronous
or asynchronous; it can be primary copy-based or multi-master. Different choices provide differ-
ent trade-offs in terms of consistency, availability, performance (specifically latency during normal
operation), and data durability in the event of a catastrophic failure or total loss of a replica. The
various trade-offs in this design space and the specific replication technique chosen by a system

4.4. REPLICATION 51

requires a detailed discussion which is beyond the scope of this chapter. In this section, we focus on a
different aspect of replication, that is, whether replication is performed explicitly by the transaction
management layer or it is implicitly handled by the data storage layer.

4.4.1 EXPLICIT REPLICATION
One choice for replicating data is to design the transaction manager to be cognizant of replication
such that updates made by the transactions are explicitly replicated while transactions are executing.
Such replication can either be multi-master or primary copy. A multi-master technique can be used
where write transactions accessing a partition can execute on independent replicas each acting as the
master. However, such multi-master replication scenarios often provide weaker consistency guaran-
tees to allow the replicas to independently process the updates without requiring synchronization.
The weaker consistency guarantees in turn result in complex application logic to tolerate data in-
consistencies. On the other hand, a primary copy replication scheme executes update transactions
at a primary replica; the updates (called downstream updates) are then replicated to the secondaries
in the order they were executed at the primary. To synchronously update the secondary copies, the
downstream updates can be applied to the secondaries before the transaction commits at the pri-
mary. Typically, the primary replica waits for the updates to be replicated and acknowledgments
received from a quorum of secondaries instead of all the secondaries. This minimizes transaction
response times and also prevents the updates from blocking when a secondary replica has failed.
Such a replication mechanism is used in Cloud SQL Serve and Megastore.

One of the benefits of such a synchronous explicit primary copy-based replication techniques
is high availability in case the primary replica fails. At least one of the secondary replicas has seen
all updates from committed transactions, electing one of the replicas as the primary does not result
in lost updates. However, a consensus-based protocol is required to orchestrate the election of the
new primary; classical leader election protocols or their variants can be used to ensure correctness
during such reconfiguration.Another advantage is that the replicas can process read-only transactions
on fresh data while supporting weaker isolation levels, such as snapshot isolation [Berenson et al.,
1995]. Furthermore, when using a quorum-based replication scheme, a minority of the replicas can
be placed in a geographically distributed data center to allow disaster recovery. If a quorum of replicas
are co-located within a data center, such geo-replication does not increase transaction latency. On
the other hand, if all replicas are geo-distributed, such as in Megastore, it will increase transaction
latency since the commit at the primary is delayed due to the higher response times involved in
contacting the secondaries.

4.4.2 IMPLICIT REPLICATION
An alternative design choice for data replication is for the replication management to be transparent
to the transaction execution, i.e., the transaction execution logic is unaware of any replication protocol.
The updates made by a transaction can be replicated synchronously during transaction execution,
or asynchronously after a transaction has completed execution. Decoupled storage architectures are

52 4. TRANSACTIONS ON CO-LOCATED DATA

amenable to such replication schemes where replication is handled transparently from transaction
execution; examples of such systems include ElasTraS,G-Store, and Megastore for replication within
a data center.

Implicit replication by the storage layer can be at the level of replicating the data pages (or
blocks) or by replicating the transaction log. For instance, the transaction log can be stored in
decoupled storage and forced at transaction commit, thus resulting in the updates being replicated
synchronously by the underlying data storage layer. While such synchronous replication will increase
transaction latencies, it allows the system to recover the state of transactions in the event of a failure in
the transaction management layer.On the other hand, in a coupled storage architecture,asynchronous
shipping of physical log entries or logical updates can be used for implicit replication. However, such
asynchronous update propagation schemes can result in the loss of the tail of the log in the event of
permanent failure of the server executing the transactions.

4.5 A SURVEY OF THE SYSTEMS
Thus far, this chapter has focused on abstracting the various dimensions in the design space. A
transaction processing system co-locating data access to a single node can, in principle, be designed
by selecting a combination of design choices from each of the design abstractions discussed. In
the remainder of this chapter, we survey a set of representative systems, provide details about their
architecture, and analyze how these systems combine the different abstractions into an end-to-end
system.

4.5.1 G-STORE
G-Store [Das et al., 2010b] is a system that supports efficient transactional access to dynamically
defined groups of keys. G-Store is layered on top of key-value stores, such as Bigtable. By supporting
application-specified dynamically defined database partitioning, G-Store provides an alternative to
the statically defined hierarchical schema patterns supported by Megastore and ElasTraSṪo allow
efficient transaction execution during the lifetime of a key group, G-Store uses a protocol, called the
key grouping protocol, to transfer ownership of the members of a key group to a single node that
becomes the logical owner of data. Since the key groups are formed on demand, in order to minimize
the cost of data movement during group formation and deletion, G-Store uses a decoupled storage
architecture with the physical storage structures managed by the transaction management layer.
Once a key group has been formed and ownership co-located, G-store uses optimistic concurrency
control and transaction operation logging for recovery. G-Store logs a transaction’s updates to a
distributed storage before a transaction commits, thus allowing the system to tolerate leader failures
and allowing the leader’s state to be recovered from this log. Techniques such as group commit
and asynchronous update propagation improve transaction throughput. G-Store relies on implicit
replication in the underlying key-value store.

In its simplest form assuming reliable message delivery and no node failures, the key grouping
protocol is essentially a handshake between the follower nodes and the leader node to transfer the

4.5. A SURVEY OF THE SYSTEMS 53

Figure 4.7: The key grouping protocol to enable logical co-location of physically distributed data.

ownership of the follower keys to the leader node. However, reliable message delivery guarantees
across nodes and message failures are often expensive. For example, protocols such as TCP provide
guaranteed delivery and ordering only on an active connection. However, group creation requires
delivery guarantees across connections. Hence, using TCP alone will not be enough to provide
message delivery guarantees in the presence of node failures or network partitions. Furthermore,
in a large distributed system, node failures are also common, and ownership transfer and group
management must tolerate such node failure.The key grouping protocol does not require any message
delivery guarantees while ensuring correctness in the presence of node failures. The basics of the
protocol are similar to a handshake often found in atomic commitment protocols, such as 2PC or
TCP connection setup; additional messages, unique identifiers, and logging are added to recover
from a variety of failure scenarios.

Figure 4.7 illustrates the protocol with unreliable messaging which, in the steady state, results
in two additional messages, one during creation and one during deletion. During group creation,
the 〈JA〉 message, in addition to notifying whether a key is free or part of a group, acts as an
acknowledgement for the 〈J〉 request. On receipt of a 〈JA〉, the leader sends a Join Ack Ack 〈JAA〉
to the follower, the receipt of which finishes the group creation phase for that follower. This group
creation phase is two phase, and is similar to the 2PC protocol for transaction commitment. The
difference stems from the fact that the key grouping protocol also allows best effort group creation
while 2PC would be equivalent to atomic group creation. During group dissolution, the leader sends
a Delete Request 〈D〉 to the followers. On receipt of a 〈D〉 the follower regains ownership of the key,
and then responds to the leader with a Delete Ack 〈DA〉. The receipt of 〈DA〉 from all the followers
completes group deletion.

Group create request. On receipt of a group create request from the client, the leader verifies the
request for a unique group id. The leader appends an entry to its log that stores the group id and
the members in the group. After the log entry is forced (i.e., flushed to persistent storage), the leader

54 4. TRANSACTIONS ON CO-LOCATED DATA

sends a 〈J〉 request to each of the follower nodes.The 〈J〉 messages are retried until the leader receives
a 〈JA〉 from the followers.

Join request 〈J〉. On receipt of a 〈J〉 request the follower ascertains the freshness and uniqueness
of the message. If the message is detected as a duplicate, then the follower sends a 〈JA〉 without
appending any log entry. Otherwise, if the follower key is not part of any active group, the follower
appends a log entry denoting the ownership transfer and the identity of the leader key.This ownership
transfer is an update to the system’s metadata, and the follower’s log is the persistent storage for this
information. This log entry must therefore be forced before a reply is sent. The follower’s state is set
to joining. The follower then replies with a 〈JA〉 message notifying its intent to yield. To deal with
spurious 〈JAA〉 messages and eliminate the problem of phantom groups, the follower should be able
to link the 〈JAA〉 to the corresponding 〈JA〉. This is achieved by using a sequence number generated
by the follower called the yield id. A yield id is associated to a follower node and is monotonically
increasing. The yield id is incremented every time a follower sends new 〈JA〉 and is logged along
with the entry logging the 〈J〉 message. The yield id is copied into the 〈JA〉 message along with
the group id. The 〈JA〉 message is retried until the follower receives the 〈JAA〉 message. This retry
ensures that the phantom groups are not left undetected.

Join Ack 〈JA〉. On receipt of a 〈JA〉 message, the leader checks the group id. If it does not match
the identifiers of any of the currently active groups, then the leader sends a 〈D〉 message and does
not log this action or retry this message. Occurrence of this event is possible when the message
was a delayed message, or the follower yielded to a delayed 〈J〉. In either case, a 〈D〉 message would
be sufficient and also deletes any phantom groups that might have been formed. If the group id
matches a current group, then the leader sends a 〈JAA〉 message copying the yield id from the 〈JA〉
to the 〈JAA〉 irrespective of whether the 〈JA〉 is a duplicate. If this is the first 〈JA〉 received from that
follower for this group, a log entry is appended to indicate that the follower has joined the group;
however, the leader does not need to force the entry. The 〈JAA〉 message is never retried, and the
loss of 〈JAA〉 messages is handled by the retries of the 〈JA〉 message. The receipt of 〈JA〉 messages
from all the followers terminates the group creation phase at the leader.

Join Ack Ack 〈JAA〉. On receipt of a 〈JAA〉 message, the follower checks the group id and yield id
to determine freshness and uniqueness of the message. If the yield id in the message does not match
the expected yield id, then this 〈JAA〉 is treated as a spurious message and is ignored. This prevents
the creation of phantom groups. A delayed 〈JAA〉 will have a different yield id since it corresponds to
an earlier group. Hence, the follower will reject it as a spurious message, thus preventing the creation
of a phantom group. If the message is detected to be unique and fresh, then the follower key’s state
is set to joined. The follower node logs this event, which completes the group creation process for
the follower; the log entry does not need to be forced.

Group delete request. When the leader receives the group delete request from the application client,
it forces a log entry for the request and initiates the process of yielding ownership back to the

4.5. A SURVEY OF THE SYSTEMS 55

followers. The leader then sends a 〈D〉 message to each follower in the group. The 〈D〉 messages are
retried until all 〈DA〉 messages are received. At this point, the group has been marked for deletion
and the leader will reject any future transactions accessing this group.

Delete request 〈D〉. When the follower receives a 〈D〉 request, it validates this message, and appends
a log entry on successful validation of the message. This log entry signifies that it has regained
ownership of the key. Since regaining ownership is a change in the system state, the log is forced
after appending this entry. Irrespective of whether this 〈D〉 message was duplicate, stale, spurious, or
valid, the follower responds with a 〈DA〉 message; this 〈DA〉 message is not retried.

Delete ack 〈DA〉. On receipt of a 〈DA〉 message, the leader checks for the validity of the message.
If this is the first message from that follower for this group, and the group id corresponds to an
active group, then a log entry is appended indicating that the ownership of the data item has been
successfully transferred back to the follower.Once the leader has received a 〈DA〉 from all the followers,
the group deletion phase terminates. The log is not forced on this protocol action.

Das [2011] presents a detailed analysis to the different failure scenarios to assert the correctness
of the protocol and ensure safety in the presence of different types of failures and works through the
details of recovery from the different types of failure at any point during the lifetime of the group.

The key grouping protocol can handle data items joining and leaving a key group at any point
during the group’s lifetime. The key group abstractions can therefore be generalized. A key group
is a set of data items on which an application seeks transactional access. This set can be dynamic
over the lifetime of a group, thus allowing data items to join or leave the group while the group is
active. Transactional guarantees are provided only to the data items that are part of the group when
the transaction is executing. As earlier, new groups can be formed and groups can be deleted at any
time. key groups continue to remain disjoint, i.e., no two concurrent key groups will have the same
data item.

Conceptually, the key grouping protocol handles the joining and deletion of a group’s data
items individually; these requests are batched to improve performance. Therefore, the key grouping
protocol remains unchanged to support this generalized key group abstraction.When the application
requests a data item k to join an already existing group, the leader executes the creation phase of the
key grouping protocol only for k joining the group. When k leaves a group, the leader ensures that k

is not being accessed by an active transaction and all of k’s updates have propagated to the follower
node. The leader then executes the deletion phase only for k leaving the group.

In summary, G-Store uses an application-specified dynamic partitioning scheme coupled with
a protocol to dynamically move ownership to limit transactions to a single node; conceptually, a key
group maps to a dynamically defined partition. It uses optimistic concurrency control in a decoupled
storage architecture with implicit replication managed by the storage layer.

56 4. TRANSACTIONS ON CO-LOCATED DATA

4.5.2 ELASTRAS
ElasTraS [Das et al., 2009, 2010a] is an elastically scalable transaction processing system primar-
ily targeting OLTP-style RDBMS-like functionality while scaling out to a cluster of commodity
servers. ElasTraS views the database as a set of database partitions. The partitions form the granule
of distribution, transactional access, and load balancing. For small application databases (as observed
in multi-tenant platforms serving large numbers of small applications), the database can be con-
tained entirely within a partition. However, for applications whose data requirements grow beyond
a single partition, ElasTraS supports partitioning at the schema-level by co-locating data items fre-
quently accessed together. Specifically, ElasTraS leverages hierarchical schema patterns to partition
the database for large applications. ElasTraS is designed to serve thousands of small tenants as
well as tenants that grow big. ElasTraS is based on a decoupled storage architecture which allows
lightweight elastic scaling. The transaction manager layer manages the physical layout and indexes
while the storage layer manages replication and data placement.

At the microscopic scale,ElasTraS consolidates multiple tenants within the same database pro-
cess allowing effective resource sharing among small tenants. It achieves high transaction throughput
by limiting tenant databases to a single process, thus obviating distributed transactions. For tenants
with sporadic changes in loads, ElasTraS leverages low-cost live database migration for elastic scaling
and load balancing. This allows it to aggressively consolidate tenants to a small set of nodes while
still being able to scale-out on-demand.

At the macroscopic scale, ElasTraS uses loose synchronization between the nodes for coordi-
nating operations, rigorous fault-detection and recovery algorithms to ensure safety during failures,
and system models that automate load balancing and elasticity.

We explain the ElasTraS architecture in terms of the four layers shown in Figure 4.8 from
bottom-up: the distributed fault-tolerant storage layer, the transaction management layer, the control
layer, and the routing layer.

The Distributed Fault-tolerant Storage Layer. The storage layer, or the Distributed Fault-tolerant
Storage (DFS), is a network-addressable storage abstraction that stores the persistent data. This
layer is a replicated storage manager that guarantees durable writes and strong replica consistency
while ensuring high data availability in the presence of failures. Such storage abstractions are com-
mon in current data centers in the form of commercial products (such as storage area networks),
scalable distributed file systems (such as the Hadoop distributed file system [HDFS]), or custom
solutions (such as Amazon elastic block storage or the storage layer of Hyder). High-throughput
and low-latency data center networks provide low-cost reads from the storage layer; however, strong
replica consistency make writes expensive. ElasTraS minimizes the number of DFS accesses to re-
duce network communication and improve the overall system performance. We use a multi-version
append-only storage layout that supports more concurrency for reads and considerably simplifies
live migration for elastic scaling.

4.5. A SURVEY OF THE SYSTEMS 57

Figure 4.8: ElasTraS architecture.

Transaction Management Layer. This layer consists of a cluster of servers called Owning Transac-
tion Managers (OTM). An OTM is analogous to the transaction manager in a classical RDBMS.
Each OTM serves tens to hundreds of partitions for which it has unique ownership. The number
of partitions an OTM serves depends on the overall load. The exclusive ownership of a parti-
tion allows an OTM to cache the contents of a partition without violating data consistency while
limiting transaction execution within a single OTM and allowing optimizations such as fast com-
mit [Weikum and Vossen, 2001]. Each partition has its own transaction manager and shared data
manager. All partitions share the OTM’s log manager which maintains the transactions’ com-
mit log. This sharing of the log minimizes the number of competing accesses to the shared stor-
age while allowing further optimizations such as group commit [Bernstein and Newcomer, 2009,
Weikum and Vossen, 2001]. To allow fast recovery from OTM failures and to guarantee high avail-
ability, an OTM’s commit log is stored in the DFS.This allows an OTM’s state to be recovered even
if it fails completely.

Control Layer. This layer consists of two components: the TM Master and the Metadata Manager
(MM). The TM Master monitors the status of the OTMs and maintains overall system load and
usage statistics for performance modeling. The TM Master is responsible for assigning partitions
to OTMs, detecting and recovering from OTM failures, and controlling elastic load balancing. On
the other hand, the MM is responsible for maintaining the system state to ensure correct operation.
This metadata consists of leases that are granted to every OTM and the TM Master, watches, a
mechanism to notify changes to a lease’s state, and (a pointer to) the system catalog, an authoritative

58 4. TRANSACTIONS ON CO-LOCATED DATA

mapping of a partition to the OTM currently serving the partition. Leases are uniquely granted to
a server for a fixed time period and must be periodically renewed. Since the control layer stores only
meta information and performs system maintenance, it is not in the data path for the clients. The
state of the MM is critical for ElasTraS’s operation and is replicated for high availability; the TM
Master is stateless.

Routing Layer. ElasTraS dynamically assigns partitions to OTMs. Moreover, for elastic load bal-
ancing, a database partition can be migrated on-demand in a live system. The routing layer, the
ElasTraS client library which the applications link to, hides the logic of connection management
and routing, and abstracts the system’s dynamics from the application clients while maintaining
un-interrupted connections to the tenant databases.

Das [2011] provides more details on ElasTraS’s implementation, such as transaction, log,
and cache management, detecting and recovering from OTM, TM Master, and MM failures, and
advanced aspects such as multi-version data and dynamic partitioning. ElasTraS effectively leverages
the design principles of scalable Key-value stores and decades of research in transaction processing,
thus resulting in a scale-out DBMS with transactional semantics.

In summary, ElasTraS uses the hierarchical tree schema to support a rich set of operations even
when limiting transactions to a single node; for small applications, ElasTraS does not impose any
restrictions on the schema or the data items accessed by a transaction. It uses optimistic concurrency
control for executing transactions locally within an OTM. Storage is decoupled from transaction
management and data replication is handled implicitly by the storage tier. The decoupled storage
abstraction lends ElasTraS the ability to easily migrate live database partitions without incurring
heavy disruption in service [Das et al., 2011].

4.5.3 CLOUD SQL SERVER
Cloud SQL Server [Bernstein et al., 2011b] adapts Microsoft’s SQL Server for cloud computing
workloads and scale out by partitioning the database. Cloud SQL Server is used as the back-end
storage system for two large-scale web services: the Exchange Hosted Archive which is an e-mail
and instant messaging repository; and SQL Azure, the relational database service offered as part of
the Windows Azure storage platform.

Cloud SQL Server limits transactions to a single database partition and uses the table group
schema pattern to support a rich set of transactions while avoiding two-phase commit. Each database
partition is replicated. At any point in time, each database partition has one replica designated as the
primary which executes all transactions accessing that partition. Updates from transactions executing
at the primary are replicated to the secondary replicas using a custom replication scheme which is
an adaptation of the primary copy replication scheme. Each database node in Cloud SQL Server is
a modified SQL Server instance that serves multiple partitions within the same database process.
Each node serves primaries for some database partitions and secondaries for some other partitions.

Figure 4.9 provides an overview of Cloud SQL Server’s architecture. Client applications
access Cloud SQL Server through a protocol gateway that authenticates user accesses and binds a

4.5. A SURVEY OF THE SYSTEMS 59

Figure 4.9: Cloud SQL Server architecture with the different major layers in the system.

user connection to a database node being accessed by the user. The gateway locates the primary
for the partition being accessed and renegotiates that choice in case a failure or system-initiated
reconfiguration causes the election of a new primary. Multiple user databases (or partitions) are
served by a SQL Server instance running on each database node. Accesses to each partition are
isolated from other partitions that are co-located with the same SQL Server process. Co-located
partitions share many internal database structures and a common transaction log. High availability is
provided by a highly reliable system management layer called the distributed fabric which implements
cluster management, failure detection and recovery, and leader election. The distributed fabric uses
a distributed hash table at its core to implement the system management functionalities.

The mapping of partitions to the database nodes is maintained by a highly available directory
service called the global partition manager. The distributed fabric monitors the servers and when
a failure is detected, the fabric recovers the partitions and updates the partition manager with the
new location for the partition’s replicas. The lowest layer in the system, called the infrastructure and
deployment services, is responsible for provisioning and deployment tasks such as upgrading the SQL
Server instances and imaging the software binaries that execute at a node.

A transaction (T) executes at the primary replica of the partition that T accesses.The primary
forwards the update operations to the secondaries as the updates occur. These update operations
serve as logical redo records. In case T aborts, the secondary is notified, which discards any updates
corresponding to T. If T commits, then the primary assigns a commit sequence number which
determines the order in which the secondaries apply updates made by T. Once a secondary completes

60 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.10: Megastore’s storage layout. The hierarchical structure of an entity group is leveraged to
co-locate data in Bigtable.

applying T’s updates, it sends an acknowledgement back to the primary. The primary writes a
persistent commit record once it receives an acknowledgment from a quorum of replicas. A secondary
is not required to force T’s updates to the log before acknowledging the primary. That is, when T
commits at the primary, a quorum of servers is guaranteed to have a copy of the commit, but is not
required to have a persistent copy of the record of the commit. If the partition’s replicas are unlikely
to experience a correlated failure, such a replication scheme is expected to provide a satisfactory
degree of fault tolerance while minimizing transaction latencies by not requiring persistence at the
secondaries. In the cases where tolerance to server failures is needed, the secondaries can be required
to force the commit record before acknowledging the primary. Bernstein et al. [2011b] provides
further details about the replication protocol and various optimizations.

In summary,Cloud SQL Server uses a hierarchical schema pattern, the table group abstraction,
to support rich functionality while limiting transactions to access a single database partition. It
uses a classical RDBMS engine which relies on a two-phase locking-based concurrency control
mechanism and couples storage with transaction management. Data replication is explicitly handled
by the transaction management layer, thus requiring a custom quorum-based commit protocol to
allow synchronous replication.

4.5.4 MEGASTORE
Megastore [Baker et al., 2011] is a scale-out data store designed to provide transactional access to
small granules of data in a replicated and geographically distributed system. To scale-out, Mega-
store partitions data into a vast space of small databases which form the granule of transactional
access. Megastore uses a hierarchical schema structure, an entity group, which forms the granule
of ACID transactions and replication. Each entity group has its own replicated log stored in a
per-replica Bigtable instance. An entity group’s log is replicated synchronously to geographically
distributed data centers using a fault-toleration replication protocol based on the Paxos consensus

4.5. A SURVEY OF THE SYSTEMS 61

algorithm [Chandra et al., 2007, Lamport, 1998]. Such replication across data centers allows Mega-
store to tolerate intermittent or permanent outages at the level of a data center while providing high
availability for application-level reads and writes.

Data storage and co-location. Megastore exposes the entity group abstraction where the applications
can group together related data items that are accessed together,often within a single transaction.The
hierarchical schema structure allows physical data co-location in the underlying Bigtable instance
storing the data corresponding to an entity group. Figure 4.10 illustrates this physical co-location
using the photo sharing application schema described in Figure 4.2(b).The Bigtable column name is
a concatenation of the Megastore table name and the property name, allowing entities from different
Megastore tables to be mapped into the same Bigtable row without collision. The Bigtable row for
the root entity stores the transaction and replication metadata and the transaction log for the entity
group. Storing all metadata in a single row allows Megastore to update or read the metadata using
Bigtable’s single row transactions API. For rows corresponding to non-root entities, the key for the
Bigtable row is constructed by concatenating the key of the root entity with the key for that entity.
In Figure 4.10, rows corresponding to an entity group are identified by the same background color.
Depending on the size of an entity group, all of its data can be co-located within a single Bigtable
table. Moreover, the contiguous key space for an entity group is also amenable to range partitioning
in Bigtable.

Transaction execution within an entity group. Megastore supports ACID semantics for transac-
tions accessing a single entity group by introducing its own library layer on top of Bigtable.Megastore
relies on multi-version support in the Bigtable layer to implement multi-version concurrency con-
trol for transactions on an entity group. A timestamp-based protocol determines which values in a
given Bigtable cell can be read or written. Transactions execute optimistically and are validated at
completion to determine if they committed or aborted due to a conflicting concurrent transaction. A
write transactions starts by reading the timestamp of the most recently committed transaction. All
mutations made by a transaction are gathered into a log entry which is assigned a timestamp greater
than the read timestamp of the transaction. A transaction commits if no other transaction’s log entry
was appended to the log since the read timestamp of the transaction. When multiple concurrent
write transactions attempt to append to the log, only one transaction wins while the remaining trans-
actions are aborted and must be restarted from the read phase. Note that this requirement serially
executes transactions in an entity group, thus eliminating any concurrency of updates. The rationale
for such a design is that many applications do not concurrently update an entity group. Writes from
a committed transaction are applied (or made visible to other transactions) after the transaction’s log
record has been successfully appended.

The multi-version nature and explicit management of timestamps allows readers and writers
to continue independently without blocking each other. This independence is beneficial since in
many application scenarios, reads dominate writes. Further, Megastore supports reads with various
isolation levels: current, snapshot, and inconsistent. Current and snapshot reads are supported in the

62 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.11: Megastore architecture layered as a library over Bigtable.

scope of an entity group. A current read is guaranteed to have seen writes of all transactions that
committed before the read was issued. Snapshot reads do not provide this freshness guarantee but
are guaranteed to see all writes as of a transaction in the past; the system can pick any committed
transaction all of whose writes have been applied to the data store. Inconsistent reads ignore the
state of the log and reads directly from the data store and hence can return updates from a partially
applied transaction or updates that span multiple versions of the database. Such inconsistent reads
are useful for operations that have more aggressive latency requirements.

Synchronous replication of logs using a Paxos-based protocol. Log records from an update trans-
action executing on an entity group are synchronously replicated to the entity group’s replicas in
geographically distributed data centers. The replication protocol provides a single consistent view of
data stored in the underlying replicas.Figure 4.11 provides an overview of the replication architecture
of Megastore, which is layered as a library over Bigtable.

Megastore adapts the Paxos protocol to minimize the number of cross-data center round
trips needed to commit a write transaction. Instead of executing the prepare phase of Paxos for
every transaction commit, Megastore uses a concept of implicit leaders and the prepare phase is
essentially piggy-backed on the previous successful consensus round.That is, Megastore executes an
independent instance of Paxos for every log position, however, the leader for each log position is a
distinguished replica chosen alongside the preceding log position’s consensus value. The first writer
to submit a value to the leader wins the right to ask all replicas to accept that value; all other writes
must fall back on two-phase Paxos. To minimize the writer to leader communication overhead, a
leader is typically located in the data center from where most writes are originating.

4.5. A SURVEY OF THE SYSTEMS 63

Since the Paxos consensus protocol only requires acknowledgements from a majority of repli-
cas, a replica might be lagging behind the most recent updates. Contacting a majority of replicas to
process a read is guaranteed to return the most updated values, though at the cost of making the
reads more expensive. Megastore uses a service, called a coordinator, local to each data center’s replicas
which tracks a set of entity groups whose replicas have observed all Paxos writes. For entity groups
in that tracked set, the local replica has sufficient state to serve local reads. The coordinator service
is an optimization to improve read latency during normal operation. However, ensuring consistency
of reads in the presence of network partitions requires an additional set of protocols. Coordinators
in Megastore must obtain remote leases from Chubby instances [Burrows, 2006] running in remote
data centers. If a coordinator ever loses a majority of its locks from a crash or network partition, it
will revert its state to a conservative default, rendering all entity groups in its purview to be out-
of-date. Patterson et al. [2012] show that the Paxos implementation is correct, i.e., ensures one-copy
serializability, but does so at the expense of executing all transactions serially. The basic Paxos is
then enhanced to a new protocol called Paxos with Combination and Promotion (Paxos-CP) that
provides true transaction concurrency while requiring the same per instance message complexity as
the basic Paxos protocol.

Megastore supports three different types of replicas. A replica which serves both reads and
writes is called a full replica. A full replica stores both the data and the logs and participates in voting
during a transaction’s commit. A write-only replica, called a witness replica, votes in Paxos rounds
and stores the write-ahead log, but does not apply updates to the log to serve reads. These replicas
act as tie breakers when enough full replicas are not available to form a quorum. A witness replica
does not serve reads and hence does not have a coordinator, thus saving an additional round-trip
when it fails to acknowledge a write. A read-only replica is the inverse of a voting replica. That is,
a read-only replica does not vote but contains a full snapshot of data consistent as of some point in
the recent past. The read-only replicas are useful to serve reads over wide geographic areas that can
tolerate some staleness and do not impact write latency.

Transactions spanning multiple entity groups. The entity group abstraction allows efficient ex-
ecution of transactions that only access a single entity group. Megastore, however, also supports
transactions that access multiple entity groups. Such multi-group transactions are either executed
using an asynchronous fault-tolerant queue or by executing two-phase commit [Gray, 1978] on all
the entity groups accessed by a transaction. Such multi-group transactions incur a higher latency
compared to transactions accessing a single entity group.

In summary, Megastore uses a hierarchical schema pattern to physically co-locate an entity
group’s data. Transactions execute using a multi-version optimistic concurrency control technique.
Storage is decoupled—-transactions execute in a library layer while data is physically stored in a log-
ically decoupled cluster of Bigtable instances. Replication across geographically distant data centers
is handled by explicitly replicating a transaction’s log to a quorum of replicas before a transaction’s
commit is acknowledged.

64 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.12: Relational Cloud Architecture.

4.5.5 RELATIONAL CLOUD
Relational Cloud [Curino et al., 2011a] presents a scale-out transaction processing architecture that
relies on access-based partitioning to limit majority of transactions to access a single database parti-
tion. Figure 4.12 presents a high-level view of Relation Cloud’s architecture. Similar to Cloud SQL
Server, the goal is to adapt existing RDBMS engines, such as MySQL, to be able to scale-out using
a shared-nothing cluster of DBMS nodes, each executing an instance of the RDBMS engine. How-
ever, Relational Cloud does allow transactions to access multiple partitions potentially distributed
over a set of nodes. A subset of the front-end nodes are responsible for coordinating the execution
and commit of the distributed transaction. The front-end nodes are also responsible for routing
transactions based on the mapping of partitions to the nodes.

An access-driven data partitioning engine and a workload-aware partition placement engine
form the administrative nodes in the system. Relational Cloud uses an access-driven partitioning
scheme, Schism [Curino et al., 2010], which models data accesses as a graph, where data items form
the nodes while the transactions form the edges, and uses standard off-the-shelf graph partitioning
techniques to partition the graph and hence the database. The optimization goal of the partitioning
algorithm is to minimize the number to edges that cross the graph cut. Edges in the graph are
weighted to account for the frequency of accesses.

The partition placement algorithm monitors the workload and resource consumption of each
database partition and uses these measures to determine the appropriate partitions to co-locate at
a given server. The goal of the placement algorithm is to ensure high resource utilization at the
backend database nodes by aggressively consolidating multiple partitions at the same node while
also ensuring that enough resources are available at the node such that a tenant’s performance is not

4.5. A SURVEY OF THE SYSTEMS 65

Figure 4.13: Hyder’s architecture. Every node in the system executes transactions on a snapshot of the
last committed state (LCS) and append’s the after-image of the database (the transaction’s intention)
to the shared log. Nodes subsequently meld the transactions in log order to independently determine
whether a transaction has committed or aborted.

affected significantly. Relational Cloud uses an integer linear programming-based solution, called
Kairos [Curino et al., 2011b], to determine a good placement scheme for a given workload pattern.
Kairos optimizes for short-running OLTP workloads where the working set fits easily in the database
cache and disk accesses are few and far between. This requirement of infrequent disk accesses forms
the basis of Kairos’s model of disk IO in a consolidated setting.

In summary, Relational Cloud uses access-driven database partitioning to limit most of the
transactions to access a single database partition. Within a partition, transactions use classical lock-
based concurrency control and a distributed transaction coordinator uses two-phase commit for
transactions accessing multiple partitions. Data storage is coupled with transaction execution.

4.5.6 HYDER
Hyder [Bernstein et al., 2011a] is an architecture that scales-out transactions without requiring
applications or databases to be partitioned. This feature differentiates Hyder from other systems
(such as ElasTraS, Relational Cloud, Cloud SQL Server, and G-Store) that rely on some form of
partitioning for scale-out. However, similar to these systems, Hyder minimizes distributed synchro-
nization during the execution of a transaction. In particular, a transaction that updates the database
results in one distributed synchronization while read-only transactions do not incur any distributed
synchronization.

66 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.14: A transaction T’s conflict zone that comprises transactions that executed concurrent with
T and were appended to the log ahead of T. Transactions in T’s conflict zone determine whether T
committed or aborted.

Figure 4.13 provides an overview of Hyder’s architecture. Hyder comprises a set of compute
nodes that execute transactions on a shared database state. The database is stored as a log that is
shared among all the compute nodes.The log is the database in Hyder.The database is an immutable
tree stored in the log; the figure uses a binary search tree for illustration, though the database may
be stored as a B+-tree. This immutable nature makes the database multi-version. Each node caches
the tail of the log that comprises the last committed state of the database as viewed by the compute
node.Transactions execute optimistically at a compute node to avoid any distributed synchronization
during transaction execution.

Figure 4.13 depicts the steps in the life of a transaction. A transaction (T) executes on a
snapshot of the database which corresponds to the last committed state (LCS) at the compute node
(step 1). If T updates any data item, it creates an after image of the database which is called T’s
intention record (step 2); a read-only transaction executes on its LCS snapshot and commits locally
without creating an intention record. A transaction executes locally at a compute node without
requiring any distributed synchronization.Since the database is multi-version, the cache at a compute
node is trivially coherent. A cache miss results in a read access to the log without any need for
synchronization. Once T completes, its intention is broadcast to all other compute nodes and also to
the log (step 3). T’s intention is atomically appended to the tail of the log (step 4) which determines
T’s global order with respect to other concurrent transactions. Once T’s position in the log is known,
this position is again broadcast to all compute nodes (step 5). Each compute node (including the
node that executed T) independently receives T’s intention and position in the log which then
processes the intentions sequentially in log order to determine T’s outcome (step 6). This process of
merging the intentions into the LCS in log order is called meld and is a deterministic function on
the sequence of intentions in the log. Since every node executes meld deterministically, each node
can independently determine a transaction’s outcome without any need for synchronization and it
is guaranteed that every node will determine the same outcome for T. Finally, the compute node
where T executed notifies the outcome (commit or abort) to the application.

4.5. A SURVEY OF THE SYSTEMS 67

If multiple transactions are executing concurrently in the system, then the position of T’s
snapshot and T’s intention is not contiguous. The intention that separates T’s intention from its
snapshot is called T’s conflict zone which comprises the transactions that executed concurrently with
T but were appended to the log ahead of T; Figure 4.14 illustrates a transactions conflict zone. If T
conflicts with a committed transaction in its conflict zone, then T must be aborted, else T commits.
The definition of conflict is contingent on the isolation level being enforced. For instance, in the case
of serializable isolation, T commits only if its read and write sets do not conflict with a committed
transaction in its conflict zone while in the case of snapshot isolation, T commits only if its write set
does not conflict. In the case of serializable isolation, T’s intention must also contain information
about its read set. In principle, when processing T’s intention, meld must sequentially check all the
transactions in its conflict zone. However, meld in Hyder leverages the tree structure and additional
metadata (in the form of structural and content version numbers) to efficiently determineT’s outcome
without individually processing all intentions in T’s conflict zone.The efficiency of meld stems from
the fact that if a node in the tree is unchanged between T’s snapshot and the current LCS, then no
changes were made in the subtree and hence meld does not need to analyze the subtree; details of
the various optimizations is provided in Bernstein et al. [2011c].

Even though Hyder limits transaction execution to a single node, there are four bottlenecks
inherent to its design that limit its peak update transaction throughput. First, all update transactions
must be broadcast to all compute nodes and hence the broadcast throughput of the network connect-
ing the compute node to the log is a bottleneck. Second, all update transactions must be appended to
the shared log and hence the log append throughput is also a bottleneck. Reid and Bernstein [2010]
and Balakrishnan et al. [2012] present two architectures for scalable shared logs on SSDs or flash
chips which can potentially be used as the log in Hyder. Third, meld processes intentions sequen-
tially in log order and hence is limited by the clock speed of a single processor. Finally, Hyder uses
optimistic concurrency control whose peak throughput is limited by the amount of data contention.
Hyder was designed to leverage various recent innovation disruptions in computer hardware and
data center networks. In particular, Hyder will benefit from multi-core processors, fast data center
networks, and abundant random I/O available from NAND flash. Such innovations help ease many
of these bottlenecks while allowing Hyder to scale-out to tens of nodes without partitioning the
database.

In summary, Hyder does not leverage partitioning of the database or the application to scale-
out transaction processing. It uses a multi-version optimistic concurrency control protocol to allow
transactions to execute locally at a node without requiring distributed synchronization; a transaction
only synchronizes with other transactions when it appends to the shared log which imposes a global
order on all the transactions. While storage is decoupled from transaction processing, Hyder uses
the storage layer also as a point of synchronization, which differentiates it from other decoupled
storage architectures. Hyder also has an inherent data replication mechanism where updates made
by a transaction become visible to other nodes which replay all update transactions in log order.

68 4. TRANSACTIONS ON CO-LOCATED DATA

Figure 4.15: An overview of Deuteronomy architecture. The transaction component and data compo-
nents are unbundled and interface through a well-defined TC-DC interface protocol.

4.5.7 DEUTERONOMY
Deuteronomy [Levandoski et al., 2011] presents a different architectural design point for supporting
ACID transactions by factoring the functions of a database storage engine kernel into a transactional
component (TC) and a data component (DC). A TC provides transactions via “logical” concurrency
control and undo/redo recovery without being aware of the physical data layout or location of data.
The DC supports a record-oriented interface with atomic operations and is responsible for physical
data organization (such as data storage and indexing) and caching; the DC is oblivious of transactions.
This design of Deuteronomy is different from classical storage engines where optimizations, such as
multi-granularity locking or physiological logging, rely on tight coupling of transaction execution
logic and the physical data layout.

Figure 4.15 presents an overview of Deuteronomy’s architecture. Applications submit requests
to the TC which uses a session manager to authenticate and manage these connections. The TC
uses a lock manager and a log manager to logically enforce transactional concurrency control and
recovery. The record manager handles the logical read and write operations for each data item and
the table manager handles the data definition operations.

A TC can interact with multiple DCs using a well-defined TC-DC interaction con-
tract [Lomet et al., 2009] that hides the details of physical data layout used by the DC. As illustrated
in Figure 4.15, a TC can interface with a DC storing relational data, a DC backed by a cloud data
store, and a DC storing graph data. This flexibility is one of the key advantages of Deuteronomy
which eliminates the need for implementing the transaction execution logic for each type of data
store. Moreover, by limiting transaction execution to a single logical entity (a TC), Deuteronomy

4.5. A SURVEY OF THE SYSTEMS 69

avoids the need for a two-phase commit protocol for executing transactions spanning multiple DCs.
While the TC executes the concurrency control and recovery logic, the actual data operations are
passed to the appropriate DC while guaranteeing to never send conflicting concurrent operations. A
TC is the unique owner of a data item, and locking within a TC ensures that conflicting operations
are never concurrently sent to the DC.

The session manager within a TC does all thread management. Each incoming request is
assigned a thread by the session manager. The lock manager arbitrates conflicting accesses by con-
currently executing threads and may occasionally block a thread. The log manager must provide
the recovery guarantees and might occasionally need to block a thread while log records are forced.
Resources within the TC are all treated as logical data items, and their identification does not include
physical location information. The TC manages locks without knowledge of the physical layout of
the stored data; Lomet and Mokbel [2009] details mechanisms to efficiently manage such logical
locking, especially for supporting predicate safety. Similarly, the log manager posts log records with
resources described logically and without physical location information. These logical resources are
mapped via metadata stored via the table manager to identify which DC owns the requested data.
Such metadata can be added throughout the lifetime of the TC in a similar way as done with
traditional database catalogs.

The DC provides both cache management and access method support, and in addition, it must
fulfill the TC-DC contract, which includes control operation support, guaranteeing idempotence of
operations, and recovery. A DC can be co-located at the same server as the TC or can be distributed,
even over a wide area network.

In summary, Deuteronomy presents an architecture that decouples transaction execution from
data storage, thus presenting an instance of decoupled storage architectures. Deuteronomy furthers
this design by defining a clean interface between the TC and DC and by abstracting physical data
storage information from transaction execution. Deuteronomy limits transactions to execute within
a single TM. While the architecture does not mandate a technique to partition the database across
different TCs, if the need arises, the partitioning techniques discussed in this chapter can potentially
be used. Within a TC, Deuteronomy uses lock-based approaches for concurrency control.

71

C H A P T E R 5

Transactions on Distributed
Data

In the previous chapter, we discussed abstractions and techniques to efficiently support transactional
semantics on physically or logically co-located data. In this chapter, we discuss a set of approaches
that do not require co-location (neither logical nor physical) of data accessed by a transaction. Dis-
tributed synchronization is inherent to such approaches, and therefore, such approaches weaken the
transactional guarantees supported to allow the system to scale-out. That is, while the techniques
discussed in the previous chapter rely on some form of partitioning and limiting the data items a
transaction might access, techniques discussed in this chapter restrict the guarantees provided by the
transactions while allowing more flexibility on the schema or data items accessed by the transactions.
For instance, some approaches relax the consistency and isolation guarantees of transactions, others
limit the operations supported, while some others leverage application semantics to relax the per-
formance requirements. In this chapter, we provide a survey of a few such approaches and highlight
the trade-offs of these approaches.

5.1 DATABASE-LIKE FUNCTIONALITY ON CLOUD
STORAGE

Most major cloud providers expose an abstraction of a scalable and highly available storage service,
such as Amazon’s Simple Storage Service (S3) and Windows Azure Storage services. Brantner et al.
[2008] propose an approach to build database-like functionality on top of these storage layers while
preserving the scalability and high availability features of the storage service.The key idea is to build
a B-tree layer over the raw pages of data stored in the cloud storage service. Figure 5.1 provides an
overview of the proposed architecture. The cloud storage service is viewed as a disk which is shared
among a number of clients that access data using a record-based interface exposed by the record
manager. Multiple database records are aggregated into a page which is the granule of storage and
transfer from the storage layer. The page manager converts record accesses to page accesses and
interacts with the storage layer. A B-tree index can be implemented on top of the page manager.
The root and the intermediate nodes of the B-tree are stored as pages.

Client accesses to the database fetches the pages on-demand, which are then cached at the
client. Any updates made by a client transaction are cached locally until the transaction is ready
to commit. When a transaction is ready to commit, log records corresponding to the updates are
appended to the storage layer. This approach is similar to classical redo-based recovery. Figure 5.2

72 5. TRANSACTIONS ON DISTRIBUTED DATA

Figure 5.1: Architecture of a database system built on Amazon’s simple storage service (S3).

illustrates the basic commit and checkpointing protocol. Committing a client’s updates is a two-step
process.

In the first step, the client generates log records for all the updates made by the transaction.
These log records are appended to a queue called the pending updates (PU) queue. Each PU queue
is responsible for storing the updates corresponding to a fragment of the database. For instance, all
the internal nodes in a B-tree index can be mapped to one PU queue while the leaf nodes each have
their individual PU queue. Many cloud providers also support a scalable and highly available queuing
service, such as Amazon’s Simple Queuing Service (SQS) or Microsoft’s Windows Azure Queue
Storage Service. The PU queues can be implemented using such a queuing service. The log records
contain enough information to guarantee idempotence, i.e., an update in a log record is applied at
most once.

In the second step of the commit protocol, the log records are applied to the pages in the
storage layer, a step similar to checkpointing in classical DBMSs. Checkpoints can be carried out
at any time and by any node (or client) of the system. A checkpoint strategy determines when and
by whom a checkpoint is carried out. A client performing a checkpoint must ensure that no other
client is concurrently performing a checkpoint on the PU queue. This synchronization is achieved
using the lock queue corresponding to the PU queue. The lock queue is a special queue that consists
of a single message. When a client wants to perform a checkpoint, it removes this message from the
queue. If multiple clients concurrently try to remove the message from the queue, only one of them
will succeed.The client that successfully removes the message gets the lock and will proceed with the
checkpoint. Once the client completes checkpointing, it puts the message back to the lock queue.
To deal with the failure of a checkpointing client, mechanisms such as timed removal can be used

5.1. DATABASE-LIKE FUNCTIONALITY ON CLOUD STORAGE 73

Figure 5.2: The commit and checkpointing protocol.

where the message re-appears in the lock queue so that another client can continue checkpointing
starting from where the previous failed client had failed. Checkpointing the internal nodes of the
B-tree requires some additional handling [Brantner et al., 2008].

The simple checkpointing protocol does not guarantee atomicity.That is, if a client failed after
appending a subset of its log records to the PU queue, the checkpointing protocol does not reject
such partial updates. Classical RDBMSs achieve atomicity by appending a commit record at the end
of a transaction that signifies that the transaction has committed and all its updates have been logged
ahead of this commit record. During recovery, any transaction missing the commit record is aborted
and its updates are undone. An approach similar to this can be used in this architecture by associating
an atomic queue with every client. The client first appends all log records to the atomic queue. Once
all the records have been appended, the client appends the commit record to the atomic queue. The
commit record contains the transaction id and the number of log records that the transaction created.
Subsequently, the client executes the two phases of the commit protocol as described earlier. The
absence of a commit record in the atomic queue implies that a transaction has failed and must be
aborted.

It is important to note that since the data pages are distributed, providing the ACID trans-
actional properties requires distributed synchronization and hence is expensive. For instance, guar-
anteeing atomicity of transactions requires an additional round to messages between the client and
the storage layer (via the atomic queue). Guaranteeing transaction isolation and stronger forms of
consistency requires even more synchronization [Brantner et al., 2008]. Therefore, while the dis-
tributed nature of data allows higher scalability, transactional guarantees become expensive and such

74 5. TRANSACTIONS ON DISTRIBUTED DATA

an architecture can only support weaker guarantees while incurring reasonable overheads due to
synchronization.

Since different levels of consistency incur different degrees of distributed synchronization and
hence different costs, one can envision a framework where different data items have different consis-
tency requirements, and the clients pay for stronger consistency only when such stronger guarantees
are required for application correctness. Kraska et al. [2009] propose a mechanism for consistency
rationing that allows the application designers to specify consistency guarantees on data items and
allows such guarantees to be dynamically altered automatically at runtime. The adaptation is driven
by a cost model and different strategies that dictate how the system should behave. The price of
consistency can be measured by the number of messages exchanged or the synchronization overhead.
Similarly, the price of inconsistency can be measured by the percentage of incorrect operations as
a result of the lower consistency guarantees and the corresponding penalties that such inconsistent
operations resulted. Using this knowledge of price and certain policies, the consistency guarantees
provided for certain data items can be changed dynamically.

The key idea is to divide all data items into three categories (A, B, and C) and use different
sets of protocols for processing operations on data items belonging to each category. Category A
contains data items where consistency is critical and a violation can result in large penalties. Category
C contains data items that are more amenable to inconsistencies, i.e.,where temporary inconsistencies
are acceptable. Category B consists of data items whose consistency requirements vary over time.
By dynamically changing the protocols used to execute operations accessing B-type data items, the
system can adapt the cost of each operation and pay for high consistency only when it is needed.

For instance, consider an e-commerce retailer. In such an application, customer profiles, fi-
nancial information, the transactions corresponding to purchases and deliveries, etc., form critical
information which is important for the e-tailer and calls for stringent consistency guarantees. Such
types of data will form Category A types. On the other hand, other types of data, such as customer
reviews of products, buying preferences, and product recommendations for a given customer profile
can tolerate some temporary inconsistencies or staleness. Hence, such types of data can be catego-
rized as type C. Finally, the consistency guarantees on product inventory might vary with time. For
instance, when large quantities of a product are in stock, temporary inconsistencies in the actual
quantity in stock might be acceptable. However, when only a few items are in stock, the exact count
might be important to ascertain which customer gets that last item remaining in inventory and
which customer’s order processing will fail. Such types of data form category B data.

Since the consistency guarantees are defined at the granularity of individual data items, for
transactions that access data items from different categories, operations on every record are executed
based on the category that data item belongs to. Therefore, the consistency guarantee of the overall
transaction will be bounded by the weakest consistency guarantee corresponding to a data item
accessed by the transaction.

Data items in category B switch between strong consistency and weak consistency at run time.
Different policies can be used to govern when such a switch happens. One policy is to dynamically

5.2. TRANSACTIONAL SUPPORT FOR GEO-REPLICATED DATA 75

track the probability of conflict for a given data item and switch to higher consistency guarantees
when the probability is higher than a specified threshold. Another policy can be to switch the
consistency guarantees based on time, i.e., running at a weak consistency level until a given point in
time when consistency switches to a stronger level.Yet another policy can be to switch the consistency
guarantees when the value corresponding to the data item falls below a specific threshold. For
instance, considering the example of the e-tailer, weaker consistency is used when large quantities
of a product is in stock and when the stock drops below a threshold, such as 100, then switch
to a stronger consistency guarantee, and vice versa. Kraska et al. [2009] provide some mathematical
models on how some of these policies, and many other variants, can be implemented in an operational
system and how the consistency guarantees can be adapted dynamically.

Note that such dynamic adaptation of consistency guarantees is motivated by the fact the
higher consistency comes at a higher cost. While this difference in cost might be significant in some
systems, specifically where distributed synchronization is required for supporting stronger consis-
tency. In various other systems, such as the ones where data or ownership is co-located (Chapter 4),
where the cost to support stronger levels of consistency might not be significantly higher, the ap-
plicability of the proposed rationing approach is unclear. Further, in many operational systems, the
cost of inconsistency and the cost to support higher consistency might not be directly comparable.
Application of consistency rationing in such scenarios will require further analysis, potentially on a
case-by-case basis.

5.2 TRANSACTIONAL SUPPORT FOR GEO-REPLICATED
DATA

Many large applications are accessed by users that are geographically distributed.Geographic replica-
tion is important to support low latency data accesses for such applications, thus requiring data to be
geographically distributed. Providing transactional access to such distributed data entails distributed
transactions. Sovran et al. [2011] present a new isolation level, called Parallel Snapshot Isolation (PSI)
to support efficient transactional accesses in such scenarios.

Supporting transactions with serializable isolation will be prohibitively expensive in such
geo-replicated data stores. Even snapshot isolation (SI), which requires a total order on all update
transactions, requires that every update transaction must synchronize even if they are executing in
different data centers and writing to independent sets of data items. PSI is strictly weaker than SI in
the sense that PSI does not enforce a global order among all update transactions. Specifically, if we
consider the data store to be distributed among a number of data centers, nodes within a data center
observe transactions according to a consistent snapshot and a common ordering of the transactions.
However, PSI only enforces causal ordering between hosts in different data centers, thus allowing
transactions to be replicated asynchronously and avoiding expensive cross-data center synchroniza-
tion for every commit. Note that PSI still ensures that if two or more concurrent transactions are
writing to the same data item, then only one of them commits. PSI does not necessarily enforce a
total order on update transactions that do not make conflicting updates. To prevent such conflicts,

76 5. TRANSACTIONS ON DISTRIBUTED DATA

Figure 5.3: An illustration of ordering of transactions in parallel snapshot isolation.

every data item designates a preferred site where object can be written to without requiring any cross-
data center synchronization. Moreover, PSI also preserves a causal ordering between transactions,
i.e., if a transaction T1 causally precedes transaction T2, then this ordering is preserved across all
sites.

One of the key differences between SI and PSI is that PSI allows different commit orderings
of transactions on different sites. Consider the example shown in Figure 5.3 where site A executes
transactions T1 and T2 and site B executes transactions T3, T4. PSI allows site A to first incorporate
the updates of just T1, T2 and later T3 and T4. On the other hand, site B first incorporates updates
from transactions T3 and T4 followed by transaction T1 and T2. Such different ordering of update
transactions on different sites is not allowed in SI but is possible in PSI. This flexibility of lazily
determining the order of non-conflicting transactions allows the system to asynchronously replicate
transactions. As shown in Figure 5.3, site A can commit transactions T1 and T2 without coordinating
with site B and then asynchronously propagates these updates after the transactions have committed
at site A.

Sovran et al. [2011] implement PSI in Walter, a geographically distributed and replicated key-
value store that supports transactions. Walter uses the notion of preferred sites and commutative
operations, such as a conflict-free counting set (cset), to minimize the synchronization needed to
ensure that two concurrent transactions do not make a conflicting write. The preferred site of a data
item stores the authoritative version of the data items and has the exclusive right to perform local
updates on the data item. A transaction executing at site A can commit locally (called a fast commit)
without the need to synchronize with any other site if it only updated data items for which site
A is the preferred site or it updates items that belong to cset. Operations on cset are commutative
and hence the relative ordering between such operation is irrelevant, i.e., irrespective of the order in
which the operations will be applied, the final outcome is the same after all operations have been

5.3. INCREMENTAL UPDATE PROCESSING USING DISTRIBUTED TRANSACTIONS 77

applied; Shapiro et al. [2011] present a number of such conflict-free replicated data types which are
potentially useful, minimizing synchronization in replicated systems.

On the other hand, if a transaction accesses a data item for which the local site is not the
preferred site, then it must synchronize with the preferred site to synchronize the write and ensure that
no concurrent transaction makes a conflicting write. Such synchronization is achieved by executing
a slow commit protocol similar to 2PC where participants are the preferred sites of all written objects,
and a server at the site executing the transaction as the coordinator. In the first phase, the coordinator
asks each preferred site to vote for commit based on whether the objects modified by the transaction
are unmodified and not locked. If an object has been modified at the local site, then it implies
that a concurrent transaction has committed a write. On the other hand, if an item is locked, this
implies that a local fast commit or a concurrent slow commit is in progress. In either case, the current
transaction seeking to commit must abort and hence the participant responds with a no.If both checks
pass, then the participant locks the data item(s) and responds with a yes. The coordinator commits
the transaction in the second phase if all the participants responded with a yes. The transaction is
otherwise aborted. Similar to any 2PC protocol, this slow commit protocol can potentially result in
blocking due to coordinator failure in the second phase of the protocol. Sovran et al. [2011] present
a detailed analysis of the protocol for various failure scenarios as well as a detailed specification for
PSI.

5.3 INCREMENTAL UPDATE PROCESSING USING
DISTRIBUTED TRANSACTIONS

In Chapter 4, we provided examples of many applications that are amenable to data partitioning and
co-location.However, such partitioning might not be possible in various other applications.Consider
the case of an inverted index of web pages, which is a basic structure used by most search engines. A
web crawler continually scans the web for new pages or for changes to existing pages. Incrementally
updating the web index as new pages or updates are crawled is desirable for freshness of results served
by the search engine. Processing a crawled web page might result in updates to different parts of
the index. And considering the scale of the web, the index is potentially distributed over thousands
of servers. Therefore, such updates will invariably access multiple nodes and performing them as a
transaction will make distributed transactions inevitable.

Percolator [Peng and Dabek, 2010] provides two main abstractions for processing such incre-
mental updates at large scale. It provides cross-row, cross-table transactions with ACID snapshot
isolation semantics [Berenson et al., 1995]. Furthermore, Percolator supports the notion of observers
that allow organizing incremental computation. Percolator is built as a layer on top of Bigtable,
a scalable and distributed key-value store. Percolator relies on a timestamp oracle which provides
strictly increasing timestamps critical for correctness of the snapshot isolation protocol that isolates
concurrent update transactions.

Percolator relies on the multi-versioned storage functionality to Bigtable to implement snap-
shot isolation; each version has a unique timestamp associated with it. This ensures that writes do

78 5. TRANSACTIONS ON DISTRIBUTED DATA

not block any reads since an update will result in a newer version while reads can continue using
the older versions. Since snapshot isolation must prevent concurrent writes to the same data items,
writers to a data item must be serialized. Percolator uses locks, stored in special in-memory columns
of the rows being updated, to synchronize such updates.

A transaction begins execution by obtaining a start timestamp from the timestamp oracle.
This start timestamp defines the consistent snapshot that the read operations of this transaction will
read from. Updates made by a transaction are buffered during execution and will be applied when
the transaction is ready to commit. Since a transaction can update data items distributed over a set
of nodes, atomically committing the updates requires a two-phase commit coordinated by the client.
At each node, an update to a data item is executed using the row transaction API of Bigtable. In
the first phase of commit (prewrite), the transaction tries to acquire a lock on each row it plans to
update. Once a lock is obtained, the row’s version is checked to determine if a concurrent writer
has successfully committed, in which case the current transaction must abort to avoid a write-write
conflict which is not admitted by snapshot isolation. If no conflict is detected, then the update
is applied to the row while the transaction continues to hold the lock on the data items. If the
transaction did not conflict on any of the rows, it may commit and proceed to the second phase.
The beginning of the second phase is marked by the client obtaining a commit timestamp from the
timestamp oracle. Then, at each row, the client releases its lock and makes its write visible to readers
by replacing the lock with a write record. The write record indicates to the readers that the most
recent version corresponds to updates made by a committed transaction.The write record also stores
a pointer to the previous version. As soon as one of these writes have succeeded, the transaction
must commit since it has made a write visible to readers. This two-phase commit protocol differs
from the classical 2PC protocol in that the coordinator does not have a local log where it writes
the outcome of a transaction. This prevents the system from blocking on coordinator failure which
might be common in the case of Percolator where the clients act as coordinators.

Due to the distributed nature of the transactions, a transaction can obtain a start timestamp
that exceeds the commit timestamp of a transaction that is still in the second phase of the com-
mit protocol. Therefore, a read operation first checks for a lock in the timestamp range [0, start
timestamp], which corresponds to the range of timestamps visible in the transaction’s snapshot.
The presence of a lock implies that another transaction is concurrently writing this cell. Hence, the
reading transaction must wait until the write completes and the lock is released. In the absence of a
conflicting lock, the read request returns the most recent write record.

Typical to any distributed commit protocol, the failure of the coordinator stalls execution of the
transaction and potentially some other concurrent transactions that are blocked due to locks acquired
by the now stalled transaction. However, all persistent information in Percolator is maintained within
Bigtable, a client’s failure does not indefinitely block transactions, and a subsequent cleanup can
unblock some of these resources. Percolator takes a lazy approach to cleanup: when a transaction TA

encounters a conflicting lock left behind by transaction TB , TA may determine that TB has failed
and erases its locks. To avoid a race between a clean-up transaction and a slow but still-not-failed

5.4. SCALABLE DISTRIBUTED SYNCHRONIZATION USING MINITRANSACTIONS 79

transaction, Percolator designates one row in every transaction as a synchronization point for any
commit or cleanup operations. This row’s lock is called the primary lock.

If the client crashes during the second phase of a commit, a transaction will be past the
commit point (it has written at least one write record) but will still have locks outstanding. An
approach similar to clean-up can be used to roll-forward the updates made by this failed transaction.
A transaction that encounters a lock can distinguish between the two cases by inspecting the primary
lock: if the primary lock has been replaced by a write record, the transaction which wrote the lock
must have committed and the lock must be rolled forward. To roll forward, the stranded lock is
replaced with a write record as the original transaction would have done. Peng and Dabek [2010]
provide many more details of the protocol and further optimizations.

While Percolator provides an interesting mechanism for incremental processing of updates,
it must be noted that this design benefits from certain application characteristics. For instance, an
update transaction might be blocked if the client coordinating its commit fails, and it can block some
other subsequent transactions. Since Percolator targets the scenario where atomicity and isolation are
more important than low latency of update transactions, such blocked transactions do not adversely
affect the performance targets. Furthermore, implementing serializable isolation in such a setting
will considerably increase the synchronization costs and the impact of stalled transactions due to
a failed client. Percolator shows that for certain applications, where latency of update transactions
is not the primary focus, distributed transactions can be scaled out to thousands of servers while
providing acceptable levels of isolation.

5.4 SCALABLE DISTRIBUTED SYNCHRONIZATION USING
MINITRANSACTIONS

Many applications do not require the full flexibility supported by transactions. Rather, such appli-
cations might just require sharing state in a fault-tolerant, scalable, and consistent manner. Sinfo-
nia [Aguilera et al., 2007] presents the minitransaction primitive for such applications to atomically
access and conditionally modify data at multiple nodes. Examples of such applications include a file
system distributed over a cluster of servers or a group communication service.

One of the primary benefits of the minitransaction primitive is to hide the complexities of the
distributed nature of data and failures,which are a norm in large distributed systems.While providing
many of the guarantees that are similar to classical database transactions, a minitransaction limits the
set of supported operations to ensure that the synchronization and message passing overhead does
not become significant enough to hinder scalability which is a primary requirement. In particular, the
minitransaction primitive limits the set of supported operations to those that can be executed within
the 2PC protocol, which is executed to atomically commit the distributed operation. This allows
Sinfonia to limit the number of network round trips to two per minitransaction which is a strict
limit when compared to classical distributed transactions where the number of round trips during
transaction execution is not bounded, only the commit is bounded to two round trips. Moreover,

80 5. TRANSACTIONS ON DISTRIBUTED DATA

minitransactions allow users to batch together updates, which eliminates multiple network round-
trips.

Sinfonia consists of a set of nodes (called memory nodes) and a user library that runs at
application nodes. Memory nodes store and serve application data that can either be in RAM or on
stable storage according to application needs.The user library implements mechanisms to manipulate
data at memory nodes using the minitransaction primitive.The memory nodes and application nodes
are logically separate, though they might be physically co-located at the same server.

Minitransactions allow an application to update data in multiple memory nodes while ensuring
atomicity, consistency, isolation, and (if wanted) durability. The key idea is to support a set of
operations where either the last action does not affect the coordinator’s decision to abort or commit
the transaction, or it is known upfront how the outcome will affect the decision. In either case, such
an action can be piggy-backed onto the first phase of the two-phase commit executed to commit the
transaction. Every participant performs the operation received in the first phase and independently
determines success or failure and can respond to the coordinator accordingly. For instance, if the
write operation on a data item is not preceded by a read of the data item (i.e., the operation is a
blind write), then the participant can execute the write and respond to the coordinator. In case a
write operation is contingent on a condition to be satisfied (i.e., a conditional write), the participant
can locally determine if the condition for the write is satisfied, apply the write if the condition is
satisfied, and respond to the coordinator based on the outcome of the condition. The coordinator
collects the vote from all the participants and then executes the second phase of the commit protocol
which commits the transaction if all the participants responded with positively.

Stated formally, a minitransaction comprises a set of compare items, a set of read items, and
a set of write items that are chosen before the minitransaction starts executing. During execution, a
minitransaction compares the locations in the compare items against the data in the compare items
and if all comparisons succeed (or if some compare items are absent), it returns the values in the
read items and writes to the locations in the write items. A minitransaction aborts if any of the
comparisons fail. Therefore, the compare items control whether the minitransaction commits or
aborts, while the read and write items determine what data the minitransaction returns and updates
respectively.

Examples of minitransactions include the following:

Swap: A read item returns the old value and a write item replaces it.

Compare-and-swap: A compare item compares the current value against a constant; if equal, a write
item replaces it.

Atomic read of many data: Done with multiple read items.

Acquire a lease: A compare item checks if a location is set to 0; if so, a write item sets it to the
(non-zero) id of the leaseholder and another write item sets the time of lease.

5.5. DISCUSSION 81

Acquire multiple leases atomically: Same as above, except that there are multiple compare items and
write items. Note that each lease can be in a different memory node.

Change data if lease is held: A compare item checks that a lease is held and, if so, write items update
data.

A common use of the minitransactions primitive is to use compare items to validate data and,
if data are valid, use write items to apply some changes to the same or different data. Aguilera et al.
[2007] show how the minitransaction primitive can be used to implement two scalable and dis-
tributed applications: a distributed file system and a group communication service.

Sinfonia’s use of 2PC for executing minitransactions differs from the classical 2PC protocol by
eliminating the coordinator log, thus eliminating indefinite blocking when the clients (acting as the
coordinator) fails. Rather, Sinfonia blocks on participant failures. A recovery coordinator is responsible
for cleaning up the state of any transaction left in the undecided state due to the coordinator failing
before commit. The recovery coordinator effectively re-executes the two-phase commit with the
difference that it requests the participants to abort the transaction. If none of the participants have
committed the transaction, then the transaction can be aborted. However, if one or more participants
committed the transaction before the coordinator failed, then this recovery coordinator commits the
transaction. Aguilera et al. [2007] present the detailed minitransaction protocol and a case analysis
of the different failure and recovery scenarios.

5.5 DISCUSSION
In this chapter, we discussed a number of techniques to support transactional guarantees on dis-
tributed data. In such scenarios, distributed synchronization is inevitable. In order to limit distributed
synchronization, these approaches either resort to weaker isolation and consistency guarantees or
restrict the types of operations that can be executed as a transaction. Brantner et al. [2008] propose
an approach that provides atomicity and isolation levels such as read committed; Walter uses Parallel
Snapshot Isolation (a weaker form of snapshot isolation) for geo-replicated data; Percolator lever-
ages application semantics to relax the performance requirements as well as the isolation guarantees
sought; and Sinfonia exposes the minitransaction primitive which limits transactions to only six
operation types.

Various other systems and approaches have also been proposed in literature that make many
design choices similar to the systems discussed in this paper. For instance, Vo et al. [2010] present a
design of a system, called ecStore, that allows transactions on distributed data while providing weaker
forms of isolation. Thomson et al. [2012] present a deterministic scheduling and sequencing layer,
called Calvin, that deterministically schedules execution of distributed transactions which obviates
the two-phase commit protocol needed for atomic commitment of distributed transactions.The key
idea is to eliminate non-determinism from the transactions. A sequencer determines an execution
order for the transactions and the storage nodes execute the transactions in this pre-determined
order.

82 5. TRANSACTIONS ON DISTRIBUTED DATA

Different from these systems that support a transaction-like abstraction, Lloyd et al. [2011]
present a weaker form of consistency, called causal+ consistency, for preserving causality among
operations in a geographically distributed and replicated database system. In systems that do not
have transactional support, such as key-value stores, very little consistency guarantees are provided
for operations that access multiple data items. Lloyd et al. [2011] present a technique to explicitly
track causal dependencies between operations, delay operations in cases where a causally preceding
update hasn’t been applied, and use a convergence mechanism in case divergent versions of the same
data item are detected.

Finally, Google recently published about its globally distributed database called Span-
ner [Corbett et al., 2012]. Spanner’s universe spans multiple geographically distributed data cen-
ters distributed across the globe. A radical departure from some of the existing large-scale systems,
Spnanner supports distributed transactions and a relational-like data model. Spanner’s data model
is relational with nesting using Google’s protocol buffers. One of the first customers using Span-
ner was Google’s advertisements database F1 [Shute et al., 2012] for storing and serving data that
drives Google’s advertisement businesses. One of the major innovations that enables Spanner is
the True Time API which exposes synchronized timestamps as a first-class API while also pro-
viding a bound on the expected error in the time measurements. It is well known that a robust
measure of time in a large geographically distributed system is extremely challenging. True time
achieves this synchronization by using custom hardware, such as global positioning system (GPS)
receivers and high-precision atomic clocks, at designated time servers available within each data cen-
ter. The time servers use readings from the GPS receiver and the atomic clocks and a well-known
protocol [Marzullo and Owicki, 1983] to synchronize time. GPS receivers and atomic clocks have
independent failure modes, thus providing high availability to the timing service which forms a crit-
ical component in the infrastructure. The data servers in Spanner contact multiple local time servers
to obtain an estimate of the current time and an error bound. Once a globally synchronized time-
stamp is known, classical timestamp-based concurrency control techniques are used for transaction
execution while leveraging the underlying multi-version data store to serve snapshot reads.

83

C H A P T E R 6

Multi-tenant Database Systems
In the previous chapters of this book, we focused on large-scale applications that needed their
databases to scale to thousands of transactions per seconds and span tens of thousands of servers
within a data center or across geographically separated data centers. In this chapter, we shift our focus
to another class of applications typically observed in a cloud platform, namely applications whose
database and usage footprints are small. Such applications are typically observed in Software-as-a-
Service (SaaS) solutions such as Salesforce.com or Microsoft Dynamics CRM (customer relationship
management), and in applications deployed in various Platform-as-a-Service (PaaS) providers such
as Google AppEngine and Microsoft Window Azure. Such SaaS and PaaS cloud infrastructures
typically serve hundreds of thousands of small applications (called tenants). Dedicating a DBMS
server for each tenant is often wasteful since the individual tenants’ resource requirements are often
small. In order to reduce the total cost of operation, cloud providers typically share resources among
the tenants, a model referred to as multi-tenancy. Multi-tenancy is possible in all tiers of the cloud
software stack: the web/application tier, the caching tier, and the database tier (refer to Figure 1.1 for
a simplified view of the cloud software stack).This chapter focuses on multi-tenancy in the database
tier. Sharing the underlying data management infrastructure among a pool of tenants allows efficient
use of resources and lowers the overall cost of serving applications.

In addition to the sheer scale of the number of applications deployed, these small applications
deployed in cloud platforms are often characterized by high variance in popularity, unpredictable load
characteristics, flash crowds, and varying resource requirements. As a result, Cloud service providers
hosting these applications face unprecedented challenges in serving these applications and managing
their data. Such challenges include management of large DBMS installations supporting thousands of
tenants, tolerating failures, dynamic partitioning of databases, elastic load balancing for effective resource
utilization and cost optimization.

The concept of a multi-tenant database has been predominantly used in the context of Software
as a Service (SaaS). The Salesforce.com model [Weissman and Bobrowski, 2009] is often cited as a
canonical example of this service paradigm. However, it is also interesting to study the various other
models of multi-tenancy in the database tier [Jacobs and Aulbach, 2007, Reinwald, 2010] and their
interplay with resource sharing in the various cloud paradigms. A thorough understanding of these
models of multi-tenancy is crucial for designing effective database management system (DBMS)
targeting different application domains.

Many large enterprises, in addition to public cloud providers, often host a vast number of
databases to serve a variety of disjoint projects or teams. These enterprises can leverage a multi-
tenant cloud platform to consolidate the number of servers dedicated to database hosting. Curino

84 6. MULTI-TENANT DATABASE SYSTEMS

et al. demonstrated, with the consolidation engine Kairos, that the number of database nodes can be
consolidated by a factor between 5.5:1 and 17:1 [Curino et al., 2011b]. Large multi-tenant databases
are therefore an integral part of the infrastructure that serves such large numbers of small applications.

In this chapter, we provide a summary of multiple efforts in designing large multi-tenant
database systems targeted to serve a large number of small applications typically encountered in a
DBMS for a PaaS paradigm or enterprise environment.We concentrate on system-level issues related
to enabling a multi-tenant DBMS for a broader class of systems. We specifically focus on elastic
load balancing which ensures high resource utilization and lowers operational costs, live migration
of a database as a primitive for elasticity, and some preliminary efforts for autonomic control of
multi-tenant databases hosted in the cloud. Note that some of the scale-out transaction processing
systems, such as ElasTraS, Relational Cloud, Megastore, and Cloud SQL Server, were also designed
with native support for multi-tenancy.

6.1 MULTI-TENANCY MODELS
Multi-tenancy in the database tier can be achieved by sharing at various levels of abstraction.
Sharing resources at different levels of abstraction and distinct isolation levels results in differ-
ent multi-tenancy models in the database tier.1 Three multi-tenancy models have been explored in
the past [Jacobs and Aulbach, 2007]: shared hardware, shared process, and shared table. SaaS providers,
such as Salesforce.com, typically use the shared table model. The shared process model is used in a
number of database systems for the cloud, such as Relational Cloud, Cloud SQL Server, and Elas-
TraS. Soror et al. [2008] and Xiong et al. [2011] propose systems using the shared hardware model.
Figure 6.1 depicts the three multi-tenancy models and the level of sharing. A thorough understand-
ing of these models of multi-tenancy is crucial for understanding the design space of multi-tenant
DBMSs. In this section, we discuss these multi-tenancy models and analyze their trade-offs.

6.1.1 SHARED HARDWARE
In the shared hardware model, tenant databases only share the server hardware resources. Such
sharing can be achieved by using a virtual machine (VM) to host each tenant’s database. Each
tenant is assigned its own VM and an exclusive database process that serves the tenant’s database.
The VMs provide an abstraction as if the tenant’s database was being hosted on its own hardware.This
multi-tenancy model is predominantly used in Infrastructure-as-a-Service (IaaS) cloud providers
such as Amazon web services. In an IaaS cloud, the primary supported abstraction is a VM. Each
tenant obtains a VM where its DBMS is hosted; multiple VMs will potentially be co-located at the
same server. While this model offers strong security isolation among tenants, it comes at the cost of
increased overhead due to redundant components and a lack of coordination using limited machine
resources in a non-optimal way. Consider the instance of disk sharing among the tenants. A VM

1The term isolation in the context of multi-tenancy refers to performance isolation, resource isolation, or access-control isolation
among tenants sharing the same multi-tenant DBMS. This is different from the use of isolation in the context of concurrent
transactions.

6.1. MULTI-TENANCY MODELS 85

Figure 6.1: The different multi-tenancy models and their associated trade-offs.

provides an abstraction of a virtualized disk that might be shared by multiple VMs co-located on
the same node. The co-located database processes make un-coordinated accesses to the disk. This
results in high contention for the disk that can considerably impact performance in a consolidated
setting. A recent experimental study by Curino et al. [2011b] shows that this performance overhead
can be up to an order of magnitude.This model might therefore be useful when only a small number
of tenants are executing at any server. As the number of tenants that need to be consolidated on the
same server increases, the overheads associated with this model dominates. The advantages of this
model, however, is that multi-tenancy can be supported without any changes in the database layer.

6.1.2 SHARED PROCESS
In this model, tenants share resources within a single database process running at each server. This
sharing can happen at various isolation levels—from sharing only some database resources such as
the logging infrastructure to sharing all resources such as the buffer pool, transaction manager, etc.
This model allows for effective resource sharing between the tenants while allowing the DBMS to
intelligently manage some critical resources such as the disk bandwidth.This will allow more tenants
to be consolidated at a single server while ensuring good performance. This multi-tenancy model is
typically observed on PaaS cloud providers such as Microsoft SQL Azure, Google Megastore, etc.

Tenants are typically only provided security isolation. Since most traditional DBMSs were not
designed for such native support of multi-tenancy, today’s DBMSs provide minimal or no resource
or performance isolation among tenants.The advantage of this model is that it allows more effective

86 6. MULTI-TENANT DATABASE SYSTEMS

sharing of some of the critical physical resources such as I/O and main memory while at the same
time ensuring a level of isolation of user data in separate tables. Most commercial DBMS solutions
can support this model easily, since all of them have a concept of supporting multiple databases
in a single DBMS instance.2 However, this support is static in the sense that it does not support
the notion of elasticity that would allow dynamic migration of databases hosted at one DBMS
instance to move to another DBMS. Also, the design flexibility was intended for hosting a handful
of databases. Anecdotal evidence suggests that DBMSs become sluggish when they are used to host
a large number of tenant databases especially when workload spikes. Manual intervention becomes
necessary to deal with such performance crises. Narasayya et al. [2013] present an abstraction, called
SQLVM, to enable performance and resource isolation among tenants sharing the same DBMS
process.

6.1.3 SHARED TABLE
In the shared table model, the tenants’ data are stored in a shared table called the heap table. To
support flexibility in schema and data types across the different tenants, the heap table does not
contain the tenant’s schema or column information. Additional meta-data structures, such as pivot
tables [Aulbach et al., 2008, Weissman and Bobrowski, 2009], provide richer database functional-
ity such as the relational schema, indexing, key constraints, etc. The reliance on consolidated and
specialized pivot and heap tables implies re-architecting the query processing and execution func-
tionality, in addition to performance implications since the tenants’ resources are not isolated, and
workloads from independent tenants contend for the shared resources. Additionally, the shared ta-
ble model requires that all tenants reside on the same database engine and release (or version). This
limits specialized database functionality, such as spatial or object based, and requires that all tenants
use a limited subset of functionality. This multi-tenancy model is ideal when multiple tenants have
similar schema and access patterns with minimal customizations, thus providing effective sharing of
resources. Such similarity is observed in SaaS where a generic application tenant is customized to
meet specific customer requirements.

6.1.4 ANALYZING THE MODELS
The different multi-tenancy models provide different trade-offs; Figure 6.1 depicts some of these
trade-offs as we move from the shared hardware model to the shared table model. At one extreme,
the shared hardware model uses virtualization to multiplex multiple VMs on the same machine.
Each VM has only a single database process serving the database of a single tenant. As mentioned
earlier, this strong tenant isolation comes at the cost of reduced performance [Curino et al., 2011b].
At the other extreme is the shared table model that stores multiple tenants’ data in shared tables and
provides the least amount of isolation, which in turn requires changes to the database engine while
limiting schema flexibility across the tenants. The shared process model allows independent schemas

2This support is facilitated in commercial DBMS engines to enable hosting of different types of databases: production DB, quality
assurance DB, development DB, etc.

6.1. MULTI-TENANCY MODELS 87

Table 6.1: Multi-tenant database models, how tenants are
isolated, and the corresponding cloud computing paradigms.

Sharing Mode Isolation IaaS PaaS SaaS

1. Shared hardware VM �
2. Shared VM OS User � �
3. Shared OS DB Instance �
4. Shared instance Database �
5. Shared database Schema � �
6. Shared table Row � �

for tenants while sharing the database process among multiple tenants, thus providing better isolation
compared to the shared table model while allowing effective sharing and consolidation of multiple
tenants in the same database process.The shared process model therefore strikes the middle ground.

While broad in concept, three main paradigms have emerged for cloud computing: IaaS,
PaaS, and SaaS. These cloud computing paradigms differ in the level of abstraction exposed to
the tenants. For instance, IaaS exposes raw hardware resources to the tenants and the tenants are
responsible for managing their own DBMSs, schemas, physical database design, backup, etc. IaaS
therefore provides the lowest level of abstraction. PaaS provides a higher level of abstraction where
the tenants interact with logical databases and resources and often do not control the physical data
layout, replication, etc. SaaS exposes the highest level of abstraction where the tenants interact at
the level of application logic with no (or minimal) knowledge of the data layout, schemas, physical
structures, query workloads, etc.

We now establish the connection between the database multi-tenancy models with the cloud
computing paradigms. While the three multi-tenancy models discussed above are well known,
Reinwald [2010] presented a finer classification where each model was further sub-divided depend-
ing on the exact level of sharing. Table 6.1 summarizes this taxonomy while analyzing the suitability
of the models for various multi-tenancy scenarios. Finer sub-divisions of the shared hardware model
(where the tenants still do not share the database process) are shared VM, where the tenants share a
VM and are isolated as different OS-level user logins, and the shared OS model, where tenants share
the same OS but each have their own dedicated database process. Finer sub-divisions of the shared
process model (where tenants share the database process but do not share the physical tables) are
shared instance and shared database.

IaaS provides raw resources such as CPU, storage, and networking. Supporting multi-tenancy
in the IaaS layer thus allows much flexibility with minimal restrictions on tenant schemas or workload
supported.The shared hardware model is therefore best suited for IaaS. A simple multi-tenant system
could be built on a cluster of commodity machines, each with a small set of virtual machines. This
model provides isolation, security, and efficient migration for the client databases with an acceptable
overhead, and is suitable for applications with lower throughput but larger storage requirements.

88 6. MULTI-TENANT DATABASE SYSTEMS

PaaS providers, on the other hand, provide a higher level of abstraction to the tenants. There
exists a wide class of PaaS providers, and a single multi-tenant database model cannot be a blanket
choice. For PaaS systems that provide a single data store API, a shared table or shared instance could
meet data needs of this platform. For instance, Google App Engine uses the shared table model for its
data store referred to as Megastore. However, PaaS systems with the flexibility to support a variety of
data stores, such as AppScale [Chohan et al., 2009], can leverage any multi-tenant database model.

SaaS has the highest level of abstraction in which a client uses the service to perform a limited
and focused task. Customization is typically superficial, and workflows or data models are primarily
dictated by the service provider. With rigid definitions for both data and processes, and restricted
access to a data layer through a web service or browser, the service provider has control over how
the tenants interact with the data store. The shared table model has thus been successfully used by
various SaaS providers.

6.2 DATABASE ELASTICITY IN THE CLOUD

One of the major factors for the success of the cloud as an IT infrastructure is its pay per use pricing
model and elasticity. For a DBMS deployed on a pay-per-use cloud infrastructure, an added goal
is to optimize the system’s operating cost. Elasticity, i.e., the ability to deal with load variations by
adding more resources during high load or consolidating the tenants to fewer nodes when the load
decreases, all in a live system without service disruption, is therefore critical for these systems.

The overall vision of multi-tenancy in cloud computing platforms is to develop an architecture
of a multi-tenant DBMS that is scalable, fault-tolerant, elastic, and self-managing. We envision multi-
tenancy as analogous to virtualization in the database tier for sharing the DBMS resources. Similar
to virtual machine migration [Clark et al., 2005], efficient techniques for live database migration
is an integral component for elastic load balancing. Live database migration should therefore be a
first-class feature in the system having the same stature as scalability, consistency, and fault-tolerance.
Only recently, there have been an increase in research and development efforts in the areas of live
database migration for elastic load balancing.

Even though elasticity is often associated with the scale of the system, a subtle difference
exists between elasticity and scalability when used to express a system’s behavior. Scalability is a
static property of the system that specifies its behavior on a static configuration. For instance, a
system design might scale to hundreds or even to thousands of nodes. On the other hand, elasticity
is a dynamic property that allows the system’s scale to be increased or decreased on-demand while
the system is operational. For instance, a system design is elastic if it can scale from 10 servers to 20
servers (or vice-versa) on-demand.

Elasticity is a desirable and important property of large-scale systems. For a system deployed
on a pay-per-use cloud service, such as the Infrastructure as a Service (IaaS) abstraction, elasticity
is critical to minimize operating cost while ensuring good performance during high loads. It allows
consolidation of the system to consume less resources and thus minimize the operating cost during
periods of low load while allowing it to dynamically scale up its size as the load decreases. On the

6.2. DATABASE ELASTICITY IN THE CLOUD 89

other hand, enterprise infrastructures are often statically provisioned. Elasticity is also desirable in
scenarios where energy efficiency is critical. Even though the infrastructure is statically provisioned,
significant savings can be achieved by consolidating tenants and therefore powering down servers,
thus reducing the power usage and cooling costs. This, however, is an open research topic in its
own merit, since powering down random servers does not necessarily reduce energy usage. Careful
planning is needed to select servers to power down such that entire racks and alleys in a data-center
are powered down so that significant savings in cooling can be achieved. One must also consider the
impact of powering down on availability. For instance, consolidating the system to a set of servers
all within a single point of failure (for instance a switch or a power supply unit) can result in an
entire service outage resulting from a single failure. Furthermore, bringing up powered down servers
is more expensive, so the penalty for a mispredicted power down operation is higher.

In our context of a database system, migrating parts of a system while the system is operational
is important to achieve on-demand elasticity.This can be achieved via an operation called live database
migration. While being elastic, the system must also ensure that a tenant’s performance or service
goals are not violated. Therefore, to be effectively used for elasticity, live migration must have low
impact, i.e., negligible effect on performance and minimal service interruption on the tenant being
migrated as well as other tenants co-located at the source and destination of migration.

Since migration is a necessary primitive for achieving elasticity, we focus on describing recent
proposals for live migration for the two most common cloud database architectures: shared disk
and shared nothing. Shared disk architectures are attractive for their ability to abstract replication,
fault-tolerance, and consistency, as well as their support for independent scaling of the storage
layer from the DBMS logic. Bigtable, HBase, and ElasTraS are examples of databases that use a
shared disk architecture. On the other hand, a shared nothing multi-tenant architecture, such as
Relational Cloud and Cloud SQL Server, uses locally attached storage for storing the persistent
data and are common in database design. Live migration for a shared nothing architecture requires
that all database components are migrated between nodes, including physical storage files. Since
this chapter discusses multi-tenant systems, in this section, we use the term tenant to refer to the
database granule being migrated. However, most of the live migration techniques presented here
can be used to migrate any self-contained granule of the database, such as a partition of a large-scale
database (as discussed in previous chapters).

6.2.1 ALBATROSS: LIVE MIGRATION FOR SHARED STORAGE DATA
STORES

The underlying reference system model used in Albatross is depicted in Figure 6.2. This model
assumes the shared process multi-tenancy model where a tenant is entirely contained in a single
database process; multiple tenants are co-located within a single database process. Application clients
connect through a decentralized query router which abstracts physical database connections as logical
connections between a tenant and the database server processing the tenant’s requests.The mapping
of a tenant to its server is stored as system metadata which is cached by the router.

90 6. MULTI-TENANT DATABASE SYSTEMS

Figure 6.2: Reference database system model.

A cluster of DBMS nodes serves the tenants; each node has its own local transaction manager
(TM) and data manager (DM). A TM consists of a concurrency control component for transaction
execution and a recovery component to deal with failures. A tenant is served by a single DBMS node,
called its owner. The size of a tenant is therefore limited by the capacity of a single DBMS node.
This unique ownership allows transactions to execute efficiently without distributed synchronization
among multiple DBMS nodes.

A network attached storage (NAS) provides a scalable, highly available, and fault-tolerant
storage of the persistent data of the tenant databases. This decoupling of storage from ownership
obviates the need to copy a tenant’s persistent data during migration. This architecture is however
different from shared disk systems that use the disk for arbitration among concurrent transac-
tion [Bernstein and Newcomer, 2009]. A system controller performs control operations including
determining the tenant to migrate, the destination, and the time to initiate migration.

Albatross aims to have minimal impact on tenant performance while leveraging the semantics
of the database structures for efficient database migration.This is achieved by iteratively transferring
the database cache and the state of active transactions. For a 2PL scheduler, the transaction state
consists of the lock table; for an OCC scheduler, this state consists of the read-write sets of active
transactions and a subset of committed transactions. Figure 6.3 depicts the timeline of Albatross
when migrating a tenant (Pmigr) from the source DBMS node (Nsrc) to the destination DBMS
node (Ndst). The overall migration process proceeds in multiple phases which are detailed below.

6.2. DATABASE ELASTICITY IN THE CLOUD 91

Figure 6.3: Migration timeline for Albatross (times not drawn to scale).

Phase 1: Begin Migration: Migration is initiated by creating a snapshot of the database cache at
Nsrc. This snapshot is then copied to Ndst . Nsrc continues processing transactions while this
copying is in progress.

Phase 2: Iterative Copying: Since Nsrc continues serving transactions for Pmigr while Ndst is initial-
ized with the snapshot, the cached state of Pmigr at Ndst will lag that of Nsrc. In this iterative phase,
at every iteration, Ndst tries to “catch up” and synchronize the state of Pmigr at Nsrc and Ndst .
Nsrc tracks changes made to the database cache between two consecutive iterations. In iteration i,
changes made to Pmigr ’s cache since the snapshot of iteration i − 1 are copied to Ndst . This phase
is terminated when approximately the same amount of state is transferred in consecutive iterations
or a configurable maximum number of iterations have completed.

Phase 3: Atomic Handover: In this phase, the exclusive read/write access of Pmigr (called ownership)
is transferred from Nsrc to Ndst .Nsrc stops serving Pmigr , copies the final unsynchronized database
state and the state of active transactions to Ndst , flushes changes from committed transactions to
the persistent storage, transfers control of Pmigr to Ndst , and notifies the query router of the new
location of Pmigr . To ensure safety in the presence of failures, this operation is guaranteed to be
atomic. The successful completion of this phase makes Ndst the owner of Pmigr and completes the
migration.

The iterative phase minimizes the amount of Pmigr ’s state to be copied and flushed in the
handover phase, thus minimizing the unavailability window. In the case where the transaction logic
is executed at the client, transactions are seamlessly transferred from Nsrc to Ndst without any loss
of work. The handover phase copies the state of active transaction along with the database cache.
For a 2PL scheduler, it copies the lock table state and reassigns the appropriate locks and latches
at Ndst ; for an OCC scheduler, it copies the read/write sets of the active transactions and that of
a subset of committed transactions whose state is needed to validate new transactions. For a 2PL

92 6. MULTI-TENANT DATABASE SYSTEMS

scheduler, updates of active transactions are done in place in the database cache and hence are copied
over during the final copy phase; in OCC, the local writes of the active transactions are copied to
Ndst along with the transaction state. For transactions executed as stored procedures, Nsrc tracks the
invocation parameters of transactions active during migration. Any such transactions active at the
start of the handover phase are aborted at Nsrc, and are automatically restarted at Ndst . This allows
migrating these transactions without moving the process state at Nsrc. Durability of transactions
that committed at Nsrc is ensured by synchronizing the commit logs of the two nodes.

In the event of a failure, data safety is paramount while progress toward successful completion
of migration is a secondary goal. Albatross’s failure model assumes reliable communication channels,
node failures, and network partitions, but no malicious node behavior. Node failures do not lead to
complete loss of data: either the node recovers or the data are recovered from the NAS where data
persist beyond DBMS node failures. If either Nsrc or Ndst fails prior to Phase 3, migration of Pmigr

is aborted. Progress made in migration is not logged until Phase 3. If Nsrc fails during Phases 1 or 2,
its state is recovered, but since there is no persistent information of migration in the commit log of
Nsrc, the progress made in Pmigr ’s migration is lost during this recovery. Ndst eventually detects this
failure and in turn aborts this migration. If Ndst fails, migration is again aborted since Ndst does not
have any log entries for a migration in progress. Thus, in case of failure of either node, migration is
aborted and the recovery of a node does not require coordination with any other node in the system.

The atomic handover phase (Phase 3) consists of the following major steps: (i) flushing changes
from all committed transactions at Nsrc; (ii) synchronizing the remaining state of Pmigr between
Nsrc and Ndst ; (iii) transferring ownership of Pmigr from Nsrc to Ndst ; and (iv) notifying the query
router that all future transactions must be routed to Ndst . Steps (iii) and (iv) can only be performed
after the completion of Steps (i) and (ii). Ownership transfer involves three participants—Nsrc,Ndst ,
and the query router—and must be atomic (i.e., either all or nothing). This handover is executed as
an atomic transfer transaction and a 2PC protocol, with Nsrc as the coordinator, guarantees atomicity
in the presence of failures. In the first phase, Nsrc executes steps (i) and (ii) in parallel, and solicits a
vote from the participants. Once all the nodes acknowledge the operations and vote yes, the transfer
transaction enters the second phase where Nsrc relinquishes control of Pmigr and transfers it to
Ndst . In the case when one of the participants votes no, this transfer transaction is aborted and Nsrc

remains the owner of Pmigr .This second step completes the transfer transaction at Nsrc which, after
logging the outcome, notifies the participants about the decision. If the handover was successful,
Ndst assumes ownership of Pmigr once it receives the notification from Nsrc. Every protocol action
is logged in the commit log of the respective nodes. Formal reasoning for the correctness guarantees
and detailed evaluation of Albatross appear in [Das, 2011].

6.2.2 ZEPHYR: LIVE MIGRATION FOR SHARED NOTHING DATA STORES
Zephyr assumes a standard shared-nothing database model for transaction processing (OLTP) sys-
tems executing short running transactions, with a 2PL scheduler, and a page-based model with a
B+ tree index. Figure 6.4 provides an overview of the architecture. Following are the salient features

6.2. DATABASE ELASTICITY IN THE CLOUD 93

Figure 6.4: A shared nothing multi-tenant DBMS architecture.

of the system. First, clients connect to the database through query routers that handle client connec-
tions and hide the physical location of the tenant’s database. Routers store this mapping as metadata
which is updated whenever there is a migration. Second, Zephyr assumes the shared process multi-
tenancy model that strikes a balance between isolation and scale. Conceptually, each tenant has its
own transaction manager and buffer pool. However, since most current systems do not support this,
Zephyr assumes a design where co-located tenants share all resources within a database instance, but
is shared nothing across nodes. Finally, there exists a system controller that determines the tenant to be
migrated, the initiation time, and the destination of migration. The system controller gathers usage
statistics and builds a model to optimize the system’s operating cost while guaranteeing the tenant’s
performance goals. The detailed design and implementation of the controller is orthogonal and is
reviewed under the issue of autonomic control of multi-tenant databases in the cloud (see Section 6.3).
Zephyr also makes some simplifying assumptions about the underlying system model: it assumes
small tenant footprints limited to a single node in the system, and no replication; furthermore, the
index structures are made immutable during migration, i.e., if a transaction update will result in a
structural change to the underlying index structure then the offending transaction is aborted.

Zephyr’s main design goal is to minimize the service interruption resulting from migrating a
tenant’s database (DM). Zephyr does not incur a stop phase where DM is unavailable for executing
updates; it uses a sequence of three modes to allow the migration of DM while transactions are
executing on it. During normal operation (called the normal mode), NS is the node serving DM

and executing all transactions TS1, . . . , TSk on DM . A node that has the rights to execute update

94 6. MULTI-TENANT DATABASE SYSTEMS

Figure 6.5: Timeline for different phases of Zephyr.

transactions on DM is called the owner of DM . Once the system controller determines the destination
for migration (ND), it notifies NS which initiates migration to ND . Figure 6.5 shows the timeline
of this migration algorithm and the control and data messages exchanged between the nodes. As
time progresses from the left to the right, Figure 6.5 shows the progress of the different migration
modes, starting from the init mode that initiates migration, the dual mode where both NS and ND

share the ownership of DM and simultaneously execute transactions on DM , and the Finish Mode
which is the last step of migration before ND assumes full ownership of DM . Figure 6.6 shows the
transition of DM ’s data through the three migration modes, depicted using ownership of database
pages and executing transactions.

Init Mode: In the init mode, NS bootstraps ND by sending the minimal information (the wireframe
of DM) such that ND can execute transactions on DM .The wireframe consists of the schema and data
definitions of DM , index structures, and user authentication information. Indices migrated include
the internal nodes of the clustered index storing the database and all secondary indices. Non-indexed
attributes are accessed through the clustered index. In this mode, NS is still the unique owner of DM

and executes transactions (TS1, . . . , TSk) without synchronizing with any other node. Therefore,
there is no service interruption for DM while ND initializes the necessary resources for DM . We
assume a B+ tree index, where the internal nodes of the index contain only the keys while the actual
data pages are in the leaves. The wireframe, therefore, only includes these internal nodes of the
indices for the database tables. Figure 6.7 illustrates this, where the part of the tree enclosed in a
rectangular box is the index wireframe. At NS , the wireframe is constructed with minimal impact
on concurrent operations using shared multi-granularity intention locks on the indices. When ND

receives the wireframe, it has DM ’s metadata, but the data are still owned by NS . Since migration

6.2. DATABASE ELASTICITY IN THE CLOUD 95

(a) Dual Mode. (b) Finish Mode.

Figure 6.6: Ownership transfer of the database pages during migration. Pi represents a database page
and a white box around Pi represents that the node currently owns the page.

involves a gradual transfer of page-level ownership, both NS and ND must maintain a list of owned
pages. We use the B+ tree index for tracking page ownership. A valid pointer to a database page
implies unique page ownership, while a sentinel value (NULL) indicates a missing page. In the init
mode, ND therefore initializes all the pointers to the leaf nodes of the index to the sentinel value.
Once ND completes initialization of DM , it notifies NS , which then initiates the transition to the
dual mode. NS then executes the atomic handover protocol which notifies the query router to direct
all new transactions to ND .

Dual Mode: In the dual mode, both NS and ND execute transactions on DM , and database pages are
migrated to ND on-demand. All new transactions (TD1, . . . , TDm) arrive at ND , while NS continues
executing transactions that were active at the start of this mode (TSk+1, . . . , TSl). Since NS and
ND share ownership of DM , they synchronize to ensure transaction correctness. Zephyr, however,
requires minimal synchronization between these nodes.

At NS , transactions execute normally using local index and page-level locking, until a trans-
action TSj accesses a page Pj which has already been migrated. In the current design of Zephyr, a
database page is migrated only once. Therefore, such an access fails and the transaction is aborted.
When a transaction TDi executing at ND accesses a page Pi that is not owned by ND , it pulls Pi from
NS on demand (pull phase as shown in Figure 6.6(a)); this pull request is serviced only if Pi is not
locked at NS , in which case the request is blocked. As the pages are migrated, both NS and ND update
their ownership mapping. Once ND receives Pi , it proceeds to execute TDi . Apart from fetching
missing pages from NS , transactions at NS and ND do not need to synchronize. Due to the critical
assumption in Zephyr that the index structure cannot change at NS once migration is initiated, local

96 6. MULTI-TENANT DATABASE SYSTEMS

Figure 6.7: B+ tree index structure with page ownership information. A sentinel marks missing pages.
An allocated database page without ownership is represented as a grayed page.

locking of the index structure and pages is enough. This ensures minimal synchronization between
NS and ND only during this short dual mode, while ensuring serializable transaction execution.

When NS has finished executing all transactions TSk+1, . . . , TSl that were active at the start
of dual mode (i.e. T(NS)= φ), it initiates transfer of exclusive ownership to ND . This transfer is
achieved through a handshake between NS and ND after which both nodes enter the finish mode
for DM .

Finish Mode: In the finish mode, ND is the only node executing transactions on DM

(TDm+1, . . . , TDn), but does not yet have ownership of all the database pages (Figure 6.6(b)). In
this phase, NS pushes the remaining database pages to ND . While the pages are migrated from NS , if
a transaction TDi accesses a page that is not yet owned by ND , the page is requested as a pull from NS

in a way similar to that in the dual mode. Ideally, NS must migrate the pages at the highest possible
transfer rate such that the delays resulting from ND fetching missing pages is minimized. However,
such a high throughput push can impact other tenants co-located at NS and ND . Therefore, the rate
of transfer is a trade-off between the performance impact on the tenant and the migration overhead.
The page ownership information is also updated during this bulk transfer. When all the database
pages have been moved to ND , NS initiates the termination of migration so that operation switches
back to the normal mode. This again involves a handshake between NS and ND . On successful
completion of this handshake, it is guaranteed that ND has a persistent image of DM , and so NS can
safely release all of DM ’s resources. ND executes transactions on DM without any interaction with
NS . Once migration terminates, NS notifies the system controller.

6.2. DATABASE ELASTICITY IN THE CLOUD 97

The correctness of transactions execution during migration in Zephyr can be established
assuming that a concurrency protocol such as 2PL is used by the underlying architecture. In the
init mode and finish mode, only one of NS and ND is executing transactions on DM . The init
mode is equivalent to normal operation while in finish mode, NS acts as the storage node for the
database serving pages on demand. Guaranteeing serializability is straightforward in these two
modes. Reasoning about correctness in the dual mode is more involved since both NS and ND are
executing transactions on DM . In the dual mode, NS and ND share the internal nodes of the index
which are immutable due to Zephyr’s underlying assumption, while the leaf nodes (i.e. the data
pages) are still uniquely owned by at most one of the two nodes. Note that if a cycle in a serialization
graph arises during dual mode, then it must be the case that there is an edge in the conflict graph of
the form TDi → TSj . But existence of such an edge will violate the property of Zephyr that migrates
data pages only once and only in one direction from NSto ND . A complete proof of correctness
appears in [Elmore et al., 2011].

Zephyr’s failure model assumes that all message transfers use reliable communication channels
that guarantee in-order, at most once delivery. Zephyr assumes node crash failures and network
partitions; but assumes that there is no malicious node behavior. Furthermore, it is assumed that a
node failure does not lead to loss of the persistent disk image. In case of a failure during migration,
Zephyr first recovers the state of the committed transactions and then recovers the state of migration.

Transaction State Recovery. Transactions executing during migration use write ahead logging for
transaction state recovery. Hence, after a crash, a node recovers its transaction state using standard
log replay techniques such as ARIES [Mohan et al., 1992]. In the dual mode, NS and ND append
transactions to their respective node’s local transaction log. Log entries in a single log file have a local
order. However, since the log for DM is spread over NS and ND , a logical global order of transactions
on DM is needed to ensure that the transactions from the two logs are applied in the correct order to
recover from a failure during migration.The ordering of transactions is important only when there is
a conflict between two transactions. If two transactions,TS and TD , executing on NS and ND , conflict
on item i, they must access the same database page Pi . Since at any instant of time only one of NS

and ND is the owner of Pi , the two nodes must synchronize to arbitrate on Pi . This synchronization
forms the basis for establishing a total order between the transactions. During migration, a commit
sequence number (CSN) is assigned to every transaction at commit time, and is appended along with
the commit record of the transaction. This CSN is a monotonically increasing sequence number
maintained locally at the nodes and determines the order in which transactions commit. If Pi was
owned by NS and TS was the last committed transaction before the migration request for Pi was
made, then CSN(TS) is piggy-backed with Pi . On receipt of a page Pi , ND sets its CSN as the
maximum of its local CSN and that received with Pi such that at ND , CSN(TD) > CSN(TS).
This causal conflict ordering creates a global order per database page, where all transactions at NS

accessing Pi are ordered before all transactions at ND that access Pi .

98 6. MULTI-TENANT DATABASE SYSTEMS

Migration State Recovery. Migration progress is logged to guarantee atomicity and consistency
in the presence of failures. A failure of either NS or ND in the dual mode or the finish mode
requires coordinated recovery between the two nodes. During migration, a transition from one state
to another is logged. Except for the transition from the init mode to dual mode, which involves the
query router metadata in addition to NS and ND , all other transitions involve only NS and ND . Such
transitions occur through a one-phase handshake between NS and ND (as shown in Figure 6.5).
At the occurrence of an event triggering a state transition, NS initiates the transition by sending a
message to ND . On receipt of the message, ND moves to the next migration mode, forces a log entry
for this change, and sends an acknowledgment to NS . Receipt of this acknowledgment completes
this transition and NS forces another entry to its log. If NS fails before sending the message to
ND , the mode remains unchanged when NS recovers, and NS re-initiates the transition. If NS fails
after sending the message, then it knows about the message after it recovers and establishes contact
with ND . The transition from the init mode to the dual mode involves three participants (NS , ND ,
and the query router metadata) that must together change the state and hence the 2PC protocol
is used and atomicity of this handover process in a distributed environment follows directly from
the atomicity property of 2PC. The page ownership information is critical for migration progress as
well as safety. A simple fault-tolerant design is to make this ownership information durable—any
page (Pi) transferred from NS is immediately flushed to the disk at ND . NS also makes this transfer
persistent, either by logging the transfer or by updating Pi ’s parent page in the index, and flushing
it to the disk. This simple solution will guarantee resilience to failure but introduces a lot of disk
I/O which considerably increases migration cost and impacts other co-located tenants. Elmore et al.
[2011] discuss several optimizations for such scenarios.

6.2.3 SLACKER: LIVE DBMS INSTANCE MIGRATION IN
SHARED-NOTHING MODEL

We now briefly summarize the design of Slacker [Barker et al., 2012] that is in contrast to the two
approaches presented above for live database migration. Slacker is a system that performs rapid
database migrations while minimizing the costs of migration, namely, system downtime, tenant
interference, and human intervention. Slacker is a component of NEC’s comprehensive data man-
agement platform for the cloud, CloudDB [Hacigümüs et al., 2010, Tatemura et al., 2012]. The
underlying design philosophy of Slacker can be summarized as follows:

• Slacker is intended as a technique for performing live (zero-downtime) database migration
using standard database backup tools. Unlike other live database migration techniques, Slacker
is unique in that it operates on off-the-shelf database systems using readily available open-
source tools. It does not require modifications to the database engine and can be implemented
completely outside of a database product.

• Slacker uses the idea of migration slack, which refers to resources that can be used for migra-
tion without seriously impacting workloads already present on the database server. A formal

6.2. DATABASE ELASTICITY IN THE CLOUD 99

mathematical model to continuously monitor this slack is used in the implementation to min-
imize interference through the use of migration throttling. This approach is based on a novel
application of control theory.

Slacker is implemented as a middleware that sits atop one or more MySQL tenants. Each
server running an instance of Slacker operates a single server-wide migration controller that migrates
MySQL instances on the server to other servers running Slacker. In addition to migrating existing
tenants, the middleware is also responsible for instantiating (or deleting) MySQL instances for new
tenants. Each Slacker node operates in an autonomous fashion and only communicates with other
nodes for the purpose of migrating tenants.

Slacker interacts with MySQL backend databases using InnoDB tables. 3 The multi-tenancy
model in Slacker is process-level—that is, each tenant co-located on the server is provided a dedicated
MySQL daemon listening on a dedicated port. Each tenant has full control over its daemon and
is free to create arbitrary databases, tables, and users. Adding a tenant creates a new data directory
containing all MySQL data, including table data, logs, and configuration files. Similarly, deleting
a tenant simply stops the server process and deletes the tenant’s data directory. From Slacker’s
perspective, each tenant is simply a directory containing all data and a corresponding MySQL
process. Slacker is transparent to tenants, who need not be aware of Slacker at all and simply interact
directly with their MySQL server on the assigned port.

The choice of process-level multi-tenancy rather than a single, consolidated database server
(housing all tenants) has two primary advantages. The first is increased isolation between tenants,
since each database server treats its tenant on a best-effort basis. This prevents situations such as
buffer page evictions due to competing workloads—thus avoiding any situations in which buffer
allocations overlap by never over-provisioning memory. The second is ease of engineering, since
resources belonging to each tenant are cleanly separated on the server. These advantages come at
the cost of modest per-tenant memory overhead and decreased maximum throughput relative to a
consolidated DBMS [Curino et al., 2011a].

Slacker itself is implemented as a Java framework to create, delete, and migrate database
tenants. The migration controller on each server monitors all tenants located on the machine and
manages any in-progress migrations.Tenants are represented by globally unique numeric IDs, which
are used to issue commands to Slacker (such as Migrate Tenant 5 to Server x). Communication
between Slacker migration controllers occurs in a peer-to-peer fashion using a simple format based
on Google’s protocol buffers [Google Protocol Buffers]. Migrations are performed on-demand by
connecting to another control node and initiating the migration of a specific tenant. For customer
applications, communication with a specific tenant database requires only knowledge of the machine
on which the tenant is located and the tenant ID, since the database port is a fixed function of the
ID. This approach is only problematic after a migration is performed, since the tenant no longer

3InnoDB is a high-reliability, high-performance, and ACID-compliant storage engine for MySQL. http://dev.mysql.com/
doc/refman/5.0/en/innodb-storage-engine.html.

http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html
http://dev.mysql.com/doc/refman/5.0/en/innodb-storage-engine.html

100 6. MULTI-TENANT DATABASE SYSTEMS

resides on the original server.This issue can be resolved cleanly by issuing an ARP packet advertising
a new IP address (similar to [Clark et al., 2005]).

Live migration in Slacker uses the tool Percona XtraBackup [Percona], which is an extended,
open-source version of the commercial MySQL Enterprise Backup program. Mainly intended for
the purpose of hot backup, XtraBackup produces a consistent-in-time snapshot of the database
without interrupting transaction processing. Slacker leverages this hot backup function to obtain a
consistent snapshot for use in starting a new MySQL instance. Migration in Slacker is performed in
three steps. In the initial snapshot transferring step, Slacker streams the initial snapshot generated
by XtraBackup to the destination server on-the-fly, then prepares the snapshot on the destination
while the source continues to service queries. During preparation, XtraBackup applies crash recovery
against the copied data. Due to the time spent preparing the snapshot, once the destination server
is running, it may be somewhat behind the still authoritative source server. To allow the destination
to catch up with the source, Slacker iteratively applies incremental updates from the source to the
destination, an approach similar to the iterative phase of Albatross. In this step, called the � updating
step, Slacker applies several rounds of δis from the source to the destination by reading from the
MySQL binary query log of the source. Each δi comprises the changes from the update transactions
processed at the source since the snapshot from the previous iteration. Each such δi brings the
destination up-to-date at the point where the δi began executing. The subsequent δi+1 contains
changes corresponding to transactions that executed when δi was being applied to the destination.
Once δis are sufficiently small, in the handover step, a very brief freeze-and-handover is performed
during which the source is frozen, the final δN is copied, and the target becomes the new authoritative
tenant. A more detailed analysis and evaluation of Slacker appears in [Barker et al., 2012].

6.3 AUTONOMIC CONTROL FOR DATABASE WORKLOADS
IN THE CLOUD

Managing large systems poses significant challenges in monitoring, management, and system opera-
tion. Moreover, to reduce the operating cost, considerable autonomy is needed in the administration
of such systems. In the context of database systems, the responsibilities of this autonomic controller
include monitoring the behavior and performance of the system, elastic scaling, and load balancing
based on dynamic usage patterns, modeling behavior to forecast workload spikes and take proactive
measures to handle such spikes. An autonomous and intelligent system controller is essential to
properly manage such large systems.

Modeling the behavior of a database system and performance tuning has been an active area
of research over the last couple of decades. A large body of work focuses on tuning the appropriate
parameters for optimizing database performance [Duan et al., 2009, Weikum et al., 2002], primarily
in the context of a single database server. Another line of work has focused on resource prediction,
provisioning, and placement in large distributed systems [Bodík et al., 2008, Urgaonkar et al., 2007].

Live VM Migration and tools such as VMWare’s Distributed Resource Scheduler [DRS] are
used for automated placement of virtual machines on a cluster of hosts for effective and efficient

6.3. AUTONOMIC CONTROL FOR DATABASE WORKLOADS IN THE CLOUD 101

Figure 6.8: Storage virtualization architecture in large data centers.

management of CPU and memory resources.More recently, companies such as VMware are realizing
the need for automatic placement and load balancing of I/O workloads across a set of storage devices
especially since diverse I/O behavior from various workloads and hot-spotting can cause significant
imbalance. Thus, the need for autonomic control exists for virtualized storage management in data-
centers (see Figure 6.8) and given its close relationship with database multi-tenancy, we review
recent results in this area. Note that our discussion here is representative and is not meant to be
comprehensive. An extensive body of work exists both in the area of autonomic computing, in
general, and virtualized storage management, in particular.

The need for automated storage management arises in virtualized environments due to a
high degree of storage consolidation and sprawl of virtual disks over tens to hundreds of data stores.
Figure 6.8 illustrates a typical configuration of computing and storage resources in a data center. Initial
placement of virtual disks and data migration across different physical data stores needs to be based
on workload characterization, device model, and analytic formulation to improve I/O performance
and utilization. VMware has developed BASIL [Gulati et al., 2010], which is a tool designed to
automate I/O load balancing across multiple storage devices. The key features of BASIL are that
it postulates I/O latency as being the key metric for overall system performance and it provides
simple models for online characterization of workloads and device behaviors. In particular, through
extensive empirical observations BASIL demonstrates that I/O latency has a linear relationship with
the number of outstanding I/O requests on a device. BASIL hence uses the latency as a key metric
to control the placement and migration of virtual disks and data across physical storage devices.

102 6. MULTI-TENANT DATABASE SYSTEMS

BASIL has been in use in production, and VMware has recently reported several challenges
associated with its use in real deployment scenarios. One of the problems is that the BASIL model
is based on passive observations of actual workloads, causing different models to be produced for
the same device over time. The other problem is that robust model creation in BASIL requires
covering a wide range of outstanding I/O requests, which may not be observed in production
deployments, even over long time periods. Furthermore, BASIL does not perform cost-benefit
analysis (i.e., the cost of data migration versus the potential improvements in throughput or latency)
during autonomic control. As a result, the development group at VMware have proposed a new
system called Pesto [Gulati et al., 2011] that overcomes these limitations. The underlying modeling
principles of Pesto is still based on the linear relationship between latency and outstanding I/O
requests on a device.

Autonomic control of database-driven applications in the data center has emerged as an im-
portant problem since a single data center within an organization may deploy hundreds or even
thousands of individual DBMSs. Database multi-tenancy where multiple databases can be consoli-
dated by analyzing the workload characteristics of multiple dedicated database servers and packing
their workloads into fewer physical machines is of significant value. As discussed above, consolidat-
ing servers is not a new idea and has been the driver for widespread deployment of virtual machines
and virtual storage in data centers. However, consolidating databases is harder since DBMSs make
strong assumptions regarding the characteristics and performance of the underlying physical system.

Curino et al. [2011b] have developed a system called Kairos for workload-aware database
monitoring and consolidation. Kairos tackles two major challenges: (i) it develops tools to accurately
monitor the resource utilization of each database and to estimate the utilization of a combined set
of databases consolidated within a single instance of a DBMS; and (ii) it provides algorithms for
the placement of databases on physical hardware. Kairos begins with a set of independent database
workloads running on dedicated servers.The output from Kairos is a consolidation strategy mapping
workloads to physical nodes. After consolidation, each physical node runs a single DBMS instance
hosting multiple databases while meeting the applications’ service-level requirements. In that sense
Kairos supports the shared process model of multitenancy.

Kairos architecture comprises three major components: (i) Resource Monitor; (ii) Combined
Load Estimator; and (iii) Consolidation Engine.The resource monitor collects performance statistics
from the DBMS engine and the operating system to estimate the resource consumption and char-
acterize the workload of individual databases in an online manner. The combined load estimator uses
the workload characterization of individual databases running on dedicated hardware as an input
and runs an algorithm to predict the performance characteristics of combined workloads in a single
database. Modeling the interaction is especially challenging for disk I/O, since disk throughput is a
complicated nonlinear function of the load, which is in contrast to the CPU or memory which in
general combine linearly. Kairos overcomes this challenge by developing a hardware-specific model
for a given DBMS allowing it to evaluate the performance of arbitrary combinations of the different
types of workloads. Finally, the consolidation engine in Kairos uses nonlinear optimization techniques

6.3. AUTONOMIC CONTROL FOR DATABASE WORKLOADS IN THE CLOUD 103

to find assignments of databases onto physical resources subject to the following constraints: (i) the
number of machines are minimized; (ii) load balance across the machine is maximized; and (iii) and
service-level requirements of each workload will be met.

Note that even though Kairos is a significant advance toward autonomic control in multi-
tenant database environments, but it is still a first step. In particular, Kairos solves the initial step
toward multi-tenancy by generating an optimal assignment of tenant databases on physical machines
in the shared process multitenancy model. This placement will work as long as the workload charac-
teristics of individual tenants remain the same. However, in reality, tenant workloads vary over time
and therefore there is a need for continuous monitoring of consolidated tenant placement and there
is a need to develop an online algorithm that re-adjusts tenant occupancies to respond to workload
variations. Furthermore, the ultimate control mechanism needs to also deal with new tenant arrivals
as well as tenant departures. We outline a conceptual design of such a mechanism in the following.
To the best of our knowledge, we are not aware of any solution that provides the end-to-end solution
that is needed for autonomic control in multi-tenant databases.

To allow cloud DBMSs to be self-managing,an intelligent system controller must also consider
various additional aspects, specifically in the case when the database system is deployed on a pay-
per-use cloud infrastructure while serving multiple application tenant instances, i.e., a multi-tenant
cloud database system. In such a multi-tenant system, each tenant pays for the service provided
and different tenants in the system can have competing goals. On the other hand, the service
provider must share resources among the tenants, wherever possible, to minimize the operating cost
to maximize profits. A controller for such a system must be able to model the dynamic characteristics
and resource requirements of the different application tenants to allow elastic scaling while ensuring
good tenant performance and ensuring that the tenants’ service-level agreements (SLAs) are met.
An autonomic controller consists of two logical components: the static component and the dynamic
component.

The static component is responsible for modeling the behavior of the tenants and their re-
source usage to determine tenant placement to co-locate tenants with complementary resource
requirements. The goal of this tenant placement algorithm is to minimize the total resource utiliza-
tion and hence minimize operating cost while ensuring that the tenant SLAs are met. One potential
approach is to use a combination of machine learning techniques to classify tenant behavior followed
by tenant placement algorithms to determine optimal tenant co-location and consolidation. This
model assumes that once the behavior of a tenant is modeled and a tenant placement determined,
the system will continue to behave the way in which the workload was modeled, and hence is called
the static component.The dynamic component complements this static model by detecting dynamic
changes in the load and resource usage behavior, modeling the overall system’s behavior to determine
the opportune moment for elastic load balancing, selecting the minimal changes in tenant placement
needed to counter the dynamic behavior, and use live database migration techniques to re-balance
the tenants. In addition to modeling tenant behavior, it is also important to predict the migration
cost such that a migration to minimize the operating cost does not violate a tenant’s SLA. Again,

104 6. MULTI-TENANT DATABASE SYSTEMS

we envision using machine learning models to predict the migration cost of tenants and the re-
placement model accounts for this cost when determining which tenant to migrate, when to migrate,
and where to migrate [Das et al., 2010c].

6.4 DISCUSSION
As many more applications are being deployed in various cloud platforms, the need for effective
means to support multi-tenancy in such architectures is also growing. In this chapter, we summarized
some important aspects in the design space of multi-tenant DBMSs: the various design alternatives
and abstractions for sharing in a multi-tenant DBMS, live migration techniques that are the basic
primitives for supporting elasticity as a first-class feature in the database tier, and techniques for
designing self-managing controllers that manage such large multi-tenant DBMS infrastructures
with minimal or no human intervention.

Traditionally, DBMSs were not designed to natively support multi-tenancy. Therefore, effi-
ciently sharing resources among independent tenant databases has posed many interesting research
challenges. One fundamental question that is often asked is what performance assurances can a
service provider expose to the tenants of the service. An examination of the current landscape shows
that the providers only expose SLAs for availability of the service; very little is guaranteed in terms
of performance. Ideally, a tenant would expect workload-level performance SLAs such as query
throughput and/or query latency. Amazon’s DynamoDB takes a first step in this direction. How-
ever, a careful study of the SLA indicates that the throughput assurance is only for the maximum
supported limit. A natural question that arises is whether such a max-only assurance is enough to
meet the application’s performance goals as other tenants contend for shared resources.

From a provider’s perspective, providing such workload-level performance assurances is chal-
lenging to support with high confidence, given the variety of workloads that a tenant can potentially
execute. Moreover, for relational Database-as-a-Service providers, such as Microsoft SQL Azure,
the problem of supporting workload-level performance SLAs is even more challenging due to the
need to support arbitrary, flexible, and ad-hoc SQL queries submitted by tenant applications. For
instance, when a tenant submits a new SQL query which the provider has not seen earlier, it is
extremely challenging to robustly estimate the resources that will be needed to execute the query,
the end-to-end wall clock time the query will take provided that resources are available, and when
a query has started executing, or how much progress has it made. While the problem might be
somewhat tractable for OLTP-like short transactions, a platform must also support diverse query
types.

As our understanding of multi-tenant DBMSs and the various application workloads deployed
in cloud infrastructures grows, it will be interesting to observe how this landscape of Database-as-
a-Service matures and how the tenants of these service adapt their workloads and performance
requirements in accordance with this evolving landscape.

105

C H A P T E R 7

Concluding Remarks
During the past few years, cloud computing has emerged as a multi-billion dollar industry and as a
successful paradigm for web application deployment. Irrespective of the cloud provider or the cloud
abstraction, data are central to applications deployed in the cloud. Since DBMSs store and serve
an application’s critical data, they form a mission-critical component in the cloud software stack.
DBMSs deployed in a cloud infrastructure and supporting diverse applications face unique chal-
lenges.The overarching goal of the current research and development efforts is to enable DBMSs to
scale-out while efficiently supporting transactional semantics and being elastic without introducing
high performance overhead.On one hand, the ability to scale-out using clusters of commodity servers
allows the DBMSs to leverage from the economies of scale, and the ability to efficiently support
transactional semantics simplifies application design. On the other hand, the ability to dynamically
scale-up and scale-down the number of nodes in a live DBMS allows the system to consolidate to
fewer nodes during periods of low load and to add nodes when the load increases.This elastic scaling
leverages the underlying pay-per-use cloud infrastructure to minimize the system’s operating cost
and ensures good performance.

This book summarizes the current state-of-the-art in the two thrust areas of scale-out trans-
action processing and lightweight elasticity. In the context of scale-out transaction processing, we
reviewed the design and implementation of several systems that strive to provide transactions access
to the underlying data by deploying a range of classical techniques borrowed from the areas of dis-
tributed computing and database transaction processing. In the context of lightweight elasticity in
DBMSs, we reviewed the design and implementation of recently proposed techniques for live data
migration for different types of database architectures.We would like to point out that the general area
of scalable data-management in the cloud is evolving relatively rapidly. For example, recently both
Google and Facebook have announced new data-management architectures and systems for trans-
actional consistency over data stored in the cloud. In particular, Google recently developed a system
called Spanner [Corbett et al., 2012] for managing transactional data in a multi-cloud environment.
Similarly, Facebook has recently presented a system called Tao [Venkataramani et al., 2012], which is
one of the few systems that uses the operational semantics of application-level transactions to ensure
transactional atomicity in NoSQL data-stores. Understanding of scale-out transaction processing
and light-weight elasticity of databases is critical for the design of next-generation DBMSs for cloud
computing infrastructures.

In traditional enterprise settings, transaction processing and data analysis systems are typi-
cally managed as separate systems. The rationale behind this separation is that OLTP and analysis
workloads have very different characteristics and requirements. Therefore, in terms of performance,

106 7. CONCLUDING REMARKS

it is prudent to separate the two types of systems [Stonebraker et al., 2007]. However, the growing
need for real-time analysis and the costs involved in managing two different systems have resulted
in the compelling need for the convergence of the transaction processing and data analysis sys-
tems, especially in cloud infrastructures. In this book, we focused on the design of OLTP systems
and presented the design principles and architectures for such systems. One major challenge in the
design of these hybrid systems is to find the suitable design principles and architectures that will
allow scale-out, elasticity, and augmented functionality. A thorough analysis of the design space and
the candidate systems is essential in distilling the design principles of the on-line transaction and
analytical processing (OLTAP) systems.

The current cloud infrastructure consists of a static collection of powerful data centers (or
cores). This model misses out on the substantial computing power that resides outside the data
centers. We envision a dynamic cloud that will be formed of the static cloud that forms the nucleus
of the infrastructure and a collection of cores that dynamically join the cloud from time to time.
Such an infrastructure presents challenges beyond the current generation of cloud infrastructures.
Examples of some challenges are: How to provide a consistent and uniform namespace spanning
the dynamic collection of cloud cores? What are the practical consistency models and abstractions
for such large-scale dynamic environments? How to efficiently integrate surplus capacity as and
when they become available? How to effectively migrate load and data and efficiently replicate state
across the cores? And how to monitor and model such large-scale systems? Extending the designs
of elastic, self-managing, and scalable systems to this dynamic cloud infrastructure spanning larger
scale operations, higher network latency, and lower network bandwidth is a worthwhile direction
for future work.

107

Bibliography

Divyakant Agrawal, Amr El Abbadi, Shyam Antony, and Sudipto Das. Data Management Chal-
lenges in Cloud Computing Infrastructures. In 6th Int. Workshop on Databases in Networked
Information Systems, pages 1–10, 2010. DOI: 10.1007/978-3-642-12038-1_1 Cited on page(s) 5

Marcos K. Aguilera, Arif Merchant, Mehul Shah, Alistair Veitch, and Christos Karamanolis. Sin-
fonia: a new paradigm for building scalable distributed systems. In Proc. 21st ACM Symp. on
Operating System Principles, pages 159–174, 2007. DOI: 10.1145/1323293.1294278 Cited on
page(s) 79, 81

Apache Hadoop. The Apache Hadoop Project. http://hadoop.apache.org/, 20012. Retrieved
October 1, 2012. Cited on page(s) 4

Stefan Aulbach, Torsten Grust, Dean Jacobs, Alfons Kemper, and Jan Rittinger. Multi-tenant
databases for software as a service: schema-mapping techniques. In Proc. ACM SIGMOD Int.
Conf. on Management of Data, pages 1195–1206, 2008. DOI: 10.1145/1376616.1376736 Cited
on page(s) 86

Jason Baker, Chris Bond, James Corbett, JJ Furman, Andrey Khorlin, James Larson, Jean-Michel
Leon, Yawei Li, Alexander Lloyd, and Vadim Yushprakh. Megastore: Providing Scalable, Highly
Available Storage for Interactive Services. In Proc. 5th Biennial Conf. on Innovative Data Systems
Research, pages 223–234, 2011. Cited on page(s) 42, 60

Mahesh Balakrishnan, Dahlia Malkhi, Vijayan Prabhakaran, and Ted Wobber. CORFU: A Shared
Log Design for Flash Clusters. In Proc. 9th USENIX Symp. on Networked Systems Design &
Implementation, 2012. Cited on page(s) 67

Sean Barker, Yun Chi, Hyun Jin Moon, Hakan Hacigümüş, and Prashant Shenoy. "cut me some
slack": latency-aware live migration for databases. In Proc. 15th Int. Conf. on Extending Database
Technology, pages 432–443, 2012. DOI: 10.1145/2247596.2247647 Cited on page(s) 98, 100

Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil. A
critique of ANSI SQL isolation levels. In Proc. ACM SIGMOD Int. Conf. on Management of Data,
pages 1–10, 1995. DOI: 10.1145/568271.223785 Cited on page(s) 51, 77

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery in Database
Systems. Addison Wesley, Reading, Massachusetts, 1987. Cited on page(s) 18

http://dx.doi.org/10.1007/978-3-642-12038-1_1
http://dx.doi.org/10.1145/1323293.1294278
http://hadoop.apache.org/
http://dx.doi.org/10.1145/1376616.1376736
http://dx.doi.org/10.1145/2247596.2247647
http://dx.doi.org/10.1145/568271.223785

108 BIBLIOGRAPHY

Philip Bernstein, Colin Reid, and Sudipto Das. Hyder - ATransactional Record Manager for Shared
Flash. In Proc. 5th Biennial Conf. on Innovative Data Systems Research, pages 9–20, 2011a. Cited
on page(s) 48, 65

Philip A. Bernstein and Eric Newcomer. Principles of Transaction Processing. Morgan-Kaufmann
Publishers Inc., second edition, 2009. Cited on page(s) 22, 57, 90

Philip A. Bernstein, Istvan Cseri, Nishant Dani, Nigel Ellis, Ajay Kalhan, Gopal Kakivaya, David B.
Lomet, Ramesh Manner, Lev Novik, and Tomas Talius. Adapting Microsoft SQL Server for
Cloud Computing. In Proc. 27th Int. Conf. on Data Engineering, pages 1255–1263, 2011b.
DOI: 10.1109/ICDE.2011.5767935 Cited on page(s) 43, 58, 60

Philip A. Bernstein, Colin W. Reid, Ming Wu, and Xinhao Yuan. Optimistic concurrency control
by melding trees. Proc. VLDB Endowment, 4(11):944–955, 2011c. Cited on page(s) 67

Kenneth P. Birman. Replication and fault-tolerance in the isis system. In Proc. 10th ACM Symp. on
Operating System Principles, pages 79–86, 1985. DOI: 10.1145/323647.323636 Cited on page(s)
14, 15

Peter Bodík, Moisés Goldszmidt, and Armando Fox. Hilighter: Automatically building robust
signatures of performance behavior for small- and large-scale systems. In Third Workshop on
Tackling Computer Systems Problems with Machine Learning Techniques, pages 1–6, 2008. Cited on
page(s) 100

Matthias Brantner, Daniela Florescu, David Graf, Donald Kossmann, and Tim Kraska. Building a
database on S3. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 251–264, 2008.
DOI: 10.1145/1376616.1376645 Cited on page(s) 71, 73, 81

Eric A. Brewer. Towards robust distributed systems (Invited Talk). In Proc. ACM SIGACT-SIGOPS
19th Symp. on the Principles of Distributed Computing, page 7, 2000. Cited on page(s) 16

Eric A. Brewer. Pushing the cap: Strategies for consistency and availability. IEEE Computer, 45(2):
23–29, 2012. DOI: 10.1109/MC.2012.37 Cited on page(s) 16

Mike Burrows. The Chubby Lock Service for Loosely-Coupled Distributed Systems. In Proc. 7th
USENIX Symp. on Operating System Design and Implementation, pages 335–350, 2006. Cited on
page(s) 26, 63

Bengt Carlsson and Rune Gustavsson. The rise and fall of napster - an evolutionary approach.
In Proc. of the 6th Int. Computer Science Conf. on Active Media Technology, pages 347–354, 2001.
DOI: 10.1007/3-540-45336-9_40 Cited on page(s) 17

Rick Cattell. Scalable SQL and NoSQL data stores. SIGMOD Rec., 39(4):12–27, December 2011.
DOI: 10.1145/1978915.1978919 Cited on page(s) 37

http://dx.doi.org/10.1109/ICDE.2011.5767935
http://dx.doi.org/10.1145/323647.323636
http://dx.doi.org/10.1145/1376616.1376645
http://dx.doi.org/10.1109/MC.2012.37
http://dx.doi.org/10.1007/3-540-45336-9_40
http://dx.doi.org/10.1145/1978915.1978919

BIBLIOGRAPHY 109

Tushar D. Chandra, Robert Griesemer, and Joshua Redstone. Paxos made live: an engineering
perspective. In Proc. ACM SIGACT-SIGOPS 26th Symp. on the Principles of Distributed Computing,
pages 398–407, 2007. DOI: 10.1145/1281100.1281103 Cited on page(s) 26, 61

Ernest Chang and Rosemary Roberts. An improved algorithm for decentralized extrema-
finding in circular configurations of processes. Commun. ACM, 22(5):281–283, May 1979.
DOI: 10.1145/359104.359108 Cited on page(s) 12

Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike Burrows,
Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A Distributed Storage System
for Structured Data. In Proc. 7th USENIX Symp. on Operating System Design and Implementation,
pages 205–218, 2006. Cited on page(s) 4, 25, 31, 32

Navraj Chohan, Chris Bunch, Sydney Pang, Chandra Krintz, Nagy Mostafa, Sunil Soman, and
Richard Wolski. Appscale: Scalable and open appengine application development and deploy-
ment. In Proc. of 1st Int. Conf. on Cloud Computing, pages 57–70, 2009. Cited on page(s) 88

Christopher Clark, Keir Fraser, Steven Hand, Jacob Gorm Hansen, Eric Jul, Christian Limpach,
Ian Pratt, and Andrew Warfield. Live migration of virtual machines. In Proc. 2nd USENIX Symp.
on Networked Systems Design & Implementation, pages 273–286, 2005. Cited on page(s) 88, 100

Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip Bohannon,
Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni. PNUTS: Yahoo!’s hosted
data serving platform. Proc. VLDB Endowment, 1(2):1277–1288, 2008. Cited on page(s) 4, 25,
26, 33

Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears. Bench-
marking Cloud Serving Systems with YCSB. In Proc. 1st ACM Symp. on Cloud Computing, pages
143–154, 2010. DOI: 10.1145/1807128.1807152 Cited on page(s) 27, 37

James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Furman, San-
jay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson Hsieh, Sebastian
Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David
Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher
Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s Globally-Distributed Database. In
Proc. 10th USENIX Symp. on Operating System Design and Implementation, pages 251–264, 2012.
Cited on page(s) 82, 105

Carlo Curino, Yang Zhang, Evan P. C. Jones, and Samuel Madden. Schism: a workload-driven
approach to database replication and partitioning. Proc. VLDB Endowment, 3(1):48–57, 2010.
Cited on page(s) 44, 45, 64

Carlo Curino, Evan Jones, Raluca Popa, Nirmesh Malviya, Eugene Wu, Sam Madden, Hari Bal-
akrishnan, and Nickolai Zeldovich. Relational Cloud: A Database Service for the Cloud. In Proc.

http://dx.doi.org/10.1145/1281100.1281103
http://dx.doi.org/10.1145/359104.359108
http://dx.doi.org/10.1145/1807128.1807152

110 BIBLIOGRAPHY

5th Biennial Conf. on Innovative Data Systems Research, pages 235–240, 2011a. Cited on page(s)
64, 99

Carlo Curino, Evan P. C. Jones, Samuel Madden, and Hari Balakrishnan. Workload-aware database
monitoring and consolidation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
313–324, 2011b. DOI: 10.1145/1989323.1989357 Cited on page(s) 65, 84, 85, 86, 102

Danga Interactive Inc. Memcached: A distributed memory object caching system. http://www.
danga.com/memcached/, 2012. Retrieved: November 2012. Cited on page(s) 37

Sudipto Das. Scalable and Elastic Transactional Data Stores for Cloud Computing Platforms. PhD
thesis, UC Santa Barbara, December 2011. Cited on page(s) 55, 58, 92

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An Elastic Transactional Data
Store in the Cloud. In 1st. USENIX Workshop on Hot topics on Cloud Computing, pages 1–5, 2009.
Cited on page(s) 56

Sudipto Das, Shashank Agarwal, Divyakant Agrawal, and Amr El Abbadi. ElasTraS: An Elastic,
Scalable, and Self Managing Transactional Database for the Cloud. Technical Report 2010-04,
Computer Science, University of California Santa Barbara, 2010a. Cited on page(s) 41, 56

Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. G-Store: A Scalable Data Store for Trans-
actional Multi key Access in the Cloud. In Proc. 1st ACM Symp. on Cloud Computing, pages
163–174, 2010b. DOI: 10.1145/1807128.1807157 Cited on page(s) 46, 47, 52

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Live Database Migra-
tion for Elasticity in a Multitenant Database for Cloud Platforms. Technical Report 2010-09,
Computer Science, University of California Santa Barbara, 2010c. Cited on page(s) 104

Sudipto Das, Shoji Nishimura, Divyakant Agrawal, and Amr El Abbadi. Albatross: Lightweight
Elasticity in Shared Storage Databases for the Cloud using Live Data Migration. Proc. VLDB
Endowment, 4(8):494–505, May 2011. Cited on page(s) 58

Jeff Dean. Talk at the Google Faculty Summit, 2010. Cited on page(s) 5

Jeffrey Dean and Sanjay Ghemawat. MapReduce: simplified data processing on large clusters. In
OSDI, pages 137–150, 2004. DOI: 10.1145/1327452.1327492 Cited on page(s) 4

Jeffrey Dean and Sanjay Ghemawat. Mapreduce: a flexible data processing tool. Commun. CACM,
53(1):72–77, 2010. DOI: 10.1145/1629175.1629198 Cited on page(s) 4

Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash Laksh-
man, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vogels. Dynamo:
Amazon’s highly available key-value store. In Proc. 21st ACM Symp. on Operating System Principles,
pages 205–220, 2007. DOI: 10.1145/1323293.1294281 Cited on page(s) 4, 25, 26, 35

http://dx.doi.org/10.1145/1989323.1989357
http://www.danga.com/memcached/
http://www.danga.com/memcached/
http://dx.doi.org/10.1145/1807128.1807157
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1145/1629175.1629198
http://dx.doi.org/10.1145/1323293.1294281

BIBLIOGRAPHY 111

Xavier Défago,André Schiper, and Péter Urbán.Total order broadcast and multicast algorithms:Tax-
onomy and survey. ACM Comput. Surv., 36(4):372–421, 2004. DOI: 10.1145/1041680.1041682
Cited on page(s) 15

Danny Dolev. The byzantine generals strike again. J. Algorithms, 3(1):14–30, 1982.
DOI: 10.1016/0196-6774(82)90004-9 Cited on page(s) 16

DRS. Resource management with VMware DRS. http://vmware.com/pdf/vmware_drs_wp.
pdf, 2006. Retrieved: November 2012. Cited on page(s) 100

Songyun Duan, Vamsidhar Thummala, and Shivnath Babu. Tuning database configuration param-
eters with ituned. Proc. VLDB Endow., 2:1246–1257, August 2009. Cited on page(s) 100

Aaron J. Elmore, Sudipto Das, Divyakant Agrawal, and Amr El Abbadi. Zephyr: Live Migration
in Shared Nothing Databases for Elastic Cloud Platforms. In Proc. ACM SIGMOD Int. Conf. on
Management of Data, pages 301–312, 2011. DOI: 10.1145/1989323.1989356 Cited on page(s)
97, 98

K. P. Eswaran, J. N. Gray, R. A. Lorie, and I. L. Traiger. The notions of consistency and predicate
locks in a database system. Commun. ACM, 19(11):624–633,1976.DOI: 10.1145/360363.360369
Cited on page(s) 5, 20, 48

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with
one faulty process. In Proc. 2nd ACM SIGACT-SIGMOD Symp. on Principles of Database Systems,
pages 1–7, 1983. DOI: 10.1145/588058.588060 Cited on page(s) 16, 17

Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consensus with
one faulty process. J. ACM, 32(2):374–382, 1985. DOI: 10.1145/3149.214121 Cited on page(s)
16

H. Garcia-Molina. Elections in a distributed computing system. IEEE Trans. Comput., 31(1):48–59,
January 1982. DOI: 10.1109/TC.1982.1675885 Cited on page(s) 12

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file system. In Proc. 19th
ACM Symp. on Operating System Principles, pages 29–43, 2003. DOI: 10.1145/945445.945450
Cited on page(s) 26, 49

David K. Gifford. Weighted voting for replicated data. In Proc. 7th ACM Symp. on Operating System
Principles, pages 150–162, 1979. DOI: 10.1145/800215.806583 Cited on page(s) 11

Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consis-
tent, available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.
DOI: 10.1145/564585.564601 Cited on page(s) 16

http://dx.doi.org/10.1145/1041680.1041682
http://dx.doi.org/10.1016/0196-6774(82)90004-9
http://vmware.com/pdf/vmware_drs_wp.pdf
http://vmware.com/pdf/vmware_drs_wp.pdf
http://dx.doi.org/10.1145/1989323.1989356
http://dx.doi.org/10.1145/360363.360369
http://dx.doi.org/10.1145/588058.588060
http://dx.doi.org/10.1145/3149.214121
http://dx.doi.org/10.1109/TC.1982.1675885
http://dx.doi.org/10.1145/945445.945450
http://dx.doi.org/10.1145/800215.806583
http://dx.doi.org/10.1145/564585.564601

112 BIBLIOGRAPHY

Seth Gilbert and Nancy A. Lynch. Perspectives on the CAP Theorem. IEEE Computer, 45(2):
30–36, 2012. DOI: 10.1109/MC.2011.389 Cited on page(s) 17

Olivier Goldschmidt and Dorit S. Hochbaum. Polynomial algorithm for the k-cut prob-
lem. In Proc. 29th Annual Symp. on Foundations of Computer Science, pages 444–451, 1988.
DOI: 10.1109/SFCS.1988.21960 Cited on page(s) 45

Google Protocol Buffers. Google protocol buffers. http://code.google.com/apis/
protocolbuffers/, 2012. Retrieved: November 2012. Cited on page(s) 99

Jim Gray. Notes on data base operating systems. In Operating Systems, An Advanced Course, pages
393–481. Springer-Verlag, 1978. DOI: 10.1007/3-540-08755-9_9 Cited on page(s) 5, 22, 63

Jim Gray and Andreas Reuter. Transaction Processing: Concepts and Techniques. Morgan Kaufmann
Publishers Inc., 1992. Cited on page(s) 7, 22

A. Gulati, C. Kumar, I. Ahamad, and K. Kumar. BASIL: Automated IO load balancing across
storage devices. In Proc. 8th USENIX Conf. on File and Storage Technologies, 2010. Cited on
page(s) 101

A. Gulati, G. Shanmugathan, I. Ahamad, C. waldspurger, and M. Uysal. Pesto: Online Storage Per-
fromance Management in Virtualized Datacenters. In Proc. 2nd ACM Symp. on Cloud Computing,
2011. DOI: 10.1145/2038916.2038935 Cited on page(s) 102

Hakan Hacigümüs, Jun’ichi Tatemura, Wang-Pin Hsiung, Hyun Jin Moon, Oliver Po, Arsany
Sawires, Yun Chi, and Hojjat Jafarpour. CloudDB: One Size Fits All Revived. In 6th World
Congress on Services, pages 148–149, 2010. DOI: 10.1109/SERVICES.2010.96 Cited on page(s)
98

James Hamilton. I love eventual consistency but... http://bit.ly/hamilton-eventual, April
2010. Retrieved: October 2011. Cited on page(s) 5, 39

hbase. HBase: Bigtable-like structured storage for Hadoop HDFS. http://hbase.apache.org/,
2011. Retrieved: October 2011. Cited on page(s)

HDFS. HDFS: A distributed file system that provides high throughput access to application data.
http://hadoop.apache.org/hdfs/, 2011. Retrieved: October 2011. Cited on page(s) 56

Pat Helland. Life beyond Distributed Transactions: An Apostate’s Opinion. In Proc. 3rd Biennial
Conf. on Innovative Data Systems Research, pages 132–141, 2007. Cited on page(s) 27

Dean Jacobs and Stefan Aulbach. Ruminations on multi-tenant databases. In Proc. Datenbanksysteme
in Business, Technologie und Web, pages 514–521, 2007. Cited on page(s) 83, 84

http://dx.doi.org/10.1109/MC.2011.389
http://dx.doi.org/10.1109/SFCS.1988.21960
http://code.google.com/apis/protocolbuffers/
http://code.google.com/apis/protocolbuffers/
http://dx.doi.org/10.1007/3-540-08755-9_9
http://dx.doi.org/10.1145/2038916.2038935
http://dx.doi.org/10.1109/SERVICES.2010.96
http://bit.ly/hamilton-eventual
http://hbase.apache.org/
http://hadoop.apache.org/hdfs/
http://hadoop.apache.org/hdfs/

BIBLIOGRAPHY 113

M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hummel, and Henri E. Bal.
An efficient reliable broadcast protocol. Operating Systems Review, 23(4):5–19, 1989.
DOI: 10.1145/70730.70732 Cited on page(s) 15

Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alex Rasin, Stanley B. Zdonik,
Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang Zhang, John Hugg, and Daniel J.
Abadi. H-store: a high-performance, distributed main memory transaction processing system.
Proc. VLDB Endowment, 1(2):1496–1499, 2008. Cited on page(s) 41

David Karger, Eric Lehman, Tom Leighton, Rina Panigrahy, Matthew Levine, and Daniel Lewin.
Consistent hashing and random trees: distributed caching protocols for relieving hot spots on the
world wide web. In Proc. 29th Annual ACM Symp. on Theory of Computing, pages 654–663, 1997.
DOI: 10.1145/258533.258660 Cited on page(s) 35

Tim Kraska, Martin Hentschel, Gustavo Alonso, and Donald Kossmann. Consistency Rationing
in the Cloud: Pay only when it matters. Proc. VLDB Endowment, 2(1):253–264, 2009. Cited on
page(s) 74, 75

H. T. Kung and John T. Robinson. On optimistic methods for concurrency control. ACM Trans.
Database Syst., 6(2):213–226, 1981. DOI: 10.1145/319566.319567 Cited on page(s) 21

Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Commun. ACM,
21(7):558–565, 1978. DOI: 10.1145/359545.359563 Cited on page(s) 8, 11, 26

Leslie Lamport. The part-time parliament. ACM Trans. Comp. Syst., 16(2):133–169, 1998.
DOI: 10.1145/279227.279229 Cited on page(s) 16, 26, 61

Leslie Lamport. Paxos made simple. SIGACT News, 32(4):18–25, Dec. 2001.
DOI: 10.1145/568425.568433 Cited on page(s) 16

Justin J. Levandoski, David B. Lomet, Mohamed F. Mokbel, and Kevin Zhao. Deuteronomy:
Transaction support for cloud data. In Proc. 5th Biennial Conf. on Innovative Data Systems Research,
pages 123–133, 2011. Cited on page(s) 48, 68

Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t settle for
eventual: scalable causal consistency for wide-area storage with COPS. In Proc. 23rd ACM Symp.
on Operating System Principles, pages 401–416, 2011. DOI: 10.1145/2043556.2043593 Cited on
page(s) 82

David B. Lomet and Mohamed F. Mokbel. Locking Key Ranges with Unbundled Transaction
Services. PVLDB, 2(1):265–276, 2009. Cited on page(s) 69

David B. Lomet, Alan Fekete, Gerhard Weikum, and Michael J. Zwilling. Unbundling transaction
services in the cloud. In Proc. 4th Biennial Conf. on Innovative Data Systems Research, 2009. Cited
on page(s) 68

http://dx.doi.org/10.1145/70730.70732
http://dx.doi.org/10.1145/258533.258660
http://dx.doi.org/10.1145/319566.319567
http://dx.doi.org/10.1145/359545.359563
http://dx.doi.org/10.1145/279227.279229
http://dx.doi.org/10.1145/568425.568433
http://dx.doi.org/10.1145/2043556.2043593

114 BIBLIOGRAPHY

Mamoru Maekawa. A square root n algorithm for mutual exclusion in decentralized systems. ACM
Trans. Comput. Syst., 3(2):145–159, 1985. DOI: 10.1145/214438.214445 Cited on page(s) 11

Keith Marzullo and Susan Owicki. Maintaining the time in a distributed system. In Proc. ACM
SIGACT-SIGOPS 2nd Symp. on the Principles of Distributed Computing, pages 295–305, 1983.
DOI: 10.1145/800221.806730 Cited on page(s) 82

C. Mohan, Don Haderle, Bruce Lindsay, Hamid Pirahesh, and Peter Schwarz. Aries: a transaction
recovery method supporting fine-granularity locking and partial rollbacks using write-ahead log-
ging. ACM Trans. Database Syst., 17(1):94–162, 1992. DOI: 10.1145/128765.128770 Cited on
page(s) 48, 97

Vivek Narasayya, Sudipto Das, Manoj Syamala, Badrish Chandramouli, and Surajit Chaudhuri.
SQLVM: Performance Isolation in Multi-Tenant Relational Database-as-a-Service. In Proc. 6th
Biennial Conf. on Innovative Data Systems Research, pages 1–9, 2013. Cited on page(s) 86

Simo Neuvonen, Antoni Wolski, Markku manner, and Vilho Raatikka. Telecommunication ap-
plication transaction processing (tatp) benchmark description 1.0. http://tatpbenchmark.
sourceforge.net/TATP_Description.pdf, March 2009. Retrieved: October 2011. Cited
on page(s) 41

NoSQL. The NoSQL Movement. http://en.wikipedia.org/wiki/NoSQL, 2012. Accessed:
October 1, 2012. Cited on page(s) 5

Dare Obasanjo. When databases lie: Consistency vs. availability in distributed systems. http://
bit.ly/obasanjo_CAP, October 2009. Retrieved: October 2011. Cited on page(s) 5, 39

Diego Ongaro, Stephen M. Rumble, Ryan Stutsman, John K. Ousterhout, and Mendel Rosenblum.
Fast crash recovery in ramcloud. In Proc. 23rd ACM Symp. on Operating System Principles, pages
29–41, 2011. DOI: 10.1145/2043556.2043560 Cited on page(s) 37

John K. Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Leverich, David
Mazières, Subhasish Mitra, Aravind Narayanan, Guru M. Parulkar, Mendel Rosenblum,
Stephen M. Rumble, Eric Stratmann, and Ryan Stutsman. The case for ramclouds: scalable
high-performance storage entirely in dram. Operating Systems Review, 43(4):92–105, 2009.
DOI: 10.1145/1713254.1713276 Cited on page(s) 37

M. Tamer Özsu and Patrick Valduriez. Principles of Distributed Database Systems. Springer, 3rd
edition, 2011. DOI: 10.1007/978-1-4419-8834-8 Cited on page(s) 5, 7

Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM, 26(4):
631–653, October 1979. DOI: 10.1145/322154.322158 Cited on page(s) 20

http://dx.doi.org/10.1145/214438.214445
http://dx.doi.org/10.1145/800221.806730
http://dx.doi.org/10.1145/128765.128770
http://tatpbenchmark.sourceforge.net/TATP_Description.pdf
http://tatpbenchmark.sourceforge.net/TATP_Description.pdf
http://en.wikipedia.org/wiki/NoSQL
http://bit.ly/obasanjo_CAP
http://bit.ly/obasanjo_CAP
http://dx.doi.org/10.1145/2043556.2043560
http://dx.doi.org/10.1145/1713254.1713276
http://dx.doi.org/10.1007/978-1-4419-8834-8
http://dx.doi.org/10.1145/322154.322158

BIBLIOGRAPHY 115

Stacy Patterson, Aaron J. Elmore, Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Seri-
alizability, not serial: Concurrency control and availability in multi-datacenter datastores. Proc.
VLDB Endowment, 5(11):1459–1470, 2012. Cited on page(s) 63

Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. Reaching agreement in the presence of
faults. J. ACM, 27(2):228–234, 1980. DOI: 10.1145/322186.322188 Cited on page(s) 15

Daniel Peng and Frank Dabek. Large-scale incremental processing using distributed transactions
and notifications. In Proc. 9th USENIX Symp. on Operating System Design and Implementation,
2010. Cited on page(s) 77, 79

Percona. Percona XtraBackup. http://www.percona.com/software/percona-xtrabackup/,
2012. Retrieved: November 2012. Cited on page(s) 100

Colin W. Reid and Philip A. Bernstein. Implementing an append-only interface for semiconductor
storage. IEEE Data Eng. Bull., 33(4):14–20, 2010. Cited on page(s) 67

Berthold Reinwald. Database support for multi-tenant applications. In IEEE Workshop on Infor-
mation and Software as Services, 2010. Cited on page(s) 83, 87

Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free replicated data
types. In Proc. of the 13th Int. Conf. on Stabilization, Safety, and Security of Distributed Systems,
pages 386–400, 2011. DOI: 10.1007/978-3-642-24550-3_29 Cited on page(s) 77

Jeff Shute, Mircea Oancea, Stephan Ellner, Ben Handy, Eric Rollins, Bart Samwel, Radek Vingralek,
Chad Whipkey, Xin Chen, Beat Jegerlehner, Kyle Littlefield, and Phoenix Tong. F1: the fault-
tolerant distributed RDBMS supporting Google’s ad business. In Proc. ACM SIGMOD Int. Conf.
on Management of Data, pages 777–778, 2012. DOI: 10.1145/2213836.2213954 Cited on page(s)
82

D. Skeen and M. Stonebraker. A formal model of crash recovery in a distributed system. IEEE
Trans. Softw. Eng., 9(3):219–228, 1983. DOI: 10.1109/TSE.1983.236608 Cited on page(s) 23

Ahmed A. Soror, Umar Farooq Minhas, Ashraf Aboulnaga, Kenneth Salem, Peter Kokosielis,
and Sunil Kamath. Automatic virtual machine configuration for database workloads.
In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 953–966, 2008.
DOI: 10.1145/1670243.1670250 Cited on page(s) 84

Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional storage for geo-
replicated systems. In Proc. 23rd ACM Symp. on Operating System Principles, pages 385–400, 2011.
DOI: 10.1145/2043556.2043592 Cited on page(s) 75, 76, 77

Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A
scalable peer-to-peer lookup service for internet applications. In SIGCOMM, pages 149–160,
2001. DOI: 10.1145/964723.383071 Cited on page(s) 17, 26, 28, 35

http://dx.doi.org/10.1145/322186.322188
http://www.percona.com/software/percona-xtrabackup/
http://dx.doi.org/10.1007/978-3-642-24550-3_29
http://dx.doi.org/10.1145/2213836.2213954
http://dx.doi.org/10.1109/TSE.1983.236608
http://dx.doi.org/10.1145/1670243.1670250
http://dx.doi.org/10.1145/2043556.2043592
http://dx.doi.org/10.1145/964723.383071

116 BIBLIOGRAPHY

Michael Stonebraker,Chuck Bear,Ugur Cetintemel,Mitch Cherniack,Tingjian Ge,Nabil Hachem,
Stavros Harizopoulos, John Lifter, and Jennie Rogersand Stanley B. Zdonik. One Size Fits All?
Part 2: Benchmarking Studies. In Proc. 3rd Biennial Conf. on Innovative Data Systems Research,
pages 173–184, 2007. Cited on page(s) 106

Michael Stonebraker, Daniel J. Abadi, David J. DeWitt, Samuel Madden, Erik Paulson, Andrew
Pavlo, and Alexander Rasin. Mapreduce and parallel dbmss: friends or foes? Commun. CACM,
53(1):64–71, 2010. Cited on page(s) 4

Junichi Tatemura, Oliver Po, and Hakan Hacgümüş. Microsharding: a declarative ap-
proach to support elastic OLTP workloads. SIGOPS Oper. Syst. Rev., 46(1):4–11, 2012.
DOI: 10.1145/2146382.2146385 Cited on page(s) 98

Alexander Thomson, Thaddeus Diamond, Shu-Chun Weng, Kun Ren, Philip Shao, and Daniel J.
Abadi. Calvin: fast distributed transactions for partitioned database systems. In Proc. ACM
SIGMOD Int. Conf. on Management of Data, pages 1–12, 2012. DOI: 10.1145/2213836.2213838
Cited on page(s) 81

TPC-C. TPC-C benchmark (Version 5.11), February 2010. Retrieved: October 2011. Cited on
page(s) 41

Bhuvan Urgaonkar, Arnold L. Rosenberg, and Prashant J. Shenoy. Application place-
ment on a cluster of servers. Int. J. Found. Comput. Sci., 18(5):1023–1041, 2007.
DOI: 10.1142/S012905410700511X Cited on page(s) 100

Venkateshwaran Venkataramani, Zach Amsden, Nathan Bronson, George Cabrera III, Prasad
Chakka, Peter Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Jeremy Hoon, Sachin Kulkarni,
Nathan Lawrence, Mark Marchukov, Dmitri Petrov, and Lovro Puzar. Tao: how facebook serves
the social graph. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages 791–792, 2012.
DOI: 10.1145/2213836.2213957 Cited on page(s) 105

Hoang Tam Vo, Chun Chen, and Beng Chin Ooi. Towards elastic transactional cloud storage with
range query support. Proc. VLDB Endowment, 3(1):506–517, 2010. Cited on page(s) 81

Werner Vogels. Data access patterns in the amazon.com technology platform. In Proc. 33rd Int.
Conf. on Very Large Data Bases, pages 1–1, 2007. Cited on page(s) 25

Werner Vogels. Eventually consistent. Commun. ACM, 52(1):40–44, 2009. ISSN 0001-0782.
DOI: 10.1145/1435417.1435432 Cited on page(s) 26

Gerhard Weikum and Gottfried Vossen. Transactional information systems: theory, algorithms, and
the practice of concurrency control and recovery. Morgan Kaufmann Publishers Inc., 2001. Cited on
page(s) 7, 22, 48, 57

http://dx.doi.org/10.1145/2146382.2146385
http://dx.doi.org/10.1145/2213836.2213838
http://dx.doi.org/10.1142/S012905410700511X
http://dx.doi.org/10.1145/2213836.2213957
http://dx.doi.org/10.1145/1435417.1435432

BIBLIOGRAPHY 117

Gerhard Weikum, Axel Moenkeberg, Christof Hasse, and Peter Zabback. Self-tuning database
technology and information services: from wishful thinking to viable engineering. In Proc. 28th
Int. Conf. on Very Large Data Bases, pages 20–31, 2002. Cited on page(s) 100

Craig D. Weissman and Steve Bobrowski. The design of the force.com multitenant internet appli-
cation development platform. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pages
889–896, 2009. DOI: 10.1145/1559845.1559942 Cited on page(s) 83, 86

Pengcheng Xiong, Yun Chi, Shenghuo Zhu, Hyun Jin Moon, Calton Pu, and Hakan Hacigumus.
Intelligent management of virtualized resources for database systems in cloud environment. In
Proc. 27th Int. Conf. on Data Engineering, pages 87–98,2011.DOI: 10.1109/ICDE.2011.5767928
Cited on page(s) 84

http://dx.doi.org/10.1145/1559845.1559942
http://dx.doi.org/10.1109/ICDE.2011.5767928

118

Authors’ Biographies

DIVYAKANT AGRAWAL
Divyakant Agrawal is a Professor of Computer Science in the
Department of Computer Science at the University of Califor-
nia at Santa Barbara. His research expertise is in the areas of
database systems, distributed computing, data warehousing, and
large-scale information systems. He is a Fellow of the ACM and
the IEEE. He has published more than 300 articles in the fields

of database systems, distributed systems, multi-dimensional indexing, data warehousing, and cloud
data management. He has served on numerous program committees of international conferences,
symposia, and workshops and served as an editor of the Journal of Distributed and Parallel Databases
from 1993–2008 and the VLDB Journal from 2003–2008. He was the program chair of ACM SIG-
MOD 2010 and has served as the general chair for multiple ACM SIGSPATIAL conferences. He
is currently serving as the editor-in-chief of the Journal of Distributed and Parallel Databases and
on the editorial boards of ACM TODS and IEEE TKDE. He is also serving as a Trustee on the
VLDB endowment. He has been on the faculty of UC Santa Barbara for more than 25 years and
has graduated more than 30 Ph.D. students. He is also the recipient of the UCSB Outstanding
Graduate Mentor Award.

AUTHORS’ BIOGRAPHIES 119

SUDIPTO DAS
Sudipto Das is currently a Researcher in the eXtreme Computing
Group (XCG) at Microsoft Research (MSR).Dr.Das received his
Ph.D. in Computer Science from University of California Santa
Barbara (UCSB). His research interests lie in the broad area of
scalable data management systems and distributed systems. His
research spans multiple areas such as scalable transaction process-
ing systems for cloud computing platforms, advanced data anal-
ysis systems for big data, and multi-tenant database systems. His
works have been published in various prestigious and highly se-
lective venues showcasing database research, such as SIGMOD,
VLDB, ICDE, CIDR, MDM, and SoCC. He has also deliv-
ered several tutorials in the area of big data and cloud computing.
Dr. Das is the recipient of UCSB’s 2012 Lancaster Dissertation

award, the CIDR 2011 Best Paper Award, MDM 2011 Best Runner-up Paper Award, the 2012
Outstanding Dissertation Award, and the 2011 Outstanding Student Award in Computer Science
at UC Santa Barbara, and the TCS-JU Best Student Award for 2006.

120 AUTHORS’ BIOGRAPHIES

AMR EL ABBADI
Amr El Abbadi is currently a Professor in the Computer Sci-
ence Department at the University of California, Santa Barbara
(UCSB). He received his B. Eng. in Computer Science from
Alexandria University, Egypt, and received his M.S. and Ph.D.
in Computer Science from Cornell University. He chaired the
Computer Science Department at UCSB from 2007–2011. Prof.
El Abbadi is a Fellow of the ACM and AAAS. He has served
as a journal editor for several database journals, including, cur-

rently,The VLDB Journal. He has been Program Chair for multiple database and distributed systems
conferences, including VLDB 2000, SIGSPATIAL GIS 2010, and ACM Symposium on Cloud
Computing (SoCC) 2011. He has also served as a board member of the VLDB Endowment from
2002–2008. In 2007, Prof. El Abbadi received the UCSB Senate Outstanding Mentorship Award
for his excellence in mentoring graduate students. He has published over 275 articles in databases
and distributed systems.

	Preface
	Acknowledgments
	Introduction
	Distributed Data Management
	Distributed Systems
	Logical Time and Lamport Clocks
	Vector Clocks
	Mutual Exclusion and Quorums
	Leader Election
	Group Communication through Broadcast and Multicast
	The Consensus Problem
	CAP Theorem

	Peer to Peer Systems
	Database Systems
	Preliminaries
	Concurrency Control
	Recovery and Commitment

	Cloud Data Management: Early Trends
	Overview of Key-value Stores
	Design Choices and their Implications
	Data Model
	Data Distribution and Request Routing
	Cluster Management
	Fault-tolerance and Data Replication

	Key-Value Store System Examples
	Bigtable
	PNUTS
	Dynamo

	Discussion

	Transactions on Co-located Data
	Data or Ownership Co-location
	Leveraging Schema Patterns
	Access-driven Database Partitioning
	Application-specified Dynamic Partitioning

	Transaction Execution
	Data Storage
	Coupled Storage
	Decoupled Storage

	Replication
	Explicit Replication
	Implicit Replication

	A Survey of the Systems
	G-Store
	ElasTraS
	Cloud SQL Server
	Megastore
	Relational Cloud
	Hyder
	Deuteronomy

	Transactions on Distributed Data
	Database-like Functionality on Cloud Storage
	Transactional support for Geo-replicated Data
	Incremental Update Processing using Distributed Transactions
	Scalable Distributed Synchronization using Minitransactions
	Discussion

	Multi-tenant Database Systems
	Multi-tenancy Models
	Shared Hardware
	Shared Process
	Shared Table
	Analyzing the Models

	Database Elasticity in the Cloud
	Albatross: Live Migration for Shared Storage Data Stores
	Zephyr: Live Migration For Shared Nothing Data Stores
	Slacker: Live DBMS Instance Migration in Shared-nothing Model

	Autonomic Control for Database Workloads in the Cloud
	Discussion

	Concluding Remarks
	Bibliography
	Authors' Biographies

