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One of the biggest problems of mathematics is to explain to everyone else 
what it is all about. The technical trappings of the subject, its symbolism and 
formality, its baffling terminology, its apparent delight in lengthy calculations: 
these tend to obscure its real nature. A musician would be horrified if his art 
were to be summed up as “a lot of tadpoles drawn on a row of lines”; but that’s 
all that the untrained eye can see in a page of sheet music. . . . In the same 
way, the symbolism of mathematics is merely its coded form, not its substance.

—Ian Stewart, British mathematician and 
celebrated popular math and science author1

IF YOUR CHILD ASKED why we learn a times table for multiplication but aren’t 
taught one for division, what would you say? It’s a basic question. Can you 

answer it? Are you able to show your child how to do long division, but can’t 
explain why it works? Not just how to perform the method, mind you, but 
what really makes it go? We all use the symbols {0, 1, 2, . . . , 9} every day: Do 
you know where they came from or what they are called? What do you call 
them, and can you explain to someone why we calculate with them instead of 
with Roman numerals? By the time you finish this book, you will know the 
answers to these questions and many more, even the most important one that 
all parents or teachers have been asked: Why is this stuff important?

Put succinctly, this book is for readers who want to know the why in arith-
metic—not just the how. If you want to know the context in which arithmetic 
sits and where the techniques come from, then you have come to the right 
place. In these pages you will find explained not just how to do multiplication 

Introduction
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but also what actually makes it tick and how our ancestors tamed it. If you 
are comfortable in your understanding of the rules of elementary arithmetic, 
you may still be surprised to learn how much is really involved in making 
the rules work. If, on the other hand, you are not content in your conceptual 
understanding of arithmetic and desire to significantly enhance it, then you 
won’t be disappointed.

You may have heard the experts wax eloquent when discussing mathemat-
ics, describing it as powerful, mysterious in its reach, even beautiful. Are they 
serious? To a supermajority of humankind these adjectives are completely 
invisible when they see mathematics expressed on paper. 

My hope with this text is to breathe life into some of that magic and beauty 
mathematicians rave about when describing their subject. I will attempt to 
do this by seizing  upon them at the fountainhead, for believe it or not, the 
beauty and power of mathematics are not confined to the higher realms of 
the subject, but are present in elementary arithmetic right from the start. 
Conceptual jewels, accessible to you, are available for the taking, and it is my 
intention to open these up in conversation and view them in the brilliant light 
of context and history.

While all are welcome to join us on this journey, this book is specifically 
targeted to address the needs of the general adult reader who, while not being 
a mathematician or scientist, is nevertheless curious about what mathematics 
is all about and wants to significantly increase their conceptual understanding 
of the subject. Hopefully in its reading, you will find that elementary arithme-
tic is truly spectacular and thereby gain a new appreciation and understanding 
of the subject in a way that allows you to better deal with the mathematics 
you might encounter in your life, better explain it to your children, or better 
understand other math and science books that you may read. 

There Is More to Mathematics Than Symbols

A key ingredient in appreciating what mathematics is about is to realize that 
it is concerned with ideas, understanding, and communication more than it 
is with any specific brand of symbols. And while symbols form a crucial cen-
terpiece in all of this, they are not the goal in and of themselves. 

In terms of using ideas in extremely powerful ways, mathematics holds an 
exceptional, almost hallowed place. It is no stretch of the English language to 
say that ideas and reasoning cast in mathematical form are truly something else. 
The great Galileo is said to have declared that, “Man’s understanding where 
mathematics can be brought to bear, rises to the level even of god’s.”2

It is almost as if ideas set in mathematical form melt and become liquid 
and  just as rivers can, from the most humble beginnings, flow for thousands 
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of miles, through the most varied topography bringing nourishment and life 
with them wherever they go, so too can ideas cast in mathematical form flow 
far from their original sources, along well-defined paths, electrifying and dra-
matically affecting much of what they touch. 

For us to dial into this transportability, however, requires that we use 
symbols—a lot of them in fact (think of the symbols as part of the fluid 
and the rules of mathematics as part of the riverbed). It is through the use 
of symbols that human beings can leverage the almost magical ability of 
mathematics to systematically and reproducibly transform ideas into other 
ideas, and the need for them appears quickly when we try to answer ques-
tions involving quantity.

Why Symbols Are Needed in Arithmetic

People have always had the need and desire to compare and analyze the sizes 
of collections. How much stuff do we have? How many people are in our 
settlement? How large is our enemy? Collections, such as these, vary in size 
and when we get to the point of describing or cataloging these variations 
in-depth, we are inevitably led to symbolic descriptions. How do symbols 
help us? Let’s take a peek.

Consider a scenario involving two cattle ranchers, each with a large herd 
numbering into the thousands, wanting to know who has more cows. For the 
time being, let’s assume that no system of numeration has been developed 
and that they must figure out a way to do the comparison from scratch. How 
will they be able to prove, beyond dispute, who has the larger herd? 

There are several ways to proceed. One involves the ranchers creating a pair 
of lanes (one for each herd) and then having their ranch hands round up the 
cows and march them singly down each of their respective lanes in a matching 
off process. If the herds are of unequal size, one of the ranchers will eventu-
ally run out of cows in the pairing. The one with the excess of cows can then 
conclude that he has the larger herd. While this method certainly works in 
determining who has the larger herd, it could be very difficult to accomplish 
in practice. There are better ways.

Another method involves using two carts (one for each herd) and a large 
collection of small rocks. Each rancher’s herd is now measured by going out 
into their respective pastures and placing a rock in their respective carts for 
each cow. Once each herd has been measured in this fashion, it is a much 
simpler matter to bring the carts in close proximity and pair off the small in-
animate rocks than it is to round up and pair off two sizeable herds of huge, 
living, smelly animals. The ranchers can obtain the same information as with 
the first method but this time in a much more convenient manner.



xiv Introduction

Each rock in the collection has acquired a new meaning—rather than sim-
ply being a rock, it now stands for a cow. Or put another way, each rock has 
become a symbol. 

Two great strides are gained by taking this simple step. First, it is clearly 
much easier and more convenient to match off small inanimate rocks than 
it is matching off hundreds of large animate cows, each with its own agenda. 
Second, using the rocks as symbols has opened up a vastly superior way of 
comparing collections. Given that existence of an object is what counts in 
whether a rock is placed into the cart, there is nothing that prevents the 
ranchers from comparing other things that exist besides two herds of cattle. 
They could just as easily use these carts and rocks to compare the sizes of 
two groups of people, two neighborhoods of houses, two forests of tall trees, 
and so on. For many of these situations, the two lanes method is impossible 
to use at all. Large houses or tall trees cannot be easily rounded up, marched 
down lanes, and paired off. So we see that the method with rocks is not only 
more handy than the method with lanes, it also gives the ability to compare a 
greater variety of objects. 

Since they are in the mood, can they find any symbols more convenient 
than using rocks? Absolutely! If the ranchers had some sort of portable writ-
ing system, they could replace the rocks in the carts with written tally marks. 
For instance, they could use any of the following sets of marks: |, X, O, or +. 
If they chose to use |, three rocks in a cart would be represented as: | | | . 

Once each had done his separate tally of his respective group, the ranchers 
could simply compare or match off the written symbols and no longer be bur-
dened by pulling heavy carts full of rocks. And since tally marks can be created 
at will whereas rocks cannot, tally marks can, in theory, measure much larger 
collections without as great a concern for supply issues. 

Each of these improvements can be looked upon as a “technological” 
breakthrough in how collections are measured, and it is clear to see that the 
method of indirect comparison, in this case using symbols that stand for the 
objects being counted, has decisive advantages over directly using the objects 
themselves. Throughout this book, we will see that in mathematics symbols 
are absolutely necessary.

Symbols Are Important in Language as Well

The need for using symbols is not unique to mathematics. Other systems 
critically depend on them as well. The most familiar of these are spoken lan-
guages. Spoken languages are systems that use sounds as symbols. They give 
us the remarkable ability to describe and communicate with easy to produce 
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sounds as opposed to trying to do so by reconstructing, out of thin air, the 
physical objects, events, and ideas that we wish to describe. 

In other words, spoken languages give us the ability to represent a substan-
tial portion of life through the use of nothing but sounds.3 Speaking allows 
us to take our inner thoughts and share them with others by simply making 
sounds with our vocal chords. A song consisting of nothing but sounds can 
bring people to tears or motivate them to action. Think of the organized 
sounds of speech serving as part of the “fluid” for transporting thoughts and 
emotions just as numerical symbols are part of the “fluid” for communicating 
quantitative information in mathematics. 

Cognitive scientist George Armitage Miller states, “The evolution of lan-
guage enabled many individuals to think together. Social units could form 
and work together in novel ways, cooperating as if they were a single super 
ordinary individual.”4 One emergency worker can, for example, using mostly 
sounds, organize ten men to lift a heavy car off a victim; acting together, if you 
will, as one super human. Spoken languages give dramatic demonstration to 
the fact that using symbols to represent ideas can be extraordinarily powerful. 

Negative Side Effects of Using Symbols

Despite being essential for the expression of mathematics, symbols are notori-
ously bad in that they can quite naturally mask what is happening conceptu-
ally. This unfortunate side effect of using symbols is one of the central issues 
that math education must overcome. 

Since symbols in mathematics rarely look like what they describe (e.g., the 
tally marks or rocks discussed earlier look nothing like the cows they repre-
sent), using them necessitates a temporary separation between the problems 
and motivations and the method of solution. This in itself isn’t a problem. 
The problem arises when this separation is taught as being the natural state of 
affairs—or worse yet, the only state of affairs. 

When this happens, it can become difficult for students to acquire a proper 
perspective of what the symbols are really doing for them, and since students 
are people and not machines, this has psychological implications that can 
prove fatal to their understanding, and forever affect their attitude toward the 
entire subject of mathematics.  

On the other hand, for the symbols to be most effective, they must be al-
lowed this separation (i.e., the rocks and tally marks must be allowed to rep-
resent other things besides the cows). Only when the symbols are allowed to 
free themselves from their origins can they really fly and open up whole new 
worlds to those who use them. 
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So we have an interesting paradox. 
The very strength of mathematics, its use of efficient and unfettered sym-

bols and procedures to express and transform ideas, is also its greatest pitfall 
in terms of conceptual and contextual understanding. This paradox is real 
and unavoidable. The situation can be likened to the difficulties with faith-
fully capturing in writing what someone said or thought. 

Issues with Making Communication Visible

Imagine this entire chapter without any punctuation marks, spaces between 
words, or capitalization. The quote by Ian Stewart at the beginning of this 
chapter would read as:

oneofthebiggestproblemsofmathematicsistoexplaintoeveryoneelsewhatitisal
laboutthetechnicaltrappingsofthesubjectitssymbolismandformalityitsbaffling
terminologyitsapparentdelightinlengthycalculationsthesetendtoobscureitsreal
natureamusicianwouldbehorrifiedifhisartweretobesummedupasalotoftadpoles
drawnonarowoflinesbutthatsallthattheuntrainedeyecanseeinapageofsheetmusic
inthesamewaythesymbolismofmathematicsismerelyitscodedformnotitssubstan
ceianstewart

as opposed to

One of the biggest problems of mathematics is to explain to everyone else what it 
is all about. The technical trappings of the subject, its symbolism and formality, 
its baffling terminology, its apparent delight in lengthy calculations: these tend 
to obscure its real nature. A musician would be horrified if his art were to be 
summed up as “a lot of tadpoles drawn on a row of lines”; but that’s all that the 
untrained eye can see in a page of sheet music. . . . In the same way, the symbol-
ism of mathematics is merely its coded form, not its substance.—Ian Stewart

It is easy to see that punctuation marks, spaces between words, and capi-
talization are a tremendous help in making passages such as Stewart’s quote 
more convenient to read and understand. These are issues of writing not 
speech; when statements are spoken they come at us in a very different fashion 
than they do when we attempt to make them visible.5 A major task in writing 
then is to design it in such a way that it recaptures, as much as possible, what 
is being spoken or thought.

If a statement is spoken, the speaker adds tone, facial expressions, eye con-
tact, and gestures to the statement to convey meaning. If the statement is a 
silent thought, then the thinker has context, images, and emotions in mind 
when he is thinking the thought.
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In either case, when the statement is penned to paper, these extras (tone, 
gestures, mental images, emotions, etc.), the nonverbal cues, if you will, are 
lost. The writer can make an attempt to recapture these; by adding context, 
formatting, careful phrasing, and through sprinkling the written text with 
punctuation (we will call these the “writing extras”).6 

If the statement is a question, then the question mark symbol can be used 
to communicate this. If the speaker or thinker wanted to express the state-
ment with emphasis, then the written form can be given an exclamation 
point, quotation marks, boldface or italics, bullets, set in a tabular format, 
and so on.

The writing extras help to clarify the speaker or thinker’s intent—making 
them a contextual and conceptual illumination of sorts. These extras rarely if 
ever do this perfectly but serve as a tremendous aid in helping written com-
munication stand on its own. 

Conceptual and Contextual Illumination

We might ask a similar question of explaining mathematics: How do we pres-
ent mathematical material such that the average reader, with the appropriate 
background, can understand in a substantial way what is truly being com-
municated about the mathematics, and then have that reader also gain a true 
appreciation of the subject from that understanding? 

It is important to recognize that the written expressions of mathematics 
have many of the same issues that language writing has in trying to effectively 
convey context and meaning. Moreover, many of these issues are of a far 
greater intensity in mathematics due to the simple fact that unlike language 
writing, which is intimately connected with the spoken language of the reader, 
mathematical writing seems more like a foreign language. 

This is an extremely serious problem in mathematics education as the 
celebrated author Lancelot Hogben has alleged, with historical justification: 
When a subject loses contact with the common man it runs the risk of becom-
ing a superstition.7 And it is a problem that really exists to some degree at all 
levels of the subject. Even exceedingly competent mathematicians and scien-
tists face this problem to some extent when trying to understand and utilize 
an area of mathematics with which they are not familiar. 

If it is to make the wonders and beauty of mathematics more generally 
accessible to the public, mathematical writing, far more so than language 
writing, needs to be significantly enhanced through conceptual and contex-
tual illumination. Doing this properly is an enormous undertaking and can 
be likened in scope, perhaps, to the difficulties in making many of the scenic 
marvels in the western United States, at one time reachable only by intrepid 
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explorers, accessible to the average citizen. Accomplishing this necessitated 
massive construction projects involving the creation of thousands of miles of 
roads, hundreds of bridges, whole cities or towns, facilities, signage, and an 
infrastructure involving thousands of people to manage it all.

It is with an eye toward contributing, in some small part, to this massive 
undertaking that How Math Works was written. Being an experiment in expo-
sition, it aims to provide in a deliberate fashion some of that critically needed 
conceptual and contextual illumination.  

Final Words

The universe is very generous in that it allows us to gain remarkable advan-
tages by converting or substituting one set of things into or for another set of 
things. A magnificent application of this is the depiction of meaningful ideas/
objects whether physical or abstract in the form of coded symbols (i.e., sym-
bols that look nothing like what they describe). It is such a natural thing to do 
in mathematics that symbols have indeed become the public face of the sub-
ject. The great advantage to employing them is that it is far easier and more 
advantageous in general to use and manipulate symbols than it is to use and 
manipulate the things they stand for. This advantage gives human beings the 
breathtaking ability to accomplish absolutely astounding feats from extremely 
comfortable positions. 

Mathematics, however, is more than just the manipulation of symbols, and 
the goal here is to shed critical light on this fact. Our discussion will revolve 
around what have historically been considered the five fundamental opera-
tions of elementary arithmetic. These include the standard four of addition, 
subtraction, multiplication, and division, as well as that of the representation 
of quantity, often referred to as numeration. We will focus on whole numbers 
exclusively. 

This material may seem too shallow to base an entire book around but, 
as you will discover, nothing could be further from the truth. There is great 
depth, beauty, and genius inherent in these five operations and the framework 
surrounding them, and we will attempt to bring awareness to this fact by 
flooding the conversation with conceptual and contextual illumination. 

Many of the questions we will address include:

• What does it mean that our number system is “base ten”? What is the 
significance of the notions ten, hundred, thousand, . . . , million? (See 
chapter 1.)
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• What do language writing and mathematical writing have in common? 
Can any of this be useful in illuminating issues in mathematics? (See 
chapter 2.)

• Where does our number system come from? (See chapter 3.)
• What is the modern significance in math education of the ancient tool 

called an abacus? (See chapters 3, 5, 6, and 8.)
• Why do some number systems, such as ours, have a zero and other 

number systems, such as Roman numerals, have none? What are our 
numerals called? (See chapter 3.)

• Why do we care about mathematics? (See chapter 4.) 
• Where do the vertical numeral formations we use in addition, subtrac-

tion, multiplication, and division originate? (See chapter 5.)
• What is the true significance of a times table? Are there tables for the 

other operations? (See chapters 5, 6, 7 and 8.)
• What makes the multiplication algorithm really tick? (See chapter 7.)
• What are three major interpretations we can give to division? Why is 

division by zero undefined? (See chapter 8.)
• What is going on with the long division algorithm? (See chapter 9.)
• Why did the numerals we use today replace all of the others? (See 

chapter 10.)
• What was arithmetic education like 500 years ago? How did medieval 

Italian merchants and eighteenth-century Swiss educators influence el-
ementary arithmetic education in America? (See chapter 11.)

• How do numbers help illuminate our world? What do measurement and 
counting have in common? (See chapter 12.)

It is now time to begin our celebration of this most fundamental of sub-
jects. I am excited! Hopefully you are too and will enjoy the journey.
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History is the most fundamental science, for there is no human knowledge 
which cannot lose its scientific character when men forget the conditions under 
which it originated, the questions which it answered, and the function it was 
created to serve.

—Benjamin Farrington, Irish writer, 
classicist, author of Greek Science1

I am sure that no subject loses more than mathematics by any attempt to dis-
sociate it from its history.

—James Whitbread Lee Glaisher, English mathematician, 
astronomer, editor of the Messenger of Mathematics 

(inspiration for the American Mathematical Society)2

I

THE RELEVANCE OF THE PAST
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Neither the bare hand nor the unaided intellect has much power; the work 
is done by tools and assistance, and the intellect needs them as much as the 
hand. As the hand’s tools either prompt or guide its motions, so the mind’s 
tools either prompt or warn the intellect.

—Francis Bacon, English statesman, lawyer, 
philosopher and voice of the Scientific Revolution1

IN NOVEMBER 1890, the noted English psychologist James Ward boldly stated 
of mathematics education that: “The individual should grow his own math-

ematics just as the race has had to do. But I do not propose that he should 
grow it as if the race had not grown it too. When, however, we set before him 
mathematics in its latest and most generalized, and most compacted form, we 
are trying to manufacture a mathematician, not to grow one.”2 

An interesting idea indeed, but it was already very old even by Ward’s time. 
Believe it or not, traces of this idea can be found way back in the 1600s in the 
writings of the great Czech educator John Amos Comenius, as well as many 
others since (and a few before). In this chapter, we aim to implement a por-
tion of this grand vision of math education by attempting to grow the reader’s 
understanding of basic numeration in a natural and contextual manner as 
opposed to manufacturing it artificially. Let’s see if it works.

We begin with a simple question: What exactly is a numeral? Is it the same 
thing as a number? If not, what’s the difference? Put to mathematics, this may 

1

Tools of the Intellect



4 Chapter 1

seem like a subtle question but it is essentially a question about the difference 
between a thing and the symbolic representative of that thing. For example, 
it is easy to see that an actual physical house is vastly different from the five 
letter word “house” that represents it in English. The word in fact doesn’t look 
anything like the structures it describes. 

In a similar fashion, numerals are symbols that we use to represent numbers 
but aren’t the actual numbers themselves. Defining exactly what a number is 
can be tricky. The good news is that our intuitive notion of what numbers are 
is more than adequate for our purposes here. For example, whether or not 
we can give an exact definition of the number three doesn’t prevent us from 
recognizing when a collection has three objects. In this text, we will often 
blur the distinction between number and numeral, but this should cause no 
difficulties.

It is worthwhile noting, however, that when the distinction between the 
two has been blurred this has sometimes led to important mathematical 
discoveries (we will see this happen in chapter 3 when we illuminate the 
discovery of zero), while in other cases it has led to untold conceptual 
difficulties and superstitions (some of which also came with the discovery 
of zero). 

In any event, it is useful to keep in mind that there is the concept of a num-
ber (say three) and many different ways to represent that number (three, tres, 
| | |, 3, etc.); just as there are many different ways to represent the concept of 
greeting someone (e.g., hello, hi, buenos dias, ni hao, konnichiwa, guten tag, 
namaste, and so on).

Organizing Tally Marks

Throughout this book, we will be primarily concerned with numerals that 
represent a number by some sort of written mark. When we decide to 
represent numbers this way, we gain advantages in efficiency—over other 
methods such as direct comparison or using rocks. Moreover, by using 
visible marks we acquire the ability to more easily lay out side by side the 
symbols for the various sizes; which allows us to analyze how different 
magnitudes compare in a visual way. Implementing this scheme by going 
from smaller values to larger values yields the following system of tally mark 
arrangements:
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Now, let’s say we wanted to count a collection of ten apples. We could do 
this by simply jotting down a tally mark for each apple and this might look 
like: | | | | | | | | | |. Since the number of tally marks is the determining factor in 
conveying size, not their horizontal or vertical appearance, this arrangement 
is equivalent to the one in the previous diagram given by: . We see then 
that the number ten is represented in the system of tally mark arrangements 
listed above. 

While giving us greater leeway than the original methods of comparing size 
(via lanes and rocks), using tally marks still has some serious inconveniences. 
This can be seen when tally marks are used to represent relatively large collec-
tions, say for instance one thousand. 

Think about it, placed side by side would you be able to quickly distinguish 
the difference between a collection containing one thousand tally marks and 
a collection that had one thousand and three tally marks? You would be a rare 
specimen indeed if you could. Humans simply aren’t built to quickly gauge 
such differences on sight. We know that we can resort to a matching off pro-
cess but this is laborious and unpractical. Can we build tools of some sort to 
help make such differences more readable to us on sight? 

Societies throughout the ages have faced this question and chose a variety 
of ways to deal with it. A natural approach, when the number of tally marks 
became large enough, involved rearranging them into equally sized groups. 
If we apply this approach to the largest two collections shown in the bottom 
row of the tally mark arrangements, we obtain many possibilities. Three rear-
rangements are listed here: 
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Groups of five:

Groups of seven:

Groups of ten:

Each of these rearrangements allows us to determine, more quickly, which 
collection of the two is larger (twenty-three versus twenty-five). Such tallies 
are frequently done in counting votes and the like; and to simplify matters 
even further, each of the rows of equal size is often struck out by a diagonal 
line, which is also included as a tally mark in the count. Thus our rearrange-
ment into groups of five can be written as:

Groups of five (rows slashed):
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Similarly, our seven and ten groupings can be written as: 
Groups of seven (rows slashed):

Groups of ten (rows slashed):

More conveniently, we could replace each of the rows of constant size by a 
new symbol. Thus, for example, in the first case we may replace the rows of 
size | | | | | by the symbol . Doing so compresses the symbols used to: 

Five coins:

Similarly, replacing the groups of sizes | | | | | | | and | | | | | | | | | | by the 
respective symbols  and  in the latter two examples yield: 

Seven coins:
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Ten coins:

Compare the readability of the coin diagrams with the original ungrouped 
tally mark diagrams. The size of the groupings chosen in this manner is 
called the base of that system. Thus the reorganizations into groups of five, 
seven, and ten correspond to systems of base five, base seven, and base ten, 
respectively. 

While there is complete freedom in which system of grouping or base to 
use, most societies in the past chose to group in fives, tens, or twenties as op-
posed to other groupings such as sevens or twelves. Why is that? 

The common belief is that these choices were made due to the nature of 
human anatomy. The human beings devising these systems had five fingers 
on one hand, ten fingers on two, and ten toes on two feet. It seems reasonable 
that these appendages would be used to aid in the counting, and that people 
would naturally choose groupings that matched the number of fingers and/or 
toes in a one to one fashion. 

A good test of this theory could occur sometime in the future: If we were 
to ever meet an alien species of beings with say seven fingers on each hand 
and seven toes on each foot. The theory would predict that popular bases for 
this species would be seven, fourteen, and twenty-eight (assuming we didn’t 
destroy each other first before we could find out). 

We will use base-ten grouping throughout the book. Accordingly, any 
collection of tally marks numbering less than ten is left as it occurs, thus we 
will leave the arrangements { | | | | | , | | | | | | | } as they are but will replace the 
arrangement with ten tally marks { | | | | | | | | | | } by the  symbol or the 
arrangement with twelve tally marks { | | | | | | | | | | | | } by the coins  
(where we have replaced ten of the tally marks by the ten coin symbol, leaving 
as is the two left over). Whenever a group of ten tally marks is encountered in 
any configuration we will so replace them by the  symbol.

Using these grouping rules now gives us the ability to quickly and easily 
distinguish between a coin configuration containing, say, eighty-three tally 
marks and one containing eighty-five. Not the case, however, if we leave 
these coin configurations ungrouped, as eighty-three |s and eighty-five |s, 
respectively.
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This problem of comparison is not unique to the |s. The essence of the 
difficulty lies with the proliferation of symbols. It is hard for us to quickly 
compare eighty-three and eighty-five of any type of symbol. So if we have 
eighty-three and eighty-five s, we will still have the same problem. 

The process of gauging or measuring the size of a collection on sight with-
out counting is called subitization. Think about it, you can probably recog-
nize at most four or five objects at a glance. Ask yourself, and be honest now, 
can you look at a collection of thirteen objects and recognize instantaneously 
that there are exactly thirteen of them without counting or rearranging them 
in some way? 

Some experimental results suggest that our ability to recognize a certain 
number of objects on sight is an innate talent that we possess from a young 
age. In a particularly interesting study reported in Nature magazine in 1992, 
reaction times of four- to five-month-old infants were investigated by a 
University of Arizona researcher. The infants paid much longer attention to 
situations involving size that violated what they evidently expected to see. 
For instance, a puppet was shown to the child and then hidden behind a 
screen. Then a second puppet, in full view of the infant, was placed behind 
the screen. When the screen was removed and only one puppet was present, 
as opposed to the two puppets, the infants paid much longer attention to 
this situation than they did to the expected situation of two puppets being 
present. Similar observations were observed, for instance, when two pup-
pets were expected and three were shown. This suggests that the infants 
could distinguish between one and two and between two and three (and 
that they even understood that one plus one should be equal to two not one 
or three).3 Other studies have since both confirmed and questioned these 
findings.4 



10 Chapter 1

We have made the arrangements represented by:

more readable by invoking our base-ten grouping rules and rewriting them as:

Can we do the same if we are confronted with twenty-three s and 
twenty-five s as shown here? 

An obvious way to make this situation more readable would be to similarly 
represent a group of ten of the  coins by a new symbol. This we do and get: 

The “H” of course stands for one hundred and using this new grouping al-
lows us to rewrite the twenty-three tens and twenty-five tens, respectively, as:

The symbols on the right represent the larger number of two-hundred and 
fifty versus the smaller value on the left of two-hundred and thirty. This form 
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of writing the values is easy to read and once again allows us to immediately 
recognize which number is greater. 

If the sizes are great enough, the problems we have with the s will reap-
pear again with the s unless we also group them and so on. Thus continued 
grouping into higher coin denominations is an obvious choice if we want to 
handle larger and larger numbers more conveniently. Historically, as societies 
grew more complex they had to deal with ever-increasing numbers, leading to 
the creation of not just one type of coin numeral but to many types—or to a 
system of coin numerals. The natural progression of our system is listed here:5

ten ≡  

hundred ≡  

thousand ≡  

ten thousand ≡  

hundred 
thousand ≡ 

million ≡ 

Imagine trying to understand, without any grouping, the individual tally 
marks represented by:
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This number in English reads as two million, two thousand, one hundred 
twenty-one and in grouped form we can grasp what value it represents with 
ease. Without the aid of grouping, we are as helpless mentally to grasp its 
value as a logger would be in a forest without the aid of his chain saw or ax.

Representing numbers by grouping doesn’t save us the trouble of having 
to do the initial count, however. If there are eight hundred thirty-five objects 
randomly assorted, the first person to learn this must perform the actual tally. 
However, once the result is obtained, grouping allows her to rearrange the 
tally marks, via the methods discussed here, and record them in a more ac-
cessible fashion for future use. That is, this grouping saves others, including 
herself, who need to reference the information, from having to perform the 
long count all over again. If the eight hundred thirty-five objects are arranged 
in a neat pattern, we may be able to determine the number of objects without 
actually counting each one; we’ll talk more about how to do that in chapter 6.

This simple process of rearranging larger groups of tally marks into smaller 
sets of coins hints at the fantastic capabilities for transformation that ideas about 
quantity can acquire when we represent them by certain types of visible marks. 
We can systematically with ease take the visible marks places that it would be very 
difficult, if not impossible, to take the things that they stand for. This allows us to 
literally reshape ideas in reproducible ways (one thousand individual tally marks 
being instantaneously morphed into the single symbol  while the thousand 
individual physical items that the symbols stand for remain unchanged)—
refashioning them so as to gain huge conceptual and, as we shall soon see, 
computational advantages while not losing any essential content. 

It’s just like money. Money allows us to equate all sorts of different things 
and represent them by a single dollar value. Eight hundred dollars can repre-
sent a rent payment, the price of a television set, the price of a computer, the 
wages for forty hours of hard work, a car repair bill, or the price of a meal at a 
campaign fund-raising event. These different things become equivalent in the 
sense of monetary value. This equivalence allows a laborer to systematically 
transform his forty hours of hard work into a television set, a rent payment, 
a set of new brakes, or a computer. Money, in a sense, acts like a liquid by al-
lowing his forty hours of sweat to seamlessly flow into another form to great 
advantage (in this case a form involving the necessities or luxuries of life). In 
fact, assets in the form of cash are often called liquid assets. Symbols in arith-
metic act like a currency for quantitative ideas.

Ancient Numeral Systems

We have discussed one possible way of making the sequence of sizes for 
collections more readable. There are a myriad of others. One of these is 
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the Egyptian hieroglyphic system. The hieroglyphic method of numera-
tion is similar in spirit to the coin system of numeration discussed earlier. 
The following table shows the coin denominations and their hieroglyphic 
equivalents. 
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Permission to use hieroglyphic symbols granted by William Hatch.

Using this system, the number two million, two thousand, one hundred 
twenty-one would read as:

       

The number twenty-three thousand, three hundred twenty-two in hiero-
glyphics would read as: 

           

Another ancient system of numeration is the well-known Roman numeral 
scheme. The Roman system uses “I” as its basic tally symbol. Thus the side-
by-side layout of magnitudes with this symbol is given by: 

I II III IIII IIIII . . . IIIIIIIII IIIIIIIIII IIIIIIIIIII . . .

It is clear that the Romans faced the same problem with the proliferation of 
symbols as we did earlier. The Romans chose to also deal with this problem 
by grouping—converting a certain collection of tally marks into a new sym-
bol; but they did so in a manner somewhat different from our coin system. 
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Their first grouping occurred at five, with the symbols IIIII being replaced by 
the symbol V. However, instead of continuing to group in fives and creating 
a new grouping symbol for VVVVV, the Romans created a new grouping 
symbol for only two of them, replacing the symbols VV by the symbol X. This 
alternation between five grouping and two grouping continues in the Roman 
scheme; indicating the use of fingers and hands (which come in fives and 
twos, respectively).

The following is a list of Roman symbols and how they represent magni-
tudes up to one thousand:

(One): I
(Five=Five ones): IIIII ≡ V
(Ten=Two fives): VV ≡ X
(Fifty=Five tens): XXXXX ≡ L
(Hundred=Two fifties): LL ≡ C 
(Five Hundred=Five hundreds): CCCCC ≡ D 
(Thousand=Two five hundreds): DD ≡ M 

Unlike our coin scheme which is purely additive (i.e., we add the coin val-
ues in a configuration to obtain the value represented), Roman numerals can 
also employ a subtractive feature. Thus for instance one may write:

four as IIII (four ones) or as IV (five minus one)
nineteen as XVIIII (fifteen plus four) or as XIX (ten plus ten minus one)
nineteen hundred as MDCCCC (fifteen hundred plus four hundred) or as
MCM (one thousand plus one thousand minus one hundred)

The convention in general is that larger value symbols are written to the 
left of smaller value symbols. If a smaller value symbol is to the left of a larger 
value symbol, it means subtraction of the smaller value from the larger. Thus 
XXXI means thirty-one whereas XXIX means twenty-nine. Numbers larger 
than one thousand can be dealt with by placing a bar over the number, which 
means to multiply by one thousand. Thus V means five thousand and L  
means fifty thousand. 

It is worth noting, however, that much variation has existed in some of 
these rules throughout the centuries. For instance, the subtractive principle 
appears to have been rarely practiced in ancient Rome itself, and several 
methods, in addition to the one discussed above, have been used to represent 
numbers greater than a thousand.6 

Roman numerals, of course, still find considerable usage today. They serve 
as visually elegant representations of numbers, and are sometimes used in 
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movie credits, on clocks, for the labeling of Super Bowls, and as page numbers 
in the prefaces and introductions to books. They are not used, however, to 
perform calculations.

Six hundred seventy-two is represented in the three systems as follows: 

DCLXXII

What is the base of the Roman numeral system? Since two types of group-
ings are used, which has the priority? Is it a base-two system, a base-five sys-
tem, or something else? Essentially, the Roman numeral system is what might 
be called a modified base-ten system. That is, all the base-ten groupings of our 
coin system (ones, tens, hundreds, thousands, ten thousands, etc.) are present 
in the Roman system (using bars for values larger than a thousand) but there 
are extras: five, fifty, five hundred, and so on. 

As a standard of comparison, think about the American monetary system 
which is a decimal or base-ten system with modifications—that is, we have 
the base-ten denominations of the penny (the equivalent to the basic tally 
mark), the dime, the dollar bill, the ten dollar bill, the hundred dollar bill, 
and so on, but we also have the nickel, quarter, five dollar bill, and twenty 
dollar bill. 

These extra or interior denominations help keep the change in our wal-
lets and purses more manageable and so too do they help keep the strings of 
Roman numerals down to a more manageable size. This is an advantage of the 
Roman system over the other two we have discussed. This can be clearly seen 
in the representation of six hundred seventy-two in the three systems (where 
the coin and Egyptian systems require fifteen total symbols while only seven 
Roman numerals are needed).

Another ancient system of numeration, which we will briefly visit later in 
chapter 10, worked by grouping in packets of sixty. That is, instead of being 
base ten, the system was what we might call a modified base-sixty system. 
This is the famous sexagesimal system of the Sumerians, and subsequently the 
Babylonians, developed more than four thousand years ago. The system was 
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a mix of additive grouping and place-values, thus differing in a fundamental 
way from the three systems discussed earlier.

Awkward as it may sound, this system was so versatile, due to the place-
value component, that remnants of it survive to this very day. For example, in 
our methods of reckoning time, we group both minutes (the small or “min-
ute” part of an hour) and seconds (the “second” small or minute part of an 
hour) in packets of sixty. 

Conclusion

We have progressed far from the pedestrian task of comparing two herds 
of cattle. The work done on the ranch clearly has had far-reaching impli-
cations. Starting from the methods developed there, we now have a coin 
numeral system allowing us to conveniently represent the quantity in any 
discrete collection we are likely to ever encounter in daily life. Moreover, 
we can use these representations to compare the sizes of various collections 
and communicate these results in a visible way. The ranchers in satisfying 
their curiosity to know which of them had the larger herd were actually 
touching upon universal situations that can all be dealt with in a similar 
fashion—meaning that they were, in a sense, able to dial into eternity from 
down on the ranch.

The requirements for using a manageable set of symbols are based in large 
part on psychological needs. We simply cannot easily distinguish the differ-
ences between collections of even modest size unless we arrange them in some 
fashion. Ultimately, however, we are still fighting a losing battle. Given that 
numbers go on without end, even our technique of grouping will result in a 
proliferation of symbols that will eventually overwhelm, as we try to describe 
larger and larger numbers. 

The coin system or even the place-value system we use today, while simple 
to learn and rich enough to describe most of the numbers we need in everyday 
life, are not so well suited to describe some of the numbers that scientists and 
engineers need on a daily basis. Consequently, they often use other notational 
schemes to keep the number of symbols down to a manageable size. Scientists 
often use a system called scientific notation while others often use a slightly 
different version called engineering notation.

Finally, the ability to share information in a visible way turns out to be 
highly nontrivial. In language, the ability to communicate visibly turned out 
to be revolutionary; perhaps as revolutionary a thing as there has ever been 
designed by the hand of man. In the next chapter we discuss some of the gains 
that we acquire from communicating this way.
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This marvelous invention of composing out of twenty-five or thirty sounds 
that infinite variety of expressions which, whilst having in themselves no like-
ness to what is in our mind, allow us to disclose to others its whole secret, and 
. . . all that we imagine, and all the various stirrings of our soul.

—Port Royal Grammarians (1660), French grammarians, 
proponents of a universal grammar1

Writing not only helps us remember what was thought and said but also in-
vites us to see what was thought and said in a new way.

—David R. Olson, contemporary Canadian 
linguist and author of The World on Paper (1994)2

BEFORE CONTINUING WITH OUR tour through elementary arithmetic, we pause 
briefly to turn our attention to the symbolic systems that we use to com-

municate with each other every day. It is well known that human languages 
are of monumental importance to most of what we do, and despite the fact 
that we are intimately familiar with how to use them (our own at least), much 
about them remains a mystery. How do languages develop?3 How do children 
truly come to learn languages?4

Whatever the answers to these questions, we know that both language and 
mathematics are used by human beings, in part, to help them better under-
stand and better steer their way through a complex world. Is there any com-
mon ground between the two—common ground that might prove useful to 

2

The World in Symbols
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a better understanding of both? Surely there must be a lot. Mining that com-
mon ground for a few grains of conceptual insight is the focus of this chapter.

Everyday communication comes in two main flavors: spoken and written. 
Each form represents an important category by which we are able to sym-
bolically represent certain aspects of the world. As this book unfolds, these 
categories will prove useful in conceptually understanding important features 
regarding numeration and calculation in elementary arithmetic. 

Speech is the more natural of the two and by itself already shows a couple 
of important features of symbolic systems in general:

1. They allow us to represent one set of objects by another more convenient set 
of objects. In the case of speech, representing complicated and hard to 
reproduce human activity more conveniently through the use of easy-
to-produce sounds. 

2. They can come in a wide variety of forms. Several thousand different spo-
ken languages exist in the world today. They differ in the details, yet they 
all exist for the same basic purpose: to facilitate communication using 
sound signals. 

Yet as powerful as speech is, it is missing two important ingredients some-
times needed in communication: permanence and static visibility. Sounds 
are temporary and invisible, and they quickly disappear. All of that coded 
meaning in those sounds vanishes almost immediately after they are created 
(the problems with lack of permanence and static visibility are not limited to 
speech—for as we saw earlier, the human need to build systems to determine 
and permanently record the varying sizes of their possessions eventually leads 
to the creation of numerals [e.g., coin numerals in our case]).5

How did people address these drawbacks of speech? One is naturally led to 
visible marks. The gain in permanence using visible marks as compared to using 
sounds is astronomical; for example, the words in a tragedy written by William 
Shakespeare in the early seventeenth century remain more than 400 years later, 
but the sounds made by human beings alive during his time vanished seconds 
after they were made. A way to overcome these limitations of speech is to figure 
out some way to represent communication by using these more permanent 
symbols. People did this, and their efforts to incorporate visible marks into 
communication can be roughly divided into two broad categories:

1. Pictorial Based Systems: Systems in which the visible marks represent 
ideas through pictures (that often look like what they describe) and have 
no direct relation to the spoken language of the users. 

2. Language Based Systems: Systems in which the visible marks represent 
some component of the spoken language of the users.
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The first type of system is much older. Humans have been sharing informa-
tion pictorially for tens of thousands of years.6 We still do so today. Examples 
include using drawings rather than words to represent men’s and women’s re-
strooms, drawings of a deer to represent deer in the area, or using illustrations 
in road signs to indicate the presence of children and to drive with caution. 
Symbols of this type are called pictograms.

In general, as in these cases, the symbols are used to communicate through 
pictures rather than through the words of a language. Being independent of 
speech, nearly everyone, regardless of native tongue, can quickly understand 
what the symbols mean.

Photograph and design by author.

This sign is a pictogram. A person does not have to understand English to 
understand what it means. Using pictures not words, it communicates the 
following information: Do not park in this location; if you do your car will be 
towed and it will cost you money to get it back.

It would appear to be impossible to capture the full range of human experi-
ence using only pictorial-like systems (although this has not been proven).7 
Imagine the difficulty in trying to accurately describe to someone everything 
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that happened to you last week (including your thoughts) by using no 
words—only pictures drawn on paper that look unambiguously like what 
they describe. 

Of more recent vintage, language-based systems have been used by humans 
for the last several thousand years or so.8 At some point in our history, people 
made the remarkable discovery that it was possible to use abstract markings 
to visually capture the sounds and words of speech. This discovery was epic, 
for it in essence led to the creation of a new and dynamic way to communi-
cate, a way that could do much of what speech could, even doing some things 
far better. With the advent of language writing, speech at long last acquired 
a teammate of similar talent, marking a watershed achievement in human 
history.

Mathematicians from time to time have made similar conceptual real-
izations about their own discipline. One of the more recent ones occurred 
throughout the 1800s when mathematicians realized that mathematics was 
way, way broader than they had before thought. So much broader in fact 
that the medium-sized lake that they thought they were almost finished 
charting turned out surprisingly to be only a shallow bay in a very large, 
very deep, and very mysterious ocean—one literally teeming with life and 
waiting to be explored. More than a century and a half later, the mathemati-
cal community is still successfully investigating this massive ocean with no 
end in sight. 

Now on to writing: What are some of the advantages that we gain by choos-
ing to communicate this way? We give a few in the next section.

Some Advantages in Communicating by Visible Marks9

1. Permanent communication: Writing gives one the ability to communi-
cate over great distances both in space and time. The mathematician Eu-
clid has been dead for more than two thousand years, yet his landmark 
work The Elements remains and may still be used to instruct.
A. History: The subject was immensely enriched with the invention 

of writing. A myriad of clay tablets with writing on them have 
been found in the Fertile Crescent giving us a glimpse into the 
world of peoples from long ago and also a better understanding of 
ourselves.10 

B. Societal accounting: Who owns what and how much of it do they have. 
A permanent record can be created and used in the case of disputes. 
Laws and contracts can be recorded as well as births, deaths, and other 
events. We regularly use receipts to demonstrate proof of purchase.
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2. Stationary, visible communication: Things that are presented in writing 
are right there in front of us—allowing us to see, then pause, reread, 
study, and reflect upon them. These are evidently important features 
because now with recording devices (e.g., tape and digital recorders) 
we can make the actual sounds of speech permanent, but writing still is 
in no danger of extinction.11 Writing gives us something that even the 
technological captures of speech don’t possess; that something appears 
to include its static (think of still photographs versus video recordings) 
and visible features. Some linguists proclaim that these features have 
allowed writing to “entirely reshape our understanding of the world.”12 
Ditto for the visible symbols of mathematics. 

3. Communication with oneself: Writing offers great opportunities for 
self-communication.13

A. Personal convenience: If you need to buy fifty items, rather than com-
mitting them to memory and taking the chance that the random 
sneeze of a stranger could cause the mental list to vanish, a printed 
list can be created on paper or some other material. You can go days 
without thinking about the items and once at the store you may refer-
ence the list with perfect recall. We regularly use writing as a memory 
aid when we jot down phone numbers, appointments, and e-mail 
addresses.

B. Recording one’s thoughts, ideas, and data: With writing one can keep 
journals or diaries that capture one’s state of mind at a particular mo-
ment in time. One can also capture ideas and data for later use. This 
turns out to be extremely useful in the sciences. In fact, prominent 
figures of the scientific revolution, such as Francis Bacon and Galileo, 
recognized the critical importance to the entire enterprise of writing 
down information obtained from observations and then translating 
them into written mathematical form.14 

4. A tangible model for speech: A printed model of speech allows for an 
analysis of the subject in ways that would not be possible with speech 
alone. For example, we can take statements in writing and experiment 
with them by moving parts of the sentence around (e.g., trying out dif-
ferent effects on meaning and impact by moving around or interchang-
ing different adverbs or adverbial phrases). While it is certainly possible 
to do some of this in speech alone, it is worthwhile noting that often 
public speakers will first pen their speech in writing, evidently to gain a 
clarity that speech alone fails to give them. In a sense, writing gives to 
the analysis of speech what a map gives to the analysis of a geographical 
region.15 Using written numerals to solve problems serves a similar func-
tion for situations involving quantity.
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Some Disadvantages of Communicating by Visible Marks

Everything has side effects; some of these for writing include: 

1. Lack of context and immediate feedback: When two people are talking to 
each other they have the luxury of knowing the context and are able to 
obtain immediate feedback from each other. Contextual awareness and 
instantaneous feedback often wind up being crucial components in the 
exchange.16 Communication in writing is more impersonal and doesn’t 
naturally possess either of these components. These issues become ex-
tremely severe in written mathematical communication.

2. Literacy issues: We acquire speech naturally; nearly everyone who is ca-
pable of speaking does so. On the other hand, acquisition of an artificial 
written symbolic code is not something we do naturally—even when 
it is a model for the spoken word (and much more so when it doesn’t 
even have this advantage, as is the case with the symbolic expression 
of mathematics). Writing requires much more formal instruction. As 
such, a “literacy gap” can arise between those who learn to use the writ-
ten symbolic system and those who do not. The measure of a person’s 
literacy depends to some degree on the extent to which he understands 
and can use the written code.17 A society, of course, can do a lot to elimi-
nate those gaps through education. 

The Alphabetic Principle

A particular aspect of writing that will prove useful later is vividly on display 
in alphabetic writing systems (such as written English).18 All English words in 
writing are primarily constructed from a twenty-six letter alphabet (making al-
lowances for punctuation marks, capital letters, etc.). This set of letters is closed 
in the sense that new symbols aren’t added to it (over short periods, at least). 
When we encounter a new concept we want to represent as a word, rather than 
creating new symbols to describe it, we form instead a new arrangement or 
spelling from the same twenty-six letters.19 Think about it, we can describe in 
writing much of the complexity in our world by using only twenty-six letters. 

A similar principle is used in chemistry, where it is believed that the 
complexity of all naturally occurring substances is reducible to a basic set of 
fundamental naturally occurring chemicals called elements in varying combi-
nations. These naturally occurring elements can be viewed as a closed alpha-
bet of sorts, with newly discovered chemical compounds being written not as 
new elements but as new arrangements (or “spellings”) of the closed set of 
basic elements. We will see this idea, of constructing more complex situations 
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from a simpler basic set of building blocks, come up several more times in a 
mathematical context. 

Naming Numbers

We have already encountered a few of the names for numbers that are in 
common use (i.e., ten, twenty-three, six hundred seventy-two, eighty-three, 
eighty-five, thousand). Many of the names used, however, were not neces-
sary for the subsequent construction of the coin system that was introduced. 
Differences in size can be distinguished in writing without giving proper 
language names to each and every configuration of the visible symbols. The 
groupings for the various coin denominations hold whether we give names 
to them or not. For instance, without providing names for the resulting coin 
arrangements, we can rewrite the following: 

and

After grouping, we can clearly tell which of the two sizes represented 
symbolically is larger without ever attaching proper names to either coin 
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arrangement. That is, even though we created and gave names to the each new 
coin denomination (ten, hundred, thousand, etc.), it is not necessary to give a 
name to every single combination involving them. 

However, since it is people who, in the first place, introduced systems such 
as our coin numerals to help them better handle quantity and who primar-
ily communicate through speech and language writing, it is also people who 
desire to give actual language names to each of these coin configurations. 

To systematically give names to each arrangement, we must start by sup-
plying names to the primary ungrouped configurations (remember any col-
lection of tally marks that is less than ten strong is left as is):

The common English names for those numbers are, respectively: 

one, two, three, four, five, six, seven, eight, nine

These names can also be used to describe sequences involving the larger 
coin denominations. Just as we would describe AAA as “three-As,” we can de-
scribe  as three-tens. This allows us to name the sequence of tens:

by the compound words, respectively:

one-ten, two-tens, three-tens, four-tens, five-tens, 
six-tens, seven-tens, eight-tens, nine-tens

We can do the same for sequences of higher denomination coins as well. 
Using these rules we can give the coin numerals the following names: 
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In actual practice, the following abbreviations are employed in English:

Using these abbreviations allows us to describe these coin arrangements 
by their more common names, respectively: eleven, twelve, twenty-four, and 
two-hundred thirty-four. 

Employing the names given earlier combined with the grouping names of 
ten, hundred, thousand, or a million means that every coin numeral desig-
nating size below ten million can now be communicated through speech or 
language writing as a word or compound word. We can easily extend this to 
represent larger whole numbers up to a billion and trillion and so on by in-
troducing new coin denominations. Moreover, this situation is not unique to 
English; many other languages make use of similar conventions in developing 
words for numbers. 

Order Counting

We now have three ways to communicate information about quantity—one 
way in speech (sounding out the language words described earlier) and two 
ways in writing (using either the coin numerals themselves or the written 
language words). The convergence of these three places within our reach 
a beautiful conceptual and computational jewel. Open wide to us now is a 
powerful newfangled way of counting. 

Before discussing the details of this new manner of counting, let’s first 
revisit our tally mark methods by using them to determine the size of our 
alphabet:
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We first perform a tally of the letters in the English alphabet by tagging each 
letter with a tally mark:

Grouping these in tens gives:

Changing denominations gives the total as:

 or twenty-six

In this example, we have determined the size of the alphabet through a 
method of tallying and grouping. Since we used it to determine the size of a 
collection, it qualifies as a type of counting. We will call it tally counting.

Next we will blend the properties of human language together with our 
coin numeral methods to fashion out an entirely new way of gauging the size 
of a collection.

Consider the named number sequence given below:

We can think of this sequence as a set of ordered cards and write: 

We will now demonstrate, with the English alphabet again, how using 
these cards gives us a way to count that is different in the details from the 
tally method of counting. In preparation of dealing the cards, we first reorder 
them as follows:
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Lining up the letters and cards gives:

If we deal the cards by passing out the “one” card to the letter A and the 
“two” card to the letter B and continuing on to the end of the alphabet, we 
get the following pairings: 

The last value card dealt is the card with the value twenty-six. This value 
matches the size of the collection exactly, meaning that there are twenty-six 
letters in the alphabet.

The two methods of counting the alphabet yield the same result, but they 
are different in the details. In the first example, we perform the tally first and 
then apply grouping to obtain the value of twenty-six. That is, we still have 
work to do in obtaining an easy to understand answer after the initial tally 
mark assignments have been made. 

In the second example, we tag the letters with coin configurations on cards 
that have already been ordered and grouped. This means that once the assign-
ments have been made, no additional work is required—the last card dealt 
contains complete information as to the size of the collection (providing in 
one fell swoop, if you will, a complete memory of the tally). Moreover, now 
that each of the coin arrangements are named, the card assignments could just 
as easily have been the spoken words for:

one, two, three, . . . , ten, eleven, . . . , twenty-four, twenty-five, twenty-six 
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We can verbally sound out these words as we go through the alphabet—es-
sentially giving us a way to determine the size of a collection by simply talk-
ing out loud (or silently if we prefer). For this method to work, however, the 
ordering of the cards or names must be perfect; as such, we will call this type 
of counting order counting. This is the method of counting that most of us 
first learned as children. 

We now take one more look at how these two methods of counting work 
by giving a side-by-side example. We determine the number of names in the 
following collection using: the tally method and the order method.

Names = { Caspian, Superior, Victoria, Huron, Michigan, 
Tanganyika, Baikal, Great Bear, Malawi, Great Slave, Erie, 

Winnipeg, Ontario, Balkhash, Ladoga, Vostok} 

The Tally Method

Tagging each of the names with a tally mark yields:

Collecting the tally marks into groups of ten gives:

Changing denominations gives the total as:

There are sixteen names.

The Order Method

Tagging each of the names by dealing the ordered cards (including the lan-
guage names for the numbers) yields:
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The last card dealt represents sixteen meaning there are sixteen names.
Notice the difference between the two methods: Nowhere in the tally 

method do we need the words or symbols for eleven, twelve, thirteen, four-
teen, or fifteen, but these words are essential to determining the count for the 
order method. 

Both methods have their advantages and disadvantages. The order method 
can be easily sounded out in speech, allowing us to count in a manner which, 
on the one hand, is quite sophisticated and powerful (containing within itself 
a complete memory of the tally), yet, on the other, is still simple enough to 
teach to preschool aged children; and if people are being counted, they can 
even aid in remembering the value and order of the count by calling out or 
memorizing their assigned number. The tally method is often preferred in the 
case of recording a running total. In practice, it is not uncommon to use the 
advantages of both methods in combination to measure size. 

Number Names as Proper Names

The previous examples show that we can attach number names to the proper 
names for a group. There is nothing to prevent us from then actually using 
those number names to identify the objects of the  group in the stead of their 
proper names. This is huge in circumstances where we care about order. 
Order occurs all around us from the way people arrive at an event, to the way 
pages are arranged in a book, to the order of countries according to popula-
tion or test scores, to the way stations are configured on a television set, and so 
on. If we want to capture that order, number names are the best thing going. 
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Number names also can be used for identification. If there are millions of 
individuals that we want to uniquely identify, number names work much bet-
ter than proper names since with the latter there is no predictable method to 
know how they are chosen, and there may be many people who have the same 
first, middle, and last name. Number names, on the other hand, are systematic, 
numerous, and far outnumber any collection that we might care to classify. Ex-
amples of number names as unique identifiers include social security numbers, 
driver’s license numbers, student identification numbers, and so on. 

Using numbers as opposed to names alone for street addresses illustrates 
how they can give us a navigational advantage. Consider the following 
two scenarios for a group of houses evenly spread out over a half mile in a 
neighborhood:

Using names as addresses:

Using number names as addresses: 

If a person, at the indicated location (in between the two rows of each ad-
dressing scheme), is looking for the house inside of the black square, then the 
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system of addresses using numbers for names gives them more information. 
Using this system, after seeing the four adjacent addresses and knowing the 
predictable order of number names, she will know that the house she is look-
ing for is to the east on the south side of the street. The proper name address-
ing scheme offers no such advantage since there is no predictable order that 
allows someone to find adjacent houses.

Using number names to order information in useful ways that provide for 
more convenient access is a practice that is entrenched deeply in the frame-
work of our society.

Conclusion

Writing and speech offer two different yet complimentary ways to represent 
the world. We will find, when it comes to handling and communicating 
quantitative features of the world however, that doing mathematics with the 
aid of visible marks far outpaces doing mathematics verbally. The sizes of col-
lections, in general, are so large and so varied that they are generally most ef-
fectively handled through using these more permanent and observable tools. 

This means that many of the advantages and disadvantages of writing will 
also be inherited by the visible symbols we use to express mathematical ideas. 
We will also discover that the type of writing we will ultimately develop with 
numerals, while sharing much in common with language writing, will also 
have its own characteristics which make it a distinctly different form of com-
munication as well.

Two critically relevant features inherited by mathematical writing are that 
it can make ideas visible and stationary. These properties often permit pow-
erful and comprehensive new views of phenomena both inside and outside 
of mathematics. Such views allow for the easier recognition of patterns in 
the symbols or diagrams from which it becomes possible to build entirely 
new mathematical disciplines or to rephrase them in novel ways to make 
them available to a lot more people. These aspects will prove to be true game 
changers in helping to build an effective system of numeration for use by the 
average citizen.

The coin numerals that we have developed so far represent an important 
class of quantitative symbols—the class of additive numeral systems. These 
are systems in which you add up all of the individual numerals in a configura-
tion to obtain the value represented. This is a very intuitive and natural thing 
to do, and while exceedingly useful (let there be no mistaking of this), these 
systems were eventually supplanted by far more potent numeral systems of 
the type that we use today. The emergence of this new way of representing 
numbers is nothing short of a heroic tale in scientific history. This book is, in 
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part, a celebration of that marvelous episode in science, and of the known and 
unknown mathematicians who participated in it. 

In the next chapter, we discuss how to transition from the coin system 
developed here to this more powerful and compact mode of representation. 
The gains obtained in this development will be a technological tour de force. 
In terms of importance, its discovery may very well be as the great French 
mathematician Henri Lebesgue says “perhaps the most important event in 
the history of science.”20 
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One is hard pressed to think of universal customs that man has successfully es-
tablished on earth. There is one, however, of which he can boast: the universal 
adoption of the Hindu-Arabic numerals to record numbers. In this we perhaps 
have man’s unique worldwide victory of an idea.

—Howard Eves, American mathematician 
and historian of mathematics1

EVERYONE WHO KNOWS ARITHMETIC, regardless of tongue, understands the 
meaning of the mathematical statement: 2 + 3 = 5. We all write it the 

same way using the same symbols. We don’t, however, all say it the same way; 
with speakers of one language in many cases saying this statement radically 
differently from speakers of another language. We don’t see this sameness in 
writing and difference in speech in regards to English versus French or Eng-
lish versus Korean.

For instance, in English, the way we say and write the statement, “That sure 
is a tall building,” is very different from the manner in which someone who 
speaks French or Korean would say or write it. Both the speaking and writing 
of each of these two languages is drastically different from the speaking and 
writing of English. Why is this not true of the statement 2 + 3 = 5? Why do we 
pronounce it differently from the French or Koreans and yet write it the same 
as they do?2 To which language does this statement belong?

The circumstance of people the world over now writing their numerical 
statements in practically the same way is a relatively recent phenomenon. 
Throughout most of human history this was not the case at all; with the 
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number of known distinct numeral systems numbering more than one hun-
dred.3 Most people separated by great distances used, if they had them at all, 
different numerals as well. What happened to change this? There are still a 
wide variety of languages with an accompanying variety of different ways to 
write and pronounce numbers (one, un, uno, ein, один, moja, wahid, etc.), 
but no longer are there still a wide variety of numeral systems in everyday use. 
What is it that makes our present day numerals different?

Our aim in this chapter is to shed light on this interesting situation. At its 
heart is the issue of efficient calculation in writing. We want to do more with 
our numerals than just describe the sizes of collections; we also want to calcu-
late with them. Are the twin requirements of communicating size in writing 
and effective calculation in writing compatible? We begin the investigation of 
this question by first considering addition—the simplest of the elementary 
operations of arithmetic. 

Addition

Two very natural things we can do to a collection of objects is to add more 
objects or take some objects away. Let’s start with adding objects to a collec-
tion, and to simplify matters for now, let’s assume that the objects are cars. 
Just imagine for a minute that you collect cars and want to add more vehicles 
to your collection. To fully understand just how big your car collection will 
be, you have to take into account three numbers:

N1: The number of cars in the collection.
N2: The number of cars added to the collection.
N3: The total number of cars in the collection after the addition.

You can, of course, find the total number by doing a direct count after 
you’ve bought all of the cars but your goal is to avoid this. The plan is to cal-
culate N3 directly from the symbols involved in representing N1 and N2. If 
you can’t do this, then our ability to do arithmetic in symbolic form is going 
to be severely limited. We will be able to use the symbols for representation 
of numbers but not for calculation. We presently have two ways to represent 
quantity in writing—using coin numerals or using language number words. 
Let’s look at how addition plays out with both.

Add fifteen cars to twelve cars using coin configurations. Symbolically, we 
have:
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Un-Grouped Representation        Grouped Representation

N1 ≡ 

N2 ≡ 

We first add using the ungrouped version and then group:

N1 + N2 ≡ 

Grouping these in tens yields: 

which is equivalent to: 

(shading indicates changes in denomination)
Now we add using the grouped representation:
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N1 + N2 ≡   

≡ 

You have twenty-seven cars in both cases.
We can add in grouped form and obtain the same answer as adding in un-

grouped form. This turns out to be true in general, meaning that once we have 
written N1 and N2 in grouped form, we can find N3 by staying completely 
within this grouped form. We don’t ever have to return to the ungrouped 
form and thus are able to use the full force of grouping to perform the opera-
tion of addition. 

In this first example, we successfully performed the addition using coin 
numerals and nothing else. Can we do the same with the language words for 
numbers? That is, can we successfully add fifteen and twelve using only the 
letters in each word with no assistance from numerals? 

Let’s try it:

Symbolically we have N1 ≡ fifteen and N2 ≡ twelve. 

Thus: N1 + N2 = fifteen + twelve = ??

Unlike with coin numerals, there is no obvious way to construct the answer 
to this sum using only rearrangements from the thirteen letters in these two 
words. The following are three possible rearrangements from the thirteen 
letters:

Arrangement 1: fifteentwelve
Arrangement 2: fiftweteenlve
Arrangement 3: ffiwfetleveen

None of these, or the millions of other rearrangements possible, works. 
If, however, we allow in our findings with coin numerals, we know that the 
answer is twenty-seven. In language words, we then have:

fifteen + twelve = twenty-seven

It is not possible, without such assistance, to assemble the answer to this 
sum from the initial components (letters) of fifteen and twelve. Simply, com-
bining the letters in these words will not construct the “y” and “s” in the word 
twenty-seven no matter what we do (nor make the l, i, and two fs disappear 
either). In fact, rearranging the letters in these two language words not only 
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leads to nothing new in mathematical content it also leads to millions of rear-
rangements that are devoid of language content as well. 

Language words are composed out of letters which serve the purpose of 
conveying in part the sound content of speech, not the mathematical content 
of quantity. This means that these words and letters by themselves do not 
contain within themselves the seeds of their own solution—they don’t have a 
natural syntax for combining quantity, if you will. 

Coin numerals, on the other hand, do contain within themselves the seeds 
of their own solution—that is, they possess a natural syntax for dealing with 
quantity. This is precisely why they were built. This yields a straightforward 
way to build the answer  from the constituent parts: 

 and  (you just combine them together while 
still retaining meaning).

 It appears then, that with respect to adding values in writing, coin numer-
als have a decisive advantage over language words. This is true in general 
and we will act accordingly; reserving the right, however, to use the language 
words to represent numbers in the situations for which they were designed, 
such as basic communication in English. The next example shows how to 
handle additions involving multiple changes in coin denominations.

Let’s add seventy-seven and sixty-five using coin numerals:

     +      

=   

 

Organizing the coins in groups of tens yields: 

  =  

or one hundred forty-two.
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The practice of performing additional grouping after the initial addition is 
equivalent to the process known as carrying. 

It is important to note that even if writing media and instruments are not 
readily available, we could still create a workable grouping scheme by fashion-
ing out dozens of material tokens representing each type of coin denomina-
tion and physically carrying out the arithmetic. Or we can form a system out 
of some other sorts of physical objects like the one given here:

aOne blade of grass ≡ ten pebbles 
One kernel of corn ≡ ten blades of grass, etc.

The representation and addition of numbers would work here just as 
they do in coins. After all, the system using pebbles, blades of grass, or 
other objects is simply a different version of the same fundamental idea of 
representing objects by symbols and then grouping them in denominations 
to make them more comprehensible, much like spoken French and spoken 
English are different versions of the same fundamental idea of communicat-
ing by sound. 

So if we had enough of each item, it is possible to perform addition with 
sticks and stones (mimicking the additions we can do in writing with coin 
numerals). You can choose your own physical grouping system simply by 
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replacing the pebbles, blades of grass, sticks, and so on, by another set of seven 
objects (e.g., peanuts, pieces of paper, spoons, glasses).

The Abacus

Basic additions, such as those performed earlier, are certainly workable using 
written coin numerals. It is a very straightforward procedure. But what if we 
have to do a lot of additions? Imagine how much work would be involved if we 
had to perform eight-hundred additions like the one we just did in finding 
the answer to “seventy-seven plus sixty-five.” This is a very serious concern, 
for as we will see in our later discussions, there are many situations in life 
that require lots of additions for their solution. What are we to do about this? 
What did the ancients do? 

Throughout history, societies around the world were faced with the prob-
lem of how to effectively handle a large number of additions. What is interest-
ing is that many of them, often independently of one another, chose to deal 
with it in a similar way. What they did was develop an entirely different way 
to represent numbers, not in writing but by way of a mechanical device that 
sometimes involved the use of a frame and rods. The heart and soul of the 
scheme was to use position or location to indicate the size of the number as 
opposed to using coin denominations. Beads or other objects were used to 
indicate how much of each coin was present. This device or counting frame 
was often called an abacus. It was a devastatingly powerful idea. 

The coins in each column were not generally present in the physical de-
vices and have been included here to facilitate understanding. Let’s see how 
it works.

Here we see how four , seven , and six  coins (four-hundred, 
seventy-six) get represented in different columns on the abacus. 
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Coins                       Abacus

Our grouping rules are still in effect, so if we have ten beads in one column, 
it can always be replaced by a single bead in the adjacent column to the left. 
Thus,

In coins, this reads as:

We can also perform additions with this device by adding three hundred 
sixty-seven to four hundred fifty-six. The steps are broken down into indi-
vidual components and the coins are included to aid understanding.

Adding with coins:
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Adding on the abacus:

Combining coins and changing denominations:

On the abacus place the beads on each of the hundreds columns together 
(then doing the same to the tens and ones columns) and then carrying over 
to a higher denomination, where required yields:

The answer is eight hundred twenty-three.
The story then, for many societies, has been to develop a written symbol-

ism (such as our coin numerals) for the representation of numbers. Un-
fortunately, this representation rarely allowed for quick, convenient, and 
easy-to-learn calculations (particularly in the case of multiplication and divi-
sion). As compensation, a calculating device of some sort such as the abacus 
was employed.
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The Abacus in History

The abacus dates back to antiquity. One of the oldest physical artifacts of 
the device is a Roman hand abacus from ancient Rome. It is also believed 
that abacus-like devices were used in Mesopotamia as early as the third mil-
lennium BCE.4 Use of an abacus, at some point in their history has been 
documented in many other places, including China, Japan, Greece, Russia, 
and Central America. Some of these devices are still in use today. Below is a 
real world example of the fundamental idea of representing value by location.

Chinese Abacus or Suan Pan (ca. 1500–1600 CE)5

In the following picture, the beads in the top section (sometimes called 
heaven) have value five while the beads in the lower section (sometimes called 
earth) have value one. The beads are active when placed toward the center 
divider. A value of up to fifteen can be represented on a given column. None 
of the beads are active in this picture. 

Photo taken by author.

Placing the coins below each column shows that we can represent numbers 
into the billions on this particular device. 
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Photo and design by author.

The next diagram shows how to represent nine million, six hundred three 
thousand, one hundred fifty-four on the Suan Pan (note that the gray beads 
are active). 

The theoretical device introduced at the beginning of our discussion on 
the abacus differs from the Suan Pan in a fundamental way—its beads can be 
either created or destroyed—with the rule being that visible beads are active 
and deactivated beads disappear. On a physical abacus the beads can’t simply 
vanish, so there has to be some other means, such as using a center divider, of 
distinguishing when they are active or inactive. 
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Elementary Arithmetic Has Hidden Complications

The difficulties inherent in performing lots of additions or lots of subtractions 
with coins lays bare the fact that elementary arithmetic is harder to rein in 
than first appears on the surface. We have already seen that the English lan-
guage words for numbers are not well suited for performing even the simplest 
of additions, and coin numerals, while much better at addition than words, 
also have their limitations. 

Thus in arithmetic, you may easily devise a written scheme by which to rep-
resent or describe numbers, but when you start to perform addition, subtrac-
tion, multiplication, and division within this scheme, it can be a major pain 
in the neck obtaining answers. This is not a trivial problem, and it was the 
abacus or some other such device that often offered a way out of the difficulty.

Consider a large collection of files, say ten thousand, which are identified 
by name. The major issue of concern with such a collection is how best to 
store files so that information can be obtained efficiently. There are a wide 
variety of options, all of which accomplish the task of storing and keeping 
the records safe. However, not all of these options lead to quick retrieval. For 
example, a random nonalphabetical storage keeps the records secure but in 
general will not lead to the efficient retrieval of a given file. Files certainly can 
be accessed, but it may take quite a while depending on their location. How-
ever, if we store them alphabetically based on last names, retrieval can take 
place more rapidly. The point being, that if one wants to be able to retrieve 
files quickly, one must pay attention to how one stores those files. 

In a similar fashion, if one wants to calculate efficiently within a written 
symbolic system, one must be much more careful in the construction of such 
a system than one might initially think. Most written systems for representing 
numbers, including our coin system, were handy for describing the varying 
sizes of collections and distinguishing among them, but were not so useful for 
quick, convenient calculation. 

By using an abacus one could translate the numerals from any written sys-
tem to the device and perform calculations far quicker than possible within 
the written system—the calculation reduces to a mechanical procedure 
involving the sliding of beads (or some other physical manipulation) as op-
posed to the generally slower procedure of writing down a large number of 
symbols. Once the answer is obtained it could then be translated back to the 
original numerals.

While using a device to help one do calculations is not in and of itself a bad 
thing (today we do so with electronic calculators), it is, like the spoken word, 
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a transient process. Once the calculation is done, all of the intermediate steps 
are lost. In some cases, for example, in education or bookkeeping, the loss of 
these intermediate steps can cause unnecessary difficulties. Moreover, effec-
tive use of the abacus is a highly involved process requiring much memoriza-
tion, a great deal of understanding, and good hand-eye coordination. These 
were the skills demanded, not of a layman, but of a craftsman, and as with 
most crafts it took time and practice to master the art. 

So while using a two-tiered scheme, representation of numbers in writing 
and calculating with numbers on the abacus is a workable scheme, it is not 
necessarily the most desirable state of affairs. 

This brings us to a high point in our journey: Sprawled out before us 
now, on the one hand, is the technique that allows for the permanent and 
visible representation of numbers as numerals while, on the other, sits the 
technique of efficient and quick calculation with the abacus. The advantages 
and disadvantages of each are clear. Systems like our coin numerals allow 
us to record, visualize, and study quantity at our leisure but don’t provide 
for swift and efficient calculation, whereas devices like the abacus, while 
allowing for rapid calculation, are difficult to learn and fail miserably at 
providing permanence and static visibility. We want the best of both worlds. 
Can we get it? 

The answer is a resounding yes, and how it was accomplished comprises 
one of the great, drawn out tales in mathematical history. The specific details 
of exactly who and exactly when are shrouded in mystery, but what is known 
is that the fulfillment of this dream came in the guise of a special system, a 
system with panache, complete with its own brand and whose arrival from the 
East was destined to change the world. 

Script of the Abacus

We have already seen that powerful new ways to represent the world were de-
veloped by representing huge portions of speech with visible marks. Similarly, 
we will now see that some of the most powerful ways to represent quantity in 
writing come from an attempt to capture, in a system of numerals, the pro-
cesses at play on the abacus. The stage has already been set with our graphical 
representations of the abacus. We now follow this path through its “natural” 
course.

The great strength of the abacus lies in the fact that it is symmetric in the 
rods or columns. That is, the following bead design
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can represent three, thirty, three hundred, or three thousand, depending on 
its position of the device. In contrast, representing these values in coins would 
require that we use four different denominations. 

The symmetry of the abacus means that what can happen on one of the 
rods is what can happen on any of them. Thus although the “values repre-
sented” change when we change positions, all of the content possible on any 
of the rods can be learned by simply studying just one of them. This means 
that if the number of distinct designs on one of the rods of the abacus is finite, 
then the number of distinct designs on any rod of the abacus is finite, and rep-
resents a self-contained set. This will afford us the magnificent opportunity to 
inject the alphabetic principle into our numeration scheme. 

As an example, we can represent the design corresponding to three beads 

on a rod, , by the symbol . Using this allows us to rewrite the entries as:

The representation for three thousand three hundred thirty-three on the 
abacus translates as follows:
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The number of designs that can occur on any rod of the abacus is indeed 
finite due to our grouping rules. The following list gives the ten different de-
signs that can occur on the ones rod of an abacus (we will refer to these as the 
“ten original designs”).

These are also the only designs that can occur on the tens rod as well (note 
arrows).

The designs with ten or more beads are not listed since they will correspond 
to a repositioning of the beads based on our grouping rules, and we will then 
have multiple rods, each respectively matching one of the “ten original de-
signs” represented on the ones rod. For example, if we have twelve beads on 
the ones rod this reduces as follows:
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Each one of the designs on the two rods on the right is listed in the “ten 
original designs” (think of the two rods as a two “letter” word from the “ten-
letter alphabet” given by the “ten original designs” where we think of each 
design as a “letter”). If those twelve beads happen to be on the tens rods, 
instead, then they transform as follows:

Once again each one of the designs on the three rods on the right is repre-
sented in the “ten original designs” (think of the three rods as a three “letter” 
word). We can always perform carries like this when we have more than nine 
beads—so the number of different scenarios that can occur on the ones or tens 
rods are exactly those given by the “ten original designs.” These arguments 
translate directly to the hundreds rods, the thousands rods, and so on (with the 
only modification being that we get longer words from the “ten original de-
signs” thought of as a “ten letter alphabet”); which means that the “ten original 
designs” are the only ones that can occur on any rod of the abacus.

If we consider the following four rod abacus, , any number 

between one and nine thousand nine hundred ninety-nine can be represented 
by some combination involving only the “ten original designs” (the words 
to describe these situations will range in length from one “design” long to 
four “designs” long). For example, all four of the rods in three thousand four 
hundred seventy-three come from the designs listed in “ten original designs” 
(duplications allowed of course):
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Given that any number in the stated range can be represented by some 
combination of the “ten original designs,” we will gain great advantage if we 
replace each original design by a single symbol as we did before when we re-

placed the  design by the symbol . This time, however, we will use our 
modern symbols to name the “ten original designs” and we have: 

These symbols are called the Hindu-Arabic (HA) numerals. The Hindu 
part of the name comes from the prevailing evidence which points to this 
numeral system having originated in ancient India (most likely somewhere 
between the first and seventh centuries CE). The Arabic part comes from the 
fact that the numerals were disseminated to Europe and eventually to the rest 
of the world through the Arabs in the Middle Ages (ca. 800–1200 CE).

Notice that, unlike the beads, these symbols of and by themselves give no 
clue as to the number they stand for—they yield a coded representation.6 As 
with words in a language, an investment in memorization must be made. In 
what follows, we will see that this investment is one of the most valuable a 
person can make. Using these symbols for their respective situations, the pre-
vious representation of three thousand four hundred seventy-three becomes: 
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The HA numerals already hint at their potency by offering us a more 
compact way to represent numbers. Let’s now see how they compare with 
coin numerals and the abacus in representing the number six million, two 
hundred sixty-two thousand, five hundred nine. 

Coins: 

Abacus: 

HA: 

The coin representation contains thirty total symbols in six varieties. The 
abacus contains thirty total symbols all of the same variety but in different col-
umns. The compact system using HA numerals only requires seven symbols.
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The abacus in practice does not have the coin tags below the columns. A 
small investment in memory of the various place values allows us to work 
the device without them. Similarly, memorization of the place values allow 
us to dispense with the tags in the case of the HA symbols as well. So in the 
example above, we can more simply express the number as 6262509, with no 
loss of information.

Below is a comparison of the abacus rods and HA numerals without coin 
tags:

We see then that the ten distinct designs { } that can occur 
on any rod (ones column, tens column, hundreds column, etc.) of the abacus 
developed into the ten distinct symbols {0, 1, 2, . . . , 9} that can occur in any 
place value (ones, tens, hundreds, etc.) of a string of HA numerals—which 
puts us in the familiar position of once again being faced with the prospects 
of an alphabetic situation. 

In this new script, any whole number no matter its size can now be ex-
pressed by simply using the ten symbols {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} in some 
combination. This fundamental set of ten digits is self-contained just as an 
alphabet is in language. It does differ from a language alphabet in one crucial 
aspect however: Random combinations of the ten digits will still lead to valid 
numeral words whereas arbitrary combinations of letters will not generally 
lead to language words, unless it is by just plain luck. 

In English, mistakenly writing “beelieve” for the word “believe,” or “mi-
take” for “mistake” causes no problems in comprehension. Both spellings are 
close, and there is really no other word that the “mispellings” could be. This 
built-in redundancy in English is what makes spell-checkers possible in word 
processors.7 
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However, mistakenly misspelling “19900” for the intended “1900,” by in-
cluding an extra “9,” is an extremely serious error in HA script, since unlike 
the situation in English, both strings are valid and distinct expressions. How 
do we know which is correct? We don’t have pronunciation cues to guide 
us as in language and if there is no context to work with then we have a real 
problem. This was one of the major reasons for resistance to the adoption of 
the HA script—leading to their being banned in Florence, Italy, in 1299.8 It 
remains a valid concern today which we still address when we write the dol-
lar amount on a check both in digits as well as in language words. The words 
serve as a confirmation of the digit amount.

It is interesting to note that a misspelling of this type is less likely to occur 
in our coin system. Writing these numbers as coins yields:

Note that “19900” in coins contains nine more symbols than “1900” mak-
ing it highly unlikely that a misspelling off by nine symbols would occur 
in this script unless it was deliberate. This illustrates the very important 
phenomenon that issues that arise in one system may present little or no dif-
ficulties in another one. The mathematical and scientific landscapes are full 
of examples of this. The fact that computers are written using a system of 
numerals involving only 1s and 0s is a case in point. The circuitry involved 
with most computers deal with only two states—the presence of a voltage and 
the absence thereof. These situations are much better matched by a base-two 
(binary) system which uses only two symbols (0 and 1) than they are by one 
which uses the ten symbols (0, 1, 2, . . . , 9).

Is Zero a Number?

Our efforts to capture the abacus in written form have created an interest-
ing and unique situation. Looking back to the original conditions involving 
the enumeration of cattle with tally marks, the smallest situation we had to 
consider, in order to measure the number of cows a rancher has, contains a 
single mark. Whenever we initiate a count we always have at least one ele-
ment; otherwise, there is nothing to do. 
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However, our quest to make representation and calculation simultaneously 
convenient and also written led us to consider the “ten original designs” that 
can occur on the ones rod of an abacus. One of those designs is the rod with 
no beads. The other nine designs clearly represent numbers and have coun-
terparts in the system of coin numerals:

There is no room, however, in the coin system for the vacant rod:
 

. What 
should we consider as its counterpart? 

One thing is certain, the empty rod and the HA symbol representing it 
are absolutely essential to the workings of the abacus and our written sym-
bolic representation of it. We simply cannot do without them. For example, 
representing four thousand two on the abacus requires that the rods for 
the tens and hundreds be vacant. Using the HA script without zero yields: 

. However, if we remove the place value coins, we have 
4     2 and it is hard to interpret exactly whether this is forty-two, four hundred 
two, or four thousand two. On the other hand, if we include the 0s, we have 

 and we can safely remove the place value coins and obtain 
4002 with no loss of information.

In systems such as the HA system, where we use the same symbols in 
different positions to denote value, we must keep track of what is absent 
as well as what is present—making the symbol 0 essential in these systems. 
In systems, such as our coin numerals, which do not incorporate position 
using instead different symbols to denote different magnitudes, a counter-
part for the symbol 0 is not needed since it is clear what symbols are present 
and what symbols are not in the representation of a number. For example, 
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in the coin representation of four thousand two we would simply write: 
. No symbol is needed to denote the absence of the 

ten and hundred coins—their nonappearance is enough all by itself. 
What then is the symbol 0 really? Some notational systems seem to require 

its use whereas others do not. Does it represent a true and bona fide number 
in its own right or is it simply a device to account for the absence of a place 
value in a positional system? 

Historically, zero has been viewed both ways. It was first used as a con-
venient accounting device or placeholder in positional systems (much like 
how spaces separate words in a line of text). The Mesopotamians (ca. fourth 
century BCE), the Chinese (ca. 700 CE), and the Maya (a few centuries after 
the Chinese) all originally used zero in this manner.9 

It was secondly viewed as a number in its own right. The first known 
recorded use of zero being considered as a stand-alone number was by the 
Indian mathematician Brahmagupta in his work Brahmasphutasiddhanta 
(ca. 628 CE).10 This is how we view zero today. This viewpoint has led us to 
discover and utilize properties of zero that no other number possesses. It is 
one of the most important numbers in all of mathematics and plays a crucial 
role throughout the whole of mathematics (e.g., solving equations in algebra, 
simplifying expressions, as an identity element). 

It is interesting to note that numerals employing negative signs were also 
employed as convenient accounting mechanisms in business (as debits) well 
before they gained widespread acceptance among mathematicians as being 
representatives of a new class of true numbers (negative numbers). 

A Discovery within Mathematics Itself

There are two major points to discuss here. First, zero does not appear in 
our initial models for counting collections but rather appears as a necessary 
punctuation symbol to avoid ambiguity in a place-value system. As such, it 
is a number that was not discovered from the natural analysis of a physical 
situation but rather from formatting considerations within a given symbolic 
system. It simply pops up out of our reasoning.

All of this would seem to indicate that discoveries may happen not only 
from trying to symbolically represent what we observe in the physical world, 
but may also occur from trying to better represent and make more efficient 
what we observe in the symbolic world of mathematics itself. That is, the 
symbolic systems which we create and the rules governing them are to some 
extent worlds unto themselves and new discoveries are just as possible when 
trying to solve problems in these virtual worlds as they are in trying to solve 
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problems in the physical world (and in many cases, given the convenience 
in working with symbols, the problems are easier to pose and treat in these 
virtual worlds). We observe similar scenarios happening time and again else-
where in mathematics and in the physical sciences at all levels. 

The conservation of energy law in physics is a case in point. One of the 
most powerful ideas in all of science, this law is based on the indirectly ob-
served quantity of energy. In regards to the law, celebrated Nobel Laureate 
Richard Feynman says: 

It states that there is a certain quantity, which we call energy, that does not 
change in manifold changes which nature undergoes. That is a most abstract 
idea, because it is a mathematical principle; it says that there is a numerical 
quantity which does not change when something happens. It is not a description 
of a mechanism, or anything concrete; it is just a strange fact that we can calcu-
late some number and when we finish watching nature go through her tricks and 
calculate the number again, it is the same.11 

Second, although the two systems may appear to be equivalent versions, 
they can differ not only in convenience but also in range or extension. A sym-
bolic scheme where value is based on position leads to an accounting sym-
bol, 0, that ends up being the gateway to a new number called zero; whereas 
a simple grouping scheme such as our coin numeral system misses out on 
this number completely. Thus, although the two symbolic systems may have 
a common origin and common goals, hence sharing common features struc-
turally, as we attempt to extend them or study them in greater detail, we find 
that they are never truly exactly the same. 

Although they are identical in crucial respects they are also different in 
other respects and some of these differences can give one system a decided 
advantage in certain contexts. We saw this happen earlier, where the method 
of comparing collections involving lanes and the method involving small 
rocks had the common origin in comparing two herds of cows but with the 
small rocks we could also compare collections that the lanes method could 
not—things such as houses, trees, and other immovable objects. 

Conclusion

We have now twice seen how powerful reorganization can be in arithmetic. 
In chapter 1, by reorganizing tally marks we were able to create our coin sys-
tem of numeration (with denominations of ten, hundred, thousand, and so 
on) which greatly enhanced our way of expressing and comprehending larger 
numbers. 
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In this chapter, we have reorganized the coins into a positional system 
yielding even greater treasure. In the process, we have discovered a new num-
ber (zero) and also have, as we shall soon see, sown the seeds of a system that 
will allow the average person to perform with ease calculations that would 
have at one time taxed the skills of many an excellent mathematician. The 
simple concept of reorganization plays a major role in mathematics at all 
levels and in life in general.

Now that we have the compact and efficient HA numerals, the stage is set 
to apply them to adding, subtracting, multiplying, and dividing. Before doing 
this, however, we will take a detour to see how tinkering with symbols and 
diagrams empowered an ancient scientist, through reasoning and calculation, 
to determine the distance around what at the time was a very big and very 
mysterious earth. A value that was impossible for him to obtain directly by 
taking a measuring tape around the earth. What follows is a testament to the 
breathtaking power human beings are afforded when they employ reasoning 
and symbolic manipulation in clever conjunction. 
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To see what is general in what is particular and what is permanent in what is 
transitory is the aim of scientific thought.

—Alfred North Whitehead, British mathematician, 
logician, philosopher, and educator1

WE NOW ATTEMPT TO breathe life into an important chain of events from 
the distant past whose conceptual importance still resonates today. In 

our discussion, we will tell the tale of a fictional character, Amar, from an-
cient Sumer (the southern part of modern-day Iraq between the Tigris and 
Euphrates Rivers). And while his personage is imagined, Amar’s story will not 
altogether be fantasy; for some person or persons had to actually discover the 
same things that he did. However, since we don’t know the specifics about 
them, even their names, we have created Amar to represent them. 

We will also share details from the life of the very real and very insightful 
third century BCE “Renaissance man” Eratosthenes who, through studied 
application of the work attributed here to Amar and others, was able to gauge 
the extent of the earth. This tale will provide dramatic demonstration to why 
human beings have cared about mathematics throughout the past and why 
they still care up to this very day. 

Consider the game of chess: It is played on hundreds of thousands of in-
dividual boards with millions of individual pieces all around the world. If we 
want to learn how to successfully play on all chessboards, all that is required, 
remarkably, is that we learn how to successfully play on one of them. A person 
who becomes a true grandmaster on their chess set at home is a grandmaster 

4
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on any chess set. All of the many game sets represent different forms upon 
which to play the same game, meaning that any particular chessboard can 
serve as a representative for all others. Thus in learning how to play on a 
particular representative, one is actually learning how to play on all represen-
tatives. Exploitation of this fascinating property of nature, in its more subtle 
forms, allows us to literally investigate the world from home.

Amar’s Tale

More than 4,000 years ago in ancient Mesopotamia, a mathematician named 
Amar has decided to study circles. He sees circles all around him, both in the 
sky as well as on earth and is curious to learn more. Despite the fact that the 
circles differ in size, composition (string, rope, wood, dirt, imaginary paths, 
etc.), and location, Amar knows that they all have something structurally in 
common—that feature that allows him to recognize them all as circles. 

To gain more knowledge about circles he realizes that he will need to make 
his own representative models and study these in great detail. He knows that 
he can easily construct a wide variety of circles by using nothing more than a 
pin, something to write with, something to write on (dirt, papyrus, soft clay, 
paper, etc.) and some string. For our purposes, let’s assume he uses a stick 
for writing and dirt as his canvas. He constructs his circles by pinning down 
one end of a string and attaching the stick to the other end and tracing the 
figure in the dirt. Given that circles are so widespread, he realizes that there is 
a good chance that his pedestrian study of ones in the dirt will be representa-
tive forms of all circles—causing his results to have far-reaching implications. 

It is evident from the very construction itself that, for each of his models, 
there is a point in the interior of each circle that is the same distance from 
every point on edge. He gives a name to this special point, calling it the “cen-
ter,” and also gives the name “radius” to the common distance. He also no-
tices that if he goes from one side of each circle to the other side in a straight 
line through the center, the distance is always the same (no matter where he 
starts); moreover, its value is always equal to twice the radius. He calls this 
number the diameter for the given circle.
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At this point, he decides to see if other circles not of his making (e.g., 
wheels) also have a center, radius, and diameter. His analysis quickly reveals 
that regardless of size or material, all of the circles investigated do indeed have 
these three characteristics. In the midst of his investigations, he happens upon 
an accident involving an overturned cart and observes a piece of caked mud 
on one of the spinning upturned wheels. He imagines the mud rotating by 
itself in the air on the same path without the wheel and realizes that it would 
still trace out a circle. 

In a flash of insight, he realizes that it is possible to link circles to turnings, 
where the whole circle corresponds to one complete turn, half a circle cor-
responds to half of a complete turn, and so on. He decides to create a unit of 
measure, which he calls the degree, to more finely gauge the amount of turn-
ing. In his system, 360 of these degrees correspond to a complete turn, 180 
degrees to a half turn, 90 degrees to a quarter turn, and so on. 

He records this information and then sets about tackling the job of devis-
ing methods to calculate the distances around his circles (i.e., the perimeter 
or circumference of the circle). He can readily do this for his small circles 
by simply taking a long enough piece of string and wrapping it around the 
loop—then straightening it out and measuring the length. This method is 
general—meaning that it will work for any circle given enough string. It is 
not convenient, however, to use on very large circles. He decides to search for 
other methods. 

Noticing that the larger the diameter of the circle, the greater the distance 
around it, he muses that there must be some relationship between the two. His 
tests reveal that the distance around his circles can closely be approximated 
by simply multiplying the diameter by 3.13 (this value was derived from the 
fraction 25__

8
 which is the value that the early Mesopotamians reportedly used 

as an estimate for Pi; the better three digit approximation today is 3.14).2 This 
number comes up every time, regardless of the size or type of circle. Why this 
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strange number (and not something nice like 2 or 5) occurs and whether it 
comes up for all circles are mysteries to him. Nevertheless, he conjectures that 
it is true for all circles and catalogs this information in the formula:

Perimeter or Distance around the circle ≈ 3.13 × (diameter)3

If he uses this formula he can more than triple the size of the circles he can 
measure using a given amount of string. For example, if he only has 200 feet 
of string, then the wrap-around method will allow him to measure circles 
whose perimeters are 200 feet or less. With the formula he can use the same 
string to measure diameters up to 200 feet which correspond to circles having 
perimeters (or circumferences) of up to 200 × 3.13 or 626 feet, a significant 
improvement.

Giddy with success, he continues on and finds out that he can incorporate 
his new degree measure into the discussion. What makes the diameter method 
work is the multiplier of 3.13. Once the diameter is found, all one needs to do 
is multiply it by 3.13. His degree measure offers a much greater multiplier. If 
he can find the distance on a circle that corresponds to 1 degree of turning, 
he can then multiply this value by 360 to obtain the distance that corresponds 
to 360 degrees of turning (i.e., the entire distance around the circle). Thus to 
measure the distance around the 626-foot circle would in theory require only 
626 divided by 360, or about only 1.7 feet of string.

We illustrate how the degree method works by finding the distance around 
a circle in which 1 degree corresponds to 2 feet. (Note circle is not drawn to 
scale.)

There are 360 sections (each 2 feet in length) just like the one here. We can 
find the distance around the circle by computing 360 × 2 feet, which equals 
720 feet.
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Amar’s results compile as follows:

• Every circle has a center, radius, and diameter.
• Every circle can be partitioned into 360 equal units called degrees.
• The distance around a circle can be obtained or approximated in the fol-

lowing three ways:
1. Encompass or trace out the perimeter of the circle with a long enough 

string, then straighten out the string and measure its length.
2. Find the diameter of the circle and multiply this value by 3.13.
3. Find the distance on the circle which corresponds to 1 degree, then 

multiply this value by 360.

He is fairly sure about all of his conclusions except for number 2. Although 
he has analyzed dozens of circles, he can’t logically reason why the number 
3.13 always gives a good approximation. It is an important enough aid in cal-
culation that he must include it but he knows it will be up to others to give a 
definitive reason why it holds. 

Amar has played his game well. The results discovered on the compara-
tively few circles investigated are indeed representative and apply to any circle 
(just like the rules and strategies of chess learned on one board being true on 
any chessboard). His efforts correspond to him first learning how to “play 
with circles” on his home game set and in the process learning how to “play 
with circles” on any set. His recording of these results means that humankind 
as a whole also learns how to “play with circles” on any set. The circle can be 
small enough to be written on a piece of paper or it can be one as big as the 
very earth itself. It simply does not matter.

Time passes and other fundamental discoveries are made, one being that the 
earth, though it appears flat, is in all likelihood probably round. One of the ob-
servations that lead to this conclusion comes from sailors noticing that when they 
approach a mountainous coastline, the first landmark they see is the top of a peak 
and not the entire mountain as you might expect if the earth were flat. As the ship 
gets closer and closer to land, more and more of the mass becomes visible. This 
same phenomenon is observed when a person walks up a hill with a mountain in 
the distance: He sees the summit first and then more and more of the prominence 
as he approaches the top of the hill. Since there are no hills in the ocean, a logical 
explanation for this occurring at sea is that the surface of the earth is curved.

Eratosthenes of Alexandria

The time is now the mid to late third century BCE and the great library in 
Alexandria, Egypt, is in its heyday. It contains much of what ancient man 
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knows about the world. Among its holdings are papyrus scrolls which include 
the results of Amar’s work on circles from so long ago. Its librarian is the great 
scientist and Renaissance man Eratosthenes. History will be much kinder to 
him than were many of his contemporaries, to whom he was known as jack 
of all trades but master of none.4 

This exceptional man has tasked himself with the problem of determin-
ing the distance around the earth. Many scholars have come to believe that 
because the earth is round it must indeed be spherical in shape. Eratosthenes 
knows that spheres have circles in abundance (e.g., the equator, lines of lon-
gitude). He feels certain he can bring to bear humankind’s knowledge about 
circles to solve this problem. 

He knows about Amar’s three ways to find the distance around a circle 
and concludes that number 1 and 2 are well nigh impossible for him to do; 
surely the dimensions of the earth are too big. He wonders about number 3. 
Given the fact that celestial objects change their orientation depending on 
your north-south location and that changes in your north-south location cor-
responds to turns (or angles) on a great circle around the earth, it certainly 
seems plausible to him that one can connect angle measurements on the earth 
to what is happening in the sky.5 

A case in point: Celestial objects in the sky will look very different at the 
North Pole than they do at the equator and a change in location from the 
equator to the North Pole corresponds to a quarter turn measuring 90 degrees 
on the earth. The distance corresponding to a 90-degree turn on the earth is 
much too large to measure directly but he wonders if isn’t possible to directly 
measure 1__

90th of that distance, namely, the distance on the earth that corre-
sponds to 1 degree.

To get a handle on the problem, he decides to first find out if he can, by 
using objects in the sky and on the surface of the earth alone, determine that 
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the equator and the North Pole are 90 degrees apart. He creates a model of a 
great circle of longitude on the earth and imagines two tall towers atop two 
buildings, one at the equator and the other at the North Pole (sizes not drawn 
to scale). 

Since the sun is so far away, he knows that its rays can be considered to be 
essentially parallel by the time they reach the earth.

Parallel light rays from a very distant sun

Parallel light rays from a very distant sun and towers

Observe that the angle the sun’s rays make with the tower on the equator 
is different from the angle they make with the tower at the North Pole. If 
the sun is directly overhead of the tower at the equator (as the diagram 
implies), then the angle its rays make with the structure is 0 degrees (they 
are parallel to each other). At the same time, its rays will make an angle of 90 
degrees with the tower at the North Pole.
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Angle between sun’s rays and the towers at the Equator and North Pole 
equals their angular separation on the Earth (90 degrees)

The angle that the sun makes with the tower at the North Pole matches 
perfectly with the actual angular separation on earth between the pole and the 
equator. In this case at least, if you can measure angles made by the sun’s rays, 
then you can in principle use those measurements to determine the angular 
separation of these two buildings. Is this always the case? 

Let’s now look at the case where one of the buildings is not at the North 
Pole, but at a location halfway between the North Pole and the equator. This 
corresponds to an angular separation on the earth of 45 degrees. 

Angle between sun’s rays and the towers equals their 
angular separation on the Earth (45 degrees)

See that the angular separation between the locations on earth matches the 
angle between the sun’s rays and the tower on the building 45 degrees away 
from the equator. It is a known fact from geometry that for two parallel lines 
such as the light rays in these two figures this correspondence will always 
hold. This general result is given here: 
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Arbitary Angles (A = B) with Earth included

Arbitary Angles (A = B) without Earth

Although angles A and B are equal in value, a monumental difference is 
involved in obtaining their measures. Angle A resides deep inside the earth 
and is effectively inaccessible, whereas angle B lies on the surface and can be 
measured directly. And once more, the almost divine gift of substituting one 
set of objects or procedures by a more convenient set of objects or procedures 
presents itself to us—this time allowing the simpler task of measuring angle B 
to be substituted for the much more difficult one of measuring angle A—with 
no loss of information. 

Although measuring angle B can be substituted for measuring angle A in 
theory, Eratosthenes still had to figure out a way to do it. How do you mea-
sure the angle that the sun’s rays make with a tower? Since the sun doesn’t dis-
criminate in sharing its wealth, Eratosthenes knew that its rays make the same 
angle with any tower or object in a given location—meaning that he could 
use the angle the sun’s rays make with a small stick in the place of a tower to 
obtain the angle (this can be done by using the shadow made by the stick).

He recalls reading about a curious situation in a town called Syene 
(present-day Aswan, Egypt), almost 490 miles directly south of Alexandria. 
On the first day of summer when the sun was at its highest point, it had been 
observed that its light shown directly down onto the water in a deep well (with 
its shimmering reflection clearly visible). 

Eratosthenes realized that the only way that this could happen was if the 
sun was directly overhead Syene at this time. This would also mean that a 
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tall tower or a thin stick held vertically in Syene would make virtually no 
shadow—implying that the angle between a tower and the sun’s rays would 
equal 0 degrees as in the earlier scenarios.6 

He decides to make an identical measurement using shadows created by 
the sun in Alexandria on the same day of the year at the same time (when the 
sun is at its highest point). He finds that the angle between a tower or stick 
here and the light rays is around 7 degrees. He now has the problem bagged.

Since Syene is almost directly south of Alexandria, the two towns are very 
nearly on the same circle of longitude. This means that the angular separation 
between Syene and Alexandria must be close to 7 degrees. Given that their 
mileage separation is approximately 490 miles, Eratosthenes ecstatically con-
cludes that on this big circle which goes around the earth, 7 degrees of turning 
must roughly equal 490 miles. Dividing by 7 then implies that 1 degree cor-
responds to approximately 70 miles. 

Now he can apply Amar’s method number 3 and multiply 360 × 70 miles 
to obtain 25,200 miles as the distance around the earth. This answer is off by 
only a few percentage points of the answer we know to be true today.7 
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Making a Spectacular Statement

Amar’s humble studies on circles, done in the dirt generations before, have 
now made a spectacular statement! The results obtained by him and others, in 
the hands of Eratosthenes, have forced the earth to give up one of her greatest 
secrets—the mystery of her size. Eratosthenes was able to do this not by the 
direct method of going around the earth and measuring its length, but rather 
by staying at home and simply creating models, using a few measurements, 
and manipulating symbols. 

Awareness of the fact that one thing in nature can be substituted for an-
other in a crushingly advantageous way is what enabled Eratosthenes to do 
this. The key point being that while we as humans do discriminate between 
forms, a small circle in the dirt as being something drastically different from a 
large one that goes around the earth, many of the fundamental rules that we 
learn about them do not. A circle is a circle is a circle and once the essential 
laws have been obtained wherever that is, they apply across the spectrum of 
forms, from a small circle drawn in the dirt more than 4,000 years ago to a 
modern circle as large as the very earth itself. It simply makes no difference. 

We say it again: For people the two circles are vastly different, the circle 
drawn in the dirt can be taken in with a glance while circuits around the earth 
are so big that as far as we know it would take more than 1,700 years, from the 
time of Eratosthenes, before someone was capable of actually traversing one. 
To make a few measurements using a small stick and a few symbolic calcula-
tions and then be able to connect them to the distance around an enormous 
planet, without actually going around that planet, is something very, very 
special indeed.

The realization that mathematics can be used to spectacularly access “the 
inaccessible and inconvenient” is certainly one of the main reasons why 
human beings have cared about it for so long. It is certainly a major reason 
why scientists often wax eloquent when describing the subject. Applying math 
to solve problems is one of the most deeply satisfying and worthwhile activi-
ties we collectively do. 

Charles Darwin is often quoted as saying: “mathematics seems to endow 
one with a new sense,” and while mathematics certainly does not fit most 
scientific definitions of what a physiological sense is, it does give us a huge 
lens to peer into a world that we cannot directly perceive, revealing patterns 
and connections which can be leveraged to “magnify” our understanding of 
the world.8 

This occurs because just as we can translate our daily happenings and 
thoughts into sounds (speech) or visible marks (writing) with great advan-
tage, so too can we translate other meaningful types of information into 
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mathematical diagrams and symbols to great advantage. With the exception 
of language whose utter centrality to human affairs there is no denying, the 
ability to advantageously translate or convert one set of objects or procedures 
into another more convenient set of objects or procedures roars the loudest 
in mathematics. 

Conclusion

As the stated calculation which Eratosthenes used to estimate the distance 
around the earth, “360 × 70 = 25,200” plays a significant role in this chapter. 
What is curious to note, however, is that this same calculation can also play 
extremely minor roles as well. If 360 assorted pieces are in each of 70 boxes 
of cereal, then “360 × 70 = 25,200” also gives the total number of pieces of 
cereal in all of the boxes. 

The same calculation describing something as significant as a valid esti-
mate of the distance around our planet, on the one hand, can also describe 
something as mundane as the total number of pieces of cereal in a collection 
of seventy boxes, on the other. There are infinitely many other potential 
situations, equally mundane or significant, that can also be described by this 
calculation (of course, both “mundaneness” and “significance” are in the eye 
of the beholder).

The existence of such situations means that simple mathematical state-
ments such as “360 × 70 = 25,200” have much in common with language 
words and language statements. For example, the single word “house” can 
simultaneously be used as a significant metaphor in a presidential address to 
the nation or as a commonplace noun in ordinary coffee shop banter. 

The word “house” can also represent millions of different existing struc-
tures, and ultimately millions of different structures yet to be built. These 
structures vary in size, inhabitants, color, shape, location, value, composition, 
and so on. In spite of this, they all still have enough in common to be repre-
sented by the same basic five-letter word. 

In the case of the mathematical statement, “360 × 70 = 25,200” the differ-
ent structures are replaced by the multitude of different and diverse situa-
tions. Some of the situations described by this expression can be immensely 
significant while others can be commonplace—even boring. 

This is an important property to realize about all symbolic mathematical 
expressions. They can describe literally an infinite cloud of potential situa-
tions, making them extremely general just like language words and sentences, 
perhaps even more so. Thus, in learning how to manipulate expressions and 
diagrams we are in a sense learning how to manipulate the entire cloud of 
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possibilities directly or potentially described by that expression or diagram.9 
This has happened over and over again in this chapter with every math-
ematical thing we did (e.g., methods for finding the distance around circles in 
Amar’s backyard, which will work in principle on any circle in the universe, 
the equality of corresponding angles which will work for trillions of angles 
and trillions of towers on trillions of different planets).

The conceptual significance of this chapter becomes clear now and is this: 
Through the judicious employment of symbols, diagrams, and calculations, 
mathematics enables us to acquire significant facts about extremely signifi-
cant things (universal laws, even), not by first forging out into the cosmos 
with teams of scientists, but rather from the comforts and confines of coffee 
tables in our living rooms! This was certainly the case with both Amar and 
Eratosthenes. 

But while true in our tale here (and in thousands of others), it is important 
to note that not every random and local investigation will produce truths that 
are both eternal and significant. The key to making it work is perhaps best 
encapsulated in the words attributed to the eminent mathematician David 
Hilbert: “The art of doing mathematics consists in finding that “special case” 
which contains all the germs of generality.”10 Local investigations of circles, 
angles, parallel lines, and numbers all have the qualities of that “special case.”

The stage is now set to transition to the next phase of the book—a detailed 
conceptual study of the four fundamental operations of addition, subtraction, 
multiplication, and division. These operations form an important core in 
grade school mathematics curricula around the world. We have already seen 
that even something as elementary as basic numeration is no trivial matter, 
and we will find the same to be true of these four classical operations as well. 

Throughout what follows, the often-mentioned computational efficiency 
of the HA notation will be on full display. However, there is also much “con-
ceptual manna” to be gleaned from the coin numeral and abacus models that 
we have developed. So instead of tossing these systems aside as interesting 
curiosities and forgetting about them, we will now recalibrate them to become 
potent weapons of exposition. These models then will comprise a crucial por-
tion of the conceptual arsenal which we will employ full force in our efforts 
to give readers a newfound appreciation for the elementary arithmetic already 
in their possession. 
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The process of “pen reckoning,” as calculation with Hindu-Arabic numerals 
was sometimes called did not efface itself as it occurred, and thus could be 
easily checked; and calculating and recording could be done with the same 
symbols.

—Alfred W. Crosby, contemporary historian, 
writer, author of The Measure of Reality: 

Quantification and Western Society, 1250–16001

II

THE SPECTACULAR FUSION OF 
CALCULATION WITH WRITING
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THE PHYSICIST, IN EXPLAINING projectile motion to the novice, as a first step, 
ignores air resistance (or friction) because it makes the analysis easier for 

beginners to digest—focusing on some of the crucial fundamentals without 
overly complicating things.

I fully concur with this plan of attack as well as with the thoughts of Re-
naissance educator Wolfgang Ratke when he states: “Before the learner has a 
notion of the thing itself, it is folly to worry him about its accidents.”1 

In this text, I have taken a similar tack and have, for the purposes of expo-
sition, chosen to view the elementary operations of arithmetic as they look 
through the lens of whole numbers only, ignoring the details of how they look 
when negatives, fractions, and irrational numbers enter the arena. I make no 
apology for this approach.

For readers who would like to see more examples of some of the conceptual pro-
cedures involved in the next five chapters please visit:  www.howmathworks.com. 

Author’s Note
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1234567890
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3456789012
4567890123
5678901234

“Should you just learn the rules and not the concepts or should you only 
understand the concepts and not the rules?” is like saying “Would you rather 
be deaf or blind?” If you are blind, you do not see, if you are deaf, you do not 
hear. On the whole we prefer to have both faculties.

—Sir Michael Atiyah (paraphrased), British mathematician, 
Fields Medal and Abel Prize laureate1

“MAKE SURE YOU SHIFT the 252 in the second row,” the teacher ex-
claimed! The startled child, for the third straight time in front of the 

classroom, had calculated the product of 42 × 67 in the following manner, 

 as opposed to ; thus making a mistake that has undoubtedly been 

committed by millions of young students since the 1500s. With the intro-
duction of the HA system into arithmetic (and its practice of using the same 
symbols in different locations), keeping the numerals in the right formation 
had become a serious affair. 

5

 Numeral Formations 
Come to Arithmetic
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But numeral formations are only a piece of the puzzle. To perform calcula-
tions correctly, one must also learn the basic facts of how the ten fundamental 
numerals {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} interact with each other in regards to the 
elementary operations of addition, subtraction, multiplication, and division. 
Correctly apply these basic facts while keeping the numerals in the right forma-
tions and you get the right answer. Apply the basic facts improperly (saying 5 
+ 4 is 8 instead of 9, for instance) or put the numerals in incorrect formations 
(thus making what should be 2520 into 252) and you don’t. It is as simple as that.

If, as is often stated, the introduction of the HA system into arithmetic was 
revolutionary, then it is no stretch to say that the need to memorize these basic 
facts along with placing numerals in the right formations are two very impor-
tant pieces in this revolution. Hundreds of basic facts have to be learned to suc-
cessfully add, subtract, multiply, and divide just the counting numbers in this 
system. If we add the rules for putting the numerals into the right formations, as 
well as the techniques for applying these numerals to solve various problems—
not to mention fractions and negative numbers—then the number of concepts 
that must be learned in elementary arithmetic mushrooms to many more. This 
can be intimidating to someone who has yet to master the system.

The need to learn so many basic facts effectively means that the introduction 
of the HA system has turned out to be a double-edged sword. With one edge 
being a blessing because it allows for the historically revolutionary idea that 
arithmetic can in principle be learned by anyone. The average person nowadays 
is fully capable of using elementary arithmetic in ways that even people who 
were good at mathematics would have found time-consuming and difficult to 
perform in other systems—unaided by a mechanical device such as an abacus. 
The opposite edge being a curse because the need to learn so many facts can at 
times seem overwhelming. In addition, the very efficiency of this system may 
easily prevent a deep understanding of what is really happening with calculation 
in elementary arithmetic; thus masking the absolute miracle in writing that has 
been achieved by the positional representation of numbers.

Our goal in this chapter as well as in subsequent ones will be to expound 
upon how the need for learning numeral formations and so many basic facts 
arose, as well as the benefits gained by fulfilling this need. Later in the book, 
we will discuss some of the pitfalls that have arisen in education because of all 
of this. We begin our discussion here by revisiting addition once again. 

Addition

In what follows, we will freely alternate between the three systems discussed so 
far: the HA numerals, the abacus rods, and the coin numerals. Although their 
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origins lie in the tangible physical device, our abacus rods have now become 
entities in their own right. In what follows, they will be used as independent 
objects in ways that would be difficult to mimic with an actual abacus. Work-
ing with the abacus rods and coins will give us conceptual information on 
how to proceed in constructing a recipe or algorithm for addition in terms 
of the HA script. We begin by observing how adding 24 and 43 plays out on 
abaci rods:

We can proceed horizontally, but it is more convenient to arrange the 
columns vertically so that their denominational values fall more easily into 
alignment. This rearrangement will become decidedly advantageous when 
carries are involved. Beginning with the ones column (or denomination) and 
moving to the left, we have:

In rods  In HA script

The next example of 56 + 25 = 81 demonstrates how we handle situations 
when more than ten beads end up on one of the rods:
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In script: 

In these examples, the rods are doing all of the work for us. This is nothing 
new since the traditional use of the abacus has been as an aid in calculation 
for a written script. This is similar to the role coin numerals played in helping 
us obtain the answer to the addition of fifteen and twelve in chapter 3. Unlike 
the situation with coin numerals, however, the HA script is a direct rendering 
of the abacus rods; so even if a person did not know how to conceptually add 
in script they could still write the correct answers using only a knowledge of 
how adding the “ten original designs” on the abacus rods translates to HA 
script. This means that as our skill with the rods improves, this should directly 
translate to our skill using the HA numerals. Our skill with the rods will im-
prove dramatically if we simply bite the bullet and memorize what the results 
will be, when we pair-wise add all of the “ten original designs” on the abacus 
rods. These results are listed here (the tables read as A + B): 
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Abacus Rod Addition Table
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Using the table is pretty straightforward as the example of adding a rod with 
eight beads to one with seven beads shows. We look for the eight rod in the A 
column and the seven rod in the B row. The arrows identify these. The circled 
entry indicates their sum after the carry. We conclude that: 

In HA script, this directly translates to: 8 + 7 = 15.
All of the results in the abacus rod addition table can be directly translated 

into the more compact HA script. These resul ts yield the following addition 
table in script: 

Hindu-Arabic Addition Table

We will sometimes abbreviate the HA addition table as simply the addition 
table. Notice that these two tables appear to say something only about the 
ones and tens rods (or ones and tens place) but, as before, the rules so dis-
covered on a particular column or place value are rules that translate to any 
column or place value. The following demonstration shows how to apply the 
results in the addition tables to the ones, tens, and hundreds places:
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These examples illustrate that calculations of 8 + 7, 80 + 70, and 800 + 700 
amount to playing the same game in different locations:

For 8 + 7, the game is played in the ones and tens places. 
For 80 + 70, the same game is played in the tens and hundreds places.
For 800 + 700, the game is played in the hundreds and thousands places.
For 8,000 + 7,000, not shown, the game is played in the thousands and ten 

thousands places.

This extends to higher places as well. The essential rule in every case is that 
8 + 7 = 15 and this is what is codified in the addition table. Knowing this 
rule alone is not enough, however. To successfully engage it we must learn 
how to properly handle the fact at whatever position it occurs in a numeral 
formation—this is a distinctly different task.

We can shorten the addition procedure if we deal with the carries up 
front—as we add, rather than waiting until after the addition is completed. In 
the addition of 56 and 25 we demonstrate this by moving the carries into the 
open space above the rods:
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In script: 

The next demonstration adding 678 and 545 shows how this shortened 
algorithm looks when multiple carries are involved: 
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In script: 

Here we have done the primary additions, 8 + 5 = 13, 7 + 4 = 11, and 
6 + 5 = 11 plus the modifications necessary to handle the additional “1s” in 
the carry. These primary additions can all be found in the HA addition table. 
This sum can also be done with coins as well. The answer is 1223 in all three 
systems. 

The procedures involving HA script and the abacus rods can both be done 
on a single diagram. Doing this with the HA yields: 

This is clearly the most compact and efficient of the three methods. Con-
sequently, it will be to our great advantage to master this method, and an im-
portant cog in making it work is to memorize outright the HA addition table. 
This table will serve as our “alphabet” for addition. Once this is accomplished, 
we can efficiently use the nice vertical procedure for the HA numerals to add 
any two whole numbers. We demonstrate this for the following addition: 

Primary additions used from the addition table this time are: 

7 + 4, 6 + 7, 9 + 8, 0 + 9, 8 + 5, 0 + 9, 0 + 8, 6 + 8, 7 + 0, 5 + 6, 2 + 1

It is certainly possible to do this calculation in coin numerals or abacus 
rods but the amount of work as well as the space used will be much greater 
for both.
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If we only add two numbers, the most we can carry to another column is 
a 1. If, however, we add three or more numbers at once, it is possible that 
values larger than 1 may be required in a carry. In such cases, memorization 
can be combined with mental calculation to obtain the result. Try this with 
687 + 796 + 587.

If we committed the addition table to memory and practiced representing 
numbers using HA numerals only, we could dispense with the rods and beads 
entirely, essentially creating a new numerical language not only for represent-
ing numbers but also for adding them too. Future generations learning only 
this new numerical language might not even be aware of the rods and beads 
from which they were derived.2 This approximates what happened and is not 
wholly unlike what happens when new technologies replace old ones.

 The reader should keep in mind that our conversations involving HA 
numerals are broad and widespread. As discussed earlier, mathematical state-
ments (whether in the form of tally marks, coin configurations, abacus rods, 
or HA numerals) all act like language words and sentences which means that 
they can be used to describe an enormous number of possibilities. Some of 
those possibilities in the case of “4589 + 2718 = 7307” include: 4589 people + 
2718 people = 7307 people, $4589 + $2718 = $7307, 4589 books + 2718 books 
= 7307 books, and so on.

A key component that distinguishes the HA numerals from the others is 
that, like language, the script requires a heavy investment in memorization. 
The scheme involving coin numerals does not require the memorization of a 
table for addition—exactly what to combine and how to change denomina-
tions is very apparent. However, the gains acquired in this trade-off are more 
than worth the trouble. Not only is it now possible to make the representation 
of numbers alphabetic in HA script, but with the memorization of the one 
hundred entries in the addition table, it becomes possible to alphabetize the 
operation of addition itself!3 

The trillions upon trillions of different additions between any two num-
bers no matter their size can be reduced to the one hundred additions in the 
addition table. Those one hundred additions act as a closed alphabet for all 
additions of two numbers. 

Subtraction

Subtraction Using Coin Configurations

What about the opposite process of taking objects away from a collection 
as opposed to adding them? This operation is called subtraction. Now that we 
have seen that it is possible to alphabetize addition, the immediate question 
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becomes can we do it with subtraction too? Can lightning strike twice in the 
same way? We will find that indeed it can but this time with a twist.

Let’s first look at subtraction with coin numerals and observe how 784 – 
362 plays out: 

In script this reads as 784 – 362 = 422. 
Sometimes it is not so easy, and before we can simply cross out coins in 

the subtraction, the coins have to be first rearranged to make it work. The 
example of 654 – 467 demonstrates this: 

Here we can easily take out the four  coins in four hundred from the 
six s above it in six hundred fifty-four, but as it now looks, there are not 
enough  and  coins, respectively, in 654 for our procedure of striking 
out to work in its present form. This turns out only to be a mild discomfort, 
for we can convert a  into ten s and a  into ten s. Doing this and 
then completing the subtraction yields: 

Translating this back to script allows us to conclude that 654 – 467 = 187. 
Changing a higher denomination coin into ten of a smaller denomination is 
a frequent occurrence in subtraction and corresponds to what is traditionally 
called borrowing.
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The notion of taking away from a collection (subtraction) is the opposite of 
adjoining to a collection (addition). This inverse relationship is reflected in our 
coin manipulations (calculations): Where in the case of addition, ten coins of 
a lower denomination are often grouped together to yield a coin of a higher 
denomination, while conversely in the case of subtraction, a coin of a higher 
denomination is often ungrouped to yield ten coins of a lower denomination.

As long as we are subtracting a smaller whole number from a larger whole 
number, borrowing ten coins from a higher denomination will always supply 
us with enough coins to complete the subtraction: The reason is that the most 
number of coins we can have for any given number (assuming the grouping 
conventions have been obeyed) is nine and when we decompose a higher 
denomination into a lower one we get ten new coins.4

Translating Subtraction to HA Script

This method of using coins will work for any subtraction of a smaller whole 
number from a larger one. This gives us a general method for subtraction 
using coin numerals that is both systematic and reproducible (meaning that 
anyone who uses it correctly will always arrive at the same answer). Unfor-
tunately, just like in addition with coins, the method is very “wordy.” Our 
next steps are to see how the general method discussed earlier looks using the 
abacus rods and to then compress these results into a method or algorithm 
involving only HA script. We first look at 784 – 362: 

In script this translates as:     
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How do situations involving a borrow look with rods? We revisit 654 – 467. 
As we saw with coins, there are not enough beads in the ones column of the 
654 to cancel out the 7 beads in the ones column of the 467. To handle this, 
we must convert and align:

In HA script this becomes: 

Thus we have that 654 – 467 = 187.
As with addition, the rods are presently doing the work for us. To make a 

practical scheme or algorithm for subtraction in HA script, it will help if we 
memorize all of the possible situations we can encounter when subtracting 
two digits within the system. 

Subtraction differs from addition, however, in that borrowing or decompos-
ing is involved as opposed to carrying. What this means is that when a borrow 
is involved we must change the form of the number before a fundamental sub-
traction can take place; this never happens in addition. In adding, we perform 
the fundamental additions from the table first and then the carries. We will 
clarify the distinction with the examples of 305 + 998 and 939 – 587:
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Fundamental additions used from the addition table are: 5 + 8 =13, 0 + 9 
= 9, and 3 + 9 = 12. 

Fundamental subtractions involved are: 9 – 7 = 2, 13 – 8 = 5, and 8 – 5 = 3.
A key difference in the two calculations in the example is the 13 – 8 that oc-

curs in the middle subtraction after a borrow. Thirteen is two numerals long, 
not one. This is true in general for fundamental subtractions which require a 
borrow, meaning that we have to also deal with two-digit long strings. This 
never occurs with addition since the carry happens after each of the numerals 
have been added in a given column.

Another key difference is that what we see in the initial subtraction diagram 
on the left is not what ends up being subtracted. In the final diagram, we 
end up performing the fundamental subtractions 13 – 8 and 8 – 5, neither of 
which appears in the original diagram of 

 

Only the fundamental subtraction 9 – 7 appears in both the original and final 
subtraction diagrams. 

All of this means that in HA numerals we effectively have two types of 
subtractions: those that require a borrow and those that don’t. Unlike addi-
tion, the fundamental HA table for subtraction splits into two: subtractions 
between digits requiring a borrow and subtractions between digits not requir-
ing a borrow. We list both situations here in a yes/no format:
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Yes/No Borrowinga

aTable reads as A – B
 bY ≡ Need to Borrow or Decompose and N ≡ No Need to Borrow or Decompose 

This leads to the following two tables based on the above yes/no results:

Subtraction Table (No Borrowing Required)
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Subtraction Table (Borrowing Required)

These two tables will serve as an “alphabet” for subtraction. The twist, or 
what makes the procedure different from what we did in addition, is that the 
fundamental situations split into two tables as opposed to one. Using only the 
tables now for the subtraction 728 – 483, without the aid of abacus rods, gives: 

Fundamental subtractions: 
Not requiring a borrow: 8 – 3 = 5; 6 – 4 = 2
Requiring a borrow: 12 – 8 = 4 

Shortening the Subtraction Algorithm 

Our next goal is to shorten the subtraction algorithm when borrowing 
is involved. In the first subtraction (784 – 362), where no borrowing was 
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required, we can essentially do the subtraction in a single step just as we did in 
addition. However, for the subtraction 728 – 483, which involved borrowing, 
the work required several steps. The biggest problem involved the fact that we 
had to make changes to the top number to complete the subtraction; that is, 
although we started with a subtraction of 7 – 4 in the hundreds column, we 
ended up actually subtracting 6 – 4 due to the borrow. 

This means that if we shorten the algorithm to a single diagram we have 
to do something to indicate the changes that can occur to a digit when we 
borrow. In performing addition, the digits of the top number in the original 
addition stay the same, and when a carry is needed, the changes happen in the 
space above the number. 

However, in subtraction the changes can occur in the digits of the top num-
ber, itself, as well as in the space above. To represent such subtractions in a 
single step, we must identify what we are doing by tagging the digits that are 
changing. We illustrate one method by reconsidering 728 – 483:

We simply combine all of the steps in the previous example into a single 
one, crossing out the 7 to indicate that it is being replaced by a 6:

The fundamental subtractions from the table remain the same.
The subtraction of 64,053 – 28,236 shows how messy a subtraction prob-

lem can be when multiple borrows are required: 

Fundamental subtractions from the table: 
Not requiring a borrow: 4 – 3 = 1; 5 – 2 = 3
Requiring a borrow: 13 – 6 = 7; 10 – 2 = 8; 13 – 8 = 5
The methods demonstrated here, in HA numerals, are all of a type called 

the decomposition method. This method of subtraction evidently caught on 
like wildfire in the United States after it was reintroduced in the late 1930s 
by the great educator William A. Brownell and has become the predominant 
way that subtraction is now taught in America. Before this time, two other 
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methods called the equal additions method and the Austrian method, respec-
tively, were used nearly as much. The Austrian method remains popular in 
Europe. The latter two methods require more memorization to use than the 
decomposition method but work just as well and don’t vandalize the vertical 
diagram as much.5 All three methods allow us to perform subtractions within 
a single expression. 

A variant of the decomposition method is also still quite popular in the 
United States today. This approach abbreviates the procedures just a bit fur-
ther. We demonstrate this for subtracting 728 – 483:

The only difference between the two methods shown for calculating 728 – 
483 is that the  in the earlier subtraction is shortened to  in the abbreviated 
method. We read the  as 12. Otherwise, the content in both methods is the 
same. 

The subtraction 64053 – 28236 abbreviates as follows:

Here the  in the earlier subtraction has twice been replaced by  which is 
interpreted as 13 and the  has been replaced by  which is interpreted as 10.

This abbreviated method introduces an inconsistency between how we add 
and subtract. For instance, in our earlier addition of 305 + 998, we read  and 
 as 1 + 3 = 4 and 1 + 0 = 1, respectively, while we read them in the abbrevi-

ated subtraction 64,053 – 28,236 as 10 + 3 = 13 and 10 + 0 = 10, respectively. 
This inconsistent treatment, in addition and subtraction, of arrangements 
that look the same is undoubtedly a source of difficulty for those learning the 
abbreviated method, particularly if the distinction is not pointed out. It is not 
unlike the irregular treatment in English pronunciation of the sequence of 
letters “cycle” in the words “recycle” and “bicycle” or of the sequence of letters 
“ough” in the words “tough” and “though.”

Regardless of the method used, subtraction succumbs to being “al-
phabetized” in HA numerals. What this means is that, as in addition, all 
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subtractions (of the type “a larger whole number” minus “a smaller whole 
number”) can be reduced by algorithm to the 100 subtractions coming 
from the two fundamental tables shown earlier. It is not enough, however, 
to simply memorize the information in the tables; one must also acquire 
the skill to handle the vertical methods that utilize this information. In the 
case of subtraction this can take quite some time. Once mastered, however, 
the subtraction techniques in HA notation are clearly superior in terms of 
convenience and compactness to the techniques we have used for the abacus 
rods and the coin numerals. 

A Game of Checkers

A central theme of this book is the fact that one method can be spectacularly 
more advantageous to use than another method. Taken at face value, this 
obvious truth is not earth-shattering. What is valuable is that interpreting it 
in the context of mathematics can be conceptually illuminating in many ways.

Consider the game of checkers. We can play it with red and black check-
ers, nickels and dimes, bottles and cans, Fords and Chevys, even horses and 
elephants. Each set of pieces represents a form in which we can play the game; 
however, it is clearly more convenient to play the first two versions of the 
game as opposed to the latter two. So even though all piece sets are equivalent 
in that they offer different versions of the same game, they are not all equiva-
lent in terms of user-friendliness. 

Imagine, if you will, that humankind’s first encounter with checkers had 
been the version where horses and elephants were used as game pieces. Play-
ing this version would require great resources and wealth to play (lots of 
land, many horses and elephants, etc.) and consequently would in general be 
unavailable to the average citizen. 

Now imagine that someone eventually discovers that it is immaterial 
whether the game pieces are alive or not, and decides to substitute small toy 
model horses and elephants in place of the real ones. This would allow the 
game to be played on a much smaller plot of land. 

Our pioneer may go even further and realize that the pieces don’t even have 
to look like horses and elephants (they just have to be two sets of distinctly 
different pieces) and decide to use a “coded set” of small red and black check-
ers on a small transportable red and black board. Implementation of this 
smaller more user-friendly version would have several immediate benefits:
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• The game would be much more convenient and economical to play plus 
transportable, making it accessible to a much larger number of people, 
perhaps the entire citizenry.

• It would allow for systematic and conceptual study of the game to occur with 
far greater ease (the entire sweep of the game can now be seen all at once).

• Wider accessibility increases the chances of a truly great talent being 
exposed to the game.

Eventually this version or some other small version of the big game would 
dominate and most likely, over a period of time, the original horses and el-
ephants version would be placed out to pasture. In the future, the only people 
that might even be aware of its existence would be those interested in the 
history of the game. Here, the substitution of the more advantageous form in 
place of the other offers such decisive advantages that it becomes historic for 
the game (and also the world, if the game is of great enough significance) and 
the replacement becomes permanent. 

This gives an analogy of what often occurs with technological change: a 
technological discovery, in this case, learning to play checkers with small red 
and black checkers yields crucial advantages over the old way. These advan-
tages turn out to be so great that the new way completely unseats the old way. 
This checkers scenario is obviously fictional but it metaphorically reflects 
what actually can and does occur in the symbolic world of mathematics. In 
elementary arithmetic, the old methods of calculating gave way to more ef-
ficient and user-friendly procedures. These newer techniques performed the 
task so much better that the switch was decisive, and over time knowledge of 
the earlier, comparatively more cumbersome (but still on occasion conceptu-
ally useful) methods have receded into the backdrop of history. 

Conclusion

The natural problem of finding out the size of a collection after objects have 
been added to it or taken away from it has now been completely rerouted to 
the task of memorizing addition or subtraction tables and learning how to use 
the accompanying algorithm (i.e., the processes of placing the numerals into 
the proper formations and rearranging them to accommodate the carries and 
borrows). This is a feat of symbolic engineering. 

Much repetition or drill is needed to learn both the tables and the algo-
rithms, but once accomplished, the ease by which addition and subtraction, 
even of large numbers, can be performed makes the effort worthwhile. The 
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algorithms are so effective, in fact, that it now becomes possible to use them 
without thinking about what is happening conceptually—this is especially 
true in the case of the more difficult subtraction algorithm. Not thinking 
about what is theoretically happening is quite fine if one has already concep-
tually mastered what is going on, but not so good if one does not understand 
at all conceptually why the algorithms work. Hopefully this chapter has 
helped shed some conceptual light on why the procedures for these two op-
erations succeed in calculation.

The advantages gained by using the HA notation, while most impressive 
here in addition and subtraction, become truly monumental in the case of the 
higher order operations of multiplication and division. This is undoubtedly 
a major reason why the script ascended to the worldwide phenomenon it is 
today. We now turn our attention to these higher order operations.
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The whole object of travel is not to set foot on foreign land; it is at last to set 
foot on one’s own country as a foreign land.

—Gilbert Keith Chesterson, British author, 
literary and social critic1

WE EAT THREE MEALS A DAY, go to work five days out of seven, and grocery 
shop perhaps once a week—repetitive acts are a part of life. Have you 

ever wondered how many times you do each of these in a year? How would 
you go about counting something like that? Trivial you say? Think again, for 
once more, we are close to touching upon timeless principles: touching upon 
those “special cases” of David Hilbert’s, if you will—the ones containing all 
the germs of generality. 

In this chapter, we will find that figuring out how to conveniently count 
repetitive actions or situations leads us onto the trail of an entirely new way 
of reckoning—called multiplication. We begin by considering the following: 

A. A bookstore receives a regular shipment of 15 boxes of books every 
week. How many boxes are delivered in one year?

B. The setup for a graduation ceremony has 30 rows each with 45 chairs. 
How many guests can be seated at the ceremony? 

C. What is the total amount paid back on a signature loan of 36 months 
where each payment is $115?

6

The Symmetry of Repetition



100 Chapter 6

D. A 2001 Chevrolet Impala gets 25 miles per gallon. If it has a gas tank 
which holds 17 gallons, how many miles can it travel when full?

E. A country has a population of 26,784,000 (approximately the same 
number of people as Nepal in 2011). If the average per capita income is 
$17,200, what is the combined income in one year for all of its citizens?

These five problems have something in common with our questions about 
weekly routines; and most people would answer that each can be solved by 
multiplication. But what exactly does that mean? If a child asked you what 
multiplication is about, could you explain it? If we knew nothing of multi-
plication and could only add and subtract, would we still be able to find the 
answers to these questions? 

While each of these problems deals with a different issue, they can be solved 
by addition alone—provided we add together the number involved in the 
repetitive act the required number of times. For question: 

A. The repetitive act is a shipment of 15 boxes every week for a year (52 
weeks in a year); for the answer we must add fifty-two 15s together. 

B.  The repetitive act is 45 chairs in each of the 30 rows of chairs in the 
auditorium; for the answer we must add thirty 45s together.

C. The repetitive act is a payment of $115 for each of the 36 months of a 
loan; for the answer we must add thirty-six 115s together. 

D. The repetitive act is 25 miles for each of the 17 gallons of gas in the fuel 
tank; for the answer we must add seventeen 25s together.  

E. The repetitive act is $17,200 for each of the 26,784,000 citizens in the 
country; for the answer we must add twenty-six million, seven hundred 
eighty four thousand 17200s together.

The need to repeatedly add or count in multiples occurs in numerous 
guises. 
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There are millions upon millions of other situations (an infinite nation of 
them if you will) that can be linked by the need to repeatedly add numbers 
together and this fact alone makes this process highly relevant. As with Amar, 
when he began studying circles: Whatever we discover in our study should 
have far-reaching, even universal, implications. 

But first we need to give chase to the common thread running through 
all of these problems. What is it? Each of the problems involves a “certain 
number of objects” (boxes, chairs, miles, or dollars) repeatedly used a “certain 
number of times.” These two numbers are what we must capture in represent-
ing this common thread. In other words, we must identify: the “number of 
times the repetitive act occurs” and the “number of objects involved in each 
repetitive act.” 

For the situation involving bookstore shipments the repetitive act occurs 52 
times and 15 objects are involved in each repetitive act. Commonly used ab-
breviations linking these two numbers include: 52 × 15 or 52 • 15 or (52)(15). 
Each of these reads as: add fifty-two 15s together or 52 times 15. In the same 
spirit, we could rewrite the “total combined income” question as 26,784,000 
times 17,200 or 26,784,000 × 17,200. These shorthand abbreviations are 
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written representatives of a new process—one that is different and distinct 
from simple addition or simple subtraction. We will christen the method with 
the name “multiplication.”

While we may jump for joy over this christening, with its shorthand nota-
tion, it really isn’t very helpful in and of itself. That is, if the only way to calcu-
late 26,784,000 × 17,200 is to literally take twenty-six million, seven hundred 
and eighty-four thousand 17,200s and add them together, then using this ab-
breviation hasn’t really given us anything new from the standpoint of saving 
us work—we still have to do all of the additions to solve problems. 

Solving the problem this way is simply out of the question: There are 
26,784,000 seconds in 310 days, and it most surely would take a longer time 
than this to simply count from 1 to 26,784,000—even if that is all one did 
24/7.2 Since it takes more time to add than to count, it stands to reason that 
performing these many repeated additions of 17,200 in a direct manner 
(without any shortcuts) would take a great deal longer than 310 days—even 
using our modern method of doing addition. 

Nevertheless this type of problem remains and needs to be solved. What 
are we to do? We know many of our ancestors got around this problem by 
using devices such as the abacus to help them multiply. But we have also 
shown that the HA numerals are a direct capture of a certain type of abacus 
in writing. Is it possible to now take advantage of this and avoid actually 
scribbling down a string of numerals the required number of times—mak-
ing convenient multiplication in writing possible? If so, this would be a 
bonanza indeed. 

In this chapter, we begin an investigation into whether this is possible or 
not, and will follow G. K. Chesterson’s lead by looking at the familiar territory 
of multiplication as if we were strangers in a new land.

Egyptian Multiplication

Our task looks daunting. We have to engineer a way to compute on paper 
(or some other writing medium) the net effect of doing lots of additions, po-
tentially numbering in the millions, without actually performing all of those 
additions. Is such a path even possible? Since the abacus already does such an 
adequate job, why should we even care? Many civilizations didn’t—the meth-
ods using a device worked for them and that was good enough. 

Nevertheless, performing multiplication in writing is not something we 
should take lightly. Language writing opens up to us whole new ways of look-
ing at the world and so too might the ability to multiply in writing. 

How should we proceed?
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We start by asking a simple question of multiplication—does the order 
in which we multiply make a difference in our answer? We know that order 
doesn’t matter in addition; for example, we get 13 whether we add 4 + 9 or 
9 + 4. This quality of addition is called the commutative property. Subtraction 
evidently does not have this property since 6 – 2 = 4 and 2 – 6 does not. The 
latter subtraction doesn’t even make sense for whole numbers, that is, when it 
is applied to collections such as a group of people or a collection of cell phones.3 

It would be fabulous if the order in which we multiply two numbers gave the 
same answer, since it would mean that 825 × 2 gives the same value as 2 × 825, 
which would imply that adding “825 twos” together is equivalent to adding “2 
eight hundred and twenty fives” together. The latter requires the addition of 
only two numbers! Put another way, if the order in which we multiply doesn’t 
change our answer, then we can find the net effect of adding 825 numbers 
together by simply changing our viewpoint and adding together only 2 values. 

We address the question of order in multiplication by considering an ex-
ample. We use coin numerals for conceptual illumination: Does 4 × 2 = 2 × 4? 

These are equivalent. In fact, if we make the columns in B into rows and the 
rows into columns, we obtain A.

The process of converting rows to columns and vice versa is called “taking 
the transpose.” Thus the transpose of the result in B is equal to the result in A. 
Similarly, the transpose of A is equal to B. We clearly see that 4 × 2 = 2 × 4 = 8.

This example illustrates what is true in general—the order in which we 
multiply two numbers makes no difference in the final answer. The order 
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in which we repeatedly add or multiply, however, does make a big differ-
ence in how convenient a time we have in obtaining that answer. Using this 
basic property in the per capita income situation, we can find the value of 
26,784,000 × 17,200 (requiring that we add 26,784,000 numbers together) 
by simply reversing the order and calculating 17,200 × 26,784,000 instead 
(requiring that we only add 17,200 numbers together). 

The equality of these multiplications quite naturally connects the total income 
of two radically different nations, one with a large population of more than 26 
million where the average citizen has an annual salary of $17,200 (below what 
is considered the poverty line for an American family of four), with a very rich 
nation of only 17,200 citizens where each earns on average $26,784,000 per year. 

Taking a situation that requires more than 26 million additions and trans-
forming it to one that requires 17,200 is no small feat. Unfortunately, this is 
still way too many to make brute force repeated addition a practical way to 
solve problems that involve many repetitive acts.

Remarkably in the time of the pharaohs, the ancient Egyptians developed a sys-
tematic way to perform fewer additions in writing. Their technique sheds light on 
an important property of multiplication so we will discuss it in some detail here. 

The method is based on the principle of doubling and requires forming 
two rows. The values in the top row are obtained by starting with the number 
one in the first cell, and repeatedly doubling the result as we move across the 
row—thus, doubling 1 yields 2, doubling 2 yields 4, doubling 4 yields 8, and 
so on. We list the results in the top row up to 1024:

Doubling Table

The bottom row will change values depending on the number repeatedly 
added. Let’s look at this for the case where the number is 5. The numbers in 
the bottom row are obtained by starting with the number 5 in the first cell and 
doubling as we move across the row. 

Doubling Table for 5

This is a times table of sorts for 5, since for example 5 × 8 = 40 and the 40 
lies below the 8. Believe it or not, from just the 11 entries in the bottom row 
we will be able to calculate the value of 5 times any number between 1 and 
2047.4 The two examples of 14 × 5 and 642 × 5 show how this works: 



 The Symmetry of Repetition 105

Doubling Table (14 × 5)

To use the table to compute 14 × 5, we first scan the top row for numbers 
that add up to 14 and find that 8 + 4 + 2 = 14. 

Next, we add the numbers in the lower row which lie below each of these 
to obtain: 40 + 20 + 10 = 70. We conclude that 14 × 5 = 70. 

Expanding this sum illustrates conceptually what is happening. 

To find 642 × 5, we scan the top row of the table for numbers that add up 
to 642 and find that 512 + 128 + 2 = 642. 

Doubling Table (642 × 5)

We add the numbers in the lower row which lie below each of these to 
obtain: 2560 + 640 + 10 = 3210. We conclude that 642 × 5 = 3210. Note that 
2560 contains 512 fives and 640 contains 128 fives and 10 contains two fives. 
Hence their sum contains 642 fives which is our goal. 

To see the generality of this method we now construct a doubling table for 
45 and use it to compute 1584 × 45: 

Doubling Table for 45

We scan the top row to find the numbers adding up to 1584 and find that 
1024 + 512 + 32 + 16 = 1584. 

Doubling Table (1584 × 45)



106 Chapter 6

We add the corresponding numbers in the bottom row to obtain: 46080 + 
23040 + 1440 + 720 = 71280. We conclude that 1584 × 45 = 71280.

From the definition of multiplication as repeated addition, we can find 
1584 × 45 by either adding 1584 (45s) together or by reversing the order and 
shortening it to adding 45 (1584s). Adding together forty-five numbers is 
still more work than we would like to do. Using the procedure from ancient 
Egypt allows us to find the answer (after the table has been constructed) by 
adding together only 4 numbers. That’s right, only 4! Pretty clever of the 
ancients! The amount of effort saved is even more substantial when larger 
numbers are involved. 

In illustrating the Egyptian method here, we have used our modern day 
HA numerals. The Egyptians of course did not know these numerals and 
would have used some other set. It turns out, in fact, that the Egyptians 
had several types of numerals, including the hieroglyphic numeral system 
discussed earlier as well as a cursive form of numerals called hieratic. They 
evidently used hieratic numerals when performing the doubling method. 
The doubling method is demonstrated in one of the oldest known surviving 
documents on mathematics—the Rhind Papyrus. Based on an even earlier 
document, the work is estimated to have been written around 1650 BCE by 
a scribe named Ahmes.5 

The Egyptian method convincingly demonstrates that we can obtain an-
swers to multiplication problems in systematic ways that don’t require doing 
all of the additions in writing. In fact, “17,200 × 26,784,000” can now be 
solved by many within 15 to 25 minutes of using it. The simple and ancient 
method of doubling, combined with the commutative property of multipli-
cation, has accelerated a process that in its original form would have taken 
several hundred days to perform using brute force repeated addition to one 
that can now be completed on a few sheets of paper and in less time than 
it takes to watch a single rerun of The Cosby Show. That’s an exceptionally 
cool thing.

The Distributive Property

Crucial to the success of the Egyptian method is the distributive property of 
multiplication over addition. To illustrate how the doubling method works, 
we will first break down a couple of multiplications by 11. We start with 11 × 
5; 11 × 5 means to add 5 together 11 times:

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 
11 fives
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We have a lot of freedom in how we choose to add these eleven fives. We 
can do it by first adding five of the 5s together in one group and six of the 5s 
in the second group and then combining the results together to obtain 55:

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 11 × 5 
5 fives 6 fives

5 × 5 + 6 × 5 = 55
25 30

We can also arrange the numbers in the following two ways as well:

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 11 × 5 
4 fives 7 fives

4 × 5 + 7 × 5 = 55
20 35

or

5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 + 5 = 11 × 5 
2 fives 9 fives

2 × 5 + 9 × 5 = 55
10 45

Given that 11 can be broken up into 5 + 6, 4 + 7, or 2 + 9, the above sug-
gests that we can calculate “11 × 5 = 55” directly or by using any of these 
subdivisions of 11. We will get 55 no matter which route we choose to take.

This is where the doubling table for 5 in the Egyptian method comes in (see 
the following abbreviated table): 

Abbreviated Doubling Table for 5

The fact that 11 equals 8 + 2 + 1 means that we can break up adding the 
eleven 5s into groups that are already listed in the table. This allows us to 
swiftly conclude that:
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11 × 5 = (5 + 5 + 5 + 5 + 5 + 5 + 5 + 5) + (5 + 5) + (5) = 40 + 10 +5 = 55
11 fives 8 fives 2 fives 1 five

Similarly the fact that 8 + 4 + 2 + 1 equals 15 means that we can break up 
adding the fifteen 5s into groups that are also already given in the table. We 
swiftly conclude again that: 

15 × 5 = (5 + 5 + 5 + 5 + 5 + 5 + 5 + 5) + (5 + 5 + 5 + 5) + (5 + 5) + (5)

15 fives 8 fives 4 fives 2 fives 1 five

= 40 + 20 + 10 + 5 = 75

Critical to making this doubling procedure work is that the numbers 1, 2, 4, and 
8 supply complete coverage of every whole number between 1 and 15 (i.e., any 
number between 1 and 15 can be written as a sum involving only 1, 2, 4, and 8): 

Coverage of Whole Numbers from 1 through 15

This implies that multiplying 5 by any number between 1 and 15 can be 
obtained by adding some combination of the four elements in the doubling 
table for 5. This can easily be extended to coverage of the whole numbers 
between 16 and 31 by simply appending another entry to the doubling table:

Appended Abbreviated Doubling Table for 5

The reader should note that all whole numbers between 1 and 31 can now 
be obtained from some combination from the top row of this expanded table 
(e.g., 27 = 16 + 8 + 2 + 1 and 23 = 16 + 4 + 2 + 1). This implies then that 
multiplying 5 by any number between 1 and 31 can be also obtained from 
some combination from the bottom row of the table (e.g., 27 × 5 = 80 + 40 + 
10 + 5 = 135 and 23 × 5 = 80 + 20 + 10 + 5 = 115). 

This process continues with the next two entries in the top row being 32 
and 64 supplying expanding coverage of the whole numbers from 1 to 63 
and then from 1 to 127, respectively. Continuing on ad nauseum, we even-
tually cover all of the whole numbers, meaning that we can in principle use 
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the doubling table to calculate any multiplication involving the number five 
(see www.howmathworks.com for more sample problems and explanation of 
many of the examples given in this chapter).

There is nothing special about five. These methods will work for any whole 
number. The sums in the top row in these tables remain. The only change 
would be to replace the doubling of 5 in the bottom row by the doubling of 
the number in question. Hence, the Egyptian method gives us a complete 
recipe for how to multiply any two whole numbers in writing. This recipe 
enables us to get around the issue of having to perform all of the repeated ad-
ditions. It is a stunning achievement of ancient Egyptian mathematics!

In spite of its success, however, this method is not the main event here. The 
high point of our discussion on multiplication will center on how it works 
using the “alphabetic” features of the HA system. For it is here that the sym-
metries of the ancient Indian system get fully unleashed— elevating the ability 
of human beings to circumvent repeated addition in writing to a high art. 

Multiplication in Place-Value Systems

Place-value multiplication is devastatingly effective on multiple fronts. If the 
Egyptian method were likened to conventional explosives, then multiplica-
tion using the alphabetic features of HA numerals is nuclear. The HA con-
quest of multiplication depends on these key components:

1. The distributive property of multiplication over addition
2. The existence of convenient footholds into which we can naturally de-

compose any number
3. The symmetry of the positional system

To take full advantage of these three components requires that we:

A. Make multiplication alphabetic (as we did with addition) by construct-
ing a “times” table.

B. Devise an efficient algorithm (that takes advantage of these alphabetic 
features) which is compact and straightforward to learn.

We have discussed the distributive property and also the existence of con-
venient footholds in the case of the Egyptian scheme (the entries in the top 
rows of the doubling tables). In the HA system, the convenient footholds are 
the place values, themselves, corresponding to 1, 10, 100, 1000, 10,000, and 
so on. We are going to use the footholds here a bit differently than in the 
Egyptian case. 
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Alone, the footholds corresponding to the place values cannot be combined 
in the Egyptian way. What the place values offer, however, is a much more 
natural decomposition of a number. This decomposition is, of course, their 
raison d’être. Before beginning, it will prove useful to introduce two hybrid or 
mixed numeral representations that will help provide critical conceptual un-
derstanding throughout our discussion of both multiplication and division. 
The decomposition of 625 illustrates these representations:

Multiplying a place value by a given number is very straightforward as the 
multiplications of 1, 10, and 100 by 3 show: 

For each calculation notice that the same thing happens—multiplication 
by 3 converts one bead (●) into three beads , the only difference being the 
location of the rod on which it occurs.

For 3 × 1, this conversion occurs on the rod in the ones place. For 3 × 10, 
this conversion occurs on the rod in the tens place. For 3 × 100, this conver-
sion occurs on the rod in the hundreds place. This identical behavior in dif-
ferent locations again illustrates the symmetry of our positional system. It is 
also worth pointing out that multiplication by 3 has no effect on the vacant 
rods (represented by a zero in HA script), only on the rod which contains a 
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bead—yielding three beads plus the vacant rods. In HA notation, this trans-
lates to a value of 3 followed by the number of zeros in the place value. Using 
this same observation we readily conclude that 3 × 10000 will yield a 3 fol-
lowed by four zeros or 30000.

There is nothing special about 3; the same result holds for any number. 
Namely, multiplying any number by the place values (1, 10, 100, 1000, etc.), 
yields a value starting with the number followed by the quantity of zeros in 
the particular place value. Thus 12 × 10000 gives 12 followed by four zeros 
or 120000.

We have discovered a fundamental pattern from observing the behavior 
of the abacus rods for the multiplications: 3 × 1, 3 × 10, and 3 × 100. There 
are dozens of other fundamental patterns to be revealed. Let’s look for the 
one yielded in the multiplications of: 4 × 3, 4 × 30, and 4 × 300 (we now add 
vertically for increased clarity): 

The pattern this time is: 

4 ×  yields .
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For 4 × 3, the situation is played out on rods one and two. For 4 × 30, the 
situation is played out on rods two and three. For 4 × 300, the situation is 
played out on rods three and four. In HA script, this fundamental pattern 
reads as 4 × 3 =12. Once this is known, we can handle any situation involving 
4 times a number that has 3 as its only nonzero digit. We do this by simply 
leading with 12 followed by the correct amount of zeros (e.g., 4 × 3000000 = 
12000000).

The fundamental pattern for 6 × 7 is:

6 ×  = . 
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For 6 × 7, this pattern is played out on rods one and two, while for 6 × 70, 
this pattern is played out on rods two and three and so on. In HA script, this 
fundamental pattern reads as 6 × 7 = 42. From this we can handle any situ-
ation involving 6 times a number that has 7 as its only nonzero digit. We do 
this by simply leading with 42 and following it by the correct amount of zeros 
(e.g., 6 × 7000 = 42000).

There are more jewels to be uncovered here (than might first appear on 
the surface) from the knowledge of the two fundamental patterns for 4 × 3 = 
12 and 6 × 7 = 42. We can now project these patterns to handle many, many 
more complicated multiplications. Let’s see this play out on the multiplica-
tion of 33 × 4—using the basic pattern that 4 × 3 = 12, the distributive prop-
erty, and the knowledge that reversing the order in which we multiply doesn’t 
change our answer:

33 × 4 = 30 × 4 + 3 × 4 = 4 × 30   +   4 × 3 

Add thirty three
4s

Add thirty 
4s

Add three 
4s

Using both abacus rod and HA script in parallel yields: 

This gives 33 × 4 = 132. We easily extend this to the multiplication of 333 × 
4 by writing this as:



114 Chapter 6

333 × 4 = 300 × 4 + 30 × 4 + 3 × 4 = 4 × 300   +   4 × 30   +   4 × 3 

Add 333
4s

Add 300
4s

Add 30 
4s

Add 3
4s

and doing the same thing as above we obtain 333 × 4 = 12 + 120 + 1200 = 
1332. Try it on the rods yourself.

In the same vein, the fundamental pattern 6 × 7 = 42 allows us to calculate 
777 × 6 as follows:

777 × 6 = 700 × 6 + 70 × 6 + 7 × 6 = 6 × 700   +   6 × 70   +   6 × 7 

Add 777
6s

Add 700
6s

Add 70 
6s

Add 7
6s

which gives 777 × 6 = 42 + 420 + 4200 = 4662. This is how it plays out on 
abacus rods: 

Simply knowing the fundamental pattern that 6 × 7 = 42 gives us the 
ability to multiply 6 by any number involving only 7s and 0s (e.g., 7777 × 6, 
70707 × 6, 77700077 × 6). For example, the multiplication 70707 × 6 looks 
like: 
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70707 × 6 = 70,000 × 6 + 0000 × 6 + 700 × 6 + 00 × 6 + 7 × 6 =

6 × 70,000 + 6 × 0 + 6 × 700 + 6 × 0 + 6 × 7 =

420000 + 0 + 4200 + 0 + 42 = 424242

Knowing that 4 × 3 is 12 will yield a similar result for multiplication by 4 
of any number containing only 3s and 0s. 

Thus the extent to which we can project our knowledge when we know a fun-
damental pattern is truly amazing. We may use this knowledge to literally multi-
ply infinitely many more numbers. That is a lot of bang from a single pattern. In 
principle, if we know all of the fundamental patterns, we can project our knowl-
edge even more (how far?). Is it possible to know all of the fundamental patterns? 

The fundamental patterns are those that occur when we multiply the ten 
digits among themselves (e.g., 9 × 5, 4 × 7, 7 × 6). Since the number of such 
products is 100, we are yet again (for a third time) presented with the oppor-
tunity to make an operation alphabetic. If we learn and memorize these 100 
fundamental patterns, it will be possible in principle to compute any product 
of the form (a single digit) × (any sized number). 

The following tables show the 100 fundamental patterns in abacus rods 
(the tables reads as A × B):  

Abacus Rod Multiplication Table
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Abacus Rod Multiplication Table (Continued)

The power of this table can be shown in the calculation of 235 × 7: 

235 × 7 = 200 × 7 + 30 × 7 + 5 × 7 = 7 × 200   +   7 × 30   +   7 × 5 

Add 235
7s

Add 200
7s

Add 30 
7s

Add 5
7s
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Using these patterns and  translating the situation to the proper location 
yields: 

Thus 235 × 7 = 1645.
This method can be used to multiply a single-digit number by any sized 

number. To multiply a single digit by numbers with more than three digits 
(for instance, 5649 × 7), we simply add more rods to accommodate the larger 
place values and use the fundamental patterns given in the abacus rods table. 
This recipe using the abacus rods gives us a systematic method for handling 
all multiplications involving a single digit. Unfortunately, it is still too bulky 
for our tastes and needs to be further simplified. 

As before with addition and subtraction, we can directly translate the 
abacus rod multiplication table into a table involving only HA script. The 
resulting table is probably the most well-known mathematical table of all and 
is called the multiplication table or times table: 
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Multiplication Table (or Times Table)

Armed with this table, we are able to multiply any number by a single digit 
in the manner of the previous examples, except now it can be done purely in 
script. The multiplication of 8432 × 8 shows how this is done:

8432 × 8 = 8000 × 8 + 400 × 8 + 30 × 8 + 2 × 8 =

  8 × 8000 + 8 × 400 + 8 × 30 + 8 × 2

Translating the fundamental patterns to the proper location yields:

(tens and ones places) 8 × 2 = 16

(hundreds and tens places) 8 × 30 = 240
(thousands and hundreds places) 8 × 400 3200
(ten thousands and thousands places) 8 × 8000 64000

Adding these yields: 67456

Thus 8432 × 8 = 67456.
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Conclusion

Who would have guessed that tracking the total number of boxes shipped to 
a bookstore in a particular year or figuring out the total amount of money 
owed back on a signature loan of 36 months, would have anything to do with 
expressing timeless principles in nature? But it turns out that they do. Multi-
plication and its generalizations appear throughout the whole of mathematics 
and science—making their presence felt, even in many of the most esoteric 
attempts by scientists to describe symbolically how the world works (e.g., E 
= mc2 or Energy = [the mass] × [the speed of light] × [the speed of light]).7 
In mathematics, by placing our fingers on a given problem, no matter how 
trite or pedestrian it apparently seems, we may end up measuring the pulse 
of the universe.

And it all begins here, with the type of ordinary problems we have discussed 
in this chapter. It is not unlike the physical scenario involving a tiny stream 
flowing out of the misty confines of a lake in northern Minnesota that eventu-
ally grows into a veritable torrent that becomes the world class Mississippi-
Missouri River system ranking among the largest in the world. 

Hyperbole aside, we are now midstream in our campaign to successfully 
grapple with multiplication. We have made significant strides in this chapter—
acquiring the capacity, thanks to the Egyptians, to solve all of the originally 
stated problems (and infinitely more) by systematically sidestepping in some 
cases thousands of additions. Knowing we can do this gives the new operation 
of multiplication teeth as it means that we can work completely within the 
abbreviated form to more conveniently handle such problems. But our task 
is far from complete—much still needs to be simplified. This simplification is 
the focus of the next chapter.
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Dancing in all its forms cannot be excluded from the curriculum of all noble 
education: dancing with the feet, with ideas, with words, and, need I add that 
one must also be able to dance with the pen?

—Friedrich Nietzsche, German philosopher, 
poet, classical philologist1

IF THIS BOOK REPRESENTS a journey passing through mountainous terrain, then 
this chapter represents one of the highest pinnacles that we shall attain. 

With many peaks, the toughest part of the climb is often the last part. In this 
vein, this chapter involves a bit more symbolic manipulation than some of 
the others—but it is still within your purview. I urge the less mathematically 
inclined of you to stay the course here. We have covered a lot of conceptual 
terrain to get to this point and now have placed within sight a much deeper 
understanding of how the modern methods of multiplication taught in the 
schools really work. Let us not now shirk from the symbols when we are so 
close. Hopefully you will find the scramble up this last segment of the trail 
illuminating (if needed, please visit www.howmathworks.com to see more 
examples). 

The major focus of the previous chapter was to show that it is possible, in 
writing, to solve problems that require repeated addition by actually getting 
around doing all of those additions on paper. This allows us to significantly 
reduce the time it takes to find solutions in these situations—once more plac-
ing before us the universal idea of substituting one thing for another to gain 

7

Dance of the Digits
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decisive advantages. Due to its widespread occurrence, the name “multiplica-
tion” was given to this way of reckoning.

While much progress has been made in taming this operation (the Egyp-
tian method of doubling, for instance), our times table methods in HA script 
are still not complete. Presently, we can only handle a restricted class of 
problems—namely, those involving an arbitrarily long number multiplied 
by a single digit. Computing such multiplications, in principle, has been 
completely solved and can usually be performed much faster, with times 
tables, than using the Egyptian technique. But there are many, many other 
multiplications where both numbers have two or more digits (the five original 
problems of the last chapter, for instance) and the time has come to learn how 
to deal with these. 

Additionally, we still need to see if the entire process can be miniaturized 
further into a single diagram in a manner similar in spirit to the compact 
algorithms we have for addition and subtraction.

Our goals then are this: to develop a general recipe (in HA script) that 
works for the multiplication of any two whole numbers, not just the special 
cases of the previous chapter, and then to stylishly simplify it. We will accom-
plish both in this chapter, and in the demonstration will see the overwhelm-
ing power inherent in the symmetry of the HA notation. This symmetry will 
give us the ability to take the repeated addition of a number and radically 
transform it into something completely different, into something that in its 
most expressive form can be likened to a drill team of digits marching to well-
scripted rules—a veritable dance of the digits, if you will. This transformation, 
this poetry of the diagrams, allows for the operation of multiplication, which 
is significantly harder than either addition or subtraction, to be wrestled out 
of the hands of the specialist and laid at the doorstep of elementary school-
aged children.

Carving Up the Numerals 

The plan of attack, when multiplying two numbers in HA script, is to “carve 
up” the multiplication or product in a way that allows us to unleash the times 
table on it. When the product is of the form “two or more digits × a single 
digit,” as in the last chapter, we break up the larger number to accomplish this 
(e.g., in 62 × 7 we split up the 62 [as 60 + 2] to get 60 × 7 + 2 × 7). However, 
if both numbers in the product contain two or more digits, we have some 
freedom in how we choose to decompose. For example, when computing the 
product 62 × 37, we can choose to carve up the 62 first or the 37 instead. To 
successfully handle these cases requires that we relocate the trailing zeros in 
the product. 
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If a numeral ends in one or more zeros, we will call these zeros “trailing 
zeros.” For example, 50 has one trailing zero and 500 has two trailing zeros. 
The numeral 100020 has four total zeros, but only the one at the end quali-
fies as a trailing zero. In HA script, trailing zeros are like free agents which 
can roam at will from the tail of one numeral in the product to the tail of the 
other. The following all show that while the total number of trailing zeros is 
conserved in the product (before completing the multiplication, that is), they 
can move freely between either numeral: 

One Trailing Zero: 60 × 1 = 6 × 10 = 60 

Two Total Trailing Zeros: 60 × 10 = 6 × 100 = 600 × 1 = 600 

Four Total Trailing Zeros: 600 × 700 = 60 × 7000 = 
6000 × 70 = 6 × 70000 = 420000

Five Total Trailing Zeros: 54000 × 7200 = 54 × 7200000 = 
5400 × 72000 = 5400000 × 72 = 388800000

In terms of our viewpoint of multiplication as repeated addition, these 
seemingly innocuous shifts of zero are actually tremendous simplifications. 
They have far greater impact on reducing the number of additions required 
than even does simply reversing the order of the multiplication. For instance, 
600 × 700 means to take six hundred 700s and add them together. But by 
shifting zeros, we can swiftly rewrite this as 6 × 70000 and find the answer by 
knowing only that 6 × 7 is 42 and then putting the four zeros after it to obtain 
420000—meaning in this case, that the collective effect of hundreds of addi-
tions has been rerouted to a single calculation that can be completed in less 
than ten seconds! These shifts play out on abacus rods as shown:

           600   ×  7 0 0    =   6   ×    7 0  0  0  0    =    4 2 0 0 0 0

Exploiting the free agent properties of trailing zeros will prove to be pivotal 
to all that follows in that we can reposition them to convert multiplications 
between any two numbers, into multiplications found in the multiplication 
table. We just have to learn how to incorporate all of the shifts in such a way 
that everything aligns correctly—historically, no small task. If there are still 
any lingering doubts on the significance of the number zero (and the symbol 
representing it) to how we perform arithmetic, please let them cease here. 



124 Chapter 7

Nontrailing zeros, on the other hand, are bound and cannot be moved 
around at will since doing so gives different answers. For example, the zeros 
in the product, 7202 × 6008, are nontrailing and cannot be shuffled around: 
7202 × 6008 ≠ 7220 × 6800. 

To get the ball rolling let’s look at how the multiplication of “two digits × 
two digits” plays out by walking through “62 × 37”:

Carving Up Sixty-Two First (60 + 2)

62 × 37 = 60 × 37 + 2 × 37

Add 62 Add 60 Add 2

37s 37s 37s

B + A

• A = 2 × 37:
 In this form we still can’t directly engage the multiplication table. We must 

also split up the 37 (as 30 + 7) which gives: 2 × 37 = 2 × 30 + 2 × 7. 
 Now we can directly engage the table. 

The fundamental patterns from the times table are: 2 × 3 = 6; 2 × 7 = 14

Using these patterns gives: 2 × 30 + 2 × 7 = 60 + 14 = 74.
And we have 2 × 37 = 74.

• B = 60 × 37: 
 In the form 60 × 37, we can’t directly engage the multiplication table. We 

must first reposition the trailing zero: 

60 × 37 = 6 × 370

Moving the 
trailing zero 
to the right

 Decomposing the 370 (300 + 70) allows us again to engage the multiplica-
tion table: 

6 × 370 = 6 × 300 + 6 × 70 = 1800 + 420 = 2220
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The fundamental patterns from the times table are: 6 × 3 = 18; 6 × 7 = 42.

Adding the result in A to the result in B vertically: 

74
+ 2220

2294

This gives 62 × 37 = 2294.

Carving Up Thirty-Seven First (30 + 7)

Since the order in which we multiply doesn’t matter (i.e., 62 × 37 = 37 × 62) 
we can read 62 × 37 from right to left (as 37 times 62). This interprets as add-
ing together thirty-seven 62s:

62 × 37 = 60 × 30 + 62 × 7

Add 37 Add 30 Add 7

62s 62s 62s

B + A

• A = 62 × 7:
 As before, we can’t directly engage the multiplication table using the form 

62 × 7. We need to also decompose 62 (60 + 2) which gives: 

62 × 7 = 60 × 7 + 2 × 7 = 420 + 14 = 434

Thus 62 × 7 = 434.

The fundamental patterns used from the times table are: 6 × 7 = 42; 
2 × 7 = 14

• B = 62 × 30:
 Similarly in the form 62 × 30, we can’t directly engage the table. We must 

first reposition the trailing zero: 
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62 × 30 = 620 × 3

Moving the 
trailing zero 

to the left

Now we decompose the 620 (600 + 20) which gives: 

620 × 3 = 600 × 3 + 20 × 3 = 1800 + 60 = 1860

Thus 62 × 30 = 1860.

The fundamental patterns used from the times table are: 6 × 3 = 18; 2 
× 3 = 6.

Adding the results in A to the result in B vertically: 

434
+ 1860

2294

This gives 62 × 37 = 2294.

We obtain the same value of 2294 whether we decompose the 62 first or the 
37 first. Regardless of which number we choose to break apart first, we end 
up carving up the other one as well. Breaking up both numbers is necessary 
to fully engage the times table. 

Trailing Zeros Go to Work

We are on the scent of something significant here. To get a better feel for 
exactly what that is let’s give ourselves a longer piece of rope to play with this 
time by looking at the multiplication of 745 × 289: 
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Decomposing the 289 first: 

 

745 × 289 = 745 × 200 + 745 × 80 + 745 × 9

Add 289 Add 200 Add 80 Add 9

745s 745s 745s 745s

Decomposing the 745 first: 

745 × 289 = 700 × 289 + 40 × 289 + 5 × 289

Add 745 Add 700 Add 40 Add 5

289s 289s 289s 289s

To engage the multiplication table requires that we eventually take apart 
both numbers, the 745 next in the first case (to 745 = 700 + 40 + 5) or the 
289 next in the second case (to 289 = 200 + 80 + 9). Once we have done 
both decompositions it then becomes a game involving only trailing zeros as 
indicated here: 

745 × 289 = 745 × 200 = 700 × 200 + 40 × 200 + 5 × 200 (1st row)
+ 745 × 80 = 700 × 80 + 40 × 80 + 5 × 80 (2nd row)
+ 745 × 9 = 700 × 9 + 40 × 9 + 5 × 9 (3rd row)

or,

745 × 289 = 700 × 289 = 700 × 200 + 700 × 80 + 700 × 9
+ 40 × 289 = 40 × 200 + 40 × 80 + 40 × 9
+ 5 × 289 = 5 × 200 + 5 × 80 + 5 × 9

Notice that each of the nine partial products in the first product (745 × 
289) are present in the second product (745 × 289) as well. In fact, the rows 
in the first product become the columns in the second product (e.g., the three 
partial products in the first row of the first product, 700 × 200 + 40 × 200 + 5 
× 200, become the first vertical column in the second product) and vice versa 
(this is the transpose again). As a result of this equivalence, we need only use 
one of the two diagrams as we continue (we choose the first one with the 
labeled rows). 
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Now that we have taken apart both numbers completely, it becomes pos-
sible to fully engage the multiplication table for every product by simply 
repositioning the trailing zeros:

745 × 289 = (7 × 2) 0000 + (4 × 2) 000 + (5 × 2) 00 (1st row)
+ (7 × 8) 000 + (4 × 8) 00 + (5 × 8) 0 (2nd row)
+ (7 × 9) 00 + (4 × 9) 0 + (5 × 9) (3rd row)

Sum of Fundamental Products for 745 × 289

The fundamental products from the multiplication table are now: {7 × 2, 
4 × 2, 5 × 2, 7 × 8, 4 × 8, 5 × 8, 7 × 9, 4 × 9, 5 × 9}. Computing these gives:

745 × 289 = 140000 + 8000 + 1000
+ 56000 + 3200 + 400
+ 6300 + 360 + 45

Adding these all up gives 745 × 289 = 215,305.
The systematic idea then is this: to fully break apart both numbers in 

a product, no matter how many digits, until we get down to single digits 
followed by trailing zeros. It is always possible to drill down a product this 
way in HA script. Once accomplished, it then becomes possible to fully 
engage the multiplication table (by simply repositioning trailing zeros) to 
find all of the partial products and then we complete the additions for the 
final answer. 

There are patterns galore here and nowhere is that better demonstrated 
than in the “Sum of fundamental products for 745 × 289” expression. The 
following table makes these patterns explicit by listing the number of trailing 
zeros in each partial product entry with its accompanying coin denomination: 

Zero Counts for 745 × 289

The pattern is the same whether we read the table horizontally or vertically 
(i.e., turning the rows into columns or vice versa yields the same arrange-
ment). Is it possible to capitalize on these patterns? Most definitely! 
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Our next task then is to engineer a way to take advantage of these sym-
metries and translate this entire way of multiplying into a simpler, more 
convenient form. 

Multiplication on Diagrams

The breakdown of 745 × 289 (into nine partial products involving the mul-
tiplication of single digits and trailing zeros) is general and will work in 
principle for the multiplication of any two whole numbers. And though it 
represents another triumph over brute force repeated addition (i.e., we can 
find 745 × 289 this way by doing far fewer than 289 additions), the method is 
still bulkier than we’d like and nowhere near as simple as it can be. We have 
seen that a very compact algorithm is possible in addition (shown here), and 
it is natural to ask if such a thing is possible with this type of multiplication. 

Expanded addition versus compact addition (742 + 659):

Expanded Addition: 

(700 + 40 + 2)
+ (600 + 50 + 9)

1300 + 90 + 11 = 1401

Compact Addition: 

  11 
  742
 + 659

1401

To obtain a recipe which is similar in spirit to compact addition, we will 
work from the table listing the count of zeros (for 745 × 289). A major ob-
stacle in trying to acquire conceptual leverage over HA procedures is that we 
use the same symbols repeatedly in different locations or place values. This 
makes it very easy to get confused and lose track of what is really going on (is 
that really a 4000 or should it be 400 and how does it align). 

With HA numerals, the positions of digits within a given string of numerals 
are how we distinguish place values. Coin numerals, on the other hand, allow 
us to distinguish different locations or place values by using different denomi-
nations; meaning that the coins can act as tracking devices, if needed, and this 
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can turn out to be conceptually very useful—especially for multiplication and 
division. Let’s now exploit this to the hilt. 

To keep everything tidy for our present purposes, we will represent the coin 
numerals without circles (including only the content of their value). Which 
means that throughout the rest of the chapter, we will characterize the coin nu-
merals,  and , respectively, by the letters “T” and “H.” Looking at the “Zero 
Counts Table for 745 × 289” and retaining only the coin information we obtain:

Zero Counts for 745 × 289—Coins Only

Before analyzing this table further, it can be helpful to use this diagram as a 
road map of sorts for multiplication. A road map gives us a convenient and use-
ful model of a three-dimensional landscape. Convenience comes from the fact 
that it is astronomically easier to lay a road map, say of the state of Texas, in our 
lap than it is to do so with the actual material state (all 268,000 square miles of it). 

Utility comes from knowing that, even though a lot of information gets lost in 
representing such a landscape on small sheets of flat paper (i.e., we do not know 
what a region really looks like, smells like, or feels like by reading such a road 
map), key structural information, nonetheless, is still captured (items such as 
names and numbers of roads, which roads go through which towns, which roads 
connect to other roads, what are the main roads, and so on). In most cases, this 
information turns out to be precisely what drivers need to successfully navigate 
through a part of the country that they have never been in before. Exploiting road 
maps in this way is no trivial matter to any who have used them to travel.

Now in a similar fashion, these coin diagrams will provide useful insight 
into the world of multiplication—insights allowing us to “navigate” our way 
to powerful procedures for performing the operation.

Notice in the previous table that the denominations can be aligned if we 
look at them diagonally from right to left:

Demonination Alignment for Zero Counts—Coins Only (745 × 289)
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This alignment is what we will build from to construct the first of the min-
iaturized methods allowing us to tame the multiplication of whole numbers. 
To make it work, requires we use the following table showing how the coin 
denominations (place values) multiply among themselves:

Multiplication Table for Coin Denomnation or Place-Values

aT × H = 10 × 100 = 1000 = TH

We will now demonstrate how all of the pieces fit together by looking at the 
multiplication of 745 × 289 on the following sequence of grids: 

A: Blank Grid

B: Place Values Written as Products

C: Place Values Multiplied (i.e., H × T = TH, etc.)

   7  H     4  T                 5  I           

    TTH      TH       H  2   H 

     TH       H       T  8   T 

      H       T        I 9   I 
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The sequence of steps A, B, C have gotten us back to the “Zero counts table 
for 745 × 289 – coins only” but this time in three steps, as opposed to the slower 
method in the previous section involving the repositioning of trailing zeros. Now 
we can multiply each of the individual digits directly on the table as follows: 

D: Digits with Place Values Multiplied

a 4 T × 2 H = (4 × 2) (T × H) = 8 TH

E: Simplified Multiplications

The fundamental products used to multiply 745 × 289 on the diagram here, 
{7 × 2, 4 × 2, 5 × 2, 7 × 8, 4 × 8, 5 × 8, 7 × 9, 4 × 9, 5 × 9}, match those used in 
the previous section. Note that the same denominations occur on the diagonals 
(reading from right to left). Adding like denominations or place values gives:

 14 TTH 140000
 8 TH + 56 TH =  64 TH 64000

10 H + 32 H + 63 H = 105 H 10500
40 T + 36 T =  76 T 760

 45 1 45

215,305

And the answer we obtain matches our result in the previous section for 
745 × 289. 

The “Sum of fundamental products for 745 × 289” diagram, which in-
volved nine partial sums has now been road-mapped to nine entries in a table. 
The only difference between the two is appearance and how we get to them. 
The essential information is all the same with the same fundamental products 
from the times table being used in both cases. There is nothing that prevents 
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all of the steps in the diagrams A–D from being compressed into the last dia-
gram shown in E. 

We demonstrate this by multiplying 452 × 78 on a single table (remember-
ing to multiply both the digits as well as the place values):

The fundamental products used from the multiplication table are: 4 × 7 = 28, 
5 × 7 = 35, 2 × 7 = 14, 4 × 8 = 32, 5 × 8 = 40, 2 × 8 = 16.

Adding like place values along the diagonals gives:

28 TH 28000
35 H + 32 H = 67 H 6700
14 T + 40 T = 54 T 540

16 1 16

35256

Thus 452 × 78 = 35256.

Now we have the makings of a time and space saving procedure. We start it off 
by performing fundamental multiplications on a diagram. The entries in the dia-
gram naturally separate the partial products by place values. After this, we simply 
pluck the entries off the table like fruit, adding them together, and we are done. 

In spite of this simplification, the procedure is still not as elegant as it can 
be. Right now we have a hybrid method using both HA numerals and coin 
numerals. The coins have been used much like conceptual boosters to add 
insight. Are we now stuck with them or can we jettison them, à la NASA, and 
develop an algorithm that only uses HA script? 

The Lattice Method 

The time has come to let the numerals dance. It turns out that HA numer-
als can dance in many ways. The remainder of the chapter is devoted to the 
discussion of two such routines. 

Let’s begin by looking at the diagram corresponding to multiplying 23 × 56:
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Plucking the entries from each of the blocks and adding yields:

10 H 1000
15 T + 12 T = 27 T 270

18 I 18

1288

Rather than adding the same place values to each other first, we can instead 
keep each entry from the table separate and add them vertically:

10 H = 1000
15 T = 150
12 T = 120
18 I = 18

1288

Now notice that each of the hybrid entries on the left can be simplified first 
by carrying; that is, 10 “H” (ten hundreds) can be simplified to 1 “TH” (one 
thousand) and 12 “T” (twelve tens) can be simplified to 1 “H” and 2 “T” (one 
hundred, two tens). Let’s see what happens if we put these changes in first 
before adding: 

10 H = 1 TH 0 H
15 T = 1 H 5 T
12 T = 1 H 2 T
18 T = 1 T 8 I

1 TH 2 H 8 T 8 I

The answer matches what we had previously, as it should, since we are only 
reorganizing the sums and not changing the values. Now observe what hap-
pens on the diagram for 23 × 56 if we do these simplifications first: 
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Judiciously reorganizing in each cell gives:

Things are aligned quite nicely now. If we draw a diagonal in each rect-
angle, we can see just how aligned the coin values have become. 

The same denominations lie in the same lanes. In this format, we will be able 
to simply add the numbers in each lane to obtain the total amount we have for 
each place-value denomination. Extending the lanes and adding yields:

If we read the grid from right to left, we observe that:

The ones denomination is in the first lane.
The tens denomination is in the second lane.
The hundreds denomination is in the third lane.
The thousands denomination is in the fourth lane.

Given that the lanes become place values when extended, the above trans-
lates to:

The ones sum is in the first location or the ones place.
The tens sum is in the second location or the tens place.
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The hundreds sum is in the third location or the hundreds place.
The thousands sum is in the fourth location or the thousands place.

This perfect alignment let’s us completely drop the coin tags and simply 
work with the numerals themselves: 

23 × 56 (No Coin Tags)

The advantage of this last procedure is that it uses HA symbols alone—the 
conceptual coin tags have been jettisoned! Our goal of obtaining a miniatur-
ized and efficient algorithm using purely HA script has been achieved.

Let’s demonstrate this procedure by multiplying 852 × 74:

852 × 74 (Blank Lattice)

Placing the diagonal lines in for each cell gives:

852 × 74 (Blank Lattice & Diagonals)

The products we have to consider from the times table of chapter 6 are:

Top row: 8 × 7 = 56, 5 × 7 = 35, 2 × 7 = 14
Bottom row: 8 × 4 = 32, 5 × 4 = 20, 2 × 4 = 8
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Placing these products into their proper positions in the lattice yields:

Extending the lanes, adding (from right to left), and carrying (indicated by 
the 1s outside the squares) in formation gives: 

Thus 852 × 74 = 63048.
This can all be done on a single diagram. Doing so for our signature mul-

tiplication of the chapter (745 × 289) gives: 

And we have 745 × 289 = 215305. Compare this to all of our earlier meth-
ods of calculating this product.

This then is the lattice method of multiplication. It allows for the complete 
transformation of the problems of repeated addition into a procedure in writ-
ing that involves placing numbers into formation, via a multiplication table, 
and simply adding them along the lanes. It is as if the numbers have become 
part of a dance troupe routine, a routine in which we are able to accomplish 
the net effect of hundreds upon hundreds of additions in the span of less than 
a minute. Let’s now go back to the problem of finding the combined income 
of a country of 26,784,000 residents where each earns $17,200:
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We must calculate 26,784,000 × 17,200.
Repositioning trailing zeros yields: 26,784 × 17,200,000 = (26,784 × 172) 

00000.
We now use the lattice to calculate 26,784 × 172:

Thus 26,784 × 172 = 4,606,848. Attaching the trailing zeros yields: 4,606,848 
00000. And now we know that the combined income for all residents in the 
country is $460,684,800,000.

Using our knowledge about the basic properties of multiplication in HA nu-
merals along with the ability to engage the method on the lattice has enabled us 
to convert a process which in its raw and original form would easily take more 
than 300 days to accomplish (using tens of thousands of pieces of paper weigh-
ing into the hundreds of pounds) into one which, through an elegant dance of 
the digits, can be accomplished in the space of one-fifth of a single sheet of paper! 
This is miniaturization on a scale that rivals converting room-sized computers 
into devices that we can now conveniently sit on our laps. This is conversion on 
a scale that rivals what we do in language everyday, where, for the purposes of 
communication, physical events, and abstract thoughts are “road-mapped” into 
sounds or visible marks—effectively making the inaccessible accessible. 

The lattice method was discovered well over a thousand years ago, we be-
lieve, possibly in ancient India. The procedure was more widely publicized 
throughout Europe in early printed arithmetics such as the Treviso Arithmetic 
(1478) and Luca Pacioli’s Summa de Arithmetica (1494).

The Standard U.S. Algorithm

The lattice method vividly shows how the HA numerals can elegantly solve 
multiplication problems; however, it is not the only procedure for multiply-
ing those numerals. It is not even the one most commonly taught today in 
the U.S. curriculum. In his Summa, Pacioli demonstrated eight different ways 
to multiply using HA script. In addition to the lattice method, he included 
several other methods still in use today. In this section we discuss another of 
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the schemes from Pacioli’s text. Given that this algorithm is probably the one 
most prevalently taught in the United States, we will call it the standard U.S. 
algorithm, or just the standard algorithm. 

The tie that binds all of the methods together is that one must successfully 
and repeatedly engage the multiplication table to make them work.2 As we 
have seen, this requires that we carve up the numbers in such a way that we 
end up with several partial products that must be added together to get the 
original or main product. 

The standard algorithm can also be obtained from the lattice by simply 
adding horizontally along the rows as opposed to adding along the diagonals. 
Explaining it to someone that way, however, requires that the lattice first be 
developed. In this section, we take a more direct route.

We start with 213 × 3 and as before we split up the 213 into (200 + 10 + 3):

213 × 3 = 200 × 3 + 10 × 3 + 3 × 3 = 600 + 30 + 9 = 6   3   9
= 2 H × 3 1 T × 3 3 I × 3 = 6 H 3 T 9 I = 6 H 3 T 9 I

Let’s look at this with the products written vertically:

Note that for 6 H 3 T 9 I, the coins align perfectly with the place values, 
which means we can jettison them with no loss of information to obtain 639. 
The fundamental products used from the times table are {2 × 3, 1 × 3, 3 × 3}. 
We can organize this all directly on a single diagram as: 

Placing these on a single vertical diagram is straightforward as long as no 
carries are involved. If carries are required, this complicates things slightly 
but as with addition if we put the carries into the space above, the situation is 
cleared up. We illustrate this by looking at 213 × 4: 

This time the initial alignment is not exact enough to remove the labels. 
That is, for 8 H 4 T 12 I, we can’t simply drop the coin tags since this would 
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give us 8412 which is incorrect. We must first convert 12 I into 1 T 2 I and 
then carry the 1 T to the open space above the tens column: 

Organizing this all directly on a single vertical diagram gives: 

The part in the diagram after the coins have been jettisoned (and carries 
applied) retains a complete memory of the entire process (including the 
proper location of the place values), so from now on we can simply use it as 
the jumping off point to obtain answers more quickly. The example of 213 × 
9 demonstrates this (remember we multiply from right to left): 

On a single vertical diagram this becomes: 

The fundamental products from the times table this time are 2 × 9, 1 × 9 and 
3 × 9.

All multiplications involving any number times a single digit may be per-
formed in the same manner as these examples. How do we extend it to multi-
plications involving multiple digits? As before, we carve up the multiplication 
into components involving only single digits and possibly trailing zeros. Let’s 
see how it all plays out in the new format by multiplying 213 × 49:
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If we want to put this on a single diagram, we can simply stack the rows. In 
the United States, more often than not, the convention is to stack the rows in 
ascending order by the number of trailing zeros (i.e., the row with no initial 
trailing zero goes on top of the row with one initial trailing zero and so on). 
Doing so for this multiplication yields: 

Which gives 213 × 49 = 10437.
In this diagram, where we have combined both rows, we have chosen to 

leave off the carries. This is done in practice if one simply handles the carries 
mentally as one proceeds through the multiplication. Of course, the carries 
can also be written down as well but this can get a bit messy when both rows 
involve carries as in the previous diagram. 

Finally, let’s put this all together by seeing how it plays out with our signa-
ture multiplication of 745 × 289:

Stacking the rows in the ascending order of trailing zeros and leaving off 
the carries gives:
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There is nothing that prevents us from stacking the trailing zeros in de-
scending order and doing so gives a slightly different method also employed 
in the school classrooms of today:

Looking back at the partial sums for 745 × 289, if we choose to add the 
rows horizontally, we obtain the stacked rows in the standard algorithm (as 
shown earlier):

745 × 289 = 140000 + 8000 + 1000 ➞ 149000
+ 56000 + 3200 + 400 ➞ + 59600
+ 6300 + 360 + 45 ➞ + 6705

If we choose to add the values along the diagonals (going from right to left), 
then we are well on the trail to the lattice method: 

Of th e two methods developed (lattice or standard), which do you prefer? 
Most will undoubtedly stick with the one that is most familiar. How do the 
techniques compare?

The lattice method differs from the standard method in that it does all of 
the multiplications right up front and then performs the additions. The stan-
dard method reserves most of the additions until the end but mixes in some 
additions with the multiplications when carries are needed. 

The lattice method also writes out explicitly everything that is done, in-
cluding the carries. This has the advantage of making transparent every step 
involved in the calculation. The standard method is not as transparent—
meaning that more memorization is often needed and more effort may be 
required in retracing one’s work.

A complaint often leveled at the lattice method is the lattice itself. For those 
used to the standard U.S. method, having to write out the lattice can seem 
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like an overly ornate way to multiply simple numbers. In fact, it is probably 
the difficulty in reproducing the lattice with printing presses that caused the 
method to fall somewhat out of favor. 

Whatever your preference, both the lattice and standard algorithms work 
spectacularly well in circumventing the tedious process of repeated addition. 
And showing this fact was a primary goal in these two chapters.

Conclusion

The Hindu-Arabic numerals have spoken! It is now possible to reduce all 
multiplications of whole numbers, no matter their size, to the one hundred 
entries contained in the multiplication table. The spirit of this idea is still alive 
and well to this very day. 

One of the major goals of many mathematicians and scientists is to find or 
classify all of the fundamental patterns in a given area. The hope is then to be 
able to reduce the full complexity of all behaviors in the given domain to some 
combination of behaviors involving only these fundamental patterns. Our use 
of the multiplication table in the algorithms discussed in this chapter provides 
a vivid illustration of the potential power of this idea.

Our ancestors deserve tremendous credit and recognition for their insights. 
Their collective efforts have gifted to us ways of multiplying in writing that 
can in principle be taught to nearly everyone. 

How to summarize all of this? There are many avenues to take but we will 
focus on just one—the power of symbolic maneuver. And while a fair portion 
of this book is about precisely this dynamic, maneuver is on such glowing 
display in our discussion of multiplication that it would be almost a shame 
not to briefly take special notice of it here.

Our discussion began by launching into the physical everyday phenomena 
of repetitive acts and trying to count them. Our methods in writing, know-
ing how to only add and subtract with HA numerals, were not up to the task. 
To remedy this necessitated our taking an extended tour through a world of 
symbols looking for patterns. We found many, and ultimately employed them 
in schemes that allowed us to transform massive and overwhelming repetitive 
tasks into stylishly, swift maneuvers on small diagrams—all the while losing 
no essential quantitative information. 

It is almost as if we took the essence of the situations we encountered and 
dissolved them into a symbolic cauldron, refashioning them into more potent 
tools much as we refashion metals into strong and effective tools by heating or 
melting them. Having done so, it now becomes possible to continually reuse 
these newly sculpted symbolic tools to more effectively handle the universal 
problems involving the counting of repetitive acts.
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This process is allied with the one of directly applying mathematics to solve 
physical world problems, but it is not quite the same thing. One aspect of 
using mathematics to solve real world problems is to transform their essence 
into mathematical symbols and then apply well-established procedures in-
volving those symbols to obtain an answer which is then translated back to the 
situation at hand. We do this, for example, every time we perform the simple 
addition of two dollar amounts at the bank or grocery store.

What has happened here in our discussion on multiplication is that we 
translated the core of real world problems into symbols, but found the meth-
ods there (involving repeated addition) to be inadequate in solving these 
problems in realistic amounts of time—meaning the traditional route of 
directly applying mathematics hit a roadblock at this point. This led to an 
expedition into the world of mathematics itself looking for better symbolic 
methods (involving HA numerals in this case) to unblock the route. We 
found them; thus opening the way to systematically handling the multitude 
of basic problems that involve the counting of repetitive acts. 

On the surface, this appears to be nothing different than what we have done 
earlier in devising our coin system of numerals, the HA numerals themselves 
and the methods for addition and subtraction. While that is true in principle, 
it is not true in the details? What we have done in the last two chapters, with 
multiplication, is a bit more sophisticated symbolically than nearly everything 
else about numeration that we have previously discussed in this text. 

In a sense, everything else we did involving symbols didn’t stray too far 
from the physical problems at hand. That is, even though we were working 
with symbols (taking symbolic tours, if you will), the physical things we were 
trying to describe were never far from view. The symbolic tours we have taken 
in chapters 6 and 7, however, were deeper forays into the mathematical world, 
where in a sense we momentarily lost actual sight of the physical things we 
were describing. 

This is illustrated by the fact that the HA methods for multiplication, 
while learnable by the majority who study them, are not initially obvious or 
intuitive. What this shows, once more, is that exploring the symbolically rich 
world of mathematics in greater depth (as an entity in its own right), straying 
far from the physical and concrete, is no trivial matter. It holds the promise 
not only of yielding greater insight into mathematics itself but also of yielding 
greater understanding in real world scenarios as well. 

What continually impresses and often astounds many mathematicians and 
scientists is that these explorations can penetrate so deep into mathematics 
that they stay out of effective sight of physical applications for decades, and 
then suddenly like a bolt from the blue turn out to be precisely what is needed 
to solve some modern problem about atoms, gravity, or computers.
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This supports our sustained contention that mathematical objects and 
procedures have much in common with language words and statements—
which continually find new uses hundreds of years after their initial creation. 
According to the Oxford Dictionary, the word “network” has been in use 
at least since the mid-1500s, making an early appearance in the Geneva 
Bible of 1560.3 Whoever first used the word certainly did not have in mind 
its present-day uses. Yet the word turns out to be precisely what is needed 
nowadays, turning up all over the place in areas such as computer networks, 
transportation networks, communication networks, television networks, sup-
port networks, and so on. In fact, a 2010 Google search of the word produced 
884 million items—more items than either of the words “football” or “sex.”4

And the eternal relevance and reusability of statements is attested to by the 
continued popular use of quotations by speechmakers today as well as in the 
high volume traffic of quotations websites on the Internet.

Enough summary, time to move on. In the next chapter, we explore new 
viewpoints and find that a whole new and fresh way of reckoning, complete 
with its own set of issues, will be thrust upon us.





— 147 —

Before the introduction of the (Hindu) Arabic notation, multiplication was 
difficult, and the division of integers called into play the highest mathematical 
faculties.

—Alfred North Whitehead (paraphrased), British mathematician, 
logician, philosopher and educator1

A SYMBOLIC INDUSTRY HAS BEEN bequeathed to us! In simply developing the 
apparatus for the representation of quantity, we can, with the greatest 

ease, describe a veritable host of diverse quantities ranging from the popu-
lation of the world to the gross domestic product of South America to the 
average depth of the Pacific to the sizes of our kitchens. Now that recipes for 
adding, subtracting, and multiplying numbers have been brought to the table, 
we also have convenient access to all sorts of information that previously 
would have been tedious, if not impossible, for us to obtain. For instance, 
the problem of determining your entire lifetime contributions to a savings 
account, if you put away $175 per month for 35 years (requiring that we mul-
tiply 175 × 12 × 35), can be answered in a minute or two using the pencil and 
paper algorithms developed in the last chapter. 

Are you ready for another journey? The inverse of repeated addition—the 
notion of repeated subtraction—awaits us. It is a notion that is even harder 
to grapple with than its predecessor. But the HA numerals are more than up 

8

The Highest Mathematical Faculties
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to the challenge—yielding yet again an effective method to successfully treat 
these problems as well. 

But unlike addition, subtraction, and multiplication, the recipes developed 
here will not be capable of completely eliminating trial and error from the 
process. Solving the problems of repeatedly taking away objects was consid-
ered hard even by medieval abacists, some of whom likened the difficulty 
to the hardness of iron. Even the modern day algorithms for treating these 
problems remain the source of constant and intense debate among educa-
tors. It is probably safe to say that a supermajority of those who have learned 
the processes for dealing with repeated subtraction still don’t know why the 
methods really work.

In the next two chapters, we head full bore into this world. Will our con-
ceptual tools be up to the task of explaining the processes involved? We shall 
put them to the test and find out. As always, you, the reader, will be the final 
arbiter on their effectiveness for you. 

Repeated Subtraction

We have previously considered such questions as: How many crates of cof-
fee are shipped to a coffee shop in five months, if every shipment consists of 
seven crates. Given that this process builds to a collection of thirty-five total 
crates, a natural question the supplier of the crates might ask in reverse (of 
the coffee shop owner) would be: If we have thirty-five crates to start with, 
how many times can we take away crates, seven at a time, until the collection 
is exhausted? We will find that this latter question is generally a harder one 
to answer. 

Let’s answer this question directly by performing the required subtractions. 
For the sake of convenience, we will symbolically represent the thirty-five 
crates by thirty-five circles: 
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We see that five subtractions are required to exactly exhaust the collection.
Rephrasing this question slightly differently gives us the ability to answer 

the question with much less writing. Instead of asking, how many times can 
we take seven crates away from thirty-five until the collection is exhausted, we 
may ask how many groups of seven crates can we form out of thirty-five. In 
this mind-set, we rearrange the thirty-five circles into groups of seven: 

We see that there are five groups of seven circles. Each subtraction of seven 
circles takes one of these groups away from the collection. Consequently, this 
repackaging of the 35 circles makes transparent the fact that we must perform 
five subtractions to exhaust the set—meaning that we can tell how many 
times we have to subtract without actually doing the subtractions. 

Let’s now use this latter technique to see how many times we can take five 
objects away from forty until the collection is exhausted.

We first rephrase the question as: How many groups of five objects can we 
form out of forty? 
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There are eight groups, hence our answer to both questions is 8. We sum-
marize the two examples in the following table:

Summary of Repeated Subtractions of 35 and 40 Objects

As usual, our ultimate goal is to streamline the process of repeated subtrac-
tion so that we don’t have to rely on clumsy diagrams. The above table gives 
a clue on how to proceed down this path. Clearly exhibited is the general 
property that:

the size of the collection = (size of the group) × (the number of groups)

Let’s enlist the help of a table to answer the question of how many groups 
of 9 objects can we form out of 63?

To obtain the answer we simply need to find the number which when 
multiplied to 9 yields 63. This number we know must be 7. Thus we see that 
the method of using the table and multiplication is much simpler than the 
brute-force method of carving out groups of nine circles from a collection of 
sixty-three. 

Now that we have rerouted the problem of repeated subtraction into a tab-
ular form, let’s play with it a bit. We have been given the size of the collection 
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and asked to find the number of groups of that size we can carve the collection 
into. Let’s now swap the question and consider the scenario where we know 
the number of groups instead and want to find the size of each group. In this 
case the last question reads as: If we carve up 63 objects into 7 equally sized 
groups, what will be the size of each group? Using the table, we have:

We know that since the “(size of the groups) × 7” should be 63, our answer 
will be 9 objects per group. 

Now consider the down to earth scenario involving 66 international stu-
dents at a small college. If they are placed into six classes of equal size, what 
will be the size of each class? The table sets up as: 

We must have: “(size of the groups/classes) × 6 = 66” which gives 11. Thus 
each class must have 11 students. 

A Three-Sided Coin

Taking stock of our progress to this point, we see, in essence, three types of 
problems present in our work. And though phrased differently, each problem 
can be solved in the same way:

Type A. Given a collection of objects, how many times can we take 
away a specific number of objects from the collection until it is 
exhausted?

Type B. Given a collection of objects, if we organize the objects of the 
collection into groups of a certain size, how many groups will 
there be?

Type C. Given a collection of objects, if we distribute the objects equally 
among a certain number of groups, what will be the size of each 
group? 



152 Chapter 8

Let’s now observe how each of these questions can be played out on the 
same collection.

A: Given a collection of 24 objects, how many times can we take away 8 
objects from the collection until it is exhausted.

The answer is 3 times.

B: Given a collection of 24 objects, if we organize the objects of the collec-
tion into groups each containing 8 objects, how many groups will there 
be?

The answer is 3 groups.
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C: Given a collection of 24 objects, if we partition or distribute them 
equally among 8 groups, what will be the number of objects in each 
group?

The answer is that every group will have 3 objects.
How are A, B, and C are related?

A and B: All we need do is perform B first and then subtract. Clearly 
once we organize the objects into the groups of 8, we can simply 
count the number of groups or we can repeatedly subtract them; 
in either case, the answers will be equal.

B and C: Imagine that the 24 objects are cards to be dealt among 8 players. 
In such a scenario, each subtraction of 8 objects corresponds to 
a deal of a single card to every player.
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There are three subtractions of 8 objects and thus 3 deals, hence each group 
consists of 3 objects or each player receives three cards. Thus if we interpret 
subtractions as deals, in this context, we see that the solutions to B and C are 
related. 

We see that A and B correspond to viewing the 24 objects as 3 groups of 
8 objects. Whereas, C corresponds to viewing those same 24 objects as being 
partitioned into 8 groups, each of which contains 3 objects.2 A geometrical 
way to phrase it is that we can view twenty-four objects as consisting of 3 rows 
of 8 objects each or as 8 columns of 3 objects each. 

There is yet again an infinite nation of scenarios which correspond to 
Type A, Type B, or Type C problems. The next example illustrates these prob-
lems at play in a real world context.

You owe $750 to a friend. She allows you to make monthly payments of 
$50. How many months will it take you to pay off the debt?

This is phrased in the context of problem types A and B. Each payment 
subtracts $50 from the $750 owed, so the debt will be paid off when $50 is 
subtracted enough times to exhaust $750. We can also think of organizing the 
$750 into $50 packets and count the total number of packets. In this case, each 
packet is the symbolic representative of one month. 

Using multiplication to help, we have that “(the number of months) × 50 
= 750.” The number of months to make this equation true is 15. Hence in 15 
months the debt will be paid off.
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This scenario can also be thought of in the context of problem Type C, but 
for this problem, thinking of it in that manner seems less natural.

Let’s now consider the related problem where the number of months is 
known but the amount of each payment is not. This time the problem reads as:

You owe $750 to a friend. She allows you a total of 15 months to pay off 
the debt. If you make payments in equal amounts, how much do you owe 
each month?

This is phrased in the context of problem Type C. We need to distribute 
the $750 equally over 15 months. Using multiplication to help again, we have 
that: (the amount of each payment) × 15 = 750. The amount that makes this 
equation true is 50. Hence, we must pay $50 each month. 

We could also answer this question by asking how many times can we sub-
tract 15 from 750, in the context of problem Type A, but for this scenario it 
doesn’t seem natural to subtract 15 months repeatedly from $750.

To nail down the distinction between the different processes involved in 
problem Types A/B and C, let’s consider a few more scenarios. 

A rental car company bought 8 cars of a certain model from General Mo-
tors. The total bill was $120,000. If they paid the same price for each car, what 
was the cost per car to the company?

This is phrased in the context of problem Type C. We spread the $120,000 
equally over the 8 cars. To find the answer we need to find the number such 
that: (the number) × 8 = 120,000. The number which works is 15,000. Thus 
each car costs GM $15,000.

A construction company can build a home in 35 days. How many homes 
can they build in 700 days at the same rate?

This is phrased in the context of problem Types A and B. We effectively 
want to know how many packets of 35 days can be formed out of 700 days. 
Each packet corresponds to a built home, hence, a determination of this 
number will give us what we desire. We need to find the number such that: 
(the number) × 35 = 700. This number is 20. Thus the company can build 20 
homes in 700 days.

A New Way of Reckoning

It is interesting to note that, although we can interpret these problems in dif-
ferent ways, the same method can be used to solve them. It is this common 
method of solution that we now wish to study in some detail. The first item 
of business is to give a name to the method and elevate it in short order to the 
status of a genuine operation on numbers. Today we use the word “division” 
to describe this way of reckoning.
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Thus if we want to know how many groups we will have from 40 objects 
arranged into groups of size 8, we will say that the answer can be found by 
calculating: 40 divided by 8. We represent the method by using special sym-
bols (“÷” and “—”) like so: 

I. 40 ÷ 8 
II. 40__

8

Problems requiring division, like those involving addition, subtraction, 
multiplication, date back to antiquity. The Babylonians, like us, evidently 
used a special symbol for division while the Greeks seemed to have often used 
their language words instead (the equivalent in English would read something 
like 40 divided by 8 as opposed to using either of the special symbols in I or II). 
Evidently in ancient India, the number being divided into was sometimes 
written on top of the number doing the dividing with no line between them 
(e.g., ). It is thought that the fraction bar was first used by the Arabs in the 
1100s.3 

Math historian Florian Cajori claims that the symbol (÷), called an obelus, 
was first introduced into the literature for representing division in 1659, by 
the Swiss mathematician, Johan Heinrich Rahn.4 The Merriam-Webster dic-
tionary defines the obelus as: “a symbol − or ÷ used in ancient manuscripts to 
mark a questionable passage.”5 This practice, dating at least back to the 200s 
BCE, of using either of these two symbols in the same manner, perhaps gives a 
partial reason as to why the symbol (÷) was also sometimes used to represent 
subtraction. The symbol, as division, eventually came into regular use in the 
United States and the British Commonwealth but not so throughout many 
parts of the world, where the colon (:), introduced by Gottfried Leibniz, is still 
often used to represent division.6 

Now that we know that problem Types A, B, and C are equivalent in their 
method of solution, we can reciprocally interpret division in any of these 
ways. Hence, 40 divided by 5 or 40__

5
 can be interpreted as answering any of the 

following three questions:

Type A. How many times can we take away 5 objects from a collection of 
40 until the collection is exhausted?

Type B. How many groups of 5 can we organize out of 40?
Type C. If we organize 40 objects into 5 equal portions, what will be the 

size of each of the portions?

We can, of course, answer any of these by finding out “(what number) 
times 5 is equal to 40”? The result is 8: therefore 40__

5
 = 8.
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In a similar fashion we can answer, 110___
11

 = ?, by finding out what number 
times 11 gives 110. This number is 10. 

The operation of division represents a unification of different perspectives 
from the standpoint of how they read in English. In Robin Hood–like fashion, it 
ties together the apparently dissimilar things of “repeatedly taking away objects” 
and “sharing them equally.” And even though we can now think of division 
and multiplication as inverse processes (allowing us to use multiplication as an 
aid in the solution of division problems), division opens up vast new vistas by 
exposing us to situations for which there is no counterpart in multiplication.

Division by Zero

In elementary arithmetic, we may represent what we really care about both 
with symbols, unrelated to English, and with names in English. Having done 
so, however, doesn’t mean that we actually have complete control over ev-
erything that we are talking about. Just as the construction engineer controls 
much in the way that infrastructures are built but still must have an abiding 
respect for the laws of nature, so too must the mathematician have a healthy 
regard for the principles of logic. 

When we incorporate into the discussion our newly discovered number 
zero with the operation of division, we find ourselves in a dilemma. In a word, 
the properties of zero and the previously discussed properties of division just 
don’t mix that well. 

Let’s consider the specific case of “
6_
0”? In the context of repeated subtrac-

tion, this reads as: How many times can we subtract 0 objects from 6 until 
the collection is exhausted? It is impossible to exhaust a collection in this way, 
since taking no objects away from a collection does nothing to reduce the size 
of the collection.

Interpreting it in the context of equal distribution is of no help either. 
Thinking of division this way the question reads as: If we organize 6 objects 
into 0 equal portions, what will be the size of each of the portions? In this 
form, the question doesn’t even make sense. 

Given that we can’t make sense of these foundational interpretations when 
we divide by zero, should we simply outlaw it? Maybe, but we need more 
justification than we have so far. Nowadays, in mathematics, we don’t ban an 
idea just because it doesn’t make sense when read a certain way. Throughout 
history, mathematicians have chosen to sometimes act in this fashion much 
to their later collective regret. The examples of negative numbers, irrational 
numbers, “imaginary numbers,” and even the idea of zero itself stand as eter-
nal testaments, in the historical case file, to the hazards of this practice. 
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When faced with such predicaments in the past, what has often worked 
is that some mathematicians forged ahead anyway, using the internal logic 
of the symbols to navigate through the confusion (hoping that useful inter-
pretations could later be found)—much like a pilot uses instruments such as 
radar to guide a plane through the fog to a safe landing. Remember, when the 
symbols are allowed to really fly they can (and most often do) take us places 
that we can’t otherwise go. 

Let’s see what working with symbols and operations can do for us here. 
In the case of trying to exhaust a collection of 6 objects by repeatedly taking 
away zero objects, working symbolically is still of no use. For example, if we 
subtract zero four times from six, we get nowhere 

(e.g., 6 – 0 – 0 – 0 – 0 = 6)

4 times

⎧ ⎨ ⎩
No matter how many 0s we subtract symbolically, the 6 still remains.
What about enlisting the aid of multiplication? This idea fails as well since 

to solve “
6_
0 = ?” , would mean that we need to find a number such that, 0 × 

(the number) = 6. This is impossible since any number multiplied by 0 will 
equal zero not 6. 

We encounter the same issues if we replace the six with 8, 20, or any other 
number. Based on all that we have done above, dividing by zero just doesn’t seem 
to work—at least when the number on top is not zero. We simply can’t make a go of 
it without contradicting fundamental and observable truths in multiplication—
truths such as (any number) multiplied to zero gives zero (e.g., 6 ×  =  in abacus 
rods which translates to 6 × 0 = 0). And we are not going there. 

While, there appears to be no way of salvaging the case of a nonzero num-
ber divided by zero, will the same be true if we replace the nonzero number 
on top by zero. In other words, do we encounter serious obstacles if we divide 
zero by zero (i.e., : 0_0)? 

In the context of repeated subtraction this reads as: How many times can 
we subtract 0 objects from 0 until the collection is exhausted? This time in-
stead of being too restrictive the rules are too generous. Symbolically, we have: 
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Here we see that any of the numbers {0, 1, 2, 4} work according to our 
definition of division. In fact, we could subtract zero any number of times and 
still get the same result. According to our earlier definitions of division, zero 
divided by zero can be any of these numbers. 

If we enlist multiplication as an aid, among the possibilities we have the 
following: 

I. Since (the number 0) × 0 = 0, we could claim that 0_0 = 0. 

II. Since (the number 1) × 0 = 0, we could claim that 0_0 = 1. 

III. Since (the number 2) × 0 = 0, we could claim that 0_0 = 2. 

IV. Since (the number 4) × 0 = 0, we could claim that 0_0 = 4. 

Any whole number will work here as well according to our established ways 
of thinking about division. Believe it or not, having every number work is as 
problematic as having no number that works.

Imagine a database of records. Databases generally are set up such that 
every record has an identification number, often called a primary key. In 
many databases, items such as a Social Security number, credit card number, 
or phone number are used as the identifier. Consider the following two situ-
ations for a database with 100,000 records: (1) No identification number is 
given to any of the records and (2) Every record is given the same identifica-
tion number. Neither of these is desirable since we cannot easily identify or 
search records in either scenario. For all intents and purposes, a database 
created in either of these fashions is ineffectual.

The first situation is roughly analogous to the case of “a nonzero number__________________
0 ”, 

where no number will work and the second situation is roughly analogous to 
0_
0, where every number works.

Worse yet, allowing 0_
0 to have meaning will cause paradoxes to occur. For 

example, let’s say we decided to make a choice and let 0_0= 1. This simple choice 
could lead to catastrophe. Consider the case in multiplication where we have 
5 × 4 × 2 = 20 × 2. We can divide both sides of the equation by 2 like so: 
5 × 4 × 2_______

2
 = 20 × 2_____

2
. Then canceling out the 2s and replacing them by 1 (we can 

do this because 2_2 = 1) yields 5 × 4 = 20. We could more easily do the division 
mentally and just cancel out the 2s directly like: 5 × 4 × 2 = 20 × 2, to obtain 
5 × 4 = 20. 

Now let’s see how this process breaks down if we cancel out or divide by zero 
the way we did with the 2. Since any expression times zero is equal to zero we 
know that   5 × 4 × 0 = 155 × 0 = 0. Now if we cancel out the 0s the way we did 
the 2s (this would be possible if we have 0_0 = 1), we obtain 5 × 4 × 0 = 155 × 0. 
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Removing the zeros implies that 5 × 4 = 155, which we know to be nonsense. 
In fact using this same reasoning, we could show that 5 × 4 equals any other 
number (simply replace 155 by the value of your choice). Similar paradoxes 
occur if we allow 0_0 to be any other number as well. This is simply unacceptable.

Moreover, this situation is a transparent contradiction since only a couple 
of steps are involved. In cases involving more intricate reasoning (such as oc-
curs in algebra and beyond), if we were to allow division by zero, we could 
generate all sorts of contradictions and not know from whence they sprang. 
This often happens when trick problems involving long algebraic arguments 
are given. Often in such cases the final answer seems to imply a contradiction 
such as 1 = 2. More times than not, the likely perpetrator is a division by zero 
which has been disguised. Mathematicians are simply left with no choice ex-
cept to outlaw division by zero.

Zero strikes again! It first shocked us by its very arrival, announcing to the 
world that there exist numbers out there that are masked from normal view 
and whose existence may only be revealed to us through symbolic manipula-
tions in mathematics. Now it astonishes us yet again by showing that it refuses 
to completely submit to division. Its influence throughout the breadth and 
depth of mathematics is no less spectacular. The simple idea of the empty rod 
on the abacus has traveled very, very far indeed.

Remainders

Division also differs from multiplication in another crucial respect. In mul-
tiplication, the result of the physical process of repeatedly adding a whole 
number quantity, say for instance an $8 payment, can always be described 
by a whole number. That is, if we wanted to repeatedly add one hundred 
payments each $8 strong, we obtain a dollar amount described by the single 
whole number 800. In division this does not always occur as we observe in 
the next example. 

Consider 14 ÷ 4. We count the number of times that we can subtract 
4 objects from 14, until the collection is exhausted. We can easily subtract 
3 groups of 4 objects from 14 objects; however, the collection is not exhausted 
(2 objects are left over), as shown here:
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How are we to describe the result of this process of dividing 14 into groups 
of 4? We certainly cannot represent it as 3, for 14__

4
 ?

≡ 3, would imply by previ-
ous reasoning that 4 × 3 = 14 which is not true. We cannot represent it by 4 
either, since we can only subtract 4 at most 3 times from 14. Since 3 and 4 are 
the only whole numbers that have a chance, it would appear that no single 
whole number can describe the result of this process. This yields yet another 
dilemma. Since there is no single whole number to describe it, is this a divi-
sion that we should outlaw as we did in the case of division by zero?

Not so fast. This situation is different from the case of division by zero. 
Here we can at least depict the result of this process in an intuitive manner 
that is systematic and reproducible. We can describe 14 ÷ 4 as yielding 3 
groups of 4 objects with 2 objects left out—there is certainly nothing strange 
or bizarre about that. We can even create a notation to indicate this by saying 
that 14 ÷ 4 is equal to 3 with a remainder of 2—abbreviated to 3 R 2. Divi-
sion by zero allowed no possible way out of the dilemma without drastically 
altering “sacred truths.”

Let’s consider 18 ÷ 7. We can organize 18 into two groups of 7 with 4 ob-
jects left over. Thus this result or quotient can be described by 2 R 4: 

We can work with remainder notation in other ways to find out useful 
information as well. Consider the scenario where we know that organizing a 
collection of fighter jets into squadrons of 12 planes yields the result 5 R 4. 
Can we find the total number of planes?

Stated another way, we know that the process of organizing the jets into 
twelves gives 5 such squadrons with four planes left out. We easily find the 
total number of jets by simply calculating 5 × 12 + 4. This gives a collection 
of 64 planes.

A single whole number cannot describe a situation where the organization 
of a collection into groups of a certain size leaves some objects out—there 
are two numbers to keep track of, the number of groups and the number of 
objects left out. The introduction of rema inder notation (involving 2 whole 
numbers in combination) gives us the ability to describe these new scenarios. 
It is, however, a new notation and questions as to what these symbolic entities 
actually represent must be asked. Whole numbers can stand on their own; by 
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which it is meant that the number represented by the symbol 3 has a meaning 
independent of the fact that 12 divided by 4 yields 3. 

Can something like 5 R 4 stand on its own? Is it the representation of a true 
number or simply a convenience helping us with certain division problems? 
If entities such as 5 R 4 do represent actual numbers, it would be natural to 
inquire about their arithmetic; how would we add, subtract, multiply, and 
divide them? This puts us in the arena of fractions which are not specifically 
discussed in this text. At present, we will only think of remainder notation as 
a convenience for describing certain types of situations occurring in division. 
When the remainder is zero, the notation is not needed and we continue as 
before, simply using the whole number alone. 

Peering into Division

So far we have only considered simple division problems—problems whose an-
swers can be obtained almost instantaneously through the use of multiplication. 
For more difficult divisions, such as 63438_____

654
, an instantaneous solution is rarely 

possible. This means that we will need to attempt to develop systematic tech-
niques that allow us to circumvent both the method using clunky diagrams and 
to some extent the trial-and-error method using multiplication (i.e., guessing 
in one grand gesture what number multiplied to 654 equals 63,438). Before dis-
cussing the standard long division algorithm that gives a systematic technique 
(while not entirely limiting the guesswork), we first consider two methods that 
will allow us to simplify certain types of division problems. The insights gained 
from looking at these will prove useful later when discussing long division.

Shortcuts Using Multiplication and Trailing Zeros

The free agent properties of trailing zeros used so effectively in multiplication 
can also be exploited in division: 

8_
2 = 4 since 2 × 4 = 8 ;  80__

2
 = 40 since 2 × 40 = 80

800___
2  = 400 since 2 × 400 = 800 ; 8000____

2  = 4000 since 2 × 4000 = 8000

 
Observe that all we need do is divide 8 by 2 to obtain 4 and then attach the 

number of trailing zeros. We can extend this idea, so for instance, in the quo-
tient, 8 000000________

2 , the dividend (top number) has 6 zeros. So all we need do is to 
divide 8 by 2 to obtain 4 and then attach the 6 zeros like so: 8 000000________

2
 = 4000000

 6 zeros

⎧ ⎨ ⎩ .
 This holds in general.
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When trailing zeros are both on the dividend and the divisor (bottom 
number), we can bring out the cutting knife and cancel zeros in equal mea-
sure as shown in the table:

And you can see that, if we cut out the trailing zeros first and then divide (third 
column), we obtain the same answer as we do dividing all at once (first column).

We are still far from a general algorithm, but what we can accomplish at 
this point already can be a huge time-saver. Recall that 30,000,000___________

15,000
 is a process 

which may be interpreted in these three ways:

Type A. How many times can we subtract 15,000 from 30,000,000?
Type B. How many groups containing 15,000 objects can we form out of 

30,000,000 objects?
Type C. If we divide 30,000,000 into 15,000 equal portions, what will be 

the size of each of these portions?

With not too much effort, we are able to once again circumvent directly 
carving up a collection of 30,000,000 objects to ascertain that the answer in 
all three cases is 2,000. The symbolism has once again revealed patterns that 
we can take advantage of; moreover, the answer is true regardless of whether 
the 30,000,000 objects are people, cars, dollars, rocks, or stars. The pieces are 
completely interchangeable without affecting the way we solve the problem.

Can We Alphabetize Division?

Knowing that it is possible to effectively alphabetize addition, subtraction, 
and multiplication, it is natural to wonder if the same is true of division. Can 
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we construct a division table in the same manner as the times table, ultimately 
reducing all complicated divisions to simple ones from a small chart?

It is certainly possible to construct a basic table of sorts for small divisions, 
but unfortunately, a scheme such as the one employed using the multipli-
cation table is not possible. A major reason for the clean, tidy procedure 
developed for multiplication is that the distributive property holds in a sym-
metric fashion; that is, we can calculate 32 × 26 by first taking apart the 32 
and writing “(30 + 2) × 26” as “30 × 26 + 2 × 26” (after which we then carve 
up the 26) or we can calculate 32 × 26 by first breaking up the 26 and writing 
“32 × (20 + 6)” as “32 × 20 + 32 × 6” (and then decomposing the 32). We can 
disassemble both numbers in the product, let the times table run loose on it, 
and still obtain the correct answer. 

The distributive property does not hold for division in this same symmetric 
fashion. While we can carve up the dividend (left hand or top term) and still 
obtain correct results, we cannot do the same with the divisor (right hand or 
bottom term). 

We demonstrate both cases here for the division of 24 by 8: 

I. Disassembling the left hand or top term (gives correct answer): We 
know that 24 ÷ 8 = 3 or 24__

8
 = 3.

  Graphically this plays out as: 

  If we disassemble the 24 and rewrite it as 16 + 8, then distribute the 
division by 8 to both numbers we obtain the same answer:

24 ÷ 8 = (16 + 8) ÷ 8 = 16 ÷ 8 + 8 ÷ 8 = 2 + 1 = 3

or

16 + 8_____
8

 = 16__
8

 + 8_
8
 = 2 + 1 = 3 

Graphically taking the 24 objects and breaking them into 2 smaller col-
lections of sizes 16 and 8, respectively, and distributing them each over the 
8 slots gives: 
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Adding up the portion sizes in both allocations still gives a total of 3 circles.

II. Disassembling the right hand or bottom term (gives a wrong answer in 
general): 

  Rewriting the 8 in the divisor as 6 + 2 and then separately distributing 
the 6 and 2 yields:

24 ÷ 8 = 24 ÷ (6 + 2) ??
≡ 24 ÷ 6 + 24 ÷ 2 = 4 + 12 = 16

or

24_____
6 + 2

 ??
≡ 24__

6
 + 24__

2
 = 4 + 12 = 16

The answer of 16 here does not agree with the 3 we obtained in I. There 
is no doubt that the correct answer for 24 ÷ 8 is 3, so we must conclude that 
something goes awry when we carve up the divisor and distribute it. Let’s see 
if a graphical viewpoint gives us some insight on why this fails:

Blindly, adding these 2 portion sizes up gives us 16 portions, but it can 
readily be seen that the process in II is very different from the processes in I. 
In II, we have taken one collection of 24 objects and broken it up into 6 equal 
portions and then have taken another collection of 24 objects and distributed 
it into 2 equal portions—meaning in effect, that we are working with 48 total 
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objects (unequally distributed in portions of 6 and 2) whereas in I we are only 
working with 24 total objects equally distributed into the same 8 portions. 
These processes simply are not equivalent and it should come as no surprise 
that they yield different results.

What this means is that, unlike in multiplication, we will not be able to 
break up both numbers involved in a division such as 63438_____

654
 
in a symmetric 

way. We can still carve up 63438 as 60000 + 3000 + 400 + 30 + 8 and split up 
the division accordingly as: 60000_____

654  + 3000____
654  + 400___

654 + 30___
654 + 8___

654. But since 654 occurs 
on the bottom, we can’t carve it up as 600 + 50 + 4 and split up the divisions. 
That is, 63438_____

654
 is not equal to 63438_____

600  
+

 
63438_____

50  
+ 63438_____

4
. So, unfortunately, we will 

not be able to work our magic on the trailing zeros in 600 + 50 + 4 (as we are 
able to do in multiplication) but will instead have to take the 3 digits in 654 
together all at once. 

This will cause the procedure we ultimately develop to involve some mea-
sure of guesswork. 

Shortcuts by Decomposing the Dividend

Although we can’t decompose the divisor (bottom number), we still can use 
the fact that it is possible to carve up the dividend to help us solve division 
problems. The example of 348___

6
 
will help us shed light on this procedure.

We need to rewrite 348 into a sum of numbers each of which we know is 
divisible by 6. One such partition is: 348 = 300 + 48. Using this yields: 

348___
6  = 300 + 48_______

6  = 300___
6  + 48__

6  = 50 + 8 = 58.

Thus 348___
6  = 58. We verify this by noting that 6 × 58 = 348.

We can break up a number into more than two parts if needed to complete 
a division. Consider this for 675___

25 : 

675___
25  = 500 + 100 + 75____________

25  = 500___
25  + 100___

25  + 75__
25 = 20 + 4 + 3 = 27.

This gives 675___
25  = 27, which we verify by noting that 25 × 27 = 675.

We also can involve subtraction in this game. Let’s consider the situation 
involving determining the monthly payments on a 9-month loan of $864: 

864___
9  = 900 – 36________

9  = 900___
9  - 36__

9  = 100 - 4 = 96

The payment each month will be $96.
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This manner of decomposing the dividend critically depends on what the 
divisor is. Dividing 4560 by three different numbers gives illustration to this: 

A. 4560____
6  = 4200____

6  + 360___
6  = 700 + 60 = 760. Decomposition: 4560 = 4200 + 360 

B. 4560____
8  = 4000____

8  + 560___
8  = 500 + 70 = 570. Decomposition: 4560 = 4000 + 560

C. 4560____
12  = 3600____

12  + 960___
12  = 300 + 80 = 380. Decomposition: 4560 = 3600 + 960

These divisions have a whimsical air about them requiring that we know 
how to break up 4560 into components that are divisible by 6, 8, and 12, re-
spectively. This will not be the case generally (e.g., how do we break 4560 up 
into components that are each obviously divisible by either 57 or 285). 

What we would like to have is a method which will allow us to system-
atically construct the result of dividing one number by another number 
regardless of what two numbers are involved. The method of breaking up the 
dividend does still hold the key. However, instead of breaking up the dividend 
(top number) into components in individual ways that depend on which 
number we are dividing by, we will break it up systematically by place values. 

A difficulty occurs, however, when we do this. For instance, if we choose to 
decompose 4560 into components by place values, this will yield 4560 = 4000 
+ 500 + 60. If we divide this decomposition by 6, 8, or 12, we will, in each case, 
encounter remainders at some point in the division:

E. 4560____
6  = 4000____

6  + 500___
6  + 60__

6 , the first two divisions leave a remainder.

F. 4560____
8  = 4000____

8  + 500___
8  + 60__

8 , the last two divisions leave a remainder.

G. 4560____
12  = 4000____

12  + 500___
12  + 60__

12, the first two divisions leave a remainder.

What are we to do about these remainders? If we want to successfully com-
plete divisions using this method, we are going to meet them. This will be true 
not just for the number 4560 but also in general. Our task in the next chapter 
will be to seek out a general procedure which will allow us to both systemati-
cally break apart numbers by place values while at the same time giving us a 
way to handle the resulting remainders. While we won’t be able to get quite 
the systematic and alphabetic scenario obtained in multiplication, we still get 
a nice, workable algorithm.
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It’s time to recognize that, for many students, real mathematical power, on the 
one hand, and facility with multidigit, pencil-and-paper computational algo-
rithms, on the other, are mutually exclusive. In fact, it’s time to acknowledge 
that continuing to teach these skills to our students is not only unnecessary, 
but counterproductive and downright dangerous.

—Steven Leinwand, contemporary author, 
researcher at American Institutes for Research1

There is a long standing consensus among those most knowledgeable in math-
ematics that standard algorithms of arithmetic should be taught to school 
children. Mathematicians, along with many parents and teachers, recognize 
the importance of mastering the standard methods of addition, subtraction, 
multiplication, and division in particular.

—David Klein, contemporary mathematician, math educator and 
author and R. James Milgram, contemporary mathematician, author, 

former member of the National Board for Education Sciences2

THE TIME HAS COME to address what is generally considered one of the most 
difficult procedures for students to master in all of elementary arithme-

tic: the long division algorithm (LDA). As the quotations suggest, consider-
able disagreement (and that is putting it mildly) exists among mathematical 
educators, parents, research mathematicians, scientists, engineers, and the 
general public about whether the method should continue to be taught (see 

9
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the October 2002 issue of Discover Magazine for an interesting and civil 
roundtable discussion on this issue).

Our goal here is not to directly enter this specific fray but rather to focus 
on magnifying visually the processes that long division abbreviates. The stage 
has already been set in the last chapter with our discussion on systematically 
breaking apart the dividend (top number) by place values. We now expand 
on this notion. 

Division with Coin Numerals

So far our illustrations of the processes at play in division have used faceless 
circles. What will these processes look like if we use coin numerals in their 
place? Besides simplifying the number of steps required, we will also find that, 
since coin numerals represent “place values in a box,” involving them in the 
process puts us firmly on the trail to our modern recipe for long division. 

We start with a simple example or two and work our way to more interest-
ing cases. 

For what follows, it will be more useful to think of division in terms of equal 
apportionment (Type C of chapter 8). Consider the following two divisions: 

6_
3 and 600___

3

A. 
6_
3

We represent 6 by  and 3 by 

. 

Distributing the six coins evenly among the three slots yields:

Each portion size is  which implies that 
6_
3 = 2.

B. 600___
3

We represent 600 by  and 3 by 

. 
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Distributing the six  coins evenly among the three slots yields:

 

Each portion size is  which implies that 
600___

3  = 200.

Here, the coins have allowed us to perform the division in grouped form, 
saving us much effort over representing the collection by 600 unlabeled 
circles.

Dividing 
936___

3  shows how the process plays out when multiple denomina-
tions are involved: 936 is represented by: 

Each set of coins is to be equally distributed into the three slots:

We start with the s and organize them into groups of three and deal 
each set to the slots. We have: 

which deals as: 
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We organize the s into a group of three to obtain . 
Dealing this set to the pile gives: 

Lastly, grouping the s in sets of three gives: . 
Dealing these to the total gives:

Thus, equally distributing 936 into 3 equal parts gives portion sizes of 312. 
We conclude then that 

936___
3  = 312.

In this example, the different coin denominations could have been dealt 
or apportioned out in any order, with no change in the final result. In other 
words, since the fit for all three denominations in the three slots was perfect, 
we could have just as easily dealt out the ones coins first and the hundreds 
last. However, when the fit for every denomination is not perfect, the most 
effective way to proceed will be from larger coin denominations to smaller as 
the example of 65__

5
 
demonstrates: 

In coins, 65 is represented as: 

These coins are to be equally apportioned into the five slots: 

We start with the s. Organizing them into groups of five gives: 

.
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This deals as: 

We have the one un-dealt ten and the five ones left over: 
. Since there is only one ten coin it can’t be 

distributed over the five slots in its present form. However, if we change de-
nominations and view it as ten one coins its value can be distributed. Doing 
this and combining it with the five one coins we already have yields: 

If we organize these fifteen ones into groups of five, we obtain: 

It takes three deals to exhaust the ones: 

Thus the size of each portion is 13 which means that 65__
5

 
= 13. This can be 

verified by multiplying 5 times 13. Hopefully, the advantages of proceeding 
from larger denomination to smaller are clear here (if not, start the process 
in reverse by first dealing the ones and see if it is more straightforward than 
the earlier method). 

The next example of 
348___

6
 
shows that this method of distributing and chang-

ing denominations gives us the answer to a division problem whose answer is 
not immediately obvious.
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 348 in coins: 

This value is to be equally distributed amongst the six slots: 

As before, we start with the highest denomination and work our way down. 
There are only three  coins and these won’t fit into six slots so we have to 
convert the hundreds to tens to obtain: 

Organizing the thirty-four tens into groups of six yields: 

These can be distributed in five deals: 

This leaves four tens out of the disbursement. Combining these with the 
four ones gives:
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Readying the ones for disbursal by grouping them into packets of six yields:

Dealing the eight packets to the slots gives portion sizes of 58: 

Thus 
348___

6  = 58. This is easily verified by noting that 

To see more examples of division with coin numerals please visit www
.howmathworks.com. This method of division with the coins and slots is 
general—meaning that it yields a standard way to perform division in coin 
numerals by systematically decomposing the dividend (top number) by its 
place values. For any division of a larger whole number by a smaller non-
zero whole number larger whole number____________________

smaller whole number
⎧⎪⎩

⎧⎪⎩, we represent the larger number by 
place value coins, the smaller number by slots, and use the above methods of 
grouping, dealing, and changing denominations where needed, to obtain the 
answer (including the remainder, if there is one). It will always work.

In addition to standardizing the process, the method with coin numerals 
also offers a clear picture of what is happening conceptually in place value 
division. As usual, however, these conceptual methods are too unwieldy for 
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general use. If we have two or more digits in the divisor (bottom number), 
we start to encounter tedium—imagine finding 9234776_______

124  in the same manner 
as we did for 348___

6 . For this larger division we would ultimately need to distrib-
ute more than 3,000 coins of varying denominations among 124 slots. This is 
simply too much work.

Thus, our next steps include abbreviating coin numeral division. As in 
multiplication, we will use a mixed system of coins and HA numerals. This 
mixed system is of a type that mathematical historians call “multiplicative.” 
Such schemes are very much present in the historical record—one of the 
most notable being the old Chinese numeral system dating back to the second 
millennium BCE. These systems, as conceptual tools, remain relevant in the 
twenty-first century.

Ground Game

To abbreviate things, we focus on describing the number of coins of a certain 
denomination present. Instead of listing all of the coins that represent a num-
ber, we will now use a coefficient given in HA numerals. For example, instead 
of describing nine tens by , we will 
use 9 . The “9” is called a numerical coefficient. If we used “nine ” in-
stead, then the word “nine” would be our coefficient. If it helps, think of a nu-
merical coefficient as being an adjective that modifies the coin denomination. 
A couple of examples utilizing numerical coefficients are included in the table:

The division algorithm also requires the conversion of higher denomina-
tion coins into lower denomination coins. In numerical coefficient language, 
for example, this unsurprisingly implies the following: 
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This is simply a restatement of our base-ten grouping in coefficient lan-
guage. We can also add, subtract, multiply, and divide with these coefficient 
numerals: 

I. Addition: 

II. Subtraction: 

III. Multiplication: 

IV. Division: 
 Without Remainder: 

 With Remainder: 

 Note that: 
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We also may need to make use of the following:

V. Conversions: 

VI. Combining different denominations: 

Long Division with Numerical Coefficients

Let’s start by revisiting our earlier coin division of 65__
5

, this time using a new 
format:

I. 

The five slots above the bar have replaced the numeral 5.

II. Organize the s into groups of five: 

III. Dealing the s into the five slots gives:
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IV. Convert the remaining  into s and arrange into groups of five:

V. Dealing the s into the five slots gives:

VI. Each portion size is , which gives as before:

65__
5

 
= 13.

Let’s now see how the above process translates to numerical coefficient 
language:

• We first replace  by 

• For II and III, the process becomes divide 6  by 5 (this gives 
 
where, 

 ):
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• For IV, the process becomes 

• For V, we have that  and the process translates to:

• Thus we have that 65__
5

 
= 1  3  =  13.

Let’s next revisit 
348___

6  using this new format: 

I. 

II. Divide the 3 s by 6 (this gives 0  R 3 ).
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III. Convert the 3 s in the remainder to s : 

IV. Divide the 34 s by 6 (this gives 5  R 4 ):

V. Convert the 4 s in the remainder into s:

VI. Divide the 48 s by 6 (this gives 8  R 0 ):

VII. Thus we have that 
348___

6
 
= 5  8  = 58.

Note that since none of the steps in these procedures are marked out, it is 
possible for all of the steps I–VI to be condensed into one diagram. 

We show how this is done with the division 3924____
9 : 
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I. 

II. Using a single diagram to perform all of the divisions (progressing 
from left to right), we obtain:

III. Thus we have that 3924____
9

 
= 4  3  6  or 436.

IV. As with multiplication on diagrams, alignments abound. In II, if we 
simply drop the coins on the remainder values when we move them 
up, we further abbreviate things with no loss of information:

The content of the modern LDA is contained in these coin/coefficient meth-
ods. To reach the final stage in this play simply requires that we vertically stack 
the horizontal steps and jettison the coins. 

Long Division with HA Numerals

To show how we get the LDA from the prior situation, we will reorganize the 
last division 3924____

9 . Instead of pushing the remainders up and to the right as we 
progress through the division, we can just as conveniently push the numerals 
in the dividend down and to the left like so: 



 The Powder Keg of Arithmetic Education 183

This can be shortened to: 

Magic happens now if we jettison the coins and bring the numerals closer 
together:



184 Chapter 9

This is the modern LDA, where we have explicitly shown the step involving 
the lead zero. In practice, this is usually left off. In comparing this diagram 
with the previous one, we clearly see that the change in coin denominations in 
the hybrid division algorithm translates to vertical steps in the LDA.

We make this explicit in the division of 6804____
12  by labeling the various steps: 

The answer to this division is 567 and it naturally and quite swiftly gives the 
answer to any of the following questions:

• How many times can we subtract 12 from 6804?
• How many groups containing 12 objects can we form out of 6804 

objects?
• What are the portion sizes if we take 6804 objects and distribute them 

equally into 12 slots?
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Each of these questions can of course take on an infinite number of guises 
including:

The LDA provides a systematic way of solving division problems. However, 
as we have already seen, it is not always the quickest way to divide. In many 
cases, we may do the division faster by canceling out trailing zeros or by sim-
ply knowing what number works in one fell swoop (as we did many times in 
chapter 8). 

Even when long division is required it is not always necessary to use every 
step. For instance, we generally leapfrog the first steps if they yield leading 
zeros. For example in the prior division, we would generally make a mental 
note that 12 doesn’t go into 6 and immediately go to work on the next step of 
finding out how many times 12 goes into 68. In this case, our writing of the 
quotient would not include the lead zero. We may also skip steps by making 
even bolder guesses (e.g., instead of guessing how many times 12 goes into 68 
we might be more daring and try to guess how many times 12 goes into 680). 
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These are luxuries afforded to us in HA form that are not as available to us 
when we divide with coin numerals (or even to some extent using numerical 
coefficients)—demonstrating yet again how HA numerals are truly the Cadil-
lac of all of the numeral systems discussed in this book.

The Great Division

In comparison with our methods for adding, subtracting, and multiplying in 
HA script, the LDA is a relative newcomer. Prior to 1500, the most common 
method of dividing with HA numerals was radically different from the LDA. 
It was known as the galley or scratch method.3 The following figure shows the 
method at work in dividing 73,485 by 214:

Before Dividing             After Dividing

The quotient is the number to the right of the bar and the remainder con-
sists of the “unscratched” out numerals on the left side of the bar (reading 
from left to right). This gives an answer of 343 remainder 83. Don’t worry if it 
looks confusing—it should if you never saw it before. But since the numerals 
sprout out somewhat evenly around the original diagram as opposed to ex-
panding vertically down from it, the galley method actually takes up less space 
than the LDA. We won’t give the details on how the method works here; to 
do it justice would take us too far afield. Also, in practice, the numerals were 
not always scratched out. 

The name galley was given to this division because its outline was thought 
by many to bear a resemblance to the galley ships which dominated the Medi-
terranean for more than 2,000 years.4 A particularly ornate example of the 
division was given in the unpublished Opus Arithmetica, a work attributed to 
a Venetian monk dating back to the sixteenth century: 
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Opus Arithmetica of Honoratus: Mathematical Treasures5

Image is from unpublished sixteenth-century manuscript (Opus Arithmetica of Honoratus:  
Mathematical Treasures). Footnote 5 has more information. Image is in the public domain.

If we so wished, we could adorn our own galley division above like so: 

Some teachers in Venice, evidently, made it a requirement that students 
embellish their galley divisions with such designs.6
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The galley technique eventually gave way in the 1500s to the method of divi-
sion called “a danda” (the method which gives). Called “the great division” by 
one Italian writer of the time, it is in essence the LDA we currently use. The 
word “gives” was used because the procedure involves giving a new numeral 
to each remainder before starting the next division. In its early form, a danda 
involved placing the quotient on the right as in the galley method but over time 
the method evolved to a current form in some countries of placing the quotient 
on the top. This was most likely a result of the arrival in the late 1500s of the 
decimal notation for fractions which in some renditions of a danda required 
divisions to grow to the right (as more zeros were added after the decimal point) 
which would lead to interference if the quotient remained on the right.

Most historians in the nineteenth and early twentieth century thought that 
the galley method originated in ancient India but Lam Lay Yong of Singapore 
has made a strong case indicating that, while certainly practiced in India in the 
early centuries CE, use of the technique in China most likely predates this.7 

The origins of our LDA are unknown. It made its first known appearance in 
print in 1491 in a work by Philipi Calanderi. As controversial among educa-
tors as the algorithm is today, it has the peculiar distinction of totally annihi-
lating its chief sixteenth-century rival (although this took some time). For all 
intents and purposes, the galley method of division is now obsolete. None of 
the major algorithms for the other three operations that were in place during 
the sixteenth century can make such a claim.8 Of the rival methods that exist 
today for adding, subtracting, and multiplying numbers, many of them were 
also rivals with each other in the 1500s as well.

Conclusion

Thus concludes our directed study on the conceptual workings of the four el-
ementary operations of arithmetic. Three of them yield to automatic handling 
once the tables and algorithms have been mastered, with the fourth, division, 
being effectively tamed with an intelligent guess or two, when needed, to get 
and keep the LDA rolling. 

Division is not the last of the operations of arithmetic, however. Higher 
order operations, known as exponentiation (or raising to powers) and its 
inverse known as the taking of roots (e.g., the square or cube root), also exist. 

The taking of exponents corresponds to repeated multiplication (when 
dealing with whole numbers). Thus, if we multiplied 6 × 6 × 6 × 6, we would 
abbreviate it as 64. The number 6 is called the base (the number being repeat-
edly multiplied) while the 4 is called the exponent (the number of times we 
involve the base in the multiplication). If we had 815, this would mean multi-
ply fifteen eights together. 
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Can we domesticate repeated multiplication in the same manner as we have 
the four elementary operations? At the present time, the answer appears to be 
in the negative, as no simple written grade school algorithms, other than sim-
ply performing all of the multiplications, seems achievable. A procedure in 
writing that allows us to circumvent the repeated multiplications does exist, 
but it is too sophisticated and messy for the elementary school. Historically, 
it required the construction of an intricate table that proved exhausting to 
develop. The Scotsman John Napier, for example, spent nearly two decades of 
his life, in the late sixteenth and early seventeenth centuries, working on such 
a table. The logarithms he developed, and that were subsequently improved 
upon, form the centerpiece in this algorithm. Their use extended and greatly 
simplified not only the taking of exponents and roots but also the very large 
and messy multiplications and divisions involving decimals that scientists, 
such as the astronomer Johannes Kepler, were beginning to encounter.

Surprisingly, logarithms quickly allowed for the creation of a physical device 
that would far outdistance the abacus in its ability to perform sophisticated 
computations. Reaching a mature form by the middle of the seventeenth cen-
tury, the slide rule is a device that can mechanically represent calculations with 
logarithms in an analogous way that the abacus is a device that mechanically 
mimics calculations in positional systems. Interestingly, in the case of the aba-
cus, the device preceded the script (HA numerals), while in the case of the slide 
rule, the script (logarithms) preceded the device. 

The question as to who actually invented the slide rule has been somewhat 
disputed—with the names of Englishmen William Oughtred, Richard Dela-
main, Edmund Gunter, and Edmund Wingate figuring prominently in the 
debate. An extremely valuable tool, the slide rule saw its heyday end only rela-
tively recently in the late 1960s and early 1970s with the advent of electronic 
calculators—but that’s a whole other story. 

Our approach to arithmetic so far has hopefully demonstrated that math-
ematics doesn’t sit alone in a vacuum, and that its symbols take their forms, in 
part, based on the needs and limitations of the human beings who developed 
them. As Raymond Wilder states, “Mathematics was born and nurtured in 
a cultural environment. Without the perspective which the cultural back-
ground affords, a proper appreciation of the context and state of present-day 
mathematics is hardly possible.”9 

This is true not only of mathematics proper but also of the manner in 
which mathematics is explained to others. In fact, mathematics education 
forms its own complex and fascinating subplot in the two vast dramas that 
comprise its name—mathematics itself and education. Both subjects have 
rich histories of their own and remain of immense importance today. The 
same is no less true of their spectacular convergence. It is to this fascinating 
and important story that we next direct our attention.
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You’re an interesting species. An interesting mix. You’re capable of such beau-
tiful dreams, and such horrible nightmares.

—Alien sage to Eleanor Arroway in the movie Contact1

 
Mathematics education is much more complicated than you expected, even 
though you expected it to be more complicated than you expected.

—Edward G. Begle, twentieth-century mathematician, 
math educator, and a chief architect of the New Math2

III

BEAUTIFUL DREAMS AND 
HORRIBLE NIGHTMARES
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Not the children of the rich or of the powerful only, but of all alike, boys and 
girls, both noble and ignoble, rich and poor, in all cities and towns, villages 
and hamlets, should be sent to school.

—John Amos Comenius (1630s), internationally famous Czech 
educator, often considered the father of modern education1

The history of education shows us that every subject of instruction has been 
taught in various ways, and further that the contest of methods has not uni-
formly ended in survival of the fittest.

—Robert Quick, nineteenth-century British educator, 
author of Essays on Educational Reformers2

10

Triumph of the Numerals

RUSSIANS WIN RACE TO  LAUNCH EARTH SATELLITE
Saturday Evening, October 5, 1957

Welch Daily News, Mcdowell County, West Virginia

For twenty-two days in October 1957, a shiny aluminum sphere, the size of a 
beach ball, whizzed through the sky at the breathtaking rate of five miles per 

second, beeping signals to radio receivers around the globe. Once its transmit-
ter fell silent, the object would remain in orbit for yet another ten weeks before 
finally plunging to its fiery demise in the upper atmosphere. It was a singular 
moment in a century packed with them. Sputnik shocked the world! And 
mathematics education in America would never be the same again. 
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Talk of serious educational reform had been in the air for more than a 
decade but few expected this. Now there was the great and real fear, in some 
cases bordering on hysteria, that America had fallen precipitously behind its 
Cold War opponent in regards to technical education.

In response, President Eisenhower signed the National Defense Education 
Act into law in 1958 with the goal of producing a tidal wave of new American-
born mathematicians, scientists, and engineers. Just a year later, in Woods 
Hole, Massachusetts, some of the country’s most distinguished scientists and 
scholars, nearly three dozen in number, met to discuss how best to improve 
the teaching of math and science in our schools. 

Such was the energy and spirit of reform at the time that Yale Professor Ed 
Begle totally refocused his career from mathematical research to mathemati-
cal education by heading up what would become the most well-known of 
the groups devoted to this reform—the School Mathematics Study Group 
(SMSG).

Other research mathematicians would accompany him in the quest for 
reform by joining SMSG or one of the many other consortiums that sprang 
up throughout the country to address these same issues. Time magazine in a 
September 1961 article stated: 

As secretary of the American Mathematical Society, Begle was in a key spot when 
Sputnik-stirred mathematicians began to worry about U.S. high schools. They 
were shocked at “cook book” courses stuffed with unrelated rules, appalled at 
teachers who themselves hated math. With grants ($4,000,000 so far from the 
National Science Foundation), Begle organized top mathematicians and teach-
ing experts into five teams, each covering a year of junior or senior high school 
math. Purpose: to create teachable courses. . . . With the high school books out, 
Begle plans new texts for kindergarten through sixth grade.3

Think of it: research mathematicians, who generally as a community had 
spurned K–14 teaching, engaged in serious pedagogical discussion about the 
issues in classroom instruction and math education at all levels.4 Here were 
some of the best minds in the subject now hard at work, trying to solve the is-
sues of how best to teach math. For those concerned with such things, what an 
exciting and energizing time it must have been. It would appear that a golden 
age in math education had arrived at our shores.

Unfortunately for schools, students, even American society at-large, this 
golden age failed to materialize. The curricula that ensued from these grand 
reform efforts became collectively known as the New Math movement, and in 
most circles today, it is viewed as an effort that, despite such promise at dawn, 
catastrophically failed to achieve its aims by dusk. If ever there is anything 
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that can serve as a cautionary tale on the multifaceted difficulties inherent in 
systematically teaching mathematics to large groups of human beings, it is the 
New Math reform movement of the 1950s and 1960s.

No matter the final tally, however, it is hard to deny that the New Math 
was clearly a bold stroke to send the math education of minors into a 
radically new and ambitious direction. The idea might be summarized as 
an effort to instill in children the unifying notions of abstract mathemati-
cal structure: “the goal being to ‘make sense’ of school mathematics, to 
anchor an apparently endless series of apparently isolated tricks to a struc-
ture within which all these tricks became realizations of a small number 
of important mathematical principles.”5 A grand unification of sorts. The 
thinking was that since children learn and take to languages far easier than 
most adults, perhaps they would do the same with abstract mathematical 
structure: Instill these notions in them early and set their natural curiosity on 
fire! Now that’s a beautiful dream!

A far older but equally beautiful dream in its day was the idea that elemen-
tary arithmetic should or even could be systematically taught to all children 
or even to most adults for that matter. The tale of how elementary arithmetic, 
one time at the forefront of mathematical thought, became a part of the work-
ing vocabulary of the average citizen is a long and involved one easily filling 
several volumes on its own. In the next two chapters, we will explore some of 
the highlights focusing specifically on education in the West. 

A Question of Speed: The Abacus 
versus the Electronic Calculator

We know that abaci were used for centuries to help people overcome the limi-
tations imposed on them by their numeral systems. But how fast could they 
really be? How would they do arithmetic in comparison with, say, a modern 
electronic calculator? Believe it or not, in 1946 we found out (see excerpt): 

An exciting contest between the Japanese abacus and the electric calculating 
machine was held in Tokyo on November 12, 1946, under the sponsorship of 
the U.S. Army newspaper, the Stars and Stripes.” In reporting the contest, the 
Stars and Stripes remarked:

The machine age tool took a step backward yesterday at the Ernie Pyle Theater 
as the abacus, centuries old, dealt defeat to the most up-to-date electric machine 
now being used by the United States Government. . . . The abacus victory was 
decisive.

The Nippon Times reported the contest as follows:
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Civilization, on the threshold of the atomic age, tottered Monday afternoon as 
the 2,000-year-old abacus beat the electric calculating machine in adding, sub-
tracting, dividing and a problem including all three with multiplication thrown 
in, according to UP. Only in multiplication alone did the machine triumph.

The American representative of the calculating machine was Pvt. Thomas 
Nathan Wood of the 20th Finance Disbursing Section of General MacArthur’s 
headquarters; who had been selected in an arithmetic contest as the most expert 
operator of the electric calculator in Japan. The Japanese representative was Mr. 
Kiyoshi Matsuzaki, a champion operator of the abacus in the Savings Bureau of 
the Ministry of Postal Administration.

As may be seen from the results tabulated on the following page [sic], the 
abacus scored a total of 4 points against 1 point for the electric calculator. Such 
results should convince even the most skeptical that, at least so far as addition 
and subtraction are concerned, the abacus possesses an indisputable advantage 
over the calculating machine. Its advantages in the fields of multiplication and 
division, however, were not so decisively demonstrated. (The Japanese Abacus: 
Its Use and Theory, by Takashi Kojima. Reprinted with kind permission from 
Tuttle Publishing)6

The abacus has since performed well in other arithmetic contests (mostly 
unofficial) against electronic calculators. Clearly, in the hands of a competent 
user, the abacus can more than hold its own against modern devices. The film 
and newsreel company British Pathe reportedly has footage of such a contest 
held in Hong Kong in 1967. 

The Counter Abacus

Abaci, like automobiles, however, can and have come in a wide variety of 
makes and models. The most common view is probably of the type we have 
discussed: a device with beads to slide up and down on rods (the Japanese So-
roban abacus used in the 1946 competition and the Chinese Suan Pan abacus 
discussed in chapter 3 are both of this type). This hasn’t always been the case, 
however. The abaci that dominated the late medieval European landscape 
were called counter abaci and they differed in the details from bead abaci. 

The counter abacus also has place value built into its design, but instead of 
beads to represent the amount in a given column, it used tokens or counters.7 
The model shown here is a simpler model than those used in practice and the 
place value coins have been included for the sake of clarity. Also in contrast 
to the bead abacus, the counters employed were not attached to the device 
(see the following).



Table 10.1 Tabulated Results of Abacus Contest (Tokyo, 1946)a

Type of Problem Name 1st Heat 2nd Heat 3rd Heat Score

Addition: 50 numbers 
each containing 3 to 6 
digits

Matsuzaki 1m. 14.9s 
(Victor)

1m 16s 
(Victor)

 1

Wood 2m 0.2s 
(Defeated)

1m 58s 
(Defeated)

  

Subtraction: 5 problems 
with minuends and 
subtrahends of from 6 to 
8 digits each

Matsuzaki 1m .4s 
All correct
(Victor)

1m .8s 
4 correct
(No decision)

1m 
All correct
(Victor)

1

Wood 1m 30s 
All correct
(Defeated)

1m 35s
4 correct
(No decision)

1m 22s
4 correct
(Defeated)

 

Multiplication: 5 
problems each 
containing 5 to 12 digits 
in the multiplier and 
multiplicand

Matsuzaki 1m 44.6s 
4 correct
(Defeated)

1m 19s 
All correct
(Victor)

2m 14.4s
3 correct
(Defeated)

 

Wood 2m 22s 
4 correct
(Defeated)

1m 20s
All correct
(Defeated)

1m 53.6s
4 correct
(Victor)

1

Division: 5 problems 
each containing 5 to 12 
digits in the divisor and 
dividend

Matsuzaki 1m 36.6s 
All correct
(Victor)

1m 23s 
4 correct
(Defeated)

1m 21s
All correct
(Victor)

1

Wood 1m 48s 
All correct
(Defeated)

1m 19s
All correct
(Victor)

1m 25s
4 correct
(Defeated)

 

Composite problems: 
1 problem in addition 
30 6-digit numbers; 
3 problems in 
subtraction, each 
with two 6-digit 
numbers; 8 problems in 
multiplication each with 
two figures containing 
a total of 5 to 12 digits; 
3 problems in division, 
each with two figures 
containing a total of 5 to 
12 digits

Matsuzaki 1m 21s
All correct
(Victor)

  1

Wood 1m 26s
4 correct
(Defeated)

   

Total Score: Matsuzaki    4

Wood    1

Results of the contest: Matsuzaki using the abacus, wins 4 to 1 against Wood, using the 
electric calculator. 

aThe Japanese Abacus: Its Use and Theory, by Takashi Kojima.
Reprinted with kind permission from Tuttle Publishing
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Simple model of a medieval counter abacus with place values included 

432 on the counter abacus with extra counters off to the side.
Photo taken by author.

432 on the bead abacus
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Woodcut from Margarita Philosophica by Gregor Reisch, 1508.
Image is in public domain.

Title page of Jakob Köbel’s Rechenbiechlin (1514).
Image is in public domain.
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Outside of the context of medieval Europe, counter abaci are usually called 
counting boards. However, since they really are different models of the same 
underlying idea, and given that writers on the period, including William of 
Malmesbury (1100s), referred to users of such boards as abacists, we will con-
tinue to call the device an abacus.8 When necessary, we will sometimes also 
refer to the counter abacus as a line abacus. As with all abaci, to handle addi-
tion, subtraction, multiplication, and division on the counter abacus required 
much skill and memorization. 

In practice the counter abacus often had a divider line (with the thousands 
place asterisk situated on this middle line instead of on the left side as in my 
simple reconstruction). This allowed two numbers to be represented on the 
same device for the purposes of adding or subtracting them. The notions of 
“carrying” and “borrowing” most likely have their origins in this device as 
these processes were literally played out with the counters both on the board 
(carrying a counter to the next higher line) and in the pile off of the board 
(borrowing from the pile).9 Commerce during the Middle Ages was often 
done by performing calculations on the counter abacus. The modern day no-
tions of “counter” and “over the counter” in stores and businesses most likely 
owe their origins also to the counter abacus.10

A great disadvantage of an abacus is that it is a device with no memory. 
Once a calculation is completed, all of the intermediary steps in the calcu-
lation are lost. This, as we discussed, led to a situation where the counter 
abacus was used for calculations between numbers, while Roman numerals 
were used to record the results of those calculations, especially those relating 
to commerce.11 Learning how to use the counter abacus was generally ac-
complished, much like a novice learns how to cook in a restaurant, through 
apprenticeship. 

Medieval Showdown

On a parallel track, starting in the early centuries CE, came the Indian way of 
reckoning. It gave people the ability to calculate in writing—meaning in effect 
that you could “take a photograph” of a calculation. You could even begin to 
build your own quantitative constitution using objects such as a multiplica-
tion table. This “Indian way” in due course would come into direct conflict 
with the counter abacus, subdue it and its proponents over time, and eventu-
ally come to dominate the planet. 

This dominance, however, did not happen overnight, not even close, taking 
nearly a millennium and a half to do so. Why did it take so long? The reasons 
are complex and varied but they show that mathematics does not stand apart 
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from the limitations and problems of the greater society at-large, nor from 
human fallibility. This is true even today. 

It is worth noting that for all of their marvelous accomplishments in math-
ematics and science, the ancient Greeks totally missed out on discovering 
this type of numeration system. The great eighteenth- and early nineteenth-
century French mathematician Pierre Simon Laplace states: 

It is India that gave us the ingenious method of expressing all numbers by means 
of ten symbols, each symbol receiving a value of position as well as an absolute 
value; a profound and important idea which appears so simple to us now that we 
ignore its true merit. But its very simplicity and the great ease which it has lent 
to computations put our arithmetic in the first rank of useful inventions; and we 
shall appreciate the grandeur of the achievement the more when we remember 
that it escaped the genius of Archimedes and Apollonius, two of the greatest men 
produced by antiquity.12

Mentioning the fact that something so basic and fundamentally important 
to all of mathematics could escape the notice of the great Greek geniuses is 
not to criticize them. It was done to illustrate that when people don’t perceive 
that there is an issue to even worry about, they generally won’t devise a new 
way to “fix it”—no matter how smart they are. The majority of the problems 
that the ancient Greeks were concerned with simply did not, for them, involve 
devising a better system of numeration. 

Could possession of HA numerals have helped them in their investigations? 
Without question, but for where the interests of their intellectual traditions 
and culture lay, the tools they had must have felt adequate enough for them.13 
Put another way, the Greeks weren’t sitting in their homes pining away for a 
better number system any more than they were bemoaning the fact that they 
didn’t have automobiles. Not having the luxury of our modern viewpoint, 
they simply did not see this situation as a major issue. The same can undoubt-
edly be said in defense of other ancient peoples as well—particularly, in re-
gards to their not employing formal proof (as we view it today) or developing 
a fully symbolic algebra, and so on.

These discoveries in numeration radiating out from India passed on into 
the medieval Arab world to successfully compete with two other rival systems 
of reckoning (finger reckoning and sexasgesimal numerals).14 The Arabs were 
eventually to make important and everlasting discoveries in many areas of 
mathematics, particularly algebra (even giving us the very word itself). Just 
how outstanding and farsighted many of their contributions were is increas-
ingly coming to light and it was through contact with the Arabs that medieval 
European mathematicians slowly emerged from the mathematical stagnation 
that existed on the continent during this period. 
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Two important European players involved in the transmission of the In-
dian way of reckoning were Gerbert d’Aurillac (ca. 946–1003) and Leonardo 
of Pisa (Fibonacci) (ca. 1170–1250). Since the numerals were used in the Arab 
world, they were at first called Arabic numerals by some Europeans. Others 
such as Fibonacci, however, knew that these numerals had their origins in 
India and over time they eventually came to be called the HA numerals, which 
is how we have referred to them in this book. 

Gerbert, who become Pope Sylvester II, used the numerals in a hybrid 
fashion. He used a counter abacus but, instead of using unmarked tokens, 
he fashioned special types of tokens by marking them with HA numerals and 
representing the place values with Roman numerals. Thus, using modern nu-
merals, Gerbert would have represented 432 on his counter abacus as: 

Contrast this with the way 432 was represented with unmarked tokens on 
the line abacus. These coins, called apices, were also not attached to the board 
and could be replaced by others as needed. Our process of crossing out num-
bers in a subtraction could have, in Gerbert’s system, amounted to one apice 
being removed from the board and replaced by another. 

Despite its earlier appearance, Gerbert’s abacus was eventually replaced by 
the line abacus. However, Gerbert’s use of the HA numerals on the apices did 
serve to give these symbols a greater familiarity in the regions that they were 
used, but unfortunately, his introduction was not the definitive introduction of 
these numerals into Europe. That would come more than two centuries later.

Leonardo of Pisa

By the High Middle Ages, a revolution in commerce had taken the towns of 
northern Italy by storm. This revolution would create an influential new class 
of citizen whose clout came not from religious ties or noble birth but from 
money. So enabling was this liquid wealth for towns such as Venice, Pisa, and 
Genoa, that they became independent and powerful city-states—able to, in 
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alliance, meet the Holy Roman Emperor Frederick Barbarossa on his own 
terms in 1176 CE and force him to the peace table.15 

As commerce grew to become more regional and international, the com-
plexity grew in terms of the types of problems that merchants were being 
called upon to handle. An example of the types of problems merchants were 
concerned with in 1202 is given here:16

• Finding the value of merchandise based on another sale: If one hundred rolls 
are sold for forty pounds, what can I buy for two-and-a-half pounds?

• Currency exchange in a complex economy: If one imperial soldo is worth thirty-
one Pisan denari, how many imperial denari can be exchanged for eleven 
Pisan denari (one imperial soldi is equivalent to twelve imperial denari)?

• Partnerships: Two men form a company in which the first man puts in 
eighteen pounds of some currency and the second puts in twenty-five 
pounds. If the company makes a profit of sixty-five pounds, how much 
of the profit does each man hold?

• Mixing alloys: A certain man has nine pounds of silver. If he wants to 
make money consisting of two ounces of silver in each pound, how much 
copper should he add to the silver to make this happen? Note: twelve 
ounces here make a pound.

Amidst this backdrop lived Leonardo of Pisa, often hailed as the most in-
fluential European mathematician of the Middle Ages. He learned of the HA 
numerals during his boyhood tenure with his father in Algeria and was so 
taken with them that in 1202 he decided to write what would turn out to be 
one of the most important and influential math books of all time, Liber Abaci 
(Book of Calculation), which showed how to use these numerals, in written, 
not “token/apice” form. The title of this book is misleading as it is a book 
about calculation in writing not calculation on the abacus.

His intent was to convey the absolute magic possessed by this numeral 
system out of Asia. In a real sense, he was one of the most important heralds 
of the fact that elementary arithmetic could be fully and conveniently accom-
plished in script alone. Merchants in the powerful city-states were impressed, 
and in due time the two-pronged process of calculating on the abacus and 
then recording the results in the accounting books with Roman numerals 
began to give way to the process of both calculating and recording in pen 
using these new numerals.17 Books, such as Liber Abaci, which discussed how 
to calculate with HA numerals in writing, became known as “algorisms.”

A few passages from chapters 1 and 11 of the thirteen-century Liber Abaci 
(translated into English by Laurence Sigler 800 years later in 2002) are provided 
here:
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Chapter 1
Here Begins the First Chapter

The nine Indian figures are:

9    8    7    6    5    4    3    2    1

With these nine figures, and with the sign 0 which the Arabs call zephir, 
any number whatsoever is written, as is demonstrated below. A number is a 
sum of units, or a collection of units, and through the addition of them the 
numbers increase by steps without end. First, one composes from units those 
numbers which are from one to ten. Second, from the tens are made those 
numbers which are from ten up to one hundred. Third, from the hundreds 
are made those numbers which are from one hundred up to one thousand. 
Fourth, from the thousands are made those numbers from one thousand up 
to ten thousand, and thus by an unending sequence of steps, any number 
whatsoever is constructed by the joining of the preceding numbers.

Chapter 11
Here Begins Chapter Eleven on the Alloying of Monies

When it is made up from mixed silver and cooper, no matter what is the 
face value, it is indeed called money. However, money is called major when 
a pound of it contains more silver than copper, and it is the more desired. 
Minor money truly is when there is less silver. It is called alloying money 
when some given quantity of silver is put in a pound of money. And when 
we say, I have money with any number of ounces, as when we say with 2, 
we understand that in a pound of the money are had 2 ounces of silver. 
Money is alloyed indeed in three ways. The first way is when it is alloyed 
from a given quantity of silver or copper. The second is when it is alloyed 
from any given monies with the addition of silver, or copper, or both. The 
third is when it is alloyed only from given monies. And all are contained in 
this complete chapter which we separate into seven distinctions.

Liber Abaci, by Leonardo of Pisa (1202), translated from the Latin by Laurence Sigler in Fibonacci’s 
Liber Abaci, 2002, 17, 227.

Reprinted with kind permission of Springer Science+Business Media.
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Liber Abaci was written in Latin but by the end of the thirteen century, 
abbreviated Italian versions of the book began to appear.18 The influences of 
this, and other texts written along similar lines, were evidently so far-reaching 
that their methods and spirit began to play a prominent role in an entirely 
different kind of school—the merchant vernacular school (reckoning or cal-
culation school). 

After completing elementary school, Italian children of primarily well-
situated families now had a choice of attending either a Latin grammar 
school or a merchant vernacular school. In contradistinction to the grammar 
schools, which focused on teaching Latin to prepare for a career in medicine, 
law, religion, or perhaps the university, vernacular schools taught reading and 
writing in Italian as well as accounting and commercial mathematics using 
HA numerals to prepare for a career in business.19 

The technique of using the new numerals to solve commercial problems 
came to be called abbaco (often called “abacus” by later writers) and some-
times the vernacular schools themselves were called abbaco schools. Famous 
alumni of abbaco schooling likely include perspective painter Piero della 
Francesca, mathematicians Luca Pacioli and Niccolò Fontana (Tartaglia), 
polymath Leonardo da Vinci, and the philosopher Niccolò Machiavelli.20 The 
echo of these schools on the course of Western mathematical education can 
still be heard to this very day.

While students had to first be taught the basics of the HA numeral system 
and how to perform the fundamental operations of arithmetic, the primary 
goal of the abbaco schools was to teach students how to use this newly ac-
quired facility in numeration to solve the commercial problems of the day. 
Most instruction in abbaco seemed to start sometime after the age of ten and 
lasted for about two years.21 After this the student would enter a long ap-
prenticeship on the job, gradually working their way up through the business.

Evidently, the instructional method involved the teacher discussing a par-
ticular problem along with its solution while the students faithfully copied it 
all down in their copy books. Over the course of their studies, the students 
would amass a large number of specific problems with procedures for their 
solutions (performing everything, including the calculations in writing al-
lowed for this). Years later when they encountered a specific problem on the 
job which they could not immediately solve, their copy book would serve as a 
valuable reference, as they could scan through it for the same type of problem 
and once found employ the same method of solution.22 

In spite of the great strides made in Italy using the HA numerals, use of the 
counter abacus did not immediately disappear in the rest of Europe or even 
in Italy for that matter. Which meant that, by the late thirteenth century in 
Europe, two rival methods of reckoning existed: one performing calculations 
using the counter abaci then recording the results in Roman numerals and 
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the other performing calculations and recording the results both in writing 
using the HA numerals. 

Practitioners of the first method were called abacists while practitioners 
of the latter were called algorists. These systems would spread (in the case 
of HA numerals) and disappear (in the case of counter abaci) at differential 
rates throughout Europe, existing side by side, in some cases, right on up 
until the arrival of the printing press in the fifteenth century and well into the 
sixteenth.23 

Knowledge Explosion: The Printing Press

Now we go back to the question: Why did it take so long for the HA numer-
als to be universally accepted across Europe? The reasons most likely include 
aspects of each of the following:

• The production of books in sufficient quantity explaining the numerals 
was difficult until the advent of the printing press.

• The shapes of the numerals were not completely standardized.
• Even in the cases where the numerals were standardized, mistakes in 

recording them could still happen leading to potentially catastrophic 
interpretations (see chapter 3, note 8).

• The Black Death pandemic of the fourteenth century which caused the 
death of perhaps more than half of the population of Europe. 

• Materials to be written upon, such as paper, a Chinese invention, were 
expensive and not readily available.

• Basic resistance to change including opposition from abacists and con-
servative merchants under the old system.

• The numerals were often associated with mysticism and astrology.
• The conceptual difficulties in understanding the meaning of the number 

zero.24

• Learning how to use the system took a lot of effort. This is not a trivial 
thing for we still deal with similar circumstances today in America. The 
metric system is clearly a superior system to the one we use (for instance, 
it allows conversions between say units of length or weight [mass] to be 
as easy as conversions with money; that is, converting say 532 cents to 
$5.32 by simply moving the decimal point two places) yet due to its un-
familiarity, we refuse to change to it. 

• The numerals were looked down upon initially by universities as com-
mercial/merchant arithmetic and not a suitable topic for their attention. 
The universities focused more on arithmetic as a theoretical science 
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rather than a practical art studying such things as prime numbers, square 
numbers, and perfect numbers in preference to studying algorithms for 
multiplication and division. On those occasions where they did deign to 
use the HA numerals, it was mainly for calculating the dates of Easter and 
other religious festivals.25

• Books written about these numerals were often written in Latin as op-
posed to the vernacular or native language and this limited access.

• It would be many years, after the founding of abbaco schools, before 
mathematics found equal prominence in the curricula of educational 
programs throughout the rest of the continent. 

Thus the odds were actually well stacked against the quick universal accep-
tance of these numerals in Europe. But accepted they did eventually become, 
as subsequent outbreaks of plague never approached mid-fourteenth century 
levels, respect for the power of numerical reasoning to successfully aid in busi-
ness ventures continued to grow, paper, while still not cheap, became more 
available, resistance from the universities began to cool, and perhaps most 
importantly of all the mechanical printing press was invented around 1440 by 
Johannes Gutenberg. The significance of this most important of inventions is 
hard to overstate: 

What gunpowder did for war the printing press has done for the mind.—Wen-
dell Phillips26

The printing press . . . soon did for knowledge what steam has done for trade: 
reduced time and distance to their lowest terms in the intellectual commerce of 
the people. Men no longer had to make long and weary pilgrimages to the homes 
of learning: knowledge was brought to their very doors. Often with less trouble 
than was taken, formerly, to teach one pupil by the voice, a teacher now taught 
thousands by the pen.—Henry Holman27

This revolution in the spread of knowledge created by the printing press can 
be likened to the revolution in the spread of energy use affected by the produc-
tion of electricity at generating stations. Before the late nineteenth century, 
most energy use had to be close to the sources where the energy was produced. 
With the development of power plants, however, this would all change, al-
lowing for the creation of vast electrical networks that gave the capability of 
transporting energy hundreds of miles from the places of production with 
spectacular results—lighting up and powering entire cities from afar.

The printing press turned some thinkers into true best-selling authors and 
celebrities. Dutchman Desiderius Erasmus (1466–1536) reportedly sold more 
than 750,000 copies of his work during his lifetime, while more than 300,000 
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copies of Martin Luther’s work sold in just three short years, from 1518 to 
1521—providing ample fuel for the fires of reformation.28 By 1600, an esti-
mated 150 to 200 million volumes had been collectively produced by all the 
printing presses in Europe.29

Printed books on arithmetic also shared in this revolution, albeit at a slower 
pace. By the end of the 1400s it has been estimated that around thirty different 
texts on elementary arithmetic had been printed, and by 1750 at least three 
thousand more.30 The first known such text is the Treviso Arithmetic printed 
in Treviso, Italy, in 1478 (the first translated passages are included here).31 It 
is worth mentioning that this book was written in the local Venetian dialect, 
and not Latin, which opened it up to a much wider audience. 

At Treviso, on the 10th day of December, 1478.
Here beginneth a Practica, very helpful to all who have to do with that 

commercial art commonly known as the abacus.
I have often been asked by certain youths in whom I have much interest, 

and who look forward to mercantile pursuits, to put into writing the fun-
damental principles of arithmetic, commonly called the abacus. Therefore, 
being impelled by my affection for them, and by the value of the subject, 
I have to the best of my small ability undertaken to satisfy them in some 
slight degree, to the end that their laudable desires may bear useful fruit. 
Therefore in the name of God I take for my subject this work in algorism, 
and proceed as follows:

Source: First passages of the Treviso Arithmetic (1478) translated into English by David Eugene 
Smith, 1911.

Seeds of Universal Education

By the 1500s in Europe, there was in place a mechanism for spreading knowl-
edge to thousands of people. Renaissance humanists sought to educate a new 
class of leaders and professionals according to the lofty heights of ancient 
Greece and Rome. With the Protestant Reformation came the desire to teach 
large masses of common people how to read in their own languages so that 
they could read the Bible for themselves. 

At this time we witness the rise of a great wave of educators and edu-
cational thinkers whose ranks include: Juan Luis Vives, Francois Rabelais, 
Johannes Sturmius, Petrus Ramus, Michel de Montaigne, the Jesuits, Richard 
Mulcaster, Wolfgang Ratke, and John Amos Comenius. These individuals 
and groups as well as many more began to grapple with some of the eternal 
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issues anyone must wrestle with when considering educating large and diverse 
groups of people. They include:

• what material to teach 
• who to teach it to
• the purpose in teaching it
• how to teach it
• who will do the teaching
• how to assess the results of teaching it
• how to effectively administer the whole enterprise

The initial social and economic circumstances, which led to an increase in 
the number of people who received schooling as well as slowly changing views 
on whether the masses should also be educated, would help elevate the issues 
involving education into one of the outstanding global concerns for the rest 
of the second millennium CE and beyond. By the early twenty-first century, 
at the center of this education storm in many countries would sit science and 
mathematics.

The sixteenth century saw the gradual defeat of the counter abacus by the 
HA numerals. This defeat was first felt in Italy and Spain, actually occurring 
earlier in these countries, and gradually creeping northward throughout the 
1500s. The algorisms printed after Gutenberg’s invention serve as a trail to the 
thinking on elementary arithmetic at the time. Most of these books had huge 
sections dedicated to solving the commercial problems of the day. This is not 
surprising since, as we have seen, the commercial influences on arithmetic 
education were enormous, predating even Fibonacci’s time. 

Unfortunately, by the seventeenth and eighteenth centuries this influence 
would take a decided turn for the worse as the number of people seen needing 
arithmetic swelled to include the ranks of those whose backgrounds and inter-
ests were very far and away from those of the sons of rich Italian merchants of 
the thirteenth through fifteenth centuries immersed in a robust commercial 
tradition. This would be true throughout all of Europe and ultimately by 
transfer to the emerging republic in America.

What Is So Special about the HA Numeral System?

After emerging the victor in Europe following a struggle of more than four 
hundred years, the conquest of HA numerals over other systems of reckoning 
would continue unabated, eventually engulfing the entire globe by the twenty-
first century. The many nations of the world still practice different religions, 
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still use different monetary systems, still speak with different sounds, still 
write using different letters and glyphs, and still live under different brands 
of government, but when it comes to numeration they all calculate in some 
measure using the same fundamental set of numerals. 

A clean sweep! Why did it happen? What do the HA numerals really offer 
us that make them so special?

They unquestionably offer a massive speed advantage in calculation versus 
Roman numerals and our coin numerals viewed purely as written systems. 
But is speed the only reason why they dominate today? 

They certainly don’t offer a speed advantage over the bead abacus—which 
we know can be as fast as modern calculators. And while performing arithme-
tic in writing with HA numerals may actually have rivaled the counter abacus 
in terms of speed, that alone wouldn’t have been great enough to overthrow 
the device.32 The truth be told, as far as bare calculation and registering the 
results alone went, the two-pronged system, of using Roman numerals to 
record and the counter abacus to compute, was workable. To effect such a 
massive change across the globe something else must have been at play. If not, 
it is doubtful whether users of the unquestionably swift bead abaci, such as the 
Chinese and the Japanese, would have ever adopted HA numerals.

It is important to remember, the HA numerals didn’t simply replace a set 
of numerals or a physical device. They forever altered clever systems that 
employed the two in powerful combination (totally overthrowing the one 
practiced throughout medieval Europe). There must be something extra 
special about combining both the representation and calculation of quantity 
into a single written system that more than makes up for the losses endured 
in abandoning centuries old and familiar systems

The answer to exactly what that something special is certainly deserves the 
attention of a cognitive scientist or two. Surely it must touch upon some of 
the general advantages that written communications can offer over kinetic 
communications (e.g., spoken language or calculations on an abacus). By 
being a full-service set of numerals, the HA script allowed for permanence 
and static visibility of expression in a small space, making possible the literal 
explosion of a “literature of quantity.” 

In discussing the Italian merchant schools, we mentioned that their copy 
books allowed students to create large reference books complete with solved 
problems that they could use repeatedly to deal with the problems they later 
encountered on the job. This ability to record and catalog hundreds of prob-
lems complete with their solutions in a single reference book is seamless with 
compact written HA numerals. 

How would you efficiently accomplish this in the two-pronged system 
where the hard calculations were done on the abacus (with each step on the 
device being literally obliterated by the next one in a calculation) and only 
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the results were written in Roman numerals? Robert Recorde in his work, The 
Grounde of Artes (1543), took seven pages of text just to show how to multiply 
1542 times 365 using the counter abacus.33 It would be difficult for many to 
follow dozens of such examples a few days later, much less many years later. 

On the other hand, by spectacularly merging the calculation and repre-
sentation of quantity together in a single system of writing, the HA numerals 
allowed for the visible preservation of both. Moreover, the numerals were 
able to miniaturize the entire business of numeration to such a degree that 
the whole process could often be taken in with a single glance. The removal 
of the abacus as an intermediary also meant that you could more easily do 
mental calculations (as a quick check) directly from the printed page (swiftly 
obtaining a ballpark estimate of what 51 × 72 is by substituting the much 
easier 50 × 70 in its place). This was not an insignificant capability to those 
regularly handling business transactions.

No two-pronged system could come close to approaching this sweep-
ing clarity of view complete with the ability to easily capitalize on all sorts 
of recognizable patterns (e.g., the ability to tell that a collection containing 
543,212,896,758,365,967,806 objects can be split into two equal parts [it’s 
an even number], not by first experimenting with the actual objects, but by 
simply knowing that the HA string describing it ends with a 6). 

Whereas other numeration systems allowed for the creation of a specialized 
and limited craft to do arithmetic (involving calculations by the specialist on 
the abacus or some other device), the HA system, by capturing the calcula-
tions and motions of arithmetic on paper, allowed for the creation of an 
industry. This industry would ultimately remove much of the mystery and 
aura surrounding elementary calculation, eventually paving the way to mak-
ing arithmetic accessible, in principle, to everyone (think of the modern-day 
revolution affected by shrinking computers from room-size machines avail-
able, at great expense, only to business and governments, to the iPads, desk-
tops, and notebooks of today—placing the wonders of electronic-powered 
computation at the fingertips of millions).

Moreover, this system was capable of natural extensions to other classes of 
important numbers such as the integers, fractions, and irrational numbers. 
Finally, the numerals laid the groundwork for the complete development of 
the mathematical marvel of the late 1500s and early 1600s: the fully written 
symbolic algebra—the importance of which is hard to overstate.

And so the HA numerals march on. From the early centuries CE to the 
Middle Ages to the Renaissance to the present day, they still impress. Without 
a doubt, they continue to be most deserving of the praise heaped upon them.

Are they without peer? Out of all of the cultures of the past, were the ancient 
Indians the only ones to devise such a system? We now know of at least three 
other cultures that constructed positional systems of some kind. The origins 
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of all three may predate the origins of the HA system. Credible suggestions 
have even been made in the case of one, that the ancient Indians might have 
obtained crucial ideas for their numerals from that system.34 Whether this is 
true or not remains to be seen, but if so it only magnifies the wealth coming 
out of Asia—it does not diminish the achievement on the Indian subconti-
nent of fusing together representation and calculation into one grand single 
written system of numerals. We now take a brief look at each of these systems.

Other Positional Systems

In this section, we will simply give data on each system along with an example: 

1. Sumerian/Babylonian Cuneiform Numerals:

Type:  A sexagesimal (base-60) positional system 
 59 distinct symbols (without a zero) 
 Groupings occur in packets of sixty

Dates of Major Usage:  Third millennium BCE to the Renaissance (1500s)

Symbols: 

Image reprinted with the kind permission of The MacTutor History of Mathematics Archive.
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Place Values:  

Other features:  (1) Numerals were written horizontally; (2) This 
system is the earliest known positional numeral 
system; (3) System did not possess a real zero, 
meaning that the size of the number represented 
often had to be inferred from the context; (4) 
Used by astronomers up until the Renaissance; 
(5) Remnants of this system survive to this day in 
time keeping (60 minutes, 60 seconds) and angle 
measurement.

82 in Cuneiform:  With the coin tags:  

 

 Without the coin tags: 

Translation:  1 ×  + 22 ×  = 60 + 22 = 82

Helpful hint:  Think of this as 82 minutes being equivalent to 1 
hour and 22 minutes.

2. Mayan Numerals:

Type:  A vigesimal (base-20) positional system 
 20 distinct symbols (including a zero) 
 Groupings occur in packets of twenty 

Dates of Major Usage:  Early centuries CE to Spanish Conquest (1500s)
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Symbols: 

 

Symbols produced by author.

Place Values:  

 or vertically as: 

 Other features:  (1) Numerals were written vertically. (2) System 
was not pure base 20 as the third place value 
should be 400 (twenty 20s) instead of 360 (eigh-
teen 20s). It is believed that this position was 
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chosen to have the value 360 due to the fact that 
the system was designed mainly for calendar 
computations. (3) System had a real zero. 

82 in Mayan: 

With the coin tags: 

Without the coin tags: 

Translation:  4 ×  + 2 ×  = 80 + 2 = 82

Helpful hint:  Think of forming 82 dollars from four twenties 
and two one dollar bills.

3. Chinese Rod Numerals (different from the old Chinese numeral system 
mentioned in chapter 9):

Type: A decimal (base-10) positional system 
 9 distinct symbols (without a zero) 
 Groupings occur in packets of tens 

Dates of Major Usage:  Fourth century BC (Warring States) to the Ming 
Dynasty (fourteenth–seventeenth centuries)

Symbols:  There were two sets of symbols for 1, 2, 3, . . . , 9. 
For the sake of readability, these were used in al-
ternate positions, the first set for units, hundreds, 
ten thousands, etc., and the second set for tens, 
thousands, hundred thousands, etc.
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Units, Hundreds, Ten Thousands,… 

Symbols produced by author.

Tens, Thousands, Hundred Thousands,… 

Symbols produced by author.

Place Values:  

Other features:  Numerals were not written but were tokens 
or chips much like Gerbert’s apices and were 
displayed horizontally on a counting board. 
Early algorithms in this system closely resembled 
some early algorithms in Arabic texts using HA 
numerals.35

82 in Rod Numerals: With the coin tags: 

 

Without the coin tags:  

Translation: 8 ×  + 2 ×  = 80 + 2 = 82
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Conclusion

Our story is far from finished. The tale of arithmetic education in the West-
ern world doesn’t end simply with the triumph of the HA system in Europe 
during the late Renaissance. Actually, this is precisely where it gets really 
interesting. It brings to mind the words of Ed Harris, in the movie Apollo 13, 
when in character as NASA flight director Gene Kranz he states, “Gentlemen, 
we’ve given our guys enough to survive til reentry. Well done. Now we gotta 
get ’em in.”36 

Now that many of the essential pieces were in place, the problem became, 
how do you actually do it: get the know-how contained in elementary arith-
metic into the working vocabulary of the millions we seek to educate? Hun-
dreds of years later, in spite of truly spectacular successes, we have yet to reach 
a consensus on the answer to this fundamental question.
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The wits and endeavors of the world are so many scattered coals or fire-
brands, which for want of union are soon quenched, whereas being but laid 
together they would yield a comfortable light and heat. . . . So we see many 
wits and ingenuities lying scattered up and down the world, whereof some 
are now labouring to do what is already done, and puzzling themselves to re-
invent what is already invented. Others we see quite stuck fast in difficulties 
for want of a few directions which some other man (might he be met withal) 
both could and would most easily give him.

—Sir William Petty (paraphrased), seventeenth-century 
English economist, scientist, and philosopher1

Human beings, who are almost unique in having the ability to learn from the 
experience of others, are also remarkable for their apparent disinclination to 
do so.

—Douglas Adams, twentieth-century author 
of The Hitchhiker’s Guide to the Galaxy2

HUMAN BEINGS HAVE BEEN busy for the last 10,000 years! Our task, a noble 
one at that, is just this: to take a wide swath of an ever expanding moun-

tain of knowledge, compress it into small, digestible packages, and present it 
to hordes of students over the short span of an educational curriculum—all 
the while hoping that their minds will take to it and that society will be the 
better for it. 

11

 From the Frontier 
to the Classroom
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Are you kidding me? With so much to consider, so many different avenues 
to take, so many people affected, so much bureaucratic red tape, and so much 
attitude to boot—and with stakes that simply could not be any higher, is it 
fair to set this charge to anyone? How to successfully negotiate such treacher-
ous waters has always been one of the major dilemmas for formal education. 

During the sixteenth, seventeenth, and eighteenth centuries, as the variety 
and number of schools continued to grow, European educators were faced 
with the complex task of incorporating thousands of more young people into 
the educational scheme of things.3 How best to do this? How should we teach 
children? How do they really learn things? 

Should they be educated as a small, less sophisticated, and imperfect type of 
adult? Or should we treat them as a different class of learner entirely—a class 
which has its own way of seeing the world? 

More times than not, it was the former view that was accepted. This was 
certainly the case in arithmetic. The early printed books on HA arithmetic 
were written for adults or advanced youths in a one-size-fits-all fashion, and 
were based, in part, on the commercial tradition of the Italians. The early 
printed school textbooks that followed continued in this vein—leading to 
the problematic situation that textbooks, born of the commercial spirit of the 
thirteenth–fifteenth centuries and written in a style more suitable for adults 
and numerically savvy children from merchant families, were still being used 
to educate large numbers of new children whose backgrounds would vastly 
differ from their predecessors’, and whose interests and needs were either new 
to commerce or would lie outside of it.

During these years, it was also common for instructors to apply corporal 
punishment in liberal doses, not only to the misbehaved mind you, but also 
to children who were not learning the material at the “appropriate pace.” 
Multiply 543 × 25 correctly, or else!4 

Thus already in its infancy, the growing idea of universal education was 
faced with the makings of a nightmare in regards to mathematics instruction. 
And perhaps, with the exception of the overly harsh discipline, it is hard to 
cast blame—the problems of mathematics education are just plain compli-
cated and tricky, leading those who don’t appreciate this fact and who may 
only have the noblest of intentions nevertheless to create true chimeras.

The HA numeral system, as well as mathematics in general, has always 
presented educators with a dilemma. Its ability to compress so much work 
into a compact written form is one of the reasons why we continue to sing its 
praises and why it won the day over all the others; yet, as we have seen, this 
very ability to compress information in writing turns out to also be the ability 
to mask what is truly going on conceptually. 

Unfortunately, the majority of those involved in European education at 
the time did not recognize this as a serious enough concern, and ushered into 
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place systems that would ultimately lead a large percentage of individuals who 
were taught mathematics in a classroom setting to not understand it at all or 
at the very least to develop an intense frustration or dislike of it.  

In this chapter, we zoom in on England and America. The methods of 
education that ensued in England during this period were the ones that were 
eventually adopted in colonial America and their effects can still be felt today 
in American attitudes toward mathematics education. 

Arithmetic Education in England: 
Seventeenth and Eighteenth Centuries

The exciting changes occurring in the development and spread of knowledge 
in arithmetic and algebra, spearheaded in southern Europe, slowly crept their 
way northward. By the 1520s, this resulted in the printing of Englishman 
Cuthbert Tunstall’s (Tonstall’s) book, De arte supputandi. Unfortunately, the 
text was written in Latin and appears not to have had much influence on later 
English educational thought, despite the high respect enjoyed by Tunstall 
during his lifetime.

Within twenty-five years, more books followed (this time written in 
English) including: the anonymous An Introduction for to Lerne to Rekyn 
with the Pen and with Counters (1537) and The Grounde of Artes (1543) by 
Robert Recorde (the man responsible in another work for introducing our 
present-day symbol for equality “ = ”). Both were to have great influence and 
success; each being printed in many editions over the next hundred years. It 
is Recorde’s work, however, which has received the lion’s share of the praise 
historically, but evidently the 1537 work also exerted an influence, as Isaac 
Newton (1642–1727) himself was found to have a copy of An Introduction in 
his collection but not The Grounde.5

One of the major goals of these books, and others that followed in the lat-
ter 1500s, was to introduce a completely new system of numeration to people 
more familiar with Roman numerals; and their audience was anyone who 
cared to learn about it. This in effect meant that the works served the purposes 
of both a textbook and a popularization. 

As knowledge of HA numerals gradually trickled down into the classroom, 
one would suspect that textbooks specifically written to address an audience 
of young people would soon follow with explanation and demonstration 
being made to play a prominent role. Shockingly, however, nothing like this 
would happen in England for hundreds of years!

By the mid-1600s, the basic textbooks on arithmetic being used were al-
most completely devoid of any real explanation of the rules (see Appendix A). 
They were terrifyingly brief. The Treviso Arithmetic (1478) itself, concise as 
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it was and written for those already familiar with arithmetic, gives far better 
explanations of the rules than many of these seventeenth- and eighteenth-
century textbooks. How could something like this happen?

According to the celebrated nineteenth-century English mathematician, 
Augustus de Morgan, it was due “to the commercial school of arithmeticians,” 
who came to the fore after Recorde, that were to blame for the “destruction 
of demonstrative arithmetic” in England or at least “the prevention of its 
growth.”6 According to math historian Florian Cajori, the blame was due to 
the authoring of arithmetic textbooks falling into the hands of less abler men.7 

Events and cultural norms in England over the span of two centuries certainly 
played the greater part. The Chantries Acts of the 1540s effectively stripped 
many English schools of their funding by unintentionally diverting these mon-
ies into private hands.8 In 1570, a series of statutes drafted by Queen Elizabeth’s 
administration formally excluded mathematics from university curricula in the 
belief that the subject belonged in the province of technical education.9 Since 
arithmetic was viewed by the English elite as a “mere” trade, it was taught as 
one, with the textbooks essentially serving the role of reference handbooks as 
opposed to being genuine guides for instructing the novice.

If this wasn’t enough, then came the 1600s with the turmoil of the Thirty 
Years’ War followed by the turmoil of the English Civil War, followed by the 
turmoil of the Restoration. These events were to all have such detrimental 
effects on mathematical education in England that it would take the Royal 
Navy’s newly minted Mathematical School at Christ’s Hospital (1673) more 
than thirty years (with the exception of a brief two-year interlude) to find a 
competent teacher.10 Even more startling, from the vantage point of today, is 
that the immensely talented Samuel Pepys (a graduate of Cambridge at age 
twenty-one), didn’t learn how to multiply using a times table until he was 
twenty-nine years old!11 Two decades after this, Pepys’s name, as president 
of the Royal Society, was to appear on the title page of the most influential 
scientific document of all time, Newton’s Principia (1687).12

In a very real sense, a set of political, social, and cultural events and norms 
converged in England during the late Renaissance to create the “perfect 
storm” against an effective mathematics educational system. Moreover, like 
the Great Red Spot on Jupiter, this storm was resilient: able to last for several 
hundred years. 

But an ineffective system doesn’t mean a 100 percent broken one, for in the 
middle of it all, the technical brilliance of men such as Thomas Harriot, Chris-
topher Wren, Newton, Edmund Halley, Joseph Priestly, Charles Hutton, and 
many others still shone forth. 

But not as often as it maybe should, for it is likely that the existence of 
a countrywide system of poor mathematics education (with its default and 
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haphazard reliance on tutors outside of the school to help make up the differ-
ence) makes the appearance of such mature and developed mathematical and 
scientific talent a much greater victim of chance than it naturally already is. 

In any event, this ineffectual system with its abstruse textbooks was the one 
that was eventually imported to the fledgling American colonies. Some of the 
more well-known English texts of this era are listed here:

• Hodder’s Arithmetic (1661) by James Hodder: First printed in London 
in 1661, the twenty-fifth edition was published in Boston in 1719, thus 
becoming the first-known text on arithmetic to be printed in the thirteen 
colonies.13 

• Cocker’s Arithmetic (1677) by Edward Cocker, published posthumously 
by John Hawkins: The preeminent school textbook of this period, it was 
reprinted in more than one hundred editions. Benjamin Franklin, after 
having failed twice at arithmetic in school, read this book at age sixteen 
and claimed to have mastered it completely:

  “And now it was that being on some Occasion made asham’d of my 
Ignorance in Figures, which I had twice fail’d in learning when at School, 
I took Cocker’s Book of Arithmetic, and went thro’ the whole by myself 
with great Ease.”14

• Schoolmaster’s Assistant (1743) by Thomas Dilworth: Dilworth’s book 
was endorsed by more than fifty English schoolmasters and used by 
schools in Boston during the American Revolution. In this text, Dilworth 
advocates strongly for the education of girls.15

Arithmetic Education in America: Eighteenth Century 

In the American colonies, instruction was given via imported texts from Eng-
land. The colonies, of course, initially languished behind the mother country 
and it wasn’t until 1729 that Isaac Greenwood wrote and published the first 
arithmetic text authored by an American. Titled Arithmetick Vulgar and Deci-
mal: With the Application Thereof, to a Variety of Cases in Trade and Commerce, 
the work was published in Boston by S. Kneeland and T. Green.16 It was in no 
way able to challenge the supremacy or replace the use of English textbooks in 
the colonial schoolroom.17 Such was the state of math education in the coun-
try, that it wasn’t until 1780 that elementary arithmetic was moved down from 
the senior course of study at Harvard University to the freshman year.18 

After the American Revolution, as the fledgling democratic nation sought 
its own identity, education of more of its citizens came to be viewed as impor-
tant.19 It was also viewed as important that the new country have school books 
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authored by Americans—the future cliché “made in the U.S.A.” being evident 
here. The first such book on arithmetic was authored by Nicholas Pike in 1788 
and titled, A New and Complete System of Arithmetick Composed for the Use of 
the Citizens of the United States. 

Upon receiving a personal copy of the book, George Washington wrote a 
letter to Pike on June 20, 1788, in which he stated: “It merits being established 
by the approbation of competent judges, I flatter myself that the idea of its 
being an American production and the first of the kind which has appeared, 
will induce every patriotic and liberal character to give it all the countenance 
and patronage in his power.”20 (See complete letter in Appendix B.) 

Since most American schoolchildren could not afford arithmetic text-
books, the classroom drama played out with the instructor verbally stating 
the rules to the class, using either the book or personal notes, while the stu-
dents copied down what was said on a slate or in a copybook called a cipher 
book.21 This method was not as effective with colonial kids as it had been with 
medieval Italian children of commerce, who in addition to probably having a 
capable teacher or tutor, also knew exactly why they were learning the mate-
rial and where it would be used. On the other hand, these eighteenth-century 
American schoolchildren (who often didn’t have a capable teacher), would 
have undoubtedly found this method of instruction a very difficult way to 
learn mathematics. 

This state of affairs would change some with the introduction of black-
boards (from Europe) into the American classroom. With a blackboard, a 
teacher could now instruct and show an entire class a calculation or proce-
dure all at once. Few classroom innovations can rival this one in importance. 

The report of the superintendent of public instruction in Michigan stated 
in regards to blackboards in the 1840s:

Now, it is safe to say that no mechanical invention ever effected greater improve-
ments in machinery, no discovery of new agents more signal revolutions in all 
the departments of science, than the blackboard has effected in the schools; and 
certain it is, that no apparatus at all comparable with it for simplicity and cheap-
ness, has to such a degree facilitated the means, and augmented the pleasures of 
primary instruction.22

A Call for Reform in Early Nineteenth-Century America

By the early 1800s, the system of having students simply copy down and 
memorize rules and examples, with little or no understanding, was increas-
ingly being viewed as totally unsatisfactory for the general population of 
youths. Benjamin Latrobe, a prominent Philadelphia architect and engineer, 
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stated in 1798, “Arithmetic is generally a heavy study to boys, because it is 
rendered entirely a business of memory, no reasons being assigned for the 
rules. A schoolbook of arithmetic accompanied with demonstrations is much 
wanted.”23

In 1818, Samuel Goodrich wrote:

Arithmetic is an abstract, and at first a very uninviting study. Children who do 
not look to its utility, can see nothing in it but an unmeaning change of figures. 
. . . It seems, therefore, every effort should be made to clothe this study in some-
what attractive colors; Our school arithmetics are written in a rigidly technical 
style, which . . . is utterly incomprehensible to children.24

During the time from 1800 to 1820, a good number of new American 
textbooks made bold claims that they were the ones to improve the situation. 
Not a single one of them went far enough, however. Not until 1821, that is, 
when Harvard graduate Warren Colburn of Massachusetts wrote a book that 
finally freed itself completely from the stranglehold that the rules-based, non-
demonstrative commercial textbooks had held on education in this country 
for nearly two centuries. 

To do so, however, required that he employ the same methods and ideas 
being used far across the Atlantic in Switzerland by a fatherly old man—who 
was destined more than any other single educator to affect the direction and 
structure of elementary education in the West, and who was in 1821 living out 
the last few years of his spectacularly influential life.

Whose Fault Is It?

Who was to blame for the deficiencies in elementary arithmetic education? 
One can take the easy route and simply blame the textbook writers and leave 
it at that. Clearly, the books they wrote were inadequate for teaching a general 
population of children even up to fifteen and sixteen years of age. 

But is this really fair?
Textbook writers had to write books that publishers wanted. Publishers 

had to print textbooks that schools and towns would buy. Schools and towns 
wanted to hire competent teachers. How to demonstrate such competence? 
Certainly, by showing (or at least feigning) familiarity with the standard 
methods of instruction using the standard textbooks! This didn’t leave much 
room to change things.

Too simplistic an account? Absolutely, but the educational system of a 
country is a complex, highly interactive system where events in one area can 
dramatically affect the entire system. If such a system is deficient it is usually 
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due to a web of complex interactions not simply just one broken component, 
such as inadequate textbooks. 

And what do we even mean when we say the system was deficient? Clearly, 
by the 1700s a lot more individuals were familiar with arithmetic than were in, 
say, 1300 CE. In terms of numbers of people, much progress had clearly been 
made. But the world was becoming more complicated too. This, combined 
with the continually emerging idea of education for all, placed ever-increasing 
demands on the system. The system was seen to be deficient in part because it 
was having difficulty keeping pace with these new demands. 

In England, we saw that a complex of reasons were probably responsible for 
the struggles. What about the other countries of Europe? Was formal educa-
tion better there? Not really, if we take the writings of reform-minded educa-
tors of the 1700s as a reliable guide. It would appear that formal education 
in general, and certainly in arithmetic, was severely deficient throughout the 
whole of the continent as well.

 But promise lay on the horizon. In fact, conceptual jewels to bankroll that 
promise had lain strewn on the ground like glowing embers from as early as 
the 1500s, if not before. But unfortunately, the best of these ideas had yet to 
be used in any systematic, large-scale way. 

By the mid-to-late eighteenth century, however, the Industrial Revolution 
was in full swing and conditions were finally ripe for change. This time, the 
thoughts and actions of many educational reformers would finally take root 
and lead to massive change on a grand scale. It was to be a truly extraordinary 
time in the history of education, and one of the big winners to come out of 
it all would be elementary arithmetic. No longer would it be relegated to the 
specialist school, to the rare self-taught individual, to those of means who 
could afford a private tutor, or to the senior year of study in elite colleges. For 
better or worse, it would take center stage in elementary education coming to 
rival even reading, writing, and spelling in importance. 

Let’s take a glimpse at the energy, excitement, and brilliance of this time 
for education. Surely it must tell us a little about ourselves and our present 
systems of instruction. 

Education Reform on the European Mainland

John Amos Comenius

So far we have neglected to mention the scientific revolution—one of the 
most important paradigm shifts in human history. Surely, it must have had 
some effect on elementary mathematics education. The answer is that it did, 
but not in as direct a manner as some might expect; for the great new and 
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influential ideas on what should happen in arithmetic education, as well as 
with basic education in general, came not from the “full-time” mathemati-
cians and scientists but rather from the generalists—educators and phi-
losophers, men such as John Amos Comenius, Jean-Jacques Rousseau, and 
Johann Heinrich Pestalozzi.

Francis Bacon (1561–1626), the great prophet of the scientific revolution, 
summed up the mood when he stated: “Men have sought to make a world 
from their own conception . . . but if, instead of doing so, they had consulted 
experience and observation, they would have the facts and not opinions to 
reason about, and might have ultimately arrived at the knowledge of the laws 
which govern the material world.”25 

A new breed of scientist, including the likes of Galileo Galilei, Johannes 
Kepler, Evangelista Torricelli, Newton, and Antoine Lavoisier agreed with 
Bacon and would begin to consult that experience and observation, and then 
fuse their findings together in writing with mathematics to usher in what has 
appropriately been called a revolution in the scientific enterprise. 

Scientists were not the only ones who began to apply this “new” way of 
thinking. Visionaries such as the Czech John Amos Comenius (1592–1670) 
applied these ideas to the problems of education. And in his case, we know he 
looked directly to Bacon for his inspiration—believing that “we should look 
to nature to find out how knowledge takes root in young minds.”26 

Comenius also subscribed to the idea of universal education for all and 
extended that idea to include girls as well as boys. He is sometimes called the 
father of modern education. He achieved international acclaim in 1631 after 
publishing his Janua linguarum reserata (The Door/Gate of Languages Un-
locked), which demonstrated an interesting, new way to teach Latin. 

His fame was such that people from other nations sought his advice on 
education. The Swedish government made him an offer, in 1638, to help 
reform their school system, and at the request of Parliament, he went to 
England in 1641 to do that exact thing—working closely with the brilliant 
and encyclopedic Samuel Hartlib. He was forced to leave a year later with 
the outbreak of the English Civil War—at which time he answered the call 
from Sweden.27 

Sometime during this period, he is said to have been offered the presidency 
of America’s newly minted Harvard University (although some have ques-
tioned this).28 

In 1657, he authored the children’s book, Orbis Pictus Sensualium (The Vis-
ible World) which is generally considered the first illustrated education book 
written for children. In this book, he attempts to teach Latin in a manner that 
is similar in spirit to the present-day methods employed by some software 
systems to teach foreign languages. 
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His theories on teaching are best espoused in The Great Didactic (ca. 
1630s). In this work, he anticipates future reformers in several areas. Unfor-
tunately over time, and with the destructive continental wars that occurred 
during the prime of his life, much of his innovative thinking was forgotten or 
credited to others. His reputation experienced a restoration of sorts in the late 
1800s when the idea of universal education actually became a reality in many 
countries, and people began to realize just how far in advance of his era was 
this Czech genius.

Jean-Jacques Rousseau

Another vigorous proponent of reform in the educational practices of the 
times was the Swiss philosopher Jean-Jacques Rousseau (1712–1778). Like 
Comenius, he believed that educators should stop imposing their own ideas 
and designs without observation and look to nature for guidance in how best 
to instruct. He directly addresses the question of how children learn in his 
great work, Émile (1762): 

We do not understand childhood. . . . Our teachers will always be seeking the 
future man in the child, instead of attempting to understand the child as he is 
and before he becomes a man . . . this is the question I have set myself to study. 
. . . Childhood has its own way of seeing, thinking, and feeling, suitable to its 
condition.29

Rousseau believed that both the classroom environment and the textbooks 
themselves should be designed to fit the world of children, rather than the other 
way around of compelling children, by force if necessary, to conform and fit 
to the existing modes of instruction. In his commentary on Rousseau, author 
Robert Quick states of the philosopher’s era, “Children have been treated as if 
they were made for their school books, not their school books for them.”30

The reaction to much of Rousseau’s work was not as he wanted. His Émile 
contained statements that offended the Church and the book was symboli-
cally and publicly burnt in 1762, forcing the philosopher to flee from Paris.31 
He was also the target of ad hominem attacks from others including his emi-
nent contemporary Voltaire, who accused Rousseau of hypocrisy in writing 
Émile given the way he treated his own children. In reference to his writings, 
Voltaire wrote to Rousseau in 1761 that “One feels like crawling on all fours 
after reading your work.”32

In spite of his many professional problems, however, Rousseau’s works 
were to be influential. In particular, they were to take root in the work of a 
younger countryman who, along with his able associates, was destined to set 
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the world of elementary education in Europe on fire. His name was Johann 
Pestalozzi.

Education Reform Incarnate

Johann Heinrich Pestalozzi (1746–1827) was born in Zurich, Switzerland, 
and during his lifetime became the living embodiment of the words uttered 
below by two very famous men: 

Our greatest glory is not in never falling, but in rising every time we fall
—Confucius.33

Imagination is more important than knowledge—Albert Einstein.34

Pestalozzi failed disastrously as a pastor in his first attempts at running a 
service (forgetting some of the words to the Lord’s prayer), didn’t complete 
his legal studies, then failed as a farmer, then failed yet again when he turned 
his hand at cotton spinning and also failed several times as a schoolmaster.35 
He was a poor administrator, was spurned by Napoleon, saw his educational 
scheme rejected by the French mathematician Gaspard Monge, had his vision 
dismissed by the famous English educator Andrew Bell, and was thought an 
eccentric dreamer at best by many of his fellow Swiss.36 

According to the nineteenth-century Swiss historian Charles Monnard, 
“He had everything against him; thick, indistinct speech, bad writing, igno-
rance of drawing, scorn of grammatical learning. . . . He was conversant with 
the ordinary numerical operations, but he would have had difficulty to get 
through a really long sum in multiplication or division.”37 In fact, with the 
exception of his marriage, nearly every big undertaking that he attempted 
ultimately failed within his own lifetime.

And yet in spite of it all, this dreamer scored spectacular success upon 
spectacular success especially in his experimental schools at Burgdorf and 
Yverdon, Switzerland; successes of such magnitude that they probably vaulted 
him into the position of the single most influential educator in the post Re-
naissance west. 

How did it happen?
Undoubtedly the force of his imagination and ideas as well as timing con-

tributed to his success, but it was also the joining of forces with very capable 
associates that made his achievements possible. These associates would help 
him to transform his ideas and theories into dramatic instructional action. 
Since these men were so integral to his success as he was to theirs, some of the 
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more well-known ones we will mention: Hermann Krusi, Johannes Niederer, 
Gustav Tobler, Johannes Buss, and Joseph Schmid.

So what was so special about this Pestalozzi?
One would not be too far off in calling him the zealous prophet of educa-

tional reform—the fiery incarnation of the idea; for Pestalozzi spoke with a 
metaphorical fire both against the existing system of education and for his 
grand vision of a new universal system of education based on psychology. In 
his book Gertrude Teaches Her Children (1801) he rails: 

But for a moment picture to yourself the horror of this murder. We leave chil-
dren up to their fifth year in the full enjoyment of nature. . . . And after they 
have enjoyed this happiness of sensuous life for five whole years, we make all 
nature round them vanish from before their eyes; tyrannically stop the delight-
ful course of their unrestrained freedom; pen them up like sheep, whole flocks 
huddled together, in stinking rooms; pitilessly chain them for hours, days, weeks, 
months, years.38

Friend, this view of things led me naturally to the conviction that it is essential 
and urgent, not merely to plaster over the school-evils which enervate the great 
majority of the men of Europe, but to heal them at the root—that consequently 
half-measures in this matter will easily turn into second doses of poison, which 
not only cannot stop the effects of the first, but must surely double them.39

Pestalozzi thought big. His bold vision was for a universal method of in-
struction that encompassed all disciplines. If applied properly, he felt that this 
universal method could make average teachers as effective as excellent and 
inspirational instructors. 

In a sense, he wanted to capture the genius in excellent teaching (the genius 
that inspires and engages students to really learn), bottle it up, if you will, and 
then dispense it freely to all would-be instructors. Doing so would benefit all 
students, especially the poor, allowing them to lift their station in life with a 
consequent benefit to the greater society at-large. 

But Pestalozzi was not just a dreamer, he could be very practical as well. 
He knew that he could not accomplish this task alone and needed the help of 
other capable men who were as passionate about change as he was, and in his 
mid-fifties he found them. Together with these men, Pestalozzi’s plan was to 
study and experiment to learn the true laws of education.

Pestalozzi agreed with Comenius and Rousseau that one should look to 
nature for the answers on how to educate. He felt that children were already 
learning very naturally before they ever went to school and that school 
should be a continuation of the methods that worked to educate the child 
in these earliest of years. This involved looking at children to see how they 
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actually learned. Pestalozzi famously said that he wanted to “psychologize 
instruction.”

What were his ideas on elementary arithmetic education? 
Pestalozzi wanted to tear the guts out of the rules-based arithmetic text-

books as well as the methods employed in using them. He felt that the teach-
ing of arithmetic from first principles using the HA numerals was severely at 
odds with nature and consequently was wrong. For him, learning the rules 
of arithmetic with numerals should occur at a much later stage of the game 
after his famous “Anschauung” had taken place. We again turn to his words 
to glimpse his thoughts on arithmetic:

How many times is seven contained in sixty-three? The child has no real back-
ground for his answer, and must, with great trouble, dig it out of his memory. 
Now, by the plan of putting nine times seven objects before his eyes, and letting 
him count them as nine sevens standing together, he has not to think any more 
about this question; he knows from what he has already learnt, although he is 
asked for the first time, that seven is contained nine times in sixty-three. So it is 
in other departments of the method.40

Pestalozzi believed, like many reformers, that concrete understanding in 
the child must necessarily precede abstract or symbolic understanding, and 
that instruction should always proceed with this in mind. 

He felt that this harmonized the best with nature. He felt that if one focused 
on the conceptual as opposed to the symbolic, arithmetic could be taught 
front and center at a much earlier stage—from the moment that children en-
tered school around six as opposed to waiting until they were eleven or twelve. 
He, like Comenius, also strongly believed in the use of picture books as an aid 
in understanding words and of manipulatives in understanding arithmetic 
(both quite modern ideas).

He even gave a name, “Anschauung,” for the process, in the student, by 
which the concrete and vague notions of “a thing” began to crystallize into 
a firm, unshakeable idea or concept. 41 At this magical point he felt the mind 
would be ripe to receive a symbolic description in the form of a name, word, 
or numeral for the idea.

Fame and Influence

Pestalozzi was already a very famous man before he began his landmark work 
in the Swiss schools at Burgdorf and Yverdon. He had already become some-
thing of a celebrity twenty years earlier due to his work as a schoolmaster and 
the publishing of his book, Leonard and Gertrude, in 1781. 
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This book was a novel describing rural life in Switzerland. Written with a 
much deeper meaning in mind than simply romanticizing life in the Swiss 
countryside, that meaning was lost on most readers, and the book was simply 
read as a good and entertaining novel. This very much bothered Pestalozzi, 
and over time he authored several sequels which were designed to better ex-
pound his educational ideas but none of these books enjoyed a similar popu-
larity with the general public.

His fame was already such that on August 26, 1792, the French National 
Assembly decreed honorary French citizenship upon him and seventeen 
other eminent men: citing these eighteen , “as men who in various countries 
have brought reason to its present maturity.”42 Among the honorees were 
Pestalozzi; American founding fathers George Washington, James Madison, 
and Alexander Hamilton; author of Common Sense Thomas Paine; discov-
erer of oxygen Joseph Priestly; British abolitionists William Wilberforce and 
Thomas Clarkson; German educator Joachim Campe; and hero of America 
and Poland General Thaddeus Kosciuszko.43

His work in the early 1800s, however, had the most far-reaching impact. 
Men from all over Europe, some at the request of national governments, were 
sent to Pestalozzi’s institute to observe. His influence was the greatest of all in 
German-speaking Prussia.

In October 1806, Prussia suffered a series of crushing defeats at the hands 
of Napoleon Bonaparte in the twin battles of Jena and Auerstedt (Auerstädt). 
The terms of her eventual surrender the following year were harsh and hu-
miliating. Prussia was forced by Napoleon to fire her foreign minister and 
her king was personally disgraced by the dictator at the negotiating table. 
In addition, Prussia was stripped of half her land, half her population, and 
her richest provinces.44 A “deep depression” descended upon the people and 
many vowed never again.45

In response, Prussia was to totally remake and fashion herself in a way, 
on a scale, and with a speed rarely seen in nations. Military reformers such 
as Gerhard Scharnhorst, August Gneisenau, and Carl von Clausewitz, in an 
attempt to institutionalize military excellence rather than rely on the rare 
military genius were to revamp the Prussian military and make it the envy 
of the world.46 Education reformers sought to accomplish the same with the 
Prussian school system. 

The leaders in Prussia decided that the way Prussia would lift itself to great-
ness was through the education of its people. King of Prussia, Frederick Wil-
liam III, said, “We have lost in territory, in power, and in splendor; but what 
we have lost abroad we must endeavour to make up for at home, and hence 
my chief desire is that the very greatest attention be paid to the instruction of 
the people.”47 When it came to elementary education in Europe at this time 
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the main event, the “fountainhead” as one of the king’s ministers called him, 
was Pestalozzi; so Prussia was naturally led to him. 

Over the years many young Prussians went to Switzerland not just to 
merely observe but to be totally immersed in Pestalozzi’s methods. Among 
those who visited were the philosopher Johann Fichte, the influential pedago-
gist/philosopher Johann Herbart, geographer Karl Ritter, education historian 
Karl von Raumer, and most notably of all, Friedrich Froebel, the founder of 
kindergarten and whose contributions and influence on childhood education 
would come to rival those of Pestalozzi himself.48 

It was by such sharing of information that the meat in Pestalozzi’s meth-
ods was absorbed into education throughout Prussia. Already as early as the 
1760s, Frederick II (the Great) had instituted compulsory education for all 
citizens thus bringing to fruition, in that country at least, Comenius’s idea 
of universal education. Many countries, the United States in particular (with 
Horace Mann leading the way in the mid-1800s), would slowly follow Prus-
sia’s lead in this regard as well as in some of its reforms. Thus Pestalozzi, by 
way of Prussia, had a very powerful influence on education in the United 
States. 

Pestalozzi’s influence on elementary education in the United States was 
not limited to the Prussian viaduct. Several others introduced Pestalozzi 
earlier and more directly into this country. Joseph Neef, a direct associate of 
Pestalozzi’s at Yverdon, opened the first American school modeled on the 
principles of Pestalozzi in Philadelphia in 1809.49 

Other influential proponents in New England soon followed suit, intro-
ducing the Swiss reformer’s ideas in one shape or another into the public 
consciousness via reform methods in existing schools, the founding of normal 
schools for teacher training, or simply raising a greater awareness to pay at-
tention to public education. 50 

Edward A. Sheldon founded the Oswego Primary Teacher’s Training 
School (which would eventually grow into the prominent and influential 
Oswego State Normal and Training School) in upstate New York in 1861. 
Sheldon wanted the school to teach the Pestalozzian ideas of object training 
so he hired Pestalozzi expert Margaret Jones as the head teacher. The impact 
of this institution on education in the United States was significant as teach-
ers trained here fanned out throughout the country spreading the methods 
with them.51 Many other normal schools in kind modeled themselves along 
the lines of the Oswego methods. The influence of this school was felt as far 
away as Japan.52

Quite a number of books have been written on Pestalozzi and his influence. 
Hopefully, this section has captured some of the excitement surrounding him 
and his ideas, but he did not exist in a vacuum. Other great educators and 
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philosophers such as John Locke, Johann Basedow, Immanuel Kant, Ernst 
Trapp, Joseph Jacotot, and J. F. Oberlin also made major contributions to 
educational practice and thought during the Enlightenment. Some such as 
Vives and Comenius actually anticipate him by centuries in many respects. 
However, it was Pestalozzi, more than any other who, in regards to elemen-
tary education, “gave form and life to the vague aspirations of his age.”53 

His ability to inspire other men to action is the stuff of legend. One man, 
John Synge (1788–1845), visited Pestalozzi’s institute almost by accident (and 
only after much coaxing by an acquaintance). He had intended his visit to last 
for only a quick hour or two, but he was so impressed by what he saw going 
on that he ended up staying for three months.54 On his return to Ireland, he 
set up a local Pestalozzian school of his own on his own land.55 

Perhaps the most telling feature of his pedagogical magnetism was that 
even those who disagreed with him on some points of his methods, includ-
ing Raumer, Herbart, Fichte, and Froebel, were nevertheless still profoundly 
inspired by him. 

A testament to his enduring popularity in Switzerland is a survey con-
ducted in 2008 by the Swiss newspaper SonntagsZeitung in which a thousand 
citizens were asked to list the fifteen most significant Swiss of all time. In the 
rankings, Pestalozzi was listed fourth (the young immigrant Albert Einstein 
was first). The complete list may be seen in Appendix C. 

There are a number of ways one can spread knowledge of reform ideas, and 
a few of the major ones certainly include the following:

• Starting your own school and having others observe what you do and 
then mimic it to some degree by starting their own schools.

• Training teachers according to the reform methods and having the word 
spread as they obtain employment in diverse places.

• Writing textbooks and curricular materials based on the reform methods 
and disseminating these in large numbers.

Pestalozzi’s reform efforts were able to spread via all three of these avenues. 
We have already discussed the first two in some detail, now we turn to the last. 
If you recall, before discussing education reform in Europe and its spread, we 
broke off from discussing the dismal state of arithmetic education and the 
accompanying texts in the United States in the early 1800s. 

We now return to New Englander Warren Colburn and the sensational 
book he authored on elementary arithmetic. The success of this text along 
with its subsequent editions emphatically showed that the fires of Pestaloz-
zian reform in Europe were more than capable of leaping across the Atlantic 
to burn brightly in the New World.



 From the Frontier to the Classroom 235

Arithmetic on the Plan of Pestalozzi

In 1821, Warren Colburn (1793–1833), published a book entitled An Arithmetic 
on the Plan of Pestalozzi, with Some Improvements. It (and its subsequent edi-
tions as First Lessons in Arithmetic on the Plan of Pestalozzi) represented a radical 
departure from the American textbooks used before it (see Appendix D). In 
addition to doing so in the title of the book, Colburn acknowledged the system 
of Pestalozzi’s contribution to his work, in his preface, but also emphasized 
that the examples used in the textbook were of his own making.56 The impact 
of this textbook on elementary arithmetic education in the United States was 
electrifying. In just six short years from its printing, its author was elected to 
the American Academy of Arts and Sciences—an organization which only five 
years prior had elected, as foreign members, two of the greatest mathematicians 
of all time: Carl Friedrich Gauss and Pierre Simon Laplace.57 

The timing was such that the book was immediately used in many schools.58 

It is likely the most influential elementary arithmetic textbook in American his-
tory. By 1856 more than two million total copies of all editions had been sold, 
with about 100,000 and 50,000 copies being sold per year, respectively, in the 
United States and Britain.59 If true, in today’s numbers, this would amount to 
somewhere between 10 and 20 million total copies being sold within the first 35 
years of printing with about 1 million and 120,000 copies being sold per year, 
respectively, in the United States and Britain. By 1890, an additional 1.5 million 
copies were said to have been sold.60 It was also translated into other languages as 
well. Such was the enduring popularity of this book, that at least seven editions 
were eventually printed in the Hawaiian Islands before all was said and done.61 

Compare the first exercises in Dilworth’s book (Appendix A) with the first 
exercises in Colburn’s—a vast, vast far-reaching difference. The differences 
were so sweeping, in fact, that they aided in the total restructuring of elemen-
tary arithmetic education in this country.

Dilworth’s book, from the start, works with abstract HA numerals that 
represent large quantities—numbering in the hundreds of millions in some 
cases. These quantities are so vast and the symbols so abstract that they lie out 
of the realm of conception for most students who were encountering them for 
the first time (remember this is the system that, in his very own words, twice 
defeated the brilliant Benjamin Franklin). 

Colburn’s book, on the other hand, starts with small values that the student 
can visualize. Moreover, he begins with familiar words and concrete objects 
that children were very comfortable with as opposed to abstract HA symbols. 
His initial aim, like Pestalozzi’s, was to give students a thorough grounding in 
the concepts (in an effort to achieve Anschauung) before moving on to per-
forming calculations with figures (introduced in the book later). 
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The simplicity of Colburn’s text meant that children no longer had to wait 
until the age of eleven or twelve to learn arithmetic but could be exposed in a 
systematic way to arithmetic much sooner—as soon, in fact, as they entered 
school. Children could be conceptually taught many of the fundamentals of 
arithmetic before they even learned to read or write. Affecting this change 
could be as straightforward as a teacher of six-year-olds simply deciding to 
use the first portions of the book.  

Thus, in a short span of time, the first stages of elementary arithmetic edu-
cation in schools, where Colburn-like texts were used, could leapfrog down 
five or six years! This same result awed visitors of Pestalozzi’s schools.

Moving the age of first contact down to the early grades led to females in 
large numbers being exposed to arithmetic for the first time. In early America, 
the majority of girls fortunate enough to receive an education were done 
with their formal schooling before age eleven or twelve and thus never had 
this opportunity. But no longer was this the case, and girls in ever-increasing 
numbers began to acquire facility in arithmetic. 

Regardless, female performance in arithmetic, as well as in other areas, 
came under particular scrutiny by many educators, as mathematics was as-
sociated with rational abstract thinking and many questioned if it was a good 
thing (or even if it was possible in general) for “more emotional” females 
to waste time studying subjects, when they needed to learn how to be good 
homemakers.62 Of what use would a female be who knew grammar and men-
suration but could not bake a loaf of bread?63 One writer states, “I do not 
trifle. To be poisoned is a serious matter: and poisoned that man is sure to be, 
and his children too, whose wife is . . . unskilled in the culinary art.”64

Strong opinions regarding the capabilities of females to learn logical subjects 
persist, in some corners, to this very day. In spite of such thoughts in mid-nine-
teenth century America, it ultimately became a moot point. The vast increase in 
the number of common schools in the middle of nineteenth-century America 
required large numbers of new teachers, and some of these would have to be 
women—the majority of men were already employed elsewhere and these em-
ployers were to eventually include the Union and Confederate armies. 

Economic circumstances were to soon dictate that preference actually be 
given to female teachers since women could be hired at a fraction of the pay 
of men. Thus if women were going to be teachers, then they certainly would 
have to learn and master some mathematics and that was simply that.65

Nineteenth-Century Math Wars

Colburn’s methods while influential and initially popular did not survive 
unscathed. In time a strong and inevitable backlash occurred and was so 
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effective that some twentieth-century authors who later wrote on Pestalozzi’s 
contributions to elementary education in America fail to mention the name 
of Warren Colburn at all (undoubtedly because they probably had never even 
heard of him). 

The two main features of Colburn’s text were mental and inductive arith-
metic. The mental arithmetic aspects can clearly be seen even from the small 
excerpt given in Appendix D. This led to oral recitation in arithmetic as the 
values were small enough to do this. Children engaged in oral demonstrations 
of arithmetic facts just as they engaged in spelling bees.66 This was one of the 
key features that made Colburn’s texts so popular. 

Colburn’s inductive arithmetic had a lot in common with today’s discovery 
method. In its most extreme form, the goals of this method are that students 
will eventually discover (from seeing enough concrete examples) all of the 
abstract rules of arithmetic (one of the major champions of this method was 
the French educator Jacotot [1770–1840] who applied it toward language 
acquisition). A tenet of the method is that if students discover the rules for 
themselves in this fashion then they will understand them better. In this arena 
Colburn probably went too far (as did Pestalozzi) and was the most suscep-
tible to attack. 

One author in 1834 states, “We have heard some parents of late, expressing 
a desire that their children might learn arithmetic in the good old way, of rules 
and examples.”67 In 1839, in an article in the American Annals of Education, 
the writer states:

There is now an evident tendency to a return to the old mode in which the 
various parts out of which the great system is constructed are taught in detail, 
directions are taken upon trust, the memory is employed to fix them, practice 
is resorted to make them familiar and at last the system as a whole is seen and 
understood at the end by the combination of elements and parts slowly and 
somewhat dogmatically communicated.68

In his article Three Absurdities of Certain Modern Theories of Education 
(1851), Tayler Lewis clearly thinks that expecting students to discover rules in 
the manner that Pythagoras, Euclid, or Descartes did is ludicrous.69 

Even in New England, Colburn’s methods never completely won the day, 
but they still were able to spread throughout the country via his own text-
books as well as similar ones from other authors who subscribed to the same 
views or were looking to cash in on his success. However, by the 1850s, the 
attacks on his methods in respected journals had been successful enough that 
the thinking had tilted back in favor of the older methods.70

Regardless of its critics, this reform spearheaded by Colburn was the first 
to really shake up the existing infrastructure of instruction in elementary 
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arithmetic in America—an imported infrastructure that, by the time of the 
printing of An Arithmetic, had been in place in the country for more than a 
century and a half. And although many of his ideas were eventually held in 
check, Colburn’s efforts were nevertheless highly influential and long lasting—
especially in the following ways: 

• They greatly assisted the move to push elementary arithmetic instruction 
in America down to the earliest grades.

• They helped make instruction in basic arithmetic available to thousands 
of American girls. This was instrumental in transforming the entire face 
of elementary education in the United States.

• They had irreversible effects on elementary arithmetic textbooks and 
instruction, for the textbooks after him that claimed to be a return to 
the old ways were still far different from the textbooks before 1800. They 
were a mix of the old with the new. They included the old, with the rote 
memorization of rules and calculations using the HA numerals, mixed 
in with the new, which involved more examples, more practice, more 
visualization, and more logical sequencing of material from simple to 
difficult (leading to the abandonment of the one-size-fits-all textbooks 
and the introduction of graded texts for students of different ages), all 
on the initial backdrop of much smaller numbers. This new manner in 
these textbooks would eventually come under attack by future reform-
ers. It is important to remember, however, that this new manner was a 
monumentally positive reform of earlier truly nightmarish methods. 

This nineteenth-century reform in textbooks was in a sense America’s real 
transition from the elementary arithmetic textbooks of old, born out of the 
thirteenth-century Italian merchant schools, to more modern textbooks. 
Such transitions occurred independently in other countries throughout the 
nineteenth century as well. These transitions occurred out of necessity, with 
the influx of ever-increasing numbers of students with varying backgrounds 
and goals, and out of a recognition that better methods of instruction needed 
to be found to educate the general population of young people. 

In describing Colburn’s contributions to American education, historian 
Patricia Cline Cohen states, “the vast diffusion of numerical skills from the 
1820s to 1900 owed much to his influence.”71 

If we jump to the present for a moment, the average American today clearly 
has far greater quantitative literacy than the average American had in 1800 
(e.g., by being able to do such simple things as tell time from a clock, build 
a personal budget, and understand a weather report) which indicates that, 
in spite of the serious issues that are seen to still exist now in mathematics 
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education, truly amazing strides have been made forward. Indeed, some of 
the very beautiful dreams entertained by the more enlightened reformers of 
the past have in some measure been realized in this country (and even more 
so in many other countries), and Warren Colburn was central in making the 
first major steps toward these realizations in the United States. 

Conclusion

We see that the story of elementary arithmetic education is large and intimately 
connected with the societies  it serves. In two prose-filled chapters, we have 
clawed our way through a skeleton of highlights to barely reach just mid-1800s 
America. So much of interest has happened since, but it is best to stop now lest 
we start to feed the fiction that our attempt here is anything more than a brief 
tour of certain specific highlights through what is an immense topic. 

In attempting any snapshot of events that happened so long ago, one is to-
tally dependent on a host of sources from both the past as well as the present, 
and consequently is susceptible to errors. As such, I freely take full responsi-
bility for any errors in fact, interpretation, or omission that may exist.

Time to summarize! We have focused on the following major story lines:

• The introduction of the HA numeral system into Europe.
• The struggle and eventual triumph of this system over the old ways of 

reckoning (e.g., the counter abaci-Roman numeral system).
• The early methods and aims of elementary arithmetic instruction involv-

ing the HA numeral system (in the classroom and via books).
• The two centuries’ long efforts to improve these early methods, with a 

closer look at some of the reforms put forth by Pestalozzi and Colburn.
• As mentioned in the introduction to the book, affecting change in 

education on a massive scale takes the work of many dedicated people. 
The same is true here. The omission of many names and texts in our 
discussion of these reforms is in no way meant to detract from them 
nor give every ounce of the credit to only two men no matter how 
exceptional they were.

• The inherent difficulties in teaching mathematics to large groups of di-
verse human beings in a complex society.

As many of you know even from your own personal experience, by the age 
of ten for thousands of youths, of average mathematical ability, it is now pos-
sible to become quite competent in performing all four of the basic operations 
using HA numerals. 
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This is an astounding achievement of elementary education! 
It represents truly spectacular change indeed: from the days of the two-

pronged process of recording in Roman numerals and calculating on the 
abacus (where a youth in his teens might apprentice with a master for a few 
years to learn the craft of calculation), from the days where conscientious 
merchants from other parts of Europe might send their children to Italian 
merchant schools to learn how to multiply and divide in writing to the days in 
the eighteenth century where basic computation in HA numerals was taught 
in the senior year at elite colleges such as Harvard. 

From our present-day perspective, the magnitude of this achievement can 
be likened to educators one day figuring out how to teach basic facility in 
calculus, not to college students majoring in engineering, but to the average 
twelve year old. 

Yet despite this achievement in elementary education and the many reform 
efforts in American mathematical instruction that have occurred since this 
first big one, we still are seen as having a crisis in mathematics education 
today. 

Why is this? Why do so many who go through schools in our country still 
end up neither understanding mathematics past arithmetic nor liking it much 
either? 

These are not questions with simple answers. Educational systems by their 
very nature are leviathans; so it is hard for them to quickly respond to change 
(especially for a system as localized as ours), even if such change is warranted. 
Moreover, everything is complicated by the fact that there is still much that we 
just don’t know about how to effectively teach mathematics, especially beyond 
elementary arithmetic. Outside of the basic rudiments, much of what is done in 
mathematics, at least on the surface, is not natural at all. It is very powerful and 
important, mind you, but it is not easy for most to understand—more research, 
hard work, and exposition are required. 

Given this reality, the reform efforts and hot disagreements of the past can 
be expected to continue through the present and into the future. To some 
degree this is understandable as the stakes are high. Education is how we pre-
pare the next generation to partake in their human heritage and add to it. The 
great American educational theorist John Dewey surely thought so when he 
stated, “What nutrition and reproduction are to physiological life, education 
is to social life.”72

In the face of what sometimes seems like insurmountable difficulties and 
eternal disagreement, there is much promise on the horizon. But this promise 
has to be nurtured. Other hope-filled times for the improvement of Ameri-
can math education (such as the powerful efforts spearheaded by university 
faculty such as David Eugene Smith, Columbia University, and Jacob William 
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Albert Young, University of Chicago, during the early 1900s), have failed to 
reach their true potential due to politics, endless bickering, disrespect, arro-
gance, and outright stupidity among many of the parties involved. 

Why such optimism now? 
First, the spectacular advances in the relatively new field of cognitive sci-

ence are starting to make their presence felt. Cognitive science deals with 
understanding in fundamental ways how the mind works and acquires 
knowledge. About as interdisciplinary a field as there is, its major components 
come from at least six areas: anthropology, computer science, linguistics, 
neuroscience, philosophy, and psychology.73 In addition to all of the exciting 
research that has already been done, we are also seeing the rise of an excit-
ing new subgenre of popular works from scientists in this area (this is not an 
insignificant thing). So much has happened in the last fifty years or so, that it 
is being called a revolution in many circles, and just as the scientific revolu-
tion came to eventually have spectacular effects on educational thinking in 
mathematics, so too should the cognitive revolution. 

Second, many research mathematicians, who have learned valuable lessons 
from the failure of the New Math reform movement of the 1960s, are now 
teaming with mathematical educators and other researchers to carve out their 
own niche in the cognitive revolution. For example, one goal is to learn what 
types of knowledge are really needed for a person to be an effective mathemat-
ics teacher. Such research should prove useful not only to those who aspire to 
be teachers but also to the thousands of excellent teachers presently working 
in our schools. 

Researchers are also finding out that simply requiring would-be teachers to 
take more math classes and become more sensitive people is not enough. Nor 
is it enough to simply create favorable conditions to entice more of America’s 
best and brightest to go into teaching (although this isn’t a bad thing); for 
as some of you may know from personal experience, a lot of very smart and 
very nice mathematicians (researchers and educators alike) are not effective 
as teachers. Despite the fact that it has been much maligned in the past couple 
of decades, this is an exciting time for mathematical education research.  

Third, in terms of an overall comprehensive plan of math education, there 
are other nations that are simply doing a better job of educating their students 
than we are right now (though none of their systems are perfect either). This 
is true whether we use a standardized test as a measure or not. While some 
of the apparent disparity may perhaps be explained away by the fact these 
nations separate their students into different career paths earlier than we do 
and only assess their strongest, most of it cannot be as we find upon closer in-
spection that some countries just have a structure that makes more sense than 
ours. And although we cannot copy them exactly due to the different natures 
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of our respective societies, there is still much to learn from them (“the wits 
and endeavors of the world ‘being’ so many scattered coals or fire-brands”). 

What’s illustrated in the comparative studies done so far is that coverage 
alone does not equate to understanding. Some of the nations that seem to be 
outperforming us in K–12 mathematics actually have teachers who take fewer 
math classes than our teachers do, cover less material than we do in their cur-
riculum, and spend less time doing it.74 

The issues regarding too much coverage in the American curriculum was 
found to be the case even in the early 1900s (this time in the schools them-
selves), when J. W. A. Young, of the University of Chicago, did a comparative 
study between the Prussian and American mathematical educational sys-
tems.75 Francesco Sacchini, the Jesuit educator from the 1600s, evidently was 
of a similar opinion when he reportedly stated in regards to students, “Care 
rather for their seeing a few things vividly and definitely, than that they should 
get filled with hazy and confusing notions of many things.”76 Much treasure is 
available for the mining, in both directions, from such international studies. 

Finally, much more material concerning the history of math education (as 
well as the history of mathematics in general) is becoming available as new 
groups of dedicated, talented, and culturally respectful researchers spring up 
around the world. A good contextual understanding and respect for both his-
tories is critically useful to all major discussions where serious change is being 
proposed. Military schools (and sports coaches too) have long known this 
about the history of their respective disciplines, and have shown such study 
to be extremely powerful and relevant when used as a potent analytic tool to 
aid in the building of new plans and strategies for the future. 

In almost any subject, when you start to look at its history you generally 
find that it is massively more extensive and broader than you think. Math-
ematics education is no exception. Volumes of written works on educa-
tional methods and thought are available in English as well as in many other 
languages—evidence that a lot of people have already thought and worked 
hard on the eternal issues involving education. 

Lack of historical context often leads educators, mathematicians, politi-
cians, and others to replicate past mistakes. Education, perhaps more than 
any other arena, provides dramatic and recurring illustration to the famous 
words attributed to George Santayana: “those who cannot remember the past 
are condemned to repeat it.”77 

With most ideas in education, the mistakes are ones of excess rather than 
of being totally off base. It stands to reason that since physiologically we need 
a balanced diet, we would also require a balanced psychological diet as well. 
In all likelihood, nice healthy portions, containing the strengths of lots of the 
methods, are probably what most students need. 
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As the 2008 report of the National Mathematics Advisory Panel states, the 
various methods put forward are not necessarily in conflict with each other 
and the strengths of each should be incorporated into an overall comprehen-
sive strategy producing a healthier mental diet for learners.78

Lack of historical context can lead to a romanticizing of the past, where 
people hearken back to a golden age of math education where children 
learned mathematics as they were supposed to—an age that we currently 
should aspire to reach again. Whether such an age has ever existed elsewhere 
in the world, where large numbers of people were involved, is highly doubtful. 
One thing is for certain, however, and that is that no such golden age has ever 
existed in the United States nor in the thirteen colonies preceding it. 

And regarding attitudes toward the subject, which in the end turns out to 
be especially important for the overall health of an educational system, a con-
sistently large portion of Americans have always disliked math, questioned its 
value to them, and been intensely frustrated with it.

We conclude now with a few quotes from educators, scientists, and phi-
losophers from the past and the present.

Quotes on Education and Mathematics 

I threw away my drawing-board and ruler, and burst out in rage against 
mathematics, because it tortures so cruelly those who love it and are eager 
for it.—Petrus Ramus, sixteenth century French humanist, philosopher, and 
educational reformer 79

A task of the teacher is to cultivate a taste and make it a power in the soul. This 
is accomplished by the aesthetic revelation of the world through instruction.
—Johann Friedrich Herbart (paraphrased), nineteenth century German educa-
tional philosopher, one of the founders of scientific pedagogy80

Grasping the structure of a subject is understanding it in a way that permits 
many other things to be related to it meaningfully. To learn structure, in short, 
is to learn how things are related.—Jerome Bruner, contemporary, influential 
American cognitive psychologist, author of The Process of Education 81

Shameless ignorance in regard to such serious intellectual conquests as are em-
bodied in the mathematical literature does not represent a normal condition on 
the part of those interested in the history of the human race. On the contrary, 
such shamelessness is evidence of the lack of the proper aids to enter this litera-
ture.— George Abram Miller, early twentieth century mathematician, former 
president of the Mathematical Association of America82
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A most sufficient recommendation of the study of old works to the teacher, is 
shewing that the difficulties which it is now (I speak to the teacher not the rule-
driller) his business to make smooth to the youngest learners, are precisely those 
which formerly stood in the way of the greatest minds, and sometimes effectu-
ally stopped their progress.—Augustus de Morgan, nineteenth-century British 
mathematician, logician, and educator83

Psychologically, the teaching of abstractions first is all wrong. Indeed, a thor-
ough understanding of the concrete must precede the abstract.—Morris Kline, 
twentieth century math historian and celebrated popularizer of math84

To give simplicity of form with depth of thought is one of the qualities of the 
difficult art of teaching.—Charles Laisant, late nineteenth century French politi-
cian, engineer, and math education writer85

Despite how commonplace it may seem, teaching is far from simple work. 
Doing it well requires detailed knowledge of the domain being taught and a great 
deal of precision and skill in making it learnable.—Deborah Loewenberg Ball, 
contemporary math educational researcher, member of the National Academy 
of Education86

There is a wise proverb that warns us that “however soon we get up in the morn-
ing the sunrise comes never the earlier.” A vast amount of instruction is thrown 
away because the instructors will not wait for the day-break.—Robert Quick, 
nineteenth-century British educator and writer87

The most important single factor influencing learning is what the learner 
already knows. Ascertain this, and teach him accordingly.—David Ausubel, 
twentieth century educational psychologist, proponent of the theory of advance 
organizers88

One fancies, indeed, that experiments in education would not be necessary; and 
that we might judge by the understanding whether any plan would turn out 
well or ill. But this is a great mistake. Experience shows that often in our experi-
ments we get quite opposite results from what we anticipated. We see, too that 
since experiments are necessary, it is not in the power of one generation to form 
a complete plan of education.—Immanuel Kant, eighteenth-century German 
philosopher of the Enlightenment89

A lot of educational and cognitive research can be reduced to this basic principle: 
People learn by creating their own understanding. But that does not mean they 
must or even can do it without assistance. Effective teaching facilitates that creation 
by getting students engaged in thinking deeply about the subject at an appropri-
ate level and then monitoring that thinking and guiding it to be more expert-like.
—Carl Wieman, contemporary physicist, Nobel laureate, science educator90
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One can invent mathematics without knowing much of its history. One can use 
mathematics without knowing much, if any, of its history. But one cannot have 
a mature appreciation of mathematics without a substantial knowledge of its 
history.—Abe Shenitzer, contemporary Polish-born mathematician, educator, 
Holocaust survivor91

If you could lead through testing, the U.S. would lead the world in all education 
categories. When are people going to understand you don’t fatten your lambs 
by weighing them?— Jonathan Kozol, contemporary education writer, activist, 
National Book Award laureate92

Metaphors are the most primitive, most elusive, and yet amazingly informative 
objects of analysis. Their special power stems from the fact that they often cross 
the borders between the spontaneous and the scientific, between the intuitive 
and the formal. Conveyed through language from one domain to another, they 
enable conceptual osmosis between everyday and scientific discourses, letting 
our primary intuition shape scientific ideas and the formal conceptions feed back 
into the intuition.—Anna Sfard, contemporary math educational researcher, 
Hans Freudenthal Award laureate93
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There are two kinds of light—the glow that illumines, and the glare that 
obscures.

—James Thurber, American author, 
humorist, and cartoonist1

What distinguishes a mathematical model from, say, a poem, a song, a por-
trait or any other kind of “model,” is that the mathematical model is an image 
or picture of reality painted with logical symbols instead of with words, sounds 
or watercolors.

—John L. Casti, contemporary mathematician, 
complexity theory scientist, author2

IV

ILLUMINATIONS
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Man possesses what we might call symbolic initiative; that is, he can assign 
symbols to stand for objects or ideas, set up relationships between them, and 
operate with them on a conceptual level.

—Raymond Wilder, American mathematician, 
author of Evolution of Mathematical Concepts1

The mathematical student needs to use the telescope as well as the microscope, 
even if the latter instrument is the more important for those who desire to 
become experts along mathematical lines.

—George Abram Miller, American mathematician, educator, 
author of Historical Introduction to Mathematical Literature2

THE NAMING OF THINGS, phenomena, and ideas by signs has literally helped 
us to create a “symbolic civilization” out of a vast and often confusing 

conceptual wilderness. Concepts in their rawest form, though potentially very 
powerful, can be wild, fluid, unruly even contradictory. Symbols have allowed 
us to establish some order, stability, and “light,” if you will, in this vast, un-
tamed, and uncultivated world of ideas. In this chapter, we come full circle by 
once again reflecting specifically on how illuminating the process of naming 
with numbers/numerals can indeed be.

12

Symbolic Illuminations
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The Glow That Illumines

Language allows us to light up our world. With language we can refer, in sig-
nificant and impactful ways, to things, actions, and so on, without physically 
pointing them out or even seeing them. The mere mention of the words “Las 
Vegas” or “Pacific Ocean” by someone on the radio can conjure up a host of 
images in the listener. The initial stimuli for these images are not the pictures 
of these places but rather the verbal words conveyed by the announcer’s voice. 
It is these sounds that are first processed by the brain to ultimately produce 
the images that come into the minds of the listener. 

In a metaphorical sense, we can think of these responses to the audio words 
as the turning on of a set of mental lights. In fact, when neuroscientists study 
human cognition they image mental activity, in some cases, literally as lit up 
regions in the brain.3 

Consider the following two maps of the United States. Notice how, for cer-
tain types of information, the naming in the second figure gives more context, 
depth, and structure (more light if you will) to the map than does the first 
figure without the names.

Map of the United States
Produced by the Cartographic Research Laboratory: The University of Alabama
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Map of the United States with State Capitals
Produced by the Cartographic Research Laboratory: The University of Alabama

The map with names brings to the fore a host of new questions that would 
probably never arise from the nameless map, questions such as, which two 
state capitals are the closest together (Providence and Boston), or what is the 
southernmost state capital in the continental United States (Austin, Texas). 
This is the glow that illumines.4

You might think that taking the map and pumping it further with more 
information would bring in even more benefits. But if we do this indiscrimi-
nately, we run the risk of adding too much information, leading to a glare 
that obscures.

The use of language in adding understanding to a subject almost gives it a 
new dimension. 

Quantitative Illumination

In what follows, when we speak of symbolic naming, we mean attaching a sym-
bol or group of symbols (and the ideas they represent) to an object or idea in ei-
ther a permanent or temporary fashion. This millennia old practice finds one of 
its fullest expressions when numbers are used in the naming. The ways in which 
numbers are used as names range from the mundane to the truly spectacular. 
In chapter 2, we have already discussed some ways that numbers are used as 
names. Before moving our discussion forward, we summarize these here:



252 Chapter 12

• Measuring the size of a collection: If we name each member of a discrete 
collection of objects by using the ordered sequence of natural numbers 
{1, 2, 3, 4, . . .} then the last number used in the naming contains com-
plete information about the size of that collection and thus measures it. 
This is a special type of number naming which we call counting.5

• Ordering collections: In performing a count of a set of objects, we are 
temporarily attaching number names to the individual members of that 
collection. Nothing then prevents us from actually using number names 
in a more permanent fashion to refer to those objects in place of their 
proper language names. This allows us to transfer the order present in a 
number sequence to the collections we name using them. 
• This ordering can be precise, using the consecutive natural number 

sequence starting at the number one, or less exact, using a consecu-
tive sequence of natural numbers not starting at one, or an ordered 
sequence of nonconsecutive natural numbers. 

• Examples of using the consecutive natural number sequence include 
ordering the runners in a race according to how they finish, the pages 
in a book or the largest metropolitan areas in the United States accord-
ing to their populations (e.g., largest metropolitan areas in the United 
States: (1) New York City, (2) Los Angeles, (3) Chicago). 

• Labeling the south facing hotel rooms on the third floor with natural 
numbers or labeling houses on streets with numbered addresses give 
examples of using an ordered sequence of nonconsecutive natural 
numbers.

• Identification: If we want to uniquely identify millions of people then 
naming with numbers has advantages. With proper English language 
names uniqueness is lost as social conventions lead to many people hav-
ing the same name, and there is no predictable way as to how such names 
are chosen. 
• Numbers, on the other hand, are systematic and far outnumber 

any collection of people that we might care to classify. Examples of 
number names as unique identifiers include: social security numbers, 
student IDs, and state driver’s license numbers. Other examples of 
number names as identifiers (not necessary unique) include: credit 
card numbers, telephone numbers, and IP addresses. 

The advantages of naming with numbers are extensive. In the next few sec-
tions, we take an interesting cross section of situations involving their use. As 
always, our hope is that a few insights can be gleaned along the way and that 
they can be used elsewhere by the reader as conceptual capital. 
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Navigation into Unknown Territory

If you happen to be totally disoriented or lost, sometimes all it takes is the 
recognition of a single familiar thing such as a landmark to change everything. 
The sight of this one thing can have an effect that is worth a thousandfold 
more than what might appear on the surface. It can allow you to place an 
entire landscape in context thus giving you the game-changing ability to suc-
cessfully negotiate your way. Naming with numbers often gives us similar 
orientations when we are dealing with something unknown: 

• Mileage of a vehicle: If you are considering the purchase of a seven-year-old 
vehicle, you care about the total number of miles the vehicle has been driven. 
• What this number does is give you crucial orientation (in the same 

way that a landmark does for location) as to the history of a vehicle 
that you may have only seen once or never at all. While there are still 
many things about the vehicle that you won’t know from its odometer 
reading, knowing its mileage is a crucial component in whether most 
people would decide to purchase that vehicle or not. 

• The age of a person: The simple knowledge of the quantity that describes 
the time a person has been alive can give you crucial insights about a 
person even though you may not have ever personally met them. For 
instance, if the person is a ninety-seven-year-old American in 2013, then 
you can immediately know that they probably have personal memories 
of the Great Depression, World War II, the Cuban Missile Crisis, the 
Apollo missions, and Watergate but not of the Civil War, the assassina-
tions of Lincoln, Garfield, or McKinley, or the sinking of the Titanic. 
• Those who know their history have a map of events and their approxi-

mate dates in their head and these serve as a navigational map of sorts 
allowing them to place some of the major cultural experiences that a 
ninety-seven-year-old person may have experienced in the context of 
that map.

• Trip navigation: Navigating on a trip is significantly enhanced when 
signage and landmarks are available. However, many situations occur 
where neither signage nor landmarks are available. Ocean travel is one 
such scenario and numbers come to the rescue in the guise of longitude 
and latitude. Longitude and latitude assign a set of number coordinates 
to every location on the surface of the earth. For instance, the spot with 
number coordinates (latitude 0°, longitude 90° west) is located in the 
Pacific Ocean on the equator in the eastern portion of the Galapagos 
Islands archipelago. 
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• An important component in successful navigation is determining 
these coordinates—a task extraordinarily easy today but more dif-
ficult in the past. When Carpathia came to Titanic’s rescue, it could 
do so by being given the longitude and latitude coordinates of the 
beleaguered vessel. 

• Numbers can help us in performing simple navigation while driving, 
even when road signs are not visible. If we know the distance between 
town A and town B is 200 miles and that our odometer shows that we 
have traveled 190 miles since leaving town A, then we know we are 
about 10 miles from town B regardless of whether or not road signs are 
visible or hidden by a fog or the whiteout conditions in a blizzard. This 
information can also tell us that our gas tank may be nearly empty 
even if the gauge isn’t working. 

• Simple navigation with numbers occurs when we stay in a hotel. 
Knowing only the room number is sufficient enough information to 
find our way with the greatest of ease even though we are stepping off 
of the elevator onto a floor that we have never seen before in our lives.

More Sophisticated Counting: Measurement

Our ability to visually distinguish between size with precision and accuracy 
is, as we know, limited to very small numbers. That is, at a glance we can 
quickly distinguish between a group of two boxes and a group of three boxes. 
However we cannot on sight quickly distinguish between 998 boxes and 1,000 
boxes. The ability to count changes everything. 

What counting does is allow us to vastly extend our native abilities to distin-
guish even minute differences between very large sizes. Counting gives a ware-
house manager the ability to conclude that during the night someone possibly 
stole two of her boxes even though her facility may be covered by a sea of the 
cardboard containers. She would never be able to tell this on sight alone, yet 
through counting (tally or order) she can. She could even distinguish the differ-
ence between a collection of 10,000 boxes and one with 9,998. Embezzlers beware! 

The ability to count allows us to not only say that Hartsfield-Jackson At-
lanta International Airport had more passenger traffic than Chicago’s O’Hare 
International Airport in 2010 but to say by how much: 89,331,622 versus 
66,774,738, respectively.6

Counting allows us to systematically see differences in sizes (large or small) 
with depth and structure. Visually we can only make crude comparisons for 
sizes larger than our subitizing ability. That is, we can certainly tell on sight 
that a group of 207 people is larger than a group of 42 people but we can’t say 
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by exactly how much. The ability to count allows us to say by how much with 
the precise value of 165.

Using an analogy, without counting it’s almost as if we can’t distinguish 
individual faces except perhaps when they differ by gender or at least ten years 
of age but with counting we are able to actually recognize the complete range 
of faces as we naturally do.

Just as we obtain the ability to “light up” in great systematic detail the crude 
notions of “more people” or “a larger number of boxes” through the process 
of counting, we would also like to “light up” other crude notions in great 
systematic detail as well. Other such crude notions include:

1. Distance: Farther, shorter, longer, taller
• The distance from Chicago to Los Angeles is farther than the distance 

from New York to Washington, D.C.
• Kareem Abdul Jabbar is taller than Magic Johnson.
• A FedEx cargo van is longer than a Chevy Impala.
• Question: Exactly how much farther, shorter, taller, or longer?

2. Weight: Heavier, lighter
• The truck is heavier than the car.
• The book is lighter than the brick.
• Question: Exactly how much heavier or lighter?

3. Time: Longer, shorter
• The baseball game lasted longer than the tennis match.
• Alan Shepard’s space flight lasted for a shorter time than Yuri 

Gagarin’s.
• Question: Exactly how much longer or shorter?

4. Temperature: Colder, Hotter
• La Ronge, Saskatchewan, was colder than Bismarck, North Dakota, 

yesterday.
• The high in Phoenix was hotter than the high in Alice Springs, Australia.
• Question: Exactly how much colder or hotter?

5. Prices: More expensive
• A new Hyundai Sonata is more expensive than a new Hyundai Elantra.
• The silk shirt cost more than the cotton shirt.
• Question: Exactly how much more expensive?

To give structure in depth to the variations in these crude notions, we will 
need to develop some way to count them. In counting discrete objects such as 
people, books, and boxes, the criteria for being counted is simply existence as 
an individual entity. That is, if the object exists in the collection, it is assigned 
a number or is counted. Each object is a discrete packet all unto itself.
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It is not as obvious, however, how to assign numbers to the notions of dis-
tance or weight or time since they don’t separate themselves into individual 
packets (i.e., they are not discrete). Can these things really be counted? 

In spite of their not being discrete, the trick to devising a way to count these 
notions is to still define a fundamental discrete unit or quantum for them.

Consider the following line segments:

Segment A

Segment B

Segment B is clearly longer than segment A. However, if we want to state 
this in a more exact manner not just a crude one, then we need to devise some 
way to count these segments. We can count both by devising a standard unit 
by which we can measure them (this amounts to devising our “1”, if you will). 
Let’s define our standard to be the following:

One Token

We can use this unit to count both line segments. We do this by counting 
the number of copies of the fundamental unit it takes to equal the length of 
each segment:

Segment A with Tokens

Segment B with Tokens

The standard unit allows us to now say with more confidence that segment 
A is 5 tokens long and segment B is 8 tokens long.7 Thus the crude notion of 
segment B being longer than segment A can now be replaced with the more 
exact notion that segment B is 3 tokens longer than segment A. 

If someone has a good feel for how long the fundamental unit is then they 
can have a feel for the lengths that correspond to both 8 tokens and 5 tokens 
as well as their difference of 3 tokens. 
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Using the tokens as we previously have quickly becomes a pain in the neck. 
Let’s rearrange them to a more convenient form by using hash marks to indi-
cate each copy of a token. Doing so allows us to craft out a measuring device:

Placing the numerals under the hash marks yields:

Writing the ruled grid alone gives:

Now that the line itself is ruled, we can use it to measure length instead 
of using repeated copies of the individual tokens. Ruled lines like this are 
sometimes called number lines and find extensive use across a wide swath of 
mathematics.

Although we have used a discrete unit to count them, it is important to 
realize that lengths are still continuous magnitudes not discrete ones. What 
this means in essence is that when counting a discrete collection, such as a 
group of people, the size of the group must be one of the natural numbers 
{1, 2, 3, 4, . . . }. People come in whole units. 

With lengths, far more variety exists. We could have situations such as 
those given below, where a whole number of fundamental units will not fit. 
The lengths of segments C and D are somewhere between 7 and 8 tokens. 
There is certainly nothing wrong with this—these scenarios are as valid as the 
scenarios above. But the quantities 7 or 8 are not exact enough to distinguish 
between the lengths of C and D or from other lengths that lie between 7 and 8. 
We need more values (accompanied by the corresponding numeral names). 
Those values of course are provided if we augment our whole numbers with 
fractions and more generally decimals. 



258 Chapter 12

In principle, any place on the line between 7 and 8 could represent the 
length of some segment. This corresponds to infinitely many more values—or 
what we call “a continuum of values.” With people, you either have 7 or 8 of 
them, nothing anywhere in between. 

We can also count other crude notions such as “heavier” by choosing a 
fundamental unit or quantum for them as well. For instance, we might choose 
a certain type of brick as the standard for counting weight and then use a scale 
to count how many bricks it takes to balance another object. An object requir-
ing 8 bricks to balance it would be said to weigh “8 bricks.” Such a system 
would allow us to give structure in depth and detail to the crude notion of 
weight just as the token allowed for length.

Making precise the crude notion of time by naming it with numbers is one 
of the most multilayered, fundamental systems of measurement we have. In 
June, when a meeting for a group of people, one-thousand strong, is sched-
uled at a hall in Boston for 9 p.m. on December 15, numbers guide their 
actions. 

Without numbers, how will all of the people be able to unambiguously 
distinguish one night from the other or even certain portions of a given night 
from other portions? With numbers (namely, the date and the time of day) 
and the tools of a calendar and clock, these thousand people can with ease 
synchronize their actions and all show up at the same location at the same 
time. It doesn’t matter if it is dark outside, raining, or even half a year later, as 
long as they have the required tools, number naming allows them to success-
fully and collectively navigate through time.8 

Calculation

One of the most spectacular demonstrations of the power in naming with 
numbers occurs when, in addition to utilizing their static properties as labels, 
we turn to their dynamical properties for change through combination with 
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each other. When this happens, the ability of these ideas to transform into 
other ideas reaches a high art. This high art of transformation is demonstrated 
symbolically in the guise of performing calculations. 

Quantitative ideas are less ambiguous than ideas such as “love” and “hate.” 
We can clearly tell that the collection of letters {A, B, C} has the property of 
three while the collection of letters {D, E, F, G, H, I} does not. This definitive-
ness allows us to create a much more precise and special way of communicat-
ing quantitatively about things, for in combining the unambiguous ideas of 
three objects and six objects, we don’t get gibberish nor varying interpreta-
tions which might be expected but instead get the equally unambiguous idea 
of nine objects. 

 And just as there are a multitude of different ways to symbolically describe 
reality by human languages, a myriad of different ways exist to symbolically 
describe this quantitative fact: 

three plus six equals nine:  English

 
:
  

Coin Numerals

:  Abacus Rods

III + VI = IX:  Roman 
 Numerals

:  Chinese Rod 
 Numerals

3 + 6 = 9:  HA Numerals

The content of this fact comes from the way in which the ideas combine not 
from the symbolic expressions themselves. The symbols simply communicate 
how the ideas combine in abbreviated form. 

This is not the end of the story, however, for the symbols play a far bigger 
role for us than simply abbreviating or representing an idea. The symbols 
provide us with a whole new way of looking at what is happening and also 
provide schematics which permit us to see crucial relationships unscreened. 
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This allows us to observe patterns in the symbols from which we can build 
sophisticated algorithms that enable us to obtain (calculate) answers to all sorts 
of scenarios in a much quicker fashion than we could physically working with 
the objects alone. We have seen how these patterns can be exploited to create 
the powerful algorithms we have today for the basic operations of arithmetic.

We can also view the ability to calculate as giving us yet another sophisti-
cated way to “count.” Consider the case of the Begay family and their desire 
to predict how much they can expect to pay for gas on a 1,425-mile road trip. 
Can they “count” the dollar amount of gas they will use on the trip in the 
direct way? 

Put another way, can they obtain the cost in the same manner that they can, 
say, count the number of people in a classroom—in a straightforward process 
of matching off? Unfortunately they can’t, as the cost in dollars doesn’t relate 
in a one-to-one fashion with the number of miles driven on the trip. That is, 
the family can’t simply count in a natural way the miles as they drive down the 
highway and then match these directly with the dollar cost for the gas. In fact, 
they can’t even see the gasoline once it has been pumped into the gas tank. 

However, since the total gas cost depends on the components of distance 
traveled, the average gas price and the gas mileage, its value can be obtained 
through a calculation. What the calculation allows them to do is to bring these 
three components into conjunction to generate a numerical dollar value for 
the total quantity of gas used. Let’s assume that the average gas price is $3.00 
per gallon and that the vehicle’s gas mileage is around 25 miles per gallon. 
From this information they can obtain what they need as follows: 

The number of gallons they will need to purchase for the trip: The gallons 
come in 25 mile packets so to determine how many of these are needed to 
cover 1,425 miles, we need to calculate 1425____

25
. We use the symbolic algorithm 

for long division to do this:

Thus a total of 57 gallons are needed. 
The cost to purchase 57 gallons at an average cost of $3.00 per gallon: The 

problem now reduces to the multiplication of 57 × 3. We do this using the 
standard U.S. multiplication algorithm: 
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And we see that the family should expect gas costs to be around $171.00.
The calculation gives a seamless way in which to transform one set of 

ideas into another set of ideas (“liquefying” them in a sense). Since every 
quantity or number represents an idea, we start with the ideas 1425, 3, and 
25 and through well-defined algorithms (played out on HA number dia-
grams), we can smoothly and unambiguously transform these to the idea 
of 171 to obtain the estimated dollar cost of gas for the trip. Moreover, we 
are able to obtain this estimate on a piece of paper before the family ever 
embarks on the trip. 

If we liken the ability to directly count a quantity to the ability in English to 
describe a concept or event by a single word, then we can metaphorically liken 
the “need to calculate” to find a quantity to the need in English to construct 
sentences to describe a concept. For example, no single English word allows 
us to describe the situation of “a group of ten people going to Pyramid Lake 
in Nevada for a picnic on a Sunday afternoon,” but this sequence of eighteen 
words does just fine in describing the event.

 And for the record, sentences are capable of describing way more situ-
ations than single words can. For instance, the number of physical objects 
described by the word “house” numbers into the millions but the number of 
physical situations described by the statement, “the woman deposited money 
into the bank” easily numbers into the thousands of trillions (quadrillions). 
This statement is capable of describing all situations involving any living 
woman (of which there are billions) depositing any amount of money (num-
bering from one cent, or any other currency, on up) into any bank on the face 
of the earth (presently more than 7,000 FDIC banks are in operation in the 
United States alone).9

This means that we are not limited symbolically in using numbers to deal 
only with things that we can directly count. If we cannot directly count some-
thing (due to size, logistical difficulties, or inhospitable conditions), we may 
still be able to perform a calculation to gauge it (i.e., construct a “quantitative 
sentence” to measure it), and thus, calculation symbolically extends almost 
in an automatic way the things that we may subsume under the domain of 
number. Performing strings of calculations using elementary arithmetic gives 
perhaps the most accessible demonstration of the broad predictive power 
inherent in mathematics.
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Calculations Are Symbolic Events

 It can’t be emphasized enough that calculations just like direct counts are 
symbolic events, and in performing them we are speaking or writing about 
numerical interactions, not controlling them. Also, the calculations them-
selves, don’t directly alter the objects or events being described only what we 
can say about them, how we think about them, and ultimately what we may 
ourselves decide to do with them.

The numerals also exhibit the well-defined and reproducible properties 
of the things they describe, which mean that regardless of who is doing the 
calculations (if they do them correctly), they should come up with the same 
answer. This reproducibility is one of the hallmarks of calculation as well as 
mathematics in general.

Let’s look at a few examples to illustrate the discussion. 

Symbolic simplifications don’t alter objects:

Consider the following coin collections:

A =   B =   C = 

We can describe or label, respectively, the number of elements in each col-
lection symbolically as:

3      4      4 

Combining collections A and B together yields the collection:

A + B = 
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We can describe this symbolically as 

3        +    4        which simplifies to 7    . 

Since the objects are all of the same denomination we can simply write 3 + 4 
= 7. It is important to remember that this is a symbolic simplification since 
physically seven distinct pennies are still present. The pennies have not been 
metallurgically combined to form a single object. They are simply represented 
as combining to a single object symbolically (Wilder’s “symbolic initiative”). 

In the same manner, if we combine the collections A and C together we 
obtain the collection:

A + C = 

We can describe this symbolically as 3        +    4    .

This expression can’t be symbolically abbreviated any further (if we are 
identifying the coins by denominations). In both situations, we still physi-
cally have seven distinct objects. Whether we can simplify the descriptions 
symbolically or not does not alter these physical facts.

Conclusion 

Naming with symbols often provides new information and insight into vague 
and confusing situations—giving structure and game-changing clarity where 
there was none. Since this is similar to what physical light can do when it is 
showered upon a darkened landscape, we have metaphorically referred to this 
ability in symbols as a type of illumination. 

Number naming like language naming is deeply interwoven into the fabric 
of our society, and on most days we usually encounter numerous situations 
involving its use (note that even basic things such as simply changing TV sta-
tions, watching the speedometer in our vehicle, or setting the heating time on 
a microwave oven have components that use number names). 
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We now conclude by recapping explicitly some of the benefits obtained 
through naming with numbers:

1. Depth of expression: Instead of seeing only crude notions such as more, 
longer, larger, or heavier in situations that are infinitely varied, numbers 
allow us to give names in depth, to all of that variety. Moreover, the 
naming is systematic, understandable, and maneuverable. 

2. Transformation of ideas: Perhaps the most potent aspect of naming with 
numbers is the ability to systematically and unambiguously transform 
ideas. These transformations allow us to connect information in obvious 
as well new and emergent ways not always easy to see at the start. 
• This can be likened to the grammar in a language which gives us the 

ability to turn simple words (which are in and of themselves extraor-
dinarily powerful) into a fuel that allows for the expression of the full 
range of life. Calculation in a sense allows us to almost symbolically 
liquefy phenomena—for ideas in symbolic and numerical form can, 
like fluids, naturally travel very far from their original sources while 
still retaining a powerful punch. 

3. Reproducibility of result: Calculations and numerical representations 
have a well-defined, reproducible quality about them. Regardless of the 
time and the place or the symbols and methods employed, multiplica-
tion of the two natural numbers 52 and 86, as we have defined it, will 
always yield the value 4,472. 
• If a package of 500 ordered but un-numbered pages is dispersed by a 

gust of wind, the recipient will have a difficult enough task just know-
ing if he has retrieved them all much more how to put the papers back 
into the correct order. However, if the pages are numbered, he can 
systematically reproduce the original ordering of the pages and as a 
consequence know whether or not he has retrieved all of them. All of 
this from simply labeling the pages with numbers. Philip Davis and 
Reuben Hersh actually define mathematics in terms of reproducibility 
by saying: “The study of mental objects with reproducible properties 
is called mathematics.”10

4. Predictive power: Naming with numbers gives us the ability to make pre-
dictions both through calculations and through direct representation.
• Calculation: Calculation gives us the ability to make predictions on the 

cost of a trip, the number of chairs in an auditorium, the amount of 
money we earn in a year given an hourly wage, the distance around the 
earth, the equal allotment of portions among a group of people, and so 
on and so on.
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• Representation: Language representation itself gives predictive power, 
for if someone told us that Redwoods National Park has exception-
ally large and tall trees—we visit it with expectations. We would be 
incredulous and felt lied to if upon arrival we found a treeless barren 
desert instead. 

• We have similar expectations if we were to hear that the temperature 
outside is 120°F, and would be shocked, if upon stepping outside, 
found that it was snowing. We continually make decisions on what to 
wear based on simple numbers that give the estimated temperatures 
for a given day. This is the predictive power of representation.

• Representation of quantity is such a valuable thing on its own that if 
that was all that numerals were useful for they would still be worth 
their weight in gold.

5. Convenience of use with symbols: It is much easier to manipulate and 
handle symbols than it is to directly handle the things they represent. 
This gives a convenience of use which is shocking in its reach. From the 
combination of reasoning and the simple handling of symbols on a piece 
of paper in front of us, we acquire the capacity to answer questions of 
monumental importance—questions that would often simply be impos-
sible to answer without.

All of this and more from just the elementary aspects of numeration alone! 
There are so many more stories yet to tell, still even in arithmetic, let alone 
the rest of mathematics, but the twilight of this text is upon us so these tales 
will have to wait for another day.
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The human brain runs on stories. Our theory of the world is largely in the 
form of stories. Stories are far more easily remembered and recalled than se-
quences of unrelated facts. . . . Thinking thrives on stories, on the construction 
and exploration of patterns of events and ideas.

—Frank Smith, contemporary psycholinguist, expert on 
reading instruction and Albert Michotte, Belgian experimental 

psychologist, author of The Perception of Causality1

Most men . . . speak primarily to narrate . . . to exhibit what they have un-
dergone or seen. Cut us off from narrative, how would the stream of conver-
sation, even among the wisest, languish into detached handfuls. . . . Strictly 
considered . . . knowledge is but recorded experience, and a product of history.

—Thomas Carlyle, nineteenth-century 
Scottish historian, critic, and author2

IN CONCLUDING THE opening address to the Third Mediterranean Conference 
on Mathematics Education (2003), Apostolos Doxiadis eloquently stated: 

Embed mathematics in the soul by embedding it in history, by embedding it 
in story. By showing how it is lovely and adventurous—the stuff of the best 
quest myths. By showing how it was created by complex, adventurous, brave, 
struggling human beings. . . . Give the poetry, the adventure and the problems, 

13

General Résumé
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through stories, both small stories of environment and large stories of culture. 
Grip the heart—and the brain will follow.3

I agree. Of all of the techniques used in How Math Works, it is the telling 
of stories and the placing of situations in context which have served as the 
lubricant to try to make everything fit together. Throughout, I have tried to 
use the power of narrative and setting to walk through elementary arithmetic 
in ways that illuminate its wonder and power—in ways that, with any luck, 
breathe life back into this old and most familiar of subjects. Hopefully this 
tack has allowed readers to gain a greater appreciation of the fact that this 
gateway subject to all of mathematics is truly spectacular in its own right, and 
that in its everyday use we are in possession of ancient knowledge every bit as 
useful to us as the wheel, music, or even language itself.  

Mathematics is a multifaceted, kaleidoscopic subject with a multitude of 
ways to view, define, and explain it. Couple this with the reality that there is 
much that we still don’t know in regards to the true nature of mathematics, 
and one must constantly be on guard to remember that numerous paths and 
approaches (way too many to describe in several books much less a single 
one) must be used to describe it in all its subtleties. No one plan of attack can 
come close to fully encompassing this immense subject.

A path that I have taken is to view mathematics, at its most elementary, as 
a type of communication possessing all of the generality of traditional lan-
guage—with numbers and calculations helping to describe the infinite range 
of quantity in its many guises in analogue to the way words and sentences help 
describe the diversity of everyday life.4

One that rather than sitting in isolation from the other ways in which we 
exchange and use information works in powerful conjunction with them. 
Taking this viewpoint is in no way demeaning to mathematics but suggests 
that it, like speech and writing themselves, is one of the highest endeavors 
that we collectively partake in—forming one of the major stories of mankind. 

Symbolic systems were created in large measure to help us better navigate 
and control our own destiny in an extremely large and complicated world. 
Their great power is indebted, in part, to the advantages in maneuverability 
they offer over the less “malleable” and less “accessible” things they are called 
upon to represent. And one of the most potent demonstrations of this power 
continues to be through mathematics itself.

However, while sharing much in common with the traditional methods of 
communication and working in creative combination with them, mathemat-
ics is still not exactly the same thing as they—no more than language writing 
is the same thing as speech. And there is no denying that, since mathematics 
in general takes more effort to study than language, there are also huge psy-
chological components tied in with its learning (“our ideas of education not 
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mattering a single whit if we neglect to remember that we are in fact teaching 
human beings”).5 

Alfred North Whitehead stated in 1911 that, “Civilization advances by ex-
tending the number of important operations which we can perform without 
thinking about them.”6 The HA numerals stand out among written math-
ematical systems in that they allow large numbers of people (who are system-
atically taught them) to actually do this to a degree—acquiring a mastery, at 
least in whole number pursuits, that rivals the mastery acquired in language 
pursuits. 

Oh, how we would like to see this in the learning of fractions, negative 
numbers, algebra, geometry, calculus, and mathematical reasoning in general. 
But once the symbols and rules from the various areas proliferate, interact, 
and no longer directly map to physical objects easily visualized, we see a 
majority of people hitting, in varying degrees, barriers to the effective under-
standing of higher-level concepts.  

A goal of this book has been to tear down in some small part these bar-
riers to understanding by attempting to shatter the “divinity of arithmetic,” 
through showing that even the methods, which we now take most for granted, 
were not given to us from on high, but were actually the result of centuries of 
scientific efforts on the part of our predecessors. 

My wish is that a conceptual currency in which to think about mathematics 
in general will be enhanced. And just as monetary currency is transportable 
across a broad swath of our modern-day economies, it is hoped that the con-
ceptual currency aimed for here can be transported from these discussions 
on arithmetic into enhanced understanding in other areas of mathematics as 
well as in private demonstrations of arithmetical concepts to those we might 
tutor or instruct.

So, now as we conclude this tour, let’s directly ask ourselves again: Why is 
this stuff important? Opinions are all over the map on this one, but I must 
confess to being appreciative of the spirit exhibited by John Perry, when he 
stated (at the 1901 British Association for the Advancement of Science Con-
ference, in Glasgow, Scotland) that:

I hold that the study (of mathematics) began because it was useful, it continues 
because it is useful, and it is valuable to the world because of the usefulness of 
its results. The pure mathematician must allow me to go on thinking that, if his 
discoveries were not being utilized continually, his study would long ago have 
degenerated into something like what the Aristotelian dialectic became in the 
fourteenth century.7

The beauty of mathematics is multilayered. For starters, there is the beauty 
of studying patterns in the math itself to come up with new methods and 



270 Chapter 13

insights that allow us to see ever more deeply into mathematics—regardless 
of whether or not an application outside of the subject can be found. There 
is the beauty that many of these new methods and insights so attained may 
then allow us to accomplish tasks in a much more convenient fashion (e.g., 
methods for multiplying with small diagrams versus brute force repeated ad-
dition). There is the beauty that these new methods not only may make things 
more convenient for us to do but in many cases may make the decisive differ-
ence in whether or not we can accomplish the task at all.

There is yet another beauty that many of these new insights expressed with 
visible marks on paper are so much more than their scripted appearance. The 
symbols provide us not only with the means to peer deeper into the subject 
of mathematics itself but they also allow us to better describe and act upon 
the things that we need in our everyday life as well. And if that isn’t enough, 
they additionally give us the extraordinary capability to discover monumental 
things about our past, our present, our future yea even the very universe itself! 
Many believe this to be the most astonishing thing of all.

Imagine, if you will, a beautiful painting that inspires awe in those who 
view it, simply for the masterpiece it is, yet at the same time also has some-
thing incredibly insightful to say about the inner workings of the sun as well 
as a million other apparently unrelated but significant things, and you catch a 
glimpse of why many rant and rave about the amazing nature of mathematics.

To some (perhaps the engineer and the mechanic), the magnificence of 
the automobile is in the beautiful mechanisms under the hood. To most, 
however, the beauty of the automobile is probably in the external appearance, 
the frills, and in the driving. Whatever your preference, you must admit that 
the splendor of the mechanisms would be much diminished, perhaps even 
marginalized, if that darn machine didn’t actually rev up, move, and take you 
places. 

Isn’t it a far more encompassing beauty that “the wonderful things going 
on under the hood” gift us with the ability to do magnitudes more than sim-
ply admire at the magnificence of their inner workings? Isn’t the mechanism 
far more enhanced by also gifting us with the amazing ability to dramatically 
impact ourselves and society to absolutely stupendous degrees? Dare I say that 
possibly the most beautiful thing of all about the automobile (as well as other 
types of motor vehicles) is the spectacular fact that the internal beauty of their 
workings opens wide to us the external beauty of our planet as well as our own 
potential to affect massive change? 

Simply put, with motorized transport we are able to rapidly haul massive 
amounts of goods over long distances (bringing the wealth of the world to our 
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doorsteps); quickly reach those in dire need of emergency assistance (saving 
their lives in many cases); and swiftly annihilate distances that would have 
taken our ancestors months if not forever to cover. Moreover, such transport 
allows us (from the beginnings of our humble driveways) to travel the length 
and breadth of entire continents exploring their wonders—doing so for noth-
ing more than the sheer enjoyment of it all.

All of this in ways that owe greatly to the multitude who came before us. 
All of this in ways that would make them proud of what we have collectively 
accomplished as human beings. 

I say ditto for mathematics!
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THIS IS THE FIRST PAGE of examples that a student, who knew nothing of 
addition in HA numerals, would see or hear discussed by the teacher 

in explaining addition. No worked out examples on elementary addition 
were given at all. (Schoolmaster’s Assistant, by Thomas Dilworth revised by 
R. Tagart, 1818 edition, 11.)

Appendix A



274 Appendix A



— 275 —

LETTER FROM GEORGE WASHINGTON TO NICHOLAS PIKE, June 20, 1788.
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The Fifteen Most Significant Swiss of All-Time 

(According to a 2008 Survey conducted by Swiss newspaper SonntagsZeitung)

 1.  Albert Einstein (1879–1955), physicist
 2.  Gottlieb Duttweiler (1888–1962), businessman and philanthropist
 3. Roger Federer (1981– ), tennis player
 4.  Johann Heinrich Pestalozzi (1746–1827), educationalist
 5.  Henry Dunant (1828–1910), founder of the Red Cross
 6. Paracelsus (1493–1541), physician
 7. Nicolas Hayek (1928– ), businessman
 8.  Claude Nicollier (1944– ), astronaut
 9.  Alfred Escher (1819–1882), entrepreneur, railway pioneer
 9.  Leonhard Euler (1707–1783), mathematician
11.  Friedrich Dürrenmatt (1921–1990), writer and artist
11.  Le Corbusier (1887–1965), architect
13.  Jean-Jacques Rousseau (1712–1778), philosopher and writer
14.  Mani Matter (1936–1972), singer
15.  Henri Guisan (1874–1960), general
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FIRST LESSONS IN ARITHMETIC ON THE PLAN OF PESTALOZZI, 2nd ed. (Boston: Cum-
mings and Hilliard, 1822), 1, 3.
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