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Preface

Writing a book and that a text book meant for students is probably a more 
arduous task than writing a book on some advanced research topic or on some 
specialised subjects. Coming to text book it matters whether the book is meant 
for undergraduate or for postgraduate students. In the opinion of the author 
it is a bit more difficult if the book is meant for undergraduate students. The 
undergraduates have the area of interest much wider and like to read the 
topics of their interest from one book. Moreover, it must be kept active in the 
thoughts of the author that the development of the wide spread subject topics 
must never lose its continuity in development. This is necessary to make the 
basic understanding of the subject based on stable ground so that the students 
themselves can move forward in the specialised branch later in their academic 
career. This zeal to further the knowledge in even any specialised topic depends 
on how efficiently the students have followed the fundamentals. Now, talking 
on fundamental Physics, there are innumerable books written by illustrious 
authors who have excelled in their career either as a researcher or as a teacher 
or both. The author of this book cannot refrain himself from recollecting from 
his memory that he was so impressed and sometimes remained spell bound in 
the classes during his undergraduate student days. The deliberations of most 
of his teachers during his undergraduate days was so absorbing that it inspired 
and implanted the idea of writing a book on fundamentals of Physics even in 
those early days of his career. It has now become a dream realised in practice. 
While writing this book the undersigned has taken help from a number of books 
in framing the plan for the development of the book and then develop it in his 
own way. The book is divided into two parts Part I and Part II. In Part I the 
Physics whose principles do not require any knowledge of the microstructure 
to understand are included and so titled as “Macroscopic Physics” In Part 
II those topics are discussed which essentially require the knowledge of the 
microstructure of the materials for explanation and understanding and so titled 
as “Microscopic Physics”

In Part I, Macroscopic Physics the preliminaries like scalar and vectors 
are included in Chapter 1 along with Newtonian Mechanics, Angular motion, 
Kepler’s laws, Rigid body mechanics, conservation of linear and angular 
momentum, Friction were discussed giving examples. In Chapter 2 on Special 
Theory of relativity, the Galilean and Lorentz transformation and relativistic 
equations of motion have been discussed. In Chapter 3 which is on Elasticity, 
elastic properties of solids and also fluid mechanics were discussed. From 



Chapter 4 to Chapter 7 the topics like Heat and Thermodynamics, Electrostatics, 
Magnetism, Electrodynamics including Maxwell’s equations have been 
discussed sequentially. From Chapter 8 to Chapter 11 the important topics like 
Elastic wave, Physical Optics (distributed in two Chapters I and II) to discuss in 
details interference and diffraction and also polarization have been done and 
finally in Part I, Chapter 11 is devoted on Electromagnetic wave.

The Part II devoted on topics which require microscopic concepts and state 
comprising fundamental constituents to explain the phenomena they exhibit. 
In this Part the topics like Statistical Physics, Quantum Mechanics, Solid state 
Physics and Semiconductor are discussed in details in Chapters from 12 to 15. 
The theories of magnetism and magnetic materials are discussed in Chapter 16, 
where as Super conductivity in Chapter 17 and finally the Nuclear Physics in 
Chapter 18. Lastly there are two Appendices, Appendix I and Appendix II. 
Appendix I discusses the interesting aspects of Universe, its creation. As it is 
experienced that until it is practiced there can never be any solid foundation 
of understanding and so in Appendix II some solved numerical problems on 
some topics of Physics are included so that students can gain confidence while 
they study though there are some theoretical questions which are included as 
Review Questions at the end of most of the chapters.

In each part the subject has been systematically developed and now all 
the efforts can be treated as successful if the present book is accepted by the 
students not merely as a book necessary for examination but more for the 
understanding of the subject and to cultivate the inner thirst to know more and 
beyond examination boundaries.

Lastly, the undersigned expresses his sincere thankfulness to his students 
as without their interest in the class room continued over decades, the idea of 
taking this massive venture would never appear reasonable and worthwhile. He 
also expresses his gratefulness to University Grants Commission for sponsoring 
this project by awarding Emeritus fellowship to him.

Sanat Kumar Chatterjee             
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1.1 INTRODUCTION 

Science emerged from the quest for finding the relationships that to the 
human mind appeared to exist between different incidences in the material 
world. That inter relations of different kinds was also observed to exist 
between the matter, living or non living and also different phenomena 
observed to happen in the world before us. To find such inter relations it 
has been found that the measurement of different parameters is necessary 
in order to observe and measure different characteristic properties. 

When we see a material object, the first aspect of the object that draws 
our attention is its size i.e. how big it is? There lies the necessity of knowing 
its dimension and that results in to the knowing a parameter known as 
“Length or distance”. Next that appears important to us its heaviness and 
that results in to the parameter known as “Mass”. Now, when we know or 
get knowledge of these two parameters of a body, we have the basic idea 
of the body and when we find that these two parameters of any body may 
appear different when observed at different intervals, we felt the necessity 
of measuring and the dependence of different parameters with the “Time”. 
These three parameters are fundamental parameters to know and analyze 
the matter and different phenomena. All other parameters that we have come 
across in order to know the more details of material objects are dependent 
on these three fundamental parameters i.e. Length, Mass and Time.

For example: Area = Length × Length (Breadth), Volume = Length 
× Length (Breadth) × Length (Height). The secondary parameters which 
involve any two or all of these fundamental parameters are also the 
parameters necessary to know the states of material bodies in more details. 
For example: Density = Mass/Volume, 
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Speed = Length (distance)/Time, Momentum = Mass × Length 
(displacement)/Time. Now, irrespective of the fact that the parameters are 
fundamental or secondary, it is essential to have a quantitative measurement 
of it in order to have a complete knowledge of the material bodies. When 
we want to measure the magnitude or the quantity of a parameter we must 
accept a certain and fixed quantity of it as unit and find how much or how 
many of such units are present in the material bodies for that parameter. 
These units are different for different parameters and there are different 
systems for standardizing such units. Now, before we introduce the different 
systems of units which are used in the measurement of parameters, it should 
be said that there must be some “standard” quantity in length, in mass and 
also in time in any system of measurement which should be universally 
accepted as units of measurement. 

In metric system, the standard of length is taken as the distance 
between two marks on a platinum-iridium bar kept at International 
Bureau of Weights and Measures in Paris and kept at 0°C and is known 
as one Meter. Recently more accurate length of one meter is measured 
by optical methods and is accepted as 1650763.73 wavelengths of the 
orange red light emitted by Krypton-86. The unit of mass in metric 
system is Kilogram and a cylinder of platinum-iridium kept at Paris is 
said to have mass of one kilogram. It is also equal to the mass of 1000 
c.c. of pure water at its maximum density which is at nearly 4°C. The 
standard time known as Second is said to be 1/86400 of the average 
length of a solar day. More accurately the duration of one second, the 
unit of time is taken as the time during which Cesium atom undergoes 
9192631770 internal vibrations.

1.2 SYSTEMS OF UNITS

There are three established systems of units and they are  (i) CGS (ii) MKS 
and (iii) FPS.

Now for fundamental parameters as Length, Mass and Time, the units 
in CGS system are respectively as Centimeter for length, Gram for mass 
and Second for time for MKS they are respectively as Meter, Kilogram and 
Second and finally for FPS system, foot for length, pound for mass and 
second for time. The dimensions of the secondary parameters in terms of 
three fundamental parameters noted respectively as L for length, M for 
mass and T for time can be derived as follows:
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Parameters Dimension CGS MKS FPS SI Units

Displacement L Cm M Ft m

Area L × L = L2 Cm2 M2 Ft2 m2

Volume L × L × L = L3 Cm3 (cc) M3 Ft3 m3

Mass M Gm Kg Lb Kg

Density Mass/Volume,
ML–3

Gm/cc Kg/m3 Lb/ft3 Kg/m3

Velocity Distance
(L)/time, LT–1

Cm/sec m/sec Ft/sec m/s

Acceleration Velocity/time,
LT2

Cm/sec2 m/sec2 Ft/sec2 m/s2

Momentum Mass × Velocity,
MLT–1

Gm.cm/sec Kg m/sec Lb ft/sec Kg.ms–1

Force Mass ×
Acceleration,
ML T–2

Gm.cm/sec2

( Dyne)
Kg m/sec2

(Newton)
Lb ft/sec2

(Poundal)
Kg.m.s–2

Newton

Pressure Force/Area, ML–1

T–2

Gm./cm.sec2 Kg /m.sec2 Lb /ft.sec2 Kg.m–1s–2

Work Force × distance,
ML2 T–2

Gm. cm2/sec2

(erg )
Kgm2/sec2

(joules)
Lb ft2/sec2 m2kgs–2

joule (J)

Power Work/Time, M L2

T–3

Gm. cm2/sec3 Kgm2/sec3 Lb ft2/sec3 m2kgs–3

watt (W)

Energy ML2T–2 erg joule m2kgs–2

Charge Q coulomb A s A s

Electric
Current

I ampere s–1 C A

1.3 SCALARS AND VECTORS

The physical parameters that have been introduced and many more to be 
introduced later are classified in to two categories. It can be realized that 
some of the parameters can fully represent the property of the material or 
incidence that they represent or stand for, if and only if the physical quantity 
of the parameters is known. For example, to know fully how heavy an object 
is, the parameter needed to be known is its Mass and if the quantity of Mass 
is known then the answer to the question i.e. how heavy the object is, can 
be known. Such parameter whose magnitude is sufficient to represent it is 
termed as “Scalar”. Like mass we can find out many other parameters which 
fall under this category like time, density, volume (how large a body is?) and 
many other. These parameters behave simply like numbers and also follow 
the basic algebraic relations, like addition, multiplication and division etc. 
Now, there exist some other kind of parameters and these parameters in 
addition to having the magnitude, have a sense of direction. Both of these two 
aspects i.e. magnitude and direction are intimately and inseparably mingled 
together in the parameters so that without the knowledge of both of these 
two aspects, the parameter fails to deliver the knowledge of that particular 
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aspect of the incidence or object. For example, suppose a man is for the first 
time in a city and wants to find the famous church of that locality, finds a 
man on the street and asks? Where is the Church?

If the man simply replies “It is one Km from here” then it is definitely 
not the complete answer to the first man’s query and so the man must ask 
him again “In which way?. But if the man to whom the question was asked 
had replied like “ Go nearly half Km towards North and then on the second 
turn, turn left (West), it will be then another half or so”. The man who 
asked for the church would then be totally satisfied and would express his 
thankfulness. This explains that not only the 1 Km distance is important, but 
equally important is the direction of that distance. Such parameters then have 
a specialty and so they belong to a different category known as “Vectors”. 
The difference between scalars and vectors are, therefore, explicit in their 
basic properties of the algebra applicable to them. Let a and b arse two scalar 
quantities and their vector counter parts are say a and b.

The Commutative Law of addition is valid for both of two types of 
quantities:

i.e. a + b = b + a for Scalars and for Vectors a + b = b + a. 
The Associative Law of addition is valid for both Scalars and Vectors
i.e. a + (b + c) = (a + b) + c and a + (b + c) = (a + b) + c.
When a and b are pure numbers, we can easily follow that but a 

bit more thought is required when we talk about a and b as vectors as 
a + b ≠ a + b, a and b will now contain their senses of directions. Suppose 
a is 5 and b is 3 and so a + b = b + a = 5 + 3 = 3 + 5 = 8 but when a and b are 
vectors having magnitude say 5 and 3 as before, then addition of them will 
also involve their directions i.e. angle between them and so if the direction 
expressed by the angle between them is changed, the magnitude of a + b 
will change even though the magnitude of both a and b remain same. This 
Vector addition follows the rule of a triangle. AB and BC are respectively 
as vectors a and b and the vector addition of them is given by the third 
side AC. It is evident that when direction of b is only changed but not in 
magnitude to b′ then the addition of them is changed. The two AC values 
of the following triangles are not same.

a

a + b

B

C

A

b

ABC is changed

when direction of

is changed tob b�
This changes the
magnitude of AC

a

a b+ �
b�

C

BA

Fig. 1.1 Vector addition, the law of triangle 
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The commutative law of Vector addition of more than two vector 
quantities can be shown graphically and the law a + b + c = b + c + a can 
also be proved.

a + b + c = R = a + c + b

a

b

c

R
R

b

c

a

Commutative law of addition for more than two vectors

Fig. 1.2 Commutative law of vector addition 

Now, it is not always possible and also not desirable to find the 
magnitude and also the direction of the resultant vector by this graphical 
means of triangle (when only two vectors are involved) and of polygons 
(when any number of vectors is involved).

This can be better done through more analytical way by resolving 
each vector in to its two mutually perpendicular components. This is a 
fundamental property of vector that is any vector can be resolved into 
mutually two perpendicular components. 

To explain this, let us now introduce the concept of “Unit Vector”. If 
a vector quantity say A, having both  the direction and  the magnitude is 
divided by its magnitude only (which is obviously the scalar) which is 
denoted by |A| then the resultant will maintain the direction of the original 
vector A but its magnitude will reduce to one. This Vector is now defined 
as a unit vector.

 | |
A
A  = n.

 This n will retain the directional sense of the vector A. In Cartesian 
coordinate system the directions of X, Y and Z axes are given by three unit 
vectors as i, j and k and any vector can be represented in terms of these 
unit vectors.
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z1

x1

y1

j

i

k

z

x

P( )x y z1 1 1

y

Fig. 1.3 The analytical method of vector addition

Now, let us consider a point P whose coordinates are x1, y1, z1 and 
in terms of unit vectors i, j and k the position vector of the point P i.e.
OP = x1 i + y1 j + z1 k. 

Again if any other vector say, OQ, when drawn from the origin of 
the coordinate system then if the coordinates of the terminal point Q 
has coordinates like x2, y2 and z2 then in terms of coordinates of Q the 
OQ = x2 i + y2 j + z2 k. When this two vectors are to be added in the sum 
could also be obtained analytically as:

 OP + OQ = x1 i + y1 j + z1 k + x2 i + y2 j + z2 k
  = (x1 + x2 ) i + ( y1 + y2 ) j + (z1 + z2) k
and in this way any number of vectors can be added analytically without 

going into the drawing as per scale of vectors and following the geometrical 
polygon rule of addition.

Now, when we come to multiplication it is an interesting point to note 
that the commutative law of vector multiplication is only valid for one type 
of multiplication and not for others. 

So, there exists two types of multiplication for vectors, a phenomena not 
observed in the case of Scalars. In first type of multiplication the product is a 
scalar quantity i.e. it neither carry the sense of directions of the participating 
vectors, nor it have one of its own. This is called scalar product or “Dot” 
product. The second type is totally different, here the product is a vector 
and it has a direction of its own and this direction given by a unit vector is 
reversed if the order of the product is reversed. Therefore, the commutative 
law of vector product is not valid for this type of product. This is known as 
vector product or “Cross” product.
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The Scalar Product ( Dot product ) 

a . b = |a||b| cos θ, where θ is the angle between the vectors a and b and 
product is a pure scalar quantity or number having value as |a||b| cos θ and 
this is the only thing that exists for the product. Example: Work is defined 
as the product of force acting on a mass and the displacement of the mass 
in the direction of the force. The both of on a mass and the displacement of 
the mass in the direction of the force. The both of these two parameters i.e. 
force and displacement are Vectors but their product work does not contain 
any sense of direction and so the product of force and displacement is scalar 
product or dot product as the multiplication between the vectors are noted 
by a dot between them.

B

C

C�D�

b cos �
�

The area is not equal to the areaABCD ABC D� �

A a

b

D

Fig. 1.4 The scalar product between two vectors

The dot product of a and b give rise to the area ABC′ D′ when angle 
between them is θ. This area is obviously different from the area of the 
parallelogram made by a and b.

Conclusion:
 i . i = j . j = k . k = 1    and i . j = i . k = j . k = 0
as cos θ = 1 and cos 90° = 0. 

The Vector Product (Cross product):

This type of product between two vector quantities a and b are noted as 
 a × b = |a||b|sin θ . n, here |a||b| sinθ is the magnitude of the 

product and its direction is given by the unit vector n and this vector is 
instead of being parallel to a or b, is perpendicular to both a and b i.e. it is 
perpendicular to the plane containing a and b.

The magnitude of this product of a and b is given by a b sinθ, which 
is the area of the parallelogram and of which a and b are the two sides. 
Therefore, it leads to an interesting conclusion that the area is given by the 
cross product of two vectors and is avector quantity the direction of which 
is given by the unit vector n.
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The direction of n is not simply perpendicular to the area i.e. the plane 
of the parallelogram but it follows the right hand screw rule i.e. when it is  
a × b the direction of n is vertically “up” (as shown in Fig. 1.5) and when it is 
b × a i.e. when the mode of multiplication is reversed i.e. commutated 
and the n is vertically “down”. Therefore, the commutative law of vector 
multiplication is not valid when it is vector or cross product. 

b sin �
b

DD�

A a B

C�
C

b

a

n

n

a × b

b × a

�

Fig. 1.5  The vector product between two vectors

Therefore, the area is a vector quantity as for a surface it is the vector 
(Cross) product of two vectors a and b i.e. lengths on two directions. The 
directions given by unit vectors n either up or down signify the curvature 
of the surface i.e. convex or concave. This can however be understood from 
the following (Fig. 1.6). The volume of any body is however a scalar as it 
is given by c . (a × b), the scalar product between the area (vector) and the 
length in the third direction.

Convex surface up   

S1 S2

Concave surface down  

S2S1

Fig. 1.6  The surfaces and the directions of the areas of different sections given by unit vectors as 
S1 and S2. The addition of these vectors S1, S2, S3 … gives the net direction of the total area
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a

b

c

n

Volume of the parallelopiped = ( × ) .a b c

A
B

C
D

E F

G
H

Fig. 1.7 The volume of any body is the product of three vectors.

a × b = a b sin θ n where a b sin θ is the area of the parallelogram ABCD 
and its direction is perpendicular to the area and is given by n. Now when 
(a × b) is scalar product with c, the another dimension of the body then 
c . n is the perpendicular component of c i.e. height of the body and as it is 
multiplied with the base area, ABCD it gives the volume of the body.

Conclusion: The dot product between two mutually perpendicular 
vectors is zero and cross product between two parallel vectors is also be 
zero and:

i × j = k, j × i = –k, k × i = j, positive in the order i → j → k and in any 
reversal negative.

Vector-scalar: classification of some important physical parameters
ClassificationParameters

Vector Scalar

Reason for the Classification

Displacement/
Length

Vector Has a sense of direction

Mass Scalar Has no sense of direction

Time Scalar Has only one sense of direction

Velocity Vector L/T, Vector/Scalar and so Vector

Acceleration Vector L/T2, Vector/Scalar

Momentum Vector M.L/T, Scalar × Vector

Force Vector ML/T2, Scalar × Vector

Moment of force
(Torque)

Vector (ML/T2) × L, Cross product
between two vectors i.e. force and
displacement

Pressure Scalar ML/T2L2, dot product between two
vectors, e, force. 1/area: F . n / area
i.e. normal component of force /
magnitude of area

Work Scalar W = (ML/T2). L, dot product
between two vectors

Power Scalar W/T, two scalars are involved

Energy Scalar It is work available

Temperature Scalar No direction sense
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1.4 GRADIENT, DIVERGENCE AND CURL

There is a difference between conventional differentiation of a scalar or 
vector quantities and the vector differentiation as Gradient, Divergence 
and Curl. While the conventional differentiation concerns with the change 
of magnitude of a scalar or vector quantities, the vector differentiation 
concerns the change in different directions of the scalar or vector quantities. 
The vector differential operator ∇ written as:

∇ =   
∂
∂x i + 

∂
∂y

j + ∂
∂z

k, or δ = i
∂
∂x

  + j
∂
∂y  + k z

∂
∂

.

The Gradient: 
If ∇j(x, y, z ) is a scalar field which is differentiable at every point of 

the field x, y, z then

∇j = x
∂j
∂

i + 
y

∂j
∂

j + 
z

∂j
∂

k and therefore, ∇j defines a vector field.

The Divergence:
If V (x, y, z) is a differentiable vector field and is defined as: 
V (x, y, z) = V1 i + V2 j + V3 k, the divergence of V, which is the dot 

product of V and ∇ is given by:

 ∇. V = x
∂

 ∂
i + y

∂
∂

j + y
∂
∂ 

k  . (V1i + V2 j + V3 k)

                  = 
∂∂ ∂

+ +
∂ ∂ ∂

31 2

x y z
VV V

.

The Curl
The curl or rotation of the differentiable vector V is the cross product 

between ∇ and V.

 ∇ . V = x
∂j
∂ i + y

∂j
∂

j + 
∂j
∂y

k . (V1 i + V2 j + V3 k)

 ∇ × V = x
∂

 ∂
i + 

∂
∂y j + k

z
∂ 

∂ 
 × (V1 i + V2 j + V3 k)

                         = 
∂ ∂ ∂
∂ ∂ ∂

1 2 3

x y z

i j k

V V V
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1.5 NEWTONIAN MECHANICS: KINEMATICS

It will be explained later that the dynamics of motion of a particle and of a 
rigid body having finite shape and of course mass are different, though the 
same laws of motions are applicable. They are different in the sense that for 
a particle mass there is only motion of the particle mass on a line which is 
either straight or in a curve and the motions about its own axis may not be 
observed and measured because of the fact that it’s mass is concentrated in 
a point having no dimension. The motion of a rigid mass are of two folds 
one which is similar to that of the motion of the particle and the other the 
motion of the mass about its own axis resulting into more complicated 
motion. Therefore, the study of dynamics is classified in to two categories 
one which is simpler i.e. particle dynamics known as Kinematics and the 
other more complicated the dynamics of rigid bodies. In the treatment of 
dynamics it is the first one with which we can safely start and then later we 
may introduce the finite size effect over the particle nature of mass.

Motion on a Plane:  A particle can move on a plane in such ways that 
either its position vector from a fixed origin changes only in magnitude but 
its direction remains same, under this condition the motion of the particle 
is straight line motion, if the position vector of the particle only changes its 
direction but the magnitude remains constant, then the motion is purely 
circular motion. In these two extremes, the particle in general can move 
on a plane so that both the magnitude and the direction of its position 
vector change. This motion on a plane can either be explained by Cartesian 
coordinates or the polar coordinates of the point.

Ar

�

00 i xx

yy

d�

r �

Bx, y

r
j

 (a)                                                        (b)

Fig. 1.8 a and b  A represents the motion of a particle given by the position vector r expressed in 
Cartesian coordinates and B represents the same in polar coordinates

In Cartesian coordinate:
 r = i x + j y

and                      •= =
dr
dt

r  i +
dydx

dt dt
j  = i vx + j vy
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When a particle moves in X, Y plane in random fashion, what changes 
is its coordinates and the sum total of its such change gives the velocity.

In Polar coordinates: When the particle moves, r changes both in 
magnitude and in direction and its rate of change:

r = nr, where n is the unit vector which defines the direction of r

                                    = +
r rn rd d dn

dt dt dt  …(1.1)

The change in the direction of the unit vector n is in its perpendicular 
direction given by the component nθ and that is given by the change of 
value of θ and so 

Therefore, d
dt

n  = 
0

.lim
t j j

∆θ→

∆j
= j

∆
n n   …(1.2)

Therefore, v = 
d
dt
r

 = n d
dt
r

 + rnθ = 
d
dt
j  …(1.3)

 v = nvr + nj vj where vr 
d
dt

 = 
 

r  and vj
dr
dt
j = 

 
 are radial and tangential 

velocities.

1.5.1 Newton’s Laws

First Law: Every body will continue in the state of rest or of uniform 
velocity unless it is acted on or be influenced externally by an action, 
known as Force.

The law thus states that the only thing that can change the state of an 
isolated body (or particle) is the external agency known as Force. Thus 
Newton’s First law introduces the Force as the cause of the change of state 
of motion (including rest). This is also known as Laws of Inertia. This 
tendency of the body to preserve its state and fail to change unless forced 
by the external cause is the inertia and obviously it should be of two types 
(i) Inertia of Rest and (ii) Inertia of Motion. The both of these two types of 
inertias are dependent on the mass of the body (particle) i.e. a heavier body 
possesses a greater tendency to preserve its state of motion or rest and thus 
require the external cause introduced as ‘Force’ of greater magnitude. The 
frame of reference used to define the position of the body is called Inertial 
Frame of Reference in which this Newton’s law is found to be valid and the 
frame where it is found to be violated is known as Non Inertial Frame of 
Reference. If we have a reference plane on which a body is rested and if the 
plane is moving with uniform velocity then there will be no relative motion 
between the body and the plane and same thing is obviously observed if the 
frame is not moving at all. This state of affair will continue until and unless 
the body is acted on by an external force. But if the frame of reference is 
given a sudden acceleration in one direction then the body on it will tend 
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to accelerate in reverse direction under the action of a force (provided the 
generated force exceeds certain limit dependent on the mass of the body 
and the nature of the surface: limiting Friction) which was not applied 
directly on it. As this state in an accelerating frame of reference do not 
obey the Newton’s law, the accelerating frame is called Non Inertial Frame 
of Reference. It has been established that more massive a body is more will 
be its inertia irrespective of this inertia being either inertia of rest or motion. 
Therefore this inertia is measured by mass and in same units.
Second Law: The rate of change of momentum of a body is proportional 
to the applied force and it takes place in the same direction as that of the 
force applied.

Now, as the First Law introduces the concept of force and also defines 
it, the second law gives its measurement. The momentum is the product of 
mass of a body (or particle) and its velocity. Now if v is taken as the final 
velocity after a time t from the state when the velocity of the body was u, 
then the change of momentum is: mv – mu, and as this change has taken 
place in the time interval t, the rate of change of momentum is:

−mv mu
t

  and according  to the Second Law, if F is the applied force on 

the body to cause this change of momentum, then:
−

∝
mv muF

t
 and as d

dt
 where f is the acceleration, then F ∝ mf  or, F = k 

mf, where k is the proportionality constant. Now, as we have already chosen 
the units of mass say in CGS system as gm and acceleration as cm. s–2 and 
if we take that quantity of force when applied on a mass of 1 gm produces 
1 cm. s–2 acceleration is a unit of force in CGS system. This is taken as of 
one unit magnitude and is called 1 dyne, and then 1 dyne is equal to 1 gm.  
1 cm. s–2. Then the value of the proportionality constant k will be equal to 
1 and so, measured in the same units,

 F = mf or in differential form:

 d
dt

mv = d
dt

p = F.

Now, this constant of proportionality k must remain always equal to 
unity when all the parameters are expressed in the same units. Say for 
MKS system, acceleration produced of amount 1 ms–2 and in a mass of 
1 kg is then is to be taken as one unit of measurement of force in MKS system 
and is known as 1 Newton.

Now, 1 kg = 103 gm, and 1 ms–2 = 102 cm. s–2 and so, 
1 Newton = 1 kg. 1 ms–2 = 103 gm. 102 cm.s–2 = 105 gm.cm.s–2 = 105 dyne. 
Like this there is FPS system and the force in that unit is known as poundal.
In addition to these units of force there is one gravitational unit of 

force. It is the force with which earth attracts a mass towards its centre. So, 
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a gm weight of force in this gravitational unit is the force with which earth 
attracts a mass of 1 gm towards its centre which is practically the weight 
of one gram of mass.

Now, a force of appreciable amount acts on a body of mass m for such 
a short duration of time so that the change of its velocity under the action 
of force cannot be measured then the force is defined as Impulsive Force or 
simply Impulse. It is then measured in terms of the change of momentum. 
When a cricket ball is hit by the bat then the entire force is applied within 
such a short duration that measurement of acceleration of the ball during 
the time when it is in contact with the bat (as the entire force is delivered on 
the ball during the period of its contact with the bat) is not possible and so 
the impulse measured by the difference of momentum (mv – mu) is taken 
as the representative of force.

Third Law: To every action there is an equal and opposite reaction.
Now, let us  explain what we understand by the word “Action”. It can be 

said that the action is the after effect of the application of any external cause 
tending to make some changes in the state of rest or motion of the body. 
When a canon shell say of mass m is fired from the canon with a velocity of 
v, this action will be acted on the canon itself as a reaction and so the canon 
will also experience a recoil velocity V so that mv is equal to MV where M 
is the mass of the canon. When a soccer ball is kicked with some velocity, 
it develops a momentum which the action imparted on the ball by the leg. 
As a result an equal momentum will be acted as a reaction on the leg. This 
should be taken in mind always that the action is equal and opposite but 
both of these two cannot act on the same body. It is thus impossible to move 
a car by pushing the car while sitting on it. 

When a lift with a man of mass M standing on its floor is moving up 
with an acceleration say, f, then net reaction of the floor on the man in the 
upward direction R will be given as: R = Mg + Mf. All the three possible 
states of motions and the corresponding reactions are given by the following 
Fig. 1.9.

When lift is moving up with
acceleration   effective force
on the mass = upwards

and so, = – (1)

f
M Mf

Mf R Mg

M R

Mf = Mg

When the lift is moving down
with same acceleration as that

of (free fall) i.e.   = , then
( ) = – and = 0(3)
g f g

Mf g Mg R R

When the lift is moving down
with acceleration f effective

force on the mass = down
wards and so, = – (2)

M Mf
Mf Mg R

M R

Mf    Mg

M R

Mf    Mg

Mf

Fig. 1.9 The different value of reaction R when the lift is moving with acceleration
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In the first stage the body will appear heavier, its weight measured 
under this condition will read more than actual and in the second case the 
body will weigh lighter and in the third case as the reaction R is zero the 
body will appear weightless and this will be shown by spring balance or 
any weighing machine, reading zero.

In the discussion of the Newton’s Laws of motion and also in the 
Newton’s Laws, it has to taken in to mind that it is always simpler if we 
consider a particle mass instead of a rigid body having a particular volume 
and fixed shape. The treatments to explain the dynamics of these two 
objects are different and they can thus be classified as (i) Particle Dynamics  
(ii) Rigid body dynamics. So far we have started with particle dynamics and 
in due course, we will introduce the rigid body dynamics.

1.5.2 Conservation of Linear Momentum and Energy

This is one of the fundamental outcome from the third law. The sum of the 
momentum of the interacting masses before any action takes place will be 
equal to the sum total of the momentum after such action is completed. 
Recalling the same example of firing a shell from the canon, the sum total 
of the momentum before the shell was fired is

MV + mv = 0 as both V and v, the velocities of the canon and the shell 
were zero. Now, after the shell was fired,:

 M × 0 + m × 0 = 0 = MV + mv, and so if the direction of v is from left 
to right, the direction of V is opposite and is from right to left and is of 
magnitude:

 V = –mv/M. Now, if the canon is moving in either left to right or from 
right to left then after the action of firing the shell from left to right its 
velocities will as per:

Left to Right:
 MV1 + m × 0 = MV + mv 
and so,  V = (MV1 – mv)/M and 
Right to Left:
 –MV1 + m × 0 = MV + mv
and so, V = –(MV1 + mv)/M.
Now, conservation of energy is one of the most important fundamental 

principle. It says that no energy can be either created out of nothing or 
destroyed to nothing. It can only be changed or transformed from one 
existing form to other. When a moving wheel is stopped by applying 
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breaks, its mechanical energy (Kinetic energy) will cease to exist and the 
energy will then is transformed in to heat energy which is manifested by 
the increase of temperature of the break shoes. When a body is thrown up 
with a certain velocity (it cannot be done without it), then as the body moves 
up its velocity decreases as it gains another mechanical energy, known as 
potential energy. At the highest point of its movement of its velocity becomes 
equal to zero and all the energy is then transformed in to potential energy. 
An opposite thing goes on happening when the body descends its potential 
energy decreases and it is then converted to the equal amount of kinetic 
energy. It is an interesting note that at every position of its motion either 
up or down, the sum total of its potential and kinetic energy will remain 
constant. Whatever example we can think of, there is no violation of this 
fundamental principle and the principle of conservation of energy.

1.6 ANGULAR MOTION AND ANGULAR MOMENTUM

In equn. 1.1 if the vector r given by nr r changes only in direction and not in 

magnitude then 
dr
dt

 = 0 and the equation then results in to 

.d d d
dt dt dt j

j
=r r n = r n ,

where r d
dt
j  is the tangential velocity ..... whose direction is given by the 

unit vector nj perpendicular to nr.

Now, d
dt
j  is known as angular velocity and as it is a velocity its direction 

should determine whether the rotation of the body is clockwise or anti-
clockwise and to specify the direction of rotation right hand screw rule is 
taken to give the direction of this vector.

�

Direction of Rotation �

Direction of Rotation

Fig. 1.10  Rotation and the directions of the angular velocity vector ω
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Now, when a body is acted on by a constant force it will go on accelerating 
and conversely if a body is observed to be constantly accelerating it is 
definitely under the action of a constant force. Consider a body is rotating in 
a circle with constant angular velocity. Its tangential velocity changes in its 
direction at every point of existence of the body on the circle. As the change 
of velocity or associated momentum can only be made possible if the body 
is acted on by a force, then at every point of its motion on a circular path of 
constant radius and constant angular velocity, a force must be constantly 
acting on the body and that force needed to change direction of tangential 
velocity is known as Centripetal force.

�

V

V�

x
�

Q

S�

n�
r

��
Y

P

nro

Fig. 1.11 Centripetal and centrifugal acceleration and the forces 

Now, if ∆θ is the angular displacement in ∆t time the angular velocity:

ω = lim
t o t∆ →

∆j
∆

 and its relation with tangential velocity v = r × ω

= r . ωsin 90°nj.
Now, through the magnitude of the product r . ω which is v for a 

constant ω and r do not change but its direction constantly changes with nj. 
This cannot be achieved without the action of a force and that force acting 
constantly on the body moving on the perimeter of the circular path must 
not have any of its component along tangent as in that case, the movement of 
the body with constant angular velocity ω would not be possible. Therefore, 
this force must always act along the radius of the circular path so that it 
cannot have any component along the tangent and increase the tangential 
velocity and the angular velocity also. This radial force is the Centripetal 
force and it acts on the body towards the centre along the radius. As every 
action has its equal and opposite reaction, so this centripetal force is also 
balanced by its reaction centrifugal force acting on the centre and directed 
towards the body along the radius.

Now, this centripetal force causes an acceleration called centripetal 
acceleration say a. 
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The a is then given by:  a = 
∆ →

∆
=

∆0
lim
t

v dv
t dt

 

 a = ( )v ddv d dv v
dt dt dt dt

j
j j= = +

n
n n  …(1.4)

 cos sinx yj = j + jn n n  and cos( /2) sin( /2)r x y= j + π + j + πn n n    

  = –nx sin j + ny cos j

Differentiating nj we get:

sin cosx y r
d d d d
dt dt dt dt

j j j j
= − j + j =

n
n n n

Now, d d ds dv
dt ds dt ds
j j j

= =  and as ds = rdj, so 1d
ds r
j

=  

Therefore, d v
dt r
j

=  and r
v

dt r
j =

dn
n .

Introducing this result in equn. 1.4 for acceleration a we get,

a = r
dv vv
dt rj +n n  and when the body is moving round in circular orbit 

with constant angular velocity, dv
dt

 = 0 and so the acceleration directed 

towards the centre along the radius is known as centripetal acceleration 
and is given by:

  a = 
2

r
v
r

n   ...(1.5)

The force F acting on the body is F = ma = m
2

r
v
r

n  this is centripetal 

force and its reaction acts on the centre. Now to prevent the movement 
of the body under the action of this centripetal force towards the centre, 
a force is imagined to act on the body which is equal and opposite to this 
centripetal force and as this can only be measured on the moving system 
(body) and not outside of it, this force is a pseudo force and is known as 
Centrifugal force. To develop this centripetal force the roads having sharp 
turn is banked towards the turn so that a component of the weight of the 
body may act as the necessary centripetal force.
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Mg
�

�

Mg cos �

Mg sin �

Reaction
Normal
reaction

Fig 1.12 Banking of the road at the turn. Mg sin θ component serves as the necessary 
centripetal force for a smooth turn. When the road at the turn is not banked then  

frictional force serves as the necessary centripetal force

Now, for a smooth turn on the road the centripetal force equals to  
Mg sin θ = Mv2/R.

Where, R is the radius of the turning path and the velocity v is the 
velocity permissibly during turn for effective and smooth turn.

1.7 ANGULAR MOMENTUM CONSERVATION

The angular momentum L is defined as L = r × p, where p is the linear 
momentum i.e. m . v and r is the distance from the axis around which the 
particle is rotating. 

Therefore, as L = r × p, L = r × mv = mr × v
Now, as the rate of change of linear momentum p is introduced in the 

Newton’s second law as force, the rate of change of this angular momentum 
L is also the force responsible for rotational motion and acceleration and this 
force is known as Torque. If τ, a vector designate this torque, then:

 τ = =
dL d
dt dt

(r × p) = r × 
d
dt p + d

dt
 
 
 

r  × p

�

o �

V

r

V�

�
P

Q

L

(p = mv)
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Now, as p = mv = m d
dt

r, d
dt

p = m
2

2
d
dt

r and putting these in the above 

equation we get:

 τ = r × m 
2

2
d
dt

r + d
dt

r × m d
dt

r.

  = m
2

2
d d dr r r r

dt dtdt
 

× + × 
 

 and the second term which is v × v is zero.

and so, τ = r × m
2

2
d
dt

r,  which is  τ = r × F and also,

 d
dt

L = r × F        …(1.6)

Now, L = 0, when L is constant and does not vary with time. This can 
be achieved for two conditions i.e.

1. When F = 0, no force acting on the particle and the particle is then 
moving with constant velocity in a straight line. This particle which is not 
under the action of a force is a free particle and we can conclude that for a 
“Free Particle” the angular momentum L is constant.

2. When r = 0. As r is a vector defining the normal distance of the 
direction of applied force F from a fixed point and so r = 0 or r × F = 0 
means either the force F passes through the point concerned or its direction 
is parallel to the direction r. 

This second condition is then achieved when the force is called a central 
force and the motion of the particle will then have its angular momentum 
constant or conversely, when the angular momentum is constant the motion 
of the particle is then executed under the action of a central force.

m

r

0

d

v

�

L = m r v, L = m r v sin× �
or, L = mvd rsin = das �

as and are constants is also constantm,v d L

r

F

v

and as is parallelr

= r x F� = dL/dt.

to and isF,  = 0 L constant

0

�

�

Fig 1.13 Central force field and the constancy of angular momentum
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1.8 MOTION UNDER CENTRAL FORCE

If a force F acts on a particle at a distance r from the origin of a reference 
frame at which another particle is located and if f (r) is a function of r defining 
the interaction, then 

 F = f (r).r/r or, F = f(r).nr

then the potential energy U which is the work that is to be done on a 
particle is:

 U(r) = − ∫
1

( )
r

r

f r dr

Now, if there are two such point masses m1 and m2 at distances from 
the origin as r1 and r2 so that the distance between them is given by 
r = r1 – r2 = rnr.

m2

r r r1 2– =

r1

r2

m1

The force on mass m1 is: m1.
2

2
d
dt

 r1 = f(r)nr,  where r1 is a vector.

And the force on mass m2 is: m2. 
2

2
d
dt

r2 = –f(r).nr, (r2 is also a vector) 

the function which determines the nature of force between masses is 
f(r) ≤ 0 if the force is attractive and f(r) ≥ 0 if it is repulsive. These two 
equations for masses m1 and m2 can be combined in terms of “reduced 
mass” µ, where µ = so that 

  µ
2

2
d
dt

r = f(r).nr.

As the motion is under central force, the torque of this force f(r) and so 
the cross product of this force with r should vanish, which is the condition 
for angular momentum to be conserved.

 f(r)(r × nr) = r x µ
2

2
d
dt

r = d
dt

d
dt

 × µ 
 

r r  = L = 0
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[Note: 
d
dt

d
dt

 × µ 
 

r r  = µ
2

2
d d dr r r r
dt dt dt

 
× + × 

 
 = r × µ

2

2
d
dt

r

   = d
dt

(r × F) = d
dt

L.

Since the direction of L lies in space, the position vector r can move only 
in a plane perpendicular to L through the centre of force and so the motion 
is planar. We then require only two dimensional polar coordinates to define 
the position of the system the radial and tangential equations of motion can 
be written by recalling the equns. (1.3) derived before a:

 v = r
d dd n n

dt dt dr
j

= + j
rr r  

 a = r
dd d drv n r

dt dt dt dt
j

j
 

= + 
 

n

  = 
2

2
d
dt

rnr + 
dr d
dt dt

nr + 
dr d
dt dt

j
nj + r

2

2
d
dt

j nj + r
d d
dt dt
φ nj.

Now,  d
dt

nj = 
0

lim
t t∆ →

∆j
∆

(–nj) = – d
dt
j nr and d

dt
nr = 

∆ →

∆
∆0

lim
t

r
t

nj = dr
dt

nj.

Using these results we get:

  a = 
2

2

d r
dt

nr + dr
dt

d
dt
j nj + dr

dt
d
dt
j nj + r

2

2
d
dt

j
nj – r

d
dt
j 

 
 

2
 nr 

  = 
22 2

2 2 2 .r
d r d d dr dr n r n

dt dt dtdt dt j
   j j j − + +    

     
and 

 
22

2
d r dr

dtdt
 j µ −  

   
 = f(r)  …(1.7 a)

 µ
2

2
dr
dt

 j



 + 2
dr
dt

 . 
d
dt
j


 = 0  … (1.7 b)

which is 

 
2d dr

r dt dt
µ j 

 
   = 0, …(1.7 c) 

and 
µ dL
r dt  = 0 so, L is conserved and constant. Now, eliminating j from 

equation 1.7 b and writing it in terms of L we get:
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	 μ
2

2
d
dt

r – 
µ

2

3
L
r

 = f(r) …(1.8)

or,   μ	
2

2

d
dt

r = – d
dr

2

2( ) ,
2

LU r
r

  + 
µ  

 where U(r) = – ( )f r dr∫   ...(1.9)

Now, multiplying both sides by 
dr
dt

	 μ
2

2
dr d
dt dt

r = – d
dr

( )
2 2

2 2( )
2 2

L LU r U r
r r

      + = +   
µ µ      

which is equivalent to:

d
dt

 
2 2

2
1 ( )
2 2

dr L U r
dt r

   µ + +  
µ   

 = 0 and this concludes that the total 

energy Etotal which is Etotal = 
2 2

2
1 ( )
2 2

dr L U r
dt r

 µ + + 
µ 

 under central force is 

also constant.

The effective potential energy Ueff (r) = U(r) + 
µ

2

22
L

r
 …(1.10) 

where U(r) is a constant and the second term 
µ

2

22
L

r
 is the centrifugal 

potential energy as it represents an additional force in the motion under 

central force. Therefore,

 Etotal = 
21 ( )

2 eff
dr U r
dt

 µ + 
 

 …(1.11)

Now, recalling equn. (1.8)

 μ
2

2
d r
dt

 = f(r) + 
µ

2

3
L
r

 = f(r) + µrj2

f(r) = – 2
C
r

 i.e. U(r) = – C
r

 for positive C the interaction is attractive.

Now, the following Fig. 1.14  gives the variation of potential energy for 
central force for a specific case.
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U r( )

0

+

–

C r/

Ueff

E E= min

E = 0

2
L

2r�

r

Fig. 1.14 The potential energy variation for an attractive central force

Now, the motions of planets and the motions of electrons round nucleus 
of an atom are the most important motions of masses under the action of 
central force. 

For motions of electron:

 f(r) = –
πε

2

2
0

1
4

Ze
r

, U(r) = – = −
πε

2

0

1
4

Ze C
r r

For planetary motions:

f(r) = – G 1 2
2

m m
r

, U(r) = – G 1 2m m
r

 = – C
r

 

Now, Ueff = – +
µ

2

22
C L
r r

 and in the above figure Ueff is given by the solid 

line and the curves given in broken lines represent – C
r

 and also 
µ

2

22
L

r
.

Now, recalling Equn. 1.11

 Etotal = µ +21 ( ) ( )
2 eff

dr U r
dt

Now, for a mass m moving under central force 

 Etotal = 21
2

mv  – G
′mm

r  and as 

                                
′

=
2

2
mv mmG

r r           

 and therefore,    ′
=21

2 2
mmmv G

r

so, Etotal = –G
′

2
mm

r
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Now, the kinetic energy T is given by T = Etotal – Ueff and the motions of 
the mass under central force is determined by total energy and the path of 
the mass is determined by the conditions i.e. E > 0, E < 0 or E = 0.

0

E 0
E 0

0

E = 0

E p = –Gmm�
r

Ep Ep

E

E

0
E

m m

m

m�
m�

m�

ELLIPSE HYPERBOLA PARABOLA

>
<

Fig. 1.15 The total energy Etotal (E) and the path of motion of mass under inverse
 square central force

1.9 KEPLER’S LAW

Kepler’s three laws of planetary motions though restricted to the inverse 
square force but in general it is an important formulation of central force 
field.

 Kepler’s First Law: The planets move in elliptical orbits with sun at one 
of its foci.

 Kepler’s Second Law: The vector from the sun to the planet describe 
equal areas in equal times.

 Kepler’s Third Law: The square of the period of a planet is proportional 
to the cube of the semi major axis of its orbit.

Discussions on Kepler’s Law: 
The path of planets are elliptical as the total energy in negative and 

with sun at one of the foci.
Recalling equn. (1.7 c) we get:

  2d dr
r dt dt
µ j 

 
 

 = 0

or, 21 1 0d d dr L
r dt dt r dt

j µ = = 
 

 as L = 2 dr
dt
j

µ
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and so 21
2 2
L dr

dt
j

=
µ

  = constant.

The area swept by the radius vector in time dt is approximately

ds 1 ( )
2

r rdj = as dj is small.

So, 21
2

ds dr
dt dt

j
=  = 

µ2
L

 = constant.

The time period T of the orbiting time is given by

 T = 
π

=
µ/ /2

S ab
ds t L  where a and b are major and semi-major axes of the 

ellipse.

And a = 
− 21
p
e

, b = 
− 21

p

e
 and b = a − 21 e , where p = a(1 – e2).

Now, as πab is its area.

Therefore, T2  = 
µ

π −
2

2 4 2
2

4 (1 )a e
L

 again as L = µC p = µC a (1 – e2)

So we get: π µ
=

2
2 34T a

C
, which is the third law of Kepler.

1.10 RIGID BODY DYNAMICS

 A “Rigid body” means a mass having definite finite volume and shape and 
its dynamics is more complicated than that of a “Particle mass” having 
definite mass but no volume. When a force acts on a particle it may execute 
a translational motion or a rotary motion around an axis lying out side the 
body. These motions are discussed in this chapter. When a body is a rigid 
body which does not change its shape on the application of a force is acted 
on by a force, whether it will execute a pure translational motion or also 
a rotary motion about an axis passing through its own body depends on 
the point of application of the said force. This requires an introduction of 
the concept of “Centre of Mass”. In the following Fig. 1.16, the rigid body 
is under the action of a series of parallel forces acting on the point masses 
with which the entire body may be assumed to be made up.

Now, as the forces applied F1, F2, F3, …. etc. are all parallel to each other 
the resultant force F will be given by F = F1 + F2 + F3 + F4 +….. as they act on 
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the point masses m1, m2 and m3 etc. they will produce accelerations which 
will be all equal as they body is a rigid body and there is no movement of 
any part of it relative to the other. Now, suppose relative to a Cartesian 
coordinate system the point masses have coordinates respectively as x1 y1 
z1, x2 y2 z2, x3 y3 z3 etc. Therefore, we can write:

  For the entire mass of the body:

 m1+ m2+ m3 + …. = ∑ i
i

m  = M(say) and 

 For all the parallel forces:

 F1 + F2 + F3 +……… = ∑ i
i

F  = F(say)

Again as these forces acting on different point masses generate same 
acceleration say a then:

 a(m1+ m2+ m3 + …. ) = a ∑ i
i

m  = F.

Now, the concept of centre of mass is that through this specific point 
the resultant force passes and this remains the sum total of the component 
actions unaltered.

m1

m2

m3
m4

m5

m6

r
1

r2r3

r4

r6

r5

F1 F2

F3

F4

F5

F6 F

Y

X

Two-dimensional Rigid body

C.M

Fig. 1.16 A two-dimensional rigid body made up of point masses

Taking moment about Y-axis for all system of forces acting point masses 
we get:

a m1 x1 + a m2 x2 + a m3 x3 + a m4 x4 + …… = a ∑ i i
i

m x = FX = aX ∑ i
i

m  
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and then the x-coordinate of the centre of mass X =
∑
∑

i i
i

i
i

m x

m
 and similarly 

taking moment of the component forces about X-axis we get the Y-coordinate 
of the centre of mass:

 Y = 
∑
∑

i i
i

i
i

m y

m .

Therefore, the centre of mass which is an important concept of rigid 
body dynamics is a definite position which either lies inside the body or 
sometimes outside can only change if the shape of the body is changed. 
Now, as given in the above figure if the body rotates round the Y-axis with 
an angular velocity of ω then the kinetic energy of the point masses m1, m2, 
m3, m4 etc are given as:

= ω∑ ∑ 22 21 1
2 2i i ii

i i
m v m r  for the point masses m1, m2, m3 etc. The total 

kinetic energy of the entire body can be obtained by simply summing over 
the kinetic energies of all the point masses and so, 

= ω = ω∑ ∑ ∑2 22 2 21 1 1
2 2 2i i i i i i

i i i
m v m r m r

Now, ∑ 2
i i

i
m r is introduced as I and is defined as the “Moment of 

Inertia” which is an important parameter for the rigid body having volume 
and shape. This parameter I in rotational motion of rigid body plays the role 
of mass and also the inertia of motion together. As it contains not only mass 
but also sum of the distances of each of the point masses from the axis of 
rotation the inertia of rotation not only depends on mass but also the shape 
of the body. By changing the shape the inertia can be drastically changed 
and so wheel can rotate easily than any body having same mass but different 
shape. Therefore, L = mvr = mr2 ω = I ω. As L is constant for central force,

 I1 ω1 = I2 ω2. If during rotational motion the moment of inertia of the 
rotating body decreases either due to decrease of mass or due to the change 
of shape, then the angular velocity of the body will increase. In short the 
moment of inertia plays the same role in rotational motion that mass plays 
in linear motion.

Now, when a force is applied on such rigid body, if the applied force 
passes through the centre of mass then the motion of the body will be purely 
translational but when a force acting through a point on the body other than 
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the centre of mass of the body will execute both the translational and the 
rotation motion about the centre of mass. The translational motion is due 
the force transformed through the centre of mass and parallel to the applied 
force and rotational due to the moment and the applied force through the 
actual point of application of this moment will be equal to the force, which 
is multiplied by the perpendicular distance of the applied force from the 
centre of mass.

Example: When we throw a marble it will move in a trajectory, but when 
we throw a brick it will execute both trajectory motion and also it will go 
on rotating about its centre of mass. The movement of boomerang used as 
weapon by aborigines of Australia is a good example of the role of centre 
of mass in the dynamics of rigid bodies.

1.11 FRICTION

Friction being a resistive force generates, when a body tries to move over 
the surface. It acts through the point of contact of the body along the surface 
in the opposite direction to the direction of motion of the body. It always 
opposes the motion of the body and is applied by the surface and so depends 
on the nature of the surface of contact and the normal reaction of the surface 
on the body. It does not exist until a force is applied on the body tending 
to move the body and increases with the increase of the applied force until 
it reaches an upper limit and if the applied force is increased beyond that 
then the body starts its motion under the action of net force equal to the 
difference of applied force and the limiting frictional force.

 Frictional force f ∝ N, where N is the normal reaction of the surface.
 Then f = µs N, this is the limiting frictional force. In the following 

(Fig. 1.17), the resulting frictional force is plotted against the applied force. 
It should be noted that the frictional force increases equally with the applied 
force up to the limiting friction and until that limit is crossed by the applied 
force the body cannot move. After the limit is crossed the frictional force 
decreases slightly as the kinetic friction coefficient µk is smaller than static 
friction coefficient µs and then remains constant.

Maximum Frictional

Force = �SN

Static Friction Kinetic Friction

(Limiting Friction)
Kinetic Friction kN�

F
ri
c
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o

n
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l 
F

o
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e

O

Fig. 1.17 The variation of frictional force and the applied force
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When a force more than the static friction µsN, is applied continuously 
on a body of mass m, it will be under the action of a resulting force F – µsN 
and this will cause of an acceleration is equal to:

− µ
=sF N

a
m

 and after this force is withdrawn, the kinetic energy 

attained by the body will be spent in doing work against kinetic friction 
and ultimately the body will stop after travelling through a distance say S, 
which is equal to:

21
2kN S mvµ ⋅ = . 

There are certain advantages and disadvantages of friction and among 
the advantages the most important is that it helps to make rolling possible. 
The rolling friction is less than sliding friction and so a body capable of 
rolling will continue to move longer distance. The following Fig. 1.18 gives 
the sliding friction down an inclined plane and the rolling friction.

W

�

W cos

N

W sin

�

�

�

w cos��

Applied
force

Mg

N

Mg

r Torque Mgrr�� =

�

Fig. 1.18 The sliding friction down an incline and the rolling
friction of a ball over a plane surface

REVIEW QUESTIONS

 1. Which of the following are scalars and which are vectors?
(a) Kinetic energy  (b) Temperature (c)  Charge
(d) Work       (e) Time    (f) Frequency 
(g) Angular velocity                                  (h) Moment of inertia

 2. Show graphically, –(A – B) = –A + B and give graphical construction of:
   3A – 2B – (C – D) and 1/2 C + 2/3 (A – B + 2 D). 
 3. If A = x1a + x2b + x3c, B = y1a + y2b + y3c and 
   C = z1a + z2b + z3c, then prove that 

   A . B × C = (a . b × c) 
1 2 3

1 2 3

1 2 3

x x x
y y y
z z z
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 4. Prove that (A × B) . (C × D) + (B × C) . (A × D) + (C × A) . (B × D) = 0.
 5. If A is a constant vector, then prove that ∇(r . A) = A. 

 6. ( )′
∇ =( )

f r
f r

r
r.

 7. Prove ∇2 (j ψ)  =  j ∇2ψ + 2 ∇j . ∇ ψ  +  ψ∇2 j.
 8. Describe how a driver of a car steer a car travelling at constant velocity 

so that (a) the acceleration is zero (b) the magnitude of acceleration 
remains constant.

 9. Describe the trajectory of a large body of finite size and of irregular 
shape, when thrown in horizontal direction from a certain height.

 10. How and when a solid body of rectangular cross section having 
sufficient weight that can rest motionless on an inclined plane.
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2.1 INTRODUCTION: GALILEAN TRANSFORMATION

There is nothing like absolute motions or rest. The dynamic state of every 
object is measured with respect to a frame of reference. To a person on a 
moving train on a straight track all the objects like poles, trees and also the 
person standing on the platform of a passing station appear to move in the 
opposite direction and to the person standing on the platform the person 
seating in the train will appear to move with the train. Let us consider the 
frame of references 1 and 2 of the following figure with 2 moving with 
constant velocity with respect to frame 1.

 
OBSERVER

(1)

O

OBSERVER
(2)

Reference Frame

(2)

r
r �

x, y, z, t
P

Z

Y

X�O�

Z
v

Y�

x , y , z , t� � � �

X

Reference Frame

(1)

Fig. 2.1 Relative motion and velocities. At t = 0, OO′ = 0 and at t = t, OO′ = Vt. The coordinates
of the point of reference P as per frame 1 are x, y, z, t and for frame 2 x ′  y ′  z ′  t ′

Let when OO′ = 0, t = 0 and it is then measured equal in both frames, 
so that t = t′. Now, for the point P:

 We get X′ = X – vt and as the frame 2 is moving along X-axis, Y = Y′ and 
Z = Z′.

′
= −

dX dX v
dt dt

 and V′ = V – v and if we reverse the direction of v, then 

V′ = V + v.
The set of equations i.e.
 X′ = X – v t, Y′ = Y and Z′ = Z are known as Galilean Transformations. 

CHAPTER

2

Special Theory of Relativity
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The relative velocities for linear motions of frames of reference are shown 
in the following (Fig. 2.2)

Observer O

Observer u Relative V u–

(a)

Relative
Object V

Object V Observer V

Wind u
Relative Velocity of Wind

22 uv +

(b)

Relative +V u

Object V

Observer – u

Fig. 2.2 The vector representations of relative motions. (a) represent the relative velocities 
when both frames move along the same line and (b) when the directions are  

perpendicular to each other

2.2 LORENTZ TRANSFORMATION

 Till the end of nineteenth century it was believed that the empty space above 
earth was filled up by a medium known as ether and earth moves within 
this medium without disturbing it and keeping it stationary. Therefore, the 
velocity of light will depend on the direction of light propagation relative to 
earth motion. It should then be equal to c′ = c – v (where c′ > c) if it is directed 
in the same direction of earth movement with velocity v and would be c′ 

= c + v (c′ > c), if it moves against the direction of earth’s movement. But 
the famous experiment of Michelson and Morley in the year 1881 showed 
that the velocity of light is invariant with respect to the direction of earth’s 
motion. This contradiction between the presence of motionless ether and 
the invariance of the velocity of light was settled by Einstein’s special theory 
of relativity in 1905. The principle of Einstein’s theory of relativity states 
that “All Laws of nature must remain same i.e. invariant for all observers 
in uniform relative translational motion”. Under this principle the Galilean 
transformation is not valid as inferred under this transformation that the 
velocity of light cannot remain invariant.

Recalling the (Fig. 2.1), let us assume that in the two frames t = t′ = 0 
when both of the observers’ positions coincide. At this moment, let a splash 
of light is emitted from O and according to Observer 1 it reaches the point 
P after time t so that r = c t where c is the velocity of light. As x, y and z are 
the position coordinates of point P then

 x2 + y2 + z2 = r2 = c2 t2   …(2.1)
the Observer 2 at O′ will find that light emitted from O reaches the point 

P in time t′ so that:
 x′2 + y′2 + z′2 = r′2 = c2 t′2   …(2.2)
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We are now to find the transformation relations between equns. (2.1) 
and (2.2).

Now as y = y′, z = z′ and OO′ = vt, then we can write 
 x′ = k(x – v t) where k is a constant and t′ = a(t – bx) and a and b are also 

constants. Now, from equns. (2.1) and (2.2) we get:
 k2 (x2 – 2vxt + v2t2) + y2 + z2 = c2a2 (t2 – 2bxt + b2 x2)
or, (k2 – b2 a2 c2) x2 – 2(k2v – ba2/c2) x t + y2 + z2

   = (a2 – k2 v2/c2) c2t2  …(2.3)
Comparing equn. (2.3) with equn. (2.1) we get:
k2 – b2 a2 c2 = 1, k2v – ba2 c2 = 0 and a2 – k2 v2/c2 = 1 and solving these set 

of equations we get:

 k = a = 
− 2 2

1

1 /v c
 and b = v/c2.

The transformations possessing the compatibility with the invariance 
of velocity of light lead to:

 x′ = k(x – vt) = 
−

− 2 21 /

x vt

v c

 y′ = y

 z′ = z … (2.4)

 t′ = k(t – bx) = 
−

−

2

2 2

/

1 /

t vx c

v c
.

This set of transformation equations are known as Lorentz 
Transformation. These primed values of coordinates of point P as per 
frame 2 are in terms of the coordinates of the same point measured from 
frame 1 when frame 2 moves along X with velocity v. Now, the inverse 
Lorentz Transformation equations are those of the unprimed parameters 
measured in terms of frame 2 when frame has relative velocity –v in the 
–X′ direction. They can be calculated by replacing v by –v and x by x′ and 
they are:

 x = k (x + vt′) = 
−

− 2 21 /

x vt

v c

 y = y′ 
 z = z′

 t = k(t′ + bx′) = −

−

2

2 2

/

1 /

t vx c

v c
  … (2.5)
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As commonly the velocity of any body is much less than the velocity of 
light i.e. as v ‹‹ c, so v2/c2 ≈ 0 and also vx/c2 ≈ 0 and then the set of Lorentz 
transformation equations revert back to Galilean transformation equations. 
In that general condition the time t in one frame is equal to time t′ measured 
in the other frame moving relative to each other. The incidence observed in 
both of the frames will then appear to be simultaneous and the situation is 
then under classical relative motion. But if the velocity v is very high and 
v/c cannot be neglected, then there will be same change in the dimension 
of length of any body and also the time measured in two frames moving 
relative to each other.

2.3 CONSEQUENCES OF LORENTZ TRANSFORMATION

 As the value of 

1
2 2

21 vk
c

−
 

= − 
 

 determines the difference between the 

Galilean and Lorentz transformations and as k changes from 1(v ‹‹ c) to  
(v ≈ c), these differences become more and more prominent. We then have the 
following consequences like contraction of length of a body in the direction 
of relative motion of the two frames and a dilation of time.

 A.  Length Contraction: Consider the Fig. 2.1 and let the observer in 
Reference frame 2 moving along X-axis with constant velocity v 
parallel to X-axis has measured the length of a rod parallel to X-axis 
and stationary in his frame of reference. The readings at the two 
ends of rod read as x2′

 and x1′
 so that the length parallel to X-axis 

reads as:

 L′ = x2′
 – x1′

The readings x2′
 and x1′ measured by the observer in Reference 

frame 1 are respectively as x2 and x1 (L = x2 – x1) and the relations between 
them from equn. (2.4) are as:

−
′ =

−
2

2 2 21 /

x vtx
v c

 and 
−

′ =
−
1

1 2 21 /

x vtx
v c

Therefore, L′ = x2′
 – x1′

 = 
−

−
2 1

2 21 /

x x

v c
 = 

− 2 21 /

L

v c
  …(2.6)

Now, as − 2 21 /v c  < 1 and 
− 2 2

1

1 /v c
 > 1, so, L < L′.

Therefore, the length of the rod measured by the observer in Reference 
frame 1 will appear shorter than the length measured by the observer in 
Reference frame 2 moving relative to 1 with constant velocity v. This is 
contraction of length in Lorentz transformation.
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 B. Time dilation: Let the time duration of an incidence which happens 
in Reference frame 2 is measured by the observer 2 and the difference 
between beginning and end time of the incidence at a place x′ in frame 

2 measured as t1′ and t2′ so that, t2′ – t1′ = ∇t′. 
Now, the time intervals of the same incidence as measured from the 

Reference frame 1 will appear as t1 and t2 and t2 – t1 = ∇t. From the above 
equn. (2.5) we get:

t1  = 
′ + ′

−

2
1

2 2

/

1 /

t vx c

v c
 and t2 = 

′ + ′

−

2
2

2 2

/

1 /

t vx c

v c
 

Therefore, t2 – t1
 = ∇t = ′ − ′

−
2 1

2 21 /

t t

v c
 =

∆ ′

− 2 21 /

t

v c
 …(2.7)

and as 
− 2 2

1

1 /v c
 > 1. 

So, ∇t > ∇t′ that shows that completion of the incidence is delayed in 
Frame 1 compared to the Frame 2.

2.4 RELATIVISTIC TRANSFORMATION OF VELOCITIES

 Referring to the coordinates of the point P from Reference frames 1 and 2 
respectively as: x, y, z, t and x′ y′ z′ t′ and differentiating them 

 
dx
dt  = = =, ,x y z

dy dzv v v
dt dt

and 
′
′

dx
dt  = 

′ ′= =′ ′ ′
′ ′

, ,x y z
dy dzv v v
dt dt

  … (2.8)

are the velocities in their respective frames of reference.
Now, taking differentials of the equn. (2.4) we get

−
′ =

− 2 2
,

1 /

dx vdtdx
v c

′ = ′ =,dy dy dz dz  and 
−

′ =
−

2

2 2

/

1 /

dt vdx cdt
v c

.

From the above equations we get:

−− −
′ = × =

− −−

2 2

2 22 2

1 /
/ /1 /

x
v cdx vdt dx vdtv

dt vdx c dt vdx cv c

−−
= =

− −2 2
/

1 ( / )/ 1 /
x

x

v vdx dt v
v dx dt c vv c
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And similarly, ′ +
=

+ 21 /
x

x
x

v vv
vv c

 and

−
′ =

−

2 2

2

1 /
1 /
y

y
x

v v c
v

vv c
 or  

′ −
=

+

2 2

2

1 /
1 /
y

y
x

v v c
v

vv c

−
′ =

−

2 2

2
1 /

1 /
z

z
x

v v cv
vv c

 or  ′ −
=

+

2 2

2
1 /

1 /
z

z
x

v v cv
vv c

.  … (2.9)

The above equations are the relativistic additions of velocities and these 
equations will reduce to those given by Galilean transformation when the 
velocity v ‹‹ c so that v/c ≈ O.

We can also see that it is not possible to obtain a velocity greater than 
the velocity of light i.e. c even by changing the reference frame because if in 
the limiting case v′x = c, then from equn. (2.9) velocity of the moving system 

v will be +
=

+ 21 /
c vv
vc c

= c. This gives the most important conclusion that 

the velocity of light is same for all the case of inertial frames.
These mathematical results are the verification of the two postulates of 

Special Theory of Relativity and these are:

Postulates Of Special Relativity

First: The laws of Physics take the same form in all inertial systems.
Second: The velocity of light in empty space is a universal constant c, 

and remains same for all observers and is independent of the state of motion 
of the emitting source.

An imaginary example of the consequence of relativity

All the above results are from transformation equations and if we imagine 
a situation to visualize the outcome of special theory of relativity then the 
following imaginary situation and observation may be cited. The time dilation 
compared to length contraction is more difficult to conceive as this can never 
be experienced and is beyond our expectation. In the following Fig. 2.3 let 
two frames of references O and O′ coincide at t = 0 i.e. OO′ = 0 before the 
second frame starts moving relative to the first with velocity v and along 
axis x′. A mirror parallel to x′ is fixed on y′ at a distance L from the common 
origin (at t = 0) O and O′. The time taken by a light beam to travel from O 
and O′ to the mirror at a distance of L get reflected and return to O, O′ at t 
= 0 will be 2 L/c where c is the velocity of light.
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Fig. 2.3 Hypothetical experimentation of time dilation in special theory of relativity

Now, suppose the frame 2(O′) is moving with velocity v and after an 
interval of time measured in frame 1(O) ∇t, the new position of O′ will be 
v . ∇t. The light beam emitted from O, O′ (at t = 0) reaches the new position 
of O′ after the time interval ∇t as measured from frame 1(O) and after 
traveling a distance of c. ∇t (OPO′). But for the frame of reference 2 the 
light beam appear to travel a distance O′ PO′ and the time taken will be 
as: ∇t′ and that will be equal to 2L/c again as velocity of light remains same 
in both of the frames. Now, from simple geometry:

2 2
21 1

2 2
c t c t L   ⋅ ∇ = ⋅ ∇ +   

   

∆ = − =
−

2
2 2 2 2

2 2 2
44 /( )

(1 / )
Lt L c v

c v c
 but as = ∆ ′

2L t
c

 Therefore, ∆ ′
∆ =

− 2 21 /

tt
v c

, Now, as ∇t′ and ∇t are the time intervals 

between two incidences i.e. emitting light and receiving it back after 
reflection as observed respectively with reference to frame 2 which is 
moving with velocity v with respect to frame 1 and the reference frame 1. 

As 
− 2 2

1

1 /v c
 is more than 1, ∇t > ∇t′.

So, the time interval between these two incidences will be prolonged 
with respect to frame 1 compared to frame 2.

Another hypothetical incident may be cited which can only be 
experienced if velocity v is very large or we consider a world where the 
velocity of light c is small so that v/c cannot be neglected. Suppose a man is 
standing on a railway platform and a train is passing through with a high 
velocity, so that v/c can not be neglected. Under that condition the original 
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length of the speeding train will appear shorter and a fat passenger seating 
by the side of window will appear lean and thin for the man standing on 
the platform. This can be viewed as the following diagram. A man standing 
with velocity zero with respect to a frame of reference and with respect to 
him the dimension of a moving man in the direction of the relative motion 
will decrease. 

O�

O O O

O�O�

u = 0 u = 0 u = 0

v v= 3

v
3

v
2

v1

LENGTH CONTRACTION

The dimension in the direction of relative motion of the
man moving is continuously decreasing

> >

v v= 2v v= = 01

 

Fig. 2.4 The imaginary situation of length contraction in the moving frame

The duration between two incidences say striking a match and lighting 
a cigar by a passenger viewed through the window of the moving train 
will be different as observed by the man standing on the platform and by 
any co-passenger seating beside the passenger. To the man standing on 
the platform this duration of the two incidences will appear much longer 
than it is actually and as observed by the co-passenger. This thinning of 
the figure of the passenger in the moving train and also the lengthening 
of the duration of the two incidences mentioned above depends on how v, 
the velocity of the train is close to the velocity of light c and if v coincides 
with c then according to the out come of the special theory of relativity the 
dimension of any body in the direction of motion of the train will vanish 
and the time duration will be prolonged to infinity.

2.5 RELATIVISTIC MOMENTUM AND ENERGY

 From Newtonian Mechanics the momentum p = mv, mass is considered a 
constant but in relativistic motion let us begin with an assumption that mass 
m is a function of velocity i.e. m = m(v). Let us consider an elastic collision 
problem between two particles of same masses (1) and (2) respectively 
in two reference frames 1 and 2 denoted by X1, Y1 and X2, Y2. The frame 2 
is moving with respect to 1 with velocity v and correspondingly frame 1 
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with –v with respect to 2. Consider the following Fig. 2.4 where in Frame 1 
which is the rest frame for particle 1 it is colliding elastically moving before 
collision with velocity v0 and colliding back with velocity v′.

In this frame particle 2 is moving with velocity w and moving with w′ 

after the collision.
Elastic collision between  two particles in two reference

frames having  relative motion

0 X1

Y1

0 X2

Y2

1

2

1

2
v

– v

Frame 1 Frame 2

v0 v�

v v�0w w�

ww�

Fig. 2.5 The diagram at left is that of frame 1 with respect to which frame 2 is moving with velocity 
v so that for particle 1 this is a rest frame along X and diagram at right which is for

frame 2 and is a rest frame for particle 2

In frame 2 which is rest frame for particle 2 it is found to move with 
velocity v0 and v′ before and after the collision, where as particle 1 is moving 
with w before and w′ after the collision. That is both of the two particles 
have same velocity v0 in their respective rest frames in the Y-axis direction 
before collision and v′ after collision and the Y-component of the oppositely 
moving particles in their respective rest frames are vy and v′y before and after 
collision i.e. with respect to particle 1 in its rest frame the Y-component of 
velocity of the particle 2 in its own rest frame before and after collision are 
vy and v′y and vice versa. Therefore, with respect to frame 1 and using the 
transformation (equn. 2.9) we get:

       

−
= = −

−

2 2
2 20

02
1 / 1 /

1 /y
x

v v cv v v c
vv c  

      

′ −
′ = = ′ −

−

2 2
2 2

2
1 / 1 /

1 /y
x

v v cv v v c
vv c

as vx = 0 for particle in before collision does not have any X-component 
of its velocity.

Now, the speed of the second particle w and w′ before and after collision 
can be obtained from the considerations that they are the resultant of the 
X and Y-components.



 2.10 Fundamental Physics

 = + − 
1/22 2 22

0 (1 / )w v v v c  and   ′ = + −  

1/222 / 2 2(1 / )w v v v c

Applying the principle of the conservation of momentum for the  
X-component, in frame 1 we get:

 m(v0).O + m(w).v = m(v′).O + m(w′).v  …(2.10 A)
and for Y-component of momentum in frame 1:

– m(v0) . v0 + m (w).v0 − 2 21 /v c = m (v0) – m(w).v0 − 2 21 /v c  …(2.10 B)
It is evident that from equn. (2.10 A) we can find that w = w′ and 

v′ = v0 and from equn. (2.10 B) m(w) = 
−

0
2 2

( )

1 /

m v

v c
. This relation gives the 

functional form of dependence of mass on speed and this holds for any 
value of v0. 

If v0 → 0 then m (v0) → m(0) = m0, which is the Newtonian mass or is 
called as “Rest Mass” of the particle. Therefore the inertial mass of the 
particle depends on its speed as:

 m(v) = m = 
−

0
2 21 /

m

v c
  …(2.11)

writing an arbitrary speed v in terms of velocity, the momentum p of a 
mass m moving with velocity v can then be written as:

 p = mv = 
−

0
2 21 /

m

v c
 v.  …(2.12)

As energy E is defined as the work done against a force F and can be 
written as:

 dE = F . dr = d
dt

p. dr = v.dp …(2.13)

Using equn. (2.12) dp = d
 
  =

− − 

0 0
2 2 3/22 2 (1 / )1 /

m v m dv
v cv c

 and putting 

this in equn. (2.13) dE =
−

= −
− −

2 22
0 0

2 2 3/2 2 2 3/2
(1 / )

2(1 / ) (1 / )
d v cm vdv m c

v c v c

 
 =
 − 

2
0 2 2

1

1 /
m c d

v c

Now, abbreviating 
− 2 2

1

1 /v c
 as γ we can write dE = m0c2dγ   …(2.14)

Now, if we integrate the above equation from γ = 1(v = 0) to γ = 1(v = 
v), we will get the kinetic energy of the body T.
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 T = 
γ

γ∫2
0

1

m c d  = m0c2(γ – 1) = 
 
 −
 − 

2
0 2 2

1 1
1 /

m c
v c

. Now for non 

relativistic.
Condition, i.e. v ‹‹ c, the above equation can be written as:
 T = − − − 

2 2 2 1/2
0 (1 / ) 1m c v c and if v ‹‹ c

 T =  + −  
2 2 2

0
11 / 1
2

m c v c .   …(2.15)

Therefore, Kinetic energy, T reduces to the classical expression 

T = 2
0

1
2

m v .

For relativistic case integrating equn. (2.14) and setting the integration 
constant as zero, we get:

 E = γ =
−

2
2 0

0 2 21 /

m cm c
v c

or,  Total energy, E = T + m0c2. …(2.16)
Now, integration over can be done in some other way as:

 dE = γ =
−

2 2 0
0 2 21 /

mc dm c d
v c

 but m = 
−

0
2 21 /

m

v c
from equn. (2.11)

dE = c2dm which after integration and equating the integration constant 
to zero

 E = mc2 … (2.17)
This is famous Einstein’s mass energy relation. 
On the other way it can be said also that when an energy ∆E is given 

to a mass it results in an increase of its inertial mass by ∆m and as this is 
true and so it may be considered as the origin of mass. As this is again true 
irrespective of the form of energy, it goes beyond the classical conservation 
of mechanical energy.

2.6 RELATISTIC EQUATIONS OF MOTION

Recalling the Lorentz transformation equn. (2.4) as:

 x′ = k(x – vt) = 
−

− 2 21 /

x vt

v c
 y′ = y
 z′ = z 

t′ = k(t – bx) = 
−

− 2 21 /

x vt

v c
 and introducing the abbreviations as:
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β =
v
c

 and γ =
− 2 2

1

1 /v c
 = 

− β2

1

1
, the above transformation 

equations may be simplified as:

 ′ = γ − β( )x x ct   and inverse relations as  = γ ′ + β( )x x ct

    ′ =y y                  = ′y y

    ′ =z z                  = ′z z

    ′ = γ − β( / )t t x c              = γ + β ′( / )t t x c       …(2.18)

Now, as = −1i  we can rewrite the above equations in terms of i as:

  ′ = γ + β1 1( )x x i ct                   and          = γ ′ − β ′1 1( )x x i ct

  ′ = ′2 2x x                = ′2 2x x

  ′ =3 3x x                                   = ′3 3x x  
and multiplying the time relations by ic on both sides.

′ = γ − β 1( )ict ict i x  and writing ict as x4

 
′ = γ − β +4 1( 4 )x i x x                    and         = γ β ′ + ′4 1 4( )x i x x    …(2.19)

This formulation of Lorentz transformation is then in four dimensional 
space with x1, x2, x3 and x4 one variables. The common characteristics of all 
these sets of quantities is that they have “four components” and for this 
reason they are called “four vectors” and can be supposed to describe a four 
dimensional representative space.

Like these equations a four dimensional vector may be specified 
in terms of components Aµ = (A1, A2, A3, A4) which are equivalent to: 
Aµ = (Ax, Ay, Az, At) and these components must obey the transformation 
rule analogous to equn. (2.18) and can be in compact notation as:

 ν ν µµ
µ=

′ = ∑
4

1
A a A the coefficients  avµ define the matrix elements in the 

direct Lorentz transformation as: 

γ βγ 
 
 
 
 − βγ λ  

0 0
0 1 0 0
0 0 1 0

0 0

i

i

 and changing the sign of iβγ we get the corresponding 

coefficients for inverse Lorentz transformation.
Now, from Newton’s equation of motion which is invariant under  the 

Galilean transformation, the force with its components and defined as:
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=i
i

dp F
dt

  where i = 1, 2, 3 may be generalized in the form which is 

invariant under Lorentz transformation as:
µ

µ=
dp

F
dt

 where µ = 1, 2, 3, 4 the spatial components 1, 2, 3 must reduce 

to that from Newton’s for very low velocity i.e. when v/c ≈ 0.
The four vector pµ can then be written as the product of rest mass m0 

and the corresponding four vector velocity vµ as:

pµ = m0 vµ = γ (m0 v, im0c) = (mv, imc). The spatial components of pµ is the 

momentum of the particle as p = 
−

0
2 21 /

m

v c
v and the time like components 

p4 is:

p4 = 2( )i mc
c

 = 
i E
c  and the four momentum is given as: pµ = , .ip E

c
 
 
 

This is a combined relation of both momentum and energy and is called 
“Momentum-Energy four-vector”. The transformation rule stated above 
leads to:

                    

β ′ = γ −  x xp p E
c

                    ′ =y yp p

                    ′ =z zp p

                     ′ = γ − β( )xE E cp   …(2.20)
Equation (2.19) shows that the energy and momentum are inter related, 

like time and longitudinal position in Lorentz transformation. The norm of 
the four momentum is a Lorentz invariant:

              µ
µ

= − = −∑
2

2 22 2
02

Ep p m c
c

. …(2.21)

This is a result which is equivalent to momentum-energy relation as 
below:

                      E = +
2

2
0 22

0
1 pm c

m c
 or,   = +2 2 2 2 2

0( )E p c m c

or, = +
2

2 22
02 .E p m c

c
 This can be geometrically expressed as a right angled 

triangle and sine of the angle is 

2/ /
p mv m c

E c mcmc c
β

= = = β . (as β = v/c) shown in Fig. 2.6. 
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m
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p
E/c

�

Fig. 2.6 The relativistic and non relativistic change of energy

Where, from we see that if β → 0, E/c → m0 c i.e. E → m0 c2 situation 
transforms in to non relativistic and if β → 1, p → E/c i.e. E → mc2 which 
is the extreme relativistic case. Now, considering the equn. (2.15) we get:

 = + + −  
2 2

2
0

11 / ... 1
2

T v c
m c

 and if the left hand is plotted against the 

velocity v then we get a comparison between the energy per mass with 
velocity for relativistic and non relativistic change of mass. This is shown 
in the following Fig. 2.7.

0.5 C 1.0 C 1.5 C 2.0 C
V

2.0

1.5

1.0

0.5

T
��
m C0

2

Considering
relativistic
change of

mass

Disregarding
relativistic
change of

mass

0

Fig. 2.7 Comparison between energies in relativistic and non relativistic change of mass. For 
velocities less than 0.2 C both yield the same result 
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REVIEW QUESTIONS

 1. Show that all laws of Physics are same in all inertial reference.
 2. Show that the speed of light in a vacuum has the same value in all 

inertial frame, regardless of the velocity of the observer or the velocity 
of the light emitting source.

 3. In the relativistic motion of a proton. Calculate the rest mass energy 
and if the total energy of the proton is three times of its rest energy 
then find the speed of the proton. (m0 = 1.67 × 10–27 kg and c = 3.00 
× 108 m/sec).

 4. An electron has a kinetic energy five times greater than its rest energy, 
find the total energy and its speed.

 5. Imagine a situation in which one of the twin brothers of same age 
travels by say rocket with speed 0.5 c, after 10 years of travel in space 
craft, the brother returns to earth and found his brother left on earth 
looks older than him. Comment on this. 
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3.1 INTRODUCTION

 The molecules or atoms in pure state of solids are not free to move from 
each other as it’s in the case of gaseous state. Though the molecule/atoms 
are not static or fixed to their positions and they oscillate about their 
respective mean positions. They can also be displaced from their positions 
resulting in a deformation either in any dimension of the bulk, change in 
shape of the bulk or change in volumes. As this state characteristic of the 
solid state of matter is universally true, it may also be mentioned here 
that the deformations resulted by the application of external force are 
resisted within certain limit by the solid. As an outcome of these resistive 
force which is not a reaction of the applied force, the body is deformed 
and may recover either fully or partially after the said force is withdrawn. 
As action (applied force) and the resistive forces (not as reaction) act and 
develop in the same body, the resistive force cannot be a reaction force of 
the applied force. This resistive force will henceforth be called as “Stress” 
and the deformation that the stress has created is known as “Strain”. The 
stress and the corresponding strain determine the physical nature known 
as “Elasticity”. This important property of elasticity classifies the solids 
into three categories namely perfectly elastic, partially elastic and perfectly 
plastic. No matter is either perfectly elastic or plastic; it remains within 
these two extreme boundaries. Hence the study of elastic properties of a 
solid matter is of immense importance. The strain is the precondition of 
the development of stress. When a solid is subjected to an external force it 
gets deformed i.e. strained and within the body a stress i.e. resistive force 
develops and this stress remains proportional to the strain within certain 
limit. When the applied deforming force within this limit is withdrawn the 
body relieves the stress by returning back to its state before deformation 
and thereby the strain is eliminated. This is valid within a limit of stress, 
different for different materials of the solid and is known as elastic limit. 
If the applied stress crosses this limit the material then suffers permanent 
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deformation. The following Fig. 3.1 shows the nature of change of stress 
developed against strain created by the external deforming force. 

Strain
0

Yield stress

Stress - strain relation
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Plastic range
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Fig. 3.1 The Stress vs. Strain curve for a crystalline solid. There are sometimes for some 
crystalline structures, there are two yield stresses

 Within the elastic limit i.e. yield stress the ratio of stress and strain 
remains constant and is known as elastic constant or elastic modulus. 
Depending on the nature of strain and stress i.e. depending on the intending 
effect i.e. change of length, change of shape and change of volume the elastic 
module are known respectively as Young’s Modulus, Shear Modulus and 
Bulk Modulus. The following linear relationship between stress and strain 
up to the limit of yield stress is known as Hooke’s Law.

They are:

,Longitudinal Stress = (Young sModulus)
Longitudinal Strain

Y

Volume Stress = (Bulk Modulus)
Volume Strain

k

Shear Stress = (Modulusof Rigidity)
Shear Strain

n

= σ
Lateral Strain (Poisson's Ratio)

Longitudinal Strain

χ
Longitudinal load per unit area of cross section = (Axial Modulus)

Increase in length per unit length  
.

It may be mentioned that the Stress is defined as Resistance force per 
unit area of cross section and strain is the ratio of amount of deformation 
per original dimension or volume.

It appears that both of Young’s modulus and Axial modulus are same. 
The χ however is defined in terms of the principal stress needed to produce 
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a simple elongation without lateral change. While y is the complete stress 
which includes two perpendicular stresses of such magnitude as will prevent 
lateral contraction, the χ represents the extensional stress to increase length 
per unit length.

3.2 DETERMINATION OF MODULI OF ELASTICITY

 The different moduli of elasticity can be determined by various methods 
and some of them are described below:

 A. Young’s Modulus by bending of beam

A bar having rectangular cross section of area a and of length l is 
supported at the ends and is centrally loaded with weight W. Let us first 
consider only one half of the beam of length l/2. In the element of length 
shown below in the Fig. 3.2 (a). The line taken through the axis of the beam 
may be assumed to remain undistorted, the upper part is elongated where 
as the lower is contracted. In Fig. 3.2 (b), let S denotes a section of that neutral 
axis. Then from diagram dS/z = j = S/r, where r is the radius of curvature 
of the bent section. So that dS/S = z/r.

l �

a

w

�

A

(b)

0

y

z
F

s
E

D C

� r

(c)

(a)

y
x

B

ds

A

b

Fig. 3.2 Bending of a beam supported at the ends and loaded at the centre. In (a) the original 
beam loaded on the centre, (b) shows the half of the total beam acting like a cantilever and  

(c) the section of the beam

If p is the magnitude of the internal force and a is the cross section then

 =
a
p dSY

S
 = 

zY
r

 or, = a
Yp z
r

The moment of p around F is = a 2Yp z z
r .
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The internal bending moment of resistance is the sum of all such terms 

and so, = a∑ ∑ 2Yp z z
r

 but the quantity a∑ 2z  is analogous to the 

moment of inertia of the cross section about that axis and is equal to ak2, 
where k is the radius of gyration.

 Then ‘Internal bending moment’ = a 2Y k
r

The curvature at the point A Fig. 3.2 (b) having coordinate x, y is given 
by:

 
ψ

=
1 d
r dS

 = ψ =
2

2( tan ) d yd
dS d x

.

Hence equating the internal bending moment with that of external 
bending moment at the point A, we get:

 −( )W l x  = a = a
2

2 2
2

d yY k Y k
r dx

Integrating we get  
a = − + 

 

2
2

12
d y xY k W lx c
d x

. The constant c1 = 0 at 

x = 0 as also = 0dy
dx

.

Integrating again equating again the constant to zero as at x = 0, y = 0, 
we get:

 yak2y = 
 

− 
 

2 3

2 6
x xW l

Referring to the Fig. 3.2 (b), The maximum displacement y = d at the 
point B is obtained after replacing x = l as:

 δ = 
a

3

23
Wl
Y k

  …(3.1)

Now, coming back to our original problem of bending of a beam loaded 
on the centre, we must replace the length l by l/2, as so long we considered 
a cantilever of length l and a total beam here can be considered of two such 
cantilevers making a beam of length l and each is subjected to a load at the 
end by W/2.

Then the relative elevation of the original centre after the loaded centre 
δ is given by:

 δ = 
a

3

248
Wl
Y k

  …(3.2)

The equn. (3.2) can be used to determine the Young’s by measuring δ 
and knowing W, l and the cross section, a.
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 B. Modulus of Rigidity by Torsion of a cylinder or Torsional pendulum
The experiment appropriate for the determination of modulus of rigidity 

has been shown in the following Fig. 3.3 (a). The wire of cylindrical shape 
of radius r and of length l is mounted firmly at A and at the other end a 
thread is wound around a cylinder and two equal weights are hung to 
apply torsion. Two mirrors are fixed on the ends of the wire to measure 
relative twist of the wire by lamp and scale method. The Fig. 3.3 (b) shows 
the magnified section of the cylindrical wire. The section ABCD is twisted 
to the position ABED due to torsion applied. Figure 3.3 (c) shows the base 
of the section both in undistorted and twisted configurations. FGIH a such 
a section element taken of element of width dr which is sheared through 
the angle f and takes the position JKML in Fig. 3.3 (d) the distorted situation 
of the element of area dr . dx is sheared through the distance rj. Now, the 
force f acting tangentially on the face FGIH, f which produces a shear of an 

angular displacement θ is given by 
.
f

d r d x
 and equating this shearing stress 

with the modulus of rigidity n, we get:

 n = 
θ .

f
dr dx

  …(3.3)
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Fig. 3.3 Torsion of a cylindrical wire and the experiment to determine the modulus of rigidity
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Now, since, lθ = rj, we get:

 f = . . rndr dx
l
j

This force f  has a moment fr about the axis about the axis of the cylinder 

and thus total moment is 2n r drdx
l
j

Γ = ∫∫  and taking integration on x 

around the circumference of the cylindrical cross section of radius r, 

 Γ = 32 .n r dr
l

p j
∫

 
4

2
n r

l
p j

Γ = . Now, writing
Γ

= τ
j

 = 
2 WR

j
 where t is the torsional rigidity 

and R is the radius of the cylinder attached to the end of the torsion wire. 

Equating this relation, we get finally p
τ =

4

2
n v

l
. The torsional rigidity can be 

measured after knowing the relative angular shift of the light beam from the 
mirrors M1 and M2 and the rigidity modulus n. However more conventional 
method which very much applicable for relatively thin cylindrical wire is 
to oscillate the body of known shape say a disc around the wire axis and 
measure the time period of this oscillation making the angular displacement 
very small. The time period of such torsional oscillation T can be equated to 

T = p
τ

2 I , where I is the moment of inertia of the disc. Using the expression 

of torsional rigidity τ in the above equation, we get finally the relation in 
measurable term as:

 T = p
p 4
22 Ie

n r
 …(3.4) 

3.3 RELATIONS BETWEEN ELASTIC CONSTANTS

 As a combination of uniform volume strain and three perpendicular shears 
is capable of producing any homogeneous strain, it is evident that the 
elastic constants Y, k, n and σ must be interrelated. The relation between 
them and their combined effect can be known from the following tabular 
method of designating stresses and their resultant strains. In this table the 
cell entitled ‘Total’ represents the net result when stresses are applied in 
three perpendicular directions. When +P stress is applied in three directions 

in succession, the resultant strain in each direction is [ ]− σ1 2P
Y

.
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The resultant volume strain is [ ]− σ
3 1 2P
Y

 but this is equal from Bulk 

modulus of elasticity to P
k

. Therefore, we can write: 

 
( )= − σ = − σ →

3 1 2 or, 3 (1 2 )P P Y k
k Y  

Stress Directions Strains produced along

X Y Z X Y Z

+P 0 0 � P

Y

P

Y

�� P

Y

��

0 +P 0
P

Y

��
+

P

Y

P

Y

��

0 0 +P
P

Y

�� P

Y

�� � P

Y

+P +P +P � �1 2
P

Y
� � � �1 2

P

Y
� � � �1 2

P

Y
� � Total

+P 0 0
+

P

Y

P

Y

�� P

Y

��

0 – P 0
P

Y

�� � P

Y

P

Y

��

+P –P 0 � �1
P

Y
� � � �� � �1

P

Y
0 Total

+P 0 0 � P

Y

�� P

Y

P

Y

��

0 +P1 0 1P

Y

�� � 1P

Y

1P

Y

��

0 0 +P1 1P

Y

�� 1P

Y

�� � 1P

Y

+P +P1 +P1 � �1

1
2P P

Y
� � � �1 1

1
( )P P P

Y
� � � � �1 1

1
( )P P P

Y
� � � Total

Now, from the second, when two perpendicular stresses one extensional 
and other compressional given respectively as +P and –P are combined, 
they produce extensional along X and equal compressional along Y and 

are equivalent to a shear strain of magnitude [ ]+ σ
2 1P
Y

 but this shear is 

equal to P
n

. Therefore, 

 
P
n  = [ ]+ σ

2 1P
Y

 or, = + σ2 (1 )Y n
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Now, from third, the result of applying a set of stresses which if produces 
no strain in Y and also in Z direction, then P1 = s(P + P1) and in this case the 

extension along X direction is 
 σ

−  − σ 

221
1

P
Y

+ σ − σ
=

− σ
(1 )(1 2 )

(1 )
P
Y

. Now, this 

is equal to 
χ
P

 and so we get:

   Y(1 – σ) = χ + σ − σ(1 )(1 2 )

From these relations we may write:

                 − +
= σ = χ =

+ +
9 3 2 3 4, ,

3 6 2 3
n k k n k nY

k n k n
.  …(3.5)

3.4 STRESS, STRAIN AND MODULUS OF ELASTICITY

 In a solid which is deformable the description of motion of the constituents 
which are not fixed at a position is influenced by various factors which 
include in addition to the applied force, the presence of the neighbouring 
constituents in the continuous medium and their mutual effect are also 
important. Though there exists local variations but as long as these 
variations are microscopic, the property of the bulk may be considered from 
macroscopic point view as that which is averaged over the entire volume 
element. Therefore, when a force is applied on the bulk, it is considered to 
be same as applicable on an elementary volume dv = dx . dy . dz, irrespective 
of the size of the element. If we consider any property of the bulk as F it is 
a function of x, y, z and also t as the property may vary with position and 
time i.e. F(x, y, z, t).This time dependence of the property is an interesting 
phenomenon of the solids.

 Now, 
dF
dt

 =
∂∂ ∂ ∂ ∂ ∂ ∂

+ + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

yF x F F z F
x t y t z t t

  = ∂ ∂ ∂ ∂
+ + +

∂ ∂ ∂ ∂x y z
F F F Fv v v
x y z t

 = (v . ∆) ∂
+

∂
FF
t

Considering F to represent an elastic parameter in general let us consider 
first the strain.
 A. Strain in the volume element (continuum)

 Consider the extension (elongation) of the volume element dv(dx . dy 
. dz) in the x-axis direction at a point x, y, z within the element at t = 0 and 
consider that the point concerned is displaced at t = t. The displacement 
vector ξ is defined as a “property” which is a function of position and time 
i.e. ξ = (ξx, ξy, ξz), at time t = t.

The strain (extensional) in the X direction εxx is the displacement in the 
X direction per unit change in x-coordinate and is given by :
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 εxx 
∂ξ
∂

x

x
 and similarly the strain in Y and Z directions are given as:

εyy 
∂ξ

∂
y

y  and  εzz 
∂ξ
∂

z

z
. These strains are also called longitudinal strain.

The shear strain is due to the change in shape of the element and at a 
point x is given by the displacement in Y direction with unit change in x 
direction i.e. that is change in ξy per change in x.

 Therefore, the shear strain along X direction, ξyx = 
∂ξ

∂
y

x  and similarly 

along y as: εxy = 
∂ξ
∂

x

y
. The angle of shear γxy in the xy plane is given 

by: γxy= 
∂ξ

∂
y

x  + 
∂ξ
∂

x

y
 but for shear in rigid element 

∂ξ ∂ξ
=

∂ ∂
y x

x y
 and so,  

εxy = γ =
1 1
2 2xy

∂ξ ∂ξ
+ ∂ ∂ 

yx

y x
, which is the shear strain in xy plane and 

similarly we can also get shear strain in xz and yz planes. We then have six 
components representing the state of strain in terms of three displacement 
components ξx, ξy, ξz and they can be written as:

εxx = ∂ξ
∂

x

x
, εyy = 

∂ξ

∂
y

y
, εzz = 

∂ξ
∂

z

z

 εxy = εyx = 
∂ξ ∂ξ

+ ∂ ∂ 

1
2

yx

y x

 εyz = εzy = 
∂ξ ∂ξ

+ ∂ ∂ 

1
2

yz

y z

 εzx = εxz = 
∂ξ ∂ξ + ∂ ∂ 

1
2

x z

z x
.

These strain components when expressed in the form of a matrix is 
called “Strain Matrx”

 ε = 

 ε ε ε
 
ε ε ε 

 ε ε ε 

xx xy xz

yx yy yz

zx zy zz

.  …(3.6)

The diagonal element of the above matrix represents strains in the 
specified directions and it will be elongation (dilation) if they are positive 
and compression if they are negative. The other elements represent shear 
strains.
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The expansion of the unit volume, called dilation ∆ or volume 
expansion is

Χ = 
∂ξ∂ξ ∂ξ

= ε + ε + ε = ε + ε + ε = + +
∂ ∂ ∂

yx X
x y z xx yy zz

dV
V x y z

Taking the time derivative of the above equation
1 dV
V dt   = exx + eyy + ezz, where e’s are the components of rate of strain. 

Now, using conservation of mass ρV, we get 

                 

ρ ρ
ρ = ρ + = = −

ρ
1 1( ) 0 or, dVd dV d dV V

dt dt dt V dt dt      
Now, expressing the rate of strain with velocities as

 exx + eyy + ezz = 
∂
∂

xv
x

 + 
∂

∂
yv

y  + 
∂
∂

zv
z

 = ∆ . v.

Therefore,  ∆ . v = 
1 dV
V dt  = 

ρ
−

ρ
1 d

dt

So, 
ρ

ρ
1 d

dt  + ∆ . v = 0. …(3.7)

This is the ‘Equation of continuity’ for a fluid of density, r.
 B. Stress in the volume element (continuum)

 It has been stated earlier that whenever a solid is strained (elongation, 
shear and volume) a resistive force develops within the solid and that 
resistive force per unit area is defined as stress designated by δ. Therefore, 

 δs = 
∆ →

∆
∆0

lim
S

F
S

 = 
d

dS F

0
X

Y
X Y Plane

X Z Plane

�
�

�

�
�

�

�

�
�

yz

yx

yy

zx

zz

zy

xx

xy

xz

S
X

S
Y

S
Z

Stress field in a volume element within the solid

Fig. 3.4 The stress field in a volume element dV = dx . dy . dz,. The stress components on three 
independent planes SX, SY and SZ i.e. YZ, XZ and XY planes are shown. σxx, σyy and σzz are 
elongation (dilation) stresses as they are perpendicular and σxy, σxz etc. which are parallel 

to the planes are shear stresses
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Therefore, on the surfaces SX, SY and SZ, the stress components are:
 σSX = σxx, σxy, σxz

 σSY = σyx, σyy, σyz

 σSZ = σzx, σzy, σzz

These nine components of stresses are positive if the direction of the 
axes are positive, otherwise they are negative. These stress components are 
expressed in the following form are known as “Stress Matrix”

 σ = 
 σ σ σ
 
σ σ σ 

 σ σ σ 

xx xy xz

yx yy yz

zx zy zz

 …(3.8)

Similar to equn. (3.6) the diagonal elements of the above matrix represent 
elongation stress if they are positive and compression if they are negative 
and all the other elements are represent shear stress.

3.5 ELASTIC SOLIDS

Normal polycrystalline metals have practically same elastic properties in 
all directions because this uniformity results due to distribution of very 
small crystals at random and in chaos. The discontinuity between these 
small crystals is the cause of the brittleness of the gross material, which 
increases continuously with continuous variation of strain. It is thus to be 
expected that the properties, especially those of elasticity, of large metal 
crystals are greatly influenced by the internal regularity of orientation 
of molecular fields. It is interesting to study this elastic behaviour for 
specially fabricated large metal single crystals, grown by using some 
special methods namely that due to Czochralski. As is to be expected, 
practically all the normal physical properties including elasticity show a 
directional sense in mono crystalline state and follow the law:

 P = P1 cos2 a = P2 sin2 a   

where P, P1, and P2 are the measure of elasticity at an angle a to the 
symmetry axis, parallel to that axis and perpendicular to it respectively.

 In general, single crystals have smaller elasticity and markedly greater 
plasticity than its polycrystalline state and these reactions to stresses 
vary markedly with directions. Because of existence of symmetry in 
single crystalline state, there are directional variation in tensile strength, 
and notable tendencies for fracture to occur along fixed cleavage planes. 
These cleavage planes naturally tend to lie on where molecular spacing 
is of maximum magnitude. If various planes are drawn in the metal, 
the breaking stress normal to the planes will exhibit defined minima of 
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different magnitudes and so the actual direction of fracture depends upon 
the ratio of stress component, perpendicular to one of the cleavage planes, 
to its particular breaking stress, and break occurs at that plane for which 
the ratio is greatest.

 In connection with plastic deformation, the metal crystals show 
some extraordinary properties. Ordinary Cadmium polycrystalline wire 
has a high value of rigidity modulus, n but single crystalline Cadmium 
wire shears into a permanent set under its own weight. Just as there are 
minimum breaking stress planes (cleavage planes), so there are minimum 
shearing stress planes, and plastic deformation occurs as a result of 
mutual gliding of these planes over one another. This is the cause of glide 
deformation. This glide deformation occurs as a series of jerks and the 
same time a striated appearance can be observed on the surface of the 
material as the ‘glide packets’ are parallel slabs of metal of a few microns 
thick. This glide of one plane over the other is commonly known as ‘slip’ 
and this slip is found to occur at the slip plane in the direction called slip 
direction and together they are called slip system.

The following Fig. 3.3 shows an example of striated appearance on 
the surface of Cadmium wire under stress.

Metal bar under
no stress

Glide
direction

Striated appearence
under stress

Glide deformation along
parallel slip planes

Fig. 3.5 Deformation by slip on parallel slip planes in the glide or slip direction

If this slip is arrested during the process of deformation, then it cannot 
continue up to breaking point with that slip system and then it will ‘climb’ 
to a parallel plane and the phenomena is normally called work hardening 
as more stress is required to allow the deformation to continue by this 
process of climb. After a limiting degree of this kind of deformation an 
increasing strain with time at constant stress occurs and this called ‘creep’. 
We can however apply a general equation to this effect of creep for many 
substances metallic, non-metallic, crystalline and amorphous in which the 
detailed atomic processes must vary. This onset of plasticity can be studied 
by stress-strain curve and also by X-ray diffraction, whereas the slip bands 
can be viewed by transmission electron microscopy.



 Elasticity 3.13

3.5.1 Elastic Constants and Ultrasonic 

 By the transmission of ultrasonic waves, it is possible to measure the elastic 
constants. When ultrasonic waves are passed through small crystals, it 
moves by creating adiabatic compression and rarefaction through the 
material. This method is applicable for materials like glass and plastics. 
Either shear or longitudinal waves may be used and from the deduced 
velocities, Vs and Vd respectively and their ratio, which is k, then Poisson’s 

ratio is given by:                    −
σ =

−

2

2
2

2( 1)
k
k

.

3.5.2 Elastic Constants and Temperature

 As a general rule elastic moduli decrease with temperature and for a small 
range of temperature the relation is approximately linear. It has been 
established that the relation between Y and T is in exponential form 

                                                 
−= 1

bTY Y e .     
The constant b has one value up to about one half the absolute 

temperature of the melting point and another value at higher temperature. 
The rigidity modulus also depends on temperature. Kohlrausch and Loomis 
observed this dependence of rigidity modulus of solids on temperature 
between 15°C and 100°C and proposed a relation as under:

                                        = − a − β 2
0( 1 )Tn n T T .

Though it is observed by many physicist that elastic moduli decreases 
with temperature but the exact dependence and the values of the constants 
depends on the purity of the metals.

3.6 FLUID MECHANICS

 The elastic behaviour of liquids and fluids in general is widely different from 
that of solids, crystalline or non-crystalline. While a solid posses both rigidity 
and bulk moduli, but a fluid has no rigidity and so cannot permanently 
resist a tangential stress. In solid the stress at any point on a given element 
of area may have any direction with reference to that area but in a fluid at 
rest it must act along the normal to the plane, and it follows that in liquids at 
rest, the pressure at a point is independent of direction and thus a function 
of the position of the point alone. In a perfect fluid, whether at rest or in 
relative motion, no tangential stress ideally can exist, but in practice, relative 
motion is accompanied by tangential forces tending to prevent that motion 
and they persist as long as the motion lasts. Thus the fluid may be regarded 
as yielding to these stresses, different liquids yielding at very different rates. 
The condition at which yield takes is determined by a property known as 
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viscosity and the latter may be regarded as a transient type of rigidity. The 
word transient is used to clarify that this property exists as long as the liquid 
flows. This can be easily experienced from the fact that when we pour liquid 
say water from a glass to another glass, we can feel the transportation of 
water even without seeing it. This may related to the transient resistance 
that flowing water exerts as it changes its shape at the brim of the edge 
of the glass pouring out water. Though no liquid is incompressible, but 
changes of volume at moderate increase of pressure is very small and can 
be practically neglected unless the pressure applied is very large. Therefore, 
a liquid can be used in hydraulic compressors or other devices and as due 
to Pascal’s law of distribution of applied stress, the undiminished applied 
force is distributed equally in all directions. Therefore, the quantitative study 
of the bulk modulus of liquids and its relation to the other properties of the 
liquid is a matter of great practical importance.

However, a distinction between a viscous fluid and a solid is that the 
viscous flow corresponds to large displacements of the particles, whereas in 
elasticity they are regarded as small. The equations of fluid mechanics can 
be derived from a postulated linear relationship between stress and rate of 
strain. The shear per unit velocity gradient is called the dynamic coefficient 
of viscosity, h which is defined as:

       

∂ ∂
σ = η = η + ∂ ∂ 

2 yx
xy xy

vve
y x

          

∂ ∂
σ = η = η + ∂ ∂ 

2 y z
yz yz

v ve
z y

       ∂ ∂ σ = η = η + ∂ ∂ 
2 x z

xz xz
v ve
z x

 …(3.9)

The equn. (3.9) above, show the dependence of the stress components 
s with the time derivatives of strain components µ, involving velocities of 
the element as e.

The significance of this equn. (3.9) can be illustrated by the following 
Fig. 3.6.

e
xy

dy

dvx

x

y

vx

0

 Fig. 3.6 Velocity distribution in x-y plane in a viscous fluid flow parallel to x
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From equn. (3.9), it follows that in a fluid which has zero velocity there 
are no shear forces i.e. σxy = σyz = σxz = 0. We can now define a scalar quantity, 
pressure, p which from Pascal’s law: px = py = pz = p and as stress force is 
independent of orientation in a fluid at rest, we have

 σxx = σyy = szz = –p and σxy = syz = sxz = 0.
Therefore, in a viscous fluid the direct stress components will be given 

in terms of rate of strain components as follows:

                                  

∂
σ = − + η = − + η

∂
2 2 x

xx xx
vp e p
x      

                                  

∂
σ = − + η = − + η

∂
2 2 y

yy yy
v

p e p
y      

                                   
∂

σ = − + η = − + η
∂

2 2 z
zz zz

vp e p
z     …(3.10)

Now, introducing f as body force per unit mass, the dynamic equations 
with viscous forces are obtained by substituting the foregoing relationships 
between stress and rate of strain the above equation into the equations of 
motion for a continuum. The resulting equation can be derived for y direction 
from the following equation:

∂σ
ρ = ρ +

∂
y xy

y
dv

f
dt x

 + 
∂σ

∂
yy

y
 + 

∂ σ

∂
zy

z
, where ρ is the density and 

ydv
dt

 is 

the y-component of acceleration. The left hand side (LHS) represents the total 
body force per unit mass. The other directions follow the similar equations. 
Therefore, using the equn. (3.6) we get:

∂ ∂
ρ = ρ − + η

∂ ∂
y

y
dv pf
dt y y

+ η

∂ ∂ ∂
+ + ∂ ∂ ∂ 

yx zvv v
x y z

 

 ∂∂ ∂ + +
 ∂ ∂ ∂ 

22 2

2 2 2
yx zvv v

x y z  

           = 
∂ ∂

ρ − + η
∂ ∂y

pf
y y  ∆ . v + h ∆2 vy …(3.11)

As for an incompressible fluid of constant density, ρ
= 0d

dt
, the equation 

of continuity (3.7), we get:
 ∆ . V = 0  …(3.12)
This equation allows us to simplify equation of motion (3.7)

                      

∂
ρ = ρ − + η∇

∂
2x

x x
pdv f v

dt x

                         

∂
ρ = ρ − + η∇

∂
2y

y y
dv pf v
dt y
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∂

ρ = ρ − + η∇
∂

2z
z z

pdv f v
dt z

  …(3.13)

These three components can be made in compact form as:

 ρ
d
dt

v = ρf – ∆p + η ∇2v …(3.14)

These equns. (3.10) and (3.14) are known as ‘Navier - Stokes equations’ 
for incompressible viscous fluids. 

 Let us now apply these equations for the viscous flow of a liquid 
through a horizontal tube of radius R and let the length of the tube be taken 
as x-axis. There are no body forces i.e. fx = fy = fz = 0 and also the velocity 

components, vy = vz = 0. The equation of continuity (3.7) reduces to ∂
=

∂
0xv

x
 , 

which signifies that the liquid flows along x-axis with constant velocity and 
so, vx is not a function of x but is only function of y and z-axes. Therefore, 
imagining the liquid to be divided into different layers in y and z-axes, the 
liquid flows with different velocities i.e. a velocity gradient exists in y and 
z-directions only. Moreover, as we consider a steady state flow velocity is 

independent of time i.e. ∂
=

∂
0xv

t
. We then can obtain:

=xdv
dt

∂
∂

x
x

vv
x

 + 
∂
∂

x
y

vv
y

 + 
∂
∂

x
z

vv
z

 + 
∂
∂

xv
t

 = 0

The x-component of equn. (3.13) then reduces to:

                        
 ∂ ∂

= η +  ∂ ∂ 

2 2

2 2
x xdp v v

dx y z
       …(3.15)

As there exists a cylindrical symmetry, transforming this equn. (3.15) 
in cylindrical coordinates, we get

                        + − =
η

2

2
1 1 0x xd v dpdv
r dr dxdr

      …(3.16)

Here r is the radial distance from the axis of the cylindrical tube.
Integrating the above equation, we get

= + +
η

21 ln
4x

dpv r A r B
dx

. Here A and B are integrating constants but 

A = 0 since vx has a finite magnitude for ρ = 0.
The viscous flow of liquid through this tube of radius R and the velocity 

gradient of the liquid flow are demonstrated in the following Fig. 3.7.
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There is no velocity of the layer in contact with the inner wall of the tube 
and so for this no slip condition, vx = 0 for ρ = R in all direction around the 
x-axis. Under this condition of laminar flow of the viscous liquid through 
the tube we get

                                       = −
η

2 21 ( )
4x

dpv r R
dx

   … (3.17)

This equn. (3.17) is known as Poiseuille’s equation for steady state of 
laminar flow.

R r xxv

Flow of viscous fluid through cylindrical tube

 

 Fig. 3.7 Laminar viscous flow in a horizontal tube

In the above Poiseuille’s equn. (3.17) as pressure decreases with the 

increase of x the factor dp
dx

, the pressure gradient along x-axis is negative 

and so the above equation considering the sign of this pressure gradient 
can be written as:

 vx = −
η

2 21 ( )
4

dp R r
dx

.

The above equation may be transformed into more practical measurable 
form by transforming in terms of measurable volume of liquid that flow out 
of the tube. For doing this, if we multiply both sides of the above equation 
with cross sectional area of the area element i.e. 2 prdr, then we will get the 
volume of liquid that flow and calling it dv, we get:

 2pr dr v x = − p
η

2 21 ( )2
4

dp r R r d r
dx

. 

As x is taken along the length of the tube writing dp
dx

 = P
l

, where P is 

the pressure difference at the two ends of the tube of length l and equating 
the left side with dv, we can write:

 dv = 
p

−
η

2 2( )
2
P r R r d r

l
.  

Integrating the above equation for the entire are of cross section of the 
tube and equating the left side to the volume, V of liquid flown per unit 
time, we get
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p

= −
η∫ 2 2

0

( )
2

R PV r R r d r
l

 = 
p
η

4

8
P R

l
.    … (3.18)

The above equation can be easily used for the determination of 
viscosity of liquids having low or moderate viscosity coefficient. The simple 
experimental requirement is to set the flow of the liquid at one end of a 
horizontal narrow tube at constant pressure and collect the liquid flowing 
out from the other end. Measuring the volume of liquid pouring out per unit 
time and knowing the liquid height from the inlet end, the constant pressure 
difference and knowing the radius of the bore of the tube, the viscosity 
coefficient h can be determined. For highly viscous liquid this method 
cannot be effectively used and for that case, the Stoke’s law. According to 
this law, the resistance P, offered by a very viscous liquid on a falling small 
spherical body is given by:

  P = 6 pηr v 

where r is the radius of the small sphere and v is the velocity of fall 
through the liquid. This resistance force on the spherical body will be added 
with the buoyancy force and these two together equal the downward force 
due to gravity, the spherical body assumes a constant velocity called terminal 
velocity vt. The condition can be stated as follows:

pη + p ρ = p ρ3 34 46
3 3t l Sr v r g r g

where ρl and ρS are the densities of the liquid and material of the 
spherical body respectively. A sinking ship in ocean experiences this viscous 
drag and can almost safely land and settle on the ocean bed. The wreckage 
of ship can be recovered much later.

 If we assume that the coefficient of viscosity is negligible i.e. η = 0, we 
then get a ‘perfect fluid’. The perfect fluid is characteristic of the fact that 
it does not support any shear. For this case the Navier-Stokes equn. (3.10) 
reduces to:

 ρ
d
dt

v = ρf – ∆p …(3.19)

This equation is called ‘Euler’s equations of hydrodynamics’.

The motion of a perfect fluid follows a ‘tube of flow’ consisting of a 
family of ‘streamlines’, which are the imaginary curves in the fluid and are 
tangential at every point to the velocity vector, as illustrated in the following 
Fig. 3.8. So that 

 v x dr = 0 …(3.20)
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dr v

Fig. 3.8 A family of streamlines in a perfect fluid

Now, recalling the equation known as Euler’s equn. (3.19), the equation 
can also be written in the form considering v as function of time and 
displacement:

 ∂
∂t

v + v (∆ . v) = f – 
ρ
1

∆p

But for a perfect fluid acted on by conservative force like gravity, the 
body force f can be written as f = –∆j, where j denotes the gravitational 

potential and also in steady flow we must consider ∂
∂t

v = 0. We then get 

from the above equation

 V(∆ . v) = –∆  
+ j ρ 

p

Using vector identities we write:

 
1
2

∆v2 – v × (∆ × v) = –∆
 

+ j ρ 

p

 or,  ∆
 

+ j 
 

2

2
v  – v × (∆ × v) = – ∆  

 ρ 

p .

Taking scalar product of the above equation with a line element dr, 
we get

 dr . ∆  
+ j 

 

2

2
v  = dr . 

∂ξ

∂
y

x

As dr . [v × (∆ × v)] = (∆ × v) . (dr × v) = 0 and then we can write,  

   d
 

+ j 
 

2

2
v

 = dr . 
  

−∆  ρ  

p
. …(3.21)

The equn. (3.21) above states the energy conservation law for a perfect 
fluid as this equation equates the change in energy per unit mass of the fluid 
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with the work done by the pressure gradient force per unit mass i.e. 
p
ρ

 
∆ 

 
 

along a stream line.
The equivalent form of the above equation can be written as:

           
 

+ + j = 
ρ  

2
0 or,

2
p vd       

 
+ + j = ρ 

2
const.

2
p v

      …(3.22)

This equn. (3.22) is known as ‘Bernoulli Equation’ along a stream line 
of a perfect fluid.

As an example of this famous Bernoulli Equation, if we neglect external 
forces, the velocity increases as pressure is lowered and vice versa. If a liquid 
flows through a pipe having constriction, the velocity at the constricted 
part has to increase to maintain same rate of flow all through the pipe, the 
pressure at the constricted part is diminished accordingly. This is shown 
in the following (Fig. 3.9). The wings of a speeding aircraft on the runway 
experience an upward force and thus can lift its nose up and take off. 
Another example of the application of this equation is the cause for the roof 
of house to fly off during a strong gale. The wind moving at the top of the 
roof suffers decrease of pressure where as below the roof inside the house 
the pressure becomes much high and this difference forces the roof to get 
detached and fly off with the wind.

Venturi tube

p p
p1

F Lift

Drag

Streamline flow around a flying airplane wing
F is the force on the wing

P
P + > P +p p1
p p> 1

Fig. 3.9 Applications of Bernoulli’s Theorem. The top is the venturi tube and bottom the
wing of airplane helping the craft to move up 

3.6.1 Dependence of Viscosity on Temperature

The viscosity of liquids depends markedly on temperature. There are 
various proposition but none of them satisfy with the experimental results. 
However, Andrade’s theory based on some assumptions can be applied to 
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first approximation. The relation proposed is that: η =
c
TAe  can be applied. 

However, it can be stated that with the increase of temperature the viscosity 
of liquids decreases. For water if temperature is varied from 0°C to 100°C, 
the viscosity of water changes from 0.01785 to 0.00282 in CGS unit.

Again it can be stated here that the velocity of moving liquid if remains 
within certain limit called ‘Critical Velocity’, the flow of liquid is found to 
be independent of density but if it exceeds then the liquid flow depends 
largely on density than on viscosity. This explains the comparatively rapid 
flow of very viscous lava during volcanic eruptions.

REVIEW QUESTIONS

 1. Explain why “Stress” is defined as a resistance force and not as a 
reaction to the applied force.

 2. In practice all types of stresses are applicable but under what 
condition only one type of stress and the associated elastic modulus 
is considered? 

 3. Establish a relation between different type of stresses and the associated 
moduli of elasticity.

 4. A 95 kg load tied with a rope of 15 m long, when allowed to fall from 
the point of suspension is found to be dangling from the end. Find the 
strain and stress if the rope is of 9.5 mm in diameter and has have an 
extension by 2.8 cm.

 5. A horizontal beam is supported at its two ends and loaded in the 
centre. Show that the upper part of the beam is under compression 
while the lower part under tension.
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CHAPTER

4

Heat and Thermodynamics

4.1 INTRODUCTION 

The word “Thermo” means heat and dynamics is the motion. The 
thermodynamics is the macroscopic Physics which deals with the 
conversion of heat i.e. thermal energy into motion representing mechanical 
energy. It is within the domain of bulk science or macroscopic Physics as 
this branch of science does not concern with the constituents and their 
behaviour under different conditions and rather it concerns a matter as 
solid, liquid or gas, the state in which it belongs. It is based on logical 
inferences observed considering the matter as a whole and its interaction 
with the surrounding. Though thermodynamics is a macroscopic science, 
heat cannot be explained macroscopically as this form of energy depends 
on the nature of microscopic constituents and their motions in fluids where 
they can move rather freely and the vibratory motions in solids. We will 
discuss the origin of this microscopic science heat later and presently 
let us begin with the macroscopic manifestation of this heat energy. 
Thermodynamics while failing to give the definition of heat, it gives the 
independent definition of temperature from macroscopic point of view. 
We have already come across two other parameters pressure and volume, 
which are very important particularly when the matter, introduced in 
thermodynamics as “System” is a gas. Pressure of course has microscopic 
origin as it depends like heat on the motions (velocity) and the change of 
momentum of the constituent molecules/atoms on their collisions with 
container wall. There exist two relations one that relates pressure of a gas 
with its volume at constant temperature, known as Boyle’s Law and the 
other relates volume of a gas with temperature when pressure remains 
constant, known as Charles’s Law.

Boyle’s Law: P ∝ 1/v i.e. P = k/V, where k is a constant. 

Therefore, PV = k(constant) for a certain mass of gas. Taking differentials 

VdP + PdV = 0 i.e. = −
dP P
dV V

. This shows that the slope of Pvs. V curve is 
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negative. This condition remains valid for an ideal gas when temperature 
is maintained constant.

 Charles’s Law: V ∝ V0 t, where t is the temperature in Celsius scale and 
pressure remains constant and V0 is the initial volume for a certain mass of 
a gas. Therefore, V = kV0 t, where k is a constant.

Taking differential dV = kV0 dt i.e. =
0

dV kdt
V

. This constant of pro-

portionality k is introduced as volume expansion coefficient and is noted 
as γ. Which is defined in finite form as:

  
−

−
2 1

1 2 1( )
V V

V t t
 = γ

For finite change of volume due to finite change of temperature, 
from 0 to t, we get: Vt – V0 = V0³t, where V0 is the volume at t = 0°C 

Vt = V0[1 + γt], Now, if temperature is changed from 0°C to – °
γ

1 C .

The volume of the gas Vt = 0. No further decrease of temperature is 
possible, as that would make the volume negative. Therefore temperature 
–1/γ°C is regarded as absolute zero of the scale of temperature and the new 
scale of temperature introduced is known as Kelvin Absolute Scale. It can be 
found that –1/γ°C is –273°C from the slope of the linear plot of Vt vs. t. We 
will however, introduce this Kelvin absolute scale from thermodynamical 
point of view having relevance to all the physical states of the matter later 
in this Chapter.

4.2 HEAT AND TRANSPORTATION OF HEAT 

 Heat is transported in system by three processes i.e. Conduction, Convection 
and Radiation. Conduction process is that when there is no mass movement 
of the medium, convection when there is and radiation is the process 
when there is no requirement of the medium. Though three processes act 
simultaneously but one of the three dominates over other depending on the 
physical state of the system. If it is solid, then conduction process dominates 
as mass movement is not possible and in liquid or gas the convection is the 
process of transportation of heat.

Conduction and conductivity: Let us consider a rectangular bar of cross 
section S and at the steady state i.e. when there is no change of temperature 
of any longitudinal section, θ1 and θ2 are the steady temperatures in Celsius 
of two sections C and D within the bar. Let Q be the heat transported during 
the time interval t. 
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A BC D

S S
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C

l
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1

� C°

Fig. 4.1 A rectangular bar of cross section (uniform) S, C and D are two cross sections 
within the bar at a distance of l

 Then Q ∝ S
               ∝ t
 and       ∝(θ2 – θ1)/l i.e. temperature gradient

Therefore,   Q = KS (θ2 – θ1)t/l or, 
Q
t

 = KS (θ2 – θ1)/l and in differential 

form, θ
=

dQ dKS
dt dl

 the constant of proportionality K which is the thermal 

conductivity is related to the rate of flow of heat as:

 K = θ
/dQ dt
dS
dl

.

In this steady state the section within C and D does not absorb any 
quantity of heat and the entire heat entered through C is transmitted 
through D leading no change in the temperatures of C(θ1°C) and of 
D(θ2°C). Before this steady state is reached a portion of the heat entering this 
region will be absorbed by the material depending on the specific heat of 
the material and is manifested by the rise of temperatures. In this unsteady 
state the rate of increase of temperature is given by the ratio:

=
ρ

thermal conductivity
thermal capacity per unit volume

K
S

, where ρ is the density and S is 

the specific heat. This ratio is known as thermal diffusivity or thermometric 
conductivity.

4.3 LAWS OF THERMODYNAMICS

 So far we have come across three thermodynamical parameters of a 
system pressure (P), volume (V) and temperature (T). While pressure 
has its microscopic origin, temperature is defined unambiguously by 
thermodynamics from its own macroscopic domain. Let us start with the 
laws of thermodynamics.
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4.3.1 Zeroth Law of Thermodynamics 

 Thermodynamic equilibrium of any system is said to be attained by the 
system when it is found that the thermodynamic parameters of it are not 
changing. “When two systems are found to remain in thermodynamic 
equilibrium with a third system separately or independently, then these two 
systems will also remain in thermodynamic equilibrium”. This is known 
as Zeroth Law of Thermodynamics. “The parameter which determines 
thermal equilibrium and also determines the direction of flow of heat 
between two systems not in thermal equilibrium is known and defined 
by thermodynamics as temperature”. Heat flows from a body at higher 
temperature to a body at lower temperature irrespective of the total content 
of heat in either of the systems.

Conclusion: Heat can only flow under normal condition from a body 
at higher temperature to another body at lower temperature when they are 
put in thermal contact.

4.3.2 First Law of Thermodynamics

 The first law determines the relationship between the mechanical work and 
heat and vice versa. It is found that whenever two solids are rubbed together 
they become hot, also when a body is drilled tremendous heat is generated. 
This is related with the conversion of mechanical work in to heat. If W is the 
amount of work spent for it and Q is the quantity of heat generated, then:

 W ∝ Q or, W = JQ. Where J is known as Joule’s constant. When 4.2 Joules 
of mechanical work is converted in to heat it produces one calorie of heat.

 When heat is to be converted in to mechanical work, the heat is to be 
supplied to a system and the system is to transform the supplied heat in 
to mechanical work. The performance of work from a fixed quantity of 
heat is different for different given conditions or constraints. For better 
representation let us consider a gaseous system enclosed within a cylinder 
fitted with a piston.

Gas

P

P/

�x

Area
A

Q

Work done by the Piston
�W = P.A.�X

�

M

M

g

g

Fig. 4.2 ∆Q is the heat supplied, work done by the piston ∆W = P.A. ∆X = Mg. ∆X
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When heat is supplied by the piston, the pressure within the gas 
increases to P which becomes greater than the outside pressure P′ and as a 
result the gas forces the piston of mass Mg to move up against gravity. In 
differential form: dW = P . A . dX = P . dV, integrating from initial to final 

W = 
f

i

P dv⋅∫ . In general for any thermodynamic process from i to f, the work 

done is 
f

i

P dv⋅∫  and it is the area enclosed in the P – V diagram known as 

Work diagram.

v

fi

Work diagram

�
F

I

PdV

P

Now, the heat given to the system under general process is not totally 
converted to work, a certain portion of the supplied heat is retained by the 
system and as a result its “Internal Energy”(U) increases. Therefore, the 
energy conversion equation is given by: dQ = dU + PdV. This conversion 
equation is also the statement of First Law of Thermodynamic like  
W = JQ. Now, this conversion or conservation of energy equation depends on 
the processes involved either on the mode of supply of heat or the constraints 
imposed on the system to perform work. This first law is essentially is the 
law of conservation of energy. Now, the different unique and fundamental 
processes possible are as under:
 1. Isothermal Process 
 In this process the temperature must remain constant i.e. dT = 0. Now, it will 
be shown later that for an ideal system the internal energy, U is a function 
of temperature only and so in this process dU = 0 and the first law then 
transforms in to: dQ = P . dV.

The entire heat given to the system is fully converted in to work. We 
will see that this conclusion is not remain valid for any continuous process. 
This process however, gives the definition of mechanical work from 
thermodynamics. “The mechanical work is the equivalent heat given to a 
system isothermally”.
 2. Isochoric Process
 In this process the volume of the working system remains constant i.e.  

dV = 0 and therefore as work done is equnl to 
f

i

P dv⋅∫ , dW = 0 and the first 
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law transforms in to: dQ = dU. “The internal energy change is the equivalent 
of the heat energy given to the system isochorically” is then the definition 
of internal energy of the system.

Unlike work which is path dependent, internal energy, U is a state 
dependent parameter. The change of this parameter depends only on the 
initial and final states of any process not on the process followed to bring 
the system from initial to final. dU is then an exact differential.
 3. Isobaric Process
 In this process the pressure should remain constant i.e. dP = 0 and the process 
is to be slow as that of isothermal process. The first law is then transformed 
in to:
 dQ =  dU + P . dV.
 4. Adiabatic Process
 In this process the entire system is thermally isolated from the surrounding 
so that no heat exchanges are possible i.e. dQ = 0. This is possible if the 
system is ideally insulated and then the first law leads to: dU = –P . dV 
= –dW. As the work done by the system is positive and so an adiabatic 
work done by the system will decrease its internal energy. Conversely, 
as the work done on the system is negative, then for any adiabatic work 
done on the system will increase the internal energy. As internal energy 
for an ideal system is a function of temperature only, these increase or 
decrease of internal energy will be manifested by the increase or decrease 
of temperature.

These processes defined above may be combined partially or fully 
leading to in numerable thermodynamic processes. All these possible 
thermodynamic processes are then classified in to two categories which are 
intrinsically connected to the basic concept of thermodynamics and they are:

(A) Reversible Process
( B) Irreversible Process.

Reversible processes are those which after the completion of the cycle 
do not leave any change either within the system or its surrounding. 
This is an ideal process and cannot be observed or created. All natural 
processes are irreversible i.e. after the completion of any natural process 
some changes are left either in the system and its surrounding or in both. 
As thermodynamics discusses its principles considering the system and 
its immediate surroundings with which it may interact, there is nothing 
like reversible reactions or process. If there is no change left after the 
completion of the process there will definitely be some permanent changes 
in its surroundings. However, the reversible process is taken as standard 
and all the practical irreversible processes are compared with it to assess 
their efficiency and also feasibility. We have seen in isothermal process that 
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complete conversion of heat in to mechanical work is possible. Now, let us 
raise a question can this complete conversion even by isothermal process 
be continued indefinitely and continuously? 

If it is to be made possible then we require an infinite reservoir of heat so 
that any decrease of its temperature after supply of heat to the system can be 
neglected. Even if it can be assumed then the length of the working cylinder 
Fig. 4.2 must be infinitely long so that the piston can move up against gravity 
and perform work un interrupt. This is simply not possible. Therefore, to 
continue the work the piston has to come back to its initial position and in 
doing so it has to decrease its volume by releasing heat. Now this release of 
heat is not possible by returning back the heat to the reservoir from which 
the heat was taken during expansion as the temperature of the system must 
remain always same and less than the supplier heat reservoir and therefore, 
the process to be continuous a ‘cold’ reservoir having temperature less than 
the system temperature is essential. In short, the system can perform work 
continuously if it works between two reservoirs ‘Hot’ and ‘Cold’ compared 
to their temperatures with that of the system. This impossibility of working 
with only one reservoir can be illustrated by the impossibility of running a 
ship in ocean by extracting heat from the ocean bed and fully converting it 
in to work without requiring any ‘cold’ reservoir to release residual heat. 
This natural observation is formulated in thermodynamics as second law 
of thermodynamics.

Conclusion: Mechanical work can only be obtained from an equivalent 
quantity of heat energy and vice versa. One form of energy can only be 
produced by the conversion of other form of energy. This is an example of 
conservation of energy principle any violation of this principle is impossible 
and the hypothetical system which would violet this first law is known in 
thermodynamics as “Perpetual Motion of First kind”.

4.3.3 Second Law of Thermodynamics 

 The second law of thermodynamics has two statements one is known as 
Kelvin-Planck Statement and the other Claussius Statement. Let us first 
introduce these two statements.

Kelvin-Planck Statement: It is impossible for an engine working in 
cycle to extract heat from a hot reservoir and convert it fully in to work, 
leaving no change either in the system or in the surrounding except the 
production of work.

Claussius Statement: It is impossible for a device working in cycle to 
transfer heat from a cold reservoir to a hot reservoir without leaving any 
change in the surrounding.
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Discussions on Kelvin-Planck Statement: This statement means that an 
engine which is a device whose sole function is to convert heat energy in to 
mechanical energy, cannot convert the entire quantity of heat that it accepts 
from a hot reservoir in to work if it is to work in cycle. Certain amount of 
heat is to rejected after each cycle and amount of this rejected heat depends 
on whether the engine in question is a reversible engine or not.

 For ideal performance assuming that there is no loss of heat: 
 Q1 = Q2 + W.
The Efficiency of the heat engine is given by

 η = 
−

= = −1 2 2

1 1 1
1Q Q QW

Q Q Q

Hot reservoir °�1 C

Heat engine cycle

21 ���

Hot reservoir °�1 C

Heat engine cycle

E

W�°c

Q1

Q2

R

W�°c

Q1

Q2

Cold reservoir ºc�2Cold reservoir °c�2

> >

Fig. 4.3 The Engine and Refrigerator cycle working between hot and cold reservoirs. Refrigerator 
cycle operates in the opposite direction as that of engine cycle

Discussion on Claussius Statement: The transfer heat from a cold 
reservoir to a hot reservoir is not a general or natural process as this is not 
permitted by zeorth law but to perform it it is essential that some quantity of 
work is to be done on the system. As this work is to be done by surrounding 
on the working system, the surrounding can deliver the required amount 
of work at the expense of its energy.

 For an ideal performance, Q1 = Q2 + W
The Coefficient of Performance of the refrigerator (COP)Ref. = 

=
−

2 2

1 2

Q Q
W Q Q

. There is another device known as Heat pump whose sole 

function is to maintain the temperature of a body constant. This is necessary 
when a body is to be kept at a temperature higher than the surrounding 
temperature. The function of such Heat Pump can be explained by the 
following Figure.



 Heat and Thermodynamics 4.9

Hot body to be
maintained at a constant

temperature ºC�1

Heat pump

H.p.
W

Q1

Q2

Cold reservoir ºc�2

Surrounding

�3ºc

Q1

� � �1 3 2> >

The coefficient of performance of Heat Pump: (COP)H.P. = =
−

1 1

1 2

Q Q
W Q Q .

Therefore, (COP)H.P – (COP)Ref. = −
− −

1 2

1 2 1 2

Q Q
Q Q Q Q  = 1.

Conclusion: There is essential requirement of two reservoirs one having 
temperature higher than the working system of the engine known as ‘Hot 
Reservoir’ and the other having temperature lower than the working 
system known as ‘Cold Reservoir’. Any system which violates this second 
law is known as “Perpetual Motion of Second Kind”. If this impossible 
hypothetical system be found to exist then we would run a ship on ocean 
without spending any fuel. This hypothetical ship would then extract heat 
from ocean bed and convert it totally in to work by working with only one 
reservoir.

4.3.4 Ideal Reversible Carnot Cycle

 As has been stated earlier the reversible cycle is an ideal cycle, let us now 
discuss about the ideal Carnot cycle. In the following diagram which is the 
work diagram of such Carnot cycle, let us consider that the working system 
be kept in thermal contact with a hot reservoir and extract heat Q1 from 
it and expand isothermally at a temperature of θ1°C. The expansion of the 
cylinder from 1 to state 2 represent this isothermal expansion during which 
the temperature of the system remains constant at θ1°C. 2 to 3 represent 
adiabatic expansion during which the working system is detached from hot 
reservoir and insulated from the surrounding and during this process the 
temperature of the system decreases from θ1°C to θ1°C.
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Fig. 4.4 Reversible Carnot Cycle(Engine) from 1 → 2 → 3 → 4 → 1 and work involved in each of 
such processes are W1 = Area 1275, W2 = Area 2387 (both positive) and  W3 = Area 3468, W4 = Area 
4156 (both negative). The network out put W(Area 1234) is then equivalent to W = W1 +  W2 – W3 – W4

 After 2 to 3, the work is then done on the system by external agency 
isothermally at temperature θ2°C. So that the volume decreases and pressure 
increases. In this isothermal process system is put in thermal contact with 
a cold reservoir, which accepts the released heat Q2. The system after 
completion of this process is again put under insulating enclosure and 
work is performed on the system adiabatically by external agency so that 
it returns to initial state 1 by following 4 to 1 reversible adiabatic path.

W1(Area 1275) = ∫
2

1

PdV  = =∫
2

2 1
1

/ (ln[ / ])R dV V R V V , where R is constant 

and as for isothermal processes PV = RT. (for 1 gm mole)

W2 (Area 2387) = 
3

2

PdV∫  but as 2 to 3 is an adiabatic expansion, 

PV³ = k (constant) and so, W2 = k γ∫
3

2

/dV V = −γ −γ−
− γ

1 1
3 2( ).

1
k V V

W3 (Area 3468) = ∫
4

3

PdV  and 3 to 4 is an isothermal compression i.e.  

                            PV = RT,

 W3 = R =∫
4

4 3
3

/ (ln[ / ])dV V R V V . For 4 to process which is an adiabatic 

compression i.e. PV³ = k (constant), W4 = γ∫
1

4

/k dV V  = −γ −γ−
− γ

1 1
1 4( )

1
k V V  
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and the network out from the entire cycle 1 → 2 → 3 →  4 → 1 W is equnl 
to:  W = W1 + W2 – W3 – W4. In terms of heat W = Q1 – Q2 as this is an ideal 
reversible cycle and there is no loss of heat from the system or during its 
transport.

The efficiency of this Carnot engine, η = W/Q1 = 
−1 2

1

Q Q
Q . Which is 

always < 1.

When the cycle is reversed i.e. 1 → 4 → 3 → 2 → 1, then the Carnot engine 
will work as a Carnot refrigerator and all the outcome of the processes will 
be reversed.

4.3.5 Equivalence of Kelvin-planck and Claussius Statements

 The two statements of second law of thermodynamics (Kelvin-Planck 
and Claussius) as stated above seem to be two different statements but 
actually they are basically same and formulate the same phenomena but 
only in two different ways to express the two different aspects. The two 
statements are equivalent to each other. This equivalence between the two 
can be established on the principle of negation of negation i.e. first we will 
assume that even if one law is not necessarily be true other one can retain 
its validity and vice versa. This is the negation of the equivalence. Now, 
if it can be shown that this negation is not supported by thermodynamics 
then the two negative statements operated one over other lead to the 
positive conclusion of their equivalence. Let us now study the following 
Fig 4.5.

C.E

Hot reservoir

Cold reservoir

Q1

W Q= 1

a

Q Q1 2+

C.R

Q2Q2 = 0

Equivalences of kelvin-planck
and claussius statements

C.E

Hot reservoir

Cold reservoir

Q1

W Q= 1–Q2

b

Q1

C.R

Q2Q2

 Fig. 4.5 (a) Represents the negation of K-P statement and assuming the validity of claussius and 
(b) Represents the reverse 

In Fig. 4.5 (a) let us assume that Kelvin-Planck statement is wrong but 
Claussius statement is correct. A Carnot engine operating between two 
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reservoirs can then extract Q1 quantity of heat from the hot reservoir and 
convert it fully into work, W and becomes a perpetual motion of second 
kind. A Carnot refrigerator operating between same two reservoirs extracts 
Q2 and W be the work done on it and releases W + Q2 amount of heat to 
the hot reservoir. Now, if we couple these two cycles, so that output work 
W from Carnot engine be given to the refrigerator, then the total effect 
is extraction of heat from a reservoir and transfer heat to a hotter body 
without requiring any assistance in the form of work from the surrounding. 
This is an obvious violation of Claussius statement. Therefore, if Kelvin 
Plancks statement is wrong then the Claussius statement cannot remain 
valid.

Again in Fig. 4.5 b. as Kelvin-Planck statement is valid then let a Carnot 
engine operates between two reservoirs and extracts Q1 heat performs 
work W and releases Q2 heat to the cold reservoir. In between the same 
two reservoirs let a Carnot refrigerator operates and it needs not to obey 
Claussius statement as the statement is assumed to wrong. In the similar 
fashion if we now couple these two cycles, then the resultant cycle in effect 
needs Q – Q heat from hot reservoir to convert it fully work violating the 
Kelvin-Planck statement. Therefore, considering these two aspects we can 
conclude that if one of the two statements is wrong the other one cannot 
remain correct. This is then the negation of negation and thus the equivalence 
of the two statements are established.

4.3.6 Kelvin’s Absolute Scale of Temperature

 Let us consider three reservoirs at temperatures in Celsius scale as θ1, θ2 and 
θ3 and let a Carnot engine operates between reservoirs 1 and 2 at θ1 and θ2 
respectively by extracting Q1 quantity of heat from the hottest reservoir 1 
and releases Q2 to the coldest reservoir 3 after producing W amount of work. 
The efficiency η1 of this Carnot engine (CE 1) is a function of temperatures 
of the two reservoirs and is given by 

 η1 = 
−

= = − = θ θ1 1 2 2
1 2

1 1 1
1 ( , )W Q Q Q f

Q Q Q
.   …(4.1)

Now, two more Carnot engines operate in between reservoirs 1 and 2 
with another intermediate reservoir 3 having temperature θ3 which is also 
intermediate between θ1 and θ2 (Fig. 4.6).
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1
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Fig. 4.6 Carnot engine (CE1) operates between θ1 and θ2 and CE 2 and CE 3 operate between 
θ1, θ3 and θ3, θ2 giving work output respectively as W2 and W3

Now, if CE 2 and CE 3 respectively have their efficiencies as η2 and η3, 
then they are similarly related to:

 η2 = − = θ θ3
1 3

1
1 ( , )Q f

Q   … (4.2) 

and η2 = − = θ θ3
3 2

2
1 ( , )Q f

Q
   …(4.3)

Now, from equns. (4.1), (4.2) and (4.3) we can write:

= = φ θ θ
− θ θ

1
1 2

2 1 2

1 ( , )
1 ( , )

Q
Q f

, = φ θ θ1
1 3

3
( , )Q

Q
 and = φ θ θ3

3 2
2

( , )Q
Q

But as φ θ θ
= =

φ θ θ
1 21 1 2

3 3 2 3 2

( , )/
/ ( , )

Q Q Q
Q Q Q

 and as the right hand side has θ3 both 

in the numerator and denominator and can be replaced by its relation with 
θ1 and θ2 then the above expression on simplification leads to the following 
equation where ψ is a new function. Therefore,

 1

3

Q
Q  = 

ψ θ
ψ θ

1

3

( )
( )      … (4.4)

Now, this new function of temperature in Celsius scale leads to a 
different scale of temperature and denoting that by T is known as Kelvin’s 
scale of temperature so that in general we can write:

 1

2

Q
Q

 = 1

2

T
T

  … (4.5)
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Conclusion: This new Kelvin’s scale of temperature is defined as the 
ratio of temperatures of two bodies in this scale is equnl to the ratio of heat 
extracted from the hotter body at temperature T1 to the heat rejected to 
the colder body at temperature T2 (T1 > T2) by a Carnot engine operating 
between these two bodies.

Now, the efficiency of an ideal reversible Carnot engine can be modified 
in terms of the temperatures of the hot and cold reservoirs in Kelvin’s scale 
as:

 η = − = −2 2

1 1
1 1Q T

Q T
  …(4.6)

This Kelvin’s scale is not only a new scale of temperature but it is the 
“Absolute Scale” because if we assume that the temperature of the cold 
reservoir is at T2 = 0°K, the efficiency of the Carnot engine would be 
η = 1 and this will lead to from equn. (4.6) Q2 = 0 i.e. the Carnot engine 
would then require only one reservoir to operate with and thus violate the 
Kelvin-Planck statement of second law of thermodynamics. Therefore, 0°K 
is the absolute zero which can not be attained by anybody and taking this 
as the zero (absolute), the scale is known as Kelvin’s Absolute Scale of 
temperature. It may be elaborated once more that as the temperature of a 
body approaches this absolute zero of Kelvin’s scale, it becomes more and 
more difficult to decrease the temperature further and ultimately the time 
to reach will approach infinitely long. This practically non attainability of 
absolute zero which otherwise would lead to the violation of second law of 
thermodynamics is known as Third Law of Thermodynamics.

4.3.7 Carnot Theorem

 This theorem establishes the difference between the ideal reversible process 
and the irreversible process. It states like this: “An irreversible engine 
working between two temperatures can not have its efficiency more than 
or equnl to the efficiency of a Carnot engine working between same two 
temperatures”.

Irreversible
engine

Irreversible
carnot
engine

Hot reservoir at °KT1

Cold reservoir at ºKT2

Q2

Q�2

W�

Q1

Q1 Irreversible
engine

Reversible
carnot

refrigerator

Hot reservoir at °KT1

Cold reservoir at ºKT2

Q2

Q�2

Q1

Q1

W W�–W

W�

Fig. 4.7 The irreversible engine and reversible carnot engine and refrigerator work
between same two reservoirs at T1°K and T2°K
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To prove the Carnot theorem let us consider that the irreversible engine 
violates the principle and has more efficiency than the ideal Carnot engine 
i.e. ηIR > ηCE, 

Therefore ′
>

1 1

W W
Q Q

, and so Q1 – Q′2
 > Q1 – Q2 or, Q2 > Q′2.

Now, let us reverse the Carnot engine (right side of the Fig. 4.7) so that 
it can act as a Carnot refrigerator and to run it let the out put work from the 
irreversible engine W′ be given to the Carnot refrigerator. If we consider 
the net function of this irreversible engine and the Carnot refrigerator we 
can find that:

1.  There is no change of the hot reservoir at T1°K and the coupled system 
extracts Q2 – Q′2 quantity of heat from the reservoir at T2°K and converts it 
into W′ – W amount of work.

2. The coupled system then violates the second law of thermodynamics 
and would then perform as a perpetual motion of second kind. Therefore, 
ηIR > ηCE assumption is wrong.

The other possibility is that ηIR > ηCE, but under that condition the 
irreversible engine would then transform into a reversible engine and lose 
its practicaticality.

The only possibility which is then left is ηIR > ηCE and then W > W′ and 
Q2 < Q′2.

The coupled system then receives W – W′ amount of work and delivers 
to the reservoir at T2°K an amount of heat equnl to Q′2 – Q2. Though there is 
no requirement of the reservoir at T1°K, but the functioning of this coupled 
system is not forbidden by the second law as the process is simply the 
conversion of mechanical work into heat and such process is not restricted 
by the second law.

Therefore, it can be concluded that the efficiency of Carnot engine 
working between two temperatures is the maximum limit of efficiency by 
any engine working between same temperatures and it is higher than the 
efficiency of any irreversible engine working between same reservoirs i.e. 
ηIR < ηCE.

Parameters Irreversible Cycles Reversible Cycle
(e.g. Carnot)

Efficiency of an Engine � = 1 – 2

1

Q

Q
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1
T

T
� � �
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Performance (COP) of
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COP =
2

1 2

Q

Q Q�
COP = 2

1 2

T

T T�

Coefficient of
Performance (COP)  of
Heat Pump

COP = 1

1 2

Q

Q Q�
COP = 1

1 2

T

T T�
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Note: =1 1

2 2

Q T
Q T

  is only applicable for reversible ideal engines, 

refrigerators or heat pumps and the efficiency or COP calculated in terms 
of T1 and T2 in Kelvin’s scale is the maximum limits of efficiency or COP, 
which no real irreversible engine, refrigerator or heat pumps can attain. 

4.3.8 Claussius Theorem 

 It has been stated earlier that internal energy of an ideal system is a state 
dependent parameter and mechanical work is a path dependent parameter 
then what should be the relation between heat involved in a process and 
with the process itself? 

Claussius theorem states that “In all the processes in between one initial 
and final state, the heat involved will be same if the work involved in such 
processes is also same”.

In the following Fig. 4.8. i → f is an arbitrary reversible process and 
it is replaced within the same initial and final states by i → g (reversible 
adiabatic), g → h (reversible isothermal) and h → f (reversible adiabatic in 
such a way that the area subtended by i → f is same as sum totals of area 
subtended by series of processes i.e. i → g, g → h and h → f. 

Therefore, the work involved in both of these processes will be 
same. Then from first law Q1 = Uf – Ui + W for original process and 
Q2 = Uf – Ui + W. The difference of internal energy U will remain same as 
it is only state dependent parameter.

P

V
0

i

f

g

h

Claussius Theorem

Q1

Q2

i f

i g

g h

h f

to   any reversible process
to a reversible adiabatic process
to a reversible isothermal process
to   a reversible adiabatic process

Fig. 4.8 Claussius theorem. i and f are initial and final stages. g and h are intermediate states

Therefore, Q1, the heat absorbed in the original reversible process is 
same as Q2, the heat involved in the substituted process. This Claussius 
theorem will be utilized in the introduction of one thermodynamic variable 
known as Entropy.
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4.4 ENTROPY AND ENTROPY PRINCIPLE 

 So far we are introduced to thermodynamic parameters like Pressure, P; 
Volume, V; temperature, T and Internal energy U. We will now introduce 
one of the most important parameter known as Entropy and will see and 
realize during the course of progress of this Chapter the importance of 
it. Let us consider an arbitrary reversible process is followed by an ideal 
system and from the following work diagram the area enclosed will give 
the net work output during the forward cycle. Now, if we sectioned the 
entire cycle area by a series of reversible adiabatic and join the ends with 
reversible isotherm then the entire area can be divided in to a series of 
Carnot cycles. In the following (Fig. 4.9) such series of Carnot cycles are 
1, 2, 3, 4, 5, 6, 7, 8 etc. Now, let Q1 and Q2 be the heat absorbed and heat 
rejected at temperatures T1 and T2 by the Carnot cycle (1, 2, 3, 4) then we 
can write:

 =1 1

2 2

Q T
Q T

  or, =1 2

1 2

Q Q
T T

.

And similarly for the second Carnot cycle (5, 6, 7, 8)

 
=3 4

3 4

Q Q
T T

V

P

6
Q3

T3
2

1 Q1

5

i

4

3Q2
Q4

7

8
T4

T2

f

Fig. 4.9 The work diagram of an arbitrary reversible cycle and Carnot cycle sections

Now, as heat absorbed by a system is considered positive and heat 
rejected by the system is negative according to the sign convention of 
thermodynamics, we get from the above expressions after assuming Q1, 
Q3 … as positive and Q2, Q4… as negative 

 + =1 2

1 2
0Q Q

T T
     and        + =3 4

3 4
0Q Q

T T
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Considering the total effect of all such possible Carnot cycles in to which 
the entire area can be divided we get

=∑ 0n

nn

Q
T

 where n is the all such number of Carnot cycle sections. Now, 

if we bring these Carnot cycles infinitesimally close to each other then we 
can assume that;
 (i) The heat involved is also infinitesimally small and can the be replaced 

as differential.
 (ii) The temperature difference between each cycle may be ignored and 
 (iii) The summation sign can be replaced by integral.
 (iv) The integrated areas of such all possible infinitesimal Carnot cycles 

can be the equnted to the entire area of the original arbitrary reversible 
cycle.

Then from the Claussius Theorem, we can write for the entire reversible 
cycle as:

 ∫
Reversible Cycle

dQ
T

 = 0  …(4.7)

As the above equation is valid for any reversible cycle we can then divide 
the cyclic integral into two arbitrary reversible but different forward and 
reverse processes Fig. 4.10 and equnte the sum to zero as:

+ =∫ ∫ 0
f i

i f

dQ dQ
T T

  and   − =∫ ∫ 0
f f

i i

dQ dQ
T T

 so, =∫ ∫
( ) ( )1 2

f f

i R i R

dQ dQ
T T

       …(4.8)

P

V

R1

R2

i f

Fig. 4.10 R1 and R2 are two arbitrary reversible processes between same initial and final states

As R1 and R2 are any two arbitrary reversible processes and as per equn. 
(4.8), we can write that over any reversible path say R between initial i and 
final f states;
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= −∫
( )1

f

f i
i

R

dQ S S
T

, Where S is a state dependent parameter and is 

independent of the path. This state dependent parameter S is introduced 
in thermodynamics as Entropy and the change of which between initial 

and final state is given by ∫
f

i

dQ
T

 when the integration is carried over any 

arbitrary reversible path between i to f.
Conclusion: Entropy like Internal Energy is a state dependent 

thermodynamic parameter and also like internal energy its changes between 
initial and final states can only be measured and not its absolute value. 
The difference between internal energy and entropy is that while internal 
energy of a system can increase or decrease, the entropy of a system together 
with its immediate surrounding can only increase. This is what is known 
as Entropy Principle and discussed in the following section. Therefore, to 
summarize the observations made so far:

=∫ 0dQ
T

, For over any reversible complete cycle and, = −∫
f

f i
i

dQ S S
T

 i.e. 

the change of entropy between the initial and final states for any reversible 
path.

4.4.1 Entropy Principle 

IR

f

R1

R2

P

V

i

Fig. 4.11 An irreversible cycle, having two steps i → f by reversible, R1 path and f → i by an 
irreversible arbitrary path (IR). The complete cycle comprising 

R1 and IR is then irreversible. Another reversible return path R2 is also  
shown. R1 forward and R2 return constitute then a reversible cycle.

Let us recall the Carnot theorem which concludes that in between two 
fixed reservoirs ηIR < ηCE therefore referring to the Fig. 4.7. 
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′ ′ ′
− − − −2 2 2 2 2 2

1 1 1 1 1 1
1 1 and 1 1 orQ Q Q T Q T

Q Q Q T Q T
>< <

And therefore, ′2 1

2 1

Q Q
T T

>  and in differential form 
2IR R

dQ dQ
T T

〉∫ ∫

 More explicitly: 
2 2

then 0
i i i i

f IR f R f IR f R

dQ dQ dQ dQ
T T T T

−∫ ∫ ∫ ∫> >

or,                       
2

0
i i

f R f IR

dQ dQ
T T

−∫ ∫ <   …(4.9)

but we know for the reversible cycle

                          1 2

0
f i

R iR fR

dQ dQ dQ
T T T

= + =∫ ∫ ∫

 …(4.10)
Now, subtracting (4.10) from (4.9), we get:

                           2 1 2

0
fi i i

fR fIR iR fR

dQ dQ dQ dQ
T T T T

− − −∫ ∫ ∫ ∫ <

or, 
1 1

0 and therefore, 0
fi i i

fIR iR fIR fR

dQ dQ dQ dQ
T T T T

+ −∫ ∫ ∫ ∫> >  …(4.11)

As R 1 is an arbitrary reversible path and so, for any reversible path,      

       

−∫ ∫ 0
i i

f IR f R

dQ dQ
T T

>

or, ∫ ∫
i i

f IR f R

dQ dQ
T T

>  and also for the irreversible and reversible 

cyclic processes:

 ∫ ∫ IR R

dQ dQ
T T

>  but as =∫ 0
R

dQ
T

Therefore, ∫ 0
IR

dQ
T

>  and this is valid for any irreversible cyclic 

process. 



 Heat and Thermodynamics 4.21

For any process in general, the change in entropy, dS = ≥∫ 0dQ
T

 …(4.12)

Where, the equality sign holds good for reversible process and inequality 
sign for an irreversible process. Let us now consider a practical irreversible 
transfer or exchange of heat between a system and its surrounding and let the 
temperatures of the system and its surrounding are respectively as T1 and T2 
and T2 > T1. There will be then a flow of heat say dQ from the surrounding 
to the system. The change of entropy of the universe comprising the system 
and its surrounding is then dSuniverse and it is then:

 dSuniverse = dSsystem + dSsurrounding and for the flow of heat dQ from the 
surrounding to the system:

 dSsystem = 
1

dQ
T

 and dSsurrounding = −
2

dQ
T  and therefore, dSuniverse 

= −
1 2

0dQ dQ
T T

>  or, dSuniverse > 0 and for an isolated system for no such 

exchange of heat energy:
∆S ≥ 0, the equnlity holds for reversible processes and inequnlity holds 

for the presence of any irreversibility in the process. This leads to the 
conclusion which is known as “Entropy Principle” and that is: Irreversible 
processes which are spontaneous and can only occur if that lead to the 
increase of the entropy of the universe or that of the system if it is isolated. 
As all practical and natural processes are irreversible, entropy of the universe 
or that of an isolated system will always increase. Therefore, for an isolated 
system:

 ∆S > 0 for all irreversible processes
 ∆S = 0 for ideal reversible processes and 
 ∆S < 0 is an impossible process.

4.4.2 Consequence of Entropy Principle

 This entropy principle and its result showed above have some very 
important consequence. Let us consider a natural process of conduction of 
heat through a solid having its two ends at different temperature. Heat will 
then automatically flow from the end at higher temperature to the end at 
lower temperature and this process will continue until the temperatures of 
the two ends equalize.
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T1 T2Q
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C.E. 1
w1 w2

Q2 Q�2

T0

T T1 2>

Fig. 4.12 Conduction of heat from higher temperature end to lower temperature end,a natural 
irreversible process. Two carnot engines 1 and 2 operate between two ends of  

the  rod and a heat sink

For Carnot engine, CE 1 (Efficiency η1) operating at end T1 extracts heat 
Q before it is transferred to the lower temperature end, releases Q2 to the 
heat sink at temperature T0 and delivers W1 amount of work. 

Then  η1 = = − = − 01 21 1
1

TW Q
Q Q T

 …(4.13)

Now, let a second Carnot engine (Efficiency η2) which operates in 
between the lower temperature end T2 and the common heat sink at T0 
extracts the same quantity of heat immediately after it reaches the second end 
i.e. immediately after the natural process of heat conduction is completed. 
Then

 η1  = 
′

= − = − 02 2

2
1 1 TW Q

Q Q T   …(4.14)

Now, as T1 > T2, η1 > η2 and so W1 > W2. Therefore, the work output 
from the same quantity of heat decreases after the natural process of heat 
conduction is completed. 

This will lead to a conclusion that after each general natural process the 
amount of mechanical energy in to which the heat energy can be converted, 
decreases and as natural processes are to continue in this universe for its 
existence, the quantity of derivable mechanical energy converted from heat 
energy and intended to be utilized for human benefit and for the survival, 
decreases continuously. As time moves only in the forward direction and 
with this, natural irreversible processes continue unabated, entropy of this 
universe always increases and as a consequence efficiency with which the 
heat energy can be converted into mechanical work decreases. This can never 
be avoided or reversed. This can be stated in slightly different way that is 
the flow of time is directed towards the direction of increase of entropy 
i.e. direction of increase of disorder in all systems together and that is the 
only possible direction we find the time to flow as we can never find any 
incidence occurring in our nature that will set any system from less ordered 
state to more ordered state.
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 The above observations can be demonstrated as below:

Direction of change of
efficiency of conversion of
heat into work

Direction of change of entropy

Direction of flow of time

We know that for reversible process: Sf – Si = ∫
( )

f

i R

dQ
T  and dQ = TdS.

 So, at constant volume ∂   = =   ∂   V
V V

dQ SC T
dT T

 and 

 at constant pressure ∂   = =   ∂   P
P P

dQ SC T
dT T

. 

Therefore, knowing CV and CP

 At isochoric process: Sf – SI = ∫
f

V

i

C dT
T

 and at isobaric: Sf – Si = ∫
f

P

i

C dT
T

.

The temperature, T vs. Entropy S diagram is commonly known as 
T-S diagram is also important and the area under initial and final state in 
T-S diagram gives the total heat interaction in the concerned process.

Now, from first law of thermodynamics, dQ = dU + PdV and recalling

        = =      V
V V

dQ dUC
dT dT

     so,      dU  = CVdT

and similarly,      = = +          P
P P P

dQ dU dVC P
dT dT dT

 as for ideal gas PV = 

nRT, P   =  P

dV nR
dT

 and as U is only state dependent parameter  
  P

dU
dT

 

 = =  
.V

V

dU C
dT
Therefore, CP – CV = nR, Again from the first law, we can get

= +VCdQ PdT dV
T T T

 and as from gas law =
P nR
T V

, we get

                           
= − = +∫ ∫ ∫

f f f

f i V
i i i

dQ dT dVS S C nR
T T V

and similarly, = − = −∫ ∫ ∫
f f f

f i P
i i i

dQ dT dPS S C nR
T T P

.
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4.5 THERMODYNAMIC FUNCTIONS

 Enthalpy: Enthalpy is defined as:
 H = U + PV and therefore, in differential form:
 dH = dU + P dV + V dP and from first law 
 dH = dQ + V dP …(4.15)

and so, = +
dH dQ dPV
dT dT dT

 for reversible isobaric process we get:

   = =       P
P P

dH dQ C
dT dT

, − = ∫
f

f i P
i

H H C dT  and Hf – Hi = Q.

Therefore, Enthalpy is a thermodynamic function, so the change of 
which in an isobaric process is equnl to the heat that is transferred.

Now as dQ = T dS so the equn. (4.15) can be written as:
             dH = T dS + V dP  …(4.16)
Considering that H is a function of entropy, S and pressure, P 

 dH = 
∂ ∂   +   ∂ ∂   P S

H HdS dP
S P

and comparing with equn. (4.16), We get:
∂  = ∂ P

H T
S

 and ∂  = ∂ S

H V
P

. Now, from the first relation we get that 

from the slope of the isobar drawn on H-S diagram of a system gives the 
temperature of the system in Kelvin scale. This H vs. S values of a system 
are known as Mollier Chart.

 Helmholtz Function: The Helmholtz function is defined as:
  A = U – TS and in differential form
  dA = dU – T dS – S dT, but from first law T
 dS = dU + P dV
Therefore, dA = – P dV – S dT  …(4.17)
Now, for reversible isothermal process:

 Af – Ai = −∫
f

i

PdV ,

and for reversible isothermal and isochoric process, A = constant. The 
equation of state for a system is, then can be obtained from the following 
relationships:
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 ∂ = −  ∂ T

AP
V

     and     ∂ = −  ∂ V

AS
T

Gibbs Function: The Gibbs function is defined as:
 G = H – TS and in differential form:
 dG = dH – T dS – S dT and from equn. (4.16)
 dG = V dP – S dT   …(4.18)
for reversible isobaric and isothermal process,
 dG = 0, G = constant.

Maxwell’s Thermodynamic Equations 

 For a chemical system of constant mass the equilibrium states are defined by 
three thermodynamic coordinates P, V, and T. In describing the behaviour 
of such system, we are already introduced to four other thermodynamic 
functions like Internal energy U, Enthalpy H, Helmholtz function A and also 
Gibbs function G. These functions are defined already by first law, equns. 
(4.15), (4.17) and (4.18). Now, as U, H, A and G are actual functions, their 
differentials are exact differential of the type:

dz = M dx + N dy where z, M and N are functions of x and y and 

therefore, 
 ∂ ∂ =   ∂ ∂   yx

M N
y x

 .                                                                     …(4.19)

Applying this result to the four exact differentials dU, dH, dA and dG 
we get:

dU = TdS – P dV; using (4.19) 
∂ ∂   = −   ∂ ∂   S V

T P
V S

 … (i) 

dH = TdS + V dP; using (4.19) ∂ ∂   =   ∂ ∂   S P

T V
P S

 … (ii)

dA = – PdV – S dT; using (4.19) ∂ ∂   =   ∂ ∂   V T

P S
T V

  … (iii)

dG = VdP – S dT; using (4.19) 
∂ ∂   = −   ∂ ∂   P T

V S
T P

 …(iv)(4.20)

These four equns. (i),(ii),(iii) and (iv) which relate the four thermodynamic 
functions of a chemical system are known as Maxwell’s Equations.

TdS Equations:
 There are two TdS equations; the first one is derived considering that 

the entropy S is a function of temperature T and volume V of a chemical 
system and the second one when S is considered as a function of T and 
pressure P.
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First TdS equation:
 S = f (T, V)  so,

∂ ∂   = +   ∂ ∂   V T

S SdS dT dV
T V

. Now multiplying both sides by T, we get:

∂ ∂   = +   ∂ ∂   V T

S STdS T dT T dV
T V

. Now, ∂ ∂   = =   ∂ ∂    V
V V

S QT C
T T

 and

From Maxwell’s equn. (4.20 iii):
∂ ∂   =   ∂ ∂   T V

S P
V T

. Replacing these relations in the above TdS equation:

                                 
∂ = +  ∂ V

V

PTdS C dT T dV
T

                     …(4.21)

Application: Heat transferred in reversible isothermal expansion in a 
van der Waals gas.

 Let us consider 1 mole of a van der Waals gas, undergoing a reversible 
isothermal expansion from volume vi to volume vf 

. The equn. (4.21) is then 
be written as:

∂ = +  ∂ V
V

PTds c dT T dv
T

 and using van der Waals equation of state as:

= −
− 2

RT aP
v b v

∂  = ∂ − V

P R
T v b

 and so, = +
−V

dvTds c dT RT
v b

.

Now, as the process is isothermal dT = 0 and as the process is reversible 

= ∫q Tds . Therefore,   =
−∫

vf

vi

dvq RT
v b

 which is 
−

=
−

ln f

i

v b
q RT

v b
.

4.5.1  Application: Energy Equation

 In a chemical system for an infinitesimal reversible process the change of 
internal energy, U is: dU = TdS – PdV from first law, and from First TdS 
equn. (4.21) we get:

∂ = +  ∂ V
V

PTdS C dT T dV
T

. Now, combining these two equations:

 ∂ = + −  ∂  
V

V

PdU C dT T P dV
T

. Now again as U is a function of T and 

V we get:  ∂ ∂   = +   ∂ ∂   V T

U UdU dT dV
T V

 and equating the coefficient of dV.
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We get:

                                   ∂ ∂   = −   ∂ ∂   
.

T V

U PT P
V T

  …(4.22)

This is ‘Energy equation’.

Now, for an ideal gas i.e. =
nRTP

V
 we get:

∂  = ∂ V

P nR
T V

 and so, 
∂  = ∂ T

U
V

 − = 0TnR P
V

.

Therefore, for an ideal gas system internal energy is a function of 
temperature only and not dependent on volume.

Second TdS equation:
  S = f (T, P)

∂ ∂   = +   ∂ ∂   P T

S SdS dT dP
T P . Now, multiplying both sides by T

∂ ∂   = +   ∂ ∂   P T

S STdS T dT T dP
T P

. Now as ∂  = ∂  P
P

ST C
T

And from Maxwell’s equn. (4.20 iv)
∂ ∂   = −   ∂ ∂   P T

V S
T P

, we get the TdS equation as:

∂ = −  ∂ P
P

VTdS C dT T dP
T .  …(4.23)

4.5.2 Application: Reversible Adiabatic Change of Pressure

For reversible adiabatic Entropy, S remains constant so the equn. (4.23)

can be written as: ∂ =  ∂ PP

T VdT dP
C T

 and introducing the volume 

expansion coefficient of solid or liquid system ∂ β =  ∂ P

V
V T

, we get, 

β
=

P

TVdT dP
C

. Therefore, as for solid or liquid the change of CP is negligible 

over a wide range of pressure: β
∆ = −( )f i

P

TVT P P
C

. So, for an adiabatic 

increase of pressure there will be increase of temperature of the system.
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4.5.3 Throttling Process: Liquefaction of Gas 

The throttling process, thermodynamically known as Joule-Kelvin expansion 
is an important phenomenon for the development of cryogenic, the low 
temperature generation and its use in low temperature Physics and 
technology.

Let us first start with the experiment as below.

P V1 1,
T1

Pf Vf,
Tf

Initial stage Final stage

T

P

P T
1 1
,

P T2 2,

P T3 3,
P T4 4,P T5 5,

P T6 6,

P T7 7,

Thermally insulated
cylinder and pistons

Porous plug

P P P P1 2 3> , ... f

Porous plug

Fig. 4.13 Joule-Kelvin expansion experiment and result

In the left side diagram at the top a gas is taken at an initial pressure 
say P1 in the left side chamber, the left side piston is pushed right slowly 
towards the porous plug and right side piston is slowly withdrawn so 
that the pressure in the right side chamber is always maintained at a 
predetermined pressure say P2, so that P2 is constant and always less than 
P1. The temperature in the second chamber is measured when final stage 
is reached and suppose that temperature is found to be T2. The experiment 
is repeated with the same value of initial pressure in the left chamber at P1 
and the process is repeated with new predetermined pressure of the right 
chamber say P3 but still keeping the condition that P1 is greater than P1. 
The value of temperature say T3 is noted. The experiment is continued to 
be repeated with new sets of predetermined pressures as P4, P5, P6 ...etc. 
which are always less than initial pressure P1 and their corresponding 
temperatures T4, T5, T6 … are measured and plotted in T – P graph. The plot 
shows an important feature that is it shows a maxima and slope reverses 
on both sides of it. As the process is continued in insulated surrounding, 
the enthalpy remains constant. This expansion which is not free is called 
Joule-Kelvin expansion the slope m given by following is known as Joule-
Kelvin coefficient.
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 µ = 
h

T
P

 ∂
 ∂ 

  …(4.24)

The reversal of slope m on both sides of the maxima indicates that the 
gas undergoing throttling process goes heated i.e. temperature increases 
if the predetermined pressure lies to the right of the maxima and the 
slope m becomes negative whereas the gas is cooled if the predetermined 
pressure is at the left side of the maxima and the slope is positive. Now, if 
the experiment described above is repeated with new initial pressure in the 
left chamber and throttling is continued with predetermined new sets of 
values of pressures which are always kept less than initial pressure in the 
left chamber then we get the following variation.

T

P

Maximum inversion
temperature

Critical
temperature

Heating region

negative�
Cooling
region
positive�

Fig. 4.14 T – P curves for various initial pressures and resultant temperature, the region within 
dotted curve shows cooling region due to throttling and critical temperature

It should be noted that below critical temperature the gas throttled 
through the porous plug will be cooled and outside this region it will be 
heated. Different real gases will have different critical temperatures and 
cooling region. Now, recalling the above expression (4.24):

  µ = 
 ∂
 ∂ h

T
P

But  h = u + Pv and so,
  dh = du + pdv + vdP
and as dq = du + Pdv and dq = Tds
we get dh = Tds + vdP now, using second Tds equn. (4.23)

 dh = 
  ∂

− −  ∂   
P

P

vc dT T v dP
T
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or

            dT = 
1 1
P P

vT v dP dh
c T c

  ∂
− +  ∂   

 Writing T as a function of P and h

 dT = 
   ∂ ∂

+   ∂ ∂   h P

T TdP dh
P h

Now, comparing coefficients of dP we get the Joule-Kelvin coefficient, 
m as: 

 µ = 
 ∂ ∂   = −    ∂ ∂    

1
P PP

T vT v
P c T

 …(4.25)

Now, if we consider an ideal gas and find out 
 ∂
 ∂ P

v
T

 using gas equation 

Pv = nRT. We will easily find out that µ = 0 i.e. implies that, there is no slope 
for T – P curve for ideal gas and so it can never be cooled due to throttling 
process. But fortunately for real gases it is possible as m does vanish to zero 
for van der Waal gas.

The maximum inversion temperature or critical temperatures for some 
important gases and the consequences are given below

Gas Maximum Inversion temperature
Critical Temperature in °K

Consequences

Carbon
dioxide

� 1500 The gas can be Liquefied and
also solidified by application
of pressure alone.

Nitrogen 621 Can be easily liquefied if
temperature is kept below.

Hydrogen 202 Pre-cooling is to be done

Either by liquefied Nitrogen

or air.

Helium � 25 to 60 Pre-cooling is essential by
liquid Hydrogen. A liquid
helium plant must be
supported by liquid Nitrogen
followed by liquid Hydrogen.

  



 Heat and Thermodynamics 4.31

H.P
valve

L.P
valve

Heat

exchanger

Coolant

Liquefied gas

Insulating wall

Throttle valve

Schematic diagram of gas liquefaction plant

 Fig. 4.15 Gas liquefaction plant using Joule-Kelvin process. Pre-cooling is done by liquid as given 
in the table above 

The liquid gas which is cable of cooling down the temperature of the 
compressed gas below the critical temperature is taken. The cooled gas 
passes through the inner tube and is further cooled after suffering expansion 
through the ‘Throttle valve’. The throttled gas is sucked through outer 
tube in the cylinder and in passing through it further cooled the incoming 
gas through ‘Heat exchanger’. The cooled gas is again compressed. As 
this process is repeated in cycle, the gas is finally liquefied. However, it 
should be mentioned here that the use of Joule-Kelvin effect to produce 
liquefaction of gases has two advantages: (1) As there are no moving parts 
working at low temperature, so there is no difficulty in lubrication (2) The 
lower the temperature, the larger will be the drop in temperature for the 
same difference of pressure. But for the liquefaction of gases like hydrogen 
and helium large amount of pre cooling is necessary and this requires as 
mentioned before liquid helium plant has to be a gigantic plant if it works on 
throttling process. The latest development in the field of gas liquefaction is 
the ‘Collins helium liquefier’ in which helium undergoes adiabatic expansion 
in a reciprocating engine. The expanded gas is then used to cool the incoming 
gas in the usual countercurrent heat exchanger. When the temperature of 
the gas is low enough, the gas is passed through throttling valve so that 
Joule-Kelvin cooling is used finally for the liquefaction of helium.
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This method having major advantages of not requiring any devices for 
the liquefaction of nitrogen and hydrogen which are to be used for pre-
cooling is in extensible use in low temperature production.

4.5.4 Application of Thermodynamics in Radiation: 
    Stefan-Boltzmann Law 

 The thermal radiation in equilibrium with the interior wall of the enclosure 
has energy which depends only on the volume of the enclosure and 
temperature. If we define energy density as u which is U/V, then this energy 
density is found from electromagnetic theory that it is a function of pressure 
and is given by:

 P = 3
u

 

Now, as black body radiation is defined by thermodynamic parameters 
like P, V and T, we can apply the energy equation as equn. (4.22), we get:

 
∂ 

 ∂ T

U
V

 = 
∂  − ∂ 

.
V

PT P
T

Since u = U/V  and P = u/3, where u is a function of T only, we get:

 u = −
3 3

d uT u
dT

and = 4d u dT
u T

 Integrating this equation we get:

 lnu = lnT4
 + lnb

Therefore, u = bT4 …(4.26)
Here, b is a constant. This equn. (4.26) is known as Stefan-Boltzmann 

Law.

4.5.5 Application of Thermodynamics in First Order Transition of 
Phase: Clapeyron’s Equation

We have introduced Gibb’s function G in section 4.5 as 
 G = H – T S and so,
 dG  = VdP – S dT
Now, in the familiar phase transition like melting, vaporization, 

sublimation and also the change of structure of one crystal phase to other, 
the temperature and pressure remain constant. Therefore, such phase 
transformation the Gibb’s function remain constant. Therefore, for unit 
mass, g(i) = g(f).
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For a phase change at T + dT and P + dP
 g(i) + dg(i) = g(f ) + dg(f ) and so
 dg(i) = dg(f ) 

 or,  v(i) dP – s(i) dT = v(f) dP – s(f )dT

 and so, 
dP
dT

 = 
−
−

( ) ( )

( ) ( )

f i

f i
s s
v v

.

But, for the reversible phase transition the heat required is Latent heat 
and is related to specific entropy l as:

 l = ( ) ( )( )f iT s s−  and finally we get

 
dP
dT  = 

−( ) ( )[ ]f i
l

T v v  …(4.27)

This is known as Clapeyron’s equation for the first order change of phase.

4.6 STEAM AND STEAM CYCLE

 When water is heated to boil, it first starts evaporating from the surface 
with an enhanced rate and with increase of temperature. There will also 
be a small increase of volume. After some time depending on the quantity 
of water and the rate of heat supply, bubbles are formed on the inner wall 
of the vessel. These bubbles are due to the release of dissolved air in water. 
Soon signs of internal activity appear. Small bubbles are formed on and 
near the heating surface; they rise a little through water and collapse. These 
are steam bubbles and this collapse of bubbles is the reason for ‘singing’ of 
kettles. The temperature rises with the supply of heat and ultimately the 
steam bubbles are able to reach the top surface of water. This is a state of 
turbulence and is known as boiling or ebullition. As soon as this boiling starts 
the temperature of water attains a constant value known as ‘boiling point’. 
As long as there is water present, it is impossible to increase the temperature 
even if the supply of heat continues. This boiling point temperature is called 
‘saturation temperature’.

As steam is produced when water present is under turbulence, the 
steam also carries with it water molecules and the steam is then called ‘Wet 
steam’ and it can be seen to comeout from the peak of the kettle. As long as 
water is present in the container, steam remains to be wet and temperature 
also remains constant at the saturation temperature. On continued supply 
of heat, the water droplets present in the wet steam vapourize and when 
no more water is present in the container and when all the water droplets 
are converted into vapour, the existing stem is then called ‘Dry saturated 
steam’. The temperature then again starts increasing and this dry steam is 
then completely transparent i.e. cannot be seen. As there is no scattering of 
light by water droplets so long present in wet steam.
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Schematical Representation of the Formation of Super heated Steam

volume increases but temperature
remains constant. Mixture of steam and

water droplets (wet steam) is formed

energy required h

gffg hhh +=

volume further increases but temperature
remains constant. Steam produced

is dry steam

gffg hhh +=

volume increases, temperature also
increases. Dry steam is superheated

energy required is super heat enthalpy

hh g +=

volume, temperature increase
energy required to produce this change

is liquid enthalpy

enthalpy super heat

Warming phase

Evaporation phase-II

Super heat steam phase

Stage-1

Stage-2

Stage-3

Stage-4

Evaporation phase-I

 Specific Liquid Enthaply = hf

 Specific Enthalpy for Dry Saturated Vapour = hg

  Specifi Evaporation Enthalpy hfg.
 If we study the variation of temperature with specific enthalpy increase 

for water when the supply of heat continues, we would get the curve like 
the Fig. 4.16. As the pressure above water surface is increased, we get 
different curves of same nature and the higher pressure observation will 
be placed above the lower one. ABEH line indicates the boundary between 
water (liquid) and vapor and is called saturated liquid line. The plateau 
which immediately follows is the constant temperature line and represents 
the evaporation. After completion of this process, temperature increases 
rapidly with the supply of heat and the region beyond this line represents 
the super heat steam phase. 
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Fig. 4.16 Temperature-Enthalpy diagram for water at pressures P1 < P2 < P3
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If we now join the points like A, B, E, H etc. and J, F, C etc., we get a curve 
like that represented in the following Fig. 4.17. The important criteria which 
determine the utility of steam is called ‘Dryness Fraction’. This parameter 
is defined as:

 Dryness Fraction = 
Mass of Drysteam in a certain volume

Massof Wet steam containig the
Drysteam in thesame volume

 x = .M
M+ m

There are different methods to determine this dryness fraction, the 
description of which are beyond the scope of this book. However, it should 
be emphasized here that more is the value of x the dryness fraction, the 
amount of energy required for producing the same quantity of steam into 
dry saturated steam becomes less. The maximum of the curve indicates the 
boundary between gas phase and vapor phase. Above this maximum the 
steam is super saturated, invisible and behaves like a perfect gas obeying 
gas laws. Whereas below this line it behaves like vapour, which does not 
follow the gas laws. The steam above this temperature can not be liquefied 
by the application of pressure alone and temperature has to be brought 
down by cooling the steam in order to condense it. However, the vapour 
can be liquefied by the application of pressure alone. Due to content of 
high heat energy and large kinetic energy of the water molecules, the dry 
saturated steam above this critical temperature can be used to run turbines. 
The successful production of this super saturated dry steam is industrially 
done in ‘Boilers’. There are two different types of boilers (i) Fire tube boilers 
and (ii) Water tube boilers. The detailed discussions on these boilers are 
however beyond the scope of this book.
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 Fig. 4.17  Boundary line between gas and vapour phases of steam
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4.6.1 Carnot Steam Cycle

 Please refer to the section (4.3.4) on ideal reversible Carnot cycle. This cycle 
is a reversible and perfectly ideal cycle dealing with ideal gas. We have seen 
that the efficiency of this ideal Carnot cycle is maximum and no real engine 
or cycle can attain such efficiency. If we now apply this Carnot cycle on 
steam, then let us see how far that will be applicable. The Fig. 4.18 shows 
such hypothetical steam cycle.

Here the left side figure is the P–V and right side the T–S diagrams. 
AB and CD. Represent the isotherms and as natural in Carnot cycle, BC and 
DA the two pairs of adiabatic. The areas ABCD for the left figure and a b c d 
for the right respectively represent the work output and heat involved Let 
us now briefly explain the actions of each step.

P

V0

A B

CD

PA

PC

Adiabatics

Isotherm

T
e
m

p
 º

C

Entropy

a b

cd

V
A

V
B

V
C

V
D

F

E

Fig. 4.18 Carnot steam cycle. Left shows the P–V diagram and right the T–S diagram

A to B: Water of volume VA is pumped to boiler at its pressure PA. In 
the boiler water is heated into steam at pressure PB. The volume of steam 
increases within the boiler from VA to VB at temperature of the boiler. This 
expansion volume of steam in the boiler is isothermal. 

B to C: The steam at volume VB is allowed to expand in the turbine. The 
volume increases to VC. This is an adiabatic expansion.

C to D: The steam after expansion in the turbine is fed into condenser 
and as a result the volume decreases from VC to VD. This takes place at a 
constant pressure PC and at constant temperature of the condenser. This is 
then an isothermal process.

D to A: The partially condensed steam and water is then fed to the 
feed pump which increases its pressure from PC to the boiler pressure PA. 
This results a decrease of volume from VD to VA. This is equivalent to an 
adiabatic compression.
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Observation: The cycle diagram representing turbine is represented by 
two isotherms and two adiabatic and is represented by area FBCE. The feed 
pump diagram represented by area EDAF is the work input. The net work 
output is then represented by ABCD. The isothermal expansion of steam 
in the boiler and adiabatic expansion of steam in the turbine are reasonable 
but condensation of wet steam at C fully into water and wet steam is not 
possible and it is also not reasonable practically that feed pump can deal with 
successfully both wet steam and condensed water to increase the pressure 
of the mixture to the boiler pressure. 

Therefore, Carnot steam cycle is not feasible both theoretically and 
practically and more reasonable cycle for steam as system is Rankine Cycle. 
This is discussed in the next section.

4.6.2 Rankine Cycle 

 Rankine cycle is a modification over the Carnot steam cycle just discussed. 
The modification concerns the full condensation of wet steam into water so 
that the feed pump can effectively pump the condensed water into boiler at 
boiler pressure. The condensation is continued up to saturated liquid line 
to d Fig. 4.19 (b). There will be slight increase of temperature due to this 
increase of pressure and ultimately this increase continues until it equnls 
the boiler temperature a shown by d′ to a step.
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 Fig. 4.19 Rankine Cycle. a its P-V diagram and b the T-S diagrams

The complete Rankine cycle is then represented by a b c d d′ a. In P-V 
diagram (Fig. 4.19 a), the work done in the turbine is represented by area  
F B C E which includes feed pump work E D A F and hence, the

  Work done per cycle = Area ABCD
 1.  During Adiabatic expansion B to C,  q = 0 and so, the energy equation 

from steady flow equation h1 = h2 + w i.e. w = h1 – h2
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This relation can however be shown as follows:

2 1 2 1

for adiabaticexpansion , 0
; ( ) as const.andso,

0 and so,

h u pv
dh du pdv vdp B C dq
dh v dp h h v p p w p v

v dp p dv pdv v dp w

= + 
 = + + → = 
 = − = − = − =
 
 + = = − = − ∫ ∫
  w = hb – hc  (applicable for Fig. 4.16 b)
or,  = area FBCE  (applicable for Fig. 4.16 a)
Feed pump work/unit mass = area EDAF
   = (PB – PC)VD
Net work done per cycle = (hb – hc) – (PB – PC) VD  … (4.28)
The heat transfer required in the boiler to convert the water at d′ to 

steam at b = hb – h′d.
Total energy of water entering the boiler at d′ = liquid enthalpy at d + 

Feed pump work.
 or, h′d = hd + (PB – PC)VD 
Therefore, heat transfer required in the boiler to convert it into saturated 

steam
  = hb – hd′ = hb – hd + (PB – PC)VD …(4.29)
The thermal efficiency of the cycle:

  = 
Work done per cycle Equation (4.28)=

Heat required per cycle Equation (4.29)

   = 
− − −
− − −

( ) ( )
( ) ( )

b c B C D

b d B C D

h h P P V
h h P P V

(PB – PC) VD is however small and can be neglected. So, the efficiency 
of Rankine cycle:

  = 
−
−

( )
( )

b c

b d

h h
h h

  …(4.30)

If super heated steam is used in Rankine cycle then the T–S diagram 
will be slightly modified as follows:
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  Fig. 4.20 Rankine cycle with super heated steam 
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Thermal efficiency of this modified Rankine cycle is given in the same 
form as:

 η = 
−
−

c d

c e

h h
h h

  … (4.31)

Therefore, there will be a slight increase of the efficiency if instead of 
saturated steam super saturated steam is used in Rankine cycle.

4.7 OTTO AND DIESEL CYCLES

 Otto cycle is air standard cycle of the spark ignition engine. In most of the 
spark ignition cycles the piston executes four complete strokes within the 
cylinder and crankshaft completes two complete revolutions. These engines 
are called ‘Four stroke internal combustion engines. The engine devised on 
this cycle was proposed by N.A. Otto, a German engineer in 1876 and is 
known after him. The four strokes constitute the following actions:
 1. Compression Stroke: During this stroke piston moves upwards and 

compresses the air-fuel mixture. At the end of this stroke, the spark 
plug fires and ignites the fuel mixture, pressure inside increases and 
the piston is forced to move down.

 2. Expansion Stroke: During the downward movement of the piston the 
crankshaft rotates and produces the useful work. At the end of this 
stroke the piston moves to its lowest position.

 3. Exhaust Stroke: During this stroke, the piston moves up and the burnt 
fuel is ejected out 

 4. Intake Stroke: During this stroke the piston again moves down and 
fresh air and fuel is sucked inside the cylinder.

The execution of this four stroke air standard cycle or Otto cycle is given 
below with the description of the actions of each step as above.

Inlet valve

Exhaust valve

Fuel-Air mixture

Combustion products

Piston

P

V

a b, f

c

d

e

Q
1

Q
2Spark

device

Fig. 4.21 Four stroke otto engine and the P – V diagram of otto cycle

a to b = Intake stage, Inlet valve opens and the mixture of air and fuel 
is inducted in the cylinder at constant pressure.
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b to c = Compression stroke, the both valves are closed and the mixture 
of fuel and air is compressed within the cylinder.

c to d = Combustion stage, the mixture is fired by spark plug, the 
pressure of burnt mixture within the cylinder increases with 
piston at the same position.

d to e = Expansion stroke, due sudden increase of pressure the piston 
moves right. This is the stage of production of work. Pressure 
and temperature decrease.

e to f = The blow-down stage, exhaust valve opens and burnt mixture 
returns to decreased pressure.

f to a = Exhaust stroke, the piston moves left and ejects out the used 
fuel-air mixture.

Heat supplied 

  →=1 b cQ Q  = −( )v c bmc T T

Heat rejected

 2 d aQ Q →=  = ( )v d amc T T−

Efficiency:  η = − 2

1
1 Q

Q  = 
−

−
−

( )
1

( )
v c b

v d a

mc T T
mc T T

   = −
−

−
1 c b

d a

T T
T T

. …(4.32)

Diesel Cycle
 The only difference between the Otto cycle and Diesel cycle so far as their 
P – V diagrams are concerned is that while heat is supplied for Otto cycle 
through the constant volume step, it is done through constant pressure step 
and instead of injecting the mixture of fuel and air, two are injected separately 
and mixing is done in the cylinder itself. Therefore, the P – V diagram is 
slightly changed. The other step by step operations are same.

 

P

V

a b, f

c d

e

Q1

Q2

 Fig. 4.22 The diesel cycle: P–V diagram
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The efficiency expression is then modified for Diesel cycle as Q1 is 
applicable for constant pressure and cp is used. The expression (4.27) is 

modified as using = γ.p

v

c
c

  η = ( )1
( )

c b

d a

T T
T Tγ

−
−

−
. … (4.33)

REVIEW QUESTIONS

 1. Explain why and when any amount of mechanical work can be 
converted fully and indefinitely into heat the reverse is not correct?

 2. Explain the different fundamental thermodynamical processes 
to convert heat into mechanical work and show that the different 
processes result different quantity of work.

 3. Explain the second law of thermodynamics and establish the 
equivalence between its two statements.

 4. Define reversible and irreversible processes and show by stating 
examples that all natural processes are irreversible.

 5. Introducing Carnot cycle, establish the Carnot theorem.
 6. Explain and prove the Entropy principle and also show its outcome 

in natural processes.
 7. Derive the first and the second TdS equations and state some of their 

applications.
 8. Explain Joule-Kelvin throttling process. Prove that this is an isenthalpic 

process.
 9. Explain the critical temperature and state its importance in explaining 

the difference between gas and vapour. Why super saturated dry steam 
is used as working substance in steam cycles, than wet steam?

 10. Explain the working diagram of Otto and Diesel cycles.
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5

Electrostatics

5.1 INTRODUCTION

 When the charges are not moving then the characteristics that they 
demonstrate are known as “Electrostatics”. An atom is electrically neutral 
having equal amount of positively charged core and negatively charged 
electrons in its surrounding. These electrons may be removed by applying 
frictional force by rubbing two materials. In the electrostatic series given 
below if two materials of the series is rubbed then the material in the top of 
the series develops positive electricity and the other which occurs later in the 
series develops negative electricity. However, these charges will remain for 
sometime on the surface of the materials if they are insulated and otherwise 
the charges will move to earth. For example, if Glass is rubbed with Flannel 
then glass will develop negative electricity and flannel positive and if it is 
rubbed with silk cloth then it develops positive and silk negative. There is 
however no creation of charge but simply there is a transfer of charge from 
one to other making the earlier one deficit of charge that is transferred and 
the latter one excess of the charge transferred. The demonstration of static 
electricity can best be observed in insulators as these materials can not 
conduct it to the other end or to earth easily.

Electrostatic Series:
(1) Fur (2) Flannel (3) Sealing Wax (4) Glass (5) Paper (6) Silk (7) Wood  

(8) Metals (9) India-rubber (10) Sulphur (11) Ebonite (12) Gutta-percha.
The charges can also be stationed in insulator and conductors by a 

process known as Induction. When a charged body, say positive is brought 
close to another then on the nearest end of the body an opposite charge 
that is negative in this case will develop and at the furthest end of the body 
similar charge that is positive will develop. This is because of the shift of 
centre of mass of the positively charged core and that of orbital negatively 
charged electrons of the atoms of the body where in the charges are induced. 
The opposite charge developed due to this induction process at the nearest 
end is known as bound charge as the charge does not move as long as the 
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inducing charged body is kept close to this end. But however the similar 
charge developed at the furthest end is know as free charge as it has freedom 
of moving away if and only if it gets a scope. It has been found that opposite 
charges attract each other and same charges repel each other. Thus, there is 
a force between two charges and the magnitude and direction of this force 
between two charges say q1 and q2 is a central force and act along their line 
of centres.

This is known as Coulomb’s inverse square law as the force between 
these two charges is directly proportional to the product of the charges and 
inversely proportional to the square of the distance between them.

5.2 ELECTROSTATICS AND ELECTRIC FIELD

 The force F between two point charges q1 and q2 at distance r is given by 
Coulomb’s Law as:

 F = 
πε

1 2
2

0

1
4

q q
r

 nr = f(r) . nr …(5.1)

Here ε0 is the permittivity of free space and nr is the unit vector giving 
the direction between the charges.

If there are a number of charges then the force on a particular charge 
will be the vector sum of forces between this particular charge pairing with 
each individual charges. The ratio of this force on a charge q to the charge 
q i.e. force per unit charge is defined as the intensity of the electro-static 
field and it is given as:

 E = F/q = 
( )f r
q  nr …(5.2)

When there are number of charges q1, q2, q3 ... etc., then the field at a 
point P is given by:

 EP = πε ∑ 3
0

1
4

i

i

q
r ri

Now, if there is a continuous distribution of charge giving rise to a 
volume charge density ρ, then the intensity at a point P is given as:

 EP = 
ρ

πε ∫ 3
0

1
4 V r r dV.

Where r is the distance between the volume element dV and the point P.
This electric intensity at a point say, P can also be understood as the 

total electric flux passing through an unit area at P.
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5.2.1 Gauss’s Law of Electrostatics

 Let an arbitrary closed surface contains a charge q and charge q′ lays 
outside it.

An arbitrary closed surface with charge

inside and charge outside the surface.

q

q�

q

E

dS

q�

dS
E

E

dS��

Fig. 5.1 Gauss’s law E is the intensity (flux density) of electric field on the surface

The flux of E across an element of area dS on S is E . dS and so the total 
flux of the electric field through the entire surface is given by:

      ∫
S

 E . dS = 
θ

θ = = Ω
πε πε∫ ∫ ∫  2

0 0

coscos
4 4S S S

q qE d
r

dSdS    …(5.3)

where θ is the angle between E, the intensity and the normal to dS and 

dΩ is the solid angle that area dS subtends at the charge q. Now as Ω = π∫ 4
S

d  

and so we get

∫
S

E . dS = 
ε0

q
. Now, if the charge, say q′ stays outside the surface then 

the flux that enters the surface dS′ will be the same that will pass out of dS′′ 

on the other side of the area and so the net flux inside the surface will be 
zero. Now, if there are a number of such charges inside the closed area then:

∫
S

E . dS = ε ∑
0

1
iq  and similarly, if there is uniform charge distribution 

resulting in to a charge density ρ inside the surface then as = ρ∑ ∫i
V

q dV  
we get:

 ∫
S

E . dS = ρ
ε ∫

0

1

V

dV   …(5.4)

The equn. (5.4) is known as Integral Form of Gauss’s Law and it states 
that: “The total flux of electric intensity E across a closed surface equals the 
total charge inside the surface divided by ε0”. 
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Differential Form of Gauss’s Law:
dV = dX . dY . dZ and ABCD and A′ B′ C′ D′ are the two faces each of 

area dYdZ and respectively at positions X + dX and at X.
Let us take one element of volume dV = dX . dY . dZ and whose edges 

are parallel to XYZ axes. If E is the field intensity on the surface ABCD, then 
the flux through it is:

 E . dS = (E cosθ) dYdZ = EX dY dZ.
The flux through the area A′ B′ C′ D′ will be similar but with negative 

sign as the field is pointing towards the volume and is given as – E′X dY dZ. 
The total flux through these two surfaces is given as:

X

Y

Z

0

E

E
X

A

B

C

D

A

B�

C�

D�

dX

dY

dZ

�

E

E�
X

Fig. 5.2 Differential form of gauss’s law. In cartesian system the volume element 

 EX dY dZ – E′X dY dZ = (EX – E′X) dY dZ. Now as the distance between 
these two surfaces is very small and equal to dX then (EX – E′X) = dEX =
∂
∂

XE dX
X

 and the total flux in X direction is:

∂
∂

XE dX
X

dY dZ = ∂
∂

.XE dV
X

 Using the similar results for other four faces 

the total flux through the volume element is; 
∂ ∂ ∂

φ = + + =
∂ ∂ ∂

X Y Z
E

E E EdV dV dV
X Y Z

∂ ∂ ∂ + + ∂ ∂ ∂ 
.X Y ZE E E dV

X Y Z  
But from Gauss’s Law if dq is the charge contained in the volume 

element dV:
∂ ∂ ∂ + + ∂ ∂ ∂ 

X Y ZE E E dV
X Y Z

 = 
ε0

dq
 and since dq = ρdV, we get

                 
∂ ∂ ∂ ρ + + = ∂ ∂ ∂ ε  0

X Y ZE E E
X Y Z   … (5.5)



 Electrostatics 5.5

This is Gauss’s Law in differential form. Now left hand side (L. H. S.) of 
the above equation is Divergence of E, then equn. (5.5) can also be written as:

 div E = 
ρ
ε0

 or,  ∇ . E = 
ρ
ε0

 …(5.6)

Now, equating the equns. (5.4) and (5.6) we get the total flux of the 
electric field across a closed surface can be equated to the volume integral 
of the divergence of E over the volume:

 ∫
S

 E . dS = ∫
V

 div E dV = ∫
V

∇ . E dV = ρ
ε ∫

0

1

V

dV  …(5.7)

The physical meaning of Gauss’s Law is that the electric charges are 
sources of electric field and their distribution and magnitude determine the 
electric field at each point of the space.

Like other central forces the electrostatic force and the field is also be 
conservative. Then the total work done in moving one unit charge around 
the uniform field in a closed path will be zero. 

In the following Fig. 5.3 let E be the uniform field intensity due a charge 
q and integrating over the closed path 

 ∫
L

E. dl = 0

X

Y

Z

E

E

q

dl

Fig. 5.3  A closed path in an electric field

Now, applying Stoke’s Theorem which is for a vector field of intensity A 
states that the value of curl of A at a given point is equal to the line integral 
around a closed path per unit surface:

∇ × A = →
lim

0S
C
S

 = 
dC
dS

 and where the line integral of A along an elementary 

path dl is given by: dC = A . dl

Therefore, ∫
S

(∇ × A) . dS = ∫
L

A . dl. Now, using this Stoke’s theorem 

we get
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 ∫
L

E . dl = ∫
S

curl E . dS = ∫
S

(∇ × E ). dS = 0, is true for any surface and so

 ∇ × E = 0.
This Gauss’s Law either in integral or differential form is called as the 

axioms of the theory of electrostatics.

5.2.2 Electrostatic Potential 

 As has been stated that for an uniform electrostatic field the line integral 
of E depends only on the initial and final positions and not on the path, we 
can define the electrostatic scalar potential as:

 V(r) = −∫
f

i
E . dr or  dV = – E . dr

The negative sign shows that E points towards the decrease in potential. 
This electrostatic potential may also be seen as the electrostatic energy per 
unit charge. We can however measure only the change of the potential 
within a field and zero potential may only be taken as a potential at a point 
at infinite distance from a charge distribution. In Cartesian coordinate system 
this V may be considered as a function of space coordinates x, y and z.

Therefore, ( )∂ ∂ ∂
= + + = − + +

∂ ∂ ∂ x y z
V V VdV dx dy dz dx dy dz
x y z

E E E  so that

                   ∂
= −

∂x
V
x

E , 
∂

= −
∂y
V
y

E , and ∂
= −

∂z
V
z

E .

And in more compact form we can write that electric field E is minus 
the gradient of the electrostatic potential

 E = – grad V = –∇V.  …(5.8)

5.2.3 Field Due to an Electric Dipole

 An electric dipole is two equal and oppositely charged point charges situated 
at a distance which is very small. In the following figure let two charges of 
+q and –q be separated by a small distance say d which is measured from 
negative charge to the positive charge. P is a point in the vicinity of the 
dipole where the separate effect from both of the charges can be felt. The 
dipole moment p = qd.
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– q +qd

r r+

r–

�

p

p = dq
0

 

Fig. 5.4 Potential and field due to an electric dipole

The potential at the point P, V(r) = − +

+ − + −

  −
− = πε πε 0 0

( )1 1
4 4

q q q r r
r r r r

.

Now as distance d compared with r then we can safely approximate as:
r – r1 = d cos θ and  r– r+ = r2. This results in to:

                                  

θ θ
= =

πε πε2 2
0 0

cos cos( )
4 4
qd pV r

r r

   = 
πε 3

04 r
p . r . …(5.9)

Now, the electric field due to this dipole at the point P is from equn. 
(5.8) as:

 E = – ∇V(r) = −
πε0

1
4

∇ {(p . r)/r3 }

   = 
−   ∇ + ∇  πε   3 3

0

1 1 1( ) ( )
4 r r

p. r p. r

But as: ∇(p . r) = p as r = ix + jy + kz, and r = (x2 + y2 + z2)1/2

    So, ∂ ∂
= + + =

∂ ∂
2 2 2 1/2( ) ,r xx y z

x x r
 and similarly ∂

=
∂

yr
y r

 and ∂
=

∂
r z
z r

.

Therefore, ∇r = 1 and ∇   = − 
 3 4

1 3
r r

− + + = 
  5

3yx z
r r r r

i k rj

Hence,

 E = 
πε0

1
4

{3(p . r)/r5 – p/r3} 

For a group of point charges qi at distances rI from point P the electrostatic 
potential at point P is
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 VP = πε ∑
0

1
4

i

i

q

ir

Now, to find a relation between the potential and charge density, let 
us write 

 ∇ . (– ∇V) = 
   ∂ ∂ ∂ ∂ ∂ ∂

+ + + +   
∂ ∂ ∂ ∂ ∂ ∂   

. V V V
x y z x y z

i j k i j k

  = 
∂ ∂ ∂

+ + = ρ
ε∂ ∂ ∂

2 2 2

2 2 2
0

1V V V
x y z

i.e.  ∇2V = ρ
ε0

1 .    …(5.10)

This equation is known as Poisson’s equation. It allows us to find the 
potential function V given the distribution of charge density ρ at every 
point. When the region does not contain any charge density, the expression 
(5.10) reduces to 

 ∇2V = 0 or, ∂ ∂ ∂
+ +

∂ ∂ ∂

2 2 2

2 2 2
V V V

x y z
 = 0 …(5.11)

This is known as Laplace’s equation.

5.2.4 Some Applications of Poisson’s and Laplace’s Equations

A : To verify that the potential of a point charge satisfies Laplace’s 
equations at all points except at the point where the charge is situated.

Let the point charge be situated at the origin of a Cartesian coordinate 
system and a point P is at a distance r which is given by:

 r2 = x2 + y2 + z2 and so, the derivative relative to x is ∂
=

∂
r x
x r

 Again ∂ ∂ = − = − ∂ ∂  2 3
1 1 r x

x xr r r
 and ∂ ∂   = −   ∂∂    

2

2 3
1 x

xx r r
∂

= − +
∂3 4

1 3x
x
r

r r
 

= − +
2

3 5
1 3x
r r

. Then similarly after finding the derivatives with respect to y 

and z and then adding we get:

+ +∂ ∂ ∂     + + = − + =     
∂ ∂ ∂     

2 2 22 2 2

2 2 2 3 5
3( )1 1 1 3 0x y z

x y zr r r r r
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Now, multiplying the both sides of the above equation by 
πε04
q  we 

get as 

  V = πε04
q

r   

∂ ∂ ∂
+ +

∂ ∂ ∂

2 2 2

2 2 2
V V V

x y z
 = 0, this conclusion is however is not valid when 

r = 0 as 1/r goes to infinity and at that point which is the position of 
charge and which is here taken as origin the Laplace’s equation is not 
applicable.

B : Using Laplace’s equation obtain the electric potential and the electric 
field in the empty region between two parallel plates at potentials V1 and V2.

O
X

Y

Z

x1
x2d

Fig. 5.5 Two parallel plates at potentials V1 and V2 and at places x1 and x2 respectively

The field as per the problem depends only on x-coordinates and as there 
are no charges in the space between the plates, from Laplace’s equation we 

get =
2

2 0d V
dx

 without using the partial derivative as the potential V is 

only x dependent. Now, integrating =
2

2 0d V
dx

, we get = constantdV
dx

 But 

the electric field E = −
dV
dx

 and so we can conclude that the field in between 

the plates is constant. Now, we can write

= −∫ ∫
2 2

1 1

V x

V x

dV dxE  and  E = 
−

−
−

2 1

2 1

V V
x x

 = 
−

− 2 1V V
d
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5.3 POLARIZATION OF DIELECTRIC

In this section we will discuss the effect of electric field on a substance 
when it is placed within the field. If the substance is a conducting material 
having free electrons then the free electrons will move in the direction of 
field and this movement of free electrons then constitute current. If the 
substance is an insulator or even a semiconductor and if the band gap 
between the valence band and conduction band is large then the field may 
not be able to transport the electrons from the valence band to conduction 
band and the substance does not show any current. But there is generally 
some effect of the electric field on the molecules of the substance. The 
atoms have spherical symmetrical distribution of charge and they are 
electrically neutral but some molecules do not possess such spherical 
symmetry and the separation of the centre of mass of the positive and 
negative charges renders the molecules as electric dipoles. Such molecules 
are called polar molecules and have permanent dipole moment. They orient 
themselves according to the direction of the field when the molecules are 
subjected to external electric field. Many other molecules are not normally 
as polar molecules but under the action of external field such molecules 
loose the spherical symmetry of the charge distribution and are polarized. 
The insulators having this polarizing property as a significant property are 
known as dielectric. Therefore all dielectric materials are insulators but all 
insulators are not generally dielectric material. The temperature dependence 
of this polarizability distinguishes insulators in between polar insulators 
and non polar insulators. In polar insulators the polarization is temperature 
dependent where as in non polar it is not.

 As a consequence of this induced dipole moments, layers of positive and 
negative charges develop on the two surfaces of the dielectric normal to the 
direction of the external applied field E. The elementary charge induced in 
a layer of thickness r and area dS can be expressed in terms of “Polarized 

charge density” σP such that σ =P
qd

dS
 an also:  σ =  

 
∑1

P q r
V

dS dS

   = = = =   
   

∑ ∑1 1q p P
V V

r dS dS dS P . dS

Therefore,  P = ∑1 p
V

  … (5.12)

This P is called polarization or dipole moment per unit volume of the 
element of dielectric. 

We may also integrate the surface charge density over the closed surface 
of a given surface of a volume V to obtain.
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Fig. 5.6 Polarization of the molecules and the dielectric in an electric field

σ =∫ ∫ 
P

S S

dS P . dS = ∇∫V
. P dV using Gauss’s divergence theorem.

Now, since each element of dielectric remain neutral under an applied 
electric field we must introduce volume polarization charge of density

ρ =P
dq
dV

 such that total charge is zero

       σ + ρ =∫ ∫

0P P
S V

dS dV  and P P
V S V

dV dS dVρ = − σ = − ∇ ⋅∫ ∫ ∫

P

Therefore, the charge density resulting from polarization of the bulk is :

                             P divρ = − = − ∇ ⋅P P   … (5.13)
Therefore, wherever the divergence of polarization is not zero, there 

exists volume polarization charge density distributed throughout the bulk 
of the dielectric. However this should be retained in the mind that both σP 
and σP are bound charge densities arising from the bound electrons and 
nuclei in the dielectric.

The polarization is determined by the charge separation in the individual 
atoms or molecules so that a functional relationship between P and the 
electric field applied, E may be derived.

5.3.1 Dipole Moment of an Atom 

 Consider an individual atom of radius R having the charge density of the 

electron cloud ρ given by : ρ= −
π 34

3

q

R
. Now if we can draw a sphere of 

radius r about the centre of the electron cloud after it has been displaced 
by r, under the action of an electric field E. Then applying the Gauss’s Law 
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to get the field due to the negative electron cloud at the nucleus which is 
given by EC, we get:

R

ro

 Fig. 5.7 The charge distribution in an electron cloud

 EC 4 πr2 = 
π − ε π 

3
3

0

31 4
34

q r
R

Which is = − = −
πε πε3 3

0 04 4
q r p

R RCE , Now to maintain equilibrium of 

the nucleus the field at the nucleus EC is to be equal and opposite to the 
external field E.

 p = 4 πε0 R3E …(5.14)

This expression shows that dipole moment p is proportional to the 
external applied field E. This is the condition of “linear” dielectric where 
in as per the equn. (5.12) the polarization P is also directly proportional to 
external field. If in addition the electrical properties are same in all directions 
for an isotropic dielectric we can write:

 P = χe ε0E …(5.15) 
Where χe is a scalar called “Electric susceptibility”. In anisotropic 

dielectric P and E may have different directions and the electric susceptibility 
becomes a second rank tensor relating their components.

 Now, recalling the Gauss’s law in differential form Equn. 5.5 and 5.6 
and applying the same for the dielectric we get 

 ∇ . E = 
0 0

1 1( ) ( )Pρ+ρ = ρ − ⋅
ε ε

∇ P  …(5.16)

where ρP is the polarization charge density and ρ is the free charge 
density and also using equn. (5.13). Now from the above equation separating 
the distribution of free charges from polarization charges we get :

∇ . (ε0 E + P) = ρ. We can now introduce a vector field D and can write 
the Gauss’s law for a dielectric by equating the divergence of the field D 
with the free charge density.
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 ∇ . D = div D = ρ  …(5.17)
Where the field D is called “Electric displacement” and must always be 

associated with a particular dielectric :
 D = ε0E + P …(5.18)
While polarization vector P is defined in presence of a dielectric, the 

electric field E is defined irrespective of the environment. Using equn. (5.15) 
for a linear isotropic dielectric, the displacement D becomes:

 D = ε0 E + χe ε0 E = ε0 (1 + χe) E = ε0 εr E …(5.19)
Which is often called the constitutive relation of electrostatics, where: 

εr = 1 + χe is known as “Relative permittivity”. µr is a dielectric constant except 
for anisotropic dielectrics where the electric susceptibility and so µr is 
represented by a second rank tensor.

5.3.2 Electrostatic Energy 

 When we consider a system of point charges under mutual electrostatic 
internal forces, the potential energy can be expressed as:

≠
= ∑ ∑1

2 i ij
i j i

U q V . This expression shows that each charge experiences 

the potential due to all other charges and then for a continuous distribution 
of charges we get:

( ) ( )= ρ∫
1 .
2 V

U V dVr r  Now in presence of a dielectric using equn. (5.17) 

we get

 UE = ( ) [ ]{ }1 1( ) .
2 2

⋅ = ⋅ − ⋅∫ ∫
V V

D V r dV VD D V dV∇ ∇ ∇

But according to Gauss’s Law the first term on the right hand side 
vanishes as:

∫
V

∇ . (VD) dV = ∫
S

VD . dS = 0 as the surface S is chosen to be an 

infinite sphere. It follows then:

= ∫
1
2E

V

U  E . DdV since E = –∇V. Therefore the electrostatic energy 

density stored in a charge distribution is given as:

 UE = 
1
2  E . D   …(5.20)
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5.3.3 Claussius-Mossotti Equations

 In dielectric the dipole moment of each atom or molecule is determined 
by an effective field. This effective field consists of the applied field E and 
the total of all other dipoles, added together. This effective field may also 
be called local field Eeff. can be calculated in a linear isotropic dielectric by 
considering a spherical region within the dielectric having radius R and 
centre at a given molecule.

 The field resulted due to the uniform distribution of molecules inside 
the sphere averages to zero so that the contribution of all other molecules 
to Eeff reduces to the field associated with the polarization surface charges 
on the sphere. In the arrangement illustrated in the following figure the 
surface charge density at angle θ to the direction of the field is equal to the 
normal component of polarization P with negative sign. Where P is the 
polarization field outside the spherical region of the dielectric

 ρ = –P . n = –P cos θ
The surface area of the annular shaded ring R sin θ and of width Rdθ is 

given as 2 ρR sinθ . Rdθ and the charge on it is given by : 
 dq = (–P cos θ) 2 πR sinθ . Rdθ. 
This produces an electric field at the origin parallel to the applied field 

θ − π θ θ θ
= = = − θ θ

επε πε

2 2
2

2 2
00 0

cos 2 cos sin cos (cos )
24 4

dq R ddE d
R RP

P P

Integrating over θ from 0 to π to take the entire sphere we get the 
contribution of the polarization charges to the local field as 

  EP = P/3ε0 …(5.21)
Now, as Eeff. = E + EP

 Eeff. = E + P/3ε0

Rd�

R
s
in

�

Eeff

P

R

d�
�

o

Fig. 5.8 The electric field due to the polarization surface charge density on a spherical 
region of the dielectric
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Now, assuming the dipole moment of a molecule p is proportional to 
the effective field Eeff, we can write after introducing α as “polarizability” 
of the molecule 

 p = αε0 Eeff. = αε0 [E + P/3ε0]
The polarization P for N molecules per unit volume is given by
 P = Np = Nαε0 [E + P/3ε0]

i.e. P = 
α

εα
−

0
1

3

N
N E   …(5.22)

Now using equn. (5.19) which introduces the dielectric constant εr, we 
get the relation between the dielectric constant εr in terms of polarizability 
α and number of molecuiles per unit volume N as :

                                      

+ α
ε =

− α
1 2 /3
1 /3r

N
N

or, 

                              

ε − α
=

ε + ε0

1
2 3

r

r

N

 
 …(5.23)

This equation is known as “Claussius-Mossotti” equation.

REVIEW QUESTIONS

 1. Two point charges are placed on the x-axis, one of + 1 e s u at x = 2 cm 
and the other of – 4 e s u at x = – 2 cm.. Calculate the magnitude and 
direction of the electric field at the point (0, 3.0). Is there any point 
where the field is zero?

 2. A water droplet of 10–2 cm in diameter carries a negative charge and 
due to this the field on the surface is 20 stat volts/cm. How strong a 
vertical field is required to hold the drop from falling down?

 3. An infinite plane has a uniform surface charge distribution s on its 
surface. Right next to it is an infinite parallel layer of charge of volume 
density r. Find the field E everywhere.

 4. Considering a spherical charge distribution of density r from r = 0 to 
r = a. Find the field due to this charge distribution for values of r both 
less than and greater than a.

 5. A thin rod along z-axis is from z = – a to z = + a. The rod carries a charge 
density per unit length as l. Find the potential at all points along the 
x-axis from x > 0.

 6. Let us consider two different processes while inserting a dielectric slab 
between two parallel plates of a capacitance, one when the plates of the 
capacitor is connected to battery and in the other when they are not. Find 
and compare the energy stored in the capacitor and force on the slab.
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Magnetism - I

6.1 INTRODUCTION 

 Long before Christ, it was observed that certain naturally available material 
known as “Lodestone” has the potentiality to attract iron, cobalt and also 
nickel. This specific property is only found to exist in the particular iron 
ore and is not found in other general bodies. Moreover, this property of 
attraction is apparently not related to electrical interaction as it does not 
attract paper pieces or cork and also not related to gravitational attraction. 
It is also found to be concentrated at some spots in the mineral ore. As 
this, it, is a different interaction named as magnetic interaction and the 
phenomena is said to belong a new natural property known as “Magnetism”. 
The specific materials showing this property are known as “Magnet” and 
the spot on the material where the property is found to be concentrated is 
known as “Magnetic poles”. The interaction between two such magnets 
was also found interesting. Ends of the two cylindrical shaped magnets 
either attract or repel. The poles of the two bars which attract each other 
are called unlike poles and which repel each other are known as like poles. 
If the rod is freely suspended then it has been found that a particular end 
always point toward north and south. The pole at the end of the magnetic 
bar pointing towards north is known as north seeking pole or “North 
pole”, (N) and the other pole pointing south is “South pole”, (S). This also 
demonstrated the fact that earth is also a huge magnet as it was seen that 
a magnet is influenced only by another magnet. These magnetic poles are 
basically different from electric charges. The electric charges though are of 
two kinds positive and negative, it has been found that they can have their 
separate existence. A body can be positively charged and also of negative 
charge of different quantity but magnetic bodies always show the poles in 
pairs, equal and opposite. Fundamental particles can be either positive or 
negative or even neutral and for charged fundamental particles the charges 
can be of different quantity but we cannot find a fundamental particle having 
only one kind of magnetism.
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 However, the electric and magnetic interactions are very closely related 
and in fact they are the two different aspects of the one property of the 
matter. When an electric charge is stationary, it shows only electric field 
but when it moves it demonstrate magnetic field and so magnetism is the 
manifestation of electric charges in motion and so electric and magnetic 
interactions should be considered together under more general name 
“Electro-magnetic interactions”. Therefore, it is necessary first to introduce 
charge flow before the magnetic effects and interactions.

6.2 MAGNETIC INDUCTION

 It has been mentioned that the electric and magnetic interactions are actually 
two different aspects of the same property of the matter. In order to establish 
this it is necessary to introduce first the charge flow constituting current 
and then the effect of this current in the magnetic induction.

6.2.1 Electric Current, Current Density and Ohm’s Law 

 In dielectrics the charge densities are bound and the electrostatic behaviour 
of these materials are described by a vector field D, which is proportional 
to the applied electric field E. In conductors the charges are free and they 
move under the action of an applied electric field E. This steady charge flow 
under the influence of the field constitutes current. A steady electron flow 
in conductors requires the condition that at one end of the conductor the 
surface charges balancing the field E must move out to the source of the 
field and at the other the charges are supplied back from the source and 
thus maintaining the conductor as a part of the complete circuit.

Now, let me be the mass and –e be the charge of the electron and v be 
the “drift velocity” of the electron in the direction opposite the direction 
of the field. Then

 e
dm
dt

v = – eE – αv … (6.1)

where –αv represents the damping force against the direction of velocity. 
This damping force results due to the collision between the moving electrons 
with the ions in the conductor. Now if there are N number of free electrons 

in volume V then free charge density is given by: ρ = − = −
Ne ne
V

. Now, as 

all these electrons are moving with same velocity v, the magnitude of the 
electric current is defined as the time rate of charge through the normal 
cross section of area S of the conductor. Then
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                               = = − = ρ
dqI n eS v S v
dt

  …(6.2)

 and from equn. (6.1)

                             

α
= −

2

e e

ne SEdI I
dt m m

 or,      α
= −

− α2 / e

dI dt
mI ne SE

 and integrating we get

 ln
  α

− = − +  α 

2

e

ne SEI t C
m

 but from the initial condition the current I = 0 

at t = 0 , we get

         
  α

= − −   α   

2
1 exp

e

tne SEI
m

, which shows that the current 

exponentially increases to its steady value:

                =
α

2ne SEI     or       =
α

2ne S VI
l

  …(6.3)

where V is the potential difference at the two ends of the conductor and 

l is the length of the conductor as =
VE
l

.

Now, introducing α
=
σ2
1

ne
 and writing: =

σ
lR
S

 we get from equn.(6.2)

 V = RI … (6.4)
This is known as Ohm’s Law, where R is called as Resistance and σ is 

the conductivity.
Now, the charge flow is always tangential to the electric field lines and 

so we can define a current density field j, the magnitude of it is equal to 

the current flow per unit normal area. So that from equn. (6.2) j = = ρ
dI
dS

v  

or, j = σv or, I = ∫
S

j . dS and from equn. (6.3) and expression of conductivity 

σ we get after equating: j . dS = σE . dS and therefore, the current density 
j = σE where the conductivity σ acts here as the constant of proportionality.

Now, considering the surface S to enclose a volume V, the total current 
flowing out of the surface S is equal to the time rate of decrease of charge 
inside S. Therefore,
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 ⋅∫
S

dj S  = 
∂ ∂ρ

− ρ = −
∂ ∂∫ ∫

V V

dV dV
t t

                             ⋅∫
S

dj S  + 
∂ρ

=
∂∫ 0

V

dV
t

 Applying Gauss’s divergence theorem:

                        ∫
V

∇ . j dV + 
∂ρ

=
∂∫ 0

V

dV
t

Which is equivalent to: ∂ρ
∇ =

∂
. 0.

t
j  This is the equation of continuity 

of current.
For a steady state flow of charge within the conductor producing steady 

current ∂ρ =
∂

0
t

, indicating no accumulation of charge inside the surface S, 

we get:

 ∇ . j = 0   …(6.5)
There are considerable similarities between the equations of current 

flow expressed in terms of current density field j in conductor and the 
equations of electrostatic interactions in dielectric expressed in terms of 
electric displacement field D. This can be seen as:

 For dielectric for conductors
 D = ε0 εr E   and j = σE
 ∇ . D = ρ  ∇ . j = 0
	 ∇ × E = 0∇ × E  = 0 …(6.6)
As stated before the electric and magnetic interactions are two different 

aspects of the same property of matter. The magnetic effects on macroscopic 
and microscopic scale are explained in terms of current flow as this effect 
finds its origin in the flow of charge. Although this assumption does not 
allow us to ascribe the source of magnetic fields to the magnetic poles 
even though it is a similar in concept of electric charge, the theory of 
magnetostatics can be developed accepting its similarity with electrostatics. 
It can be once again emphasized that a stationary charge positive or negative 
shows only electrostatic field where as a moving charge constituting current 
shows magnetic field.

6.2.2 Magnetic Effects

 Let a vector field B, called magnetic induction associated with the flow of a 

charge dq with velocity v, dB is given by:  dB = 3
dqk
r

 (v × r). That is the reason 
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for the deflection of magnetic needle when placed near the current carrying 
wire. The direction of this resultant magnetic field is perpendicular over the 
plane containing v giving the direction of current and the distance vector r 
of the point of observation from the current due to the flow of elementary 
charge dq.

�

v
r

dq

dB

 Fig. 6.1 Magnetic induction due to charge flow

This magnetic field B is an inverse square dependence on position of 

observation. The constant of proportionality k is equal to µ
π
0

4
 when all the 

parameters are measured in SI units and µ0 is the permeability of free space.

 dB = 
µ
π
0

34
dq
r

(v × r) … (6.7)

Let us now express this magnetic induction in terms of steady current 
I flowing in an infinitesimal element of conductor of length dl. 

 Now as dq = ρ	dV = ρ	Sdl where ρ is the volume charge density and S 
is the cross section of the element of conductor of length dl the equn. (6.7) 
can be written as 

 dB = 
ρµ

π
0

34
Sdl
r

(v × r) = 
µ
π
0

34
S dl
r

(ρv × r) = 
µ
π
0

34
S dl
r

(j × r) 

Where as introduced before j = ρv and now as j, the current density and 
dl, the element of length of the conductor are parallel,  so we can replace jdl 
by jdl and so the above expression can be written as:

 dB = 
µ
π
0

34
Sj
r  (dl × r) = 

µ
π
0

34
I

r
(dl × r) …(6.8)

This is known as Biot-Savart Law. In a more convenient form, the Biot-
Savart law (equn. 6.8) can be written in scalar form as:

                               
θµ

=
π
0

2
sin

4
dlIdB

r
  … (6.9 )
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This expression of Biot-Savart Law can be demonstrated by the following 
Fig. 6.2.

d

I

l

r

dB

�

Fig. 6.2 Biot-Savart law and the direction of magnetic field due to the current element

Now, recalling equn.(6.7) and modifying it for a total charge q moving 
with velocity v the total magnetic field B at a point P which is at a distance 
r from the charge at an instant, we get  

 B = µ
π
0

24
q
r

(v × n) …(6.10 a)

where n is an unit vector which defines the direction of r.
Now, the electric field E due to this charge at that instant and at the 

point r is given by 

 E = 
πε 2

04
q

r
 n …(6.10 b)

Now, comparing equns. (6.10 a ) and (6.10b) we can establish a relation 
between B and E as

 B = µ0ε0v × E Now, writing =
µ ε0 0

1c , 
we get

 B = 2
1
c

v × E. …( 6.10 c)

This equation establishes the relation between the electric field and 
magnetic field of induction produced by a moving charge. The relation 
between the directions of B and E is shown in the following diagram. (6.3).

P

B

E

v
q

n

�

 Fig. 6.3 The magnetic field produced due to a moving charge
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6.2.3 Magnetic Induction in Simple Common Circuits

	(A)	 Due	to	long	straight	wire	of	very	long	length	(infinite)
  Let us take a wire of an infinite length carrying a constant current I 

through it. We are to find the magnetic induction field at a point P 
which is at a normal distance of R.

I

R

dl

�

d�

�

P

rd�

r
B

Fig. 6.4 The long straight wire carrying current 

 Now, consider a current element dl at a distance of r from the point 
of observation and ± is the angle that this end that point P makes. Then 

=
αsin

Rr  and the element of wire of length dl = 
α α

=
α α2sin sin

r d R d

Now, recalling the equn. (6.9) we get as θ = α here

 

α α αµ µ
= = α α

π πα

2
0 0

2 2
sin sin sin

4 4sin
I R d IdB d

RR
.
 

Now, if we consider another such element at the other end and if the 
element of length dl makes angle b and as these two elements make the 
magnetic induction field in the same direction (perpendicular to the plane 
containing both dl and r) then we can add these two contributions and get

                                   

µ
= α α + β β

π
0 (sin sin )

4
IdB d d
R

 and then integrating we get

                                     

µ
= α + β

π
0 (cos cos )

4
IB
R

Now, for a very long wire both α and β become zero and then the total 
magnetic induction field B at point P at a normal distance of R from the 
straight wire of infinite length carrying current I in scalar form as:

 B = 
µ
π
0

2
I
R

.  …(6.11) 

The direction of the field at every of such points P on the plane of the 
figure is perpendicular to the plane. The pictorial presentation of this field 
is given as below:
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Fig. 6.5 The direction of the circular field due to current I through the straight conductor

 (B) Due to circular wire carrying constant current
  In the following Fig. 6.5. a current I passes through a circular loop of 

radius a and it is necessary to determine the magnetic induction field 
B at a point P which is at a distance of R from the centre of the loop 
and lies on the axis. Now, recalling the Biot-Savart Law from equns.
(6.8) and (6.9) the induction field dB due to an element of wire dl

 dB = 
µ
π
0

34
I

r
(dl × r)

As direction of B is perpendicular to both current element dl and distance 
vector r, it is expressed as cross product between dl and r and so the other 

form of the law is: µ θ
=

π
0

2
sin

4
I dldB

r
. Now as per the figure below θ being 90°.

The expression reduces to 

 dB = 
µ
π

0
24

I dl
r

.     …(6.12)

Now, as the direction of dB is perpendicular to both dl and r i.e. normal 
on the plane ABCD, the dB can be resolved in to dB perpendicular and 
parallel as noted in the Fig. 6.6.

o
R

r

D

P
dB

II

C�

dB� dBa

�A

dI

B

Fig. 6.6 Circular loop of wire and the magnetic field of induction along the axis

The perpendicular components of magnetic induction field dB for the 
wire element dl taken at the two diametrically opposite direction cancel 
each other and the only component that will remain is dBll for all positions 
of the wire element along the circumference of the loop.
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Therefore, dBll = dB cos α = 
µ

=
π
0

34
Iaa dB dl

r r

 Then = ∫ llB dB  = 
µµ

=
π ∫

22
00

3 34 2
IaIa dl

r r

 But as: r = (a2 + R2)1/2 and using this we get the expression for the 
magnetic induction field for the complete loop

 B = µ
+

2
0

2 2 3/22( )
I a

a R
.  …(6.13) 

The magnetic flux round a circular loop carrying current is shown below. 
The view from the right of the loop appears that this end where from the flow 
of current is anticlockwise acts like North pole as the magnetic flux emerge 
from this side and the opposite side acts like South pole. Therefore, this loop 
develops a magnetic moment and acts like a magnetic dipole provided the 
loop is very small. The magnetic moment M = I(π a2) and replacing this in 
equn. (6.12) we get

 B = 
µ

π +
0

2 2 3/22 ( )
M

a R
.

B

I

Fig. 6.7 The magnetic induction lines of forces emerging through the loop of wire

 (C) Due to solenoidal current 
  Now, if we have a large number of such loops close to each other and 

if the current flows through each of such loops in the same direction 
then the induction field produced either at the centre of the solenoid or 
at its ends will be dependent on the total number of such loops or turns 
(the insulated wire is wound on a cylinder in the same mode and the 
current passes through each loop of the cylinder in the same direction).

  Recalling equn. (6.12) and writing in modified form

   dB = 
 µ
 

+  

2
0

2 2 3/22( )
I a N dR

La R   …(6.14)

where N is the total number of such turns and L is the length of the 
solenoid.
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X X X X X X X X X X

L

dR

P
�

1
�

2
�

a

R

Current moving up

X Current moving down

Fig. 6.8 Solenoid of length L having total turns N . dR is the element of length of the solenoid α’s 
are the angles subtended as shown

Now, in the above Fig. 3.11, take a point P outside the solenoid but on 
the axis and at a distance R. Take an element of length dR which subtends 
an angle ± at P and let the front side and back side of the solenoid of length 
L subtend respectively the angles α1 and α2. Now we can find that 

R = α cot α  and so dR = – α cosec2 α d α and also α2 + R2 = a2 cosec2α.
Substituting this result in the equn. (6.9) above we get

 dB = ( )µ
− α α0 sin

2
I N d
L

.

The resultant field can be found by integrating from one appropriate 
limit to other so that it can cover the solenoid.

Therefore, the resultant field is

 B = 
α

α

µ
− α α = α = α∫ 1

2 1
1

sin (cos cos )
2 2
o oIN m INd

L L
.

Now, putting the appropriate values of α’s and assuming the solenoid 
is very long, then at the centre of the solenoid we can assume α1 = p and 

α2 = 0 then the field at the center of the solenoid B = 
µoIN

L        …(6.15 a)

Similarly, at one end of the solenoid (long) we can assume

π
α = α =1 1and 0

2
 or for the other end α1 = π and π

α =2 2
 and for either 

case we can write B = 
µ 0

2
IN

L
                                         …(6.15 b)
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6.2.4 Ampere’s Law 

 Recalling Biot-Savart Law of equn. (6.8) as: B µ
π ∫0

3
1

4
I

r
 (dl × r) Now, writing 

this form in terms of line integral in the form of volume integral and 

introducing Idl = jS dl = j dV we get B 
µ
π ∫
0

3
1

4 V r
 (j × r)dV. 

Now taking the divergence of the magnetic induction B

0 0
3 3 2
1 1 1( ) ( )

4 4V V

j r dV r j j r dV
r r r

µ µ   ∇ ⋅ = ∇ × = ⋅ ∆ × − ⋅ ∆ ×  π π   ∫ ∫B

 Now, ∇ × j = 0 and we have

( )0
3 3
1 1 .

4 V

j r r dV
r r

µ     ∇ ⋅ = ⋅ ×∇ − ∇ ×    µ     ∫B

Now,  ∇ = − 
 3 5

1 1
r r

r and so the cross product in the first term vanishes 

to zero and also ∇ × r = 0 and putting these results we get 
 ∇ . B = 0.   …(6.15)
This result of the divergence of the magnetic induction indicates that 

the strength of source field at a point is zero and therefore, the magnetic 
induction B which is a solenoidal field has no source as the field lines have 
no beginning or end.

 Now, using Gauss’s divergence theorem the equn. (6.15) gives ∫
S

 B . dS 

= ∫
V
∇ . BdV = 0, which shows that the flux of magnetic induction through 

any closed surface is zero and B is often referred as magnetic flux density.
 Now, the line integral of B around any closed path dL will be given after 

using equn. (6.11) and the following Fig. 6.8 as:

 
L
∫ B . dL = 

L
∫  BRdα = 

µ
π
0

2
I
R α
∫Rdα = m0I  …(6.16 a)

This result will only be added up if in place of a single wire carrying 
current I we have a large number of straight wires each carrying currents 
of different magnitude so that:

 
L
∫ B . dL = µ ∫0

S
j . dS  …(6.16 b)
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R

L

I

B

dL

d�

 Fig. 6.9 Current path for the ampere’s circulation law

This equn. (6.16) is known as Ampere’s Circuital Law. Which implies 
that the line integral of B around any closed path is equal to µ0 times the 
total current I enclosed by the closed path or crossing any surface bounded 
by the path.

As for arbitrary distribution of current given by current density j, the 
equn. (6.16) can be written as:

 ∫
L

B . dL = µ ∫0
S

j . dS  …(6.16 c)

Using Stoke’s theorem , the equn. (6.16 c) can be written as :

∫
S

(∇ . B) . dS = µ ∫0
S

j . dS which is valid irrespective of the smallness of 

the surface element and so, the Ampere’s Law can be written as:
 ∇ × B = µ0 j  …(6.16 d)
This may also be called as Ampere’s Law in differential form. It 

establishes a relation between magnetic field B at a point and the current 
density j at the same point. It is similar to the Gauss’s Law which relates 
the electric field and the charges at the same point of space. As the charge 
distribution is the source of electric field the electric current is then the 
source of magnetic field.

6.3 MAGNETIC VECTOR POTENTIAL 

 The Ampere’s Law which is stated in equn. (6. 16) shows that magnetic 
field B is conservative in the region of space which does not enclose any 
current and in the regions where it is conservative, it can be written as:  
B = – ∇φ, where φ is the magneto static scalar potential. This equation has 
exact similarity with the equn. (5.8). for the conservative electric field.

Now, recalling the equn. (6.15) which states that the divergence of B 
representing the strength of the source field at a point vanishes:
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 ∇ . B = 0
Now, from this relation indicates that a vector field A known as vector 

potential can be defined as
 B = ∇ × A. 
Recalling Biot-Savart Law equn.(6.8) as

 B = 
µ
π

0
3
1

4
I

r  (dl × r)

Where both dl and r  can be written in Cartesian coordinates as:
        dl = idl1 + jdl2 + kdl3   and  r = ix + jy + kz
then substituting dl and r

B  = 
µ
π + +

0
2 2 2 3 /2

1
4 ( )

I
x y z [(idl1 + jdl2 + kdl3) × (ix + jy + kz)]

    = 
µ

π + +
0

2 2 2 3/24 ( )
I

x y z
[kdl1 y – jdl1 z – kdl2x + idl2 z + jdl3 x – idl3y]

    = 
µ

π + +
0

2 2 2 3/24 ( )
I

x y z [i(dl2z – dl3y) + j(dl3x – dl1z) + k(dl1y – dl2x)]

Now, as B = iBx + jBy + kBz comparing the two expressions of B we get:

  Bx = 
µ

π + +
0

2 2 2 3/24 ( )
I

x y z
(dl2z – dl3 y) …(6.17)

Now, let that vector potential A be defined as:

 A = 
µ

π + +
0

2 2 2 1/24 ( )
I

x y z dl. …(6.18)

Now, taking curl of A

	 ∇ × A = 
µ

π + +
0

2 2 2 1/24 ( )
I

x y z ∇ × dl], writing

 dl = id l1 + jdl2 + kdl3

= 
( )

( )
  µ ∂ ∂ ∂

+ + × + +  ∂ ∂ ∂   π + +

0
1 31/22 2 24

I dl dl dl
y y yx y z

i j k i j k

= 
µ ∂ ∂ ∂ ∂ ∂ ∂ − − + + − ∂ ∂ ∂ ∂ ∂ ∂ π + +

0
2 3 1 3 1 22 2 2 1/24 ( )

I dl dl dl dl dl dl
x x x x x xx y z

k j k i j
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{ }    ∂ ∂ ∂ ∂∂ ∂− −    −∂ ∂ ∂ ∂µ ∂ ∂    + + π + + + + + +
 
  

3 2 2 11 3
0

2 2 2 1/2 2 2 2 1/2 2 2 2 1/24 ( ) ( ) ( )

dl dl dl dldl dly z x yI z x
x y z x y z x y z

i j k

Now, considering the x component only we get
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Now, comparing this with equn. (6.17)

We can conclude that Bx = [∇ × A]X  and therefore:
[B = ∇× A, where the vector potential A which is introduced and defined 

and is given as:

 |A| = 
µ
π ∫

0

4
I dl

r
. … (6.19)

6.3.1 Magnetic Field and Magnetizaton

 So long what we have discussed is termed as Magnetic Induction which 
is the fact that a moving charge not only show the electric field but also a 
magnetic field associated with this moving charge. This resultant magnetic 
field will cease to exist as soon as the charge concerned ceases to move. 
We have seen in earlier sections that a current carrying wire produces a 
magnetic field around it without it self getting magnetized. If we pass a 
current through a copper wire and if this wire is dipped through some 
iron powders, the powders do not cling to the wire but instead they are 
arranged in circular path surrounding the wire. This shows a dependence 
of induced magnetic field with existing current and also vice versa. We can 
however draw this conclusion as the electrons in the atom also constitute 
a closed current. Therefore this small current electron orbit constitutes a 
magnetic dipole. Atoms however may or may not exhibit a net magnetic 
dipole moment depending on the symmetry or on the relative orientation 
of their electronic orbits. Since most of the molecules are not spherically 
symmetric, they therefore exhibit magnetic dipole moment because of 
special orientation of the electron orbit. But the matter in bulk (exception 
ferromagnetic material) fails to exhibit a net magnetic dipole moment 
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because of the random orientation of molecules. However, the presence of 
an external magnetic field distorts the electronic motion, giving rise to a net 
magnetic ‘polarization’ or magnetization of the material.

S

L

M

M

I
m

Fig. 6.10 Magnetization surface current IM and elementary currents due to electron 
orbits in a magnetized cylinder

Now, if this cylindrical matter is put in a solenoidal current I in the same 
direction as IM and if the solenoid has n turns per unit length, this magnetized 
cylinder is then equivalent to a cylinder carrying a current per unit length 
as nI + M. This effective solenoidal current gives rise to a resultant magnetic 
field B parallel to the axis of the cylinder. Then

 B = m0 (nI  + M)     or, − =
µ0

1 B M nI.  …( 6.20)

This expression relates the free currents per unit length, nI on the 
surface of the cylinder in terms of the magnetic field B in the medium and 
the magnetization M of the medium. 

Now, as both B and M are vectors in the same direction we can introduce 
a new vector field called magnetizing field H defined as 

 H = 
µ0

1
B – M …(6.21)

If we consider the cylinder of length L then we can write:
 HL = LnI = Ifree

or, ∫
L

H . dl = Ifree …(6.22)

Therefore, it may be stated that “The circulation of the magnetizing 
field H along a closed line is equal to the total free current Ifree through the 
path”. From equn. (6.21), we get

 B = µ0(H + M)
Now, introducing a physical parameter χm as Magnetic susceptibility 

of the material by writing: M =	χm H we get:
 B =	µ0 ( 0 + χmH) = µ0(1 +	χm) H =	µH …(6.23)

where,  µ B
H

 =	µ0(1 +	χm) is known as “permeability” of the medium. 

The relative permeability is defined as
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 µµ = µ 0r  = (1 + χm). The equn. (6.23) when used in (6.22)

We get

 µ∫
1

L
 B . dl = Ifree and ∫

L
B . dl =	µ Ifree

The above result is similar to Ampere’s Law given in equn. (6.16) only 
with the replacement of total current with free current and µ0 by µ.

6.4 MAGNETIC FORCE ON A MOVING CHARGE 

 When an electric charge moves in a magnetic field it experiences a force 
which is never observed on a stationary charge and this force is different 
from that of gravitational or the electric interactions. The force F exerted by 
a magnetic field is proportional to the charge q, intensity of magnetic field 
B and the velocity of the moving charge v within the magnetic field. This 
is expressed in mathematical form as: F = q v × B and when the charged 
particle moves in field where there are both magnetic field and electric field, 
the force F is expressed as:

  F = q(E + v × B) …(6.24)
This expression is known as Lorentz Force.

Plane containig
B and V

F (for negative charge)

F (for positive charge)

B

V

�

Fig. 6.11 Vector relation between magnetic force, magnetic intensity and velocity

The scalar form of this magnetic force (Lorentz force) in the absence of 
electric field is given by: F = qvB sin θ as this force is always perpendicular 
to the direction of v as long as the charge remains within the magnetic 
field, it acts as a centripetal force and the path of the moving charge will be 
circular for θ = 90° and then F = qvB, again as this force F is perpendicular 
to both B and v therefore it is a “No work force” and it cannot increase the 
kinetic energy of the charge particle.

6.4.1 Motion of a Moving Charge in a Magnetic Field

As stated before this magnetic force F will be perpendicular and for angle 
between v and B as 90° this will have effect on the direction of the moving 
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charge and equating with acceleration v2/r, we get : =
2m v qv

r
B  and the 

radius of the resulting circular path of the charge particle is given by:

 r = 
mv
qB

   … (6.25)

or,  ω	= 
q
m

B   

Now, as the acceleration of a uniform circular motion a = ω × v, therefore 
writing the equation of motion as F = ma mω × v = qv × B and now if we 
reverse the vector product as B × v.

 ω × v = –  
 
 

q
m

B × v 

Therefore, ω = –  
 
 

q
m

B. …(6.26)

This expression gives the magnitude and the direction of ω. The negative 
sign indicates that ω is opposite in direction of B for a positive charge and for 
a negative charge the negative sign is changed to positive and then ω is in the 
same direction as that of B. This ω is known as cyclotron frequency as this 
expression is used in discussing the motion of charge particle in cyclotron.

This may be concluded that when a charged particle moves in a magnetic 
field of uniform intensity in a direction same as the magnetic field of induction 
then there will be no force acting on the charged particle i.e. θ = 0 and the 
path will be circular if the direction of motion is perpendicular to the 
magnetic field. Now, if the angle between v and B i.e. θ is in between 0° and 
90° then v can be resolved parallel to B and perpendicular to v, which are 
respectively as vII  and v⊥. The path of moving charge will then be helical 
of constant pitch as long as the charged particle remains within magnetic 
field of constant intensity. This movement of charged particle in a magnetic 
field is demonstrated in the following Fig. 6.12.
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 Fig. 6.12 The helical path of a moving positive charge +q in an uniform magnetic field of intensity B
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This may be interesting to note that if the magnetic field instead of 
remaining constant increases continuously then the helical path’s pitch will 
decrease and the cyclotron frequency (6.26) will increase. This may also be 
mentioned here that the earth being a huge magnet, the lines of force of its 
magnetic field are perpendicular (normal) on the poles and horizontal at 
the equator. As a result, the fast charged particles from outer space (Cosmic 
rays) while entering earth’s field near equatorial regions will execute helical 
path of decreasing pitch as the radius of the helix is to decrease with the 
increase of earth’s magnetic field equn. 6.25 and finally suffer a reflection 
back (magnetic reflection) and can not reach the earth surface where as the 
particle approaching earth in the polar region can enter earth’s atmosphere 
and create the most interesting polar incidence of “Aurora” in the night’s sky.

6.4.2 Hall Effect 

 One of the most important applications of Lorentz force is the “Hall Effect”. 
When a field is placed at the two ends of a semiconductor crystal, current 
is constituted in the direction of the field due to majority carrier which 
are electrons in n-type semiconductors and positive charge “holes” in the 
p-type semiconductors. The details of this will however be discussed later 
in the second part of the book. Now, if this semiconductor crystal is then 
subjected to a magnetic field in a direction perpendicular to the direction of 
majority current, a potential difference results in a direction transverse to 
the direction of original potential difference. This important phenomenon is 
known as Hall Effect. On the basis of the direction of the transverse potential 
difference, Hall Effect is classified in to two categories as Positive Hall effect 
and Negative Hall effect. This has immense importance in semiconductor 
physics and is used in identifying n–type and p-type semiconductors. In 
the following Fig. 6.13 the Hall Effect is explained.
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In (a) current I is due to the movement of conducting electrons in the 
direction opposite to I(v–) and are subjected to Lorentz force F = –e(v– × B). 
Though (v– × B) is directed to –X direction but when multiplied with the 
negative sign due to negative charge of electrons, the F is directed in the 
+X direction resulting in to accumulation of negative charge on the right 
side and the Hall field E. In (b), the positive Hall effect the current is due to 
the movement of positively charged “holes” and due to Lorentz force holes 
have increased concentration on the right side which results in to field E 
shown which is opposite to that of (a).

 Now, this Hall Effect and Hall current differentiate a n-type of semi- 
conductor from p-type considering the direction of Hall voltage and also 
the carrier mobility considering the Hall current.

6.5 FARADAY’S LAW

 We have seen that a moving charge induces a magnetic field called magnetic 
field of induction. As all natural phenomena have its mirror counterpart that 
is if current which is essentially a change in electric field produces a magnetic 
field, a changing magnetic field through a closed loop produces a current in 
the loop. The strength of the current is proportional to the rate of change of the 
magnetic flux through the closed loop and this effect i.e. the resulting current 
in the loop will always oppose the cause of it i.e. the changing magnetic flux.

dr

S

S

B dS� � ��

Fig. 6.14 Magnetic flux Φ through a closed loop of wire and of area S and faraday’s law

Based on this observation the Faraday’s Law states that “The resulting 
e.m.f. around a closed path is minus the time rate of change of the magnetic 
flux over an arbitrary surface bounded by the path”.

 Now, if Φ represents the total magnetic flux through the arbitrary area 
S of the closed loop and B being the magnetic field then:

	 Φ = 
S

⋅∫ B dS   …(6.27)

Now, as B = ∇ × A where A is the magnetic vector potential then using 
Stoke’s law equn. (6.27) can be written as:
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 Φ = ∫
S

(∇ × A) . dS = ∫
closed path

.A dl

Now, the electro motive force (e.m.f.) is given by 

 e.m.f = ∫
closed path

. dE r  …(6.28)

Equating the equns. (6.27) and (6.28), we get the mathematical statement 
of Faraday’s Law:

 
closed path

d⋅∫ E r  = − ∫
S

d
dt

B . dS  …(6.29)

6.5.1 Energy in Magnetic Field

 The energy stored in a circuit having “self induction” L is equal to the work 
done against the back e. m. f. in order to maintain the current I is given as: 
dU = –(e.m.f.) Idt = LId I which turns out as follows for the current changing 
from zero to I as 

 U = 21
2

L I ,    Now as     F = LI and so,

 LI = 
closed path

.A d∫ l

Therefore, U = ∫
closed path

1
2

I A . dl = ∫
1
2

I . Adl using Idl = Idl

For any system of current we get

 U = ∫
1
2 V

j . A dV.

In the presence of magnetic materials, the free current density j is given 
by Ampere’s Law as: ∇ × H = j and so,

1 1 .( ) (  )  ( ) .
2 2H

V V V

U AdV A dV A dV= ∇ × = ∇× − ∇ ×∫ ∫ ∫H H H

The second term in the right hand side vanishes and so,
1 ( )
2H

V

U H dV= ∇ ×∫ A  and as B = ∇ × A, the energy becomes:

 UH = 
1
2 V
∫H . B.

Therefore, the energy density associated with magnetic field is given by

 UH = 
1
2

 H . B …(6.30)
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REVIEW QUESTIONS

 1. Considering a hydrogen atom consisting of a proton at the centre of 
the atom and an electron circulating round it in circular orbit and the 

following relations: radius of the orbit a  2
h

m e
, the speed of the electron 

2ev
h

=  where e the charge, m the mass and 
2
hh =
π

. Using the above 

expressions find the current the circulating charge is equivalent to and 
the strength of the magnetic field at proton arising out of the motion 
of the electron.

 2. The vector potential A is related to the magnetic field B as B is related 
to current density J so that curl A = B and curl B = (4p/c) J. What 
statement about A corresponds to the statement that the line integral 
of B around any close path equals 4p/c times the current enclosed 
by the path? Using the relations as mentioned above, find the vector 
potential associated with the field of an infinitely long solenoid.

 3. In electric circuits wires carrying current in opposite directions are 
often twisted together. What is the advantage for doing this?

 4. Since parallel current elements attract each other why not current 
flowing through a long straight conductor concentrates at the central 
axis of the cylinder instead of getting distributed evenly through the 
cross section?

 5. If two electrons in a cathode ray tube move parallel to each other with 
same speed as v and the distance between them is r, what is the force 
that acts on each of them, due to the presence of the other?
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CHAPTER

7

Electrodynamics

7.1 INTRODUCTION TO MAXWELL’S EQUATIONS

 The theory of Electrodynamics is unique and novel in the sense that this 
elegant theory and its superstructures are based on some physical laws and 
some relations observed and verified experimentally. These physical laws 
and the relations which form the foundation of electrodynamics are known 
as – Maxwell’s equations. These equations are derived from the domains 
of electrostatics and magnetostatics i.e. Coulomb’s law, Gauss’s Law and 
magnetic induction field and establishes the elegant fact that they are inter-
related phenomena.

 An important kind of interaction among fundamental particles 
composing matter is the one called electromagnetic interaction. It is related 
with the characteristic property of these fundamental particles as electric 
charge. In order to describe these interactions the electromagnetic fields 
noted by two vectors representing electric field E and magnetic field B are 
involved and this involvement is expressed in the force applied on a moving 
charge q introduced before as Lorentz force and given as

 F = q(E + v × B)
The electric E and magnetic B fields are determined by the position 

of the charge and its motion. The separation of the electric and magnetic 
components depends on the relative motion of the charge and the observer.

7.2 MAXWELL’S EQUATIONS

 Let us recall the Gauss’s law in electrostatics in differential form from 
Chapter 5 in the section 5.2.1 as

 div E = 
0

ρ
ε    or,  ∇ . E = 

0

ρ
ε   … (7.1) 

This equation is noted as “First Maxwell’s Equation”.
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 As the concept of monopole is a remote concept, therefore unlike 
electrostatic field we must adopt the view that every magnetic field line 
that enters a closed surface must also exit the surface and mathematically 
this fact has already been introduced in Chapter 6, Ampere’s law  
(equn. 6.15) as 

  div B = ∇ . B = 0.     …(7.2)
This equation is noted as “Second Maxwell’s Equation”.
 Now, if we recall the Faraday’s Law given in Chapter 6 (equn. 6.29) 

which states 
closed path

.
S

ddr dS
dct

⋅ = − ⋅∫ ∫

E B  Now dividing both sides by 

surface area S and using the limit S → 0 we get:

 curl E = 
lim

0S → { }1 dr
S

⋅∫ E

  B = 
lim

0S →
1

S

ds
S

  ⋅ 
  

∫B  and therefore we can write:

  curl E = ∇ × E = ct
∂

−
∂

B  …(7.3)

This is noted as “Third Maxwell’s Equation”.
 Now, from Ampere’s Law, in Chapter 6 the magnetic induction field B 

is related to the current density j (equn. 6.16 ) as:

 
L
∫ B . dL = 0

S

µ ∫  j . dS and also,

 ∇ × B = µ0 j.  …(7.4)
Now, this Ampere’s Law does not contain any time dependent flux of 

the electric field as it has been derived under static condition and therefore, 
this Ampere’s Law needs revising when it is applied to time dependent 
fields.

Now, for a closed surface we know that 

 I = 
S
∫ j . dS and as  I = 

dq
dt

− , therefore, 
dq
dt

−  = 
S
∫ j . d S

From Gauss’s Law , the total charge within a closed surface is expressed 
in terms of electric field as:

0
S

q = ε ∫E . dS and so, 0
S

dq d
dt dt

= ε ∫ E . dS and substituting this in above 

equation we get 
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S
∫ j . dS + 0

S

d
dt

ε ∫ E . dS = 0. This is the principle of conservation 

of charge and incorporates the Gauss’s Law. For static field however,  

S
∫ j . dS = 0 and for time dependent field the Ampere’s Law expressed 

in Chapter 6 and recalled here in equn. (7.4) is to be written as: 
L
∫B . dL 

= µ0 
S
∫ j . dS + µ0 0

S

d
dt

ε ∫E . dS this can be written in the vector form as

 curl B = ∇ × B = µ0
 + µ  0

dj
dt

E   …(7.5)

 This is “Fourth Maxwell’s Equation”.
Now, these Maxwell’s equations for Electromagnetic field can be made 

more explicit in the following Table 7.1.

Table 7.1  Maxwell’s equations for electromagnetic field

Law Integral form Differential form

1. Gauss’s Law for
Electric Field ��

S

E .dS =
0

q

�
div E =

0

�
�

2. Gauss’s Law for
Magnetic Field �� B . dS =  0 div B =  0

3. Faraday’s Law

L
�� E . dl =

S

d

dct
� �� B . dS curl E  =

ct

��
�

B

4. Ampere-Maxwell
Law

L
�� B . dl = 0 0 0

d
I

dt
� � � � � E. dS curl B = 0� j + 00 t

�� �
�

E

7.3 GENERAL PROPERTIES AND APPLICATIONS OF 
MAXWELL’S EQUATIONS

The synthesis of electromagnetic interactions as expressed by Maxwell’s 
equations is one of the greatest achievements in Physics. They are 
the equations which mathematically enable the understanding of the 
electromagnetic interactions. 

 Now to further establish the interdependence of electric and magnetic 
fields, let us recall the following equations of Faraday’s law, discussed in 
Chapter 6 and also given above as 
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   F = 
S
∫ B . dS and  

closed path
∫ E . dr = 

S

d
dct

− ∫ B . dS 

Where as stated F is the total magnetic flux and B magnetic induction 
over the closed surface S Since Faraday’s law deals empirically with the 
electric field induced changing magnetic flux, taking into mind that the time 
derivative must include two terms one intrinsic time variance term and a 
convective term due to relative motion of the observer.

Therefore,                                      d
dt t

∂
= + ⋅ ∇

∂
v

In the laboratory frame, the Faraday’s equations, we can write

            
closed path

1 1 ( )
S

v dS d
c t c t

∂ F ∂
− = − + ⋅ ∇ ⋅ = ⋅

∂ ∂ ∫ ∫B n E r   …(7.6)

In a frame of reference moving with respect to the laboratory frame, the 
Faraday’s law can be correctly written as

1 ( )
r S

d ndS
c t

∂
′ ⋅ ′ = − + ⋅ ∇ ⋅

∂∫ ∫

E r v B .

This velocity of the frame of reference with respect to observer is not 
very high so that relativistic transformation is unnecessary here and we can 
assume the spatial derivative of B is zero. 

 We know from vector relation: (v . ∇) B = ∇ × (B × ∇) + v(∇ . B) – B 
(∇ . v) + (B . ∇) . v and writing ∇ . B = 0, we get: (v . ∇) B = ∇ × (B × v) and 
therefore,

 ′ ⋅ ′∫
r

dE r  =  
1 1

S r

dS d
c t c

∂
− ⋅ + × ⋅

∂∫ ∫ 

vB n B r   …(7.7)

Combining equns. (7.6) and (7.7) we can conclude:
   E′ = E + (v × B)/c
This interprets the velocity dependent term as the transformed change 

in E.
The Maxwell’s equations state that the time derivatives of the fields 

are sources of their counterpart that is whenever one of either E or B 
changes with time the counterpart field results, the theoretical basis of 
electromagnetic induction. One field transforms into other due to their 
relative motion. It has been established from experimental evidence that 
when a conductor moves in a magnetic field, an electromotive force is 
induced in the conductor and induced electric current flows through it. 
The direction of this current is determined by Fleming’s right hand rule. 
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Fig. 7.1 Electromagnetic induction of current in a varying magnetic field

The following figure demonstrates such an experimental evidence. Due 
to motion of the conductor the magnetic flux linked with it changes and as 
a result an electric field is induced. Conversely if electric field is changed 
within a conductor, a magnetic field is induced within another conductor 
placed near it. Therefore it shows an interrelation between these two fields 
established by Maxwell’s equations.

 We also should know that the Maxwell’s equations as they are 
derived have some limitations. They though explain satisfactorily the 
electromagnetic interactions between large aggregate of charges such as 
beams of ionized atoms or molecules, but they fail to explain the interactions 
between fundamental particles and their interactions are to be treated in 
different way known as quantum electrodynamics. 
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REVIEW QUESTIONS

 1. In a region of space the magnetic induction field is changing at the 

rate 
t

∂
∂

B, show that the electric field induced in space is given by

  E = 
1

4π ∫ t
 ∂

× ∂ 
r B /r3 dv.

 2. A particle of charge q and mass m moves in a circular orbit r under 
the influence of central attractive force varying as inverse square of 
the distance. An external magnetic field B(t) is applied perpendicular 
to the orbit such that

  B(t) = 0               for        t < 0
   = B0 (t/T)   for        0 < t < T
   = B0             for        t > T

  Calculate the motion and angular velocity.
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8

Elastic Waves

8.1 INTRODUCTION

 When a bell is struck, it starts ringing and then it can be heard at a distance. 
At this instance we tell that, on being struck the surface of the bell is set to 
vibrate which is a forward and backward movement of the surface and as 
a result of the surface compresses and rarefies the air with which it is in 
contact. This compression and rarefaction of the air is called sound and it 
moves in all possible direction. Moreover, this alternate compression and 
rarefaction i.e. movement of the constituent of the “medium” is generally 
periodic at least in an ideal condition and is known as wave. The same is 
true when a pebble is thrown in to the still water surface of a pond where 
we observe the crest and trough move on the surface of water. These air 
and water and other solid material mediums having mass and elastic 
property act here as elastic medium and the wave created in such mediums 
are termed as elastic wave. Depending on the elastic parameter of such 
mediums solid, liquid or gas(air), the mediums set in to convenient mode 
of vibration i.e. either the vibration of the sections of the mediums are 
transverse or longitudinal with respect to the direction of the propagation 
of the wave concerned. When a solid rode is struck on its cross section in 
the direction of its length a longitudinal wave propagates along its length, 
when a string is plucked, the transverse wave is created along the string, 
when the still water surface of the pond is disturbed the surface of water is 
set to vibrate in the transverse direction and the air or gases are disturbed 
so that a longitudinal wave propagates. All these natures of the waves 
depend on the elastic parameter which becomes responsible to counter the 
distortions created in the medium.

So, several types of waves are possible and the difference of one 
from other depends on the nature of motion of the particles. For a simple 
sinusoidal wave, when the displacement of all the particles at a time is 
considered it gives space-displacement curve and when the displacement of 
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any particular particle with time is considered it shows time displacement 
curve. For sinusoidal wave both of these two curves are similar and are 
sine wave.

8.1.1 Wave Equation and Mathematical Description of 
         its Propagation 

 Let us consider a function ξ given by ξ = f (x) where f determines the manner 
in which ξ depends on x. Now, if the nature of dependence with x remains 
same and if ξ is given as: ξ = f (x – a) then to maintain the left side same x 
is actually to be x + a. In the following (Fig. 8.1) the curve (1) represents ξ 
= f(x) and the curve (2) then will represent ξ = f (x – a) after a translation 
of x by an amount a and this can be said that the function ξ has travelled 
a distance a along x so that it can represent now the curve (2) Similarly, if 
ξ = f (x + a) then x is changed to x – a, to represent the curve (3) and the 
function then has to travel in the opposite (left) side by a distance a.

Now, this travel of the curve ξ = f(x) towards right or left can be better 
explained if we consider a = vt, a the travel length or distance, v the velocity 
of the travel and t is the time. Then, the function ξ can be written as  

  ξ(x, t) = f (x ± vt) …(8.1)
and now we can conclude that the above expression equn. (8.1) is 

adequate to explain the situation of travel or propagation without distortion 
of the function in both positive and negative direction. This is what is called 
“Wave Motion”. The quantity ξ (x, t) then may represent widely different 
physical quantities like deformation in solid, pressure in a gas and electric 
and magnetic field etc.

 

�

Xaa

1 23

Undistorted movement of a function �

Fig. 8.1 Undistorted propagation of a wave

Now, if f is defined as a sinusoidal relation then the equn. (8.1) can be 
written as:

 0( , ) sin ( )x t k x vtξ = ξ −                                      …(8.2)
The quantity k in the above equation has a special meaning. It does not 

alter the function ξ(x, t) when x is changed to x + 2p/ k as
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[ ]0 0

2 2( , ) sin ( ) sin ( ) 2x t k x vt k x vt
k k
π π

ξ + = ξ + − = ξ − + π

                                    0 sin ( ) ( , )k x vt x t= ξ − = ξ        …(8.3)

Then 2
k
π

λ =  where l is the “space period” i.e. the distance after which 

the curve repeats itself and is known as “Wave-Length”. The following 
Fig. 8.4 shows a sine wave.
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Fig. 8.2 Harmonic wave showing wavelength and amplitude

When λ is introduced as wavelength, k = 2p/λ represents the number of 
wavelengths in the distance 2p and is called “Wave number”. Now recalling 
equn. (8.3) we get

  0 0 0
2( , ) sin ( ) sin ( ) sin( )x t k x vt x vt kx tπ

ξ = ξ − = ξ − = ξ −ω
λ

  …(8.4)

where 2 vkv π
ω = =

λ
 and so ω gives the angular frequency of the wave.

Now, as velocity of the propagation of wave v = λν, where n is the 
frequency. Introducing the period of oscillation T as T = 2π/ω, then from 
equn. (8.4)

 0 sin 2 x t
T

 ξ = ξ π − λ 
                                      …(8.5 a) 

0 sin 2 x t
T

 ξ = ξ π + λ 
                                    … (8.5 b)

While equn. (8.5 a) represents a harmonic sinusoidal wave moving in 
the +x direction, equn. (8.5 b) represents that moving in –x direction. 

Now, recalling again equn. (8.4) as 0 sin ( )k x vtξ = ξ −  and taking partial 
derivatives with respect to space and time we get
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2
2

0 02

2
2 2

0 02

cos ( ), sin ( ) ;

cos ( ) , sin ( )

k k x vt k k x vt
x x

kv k x vt k v k x vt
t t

∂ξ ∂ ξ
= ξ − = − ξ −

∂ ∂
∂ξ ∂ ξ

= − ξ − = − ξ −
∂ ∂

   …(8.6)

Therefore, from the above equation, we can write the differential 
equation of the motion of the harmonic wave as:

   
2 2

2
2 2v

t x
∂ ξ ∂ ξ

=
∂ ∂

  …(8.7)

It also follows that the equn. (8.1) for a traveling wave can be written in 
an alternative form as: ( , ) ( / )x t F t x vξ = ± , where as before (equn. 8.1), the 
positive sign corresponds to the propagation in –x direction and negative 
sign in the +x direction and so for a harmonic wave we may write instead 
of equns. (8.4) and (8.5),

       0 0( , ) sin ( / ) sin( )x t t x v t kxξ = ξ ω ± = ξ ω ±   … (8.8)
Therefore, while describing wave any of these equations i.e. equns.

(8.4) or (8.8) and also those in cosine form like: 0( , ) cos ( / )x t t x vξ = ξ ω ±  
0 cos( )t kx= ξ ω ±  can be used.

8.2 ELASTIC WAVE IN DIFFERENT MEDIA

 The elastic waves in different media solid, liquid or gases are dependent 
on the material elastic constants, density or mass etc., and so these waves 
are called elastic waves. 

We will discuss the propagation of such waves in solid, surface wave 
on liquid and the waves through a gas.

8.2.1 Elastic Wave in Solid Rod

 When we hit one end of a rod say by a hammer the disturbance elastic in 
nature propagates along the length and reaches the other end. 

Let us consider a uniform rod of cross section A subjected to a stress 
along the axis resulted by the force F. The force F is not necessarily same in 
all sections and may vary along the length of the rod. However each section 
will be subjected to two equal and opposite forces as F and F′. The force F 
is the pull by the left part of the rod on the right part and F′ is the force on 
the left part by the right part.
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Rod or Wire fixed at one end

Fig. 8.3 Propagation of elastic wave through a rod fixed (equilibrium) at one end

The normal stress σ at a section of the rod is defined as force per unit 

area and is given by: F
A

σ =  and the strain ε which is the deformation χ 

along the axis per unit length is given by ε = 
x

∂ξ
∂

.

Within the elastic limit for this longitudinal deformation we know: 
Yσ = ε  and using the above relations we get

 F = YA
x

∂ξ
∂

Therefore, 
2

2
F YA
x x

∂ ∂ ξ
=

∂ ∂
  

From this expression 
0 0

xFd dx
YA

ξ

ξ =∫ ∫  and 
F x

YA
ξ = .

Now, using the dynamical relation, the force F in an element of length 
dx is equal to mass of the element multiplied with acceleration and so where 
Á is defined as density 

   

2

2( )F dx Adx
x t

∂ ∂ ξ
= ρ

∂ ∂  

or,         

2

2
F A
x t

∂ ∂ ξ
= ρ

∂ ∂   … (8.9)
Comparing this equation with equn. (8.8) and equating the right hand 

side we get 

                                                 
2 2

2 2
Y

t x
∂ ξ ∂ ξ

=
ρ∂ ∂

 … (8.10)
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Now, comparing this equation with equn. (8.7), the velocity of the elastic 
wave motion in the rod is given by 

 ν = 
Y
ρ

  … (8.11)

The force field can also be proved to be given by

 
2

2
F

t
∂
∂

 = 
2

2
Y F

x
∂

ρ ∂
.

8.2.2 Elastic Transverse Wave in a String

 When a string under tension is plucked, bowed or struck, it starts vibrating 
and an elastic wave transverse in nature and of different shapes depending 
on how the wire is set under vibration. Irrespective of the mode of setting 
the wire in vibration each section of the wire is set to vibrate perpendicular 
to the direction of wave propagation. In the following  Fig. 8.4 which shows 
the forces acting on a small section of the wire AB.

x dx
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T
x
�

T
y
�

Fig. 8.4 A section of the deformed wire of general shape AB and the forces on it

  The tension T will remain uniform along the length of the wire and 
is directed tangential to every section of it. The vertical components of 
each of this at the two ends of the section AB are respectively T sinθ and T 
sinθ′. Now, as the angles θ and θ′ are different because of the shape of the 
deformed wire, the net upward force acting on this segment is:

( )sin sinYF T= θ′ − θ and as the curvature of the wire segment is not 
large the expression can be approximated as

 ( )sin sinYF T= θ′ − θ  = ( )(tan ) tanTd T dx
x
∂

θ = θ
∂

The partial derivative is used as tan θ depends both on time and position 

x. As tan θ is the slope of the curvature of the string, therefore tan θ = 
x

∂ξ
∂

 
and the above expression can be equated to

                              
2

2YF T dx T dx
x x x

 ∂ ∂ξ ∂ ξ = =     ∂ ∂ ∂   
.
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This force must then be equated to mass of the segment multiplied with 
the acceleration and if m be the mass per unit length of the wire, then

                 ( )
2 2

2 2mdx T dx
t x

∂ ξ ∂ ξ
=

∂ ∂
   or    

2 2

2 2
T
mt x

∂ ξ ∂ ξ
=

∂ ∂
 …(8.12)

This is the wave equation for the transverse elastic wave propagating 
in the stretched wire. Comparing this equation with equn.(8.7), the velocity 
of this elastic transverse wave in the wire is given by

                               Tv
m

= . …(8.13)

8.2.3 Surface Wave in a Liquid

 Let us consider a liquid section ABCD in a liquid at rest in a large reservoir. 
The surface wave of large wave length is created on the surface (Fig. 8.5). 
Considering the liquid as incompressible, the volumes of the open section 
and shaded section are equal and so

1( ) ( )Lhdx L h h dx d= + + ξ  = 1 1( )L h dx h d h dx h d+ ξ+ + ξ

where, h is the depth of the liquid in the undisturbed region at a distance 
x, L is the breadth of the liquid section and h1 is the difference of height of 
the shaded section. 

Now, as both h1 is very small compared with h and d ξ with dx we 
can equate after canceling the last term h1 d ξ which is the product of two 

small quantities we get: 1 10 and thenh dx h d h h
x

∂ξ
+ ξ = = −

∂
. This relates 

the vertical surface displacement to the horizontal displacement of the 
incompressible liquid.

h
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Fig. 8.5 A section of liquid in a large liquid reservoir. The surface wave of large wave length 
created on the surface is shown by bold out line



 8.8 Fundamental Physics

Now, if pav is the average pressure on the shaded surface from left 
and p′av. that from right and a is the area of cross section of the section 
then force to the right from left is given as: .( )av av avp p adp− ′ − = −  and if 
ρ is the density of the liquid, then equating this force from dynamical relation

 ( )
2 2

.
.2 2or av

av
padx a dp
xt t

∂∂ ξ ∂ ξ
ρ = − ρ = −

∂∂ ∂
                  …(8.14)

and as pav. = ρ gh so, dpav. = ρg (h2 – h1) 
1hg dx

x
∂

= ρ
∂

. 

The partial derivative is taken as h the depth of the disturbed surface is 

dependent both on position x and time t. Therefore, . 1avp hg
x x

∂ ∂
= ρ

∂ ∂
 

Then comparing with equn. (8.14) we get:
2

1
2

hg
xt

∂∂ ξ
= −

∂∂
 Now, differentiating the expression 1h h

x
∂ξ

= −
∂

 we get 

2
1

2
h h
x x

∂ ∂ ξ
= −

∂ ∂
 and eliminating 1h

x
∂
∂

 from above two expressions

             
2 2

2 2gh
t t

∂ ξ ∂ ξ
=

∂ ∂
.                                      … (8.15)

Comparing this equn. (8.15) with equn. (8.7), we get the velocity of 
surface wave on liquid is given by

 v gh= .                                           …(8.16)
Now, if the assumption that has been made here i.e. the wavelength 

of the waves large is not valid and if the wavelength l is small compared 
with h then surface tension plays a role in determining the velocity. The 
expression (8.16) will be added with the effect of capillarity. The velocity 
expression which is given by

                                          
2 2tanh

2
g S hv

 λ π π
= + π ρλ λ 

.  …(8.17) 

But, when h is large as considered before compared with λ then, 
2 2tan h hh π π

→
λ λ

 and the second term can be neglected. This equn. (8.17), 

then reduces to the one derived above i.e. equn. (8.16). If on the other hand, 
λ is very small, then the second term predominates and the velocity is then 
given by 
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2 Sv π
=

ρλ
 and the wave then is called capillary wave, otherwise for 

large l the equn. (8.16) is termed as Gravity wave. 

8.2.4 Pressure Wave in Gases

 We will now consider the elastic wave in a gas which results in pressure 
variation. Unlike solid or liquid the gases are compressible and so with 
variation of pressure the density of the gas changes. Consider a gas enclosed 
in a cylindrical pipe as given in the following Fig. 8.6.
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Fig. 8.6 Compression wave in a gas column

Let p and p′ be two pressures on two sides of the left side element and as 
p is greater than p′, the element’s left side moves right through a distance of 
ξ and right side of the element through ξ′, so that thickness of the element 
changes after deformation to dx + dξ.

If the density in the un deformed state be ρ0 and that in the deformed 
state be ρ, then as the mass is conserved: ρA(dx + dξ) = ρ0 Adx, where A is 
the area of cross section of the elements

 or,           0
01 and solving

1x
x

ρ∂ξ ρ + = ρ ρ =  ∂ξ∂  + ∂

Now, as 
x

∂ξ
∂

 is small we can approximate 
1

1 1 xx

−∂ξ  ∂ξ+ = −  ∂∂ 
 and 

can write

 ρ = ( )0 1 x
∂ξρ − ∂   …(8.18)

Now as pressure p = f(ρ), we can apply Taylor’s expansion and retain 
only first two terms considering small change of density as
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 p = 0 0
0

( ) dpp
d

 
+ ρ−ρ  ρ 

The bulk modulus is defined as: 0
0

dp
d

 
κ = ρ  ρ 

 then we can write the 

above expression as

 p = 0
0

0
p

 ρ − ρ
+ κ ρ 

, using the equn. (8.18)

 p = 0p
x

∂ξ
− κ

∂   …(8.19)

As force on the left side element at a distance x is given by – Adp where 
dp = p′ – p is given by from dynamical relation

       

2 2

0 02 2( ) pA dp A dx or
xt t

∂∂ ξ ∂ ξ
− = ρ = − ρ

∂∂ ∂

Now, differentiating equn. (8.19) with respect to x and as ρ0 is constant, 
we get:

2

2
p
x x

∂ ∂ ξ
= − κ

∂ ∂
 and comparing this with above expression we get

   
2 2

2 2
0t x

∂ ξ κ ∂ ξ
=

ρ∂ ∂
.                                                  …(8.20)

Comparing with equn. (8.7) we get velocity with which disturbance due 
to pressure difference propagates:

            0
v κ

=
ρ                                                        …(8.21)

For sound wave which makes adiabatic disturbance as its velocity is 

high, it can be shown that it is given as: .pv γ= ρ

8.2.5 Sound Wave and Doppler’s Effect

The sound wave which is also an elastic wave propagates through gases by 
creating longitudinal wave i.e. alternate compressions and rarefaction. This 
is possible because a gas is a fluid having bulk modulus. The introductory 
discussion of sound wave generated by a vibrating object is however not 
discussed here. We will discuss however the change of frequency of the 
emitted and transmitted wave when there is a relative motion between the 
source and the receiver. This change of frequency of the wave is not only 
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applicable for elastic wave like sound but also for electromagnetic wave 
like light. Below is presented a brief discussion on this property.

Source moving receiver
stationary

1
S 2S 3S

Receiver

SVVelocity of source

Velcocity of wave V

Vs

Receiver

RV = 0
RV

sV = 0

Source staionary receiver
moving

Fig. 8.7 The doppler’s effect in two cases source moving and receiver moving 

Case I  Source moving but Receiver is stationary

 Let first the source is moving with velocity VS but receiver is stationary i.e. 
VR = 0 and let S1, S2, S3 …. are the subsequent positions of the source. The 
spherical waves are also continuously shifting towards the receiver. The 
distance between the spherical surfaces are the wavelength of the wave. 
If the velocity of the wave is V and when the source and receiver both are 
stationary, the frequency n is given by

   V
ν =

λ
.

But, when the source is moving, the changed frequency due to change 
of wavelength is given by

                
/ /S S S

V V V V
VT V T V V V V

ν′ = = = = ν
λ′ − ν − ν −

  …(8.22)

where T is the time period and is given by 1T =
ν

.

As VS < V, the apparent frequency ν′ > ν, the original frequency. The 
negative sign in the denominator will be changed to positive, if the source 
with velocity VS is moving away from the stationary receiver and in that 
case the ν′ < ν.

Case II Source stationary but receiver is moving

 Now, in this case if source is stationary but receiver is moving towards 
the source with velocity VR, then the receiver will be encountering the 
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waves more frequently than when it is stationary. In time t, the number 
of waves intercepted by the receiver with velocity VR will then be (Vt + 
VRt)/l and the rate of such interception is given by the apparent frequency.
Therefore,

 ( )/
/

R R R RVt V t V V V V V V
t V V

+ λ + + +
ν′ = = = = ν

λ ν
        …(8.23)

As VR¹ 0, the here in this case also the apparent frequency ν′ is greater 
than original frequency ν. Similarly if the receiver is moving away from the 
source then the positive sign in the numerator of the above equation will 
be changed to negative and then the apparent frequency decreases instead 
of increasing.

If both of the source and receiver are moving then the above two 
equations can be combined into

   
.R

S

V V
V V

±
ν′ = ν



The upper signs both in numerator and denominator represent when 
the source and receiver are both moving towards each other and lower signs 
when they move away from each other.

There is an important application of this effect in Astrophysics, if a 
distant star is moving towards earth the light received will suffer frequency 
increase and the light reaching earth will have its colour a blue shift and if 
it is receding, it will have a red shift.

8.3 WAVE ENERGY AND PROPAGATION

 So far we have discussed the elastic waves in different mediums and have 
come to the conclusion that the wave equns. (8.8) in a special case of solution 
can be written as { }0( , ) cos ( )x t t kxξ = ξ ω ± + φ  where, ω, k are already 
introduced.

Now, expanding the cosine of the above equation gives a linear 
combination of two waves in quadrature:

1 2
2( , ) cos ( ) sin ( ) where 2x t k x t k x t T
k
πυ

ξ = ξ ± υ + ξ ± υ λ = υ = π =
ω

2
1 0 2 0

1
cos and sin or tan ξ

ξ =ξ ϕ ξ = − ξ ϕ ϕ = −
ξ

.

The above equation of ξ(x, t) can be generalized in the form

 0
1

cos( ) cos( )
n

j j
j

kx t kx t
=

ξ ± ω + ϕ = ξ ± ω + ϕ∑ , the quantity ϕ is introduced 

as “Phase Factor” and is given as 
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  tan ϕ = 1

1

sin

cos

n

j j
j
n

j j
j

=

=

ξ ϕ

ξ ϕ

∑

∑
.  …(8.24)

The formation of wave theory is essentially simplified by means of 
the complex linear combination of two waves in quadrature having same 
amplitude and frequency 

( )
0 0 0( , ) cos( ) sin( ) i k x tx t kx t i kx t e ± ω +ϕξ = ξ ± ω + ϕ + ξ ± ω + ϕ = ξ .

From this mathematical relation it can be concluded that: 
“A wave may be represented in an equation in which case the real part 

of the complex function is to be taken during the operation of mathematical 
operations like addition, multiplication etc. by real or with respect to a real 
variable”.

 We have already discussed different types of waves propagating in 
different mediums and all these types of waves constitute certain kinds 
of motion of atoms or molecules of the medium. The atoms or molecules 
do not actually move but they vibrate around one mean position either 
perpendicularly or longitudinally with respect to the “movement” of the 
wave. Then the question still remains that what really propagate? As the 
matter of the medium does not propagate, it is their state of motion or 
vibration or more precisely their dynamical condition is the thing that 
propagates. As by dynamical condition of any matter we understand their 
momentum or energy, then by wave propagation essentially we mean the 
transfer of momentum or energy from one place to other of the medium. 
Now, let us consider the propagation of elastic wave longitudinal in 
character in a solid rod (Section 8.2.1) where the right side of the rod pulls 
the left side with a force F and the left side pulls the right side with a force–F 

and a particular section is displaced with a velocity, 
t

∂ξ
∂

. The power or the 

work per unit time that the left side transmits to the right side of the section 

is:

 ( )W F
t t

∂ ∂ξ
= −

∂ ∂
                                    …(8.25)

Now, if we consider a sinusoidal elastic wave of the form x = x0 sin
(ωt – kx).

Then, 0 cos( )t k x
t

∂ξ
= ωξ ω −

∂
 and we know from section 8.2.1 that 
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F YA
x

∂ξ
=

∂
 and putting the value of the derivative:

 F = 0 cos( )Y A k t k x− ξ ω −

Putting these values in equn. (8.25) we get:

 
W
t

∂
∂  = 0 cos ( )F t k x− ωξ ω − , but as

 F = 0 cos( )Y A k t k x− ξ ω −

and                               and Ykv vω = =
ρ

So,    2
0 cos ( )W YA k t kx

t
∂

= ω ξ ω −
∂

 = ( ) ( )22 2 2
0 cos ( )v A t kxv

ωρ ξ ω −

                  = 2 2 2
0[ cos ( )]v A w t k xρ ξ ω − .  …(8.26)

One important physical consequence of this equation is that as  
cos2(ωt – kx)is involved the transfer of power is always positive and as it is 
time dependent this transfer will be fluctuating and also satisfy the wave 
equation. Therefore, this equn. (8.24) may be taken as an “Energy Equation”.

Taking time average on both sides and as [cos2 (ωt – kx)]average = 1/2 so,

               
average

W
t

∂ 
 ∂ 

 = 2 2
0

1( )
2

v A ρω ξ . …(8.27)

Now, as the total energy per unit volume or energy density in the rod 
due to oscillation resulting from wave motion is given in terms of amplitude 
ξ0 and mass density ρ as 

2 2
0

1
2

E = ρ ω ξ , and substituting this in equn. (8.27) we get

average

W vAE
t

∂  = ∂ 
, Now as v is the velocity of propagation, we have 

that vE is the energy flow through the unit area per unit time which is
1 WvE I
A t

∂ = = ∂ 
, where I is the intensity of the wave. Therefore, we may 

conclude that in wave motion energy and momentum are transferred from 
one place to other along the wave.

8.4 PHASE VELOCITY AND GROUP VELOCITY

 Now, if we recall the equn. (8.7) as 
2 2

2
2 2v

t x
∂ ξ ∂ ξ

=
∂ ∂

 or, 
22 2

2 2
k

x t
∂ ξ ∂ ξ −  ω∂ ∂ 

.
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where v
k
ω

= , the ω is the number of radians of the wave that pass a given 

location per unit time and 1/k is the spatial length of the wave per radian. 

It follows that v
k
ω

=  is the speed with which the shape of the wave is 

moving i.e. the speed at which any fixed phase of the cycle is displaced. 
Consequently this is called the “Phase Velocity” of the wave, henceforth 
will be denoted by vP. In terms of cycle velocity and wave length we then 
say that  vP = λν. Here we may repeat that with this phase velocity vP the 
wave pattern moves yet not causing any movement of the material particle 
of the medium in the lateral direction. 

 Since a general wave or a wave like phenomenon needs not only 
represent the flow of any physical effects, there exists obviously no upper 
limit on the possible phase velocity of the wave. However, for a genuine 
physical wave i.e. a chain of sequentially dependent events, the phase 
velocity does not necessarily correspond to the speed at which energy 
or information is propagating. This is partly a semantic issue, because in 
order to actually convey information, a signal can not be a simple periodic 
wave and so we must consider non periodic signals leading to the concept 
of phase a little bit ambiguous. A signal implies something that begins at a 
certain time and ends at a certain later time and a wave with such a shape is 
called “pulse”. Therefore, if we measure the velocity with which a signal is 
transmitted we are essentially implying the velocity with which this pulse 
travels. A single section as pointed out by arrow is a pulse and together 
such pulses constitute a signal.  
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 Fig. 8.8 Group velocity and phase velocity in a wave pulse

In practice and common usage, though we tend to define the pulse of 
a signal with respect to the intervals between consecutive local maxima or 
minima to illustrate, consider a signal consisting of two superimposed sine 
waves with slightly different frequencies and wave lengths i.e. a signal with 
amplitude function ξ(x, t) having two superimposed sinusoidal waves of 
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same amplitude but with slightly different frequencies as ω and ω′ so that  
is very small.

0 0( , ) sin ( ) sin ( )x t k x t k x tξ = ξ − ω + ξ ′ − ω′

           = [ ]0 sin ( ) sin( )kx t k x tξ − ω + ′ − ω′

           = [ ] [ ]0
1 12 cos ( ) ( ) sin ( ) ( )
2 2

k k x t k k x tξ ′ − − ω′ − ω ′ + − ω′ + ω

Now, since ω and ω′ are small and also k and k′ are almost equal, we 
may approximate:

1 ( )
2

ω + ω′  as ω and 1 ( ) as
2

k k k+ ′  and so,

 [ ]0
1( , ) 2 cos ( ) ( ) sin( )
2

x t k k x t kx tξ = ξ ′ − − ω′ −ω −ω .  …(8.28)

The above equation represents a wave motion whose amplitude is 
modulated. The modulation is given by the factor

 
[ ]0

12 cos ( ) ( )
2

k k x tξ ′− − ω′−ω .

The modulated amplitude corresponds to a wave motion propagating 
with velocity vg, introduced as “Group Velocity”. This is also shown in the 
above figure. Now, this Group velocity is given by

g
dv

k k dk
ω′ − ω ω

= =
′ −

.                                             …(8.29)

This group velocity is the velocity with which the amplitude wave 
shown in the above figure by dotted line (envelope) propagates. We know 
that ω = kvp and so the above equation can be written as

                                    p
g p

dv
v v k

dk
= + .  …(8.30)

Now, if the phase velocity is independent of the wavelength i.e. 

0pdv
dk

= , then vg = vp.

Therefore, in non dispersive media there is no difference between phase 
velocity and group velocity but in dispersive medium the group velocity 
may be smaller or larger than the phase velocity. The maximum of the 
pulse in the above figure propagate with the group velocity vg. Therefore, 
in dispersive medium the signal velocity is the group velocity. To be more 
explicit the propagation of information or energy in a wave always occurs 
as a change in the wave. The most obvious example is changing the wave 
from being absent to being present, which propagates at the speed of the 
leading edge of a wave train. Generally, some modulation of the frequency 



 Elastic Waves 8.17

or amplitude of a wave is required in order to convey information and it is 
this modulation that represents the signal content. Hence the actual speed 
of the content in the situation described above is d

dk
ω . This is the phase 

velocity of the amplitude wave, but since each amplitude wave contains 
a group of internal waves, this speed is actually called the group velocity. 
The physical waves of a given type in a given medium generally exhibit a 
characteristic group velocity as well as a characteristic phase velocity. This 
is because within a given medium there is a fixed relationship between the 
wave number and frequency of waves. In a transparent optical medium the 
refractive index n is defined as the ratio c/vp where c is the speed of light 
in vacuum and vp is the phase velocity of light in that medium. Since vp = 
ω/k, we have ω = kc/n . Taking the derivative of ω as

                                         2
d c ck dn
dk n dkn
ω

= −

Hence any modulation of an electromagnetic wave in this medium will 
propagate at the group velocity

                                          
1 .g p

k dnv v
n dk

 = −  
Now, in a medium whose refractive index is constant, independent of 

frequency i.e. as vacuum, we have 0=
dn
dk

, the group velocity equals the 

phase velocity but in commonly known dispersive media like air, water, 
glass etc. where refractive index is dependent on frequency (wave number), 
the group velocity of light is less than the phase velocity.

An example of a physical application of phase and group velocity lies 
in the propagation of electromagnetic waves through a hollow magnetic 
conductor often called a waveguide. A waveguide imposes a cutoff 
frequency ω0 on any propagating electromagnetic waves based on the 
geometry of the tube and will not sustain waves of any lower frequency. As 
a result the dominant wave pattern of a propagating wave with a frequency 
of w will have a wave number k given by:

                                            2 2
0

1k
c

= ω − ω  

As we have seen the phase velocity is 
k
ω , this implies that the phase 

velocity in a waveguide with cutoff frequency ω0 is

                                          2
01

p
cv =
ω −  ω 

.
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Hence, not only is the phase velocity generally greater than c, it 
approaches infinity as ω approaches the cutoff frequency ω0. However, 
the speed at which information and energy actually propagates down a 
waveguide is the group velocity which as we have seen is given by .d

dk
ω

Taking derivative of the earlier expression of k we get

                                   2 2
0

dk
d c

ω
=

ω ω − ω
. 

So, the group velocity in a waveguide with cutoff frequency ω0 is

                                    
2

01g
dv c
dk

ωω  = = −  ω 
, 

This is always less than or equal to the speed of light c.
As another interesting example, consider the case of surface wave in a 

liquid having wavelength long and the depth is very great compared with 
wavelength. The phase velocity of such surface wave is given as (from 
equn. 8.17):

2p
gv λ

=
π

  = 
g
k

  as  k 2π
=

λ

Now,          
1

2
pdv g

dk k k
= −  = 

2
pv
k

−

Recalling equn. (8.28). p
g p

dv
v v k

dk
= +  and putting the value of 

pdv
dk

 as 

derived for the surface wave, we get: 1
2g pv v= .

Therefore, the group velocity is just half of the phase velocity. This 
observation implies that if a long wave disturbance is created in water the 
initial disturbance is distorted in such a way that the components of longer 
wave length moves out from the disturbance with a velocity twice as large 
as that of group velocity which is the velocity of the peak of the disturbance.
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REVIEW QUESTIONS

 1. Let a wave pulse moving towards right along x-axis be represented 
by wave function

                     y(x, t) = 2
3.0

( – 5.0 ) 1x t +
.

  Show that the wave pulse is a progressive wave function and is a 
solution to the linear wave equation.

 2. Establish that elastic waves created in different media are transverse 
or longitudinal depending upon their elastic moduli.

 3. If a vibrating wire is firmly supported at its two ends and set to vibrate, 
explain the creation of standing waves and terms ‘harmonics’

 4. In surface wave in liquid explain the role of two factors, gravity and 
surface tension.

 5. Introducing some daily experiences explain the ‘Doppler Effect’. 
Mention its use in finding stellar motions.

 6. Explain Group velocity and Phase velocity. Can they be different in a 
medium? 
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CHAPTER

9

Physical Optics - I

9.1 LIGHT WAVE AND SPECTRA

 After introducing the wave motion in elastic medium, here in this chapter 
we will discuss the wave nature of light and its various aspects. In order to 
explain various physical phenomena caused by light, two points of view 
have emerged and each of these points of view have their place in the history 
of physics. Almost simultaneously in the second half of seventeenth century 
the corpuscular theory was developed by Newton and the wave theory by 
Huygens. Some basic phenomena like rectilinear propagation, reflection 
and refraction can be explained by both the theories but in explaining 
the interference and diffraction of light, the corpuscular theory failed and 
these could only be explained by Huygens’ wave theory. Two light beams 
meeting together and creating darkness can only be explained when light 
is considered as a wave. The success of Maxwell’s electrodynamics in 
the nineteenth century, which interprets light as electromagnetic wave 
established finally the wave nature of light. Discovery of photo electric 
effect by Heinrich Hertz in 1887, however brought back the particle concept 
of light once introduced by Newton. This development of the theory of 
light as electromagnetic radiation led ultimately to the view that light is 
to be considered either as particles or waves, depending on the specific 
problem considered. The “particles” of light are called “Quanta of light” 
or “Photons”, the wave packets and this is the co-existence of waves and 
particles together called wave-particle dualism an aspect we will consider 
in some latter chapters. Here in this chapter we will concentrate only on 
the wave aspects of light and the related experiments which establish this 
aspect of light.

 The wave lengths of visible light extend between about 4 × 10–5 cm. 
(4000 A° or 400 nm) for the extreme violet and 7.2 × 10–5 cm (7200 A° or 
720 nm) for the deep red. This range of wavelength of light is designated 
as visible region as human eye fails to “see” the light beyond this region as 
human ear fails to recognize and sound frequency beyond some region on 
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both sides. The following Fig. 9.1 gives the spectrum of the electromagnetic 
radiation in terms of wavelength though the boundaries between different 
regions as they are named are not demarcated exactly.

 It will be seen that visible light covers an almost insignificant fraction of 
the entire spectrum. There is no basic difference between radiations of the 
electromagnetic waves but differing only in wavelength. The term “Light” is 
conventionally extended only to the adjacent portion of the spectrum namely 
Ultra violet and Infra red. Though there is no basic difference between 
different types of radiation except that they are generated and detected in 
different ways. While X-rays are invisible and are detected on their property 
of fluorescence and ionization, the visible region can be detected by human 
eye. Nichols and Tear in the year 1917 produced infrared waves having 
wavelengths up to 42 × 104 nm and radio waves down to 22 × 104 nm. The 
two regions are said to overlap though the waves themselves remain of the 
same nature. The same is valid for the boundaries of the all other regions 
of the spectrum. 
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Fig. 9.1 The spectrum of electromagnetic waves. The boundaries of each region can only be 
tentatively defined, as no well defined boundaries exist. The spectra also extends indefinitely  

both in longer and shorter wavelength directions

Like sound and other elastic waves a change in wavelength occurs when 
the source has a translational motion. The waves sent out in the direction 
of motion are shortened and in the opposite direction are lengthened. No 
change is however produced in the velocity of sound. A stationary observer 
receives a frequency which is larger or smaller than that of the source. If 
on the other hand the source is at rest and the observer is under motion, a 
change of frequency is also observed but for different reason. Here there 
is no change of wavelength but the frequency is altered by the change in 
relative velocity of the waves with respect to the observer. This observed 
change in frequency of the wave is known as Doppler Effect and is most 
commonly experienced in sound as changes in the acoustic pitch. Doppler’s 
principle has become a powerful method of studying the radial velocities of 
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stars. The spectra of other galaxies like spiral nebulae show displacement 
toward the red, which for the most distant ones amount to several hundreds 
of angstrom units. Such values would indicate recessional velocities of tens 
of thousands of kilometers per second, and have been so interpreted. It is 
rather interesting that there is enough reddening to change the colour of 
the object, as postulated by Doppler, but in this case it occurs for objects far 
too faint to be seen by the naked eye.

9.2 INTERFERENCE AND COHERENCE

 In Huygens’s principle a source of light at a large distance is thought of 
emitting light of plane wave. A section of a circle or sphere of very large 
radius may be safely considered as a plane. The wave emitted by a point 
source or a narrow opening is considered to emit spherical wave. The points 
on a single wave surface exist in the same phase and the plane generated by 
joining them is said as Wave front. In the following figure we consider the 
plane wave from a source at a long distance reaching a narrow slit S. The slit 
S in turn emits spherical wave fronts and the points on the wave front S1, 
S2 and S3 and all other act as secondary sources and the surface generated 
by joining them is another spherical surface and is taken as a new position 
of spherical wave front. 

A

B

S

1

s2

s

s3

S
c
re

e
n

Fig. 9.2 A B is the slit with opening at S acting as a point source The plane wave from a distant 
source and incident on the slit emerges as spherical waves. Each point on the spherical  

wavefront acts as a source 

9.2.1 Young’s Experiment and Interference 

 There are two types of interference phenomenon and these are due to 
Division of wave front and Division of amplitude. This classification is 
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based on the causes of the phenomenon concerned. Let us first start with 
the earlier type i.e. division of wave front.

 We shall now derive the expression of intensity of light reaching at a 
point P on the screen. A double slit is placed before the spherical wave front 
coming from a source and the two sinusoidal waves emerging out from the 
slits S1 and S2 are given by the expressions as

1 01 1sin( )t kS Pξ = ξ ω −  and 2 0 2 2sin( )t kS Pξ = ξ ω −

where ξ01 and ξ02 are the amplitudes of the waves and S1P and S2P 
are the paths traveled by the waves from the respective slits to the point 
P on the screen. If the resultant wave is given by ξ where ξ = ξ1 + ξ2 then
ξ = ξ01 1 02 2 1 1 2 2sin( ) sin( ) where andt k t k kS P k S Pω − α + ξ ω − α α = α =                     

   01 1 01 1 02 2 02 2sin cos cos sin sin cos cos sint t t t= ξ ω α −ξ ω α + ξ ω α − ξ ω α  
    01 1 02 2 01 1 02 2( cos cos )sin ( sin sin )cost t= ξ α + ξ α ω − ξ α + ξ α ω

Now, writing ( )01 1 02 2cos cosξ α + ξ α  = ξ0 cos d and

                        ( )01 1 02 2cos cosξ α + ξ α  = ξ0 sin d where,

                                     2 2 2
0 01 02 01 02 1 22 cos( )ξ = ξ + ξ + ξ ξ α − α  and 

 d = tan–1 01 1 02 2

01 1 02 2

sin sin
cos cos

ξ α + ξ α
ξ α + ξ α

.

Using these abbreviations we may write

                                       0 (sin . cos cos .sin )t tξ = ξ ω d − ω d

                                          0 sin( )t= ξ ω − d .  …(9.1)
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Fig. 9.3 Young’s ‘double slit’ experiment
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The optical path difference between the waves coming out from S1 and 
S2 and reaching the point P on the screen S2P – S1P = ∆ = d sinθ and when θ 
is very small we can approximate sinθ = tanθ = X/D also as D is thousand 
time larger than d or x.

Then, the phase difference d = 2 π/λ(S2P – S1P) = (2/λ) Xd /D and as 
intensity I is proportional to the square of the amplitude so,

 I ~ 2
0ξ  = 2 2 2 2

00 00(1 cos ) 4 cos
2
d

ξ + d = ξ , considering 01 02 00ξ = ξ = ξ  …(9.2)

Now, the intensity I have maximum values equal to 2
004ξ  whenever d 

is an integral multiple of 2π and according to d = 2π/λ (S2P – S1P) = (2π/λ) 
× d/D, this will occur when the path difference is an integral multiple of l 
and so for:

Bright fringes:

          0, , 2 , 3 . . . . or,Xd Dm X m
D d

= λ λ λ = λ = λ .   …(9.3a)

The minimum value of the intensity is zero and this occurs when d = π, 
3π, 5π,... and for these points on the screen

Dark fringes:

           3 5 1 1, , , . . . ( ) or, ( )
2 2 2 2 2

Xd Dm X m
D d

λ
= λ λ = + λ = + λ  …(9.3b)

The whole number m which characterizes a particular bright fringe is 
called the order of interference and so fringes with m = 0, 1, 2, …. are called 
the zero, first, second etc. orders. Now, from equn. (9.2 a ) or (9.2 b) the 
distances between two successive fringes on the screen can be obtained by 
changing m by unity and subtracting one from other. This distance on the 

screen DX
d

λ
∆ =  and therefore its magnitude is directly proportional to the 

slit-screen distance and inversely proportional to the slit separation d and 

also directly proportional to the wavelength λ. Knowing the fringe separation 
it is therefore possible to measure the wavelength of the monochromatic 
light as other parameters remain as instrument constants. These maxima and 
minima of intensity exist throughout the space behind the slits and a lens is 
not required to produce them but as the fringes is so fine that a magnifier lens 
must be used to see them visually. This distribution of fringe intensities is 
shown in the following Fig. 9.4. The variation of intensity shows that it varies 
between 4ξ2

00 and zero. Now each beam acting separately would contribute 
ξ2

00 and so without interference we would have a uniform intensity 2, as 
indicated by the dotted line Fig. 9.4. The average value of the square of the 
cosine (cos2 d/2) is 1/2 and this gives from the above equation for intensity 
I as I ~ 2 . Therefore, it shows that the distribution of this intensity does not 
violet conservation of energy.
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There are two other examples of this type of interference i.e. division of 
wave front and the more important experiments are (1) Fresnel’s biprism 
and (2) Lloyd’s mirror. The following diagrams explain these two methods 
of forming interference. 

2 2
004 cos /2� � �I

� 2

0 04

I

0 � 2� 3� 4� 5� 6� 7� 8� 9�–�–2�–3�–4�–5�–6�–7�–8�–9�
�

�2

004

 Fig. 9.4 The distribution of intensity on the screen due to interference.

9.2.2 Division of Wave Front: Fresnel Biprism and                                 
Lloyd Mirror 

In the Fresnel’s biprism experiment as above the wave front from the source 
S is divided in to two parts due to refraction from up and down parts of the 
biprism. This results the division of real source S into two virtual sources S1 
and S2. The shaded portion BC on the screen is the interference region. In 
Lloyd’s mirror the original source S and the virtual source S1 send waves 
which interfere in the region AB of the screen.

Lloyd’s Mirror

s

s1

B

A

D

C

B

A

s2

s

s1

Fresnel Biprism

Fig. 9.5 Fresnel’s biprism and Lloyd’s Mirror experimental set up
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9.2.3 Division of Amplitude

 (i) Newton’s Ring: The multiple reflections from a thin film is an example 
of the formation of interference pattern by division of amplitude. Let 
us consider the light from a source S be incident on a thin film at A. It 
then refracting in the film suffers multiple reflection on surfaces and 
1, 2, 3, 4,…. are the beams emerging out of the front surface. These 
rays are made to converge at the point P.

Thin film

C

��

��

� Convex lens

P

G 1 2 3 4
F

E

DB

A

s

Fig. 9.6 Multiple reflections from a thin film

 When we consider only the pair of beams (1) and (2), AE and GF are the 
two subsequent wave fronts of the waves suffering internal and external 
reflections, and then the optical path difference between (1) and (2) is:

∆ = n(ADF) – AG, where n is the refractive index of the medium of the 
film. 

Now, from geometry, ∆ = nCF – AG = n(CE + EF) – AG,
Now, as optical path n EF = AG then 
∆ = nCE = n(2d cos φ′) where d is the thickness of the film. Therefore, 

when (1) and (2) meet at P the path difference 2nd cos φ′  satisfy the following 
conditions we get interference maxima and minima taking into account the 
fact that the ray suffers a phase change by p but the ray (2) does not as the 
latter is an internal reflection and so the conditions of maxima and minima 
are reversed.

 Minima: 2nd cos φ′ = mλ and
 Maxima: 2nd cos φ′ = (m + ½)λ. …(9.4)
In Newton’s ring experiment described in the following Fig. 9.7 a part 

of the incident ray is reflected from the inner convex surface of the lens 
and a part after refracting out suffers reflection from the plane surface of 
the glass slide.
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Schematic diagram of newton’s ring experiment
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Fig. 9.7 Newton’s ring experimental set up
Now, for Newton’s ring set up the light is incident normally on the 

plane surface of the plano-convex lens and so, φ = 0 and also φ′ = 0, the 
interference condition from equn. (9.3) transform into

 2nd = mλ for Minima and 2nd = (m + ½ )λ for Maxima.

This d, the depth of the wedge shaped gap is given as: 
2

2
Nrd
R

= , which 

remains same along the circumference of the circle of radius rN of Nth 
number of fringe.
 (ii) Fabrey-Perot Interferometer: Febrey-Perot interferometer is one of the 

most important application of interference by division of amplitude. 
The working diagram is given below (Fig. 9.8)

s

p1

E1 E2

�

�
0

p2
s2

Fabrey-perot interferometer: , are source and screen, , are reflecting

Mirrors to form circular fringes on the screen

s s E E1 2 1 2

Fig. 9.8 F-P Interferometer: P1 is the point on the extended source and P2 is the corresponding 
point on the screen. A circular fringe is resulted after multiple reflection and refraction
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The condition of maxima is 2nd cos θ = mλ which is different from equn. 
(9.3) as here the refracted beams overlap, the other parameters are same.

9.3 FRAUNHOFER DIFFRACTION

9.3.1 Diffraction of Light Waves: An Introduction

 So far we have seen in interference of light from Huygens’s principle that 
every point on the approaching wave front being spherical (for near source) 
or plane (for distant source) generate secondary wavelets which are being 
spherical travel in all directions. Now, if two of them are selected and 
rests are obstructed then the two selected waves after traveling different 
distances assume a phase difference and create interference pattern (maxima 
and minima) if they meet together. These are achieved in double slit and 
biprism experiments which are interference by division of wave front 
and also by dividing the amplitude of light from the same wave front by 
multiple reflections which are achieved in thin parallel films or Newton’s 
ring experiments.

 Now, if a part of the approaching wave front is obstructed, the rest 
which is exposed generates secondary wavelets and two of which meet 
at a particular point with different phases even though the selected point 
lies within the geometric shadow part of the obstacle. This is the reason 
for observing no sharp out line of the shadow of the obstacle, which can 
never be explained without the wave characteristics of light. This is another 
important aspect of wave theory and is known as diffraction of light, 
which is the sole reason for getting light in the geometric shadow part of 
any obstacle and which can never be explained on the basis of assumption 
that light is the energy which simply travels in geometric straight line. The 
phenomenon of “Diffraction” is classified into two types, the one which 
is applicable for plane approaching waves from a source at infinity and is 
known as Fraunhofer Diffraction and the other is applicable for spherical 
wave front from a near source and this is known as Fresnel Diffraction. 
The mathematical interpretations of these two types are different and are 
known after the names of the Physicists who developed their mathematical 
interpretations. However, strictly speaking the Fresnel diffraction is the 
actual case of diffraction as the light waves coming out from a source is 
spherical in general but for a source at a considerable distance the wave 
fronts may be approximated as plane and so Fraunhofer diffraction can be 
considered without much error involved.

9.3.2 Fraunhofer Diffraction by a Single Opening

 Let a plane wave front from a distant source is approaching a single slit 
opening as shown in the following Fig. 9.8. The different secondary wavelets 
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after passing through the opening of width say b are made to meet together 
at points on the screen.

In the Fig. 9.8 a plane wave is approaching a single slit of width b from 
a distant object. Let dS be an element of a section of wave front at a distance 
S from the center and P be any point on the screen.

Now, as the energy from a source is uniformly distributed over the 
surface of the spherical wave and as the area of the surface varies as the 
square of the radius of the sphere i.e. the distance from the source, the 
energy density varies inversely as the square of the distance (radius). The 
amplitude of the wave then should vary inversely as the distance (radius). 
Now, if ξ0 is the amplitude per unit area reaching the slit, then amplitude 

at point P from an element dS of the wave front will be 0dS
x

ξ  at a distance 
of x and the equation of wave will be given by 

 dξ = 0 sin ( )dS t kx
x

ξ
ω −   …(9.5)
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o
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Fig. 9.9 Fraunhofer diffraction for a single opening (single slit)

 The displacement dξ will vary both in magnitude and phase as ξ 
changes with different positions of the point of observation P on the 
screen. Now, taking the element of area dS on the wave front at a distance 
s down the centre 0 an additional path difference ∆ results and the 
equn. (9.4) is modified as

0 0sin( [ ]) sin( sin )S
dS dSd t k x t kx kS
x x+

ξ ξ
ξ = ω − + ∆ = ω − − θ  ...(9.6 a)

And similarly for an element dS up the center 0

0 0sin( [ ]) sin( sin )S
dS dSd t k x t kx kS
x x−

ξ ξ
ξ = ω − − ∆ = ω − + θ .  …(9.6 b)

Now, taking the combined effect from two such wave front elements 
by adding equns. (9.5 a) and (9.5 b) we get:
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                        dξ =  S Sd d+ −ξ + ξ

    = 0 [sin( sin ) sin( sin )]dS t kx kS t kx kS
x

ξ
ω − + θ + ω − − θ

which is of the form: sinα + sinβ = 1 12 cos ( )sin ( )
2 2

α − β α + β

and so 0 [ 2 cos( sin )sin( )]dSd kS t kx
x

ξ
ξ = θ ω − . 

Now, integrating for the entire wave front from S = 0 to β/2 we get

  ξ = 
/2

0

0

2 sin ( ) cos( sin )
b

t k x k S dS
x
ξ

ω − θ∫

   = 
/2

0

0

sin sin2 sin( )
sin

b
kS t kx

x k
 θξ

ω − θ 

   = 0

1sin( sin )
2 sin( ).1( sin )

2

kbb t k x
x k b

 θ ξ
ω − 

 θ
 

The resultant vibration will therefore be a simple harmonic one, the 
amplitude of which varies with θ i.e. with different positions of point P on 

the screen. Now, abbreviating sin1 sin or as
2

bkb π θ
θ β

λ
 the above equation 

is transformed in to

 ξ = 0 sin sin( )b t kx
x

βξ  
ω − β 

  …(9.7)

Now, writing the resultant amplitude as A and 0b
x

ξ  as A0 we get

 A = A0
sinβ

β
  …(9.8 a)

Therefore, as intensity I ~ A2 so, it may be written as I = 
2

2
0 2

sinA β
β

…(9.8 b) 

In the following Fig. 9.10 the variation of both amplitude and also 
intensity with θ are shown
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 Fig. 9.9 Variation of intensity and the amplitude with θ which is dependent on slit with and angle θ  
(which depends on positions P on the screen)

9.3.3 Fraunhofer Diffraction by a Double Slit (Opening)

 Without going in to experimental details, if a double slit is placed before a 
source at a distance, then interference fringes giving its intensity expression 
by Equn. 9.2 and 9.3 and variation by Fig. 9.4 along with diffraction from each 
slit given by equn. 9.8 a and 9.8 b. These two phenomena i.e. the interference 
from two coherent waves and diffraction from different places of each wave 
fronts combine together to give the net results from a double slit. It will be 
then in effect the superposition of two graphs showing intensity variation.

Source L1 Slit L2 L3
Double

slit
Screen

b

b

c d

2�

2
sin �

�2
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0
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–2

–3

3

mp

0

1

–1

Fig. 9.10 The out line of the experimental set up for diffraction phenomenon by a double Slit. 
L2 is used to result parallel rays as position of slit is at its focus and L3 is to converge the 

diffracted wave fronts on the screen to view the diffraction pattern, b is the width of 
each opening and c is the opaque part which separates the two slits

Now, the integration limits used while deriving the equn. 9.7 for 
single slit i.e. from 0 to b/2 is to be modified now in to s = d/2 – b/2  to 
d/2 + b/2. Recalling and inserting the modified integration limits:
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/2 /2
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d b

t kx k S dS
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−

ξ
ξ = ω − θ∫  and this gives

( ){ } ( ){ } ( )02 1 1sin sin sin sin sin
sin 2 2

k d b k d b t k x
x k

ξ  ξ = + θ − − θ ω − θ  
 …(9.9)

Now, the quantity with the bracket is of the form sin (a + b) – sin (a – b), 
which when expanded we get

                               02 sin cos sin( )b t k x
x
ξ β

ξ = γ ω −
β

  …(9.10)

Where as before  1 2sin where
2

k b k π
β = θ =

λ
 and 

                               1 ( )sin sin
2

k b c dπ
γ = + θ = θ

λ
. 

The intensity is equal to the square of the amplitude and so using as 

before  A0 = 0 b
x

ξ
.

We get  
2

2 2
0 2

sin4 cosI A β
= γ

β
                                           ...(9.11)

It can be emphasized here that 
2

2
sin β

β
 term which represents the 

dthe diffraction part and is the envelope (dotted) of the curve of the total 
diffraction pattern Fig. 9.11 and cos2 γ represents the interference effect 
from two slits and are shown by the shaded pattern within the envelope. 

Therefore, the diffraction part (the envelope) shows minima at values 

,2 ,3 ,.....β= π π π { }1 sin sin
2

kb bπ
β= θ= θ

λ
 and the second part due to 

interference will give minima at values

                       
3 5/2 , , ,....
2 2

γ = π π π
 { }1 ( )sin sin

2
k b c dπ

γ = + θ = θ
λ .

 The final diffraction minima will be shown when either of the above two 
conditions are satisfied. It can be shown that β and γ are not independent 
and in terms of the dimensions of the slits,

                      
d
b

γ
=

β
.

Now, a study of the diffraction profile shows that certain orders are 
missing or at least the intensities are reduced to minimum. These so called 
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missing orders result where the condition for a maximum of the interference 
and for minima for diffraction are both fulfilled for the same value of θ, that 
is for

                           

sin
sin

d m
b p

d m
b p

θ = λ
θ = λ

= . …(9.12)

Therefore, when d/b =  3, orders 3, 6, 9… will be missing Fig. 9.11.

9.3.4 Fraunhofer Diffraction by an Ideal Grating

Now, in place of using the sine or the cosine to represent a simple harmonic 
wave, one may write the wave equation in the exponential form y = aei(wt – 

kx)
 = ae iwt e–id where d = kx and is constant at a particular point in space and 

exp (iwt) is the time varying factor. We may use this complex representation 
and at the end of the problem take either the real (cosine) or the imaginary 
(sine) part of the resulting expression. This procedure may be used for 
the diffraction analysis from a system of say N number of openings. 
Nevertheless, we can also calculate the diffraction from N number of slits 
by following the same procedure of integration but this would involve 
cumbersome process. If we follow the imaginary exponential and designate 
the amplitudes from each slit by ‘a’ and the change of phase from slit to 
the other by d, the resultant complex amplitude is then will be given by the 
sum of the series:

                       

2 3( 1 ..........)

1 .
1

i i i i

i N

i

A e a e e e

ea
e

θ d d d

d

d

= + + + +

−
=

−

To find intensity we are to multiply the above expression with its 
complex conjugate

                                    

2 2 (1 )(1 )
( 1 )(1 )

iN iN

i i
e eA a

e e

d − d

d − d
− −

=
− −  

  = 2 1 cos
1 cos

Na − d
− d

  =  
2 2

2 2
2 2

sin ( /2) sin
sin ( /2) sin

N Na ad γ
=

d γ
.     …(9.13)

Now, as for the double slit γ = s/2 = (πd sin θ)/λ. This expression includes 
the result of diffraction by a single slit given in equn. (9.8 b) and so the 
intensity expression from an ideal diffraction grating is given by
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 I ~ A2  = 
2 2

2
0 2 2

sin sin
sin

NA β γ
β γ

 ...(9.14)

In the above equation if we put N = 2 (double slit) the equation is 
transformed in to that for the double slit diffraction (9.11).

Principal Maxima

The new factor in the equn. (9.14) 
2

2
sin
sin

Nγ
γ

 represents the interference term 

for N slits. It will represent maximum values equal to N2 for γ = 0, π, 2π, 3π, 
.... as the limit of the function:

     [ ]
2

2sinlim .
sinm

N Nγ → π
  γ

=  γ   
 Now as seen before, 1 ( )

2
k b cγ = +   

sindπ
= θ

λ
 for the double slit.

Principal maxima are obtained at d sin θ = 0, λ, 2λ, 3λ,… = mλ …(9.15)
However, the maxima are more intense and they are in the ratio of the 

square of the number of slits.
The relative intensities of the different orders m are in all cases governed 

by single slit diffraction envelope 
2

2
sin β

β
. Therefore, the relation between 

β and γ in terms of slit width and slit separation remains unchanged and 
also the conditions of missing orders.

Minima and Secondary Maxima

Now, to find the minima of the function 
2

2
sin
sin

Nγ
γ

, we can note that the 

numerator becomes zero more often than the denominator and this occurs 
at values Nγ = 0, π, 2π, … or pπ. In the special cases for p = 0, N, 2N, … γ 
will be 0, π, 2π, …; so for these values both numerator and denominator 
vanish simultaneously and we get as a result Principal Maxima as above 
and for other values of p the denominator does not vanish with numerator 
and  we get zero intensity. Hence the condition for a minimum is: γ = pπ/N, 
excluding those values of p for which p = mN, m being the order.

Between other minima the intensity rises again, but the secondary 
maxima thus produced are of much smaller intensity than the principal 
maxima. Fig. 9.12 shows the interference curve for grating having  
N = 20 number of slits.
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Fig. 9.12 a Intensity profiles showing the principal maxima and secondary maxima (adopted from 
fundamentals of optics, jenkins and white)

Fig. 9.12 b Replica of diffraction pattern for same grating with N = 20 Slits. The principal maxima 
are narrow and intense whereas the higher order secondary maxima are almost not visible

 Now, the equn. (9.15) i.e. d sin θ = mλ is normally known as grating 
equation is to be modified for light incident on the grating at an angle i and 
the resulting equation will then be more general. This can be seen from the 
following figure.

To Screen

If is the angle of incidence of light on the grating
then will be diffraction angle for a wavelength,
which is different for different wavelengths of
incident light. The diffraction equation then will be
modified in to a more general form as :
(sin + sin ) =

i

d i m� ��

d isin
i

d

d sin �

�

The grating equation d(sin i + sin θ) = mλ is individually valid for each 
value of the wavelengths of the incident radiation and so if we have in 
the incident light two or more wavelengths we will get maxima of the 
corresponding wavelength at different value of θ and so we will have 
maxima for the different wave lengths (different colours) in sets of entirely 
separate line spectrum. The separation of any two colours such as say for 
the wavelengths λ1 and λ2 increases with m the order number. To express 
this separation between different colours the term frequently used is known 
as “Angular dispersion”, which is the rate of change of angle with change 
of wavelength. Now, taking the finite increment of the grating equation  
d(sin i = sin θ) = mλ, we get for constant angle of incidence i(∼0).
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( sin ) ( )
cos

d m
d m
∆ θ = ∆ λ

θ∆ θ = ∆ λ

or,                 
cos
m

d
∆θ

=
∆λ θ

. …(9.16)

Therefore, larger will be the separation between two colours at higher 
order values of m for a fixed value of grating space, d  and at higher angles 
i.e. lesser values of cosθ.

The real advantage of grating over prism lies not in its large dispersion, 
however, but in the high resolving power it affords.

The chromatic resolving power of a grating is defined as:
Chromatic Resolving Power = Angular Dispersion × Width of the 

emergent beam

                                           
cosN d mNλ ∆θ

= × θ =
∆λ ∆λ  

Now, substituting the value of m from equation d(sin i = sin θ) = mλ, 
we get

           ( )sin sin(sin sin ) W id i N
+ θ+ θλ

= =
∆λ λ λ

. …(9.17)

Here, W = N d is the total width of the grating. At given values of i 
and θ, the resolving power is therefore independent of the number of lines 
(rulings) in the distance W. Theoretically, the ideal maximum resolving 
power obtainable with any grating occurs when i = θ = 90° and it equals 
2 W/λ. However, one can only attain about 2/3rd of this ideal maximum.

Measurement of Wavelength by Grating: An important use

The most important application of diffraction grating is the determination of 
unknown wave length of the incident light. Using the general grating equation 
s(sin i + sin θ) and setting the grating surface normal corresponding to the 
incident light. This is done first by observing the reflected light from the 
surface of grating and then rotating the prism table through 45° further. 
Under this alignment incident angle i will be zero and the grating equation 
will be simplified into d sinθ = mλ. As d, the grating space is supplied, then 
measuring the diffracting angle θ and the order of diffraction line the λ 
can be calculated. In the following Fig. 9.13 these two arrangement of the 
grating on the prism spectrometer are shown in A and B.

However, the spectrometric method (by Prism Spectrometer) is not 
absolutely accurate as the lenses used in the telescopes in the spectrometer 
are not absolutely free from chromatic aberration. To avoid this difficulty 
Rowland invented the concave grating, in which the focusing is done by 
a concave mirror and thus not requiring any lens system either in the 
collimator or in the telescope.
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Fig. 9.13 The Spectrometer arrangement for the determination of wave length of light

If the grating instead of being ruled on plane surface, is ruled on a concave 
spherical mirror of metal, it will then diffract and also focus light at the 
same time. This eliminates the requirement of any lens and also chromatic 
aberration. Besides this Concave grating made on metal surface can also be 
used in the ultra violet region of the spectrum where the conventional grating 
etched on glass is not applicable due to absorption in the glass.
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Fig. 9.14 Concave grating, with slit and the orders of diffraction are focused on the 
circle of radius R. The circle is known as rowland circle

9.4 FRESNEL DIFFRACTION

 It has been stated earlier that the diffraction phenomenon observed when 
either the source of light or viewing screen or both are at a finite distance 
is known as Fresnel Diffraction. It has also been stated that in this type of 
diffraction, we do not require any lens system either to render the light 
parallel from a point source at finite distance or to focus the diffracted light 
on the screen and thus make it much simpler experimental set up than that 
of Fraunhofer diffraction. Since Fresnel diffraction is the easiest to observe, 
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it was historically the first type to be investigated, although its explanation 
requires much more mathematical theory than that for Fraunhofer diffraction.

It should be understood by this time that it is diffraction phenomenon 
due to which the light from a source reaches in to the geometrical shadow 
part of the obstacle placed before it. However, it is observed that a dark 
shadow is formed though of slightly diffuse boundary. According to Fresnel, 
the limits of geometrical shadow the secondary wavelets arrive with phase 
relations such that they interfere destructively and so an obstacle produces 
practically dark shadow. There is variation of amplitude with direction, 
which is known as “obliquity factor” and due to this the amplitude varies 
as 1 + cos θ.

�
Source

0

D

Following Fresnel approach to the diffraction problem let us now find 
the effect of this reduction of diffracted intensity due to the effect of obliquity 
from a slightly divergent spherical wave. In the following Fig. 9.15 ABCD 
represents a section of spherical wave front of monochromatic light traveling 
from a source toward the right. Every point on this spherical section may 
be thought of as the origin of secondary wavelets and we wish to find the 
resultant effect on a point P. The spherical section is divided in to circular 
sections called zones around the point O which is the foot of perpendicular 
drawn from the point P on the section. Each such sections or zones are a 
distances as S1, S2 and S3, …. Sm etc., and also each such zones is half wave 
length further from P. As the distance from O to P is taken as b, the zone 
circles will then be at distances: 

/2, 2 /2, 3 /2,......., /2b b b b m+ λ + λ + λ + λ .
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b

2/��b

2/2��b
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 Fig. 9.15 A shows the half period zones on the section of spherical wave front and B shows the 
path difference from the pole of the spherical wave i.e. CQP – COP = ∆
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The distances S is very small compared to a and b and so S may be 
considered as vertical distance of Q above the axis and ∆ may be equated 
to the sum of the sagittas of the two arcs OQ and OR. From the by sagitta 
formula we have

2 2
2

2 2 2
a bS S S

a b ab
+

∆ = + = .

As each zone is at a distance λ/2 further from the point P, the successive 
zones will produce resultant at P which differ by π. This difference by a 
half period in the vibrations from each zone is the origin of the name “Half 
period Zone”. If now Am gives the resultant amplitude from mth zone, then 
the total amplitude from whole wave A will be given by a series with each 
term having alternate sign as the changing phase by p means the reversing 
the direction of amplitude vector.

     A = A1 – A2 + A3 – A4 + A5 – ……… + (–1)m–1 Am.      …(9.18)
Now, the magnitude of each term in the above series depends on three 

factors which are respectively due to: 
 1. Each term is related to the number of wavelets generated from it and 

as area increases slowly, so is the number of wavelets and the value 
of each term. 

 2. Since amplitude decreases with the increase of distance from the source 
at P, the magnitude of each term decreases with increase of the order 
of terms m.

 3. Because of the increase of obliquity the magnitude also decreases.
Therefore, the amplitude due to mth term, Am is given as: Am = const.

(1 cos )m

m

S
d

+ θ , where dm is the average distance to P and θ is the angle at 

which light leaves the zone.
Practically, the amplitude from any zone depends on the obliquity 

factor, (1 + cos θ) and due to this, each term of the above series (9.18) 
decreases slowly because of rapid change of θ with m. The effect may be 
followed from the following figure showing the vector addition of the 
terms in the series.

   

A1
A3 A5

A4A2

A = A1/2

The vectors A’s represent the terms of the series (9.18). Like these shown 
for only five terms if all other terms are drawn, the resultant amplitude A 
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is shown by height of the final arrow head above the base line. Here the 
tail of each vector is put at the same height as the head of the previous one.

9.4.1 Small Circular Opening and Obstacle

If now as an example we consider a very small opening having radius of 
the opening equal to say S1 the amplitude will be A1 which is twice the 
amplitude of the unscreened wave and thus the intensity will be four times 
of the intensity if the screen is removed and entire wave front is allowed 
to pass. If now the radius of the hole is increased so as to include first two 
zones S1 and S2 the intensity will almost vanish. This may also be done by 
changing the distance observing screen from the opening and as a result we 
will observe alternate maxima and minima along the axis of the aperture. 
This is definitely an interesting conclusion from Fresnel diffraction and 
more specifically, smaller the aperture better is the intensity of diffracted 
image considering the distance between the aperture and the observation 
screen or photographic plate. This concept though explained much later, 
was implemented in pin-hole camera centuries ago and many beautiful 
and historically important photographs were taken without use of any 
lens system. 

 
Fig. 9.16 The replica of the diffraction pattern from a small circular opening

Now, if an obstacle is placed to block off the light from every other half 
period zones, the result will be to remove either every positive or negative 
terms of the series (9.18). In both cases the amplitude at point P (Fig. 9.14) will 
be increased to many times in its value. No further discussions on Fresnel 
diffraction are included in this section as these are beyond the scope of this 
book. Readers are requested to go through the references given.
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REVIEW QUESTIONS

 1. If a system of vibration differing in amplitude and period is 
superimposed. Show that the resulting displacement is periodic and 
that its period is the least common multiple of the periods of the 
different vibrations.

 2. Explain the similarity and differences between interference produced 
by division of wave front and by division of amplitude.

 3. What are the differences between ‘Interference’ and ‘Diffraction’? 
Establish that both of them can only be explained by wave theory of 
light.

 4. What are the differences between Fraunhofer and Fresnel diffraction?. 
What is more general?

 5. If the number of openings on a stop are more in number but small 
in size, as in diffraction grating, the diffraction pattern is drastically 
changed from a single opening.—Explain.

 6. Newton’s rings are formed between a plane surface of glass and a 
lens. The diameter of the fifth black ring is 9 mm. When sodium light 
is used and light passes through the air film at an angle of 30° to the 
normal. Find the radius of the glass lens.

 7. A soap film illuminated by white light gradually becomes thinner as 
the liquid drains away. It is placed in front of the slit of a direct vision 
spectroscope, which is held so that the slit is horizontal. Describe and 
explain the phenomena which are observed.

 8. A very large opaque screen contains a small rectangular opening. 
Parallel monochromatic light incident normally on the screen, passes 
through the aperture. Investigate diffraction phenomena produced.
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CHAPTER

10

Physical Optics - II

10.1 POLARIZATION OF LIGHT AND STATE OF POLARIZATION

The phenomena of interference and diffraction of light just discussed are 
the verification of the fact that light is a wave and now the question comes 
what type of wave? Is it an elastic waves like sound wave or the wave that 
propagate in solids, liquid and gaseous medium? The phenomenon, known 
as polarization gives the answer to this question. The fact that light can pass 
through vacuum and does not require any material medium like sound 
or other elastic waves. This proves that light is an electromagnetic wave 
having electric and also magnetic vectors perpendicular to the direction 
of propagation and so these vectors lie on the plane of the wave front of 
light rendering the light as a transverse electromagnetic wave. We will 
in this chapter discuss the important properties of transverse wave like 
polarization. The vibrations of the say electrical vector lies on the plane of 
the wave front and the resultant vibration in most general case is elliptical, 
of which the linear and circular vibrations are two extreme cases. When 
the phase difference between two vectors unequal in magnitude is π/2, the 
resultant is elliptical vibration and it will be circular if the magnitudes are 
equal and when the phase difference is integral multiple of π, the resultant 
is linear. It may here be emphasized that sound wave being a longitudinal 
wave must necessarily be symmetrical about the direction of propagation, 
light wave under certain conditions shows dissymmetry and under that 
condition light is known as polarized. 

Before we proceed for discussions on polarization, it is better to 
introduce and clarify the meaning of “Optic Axis”. Calcite and Quartz are 
examples of anisotropic crystals in which the physical properties vary with 
direction. If there is a single direction, perpendicular to which the physical 
property, say heat conductivity remains same in any direction and at other 
angles to the direction, the property changes, then that direction is called 
“Optic Axis”. Further more, this direction is also the axis of symmetry of 
the molecules and also of the crystal form.

Polarization may take place from the effects called (a) Reflection (b) 
dichroism (c) Double refraction and (d) Scattering.
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(a)

(b)

(c)

AnalyzerPolarizer

Polarizer

No Light

Analyzer

(d)

(e)

Fig. 10.1 Pictorial representations of ordinary light (a), plane polarized with vibrations 
perpendicular on the plane of the diagram (b) and parallel to the plane of the fig.(c). 

(d) and (e) are the effects of plane polarized light through polarizer and analyzer

The above figure shows in (d) and (e) that when ordinary light gets 
polarized in the plane of the paper after passing through a “polarizer”, 
having say vertical gates, interact with another similar gate but with opening 
perpendicular to the earlier one will fail to pass through and will pass when 
the gates are parallel. This is a simplified pictorial representation of the 
phenomenon and it’s outcome.

Polarization by reflection and refraction: Brewster’s Law 

It has been observed that when unpolarized light is reflected from a glass plate 
at an angle of incidence 57° and the reflected light is again reflected by a parallel 
glass plate the final reflected light will decrease in intensity with the rotation 
and may be cut off if the second glass plate is rotated by 90°.

r

i i

r �

i i

i 75º� �

r� � 33º

(a)                                                                      (b)
Fig. 10.2 (a) Polarization by reflection and refraction (b) Brewster’s Law for polarizing angle
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It was observed by Brewster that when unpolarized light ordinary light 
is incident on glass surface the reflected light is partially polarized and when 
the incidence angle is about 57° the reflected light is fully polarized and 
at that angle of incidence the reflected light makes 90° with the refracted 
light. This relates the polarizing angle with the index of refraction which is 
known as Brewster’s Law.

       
( )sin refractive Index

sin
i n
r

=

                     ( ) ( )
sin sin sin sin tan
sin sin 180 90 sin 90 cos

i i i i i n
r i i i
′ ′ ′ ′

= = = = ′ =
′ °− °− ′ °− ′ ′

Therefore,          1tani n−′ = .

When light is incident on the glass surface, the plane of vibration which 
lies on the plane of the figure and refracted in the glass can not have its 
component at right angle and so the reflected beam at Brewster’s angle 
of incidence will be polarized perpendicular to the figure. The refracted 
beam will contain both planes of vibration but upon subsequent refractions 
through refracting piles it may be also be fully polarized.

 Again when a narrow pencil of unpolarized light is incident on some 
mineral crystals like “Tourmaline”, the transmitted light is polarized. The 
phenomenon is demonstrated in Fig. 10.1, where both “Polarizer” and 
“Analyzer” are tourmaline crystals.

Double Refraction

The crystals of Calcite (CaCO3) and Quartz (SiO2), the former belonging 
to crystal classes as rhombohedra and have the molecules having axis of 
symmetry are placed in such a regular fashion that the crystal as a whole 
have a net axis of symmetry named as Crystal axis or Optic axis. Calcite can 
be cleaved into thin slices and can be used for polarization by refraction. 
The electric vector of light wave can be resolved in the direction parallel 
to the optic axis and perpendicular to the optic axis of the crystal. These 
two components are named as Extra ordinary (E), which is parallel and 
Ordinary (O) which is perpendicular to the optic axis and they travel with 
different velocities within the crystal. As the velocities are different so are 
the refractive indices and as a result, we get two refractive rays (Fig. 10.3 
b). This is known as “Double Refraction”.
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    Fig. 10.3 A. Represents a slice of Calcite crystal, the parallel lines show the optic axis of the 
plane of crystal. The electric vector O′ R incident on such crystal at an angle, may be 
resolved in the direction perpendicular to the optic axis, called O ray (Ordinary Ray) 
and parallel to the optic axis called as E ray (Extra ordinary). B. Two separated rays 

of light separated due to refraction at different angles

From the stand point of optics, doubly refracting crystals are classified 
as either “uniaxial” or “biaxial”. In uniaxial crystals the velocities of O 
and E waves become equal along the only and unique direction introduced 
as optic axis. But in biaxial crystals there are two directions in which the 
velocity of plane wave is independent of the orientation of the incident 
vibration. However, the uniaxial crystals may be assumed to be a special 
case of biaxial crystal where the angles between the axes are zero.

 Uniaxial crystals are divided into two classes negative and positive. In 
negative uniaxial crystals the extraordinary index of refraction (nE) is less 
than ordinary index (n°) . Quartz being a positive uniaxial crystal ordinary 
refractive index n° is less than nE. Let us now start with negative uniaxial 
crystal.

Nicol Prism

 If such Calcite crystal slice is polished so as to reduce one edge angle from 
71° to 68° and is cut diagonally into two pieces, polished and then joined 
together by Canada balsam (an adhesive cement having refractive index 
almost same as glass), device can be used as polarizer and also as analyzer 
using the double refraction phenomenon.
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Nicol Prism made from Calcite crystal

48º
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Fig. 10.4 Nicol Prism, showing the removal of ordinary ray (O) from extra ordinary ray (E)

If ordinary un polarized ray is incident on the side at an angular range 
of 14° (near normal), the ray is divided into two parts, ordinary O and 
extra ordinary E. The refractive indices for O and E rays in Calcite medium 

are different and are respectively as: 1.6584Calcite
On = and 1.4864Calcite

En =

. The refractive index for Canada balsam which is used to join two parts 
is nCanada balsam = 1.55. Therefore, when O and E rays are incident on the 
Canada balsam thin layer, for E ray it is from a rarer medium to denser 
medium and so the E ray will refract into the second part of calcite but 
for O ray it is from a denser medium to rarer and for the geometry of the 
prism, the incident angle for O ray will be greater than critical angle and 
so O ray will suffer total internal reflection and thus get separated from 
E ray. The emerging ray will then be totally plane polarized on the plane 
of optic axis of the crystal.

Now, if this E ray coming out from the Nicol prism, called polarizer is 
again incident on another such prism then E ray will also pass through the 
second one if and only if the optic axes of these two prisms are parallel. If 
now the second one, called Analyzer is rotated about the direction of the 
E ray, the optic axis of the analyzer will also rotate and when the angle 
between the optic axes of these two prisms becomes any value other than 
zero, the intensity of the final emergent ray decreases and finally it will be 
zero when this angle becomes 90°. The situation is same as Fig. 10.1 a.

State of Polarization

 The electric vector E of the light which is electromagnetic wave may be 
assumed to vary sinusoidally and when it is incident on a polarizer it is 
resolved into two components one parallel and other perpendicular to the 
optic axis. Now these two components assumed to be sine waves travel 
with different velocities (as refractive indices in any medium for them 
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are different) and after traveling a common distance will develop a phase 
difference between them. When they join together the result different 
states of polarization like elliptical and for special cases circular or linear. 
This can be explained from both mathematical derivation and graphical 
representations.

 Let us now consider two simple harmonic waves of same frequency in 
two mutually perpendicular directions say y and z and they are given as 

               ( ) ( )1 1 2 2sin and siny a t z a t= ω −α = ω − α   …(10.1) 

Expanding them:

1 1
1

sin cos cos siny t t
a

= ω α − ω α  and 2 2
2

sin cos cos sinz t t
a

= ω α − ω α .

Multiplying the first by sinα2 and the second by sinα1, and subtracting 
the first from second, we get

 ( )2 1 2 1 1 2
1 2

sin sin sin cos sin cos siny z t
a a

− α + α = ω α α − α α  …(10.2 a)

Similarly, multiplying first by cos α2 and second by cos α1 and 
subtracting second from first, we get

 ( )2 1 2 1 1 2
1 2

cos cos cos cos sin cos siny z t
a a

α − α = ω α α − α α …(10.2 b)

Now, squaring both equn. (10.2 a) and (10.2 b) and adding we eliminate t. 

                
2 2

2
1 2 1 2

1 2 1 2

2sin ( ) cos( )y y zz
a a a a

α − α = + − α − α   …(10.2 c)

Now, if the phase difference (α1 – α2) = δ, then above equation is 
simplified as:

                              
2 2

2

1 2 1 2

2sin cosy y zz
a a a a

δ = + − δ . …(10.2 d)

This is the equation for the resultant path. The following figure gives 
the graphical representations of the resultant vibrations.

 If δ, the phase difference between two sine waves vibrating on two 
planes, mutually perpendicular to each other is m p, where m is an integer 
0, 1, 2, 3… etc. then resultant vibration is linear and polarized light is 
linearly polarized. If d is m p and m is odd numbers like 1, 3, 5,... etc. 
then the resultant vibrations are circular if the amplitudes a1 and a2 are 
equal in all other cases as shown in the Fig. 10.5 the resultant vibration 
are elliptical. The resultant light wave is then elliptically polarized. This 
elliptical polarization is then a general case and the circular and linear 
polarization states are only special.
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Fig. 10.5 Combination of two waves at right angles having different phase. Differences showing 
different states of polarization

10.2 OPTICAL CLASSIFICATION OF ANISOTROPIC MEDIA

Recalling the Maxwell’s equations as discussed in Chapter 7 i.e. equns. 
(7.1), (7.2), (7.3) and 7.5.

 ∇ . E = 
0

ρ
ε

 ∇ . B = 0,

  curl E = ∇ × E = t
∂

−
∂  B,    and 

  curl B = ∇ × B = µ0 0 .
t

∂ + ε ∂ 
j E  

Now, if we consider only the non magnetic media i.e. B = 0 and 
µr = 1(from B = µr H), which contains no volume charge r = 0 and no conduction 
current j = 0, then the above Maxwell’s field equations (recalled) reduce to : 

 ∇ . H = 0 and ∇ . D = 0 (As B = µ0H and D = ε0E)   …(10.3 a)

 ∇ × E = – µ0 t
∂
∂

 H and ∇ × H = 
t

∂
∂

D       …(10.3 b)

Now, assuming that this media sustains monochromatic plane wave, 
propagating in any direction k = n k (wave vector) then the field vectors E, 
D and H may then be given the harmonic representation as :

 E = E0 ei(k . r - wt), H = H0 ei(k . r – wt) and D = D0 ei(k . r – wt) 

Therefore, the field variation with both position and time is harmonic 
and as the wave vector k = nk the following properties may be derived

 ∇ . E = i k . E ∇ . H = ik . H
 ∇ × E = i k × E ∇ × H = ik × H and
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t

∂
∂

E = –iωE  
t

∂
∂

H = –iωH.

Thus for a plane harmonic wave representation of the field vectors E 
and H the following operators are valid

 ∇ → ik

  
t

∂
∂

 → – iw.

Now, substituting these operator relations in the equns. (10.3 a and b), 
the equations take the form :

 k . E = µ0ωH  k . H = –ωD
  k . H = 0 k . D = 0.   …(10.4)
Now if we eliminate H from equn. (10.4), the plane wave equation can 

be formulated as 
  k × (k × E) = µ0ω (k × H) = –µ0 ω2 D. …(10.5)

Now, the relation between D and E as from Maxwell’s equations as 
D = ε0 εr E = εE cannot be always used or expressed with scalar dielectric 
constant only as for anisotropic medium. We then must assume the general 
form of a linear relation between the field components with respect to a 
Cartesian axes fixed in the medium

3

0
1

i ij
j

D
=

= ε ε∑ jE , where i, j stand for x, y and z. There are nine coefficients 

εij, which form the elements of dielectric tensor ˆrε  so that the relation with 
D can be written as 

 
x

y

z

D
D
D

 
 
 
 
 

 = 0

xx xy xz x

yx yy yz y

zx zy zz z

E
E
E

 ε ε ε  
   ε ε ε ε   

  ε ε ε   

.

Now, if all the elements of the matrix ˆrε  are real the matrix is symmetric 
about the diagonal and describes a non active medium which exhibits no 
optical activity, where as in any optically active medium some elements 
εij must be complex. For real symmetric matrices there exists always a set 
of Cartesian axes, called principal axes, so that dielectric matrix takes the 
diagonal form

 ˆrε  = 

2

2

2

0 00 0
0 0 0 0
0 0 0 0

xx

y y

z z

n

n

n

 ε    ε =      ε     

.

Where, εx, εy and εz are principal dielectric constants and nx, ny and nz 
are principal refractive indices. Substituting these conditions in equn. (10.5), 
we get the general plane wave equation in anisotropic media:
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k × k × E + (w2/c2) ˆrε E and using the vector relation:

 k (k . E) – k2 E + (ω2/c2) ˆrε E = 0  …(10.6)
If now we assume that k lies on the x – z plane, then ky = 0 and 

k2 = k2
x + k2

z, then the scalar components are 

                     

2
2 2

2

2
2 2 2

2

2
2 2

2

0

0

0

x z x z

y x z y

z x x z x z

n E
c

n
c

n
c

 ω
− + = 

 
 ω

− − = 
 

 ω
+ − = 

 

x zk k k E

k k E

k k E k E .       …(10.7) 

The second reduces to the equation of a circle i.e.

         
2

2 2 2
2x z yn

c
ω

+ =k k     …(10.8)

and from first and third we get equation of an ellipse.

                            
( ) ( )

2 2

2 2 1
/ /
x z

z xn c n c
+ =

ω ω

k k    …(10.9)

In general case we must assume that the three principal refractive indices 
are different and for convenience, we can order them as nx > ny > nz. The 
end points of the possible wave vectors in the x-z plane are distributed on 
the circle equn. (10.8) and ellipse equn. (10.9).
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c
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c
�

yn
c

�
zn
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�

 

Fig. 10.6 The solid circle represents the wave vector surface (equn. 10.8) and the broken ellipse 
represents the equn. (10.9) with x-z plane 
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10.3 BIREFRINGENCE 

 The velocity of light in any refracting medium depends on the different 
colour components of white light. This phenomenon is known as dispersion 
but this is not only dependence of velocity of light, it also depends on the 
planes of polarization resulting into different refractive indices in different 
planes of polarization. This latter phenomenon is known as Birefringence. 
Let us discuss this in a bit more details.

The optical properties of anisotropic medium as derived in the earlier 
section can be simplified if we consider wave propagation along one of the 
principal axes of dielectric tensor, say the y-axis such that kx = kz = 0 and 
ky = k, the equn. (10.7) derived from Maxwell’s equations then take the form

                            

2
2 2

2

2
2

2

2
2 2

2

0

0

0

x x

y y

z z

n k E
c

n E
c

n k E
c

 ω
− = 

 
ω

=

 ω
− =  

 
.   …(10.10)

 The second equation states that there is no electric vector in the y-axis 
as the light cannot have any longitudinal component as we have considered 
that wave travels in the y-axis direction. So, Ey = 0 but Ex ≠ 0 and also 
Ez ≠ 0. Therefore from equations first and third of (10.10), as we are 
considering anisotropic medium these two equations must have different 
values of k say k1 and k2 so that

                                    
1 2,x zk n k n

c c
ω ω

= = .

If we consider nx 〉 nz and the configuration shown in the Fig. 10.6, we 
can obtain the intercepts of the outer and inner wave vector surfaces with 
the principal axis to be at k1 and k2 respectively. The two wave vectors (k) 
correspond to mutually orthogonal states of liner polarization, in the x and 
z directions, traveling with different phase velocities respectively as 

 
1k

ω    and   
2k

ω .

When these two waves travel within an anisotropic medium they follow 
different paths and due to this:
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10.4 OPTICAL ACTIVITY 

 There are certain media like quartz, which are found to rotate the plane of 
linearly polarized electromagnetic waves propagating through them and 
are said to be “optically active”. If for an electromagnetic wave propagating 
in z direction has the E and H components in x and y directions and is 
incident on a quart crystal block of thickness ∆Z, the E and H get rotated 
either clockwise or anti clockwise through certain angle say ϕ (depending 
on ∆Z) after it emerges out. This is shown in the following figure.

 

Quartz Plate
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 As early as in 1811 Dominique. F. J. Arago, a French physicist first 
observed that a plane polarized light undergoes a continuous rotation of 
its plane of polarization as it passes through a quartz plane in direction of 
its optic axis. This is the phenomenon now known as “Optical Activity”. 
It has been observed that when we look towards the source, the plane of 
polarization either rotates right (clockwise) or left direction (Anticlock 
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wise) depending on the two different crystal forms (Structure) in which 
quartz can exists. Further neither fused quartz nor molten quartz being 
amorphous shows any such optical activity. Therefore, this activity is 
structure dependent. The substances which cause clockwise rotation are 
referred to as dextrorotatory or d-rotatory and those which cause counter 
clockwise rotation are known as levorotatory or l-rotatory. 

R

L

R

R

R

L

L

1

2

3

4

5

X

Y

The Fresnel composite prism

Z (Direction of propagation)

Fresnel composite prism is an important study of circularly polarization 
in clockwise and anti clockwise directions. A linear polarized light is incident 
from left of the composite prism which is made up of aligning say five 
prisms in alternate order having left handed and right handed direction 
of rotation. This linear polarized light will be separated into two circularly 
polarized beams as they have in this optically active medium two different 
refractive indices corresponding to whether they have either right handed 
or left handed direction of rotation. The electric vector of these two fields 
separated into two beams from the original wave of amplitude E0 and 
propagating say in z-direction are given as 

For right handed: ER =  0

2
E {i cos(kRz – ωt) + j sin (kRz – ωt)}

 and for left handed: EL = 0

2
E {i cos (kLz – ωt) + j sin(k Lz – ωt)}

as w is constant and kR = k0nR and kL = k0nL and also as the resultant 
disturbance E is given by 

 E = ER + EL. 
The E can then be found after some simple trigonometric operations 

and that is 
E = E0 cos[(kR + kL) z/2 – ωt] [i cos (kR – kL)z/2 + j sin(kR – kL) z/2]
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It can also be followed that at the point of entrance i.e. z = 0, the 
above expression reduces to: E = E0i cos ωt, which the equation of linearly 
polarized light. Keeping this in mind we can understand that the field 
at point z makes an angle of β with respect to the original orientation as: 
β = (nL – nR)z/2 and for a medium of thickness d the plane of vibration 

rotates through an angle of ( )
0

L R
d n nπ

β = −
λ

 for d-rotatory nL > nR and for 

l-rotatory nR > n.

Optical activity from helical moleculesIncident
wave front The electric field E by electric

dipole and E , the electric field
by magnetic dipole and
E the resultant field
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Fig. 10.7 Propagation of linear polarized light through optically active medium and its rotation

In quartz the silicon and oxygen atoms are known to be arranged in 
either right or left handed spirals about the optic axis and because of this 
the incoming wave will interact oppositely with the specimen depending 
on whether it “sees” the molecules as right or left handed helices. Let us 
consider the molecule has its optic axis parallel to the time dependent 
electric vector of the incident wave (Ei). Now this field will drive charges 
up and down along the length of the molecule and produces a time variant 
electric dipole moment p(t) parallel to the axis. Now, due to the spiraling 
motion of the electrons a current may be considered to exist in spiral motion 
about the axis. This current will result magnetic dipole moment m(t). If the 
helical axis is parallel to the time dependent magnetic field vector Bi, then 
the varying magnetic field would have produced induced electric current 
circulating the molecule. This would again produce oscillating axial electric 
and magnetic dipole moments. In either case the p(t) and m(t) will be parallel 
or anti parallel depending on whether the molecule has its atoms spiral 
right handed or left handed. Now the molecule considered as oscillating 
dipole will absorb energy from the incident field and radiate. The electric 
field radiated by the electric dipole Ep and the electric field radiated by 
the magnetic dipole Em will be perpendicular to each other. The resultant 
of these two fields, ES will however be not parallel to the incident field Ei. 
The same is also true for the magnetic field. The plane of vibration of the 
resultant transmitted wave will then be ES + Ei = E and will be rotated in 
the direction determined by the sense of helix. The amount of rotation will 
however, vary with the orientation of each molecule.
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10.5 LIGHT AMPLIFICATION BY STIMULATED EMISSION OF 
RADIATION (LASER)

 Laser is the abbreviation of the title of this section. The explanation of the 
origin and emission needs quantum mechanical approach. Though this is 
an microscopic phenomena, it is included in this part of the book as the 
quantum mechanical treatment is avoided and the phenomenon is described 
rather qualitatively.

10.5.1 Spontaneous and Induced Radiative Transition

 It is known that when valence electrons of an atom are excited by some 
energy, they may absorb energy and move up in the vacant energy states. 
This is the excited state of the atom as a whole and atom returns back to the 
ground state by allowing the electrons to come down to their original level 
by emitting photons of a specific energy equal to the difference between the 
ground state and excited state. This is a spontaneous effect. The induced and 
spontaneous transitions are shown in the following energy level diagram, 
(Fig. 10.8).

N1

N2

Atoms

atoms

E1

E 2

E 1

E3

E2

Excited state

(a) Spontaneous emission

Metastable
state

Ground State

(b) Stimulated emission
three level laser

Optical
pumping

A B E v21 21+ ( ) B E v12 ( )

Fig. 10.8 Spontaneous emission and stimulated emission (three level laser)

First let us consider the spontaneous emission described in Fig. 10.8 a. 
N1 and N2 are the number of atoms in energy levels E1 and E2. The photon 
energy corresponding to the transition between these two levels is hν = 
E2 – E1. Atoms from higher level E2 may spontaneously jump to E1 and 
emit the photon. Now, let A21 represent the probability of this transition. 
If the radiation of energy E = hν is present, then it may be responsible for 
submitting this energy to the E1 level atoms to get excited to the level E2. 
Now, if B12 is the transition probability per unit time per unit intensity of 
radiation present, then B12 E(ν) will give the induced absorption transition 
probability per unit time. But the radiation because of its interaction with 
excited atoms at E2, also produces emission transition from E2 to E1 with an 
induced emission transition probability per unit time as B21 E(ν). Therefore, 
total emission per atom per unit time from E2 to E1 is A21 + B21 E(ν). Now, 
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if there are N2 number of atoms in E2, number of such transition per unit 
time is given by [A21 + B21 E(ν)]N2. At the same time the number atoms that 
jump from E1 to E2 is given by B12 E(ν) N1. Therefore the net change in the 
number of atoms at E 2 level per unit time is equal to net gain by absorption 
minus the rate of loss due to emission.

                           
2

12 1 21 21 2( ) [ ( )]dN B E N A B E N
dt

= ν − + ν .

Now, when equilibrium is established between atoms and radiation, we 

have 2 0dN
dt

= . This leads to: B12 E(ν) N1 = [A21 + B21E(ν)] N2. This implies 

that the number of absorption and emission per unit time between these two 
levels are same. Now, if the atoms are in thermal equilibrium and follow 
Maxwell-Boltzmann statistics (discussed in Chapter 12), then

                                           

( )/ /1 2 1

2

E E kT h kTN e e
N

− ν= = .

So that,      /
12 2 1 2 1( ) ( )h kTB E e A B Eνν = + ν

or that,                           21 12
/

21 12

/( )
/νν =

−h kT

A BE
e B B

   …(10.11)

Now, comparing this with Planck’s radiation equation discussed in 

Chapter 12, (equn. 12.54) which will be derived as : E(n) = 
3

3 /
8 1

1h kT
h

c e ν

π ν
−

   

and comparison with the above equn. (10.11), we find that

                                        

3
21 21

3
12 12

8 and 1.A B
B Bc

πν
= =

This expression is known after Einstein equation.
Using the above equations we get

 /21

21

Spontaneous emission probability 1
Induced emission probability ( )

h kTA e
B E

ν= = −
ν

.    …(10.12)

Now, two cases may arise either hν >> kT or hν << kT. In the first case 
spontaneous emission is much more probable than induced (stimulated) 
radiation but in the second case where hν << kT , the induced or stimulated 
emission become prominent. As this induced radiation is the result of the 
action of incoming radiation on atoms and so this forced atomic oscillation 
bears a constant phase difference relative to the incoming radiation. This 
means that all atoms radiate in phase and as a result the stimulated radiation 
is coherent. This is the one of the most important property of stimulated 
emission or Laser. All the wave phenomena of light like interference, 
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diffraction and polarization etc., can be more efficiently demonstrated with 
Laser. On the other hand, the spontaneous radiation occurs at random 
with no correlation with time and as the phases of atomic radiation are 
distributed randomly, the spontaneous emission is incoherent. But not 
only that the stimulated radiation is coherent it is very intense and strictly 
monochromatic. When several sources radiate in phase, the resultant 
amplitude is the sum total of the individual amplitude. If now all the sources 
are alike, we have;

Resultant amplitude of coherent radiation = Nx source amplitude
where N is the number of sources.
As intensity is the square of amplitude, we get :
Resultant intensity of coherent radiation = N2x source intensity. If 

the number of sources is large, we get stimulated radiation of very high 
intensity. Therefore, major importance of Laser is its perfect coherency and 
very high intensity. So, it can be effectively used in optical communication, 
photoluminescence and in many industrial applications.

REVIEW QUESTIONS

 1. It is found that when sodium light is incident on the surface of a 
certain glass plate at an angle of 58°18, that the reflected light is plane 
polarized. What is the refractive index of the glass?

 2. Explain the reason for polarization and the different types of it like 
circularly polarized, elliptically polarized etc.

 3. What is the reason for double refraction, Explain the function of Nicol’s 
prism.

 4. The two refracted rays of one single incident ray travel with different 
velocities in the medium. Narrate the consequence of this phenomenon 
and also explain the Birefringence.

 5. Explain the differences between spontaneous emission and stimulated 
emission.

 6. Explain the phenomena Birefringes and mention the use of this in 
liquid crystal devices.
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11

Electromagnetic Waves

11.1 INTRODUCTION 

We have seen that a particle’s momentum given by p = mv depends on its 
inertia, its velocity and also its kinetic energy and angular momentum. As 
such a particle’s dynamical behaviour can change as v changes along its path. 
For particles a complete description of the dynamics requires a solution for 
their trajectory, which provides v(t) and r(t) subject to the initial conditions. 
In contrast to this particle behaviour, when waves are moving in vacuum, 
their speed is invariant since it is measured by all observers as equal to 
velocity of light. The field amplitude may be different. Therefore for fields, 
the momentum and angular momentum, densities and also the energy 
flux change because the field intensities E and B vary in time and space. 
To complete the description of field dynamics, we need to know the time 
dependent and space dependent behaviour of the field amplitudes which 
should include the information on wave vector or propagation direction. 
This is what we will discuss in this chapter. We shall see that the fields may 
either be “attached” to the sources or become completely “detached” in 
the radiation zone. These two categories result in to the difference in their 
dynamical properties.

11.2 ELECTROMAGNETIC WAVE 

In the region of space where there are no free sources, Maxwell’s equations 
as introduced in Chapter 7 reduce to simple form as given by:
 ∇ . D = 0

 ∇ . B = 0

  ∇ × E = 
1
c t

∂
−

∂
B

 ∇ × H = 
1
c t

∂
∂

D.  …(11.1)
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We will assume here that the medium is non conducting, because 
otherwise from Ohm’s Law, J = σE results in a current density J and this in 
turn would act as a source of additional fields.

Considering linear isotropic media,
 D = εE,
 H = µ′B, where ε and µ′ = 1/µ are constants so that 

their derivatives are zero.
Substituting these in the above equn. (11.1), they can be written as:
  ∇ . E = 0  (a)
 ∇ . B = 0  (b)

 ∇ × E = 
1
c t

∂
−

∂
 . B  (c)

and

  ∇ × B = c t
µε ∂

∂ E.           …(11.2)(d) 

These simultaneous equations are first order differential equations. 
Now, if we take the curl of equn. (11.2 d) and add to it the time derivative 
of (11.2 c), we get

 ∇ × (∇ × B) = – 
2

2 2c t
µε ∂

∂
 B

But since ∇ × (∇ × B) = ∇(∇ . B) – ∇2B and as ∇ . B = 0, we get

 ∇2 B – µε 
2

2( )c t
∂

∂
B = 0.

This hyperbolic partial differential equation is commonly known as 
wave equation and one of its solutions is

 B = B0 exp {i(k . x – ωt)}.  …(11.3)
Here  ω, the angular frequency is related to the magnitude of the wave 

vector k by the relation 

 k = 
ω
ν

 where v = c/ µε  is a constant of the 

medium and will be less than c but will be equal to c in vacuum where 
µ = ε = 1.

A similar reduction may be made for electric field E, which produces 
a second wave equation 

 ∇2 E – µε 
2

2( )c t
∂

∂
E = 0

whose solution is E = E0 exp{ i(k . x – ωt)} …(11.4)
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Now, the presence of sources in the system i.e. where ρ ≠ 0 and J ≠ 0 
modifies the character of these wave equations considerably. In that case, a 
complete solution to the corresponding wave equations with sources on the 
right hand side will include waves of the fields associated with the charges 
themselves and these are not planar. However, the discussion on this aspect 
is beyond the scope of the present book.

Now, recalling the above two wave equns. (11.3) and (11.4), where E0 
and B0 are constant vectors, 

 k . k = 
2

v
ω 

 
 

 where v = 
c
µε

  …(11.5)

let us now examine this two solutions (11.3) and (11.4) and see what 
other properties are suggested by Maxwell’s equations. The electric field 
must satisfy Gauss’s law ∇. D = 0 and this with ε = constant, leads to the 
condition:

 ∇. E = (i k1 E01 + i k2 E02 + i k3 E03) exp{i(k . x – ωt)} = 0.
That is k . E0 = 0 and also k . B0 = 0 as the latter B must also satisfy the 

same constraint.
This shows that the electromagnetic wave in non conducting medium 

must be transverse to the propagation vector k. This result can be shown 
in the following Fig. 11.1.

k

E

�

Fig. 11.1 The electric vector E rotates around k, the direction of propagation with angular 
frequency, say w in circular polarized electromagnetic wave

11.2.1 Polarization

 Since E, B and k form an orthogonal set, the more general way to express 
the electric field vector is 

E(x, t) = (E01 + E02) exp{i(k . x – i ωt)}° (E01 ε′1 + E02ε′2) exp{i(k . x – i ωt)}
where ε′1, ε′2 and k unit vectors constitute an alternative set of orthogonal 

vectors.
 If we write E01 = E01exp (iϕ1) and E02 = E02exp (iϕ2) so that

E(x, t) = [ε′1E01 + ε′2 E02exp{i(ϕ2 – ϕ1)}]exp (ik . x – iωt + iϕ1)     …(11.6)
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The overall phase of the field ϕ1, represents a constant rotation in the 
complex plane. We can drop it and write the field as

E(x, t) = [ε′1E01 + ε′2 ε′E02exp {i(ϕ2 – ϕ1)}] exp (ik . x – i ωt +).  …(11.7)
To understand the behaviour of the actual electric field, we should be 

interested in the real part of the above equation of the field. We find from 
the above equn. (11.6) that when (ϕ2 – ϕ1) = 0 the wave is linearly polarized. 
The total real part of the above equation will then comprise of two parts.

E1 = E01cos (k . x – ωt) and E2 = E02cos (k . x – ωt) so that arctan 
E2/E1 remains constant as the field evolves in space and time. Under this 
condition the field vector oscillates along a constant direction making an 
angle arctan E2/E1 with respect to the ε′1 direction. When (ϕ2 – ϕ1) ≠ 0, the 
wave is elliptically polarized and rotates around k. Because of the phase 
difference between E01 and E02, the field component in the ε′1 direction 
passes through its notes at different spatial locations and/or times compared 
with the other one. Though they do not change proportionately, the net 
effect is a rotation in the ε′1 – ε′2 plane. E sweeps around once every 2π/ω 
seconds, so that the angular frequency is maintained at ω. It may also be 
seen that when as a special case E01 = E02 and (ϕ2 – ϕ1) = ± π/2, then 
the amplitude of the electric field E is constant and E1(real) = E01cos(k . 
x – ωt) and E2(real) = E01 sin(k . x – ωt). Under this condition E then rotates 
around k with a constant magnitude and angular frequency ω. This is case 
of circular polarization. Under this condition the electric field is given by 

 E(x, t) = E0(ε′1 + i ε′2) exp {i(k . x) – ωt}   …(11.8)
The reader may compare these results with the polarization discussed 

and described in the Chapter 10 on polarization of light.

11.2.2 Reflection and Refraction

Now, from (11.5) we can know that in the medium m1 

 ki = kr = 1 1 c
ω

µ ε  ...(11.9)

and for the refracted medium with µ2 

  kt = 1 1 c
ω

µ ε .  ...(11.10)

According to the way we have chosen the axes and as ki, kr and kt are 
coplanar,

 kixx = krxx + kryy
and so,  kix = krx            and            kty = 0. 
From the above finding we can say sin θi = sin θr because of equn. (11.9) 

which means that angle of reflection is equal to the angle of incidence and 
this is known as law of reflection. 
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Fig. 11.2 The directions of unit vectors ε′1 and ε′2 are respectively as on the plane  of the figure 
and perpendicular to it and wave vectors ki, kr and kt are respectively for incident, reflected and 

transmitted field and are coplanar

Now, again from the equns. (11.9) and (11.10), it implies that
 kisinθi = kt sinθt 

 so that                 2 2

1 1

sin
sin

i

t

µ εθ
=

θ µ ε

This is known as Snell’s law of refraction.
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CHAPTER

12

 Statistical Mechanics

12.1 INTRODUCTION TO CLASSICAL STATISTICS 

The classical mechanics founded on Newton’s laws discusses certain 
principles such as conservation of energy and momentum. These principles 
are also applied to interacting particles. The classical statistical mechanics 
introduced in this chapter extended these principles to a system of many 
particles and is used to obtain collective or macroscopic properties of 
the system without even considering the detailed motions of individual 
particles. We use “particle’ here in the broad sense, meaning a fundamental 
particles, such as electrons or aggregate of fundamental particle such as 
atoms, molecules etc., composing a given system. The necessity of this 
statistical approach can be realized from the simple fact that in one cubic 
centimeter of a gas at STP the number of molecules is 3 × 1019 and to study its 
bulk properties like pressure and temperature, the approach to concentrate 
on each molecules individually to get the bulk properties is practically 
impossible and also unnecessary. As a reasonable alternative, statistical 
analysis of such many particle system, we make some reasonable estimate 
of the dynamical state of individual particles based on general properties 
of the particles. We make this estimate by introducing the concept of the 
probability of distribution of the particles among the different dynamical 
states in which they may be found. When we introduce the idea of probability, 
we take in to mind that particles do not move randomly or in a chaotic way 
without obeying any well defined laws. 

12.2 STATISTICAL EQUILLIBRIUM AND BOLTZMANN’S 
PRINCIPLE

If we consider an isolated system which do not exchange matter or energy 
with other separate systems to be composed of a large number N of particles, 
say n1, n2, n3, ….. etc., which are non interacting in a space of volume V. 
Then we can write
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 N = i
i

n∑  

and at a particular time particles are distributed among different energy 
states so that n1 particles have energy E1, n2 particles have energy E2; and 
so on. The total energy of the system is given by

 U = i i
i

n E∑ .

Now the parameters defined by U, V and N determine the macroscopic 
state and parameter Ei determine the microstate of the ith particle.

Since all particles are assumed to be non interacting, it seems at first 
sight that this assumption is unrealistic. However, under special conditions 
we can use a technique called self-consistent field, in which each particle is 
considered subject to the average interactions of the others, with an average 
potential energy which depends only on its coordinates, so that we can 
assume the above two equations as valid. It is also reasonable to assume 
that for each macroscopic state of a system of particles there is a partition 
which is more favored than the other. In other words, “Given the physical 
conditions of the system of particles there is a most probable partition 
and when this partition is achieved, the system is said to be in statistical 
equilibrium”.

The number of microstates compatible with a macroscopic state of the 
actual system is called “Thermodynamic Probability”, W. 

A given macroscopic state defined by parameters U, V, N will be 
represented by phase points in a volume ∆Ω in phase space. This phase 
volume is an increasing function of U and also depends on N and V. 
The thermodynamic probability is proportional to the phase volume  
∆Ω(U,V,N), so that its magnitude Ω(U, V, N) and the nature of its dependence 
on U, V, and N will provide us with a bridge between statistical mechanics 
and thermodynamics. As N is typically very large, the analysis will be 
carried out in the thermodynamical limit, where N → ∞ and V → ∞, so that 
N
V

 and U
N

 remain definite and a continuous distribution of energies Ei is 

obtained. We find that the extensive variables, such as energy and entropy 
which refer to system as a whole become in this limit proportional to both 
V and N whereas the temperature and pressure remain independent of 
these parameters.

 

U U�

Fig 12.1 Thermal contacts between two subsystems   
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A direct relation between the thermodynamic probability W(U, V, N) 
and an extensive thermodynamic function can be derived by diving a 
system in to subsystems which are separately in states of thermodynamic 
equilibrium specified by U, V, N and W(U V N) and U′, V′, N′ and W′(U′ V′ 
N′) respectively. In the above figure the subsystems are separated by rigid 
walls so that V, V′ and N, N′ remain constants and the exchange of energy 
within the subsystems is allowed so that

 U0 = U + U′ = constant.  …(12.1)

Now, any one microstate of W(U) can combine with any microstate 
W(U′) to yield a microstate of the system W(U, U′) and the rule for combining 
the microstates reads

W0(U, U′) = W(U) W′(U′) = W (U)W′ (U0 – U) = W0(U, U0 – U). …(12.2)

The thermodynamic equilibrium of the system will be attained at the 
value of U which maximizes the thermodynamic probability W0 (U, U0 – U) 
and this state of equilibrium will be attained after the lapse of maximum 

time interval by the system. Now let U
−

 and 0U U U
− −

′ = −  be the definite 
values of U and U′ that maximize the function (12.2) under the condition 
(12.1). Therefore,

 d[W(U) W′(U′)] = 0, dU + dU′ = 0 
This gives

 ln ( )
U U

W U
U −

=

 ∂
 

∂ 
 = ln ( )

U U

W U
U −

= ′

 ∂
′ ′ 

∂ ′ 
 …(12.3)

Introducing a parameter β = 
,

ln ( , , )
V N

W U V N
U

 ∂
 

∂ 
 …(12.4)

 so that at equilibrium β  = β′.

The physical significance of this β is clear when we take that in 
Boltzmann’s principle, the thermodynamic entropy S(U, V, N) is an 
extensive function directly related to the thermodynamic probability  
W(U, V, N). 

 Now, recalling from the first law of thermodynamics, dQ = dU + pdV, 

which is dU = TdS – pdV and these result T = 
V

U
S

 ∂
 ∂ 

and finally this can be 

written for this system as 

                                   
,

( , , ) 1

V N

S U V N
U T

 ∂
= 

∂    …(12.5)
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Therefore, at the condition of equilibrium the above system behaves as

  T = T′  or  ( ) ( )

E E E E

S U S U
U U−

= ′ = ′

∂ ∂ ′ ′   =   
∂ ∂ ′    

.    …(12.6)

Now, finding the correspondence between thermodynamic approach 
(12.6) and statistical approach (12.3), we get after using equns. (12.5) and 
(12.4)

0

0,

( )/1
ln ( )/ ( ln ) ln lnV N

S U U S SS k
T W U U W W W β

 ∂ ∂ −∆
= = = = 

β ∂ ∂ ∆ − 
.   …(12.7)

Where the additive constant S0 gives the law of increase of entropy must 
give the minimum entropy associated with the state of perfect order. This 
is the macro state realized through a single microstate, that is W0 = 1. The 
equn. (12.7) can then be rewritten in the form

 S = kβ lnW + S0.
At absolute zero the entropy must vanish if third law of thermodynamics 

is to hold and if we assume that thermodynamic probability is one at absolute 
zero, the S0 is equal to zero, this gives:

 S = kβ lnW. …(12.8)
This is known as Boltzmann’s Relation which can also be written in 

the form:
 W = e S/k

β.
This shows that increase of entropy of a system in thermodynamic 

equilibrium is associated with increase in the number of associated 
microstates, W in phase space. The absolute value of entropy in terms of 
the number W of accessible microstates can then be taken as a measure of 
disorder of the system. The constant k, known as Boltzmann’s constant 
allows us to measure the statistical parameter b from (12.7) as

 β = 
1

kT
. …(12.9)

 The key problem of statistical mechanics is to find the most probable 
partition of an isolated system (distribution law), given its composition. 
Once the most probable partition has been found, the next problem is to 
devise methods for deriving macroscopic properties from it after adopting 
different assumptions so that the distribution law yield finally a result which 
is compatible to the experimental observations.

12.3 MAXWELL – BOLTZMANN DISTRIBUTION LAW

 Classical statistical mechanics was developed in the last part of nineteenth 
century and the beginning of twentieth century as a result of the work 
of Ludwig Boltzmann (1844-1906), James C. Maxwell (1831-1879) and 
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J. W. Gibbs (1839-1903). The classical statistical mechanics has a broad 
applicability especially when it is applied for the study of many properties 
of gases. The two other statistics namely Fermi-Dirac and Bose-Einstein, 
belong to quantum statistics, which are to be discussed in the following 
sections. The classical statistics, however, can be considered as a limiting 
value of the two quantum statistics.

 Let us consider a system composed of large number of identical yet 
distinguishable particles. The consideration that the particles seem to 
posses two contradictory characteristics that is they are distinguishable in 
one hand and identical on the other can be explained as, the particles are 
identical because they posses same structure and composition and they 
are distinguishable at the same time because we can distinguish or tell 
the difference between one particle and another identical particle. Though 
there exists an apparent lack of logic, the results we get are sufficiently 
simple and justify a preliminary discussion on the subject. Let us represent 
a particular partition n1, n2, n3 ….etc., distributed in energy states E1, E2, E3 
…. etc.

To start with let us assume that all energy states equally accessible i.e. 
all energy states have the same probability of being occupied by particles. 
This can be summarized as that the probability of a particular partition is 
proportional to the number of different ways in which the particles can 
be arranged among available energy states to produce the partition. Let 
there be particles which are distinguishable are named as p, q, r and s and 
in a particular distribution or partition if p, r, s exist in the energy states 
respectively as E1, E3 and E4 will be different if all the three exist in energy 
states instead of E1, E3 and E4, they exist in respectively states as E4, E1 and E3 
.This is because the particles are distinguishable. Now, there are N number 
of total particles, then the first energy state can be filled by any one of the N 
particles to make one particular partition i.e. N different ways. Now when 
first particle is selected, the same state can be filled up by a second particle 
in (N – 1) ways and so the third by (N – 2) ways. All these three particles 
existing in the first energy state can then be selected to fill the energy state 
in N(N – 1) (N – 2) ways.

    N(N – 1) (N – 2) = 
!

( 3)!
N

N − .  ...(12.10)

Now, which particular particle is selected first and which second does 
not make any different partition as each particle is identical and the partition 
is dependent on the number of particles selected and not which one is 
selected. Therefore, we must divide the expression (12.10) by 3! resulting in: 

!
3! ( 3)!

N
N −

. The general expression for the total number of distinguish-able 

different ways of placing n1 particles in E1 state is
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1 1

!
!( )!

N
n N n−

  …(12.11)

Now, if there will be n2 numbers of particles to be selected in E2 
energy state when n1 is already selected in E1 then this can be done in  

1

2 1 2

( )
( )!

N n
n N n n

−
− −

 and similarly for the third energy state E3, n3 number of 

particles can be selected when n1 and n2 are already selected in:

  1 2

3 1 2 3

( )
!( )!

N n n
n N n n n

− −
− − −

 ways.

Now, if this process is continued the total different ways to fill up E1, E2, 
E3 … states by n1, n2, n3,… particles, which is the thermodynamic probability 
W can be obtained by multiplying each such terms. The final value of W 
obtained on multiplication will cancel similar terms in numerator and 
denominator resulting in 

 W = 
1 2 3

!
! ! !....

N
n n n .  …(12.12)

Now, here we have assumed that each energy state has equal intrinsic 
probability of being occupied by particles, but if it is not i.e. meaning that the 
states have different intrinsic probabilities, so that the number of particles 
n1, n2… etc. are to decided by that then if for Ei state has such intrinsic 
probability as gi, then first particle out of ni particles can be selected in g i 
ways and ni particles gi × gi × gi × …. to ni terms and that is gi

ni number of 
ways. Therefore, the total probability of a given partition is given by

 W = 
1 32

1 2 3

1 2 3

! ...
! ! !...

n nnN g g g
n n n

.  …(12.13)

Now, if we remove the distinguishability and assume that all particles 
are identical and indistinguishable that is, there is no difference if any one 
of the number of particles accommodated in one energy state in a particular 
partition is selected before the others of the same state. In this condition all 
N! permutations among the particles occupying the different states give the 
same partition. This means that we have to divide (12.3) by N!, resulting in

 W = 
31 2

1 2 3

1 2 3 1

...
! ! !... !

nnn n N i
i

ii

gg g g
n n n n=

= ∏ .  …(12.14)

This is the probability of a distribution in Maxwell – Boltzmann statistics.
Now, the most probable or equilibrium partition corresponds to that for 

maximum of probability W. It is mathematically easier to find the maximum 
of ln W instead of finding the maximum of W.

Now, taking log of equn. (12.4) we get
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 lnW = n1 ln g1 + n2 ln g2 + n3 ln g3 + … – ln n1! – ln n2 ! – ln n3 !  …(12.15)
Now in the above equation we have ln n1, ln n2, ln n3 etc. are in the 

form ln x!, which is ln x ! = ln1 + ln2 + ln3 + …. + ln (x – 1) + ln x and when 

x is an integer ln x!  = 
1

ln
x

x∑ and when x is very large we can replace the 

summation by an integral without much error and so we can write ln x ! 

= 
1

ln
x

x dx∫  then integrating by parts (replacing ln x = u and dv = x) we get 

ln x ! = x ln x – x + 1. Neglecting 1 compared to large x we get that what is 
called Sterling’s approximation : ln x ! = x ln x – x.

Now, applying this Sterling’s approximation in the equn. (12.15) 
ln W = n1 ln g1 + n2 ln g2 + n3 ln g3 + …, – (n1 ln n1 – n1) – (n2 ln n2 – n2)  

   –(n 3 ln n3 – n3) – …
          = –n1 ln n1/g1 – n2 ln n2 / g2 – n3 ln n3 / g3 – …+ (n1 + n2 + n3 + …)

Using  N i
i

n∑ we get  

  ln W = N – ln /i i i
i

n n g∑ . …(12.16)

Now, differentiating this equation and as for a closed system dN = 0, 
we get

 d(ln W) = ln / (ln / )i i i i i i
i i

dn n g n d n g− −∑ ∑

   = ( )ln / ( )/i i i i i i
i i

dn n g n d n n− −∑ ∑
 as intrinsic probability gi is constant. Therefore,

 d(ln W) = ( )ln / ( )i i i i
i i

dn n g dn− −∑ ∑ . Now as dN = 0, 

   
0i

i
dn =∑ .

 …(12.17)

Therefore,  –d(ln W) = ln / 0i i i
i

n g dn =∑ . …(12.18)

as in the equilibrium condition the probability of partition attains its 
maximum.

 As again for the closed system the total energy U is constant then as 

 dU = 0i i
i

E dn =∑ .   …(12.19)

 Now, to compensate for two conditions given by equns. (12.17) and 
(12.19), we adopt the Lagrange’s method of undertermined multipliers, α 
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and β and multiplying the equn. (12.17) by α and (12.19) by β and adding 
to equn. (12.18), we obtain

                
( ln / ) 0i i i i

i
n g E dn+ α +β =∑ .

These α and β are two arbitrary coefficients. The equilibrium condition 
of distribution is then obtained if

                                  ln ni /gi + α + βEi = 0
or,                    Ei

i in g e−α −β= .   …(12.20)

Now, as we know that  N = n1 + n2 + n3 + ……

      = ( )1 2 3
1 2 3 ....E E Eg e g e g e− α −β − α −β − α −β+ + +

       = ( )2 3
1 2 3 .....E E Eie g e g e g e− α −β −β −β+ + +

                                            = Ei
i

i
e g e− α −β 

 
 
∑  = e–aZ.

Where,  Z  = 
Ei

i
i

g e−β∑   …(12.21)

called the partition function. Writing e–a = N/Z the equn. (12.20) can 
be written as 

                  1
1

E
i

Nn g e
Z

−β=  = /E kTi
i

N g e
Z

− .  …(12.22) 

This expression (12.21) is called Maxwell-Boltzmann distribution law. 
As quantity α is related to partition function and β is related to energy of 
the system.

12.3.1 Application of Boltzmann Statistics in Ideal Gas

 It is now to find the system of particles in nature whose collective behaviour 
resembles the prediction of Maxwell-Boltzmann distribution law. It is found 
that most of the gases can be described according to Maxwell-Boltzmann 
statistics over a wide range of temperature. We consider that the gas 
considered is composed of monatomic molecules and do not possess any 
potential energy and possess only translational kinetic energy. Then 

Ei of equn. (12.21) is given by

 Ei = 2 21 1
2 2i ip mv

m
=    … (12.23)

Now, as the kinetic energy of an ideal gas occupying a large volume may 
be considered as not being quantized but as being a continuous spectrum, 
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then the summation sign as given above: Z = Ei
i

i
g e−β∑  can be replaced by 

an integral in the form as b = 1/kT:

 Z = /

0

( )E kTe g E dE
∝

−∫ . …(12.24)

Where, g(E)dE replaces gi and represents the number of molecular states 
in the energy range between E and E + dE. This number arises from the 
different orientations of the momentum p for a given energy.

Now, let us consider the number of energy states or levels in a small 
energy range dE for a particle in a very large potential box. The momentum 
of the particle in x, y and z-directions in a three dimensional potential well 
be given as px, py and pz and all these three momentums are quantized so 
that for potential well or box being cube in shape can be given as

                  
1 2 3, and

2 2 2x y z
h n h n h np p p

a a a
= = = ,

where n1, n2 and n3 are integers
Now, the energy:

 E = ( )2 2 2 21 1
2 2 x y zp p p p

m m
= + +

  = 
2

2 2 2
1 2 32 ( )

8
h n n n
m a

+ + .

Now as n1, n2 and n3 are all positive, the number of energy states between 
zero and E, N(E) approximately will be equal to the volume of the octant 
which is 1/8 the of the sphere with radius

 r = (n1
2 + n2

2 + n3
2 )1/2.

Therefore, 

N(E) = 
3/22

3 3/2
1 2 3 2

81 4 ( )
8 3 6 6

m ar n n n E
h

 π π π = + + =        
As a3 = V, the volume then

  = 
3/2

2
8

6
V mE

h
π  

 
 

 = ( )1/23 3 /2
3

8 2
3

V m E
h
π

  dN(E) = 
3 1/2

1/2
3

4 (2 )V m E dE
h

π . …(12.25)

It is convenient to write dN(E) = g(E )dE and replacing g(E) in equn. 
(12.24), we get
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 Z = 
3 1/2

1/2 /
3

0

4 (2 ) E kTV m E e dE
h

∞
−π

∫ . …(12.26) 

The value of the integral in the right side of equn. (12.25) can be 

evaluated as  31 ( )
2

kTπ . Therefore,

 Z = 
3/2

3
(2 )V m kT

h
π .  …(12.27)

This gives the partition function of an ideal monatomic gas as the 
function of temperature and the volume of the gas. Taking natural logarithm 
we get ln Z = C + 3/2 (ln kT ) where C is the constant which includes all 
remaining constant quantities.

Now, from equn. (12.21) as β = 1/kT, dβ = – dT /kT 2 and as the total 
energy of the closed system

 U = n1E1 + n2E2 + n3E3 + …….

   = Ei
i i

i

N g E e
Z

−β 
 
 
∑

and using the definition of partition function (12.21), we may write U 
in the alternative form as:

 U = 

Ei
i

i

N d g e
Z d

−β 
−  

β  
∑

 

   =  – (ln )N dZ dN Z
Z d d

= −
β β

.  …(12.28)

and so,  Eaverage = (ln )U d Z
N d

= −
β

.

Now, writing the Maxwell-Boltzmann distribution law (12.22) in terms 
of temperature T and since β = 1/kT; where k is Boltzmann constant and 

then 2
dTd
kT

β = − , writing the expression of energy U as

 U = 2 (ln )dkN T Z
dT

.  …(12.29)

The average energy per particle U / N, is then given by:

 Eave = 2 (ln )dkT Z
dT

. …(12.30)

Now, substituting the value of ln Z = C + 3/2 ln kT in equn. (12.30) we 
get the value of the average energy of the molecules as
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 Eave = 
3
2

kT.  …(12.31)

 And as  U = NEave = 
3
2

NkT.  …(12.32)

12.3.2 Observation on Boltzmann Distribution Law

 Considering the equn. (12.22), since the exponential /E kTie−  is a decreasing 
function of Ei/kT, the larger the ratio Ei/kT, the smaller the value of 
occupation number ni. Therefore, at a given temperature, the larger the 
energy Ei, the smaller the value of ni. Therefore, the occupation of states 
available to the particles decreases as their energy increases. Conversely at 
low temperature only the lowest energy levels are occupied. As T → 0, all 
the available particles tend to occupy the lowest energy state. This is what 
is shown in Fig. 12.2 below.

i

i

g

n

0 iE

Low temperature

High temperature

Maxwell-Boltzmann distribution

Fig 12.2 Maxwell-Boltzmann distribution at high and low temperatures

Now, for an ideal gas we have seen that from equn. (12.22) after replacing 
g i by g(E) dE and taking differential and after replacing g(E) dE

 

3 1/2
/ 1/2 /

3
4 (2 )( )E kT E kTV mN Ndn e g E dE E e dE

Z Z h
− −π

= = .

Where dn is the number of molecules with energy between E and 
E + dE. After introducing the value of Z from (12.27) we have,

                                        1/2 /
3/2

2
( )

E kTdn N E e
dE kT

−π
=

π
.  …(12.33)

This is Maxwell formula for energy distribution of molecules in an 
ideal gas. A plot of dn/dE for two different temperatures are given in Fig. 
12.3 below. The number of molecules per energy level i.e. dn/dE shows the 
difference in packing of energy levels at two temperatures. The difference 
is marked in the figure. It is interesting to note that the expression (12.33) 
is independent of mass of the molecules.



 12.12 Fundamental Physics

 E0

100 K

300 K

dn
—
dE

Maxwell molecular
energy distribution

Fig 12.3 Maxwell formula for energy distribution. While higher energy levels at high temperature is 
more densely packed by molecules, same level remain almost empty at lower temperature

12.4 INTRODUCTION TO QUANTUM STATISTICS

 In the last section we discussed the classical statistics characterized by 
the method of calculation of probability of a given partition and by 
Maxwell-Boltzmann distribution law, for the most probable or equilibrium 
partition. When we discussed classical statistics we ignored any symmetry 
considerations related to the distribution of particles among the different 
states associated with each energy level accessible to the particles. There 
may be certain restrictions on the number of different ways in which a 
group of particles may be distributed among the available wave functions 
associated with energy state. These restrictions of quantum origin, affect 
the probability of a given partition. The theory in which these symmetry 
considerations are taken into account is called ‘quantum statistics’.

There are two kinds of such statistics one where in the particles obey 
exclusion principle and hence described by antisymmetric wave functions. 
This kind is named as “Fermi–Dirac statistics”. The particles which obey this 
statistics are known as ‘Fermions’. In the other type of statistics, where the 
particles do not obey the exclusion principle and are described by symmetric 
wave functions, is known as Bose-Einstein statistics, The particles which 
obey this statistics are called ‘Bosons’.

12.4.1 Fermi-Dirac Distribution Law

We now find the probability of partition of a system of particles where 
the particles are identical and indistinguishable and in addition they 
obey the exclusion principle. Under this principle no two particles can 
be in the same dynamical state and the wave function of the total system 
is antisymmetric. It has been stated that the particles which satisfy these 
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conditions are known as ‘Fermions’ after Enrico Fermi (1901-1954) who 
first discussed this system. It has been found experimentally that all 
fermions have spin 1/2. Now in classical statistics, gi has been introduced 
as intrinsic probability, where as in the quantum statistics it is redefined 
as the different quantum states corresponding to a given energy i.e. the 
degeneracy of energy states. To each quantum state there corresponds a 
particle wave function. These wave functions are determined by each of 
the possible arrangements of quantum numbers corresponding to a given 
energy level. Explicitly, for particles of spin 1/2, not subject to magnetic 
forces, each particle may be in each energy state with spin up or down  
(ms = ± 1/2 )* and so gi = 2. This gi is the maximum number of particles 
(fermions) that can be accommodated in an energy level without violating 
the Pauli’s exclusion principle. Therefore ni, the number of particles in an 
energy level Ei can not exceed the gi in any particular partition i.e. ni ≤ gi. 

Now, to fill the energy level Ei with available ni number of fermions, 
we can place the first particle in any of the g i states available and thus this 
can be done in gi different ways. Once one of such gi state is filled up, the 
second particle in (gi – 1) way and the third in (gi – 2) ways. This continues 
until all of the ni particles are placed in gi states with energy Ei . Therefore, 
this distribution in one particular partition can be done in gi(gi – 1) (gi – 2) 
(gi – 3) …….(gi – ni + 1) ways.

This can be written in the form:

                                               
!

( )!
i

i i

g
g n−  …(12.34)

* This will be discussed in one later chapter.
Now, in addition to the exclusion principle so far applied if now we 

introduce the concept that the particle are indistinguishable, then it is 
not possible to differentiate which of the particle from ni is chosen for 
the particular gi. Therefore, it is not possible to distinguish the partition 
distribution, if the ni fermions are reshuffled among gi energy states in the 
level of Ei. The resulting conclusion is then the equn. (12.34) is to be divided 
by ni!. Then the resulting distribution is 

   
!

! ( )!
i

i i i

g
n g n−   …(12.35)

We now can find the total number of distinguishable different ways of 
obtaining the partition n1, n2, n3 …. among energy levels E1, E2, E3, ….. by 
multiplying all expressions like (12.35) for each energy levels available and 
thus obtain the partition probability as: 

  W = 1 2 3

1 1 1 2 2 2 3 3 3

! ! ! ...
! ( )! ! ( )! ! ( )!

g g g
n g n n g n n g n− − −  
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  = 
!

! ( )!
i

i i ii

g
n g n−∏   …(12.36)

Taking the natural logarithm of this, we get after using the Sterling’s 
approximation

  ln W = { }ln ln ( )ln( )i i i i i i i i
i

g g n n g n g n− − − −∑

Similar to our discussion on Maxwell- Boltzmann statistics at 
equilibrium, the probability becomes maximum and that is, d ln W = 0.

Then,

 –d(ln W) = {ln ln( )} 0i i i i
i

n g n dn− − =∑ . …(12.37)

Considering once again the two conditions as discussed before for a closed 

system at equilibrium as 0 and 0i i i
i i

dn E dn= =∑ ∑  and multiplying them 

by α and β and adding with (12.37), we get
ln ln( ) 0i i i in g n E− − + α + β =      

or,                              

Ei i

i i

n e
g n

− α −β=
−

i.e.                                1
i

i Ei

gn
eα + β=

+
.                                         …(12.38)

This is Fermi–Dirac distribution Law.
The parameter β here plays the same role that it played for Maxwell 

– Boltzmann distribution law and that was β = 1/kT. The quantity α is 

determined from the condition that i
i

n N=∑  and in most cases it is found 

to be negative. It is however more convenient to introduce a new quantity, 
EF which is related with α by the relation 
                         EF  = – αkT

Then the equn. (12.38) can be written as

                                   ( )/ 1
i

i E E kTi F

gn
e −=

+
.                                         …(12.39)

This quantity EF has a positive value in most cases and possesses 
tremendous importance. This is known as ‘Fermi Level of Energy’. It 
represents a particular level of energy which is related to Ei, the energy 
corresponding to ith  level as:
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0 for ( ) 0

( )/
0 for ( ) 0

lim
E Ei FE E kTi F

T E Ei F
e

− <
−

→ ∝ − >

 
=  

 
. …(12.40)

In the following Fig. 12.4, the distribution of the function i

i

n
g

, which 

physically, can be interpreted as the mathematical probability of filling 
up gi  energy degenerate states by ni  number of fermions is shown with 
its variation at different temperatures (high and low). It is seen from 
the following Fig. 12.4 at absolute zero, unlike Maxwell-Boltzmann all 
particles do not accumulate at the ground energy level, rather they occupy 
increasingly higher states until EF, the Fermi energy state. This is to obey 
exclusion principle. As temperature is increased the fermions start occupying 
energy states higher than EF. The probability of occupation until Fermi 
energy state is reached is 100% (at T = 0), where as this probability of higher 
energy states remain zero but  increases as temperature is increased. Hence 
the Fermi energy state can be defined as the highest energy state occupied 
by fermions at zero degree Kelvin. Only those fermions with energy close 
to EF can move into higher unoccupied states by absorbing energy in order 
to maintain the exclusion principle. The corresponding Fermi temperature 
is introduced as ΦF = EF/k.

T = High

EiEF
0

0.5

1

T = 0

T = Low

n
—
g

i

i

Fig. 12.4 The variations of distribution function i

i

n
g

 with energy Ei at different temperatures

12.4.2 Electron Gas 

We now consider an assembly of electrons in a metal and the electrons obey 
exclusion principle, they are fermions. These electrons in a metal exist in two 
bands, the lower is the Valance Band where all the energy states are filled up 
at any temperature and the higher one is Conduction Band. In conduction 
band the electrons exist in levels from the bottom of the conduction band to 
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above. These electrons in metals are known as conducting or free electrons 
and they constitute current as they are free to move. As the energy spectrum 
in the conduction band may be considered as continuous because of large 
number states occupied by electrons obeying exclusion principle exist 
within the some energy limits in the band. Therefore, gi introduced in (12.34) 
as number of energy states in the energy level Ei, may be assumed to be 
expressed as g(E)dE within the energy levels E and E + dE. The number of 
electrons say dn existing within this energy limits is given as (from 12.39):

               ( ) /
( )

1E E kTF

g E dEdn
e −=

+
 …(12.41)

where E is measured from the bottom of the conduction band and g(E) 
dE is the number available states within that range or limit.

Now, recalling and using the equn. (12.25)  we can write the expression 
for g(E)dE  the number of states, after multiplying the expression (12.25) 
by 2  to take into account two different states having same energy for two 
possible orientations of spin of electrons as 

       
3 1/2

1/2
3

8 (2 )( ) V mg E dE E dE
h

π
=  …(12.42)

and substituting this equn. in (12.41), we get

                                  
3 1/2 1/2

3 ( )/
8 (2 )

1E E kTF

V mdn E
dE h e −

π
=

+
.               …(12.43)

Where dn
dE

 is the number of free electrons (fermions) per unit energy 

range. This is the Fermi-Dirac expression for the energy distribution of 
free electrons or more generally fermions. It is represents by the following  
Fig. 12.5. It can be found from the figure that at 0°K electrons are distributed 
in different energy states and number density per energy states varies 
parabolically as long as E < EF. When E = EF  at 0°K the electrons occupy  
the highest energy state i.e. EF and when E > EF  vanishes to zero (at 0°K).

High temperature
Low temperature

T = 0

0
EF E

dn
—
dE

Fig. 12.5 Energy distribution of fermions at different temperatures
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As temperature is increased, electrons move from Fermi energy state 
and nearby lower energy states to higher energy levels. This effect continues 
with the increase of temperature. If we integrate the equn. (12. 43) over all 
energies we get the total number N of the electrons in the conduction band. 

As the temperature is very low, we can assume that 
dn
dE

 = g(E)

 N = 
3 1/2

1/2
3

0

8 (2 )
E FV m E dE

h
π

∫

  = 
3 1/2

3/2
3

16 (2 )
3 F

V m E
h

π

 EF = 
2 /32 3

8
h N
m V

 
 π 

.  ...(12.44)

This is the expression for the Fermi energy of the electrons in a metal 
and it can be calculated after knowing the value of N/V of conduction 
electrons per unit volume.

12.4.3 Total and Minimum Energy of a Fermi Gas

As explained before the total energy U of a gas classical or quantum is 
given as

d nU Edn E dE
d E

= =∫ ∫  and replacing the value of dn
dE

 at low temperature 

so that dn
dE

 can be approximated as g(E), we get from (12.43) and (12.44)

3 1/2 3 1/2
3/2 5/2

3 3
0

8 (2 ) 16 (2 )
5

EF

F
V m V mU E dE E

h h
π π

= =∫ . ...(12.45)

Replacing the value of EF from (12.45) we get 
3
5 FU NE= . This is the minimum energy of a system of N fermions. The 

average energy per particle is 

  
3
5ave F

UE E
N

= = .  …(12.46)

This Fermi-Dirac statistics applied to the quantum particle like electrons 
obeying exclusion principle is applicable for the electrons in metals. The 
various characteristics of metals, semiconductors can be explained on the 
basis and concept of Fermi energy level.

These will be discussed in one later chapter.
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12.5 BOSE-EINSTEIN DISTRIBUTION LAW

 Now, let us consider the system where the particles like Fermi-Dirac 
are identical and indistinguishable but unlike Fermi-Dirac, they do not 
obey the exclusion principle. This results into the situation in which we 
can accommodate any number of such particles in an energy state. This 
statistical distribution law was first investigated by Prof. S. N. Bose and 
the statistics goes by the name Bose-Einstein statistics. The particles 
which obey this statistics are known after Prof. Bose as bosons. It has been 
found that all particles with integral spin (0 or 1) are bosons and the wave 
function describing such system of particles are symmetric. Like Fermi-
Dirac statistics, each energy level with energy Ei are divided into gi number 
degenerate states which accommodates ni number of particles without 
following exclusion principle. We under this statistical distribution can 
then accommodate any number of bosons in a particular degenerate state 
resulting into symmetric wave function. The helium nucleus and mesons 
are examples of Bose-Einstein statistics. This distribution can be pictorially 
represented by the following classical example showing and arrangement 
of particles in different divisions. Let us suppose that there are ni identical 
particles in a row and they are to be distributed in gi number of partitions 
(say, boxes), without limit to number of such particles that can be put 
within any partition or box. This is similar to finding ni number of bosons 
distributed in gi number of quantum states.  The total number of particles 
and divisions is equal to the number of permutations of (ni + gi – 1) objects 
in a row and this (ni + gi – 1) !

3 2 4 1 20

Particle
number in
division

Division

Now, as all particles are identical and indistinguishable all permutations 
differ only on the number of particles in each partition or divisions and as 
the permutation of divisions yield same physical state, the permutations (ni + 
gi – 1)! is to be divided by ni! and (gi – 1)! The total number of distinguishable 
arrangements of the ni particles in gi states therefore yields as 

                     ( )1 !
! ( 1)!

i i

i i

n g
n g

+ −

−
. …(12.47)

Now, by multiplying all expressions for different values of i, we get the 
different ways of partition of particles n1, n2, n3, …. among the energy levels 
E1, E2, E3,…. and the partition probability results then

 W = 
( ) ( ) ( )1 1 2 2 3 3

1 1 2 2 3 3

1 ! 1 ! 1 !
...

! ( 1)! ! ( 1)! ! ( 1)!
n g n g n g
n g n g n g

+ − + − + −

− − −
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                        =   ( )1 !
! ( 1)!

i i

i ii

n g
n g

+ −

−∏ .  …(12.48)

We now find the most probable partition by finding the maximum of 

ln W keeping in mind that i
i

n N=∑   and  .i i
i

n E U=∑

( )ln 1 ln ( 1) ln ( 1)ln( 1)i i i i i i i i
i

W n g n g n n g g = + − + − − − − − ∑

We now set d ln W = 0 to find the maximum of W

       [ ]ln ln( 1) ln 0i i i i
i

d W n g n dn− = − + − + =∑  …(12.49)

Now, to combine the expressions obtained from i
i

n N=∑  and i i
i

n E U=∑   

at equilibrium i.e. 0i
i

dn =∑  and 0i i
i

E dn =∑  we multiply them by α and 

β respectively and add with (12.49).

ln( 1) ln 0i i i in g n E− + − + + α + β =  as ni + gi is very large compared to 
1, therefore, neglecting 1 in the first term of the above expression we get

ln i
i

i i

n E
n g

= −α − β
+

or,                                        Ei i

i i

n e
n g

−α − β=
+              

and putting as β =  1/kT

or,                                          
/ 1
i

i E kTi

gn
eα +=

−
.    …(12.50)

This is Bose-Einstein distribution law. The distribution of bosons in 
different energy levels at different temperatures is shown by the following 
(Fig. 12.6)

 

n
—
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i
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E

Fig. 12.6 The distributions function i

i

n

g
 at two temperatures in bose-einstein statistics
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12.5.1 THE PHOTON GAS

The most important application of Bose-Einstein statistics lies in the analysis 
of Black Body radiation which is represented by electromagnetic radiation 
trapped in an enclosure (cavity) and is in thermal equilibrium with the 
atoms of the wall of the cavity. The atoms of the wall will be continuously 
absorbing the energy and emitting it so as to obtain a stage of equilibrium. 
This electromagnetic radiation is composed of ‘photons’ having energy 
hν = h c/λ, where n is the frequency and l is the wavelength. As any number 
of photons can have same energy for example a monochromatic beam of 
light (electromagnetic radiation) can have any intensity. The wavelength 
is related to the energy and intensity to the number of photons. Therefore, 
the photons can be considered as bosons and obey Bose-Einstein statistics. 
In black body radiation the number of photons is not constant as they are 
continuously absorbed or emitted by the atoms of the wall of the cavity. 

Therefore, the condition so far considered valid i.e. 0i
i

dn =∑  either for 

Maxwell-Boltzmann (Ideal Gas) or Fermi-Dirac statistics ( Electron gas) 
is to be  dropped out and so we can set a = 0 and the equn. (12.50) is to be 
changed into

/ 1
i

i E kTi

gn
e

=
−

.

In addition, the energy spectrum of the photons may be treated as 
continuous if the cavity is large compared to the average wavelengths of the 
radiation as in this case the energy difference between successive allowed 
energy values is extremely small. Under this condition we can write the 
above expression by replacing gi by g(E) dE and the equn. (12.50) can be 
written as

                                             /
( )

1E kT
g E dEdn

e
=

−
.                                      …(12.51)

Now as the energy of the photons E = hν, we can write g(E)dE = g(ν)
dν, which physically represents the number of oscillatory modes in the 
frequency range d n corresponding to energy range dE. 

Now, recalling the equn. (12.25) which is

                            dN(E) = 
3 1/2

1/2
3

4 (2 )V m E dE
h

π

we write dN(E) = g(E)dE, so that 
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3 1/2

1/2
3

4 (2 )( ) V mdNg E E
dE h

π
= = .

Now, considering that the energy is related to momentum p by E = p2/2m 
and also defining g(p) so that dN = g(p)dp = g(E)dE, we get

                                   ( ) ( )dN g p dp g E dE= =

and subsequently, 

 ( )dN g p
dp

=  = 2
3

4( ) VdEg E p
dp h

π
= .

Applying this to the number of modes of “Longitudinal waves” trapped 
in a cavity of volume V. In such cases it is more convenient to use frequency  
ν. Recalling that p = h/λ and ν = c/λ, where c is the phase velocity of the 
waves, we define g(ν) by g(ν) dν = g(p)dp and get

                                 2
3

4( ) ( ) dp Vg g p
d c

π
ν = = ν

ν .                           …(12.52)

The above equn. (12.52) gives the number of oscillatory modes trapped 
in a cavity of volume V, but as an electromagnetic waves are transverse 
having two independent perpendicular directions of polarization, we have 
to multiply the above equn. (12.52) by a factor of 2. Therefore, the number 
of states in the black body radiation with frequency between ν and ν + dν 
or energy between E and E + dE is given by

                               
2

3
8( ) ( ) Vg E dE g d d
c
π

= ν ν = ν ν .

Therefore, we may write equn. (12.51) as

                                    
2

3 /
8

1h kT
V ddn

c e ν
π ν ν

=
−

. ...(12.53)

Now, the energy corresponding to dn photons in the frequency 
range of dν is (hν) dn and the energy per unit volume is then (hν) dn/V 
and defining the  energy density distribution in black body radiation by 

ε(ν)  = 
h dn
V dV
ν

, we get

The energy per unit volume corresponding to radiation with frequency 
between ν and ν + dν from equn. (12.53) given as

 ε(ν) = 
3

3 /
8 1

1h kT
h
c e ν

π ν
−

 …(12.54)

This is the famous Planck radiation equation. The agreement of this 
equation with experimental observations is a strong support of the idea that 
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electromagnetic radiations are composed of photons and the photons obey 
Bose-Einstein statistics. It may be stated here that the problem of explaining 
the black body emission spectrum Planck introduced the concept that 
when radiation interacts with matter, it is absorbed or emitted in energy 
quanta equal to hν. However, the flaw in Planck’s proposition was that 
he assumed that the atoms of wall of cavity behave as an oscillators with 
energy E = nhν, instead of E = (n + 1/2)hν to include zero-point energy and 
he also applied Maxwell-Boltzmann statistics. Though otherwise Planck’s 
derivation of the law found in agreement with experimental observation 
at elevated temperatures, the result was found to deviate if zero-point 
energy is considered. This discrepancy was convincingly removed after 
the introduction of Bose-Einstein statistics.

12.5.2 Comparison between the Statistics

  Let us now have a comparison between Maxwell-Boltzmann, Fermi-Dirac 
and Bose-Einstein statistics. These three statistics lead to the distribution 
laws which are derived respectively in equns. (12.20), (12.38) and (12.50) 
which may be recalled here.

 1. Maxwell–Boltzmann  : /E kTi
i in g e−α −=         

 2. Fermi-Dirac  : 
1

i
i Ei

gn
eα + β=

+

 3. Bose- Einstein  : / 1
i

i E kTi

gn
eα +=

−
.

Now, these three expressions can be written in one abbreviated form as: 

                                       

/E kTi i

i

g e
n

α ++ δ = .

Here δ  =  0 for Maxwell Boltzmann,  –1 for Fermi-Dirac and + 1 for 
Bose-Einstein statistics.

It is evident that if 1i

i

g
n

〉〉  i.e. 1i

i

n
g

〈〈  which means that number of 

particles ni in the energy state gi is much less than the total number of 
available states gi, then these three statistics yield almost same results. This 
is true at high temperatures because α increases with temperature. Therefore 
it may be concluded that except for low temperatures, we may ignore most 
quantum statistical effects and classical Maxwell-Boltzmann statistics can 
be safely applied.

12.6 BLACK BODY RADIATION

We see a body and its colour when light from the body reaches our eyes. The 
light may be emitted by the body, if it is light emitting source or be scattered 
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by it. When light is scattered out of the spectrum of light received by it, it 
obeys a law known as Kirchhoff’s law of radiation. According to this law a 
body scattered only those radiation which it would absorb when it acts as 
an absorber.  A red coloured body do not absorb red colour from the white 
spectrum received by it but absorb all the rest colours.

O

Fig. 12.7 Fery’s black body

Therefore, when heated it can emit all colours except red because it did 
not absorb it. Now, if it absorbs all colours and does not reject any thing, it 
looks black and if this is true for all electromagnetic spectrum, the body is 
then named as Black body. When it heated such body would emit all wave 
lengths and is called white body. The figure shown above is an enclosure 
with insulated wall and having a narrow opening. The is a pyramid shaped 
structure just opposite to the opening. Any radiation entering through 
the opening will never be able to come out of the enclosure and suffer 
multiple reflections from the wall and thus may be assumed to be totally 
absorbed. Such enclosure devised by Fery is known as Fery’s black body. 
When heated it emits all the radiations it absorbed and the experimentally 
observed distribution of intensity with frequency measured bears some 
peculiarities which led to the discovery of quantum ideas of radiation. 
The figure below (Fig. 12.8) shows the energy distribution spectrum of a 
black body radiation.

T K1

T K2

T1 � T2

E�

�o

        Fig. 12.8 Energy spectrum of black body radiation
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Now, recalling the equn. (12.54) which is:

  ε(ν) = 
3

3 /
8 1

1h kT
h
c e ν

π ν
−

and transforming it in terms of wavelength λ by using ν = c/λ so that 
dν = – (c/λ2) dλ and ε(λ) = – ε(ν)dν/dλ = ε(ν) c/λ2. Replacing these in the 
above equn. (12.54), we get:

                              5 /
8 1( )

1hc kT
hc

e λ

π
ε λ =

λ − .                                …(12.55)

The variation of ε(λ) is shown in the above Fig. 12.8 at two different 
temperatures. It shows pronounced peaks at wavelengths dependent on 
temperature. It should be noted here that if the frequency, ν is very high or 
conversely the wavelength λ is very low, the expression ehν/kT would be very 
high and so the minus 1 in the expressions (12.54) and (12.55) may be ignored 
and the radiation is then governed by Wien’s radiation law. Conversely, 
if frequency is very low i.e. wavelength is very large, then the expression 
ehν/kT could be neglected at high temperatures. The radiation law is then is 
called Rayleigh-Jeans law. While each of these two laws could explain the 
two different regions of the black body radiation energy spectrum, none of 
them developed classically could explain the total region of the spectrum. 
It was Planck introducing the concept of energy photons could successfully 
explain the radiation spectrum of black body. This Planck’ radiation law was 
later more correctly derived by the application of Bose-Einstein statistics.

REVIEW QUESTIONS

 1. The possible particle energies of a system of particles are 0, ε, 2ε, 3ε, 

nε,... show that the partition function of a with gi = 1 is ( ) 1/1 .kTZ e
−−ε= −

 2. Compute in the above problem the average energy per particle and 
also the limiting value of the average energy when ε is much smaller 
than kT.  

 3. Compute the mean translational kinetic energy of an ideal gas molecule 
at 300°K.

 4. Assuming that a small hole is made in an oven door containing a gas 
at temperature T, show that the number of molecules with velocity 
between v and v + dv escaping per unit are per unit time is given by:  

  

3/2
23 /2

2
mv kTmdn N v e dv

kT
− 

= π  π 
  N is the total number of molecules per unit volume in the oven.
 5. Find the average velocity and the average energy of the electrons at 

0°K in a metal having 1022 electrons per c.c.
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CHAPTER

13

Quantum Mechanics

“Quantum Mechanics is certainly imposing. But an inner voice tells me that 
it is not yet the real thing”                                          Albert Einstein.

13.1 INTRODUCTION: QUANTUM PHYSICS

 The motion of the bodies independent of mutual interactions can be described 
on the basis of general rules based on experimental evidences. These rules 
or principles are like conservation of momentum, angular momentum and 
energy. These rules are framed on the assumption that we can localize a 
body in space and measure its momentum without disturbing the body so 
that its position and momentum remain measurable. The mechanics based 
on such assumptions is called Classical Mechanics. The ability to localize a 
body and measure its momentum simultaneously is found to be possible 
for large bodies. There is no limit to its largeness but down to its size it is 
found that the classical mechanics fails to yield the results for the particles 
which are the constituents of matter. It is found that for electron like small 
“particles” if we try to locate the object in space, it is so much disturbed 
that the measurement becomes impossible. The outcome of this result of 
impossibility is known as the uncertainty principle. The quantization of 
energy is another novel idea which does not appear in classical mechanics. 
The interaction of radiation and matter by means of emission and absorption 
of photons is another new concept.

 Therefore, the need of a totally new formalism known as “Quantum 
mechanics” and the revolutionary development of this mechanics in the 
present form is due to the contribution of Luis de-Broglie, Erwin Schrödinger, 
Werner Heisenberg, Paul Dirac and Max Born and others in the late 1920’s. 
The theory of this new formalism is mathematically elaborate but its basic 
concept is simple. In this chapter we will develop the fundamental aspects 
of quantum mechanics, which are adequate to explain some characteristics 
of atomic, molecular and nuclear structures.
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13.2. PHOTOELECTRIC AND COMPTON EFFECTS: THE 
CORPUSCULAR NATURE OF RADIATION

The photoelectric Effect: When light is incident upon certain metallic 
surfaces, a radiative energy is transferred to bound electrons, liberating 
them from surface atoms. The kinetic energy of an electron produced by 

photoemission is simply given by: 
2

2
mv W= ε − , where ε the radiative 

photon energy and W is is the minimum work needed to be done on the 
electron to get it free from the metallic surface and is known as ‘work 
function’. The difference of this two is contributed to the liberated electron 
as its kinetic energy. This liberated electron move because of its negative 
charge move towards the anode of the electrodes used to apply the field. 
Now, if V0 is the retarding potential necessary to just stop the ejected electron 
then we can write eV0 = ε – W. This V0 and its variation for frequency ω 
of the incident light show the following results, Fig. 13.1. Now as ε = hν  

where ν = 
2
w
π

  from Planck’s theory, we can write: eV0 =  hν – W = h(ν – ν0) 

where hν0 =  W =  0

2
hw

π
 and 0

0 2
ω

ν =
π

 is known as threshold frequency of 

the incident radiation (light).
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Fig. 13.1 The variation of stopping potential with frequency of the incident light. 
ω0 is the threshold frequency

The slope of the above graph which is 
2
h

eπ
 is constant (e is the charge 

of an electron).

This relation, experimentally confirmed gives the direct method for the 
determination of Planck’s constant using the value of electronic charge.
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 The Compton Effect: The spectrum of X-ray scattered from carbon 
contains an undeflected beam of the same wavelength, λ as the incident 
radiation and a deflected beam of longer wavelength. The effect was 
explained by Compton and based on the Einstein theory of photon. 
Compton suggested that the wavelength shift of the deflected beam of  
X-ray is independent of λ, the scattering material and varies only with the 
scattering angle q according to:

 λ′ – λ = 0.0024(1 – cos θ).
Treating incident radiation of X-ray as photon having energy e and 

which undergoes a collision with an electron of rest mass me, applying 
conservation of energy and momentum p we get

  ε + mec2 = ε′ + εe

                           
2 2 2 2 4 1/2( )e e em c p c m cε + = ε′ + +   …(13.1 a)

 and,  p = p′ + pe …(13.1 b)
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Fig. 13.2 Compton effect: wavelength shift and momentum conservation

From (13.1 b) p2
e = p2 + p′2 – 2p.p′ = p2 + p′2 – 2p.p′ cosθ.

Now, from (13.1a) 
2

0
2

21

m c

v
c

ε =

−

 and 
22
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m vp
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=
−
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22
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2

22
0

Now, replacing we get 1 pv
c m c

γ = +

Therefore,          
2

2 2 2 2 2 2 2
0 0 02

0
1 or, ( )pm c m c p c m c

m c
ε = γ = + ε = +  and 

writing for electron 2 2 2 4 1/2( )e e ep c m cε = +  which is used in equn. (13.1a)

Now, recalling the momentum equation as above:
       p2

e = p2 + p′2 – 2 p . p′ = p2 + p′2 – 2 p . p′ cosθ

and as p = e/c, we get

      p2
e = p2 + p′2 – 2 p.p′ = 2 2

2
1 ( 2 cos )
c

ε + ε′ − εε′ θ    …(13.2)

Now, recalling equn. (13.1a) which is

                          ( )2 2 2 2 4 1/2
e e em c p c m cε + = ε′ + +

or           ( )22 2 2 2 4
e e em c p c m cε + − ε′ = +

( ) { }22 2 2 2 2 2 2
2 2
1 1 2 ( ) 2e e e ep m c m c m c
c c

= ε + − ε′ − = ε + ε′ + ε −ε′ − εε′ . …(13.3)

Now, equating equns. (13.2) and (13.3) we get

                   
2(1 cos ) ( )em cεε′ − θ = ε − ε′

or,                          2
1 1 1 (1 cos )

em c
− = − θ

ε′ ε
.

 If for radiation the photon nature is correct then, ε = hν = ch/λ, the above 
equation can then be written as

 (1 cos )
e

h
m c

λ′ − λ = − θ .                                       …(13.4)

This 
e

h
m c

 is known as Compton’s wavelength. It may be emphasized that 

the quantum nature of radiation was established from the observed fact that 
the change of wavelength of incident X-ray due to scattering by an electron 
depends only on the angle of scattering as per the equn. (13.4).

13.2.1 The Old Quantum Theory
 The analysis of the radiation spectrum emitted by hydrogen atoms shows 
intense lines having definite frequencies which can be fitted to an empirical 
relation 
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  2 2
1 1R

n m
 ν = − 
 

 where n and m are integers and m > n ≥ 1.

R is a constant known as Rydberg constant and its value determined 
is 3.29 × 1015 Hz.

For different values of the integers and the above expression fits give 
rise to different series. Similar series of formula have been found for the 
emission spectra of alkali metal atoms.

This result contradicts the classical picture of an electron orbiting 
round a nucleus and radiates electromagnetic waves leading to an unstable 
atom. Since the electron frequency of revolution will change smoothly, the 
emission spectra should be continuous and not that which is predicted by 
the above equation of series of discrete lines.

 A successful interpretation of the discrete spectrum of one electron 
atoms was proposed on the basis of two assumptions known as “Bohr’s 
Postulates”.
 1. Postulate of stationary states: “An electron moves only in certain 

permissible orbits which are stationary states, in the sense that no 
radiation is emitted. The orbital angular momentum of the electron 
in those stationary states equals an integer times of h/2p”.

  Conclusion: The electron in a stable orbit is exempted from the 
requirement that accelerated charge must radiate.

 2. Postulate of discrete transitions: “Emission and absorption of 
radiation occurs only when an electron makes a transition from one 
stationary state to another. The radiation has a definite frequency 
νmn gives by the condition: hνmn = εm – εn”.

  The stationary state for which n = 1 is known as “ground state” and 
the states for n > 1 are said to be excited states. The above condition 
states that radiation of frequency:

4
2

3 2 3 2 2
0

1 1
64

e
nm

m eZ
h n m

 ν = − 
π ε  

 is emitted when the electron drops from 

stationary state m to that of n .Where m > n ≥ 1.

13.3 WAVE NATURE OF PARTICLE 

 The stable motion of electrons in the atom introduces integers, which can 
resemble classically to the wave motion phenomena such as normal modes 
of standing wave. A similar periodicity was assigned to electrons by Louis 
de Broglie, who derived the quantization condition of Bohr orbits by fitting 
a standing wave around each circumference. In other words he assumed 
in 1924 that electrons were accompanied by matter waves, which were 
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he assumed that the electrons were accompanied by matter wave, which 
were regarded as localized with the particle, in contrast to the condition of 
classical waves.

The de-Broglie assumption was to assign the group velocity vg (Chapter 8) 
to a classical particle of momentum p. From equn. (8.29) which is:

g
pdv

k k dk m
ω′ − ω ω

= = =
′ −

.                                    …(13.5)

Now, if free particle energy ε obeys the Einstein relation: ε = hν = hω 

 Where
2
hh

 
= = π 

 

 i.e.              
2 2

or
2 2
p ph
m m h

ε = ω = ω = .

The equn. (13.5) holds only for the choice: p = hk. This is known as 
de-Broglie’s hypothesis. The matter wavelength is then given by

  
2 h
k p
π

λ = = .  …(13.6)

This wavelength associated with electrons was experimentally measured 
by Davisson and Germer and this provided a strong reason to retain the 
de Broglie concept of matter waves and to modify the classical concept 
concerning the meaning of position and velocity of a particle. Davisson 
and Germer in their experiment demonstrated the formation of diffraction 
pattern obtained when a crystalline material was irradiated by electrons.

 

Photographic
plate

Crystalline
material

Incident beam
of electrons

Fig. 13.3 Davisson–germer experiment of electron diffraction by crystalline material
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Electrons accelerated by an electric potential V gain an energy eV and 
kinetic energy p2/2 me = eV. Therefore, p = 2 em eV . Now, introducing the 
values of e, me and h, we obtain the de-Broglie wavelength of such electrons 

/ 2 eh m eVλ =  = 1.23 × 10–9/ V m.

13.3.1 Uncertainty Principle

Let us now encounter a situation which can not be explained by classical 
mechanics and we start with an experiment given below. An electron 
stream is directed towards a slit say of opening b. According to de-Broglie 
hypothesis and demonstration of particle wave by Davisson– Germer, 
we will get a diffraction pattern on the screen. From the Fig. 13.4 it can 
be seen that uncertainty in the particle’s momentum parallel to X-axis 
is determined by the angle θ, corresponding to the central maximum.
Since the electron after passing through the slit would most probably 
be moving within the angle 2θ. According to the diffraction by a single 
slit the angle θ is given by sin θ = l/b. Then ∆p ~ p sin θ = (h/λ) (λ/b) is 
the uncertainty in the momentum parallel to X-axis. Now, if we want to 
determine the x-coordinate of the particle whether or not the particle passes 
through the slit of width b, then the precision of such measurement will 
be ∆x = b. Now, combining these two uncertainties i.e. momentum and 
position we get

Incident Electrons

�

�2

b

2�
p p

p

Fig. 13.4 Measurement of position and momentum of a particle passing through the slit

                                           ∆p . ∆x ~ h.  …(13.7)
Now, in order to reduce the uncertainty in position determination the 

only alternative is to reduce the opening of the slit i.e. to reduce b but in 
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doing so the broadness of the diffraction central maximum will increase 
(Chapter 9). This broadening of the central maximum will increase then 
the uncertainty of measurement of momentum p i.e. ∆p. Conversely, in 
order to reduce the uncertainty in momentum measurement the central 
maximum must then be very narrow and to achieve this we must have a 
wider slit opening and this in return increase the uncertainty in position 
measurement i.e. x-coordinate of the particle. In most cases x and p 
are known with much less accuracy, so that we must write instead of  
equn. (13.7):

 ∆p . ∆x ≥ h/2p.  …(13.8)
This result is known as Heisenberg’s uncertainty principle and this can 

be stated in words as:
“It is impossible to know simultaneously and with exactness both 

the position and the momentum of a particle”.
The above so long new and thrilling for the existing concept of matter, 

we may imagine an experiment. Let us now take a double slit and consider 
the double slit experiment as discussed in Chapter 9 (Section 9.2.1) with 
only difference is that we now replace light photons by a stream of electrons 
and on the screen position, there are a series of detectors of microscopic 
dimensions. The detectors show an interference pattern similar to that of Fig. 
9.3. If we close one slit, we would get the diffraction pattern from single slit 
as Fig. 9.9 and Fig. 13.4. More explicitly when both slits are open we actually 
receive in the detectors the intensity distribution as that in Fig. 9.10. Now, 
more interestingly if the electron beam intensity is gradually reduced, we 
would continue to receive the same diffraction pattern from a double slit. 
When the intensity of electron beam is very much reduced we can essentially 
assume that a single electron is allowed to fall on the double slit and as 
we still continue to have the same diffraction pattern from a double slit, 
we would then require to conclude that each electrons interact with both 
slits at the same time. This is quite contrary to our existing classical idea of 
particle and particularly their ‘condition of location’. As neither electrons nor 
photons can split into two fragments, we have to consider that the electrons 
behave similarly as the light photons and posses wave characteristics. We 
now can move forward for the statistical interpretation of matter wave.

13.3.2 Statistical Interpretation of Matter Wave

 The interpretation of a wave describing a particle or a particle represented 
by a wave was a matter of discussion in the early years of the development 
of quantum mechanics. It was Max Born, who first put forward the statistical 
interpretation of the wave function. In the diffraction pattern of a light wave 
say from a single slit opening, it may be said that the probability of finding 
light photon at the peak of the central maximum of intensity distribution 
is maximum and it decreases with the decrease of intensity on both sides 
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of the central maximum until again it increases at different positions on the 
screen giving rise the secondary maxima. Born introduces in analogy with 
the electromagnetic wave, a wave function ψ, which is a complex scalar 
function of the coordinates of the particle and time. The probability that a 
particle will follow a particular path is given by the intensity of the field 
which is the absolute square of this guiding field. In this case of scattering 
the intensity of the matter wave determines at every point the probability of 
finding an electron there. The square of the amplitude of the wave function 
ψ is the intensity which determines the probability of finding a particle at 
a certain place. This ψ which may be complex and the probability is real; 
we do not define ψ2 as a measure of intensity but instead
 |ψ2| = ψ . ψ* 

where ψ* is the complex conjugate of complex function ψ.
Now, as the probability of finding a particle say dW(x, y, z, t) within a 

certain volume is also proportional to the volume element dV = dx. dy. dz 
at a time t, according to the statistical interpretation of matter wave, the 
following hypothesis may be adopted

 dW(x, y, z, t) = |ψ(x, y, z, t)|2 dV.
Now, to get a quantity independent of volume, we introduce the spatial 

probability density

 w(x, y, z, t) = 
2( , , , )dW x y z t

dV
= ψ   …(13.9)

                      * 1dV
∝

−∝
ψψ =∫ .                                           …(13.10) 

This implies that the particle must be somewhere in the space and this 
normalization integral is independent of time otherwise we will not be 
able to compare the probabilities referring to different times. A state of the 
particle is bound when the wave function y is square integrable and when 
it is not the particle is in the free state. It can be seen that wave function ψ 
in the bound state where E < 0 is square-integrable and the bound states 
are localized within the potential well and can propagate only within the 
interior of the well. Free states are located above the potential well and are 
not bound.

13.4 INTERPRETATION OF QUANTUM MECHANICS AND 
SCHRÖDINGER EQUATION

 We have by this time have probably established that in quantum mechanics 
the wave function ψ(x) plays similar role of standing wave of amplitude 
ξ(x) in classical mechanics. For one dimensional wave equation the 
amplitude of a standing wave of wavelength λ satisfy the following 
differential equation: [Refer to equn. (8.6)]
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2
2

2 0d k
dx

ξ
+ ξ = , where k the wave number of the standing wave is given 

by k = 2p/λ. Now we may recall that in matter wave p = hk so that we can 
expect that wave function ψ(x) to satisfy a similar equation

 
22

2 2
pd

dx h
ψ

+ ψ  = 0.

Now, the total energy of the system E = p2/2m + Ep(x), where Ep is the 
potential energy and p and m are respectively as momentum and mass of 
the particle. Then we may write

 p2 = 2m[E – Ep(x)]

then,         
2

2 2
2 [ ( )] 0p

md E E x
dx h

ψ
+ − ψ =   …(13.11)

This is known as Schrödinger’s equation.
In case of free particle the potential energy is zero i.e. Ep = 0 and the 

Schrödinger’s equation is then transformed in the form:

                      
2 2

22
h d E

m dx
ψ

− = ψ.

This may be written in the form:

             
2

2 2
2 0mEd

dx h
ψ

+ ψ = . 

For a free particle, E = p2/2 m and we know p = hk where k is the wave 
number, we then write

                     
2

2
2 0d k

dx
ψ

+ ψ = .     …(13.12)

A slightly more elaborate derivation of this Schrödinger’s equation 
in place of which that has been so far derived by assuming intuitively a 
correlation between matter wave and a classical stationary wave is given 
below. Students during their first reading may however omit this derivation.

 In relativistic classical mechanics time coordinates and spatial 
coordinates are treated as four components of a four vector representing 
energy and momentum i.e.

 xν = (r, i c t), pν = (p, iE/c), where n = 1, 2, 3, 4.
By enlarging the operator representation of the three dimensional 

momentum to a four dimensional covariant vector operator, we get 

                           
ˆˆ , , , ,

( )
ip E i h i h
c x x y z i c tν

  ∂ ∂ ∂ ∂ ∂  = − = −     ∂ ∂ ∂ ∂ ∂     
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Now by comparison, the energy is replaced by the operator

                                      Ê i h
t

∂
=

∂
.

In quantum mechanics we have three operators 1. Kinetic energy 
operator 2. Angular momentum operator and 3. Hamiltonian operator. 
These can be introduced before we proceed further:
 1. Kinetic Energy Operator

In the relativistic case we have for the kinetic energy T = p2/2m. With 

∇2 = ∆, we obtain the operator T written as T̂  = 
2 2ˆ ( )

2 2
p i h
m m

−
= ∇2 = 

2

2
h
m

− ∆

 2. Angular Momentum Operator
 The classical definition of angular momentum of a particle is L = r × p 

and its quantum mechanical operator is given as: 

 L̂  = r × (– ih∇) = – ihr × ∇

where L̂  is a vector operator
 3. Hamiltonian Operator

 In analogy with Hamiltonian classical mechanics, let us define the 
Hamiltonian operator as the operator of total energy. In classical mechanics

                                     

2
and ( )

2
pH T V H V r

m
= + = +

where T denotes the kinetic and V, the potential energy. Now, as

p̂  = – ih∇ and therefore, 
2

ˆ ˆ ( ).
2
hH V r
m

= − ∆ +

Then we have two operators for the energy as both ˆ ˆandE H  describe the 
total energy and then be equated. This generates the Schrödinger’s equation

 ˆ ( , )E tψ r  = ˆ ( , )H tψ r .
Which is 

 ( , )i h t
t

∂
ψ

∂
r  = ˆ ( , )H tψ r  

  = 
2

( )] ( )
2
h V r r
m

 
− ∆ + ψ 

 
 …(13.13)

This is the non relativistic Schrödinger’s equation.
To get more detailed picture of the quantum operators compared to 

classical definitions, the following table may be looked into.
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Table 13.1 Quantum Operators

Quantity Classical definition Quantum operators

Position r r

Momentum p i h� �

Angular momentum r × p i h� r x �

Kinetic Energy p2 / 2m 2( /2 )h m� � 2

Total Energy
Hamiltonian

p2 / 2m + Ep(r) 2( /2 )h m� � 2 + Ep(r)

13.5 SCHRÖDINGER’S PICTURE AND PARTICLE IN 
     A POTENTIAL BOX

 Let us now consider the electron in a piece of metal. The electron move freely 
within the metal but if we neglect the interaction of negative electrons with 
the positive ions on the sides and if the height of the potential barrier is large 
enough compared with the energy of the electron, then the electron will be 
moving within the metal but will not be able to come out from the surface 
automatically. This has resemblance with the gas molecules enclosed within 
an enclosure. The physical situation may be represented by the following 
figure which represents the simplified situation of potential energy situation 
and is known as potential box.
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One Dimensional Potential well and Energy Levels

Fig. 13.5 Particle in a potential box and energy levels

 The electron within the potential well has only kinetic energy and no 
potential energy i.e. EP(x) = 0 for 0 〈 x 〈 a. The electron then move freely 
within that region. There exists strong retarding force on the wall and can 
not be found either in the region X 〈 0 or X 〉 0. The wave functions are also 
zero in these two regions i.e. ψ = 0 for X 〈 0 and also ψ = 0 for X 〉 0. 
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 Now, recalling the Schrödinger’s equation for a free particle from equn. 
(13.12)

 
2

2
2

d k
dx

ψ
+ ψ  = 0.

    2As k π
=

λ
 and so 

2 2
2 2 2 2

2 2 2
4 8 1 2( ) as

2 2
m m hk m v mv E h

h h h
π π

= = = =
π

.

The particle will move back and forth between x = 0 and x = a and forms 
standing wave.

The general solution of the above equation which is

                                 ( ) ikx ikxx Ae Be−ψ = + .  …(13.14)
Where in the first part represents a particle moving in + X direction and 

the second part the one moving in –X direction. Now from the boundary 
condition mentioned above we get ψ(x) = 0 at x = 0 and also at x = a, then 
y (x = 0) = A + B or, A = – B.

Therefore, ( ) ( ) 2 sin sinikx ikxx A e e i A kx C kx−ψ = − = = .

Here, C = 2 iA. Now since at the boundary condition x = a, y (x = a) = C 
sin ka = 0. But C cannot be zero so, sin ka = 0 or ka = np, where n is an integer. 

 So, as k = np/a and as p = n hh k
a
π

= . This gives the possible discrete 

values of momentum corresponding to different values on the integer n. 
Now, as the energy of the particle E is given by 

                                      
2 2 2 2 2 2

22 2 2
p h k n hE
m m ma

π
= = = .   …(13.15)

This equation is an important observation that is the energy levels of 
the particle trapped inside the one dimensional potential well and moving 
back and forth are discrete and there exists a minimum energy level which 

is not zero and equal to E 1 = 
2 2

22
h

ma
π

 for n = 1 . Then we can say E = E1, 4E1,

9E1, … . These discrete energy levels are shown at the right side of 
Fig. 13.5. The particle can not then assume any arbitrary energy and neither 
can it attain any energy of its will as its energy is quantized. This quantization 
of energy of particle energy is observable whenever the Schrödinger’s 
equation is applied and solved for potential energy which confines the 
particle to move in a limited region. The energy quantization is due to the 
fact that the wave function is determined by the potential energy and the 
boundary conditions of the physical problem and the solution exists only 
for certain values E1, E2, E3, …En, …. of energy. This intuitive solution of 
Schrödinger’s equation for particle in one dimensional potential well will 
not be valid if the potential field is of more complicated nature and then 
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direct solution of the Schrödinger’s equation would be necessary. For this 
simple case we can easily find resemblance with the vibration of stretched 
string fixed at two ends forming harmonics of different frequencies and 
energies as shown in the following (Fig. 13.6).

  
�4 n = 4

�4 n = 3

�3

n = 2

�1 n = 1

 Fig. 13.6 Vibration of stretched string fixed at the two ends and formation of different harmonics

13.5.1 Three Dimensional Box

 Let us now extend the idea developed for one dimensional potential well to 
a three dimensional potential box of sides a, b and c. Under this condition 
the momentum p will have three directions and given as px, py and pz and 
they in relation with one dimensional case

          
1 2 3, andx y z

h n h n h np p p
a b c

π π π
= = = .

Where, n1, n2 and n3 are integers. The energy E is given by:

           
( )2 2 2 21 1

2 2 x y zE p p p p
m m

= = + +

  = 
2 2 22 2

31 2
2 2 22

h nn n
m a b c

 π
+ +  

 
.

Now, as derived before for one dimensional potential well as k = nπ/a, 
and wave function yn(x) = C sin(npx/a), for three dimensional potential well 
the wave function is given by

                                      1 2 3sin sin sinn x n y n zC
a b c
π π π

ψ = .
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Now, incase of cubical potential well where a = b = c, the energy E is 
given by

   E = ( )
2 2

2 2 2
1 2 322

h n n n
ma

π
+ +   …(13.16)

and the corresponding wave function is 

                                       1 2 3sin sin sinn x n y n zC
a a a
π π π

ψ = .  …(13.17)

In the above expression n1, n2 and n3 are as usual integers now for 
different values of these integers, let us examine one important case from 
the following table (Table 13.2)

 Table 13.2 Energy levels and degeneracy 
2 2

1 22
hE

ma
 π

=  
 

Energy
2 2 2
1 2 3 1( )n n n E� �

Combination of n1, n2 and n3 Degeneracy, g

3 E 1 ( 1 1 1 ) 1

6 E 1 (2 1 1 ) , (1 2 1 ) , ( 1 1 2 ) 3

9 E 1 ( 2 2 1) , ( 2 1 2 ) , ( 1 2 2 ) 3

11 E 1 ( 3 1 1 ), ( 1 3 1 ), ( 1 1 3 ) 3

12 E 1 ( 2 2 2) 1

14 E 1 (1 2 3 ),(1 3 2 ), ( 3 1 2 ), (3 2 1 ) 4

We introduce here a term degeneracy which represents different energy 
states having the same energy. These different states result due to shuffling 
of the integers n1, n2 and n3 but still keeping the same value of 2 2 2

1 2 3n n n+ +  
so that the energy remains same. The different energy states having same 
energy but still remaining as different states are known as “Degenerate 
States”.  Now, it can be shown that the number of states within some limiting 
positive values of n1, n2 and n3 (the integers are only positive) corresponding 
to some maximum energy E, is approximately equal to the volume of an 
octant with radius 2 2 2

1 2 3n n n+ + . As the volume of the octant is 1/8 th of 

the sphere of radius r2 = 2 2 2
1 2 3n n n+ + , the number of states N(E). Therefore, 

using the equn. (13.16),

N(E) =  

3/22
3 2 2 2 3 /2

1 2 3 2 2
21 4 1 4 [ ]

8 3 8 3 6
ma Er n n n

h
 π   π = π + + =       π     
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                = 
3/2

3 1/2 3 /2
2 2 3

2 8 (2 )
6 3

mE VV m E
h h

  ππ
=  π 

 using a3 = V and 
2
hh =
π

  

                   (V = volume of the box).
Now, the number of states within energy range between E and E + dE 

can be obtained by differentiating the above expression and this results:

           

3 1/2
1/2

3
4 (2 )( ) V mdN E E dE

h
π

=
 

Now, writing dN(E) = g(E)dE, we get:

              
3 1/2

1/2
3

4 (2 )( ) V mdNg E E
dE h

π
= = .  …(13.18)

This equation gives the number of possible states per unit energy interval 
at the energy E or may be said as density of states. It is found from the above 
equn. (13.18) that this density of state varies parabolically with energy E 
and this variation is shown in the following (Fig. 13.7). 

 

g E( )

0 EE
FdE  

Fig. 13.7 Variation of density of states g(E) with energy E 

Now, if we recall the Fermi-Dirac statistical distribution and the equn. 

(12.43) which was as : 
3 1/2 1/2

3 ( )/
8 (2 )

1E E kTF

V mdn E
dE h e −

π
=

+
 and the Fig. 12.5, 

it should be understood that while equn. (12.43) represents number of 
Fermions per energy states, the equn. (13.18) above represents the number 
of available energy states including degenerate states per energy. This 
difference must be kept in mind and as the variation of both parameters are 
function of E1/2, the figures are both of the shape of parabolas.

13.5.2 Potential Barrier Penetration

We have seen above that the wave function while being hurdled by a 
potential barrier gets reflected from the wall and form standing wave. 
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This can be more easily conceived even from classical analogy (Vibration 
of stretched string) but the fact that a wave function may extend beyond 
the classical limits of motion and gives rise to an important and quantum 
phenomena known as “potential barrier penetration”. Let us consider in 
the following Fig. 13.8, the potential barrier of height E0 higher than the 
energy E i.e. 

E 〈 E0. Classical mechanics requires that for this case the particle would 
be reflected from the wall at x = 0 but from quantum mechanics, the wave 
function ψ(x) has solutions in the regions as shown (1), (2) and also (3) and 
are shown in following second (Fig. 13.9).

 

Incident particles

Reflected particles

E

Transmitted particle

X
0 a1 2 3

Rectangular potential barrier

E xp( )

E0

Fig. 13.8 Rectangular potential barrier with height E0 and width a

�( )x

�
�

�
�

0 a

�
�

Fig. 13.9 Wave functions and matter wave for an energy less than potential barrier

The wave function has components in the three regions as:

1 2 3, ,ikx kx x x ikxAe Be Ce De A e− α −αψ = + ψ = + ψ = ′

where k and a are same and so as k2 = 2 mE/h2 so also 2 0
2

2 ( )m E E
h

−
α = .

The wave function ψ1 contains both the incident and reflected particles 
and when it is within the barrier the wave function still contains the positive 
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exponential and therefore, ψ2 is not zero even at x = a and continue to 
exist in the third region (3) and is represented by ψ3, for the transmitted 
particles. The transmitted particles have the same energy as the incident 
particles but the wave function has reduced amplitude different from A 
and so denoted by A′. Since ψ3 is not zero there exists a definite probability 
of finding particle in the transmitted region (3). Therefore, in contradiction 
to classical mechanics, quantum mechanics confirms that it is possible for a 
particle to go through the potential barrier even if its kinetic energy is less 
than the height of the potential barrier.

When E 〉 E0, classical mechanics says that all particles should cross 
the potential barrier and reach the other side of the barrier. However, in 
quantum mechanics some particles will be reflected at the wall x = 0 and 
also at x = a and the wave functions in the three regions are respectively as

 1 2 3, ,ikx kx k x k x ikxAe Be Ce De A e− ′ − ′ψ = + ψ = + ψ = ′

where 2 2
02 ( )/k m E E h′ = −  and hk′ is the momentum of the particle 

while they are crossing the potential barrier.
From Fig. 13.9, we see that in the region (1) the wave function is 

oscillatory and in the region (2) it decreases exponentially and finally in 
the region (3) it starts oscillating again. 

This barrier penetration effect can be seen in electrons in a metal. 
Usually the electrons from the Fermi energy level must be supplied with the 
minimum energy required to get free from the potential well, either in the 
form of heat (Thermal emission) or by the supply of photon (Photoelectric 
effect). In addition to these three causes, if a potential is applied across to 
ends of the metal the potential well stoops down and thus allows the most 
energetic electrons to escape from the metal surface. This effect is known 
as “Field effect emission”.

13.6 TIME DEPENDENT SCHRÖDINGER’S EQUATION

 Schrödinger’s time dependent equation when we equate the left hand side 
of the equn. (13.11) with the time variation of the wave function, ψ. This is 
when we consider the wave function as function of both position i.e. space 
x or r and time i.e.

 ψ(x, t) in place of ψ(x).

  
2 2

2 ( )
2 p
h E x i h
m tx

∂ ψ ∂ψ
− + ψ =

∂∂
.  …(13.19)

The derivation of this Schrödinger’s time dependent equation can be 

followed from equn. (13.13) which is ( , )i h t
t

∂
ψ

∂
r  = ˆ ( , ).H tψ r
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where Hamiltonian operator (quantum) Ĥ  of total energy, Ĥ  =
2( /2 )h m−  ∇2 + Ep(r).

This equn. (13.19), the time dependent Schrödinger’s equation is a 
fundamental law of nature. We may point out here that this Schrödinger’s 
time dependent equation is of the first order in time derivative and second 
order in position or space derivative. If we try to obtain the a solution of 
the above equn. (13.19), we may assume that such solution has time and 
position variables separated and may have a trial solution as:

 /( , ) ( ) iEt hx t x e−ψ = ψ .                                          …(13.20)
We must now prove that E is the energy and ψ(x) is the amplitude 

satisfying the equn. (13.11) and for this:

                             
2 2

/ /
2 2( ) andiEt h iEt hiE dx e e

t h x dx
− −∂ψ ∂ ψ ψ

= − ψ =
∂ ∂

.

Now, if we introduce these values in equn. (13.19) and simplify, we 
get the equn. (13.11). Therefore, we say that while E is the total energy of 
the system and the matter wave given in the equn. (13.20) oscillates with 
angular frequency 

                      ω = E/h        or           E = hω = hν.

This equn. (13.20) is a typical expression of standing wave because of 
separate space and time parts but unlike the other classical standing wave 
examples like vibration of string or air column, we can not express the time 
part in sine or cosine terms but instead the matter wave have always have 
complex time derivative like e–iωt

 = e–iEt.
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REVIEW QUESTIONS

 1. What is the de-Broglie wavelength of thermal neutrons at a temperature 
of 25°C?

 2. The position of an electron is determined with an uncertainty of  
0.1 A°. Find the uncertainty in its momentum. 

 3. Explain the wave nature of particle and the Uncertainty Principle 
giving emphasis on their physical interpretation.

 4. Solve the one dimensional Schrödinger equation for a finite potential 
well described by

   – V0 if  x ≤ a
   V(x)
    0 if  x > a.
 5. Calculate the zero point energy of a neutron which is confined within 

a nucleus which has a size 10–15 m.
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CHAPTER

14

Solid State Physics

14.1 STRUCTURE OF SOLIDS: AN OVERVIEW

When the atoms or molecules the basic constituents of matter, come closer 
to each other they fall within a potential trap and loose their freedom of 
movement. The only movement which will be allowed is their oscillating 
motion within limiting amplitude which depends on the temperature. Such 
state of existence of the matter is called the solid state. The atoms while 
coming close form a bonding between them and according to the bonding; 
they are classified as either Covalent Solids or Ionic Solids. In covalent 
solids the atoms are bound together by localized directional bonds. The 
crystal lattice discussed later is determined by the orientation and nature of 
the directional bonds. The other state of bonding is the ionic bonding where 
a regular array of positive and negative ions resulting from the transfer 
one electron or more from one kind of atom to another. In solid state of 
matter the constituents may either exist bearing regularity determined 
by this bonding, in their arrangement in space or not. These two states of 
arrangements are known respectively as crystalline state or amorphous. 
The crystalline state of matter bears some special properties which are lost 
if they lose their regular arrangements and become amorphous. The study 
of this regularity of arrangements is named as “Crystallography” which 
is therefore, an important aspect of condensed matter physics.

The regularity of arrangements of the constituents when bears a 
symmetry form a ‘pattern’ and a pattern either two dimensional like 
printed cloths or three dimensional like crystal has two aspects (1) The 
constituents named as ‘Motifs’ (2) Mode of their arrangements known as 
symmetry. If we change either of these two the entire pattern is changed 
from one type of regularity to the other. Let us now start with the second 
aspect of a pattern i.e. mode of arrangements or symmetry.
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The ‘symmetry’ the characteristic which is found in a pattern is the result 
of an ‘operation’ which when done on a motif or its site, the entire pattern 
returns to a situation of self coincidence.

The symmetry operations we have just talked about are classified as 
follows:
 1. Mirror Plane of Symmetry  (m) 

 2. Centre of Symmetry    ( 1 ) 
Hermann - Mauguin

Symbols
 
 
 

 

 3. Rotation axis of Symmetry  (1, 2, 3, 4, 6) 

 4. Rotation Inversion axis of Symmetry  ( )3, 4, 6

Mirror plane of Symmetry: If a single or more number of planes may 
be imagined to exist so that the motifs on one side appear to be the mirror 
reflection of the opposite side, then those planes are mirror planes of 
symmetry. m is the Hermann–Mauguin symbol.

Centre of Symmetry:  If we can find a point within the pattern and if 
one motif is found to be on the opposite side at equal distance and inverted, 
it is called centre of symmetry. The symbol of this centre of symmetry 
is ( 1 ).

Rotation axis of Symmetry: If we identify an axis through the pattern 
about which if the pattern is rotated through an angle θ and the pattern 

returns to its position of self coincidence then if, 360º n=
θ

, the pattern is 

said to have a n fold of rotation axis of symmetry. Any object which having 
a random external shape possesses 1-fold of rotation. A rectangle has  
2-fold, an isosceles triangle has 3-fold, a square a 4-fold and a regular 
hexagon 6-fold axis of symmetry. 5-fold rotation is said to be absent in 
geometrical crystallography, as it fails to make a compact structure.

Rotation Inversion Axis of Symmetry: A pattern can be said to have 
rotatory inversion axis of symmetry if it can be transformed in to self 
coincidence by the combined effect of rotation and inversion. 1– which is 
1-fold rotation and inversion is already considered in centre of symmetry 
and 2– which is 2-fold rotation and inversion is exactly equivalent to mirror 
plane of symmetry. 5– is not considered as 5-fold rotation is said to be absent 
in conventional geometrical crystallography.

All these ten number of symmetry operations are grouped as 
“Macroscopic Symmetry Elements” as they are manifested on the external 
shape of the crystal which is three dimensional pattern and they can be 
identified by simple observation of the symmetry present on the external 
faces of the crystal.
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In real pattern or crystal the sites of the motifs must demonstrate the 
symmetry that exists in the pattern and these sites represented by geometric 
points are known as Lattice Points and the arrangements of these lattice 
points in space constitutes the “Space Lattice”. The mode of repetition of a 
pattern is specified by this array of lattice points.

Now the above ten macroscopic symmetry elements can be combined 
without any repetition in 32 possible ways and every crystal must have 
macroscopic symmetry elements that can be described by one of the  
32 combinations and there would be no others. They are known as “Point 
Groups”. Now, if these 32 point groups are regrouped, based on the fact that 
each group has one symmetry element common between members of that 
group then we get seven crystal systems or crystal classes. They are:

Table 14.1 Seven crystal systems

Set System or Class Common feature (Symmetry elements)
A Triclinic 1 fold axis.
B Monoclinic One 2 fold axis.
C Orthorhombic Three mutually perpendicular 2 fold axes.
D Rhombohedra One 3 fold axis.
E Tetragonal One 4 fold axis.
F Hexagonal One 6 fold axis.
G Cubic Four 3 fold axes at 70° 32′ to each other.

Now, these seven crystal systems are built up by joining lattice points, 
having non co-planar unit translations as edges and are representative of 
the lattice. A unit cell of the space lattice is completely specified by the unit 
translations a, b and c and the angles α, β, and γ between them. The relative 
values of these parameters required by minimum symmetry properties of 
each crystal system are as follows.

Table 14.2 Unit cells of seven crystal systems

Set Crystal Class or
Systems

Relation between
a, b and c

Relation between

�, � and �

A Triclinic a � b � c � � � � �

B Monoclinic a � b � c � = � = 900 � �

C Orthorhombic a � b � c � = � = � = 90°

D Rhombohedral a = b = c � = � = � � 90°

E Tetragonal a = b � c � = � = � = 90°

F Hexagonal a = b � c � = � = 900, � = 120°

G Cubic a = b = c � = � = � = 90°
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For any space lattice, the unit cell which is geometrically simple and 
which adequately displays the essential symmetry of the lattice may be 
primitive, base centered, face centered or body centered. By considering 
this aspect we can have only 14 different types of lattices without disturbing 
the unit cell characteristics and without any repetition. These 14 different 
types of lattices are called “Bravais Lattices”.

Primitive cell A B Cor or centered

Body centered Face centered

Additional lattices created with additional sites without
changing the crystal system

Possibility of additional lattices

The following table shows all such possible Bravais lattices:

Table: 14.3 The possible bravais lattices

SET Crystal Class or
System

Symbol or
possible space

Lattices

Total no.
possible in the

Class

Total no. of space
(Bravais) Lattices

A Triclinic P 1 1

B Monoclinic P Cand 2 2 + 1 = 3

C Orthorhombic P, C, I Fand 4 3 + 4 = 7

D Rhombohedral P 1 7 + 1 = 8

E Tetragonal P Iand 2 8 + 2 = 10

F Hexagonal P 1 10 + 1 = 11

G Cubic P, I and F 3 11 + 3 = 14

The number of lattice points, N (atoms or molecules in actual crystals) 
in a Unit Cell is given by:

  N = 1 + (½) f + b,
where f and b stand for number of points on the centre of the faces and 

at the centre of the body of the unit cell.
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Body-centered
cubic

Body-centered
tetragonal

Simple cubic

Simple
tetragonal

Face-centered
cubic

Simple
orthorhombic

Body-centered
orthorhombic

Base-centered
orthorhombic

Face-centered
orthorhombic

Rhombohedral Hexagonal

Simple
monoclinic

Base-centered
monoclinic

Triclinic

Bravais lattices
14 possible bravais lattices

Fig. 14.1 Fourteen bravais lattices

A primitive Cubic lattice unit cell has atoms at the corners but each one 
of them is shared by eight neighbouring unit cells and therefore the total 
contribution of corner atoms is equivalent to only 1. A body centered cubic 
unit cell has only 2( f = 0) and a face centered cubic unit cell has 4, one due 
to eight corner points 3 due to centre points on each of six faces. These face 
centered points are shared by two neighbouring unit cells.

Now, it is essential to know different planes and the planes are 
designated by integers known as “Miller Indices”. 

The Miller indices of a plane or of a direction in a crystal or in a space 
lattice are that set of three numbers enclosed in the appropriate brackets 
that identifies the particular plane or particular direction and distinguishes 
it from others.

To assign the Miller indices we must follow the steps as:
 1. Measure the intercepts that the plane makes on the axes of the lattice.
 2. Divide the intercepts by the appropriate unit translations.
 3. Invert the dividends.
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 4. Rationalize the inverted dividends.
 5. Place rationalized numbers in first (round) bracket to name the plane.

In cubic systems and systems other than hexagonal systems three indices 
known as (h k l) are used to identify the crystal or space lattice planes but to 
identify the prismatic planes in hexagonal crystals of space lattice, a fourth 
integer is used and indices are (h k i l). The indexing procedure is described 
above and is represented in the following Fig. 14.2 (a) and (b). 

 

a
b

c

(111)

(111)

(111)

(111)

(111)

(111)

 (a) 

b

c

i

)0101(

)0211(

a

)1112(

)1212(

Hexagonal System and Miller Planes

 (b) 

Fig. 14.2 Miller indices of some planes in (a) Cubic system (b) Hexagonal system

 A set of planes (h k l) is noted by { h k l } and { 1 1 0 } set of planes include 
a family of six planes namely : (110), (011), (110), (110), (011), (101) .

The crystallographic directions within the space lattice can also be 
designated by Miller indices and they are done as follows:
 1. Determine the coordinates of any point on the direction.
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 2. Divide the coordinates of the point by the respective unit translations.
 3. Rationalize the dividends.
 4. Place these rationalize dividends in square brackets.

The indices of the direction in a space lattice do not depend on the size 
or shape of the unit cell and so similar indices in lattice of any type indicate 
same direction.

Now, if we assume the atoms in any Bravais lattice are represented by 
solid sphere of radius r, we can evaluate the “packing fraction” f defined 
as the ratio of the volume of the atoms in the unit cell to the volume of the 
unit cell. Therefore, for close packed FCC structures, there are four atoms 
of radius r per unit cell of volume a3 and as (4r) 2 = 2a2 so that r = a√2/4 and 

the packing fraction is 
( )3

3

4(4 /3) 2 /4 2 0.74
6FCC

a
f

a

π π
= = =  

Similarly, for another important BCC lattice packing fraction is 0.68. 
The billiard ball model used to find the packing fraction is given Fig. 14.3.

r

4 =  2r a (4 ) = + ( 2) = 3r a a a
2 2 2 2

or, =
3
4

r a

2 =r a

Simple cubic structure
primitive

FCC BCC

r

4r

a

Fig. 14.3 Cubic systems’ packing of atoms 

14.1.1 X-ray Diffraction of Crystalline Solids

X-rays was discovered by Roentgen, a German Physicist in the late nineteenth 
century. It is important in the structure analysis or rather indispensable as its 
wavelength is of the order of the inert atomic distances of solids satisfying 
the basic requirement of diffraction. There are two types of X-ray radiation 
and this classification is based on its physics of production. The bombarding 
electrons from the source are accelerated and when they enter the orbital 
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electrons of the target atom, they are rapidly and continuously decelerated 
which results into the emission of invisible X-radiation or X-rays. Due to 
this reason of its production, this type X-ray is called ‘General radiation’. 
Superposed on it at higher accelerating voltage is the second type of X-rays 
which are sharp peaks on the continuous general radiation and it is called 
‘Characteristic radiation’. They are called characteristic as the wavelengths of 
these peaks depend on the atomic number of the target atom. Physics behind 
the production of this characteristic radiation is that with the accelerated 
kinetic energy of the bombarding electrons, they dislodge the orbital 
electrons of the target atoms and the atom as a consequence of this loss of 
orbital electrons is raised to higher potential energy and to lower down 
this potential energy, the electrons from higher orbits jump to the vacant 
site of the orbit by releasing the photons having specific wavelength. The 
wavelength of the radiation is equal to the energy difference of the orbits. 
This phenomenon is shown in the following Fig. 14.4 (a). The net observed 
X-ray spectra is shown in Fig. 14.4 (b). This spectra is however characteristic 
of the target and so also the characteristic wavelengths.

K-shell

L-shell

M-shell

K�

K�

Ground state

Potential
Energy

Fig. 14.4 (a) Potential energy change due to K-vacancy and lowering it due to 
L-K or M-K transition

Wavelength �

SWL

I

K�

K�

Fig. 14.4 (b) The X-ray spectra, showing the peaks of characteristic Kα and Kβ  
radiations and also short wavelength limit (SWL)
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The short wavelength limit as indicated in the spectra is generated when 
the total energy of the bombarding electron is utilized in the production 
of radiation and this will be the X-ray radiation of shortest wavelength. 
These characteristic radiations have two components and as Kα radiation 
is of highest intensity, the Kβ is eliminated by absorbing this component 
through filters.

14.1.2 Laue Equations and Bragg’s Law

Now, coming back to symmetry and ordering in crystals we may state 
here that these ordering of crystals are of two types 1. Short range order, 
which is effective within few atomic limits and 2. Long range order which 
is effective all through the bulk of crystal. A real crystal may possess both 
of these two types or the second one. When both of these are followed it is 
regarded as Single crystal and when the second one is followed all through 
but the short range is violated at some places, it is called Poly crystal. In 
both of stages of existence the structure of crystals can only be detected by 
either X-ray or by electron beams as their wavelengths are of the order of 
inter atomic distance and can cause of diffraction. The diffracted beam brings 
out the inside structural information of the crystalline substance. We will 
start this study within the limitations of this book with Laue equations. Let 
us consider an array of atoms within the crystal with atomic spacing as a 
and X-ray upon incidence is diffracted as shown in the following (Fig. 14.4). 

In these figure S0 and S are the unit vectors defining the directions of 
incident and diffracted beams.

Now, when the path difference between incident and diffracted beams 
equals the integral multiple of the wave length λ, then the interference 
maxima condition will be satisfied.

i.e. BC – AD = a cosθ – a cosϕ = nλ, this is one dimensional Laue equation. 
When the other two directions are considered then the corresponding Laue 
equations are: b cos θ′′ – b cos ϕ′ = nλ and c cosθ′′ – c cosϕ′′ = nλ in vector 
form these three Laue equations can be written as:

 (a)  (S – S0) = nλ  (b)  (S – S0) =  nλ   and   (c) (S – S0) = nλ.
When these three conditions are simultaneously satisfied the entire 

diffraction phenomenon may be equivalent to a planer reflection and gives 
rise to Bragg’s Law.

It can be shown that the wavelengths of X-ray for which the Laue 
conditions are satisfied are not the characteristic radiation but general 
radiation.
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�
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B D d
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B XIncident -ray
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D

A

�

S

Fig. 14.5 Laue and Bragg’s Diffraction from a set of planes having indices (h k l )

The path difference between the incident and diffracted wave fronts: 
AB and AD will be BC – CD = 2d sin θ and when this is equal to an integral 
multiple of the characteristic wavelength λ, then there will be ‘reflection’ 
and the reflected beams will interfere constructively i.e. 2d sin q = nλ. This 
is known as Bragg’s Law and the angle q is known as Bragg angle. The d 
is the inter planer spacing. As the values of the inter planar spacing i.e. d 
are different for different sets of planes the angle q will also be dependant 
on the plane for a definite wave length of X-ray radiation. So, the Bragg’s 
condition for reflection can be more generalized as:

2dhkl sinθhkl = nλ

The X-ray is diffracted from the planes and brings about amongst many 
two very important information; one is the angle of diffraction and the other 
one is intensity of diffraction. The angle of diffraction gives us the Miller 
indices of the diffracting planes and the intensity from the diffracted planes 
gives us the clues to find the crystal structure of the crystals. However, the 
discussion of these aspects is beyond the scope of this book and the interested 
readers may consult the references given.

14.2 FREE ELECTRON APPROXIMATION

We will now consider a metal to consist of positive ions located on lattice 
sites, and bathed in a sea of conducting electrons in the conduction band and 
take a particular example where, N valence electrons move in a structure 
containing N monovalent ion cores. Then we can assume that these electrons 
move in a constant average potential energy and are free and can move 
independently. Also for simplicity we consider a linear lattice. Then we 
can apply the Schrödinger’s Equation as described in Chapter 13, equn. 
(13.13), which was

 ( , )i h t
t

∂
y

∂
r  = ˆ ( , )H ty r  = 

2
[ ( )] ( )]

2
h V r r

m
− ∆ + y
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We may then drop the potential term and write the approximate wave 
function of an electron having momentum p = hk is y = eikx the k can be 
either positive or negative to allow the motion of electrons in two opposite 
directions. Now, in a three dimensional lattice, we must have a wave 
function which can be given as

               y(r) = eik.r.                                   …(14.1)

For both of the above two functions we must have |y|2 = 1, which 
means that the electron has same probability of being found at any place 
in the lattice. This is however a crude approximation as the electrons will 
have greater probability for being found near the positive ions at the lattice 
sites but we can ignore this in the ‘Free electron Model” as this gives some 
important insight in to the properties of many solids.

The plane wave solution of the above equn. (14.1) is:

 y(r) = 
1
V

 eik . r.

Now, the normalized function with respect to volume V, energy 
eigenvalues of the electron described by wave functions as above and when 
we disregard the constant average potential energy, is

 E = p2/2 me = 2 2 /2 eh k m   …(14.2)
The variation of energy E with k is parabolic and is given in Fig. 14.5.
The momentum eigenvalues of the free electrons result from

 Py(r) = 1{ }ih e
i V

k. r  = hky(r).

The free electron model allows all values of k and therefore Ek, which 
means that the model does not provide any information about the width 
of the band, but we may estimate it in the following way.

 
2
—

�
a

�
—
a

�
—
a

��
—
a

0
k

E

Fig. 14.6  Energy of free electron as a function of k(p = hk)

Consider a liner lattice of length L composed of N ions separated by 
a distance a, so that L = Na. At the boundary the wave function vanishes 
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and to sustain a standing wave we have  n(λ/2) = L and for each value of 
na stationary state results.

The possible values of n is then are 1, 2, 3, … N and noting that 
k = 2π/λ, we get:

 K = nπ/L = nπ / Na, n = 1 , 2, 3, ….., N.
The difference between successive values of k is π/Na and for N being 

very large k may be safely assumed to be continuous though the values are 
quantized. Now, setting n = N the maximum value of k is kmax = π/a.

Thus the range of k values allowed within the band is between –π/a to 
+ π/a and the maximum energy of the band which is also the width of the 
band is then

                                

2 2

max 2 .
2 e

hE
m a

π
=

Now, it is very important to know how the electrons distribute 
themselves in a band among the energies from zero up to Emax, we recall 
the equation derived in Chapter 13, equn. (13.18) and as g(E) is equal to the 
number of energy levels within the range E and E + dE, 

                                 

3 1/2
1/2

3
4 (2 )( ) V mdNg E E

dE h
π

= =

and therefore     
3 1/2

1/2
3

4 (2 )( ) V mdN E E dE
h

π
= .

Considering the spin up and down of the electrons in each levels, the 
total number of electrons per unit volume with energy between E and E + 
dE in the band is

                                    
3 1/2

1/2
3

8 (2 )emdn E dE
h

π
= .  …(14.3)

Using this equns. (14.3) and (13.18) as 

  n = 
0

( )
E

g E dE∫ , we get

    n = 
3 1/2 3 1/2

1/2 3/2
3 3

0

8 (2 ) 16 (2 )
3

E
e em mE dE E

h h
π π

=∫ .  …(14.4)

This quantity g(E) and the distribution of electrons in the energy sates 
in the conduction band are shown in the following Fig. 14.6. 
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Fig. 14.7 Density of states for free electrons in a solid and their distributions

14.3 ELECTRON SPIN PARAMAGNETISM

Now, consider the effect of magnetic field on these free electrons. The 
magnetic field is represented by the magnetic induction B0 = µ0 H , where H 
is the intensity of external magnetic field and B0 is the field induced within 
the solid. At absolute zero and in the absence of any field the energy band 
for free electrons is represented by the plot of energy E and N(E) discussed 
in the last chapter and given by

3 1/2 3/2
3

8( ) (2 )
3

VN E m E
h
π

= .
 

The electrons with spin parallel to Z-axis say Np(E) and those anti 
parallel spin, Na(E) are separated onto two halves of the horizontal axis. This 
is given in the Fig. 14.7 a. If now the direction of the applied field is taken 
as the Z-axis, the energy E of the spinning electrons is raised or lowered, 
depending on the spin orbit interaction. As the electron is spinning, it will 
posses an intrinsic spin magnetic moment and the spin magnetic moment 
µS is proportional to the spin angular momentum S by the relation:

     µS = – gS 2 e

e
m

S.  

The eigenvalue of its spin component by:

 –µS . B0 = gS 2 e

e
m

S . B0 = 0 02
2 S B

e

e m hB B
m

= ±µ . 

The result is instantaneous displacement of two halves of the energy 
b and as in Fig. 14.7 b. This is a non equilibrium configuration and as a 

consequence the electrons with 1
2Sm = + , which have higher energy than 

those with   1
2Sm = +  fall into the empty states and occupy the states by 
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reversing their spins. Due to this reversal of the spins, shown in Fig. 14.7 

(c), there will more electrons with spin 1
2Sm = −  which is anti-parallel to 

the magnetic field than parallel. 

  

1
= –

2
sm

1
= +

2
sm

E

N Ea( ) N Ep( ) N Ea( ) N Ep( ) N Ea( ) N Ep( )

E E

+�BB0

–�BB0

  (a)                                      (b)                                     (c)

 Fig. 14.8 Energy bands for free electrons in applied magnetic field

Due to this reversal of the electron spin direction in the direction anti 
parallel to the applied field, the net spin magnetic moment increases in the 
parallel direction and magnetization as a result is induced in the solid as 
long as the applied external field continues. This phenomenon of induced 
magnetism in the direction of applied field is known as “paramagnetism”. 
This will be discussed in details in a later Chapter 16 along with other types 
of magnetism. 

14.4 ELECTRICAL CONDUCTION 

The electrons flow in a conductor in a conductor under the influence of an 
external electric field and this can be associated with a change of the free 
electron distribution say f (k) in k space. Let us consider a simple situation 
when a small electric field V is applied in x-direction and electron flow 
under its influence. The force applied by this field on the electron is given 

by using p = hk xdkeV h
dt

− = .

The rate of change of the distribution function f (k) in x-direction is 
associated with the electron drift and is expressed as:

x

x xd

df df eV dfdk
dt d k dt h dk

      = = −           
.

For small deviation of the distribution function from equilibrium, we 
assume that in real crystal f (k) returns to its thermal equilibrium form 
f0(k) exponentially with time due to electron lattice collisions as:
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/

0 0 0( ) ( ) t
t tf f f f e− τ

=− = −

where t is the relaxation time of the system. Alternatively we may say 
that the rate of change of f (k) caused by collisions is proportional to the 
deviation of the function from equilibrium i.e. 

                                             

0 .
c

df f f
dt

−  = −  τ 

Together these can be equated as:

      

0

xd c

df df f f dfeV
dt dt h dk

−   = = − = −    τ   

The distribution function can then be equated as:

                         0
x

dfe Vf f
h dk
τ

= +  = 0
1

x

df dEf e V
h dE dk

+ τ

 As E = p2/2me and px = hkx E = 
2 2

2
x

e

h k
m

 and 
2

x

x e

h kdE
dk m

=   ...(14.5)

Replacing this value above we get:

   0
x

e

e V h k dff f
m dE

τ
= +  = 0 x

dff e Vv
dE

+ τ . Here, / .x
x e x

e

h kp m v
m

= =

vx is the velocity of the electron in the x-direction.
Now,  providing the potential V is small, the distribution function f  may 

be assumed to be same as Fermi distribution which is the first term of the 
above equation so that 

 df/dE = df0 /dE

 and 0
0 x

dff e Vv
dE

+ τ . In k space 3 3
0

0

( )  4  / 4
kF

f k N  v  n= π = π∫
where N is the total number of electrons in volume v and n is the electron 

density.

 dn = dN/v = 3
1

4π
f(k)dk.

The current density     jx = 
2

F
x

e

eNev dn V
v m

τ
− =∫

and as current density jx = σV from classical free electron theory, we 

get the electrical conductivity s = 
2

F

e

ne
m

τ . …(14.6)
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14.5 BLOCK THEOREM: PERIODIC POTENTIAL

So far in the free electron model, we have considered that the electrons are 
either not influenced by a potential field due to non existence of it or they are 
not effectively influenced as the potential remains constant. However, now 
to improve the free electron model, we incorporate the periodic structure 
of the lattice. Let us start with the possible variation of the wave function. 
The effect of the periodic lattice is to change the particle wave function eik.r 
so that instead of having a constant amplitude, the wave function has a 
varying amplitude and the variation changes with the period of the lattice.

 Therefore, we may write the wave function as:
 y(r) = eik . ru(r)  …(14.7)
where u(r) is the modulating amplitude which repeats itself from one 

unit cell to the other in the lattice having spacing a and in a linear lattice 
the above equn. (14.6) is modified as:

 y(x) = ei kxu(x)  … (14.8)
where u(x) satisfies the condition
 u(x + a) = u(x).    …(14.9)
The equns. (14.7) and (14.8) together constitute the “Bloch’s Theorem”. 

The fact that the function u(x) obey the periodicity of the lattice can be seen 
for one dimensional lattice in the following way:

If we consider a linear lattice of period “a” such that the potential energy 
Ep is related as:

Ep(x) = Ep(x + a) is also periodic with period “a” then the probability 
distribution of the electrons must show also the same periodicity as the 
potential energy so that

                            
22( ) ( )x x ay = y + .

The above equation implies that ( ) ( )x a C xy + = y  and |C|2 = 1. Thus, 
we may write C = eika having k as an arbitrary parameter. Therefore, we 
may write:

 y(x) = e–ika y(x + a). Now multiplying both sides by e–ikx we get
 e–ikx y(x) = e– ik (x + a) y(x + a)
The above equation shows that if we consider the function u(x) = e– ikx 

y(x) then u(x) = u(x + a). This is Bloch theorem.
Now, recalling the Schrödinger’s equation from (13.13) which is

2
ˆ( , ) ( , ) ( ) ( )

2
hi h t H t V

t m
 ∂

y = y = − ∆ + y 
∂   

r r r r  and replacing y(r) by 

y(r) = ei k . r u(r) we get an equation for u(r). 
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2

2
h
m

− {k . ∇ – k2} u(r) + V(r) u(r) = Eu(r).

 Considering the complex conjugate equation we can obtain that 
  E(–k) = E(k).
This further shows that each energy band is symmetric about the origin 

of k space.
The energy of the electron is not entirely kinetic as it is in the case free 

electron , because of the potential energy due to the lattice ions. The detailed 
expression for energy in terms of k is complicated and depends upon the 
geometry of the lattice. The important observation is that the energy has 
a discontinuity or gap at certain values of k which for a linear lattice of 
spacing a, are given by k = nπ/a, where n = ± 1, ± 2, ± 3, … and it is shown 
in the following Fig. 14.8.
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 Fig. 14.9 Brillouin zones in linear lattice 

It is now be said that electrons can move freely within the lattice without 
encountering any resistance except when k is close to the values nπ/a. 
The motion of the electrons in the lattice can be considered similar to the 
propagation of electromagnetic wave in a crystal. It has been seen that the 
electromagnetic wave in the lattice gives to a reinforced scattering when 
Bragg’s condition is satisfied as discussed before. For normal incidence the 
Bragg’s law is written as: 2a = nλ for linear lattice. Now, writing λ = 2π/k, 
we get: k = nπ/a which is in agreement with the expression written before. 
Therefore, these values of k are those at which the linear lattice blocks the 
motion of electrons in a given direction by forcing them to move in the 
opposite direction. The range of k values between –π/a to + π/a, constitute 
the first Brillouin zone and between –2π/a to + 2π/a, constitute second 
Brillouin zone and so on.
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Now, when a force F is applied, the F = dkh
dt

and this can be considered 

as the equation of motion of electron in the lattice. The electron in the first 
Brillouin zone under the effect of the field suffers increase in its k value 
and its velocity v also suffers increase. When k reaches a certain value close 
to π/a, the velocity begins to decrease i.e. electron decelerates even when 
the field continues to be applied. When k = π/a, the velocity becomes zero 
and the wave packet suffers a Bragg’s reflection . the velocity of electron 
continuously decreases as it moves opposite to the direction of the applied 
field and continues until velocity becomes zero at k = 0 and then again it 
turns back and continues to move in the direction of the field and the cycle 
repeats itself as shown in Fig. 14.9.
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Fig. 14.10 The motions of electrons in Brillouin zones under electric field

An important conclusion to be understood from the above kinematical 
description is that an external force cannot remove the electron from the 
Brillouin zone unless it is acted by photon and enough energy is gained. But 
the electrons and their motions discussed here is for the valence electrons in 
the metal atoms, which are rather free to move in the periodic lattice within 
which the potential variation is also periodic with the same periodicity as 
the lattice structure. For a complex structure, this potential variations are 
also complex and it is approximated here as a linear simple lattice. This 
approximation taken to develop Bloch’ theorem is called “Weak binding 
approximation” and this approximation is valid for metallic bonding in 
metals and conductors. 

It is now necessary to define the effective mass of electrons m*, which is 
defined as m* = F/a where F is the applied force due to electric field and a is 
the acceleration of the electrons due to this field and the lattice interaction. 
Therefore m* is different from me and is also not a constant. 
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.dv dv dka

dt dk dt
= =

Now, as E = hω and group velocity 1,g
d dEv so v
dk h dk
ω

= =  and also as 

F v dt = (dE/dk) dk and using the above expression for v, we get

             F = dkh
dt

   and so   
2

*
2 2 .

/
hm

d E dk
=   …(14.10)

This should be noted here that when electrons are free and its energy 
is given by equn.(14.2) which was E = p2/2 me = h 2k 2/2mc, we have m* = me 
and therefore m* is the parameter for the lattice and of the electrons lattice 
momentum hk. It is interesting to point out here that in (Fig. 14.9) above 
m* is positive at the bottom of the of an energy band and negative at the 
top because at the bottom it moves in the direction of force resulting in 
the increase of velocity and at the top in the opposite to the force resulting 
velocity decrease. 

Let us conclude the discussion on the electron motions in a periodic 
lattice by considering the density of states, which has already been 
introduced in free electron model. If we consider the variation of g(E) which 
is dn/dE with energy E in following Fig. 14.10, it is found to be parabolic 
at the bottom of the band and parabolically increases but unlike Fig. 14.6, 
it does not continue it but again parabolically decreases at the top of the 
band. However, the shape of the variation of g(E) given in the figure is only 
a qualitative representation. The correct representation of g(E) variation 
depends on the structure of the lattice and the position of the band. The 
electron at the Fermi level faces some empty energy levels and can move 
up with the application of field and increase of temperature. If EF coincides 
with Emax and so there will be no energy levels available and that condition 
electrons fail to get influenced by the applied field. The behaviour of the 
solids then changes from conductor to insulator.

The free electron theory under weak binding approximation discussed 
here is more classical than quantum mechanical as detailed quantum 
mechanical derivation and treatment is beyond the scope of this book. 
However semi quantum mechanical treatment for other types solids 
namely non metals whose valence electron are not as free as that in metals 
is discussed in the following section.
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Fig. 14.11 The density of states in a band

14.6 THE TIGHT BINDING APPROXIMATION

We also can demonstrate the existence of electronic energy band with gaps 
between energy bands, by solving one electron problem in the tight binding 
approximation, where we think electrons as bound to separate atoms in 
the solid. Such an approximation is valid for electrons in insulators. For 
an electron in linear lattice of spacing a the wave function y is given as : 

( ),ikna

n
e x nay = φ −∑  where f is the atomic wave function of an electron in 

a stationary state of an isolated atom and n = 1, 2, ….., N identifies each of 
the atoms in the lattice. Thus, f (x – na) is the wave function corresponding 
to the nth atom and y is a linear combination of atomic wave functions with 
convenient phase factors. We will now see that the above equation satisfies 
the Bloch theorem. We can write the above equation can also be written as

         
( ) ( )ikx ik x na

n
e e x na− −y = φ −∑                      …(14.11)

which by comparison with ikxey =  results

 u(x) = ( ) ( )ik x na

n
e x na− − φ −∑  and 

  u(x + a) = [ ( 1) ] [ ( 1) ]ik x n a

n
e x n a− − − φ − −∑

The summation in both of the expression of u(x) and u(x + a) are identical 
if N, the number of atoms in the lattice is very large and thus as u(x) = u(x 
+ a), the Bloch’s theorem is verified. The average energy of an electron 
described by the wave function (14.11) is given by

  

*

*ave
H dx

E
dx

y y
=

yy
∫
∫

where H the Hamiltonian operator given as before by H = 
2 2

22 e

h d
m dx

−  + 

Ep(x) where Ep(x) is the periodic potential energy of the electron in the lattice.
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CHAPTER

15

Semiconductor Physics

15.1 SEMICONDUCTOR PHYSICS

 An interesting property of solids is their electrical conductivity. There are 
some solids which are Good conductors and Semiconductor at the other 
extreme lay some solids which are insulators. Amongst the conductors are 
metals like copper, aluminium and silver and amongst the insulators are 
most covalent and ionic solids including diamond and quartz. There is 
wide difference between the electrical conductivity within these two solid 
classes, for example, while for copper the conductivity at room temperature 
is 1020 times greater than that of quartz. Intermediate between these two 
classes is a third kind of solid named as Semiconductor which totally unlike 
conductors and insulators does not obey Ohm’s law. It has been seen that 
the resistance increases with increase of temperature for conductors and 
insulators, for semiconductors it decreases. The semi conductors at room 
temperature show much poorer conductivity than conductors. Typical 
semiconducting materials are germanium and silicon. 

 When atoms of the substance come close enough to get transformed 
into solid state, not only they form normally crystalline structure but their 
electronic orbits overlap to form bands from discrete energy levels. Due to 
this possible situation the band theory of solids give a simple explanation 
of the marked different electrical behaviour of solids. The first analysis of 
this electrical behavior has been done in the last chapter (Chapter 14) by 
means of free electron model which was later refined by taking into account 
the periodic structure of the lattice. Let us consider a metal having band 
structure as shown in the following Fig. 15.1 which might correspond to 
the energy levels of sodium (Na) (Z = 11).

It can be seen from the above figure that the bands corresponding 
to 1s, 2s, 2p are completely filled, whereas the band corresponding to 3s 
which can accommodate two electrons per atom but have only one is half 
filled and other half is emptydue to thermal excitation the electrons, these
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 Energy bands in a conductor
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Fig. 15.1 Energy bands in sodium like metal

3s electrons from the Fermi level can increase their energy and go to higher 
energy level, depending on the thermal excitation. This is shown in the left 
half of the above Refer to Fig. 12.5. On the application of electric field these 
electrons can be accelerated and go to the nearby higher level or state of 
the same band without violating the Pauli’s exclusion principle. Thus the 
electrons gaining momentum opposite to the direction of the field constitute 
electric current. Therefore, the substances having band structures similar to 
that of the above figure should be good conductors of electricity and also 
be good thermal conductors because of the same cause. To summarize, 
good conductors of electricity also called metals are those solids in which 
the upper most occupied band is not completely filled. Actual situation in 
conductors are slightly more complex for example in magnesium the 3S 
and 3p bands overlap eliminating the band gap and therefore the electrons 
in the 3s level have plenty of vacant states to move up. This is as shown in 
the following Fig. 15.2 is the usual state of affairs for all conductors. So, in 
magnesium the case is slightly different, if there is no overlapping and as 
3S band is filled up and 3p band is empty, magnesium should an insulator. 
But because of overlapping, upper most electrons of the 3s band have the 
lowest energy states of the 3p band available and thus some 3s electrons 
move to occupy some low 3p levels until an equilibrium energy level for 
both bands is established. That is the reason for magnesium being a good 
conductor. Those substances whose atoms have complete shells but which 
in the solid state are conductors because of this overlapping of filled band 
and an empty band are often called “semimetals”.
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Fig. 15.2 Overlapping of bands in the band structure

In transition metal group, such as Iron, the overlapping bands are 3d, 
4s, and 4p and the number of electrons is insufficient to fill these bands. This 
property for Iron is a special and for this iron is ferromagnetic which will be 
discussed in a latter chapter. Similarly for rare earth group, the overlapping 
bands involved are 4 f, 5d, 6s and 6p and hence these elements in solid state 
are conductors. Now, let us refer to the figure above Fig. 15.3. In Fig. 15.3 a 
the valence band is totally filled up whereas the conduction band is empty 
and in between them there is a large energy gap. 

0

E

Filled valence band
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(a) energy bands of Insulator
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(b) Energy bands for diamond (c), Silicon (Si) and germanium (Ge)

Fig. 15.3 The energy band structures for an insulator (A) and for diamond
silicon and germanium 
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This is the band configuration of a perfect insulator and its insulating 
property or limit depends on the width of the energy gap. It has been stated 
above that when atoms are widely separated there electronic levels do not 
over lap but when they are brought close enough to form solid, their electron 
energy levels overlap to form bands. The structure of bands depends on the 
crystal structure that is formed in the solid state and also on the electron 
configuration of the atoms. In Fig. 15.3 (b), this is exhibited where energy is 
plotted against the inter atomic distance r.  For carbon in diamond structure 
when carbon atoms form solid, the energy gap is very wide and as a result 
diamond is a perfect insulator both for electricity and heat transmission. 
For silicon and germanium, the energy gaps are much narrow though 
other characteristic namely the filled valence band and empty conduction 
band remain same. This characteristic property for silicon and germanium 
allows the electrons from valence band to jump across the energy gap due to 
thermal agitation and enter into the conduction band and start conducting. 
This special property of silicon and germanium classifies them into an 
intermediate state other than conductors and insulators and that electrical 
state is called “Semiconductors”. A comparative study of the value of energy 
gap for some insulators and semiconductors are given below in Table 15.1.

 Table 15.1 Some important insulators and semiconductors with their 
respective energy gap values in eV

Insulators Energy Gap (eV) Semiconductors Energy Gap (eV)

Diamond 5.33 Silicon 1.14

Zinc oxide 3.2 Germanium 0.67

Silver chloride 3.2 Tellurium 0.33

Cadmium sulfide 2.42 Indium antimonite 0.23

15.1.1  Clssification of Semiconductors 

 The semiconductors introduced as above can be classified into different 
classes as below:
 I : On nature of current carriers 

(a) Ionic semiconductors – where conduction takes place by the 
movement of ions and this is accompanied by mass transport.

(b) Electronic semiconductors – where conduction takes place by 
electrons without any mass transport.

 II : On composition 
(a) Elemental semiconductors – elements in Group-IV, C, Si, Ge, Sn.
(b) Compound semiconductors – compounds of inter metallic Group 

III–V and Group II–VI.
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 III : According to structure
(a) Amorphous – having local, short range order in quasi periodic 

structure.
(b) Poly crystals – similar to single crystals in electrical behaviour but 

with significant lower conductivity.
(c) Single crystals – most of the semiconductors are single crystals 

superior in all qualities.
In compound semiconductors, the semiconductors are formed from the 

elements in (i) Group III A with those of Group V A as:
Group III A   Group V A 
 ↓         → N  P  As Sb
B
Al   Al N 
Ga    GaN  GaP GaAs GaS
In     InP  InAs  InSb 
Compounds in bold are stable and do not disintegrate with time. In 

this III-V category of semiconductors each atom on the average has 4 
valence electrons and the bonding is of covalent nature. But as Group III 
elements are more electropositive than Group IV and Group V is more 
electro negative than Group IV, the cohesive force between the atoms has 
two terms one due to the contribution of covalent bonding and the other 
due to ionic contribution. As a result the cohesive force and the strength 
with which the valence electrons are bound to the atoms are higher for 
these crystals than for Group IV elements. Therefore, due to this along 
with melting point, the band gap Eg in this type of III-V compound semi-
conductor is higher than Group IV elements. The technical importance of 
these III-V semiconductors is that they give wider choice of band gap than 
the elemental semiconductors and some of them have their energy band 
gap within the visible region of light and so are applied as LED and In Sb 
and In As are used in galvanometric devices.

However, due to the difference of melting point and vapor pressure of 
the constituents, it is difficult to maintain the stoichometry of the compound.
 (ii) Group II–VI Compound semiconductors 
  These semiconductors are formed by combining the elements in Group 

II B and VI A.
Group II B ↓  Group VI A →
      O   S  Se  Te
Zn     ZnS  ZnSe  ZnTe
Cd     CdS  CdSe  CdTe
Hg     HgS  HgSe  HgTe 
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The average number of valence electrons per atom is 4 and the bonding 
is a mixture of covalent and ionic type and large band gap compared to the 
other covalent semiconductors. They deserve a potential source of electro- 
luminescent devices.
 (iii) Group IV–VI Compound semiconductors
  These semiconductors are receiving wider attention because of their 

applications in infrared detectors. PbS, PbSe, PbTe and SnTe are among 
this category. They crystallize in simple NaCl structure, the bonding 
is ionic with some covalent characterization. They have small band 
gap and low effective mass of carriers.

15.1.2  Concept of Holes

From the characteristics of semiconductors as described above it can be 
said that semiconductors are insulators in which the energy gap between 
valence band and the conduction band is about one eV or less (1.1 eV in 
silicon and 0.7 eV in germanium) so that it is relatively easy to thermally 
excite electrons from valence band to the conduction band. The electrons 
transferred to the conduction band then face empty energy levels and 
can be said to act as conducting electrons as that in metals and other 
conductors. As long as these electrons were confined to the covalent 
bonding in semiconductors like germanium or silicon, they are said to 
exist in the valence band. With the increase in temperature, the thermal 
energy dislodges the electrons in the valence band and transports it to 
the conduction band. The bond they leave suffers a vacancy or absence of 
negatively charged electrons which may be considered as equivalent to 
the presence of equal amount of positive charge like positive electrons and 
exist in the valence band. These positive charge equivalents are named as 
“hole”. With thermal excitation negative electrons break from the bonds 
and may fill up the holes and causing the transport of hole from one 
position to the other in the valence band. This effect increases with increase 
of temperature. For example in silicon the number of excited electrons 
is increased by a factor of 10 6 when temperature is raised from 250°K to 
450°K. We thus have electric conduction from the excited electrons in the 
conduction band and from holes in the valence band and this conductivity 
increases with temperature as number of excited electrons in the conduction 
band and holes in the valence band increase. This current due to electrons 
in the conduction band and positive holes in the valence band is an intrinsic 
property of the semiconductors and is called “intrinsic conductivity”.



 Semiconductor Physics 15.7

 

Hole Conducting
Electron

Si

Si

Si

Si

Si

Si

Si

Si

Si

Conduction band
Excited electron

from valence
band

Holes

Valence band

E = Bottom of conduction bandc

E = Top of valence bandV

Ev

EF

EC Energy
gap (E )g 3 kT

3 kT

Fig. 15.4 Conduction electrons and holes in the valence band

15.1.3  Carrier Density and Band-gap Determination in Intrinsic 
Semiconductor

 Now, if Ne represents the number of density of states in the conduction band 
and NV represents the density of states in valence band and ne and np denote 
the number of conducting electrons and valence band holes, then: 
 ne = Ne f (E) and
 np = NV f (p)
where f(E) is the Fermi-Dirac distribution of electrons in the conduction 

band and f (p) = 1 – f (E) writing:

  f (E) = 
( )exp C FE E

kT
− −  

 and  f (p) = 
( )exp F VE E

kT
− −  

EC, EV and EF are shown in Fig. (15.4).

       ne . np  = Ne NV f (E) . f (p)

                 = Ne NV  
( )exp C VE E

kT
− −  

  …(15.1)

Now, 
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For intrinsic ni
2 = ne . np = k1

2 T3 exp (–Eg/ kT) where Eg is the band gap

 or,       3/2
1 exp( /2 )i gn k T E kT= − .  …(15.2)

Now the band gap energy is a function of temperature T so that: 
Eg(T) = Eg0 – bT, where b is the rate of decrease of energy band gap with 

temperature.

         

03/2
1 exp

2
g

i
E bT

n k T
kT

− + 
=  

    

  = 
03/2 2

1 exp .
2

b
g kE

k T e
kT

− 
 
 

.

Now writing             /2
2 1

b kk k e=

                                     
03/2

2 exp
2

g
i

E
n k T

kT
− 

=  
 

.  …(15.3)

Now, putting the of values me
*, mp

*, b and Eg0, the value of ni can be 
determined as a function of temperature. For example:

For Ge: ni(T) =   1.76 × 1016 T3/2 exp (– 4550/T) cm–3   and 
For Si: ni(T) =  3.88 × 1016 T3/2 exp (– 7000/T) cm–3.

As conductivity σ is proportional to ni and therefore to 0exp
2

gE
kT

− 
 
 

 

and as resistivity, ρ = 1/σ, the resistivity is given by: const. exp .
2

gE
kT

 
ρ =  

 
 

Now, taking log of both sides loge σ = loge const. + Eg/2 kT.

Therefore, log
1 2

ge E
k

T

∂ ρ
=

 ∂ 
 

 and the slope of the plot of loger vs. 1
T

 gives 

a measure of band gap, Eg.

15.1.4  Carrier Mobility: Intrinsic and Extrinsic (Impurity) 
Semiconductors

Now, if n is the carrier per unit volume, v the drift velocity, F the electric 
field and e the charge of the carrier, then current I is given by

 I = n e v α where α is the cross section
The current density,  J = I/α = n e v.
The carrier mobility µ is defined as the drift velocity per unit field 

strength and so

 µ	=	
v
F
ν = µF  and so J = n e µF
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The conductivity, σ of the carriers is defined as current density per 
electric field i.e.

 	 σ = J/F = ne µ.
Now, this number density of carrier per unit volume are:
 ne = number of electrons as carrier in the conduction band
 np = number of holes as carrier in the valence band and
 mn = mobility of the electrons µp = mobility of holes
Then as
	 σ = σn + σp where suffixes n represents for conducting 

electrons and p the holes in the valence band. Therefore,
  σ = e(ne µn + np µp)
For intrinsic semiconductors as discussed above
  ne = np = ni

Therefore, σ = ni e(µn + µp). …(15.4 a) 
And the current density j(a vector) can be written for intrinsic 

semiconductor as
  j = (σn + σp) F = (nn eµn + npeµp)F.  …(15.4 b)
Now, recalling the Fermi distribution function from equn. (12.39) which 

was as

 ni = 
( )/ 1

i
E E kTi F

g
e − +

.  

Now the probability that ith level having energy Ei will be occupied by 
conducting electrons is given by

               1( )
1 exp

i

i Fi

nf E
E Eg

kT

= =
− +   

.  … (15.5)

Now, referring to the Fig. 15.4, we know that:
 EC = Energy level at the bottom of the Conduction Band
  EV = Energy level at the top of the Valence Band
and  Eg = Forbidden energy gap
when (Ei – EF) > 3 kT, the Fermi-dirac distribution can be approximated 

by Maxwell Boltzmann classical distribution.

Therefore,  
1

( ) 1 exp exp exp .i F i F F ii

i

E E E E E Enf E
g kT kT kT

−− − −      = = + ≈ − =            

Now, to increase conductivity in pure intrinsic semiconductors 
if impurity atoms either having 5 valence electrons (pentavalent) or 
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alternatively if 3 valence electrons (trivalent) are doped, we get impurity or 
extrinsic semiconductors. They are respectively called as n-type or p-type. 
These extrinsic semiconductors are discussed later in this chapter.

Now, the number of excess carrier of electricity is negative electrons 
in n-type and in p-type it is positively charged holes due to impurity 
effect. Now, ne is the number of excess carrier in n-type and np that in 
p-type semiconductors and ni is the number of charge carriers in any 
semiconductors, n-type or p-type and EF the Fermi energy level lies in the 
forbidden energy gap and 3 kT energy away from conduction and valence 
band edge, (Fig. 15.4). Then we get:

 ne = 
exp .F i

i
E En

kT
−

  …(15.6)

Now for holes  f (p) = 1 – f (E) 

  =  
exp

11
1 exp 1 exp

i F

i F i F

E E
kT

E E E E
kT kT

− 
  − =

− −   + +      

  = 1 exp
( )1 exp

i F

i F

E E
E E kT

kT

− ≈  −   + −  

.

Therefore, np = exp i F
i

E En
kT
− 

  
  …(15.7)

Now, multiplying equns. (15.3) and (15.4) we see that

                               
2

e p in n n⋅ = .  … (15.8)

This is an important relation which shows that the product of number 
of two different types of carriers is equal to the square of the total number 
of intrinsic carriers.

Extrinsic (Impurity) Semiconductors

 Now the conductivity of pure intrinsic semiconductors is limited and can 
be enhanced by the addition of impurity atoms in the original sites of the 
covalent atoms of the semiconductor. This a bit special type of addition 
of impurity in the pure lattice is termed as “doping”. Now two cases may 
arise, first suppose these impurity atoms have more electrons than those 
of the semiconductor for example in tetra valent Germanium or Silicon 
contributing four electrons per atom to the valence band, penta valent 
impurity like Phosphorus or Arsenic, each of which contribute five electrons 
per atom in the valence band is added. We then have one extra electron per 
impurity atom. This extra electron can not be accommodated in the valence 
band of the original lattice and so occupy some discrete energy levels just 
below the conduction band, (Figs. 15.5 and 15.6).
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The separation between these discrete energy levels and the lower edge 
of conduction band is only a few tenths of 1 eV. This is a common feature 
for all such impurity atoms of same valency. These excess electrons from the 
energy levels can then be easily transported (excited) to the conduction band, 
(Fig. 15.6). Now these transported or excited electrons in the conduction 
band contribute to the electrical conductivity and another important feature 
which should be noted that these electrons excited from impurity atoms 
to the conduction band are in excess compared to holes created in the 
valence band due to intrinsic effect. Therefore, number of majority carriers 
is electrons and so these impurity semiconductors are called n–type or 
negative type. The discrete energy levels from which these electrons are 
excited to the conduction band are called “Donor levels”. 

Ge

Ph

Extra
electron

Ge

Hole
B

Impurity semiconductor

n-type p-type

Fig. 15.5 Doping of penta valent phosphorus in n-type and trivalent boron in tetra valent 
germanium host lattice
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Valence band Valence band

Impurity levels
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n-type impurity semiconductor p-type impurity semiconductor

Intrinsic
holes

Intrinsic
holes

Intrinsic
electrons

Intrinsic
electrons

Impurities in semiconductors

 Fig. 15.6 Donor levels in n-type and acceptor levels in p-type semiconductors

Conversely, if the impurity atom has fewer electrons than the host 
atoms like germanium or silicon the impurity atoms may be either Boron 
or Aluminum, each of which contributes three electrons. In this situation 
the impurity atoms introduce vacant discrete energy levels close to the 
top of Valence band Figs. 15.5 and 15.6. It is then easier for more energetic 
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electrons in the valence band to get excited in these levels (named as 
“Acceptor levels”) and thus creating holes in the valence band without 
creating their corresponding electrons in the conduction band. Therefore 
majority carriers are holes in this type of semiconductor and are called 
p-type impurity semiconductor.

The effect of insertion of the impurities either to form n-type or 
p-type in increasing the conductivity is so enormous that only one single 
impurity atom per million host semiconductor atoms makes significant 
change in conductivity. We will discuss the various important applications 
of these impurity semiconductors in latter sections.

15.2 CARRIER TRANSPORT PHENOMENA

 Semiconductors are technologically important because the mechanism 
for electrical conductivity is different to that found in a perfect conductor. 
When an electric field is applied to a semiconductor, charge transport can be 
described by current density equations and by the requirement of continuity 
for electrons and holes. The current density given in equn. (15.4 b) above 
for intrinsic semiconductor is modified by the presence of concentration 
gradient, which is established by the addition of impurity atoms. We in 
addition take into account a new mechanism of charge transport, which 
is not significant in metals, consisting of diffusion of carriers by thermal 
motion and occurring whenever a concentration gradient exists. The current 
density caused by diffusion can be respectively written for electrons and 
holes as:

                               ( )n n
dnj x eD
dx

= ,                                              …(15.9a)

  and                        ( )p p
dpj x eD
dx

= − .  …(15.9b)

where Dn and Dp are diffusion constants for electrons and holes. The 
opposite signs are due to the opposite direction of flow of the charges 
(electrons and holes) for x-direction of the applied field Fx. Now considering 
the fact that the current densities for electrons and holes have two 
components, one due to carrier mobility and the other due to diffusion 
component caused by carrier concentration gradient:

                          ( )n n n
dnj x en F eD
dx

= µ + ,                  …(15.9 c)

                             ( )p p p
dpj x ep F eD
dx

= µ − .                …(15.9 d)

Now, under no electric field there will be no current flow and the both 
je and jp separately equal to zero and then the above equation reduces to:
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 nµn F = – Dn 
dn
dx

.                                              …(15.10)

This results in the implication that the diffusion causes an internal 
electric field which produces an electrostatic potential given by

 F = 
( )dV x

dx
− .

The energy distribution of carriers however, follows the Maxwell-

Boltzmann distribution and can be given as: 
( )expC

eV xn N
kT

 =   
, where 

NC is the carrier electrons or holes.

 Then      dn
dx

  =  
( )( ) ( )expC

eV xdV x dV xe eN n
kT dx kT kT dx

  =  

Hence equn.(15.10) becomes ( ) ( )
n n

dV x dV xen D n
dx kT dx

− µ = −

This yield         n n
kTD
e

= µ  …(15.11a)

Similarly for holes we get

   p p
kTD
e

= µ                                  …(15.11b)

Now, these two relations are known as Einstein Relations which on 
substitution in (15.9 c) and (15.9 d) give to:

   
( )n n n

dnj x en F kT
dx

= µ + µ
 

 and                                 ( )p p p
dpj x ep F kT
dx

= µ − µ  

In the absence of the electric field F,  j n  =  0 = k T m n { }( )/E E kTF Fnd ne
dx

−

Where n, the number of electron carrier is replaced by using Fermi 
distribution and EF and EFn represent Fermi energy levels for carrier in 
general and the electrons respectively and on differentiation we get 

0F
n

dEn
dx

µ = and similarly also the current density for holes and we can 

conclude that as 0FdE
dx

=  in general, the Fermi energy is constant throughout 

an inhomogeneous semiconductor in thermal equilibrium.
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15.3 THE JUNCTION DIODES, TRANSISTOR AND APPLICATIONS

15.3.1  Junction Diodes

It may be once again stated that p and n type semiconductors respectively 
have positive holes and negative electrons as majority carriers. Now, 
two such semi conducting materials are joined together. Then, there will 
be transport of holes and electrons through the junction due to thermal 
diffusion to the other side. In doing so, the holes and the electrons from p 
and n side accumulate at the junction and prevent further flow. This results 
an opposing potential difference which acts as a barrier and is known as 
barrier potential. The minority carrier electrons from p-type on entering 
n–type through junction (which is not affected by barrier) combine with 
minority carrier holes in the n-type and make it electrically negative and 
cause a flow of small current I1 from from left (p-type) to right (n-type). 
Conversely the minority carriers, holes from n–type diffuse through the 
junction and combine with minority carrier electrons in the p-type and form
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Fig. 15.7 The p-n junction diode

an opposite current I2 from right to left. At equilibrium both of these two 
currents are equal i.e. I1 =  I2  Fig. 15.7 (a). Now, if a potential difference is 
applied with p-side connected to positive polarity and n-side to the negative 
polarity of the potential source, then majority carrier holes from p-side can 
overcome the barrier and reach the n-side and combine with electrons. This 
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constitutes a comparatively large flow of current from left to right i.e. I1. But 
on the other hand, the flow of electrons from n-type to the p-type will be 
limited due to potential barrier and constitutes I2 from right to left which 
is less than I1  i.e. I1 > I2, Fig. 15.7 (b). If now the polarity is reversed, the 
current I2 due to minority holes from right side to left will remain same but 
I1 is decreased due to potential barrier i.e. I1 < I2,  Fig. 15.7 (c). The polarity 
shown in (b) for which I1 > I2 is called “Forward bias” and the polarity shown 
in (c) for which I1 < I2 is called “Reverse bias”. The variation net current 
I = I1 –  I2 with potential difference V is shown in the following Fig. 15.8.
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Fig. 15.8 Current as function of voltage

Now, when the input voltage is oscillating between forward and reverse 
biased conditions, the out put current will be obtained only for the forward 
bias condition and the potential across a resistor will be direct instead of 
alternating in polarity. This action of diode is known as rectification of 
alternating signal into direct voltage.

Now, again if the voltage in reverse bias condition is increased the 
bonds in the lattice break up to produce further electron – hole pairs. This 
effect is prominent if the depletion region is narrow and the diode is heavily 
doped. This is known as Zener Diode. The main application of this diode is 
to make reverse bias potential constant as this Zener break down occurs at a 
particular voltage, Fig. 15.9 (a). and the reverse bias voltage across the diode 
VZ does not change. In Fig. 15.9 (b) the Solar Cell is represented. Solar cells 
are p-n junction diodes which transform the sunlight to electricity with 
large conversion efficiency. Light photons on incidence produce electron-
hole pairs in p and n-regions. These electron-hole pairs produced near 
the junction can reach the depletion region of width say W by thermal 
diffusion. The electrons in the p-side can slide down the barrier potential 
and reach the n-side. Conversely, the holes from n–side to the p-side. These 
effects cause p-side to be more reach in hole concentration and n-side with 
electron concentration and thus develop a potential difference. When joined 
by a resistance, RL a current I flows and the strength of this current will be 
proportional to the intensity of the light and will continue as long as there 
is light. However, instead of connecting a resistance the potential difference 
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created by sun light during day time is used in charging a battery which 
acts as potential source during night. In Fig. 15.9 (c) Light Emitting Diode is 
represented. The diode is connected in forward bias; this accelerates the holes 
to move from p-side to n-side and electrons from n-side to p-side through 
the depletion region and if the transported electrons from conduction bands 
of p-side and also of n-side jump the energy gap and meet the holes of the 
valence band, an energy equivalent to the energy gap, Eg is emitted. In this 
LED the released energy is photons within the visible region i.e. n = Eg. The 
different LED materials emit different coloured lights depending on Eg.
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Fig. 15.9 Uses and applications of p-n junction diode

Ga As however is used as a source of infrared and Ga As1 – x Px an alloy 
semiconductor emit different colours depending on the values of x. As 
when x = 0.65, it emits orange; when x = 0.85, it emits yellow and when
x = 1, it emits green.

While LED emits visible light (power consumption ≈	milli watts) by 
spontaneous emission, Injection junction Laser (solid state laser) described 
in Fig. 15.9 (d), emits radiation due to stimulated action. This laser diode 
is basically LED type forward biased diodes but the difference is that the 
emitted radiation due to the combination of electrons with holes across 
the energy gap itself triggers or stimulates emission. The photon of energy 
emitted h n is again equal to energy gap Eg and it then is capable to stimulate 
emission by forcing electrons of conduction band to jump the energy gap 
and meet with holes in the valence band and emit radiation. This effect is 
similar to forced oscillation in classical oscillators.

Another application of junction diodes needs to be mentioned. Photo 
diodes in reverse bias, when illuminated with light extra electron-hole 
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pairs are generated and as result minority carrier concentration increases 
significantly near the junction and increases the reverse bias current. This 
reverse bias current is proportional to light fluxes or intensity and is used 
extensively in decoding sound track and various light operated switches.

Another important application of diodes is the Tunnel Diode, the 
detailed explanation of this tunneling phenomenon though needs 
quantum mechanics (Chapter 13), it can however be stated qualitatively. 
We know that under forward bias condition the conduction band EC of 
n-region is lifted up, decreasing the energy level difference between EC 
of n-region and p-region of the junction diode. In reverse bias condition 
exactly the opposite situation occurs, the EV of the p-region is lifted up as 
EC of the n-region is lowered. Thus, the Fermi level energy levels of p and 
n regions which were equal at zero potential condition, now after biasing 
become different. The EF of n-region moves higher than EF of p-region in 
forward bias and an opposite situation occurs during reverse bias. Now if 
in addition, the band gap is narrow, the electrons from either n-region (in 
forward bias) or from p-region cross over the gap and enter the p-region or 
n-region to equalize the difference in Fermi level. This is explained in the 
following  Fig. 15.10.
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15.3.2 Transistors

The junction transistor consists of two n-p junctions joined together in the 
two configurations, either in n-p-n or p-n-p. n-p-n is shown in the following 
Fig. 15.11.  
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       Fig. 15.11 Junction transistor (common base)

Let us take n-p-n transistor. The emitters (E, n-type) is heavily doped 
and due to direct bias the majority carriers, electrons cross over to base  
(B, p-type) and constitute an emitter current IE. These excess electrons 
can pass through base (B), which is thin and enter into the collector (C). 
The collector is comparatively larger in size than emitter and so contains 
a large number of minority carrier, holes. The electrons combine with 
majority carriers, holes in the collector base junction. For every electron 
thus combining with hole in B, a free electron moves out from battery to the 
base (IB). The electrons avoiding such combination cross through base and 
reaching collector combine with minority carriers, holes in collector and a 
current IC moves out from battery. The detailed action of this common base 
n-p-n transistor can be followed from the following band structure.
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Fig. 15.12 The energy band diagram of n-p-n transistor

Figure 15.12 (a) shows the arrangement of Fermi level in emitter, base 
and collector, which remain same in all the three sections when no potential 
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is applied. Now, on applying the direct bias emitter-base potential VBE, the 
Fermi level of emitter (n-region is moved up and correspondingly in base 
(p-region) is moved down. This initiates flow of electrons from E to B. These 
electrons on combination with holes on the E-B junction, produces the base 
current IB. The excess electrons move past the  base and as base–collector 
potential is reversed biased, the Fermi level of base (p-region) will go up 
and collector (n-region) will come down, resulting in the flow of electrons 
from base to collector. These electrons on combination with minority carrier 
holes in collector (n-type) produce current I C and potential difference VBC. 
From Fig. 15.11, we can write IE = IeE + IhE, where IeE and IhE respectively 
mean the electron and hole components of the emitter current IE, then the 
emitter efficiency g is defined as

           

1 .
1 /

eE eE

E eE hE hE eE

I I
I I I I I

γ = = =
+ +

The base transport efficiency is defined by:

eC

eE

I
I

δ = , where IeC stands for the electron component of the collector 

current. From the above two expressions we get

                                             
and so, .eC

eC E
E

I I I
I

γ = = γδ
δ

But as,     IC =  IeC + IhC  

Therefore, IC = γδ IE + IhC and  from Fig. 15.11 we get IE = IC + IB

Introducing “Current gain”, α  is related as  α =  γδ.

Input

Output

B

C

Common emitter configuration

n-p-n transistor

IC

IB

Another configuration for n-p-n transistor is common emitter type 
shown above. This configuration is useful for achieving larger current gain. 
The static characteristics of this configuration is same as the common base 
type but the only difference is that here the input current is IB and not IE as 
in common base configuration. The current gain which is given in common 
base as  α =  γδ is given here as:
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 Current gain: 1
1 1/ 1
α

β = =
− α α −

 , which is much greater than common 

base and it is also important to know that α =  γ	δ is to be as near to unity 
as possible. Now to summarize, the major use of these transistors either 
in n-p-n or p-n-p configuration is amplification of any input signal put in the 
emitter-base circuit due to current gain and are extensively used in practice.
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CHAPTER

16

Magnetism - II

16.1 SOLID STATE MAGNETISM: AN INTRODUCTION 

	When	a	solid	is	put	in	a	magnetic	field	of	strength H, the magnetization 
induced	with	it	and	say	of	strength	M	then	they	are	related	as:

  M = χH 
where	c	is	introduced	as	magnetic	susceptibility.	This	is	a	constant	for	

isotropic	substance	and	is	a	tensor	in	an	anisotropic	substance	and	in	that	
case M and H	are	not	in	the	same	direction.	The	magnetic	induction	B is 
defined	as:

 B = µ0 (M + H) = µ0 H(1 + c) = µ0	.µr H
where			m0 and mr	are	respectively	known	as	magnetic	permeability	in	

free	(empty)	space	and	relative	permeability.	Again,	µ = µ0 
.µr = µ0 ( 1 + χ) 

is	the	magnetic	permeability	of	the	medium.	This	should	be	noted	here	that	
µ0,	which	is	the	free	space	permeability	is	constant	and	its	value	is	given	as:	
µ0 = 4 p × 10–7	henry/µ.

In	an	isotropic	medium,	B, H and H	vectors	and	m	is	a	scalar.
On	the	basis	of	the	magnetic	susceptibility	χ	 the	solids	are	classified	

into	(a)		Diamagnetic	(b)	Paramagnetic	and	(c)	Ferromagnetic.	
If	χ 〈	0	and	has	a	very	low	value	and	|χ| 〈〈	1,	then	the	slope	of	M	vs.	

H	is	negative,	constant	and	independent	of	the	variation	of	H, the solid is 
Diamagnetic.

H

M

0

Paramagnetic

Diamagnetic

Some typical diamagnetic

substances with their values�

Bi = –15 x 10
–5

Cu = 0.9 x– 10
–5

Ge = 0.8 x– 10
–5

Si = 0.3 x 10
–5

–
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But	if	c	is	positive	i.e.	χ	>	0,	though	|χ|	remains	as	〈〈 1, then in M	vs.	H 
curve	the	slope	becomes	positive	and c	is	independent	of	H	but	depends	
on	temperature.	The	solid	is	then	named	as	Paramagnetic.	The	values	of	χ 

For	some	typical	paramagnetic	substances	at	room	temperature	is	given	
below;

 CaO = 580 × 10–5,	 Fe	Cl2 = 360 × 10–5,
  NiSO4 = 120 × 10–5,																		Pt	=	26	×	10–5.
If	now	c	is	positive	and	has	usually	very	high	value	i.e.	χ >> 1, then 

the	solid	is	named	as	Ferromagnetic.	Apart	from	first	transition	group	of	
materials	like	Fe	(Iron	Z	=	26),	Co(Cobalt	Z	=	27)	and	Ni	(Nickel	Z = 28) 
some	rare	earth	metals	like	Gadolinium	(Z	=	64),	Holmium	(Z	=	67),	Erbium	 
(Z	=	68)	and	also	some	alloys	exhibit	ferromagnetism.	For	ferromagnetic	the	
magnetization M	first	increases	rapidly	with	H	and	then	it	is	saturated.	As	
χ	is	obtained	from	the	slope,	for	ferromagnetic	the	χ	first	increases	rapidly	
with H	until	it	attains	a	maximum	and	then	decreases	to	zero	as	H attains 
saturation.	Another	phenomenon	which	is	typical	property	of	ferromagnetic	
is	the	‘Hysteresis’.	This	is	demonstrated	in	the	following	figure	first	and	
then	introduced.

M
S

M

0 H H

�

0

A

H
F0D

C

B

E

                   (a)                                                      (b)                                    (c)

Fig. 16.1 The variation of M, χ and magnetic induction B vs. magnetizing field H for ferromagnetic 
materials. (c) is the hysteresis loop

In	 the	figure	 above,	 (a)	 represent	first	 slow	 then	 rapid	 increase	 of	
magnetic	field	strength	M	with	external	magnetizing	field	H which tends 
to	attain	saturation.	The	variation	of	susceptibility	χ with H is	unlike	pra	
and	dia	magnetic	substance	shows	a	maximum	as	it	is	not	a	constant	for	
ferromagnetic	and	decreases	rapidly	as	M	attains	saturation.	The	Fig.	16.1	
(c)	represents	an	important	property,	known	as	hysteresis.	The	magnetic	
induction B	first	increases	as	(a)	with	the	increase	of	H attains	a	saturation	
and	then	do	not	follow	the	same	route	when	H	is	decreased	and	follow	A	
to C when H	is	decreased	to	zero.	There	is	always	a	retained	magnetization	
within	 the	 ferromagnetic	 equal	 to	OC,	which	 is	 known	 as	 ‘magnetic	
retaintivity’	and	represents	the	remnant	magnetic	induction.	On	reversing	
the	field H, B	decreases	and	becomes	zero	at	some	negative	H, D which 
shows	the	coercive	force	to	relieve	the	magnetization.	Thus	B completes 
a loop when H	 is	varied	 from	+H to –H.	This	 loop	 formed	 is	known	as	



 Magnetism - II 16.3

‘Hysteresis	cycle’	which	represents	the	loss	of	energy	due	to	magnetizing	
field	cycle.	Depending	on	the	area	of	this	loop,	the	ferromagnetic	substances	
are	classified	as	magnetic	‘soft’	and	‘hard’.	Soft	magnetic	materials	can	be	
easily	magnetized	and	demagnetized	without	loss	of	much	energy,	where	as	
‘hard’	materials	which	have	large	areas	enclosed	by	the	loop	are	permanent	
magnets	and	difficult	to	magnetize	and	demagnetize.

When	ferromagnetic	substance	is	magnetized	and	demagnetized	there	
is	 always	fluctuation	of	 the	volume	with	 frequency	depending	on	 the	
frequency	of	change	in	H.	This	phenomenon	is	known	as	‘Magneto	striction’.	

16.1.1 Theory of Diamagnetism

Diamagnetism	has	 its	 origin	 in	 the	 change	of	 orbital	motion	of	 atomic	
electrons	due	to	applied	magnetic	field.	We	know	that	a	loop	of	wire	with	
a	current	through	it	produces	a	magnetic	field.	If	A	is	the	area	of	the	loop,	
the magnetic moment m l	is	given	by	µl = Ai,	where A	the	area	is	πa2 and i is 
the	current.	So,	ml = πa2i,	but	as	i = eν,	where	n	is	the	frequency	(=	ω/2π)	of	
revolution	and	e	the	charge	of	the	electron.	Hence	the	magnetic	moment,	
µl for	orbital	motion	of	the	electron	is	given	as:

                                 
2

2

2 2l
e aea ωω

µ = π =
π

 and

the	orbital	angular	momentum	pl	is	given	by: pl = me a1 . ω then

2
l

l e

e
p m
µ

= ,	Provided	both	pl  and µl	are	in	the	same	direction.	

This	ratio	is	known	as	‘Gyromagnetic	ratio’.
We	get	from	Bohr’s	theory	the	orbital	angular	momentum	is	quantized	

and	is	given	as
 pl = lh																		where		l	=	1,	2,	3,	..	.
From	the	above	relation	we	get

 µl = 2 2l B
e e

e ehp l l
m m

= = µ

where	µB = 2 e

eh
m  is	known	as	Bohr	magneton	which	is	the	basic	unit	of	

atomic	magnetic	moment.	(µB	=	9.2741	×	10–24 J/Tesla,	1	Tesla	=	104	Gauss).
The	current	loop	due	to	electron	circulating	in	an	orbit	thus	behaves	

like	a	tiny	magnet	of	atomic	size.	We	know	that	when	a	bar	is	placed	in	
a	magnetic	field	and	is	free	to	oscillate,	it	oscillates	back	and	forth	before	
it	 can	 get	 settled	 in	 the	 direction	 of	 the	 external	magnetic	 field.	 The	
atomic	magnet	however	behaves	differently;	its	magnetic	moment	vector	
µl	precesses	about	the	field	direction	making	a	definite	angle	like	a	rotating	
top	precesses	around	the	earth’s	magnetic	field.
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Fig. 16.2 Larmor precession of orbital electron under magnetic field

In	a	magnetic	field	B(= µ0 H),	the	torque	acting	on µl is µl × B and this 
is	equal	to	the	rate	of	change	of	angular	momentum	pl and that is 

 d
dt

pl = µ0 (µl × H) = – 0

2 e

e
m

µ (pl × H).	 …(16.1)

The	negative	sign	is	due	to	the	fact	that	electrons	are	negatively	charged.
Now,	the	change	of	angular	momentum	can	be	written	as
 ∆pl = ωL × pl ∆t
Where,	ωL	is	the	‘Larmor	precessional	angular	velocity’.

Therefore,		
d
dt

pl = ωL × pl.

Then,	comparing	with	equn.(16.1)	ωL = 0

2 e

e
m

µ
H and	Larmor	precessional	

frequency	νL(=   ω/2π)	is	given	by	:	νL = 
0

4 e

e
m

µ
π

H
.

Due	to	precession	of	electron	orbit	in	the	applied	field	there	is	induced	
magnetic moment ∆µ	whose	direction	is	opposite	to	the	direction	of B and 
is	given	by	

 2

2 e L
e

e m
m

∆µ = − ω ρ  = 2

2
Leω

− ρ

where	 2ρ 	is	the	mean	squared	radius	of	the	projection	of	the	electron	

orbit	in	the	plane	perpendicular	to	B and 2
e Lm ω ρ  is the change in the 

angular	momentum,	due	to	precessional	motion	induced.
	Now,	if	there	are	n	atoms	per	unit	volume	and	there	are	Z	electrons	per	

atom.
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Then:	

  M = n Z ∆µ = 
2

2 20 0

2 2 4e e

e een Z nZ
m m

µ µ
− ρ = − ρ

H H
	 	…(16.2)

We	consider	spherical	symmetrical	charge	distribution	so	that	

              
2 2 2 21 .

3
x y z r= = =

Now,	taking B in	the	direction	of	z-axis,	the	projection	of	electron	orbit	
r in the x – y	plane	is	given	by

              
2 2 2 22

3
x y rρ = + =

Then	        M = 
2

20

6 e

enZ r
m

µ
−  H.

Hence	the	Diamagnetic	susceptibility	χ(=	M/H) = 
2

2
0 6 e

enZ r
m

− µ .

Therefore,	the	susceptibility	χ	for	diamagnetic	substance	is	negative.

16.2 THEORY OF PARAMAGNETISM

In	 classical	 Langevin’s	 theory	 of	 paramagnetism	 it	was	 assumed	 that	
the	 inclination	of	 atomic	dipoles	varies	 continuously	 in	 the	direction	of	
applied	magnetic	field.	This	was	later	found	from	Zeeman’s	effect	is	not	
a	correct	assumption	as	under	the	action	external	field	an	atom	gives	its	
characteristic	 super	fine	 spectral	 structures.	According	 to	Sommerfeld’s	
space	quantization,	the	resultant	angular	momentum	vector J h can only 
align in (2J	+	1)	special	directions	so	that	its	components	in	the	external	
field	direction	assume	the	discrete	set	of	values	mJ = J, J – 1, J –	2,	….	– J.

Resultant	magnetic	moment	of	an	atom	is	given	by

                ( 1)J Bgµ = + µJ J 	 …(16.3)

where	µB	is	the	Bohr	magneton	introduced	above	and	g	is	known	as	
Lande’s	g-factor	and	is	given	by	:

                   g = 1 + 
( 1) ( 1) ( 1)

2 ( 1)
S S L L

J
+ + + − +

+
J J

J . 

As	discussed	before	L and S represent	 respectively	orbital	 and	spin	
angular	momentum	vectors	of	the	atom	comprising	many	electrons	and	J is 
their	resultant	and	it	will	precess	around	the	direction	of	applied	magnetic	
field µL and µS represent	 the	magnetic	moments	due	to	orbital	and	spin	
motions	of	the	electron	are	aligned	antiparallel	to	the	vectors	L and S and 
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they	also	precess	around	the	magnetic	field.	µJ the total magnetic moment 
it	is	given	as:	µJ = µL + µS.

Now,	 if	µH	 is	 the	component	of	magnetic	moment µJ	along	the	field	
direction	then	µH = –µJ g µB.	The	mean	value	of	µH	is	given	as

                                 
0

0

exp( / )

exp( / )

J

J B J B
J

H J

J B
J

m g m B kT

m g B kT

−

−

µ µ

〈µ 〉 =
µ

∑

∑
.		 	…(16.4)

The	magnetization	of	the	substance	is	then	given	by

  MH = n < µH >  = 
0

0

exp( / )

exp( / )

J

J B J B
J

J

J B
J

n m g m B kT

m g B kT

−

−

µ µ

µ

∑

∑
.		 …(16.5)

At	relatively	high	temperature	i.e.	room	temperature	we	can	assume	
0 1J Bm B

kT
µ

〈〈 	and	so	in	this	case	the	exponential	can	be	expanded	as:

         

0 0exp 1 .J B J Bm B m B
kT kT
µ µ 

≈ + 
 

Then	 MH = 
0

0

(1 / )

(1 / )

J

B J J B
J

J

J B
J

n g m m g B kT

m g B kT

−

−

µ + µ

+ µ

∑

∑

   = 

2
0

0

( )/

.
( 2 1) ( )/

J J

B J B J
J J

J

B J
J

n g m g B m kT

J g B m kT

− −

−

  µ + µ 
  

+ + µ

∑ ∑

∑

Now, as          0
J

J
J

m
−

=∑   and  2 ( 1)(2 1)
3

J

J
J

J J Jm
−

+ +
=∑

 MH = 
2 2

0 ( 1)(2 1)
3(2 1)

Bn g B J J J
kT J
µ + +

+
 and the n	finally,	we	get

Susceptibility,							
2 2

0 ( 1)
3

BH n g J JM
H k T

µ µ +
χ = = .		 …(16.6)
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If	 now	 the	 paramagnetic	 susceptibility	χ is calculated using the 
above	equn.	(16.6)	using	Bohr	magneton	and	n ~ 1028/m3, and we can get  

χ ~ 3
100 T

	and	for	T = 300 K (room	temperature)	χ	is	of	the	order	of	10–4.	

This	 shows	 that	 for	paramagnetic	 substances	 the	 susceptibility	 though	
positive	but	its	magnitude	is	very	small	and	it	gets	still	smaller	values	at	
higher	temperature.

The	other	approach	 to	 the	 susceptibility	derivation	of	paramagnetic	
substances	from	the	statistical	concept	of	taking	the	electrons	as	free	electron	
obeying	Fermi	statistical	distribution	 is	already	discussed	 in	Chapter	14	
(Sec.	14.3).

16.3 ORIGIN OF FERROMAGNETISM

	The	theory	of	ferromagnetism	was	first	introduced	by	P.	Weiss	in	1907	on	
the	basis	of	molecular	field	and	is	based	on	the	following	two	assumptions:
	 1.	 There	 exist	 some	microscopic	domains	within	 the	 ferromagnetic	

material	which	are	 spontaneously	magnetized.	The	magnetization	
of	the	whole	body	is	the	resultant	of	the	magnetic	moments	of	these	
individual	domains.

	 2.	 The	 spontaneous	magnetization	of	 the	microscopic	domains	arises	
due	to	existence	of	a	molecular	field	within	the	material.	Due	to	this	
field	all	the	magnetic	dipoles	within	a	domain	are	aligned	parallel	to	
one	another.

This	Weiss	original	theory	was	based	on	Langevin’s	classical	theory,	
however,	we	will	discuss	here	from	the	stand	point	of	quantum	theory.	

We	have	seen	above	in	paramagnetism	and	recalling	the	equn.(	16.5)	
above	as	

  MH = 

exp( / )
.

exp( / )

J

J B J B
J

J

J B
J

n m g m kT

m g kT

−

−

µ µ

µ

∑

∑

0

0

B

B

This	can	be	evaluated	in	a	general	case	as:	
  MH = n g J µB BJ (α)	 …(16.7)
where	BJ(α)	is	known	as	Brillouin	function	and	α = Jg mB B0/kT.
This	 is	a	general	case	and	now	introducing	Weiss’s	assumption	that	

the	total	magnetic	acting	on	the	dipoles	within	a	ferromagnetic	material	is	 
Hm = H + gM.	Here	H	 is	 the	 external	field,	M	 the	magnetization	of	 the	
material	and	γ	is	a	constant	known	as	Weiss	constant.	Using	this	result	and	
as B0 = µ0 Hm we get
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 α = J g µB µ0 (H + γM)/kT and so

 Μ = 
0 B

kT
g

α
γ µ µ J

		 …(16.8)

Now,	if	we	use	two	equn.	(16.7)	applied	for	general	case	and	(16.8)	for	
ferromagnetic	materials	and	plot	the	graph	for	the	variation	of	M with α, 
we	get	the	following	Fig.	16.3.
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Fig. 16.3 Variation of magnetization M with the function α

In	the	figure	the	curve	A	is	drawn	using	the	equn.	(16.7)	and	curve	B 
using	the	equn.	(16.8).The	point	of	intersection	shown	by	the	dot	gives	the	
spontaneous magnetization M	 at	 temperature	T.	The	 slope	of	 the	 curve	
A	 plotted	using	 equn.	 (16.7)	 gives	 the	 limiting	 temperature TC,	 above	
which	spontaneous	magnetization	is	not	possible.	For	T < TC, spontaneous 
magnetization	 is	possible	 and	 this	TC	 is	 known	as	 ferromagnetic	Curie	
temperature.

As	per	 the	domain	 theory	of	 ferromagnetism,	 in	 the	absence	of	any	
external	field,	 the	different	domains	are	oriented	at	 random	so	 that	 the	
resultant	magnetization	is	zero.	In	this	case	the	free	energy	of	the	specimen	
is	 the	minimum.	By	 the	application	of	 a	magnetic	field	 the	 specimen	 is	
magnetized	with	the	orientation	of	the	domain	so	that	the	net	magnetization	
vector	is	not	cancelled	and	the	resultant	is	oriented	in	the	direction	of	external	
field.	In	1928,	W.	Heisenberg	proposed	a	quantum	mechanical	model	of	
the	molecular	fields	 in	 ferromagnetic	materials.	According	 to	his	 theory	
in	ferromagnetic	materials	the	spins	of	the	electrons	of	the	neighbouring	
atoms	which	are	antiparallel	align	themselves	in	the	parallel	direction	due	
to	a	 force	known	as	 ‘exchange	 force’.	This	 exchange	 force	 results	when	
two	electrons	between	the	neighbouring	atoms	are	exchanged	to	form	a	
symmetrical	spatial	state	and	thus	results	an	attractive	force	between	them	
when	they	are	brought	at	some	internuclear	distance	otherwise	when	they	
form	antisymmetrical	distribution	 they	experience	a	 repulsive	 force.	As	
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this	 symmetrical	 spatial	 state	 arises	when	 the	 electrons	align	 their	 spin	
direction	parallel	to	each	other,	the	total	energy	of	the	system	decreases.	
This	lower	energy	state	is	more	stable	and	is	the	state	when	ferromagnetism	
arises.	Whether	the	exchange	interaction	force	will	be	positive	or	negative	
depends	on	the	lattice	parameter	a	and	the	diameter	d	of	the	partially	filled	
electronic	shell.	If	this	exchange	force	given	an	integral	Je is plotted against 
a/d,	we	get	the	following	graph	Fig.	16.4.	In	the	graph	the	positions	α-Iron,	
Nickel	and	Cobalt	are	in	the	positive	side	of	the	plot	and	γ-Fe,	Mn	are	in	
the	negative	side.	

0
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Fe��

Fe��

nM

oC

iN+

–

Fig. 16.4  The plot of Exchange force (Integral) vs. a/d

16.4 ANTI-FERROMAGNETISM AND FERRIMAGNETISM

If	exchange	force	given	by	the	integral	Je	is	negative	the	spin	vectors	of	the	
atoms	in	the	neighbouring	positions	in	the	lattice	are	aligned	antiparallel	and	
they	do	not	show	any	spontaneous	magnetization.	Such	demagnetization	
occurs	at	0°K	and	this	phenomenon	is	known	as	anti-ferromagnetism.	If	
temperature	of	 the	substance	 is	 increased,	 this	antiparallel	alignment	of	
the	magnetic	moment	of	 the	neighbouring	atoms	will	be	disturbed	and	
magnetization	 increases.	Above	 a	 specific	 temperature	known	as	Neel	
temperature	 the	substances	show	paramagnetism.	An	antiferromagnetic	
crystal	may	be	 regarded	as	 composed	of	 two	sub	 lattices	with	opposite	
directions	of	magnetization.	An	example	of	MnO	is	an	antiferromagnetic	
material.	

If	 in	 some	substances	oppositely	aligned	magnetizations	of	 two	sub	
lattices	are	there	but	their	magnetizations	are	not	equal	and	so	they	can	
not	compensate	each	other	and	the	material	as	a	whole	show	spontaneous	
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magnetization.	The	property	of	these	materials	is	known	as	Ferrimagnetisms.	
The	materials	are	known	as	ferrites.	As	an	example	if	in	a	magnetic	crystal	
say	FeO,	Fe2O3	if	the	Fe++	ions	are	substituted	by	some	divalent	metallic	
ions	like	Mg,	Ni,	Co,	Mn	etc.,	 then	we	get	a	ferrite.	The	most	important	
characteristic	of	 these	 ferrites	 are	 that	 they	have	very	 low	conductivity	
and	high	resistivity	much	higher	than	iron.	But	they	have	similar	magnetic	
properties	 like	 iron.	This	has	 resulted	 in	 its	 indispensability	 in	 the	high	
frequency	technology	where	eddy	current	is	an	disadvantage.
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CHAPTER

17

Superconductivity

17.1 INTRODUCTION

 The basic property of superconductivity is the existence of a persistent 
current or zero electrical resistance on cooling the material below a critical 
temperature. This very important property is however not a general property 
exhibited by all solids but is exhibited by elements, alloys and oxides with 
a range of compositions and structures. The sharp transition between the 
normal and the superconducting state below a temperature known as critical 
temperature, (TC) is shown in the following Fig. 17.1.
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Fig. 17.1 Temperature dependence of resistivity ρ(= 1/σ) for superconducting metal 

	The	condition	of	perfect	conductivity	in	terms	of	finite	current	density	j 
which	flows	indefinitely	in	the	superconducting	state	such	that	the	Ohm’s	
Law gives

 E = (1/σ)j = ρj = 0. …(17.1)
Substituting	this	result	in	Faraday’s	Law	as	introduced	in	Chapter.	6	

(equn.	6.29)	and	writing	it	in	differential	form	we	get

 
t

∂
∂

B = –∇ × E = 0 or, B	=	const.		 …(17.2)
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This means that inside a conductor B cannot change with time. Now, 
if an electrical conductor which is cooled below TC in an external magnetic 
field	B0 and then becomes a perfect conductor, we can expect that the 
magnetic	field	within	the	samples	would	remain	even	after	switching	off	
the	external	magnetic	field	and	that	is	due	to	induced	current.	However,	
it has been found experimentally that if a superconductor is cooled below  
TC	 in	an	applied	magnetic	field,	 the	magnetic	flux	is	expelled	out	of	 the	
material	instead	of	the	field	be	‘frozen’	inside	the	material.	Therefore,	in	
superconducting state it is always required that: B = 0. This result which 
is	not	predicted	by	 equn.	 (17.2),	 is	 known	as	Meissner	Effect.	This	 is	 a	
state	 of	perfect	diamagnetism	and	 is	 shown	 in	 the	 following	Fig.	 17.2.	
For a perfect conductor even at TC,	the	retained	magnetic	field	within	the	
material and then on further cooling it is expected to decrease linearly but 
for superconductors it simply drops down to zero. Therefore, two properties 
of perfect conductivity and perfect diamagnetism are mingled together in 
superconductors.

B
C

0 B0

B

Fig. 17.2 Magnetic behaviour of superconducting material. The bold line shows the 
superconducting material and the dotted line represent the behaviour of perfect conductors

 This observation represents the phenomenological basis of London 
Theory or the two-fluid model of superconductivity. It assumes that 
superconductor contains two types of electrons, superconducting and 
normal, with densities nS and nN and velocities vS and vN respectively. The 
normal electrons obey the established current density equations as:

 jN =  – nN e vN = sN E.
However,	for	superconducting	material	the	damping	force	arising	due	

to resistance from the equation of motion can be dropped out and may be 
written as:

 e
dm
dt

vS = – eE.

The current density of the superconducting electrons takes the form:
 jS = – nS e vS.
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Now, combining these two equations we get

 d
dt

jS = 
2

S

e

n e
m

E. …(17.3)

This	equation	is	known	as	First	London	Equation.
Now, if we take curl of this equn. (17.3), we have:

 
dx
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or, ∇x jS = –
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S

e

n e
m

B  …(17.4)

This	is	known	as	Second	London	Equation	for	a	perfect	diamagnetic	
substance.

17.2 COOPER PAIRS

Inside a superconductor the behaviour of electrons is vastly different. The 
impurities and lattice are still there, but the movement of superconducting 
electrons through the obstacles is quite different. They bump into nothing 
and create no friction and transmit electricity with no appreciable loss in 
current and no loss of energy. The early researches concluded that it is the low 
temperature which decreases the lattice vibration substantially is the cause 
of this superconductivity. But this decrease of temperature predicts a slow 
decrease of resistivity rather than abrupt loss of it, when the temperature 
is brought down to a critical value as shown in Fig. 17.1. Therefore, it 
was established that no classical and existing ideas could explain this 
phenomenon.	It	was	in	1957,	three	American	physicists	namely	J.	Bardeen,	
L.	Cooper	 and	 J.	 Schrieffer	 through	 their	 theory	 of	 superconductivity	
known	as	BCS	Theory	could	explain	the	superconductivity	phenomenon	
at temperature close to absolute zero.

According	 to	 the	 theory	 as	 one	negatively	 charged	 electron	passes	
by positively charged ions in the lattice of the superconductor, the lattice 
distorts. This distortion of the lattice creates phonons to be emitted which 
in turn form a trough of positive charge. Now, before the electron passes by 
and before the lattice springs back to the original position, another electron is 
drawn towards this trough and the process is repeated. These two electrons 
instead of repelling each other are linked up by the forces exerted by the 
phonons.	This	pair	is	known	as	Cooper	Pair.	The	net	effect	is	that	when	
one electron of the pair emits a phonon due to shrinkage and subsequent 
release of the lattice, the other pair absorbs that phonon. It is this exchange 
that keeps the two negative electrons together and electron moving ahead 
makes	the	movement	of	the	follower	electron	easier.	However,	though	it	
is also important to remember that the pairs are constantly breaking and 
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reforming, they can be considered as permanent pairs as electrons are 
indistinguishable.

The qualitative pictorial demonstration can be seen from the following 
(Fig. 17.3).
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 Fig. 17.3 Cooper pairs and their flow through lattice

This electron pairing is favourable because it has the effect of placing the 
material	at	low	energy	state.	When	the	temperature	is	very	low,	the	Cooper	
pairs remain intact due to reduced lattice vibration and with the increase 
of	temperature	the	lattice	vibration	increases	and	the	pairs	are	broken.	As	
the pairs are broken, the superconductivity decreases and at a temperature 
above a critical temperature, TC the material is transformed into simple 
conductors. The superconductors made from different materials show 
different	critical	temperature.	Among	ceramic	superconductors,	YBa2Cu3O7 
has TC about	90	K.	The	following	Fig.	17.4	shows	such	variation.
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Fig. 17.4 Resistance vs. temperature of Y Ba 2Cu 3O 7

Since	there	is	no	loss	of	electrical	energy	due	to	Joule’s	heat	when	current	
flows	 in	 superconductors,	 relatively	narrow	wires	 of	 superconducting	
material	 can	 be	used	 to	 carry	huge	 currents.	However,	 there	 is	 some	
maximum	 limit	of	 the	 current	giving	 rise	 to	Critical	 current	density,	 JC 
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above which the superconductors loose their superconducting behaviour 
and	return	to	normal	state	even	if	the	Critical	temperature, TC is not crossed.

For practical applications, JC values in excess of 1000 amperes per 
square	millimeter	are	preferred.	As	an	electric	current	in	a	wire	produces	
a	magnetic	field	around	it	and	as	the	field	is	proportional	to	the	current	
strength, superconductors which are capable of carrying huge current, are 
very suitable for making strong electromagnets When superconductors are 
cooled	below	their	transition	temperature	and	a	magnetic	field	is	increased	
around	 it,	 the	magnetic	field	 remains	around	 the	 superconductors.	The	
superconductor	pushes	the	external	field	out	of	it	if	the	temperature	is	below 
TC and then it behaves as a perfect diamagnetic material. This is because the 
superconductor (below TC) creates a surface current in itself which in turn 
produces	an	opposite	magnetic	field	and	cancels	all	magnetic	fields	in	its	
interior.	This	flux	exclusion	is	an	important	property	of	superconductors	and	
is	known	as	‘Meissner	Effect’.	While	existence	of	a	critical	temperature	(TC) 
and	Meissner	effect	are	macroscopic	characteristics	of	the	superconductors,	
the tunneling characteristic of superconductors has quantum origin.

17.3 JOSEPHSON EFFECT

It has been introduced in the earlier chapters that the tunneling has quantum 
origin and depends on the wave nature of the electrons. The tunneling of 
a pair of electrons between superconductors separated by an insulating 
barrier	was	first	discovered	by	Brian	Josephson	in	the	year	1962	and	the	
effect	 is	 known	as	 Josephson	Effect.	 Josephson	discovered	 that	 if	 two	
superconducting metals were separated by a thin insulating barrier such 
as	an	oxide	layer	of	10	to	20	angstroms	thick,	it	is	possible	for	the	electron	
pairs	 (Cooper	pairs)	 to	pass	 through	 the	barrier	without	any	resistance.	
This observation is in contradiction to what happens in ordinary material, 
where	a	potential	difference	must	exist	for	a	current	to	flow.	As	long	as	
the current is below the critical current for the junction, there will be zero 
resistance and no voltages drop across the junction. This effect has many 
potential applications as switching device in computer over ordinary 
semiconductor switches. 

 Now, let us have now a consolidated view of this property of materials. 
It	 has	 been	 stated	 above	 that	 superconducting	 state	 is	 defined	by	 the	
three very important factors like: (1) The critical temperature (TC)	 (2)	
The	 critical	magnetic	field	 (HC) and (3) The critical current density(JC). 
Each	of	these	parameters	however	are	not	independent	but	are	mutually	
dependent parameters. Therefore, the superconducting state requires 
that	 the	magnetic	 field,	 current	 and	 as	well	 as	 the	 temperature	must	
remain below the critical values and these values depend on the material.  
Figure	17.5	demonstrates	the	relationship	between TC, HC and JC . When HC 
and JC are zero, the TC attains its maximum value and together they constitute 
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a	critical	surface	shown	shaded	in	the	Fig.	17.5.	The	states	pointing	towards	
zero is superconductors and outside it is either normal or mixed state. 

JC

HC

TC

Critical surface phase diagram

Super conducting state

Normal conducting state

Fig. 17.5 Critical surface phase diagram: Within the shaded surface the material possesses 
superconducting state and outside it behaves as normal  conductors
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CHAPTER

18

Nuclear Physics

18.1 NUCLEAR STRUCTURE: AN OVERVIEW

 It was long been established that an atom being electrically neutral must 
has within its volume equal quantity of positive and negative charges.  
J. J. Thomson first put forward a model of nucleus, according to which an 
atom was thought to be a positively charged matter within which equal 
quantity of negatively, charged electrons are embedded like plums in 
pudding. The model proposed was known as Thomson’s plum-pudding 
model. The fact that an atom has a massive center called nucleus, was first 
established in 1911 by Rutherford by his famous alpha particle scattering 
experiment. He also proposed a planetary model of atom, having the 
positive massive center known as nucleus and surrounding it are negative 
electrons revolving in different orbits. It was Niels Bohr, who from the 
study of spectral lines emitted by gases, established in 1913, his model of 
atom, introducing the concept of quantization of angular momentum of 
electrons in stationary orbits. An atom according to Bohr has a nucleus 
which is positively charged and surrounding it in definite stable orbits are 
electrons revolving round it. The arrangement of electrons in stable orbits 
having different quantum numbers was introduced to explain the spectral 
lines having fine and superfine structures. In 1920, Rutherford advanced an 
hypothesis that an electron and a proton together form a composite nuclear 
particle but 1932 Chadwick proposed the existence of a neutral particle, 
named as neutron from its emission from nucleus. After this Chadwick’s 
discovery W. Heisenberg proposed in 1932 that the nuclei are made up of 
protons having positive charge and neutrons which are electrically neutral. 
In this picture of nucleus, a nucleus having mass number A and atomic 
number Z consists of Z protons and A – Z neutrons, so that the total number 
of particles within a nucleus is maintained as A. Since the mass of protons 
and neutrons are almost same and equal to unity, the mass of an atom 
will be close to its mass number. The nucleus so composed will obviously 
possesses Z units of positive charge. The term nucleon is now used either 
for proton or neutron. The mass of the atoms or nucleons are expressed in 
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the ‘atomic mass unit’ (a.m.u.) which is the mass of oxygen- 16 taken as 16 
a. m .u. Thus the unit of a.m.u. in physical scale is one-sixteenth of mass 
of oxygen – 16 and that is: 1 a.m.u. = 1.6598 × 10–24 gm. However, in 1961 
onwards 1/12th of the mass of 12

6C is accepted as unit of nuclear mass and is 
known as “Unified atomic mass unit”. According to this unit, 1 mole of 12

6C 
has mass 12 gm = 12 × 10–3 kg and contains 6.02205 × 1023 (= N0 Avogadro 
no.) atoms and so, the mass of a 12

6C atom = 12 × 10–3/(6.02205 × 10 23) and 
the unit of mass in this unit scale is:

  1 u = 
3

27

0

12 101 1.660566 10 kg
12 N

−
−×

= ×

However, continuing with atomic mass unit (1/16 of 16O) and using 
this, the mass of :

 Proton : 1.00759 a.m.u. = 1.6734 × 10–24 gm
Neutron : 1.00898 a.m.u.
It has been stated above that as mass of protons and neutrons are almost 

same and can be approximately taken as one a.m.u . but there exists some 
difference between the mass of an atom M with the mass number or number 
of particles in the nucleus A. This difference is stated by Aston in 1927 as 
mass defect.

Mass Defect : ∆ = M – A and another parameter introduced by Aston as:
Packing Fraction: p = ∆/A which is the mass defect per nucleon. 
Now, the variation of this packing fraction, ∆ with mass number A by 

Aston gave a qualitative indication of the ‘Packing’ of nucleons within the 
nucleus and that was perhaps the beginning of the study of nuclear structure 
and binding of nucleons. 
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Fig. 18.1 The binding energy per nucleons Vs. the mass number
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When a nucleus of an element is formed by joining the nucleons, then it 
is found that the sum total of individual nucleons like proton and neutrons 
is found to be more than the mass of the nucleus of the element. This shows 
that there is always certain loss of mass while forming the nucleus and this 
loss of mass known as ‘Mass Difference’ ∆m results into creation of energy 
from E = ∆mc2. This energy equivalent of the loss of mass or mass difference 
is responsible for binding the nucleus and is known as binding energy. In 
Fig. 18.1 above the binding energy per nucleons Vs. mass number is shown. 
It can be seen from the figure that binding energy per nucleons for He 42 is 
much higher than hydrogen H2

1. O16, Cu63 occur at the top of the curve and 
indicate that these are very stable nuclei. Now, using the mass difference 
∆m, which results into energy equivalent from Einstein mass energy relation 
as: E = mc2 we get for 7

3Li : Z = 3 (number of protons), A = 7 (number of 
nucleons including 3 protons and 4 neutrons). The sum of the constituents’ 
mass (rest mass) is:

 3 × Mass of Proton = 3 × 1.00759 a.m.u.= 3.02277
  4 × Mass of neutron = 4 × 1.00898 a.m.u.= 4.03592
       Total mass in a.m.u. = 7.05869
Now, the mass of one 73Li atom is 7.01818. If we subtract from this the 

total mass of 3 electrons of the orbits, then we would get the mass of the 
nucleus from second approach.

 7.01818 – 3 × me (where me is the mass of an electron)
    = 7.01653 a.m.u. 
Then the mass difference ∆m = 7.05869 – 7.01653 = 0.04216 a.m.u.
But we know that 1 a.m.u. = 1.6598 × 10–24 gm. ≅ 1.6598 × 10–24 × (2.9978 

× 1010)2 erg = 1.492 × 10–3erg.
Therefore, 1 a.m.u. is equivalent to energy = 1.492 × 10–3 erg
Now, we know that 1 eV = 1.601 × 10–12 erg and so as:

  1 a.m.u. ≡ 91.492 10 eV
1.601

×  = 931 MeV. 

This is an important relation between 1 a.m.u. of mass and the equivalent 
amount of energy into which the mass is converted.

The mass difference ∆ m for 7
3Li atom nucleus is 0.04216 × 931 MeV 

= 39.3 MeV.
This equivalent energy is reasonably high and is used in binding the 

nucleons closely tight together and is called the source of binding energy. 
As this energy is reasonably high, the 7

3Li nucleus as a verification is also 
found to be of very stable structure.
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18.2 SEMI-CLASSIC MODELS OF NUCLEUS

 A nucleus of an element having Atomic no. Z and Mass no. A is designated 
by the symbol AZX. The number of neutrons within it is given by N = A – Z. 
The elements having same atomic number Z (same element)but different 
N and thus different mass number A are known as “Isotopes”, those with 
same N and different Z are known as “Isotones” and those of the same mass 
number A, but different Z and N are said to be “Isobars”.

 Specific approximate descriptions, called “Models” have been developed 
in the case of nuclei, each of them only being appropriate for a limited range 
of nuclear properties. A general understanding of systematic trends found in 
the time-independent properties such as mass, size, charge can be obtained 
from semi classical models which give description of the nuclear phenomena 
without considering the inside details of the nucleus. It has been seen from 
Fig. 18.1 that binding energy per nucleons of most nuclei is about 8 M eV 
and approximately independent of mass number A. This implies that a 
nucleon in a large nucleus is not bound to more nucleons than in a small 
one. Hence nuclear forces have a range which is of the order of the diameter 
of one nucleon. The saturation of the curve indicates the effects which keep 
nucleons apart from each other. The nuclei are most tightly bound near 
A = 60, where the binding energy per nucleons is also maximum. In light 
nuclei, a single nucleon is attracted by a few other nucleons, thus the nucleon 
separation is large and stability is reduced. In heavy nuclei the decrease 
of stability is due to coulomb repulsion between protons, which becomes 
important for large Z and hence large A. 

It is then concluded that energy can be released using nuclei situated 
at the both ends of the curve, either by combining light nuclei into heavier 
nuclei (nuclear fusion) or by breaking heavy nuclei into lighter nuclei 
(nuclear fission).

Liquid Drop Model for Nucleus

 Saturation properties of the nuclear forces are very similar to the properties 
of the intermolecular forces in a liquid. A formula for binding energy of 
the nucleus can be derived on the basis of liquid drop analogy for nuclear 
matter. It is considered in this model that matter within the nucleus is 
incompressible like liquid. If the nucleus is regarded as a spherical assembly 
of A nucleons, its volume must be proportional to A:

  34
3

Rπ  ~ A or,     R = R0 A1/3

where the experimental value of R0 ≅ 1.2 × 10–15 m. This liquid drop 
model was proposed by Bohr in 1936.

Considered as a sphere, the volume V of the nucleus will be given by:
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V = 3 15 3 34 4 (1.2 10 )
3 3

R Am−π = π ×  = 7.24 × 10–45 Am3.

The mass of the nucleus is approximately A times the mass of the proton i.e. 
1.6 × 10–27 A kg. Then the density of the nucleus is given as:

 ρ = 
27

3 17 3
45

1.67 10 kg / 2.3 10 kg /
7.24 10

A m m
A

−

−
×

= ×
×

.

The density of the nuclear matter is therefore independent of the type 
of nucleus. Furthermore, it has a colossal value 2.3 × 1017 kg./m3 i.e. about 
108 ton/cm3.

The following analogies can be found between the nucleus and a small 
drop of liquid:
 1.  The drop is spherical because of the symmetrical surface tension 

forces which act towards the centre. The nucleus is also assumed to 
be spherical.

 2. The density of the spherical drop is independent of volume. This is 
also the case for nucleus. The only difference is that while the density 
of nucleus is independent of the type of the nucleus, the density of 
the liquid drop depends on the type of the liquid.

 3. The molecules in a liquid drop interact over short ranges compared 
with the diameter of the drop. Like nucleons of the nucleus, the 
molecules of the liquid drop interact only with their immediate 
neighbours.

 4. The surface tension effect on the surface of the drop of liquid may 
be compared with the potential barrier acting on the surface of the 
nucleus.

 5. Molecules of the drop move over short ranges with thermal velocities 
but if the temperature is increased, the molecules escape from the 
surface in the form of vapours. Similarly if the energy is supplied to 
the nucleons by bombarding particle, a compound nucleus is formed 
which emits nucleons almost instantaneously.

 6. If a drop of liquid is made to oscillates, it breaks up into two drops of 
almost same size. Similarly, by capturing a neutron by nuclei of certain 
heavy elements, the nuclei of the heavy element breaks up into almost 
two parts of roughly equal size. This phenomenon is known as nuclear 
fission.

Fermi Gas Model of the Nucleus

 Fermi gas model is a statistical model which assumes the nucleus to behave 
like Fermi electron gas in metals. (Discussed before in Ch. 12). According to 
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this model the nucleus is a degenerate gas of protons and neutrons. It may 
be said again that a gas is called degenerate if the number of energy states 
that can be occupied is comparable to the number of particles. Since nucleons 
are spin 1/2 particles, they are Fermions. Hence the behaviour of protons 
and neutrons will be described by Fermi-Dirac statistical distribution. At 0°K 
all energy levels will be filled up accommodating two nucleons of opposite 
spins. The Fermi level energy EF is given in Chapter 12 (Equn. 12. 45) and 
may be recalled here as:

2 /32 3 .
8F
h NE
m V

 =  π 
                                           …(18.1) 

Here, m is the nucleonic mass and volume V now represent the nuclear 
volume which contains N number of nucleons. Actually there are two types 
of nucleons one proton having number Z and the other neutrons having 
number A – Z. Assuming further that the number of nucleonic states to be 
equal to the nucleon number in each case, we get density of states for two 

gases (of protons and neutrons) as: np = 
3
0

4
3

Z Z
V r A

=
π

,  where r0 is the radius 

of the nucleons. And similarly nn = 3
0

3( )
4

A Z
r A
−

π
, Now taking or assuming  N = 

A – Z = A/2 and taking nuclear radius parameter r0 = 1.2 fm = 1.2 × 10-15m

We get:  np = nn = 3
3

3/2 0.069 nucleons per/m
4 (1.2)

=
π

.

Therefore, total nucleon density as nt = np + nn = 0.138 nucleons per m3.
Now, if this value is substituted in equn. (18.1) and taking into mind 

that each state is occupied by two nucleons with spin up and spin down. 
The Fermi energy of each of the of the above two gases (protons and 
neutrons) as:

 
2 /32

23 21MeV
2F p

hE n
m

 = π = 
 

.                        …(18.2)

In an actual nucleus the number of protons (Z) and neutrons 
(N = A – Z) are not equal, N being slightly greater than A, the Fermi energies 
of these two types of nucleons will also be different. Since N > Z the depth 
of potential well for neutrons is more deep than that of protons. The below, 
Fig. 18.2 shows the energy states within the potential well in the nucleus.
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Fig. 18.2 Potential well and discrete energy levels inside a nucleus

18.3 THE SHELL MODEL OF THE NUCLEUS

 There is existence of enough evidences that there are periodicities in the 
nuclear binding energies which might be due the shell structure similar to 
the atomic shell structure. For neutrons closed shells have been associated 
with the magic numbers N = 2, 8, 20, 28, 50, 82, and 126 and for protons with 
Z = 2, 8, 20, 50, and 82, because the nuclei with one or both of the magic 
numbers shows a particular stability, when compared with other nuclei. 
The magic numbers can be derived using ‘single particle shell model’ where 
many nucleon problem is reduced to a single particle problem, under the 
assumption that despite the strong overall attraction between nucleons, 
which provides the nuclear binding energy each nucleon moves in a nuclear 
potential due to all the other nucleons. In brief, it may be said that the short 
range nuclear forces average out to create the nuclear potential and all the 
internucleon coupling can be neglected. 

 There are strong reasons to believe that as in the case of binding of 
orbital electrons in the atoms, the nucleons in the nuclei are arranged in 
certain discrete shells.

W. M. Elasser (1933) was first to introduce this concept of nuclear shells. 
Similar to the stable orbits in the electronic configuration round the nucleus, 
it was pointed out by some other physicists also that nuclei containing some 
definite numbers of neutrons and protons show very high stability. They are 
as introduced before, known as ‘Magic numbers’. They are:

Protons : 2 8 20 28 50 82
Neutrons : 2 8 20 28 50 82 126 
 Some nuclei contain magic numbers of protons and neutrons both. 

Examples:
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 4He (Z = 2, N = 2 ), 16O(Z = 8, N = 8), 40 Ca (Z = 20, N = 20), 48Ca(Z = 20, 
N = 28), and also 208Pb(Z = 82,  N = 126 ) and it has been found that these 
are doubly magic and show exceptional stability.

Though the detailed discussion on the shell structure as being quantum 
mechanical and is avoided in this book, the evidence of its existence inside 
the nucleus can be obtained from the following:

 (a) Nuclei containing the magic numbers show very high stability which 
shows  similarity of stable orbits in the electron configuration. The 
minimum energy required to separate either a proton or neutron from 
the nucleus having the protons and neutron as magic numbers is found 
to much more than from those having at least one number more.

 (b) The naturally occurring isotopes, whose nuclei contain magic numbers 
of neutrons or protons have generally greater relative abundance. This 
again because of their more stability.

 (c) The number of stable isotopes of an element containing magic number 
of protons is usually large compared to those for other elements. 
Example: 20Ca with Z = 20 has 6 stable isotopes compared to 3 and 5 
for 18Ar and 22Ti.

 (d) The number of naturally occurring isotones with magic number of 
neutrons is usually large compared to those occurring nearby. 

 (e) The stable end products of all the three radioactive series are the three 
isotopes of Pb i.e. 206Pb , 207Pb and 208Pb, which all have magic number 
of protons 82.

 (f) The neutron capture cross sections of the nuclei with magic numbers 
of neutrons are usually low. Since the neutron shells are filled up in 
these nuclei, the probability of capturing an additional neutron is small. 

 (g) If the α and also β disintegration energies are plotted for heavy nuclei 
as function of mass number A, for a given Z, then usually a regular 
variation is observed except sudden discontinuities are observed at 
the number neutron, N is 126 which is the magic number of neutrons 
for α disintegration and also for β, similar discontinuities are also 
observed when neutrons or protons attain the magic numbers.

The experimental results summarized as above lend strong support to 
the proposition of shell structure for the nucleus and to develop a theory of 
the nuclear shell structure it is necessary to assume the existence of potential 
well within the nucleus and within this potential well there can exist a 
number of quantum states. However, the detailed quantum mechanical 
analysis of the quantum states of nucleons existing in the nucleus potential 
well is beyond the scope of this book.
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18.4 RADIOACTIVE DECAY OF NUCLEUS

 In the year 1896 Henry Becquerel discovered the emission of radiation 
from some double salts of uranium and confirmed that these radiations 
are spontaneous. This phenomenon known as Radioactivity was later 
extensively studied by Rutherford (1902) on thorium and its successive 
products. Rutherford studied the ionization power of the radiations given 
off by uranium using electroscope. He established that these rays are of two 
types : one called α-rays and the other β-rays. A year later it was established 
that radium emits in addition to α and β-rays a third type of radiation known 
as γ-rays.

This third type (γ-rays) was found to be much more penetrating than 
α and β-rays. On application of a magnetic field it was found that this 
γ-rays were not affected by magnetic field, whereas, the α-rays were 
deflected to a small extent in a direction confirming that they are positively 
charged and heavier than β-rays, which were deflected more and in opposite 
direction confirming that they are lighter and negative particles. The use 
of magnetic field to deflect the emitted radiation is shown in the following 
Fig. 18.3.
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Fig. 18.3 α, β and γ-rays emitting from radioactive radium (Rd ), separated by magnetic field

Due to this emission of radiations from radioactive metals, the mother 
nucleus goes on disintegrating by emitting of these radiations like α, β 
and γ-rays and constantly goes to daughter nuclei and thus creating a 
series of elements in the series known as Radioactive series. There are 
several important such series called ‘Uranium Series’, ‘Thorium Series’ and 
‘Actinium Series’ named after the mother element.

It was also established that these α-rays emitted is ionized Helium atoms 
and β-rays are electrons and so α-rays are composed of positively charged 
particles and much heavier than β-ray which is nothing but negatively 
charged electrons. The γ-rays which is not deflected by magnetic field is 
electromagnetic radiations. Therefore, the following radioactive reactions 
occur during α and β-emissions.
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4 4
2 2

1

( )

( )

A A
Z Z
A A
Z Z

X Y He

P Q e

−
−

−
+

→ + α

→ + β   …(18.3)
Due to this disintegration the number of nucleons in the radioactive 

nucleus goes on decreasing and it was found that with time the intensity 
of radiation emitted decreases. The plot of number of atoms with time from 
one initial takes the following nature:

�N

�n

N

�t0 �t t  

Fig. 18.4 The decay of N no of atoms with time t of any radioactive element

It is evident from the above Figure that ∆N representing the same 
decrement taken at two different regions occur during two different 
interval of time i.e. ∆t is more when t is large and N is small. Therefore, 
mathematically it may be written as:

 – dN ∝  N and also
   ∝ dt 

or, 
dN
N

 = – ldt.

Integrating we get:
 loge N = – lt + k, where k is a constant.
If N0 is the number of atoms at the beginning, when t = 0 and k = loge N0.

Therefore,        
0

log e
N t
N

= − l

or, N = N0e–γt. …(18.4)
This is famous Rutherford-Soddy equation of radioactive disintegration. 
Half life period of any radioactive decay is the time elapsed from t = 0, 

so as to decrease the initial number of atoms from N0 to N0/2.
Then,  loge 0.5 = – lT, where T is the half life.
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Then  lT = 2.303 log102

Therefore,  T = 
0.693 .

l
This half life is an important parameter to know the activity of the 

radioactive elements and in a radioactive series at every step of the 
transformation, this half life being different and it changes. For example, 
in Uranium Series the half life changes from 4.5 × 109 year (for Uranium I) 
to as low as 1.6 × 10–4 sec (Ra C′). If the half life is large, it shows that the 
element takes a longer time through slow decay to reach the next element 
in the series.

18.4.1 The Growth and Decay of Uranium X in Uranium

Uranium, having mass number 238 and atomic number 92 and noted as 
238

92U emits one α particle to disintegrate into UX1. The disintegration 
reaction is given by:

 238
92U

234 4
90 1 2 ( )UX He→ + α T (Half life ) = 4.5 × 109 years.

This UX1 forms as a by product within the uranium. UX1 the by product 
has a half life (T) only 24.1 days and emits one β particle. The radioactivity 
is then due to the breaking of UX1 to emit β particles and when this UX1 is 
separated from uranium it will decay by emitting β particles and its activity 
will become half of its initial activity within 24.1 days.

Consider now the growth of UX1 in freshly separated uranium, 238
92U. Let 

the number of uranium atoms at this time taken as t = 0 is N0, which may be 
assumed to be sensibly constant for very long half life. The rate of formation 
of UX1 atoms will therefore be constant and equal to l1 N0, where l1 is the 
decay constant of uranium, 238

92U. If now the number of UX1 at a time t is N, 
the UX1 will decay at time t by the rate l2N, where l2 is the decay constant 
of UX1. The net increase of UX1 atoms in uranium is given by:

                                  
1 0 2

dN N N
dt

= l − l
   

or,         
1 0 2( )

dN dt
N N

=
l − l

.

Integrating we get: ln(l1N0 – l2N) = –l2t + C, where c is a constant.
When t = 0, N = 0 as there was no UX1 atoms and then C = ln l1 N0. Then 

the above equation can be written as:

          

1 0 2
2

1 0
ln N N t

N
 l − l

= − l l 
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 or,                  
2 2

1 0
1 tN e

N
− ll

− =
l

i.e. N = 1 0 2

2
(1 )tN e−ll

−
l

  …(18.5)
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Fig. 18.5 The decay of uranium X1 and the recovery of uranium 

Now, in the above disintegration, the activity demonstrated in 
intensities, which is measured in ionization chamber, the effect of the α 
particle emission by uranium is very small (Long half life). Thus the β 
emission by UX1 is only significant in creating ionization and so the rate of 
decay of the freshly separated UX1 will be decided by

 N′ = 2
0

l−′ tN e  …(18.6)

Where N′0 is the initial number of atoms of UX1 at time zero and N′ is 
the number of these atoms at time t.

The recovery curve for the growth of UX1 in uranium will depend 
on equn. (18.5). However, N0 in equn. (18.5) is not same as N′0 of equn. 
(18.6) because N0 is the number of uranium atoms and N′0 is the number 
of UX1

 atoms in the original uranium before the UX1 is separated from it. 
However, a relation between N0 and N′0 can be derived because of the fact 
that uranium left for many months or years, will have reached a state of 
radioactive equilibrium. In that equilibrium state the rate of formation of 
UX1 in it is equal to the rate of disintegration. This is:

                                   dN dN
dt dt

′
=  and therefore, l1 N0 = l2 N′0

The equn. (18.5) can therefore, be written as:

 N = ( )2
0 1 tN e− l′ −   …(18.7)

The above Fig. 18.5, the intensity equivalent of the equns. (18.6) and 
(18.7) are plotted.
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18.4.2 A Comparative Study of α, β-Particles and γ-Radiation and 
Artificial Radio Activity

 In the natural radio activity described before, three types of radiations 
are found to emit from naturally radioactive atoms and they are α and 
β-particles and γ-radiations. A comparative study of these emitted particles 
and radiation is given below.

 α-Particles: They are by far most strongly ionizing particles and are 
readily absorbed by thin foils of metal and by the passage of few centimeters 
of gas at atmospheric pressure. They are as mentioned before are ionized 
helium atoms 42He. The velocities of these α-particles depend on the nature 
of the emitting radioactive atoms and are of the order of c/16, where c is 
the velocity of light. This velocity ranges between, highest from short lived 
radioactive element to lowest from atoms having long half life. For example, 
Th C′ having half life T = 3 × 10–7 sec emits α-particles having α velocity 
2.054 × 109 cm/sec and U1, half life, T = 4.5 × 109 yrs. emit α with velocity 
1.42 × 109 cm/sec.

The α-particle has specific charge e/m of 4,823 e.m.u./gm and a charge 
of 3.202 × 10-20 e.m.u. which is twice the charge of an electron. This through 
the experiments of Rutherford it is established that α-particle is a helium 
atom with two positive charges.

β-Particles: The experiments on the charge and specific charge 
established that β-particles are fast moving electrons. Being as light as that 
of electron, β-particles have ranges in materials of the order of twenty times 
those of a particles. A β-particle with an energy of 0.5 MeV, has a range in air 
at N.T.P. of 1 m approximately. A continuous energy spectrum is observed to 
be occupied by β-particles emitted from the nuclei of radioactive elements.

γ-Radiation: This is a form of very high energy electromagnetic radiation 
of low ionizing power but having high penetration through materials. 
γ-Rays from radium are capable of traversing a thickness of steel up to 12 
in. and more but have only 1% of ionizing power of that of β-particles. γ-ray 
spectrum is a line spectrum in the form of a number of discrete frequencies 
characteristics of the energy levels of the nucleus, they emit from.

Induced (Artificial) Radioactivity

 In 1933 Curie – Joliot discovered that when aluminium foil was bombarded 
with α-particles from naturally radioactive Polonium, emission of neutrons 
took place. They also found that positrons were also emitted at the same 
time and this emission continued even after the radioactive source of 
α-particle, Polonium was removed though the intensity of positron was 
found to decrease exponentially with time. To interpret their results, Joliots 
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assumed that Aluminum on bombardment with a particles from Polonium 
source initiates a reaction as

                              27 4 31 30 1
13 2 15 15 0Al He ( P) P n+ → → + .   …(18.8)

This 1
0n is the neutron produced in the reaction and 30

15 p is radioactive 
and breaks up producing the decay

                              30
15P 30 0

14 1Si e+→ +  (positron).  …(18.9)

The above reaction (18.9) has half life 2.2 min. Joliots confirmed the 
production of positron by studying the deflection in magnetic field. They 
further after separating the new radioactive product by radiochemical 
method established that positron emission took place from separated 
phosphorus. This induced reaction is known artificial or induced 
radioactivity. Joliots also observed similar phenomena with boron and 
magnesium 10 4 13 1

5 2 7 0B He N n+ → +  and 13
7 N being radioactive emits

                          13 13 0
7 6 1N C .e+→ +

The discovery of this artificial radioactivity is of great importance 
and for this Joliots were awarded Nobel Prize  in 1935. Most products of 
artificial transmutations of elements are radioactive. They decay mainly 

by 0 0
1 1( ) or by ( )e e− +

− +β β  or by orbital electron capture. In cases of heavy 
elements they are found to decay by a emission or by spontaneous fission.

The induced radioactivity may be Proton (1
1H) induced like (p – α), 

(p – n) or (p – γ) or even deuteron (2
1H) induced reactions. The detailed 

descriptions of these reactions are however out of the scope of this 
book. However, the neutron induced reactions which have some special 
importance is discussed later.

18.4.3 Discovery of Neutron

 The discovery of neutrons is an important phenomenon and its detection 
was delayed because of the fact that they are electrically neutral and remains 
undeflected by electric field. It was however, certain that neutrons were 
being produced in experiments on artificial disintegration of nuclei from 
1919 onwards but remained undetected until 1930 because of difficulty 
involved in interpreting fully the experimental results. In 1930, Bothe 
and Becker on bombarding beryllium with a particles found that a very 
penetrating radiation was produced and this radiation was found to be 
uncharged, it was reasonable at that time to assume it to be highly energetic 
γ-radiation.

           9 4 13 13
4 2 6 6Be He ( C) C ( )h+ → → + ν γ   …(18.10)
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On measuring the absorption of this radiation in lead, it was found 
that the energy of the proposed γ-radiation to be 7 MeV which was greater 
than the energy of any γ-radiation known at that time. In 1932 Curie-Joliot 
measured the intensity of this radiation by ionization chamber and found 
that ionization had marked increase, if this radiation is passed first through 
paraffin or other hydrogen reach materials. They found that protons were 
emitted from paraffin on being bombarded with this radiation, measured 
the energy of the protons to be 4.5 MeV and considering this energy transfer 
to protons due to Compton recoil process found the energy of the proposed 
γ-radiation to be as high as 55 MeV. This energy of 55 MeV was however, 
much greater than the energy available from a reaction of the type given 
in equn. (18.10) calculated on a basis of mass energy difference of final and 
initial products. This result found inconsistent with the conservation of 
momentum and energy was explained by J. Chadwick of Britain in the year 
1932, by proposing a different type of reaction as below:

                               9 4 13 12 1
4 2 6 6 0Be He ( C) C n+ → → + . …(18.11)

This is the brief history of the discovery of neutral particle, neutrons 
theoretically predicted long back but experimentally detected after many 
years.

The general α-particle induced reactions (α – n) which emit neutrons 
can be written as:

4 3 1
2 2 0X He Y QA A

Z Z n+
++ → + + , where Q is the energy emitted.

A few typical (α – n) reactions are:

 Lithium:        7 4 10 1
3 2 5 0Li He Be n+ → +

Nitrogen:      14 4 17 1
7 2 9 0N He F n+ → +

Aluminium: 27 4 30 1
13 2 15 0Al He P n+ → + .  …(18.12)

18.4.4 Mass of Neutron 

 In the experiment of ejection of protons (hydrogen nuclei) from paraffin 
wax, Chadwick considered that this ejection was due to collision with 
neutron and applied the laws of mechanics for the elastic collision . Let M 
and V represent the mass and the maximum initial velocity of the neutrons. 
It suffers elastic collision with a nucleus of mass m at rest and produces a 
recoil velocity vR and its velocity decreases to V1. Applying the conservation 
of momentum and energy we get:

 MV = mvR + MV1 and
  1/2 MV2 = 1/2 mvR

2 + 1/2 MV1
2
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From the momentum equation we get V1 = RMV mv
M
−

 and substituting 

this in the energy equation we get:

                                

2
2 2 ( )R

R
MV mvMV mv

M
−

= +

Which on algebraic simplification MvR – 2MV + mvR = 0 and

 vR = 
2MV
M m+

This is a general expression, which can be written when neutron 
impinges on protons in paraffin wax we get simply by replacing vR by vH

 vH = 2
H

MV
M m+

 and considering collision with 

nitrogen atoms in nitrogenous materials, we get

                                   

2
N

N

MVv
M m

=
+

Dividing we get:

                                   

NH

N H

M mv
v M m

+
=

+

Measuring the recoil velocities of protons vH and nitrogen nuclei vN, and 
as mH and mR are known from this we get the mass of neutrons. Chadwick 
after finding the maximum recoil velocities of hydrogen and nitrogen nuclei 
from cloud chamber calculated the value of mass of neutron as 1.17 a.m.u. 
This was the first value of neutron mass reported and is too high. Chadwick 
himself modified the process and using the methods of greater accuracy 
measured the value as 1.00898 a.m.u.

18.4.5 Disintegration of Nuclei by Neutron Bombardment

The interaction with nuclei with neutron result into a compound nucleus 
having same atomic number but only the mass number is increased by 
unity. The general form of this reaction can be written as:

                           ( )1 1
0X XA A

Z Zn ++ →

The increased energy given to compound nucleus makes it unstable and 
it generally returns to a stable state by emitting any of the resulting products 
like γ-rays, α particles, protons p, neutrons etc. The reactions created are 
known respectively as: (n – γ), (n – α), (n – p) and (n – n) etc. Some of the 
examples of these reactions are given below:
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(n – g) reaction:

                                         
1 1 2
1 0 1H ( H)n h+ → + ν

Deuterium 21H is formed from hydrogen.
(n – α) reaction

                                         
6 1 7 3 4
3 0 3 1 2Li ( Li) H Hen+ → → +

  3
1H is tritium an unstable isotope of hydrogen having half life 
T = 12.4 years.

(n – p) reaction

                        
14 1 15 14 1
7 0 7 6 1N ( N) C Hn+ → → +

14 14 0
6 7 1C(radio carbon) N e−→ +  having half life T = 5, 570 years.

(n – n) reaction

                                    
107 1 107 1
47 0 47 0Ag Agn n+ → +

This 107
47 Ag is a meta stable and it decays by emitting γ rays

                                                               107
47Ag → 107

47Ag + hν.

18.4.6 Neutron Cross Section

 The concept of cross section becomes a general and useful measure of many 
classes of “collisions”. If two particles interact in more than one way, the 
probability of various interactions can be measured in terms of cross section 
of each.

For neutrons also when they are moving through the matter we find 
various kinds of inter actions and each has its own probability which is 
directly proportional to its cross section.

In a material if  n = molecules per unit volume
  l = dimension of the square area
 dx = thickness of the of the volume element
 σ = Cross section of each molecule = π(rb + rt)2

 where rb represent the radius of say bullet and rt is the radius of the 
target molecule.

Then area of the molecular targets = σ . n . l2 dx. This per unit area gives 
n s d x which is collision probability.

The probability of a particular neutron induced reaction including 
Fission for a neutron moving a distance dx is Pf  = sf Ndx, where s stands for 
microscopic cross section and N is the number of nuclei per unit volume.

When this microscopic cross section is multiplied by N gives macroscopic 
cross section.
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The total probability Pt for a number of possibilities is written as:
 Pt = (σf + σS + σa + σr + … etc.) Ndx
where, σf , σS, σa , σr respectively represent the micro cross section for 

fission, scattering, absorption and radioactive absorption etc.
This concept as said above, is particularly important in dealing with 

various chances and probabilities of various reactions during a process 
where only one type cannot be singled out. This has special significance in 
Nuclear Fission that is being discussed in the following section. 

18.5 NUCLEAR FISSION: AN INTRODUCTION

 In 1934, Fermi during the course of his study suggested that the bombardment 
of 238

92U might lead to the formation of transuranic elements having atomic 
number greater than 92 by following the reaction:

 
238 1 239 238 0
92 0 92 93 1U U Xn e−+ → → +

The element X would then be possible as suggested by Fermi a 
transuranic element and his suggestion seemed to be borne out by 
experiments in his laboratory in which 238

92 U.
When bombarded by neutrons emitted negative β-particles. But in the 

year 1938, through the elaborate investigations of the products obtained 
through this neutron bombardment of natural 238

92U, Hahn and Strassmann 
found that the precipitate responsible for β emission was an isotope of 
Barium. Now, if one of the fragment is barium of mass number 56, the other 
must be 92 – 56 i.e. 36 which is characteristic of a gas krypton. Therefore it 
was proposed by them (Hahn and Strassmann) that the uranium nucleus 
was split up into two nuclei on irradiation with neutrons. However, this 
new process of nuclear reaction was named by Meitner and Frisch as “ 
Fission of Nucleus”.

The completed such Fission reaction of Uranium 235 by thermal neutron is:

                     235 1 236 141 92 1
92 0 92 56 36 0U U Ba Kr 3n n+ → → + +  …(18.14)

18.5.1 Energy Release Per Fission of Uranium Atom

 Recalling the equn.(18.14) which is:

                                    
235 1 141 92 1
92 0 56 36 0U Ba Kr 3n n+ → + +

Total reacting mass:
                                 235

92U = 235.1175 a.m.u.
 1

0n = 1.00898 a.m.u. (Neglecting the kinetic energy                         
                                                                        of thermal neutron)                                             
                                              236.1265 a.m.u.
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Total resulting mass:
 141

56Ba = 140.9577 a.m.u.
 92

36KrKr = 91.9264 a.m.u.

  3 × 1
0n  =  3.02694 a.m.u. (3 × 1.00898)

   

    235.911 a.m.u.
Mass Difference (∆ m)  : 236.1265 - 235.911 = 0.2154 a.m.u.
  1 a.m.u. ≅ 931 M eV.
This mass difference is equivalent to 200 MeV. Therefore, this energy 

release per fission of uranium atom will appear mostly in the form of kinetic 
energy of the fragments and product three neutrons. Now in more practical 
form as 1 MeV is equivalent to 1.6 × 10–6 erg, 200 MeV is equivalent to 
3.2 × 10–4 erg. This though appear very low but if we look into in more 
details we get:

 There are 6.025 × 1023 atoms per gm atom of  235
92U and so the number 

of atoms per gm of 235
92U = 

23
216.025 10 2.56 10 atoms

235
×

= × .

Now, if all these 235
92U atoms undergo fission, the energy produced will 

be given by:
  E = 2.56 × 1021 × 3.2 × 10–4 = 8.2 × 1017 erg
But as  107 erg = 1 joule = 1 watt-sec and 1 KWh = 107 × 103 × 3600 erg
Therefore, energy released per gm of 235

2U, 

  E = 
17

4
7 3
8.2 10 2.28 10 KWh

10 10 3600
×

= ×
× ×

.

Now, this energy release will appear substantial. It has been shown that 
on complete disintegration of 1 gm of 235

92U th e energy release is equivalent 
to the energy supply of a power plant of 1 MW capacity for nearly one day. 
More interestingly, a pound of uranium-235 will supply power of 1 MW 
capacity for nearly a year.

18.5.2 Products of Fission

The fission reaction as stated in equn. (18.14) shows that 3 neutrons are 
produced per fission of 235

92U. As there exists other product possibilities, the 
general fission from 235

92U with one slow, thermal neutron can be written as:

235
92U  + 10n (235

92U) 1
92X Y Prompt neutronsAA

Z Z−→ + +
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If there are two prompt neutrons then the mass number of the nuclei Y, 
A1 will be 234-A. If AZX is lighter nuclei then A can be anywhere in the range 
of 85 to 104 and the number A1 of Y will be 149 to 130. For example, there 
is a possibility that instead of the reaction (18.14) the following reaction 
yielding two prompt neutrons may also result.

           ( )235 1 236 140 94 1
92 0 92 54 38 0U U Xe Sr 2n n+ → → + + + γ   ...(18.15)

It then can be stated that fission products are then of a statistical nature. 
The following Fig. 18.6 shows the graph of the percentage of total number 
fission which gives rise fragments of certain mass number plotted against 
the mass number.
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Fig. 18.6 Percentage of fission product with mass number for thermal fission of  235
92U

It can be seen that the probability of having fission product having 
mass number of both equal to 118 is only 0.01%. The most probable (7%) 
fission products are those having mass number 96 and 140 approximately. 
Therefore the reactions of the types given in equns. (18.14) and (18.15) have 
almost equal possibilities. Therefore, in our subsequent discussions it is 
said that 2.5 numbers of neutrons are produced per fission. However, all 
these neutrons are very fast and prompt neutrons as they carry a part of the 
energy liberated due to mass loss. One example of the enormous quantity 
of the energy to be released can be seen from this fission of 1 kg. of  235

92U. 
We know that:  
 235 gms of  235

92U contains = 6.025 × 1023 atoms

 1 kg. of  235
92U  contains = 

26
236.025 10 25 10 atoms

235
×

≈ ×
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Now assuming there is no loss of neutrons i.e. if each of those neutrons 
product take part in fission with another 235

92U atom and if there are n such 
fission reactions are necessary to react with all these 25 × 1023 atoms, then:

 (2.5)n = 25 × 1023

and n = 60 approximately and the time required to consume all the 
atoms of 1 kg of 235

92U is only 60 × 10–8 sec ≈ 10–6 sec. We have seen that 1 kg 
of 235

92U releases an energy of 2.28 × 107 KWh and that too in a span of time 
of one micro second. This release within such small time will lead to a rise 
of temperature of the order of 107 °C.

It should be realized that this fission reaction has an enormous 
potentiality as a source of energy which should be used for peaceful 
purposes.

18.5.3 Neutron Cross Section and Multiplicity Factor 

We have got introduced to neutron cross section in section 18.4.6 and now 
consider it in more details with giving emphasis on some important elements 
used in nuclear fission processes. The unit of the cross section of nuclear 
reaction is ‘barn’ which is 10–12 cm. This is because most of the nuclides have 
diameters about 10–12 cm. Neutrons are generally classified as fast as they 
are produced in fission reaction and are about 2 Mev and the energy of the 
neutrons which have obtained equilibrium with the molecular motion of 
the material is about 0.025 eV and are called thermal neutrons. The cross 
sections of the nuclear reactions are different for these two broad categories 
of neutrons. A brief prior knowledge can be obtained from the following 
table (Table: 18.1). It is noticeable that the cross sections which signify the 
probability of the reaction nature widely different for different materials, 
reaction natures and also on the energies of the neutron. For example, the 
absorption cross section for slow neutrons for Cadmium is very large and 
so this element has utilities as slow neutron absorber in controlled fission 
reaction in reactors, and the fission cross section sf for U-235 for fast neutron 
is only 1.3 whereas it is 580 for slow neutrons. This implies that U-235 
undergoes fission only with slow thermal neutrons. For U-238 abundantly 
occurring in natural uranium the fission cross sections is negligible for slow 
neutrons and very low with fast neutrons. To sustain the fission reaction in 
uranium it is necessary to slow the neutron produced in fission as they are 
prompt and fast. We now introduce the concept of multiplicity factor k for 
neutrons in fission reactions. If we could use an appropriate device to slow 
down the neutrons produced then the reaction can be sustained and then 
the sustained reaction process is called a “Chain Reaction”.
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Table 18.1 Neutron cross sections in barns

Elements/
compounds

�t

(slow)
�t

(fast)
�s

(slow)
�a

(slow)
�f

(slow)
�f

(fast)

H2O 110

D2O 14.5 0 0

B 760 4 755 0 0

C 4.8 4.8 0.0032 0 0

Zr 8 8 0.18 0 0

Cd 2560 7 2550 0 0

U (Natural) 7 4.7 (fast) 2 (fast) 0.5

U235 697 6.5 10 107 580 1.3

U238 2.8 0 2.0 0.0005 0.5

Pu 1075 9.6 315 750

The multiplicity factor is defined as the ratio of the number of neutrons 
in one generation to the neutrons in the preceding generation and if the 
loss of neutrons is prevented or can be neglected, instead of k, it is noted 
as k∞. The fast neutrons produced may be slowed down to thermal limit 
due to their passage through the bulk uranium 235 and the minimum size 
necessary to maintain the chain reaction is known as “Critical Size”. It can 
then be concluded that above the critical size k is greater than unity and 
the neutron population increases exponentially with time, at critical size k 
is equal to unity and so the neutron population is constant and if it is less 
than unity the neutron population exponentially falls down with time and 
the fission can not be sustained.

Now, the calculations are sufficient to show this conclusion that the 
neutrons may produce fission for which cross section is 0.5 barns for U-238. 
These neutrons are productively absorbed and tend to maintain chain 
reaction. The probability that one neutron will produce another fission is 
the microscopic fission cross section divided by total cross section.

0.5 0.2.
2 0.5

f
f

a f
P

σ
= ≈ =

σ + σ +

Thus one out of five neutrons may produce fission and since 2.5 number 
of neutrons are produced on the average then 0.2 × 2.5 = 0.5 the number 
neutrons produced by each neutrons. If we start with 10 neutrons in one 
generation, then 10 × 0.2 = 2 neutrons will be available for fission. In the 
next generation then 2.5 × 2 = 5 neutrons will be available and out of that  
5 only 5 × 0.2 = 1 will only available. Thus the reaction cannot be maintained 
and dies down very fast. This shows that in natural uranium U-238 is about 
99.3% whereas the U-235 is only 0.7%. Therefore, the natural neutron can 
not chain react and enrichment with U-235 is essential. This can be shown 
as follows:
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5 5 8 8

5 5 5 8 8 8
2.5

( ) ( )
f f

a f a f

N N
k

N N∞

σ + σ
=
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If we put N5 = 0, we get our just earlier calculation of k∞ and if we put 
N8 = 0 ( pure U-235), we get our second result. Now, if we put k∞ = 1 and 
calculate N8/N5 we get 1.5, which says that a large body of uranium would 
be critical it must contain about 40 per cent of U-235 and for a finite size 
where there are losses, the enrichment of U-235 must be more than 40%. 
As the separation of U-235 from natural uranium is a very costly process 
by gaseous diffusion of UF6, the cost of pure U-235 is enormous compared 
to U-238.

Now, the question which may puzzle the young readers that even if the 
content of U-235 in the uranium ore of the mine is only 0.7% and U-235 which 
is an isotope of uranium, in the mine the total quantity of U-235 is definitely 
enormous so U-235 present may cause a fission and emit fast neutrons and 
these neutrons while moving through the huge quantity of ore may be 
thermalized and may cause further fission. But this does not occur and a 
Uranium mine never explode. The reason is the fast neutrons produced in 
any fission and the cause is that the natural thermalization is not possible. 
As the neutrons produced decrease their energy due to collision and as soon 
as it reaches 7 eV, the neutrons suffer resonance capture by plenty of U-238 
present and it is not possible for the neutrons go below 7 eV. to attain the 
probability that they can create fission with U-235 present. This resonance 
capture in U-238 is shown in the following Fig. 18.7(a) and 18.7(b) shows 
the high fission cross section in U-235 at thermal neutrons at 0.025 eV.
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log �f( )A

Several thousand
barns

500 barns

7 eV
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log �a

Fig. 18.7 (a) The absorption cross section in U-238 showing resonance capture at 7 eV and 
(b) The fission cross section in U-235 for thermal neutron 
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18.5.4 Some More Aspects of Critical Size

It has been stated before that a critical size of the fissionable material is 
necessary for sustaining the chain reaction. There are some important aspects 
which should be attended to before designing the nuclear reactors for the 
production of electric power as one of the most important peaceful use of 
fission process. These aspects are stated below:
 1. As fission occurs throughout the volume of the fissionable material 

there is fair chance that the neutrons which are produced in the fission 
reaction may escape from the fuel surface as they are fast and prompt. 
Therefore, to prevent such loss of neutrons the determination of size 
of the fission material (fuel in reactor) is of immense importance.

 2. As the size of the fission material is changed, its volume also changes. 
The former is proportional to the square of the dimension and the 
latter is proportional to the cube of the dimension.

 3. The ratio of the neutron production to the loss due to leakage then 
varies as the first power of the dimension.

 4. To prevent k∞ to be greater than one, a smaller size is required 
compared to that for the material to be just critical with k∞ equal to 
unity. Below this size k∞ < 1.

 5. For k∞ > 1, neutron population increases exponentially.
 6. For k∞ = 1, neutron population is constant.
 7. For k∞ < , neutron population decreases exponentially.
 8. Natural thermalization is not possible as the neutrons at 7 eV energy will 

suffer resonance capture by 235
92U  and so mixture of  235

92U  and 235
92U cannot 

sustain the fission reaction by 235
92U.

 9. For slowing down the neutrons with average energy 2 M eV, gathered 
during fission, elastic scattering in ‘Moderators’ is much more suitable.

 10. No moderators can however, reduce the energy of neutrons below 
energies of the moderator molecules.

 11. At room temperature 20°C the energy of the gas molecules is about 
0.025 eV. Neutrons in thermal equilibrium with the gas at 20°C will 
have same energy as that of the gas molecules is known as “Thermal 
neutrons”.

 12. Assuming that the neutrons emitted in fission reaction have average 
energy 2 MeV and to have energy in the thermal state to have energy 

0.025 eV, the Total fraction of energy reduction = 8
6

0.025 1.3 10
2 10

−= ×
×

 

and if n is the number of collisions necessary for energy reduction in 
moderators is equal to:

 (Average fractional energy loss per collision)n = 1.3 × 10–8.
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18.5.5 Four Factor Equation

It has been seen that the working value of k∞ is very important to decide 
whether the fission reaction can be self sustained or even whether the 
reaction will die down or will be uncontrollable. The following schematic 
diagram, Fig. 18.8, throws some light on it.
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Fig. 18.8 The chain reaction in fission with almost all possibilities

The above Fig. 18.8, schematically represents the various factors 
involved in determining effectively the multiplicity factor. However, this 
can be explained as follows:
 1. The process starts with fission of U-235 rich uranium with a thermal 

neutron and as a result it produces fission fragments along with ν 
number of fast neutrons

 2. Some of these fast neutrons collide with U-238 present and can cause 
fissions resulting in the increase of fast neutrons by say ε times more.

 3. The total number of fast neutrons then increases from ν to νε. This 
 ε is called ‘fast fission factor’.
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 4. νε Numbers of fast neutrons now move through the ‘pile’ (fuel, 
moderator, assembly) most of them are slowed down but a fraction lf 
escape and so number of neutrons available remains as ne(1 – lf).

 5. During the slowing down process some neutrons will be captured 
by U-238 to form U-239 which decays to Pu-239. The number ne(1 
– lf) which undergoes slowing down process νε(1 – lf)p escapes this 
resonance capture and the number νε(1 – lf) (1 – p) are captured to 
form Pu-239. The quantity p is called ‘resonance escape probability’.

 6. Some of the slow neutrons may also escape from the system and if the 
fraction avoiding this escape is denoted by lt, the number of thermal 
neutrons per fission of U-235 that are escaped is ne(1 – lf)plt.

 7. Remaining thermal neutrons of number νε(1 – lf) p(1 – lt) a fraction 
f is absorbed in uranium as a whole and then a fraction νε(1 – lf) 
p(1 – lt)(1 – f) is absorbed in other materials and the number available 
for carrying out chain reaction is then νε(1 – lf) p(1 – lt)f. The quantity 
f is called ‘thermal utilization factor’.

 8. The fraction of these thermal neutrons available for fission of U-235 
is just

 ( )
( )

f
a

U
U

σ
σ  = g.

 9. The multiplicity factor is then given by:
  k = νε(1 – lf) p(1 – lt)fg

 and let  η = ν ( )
( )

f

a

U
U

σ
σ

 = νg and then

  k = ηε pf (1 – lf) (1 – lt).
 10.  If there is no leakage of neutrons in any way i.e., lf = lt = 0 and then as 

stated k = k∞ 
  k∞ = η ε p f this is known as ‘Four Factor Equation’ 

which is an essential theoretical basis in 
designing the nuclear reactor and includes 
the factors already introduced and are as: 

 ν = fast neutrons produced per fission of thermal 
neutron.

  ε = fast fission factor (more fast neutron from 
U-238).

  p = resonance escape probability.
  f = thermal utilization factor.
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18.6 NUCLEAR FUSION

Fusion process is exactly opposite to that of fission. In fission the heavy 
nuclei break up into fragments and thus the release energy (Section 18.5.1). 
In fusion to very light nuclei combine together to form a heavier nucleus 
and release energy. 

1 4 0
1 2 14 H He 2 ( ) 24.7 MeVe +

+→ + β +              ...(18.16)
Now, these two positrons (β+) immediately after their creation will 

combine with two negative electrons and release energy due to their 
annihilation. The energy that will be released in addition is of the order  
2 M eV. The total energy released per fusion of hydrogen nucleus will be 
then 26.7 M eV. 

In 1939 Bethe proposed a set of reactions that occurs in sun and named 
it as ‘Carbon Cycle’. The steps of that set of reactions proposed by Bethe are:

              
12 1 13

6 1 7C + H N+Q→

                       
13 13 0
7 6 +1N C + e→

              
13 1 14
6 1 7C + H N + Q→      

              
14 1 15
7 1 8N + H O + Q→

                        
15 15 0
8 7 +1O N + e→

              
15 1 12 4
7 1 6 2N + H C + He→  



 
1 4 0
1 2 14 H He 2 ( ) 24.7MeVe +

+→ + β +

 To produce these reactions on earth, the carbon and nitrogen nuclides 
must be bombarded with accelerated protons. But the temperature at the 
center of the sun is so great that some thermal protons at the high energy 
end of the Maxwellian distribution of velocity are found able to react. 
Considering the fact of presence of enormous quantity of high energy 
protons resulting to produce this reaction, enormous quantity of solar energy 
is produced. From presence of the absorption spectra of hydrogen in the 
continuous radiation emitted and reaching earth, it is established that the 
fusion reaction of hydrogen actually takes place within sun. It is also now 
known that when all hydrogen will be converted into helium, the radiation 
will cease to be produced. It will take, however, 30 billion years to consume 
all the hydrogen present within the sun. The sun is in equilibrium because 
even though fission increases the temperature of the core of sun and thus 
increases the energy of the protons and increases the fusion rate along with 
temperature, on the other hand this probable increase of temperature would 
expand the sun volume and thus decrease the neutron concentration. These 
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two opposite effects are balanced and sun steadily emits energy. There is 
thus ample reason o believe that the sun is not unique; but the other stars 
also follow the nuclear fusion reactions and emit light. The sun is the source 
of energy in the form of heat and light, so life on earth is possible.

 It may be stated again that the nuclear power is a chain reaction 
which maintains itself. While neutrons are the ‘link’ in maintaining fission 
chain reaction, the ‘link’ in fusion is the protons. The major difference 
between these to chain reactions is that in fission thermal neutrons at room 
temperature are responsible, in fusion protons in fusion are at millions of 
degree. This makes the possibility of making fusion chain on earth bleak. 
Only hope to maintain fusion on earth lies on the following reactions:

  
6 1 4 3
3 0 2 1Li He+ Hn+ →

3 2 4 1
1 1 2 0H H He n+ → +

The first reaction produces a tritium (3
1H) and if this tritium is struck 

by deuterium, it produces a neutron and this neutron may initiate the first 
reaction and maintain the chain. Once the fusion is started, the fusion itself 
maintains the temperature to keep the process going. The energy liberated 
is a function of amount of fusion material present and there is no theoretical 
limit. In fission bomb, the parts before detonation must be smaller than the 
critical size otherwise the bomb will explode automatically, in fusion there 
is nothing like critical size and any amount would be safe to be preserve 
until it is ignited. The constructive use of the energy release from fusion is 
now a major field of research. Fusion in sun is ‘contained’ by tremendous 
gravity of sun but on earth for peaceful purpose not only the production 
of high temperature but also to contain the reaction at this temperature 
many orders of magnitude which is much above the temperature of 
vaporization of earth materials. However, calculations have shown that 
it may be possible to maintain fusion continuously at a temperature as 
low as 45 million degrees because the charged particles may be given this 
kinetic temperature by accelerating them under an electric field of 4000 
volt. At this temperature and electric field, the gases will be ionized and as 
this state of the gas is called ‘Plasma’, the problem of plasma is to contain 
them within an enclosure whose surface must not be struck by the ions 
of plasma to prevent evaporation of the container. There is possibility to 
contain this plasma without allowing the ions to react with the material 
wall of the container by applying a strong magnetic field, which may be 
able to contain the plasma in a volume less than the volume of the container 
or even without any container. The detailed discussion of the processes 
possible is beyond the scope of this book and as most the aspects are yet 
to be fully standardized.
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18.7 NUCLEAR REACTORS AND SOURCE OF ENERGY

The nuclear reactors are basically of two types (i) Research Reactors whose 
power output is insignificant and are mainly used in making radio isotopes 
and (ii) Power Reactors whose most important function is to produce electric 
power.

As there are three components of a reactor (i) Fission Fuel (ii) Moderator 
(iii) Absorber and (vi) Safety rods. The reactors are again classified as (i) 
Heterogeneous Reactor where all the components are individually placed 
and (ii) Homogeneous Reactor where the components (fuel and moderator) 
exist in a homogeneous mixture within the pile. 

 

Safety rods (cadmium)

Control Rods

Uranium
fuel rods

Graphite

block
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22 sq. feet

cross section

8 inch gap

(steel coated
with boron)

Fig. 18.9 Uranium reactor pile of heterogeneous reactor type

The heterogeneous thermal reactor at Chicago University, reached its 
criticality on December 2, 1942 and the schematic diagram of the nuclear 
pile is shown in the above Fig. 18.9. The power level achieved in this 
reactor was initially 1,000 kW which was doubled later. This was the first 
demonstration of successful attempt to control nuclear energy. The fuel (6.2 
tons of Uranium metal and Uranium oxide) in aluminum sealed casings were 
placed at regular intervals within the graphite block (used as moderator) 
of 9 inch. The fast neutrons produced in the fission in uranium have to 
travel this distance of 9 inch to reach next fuel rod and during this travel 
through graphite are thermalized as the slowing down length in graphite 
is 7.4 inch. Strips of Cadmium which has high absorption cross section for 
thermal neutrons were inserted at regular intervals. They are noted in the 



 18.30 Fundamental Physics

figure as ‘Control rods’. For further safety so that just critical condition is 
always maintained and the reaction rate is kept constant, cadmium ‘Safety 
rods’ are inserted under gravity from the top as and when the situation 
demands. The total pile (graphite in layers) along with fuel, control and 
safety rods was shielded by cubical shaped 7 ft. thick concrete wall, so that 
there is no radiation hazard to outside operators.

The homogeneous reactors are a mixture of fuel and heavy water  
(D2 O) which acts as moderator. The control and safety rods are introduced 
separately. The first of such system is known as ‘Swimming Pool’ type.

Now, if we consider an assembly consisting of only fuel and moderator, 
we may write the thermal utilization factor f, introduced in section 18.5.5 as:

 0 0

0 0 1 1

a

a

Nf
N N a

σ
=

σ + σ
 = [ ]1 1 0 0

1 .
1 /a aN N+ σ σ

The subscripts 0 and 1 stand for fuel and moderator respectively and 
N1 and N0 are number of atoms of fuel and moderator per cubic centimeter 
of reactor material. 

We may finally write for thermal utilization factor for three reactors 
as follows:

 Uranium – Graphite :                
1 0

1
1 ( / ) (0.000579)

f
N N

=
+

Uranium - Heavy water (D2 0): 
1 0

1
1 ( / ) (0.000169)

f
N N

=
+

 Uranium – Water :                     
1 0

1
1 ( / ) (0.0432)

f
N N

=
+

From the results of calculation of f, p, p f and k∞ for different values of 
N1/N0 which is the ratio of number of moderator atoms per number of 
Uranium atoms, it is seen that 
 1. For small values of N1/N0, f approaches unity while p is small.
 2. An arrangement which increases f should decrease p and the product 

p f should pass through maximum as N1/N0 is varied.
 3. The maxima for k∞ is found to be quiet flat occurring in the ranges of 

N1/N0 equal to 4 to 10 for H2O, 150 to 500 for D2O and 300 to 600 for 
graphite as moderators.

 4. The important observation is that k∞ > 1 can be attained in a 
homogeneous mixture containing natural Uranium and heavy water, 
but not with homogeneous mixtures of natural uranium–graphite or 
natural uranium–ordinary water.

 5. When uranium enriched in 235U is available, a chain reaction k∞ can 
be achieved with either graphite or water as moderator.
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The following Fig. 18.10 represents a schematic diagram of a Power 
Reactor where, high temperature, high pressure steam is produced to run 
the turbine to generate electric power, which is much cheaper than using 
conventional fossil fuels like coal or petroleum and there is by large no 
danger if the reactor’s safety devices function effectively. However, there 
exist many more safety measures and monitoring devices to prevent any 
disaster. However, it may be mentioned that the disposal of used fuels 
which remains very radioactive is an imposing problem.

Nuclear Power Reactor 
In some other kinds of reactor the Breeder Reactor needs mentioning. In 
this reactor the primary and produced fuels are same. For example 239

94Pu 
undergoes fission as fuel and the neutrons are absorbed by 238

92U inserted in 
the reactor and get converted into 239

94Pu which is continued to be used as 
fuel. As 238

92U enrichment from natural uranium is a very costly process and 
so production of electricity by using 238

92U  as fuel will not be cost effective. 
239

94Pu used as fuel produces further 239
94Pu and can be used as fuel so the 

Breeder Reactor is more cost effective.
It may be stated here that the problem of safe disposal of radioactive 

wastes from fission reactors could be totally avoided if the fusion reactor 
in an established scale could be effectively implemented as none of the 
fusion products like helium is not radioactive. However, it still remains 
as a dream.
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Fig. 18.10 Schematic diagram of a boiling water power reactor
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APPENDIX 

I

The Universe: A Brief Discussion

From the time unknown, human beings have looked upon the sky and get 
amazed by finding moon and sparkling stars during night and sun during 
day. They were so amazed by their presence in the sky that they later wrote 
many mythological scripts to associate them with God and worshipped 
them. What the human used to see at that time and what we see today 
during night on clear sky are only a small part of that, we call universe.

The universe as it was thought just a century ago, extends just up to 
the disc of stars what we call ‘Milky Way’ and beyond it exist only black 
empty space. Our sun and the solar systems are only a part of this Milky 
Way. But now we realize that this Milky Way galaxy is only one of the 
billions of galaxies just strewn across the distances of billions of light years. 
One light year is the distance covered by light (c = 3 × 108 m/sec) in one 
year and what we ‘see’ today was existing billions of years ago and what 
exists today, the information can only be known billions of years after! 
Such is the amazing vastness of the universe. The study of the objects in 
the galaxies is known as Astronomy and the study and formulation of the 
natural laws is Astrophysics. The science of the universe as a whole is known 
as ‘Cosmology’. Let us start our very brief discussion on universe with an 
humble introductory study of our own home galaxy, the Milky Way and 
then peep into the other normal and unusual galactic objects.

Earth

Interstellar gas
nebulae

 Fig. AI 1 An artist’s impression of Milky way galaxy of which our sun is just member. It is a disc 
shaped collection of hundreds of billions of stars
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In studying the Milky Way, we may explore the universe as we instead of 
looking at any particular star, we look at a system of stars, and we consider 
the overall arrangement and history of a huge stellar community of which 
our sun is a member. For over a century,the prevailing idea was that our sun 
and its planets lie on the centre of the galaxy but now we know that Milky 
Way does not only contain stars but also copious interstellar dust. These 
dusts hide most of the galaxy stars from view and thus forbid us to make 
idea of the true dimension of the galaxy. There are three major components 
of our galaxy first a thin disk mainly consists of interstellar dusts with metal 
rich stars second a central bulge and third the halo consists of metal poor 
stars. The bulge at the centre is a mixture of these two types of stars.

Because the stellar dusts obscured the detailed observation of the 
structure of the galaxy by light telescopes, the knowledge about its structure 
had to wait until the discovery of radio astronomy. Both the optical and radio 
observations reveal that the star forming regions of the galaxy has ‘Spiral 
arms’. The process of tracking the hydrogen element, the main constituent 
of the galaxy by the observation of the radio waves emitted by it is used 
for this purpose. Interstellar dusts and hydrogen gas mostly make up the 
interstellar medium of the disk. These constituent materials are not evenly 
spread but during the period of over billion years is churned up by passing 
stars and supernovae, have resulted it into non uniformly spread lumpy 
and frothy. The space missions indicated that Sun lies inside one of such 
regions, where interstellar medium is hot and thin. The figure below shows 
the structure of the spiral arms of the galaxy.

Fig. AI 2 The spiral structure of Milky way galaxy

The disk shape of the galaxy is not difficult to understand but when 
a large number of objects are put into orbit around a common center, the 
objects naturally tend to orbit around it. This is what happened when our 
solar system was formed from solar nebula. The giant cloud of objects 
organizes themselves to form planets and all of them orbit in nearly same 
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plane. To understand the formation of spiral arm of the galaxy, let us 
consider the following figure.

After one complete orbits
of star A

Galactic center

A B C

A

B

C

A

C

A

After two complete orbits
of star A

After 1/2 orbit
of star A

A

B C

A ,B ,C are three
consecutive stars
on the axis

Fig. AI 3 Shows that the spiral arm of our galaxy is caused by systematic movement of stars 

The figure above shows that as star A completes one orbit and more the 
spiral continues to tighten up. Now, the question arises why then not the 
spiral wing of the galaxy does collapse? If the spiral arms are caused by mass 
movement, then it has been calculated that to collapse or wind up, it would 
need only few hundred million years which is a very brief time compared to 
the age of the galaxy. In 1940 astronomers predicted that instead of matter 
movement the spiral structure is caused by creation of mass density wave, 
whose crest passes out making spiral configuration. This latter prediction 
is more likely to have caused the spiral structure.

 As mentioned before, this Milky Way is not the only one galaxy present. 
The boundary of the universe is not limited but is continued so as to enclose 
several other galaxies of different natures. The famous astronomer Hubble 
classified these galaxies into four major categories like: Spirals, Barred 
Spirals, Ellipticals and Irregulars. The disks of spiral and barred spiral 
galaxies are sites of active star formation. The elliptical galaxies do not 
contain interstellar gases and cannot favor any star formation. Irregular 
galaxies are not well defined and have asymmetrical shape.

The distance between the galaxies can be approximately measured from 
the linear relationship defined by Hubble Law. This is v = H0d, where v is 
the recessional velocity of the galaxy, d is the distance of the galaxy from 
earth and H0 is a constant known as Hubble constant. 
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Application of Hubble Law

If the spectrum of the galaxy is observed and measured by telescope and 
suppose a spectral line whose normal wavelength is l0 appears in the 
spectrum as l. If observed wavelength l is greater than standard wavelength 
l0, then there is a red shift indicating that the galaxy is receding from earth. 
The shift is then Dl = l – l0. Then the red shift galaxy, usually denoted by 
z is given by:

0

0 0
z l − l Dl

= =
l l

.

Now, according to Doppler effect 
0

v
c

Dl
=

l
 which is valid if velocity 

v << c, the velocity of light. According to Hubble law, as stated above v = H0d 
and then using the red shift due to Doppler effect, the distance of the galaxy 
from earth is given by:

 d = 
0

zc
H

.

An example: The K line of strongly ionized calcium has normally wave-
length 393.3 nm. In the observed spectrum of a galaxy it is measured as 

401.8 nm. The red shift of the galaxy is then 
(401.8 – 393.3) nm 0.0216.

393.3 nm
z = =

The said galaxy is then moving away from earth with a speed of
  v = zc = 0.0216 × 3 × 10 5 km/s.
The value of the Hubble constant varies between 50 to 80 km/s/Mpc 

[1 pc(parsec) = 3.09 × 1013 km = 3.26l y( Light year ). 
11 y = 3600 × 30 × 12 × 3 × 105 km/s = 9.46 × 1012 km
1 Mpc = 106 pc
Any of light year or parsec can be used to measure distances in space]

Using the above expression d = 
0

zc
H

 and using the values of zc and the 

constant H0 as 75 km/s/Mpc, we get the distance of the galaxy from 
earth as 87 Mpc. 

This is equal to 280 million light years.
The determination of temperature on the surface of a star is determined 

by using Stefan-Boltzmann law (Described in Ch. 4) which is
 E = sT4, where E is the radiation energy emitted per sec per square meter 

of a black body. The luminosity of a star at a temperature T is given by:
 L = 4 pR2 sT4
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The ratio of the star’s radius to the sun’s radius can be obtained from 
a related expression as:

2
Star Star Star

Sun Sun Sun

R T L
R T L

 
=  

 
.

Classification of Stars and Stellar Energy

The details of the star’s spectrum reveal whether it is a giant, a white dwarf 
or a main sequence star. Hydrogen lines are good indicator of the luminosity 
as they are affected by both density and pressure. Higher the density and 
pressure, the collision between hydrogen atoms and other atoms are more 
frequent and this results into more ionization and broaden the hydrogen 
spectral lines, otherwise not. The density and pressure in the atmosphere 
of a luminous giant star is low as the star’s mass is spread over a larger 
volume and so collisions are less frequent resulting into narrow hydrogen 
Balmer lines. A main sequence star is however more dense and compact 
than giant or super giant stars, the density of hydrogen is more and the 
collisions are more frequent. This results in the broadening of the hydrogen 
spectral lines. The stars are classified on the basis of their luminosity and 
as this is a continuous process spread over hundreds of billion years, there 
is a luminosity scale for this classification. White dwarfs are not given a 
luminosity class and they represent the final stage of stellar evolution in 
which no thermonuclear reactions take place. In the understanding of the 
stellar evolution which includes the questions of how the stars are born, 
live their lives and finally die, we search the answers from the realm of 
Physics. Our sun the basic cause of our existence on earth emits energy 
due to the thermo nuclear reaction at its center. The reaction converts 
hydrogen into helium by fusion and as a process it consumes 6 × 1011 kg 
of hydrogen per sec. It has been mentioned in Chapter 18, that when this 
hydrogen will be exhausted, the sun will die. This fusion is commonly 
called ‘Hydrogen burning’. There is a sequence of this hydrogen burning 
process. It first starts at the core of the star and slowly goes to the outer part 
as the density of hydrogen at the center decreases. As this thermonuclear 
fusion of hydrogen into helium ceases due to exhaust or decrease of density 
of hydrogen, a second type of thermonuclear reaction starts at the core, 
where two helium atoms combine to form Be and then carbon and oxygen. 
(Please visit Bethe’s carbon cycle, Chapter 18. Sun’s source of energy is due 
to hydrogen burning core with a diameter about 105 km as it is today. In 
about 5 billion years, the sun will draw energy from hydrogen burning shell 
which will surround a compact helium rich core. The helium core will have 
its diameter about 30,000 km and this condensed helium core will initiate 
‘Helium burning’ by converting gravitational energy into thermal energy. 
The helium burning occurs in two steps. First two helium atoms combine 
to form an isotope of 4Be8
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 2He4 + 2He4 = 4Be8 
At the core, this beryllium atom before it decays is attacked by third 

helium atom and forms carbon and release energy
 4Be8 + 2He4 = 6C

12 + g
  6C

12 + 2He4 = 8O
16 + g

This Carbon is the main constituent of human body and the oxygen is 
what we breathe.

The Life Time and the Death of a Star 

  During hydrogen burning (Fusion) a part of the star’s mass is converted into 
energy and if f is the fraction, then using Einstein’s mass energy relation, 
we get

 E = f Mc2. Now if L is the star’s luminosity i.e. energy released per unit 
time and if t is the total life time then

 L = 
E
t  So, E = Lt

and  Lt = f Mc2

or, t = 
2Mc

L
 

The luminosity is roughly proportional to 3.5 power of mass and so 
we can write

 t ∝ 2.5 2
1 1

M M M
=

Thus a star’s life time is inversely proportional to 3.5 times of its mass.
We ‘see’ sometimes in the clear night sky a distant star suddenly 

increases it luminosity and this may be the beginning of the end of the star 
or sudden lack of balancing reactions stated above. A high mass star dies 
in a violent cataclysm in which its core collapses and most of its matter 
is ejected into space with high speeds. This results into sudden increase 
of luminosity by a factor of 108 and during this explosion supernova is 
produced. The matter ejected glows as nebula. 

Neutron Star

The neutrons are heavier than proton but unlike protons which contain 
positive charge, neutrons are electrically neutral. Protons and electrons may 
combine with each other under high pressure and if that happens in a dying 
star, it then transforms into a neutron star. Neutron stars are inconceivably 
dense and its compactness may be imagined as a mass having equal to 
the mass of sun (solar mass = 1.989 × 1030 kg) and packed in a sphere of 
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diameter only few km (solar radius = 6.9599 × 105 km). They are actually the 
collapsed cores of massive stars that have perished in cataclysmic supernova 
explosions. The material within these neutron stars is very different from 
ordinary materials. These materials are super fluid i.e. they flow without 
any friction and they also conduct electricity without offering any resistance 
and so these are super conducting materials. The pulsating radio signals 
received on earth from these neutron stars is due to their powerful magnetic 
field which sweeps radiation across the sky. Neutron stars rotate around an 
axis and as they are also strong magnets having their magnetic axis is tilted 
with respect to their axis of rotation, the magnetic field sweeps around in 
space and as it reaches the earth we receive the pulsar (on and off pulse).

Black Hole and its Formation

If the burnt out matter presses inexorably and if it is too heavy and beyond 
the Chandrasekhar limit resulting into a density more than a nucleus. If 
any object approaches close to it, it is attracted by the star and to escape the 
object needs a velocity more than the velocity of light, which is not possible. 
Therefore nothing can emerge out of this and it is so called as Black hole. 
There is compelling evidence that the black holes do exist and it has been 
discovered that black holes more than a million solar masses may lie at the 
center of many galaxies including our own, Milky Way. The behavior of 
the black holes is explained by Einstein’s General theory of Relativity. Due 
to enormous mass, according to this theory the space around this black 
hole is curved.

Normal star Neutron star

Black hole

Fig. AI 4 A comparison showing how the light beam emerges out from the normal star, the Neutron 
star and black hole. Note that in black hole all the radiation including photons to bend 

back to the black hole due to enormous gravity pull.
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The curvature of space around normal star is so small that photons 
emitted almost move out straight from the surface. At the surface region of 
a collapsing neutron star the space is more curved and hence the photons 
emitted from surface of the star follow curved path.

When and as the collapsing process continues in a neutron star, the 
curvature of the space near its surface increases and the photons begin 
to follow a trajectory so that they return back to the surface. When this 
neutron star condenses below a critical size, the curvature of space around 
becomes so large that nothing can come out. A black hole is thus in fact, 
an ‘information sink’. For anything to come out of a black hole, it must 
have its escape velocity more than the velocity of light, a condition which 
is impossible.

In Search of Extra Terrestrial Life

The heavens we see a minute part of it in the sky above earth raise in our 
mind many profound questions. The series of questions that we contemplate 
includes the berth, life and the death and nature of stars, black holes and 
above all the possibility of life in other worlds. The questions in our mind 
that often make us curious include: Are we alone? Is there a chance that 
someday we will meet an alien civilization?

Unfortunately there exist no answers to these questions though the 
chemical building blocks of life on our earth are found throughout the 
space. Even, based on our present technology, it seems impracticable to send 
unmanned space probes to other stars. Firstly it would take a century or less 
to reach as the distance of the nearest star; Proxima Centauri is nearly 4.22 ly. 
Secondly, the cost of fabrication of such space probe from the design would 
be prohibitively expensive. The search is carried on by sending radio signal 
of varying frequencies and waiting to receive the response or reply. Even if 
there are a few alien civilizations scattered around and across the Galaxy, 
it is not yet possible to detect one though we now have the technology to 
detect the radio transmission from them. An ambitious project named ‘High 
Resolution Microwave Survey’ (HRMS) under National Aeronautics and 
Space Administration (NASA) is under operation since 1992. Since last few 
decades scientists are in search of receiving such response and a separate 
institute ‘Search for Extra Terrestrial Intelligence’ (SETI) has already been 
formed. Let us wait and see!

 



APPENDIX 

II

Some Solved Problems

Solved Problems On Classical Physics (Chapter 1)

 1. If two forces F1 and F2 act on an object of mass 5.00 Kg. If F1 and F2 are 
of magnitudes 20.0 N and 15.0 N respectively and act in the directions 
a) 90° and b) 60° with each other, then find accelerations.

90° 60°

(a) (b)

F
1

F
1

F
2

F
2

Solution:
 a) As two forces are perpendicular to each other, the resultant force 

will be 
 F = (F1

2 + F2
2 )1/2 that is F = (202 + 152)1/2 = (400 + 225)1/2 = 25 N

 Acceleration (a) = F/M = 25/ 5 = 5 m/sec2

 b) Using the relation R2 = F1
2 + F2

2 + 2 F1F2 cos 60°

   = 202 + 152 + 2 20.15 . 1
2

 = 400 +225 + 20.15

    = 400 + 225 + 300 = 925
   R = 30.41
   a = 30.14/ 5 = 6.028 m/sec2 
Alternatively:
For (a)

  F1 = iF1 and F2 = jF2 Resultant force F = iF1 + jF2 and tan a = F2/F1 
where a is the angle between resultant and F1 . |F| = (F1

2 + F2
2)1/2 

 F =  (202 + 152 )1/2 = 25 N.
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For (b)
Total F1(x) = iF1 + iF2 cos 60° 
  F1(x) = 20 + 15 cos 60 = 27.5
Total  F2(y) = jF2 sin 60°
 F2(y) = 15. .866 = 12.99
 R = (27.52 + 12.992)1/2 = 30.41 N
 a = 30.41/5 = 6.08 m/sec2. 

 2. Show for what value of the projection angle, a projectile motion will 
have maximum range and also maximum height.

  The velocity v with which a body is projected making an angle θ with 
the horizontal will have two mutually perpendicular components. The 
component responsible for vertical height to be attained is equal to v 
sinq and direction vertically up and against gravity. The maximum 
height to be attained is then using: v2 = u2 – 2 gH where H is the 
maximum vertical height. Which is then 0 = v2 sin2 q – 2 gH.

  Therefore, 
2 2sin

2
vH

g
q

= . This can be maximum for a given value of 

velocity when the angle of projection θ is 90° i.e. when it is thrown 
vertically up. Now, for the horizontal range traversed by the body, 
R is given by R = v cosq, 2 t where t is the total time of travel which 
is obtained from v = u - gt i.e. 0 = v sin q – gt v sin q – gt and the total 

time of travel (up and down) is given by 2t = 
2 sinv

g
q

. Now, putting 

this time in the expression for range R we get: 

  R  = 2 v2 sin q cosq 
21 sin 2v

g g
q

= . This range R will therefore be maximum 

when angle of projection θ is 45°.

   Therefore, for a projectile motion the vertical height will be maximum 
when the angle of projection θ is 90° and horizontal range will be 
maximum when this is equal to 45°.

�
0 v cos

v sin

v

�

�

Range

Height

u

�

0

(a)                                                                     (b)
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 3. A particle is projected at an angle a with the horizontal from the foot 
of a plane, whose inclination to the horizontal is β. Show that it will 
strike plane at right angles if cot b = 2 tan (a – b). Fig. (b) above.

  If u be the velocity of projection, then u cos(a – b) and u sin(a – b) be the 
initial velocities respectively parallel and vertical to the inclined plane. 
The acceleration of the particle along these parallel and perpendicular 
directions will be respectively as –g sin b and – g cos b. Then we can 
write taking the total time t as the time to move up and down making 
net displacement as zero: 

  0 = u sin(a – b). t – 1
2

 g cos b t2 and t = 
2 sin( - )

cos
u

g
a b
b

.

  Now, as required, the direction of motion at the instant when the 
particle strikes the plane is perpendicular and so the component parallel 
to the inclined plane vanishes. Thus,  u cos (a – b) – g sin b . t = 0. 

  

cos( ) 2 sin( )
sin cos

u ut
g g

a − b a − b
∴ = =

b b  
  ∴ cot b = 2 tan(a – b).
 4. As in the following diagram find the relative acceleration between A 

and B when a force of 5 Kg wt. is applied on the body A

5  Kg

15  Kg

F

12.0=s�

10.0=s�

0.60 Kg wt.

2 Kg wt.

N

A

B

 

  When a force F of 5 Kg wt. is applied in horizontal direction on A
  The frictional resistance applied by B on A through the surface between 

A and B is:
  fS = msN = 0.60 × 5 Kg wt. = 3 Kg wt.

  Net force on A = (5 – 3) Kg wt. = 2 Kg wt = 19. 6 N
  Acceleration of A with respect to B = 19.6/ 5 m/sec2 = 3.92 m/sec2

  Reaction force acting on B due to friction on A = 0.60 Kg wt.
  But frictional resistance on B because of friction between B and ground 

is
    fS = msN = 0.01 × (5 + 15) km wt. = 2 Kg wt.
  As this is exactly equal to the effective force on B, there will not be 

movement of B and so the relative acceleration between A and B will 
remain as 3.92 m/sec2 in the direction of force F = 5 Kg wt.
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 5. If in the above problem the force of 5 Kg wt. is applied on the lower 
body B, then find the relative acceleration.

  Total frictional force on B:
  fS = (ms × 5 = ms × 20) = 0.12 × 5 + 0.10 × 20 = 2.6 Kg wt.
  Net effective force on B: (5 – 2.6 ) Kg wt = 2.4 Kg wt.
  Acceleration of B in the left to right direction: (2.4 × 9.8)N/20 Kg = 

1.176 m/sec2.
  Pseudo force acting on A is (1.176 × 5) N = 5.88 N in the opposite 

direction and the frictional resistance on it (A) is also 60 Kg wt. = .60 
× 9.8 =5.88 N

  Therefore, effective force acting on it in the opposite direction is zero.
  Therefore,
  Net relative acceleration of A towards left: 1.176 m/sec2.

 

mg

mg cos�
mg sin�

sf
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F
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R
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���sf

�
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�

�

(a)

(b)

(c)

Fig. AII 1 (a) Mass on an inclined plane (b) Rotating sphere or spherical ball (c) Rotating disc
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 6. A wedge shaped inclined plane of inclination a is shown in the figure 
below (Refer to figure AII. 1 (A), a mass m is rested on the plane of 
inclination. The angle of inclination is a. Study the characteristics of 
its motion on the inclined plane.

  The weight vertically down mg has two components mg cosa acting 
normal on the inclined plane and mg sina acting along the plane and 
is responsible for downward sliding motion of the body. The frictional 
force fS opposes the motion and is equal to μ mg cosa. Now, two 
possibilities are there in the first:

   mg sina > μ mg cosa and then the net force responsible for sliding down 
the inclined plane will be mg sina – μ mg cosa and the acceleration 
a will then be: g(sina – cosa) = a. The second case when mg sina 
= μ mg cosa, the body will remain at rest. The case when μ mg cosa > 
mg sina, interesting situation results. As the under this condition the 
body develops a tendency to move up under the resultant force μ 
mg cosa – mg sina. But as the friction force is a self adjusting force it 
changes (reverses) its direction and acts downwards along with mg sin 
a and then the body reverses the tendency of movement and tries to 
move down and then the frictional force acts upwards. This swinging 
tendency continues and the body will remain in its state of rest.

 7. When a football is kicked by a footballer, it first slide over the ground 
and after sliding through certain length it starts rolling. Find the 
distance the ball must slide before rolling.

  When a ball is kicked with force F say it is resisted by the sliding friction 
which is mmg where µ is the frictional coefficient and m is the mass of the 
ball. Then the initial velocity V will decrease due to friction and let S be the 
distance that the ball has to slide before it assumes a velocity say V1. Then:

   V1
2 = V2 – 2 mmg S.

  And this velocity V1 is such that V1 = Rw, where R is the radius of the 
ball and w is the pure rotational velocity. Then the above equation can 
be written as:

   R2 w2 = V2 – 2 mmgS 
  Then after sliding over a distance S on the ground the ball would start 

pure rotational velocity.
 8. A circular plate is capable of rotating about the axis. A mass m is placed 

over the plane at a distance r from the centre. Find the minimum 
rotational speed of the circular plate that would initiate the sliding 
motion of the mass over the plane.

  The mass will experience centrifugal force due to the rotational motion 
of the circular disc and that would be under equilibrium condition m 
r w2 = fs = mmg the minimum rotational speed would be:
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 w = /g rm .
 9. A particle slides down a smooth curve from a vertical height h which 

is sufficient so that it can make a complete round. Prove if the inside 
radius of the circular path is r then 2h is greater than 5r.

   P.E. at the vertical height h is mgh and the kinetic energy at the bottom 

is say 21
2

mv  and mgh = 21
2

mv  and then 2v gh= .

  Again the forces acting on the point vertically up the circular path will 
be :

  Weight of the particle and the centrifugal force

   mg = 
2

2. .mu i e u gr
r

= . 

Now, P. E. at h = K. E. at vertically down the circular path = P. E. + K. E. 
at vertical top point on the circular path i.e.

  21 2
2

mgh mu mg r= + ×  and the condition of the body to make just one 

complete round on the vertical circular path

 mgh > 21 2
2

mu mgr+

  2 gh > u2 + 4 gr
  2 gh > gr + 4 gr
 ∴  2 h > 5r.

 10. A cylindrical steel drum of diameter 20 cm rotates about its axis 
which is vertical. A small steel body can be kept stuck i.e. in unmoved 
state on the inner wall of the cylinder if the cylinder rotates with 200 
revolutions per minute and falls if the revolution decreases. Find the 
coefficient of friction of the inner wall.

  When the rotational speed is w and it is sufficient to keep the body of 
mass m stuck on the inner wall of the cylinder, then the normal reaction 
on the wall of the cylinder 

  N = mw2r and mN = mg, ∴ m = 2
mg mg
N mw r

=

  Putting g = 980 cm/s2, w = 
2002 /
60

rad sp × p  and r = 10 cm we get

   m = 0.223.
 11. A small body starts sliding off the top of a smooth sphere of radius 

r. Find the angle corresponding to the point at which the body losses 
contact with the sphere. Find also the break off velocity of the body.
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Let the line joining the body of mass m and the centre makes an angle q 
with the vertical when it gets detached from the surface of the sphere and 
the break off velocity is v then the component of the weight of the particle 
towards the centre will be mg cosq and the centrifugal force on the particle 

at that point is 
2mv

r
, the force tangential responsible for downward sliding 

will be mg sinq. The potential energy of the particle mass m at the vertically 
up point on the spherical surface will be mg and at the point of having 
detachment mg – mg cosq = mg(1 – cosq). From the principle of conservation 
of energy we get: 

 1
2

mv2 = mg r(1 – cosq) i.e. v2 = 2 gt(1 – cosq) and equating the force 

towards the centre mg cosq with the centrifugal force we get:

 mg cosq = 
2 (1 cos )m gr

r
− q

 and  cosq = 
2
3

  

Again the break off velocity will be: 

v2 = 2 gr(1 – cosq) = 2gr 2 21
3 3

gr − = 
 

∴ v = 
2
3

gr
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  12. A bob of mass m hangs from a string. It is released from a position 
where it is displaced at angle 90° from vertical and released. Now, 
where the sting would snap if it can withstand the tension equal to 
only the double of the weight of the bob.

  Let the string snaps when the bob descended from the vertical height 
to a position making an angle q with the vertical. If u is the velocity of 
the bob at that point then the tension T is given by:

  T = mg cosq + 
2mu

l
 where l is the length of the string.

  P.E. at the vertical top position = P. E. + K.E of the bob at the position 
concerned.

  Then mgl = mgx + 21
2

mu , where x is the vertical distance of the bob 

from bottom position and this x is given by : l – l cosq and then:  u2 = 
2gl – 2g(1 – cosq)l and thus, 

  T = mg cosq + m
l

 × 2gl (1 – 1 cosq) = 3 mg cosq. 

  The maximum tension that the string can with stand is 2 mg and so 
  The string not be snapped 

  Tmax
 = 2 mg ≥ T i.e. 2 mg ≥ 3 mg cosq i.e. cosq 

2 .
3

≤
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