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Preface

This book on calculus has been written in accordance with the syllabi of B.Sc. 
Math honors students. The book can also be used by students with little or no 
background of calculus. The subject matter has been presented in a way that 
the students will not find any difficulty in understanding the various concepts 
included in the various volume. The book contains nine chapters.

 The initial chapter is devoted to the various facts, especially as they appear 
to a beginner, of the nature of mathematics in general and of calculus in 
particular. The next two chapters deal systematically with the standard topics 
of limit and continuity and differentiability of the functions. Chapter four 
deals with the successive differentiation, in chapter five we have discussed 
the various aspects of the calculus which are generally called the backbone 
of the calculus. Chapter six contains on introduction of polar coordinates and 
conic sections, chapter seven has been devoted to the some properties of the 
integration. Chapter eight is hyperbolic function and last chapter nine cover the 
introductory knowledge of vectors.

 Each chapter contains a good number of examples have taken from the 
question papers of different university examinations. Nearly all exercises require 
some thinking.

 It is very much hoped that the book in its present form will help to make 
the study of the subject more interesting, relevant, and meaningful.

 I am thankful to the publisher for their keen interest in the book.

 I acknowledge with pleasure the assistance of many friends and the 
colleagues.

 Thanks are due also to Mr. Khurram Irfan for their sincere help and interest 
in the computational work.
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 Suggestion for improvement will be thankfully acknowledged.

Mohammed Arif
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1
C H A P T E R

Preliminaries

1.1 REAL NUMBERS

In this chapter we present basic information that you will need for your study 
of calculus. We begin by discussing the real number system. The system of real 
numbers has evolved as a result of a process of successive extensions of the 
system of natural numbers [1, 2, 3, 4, º]. If we add two natural numbers, 
we get a natural number for example 6 + 2 = 8, but the inverse operation 
of subtraction is not always possible for example 2 – 5 is meaningless in so 
far as the natural numbers is concerned. Natural numbers are also referred 
to as positive integers. In order that the operation of subtraction performed 
without any restriction the natural numbers enlarge by introducing the negative 
integers and a number zero [0]. Thus to every positive integer [n] correspond 
a unique negative integer [–n] (called the additive inverse of n) so the relation 
between n, –n and 0 as n + (–n) = 0, and n + 0 = n for every natural number 
n. Hence the positive integers (natural numbers), the negative integers and 
the number zero together constitute what is known as the system of integers
[0, ±1, ±2, ±3, ±4 º]. A rational number is a number that can be written 
as quotient of two integers, where the integer in the denominator is not zero:

r =   m __ n   where n π 0  [   1 __ 
3

  ,   1 __ 
2

  ,   –3 ___ 
2

  ,   0 __ 
2
  , 321, º ] . Every rational number can be 

written as a repeating decimal for example   1 __ 
3
   = .33333 º, 3/11 = 0.272727 º. 

The rational numbers can be represented geometrically as points on a number 
line. The number line can be used to give us sense of order. We put a number 
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m to the right of the number n if m is greater than n. We then write this 
inequality as

   m > n

 Similarly if n is greater than m, then m is to the left of n, and we write 
the inequality as

   m < n

 If m is less than or equal to n, that is m < n or m = n then we use the 
notation as m £ n we write m ≥ n to indicate that m is greater than or equal 
to n Hence every rational number can be represented by a point of a line, “Is 
the converse true?” “Is it possible to assign a rational number to every point 
on the number line?” The answer is no.

 If we construct a square with one side of unit length, Fig. 1.1 and take a 
point on the number line such that OP is equal in length to the diagonal of this 
square. It will now be shown that the point P cannot correspond to a rational 
number.

A

C

B

D

P

Fig. 1.1

 Hence we see that there are so many number of points on the number 
line which do not correspond to any rational number. If we want to measure 
the length OP It is necessary to extend our system of numbers further by the 
introduction of irrational numbers. Thus any number that is not a rational 
number is called irrational number. (the ratio between the circumference 
and diameter of a circle is also an irrational number) Examples of irrational 
numbers are  ÷ 

__
 2   = 1.41421356 º, p = 3.141592 (not repeated). Rational numbers 

and irrational numbers together constitute what is known as the system of real 
numbers. 

4
3

3
2

÷2

– 2 – 1 0 1 2

Fig. 1.2

Between any two real numbers, there is a rational number and an irrational 
number.
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Fig. 1.3

1.2 SET

A set of objects is any well defined collection of objects, and these objects 
are the elements of the set. If S is a set, the notation m Œ S means that m is 
an element of S, and m œ S means that m is not an element of S. The empty 
set, denoted by f, is the set containing no elements. If S and T are two sets 
then the union of S and T, denoted by S » T is the set of elements in S or T 
or both. That is

  S » T = {m:m  Œ S or m Œ T or both} 

 

A B

   

A B

Fig. 1.4 Shaded region is A » B       Fig. 1.5 A » B

 In Boolean Logic, following UNION is represented by the intersection of 
two or more circles.

 The intersection of S and T denoted by S « T is the set of elements both 
in S and T

  S « T = {m:m Œ S and m Œ T} 
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Fig. 1.6

Fig. 1.7

College USA

Soccer
team

Intersection
of

all 3 sets

Fig. 1.8
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Some typical sets

The students of class B.Sc. (Hons.) Math 1st Year in Z.H.C. New Delhi is a 
set.

 The set of all islands in Micronesia 
 The set of all atolls in Yap State 
 The set of all cars on Mokil
 The students of class B.Sc. (Hons.) 1st Year in Z.H.C. New Delhi is not a 
set (Why).
 All big cities in India is not a set (why).
 N: The set of natural numbers. {1, 2, 3 º}

 I: The set of integers. {0, ±1, ±2, ±3 º}

 Q: The set of rational numbers.  { 1, 2,   3 __ 
5
  , ±   7 __ 

2
  , 0 º } 

 R: The set of real numbers.  { 0, 1, ±2, ± 3,  ÷ 
__

 2  , p,   3 __ 
4
   º } 

Subset

If S and T are two sets such that each element of S is also an element of T then 
S is called a subset of T and denoted as S Õ T. i.e. the set of natural numbers 
is the subset of the set of integers.

Positive
integers

All numbers

Integers

Positive

Real

 

Fig. 1.9

1

T

5

S

0 7

S TÃ

Fig. 1.10
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Equality of sets

Two sets are said to be equal when they consist of exactly same elements. Thus, 
sets S and T are equal (S = T) if every element of S is an element of T and 
every element of T is also an element of S. Thus {a, b, c} = {b, c, a}.

Fig. 1.11 Six wine glasses divided into two equal sets of three

1.3 INTERVALS

A subset S1 of R is called an interval if S1 contains at least two distinct elements 
and every element lies between any two members of S1.

 The set of all nonzero real numbers between –1 and 1 is not an interval; 
since 0 is absent, the set fails to contain every real number between –1 and 1. 
Fig. 1.12.

Fig. 1.12

 The open interval ]m, n[ is the set of real numbers between m and n, not 
including the numbers m and n. i.e. ]–1, 4[ = {x: –1 < x < 4} hence m = –1,
n = 4. Fig. 1.13.

Fig. 1.13

 The closed interval [m, n] is the set of numbers between m and n, including 
the numbers m and n.

i.e.  [0, 6] = {x: 0 £ x £ 6} m = 0, n = 6. 

0 6

Fig. 1.14
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 The half open interval [m, n] is given by

  ]0, 6] = {x:0 < x £ 6} m = 0, n = 6.

0 6

Fig. 1.14(a)

 Interval may be infinite.

i.e.  [m, •[ = {x:x ≥ m}

i.e.  ]m, •[ = {x:x > m} 

i.e.  ]– •, m] = {x:x £ m}

i.e.  ]– •, • [ = R

 The symbol and – • denoting infinity and minus infinity, respectively are 
not real numbers and do not obey the usual laws of algebra, but they can be 
used for notational convenience. 

Solving inequalities

By which process we find the interval or intervals of numbers that satisfy an 
inequality in x is called solving the inequality. 

Example 1 Solve the following inequalities

 (i) 2x – 3 < x + 4   (ii) –   x __ 
5
   < 3x + 2

 (iii)   5 _____ 
x + 1

   ≥ 5   (iv)   6 _____ 
x – 1

   ≥ 5

Solution

 (i) 2x – 3 < x + 4 (ii) –   x __ 
5

   < 3x + 2 (iii)   5 _____ 
x + 1

   ≥ 5 (iv)   6 _____ 
x – 1

   ≥ 5

  2x < x + 7  – x < 15x + 10  5 ≥ 5x + 5  6 ≥ 5x – 5

  x < 7  0 < 16x + 10  0 ≥ 5x  11 ≥ 5x

    –   5 __ 
8

   < x  0 ≥ x    11 ___ 
5
   ≥ x 

 The term “absolute value” has been used in this sense since at least 1806 
in French and 1857 in England the notation | m | was introduced by Karl 
Weierstrass in 1841. Other names for absolute value include “the numerical 
value” and “the magnitude”.
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1.4 ABSOLUTE VALUE

The absolute value (or modulus) of a number m is the distance from that 
number to zero and is written |m|. Hence 3 is 3 units from zero, so that |3| = 3. 
The number –2 is 2 units from zero, so that |–2| = 2 or –(–2) = 2, Fig. 1.15.

02 Units 3 Units

Fig. 1.15

  |m| = m if m ≥ 0

  |m| = – m if m < 0

  |m| =  {   m 
 

 0   
–m

      
m ≥ 0

 
  

 m = 0    
m < 0

 

  (–m)2 = m2 = |m|2 or |m| =  ÷ 
___

 m2   

i.e.  |– 4| =  ÷ 
_____

 (– 4)2   = 4, |4| =  ÷ 
____

 (4)2   = 4, |–3| =  ÷ 
_____

 –(3)2   = 3

Properties for absolute value:
 (i) |–m| = m

 (ii) |mn| = |m||n|

 (iii)  |   m __ n   |  =   |m| ___ 
|n|

  

 (iv) |m + n| £ |m| + |n| (Triangle inequality) i.e. |– 4 + 7| = |3| < |– 4| + 
|7| = 11

  i.e.  |4 + 7| = |11| = |4| + |7|

  i.e.  |– 4 – 7| = |–11| = 11 = |–4| + |–7|

 (v) |m – n| = 0 ¤ m = n 

 (vi) |x| = m if and only if x = ± m

 (vii) |x| < m if and only if – m < x < m 

  i.e.  |x| < 2 fi –2 < x < 2, Fig. 1.16

Fig. 1.16

 (viii) |x| > m if and only if x > m or x < – m 

  i.e.  |x| > 2 fi x > 2 or x < – 2, Fig. 1.17
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0– 2 2

Fig. 1.17

 (ix) |x| £ m if and only if – m £ x £ m

 (x) |x| ≥ m if and only if x ≥ m or x £ – m

 (xi) |x – m| < l ¤ m – l < x < m + l

Example 2 Solve the inequality |x + 3| ≥ 7.

Solution  |x + 3| ≥ 7

   x + 3 ≥ 7 or x + 3 £ –7

 Hence either x ≥ 4 or x £ –10

Example 3 Solve the inequality |2x –1| £ 3

Solution   |2x – 1| £ 3

   –3 £ 2x – 1 £ 3 fi –2 £ 2x £ 4 fi –1 £ x £ 2. 

1.5 THE CARTESIAN PLANE

The Cartesian plane is named of the great French mathematician Rene Descartes. 
In the section 1.1 we identified the points on the line with real numbers by 
assigning those coordinates. Now the points in the plane can be identified 
with ordered pairs of real numbers. Let OX and OY be two fixed straight line 
perpendicular to each other. The line OX is called the x-axis while OY is called 
the y-axis. Both of them together are called the coordinates axes. The point 
O is termed as the origin of coordinates. Let P be any point in the plane, to 
reach this point let us draw a straight line from P, parallel to OY to meet OX 
in M. The distance OM is called x-coordinate (abscissa) and distance MP is 
called y-coordinate (ordinate) of the point P This ordered pair with abscissa 
as first member, is called the coordinate of P If OM = x, MP = y then (x, y) 
are coordinate of P. This coordinate system is called the rectangular coordinate 
system or Cartesian coordinate system. The coordinate axes of this Cartesian 
plane divide the plane into four regions called quadrants Fig. 1.18.

Fig. 1.18
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 We will usually refer to the Cartesian plane as the xy-plane.

 If (x1, y1) and (x2, y2) are the two points in the xy-plane then the distance 
between these two points is the length of the line segment PQ, Fig. 1.19.

Fig. 1.19

 Since PQR is a right triangle and by the Pythagoras theorem,

 
____

 PQ2  =  
____

 PR2  +  
____

 QR2 

 But  
___

 PR  = |y1 – y2|, QR = |x1 – x2| so that

  (PQ)2 = (x1 – x2)2 + (y1 – y2)2

i.e.    (x1, y1) fi (2, 3) and (x2, y2) fi (–3, 4) then

  PQ =  ÷ 
_________________

  (–3 – 2)2 + (4 – 3)2   =  ÷ 
___

 26  

1.6 LINE

The line plays a very important rule to study the calculus. Two distinct points 
(x1, y1) and (x2, y2) determine a line (in Fig. 1.19 PQ is a line). The slope of 
a line tell us the direction and steepness of a line measure of the relative rate 
of change of the x-coordinate and y-coordinate points on the line as we move 
along the line.

 The slope m of a line passing throw the points (x1, y1) and (x2, y2) is given 
by 

  m =   
y2 – y1 ______ x2 – x1

   =   
Dy

 ___ 
Dx

   = tan q (if x1 π x2) (Fig. 1.20)

 The speed of the cart A will be faster than the cart B because the slope m 
of the line OA > line OB, Fig. (1.21).

 In Fig. 1.20 if Dx = (x2 – x1) = 0 and y1 π y2 then the line is vertical and 
the slope is said to undefined. {Fig. 1.24 vertical line}.

 In Fig. 1.20 if Dy = (y2 – y1) = 0 and x1 π x2 then the line is horizontal 
and the slope is zero. {Fig. 1.24 horizontal line}.
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Fig. 1.20

0

A

B

Fig. 1.21

    

 Fig. 1.22 Positive slope m > 0 Fig. 1.23 Negative slope m < 0   Fig. 1.24

Some properties of straight lines

 Equation of line Description of line

 x = b 

b

 No slope, x intercept is b, line is vertical 

 y = b  Slope is 0, y intercept is b, and line is horizontal 
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 y – y1  slope m, line pasing through a point (x1, y1).

 = m(x – x1)

 y = mx + c 
c

 slope m, y intercept is c, and x intercept is

    – c ___ m  , m π 0

   x __ a   +   
y
 __ 

b
   = 1 b

a

 slope is  ( –   b __ a   ) , y intercept is b, and x

  intercept is a.

 Two lines are parallel if and only if they have same slope Fig. 1.25

Fig. 1.25  

 If two lines L1 and L2 have the slopes m1 and m2 respectivaly and both lines 
are perpendicular to each other then, Fig. 1.26.

Fig. 1.26

  m1 m2 = –1 (m1 π 0)

 If m > 0 then 0° < q < 90° Fig. 1.20.

 If m < 0 then 90° < q < 180° as we move from P to Q in Fig. 1.27, y 
decreases and Dy < 0. Thus the length P R is –Dy, and we have

  tan(p – q) =   
Dy

 ___ 
Dx

   = –m
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Fig. 1.27

1.7 FUNCTION AND THEIR GRAPH

We know that the area A = pr2 of a circle depends on the radius of the circle 
so here the radius r of the circle is an independent variable and the area A is 
dependent variable.

 In the above example the value of one variable quantity, which we might 
call y, (area A) depends on the value of another variable quantity, which we 
might call x, (radius r) Since the value of y is completely determined by the 
value of x, we say that y is a function of x. A symbolic way to say “y is a 
function of x” is by writing.

  y = f(x).

The function notation y = f (x) was first used by the Leonhard Euler in 
1734-1735. 

 In writing y = f(x), the symbol f which stands for the function rule, and the 
symbol f(x), which is the value of the function takes on for a given independent 
number x in the domain of f. Here f(x) is a number in the range of f.

Definition A function from a set X to a set Y is a rule that assigns a unique 
element f(x) Œ Y to each element x Œ X. The set X is called the domain of f, 
and the set of all values of f(x) as X varies through X is called the range of 
the function f.

Definition A function is a set of ordered pairs where for any x value in the 
set, there is only one y value. 

i.e. {(0, 0), (1, 1), (2, 8), (3, 27)} fi Function

i.e. {(0, 0), (1, 1), (1, –1) (3, 27)} fi Not a Function
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X

1
4

Codomain

2

3
Domain

1 16

9
4

0

8Range

Fig. 1.28

RangeDomain

Function f

Fig. 1.29

 To find the domain of a function we need to ask the question “for what 
values of x does the rule y = f(x) make sense”? For example the area of a circle 
whose radius r defined as A(r) = pr2, since the radius of the circle always will 
be positive real number except zero so the domain of the area of the circle 
is the set of all positive real numbers except zero. This set can be written as
R+ –{0}.

 To find the range of a function we must ask “what values do we obtain for 
y as x takes on all values in domain f” ? For example

   f(x) fi A(r) = pr2 fi f

 Hence the domain of f is R+ – {0}, the range of f is also R+ – {0} {Area 
is neither zero nor negative}.

Example 4 Find the domain of the following functions.

 (i) y =   3 __ x  , (ii) y = 2x – 1, (iii) y =  ÷ 
_______

 (1 – x2)  , (iv)   1 _______ 
 ÷ 

______
 (1 – x)  
  

 (v) y =   1 ______________  
 ÷ 

____________
  (1 – x) (x – 2)   

   (vi) y =  ÷ 
_____

 x + 2    (vii) y =   1 ________ 
1 – sin x 
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Solution

 (i) y =   3 __ x   The function not define at x = 0

  so the domain is R – {0} or ]– •, 0[»] 0, • [

 (ii) The domain of the function y = 2x – 1 is all real numbers.

 (iii) We know that there is no real number whose square is negative,

  so far as real number are concerned, the square is negative number does 
not exist.

  Now 1 – x2 > 0, if and only if x satisfies the relation

    – 1 £ x £ 1.

  So the domain of the function y =  ÷ 
_______

 (1 – x2)   is the interval [–1, 1].

 (iv) The domain of the function y =   1 _______ 
 ÷ 

______
 (1 – x)  
   is the interval ]– •, 1[, because 

at x = 1, y is not define and 1 – x is negative for x > 1.

 (v) The domain of the function y =   1 ______________  
 ÷ 

____________
  (1 – x) (x – 2)  
   is the open interval 

]1, 2[.

 (vi) The function y =  ÷ 
_____

 x + 2   has meaning if and only if x + 2 is non negative, 
therefore the domain is [– 2, • [.

 (vii) The function y =   1 _______ 
1 – sin x

   has the domain if and only if sin x π 1 so 

x π  ( 2n +   1 __ 
2

   )  p where n = 0, ±1, ±, 2 º

Graph of the function

The commercial and Political Atlas was the one of the first book to use graph 
for representing numerical data published in 1786 by the Scottish political 
economist William Play-fair.

Types of graphs 

Scatter plot  Line graph  Bar graph

Fig. 1.30        Fig. 1.31           Fig. 1.32 
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Definition The graph of the function f is the set of order pairs [{x, f(x)}: x Œ 
domain f ]. Hence a point lies on the graph of f if and only if its coordinates 
satisfy the equation y = f(x) For example the equation y = 2x + 1 can be thought 
of as a function since for every real number x there is a unique real number 
y that is equal to 2x + 1. The domain and range of f is R.

Fig. 1.33

The vartical line test

A curve in the xy – plan is the graph of a function if and only if it intersect 
the vertical line only once. 

    

Fig. 1.34           Fig. 1.35          Fig. 1.36

Fig. 1.37

 The graph of a cricle x2 + y2 = 4 given in Fig. 1.38. In the open interval 

]–1, 1[ for every real number x there are two values of y given by y ±  ÷ 
_______

 (4 – x2)   
Hence we do not have a function. We can obtain two seprate functions by 

defining y1 =  ÷ 
_______

 (4 – x2)   and y2 = –  ÷ 
_______

 (4 – x2)  .
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Fig. 1.38

Types of functions

One-one Function: A function f: X Æ Y is said to be one-one (injective or 
univalent) if distinct element of X have distinct element in Y, Fig. 1.39.

X Y
1

2
3

4
Domain

1
4

16

9

Range

Fig. 1.39

Onto Function: A function f : X Æ Y is said to be Onto (or subjective) if the 
range set of f coincides with its co-domain. In symbols f (x) = Y. Fig. 1.39.

One-one onto Function: A function f : X Æ Y is said to be one-one onto (or 
bijective) function if it is both-one-one and onto, Fig. 1.39. i.e. Let X be the 
set of all even integers and Y be the set of all odd integers. Then f defined as 
f(x) = x + 1 is one – one onto. 

Many one Function: A function f: X Æ Y is said to be a many-one function 
if it is not one-one. i.e. f(x1) = f(x2) even x1 π x2 for x1, x2 Œ X Fig. 1.40.

 Let R be the set of all real numbers and let f: R Æ R be defined as 

  f(x) =  {  
 
 
1, if x is a rational

   
–1, if x is irrational

 
 
   

 Then, f is a many-one function.
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Constant Function: A function f: X Æ Y is said to be a constant function 
if each element of X is associated with the same element of Y. i.e. f(x) = 1 " 
x Œ R, Fig. 1.41.

X Y

1

Fig. 1.41

Identity Function: A function f :X = Y is said to an identity function if 

each element x Œ X is associated with x itself. In symboles " x Œ X i.e. if
X = {1, 2, 3} then f(1) = 1, f(2) = 2, f(3) = 3 is an identity function.

Linear Function: is the function of the form y = mx + c, where m and c 
are constant.

Fig. 1.42

Fig. 1.40

X Y

– 2
4

2 f
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Power Function: is a function of the form f(x) = xa, where a is constant.

(i) When a = n is a positive integer 1, 2, 3, 4, 5 º.

    

Fig. 1.43 f(x) = x           Fig. 1.44 f(x) = x2

    

Fig. 1.45 f(x) = x3          Fig. 1.46 f(x) = x4

Fig. 1.47 f(x) = x5
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(ii) When a is – 1 or – 2

     

Fig. 1.48 f(x) =   1 __ x             Fig. 1.49 f(x) =   1 __ 
x2

  

(iii) When a is   1 __ 
2

  ,   3 __ 
2

  , º.

     

Fig. 1.50 f(x) =  ÷ 
__

 x             Fig. 1.51 f(x) =  x   
3 __ 
2

   

Polynomial Function

is a function of the form 

  f(x) = an x n  + an – 1 x n – 1 + an – 2x n  – 2 + an – 3 x
n – 3 + a1x2 + a1x + a0

 Where n is a positive integer and an, an – 1 º a2, a1, a0 are constants. All 
polinomials have domain (– •, •). If the leading coefficient an π 0 and n > 0, 
then n is called the degree of the polynomials.
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 Fig. 1.52(a) f(x) = x2 – 4x + 2 (degree 2)

Fig. 1.52(b) f(x) = x3 + 3x2 + x – 1 (degree 3)

Fig. 1.52(c) f(x) = x4 – 4x3 + 7x + 1 (degree 4)
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Constant Function: is zero degree polinomial f(x) = a. i.e. f(x) =   1 __ 
2
  

Fig. 1.53 f(x) =   1 __ 
2

  

Rational Function: is a ratio of two polinomial functions p and q  defined as

f(x) =   
p(x)

 ____ 
q(x)

  . The domain of this function is the set of real numbers for which 

q(x) π 0 i.e. f(x) =   3x2 – 4 ______ 
5x + 3

  

Fig. 1.54 f(x) =   3x2 – 4 ______ 
5x + 3

  

Algebraic Functions: A function is called algebraic function if it can be 
constructed from the polinomials using a finite number of algebraic operations 

(addition, subtraction, multiplication, division and taking roots) i.e. f(x) =  x 
  1 __ 
3
  
  

(x – 2).

 Function that are not algebraic are called transcendental.

 The following are transcendental functions,

Trignometric Functions: are the functions sine, cosine, tangent, secant, 
cosecent and contangent.
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Fig. 1.55 f(x) =  x   
1 __ 
3

    (x – 2)          Fig. 1.56 f(x) = x(1 – x )   
3 __ 
5

   

– 1.0

– 0.5

0.5

1.0

Fig. 1.57 f(x) = sin x

– 1.0

– 0.5

0.5

1.0

5 10 15

Fig. 1.58 f(x) = cos x

Exponential Functions: are functions of the form f(x) = ax, where base
a > 0 is a positive constant and a π 1. The domain of exponential functions is 
]– •, • [ and range ]0, •[ i.e. f(x) = 5x, f(x) = 10x.
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Fig. 1.59 f(x) = tan x

 The natural exponential function f(x) = ex(e ª 2.71828182) is some times 
denoted as exp (x). 

Fig. 1.60

Fig. 1.61 f(x) = ex

Logarithmic Function: are functions of the form f(x) = logb x, where b is 
positive constant, b π 1.

i.e.  f(x) = log3(2x + 3)

 The natural logarithm, loge x, is denoted by ln x. The common logarithm 
log10x, denoted by logx
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Fig. 1.62

Basic properties of the natural logarithm

log 1 = 0, log e = 1, elog  x = x, " x > 0, log ey = y, " y > 0, bx = ex log b for 

any b > 0 (b π 1)

 log b x =   
log x

 _____ 
log b

   for any b > 0(b π 1), a = log b if and only if b = 10a. 

Even and odd Function: The function y = f(x) is symmetric about y–axis if 
f(x) = f(– x) and this function is called the even function. The symmetry with 
respect to the origin occurs when f(– x) = – f (x) for all x and this function is 
called the odd function. Fig. 1.44 and Fig. 1.46 denoted the even functions 
while the Fig. 1.45 and Fig. 1.47 are the example of odd functions.

Composite Function: If f and g are two functions, then the composite 
function fog is defined by ( fog) (x) = f(g(x))

 Dom( fog) = {x: x Œ dom g and g(x) Œ dom f} ¤ x Æ g Æ g(x) – f Æ f(g(x))

 Let f(x) =  ÷ 
__

 x   and g(x) = 2x2 + 3, then ( fog) (x) = f(g(x)) = f(2x2 + 3)

=  ÷ 
_______

  2x2 + 3  

 Dom( fog) = {x: x Œ g(x) = 2x2 + 3 Œ dom f} But 2x2 + 3 > 0, 2 x2 + 3 

Œ dom f for every real x so Dom ( fog) = R.

 And (gof) (x) = g( f(x)) = g  ÷ 
__

 x   = 2x + 3.

 [To make an ice-cream from orange juice without any other material is an 
example of composite function fog. Fig. 1.63.]
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Fig. 1.63 Composite function

Some general rules for y = f(x)

The graph of y = f(x) + c, shift the graph of y = f(x) up c units if c ≥ 0 and 
down |c| units if c < 0, Fig. 1.64.

Fig. 1.64

 The graph of y = f(x – c), shift the graph of y = f(x) to the right if c > 0 
and to the left |c| units if c < 0, Fig. 1.65.

Inverse Function: Let f be a function with domain X and range is Y. Then 
the function f –1with domain Y and range X is the inverse of f if 

  f –1[ f (x)] = x " x in X

  f [ f –1(y)] = y " y in Y.

 And it is possible if and only if the function f is one-to-one, Fig. 1.66.
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Fig. 1.66 

 Let f(x) = 2x + 1 to find f –1 let y = 2x + 1 then x = 2y + 1 (interchange 

the x and y and solve) y =   
(x – 1)

 ______ 
2

  , Hence f –1 =   
(x – 1)

 ______ 
2
  . For verification

Fig. 1.67

Fig. 1.68

Fig. 1.65
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Horizontal line test: A function f has an inverse f –1 if and only if a horizontal 
line intersect the graph of y = f(x) not more than one point.

 A graph of a function that has inverse function, Fig. 1.69. A graph of a 
function that has no inverse function, Fig. 1.70.

Fig. 1.69 A graph of a function that has inverse function

Fig. 1.70 A graph of a function that has no inverse function 

Example 5 Find the inverse functions of the following functions.

 (i) f(x) =   x + 6 ______ 
2x – 3 

     (ii) f(x) =  ÷ 
_____

 2x –1  

 (iii) f(x) = 
7
 ÷ 

______
 3x + 4      (iv) f(x) =  {  

 
 
3x,

   
x2

 
 
 
,
    

 
 x £ 0   
x > 0

 
 
 
.

 (v) f(x) = {(0, 1), (1, 4), (2, 7), (3, 10)}

Solution

 (i) Let y = f(x) =   x + 6 ______ 
2x – 3

   (ii) Let y = f(x) =  ÷ 
______

 2x – 1   
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  x =   
y + 6

 ______ 
2y – 3

  , (interchange x and y)  y2 = 2x – 1 

  fi 2yx – 3x – y – 6 = 0  x2 = 2y – 1 (interchange x and y)

  fi y =   3x + 6 ______ 
2x – 1

   Hence f –1(x) =   3x + 6 ______ 
2x – 1

   fi y =   x
2 + 1 _____ 

2
  , hence f –1(x) =   x

2 +  1 _____ 
2
  

 (iii) Let y = f(x) = 
7
 ÷ 

______
 3x + 4  . 

  y7 = 3x + 4, x7 = 3y + 4, (interchange x and y) fi y =   x
7 – 4 _____ 

3
  , Hence 

f  –1(x) =   x
7 – 4 _____ 

3
  

 (iv) y = f(x) =  {  
 
 
3x,

   
x2

 
 
   

 
 x £ 0   
x > 0

 
 
   .  x = f(y) =  {  

 
 
3y,

   
y2,

 
 
     

 
 
y £ 0

   
y > 0

 
 
 . 

  Hence f –1(x) =  {  
 
 
  x __ 
3

  ,
   

 ÷ 
__

 x  ,  
     

 
 x £ 0   
x > 0

 
 
 .

 (v) f(x) = {(0, 1), (1, 4), (2, 7), (3, 10)},  f –1(x) = {(1, 0), (4, 1), (7, 2), (10, 3)}

Example 6 Use the inverse function solve log (x – 4) = 3.

Solution Since logarithmic and exponential functions are inverse of each 
other, use the property of logarithmic (page 1.25).

  (x – 4) = 103 fi x = 1004.

Example 7 A camera is to take a series of photographs of a hot air balloon 
rising vertically. The distance between the camera at P and the launching point 
of balloon Q is 200 meters. The camera must keep the balloon one sight and 
therefore its angle of elevation a must change with the hight h of the ballon.

 (i) Find the angle a as a function of the hight h.

 (ii) Find the angle a in degree when h is 600 meters, Fig. 1.71.

Fig. 1.71

Solution

 (i) From Fig. 1.71 tan a =   h ____ 
200
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  And we know that tan–1 (tan a) = a 

   a = tan–1  (   h ____ 
200

   ) 
 (ii) a = tan–1  (   600 ____ 

200
   ) 

  a = tan–1 (3)

  Piecewise Function: An example of Piecewise Function is a absolute 
function f(x) = |x|, in the sense that the formula for f changes, depending 
on the value of x, Fig. 1.72.

Fig. 1.72

Example 8 Sketch the graph of the following function

  f(x) =  {   0,

 
  

      ÷ 
_____

 4 – x2  ,   
 

x,
      

x £ – 2
 

   
 – 2 < x < 2     

x ≥ 2
    

Solution

Fig. 1.73
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Note: In geometric problems to preserve the true shape of a graph we must 
use the equal length of the units on both axes. For example if we sketch the 
graph of a circle in a coordinate system in which 1 unit in the y-axis is smaller 
than 1 unit in the x-axis, then the cricle will be change in the form of the 
ellips, Fig. 1.74. 

 

Fig. 1.74(a) Units equal in both axes

Fig. 1.74(b) 1 unit in the y-axis is smaller than 1 unit in the x-axis  

 In many cases it is not possible to display a graph by using the units of 
equal length. For example if we want to sketch the portion of the graph of the 
function y = 2x2 over the interval –2 £ x £ 2, then there is no problem using 
units of equal length. However, If we want to sketch the portion of the graph 
over the interval –6 £ x £ 6, then there is a problem keeping the units equal 
in length in this case the value of y varies between 0 and 72. To solve this 
problem the easy way is to the compress the unit of length along the y-axis  
shown in Fig. 1.75.
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Fig. 1.75(a)                Fig. 1.75(b)

Example 9 Solve ex – e–x = 2 for x.

Solution ex –   1 __ 
ex   = 2 or e2x – 2ex – 1 = 0

 Let v = ex then we have v2 – 2v – 1 = 0

 Solving for v we obtain v =   
2 ±  ÷ 

__
 8  
 ______ 

2
   = 1 ±  ÷ 

__
 2   or, since v = ex 

  ex = 1 ±  ÷ 
__

 2   but ex cannot be negative, hence

  ex = 1 +  ÷ 
__

 2  

  log ex = log(1 +  ÷ 
__

 2  ) fi x = log(1 +  ÷ 
__

 2  ) ª .881 

Exercises

 1. Solve the following inequalities

 (i) –3x >6,   (ii) 9x – 3 £ 5 – 3x,

 (iii) –  (   x – 4 _____ 
2

   )  ≥ 5x –   7 __ 
2
  , (iv)   4 __ 

5
   (x – 2) <   1 __ 

3
   (x – 6),

 (v) –3 <   
(7 – 2x)

 _______ 
3

   £ 4, (vi) –   x __ 
3
   < 2x + 1,

 (vii) 2x –   1 __ 
2

   ≥ 7x +   7 __ 
6

  , (viii) |x – 4| < 5,

 (ix) |x – 1| £ 3,   (x) |5x – 9| < 6,

 (xi)  | 5 –   2 __ x   |  < 1,   (xii)  |   x __ 
5
   – 1 |  £ 1,

 (xiii)  | 3 –   1 __ x   |  <   1 __ 
2

  ,   (xiv) |2x – 3| £ 4,
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 2. Find the domain of the following functions

 (i) y =   1 _____ 
x3 – x

  ,   (ii) y =  ÷ 
________

  (   1 ____  x     – 2 )   ,

 (iii) y =  ÷ 
____________

   [   1 ___ 
 ÷ 

__
 x  
   –  ÷ 

_____
 x + 1   ]   , (iv) y =  ÷ 

_________
 1 + 2 sin x  ,

 (v) y =   x
2 + 3 ______ 

x2 + |x|
  ,   (vi) y = 3 ÷ 

_____
 1 – x  ,

 (vii) y =  ÷ _____

   x _____ 
1 – x

    ,    (viii) y =  ÷ 
______

 2x – 6  ,

 (ix) y =  ÷ 
_____

 1 – |x|  ,   (x) y =   1 ____________  
 ÷ 

___________

  – x2 + 6x – 9  
  , 

 3. Find the domain and range of the following functions

 (i) y = x3,   (ii) y = x2/3,

 (iii) y =   1 __ 
x2

  ,   (iv) y =  ÷ 
_____

 4 – x  ,

 (v) y =  ÷ 
_____

 1 – x2   ,   (vi) y =  {  
 
 
1,

   
2,

 
 
     

 
 x ≥ 0   
x < 0

 
 
 

 4. Find fog and gof then determine the domain of each.

 (i) f(x) = x + 1, g(x) = 2x, (ii) f(x) = 2 –  ÷ 
__

 x  , g(x) = (x + 1)2

 (iii) f(x) =   1 + x _____ 
1– x

  , g(x) =   x _____ 
1 – x

  , (iv) f(x) =   |x| __ 
X
  , g(x) = x2,

 (v) f(x) =   x ______ 
1 + x2 

  , g(x) =   1 __ x  .

 5. Find the inverse (if it exist) of each of the following functions

 (i) y =   2x – 6 ______ 
3x + 3

  ,   (ii) y = 
7
 ÷ 

______
 2x + 1  , x ≥ –   1 __ 

2
  ,

 (iii) y =   ax + b ______ 
cx + d  

  ,   (iv) y = x2 – 2x, x ≥ 1,

 (v) y = ex – 1 + 3,   (vi) y = log(x + 2) – 3,

 (vii) y = 
3
 ÷ 

_____
 x + 1  .

 6. Two right circular cones, with the same height h = 50 cm, are to be 
constructed. The volumes of these cones are to be 200 and 400 cm3, 
find the radius of the base of the each cone.

 7. The population of a certain city increase according to the formula 
P = 200,000 e0.01t where P is the population and t the number of years, 
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with t = 0 corresponding to the year 2000, when will the population be 
300,000 and 500,000. 

 8. Suppose that DABC has an obtuse angle g. Draw BD perpendicular to 
AC, forming right triangles DABC and DBDC (with right angles D) show 

that   sin a _____ a   =   
sin g

 ____ c  . 

 9. If sin a + cos a = s and sin a – cos a = t where a is accute angle, 

show that a = tan–1   s + t ____ 
s – t

  .

 10. Express the following function in piecewise form without using absolute 
value.

 (i) f(x) = 4 + |2x – 3|, (ii) f(x) = 3 |x – 2| – |x + 1|.

 11. Find x such that

 (i) log x =  ÷ 
__

 3     (ii) log (x + 1) = 6

 (iii) 5x = 7   (iv) if 6 = 75  e 
  – s ____ 
125

  
  then find s.

Answers 

 1. (i) x < –2,   (ii) x £   2 __ 
3
  ,

  (iii) ]–•, 1]   (iv) x < –   6 __ 
7
  ,

  (v) –   5 __ 
2

   £ x < 8,   (vi) x > –   3 __ 
7
  ,

  (vii) x £ –   1 __ 
3

  ,   (viii) –1 < x < 9,

  (ix) –2 £ x £ 4,   (x)   3 __ 
5
   < x < 3,

  (xi)   1 __ 
3

   < x <   1 __ 
2

  ,   (xii) 0 £ x £ 10,

  (xiii)   2 __ 
7

   < x <   2 __ 
5

  ,   (xiv) –   1 __ 
2
   £ x £   7 __ 

2
  . 

 2. (i) R – [– 1, 0, 1],   (ii) 
 
0,   1 __ 

2
   
 ,

  (iii)  [ 0,   1 __ 
2

    ( –1 +  ÷ 
__

 5   )  ] ,  (iv)  [  ( 2n –   1 __ 
6
   )  p,  ( 2n +   7 __ 

6
   )  p ] ,

  (v) R,   (vi) ]–•, 1],

  (vii) [0, 1],   (viii) [3, • [

  (ix) [–1, 1],   (x) For no value of x.
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 3. (i) ]– •, • [; ]–•, • [, (ii) ]–•, • [; [0, • [

  (iii) ]–•; 0[ » ]0, • [; ]0, • [ (iv) ]– •, 4]; [0, • [ 

  (v) [–1, 1]; [0, 1],   (vi) R; [1, 2]. 

 4. (i) 2x + 1, R; 2x + 2, R (ii) 2 – |x + 1|, R; (3 –  ÷ 
__

 x  )2, [0, • [,

  (iii)   1 ______ 
1 – 2x

  , x π   1 __ 
2

  , 1; –   1 ___ 
2x

   –   1 __ 
2
  , x π 0, 1,

  (iv) 1, R –{0}; 1, R – {0} (v)   x _____ 
x2 + 1

  , x π 0;   1 __ x   + x, x π 0

 5. (i) y =   3x + 6 ______ 
2 – 3x

  ,    (ii) y =   1 __ 
2
   (x7 – 1),

  (iii) y =   b – bx ______ 
cx – d 

  ,   (iv) y = 1 +  ÷ 
_____

 x + 1  , 

  (v) y = log(x – 3) + 1, (vi) y = e x + 3 – 2,

  (vii) y = x3 – 1. 

 6.  (i) 1.95 cm, (ii) 2.76 cm.

 7. 2041,  2092.

 10. (i) f(x) =  {  
 
 
7 – 2x,

   

1 + 2x,
 
 
   

 

 
x <   3 __ 

2
  
   

x ≥   3 __ 
2
  
 

 

   

  (ii) f(x) =  {  7 – 2x,
 

  
 5 – 4x,    

2x – 7,
    

x < – 1
 

   
 –1 £ x < 2     

x ≥ 2
    

 11. (i) 53.95, (ii) 402.42, (iii) 1.21 (iv) 315.71.



2
C H A P T E R

Limit and Continuity

2.1 INTRODUCTION

The calculus was invented independently in England by Sir Isaac Newton and 
in Germany by Gottfried Wilhelm Leibnitz in the last quarter of the seventeenth 
century though it was to some extent the answer to the four major problems 
already tackled by the Greeks. The first problem was, given the formula for 
the distance a body covers as a function of the time, to find the velocity and 
acceleration at any instant; and conversely, given the formula describing the 
acceleration of a body as a function of the time, to find the velocity and the 
distance traveled. The second type of the problem was to find the tangent to a 
curve. The third problem was that of finding the maximum or minimum value 
of a function, and the fourth problem was finding the lengths of curves, such 
as the distance covered by a planet in a given period of time or to find the 
area enclosed by a given curve.

 We know that the average speed of an object can be fined by the formula

    
Dy

 ___ 
Dt

   =   
y1 – y0 ______ t1 – t0

  

(y1 is the position of the object at a time t1 and y0 is the position at a 
time t0).

 Let a ball falls from the top of a 100 ft cliff then the average speed during 
the first 2 sec of fall is

    
Dy

 ___ 
Dt

   =   
16(2)2 – 16(0)2

  _____________ 
2 – 0

   = 32 ft./sec

(Physically experiments a solid object dropped from rest to fall freely near the 
earth surface modeled by the function y = 16t2 ft. during the first t sec.).
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 The average speed from 1 second to 2 second

    
Dy

 ___ 
Dt

   =   
16(2)2 – 16(1)2

  _____________ 
2 – 1

   = 48 ft./sec

 We can also calculate the average speed of the ball over a time interval 
(t0, t0, + h where h = Dt is the length of the interval

    
Dy

 ___ 
Dt

   =   
16(t0 + h)2 – 16(t0)2

  ________________ 
h
  

 This formula cannot be use for calculate the “instantaneous” sped at t0 
when h = 0. But it can be use to calculate average speeds over increasingly 
short time intervals starting for different value of t0, for example when t0 = 1 
we use this formula as 

 Length of the intervals Average speed over interval of length h starting at t0 = 1

 1 48
 .5 40
 .1 33.6
 .01 32.16
 .001 32.016
 .0001 32.0016S

 So the average speed on intervals starting at t0 = 1 seems to approach a 
limiting value of 32 as the length of the interval decrease and tends to zero. 

 In an another case let us examine the behavior of the function y = f(x) 
= x + 3

 x x + 3 x x + 3

 3 6 1 4
 2.5 5.5 1.5 4.5
 2.2 5.2 1.9 4.9
 2.01 5.01 1.99 4.99
 2.001 5.001 1.999 4.999

 What happens to f(x) as x gets close to the value 2. Keeping in mind that x 
can get close to 2 from the right of 2 and from the left of 2 along the x-axis. 
We describe this by seeing that as x gets close to 2 from the either side the 
f(x) gets close to 5. In mathematically symbol, we write

 Lim   
x Æ 2

   (x + 3) = 5

 Observe that in our investigation of limx Æ 2 we are only concerned with 
the value of f(x) close x = 2 and not the value of f(x) at x = 2. In above two 
examples we have seen that, when a variable get closer and closer a particular 
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value [in first example t close to zero and in second x close to 2], the value 
of the function [speed tends to 32ft. and f(x) tends to 5] tends to a number.

 The above description leads us to introduce the idea of the limit of the 
function as follows. 

2.2 INFORMAL DEFINITION OF LIMIT 

Let a function f(x) be defined on an open interval I about x0, except possibly 
at x0 itself. If function f(x) gets arbitrarily close to a number L for all x 
sufficiently close to x0 we say that f approaches the limit L as x approaches 
x0, and we write

   LimxÆx0
 f(x) = L

 The existence of a limit as x tends to x0 does not depend on how the function 
may be defined at x0.

 Let   lim   
xÆ2

  f(x) =   x
2 – 4 _____ 
x – 2

   and   lim   
xÆ2

  g(x) = x + 2. The function f(x) has limit 4 as 

x tends to 2 even though f has not defined at x = 2, Fig. 2.1. The function g(x) 
also has the limit 4, Fig. 2.2. This is a special kind of equality of limits.

   

Fig. 2.1                Fig. 2.2

 The above informal definition of the limit is commonly called a two sided 
limit because it requires the values of the function to get closer and closer to 
a number L as values of x approaches x0 from either sides. However, some 
function exhibit different behaviours on the two sides as x approaches x0. For 

example consider the function f(x) =   |x| __ x  . The value of this function f(x) close 

to 1 as x approaches 0 from the right and the value of f(x) close to –1 as x 
approach 0 from the left, Fig. 2.3.
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Fig. 2.3

 The above statements can be describe as “the limit of f(x) =   |x| __ x   is 1 as 

x approaches 0 from the right” and that “the limit of f(x) =   |x| __ x   is –1 as x 
approaches 0 from the left”. We denote these limits by writing

limx Æ 0 +   |x| __ x   = 1 and limx Æ 0 –   |x| __ x   = –1

[0+ indicate a limit from the right of the zero and 0– limit from the left of 
the zero]

 This leads the following idea of the limit.

2.3 INFORMAL DEFINITION OF RIGHT HAND LIMIT 
R.H.L.  AND LEFT HAND LIMIT L.H.L.

Let f(x) be a function defined on an interval (a, b) [a < b] and f(x) approaches 
M as x approaches x0, x0 Œ[a, b] from the right in the interval (a, b) then we 
say that f has Right-hand limit M at x0, and we have

  lim   
x Æ  x 0  

+ 
  f(x) = M

 Similarly f(x) approaches N as x approaches x0 from the left in the interval 
(a, b), then we say that f has Left-hand limit N at x0, and we have

  lim   
x Æ  x 0  

– 
  f(x) = N

Relation between one sided and two sided limit

The two sided limit of a function f(x) exist at x0 if and only if the Right-hand 
limit (R.H.L.) and Left-hand limit (L.H.L.) exist at x0 and have the same 
value; that is 

li m x Æ  x 0 
  f(x) = L if and only if li m 

x Æ  x + 0 
  f(x) = li m x Æ  x – 0 

  f(x)
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y

xx0   

y

x
x0   

y

xx0

  Fig. 2.4 Limit exist  Fig. 2.5 Limit does not exist  Fig. 2.6 Limit does exist 

Example 1 Calculate limx Æ 0 |x|.

Solution We have |x| =  {  
 
 
x,

   –x,  
   

 
 x ≥ 0   
x < 0

 
 
  } 

 If x > 0 then |x| = x, which tends to zero as x tends to 0 from the right of 
0. If x < 0 then |x| = –x, which again tends to zero as x tends to 0 from the left 
of 0. Hence limx Æ 0 |x| = 0 limit exist (Both limit exist and equal) Fig. 2.7.

Fig. 2.7 

Example 2 Calculate the limit of the following function f(x) a x = 0, where

  f(x) =  {  
 
 
x + 2,

   
x – 2,

 
 
   

 
 x > 0   
x < 0

 
 
   

Solution Li m 
x Æ 0+  f(x) =   lim   

x Æ 0+
  (x + 2) = 2 and  lim x Æ 0–  f(x) =   lim   

x Æ 0–
  (x – 2) = –2

 Since the limits are different, hence limit does not exist (both limit exist 
but not equal) Fig. 2.8.

Example 3 Calculate the limit of the function f(x) = [x] a x = 2, where [x] 
is greatest integer function.
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Solution We know that

    lim   
x Æ n+

  [x] = n and   lim   
x Æ n–  [x] = n – 1, therefore 

    lim   
x Æ 0+

  [x] = 2 and   lim   
x Æ 2–

  [x] = 1. Hence the limit does not exist

Example 4 Calculate limx Æ 0 f(x) =  ÷ 
__

 x  .

Solution   Lim   
x Æ 0+

   ÷ 
__

 x   = 0 but   lim   
x Æ 0–

   ÷ 
__

 x   = not defined. Hence the limit does
not exist.

Example 5 Calculate the limit of the following function f(x) at x = 0, where

  f(x) =  {  
 

 
0,

   

  sin   1 __ x  ,
 

 

   
 
 
x £ 0

   
x > 0

 
 
   

Solution The function oscillate too much between –1 and +1 when x tends 
to 0 from the right side so the limit does not exist, Fig. 2.9.

Fig. 2.9 

Fig. 2.8
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2.4 INFINITE LIMITS

The value of   1 __ x   for x near 0 are given in Table 2.1 and in Fig. 2.10. We see 

that as x approaches to 0 from the right f(x) =   1 __ x   grows without bounded in the 

positive direction but if x approaches 0 from the left f(x) =   1 __ x   grows without 

bounded in the negative direction. Since the behaviour of   1 __ x   depends on the 
way in which x approaches 0 and we can write as

    lim   
x Æ 0+

    1 __ x   = • and   lim   
x Æ 0–

    1 __ x   = – •

Table 2.1

 x f(x) =   
1

 __ x   x f(x) =   
1

 __ x  

 —1 —1 1 1
 —.01 —100 .01 100
 —.001 —1000 .001 1000
 —.0001 —10000 .0001 10000
 —.00001 —100000 .00001 100000

Fig. 2.10 

Definition 

 (i) If f(x) grows without bound in the positive direction as x approaches 
x0 from either side, then we say that f(x) tends to infinity as x0 and we 
write

     lim   
x Æ x0

    1 __ x   = – •. i.e,   lim   
x Æ 0

    1 __ 
x2

   = •.
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Fig. 2.11

 (ii) If f(x) grows without bound in the negative direction as x approaches 
x0 from either side, then we say that f(x) tends to minus infinity as x 
approaches x0 and we write

    lim   
x Æ x0

    1 __ x   = – • i.e,   lim   
x Æ 0

    –1 _______ 
(x – 1)2

   = – •.

Fig. 2.12 

2.5 LIMITS AT INFINITY 

The limit as x infinity of f(x) is L, written

    lim   
x Æ •

  f(x) = L
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 If f(x) is defined for all large values of x and gets close to L as x increases 
without bound then it’s called the limit at infinity, and if f(x) is defined for all 
values of x that are large in the negative direction and if f(x) gets close to L 
as x increases in the negative direction without bound then it’s called the limit 
at minus infinity.

Example 6 Calculate limx Æ •   1 __ 
x2

  .

Solution From Table 2.2 we have limx Æ •   1 __ 
x2

   = 0.

Table 2.2

 x   
1

 __ 
x2

  

 1 1
 10 0.01
 100 0.001
 1000 0.0001
 10000 0.00001

Example 7 Calculate limx Æ •   x3 + 2x + 3  ___________  
x5 + 3x2 + 4  

  

Solution   lim   
x Æ x0

    x3 + 2x + 3  ___________  
x5 + 3x2 + 4 

  =   lim   
x Æ •

   

 1 +   2 __ 
x2

   +   3 __ 
x3

  

  ______________  
x2 ( 1 +   3 __ 

x3
   +   4 __ 

x5
   )  

  = 0

2.6 THEOREMS ON LIMITS

Let f and g be two functions such that 

    lim   
x Æ x0

  f(x) = L1 and   lim   
x Æ x0

  g(x) = L2

 Then:

 (i)   lim   
x Æ x0

  [ f(x) + g(x)] =   lim   
x Æ x0

  f(x) +   lim   
x Æ x0

  g(x) = L1 + L2

 (ii)   lim   
x Æ x0

  [ f(x) – g(x)] =   lim   
x Æ x0

  f(x) –   lim   
x Æ x0

  g(x) = L1 – L2

 (iii)   lim   
x Æ x0

  [ f(x) g(x)] =   lim   
x Æ x0

  f(x)   lim   
x Æ x0

  g(x) = L1L2

 (iv)   lim   
x Æ x0

    
f(x)

 ____ 
g(x)

   =   
  lim   
x Æ x0

  f(x)
 ________ 

  lim   
x Æ x0

  g(x)
   =   

L1 __ 
L2

  

 (v)   lim   
x Æ x0

  n ÷ 
___

 f(x)   = n ÷ _______
   lim   

x Æ x0
  f(x)   = n ÷ 

___
 L1   Provided L1 > 0 if n is even.

 (vi) limits of polynomials:
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  If P(x) = anxn + an – 1xn – 1 + an – 2x n – 2 + an – 3 x n – 3 + º a2x2 + a1x + a0.

  Then   lim   
x Æ c

  P(x) = P(c) = ancn + an – 1c
n – 1 + an – 2cn – 2 + an – 3cn – 3

    + º a2c2 + a1c + a0.

 (vii) Limits of Rational functions:

  If P(x) and Q(x) are polynomials and Q(c) π 0, then   lim   
x Æ c

    
P(x)

 ____ 
Q(x)

   =   
P(c)

 ____ 
Q(c)

  

The Sandwich Theorem:
Suppose that g(x) £ f(x) £ h(x) for all x in some open interval containing a 
number c, except at possibly x = c itself. Suppose also that   lim   

x Æ c
  g(x) =   lim   

x Æ c
 

h(x) = L, then   lim   
x Æ c

  f(x) = L.

Example 8 Applying the Sandwich Theorem given that 

    2 –   x
2

 __ 
4

   £ f(x) £ 2 +   x
2

 __ 
3
   find   lim   

x Æ 0
  f(x)

Solution   lim   
x Æ 0

   ( 2 –   x
2

 __ 
2

   )  = 2 and   lim   
x Æ 0

   ( 2 +   x
2

 __ 
3
   )  = 2

 The Sandwich Theorem implies   lim   
x Æ 0

  f(x) = 2.

Example 9 Find the limits of the following functions

 (i)   lim   
x Æ –1

   (   x3 + 2x2 + 3  __________ 
x2 + 4 

   ) , (ii)   lim   
x Æ 4

   (   2x – 6 _________ 
x2 + x – 12

   ) ,
 (iii)   lim   

x Æ 0
   (    x _________ 

 ÷ 
_____

 x + 1   – 1
   ) , (iv)   lim   

x Æ 0
   (   3 –  ÷ 

_____
 x + 9  
  __________ x   ) , 

 (v)   lim   
x Æ a

   (   xn – an

 _______ x – a    ) ,   (vi)   lim   
x Æ a

   (   sin x – sin a  ___________ x – a   ) ,

 (vii)   lim   
x Æ 0

   (   esinx – 1 _______ x   ) ,  (viii)   lim   
x Æ 0

   (   tan x – sin x  ___________ 
x3

   ) , 

 (ix) limx Æ 0  (   3x + |x| _______ 
7x – 5|x|

   ) , (x)   lim   
x Æ a

   (     1 __ 
ex   –   – 1 ___ 

ex  
 _______ 

  1 __ 
ex   +   – 1 ___ 

ex  
   ) ,

 
(xi) Let f(x) =

  {     1 ______ 
(x + 2)

  ,

 
  

 x2 – 5,    

 ÷ 
______

 x + 13  ,

    

x < – 2

 
   

 –2 £ x £ 3     

x > 3

     At   lim   
x Æ –2

  f(x),    lim   
x Æ 0

  f(x) and   lim   
x Æ 3

  f(x), 
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 (xii)   lim   
x Æ •

   (  ÷ 
_______

 (x2 + 1)   –  ÷ 
______

 (x + 1)   ) , (xiii)   lim    
x Æ –•

  (6x3 + 2x2 + 3x + 5).

Solution

 (i)   lim   
x Æ –1

   (   x3 + 2x2 + 3  __________ 
x2 + 4

   )  =  (   (–1)3 + 2(–1)2 + 3
  _______________  

(–1)2 + 4
   )  =   4 __ 

3
  .

 (ii)   lim   
x Æ 4

   (   2x – 6 __________  
x2 + x – 12

   )  =   lim   
x Æ 4

   (   2(x – 3)
  ____________  

(x – 3) (x + 4)
   )  =   1 __ 

4
  .

 (iii)   lim   
x Æ 0

   (   x __________  
 ÷ 

_____
 x + 1   – 1

   )  =   lim   
x Æ 0

   (   x ÷ 
_____

 x + 1   + 1
  ______________________   

( ÷ 
_____

 x + 1   – 1) ( ÷ 
_____

 x + 1   + 1)
   ) 

  =   lim   
x Æ 0

   (   x ÷ 
_____

 x + 1   + 1
  ___________ 

x + 1 – 1
   )  = 2. 

 (iv)   lim   
x Æ 0

    
3 –  ÷ 

_____
 x + 9  
  __________ x     lim   

x Æ 0
   (   (3 –  ÷ 

_____
 x + 9  ) (3 +  ÷ 

_____
 x + 9  )
   ______________________  

x(3 +  ÷ 
_____

 x + 9  )
   ) 

  =   lim   
x Æ 0

   (   9 – 9 – x  ____________  
x(3 +  ÷ 

_____
 x + 9  )

   )  =   – 1 ___ 
6
  .

 (v)   lim   
x Æ a

   (   xn – an

 _______ x – a   )  =   lim   
x Æ a

   (   (x – a) (xn – 1 + xn – 2a + º + an – 1

    ____________________________  x – a   ) 
  =   lim   

x Æ a
  (xn – 1 + xn – 2a + º + an – 1 = an – 1)   lim   

x Æ a
  (xn – 1) +   lim   

x Æ a
  (xn – 2a) + º + an – 1

  = nan – 1.

 (vi)   lim   
x Æ a

   (   sin x – sin a  ___________ x – a   )  =   lim   
x Æ a

   (   2 cos   
(x + a)

 ______ 
2
   sin   

(x – a)
 ______ 

2
  
   _____________________  x – a   ) 

  =   lim   
x Æ a

   (   sin   
(x – a)

 ______ 
2

  
 _________ 

  x – a _____ 
2

  
   )    lim   

x Æ a
  cos   

(x + a)
 ______ 

2
   = 1 ◊ cos   

(a + a)
 ______ 

2
   = cos a.

 (vii)   lim   
x Æ 0

   (   esin  x – 1 _______ x   )  =   lim   
x Æ 0

   (   esin  x – 1 _______ 
sin x

   )    lim   
x Æ 0

    sin x ____ x   = 1. 

   {   lim   
x Æ 0

    e
x – 1 _____ x   = 1 and   lim   

x Æ 0
    sin x ____ x   = 1 } 
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 (viii)   lim   
x Æ 0

   (   tan x – sin x  __________ 
x3

   )  =   lim   
x Æ 0

   (     sin x _____ cos x   – sin x
  ___________ 

x3
   )  =   lim   

x Æ 0
   (   sin x (1 – cos x)

  _____________  
x3 cos x

   )  

  =   lim   
x Æ 0

    tan x ____ x     lim   
x Æ 0

    
2 sin2   x __ 

2
  
 _______ 

x2
   =   lim   

x Æ 0
    tan x _____ x     2 __ 

4
     lim   

x Æ 0
    
sin   x __ 

2
  
 _____ 

  x __ 
2
  
     lim   

x Æ 0
    
sin   x __ 

2
  
 _____ 

  x __ 
2

  
   =   1 __ 

2
  .

 (ix)   lim   
x Æ 0

   (   3x + |x| _______ 
7x – 5|x|

   ) , L.H.L   lim   
x Æ 0–

    3x – x _________ 
7x – (–5x)

   =   1 __ 
6
  .

  And R.H.L   lim   
x Æ 0

    3x + x ________ 
7x – (5x)

   = 2. Hence limit does not exit

 (x)   lim   
x Æ 0

   (    e   
1 __ x    –  e   

– 1 ___ x    _______ 
 e   

1 __ x    +  e   
– 1 ___ x   

   ) , L.H.L   lim   
x Æ 0–

   (    e   
–1 ___ x    (  e   

2 __ x    – 1 ) 
  __________  

 e   
–1 ___ x    ( e   

2 __ x    + 1)
   )  =   lim   

h Æ 0
   (    (  e 

  2 ____ 
0 – h

  
  – 1 ) 
 _________ 

 (  e 
  2 ____ 
0 – h

  
  + 1 ) 

   )  = –1, 

and R.H.L.   lim   
x Æ 0+

   (    e   
1 __ x     ( 1 –  e   

–2 ___ x    ) 
  __________  

 e   
1 __ x     ( 1 +  e   

–2 ___ x    ) 
   )  =   lim   

h Æ 0
   (    ( 1 –  e 

  2 ____ 
0 – h

  
  ) 
 _________ 

 ( 1 +  e 
  2 ____ 
0 – h

  
  ) 
   )  = 1,

  Hence limit does not exist.

 
(xi) f(x) =

  {    1 ______ 
(x + 2)

  ,

 
  

 x2 – 5,    

 ÷ 
_____

 x + 3  ,

       

x < – 2

 
   

 –2 £ x £ 3     

x > 3

   At   lim   
x Æ –2

  f(x)

  L.H.L.   lim    
x Æ –2–

  f(x) =.   lim    
x Æ –2–

    1 ______ 
(x + 2)

   = – • and R.H.L.   lim    
x Æ –2+

  f(x)

  =   lim    
x Æ –2+

  x2 – 5 = –1.

  Hence limit does not exist.

  At   lim   
x Æ 0

  f(x)

  L.H.L.   lim   
x Æ 0–

  f(x) =   lim   
x Æ 0–

  (x2 – 5) = –5 and R.H.L.   lim   
x Æ 0+

  f(x)

       =   lim   
x Æ 0+

  (x2 – 5) = –5.

  L.H.L. = R.H.L. = –5. Hence limit exist.

  At   lim   
x Æ 3

  f(x)

  L.H.L.   lim   
x Æ 3–

  f(x) =   lim   
x Æ 3–

  (x2 – 5) = 4 and R.H.L.   lim   
x Æ 3+

  f(x)

       =   lim   
x Æ 3+

   ÷ 
_____

 x + 3   =  ÷ 
__

 6  .

  Hence limit does not exist.
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 (xii)   lim   
x Æ •

   (  ÷ 
_______

 (x2 + 1)   –  ÷ 
______

 (x + 1)   )  =   lim   
x Æ •

    
(x2 + 1) – (x + 1)

  ___________________   
 (  ÷ 

_______

 (x2 + 1)   +  ÷ 
______

 (x + 1)   ) 
    

 =   lim   
x Æ •

    
(x – 1)

  _____________________   

 (  ÷ _______

  ( 1 +   1 __ 
x2

   )    +  ÷ ________

  (   1 __ x   +   1 __ 
x2

   )    ) 
   =  •.

 (xiii)   lim    
x Æ –•

  (6x3 + 2x2 + 3x + 5) =   lim    
x Æ –•

  x3 ( 6 +   2 __ x   +   3 __ 
x2

   +   5 __ 
x3

   )  = – •.

Example 10 For the function in Fig. 2.13 and Fig. 2.14 find the limit at x = c

1

2

3

y

c x

y f x= ( )

   c

2

y

y f x= ( )

x

Fig. 2.13               Fig. 2.14

Solution. In Fig. 2.13   lim   
x Æ c–  f(x) = 1 and   lim   

x Æ c+
  f(x) = 3. limit does not exist

 In Fig. 2.14   lim   
x Æ c–  f(x) =   lim   

x Æ c+
  f(x) = 2. limit exist

2.7 FORMAL DEFINITION OF LIMITS

In this section we give a formal definition of the limit. To do this we first 
examine how to control the input of a function to ensure that the output is kept 
within preset bounds. Let us consider the example in section 2.1 on page 2, 
in this example we have seen that as x approaches 2 the value of the function
y = f(x) = x + 3 get closer to 5. Now see this example in an another way, how 
close to x0 = 2 does x have to be so that y = x + 3 differs from 5 by say, 
less than 2 units or what values of x is |x – 5| = 2? to find out, we solve the 
inequality

    |x + 3 – 5| < 2

    |x – 2| < 2

    –2 < x – 2 < 2

    0 < x < 4
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 Keeping x within 2 units of x0 = 2 keep y with 2 units of y0 = 2 Fig. 2.15.

5

2 64

y x= + 3

y

x

Fig. 2.15

Formal Definition

The statement   lim   
x Æ x0

  f(x) = L means

 If given any number e > 0 we may find a number d > 0 such that
|f(x) – L| < e if 

   0 < |x – x0| < d

y f x= ( )

L + e

L – e

L

y

x
x0 – d x0 x0 + d

Fig. 2.16
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Example 11 Show that   lim   
x Æ 3

  (2x – 1) = 5

Solution |2x – 1 – 5| < e if 0 < |x – 3| < d    
  f(x) L x0 

 The aim of this example is to prove that the limit of the function 
f(x) = (2x – 1) is 5 when x approaches to 3. We have |2x – 1 – 5| = 2|x – 3|

 And this must be less than e whenever |x – 3| < d, for a given > 0, choose 

d =   e __ 
2

  .

|f(x) – L| = 2|x – 3| < 2d = 2   e __ 
2

   = e Fig. 2.17  { If we choose e = 1 then d =   1 __ 
2
   } 

L – e

L + e
L

x0 + dx0 – d

y

x

2 – 1x

5

2 4 6

Fig. 2.17

Fig. 2.16(a) Limit exist Fig. 2.16(b) Limit does not exist
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Example 12 Show that   lim   
x Æ 5

  x2 = 25 

Solution By definition

  |f(x) – L| = |x2 – 25| = |(x – 5) (x + 5)|

    |(x – 5) (x + 5)| (2.1)

 This must be less than e whenever |x – 5| < d
 Using the triangular inequality, we say that

  |x + 5| = |(x – 5) + 10| £ |x – 5| + |10| (2.2)

 From (2.1) and (2.2)
    |x + 5| |x – 5| £ (|x – 5| + |10|) |x – 5|

 Therefore if |x – 5| < d, then

    |x + 5| |x – 5| £ (d + 10)d
 For a given e > 0 choose d
    (d + 10) d £ e
 Let d £ 1 then

    (d + 10) d £ 11d
 Hence 11d £ e

 So when d = min  (   e ___ 
11

  , 1 )  then   lim   
x Æ 5

  x2 = 25.

Example 13 Show that   lim   
x Æ 0

  x sin   1 __ x   = 0

Solution |f(x) – L| = |x sin 1/x – 0|

   =  | x sin   1 __ x   |  £ |x|

 This must be less than e whenever |x – 0| < d
 For a given e > 0 choose d = e, then

  |f(x) – L| =  | x sin   1 __ x   |  £ |x| = e

 Hence when d = e, then   lim   
x Æ 0

  sin   1 __ x   = 0

Example 14 Show that   lim   
x Æ 0+

    1 ______ 
 1 + e   

–1 ___ x   
   = 1

Solution |f(x) – L| =  |   1 ______ 
1 +  e   

–1 ___ x   
   – 1 | 

 This must be less than e whenever |x – 0| < d

 When   1 ______ 
1 +  e   

1 __ x   
   < e or  e   

1 __ x    + 1 >   1 __ e  
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 Or     1 __ x   > log  (   1 __ e   – 1 ) 
fi    0 < x < 1/log  (   1 __ e   – 1 ) 
 For a given e > 0 we choose d =   1 __________  

log  (   1 __ e   – 1 ) 
  

 Thus for any e > 0 and d > 0

     |   1 ______ 
1 +  e   

–1 ___ x   
   – 1 |  < e when d =   1 __________  

log  (   1 __ e   – 1 ) 
   .

Example 15 Show that   lim   
x Æ 0

    1 __ x   does not exist 

Solution Let L be any number then

    |f (x) – L| < e

fi     |   1 __ x   – L |  < e

fi    L – e <   1 __ x   < L + e If e = 1, then

     |   1 __ x   |  < |L| + 1

    |x| >   1 ______ 
|L| + 1

  

 Hence for any e > 0, and d > 0, there will always be a number x in the 

interval 0 < |x – 0| < d such that   1 __ 
|x|

   > |L| + e so the limit does not exist.

Limits as x  ± 

In section 2.5 we discussed the limits

  l im 
x Æ •+  f(x) = L and li m xÆ•–  f(x) = L

 These limit can be defined more precisely as 

L – e

L

L + e

N X
X

y

Fig. 2.18
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 The expression l im 
x Æ •+  f(x) = L means given any e > 0 there exists a 

positive number N such that 

    |f(x) – L| < e, when x > N.

 The expression  lim x Æ •–  f(x) = L means given any e > 0 there exists a 

negative number N such that 

    |f(x) – L| < e, when x < – N

Fig. 2.19

Example 16 Show that   lim   
x Æ •

   ( 3 +   1 __ x   )  = 3.

Solution Applying the definition, we have

     | 3 +   1 __ x   – 3 |  < e when x > N

 Because x Æ • we assume that x > 0 so

      1 __ x   < e when x > N

 Or  x >   1 __ e   when x > N

 It is clear that N =   1 __ e   satisfies the requirement and according the definition 

there is a positive number   1 __ e   when   lim   
x Æ •

  (3 + 1/x) = 3, Fig. 2.20.

1 2 3 4 5

4

2

x

y

Fig. 2.20
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Infinite limits
In section 2.4 we discussed the limits   lim   

x Æ x0
  f(x) = • and   lim   

x Æ x0
  f(x) = – •

 The expression   lim   
x Æ x0

  f(x) = +• means, given any positive number N > 0 

(however large), there exists some d > 0 such that f(x) > N, when 0 < |x – x0| 
< d, Fig. 2.21. 

x0 – d x0 + d
d

N

y

x

Fig. 2.21 

 The expression   lim   
x Æ x0

  f(x) = – • means, given any negative number N there 

exists some d > 0 such that f(x) < – N, when 0 < |x – x0| < d, Fig. 2.22. 

N

y

x

x0 – d x0 + d

d

Fig. 2.22

Example 17 Show that   lim   
x Æ 0

    1 __ 
x2

   = •

Solution Given a positive number N, we find d > 0 such that 0 < |x – 0| < 

d fi   1 __ 
x2

   > N 
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 Now   1 __ 
x2

   > N if and only if |x| =   1 ___ 
 ÷ 

__
 N  
  ,

 Hence, when d =   1 ___ 
 ÷ 

__
 N  
   then |x| < d fi   1 __ 

x2
   >   1 __ 

d2
   ≥ N

 Therefore, by definition   lim   
x Æ 0

    1 __ 
x2

   = •, Fig. 2.23.  ( If N = 2 then d = ±   1 ___ 
 ÷ 

__
 2  
   ) 

Fig. 2.23

Exercises 

Find the limits of the following.

 1.   lim   
x Æ 3

    
(x – 1) (x – 3)

  ____________ 
(x + 2)

  , 2.   lim   
x Æ –1

    x
2 + 6x + 5  __________  
x2 – 3x – 4

  ,

 3.   lim   
x Æ 4–

    3 – x __________  
x2 – 2x – 8

  , 4.   lim   
x Æ 5–

   ÷ 
_____

   x + 2 _____ 
x + 1

    ,

 5.   lim   
x Æ 0+

    
 ÷ 

__________

  x2 + 4x + 5   –  ÷ 
__

 5  
  _________________  x    , 6.   lim   

x Æ 0
    3 ___________  
 ÷ 

______
 3x + 1   + 1

  ,

 7.   lim   
x Æ 0

    
 ÷ 

______
 3x + 1   – 1
  ___________ x    , 8.   lim   

x Æ 2
    
 ÷ 

______

 x2 + 12   – 4
  ___________ 

x – 2
  ,

 9.   lim   
x Æ 0+

    x __________  
 ÷ 

_________
 1 – cos x  
  , 10.   lim   

x Æ 0
    3 sin–1x _______ 

4x
  ,

 11.   lim   
x Æ 0

    
sin (1 + x) – sin (1 – x)

   ____________________  x  , 12.   lim   
x Æ 0

    cosec2 x _______ 
cot2 x

  ,
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 13.   lim   
x Æ 2+

    1 ______ 
|2 – x|

  ,   14.   lim   
x Æ 2

    
|x + 2| (x + 3)

  ____________ 
(x + 2)

  ,

 15.   lim   
x Æ 0

    
 ÷ 

_____
 1 + x   –  ÷ 

_____
 1 – x  
  ______________  

sin–1 x
  , 16.   lim   

x Æ 0
    e

x + e–x – 2  ___________ 
x2

  ,

 17. If f(x) =  {  
 
 
x – 1,

   
3x – 7,

 
 
   

 
 x £ 3   
x > 3

 
 
    then find   lim   

x Æ 3
  f(x),

 18. If f(x) =  {  
 
 
3 – 2x,

   
x2 – 5,

 
 
     

 
 x £ 2   
x > 2

 
 
  then find   lim   

x Æ 2
  f(x),

 19. If  ÷ 
_______

 6 – 2x2    £ f(x) £  ÷ 
______

 6 – x2   for –1 £ x £ 1 use the sandwich theorem 
show that f(x) = 6.

 20. If 1 –   x
2

 __ 
6

   <   x sin x ___________  
2 – 2 cos x

   < 1 holds for all values of x approaches to 

zero then find   lim   
x Æ 0

    x sin x _________ 
2 – 2 cos x

  .

 21. For the function f(x) graphed in Fig. 2.24, find

 (a)   lim   
x Æ 2+

  f(x), (b)   lim   
x Æ 2–

  f(x), (c)   lim   
x Æ 2

  f(x), (d)   lim   
xÆ •+

  f(x),

  (e)   lim    
x Æ •–  f(x), (f) f(2).

y

2 4 6
x

–2–4

5

Fig. 2.24 
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 22. For the function f(x) graphed in Fig. 2.25 find

 (a)   lim   
x Æ 0+

  f(x), (b)   lim   
x Æ 0–

  f(x), (c)   lim   
x Æ 0

  f(x), (d)   lim   
xÆ•+

  f(x),

 (e)   lim    
x Æ •–  f(x).

Fig. 2.25

 23. For the function f(x) graphed in Fig. 2.26, find

 (a)   lim   
x Æ 2+

  f(x), (b)   lim   
x Æ 2–

  f(x), (c)   lim   
x Æ 0

  f(x), (d)   lim   
xÆ•+

  f(x),

 (e)   lim    
x Æ •–  f(x).

 24. For the function f(x) graphed in Fig. 2.27, find

 (a)   lim   
x Æ 0+

  f(x), (b)   lim   
x Æ 0–

  f(x) (c)   lim   
x Æ 0

  f(x) (d)   lim    
x Æ •+

  f(x),

 (e)   lim   
xÆ •–  f(x), (f) f(0).

 25. Show that   lim   
x Æ 2

  (2x + 4) = 8.

 26. Show that the function f(x) = sin   1 __ x  , whenever x π 0. Defined on R – {0} 

does not approaches 0 as x Æ 0.
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 27. Show that the limit of the function f(x) = 
 {  

 
 
  |x – 4| _____ 
x – 4

  ,
   

0,
 

 
      

 
 
x π 4

   
x = 2

 
 
  when x Æ 

4 does not exist.

 28. Show that the limit   lim   
x Æ 1

   2 
  1 _____ 
(x – 1)

  
  does not exist.

 29. Show that the limit   lim   
x Æ 0+

   ÷ 
__

 x   does not exist.

 30. For the limit   lim   
x Æ 1

   ÷ 
______

 2x – 1   = 1, find a d > 0 that works for e = 1.

 31. Prove that   lim   
x Æ 2

  f(x) = 4 if f(x) =  {  
 
 
x2,

   
1,

 
 
   

 
 x π 2   
x = 2

 
 
   .

Fig. 2.26

Fig. 2.27
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 32. By using the formal definition of the limit find the values of d > 0 of 
the following.

 (i)   lim   
x Æ –1

  (7x + 5) = –2; when e = .01,

 (ii)   lim   
x Æ 0

   ÷ 
_____

 x + 1   = 1; when e = .1,

 (iii)   lim   
x Æ 0

   ÷ 
______

 1 – 5x   = 4; when e = .5,

 (iv)   lim   
x Æ –5

    1 __ x   =   1 __ 
5

  ; when e = .05,

 (v)   lim   
x Æ –2

  x2 = 4; when e = .5,

 33. Obtain the limit of the function f(x) =   x2 – 4 ____________  
(x – 2)2 (x – 4)

   when x approaches 
to 2, –7, – •, + •.

 34. Given that f(x) =   x2

 _____________  
(x – 1) (x – 2)

   show that   lim   
x Æ 1+

  f(x) = +• and   lim   
x Æ 1–

 
f(x) = – •.

 35. show that   lim   
x Æ •

    
 ÷ 

_____

 x2 + 1  
 _______ 

x + 1
   = 1 and   lim    

x Æ –•
    
 ÷ 

_____

 x2 + 1  
 _______ 

x + 1
   = –1.

 36. show that   lim   
x Æ 2

    1 _______ 
(x – 2)4

   = •.

 37. Use the definition on page (18) find N when   lim   
x Æ •

    1 __ 
x2

   = 0; e = .01.

Answers

 1. 0, 2.   – 4 ___ 
5

  , 3. +•, 4.  ÷ 
__

 3  ,

 5.   2 ___ 
 ÷ 

__
 5  
  , 6.   3 __ 

2
  , 7.   3 __ 

2
  , 8.   1 __ 

2
  ,

 9.   2 ___ 
 ÷ 

__
 2  
  , 10.   3 __ 

4
  , 11. 2 cos 1, 12. 1,

 13. + •, 14. 1 and –1, 15. 1, 16. 1,

 17. 2, 18. –1, 20. 1,

 21. (a) 3, (b) –1, (c) does not exist, 

  (d) 3, (e) –1, (f) 2,

 22. (a) 0, (b) 0, (c) 0, (d) +•,

  (e) –•,
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 23. (a) 2, (b) 2, (c) 2, (d) +•,

  (e) – •, 

 24. (a) 0, (b) 0, (c) 0, (d) +•,

  (e) – •, (f) 0,

 32. (i)   1 ____ 
700

  , (ii) (– .19, .21), (iii) .75, (iv) 1,

  (v)  ( –  ÷ 
___

 4.5  , –  ÷ 
___

 3.5   ) ,
 33. (–• and +•), (–• and +•), 0, 0,

 37. 10.

2.8 CONTINUITY

A function is continuous at a point if its defined at that point and its graph 
moves unbroken through that point, Fig. 2.28.

   x0

y f x= ( )

y

x
         x0

y

x

Fig. 2.28(a) Continuous at x0       Fig. 2.28(b) Not Continuous at x0

x0

y

x

Fig. 2.28(c) Not Continuous at x0 

Continuity at a point: A function f(x) is continuous at an interior point
x = x0 of the domain of f if 

 1. f(x0) is defined,  2.   lim   
x Æ x0

  f(x) exists,

 3.   lim   
x Æ x0

  f(x) = f(x0)
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A function that is not continuous at a point x0 is said to be discontinuous 
at that point 

The third condition of continuity says that if x approaches x0 then the function 
f(x) must be close to f(x0) and this condition can be defined as:

 Let f(x) be a function defined on an interval I. Then the function is 
continuous at any interior point x0 Œ I, if for any e > 0, there exists a number 
d > 0 such that |f(x) – f(x0)| < e, when 0 < |x – x0| < d, Fig. 2.29.

f x f x( ) = ( )0

y f x= ( )

x0 – d x0 + d

x0
x

y

Fig. 2.29

 When a function defined in an interval I say (a, b), then the continuity of 
the function can be defined at three points in which one is interior point and 
other two points are the end points of the interval.

 The continuity at end points is defined by taking one sided limits.

 A function f(x) is continuous at a left end point x = a of its domain if 
  lim   
x Æ a+

  f(x) = f(a) and the function f(x) is continuous at b right end point x = b 

of its domain if   lim   
x Æ b–

  f(x) = f(b), Fig. 2.30.

y

x
a bx0

Fig. 2.30
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 For example the function f(x) =  ÷ 
______

 9 – x2   is continuous at every points of its 
domain [–3, 3] including x = –3, where f is right continuous, and x = 3 where 
f is left continuous, Fig. 2.31.

Fig. 2.31

 The other function f(x) where f(x) =  {  
 
 
0,

   
1,

 
 
   

 
 x < 0   
x ≥ 0

 
 
    

 Is the right continuous at x = 0, but is neither left continuous nor continuous 
there, Fig. 2.32.

1

y

x

Fig. 2.32

 A function f is continuous in the open interval (a, b) if it continuous at 
every point in that interval (a may be – • and/or b may be +•).

 A function f is continuous in closed interval [a, b] if the following conditions 
hold:

 1. The function f is continuous in the open interval (a, b).

 2. f(a) and f(b) both exist.

 3.   lim   
x Æ a+

  f(x) = f(a) and   lim   
x Æ b–

  f(x) = f(b).
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 Rotation of the earth about the sun or rotation of the moon about the earth 
with respect to time is continuous, Fig. 2.32(a).

Sun

Earth
Rotation

Moon

Revolution

Fig. 2.32(a)

Theorems: Let the function f and g be the continuous at x0, and c be a 
constant. Then following functions are continuous at x0:

 1. Sums f + g.

 2. Difference f – g.

 3. Product f ◊ g

 4. Constant multiples c ◊ f 

 5. Quotients   
f
 __ g   provided g π 0.

 6. Powers  f     
r _ s    provided it is defined on an open interval containing x0, where 

r and s integers

 7. If f is continuous at a and if   lim   
x Æ x0

  g(x) = a, then   lim   
x Æ x0

  f(g(x)) = f(a).

 8. Let P(x) = anxn + an – 1 x
n – 1 + an – 2 x

n – 2 + º a2x2 + a1x + a0 be a 

polynomial, then   lim   
x Æ x0

  P(x) = P(x0) for every real number x0. Therefore 

every polynomial function is continuous at every real number.

 9. If P(x) and Q(x) are polynomials, then the rational function P(x)/Q(x) 
is continuous whenever it is defined (Q(c) π 0) by the quotient rule.

 10. Intermediate value theorem: Let f be continuous on [a, b], and if 
c is any number between f(a) and f(b), then there is a number x0 in
(a, b) such that f(x0) = c, Fig. 2.33.
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Fig. 2.33

  For example the polynomial P(x) = x3 + x2 + x – 2 is continuous in the 
interval [0, 1]. Since P(0) = –2 and P(1) = 1, there must be a number x0 in
(0, 1) such that P(x0) = 0. (since 0 is between –2 and 1). (root of the 
polynomial), Fig. 2.34.

Fig. 2.34

  Let P  (   1 __ 
2

   )  = – 1.125 and P  (   9 ___ 
10

   )  = .439, therefore there is a root between   1 __ 
2
   

and   9 ___ 
10

  .

  Using the calculator, we can narrow the root down further.
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 11. If f is continuous on [a, b] and f(a) and f(b) are none zero and have 
opposite signs, then there is at least one solution of the equation
f(x) = 0 in the interval (a, b), Fig. 2.35.

Fig. 2.35

Example 18 Show that f(x) = 5x + 2 is continuous for x = 1

Solution
 1. f(x) = 5x + 2 is defined at x = 1 (polynomial function)

 2. L.H.L.   lim   
x Æ 1–

  f(x) =   lim   
x Æ 1–

  5x + 2 = 7 and R.H.L.   lim   
x Æ 1+

  f(x) =   lim    
x Æ 1+ 

 5x + 2 = 7

  Hence   lim   
x Æ 1

  f(x) exist 

 3.   lim   
x Æ 1

  f(x) = f(1) = 7. Therefore the function f(x) = 5x + 2 is continuous 

at x = 1.

 4. Let e > 0, we have |f(x) – f(1)| = |5x + 2 – 7| = |5x – 5| = 5|x – 1|

  Now 5|x – 1| < e when 0 < |x – 1| < d. Hence |x – 1| < e when d =   e __ 
5
  

 Thus there exist an interval  ( 1 –   e __ 
5
  , 1 +   e __ 

5
   )  around 1 such that for every 

value of xe ( 1 –   e __ 
5

  , 1 +   e __ 
5

   ) , the numerical value of the difference between f(x) 

and f(1) is less than a positive number e.

 Hence f(x) is continuous at x = 1.

Example 19 Show that f(x) = |x| + |x – 1| is cotinuous at x = 0 and x = 1

Solution f (x) = – x – (x – 1) = 1 – 2x when x < 0

  f(x) = x – (x – 1) = 1 when 0 £ x < 1
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  f(x) = x + (x – 1) = 2x – 1 when x ≥ 1

 Now, L.H.L. at x = 0   lim   
x Æ 0–

  f(x) =   lim   
x Æ 0–

  (1 – 2x) = 1 and R.H.L.   lim   
x Æ 0+

  f(x) = 1

 Also f(0) = |0| + |0 – 1| = 1. Therefore   lim   
x Æ 0–

  f(x) =   lim   
x Æ 0+

  f(x) = 1 = f(0).

 Hence the f(x) is continuous at x = 0.

 Now L.H.L. at x = 0   lim   
x Æ 1–

  f(x) = 1 and R.H.L   lim   
x Æ 1+

  f(x) =   lim   
x Æ 1+

  (2x – 1) = 1

 Also f(1) = |1| + |1 – 1| = 1. Therefore   lim   
x Æ 1–

  f(x) =   lim   
x Æ 1+

  f(x) = 1 = f(1).

 Hence the f(x) is also continuous at x = 1.

Example 20 Show that f(x) = |x| is continuous everywhere

Solution |x| =  {   x,
 

 
 0,   

– x,
     

if
 

 
 if   

if
   

x > 0
 

  
 x = 0    

x < 0
 

 Here |x| in the interval (0, + •) which is a polynomial and |x| = – x in 
the interval (– •, 0) which is also polynomial. But polynomial are continuous 
everywhere so x = 0 is the only possible discontinuity for |x| to prove the 
continuity at x = 0 we must show   lim   

x Æ 0
  |x| = 0.

 L.H.L.   lim   
x Æ 0–

  f(x) =   lim   
x Æ 0–

  |x| =   lim   
x Æ 0–

  (– x) = 0, and R.H.L.   lim   
x Æ 0+

  f(x) =   lim   
x Æ 0+

  

|x| = 0,

 And   lim   
x Æ 0

  |x| = 0 = |0|. Hence the function is continuous at x = 0.

Example 21 Show that f(x) = sin2 x is continuous for every values of x

Solution Let e > 0 we have |f(x) – f(c)| = |sin2 x – sin2 c|

   = |sin (x + c) sin (x – c)| £ |sin (x + c)| |sin (x – c)|

 Now |sin (x + c)| £ 1 for every value of x and c and |sin (x – c)| £ |x – c|

 Hence, we have |f(x) – f(c)| £ |x – c|

 |f(x) – f(c)| < e when |x – c| < e

 Thus, there exist an interval (c + e, c – e) around c such that for every 
value of x

    |sin2 x – sin2 c| < e
 Hence, sin2 x is continuous when x = c, therefore also for every value of 
x: c being any number.

Example 22 Examine the continuity of the function

  
f(x) =

  {  
 
 

  x ______ 
1 +  e   

1 __ x   
  ,

   
0

 
 
   ,  

 
 

when

   when 
 
   

 
 

x π 0

   x = 0 
 
 
   

at x = 0
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Solution L.H.L.   lim   
x Æ 0–

  f(x) =   lim   
h Æ 0

    
(0 – h)

 _________ 

1 +  e 
  1 ______ 
(0 – h)

  
 

   =   lim   
h Æ 0

    – h ________ 

1 +  e 
  1 ______ 
(0 – h)

  
 

   = 0 and

 R.H.L.   lim   
x Æ 0+

  f(x) =   lim   
h Æ 0

    
(0 + h)

 ________ 

1 +  e 
  1 ______ 
(0 – h)

  
 

   = 0 and f(0) = 0.

 Since   lim   
x Æ 0

  f(x) = f(0). Hence the function is continuous at x = 0.

Example 23 Determine whether the following function are continuous at
x = 3

  
f(x) =   x

2 – 9 _____ 
x – 3

  ,
 

g(x) =
  {  

 
 
   x2 – 9 _____ 

x – 3
  ,
   

5,
 

 
    

 
 
  x π 3

   
x = 3

 
 
 , 

h(x) =
  {  

 
 
  x

2 – 9 _____ 
x – 3

  ,
   

6,
 

 
   

 
 
x π 3

   
x = 3

 
 
   

Solution In above all cases we have   lim   
x Æ 3

  f(x) =   lim   
x Æ 3

  g(x) =    lim   
x Æ 3

  h(x) 

=   lim   
x Æ 3

    x
2 – 9 _____ 
x – 3

   =   lim   
x Æ 3

  (x + 3) = 6

 But the function f(x) is not defined at x = 3 so f(x) is not continuous at 
x = 3. Figure 2.36(a). The function g(x) is defined at x = 3 and g(3) = 5, hence
  lim   
x Æ 3

  g(x) π g(3) so the function g(x) is not continuous at x = 3 Fig. 2.36(b). 

In last case The function h(x) is defined at x = 3 and h(3) = 6 hence   lim   
x Æ 3

  
h(x) = h(x) so the function h(x) is continuous at x = 3, Fig. 2.36(c).

  

Fig. 2.36(a)         Fig. 2.36(b)         Fig. 2.36(c)

Example 24 Find the value of K if the function f is given by

  f(x) =  {  2x – 3,
 

  
 K,    

x – 2,
      

x < 1
 

  
 x = 1    

x > 1
 

is continuous at x = 1
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Solution L.H.L.   lim   
x Æ 1–

  f(x) =   lim   
x Æ 1–

  (2x – 3) = –1 and

 R.H.L.   lim   
x Æ 1+

  f(x) =   lim   
x Æ 1+

  (x – 2) = –1 and f(1) = K given

 So   lim   
x Æ 1

  f(x) = f(1) = –1 = K. Hence K = –1.

2.9 TYPES OF DISCONTINUITY

(a) Removable Discontinuity: A function f(x) has a removable discontinuity 
at a point x = x0, if  there is any one of the following posibility.

 (i)   lim   
x Æ x0

  f(x) exists and is finite, but f is not defined at x = x0, Fig. 2.37.

2

4

y

1 2 3 4 5
x

y f x= ( ) f x( )0

Fig. 2.37

 (ii)   lim   
x Æ x0

  f(x) exists and is finite, and f is defined at x = x0 but   lim   
x Æ x0

  f(x) π 

f(x0), Fig. 2.38.

2

4

y

1 2 3 4 5
x

f x( )0
y f x= ( )

Fig. 2.38

 This type of discontinuity can be removed by defining f at x = x0 such 
that   lim   

x Æ x0
  f(x) = f(x0) 
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Example 25 Show that the function defined as

  f(x) =  {  
 
 
  sin 2x _____ x  ,

   
1,

 
 
     

 
 
when

   
when

 
 
   

 
 
x π 0

   
x = 0

 
 
 

 Has removable discontinuity at x = 0

Solution   lim   
x Æ 0

  f(x) =   lim   
x Æ 0

    sin 2x _____ x   =   lim   
x Æ 0

   (   sin 2x _____ 
2x

   )  2 = 2 but f(0) = 1 (given) 

Hence   lim   
x Æ 0

  f(x) π f(0)

 Thus the limit exists but is not equal to the value of the function at the 
given point.

 The function has the removable discontinuity at x = 0 and this discontinuity 
can be removed at this point such as f(0) = 2.

(b) Discontinuity of the first kind: A function f(x) is said to have a 
discontinuity of the first kind if.

     lim    
x Æ x0–

  f(x) π   lim    
x Æ x0

+
  f(x) or   lim   

x Æ x0
–  f(x) π   lim   

x Æ x0
+
  f(x) = f(x0) or   lim   

x Æ x0
–  f(x)

    = f(x0) π   lim   
x Æ x0

+
  f(x)

y

x

L. H. L

R. H. L

x0

Fig. 2.39 

Example 26 Show that the following function has the discontinuity of the 
first kind

  f(x) =  {  
 
 
  x – |x| _____ x  ,

   
2,

 
 
   

 
 
when

   
when

 
 
     

 
 
x π 0

   
x = 0

 
 
 

at  x = 0

Solution L.H.L.   lim   
x Æ 0–

  f(x) =   lim   
x Æ 0–

    x – |x| _____ x   =   lim   
x Æ 0–

    x + x _____ x   = 2 and R.H.L.   lim   
x Æ 0+

  

f(x) =   lim   
x Æ 0+

    x – x ____ x   = 0

 And f(0) = 2 (given). Hence   lim   
x Æ 0–

  f(x) = f(0) π   lim   
x Æ 0+

  f(x)
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 Thus the function has discontinuity of the first kind from the right at x = 0

(c) Discontinuity of the second kind: If neither   lim   
x Æ x0

–  f(x) nor   lim   
x Æ x0

+
  f(x) exists, 

then the discontinuity at x = x0 is said to be of the second kind, Fig. 2.40.

y

x
x0

Fig. 2.40

Example 27 Examine the continuity of the function f(x) =   1 ______ 
(x – a)

   csc   1 ______ 
(x – a)

   
at x = a

Solution L.H.L.   lim   
x Æ a–  f(x) =   lim   

x Æ a–    1 ______ 
(x – a)

   csc   1 ______ 
(x – a)

   =   lim   
h Æ 0

    1 ___________  
(a – h – a)   

   

csc   1 __________  
(a – h – a)

  

   =   lim   
h Æ 0

    1 ___ 
– h

   csc   1 ___ 
– h

   =   lim   
t Æ •

  t csc,  [ t =   1 __ 
h
   ] 

 When t Æ • oscillates between –1 and +1, therefore the L.H.L. of f(x) 
oscillates between – • and •. Simillarly R.H.L. of the function f(x) does not 
exist. Hence f(x) is discontinuous of the second kind. 

(d) Jump Discontinuity: A function has jump discontinuity when the function 
“Jumps” from one finite value to another at a point, Fig. 2.41.

y

x

Fig. 2.41
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(e) If either   lim   
x Æ 0–

  f(x) or   lim   
x Æ 0+

  f(x) is infinitely large, then f is said to have an 

infinite discontinuity at x = x0 [example 17 on page 1.18] 

Exercises
 1. Find the value of x (if any) at which f is discontinuous of the follwing 

functions.

 (i) f(x) = x2 + 2x + 5, (ii) f(x) =   x2

 ______ 
2x2 + 1

  ,

 (iii) f(x) =   2x ______ 
3x2 + 2

  ,  (iv) f(x) =   x – 4 ______ 
x2 – 16

  ,

 (v) f(x) =   x _____ 
|x| – 3

  ,   (vi) fx = f(x)

 2. Examine the continuity of f(x) of the following functions at the indicated 
points.

 (i) f(x) =  {    1 __ 
2

   – x,

 
  

 1,    

  3 __ 
2

   – x,

    

0 £ x <   1 __ 
2
  

 

  

 x =   1 __ 
2
   

  
 

  1 __ 
2

   < x < 1

   

  At x =   1 __ 
2

  ,

 (ii) f(x) =  {   2x,
 

  
 2 – x,    

x2 – 2x,

     
0 £ x £ 1

 
  

 1 < x £ 2    
x > 2

  

  At x = 1 and x = 2,

 (iii) f(x) =  {  
 
 

x sin   1 __ x  ,
   

1,
 

 
   

 
 
 x π 0

   
x = 0

 
 
   

  At x = 0,

 
(iv) f(x) =

  {  
 
 

   e x
2

  _______ 
 e 1/x2

  – 1
  ,

   
1

 
 
      

 
 

x π 0

   
x = 0

 
 
 

  At x = 0,

 (v) f(x) =  {  
 
 
sin2 x,

   
1,

 
 
      

 
 x π 0   
x = 0

 
 
 

  At x = 0,
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 (vi) f(x) =  {  
 

 
  tan2 x _____ 

3x
  ,
   

  2 __ 
3

  ,
 

 

      
 
 
x π 0

   
x = 0

 
 
 

  At x = 0,

 
(vii) f(x) =

  {  
 

 
x,

   

cos   1 __ x  ,
 

 

     
 
 x £ 0   

x > 0
 
 
 

  At x = 0,

 
(viii) f(x) =

  {  
 
 
  sin x ____ 

|x|
  ,
   

1,
 

 
    

 
 
x π 0

   
x = 0

 
 
   

  At x = 0,

 
(ix) f(x) =

  {  
 
 
xm sin   1 __ x  ,

   
0

 
 
      

 
 
x π 0, m > 0

   
x = 0

 
 
 

  At x = 0, what happens when m = 1,

 (x) f(x) =  {  
 
 
  sin x ____ x   + cos x,

   
2,

 
 
      

 
 x π 0

   
x = 0

 
 
 

  At x = 0,

 
(xi) f(x) =

  {  
 
 
x [ 1 +   1 __ 

3
   sin (log x2) ] ,

   
0,

 
 
     

 

  x π 0
   

x = 0
 
 
 

  At x = 0,

 (xii) f(x) =  {  
 

 
  ( 1 –   x __ 

4
   )    

1 __ x  
 ,
   

 e 
  –1 ___ 
4

  
 ,
 

 

      
 
 
x π 0

   

x = 0
 
 
 

  At x = 0, 

 3. The function f(x) =   
[log(1 + 2x) – log(1 – 3x)]

   _______________________  x   is not defined at x = 0, 

find f(0) if f(x) is cotinuous at x = 0.

 4. Show that the function f(x) = |x| + |x – 1| + |x – 2| is continuous at the 
points x = 0, 1, 2.
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 5. (a) Determine the values of a and b for which the function

  
f(x) =

  {  
 

 
ax2 + b,

   

  –3 _____ 
x2 + 1

   + 1,
 

 

     
 
 x £ 0   

x > 0
 
 
 

  Is continuous at x = 0,

 (b) Determine the values of a and b for which the function 

 
 f(x) = 

 {   

 

 2x2 + b.   

   
3 ÷ 

______

   x
2

 __ 
2

   + 1   + b,

 

 

     
 
 x ≥ 0   

x < 0

 
 
 

  Is continuous at x = 0 and f(1) = 2,

 6. Find the value of K when the following functions are continuous at x 
everywhere,

 (i) f(x) =  {  
 
 
x2 – 1,

   
2kx,

 
 
    

 
 x < 3   
x ≥ 3

 
 
   

 (ii) f(x) =  {  
 
 
kx2,

   
 2x + k,

 
 
     

 
 x £ 2

   
x > 2

 
 
 

 (iii) f(x) =  {  
 
 
7x – 4,

   
kx2,

 
 
      

 
 x £ 1   
x > 1

 
 
 

 7. For what values of k would the function f(x) =   x
3 – 6x2 + 11x – 6  ________________  

x – k
   have 

removable discontinuity at x = k. 

 8. Use the intermediate value theorem show that the function f(x) = cos 
x – x, has a root between 0 and 1.

 9. Use the intermediate value theorem show that the function f(x) = log 
x – e–x, has a root between 1 and 2.

 10. Show that there is some k with 0 < k < 2 such that k2 + cos (pk) = 4.

 11. Use the intermediate value theorem to show that there is a square with 
a diagonal length that is between r and 2r an area that is half the area 
of a circle of radius r.

 12. Prove that f(x) =   5 ____________  
 ÷ 

___________

  x4 + 7x2 + 2  
   is continuous everywhere.

Answers

 1. (i) None.   (ii) None.

  (iii) None.   (iv) f(x) is not defined at x = 4.

  (v) f(x) is not defined at x = ±3 (vi) None.
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 2. (i) Discontinuous.   (ii) Continuous, Continuous.

  (iii) Continuous.   (iv) Discontinuous.

  (v) Discontinuous.   (vi) Discontinuous.

  (vii) Discontinuous.   (viii) Continuous.

  (ix) Continuous.   (x) Continuous.

  (xi) Continuous.   (xii) Continuous.

 3. f(0) = 5.

 5. (a) b = –2 and whatever a. (b) a = 0 and b = –3.

 6. (i) k =   4 __ 
3

  , (ii) k =   4 __ 
3
  , (iii) k = 3.

 7. 1, 2.
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C H A P T E R

Differentiation

3.1 INTRODUCTION

In four major problems which has been described in chapter 2 and one was to 
find the tangent to a curve. There are so many uses of the tangent to a curve, 
in optics, the tangent determined the angle at which a ray of light entered a 
curve lens, Fig. 3.1.

Ray of light

Normal

Tangent Lens

Fig. 3.1

 In mechanics, the tangent line determined the direction of motion of an 
object at every point along its path, Fig. 3.2. In geometry in a general prospect 
a tangent is a line which touch a curve at a point. In seventeenth century the 
Greeks knew how to find the tangent line to a circle, it is always perpendicular 
to the radial line, the Greeks used the definition of the tangent as a line touching 
a curve at only one point and lying on one side of the curve sufficed. But it 
was insufficient for some of the complicated curves. To give the definition 
of a tangent line that applies to a wide variety of curves use the dynamic 
approach.
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y

x

Normal

Tangent

Fig. 3.2

 The tangent to a curve y = (x) at a point P(x0, y0) is the line through the 
point P whose slope is the limit of the secant slopes which passes through 
from P and a point (x0 + h, y0 + h), as Q tends to P from either side.

P

Tangent Secant

Q

Fig. 3.3

 The tangent line to the curve y = f(x) at a point P(x0, f(x0)) (where

y0 = f(x0)) is a line y = y0 + m(x – x0), Fig. 3.4. Where exists:

  m =   lim   
h Æ 0

    
f(x0 + h) – f(x0)

  ______________ 
h
   

 [ m =   
Change in y

  __________  
Change in x

   =   D x ___ 
Dy

   =   
f(x0 + h) – f(x0)

  ______________  
x0 + h – x0

   ] 

P x f x( , ( ))0 0
Q x h  f x h( + , ( + ))0 0

Tangent
h

x0 x h0 +

Fig. 3.4
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 Let y =   3 __ 
2

   x – 3. Then if we move from the point P(1, – 1.5) to Q (3, 1.5) 

along the line. We see that the as x has changed (increased) 2 unit, y has 

increased 3 units corresponding to the slope m =   3 __ 
2
  , Fig. 3.5.

Fig. 3.5

  m =   
1.5 – (– 1.5)

  __________ 
3 – 1

   =   3 __ 
2
  

Example 1 Find the equation of the tangent line to the parabola y = x 2 at 
a point (1, 1)

Solution Given point P is (1, 1) fi x0 = 1, y0 = 1 = f(x0), and f(x0 + h)
= (1 + h)2

  m =   lim   
h Æ 0

    
f(x0 + h) – f(x0)

  ______________ 
h

   =   lim   
h Æ 0

    
(1 + h)2 – 1

  __________ 
h
   =   lim   

h Æ 0
    
h(2 + h)

 ________ 
h
   = 2

 Hence the equation of the tangent line is y = 1 + 2(x – 1) = 2x – 1.

3.2 DEFINITION OF DERIVATIVE

 (i) The derivative of a function y = f (x) is the slope of a tangent line to the 
graph of the function f (x) at the point P(x0, f (x0)) denoted as f ¢(x0).

 (ii) Let f be a function defined on an open interval (a, b) and there is point 
x0 Œ(a, b). Suppose that

      lim   
h Æ 0

    
f (x0 + h) – f (x0)

  ______________ 
h
   exists and finite.

 Then f is said to be differentiable or smooth at x0 and derivative of f at x0 
denoted f ¢(x0) is given by 

  f ¢(x0) =   lim   
h Æ 0

    
f (x0 + h) – f (x0)

  ______________ 
h
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 Consider the graph of the function y = f(x) drawn in Fig. 3.6, we observed 
that there is a unique tangent line at each point and each tangent has a slope, 
for example the slope at the point (x1, f(x1))

x

y

Slope = 0Slope < 0 Slope > 0

x1 x2 x3 x4 x5

Fig. 3.6

 Is negative while the slope at the point (x3, f(x3)) is zero and the slope at 
(x4, f(x4)) is positive.

 According to the definition of a function in chapter 1, it is a rule that assigns 
a unique real number to every number in its domain. Here in Fig. 3.6 we have 
a new function f ¢ called the derivative of f, that assigns to each number x0 
a new number f ¢(x0) (slope of the tangent line at x0), and the domain of f ¢ is 
contained in domain f.

One sided derivative

Let y = f(x) be a function and let x0 be a point in the domain of. The right-hand 

derivative of f at x = x0 is the limit  lim 
h Æ 0+    

f(x0 + h) – f(x0)
  ______________ 

h
   and Left-hand 

derivative of f at x = x0 is the limit  lim h Æ 0–    
f(x0 + h) – f(x0)

  ______________ 
h
  . A function f is 

differentiable at x = x0 if and only if f has both a right-hand derivative and 
Left-hand derivative of f at x = x0 and both of these derivatives are equal.

 A function y = f(x) is differentiable on a closed interval [a, b] if its 

differentiable on the (a, b) and if limits  lim 
h Æ 0+    

f(a + h) – f(a)
  _____________ 

h
   Right-hand 

derivative at a, and  lim h Æ 0–    
f(b + h) – f(b)

  _____________ 
h
   Left-hand derivative at b exist at 

end points 

 Geometrically, if the function y = f(x) is differentiable at x = x0, then the 
graph of the function has a tangent line at x0. If the function f defined but is 
not differentiable at x0, then the graph of the function at x0 has 1. A corner, 
Fig. 3.7 2. A cusp, Fig. 3.8.



Differentiation 3.5 

P

Q
Q

P

Fig. 3.7 One sided derivative differ

P

Q

Q

Fig. 3.8 Slope of PQ approaches • from one side and – • from other

3.3 VERTICAL TANGENT

Figure 3.9 Slope of PQ approaches • from both sides or approaches – • from 
both sides

PQ

Q

    

Fig. 3.9
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P

Q

Q

Fig. 3.10 

Alternative definition of the derivative

Let t = x0 + h then h = t – x0 and h Æ 0 is equivalent t Æ x0. Hence

  f ¢(x0) =  lim t Æ x0
     

f(t) – f(x0)
  __________ t – x0

  , (Fig. 3.11)

Fig. 3.11

 Sometimes this definition more convenient to use in the computation.

 Some common alternative notations for the derivative of the function
y = f(x), where x is independent and y is dependent variable are

  y ¢ = f ¢(x) =   
df

 ___ 
dx

   =   
dy

 ___ 
dx

   =   
df(x)

 ____ 
dx

   = D( f)(x) = Dxf (x)

 The symbols   d ___ 
dx

   and D indicate the operation of differentiation and are 

called differentiation operators.

 The symbols   
dy

 ___ 
dx

   is read “ the derivative of y with respect to x”.

Example 2 Find the derivative of y =  ÷ 
__

 x  , and show that this function is not 
differentiable at x = 0 and also calculate the slope of the tangent line at the 
point (5,  ÷ 

__
 5  ),
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Solution We have 

  f ¢(x) =   lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h

   =   lim   
h Æ 0

    
 ÷ 

______
 (x + h)   –  ÷ 

__
 x  
  ____________ 

h
  

   =   lim   
h Æ 0

    
(x + h) – x

  _______________  
h [  ÷ 

______
 (x + h)   +  ÷ 

__
 x   ] 
   =   lim   

h Æ 0
    h _______________  
h [  ÷ 

______
 (x + h)   +  ÷ 

__
 x   ] 
   =   1 ____ 

2 ÷ 
__

 x  
  

 Thus f ¢(x) =   1 ____ 
2 ÷ 

__
 x  
   When x > 0 (3.1)

 Now when x = 0

  f ¢(0) =   lim   
h Æ 0+

    
 ÷ 

______
 (0 + h)   –  ÷ 

__
 0  
  ____________ 

h
   =   lim   

h Æ 0+
    1 ___ 
 ÷ 

__
 h  
   = •

 Since the right-hand derivative is not finite, so the function is not 
differentiable at x = 0. 

 And from (3.1) f ¢(5) =   1 ____ 
2 ÷ 

__
 5  
  

 Hence the slope at (5,  ÷ 
__

 5  ) is   1 ____ 
2 ÷ 

__
 5  
  .

Example 3 Find the derivative of y = sin x

Solution f ¢(x) =   lim   
h Æ 0

    
 f(x + h) – f(x)

  ____________ 
h
   =   lim   

h Æ 0
    
sin(x + h) – sin x

  _______________ 
h
   

   =   lim   
h Æ 0

    sin x cos h + sin h cos x – sin x    ____________________________  
h
  

   =   lim   
h Æ 0

    
sin x(cos h – 1) + sin h cos x

   _________________________  
h
  

   =   lim   
h Æ 0

    
sin x (cos h – 1)

  ______________ 
h
   +   lim   

h Æ 0
    sin h cos x  __________ 

h
  

  0 + 1. cos x = cos x.

Example 4 Find the derivative of y = loga x, when x Œ[0, •], a > 0

Solution f ¢(x) =   lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h
   =   lim   

h Æ 0
    
loga(x + h) – loga x

  _________________ 
h
  

   =   lim   
h Æ 0

    1 __ 
h

   loga  (   x + h _____ x   )  =   lim   
h Æ 0

    x __ 
h
     1 __ x   loga  ( 1 +   h __ x   ) 
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   =   lim   
h Æ 0

    1 __ x   loga   ( 1 +   h __ x   )    
x __ 
h
  
  =   1 __ x   loga e =   1 __ x  

 Here   lim   
h Æ 0

    ( 1 +   h __ x   )    
x __ 
h

  
  = e.  [ Let a = e then loge x = log x,   

df (x)
 _____ 

dx
   =   

d log x
 ______ 

dx
   =   1 __ x   ] . 

Example 5 Find the derivative of y =   2 _________ 
 (  ÷ 

______
 5 – 7x   ) 3

  

Solution f ¢(x)  =   lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h

   =   lim   
h Æ 0

    
2[5 – 7(x + h) ] 

  – 3 ___ 
2
  
  – 2[5 – 7(x) ] 

  – 3 ___ 
2
  

 
    ____________________________  

h
  

   =   lim   
h Æ 0

    
2[5 – 7x ] 

  – 3 ___ 
2

  
    [  { 1 +   3 __ 

2
    (   7h ______ 

5 – 7x
   )  + º }  –1 ] 

    __________________________________  
h
   = 21[5 – 7x ] 

  – 5 ___ 
2
  
 .

Example 6 If f(x) =  {  
 
 
2x,

   
  3 + x,

 
 
     

 
 x £ 0   
x > 0

 
 
 

 Then calculate f ¢(0)

Solution f ¢(0) =  lim h Æ 0    
f(0 + h) – f(0)

  ______________ 
h
   =   lim   

h Æ 0
    
f(h)

 ____ 
h
  . 

 Now f(h) =  {  
 
 
2h,

   
  3 + h,

 
 
     

 
 h £ 0   
h > 0

 
 
 

 
And   

f(h)
 ____ 

h
   =

  {  

 

 2      

  3 + h _____ 
h

   ,
 

 

     
 
 h £ 0   

h > 0
 
 
 .
 

But   3 + h _____ 
h
   = 1 +   3 __ 

h
   and   lim   

h Æ 0
    3 __ 
h
   = •

 Thus   lim   
h • 0

    
f(h)

 ____ 
h

   = •. Hence f ¢(0) does not exist.

Example 7 Show that the function f defined by f(x) = |x – 1| + |x| + |x + 1| 
is not differentiable

 At x = – 1, 0 and 1

Solution We have 

  f(x) =  {  

 

 
 
 
 

–(x – 1) – x – (x + 1) = –3x,
     

–(x – 1) – x + (x + 1) = – x + 2,
 
 
 
     

   
 
 

–(x – 1) + x + (x + 1) = x + 2,
     

(x – 1) + x + (x + 1) = 3x,
 

 
 
 

 

     

 

 
 
 
   x < –1   

–1 £ x < 0
 
 
 
   

 
 
 0 £ x < 1   
x ≥ 1

 
 
 
 

 

 

 By Alternative definition At x = – 1 

  R.H.D. =   lim    
x Æ –1+

    
f(x) – f(–1)

  __________ 
x – (–1)
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   =   lim    
x Æ –1+

    – x + 2 – 3  _________ 
x + 1

   =   lim    
x Æ –1+

    
 – (x + 1)

 ________ 
x + 1

   = – 1

  L.H.D. =   lim    
x Æ –1–

    
f(x) – f(–1)

  __________ 
x – (–1)

  

   =   lim    
x Æ –1–

    –3x – 3 _______ 
x + 1

   = – 3

 Hence f is not differentiable at x = – 1.

 At x = 0

  R.H.D. =   lim   
x Æ 0+

    
f(x) – f(0)

  _________ 
x – (0)

  

   =   lim   
x Æ 0+

    x + 2 – 2 _________ x   = 1

  L.H.D. =   lim   
x Æ 0–

    
f(x) – f(0)

  _________ 
x – (0)

  

   =   lim   
x Æ 0–

    – x + 2 – 2  __________ x   = – 1

 Hence f is not differentiable at x = 0.

 At x = 1

  R.H.D. =   lim   
x Æ 1+

    
f(x) – f(1)

 _________ 
x – (1)

  

   =   lim   
x Æ 1+

    3x – 3 ______ 
x – 1

   = 3

  L.H.D. =   lim   
x Æ 1–

    
f(x) – f(1)

 ________ 
x – (1)

  

   =   lim   
x Æ 1–

    x + 2 – 3 _________ 
x – 1

   = 1

 Hence f is not differentiable at x = 1.

3.4 DERIVABILITY IMPLYING CONTINUITY

Theorem If a function y = f(x) is derivable at a point x0, then f(x) is also 
continuous at x0

Proof: Let y = f(x) be differentiable at a point x0 then 

  f ¢(x0) =   lim   
h Æ 0

    
f(x0 + h) – f(x0)

  ______________ 
h
   (3.2)
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 We write f(x0 + h) – f(x0) =   
f(x0 + h) – f(x0)

  ______________ 
h
   h

fi    lim   
h Æ 0

  [ f(x0 + h) – f(x0)] =   lim   
h Æ 0

    
f(x0 + h) – f(x0)

  ______________ 
h
     lim   

h Æ 0
  h

   = f ¢(x0). 0 From (3.2)

fi  limh Æ 0 [ f(x0 + h) – f(x0)] = 0

fi    lim   
h Æ 0

  f(x0 + h) = f(x0)

 Hence f(x) is continuous at x = x0.

 The converse of this theorem is not necessarily true, i.e. a function may be 
continuous for a value of x without being differentiable for that value.

Example 8 Show that the function f(x) = |x| is continuous at the origin but 
not differentiable.

Solution In example 20, we have shown that f(x) = |x| is continuous at the 
origin, now for derivative

  R.H.D.  lim 
h Æ 0+  f ¢(0) =  lim 

h Æ 0+    |0 + h| – |0|  __________ 
h
   =  lim 

h Æ 0+    |h| __ 
h
   = 1

 L.H.D.  lim h Æ 0–  f ¢(0) =  lim h Æ 0–    |0 + h| – |0|  __________ 
h
   =  lim h Æ 0–    |h| __ 

h
   = – 1

   lim 
h Æ 0+  f ¢(0) π  lim h Æ 0–  f ¢(0)

 Thus the function f(x) = |x| is not differentiable at x = 0, {has a corner at 
x = 0} but differentiable in the interval ]–•, 0[U] •, 0[, Fig. 3.12.

Fig. 3.12

Example 9 Show that the function (x) = x    e   
1 __ x    –  e   

– 1 ___ x    ________ 
 e   

1 __ x    +  e   
– 1 ___ x   

  , x π 0, f(0) = 0 is 

continuous at the origin but not differentiable.
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Solution For continuity L.H.L.  lim x Æ 0–  f(x) =  lim h Æ 0–  (0 – h)    e 
  1 ______ 
(0 – h)

  
  –  e 

  – 1 ______ 
(0 – h)

  
   ____________  

 e 
  1 ______ 
(0 – h)

  
  +  e 

  – 1 ______ 
(0 – h)

  
 

   

= 0

 R.H.L.  lim 
h Æ 0+  f(x) =  lim 

h Æ 0+  (0 + h)    e 
  1 ______ 
(0 + h)

  
  –  e 

  – 1 ______ 
(0 + h)

  
   _____________  

 e 
  1 ______ 
(0 + h)

  
  +  e 

  – 1 ______ 
(0 + h)

  
 

   = 0

 And f(0) = 0. Hence  lim h Æ 0–  f(x) =  lim 
h Æ 0+  f(x) = f(0) = 0, so the function 

is continuous 

 At x = 0

 L.H.D =  lim h Æ 0–  (0 + h)   

 (    e 
  1 __ 
h

  
  –  e 

  – 1 ___ 
h
  
  _______ 

 e 
  1 __ 
h

  
  +  e 

  – 1 ___ 
h
  
 

   )  – f(0)

  _______________ 
h
   =  lim h Æ 0–     e 

  2 __ 
h
  
  – 1 ______ 

 e 
  2 __ 
h
  
  + 1

   = – 1

 R.H.D =  lim 
h Æ 0+  (0 + h)   

 (    e 
  1 __ 
h

  
  –  e 

  – 1 ___ 
h
  
  _______ 

 e 
  1 __ 
h

  
  +  e 

  – 1 ___ 
h
  
 

   )  – f(0)

  _______________ 
h
   =  lim h Æ 0–    1 –  e 

  2 ___ 
– h

  
  ______ 

1 +  e 
  2 ___ 
– h

  
 

   = 1

     lim 
h Æ 0+  f ¢(0) π  lim h Æ 0–  f ¢(0)

 Hence f is not differentiable at x = 0.

Example 10 Show that f(x) =  {   
 
 
x2 + 3,

   
x + 3

 
 
     

 
 x £ 1   
x > 1 

 
  is continuous but not 

differentiable at x = 1.

Solution For continuity L.H.L. 

   lim x Æ 1–  f(x) =     lim x Æ 1–  x2 + 3 = 4

  R.H.L.  lim 
x Æ 1+  f(x) =  lim 

x Æ 1+  x + 3 = 4

 And f(1) = 4. Hence  lim x Æ 1–  f(x) =  lim 
x Æ 1+  f(x) = f(1) = 4, so the function 

is continuous 

 At x = 1 

  L.H.D. =  lim h Æ 0–    
(1 + h)2 + 3 – f(1)

  ________________ 
h
   =  lim h Æ 0–    1 + h2 + 2h + 3 – 4  ________________ 

h
  

   =  lim h Æ 0–    
h(h + 2)

 _______ 
h

   = 2
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  R.H.D. =  lim 
h Æ 0+    

1 + h + 3 – f(1)
  _____________ 

h
   =  lim 

h Æ 0+    4 + h – 4 ________ 
h
   = 1 

 Hence f is not differentiable at x = 1, Fig. 3.13

1 2 3

2

4

6
y

4 5 6
x

Fig. 3.13

Example 11 Show that f(x) =  {  
  
xn sin   1 __ x  

   
0, 

 
 
 
    

 
 x π 0   
x = 0 

 
 
   is continuous and 

differentiable at x = 0.

Solution For continuity 

  limx Æ 0 f(x) = limx Æ 0 xn sin   1 __ x   = f(0) = 0

so the function is continuous 

 For derivative 

  f ¢(0) =   lim   
h Æ 0

    
(0 + h)n sin   1 ______ 

(0 + h)
   – f(0)
   _______________________  

h
   =   lim   

h Æ  
    
hn sin   1 __ 

h
  
 _______ 

h
   (3.3)

 Equation (3.3) shows that the limit exist when n ≥ 2, hence it is observed 
that the given function is continuous when n > 0, but differentiable, when
n ≥ 2.

Some differentiation formulas 

 1. Let f(x) = c, a constant function. Then f ¢(x) = 0.

  In Fig. 3.14 a constant function f(x) = c is a horizontal line with a slope 
of zero. 
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c
f x c( ) =

y

x

Fig. 3.14

  We have

  f ¢(x) =   lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h

   =   lim   
h Æ 0

    c – c ____ 
h
   = 0

   The converse of this also true-namely if f ¢(x) = 0 on an interval then f 
is constant function on that interval.

 2. If n is a positive integer, then x n is differentiable and   
d(xn)

 _____ 
dx

   = nxn – 1.

Proof: f ¢(x) =   
d(xn)

 _____ 
dx

   =   lim   
t Æ x

    
f(t) – f(x)

 ________ t – x   =   lim   
t Æ x

    t 
n – x n ______ t – x  

  lim   
t Æ x

    
(tn – 1 + tn – 2 x + tn – 3 x 2 + º txn – 2 + xn – 1) (t – x)

     __________________________________________   t – x  

  Here we use the formula a n – b n = (an – 1 + an – 2 b + an – 3b2 + º abn – 2 
+ bn – 1) (a – b) 

       xn – 1 + x n – 2 x + xn – 3x2 + º xx n – 2 + xn – 1 = n xn – 1

  Let f(x) = x5 then f ¢(x) = 5x4

 3. Let c be constant. If f and g are differentiable function then cf, f + g 
and f – g are also differentiable 

 (i)   
d(cf)

 ____ 
dx

   = c   
df

 ___ 
dx

  

 (ii)      
d( f ± g)

 ________ 
dx

   =   
df

 ___ 
dx

   ±   
dg

 ___ 
dx

  .

Proof:   
d( f + g)

 _______ 
dx

   =   lim   
h Æ 0

    
( f + g) (x + h) – ( f + g) f(x)

   ________________________  
h
  

   =   lim   
h Æ 0

    
f(x + h) + g(x + h) – f(x) – g(x)

    ____________________________  
h
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  lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h
   +   lim   

h Æ 0
    
g(x + h) – g(x)

  _____________ 
h
  

   =   
df

 ___ 
dx

   +   
dg

 ___ 
dx

  

  Let f(x) = 3x4 + 2x3, then   
df

 ___ 
dx

   =   
d(3x4)

 ______ 
dx

   +   
d(2x3)

 ______ 
dx

   = 12x3 + 6x2

 4. Product rule 
  Let f and g be are differentiable function then f g is differentiable, and

    
d( fg)

 _____ 
dx

   = g   
df

 ___ 
dx

   +  f   
dg

 ___ 
dx

  

 Proof:   
d( fg)

 _____ 
dx

   =   lim   
h Æ 0

    
f(x + h) g(x + h) – f(x) g(x)

   ________________________  
h
  

    
d( f g)

 _____ 
dx

   =   lim   
h Æ 0

    
f(x + h) g(x + h) – f(x) g(x + h) + f(x) g(x + h) – f(x) g(x)

      __________________________________________________   
h
  

  =   lim   
h Æ 0

  g(x + h)   lim   
h Æ 0

    
f(x + h) – f(x)

  ____________ 
h
   + f(x)   lim   

h Æ 0
    
g(x + h) – g(x)

  _____________ 
h
  

  = g(x)   
df

 ___ 
dx

   + f(x)   
dg

 ___ 
dx

  . 

  Similarly, if y = f(x) g(x) h(x) then 

   
dy

 ___ 
dx

   = h(x) g(x)   
df

 ___ 
dx

   + h(x) f(x)   
dg

 ___ 
dx

   + g(x) f(x)   dh ___ 
dx

  

 5. Quotient rule 

  Let f and g be are differentiable function then   
f
 __ g   is differentiable, 

and   (   f __ g   )  ¢  =   
d (   f __ g   ) 

 _____ 
dx

   =   
g(x)   

df
 ___ 

dx
   – f(x)   

dg
 ___ 

dx
  
  _______________  

g2(x)
   =   

gf ¢ – fg ¢
 ________ 

g2
  

Proof: 

   
d( fg)

 _____ 
dx

   =   lim   
h Æ 0

    
f(x + h) g(x + h) – f(x) g(x)

   ________________________  
h
   

   
d (   f __ g   ) 

 _____ 
dx

   =   lim   
h Æ 0

    

  
f(x + h)

 _______ 
g(x + h)

   –   
f(x)

 ____ 
g(x)

  

  ______________ 
h
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  =   lim   
h Æ 0

    
f(x + h) g(x) – f(x) g(x + h)

   ________________________  
hg(x + h) g(x)

  

  =   lim   
h Æ 0

    
f(x + h) g(x) – f(x) g(x) + f(x) g(x) – f(x) g(x + h)

     ___________________________________________    
hg(x + h) g(x)

  

  =   lim   
h Æ 0

    
  
g(x)[ f(x + h) – f(x)]

  ________________ 
h

   –   lim   
h Æ 0

 
 
  
f(x)[g(x + h) – g(x)]

  ________________ 
h
  

     _________________________________________    
  lim   
x Æ 0

  g(x + h) g(x)  
  

  =   
g(x)   

df
 ___ 

dx
   – f(x)   

dg
 ___ 

dx
  
  _______________  

g2(x)
  

 [Here g(x) is differentiable fi g(x) is continuous. Also we have 
supposed that the value of g(x) is not zero for the value of x under 
consideration].

 Cor. Derivative of y = x m where x π 0 and m is any nonzero negative 

integer y = x m =   1 ___ 
x n

   [m = – n, n Œ N, use by above quotient rule where 

f = 1, and g = xm we show that   
d(xm)

 _____ 
dx

   = – nxn – 1 = mxn – 1.

 6. Derivative of the inverse of an invertible function.

  Let y = f(x) be a differentiable function in [a, b] and suppose g is a 
inverse function of f such that 

  y = f(x) ¤ x = g(y)

  We have to find a relation between f ¢(x) and g ¢(y) for the corresponding 
values of x and y.

  Let Dy be the change in y corresponding to change D x in x, as determined 
from y = f(x). The change D x in x corresponding to change Dy in y, as 
determined from x = g(y). When f ¢(x) π 0, we have 

  1 =   
Dy

 ___ 
D x

   ◊   D x ___ 
Dy

   fi   D x ___ 
Dy

   =   1 ___ 

  
Dy

 ___ 
Dx

  

  .

  Let D x fi 0, Therefore   dx ___ 
dy

   =   1 ___ 

  
dy

 ___ 
dx

  

   fi   
dy

 ___ 
dx

   ◊   dx ___ 
dy

   = 1. Hence   
dy

 ___ 
dx

   and   dx ___ 
dy

   are 

reciprocal to each other.

 Cor. Derivative of y =  x   
1 __ n    when x > 0, n Œ N.
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  We know that the function y =  x   
1 __ n    is the inverse of yn = x so that

y =  x   
1 __ n    ¤ yn = x. Now   

dy
 ___ 

dx
   ◊   dx ___ 

dy
   = 1 fi   

dy
 ___ 

dx
   nyn – 1 = 1 fi   

dy
 ___ 

dx
   =   1 __ n   y– (n – 1 ) 

=   1 __ n     [  x   
1 __ n    ]  –(n – 1)

  =   1 __ n    x   
1 __ n   – 1 , x > 0.

  Hence   
d  (  x   

1 __ n    ) 
 _____ 

dx
   =   1 __ n    x   

1 __ n    – 1  x > 0, n Œ N.

 7.  Derivative of a polynomial function.

  Let y = anxn + an – 1 x
n – 1 + an – 2 x

n – 2 + an – 3 x
n – 3 + º a2x2 + a1 x + a0, 

then   
dy

 ___ 
dx

   = nan xn – 1 + (n – 1) an – 1 xn – 2 + (n – 2) an – 2 xn – 3 + (n – 3) 

an – 3 xn – 4 + º. 

 8. The Derivative of composite function. [The chain rule]

  Let y = f(u) is a function of u and u = g(x) is a function of x, so that 

y(x) = (fog) (x). Then   du ___ 
dx

   = g ¢(x) and   
dy

 ___ 
du

   = f ¢(u). Now what is   
dy

 ___ 
dx

  ? To 

find   
dy

 ___ 
dx

  , suppose that a particle is moving in the xy-plane in such a 

way that x = 5t, where t stands for time. Suppose that the particle is 

moving with a velocity of 5 ft/sec. in the direction of x, that is   dx ___ 
dt

   = 5. 

In addition, suppose that for every 1 unit change in the x direction, 

the particle moves 3 units in the y direction; that is   
dy

 ___ 
dx

   = 3 (y = 3x). 

Now we ask, what is the velocity of particle, in feet per second, in 

the y direction that is what is   dx ___ 
dt

  ? we may write   
dy

 ___ 
dt

   as   
dy

 ___ 
dt

   =   
dy

 ___ 
dx

   ◊   dx ___ 
dt

  

= 3 × 5 = 15 ft/sec.

 This result implies that if x changing 5 times as fast as t, and if y is 
changing 3 times as fast as x then y is changing 15 times as fast as t, 
Fig. 3.15.
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Fig. 3.15

  In this example y is a function of x while x is a function of t, this means 
that the y is a composite function. 

  Let y(x) = f(g(x)). That is y is the composite function fog. Now we can 
show that

    
dy

 ___ 
dx

   =   
d(fog) (x)

 ________ 
dx

   = f ¢(g(x)) g ¢(x)

Proof:   
df(g(x))

 _______ 
dx

   =   lim   
h Æ 0 

    
f(g(x + h)) – f(g(x))

  __________________  
h
  

   =   lim   
h Æ 0

    
f(g(x + h)) – f(g(x))

  _________________  
h
    [   g(x + h) – g(x)

  _____________  
g(x + h) – g(x)

   ] 
   =   lim   

h Æ 0
    
f(g(x + h)) – f(g(x))

  __________________  
g(x + h) – g(x)

     lim   
h Æ 0

    
g(x + h) – g(x)

  _____________ 
h
  

  Now we note that as h Æ 0 fi g(x + h) Æ g(x), because g, being 
differentiable is continuous at x. Then Dg = g(x + h) – g(x), we may 
write g(x + h) = Dg + g(x) and Dg Æ 0 as h Æ 0, thus 

   =   lim    
Dg Æ 0

    
f(Dg + g(x)) – f(g(x))

   ___________________  
Dg

     lim   
h Æ 0

    
g(x + h) – g(x)

  _____________ 
h
  

   = f ¢(g(x)) g ¢(x)
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 9.  if y = xr where r =   
p

 __ q   (p and q are integer and q π 0) then   
dy

 ___ 
dx

  
= rxr – 1.

Proof:   
dy

 ___ 
dx

   =   dxr

 ___ 
dx

   =   d x 
  
p
 __ q  
  ___ 

dx
   =   

d  (  x 
  1 __ q  
  )  

p

 
 ______ 

dx
  

  Let u =  x 
  1 __ q  
 , then y = up

    
dy

 ___ 
dx

   =   
dy

 ___ 
du

     du ___ 
dx

   = pup – 1   1 __ q    x 
  1 __ q    – 1

 

   =   P __ q     (  x 
  1 __ 
Q

  
  )  P – 1

   x 
  1 __ 
Q

   – 1
 

   =   
p

 __ q    x 
  
p

 __ q    – 1
 

   = rxr – 1

 10. Derivative of trigonometry functions.

  In example 3 we have show that when f(x) = sin x then f ¢(x) = cos x 

or y = sin x then   
dy

 ___ 
dx

   = cos x. Similarly we can show that   d cos x ______ 
dx

   =

– sin x,   d tan x ______ 
dx

   = sec2x, d cot x/dx = – cosec2x, d sec x/dx = sec x tan 

x And   d cosec x ________ 
dx

   = – cosec x cot x.

3.5 DIFFERENTIALS, DIFFERENTIAL COEFFICIENT

Let y = f(x) be a differentiable function then the differential dx is an independent 
variable is called the differential of x, and the differential dy is

  dy = f ¢(x) dx

 Where the symbol “dy” is simply the dependent variable of x and dx.

 The variable f ¢(x) being the coefficient of the differential dx is known as 

differential coefficient, if dx π 0 then   
dy

 ___ 
dx

  , Fig. 3.16. 

 Let y = x2. Since   
dy

 ___ 
dx

   = 2x and dy = 2xdx, here 2x is the Differential 

coefficient. Now if we take x = 2 then dy = 4dx, this shows that if we move 
along the tangent line to the curve y = x2 at the point (2, 4) then any change 
of the dx units in the horizontal direction produces a change of dy units in 
the vertical direction.

 Relation between dx, dy and Dx, Dy.
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 For a given function y = f(x), then change in y from its value at 
some initial number x to its value at a new number x + Dx denoted as
Dy = f(x + Dx) – f(x) represent the change in y that occurs when we start at 
x and move along the curve y = f(x) until we have moved Dx (= dx) units in 
the direction of x, and dy represents the change in y that occurs if we start at 
x and move along the tangent line until we have moved dx (= Dx) units in the 
direction of x, Fig. 3.17.

Dy

dy

Dx dx=

x  f x, ( )

y f x= ( )
x x  f x x+ , ( + )D D

y

x
x x dx+

Fig. 3.17 = x + Dx

Example 12 Let y = x2. Find dy and Dy at x = 1 with dx = Dx = 2.

Solution Dy = f(x + Dx) – f(x) = (x + Dx)2 – x2 = (1 + 2)2 – 12 ª 8

 If y = x2 the   
dy

 ___ 
dx

   = 2x fi dy = 2x dx and dy = 2 × 1 × 2 = 4. 

 Above results shows that Dy and dy are generally different, the differential 
dy will nonetheless be a good approximation for Dy provided dx = Dx is 
approaches to zero to see this 

  f ¢(x) =   lim    
Dx Æ 0

    
Dy

 ___ 
Dx

  

Rise = dy

Slope = ( )f x¢

y f x= ( )

y

x
x x dx+

Run = dx

Fig. 3.16
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 It follows that if Dx approaches to zero, then we will have f ¢(x) ª   
Dy

 ___ 
Dx

   or, 

  Dy = f ¢(x) Dx = f ¢(x) dx = dy

3.6 IMPLICIT DIFFERENTIATION 

An equation of the form y = f(x) is said to be define y explicitly as a function 
of x because the variable y appears alone one side of the equation. For example, 
for each of functions y = 2x + 1, y = 3x2, y =  ÷ 

______
 2x + 1  , y = 3 + 2x + x3, the 

variable y appears alone on the left-hand side however, sometimes functions 
are defined by equation in which y is not alone on one side, for example

x3 + y3 = 3xy4,   (  x 
  3 __ 
2

  
  +  y 

  9 __ 
4

  
  )  3  – 6y3 = 2. Here x and y are not given separately. In 

general, we say that x and y are given implicitly if neither one is expressed as 

an explicitly function of the other. [This is not to say that one variable cannot 
be solved explicitly in terms of the other]. Let xy = 2 or x2 + y2 = 1, in these 
cases the variable x and y are given implicitly but it is easy to solve for one 

variable in terms of the other say y =   2 __ x   and y = ±  ÷ 
______

 1 – x2  , in general it is 

not necessary to solve an equation for y in terms of x in order to differentiate 
the function defined implicitly by the equation.

 Now let us consider the equation xy = 2 or y = 2x and   
dy

 ___ 
dx

   =   –2 ___ 
x2

  . Now we 
calculate the derivative another way 

 Let xy = 2 then   
d(xy)

 _____ 
dx

   =   
d(2)

 ____ 
dx

   fi x   
d(y)

 ____ 
dx

   + y   
d(x)

 ____ 
dx

   = 0 or   
dy

 ___ 
dx

   = –   
y
 __ x   

fi   
dy

 ___ 
dx

   = –   2 __ 
x2

    [ y =   2 __ x   ] 
 This above method of obtaining derivatives is called implicit 
differentiation. 

Example 13 Use implicit differentiation to find   
dy

 ___ 
dx

   if x3 + y3 = 2xy.

Solution   
d(x3 + y3)

 ________ 
dx

   =   
d(2xy)

 ______ 
dx

  

  3x2 + 3y2   
dy

 ___ 
dx

   = 2y + 2x   
dy

 ___ 
dx

  

    
dy

 ___ 
dx

   [3y2 – 2x] = 2y – 3x2 fi   
dy

 ___ 
dx

   =   
2y – 3x2

 _______ 
3y2 – 2x

  .
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Example 14 Use implicit differentiation to find   
dy

 ___ 
dx

   if 3y2 + 2 sin x = cos y.

Solution   
d(3y2)

 ______ 
dx

   +   
d(2 sin x)

 ________ 
dx

   =   
d(cos y)

 _______ 
dx

  

  6y   
dy

 ___ 
dx

   + 2 cos x = – sin y   
dy

 ___ 
dx

   fi   
dy

 ___ 
dx

   =   – 2 cos x ________ 
6y + sin y

  .

Example 15 Find the   
dy

 ___ 
dx

   of the following functions 

 (i) y = ax,   (ii) y = log  [    ÷ 
_____

 2 + x   +  ÷ 
_____

 2 – x  
  _______________  

 ÷ 
_____

 2 + x   –  ÷ 
_____

 2 – x  
   ] ,

 (iii) y = log  [ e– 2x   {   3x – 1 ______ 
4x + 3

   }  
  2 __ 
3

  
  ] , (iv) y = logcos x tan x,

 (v) =   sin x ________ 
1 + cos x

  ,   (vi) y =  ÷ 
________

 1 + sin4x    ÷ 
__

 x3  ,

 (vii) y = (xx)x +   ( 1 +   1 __ x   )  x2

 , (viii) y = sin– 1   
2x + 3  ÷ 

______

 1 – x2  
  _____________ 

 ÷ 
___

 13  
   ,

 (ix) y = tan–1  [   2 cos x – 3 sin x   ________________  
3 cos x + 2 sin x

   ] , (x) y =  ÷ 
________________

  sin x +  ÷ 
____

 sin x   + º  ,

 (xi) 2x + 2y = 2x + y,

 (xii) y = 2 cos t + 2 sin t and x = 3 cos t – sin 3t,

Solution (i) Let y = ax, xŒ[–•, •], a > 0 we have y = ax ¤ x = loga y

  Now x = loga y fi   dx ___ 
dy

   =   1 __ y   loga e also   
dy

 ___ 
dx

   ◊   dx ___ 
dy

   = 1 fi   
dy

 ___ 
dx

     1 __ y   loga e = 1

  fi   
dy

 ___ 
dx

   = y loge a = ax loge a.

  Cor. Let a = e so that y = ex and   
dy

 ___ 
dx

   = ex loge e = ex.

 (ii) Let y = log  [    ÷ 
_____

 2 + x   +  ÷ 
_____

 2 – x  
  _______________  

 ÷ 
_____

 2 + x   –  ÷ 
_____

 2 – x  
   ] 

   = log   [    ÷ 
_____

 2 + x   +  ÷ 
_____

 2 – x  
  _______________  

 ÷ 
_____

 2 + x   –  ÷ 
_____

 2 – x  
   ×   

 ÷ 
_____

 2 + x   +  ÷ 
_____

 2 – x  
  _______________  

 ÷ 
_____

 2 + x   +  ÷ 
____

 2 – x   
   ] 

    = log  [   4 + 2  ÷ 
_____

 4 – x2  
  ____________ 

2x
    ] 
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   = log  [ 2 +  ÷ 
_____

 4 – x2   ]  – log [x]

    
dy

 ___ 
dx

   =   1 ____________  
 [ 2 +  ÷ 

______

 4 – x2   ] 
     
d [ 2 +  ÷ 

______

 4 – x2   ] 
  _____________ 

dx
   –   1 __ x  

   =   1 ____________  
 [ 2 +  ÷ 

______

 4 – x2   ] 
     1 __ 
2
   (–2x) [4 – x2 ] 

  – 1 ___ 
2
  
  –   1 __ x  

   =   – x  ____________________   
 [ 2 +  ÷ 

_____

 4 – x2   ]   ÷ 
_______

 [4 – x2]  
   –   1 __ x  .

 (iii) Let y = log  [ e– 2x   {   3x – 1 ______ 
4x + 3 

   }  
  2 __ 
3

  
  ]  = – 2x + 2/3 [log (3x – 1) – log

(4x + 3)]

    
dy

 ___ 
dx

   = –2 +   2 __ 
3

    [   3 ______ 
3x – 1

   –   4 ______ 
4x + 3

   ] 
 (iv) Let y = logcos x tan x =   

log[tan x]
 _________ 

log[cos x]
  

   
dy

 ___ 
dx

   =   
log [cos x] 2 csc 2x + tan x log [tan x]

    _________________________________   
(log [cos x])2

  .

 (v) Let y =   sin x ________ 
1 + cos x

  

   
dy

 ___ 
dx

   =  [   (1 + cos x) cos x – sin x (–sin x)
    ____________________________   

(1 + cos x)2
   ]  =   1 _________ 

(1 + cos x)
  .

 (vi) Let y =  ÷ 
________

 1 + sin4x    ÷ 
__

 x3  

   
dy

 ___ 
dx

   =   3 __ 
2

    x 
  1 __ 
2

  
  (1 + sin4x ) 

  1 __ 
2
  
  +   1 __ 

2
    x 

  3 __ 
2
  
  (1 + sin4x ) 

  –1 ___ 
2
  
    
d(1 + sin4x)

  __________ 
dx

  

  =   3 __ 
2

    x 
  1 __ 
2

  
  (1 + sin4x ) 

  1 __ 
2
  
  +   1 __ 

2
    x 

  
3 __ 
2
  
  (1 + sin4x ) 

  –1 ___ 
2
  
  4sin3x cos x

  =  [   3 x 
  1 __ 
2

  
  (1 + sin4x) + 4 x 

  3 __ 
2
  
  sin3x cos x

    ____________________________   
2 ÷ 

________

 1 + sin4x   
   ] .
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 (vii) Let y = (xx)x +   ( 1 +   1 __ x   )  x2

  =  e x log xx

  +  e x
2

  { log  ( 1 +   1 __ x   )  } , =  e x
2

  log x

+  e x
2

  {log (1 + x) – log x}    
dy

 ___ 
dx

   =  e x
2

  log x   
d(x2 log x)

 _________ 
dx

   +  e x
2

 {log (1 + x)

– log x}   
 d[x2{log(1 + x) – log x}]

   _____________________  
dx

   

    = (xx)x  [ x2   1 __ x   + 2x log x ]  +   ( 1+   1 __ x   )  x2

   [ x2  {   1 _____ 
x + 1

   –   1 __ x   } 

           + 2x log  { 1 +   1 __ x   }  ] 
    =  x x

2 + x  + log(ex2) +    ( 1 +   1 __ x   )  x2 

  
+ 1

   [ –   1 _____ 
x + 1

   + 2 log { 1 +   1 __ x   }  ] .

 (viii) Let y = sin– 1  [   2x + 3  ÷ 
______

 1 – x2  
  _____________ 

 ÷ 
___

 13  
   ]  = sin– 1  [   2x ____ 

 ÷ 
___

 13   
  +   

3 ÷ 
______

 1 – x2  
 ________ 

 ÷ 
___

 13  
   ] 

  Let x = cos q,   2 ____ 
 ÷ 

___
 13  
   = sin a,   3 ____ 

 ÷ 
___

 13  
   cos a then tan a =   2 __ 

3
   fi a = tan– 1   2 __ 

3
  , 

hence

  y = sin– 1 [cos q sin a + cos a sin q] = sin– 1[sin (a + q)] = a + q

  fi  y = tan– 1   2 __ 
3
   + cos– 1 x

      
dy

 ___ 
dx

   = 0 –   1 _______ 
 ÷ 

______

 1 – x2  
   = –   1 _______ 

 ÷ 
______

 1 – x2  
  

 (ix) Let y = tan– 1  [   2 cos x – 3 sin x  _______________  
3 cos x + 2 sin x

   ]  = tan– 1  [     2 __ 
3
   – tan x  

  __________  
1 +   2 tan x _______ 

3
  

   ] , let tan a =   2 __ 
3
   

fi a = tan– 1   2 __ 
3

  

 y = tan–1  [   tan a – tan x  _____________  
1 + tan a tan x

   ]  = tan– 1[tan(a – x)] = a – x

 y = tan– 1   2 __ 
3

   – x

   
dy

 ___ 
dx

   = 0 – 1 = – 1
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 (x) Let y =  ÷ 
________________

  sin x +  ÷ 
____

 sin x   + º   =  ÷ 
________

 sin x + y  

  y2 = sin x + y

  2y   
dy

 ___ 
dx

   = cos x +   
dy

 ___ 
dx

  

    
dy

 ___ 
dx

   =   cos x ______ 
2y – 1

  .

 (xi) 2x + 2y = 2x + y

  Differentiate each term w.r. to x we have

 2x log 2 + 2y log 2   
dy

 ___ 
dx

   = 2x + y log 2  [ 1 +   
dy

 ___ 
dx

   ] 
 [2y – 2x + y]   

dy
 ___ 

dx
   = 2x(2y – 1)

   
dy

 ___ 
dx

   =   
2x – y(2y – 1)

  __________ 
(1 – 2x)

  

 (xii) y = 2 cos t + 2 sin t and x = 3 cos t – sin 3t

    
dy

 ___ 
dt

   = – 2 sin t + 2 cos t

    dx ___ 
dt

   = – 3 sin t – 3 cos 3t

    
  
dy

 ___ 
dt

  
 ___ 

  dx ___ 
dt

  
   =   – 2 sin t + 2 cos t  ________________  

– 3 sin t – 3 cos 3t
  

    
dy

 ___ 
dx

   =   
2[sin t – cos t]

  _____________  
3[sin t + cos 3t]

  .

Example 16 (i) Solve   
d ÷ 

_________

 x3 + csc x  
  ___________ 

dx
  , (ii) Solve   

d [ sin  ÷ 
_________

 1 + cos x   ] 
  _______________ 

dx
  ,

Solution (i) L et u = x3 + csc x, then   
d ÷ 

_________

 x3 + csc x  
  ___________ 

dx
   =   

d ÷ 
__

 u  
 ____ 

dx
   =   1 ____ 

2 ÷ 
__

 u  
     du ___ 
dx

  

   =   1 ___________  
2 ÷ 

________

 x3 + csc x  
     
d(x3 + csc x)

  ___________ 
dx

  

   =   1 ___________  
2 ÷ 

________

 x3 + csc x  
   [3x2 – csc x cot x].
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 (ii) Let u =  ÷ 
________

 1 + cos x  , then   
d[sin  ÷ 

________
 1 + cos x  ]
  ______________ 

dx
   =   

d[sin u]
 _______ 

dx
   = cos u   du ___ 

dx
  

  = cos  ÷ 
_________

 1 + cos x     
d ÷ 

_________
 1 + cos x  
  ___________ 

dx
  

  = cos  ÷ 
_________

 1 + cos x     – sin x ___________  
2 ÷ 

_________
 1 + cos x  
  .

3.7 THE DERIVATIVE AS A RATE OF CHANGE 

Suppose that a particle is moving along x-axis so that we know its position s 
on that axis as a function of time t is s = f(t). The displacement of the particle 
from time t to time (t + Dt) is

  D s = f(t + Dt) – f(t),

 Then the average velocity of the particle over that time interval is 

  vav =   
displacement

  ___________ 
time

   =   Ds ___ 
Dt

   =   
f(t + Dt) – f(t)

  ____________ 
Dt

  

 To find out the velocity at the exact instant t, we take the limit of the average 
velocity over the interval from t to t + Dt as Dt tends to zero, and defined as 

  v(t) =   ds __ 
dt

   = limDt Æ 0   
f(t + Dt) – f(t)

  ____________ 
Dt

   (3.4)

 

and the speed is |v(t)| =  |   ds __ 
dt

   | 
 The acceleration is the derivative of the velocity w. r. to time fi a(t)

=   dv ___ 
dt

   =   d
2s ___ 

dt2
  

Dx

s f t= ( ) ( + ) = (  + )s x f t tD D

y

x

Fig. 3.18

 In Fig. 3.19 we have shown that the relation between secant slope, tangent 
slope, average velocity and the instantaneous velocity of a moving object. The 

average velocity of the object which moves from P to Q is   500 – 300 _________ 
7 – 3

   = 50

m/sec, and its equal to the secant slope which is passes though from P and Q. 
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The instantaneous velocity of the particle at a time t = 3 is about 100 m/sec, 
and its equal to the slope of the tangent at P.

1 2 3 4 5 6 7

200

100

300

400

500

y

x

P

Tangent slope is
instantaneous velocity at
= 3t

Q Secant slope is average
velocity from   = 3 to   = 7t t

Time  

Fig. 3.19

Example 17 The position at a time t of an object moving along a line is 
given by 
  s(t) = 3t3 – 40.5t2 + 162t

for t on [0, 5]. Find the initial position, velocity and acceleration for the 
object.

Solution at t = 0, is the initial position so 

  s(0) = 3(0)3 – 40.5(0)2 + 162(0) = 0

 Velocity v(t) =   ds __ 
dt

   =   
d(3t3 – 40.5t2 + 162t)

   __________________  
dt

  

 From equation (3.4)

   = 9t2 – 81t + 162

   = 9(t – 3) (t – 6) (3.5)

 The initial velocity v(0) = 9(0)2 – 81(0) + 162 = 162

 Now, the velocity will be zero when t = 3 and t = 6, which shows that the 
object will be at rest when t = 3 and t = 6. (We can also find the velocity of 
the object for t = 1, 2, 4, 5 from the equation (3.5)).

 For the acceleration 

  a(t) =   dv ___ 
dt

   = 18t – 81

   = 18(t – 4.5)
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3.8 LINEARIZATION 
To solve the certain problems, it may be useful to approximate a nonlinear 
function by a linear function. For example to describe the motion of a simple 
pendulum may be greatly simplified by using the fact that if x approaches to 
0, then x ª x. The existence of such linear approximation provides us with a 
geometric interpretation of differentiability at a point x0 then the tangent line 
to the graph of the function f passes through the point P(x0, f(x0)) will very 
closely approximate the graph of f for values of x near x0, Fig. 3.4. In an 
another example, in Fig. 3.20 we can observed that the tangent line to the curve
y = x2 lies close to the curve near the point of tangency.

Fig. 3.20

 For a small interval to either side the value of the function along the 
tangent line give good approximation to the value of the function on the curve, 
Fig. 3.21, in this figure we can see the tangent and the curve very close 
throughout entire interval. If a function y = f(x) is differentiable at x = a, the 
tangent line at a point P(a, f(a)) on the graph y = f(x) has slope m = f ¢(a) and 
equation

0.2

1

y

x
0.4 0.6 0.8 1.0

Fig. 3.21
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y – f(a)

 _______ x – a   = f ¢(a)

 Or y = f(a) + f ¢(a) (x – a)

 Thus, this tangent line is the graph of the linear function

  L(x) = f(a) + f ¢(a) (x – a)

 For as long as this line remain close to the graph of f, L(x) gives a good 
approximation to f(x), and is called a linearization of the function at a point
x = a.

Example 18 Find the linearization of the following functions at x = 0.

 (i) f(x) =   1 _____ 
2 – x

  ,   (ii) f(x) = sin x.

Solution (i) f(x) =    1 _____ 
2 – x

   = (2 – x)–1, f ¢(x) =   1 _______ 
(2 – x)2

  , f(0) =   1 __ 
2
  , f ¢(0) =   1 __ 

4
  

  Hence L(x) = f(0) + f ¢(0) (x – 0) =   1 __ 
2
   +   1 __ 

4
   x

 (ii) f(x) = sin x, f ¢(x) = cos x, f(0) = 0, f ¢(0) = 1,

  Hence L(x) = f(0) + f ¢(0) (x – 0) = 0 + 1(x – 0) = x. 

Exercises

 1. Show that 

 f(x) =  {   
 
 
x2 + x + 1,

   
3x,

 
 
      

 
 
x £ 1

   
x > 1

 
 
 

  Is continuous at x = 1, determine whether f is differentiable at x = 1.

 2. Let 

 f(x) =  {  
 
 
x2,

   
 ÷ 

__
 x  ,  
     

 
 x £ 1   
x > 1

 
 
 

  determine whether f is differentiable at x = 1. If so, then find the value 

of the derivative.

 3. Discusse the continuity and derivability of the function of

 f(x) =  {  
 

 
 
 
 
 1 + x,

   x,  
 
   

 
 
 
 2 – x,

   
  3x – x2,

 
 
 
 

 

     

 

 
 
 
 x £ 0   
 0 < x < 1

 
 
 
   

 
 
 1 £ x £ 2   
x > 2

 
 
 
 

 

 

  At x = 0, 1, 2.
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 4. A function f is defined as 

 f(x) = 
 { 

  

  1 __ 

2

   
(b2 – a2),

  
    

  
   1 __ 
2

   b2 –   x
2

 __ 
6
   –   a

3

 ___ 
3x

  ,
  

    

  

  1 __ 
3

    [   b3 – a3

 ______ x   ] ,

  
   

  

0 £ x £ a

    
a < x £ b

 
  

 

x > b

    

  Prove that f and f ¢ are continuous but f≤ is discontinuous.

 5. Show that 

 
f(x) =  {     x

2 sin   1 __ x  ,
 

 
 0,      

 
 
x π 0

   x = 0 
 
   

  Is differentiable at x = 0.

 6. Show that the function 

 f(x) =  {  
 
 

– 2x,
   

 ÷ 
__

 x   – 3,
 
 
     

 
 x < 1   
x ≥ 1

 
 
 

  Is continuous but not differentiable at x = 1.

 7. Find the   
dy

 ___ 
dx

   of the following functions

 (i) y = x– 3 +   1 __ 
x7

  ,   (ii) y = (x3 + 7x2 – 8)  (   2 __ 
x3

   +   1 __ 
x4

   ) ,
 (iii) y =   ( x +  ÷ 

_______

 a2 + x2   )  
n
 . (iv) y =   1 + x2

 __________  
x2 – 3x + 2

  ,

 (v)   1 + x3

 _____________  
(x2 – 1) (x3 – 1)

  , (vi) y =  ÷ 
___________

  (1 + x)(1 – x)  ,

 (vii) y = log  [    ÷ 
______

 1 – x2   + x
  __________  

 ÷ 
______

 1 + x2   – x
   ] , (viii) y = log  [  ÷ 

__________

  a2 + x2 + x   ] ,

 (ix) y = log tan  [   x __ 
2

   +   p __ 
4

   ] , (x) y = log10 (sin– 1 x2), 

 (xi) y = log  [   a + b tan q  ___________  
a – b tan q

   ] , (xii) y = (log x)x + (sin– 1 x)sin x, 

 (xiii) y = tan– 1   [   1 + sin x ________ 
1 – sin x

   ]    
1 __ 
2
  
 , (xiv) y = sec– 1  [   1 ______ 

2x2 – 1
   ] ,



3.30 Calculus

 (xv) y = cos– 1  [   x – x– 1

 ______ 
x + x– 1

   ] , (xvi) y = sin– 1  [ 2ax  ÷ 
_______

 1 – a2x2    ] , 

 (xvii) y = sin–1   x2

 ________ 
 ÷ 

_______

 a4 + x4  
  , (xviii) y = csc– 1 (sin x),

 (xix) y = x3 sin2 (5x), (xx) y = cos3 (sin 2x),

 (xxi) y =   [   x – 5 ______ 
2x + 1

   ]  3 ,  (xxii) y = cos  ÷ 
__________

  x2 + 3x + 4  ,

 (xxiii) y =   x cos x _______ 
 ÷ 

______

 1 + x2  
  ,   

 (xxiv) y = sin–1 (3x – 4x3) + cos–1 (4x3 – 3x).

 (xxv) y = |sin x|, (–  p < x < p).

 8. If x = 2t + 3 and y = t2 – 1, find the value of   
dy

 ___ 
dx

   at t = 6. 

 9. If x = a  [ cos t + log tan   t __ 
2
   ]  and y = a sin t, find the value of   

dy
 ___ 

dx
  .

 10. If x =   2at2

 _____ 
1 + t2

   and y =   2at3

 _____ 
1 + t2

  , find the value of   
dy

 ___ 
dx

  .

 11. If x = sin– 1  ÷ _____

   t2

 _____ 
1 + t2

     and y = cos t  ÷ 
_____

 cos 2t  , find the value of   
dy

 ___ 
dx

  .

 12. Find the   
dy

 ___ 
dx

   when 

 (i) sin (xy) +   x __ y   = x2 – y, (ii) (x2 + y2)2 = xy,

 (iii) x2y + 3xy3 – x = 3, (iv) tan3 (y2x + y) = x.

 (v) x ÷ 
_____

 1 + y   + y ÷ 
_____

 1 + x   = 0, (vi) xm ym = (x + y)m + n,

 (vii) (cos x)2 = (sin y)x, (viii) x =  e 
tan– 1  [   y – x2

 _____ 
x2

   ]  ,
 (ix) Y = (cos x ) (cos x ) (cos x)º

  ,

 13. Find the derivative of sin–1  [   1 – x _____ 
1 + x

   ]  with respect to  ÷ 
__

 x  .

 14. Find the derivative of u = xsin x with respect to (sin x)x.

 15. Find the derivative of tan– 1   
 ÷ 

_____

 1 + x2   –  ÷ 
_____

 1 – x2  
  _______________  

 ÷ 
_____

 1 + x2   +  ÷ 
_____

 1 – x2  
   with respect to cos– 1 x2.
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 16. If l =   [   bx + c ______ 
dx + e

   ]  7 , find   dl ___ 
dx

   (b, c, d, e are constant).

 17. Find   d
95

 ____ 
dx95

   [sin x] and   d
19

 ____ 
dx19

   [x sin x].

 18. In the following figures identify the graph of the function f and the 
graph of its derivative f ¢.

 

(i)

 

B A

x

y

 

(ii)

 

B

A

x

y

 

(iii)

 
x

y

B

A

 

(iv)

 

x

y

B

A

 19. If s = t3 – 2t2 + 3t – 4 is the position of a particle at a time t, then 
find the velocity and Accerelation of the particle at the end of 1, 2 
seconds.

 20. Fuel in a rocket burns for 3.5 minutes, in the first t seconds, the rocket 
reaches a height of 70t2 feet above the earth, what is the velocity of the 
rocket after 3 seconds.

 21. An object moves along a straight line so that after t minutes, its position 

relative to its starting point (in meters) is s = 10t +   t __ 
e t

  . At what speed 

is the object moving at the end of 4 minutes. 

 22. An object moving on the x-axis has a position x(t) = t3 – 9t2 + 24t + 
20, after t seconds. What is the total distance travelled by the object 
during the first 8 seconds.

 23. Find the linearization of the following functions at the given points.

 (i) f(x) =  ÷ 
_____

 1 + x   at x = 0, (ii) f(x) = x +   1 __ x   at x = 1,
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 (iii) f(x) = cos x at x =   p __ 
2
  , (iv) f(x) = sec x at x = 0,

 (v) f(x) = x3 – 2x + 3 at x = 2.

Answers
 1. Differentiable.   2. not differentiable.

 3. Continuous at 0,1 but not derivable. Discontinuous at 2.

 7. (i) –  3x– 4 – 7x– 8. 

  (ii)  – 15x– 2 – 14x– 3 + 48x– 4 – 32x– 5.

  (iii)   
n(x +  ÷ 

________

 a2 + x2 ) n   
  ______________  

 ÷ 
_______

 a2 + x2  
  .

  (iv)   –  3x2 + 2x + 3  _____________  
(x2 – 3x + 2)2

  .

  (v)   – 2x7 – 6x4 + 6x2 + 2x   ____________________  
(x2 – 1)2 (x3 – 1)2

  .

  (vi)   1 ______________  

(1 + x ) 
  1 __ 
2

  
  (1 – x ) 

  3 __ 
2

  
 

  .

  (vii)   2 _______ 
 ÷ 

_____

 1 + x2  
  .

  (viii)    1 _______________  
  – 2 ______ 
 ÷ 

_____

 1 – x2  
    ÷ 

_______

 a2 + x2  
  .

  (ix) sec x.

  (x)   
2x log10 e

  ______________  
 ÷ 

______

 1 – x4   sin– 1 x2
  .

  (xi)   2ab  _________________  
a2 cos2 x – b2 sin2 x

  .

  (xii) (log x)x + 1 [2 + log x] + (sin– 1 x)sin–1 x.

  (xiii)   1 __ 
2

  .

  (xiv)    – 2 _______ 
 ÷ 

______

 1 – x2  
  .
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  (xv)   – 2 ______ 
1 + x2

  .

  (xvi)   2a _________ 
 ÷ 

________

 1 – a2 x2   
  .

  (xvii)   2a2x _______ 
a4 + x4

  .

  (xviii)   – cos x  ______________  
sin x  ÷ 

________

 sin2x – 1  
  .

  (xix) 10x3 sin 5x cos 5x + 3x2 sin2 5x. 

  (xx) – 6 cos2(sin 2x) sin(sin 2x) cos 2x. 

  (xxi)   
33(x – 5)4

  _________ 
(2x + 1)4

  .

  (xxii) –   1 __ 
2

   (2x + 3) (x2 + 3x + 4 ) 
  – 1 ___ 
2
  
  sin  ÷ 

__________

  x2 + 3x + 4  . 

  (xxiii)   cos x ________ 

(1 + x 2) 
  3 __ 
2

  
 

   –   x sin x _______ 
 ÷ 

______

 1 + x2   
  . (xxiv) 0.

  (xxv)  {  
 
 
  cos x,

   – cos x,  
     

 
  0 < x < p   

– p < x < 0
 
 
 . 

 8. 6.   9. tan t.

 10.   1 __ 
2

   (t3 + 3t).   11. 1.

 12. (i)   
 [ 2x –   1 __ y   – cos (xy) ] 

  __________________  
 [ x cos(xy) –   x __ 

y2
   + 1 ]  

  ,

  (ii)   
 y – 4x(x2 + y2)

  ______________  
4y(x2 + y2) – x

  ,

  (iii)   
1 – 2xy – 3y3

  ____________  
x2 + 9xy2

  ,

  (iv)   
1 – 3y2 tan2(xy2 + y) sec2(xy2 + y)

    ________________________________    
3(2xy + 1) tan2(xy2 + y) sec2(xy2 + y)

  ; 
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  (v)   – 1 _______ 
(1 +  x)2

  ,

  (vi)   
y
 __ x  ,

  (vii)   
log sin y + y tan x

  _________________  
log cos x – x cot y

  ,

  (viii) 2x + x[2 tan (log x) + sec2 (log x)], 

  (ix)   
y2 tan x

  _____________  
y log cos x – 1

  . 

 13.   – 2 _____ 
1 + x

  .   14.   
xsin x  [   1 __ x   sin x + cos x log x ] 

   ___________________________   
  (sin x)x [x cot x + log (sin x)]  

  .

 16. 7  [   bx + c ______ 
dx + e

   ]  6   [   be – cd ________ 
(dx + e)2

   ] . 17. cos x and – x cos x – 19 sin x.

 18. (i) Graph of f is A and of f ¢ is B,

  (ii) Graph of f is A and of f ¢ is B,

  (iii) Graph of f is B and of f ¢ is A,

  (iv) Graph of f is B and of f ¢ is A.

 19. 2, 2; 7, 8.   20. 420 ft/sec.

 21. 9.91m/min.   22. 136. 

 23. (i) 1 +   x __ 
2

  , (ii) 2, (iii) – x +   p __ 
2
  , (iv) 1,

  (v) 10x – 13.



4
C H A P T E R

Successive
Differentiation

4.1 INTRODUCTION 

In chapter 3 we have seen that the derivative   
dy

 ___ 
dx

   = f ¢ of the function y = f(x) 

with respect to x is in general also a function of x. This new function f ¢ may 
also be differentiable, in which case the derivative of the first derivative is called 

the second derivative of the original function y = f(x) and denoted as   
d2y

 ___ 
dx2

   = f ≤ 

or D2y where D ∫   d ___ 
dx

  . Similarly, the derivative of the second derivative f ≤ is 

called the third derivative of f and denoted as   
d3y

 ___ 
dx3

   = f ≤¢.

 Hence, the successive derivatives of the function f are represented by the 
symbols,

   f ¢, f ≤, f ≤¢ º, f n, º

 Where each term is the derivative of the preceding one.

 The symbols f n(c) =   [   d ny
 ____ 

dxn   ]  
x = c

  = yn(c) denote the value of the nth derivative 

of the function f at the point c. Thus if 

  y = x3 + 3 x2 + 2, then 

    
dy

 ___ 
dx

   = f ¢ = y1 = 3x2 + 6x

    
d2y

 ___ 
dx2

   = f ≤ = y2 = 6x + 6
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d3y

 ___ 
dx3

   = f ≤¢ = y3 = 6.

Fig. 4.1

Example 1 If y = sin [ m log { x +  ÷ 
_____

 x2 + 1   }  ]  then show that (x2 + 1)   
d2y

 ___ 
dx2

   + 

x   
dy

 ___ 
dx

   + m2y = 0

Solution y = sin [ m log { x +  ÷ 
_____

 x2 + 1   }  ] 

 We get y1 = cos [ m log { x +  ÷ 
_____

 x2 + 1   }  ]  m   

 { 1 +   x _______ 
 ÷ 

_____

 x2 + 1  
   } 

  _____________  
 { x +  ÷ 

_____

 x2 + 1   } 
  

   = cos [ m log { x +  ÷ 
_____

 x2 + 1   }  ]    m _______ 
 ÷ 

_____

 x2 + 1  
  

   (  ÷ 
_____

 x2 + 1   )  y1 = m cos [ m log { x +  ÷ 
_____

 x2 + 1   }  ] 

  (x2 + 1)  y 1  
2  = m2 [ 1 – sin2  { m log  ( x +  ÷ 

_____

 x2 + 1   )  }  ] 
  (x2 + 1)  y 1  

2  = m2[1 – y2]

 Differentiating again, we get

  (x2 + 1) 2y1 y2 + y1
2 2x = – m2 2yy1

 Hence, (x2 + 1) y2 + xy1 + m2y = 0.

Example 2 If y = a cos(log x) + b sin(log x) then show that x2y2 + xy1 + y = 0.

Solution y = a cos(log x) + b sin(log x)

 We get y1 = {–a sin(log x)}   1 __ x   + {b cos(log x )}   1 __ x  
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fi  xy1 = –a sin(log x) + b cos(log x)

 Differentiating again, we get

  xy2 + y1 = {– a cos(log x)}   1 __ x   – {b sin (log x)}   1 __ x   

 Hence, x2y2 + xy1 + y = 0.

Example 3 If x = sin t, y = sin pt, prove that (1 – x2)y2 – xy1 + p2y = 0.

Solution x = sin t

    dx ___ 
dt

   = cos t,   
dy

 ___ 
dt

   = p cos pt

    
dy

 ___ 
dx

   = y1 =   
p cos pt

 ________ cos t  

 Differentiating again, we get

  y2 =   
p[cos t(– p sin pt) – cos pt(– sin t)]

    ______________________________  
cos2 t

     dt ___ 
dx

   

 Put y, y1 and y2 in given equation (1 – x2)y2 – xy1 + p2y = 0 and we get 
the result.

Example 4 If third derivative of f(x) = ax3 + bx + c is 6 then find the value

of a.

Solution y = ax3 + bx + c (given)

\  y1 = 3ax2 + b, y2 = 6ax and y3 = 6a

 It is given that y3 = 6

 Thus, 6 = 6a fi a = 1.

Example 5 If ky = sin(x + y) where k is a constant, show that y2 = – y(1 + y1)
3.

Solution ky = sin(x + y) 

 We get ky1 = cos(x + y) (1 + y1)

  ky1 =  (1 – k2 y2) 
  1 __ 
2
  
  (1 + y1) (4.1)

fi  ky2 =   
–2k2yy1 __________  

2(1– k2 y2) 
  1 __ 
2
  
 

   (1 + y1) + y2  ÷ 
_______

 1 – k2y2    (4.2)

fi  ky2 = –   
k2yy1 _______ 

  
ky1 _______ 

(1 + y1)
  

   (1 + y1) + y2   
ky1 _______ 

(1 + y1)
   (using (4.1))

fi    k _______ 
(1 + y1)

   y2 = – ky(1 + y1)
2 fi y2 = – y(1 + y1)

3.
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Example 6 If y = 2 cos(log x) + 3 sin(log x), then show that x2   
d2y

 ___ 
dx2

   + x   
dy

 ___ 
dx

   

+ y = 0.

Solution We have y = 2 cos(log x) + 3 sin(log x) 

fi    
dy

 ___ 
dx

   = [– 2 sin(log x)]   1 __ x   + [3 cos(log x)]   1 __ x   

fi  x   
dy

 ___ 
dx

   = – 2 sin(log x) + 3 cos(log x)

 Differentiating again w.r.t., we get 

  x   
d2y

 ___ 
dx2

   +   
dy

 ___ 
dx

   = –   1 __ x   [2 cos(log x) + 3 sin(log x)] 

  x   
d2y

 ___ 
dx2

   +   
dy

 ___ 
dx

   = –   
y
 __ x   fi x2   

d2y
 ___ 

dx2
   + x   

dy
 ___ 

dx
   + y = 0.

4.2 SOME STANDARD RESULTS OF NTH DERIVATIVES

1. Let y = (ax + b)m

  y1 = m(ax + b)m – 1 a

  y2 = m(m – 1) (ax + b)m – 2 a2

  y3 = m(m – 1) (m – 2) (ax + b)m – 3 a3,
   ------------------------------------------------
   ------------------------------------------------

  yn = m(m – 1) (m – 2) º (m – n + 1) (ax + b)m – nan, 

 If m is positive integer then yn can be written as 

  yn =   m! _______ 
(m – n)!

   an(ax + b)m – n,

Cor. 1 If m = –1, we have

  yn = –1(–2) (– 3) º (–n) (ax + b)–1 – n an

fi    
dn (   1 ______ 

ax + b
   ) 
  __________ 

dxn   =   
(–1)n (n!) an

  ___________  
(ax + b)n + 1

  .

Cor. 2 If y = log(ax + b), then we have,

  y1 =   a _______ 
(ax + b)

   y2 =   a2

 ________ 
(ax + b)2

   fi yn = an   
(–1)n – 1 (n– 1)!an

  ______________  
(ax + b)n  .
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2. Let y = amx, then

  y1 = mamx log a, 

  y2 = m2amx(log a)2 … yn = mnamx(log a)n

Cor. If a = e, we have   
d n(emx)

 ______ 
dxn   = mnemx.

3. Let y = sin(ax + b), then 

  y1 = a cos(ax + b) = a sin ( ax + b +   p __ 
2
   ) 

  y2 = a2 cos ( ax + b +   p __ 
2
   )  = a2 sin ( ax + b +   2p ___ 

2
   )  

  y3 = a3 cos ( ax + b +   2p ___ 
2
   )  = a3 sin ( ax + b +   3p ___ 

2
   ) .

   ………………………………………………………...... 

   ……………………………………………………..…....

Thus   
dnsin(ax + b)

  ___________ 
dxn   = ansin ( ax + b +   np ___ 

2
   ) . 

 Similarly,

4.    
dn cos(ax + b)

  _____________ 
dxn   = an cos ( ax + b +   np ___ 

2
   ) .

Example 7 Find the nth derivative of   x4

 ____________  
(x – 1) (x – 2) 

  .

Solution Let y =   x4

 ____________  
(x – 1) (x – 2)

   = x2 + 3x + 7 +   15x – 14  ____________  
(x – 1) (x – 2)

  

fi  y = x2 + 3x + 7 +   –1 ______ 
(x – 1)

   +   16 ______ 
(x – 2)

  

    [By partial fraction]

 We use Cor. 1 of 1 in last two terms, we get,

  yn = –   
(–1)n (n!)

 _________ 
(x – 1)n + 1

   + 16   
(– 1)n (n!)

 _________ 
(x – 2)n + 1

  

  (first three terms will be zero after second derivative)
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Example 8 Find the nth derivative of tan–1  [   1 + x _____ 
1 – x

   ] .
Solution Let y = tan–1  [   1 + x _____ 

1 – x
   ] , Put x = tan q, we get y = tan–1  [   1 + tan q ________ 

 1 – tan q
   ]  

= tan–1  [ tan  (   p __ 
4

   + q )  ] 
  y =   p __ 

4
   + q =   p __ 

4
   + tan–1 x

\  y1 = 0 +   1 _____ 
1 + x2

   =   1 ____________  
(x – 1) (x + 1)

   =   1 __ 
2i

    [   1 ____ 
x – i

   –   1 ____ 
x + i

   ] , hence 

  yn =   
(– 1)n – 1 (n – 1)!

  _____________ 
2irn   [(x – i)–n – (x + i)–n]

 [To eliminate the ¢i ¢ and express the result in real form] let x = r cos q,

1 = r sin q, so that r =  ÷ 
_______

 (1 + x2)   and q = tan–1 (   1 __ x   ) 
  yn =   

(–1)n – 1 (n – 1)!
  _____________ 

2irn   [(cos q – i sin q)– n – (cos q + i sin q)– n]

  yn =   
(–1)n – 1 (n – 1)!

  _____________ 
2irn   [2i sin nq] = yn =   

(–1)n – 1 (n – 1)!
  _____________ 

rn   [sin nq]

 [here we used the De Moivre’s Theorem which state that (cos q ± i sin q)n 
= (cos nq ± i sin nq).

Example 9 Find the nth derivative of sin2 x cos x.

Solution Let y = sin2 x cos x =   
(1 – cos 2x)

  __________ 
2
   cos x

   =   1 __ 
4

   [2 cos x – 2 cos 2x cos x] 

   =   1 __ 
4

   [2 cos x – (cos 3x + cos x)] =   1 __ 
4
   [cos x – cos 3x], hence

  yn =   1 __ 
4

    [ cos ( x +   np ___ 
2

   )  – 3n cos ( 3x +   np ___ 
2
   )  ] .

Example 10 If y = sin mx + cos mx, show that yn = mn [1 + (–1)n sin(2 mx)] 

Solution Given y = sin mx + cos mx

  yn = mn [ sin  ( mx +   np ___ 
2
   )  + cos  ( mx +   np ___ 

2
   )  ] 

\ yn = mn  [ sin2 ( mx +   np ___ 
2

   )  + cos2 ( mx +   np ___ 
2
   )  + 2 sin ( mx +   np ___ 

2
   )  cos ( mx +   np ___ 

2
   )  ]    

1 __ 
2
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  yn = mn[1 + sin (2mx + np)]

  yn = mn[1 + sin 2mx cos np + cos 2mx sin np], hence

  yn = mn[1 + (–1)n sin (2mx)] (sin np = 0 cos np = (–1)n) 

Example 11 If y = x(x + 1) log (x + 1)3, prove that

  yn =   
3(–1)n – 1 (n – 3)! (2x + n)

   _____________________  
(x + 1)n – 1

   if n ≥ 3.

Solution y = x(x + 1) log (x + 1)3 (given)

  y1 = 3[(x + 1) log (x + 1) + x log (x + 1) + x]

  y2 = 3 [ log (x + 1) + 1 + log (x + 1) + 1 +   x _____ 
x + 1

   ] 
  y3 = 3 [   2 _____ 

x + 1
   +   1 _______ 

(x + 1)2
   ] 

 Differentiating (n – 3) times, we get

yn = 3 [   2 (–1)n – 3 (n – 3)!
  _______________  

(x + 1)n – 2
   +   

(– 1)n – 3 (n – 2)!
  _____________  

(x + 1)n – 1
   ]    

dn [   1 _______ 
(x + 1)2

   ] 
  __________ 

dxn   =   
(–1)n (n + 1)!

  ___________  
(x + 1)n + 2

  

yn =   
3(–1)n – 1 (n – 3)! ( 2x + n)

   _______________________  
(x + 1)n – 1

  , Hence

yn =   
3(–1)n – 1 (n – 3)! (2x + n)

   ______________________  
(x + 1)n – 1

  .

Example 12 Find the nth derivative of e(ax + b) sin x.

Solution Let y = e(ax + b) sin x

  y1 = cos e(ax + b) + a sin xe(ax + b)

  y1 = e(ax + b) [cos x + a sin x] 

 Put 1 = r sin q, a = r cos q so that r =  ÷ 
______

 1 + a2  , q = tan–1  (   1 __ a   ) 
  y1 = e(ax + b) [r sin q cos x + r cos q sin x]

  y1 = re(ax + b) [sin q cos x + cos q sin x]

  y1 = re(ax + b) sin (q + x), Now

  y2 = re(ax + b) [cos (q + x) + a sin (q + x)] 
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  y2 = r2e(ax + b) [sin q cos (q + x) + cos q sin (q + x)]

  y2 = r2e(ax + b) sin (x + 2q)

  y3 = r3e(ax + b) sin (x + 3q), hence

  yn = rne(ax + b) sin (x + nq)

  yn = rne(ax + b) sin (x + nq).

Example 13 Find the nth derivative of sin3x.

Solution Let y = sin3 x =   1 __ 
4

   [3 sin x – sin 3x], then 

  y1 =   1 __ 
4

   [3 cos x – 3 cos 3x]

  y1 =   1 __ 
4

    [ 3 sin  ( x +   p __ 
2
   )  – 3 sin  ( 3x +   p __ 

2
   )  ] 

  y2 =   1 __ 
4

    [ 3 cos  ( x +   p __ 
2
   )  – 32 cos  ( 3x +   p __ 

2
   )  ] 

  y2 =   1 __ 
4

    [ 3 sin  ( x +   2p ___ 
2
   )  – 32 sin  ( 3x +   2p ___ 

2
   )  ] , hence 

  yn =   1 __ 
4

    [ 3 sin  ( x +   np ___ 
2
   )  – 3n sin  ( 3x +   np ___ 

2
   )  ] .

Example 14 Find the nth derivative of ex sin4 x

Solution Let y = ex sin4 x =   1 __ 
4

   ex(1 – cos 2x)2 

     =   1 __ 
4

   ex  [ 1 – 2 cos 2x +   1 + cos 4x _________ 
2
   ]    

     =   1 __ 
8

   (3ex – 4ex cos 2x + ex cos 4x) hence

  yn =   1 __ 
8

    [ 3ex – 4. 5 
  n __ 
2

  
  ex cos (2 x + n tan–1 2) + 1 7 

  n __ 
2
  
  ex cos (4x + n tan–1 4) ] ,

      ÷ 
______

 12 + 22   = 5,  ÷ 
______

 12 + 42   = 17

Exercises 

 1. If y = (sin–1 x)2, then show that   
d2y

 ___ 
dx2

   = 2 (1 – x2)–1 [1 + x(1 – x2)–1 sin–1 x].

 2. If y =   sin–1 x ______ 
 ÷ 

_____

 1 – x2  
  , then show that (1 – x2)   

d2y
 ___ 

dx2
   – 3x   

dy
 ___ 

dx
   – y = 0.
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 3. If y = 2eax + 3ebx, then show that   
d2y

 ___ 
dx2

   – (a + b)   
dy

 ___ 
dx

   + aby = 0

 4. If y =  e 
  – cx ____ 

2
  
  (a cos nx + b sin nx), then show that   

d2y
 ___ 

dx2
   + c   

dy
 ___ 

dx
   +  ( n2 +   c

2

 __ 
4
   )  

y = 0.

 5. If y = ent (a + bt), then show that   
d2y

 ___ 
dt2

   – 2n   
dy

 ___ 
dt

   + n2y = 0.

 6. If p2 = a2 cos2 x + b2 sin2 x, then show that    
d2p

 ___ 
dx2

   + p =   a
2b2

 ____ 
p3

  

 7. If py = sin (x + y), then show that   
d2y

 ___ 
dx2

   = – y   ( 1 +   
dy

 ___ 
dx

   )  3 
 8. If y = sin (sin x), then show that   

d2y
 ___ 

dx2
   + tan x   

dy
 ___ 

dx
   + y cos2 x = 0

 9. If ax2 + 2 hxy + by2 = 1, then show that   
d2y

 ___ 
dx2

  . =   h2 – ab _________ 
(hx + by)3

  .

 10. If ax2 + 2hxy + by2 + 2gx + 2fy + c = 0, then show that   
d2y

 ___ 
dx2

   

=   
abc + 2 fgh – af2 – bg2– ch2

   _________________________   
(hx + by + f)3

  .

 11. If y3 + x3 + 3ax2 = 1, then show that   
d2y

 ___ 
dx2

   = –   2a2x2

 _____ 
y5

  .

 12. If x = a (q – sin q), y = a(1 – cos q) show that   
d2y

 ___ 
dx2

   = –   1 __________  
a(1– cos q)2

  .

 13. If y = sec x, then show that   [   d2y
 ___ 

dx2
   ]  x =   p __ 

4
  .
  = 3 ÷ 

__
 2  .

 14. If x cos y = y, then show that   
d2y

 ___ 
dx2

   =   
– sin 2y + y (sin2 y + 1)

   ___________________  
(x sin y – x)3

  .

 15. If 2xy – y2 = 6, then show that   
d2y

 ___ 
dx2

   =   – 6 ______ 
(y – x)3

  .

 16. If y = eax sin3 x, then show that

  yn =   3 __ 
4

     (  ÷ 
______

 1 + a2   )  
n
  sin  ( x + n tan–1   1 __ a   )  –   1 __ 

4
     (  ÷ 

______

 9 + a2   )  
n
  sin  ( 3x + n tan–1   1 __ a   ) . 

 17. If y = e(ax + b) cos x, then show that yn = r ne(ax + b) cos (x + nq). where

r =  ÷ 
______

 1 + a2  , tan–1  (   1 __ a   ) 
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 18. Show that the nth derivative of y =   x ____________  
(x – m) (x – l)

   is

    
(–1)n n!

 _______ 
(m – 1)

    [   m _________ 
(x – m)n + 1

   –   l _________ 
(x – l)n + 1

   ] .
 19. Show that the nth derivative of y =   x3

 _____________  
(x – 1)3 (x – 2)

   is 

  (–1)n + 1  [   4n! _________ 
(x – 1)n + 1

   +   
3(n + 1)!

 ________ 
(x – 1)n + 2

   +   
(n + 2)!

 _________  
2(x – 1)n + 3

   –   4n! ________ 
(x – 2)n + 1

   ] .
 20. Show that the nth derivative of y =   x _____________  

1 + x + x2 + x3
   is 

    1 __ 
2

   (–1)n n! sinn + 1 q [ sin (n + 1) q – cos (n + 1) q + (sin q + cos q)– n – 1 ] .
 21. Show that the nth derivative of y =   x _________ 

1 + x + x2
   is 

    
(–1)n n!

 _______ 
r n + 1

    [ cos (n + 1) q –   
sin (n + 1) q

  ____________ 
 ÷ 

__
 3  
   ] , where, r =  ÷ 

__________

  1 + x + x2  ,

q = cot–1   
(2x + 1)

 _______ 
 ÷ 

__
 3  
  .

 22. Show that the nth derivative of y = tan–1  (   x sin q ___________  
1 – x cos q

   )  is (–1)n – 1

(n – 1)! sin na sinn a cscn q, where cot a = x csc q – cot q.

 23. Show that the nth derivative of y = tan–1  (    ÷ 
______

 1 + x2   – 1
  ___________ x   )  is   1 __ 

2
   (–1)n – 1 

(n – 1)! sin nq sinn q, where q = cot–1 x.

 24. Show that the value of r, when y = xr satisfies the equation 16x2y2 + 

24xy1 + y = 0, is r =   – 1 ___ 
4

  .

 25. Show that the nth derivative of y =   x _______ 
a2 + x2

   is   
(–1)n n!

 _______ 
rn + 1

   [cos (n + 1) q], 

where r =  ÷ 
_______

 a2 + x2  , q = tan–1   
(a)

 ___ x  .

 26. Show that the nth derivative of y = e2x cos x sin2 2x is 

    1 __ 
4

   e2n  [ 2. 5 
  n __ 
2

  
  cos  ( n tan–1   1 __ 

2
   + x )  –1 3 

  n __ 
2
  
  cos  ( n tan–1   3 __ 

2
   + 3x )  – 2 9 

  n __ 
2
  
  cos

 ( n tan–1   5 __ 
2

   + 5x )  ] .
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 27. Show that the nth derivative of y = cos3 x sin2 x is

    1 ___ 
16

    [ 2 cos  ( x +   np ___ 
2

   )  – 3n cos  ( 3x +   np ___ 
2
   )  – 5n cos  ( 5x +   np ___ 

2
   )  ] .

4.3 LEIBNITZ’S THEOREM 

In this section we are going to extend the product rule of differentiation. If
u = f(x) and v = g(x) be two functions of x, possessing derivatives of higher 
order then by the product rule the first derivative of (uv)1 = u1v + uv1.  

( where the suffixes denote the order of differentiation for example u1 =   du ___ 
dx

   ) .
 In 1684 Leibnitz extended this product rule for the nth derivatives and this 
extension is known as Leibnitz’s Theorem.

Statement: If u and v be two functions of x, possessing derivatives of higher 
order, then

  (uv)n = nC0unv + nC1un – 1v1 + nC2un – 2v2 + ºnCrun – rvr + º + nCnvnu

Proof: This theorem will be proved by Mathematical induction.

 We have (uv)1 = u1v + uv1 = 1C0u1v + 1C1uv1

  (uv)2 = (u1v + uv1)1 = u2v + u1v1 + u1v1 + uv2 = 2C0u2v

    + 2C1u1v1 + 2C2v2u.

 Thus, the theorem is true for n = 1, 2.

 Let us assume that the theorem is true for n = m, so that we have 

  (uv)m = mC0umv + mC1um – 1v1 + mC2um – 2v2 º + º

    + mCr – 1um – r + 1vr – 1 + mCrum – rvr + º mCmvmu.

 Differentiating both sides, we get

  (uv)m + 1 = mC0um + 1v + mC0umv1 + mC1umv1 + mC1um – 1v2 + mC2um – 1v2

    + mC2um – 2v3 + º mCr – 1um – r + 2vr – 1 +

     + mCr – 1um – r + 1vr + mCrum – r + 1vr + mCrum – r vr + 1 + º + m Cmvm +1 u

   = mC0um + 1v + (1 + mC1)umv1 + (mC1 + mC2)um – 1v2 + º
    + (mCr – 1 + mCr)um – r + 1vr + º + mCmvm + 1u.

 We know that 

  1 + mC1 = 1 + m = m + 1C1,

  mCm = 1 = m+1Cm+1,

  mCr –1 + mCr = m + 1Cr,
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\  (uv)m + 1 = m + 1C0um + 1v + m + 1C1umv1 + m + 1 C2um – 1v2 + º

    + m + 1Crum – r + 1vr + º + m + 1Cm + 1vm + 1u.

 Thus, the theorem is true for n = m, it is certainly true for n = m + 1. It 
is already verified for n = 1, 2 and hence the theorem is true for all positive 
integral values of n.

Example 15 If y = (sin–1 x)2, then show that (1 – x2)yn + 2 – (2n + 1)xyn + 1 
– n2yn = 0

Solution y = (sin–1 x)2 

y1 = 2 sin–1 x   1 ______ 
 ÷ 

_____

 1 – x2  
   fi (1 – x2) y 1  

2  = 4(sin–1 x)2 = 4y, differentiate again we get, 

(1 – x2) 2y1y2 – 2x y 1  
2  = 4 y1   (1 – x2) y2 – xy1 – 2 = 0.

 Now differentiate ntimes, by Leibnitz Theorem we get,

 [(1 – x2) yn + 2 – nC12xyn + 1 – nC22 yn] – [x yn + 1 + nC1yn] = 0

 (1 – x2) yn + 2 – 2xn yn + 1 –   
n(n – 1)

 _______ 
2
   2 yn – xyn + 1 – nyn = 0

 Hence, (1 – x2)yn + 2 – (2n + 1) xyn + 1 – n2yn = 0.

Example 16 If y =  e m sin–1
x , then show that (1 – x2)yn + 2 – (2n + 1)xyn + 1 –

(n2 + m2)yn = 0

Solution y = e m  sin–1
  x then y1 = e m  sin–1

  x   m _______ 
 ÷ 

______

 1 – x2  
   fi (1 – x2) y 1  

2  = m2y2, 

differentiate again we get, (1 – x2)2 y1y2 – 2x y 1  
2  = m22yy1

  (1 – x2) y2 – xy1 = m2y. 

 Now differentiate ntimes, by Leibnitz Theorem we get, 

 [(1 – x2) yn + 2 – nC12xyn + 1 – nC22yn] – [xyn + 1 + nC1yn] = m2yn

 (1 – x2)yn + 2 – 2xnyn + 1 –   
n(n – 1)

 _______ 
2
   2yn – xyn + 1 – nyn = m2yn

 Hence, (1 – x2) yn + 2 – (2n + 1)xyn + 1 – (n2 + m2)yn = 0

Example 17 If y = a cos (log x) + b sin (log x),

then show that x2yn + 2 + (2n + 1)xyn + 1 + (n2yn) = 0 

Solution y1 = – a sin (log x)   1 __ x   + b cos (log x)   1 __ x  

fi  xy1 = – a sin (log x) + b cos (log x), differentiate again 
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 We get, 

  xy2 + y1 = – a cos (log x)   1 __ x   – b sin (log x)   1 __ x  

 Now differentiate ntimes, by Leibnitz Theorem we get, 

   [x2yn + 2 + nC12xyn + 1 + nC22yn] + [xyn + 1 + nC1yn] + yn = 0

 Hence, x2yn + 2 + (2n + 1)xyn + 1 + (n2 + 1)yn = 0.

Example 18 If y = log  ( x +  ÷ 
_______

 1 + x2   )  then show that (1 + x2)yn + 2
+ (2n + 1)xyn + 1 + n2yn = 0. Find yn(0)

Solution y = log  ( x +  ÷ 
______

 1 + x2   )  then y1 =   1 ____________  
x +  ÷ 

______

 1 + x2  
     [ 1 +    x _______ 

 ÷ 
______

 1 + x2   
   ] 

=   1 _______ 
 ÷ 

______

 1 + x2  
  , fi (1 + x2) y 1  

2  = 1 differentiate again we get, 

 (1 + x2) 2y1y2 + 2x y 1  
2  = 0

  (1 + x2) y2 + xy1 = 0

 Now differentiate ntimes, by Leibnitz Theorem we get, 

  [(1 + x2)yn + 2 + nC12xyn + 1 + nC22yn] + [x yn + 1 + nC1yn] = 0

 Hence, (1 + x2) yn + 2 + (2n + 1)xyn + 1 + n2yn = 0 Now to find yn(0) putting 
x = 0

fi  yn + 2(0) = – n2yn(0) (4.3)

 We know that y(0) = 1, y1(0) = 1, y2(0) = 0

 Putting     n = 1, 2, 3, º in equation (4.3), we get 

  y3(0) = –12y1(0) = – 12. 

  y4(0) = –22y2(0) = 0. 

  y5(0) = –32y3(0) = (–1)232.

  y6(0) = – 42y4(0) = 0. So

yn(0) = 0 If n is even and  (– 1) 
  
(n – 1)

 ______ 
2
  

  12 ◊ 32 ◊ 52 º º (n – 2)2, if n is odd.

Example 19 Find the nth derivative of (x2e2x sin 3x)

Solution Let y = (x2e2x sin 3x) then 

  yn = (e2x sin 3x)n. x2 + nC1(e
2x sin 3x)n – 1. 2x + nC2(e2x sin 3x)n – 2.2
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   = (22 + 32 ) 
  n __ 
2

  
  e2x sin  ( 3x + n tan–1   3 __ 

2
   ) . x2 + 2xn(22 + 32 ) 

  n – 1 ____ 
2
  
 

    e2x sin  ( 3 x + (n – 1) tan–1   3 __ 
2
   )  + 2   

n(n – 1)
 _______ 

2
   (22 +  32) 

  n – 2 ____ 
2
  
  

e2x sin ( 3x + (n – 2) tan–1   3 __ 
2
   ) . 

   = ( 13) 
  n __ 
2

  
  e2x sin  ( 3x + n tan–1   3 __ 

2
   )  ◊ x2 + 2xn (1 3) 

  n – 1 ____ 
2
  
  e2x

    sin  ( 3x + (n – 1) tan–1   3 __ 
2
   )  + n(n – 1) ( 13) 

  n – 2 ____ 
2
  
  e2x

  sin  ( 3x + (n – 2) tan–1   3 __ 
2
   ) . 

Example 20 If  y   
1 __ m    +  y   

–1 ___ m    = 2x or y =   [ x +  ÷ 
______

 1 + x2   ]  m  then show that (x2 – 1)

yn + 2 + (2n + 1)xyn + 1 + (n2 – m2)yn = 0

Solution  y   
1 __ m    +  y   

– 1 ___ m    = 2x fi  y   
2 __ m    – 2 xy   

–1 ___ m    + 1 = 0 

\   y   
1 __ m    =   

2x ±  ÷ 
______

 4x2 – 4  
  ____________ 

2
   fi y =   ( x ±  ÷ 

_____

 x2 – 1   )  
m

 , then

  y1 = m  ( x ±  ÷ 
______

 x2 – 1   )  m – 1
   [ 1 ±   x ______ 

 ÷ 
_____

 x2 – 1  
   ] 

  (x2 – 1) y 1  
2  = m2y. Differentiate again we get,

  (x2 –1)2y1y2 + 2x y 1  
2  = 2m2yy1 

  (x2 –1)y2 + xy1 – m2y = 0.

 Now, differentiate ntimes, by Leibnitz Theorem we get,

  [(x2 –1)yn + 2 + nC12xyn + 1 + nC22yn] + [xyn + 1 + nC1yn] = m2yn

 Hence, (x2 – 1)yn + 2 + (2n + 1)xyn + 1 + (n2 – m2)yn = 0

Example 21 If x2n = xn xn prove that

  1 +   n
2

 __ 
12

   +   
n2(n – 1)2

 _________ 
12 ◊ 22

   +   
n2(n – 1)2 (n – 2)2

  ________________  
12 ◊ 22 ◊ 32

   + º =   
(2n)!

 _____ 
(n!)2

  .

Solution Let y = x2n, then

  yn = 2n(2n – 1) (2n–2) º (n + 1)x2n – n =   
(2n)!

 _____ 
n!

   xn (4.4)
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 We also know that by Leibnitz theorem

  yn = xn ◊ Dn(xn) +  n C1
 Dn – 1(xn) ◊ D(xn) + nC2Dn – 2(xn) ◊ D2(xn) º + Dn(xn) ◊ xn

     ( D =   
dy

 ___ 
dx

  , and Dn =   d n ___ 
dxn   ) 

   = xn(n!) + n ◊ nxn – 1(n!x) +   
n(n – 1)

 _______ 
2
   n(n – 1) (x2)xn – 2   n! __ 

2
   º + n! ◊ xn,

 Hence, xn(n!)  [ 1 +   n
2

 __ 
12

   +   
n2(n – 1)2

 ________ 
12 ◊ 22

   +   
n2(n – 1)2 (n – 2)2

  _______________  
12 ◊ 22 ◊ 32

   ]   (4.5)

 Equating the R.H.S. of (4.4) and (4.5) and dividing both sides by xn(n!), 
we get the result.

Exercises

 1. Find yn If

 (i) y = x3ebx,   (ii) y =   
log x

 _____ x  ,

 (iii) y = ebx[b2x2 – 2nbx + n(n + 1)].

 2. If y = sin (m sin–1 x) then show that (1 – x2)yn + 2 – (2n + 1)xyn + 1

– (n2 – m2) yn = 0

 3. If y = e m  cos–1
  x, then show that (1 – x2)yn + 2 – (2n + 1)xyn + 1 – (n2 + m2) 

yn = 0.

 4. If y =  e tan–1

  x, then show that (1 + x2)yn + 2 + (2n + 1)xyn + 1 + n(n + 1)

yn = 0.

 5. If y = (1 – x)– ne– bx, then show that (1 – x)yn + 2 + (2n + 1)xyn + 1 + nbyn – 1 

= 0.

 6. If y = log   ( x +  ÷ 
______

 1 + x2   )  2  then show that (1 + x2)yn + 2 + (2n + 1)xyn + 1 

+ n2yn = 0.

 7. If =   sin–1 x ______ 
 ÷ 

_____

 1 – x2  
  , then show that (1 – x2)yn + 2 – (2n + 3)xyn + 1 – (n + 1)2yn = 0.

 8. If y = (x2 – 1)n, then show that (x2 – 1)yn + 2 + 2xyn + 1 – n(n + 1)yn = 0.

 9. If = a  ( x +  ÷ 
______

 1 + x2   )  
m

  + b  ( x –  ÷ 
______

 1 + x2   )  
m

 , then show that (1 + x2)yn + 2 

+ (2n + 1)xyn + 1 + (n2 – m2)yn = 0.
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 10. If cos–1  (   y __ a   )  = log   (   x __ n   )  n  then show that x2yn + 2 + (2n + 1)xyn + 1 + 2n2yn 
= 0.

 11. If y =  e 
  x

2

 __ 
2

  
  cos x, then show that (y2n + 2)0 – 4n(y2n)0 + 2n(2n – 1)

(y2n – 2)0 = 0.

 12. If x = tan (log y), then show that (1 + x2)yn+1 + (2nx – 1)yn + n(n – 1)
yn – 1 = 0.

 13. If y =  e mtan–1x

 , a0 + a1x + a2x2 + º
  Then show that (1 + n)an + 1 + (n – 1)an – 1 = man.

 14. If = Aepx + Beqx, show that y2 – (p + q)y1 + pqy = 0.

 15. If y = sin nx + cos nx, Then show that yr = nr[1 + (– 1)r sin 2nx ] 
  1 __ 
2
  
 .

Answers

 1. (i) bnebxx3 + nbn – 13x2 + n(n – 1)bn – 23x + n(n – 1) (n – 2) bn – 3,

  (ii)   
(–1)n + 1 n!

 _________ 
xn + 1

    [ log x – 1 –   1 __ 
2
   º –   1 __ n   ] ,

  (iii) bn + 2 ◊ ebx ◊ x2
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C H A P T E R

More About Derivative

5.1 INCREASING AND DECREASING FUNCTIONS

Consider the graph of a function in Fig. 5.1. The function increases in the 
intervals (c, x11), (x12, x13) and (x14, x15) {the function increases if we moves 
up}, while the function decreases in the intervals (x11, x12) and (x13, x14) {the 
function decreases if we moves down}. In the interval (x4, b) the function 
neither increasing nor decreasing. {Constant function}. Moreover, when x = x11, 
x12, x13, x14 the tangent line is horizontal so that the derivative of the function 
at these points are zeros ( f ¢ = 0). The tangent line at the points x = x01, x03 
and x05 have positive slope so that the derivative of the function at these points 
are greater than zero ( f ¢ > 0) and the tangent line at the points x = x02 and x04 
have negative slope so that the derivative of the function at these points are less 
than zero ( f ¢ < 0).To be more precise, we have the following definitions.

x
C

x11

x01 x02 x03

x13

x04

x05 x15 d

( , ( ))x f x14 14

( , ( ))x f x12 12

( , ( ))x f x13 13( , ( ))x f x11 11
y

Fig. 5.1
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For increasing function

 1. The function f defined on an interval [a, b] is said to be increasing on 
that interval if whenever a £ x1 < x2 £ b, we have f(x1) < f(x2).

 2. Let f be a function that is continuous on a closed interval [a, b] and 
differentiable on the open interval ]a, b[, and if f ¢(x) > 0 for every value 
of x in [a, b], then function f is increasing on [a, b].

  {not need differentiability at the end points for the required result for 
example in the Fig. 5.3 the function f is increasing on [a, b] but not 
differentiable at a and b}.

Critical point

Increasing

Decreasing

Fig. 5.2

b

a

Fig. 5.3

For Decreasing function

 1. The function f defined on an interval [a, b] is said to be decreasing on 
that interval if whenever a £ x1 < x2 £ b, we have f(x1) > f(x2).

 2. Let f be a function that is continuous on a closed interval [a, b] and 
differentiable on the open interval ]a, b[, and if f ¢(x) < 0 for every value 
of x in [a, b], then function f is decreasing on [a, b].

  {A function f is said to be (strictly) monotonic on an interval I if it is 
either strictly increasing on all of I or strictly decreasing on all of I.}
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a b a b

Strictly increasing
in ( , )a  b

No strictly increasing
in ( , )a  b

For constant function

Let f be a function that is continuous on a closed interval [a, b] and differentiable 
on the open interval ]a, b[, and if f ¢(x) = 0 for every value of x in [a, b], then 
function f is constant on [a, b].

Critical point: Let f be a function that is continuous on a closed interval 
[a, b] and let a point x0 be in (a, b). Then the number x0 is called a critical 
point of a function f if f ¢(x0) = 0 or f ¢(x0) does not exist. {By this definition, 
a critical point x0 is not an end point of the interval}.

 In Fig. 5.1 the points x11, x12, x13, x14, x15 are the critical points.

Example 1 Find the value of x for which the function f (x) = x3 – 3x2 – 9x 
+ 2 increasing and decreasing. 

Solution We have f (x) = x3 – 3x2 – 9x + 2

  f ¢(x) = 3x2 – 6x – 9 = 3(x + 1) (x – 3)

 For critical number f ¢(x) = 3(x + 1) (x – 3) = 0 fi x = –1 and x = 3, hence 
–1 and 3 are the critical point of the function further these critical numbers 
divide the x-axis into three parts.

–• < x < –1, –1 < x < 3, and 3 < x < •.

 It is observed that f ¢(x) > 0 when –• < x < –1 and 3 < x < •. We have 
f ¢(x) < 0 when –1 < x < 3. Hence the function increasing when –• < x < –1 
and 3 < x < •, and decreasing when 3 < x < •. Fig. 5.4

     

f ¢ > 0 f ¢ < 0 f ¢ > 0

1 3

      Fig. 5.4     Fig. 5.5 Interval where f is increasing and decreasing
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5.2 CONCAVITY 

The sign of the derivative of a function f tell us where the graph of f is 
increasing or decreasing but not tell us about the direction of the curvature 
(curvature means the rate by which the curve bend or turned), for example in 
the Fig. 5.6 the graph of the functions are increasing but they are quite different 
from one another.

 In Fig. 5.6(c), on both sides of the point x0 the graph is increasing, but on 
the left side it has an upward curvature and on the right side it has downward 
curvature. 

       

Inflection point

  Fig. 5.6(a)        Fig. 5.6(b)          Fig. 5.6(c)

 1. On intervals where the graph of f has upward curvature we say that 
f is concave up, and on intervals where the graph of f has downward 
curvature we say that f is concave down. 

 2. Another way to think of concavity is suggested by Fig. 5.7, the graph 
of f has upward curvature or concave up on intervals where the graph 
lies above the tangent lines, and it has downward curvature or concave 
down on intervals where it lies below its tangent lines.

 3. We know that the derivative of f ¢ is f ≤, and if f ≤ > 0, then f ¢ has a 
positive derivative, and so we can conclude that f ¢ is increasing and f 
is concave up. If f ≤ < 0 then f ¢ is decreasing and f is concave down.

Theorem Let f ≤(x) exists on an open interval I.

 (i) If f ≤(x) > 0, on I, then f is concave up on I.

 (ii) If f ≤(x) < 0, on I, then f is concave down on I.

Inflection point: A point (x0, f(x0)) is called a Inflection point of a function 
f if f changes its direction of concavity at that point x0. Fig. 5.6(c).

Theorem: f may have a point of inflection at (x0, f(x0)), if f≤(x0) = 0, or 
f ≤(x0) does not exist.

Note: The converse of above theorem is not true in general. That is, if
f≤(x0) = 0, then x0 is not necessarily a point of inflection. For Example, let 
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f(x) = x4 + 2, then f ¢(x) = 4x3, and f≤(x) = 12x2, thus f≤(x) = 0, when x = 0, 
but this is not a point of inflection, Fig. 5.7(d).

Fig. 5.7(d)

Example 2 Find the intervals on which the following functions are concave 
up and concave down.

 (i) f(x) = x3 – x + 6, (ii) f(x) = x3 – 3x2 + 6,

 (iii) f(x) = x2 – 2x + 1. 

Solution (i) We have f(x) = x3 – x + 6 then f ¢(x) = 3x2 – 1 and f≤(x) = 6x, 
Therefore, f ≤(x) > 0 if x > 0, and f ≤(x) < 0 if x < 0, hence 
the graph of f is concave up for x > 0, and concave down for
x < 0, and point of inflection is x = 0 Fig. 5.8.

Fig. 5.8

 Fig. 5.7(a) Concave up  Fig. 5.7(b) Concave down      Fig. 5.7(c)

x

y

x

y Bend up Concave up

Bend down Concave down
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 (ii) We have f(x) = x3 – 3x2 + 6, then f ¢(x) = 3x2 – 6x and
f ≤(x) = 6(x – 1) Therefore, f ≤(x) > 0 if x > 1, and f ≤(x) < 0 if 
x < 1, hence the graph of f is concave up on 1 < x < •, and 
concave down on –• < x < 1 and point of inflection is x = 1, 
Fig. 5.9.

Fig. 5.9

 (iii) We have f(x) = x2 – 2x + 1 then f ¢(x) = 2x – 2 and f ≤(x) = 2, 
Therefore, f ≤(x) > 0 for all x, hence the graph of f is concave 
up on –• < x < •, Fig. 5.10.

Fig. 5.10

Example 3 Find the intervals on which the function f(x) = cos x are concave 
up and concave down.

Solution We have f(x) = cos x, then f ¢(x) = – sin x and f ≤(x) = –cos x 

Therefore, f ≤(x) > 0 if   p __ 
2

   < x <   3p ___ 
2

  , and f ≤(x) < 0 if 0 < x <   p __ 
2
  , and   3p ___ 

2
   < x < 2p, 

hence the graph of f is concave up on   p __ 
2
   < x <   3p ___ 

2
   and concave down on

0 < x <   p __ 
2

  , and   3p ___ 
2

   < x < 2p, and point of inflection is x =   p __ 
2

   and   3p ___ 
2
  

Fig. 5.11. 
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Fig. 5.11

5.3 MAXIMUM OR MINIMUM

The maximum and minimum values of a function f are also known as relatively 
greatest and least values of the function in that these are the greatest and 
least values of the function relatively to some neighborhoods of the points in 
question. Thus, a maximum or minimum value of f may not be the greatest 
or least values of the function in a finite interval. In fact a function can have 
several maximum and minimum values even a minimum value may be greater 
than a maximum value. Figure 5.12 shows that the Points x0, x2, x4 and x5 are 
the local or relative maximum and points x1, x3 and c are the local or relative 
minimum values of the corresponding function f.

x0

x1

x2

x4

x3

x5

dcba

Fig. 5.12

Definition The function f has a local maximum at a point x0 if there is an 
open interval (a, b) containing x0 such that f(x0) ≥ f(x) for every x Œ (a, b).

 The function f has a local minimum at a point x0 if there is an open interval 
(a, b) containing x0 such that f (x0) £ f (x) for every x Œ (a, b).

 The function f has a global maximum at a point x0 if f (x0) ≥ f (x) for every 
x in domain of f.
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 The function f has a global minimum at a point x0 if f (x0) £ f(x) for every 
x in domain of f.

Note: If a function f has a maximum or minimum at a point x0, then x0 is 
called extremum.

 In example 2(ii) function has a local maximum at a point x0 = 0 and has 
a local minimum at a point x0 = 2, while in example 3 function has a global 
minimum at a point x0 = 1.

Theorem: Suppose the function f has a local maximum or local minimum 
at a point x0, then x0 is a critical point (Example 2(ii) at critical point
f ¢(x0) = 0).

 The converse of this theorem is not true, for example let f(x) = x3, then 
f ¢(x) = 3x2, now when x = 0, f ¢(x) = 0, but at x = 0 the function has neither a 
local maximum nor local minimum, Fig. 5.13.

Fig. 5.13

 It is observed that at a critical point a function may have a local maximum, 
a local minimum, or neither.

 Following two ways we may determine when a critical point is a local 
maximum or local minimum.

 1. First derivative test: Let x0 be a critical point of a function f with 
x0 Œ (a, b) suppose that f is continuous on a closed interval [a, b] and 
differentiable on open interval ]a, b[, except possible at x0.

 (i) if f ¢(x) > 0 for a < x < x0 and f ¢(x) < 0 for x0 < x < b, f has a 
local maximum at x0.



More About Derivative 5.9 

 (ii) if f ¢(x) < 0 for a < x < x0 and f ¢(x) > 0 for x0 < x < b, f has a 
local minimum at x0.

 (iii) if f ¢(x) < 0 for a < x < b or f ¢(x) > 0 for a < x < b, (except 
possibly at x0 itself), f has neither a local maximum nor a local 
minimum.

    a x0 b

f ¢ < 0 f ¢ < 0

    a x0 b

f ¢ > 0 f ¢ > 0

  For example let f (x) = 2x2 – 4x + 3, then f ¢(x) = 4x – 4 = 4(x – 1). 
Since f ¢(x) < 0 for x < 1, f ¢(x) > 0 for x > 1, and f ¢(1) = 0, f has a local 
minimum at x = 1 (which is also a global minimum), Fig. 5.14.

Fig. 5.14

 2. Second derivative test: Let f be a differentiable function on an open 
interval I containing x0 and suppose that f ≤(x0) exists.

 (i) If f ¢(x0) = 0 and f ≤(x0) > 0, (concave up at x0) f has a local 
minimum at x0.

 (ii) If f ¢(x0) = 0 and f ≤(x0) < 0, (concave down at x0) has a local 
maximum at x0.

Note: If f ¢(x0) = 0 and f ≤(x0) = 0, then f may have a local minimum, local 
maximum or neither at x0.

Example 4 For the following functions (a) Find the intervals on which f is 
increasing, decreasing, (b) the open intervals on which f is concave up, concave 
down, (c) Locate the local maximum, local minimum, (d) Find all the values 
of x at which f has an inflection point.

 (i) f (x) = x4 – 4x3 + 4x2 + 1, (ii) f(x) =  x  
  4 __ 
3
  
  –  x  

  1 __ 
3
  
 ,

 (iii) f (x) = cos2 x – 2sin x: [0, 2p] (iv) f (x) =  
 
 1

   
 ÷ 

___
 2p   
 
  e 

–   x
2

 ___ 
2
  
 .
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Solution (i) We have f(x) = x4 – 4x3 + 4x2 + 1, then f ¢(x) = 4x3 – 12x2 + 8x 
= 4x (x – 1) (x – 2) f ¢(x) = 0 fi 4x (x – 1) (x – 2) = 0, x = 0, x = 1, x = 2.

 And f ≤(x) = 12x2 – 24x + 8 = 4 (3x2 – 6x + 2).

 Therefore  f ≤(x) = 0 fi 3x2 – 6x + 2 = 0, or x =   
6 ±  ÷ 

_______
 36 – 24  
  ____________ 

6
   = 1 ±   1 ___ 

 ÷ 
__

 3  
  

 (a) For critical number f ¢(x) = 4x (x – 1) (x – 2) = 0, fi x = 0, x = 1 

and x = 2, hence when x = 0, f (x) = 1, x = 1, f (x) = 2 and x = 2,

f (x) = 1, hence (0, 1), (1, 2) and (2, 1) are the critical point of the function 
further these critical numbers divide the x-axis into four parts.

   –• < x < 0, 0 < x < 1, 1 < x < 2 and 2 < x < •.

  It is observed that f ¢(x) > 0 when 0 < x < 1 and 2 < x < •. We have 

f ¢(x) < 0 when –• < x < 0, and 1 < x < 2. Hence the function increasing 

when 0 < x < 1 and 2 < x < •, and decreasing when –• < x < 0, and 
1 < x < 2.

 (b) f ≤(x) > 0 if x < 1 –   1 ___ 
 ÷ 

__
 3  
  , and x > 1 +   1 ___ 

 ÷ 
__

 3  
  , f ≤(x) < 0, if 1 –   1 ___ 

 ÷ 
__

 3  
   < x 

< 1 +   1 ___ 
 ÷ 

__
 3  
  , hence the graph of f is concave up for x < 1 –   1 ___ 

 ÷ 
__

 3  
  , and

x > 1 +   1 ___ 
 ÷ 

__
 3  
  , and concave down when 1 –   1 ___ 

 ÷ 
__

 3  
   < x < 1 +   1 ___ 

 ÷ 
__

 3  
  .

 (c) When x = 0, f ≤(0) = 8 fi f ≤(x) > 0, when x = 1, f ≤(1) = –4, fi f ≤(x) 

< 0 and when x = 2, f ≤(2) = 8 fi f ≤(x) > 0, hence function have local 

minimum at (0, 1), (2, 1) and local maximum at (1, 2). (d) points of 

inflection are  ( 1 –   1 ___ 
 ÷ 

__
 3  
  ,   13 ___ 

9
   ) , and  ( 1 +   1 ___ 

 ÷ 
__

 3  
  ,   13 ___ 

9
   ) , Fig. 5.15.

Fig. 5.15
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(ii) We have f(x) =  x  
  4 __ 
3

  
  –  x  

  1 __ 
3

  
 , then f ¢(x) =   

4  ( x –   1 __ 
4
   ) 
 ________ 

3 x  
  2 __ 
3
  
 

  , f ¢(x) = 0 fi  ( x –   1 __ 
4
   )  = 0, 

or x =   1 __ 
4

  . And f ≤(x) =   
4  ( x +   1 __ 

2
   ) 
 ________ 

9 x  
  5 __ 
3

  
 

  . Therefore f ≤(x) = 0 fi  ( x +   1 __ 
2
   )  = 0, or 

x = –   1 __ 
2

  

 (a) For critical number f ¢(x) =   
4  ( x –   1 __ 

4
   ) 
 ________ 

3 x 
  2 __ 
3
   
 

   = 0 fi x =   1 __ 
4
  , hence   1 __ 

4
   is the 

critical point of the function further these critical numbers divide the 
x-axis into two parts.

   –• < x <   1 __ 
4

   and   1 __ 
4

   < x < •.

  It is observed that f ¢(x) > 0, when   1 __ 
4
   < x < •. We have f ¢(x) < 0, when 

–• < x <   1 __ 
4

  . Hence the function increasing when   1 __ 
4

   < x < •, and 

decreasing when –• < x <   1 __ 
4
  . 

 (b) f ≤(x) > 0, if –• < x < –   1 __ 
2
  , and 0 < x < •, f ≤(x) < 0, if –   1 __ 

2
   < x < 0, 

hence the graph of f is concave up for –• < x < –   1 __ 
2
  , and 0 < x < •, 

and concave down when –   1 __ 
2
   < x < 0.

 (c) function have neither local minimum nor local maximum.

 (d) points of inflection are x = –   1 __ 
2
  , and x = 0.

(iii)  We have f (x) = cos2 – 2sin x, then f ¢(x) = –2sin x cos x – 2cos x = –2cos 

x [1 + sin x], f ¢(x) = 0 fi –2cos x [1 + sin x] = 0, or x =   p __ 
2
   and x =   3p ___ 

2
  .

 And f ≤(x) = 2sin x [1 + sin x] – 2cos2 x = 4[1 + sin x]  [ sin x –   1 __ 
2
   ] . Therefore 

f ≤(x) = 0 fi [1 + sin x]  [ sin x –   1 __ 
2
   ]  = 0, or x = 0, x =   p __ 

6
   and x =   5p ___ 

6
  .

 (a) For critical number f ¢(x) = –2cos x [1 + sin x] = 0, or x =   p __ 
2
  , and

x =   3p ___ 
2

   which are the critical point of the function further these critical 

numbers divide the x-axis into three parts.

    0 < x <   p __ 
2

  ,   p __ 
2
   < x <   3p ___ 

2
   and   3p ___ 

2
   < x < 2p.
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  It is observed that f ¢(x) > 0, when   p __ 
2
   < x <   3p ___ 

2
  . We have f ¢(x) < 0 when 

0 < x <   p __ 
2

  , and   3p ___ 
2

   < x < 2p. Hence the function increasing when   p __ 
2
  

< x <   3p ___ 
2

  , and decreasing when 0 < x <   p __ 
2
  , and   3p ___ 

2
   < x < 2p.

 (b) f ≤(x) > 0, if   p __ 
6

   < x <   5p ___ 
6

  , f ≤(x) < 0 if 0 < x <   p __ 
6
  , and   5p ___ 

6
   < x < 2p, 

hence the graph of f is concave up for   p __ 
6
   < x <   5p ___ 

6
  , and concave down 

when 0 < x <   p __ 
6

  , and   5p ___ 
6

   < x < 2p.

 (c) When x =   p __ 
2

  , f ≤  (   p __ 
2

   )  > 0, when x =   3p ___ 
2
  , f ≤  (   3p ___ 

2
   )  < 0, hence function have 

local minimum at x =   p __ 
2

  , and local maximum at x =   3p ___ 
2
  .

 (d) points of inflection are x =   p __ 
6
  , and x =   5p ___ 

6
   Fig. 5.16.

Fig. 5.16

(iv) We have f(x) =   1 ____ 
 ÷ 

___
 2p  
    e 

–   x
2

 __ 
2

  
 , then f ¢(x) =   – x ____ 

 ÷ 
___

 2p  
    e 

 –   x
2

 __ 
2

  
 , f ¢(x) = 0 fi x = 0, 

(because  e  
–    x

2

 __ 
2

  
  always positive).

 And f ≤(x) =   x2

 ____ 
 ÷ 

___
 2p  
    e  

–   x
2

 __ 
2

  
  –   1 ____ 

 ÷ 
___

 2p  
    e 

–   x
2

 __ 
2
  
  =   1 ____ 

 ÷ 
___

 2p  
   (x2 – 1)  e  

–    x
2

 ___ 
2
  
 . Therefore f ≤(x) = 0 

fi (x2 – 1) e  
–   x

2

 __ 
2

  
  = 0, or x = ±1

 (a) For critical number f ¢(x) =   – x ____ 
 ÷ 

___
 2p  
    e 

–   x
2

 __ 
2
  
  = 0 fi x = 0, and f(0) =   1 ____ 

 ÷ 
___

 2p  
   ª 0.4 

hence (0, 0.4) is the critical point of the function further these critical 
numbers divide the x-axis into two parts.

    –• < x < 0.4 and 0.4 < x < •.
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  It is observed that f ¢ (x) > 0, when –• < x < 0.4. We have f ¢ (x) < 0, 
when 0.4 < x < •. Hence the function increasing when – • < x < 0.4, 
and decreasing when 0.4 < x < •. 

 (b) f ≤ (x) > 0, if –• < x < –1, and 1 < x < •, f ≤ (x) < 0 if –1 < x < 1, 
hence the graph of f is concave up for –• < x < –1, and 1 < x < •, 
and concave down when –1 < x < 1.

 (c) When x = 0.4, f ≤ (0.4) < 0, hence function has local maximum at
x = 0.4.

 (d) when x = 1, and x = –1, f (1) = f (–1) = 0.24, points of inflection are 
(–1, 0.24) and (1, 0.24), Fig. 5.17.

Fig. 5.17

Example 5 Find constants a, b and c that guarantee that the function
f(x) = ax3 + bx2 + c, will have a relative extremum at (2, 9) and an inflection 
point at (1, 4).

Solution We have f (x) = ax3 + bx2 + c, then f (x) = 3ax2 + 2bx, and
f ≤ (x) = 6ax + 2b.

 For relative extremum (local maximum or minimum) we know that
f ¢ (x) = 0, hence

  3ax2 + 2bx = 0 = 3a (2)2 + 2b. 2 = 12a + 4b = 4 (3a + b) (5.1)

 Given points (2, 9) and (1, 4) lie on the function f (x) = ax3 + bx2 + c, we 
have,
  9 = 8a + 4b + c  (5.2)

and  4 = a + b + c  (5.3)

from equations (5.1) and (5.2) we have,

  9 = –4a + c  (5.4)

from equations (5.1) and (5.3) we have,

  4 = –2a + c  (5.5)

 Now from equations (5.4) and (5.5) we have, a = –   5 __ 
2
  , put this value of a 

in (5.1) we have, b = –    15 ___ 
2

  , thus, from (5.4), c = –1.
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Example 6 A rectangular sheet of metal has four equal square portions 
removed at the corners, and the sides are then turned up so as to form an 
open rectangular box. Show that when the volume contained in the box is a 

maximum, then the depth will be   1 __ 
6
    [ (a + b) – (a2 + b2 – ab )  

  1 __ 
2
  
  ] . 

Solution Let x be the length of the side of each of the squares removed and 
V be the volume of the box 

a

a x– 2

bb x– 2

x

Fig. 5.18

\  V = (a – 2x) (b – 2x)x

   (x is the height of the required box shown in Fig. 5.18)

   = 4x3 – 2 (a + b) x2 + abx, hence

    dV ___ 
dx

   = 12x2 – 4 (a + b) x + ab, for maximum V, have

    dV ___ 
dx

   = 12x2 – 4 (a + b) x + ab = 0, or

  x =   
  4 (a + b) ±  ÷ 

________________

  16(a + b)2 – 48ab  
    ___________________________  

24
  

   =   
(a + b) ±  ÷ 

___________

  a2 + b2 – ab   
   ______________________  

6
  

     d
2V ____ 

dx2
   = 24x – 4 (a + b) = –4 ÷ 

______________

  {(a – b)2 + ab}  , when 

  x =   
(a + b) –  ÷ 

___________

  a2 + b2 – ab   
   ______________________  

6
  

 Which is negative, hence V maximum when depth is   
(a + b) –  ÷ 

__________

  a2 + b2 – ab  
   ___________________  

6
  .
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Example 7 A garden is to be laid out in a rectangular area and protected by 
a wire fence. What is the largest area of the garden if only 200 running feet 
of wire is available for the fence. 

Solution Let x be the length, y be the width and A be the area of the given 
rectangle. 

 Then A = xy, and 2x + 2y = 200 (perimeter of the garden = 200).

 Now A = x (100 – x) = 100x – x2. (y = 100 – x).

 We know that x cannot be negative, and 0 < x + x £ 200 fi 0 < x £ 100.

 Now   dA ___ 
dx

   = 100 – 2x, for maximum A, we have

   dA ___ 
dx

   = 100 – 2x = 0, or x = 50. Thus maximum A occurs when x = 50 or 

x = 100.

 At x = 100, A = 0, and at x = 50, A = 2500 ft2.

 Hence maximum area occurs at x = 50.

Example 8 How should we choose the height and radius to minimize the 
amount of material needed to manufacture a closed cylindrical can of one 
liter.

Solution Let r be the radius, h be the height and S be the surface area of 
the given can. 

 The can consists of two circular disk of radius r, Fig. 5.20, and a rectangular 
sheet with dimensions (h × 2pr), Fig. 5.21, the surface area will be

  S = 2prh + pr2 + pr2 = 2prh + 2pr2 (5.6) 

  Volum = 1000 = pr2h or h = 1000/pr2 (1 liter = 1000 cm3)

 Substituting h in (5.6), we have

  S = 2pr2 +   2000 _____ r  

 

h

r

     

2pr

     Fig. 5.19         Fig. 5.20        Fig. 5.21 
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 Since S is a continuous function of r on the interval (0, •), and for minimum 
S, we calculate

    ds __ 
dr

   = 4pr –   2000 _____ 
r2

   = 0, or r =   10 ____ 
3
 ÷ 

___
 2p  
   ª 5.4.

 Hence r ª 5.4 is the only critical number in the interval (0, •). For this 
value of r, we have

  h =   1000 ______ 
p(5.4)2

   ª 10.8.

 We know that,   d
2s ___ 

dr2
   = 4p +   4000 _____ 

r3
   > 0 fo r ª 5.4 hence S is minimum when

r ª 5.4 and h ª 10.8. 

Example 9 Show that the least perimeter of an isosceles triangle in which a 
circle of radius r can be inscribed is 6 ÷ 

__
 3  r.

Solution Suppose O is the centre of the circle and A is the vertex of the 

triangle Fig. 5.22. Let AO = x. Now AM =  ÷ 
______

 x2 – r2  , and in triangle ABD   BD ___ 
AD

   

= tan (BAD) =   OM ____ 
AM

   fi BD = AD   OM ____ 
AM

   = (r + x)   r _______ 
 ÷ 

______

 x2 – r2  
  

Fig. 5.22

\ P = Perimeter of the triangle = AB + BC + AC = 2AB + 2BD = 2AM

+ 2BD = 2 ÷ 
______

 x2 – r2   + 4(r + x)   r ________ 
 ÷ 

______

 x2 – r2  
  , now,   dP ___ 

dx
   = 3(r + x ) 

  1 __ 
2
   
 (x – r )  

  –1 ___ 
2
   

 – 

(r + x )  
  3 __ 
2

  
  (x – r ) 

  –3 ___ 
2

  
  = 2(r + x ) 

  –1 ___ 
2

  
  (x – r ) 

  –1 ___ 
2
  
  [x – 2r]. For least Perimeter   dP ___ 

dx
   = 0 

fi x = 2r.

 We also have   dP ___ 
dx

   > 0 when x > 2r and   dP ___ 
dx

   < 0 when x < 2r, hence P is 

minimum when x = 2r.
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 Thus P = 2 (2r + r ) 
  3 __ 
2
  
  (2r – r ) 

  –1 ___ 
2
  
  = 6 ÷ 

__
 3  r.

5.4 OPTIMIZATION IN BUSINESS, ECONOMICS,
  AND LIFE SCIENCES

The terms velocity [change in displacement with respect to the time] and 
acceleration [change in velocity with respect to the time] use to refer to the 
derivatives of functions describing motion of an object.

 The terms rates of change and derivatives also use in Economics and in 
Economics they called them marginal.
 In a manufacturing operation, the cost of production C(x) is a function of 
x, the number of units produced. The marginal cost of production is the rate 

of change of cost with respect to level of production, so its   dC ___ 
dx

   = C ¢ (x).

 Suppose to produce x kg. ghee in a week we need C(x) rupees. It costs 
more to produce x + h units per week, and the cost difference, divided by h, 
is the average cost of producing each additional kg.

   
C(x + h) – C(x)

  ______________ 
h

   = Average cost of the additional h kg. of ghee produced.

 The limit of this ratio as h Æ 0 is the marginal cost of producing more 
ghee per week when the current weekly production is x kg., Fig. 5.23.

y

x

h

y C x= ( )

Slope = marginal cost

x x h+

Fig. 5.23

 Marginal cost of production   dC ___ 
dx

   = C ¢ (x) = limh Æ 0   
C(x + h) – C(x)

  ______________ 
h

  .

 Sometimes the marginal cost of production is defined to the extra cost of 
producing one unit:

    Dc ___ 
Dx

   =   
C(x + 1) – C(x)

  _____________ 
1
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 Which is approximated by the value of   dc ___ 
dx

   at x and this approximation is 

acceptable if the slope of the graph of C does not change quickly near x. The 
approximation works best for large value of x.

Fig. 5.24

 The demand function p(x) is defined for the price that consumer will pay 
for each unit of commodity when x units are brought to the market. Then the 
total revenue R (x) = xp (x) derived from the sale of the x units and the total 
profit is defined as P (x) = R (x) – C (x).
Maximum Profit: Profit is maximized when marginal revenue R ¢ (x) is 
equals to marginal cost C ¢ (x), Fig. 5.25. To prove this. 

C x( )
R x( )

Loss

Local maximum for
loss ( ) = ( )R x C x¢¢

Maximum profit
( ) = ( )R x C x¢¢

x
a bItems produced

R
up

ee
s

Fig. 5.25

 Let R (x) and C (x) be differentiable for all x > 0, and if P (x) = R (x) – C (x) 

has a maximum value, It occurs at a level of production at which

  P ¢(x) = 0 (5.7)

 Differentiate (5.7) with respect to x, we have

  P ¢ (x) = R ¢ (x) – C ¢ (x) = 0 fi R ¢ (x) = C ¢ (x).

 In an another principle of economics the average cost A(x) =   
C(x)

 ____ x   is related 
to the marginal cost as follows.
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Minimum Average Cost: Average cost minimized at the level of production 

when C ¢ (x) =   
C(x)

 ____ x  . 

 To prove Differentiate A(x) with respect to x, we have

  A ¢ (x) =   
xC ¢ (x) – C(x)

  ____________ 
x2

   =   
C ¢ (x) –   

C(x)
 ____ x  
  ___________ x   =   

C ¢ (x) – A(x)
  ___________ x  .

 Now for minimum average cost A ¢ (x) = 0, hence we have C ¢ (x) =   
C (x)

 ____ x  .

Example 10 We give the Cost price C(x) and the Selling price p when x 
units of commodity are produced in each of the following cases, find the level 
of the production that maximizes the profit.

 (i) C (x) =   1 __ 
6

   x2 + 5x + 200, p(x) = 40 – x;

 (ii) C(x) =   1 __ 
5

   x + 6, p(x) =   70 – x  ______ 
x + 20

   

Solution (i) The marginal cost is C ¢ (x) =   1 __ 
3
   x + 5.

  The revenue R(x) = xp (x) = x (40 – x) = 40x – x2, and the 

marginal revenue is R ¢ (x) = 40 – 2x. The profit maximized 

when R ¢ (x) = C ¢ (x), 40 – 2x =   1 __ 
3
   x + 5 fi x = 15, hence the 

price that corresponds the maximum profit is p (15) = 40 – 15 
= 25.

 (ii) The marginal cost is C ¢ (x) =   1 __ 
5
  .

  The revenue R (x) = xp (x) = x  (   70 – x ______ 
x + 20

   )  =   70x – x2

 ________ 
x + 20

  , and the 

marginal revenue is R ¢ (x) = 1400 – 40x – x2. The profit maximized 

when R ¢ (x) = C ¢ (x), 1400 – 40x – x2 =   1 __ 
5
   fi x ª 22, hence the 

price that corresponds the maximum profit is P (22) ª 1.14.

Example 11 A manufacturer can produce a particular commodity at a cost 
of $100, if manufacturer sold approximately s (x) = 2000 e–.01x commodities 
in a week by x dollars per commodity. At what price should the manufacturer 
sell the commodity to maximize profit.

Solution The cost price C (x) of the sold commodity in a week is 

100.2000 e–.01x, hence C (x) = 100.2000 e–.01x = 200000 e–.01x and Revenue

R (x) = 2000 xe – .01 x the marginal cost is C ¢ (x) = – 2000 e – .01 x.

 And the marginal revenue is R ¢ (x) = 2000 e – .01 x – 20 xe–.01x.
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 The profit maximized when

  – 2000 e – .01 x = 2000 e – .01 x – 20 xe – .01 x fi x = 200,

hence the price that corresponds the maximum profit is x = 200.

Example  12 If the total revenue (in dollars) from the sale of x units of a 
particular commodity is

  R(x) = – x2 + 34x – 64

 Then at what level of sales is the average revenue per unit equal to the 
marginal revenue. 

Solution The average revenue   
R(x)

 ____ x   = –x + 34 –   64 ___ x  , and 

 Marginal revenue R ¢ (x) = – 2x + 34. Now

    
R(x)

 ____ x   = R ¢ (x) = – x + 34 –   64 ___ x   = – 2x + 34 fi x = 8.

 Hence the average revenue per unit equal to the marginal revenue when x = 8

Example 13 A shopkeeper buys 4000 fish pot from a company for a year. 
The cost of per fish pot is $ 5. The shopkeeper pays $ 2 per fish pot for storage 
and $ 40 for ordering fees per shipment. Suppose that the Selling price of fish 
pot is constant throughout the year and the next shipment arrives when the 
preceding shipment has been used up. How many fish pot should the shopkeeper 
order each time to minimize the cost price.

Solution Let x be the number of fish pot order for one shipment. Assume 
that the same number of fish pot order for each shipment. Suppose that the 

shopkeeper store the fish pot half of a given order  (   x __ 
2
   ) , and assume that storage 

cost remain unchanged throughout the year.

 The total cost C(x) = cost of fish pot + cost of storage + order cost

  C(x) = 4000 × 5 +  (   x __ 
2
   )  × 2 + 40 ×  (   4000 _____ x   ) , for minimize

  C ¢ (x) = 1 – 160000 x – 2 = 0 fi x = ± 400

 Hence x = – 400 π Œ [0, 4000] now we can see C ¢ (x) < 400 is when
x < 400, and C ¢ (x) > 0 when x > 400.

 Thus 400 fish pot should the shopkeeper order each time to minimize the 
cost price.

Example 14 A mathematical model P (x) = Ax s e  –   sx __ r    developed by A. Lasota 
where A, s and r are positive constant, x is the number of granulocytes. Find 
the granulocytes level that maximizes the function P (x).
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Solution Given P (x) = Ax s e –   sx __ r   ,

  P ¢ (x) = Asx s – 1  e –   sx __ r    – Ax s   s _ r    e  –   sx __ r   , for maximum granulocytes level x

  P ¢ (x) = 0 = Asx s – 1  e –   sx __ r    – Ax s   s _ r    e  –   sx __ r    fi x = r, now

  P ≤ (x) = As e  –   sx __ r     [ (s – 1)x s – 2 –   2s __ r   x s – 1 + s   x s __ 
r 2

   ] , hence

 P ≤ (x) < 0, when x = r

granulocytes level is maximum when x = r.

Example 15 Suppose the total cost (in dollars) of manufacturing x units of  
the particular commodity is

  C(x) = x2 + x + 64

 At what level of production is the average cost per unit, minimum.

Solution The average cost is A (x) =   
C (x)

 ____ x   = x + 1 +   64 ___ x  , and A (x) is minimized 
when

  C ¢ (x) = A (x). Thus 2x + 1 = x + 1 +   64 ___ x   fi x = ± 8.

 So the minimum cost occurs, when x = 8.

Example 16 A company sold 6000 pieces of a commodity per month at 
the rate of $ 6 per piece while the producing price is $ 4 per piece. Due to 
increasing the price of raw material, the company is planning to raise the price 
$ 1 per piece and estimates that 600 fewer pieces will be sold each month. At 
what price should the company sell the commodity to maximize the profit.

Solution Let x be the number of $ 1 price increases. 

 The number of pieces sold = 6000 – 600 (number of $ 1 increases)

   = 6000 – 600 x. 

 Now the price per piece is 6 + x, thus the

 Cost price = (6000 – 600 x) 4, and Selling price is (6000 – 600 x) (6 + x)  

Profit p (x) = Revenue – Cost price

   = (6000 – 600 x) (6 + x) – (6000 – 600 x) 4

   = 600 (10 – x) (2 + x) (5.8)

 Equation (5.8) shows that the domain of x is [0, 10], now

  p ¢(x) = 600 (10 – x) – 600 (2 + x)
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  p ¢(x) = 1200 (4 – x) = 0 fi x = 4, for maximum profit, we have

  p (0) = 12000, p (10) = 0 and p (4) = 21600.

 Hence the maximum profit is 21600, which occurs when piece sold for
6 + 4 = 10 $.

Exercises 

 1. For the following functions (a) Find the intervals on which f is increasing, 
decreasing, (b) The open intervals on which f is concave up, concave 
down, (c) Locate the local maximum, local minimum, (d) Find all the 
values of x at which f has an inflection point.

 (i) f (x) = x2 – 4x + 8, (ii) f (x) = x 4 – 4x 2 + 8,

 (iii) f (x) = x 4 – 4 x 3 + 10, (iv) f (x) = 3 x 5 – 5 x 3 + 2,

 (v) f (x) = 
3
  ÷ 
_____

 x + 5  ,   (vi) f (x) = 3x + cot x, [0, p],

 (vii) f (x) = sin x + cos x, [0, 2p] (viii) f (x) = x 2 e – 4x.

 2. Window in the form of a rectangle surmounted semicircular opening. The 
total perimeter is 20 meters. Show that the dimension of the windows to 

admit maximum light through the whole opening is   40 ______ 
(p + 4)

   ×   20 ______ 
(p + 4)

  .

 3. An open box with a square box is to be made of a metal sheet, whose 

area is 16 m2. Show that the maximum volume of the box is   
32 ÷ 

__
 3  
 _____ 

9
  .

 4. Show that the greatest area of a rectangle which is inscribed in a right 
angle triangle having sides of length 3 in, 4 in and 5 in is 3 in 2.

 5. A container with square base and vertical sides to be made from a ft 2 
of material. Show that the dimensions of the container with maximum 

volume is  ÷ __

   a __ 
6

     ×   
 ÷ 

___
 6a  
 ____ 

2
  .

 6. Show that a cylinder of given volume, open at the top has minimum 
total surface area provided its height is equal to the radius of its base.

 7. Show that the volume of greater cylinder which can be inscribed in a 

cone of height h and semi-vertical angle q is   4p ___ 
27

   h2 tan 2 q.

 8. A cone is inscribed in a sphere of radius R, prove that its volume as 

well as its curved surface is maximum when its altitude is   4R ___ 
3
  .
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 9. A open top of right circular cylinder of radius r and height h have a 
volume V. The bottom are cut from square as shown in following figure. 
If the shaded corners are wasted, but there is no other waste, show that 
the ratio r/h for the can requiring the least material including waste is

  p __ 
4

  .

r

 10. A cone shaped drinking cup made by a paper is to hold 5 cm3 of liquid. 

Show that height h =   15 ___ p    ÷ 
____

   p 2 ____ 
125

     cm. and radius r = 6  ÷ ____

   125 ____ 
p 2

     cm. of the cup 

that will require the least paper.

 11. A 20 cm. long wire bent into a circle and a square. Show that   20p _____ 
p + 4

   cm. 

long wire should be used for the circle if the total area enclosed by the 
figure (s) is to be minimum.

 12. A manufacturer estimates that when x units of a particular commodity 

are produced each month, the total cost (in dollars) will be C (x) =   1 __ 
8
   x2 

+ 4x + 200 and all units can be sold at a price of p (x) = 49 – x dollars 
per unit. Show that the price that corresponds to the maximum profit is 
29 dollars/units . 

 13. A company sells a commodity at a price of $ 50 per unit. If the total 
production cost of x units per day is C (x) = .002 x 2 + 25 x + 10000 
and if the production capacity is at most 5000 units per day, how many 
units of commodity be manufactured and sold daily to maximize the 
profit.

 14. Suppose a manufacturer produced x units per day at the cost of
C (x) = 10 x + 2000. and sell S dollars per unit where x = 500 – s, then 
show that the maximum profit is 58025.

 15. When we should be sold a property whose price after t years from 
now is 2000  e  ÷ 

_
 t    dollars when the rate of interest is 9% compounded 

continuously.

 16. If the population of a country will be P (t) = 100 e 0.01 t million after 
5 years from now, then at what rate will the population be changing 
with respect to time after 5 years from now. 
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 17. If demand function of a commodity is p (x) =    a – 2x ______ 
b
   for 0 £ x £ a, and 

b are positive constant then find the total revenue function explicitly 
and determine the intervals in which the revenue function increases and 
decreases. 

 18. Determine a, b and c such that the graph of f (x) = ax 3 + bx 2 + c has 
an inflection point (–1, 2), and slope is 1.

 19. Find the numbers a, b, c and d that guarantee that the function f (x) 
= ax 3 + bx 2 + cx + d will have a relative maximum at (1, –1), and a 
relative minimum at (–1, 1).

 20. If the concentration in the blood at a time t of a drug injected into the 
body given as

   C (t) = 544.4 (e – 0.4t – e – 0.5t ).

  What time does the largest concentration occur.

Answers
 1. (i)  (a) increasing when 1 < x < • decreasing when • < x

< 1, (b) concave up on – • < x < •, (c) local minimum at x = 1,
(d) no inflection point.

  (ii) (a)  increasing when –2 < x < 0 and 2 < x < •, decreasing when 
– • < x < – 2 (b) concave up when – • < x – .8164 and .8164 < x < •, 
concave down when – .8164 < x < .8164 (c) local minimum at x = – 2 
and x = 2 local maximum at x = 0 (d) inflection point at (– .8164,
5.77) and (.8164, 5.77).

  (iii) (a) increasing when 3 < x < •, decreasing when – • < x < 0 and
0 < x < 3, (b) concave up when – • < x < 0 and 2 < x 
< • concave down when 0 < x < 2 (c) local minimum at x = 3,
(d) inflection point at. (0, 10) and (2, – 6).

  (iv) (a) increasing when – • < x < – 1, and 1 < x < •, decreasing when –1 
< x < 1, (b) concave up when – 0.7071 < x < 0 and 0.7071 < x < •, 
concave down when – • < x < – 0.7071 and 0 < x < 0.7071 (c) local 
maximum at x = – 1 local minimum at x = 1, (d) inflection point at. 
(– 0.7071, 3.237), (0, 2) and (0.7071, 0.7625).

  (v) (a)  f is increasing when – • < x < •, (b) concave up when 

– • < x < – 5, concave down when – 5 < x < • (c) no extremum, 

(d) inflection point at. x = – 5 (vi) (a) increasing when   p __ 
4

   < x

<   3p ___ 
4

  , decreasing when 0 < x <   p __ 
4
   and   3p ___ 

4
   < x <, p (b) concave up 

when 0 < x <   p __ 
2

  , concave down when   p __ 
2
   < x < p (c) no extremum, 

(d) inflection point at x =   p __ 
2
  .
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  (vii) (a) increasing when 0 < x <   p __ 
4
   and   5p ___ 

4
   < x < 2p, decreasing when   p __ 

4
   

< x <,   5p ___ 
4

  , (b) concave up when   3p ___ 
4
   < x <   7p ___ 

4
  , concave down when 

0 < x <   3p ___ 
4

   and   7p ___ 
4

   < x < 3p (c) local maximum at x =   p __ 
4
   and local 

minimum at x =   5p ___ 
4

   (d) inflection point at x =   3p ___ 
4
   and x =   7p ___ 

4
  .

  (viii) (a) increasing when 0 < x < .5, decreasing when – • < x < 0 and 
0.5 < x < •, (b) concave up when – • < x < .20 and 0.89 < x < 
• concave down when 0.20 < x < .89 (c) local minimum at x = 0 
and local maximum at x = 0.5 (d) inflection point at (0.20, 0179) 
and .89.

 13. Manufacture units is 5000 and maximum profit is 65000.

 15. 31 years.

 16. 1.22 million people/year.

 17. Revenue function is  { x  (   a – 2x ______ 
b
   )  }  increasing in  [ 0,   a __ 

4
   ]  and decreasing 

in  [   a __ 
4

  , a ] .
 18. a =   – 1 ___ 

3
  , b = –1, c =   8 __ 

3
  .

 19. a =   1 __ 
2

  , b = 0, c = –   3 __ 
2

   and d = 0.

 20. t ª 2.233.

5.5 ASYMPTOTES 

“asymptote” comes from the Greek word asymptotes meaning 
“nonintersecting”.

Definition If the distance between the graph of a function and some fixed 
line approaches zero as the graph moves increasingly far from the origin, we 
say that the graph approaches the line asymptotically and that the line is an 
asymptote of the graph, Fig. 5.26.

A
sym

ptote

Graph of a
function

Fig. 5.26
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Vertical asymptote: A line x = k is called a vertical asymptote (parallel to 
y-axis ) of the graph of a function f(x) if f(x) tends to + • or –• as x approaches 
k from left or right, Fig. 5.27.

Graph of a
function

V
ertical asym

ptote

x

y

Graph of a
function

x k=

Fig. 5.27

 Or

 A line x = k is a vertical asymptote of the graph of a function f (x) if 
either

   lim 
x Æ k+  f (x) = ± • or  lim x Æ k–  f(x) = ± •.

Example 17 Find the vertical asymptote of the following functions.

 (i) f (x) =   2x2

 _____ 
x2 – 1

  ,   (ii) f (x) =   5 ______ 
16 – x2

  .

Solution (i) f (x) =   2x2

 _____ 
x2 – 1

   =   2x2

 ____________  
(x – 1) (x + 1)

   and f (x) Æ • as x Æ ± 1, hence 

asymptotes are x = ± 1, Fig. 5.28.

Fig. 5.28
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 (ii) f(x) =   5 ______ 
16 – x2

   =   5 ____________  
(4 – x) (4 + x)

   and f (x) Æ • as x Æ ± 4, hence 

asymptotes are x = ± 4, Fig. 5.29.

Fig. 5.29

Or

 The vertical asymptotes are obtained by equating to zero the real linear 
factors in the coefficient of the highest power of, y in the algebraic equation 
of the curve.

 Suppose we have an algebraic equation (x 2 + y 2) x – by 2 = 0, then the linear 
factor of the coefficient of the highest power of y is (x – b) so the vertical 
asymptote is x = b.

Horizontal asymptote: A line y = L is called a horizontal asymptote (parallel 
to x-axis) of the graph of a function f(x) if f(x) tends to L as x Æ +• or x 
Æ – •, Fig. 5.30.

Curve

Horizontal asymptote =y L
y

x

      

Curve

Horizontal asymptote =y L
y

x

 

       Fig. 5.30(a)              Fig. 5.30(b) 
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Curve

Horizontal asymptote =y L

y

x

Fig. 5.30(c)

 Or

 A line y = L is a horizontal asymptote of the graph of a function f (x) if 

limx Æ ± • f (x) = L.

Example 18 Find the horizontal asymptote of the following functions.

 (i) f (x) =   2x _____ 
x – 5 

  ,   (ii) f(x) =   x2

 _____ 
x2 – 1

  ,

 (iii) f (x) =   3x2 – 1 ______ 
x2

   

Solution (i) f (x) =   2x _____ 
x – 5 

  . limx Æ • f (x) = limx Æ •   2x ________ 
x  ( 1 –   5 __ x   ) 

   = 2 and, hence 

asymptote is y = 2.

 (ii) f (x) =   x2

 _______ 
(x2 – 1)

  . limx Æ • f (x) = limx Æ •   x2

 __________  
x2  ( 1 –   1 __ 

x2
   )  

  = 1, hence 

asymptote is y = 1.

 (iii) f (x) =   3x 2 – 1 _______ 
x 2

  . limx Æ • f (x) = limx Æ •   

x2  ( 3 –   1 __ 
x2

   ) 
  __________ 

x2
   = 3, hence 

asymptote is y = 3

 Or

 The horizontal asymptotes are obtained by equating to zero the real linear 
factors in the coefficient of the highest power of, x in the algebraic equation 
of the curve.

 Suppose we have an algebraic equation x 2 y 2 – a 2 (x 2 + y 2 ) = 0, then the 
linear factor of the coefficient of the highest power of x are (y – a) and (y + a) 
so the horizontal asymptote are y = a and y = – a.
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Example 19 Find constants a and b that guarantee that the graph of the 
function defined by

f (x) =   ax2 + 6 ______ 
bx2 – 2

  

 Will have a vertical asymptote at x = 1 and a horizontal asymptote at
y = – 1.

Solution We know that for vertical asymptote bx2 = 2 and for given x = 1, 
we have b = 2, and for horizontal asymptote

  limx Æ • f(x) = limx Æ •   

x2  ( a +   6 __ 
x2

   ) 
 _________ 

x2  ( b –   2 __ 
x2

   ) 
   = – 1 fi a = – b, hence a = – 2.

Note: Let

 f (x) =   
a n x n + a n – 1x n – 1 + a n – 2 x n – 2 + º a 1 x + a0     _____________________________________     
b m x m + bm – 1x m – 1 + bm – 2 x m – 2 + º b1x + b

   be a rational function 

such that m > n and bm π 0, then 

limx Æ • x n  
   (an + a n – 1 x – 1 + an – 2 2x – 2 + º a1/x

n – 1 + a0 /x
n)
     ___________________________________________     

x m(bm + bm – 1 x – 1 + bm – 2 x – 2 + º b1/x m – 1 + b0/xm)  
  

shows that the function has x-axis only horizontal asymptote and if m = n then 

y =   
an ___ 
bm

   is the only horizontal asymptote and the value of the function tends to 

infinity as x tends to infinity when m < n which shows that the function has 
no any horizontal asymptote.

Oblique asymptote: The line y = mx + c (m π 0) is called an asymptote of 
the graph of a function f (x) if the perpendicular distance of any point P (x, y) 
on the graph from the line approaches zero as x Æ • or x Æ – •, Fig. 5.31.

p

x

y

P x  y( , )

Oblique asymptote

Fig. 5.31
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 We shell now determine the condition in order that the line y = mx + c is 
an asymptotes of the graph of the function f (x). If p denote the perpendicular 
distance of any point P (x, y) on the graph from the line, Fig. 5.31.

  p =   
 | y – mx – c |   __________ 

 ÷ 
______

 1 + m2  
  

 Now by definition p Æ 0 as x Æ ±  •
fi  limx Æ ± • (y – mx – c) = 0

fi  limx Æ ± • x   (   y __ x   – m –   c __ x   )  = 0 (5.9)

 Since otherwise the limit in above equation would be

  ±  • fi limx Æ ± •   
y
 __ x   = m.  ( limx Æ ± •   c __ x   = 0 ) 

 Hence m = limx Æ ± •   
y
 __ x   and from (5.9)

  c = limx Æ ± • (y – mx)  (5.10)

 We have thus the following method to determine to oblique asymptotes 
which are not parallel to y-axis. 

 (i) Determine limx Æ ± •   
y
 __ x  ; let m = limx Æ ± •   

y
 __ x  .

 (ii) Put this value of m in equation (5.10) and find c

 Then y = mx + c is an asymptote.

Example 20 Find the asymptote of the curve x3 + y3 – 3axy = 0.

Solution x3 + y3 – 3axy = 0, dividing by x3, we obtain

  1 +   (   y __ x   )  3  – 3a  (   y __ x   )   (   1 __ x   )  = 0

 Taking limit as x Æ •, then 1 + m3 = 0   ( m = limx Æ •   
y
 __ x   ) 

 Or (1 + m) (1 + m2 – m) = 0.

 Thus m = – 1 is the only real root, now y – mx = y + x. (for m = – 1).

 Let y + x = p so that, p is a variable which tends to c when putting y = 
p – x in given curve, we get

  x3 + (p – x)3 – 3ax (p – x) = 0

or  3(p + a)  x2 – 3(p2 + ap) x + p3 = 0,

or  3 (p + a) – 3 (p2 + ap)    1 __ x   +   
p3

 __ 
x2

   = 0.
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 Taking limit as x Æ •, we have 3 (c + a) = 0 fi c = – a (p Æ c when x Æ •), 

thus y + x + a = 0 is the only require oblique asymptote.

Example 21 Find the asymptote of the curve (x2 + y2)  x – ay 2 = 0.

Solution (x2 + y2)  x – ay 2 = 0, dividing by x 3, we obtain

  1 +   (   y __ x   )  2  –  (   a __ x   )    (   y __ x   )  2  = 0

 Taking limit as x Æ •, then 1 + m2 = 0   ( m = limx Æ •   
y
 __ x   ) 

 Or 1 + m2 = 0.

 It gives no real value of m. Hence there is no asymptote of the form 
y = mx + c. Further to obtain asymptotes parallel to x-axis. We suppose that 
x = my + d, then

  m = limx Æ •   x __ y   and d = limx Æ •  (x – my) 

 Now dividing the given equation by y3, we get 

   {   (   x __ y   )  2  + 1 }     x __ y   –   a __ y   = 0

 Taking limit as y Æ •, then (1 + m2)  m = 0 fi = m = 0.  

( m = limx Æ •   x __ y   )  
 Now in order to find d, we get x = 0y + d in given curve we get,

  (d2 + y2) d – ay2 = 0

or   {   (   d __ y   )  2  + 1 }   d – a = 0,

 Taking limit as y Æ •, we have d = a thus x – a = 0 is the require 

asymptote. y + x + a = 0 is the only oblique asymptote.

Multiple points

A point on a curve through which two or more branches of the curve pass, 
is called a multiple point or a singular point of the curve, Fig. 5.32. If only 
two branches of the curve pass from a point on the curve then this point is 
called the double point of the curve. The double point will be a node if the 
two tangents to the two branches of the curve are real and distinct, Fig. 5.33.
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x

y

Doble point

      
x

y

Node

Fig. 5.32               Fig. 5.33 

 The double point will be a cusp if the two tangents to the two branches of 
the curve are coincident, Fig. 5.34. A double point is called an isolated point 
or conjugate point if there no real tangents on the curve in a neighborhood 
of the point.

x

y
Cusp

Fig. 5.34

 To determine the position and nature of the double point we solve 

( fxy) 
2 – fxx  fyy.

 Hence, if fxy , fxx and fyy are not all zero at a double point P (x, y), then this 
point is a node, cusp or a conjugate point according as 

  ( fxy)
2 – fxx  fyy > 0, ( fxy)

2 – fxx  fyy = 0 or ( fxy)
2 – fxx  fyy < 0.

Example 22 Determine the position and nature of the double points on the 
following.

 (i) x3 – y2 – 7x2 + 4y + 15x – 13 = 0. 

 (ii) y3 = x3 + 2x2.

Solution (i) f (x, y) = x3 – y2 – 7x2 + 4y + 15x – 13

   fx = 3x2 – 14x + 15 
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  ( fx = Differentiate with respect to x)

  fy = – 2y + 4 ( fy = Differentiate with respect to y)

  fx Æ 0 fi 3x2 – 14x + 15 = 0 fi x = 3, 5/3 and

  fy Æ 0 fi – 2y + 4 = 0 fi y = 2, hence 

  The point (3, 2) lie on the curve and

  Now fxx = 6x – 14  ( fxx = Differentiate with respect to x of fx)

  fyy = – 2  ( fyy = Differentiate with respect to y of fy)

  And fxy = 0 ( fxy = Differentiate with respect to y of fx)

  Hence, {( fxy)
2 – fxx  fyy}P (3, 2) = {(0)2 + 2 (6 × 3 – 14)}P (3, 2) = 8 > 0.

  Thus (3, 2) is a node.

 (ii) y3 = x3 + 2x2

  f (x, y) = y3 – x3 – 2x2

  fx = – 3x 2 – 4x ( fx = Differentiate with respect to x)

  fy = 3y2 ( fy = Differentiate with respect to y)

  fx Æ 0 fi – 3x 2 – 4x = 0 fi x = 0, – 4/3 and

  fy Æ 0 fi 3y 2 = 0 fi y = 0, hence the point (0, 0) lies on the 

curve and

  Now fxx = – 6x – 4 ( fxx = Differentiate with respect to x of fx )

   fyy = 6y ( fyy = Differentiate with respect to y of fy )

  And fxy = 0 ( fxy = Differentiate with respect to y of fx )

  Hence,   { ( fxy ) 
2 – fxx   fyy }   P (0, 0)  =   { (0) 2 – (– 6 × 0 – 4) × (6 × 0) }  P (0, 0)  

= 0

  Thus (0, 0) is a cusp.

5.6 SKETCHING OF A CARTESIAN CURVE

The following steps are very useful in sketching a Cartesian curve.

 1. Symmetry 

 (i) The curve is symmetrical about the x-axis if all powers of y in 
the equation are even.

 (ii) The curve is symmetrical about the y-axis if all powers of x in 
the equation are even.
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 (iii) The curve is symmetrical about the line y = x if the equation of 
the curve remains unchanged on interchanging x and y.

 (iv) The curve is symmetrical in opposite quadrant if the equation of 
the curve remains unchanged when x and y are replaced by – x 
and – y respectively. 

 2. Origin 

  Find out whether the origin lies on the curve. If it does, find out the 
tangent or tangents at the origin. In case the origin is a multiple point, 
then find out its nature.

 3. Intersection with coordinate axes
   Find out the point of intersection of the curve with the coordinate axes 

and the tangent at such points.

 4. Asymptotes 

  Find out the asymptotes of the curve.

 5. Critical point

  Find out the values of x at which   
dy

 ___ 
dx

   = 0. At such points y generally 

changes its character from an increasing function of x to a decreasing 
function of x vice-versa.

 6. Point of inflection 

  Find out the point of inflection  (   d 2y
 ____ 

dx 2
   = 0 )  and the region where the 

curve is concave up and concave down. 

 7. Solving the equation
  If possible, solve the equation for y in terms of x observe how y varies 

as x varies from – • to + •.

 8. Region
  Find out the regions of the plane in which no part of the curve lies. Such 

a region is generally obtained on solving the equation for one variable in 
terms of the other, and find out the set of values of one variable which 
make the other imaginary.

Example 23 Trace the curve y = x3 – 6x2 + 11x – 6.

Solution 1. The curve is not symmetric about any line.

 2. Origin does not lies on the curve. (when x = 0 fi y = – 6).

 3. Point of intersection with coordinate-axis

   When x = 0 then point is (0, – 6) and when y = 0 fi x3 – 6 x 2

+ 11x – 6 = 0 fi x = 1, 2 and 3, hence other point of intersection 
are (1, 0), (2, 0) and (3, 0).

 4. Neither vertical nor horizontal asymptotes lie.
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 5.   
dy

 ___ 
dx

   = 0 fi 3x2 – 12x + 11 = 0 fi x ª 1.4 and 2.4

  x – • 1.4 2.4 •

    
dy

 ___ 
dx

    +  0 – 0 +

  y  Increasing  Decreasing  Increasing

 6.   
d 2y

 ____ 
dx 2

   = 0 fi 6x – 12 = 0 fi x = 2. fi Point of inflection is 

(2, 0).

  Also   
d 2y

 ____ 
dx 2

   < 0 " xŒ[– •, 2] fi curve concave down and 

  
d 2y

 ____ 
dx 2

   > 0 " xŒ [2, •] concave up.

 7. 

 x – 1 – .5 .5 1.5 2.5 4

 y ª –24 –13 –1.8 .37 –.37 6

  Hence the curve given as

Fig. 5.35

Example 24 Trace the curve y = x3 – 9x.

Solution 1. The curve is not symmetric about any line.
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 2. Origin lies on the curve. (when x = 0 fi y = 0).

 3. Point of intersection with coordinate-axis

  When x = 0, then point is (0, 0) and when y = 0 fi x3 – 9x = 
0 fi x = 0 and ± 3, hence other point of intersection are (0, – 3) 
and (0, + 3).

 4. Neither vertical nor horizontal asymptotes lie.

 5.   
dy

 ___ 
dx

   = 0 fi 3x2 – 9 = 0 fi x = ±  ÷ 
__

 3   = ± 1.732

 x – • – 1.732 1.732 •

   
dy

 ___ 
dx

    + 0 – 0 + 

 y  Increasing  Decreasing  Increasing

 6.    
d 2y

 ____ 
dx 2

   = 0 fi 6x = 0 fi = 0. Point of inflection is (0, 0)

  Also   
d 2y

 ____ 
dx 2

   < 0 " xŒ [–  •, 0] fi curve concave down and

  
d 2y

 ____ 
dx 2

   > 0 " xŒ [0, •] concave up. 

 7.

 x – 2 – 1 0 1 2 4

 y ª 10 8 0 – 8 – 10 28

  Hence the curve given as

Fig. 5.36

Example 25 Trace the curve y =   9a3

 _______ 
x2 + 3a2

  

Solution 1. The curve is symmetrical about y-axis. (The power of x is even)

 2. Origin does not lie on the curve. (when x = 0 fi y = 3a).
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 3. Point of intersection with coordinate-axis

  The curve meets x-axis at (0, 3a). 

  Hence (0, 3a) is only the point of  intersection.

 4. The equation of the given curve can be written as y (x2 + 3a2) 

= 9a3 fi y = 0 is the only horizontal asymptote.

 5.   
dy

 ___ 
dx

   = 0 fi   –18xa3

 _________ 
(x2 + 3a2)2

   = 0 fi x = 0

 x – •  0  •

   
dy

 ___ 
dx

    + 0 –

 y  Increasing  Decreasing  

 6. There is no Point of inflection. 

 7. 

 x – 2a – a a 2a 

 y ª 1.2a 2.25a 02.25a 1.2a 

 Hence the curve given as

 

Fig. 5.37 

Example 26 Trace the curve a 2 y 2 = x 2 (a 2 – x 2) 

Solution 1. The curve is symmetrical about both axes. (The power of x and 
y both are even) 

 2. Origin lies on the curve. (when x = 0 fi y = 0). 

 3. Point of intersection with coordinate-axis 

  When x = 0 then point is (0, 0) and when y = 0 fi (a, 0) and 
(– a, 0). 

 4.  Neither vertical nor horizontal asymptotes lies. 

 5.   
dy

 ___ 
dx

   = 0 fi   
(a2 – 2x2)

 ________ 
a  ÷ 

______

 a2 – x2  
   = 0 fi x = ±   a ___ 

 ÷ 
__

 2  
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 x 0    a ___ 
 ÷ 

__
 2  
    a 

   
dy

 ___ 
dx

    + 0 – 

 y  Increasing  Decreasing 

 6. There is no Point of inflection. 

 7. y is real when x 2 < a 2 i.e. – a < x < a. Thus the entire curve 
lies between – a and a.

 8. y  = ±   x __ a    ÷ 
_________

 (a 2 – x 2)  

 x 0   a ___ 
 ÷ 

__
 2  
   a

 y ª 0   a __ 
2
   0

  Hence the curve given as

 

       Fig. 5.38                Fig. 5.39

Note: The following equations of the curve also have almost same figures 
as, Fig. 5.39

 (i) y2 (a2 + x2) = x2(a2 – x2). (ii) x2 (y2 + x2) = a2 (x2 – y2).

 (iii) a4 y2 = x4 (a2 – x2) (iv) a6 y2 = x6 (a2 – x2).

 (v) x4 = a2 (x2 – y2).

Example 27 Trace the curve x2 y2 = a2 (y2 – x2)

Solution 1. The curve is symmetrical about both axes. (The power of x and 
y both are even)

 2. Origin lies on the curve. (when x = 0 fi y = 0).

 3. Point of intersection with coordinate-axis

  The curve intersects the coordinate-axis only at (0, 0). 
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 4. There exist only vertical asymptotes y = ± a. {the coefficient of 

the highest power of y is (a 2 – x 2)}.

 5.   
dy

 ___ 
dx

   =   a3

 ________ 
3
 ÷ 

_______

 a2 – x2  
   fi   

dy
 ___ 

dx
   π 0

 6. There is no Point of inflection. 

 7. y is real when x2 < a2 i.e. – a < x < a. Thus the entire curve 
lies between – a and a.

 8. y = ±   ax ________ 
 ÷ 

_______

 (a2 – x2)  
  

  x 0   a __ 
2
   a

  y ª 0 ±   a ___ 
 ÷ 

__
 3  
   •

  Hence the curve given as

y

x     

x
a

=
 –

x
a

=

        Fig. 5.40(a)            Fig. 5.40(b)

Example 28 Trace the curve y2 = (x – 2) (x – 3) (x – 4)

Solution 1. The curve is symmetrical about x-axis. (The power of y is even)

 2. Origin does not lie on the curve. (when x = 0 fi y = ±  ÷ 
___

 24  ).

 3. Point of intersection with coordinate-axis

  When x = 0 then point is (0, ±  ÷ 
___

 24  ) and when y = 0 fi (2, 0) 
(3, 0) and (4, 0). 

 4. Neither vertical nor horizontal asymptotes lies.
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 5.   
dy

 ___ 
dx

   = ±   3x2 – 18x + 26  ______________________   
2  ÷ 

____________________
   (x – 2) (x – 3) (x – 4)  

      fi   
dy

 ___ 
dx

   = 0 fi x ª 2.4 and 3.5

 x 2  2.4  3

   
dy

 ___ 
dx

    + 0 –

 y  Increasing  Decreasing

    
dy

 ___ 
dx

   > 0 " x > 4

 6. There is no Point of inflection.

 7. y is real when x > 4 and when 2 < x < 3, and imaginary when 
0 < x < 2 and 3 < x < 4 Thus the curve does not lie between 
0 < x < 2 and 3 < x < 4

 8. y = ±  ÷ 
___________________

   (x – 2) (x – 3) (x – 4)  

  x 2.4 4.5

  y ª .6 1.36

  Hence the curve given as

     

Fig. 5.41(a)            Fig. 5.41(b)

Example 29 Trace the curve y = (9 – x2)  e 
–   x

2

 __ 
6
  
 .

Solution 1. The curve is symmetrical about y-axis. (The power of x is even)

 2. Origin does not lie on the curve. (when x = 0 fi y = 9).

 3. Point of intersection with coordinate-axis

  When x = 0 then point is (0, 9) and when y = 0 fi (3, 0) and 
(–3, 0).

  limx Æ ± •   
(9 – x2)

 ________ 

 e 
  x

2

 __ 
6

  
 

   = 0  (   • __ •   form this type of limit solve in

next section ) .
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 4. Hence y = 0 is the horizontal asymptote.

 5.   
dy

 ___ 
dx

   =   x __ 
3

    (–15 + x2)  e 
–   x

2

 __ 
6
  
  fi   

dy
 ___ 

dx
   = 0 fi x ª 0 and ±  ÷ 

___
 15  

 x –•  –  ÷ 
___

 15    0   ÷ 
___

 15    •

   
dy

 ___ 
dx

    – 0 + 0 – 0 + 

 y Decreasing  Increasing  Decreasing  Increasing

 6.   
d 2y

 ____ 
dx2

   =  e 
–   x

2

 __ 
6

  
   ( – 5 –   2x2

 ___ 
3
   –   x

4

 __ 
9
   )  = 0 fi x = ± 2. Hence at point of 

inflection are (–2, 2.5) and (2, 2.5).

   Also   
d 2y

 ____ 
dx 2

   > 0 " xŒ[ – •, – 2.5] and " xŒ[2.5, •] fi curve concave 

up and   
d 2y

 ____ 
dx 2

   < 0 " xŒ ]– 2.5, 2.5[ concave down.

 7. 

 x 1 4

 y ª 6.9 –.7

  Hence the curve given as

Fig. 5.42(a)
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Fig. 5.42(b) 

Exercises 

 1. Find all the vertical and horizontal asymptotes of the graph of the 
following functions.

 (i) f (x) =   2x + 3 ______ 
3 – x

  ,   (ii) f (x) = 5 +   3x _____ 
4 – x

  , 

 (iii) f(x) =   3x3 + 2 ______ 
x3 – 27

  ,  (iv) f (x) =   2x2 – x + 2  __________ 
x – 2

  ,

 (v) f (x) =   2x + 3 __________  
x2 – 3x + 2

  ,  (vi) f(x) =   1 _______ 
(x + 3)3

  , 

 (vii) f (x) =   
(x – 2) (x + 1)

  _____________  
(x – 2)2

  ,  (viii) 2y 2 x – a 2 (x + 2a) = 0, 

 (ix)   2a 2 ____ 
x 2

   +   b 2 ___ 
y 2

   = 1,   (x) x 2 y – 5x 2 + 5xy + 6y + 2 = 0.

 2. Find the Oblique asymptotes of the graph of the following functions

 (i) x2 y2 – 4a2 (x2 + y2) = 0,  (ii) x3 – y3 = ax2, 

 (iii) y2 (x2 – 5a) = x2 – a2,  (iv) y2 (a2 – x2) = 2x4,

 (v) (y – a)2 (x2 – a2) = x4 – a4,  (vi) x (x2 + y2) = 4 a y 2
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 3. Find constants a and b that guarantee that the graph of the function 
defined by

 f (x) =   ax + 5 ______ 
3 – bx

  

  Will have a vertical asymptote at x = 5 and a horizontal asymptote at 
y = – 3.

 4. Show that, in general the graph of the function

 f (x) =   ax2 + bx + c  ___________  
rx2 + sx + t

   

  Will have y =   a __ r   as a horizontal asymptote and that when br π as the 

graph will cross this asymptote at the point where, x =   at – cr _______ 
br – as

  .

 5. Sketch the graph of the following functions.

 (i) y =   2x – 5 ______ 
x – 3

  ,   (ii) y =   x – 5 _____ 
x – 3

  , 

 (iii) y = x3 (3x – 5) (x – 2)2, (iv) y = x3 – 2x + 1, 

 (v) y =   x
2 – 4 ______ 

x2 – 8
  ,   (vi) y =   x

2 – 2 ______ 
x3

  , 

 (vii) y =   x
2 – 3x _______ 
x – 2

  ,   (viii) y =   x
2 + 3x – 3  __________ 
(x + 2)2

  , 

 (ix) y =   x
3 – x2 – 9  __________ 

x – 2
  , (x) y =   x

2 – 2x – 3  __________  
2x 2 + x – 7

  , 

 (xi) y =   3x2 – x – 7  ______________  
– 12x 2 + 2x + 9

  , (xii) y2 (x2 – 4) = 2 (x – 1), 

 (xiii) y2 (x – 4) = x2 (x + 4), (xiv) y2x2 = x2 – 4, 

 (xv) y2 = 2x2   
(a – x)

 ______ 
(a + x)

  , (xvi) y 2 x = 2a2 (a – x), 

 (xvii) y 2a = x2 (a2 – x) (x – 2), (xviii) y2 = 4x4/(a2 – x2), 

 (xix) y = 4a2x/(a2 + x2), (xx) y3 = 4x – x3, 

 (xxi) y  (1 + x2) = 2x2,  (xxii)  y (1 – x2) = 2x2 + 1, 

 (xxiii) y2 = 4x2(5 – x),  (xxiv) y2 = (x – 3)2 (x – 1). 
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Answers

 1.  (i) x = 3, y = – 2, (ii) x = 4, y = 2, 

  (iii) x = 3, y = 3,  (iv) x = 2, No Hor. Asymp., 

  (v) x = 2, x = 1, y = 0. (vi) x = – 1, y = 0, 

  (vii) x = 2, y = 1,  (viii) x = 0, y = ±   a ___ 
 ÷ 

__
 2  
  , 

  (ix) x = ±  ÷ 
___

 2a  , y = ± b, (x) x = 2, x = 3, y = 5. 

 2.  (i) y = ± 2a,   (ii) y = x +   a __ 
3
  , 

  (iii) x = ±  ÷ 
___

 5a  ,   (iv) x = ± a, 

  (v) y = ± x + a,   (vi) x = 4a, 

 3.  a =   9 __ 
5

  , b =   3 __ 
5

  ,

 

5. (i)

  

(ii)

 

  

(iii)

 

(iv)
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(v)

  

(vi)

  

(vii)

 

 

(viii)

  

(ix)

   

(x)

 

 

(xi)

      

 (xii)

 

 

(xiii)

  

(xiv)
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(xv)

 

y

x

    

(xvi)

 

y

x

 

 

(xvii)

 

y

x

    

(xviii)

 

y

x

 

(xix)

     

(xx)

  

 (xxi)

   

(xxii)
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(xxiii)

  

(xxiv)

 

5.7 INDETERMINATE FORMS

We know that limx Æ c   
f (x)

 ____ 
g (x)

   =   
limx Æ c  f (x)

  __________  
limx Æ c g(x)

   when limx Æ c g (x) π 0 but we have 

no any information about limx Æ c   
f (x)

 ____ 
g (x)

   when limx Æ c g (x) = 0. We also unable 

to determined the value of a fraction when limx Æ c f (x) = 0 and limx Æ c g (x) = 0 

or when limx Æ c f (x) = • and limx Æ c g (x) = • and this type of limit are called 

the Indeterminate form   0 __ 
0

   and   • __ •   for x = c respectively, because their value 

cannot be determined at x = c without further analysis. In the late seventeenth 
century, John Bernoulli discovered a rule for calculating the valve of this type 
of fractions, and this rule is known today as l’Hopital’s rule.

 (i) Indeterminate form   0 __ 
0

  : If limx Æ c f (x) = 0 and limx Æ c g (x) = 0, 

and suppose that f and g both are differentiable functions on an open 
interval containing x = c except possibly at x = c with g ¢ (x) π 0 then 

limx Æ c   
f ¢ (x)

 _____ 
g ¢ (x)

   = l fi limx Æ c   
f (x)

 ____ 
g (x)

   = l, (where l is either a finite number, 

• or – •). This statement is also true in the case of a limit as x Æ c–, 

x Æ c+, x Æ + • or x Æ – •.

  Proof: Let f and g both are differentiable functions such that
f(c) = g(c) = 0
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f ¢ (c)

 _____ 
g ¢ (c)

   =   
  lim   
x Æ c

    
f (x) – f (c)

 _________ x – c  
  _____________  

  lim   
x Æ c

    
g (x) – g (c)

  __________ x – c  

   =   lim   
x Æ c

    
  
f (x) – f (c)

 _________ x – c  
  __________  

  
g (x) – g (c)

  __________ x – c   

  

   =   lim   
x Æ c

    
f (x) – f (c)

 __________  
g (x) – g (c)

   =   lim   
x Æ c

    
f (x)

 ____ 
g (x)

   

  To apply the L’Hopital’s rule use the following steps.

 1. Check that the limit of   
f (x)

 ____ 
g (x)

   is an indeterminate form. If it is 

not, then L’Hopital’s rule cannot be used. For example, 

  limx Æ 0   
1 – cos x ________ sec x   =   

  lim   
x Æ 0

  (1 – cos x)
  ____________  

  lim   
x Æ 0

  sec x
   =   0 __ 

1
   = 0, Now if we apply 

l’Hopital’s rule then

  limx Æ 0   
1 – cos x _______ sec x   =   lim   

x Æ 0
    sin x _________ 

sec x tan x
   = limx Æ 0   

cos x _____ sec x   =   1 __ 
1
   = 1, 

and this answer is wrong.

 2. Differentiate f and g separately.

 3. Determined   lim   
x Æ c

    
f ¢ (x)

 _____ 
g ¢ (x)

  . If its finite, + • or – • then its equal of 

limx Æ c   
f (x)

 ____ 
g(x)

  . If   lim   
x Æ c

  f ¢ (x) = 0 and   lim   
x Æ c

  g ¢ (x) = 0, then limx Æ c

  
f ≤ (x)

 _____ 
g≤ (x)

   = l fi  lim x Æ c    
f ¢ (x)

 _____ 
g ¢ (x)

   = l, and so on.

Example 30 Evaluate

 (i) limx Æ 0   sin x ____ x  ,   (ii)  lim 
x Æ   p __ 

2
  
    1– sinx _______ 

2 cos x
  ,

 (iii) limx Æ 0 –   2 tan x _______ 
x2

  ,  (iv) limx Æ + •   
x  (   5 __ 

3
   ) 
 ______ 

sin  (   2 __ x   ) 
  , 

 (v) limx Æ 2   x
4 – 16 _______ 
x – 2

  ,  (vi) limx Æ 0   x – 1+ cos x  ___________ 
x3 + 2x

  .

 (vii) limx Æ 0   
e 2x – e – 2x– 4 log (1 + x)

   _____________________  
x sin x

  ,  

 (viii)  limx Æ 0   ( cot x –   2 __ x   ) ,
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Solution (i) limx Æ 0   sin x ____ x  . This is the form of   0 __ 
0
  ,   lim   

x Æ 0
    cos x _____ 

1
   = 1.

 (ii)   lim   
x Æ    p __ 

2
  
    1 – sinx _______ 

2 cos x
   This is the form of   0 __ 

0
  ,    lim   

x Æ   p __ 
2
  
    – cos x ________ 
2 (– sin x)

   =   0 ___ 
– 2

   = 0.

 (iii)   lim   
x Æ 0–

    2 tan x ______ 
x2

  . This is the form of   0 __ 
0
  ,          lim   

xÆ0–
    2 sec2x ________ 

2x
    = – •

 (iv) This is the form of   0 __ 
0
     lim   

x Æ •
     x 

 ( –   5 __ 
3
   )   ______ 

sin (   2 __ x   ) 
      lim    

xÆ+•
    

–   5 __ 
3
    x 

 ( –   8 __ 
3
   )  
  _____________  

 ( –   2 __ 
x2

    )  cos  (   2 __ x   ) 
   

  =   lim    
xÆ + •

    
  5 __ 
3

    x 
 ( –   2 __ 

3
   )  
 ______ 

cos (   2 __ x   ) 
   =   0 __ 

1
   = 0.

  (v) This is the form of   0 __ 
0
  ,   lim   

x Æ 2
    x

4 –16 ______ 
x – 2 

  .   lim   
 x Æ 2

    4x3

 ___ 
1
   = 32.

 (vi) li m xÆ0    x – 1 + cosx  ___________ 
x3 + 2x

  . This is the form of   0 __ 
0
  ,

    lim   
xÆ0

    x – 1 + cos x  ____________ 
x3 + 2x 

  .    lim   
xÆ0

    1 – sin x _______ 
3x2 + 2

   =   1 __ 
2
  .

 (vii) limx Æ 0    
e2x – e–2x – 4 log (1 + x)

   ______________________  
x sin x

  . This is the form of   0 __ 
0
  

    lim   
xÆ0

    
e2x – e–2x – 4 log (1 + x)

   _____________________  
x sin x

   . lim   
xÆ0

     
2e2x + 2e –2x –   4 ______ 

(1 + x)
  
   ____________________  

 sin x + x cos x 
  

  This is again the form of   0 __ 
0
  ,    lim   

xÆ0
    
2e2x + 2e –2x –   4 ______ 

(1 + x)
  
   ___________________  

sin x + x cos x
  .

     lim   
x Æ 0

    

4e2x– 4e –2x +   4 _______ 
(1 + x)2

  

   ____________________  
2 cos x – x sin x

   =   4 __ 
2
   = 2.

 (viii) limx Æ 0   ( cot x –   2 __ x   )  = li m x Æ 0   (   cos x  _____ 
sin x

   –   2 __ x   ) 

  = li m x Æ 0   (   x cos x – 2 sin x  _______________  
x sin x

   ) . This is the form of   0 __ 
0
  ,
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     lim   
xÆ0

   (   x cos x – 2 sin x  ______________  
x sin x

   ) ,    lim   
x Æ 0

   (   co x – x sin x – 2 cos x   ____________________  
x cos x + sin x 

   )  = – •

 (ii) Indeterminate form    __   : If limx Æ c f(x) • and limx Æ c g(x) = •, and 

suppose that f and g both are differentiable functions on an open interval 

containing x = c except possibly at x = c then li m xÆc    
f ¢(x)

 ____ 
g ¢(x)

   = l fi

li m xÆc    
f(x)

 ____ 
g(x)

   = l, (where l is either a finite number, • or – •). This 

statement is also true in the case of a limit as x Æ c–, x Æ c+, x Æ + • 
or x Æ – •.

Example 31 Evaluate

 (i) li m x Æ •    
x2

 __ 
ex     (ii) li m x Æ 0  a2x log sin x.

Solution (i) l im x Æ •    
x2

 __ 
ex   this is the form of   • __ •  

   lim x Æ •    
x2

 __ 
ex  

  li m x Æ •     2x
 ___ 

ex  
 

   lim x Æ •   2 __ 
ex   = 0

 (ii)   lim x Æ 0  a2x log sin x = l im x Æ 0    
a2 log sin x

  __________ 
  1 __ x  

    this is the form 

of   • __ •  

   lim xÆ0    a
2cot x ______ 
  –1 ___ 
x2

  
    = a2   lim   

xÆ0
  (–x).   lim   

xÆ0
    x ____ 
tanx

   = 0 

 (iii) Indeterminate form 0 .  or  – : In these both cases we 

may try to make the form as   0 __ 
0
   or   • __ •  . For example,

  We take   lim   
x Æ c

   ( f(x). g(x))

  When  lim   
xÆc

   f(x) = 0,  lim   
x Æ c

   g(x) = •.

  As f(x) . g(x) =   
g(x)

 ____ 
  1 ___ 
f(x)

  
  .
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  Similarly we take  lim   
x Æ c

   ( f(x) – g(x))

  When  lim   
x Æ c

   f(x) =  lim   
x Æ c

   g(x) = •.

  As f(x) – g(x) =  [   1 ___ 
f(x)

   –   1 ____ 
g(x)

   ]  ∏   1 _______ 
f(x) ◊g(x)

  .

Example 32 Evaluate

 (i) li m 
x Æ   p __ 

2
  
  a ( x –   p __ 

2
   )  tan x, (ii) li m x Æ 0   (   1 ______ 

sin 3x
   –   1 ___ 

3x
   ) .

Solution (i)   lim   
x Æ   p __ 

2
  
  a ( x –    p __ 

2
   )  tan x =   lim   

x Æ   p __ 
2
  
    
a ( x –    p ___ 

2
   ) 
 _________ 

cot x
  

  This is the form of   0 __ 
0
  

     li m 
x Æ   p __ 

2
  
    a _______ 
– csc2x 

   = – a.

 (ii) li m x Æ 0   (   1 _____ 
sin 3x

   –   1 ___ 
3x

   )  = limx Æ 0  (   3x –  sin 3x  __________ 
3x sin 3x

   ) 
  This is the form of   0 __ 

0
  

   l im x Æ 0   (    3 – 3 cos 3x  ___________________   
3 sin 3x + 9 x cos 3x

   ) 
  This is again the form of   0 __ 

0

      lim   
x Æ 0

   (   9 sin 3x
  ____________________________    

9 cos 3x + 9 cos 3x – 27x sin 3x
   )  =   0 ___ 

18
   = 0.

 (iv) Indeterminate form 00, 1 • and •0

  We consider   lim   
x Æ c 

   [ {f(x)}g(x) ]  

  When   lim   
x Æ c

  f(x) = 0,  lim   
x Æ c

   g(x) = 0,  lim   
x Æ c

   f(x) = 1,  lim   
x Æ c

   g(x) = • 

and  lim   
x Æ c

   f(x) = •,  lim   
x Æ c

   g(x) = 0, 

  As y = [{f(x)}g(x)]

  fi log y = g(x) ◊ log f(x)
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  (it is necessary that f(x) is positive in the neighborhood of c)

  Let lim  log  y =  lim   
x Æ c

   [g(x) ◊ log f(x)] = l (from (iii))]

  fi lim y = el

  fi lim [{f(x)}g(x)] = el.

Example 33 Evaluate

 (i)   lim   
x Æ 0

  [{x}sin 2x]   (ii)   lim   
x Æ •

    ( 1 +   1 ___ 
bx

   )  ax
 

Solution (i) Let y =   lim   
x Æ 0

  [{x}sin 2x]

 fi  log y = log   lim   
x Æ 0

  [{x}sin 2x]

   log y =   lim   
x Æ 0

  log [{x}sin 2x]

   log y =   lim   
xÆ0

  sin 2x log x

   log y =   lim   
x Æ 0

  =   lim   
x Æ 0

    
log x

 ______ 
csc 2x

  

  log y =   lim   
x Æ 0

    
  1 __ x  
 ______________  

– 2 csc 2x cot 2x
   

  log y =   lim   
x Æ 0

    – sin2 2x _________ 
2x cos 2x

  .

   log y =   lim   
x Æ 0

   (   sin 2x _____ 
2x

   )   ( –   sin 2x ______ 
cos 2x

   )  = 1.0 = 0

  Hence y = e0 = 1

 (ii)     lim   
x Æ •

    ( 1 +   1 ___ 
bx

   )  ax
  

  Let y =   lim   
x Æ •

    ( 1 +   1 ___ 
bx

   )  ax
 

  fi log y =   lim   
x Æ •

  ax log   ( 1 +   1 ___ 
bx

   )  ax
 

   log y =   lim   
x Æ •

  a   
log  ( 1 +   1 ___ 

bx
   ) 
  ___________ 

  1 __ x  
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   log y =   lim   
x Æ •

  a   

  1 ________ 
 ( 1 +   1 ___ 

bx
   ) 
    ( –   1 ___ 

bx2
   ) 
  _______________  

 (   –1 ___ 
x2

   ) 

  
   log y =   a __ 

b
     lim   

x Æ •
    1 ________ 
 ( 1 +   1 ___ 

bx
   ) 
  

   log y =   a __ 
b
     1 ______ 
(1 + 0)

  

   log y =   a __ 
b

     y =  e 
  a __ 
b
  
 .

Some special formulas

(i)   lim    
x Æ +•

    
log x

 _____ 
xn   = 0 =   lim    

x Æ  +•
  xn e–ax, (ii)   lim   

xÆ0+
    
log x

 _____ 
xn   = – •.   lim    

x Æ + •
    e

ax

 ___ 
xn   = +•. 

Where a and n are positive

Example 34 Find so that   lim   
x Æ •

    (   x + a ______ 
x – 2a

   )  x  = 5.

Solution Let y =   lim    
x Æ + •

    (   x + a ______ 
x – 2a

   )  x 

fi  log y = log   lim    
x Æ + •

    (   x + a ______ 
x – 2a

   )  x 

  log y =   lim    
x Æ + •

   
log  (   x + a ______ 

x – 2a
   ) 
  ___________ 

  1 __ x  
  

   =   lim    
x Æ + •

    

 (   x – 2a ______ x + a   )   [   (x – 2a) – (x + a)
  ______________  

(x – 2a)2
   ] 
   __________________________  

 ( –   1 __ 
x2

   ) 
  

  log y =   lim    
x Æ + •

    
– x2 [– 3a]

  ___________  
x2 – ax – 2a2

   = 3a

  log y = 3a
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  y = e3a = 5 (given)

fi 3a = log 5, hence

 a =   
log 5

 ____ 
3

  .

Example 35 Find a and b so that   lim   
x Æ 0

    
x(1 + 2a cos x) – b sin x

   _____________________  
x3

   = 4.

Solution   lim   
x Æ 0

    
x(1 + 2a cos x) – b sin x

   _____________________  
x3

  .

 This is the form of   0 __ 
0

   for all values of a and b, when x Æ 0.

\   lim   
x Æ 0

    
x(1 + 2a cos x) – b sin x

   ______________________  
x3

  

   lim   
x Æ 0

    1 + 2a cos x – 2ax sin x – b cos x    ______________________________  
3x2

  .

 If x = 0; the denominator is zero then the fraction will be the form of   0 __ 
0
  . 

when

  1 + 2a – b = 0 (5.11)

 Again differentiate, we gate

     lim   
x Æ 0

    – 4a sin  x – 2ax cos  x + b sin  x    ____________________________  
6x

   This is the form of   0 __ 
0
  

     lim   
x Æ 0

    – 6a cos x + 2ax sin x + b cos x    ____________________________  
6
   =   b – 6a ______ 

6
  

    b – 6a ______ 
6

   = 4 (given)

  b – 6a = 24 (5.12)

 From (5.11) and (5.12) we have a = –   23 ___ a   and b = –   21 ___ 
2
  .

Exercises

The series expansion of the function also very helpfull to solve the indeterminate 
form.

 For example,

 (i)   lim   
x Æ 0

    sin x – x _______ 
x3

   =   lim   
x Æ 0

    
 ( x –   x

3

 __ 
3!

   +   x
5

 __ 
5!

   º )  – x
  __________________  

x3
   = 6.
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 (ii)   lim   
x Æ 0

    e ax – e bx

 ________ 
2x

  

   =   lim   
x Æ 0

    
 ( 1 + ax +   a

2 x2

 ____ 
2!

   + º )  –  ( 1 + bx +   b
2 x2

 ____ 
2!

   + º ) 
     ________________________________________   

2x
   =   a – b _____ 

2
  .

 1. Find the limits of the following.

 (i) limx Æ – 1   x
4 – 1 _____ 
x2 – 1

  , (ii) limx Æ 0   sin 3x _____ x  ,

 (iii)  lim 
x Æ   p __ 

2
  
    1 – sin2 x ________ 

cos3 x
  , (iv) limx Æ 0   1 – cos 3x _________ 

1 – cos 5x
  ,

 (v) l im 
x Æ   p __ 

2
  
     a sec x _________ 

b + tan x 
  , (vi) li m 

x Æ   p __ 
2
  
   (   cos x _____ 

  p __ 
2
   – x

   ) ,
 (vii) limx Æ •  (   x + cos x ________ 

x + 2
   ) , (viii) limx Æ 0   

(2 – cos x) sin 3x
  ______________  

x3 cosx
  ,

 (ix) limx Æ •  x 
  5 __ 
2

  
  sin   1 __ x  , (x)   lim   

x Æ   p __ 
2
  
  (2 – sin x) tan x,

 (xi) limx Æ 0 x3 log(x5), (xii) limx Æ 0 tan x log(x3)

 (xiii) limx Æ 0  (   2 __ 
x3

   – log  ÷ 
__

 x   ) , (xiv) limx Æ 0  (   cos x _____ 
sin 2x

   –   2 __ x   ) ,

 (xv) limx Æ 0  (   1 __ 
x2

   –   1 ______ 
sin2 2x

   ) , (xvi)   lim   
x Æ •

    ( 1 +   1 ___ 
3x

   )  5x
 

 (xvii)   lim   
x Æ 0

  (tan x ) 
  1 ____ 
log x

  
 , (xviii)   lim   

x Æ 0
  (cos x ) 

  2 __ 
x2

  
 ,

 (xix)   lim   
x Æ a

    ( 2 –   x __ a   )  sec   px ___ 
2a

  
 , (xx)   lim   

x Æ 0
    
(1 + 2x ) 

  1 ___ 
2x

  
  – e +   ex __ 

2
  
  _________________  

x2
  ,

 (xxi) limx Æ •  ÷ 
______

 x2 + 2x   – x, (xxii)   lim   
x Æ 0

  (ex + x ) 
  1 ___ 
2x

  
 ,

 (xxiii)   lim   
x Æ 0

     a cos x – a ________ 
log cos x

  , (xxiv)   lim   
x Æ 0

    e
x – e– x – 2x  ___________  
x(1 – cos x)

  ,
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 (xxv)   lim   
x Æ 1

    x2x – x ____________  
x – 1 – log x 

  , (xxvi)   lim   
x Æ 0

    x – tan– 1 2x  ___________ 
x3

  

 (xxvii)   lim   
x Æ 0

  (2 + x )   
log a

 ____ x   , (xxviii)   lim   
x Æ •

    
x(3 + sin 3x)

  ___________ 
x + 1

  ,

 (xxix)   lim   
x Æ •

    (   x + 2 _____ 
x + 3

   )  x , (xxx)   lim   
x Æ 0

    (   tan x _____ x   )  
  1 __ 
x2

  
 

 (xxxi)   lim   
x Æ •

  x4  [ cos  (   1 __ x   )  +   1 ____ 
x2 2!

   – 1 ] . 
 (xxxii) limx Æ 0  (   1 – cos x2

 _________ 
x2 sin x2

   ) , (xxxiii) limx Æ 0  (   1 _____ 
ex – 1

   –   1 __ x   ) ,

 (xxxiv)   lim   
x Æ 0

   [   1 __ x   –   1 __ 
x2

   log(x + 1) ] .
 2. Find a if   lim   

x Æ 0
     tan ax + tan a2 x  _______________  

sin 4x
   =   1 __ 

2
  .

 3. Find a if   lim   
x Æ •

    (   x + a ______ 
x – 3a

   )  2x
  = 2.

 4.  Find a and b if   lim   
x Æ 0

   (   sin 3x _____ 
x3

   +   2a ___ 
x2

   + b )  = – 2.

 5. Find a if   lim   
x Æ 0

   (   sin 3x + a sin x  _____________ 
x3

   )  is finite and find the limit.

 6.  Find a, b and c if   lim   
x Æ 0

    aex – b cos x + ce– x  __________________  
x sin x

   = 1.

Answers

 1.  (i) 2,   (ii) 3, 

   (iii) undefined, (iv)   9 ___ 
25

  ,

   (v) a,   (vi) 1, 

   (vii) 1,   (viii)   3 __ 
2
  ,

   (ix) undefined, (x) 0, 

   (xi) 0,   (xii) 0,
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   (xiii) undefined, (xiv) 0, 

   (xv)   –16 ____ 
3

  ,   (xvi)   5 __ 
3
  , 

   (xvii) e   (xviii)   1 __ e  , 

   (xix)  e   
2 __ p   ,   (xx)   11e ____ 

24
  , 

   (xxi) 1,   (xxii) e, 

   (xxiii) a log a,   (xxiv)   4 __ 
3
  ,

   (xxv) 8,   (xxvi)   4 __ 
3
  , 

   (xxvii)  e 
  
log a

 _____ 
2

  
 ,   (xxviii) limit does not exist, 

   (xxix) – 1,   (xxx)   1 __ 

 e 
  1 __ 
6
  
 

  , 

   (xxxi)   1 ___ 
24

  .   (xxxii) 0, 

   (xxxiii) 1,   (xxxiv)   1 __ e  ,

 2. 1 and – 2.   3.   
log 2

 _____ 
8
  , 

 4. a  =   – 3 ___ 
2

  , b =   5 __ 
2

  ,   5. a  = – 3, limit is – 4,

 6. a  = c =   – 1 ___ 
2

  , b = 1.

5.8 THE MEAN VALUE THEOREM 

In this section we discuss one of the most important theorems of mathematics, 
the mean value theorem. This theorem can be use to prove some important 
facts about differentiation. To stating and proving the mean value theorem, we 
need one preliminary result, which is Rolle’s theorem. 

Rolle’s theorem: Let f be a continuous function on the closed interval [a, b] 
and differentiable on the open interval ]a, b[. If f(a) = f(b) or f(a) = f(b) = 0. 
Then there exist at least one number c in [a, b] at which f ¢(c) = 0.
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Proof: A function f which is continuous on a closed interval is also bounded 
therein. Let m and M be the least and greatest value of f respectively then there 
exist points c and d in [a, b] such that f(c) = M and f(d) = m.

 There are two possibilities: either m = M or m π M

 If m = M then f(x) = m = M, for all x Œ[a, b] fi f(x) is constant on 
[a, b]

\ f is derivable in ]a, b[ thus f ¢(x) = 0 for all x Œ[a, b].

 Now when M π m fi at least one of them must be different from the equal 
values f(a), f(b) so that

  f(c) = M π f(a) fi c π a and f(c) = M π f(b) fi c π b ( f(a) = f(b))

 This means that c lies in the open interval ]a, b[. Now we shall show that 
c is the point where f ¢(c) = 0.

 Suppose f is differentiable at c then (c is interior point and f is differentiable 
on ]a, b[)

    lim   
h Æ 0

    
f(c + h) – f(c)

  _____________ 
h
  

exists and have the same value when h tends to zero through positive or 
negative values.

 We have f(c + h) £ f(c) ( f(c) = M)

    
f(c + h) – f(c)

  _____________ 
h

   £ 0 for h > 0 fi f ¢(c) £ 0       (5.13)

    
f(c + h) – f(c)

  _____________ 
h

   ≥ 0 for h < 0 fi f ¢(c) £ 0      (5.14)

 The relations (5.13) and (5.14) both will be true if, and only if 

  f ¢(c) = 0.

 The same conclusion can be proved in the similar manner if 

f(c) = m π f(a) fi c π a and f(c) = m π f(b) fi c π b.

Geometrically, Rolle’s theorem asserts that there is at least one point lying 
between x = a and x = b, at which the tangent to the curve of the function f 
is parallel to the x-axis, Fig. 5.43
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a b

c

y

x   

c1
c2

c3

y

x
ba

c4

Fig. 5.43(a)                   Fig. 5.43(b)

Remark: Rolle’s theorem does not hold if

 (i) f(a) π f(b), Fig. 5.44. 

y

x
a b

Fig. 5.44

 (ii) f is discontinuous at the end point or interior points, Fig. 5.45.

y

x
a b        

y

x
a b

Fig. 5.45(a)            Fig. 5.45(b)

 (iii) f is continuous on [a, b] but not differentiable at an interior point, 
Fig. 5.46.

y

x
a b       

y

x
a b

Fig. 5.46            Fig. 5.47
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 Figure 5.47 shows that for the Rolle’s theorem no need of the differentiability 
at the end points.

 A physical example of Rolle’s theorem is given in Fig. 5.48.

Fig. 5.48

Algebraic: Between two zeros a and b of f(x) there exists at least one zero 
of f ¢(x).

Example 36 Verify Rolle’s Theorem for the following:

 (i) f(x) =   x
3

 __ 
2

   – 2x, [– 2, 2] 

 (ii) f(x) =  ÷ 
_____

 9 – x2  , [– 3, 3] 

 (iii) f(x) =  | 2x | , [– 2, 2]

 (iv) f(x) = 2 sin x – sin 3x, [0, p] 

Solution (i) f(x) =   x
3

 __ 
2

   – 2x

  The given function being a polynomial function is continuous 
in [–2, 2].

  Now f ¢(x) =   3x2

 ___ 
2

   – 2, thus the function is differentiable in 

[–2, 2].

 f(– 2) = 0 = f(2)

  Hence the function satisfies all the conditions of the Rolle’s 
Theorem.
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  So there exist a point cŒ [– 2, 2] such that f ¢(c) = 0.

  Clearly f ¢(x) =   3x2

 ___ 
2

   – 2 = 0 fi x = ±   2 ___ 
 ÷ 

__
 3  
  , Fig. 5.49

Fig. 5.49

 (ii) f(x) =  ÷ 
______

 9 – x2  

  The given function being a algebraic function is continuous in 
[–3, 3].

  Now f ¢(x) =   – x ________ 
 ÷ 

______

 9 – x2  
  , thus the function is differentiable in 

]–3, 3[.

 f(– 3) = 0 = f(3)

  Hence the function satisfies all the conditions of the Rolle’s 
Theorem.

  So there exist a point cŒ [– 3, 3] such that f ¢(c) = 0.

  Clearly f ¢(x) =   – x _______ 
  ÷ 

______

 9 – x2  
   = 0 fi 0, Fig. 5.50

Fig. 5.50
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 (iii) f(x) = |2x|, [–2, 2] 

  The given function is continuous in [– 2, 2] and f(– 2) = 4 = f(2) 
but the function is not differentiable at x = 0 Œ [– 2, 2]. Thus not 
all the three conditions of the Rolle’s Theorem are satisfied.

  Clearly the conclusion of Rolle’s Theorem is not valid for the 
given function.

 (iv)  f(x) = 2 sin x – sin 3x, [0, p]

  The given function is continuous in [0, p].

  Now f ¢(x) = 2 cos x – 3 cos 3x, which exist for all x Œ [0, p] 
thus the function is differentiable in [– 0, p].

 f ¢(0) = 0 = f(p)

  Hence the function satisfies all the conditions of the Rolle’s 
Theorem

  So there exist a point [0, p] such that f ¢(c) = 0.

  Clearly f ¢(x) = 2 cos x – 3 cos 3x = 0 fi 11 cos x – 12 cos3 x 

= 0 fi cos x = 0 and cos x ±  ÷ 
___

   11 ___ 
12

    , Fig. 5.51

0.5

1.0

1.5

2.0

2.5

3.0

Fig. 5.51

Example 37 show that the x3 + x + 2 has exactly one real solution.

Solution Let f(x) = x3 + x + 2 and f ¢(x) = 3x2 + 1 fi f ¢(x) always will be 
positive and not will be zero. By Rolle’s Theorem if a function is continuous 
in a closed interval [a, b] and differentiable in open interval ]a, b[ and
f(a) = f(b) = 0 then there exist at least one point in this interval such that f ¢(c) = 0 
but here is f ¢(c) π 0. Therefore, f has no more than one zero. By intermediate 
value theorem the graph of the function crosses the x-axis at x = – 1 between 
(– 2, 0). Hence the given equation has one real solution x = – 1, Fig. 5.52.
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Fig. 5.52

 We are ready to state the mean value theorem.

The mean value theorem: Let f be a continuous function on the closed 
interval [a, b] and differentiable on the open interval ]a, b[. Then there exist at 

least one number c in [a, b] such that f ¢(c) =   
f(b) – f(a)

 _________ 
b – a

  . (This is also known 

The Lagrange’s mean value theorem)

 Geometrical interpretation Fig. 5.53 shows that the expression

  
f(b) – f(a)

 ________ 
b – a

   represent the slope of the secant line whose joining the points (a, f(a)) 

and (b, f(b)) and f ¢(x) is the slope of the tangent line to the curve y = f(x), the 
mean value theorem states that there is always a number cŒ [a, b] such that 
the slope of the tangent line at the point (c, f(c)) is the same as the slope of 
the secant line (secant and tangent line are parallel to each other).

y

x
a c b

( , ( ))a  f a

( , ( ))c  f c ( , ( ))b  f b

      

y

x
a c b

( , ( ))a  f a

( , ( ))c  f c
( , ( ))b  f b

y f x= ( )

Fg. 5.53               Fig. 5.54
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Proof: We know that the equation of the secant is 

  y – f(a) =   
f(b) – f(a)

 _________ 
b – a

   (x – a), (Fig. 5.55)

fi y = f(a) +   
f(b) – f(a)

 _________ 
b – a

   (x – a) 

y

x
a x b

( , ( ))a  f a

y f x= ( ) ( , ( ))b  f b

g x( )

Fig. 5.55

 Let g(x) be the difference between the height of the graph of the function 
y = f(x) and the height of the secant line, then

  g(x) = f(x) –  [ f(a) +   
f(b) – f(a)

 _________ 
b – a

   (x – a) ]  (5.15) 

 The function g(x) satisfies all the three condition of the Rolle’s Theorem 
on the interval [a, b] ( f(x) is continuous on [a, b] and differentiable ]a, b[ on 
so is g(x) and g(a) = g(b) = 0). 

 Hence there exist a number cŒ [a, b] such that g ¢(c) = 0, thus from 
equation (5.15)

  g ¢(c) = f ¢(c) –   
f(b) – f(a)

 _________ 
b – a

  

 Since g ¢(c) = 0 fi f ¢(c) =   
f(b) – f(a)

 _________ 
b – a

  .

Note: 1. Let x and b be two points such that x π a but x is sufficiently close 
to a then there exists a number c between x and a which depends 
on x (by Mean-Value theorem) such that

   f ¢(c) =   
f(x) – f(a)

 _________ x – a  

  But by definition of derivative 

   f ¢(a) =   lim   
x Æ a

    
f(x) – f(a)

 _________ x – a  
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  And by definition of Mean-Value theorem

    =   lim   
x Æ a

  f ¢(c)

    =   lim   
x Æ a

  f ¢(x) (Since f ¢(x) exists and c lies between x and a).

 2. Let a function f satisfies the condition of The Lagrange’s mean value 
theorem in [a, b].

  Let x1, x2 Œ [a, b] such that x1 < x2. We know that

  f(x2) – f(x1) = (x2 – x1) f ¢(c) where cŒ [x1, x2] (5.16)

 Now if f ¢(x) = 0, for all xŒ [a, b] then from equation (5.16) we get 

f(x2) = f(x1) fi function is constant and this the converse of the theorem, 
‘Derivative of a constant function is the zero function’.

Cor. If two functions f and g have the same derivative for all xŒ [a, b] then 

these functions are differ only by a constant. Let f¢(x) = f ¢(x) – g ¢(x) = 0, for 
all xŒ [a, b] fi f is constant. 

Physical Interpretation Suppose a car with zero initial velocity covered 
400 ft in 5-sec, thus its average velocity in 5-sec is 80 ft/sec. The Mean Value 
theorem state that the speedometer of the car must reached exactly 80 ft/sec 
during the cover this 400 ft distance.

Example 38 Verify Lagrange’s mean value theorem for the following 
functions

 (i) f(x) = 5 + 3x – x2, a = 0, b = 3,

 (ii) f(x) = log x + 2, a = 1, b = e

Solution (i) f(x) = 5 + 3x – x2, a = 0, b = 3

  f(x) is continuous in [0, 3] and f ¢(x) = 3 – 2x exists in ]0, 3[

  Now f(a) = f(0) = 5, f(b) = f(3) = 5, and f ¢(c) = 3 – 2c, hence

  3 – 2c =   5 – 5 _____ 
3 – 0

   =   0 __ 
3
   fi c =   3 __ 

2
   Œ [0, 3]

 (ii) f(x) = log x + 2, a = 1, b = e

  f(x) is continuous in [1, e] and f ¢(x) =   1 __ x   exists in[1, e]

  Now f(a) = f(1) = 2, f(b) = f(e) = 3, and f ¢(c) =   1 __ c  , hence

    1 __ c   =   3 – 2 _____ 
e – 1

   =   1 _____ 
e – 1

   fi c = e – 1 Œ [1, e].

Example 39 Find a point on the graph of the function f(x) = x2 + 4x + 4 
where the tangent is parallel to the chord joining (– 1, – 6) and (1, 6).
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Solution f(x) = x2 + 4x + 4 \ f ¢(x) = 2x + 4, and slope of the given chord 

is   
6 – (– 6)

 ________ 
1 – (– 1)

   = 6,

\ 2x + 4 = 6. Hence the required point is (1, 9).

Example 40 Show that   a – b ______ 
1 + a2 

   < cot– 1 a <   a – b ______ 
1 + b2

   where 0 < a < b.

Solution Let f(x) = cot– 1 x, a < x < b

fi  f ¢(x) =   – 1 ______ 
1 + x2 

  

 By Lagrange’s mean value theorem, there exists a number c Œ [a, b] such 
that

    
 f(b) – f(a)

 _________ 
b – a

   = f ¢(c)

fi    cot– 1 b – cot– 1 a  _____________ 
b – a

   =   – 1 ______ 
1 + c2 

  

  a < c fi a2 < c2 < fi 1 + a2 < 1 + c2

fi    – 1 _____ 
1 + c2

   <   – 1 ______ 
1 + a2 

  

fi    cot– 1 b – cot– 1 a  ______________  
b – a

   <   – 1 _______ 
 1 + a2 

  

fi    a – b ______ 
1 + a2

   < cot– 1 b – cot– 1 a (5.17)

 Now 

  c < b fi c2 < b2 fi 1 + c2 < 1 + b2

fi    – 1 ______ 
1 + b2

   <   – 1 ______ 
1 + c2

  

fi    – 1 ______ 
1 + b2

   <   cot– 1 b – cot–1 a  _____________ 
b – a

  

fi     cot– 1 b – cot– 1 <   a – b ______ 
1 + b2 

   (5.18)

 Thus from (5.17) and (5.18) we have
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    a – b ______ 
1 + a2

   < cot– 1 b – cot– 1 a <   a – b ______ 
1 + b2

  .

Example 41 Show that 0 < [log (1 + 2x)]– 1 – (2x)– 1 < 1, x > 0

Solution Let f(x) = log(1 + 2x), in [0, x]

fi  f ¢(x) =   2 ______ 
1 + 2x

  

 By Lagrange’s mean value theorem, there exists a number c = ax Œ [0.x, 1.x] 

fi < a < 1 such that   
f(x) – f(0)

 ________ 
x – 0

   = f ¢(c) = f ¢(ax)

fi  log(1 + 2x) =   2x _______ 
1 + 2ax

  

    0 < a < 1 and x > 0 fi 2ax < 2x fi 1 + 2ax < 1 + 2x

fi    1 ______ 
1 + 2x

   <   1 ________ 
1 + 2ax

  .

fi    2x ______ 
1 + 2x

   < log(1 + 2x) (5.19)

 Now

      0 < a < 1 and x > 0 fi 0 < 2ax fi 1 < 1 + 2ax

fi    2x _______ 
1 + 2ax

   < 2x

fi  log(1 + 2x) < 2x (5.20)

 Thus, from (5.19) and (5.20) we have

    2x _____ 
1+ 2x

   < log(1 + 2x) < 2x (5.21)

 Now

fi    1 + 2x ______ 
2x

   >   1 __________  
log(1 + 2x)

   >   1 ___ 
2x

  

fi  1 +   1 ___ 
2x

   >   1 __________  
log(1 + 2x)

   >   1 ___ 
2x

  

fi  1 >   1 __________  
log(1 + 2x)

   –   1 ___ 
2x

   > 0. Hence

     0 < [log(1 + 2x)]– 1 – (2x)– 1 < 1, x > 0
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Example 42 A car covered 100 km in 2hr. Show that the speedometer reads 
exactly 50 km/hr at least once during the trip.

Solution Let s(t) be the position function of the car then by Lagrange’s mean 
value theorem there is at least one point c in [0, 2] such that

  s ¢(c) =   
s(2) – s(0)

  __________ 
2 – 0

   =   100 ____ 
2
   = 50km/hr.

Cauchy’s mean value theorem: Let f and g be two functions continuous 
on the closed interval [a, b] and differentiable on the open interval ]a, b[ and 
g ¢(x) π 0 for all x Œ [a, b]. Then there exist at least one number c in [a, b] 
such that

    
f(b) – f(a)

 __________  
g(b) – g(a)

   =   
f ¢(c)

 ____ 
g ¢(c)

  

Proof: By given condition we know that g(b) π g(a). For if g(b) = g(a), 
then g satisfies the conditions of the Rolle’s theorem and so there exists at 
least one number at which g ¢(x) vanish and this contradict of given condition 
g ¢(x) π 0.

 Let a new function f(x) = f(x) + Ag(x) for all x Œ [a, b]

 Where A is a constant to be determined such that

  f(a) = f(b)

 Hence f(a) + Ag(a) = f(a) + Ag(b)

fi  A = –   
f(b) – f(a)

  __________  
g(b) – g(a) 

  

 Now f(x) is continuous in [a, b] and differentiable on ]a, b[. ( f(x) and g(x) 
both are continuous and differentiable and A is constant) and as we know that 
f(a) = f(b). Thus f(x) satisfies all the conditions of the Rolle’s theorem

fi  f¢(c) = 0 = f ¢(c) + Ag ¢(c)

fi  A = –   
f ¢(c)

 ____ 
g ¢(c)

  

fi    
f ¢(c)

 ____ 
g ¢(c)

   =   
f(b) – f(a)

 __________  
g(b) – g(a)

  . 

Another forms of Cauchy’s mean value theorem. 
 (i) If the functions f and g are differentiable in [a, a + h] and g ¢(x) π 0 

for any x Œ [a, a + h] then there exists at least one number q Œ ]0, 1[ 
such that
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f(a + h) – f(a)

  _____________  
g(a + h) – g(a)

   =   
f ¢(a + qh)

 _________ 
g ¢(a + qh)

   (0 < q < 1).

 (ii) Let a function f be continuous in [a, b] and differentiable in ]a, b[ and 
let g(x) = x2, hence by Cauchy’s mean value theorem we have

   
f ¢(c)

 _____ 
2c

   =   
f(b) – f(a)

 _________ 
b2 – a2

   fi f ¢(c) (b2 – a2) = 2c { f(b) – f(a) } , c Œ [a, b]

Geometrical, Physical Interpretation

The Cauchy’s mean value theorem may be written as

    
f ¢(c)

 ____ 
g ¢(c)

   =   
  
{f(b) – f(a)}

  __________ 
(b – a)

  
  ___________  

  
{g(b) – g(a)}

  ___________ 
(b – a)

  

  

 Which shows that the ratio of the mean rates of increases of two functions in 
an interval is equal to the ratio of the actual rates of increases of the functions 
at some point within the interval.

Example 43 Verify Cauchy’s mean value theorem for the following 
functions

 (i)  f(x) = x2, g(x) = x5 in [1, 3], (ii) f(x) = e2x, g(x) = e– 2x in [0, 1]

Solution

 (i) f(x)  = x2, and g(x) = x5

  Here f(x) and g(x) both are continuous in [1, 3] and differentiable in 

]1, 3[ g ¢(x) = 5x4. Further g ¢(x) π 0 for all x Œ [1, 3] hence by Cauchy’s 
mean value theorem there exists a point c in ]1, 3[ such that

   =   9 – 1 _______ 
243 – 1

   =   2c ___ 
5c4

   fi c = 
3
 ÷ 

____
 12.1   Œ [1, 3].

  Hence Cauchy’s mean value theorem is verified.

 (ii) f(x)  = e2x, and g(x) = e–2x 

 Here f(x) and g(x) both are continuous in [0, 1] and differentiable in 
]0, 1[ g ¢(x) = –2e– 2x. Further g ¢(x) π 0 for all x Œ [0, 1] hence by Cauchy’s 
mean value theorem there exists a point c in ]0, 1[ such that

   =   e
2 – 1 ______ 

e– 2 – 1
   =   2e 2c

 ______ 
– 2e– 2c

   fi c =   1 __ 
2
   Œ [0, 1].

 Hence Cauchy’s mean value theorem is verified.



5.70 Calculus

Example 44 Show that   
cos a – cos b

  ____________  
sin b – sin a

   = tan q, 0 < a < q < b <   p __ 
2
  .

Solution Let f(x) = cos x, g(x) = sin x, x Œ [a, b]

 Here f(x) and g(x) both are continuous in [a, b] and differentiable in ]a, b[ 
g ¢(x) = cos x. Further g ¢(x) π 0 for all x Œ [a, b] hence by Cauchy’s mean 
value theorem there exists a point q in ]a, b[ such that

    
cos b – cos a

  ____________  
sin b – sin a

   =   sin q _____ 
cos q

  

fi    
cos a – cos b

  ____________  
sin b – sin a

   = tan q, 0 < a < q < b <   p __ 
2
  .

Exercises

 1. Verify Rolle’s theorem for the following

 (i) f(x) = |2x|, [– 1, 1]   (ii) f(x) = 26 cos x – sin x,  [   p __ 
2
     3p ___ 

2
   ] ,

 (iii) f(x) = x(x – 2)e– x, [0, 2] (iv) f(x) = log   [   x2 + ab _______ 
x(a + b)

   ]  2 , [a, b]

 (v) f(x) = (x – a) (x – b)n where n is a positive integer [a, b].

 2. Prove that if a0, a1, a2, º, an are real numbers such that

      
a0 _____ 

n + 1
   +   

a1 __ n   + º   
an – 1 ____ 

2
   + an = 0

  Then there exists at least one real number x between 0 and 1 such 
that

    a0 x
n + a1 x

n – 1 + a2 x
n – 2 + º an = 0.

 3. Show that there is no real number t for which the equation x2 – 5x + t = 0 
has two distinct root in [0, 1].

 4. Prove that if P be any polynomial and P ¢ the derivative of P, then 
between any two consecutive zeros of P ¢, there lies at the most one 
zero of P.

 5. prove that between any two real roots of ex cos x = x, there is at least 
one real root of cos x – sin x = e– x.

 6. If f ¢ is continuous on [a, a + h] and derivable on ]a, a + h[, then 
prove that there exists a real number c between a and a + h such that

f (a + h) = f(a) + hf ¢(a) +   h
2

 __ 
2
   f≤(c)



More About Derivative 5.71 

 7. Verify Lagrange’s mean value theorem for the following

 (i) f(x) = x2 + x – 2, [0, 2] (ii) f(x) =  ÷ 
______

 16 – x2  , [– 4, 0]

 (iii) f(x) = 2log x, [1, e] (iv) f(x) =   1 _____ 
x – 2

  , [3, 6].

 8. Show that there is no number c between – 1 and 7 such that 

f ¢(c) =   
f(7) – f(– 1)

  __________ 
8

   when f(x) =  x 
  2 __ 
3
  
 .

 9. Use the Lagrange’s mean value theorem show that   x ______ 
1 + 4x2

   < tan– 1 

2x < x.

 10. If f(x) = x(2 – log x), x > 0, show that (b – a) (1 – log c) = b(2 – log b) 
– a(2 – log a).

 11. Find a point of f(x) = (x – 2)2 where the tangent is parallel to chord 
joining (2, 0) and (3, 1).

 12. Use the Lagrange’s mean value theorem show that |sin x – sin y|
£ |x – y| for all real values of x and y.

 13. Verify Cauchy’s mean value theorem for the following functions

 (i) f(x) = x3 + 3, g(x) = x2 + 4 in [1, 2],

 (ii) f(x) = sin x, g(x) = cos x in  [ 0,   p __ 
2
   ] .

 14. If f ¢ and g ¢ exists for all x Œ [a, b] and if g ¢(x) π 0 for all x Œ ]a, b[ 
then prove that for some c Œ ]a, b[

      
f(c) – f(a)

 _________ 
g(b) – g(c)

   =   
f ¢(c)

 ____ 
g ¢(c)

  .

 15. Prove that   tan x _____ x   >   x ____ 
sin x

  , whenever 0 < x <   p __ 
2
  .

Answers

 1. (i) not verified  (ii) verified, c ª p

  (iii) verified, c = 0.59 (iv) verified, c =  ÷ 
___

 ab   

  (v) verified, c =   an + b _______ 
1 + n

  .

 7. (i) verified, c = 1 (ii) verified, c =  ÷ 
__

 8  

  (iii) verified, c =   e – 1 _____ 
2

   (iv) verified, c = 4.

 11.  (   5 __ 
2

  ,   1 __ 
4

   ) .
 13. (i) verified, c = 1.55 (ii) not verified.
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5.9 TAYLOR POLYNOMIALS AND TAYLOR’S THEOREM

Taylor Polynomials Let f be a function whose first nth derivatves f n exists 
on the closed interval [x0, x1] and suppose c Œ [x0, x1] and x Œ [x0, x1] then the 
nth degree polynomial Pn(x) of f at c is

Pn(x) = f(c) +   
f ¢(c)

 ____ 
1!

   (x – c) +   
f≤(c)

 _____ 
2!

   (x – c)2 +   
f ¢≤(c)

 _____ 
3!

   (x – c)3 + º   
f n(c)

 ____ 
n!

   (x – c)n

   º (5.22)

 The Taylor Polynomials is a general case of a Maclaurin Polynomial. 
Hence if we take c = 0 in equation (5.22) we get Maclaurin Polynomial as

 Pn(x) = f(0) +   
f ¢(0)

 ____ 
1!

   x +   
f≤(0)

 ____ 
2!

   x2 +   
f ¢≤(0)

 _____ 
3!

   x3 + º   
f n(0)

 _____ 
n!

   xn º (5.23) 

Example Let f(x) = ex. Hence

 f ¢(0) = f≤(0) = f ¢≤(0) = f n(0) = e0 = 1. Therefore Maclaurin Polynomial is

 Pn(x) = ex = 1 +   x __ 
1!

   +   x
2
 __ 

2!
   +   x

3
 __ 

3!
   + º   x

n
 __ 

n!
   

 Figure 5.56 shows the graphs of f(x) = ex and the graphs of Maclaurin 
Polynomials and we have seen that these polynomials are good approximation 
of ex for x near 0.

Fig. 5.56

 Similarly the Taylor Polynomials for f(x) = log x about x = 2 can be 
found as

 Pn(x) = log 2 +   1 __ 
2

   (x – 2) –   1 __ 
8

   (x – 2)2 +   1 ___ 
24

   (x – 2)3 + º, where

 f(x) = log x, f(2) = log 2, f ¢(x) =   1 __ x  , f ¢(2) =   1 __ 
2
  , f≤(x) =   –1 ___ 

x2
  , f≤(2) = –   1 __ 

4
   º 
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 Figure 5.57 shows the graphs of f(x) = log x and the graphs of Taylor 
Polynomials and we have seen that these polynomials are good approximation 
of log x for x near 2.

Fig. 5.57

Remainder Term Let Pn(x) be the nth degree Taylor Polynomial of function 
f. Then the remainder Term, denoted by Rn(x), is given by

  Rn(x) = f(x) – Pn(x)

Taylor’s Theorem (Taylor’s Formula with Remainder) Let f be a function 
whose (n + 1)th derivatves f n + 1 exists on the closed interval [x0, x1] and suppose 
a Œ [x0, x1] and x Œ [x0, x1] then there is a number c in (a, x) or (x, a) such 
that

  Rn(x) =   
f n + 1(c)

 ______ 
n + 1!

   (x – a)n + 1 

 This above expression is called Lagrange’s form of remainder and use this 
we can write Taylor’s Formula as

 f(x) = f(a) +   
f ¢(a)

 ____ 
1!

   (x – a) +   
f≤(a)

 ____ 
2!

   (x – a)2 +   
f ¢≤(a)

 _____ 
3!

   (x – a)3 
  

+ º   
f n(a)

 _____ 
n!

   (x – a)n +   
f n + 1(c)

 ______ 
n + 1!

   (x – a)n + 1.

 Or

 f(x) = f(a) +   
f ¢(a)

 ____ 
1!

   (x – a) +   
f≤(a)

 ____ 
2!

   (x – a)2 +   
f ¢≤(a)

 _____ 
3!

   (x – a)3 

 + º   
f n – 1(a)

 ______ 
n – 1!

   (x – a)n – 1 +   
f n(a + qx – aq)

  ______________ 
n!

   (x – a)n where 0 < q < 1
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 Or

 f(x) = f(a) +   
f ¢(a)

 _____ 
1!

   (x – a) +   
f≤(a)

 _____ 
2!

   (x – a)2 +   
f ¢≤(a)

 ______ 
3!

   (x – a)3 

 + º   
f n – 1(a)

 ______ 
n – 1!

   (x – a)n – 1 +   
f n(a + qx – aq)

  ______________  
n – 1!

   (x – a)n (1 – q)n – 1

where 0 < q < 1

(With Cauchy’s remainder)

Proof: Suppose x be a fixed number in [a, b] and let a function j(t) define 
as

 j(t) = f(x) – f(t) –   
f ¢(t)

 ____ 
1!

   (x – t) –   
f≤(t)

 ____ 
2!

   (x – t)2 –   
f ¢≤(t)

 ____ 
3!

   (x – t)3

   + º   
f n(t)

 ____ 
n!

   (x – t)n –   
Rn(x)
 _________ 

(x – a)n + 1
   (x – t)n + 1. (5.24)

 From equation (5.24), we have

  j(x) = 0 and j(a) = f(x) – Pn(x) – Rn(x) = 0.

 Since f n + 1 exists fi f n is differentiable so that j is a differentiable for t in 
(a, x)

 Here function j is continuous in [a, x] and differentiable in ]a, x[ and 
j(x) = 0 = j(a), hence j hold all the conditions of the Rolle’s theorem in 
[a, x] so that there exists a number c Œ (a, x) with j¢(c) = 0. Therefore from 
equation (5.24) we have

  j¢(c) = 0 – f ¢(c) + f ¢(c) – f≤(c) (x – c) + º

     
– f n + 1(c)

 ________ 
n!

   (x – c)n –   
(n + 1) Rn(x)

  ____________  
(x – a)n + 1

   (x – c)n + 1 = 0.

fi  Rn(x) =   
f n + 1(c)

 ______ 
n + 1!

   (x – a)n + 1

hence proved.

Example 45 Obtain the Maclaurin’s expension of

sin x, log(1 + x), (1 + x)m

  f(x) = sin x f(0) = 0

  f ¢(x) = cos x f ¢(0) = 1

  f≤(x) = – sin x f≤(0) = 0 f ¢≤(x) = – cos x f ¢≤(0) = – 1
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Fig. 5.58

 Hence

  sin x = x –    x
3
 __ 

3!
   +   x

5
 __ 

5!
   º

 Now to  obtain Lagrange’s form of remainder

 Rn(x) =   
f n + 1(c)

 ______ 
n + 1!

   (x)n + 1  { f n + 1(c) = sin  ( c +   
 (n + 1)p

 ________ 
2
   )  } 

 We have Rn(x) =   
(x)n + 1

 ______ 
n + 1!

   sin  ( (c +   
(n + 1)p

 ________ 
2
   )  so that

 |Rn(x)| =  |   (x)n + 1
 ______ 

n + 1!
   |   | sin  ( c +   

 (n + 1)p
 ________ 

2
   )  |  £  |   (x)n + 1

 ______ 
n + 1!

   | 
fi Rn(x) Æ 0 as n Æ • for all x Œ R.

  f(x) = log(1 + x) f(0) = 0

  f ¢(x) =   1 ______ 
(1 + x)

   f ¢(0) = 1

  f≤(x) =   1 _______ 
(1 + x)2

   f≤(0) = – 1

  f ¢≤(x) = –   2 _______ 
(1 + x)3

   f ¢≤(0) = – 2

 Hence

  log(1 + x) = x –   x
2
 __ 

2
   +   x

3
 __ 

3
   –   x

4
 __ 

4
   º

 Now to obtain Lagrange’s form of remainder

 Rn(x) =   
(x)n

 ____ 
n!

   fn(qx)  { fn(qx) =   
(– 1)n – 1 (n – 1)!

  ______________  
(1 + qx)n   } 
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 Let 0 £ x £ 1

   =   
(x)n

 ____ 
n!

     
(– 1)n – 1 (n – 1)!

  ______________  
(1 + qx)n  

   =   
(– 1)n – 1

 _______ n     (   x ______ 
1 + qx

   )  n 
  0 £   x ______ 

1 + qx
   < 1

\   (   x ______ 
1 + qx

   )  n  Æ 0 as n Æ •

 Also   1 __ n   Æ 0 as n Æ • Thus Rn(x) Æ 0 as n Æ •.

 Now when – 1 < x < 0. For this case we consider Cauchy’s form of 
remainder

   Rn(x) =   
(x)n

 _______ 
(n – 1)!

   (1 – q)n – 1 f n(qx)

     
(x)n

 _______ 
(n – 1)!

   (1 – q)n–1   
(– 1)n – 1 (n – 1)!

  _____________  
(1 + qx)n  

   (– 1)n – 1 (x)n   (   1 – q ______ 
1 + qx

   )  n – 1
    1 ______ 
1 + qx

  

 Now 0 < 1 – q < 1 + qx then   (   1 – q ______ 
1 + qx

   )  n – 1
  Æ 0 as n Æ •

 Also, (x)n Æ 0 as n Æ •

 And 1/1 + qx < 1/1 – |x| \ Rn(x) Æ 0 as n Æ •.

f(x) = (1 + x)m. Let m is a real number then f(x) have continuous derivatives 
of every order when (1 + x) is greater than zero.

  f(0) = 1

  f ¢(x) = m(1 + x)m–1 f ¢(0) = m

  f≤(x) = m(m – 1) (1 + x)m–2 f≤(0) = m(m – 1)

f ¢≤(x) = m(m – 1) (m – 2) (1 + x)m –3  f ¢≤(0) = m(m – 1) (m – 2)

 Hence

 (1 + x)m = 1 + mx +   
m(m – 1)x2

  ___________ 
2!

   +   
m(m – 1) (m – 2)x3

  _________________  
3!

   º
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 When –1 < x < 1 

 Now to obtain Cauchy’s form of remainder

  Rn(x) =   
(x)n

 _______ 
(n – 1)!

   (1 – q)n – 1 f n(qx)

  f n(qx) = m(m – 1) (m – 2) º (m – n + 1) (1 + qx)m – n

  Rn(x) =   
(x)n

 _______ 
(n – 1)!

   (1 – q)n – 1 f n(qx)

 =   
(x)n

 _______ 
(n – 1)!

   (1 – q)n – 1 m(m – 1) (m – 2) º (m – n + 1) (1 + qx)m – n

 Let |x| < 1 Now – 1 < x fi 1 – q < 1 + qx fi   
(1 – q)

 _______ 
(1 + qx)

   < 1

 Hence, we have

   0 <   (   1 – q ______ 
1 + qx

   )  n – 1
  < 1

 Now let (m – 1) be positive

   0 < 1 + qx < 2 fi 0 < (1 + qx)m – 1 < 2m

 Let (m – 1) be negative then we get

   1 + qx ≥ 1 – |x| fi (1 + qx)m – 1 £ (1 – |x|)m – 1

fi   lim   
n Æ •

    
m(m – 1) (m – 2) º (m – n + 1)

    ____________________________  
(n – 1)!

   xn = 0

 Thus Rn(x) Æ 0 as n Æ • if |x| < 1.

Example 46 Show that ex cos 2x = 1 + x – x2 – 5   x
3

 __ 
3
   + º

Solution f(x) = ex cos 2x f(0) = 1

  f ¢(x) = ex cos 2x – 2ex sin 2x f ¢(0) = 1

  f≤(x) = –2ex cos 2x – 4ex sin 2x f≤(0) = – 2

  f ¢≤(x) = –2ex cos 2x – 8ex cos 2x f ¢≤(0) = – 10

 Hence by Maclaurin’s expansion we have 

 ex cos 2x = 1 + x – 2   x
2

 __ 
2!

   – 10   x
3

 __ 
3!

   = 1 + x – x2 – 5   x
3

 __ 
3
   + º
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Exercises

 1. Show that for all real x

 (i) cos x = 1 –   x
2

 __ 
2!

   +   x
4

 __ 
4!

   –   x
6

 __ 
6!

   + º,

 (ii) log(1 – x) = – x –   x
2

 __ 
2

   –   x
3

 __ 
3
   –   x

4

 __ 
4
   – º,

 (iii)   1 ______ 
(1 – x)

   = 1 + x + x2 + x3 + º,

 (iv) sin px = 0 + px +   
(px)2

 _____ 
2!

   –   
(px)3

 _____ 
3!

   + º,

 (v) log(1 + sin x) = 1 –   x
2

 __ 
2

   +   x
3

 __ 
6
   –   x

4

 ___ 
24

   – º,

 (vi) tan– 1 x = x –   x
3

 __ 
3

   +   x
5

 __ 
5

   – º,

 (vii) tan– 1 x = tan– 1   p __ 
4

   +   
x –   p __ 

4
  
 ______ 

1 +   p
2

 ___ 
16

  

   –   
p  ( x –   p __ 

4
   )  2 
 _________  

4  ( 1 +   p
2

 ___ 
16

   )  2 
   + º,

 (viii) sin(ex – 1) = x +   x
2

 __ 
2!

   +   5x4

 ___ 
4!

   + º,
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C H A P T E R

Polar Coordinates
and Conic Section

6.1 POLAR COORDINATE 

We know that a point P in the Cartesian plane (xy-plane) represent by their x 
(abscissa) and y (ordinate) say coordinates (Fig. 6.1). There are so many ways 
to represent this point P in the plane, the most important of which is called the 
Polar Coordinate system. Let a fixed point O and a ray that extends in one 
direction from O and this ray we label OQ. The fixed point O is called the pole 
and the horizontal ray OQ is called the polar axis (Fig. 6.2). Suppose P is any 
other point in the plane, let r be the distance between O and P, and let q be the 
angle (in radians) between OQ and OP, measured counterclockwise from OQ to 
OP. The number r is called the radial coordinate of P and number q is called 
angular coordinate of P. Then every point in the plane, except the pole, can 
be represented by a pair of number (r, q), where r > 0 and 0 £ q £ 2p. The 
pole can be represent as (0, q) for any number q. The representation P = (r, q) 
is called the polar representation of the point, and r and q are called the polar 
coordinates of P. For example the points (3, 60°), (4, 120°), (2, 225°), located 
as in the following figures.

      

Fig. 6.1                    Fig. 6.2
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  Let (r, q) be any pair of real numbers and r is positive then to locate the 
point P = (r, q), we first rotate the polar axis through the angle of q in the 
counterclockwise direction if q is positive and in the clockwise direction if q is 
negative and if r is negative then the ray OP is extended backward through the 
pole and the point P is then located |r| units from the pole along this extended 
ray for example

              

Fig. 6.3                                  Fig. 6.4

 The points (1, 675°), (– 2, 45°), (– 1, – 90°) located as.

 The Fig. 6.5 and Fig. 6.7 represent the coordinates of the same point 
similarly the Fig. 6.6 and Fig. 6.8 also represent the coordinates of another same 
point. Hence we conclude that the polar coordinates of a point are not unique. 
In general if (r, q) represent the coordinate of a point P then (r, q + n. 360) 
and (r, q – n. 360) are also represent the coordinates of the same point P for 
positive n.

                 

Fig. 6.5                                 Fig. 6.6

               

Fig. 6.7                                 Fig. 6.8

Fig. 6.9
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6.2 RELATION BETWEEN POLAR AND
 RECTANGULAR COORDINATES

To find the relation between polar and rectangular coordinates, we replace the 
pole by the origin and polar axis along the x-axis in the Cartesian plane as 
in Fig. 6.1 and Fig. 6.2. Let P = (x, y) = (r, q) be a point in the plane. Then 
from Fig. 6.1 we have 

 Changing from polar to rectangular coordinates
  x = r cos  and y = r sin  (6.1) 

 Changing from rectangular to polar coordinates
 We know that x2 + y2 = r2, so that if we specify that r > 0 we have

  r =  ÷ 
_______

 x2 + y2   (6.2)

 And tan  =   
y
 __ x   if x π 0 (6.3) 

 To determine q from equation (6.3) we must be taken of the signs x and y 
into account. For example, for (2, 2) and (– 2, – 2), tan q = 1. But in the first 

case q =   p __ 
4

   and in the second case q =   5p ___ 
4
  , Fig. 6.10.

Fig. 6.10

Note: We can find the value of q from equation (6.3) as 

  q = tan– 1   
y
 __ x   if x > 0, y > 0;

  q = tan– 1   
y
 __ x   + 2p if x > 0, y < 0;

  q = tan– 1   
y
 __ x   + p if x < 0, y < 0;

{in the case r < 0, we have (– r, q) = (r, q + p)}.

Example 1 Convert from polar to rectangular coordinates:

 (i)  ( 2,   p __ 
3

   )    (ii)  ( 3, –   p __ 
4
   ) 
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Solution (i) r = 2 and q =   p __ 
3

   hence from (6.1)

  x = r cos q = 2 cos  (   p __ 
3
   )  = 2 ◊   1 __ 

2
   = 1 and y = r sin q = 2 sin  (   p __ 

3
   )  

= 2 ◊    ÷ 
__

 3  
 ___ 

2
   =  ÷ 

__
 3  . So the coordinates (1,  ÷ 

__
 3  ).

 (ii) r = 3 and q = –   p __ 
4
   We can take q as q + n. 2p = –   p __ 

4
   + 2p 

=   7p ___ 
4

  , then from (6.1) x  = r cos q = 3cos  (   7p ___ 
4
   )  = 3 ◊   1 ___ 

 ÷ 
__

 2  
   =   3 ___ 

 ÷ 
__

 2  
   and 

y = r sin q = 3 sin  (   7p ___ 
4
   )  = 3 ◊  ( –   1 ___ 

 ÷ 
__

 2  
   )  =   – 3 ___ 

 ÷ 
__

 2  
  . So the coordinates  

(   3 ___ 
 ÷ 

__
 2  
  , –   3 ___ 

 ÷ 
__

 2  
   ) .

  Or

  r = 3 and q = –   p __ 
4

  , then from (6.1)

  x = r cos q  = 3 cos  ( –   p __ 
4
   )  = 3 ◊   1 ___ 

 ÷ 
__

 2  
   =   3 ___ 

 ÷ 
__

 2  
   {cos (–q) = cos q} and 

y = r sin  = 3 sin  ( –   p __ 
4
   )  = 3 ◊  (   –1 ___ 

 ÷ 
__

 2  
   )  =   – 3 ___ 

 ÷ 
__

 2  
   {sin(–q) = – sin q}. 

So the coordinates =  (   3 ___ 
 ÷ 

__
 2  
  ,   –3 ___ 

 ÷ 
__

 2  
   ) .

Example 2 Convert from rectangular to polar coordinates (with r > 0 and 
0 £ q < 2p)

 (i) (1,  ÷ 
__

 3  ) (ii) (1, –1) (iii) (–2 ÷ 
__

 3  , –2)

Solution (i) from (6.2) r =  ÷ 
_______

 x2 + y2   =  ÷ 
___________

  (1)2 + ( ÷ 
__

 3  )2   = 2 and from (6.3) 

tan q =   
y
 __ x   =   

 ÷ 
__

 3  
 ___ 

1
   fi q =   p __ 

3
  . So the coordinates  ( 2,   p __ 

3
   ) .

 (ii) r =  ÷ 
_______

 x2 + y2   =  ÷ 
____________

  (1)2 + ( ÷ 
___

 – 1  )2   =  ÷ 
__

 2   and from (6.3) tan q =   
y
 __ x   

=   –1 ___ 
1

   = –1

  But here x > 0, y < 0 fi q = tan–1(–1) + 2p =   –p ___ 
4
   + 2p =   7p ___ 

4
  .

  So the coordinates =  (  ÷ 
__

 2  ,   7p ___ 
4
   ) .

 (iii) r =  ÷ 
_______

 x2 + y2   =  ÷ 
______________

  (–2 ÷ 
__

 3  )2 + (–2)2   = 4 and from (6.3) tan q =   –2 _____ 
–2 ÷ 

__
 3  
   

=   1 ___ 
 ÷ 

__
 3  
   .
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 But here x < 0, y < 0 fi q = tan–1  (   1 ___ 
 ÷ 

__
 3  
   )  + p =   p __ 

6
   + p =   7p ___ 

6
  . So the

coordinates =  ( 4,   7p ___ 
6

   ) .
6.3 GRAPHING IN POLAR COORDINATES 

In the Cartesian coordinates we define the graph of the equation y = f (x) as 
the set of the points (x, y) whose coordinates satisfies the equation y = f (x). 
As we have seen in section (6.1) that in polar coordinates each point in the 
plane has an infinite number of representations.

The graph of an equation r = f (q)  ( i.e. r = sin q, r = 2q, =   1 ________ 
1 + sin q

   )  
in polar coordinates r and q consists of those points P having at least one 
representation P = (r, q) whose coordinates satisfy the equation r = f (q).

Rules of symmetry 

 (i) The graph of the polar equation will be symmetric about the polar axis 
if q can be replaced by – q without changing the equation, Fig. 6.11.

Fig. 6.11

 (ii) The graph of the polar equation will be symmetric about the line 

q =   p __ 
2

   if q can be replaced by (p – q) without changing the equation, 

Fig. 6.12.

Fig. 6.12
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 (iii) The graph of the polar equation will be symmetric about the pole if q 
can be replaced by (p + q) or r replaced by – r without changing the 
equation, Fig. 6.13.

           

Fig. 6.13

Note: The above rules do not give necessary condition for symmetry. That is, 
symmetry may be exists in a situation where none of any above rules holds.

Example 3 Sketch the curve r = cos q.

Solution Since cos (–q) = cos q, hence from rule (i) there is symmetry about 
polar axis, so we determine the values of the equation only when 0 £ q £ p. 
In Table 6.1 we tabulate r for some values of q for 0 £ q £ p.

Table 6.1

 q 0   
p __ 
6

     
p __ 
3

     
p __ 
2

     
2p ___ 
3

     
5p ___ 
6

   p

r = cos q 1   
 ÷ 

__
 3  
 ___ 

2
     

1
 __ 

2
   0   

— 1
 ___ 

2
     

—  ÷ 
__

 3  
 ____ 

2
   —1

 Therefore the polar coordinates are (1, 0),  (    ÷ 
__

 3  
 ___ 

2
  ,   p __ 

6
   ) ,  (   1 __ 

2
  ,   p __ 

3
   ) ,  ( 0,   p __ 

2
   ) ,  ( –   1 __ 

2
  ,   2p ___ 

3
   ) ,  

(   – ÷ 
__

 3  
 ____ 

2
  ,   5p ___ 

6
   )  and (– 1, p).

 In these coordinates (order pair) first part defines the length of r and second 
part defines the angle (in degree) in counterclockwise direction from the polar 
axis. {i.e. let 1 cm. = 1 unit then in (1, 0) r = 1 cm.} 

 By use these polar coordinates we can plot the curve as 

     

 Fig. 6.14                 Fig. 6.15
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2
3
pq =

T =
1
2

2
3
p,–

S = 0,
p
2

Fig. 6.16

Fig. 6.17

Fig. 6.18

 Joined the points P, Q, R º V, we get require graph as follows

 Figure 6.19a shows that the graph is a circle of radius   1 __ 
2
  . Hence the equation 

of the form r = 2a cos  represent the circle of radius a. Similarly the equation 
r = 2a sin  also represent the circle of radius a, Fig. 6.19(b).

         

Fig. 6. 19(a) curve r = cos        Fig. 6.19(b) curve r = 2a sin 

 To see this analytically, we convert to Cartesian-coordinates. Since r = cos q, 
we have for r π 0,
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  r2 = r cos q fi x2 + y2 = x fi   ( x –   1 __ 
2
   )  2  + y2 =   1 __ 

4
  

 Which is a circle centered at the  (   1 __ 
2
  , 0 )  and with radius   1 __ 

2
  .

 The equation r = cos q can also be graphed in Cartesian qr-coordinates 

system with coordinates (0, 1),  (   p __ 
2

  , 0 ) , (p, – 1) as follows 

Fig. 6.20

Example 4 Sketch the curve r = sin 2q.

Solution The graph plotted as follows 

Table 6.2

 q 0   
p __ 
4

     
p __ 
2

     
3p ___ 
4

   p   
5p ___ 
4

     
3p ___ 
2

  

 r = sin 2q 0 1 0 — 1 0 1 0

         

Fig. 6.21 r varies from 0 to 1 as      Fig. 6.22 r varies from 1 to 0 as

    q varies from 0 to  
 p __ 
4

  .           q varies from   
p __ 
4

   to   
p __ 
2

  .
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Fig. 6.23 q varies from 0 to   
p __ 
2

  .    Fig. 6.24 r varies from 0 to – 1 as

       q varies from   
p __ 
2

   to   
3p ___ 
4

  .

        

Fig. 6.25 r varies from – 1 to 0 as     Fig. 6.26 q varies from   
p __ 
2

  . to p.

      q varies from   
3p ___ 
4

   to p.

          

 Fig. 6.27 q varies from 0. to p.    Fig. 6.28 q varies from 0. to 2p.

 The equation r = sin 2q can also be graphed in Cartesian qr-coordinates 

system with coordinates (0, 0),  (   p __ 
4
  , 1 )   (   p __ 

2
  , 0 ) ,  (   3p ___ 

2
  , – 1 ) ,  ( p, 0 )  as follows 

Fig. 6.29
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Rose curves families
In polar coordinates, equation of the form r = a sin nq and r = a cos nq, where 
a > 0 and n is a positive integer represent the flower-shaped curves families 
called roses. If n is odd then the rose contain n equally spaced petals with 
radius a, and for even n contain 2n equally spaced petals of radius a. 

Rose curves
r = a sin n    n = 2   n = 3   n = 4   n = 5   n = 6

            

r = a cos n

                 

Example 4 Sketch the curve r = 1 + sin q.

Solution The graph plotted as follows 

 Since sin(p – q) = sin q, the curve is symmetric about the line q =   p __ 
2
  . 

Now,

Table 6.3

 q 0   
p __ 
6

     
p __ 
4

     
p __ 
3

     
p __ 
2

   p   
5p ___ 
3

     
3p ___ 
2

     
11p ____ 

6
   2p

r = 1 + sin q 1   
3

 __ 
2

   1 +   
 ÷ 

__
 2  
 ___ 

2
   1 +   

 ÷ 
__

 3  
 ___ 

2
   2 1 1 —   

 ÷ 
__

 3  
 ___ 

2
   0   

1
 __ 

2
   1

         

Fig. 6.30 r varies from 1 to 2 as       Fig. 6.31 r varies from 2 to 1 as

      q varies from 0 to   
p __ 
2

  .            q varies from   
p __ 
2

   to p.
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Fig. 6.32 q varies from q. to p.        Fig. 6.33 r varies from 1 to 0 as

                 q varies from p to   
3p ___ 
2

  .

       

 Fig. 6.34 r varies from 0 to 1 as      Fig. 6.35 q varies from 0. to 2p.

      q varies from   
3p ___ 
2

   to. 2p

 The equation r = 1 + sin q can also be graphed in Cartesian qr-coordinates 

system with coordinates (0, 1),  (   p __ 
2

  , 2 ) , (p, 1),  (   3p ___ 
2
  , 0 ) , (2p, 1), as follows 

0.5

1.0

1.5

2.0

0

r

C

Fig. 6.36
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Example 5 Sketch the curve r = 1 + 2 cos q.

Solution Here cos(–q) = cos q fi the curve is symmetric about polar axis, 
Now,

Table 6.4

 q 0   
p __ 
6

     
p __ 
4

     
p __ 
3

     
p __ 
2

     
2p ___ 
3

     
3p ___ 
4

     
5p ___ 
6

   p

r = 1 + 2 cos q 3 1 +  ÷ 
__

 3   1 +  ÷ 
__

 2   2 1 0 1 —  ÷ 
__

 2   1 —  ÷ 
__

 3   — 1

Fig. 6.37 r vaires from 3 to 0 as q varies from 0 to   
2p ___ 
3

  .

Fig. 6.38 r varies from 0 to 1 and then again 1 to 0 as q varies from   
2p ___ 
3

   to   
4p ___ 
3

  .

Fig. 6.39 r varies from 0 to 3 as q varies from   
4p ___ 
3

   to 2p.

Fig. 6.40 q varies from 0. to 2p.
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Families of cardioids and limacons 

The graph of the equation

  r = a ± b sin q or r = a ± b cos q

 When a > 0 and b > 0 is called the limacons.There are four possible 
shapes 

 (i) if   a __ 
b

   < 1, then we get the limacon with inner loop and the length of this 

loop is equal to the difference of a and b.

        

Fig. 6.41 r = a + b sin q  Fig. 6.42 r = a – b sin q  Fig. 6.43 r = a + b cos q

     

 Fig. 6.44 r = a – b cos q  

 (ii) if   a __ 
b

   = 1, then we get the limacon which called the cardioids as 

follows

           

 Fig. 6.45 r = a + b sin q  Fig. 6.46 r = a – b sin q  Fig. 6.47 r = a + b cos q

 Fig. 6.48 r = a – b cos q 
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 (iii) if 1 <   a __ 
b

   < 2, then we get the limacon which called the dimpled limacon 

as follows

         

Fig. 6.49 r = a + b sin q  Fig. 6.50 r = a – b sin q  Fig. 6.51 r = a + b cos q

 Fig. 6.52 r = a – b cos q 

 (iv) if   a __ 
b

   ≥ 2, then we get the limacon which called the convex limacon as 

follows

        

Fig. 6.53 r = a + b sin q  Fig. 6.54 r = a – b sin q  Fig. 6.55 r = a + b cos q

Fig. 6.56 r = a – b cos q 

Example 6 Sketch the curve r2 = 9 cos 2q.

Solution Here (– r) = r2 which implies the symmetry about the pole we also 
know that the given equation does not express r as a function of q. Hence we 

solve the function as r = 3 ÷ 
______

 cos 2q   and r = – 3 ÷ 
______

 cos 2q   and combine these 
two graph we get required curve.
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Table 6.5

q 0   
p __ 
4

     
3p ___ 
4

   p   
5p ___ 
4

     
7p ___ 
4

   2p

r = 3 ÷ 
______

 cos 2q   3 0 0 3 0 0 3 

 We know that the given curve not define for   p __ 
4

   < q <   3p ___ 
4

  ,   5p ___ 
4

   < q 

<   7p ___ 
4

   º.

Fig. 6.57 r varies from 3 to 0 as q varies from 0 to   
p __ 
4

  .

Fig. 6.58

 The equation r2 = 9 cos 2 q can also be graphed in Cartesian qr-coordinates 

system with coordinates (0, 3),  (   p __ 
4

  , 0 ) ,  (   3p ___ 
4
  , 0 ) , (p, 3),  (   5p ___ 

4
  , 0 ) ,  (   7p ___ 

4
  , 0 ) , (2p, 3) 

as follows 

Fig. 6.59(a)

Lemniscates

The curve with the equation

r2 = a cos bq or r2 = a sin bq is a lemniscates of the form 
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Fig. 6.59(b) r2 = a cos bq

Fig. 6.60 r2 = a sin bq

Exercises
 1. Plot the following points in polar coordinates.

 (i)  ( 2,   p __ 
4

   )    (ii)  ( 3,   2p ___ 
3
   ) 

 (iii)  ( – 1,   9p ___ 
4

   )    (iv)  ( – 2,   3p ___ 
4
   ) 

 (v)  ( – 4,   – p ___ 
6

   )    (vi)  ( – 2,   – 2p ____ 
3
   ) .

 2. Find the rectangular coordinates of the following points, whose polar 
coordinates are

 (i)  ( 2,   p __ 
6

   )    (ii)  ( 1,   2p ___ 
3
   ) 

 (iii)  ( – 1,   – 3p ____ 
4

   )    (iv)  ( – 2,    p __ 
4
   )  

 (v)  ( – 1,   – p ___ 
6

   )    (vi)  ( 2,   9p ___ 
4
   ) 

 3. Find the polar coordinates of the following points, whose rectangular 
coordinates are

 (i) (2, 3)   (ii) (4, – 3) 

 (iii) (– 2, 2 ÷ 
__

 3  )   (iv) (3, tan– 1 1)

 (v)  ( 1, tan– 1   1 ___ 
 ÷ 

__
 3  
   ) .
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 4. Sketch the curve in polar coordinates

 (i) q =   p __ 
3

     (ii) q =   – 3p ____ 
4
  

 (iii) r = 2   (iv) r = 3 sin q
 (v) r = 2 cos q   (vi) r = 3 + 4 cos q
 (vii) r = – 1 – cos q  (viii) r = 1 + cos q
 (ix) r = 3 – 2 cos q  (x) r = 3 + 2 sin q 

 (xi) r = 1 – 2 sin q  (xii) r = 3(1 – sin q) 

 (xiii) r = 2 sin 2q   (xiv) r = 2 cos 3q
 (xv) r2 = 16 cos 2q  (xvi) r2 = 4 sin 2q 

 5. Express the following equation in polar coordinates

 (i) x = 5   (ii) y = – 2 

 (iii) x2 + y2 = 4   (iv) x2 + y2 – 8y = 0

 (v) x2(x2 + y2) = 4y2 

 6. If a and b varies then show that the polar equation r = 2a sec q when  

( –   p __ 
2

   < q <   p __ 
2

   )  describe the lines of family perpendicular to the polar 

axis and r = 2b cos q when (0 < q < p) describe the lines of family 
parallel to the polar axis.

 7. If A and B both are not zero then prove that the graph of the equation 

r =   1 __ 
2

   (A sin q + B cos q) is a circle of radius   
 ÷ 

_______

 A2 + B2  
 ________ 

4
  .

Answers

 

1. (i)

  

(ii)

  

(iii)

  

(iv)

  

  

(v)

    

(vi)

 

 2. (i) ( ÷ 
__

 3  , 1)   (ii)  (   –1 ___ 
2
  ,   

 ÷ 
__

 3  
 ___ 

2
   )  

  (iii)  (   1 ___ 
 ÷ 

__
 2  
  ,   1 ___ 

 ÷ 
__

 2  
   )    (iv) (– ÷ 

__
 2  , –  ÷ 

__
 2  ) 

  (v)  ( –   
 ÷ 

__
 3  
 ___ 

2
  ,   1 __ 

2
   )    (vi)  (  ÷ 

__
 2  ,  ÷ 

__
 2   ) 
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 3. (i) (3.605, .982)   (ii) (5,5.639)

  (iii)  ( 4,   2p ___ 
3

   )    (iv) (3.10108, .25605)

  (v) (1.1287, .4823). 

  4. (i)

    

(ii)

  

  

(iii)

    

(iv)

 

   

(v)

    

(vi)

  

  

(vii)

    

(viii)

 

  

(ix)

    

(x)

  

  

(xi)

    

(xii)

 

  

(xiii)

    

(xiv)
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(xv)

  

(xvi)

 

 5. (i) r cos q = 5   (ii) r sin q = – 2

  (iii) r = 2   (iv) r2 – 8r sin q = 0, r = 8 sin q
  (v) r4 cos2 q = 4r2 sin2 q.

6.4 CONIC SECTIONS 

Those sections are obtained from intersection of a plane and double-napped 
circular cone are called the conic section and the names of these are circles, 
parabolas, ellipses and hyperbolas 

Circle    Parabola   Ellipse    Hyperbola

    Fig. 6.61(a)     Fig. 6.61(b)      Fig. 6.61(c) Fig. 6.61(d) 

Parabola: It is the locus of a point which moves such that its distance from 
a fixed point is equal to from a fixed line. Fixed point is called the focus and 
fixed line is called the directrix of the parabola, Fig. 6.62.

 Fig. 6.62

 Suppose that the distance between the focus and the vertex is a then by 
definition the distance between the vertex and the directrix also is equal to a; 
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consequently the distance between the focus and the directrix is 2a, (Fig. 6.63). 
This Figure also shows that the parabola passes through the two corners of a 
rectangular box that passes through the vertex and the focus of the parabola 
along the axis of symmetry and extends 2a units above and 2a units below the 
axis of symmetry. A line which is passes through the focus and perpendicular 
to the axis of the parabola is called the latusrectum. If the distance between the 
vertex and the focus is a then the length of the latusrectum is 4a, Fig. 6.63.

2a

2a

a a

2a

Fig. 6.63 

Equation of the parabola: Let S be the focus and ZQ be the directrix of the 
parabola. Draw PM and PQ perpendicular from P to the axis of the parabola 
and the directrix of the parabola respectively. Now by definition, Fig. 6.64 

y

OZ M
x

Q a  y(– , ) P x  y( , )

S a( , 0)

Fig. 6.64

  SO = OZ = a

  (SP)2 = (PQ)2 and (PQ)2 = (ZM)2 

 But (SP)2 = (a – x)2 + y2

 So (SP)2 = (ZM)2

  (a – x)2 + y2 = (a + x)2

fi  y2 = 4ax

 This is the standard equation of the parabola.



Polar Coordinates and Conic Section 6.21 

Note: for this standard equation to find the coordinate of the vertex we put 
y2 = 0 = x, here vertex at (0, 0), according to the definition equation of the 
directrix is x + a = 0, the coordinate of the focus is (a, 0), to obtain the tangent 
to the parabola we put coefficient of 4a is equal to zero, hence here equation 
of tangent is x = 0 fi y-axis is tangent and to find the equation of the axis of 
the parabola we put y2 = 0 fi x-axis is the axis of the parabola. 

Other cases of the parabolas
Open right

   y2  = 4ax        or    (y – k)2 = 4a(x – h)

       

Vertex at ( , )h  k

O
x

y

       Fig. 6.65                Fig. 6.66 

Open left 

 y2  = – 4ax        or   (y – k)2 = – 4a (x – h) 

Vertex at ( , )h  k

x

y

    

Vertex at ( , )h  k

O
x

y

     Fig. 6.67                  Fig. 6.68 
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Open up
 x2  = 4ay         or    (x – h)2 = 4a(y – k)

Vertex at the origin

x

y

      

Vertex at ( , )h  k

x

y

      Fig. 6.69                Fig. 6.70 

Open down

 x2  = – 4ay        or    (x – h)2 = – 4a(y – k)   

Vertex at the origin

x

y

     

Vertex at ( , )h  k

x

y

      Fig. 6.71                Fig. 6.72

Some useful points for sketching the parabola of standard equation

Suppose we want to sketch the graph of the parabola whose equation is x2 = 4y.

 (i) Write the given equation in the standard form fi x2 = 4(1.) y fi a = 1 
fi (the distance between the focus and vertex is 1)

 (ii) Parabola open. The given equation has the form as in Fig. 6.69, therefore 
the parabola open up.

 (iii) Determine the symmetry (the curve has the symmetry about x-axis If 
the vertex at the origin or the symmetry about a line parallel to x-axis 
If the vertex not at the origin if equation has y2 term and symmetry 
about the y-axis If the vertex at the origin or the symmetry about a line 
parallel to y-axis If the vertex not at the origin if equation has x2 term). 
Now the given equation has x2 term and to obtain the vertex we put
x = 0 = y. therefore the centre lies at the origin so the given parabola 
has the symmetry about the y-axis.

 Now we can draw the parabola by use these three points and use the 
property define in Fig. 6.63 as 
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Fig. 6.73

Example 7 Find the vertex, focus, directrix, tangent and axis of the parabola 
y2 – 4y + 8x – 20 = 0, and also sketch the curve.

Solution (i) Given equation y2 – 4y + 8x – 20 = 0 can be written as (y – 2)2 
= – 4(2) (x – 3) fi a = – 2.

 (ii) The given equation has the form as in Fig. 6.68, therefore the 
parabola open left.

  To find the vertex we put (y – 2)2 = 0 = (x – 3) fi the vertex 
lies at (3, 2). Here a = – 2 fi distance from the vertex to the 
focus is 2, therefore the coordinate of the focus is (3 – 2 = 1, 
2). Now the distance between the vertex and the directrix is 2, 
so the equation of the directrix is x = 3 + 2 = 5. For equation 
of tangent (x – 3) = 0, therefore the equation of the tangent is 
x = 3. For axis of the parabola (y – 2)2 = 0, so the axis of the 
parabola is y = 2.

 (iii) the given equation has y2 term and the vertex at (3, 2) so the 
given parabola has the symmetry about the line which is parallel 
to x-axis.

 Now we can draw the parabola by use these three points and use the 
property define in Fig. 6.63 as (Fig. 6.74)

Example 8 Find the vertex, focus, directrix, tangent and axis of the parabola 
x2 – 2x + 12y – 23 = 0, and also sketch the curve.

Solution (i) Given equation x2 – 2x + 12y – 23 = 0 can be written as (x – 1)2 
= – 4(3) (y – 2) fi a = – 3.

 (ii) The given equation has the form as in Fig. 6.72, therefore the 
parabola open down

  To find the vertex we put (x – 1)2 = 0 = (y – 2) fi the vertex 
lies at (1, 2). Here a = – 3 fi distance from the vertex to the 
focus is 3, therefore the coordinate of the focus is (1, 2 – 3 = –1). 
Now the distance between the vertex and the directrix is 3, so 
the equation of the directrix is y = 3 + 2 = 5. For equation of 
tangent (y – 2) = 0, therefore the equation of the tangent is
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y = 2. For axis of the parabola (x – 1)2 = 0, so the axis of the 
parabola is x = 1.

 (iii) the given equation has x2 term and the vertex at (1, 2) so the 
given parabola has the symmetry about the line which is parallel 
to x-axis.

 Now we can draw the parabola by use these three points and use the 
property define in Fig. 6.63 as

Fig. 6.75

Example 9 Find the equation of the parabola whose satisfies the following 
conditions 

 (i) vertex(0, 0); focus(2, 0) 

 (ii) vertex (1, 2); directrix y = – 1

 (iii) focus (0, – 4) directrix y = 2.

Fig. 6.74
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Solution (i) vertex at(0, 0) and focus at(2, 0) here distance between the focus 
and vertex is 2. fi a = 2, and directrix at x = – 2, Fig. 6.76.

Fig. 6.76 

  So the equation is (y – 0)2 = 8(x – 0) = y2 = 8x.

 (ii) vertex at (1, 2) and directrix at y = –1, therefore distance between 
the directrix and vertex is 3 fi distance between the focus and 
vertex is 3, but here vertex is at (1, 2), Fig. 6.77.

  So the equation is (x – 1)2 = 12(y – 2).

Fig. 6.77

 (iii) focus at (0, – 4) and directrix at y = 2, we know that the vertex 
lie between the directrix and focus, therefore the coordinate of 
the vertex is (0, – 1), and a = – 3, Fig. 6.78.

Fig. 6.78

  So the equation is x2 = – 12(y + 1) 
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Parametric equation of a parabola:
The equation y2 = 4ax may be written as 

    
y
 ___ 

2a
   =   2x ___ y   = t

 Then y = 2at and yt = 2x or x = at2, hence the parametric equation of the 
parabola is 

  x = at2, y = 2at.

Equation of the tangent at parabola: Let P and Q be two points on the 
parabola whose coordinates are (x1, y1) and (x2, y2) respectively, Fig. 6.79

P x y( , )1 1

Q x y( , )2 2

Fig. 6.79

 The equation of PQ is

  (y – y1) =   
(y2 – y1) ________ 
(x2 – x1)

   (x – x1) (6.4)

 Since P and Q lies on the parabola

\   y 1  
2  = 4ax1 (6.5)

and  y 2  
2  = 4ax2 (6.6)

 From (6.5) and (6.6), we get  y 2  
2  –  y 1  

2  = 4a(x2 – x1)

fi    
(y2 – y1) _______ 
(x2 – x1)

   =   4a ______ y2 + y1
  

 Substituting   
(y2 – y1) _______ 
(x2 – x1)

   in (6.4), we get

  (y – y1) =   4a ______ y2 + y1
   (x – x1) (6.7)

 The line PQ will be the tangent at P if Q Æ P fi x2 Æ x1 and y2 Æ y1, 
then (6.7) becomes

  (y – y1) =   2a ___ y1
   (x – x1)
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  yy1 =  y 1  
2  + 2ax – 2ax1 

  yy1 = 2a(x + x1)  ( y 1  
2  = 4ax1)

 This is the required equation of tangent at a point (x1, y1).

 The equation of the tangent in parametric form at (at2, 2at) is which can 
be obtained from equation (6.4) after substitution (at2, 2at) and (a t 1  

2 , 2at1) and 
t1 Æ t.

  ty = x + at2

Properties of parabola

1. The tangent at a point P on a parabola makes equal angles with the 
line through P parallel to the axis of symmetry and the line through P 
and the focus. (Reflection property) Fig. 6.80(a).

 Let the coordinate of P is (at2, 2at), a tangent PQ at P meet the x-axis at Q, 
we know that the equation of the tangent PQ is ty = x + at2, so the coordinate 
of Q is (– at2, 0), Fig. 6.80(b).

a
a

P

Q

Axis of symmetry
Focus

   

     Fig. 6.80(a)                 Fig. 6.80(b)

 Therefore SQ =  | – at2 – a |  = a(1 + t2)

 And PS =  ÷ 
___________________

   (at2 – a)2 + (2at – 0)2   =  ÷ 
_________

 (at2 + a)2   = a(1 + t2)

fi PS = SQ fi in triangle PQS, –SQP = –SPQ

 But ray PR is parallel to x-axis, hence –SQP = –RPT.

fi  –QPS = –RPT.

2. The tangent at a point P on a parabola bisect the angle between the 
focal chord through P and the perpendicular from P on the directrix. 
Fig. 6.81.
 We know that the equation of tangent PT is ty = x + at2 and the slope of 

this tangent is   1 __ t  .
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 Similarly the slope of PQ and PS are 0 and   2t _____ 
t2 – 1

   respectively. If q and f 

be the angle QPT and SPT respectivaly, then 

  tan q =   
  1 __ t   – 0
 _________ 

1 +   1 __ t   ◊ 0
    =   1 __ t  

 And

  tan f =  

    2t ______ 
t2 – 1 

   –   1 __ t     

  _____________  
1 +   1 __ t   ◊   2t _____ 

t2 – 1
  
  =   1 __ t  

 Hence, tan q = tan f fi q = f.

3. The tangents at the extremities of a focal chord intersect at right angle on 
the directrix. 

 Let P( at 1  
2 , 2at1) and Q( at 2  

2 , 2at2) be the extremities of the focal chord,
Fig. 6.82.

P at at( , 2 )1 1
2

Q at at( , 2 )2
2

2

S a( , 0)

Fig. 6.82

Fig. 6.81
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 We know that the equation of PQ is 

  (y – 2at1) =   
(2at2 – 2at1)  ___________  

( at 2  
2  –  at 1  

2 )
   (x –  at 1  

2 ) (6.8)

 Since PQ passes through (a, 0) we get

  t1t2 = – 1 (6.9)

 Equation of tangents at P and Q are 

  t1y = x +  at 1  
2  (6.10)

 And t2y = x +  at 2  
2  (6.11) 

 These two tangents intersect when

  x = a t1 t2 (6.12) 

 Therefore from (6.9) and (6.12) we have x = – a.

 And the slope of (6.10) and (6.11) are   1 __ t1
   and   1 __ t2

   respectively 

 Then   1 __ t1
   ◊   1 __ t2

   = – 1

 Hence the result.

Example 10 In Fig. 6.83, find the area of rectangle.

(5, 8)

h
20

Fig. 6.83

Solution The equation of the given parabola can be written as 
y2 = – 4a(x – h)

 Now this parabola Passes through from (0, 10) and (5, 8), hence we have 

  100 =  4ah (6.13)

  64 = – 20a + 4ah (6.14) 

 From equations (6.13) and (6.14), we have h =   125 ____ 
9
  

 So the area of rectangle is 20 ×   125 ____ 
9
   ª 277.77
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Example 11 Suppose a comet moves in parabolic orbit with sun at its focus 
and that the line from the sun to the comet makes an angle of 60° with the 
axis of the parabola when the comet is 30 million miles from the centre of the 
sun. determine the nearest position of the sun to the comet.

Solution From above Fig. 6.84 let the comet at P, then PS = 30 and the angle 
PSM is equal to 60°. Let QN be the directrix then by definition the comet will 
be the nearest to the sun when it will be at the vertex.

S a( , 0)

Q

N O M

P

Fig. 6.84

 We know that PQ = MN = 2a + 30 cos 60 = 2a + 15 = 30 (PQ = PS by 
bdefinition), hence a = 7.5

 The nearest distance between the sun and comet is 7.5 million.

Ellipse: is the locus of a point which moves such that the sum of whose 
distances from two fixed point is a given positive constant that is greater than 
the distance between the fixed point, these two fixed points are called the 
foci, midpoint of the line segment join the foci is called the centre, the line 
segment through the foci and across the ellipse is called the major axis, and 
the line segment perpendicular to the major axis across the ellipse and through 
the centre is called the minor axis. The end points of the major axis are called 
the vertices of the ellipse, Fig. 6.85.

Or

 Ellipse is the locus of a point which moves such that its distance from a 
fixed point is e(e < 1) times from a fixed line, fixed point is called the focus 
and fixed line is called the directrix of the ellipse. (e is called the ecentricity), 
Fig. 6.86. 

 Fig. 6.85 PS1 + PS2 = constant > distance between S1 and S2
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S2 S1

P
Q

D
irectrix

   

2c

2b

S2

Q

S1

÷c + b
2 2

a a M

2a

Fig. 6.86(a) PS1 = e PQ               Fig. 6.86(b)

Equation of the ellipse:
suppose the length of the major axis is 2a, length of the minor axis is 2b and 
distance from the centre to the focus is c, then the relation between a, b and 
c can be obtained by using the definition of the ellipse as, Fig. 6.87

S c2(– , 0) S c1( , 0)

x

y

P x  y( , )

Fig. 6.87

  QS1 + QS2 = MS1 + MS2 fi 2 ÷ 
_______

 b2 + c2   = (a – c) + (a + c)

fi  a =  ÷ 
_______

 b2 + c2   (6.15)

 Where M and Q are the points on the ellipse at the end of the major and 
minor axis respectively. Equation (i) implies that for all points on the ellipse 
the sum of the distances to the foci is 2a, which is constant and greater than 
the distance between the foci, this equation also show that a ≥ b, and a will 
be equal to b only when c = 0, which implies that the major axis will be the 
larger from the minor axis and these two axes have the equal length only when 
the foci coincide, and in this case the ellipse will be a circle.

 To obtain the standard equation of the ellipse, let P(x, y) be a point on the 
ellipse and foci on the x-axis with centre at the origin, Fig. 6.87. Since the sum 
of the distances from P to the foci is 2a, hence 

  PS1 + PS2 = 2a

fi  ÷ 
___________

  (x + c)2 + y2   +  ÷ 
___________

  (x – c)2 + y2   = 2a

fi (x + c)2 + y2 = 4a2 – 4a ÷ 
___________

  (x – c)2 + y2   + (x – c)2 + y2
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 After simplify, we get 

   ÷ 
___________

  (x – c)2 + y2   = a –   c __ a   x

fi    x
2

 __ 
a2

   +   
y2

 ______ 
a2 – c2

   = 1

 With the help of equation (6.15), we have

    x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1 (6.16)

 Let C be the center at the origin, S1 be the focus at the x-axis, Z1M be the 
directrix, PM and S1Z1 are the perpendicular from P and S1 on the directrix 
respectively, Fig. 6.88. 

Fig. 6.88

 Now by definition

  S1A1 = eA1Z1 (6.17)

 And

  S1A2 = eA2Z1 (6.18)

 Adding (6.17) and (6.18), we get 

  S1A1 + S1A2 = e(A1Z1+ A2Z1) = e(CZ1 – CA1 + CZ1 + CA2) 

  S1A1 + S1A2 = 2eCZ1  (CA1 = CA2)

\  CZ1 =   a __ e    (S1A1 + S1A2 = 2a)

 So the equation of the directrix is x =   a __ e  

 Now subtracting (6.17) from (6.18), we get 

  S1A2 – S1A1 = e(A2Z1 – A1Z1)

 (A2C + CS1) – (CA1 – CS1) = 2ae

fi  CS1 = ae 
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 Hence the coordinate of the focus is (ae, 0) and the equation of the directrix 
is x = a/e.

 Now PS1 = ePM (by definition)

 Squaring both sides, we get

  (PS1)
2 = e2(PM)2

  (x – ae)2 + y2 = e2  (   a __ e   – x )  2  (PM = (NZ1)

  (ae)2 + x2 – 2aex + y2 = a2 + x2e2 – 2aex

fi  x2(1 – e2) + y2 = a2(1 – e2)

 Or

    x2

 __ 
a2

   +   
y2

 _________  
a2 (1 – e2)

   = 1

\    x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1  b2 = a2(1 – e2)

 If we take the major axis at y-axis and minor axis at x-axis, then the 
equation of ellipse is

    x
2

 __ 
b2

   +   
y2

 __ 
a2

   = 1

Some useful points for sketching the Ellipse of standard equation

Suppose we want to sketch the graph of the Ellipse whose equation is

x2 + 9y2 = 9.

 1. Write the equation in the standard form. So the given equation can be 
written as 

   x
2

 __ 
32

   +   
y2

 __ 
12

   = 1

 2. Determine a = length of the semi major axis and b = length of the semi 
minor axis then draw a rectangle whose sides are 2a and 2b. Hence 
here a = 3 and b = 1.

 3. Now sketch the ellipse such that the centre of the ellipse (to obtained the 
centre of the ellipse we put x2 = 0 = y2) is at the center of the rectangle 
and touch the sides as, Fig. 6.89

Fig. 6.89
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 For the coordinates of the foci, we obtain 

  c =  ÷ 
_______

 a2 – b2   =  ÷ 
_____

 9 – 1   =  ÷ 
__

 8  

 Thus, the coordinates of the foci are ( ÷ 
__

 8  , 0) and ( ÷ 
__

 8  , 0).

Example 12 Describe the graph of the equation 

 9x2 + 4y2 – 36x – 24y + 36 = 0

Solution 1. The given equation 

   9x2 + 4y2 – 36x – 24y + 36 = 0

  Can be written as

   9(x2 + 4 – 4x) + 4(y2 – 6y + 9) = 36

  Or

     
(x – 2)2

 _______ 
4
   +   

(y – 3)2

 _______ 
9
   = 1 

 2. a = 3 and b = 2

 3. To obtain the coordinates of the centre we put (x – 2)2 = 0 fi 
x = 2 and (y – 3)2 = 0 fi y = 3,

 So we can draw the ellipse as, Fig. 6.90.

 

Fig. 6.90

 The equation of major axis can be obtain as x – 2 = 0, and the equation 
of minor axis can be obtain as y – 3 = 0, for the coordinates of foci we fined

c =  ÷ 
______

 b2 – a2   =  ÷ 
_____

 9 – 4   =  ÷ 
__

 5  . Hence the coordinates of the foci are (2, 3 +  ÷ 
__

 5  ) 
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and (2, 3 –  ÷ 
__

 5  ). And the coordinates of end of the major axis are (2, 0) and 
(2, 6).

Example 13 Describe the graph of the equation 

    
(x + 3)2

 _______ 
6

   +   
(y + 2)2

 _______ 
5

   = 1

Solution Here a2 = 6 and b2 = 5

 To obtain the coordinates of the centre we put (x + 3)2 = 0 fi x = – 3 and 
(y + 2)2 = 0 fi y = – 2,

 So we can draw the ellipse as Fig. 6.91.

Fig. 6.91(a)

 The equation of major axis can be obtain as x = – 3, and the equation 
of minor axis can be obtain as y = – 2, for the coordinates of foci we find

c =  ÷ 
________

 a2 – b2   =  ÷ 
______

 6 – 5   = 1. Hence the coordinates of the foci are 

(– 2, – 2) and (– 4, – 2). And the coordinates of end of the major axis are 

(– 3 +  ÷ 
__

 6  , – 2) and {–(3 +  ÷ 
__

 6  ), – 2}. The coordinates of end of the minor axis are

(– 3,  ÷ 
__

 5   – 2) and {–3, – (2 +  ÷ 
__

 5  )}.

Example 14 Find the equation of the ellipse whose satisfies the following 
conditions

 (i) Ends of the major axis (±5, 0) and the ends of the minor axis
(0, ±3),

 (ii) Length of major axis 18 and foci (±2, 0),

 (iii) Centre at (0, 0); major and minor axes along the coordinate axes and 
passes through the points (2, 3) and (1, 4).

Solution (i) To write the equation of the ellipse we needs a and b and here 
a = 5 and b = 3 (as by rough sketch Fig. 6.91) 
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Fig. 6.91(b)

  Hence the equation is   x
2

 ___ 
25

   +   
y2

 __ 
9
   = 1.

 (ii) Here a =   18 ___ 
2

   = 9, c = 2 and b2 = a2 – c2,

  therefore b2 = (9)2 – (2)2 = 77

   Hence the equation is   x
2

 ___ 
81

   +   
y2

 ___ 
77

   = 1.

 (iii) we know that the equation of the ellipse is   x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1

 And this ellipse passes through from (2, 3) and (1, 4) hence 

    4 __ 
a2

   +   9 __ 
b2

   = 1 (6.19)

 And 

    1 __ 
a2

   +   16 ___ 
b2

   = 1 (6.20)

 From (6.19) and (6.20), we get a2 =   55 ___ 
7
   and b2 =   55 ___ 

3
  

 Hence the equation is 7x2 + 3y2 = 55.

Equation of the tangent at ellipse: Let P and Q be two points on the ellipse 
whose coordinates are (x1, y1) and (x2, y2) respectively, Fig. 6.92.

P x y( , )1 1

Q x y( , )2 2

Fig. 6.92



Polar Coordinates and Conic Section 6.37 

 The equation of PQ is

  (y – y1) =   
(y2 – y1) ________ 
(x2 – x1)

   (x – x1) (6.21)

 Since P and Q lies on the ellipse

\    
 x 1  

2 
 __ 

a2
   +   

 y 1  
2 
 __ 

b2
   = 1 (6.22)

 And   
 x 2  

2 
 __ 

a2
   +   

 y 2  
2 
 __ 

b2
   = 1 (6.23)

 From (6.22) and (6.23), we get

    
(y2 – y1) ________ 
(x2 – x1)

   = –  (   x1 + x2 _______ y2 + y1
   )    b

2

 __ 
a2

  

  Substituting   
(y2 – y1) ________ 
(x2 – x1)

   in (6.21), we get

  (y – y1) = –  (   x1 + x2 _______ y2 + y1
   )    b

2

 __ 
a2

   (x – x1) (6.24)

 The line PQ will be the tangent at P if Q Æ P fi x2 Æ x1 and y2 Æ y1, 
then (6.24) becomes

fi  (y – y1) = –   
b2 x1 ____ 
a2 y1

   (x – x1)

fi    
yy1 ___ 
b2

   –   
 y 1  

2 
 __ 

b2
   = –   

xx1 ___ 
a2

   +   
 x 1  

2 
 ___ 

a2 
  

fi   
xx1 ___ 
a2

   +   
yy1 ___ 
b2

   =   
 x 1  

2 
 __ 

a2
   +   

 y 1  
2 
 __ 

b2
   = 1   (    x 1  

2 
 __ 

a2
   +   

 y 1  
2 
 __ 

b2
   = 1 ) 

    
xx1 ___ 
a2

   +   
yy1 ___ 
b2

   = 1

 This is the required equation of tangent at a point (x1, y1).

Auxiliary circle: The circle described on the major axis of an ellipse as 
diameter A1 A2 is called the Auxiliary circle of the ellipse, Fig. 6.93.
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Q

P x  y( , )

A1

A2

Auxiliary circle

C N
f

Fig. 6.93

 The equation of the auxiliary circle is x2 + y2 = a2.

 Let P(x, y) be any point on the ellipse   x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1. Draw PN perpendicular 

on A1 A2 and produced PN to meet the auxiliary circle at Q, the point P lies 
on the ellipse, we have 

    x
2

 __ 
a2

   +   
(PN)2

 _____ 
b2

   = 1                 (6.25)

 And the point Q lies on the circle, we have 

  x2 + (QN)2 = a2 (6.26)

 From (6.25) and (6.26), we have 

    
(PN)2

 _____ 
b2

   –   
(QN)2

 _____ 
a2

   = 0

fi    PN ___ 
QN

   =   b __ a  

Eccentric angle: The eccentric angle of a point on the ellipse is the angle 
which the straight line joining the centre to the corresponding point on the 
auxiliary circle makes with positive side of the major axis in Fig. 6.93 the 
angle f is the eccentric angle. From Fig. 6.93, we have 

    CN ___ 
CQ

   = cos f fi CN = CQ cos f = a cos f

 And we know that   PN ___ 
QN

   =   b __ a   fi PN = QN   b __ a   a sin f = b sin f (QN = a sin f)

 Hence the coordinate of P is (a cos f, b sin f), and the coordinate of Q is 
(a cos f, a sin f).
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Properties of Ellipse
 1. A tangent line at a point P on the ellipse makes equal angles with the 

line joining the point P to the foci. (Reflection property), Fig. 6.94.

Fig. 6.94

  Let the line S1 P makes the angle a with tangent line T and the line 
S2 P makes the angle b with tangent line T, Fig. 6.94.

  Now we want to show that a = b

  The equation of the tangent line T at a point P(x1, y1) is   
xx1 ___ 
a2

   +   
yy1 ___ 
b2

   = 1 

then the slope of this line is   
– x1 b

2

 ______ 
y1 a

2
   = m1, the slope of S1 P is   

y1 _____ x1 – c   = m2 

and the slope of S2 P is   
y1 _____ x1 + c   = m3.

  tan a =   
m2 – m1 ________ 
1 + m1m2

   =  

   
y1 _____ x1 – c    (   – x1 b

2

 ______ 
y1 a

2
   ) 
  ____________________   

1 +  (   – x1 b2

 ______ 
y1 a

2
    )   (   y1 _____ x1 – c   )   

   

   =   
 y 1  

2  a2 + x1 b
2(x1 – c)

  __________________  
y1 a

2(x1 – c) – y1x1b
2
   =   – b2

 ____ y1 c
   

   (  x 1  
2  b2 +  y 1  

2  a2 = a2b2, and a2 – b2 = c2 ) . Similarly we can find

  tan b =   
m1 – m3 ________ 
1 + m1m3

   =   

 (   – x1 b
2

 ______ 
y1 a

2
   )  –   

y1 _____ x1 + c  

  ____________________   

1 +  (   – x1 b
2

 ______ 
y1 a

2
   )   (   y1 _____ x1 + c   ) 
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   =   
–  {  y 1  

2  a2 + x1 b
2(x1 + c) } 

   ____________________   
y1a

2(x1 + c) – y1 x1b
2
   =   – b2

 ____ y1c
  , hence a = b.

 2. If the tangent at any point P meets the major axis at Q and the minor 
axis at T, then 

   CN ◊ CQ = a2, CM ◊ CT = b2. Fig. 6.95

  We know that the equation of tangent at P is   
xx1 ___ 
a2

   +   
yy1 ___ 
b2

   = 1.

  Now at Q, xx1 = a2, But CN = x1, and CQ = x, hence CN ◊ CQ = a2. 

Similarly CM ◊ CT = b2

Fig. 6.95

 3. If S1Y1 and S2Y2 be the perpendicular from the foci upon the tangent at 
any point of the ellipse, then S1Y1 ◊ S2Y2 Fig. 6.96

Y2
Y1

S1S2

Fig. 6.96 

  Let y = mx +  ÷ 
_________

 a2m2 + b2   be any tangent to the ellipse   x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1, 

the coordinates S1 and S2 are (ae, 0) and (– ae, 0) respectively.
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   S1Y1 =   
mae +  ÷ 

_________

  a2m2 + b2  
  ________________  

 ÷ 
_______

 1 + m2   
  

  (S1Y1 is a perpendicular distance from S1 to the tangent)

  And S2Y2 =  
 – mae +  ÷ 

_________

 a2m2 + b2  
  __________________  

 ÷ 
______

 1 + m2   
  

  (S2Y2 is a perpendicular distance from S2 to the tangent)

   S1Y1 ◊ S2Y2 =   a
2m2 + b2 – a2m2e2

  _________________  
1 + m2

   

   S1Y1 ◊ S2Y2 =   
b2(1 + m2)

  __________ 
1 + m2

   = b2. {b2 = a2(1 – e2)} 

Example 15 Find the equation of the ellipse traced by a point which moves 
such that the sum of its distances to (5, 1) and (5, 7) is 14.

Solution By definition we know that the given points (5, 1) and (5, 7) are the 
foci, and the center of the ellipse lies between the foci therefore the coordinate 
of the center is (5, 4), Fig. 6.97

Fig. 6.97

 Now 2a = 14 fi a = 7, c = 3, b2 = a2 – c2, b2 = 49 – 9 fi b =  ÷ 
___

 40   

 So the equation of the ellipse is 

    
(x – 5)2

 _______ 
40

   +   
(y – 4)2

 _______ 
49

   = 1 

Example 16 Find the values of k such that the line x + 3y = k touch the 
ellipse x2 + 6y2 = 10. Find the point of tangency. 

Solution Equation of the ellipse is x2 + 6y2 = 10, then   
dy

 ___ 
dx

   = –   x ___ 
6y

  , x0 and y0 

are the points on the ellipse where a line touch the ellipse, hence the slope of 
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the tangent line is = –   
x0 ___ 
6y0

  . Now if given line touch the ellipse at the same 

point (x0, y0), then –   
x0 ___ 
6y0

   = –   1 __ 
3

  

fi  x0 = 2y0 (6.27)

 This point (x0, y0) lies on the ellipse, we have

   x 0  
2  + 6 y 0  

2  = 10 (6.28) 

 From equations (6.27) and (6.28), we have x0 = ±2 and y0 = ±1, therefore 
the point of tangency are (2, 1) and (–2, –1).

 Put these values in given equation x + 3y = k, we have k = ±5.

Example 17 Find the equation of the tangent to the ellipse 4x2 + 3y2 = 5 
which are parallel to the straight line 3x + 7 = y.

Solution Let the equation of a line which is parallel to 3x + 7 = y is
y = 3x + k, now to find the value of k we proceed as in example 16, we get

k = ±  ÷ 
____

   155 ____ 
12

    .

Hyperbola: is the locus of a point which moves such that the difference of 
whose distances from two fixed point is a given positive constant that is less 
than the distance between the fixed point, these two fixed points are called 
the foci, midpoint of the line segment join the foci is called the center, the 
line segment through the foci and across the hyperbola is called the transverse 
axis(focal axis), and the line segment perpendicular to the transverse axis and 
through the centre is called the conjugate axis. The hyperbola intersect the 
transverse axis at two points called the vertices, Fig. 6.98.

Fig. 6.98

Or

 Hyperbola is the locus of a point which moves such that its distance from a 
fixed point is e(e > 1)times from a fixed line, fixed point is called the focus and 
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fixed line is called the directrix of the hyperbola. (e is called the ecentricity), 
Fig. 6.99. 

Perpendicular
distance

Asymptote
Directrix

Point

Focus S1

Fig. 6.99

The asymptote: An asymptote is a straight line which meets the hyperbola 
in two coincident points at infinity but it does not completely lie at infinity. 

Or

 A pair of straight lines intersect at the centre of the hyperbola and have the 
property that as a point P moves along the hyperbola away from the centre, 
the vertical distance between the point P and one of the asymptotes approaches 
zero in Fig. 6.99.

Equation of the hyperbola: suppose the length of the transverse axis is 2a, 
length of the conjugate axis is 2b and distance from the center to the focus is 
c, then the relation between a, b and c can be obtained by using the definition 
of the hyperbola as, Fig. 6.100(a)

bS1S2

c

a

Fig. 6.100(a)

 Let V is one vertex of the hyperbola and the distance from V to the further 
focus minus the distance from V to the closer focus is 

[(c – a) + 2a] – (c – a) = 2a, Fig. 6.100(b)

 From Fig. 6.100(a), we get b2 = c2 – a2

 To obtain the standard equation of the hyperbola, let P(x, y) be a point on 
the hyperbola and foci on the x-axis with centre at the origin. Figure 6.100(b). 
Since the difference of the distances from P to the foci is 2a, hence
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Fig. 6.100(b)

 Now again from Fig. 6.100(b)

  PS2 – PS1 = 2a (by definition)

fi   ÷ 
___________

  (x + c)2 + y2   –  ÷ 
___________

  (x – c)2 + y2   = 2a

fi  (x + c)2  + y2 = 4a2 + 4a ÷ 
___________

  (x – c)2 + y2   + (x – c)2 + y2

 After simplify, we get 

   ÷ 
___________

  (x – c)2 + y2   =   c __ a   x – a

fi    x
2

 __ 
a2

   –   
y2

 ________ 
(c2 – a2)

   = 1

    x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 1 (b2 = c2 – a2)

Some useful points for sketching the hyperbola of standard equation

Suppose we want to sketch the graph of the hyperbola whose equation is
x2 – 9y2 = 9.

 1. Write the equation in the standard form. So the given equation can be 
written as 

   x
2

 __ 
32

   –   
y2

 __ 
12

   = 1 

 2. Determine 2a = length of the transverse axis and 2b = length of the 
conjugate axis then draw a rectangle whose sides are 2a and 2b. Hence 
here a = 3 and b = 1.

 3. Draw the asymptotes along the diagonals of the rectangle. 

 4. Now sketch the hyperbola such that the centre of the hyperbola (to 
obtained the centre of the hyperbola we put x2 = 0 = y2) is at the centre 
of the rectangle and touch the sides as, Fig. 6.101.
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Fig. 6.101

Example 18 Describe the graph of the equation 

  4x2 – 9y2 – 24x + 36y = 36 = 0

Solution
 1. Write the equation in the standard form. So the given equation can be 

written as 

   
(x – 3)2

 _______ 
32

   –   
(y – 2)2

 _______ 
22

   = 1

 2. Determine 2a = length of the transverse axis and 2b = length of the 
conjugate axis then draw a rectangle whose sides are 2a and 2b. Hence 

here a = 3 and b = 2 and c =  ÷ 
______

 a2 + b2   =  ÷ 
_____

 9 + 4   =  ÷ 
___

 13  .

 3. Draw the asymptotes along the diagonals of the rectangle. 

 4. Now sketch the hyperbola such that the center of the hyperbola (to 
obtained the centre of the hyperbola we put (x – 3)2 = 0 fi x = 3 
(y – 2)2 = 0 fi y = 2) is at the centre of the rectangle and touch the 
sides as, Fig. 6.102. Equation of the transverse axis is x – 3 = 0. and 
the equation of the conjugate axis is y – 2 = 0. Coordinate of the foci 
are (3 +  ÷ 

___
 13  , 2) and (3 –  ÷ 

___
 13  , 2). 

Fig. 6.102
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Example 19 Describe the graph of the equation 

    
(x + 2)2

 _______ 
1

   –   
(y – 3)2

 _______ 
4

   = 1

Solution 1. Given equation is 

     
(x + 2)2

 _______ 
1

   –   
(y – 3)2

 _______ 
4
   = 1

 2. Here a = 2 and b = 1 and c =  ÷ 
______

 12 + 22   =  ÷ 
______

 1 + 4   =  ÷ 
__

 5  

 3. Draw the asymptotes along the diagonals of the rectangle. 

 4. Now sketch the hyperbola such that the center of the hyperbola 
(to obtained the center of the hyperbola we put (x + 2)2 = 0 fi x 
= –2 (y – 3)2 = 0 fi y = 3) is at the center of the rectangle and 
touch the sides as, Fig. 6.103. Equation of the transverse axis is 
y – 3 = 0 and the equation of the conjugate axis is x + 2 = 0. 
Coordinate of the foci are (– 2 +  ÷ 

__
 5  , 3) and (–2 –  ÷ 

__
 5  , 3). 

Fig. 6.103

Equation of asymptotes:

 Let y = mx + c (6.29)

be the asymptote to the hyperbola

    x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 1 (6.30)

 The point of intersection of the asymptote and the hyperbola are given by 
the equation

    x
2

 __ 
a2

   –   
(mx + c)2

 _________ 
b2

   = 1 (from (6.29) and (6.30))
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   x2(b2 – a2m2) – 2a2mcx – a2(b2 + c2) = 0 (6.31) 

 Since the line y = mx + c will meets the hyperbola (6.30) at infinity if both 
roots of (6.31) are infinite.

 For this the coefficients of x2 and x are both zero.

fi  b2 – a2m2 = 0 = –2a2mc

fi  m = ±   b __ a   x and c = 0

 Substitutes the value of m and c in (6.29), we have

  y = ±   b __ a   x

i.e.    x __ a   –   
y
 __ 

b
   = 0 and   x __ a   +   

y
 __ 

b
   = 0

 Now the combined equation of asymptotes is

   (   x __ a   –   
y
 __ 

b
   )   (   x __ a   +   

y
 __ 

b
   )  = 0 fi   x

2

 __ 
a2

   –   
y2

 __ 
b2

   = 0

Conjugate hyperbola: A hyperbola whose transverse and conjugate axis are 
respectively the conjugate and transverse axis of a given hyperbola is called 
conjugate hyperbola of given hyperbola, Fig. 6.104.

Fig. 6.104

 Thus the hyperbola

    x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 1 (6.32)

is conjugate to the hyperbola

    x
2

 __ 
a2

   –   
y2

 __ 
b2

   = – 1 (6.33)

and the equation to its asymptotes is

    x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 0 (6.34)
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 Here the equation (6.33) differs from equation (6.32) by a constant and the 
equation (6.34) differs from (6.33) by exactly the same quantity that (6.33) 
differs from (6.32). Bothe the asymptotes passes through the origin. The two 

asymptotes are equally inclined to the transverse axis with slope   b __ a  .

 

Fig. 6.104(a)

  x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 1

2a

(0, – )c

y x= a
b

y x= – a
b

(0, )c

2b

Fig. 6.104(b)

  y
2

 __ 
a2

   –   
x2

 __ 
b2

   = 1

Example 20 Find the equation of the hyperbola whose satisfies the following 
conditions

 (i) Vertices (± 2, 0) and foci (± 3, 0), 

 (ii) Vertices (0, ± 6) and asymptotes y = ± 3x, 

 (iii) Foci (0, ± 2); asymptotes y = ± x.

Solution (i) Here a = 2, c = 3 and b2 = c2 – a2, b2 = 9 – 4 = 5, hence the 
equation is 
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   x
2

 __ 
4

   –   
y2

 __ 
5

   = 1 

 (ii) Since the vertices are on the y-axis, the equation of the hyperbola 

is   
y2

 __ 
a2

   –   x
2

 __ 
b2

   = 1 and the asymptote are y = ±   a __ 
b
   x

 a = 6 and   a __ 
b

   = 3 fi b = 2, hence the equation is 

   
y2

 ___ 
36

   –   x
2

 __ 
4

   = 1

 (iii) c = 2, and   a __ 
b

   = 1, a2 + b2 = 4 fi 2a2 = 4 fi a2 = b2 = 2, hence 

the equation is 

   
y2

 __ 
2

   –   x
2

 __ 
2

   = 1

Equation of the tangent at hyperbola: Let P and Q be two points on the 
hyperbola whose coordinates are (x1, y1) and (x2, y2) respectively, Fig. 6.92.

Q x y( , )2 2

P x y( , )1 1

 

 The equation of PQ is

  (y – y1) =   
(y2 – y1) ________ 
(x2 – x1)

   (x – x1) (6.35)

 Since P and Q lie on the hyperbola

\    
 x 1  

2 
 __ 

a2
   –   

 y 1  
2 
 __ 

b2
   = 1 (6.36)

 And   
 x 2  

2 
 __ 

a2
   –   

 y 2  
2 
 __ 

b2
   = 1  (6.37)

 From (6.36) and (6.37), we get

    
(y2 – y1) ________ 
(x2 – x1)

   =  (   x1 + x2 _______ y2 + y1
   )    b

2

 __ 
a2

  

 Substituting   
(y2 – y1) ________ 
(x2 – x1)

   in (6.35), we get
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  (y – y1) =  (   x1 + x2 _______ y2 + y1
   )    b

2

 __ 
a2

   (x – x1) (6.38)

 The line PQ will be the tangent at P if Q Æ P fi x2 Æ x1 and y2 Æ y1, 
then (6.38) becomes

fi  (y – y1) =   
b2 x1 ____ 
a2 y1

   (x – x1)

fi    
xx1 ___ 
a2

   –   
yy1 ___ 
b2

   =   
 x 1  

2 
 __ 

a2
   –   

 y 1  
2 
 __ 

b2
  

fi    
xx1 ___ 
a2

   –   
yy1 ___ 
b2

   = 1  (    x 1  
2 
 __ 

a2
   –   

 y 1  
2 
 __ 

b2
   = 1 ) 

    
xx1 ___ 
a2

   –   
yy1 ___ 
b2

   = 1

 Which is the required equation of tangent at a point (x1, y1).

Properties of hyperbola 

A tangent line at a point P on the hyperbola makes equal angles with the line 
joining the point P to the foci. (Reflection property), Fig. 6.106.

Fig. 6.106

 Let the line S1 P makes the angle a with tangent line T and the line S2 P 
makes the angle b. with tangent line T, Fig. 6.106. Now we want to show that 
a = b.

 The equation of the tangent line T at a point P(x1, y1) is   
xx1 ___ 
a2

   –   
yy1 ___ 
b2

   = 1 

then the slope of this line is   
x1 b

2

 ____ 
y1 a

2
   = m1, the slope of S1 P is   

y1 _____ x1 – c   = m2 and 

the slope of S2 P is   
y1 _____ x1 + c   = m3.
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 tan a =   
m2 – m1 _________ 
1 + m1 m2 

  =   

  
y1 _____ x1 – c   –  (   x1 b

2

 ____ 
y1 a

2
   ) 
  __________________  

1 + (    
x1 b

2

 ____ 
y1 a

2
   )   (   y1 _____ x1 – c   ) 

   =   
 y 1  

2  a2 – x1 b
2(x1 – c)

  ___________________   
y1 a

2(x1 – c) + y1 x1 b
2   
    

=   b
2

 ____ y1 c
  , ( x 1  

2  b2 –  y 1  
2  a2 = a2 b2, and a2 + b2 = c2). Similarly we can find

tan b =   
m1 – m3 ________ 
1 + m1 m3

   =   

 (    x1 b
2

 ____ 
y1 a

2
   )  –   

y1 _____ x1 + c  

  _________________  

1 +  (   x1 b
2

 ____ 
y1 a

2
   )   (   y1 _____ x1 + c   ) 

   =    
 { –  y 1  

2  a2 + x1 b
2(x1 + c) } 

   _____________________   
y1 a

2(x1 + c) + y1 x1 b
2
   =   b

2

 ____ y1 c
  , 

hence a = b.

Example 21 Find the coordinates of all points on the hyperbola 5x2 – y2 = 5 
where the two lines that passes through the point and the foci intersect at right 
angle.

Solution From Fig. 6.106 let the line S1 P and S2 P intersect at right angle at 
P, the coordinates of S1 and S2 are ( ÷ 

__
 6  , 0) and (–  ÷ 

__
 6  , 0) respectively. Then 

the slope of S1P is   
y1 _______ 

x1 –  ÷ 
__

 6    
  and S1 P is   

y1 _______ 
x1 +  ÷ 

__
 6  
  , if the line intersect at right 

angle then   
y1 _______ 

x1 –  ÷ 
__

 6  
   ◊   

y1 _______ 
x1 +  ÷ 

__
 6  
   = – 1 

fi   y 1  
2  = 6 –  x 1  

2  (6.39)

 Now the point P lie on the hyperbola, we have

  5 x 1  
2  –  y 1  

2  = 5 (6.40)

 From (6.39) and (6.40), we have  ( ±  ÷ ___

   11 ___ 
6
    ,   5 ___ 

 ÷ 
__

 6  
   )  and  ( ±  ÷ ___

   11 ___ 
6

    ,   – 5 ___ 
 ÷ 

__
 6  
   ) .

Exercises
 1. Sketch the parabola, and label the focus, vertex and directrix of the 

following equations.

 (i) y2 = 8x,   (ii) y2 = – 6x, 

 (iii) x2 = 9y,   (iv) x2 = – 4y,

 (v) (y + 2)2 = 6(x + 1), (vi) (x – 1)2 = – 4(y + 1), 

 (vii) y2 = – 6x – 2y + 3.
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 2. Sketch the ellipse, and label the foci, vertices and the ends of the minor 
axis of the following equations.

 (i)   x
2

 __ 
9

   +   
y2

 __ 
4

   = 1,   (ii) 6x2 + y2 = 6, 

 (iii)   x
2

 __ 
9

   +   
y2

 ___ 
25

   = 1,   (iv) 9(x – 1)2 + 16(y – 2)2 = 144, 

 (v) (x + 2)2 + 4(y + 3)2 – 16 = 0,

 (vi) 9x2 + 4y2 + 6x – 8y – 31 = 0.

 3. Sketch the hyperbola, and label the foci, vertices and the and the 
asymptotes of the following equations.

 (i)   x
2

 __ 
4

   –   
y2

 __ 
1

   = 1,   (ii) 4x2 – y2 = 4, 

 (iii)   
y2

 ___ 
25

   –   x
2

 __ 
9

   = 1,   (iv) 4(x – 1)2 – 9(y – 2)2 = 36, 

 (v) (y + 1)2 – 4(x + 2)2 – 4 = 0, 

 (vi) 4x2 – 9y2 + 16x + 36y – 56 = 0.

 4. Find an equation for the parabola which satisfies the following 
conditions.

 (i) Vertex (0, 0); focus (2, 0), 

 (ii) Vertex (0, 0); directrix x = 3,

 (iii) focus (0, – 2); directrix y = 2, 

 (iv) focus (5, 0); directrix x = – 5, 

 (v) Focus (– 1, 4) directrix x = 7, 

 (vi) Axis y = 0; passes through (2, 3) and (3, – 2).

 5. Find an equation for the ellipse which satisfies the following 
conditions.

 (i) Ends of major axis (± 4, 0); ends of minor axis (0, ± 3), 

 (ii) Length of major axis 20; foci (± 3, 0), 

 (iii) Foci (± 2, 0); b =  ÷ 
__

 3  ,

 (iv) Foci (± 2, 0); a = 9, 

 (v) b = 4; c = 3; centre at the origin; foci on a coordinate axis,

 (vi) Foci (1, 3) and (1, 5); minor axis of length 4, 

 (vii) Length of minor axis 8; foci (1, 1) and (1, – 3)
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 6. Find an equation for the hyperbola which satisfies the following 
conditions.

 (i) Vertices (± 1, 0) foci (± 2, 0), 

 (ii) Vertices (± 2, 0); asymptote y = ± 3x, 

 (iii) Vertices (0, ± 1) foci (0, ± 3), 

 (iv) asymptote y = ±   3 __ 
2

   x; b = 6; 

 (v) Vertices (2, 2) and (10, 2); foci 10 units apart, 

 (vi) asymptote y = 3x + 1 and y = –3x + 7; passes through origin,

 (vii) Vertices (–3, –2) and (5, –2); b = 4.

 7. Show that the equation y = mx + c will touch the

 (i) Parabola y2 = 4ax if c =   a __ m  , 

 (ii) Ellipse   x
2

 __ 
a2

   +   
y2

 __ 
b2

   = 1 if c =  ÷ 
_________

 a2m2 + b2  , 

 (iii) Hyperbola   
x1 __ 
a2

   –   
y2 __ 
b2

   = 1 if c =  ÷ 
_________

 a2m2 – b2  .

 8. Show that the vertex is the closet point on a parabola to the focus.

 9. Show that the equation of the parabola traced by a point that moves 
so that its distance from (1, 2) is the same as its distance to y = 1 is 

(x – 1)2 = 2 ( y –   3 __ 
2

   ) .
 10. Show that the equation of the ellipse traced by a point that 

moves so that the sum of its distance to (5, 1) and (5, 5) is 12 is

  
(x – 5)2

 _______ 
32

   +   
(y – 3)2

 _______ 
36

   = 1.

 11. Show that the equation of the hyperbola traced by a point that moves 
so that the difference between its distance to (0, 0) and (2, 2) is 2 is 
2xy – 2x – 2y + 1 = 0.

 12. Show that the equation of the chord joining two points on the ellipse 

whose eccentric angles are q1 and q2 is   x __ a   cos   
q1 + q2 ________ 

2
   +   

y
 __ 

b
   sin

  
q1 + q2 _______ 

2
   = cos   

q1 – q2 _______ 
2

  .

 13. If we take the asymptotes as the coordinate axis then prove that the 

equation of the hyperbola   x
2

 __ 
a2

   –   
y2

 __ 
b2

   = 1 can be written as xy = c2 where 

c =   a
2 + b2

 _______ 
4

  .
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Answers

 

1. (i)

  

(ii)

 

    

(iii)

 

    

(iv) 

  

     

(v)  
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(vi)

 

  

(vii)

  

 

2. (i)

  

(ii)
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(iii)

  

(iv)

 

  

(v)

 

  (vi)

  

 

3. (i)
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(ii)

 

  

(iii)

 

  

(iv)
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(v)

 

  

(vi)

 

 4.  (i) y2 = 8x,   (ii) y2 = –12x, 

  (iii) x2 = –8y,   (iv) y2 = 20x, 

   (v) (y – 4)2 = – 16(x – 3), (vi) y2 = – 5 ( x –   19 ___ 
5
    ) 

 5.  (i)   x
2

 ___ 
16

   +   
y2

 __ 
9

   = 1, (ii)   x2

 ____ 
100

   +   
y2

 ___ 
91

   = 1,

  (iii)   x
2

 __ 
7

   +   
y2

 __ 
3

   = 1, (iv)   x
2

 ___ 
81

   +   
y2

 ___ 
77

   = 1, 

   (v)   x
2

 __ 
4

   +   
y2

 __ 
5

   = 1. (vi)   
 (x – 1)2

 _______ 
12

   +   
(y + 1)2

 _______ 
16

   = 1.
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 6.  (i)   x
2

 __ 
1

   –   
y2

 __ 
3

   = 1, (ii)   x
2

 __ 
4
   –   

y2

 ___ 
36

   = 1, 

  (iii)   
y2

 __ 
1

   –   x
2

 __ 
8

   = 1, (iv)   x
2

 ___ 
16

   –   
y2

 ___ 
36

   = 1, and   
y2

 ___ 
81

   –   x
2

 ___ 
36

   = 1, 

   (v)   
(x – 6)2

 _______ 
16

   –   
(y – 2)2

 _______ 
9

   = 1, (vi)   
(y – 4)2

 _______ 
7
   –   

9(x – 1)2

 ________ 
7
   = 1, 

  (vii)   
(x – 1)2

 _______ 
16

   –   
(y + 2)2

 _______ 
16

   = 1. 

6.5 SECOND DEGREE EQUATION AND ROTATION OF AXIS 

The curves we have discussed in section 6.5 had their axes parallel to the 
coordinate axes, but this is not always true i.e., Fig. 6.107.

y

x   

y

x   

y

x

    Fig. 6.107(a)        Fig. 6.107(b)        Fig. 6.107(c)

 To obtain curves like those sketched in Fig. 6.107, we must rotate the 
coordinate axes through an appropriate angle. How do we do so. Let us suppose 
that the x-axes and y-axes are rotated an angle of q with respect to the origin 
and let P(x, y) represent a point in the coordinate x and y Fig. 6.108.

P x  y P x  y( , ) = ( , )¢

a
q

A
x

y

B

O

y ¢ x ¢

 

       Fig. 6.108(a)             Fig. 6.108(b)
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 Now seek a represent of the point P(x, y) in the new coordinates x ¢ and y ¢. 
From Fig. 6.108(a)

 In DOAP, we have

  x = OA = OP cos(q + a) = OP(cos q cos a – sin q sin a) (6.41)

 And

  y = AP = OP sin(q + a) = OP(sin q cos a + cos q sin a) (6.42)

 Similarly In DOBP, we have

  x ¢ = OP cos a and y ¢ = OP sin a (6.43)

 From equations (6.41), (6.42) and (6.43), we get 

  x = x ¢ cos  – y ¢ sin  (6.44)

  y = x ¢ sin  + y ¢ cos  (6.45)

 These equations (6.44) and (6.45) are called the rotation equations
 From the equations (6.44) and (6.45), we also get 

  x ¢ = x cos  + y sin  (6.46)

  y ¢ = – x sin  + y cos  (6.47)

Example 22 Find the equation of the curve obtained from the graph of

x2 – xy + y2 = 12 by rotating the axes through an angle of q = 45°.

Solution Since cos 45° = sin 45° =   1 ___ 
 ÷ 

__
 2  
   and from equations (6.42) and (6.43), 

we have

  x =   
x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   and y =   

x ¢ + y ¢
 ______ 

 ÷ 
__

 2  
  

 Substitution of these into the given equation x2 – xy + y2 = 12, yields

      (   x ¢ – y ¢
 ______ 

 ÷ 
__

 2  
   )  2  –  (   x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   )    (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   )  +   (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   )  2  = 12

 After simplification, we get

    
  (x ¢)2 + 3(y ¢)2

  ____________ 
2

   = 12

 Or

    
(x ¢)2

 ____ 
24

   +   
(y ¢)2

 ____ 
8

   = 1
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 Hence in new coordinate system x ¢ and y ¢ this is the equation of an ellipse 
with a =  ÷ 

___
 24  , b =  ÷ 

__
 8   and c =  ÷ 

______
 24 – 8   = ± 4, Fig. 108(b).

Example 23 Find the new coordinates of the point (1, 2) if the coordinate 
axes are rotated through an angle of q = 60°

Solution From equations (6.46) and (6.47), we get

  x ¢ = 1 ◊   1 __ 
2

   + 2  
 ÷ 

__
 3  
 ___ 

2
  

  y ¢ = –   
 ÷ 

__
 3  
 ___ 

2
   + 2 ◊   1 __ 

2
  

 Thus, the new coordinates are  (   1 + 2 ÷ 
__

 3  
 _______ 

2
  ,   

2 –  ÷ 
__

 3  
 ______ 

2
   ) .

Quadratic equation

Consider the quadratic equation

   Ax2 + Bxy + Cy2 + Dx + Ey + F = 0 (6.48)

B = 0 and A π 0 and C π 0 then 

 (i) If AC > 0, then the equation represents an ellipse, a circle, a point, or 
has no graph.

 (ii) If AC < 0, then the equation represents a hyperbola or a pair of 
intersecting lines.

 (iii) If AC = 0, then the equation represents a parabola or a pair of parallel 
lines or has no graph. i.e. the equation 2x2 – y2 – 4x + 4y = 10 has A 

= 2 and C = –1 fi AC = – 2, fi AC < 0 then the equation represents 

a hyperbola or a pair of intersecting lines. Now this equation can be 

written as   
(x – 1)2

 _______ 
4

   –   
(y – 2)2

 _______ 
8
   = 1, which is a hyperbola while the 

equation x2 – 4y2 – 8y = 4 also has AC < 0 and this equation can be 

written as x2 – 4(y + 1)2 = 0 fi x = ± 2(y + 1) which represents the 
pair of intersecting lines.

  B π 0 and A π 0 and C π 0 then 

 (i) If B2 – 4AC < 0, then the equation represents an ellipse, a circle, a 
point, or has no graph.

 (ii) If B2 – 4AC > 0, then the equation represents a hyperbola or a pair of 
intersecting lines.

 (iii) If B2 – 4AC = 0, then the equation represents a parabola or a pair of 
parallel lines or a line or has no graph. 
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 The quantity B2 – 4AC is called discriminant of the equation (6.48).

i.e. the equation x2 + y2 – xy = 4 has A = 1, B = –1 and C = 1 fi B2 – 4AC 
= 1 – 4.1.1 < 0. So the given equation represents an ellipse, a circle, a point, 
or has no graph. Further we observed that the points (0, ±2) lies on the curve, 
thus the curve is an ellipse. Now the equation x2 + y2 + 2xy + 2 = 0 satisfies 
B2 – 4AC = 0; but there is no real values of x and y that satisfy the given 
equation (x + y)2 = –2. Hence the equation has no graph.

 If the equation (6.48) is such that B π 0, and if an x ¢ y ¢-coordinate 
system is obtained by rotating the x y-axes through an angle q satisfying

cot 2q =    A – C _______ 
B

   then, in x ¢ y ¢-coordinate system the equation (6.48) will have 

the form

   A¢x ¢2 + C ¢y ¢2 + D ¢x ¢ + E ¢y ¢ + F ¢ = 0 (6.49)

 To prove this substitute the value of x and y from equations (6.44) and (6.45) 
into (6.48) and after simplifying we have A¢x ¢2 + B ¢x ¢y ¢ + C ¢y ¢2 + D ¢x ¢ + E ¢y ¢ + F ¢
= 0 where 

A¢ = A cos2 q + B sin q cos q + C sin2 q

B ¢ = B(cos2 q – sin2 q) + 2(C – A) sin q cos q = B cos 2q + (C – A) sin 2 q

C ¢ = C cos2 q – B sin q cos q + A sin2 q

D ¢ = D cos q + E sin q   

E ¢ = E cos q – D sin q

F ¢ = F

(6.49a)

 We know that in equation (6.49) there is no B ¢ fi B ¢ = 0 cot 2q

=   A – C _____ 
B

    ( 0 < q <   p __ 
2

   ) .
 Rotating a curve through an angle q has the effect of rotating the axes 
through an angle (–q).

Example 24 Identify and sketch the curve xy = 1

Solution Comparing the equation xy = 1 from equation (6.48), we have

A = 0 = C, B = 1 and cot 2q =   A – C ______ 
B

   =   0 – 0 _____ 
1
   = 0 fi 2q =   p __ 

2
   fi q =   p __ 

4
  .

 Hence from (6.44) and (6.45), we have 

  x =   
x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   and y =   

x ¢ + y ¢
 ______ 

 ÷ 
__

 2  
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 Substituting these in the given equation xy = 1 yields

    (   x ¢ – y ¢
 ______ 

 ÷ 
__

 2  
   )   (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   )  = 1 or   

(x ¢)2

 ____ 
2
   –   

(y ¢)2

 ____ 
 2

   = 1

 This is the equation of the hyperbola in x ¢ y ¢-coordinate system, Fig. 109.

Fig. 6.109

Example 25 Identify and sketch the curve x2 + 3xy + 5y2 + 4 = 0

Solution We have A = 1, B = 3, C = 5. 

 Then cot 2q =   A – C ______ 
B

   =   1 – 5 _____ 
3

   = –   4 __ 
3
  . We know that here is inconvenient 

to solve the value of q. In this case we can solve the q as.

 The q lies between 0 and   p __ 
2

  , this relationship is represented by the 
Fig. 6.110.

 From Fig. 6.110, we obtained 

Fig. 6.110
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  cos 2q = –   4 __ 
5

   fi cos q =  ÷ 
__________

    1 + cos 2q   __________ 
2
     =  ÷ 

_____

   
1 –   4 __ 

5
  
 _____ 

2
     =   1 ____ 

 ÷ 
___

 10  
   and 

  sin q =  ÷ 
___________

    1 – cos 2q   __________ 
2

     =  ÷ 
_____

   
1 +   4 __ 

5
  
 _____ 

2
     =   3 ____ 

 ÷ 
___

 10  
  

 Hence from (6.44) and (6.45), we have

  x =   
x ¢ – 3y ¢

 _______ 
 ÷ 

___
 10  
   and y =   

3x ¢ + y ¢
 _______ 

 ÷ 
___

 10  
  

 Substituting these in the given equation x2 + 3xy + 5y2 + 4 = 0 yields

    (   x ¢ – 3y ¢
 _______ 

 ÷ 
___

 10  
   )  + 3 (   x ¢ – 3y ¢

 _______ 
 ÷ 

___
 10  
   )   (   3x ¢ + y ¢

 _______ 
 ÷ 

___
 10  
   )  + 5 (   3x ¢ + y ¢

 _______ 
 ÷ 

___
 10  
   )  + 4 = 0

 After some simplification we have

    
11(x ¢)2

 ______ 
8

   +   
(y ¢)2

 ____ 
8

   = 1

 This is the equation of the ellipse in x ¢ y ¢-coordinate system with q = sin– 1 

(   3 ____ 
 ÷ 

___
 10  
   )  = .9486 ª 71°, Fig. 6.111.

Fig. 6.111

Example 26 State about the graph of the equation  ÷ 
__

 x   +  ÷ 
__

 y   = 2.

Solution  ÷ 
__

 x   +  ÷ 
__

 y   = 2 fi x = (2 –  ÷ 
__

 y  )2 fi x2 – 2xy + y2 – 8x – 8y + 16 = 0

 Now cot 2q =   A – C ______ 
B

   =   1 – 1 _____ 
–2

   = 0 fi 2q =   p __ 
2
   fi q =   p __ 

4
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 Hence from Equation (6.44) and (6.45), we have 

  x =   
x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   and y =   

x ¢ + y ¢
 ______ 

 ÷ 
__

 2  
  

 Substituting these in the equation x2 – 2xy + y2 – 8x – 8y + 16 = 0 
yields

   (   x ¢ – y ¢
 ______ 

 ÷ 
__

 2  
   )  2  – 2 (   x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   )   (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   )  +   (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   )  2  – 8 (   x ¢ – y ¢

 ______ 
 ÷ 

__
 2  
   )  – 8 (   x ¢ + y ¢

 ______ 
 ÷ 

__
 2  
   ) 

    + 16 = 0

 After some simplification we have

(y ¢)2 – 2(x ¢ – 4) = 0 Which is a parabola in x ¢ y ¢-coordinate system and from  

÷ 
__

 x   +  ÷ 
__

 y   = 2

 We know that 0 £ x £ 1 and 0 £ y £ 1, so the graph is just a portion of a 
parabola.

Exercises
 1. By rotating x y-coordinate system through an angle of q = 30° we 

obtained x ¢ y ¢-coordinate system.

 (i) Find the x ¢ y ¢-coordinates when x = – 1 and y = 3.

 (ii) Find the x ¢ y ¢-coordinates when x = 2 and y = – 5

 (iii) Find an equation of the curve 2xy + x2 = 3 in x ¢ y ¢- coordinates 
when x = – 1 and y = 3.

 2. Identify and sketch the curve

 (i) 2xy = – 6,

 (ii) x2 – xy + y2 = 16,

 (iii) x2 – 3xy – 3y2 + 2 = 0,

 (iv) 16x2 – 24xy + 9y2 + 100x – 200y + 200 = 0,

 (v) 153x2 – 192xy + 97y2 – 30x – 40y – 100 = 0,

 (vi) 4x2 + 4xy + y2 + 20x – 10y = 0, 

 (vii) x2 + 4xy – 2y2 = 10,

 (viii) x2 + xy + y2 = 1,

 (ix) 3x2 + 4 ÷ 
__

 3  xy – y2 = 7.

 3. By equation (ixa) prove that B2 – 4AC = B ¢2 – 4A¢C ¢ and A + C = A¢ + C ¢
 4. Prove that x2 + y2 = r = x ¢2 + y ¢2.
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 5. Use the discriminant to identify the graph of the following equations

 (i) 2x2 + 3xy + y2 + 3 = 0, 

 (ii) x2 + 2xy + y2 – 7 = 0,

 (iii) x2 + 3 ÷ 
__

 3  xy + y2 +  ÷ 
__

 3  x – y = 0, 

 (iv) 5x2 + 4xy + y2 – 12x + 20y = 11.

 6. The following equations represents the degenerate conic section. Where 
possible, sketch the graph

 (i) x2 – 3y2 = 0,   (ii) x2 + 5y2 + 3 = 0,

 (iii) 7x2 + 5y2 = 0,   (iv)  x2 + 4xy + 4y2 = 0,

 (v) 4x2 + 72xy + 9y2 – 36 = 0.

Answers
 1.  (i)  x ¢ = –   

 ÷ 
__

 3  
 ___ 

2
   +   3 __ 

2
   and y ¢ =   1 __ 

2
   +   

3 ÷ 
__

 3  
 ____ 

2
  , 

   (ii)  x ¢ =  ÷ 
__

 3   –   5 __ 
2

   and y ¢ = – 1 –   
5 ÷ 

__
 3  
 ____ 

2
  , 

  (iii)    
(x ¢)2

 ____ 
2

   +   
(y ¢)2

 ____ 
3

   = 1.

 2.  (i)    
(x ¢)2

 ____ 
6

   –   
(y ¢)2

 ____ 
6

   = 1, Hyperbola;
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   (ii)   
(x ¢)2

 ____ 
32

   +   
3(y ¢)2

 ______ 
32

   = 1, Ellipse;

  (iii)   
7(x ¢)2

 _____ 
4

   –   
3(y ¢)2

 ______ 
4

   = 1, Hyperbola; 
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  (iv)  (y ¢ – 4)2 = 4(x ¢ + 3), Parabola;

 

   (v)   
(x ¢ – 1)2

 _______ 
5

   +   
9(y ¢)2

 _____ 
5

   = 1, Ellipse;

  (vi)    ( x ¢ +   3 ___ 
 ÷ 

__
 5  
   )  2  =   8 ___ 

 ÷ 
__

 5  
    ( y ¢ +   

9 ÷ 
__

 5  
 ____ 

8
   ) , Parabola;
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  (vii)   
(x ¢)2

 ____ 
5

   –   
3(y ¢)2

 ______ 
10

   = 1, Hyperbola;  (viii)   
3(x ¢)2

 ______ 
2
   +   

(y ¢)2

 ____ 
2
   = 1, Ellipse;

     

 (ix)   
5(x ¢)2

 _____ 
7

   –   
3(y ¢)2

 ______ 
7

   = 1, Hyperbola; 

 5.   (i)  Hyperbola or a pair of intersecting lines, 

      (ii)  Parabola or a pair of parallel lines or a line or has no graph, 

  (iii)   Hyperbola or a pair of intersecting lines, 

  (iv)  Ellipse, a circle, a point, or has no graph.
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 6. (i)  Pair of straight lines, (ii) No graph,  

   

  (iii)  Point x = 0, y = 0, (iv) A line,

             

  (v)  Parallel lines
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6.6 CONIC SECTION IN POLAR COORDINATE

Let a fixed point O and a fixed line AB at a distance D from O, Fig. 6.112. 
Suppose that a point P lies in the plane of O and AB moves so that the ratio 
of its distance from the point O to its distance from line AB is always equal 
to the positive constant e i.e.   r __ 

d
   = e.

Fig. 6.112

 The point O is called the focus or pole the line AB is called the directrix 
and the ratio e is called the eccentricity. The curve described by P is given 
in polar coordinate (r, q) as 

  r =   
p
 __________  

1 + e cos 
   (6.50)

or 

  r =   eD __________  
1 + e cos 

  

 And this curve is often called a conic section. We know that there are three 
types of conic section. These three conic sections depending on the value of 
the eccentricity. To derive the equation (6.50)

    r __ 
d

   = e or   r __ e   = d (6.51)

 At a particular point Q, we have 

    
p
 __ 

D
   = e or p = eD (6.52)

 But D = d + r cos q =   r __ e   + r cos q =   r __ e  (1 + e cos q) (6.53)

 From (6.52) and (6.53), we have 

  p = r(1 + e cos q) or r =   
p
 __________  

1 + e cos q
   =   eD __________  

1 + e cos q
  .

 The equation (6.50) represent the
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 Parabola if e = 1, Fig. 6.113, Ellipse if 0 < e < 1, Fig. 6.114, Hyperbola 
if e > 1 Fig. 6.115, 

Directrix

x
Pole

Fig. 6.113

Fig. 6.114

Fig. 6.115
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 The equation of the parabola is r =   D _________ 
1 + cos 

   =   
p
 _________ 

1 + cos 
  , if e = 1

 (6.54)
 The equation of the ellipse is

  r =   
a(1 – e2)

 __________  
1 + e cos q

  , if 0 < e < 1  ( D =   a __ e   – ae =   
a(1 – e2)

 ________ e   )  (6.55)

 The equation of the hyperbola is

  r =   
a(e2 – 1)

 __________  
1 + e cos 

  , if e > 1  ( D = ae –   a __ e   =   
a(e2 – 1)

 ________ e   )  (6.56)

Theorem If a conic section defined in polar coordinate system such that 
the focus at the pole(origin) and the corresponding directrix is at a distance
D from the pole and is either parallel or perpendicular to the polar axis with 
eccentricity e, then the equation of the conic has one of four possible forms, 
depending on its orientation:

  r =   eD __________  
1 + e cos q

   directrix right of the pole (6.57)

  r =   eD __________  
1 – e cos q

   directrix left of the pole (6.58)

  r =   eD __________  
1 + e sin q

   directrix above of the pole (6.59) 

  r =   eD __________  
1 – e sin q

   directrix below of the pole (6.60)

 Some useful steps for sketching the conic section in polar 
coordinates: 
 (i) Identifies the conic 

  For example we want to sketch the graph of r =   8 _________ 
2 + cos q

  

  This equation can be written in standard form as r =   4 __________  
1 +   1 __ 

2
   cos q

  , now 

this equation is an exact match to equation (6.57) with e =   1 __ 
2
   fi e < 1, 

So given curve is ellipse where eD = 4 fi D = 8 which implies that 
the directrix of the ellipse is 8 units to the right of the pole.

 (ii) Obtain r0 and r1 

  r0 is the distance from the focus to the closet vertex (called perigee or 
perihelion) and r1 is the distance from the focus to the farthest vertex 
(called apogee or aphelion). 

 (a) If the given equation is an exact match to (6.57) then r0 and r1 
can be obtained by setting q = 0 and q = p in the given equation 
respectively. 
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 (b) If the given equation is an exact match to (6.58) then r0 and r1 
can be obtained by setting q = p and q = 0 in the given equation 
respectively.

 (c) If the given equation is an exact match to (6.59) then r0 and 

r1 can be obtained by setting q =   p __ 
2
   and q =   3p ___ 

2
   in the given 

equation respectively.

 (d) If the given equation is an exact match to (6.60) then r0 and r1 

can be obtained by setting q =   3p ___ 
2
   and q =   p __ 

2
   in the given equation 

respectively. for the ellipse a =   1 __ 
2
   (r0 + r1), b =  ÷ 

____
 r0r1  , c =   1 __ 

2
  

(r1 – r0). For the hyperbola a =   1 __ 
2
   (r1 – r0), b =  ÷ 

____
 r0r1  , c =   1 __ 

2
   

(r1 + r0). for the ellipse e =   c __ a   =   
  1 __ 
2
   (r1 – r0)

  _________ 
  1 __ 
2
   (r0 + r1)

   =   
(r1 – r0)

 ________ 
(r0 + r1)

  , and 

hyperbola e =   
(r1 + r0)

 ________ 
(r1 – r0)

  .

Directrix

y

C

b

r1

r0

Focus or pole

a

Fig. 6.115(a)

Fig. 6.115(b)
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 In given example the equation match exact to equation (6.57), hence

r0 =   4 ___________  
1 +   1 __ 

2
   cos 0

   =   8 __ 
3

   and r1 =   4 ___________  
1 +   1 __ 

2
   cos p

   = 8. Distance from the pole to 

the vertices are   8 __ 
3

   and 8.

 According to the definition of the ellipse a =   1 __ 
2
   (r0 + r1) =   16 ___ 

3
  , b =  ÷ 

____
 r0r1   

=   8 ___ 
 ÷ 

__
 3  
  , c =   1 __ 

2
   (r1 – r0) =   8 __ 

3
  . Center  ( –    8 __ 

3
  , 0 ) . So the equation of the ellipse in 

rectangular coordinates is   
9  ( x +   8 __ 

3
   )  2 
 ________ 

162
   +   

3y2

 ___ 
64

   = 1

 Now we are able to sketch the graph, Fig. 6.116

16
3

8
3÷

Directrix
8

8
3

Focus
0

p
2

Fig. 6.116

Example 27 Find the eccentricity the distance from the pole to the directrix, 
the distance from the pole to the vertices, find the equation in rectangular 

coordinates and sketch the graph of r =   3 __________  
1 + 3 sin q

  

Solution Given equation is an exact match to equation (6.59) with e = 3 

fi e > 1, So given curve is hyperbola where eD = 3 fi D = 1 which implies 

that the directrix of the hyperbola is 1 units above the pole. Hence

r0 =   3 _________ 
1 + sin    p __ 

2
  
   =   3 __ 

4
  , r1 =  |   3 ___________  

1 + 3sin   3p ___ 
2
  
    |  =  |   3 ___ 

– 2
   |  =   3 __ 

2
  , Distance from the pole to 

the vertices are   3 __ 
4

   and   3 __ 
2

  . a =   1 __ 
2

   (r1 – r0) =   3 __ 
8
  , b =  ÷ 

____
 r0r1   =   3 ___ 

 ÷ 
__

 8  
  , c =   1 __ 

2
   (r1 + r0) 
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=   9 __ 
8

  . Centre  ( 0,   9 __ 
8

   )  So the equation of the hyperbola in rectangular coordinates 

is   – 8x2

 _____ 
9
   +   

64  ( y –   9 __ 
8

   )  2 
 _________ 

9
   = 1, Fig. 6.117. 

3
8

3
8÷

Focus

p
2

0

Fig. 6.117

Example 28 Sketch the graph of r =   4 ________ 
1 – sin q 

  

Solution Given equation is an exact match to equation (6.60) with e = 1 fi 
e > 1, So given curve is parabola where eD = 4 fi D = 4 which implies that 
the directrix of the parabola is 4 units below the pole. So the equation of the 
parabola in rectangular coordinates is x2 = 8y. This tell us that the parabola 
opens to the up side with p = 2, Fig. 6.118.

0

2

4

Focus

p
2

Directrix

Fig. 6.118

Exercises
 1. Find the eccentricity the distance from the pole to the directrix D, the 

distance from the pole to the vertices, find the equation in rectangular 
coordinates and sketch the graph of the following:
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 (i) r =   6 ___________  
2 + 3 cos q

  , (ii) r =   1 _________ 
2 – cos q

  ,

 (iii) r =   4 _________ 
1 – cos q

  ,   (iv) r =   6 ________ 
2 + sin q

  , 

 (v) r =   1 __________  
2 + 2 sin q

  , (vi) r =   1 __________  
2 – 3 sin q

  .

 2. Find a polar equation for the conic which has the focus at the pole and 
satisfies the following conditions: 

 (i) Directrix to the right of the pole; a = 6; e =   1 __ 
2
  .

 (ii) Directrix to the left of the pole; b =  ÷ 
__

 2  ; e =   1 __ 
3
  

 (iii) Directrix to the above of the pole; c = 4; e =   2 __ 
3
  .

 (iv) Directrix to the below of the pole; a = 5; e =   1 __ 
5
  .

 (v) Directrix x = 2; e =   1 __ 
5
  

 (vi) Directrix x = – 2

 (vii) Directrix y = 1; e =   5 __ 
3
  

 (viii) Vertices (8, 0) and (6, p), Ellipse.

 (ix) Vertices  ( 4,   p __ 
2

   )  and  ( – 6,   3p ___ 
2
   ) , hyperbola.

 (x) Vertex  ( 1,   3p ___ 
2

   ) , Parabola.

Answers

 1.   (i)  e =   3 __ 
2

  , D = 2, r0 =   6 __ 
5

  , r1 = 6,   
25  ( x –   18 ___ 

5
   )  2 
  __________ 

144
   –   

5y2

 ___ 
36

   = 1 
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   (ii)  e =   1 __ 
2

  , D = 1, r0 =   1 __ 
3

  , r1 = 1,   
9  ( x –   1 __ 

3
   )  2 
 ________ 

4
   + 3y2 = 1 

  (iii)  e = 1, D = 4, a = 2.

0

 

  (iv)  e =   1 __ 
2

  , D = 6, r0 = 2, r1 = 6,   x
2

 ___ 
12

   +   
(y + 2)2

 _______ 
16

   = 1

   (v)  e = 1, D =   1 __ 
2

  , a =   1 __ 
4

  .

1
2

p
2

0
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  (vi)  e =   3 __ 
2

  , D =   1 __ 
3

  , r0 =   1 __ 
5

  , r1 = 1,   
25  ( x +   3 __ 

5
   )  2 
 _________ 

4
   – 5x2 = 1

 2.   (i)  r =   9 _________ 
2 + cos q

  ,  (ii) r =   4 _________ 
3 – cos q

  , 

  (iii)  r =   10 __________  
3 + 2 sin q

  ,  (iv) r =   24 ________ 
5 – sin q

  , 

   (v)  r =   2 _________ 
5 + cos q

  ,  (vi) r =   2 _________ 
1 – cos q

  , 

  (vii)  r =   5 __________  
3 + 5 sin q

  ,   (viii) r =   48 _________ 
7 – cos q

  , 

  (ix)  r =   24 _________  
1 + 5sin q

  ,  (x) r =   2 ________ 
1 – sin q

  .



7
C H A P T E R

Integration

7.1 INTRODUCTION

As we have discussed in chapter 2 that the invention of the calculus was based 
on the four major problems in which the fourth problem was to find the area 
enclosed by a given curve. The solution of this fourth problem led to what is 
now termed integral calculus. Before discussing the method for computing 
areas, we will define a new function, called the antiderivative. An antidarivatve 

of a function f is a new function F having the property that   dF ___ 
dx

   = f

Antiderivative: Suppose a function f defined on [a, b]. If there exists a 
function y = F(x) such that F is continuous on [a, b] differentiable on open 
interval]a, b[, and the derivative of F is f for every x in ]a, b[; that is, if 

  F ¢(x) =  
 dF

 ___ 
dx

   = f (x), " x Œ[a, b]

 Then F is called an antiderivative of f on [a, b] and 

  F = Ú  f (x)dx = Ú f.  (7.1)

 Above no tation is read “F(x) is the integral of f (x) with respect to x”, 
or “F is an antiderivative of f”. If the function F exists, then f is said to be 
integrable, the process of calculating an integral is called integration. The 
variable x is called the variable of integration, and the function f is called 
the integrand.

 We know that   
d(x2)

 _____ 
dx

   = 2x, hence Ú 2x dx = x2. But the derivative of any 

constant term is zero, so that x2 + 1, x2 – 2, x2 + 2p are also the antiderivative 
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of 2x. To see this, we have   
d(x2 + c)

 ________ 
dx

   = 2x. So 2x have an infinite number of 

antiderivatives. If F is an antiderivative of f, then so is F + c for every constant 

c, since   
d(F + c)

 ________ 
dx

   =   
d(F)

 ____ 
dx

   +   
d(c)

 ____ 
dx

   = f.

Theorem If there are two differentiable functions F and G have the same 
derivative, then they differ by a constant. That is, 

 If F ¢(x) = G ¢(x), then F(x) – G(x) = c.

 The above theorem allows us to define the general antiderivative or 
indefinite integral of f as F(x) + c, where F some antiderivative of f and c is 
an arbitrary constant. 

 The above theorem allows us to define the general antiderivative or 
indefinite integral of f as F(x) + c, where F some antiderivative of f and c is 
an arbitrary constant. 

 In the earlier classes we have find the indefinite integral of so many 
functions, for example 

Ú k dx  = kx + c, Ú xr, dx =   x
r + 1 _____ 
r + 1

   + c, Ú sin x dx = – cos x + c, Ú cos x

dx = sin x + c º

 Some other basic indefinite integration formulas are:

 Ú   1 __ x   dx = log |x| + c, Ú ax dx =   1 _____ 
log a

   ax + c, Ú ex dx

= ex + c, Ú  sec2 x dx = tan x + c, 

 Ú sec x tax x dx = sec x + c, Ú csc2x dx

= – cot x + c = –csc x + c, 

 Ú tan x dx = log |sec x| + c, Ú cot x dx = log |sin x| + c, Ú sec x dx

= log |sec x + tan x| + c, 

 Ú csc x dx = – log |csc x + cot x| + c, Ú   dx
 ______ 

a2 + x2
   =   1 __ a    tan–1   x __ a   + c, 

  { Ú   dx ________ 
x ÷ 

______

 x2 – a2  
     =   1 __ a   sec –1 |   x __ a   |  + c, Ú   dx _______ 

 ÷ 
______

 x2 – a2  
   = log  ( x +  ÷ 

______

 x2 – a2   )  + c,

 (0 < a < |x|) , Ú   dx _______ 
 ÷ 

_____

 a2 –x2  
   = sin–1  |   x __ a   |  + c, |x| < a,
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 Ú   dx _________  
 ÷ 

________

  a2 + x2   
   = log  ( x +  ÷ 

_______

 a2 + x2   )  + c, Ú   dx  ______ 
a2 – x2

   =   1 ___ 
2a

   log  |   a + x _____ a – x   |  + c, 

 Ú   dx ________ 
x ÷ 

______

 x2+ a2  
    =   –1 ___ a   log  |   a +  ÷ 

______

 a2+ x2  
  ___________ x   |  + c. Ú  log x dx = x log x – x + c. 

7.2 APPROXIMATION AREA UNDER THE CURVE 

Suppose we want to find out the area of the region which is bounded above 
by a curve y = f(x), below by the x-axis and the line x = a and x = b,
Fig. 7.1. Let the interval [a, b] is divided into n subintervals [xi – 1, xi] of equal 
length. Choose an arbitrarily point xi

* in each interval [xi – 1, xi]. The number 
f( x 1  

* ) give us height of the our n rectangles and base of each rectangle is of 
length xi – xi – 1 = Dx. Then the area Ai of the ith rectangle is Ai = length × 
breadth = f( x 1  

* ) Dx, and the total area is 

   A a  
b  ª  S 

i=1
  

n

    f ( x i  
* ) D x (i) (7.2)

Fig. 7.1

The Definite integral: Let the function f defined on [a, b] with a < b. Then 

the definite integral of the function f over the interval[a, b] written  Ú 
a
   

b

    f(x)dx, 
is given by

    Ú 
a
   

b

   f(x)dx = limmax Dxi Æ 0  S 
i=1

  
n

     f( x i  
* ) Dxi (7.3)

(Each rectangle becomes “thinner and thinner”, the area of the region enclosed 
by the rectangles seems to get closer to the area of the regions under the 
curve).
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 The area of the region bounded above by a curve y = f(x), below by the x-axis 

and the line x = a and x = b for a < b, define by the formula  Ú 
a
   

b

    |f(x)|dx.

Note: If a < b and if f(x) is nonnegative for a £ x £ b, then |f(x)| = f(x), and 

in this case area =  Ú 
a
   

b

   f(x)dx, if f(x) is negative for some values of x in [a, b], 

then the area is sometimes called the net area of f over [a, b]

7.3 SOME RESULTS RELATED TO THE DEFINITE INTEGRAL 

 (i) If c be a constant, then  Ú 
a
   

b

    c dx = c(b – a) particularly c = 1  Ú 
a
   

b

   1 dx

= (b – a).

 (ii) If a = b,  Ú 
a
   

a

    f(x) dx = 0.

 (iii) If a < b, and  Ú 
a
   

b

   f(x) dx exists, then  Ú 
b
   

a

   f(x) dx = –  Ú 
a
   

b

    f(x) dx

  i.e.  Ú 
1
   

0

   x4dx = – Ú 
0
   

1

   x4 dx = –   1 __ 
5
  .

 (iv) If f(x) and g(x) are define and continuous in [a, b], then

     Ú 
a
   

b

    [ f(x) + g(x)]dx  =  Ú 
a
   

b

   f(x)dx +  Ú 
a
   

b

    g(x) dx.

  Proof: Suppose F(x) and G(x) are the antiderivatives of f(x) and g(x) 
respectively 

  Then   Ú 
a
   

b

    f(x)dx +  Ú 
a
   

b

    g(x)dx = [F(x) ] a  
b  + [G(x) ] a  

b  = [F(b) – F(a)] + [G(b)

– G(a)] = [F(b) + G(b)] – [F(a) + G(a)] = [F(x) + G(x) ] a  
b  =  Ú 

a
   

b

   [ f(x)

+ g(x)] dx.

  i.e.  Ú 
0
   

  

p __ 
2 

 
    [x + sin x]dx =  Ú 

0
   

  p __ 
2

  

   x dx +  Ú 
0
   

  p __ 
2

 
 

   sin x dx =   [   x2

 __ 
2

   ]  
0
  

  p __ 
2

  
  +   [ – cos x ]  

0 
 

  p __ 
2
   
 

   =    p
2

 __ 
8

   – 0 + 0 – (–1) =   p
2

 __ 
8 

   + 1.

 (v) If the function f is integrable on [a, b] and if a < c < b, then f is 
integrable on [a, c]
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  And  Ú 
a
   

b

    f(x)dx =  Ú 
a
   

c

   f(x)dx +  Ú 
c
   

b

   f(x)dx.

Proof:  Ú 
a
   

C

    f(x)dx +  Ú 
c
   

b

    f(x)dx = [F(x) ] a  
c  + [F(x) ] c  

b  = [F(c) – F(a)] + [F(b) 

– F(c)] = [F(b) – F(a)] = [F(x) ] a  
b  =  Ú 

a
   

b

   f(x)dx.

y

x
a b c

A1 A2

Fig. 7.2

 Figure 7.2 shoes that the area  Ú 
a
   

b

    f(x)dx = area A1 + area A2 =  Ú 
a
   

c

    f(x)dx 

+  Ú 
c
   

b

    f(x)dx.

Fig. 7.3

i.e. To find the area of the region enclosed by the line y = x, and x = – 2 
and x = 1. Figure 7.3 we can use the above formula as 

   Ú 
–2

  
1

     |x|dx =  Ú 
–2

  
0

     |x|dx +  Ú 
0
   

1 

    |x|dx =   5 __ 
2
  . 

 (vi) If f be integrable, then 

  1.   Ú 
0
   

a

    f(x)dx =  Ú 
0
   

a

    f(a – x)dx. and 

  2.  Ú 
0
   

2a

   f(x)dx =  Ú 
0
   

a

   f(x)dx + Ú 
0
   

a

   f(2a – x)dx. 

Proof 1: Let x = a – t, so dx = – dt, and when x = 0 then t = a, and 
when x = a then t = 0
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  \  Ú 
0
   

a

    f(x) dx = –  Ú 
a
   

0

    f(a – t)dt =  Ú 
0
   

a

    f(a – x)dx or  Ú 
0
   

a

   f(a – x)dx

Proof 2: Now 0 < a < 2a, therefore 

   Ú 
0
   

2a

   f(x) dx =  Ú 
0
   

a

    f(x)dx +  Ú 
a
   

2a

   f(x)dx 

 In the second integral on the right 

 Let x = 2a – t, so dx = – dt, and when x = a then t = a, and when 
x = 2a then t = 0

 \  Ú 
a
   

2a

   f(x)dx = –  Ú 
a
   

0

    f(2a – t)dt =  Ú 
0
   

a

   f(2a – t)dt or  Ú 
0
   

a

    f(2a – x)dx Hence 

   Ú 
0
   

2a

   f(x)dx =  Ú 
0
   

a

   f(x)dx +  Ú 
0
   

a

   f(2a – x)dx

Corollary If f(2a – x) = f(x), then above formula gives 

   Ú 
0
   

2a

   f(x)dx = 2  Ú 
0
   

a

   f(x)dx

 And if f(2a – x) = – f(x), then 2. gives  Ú 
0
   

2a

    f(x)dx = 0. 

 (vii) If f is integrable, then

    Ú 
–a

  

a

     f(x)dx = 2 Ú 
0
   

a

    f(x)dx, if f(X) is even and

    Ú 
–a

  

a

      f(x)dx = 0, if f(x) is odd 

Proof: We know that  Ú 
–a

  

a

    f(x)dx =  Ú 
–a

  
0

    f(x)dx +  Ú 
0
   

a

    f(x)dx (7.4)

 In the first integral on the right 

 Let – x = t, so dx = – dt, and when x = – a then t = a, and when x = 0 then 
t = 0

\  Ú 
– a

  
0

     f(x)dx = –  Ú 
a
   

 0

   f(–t)dt =  Ú 
0
   

a

   f(– t)dt or  Ú 
0
   

a

   f(– x)dx. Put this value in (7.4), we 

have
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   Ú 
–a

  

a

    f(x)dx =  Ú 
0
   

a

   f(– x)dx +  Ú 
0
   

a

   f(x)dx  (7.5)

 If f(x) is even, then f(– x) = f(x), from (7.5), we have

   Ú 
–a

  

a

     f(x)dx = 2  Ú 
0
   

a

    f(x)dx

 And if f(x) is odd, then f(– x) = – f(x), from (7.5), we have

   Ú 
–a

  

a

    f(x)dx = 0.

7.4 FUNDAMENTAL THEOREM OF INTEGRAL CALCULUS

First fundamental theorem of integral calculus: Let f be continuous on 
[a, b] if F is any antiderivative of f on [a, b] then

   Ú 
a
   

b

    f(x)dx = F(b) – F(a). 

Proof: Let F be the antiderivative of a function f which is continuous and 
integrable on [a, b] then by definition of the antiderivative, F is continuous on 
[a, b] and differentiable on]a, b[.

 Let a = x0 < x1 < x2 < x3 º º º º < xn = b be a regular subinterval 
of [a, b] use the mean value theorem in the subinterval [xi–1, xi] we have

  F(xi) – F(xi – 1) = F ¢( x i  
* )(xi – xi – 1) = F ¢( x i  

* ) Dxi  (7.6)

 Where xi – 1 <  x i  
*  < xi. Thus

   S 
i=1

  
n

    |F(xi) – F(xi – 1)] =  S 
i=1

  
n

    F ¢( x i  
* ) Dxi (7.7)

 But we know that

 S 
i=1

  
n

    |F(xi) – F(xi – 1)] = [F(x1) – F(x0)] + [F(x2) – F(x1)] + ... [F(xn) – F(xn – 1)] 

   = F(xn) – F(x0) = F(b) – F(a) 

 Hence from (7.7), we have

   S 
i=1

  
n

    F ¢( x i  
* ) Dxi = F(b) – F(a)

 Taking limit as Dxi Æ 0 of both side, we obtain

 limDx Æ 0[F(b) – F(a)] = li m Dxi Æ 0   S 
i=1

  
n

    F ¢( x i  
* ) Dxi  (7.8)

 Since F is antiderivative of f, we have
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  F ¢( x i  
* ) = f( x i  

* ) (7.9)

 From (7.8) and (7.9), we obtain

|F(b) – F(a)] = li m Dxi Æ 0   S 
i=1

  
n

    f( x i  
* )Dxi =  Ú 

a
   

b

    f(x)dx

(use equation (7.3) of section (7.2)

Example 1 Calculate  Ú 
0
   

1

   xdx 

Solution We know that   x
2

 __ 
2

   is an antiderivative for x. Thus 

   Ú 
0
   

1

   xdx =   1 __ 
2

   – 0 =   1 __ 
2
  .

Example  2 Calculate  Ú 
0
   

p

    cos x dx 

Solution We know that sin x is an antiderivative for cos x. Thus

  Ú 
0
   

p

    cos x dx = sin p – sin 0 = 0.

Second fundamental theorem of integral calculus: If a function f is continuous 

on [a, b], then the function G(x) =  Ú 
a
   

x

  f(t)dt  is continuous on [a, b] differentiable 

on ]a, b[ and for every x in ]a, b[

G¢(x) = f(x)

 That is, G is an antiderivative of f on the interval [a, b]

Proof: We know that

  G ¢(x) =   lim    
Dx Æ 0

    
G(x + Dx) – G(x)

  _______________ 
Dx

   (7.10)

 Since G(x) =  Ú 
a
   

x

   f(t)dt = area under the curve above y = f(x), below x-axis 

and between x and a, Fig. 7.4 then assuming that f > 0 on [a, b].

 If Dx is small, then Fig. 7.4 shows that G(x + Dx) – G(x) ª f(x)Dx, or

    
 G(x + Dx) – G(x)

  _______________ 
Dx

   ª   
f(x) Dx

 ______ 
Dx

   = f(x)  (7.11)
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f x( ) f x x( + )D

a b
x x x+ D

Dx

Area ( )G x
A G x x G xDx = ( + ) – ( )D

y f x= ( )

x

y

Fig. 7.4

 As for as Dx Æ 0, then from equations (7.10) and (7.11), we have

  G ¢(x)  =   lim   
DxÆ0

    
G(x + Dx) – G(x)

  _______________ 
Dx

   = f(x),

 Hence proved.

7.5 INTEGRATION BY SUBSTITUTION

We know that the derivative of F(g(x)) is

    
d[F(g(x))]

 _________ 
dx

   = F ¢(g(x))g ¢(x) (by chain rule) 

 In integral form it can be written as 

ÚF ¢(g(x))g ¢(x)dx = F(g(x)) + c

 If F is antiderivative of f, then 

  Ú f (g(x)) g ¢(x) dx = F(g(x)) + c (7.12)

 Now let u = g(x), then   du ___ 
dx

   = g ¢(x) dx and in differential form it can be 

written as du = g ¢(x)dx, with this notation above equation can be expressed 
as 

   Ú f(u) du = F(u) + c (7.13)

 If we evaluate an integral by converting the equation (7.12) into (7.13) 
with the substitution u = g(x) and du = g ¢(x) dx then this process is called the 
method of u-substitution. 

Example 3 Calculate Ú  ÷ 
_____

 2 + x   dx 
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Solution Let u = g(x) = 2 + x Then du = dx and

  Ú  ÷ 
_____

 2 + x   dx = Ú  ÷ 
__

  u   du =   2 __ 
3
   u 

  3 __ 
2
  
  + c =   2 __ 

3
   (2 + x ) 

  3 __ 
2
  
  + c

Example 4 Calculate Ú x 
3
 ÷ 

______

 2 + x2   dx

Solution Let u = g(x) = 2 + x2. Then du = 2x dx and

  Ú x 
3
 ÷ 

______

  2 + x2   dx =   1 __ 
2

   Ú  u 
  1 __ 
3

  
  du =   1 __ 

2
   .   3 __ 

4
    u 

  4 __ 
3
  
  + c =   3 __ 

8
   (2 + x2 ) 

  4 __ 
3
  
  + c

Warring: This method of u-substitution will do not work if the chosen u 
and the computed du cannot be used to produce an integrand in which no 
expressions involving x remain, or if its not possible to evaluate the resulting 
integral. For example, the substitution u = 2 + x2, du = 2xdx and u = x2, 
du = 2xdx will not work respectively of the following integrals 

 (i) Ú  ÷ 
______

 2 + x2   dx =   1 ___ 
2x

   Ú  u 
  1 __ 
2

  
  du cannot be evaluate, (ii) Ú 2x sin x4 dx 

= Ú sin u2 dx also cannot be evaluate. 

Example 5 Calculate Ú x2 ÷ 
_____

 x – 3   dx 

Solution Let u = g(x) = x –  3. Then du = dx and we have x2 = (u + 3)2

= u2 + 9 + 6u

   Úx2  ÷ 
_____

 x – 3   dx = Ú (u2 + 9 + 6u)  ÷ 
__

 u   du =   2 __ 
7
    u 

  7 __ 
2
  
  + 6 u 

  3 __ 
2
  
  +   12 ___ 

5
    u 

  5 __ 
2
  
  + c

   =   2 __ 
7

   (x – 3 ) 
  7 __ 
2
  
  + 6 (x – 3 ) 

  3 __ 
2
  
  +   12 ___ 

5
   (x – 3 ) 

  5 __ 
2
  
  + c

Example 6 Calculate Ú sin3x dx

Solution Ú sin3x dx = Ú sin2x sin x dx = Ú (1 – cos2x) sin  x  dx

 Now let  u = g(x) = cos x. Then du = – sin x dx and

  Ú sin3x dx = Ú(1 – cos2x) sin x dx = – Ú(1 – u2)du

   =   1 __ 
3

  u3 – u + c =   1 __ 
3
   cos3x – cos x + c.

 Some other useful trigonometric substitutions are

 For  ÷ 
_______

 a2 – x2   x = a sin q  –   p __ 
2
   £ q £   

p __ 
2
  

 For  ÷ 
_______

 a2 + x2    x = a tan q  –   p __ 
2
   £ q £   

p __ 
2
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 For  ÷ 
______

 x2 – a2    x = a sec q   0 £ q <   p __ 
2
   if x ≥ a

       p __ 
2
   < q £ p if £ – a

7.6 INTEGRATION BY PARTS 

There is an another important method of integration which is called the 
integration by parts, and this method is derived from the product rule of 
differentiation.

  d(uv) = u dv + v du  (7.14)

 Integrating both sides, we have

  uv = Úu dv + Úv du or

  Úu dv = uv – Úv du (7.15)

Example 7 Calculate Ú xex dx

Solution This cannot be integrate directly because the x term gets in the way. 
However, if we set u = x and dv = ex, then du = dx, v = Ú ex dx = ex and

Ú xex dx = Ú u dv = uv –  Ú v du = xex – Ú exdx = xex – ex + c

Example 8 Calculate Ú log x dx

Solution There are two terms log x and dx, now let u = log x and dv = dx, 

then du =   dx ___  x  , v = x and 

 Úlog x dx = Úu dv = uv – Úv du = x log x – Ú x.   dx ___ x   = x log x – x + c.

 The success of this method is depend on the choice of u = log x and dv. 
For example if we choose u = sin x, and dv = x dx, then du = cos x dx and

v =   x
2

 ___ 
2

  , to calculate the integration 

 Ú x sin x dx, then we have Ú x sin dx =   x
2

 __ 
2
  . sin x – Ú   x

2

 __ 
2
  .cos x dx,

 Which is more complicated than the original. In general there are no any 
hard and fast rules for choosing u and dv. 

 According to Herbert Kasube when the integrand of an integration by parts 
problem consists of the product of two different types of functions, we should 
let u designate the function that appears first in LIATE (logarithmic, inverse 
trigonometric, algebraic, trigonometric, and exponential) and let dv denote 
the rest. i.e. in above example according to LIATE we should be take u = x 
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(algebraic) and dv = sin x (trigonometric) then the example will be solve easily, 
but this choice does not always produce the correct choice of u and dv.

7.7 REDUCTION FORMULAS

A reduction formula, by which we can solve an integral problem by reducing 
it to a problem of solving an easier integral problem, and then reducing that 
to the problem of solving an easier problem, and so on, and the integration by 
parts can be used to derive reduction formulas for integral. For example, if n 
is a positive integer such that n ≥ 2 then the integration by parts can be used 
to obtain the reduction formulas 

  Ú sinn xdx = –   1 __ n   sinn–1 x cos x +   n – 1 _____ n   Ú sinn – 2 x dx (7.16)

  Ú cosn dx =   1 __ n   cosn–1 x sin x +   n – 1 _____ n    Ú cosn – 2 x  dx (7.17)

 To obtain (7.16), write 

  Ú sinn x dx = Ú sinn – 1x sin x dx 

 Let u = sinn – 1 x, dv = sin x dx

  du = (n – 1) sinn  –  2 x cos x dx, v = – cos x 

  Ú sinn x dx = Ú sinn – 1 x sin x dx = Ú u dv = uv – Ú v du

   = – sinn – 1 x cos x + (n – 1) Ú  sinn – 2 x cos x. cos x dx

    = – sinn – 1 x cos x + (n – 1) Ú sinn – 2 x (1 – sin2 x) dx

   = – sinn – 1 x cos x + (n – 1) Ú sinn – 2 x dx – (n – 1)Ú sinnx dx

  n Ú sinn dx = – sinn – 1 x cos x + (n – 1) sinn – 2 x dx

  Ú sinn x dx = –   1 __ n   sinn – 1 x cos x +   n – 1 _____ n   sinn – 2 x dx.

Example 9 Use reduction formula to evaluate

 (i) Ú cos6 x dx,   (ii)  Ú 
0
   

  p __ 
4  

    sin4 x dx.

Solution (i) Ú cos6 x dx

 By equation (7.17), we have

  Ú cos6 x dx =   1 __ 
6

   cos5 x sin x +   5 __ 
6
   Ú cos4 x dx
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 Use the reduction formula for n = 4, we have

=   1 __ 
6

   cos5 x sin x +   5 __ 
6

    {   1 __ 
4
   cos3 x sin x +   3 __ 

4
   Ú cos2 x dx } 

 Now again use the reduction formula for n = 2, we have

 =   1 __ 
6

   cos5 x sin x +   5 __ 
6

    {   1 __ 
4

   cos3x sin x +   3 __ 
4
    (   1 __ 

2
   cos x sin x +   1 __ 

2
   Ú dx )  } 

 =   1 __ 
6

   cos5 x sin x +   5 ___ 
24

   cos3 x sin x +   5 ___ 
16

   cos x sin x +   5 ___ 
16

   x + c

 (ii) By equation (7.16), we have

  Ú sin4 x dx = –   1 __ 
 4

   sin3 x cos x +   3 __ 
4
   Ú sin2 x dx

 Use the reduction formula for n = 2, we have

   = –   1 __ 
4

    sin3 x cos x +   3 __ 
4
    ( –   1 __ 

2
   cos x sin x +   1 __ 

2
   Ú dx ) 

 Ú 
0
   

  p __ 
4

 
 

   sin4 x dx =   { –   1 __ 
4 

  sin3 x cos x –   3 __ 
8
   cos x sin x +   3 __ 

8
   x }  

0
  

  p __ 
4
  
 

  = –   1 __ 
4

     (   1 ___ 
 ÷ 

__
 2  
   )  3    1 ___ 

 ÷ 
__

 2  
   –   3 __ 

8
   .   1 ___ 

 ÷ 
__

 2  
   .   1 ___ 

 ÷ 
__

 2  
   +   3p ___ 

32
  .

Example 10 Use the reduction formula show that

Ú sin3 x dx = –   1 __ 
3
    cos3 x – cos x + c 

Solution By reduction formula (7.16), we have 

  Ú sin3 x dx = –   1 __ 
3

    sin2 x cos x +   2 __ 
3
   Ú sin x + c

  Ú sin3 x dx = –   1 __ 
3

   sin2 x cos x –   2 __ 
3
   cos x + c

   = –    1 __ 
3

   (1 – cos2 x) cos x –   2 __ 
3
   cos x + c

  Ú sin3 x dx =   1 __ 
3

   cos3 x – cos x + c.

Integrating product of trigonometric functions: Suppose m and n are 
positive integers, then the integral

   Ú sinm x cosn x dx (7.18)

 Can be evaluated as 

 When m is odd then substitute u = cos x and break sin2 x = 1 – cos2 x
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 When n is odd then substitute u = sin x and break cos2 x = 1 –  sin2 x

 When both m and n are even then break sin2 x =   1 – cos 2x  __________ 
2

   and

cos2 x =   1 + cos 2x  __________ 
2

   or sin x cos x =   1 __ 
2
   sin 2x.

Example 11 Calculate 

 (i) Ú sin4 x cos5 x dx,  (ii) Ú sin6 x cos6 x dx,

 (iii)  Ú 
0
   

  p __ 
4

 
 

   sin2 x cos4 x dx,  (iv) Ú sin3 x cos5/3 x dx,

 (v)  Ú 
0
   

  p __ 
3

 
 

   sin4 3x cos3 3x dx. 

Solution (i) Ú sin4 x cos5 x dx = Ú sin4 x cos4 x cos xdx

 here n is odd break cos2 x = 1 – sin2 x, we have

   Ú sin4 x cos4 x cos x dx  = Ú sin4 x (1 – sin2 x)2 cos x dx

 substitute u = sin x du = cos x dx

   = Ú u4 (1 – u2)2du = Ú (u4 –2u6 +u8)du

   =   1 __ 
5

   u5 –   2 __ 
7
   u7 +   1 __ 

9
   u9 + c

   =   1 __ 
5

   sin5 x –   2 __ 
7
   sin7 x +   1 __ 

9
   sin9 x + c

(ii)  Ú sin6 x cos6 x dx, here both m and n are even so let sin x cos =   1 __ 
2
   sin 2x, 

we have

  Ú (sin x cos x)6 dx = Ú   (   1 __ 
2

   sin2x )  6  dx let u = 2x du = 2 dx

  Ú   1 ____ 
128

   sin6 u du =   1 ____ 
128

   Ú sin6 u du. Now use the formula (7.16), we have

    1 ____ 
128

   Ú sin6 u du =   1 ____ 
128

    ( –    1 __ 
6
   sin5 u  cos u +   5 __ 

6
   Ú sin4 u du )  

 Use the reduction formula for n = 4, we have

 =    1 ____ 
128 

    [ –    1 __ 
6

   sin5 u cos u +   5 __ 
6
    { –   1 __ 

4
   sin3 u cos u +   3 __ 

4
   Ú sin2 u du }  ] 
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 Now again use the reduction formula for n = 2, after some simplification 
we have

  =   1 ____ 
128

    [ –   1 __ 
6

   sin5 u cos u +   5 __ 
6

   { –   1 __ 
4
   sin3 u cos u +   3 __ 

4
    ( –   1 __ 

4
   sin 2u +   u __ 

2
   )  }  ] 

 = –   1 ____ 
768

   sin5 2x cos x –   5 _____ 
3072

   sin3 2x cos 2x –   15 ______ 
12288

   sin 4x +   15x _____ 
3072 

   + c

(iii)   Ú 
0
   

  

p __ 
4

  

    sin2 x cos4 x dx =  Ú 
0
   

  

p __ 
4

  

 
     ( sin x cos x )  2  cos2 x dx

    =  Ú 
0
   

  

p __ 
4

  

      (   1 __ 
2

   sin 2x )  2    1 __ 
2
   (1 + cos 2x)dx 

    =   1 __ 
8

    Ú 
0
   

  p __ 
4

 
 

   sin2 2x dx +   1 __ 
8
    Ú 

0
   

  p __ 
4  

   sin2 2x cos 2x dx

 Let u = 2x, du = 2dx, 

    =   1 ___ 
16

    (  Ú 
0
   

  p __ 
4

 
 

    sin2 u du +  Ú 
0
   

  p __ 
4
 
 

   sin2 u cos u du ) 
 In first integral we use the formula (7.16) and in second integral formula 
(7.18), we get

  =   1 ___ 
16

     { –   1 __ 
4

   sin 2u +   u __ 
2
   }  

0
  

  p __ 
4
  
  +   1 ___ 

16
     {   sin3u _____ 

3
   }  

0
  

  p __ 
4

  
   =   1 ___ 

16
     { –   1 __ 

4
   sin 4x + x }  

0
  

  p __ 
4
  
  +   1 ___ 

16
    {   sin3 2x ______ 

3
   }  

0
  

  p __ 
4
  
 

  =   p ___ 
64

   +   1 ___ 
48

  .

(iv) Ú sin3 x co s 
  5 __ 
3

  
  x dx = Ú sin2 x sin x co s 

  5 __ 
3
  
  x dx = Ú (1 – cos2 x) sin x  cos 

  5 __ 
3
  
  x dx 

substitute u = cos x du = – sin x dx

  = Ú – (1 – u2) u 
  5 __ 
3

  
 du = – Ú  u 

  5 __ 
3
   
 + Ú  u 

  11 ___ 
3
  
 

  = –   3 __ 
8

    u 
  8 __ 
3

  
  +   3 ___ 

14
    u 

  14 ___ 
3

   
 + c

(v)  Ú 
0
   

  p __ 
3
 
 

   sin4 3 x cos3 3 x dx
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 Let t = 3x  dt = 3 dx

  1 __ 
3

    Ú 
0
   

  p __ 
3

 
 

   sin4 t cos3 t dt

 Now use the formula (7.18), we have

  1 __ 
3

    Ú 
0
   

  p __ 
3

 
 

   sin4 t cos3 t dt =   1 __ 
3

    Ú 
0
   

  p __ 
3

 
 

    sin4 t cos2 t cos t dt =   1 __ 
3
    Ú 

0
   

  p __ 
3
 
 

     sin4 t (1 – sin2 t) 

cos t dt

 Let u = sin t du = cos t dt

  =   1 __ 
3

    Ú 
0
   

  p __ 
3

 
 

   sin4 t (1 – sin2 t) cos t dt =   1 __ 
3
    Ú 

0
   

  p __ 
3
 
 

   u4 (1 – u2)du =   1 __ 
3
     [   u5

 __ 
5
   –   u

7

 __ 
7
   ]  

0
  

  p __ 
3
  
  

  =   1 __ 
3

     [   sin5 t _____ 
5

   –   sin7 t _____ 
7

   ]  
0
  

  p __ 
3

  
  =   1 __ 

3
     [   sin5 3x ______ 

5
   –   sin7 3x ______ 

7
   ]  

0
  

  p __ 
3
  
  = 0.

Some Other Reduction Formulas

  Ú secn x dx =   1 _____ 
n – 1

  secn – 2 x tan x +   n – 2 _____ 
n – 1

   Ú secn – 2 x dx (7.19)

  Ú tann x dx =   1 _____ 
n – 1

   tann – 1 x – Ú tann – 2 x dx (7.20)

  Ú xn exdx = xn ex –  n Ú xn – 1 ex dx (7.21)

  Ú (log x)ndx = x (log x ) n  – n Ú (log x ) n – 1  dx (7.22)

Proof: Ú secn x dx = Ú secn –  2 x sec2 x dx 

 Let u  = secn – 2 x dv = sec2 x dx du = (n – 2) sec n – 2 x tan x dx

 Ú secn x dx = Ú secn – 2 x sec2 x dx = Ú u  dv = secn – 2 x tan x – (n – 2)

Ú secn – 2 x tan2 x dx

   = secn – 2 x tan x – (n – 2) Ú secn – 2 x (sec2 x – 1) dx

   = secn – 2 x tan x + (n – 2) Ú (secn – 2 x – secn x) dx

   = secn – 2 x tan x + (n – 2) Ú (secn – 2 x dx – (n – 2) Ú secn x  dx 

 Ú secn x dx =   1 _____ 
n – 1

   secn – 2 x tan x +   n – 2 _____ 
n – 1

   Ú secn – 2 x dx
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Proof: Ú tann x dx = Ú tann – 2 tan2 x dx = Ú tann – 2 (sec2 x – 1) dx 

   = Ú tann – 2 x sec2 x dx – Ú tann – 2 x dx  (7.23)

 In first integral of (7.23)

  Let u = tann – 2 x dv = sec2 x dx du = (n – 2)  tann – 3 x sec2 x dx then 

 Ú tann – 2 x sec2 x dx  = Ú u dv = tann – 2 x tan x – (n – 2) Ú tann – 3 x sec2 x tan x dx

   =   tann – 1 x _______ 
(n – 1)

    (7.24) 

 From (7.23) and (7.24), we have 

  Ú tann x dx =   1 _____ 
n – 1

   tann – 1x – Ú tann  –  2x dx 

Proof: To prove formula (7.21) 

 Let u = xn dv = ex dx du = n xn – 1 dx then 

  Ú xnex dx = Ú u dv = xn ex – n Ú xn – 1 ex dx 

Proof: To prove formula (7.22) 

 Let u = (log x)n dv = dx du = n(logx)n – 1   1 __ x    dx then 

  Ú (log x ) n  dx = Ú u dv = x (log x)n – n Ú (log x)n – 1 dx. 

 Similarly,

  Ú cotn x dx = –   1 _____ 
n – 1

   cotn – 1 x – Ú cotn–2 x dx

  Ú cosecn x dx = –   1 _____ 
n – 1

   cosecn – 2 x cot x +   n – 2 _____ 
n – 1

   Ú cosecn – 2x dx   

    (7.25)

 Now the integral

  Ú tanm x secn x dx can be evaluated as 

 When m is odd break the factor of sec x tan x then substitute u = sec x and 
make tan2 x = sec2 x – 1

 When n is even break the factor of sec2 x then substitute u = tan x and make 
sec2 x = 1 + tan2 x

 When m even and n odd then use sec2 x = 1 + tan2 x to write everything in 
terms of sec x and after that use the formula for power of sec x.

Example 12 Calculate 

 (i) Ú sec4 x dx,   (ii) Ú tan3 x dx,
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 (iii) Ú tan5 x sec2x dx,  (iv) Ú tan2x sec4x dx,

 (v) Ú tan2 x sec x dx.

Solution 

 (i) Ú sec4 x dx

  from formula (7.19), we have

  Ú sec4 x dx  =   1 __ 
3

   sec2 x tanx +   2 __ 
3
   Ú sec2x  dx =   1 __ 

3
   sec2 x tan x +   2 __ 

3
    tan 

x + c 

 (ii) Ú tan3 x dx

  from formula (7.20), we have 

  Ú tan3 x dx  =   1 __ 
2

   tan2 x – Ú tan x dx =   1 __ 
2
   tan2 x – log |sec x| + c

 (iii) Ú tan5 x sec2 x dx 

  Here m is odd; we will use the formula (7.25) for odd m

  Ú tan5 x sec2 x dx  = Ú tan4x sec x sec x tan x dx = Ú (sec2 – 1)2 sec x sec x 
tan x dx 

  Now let u = sec x du = sec x tan x dx

  Ú tan5 x sec2x dx = Ú (sec2 – 1)2 sec x sec x tan x dx = Ú (u2 – 1)2 u 

du = Ú (u5 – 2u3 + u) du

  =   u
6

 __ 
6

   –   u
4

 __ 
2 

  +   u
2

 __ 
2
   + c =   sec6 x _____ 

6
   –   sec4 x _____ 

2
   +   sec2 x _____ 

2
   + c 

 (iv) Ú tan2 x sec4 x dx

  Here n is even, we will use the formula (7.25) for even n

   Ú tan2 x sec4 x dx = tan2 x (1 + tan2 x)sec2 x dx

  Now let u = tan x du = sec2 x dx

  Ú tan2 x sec4 x dx = Ú tan2 x (1 + tan2 x) sec2 x dx = Ú u2 (u2 + 1) du

    =   u
5

 __ 
5

   +   u
3

 __ 
3

   + c =   tan5x _____ 
5
   +   tan3x _____ 

3
   + c

 (v) Ú tan2 x sec x dx.

  Here m is odd and n is even we will use again the formula (7.25)
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  Ú tan2 x sec x dx = Ú (sec2– 1) sec x dx

  Ú sec3 x dx – Ú sec x dx

    1 __ 
2

   sec x tan x +   1 __ 
2

   log |sec x + tan x| – log |sec x + tan x| + c

    1 __ 
2

   sec x tan x –   1 __ 
2

   log |sec x + tan x| + c.

  Ú cosm x sin nx dx = –    cosm x cos nx  ____________ m + n    +   m ______ m  +  n   Ú cosm – 1 x

 sin (n – 1) x dx (7.26) 

  Proof: Let u = cosmx dv = sin nx dx du = – m cosm – 1 x sin dx then 

  Ú cosm x sin nx dx = Ú u dv = –    cosm x cos nx  ___________ n   – m

Ú   cosm – 1 x sin x cos nx dx
   ___________________  n   (7.27)

  Now we know that 

  sin (n – 1) x = sin nx cos x – cos nx sin x

  \  Ú cosm – 1 x cos nx sin x dx = Ú cosm x sin nx dx – Ú cosm – 1 x

         sin (n – 1) x dx (7.28)

  From (7.27) and (7.28), we have 

  Ú cosmx sin n x dx = –   cos m x cos nx  ___________ m + n   +   m ______ m + n   Ú cosm –1 x sin (n – 1) x dx

  Similarly, we can establish the following:

  Ú cosm x cos nx dx =   cosm x sin nx  ___________ m + n  +   m _____ m + n  

      Ú cosm – 1 x cos (n – 1) x dx (7.29)

   Ú sinm x cos nx dx = –   n sinm x sin nx + m sinm – 1 x cos x cos nx     ____________________________________   
m2 – n2

  

    +   
m (m – 1)

 _________ 
m2 – n2

   Ú sinm – 2 x cos nx dx (7.30)

  Ú sinm x sin nx dx =   nsinm x cos nx – m sinm–1 x cos x sin nx    ___________________________________   
m2 – n2

  

   +   
m (m – 1)

 ________ 
m2 – n2

  Ú sinm – 2 x sin n x dx (7.31)
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  Ú xn sin mx dx  =   x
n –1
 ____ 

m2
   (n sin mx – mx cos mx) –   

n (n – 1)
 ________ 

m2
  

     Ú xn – 2 sin mx dx (7.32)

  Proof: Let u = xn dv = sin mx dx du = nxn – 1 dx then

  Ú xn sin mx dx = Ú u dv = –   x
n cos mx _________ m   + n Ú   x

n – 1  cos mx dx  _____________ m    (7.33)

  Now for right integral of (7.33) 

  Ú xn – 1 cos mx dx = Ú u dv =   x
n – 1 sin mx  __________ m   – (n – 1) Ú    x

n – 2 sin mx dx
  ____________ m      

    (7.34)

  Where u = xn – 1 dv = cos mx dx du = (n – 1) xn – 2 dx 

  From (7.33) and (7.34), we have 

  Ú xn sin mx dx =   x n – 1

 ____ 
m2

   (n sin mx – mx cos mx) –   
n (n – 1)

 ________ 
m2

   Ú xn – 2sin mx dx 

  Similarly,

  Ú xncos mx dx =   x
n – 1
 ____ 

m2
   (n cos mx + mx sin mx) –   

n (n – 1)
 ________ 

m2
  

Ú xn – 2 cos mx dx (7.35)

  Ú x sinn x dx = Ú   
(sin x – nx cos x) sinn–1 x

   _____________________  
n2

   +   
n (n – 1)

 _______ n  

    Ú x sinn  –  2 x dx (7.36)

  Where n ≥ 2

  Proof: Since n ≥ 2 Ú x sinn x dx = Ú x sin n–1 x sin x dx

  Let u = x sinn – 1 x dv = sin x dx du = {(n – 1) x sinn – 2 x cos x

+ sinn – 1x} dx then 

   Ú x sinn –1 x sin x dx = Ú u dv

   = – x sinn – 1x cos x + Ú x {(n – 1) x sinn – 2 x cos x + sinn – 1 x} cos x  dx

  = – x sinn – 1 x cos x +   sinnx _____ n   + (n – 1) Ú x sinn – 2 x dx – (n – 1) Ú x sinn x dx

  \ Ú x sinnx dx = –x sinn – 1x cos x +   sinnx _____ n   + (n – 1) Ú x sinn – 2 x

dx – (n – 1) Ú x sinn x dx
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 Hence

  Ú x sinn x dx = Ú   
(sin x – nx cos x) sinn – 1x

   _____________________  
n2

   +   
n (n –1)

 _______ n  

Ú x sinn – 2 x dx 

 Similarly,

  Ú x cosnx dx = Ú   
(cos x + nx sin x) cosn – 1 x

   ______________________  
n2

   +    
n (n – 1)

 _________ n  

Ú x cosn – 2 x dx (7.37)

Exercises
 1. Use the reduction formulas evaluate the following

 (i) Ú sin5 x dx,   (ii) Ú sin7 x dx,

 (iii) Ú sin6  x dx,   (iv) Ú cos4 x dx,

 (v)  Ú 
0
   

  p __ 
2  

   sin7x dx   (vi)  Ú 
0
   

  

p __ 
2  

   sin3 dx, 

 (vii)  Ú 
0
   

  p __ 
6  

   cos3 3x dx,   (viii)  Ú 
0
   

  p __ 
8
 
 

   sin4 4x dx, 

 (ix)  Ú 
0
   

  p __ 
4  

   sin4 x dx,   (x)  Ú sin4 x cos4 x dx,

 (xi)  Ú 
0
   

  p __ 
2

 
 

   sin4 x cos2 x dx, (xii)  Ú 
0
   

  p __ 
2
 
 

   sin6 x cos4 x dx, 

 (xiii)  Ú 
0
   

  p __ 
3  

   sin4 5x cos35x dx,  (xiv) Ú sin33x cos23x dx, 

 (xv) Ú sin24x cos34x dx, (xvi)  Ú 
0
   

  

p __ 
4
  

   sin2   x __ 
2
   cos2   x __ 

2
   dx,

 (xvii)  Ú c os 
  1 __ 
3

  
  x sin x dx  (xviii) Ú co s 

  5 __ 
3
  
  x sin3 x dx, 

 (xix)  Ú 
0
   

  p __ 
2

 
 

   sin3 x cos3 x dx, (xx) Ú sec3 x dx, 
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 (xxi) Ú tan4 x dx,   (xxii) Ú tan3 5x dx,

 (xxiii) Ú sec5x dx,   (xxiv)  Ú 
0
   

  p __ 
4  

   tan7x sec4x dx,

 (xxv)  Ú 
0
   

  p __ 
3  

   tan5 x sec3 x dx,  (xxvi) Ú tan 4 4x sec 4x dx,

 (xxvii) Ú tan2 x sec3 x dx, (xxviii) Ú tan3 3x sec4 3x dx, 

 (xxix)  Ú 
0
   

  p __ 
4  

    tan4 x sec4 x dx, (xxx) Ú tan x se c 
  5 __ 
2
  
  x dx, 

 (xxxi) Ú t an 
  3 __ 
2 

  
 x sec4 x dx, (xxxii)  Ú 

0
   

  p __ 
2
 
 

   cos6 x cos 6x dx,

 (xxxiii)  Ú 
0
   

  p __ 
2

 
 

   x sin5x dx,    (xxxiv) Ú cot5 3x dx.

 2. If ln =  Ú 
0
   

  p __ 
4

 
 

   tann x dx, show that ln + ln – 2 =   1 _____ 
n  – 1

  . 

 3. Show that 

 (i)  Ú 
0
   

  

p __ 
2  

   sinn x dx =  Ú 
0
   

  

p __ 
2

 
 

   cosn x dx =   p __ 
2
   ◊   

1.3.5 º (n – 1)
  _____________  

 2.4.6 º n
   when n is even and

n ≥ 2

 (ii)  Ú 
0
   

  p __ 
2

 
 

   sinn x dx =  Ú 
0
   

  p __ 
2

 
 

    cosn x dx =   
2.4.6 º (n – 1)

  _____________  
 3.5.7 º n

   when n is odd and 

n ≥ 3

 4. If ln =  Ú 
0
   

  

p __ 
4  

   x sinnx dx, (n > 1), then show that nln = (n – 1) ln–2 +   1 __ n  .

 5. Show that Ú (log x)5 dx  = x (log x)5 – 5x (log x)4 + 20x (log x)3 – 60x (log x)2 

+ 120 (x log x  – x) + c.
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Answers

 1. (i)  – cos x +   2 __ 
3

   cos2 x –   1 __ 
5
   cos5 x + c, 

  (ii) –   1 __ 
7

   sin6 x cos x –   6 __ 
5

   sin4x cos x –   8 ___ 
35

   sin2x cos x –   16 ___ 
35

   cos x + c 

  (iii)  –   1 __ 
6

   sin5 x cos x –   5 ___ 
24

   sin3 x cos x –   5 ___ 
16

   sin x cos x +   5 ___ 
16

   x + c,

  (iv)    1 __ 
4

   cos3 x sin x +   3 __ 
8

   (sin x cos x + x) + c,

  (v)   16 ___ 
35

  ,   (vi)   2 __ 
3
  ,

  (vii)   2 __ 
9

  ,   (viii)   3p ___ 
64

  , 

  (ix)   3p ___ 
32

   –   1 __ 
4

  ,

  (x)   3 ____ 
128

   x –   1 ____ 
128

   sin 4x +   1 _____ 
1024

    sin 8x + c,

  (xi)   p ___ 
32

  ,   (xii)   3p ____ 
512

  ,

  (xiii) 0,   (xiv) –    1 __ 
9
   cos3 3x +   1 ___ 

15
   cos5 3x + c,

  (xv)   1 ___ 
12

   sin3 4x –   1 ___ 
20

  ,  sin5 4x + c,

  (xvi)   p ___ 
32

   –   1 ___ 
16

  ,

  (xvii) –   3 __ 
4

   co s 
  4 __ 
3

  
  + c,   (xviii)  –   3 __ 

8
   co s 

  8 __ 
3
  
  +   3 ___ 

14
   co s 

  14 ___ 
3
  
  + c, 

  (xix)   1 ___ 
12

  ,

  (xx)    1 __ 
2

   sec x tan x +   1 __ 
2

   log |sec x + tan x| 

  (xxi)    1 __ 
3

   tan3x – tan x + x + c, (xxii)    1 ___ 
10

   tan2 x –   1 __ 
5
   log |sec x| + c,

  (xxiii)   1 __ 
4

   sec3 x tan x +   3 __ 
8

    sec x tan x +   3 __ 
8
   log |sec x + tan x| + c, 

  (xxiv)   9 ___ 
40

  ,   (xxv)   418 ____ 
35

  , 
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  (xxvi)   1 ___ 
16

   sec3 x tan x –   5 ___ 
32

   sec x tan x +   3 ___ 
32

   log |sec x + tan x| + c, 

  (xxvii) sec3 x tan x –   1 __ 
2

   sec x tan x –   1 __ 
2
   log |sec x + tan x| + c, 

  (xxviii)   1 ___ 
18

    tan6 x +   1 ___ 
12

   tan4 x + c, (xxix)   12 ___ 
35

  ,

  (xxx)   2 __ 
5

   se c 
  5 __ 
2

  
  x + c,   (xxxi)   2 __ 

5
    ta n 

  5 __ 
2
  
  x +   2 __ 

9
   ta n 

  7 __ 
2
  
  x + c,

  (xxxii)   p ____ 
128

  ,   (xxxiii)   149 ____ 
225

  ,

  (xxxiv) –   1 ___ 
12

   cot4x +   1 __ 
6

   cot2x +   1 __ 
3
   log sin x + c,

7.8 AREA BETWEEN TWO CURVES 

As we have seen in section 7.2 that the area between a curve y = f (x) and the 
x-axis can be defined as 

  Area =  Ú 
a
   

b

    |f (x)| dx

 Similarly the area between the curve x = f(y) and the y-axis can be defined 
as

  Area =  Ú 
c
   

d

    |f (y)| dy.

x

y

c

d

Area
x f y= ( )

Fig. 7.5

 We will now extend the above area problem as: 

 Suppose we want to find the area of a region which is bounded above by 
y = f (x) below by y = g (x) left by x = a and right by x = b, Fig. 7.7. To find 
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the area we divide this region into n rectangles, Fig. 7.6. Now let a typical 
rectangle with breath Dxi and length {f ( x i  

* ) – g ( x i  
* )}, then the

y

x
f x g x( *) – ( *)i i

y g x= ( )
xi*

b

y f x= ( )
Dxia

Fig. 7.6

y

x

a
y f x= ( )

b

y g x= ( )

Fig. 7.7

area of this rectangle is

 {f ( x i  
* ) – g ( x i  

* )} Dxi

 Where  x i  
*  Œ [xi – 1 – xi] and Dxi = xi – xi – 1.

 Now taking the limit as n increases and the breath of the rectangle approach 
zero we get the area between the curves:

 Area limDxi Æ 0  S 
i = 1

  
n

    {f ( x i  
* ) – g ( x i  

* )} D xi =  Ú 
a
   

b

    |f (x) – g (x)| dx 

 Hence the area between two curves are

  Area =  Ú 
a
   

b

   | f(x) – g(x)| dx  (7.38)

 If the function f and g are positive on the interval [a, b] then the area is 

  Area =  Ú 
a
   

b

    f (x) dx –  Ú 
a
   

b

   g (x) dx  (7.39)
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Example 13 Find the area of the region bounded by y = 2 – x and y = x2

Solution (To find the area first we sketch the curves it not necessary to 
sketch the accurate curve because the purpose of the sketch is to determine 
which curve is the upper boundary and which is the lower). 

 Therefore the Fig. 7.8 shows the upper boundary is y = 2 – x and lower 
boundary is y = x2. The limit of the integration will be the point of intersection 
of these two curves, to obtain these points we equate y = x2 and y = 2 – x and 
this gives

 x2  = 2 – x fi x2 + x – 2 = 0 fi x2 + 2x – x – 2 = 0 or (x + 2) (x – 1) = 0

 Hence, we get 

 x  = – 2 and x = 1 fi a = – 2  and b = 1. f (x) = 2 – x, g (x) = x2

Fig. 7.8

 We obtain the area 

  Area =  Ú 
–2

  
1

    |[(2 – x) – x2]| dx =   [ 2x –   x
2

 __ 
2
   –   x

3

 __ 
3
   ]  

–2
  

1

   =   7 __ 
6
   –  ( –   10 ___ 

3
   )  =   27 ___ 

6
  .

Example 14 Find the area of the region bounded by y = sin 2x, y = 0, x =   p __ 
2
   

and x = p.

Solution The Fig. 7.9 shows the upper boundary is y = 0 and lower boundary 
is y = sin 2x.

 Therefore f (x) = 0, g (x) = sin 2x, a =   p __ 
2
   and b = p

 Fig 7.9
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 We obtain the area

  Area =  Ú 
  p __ 
2

  

  

p

    |[0 – sin 2x]| dx =   [   cos 2x ______ 
2
   ]    p __ 

2
    

p
   =   1 __ 

2
   –  ( –   1 __ 

2
   )  = 1.

Example 15 Find the area of the region bounded by y =   x __ 
4
   y = 4x, and 

y = 4 – x.

Solution Here the region divide in two parts. Fig. 7.10

 In first part the upper boundary is y = 4x and lower boundary is y =   x __ 
4
  

 In second part the upper boundary is y = 4 – x and lower boundary is 
y =   x __ 

4
  

 

Fig. 7.10

 For first part

  f (x) = 4x, g (x) =   x __ 
4
  , a = 0 and b =   4 __ 

5
  

 And for second part

  f (x) = 4 – x, g (x) =   x __ 
4
  , a =   4 __ 

5
   and b =   16 ___ 

5
  

 Total area =  Ú 
0
   

  4 __ 
5

 
 
     |  [ (4x) –   x __ 

4
   ]  |  dx +  Ú 

  4 __ 
5
  

  

  16 ___ 
5
 
 
     |  [ (4 – x) –   x __ 

4
   ]  |  dx

  =   [ 2x2 –   x
2

 __ 
8

   ]  
0
  

  4 __ 
5

  
  +   [ 4x –   x

2

 ___ 
2
   –   x

2

 ___ 
8
   ]    4 __ 

5
   
 

  16 ___ 
5
  
 

   =   6 __ 
5

   +   154 ____ 
25

   =   184 ____ 
25

  .
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Reversing the roles of x and y
We are in the habit of writing every relation between x and y in terms of x as a 
function of x. However, there are so many problems which are more convenient 
to treat x as a function of y. For example to find the area of the region between 
the curves x = y2 – 4 and x + 2y = 4 is more convenient to treat x as a 
function of y. We will now show how this can be done. Suppose we want to 
find the area of a region which is bounded above by y = d below by y = c 
left by x = v(y) and right by x = w(y), (Fig. 7.11). In this case the formula of 
the area will be 

  Area =  Ú 
c
   

d

     |w (y) – v (y)| dy (7.40)

Fig. 7.11

Example 16 Find the area of the region bounded by y2 = x + 4 and x + 2y = 4.

Solution The Fig. 7.12 shows the right boundary is x + 2y = 4 and left 
boundary is y2 = x + 4. The limit of the integration will be the point of 
intersection of these two curves, and this gives

Fig. 7.12

   y2 = 4 – 2y + 4 fi y2 + 2y – 8 = 0 or (y – 2) (y + 4) = 0

 Hence, we get

 y  = – 4 and y = 2 fi c = – 4 and d = 2. w (y) = 4 – 2y, v (y) = y2 – 4
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 Now from formula (7.40), we have

  Area =  Ú 
–4

  
2

     |(4 – 2y) – (y2 – 4)| dy =  Ú 
–4

  
2

     |8 – 2y – y2|

dy =   [ 8y – y2 –   
y3

 __ 
3
   ]  

–4
  

2

   = 36.

Example 17 Find the area of the region bounded by y3 – 4y2 + 3y = x and 

x = y2 – y.

Solution The Fig. 7.13 shows that the region divide in two parts. In first part 
the right boundary is y3 – 4y2 + 3y = x and left boundary is x = y2 – y, and 
in second part the right boundary is x = y2 – y and left boundary is y3 – 4y2 
+ 3y = x. 

Fig. 7.13

 The limit of the integration will be the point of intersection of these two 
curves, and this gives

  y3 – 4y2 + 3y = y2 – y 

fi  y (y2 – 5y + 4) = 0 or y(y – 1)(y – 4) = 0 

 Hence, we get

 Now from formula (7.40), we have

 Total area  =  Ú 
0
   

1

    |[y3 – 4y2 + 3y) – (y2 – y)]| dy +  Ú 
1
   

4

    |[(y2 – y)

– (y3 – 4y2 + 3y)]| dy =   7 ___ 
12

   +   45 ___ 
4
   =   71 ___ 

6
  .

Note: There is no any general rule for choose the formula (7.38) or (7.40). 
In most cases an inspection of the graph of the area being considered will 
indicate which is suitable. 
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Exercises  

 1. Find the area bounded by the curves

 (i) y = x3 and y =  ÷ 
__

 x  ,  (ii) y = x2 and y = 2x, 

 (iii) y = x2 and y = 3x + 4, (iv) y = e3x, y = ex x = 0, x = log 3,

 (v) y = cos 2x, y = 0, x =   p __ 
4
  , x =   3p ___ 

4
  . 

 (vi) y = cos x, y = sin x, x = 0, x = 2p

 (vii) y = x3 – 4x, y = 0, x = – 2, x = 2,

 (viii) y =  |   x __ 
2

   | , y =   1 _____ 
1 + x2

   , 

 (ix) y = 2 + |x –1|, y = –   1 __ 
6
   x + 8,

 (x) x = 2 sin y, x = 0, y =   p __ 
4
  , y =   3p ___ 

4
  .

 2.  Find the area bounded by the curves y = x2 + 3x + 5, y = – x2 + 5x 
+ 9, x = – 1 and x = 3.

 3. Find the area of the region bounded by the curves y = x2 and y = 3x 
by integrating 

 (i) With respect to x   (ii) With respect to y.

 4. Find the area of the region bounded by the curve  x 
  1 __ 
2
  
  +  y 

  1 __ 
2
  
  =  a 

  1 __ 
2
  
  and the 

coordinate axes.

 5. Find the area of the region bounded by the parabola y = 2x – x2 and 
the x-axes.

 6. Find the area of the region bounded by the parabolas y2 = 4a (x + a) 
and y2 = 4b (b – x). 

Answers

 1. (i)   5 ___ 
12

  ,   (ii)   4 __ 
3
  ,
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  (iii)   125 ____ 
6

  ,     (iv)   2 __ 
3
  ,

       

  (v) 1,    (vi) 4 ÷ 
__

 2  ,

    

  (vii) 8,     (viii)   p __ 
2
   –   1 __ 

2
  ,

     

  (ix) 35,     (x) 2 ÷ 
__

 2   ,

    

3
4
p

p
4
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 2.   38 ___ 
3

  ,

   

 3. (i)   9 __ 
2

  ,   (ii)   9 __ 
2
  ,

 4.   a __ 
6

  ,   5.   4 __ 
3
  ,

 6.   8 __ 
3

    ÷ 
___

 ab   (a + b).

7.9 AREAS OF SURFACE OF REVOLUTION 

A surface of revolution is formed when a curve rotated about a line, Fig 7.14.

Curve Curve Curve Curve

 

 Fig. 7.14 Some surfaces

 Above figures shows that if we revolve a semi circle bout a line then we 
get a surface of the sphere and we know that the surface area of the sphere 
with radius r is 4pr2, if we revolve a parallel line about a line then we get a 



Integration 7.33 

surface of a cylinder and the lateral surface area of the cylinder with radius r 
and height h is 2prh, and if we revolve a line which makes a fixed angle with 
a line then we get a surface of a right circular cone and we also know that 
the lateral surface area of this right circular cone with base radius r and slant 
height l is prl.

 Now suppose we want to find the area of the surface generated by revolving 
the graph of a positive function y = f (x), about the x-axis, where a £ x £ b, 
Fig. 7.15. Now divide [a, b] into n partition, in which one partition is PQ, 
Fig. 7.16. As we revolve this arc PQ about x-axis, the line segment sweeps out 
a part of a cone called frustum of the cone whose axis lies along the x-axis, 
Fig. 7.17. 

Fig. 7.15

PQ

 Fig 7.16

Fig 7.17
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 The surface area of the frustum approximates the surface area of the band 
swept out by the arc PQ.

 The surface area Ai of the ith frustum is

  Ai = p [r2 (L + li) – r1 L] = p [(r2 – r1) L + r2 li] (7.41)

r2

li

r1

L

Fig. 7.18

 By similar triangles we have   L __ r1
   =   

L + li _____ r2
   or (r2 – r1) L = r1 li  (7.42)

 From (7.41) and (7.42), we have

  Ai = p (r2 + r1) li

  Ai = p {f (xi) + f (xi – 1)}  ÷ 
____________

  (Dxi)
2 + (Dyi)

2    (7.43)

 

Fig. 7.19

  Ai = p{f (xi) + f (xi – 1)}  ÷ 
_____________________

   (Dxi)
2 + {f (xi) – f (xi –1)}

2    (7.44)

 The area A of the original surface will be the some of the areas of the bands 
generated by arcs like arc PQ, is approximated by the frustum area sum

\  A ª  S 
i = 1

  
n

    p {f (xi) + f (xi – 1)}  ÷ 
____________________

   (Dxi)
2 + {f(xi) – f(xi–1)}

2   (7.45) 
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 Now by Mean - Value theorem, we have

    
 f (xi) – f (xi – 1)  ____________  xi – xi – 1

   = f ¢ ( x i  
* ) where xi – 1 <  x i  

*  < xi

 Or

  f (xi) – f (xi – 1) = (xi – xi – 1) f ¢ ( x i  
* ) = Dxi   f ¢ ( x i  

* )

 From (7.45), we get

  A ª  S 
i = 1

  
n

    p {f (xi) + f (xi – 1)}  ÷ 
__________

  1 +{f ¢( x i  
* )}2   Dxi  (7.46)

 By Intermediate-Value theorem, we have

    1 __ 
2

   {f (xi) + f (xi – 1)} = f ( x i  
** ) where xi – 1 <  x i  

**  < xi

 We know the function f is continuous on [a, b]. If we assume that  x i  
**  =  x i  

* , 

then

  A = limmaxDxi Æ0  S 
i = 1

  
n

    2p  f ( x i  
** )  ÷ 

___________

  1 + {f ¢( x i  
* ) } 2    Dxi

   =  Ú 
a
   

b

    2p f (x)  ÷ 
______________

   1 + {f ¢(x)}2 dx  

 Hence

 If f is a smooth (function with a continuous first derivative) nonnegative 
function on |a, b| then the surface area A of the surface of revolution that is 
generated by revolving the portion of the curve y = f(x) about the x-axis is

  A =  Ú 
a
   

b

    2p f (x)  ÷ 
__________

  1 + {f ¢(x)}2   dx =  Ú 
a
   

b

   2p y  ÷ 
___________

  1 +   {   dy
 ___ 

dx
   }  

2
  dx   (7.47)

 For revolution about the y-axis, we interchange x and y in equation (7.47) 
and obtained the formula as 

  A =  Ú 
c
   

d

    2p g(y)  ÷ 
___________

  1 + {g ¢(y)}2   dy =  Ú 
c
   

d

    2px  ÷ _________

  1 +   {   dx ___ 
dy

   }  
2
   dy (7.48) 

 Where the function x = g (y) is smooth nonnegative on [c, d].

 If we have the equation of the curve in parametric form as

  x = x (t), y = y (t), (a £ t £ b)

 Then the surface area A of the surface of revolution that is generated by 
revolving the portion of the curve about the x-axis is define as 

  A =  Ú 
a
   

b

    2p y (t)  ÷ 
_____________

    {   dx ___ 
dt

   }  
2
  +   {   dy

 ___ 
dt

   }  
2
    dt
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 And about the y-axis is define as 

  A =  Ú 
a
   

b

    2p x (t)  ÷ 
_____________

    {   dx ___ 
dt

   }  
2
  +   {   dy

 ___ 
dt

   }  
2
    dt

 Where   dx ___ 
dt

   and   
dy

 ___ 
dt

   are continuous functions in [a, b].

Example 18 Find the area of the surface generated by revolving the curve 
y =  ÷ 

__
 x  , 1 £ x £ 2, about the x-axis, Fig. 7.20.

y

x

Fig. 7.20

Solution Here y =  ÷ 
__

 x  ,   
dy

 ___ 
dx

   =   1 ____ 
2 ÷ 

__
 x  
  ,

A =  Ú 
a
   

b

    2p y  ÷ 
_________

 1 +   {   dy
 ___ 

dx
   }  

2

   dx =  Ú 
1
   

2

   2p ÷ 
__

 x    ÷ __________

  1 +   {   1 ____ 
2 ÷ 

__
 x  
   }  

2
    dx =  Ú 

1
   

2

    2p ÷ 
__

 x     
 ÷ 

______
 4x + 1  
 _______ 

2 ÷ 
___

 x  
   dx

  A  = p  Ú 
1
   

2

     ÷ 
______

  4x + 1   dx =   p __ 
6
     [   { 4x + 1 }  

  3 __ 
2
  
  ]  1  

2

  =   p __ 
6
    ( 27 – 5 ÷ 

__
 5   ) 

  A =   p __ 
6

   (27 – 5  ÷ 
__

 5  ).

Example 19 Find the area of the surface generated by revolving the curve 

y =  ÷ 
______

 16 – x2   – 1 £ x £ 2, about the x–axis.

Solution Here y =  ÷ 
______

 16 – x2  ,   
dy

 ___ 
dx

   =   – x _______ 
 ÷ 

______

 16 –x2  
  , 1 +   {   dy

 ___ 
dx

   }  
2

 

   = 1 +   x2

 ______ 
16 – x2

   =   16 ______ 
16 – x2

  

A =  Ú 
a
   

b

   2p y  ÷ 
_________

 1 +   {   dy
 ___ 

dx
   }  

2

    dx =  Ú 
–1

  
2

    2p  ÷ 
_______

 16 – x2    ÷ ______

   16 ______ 
16 – x2

     dx = 8p  Ú 
–1

  
2

    dx

  A = 8p [x ] –1  
2
   = 24p.
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Example 20 Find the area of the surface generated by revolving the curve 

xy2 =   1 __ 
4

   y6 +   1 __ 
8

  , – 1 £ y £ 2, about the y-axis.

Solution Here x =   1 __ 
4

   y4 +   1 ___ 
8y2

  ,   dx ___ 
dy

   = y3 –   1 ___ 
4y3

  , 1 +   {   dx ___ 
dy

   }  
2
  = 1

+   { y3 –   1 ___ 
4y3

   }  
2
  =   { y3 +   1 ___ 

4y3
   }  

2
 

  A =  Ú 
–1

  
2

     2p x  { y3 +   1 ___ 
4y3

   }  dy = 2p  Ú 
–1

  
2

      (   1 __ 
4
   y4 +   1 ___ 

8y2
   ) 

 { y3 +   1 ___ 
4y3

   } dy

   =   p ___ 
16

    Ú 
–1

  
2

      ( 8y7+ 6y +   1 __ 
y5

   )  dy =   p ___ 
16

     [ y8+ 3y2 –   1 ___ 
4y4

   ]  
–1

  
2
  

  A =   10511 ______ 
1024

   p.

7.10 ARC LENGTH

Suppose we want to find the length of a curve y = f (x) from to x = a to 
x = b, Fig. 7.21.

a b
xi – 1

xi

Dxi

y

x

Dyi
y f x= ( )

   

y

x

Dxi

Dyi

DSi

Q x f x( , ( ))i i

P x f x( , ( ))i i– 1 – 1

Fig. 7.21              Fig. 7.22

 To find the length of the curve divide it into n subintervals of equal length, 
then find DSi the approximate length of the arc in these each subinterval and 
add up. In Fig. 7.22 we have taken a typical subinterval |xi – 1, xi| then the length 
DSi of the curve between xi – 1 and xi can be approximated by the line segment 
PQ.

\  PQ =  ÷ 
____________

  (Dxi)
2 + (D y i )

2   ª DSi (7.49)
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 If the function f is continuous on [a, b] and differentiable on (a, b) then f 
is also continuous on [xi – 1, xi| and differentiable on (xi – 1, xi) By the Men-Value 
theorem we have

     
 f (xi) – f (xi – 1)  ____________  xi – xi – 1

   = f ¢ ( x i  
* ) where xi – 1 <  x i  

*  < xi

 Or

    
Dyi ___ 
Dxi

   = f ¢( x i  
* ), Dyi = Dxi   f ¢( x i  

* ) (7.50)

 From (7.49) and (7.50), we have

  D S i  ª  ÷ 
_________________

  (D x i )
2 + (D x i   f ¢( x i  

* ))2  

 So that

  S =  S 
i = 1

  
n

    D  S i  ª  S 
i = 1

  
n

     ÷ 
__________

  1 + ( f ¢( x i  
* ))2   Dxi

 If f ¢ is also continuous on [a, b] fi ( f ¢)2 is continuous on [a, b] fi  

÷ 
__________

  1 + ( f ¢( x i  
* )2   is continuous on [a, b] fi  ÷ 

__________

  1 + ( f ¢( x i  
* )2   is integrable in [a, b] 

and

   Ú 
a
   

b

     ÷ 
__________

  1 + {f ¢(x)}2   dx =   lim    
max DxiÆ0

   S 
i = 1

  
n

     ÷ 
___________

  1 + {f ¢( x i  
* )}2   Dxi

 Hence

 If f and f ¢ are continuous in [a, b] then the length of the curve f (x) in 
[a, b] is

  S =  Ú 
a
   

b

    ÷ 
__

 1   + {f ¢(x)}2dx =  Ú 
a
   

b

    ÷ 
__

 1   +   {   dy
 ___ 

dx
   }  

2
  dx (7.51)

  Moreover, if the function given of the form x = g(y), where g¢ is continuous 
on [c, d] then the arc length can be define as

  S =  Ú 
c
   

d

     ÷ 
__________

  1 +  {g ¢(y)} 2    dy =  Ú 
c
   

d

     ÷ _________

 1 +   {   dx ___ 
dy

   }  
2
    dy (7.52)

 If we have the equation of the curve in parametric form as 

  x = x(t), y = y(t), (a £ t £ b)

 Then the length of the curve define as

  S =  Ú 
a
   

b

     ÷ 
_____________

    {   dx ___ 
dt

   }  
2
  +   {   dy

 ___ 
dt

   }  
2

    dt

 Where   dx ___ 
dt

   and   
dy

 ___ 
dt

   are continuous functions in [a, b].
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Example 21 Find the length of the curve y =  x 
  3 __ 
2
  
  + 4, 1 £ x £ 2.

Solution y =  x 
  3 __ 
2

  
  + 4,   

dy
 ___ 

dx
   =   3 __ 

2
    x 

  1 __ 
2
  
 ,   {   dy

 ___ 
dx

   }  
2

  =   9 __ 
4
  x,

  S =  Ú 
1
   

2

     ÷ 
______

 1+   9 __ 
4

   x   dx =   1 __ 
2
    Ú 

1
   

2

      ÷ 
______

 4 + 9x   dx =   1 ___ 
27

     [ (4 + 9x ) 
  3 __ 
2
  
  ]  1  

2

 .

  S =   1 ___ 
27

    {  (22) 
  3 __ 
2

  
  – (13) 

  3 __ 
2
  
  } 

Example 22 Find the length of the curve x = (2 + t)2 and y = (1 + t)2, 
0 £ x £ 1.

Solution x = (2 + t)2, y = (2 + t)3,   dx ___ 
dt

   = 2  (2 + t), and   
dy

 ___ 
dt

   = 3(2 + t)2

  S =  Ú 
0
   

1

      ÷ 
___________________

   4 (2 + t)2 + 9 (2 + t)4   dt

   = S =  Ú 
0
   

1

     (2 + t)  ÷ 
____________

  4 + 9 (2 + t)2   dt

  S =   1 ___ 
27

     [ (4 + 9 (2 + t)2 ) 
  3 __ 
2
  
  ]  0  

1

  =   1 ___ 
27

    {  (85) 
  3 __ 
2
  
  +  (40) 

  3 __ 
2
  
  } .

Exercises 

 1. Find the area of the surface generated by revolving the curve about the 
stated axis

 (i) y = x3, 0 £ x £   1 __ 
2

  , about x-axis,  

 (ii) y = 8x, 0 £ x £ 2, about x-axis,

 (iii) y =  ÷ 
_____

 5 – x2  , 0 £ x £ 1, about x-axis, 

 (iv) x = 3 ÷ 
__

 y  , 0 £ y £ 27, about x-axis,

 (v) y =   1 __ 
3

   x3 +   1 __ 
4

   x–1, 1 £ x £ 3, about x-axis

 (vi) x = 5y + 1, 0 £ y £ 1, about y-axis, 

 (vii) y = x2, 1 £ x £ 2,  about y-axis, 

 (viii) x = 2 ÷ 
_____

 2 – y  , 0 £ x £ 1, about y-axis. 
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 2. Find the area of the surface generated by revolving the curve y =  ÷ 
______

 r2 – x2  
, – r £ x £ r, about the x-axis.

 3. Find the area of the surface generated by revolving parametric curve 
x  = t2, y = 2t, 0 £ t £ 4, about the x-axis.

 4. Find the area of the surface generated by revolving parametric curve 
x = t2, y = 2t, 0 £ t £ 2, about the y-axis.

 5. Find the area of the surface generated by revolving parametric curve 

x = 4 cos t, y = sin2t, 0 £ t £   p __ 
2
  , about the y-axis.

 6. Find the area of the surface generated by revolving cycloid x = a 
(t – sin t), y = a (1 – cos t), 0 £ t £ 2p, about the x-axis.

 7. Show that the area of the surface generated by revolving cardioide 

r = a (1 – cos t), about the initial line is   32pa2

 _____ 
5
   .

 8. Show that the area of the surface generated by revolving asteroid x = a 

cos3t, y = a sin3t about the x-axis is   12pa2

 _____ 
5
   .

 9. Find the length of the following curves 

 (i) y =   
4 ÷ 

__
 2  
 ____ 

3
   x 

  3 __ 
2

  
  – 1, 0 £ x £ 1, (ii) y =   x

4

 ___ 
96

   + 3x–2, 1 £ x £ 2, 

 (iii) x =   1 __ 
3

   (y2 + 2 ) 
  3 __ 
2

  
 , 0 £ y £ 2, (iv)  x =   

y3

 __ 
6
   +   1 ___ 

2y
  , 0 £ y £ 2, 

 (v) y =   x
4

 ___ 
96

   + 3x–2, 1 £ x £ 2,

 10. Find the length of the curve  x 
  2 __ 
3
  
  +  y 

  2 __ 
3
  
  = 1.

 11. Find the length of the curve x = cos 4t, y = sin 4t, 0 £ t £   p __ 
2
  . 

 12. Show that the arc of the cardioide r = a (1 – cos q) lying above the 

initial line is bisected at q =   2p ___ 
3
  . 

 13. Find the length of the curve x = a cos3t, y = a sin3t. 

 14 Show that the arc length of the cardioide r = a (1 + cos q) measured 

from the point q = 0 upto the point q =   2p ___ 
3
   is 2 ÷ 

___
 3a  .

Answers

 1. (i)   61p _____ 
1728

   ,   (ii) 32 p ÷ 
___

 65  ,
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   (iii) 4p,   (iv)   p ___ 
27

   { (730 ) 
  3 __ 
2
  
  –(10 ) 

  3 __ 
2
  
  } ,

   (v)   1505 _____ 
36

  ,   (vi) 7p ÷ 
___

 26  ,

   (vii)   p __ 
6

    {  (17) 
  3 __ 
2

  
  –  (5) 

  3 __ 
2

  
  } , (viii)   8p ___ 

36
    { (2 ) 

  3 __ 
2
  
  – (3 ) 

  3 __ 
2
  
  } ,

 2. 4 pr2,    3.   8p ___ 
3
    { (17 ) 

  3 __ 
2
  
  – 1 } ,

 4.   p ___ 
24

    { (65 ) 
  3 __ 
2

  
  – 1 } ,  5.   16p ____ 

3
   {  (5) 

  3 __ 
2
  
  –  (4) 

  3 __ 
2
  
  } , 

 6.   64pa2

 _____ 
3

  , 

 9. (i)   13 ___ 
6

  ,  (ii)   77 ___ 
32

  , (iii)   14 ___ 
3
  , (iv)   9 __ 

8
  , 

 10. 6, 11. 2p, 13. 6a,

7.11 VOLUMES BY SLICING METHOD 

The slice means a part, a portio, a share or a cross section of an object 
Fig. 7.23. In this section we see how can we find the volume of an object by 
use the slice.

    

          Fig. 7.23(a)             Fig. 7.23(b)



7.42 Calculus

    

Cross section

Fig. 7.23(c)               Fig. 7.23(d)

Cross section

    

Cross section

Fig. 7.23(e)                 Fig. 7.23(f)

 Suppose we want to find the volume of a solid Fig. 7.24

a
x

b x

Cross section with area A

Fig. 7.24 Enlarged view of the slice

 Let A(x) be the area of the cross section at each point x in [a, b] is a 
continuous real valued function. Partition the interval [a, b] along the x-axis 
and slice the solid by the planes perpendicular to the x-axis at the partition 
points. The volume of the ith slice between the planes at xi – 1 and xi will be 
the approximately same as the cylinder between these planes. Figure 7.25. 
The volume of this slice or cylinder is

  Vi = base area × height

   = A (xi) Dxi
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x

xi – 1 xi

Dxi

Fig. 7.25

 Therefore the volume V of the solid is approximated by the sum of the 
cylinder volume

  V ª  S 
i=1

  
n

      A(xi) Dxi

 This is Riemann sum for the function A(x) on the interval [a, b]. Taking 
the limit as the number of partitions increases and the widths of the partitions 
approach zero yields the definite integral

  V ª   lim    
max D xi Æ 0

   S 
i=1

  
n

     A (xi) Dxi =  Ú 
a
   

b

    A (x) dx

 Let a solid bounded by the two parallel planes perpendicular to the x-axis at 
x = a and x = b. Let A (x) be area of the cross section of the solid perpendicular 
to the x-axis for x Œ[a, b] the volume of the solid is

  V =  Ú 
a
   

b

    A(x) dx  (7.53)

 Similarly if the cross section is perpendicular to the y-axis the volume of 
the solid is

  V =  Ú 
a
   

d

     A(y) dy (7.54)

 Where solid bounded by the two parallel planes perpendicular to the y-axis 
at y = c and y = d. And A (y) be area of the cross section of the solid 
perpendicular to the y-axis for x Œ[c, d].

Example 23 Find the volume of a solid such that the solid lies between 
the planes perpendicular to the x-axis at x = – 2 and x = 2, the cross section 
perpendicular to the x-axis between these planes run from the semicircle

y = – ÷ 
_____

 2 – x2   and y =  ÷ 
______

 2 – x2  .
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 (i) The cross sections are circular disks with diameters in the xy-plane.

 (ii) The cross sections are squares with bases in the xy-plane.

Solution (i) To find the volume by slicing methods, first we sketch the solid 
and a typical cross section, Fig. 7.26

x y
2 2

+ = 2

y

x

r x= 2 –÷ 2

Fig. 7.26

  Now we find the area of cross section and here the cross sections 
are circular disk with diameters in the xy-plane. Therefore the 
area A(x) of cross section is

 A(x) = pr2 = p(2 – x2)

  Hence the volume is

 V =  Ú 
a
   

b

    A(x) dx = p  Ú 
–2

  
2

     (2 – x2) dx = p   [ 2x   – x3

 ____ 
3
   ]  

–2
  

2

   =   8p ___ 
3
  

.

 (ii) From Fig 7.27 the cross sections are the squares and the area 
A(x) of the cross section is

 A(x) = (side)2 = 4(2 – x2)

y

x

Side of the
square = 2 2 –÷ x

2

x y
2 2

+ = 2

Fig. 7.27
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  Hence the volume is

 V =  Ú 
a
   

b

    A(x) dx = 4  Ú 
–2

  
2

     (2 – x2) dx = 4   [ 2x –   x
3

 __ 
3
   ]  

–2
  

2

   =   32 ___ 
3
  

.

Example 24 Find the volume of right pyramid whose altitude is h and whose 
base is a square with sides of length a.

Solution  The cross section of the right pyramid whose base is the square is 
a square Fig. 7.28 the area A(x) of this cross section of side s from the height 
y from the base is.

Cross section

y

A

B
C

x

s

 Fig. 7.28

h y–

y

h

a
2

s
2

A

B C

Fig. 7.29

   A(x) = (side)2 = (s)2

 To find the relation between s and y from triangle ABC, we have

    
  s __ 
2

  
 __ 

  a __ 
2

  
   =   

h –y
 ____ 

h
   or s =   

a (h – y)
 _______ 

h
  

 Hence the volume is

  V =  Ú 
c
   

d

    A(y) dy  =  Ú 
0
   

h

       (   a (h – y)
 _______ 

h
   )  2  dy =   a

2

 __ 
h2

     [ –  
(h – y)3

 _______ 
3
   ]  

0
  

h

  =   a
2h ___ 
3
  

.
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7.12 VOLUMES BY DISKS METHOD 

Figure 7.14 shows that if we revolve the curve about a line we get some familiar 
surfaces similarly if we revolve a plane region about a line that lies in the same 
plane as the region then we get some solids.

Fig. 7.30

 We can find the volume of these solids as:

 Let f be a continuous and nonnegative function define on the interval [a, b] 
let R be a region that is bounded above by y = f (x) below by the x-axis left 
by x = a and right by x = b. Now we want to find the volume of the solid 
generated by the region R revolving about the x-axis, Fig. 7.31. To solve this 
problem take a cross section of the solid which will be a circular disk of radius 
f (x) perpendicular to the x-axis at the point x, Fig. 7.32.

y

x
a b

y f x= ( )

    

y

x

a

b

f x( )

x

Fig. 7.31                 Fig. 7.32

 Now the area A (x) of this cross section is

  A (x) = p [ f (x)]2

 Hence, from (7.53) the volume V of the solid is 

  V =  Ú 
a
   

b

    A(x) dx =  Ú 
a
   

b

    p [ f(x)]2dx (7.55)
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 Similarly, 

 Let g be a continuous and nonnegative function define on the interval [c, d] 
let R be a region that is bounded right by x = g (y), left by the x-axis above 
by y = d and below by y = c. Now we want to find the volume of the solid 
generated by the region R revolving about the y-axis, Fig. 7.33. To solve this 
problem take a cross section of the solid which will be a circular disk of radius 
g(y) perpendicular to the y-axis at the point y, Fig. 7.34.

x g y= ( )

d

c
x

y

     

d

c
x

y

g y( )

Fig. 7.33               Fig. 7.34

 Now the area A(y) of this cross section is

  A(y) = p[g (y)]2 

 Hence, from (7.54) the volume V of the solid is 

  V =  Ú 
c
   

d

     A(y) dy =  Ú 
c
   

d

     p [g (y)]2 dy  (7.56)

 For example a sphere of radius r can be generated by revolving the upper 
semicircular disk enclosed between the x-axis and x2 + y2 = r2, Fig. 7.35.

  y2 = [ f(x)]2 = r2 – x2

Fig. 7.35
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 And the formula of the volume V of this sphere can be derive as 

V  =  Ú 
a
   

b

     A(x) dx =  Ú 
–r

  

r

      p [ f (x)]2 dx = p =  Ú 
–r

  

r

      (r2 – x2) dx = p   [ r2x –   x
3

 __ 
3
   ]  

–r
  

r

   =   4 __ 
3
   pr3.

 Or

 From Fig. 7.36

V  =  Ú 
c
   

d

     A(y) dy =  Ú 
–r

  

r

      p [g(y)]2 dy = p  Ú 
–r

  

r

      (r2 – y2) dy = p   [ r2y –   
y3

 __ 
3
   ]  

–r
  

r

   =   4 __ 
3 

  pr3.

Fig. 7.36

Example 25 Find the volume of solid that is generated by the region under 
the curve y = 2 ÷ 

__
 x   which is revolved about the x-axis over the interval [0, 4].

Solution From (7.53), and with the help of Fig. 7.37 volume is

 V  =  Ú 
a
   

b

     A(x) dx =  Ú 
0
   

4

    p [ f (x)]2 dx = 4p  Ú 
0
   

4

    x dx = 4p   [   x2

 __ 
2
   ]  

0
  

4

  = 32p.

y

x

y x= 2÷

f x x( ) = 2÷

Fig. 7.37
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Example 26 Find the volume of solid that is generated by the region under 
the curve y =  ÷ 

__
 x   and the lines y = 1, x = 5 which is revolved about the line 

y = 1.

Solution The Fig. 7.38 shows that the radius of the required region is  ÷ 
__

 x   – 1 
and the solid generated in Fig. 7.39.

 The line y = 1 intersect the curve y =  ÷ 
__

 x   at the point (1, 1).

Fig. 7.38

Fig. 7.39

 Therefore the volume is

V  =  Ú 
a
   

b

     A(x) dx =  Ú 
1
   

5

    p [ f (x)]2 dx = p  Ú 
1
   

5

     ( ÷ 
__

 x   – 1)2 dx = p  Ú 
1
   

5

     (x – 2 ÷ 
__

 x   + 1) dx

 = p   [   x2

 __ 
2

   – 2.   2 __ 
3

   x3/2 + x ]  
1
  

5

  = p  [ 13 –   4 __ 
3
   (5)3/2 ] .

Example 27 Find the volume of solid that is generated by the region enclosed 
the curve y =  ÷ 

__
 x   and the lines y = 3, x = 0 which is revolved about the 

y-axis.

Solution The Fig. 7.40 shows that the required region and the solid generated 
in Fig. 7.41.

 The line y = 3 intersect the curve y =  ÷ 
__

 x   at the point (9, 3).
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2

2

4

4 6 8

y = 3

y x= ÷

   

y

x

Fig. 7.40             Fig. 7.41

 Therefore the volume is

  V  =  Ú 
c
   

d

    A(y) dy =  Ú 
c
   

d

    p[g (y)]2 dy = p  Ú 
0
   

3

    y4 dx = p   [   y5

 __ 
5
   ]  

0
  

3

  = p   243 ____ 
5
  .

7.13 VOLUMES BY WASHERS METHOD 

 The last part of Fig. 7.30 shows that if we revolve the region between two 
curves about a line then we get a solid which have the hole or channels. The 
volume of this solid can be obtained as:

 Let f and g be two nonnegative continuous functions define in the interval 
[a, b] and f  (x) ≥ g (x) " x Œ[a, b] and let R be the region that is bounded above 
by y = f (x), below by y = g (x), left by x = a and right by x = b, Fig. 7.42.

 

y

x

ba

f x( )

g x( )

Radius

 

     Fig. 7.42                 Fig. 7.43

 Then the volume V of the solid of revolution that is generated by revolving 
the region R about the x-axis is

  V =  Ú 
a
   

b

    p (|f (x)]2 – [g (x)]2) dx (7.57)

 Similarly, 

 Let u and v be two nonnegative continuous functions define in the interval 
[c, d] and u (y) ≥ v (y) " y Œ[c, d] and let R be the region that is bounded above 
by y = d below by y = c, left by x = v (y) and right by x = u (y), Fig. 7.44.
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y

x

x
v

y
=

(
)

x
u

y
=

(
)

R

     x
c

d

u y( )
Radius

v y( )

     Fig. 7.44                Fig. 7.45

 Then the volume V of the solid of revolution that is generated by revolving 
the region about the y-axis is

  V =  Ú 
c
   

d

    p([u (y)]2 – [v (y)]2) dy (7.58)

Example 28 Find the volume of solid that is generated by the region enclosed 
the curve y = x2 + 1 and the lines y = x, x = 0 over the interval [0, 2] which 
is revolved about the x-axis.

Solution The Fig. 7.46 shows that the required region and the solid generated 
in Fig. 7.47.

      

x

y

Radius

Fig. 7.46              Fig. 7.47

 V  =  Ú 
a
   

b

    p(| (x)]2 – [g(x)]2) dx =  Ú 
0
   

2

    p ([x2 + 1]2 – [x]2) dx =  Ú 
0
   

2

    p (x4 + x2 + 1) dx

 = p   [   x5

 __ 
5

   +   x
3

 __ 
3

   + x ]  
0
  

2

  = p   166 ____ 
15

  .

Example 29 Find the volume of solid that is generated by the region enclosed 
the curve x = y2 and the line y = x which is revolved about the line (i) y = –1. 
(ii) x = –1.
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Solution (i) The Fig. 7.48 shows the required region.

  f (x) =  ÷ 
__

 x   + 1

  V =  Ú 
a
   

b

    p([ f (x)]2 – [g (x)]2) dx =  Ú 
0
   

1

    p ([ ÷ 
__

 x   +1]2 – [x + 1]2) dx

   =  Ú 
0
   

1

    p (2 ÷ 
__

 x   –x2 –x) dx = p   [ 4    x 
  3 __ 
2
  
  __ 

3
   –   x

3

 __ 
3
   –   x

2

 __ 
2
   ]  

0
  

1

  =   p __ 
2
  .

Fig. 7.48

 (ii) The Fig. 7.49 shows the required region.

  V =  Ú 
c
   

d

    p([u (y)]2 – [v (y)]2) dy =  Ú 
0
   

1

    p ([y + 1]2 – ([y
2 + 1]2) dy

   =  Ú 
0
   

1

    p (2y – y2 – y4) dy = p   [ y2 –   
y3

 __ 
3
   –    

y5

 __ 
5
   ]  

0
  

1

  =   7p ___ 
15

  .

 

Fig. 7.49
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7.14 VOLUMES BY SHELL METHOD 

In last two sections we have discussed the methods for computing the volumes 
of the solid by compute the area of the cross section. There are so many 
problems in which we cannot find the cross section or the integration is too 
difficult. To solve this type of problems we will develop an another method 
called the Shell Method.

 Let f be nonnegative continuous functions define in the interval [a, b], 
" x Œ [a, b] and let R be the region that is bounded above by y = f (x), below 
by x-axis, left by x = a and right by x = b, Fig. 7.50. Suppose we want to 
find the volume of a solid generated by this region revolving about the y-axis. 
Divide the interval [a, b] into n subintervals, thereby subdividing the region R 
into n small rectangles R1, R2 º Rn Fig. 7.52. When we revolved the region R 
about the y-axis then these rectangles generate Cylindrical shells S1, S2, º Sn 
Fig. 7.53.

a b
x

y

Region R

y f x= ( )

      
r1 xi – 1

xi*
xi

h

Dxi r2

      Fig. 7.50                Fig. 7.51

a b
x

y

R1 R2 Rn

             

       Fig. 7.52                  Fig. 7.53

 Cylindrical shell is a solid enclosed by two concentric right circular 
cylinders, Fig. 7.51.
 We can obtain the volume of a shell with outer radius r2 and inner radius 
r1 as



7.54 Calculus

  V = (p r 2  
2  – p r 1  

2 ) h = 2p (r2 – r1).   1 __ 
2
   (r2 + r1) . h

   = 2p. Thickness. Average, Height of the radius.

 Therefore the volume of the ith shell is

  Vi = 2p  x i  
*  f ( x i  

* ) Dxi

 Where   1 __ 
2

   (r2 + r1) =  x i  
*  = average radius, (r2 – r1) = Dxi difference of the 

radius or width of the shell, h = f( x i  
* ) height of the shell Fig. 7.51.

 Add up the volumes of the n cylindrical shells to obtain an approximation 
to the volume of the solid.

  V ª  S 
i = 1

  
n
    2p  x i  

*  f ( x i  
* ) Dxi

 Taking the limit as n increases and Dxi Æ 0

  V =   lim    
maxDxi Æ 0

   S 
i = 1

  
n

    2p  x 1  
*   f ( x i  

* ) Dxi =  Ú 
a
   

b

    2pxf(x) dx.

 Hence,

  V =  Ú 
a
   

b

    2px f (x) dx (7.59)

 Similarly, 

 Let f be nonnegative continuous functions define in the interval [c, d], 
" x Œ [c, d] and let R be the region that is bounded above by y = d, below by 
y = c, left by y-axis and right by x = f (y), Fig. 7.54. Then the volume of a 
solid generated by this region revolving about the x-axis is

  V =  Ú 
c
   

d

    2py f (y) dy (7.60)

y

x

d

c

x f y= ( )

Fig. 7.54

Example 30 Find the volume of solid that is generated by the region enclosed 
the curve y = x2 and the line y = x, which is revolved
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 (i) about the x-axis, by Washer Method,

 (ii) about the y-axis, by Washer Method

 (iii) about the x-axis, by Shell Method, 

 (iv) about the y-axis, by Shell Method

 (i)  The Fig. 7.55 shows the required region

Fig. 7.55

   V =  Ú 
a
   

b

     p([ f (x)]2 – [g (x)]2) dx =  Ú 
0
   

1

    p ([x]2 – [x2]2) dx =  Ú 
0
   

1

    p (x2 – x4) dx

    = p   [   x3

 __ 
3

   –   x
5

 __ 
5

   ]  
0
  

1

  =   2p ___ 
15

  .

 (ii) The Fig. 7.56 shows the required region

Fig. 7.56

   V =  Ú 
c
   

d

    p([u (y)]2 – [v (y)]2) dy =  Ú 
0
   

1

    p([ ÷ 
__

 y  ]2 – [y]2) dy =  Ú 
0
   

1

    p(y – y2) dy

    = p   [   y2

 __ 
2

   –   
y3

 __ 
3

   ]  
0
  

1

  =   p __ 
6

  .
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 (iii) The Fig. 7.57 shows the required region

   V =  Ú 
c
   

d

    2py f (y) dy =  Ú 
0
   

1

    2py ( ÷ 
__

 y   – y) dy = 2p  Ú 
0
   

1

     (  y 
  3 __ 
2
  
  – y2 )  dy 

Fig. 7.57

 (iv) The Fig. 7.58 shows the required region

Fig. 7.58

   V =  Ú 
a
   

b

    2px f (x) dx =  Ú 
0
   

1

   2px (x – x2) dx = 2p  Ú 
0
   

1

    (x2 – x3) dx

    = 2p   [   x3

 __ 
3

   –   x
4

 __ 
4

   ]  
0
  

1

  =   p __ 
6

  .

Example 31 Use cylindrical shell to find the volume of solid that is generated 
by the region enclosed the curve y = x2 over the interval [0, 1] which is revolved 
about the x-axis
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Solution The Fig. 7.59 shows the required region

Fig. 7.59

Exercises 

 1. Use the slicing method to find the volume of a solid such that the solid 
lies between the planes perpendicular to the x-axis at x = – 2 and x = 2, 
the cross section perpendicular to the x-axis between these planes run 

from the semicircle y = – ÷ 
______

 2 – x2   and  ÷ 
______

 2 – x2  .

 (i) The cross sections are equilateral triangle with base in the 
xy-plane.

 (ii) The cross sections are squares with diagonal in the xy-plane.

 2. Use the slicing method to find the volume of a solid such that the base 

of the solid is the region between the curve y = 4 ÷ 
____

 sin x   and the interval  

[ 0,   p __ 
2

   ]  on the x-axis. The cross section perpendicular to the x-axis are 

 (i) equilateral triangles with bases running from the x-axis to the 
curve.

 (ii) squares with bases running from the x-axis to the curve.

     3.   (i) Use the slicing method to find the volume of a solid such that 
the solid lies between the planes perpendicular to the y-axis at 
y = 0 and y = 4, the cross section perpendicular to the y-axis are 
circular disks with diameters running from the y-axis to the curve

x =  ÷ 
__

 3  y2.

 (ii) Find the volume of the solid whose base is the region bounded 
between the curves y = 2x and y = x2 and whose cross sections 
perpendicular to the x-axis are squares.

 4. Find the volumes of the solids generated by revolving the regions 
bounded by the lines and the curves about the y-axis.
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 (i) y =  ÷ 
___

 3x  , y = 0, 0 £ x £ 2, (ii) y =  ÷ 
_____

 4 – x2  , y = 0

 (iii) y =  ÷ 
______

 cos 2x  , 0 £ x £   p __ 
4
  ,  (iv) y = x2, x = 0, x = 2, y = 0, 

 (v) y = x2, y = x3   (vi) y =  ÷ 
______

 29 – x2  , y = 2 

 (vii) y = 4 – x2, y = 0 (viii) x =  ÷ 
__

 y  , x =   
y
 __ 

2
  

 5. Find the volumes of the solids generated by revolving the regions 
bounded by the lines and the curves about the y-axis.

 (i) x =   3 __ 
4

  , x = 0, 1 £ y £ 2,  (ii) y = x3, x = 0, y = 1 

 (iii) x = 4 – y2, x = 0  (iv)  x = y2 x = y + 6, 

 (v) x = 1 – y2, x = 2 + y2, y = –1, y = 1

 (vi) y = x2, x = y2   (vii) x =  ÷ 
_____

 1 + y  , x = 0, y = 4,

 (viii) y = x2 – 2, x = 3, y = 0.

 6. Find the volume of the solid that generated by the region between the 

curve   x2

 ___ 
a2

   +   
y2

 __ 
b2

    = 1 and x-axis.

 7. Find the volume of the solid that generated by the region enclosed by 

the curve y =  ÷ 
_____

 x + 2   y  =  ÷ 
___

 2x   and x-axis is revolved about the x-axis.

 8. Find the volume of the solid that generated by the region enclosed by 

the curve y =  ÷ 
___

 2x   y = 4 – x and x-axis is revolved about the x-axis.

 9. Find the volume of the solid that generated by the region enclosed by 
the curve y =  ÷ 

__
 x    x-axis and x = 4 is revolved about the line (i) x = 4, 

(ii) y = 2,

 10. Use cylindrical shells to find the volume of the solid generated when the 
region enclosed by the given curves is revolved about the said axis.

 (i) y =  ÷ 
___

 2x  , y = 0, x = 4 about the y-axis, 

 (ii) y = x3, y = 0, x = 2 about the y-axis,

 (iii) y =  ÷ 
__

 x  , x = 1, x = 4, y = 0 about the y-axis, 

 (iv) y =   4 __ x   y = 0, x = 1, x = 4 about the y-axis, 

 (v) y = 2x – 1, y = –2x + 3, x = 3 about the x-axis, 
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 (vi) y2 = 2x, y = 2, x = 0 about the x-axis.

 (vii)  x = 3y, y = 3, y = 4, x = 0 about the x-axis.

 (viii) xy = 5, x + y = 6 about the x-axis.

 11. Use cylindrical shells to find the volume of the solid generated when 
the region under the curve y = x3 – 5x2 + 7x over the interval [0, 1] is 
revolved about the y-axis.

 12. Use cylindrical shells to find the volume of the solid generated when 

the region under the curve y =   1 __ 
x5

   x = 1, x = 2, y = 0 is revolved about 
the line x = – 1.

Answers 

 1. (i)   
8 ÷ 

__
 3  
 ____ 

3
  ,   (ii)   16 ___ 

3
  

 2. (i) 4 ÷ 
__

 3  ,   (ii) 32.

 3. (i)   768 p _____ 
5

  ,   (ii)   16 ___ 
15

  , 

 4. (i) 6p, (ii)   32p ____ 
3

  , (iii)   p __ 
2
  , (iv)   32p ____ 

3
  ,

  (v)   2p ___ 
35

  , (vi)   500p _____ 
3

  , (vii)   512p _____ 
15

  , (viii)   64p ____ 
15

  . 

 5. (i)   9p ___ 
2

  , (ii)   3p ___ 
5

  , (iii)   512p _____ 
15

  , (iv)   500p _____ 
3
  , 

  (v) 10p, (vi)   3p ___ 
10

  , (vii)   25 p ____ 
2
  , (viii)   49p ____ 

2
  . 

 6.   4pab2

 ______ 
3

  . 7. 4p, 8. 20   p __ 
3
  ,

 9. (i)   256 p _____ 
15

  , (ii) 8p  ( – 1 +   
3
 ÷ 

__
 2   ___ 

3
   ) . 

 10. (i)    128  ÷ 
__

 2  p _______ 
5

   (ii)   32p ____ 
5

  , (iii) 12p, (iv) 24p,

  (v)   112p _____ 
3

  ,  (vi) 4p, (vii) 74p, (viii)   64p ____ 
3
  .

 11.   154p _____ 
60

  . 12.   202p _____ 
192

   .
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Hyperbolic Functions

8.1 INTRODUCTION

In many physical applications, functions arise that are combinations of exponential 
function ex and e–x for example 

  ex =   e
x + e– x

 _______ 
2

   +   e
x – e– x

 _______ 
2
  

   
  Even part Odd part

 The even part of e x is called the hyperbolic cosine function and odd part of ex 
is called the hyperbolic sine function of x so that the hyperbolic cosine function 
defi ne as

  cos hx =   e x + e– x

 _______ 
2

   for all x

 The domain of cos hx is (– •, •).

 The hyperbolic sine function defi ne as

  sin hx =   e x – e– x

 _______ 
2

   for all x

 The domain of sin hx is (– •, •).

 Other Hyperbolic functions are 

  tan hx =   sin hx ______ 
cos hx

   =   e x – e – x

 _______ 
ex + e – x   domain is (– •, •).

  cot hx =   cos hx ______ 
sin hx

   =   1 ______ 
tan hx

   =   e x + e – x

 _______ 
ex – e – x   domain is all x except x = 0.
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  sec hx =   1 ______ 
cos hx

   =   2 _______ 
e x + e – x   domain is (– •, •).

  csc hx =   1 _____ 
sin hx

   =   2 _______ 
e x – e – x   domain is all x except x = 0.

8.2 DERIVATIVE OF HYPERBOLIC FUNCTIONS

The derivative of Hyperbolic functions defi ne as 

    d ___ 
dx

   cos hx = sin hx

Proof:   d ___ 
dx

   cos hx =   d ___ 
dx

     (   e x + e – x

 _______ 
2

   )  =  (   e x – e – x

 _______ 
2
   )  = sin hx

 Similarly,    d ___ 
dx

   sin hx = cos hx.

Proof:   d ___ 
dx

   sin hx =   d ___ 
dx

    (   e x – e – x

 _______ 
2

   )  =  (   e x + e – x

 _______ 
2
   )  = cos hx

      d ___ 
dx

   tan hx = sec h2x

Proof:   d ___ 
dx

   tan hx =   d ___ 
dx

    (   sin hx ______ 
cos hx

   )  =  (   cos h2x – sin h2x  ______________ 
cos h2x

   )  =   1 ______ 
cos h2x

   = sec h2x

 Because 

  cos h2x – sin h2x =   (   ex + e–x

 _______ 
2
   )  2  –   (   e x – e – x

 _______ 
2
   )  2  = 1. 

 Similarly we can proof 

    d ___ 
dx

   cot hx = – csc h2x,   d ___ 
dx

   sec hx = – sec hx tan hx, 

    d ___ 
dx

   csc h = – cos hx cot hx.

 If u be a function of x. Then 

  d ___ 
dx

   sin hu = cos hu   du ___ 
dx

  ,   d ___ 
dx

   cos hu = sin hu   du ___ 
dx

  ,   d ___ 
dx

   tan hu = sec h2u   du ___ 
dx

  ,   d ___ 
dx

   cot hu

= – cos h2u   du ___ 
dx

  ,   d ___ 
dx

   sec hu = – sec hu tan hu   du ___ 
dx

  ,   d ___ 
dx

   csc hu = – csc hu cot hu   du ___ 
dx

  . 

 For example   d ___ 
dx

   tan h(x2 + 2) = sec h2(x2 + 2)   
d(x2 + 2)

 ________ 
dx

   = 2x sec h2(x2 + 2).
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 To draw the graphs of the hyperbolic functions we know that sin hx > 0 if 
x > 0, sin hx < 0 if x < 0. If x = 0 then sin hx = 0 and cos hx = 1. Therefore,
cos hx is decreasing if x < 0, and increasing if x > 0, and x = 0 is the critical 

point. Further   d
2

 ___ 
dx2

   (cos hx) = cos hx > 0, so that cos hx is concave up and the 

point (0, 1) is a minimum, Fig. 8.1. Since   d ___ 
dx

   sin hx = cos hx > 0, therefore sin 

hx always increasing.

   d
2

 ___ 
dx2

   (sin hx) = sin hx, so that sin hx is concave down for x < 0 and concave up 

for x > 0, and (0, 0) is a point of infl ection, Fig. 8.2.

    

        Fig. 8.1(a)              Fig. 8.1(b)

    

Fig. 8.2(a)               Fig. 8.2(b)

 Similarly

     

Fig. 8.3(a) y = tan hx            Fig. 8.3(b) y = cot hx
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Fig. 8.3(c) y = sec hx             Fig. 8.3(d) y = cos hx

8.3 INTEGRATION FORMULAS OF HYPERBOLIC   
 FUNCTIONS

Ú sin hx dx = cos hx + c, Ú cos hx dx = sin hx + c, Ú sec h2x dx = tan hx + c,

Ú csc h2x dx = – cot hx + c, Ú sec hx tan hx dx = – sec hx + c, Ú cos hx cot hx dx 

= – csc hx + c.

Examples

 (i) Ú sin h4x cos hx dx,  (ii)  Ú x sec h2(x2),  (iii)  Ú tan hx dx.

Solutions

 (i) Ú sin h4x cos hx dx 

  Let  u = sin hx  du = cos hx dx

 Ú u4 du =   u
5

 __ 
5

   + c =   sin h5x ______ 
5
   + c.

 (ii) Ú 2x sec h2(x2) dx

  Let u = x2  du = 2x dx

   Ú 2x sec h2(x2) dx = Ú sec h2(u) du = tan hu + c = tan hx2 + c

 (iii) Ú tan hx dx = Ú   sin hx ______ 
cos hx

   Let u = cos hx du = sin hx dx

  Ú   sin hx ______ 
cos hx

   dx = Ú   
du

 ___ u   = log u + c = log(cos hx) + c. 

8.4 PROPERTIES OF THE HYPERBOLIC FUNCTIONS

  cos h2x – sin h2x = 1

  sin h(– x) =   e – x – e x _______ 
2

   = –   e x – e – x
 _______ 

2
   = – sin hx
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 Similarly, 

  cos h(– x) = cos hx

  tan h(– x) = – tan hx

sin h(x + y) = sin hx cos hy + cos hx sin hy, sin h(x – y)

= sin hx cos hy – cos hx sin hy

cos h(x + y) = cos hy cos hx + sin hy sin hx, cos h(x – y)

=  cos hy cos hx – sin hy sin hx

  sec h2x = 1 – tan h2x

  csc h2x = cot h2x – 1, cos h2x =   cos h 2 x + 1  ___________ 
2
  , 

  sin h2x =   cos h 2x –1 __________ 
2

  , sin h(0) =   

  1 __ 
e0

   – e0

 ______ 
2
   = 0

  cos h(0) = 1

  sin hx + cos hx = e x

  cos hx – sin hx = e– x

  sin h 2x = 2 sin hx cos hx, cos h 2x = cos h2x + sin h2x. 
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Vectors

9.1 INTRODUCTION

Various quantities of physics, such as length, mass and time, require for their 
specification of a single real number is called magnitude of the quantity. For 
example the length of a book is 6 inch so the magnitude of the length is
6 inch, and such quantities are called the scalars quantities.

 Other quantities of physics, such as displacement, velocity, require for 
their specification a magnitude as well as direction. Such quantities are called 
vectors. 
 In Fig. 9.1 cars have the same (scalar) speed but different (vector) velocities 
because they move in different directions. The bow in Fig. 9.2 converts potential 
(stored) (scalar) energy into kinetic (motive) (vector) energy. In Fig. 9.4 a ball 
has some mass (scalar) and in Fig. 9.5 a kick give the displacement (vector) 
quantity.

Fig. 9.1
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  Fig. 9.2

   

 Fig. 9.3                  Fig. 9.4

 

At this position
terminal point

Initial point

Fig. 9.5

 A vector is represented analytically by a bold faced letter such as A. 
Geometrically speaking; a vector is a directed line segment. If a vector extend 
from a point P (called initial point) to a point Q (called terminal point), then 
we denote the vector as PQ = A. The magnitude of a vector A is denoted by 
|A|.

 Suppose a car moves from a point P to a point Q and the distance between 
them is 5 meter which is shown in Fig. 9.6. The point P is called the initial 
point and the point Q is called the terminal point and, is |A| = 5.
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Fig. 9.6

 Vectors having unit length are called unit vectors, or a vector whose 

magnitude is unity is called a unit vector, and this unit vector obtained as   A ___ 
|A|

  . 

Two vectors A and B are equal if they have the same magnitude and direction 
regardless of their initial points. 

   

Fig. 9.7        Fig. 9.8          Fig. 9.9

 The negative of a vector A, denoted as –  A, Fig. 9.11 which has the same 
magnitude as A but where direction is opposite to that of A.

A

B       

A

– A

Fig. 9.10 A = B             Fig. 9.11 A = – A

 The rectangular unit vectors i, j and k are mutually perpendicular unit 
vectors having direction of the positive x-axis, y-axis and z-axis respectively 
of a rectangular coordinate system, Fig. 9.12.

  

        Fig. 9.12       
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 Let (A1, A2, A3) be the rectangular coordinates of the terminal point of 
vector A with initial point at origin, then A1, A2, A3 are called the rectangular 
components or simply components of A in the x, y and z direction respectively 
in R3.

 Hence A = A1 i + A2 j + A3 k.

 The magnitude of A is

  |A| =  ÷ 
_____________________________

    (A1 – 0)2 + (A2 – 0)2 + (A3 – 0)2   =  ÷ 
____________

   A 1  
2  +  A 2  

2  +  A 3  
2   , Fig. 9.13.

x

y

P A i  A j  A k( , , )1 2 3

z

A

Fig. 9.13

 If (A1, A2, A3) are the coordinates of the terminal point and (A11, A21, A31) 
are the coordinates of the initial point of the vector A, then 

  A = (A1 – A11)i + (A2 – A21)j + (A3 – A31)k.

 And the magnitude is

  |A| =  ÷ 
_________________________________

    (A1 – A11)
2 + (A2 – A21)

2 + (A3 – A31)
2  .

 For example,

 If (5, 6, – 3) are the coordinates of the terminal point and (2, – 1, 4) are 
the coordinates of the initial point of the vector A, then

  A = (5 – 2)i + (6 – (– 1))j + (– 3 – 4)k = 3i + 7j – 7k

 The magnitude is

  |A| =  ÷ 
________________

  (3)2 + (7)2 + (– 7)2   =  ÷ 
____

 107  .

 And the unit vector is

    A ___ 
|A|

   =   
3i + 7j – 7k

  ___________ 
 ÷ 

____
 107  
   =   3 _____ 

 ÷ 
____

 107  
   i +   7 _____ 

 ÷ 
____

 107  
   j –   7 _____ 

 ÷ 
____

 107  
   k.

 If A = A1i + A2 j + A3k. And B = B1i + B2 j + B3k, then 

  A ± B = (A1 ± B1)i + (A2 ± B2)j + (A3 ± B3)k.
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 If A = r, A1 = x, A2 = y and A3 = z

 Then the vector r = xi + yj + zk is called the position vector of a 
point P.

9.2 THE DOT PRODUCT

If A = A1 i + A2 j + A3 k, and B = B1 i + B2 j + B3 k are two vectors then the 

dot product or scalar product, written A ◊ B is

  A ◊ B = A1B1 + A2B2 + A3B3,

Properties of dot product:

  A ◊ A = |A|2

 (i ◊ i = j ◊ j = k ◊ k = 1), (i ◊ j = j ◊ k = k ◊ i = 0).

 A ◊ B = B ◊ A, c (A ◊ B) = (c ◊ A) ◊ B = (c ◊ B) ◊ A, 0 ◊ A = 0.

 If A, B and C are three vectors then 

  A ◊ (B + C) = A ◊ B + A ◊ C
 If q be the angle between two non-zero vectors A and B,  

 then A ◊ B = |A| |B| cos q.

Proof: Suppose A = A1 i + A2  j + A3 k, and B = B1 i + B2  j + B3 k, are the 
sides of a triangle whose one vertex at the origin, Fig. 9.14.

B

A

y

x

A B–

q

Fig. 9.14

 The lengths of the sides are

  |A| =  ÷ 
____________________________

    (A1 – 0)2 + (A2 – 0)2 + (A3 – 0)2   =  ÷ 
___________

   A 1  
2  +  A 2  

2  +  A 3  
2   ,

  |B| =  ÷ 
____________________________

    (B1 – 0)2 + (B2 – 0)2 + (B3 – 0)2   =  ÷ 
___________

   B 1  
2  +  B 2  

2  +  B 3  
2   

 and

  |A – B| =  ÷ 
_______________________________

    (A1 – B1)
2 + (A2 – B2)2 + (A3 – B3)

2  
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 By the law of cosines, we have

  |A – B|2 = |A|2 + |B|2 – 2|A| |B| cos q
 Or

  cos q =   |A|2 + |B|2 – |A – B|2   __________________  
2|A| |B|

  

 =   
 A 1  

2  +  A 2  
2  +  A 3  

2  +  B 1  
2  +  B 2  

2  +  B 3  
2  – {(A1 – B1)

2 + (A2 – B2)2 + (A3 – B3)
2}
       ____________________________________________________________    

2|A| |B|
  

   =   
2A1B1 + 2A2B2 + 2A3B3   _____________________  

2|A| |B|
   =   A ◊ B ______ 

|A| |B|
  

  A ◊ B = |A| |B| cos q.

 If non-zero vectors A and B are orthogonal then A ◊ B = |A| |B| cos  (   p __ 
2
   )  = 0.

Projections

Suppose we have two none-zero vectors A and B with common initial point,  
shown in Fig. 9.15. The vector projection of A onto B is the vector OP 
determined by dropping a perpendicular from Q to the line OS, and notation 
for this vector is projectionB A (vector projection of A onto B)

Fig. 9.15 

 If we pull an object with a force A, then the effective force moving the object 
forward in the direction B is the projection of A onto B shown in Fig. 9.16.

Fig. 9.16
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 Let q be the acute angle between the vectors A and B, then the length of 

projection B A is |A| cos q and direction   B ___ 
|B|

  . If q be the obtuse, and cos q < 0 

then the length of projection BA is – |A| cos q and direction –   B ___ 
|B|

  , Fig. 9.17.

q

A

B

Fig. 9.17

 Now in both cases

  projection B A = (|A| cos q)   B ___ 
|B|

  

 Length . Unit vector

   =  (   A ◊ B ____ 
|B|

   )    B ___ 
|B|

  

   =  (   A ◊ B ____ 
|B|2

   )  B
 Hence, if A and B are two non-zero vectors then the vector projection of 
A onto B is the vector

  projection B A =  (   A ◊ B ____ 
|B|2

   )  B.

 The scalar component of A in the direction of B

  |A| cos q =   A ◊ B ____ 
|B|

   =   A ◊ B ____ 
|B|

  . 

Work as a dot product

Let W be work done by a force F on an object moving along the line from a 
point P to a point Q, then

Work done = W = F .  PQ

 Where PQ is the displacement vector of the object’s motion from P to Q.

9.3 THE CROSS PRODUCT

If A = A1 i + A2  j + A3 k and B = B1 i + B2  j + B3 k are two vectors then the 
cross product or vector product, written as A × B, is a vector

A × B = (A2B3 – A3B2)i + (A3B1 – A1B3)j + (A1B2 – A2B1)k.
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 We can calculate the cross product by determinant 

  A × B =  |   i   A1   
B1

    

j
 
 

 A2   
B2

    
k
 

 
 A3   

B3

  |  
Properties of Cross Product

   A × B  =  |   i   A1   
B1

    

j
 
 

 A2   
B2

    
k
 

 
 A3   

B3

  |  = –  |   i   B1   
A1

    

j
 
 

 B2   
A2

    
k
 

 
 B3   

A3

  |  = – (B × A)

(i × i = j × j = k × k = 0), (i × j = k ◊ j × k = i ◊ k × i = j)

  (cA) × (dB) = cd(B × A), 0 × A = A × 0 = 0.

 If A, B and C are three vectors, then 

  A × (B + C) = A × B + A × C

  (A + B) × C = A × C + B × C

  |A × B|2 = |A|2 |B|2 – (A ◊ B)2.

 If q be the angle between two non-zero vectors A and B then 

  |A × B| = (|A| |B| sin q) n

 The cross product of two vectors is also a vector. For this reason it is also 
called the vector product. The vector A × B is orthogonal to both A and B 
because it is a scalar multiple of n, Fig. 9.18. 

B

A

A B×

Fig. 9.18

Proof: We know that |A × B|2 = |A|2 |B|2 – (A.B)2 = |A|2 |B|2 – |A|2 |B|2 

cos2q = |A|2 |B|2 (1 – cos2q) = |A|2 |B|2 sin2q.

 Non-zero vectors A and B are parallel, if and only if A × B = 0.
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Cross product as area 

The parallelogram with adjacent sides AB and AC has 

  Area = |A| |C| sin q = |AB × AC|

C

C

A A B

q
h c= | | sin q

    

C

C

A A B

q

h c= | | sin q

      Fig. 9.19         Fig. 9.20

 Let A, B and C are the vertices of a triangle in R3, then the area of the 
triangle is 

   Area =   1 __ 
2
   [AB × AC].

9.4 TRIPLE PRODUCT 

In this section we will discuss two types of triple product, scalar triple product 
and vector triple product.

Scalar Triple Product

Let A = A1 i + A2  j + A3 k, B = B1 i + B2  j + B3 k and C = C1 i + C2   j + C3 k 
are three vectors then the scalar triple product define as

A ◊ (B × C) = A1 (B2C3 – B3C2)i + A2 (B3C1 – B1C3)j + A3 (B1C2 – B2C1)k.

 We can Calculate the scalar triple product by determinant 

  A ◊ (B × C) =  |   A1

 
 

 B1   
C1

    

A2

 
 

 B2   
C2

    

A3

 
 

 B3   
C3

  | 
 Similarly,

  (A × B) ◊ C =  |  C1

 
 

 A1   
B1

   

C2

 
 

 A2   
B2

    

C3

 
 

 A3   
B3

   | 
 Since both the determinants are equal, hence

  A ◊ (B × C) = (A × B) ◊ C = (C × A) ◊ B
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Example 1 Find the volume of a parallelepiped in R3 with side A, B 
and C.
Solution The volume of a parallelepiped = height of parallelepiped × area 
of the base of parallelepiped

 From Fig. 9.22, height h = |C| cos q and area of the base is equal to the 
area of a parallelogram with side A and B.

C

B

A   

C

B

A

q

q

h C= | | cos q

( × )A B

     Fig. 9.21           Fig. 9.22

\  Volume V = |C| cos q × |A × B|

  Volume V =  |   (A × B) ◊ C
 _________ 

|A × B|
   |  × |A × B| {(A × B) ◊ C = |A × B| ◊ |C| cos q}

 Hence,

 Volume of a parallelepiped = |(A × B) ◊ C|.

Example 2 Find the volume of a parallelepiped determined by the vectors 
A = i + 2j – k, B = 2i + j – 3k and C = 3i – 2j + k.

Solution (A × B) ◊ C =  |  C1

 
 

 A1   
B1

    

C2

 
 

 A2   
B2

    

C3

 
 

 A3   
B3

   |  =  |  3 
 
 1   

2
   

– 2
 

 
 2   

1
     

1
 

 
 – 1   

– 3
  |  = – 20

 Hence the volume is (A × B) ◊ C = |– 20| = 20.

Example 3 Following Fig. 9.23 shows that the volume of a tetrahedron is 

  1 __ 
3

   (area of DABC) (height of tetrahedron)

C

B

A

q

q

h

Fig. 9.23
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 Use the above result show that the volume V of the tetrahedron is

  V =   1 __ 
6

   |(AB × AC) ◊ AD|

Solution We know that the area of the triangle is   1 __ 
2
   |AB × AC| and 

 Height = |AD| cos q =  |   (AB × AC) ◊ AD
  _____________  

|AB × AC|
   | 

\ V =   1 __ 
3

    {   1 __ 
2

   |AB × AC| }  ◊  |   (AB × AC) ◊ AD
  ______________  

|AB × AC|
   |  =   1 __ 

6
   |(AB × AC) ◊ AD|.

Example 4 Show that if A, B and C are vectors in R3 with A + B + C = 0. 
Show that

  A × B = B × C = C × A

Solution A × (A + B + C) = A × A + A × B + A × C = 0

fi  A × B + A × C = 0

fi     A × B = C × A

 Similarly,

  B × (A + B + C) = B × A + B × B + B × C = 0

fi  B × A + B × C = 0

fi     A × B = B × C

 Hence

     A × B  = B × C = C × A.

Vector Triple Product

For any three vectors A, B and C the vector triple product define as 

  A × (B × C) = (A ◊ C)B – (A ◊ B)C.

Proof: Let A = A1 i, B = B1 i + B2  j and C = C1 i + C2 j + C3 k.

 We have A ◊ C = A1C1, A ◊ B = A1B1, 

  B × C =  |   i   B1   
C1

    

j
 
 

 B2   
C2

    
k
 

 
 0   

C3

  |  
   = B2C3 i – B1C3 j + (B1C2 – B2C1) k.
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\  A × (B × C) =  |   i
 

  
 A1    

B2C3

    
j
 

  
 0    

– B1C3

    
k
 

   
 0      

B1C2 – B2C1

  | 
  A × (B × C) = – A1(B1C2 – B2C1)j – A1B1C3k (9.1)

 Now

  (A ◊ C)B – (A ◊ B)C = A1C1(B1 i + B2 j) – A1B1(C1 i + C2 j + C3 k)

  (A ◊ C)B – (A ◊ B)C = – (A1B1C2 – A1B2C1)j – A1B1C3k (9.2)

 From (9.1) and (9.2), we have

  A × (B × C) = (A ◊ C)B – (A ◊ B)C.

9.5 PARAMETRIC REPRESENTATION OF CURVES 

When we draw a curve by an equation y = f (x) we must always restrict ourselves 
to a single-valued branch. Hence it is often more convenient to introduce other 
analytical methods of representation. The most general and the most useful 
representation of a curve is parametric representation. Instead of considering 
one of the rectangular coordinates as a function of the other, we think the 
coordinates x and y as functions of a third independent variable t, the so called 
parameter; the point with the coordinates x and y then describes the curve as 
t transverses a closed interval.

 Therefore, a curve in the plane is said to be parameterised if the coordinates 
on the curve, (x, y), are represented as functions of a variable t. Namely, 

  x = f (t), y = g (t)

 Where f and g are continuous functions of real number t define on an 
interval I. The variable t is called a parameter and the relations between x, y 
and t are called parametric equations. The set I is called the domain of f and 
g and it is the set of values t takes.

 Conversely, given a pair of parametric equations with parameter t, the set 
of points {f (t), g(t)} form a curve in the plane. 

 For example, the graph of any function y = f(x) can be parameterised as: 

let  t = x so that

  x = t, y = f(t). 

is a pair of parametric equations with parameter t whose graph is identical to 
that of the function. The domain of the parametric equations is the same as 
the domain of f
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 For example the curve y = ax2 can be parameterized by the parametric 

equation x = t and y = at2, the equation of the circle x2 + y2 = a2, can be 
parameterised by the parametric equation x = a sin t and y = a cos t.

 Similarly, the polar equation r = a cos5 q can be parameterised as:

 Let x = r cos q and y = r sin q. Then x = (a cos5 q) cos q = a cos6 q, and 
y = (a cos5 q) sin q. 

Example 5 Sketch the path of the following curves.

 (i) x = t2 – 4, y =   1 __ 
2

   t, – 2 £ t £ 2

 (ii) x = 3 tan 2q, y = 2 sec 2q, 0 £ q £ p.

Solution (i) In the following table we have given the values of x, y and t.

Table 9.1
 t x y

—2 0 —1
 —1 —3 —1/2
 0 —4 0
 1 —3 1/2
 2 0 1

 We have y =   1 __ 
2

   t then t = 2y and substituting these values in x = t2 – 4, 

we obtain x = 4y2 – 4, which is a parabola, Fig. 9.24 (dot denote the position
of t).

 Parameterization are not unique. For example the curve x = 4(4t2 – 1), 

y = 2t for –   1 __ 
2

   £ t £   1 __ 
2

  , represent the same curve.

Fig. 9.24
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 (ii) We have, x = 3 tan 2q, y = 2 sec 2q.

 We can write given equation as   x __ 
3
   = tan 2q,   

y
 __ 

2
   = sec 2q or sec2 2q – tan2 2q 

=   
y2

 __ 
4

   –   x
2

 __ 
9

   = 1.

 Therefore the path is an hyperbola shown in Fig. 9.25.

Fig. 9.25

9.6 VECTOR VALUED FUNCTIONS 

In section 9.1, we defined the vectors as A = A1 i + A2 j + A3 k. In this section, 
we see what happens when the numbers A1, A2 and A3 are replaced by functions 
f1(t), f2(t) and f3(t).

Definition Let f1, f2 and f3 be functions of the real variable t. Then for all 
values of t for which f1(t), f2(t) and f3(t) are defined, we define the vector-valued 
function f in R3 as

  f (t) = ( f1(t), f2(t), f3(t)) = f1(t) i + f2(t) j + f3(t) k (9.3) 

 The domain D of f is the intersection of the domains of f1, f2 and f3.

 For example f (t) = t i +   4 __ t   j +  ÷ 
_____

 t + 1   k is a vector-valued function. The 

domain of f is the set of all t for which f1(t) = t, f2(t) =   4 __ t   and f3(t) =  ÷ 
____

 t + 1     

are defined. We know that f1(t) defined for all real values of t, f2(t) defined for 
all real values of t except t = 0 and f3(t) defined for all real values of t ≥ – 1. 
Therefore the domain of f is the set {t: t ≥ – 1 and t π 0}.
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Graph of vector-valued function: The graph a vector valued function we 
can just graph the parametrically defined function or let f be a vector function 
such that the initial point of the vector f (t) is at the origin then the graph of 
the function f is the curve which traced by terminal point of the vector f (t) as 
t varies over the domain D.

Example 6 Describe the graph of the following vector-valued functions 

 (i) f (t) = (2 – t)i + t j + (3t – 2)k, (ii) f (t) = 5 sin t i – 3 cos t j + 3t k,

Solution (i) f (t) = (2 – t)i + t j + (3t – 2)k,

x = f1(t) = (2 – t), y = f2(t) = t and z = f3(t) = (3t – 2), the graph of f (t) is 
the collection of the all points (x, y, z) for different values of t which is a line, 
Fig. 9.26.

  

  Fig. 9.26

 (ii) f(t)  = 5 sin t i – 3 cos t j + 3tk,

x = f1(t) = 5 sin t, y = f2(t) = – 3 cos t and z = f3(t) = 3t, we obtain   x
2

 ___ 
25

   +   
y2

 __ 
9
   = 1, 

which is a equation of an ellipse in the xy-plane and z = 3t increases as t 
increases, therefore the curve is a spiral that climbs up the side of an elliptical 
cylinder. This type of curve is called an elliptical helix. the graph of f (t) is 
the collection of the all points (x, y, z) for different values of t, Fig. 9.27.
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Fig. 9.27

Vector function operations: Suppose f (t) and g (t) are two vector valued 
functions of the real variable t, and let f (t) be a scalar function. Then 

  ( f + g)t = f (t) + g (t)  

  ( f – g)t = f (t) – g (t)

  ( f f)(t) = f (t) f (t)      
Æ Vector functions

  ( f × g)t = f (t) × g (t)

 And

  ( f ◊ g)(t) = f (t) ◊ g (t) is a scalae function.

Example 7 If f (t) = 2t i – 3t2 j + cos t k and g (t) = t i + et j + 5 k.

 Then find

 (i) ( f + g)t, (ii) (e2t f) (t), (iii) ( f . g) (t), (iv) ( f × g) (t).

Solution (i) ( f + g)t  = f(t) + g(t)

  {2t i – 3t2 j + cos t k} + {t i + et j + 5 k}

= 3t i + (–3t2 + et)j + (cos + 5)k.

 (ii) (e2t f) (t) = e2t f (t)

  e2t {2ti – 3t2 j + cos t k} = 2te2t i – 3t2e2t j + e2t cos t k.

 (iii) ( f ◊ g) (t) = f (t) ◊ g (t)

  {2ti – 3t2 j + cos t k}. {ti + et j + 5 k} = 2t2 – 3t2et + 5 cos t. 
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 (iv) ( f × g) (t) = f (t) × g (t)

  f (t) × g (t) =  |   i   2t   
t
     

j
 
 

 –3t2   

et

     
k
 
 

 cos t   
5
   | 

  = (–15t2 – et cos t)i + (t cos t – 10t)j + (2tet + 3t3)k.

Limit of vector function: Let f1, f2 and f3 all have the finite limit as t Æ t0, 
where t0 is any number or ± •. Then the limit of the function f (t) as t Æ t0 
is a vector

   lim t Æ t0
  f (t) =  {   lim   

t Æ t0

  f1(t) }  i +  {   lim   
t Æ t0

  f2(t) }  j +  {   lim   
t Æ t0

  f3(t) }  k.

Or

 Let f (t) be a vector-valued function define for all real value t in some open 
interval I containing the number t0, except that the function f (t) need not be 
defined at the t0. Then 

  lim   
t Æ t0

  f (t) = l

 If any given number e > 0 there exist a number d > 0 such that

   |f (t) – l| < e if |t – t0| < d.

Geometric interpretation of limits: If f (t) be a vector-valued function, 
then 

  lim   
t Æ t0

  f (t) = l

 If and only if the vector f (t) approaches l in both length and direction as 
t Æ t0, Fig. 9.28.

f t l( ) –

z

y

x

f t( )

l

Fig. 9.28
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Example 8 Find the limit.

 (i) limt Æ 1 f (t), Where f (t) = t i – 3et j + cos 2t k,

 (ii) limt Æ 0 f (t), Where f (t) =   sin ___ t   i – 3et j + sin 2t k,

Solution
 (i) limt Æ 1 f (t) =  {   lim   

t Æ 1
  f1(t) }  i +  {   lim   

t Æ 1
  f2(t) }  j +  {   lim   

t Æ 1
  f3(t) }  k.

  limt Æ 1 f (t) =  {   lim   
t Æ 1

  t }  i +  {   lim   
t Æ 1

  (– 3et) }  j +  {   lim   
t Æ 1

  cos 2t }  k

   = i – 3e j + cos 2 k.

 (ii) limt Æ 0 f (t) =  {   lim   
t Æ 0

    sin t ____ t   } i +  {   lim   
t Æ 0

  (– 3et) }  j +  {   lim   
t Æ 0

  (sin 2t) } k

   = i – 3j.

Rules for vector limit: Suppose f (t) and g(t) are two vector valued functions 
of the real variable t, and let f (t) be a scalar function such that all three 
functions have finite limits as t Æ t0, then

 (i)   lim   
t Æ t0

  {f (t) + g (t)} =   lim   
t Æ t0

  f (t) +   lim   
t Æ t0

  g (t)

 (ii)   lim   
t Æ t0

  {f (t) – g (t)} =   lim   
t Æ t0

  f (t) –   lim   
t Æ t0

  g (t)

 (iii)   lim   
t Æ t0

  {f (t) ◊ g (t)} =  {   lim   
t Æ t0

  f (t) }  ◊  {   lim   
t Æ t0

  g (t) } 

 (iv)   lim   
t Æ t0

  {f (t) × g (t)} =  {   lim   
t Æ t0

  f (t) }  ×  {   lim   
t Æ t0

  g (t) } 

 (v)   lim   
t Æ t0

  {f (t) f (t)} =  {   lim   
t Æ t0

  f (t) }   {   lim   
t Æ t0

  f (t) } .

Example 9 For the vectors f (t) = 2 i + t2 j + t k and g (t) = (1 – t) i + e2t j + 2 k. 
Show that

    lim   
t Æ 0

  {f (t) × g (t)} =  {   lim   
t Æ 0

  f (t) }  ×  {   lim   
t Æ 0

  f (t) } 

Solution f (t) × g (t) =  |   i
 

  
 2    

(1 – t)
    

j
 
 

 t2   

e2t

   
k
 

 
 t   

2
  | 

   = (2t2 – te2t) i + (t(1 – t) – 4) j + (2e2t + (1 – t)t2) k.
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 Hence, the limit of the cross product is

    lim   
t Æ 0

  {f (t) × g (t)} =  {   lim   
t Æ 0

  (2t2 – te2t) }  i +  {   lim   
t Æ 0

  (t (1 – t) – 4) }  j

+  {   lim   
t Æ 0

  (2e2t + (1 – t)t2) }  k = – 4 j + 2 k.

 Now   lim   
t Æ 0

  f (t) =   lim   
t Æ 0

  (2 i + t2 j + t k) = 2 i

and   lim   
t Æ 0

  g (t) =   lim   
t Æ 0

  ((1 – t) i + e2t j + 2 k) = i + j + 2k

 {   lim   
t Æ 0

  f (t) }  ×  {   lim   
t Æ 0

  f (t) }  =  |   i   2   
1
    

j
 

 
 0   

1
   

k
 

 
 0   

2
  |  = – 4 j + 2 k.

 Therefore,

    lim   
t Æ 0

 {f (t) × g (t)} =  {   lim   
t Æ 0

  f (t) }  ×  {   lim   
t Æ 0

  f (t) } .

Continuity of vector function: A vector-valued function f (t) is said to be 
continuous at a point t0 if t0 is in the domain of f and 

    lim   
t Æ t0

  f (t) = f (t0)

fi   lim t Æ t0
  f1 (t) = f1 (t0),  lim t Æ t0

  f2 (t) = f2 (t0),  lim t Æ t0
  f3 (t) = f3 (t0).

Example 10 Find the value of t for which the function 

f (t) = 2 sint i + (2 – t)– 1 j + 2 log t k is continuous.

Solution Vector-valued function f is continuous where the functions

 f1 (t) = 2 sin t  f2 (t) = (2 – t)– 1 f3 (t) = 2 log t

are continuous. The function f1 is continuous for all t; f2 is continuous when 
2 – t π 0 and f3 is continuous when t > 0. Hence f is continuous when t > 0, 
t π 2.

Example 11 Determine whether f (t) is continuous at given points.

 (i) f(t) = t i + e2t j + 2 ÷ 
_____

 1 + t   k. at t = 1,

 (ii) f(t) =   2 __ t   i + t2 j + t k, at t = 0

Solution (i) Vector-valued function f is continuous where the functions

 f1 (t) = t  f2 (t) = e2t f3 (t) = 2 ÷ 
_____

 1 + t  

are continuous and here all functions are continuous at t = 1
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  lim t Æ 1  f1 (t) = f1 (1) fi 1 = 1,  lim t Æ 1  f2 (t) = f2 (1) fi e1 = e1,  lim t Æ 1  

f3 (t) = f3 (1) fi 2 ÷ 
__

 2   = 2 ÷ 
__

 2  . Hence the function f (t) is continuous.

 (i) f (t) = t i + e2t j + 2 ÷ 
_____

 1 + t   k. at t = 1,

   (ii) f (t) =   2 __ t   i + t2 j + t k, at t = 0

Solution (ii) Vector-valued function f is continuous where the functions

 f1 (t) =   2 __ t    f2 (t) = t2 f3 (t) = t

are continuous and here f1 (t) are not continuous at t = 0 

fi the function f (t) is not continuous at t = 0.

9.7 DIFFERENTIATION AND INTEGRATION OF VECTOR 
VALUED FUNCTIONS

In section (3.4) we defined how the derivative   
dy

 ___ 
dx

   could be calculated when x 

and y were given parametrically in terms of t. In this section, we will show 
how to calculate the derivative of a vector function.

Derivative of a Vector Function 

Let f be defined at a point t. Then f is differentiable at t if

  f ¢(t) =   lim   
Dt Æ 0

    
Df

 ___ 
Dt

   =   lim   
Dt Æ 0

    
f (t + Dt) – f (t)

  _____________ 
Dt

   =   
df

 __ 
dt

  

exist and is finite.

Or

 The vector function f (t) = f1 (t) i + f2 (t) j + f3 (t) k is differentiable if the 
functions f1 (t), f2 (t) and f3 (t) are differentiable, therefore

  f ¢(t) = f1¢(t) i + f2¢(t) j + f3¢(t) k

Proof: We know that the function f differentiable if the limit exist. 

  f ¢(t) =   lim   
Dt Æ 0

    
f  (t + Dt) – f (t)

  _____________ 
Dt

  

     lim   
Dt Æ 0

    
f (t + Dt) – f (t)

  ______________ 
Dt
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  =   lim   
Dt Æ 0

    
{f1 (t + Dt) i + f2 (t + Dt) j + f3 (t + Dt) k} – {f1 (t) i + f2 (t) j + f3 (t) k}

       _________________________________________________________    
Dt

  

  =  {   lim   
Dt Æ 0

    
f1 (t + Dt)– f1 (t)  _______________ 

Dt
   }  i +  {   lim   

Dt Æ 0
    
f2 (t + Dt) – f2 (t)  _______________ 

Dt
   }  j 

    +  {   lim   
Dt Æ 0

    
f3 (t + Dt) – f3 (t)  _______________ 

Dt
   }  k

  f ¢(t) = f1¢(t) i + f2¢(t) j + f3¢(t) k.

Example 12 Find the derivative of the function f (t) = 2e2t i + cos t j 

+ (t2 + 5) k.

Solution f ¢(t) = (2e2t) ¢i + (cos t) ¢j + (t2 + 5) ¢k = 4e2t i – sin tj + 2tk.

Example 13 Find the value of t for which the function f (t) = 2|t – 1| i + cos 
t j + 5t k is differentiable.

Solution The function f2 (t) = cos t and f3 (t) = 5t are differentiable for all 
values of t but f1 (t) = 2|t – 1| is not differentiable at t = 1, therefore the function 
f (t) is differentiable for all t except t = 1.

Geometric interpretation of derivative f ¢: Figure 9.29 shows that the 
vector

     
f (t + Dt) – f (t)

  ______________ 
Dt

  

has the direction of a secant vector whose direction approaches that of the 
tangent vector as Dt Æ 0.

 Hence, f ¢(t) is tangent to the graph of f at the point P.

z

y

x

f t( )

f t t(  + )D

f t t f t(  + ) – ( )D

Tangent vector

P

Fig. 9.29
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Unit tangent vector: The unit tangent vector denoted by T of a curve is a 
tangent vector whose magnitude is 1. Hence,

  T =   
f ¢(t)

 _____ 
| f ¢(t)|

  

 For any number t, as long as f ¢(t) π 0.

Smooth curve: The graph of a vector function f (t) is smooth on any 
interval I

 (i) If f ¢ is continuous in I

 (ii) f ¢(t) π 0 in I.

Example 14 Determine whether the graph of the vector function 

 (i) f (t) = 2e2t i + 2t j + 2k,

 (ii) f (t) = 2i + cos t j + t2k is smooth.

Solution

 (i) The derivative 

   f ¢(t) = 4e2t i + 2 j

  is continuous and not zero for all t, hence the function is smooth for 
all t.

 (ii) The derivative

   f ¢(t) = – sint j + 2t k

  is continuous for all t but f ¢(0) = 0, Hence the function is smooth for all t 
except t = 0.

Rules for differentiable vector functions: Suppose two vector functions f (t) 
and g (t) are differentiable at t, and let f (t) be a scalar differentiable function 
at t and if a and b are constant then af + bg, f f, f ◊ g and f × g are also 
differentiable at t and

 (i) {af + bg}¢(t) = af ¢(t) + bg ¢(t)
 (ii) {f f}¢(t) = f ¢(t) f (t) + f (t) f ¢(t)
 (iii) {f ◊ g}¢(t) = f ¢(t) ◊ g (t) + f (t) ◊ g ¢(t)
 (iv) {f × g}¢(t) = f ¢(t) × g (t) + f (t) × g ¢(t)
 (v) {f ( f (t))}¢ = f ¢(t) f ¢( f (t)).
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Proof: (i) We know that

  {af + bg}¢(t) =   lim   
Dt Æ 0

   {   D(af + bg)
  __________ 

Dt
   } 

   =   lim   
Dt Æ 0

   {   aDf
 ____ 

Dt
   +   

bDg
 ____ 

Dt
   }  = a   lim   

Dt Æ 0
    
Df

 ___ 
Dt

   + b   lim   
Dt Æ 0

    
Dg

 ___ 
Dt

  

  (af + bg) ¢(t) = af ¢(t) + bg ¢(t).

 Othet rules leave for exercises.

Example 15 If f (t) = 2 i + 3t j + et k, and g (t) = t i + 5 j + t2 k.

Show that

 (i) {f × g}¢(t) = f ¢(t) × g (t) + f (t) × g ¢(t).

 (ii)   d __ 
dt

   {2f (t) + t2 g (t)} = {(3t2) i + (6 + 10t) j + (2et + 4t3) k)}

Solution

(i) {f × g} (t) =  |   i   2   
t
     

j
 

 
 3t   

5
     

k
 

 
 et   

t2

   |  = (3t3 – 5et) i + (tet – 2t2) j + (10 – 3t2) k.

 Therefore,

  {f × g}¢(t) = (9t2 – 5et) i + (et + tet – 4t) j + (– 6t) k.

  f ¢(t) = 3j + etk, g ¢(t) = i + 2tk,

  {f ¢(t) × g (t)} =  |   i   0   
t
     

j
 

 
 3   

5
    

k
 

 
 et   

t2

   |  = (3t2 – 5et) i + (tet) j + (– 3t) k.

 And 

  {f (t) × g ¢(t)} =  |   i   2   
1

    
j
 

 
 3t   

0
     

k
 

 
 et   

2t
  |  = (6t2) i + (et – 4t) j + (– 3t) k

 Add these two vector, we have

 {f ¢(t) × g (t)} + {f (t) × g ¢(t)} = (9t2 – 5et)i + (et + tet – 4t)j + (– 6t)k.

 Hence {f × g}¢(t) = f ¢(t) × g (t) + f (t) × g ¢(t).

(ii)    d __ 
dt

   {2f (t) + t2 g (t)} =   d __ 
dt

   {2(2 i + 3t j + et k) + t2 (t i + 5 j + t2 k)} 
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   =   d __ 
dt

   {(4 i + 6t j + 2et k) + (t3 i + 5t2 j + t4 k)}

   =   d __ 
dt

   {(4 + t3) i + (6t + 5t2) j + (2et + t4) k)}

   = {(3t2) i + (6 + 10t) j + (2et + 4t3) k)}.

Vector in motion: If a partical moves in such a way that the position vector 
at any time t is r. Then 

 (i) The velocity vector is v =   dr __ 
dt

  , 

 (ii) Speed |v| is magnitude of the velocity v

 (iii) Direction of motion is the unit vector   v __ 
|v|

  

 (iv) Acceleration vector is the derivative of the velocity vector 

   A =   dv ___ 
dt

   =   d
2r ___ 

dt2
  .

Theorem If r (t) is a vector function and |r (t)| (length) is constant for all 
t, then

  r (t) ◊ r ¢(t) = 0, Fig. 9.30

r t( )

r t¢( )

z

y

x

Fig. 9.30

 That is, r (t) and r ¢(t) are orthogonal vectors for all t.

Proof: It is given that |r (t)|2 = constant.

    d __ 
dt

   |r (t)|2 = 2r (t) ◊   dr __ 
dt

   = 0 fi r (t) ◊ r ¢(t) = 0.

Example 16 If the position vector of a particle at a time t is r (t) = t2 i + 3 sin 
t j + et k then find the particle’s velocity, speed, acceleration and direction of 
motion at a time t = 1.
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Solution v =   dr __ 
dt

   = 2t i + 3 cos t j + et k

 At t = 1 v = 2 i + 3 cos 1 j + e k 

  A =   dv ___ 
dt

   =   d
2r ___ 

dt2
   = 2 i – 3 sin t j + et k

 At t = 1

  A = 2 i – 3 sin 1 j + e k

 The speed is

  |v| =  ÷ 
______________

  4 + 9 cos2t + e2t  

 At t = 1

  |v| =  ÷ 
______________

  4 + 9 cos21 + e2  

 Direction derivative is the unit vector 

    v __ 
|v|

   =   
2t i + 3 cos t j + et k

  _________________  
 ÷ 

______________

  4 + 9 cos2t + e2t  
  

 At t = 1

    v __ 
|v|

   =  
 2 i + 3 cos 1 j + e k

  _________________  
 ÷ 

______________

  4 + 9 cos2 1 + e2  
  .

Vector integrals: Let f1, f2 and f3 all are continuous on the closed interval 
[a, b] such that t Œ [a, b] then the indefinite integral of f (t) = f1 (t) i + f2 (t) j 
+ f3 (t) k is the vector function 

  Ú f (t)dt =  { Ú f1 (t)dt }  i +  { Ú f2 (t)dt }  j +  { Ú f3 (t)dt }  k + c

 Where c = c1 i + c2  j + c3 k is an arbitrary constant vector.

 The definite integral of f (t) = f1 (t) i + f2 (t) j + f3 (t) k is the vector

   Ú 
a
   

b

    f (t)dt =  {  Ú 
a
   

b

    f1 (t)dt }  i +  {  Ú 
a
   

b

    f2 (t)dt }  j +  {  Ú 
a
   

b

    f3 (t)dt }  k

 Where t Œ [a, b].

Example 17 If the velocity of a particle at a time t is v (t) = t2 i + 2 cos t j 
+ et k then find the particle’s position as a function of t if t = 0 is r (t) = 3i – j 
+ 2k. 

Solution To find the position of the particle integrate the velocity vector both 
side with respect to t:
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  Ú v (t)dt =  { Ú t2 dt }  i +  { Ú 2 cost dt }  j +  { Ú et dt }  k

  r (t) =  (   t3

 __ 
3

   + c1 )  i + (2 sin t + c2) j + (et + c3) k

 Use the initial condition to find c1, c2 and c3

  3i – j + 2k =  (   03

 __ 
3

   )  i + (2 sin 0) j + (e0) k + c1 i + c2 j + c3 k

  3i – j + 2k = k + c1i + c2j + c3k

 Compare the coefficients of i, j and k, we have 

  3 = c1, – 1 = c2 and 2 = 1 + c3

 So 3 = c1, – 1 = c2 and 1 = c3.

 Hence, the particle position at any time t is

  r (t) =  (   t3

 __ 
3

   + 3 )  i + (2 sin t – 1) j + (et + 1) k.

Example 18 If  Ú 
0
   

3a 

   {(cos t) i + (sin t) j + (sin 2t) k}dt = i + j +   1 __ 
2
   k

 Then find the value of a.

Solution    [ (sin t) i + (– cos t) j +  (   – cos 2t _______ 
2
   )  k ]  0  

3a
  = i + j +   1 __ 

2
   k

 Or

   { (sin 3a) i + (1 – cos 3a) j +  (   1 __ 
2
   –   cos 6a ______ 

2
   )  k }  = i + j +   1 __ 

2
   k

 From above equation, we obtain

  sin 3a = 1 fi a =   p __ 
6
  .

Exercises

 1.  Find two vectors that are orthogonal to both of A = – 3i + 2 j + k,
B = 2i + k,

 2. Let A = i – 2 j – 3k, B = 2i + j – k, C = i + 3j – 2k, 

 find  (i) A × C,   (ii) |A × B|,

  (iii) A ◊ (B × C),  (iv) |(A × B) × C)|,

  (v) (A × B) × (B × C).

  (vi) A × (B + C) + B × (C + A) + C × (A + B).
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 3. Find the projection of the vector i – 3 j + 5k on the vector
i + 2 j + 2k.

 4. Find the area of the triangle PQR where P (– 1, 2, 3), Q (0, 3, 2), 
R (1, 2, 3) If q be the angle between PQ and PR then show that

q =  ÷ 
__

 2  .

 5. Consider the parallelepiped with adjacent sides A = 2i – 3 j + 4k, 
B = i + 2 j – k, C = 3i – j + 2k.

 (i) Find the volume,

 (ii) Find the area of the face determined by A and C.
 6. Find the volume of the parallelepiped with adjacent sides A = i – 2 j 

+ 3k, B = – 4i + 7 j – 11k, C  = 3i + j – k.
 7. Show that the vectors A, B and C are coplanar if A ◊ (B × C) = 0 or 

(A × B) ◊ C = 0

 8. Find the constant a such that the following vectors are coplanar

 (i) A = 2i – j + k, B = i + a j – k, C = i + 2k,
 (ii) A = 2i, B = 2i + j + k, C = i + j + ak.
 9. Find an explicit relationship between x and y of the following parametric 

equations and sketch the path.

 (i) x = t + 2, y = t – 2, – 2 £ t £ 4,

 (ii) x = 2t, y = 3 + 16t2, – 2 £ t £ 2,

 (iii) x = 2 + sin t, y = – 3 + cos t, 0 £ t £ 2p,

 (iv) x = 3 tan 3t, y = 2 sec 3t, 0 £ t £ p,

 (v) x = t5 y = 2 + 5 log x, t > 0.

 10. Find the parametric equations for each of the following curves.

 (i) A circle of radius 2, centered at (1, 2), oriented counter-
clockwise,

 (ii) The ellipse   
(x – 1)2

 _______ 
2

   +   
(y – 2)2

 _______ 
3
   = 1, counter-clockwise,

 (iii) The hyperbola   
(x – 1)2

 _______ 
2
   –   

(y – 2)2

 _______ 
3
   = 1, counter-clockwise.

 11. Find the domain of the following vector functions

 (i) f (t) = t i +   3 __ 
2t

   j + 5k,

 (ii) f (t) = t i + 5 ÷ 
____

 t – 2   j +   3 ____ 
t – 3

   k,

 (iii) f (t) = tan t i + cot t j + cos t k,

 (iv) f (t) + g (t), where f (t) = t i + 2 log t j + 5k, g (t) = 4t i – j + k.
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 12. Find the limits of the following vector functions

 (i) limt Æ 1  ( t i +   3 __ 
2t

    j + 5k ) ,
 (ii) limt Æ 0 (t i + cos t j + 5t k),

 (iii) limt Æ 0  (   sin t i + e2t j + 5t k
  _______________  

4t2 – t + 1
   ) ,

 (iv) limt Æ •  (   t2 + 2 ______ 
2t2 + 3

   i +   3 __ 
2t

    j ) ,
 (v) limt Æ 1  (   1 ___ 

2t3
   i + log t j + sin 3t k ) , 

 (vi) limt Æ 0  (   sin 2 t ______ 
sin 3 t

   i + log(cos t)  j + et k ) .
 13. Determine all values of t for which the following vector functions are 

continuous

 (i) f (t) = 3i +   3 __ 
2t

   j + 4t k,

 (ii) f (t) =   3i + 4k ______ 
t2 + t

  ,

 (iii) f (t) = 3 log t i +   1 __ 
2t

    j + 4t k,

 (iv) f (t) = 3t i +  ÷ 
_____

 2t + 1    j + 4t k.

 14. If f, g and h are differentiable vector function of t, then prove that

 (i) ( f ◊ g) ¢(t) = ( f ◊ g ¢) (t) + ( f ¢ ◊ g) (t),

 (ii) ( f × g) ¢(t) = ( f × g ¢) (t) + ( f ¢ × g) (t),

 (iii)   d __ 
dt

   {f ◊ (g × h)} = f ¢ ◊ (g × h) + f ◊ (g ¢ × h) + f ◊ (g × h ¢),

 (iv)   d __ 
dt

   {f × (g × h)} = {(h ◊ f)g}¢ – {(g ◊ f)h}¢.

 15. If f is differentiable vector function of t, and h is a scalar function of 
t, then show that

    (h(t) ◊ f (t)) ¢ = h(t) ◊ f ¢(t) + h ¢(t) ◊ f(t).

 16. Find the value of f ¢ and f≤ of the following vector functions and also 
find the tangent vector to the graph of the vector function at the indicate 
points.
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 (i) f (t) = 3t2 i +   3 __ t   j + 4t k, t = 1, t = 2,

 (ii) f (q) = tan2 q i + sin 2q j + 4k, q = 0,

 (iii) f(q) = sin q i + sin 2q j + q2 k, q = 0, q =   p __ 
2
  .

 17. If r = a cos qi + sin qj + bqk, prove that   dr ___ 
dq

   ◊  (   d2r ___ 
dq2

   ×   d
3r ___ 

dq3
   )  = a2b.

 18. If the position vector of a particle at a time t is r (t) = 2t2 i + (t2 – 4t)
 j + (3t – 5) k. Find the components of its velocity and the acceleration 
at t = 1 in the direction i – 3 j + 2k.

 19. A particle moves along a curve whose parametric equation are x = e– t, 
y = 2 cos 3t, z = 2 sin 3t, where t is the time.

 (i) Determine its velocity and the acceleration at any time

 (ii) Find the magnitude of the velocity and acceleration at t = 0

 20. Find the position vector r (t), given the velocity v (t) and the initial 
position r (0) as:

 (i) v (t) = et i + t2 j + (cos 2t)k, r (0) = 2i + j – k,

 (ii) v (t) = t3 i – e3t j +  ÷ 
_
 t   k, r (0) = i + j – k.

 21. Find the position vector r (t) and velocity vector v (t), given the 
acceleration a (t) and initial position and initial velocity vectors r (0) 
and v (0), respectively as:

  a (t) = (sin 2t)i + (t cos 2t)k, r (0) = i + 2 j – k, v (0) = 2i – k.

Answers

 1. ±  {   – 3i ____ 
 ÷ 

___
 45  
   +   

5 j
 ____ 

 ÷ 
___

 45  
   +   4k ____ 

 ÷ 
___

 45  
   } ,

 2. (i) 13i – j + 5k,   (ii) 5 ÷ 
__

 3  , (iii) – 20, 

  (iv) 5 ÷ 
___

 26  , (v)  – 40i – 20 j + 20k,  (vi) 0,

 3.   5 __ 
3

  ,   4.  ÷ 
__

 2  

 5.  (i) 7,   (ii)  ÷ 
____

 117  ,

 6. 3,

 8. (i) a,   (ii) – 1.
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 9. (i) x = y + 4,   (ii) y = 3 + 4x2,

      

  (iii) (x – 2)2 + (y + 3)2 = 1. (iv)   
y2

 __ 
4
   –   x

2

 __ 
9
   = 1,

     

y
x

1

2

3

4

0.5 1.0 1.5 2.0 2.5 3.0

  

   (v) y = 2 + log x,
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 10.  (i) x =  ÷ 
__

 2   cos t – 1, y =  ÷ 
__

 2   sin t – 2,

  (ii) x = 1 +  ÷ 
__

 2   cos t, y = 2 +  ÷ 
__

 3   sin t,

  (iii)  x = 1 +  ÷ 
__

 2   sec t, y = 2 +  ÷ 
__

 3   tan t.

 11.  (i) t π 0   (ii) t ≥ 2, t π 3,

  (iii) t π   np ___ 
2

   n integer, (iv) t > 0.12.

 12.  (i)  ( i +   3 __ 
2

   j + 5k ) , (ii)   p __ 
2
   j, (iii) j,   

  (iv)   1 __ 
2

   i,   (v)   1 __ 
2
   i + sin 3k, (vi)   2 __ 

3
   i + k.

 13. (i)  all t except t = 0, (ii) all t except t = 0 and t = – 1,

  (iii) For all t > 0,  (iv) For all t > –   1 __ 
2
  .

 16. (i)  f ¢(t) = 6t i –   3 __ 
t2

   j + 4k, f≤(t) = 6i +   3 __ 
t3

   j, f ¢(1) = 6i – 3 j + 4k, 

f ¢(2) = 12i –   3 __ 
4

   j + 4k,

  (ii) f ¢(q) = 2 tan q sec2 q i + 2 cos 2q j, f≤(q) = (2 sec4 q + 4 tan2 q 

sec2 q)i – 4 sin 2q j, f ¢(0) = 2 j,

  (iii) f ¢(q) = cos q i + 2 cos 2q j + 2q k, f ≤(q) = – sin q i – 4 sin

2q j + 2k. f ¢(0) = i + 2 j, f ¢ (   p __ 
2
   )  = – 2 j + pk.

 18.   
8 ÷ 

___
 14  
 _____ 

7
  ,   

–   ÷ 
___

 14  
 _____ 

7
  .

 19. (i) v = – e– t i – 6 sin 3t j + 6 cos 3t k,   d
2r ___ 

dt2
   = e– t i – 18 cos 3t j – 18 

sin 3t k,

  (ii)  ÷ 
___

 37  ,  ÷ 
____

 325  . 

 20. (i)  r (t) = (et + 1)i +  ( 1 +   t
3

 __ 
3
   )  j +  (   1 __ 

2
   sin 2t – 1 )  k,

  (ii) r (t) =  (   t4

 __ 
4

   + 1 )  i +  (   4 __ 
3

   –   e
3t

 ___ 
3
   )  j +  (   3 __ 

2
    t 

  3 __ 
2
  
  – 1 )  k.

 21. v =  (   5 __ 
2

   –   cos 2t _____ 
2

   )  i +  (   t sin 2t ______ 
2

   +   cos 2t _____ 
4
   –   5 __ 

4
   )  j, r =  (   5 __ 

2
   t –   sin 2t _____ 

4
   + 2 )  i 

+  (   sin 2t _____ 
4

   –   tcos 2t ______ 
4

   –   5 __ 
4

   t – 1 )  j.
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9.8 MODELING BALLISTICS AND PLANETARY MOTION

Dictionary meaning of ballistics is the scientific study of the movement of 
objects that are through the air such as bullets, shot from a gun or an object 
through by a muzzle. An object fired from a gun or dropped from a moving 
aircraft is often called projectile. If air resistance is negligible then the path 
of a projectile is a parabola, Fig. 9.31.

Fig. 9.31(a)

 

Fig. 9.31(b)

9.9 MOTION OF PROJECTILES

Suppose r is the position vector and v is the velocity vector at any time t of a 
projectile of mass m, Fig. 9.32.

 

Fig. 9.32
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 By Newton’s second law, we have 

  Mass × acceleration = Force

  m   d
2r ___ 

dt2
   = – mg k (9.4)

(g is the free fall acceleration due to the gravity = 9.8 m/s2 approximately)

 Or   dv ___ 
dt

   = – g k   (   d2r ___ 
dt2

   =   dv ___ 
dt

   ) 
 Integrate both sides 

  Ú   dv ___ 
dt

   = Ú – g k

fi  v = – gt k + c (9.5)

 (c is constant of integration)

 Suppose that the initial velocity of the projectile is in the yz-plane so when 
t = 0 velocity is 

  v0 = v0 cos a j + v0 sin a k (9.6)

 At t = 0 from (9.5) and (9.6), we have 

  v(t) = v0 cos a j + (v0 sin a – gt)k (9.7) 

 Now   dr __ 
dt

   = v = v0 cos a j + (v0 sin a – gt) k

 Again integrate both sides, we have

r (t) = x i + y j + z k = v0 cos a t j +  { v0 sin a t – g   t
2

 __ 
2
   }  k + c1

 When t = 0, then r (0) = 0, but if the object start from height h (Fig. (9.30), 
last part), then

  c1 = h k

 And we get,

  x(t) i + y(t) j + z(t) k = v0 cos a t j +  { v0 sin a t – g   t
2

 __ 
2
   + h }  k (9.8)

 From (9.8), we obtain

  x(t) = 0, y(t) = v0 cos a t and z(t) = v0 sin a t – g   t
2

 __ 
2
   + h (9.9)

 Suppose that an object moves in a projectile motion in a coordinate plane 
such that xy-plane along a level ground, Fig. 9.31. If a object fired in a vacuum 
from a height of h with initial speed v0 and angle of elevation a, then at time 
t (t ≥ 0), it will be at the point
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y(t) = v0 cos a t and z(t) = v0 sin a t – g   t
2

 __ 
2
   + h.

 At the highest point of the path the component of velocity v in the direction 
of k is zero, hence from (9.7), we have

  v0 sin a – gt = 0

 Or t =   
v0 sin a

 _______ g  

 Substitute the value of t in last part of (6), we have

   = v0 sin a  (   v0 sin a
 _______ g   )  – g   

  (   v0 sin a
 _______ g   )  2 
  _________ 

2
   + h

 Or

   =   
 v 0  

2  sin2 a
 _______ 

2g
   + h

 Therefore the object have maximum height   
 v 0  

2  sin2 a
 _______ 

2g
   + h, at the ground 

level at a time   
v0 sin a

 _______ g  . 

 The time of flight of a projectile is the time between launch and impact, 
and range is the total distance which the projectile travel horizontally, therefore 
when the object fired from ground level then the time of flight can be obtain 
when

  z(t) = v0 sin a t – g   t
2

 __ 
2
   + 0 = 0

fi  t =   
2v0 sin a

 ________ g  .

 And the range R given by the equation 

  R = v0 cos a  (   2v0 sin a
 ________ g   )  =   

 v 0  
2  sin 2 a

 ________ g  .

 And this is maximum when sin 2a = 1 fi 2a =   p __ 
2
   fi a =   p __ 

4
  .

 Hence the maximum range is   
 v 0  

2 
 __ g   and it occurs when a =   p __ 

4
  .

 The parametric equation for the motion of the projectile can be obtain by 
substituting the value of t from the second part of the equation (9.9) into last 
part of same equation (9.9) as
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  y(t) = v0 cos a t and z(t) = v0 sin a t – g   t
2

 __ 
2
   + h

  t =  (   y
 _______ v0 cos a   ) 

 By substitute this in z(t) = v0 sin a t – g   t
2

 __ 
2
   + h, we have

  z =  {   – g
 ___________  

2(v0 cos a)2
   }  y2 + y(tan a) + h

 This is a Cartesian equation for the trajectory of the projectile has the 
general form 

  z = ay2 + by + h

 With a < 0, and this is an equation of a parabola opening downward in 
yz-pale.

 When the projectile fired from the height h from the ground then the time 
of flight T satisfies the equation 

   v0 sin a T – g   T 2 ___ 
2
   + h = 0 (9.10)

 And range R given by the equation

  R = (v0 cos a) T. (9.11)

 With the help of (9.10) and (9.11) We can show that the range R satisfy the 
equation

  g(sec2 a) R2 – 2 v 0  
2  (tan a) R – 2 v 0  

2  h = 0 (9.12)

 Maximum range occurs when   dR ___ 
da

   = 0, therefore from above equation we 
have

 2g(sec2 a) tan a R2 – 2 v 0  
2   (sec2 a)R + 2g(sec2 a) R   dR ___ 

da
   – 2 v 0  

2  tan a   dR ___ 
da

   = 0

 So maximum range occurs when R tan a =   
 v 0  

2 
 __ g  .

 Now we know that tan a =   
 v 0  

2 
 ___ 

Rg
   and sec a =  ÷ ________

 1 +   
 v 0  

4 
 _____ 

(Rg)2
    

 Put these values of tan a and sec a in (9.12), we have

  R =   
v0 __ g    ÷ 

________

  v 0  
2  + 2gh  .
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Example 19 A ball is thrown upward from the ground level at an angle 45° 
hits the ground 1000 m away. Find the initial speed and time of the flight of 
the ball.

Solution We know that

  R =   
 v 0  

2  sin 2a
 ________ g   = 1000 =   

 v 0  
2  sin 90°

 _________ 
9.8

  

   v 0  
2  = 1000 × 9.8

 Or v0 = 98.99.

 Time of the flight is

  t =   
 v 0  

2  sin a
 _______ g   =   

2 × 98.99 ×   1 ___ 
 ÷ 

__
 2  
  

  ______________ 
9.8

   ª 14 sec.

Example 20 A ball is thrown upward from the edge of cliff at a 30° angle 
with initial speed 68 ft/sec. Suppose the height of the cliff from the ground 
is 50 then

 (i) Find the time of flight of the ball and its range.

 (ii) Find the velocity and the speed of the ball at the time of impact.

 (iii) Find the highest point where, the ball reached during the flight.

Solution (i) We have given a = 30°, v0 = 68 ft/sec, and h = 50, and we 
know that g = 32 ft/sec.

 From (9.10), we have

  v0 sin a T – g   T 2 ___ 
2

   + h = 68 sin 30° T – 32   T 2 ___ 
2
   + h = 0

 Or – 16T 2 + 34T + 50 = 0

fi  (8T + 25) (2 – 2T) = 0

 Hence the ball hit the ground when T = 1, because T ≥ 0,

 From (9.11) we can find the range as

  R = 68 cos 30° × 1 =   
68. ÷ 

__
 3  
 _____ 

2
   = 34 ÷ 

__
 3   ª 58.889.

(ii)  The velocity v can be obtain from (9.7) as

v(t) = v0 cos a j + (v0 sin a – gt) k = 34 ÷ 
__

 3   j + (34 – 32.1) k = 34 ÷ 
__

 3   j + 2k

 The speed is  |v| =  ÷ 
__________

  (34 ÷ 
__

 3  )2 + 4   ª 58.9237.
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(iii) we know that the time when the ball reached at the highest point 

is   
v0 sin a

 _______ g   and maximum height is   
 v 0  

2  sin2 a
 ________ 

2g
   + h

 Hence time =   
v0 sin a

 ________ g   =   34 ___ 
32

   ª 1 and maximum height is   
 v 0  

2  sin2 a
 ________ 

2g
   + h 

=   682 sin230 _________ 
64

   + 50 ª 68.06

 So the ball attend the maximum height at (58.889, 68.06 ft.).

9.10 KEPLER’S LAWS 

In the seventeenth century the German astronomer Johennes Kepler (1571-1630) 
formulated three useful laws for describing the planetary motion (motion of 
the planets) which are 

 (i) Every planet moves in an elliptical orbit with sun at on focus.

 (ii) The radius vector drawn from the sun to any planet sweeps out equal 
area in equal time.

 (iii) The squares of the periods of revolution of the planets are proportional 
to the cubs of the semi-major axis of their orbits (If T is the period and 
a is semi-major axis then (T 2 ª a3), Fig. 9.33.

Fig. 9.33 Sweeps out equal area in equal time

Velocity and Acceleration in polar form when an object moves in a 
curve:
 Suppose ur and uq are the unit vectors along the radial axis and perpendicular 
to the radial axis respectively, Fig. 9.33. Now in terms of the unit Cartesian 
vectors i and j, we have

  ur = cos q i + sin q j and uq = – sin q i + cos q j

 Now   
dur ___ 
dq

   = – sin q i + cos q j = uq
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 And   
duq ____ 
dq

   = – cos q i – sin q j = – ur

 Suppose the sun S is at the origin and an object O moves about the sun, 
Fig. 9.32. Then in polar coordinate system the radial vector r = SO can be 
written as 

  r = rur = r cos q i + r sin q j

 Now, we know

  v =   dr __ 
dt

   =   dr __ 
dt

   ur + r   
dur ___ 
dt

  

   =   dr __ 
dt

   ur + r   
dur ___ 
dq

     dq ___ 
dt

  

   =   dr __ 
dt

   ur + r   dq ___ 
dt

   uq (9.13)

 Hence, the component of the velocity along the radial axis is   dr __ 
dt

   and 

perpendicular to the radial axis is r   dq ___ 
dt

  .

 Differentiate (9.13), with respect to t, we have

 Acceleration A =   dv ___ 
dt

   =   d __ 
dt

    (   dr __ 
dt

   )  ur +   dr __ 
dt

     
dur ___ 
dt

   +   dr __ 
dt

     dq ___ 
dt

   uq + r   d __ 
dt

    (   dq ___ 
dt

   )  uq

+ r   dq ___ 
dt

     
duq ____ 
dt

  

  =   d
2r ___ 

dt2
   ur +   dr __ 

dt
     

dur ___ 
dq

     dq ___ 
dt

   +   dr __ 
dt

     dq ___ 
dt

   uq + r   d __ 
dt

    (   dq ___ 
dt

   )  uq + r   dq ___ 
dt

     
duq ____ 
dq

     dq ___ 
dt

  

 =   d
2r ___ 

dt2
   ur +   dr __ 

dt
   uq   dq ___ 

dt
   +   dr __ 

dt
     dq ___ 

dt
   uq + r   d __ 

dt
    (   dq ___ 

dt
   )  uq – r   dq ___ 

dt
   ur   dq ___ 

dt
  

Fig. 9.33(a)
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 =  {   d2r ___ 
dt2

   – r   (   dq ___ 
dt

   )  2  }  ur +  { r   d
2q ___ 

dt2
   + 2   dr __ 

dt
     dq ___ 

dt
   }  uq.

 Hence, the component of the acceleration along the radial axis is  

{   d2r ___ 
dt2

   – r  (   dq ___ 
dt

   )  2  }  and perpendicular to the radial axis is  { r   d
2q ___ 

dt2
   + 2   dr __ 

dt
     dq ___ 

dt
   } .

Kepler’s second Law: According to the Kepler’s second law, the radius vector 
drawn from the sun to any planet sweeps out equal area in equal time, which 
is described in Fig. 9.34. We will assume that the only force acting on a planet 
is the gravitational attraction of the sun and by the universal law of gravitation 
and force of attraction is given by 

  F = – G   m M ____ 
r2

   ur

t1

t2

A1

Sun

F

t4
t3

Planet

A2

F

Fig. 9.34

 Where G is a physical constant, M is the mass of the sun and m is the mass 
of the planet. By Newton’s second law of motion, we have

  F = m A = – G   m M ____ 
r2

   ur

  A = – G   M __ 
r2

   ur (9.14)

 Where A is the acceleration of the planet.

 Equation (9.14) says that the acceleration of a planet has only a radial 
component, this means that the uq component of the planet’s acceleration is 
zero. Hence

  r   d
2q ___ 

dt2
   + 2   dr __ 

dt
     dq ___ 

dt
   = 0
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which is the derivative of a certain expression namely,

    d __ 
dt

     ( r2   dq ___ 
dt

   )  = 0

 Integrate w.r.t. t giving us

  r2   dq ___ 
dt

   = C

for some constant C. Now let two time intervals [t1, t2] and [t3, t4] of equal 
length, Fig. 9.34. Now area A1 of the region SPQ, Fig. 9.35 is

 A1 =  Ú 
t1

  
t2

      1 __ 
2

   r ◊ rdq =  Ú 
t1

  
t2

      1 __ 
2

   r2 dq =  Ú 
t1

  
t2

      1 __ 
2
   r2  (   dq ___ 

dt
   )  dt =  Ú 

t1

  
t2

      1 __ 
2
   Cdt

 Fig. 9.35

 Hence, A1 =   1 __ 
2

   C(t2 – t1). Similarly we can show that the area swept out in 

[t3, t4] is A2 =   1 __ 
2

   C(t4 – t3). Therefore,

  A1 =   1 __ 
2

   C(t2 – t1) = A2 =   1 __ 
2
   C(t4 – t3).

 So equal area is swept out in equal time.

Example 21 Suppose the position vector r of a moving body is r (t) = t i + 2t2 j 
for t ≥ 0. Express the position vector r and velocity vector v (t) in terms of ur 
and uq.

Solution r = |r| =  ÷ 
__________

  (t)2 + (2t2)2   = t  ÷ 
______

 1 + 4t2  

  r = rur = t  ÷ 
______

 1 + 4t2   ur

    dr __ 
dt

   =  ÷ 
______

 1 + 4t2   +   t __ 
2
   (1 + 4t2 ) 

–   1 __ 
2
  
  8t =   1 + 8t2

 ________ 
 ÷ 

______

 1 +  4t2  
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 We know that q = tan– 1  (   y __ x   )  = tan– 1  (   2t2

 ___ t   ) 
    dq ___ 

dt
   =   1 _______ 

1 + 4t2
  

 Hence,    1 + 8t2

 _______ 
 ÷ 

______

 1 + 4t2  
   ur + t  ÷ 

______

 1 + 4t2     1 ______ 
1 + 4t2

   uq.

9.11 TANGENTIAL AND NORMAL COMPONENTS OF   
  ACCELERATION

Suppose you are riding in a car which is accelerates forward then you are 
pressed to the back of your seat. If the car turns sharply to one side, then you 
will be thrown out other side. In this case both motions are due to acceleration. 
It is of interest to know how much of the acceleration acts in the direction 
of motion, as indicated by the unit tangent vector T, and how much in the 
direction of the principal unit normal N. The answers of these questions can 
be found by following theorem.

Theorem When an object moving along a smooth curve then the velocity 
v and the acceleration A of the object define as

  v =  (   ds __ 
dt

   )  T and A =  (   d2s ___ 
dt2

   )  T + k   (   ds __ 
dt

   )  2  N
 Where s is the length of the arc along the curve and k is the curvature of 
the curve. (The curvature is a measure of how fast the curve turns as we move 
along with the curve).

A

T

N

k ds
st

2 d s
dt

2

2

Fig. 9.36

Proof: A =   dv ___ 
dt

   =   d __ 
dt

    {  (   ds __ 
dt

   )  T }  =  (   d2s ___ 
dt2

   )  T +   ds __ 
dt

     dT ___ 
dt

  

   =  (   d2s ___ 
dt2

   )  T +   ds __ 
dt

     dT ___ 
ds

     ds __ 
dt
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   =  (   d2s ___ 
dt2

   )  T +   (   ds __ 
dt

   )  2    dT ___ 
ds

  

   =  (   d2s ___ 
dt2

   )  T +   (   ds __ 
dt

   )  2  k N  [ N =   1 __ 
k

     dT ___ 
ds

   ] 
 Hence,

 AT =  (   d2s ___ 
dt2

   )  is the tangential component of the acceleration

 AN =   (   ds __ 
dt

   )  2  k is the normal component of the acceleration.

 If an object moves along a curve then the velocity v and the acceleration 
A of the object at each point are related to AT, AN and k by the formulas

  AT =   v ◊ A ____ 
|v|

  , AN =   |v × A| ______ 
|v|

  , k =   |v × A| ______ 
(|v|)3

  .

Proof:  From Fig. 9.37, we have s

  AT = |A| cos q =   v ◊ A ____ 
|v|

  

  AN = |A| sin q =   |v × A| ______ 
|v|

  

  k =   
AN _____ 

  (   ds __ 
dt

   )  2 
   =   

AN ____ 
(|v|)2

   =   1 ____ 
(|v|)2

     |v × A| _______ 
|v|

   =   |v × A| ______ 
(|v|)3

  .

A

T

N

k ds
st

2 d s
dt

2

2

q

Fig. 9.37

Example 22 Suppose the position vector r of a moving object are

 (i) r(t) = t i + 2t2 j + t3 k for t ≥ 0.

 (ii) r(t) = sin t i + cos t j + 2tk for t ≥ 0.

 Find the tangential and normal components of the acceleration. 
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Solution (i) r (t) = t i + 2t2 j + t3 k, v =   dr __ 
dt

   = i + 4t j + 3t2 k and

  A =   dv ___ 
dt

   = 4 j + 6t k

  v ◊ A = (i + 4t j + 3t2 k) ◊ (4 j + 6t k) = 16t + 18t3

  v × A =  |   i   1   
0

    
j
 

 
 4t   

4
     

k
 

 
 3t2   

6t

   | 
  v × A = (12t2i – 6tj + 4k)

  |v| =  ÷ 
____________

  1 + 16t2 + 9t4  

 Hence, the components are

 AT =   v ◊ A ____ 
|v|

   =   16t + 18t3

  ______________  
 ÷ 

____________

  1 + 16t2 + 9t4  
  , AN =   |v × A| ______ 

|v|
   =   

 ÷ 
_______________

  144t4 + 36t2 + 16  
  ________________  

 ÷ 
____________

  1 + 16t2 + 9t4  
  .

Solution (ii) r (t) = sin t i + cos t j + 2t k, v =   dr __ 
dt

   = cos t i – sin t j + 2k 
and

  A =   dv ___ 
dt

   = – sin t i – cos t j

  v ◊ A = (cos t i – sin t j + 2k) ◊ (– sin t i – cos t j)

   = – cos t sin t + cos t sin t = 0

  v × A =  |   i
 

  
 cos t    

– sin t
    

j
 

  
 – sin t    

– cos t
   

k
 

 
 2   

0
  |  = 2cos t i – 2sin t j – k

  |v| =  ÷ 
__

 5  

 Hence, the components are

  AT =   v ◊ A ____ 
|v|

   =   0 ___ 
 ÷ 

__
 5  
   = 0, AN =   |v × A| ______ 

|v|
   =   

 ÷ 
__

 5  
 ___ 

 ÷ 
__

 5  
   = 1.

Note: If an object of mass m move such that the total force acting on the 
object is F then by Newton’s second law.

  F = m A = m(AT)T + m(AN)N = FT T + FN N

 Therefore FT = m(AT) = m  (   d2s ___ 
dt2

   )  and FN = m k   (   ds __ 
dt

   )  2 .
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Exercises 

 1. A shell fired from ground level at an angle of 45° hits the ground 
3000 m away. Find the initial speed and time of the flight of the ball.

 2. Find two angles of elevation so that a shell fired from ground level if 
its muzzle speed is 80 ft/sec and the desired range is 100 ft. 

 3. A boy standing at the edge of a cliff throws a ball upward at an angle 
of 30° with the horizontal axis and an initial speed of 64 ft/sec. Suppose 
that when the ball leaves the boy’s hand, it is 48 ft above the ground 
at the base of the cliff. What are the time of the flight of the ball and 
its range.

 4. A golf ball is hit from the tee to a target with an initial speed 145 ft/sec 
at an angle of elevation  45°. How long will it take for the ball to hit the 
target.

 5. Find the maximum height, flight time, and range of a particle fired from 
the origin over horizontal ground at an initial speed of 600 m/sec and 
a launch angle of 60°.

 6. Express r and the velocity vector v (t) in terms of ur and uq*, when

 (i) r (t) = 2t i – t2 j, for ≥ 0, (ii) x = 3t2, y = t,

 (iii) r = sin q, q = 3t.

 7. Express the velocity vector v (t) and acceleration A in terms of ur and 
uq, when r = (1 + cos q),

   q = 2t.

 8. Suppose the position vector r of a moving body are

 (i) r (t) = 2t i + t2 j

 (ii) r (t) = sin t i + 2t k.

 (iii) r (t) = cos t i + 2t j + 7k
  Find the tangential and normal components of the acceleration.

 9. The speed |v| of an object at an arbitrary time t is given. Find the 
tangential component of acceleration at the indicated time.

 (i) |v| =  ÷ 
_____

 t2 + 2  ; t = 1, (ii) |v| =  ÷ 
_______

 t + 2e 2t  ; t = 2.

Answers

 1. v0 = 171.464, t ª 25 sec. 2. a = 15°, 75°.

 3. t ª 3 sec, R ª 166. 4. t ª 6.4 sec.

 5. Maximum height 13775.5, t ª 106 sec, R ª 31813.
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 6. (i) r (t) = t  ÷ 
_____

 4 + t2   ur, v (t) =   4 + 2t2

 ______ 
 ÷ 

_____

 4 + t2  
   ur + t  ÷ 

_____

 4 + t2    (   – 2 _____ 
4 + t2

   )  uq, 

  (ii) r (t) = t  ÷ 
______

 1 + 9t2   ur, v (t) =   1 + 18t2

 _______ 
 ÷ 

______

 1 + 9t2  
   ur + t  ÷ 

______

 1 + 9t2     (   9t2

 ______ 
1 + 9t2

   )  uq,

  (iii) r (t) = sin q ur, v (t) = 3 cos 3t ur + 3 sin 3t uq.

 7. v (t) = – 2 sin 2t ur + 2(1 + cos 2t) uq A (t) = (– 8 cos 2t – 4) ur – 8 sin 
2t uq.

 8.  (i)  At =   2t ______ 
 ÷ 

_____

 1 + t2  
  ,   4 ______ 

 ÷ 
_____

 1 + t2  
  .

  (ii)  At =   – sin t cos t  __________  
 ÷ 
________

 4 + cos2t   
  , AN =   – 2 sin t _________ 

 ÷ 
________

 4 + cos2t  
  .

  (iii)  At =   sin t cos t _________ 
 ÷ 

_______

 4 + sin2t  
  , AN =   – 2 cos t _________  

 ÷ 
________

 4 + sin2t   
  .

 9.  (i)   1 ___ 
 ÷ 

__
 3  
  ,   (ii)   1 + 4e4t

 _________ 
2 ÷ 

_______

 2 + 2e 4t  
  .
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Some Important Results

Ú   dx _________ 
x (ax + b) 

   =   1 __ 
b

   log  |   x ______ 
ax + b

   |  + c,

Ú   dx ______ 
x2 – a2 

   =   1 ___ 
2a

   log  |   x – a _____ x + a   |  + c = –   1 __ a   cot h–1   x __ a   + c, x2 > a2,

Ú   dx ______ 
a2 – x2

   =   1 ___ 
2a

   log  |   a + x _____ a – x   |  + c =   1 __ a   tan h–1   x __ a   + c, a2 > x2,

Ú   dx  ________ 
 ÷ 

_______

 a2 – x2   
  = sin–1   x __ 

|a|
   + c,

Ú   dx ________ 
 ÷ 

_______

 x2 – a2   
  = log  | x +  ÷ 

______

 x2 – a2   |  + c, 

Ú   dx _________ 
x ÷ 

_______

 x2 – a2   
  =   1 __ 

|a|
   sec–1  |   x __ a   |  + c,

Ú   dx ________ 
 ÷ 

_______

 x2 + a2   
  = log  | x +  ÷ 

______

 x2 + a2   |  + c,

Ú   dx _________ 
x ÷ 

_______

 x2 + a2  
   = –   1 __ a   log    

a +  ÷ 
______

 x2 + a2  
  ____________ x    + c,

Ú   dx _________ 
x ÷ 

______

 a2 – x2   
  = –   1 __ a   log  |   a +  ÷ 

______

 a2 – x2  
  ___________ x    |  + c,
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Ú   xdx ________ 
(ax + b)

   =   x __ a   –   b __ 
a2

   log |ax + b| + c,

Ú   dx _________ 
x2(ax + b)

   = –   1 ___ 
bx

   +   a __ 
b2

   log  |   ax + b ______ x   |  + c,

Ú   dx ________ 
(ax + b)2

   =   – 1 _________ 
a(ax + b)

   + c,

Ú   dx _________ 
x(ax + b)2

   =   1 _________ 
b(ax + b)

   +   1 __ 
b2

   log  |   x ______ 
ax + b

   |  + c,

Ú   xdx ________ 
(ax + b)2

   =   b _________ 
a2(ax + b)

   +   1 __ 
a2

   log |ax + b| + c,

Ú   dx _______ 
 ÷ 

______
 ax + b  
   =   

2 ÷ 
______

 ax + b  
 ________ a    + c,

Ú   xdx _______ 
 ÷ 

______
 ax + b   
  =   

2(ax – 2b)  ÷ 
______

 ax + b  
  _________________  

3a2
   + c, 

Ú   dx ________ 
x ÷ 

______
 ax + b   
  =  {  

 

 

  1 ___ 
 ÷ 

__
 b  
   log  |    ÷ 

______
 ax + b   –  ÷ 

__
 b  
  ____________  

 ÷ 
______

 ax + b   +  ÷ 
__

 b  
   |  + c, b > 0

     

  2 ____ 
 ÷ 

___
 –b  
   tan–1  ÷ 

_______

   ax + b ______ 
–b

     + c, b < 0
 

 

   

Ú  ÷ 
______

 ax + b   dx =   
2 ÷ 

________

 (ax + b)3  
  __________ 

3a
    + c,

Ú   x2dx _______ 
x2 + a2

   = x – a tan–1   x __ a   + c,

Ú   xdx _______ 
x2 + a2

   =   1 __ 
2

   log(x2 + a2) + c,

Ú   dx _________ 
x(x2 + a2)

   =   1 ___ 
2a2

   log  (   x2

 _______ 
x2 + a2

   )  + c,

Ú   dx ______ 
x2 – a2

   =   1 ___ 
2a

   log  |   x – a _____ x + a   |  + c, x2 > a2,

Ú   xdx ______ 
x2 – a2

   =   1 __ 
2

   log(x2 – a2) + c, x2 > a2,



Appendix A.3 

Ú   x2dx ______ 
x2 – a2

   = x +   a __ 
2

   log  |   x – a _____ x + a   |  + c, x2 > a2

Ú    dx _________  
x2(x2 – a2)

   =   1 ___ 
xa2

   +   1 ___ 
2a3

   log  |   x – a _____ x + a   |  + c, x2 > a2,

Ú    dx _________ 
x(x2 – a2)

   =   1 ___ 
2a2

   log  |   x2 – a2

 ______ 
x2

    |  + c, x2 > a2

Ú   dx ______ 
a2 – x2

   =   1 ___ 
2a

   log  |   a + x _____ a – x   |  + c =   1 __ a   tan h–1   x __ a   + c, x2 < a2,

Ú   x2dx ______ 
a2 – x2

   = – x +   a __ 
2

   log  |   a + x _____ a – x   |  + c, x2 < a2,

Ú   xdx ______ 
a2 – x2

   = –   1 __ 
2

   log |a2 – x2| + c, x2 < a2,

Ú   xdx ________ 
(a2 – x2)2

   =   1 __ 
2

     1 ________ 
(a2 – x2)

   + c, x2 < a2,

Ú   dx ________ 
 ÷ 

_______

 x2 + a2  
   = log ( x +  ÷ 

_______

 x2 + a2   )  + c, = sin h–1   x __ 
|a|

   + c,

Ú   xdx ________ 
 ÷ 

_______

 x2 + a2  
   =  ÷ 

_______

 x2 + a2   + c,

Ú   x2dx ________ 
 ÷ 

_______

 x2 + a2  
   =   

x ÷ 
_______

 x2 + a2  
 _________ 

2
    –   a

2

 __ 
2

   log ( x +  ÷ 
_______

 x2 + a2   )  + c,

Ú   dx _________ 
x ÷ 

_______

 x2 + a2  
   = –   1 __ a   log  |   a +  ÷ 

_______

 x2 + a2  
  ___________ x    |  + c,

Ú  ÷ 
_______

 x2 + a2   dx =   
x ÷ 

_______

 x2 + a2  
 _________ 

2
    +   a

2

 __ 
2

    log  ( x +  ÷ 
_______

 x2 + a2   )  + c,

Ú x  ÷ 
_______

 x2 + a2   dx =   
(x2 +  a2) 

  3 __ 
2

  
 
 ________ 

3
   + c,

Ú x2  ÷ 
_______

 x2 + a2   dx =   
x(x2  + a2) 

  3 __ 
2

  
 
  __________ 

4
    –   

a2x ÷ 
______

 x2 + a2  
  __________ 

8
    –   a

4

 __ 
8
   log ( x +  ÷ 

______

 x2 + a2   )  + c,
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Ú    ÷ 
_______

 x2 + a2  
 ________ x    dx =  ÷ 

_______

 x2 + a2   – a log  |   a +  ÷ 
_______

 x2 + a2  
  ___________ x    |  + c,

Ú   
  ÷ 

_______

 x2 + a2  
 _________ 

x2
    dx = –    

 ÷ 
_______

 x2 + a2  
 ________ x    + log ( x +  ÷ 

_______

 x2 + a2   )  + c,

Ú    dx ________ 
 ÷ 

______

 x2 – a2  
   = log  ( x +  ÷ 

______

 x2 – a2   )  + c, 

Ú    xdx ________ 
 ÷ 

______

 x2 – a2  
   =  ÷ 

______

 x2 – a2   + c,

Ú    x2dx ________ 
 ÷ 

______

 x2 – a2  
   =   

x ÷ 
______

 x2 – a2  
 _________ 

2
    +   a

2

 __ 
2

   log ( x +  ÷ 
______

 x2 – a2   )  + c,

Ú    dx ________ 
x ÷ 

______

 x2 – a2  
   =   1 __ a   sec–1  |   x __ a   |  + c,

Ú  ÷ 
______

 x2 – a2   dx =   
x ÷ 

______

 x2 – a2  
 _________ 

2
    –   a

2

 __ 
2

   log ( x +  ÷ 
______

 x2 – a2   )  + c,

Ú x ÷ 
______

 x2 – a2   dx =    
(x2  – a2) 

  3 __ 
2

  
 
 ________ 

3
   + c, 

Ú x2 ÷ 
______

 x2 – a2   dx =   
x(x2  – a2) 

  3 __ 
2

  
 
  __________ 

4
    +   

a2x ÷ 
______

 x2 – a2  
  ___________ 

8
    –   a

4

 __ 
8
   log ( x +  ÷ 

______

 x2 – a2   )  + c,

Ú    ÷ 
______

 x2 – a2  
 ________ x    dx =  ÷ 

______

 x2 – a2   – a sec–1  |   x __ a   |  + c, 

Ú    ÷ 
_______

 x2 + a2  
 ________ 

x2
    dx = –    

 ÷ 
______

 x2 – a2  
 ________ x    + log ( x +  ÷ 

______

 x2 – a2   )  + c,

Ú    dx ________ 
 ÷ 

______

 a2 – x2  
   = sin–1   x __ 

|a|
   + c,

Ú    xdx ________ 
 ÷ 

______

 a2 – x2  
   = –  ÷ 

______

 a2 – x2    + c,

Ú    x2dx ________ 
 ÷ 

______

 a2 – x2  
   =   

– x ÷ 
______

 a2 – x2  
  __________ 

2
    +   a

2

 __ 
2

   sin–1   x __ 
|a|

   +c,



Appendix A.5 

Ú    dx _________ 
x ÷ 

______

 a2 – x2  
   = –   1 __ a   log  |   a +  ÷ 

______

 a2 – x2  
  ___________ x    |  + c,

Ú    dx _________ 
x2 ÷ 

______

 a2 – x2  
   =    

–  ÷ 
______

 a2 – x2  
  _________ 

a2x 
   + c,

Ú  ÷ 
______

 a2 – x2   dx =   
x ÷ 

______

 a2 – x2  
 _________ 

2
    +   a

2

 __ 
2

   sin–1   x __ 
|a|

   + c

Ú x ÷ 
______

 a2 – x2   dx = –    
(a2 –  x2) 

  3 __ 
2

  
 
 _________ 

3
    + c,

Ú    ÷ 
______

 a2 – x2   ________ x    dx =  ÷ 
______

 a2 – x2   – a log  |   a +  ÷ 
______

 a2 – x2  
  ___________ x    |  + c,

 sin (– q) = – sin q, cos (– q) = cos q, tan (– q) = – tan q,

 csc (– q) = – csc q, sec (– q) = sec q, cot (– q) = – cot q.

 sin  (   p __ 
2

   – q )  = cos q, cos  (   p __ 
2
   – q )  = sin q, tan  (   p __ 

2
   – q )  = cot q,

 csc  (   p __ 
2

   – q )  = sec q, sec  (   p __ 
2
   – q )  = csc q, cot  (   p __ 

2
   – q )  = tan q,

 sin (p – q) = sin q, cos (p – q) = – cos q, tan (p – q) = – tan q,

 csc (p – q) = csc q, sec (p – q) = – sec q, cot (p – q) = – cot q,

 sin (p + q) = – sin q, cos (p + q) = – cos q, tan (p + q) = tan q,

 csc (p + q) = – csc q, sec (p + q) = – sec q, cot (p + q) = cot q,

 sin (a + b) = sin a cos b + cos a sin b,

 sin (a – b) = sin a cos b – cos a sin b,

 cos (a + b) = cos a cos b – sin a sin b,

 cos (a – b) = cos a cos b + sin a sin b,

 tan (a + b) =    
tan a + tan b

  _______________  
1 – tan a tan b

    ,  tan (a – b) =   
tan a – tan b

  ______________  
1 + tan a tan q

   sin 2a + cos2 a = 1, tan2 a + 1 = sec2 a, 1 + cot2 a = csc2 a.

 sin 2a = 2 sin a cos a,
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 cos 2a = 2 cos2 a – 1 = 1 – 2 sin2 a = cos2 a – sin2 a,

 sin2   a __ 
2

   =   1 – cos a _________ 
2

   , cos2   a __ 
2
   =   1 + cos a _________ 

2
   ,

 tan 3a =   3 tan a – tan3 a  _______________  
1 – 3 tan2 a 

  ,  tan a =    2 tan a /2  ____________  
1 – tan2 a /2

   ,

 sin 3a = 3 sin a – 4 sin3 a,

 cos 3a = 4 cos3 a – 3 cos a, tan a /2 = ±  ÷ 
_________

   1 – cos a _________ 
1 + cos a

    ,

 2 sin a cos b = sin (a + b) + sin (a – b),

 2 cos a sin b = sin (a + b) – sin (a – b),

 2 cos a cos b = cos (a + b) + cos (a – b), 

 2 sin a sin b = cos (a – b) – cos (a + b), 

 sin a + sin b = 2 sin   
(a + b)

 _______ 
2

   cos   
(a – b)

 _______ 
2
  ,

 sin a – sin b = 2 cos   
(a + b)

 _______ 
2

   sin   
(a – b)

 _______ 
2
  ,

 cos a + cos b = 2 cos   
(a + b)

 _______ 
2

   cos   
(a – b)

 _______ 
2
  ,

 cos a – cos b = 2 sin   
(a + b)

 _______ 
2

   sin   
(b – a)

 _______ 
2
  ,

 a = 0°   
p

 __ 
6

   30°   
p

 __ 
4

   45°   
p

 __ 
3

   60°   
p

 __ 
2

   90°   
2p

 ___ 
3

   120°   
3p

 ___ 
4

   135°   
5p

 ___ 
6

   150° p 180°   
3p

 ___ 
2

   270° 2p 360° 

sin a 0 1/2 1/ ÷ 
__

 2    ÷ 
__

 3  /2 1  ÷ 
__

 3  /2 1/ ÷ 
__

 2   1/2 0 –1 0

cos a 1  ÷ 
__

 3  /2 1/ ÷ 
__

 2   1/2 0 –1/2 –1/ ÷ 
__

 2   – ÷ 
__

 3  /2 –1 0 1

tan a 0 1/ ÷ 
__

 3   1  ÷ 
__

 3   – – ÷ 
__

 3   –1 –1/ ÷ 
__

 3   0 – 0

csc a – 2  ÷ 
__

 2   2/ ÷ 
__

 3   1 2/ ÷ 
__

 3    ÷ 
__

 2   2 – –1 –

sec a 1 2/ ÷ 
__

 3    ÷ 
__

 2   2 – –2 – ÷ 
__

 2   –2/ ÷ 
__

 3   –1 – 1

cot a –  ÷ 
__

 3   1 1/ ÷ 
__

 3   0 –1/ ÷ 
__

 3   –1 – ÷ 
__

 3   – 0 –
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