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Abstract
Leaving behind 14 years of chaotic life in Brazil, I went to Switzerland

with my family in August 1990. We spent a year and a half in Zurich,
where I worked at the Federal Institute of Technology Zurich (ETHZ)
with Prof. James L. Massey and interacted with his doctoral students
and other members of the unit called Institut für Signal- und Informa-
tionsverarbeitung (ISI). Back in Brazil, this interaction continued and
led to some joint work.

Since my return to Brazil I have been teaching error-correcting codes,
information theory, and cryptography at the Federal University of
Pernambuco.

This book serves as an introductory text to algebraic coding theory.
The contents are suitable for final year undergraduate and first year
graduate courses in electrical and computer engineering, and will give the
reader knowledge of coding fundamentals that is essential for a deeper
understanding of state-of-the-art coding systems. This book will also
serve as a quick reference for those who need it for specific applications,
like in cryptography and communications. Eleven chapters cover linear
error-correcting block codes from elementary principles, going through
cyclic codes and then covering some finite field algebra, Goppa codes,
algebraic decoding algorithms, and applications in public-key cryptog-
raphy and secret-key cryptography. At the end of each chapter a sec-
tion containing problems and solutions is included. Three appendices
cover the Gilbert bound and some related derivations, a derivation of
the MacWilliams’ identities based on the probability of undetected er-
ror, and two important tools for algebraic decoding, namely, the finite
field Fourier transform and the Euclidean algorithm for polynomials.

Keywords
codes, BCH codes, Goppa codes, decoding, majority logic decoding,

time domain decoding, frequency domain decoding, Finite fields, poly-
nomial factorization, error-correcting codes, algebraic codes, cyclic.
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Chapter 1

BASIC CONCEPTS

1.1 Introduction
Reliable data transmission at higher data rates, has always been a con-

stant challenge for both engineers and researchers in the field of telecom-
munications. Error-correcting codes (Lin and Costello Jr. 2004), have
without doubt contributed in a significant way for the theoretical and
technological advances in this area. Problems related to storage and
recovery of large amounts of data in semiconductor memories (Chen
and Hsiao 1984), have also been benefited from error-correcting coding
techniques.

Another important aspect related to both data transmission and data
storage concerns data security and data authenticity. However, security
and authenticity belong to the study of cryptology (Konheim 1981) and
will not be considered by us in this book. Transmission reliability, re-
ferred to earlier, concerns only the immunity of the transmitted data to
noise and other types of interference, ignoring the possibility of message
interception by a third party.

Frequently in the context of digital communications, we face problems
of detection and correction of errors caused by noise during transmission,
or that have affected stored data. Situations of this kind occur, for
example, in a banking data transmission network where, ideally, errors
should never occur.

Digital communication systems keep changing their appearance as far
as circuits and components are concerned, as a consequence of changes in
technology. For example, old communication systems evolved from the
electromechanical relay to thermionic valves, later to transistors, and so
on. Even so a closer look at such systems reveals that all of them can
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be represented by a block diagram as shown in Figure 1.1, the blocks of
which are defined as follows.

Source: The originator of information to be transmitted or stored.
As examples of information sources we mention the output of a com-
puter terminal, the output of a microphone or the output of a re-
mote sensor in a telemetry system. The source is often modeled as a
stochastic process or as a random data generator.

SOURCE
SOURCE

ENCODER
MODULATOR

CHANNEL

ENCODER

NOISY

CHANNEL

TRANSMITTER

SINKDEMODULATOR
SOURCE

DECODER

CHANNEL

DECODER

RECEIVER

Figure 1.1. Digital communication system.

Transmitter: A transmitter converts the source output into wave-
forms appropriate for transmission or storage. The role of a trans-
mitter can be subdivided as follows:

(1) Source encoder: Very often a source encoder consists of just
an analog to digital converter. For more sophisticated applica-
tions, a source encoder may perform the task of removing unnec-
essary detail from the data as, for example, in image processing.

(2) Channel encoder: A channel encoder adds controlled redun-
dancy to the data at the output of the source encoder to combat
channel noise.

(3) Modulator: A modulator translates the channel encoder out-
put to a waveform appropriate for transmission or storage.

Channel: A channel in practice is the physical media through which
information passes before reaching the receiver. A channel may con-
sist for example of a pair of wires, a microwave radio link, etc. Data
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traveling through the channel is subjected to noise in the form of
undesirable disturbances which are, in certain ways, unpredictable.
As a result of corruption by channel noise part of the information
may be lost or severely mutilated. To predict or to measure the per-
formance in a communication system it is necessary to characterize
the channel noise mathematically by means of tools from statistics.
In other words, it is necessary to mathematically model the channel.

Receiver: The role of a receiver in a communication system is to
process the noisy channel output, aiming to detect the transmitted
waveform and recover the transmitted data. The receiver part is
normally the most complex part of a communication system and can
be subdivided as follows:

(1) Demodulator: The demodulator processes the waveform re-
ceived from the channel and delivers either a discrete (i.e., a
quantized) output or a continuous (i.e., an unquantized) output
to the channel decoder.

(2) Channel decoder: By operating on the demodulator output
and applying decoding techniques the channel decoder attempts
correction of possible errors and erasures before delivering its es-
timate of the corresponding source encoder output digits. The
correction of errors is usually more complex than the correction
of erasures since the positions of the latter are known to the
decoder.

(3) Source decoder: A source decoder processes the channel de-
coder output, replacing redundancy removed earlier at the source
encoder, and thus reconstituting the message to be delivered to
the data sink.

Sink: A sink is the final recipient of the information transmitted. A
sink can be, for example, a human being at the end of a telephone
line, or a computer terminal.

1.2 Types of errors
Due to the presence of noise, as mentioned earlier, errors may occur

during transmission or storage of data. These errors can occur sporad-
ically and independently, in which case they are referred to as random
errors, or else errors can appear in bursts of many errors each time it
occurs, and are called burst errors, in which case the channel is said to
have a memory.
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1.3 Channel models
As mentioned earlier data traveling through the channel is corrupted

by noise. Ideally the receiver should be able to process a continuous
signal received from the channel. This situation is modeled by a channel
with a discrete input and a continuous output. For practical reasons very
often the receiver output needs to be quantized into a finite number of
levels, typically 8 or 16 levels, which situation is modeled by a discrete
channel. Two typical discrete channel models are the binary symmetric
channel (BSC) and the binary erasure channel (BEC) (Peterson and
Weldon Jr. 1972, pp.7–10). The BSC and the BEC somehow model two
extreme situations, since each binary digit at the BSC output is either
correct or assumes its complementary value (i.e., is in error), while the
BEC outputs are either correct binary digits or are erased digits.

1.4 Linear codes and non-linear codes
Linear error-correcting codes are those codes for which the parity-

check digits in a codeword result from a linear combination involving
information digits. For nonlinear codes, on the other hand, parity-check
digits may result from nonlinear logical operations on the information
digits of a codeword, or else result from nonlinear mappings over a given
finite field or finite ring, of linear codes over a finite field or finite ring
of higher dimension (Hammons Jr. et al. 1994).

In the sequel only linear codes will be addressed due to their practical
importance and also for concentrating, essentially in all publications, on
error-correcting codes.

1.5 Block codes and convolutional codes
Depending on how the digits of redundancy are appended to the digits

of information, two different types of codes result. Codes for which
redundancy in a block of digits checks the occurrence of errors only in
that particular block are called block codes. Codes where the redundancy
in a block checks the presence or absence of errors in more than one block
are called convolutional codes. Convolutional codes are a special case of
tree codes (Peterson and Weldon Jr. 1972, p.5) which are important in
practice but are not the subject of this book. Block and convolutional
codes are competitive in many practical situations. The final choice of
one depends on the factors such as data format, delay in decoding, and
system complexity necessary to achieve a given error rate, etc.

No matter how well designed it is, any communication system is al-
ways disturbed by the action of noise, i.e., messages in its output can
contain errors. In some situations it is possible that a long time will pass
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without the occurrence of errors, but eventually some errors are likely
to happen. However, the practical problem in coding theory is not the
provision of error-free communications but the design of systems that
have an error rate sufficiently low for the user. For example, an error
rate of 10−4 for the letters of a book is perfectly acceptable while that
same error rate for the digits of a computer operating electronic funds
transfer would be disastrous.

The maximum potential of error-correcting codes was established in
1948, with the Shannon coding theorem for a noisy channel. This theo-
rem can be stated as follows.

Theorem. For any memoryless channel, whose input is a discrete
alphabet, there are codes with information rate R (nats/symbol), with
codewords of length n digits, for which the probability of decoding er-
ror employing maximum likelihood is bounded by Pe < e−nE(R), where
E(R) > 0, 0 ≤ R < C, is a decreasing convex-∪ function, specified
by the channel transition probabilities and C is the channel capacity
(Viterbi and Omura 1979, p.138).

The coding theorem proves the existence of codes that can make the
probability of erroneous decoding very small, but gives no indication of
how to construct such codes. However, we observe that Pe decreases
exponentially when n is increased, which usually entails an increase in
system complexity.

The goals of coding theory are basically:

Finding long and efficient codes.

Finding practical methods for encoding and efficient decoding.

Recent developments in digital hardware technology have made the
use of sophisticated coding procedures possible, and the corresponding
circuits can be rather complex. The current availability of complex pro-
cessors makes the advantages derived from the use of codes become even
more accessible.

1.6 Problems with solutions
(1) Suppose a source produces eight equally likely messages which are

encoded into eight distinct codewords as 0000000, 1110100, 1101001,
1010011, 0100111, 1001110, 0011101, 0111010. The codewords are
transmitted through a BSC with probability of error p, p < 1/2.
Calculate the probability that an error pattern will not be detected
at the receiver.

Solution: An error pattern will not be detected if the received word
coincides with a codeword. For the set of codewords given, notice
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that the modulo 2 bit by bit addition of any two codewords produces
a valid codeword. Therefore, we conclude that if an error pattern
coincides with a codeword it will not be detected at the receiver.
The probability of undetected error is thus: (1− p)7 + 7p4(1− p)3.

(2) The set of codewords in the previous problem allows the correction of
a single error in a BSC. Calculate the block error rate after decoding
is performed on a received word.

Solution: The probability of error in a word after decoding, denoted
as PB , is equal to the probability of occurring i errors, 2 ≤ i ≤ 7.
Instead of computing PB with the expression

∑7
i=2 p

i(1 − p)7−i, it
is simpler to compute PB = 1− (1− p)7 − 7p(1− p)6.



Chapter 2

BLOCK CODES

2.1 Introduction
Block codes can be easily characterized by their encoding process. The

process of encoding for these codes consists in segmenting the message
to be transmitted in blocks of k digits and appending to each block
n − k redundant digits. These n − k redundant digits are determined
from the k-digit message and are intended for just detecting errors, or
for detection and correction of errors, or correcting erasures which may
appear during transmission.

Block codes may be linear or nonlinear. In linear codes, as mentioned
in Chapter 1, the redundant digits are calculated as linear combinations
of information digits. Linear block codes represent undoubtedly the
most well-developed part of the theory of error-correcting codes. One
could say that this is in part due to the use of mathematical tools such as
linear algebra and the theory of finite fields, or Galois fields. Due to their
importance in practice, in what follows we mostly consider binary linear
block codes, unless indicated otherwise. In general, the code alphabet
is q-ary, where q denotes a power of a prime. Obviously for binary
codes we have q = 2. A q-ary (n, k, d) linear block code is defined as
follows.

Definition 2.1 A q-ary (n, k, d) linear block code is a set of qk q-ary
n-tuples, called codewords, where any two distinct codewords differ in at
least d positions, and the set of qk codewords forms a subspace of the
vector space of all qn q-ary n-tuples.

The code rate R, or code efficiency, is defined as R = k/n.
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2.2 Matrix representation
The codewords can be represented by vectors with n components. The

components of these vectors are generally elements of a finite field with q
elements, represented by GF(q), also called a Galois field. Very often we
use the binary field, the elements of which are represented by 0 and 1,
i.e., GF(2). As already mentioned, a linear code constitutes a subspace
and thus any codeword can be represented by a linear combination of
the basis vectors of the subspace, i.e., by a linear combination of linearly
independent vectors. The basis vectors can be written as rows of a
matrix, called the code generator matrix (Lin and Costello Jr. 2004,
p.67).

Given a generator matrix G of a linear code with k rows and n
columns, we can form another matrix H, with n−k rows and n columns,
such that the row space of G is orthogonal to H, that is, if vi is a vector
in the row space of G then

viH
T = 0, 0 ≤ i ≤ 2k − 1.

The H matrix is called the code parity-check matrix and can be repre-
sented as

H = [h : In−k],

where h denotes an (n− k)× k matrix and In−k is the (n− k)× (n− k)
identity matrix. It is shown, e.g., in (p.69), that the G matrix can be
written as

G = [Ik : g], (2.1)

where g denotes a k × (n − k) matrix and Ik denotes the k × k iden-
tity matrix. The form of G in (2.1) is called the reduced echelon form
(Peterson and Weldon Jr. 1972, p.45–46). The g and h matrices are
related by the expression g = hT. Since the rows of H are linearly
independent, they generate a (n, n − k, d′) linear code called the dual
code of the (n, k, d) code generated by G. The code (n, n− k, d′) can be
considered as the dual space of the (n, k, d) code generated by G.

Making use of the matrix representation, we find that an encoder has
the function of performing the product mG of a row matrix m, with k
elements which represent the information digits, by the G matrix. The
result of such an operation is a linear combination of the rows of G and
thus a codeword.

2.3 Minimum distance
The ability of simply detecting errors, or error detection and error

correction of a code is directly linked to a quantity, defined later, that



Block Codes 9

is its minimum distance. Before doing that however we define Hamming
weight of a vector and the Hamming distance between two vectors.

Definition 2.2 The Hamming weight WH(v) of a vector v is the num-
ber of nonzero coordinates in v.

Definition 2.3 The Hamming distance dH(v1,v2) between two vec-
tors, v1 and v2, having the same number of coordinates, is the number
of positions is which these two vectors differ.

We observe that the Hamming distance is a metric (p.17).

Definition 2.4 The minimum distance of a code is the smallest Ham-
ming distance between pairs of distinct codewords.

Denote by q = pm the cardinality of the code alphabet, where p
is a prime number and m is a positive integer. Due to the linearity
property, the modulo-q sum of any two codewords of a linear code results
in a codeword. Suppose that vi,vj and vl are codewords such that
vi + vj = vl. From the definitions of Hamming distance and Hamming
weight it follows that dH(vi,vj) = WH(vl). Hence we conclude that,
to determine the minimum distance of a linear code means to find the
minimum nonzero Hamming weight among the codewords. This last
remark brings a great simplification to computing the minimum distance
of a linear code because if the code has M codewords, instead of making
C2
M operations of addition modulo-q and the corresponding Hamming

weight calculation, it is sufficient to calculate the Hamming weight of
the M − 1 nonzero codewords only. In special situations where the
code, besides linearity, has an additional mathematical structure, the
determination of the minimum distance, or the determination of upper
or lower bounds for the minimum distance can be further simplified.

In a code with minimum distance d, the minimum number of changes
necessary to convert a codeword into another codeword is at least d.
Therefore, the occurrence of up to d − 1 errors per codeword during
a transmission can be detected, because the result is an n-tuple that
does not belong to the code. Regarding error correction it is important
to note that after detecting the occurrence of these, we must decide
which codeword is more likely to have been transmitted. Assuming that
the codewords are equiprobable, we decide for the codeword nearest (in
terms of Hamming distance) to the received n-tuple. Obviously this
decision will be correct as long as an error pattern containing up to t
errors per codeword occurs, satisfying the relation 2t+ 1 ≤ d.
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2.4 Error syndrome and decoding
Suppose a codeword v of a linear code with generator matrix G and

parity-check matrix H is transmitted through a noisy channel. The sig-
nal associated with v arriving at the receiver is processed to produce an
n-tuple r defined over the code alphabet. The n-tuple r may differ from
v due to the noise added during transmission. The task of the decoder is
to recover v from r. The first step in decoding is to check whether r is a
codeword. This process can be represented by the following expression:

rHT = s,

where s denotes a vector with n − k components, called syndrome. If
s = 0, i.e., a vector having the n − k components equal to zero, we
assume that no errors occurred, and thus r = v. However if s �= 0, r
does not match a codeword in the row space of G, and the decoder uses
this error syndrome for detection, or for detection and correction. The
received n-tuple r can be written as

r = v + e,

where + denotes componentwise addition and e is defined over the code
alphabet, denoting an n-tuple representing the error pattern.

The decoding process involves a decision about which codeword was
transmitted. Considering a binary code, a systematic way to implement
the decision process is to distribute the 2n n-tuples into 2k disjoint sets,
each set having cardinality 2n−k, so that each one of them contains
only one codeword. Thus the decoding is done correctly if the received
n-tuple r is in the subset of the transmitted codeword. We now describe
one way of doing this. The 2n binary n-tuples are separated into cosets
as follows. The 2k codewords are written in one row then, below the
all-zero codeword, put an n-tuple e1 which is not present in the first
row. Form the second row by adding modulo-2 to e1 the elements of the
first row, as illustrated next.

0 v1 v2 · · · v2k−1

e1 e1 ⊕ v1 e1 ⊕ v2 · · · e1 ⊕ v2k−1,

where ⊕ denotes modulo-2 addition of corresponding coordinates. Sub-
sequent rows are formed similarly, and each new row begins with an
element not previously used. In this manner, we obtain the array in
Table 2.1, which is called standard array. The standard array rows are
called cosets and the leftmost element in each coset is called a coset
leader. The procedure used to construct the given linear code standard
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Table 2.1. Standard array decomposition of an n-dimensional vector space over
GF(2) using a block length n binary linear code having 2k codewords.

0 v1 v2 · · · v2k−1

e1 e1 ⊕ v1 e1 ⊕ v2 · · · e1 ⊕ v2k−1

e2 e2 ⊕ v2 e2 ⊕ v2 · · · e2 ⊕ v2k−1
...

...
... · · · ...

e2n−k−1 e2n−k−1 ⊕ v1 e2n−k−1 ⊕ v2 · · · e2n−k−1 ⊕ v2k−1

array is called the coset decomposition of the vector space of n-tuples
over GF(q).

To use the standard array it is necessary to find the row, and therefore,
the associated leader, to which the incoming n-tuple belongs. This is
usually not easy to implement because 2n−k can be large, so that the
concept of the standard array is most useful as a way to understand the
structure of linear codes, rather than a practical decoding algorithm.
Methods potentially practical for decoding linear codes are presented
next.

2.4.1 Maximum likelihood decoding
If the codewords of a (n, k, d) code are selected independently and all

have the same probability of being sent through a channel, an optimum
way (in a sense we will explain shortly) to decode them is as follows.
On receiving an n-tuple r, the decoder compares it with all possible
codewords. In the binary case, this means comparing r with 2k distinct
n-tuples that make up the code. The codeword nearest to r in terms
of the Hamming distance is selected, i.e., we choose the codeword that
differs from r in the least number of positions. This chosen codeword is
supposedly the transmitted codeword. Unfortunately, the time necessary
to decode a received n-tuple may become prohibitively long even for
moderate values of k. It should be noted that the decoder must compare
r with 2k codewords, for a time interval corresponding to the duration of
n channel digits. This fact makes this process of decoding inappropriate
in many practical cases. A similar conclusion holds if one chooses to
trade search time by a parallel decoder implementation, due to high
decoder complexity.

Let v denote a codeword and let P (r|v) denote the probability of r
being received when v is the transmitted codeword. If all codewords have
the same probability of being transmitted then the probability P (v, r)
of the pair (v, r) occurring is maximized when we select that v which
maximizes P (r|v), known in statistics as the likelihood function.
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2.4.2 Decoding by systematic search
A general procedure for decoding linear block codes consists of asso-

ciating each nonzero syndrome with one correctable error pattern. One
of the properties of the standard array is that all n-tuples belonging to
the same coset have the same syndrome. Furthermore, each coset leader
should be chosen as the most likely error pattern in the respective coset.
Based in these standard array properties, it is possible to apply the
following procedure for decoding:

(1) Calculate the syndrome for the received n-tuple.

(2) By systematic search, find the pattern of correctable errors, i.e., the
coset leader, associated with the syndrome of the received n-tuple.

(3) Subtract from the received n-tuple the error pattern found in the
previous step, to perform error-correction.

To implement this procedure it is necessary to generate successively all
configurations of correctable errors and feed them into a combinational
circuit, which gives as output the corresponding syndromes. Using a
logic gate with multiple entries, we can detect when the locally generated
syndrome coincides with the syndrome of the received n-tuple. If this
(n, k, d) code corrects t errors per block then the number of distinct
configurations of correctable errors that are necessary to generate by
this systematic search process is given by

C1
n + C2

n + · · ·+ Ct
n =

t∑
i=1

Ci
n ≤ 2n−k − 1. (2.2)

It is easy to observe in (2.2) that the number of distinct configurations
grows rapidly with n and t. For this reason, this decoding technique is
of limited applicability.

2.4.3 Probabilistic decoding
In recent years, various decoding algorithms of a probabilistic nature,

which in principle can operate on unquantized coordinate values of the
received n-tuple have appeared in the literature. For practical reasons
channel output quantization is employed. If the code used is binary and
the number of channel output quantization levels is 2 then the decoding
technique is called hard-decision, otherwise it is called a soft-decision
decoding technique. A probabilistic decoding algorithm was introduced
(Hartmann and Rudolph 1976) which is optimal in the sense that it
minimizes the probability of error per digit, when the codewords are
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equiprobable and are transmitted in the presence of additive noise in
a memoryless channel. This algorithm is exhaustive such that every
codeword of the dual code is used in the decoding process. This feature
makes it practical for use with high rate codes, contrary to what happens
with most conventional techniques. Another decoding algorithm was
introduced (Wolf 1978) which is a rule to walk in a trellis-type structure,
and depends on the code H matrix. The received n-tuple is used to
determine the most probable path in the trellis, i.e., the transmitted
codeword. Trellis decoders for block codes for practical applications are
addressed in (Honary and Markarian 1998).

2.5 Simple codes
In this section, we present some codes of relatively simple structure,

which will allow the readers to understand more sophisticated coding
mechanisms in future.

2.5.1 Repetition codes
A repetition code is characterized by the following parameters: k =

1, n − k = c ≥ 1 and n = k + c = 1 + c. Because k = 1, this code
has only two codewords, one is a sequence of n zeros and the other is
a sequence of n 1’s. The parity-check digits are all identical and are a
repetition of the information digit. A simple decoding rule in this case is
to declare the information digit transmitted as the one that most often
occurs in the received word. This will always be possible when n is odd.
If n is even, and there is a tie in the count of occurrence of 0’s and 1’s, we
simply detect the occurrence of errors. The minimum distance of these
codes is d = n and their efficiency (or code rate) is R = 1/n. Obviously
any pattern with t ≤ �n/2	 errors is correctable.

2.5.2 Single parity-check codes
As the heading indicates, these codes have a single redundant digit per

codeword. This redundant digit is calculated so as to make the number
of 1’s in the codeword even. That is, we count the number of 1’s in
the information section and if the result is odd the parity-check digit is
made equal to 1, otherwise it is made equal to 0. The parameters of these
codes are: k ≥ 1, n− k = 1, i.e., n = k+1. The Hamming distance and
efficiency of these codes are, respectively, d = 2 and R = k/n = k/(k+1).

The rule used for decoding single parity-check codes is to count the
number of 1’s in the received word. If the resulting count is even,
the block received is assumed to be free of errors and is delivered to
the recipient. Otherwise, the received block contains errors and the
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recipient is then notified of the fact. These codes, while allowing only to
detect an odd number of errors, are effective when used in systems that
operate with a return channel to request retransmission of messages, or
when decoded with soft-decision.

2.5.3 Hamming codes
Hamming codes were the first nontrivial codes proposed for correcting

errors (Hamming 1950). These codes are linear and have a minimum dis-
tance equal to 3, i.e., are capable of correcting one error per codeword.
They have block length n ≤ 2n−k − 1, where n− k is the number of re-
dundant digits. This condition on n ensures the availability of sufficient
redundancy to verify the occurrence of an error in a codeword, because
the number of nonzero syndromes, 2n−k − 1, is always greater than or
equal to the number of positions where an error can be.

Example 2.5 We next consider the construction of the code (7, 4, 3)
Hamming code. However, the ideas described here are easily generalized
to any (n, k, 3) Hamming code. The number of parity-check digits of the
(7, 4, 3) code is n − k = 7 − 4 = 3. Consider now the non-null binary
numbers that can be written with n− k = 3 binary digits. That is,

0 0 1 c1
0 1 0 c2
0 1 1 k1
1 0 0 c3
1 0 1 k2
1 1 0 k3
1 1 1 k4.

Hamming associated the numbers of the form 2j , j = 0, 1, 2, . . . with
parity-check positions. Other positions were associated with information
digits, as indicated in the given list. Now, looking downward at the
columns in the list, the parity-check equations denoted as ci, 1 ≤ i ≤ 3,
are written as modulo-2 sums of information positions where a 1 appears
in the particular column considered. That is,

c1 = k1 ⊕ k2 ⊕ k4

c2 = k1 ⊕ k3 ⊕ k4

c3 = k2 ⊕ k3 ⊕ k4.

Upon receiving a word, the decoder recalculates the parity-check digits
and adds them modulo-2 to their corresponding parity-check digits in the
received word to obtain the syndrome. If, for example, an error has hit
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the digit k3 the syndrome digits in positions c2 and c3 will be 1 and will
indicate failure, while in position c1 no failure is indicated because c1
does not check k3. The situation is represented as:

(c3, c2, c1) = (1, 1, 0),

which corresponds to the row for k3 on the list considered. The error has
thus been located and can then be corrected. Obviously, this procedure can
be applied to any value of n.

Hamming codes are special in the sense that no other class of nontrivial
codes can be so easily decoded and also because they are perfect, as
defined next.

Definition 2.6 An (n, k, d) error-correcting code over GF(q), which
corrects t errors, is defined as perfect if and only if

t∑
i=0

(q − 1)iCi
n = qn−k.

With the exception of Hamming codes, the binary (23, 12, 7) Golay code
and the (11, 6, 5) ternary Golay code, there are no other nontrivial lin-
ear perfect codes (Pless 1982, p.20). Nonlinear single error-correcting
codes, with parameters identical to Hamming codes, were introduced in
(Vasil’ev 1962).

2.6 Low-density parity-check codes
In 1993, the coding community was surprised with the discovery of

turbo codes (Berrou, Glavieux, and Thitimajshima 1993), more than
40 years after Shannon’s capacity theorem (Shannon 1948), referred
to by many as Shannon’s promised land. Turbo codes were the first
capacity approaching practical codes. Not long after the discovery of
turbo codes, their strongest competitors called low-density parity-check
(LDPC) codes were rediscovered (MacKay and Neal 1996). LDPC codes
have proved to perform better than turbo codes in many applications.

LDPC codes are linear block codes discovered by Gallager in 1960
(Gallager 1963), which have a decoding complexity that increases lin-
early with the block length. At the time of their discovery there was
neither computational means for their implementation in practice nor
to perform computer simulations. Some 20 years later a graphical repre-
sentation of LDPC codes was introduced (Tanner 1981) which paved the
way to their rediscovery, accompanied by further theoretical advances.
It was shown that long LDPC codes with iterative decoding achieve a
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performance, in terms of error rate, very close to the Shannon capacity
(MacKay and Neal 1996). LDPC codes have the following advantages
with respect to turbo codes.

LDPC codes do not require a long interleaver in order to achieve low
error rates.

LDPC codes achieve lower block error rates and their error floor
occurs at lower bit error rates, for a decoder complexity comparable
to that of turbo codes.

LDPC codes are defined by their parity-check matrix H. Let ρ and γ
denote positive integers, where ρ is small in comparison with the code
block length and γ is small in comparison with the number of rows in H.

Definition 2.7 A binary LDPC code is defined as the set of codewords
that satisfy a parity-check matrix H, where H has ρ 1’s per row and γ
1’s per column. The number of 1’s in common between any two columns
in H, denoted by λ, is at most 1, i.e., λ ≤ 1.

After their rediscovery by MacKay and Neal (1996) a number of good
LDPC codes were constructed by computer search, which meant that
such codes lacked in mathematical structure and consequently had more
complex encoding than naturally systematic LDPC codes. The con-
struction of systematic algebraic LDPC codes based on finite geometries
was introduced in (Kou, Lin, and Fossorier 2001).

2.7 Problems with solutions
(1) Consider the vectors v1 = (0, 1, 0, 0, 2) and v2 = (1, 1, 0, 3, 2). Com-

pute their respective Hamming weights, WH(v1) and WH(v2), and
the Hamming distance dH(v1,v2).

Solution: The Hamming weights of v1 and v2 are, respectively,
WH(v1) = 2 and WH(v2) = 4 and the Hamming distance between
v1 and v2 is dH(v1,v2) = 2.

(2) If d is an odd number, show that by adding an overall parity-check
digit to the codewords of a binary (n, k, d) code, a (n + 1, k, d + 1)
code results.

Solution: The minimum nonzero weight of a linear code is equal
to d, which in this problem is an odd number. Extending this binary
code by appending an overall parity-check digit to each codeword
will make the weight of every codeword an even number and thus
the minimum nonzero weight will become d + 1. Therefore, the
minimum distance of the extended code is d+ 1.



Block Codes 17

(3) Consider the (7, 3, 4) binary linear code having the following expres-
sions for computing the redundant digits, also called parity-check
digits.

c1 = k1 ⊕ k2, c2 = k2 ⊕ k3,
c3 = k1 ⊕ k3, c4 = k1 ⊕ k2 ⊕ k3.

Each block containing three information digits is encoded into a
seven digit codeword. Determine the set of codewords for this code.

Solution: Employing the given parity-check equations, the follow-
ing set of codewords results:

MESSAGES CODEWORDS⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1
k1 k2 k3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⇒

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 1 0 1 1 1
0 1 0 1 1 0 1
0 1 1 1 0 1 0
1 0 0 1 0 1 1
1 0 1 1 1 0 0
1 1 0 0 1 1 0
1 1 1 0 0 0 1
k1 k2 k3 c1 c2 c3 c4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(4) Write the generator matrix and the parity-check matrix for the code
in Problem 3, both in reduced echelon form.

Solution:

G =

⎡
⎢⎢⎣

1 0 0 1 0 1 1
0 1 0 1 1 0 1
0 0 1 0 1 1 1
k1 k2 k3 c1 c2 c3 c4

⎤
⎥⎥⎦ .

Therefore, it follows that

g =

⎡
⎣ 1 0 1 1

1 1 0 1
0 1 1 1

⎤
⎦, h = gT =

⎡
⎢⎢⎣

1 1 0
0 1 1
1 0 1
1 1 1

⎤
⎥⎥⎦ .

The code parity-check matrix H takes the following form:

H =

⎡
⎢⎢⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 0 1
k1 k2 k3 c1 c2 c3 c4

⎤
⎥⎥⎥⎥⎦ .





Chapter 3

CYCLIC CODES

Among the codes in the class of block codes cyclic codes are the most
important from the point of view of practical engineering applications
(Clark and Cain 1981, p.333). Cyclic codes are used in communication
protocols (A, Györfi, and Massey 1992), in music CDs, in magnetic
recording (Immink 1994), etc. This is due to their structure being based
on discrete mathematics, which allows a considerable simplification in
the implementation of encoders and decoders. The formal treatment
of cyclic codes is done in terms of polynomial rings, with polynomial
coefficients belonging to a Galois field GF(q), modulo xn − 1, where n
denotes the block length (Berlekamp 1968, p.119). However, a simple
way to define cyclic codes is as follows.

Definition 3.1 A block code is called a cyclic code whenever a cyclic
shift, applied to any of its codewords, produces a codeword in the same
code, i.e., if v = (v0, v1, v2, . . . , vn−1) is a codeword then

vi = (vn−i, vn−i+1, . . . , v0, v1, . . . , vn−i−1)

obtained by shifting v cyclically by i places to the right, is also a codeword
in the same code, considering the indices in v reduced modulo n.

An n-tuple v can be represented by a polynomial of degree at most n−1
as follows:

v(x) = v0 + v1x+ v2x
2 + · · · + vn−1x

n−1.

Using properties of finite fields it can be shown that all the codewords
of a (n, k, d) cyclic code are multiples of a well-defined polynomial g(x),
of degree n − k, and conversely that all polynomials of degree at most
n − 1 which are divisible by g(x) are codewords of this code (Lin and
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Costello Jr. 2004, p.140). The polynomial g(x) is called the code gener-
ator polynomial and is a factor of xn − 1.

3.1 Matrix representation of a cyclic code
As we mentioned earlier, each codeword of a cyclic code is a multiple

of the code generator polynomial g(x). In this manner, it follows that
the polynomials g(x), xg(x), x2g(x), . . . , xk−1g(x) are codewords. We
also note that such codewords in particular are linearly independent,
and thus can be used to construct a generator matrix G for the cyclic
code which has g(x) as its generator polynomial, as shown next.

G =

⎡
⎢⎢⎢⎢⎢⎣

xk−1g(x)
...

x2g(x)
xg(x)
g(x)

⎤
⎥⎥⎥⎥⎥⎦ ,

where we assume that each row of G contains n elements, consisting of
the coefficients of the corresponding row polynomial and the remaining
empty positions are filled with zeros. For encoding purposes, the cyclic
shift property of cyclic codes allows a sequential implementation of the
G matrix which is presented next.

3.2 Encoder with n − k shift-register stages
This encoding procedure is based on the property that each codeword

in a cyclic code is a multiple of the code generator polynomial g(x). The
k information digits can be represented by a polynomial I(x), of degree
at most k − 1. Multiplying the polynomial I(x) by xn−k we obtain
I(x)xn−k, which is a polynomial of degree at most n− 1 which does not
contain nonzero terms of degree lower than n−k. Dividing I(x)xn−k by
g(x) we obtain:

I(x)xn−k = Q(x)g(x) +R(x),

where Q(x) and R(x) are, respectively, the quotient polynomial and the
remainder polynomial. R(x) has degree lower than g(x), i.e., R(x) has
degree at most n−k−1. If R(x) is subtracted from I(x)xn−k, the result
is a multiple of g(x), i.e., the result is a codeword. R(x) represents the
parity-check digits and has got no terms overlapping with I(x)xn−k, as
follows from our earlier considerations. The operations involved can be
implemented with the circuit illustrated in Figure 3.1.

Let g(x) = xn−k + gn−k−1x
n−k−1 + · · · + g1x+ 1. The circuit in Fig-

ure 3.1 employs n − k stages of a shift-register and pre-multiplies the
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Figure 3.1. Encoder with n− k shift-register stages for a binary cyclic code.

information polynomial I(x) by xn−k. A switch associated with the co-
efficient gi, i ∈ {1, 2, . . . , n−k−1}, is closed if gi = 1, otherwise it is left
open. Initially the shift-register contents are 0s. Switch S1 is closed and
switch S2 stays in position 1. The information digits are then simultane-
ously sent to the output and into the division circuit. After transmitting
k information digits, the remainder, i.e., the parity-check digits, are the
contents in the shift-register. Then, switch S1 is open and switch S2 is
thrown to position 2. During the next n−k clock pulses the parity-check
digits are transmitted. This procedure is repeated for all subsequent
k-digit information blocks. Another sequential encoding procedure ex-
ists for cyclic codes based on the polynomial h(x) = (xn−1)/g(x), which
employs k stages of shift-register. We chose not to present this proce-
dure here, however, it can be easily found in the coding literature, for
example, in the references (Clark and Cain 1981, p.73) and (Lin and
Costello Jr. 2004, p.148). In the sequel we present a few classes of codes
which benefit from the cyclic structure of their codewords.

3.3 Cyclic Hamming codes
The Hamming codes seen in Chapter 2 have a cyclic representation.

Cyclic Hamming codes have a primitive polynomial p(x) of degree m
(Peterson and Weldon Jr. 1972, p.161) as their generator polynomial,
and have the following parameters:

n = 2m − 1, k = 2m −m− 1, d = 3.

Cyclic Hamming codes are easily decodable by a Megitt decoder, or by an
error-trapping decoder, which are described later. Due to the fact that
Hamming codes are perfect codes (see Definition 2.6), very often they
appear in the literature in most varied applications, as for example their
codewords being used as protocol sequences for the collision channel
without feedback (Rocha Jr. 1993).
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3.4 Maximum-length-sequence codes
The maximum period possible for a q-ary sequence generated by a

shift-register of m stages, employing linear feedback, is qm − 1. We now
look at binary maximum-length-sequence (m-sequence) codes, i.e., we
consider q = 2. The m-sequence codes are cyclic, are dual codes of
Hamming codes, and have the following parameters:

n = 2m − 1, k = m, d = 2m−1, for m ≥ 2.

The generator polynomial of an m-sequence code has the form g(x) =
(xn − 1)/p(x), where p(x) denotes a degree m primitive polynomial.
The dictionary of an m-sequence code has an all-zeros codeword, and n
nonzero codewords which result from n cyclic shifts of a nonzero code-
word. It follows that all nonzero codewords have the same Hamming
weight. The m-sequence codes are also called equidistant codes or sim-
plex codes. The m-sequence codes are completely orthogonalizable in
one-step (Massey 1963) and as a consequence they are easily decodable
by majority logic. The nonzero codewords of an m-sequence code have
many applications, including direct sequence spread spectrum, radar and
location techniques.

3.5 Bose–Chaudhuri–Hocquenghem codes
Bose–Chaudhuri–Hocquenghem codes (BCH codes) were discovered

independently and described in (Hocquenghem 1959) and (Bose and
Ray–Chaudhuri 1960). The BCH codes are cyclic codes and represent
one of the most important classes of block codes having algebraic decod-
ing algorithms. For any two given positive integers m, t there is a BCH
code with the following parameters:

n = qm − 1, n− k ≤ mt, d ≥ 2t+ 1.

The BCH codes can be seen as a generalization of Hamming codes,
capable of correcting multiple errors in a codeword. One convenient
manner of defining BCH codes is by specifying the roots of the generator
polynomial.

Definition 3.2 A primitive BCH code over GF(q), capable of correct-
ing t errors, having block length n = qm−1, has as roots of its generator
polynomial g(x), αh0 , αh0+1, . . . , αh0+2t−1, for any integer h0, where
α denotes a primitive element of GF(qm).

It follows that the generator polynomial g(x) of a BCH code can be
written as the least common multiple (LCM) of the minimal polynomials
mi(x) (Berlekamp 1968, p.101), as explained next.

g(x) = LCM{m0(x),m1(x), . . . ,m2t−1(x)},
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where mi(x) denotes the minimal polynomial of αh0+i, 0 ≤ i ≤ 2t − 1.
When α is not a primitive element GF(qm) the resulting codes are called
nonprimitive BCH codes. It follows that the respective block length is
given by the multiplicative order of α. BCH codes with h0 = 1 are
called narrow sense BCH codes. An alternative definition for BCH
codes can be given in terms of the finite field Fourier transform (see
Appendix C) of the generator polynomial g(x) (Blahut 1983, p.207).
The roots αh0+i, 0 ≤ i ≤ 2t− 1, of g(x) correspond to the zero compo-
nents in the spectrum G(z), in positions h0 + i, 0 ≤ i ≤ 2t− 1.

Definition 3.3 A primitive BCH code over GF(q), capable of correct-
ing t errors, having block length n = qm − 1, is the set of all code-
words over GF(q) whose spectrum is zero in 2t consecutive components
h0 + i, 0 ≤ i ≤ 2t− 1.

The 2t consecutive roots of g(x) or, equivalently, the 2t null spectral
components of G(z) guarantee a minimum distance δ = 2t + 1, called
the designed distance of the code, as shown next in a theorem known as
the BCH bound theorem.

Theorem 3.4 Let n be a divisor of qm−1, for some positive integer m.
If any nonzero vector v in GF(q)n has a vector spectrum V with d − 1
consecutive null components, Vj = 0, j = h0, h0+1, . . . , h0 + d− 2, then
v has at least d nonzero components.

Proof: Let us suppose by hypothesis that v = {vi}, 0 ≤ i ≤ n − 1,
has a, a < d, nonzero components in positions i1, i2, . . . , ia and that
the finite field Fourier transform of v is identically zero in positions
h0, h0 + 1, . . . , h0 + d − 2. We now define a frequency domain vector
such that its inverse finite field Fourier transform has a zero whenever
vi �= 0. One convenient choice for such a vector is based on the locator
polynomial L(z) as follows:

L(z) =

a∏
k=1

(1− zαik) = Laz
a + La−1z

a−1 + · · ·+ L1 + L0. (3.1)

It follows that the spectral vector L, associated with L(z), is such that
its inverse finite field Fourier transform l = {li}, 0 ≤ i ≤ n−1, has li = 0
precisely for all i such that vi �= 0, i.e., li = 0 whenever vi �= 0. It now
follows that, in the time domain, we have livi = 0, 0 ≤ i ≤ n − 1, and
consequently the corresponding finite field Fourier transform is all-zero:

n−1∑
k=0

LkVj−k = 0, (3.2)
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i.e., the cyclic convolution in the frequency domain is zero. However
L(z) has degree at most d − 1 and L0 = 1 in (3.1), thus (3.2) can be
written as:

Vj = −
d−1∑
k=1

LkVj−k. (3.3)

Expression (3.3) shows how to generate the Vj ’s from a block of d − 1
known Vj ’s. However, by hypothesis, there is a block of d − 1 all-zero
Vj ’s in positions h0, h0 + 1, . . . , h0 + d− 2. If such a block is used as an
initial condition then all subsequent Vj’s will be zero, and the vector v
will be all-zero. Thus, any nonzero vector, with a spectrum having d−1
consecutive null components, must necessarily have at least d nonzero
components.

3.6 Reed–Solomon codes
Reed–Solomon (RS) codes (Blahut 1983, p.174) are nonbinary BCH

codes, with m = h0 = 1, defined by the parameters:

n = q − 1, n− k = 2t, d = 2t+ 1.

Given an element α primitive in GF(q), the generator polynomial of an
RS code has the following form:

g(x) = (x− α)(x− α2)(x− α3) · · · (x− α2t).

Many practical applications employ binary digits, therefore RS codes
with q = 2r are a natural choice, having each 2r-ary symbol repre-
sented by r binary digits. Since their minimum distance is equal to
n − k + 1, RS codes constitute a class of maximum distance separable
codes (MacWilliams and Sloane 1977, p.323). When mapped to binary,
an RS code defined over GF(2r) becomes a binary code of block length
nr which is capable of correcting both random errors and burst errors,
i.e., it can correct any combination of t erroneous binary r-tuples. Very
often RS codes are employed as outer codes in serial concatenated coding
schemes (Clark and Cain 1981, p.333).

3.7 Golay codes
The Golay codes have the following parameters: n = 23, k = 12, d =

7, with a binary alphabet, and n = 11, k = 6, d = 5, with a ternary
alphabet. The Golay codes are the only existent perfect codes with t > 1
(Lint 1982, p.102).
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3.7.1 The binary (23, 12, 7) Golay code
The (23, 12, 7) binary Golay code can be seen as a non-primitive BCH

code generated as follows. Let α be a primitive element of GF(211)
and notice that 211 − 1 = 89 × 23. Thus, it follows that β = α89 is a
nonprimitive element of order 23. The (23, 12, 7) binary Golay code is
specified by the generator polynomial g(x) having β as a root. The roots
of the minimal polynomial of β are:

β, β2, β4, β8, β16, β9, β18, β13, β3, β6, β12,

where the fact that β23 = 1 has been used. The factoring of x23+1 over
GF(2) produces x23+1 = (x+1)(x11+x10+x6+x5+x4+x2+1)(x11+
x9 + x7 + x6 + x5 + x + 1). Depending on the choice of the primitive
polynomial that generates GF(211), one of the two degree 11 factors of
x23 + 1 will have β, β2, β3 and β4 as the longest string of consecutive
roots while the other degree 11 factor will have β19, β20, β21 and β22 as
the longest string of consecutive roots. Any of these two degree 11 factors
of x23 + 1 can be the code generator polynomial. We notice, however,
that by the BCH bound (Lin and Costello Jr. 2004, p.205) this code
has a designed distance δ = 5, while the code true minimum distance
is 7. The extended (24, 12, 8) binary Golay code is obtained from the
(23, 12, 7) Golay code by appending to each codeword an overall parity-
check digit, i.e., by appending a digit that makes even the total number
of 1’s in a codeword (see Chapter 2, Problem 2).

3.7.2 The ternary (11, 6, 5) Golay code
The (11, 6, 5) ternary Golay code can also be seen as a nonprimitive

BCH code over GF(3). It follows that if β is a primitive element in
GF(35) then (β22)11 = β242 = 1. Therefore, by considering α = β22,
it follows that the powers αi = (β22)i, 0 ≤ i ≤ 10, are the roots
of x11 − 1. The roots of x11 − 1 split into cyclotomic classes as {1},
{α,α3, α9, α5, α4}, {α2, α6, α7, α10, α8}. Furthermore, x11 − 1 factors
into irreducible polynomials over GF(3) as

x11 − 1 = (x− 1)(x5 + x4 + 2x3 + x2 + 2)(x5 + 2x3 + x2 + 2x+ 2),

where the roots of x5 + x4 +2x3 + x2 +2 are {α,α3, α9, α5, α4} and the
roots of x5 + 2x3 + x2 + 2x+ 2 are {α2, α6, α7, α10, α8}.

Let us consider the ternary cyclic (11, 6, 5) Golay code with generator
polynomial g(x) = x5+x4+2x3+x2+2. The set of roots of g(x) contains
a maximum of three consecutive roots, namely α3, α4 and α5, and thus
by the BCH bound it guarantees a minimum Hamming distance of 4
but not 5 as required for a double-error correcting code. We can also
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consider the (11, 6, 5) ternary Golay code generated by x5 + 2x3 + x2 +
2x+2, having α6, α7 and α8 as its longest string of consecutive roots of
the generator polynomial. The extended (12, 6, 6) ternary Golay code is
obtained from the (11, 6, 5) Golay code by appending to each codeword
an overall parity-check digit, i.e., by appending a digit that makes equal
to zero the modulo 3 sum of the digits in a codeword.

3.8 Reed-Muller codes
Reed–Muller (RM) codes are binary codes which are equivalent to

cyclic codes with an overall parity-check digit attached. Prior to defining
RM codes, it is necessary to define the Hadamard product of vectors of
the same length, as the vector whose components are the product of
the corresponding components of the factors. For example, the abc
Hadamard product of vectors a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn)
and c = (c1, c2, . . . , cn) is given by:

abc = (a1b1c1, a2b2c2, . . . , anbncn).

Definition 3.5 Let v0 be the vector having 2m components, all of which
are equal to 1. Let v1,v2, . . . ,vm be vectors forming the rows of a matrix
whose 2m columns are all the distinct binary m-tuples. The RM code of
order r is defined by the generator matrix whose rows are the vectors
v0,v1, . . . ,vm and their respective Hadamard products two at a time,
three at a time, . . ., r at a time. For any positive integer m, the RM
code of order r has the following parameters:

n = 2m, k =

r∑
i=0

Ci
m, d = 2m−r.

The RM codes are a large class of codes but have an error correction
power in general lower than that of BCH codes of equivalent rate. Two
important aspects characterize RM codes. The first is the fact that they
are easily decodable by majority logic and the second is to be a sub-class
of codes constructed from the Euclidean geometry. We will revisit RM
codes with more in-depth detail in Section 11.5.

3.9 Quadratic residue codes
Before defining quadratic residue codes it is necessary to introduce

quadratic residues.

Definition 3.6 An integer r is a quadratic residue of a prime num-
ber p, if and only if there exists an integer s such that s2 ≡ r mod p,
where the abbreviation mod is used to mean modulo.
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It can be shown (MacWilliams and Sloane 1977, p.481) that if n = 8m±1
is a prime number then 2 is a quadratic residue of n. In this case xn+1
can be factored as (x+ 1)Gr(x)Gr(x), where:

Gr(x) =
∏
r∈R0

(x+ αr) and Gr(x) =
∏
r∈R0

(x+ αr),

where α denotes an element of multiplicative order n in an extension
field of GF(2), R0 denotes the set of quadratic residues modulo n and
R0 denotes the set of quadratic non-residues modulo n. The cyclic codes
with generator polynomials Gr(x), (1+x)Gr(x), Gr(x) and (x+1)Gr(x)
are called quadratic residue codes. An efficient way of decoding quadratic
residue codes is by means of permutations (p.513). Permutation decoders
are usually more complex than algebraic BCH decoders. However, the
minimum distance of some quadratic residue codes of moderate length is
greater than the minimum distance of BCH codes of comparable block
length.

3.10 Alternant codes
The class of alternant codes (p.332) is of great importance for includ-

ing, as particular cases, the BCH codes, Goppa codes, Srivastava codes
and Chien-Choy codes. Alternant codes are constructed by a simple
modification of the parity-check matrix of a BCH code. A BCH code of
block length n and designed distance δ over GF(q) has a parity-check
matrix H = [hij ], where hij = αij , 1 ≤ i ≤ δ − 1, 0 ≤ j ≤ n − 1, and
α ∈ GF(qm) is a primitive nth root of unity (p.196). Alternant codes
are obtained by considering hij = xi−1

j yj, where x = (x1, x2, . . . , xn)

is a vector with distinct components, belonging to GF(qm) and y =
(y1, y2, . . . , yn) is a vector with nonzero components, also belonging to
GF(qm). For more detailed information on this subject the reader should
consult Chapter 12 of (MacWilliams and Sloane 1977).

3.11 Problems with solutions
(1) Consider the (2m − 1, 2m − m − 2, 3) binary cyclic Hamming code

generated by p(x), a primitive polynomial of degree m. Show that
this code is capable of correcting any pattern containing at most
two erasures.

Solution: By changing the values of at most two positions in a
codeword of a code with minimum distance 3 cannot produce an-
other codeword. Therefore by trial and error, at most four binary



28 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

Table 3.1. Galois field GF(8) generated by p(x) = x3 + x+ 1.

Exponential form Polynomial form

0 0
1 1
α α
α2 α2

α3 α+ 1
α4 α2 + α
α5 α2 + α+ 1
α6 α2 + 1

patterns need to be tested as replacements for two erasures, which
are corrected in this manner.

(2) Construct a table with the elements of GF(8) expressed as powers
of a primitive element α which is a root of x3 + x+ 1.

Solution: Table 3.1 presents the elements of GF(8) as powers of a
primitive root of the polynomial x3 + x+ 1.

(3) Construct a table with the elements of GF(16) expressed as powers
of a primitive element α which is a root of x4 + x+ 1.

Solution: Table 3.2 presents the elements of GF(16) as powers of
a primitive root of the polynomial x4 + x+ 1.

Table 3.2. Galois field GF(16) generated by p(x) = x4 + x+ 1.

Exponential form Polynomial form

0 0
1 1
α α
α2 α2

α3 α3

α4 α+ 1
α5 α2 + α
α6 α3 + α2

α7 α3 + α+ 1
α8 α2 + 1
α9 α3 + α
α10 α2 + α+ 1
α11 α3 + α2 + α
α12 α3 + α2 + α+ 1
α13 α3 + α2 + 1
α14 α3 + 1
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(4) Let α be a root in GF(8) of the binary primitive polynomial p(x) =
x3 + x+1. Determine the generator polynomial g(x) of an RS code
in GF(8) with minimum distance 5, such that g(α) = 0.

Solution: The generator polynomial g(x) is required to have four
consecutive roots, where α is one of them. Using the roots α,α2, α3

and α4, and using Table 3.1 to simplify the result we obtain g(x) =
x4 + α3x3 + x2 + αx + α3. Verify that α4, α5, α6 and α, although
not all consecutive roots, offer another solution to this problem.

(5) Determine the generator polynomial g(x) of the (15, 5, 7) binary
BCH code, having roots αi, 1 ≤ i ≤ 6.

Solution: Let g(x) = m1(x)m3(x)m5(x) denote the generator poly-
nomial. Using Table 3.2 we obtain m1(x) = x4 + x + 1, m3(x) =
x4+x3+x2+x+1, and m5(x) = x2+x+1. Simplifying, we obtain
g(x) = x10 + x8 + x5 + x4 + x2 + x+ 1.





Chapter 4

DECODING CYCLIC CODES

The decoding procedures for linear block codes are also applicable to
cyclic codes. However, the algebraic properties associated with the cyclic
structure allow important simplifications when implementing a decoder
for a cyclic code, both for calculating the syndrome and for correcting
errors. The syndrome computation consists in dividing by the generator
polynomial g(x) the polynomial representing the word received from the
channel. The remainder of this division is the syndrome, denoted by
s(x). If s(x) = 0, the received word is accepted as being a codeword.
Otherwise, i.e., if s(x) �= 0, we declare that errors have occurred. In this
manner, it is clear that a circuit to detect errors with a cyclic code is
rather simple. The problem of locating error positions in a received word
for correction is a different matter and in general requires more elaborate
techniques to be implemented in practice. So far, the most important
algebraic decoding techniques for cyclic codes are those based on the
Berlekamp–Massey algorithm (Massey 1969) and on the Euclidean al-
gorithm (MacWilliams and Sloane 1977, pp.362–365), (Clark and Cain
1981, pp.216–218). In the sequel, we give a brief presentation of the more
relevant decoding procedures for cyclic codes.

4.1 Meggitt decoder
The Meggitt decoding algorithm (Lin and Costello Jr. 2004, p.156)

consists in employing a circuit to identify those syndromes that corre-
spond to error patterns containing an error in the highest order position
of the received word, i.e., an error at position xn−1. Thus, when this
digit is being delivered to the sink it can be altered or not, depending
on the decision determined by the circuit that identifies errors in that
position. If we cyclically shift the received word, digit by digit with a
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shift-register, all the digits in this word will necessarily occupy position
xn−1 after a certain number of shifts, and will be examined by the cir-
cuit that identifies errors in that position. The decision for choosing
the Meggitt decoder depends on the complexity of the circuit that iden-
tifies errors at position xn−1 of the received word. A straightforward
way of implementing a Meggitt decoder is by the use of programmable
memories.

4.2 Error-trapping decoder
The decoding algorithm known as error trapping (Lin and Costello Jr.

2004, p.166) operates by cyclically shifting, bit by bit, the syndrome of
the received word, and observing its Hamming weight at each step. If a
syndrome of Hamming weight at most t (number of correctable errors) is
detected, then the corresponding length n−k segment of the error vector,
containing all the errors, coincides with this shifted syndrome. Once
the error pattern is identified, or trapped, error correction is immediate.
However, a situation may occur where, after n cyclic shifts, the syndrome
Hamming weight was never t or less. In this case the decoder declares the
occurrence of an error pattern that spreads over a length of cyclically
consecutive positions greater than n − k. This decoding procedure is
more appropriate for use with low rate codes, since for a code with
block length n, having k information digits and capable of correcting t
errors per block, the efficient application of error trapping requires the
condition

n/k = 1/R > t

to be satisfied.

4.3 Information set decoding
In a linear (n, k, d) code any set of k positions, that can be indepen-

dently specified in a codeword, constitutes an information set (Clark and
Cain 1981, p.102). As a consequence, the symbols in an information set
define a codeword. If an information set in a received n-tuple contains no
errors then it is possible to reconstitute the transmitted codeword. The
decoding algorithm based on information sets consists of the following
steps:

(1) Construct several information sets for the given code.

(2) Form various estimates of the transmitted codeword, by decoding
the received word using each of the information sets obtained in the
previous step.
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(3) Compare the received word with the estimates obtained in the pre-
vious step and decide for the codeword nearest to the received word.

4.4 Threshold decoding
Threshold decoding (Massey 1963) is also known as majority logic de-

coding. A great number of applications of this technique is concentrated
on cyclic codes. Before describing threshold decoding, it is necessary to
introduce the concept of parity-check sums or simply parity sums. As we
have seen earlier, the syndrome is represented by a vector having n−k co-
ordinates, s = (s0, s1, . . . , sn−k−1), where, for a given (n, k, d) linear code
with parity-check matrix H = [hij ] and an error vector (e0, e1, . . . , en−1)
we have the relation:

s = eHT ,

where each syndrome component sj, 0 ≤ j ≤ n− k − 1, is given by

sj =

n−1∑
i=0

eihij . (4.1)

The linear combination of syndrome digits

A =
n−k−1∑
i=0

aisi,

where ai is either 0 or 1, with the help of (4.1) can be written as

A =

n−1∑
i=0

biei, (4.2)

where bi is either 1 or 0. An error in position ei is said to be checked
by A if the corresponding coefficient bi in (4.2) is 1. Expression (4.2) is
called a parity-check sum.

Definition 4.1 Given a set of J parity-check sums A1, A2, . . . , AJ ,
such that a position el in the error vector is checked by all of them and
all other positions ei, i �= l, in the error vector are checked at most once,
then this set is said to be orthogonal on position el.

Assuming the occurrence of t ≤ �J/2	 errors in the received word, the
threshold decoding procedure is based on the following reasoning:

(i) el = 1. This means that the remaining t − 1 errors will affect at
most t− 1 ≤ �J/2	 − 1 of the J parity sums, thus leaving at least
J − �J/2	 + 1 = 
J/2� + 1 of the parity sums equal to 1.
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(ii) el = 0. In this case the t errors will affect at most �J/2	 parity
sums, i.e., half of the parity sums in the worst case situation.

The threshold decoding rule consists in making el = 1, i.e., to declare
the presence of an error in this position, whenever the majority of the
parity sums are equal to 1. Otherwise, make el = 0, i.e., in case the
number of parity sums equal to 1 coincides with the number of parity
sums equal to 0, or if the majority of the parity sums are equal to 0.
When the code considered is a cyclic code, after decoding a given position
in a codeword a cyclic shift is applied to that codeword and the same
set of J parity-check sums are used to decode position el−1, and so on
in a similar manner for decoding the remaining codeword positions until
the complete codeword is decoded.

Codes for which J = d−1 are said to be completely orthogonalizable.
However, it is not always possible to obtain directly J parity sums or-
thogonal on a given position of a codeword. For various classes of codes
(Lin and Costello Jr. 2004, p.296) orthogonal parity sums are obtained
in L steps, where at each step one uses parity sums orthogonal on a sum
of codeword positions. This topic of threshold decoding is treated in
greater detail in Chapter 11.

4.5 Algebraic decoding
In general, for a given (n, k, d) code the decoding process has always a

complexity higher than the corresponding encoding process. Thus, from
a practical point of view the best code is chosen subject to a specified
budget. This financial constraint can force the choice of suboptimum
codes, however having a decoder which is amenable to practical imple-
mentation. Fortunately, for some classes of algebraic codes decoding al-
gorithms were developed which are computationally efficient (Berlekamp
1968, p.178). The problem of decoding algebraic codes consists in solv-
ing a system of nonlinear equations, whose direct solution in general is
not obvious.

4.5.1 Berlekamp-Massey time domain decoding
An important algebraic decoding algorithm for BCH codes was pub-

lished in (Berlekamp 1968). Analyzing Berlekamp’s algorithm, Massey
(1969) showed that it provided a general solution to the problem of
synthesizing the shortest linear feedback shift register capable of gener-
ating a prescribed finite sequence of digits. Since then this algorithm is
known as the Berlekamp–Massey (BM) algorithm. The BM algorithm
is widely applicable for decoding algebraic codes, including RS codes
and BCH codes. For binary BCH codes, there is no need to calculate
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Figure 4.1. Flow chart of the Berlekamp–Massey time domain decoding algorithm.

error magnitude values, since in GF(2) it is sufficient to determine the
positions of the errors to perform error correction. For non-binary BCH
codes, including RS codes, both error location and error magnitudes
have to be determined to perform error correction.

Let (n, k, d) denote an algebraic code (BCH or RS) with generator
polynomial g(x) having coefficients in some finite field GF(q) and having
roots α,α2, . . . , α2t. Let c(x) =

∑n−1
i=0 cix

i denote a codeword polyno-

mial, let e(x) =
∑n−1

i=0 eix
i denote the error polynomial with coefficients
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in GF(q) and let r(x) = c(x) + e(x), with addition over GF(q), denote
the received n-tuple in polynomial form. In general, the approach used
for algebraic decoding contains the following steps.

(1) Compute the first 2t coefficients s0, s1, . . . , s2t−1 of the syndrome
polynomial s(x) = s0 + s1x + · · · + s2t−1x

2t−1 + · · · , where s0 =
r(α), s1 = r(α2), . . . , s2t−1 = r(α2t).

(2) Use the sequence s0, s1, . . . , s2t−1 as input to the BM algorithm and
compute the error-locator polynomial σ(x), of degree τ , τ ≤ t, where

σ(x) = 1 + σ1x+ σ2x
2 + · · · + στx

τ .

(3) Find the roots of σ(x), denoted by β1, β2, . . . , βτ , whose multiplica-
tive inverses give the error locations.

(4) Compute the error magnitudes in case of nonbinary codes.

In (Berlekamp 1968, p.220) a procedure was introduced for com-
puting error magnitudes for nonbinary cyclic codes and defined the
polynomial

Z(x) = 1 + (s0 + σ1)x+ (s1 + σ1s0 + σ2)x
2 + · · ·

· · ·+ (sτ−1 + σ1sτ−2 + σ2sτ−3 + · · ·+ στ )x
τ . (4.3)

Error magnitudes at positions β−1
i , 1 ≤ i ≤ τ, are calculated as

ei =
Z(βi)∏τ

j=1,j �=i(1− β−1
j βi)

. (4.4)

The block diagram in Figure 4.1 (Massey 1998) illustrates the steps
for running the BM algorithm, where C(D) plays the role of σ(x). As
a result of this procedure, an estimate of the error pattern that has
minimum Hamming weight and satisfies all the syndrome equations is
obtained. Whether such an estimate will be the true error pattern that
occurred on the channel or not will depend on its Hamming weight τ
in comparison to t. Decoding succeeds whenever the condition τ ≤ t is
satisfied.

4.5.2 Euclidean frequency domain decoding
The decoding procedure known as algebraic decoding in the frequency

domain (Blahut 1983, p.193) is applicable to any cyclic code, being how-
ever more efficient for BCH codes. The received vector r is assumed to
result from the sum v+e over GF(q) of a codeword v and an error vector
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e, i.e., r = v + e. The steps required for using this decoding procedure
are now described.

(1) Fourier transform of the received vector
The Fourier transform R of the received vector r is computed. Due
to linearity R can be expressed as a function of the corresponding
Fourier transforms of v and e, i.e., as R = V +E.

(2) Syndrome calculation

S(z) =
2t−1∑
j=0

Sjz
j ,

Sj = Rj+h0 =
n−1∑
i=0

riα
i(j+h0), j = 0, 1, . . . , 2t− 1.

(3) Error locator polynomial calculation
This step is also known as the solution of the key equation (Clark
and Cain 1981, p.189). The error locator polynomial, L(z), has the
form:

L(z) =

ν−1∑
k=0

Lzz
k =

ν∏
k=1

(1− zαik),

where ν ≤ t and i1, i2, . . . , iν , correspond to the error locations. The
Euclidean algorithm (see Appendix C) is applied with a(z) = z2t and
b(z) = S(z), stopping when the degree of ri(z) becomes less than t.
We take L(z) = gi(z).

(4) Error vector Fourier transform calculation
The error vector e has its Fourier transform denoted by E, which
has the following polynomial representation:

E(z) =

n−1∑
j=0

Ejz
j.

Since the code is assumed to have 2t consecutive roots, it follows
that the coefficients Ej , j = h0, h0 + 1, . . . , h0 + 2t − 1, are known.
The remaining unknown coefficients are calculated by means of the
following recursive formula:

n−1∑
k=0

LkEj−k = 0,
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which can be slightly simplified to

Ej =
ν−1∑
k=0

LkEj−k,

because L0 = 1 and L(z) has degree ν − 1 ≤ t− 1.

(5) Error correction
The error vector is obtained as the inverse Fourier transform of
vector E, obtained in step 4. Finally, the estimated transmitted
codeword is given by

v = r− e.

4.6 Soft-decision decoding
Probabilistic decoding algorithms (see Section 2.4.3) are used in soft-

decision decoding. A soft-decision decoder employs received symbol re-
liability information supplied by the demodulator when deciding which
codeword was transmitted. Typically soft-decision decoding leads to a
gain of at least 2.0 dB with respect to hard-decision decoding.

4.6.1 Decoding LDPC codes
Efficient decoding of LDPC codes relies on the sum-product algorithm

(SPA) (Moreira and Farrell 2006, p.282), which is a symbol-by-symbol
soft-in soft-out iterative decoding algorithm. The received symbols are
fed to the decoder which employs iterations based on the code parity-
check matrix H to improve the reliability of the decoded symbols. After
each iteration the available symbol reliability values are used to make
hard decisions and to output a decoded binary n-tuple z. If zHT = 0
then z is a codeword and decoding stops. If zHT �= 0 then z is not a
codeword and another iteration is performed by the decoder. A stop
condition is defined by specifying a maximum number of decoder itera-
tions. A decoding failure occurs if the maximum number of iterations is
reached and the decoder does not find a codeword.

Let v = (v1, v2, . . . , vi, . . . , vn) denote a codeword and let y denote
a received n-tuple with real valued coordinates. The SPA is imple-
mented by computing the marginal probabilities P (vi|y), for 1 ≤ i ≤ n.
A detailed description of SPA decoding of LDPC codes is available in
(MacKay 1999).
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4.7 Problems with solutions
(1) Consider the binary maximum-length sequence (7, 3, 4) code gener-

ated by g(x) = x4+x3+x2+1. Determine three parity-check sums,
orthogonal on position e6.

Solution: The following three parity-check sums, orthogonal on
position e6, are obtained:

A1 = e6 + e4 + e3
A2 = e6 + e5 + e1
A3 = e6 + e2 + e0.

Since J = 3 = d − 1, we conclude that this code is completely
orthogonalizable in one-step, and by threshold decoding it corrects
one error per codeword.

(2) Consider the binary cyclic (7, 4, 3) Hamming code generated by
g(x) = x3 + x + 1. This code is the dual of the (7, 3, 4) code of
Problem 1 and is threshold decodable in two-steps. Describe a two-
step decoding algorithm for this code, with the help of the code H
matrix.

Solution: We now describe the solution with the help of the code
H matrix.

H =

⎡
⎣ 1 1 1 0 1 0 0

0 1 1 1 0 1 0
1 1 0 1 0 0 1

⎤
⎦ .

Using the H matrix we obtain the following parity sums:

A1 = s2 = e6 + e5 + e4 + e2
A2 = s2 + s1 = e6 + e3 + e2 + e1
A3 = s0 = e6 + e5 + e3 + e0.

Notice that A1 and A2 are orthogonal on the sum e6+e2, and that A1

and A3 are orthogonal on the sum e6+ e5. We now use the sums A1

and A2 to estimate the sum e6 + e2, and use the sums A1 and A3

to estimate e6 + e5. This concludes the first decoding step. We
now use the two estimated sums, denoted by A4 and A5, respec-
tively, i.e.,

A4 = e6 + e2

A5 = e6 + e5,
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which are orthogonal on e6, constitute the second decoding step and
complete the orthogonalization process for this code.

(3) Consider the (15, 7, 5) binary BCH code, with g(x) = m1(x)m3(x) =
(x4+x+1)(x4+x3+x2+x+1) as generator polynomial and decode
the received polynomial r(x) = x+ x9 with the Berlekamp–Massey
algorithm.

Solution: The syndrome coefficients for the received polynomial
r(x) = x+ x9 are calculated with the help of Table 3.2 as

s0 = r(α) = α+ α9 = α3

s1 = r(α2) = α2 + α18 = α6

s2 = r(α3) = α3 + α27 = α10

s3 = r(α4) = α4 + α36 = α12.

Table 4.1 is used to compute the error-locator polynomial with the
BM algorithm for the input sequence s0, s1, s2, s3 = α3, α6, α10, α12.
The polynomial C(D) = 1+α3D+α10D2 is the error-locator poly-
nomial, and since C(D) = σ(x) we write

σ(x) = 1 + α3x+ α10x2,

the roots of which are found by an exhaustive search to be β1 = α6

and β2 = α14. The error positions are the exponents of α in the
representation of β−1

1 and β−1
2 , i.e., β−1

1 = α−6 = α9 and β−1
2 =

α−14 = α. Two errors are thus located, at positions x and x9,
respectively. After the operation of error correction is completed,
the decoded word is the all-zero codeword, i.e., c(x) = 0.

(4) Consider the (7, 5, 3) RS code over GF(8), with generator polynomial
g(x) = (x− α)(x − α2) and decode the received polynomial r(x) =
α2x3 using the Berlekamp–Massey algorithm.

Table 4.1. Evolution of the BM algorithm for the input sequence (s0, s1, s2, s3) =
(α3, α6, α10, α12).

n sn δ T (D) C(D) = σ(X) L C∗(D) δ∗ x

0 α3 α3 − 1 0 1 1 1
1 α6 0 1 1 + α3D 1 1 α3 1
2 α10 α13 1 1 + α3D 1 1 α3 2
3 α12 0 1 + α3D 1 + α3D + α10D2 2 1 + α3D α13 1
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Table 4.2. Evolution of the BM algorithm for the input sequence (s0, s1) = (α5, α).

n sn δ T (D) C(D) = σ(X) L C∗(D) δ∗ x

0 α5 α5 − 1 0 1 1 1
1 α 1 1 1 + α5D 1 1 α5 1

1 + α5D 1 + α3D 1 1 + α5D 1 1

Solution: The syndrome coefficients for the received polynomial
r(x) = α2x3 are calculated with the help of Table 3.1 as

s0 = r(α) = α5

s1 = r(α2) = α8 = α.

Table 4.2 is used to compute the error-location polynomial with the
BM algorithm for the input sequence s0, s1 = α5, α. The polynomial
C(D) = 1+α3D is the error-locator polynomial, and since C(D) =
σ(x) we write

σ(x) = 1 + α3x,

whose root is found by an exhaustive search to be β = α4. The
error position is the exponent of α in the representation of β−1, i.e.,
β−1 = α−4 = α3. Therefore, an error occurring at x3 has been
found, i.e., e(x) = e3x

3. In case of just a single error occurring, the
error magnitude is easily found as follows:

s0 = e(α) = α5 = e3α
3,

and thus e3 = α2. Therefore, e(x) = α2x3 and c(x) = r(x)− e(x) =
0, i.e., the decoded polynomial is the all-zero polynomial. It is clear
that to correct single errors it is not necessary to resort to (4.3) and
(4.4).

(5) Consider the (15, 11, 5) RS code over GF(16), with generator poly-
nomial g(x) = (x − α)(x − α2)(x − α3)(x − α4) and decode the
received polynomial r(x) = α2x+α3x9 with the Berlekamp–Massey
algorithm.

Solution: The syndrome coefficients for the received polynomial
r(x) = α2x+ α3x9 are calculated with the help of Table 3.2 as

s0 = r(α) = α3 + α12 = α10

s1 = r(α2) = α4 + α6 = α12

s2 = r(α3) = α5 + 1 = α10

s3 = r(α4) = α6 + α9 = α5.
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Table 4.3. Evolution of the BM algorithm for the input sequence (s0, s1, s2, s3) =
(α10, α12, α10, α5), where a(x) = 1 + α2D + αD2.

n sn δ T (D) C(D) L C∗(D) δ∗ x

0 α10 α10 − 1 0 1 1 1
1 α12 α14 1 1 + α10D 1 1 α10 1
2 α10 α11 1 + α10D 1 + α2D 1 1 α10 2
3 α5 α2 1 + α2D 1 + α2D + αD2 2 1 + α2D α11 1

a(x) 1 + α3D + α10D2 2 a(x) α11 2

Table 4.3 is used to compute the error-locator polynomial with the
BM algorithm for the input sequence s0, s1, s2, s3 = α10, α12, α10, α5.
The polynomial C(D) = 1+α3D+α10D2 is the error-locator poly-
nomial, and since C(D) = σ(x) we write

σ(x) = 1 + α3x+ α10x2 = (1 + αx)(1 + α9x),

the roots of which are found by an exhaustive search to be β1 = α14

and β2 = α6. The error positions are the exponents of α in the
representation of β−1

1 and β−1
2 , i.e., β−1

1 = α−14 = α and β−1
2 =

α−6 = α9. Two errors are thus located, at positions x and x9,
respectively. The error magnitudes are found with the help of (4.3)
and (4.4) as follows:

Z(x) = 1 + (s0 + σ1)x+ (s1 + σ1s0 + σ2)x
2

= 1 + (α10 + α3)x+ (α12 + α3α10 + α10)x2

= 1 + α12x+ α8x2.

Then

e1 =
Z(β1)

(1 + β−1
2 β1)

=
1 + α12α14 + α8α13

(1 + α9α14)
=

α4

α2
= α2

e2 =
Z(β2)

(1 + β−1
1 β2)

=
1 + α12α6 + α8α12

(1 + αα6)
=

α12

α9
= α3.

The error polynomial is thus α2x + α3x9. After the operation of
error correction is completed, the decoded polynomial is the all-zero
polynomial, i.e., c(x) = 0.

(6) Consider the binary (7, 4, 3) BCH code having α,α2 and α4, as roots
of the generator polynomial, where α denotes a primitive element
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of GF(23). Decode the received word r(x) = x6 + x3 using the
Euclidean frequency domain decoder.

Solution: The received word r(x) in vector form is expressed as

r = (1, 0, 0, 1, 0, 0, 0).

(a) The Fourier transform of r(x).

From r(x) we compute R and obtain

R = (α2, α4, α2, α, α, α4, 0),

where

Rj =

6∑
i=0

riα
ij = α6j + α3j .

(b) Syndrome calculation.

For the syndrome we obtain Sj = Rj+1, j = 0, 1, which gives:

S0 = R1 = α4

S1 = R2 = α,

and therefore,

S(z) = αz + α4.

(c) Error locator calculation.

We find L(z) by means of the Euclidean algorithm (see Ap-
pendix C).

i gi(z) ri(z) qi(z)

−1 0 z2 −
0 1 αz + α4 −
1 α6z + α2 α6 α6z + α2

therefore, L(z) = α6z + α2.

(d) Error vector Fourier transform calculation.

ν−1∑
k=0

LkEj−k = 0

L0Ej + L1Ej−1 = 0.
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We know that Ej = Sj−1, j = 1, 2. It thus follows that E1 = α4

and E2 = α. From L(z) = α6z+α2 we extract L0 = α2 and L1 =
α6, which are then applied to the recursion L0Ej + L1Ej−1 = 0
to produce

Ej = α4Ej−1.

We now use the recursion Ej = α4Ej−1 to compute the remain-
ing unknown values of E and obtain:

E = (α3, α6, α2, α5, α, α4, 1).

(e) Error correction

The inverse Fourier transform of E is the following:

e = (0, 0, 1, 0, 0, 0, 0).

Therefore, we obtain e(x) = x4, and the corrected word is
given by:

v(x) = r(x)− e(x), i.e., v(x) = x6 + x4 + x3.



Chapter 5

IRREDUCIBLE POLYNOMIALS OVER

FINITE FIELDS

5.1 Introduction
The theory of finite fields constitutes a very important tool in many

practical situations. In particular, it is worth mentioning its use in
algebraic coding and cryptography. As we have already seen, the con-
struction of cyclic codes relies on knowledge of irreducible polynomials
over finite fields. Similarly, modern cryptographic systems also rely on
the structure of finite fields, e.g., the Advanced Encryption Standard
(Daemen and Rijmen 2002).

Polynomials are important in the study of the algebraic structure of
finite fields and irreducible polynomials are the prime elements of the
polynomial ring over a finite field. Irreducible polynomials are indispens-
able for constructing finite fields and doing computations with elements
of a finite field. The following treatment assumes the reader has famil-
iarity with some basic properties of finite fields, some of which are now
summarized.

For every prime number p there is a finite field with p elements.

The integers modulo p, together with ordinary addition and multi-
plication, are examples of finite fields.

Let GF(p) denote a finite field with p elements. Given an irreducible
polynomial of degree m over GF(p), a field with pm elements can
always be constructed.

There can be no finite field with a number of elements which is not
a power of a prime number.
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A very important result in finite field theory, which is proven later in
Theorems 5.10 and 5.11, is explained as follows. For all values of a prime
number p and a positive integer m there exists at least one irreducible
polynomial of degree m over GF(p). Also, the fields with pm elements,
constructed with such irreducible polynomials, are the only kind of finite
fields that exist, i.e., they are unique up to an isomorphism. Those
results are established by analyzing how certain polynomials factor over
certain finite fields.

5.2 Order of a polynomial
Lemma 5.1 Let f(x) ∈ GF(q)[x] be a polynomial of degree m ≥ 1 with
f(0) �= 0. Then there exists a positive integer e ≤ qm − 1 such that
f(x)|(xe − 1).

Proof: The residue class ring GF(q)[x]/(f(x)) contains qm−1 nonzero
residue classes, which are obtained from the nonzero remainders modulo
f(x) of polynomials over GF(q)[x]. The qm − 1 residue classes xj +
(f(x)), j = 1, 2, . . . , qm−1, are all nonzero and must be included among
the nonzero residue classes given earlier, so there exist integers r and s
with 0 ≤ r < s ≤ qm − 1 such that xs ≡ xr modulo f(x). Since x
and f(x) are relatively prime, i.e., their greatest common divisor is 1,
denoted by gcd(x, f(x)) = 1, or simply as (x, f(x)) = 1, it follows that
xs−r ≡ 1 modulo f(x), i.e., f(x) divides xs−r−1, and 0 < s−r ≤ qm−1.

Definition 5.2 Let f(x) ∈ GF(q)[x] be a nonzero polynomial. If f(0) �=
0, then the least positive integer e for which f(x) divides xe− 1 is called
the order of f(x).

The order of f(x) is denoted by ord(f) = ord(f(x)). If f(0) = 0, then
f(x) = xhg(x), h ∈ N and g(x) ∈ GF(q)[x], with g(0) �= 0, are uniquely
determined. In this case, the ord(f) = ord(g) by definition. The order
of f(x) is also known as the period of f(x) or the exponent to which
f(x) belongs.

5.3 Factoring xqn − x

Consider a finite field GF(q), q = pm and the polynomial xq
n − x.

Such a polynomial has a unique factorization as a product of irreducible
monic polynomials over GF(q). This result can be expressed in a slightly
different form as given in Theorem 5.4, but first the following lemma is
needed.
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Lemma 5.3 Let α be a primitive element of GF(qd) such that αqs = α.
Any element β ∈ GF(qd) is a root of xq

s − x, as long as s ≥ d.

Proof: Let β ∈ GF(qd) and let ai ∈ GF(q), then β =
∑d−1

i=0 aiα
i →

βqs =
∑d−1

i=0 aq
s

i αiqs =
∑d−1

i=0 aiα
i = β, since αqs = α and aq

s

i = ai. Thus,
any element β ∈ GF(qd) is a root of xq

s − x, as long as s ≥ d.

Theorem 5.4 The polynomial xq
n−x factors over GF(q) as the product∏

d:d|n
Vd(x),

where Vd(x) is the product of all monic irreducible polynomials of degree
d in GF(q)[x], and where d is a divisor of n, i.e.,

xq
n − x =

∏
d:d|n

Vd(x). (5.1)

Proof: First we prove that xq
n − x has no repeated factor, and then

we prove that the degree of every irreducible divisor of xq
n − x is a

divisor of n. To show that xq
n −x has no repeated factor, it is necessary

to calculate the greatest common divisor (gcd) between xq
n − x and

its formal derivative (which is equal to −1) to check whether they are
relatively prime. It follows that gcd(xq

n − x,−1) = 1 and consequently
xq

n − x has no repeated factor. Now let f(x) be a monic irreducible
polynomial of degree d, d|n, over GF(q). Let α be a root of f(x), i.e.,
let f(α) = 0. An extension field GF(qd), constructed with f(x), has qd

elements and thus

αqd = α, (5.2)

which is equivalent to

f(x)|(xqd − x).

However, (xq
d − x)|(xqn − x) if and only if d|n, and it follows that

f(x)|(xqn −x) because, by hypothesis, d|n. Thus, every irreducible poly-
nomial the degree of which divides n is a factor of (xq

n−x). The converse
is proven next by assuming that f(x)|(xqn−x). If the degree of f(x) is d,

(5.2) still holds and so f(x)| gcd
[
(xq

d − x), (xq
n − x)

]
= xq

s − x, s =

gcd(d, n), and since f(α) = 0 then necessarily αqs = α must hold. In
fact, by Lemma 5.3 any element β ∈ GF(qd) is a root of xq

s − x which
can have at most qs solutions, and so s ≥ d. Since s = gcd(n, d), it
follows that s = d. This means that d is a divisor of n.
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Example 5.5 Let q = 2 and n = 3. By Theorem 5.4, x2
3
+ x is the

product of all GF(2)-irreducible polynomials of degree d, d|3, i.e., of
degrees 1 and 3. From a table of irreducible polynomials, e.g., (Peterson
and Weldon Jr. 1972, p.472) it follows that

x8 + x = x(x+ 1)(x3 + x+ 1)(x3 + x2 + 1)

and thus

V1(x) = x2 + x

V3(x) = x6 + x5 + x4 + x3 + x2 + x+ 1.

Comparing the degrees on both sides of (5.1) the following corollary
is obtained.

Corollary 5.6 qn =
∑

d:d|n dId, where Id is the number of distinct
monic irreducible polynomials of degree d.

5.4 Counting monic irreducible q-ary polynomials
The powerful tool of generating functions is now used to obtain an

analytic expression for the unique factorization theorem for polynomials
over a finite field. Let the generating function M(z) be defined as

M(z) =
∑
n≥0

Tnz
n, (5.3)

where Tn denotes the number of monic polynomials of degree n over
GF(q). The proof consists of calculating (5.3) in two distinct ways and
equating the results.
WAY 1: In a general monic polynomial f(x) = xn +

∑n−1
i=0 aix

i, of
degree n over GF(q), there are q distinct choices for each one of the
coefficients ai of x

i, 0 ≤ i ≤ n− 1. Therefore, there are qn such polyno-
mials, i.e., Tn = qn. From (5.3) it follows that

M(z) =
∑
n≥0

qnzn =
1

1− qz
. (5.4)

WAY 2: Over a field every monic polynomial of degree n has a unique
factorization into a product of monic irreducible polynomials. The fol-
lowing generating function (Berlekamp 1968, p.76), called enumerator
by degree is now used to represent the number of powers of a particular
monic irreducible polynomial p(x) of degree d, i.e.,

1 + zd + z2d + · · · = 1

1− zd
.
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The power series 1+zd+z2d+· · · is interpreted as follows. The coefficient
of a term zi, in the series, is equal to 1 if i is a multiple of d, i.e., if
it corresponds to a polynomial of degree i which is a power of p(x),
otherwise the coefficient of zi is made equal to 0. Since for a given d
there are Id irreducible monic polynomials of degree d, the expression

∏
d≥1

(
1

1− zd

)Id

, (5.5)

can be written to represent the number of all monic polynomials which
are products of powers of irreducible monic polynomials. This covers all
possible monic polynomials and thus (5.4) and (5.5) can be equated, i.e.,

1

1− qz
=

∏
d≥1

(
1

1− zd

)Id

. (5.6)

Expression (5.6) represents the unique factorization theorem
analytically.
Alternative proof of Corollary 5.6
Proof: Taking logarithms on both sides in (5.6), then taking the
derivative of both sides, and multiplying both sides by z, it follows that

qz

1− qz
=

∑
d≥1

dId

(
zd

1− zd

)
. (5.7)

However, the right-hand side of (5.7) can be written as

∑
d≥1

dId

(
zd

1− zd

)
=

∑
d≥1

dId
∑
m≥1

zmd =
∑
n≥1

zn
∑
d|n

dId

and since qz/(1 − qz) =
∑

n≥1 q
nzn, Corollary 5.6 results by equating

the coefficients of zn on both sides of (5.7).

5.5 The Moebius inversion technique
By looking at Theorem 5.4 and Corollary 5.6 the following expressions

are worth noticing:

xq
n − x =

∏
d:d|n

Vd(x) (5.8)

qn =
∑
d:d|n

dId. (5.9)
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How can the values of Vd(x) and Id, in (5.8) and (5.9), respectively,
be extracted from their associated expressions? At the present stage,
nothing much better than a brute force computation of these values can
be done. The neat answer to this question is provided by the Moebius
inversion formula, which is investigated next.

5.5.1 The additive Moebius inversion formula
Consider G, an abelian group, with group operation +. Suppose that

a(1), a(2), . . . and b(1), b(2), . . . are two sequences of elements in G which
are related by

a(n) =
∑
d:d|n

b(d), n ≥ 1. (5.10)

It is desired to find a formula to express the b’s as a function of the a’s.
This is called the problem of inverting (5.10). First notice that (5.10)
uniquely determines b(d) as a function of a(n), since b(1) = a(1) for
n = 1, and for n ≥ 1 it follows that

b(n) = a(n)−
∑
d:d|n

b(d), d �= n.

The sequence μ(n), known as the Moebius function, is now defined to be
the inverse of the sequence (1, 0, 0, . . .) and, as shown shortly, this will
prove useful in solving the problem of inverting (5.10), i.e.,

∑
d:d|n

μ(d) =

{
1, if n = 1
0, if n > 1.

(5.11)

Actually, the desired formula is the following:

b(n) =
∑
d:d|n

a(d)μ(n/d). (5.12)

Doing it this way is much easier than starting from scratch (Berlekamp
1968, p.81). Taking this value of b(n) into (5.10) it follows that

a(n) =
∑
d:d|n

b(d) =
∑
d:d|n

∑
e:e|d

a(e)μ(d/e)

=
∑
e:e|n

a(e)
∑

d:e|d|n
μ(d/e) =

∑
e:e|n

a(e)
∑

f |(n/e)
μ(f) = a(n)

by the definition of μ(f), where f = d/e.



Irreducible Polynomials over Finite Fields 51

5.5.1.1 Computation of µ(n)

The computation of μ(n) by using its definition in (5.11) is cumber-
some. A simpler way to compute μ(n) is presented next. Let n =
pe11 pe22 . . . pemm be the factorization of n into distinct prime powers. Then
the following definition of μ(n):

μ(n) =

⎧⎨
⎩

1, if n = 1
(−1)m, if n is the product of m distinct primes

0, if any ei ≥ 2
(5.13)

is next shown to be the same as the definition in (5.11).
Let x1, x2, . . . , xm be indeterminates and let pe11 pe22 . . . pemm be the fac-

torization of n into distinct prime powers. For each d, d|n, d is factored
as a product containing powers of some of the pi’s. x(d) is defined as
the product of xi’s, where the i’s are the same as the subscripts in the
pi’s which divide d, i.e.,

x(d) =
∏
pi|d

xi

with x(1) = 1. Example 5.7 is meant to clarify the definition of x(d).

Example 5.7 Let n = p31p2p
2
3 and consider the following: values of d,

d|n.
(a) d = p1p2p3,

(b) d = p21p2,

(c) d = p31p
2
3,

(d) d = p1p
2
3.

The corresponding values of x(d) are, respectively,

(a) x(p1p2p3) = x1x2x3

(b) x(p21p2) = x1x2

(c) x(p31p
2
3) = x1x3

(d) x(p1p
2
3) = x1x3.

The product
∏m

i=1(1 − xi) is now expanded, and in view of (5.13) it is
observed that

m∏
i=1

(1− xi) =
∑
d:d|n

μ(d)x(d). (5.14)
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Making xi = 1, 1 ≤ i ≤ m, in (5.14) it follows that∑
d:d|n

μ(d) =

{
1, if n = 1
0, if n > 1,

and since this result is in agreement with the definition in (5.11) the
formula given in (5.13) is correct. This is now stated as a theorem.

Theorem 5.8 If a(n) and b(n) are two sequences of elements in a com-
mutative group G, which satisfy the relation given in (5.10) then expres-
sion (5.10) can be inverted to give

b(n) =
∑
d:d|n

a(d)μ(n/d), (5.15)

where the function μ(n) is as given in (5.13).

By making c = n/d in (5.15) an alternative expression is obtained for
the additive Moebius inversion formula, namely

b(n) =
∑
c:c|n

a(n/c)μ(c). (5.16)

Expression (5.15) is called the additive Moebius inversion formula, and
the function μ(n) is called the Moebius function.

5.5.2 The multiplicative Moebius inversion
formula

If the underlying Abelian group operation is multiplication then the
following version of the Moebius inversion formula is appropriate.

Theorem 5.9 If a(n) =
∏

d:d|n b(d) then

b(n) =
∏
d:d|n

a(d)μ(n/d) (5.17)

or
b(n) =

∏
d:d|n

a(n/d)μ(d).

Proof: Taking the value of b(n) into the expression for a(n) it follows
that

a(n) =
∏
d:d|n

b(d) =
∏
d:d|n

∏
e:e|d

a(e)μ(d/e) =
∏
e:e|n

∏
d:e|d|n

a(e)μ(d/e)

=
∏
e:e|n

a(e)
∑

f |(n/e) μ(f) = a(n),

where f = d/e.
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In order to motivate the present study some interesting applications of
(5.15) are presented next, related to some of the questions raised earlier.

5.5.2.1 The Euler totient function

The number of integers in the set {0, 1, 2, . . . , t−1} which are relatively
prime to t is represented by the symbol φ(t). The symbol φ(.) is called
the Euler φ function or the Euler totient function. In number theory,
it is shown that if n is any positive integer, then

∑
d|n φ(d) = n. Next,

Theorem 5.8 is applied to this formula, by identifying b(d) = φ(d) and
a(n) = n. Thus, from (5.16) it follows that

φ(n) =
∑
d:d|n

(n/d)μ(d) = n
∑
d:d|n

μ(d)/d. (5.18)

The formula (5.18) still does not look like a simple way to compute φ(n).
Suppose that n factors into distinct prime powers as

n = pe11 pe22 . . . pemm .

Now applying (5.14) with xi = 1/pi, and noticing that x(d) = 1/d, it
follows that ∑

d:d|n

μ(d)

d
=

m∏
i=1

(1− 1/pi). (5.19)

By combining (5.18) and (5.19) finally it follows that

φ(n) = n

m∏
i=1

(1− 1/pi) =

m∏
i=1

pei−1
i (pi − 1). (5.20)

5.5.3 The number of irreducible polynomials of
degree n over GF(q)

An expression is derived next for calculating the number of irreducible
polynomials of a given degree over a given finite field. From Corol-
lary 5.6, it is known that qn =

∑
d:d|n dId. Let a(n) = qn and let

b(n) = nIn in (5.10). The underlying group is formed by the integers
under ordinary addition. Now, applying (5.16) with these values it fol-
lows that

In =
1

n

∑
d:d|n

μ(d)qn/d. (5.21)

The formula in (5.21) gives the number of irreducible polynomials of
degree n over a finite field with q elements. It is a very important result
in itself and in the conclusions that can be drawn about the existence of



54 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

irreducible polynomials. For example, since the dominant term in (5.21)
is obtained when d = 1, In can be approximated as In ≈ qn/n, for large
n and q fixed. This can be interpreted to mean that, for large n and q
fixed, the probability of randomly choosing an irreducible polynomial of
degree n is about 1/n, because In/q

n ≈ 1/n. In (McEliece 1987, p.66)
the author remarks that, although interesting, that is by no means a
proof of the existence of an irreducible polynomial of any degree.

Theorem 5.10 For a given finite field with q elements, GF(q), for all
n ≥ 1 there exists at least one irreducible polynomial of degree n over
GF(q).

Proof: Notice that I1 = q. Also, since It ≥ 0 for all t, it follows that

qt =
∑
d:d|t

dId = tIt +
∑

d:d|t,d�=t

dId = tIt +
∑

d:d|t,d�=t,d�=1

dId + I1,

where I1 = q, and it follows that

qt ≥ tIt + I1 or qt ≥ tIt + q.

Thus, It ≤ (qt−q)/t, with equality if and only if t is prime. In particular,
I2 = (q2 − q)/2 > 0 and I3 = (q3 − q)/3 > 0. Next, a lower bound on It
is derived. Since qt ≥ tIt, it follows that

t/2∑
i=0

qi >

t/2∑
i=0

iIi ≥
∑

d:d|t,d�=t

dId (5.22)

and thus,

qt =
∑
d:d|t

dId = tIt +
∑

d|t,d�=t

dId < tIt +

t/2∑
i=0

qi < tIt + qt/2+1,

where the first inequality results from (5.22) and the second inequality

results because
∑t/2

i=0 q
i is part of a super increasing sequence (Denning

1982), i.e., each term in the sequence is greater than the sum of the
preceding terms. In this manner, we obtain the inequality

It > (qt − qt/2+1)/t = (1− q−t/2+1)qt/t.

This last expression shows that It > 0 for all t ≥ 2. It has already
been seen that I1 > 0 and I2 > 0, and thus it is concluded that there
exist irreducible monic polynomials of every degree over every finite
field.
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As a consequence of Theorem 5.10 the following important result is
obtained.

Theorem 5.11 If p is any prime number and m is any positive integer,
then there exists a finite field having pm elements.

5.6 Chapter citations
Chapters 3, 4, and 6 of (Berlekamp 1968), Chapters 2, 3, and 4 of

(Lidl and Niederreiter 2006), Chapters 6 and 7 of (McEliece 1987) and
Chapters 3 and 4 of (MacWilliams and Sloane 1977).

5.7 Problems with solutions
(1) Prove that (xq

d − x)|(xqn − x) if and only if d|n.
Solution: Simplifying the given polynomial ratio we obtain

F (x) =
xq

n − x

xqd − x
=

xN − 1

xD − 1
,

where N = qn−1 and D = qd−1. Suppose, with no loss of essential
generality, that N = aD+R, R < D. Then we can express F (x) as

F (x) = xR
(
xaD − 1

xD − 1

)
+

xR − 1

xD − 1
.

We know that xaD − 1 is always divisible by xD − 1 (Prove it!) and
since R < D, xR − 1 is divisible by xD − 1 if and only if R = 0, i.e.,
if and only if D|N . By a similar argument it follows that d|n, i.e.,
(qd − 1)|(qn − 1) if and only if d|n.

(2) Prove that gcd{(xqd −x), (xq
n −x)} = xq

s −x, where s = gcd(n, d).

Solution: We know by Theorem 5.4 that

xq
n − x =

∏
a:a|n

Va(x)

and that
xq

d − x =
∏
b:b|d

Vb(x).

Thus, gcd(xq
n − x, xq

d − x) is the product of all monic irreducible
polynomials whose degrees divide both n and d, i.e., whose degrees
divide gcd(n, d) = s. Again from Theorem 5.4 we know that the
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product of all polynomials whose degrees divide s is equal to xq
s −1.

Thus,

gcd(xq
n − x, xq

d − x) = xq
s − x,

where s = gcd(n, d).

(3) Let n = 6 in (5.14). Expand both sides and verify that they coincide.

Solution: We consider (5.14) as follows:

m∏
i=1

(1− xi) =
∑
d|n

μ(d)x(d),

where x(1) = 1, n = pe11 pe22 . . . pemm and, e.g., x(peii p
ej
j . . . pell ) =

xixj . . . xl.

(a) For n = 6 = 2.3, expanding the left-hand side of (5.14) we
obtain

(1− x1)(1− x2) = 1− x1 − x2 + x1x2.

(b) For n = 6 = 2.3, expanding the right-hand side of (5.14) we
obtain

μ(1)x(1) + μ(2)x(2) + μ(3)x(3) + μ(6)x(6)
= 1.1− 1.x1 − 1.x2 + 1.x1x2,

and, as expected, the results obtained in (a) and (b) coincide.

(4) Verify (5.19) for the particular value n = 12.

Solution: We consider (5.19) as follows:

∑
d|n

μ(d)

d
=

m∏
i=1

(
1− 1

pi

)
,

where n = pe11 pe22 . . . pemm .

a) For n = 12, expanding the left-hand side of (5.19) we obtain

∑
d|12

μ(d)

d
= μ(1) +

μ(2)

2
+

μ(3)

3
+

μ(4)

4
+

μ(6)

6
+

μ(12)

12

= 1− 1

2
− 1

3
+

0

4
+

1

6
+

0

12

= 1− 1

2
− 1

3
+

1

6
.
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b) For n = 12, expanding the right-hand side of (5.19) we obtain

2∏
i=1

(
1− 1

pi

)
=

(
1− 1

2

)(
1− 1

3

)

= 1− 1

2
− 1

3
+

1

6
,

and, as expected, the results obtained in (a) and (b) coincide.

(5) Obtain the enumerators by degree for each of the following subsets
of monic polynomials over GF(q):

(a) Perfect squares.

(b) Perfect cubes.

(c) Products of all distinct irreducible factors.

Solution:

(a) Perfect squares: By squaring a monic polynomial of degree k we
obtain a perfect square of degree 2k. Therefore, the number of
perfect squares of degree 2k coincides with the number of monic
polynomials of degree k, i.e., qk. The total number of distinct
perfect squares is written in terms of the enumerator by degree
(see Section 5.4) as

∞∑
k=0

qkz2k =

∞∑
k=0

(qz2)k =
1

1− qz2
.

(b) Perfect cubes: Following a reasoning analogous to the one in the
listed in (a) we obtain

∞∑
k=0

qkz3k =
∞∑
k=0

(qz3)k =
1

1− qz3
.

(c) Products of all distinct irreducible factors: Assuming q = 2, for
k = 1 we can easily check that x and x+1 are the only degree one
distinct irreducible polynomials. For k = 2 we obtain x(x + 1)
and x2 + x+ 1. For k = 3 we obtain x(x2 + x+ 1), (x+ 1)(x2 +
x+1), x3 + x2 +1, and x3 + x+1. For k ≥ 2 we can check that
2k−1 distinct irreducible factors result. In general, over GF(q)
we have the following expression:

∞∑
k=0

qkzk −
∞∑
k=2

qk−1zk, (5.23)
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which denotes the total number of monic polynomials minus the
number of polynomials which contain at least one factor with
multiplicity 2 or greater. Alternately, (5.23) can be written as

∞∑
k=0

qkzk − qz2
∞∑
j=0

qjzj =
1

1− qz
− qz2

1− qz
=

1− qz2

1− qz
.

(6) Let g(x) be an irreducible polynomial with nonzero derivative g′(x).
Show that g(x) is a repeated factor of the polynomial f(x) if and only
if g(x) divides gcd(f(x), f ′(x)) where f ′(x) is the formal derivative
of f(x).

REMARK (Berlekamp 1968, p.75), (Castagnoli, Massey,
and Schoeller 1991): In a finite field or in a field of characteristic
zero, every irreducible polynomial has a nonzero derivative, how-
ever, in certain infinite fields with prime characteristic there exist
irreducible polynomials the derivative of which is zero.

Solution: Let g(x) be an irreducible factor of f(x), i.e., let f(x) =
g(x)h(x). The formal derivative of f(x) produces

f ′(x) = g′(x)h(x) + g(x)h′(x).

If g(x) divides f ′(x) then it must divide g′(x)h(x). However,
deg g′(x) < deg g(x) and g(x) does not divide g′(x), thus g(x) di-
vides h(x). Therefore g(x) is a repeated factor of f(x) if and only if
it is a factor of both f(x) and f ′(x), or, in other words, if it divides
gcd(f(x), f ′(x)).

(7) Show that
∑

d:d2|n μ(d) = |μ(n)|.
Solution:

(a) Let n be a prime. Then μ(n) = −1 and
∑

d:d2|n μ(d) = μ(1) = 1.

So,
∑

d:d2|n μ(d) = |μ(n)| in this case.

(b) Let n be a product of non-repeated primes. Then μ(n) =
(−1)m if n = p1p2 . . . pm and

∑
d:d2|n μ(d) = μ(1) = 1, thus,∑

d:d2|n μ(d) = |μ(n)|.
(c) The general case.

Let pe11 pe22 . . . pemm be the prime factor decomposition of n. Now,
we have∑

d:d2|n
μ(d) = μ(1) + μ(pl1) + μ(pl2) + · · ·+ μ(pls) +

μ(pl1pl2) + μ(pl1pl3) + · · ·+ μ(pls−1pls) +

· · ·+ μ(pl1 . . . pls−1pls),



Irreducible Polynomials over Finite Fields 59

where each plj , 1 ≤ j ≤ s, contains at least one factor peii with
ei ≥ 2, for 1 ≤ i ≤ m. It thus follows that

∑
d:d2|n μ(d) =

μ(1) = 1 since all the remaining terms in the sum will be zero.
The result is thus true in general.

(8) Evaluate the sum
∑

d|n |μ(d)|.
Solution: Let m be the number of distinct prime factors of n.
Consider the relation

m∏
i=1

(1− xi) =
∑
d:d|n

μ(d)x(d) = μ(1) + μ(p1)x1 + μ(p2)x2 +

+ · · ·+ μ(p1p2 . . . pm)x1x2 . . . xm (5.24)

obtained from (5.14), and make xi = −1 for all i. It now follows
that

2m =
∑
d:d|n

|μ(d)|

because any nonzero term in (5.24) becomes positive, e.g.,

μ(p1p2 . . . ps)x1x2 . . . xs = (−1)s(−1)s = (−1)2s = 1,

for xi = −1, 1 ≤ i ≤ s, and there are 2m such terms.

(9) Show that the generating function A(x) =
∑

i=0 Aix
i has a multi-

plicative inverse, denoted by B(x) such that A(x)B(x) = 1, if and
only if A0 �= 0. Hint : Equate coefficients of the same degree on both
sides of A(x)B(x) = 1.

Solution:

A(x) =
∞∑
i=0

Aix
i.

If A0 �= 0 we can write

A(x)

A0
= 1 +

∞∑
i=1

(
Ai

A0

)
xi

and

A0

A(x)
=

1

1 +
∑∞

i=1

(
Ai
A0

)
xi

=
∞∑
j=0

[
−

∞∑
i=1

(
Ai

A0

)
xi

]j

.
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Thus

B(x) =
1

A(x)
=

1

A0

∞∑
j=0

[
−

∞∑
i=1

(
Ai

A0

)
xi

]j

is defined if and only if A0 �= 0.



Chapter 6

FINITE FIELD FACTORIZATION OF

POLYNOMIALS

6.1 Introduction
The development and design of many practical applications involving

digital sequences require the factorization of polynomials. In particular,
a cyclic code or a similar mathematical structure requires the factoriza-
tion of xn − 1 as a product of irreducible polynomials with roots in a
finite field, where n denotes a positive integer. The global positioning
system (Parkinson and Spilker Jr. 1996, pp.114–118) and digital video
broadcast (Alencar 2009, pp.89–93) are just two examples where the
factorization of polynomials in finite fields is employed.

Let again the factorization derived in Theorem 5.4 be considered, i.e.,

xq
n − x =

∏
d:d|n

Vd(x). (6.1)

In (6.1) Vd(x) denotes the product of all monic irreducible polynomials
of degree d, over GF(q), such that d|n. We want to extract Vd(x) in
(6.1) and to do that the multiplicative Moebius inversion technique will
be employed over the Abelian group formed by the set of rational func-
tions with ordinary multiplication as the group operation. By the set of
rational functions over GF(q) is meant the set

{p(x)/q(x), p(x) ∈ GF(q)[x], q(x) ∈ GF(q)[x], p(x) �= 0, q(x) �= 0}.

The multiplicative Moebius inversion formula (5.17) is represented as

b(n) =
∏
d:d|n

[a(d)]μ(n/d), (6.2)
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equation where

[a(d)]0 = a0(d) = 1 is the group identity,
[a(d)]+1 = a+1(d) = a(d)

[a(d)]−1 = a−1(d) = the multiplicative inverse of a(d).

Expressions (6.1) and (6.2) are combined by making b(n) ⇐ Vn(x) and

a(d) ⇐ xq
d − x, and the result is the following:

Vn(x) =
∏
d:d|n

(xq
d − x)μ(n/d). (6.3)

Example 6.1 Let q = 2 and let n = 10 in (6.3). It follows that

V10(x) =
∏
d:d|10

(x2
d − x)μ(10/d)

= (x2 − x)μ(10)(x4 − x)μ(5)(x32 − x)μ(2)(x1024 − x)μ(1)

=
(x2 − x)(x1024 − x)

(x4 − x)(x32 − x)
=

(x− 1)(x1023 − 1)

(x3 − 1)(x31 − 1)
,

i.e., V10(x) is a polynomial of degree 990 which is not yet known explic-
itly. Since 990/10 = 99, it follows from Theorem 5.4 that V10(x) is the
product of 99 monic irreducible polynomials of degree 10 over GF(2).
For the moment that is as far as one can go, concerning the factoriza-
tion of V10(x). To proceed with this factorization more theory needs to
be introduced.

6.2 Cyclotomic polynomials
Consider GF(q) a finite field of characteristic p. Let n be a positive

integer, gcd(n, p) = 1, and let ζ be a primitive nth root of unity, i.e.,
ζu �= 1, 1 ≤ u < n and ζn = 1. Over GF(q), the following factorization
results

xn − 1 =

n−1∏
u=0

(x− ζu). (6.4)

It is remarked that the order of ζu depends on gcd(n, u) and that, for
every divisor d of n, there are φ(d) powers of ζ that have order d.

Definition 6.2 The dth cyclotomic polynomial Φd(x) is the monic poly-
nomial of degree φ(d) which has as its roots those powers of ζ which have
order d, d|n, where ζ is a primitive nth root of unity over GF(q), i.e.,

Φd(x) =

n−1∏
u=0

(x− ζu), gcd(n, u) = n/d. (6.5)
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By combining (6.4) and (6.5) it follows that

xn − 1 =
∏
d:d|n

Φd(x). (6.6)

By applying the Moebius inversion formula to (6.6), with b(n) ⇐ Φn(x)
and a(d) ⇐ xd − 1, it follows that

Φn(x) =
∏
d:d|n

(xd − 1)μ(n/d). (6.7)

By expanding the right-hand side of (6.7) a quotient of two monic poly-
nomials is obtained, where the numerator is the product of those (xd−1)
for which μ(n/d) = 1 and where the denominator is the product of those
(xd − 1) for which μ(n/d) = −1. Notice that Φn(x) in (6.7) has integer
coefficients, despite the appearance of GF(q) elements in Definition 6.2,
because (6.7) is the quotient of two polynomials where the numera-
tor has integer coefficients and the denominator is monic with integer
coefficients.

Example 6.3 Compute Φ12(x).

Solution: By (6.7) it follows that

Φ12(x) =
(x12 − 1)(x2 − 1)

(x6 − 1)(x4 − 1)
. (6.8)

By performing the operations indicated on the right-hand side of (6.8) a
degree 4 polynomial results. However, it was noticed (Berlekamp 1968,
p.95) that, since degΦd(x) = φ(d), the operations needed to obtain Φn(x)
may be simplified by reducing polynomials modulo xt, t = φ(n)+1. Thus
it follows that

Φ12(x) =
(−1)(x2 − 1)

(−1)(x4 − 1)
mod x5

=
(x2 − 1)(x4 + 1)

(x4 − 1)(x4 + 1)
≡ x4 − x2 + 1 mod x5

i.e., Φ12(x) = x4 − x2 + 1. This result follows because the denominator
is a unit in the ring of polynomials modulo xt.

We also notice that

Φn(0) =

{ −1, n = 1
1, n > 1.
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It is remarked that the factorization in (6.6) is true over any field since
the coefficients of Φd(x) are integers. Over a field of characteristic p the
coefficients of Φd(x) are the integers modulo p, i.e., the coefficients are
the elements of the prime field GF(p).

Returning to Example 6.3, each binomial factor xd−1 can be written
as an expression containing only cyclotomic polynomials, i.e.,

V10(x) =
(x− 1)(x1023 − 1)

(x3 − 1)(x31 − 1)
=

Φ1Φ1Φ3Φ11Φ31Φ33Φ93Φ341Φ1023

Φ1Φ3Φ1Φ31

= Φ11Φ33Φ93Φ341Φ1023,

where, for short, Φs(x) is denoted simply as Φs. Since

φ(11) = deg Φ11 = 10
φ(33) = deg Φ33 = 20
φ(93) = deg Φ93 = 60
φ(341) = deg Φ341 = 300
φ(1023) = deg Φ1023 = 600

and V10(x) is the product of distinct monic irreducible polynomials of
degree 10, it is concluded that over GF(2):

(a) Φ11(x) is irreducible of degree 10

(b) Φ33(x) is the product of two distinct irreducible degree 10
polynomials

(c) Φ93(x) is the product of six distinct irreducible degree 10
polynomials

(d) Φ341(x) is the product of 30 distinct irreducible degree 10
polynomials

(e) Φ1023(x) is the product of 60 distinct irreducible degree 10
polynomials.

It is immediate to obtain

Φ11(x) =
x11 − 1

x− 1
= x10 + x9 + x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+1,

however, one needs to learn more about the factorization of cyclotomic
polynomials in order to factor Φ33,Φ93,Φ341, and Φ1023. A useful par-
tial answer to this factorization problem is provided by the following
theorem.
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Theorem 6.4 If p is a prime and gcd(n, p) = 1, then for k ≥ 1 it
follows that

(1)

Φnpk(x) = Φnp

(
xp

k−1
)
. (6.9)

(2) Φnpk(x) =
Φn(xpk )

Φn(xpk−1 )
.

(3) Φnpk(x) = [Φn(x)]
(pk−pk−1) over GF(pm).

Proof: The alternative form of the multiplicative Moebius inversion
formula will now be used:

b(n) =
∏
d:d|n

[a(n/d)]μ(d)

with b(n) = Φn(x) and a(d) = xd − 1.

(1)

Φnpk(x) =
∏

d:d|npk

[
xnp

k/d − 1
]μ(d)

=
∏

d:d|np

[
xnp

k/d − 1
]μ(d)

because μ(d) = 0 if pu|d, u ≥ 2. Therefore it follows that

∏
d:d|np

[
xnp

k/d − 1
]μ(d)

= Φnp(x
pk−1

).

(2) Expression (6.9) is now used and the values of d, d|np, are sepa-
rated into two sets and the contribution of each set to Φnpk(x) =

Φnp(x
pk−1

) is calculated.

(a) Consider d, d|np, and p|d, d = pd′

∏
d′:d′|n

[
xnp

k−1/d′ − 1
]μ(pd′)

=
∏

d′:d′|n

[
xnp

k−1/d′ − 1
]−μ(d′)

=
[
Φn(x

pk−1
)
]−1

.

(b) Consider d, d|np, and p � d

∏
d:d|n

[
xnp

k/d − 1
]μ(d)

= Φn(x
pk)
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and thus,

Φnp(x
pk−1

) =
Φn(x

pk)

Φn(xp
k−1)

.

(3) In a field of characteristic p it follows that f(xp
r
) = [f(x)]p

r
, r ≥ 1,

thus:

Φnp(x
pk−1

) =
Φn(x

pk)

Φn(xp
k−1)

= [Φn(x)]
(pk−pk−1) .

Example 6.5 The results of Theorem 6.4 will now be applied to Φ63(x),
noticing that 63 = 7.32.

(a) Φ7.32(x) = Φ7.3(x
3) = Φ21(x

3).

(b) (b.1) d, d|7.3, and 3|d ⇒ d ∈ {3, 21},
(b.2) d, d|7.3, and 3 � d ⇒ d ∈ {1, 7}

Φ21(x
3) =

Φ7(x
9)

Φ7(x3)
=

(x63 − 1)(x3 − 1)

(x9 − 1)(x21 − 1)

=
x42 + x21 + 1

x6 + x3 + 1

= x36 + x33 + x27 + x24 + x18 + x12 + x9 + x3 + 1,

which is the product of six irreducible polynomials of degree 6.

(c) For a field of characteristic 3 it follows that

Φ21(x
3) = [Φ7(x)]

(9−3) = [Φ7(x)]
6.

It is a property of finite fields that for a given n, over GF(q), q = pr,
gcd(n, p) = 1, there is a least integer m such that qm ≡ 1 modulo n.
This value of m is called the order of q modulo n.

It was shown in Chapter 5 that there exists a finite field GF(qm) with
an element α of order n. Then, for every divisor d of n, similarly to
(6.5), it also follows that

Φd(x) =
n−1∏
s=0

(x− αs), gcd(s, n) = n/d,

which can be equivalently expressed as

Φd(x) =
∏
β

(x− β), ord(β) = d,
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i.e., over GF(qm), Φd(x) factors completely into linear factors. By mak-
ing use of minimal polynomials the factorization of Φd(x) over GF(q)
will now be considered.

Since the minimal polynomial of α has m conjugates α,αq, . . . , αqm−1
,

it is concluded that Φn(x) has at least one irreducible factor of degree m,
which is the minimal polynomial of α. By the definition of a cyclotomic
polynomial, each one of the other roots of Φn(x) has order n and also
m conjugates. These results are now stated as a theorem.

Theorem 6.6 Over GF(q), q = pr, p � n, the cyclotomic polynomial
Φn(x) consists of the product of φ(n)/m irreducible factors of degree m,
where m is the order of q modulo n.

A practical procedure to factor polynomials over GF(q) which follows
from the application of Theorem 6.7 is presented next (Berlekamp 1968,
p.146).

Theorem 6.7 Suppose f(x) is a monic polynomial of degree n with
coefficients in GF(q). If h(x) ∈ GF(q)[x] is such that

[h(x)]q ≡ h(x) mod f(x), (6.10)

then
f(x) =

∏
u∈GF(q)

gcd[f(x), h(x) − u]. (6.11)

Proof: From Theorem 5.4 one may infer that

zq − z =
∏

u∈GF(q)

(z − u),

and thus it follows that for any polynomial h(x)

[h(x)]q − h(x) =
∏

u∈GF(q)

(h(x) − u).

The hypothesis can thus be expressed as f(x)

∣∣∣∣∏u∈GF(q)(h(x)−u), which

implies

f(x)

∣∣∣∣ ∏
u∈GF(q)

gcd[f(x), h(x) − u], (6.12)

however, for each u ∈ GF(q) it follows that

gcd[f(x), h(x) − u]

∣∣∣∣ f(x). (6.13)
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Furthermore, since the difference [(h(x) − u1) − (h(x) − u2)] is a scalar
u2 − u1 ∈ GF(q), it follows that h(x) − u1 and h(x) − u2 are relatively
prime for u1 �= u2. Thus, gcd[f(x), h(x) − u1] and gcd[f(x), h(x) − u2]
are relatively prime and from (6.13) it follows that

∏
u∈GF(q)

gcd[f(x), h(x) − u]

∣∣∣∣ f(x). (6.14)

By comparing (6.12) and (6.14) it is concluded that

f(x) =
∏

u∈GF(q)

gcd[f(x), h(x) − u].

REMARKS

(1) If, for some u ∈ GF(q), it is true that h(x) ≡ u modulo f(x) then
the factorization is said to be trivial as one of the factors is f(x)
and all other factors are equal to 1.

(2) In general gcd[f(x), h(x)−u] may be reducible in GF(q)[x]. By using
all the h(x) as in Theorem 6.7 the factorization of f(x) is obtained.

The set of polynomials reduced modulo f(x) can be seen to form an
n dimensional vector space V (f) over GF(q). A suitable basis for V (f)
is provided by {1, x, x2, . . . , xn−1}.
Definition 6.8 The polynomials h(x) which allow the factorization of
f(x) are called f -reducing polynomials.

Let R(f) denote the subset of V (f) containing the f -reducing poly-
nomials. The set R(f) constitutes a subspace of V (f) because if h1(x) ∈
R(f), h2(x) ∈ R(f) and c1 ∈ GF(q), c2 ∈ GF(q), where both c1 and c2
are nonzero, it follows that

h(x) = c1h1(x) + c2h2(x)

hq(x) = [c1h1(x) + c2h2(x)]
q = cq1h

q
1(x) + cq2h

q
2(x)

= c1h
q
1(x) + c2h

q
2(x) ≡ c1h1(x) + c2h2(x) mod f(x).

Theorem 6.9 The dimension of R(f) equals the number of distinct ir-
reducible factors of f(x), denoted by k.

The polynomial xn − 1, with gcd(n, q) = 1, allows the Berlekamp
algorithm to be simplified as follows.
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Theorem 6.10 A polynomial h(x) =
∑n−1

i=0 hix
i satisfies the congru-

ence hq(x) ≡ h(x) modulo (xn − 1) if and only if hiq = hi for all sub-
scripts i = 0, 1, . . . , n− 1 reduced modulo n.

Proof:

hq(x) =

(
n−1∑
i=0

hix
i

)q

=

n−1∑
i=0

hqix
iq ≡

n−1∑
i=0

hix
iq mod (xn − 1),

and the theorem follows when the coefficients of xiq on both sides of the
congruence are compared.

Example 6.11 Let f(x) = x4 + x3 + x2 + 1 and let q = 2. If h(x) =
h3x

3 + h2x
2 + h1x + h0 is considered and the condition h2(x) ≡ h(x)

modulo f(x) is applied then it follows that

h3x
6 + h2x

4 + h1x
2 + h0 ≡ h3x

3 + h2x
2 + h1x+ h0 (6.15)

modulo x4 + x3 + x2 + 1, where h2i = hi since hi ∈ {0, 1}, 0 ≤ i ≤ 3.
However,

x4 ≡ x3 + x2 + 1 mod (x4 + x3 + x2 + 1)

x6 ≡ x3 + x2 + x mod (x4 + x3 + x2 + 1).

Representing the polynomial h0+h1x+h2x
2+h3x

3 by the column vector
(h0, h1, h2, h3)

T, the congruence (6.15) can be expressed as

h0

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦+ h1

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦+ h2

⎡
⎢⎢⎣

1
0
1
1

⎤
⎥⎥⎦+ h3

⎡
⎢⎢⎣

0
1
1
1

⎤
⎥⎥⎦

≡ h0

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦+ h1

⎡
⎢⎢⎣

0
1
0
0

⎤
⎥⎥⎦+ h2

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦+ h3

⎡
⎢⎢⎣

0
0
0
1

⎤
⎥⎥⎦ .

Using the binary column vectors on the left-hand side to form a 4 × 4
matrix and similarly for the binary column vectors on the right-hand
side, it is desired to find h = [h0, h1, h2, h3] which is in the null space of
the following matrix B:

B =

⎡
⎢⎢⎣

1 0 1 0
0 0 0 1
0 1 1 1
0 0 1 1

⎤
⎥⎥⎦−

⎡
⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

0 0 1 0
0 1 0 1
0 1 0 1
0 0 1 0

⎤
⎥⎥⎦
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or {
h2 = 0
h1 + h3 = 0

and the solutions for (h0, h1, h2, h3) are (0, 0, 0, 0), (1, 0, 0, 0), (0, 1, 0, 1)
and (1, 1, 0, 1). The dimension of the subspace of the h’s is two, which
means that f(x) has two distinct irreducible factors given by gcd(f(x), x3+
x+ 1) = x3 + x+ 1, gcd(f(x), x3 + x) = x+ 1.

6.3 Canonical factorization
Let f(x) be any polynomial of positive degree, f(x) ∈ GF(q)[x]. By

the canonical factorization of f(x) over GF(q)[x] it is meant to express
f(x) as

f(x) = A0f
e1
1 (x).f e2

2 (x) . . . f ek
k (x),

where fi(x), 1 ≤ i ≤ k, are distinct monic irreducible polynomials in
GF(q)[x] and ei, 1 ≤ i ≤ k, are positive integers, and A0 �= 0 is an
element of GF(q). It can be shown that any polynomial f(x) ∈ GF(q)[x]
of positive degree has a canonical factorization over GF(q)[x].

6.4 Eliminating repeated factors
The problem of factoring f(x) can be simplified by considering only

the factorization of polynomials without repeated factors as follows. Cal-
culate s(x) = gcd(f(x), f ′(x)), the greatest common divisor between
f(x) and its derivative f ′(x).

(a) If s(x) = 1 then f(x) has no repeated factor.

(b) If s(x) = f(x) then f ′(x) = 0 and hence f(x) = [g(x)]p
r
, where p

is the characteristic of GF(q) and r is a positive integer. If desired,
the procedure can be applied to g(x).

(c) If s(x) �= 1 and s(x) �= f(x), then s(x) is a nontrivial factor of f(x)
and f(x)/s(x) has no repeated factor. In case s(x) has repeated
factors keep using the reduction process as long as necessary.

6.5 Irreducibility of Φn(x) over GF(q)

From Theorem 6.6 it is known that Φn(x) is irreducible over GF(q) if
and only if φ(n)/m = 1, where qm ≡ 1 modulo n and qi �= 1, 0 < i < m.
The set of residues modulo n which are relatively prime to n form a
multiplicative group of order φ(n). In the case of qφ(n) ≡ 1 modulo n
a cyclic group is obtained with q as its generator, i.e., q is a primitive
root modulo n. In number theory it is shown that the only values of n
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for which the group of residues is cyclic modulo n are n = 1, 2, 4, pu, 2pu

where p is an odd prime.

Example 6.12 Consider Φ8(x) = x4 + 1. Then φ(8) = 4, but there is
no element of order 4 modulo 8 and thus Φ8(x) is reducible modulo p for
every p. On the other hand, for the important case of q = 2, Φn(x) is
reducible over GF(2) if and only if 2 is a primitive root modulo n, i.e.,
if and only if 2 has order φ(n) modulo n. This restriction conditions the
values of n to be 3, 5, 9, 11, 13, 19, . . . and produces irreducible polynomials
of degrees 2, 4, 6, 10, 12, 18, . . . .

Example 6.13 Factor f(x) = x5+x4+1 over GF(2) using Berlekamp’s
algorithm.

Solution: Let h(x) = h0 + h1x+ h2x
2 + h3x

3 + h4x
4. Proceeding as in

Example 6.11 it follows that

B =

⎡
⎢⎢⎢⎢⎣

0 0 0 1 1
0 1 0 1 1
0 1 1 0 1
0 0 0 1 1
0 0 1 1 0

⎤
⎥⎥⎥⎥⎦ .

Solving the system of linear equations

(h0, h1, h2, h3, h4)B
T = (0, 0, 0, 0, 0),

the solutions obtained for (h0, h1, h2, h3, h4) are the following (0, 0, 0, 0, 0),
(1, 0, 0, 0, 0), (0, 0, 1, 1, 1), and (1, 0, 1, 1, 1). For these solutions it follows
that

(a) h(x) = x4 + x3 + x2 and that gcd(f(x), x4 + x3 + x2) = x2 + x+ 1.

(b) h(x) = x4+x3+x2+1 and that gcd(f(x), x4+x3+x2+1) = x3+x+1.

Thus x5+x4+1 = (x3+x+1)(x2+x+1) is the answer because x3+x+1
and x2 + x+ 1 are both known to be irreducible over GF(2).

Example 6.14 Factor f(x) = x6+x2+1 over GF(2) using Berlekamp’s
algorithm.

Solution: Let h(x) = h0 + h1x+ h2x
2 + h3x

3 + h4x
4 + h5x

5 and apply
Theorem 6.7, i.e., h2(x) ≡ h(x) mod f(x), where f(x) = x6 + x2 + 1.
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It then follows that

h0

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h1

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h2

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h3

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h4

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h5

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
1
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦ ≡

h0

⎡
⎢⎢⎢⎢⎢⎢⎣

1
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h1

⎡
⎢⎢⎢⎢⎢⎢⎣

0
1
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h2

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
1
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h3

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
1
0
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h4

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
1
0

⎤
⎥⎥⎥⎥⎥⎥⎦+ h5

⎡
⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
1

⎤
⎥⎥⎥⎥⎥⎥⎦

modulo x6 + x2 + 1, or (h0, h1, h2, h3, h4, h5)B
T = (0, 0, 0, 0, 0, 0) with

B =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1 0 1
0 1 0 0 0 0
0 1 1 1 1 1
0 0 0 1 0 0
0 0 1 0 0 1
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎦ .

The only solutions are h = [0, 0, 0, 0, 0, 0] and h = [1, 0, 0, 0, 0, 0]. Since
f ′(x) = 0 over GF(2) it follows that gcd(f(x), f ′(x)) = f(x) and that
x6 + x2 + 1 = (x3 + x+ 1)2, where x3 + x+ 1 is irreducible over GF(2).

Example 6.15 Factor Φ15(x) over GF(2).

Solution: Since the order of 2 modulo 15 is 4, i.e., 4 is the least positive
integer for which 24 ≡ 1 modulo 15, and φ(15) = 8, it follows that Φ15(x)
factors over GF(2) as the product of φ(15)/4 = 8/4 = 2 irreducible
polynomials of degree 4. Let α denote an element of order 15 in GF(24).
The two irreducible polynomials are obtained from

f1(x) = (x− α)(x− α2)(x− α4)(x− α8)

f2(x) = (x− α7)(x− α14)(x− α13)(x− α11),

with α4 = α+1 it follows that f1(x) = x4+x+1 and f2(x) = x4+x3+1.

Example 6.16 Factor Φ20(x) over GF(3).

Solution: Notice that φ(20) = 8 and that the order of 3 modulo 20 is
4, i.e., 4 is the least positive integer for which 34 ≡ 1 modulo 20. Thus
φ(20)/4 = 8/4 = 2 and Φ20(x) factors over GF(3) as the product of two
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degree 4 irreducible polynomials. Let α denote an element of order 20 in
GF(34). The two irreducible polynomials are obtained from

f1(x) = (x− α)(x− α3)(x− α9)(x− α7)

f2(x) = (x− α11)(x− α13)(x− α19)(x− α17),

Example 6.17 Factor x4 + 1 over GF(3).

Solution:

(a) Since d
dx(x

4+1) = x3 it follows that gcd(x4+1, x3) = 1. Thus x4+1
has no repeated factors.

(b) Let h(x) = h0 + h1x+ h2x
2 + h3x

3. The following BT is obtained

BT =

⎡
⎢⎢⎣

0 0 0 0
0 2 0 1
0 0 1 0
0 1 0 2

⎤
⎥⎥⎦ .

By replacing column 2 in BT by the sum of columns 2 and 4 the
following matrix results: ⎡

⎢⎢⎣
0 0 0 0
0 0 0 1
0 0 1 0
0 0 0 2

⎤
⎥⎥⎦ .

It follows that B has rank 2 and thus x4 + 1 has k = 4 − 2 = 2
irreducible factors. The following system of linear equations results{

h2 = 0
h1 + 2h3 = 0

which has h1(x) = 1 and h2(x) = x3 + x as solutions. Finally,

gcd(x4 + 1, h2(x) + 1) = x2 + x+ 2

gcd(x4 + 1, h2(x) + 2) = x2 + 2x+ 2.

Example 6.18 Determine the number of distinct monic irreducible fac-
tors of x4 + 1 in GF(p)[x], for all odd primes p. Hint:

Φ8(x) =
x8 − 1

x4 − 1
= x4 + 1,

and use Theorem 6.6.

Solution: From Theorem 6.6 it follows that the number of distinct
monic irreducible factors of Φ8(x) over GF(p) is given by φ(8)/m = 4/m,
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where m is the order of p modulo 8. It is immediate to show that m ≤ 2
if p is any odd prime by noticing that p2 ≡ 1 modulo 8, because if p is
written as p = 2r + 1 then

p2 − 1 = (p − 1)(p + 1) = 2r(2r + 2) = 4r(r + 1)

and it follows that p2−1 ≡ 0 modulo 8, whether r is even or odd. It thus
follows that φ(8)/m = 4/2 = 2, i.e., x4 +1 factors as the product of two
polynomials of degree 2 over GF(p)[x], if m = 2. Notice that if p ≡ 1
modulo 8, e.g., p = 17, then m = 1 and x4 + 1 factors as the product of
4/1 = 4 monic linear factors.

Example 6.19 Factor x3+4x2+x−1 over GF(5)[x] using Berlekamp’s
algorithm.

Solution: Let h(x) = h2x
2+h1x+h0. Next compute the residue of h5(x)

modulo f(x), i.e., compute x5 modulo f(x) and compute x10 modulo
f(x). However, x5 ≡ x modulo f(x). It thus follows immediately that
h(x) = x and

gcd(f(x), x− 1) = x− 1

gcd(f(x), x− 2) = x− 2

gcd(f(x), x− 3) = x− 3.

6.6 Problems with solutions
(1) If n is a positive integer then prove that

Πd: d|n(−1)μ(d) =

{ −1, if n = 1
1, if n > 1.

Solution: Obviously, in n = 1 it follows that∏
d:d|1

(−1)μ(d) = (−1)1 = −1.

Let n > 1 and suppose the prime factor decomposition of n is given
by pe11 pe22 · · · pess , where the pi denote prime numbers and the ei de-
note positive integers, 1 ≤ i ≤ s. For computing μ(d), when d|n,
only those d’s of the form pi11 p

i2
2 · · · piss need to be considered, where

ij ∈ {0, 1}, 1 ≤ j ≤ s. The other divisors of n, i.e., those with at
least one ij ≥ 2, lead to μ(d) = 0. Therefore, 2s divisors of n are
being considered. Among those divisors, half of them contain an
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odd number of factors and the other half contains an even number
of factors. Therefore, it follows that∏

d|n
(−1)μ(d) = (−1)2

s−1/(−1)2
s−1 = 1, if n > 1.

(2) If n is odd then prove that Φ2n(x) = Φn(−x), n > 1.

Solution: By Theorem 6.4, part b, for n odd, it follows that

Φ2n(x) =
Φn(x

2)

Φn(x)

Φn(x
2) =

∏
d|n

(x2n/d − 1)μ(d) =
∏
d|n

[(xn/d − 1)(xn/d + 1)]μ(d)

= Φn(x)
∏
d|n

(xn/d + 1)μ(d) ⇒ Φ2n(x) =
∏
d|n

(xn/d + 1)μ(d)

Φn(−x) =
∏
d|n

[(−x)n/d − 1]μ(d)

=
∏
d|n

(xn/d + 1)μ(d)
∏
d|n

(−1)μ(d), n odd.

However, by Problem 1,
∏

d|n(−1)μ(d) = 1, if n > 1, and it follows

that Φ2n(x) = Φn(−x), n odd, n > 1.

(3) Show that cyclotomic polynomials are self-reciprocal polynomials.

Solution: If f1(x) and f2(x) are reciprocal polynomials, it follows
that if f1(α) = 0 then f2(1/α) = 0. Suppose α is an element of
order n in GF(qm). Then by the definition of Φn(x) it follows that
Φn(α) = 0. Let β = 1/α. Then, β also has order n in GF(qm) and
thus Φn(β) = 0.

(4) Prove that the constant term of a cyclotomic polynomial Φn(x) is
−1 if n = 1, and +1 if n > 1.

Solution: Write Φn(x) as Φn(x) =
∏

d|n(x
n/d − 1)μ(d) and by mak-

ing x = 0 it follows that Φn(0) =
∏

d|n(−1)μ(d), i.e., precisely the
same expression obtained in Problem 1, which solves this problem
since Φn(0) represents the constant term in Φn(x).

(5) Calculate the following cyclotomic polynomials.

(a) Φ24(x).
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(b) Φ40(x).

(c) Φ60(x).

Solution:

(a) By (6.7) and reducing mod xt, for t = φ(24)+1 = 9, it follows
that

Φ24(x) =

∏
d|3(x

3.8/d − 1)μ(d)∏
d|3(x3.4/d − 1)μ(d)

=
(x24 − 1)(x4 − 1)

(x12 − 1)(x8 − 1)

=
(−1)(x4 − 1)

(−1)(x8 − 1)
mod 9 =

(x4 − 1)(x8 + 1)

(x8 − 1)(x8 + 1)

=
(x4 − 1)(x8 + 1)

−1
mod x9 = x8 − x4 + 1.

(b) By (6.7) it follows that

Φ40(x) =
(x40 − 1)(x4 − 1)

(x8 − 1)(x20 − 1)
=

x20 + 1

x4 + 1

= x16 + x12 + x8 + x4 + 1.

(c)

Φ60(x) =
(x60 − 1)(x4 − 1)

(x20 − 1)(x12 − 1)

(x10 − 1)(x6 − 1)

(x30 − 1)(x2 − 1)

=
(x30 + 1)(x2 + 1)

(x10 + 1)(x6 + 1)

= x16 + x14 − x10 − x8 − x6 + x2 + 1.

(6) Calculate the canonical factorization of the following cyclotomic
polynomials, over the given finite field.

(a) Φ17(x), over GF(2)

(b) Φ11(x), over GF(3)

(c) Φ13(x), over GF(5).

Solution:

(a) The order of 2 mod 17 is 8, thus φ(17)/8 = 16/8 = 2 and it
follows that Φ17(x) factors as the product of two irreducible
polynomials of degree 8. Applying Theorem 6.7 with 8 as the
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order of 2 modulo 17, it follows that Φ17(x) = (x17−1)/(x−1),
and that

gcd(x17 − 1, x+ x2 + x4 + x8 + x9 + x13 + x15 + x16)

= x9 + x8 + x6 + x3 + x+ 1

= (x+ 1)(x8 + x5 + x4 + x3 + 1).

and

gcd(x17 − 1, 1 + x+ x2 + x4 + x8 + x9 + x13 + x15 + x16)

= x8 + x7 + x6 + x4 + x2 + x+ 1.

Therefore,

φ17(x) = (x8+x5+x4+x3+1)(x8 +x7+x6+x4+x2+x+1).

(b) The order of 3 mod 11 is 5 and Φ11(x) = (x11 − 1)/(x − 1). It
follows that

gcd(x11 − 1, x+ x3 + x4 + x5 + x9) = x5 + 2x3 + x2 + 2x+ 2,

and its reciprocal-root polynomial is x5 + x4 + 2x3 + x2 + 2.
Thus,

Φ11(x) = (x5 + 2x3 + x2 + 2x+ 2)(x5 + x4 + 2x3 + x2 + 2).

(c) The order of 5 mod 13 is 4. Since φ(13)/4 = 3, we need to find
three degree 4 monic irreducible polynomials.

gcd(x13 − 1, x+ x5 + x8 + x12) = 1

gcd(x13 − 1, 1 + x+ x5 + x8 + x12) = x5 + 3x3 + 2x2 + 4

gcd(x13 − 1, 2 + x+ x5 + x8 + x12) = x4 + 2x3 + x2 + 2x+ 1

gcd(x13 − 1, 3 + x+ x5 + x8 + x12) = x4 + 3x3 + 3x+ 1

gcd(x13 − 1, 4 + x+ x5 + x8 + x12) = 1,

where x5+3x3+2x2+4 factors as (x−1)(x4+x3+4x2+x+1).
Finally, Φ13(x) is equal to

(x4+x3+4x2+x+1)(x4+2x3+x2+2x+1)(x4+3x3+3x+1).

(7) Determine the shape of the factorization of Φ360(x) over GF(3) by
using Theorem 6.4.
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Solution: Consider the following factorization: 360 = 23325. It
follows that

Φ360(x) =
Φ40(x

9)

Φ40(x3)
=

Φ5(x
72)/Φ5(x

36)

Φ5(x24)/Φ5(x12)

(8) Find the canonical factorization of x15 − 1 over GF(4).

Solution: Cyclotomic cosets modulo 15 over GF(4): (0), (1, 4),
(2, 8), (3, 12), (5), (6, 9), (7, 13), (10), (11, 14).

gcd(x15 + 1, x4 + x) = x3 + 1 = (x+ 1)(x2 + x+ 1)

= (x+ 1)(x+ α)(x+ α2)

gcd(x15 + 1, x4 + x+ 1) = x4 + x+ 1

gcd(x15 + 1, x4 + x+ α2) = x4 + x+ α2

gcd(x15 + 1, x13 + x7 + α) = x4 + αx3 + α

gcd(x4 + αx3 + α, x4 + x+ 1) = x2 + x+ α

gcd(x4 + αx3 + α, x4 + x+ α2) = x2 + α2x+ 1.

Continuing in this way we obtain the factorization of x15 +1 as the
product of the following polynomials: x+ 1, x+ α, x+ α2, x2 + x+
α, x2 +α2x+α2, x2 +x+α2, x2 +αx+α, x2 +α2x+1, x2 +αx+1,
obtained by using α2 = α + 1, α ∈ GF(4), and β2 = β + α, β ∈
GF(16), and the following table for the powers of β.

0 β4 = β + 1 β9 = αβ + α β14 = α2β + α2

1 β5 = α β10 = α2

β β6 = αβ β11 = α2β
β2 = β + α β7 = α2β β12 = α2β + 1
β3 = α2β + α β8 = β + α2 β13 = αβ + 1



Chapter 7

CONSTRUCTING F-REDUCING

POLYNOMIALS

7.1 Introduction
Let f(x) be a monic polynomial of degree n without repeated factors.

We recall from Definition 6.8 that f -reducing polynomials are those poly-
nomials which allow the factorization of f(x). In this chapter, we look
into the interesting problem of factorization of polynomials over large
finite fields using f -reducing polynomials.

Let f1(x), f2(x), . . . , fk(x) be monic irreducible factors in the canoni-
cal factorization (see Section 6.3) of f(x) in GF(q)[x], where deg(fi(x)) =

ni, 1 ≤ i ≤ k. Let N be the least positive integer such that xq
N ≡ x

mod f(x). By Theorem 6.10 it follows that

Ti(x) = T (xi) =
N−1∑
j=0

xiq
j

are f -reducing polynomials. It is immediate to check that

T q
i (x) ≡ Ti(x) mod f(x), 1 ≤ i ≤ n− 1.

Whenever the order of f(x) is known in advance, e.g., when f(x) =
xn−1, or f(x) = Φn(x), it is convenient to employ the polynomial Ri(x)
defined as

Ri(x) = xi + xiq + xiq
2
+ . . .+ xiq

mi−1
,

where, for each i > 0, mi is the least positive integer such that

xiq
mi ≡ xi mod f(x).

It is assumed that f(0) �= 0. If ord(f(x)) = e then the condition on mi

is equivalent to

iqmi ≡ i mod e or qmi ≡ 1 mod e/ gcd(e, i),
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i.e., mi is the multiplicative order of q modulo e/ gcd(e, i). Notice that

Rq
i (x) ≡ Ri(x) mod f(x)

and Theorem 6.7 thus applies.

7.2 Factoring polynomials over large finite fields
Obviously, the basic methods of factorization of polynomials over fi-

nite fields remain applicable for large finite fields. However, the amount
of computation increases with the number of elements in GF(q). It is
thus important to find ways to avoid computing gcd’s which are equal
to one because they lead to trivial results.

In the present context, to say that q is large means q is large with
respect to n, the degree of f(x), i.e., the polynomial to be factored. If
f(x) has k distinct monic irreducible factors, i.e., k prime polynomials,
in GF(q)[x], then at most k gcd’s will be different from 1. In the sequel
the elements c ∈ GF(q) for which gcd(f(x), h(x) − c) �= 1 will be char-
acterized. One technique makes use of the resultant of two polynomials,
which is defined next.

7.2.1 Resultant
Let

f(x) =
n∑

i=0

aix
i ∈ GF(q)[x]

and let

g(x) =

m∑
j=0

bjx
j ∈ GF(q)[x]

be two polynomials of formal degree n and m, respectively, where n ∈ N
and m ∈ N.

Definition 7.1 The resultant R = R(f(x), g(x)) of the polynomials
f(x) and g(x) is defined by the following determinant of order n+m

R =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 . . . . . . a1 a0 . . . 0
0 an . . . . . . a2 a1 . . . 0
...

...
...

0 0 0 0 an an−1 . . . a0
bm bm−1 . . . b0 0 0 . . . 0
0 bm . . . . . . b0 0 . . . 0
...

...
...

0 0 . . . . . . bm bm−1 . . . b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

.

...

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭m rows

.

.

...

.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭n rows
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From the definition of resultant it is shown next that R = 0 if and only
if f(x) and g(x) have a common factor. Notice that R = 0 if and only if
the rows of the determinant R are linearly dependent, i.e., if and only if

c1(x)f(x) + c2(x)g(x) = 0,

where deg c1(x) < m and deg c2(x) < n. Dividing c1(x)f(x)+ c2(x)g(x)
throughout by f(x) it is concluded that g(x) must have a factor in
common with f(x), because deg c2(x) < n and thus c2(x) is not divisible
by f(x). By using a similar argument the same conclusion will be reached
if c1(x)f(x) + c2(x)g(x) is divided through by g(x).

Let f(x) = a(x)F (x) and let g(x) = a(x)G(x). It follows that

f(x)g(x) = a(x)G(x)f(x) = a(x)F (x)g(x), a(x) �= 0,

and
G(x)f(x)− F (x)g(x) = 0,

thus c1(x) = G(x) and c2(x) = −F (x).

7.2.2 Algorithm for factorization based on the
resultant

Let h(x) be an f-reducing polynomial and consider the resultant R =
R(f(x), h(x)− c). It has already been seen that gcd(f(x), h(x)− c) �= 1
if and only if R(f(x), h(x) − c) = 0. Consider F (z) = R(f(x), h(x) − z)
which is a polynomial in z, of degree at most n. It is desired to find
the roots of F (z) in GF(q), i.e., to find those c’s, c ∈ GF(q) such that
F (c) = 0, because for those c’s it follows that gcd(f(x), h(x) − c) �= 1.

7.2.3 The Zassenhaus algorithm
Suppose that c ∈ GF(q) and c ∈ C, where C contains all the c’s such

that gcd(f(x), h(x) − c) �= 1. From Theorem 6.7 it is known that

f(x) =
∏
c∈C

gcd(f(x), h(x) − c) (7.1)

and also that

f(x)

∣∣∣∣∣∏
c∈C

(h(x)− c) .

Let G(z) =
∏

c∈C(z − c) and notice that f(x)|G(h(x)). The polynomial
G(z) is characterized in the following theorem.

Theorem 7.2 The polynomial G(z) is the unique monic polynomial of
least degree, among all the polynomials g(z) ∈ GF(q)[z], such that f(x)
divides g(h(x)).
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Proof: The set of polynomials g(z) ∈ GF(q)[z], such that f(x) di-
vides g(h(x)), constitutes a nonzero ideal J of GF(q)[z]. It follows
that J is a principal ideal generated by g0(z) ∈ GF(q)[z] which is a
monic and uniquely determined polynomial. Consequently G(z) is a
multiple of g0(z) and thus g0(z) =

∏
c∈C1

(z − c), where C1 � C, and
f(x) divides g0(h(x)) =

∏
c∈C1

(h(x) − c). Therefore, it follows that
f(x) =

∏
c∈C1

gcd(f(x), h(x) − c) which in view of (7.1) leads to the
conclusion that C1 = C and thus g0(z) = G(z).

Suppose the set C has size m and consider G(z) expressed as

G(z) =
∏
c∈C

(z − c) =

m∑
i=0

biz
i,

where bi ∈ GF(q) and assuming bm = 1. Since f(x)|G(h(x)) it follows
that

m∑
i=0

bi[h(x)]
i = G(h(x)) ≡ 0 mod f(x). (7.2)

Expression (7.2) can be seen as a linear dependence relation among the
residues of 1, h(x), h2(x), . . . , hm(x) modulo f(x). The polynomial G(z)
is determined by computing the residues modulo f(x) of [h(x)]i, i =
0, 1, . . . , until a smallest power of h(x) is found that is linearly dependent
on the preceding powers of h(x). The value of m is upperbounded by
m ≤ k, where k is the number of distinct prime polynomials in f(x).
The coefficients bi, after normalization with bm = 1, are the coefficients
of G(z) =

∏
c∈C(z − c). The elements c ∈ C are the roots of G(z).

This manner of finding the roots of G(z) in GF(q) is known as the
Zassenhaus algorithm.

7.3 Finding roots of polynomials over finite fields
It is now considered the problem of finding the roots in GF(qm)

of a polynomial of positive degree f(x) ∈ GF(qm)[x]. Polynomials
over GF(q) can be viewed as polynomials over GF(qm). By calculat-
ing gcd(f(x), xr − x) it is obtained the part of f(x) which factors as the
product of monic linear polynomials over GF(r). Suppose that r is a
prime number p. It is sufficient to consider only polynomials of the form

f(x) =

n∏
i=1

(x− ci), (7.3)

where the ci’s, 1 ≤ i ≤ n, are distinct elements of GF(p). If p is small
the roots of f(x) can be found by exhaustive search through the ci’s.
The case in which p is large is considered next.
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7.3.1 Finding roots when p is large
Let b ∈ GF(p) and write (7.3) as

f(x− b) =

n∏
i=1

[x− (b+ ci)].

Notice that
f(x− b)|(xp − x)

and that xp−x = x(x(p−1)/2 − 1)(x(p−1)/2 +1). If f(−b) = 0 then x is a
factor of f(x − b) and a root of f(x) has been found. Otherwise, write
f(x− b) as

f(x− b) = gcd
(
f(x− b), x(p−1)/2 − 1

)
gcd

(
f(x− b), x(p−1)/2 + 1

)
(7.4)

and calculate
x(p−1)/2 mod f(x− b).

If x(p−1)/2 �= ±1 modulo f(x− b) then (7.4) provides a nontrivial factor-
ization of f(x). If x(p−1)/2 ≡ ±1 modulo f(x− b) then a different value
of b is selected and the procedure is repeated. Proceeding in this manner
eventually all roots of f(x) will be found. Notice that this procedure is
not deterministic because the values for b are randomly chosen.

7.3.2 Finding roots when q = pm is large but p is
small

Consider f(x) = Πn
i=1(x − γi), where γi ∈ GF(q), 1 ≤ i ≤ n. Let

q = pm and define the polynomial S(x) =
∑m−1

j=0 xp
j
where, for γ ∈

GF(q), S(γ) is the trace of γ over GF(p). It follows that S(x) has degree
pm−1 and the equation S(γ) = c, with γ ∈ GF(q) and c ∈ GF(p), can be
shown to have pm−1 solutions (Lidl and Niederreiter 2006, p.152), i.e.,
pm−1 values of γ satisfying S(γ) = c, with γ ∈ GF(q). This remark leads
to the following result:

xq − x = Πc∈GF(p) (S(x)− c) .

Since f(x)|(xq −x) it follows that Πc∈GF(p) (S(x)− c) ≡ 0 modulo f(x),
and thus

f(x) = Πc∈GF(p) gcd(f(x), S(x)− c).

For small p the computation of p gcd’s is not a problem. If, however,
the factorization of f(x) turn out to be trivial, i.e., if S(x) ≡ c modulo
f(x) for some c ∈ GF(p), the following procedure is adopted.
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Let {1, β, β2, . . . , βm−1} be a basis of GF(q) over GF(p). For j =
0, 1, . . . ,m − 1 substitute βjx for x in xq − x = Πc∈GF(p) (S(x)− c) ,
leading to

(βj)qxq − βjx = Πc∈GF(p)

(
S(βjx)− c

)
or

xq − x = β−jΠc∈GF(p)

(
S(βjx)− c

)
.

The original factorization of f(x) is now generalized and expressed as

f(x) = Πc∈GF(p) gcd
(
f(x), S(βjx)− c

)
, 0 ≤ j ≤ m− 1.

It can be shown by contradiction that at least one of the above partial
factorizations is nontrivial.

7.4 Problems with solutions
(1) Find the canonical factorization of f(x) = x5 + x4 + 1 in GF(2)[x].

Solution: Notice that

(a) gcd(f(x), f ′(x)) = 1, meaning f(x) has no repeated factor.

(b) Since N is not known, it is necessary to compute x2
r
modulo

(x5 + x4 + 1) until the condition x2
r ≡ x modulo (x5 + x4 + 1)

is satisfied, by trying r = 1, 2, . . .

The operation of squaring a polynomial over GF(2) and reducing
modulo f(x) can be performed as a matrix multiplication as follows.
Let h(x) = h0 + h1x + h2x

2 + h3x
3, for example. Then it follows

that

[h0, h1, h2, h3]

⎡
⎢⎢⎣

x0 mod f(x)
x2 mod f(x)
x4 mod f(x)
x6 mod f(x)

⎤
⎥⎥⎦ = h0 + h1x

2 + h2x
4 + h3x

6 mod f(x)

= h2(x) mod f(x).

For f(x) = x5 + x4 + 1 it follows that

x0 ≡ 10000 mod f(x)
x2 ≡ 00100 mod f(x)
x4 ≡ 00001 mod f(x)
x6 ≡ 11011 mod f(x)
x8 ≡ 11111 mod f(x).
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It is now simpler to obtain the various powers x2
r
modulo f(x) by

matrix multiplication with reduction modulo f(x), i.e.,

x ≡ 01000 mod f(x)
x2 ≡ 00100 mod f(x)
x4 ≡ 00001 mod f(x)
x8 ≡ 11111 mod f(x)
x16 ≡ 10011 mod f(x)
x32 ≡ 10110 mod f(x)
x64 ≡ 01000 mod f(x).

Thus x2
6 ≡ x modulo (x5 + x4 + 1) and N = 6.

T1(x) =

5∑
j=0

x2
j
= x+ x2 + x4 + x8 + x16 + x32

≡ 1 + x2 + x3 + x4 mod x5 + x4 + 1.

T1(x) is thus f-reducing because it is not congruent to a constant
modulo f(x).

gcd(x5 + x4 + 1, x4 + x3 + x2 + 1) = x3 + x+ 1

gcd(x5 + x4 + 1, x4 + x3 + x2) = x2 + x+ 1.

Both factors, x3 +x+1 and x2 + x+1, are known to be irreducible
in GF(2)[x]. Also, N = 6 = lcm(3, 2) confirming the result.

(2) Given f(x) = a3x
3 + a2x

2 + a1x + a0 and g(x) = b2x
2 + b1x + b0

calculate the resultant R = R(f(x), g(x)).

Solution: The resultant is calculated as follows:

R =

∣∣∣∣∣∣∣∣∣∣

a3 a2 a1 a0 0
0 a3 a2 a1 a0
b2 b1 b0 0 0
0 b2 b1 b0 0
0 0 b2 b1 b0

∣∣∣∣∣∣∣∣∣∣

.

.

}
2 rows

.

.

.

⎫⎬
⎭ 3 rows

(3) Factor f(x) = x3 − x2 + 1 over GF(5).

Solution: By applying the Berlekamp algorithm it follows that
k = 2 and that h(x) = x2 + x. Then
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F (z) = R(f(x), h(x) − z) =

∣∣∣∣∣∣∣∣∣∣

1 4 0 1 0
0 1 4 0 1
1 1 −z 0 0
0 1 1 −z 0
0 0 1 1 −z

∣∣∣∣∣∣∣∣∣∣
which produces F (z) = −z3 − 3z2 − 1 with roots 1 and 3. Thus,

gcd(f(x), h(x)− 1) = x+ 3

gcd(f(x), h(x)− 3) = x2 + x+ 2.

Finally, f(x) = (x+ 3)(x2 + x+ 2).

(4) Find all f -reducing polynomials h(x) for f(x) = x5 + 2x4 + 5x3 +
6x2 − 3x+ 10 over GF(23).

Solution: The polynomials h(x) = h0 + h1x + h2x
2 + h3x

3 +
h4x

4 must satisfy the condition h23(x) ≡ h(x) mod f(x), i.e., h0 +
h1x

23 + h2x
46 + h3x

69 + h4x
92 ≡ h0 + h1x + h2x

2 + h3x
3 + h4x

4.
Therefore, we now compute the following:

x23 ≡ 2x4 + 21x3 + 13x2 + 11x+ 12 mod f(x)

x46 ≡ 2x4 + 21x3 + 14x2 + 10x+ 12 mod f(x)

x69 ≡ x3 mod f(x)

x92 ≡ 22x4 + 2x3 + 10x2 + 13x+ 11 mod f(x)

From h23(x) − h(x) ≡ 0, mod f(x), we construct the B matrix to
satisfy [h0, h1, h2, h3, h4]B

T ≡ 0 mod f(x).

B =

⎡
⎢⎢⎢⎢⎣

1 12 12 0 11
0 11 10 0 13
0 13 14 0 10
0 21 21 1 2
0 2 2 0 22

⎤
⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎣

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎤
⎥⎥⎥⎥⎦

i.e,

B =

⎡
⎢⎢⎢⎢⎣

0 12 12 0 11
0 10 10 0 13
0 13 13 0 10
0 21 21 0 2
0 2 2 0 21

⎤
⎥⎥⎥⎥⎦ .
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All rows inB are linearly dependent and the coefficients of h(x) must
satisfy the condition h0.0+h1.1+h2.1+h3.0+h4.22 = 0. It follows
that h0 and h3 can be chosen arbitrarily, while the condition h1 +
h2 = h4 mod 23 implies that two out of these three variables can
be chosen arbitrarily, and determine the value of the third variable.
The dimension of the subspace of the h’s is thus four, which means
the f(x) has four irreducible factors. The f -reducing polynomials
h(x) have the general form

h(x) = h0+h1x+h2x
2+h3x

3+h4x
4 = a+bx+cx2+dx3+(b+c)x4,

where a, b, c and d take values in the closed interval [0, 22].

(a) gcd(f(x), f ′(x)) = 1, meaning that f(x) has no repeated factor.

(b) The Berlekamp algorithm gives k = 4 and for a = b = d = 0
and c = 1 the polynomial h(x) = x4 + x2 ∈ GF(23)[x] is one of
the f-reducing polynomials.

(c) The Zassenhaus algorithm is next applied to select the elements
c ∈ GF(23) for which gcd(f(x), h(x) − c) �= 1. First we need to
compute hi(x), 1 ≤ i ≤ k.

h(x) ≡ x4 + x2 mod f(x)

h2(x) ≡ 7x4 + 14x3 + 11x2 + 19x+ 3 mod f(x)

h3(x) ≡ x4 + 18x3 + 9x2 + 15x+ 3 mod f(x)

h4(x) ≡ 6x4 + 3x3 + 9x2 + 20x+ 13 mod f(x)

The desired linear dependence relation is given by

h4(x) + 5h3(x)− 5h2(x) + h(x) + 10 ≡ 0 mod f(x),

and thus

G(z) = z4 + 5z3 − 5z2 + z + 10.

The roots of G(z) in GF(23) are −1,−3,−4 and 3, and can be found
using the theory developed in this chapter.

(5) Factor x5 + 2x4 + 5x3 + 6x2 − 3x+ 10 over GF(23).

Solution: We use here the h(x) computed in Problem 4. To find
the explicit factorization of f(x) over GF(23)[x] the following gcd’s
are computed.
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gcd(f(x), h(x) + 1) = x2 + 22x+ 1

gcd(f(x), h(x) + 3) = x+ 2

gcd(f(x), h(x) + 4) = x+ 11

gcd(f(x), h(x) − 3) = x+ 13.

Finally, f(x) factors over GF(23) as

f(x) = (x2 + 22x+ 1)(x + 2)(x+ 11)(x + 13).

(6) Find the roots of f(x) = x5−x4+2x3+x2−x−2, f(x) ∈ GF(5)[x],
contained in GF(5).

Solution:

(a) The roots of f(x) in GF(5) are the same as the roots of gcd(x5−
x, f(x)) = x2 + x+ 3.

(b) Let g(x) = x2 + x+ 3. Calculating the residue of x(5−1)/2 = x2

modulo g(x) the result

x2 ≡ 4x+ 2 mod g(x)

is obtained. This is equivalent to choosing b = 0 in the root
finding algorithm. Also, since x(5−1)/2 = x2 �= ±1 modulo g(x)
the following nontrivial factorization of g(x) is obtained.

gcd(x2 + x+ 3, x2 + 1) = x− 3

gcd(x2 + x+ 3, x2 − 1) = x− 1.

Thus, g(x) = (x− 1)(x − 3) and the desired roots are 1 and 3.

(7) Prove that all the roots of f(x) = x3+8x2+6x− 7 ∈ GF(19)[x] are
contained in GF(19) and find them.

Solution:

(a) gcd(x19 − x, f(x)) = f(x) = x3 + 8x2 + 6x− 7.

(b) x(19−1)/2 = x9 ≡ 10x2 + 6x+ 7 modulo f(x).

Proceeding as in the previous problem we obtain

gcd(f(x), x9 + 1) = x2 + 12x− 3.
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As a partial factorization of f(x) we have f(x) = (x−4)(x2+12x−3),
and also

gcd(x2 + 12x− 3, x9 − 1) = x+ 5,

with x2 + 12x− 3 = (x+ 5)(x + 7). So, finally, f(x) = (x− 4)(x+
5)(x+ 7), and the roots are 4,−5 and −7.





Chapter 8

LINEARIZED POLYNOMIALS

8.1 Introduction
Linearized polynomials are useful in the study of polynomial factor-

ization techniques because they have enough structure to allow an easy
procedure to find their roots.

Definition 8.1 Over GF(qm), a linearized polynomial (or a q-poly-
nomial) is defined as a polynomial of the form

L(x) =

n∑
i=0

αix
qi ,

with coefficients in the extension field GF(qm) of GF(q).

8.2 Properties of L(x)

Let F be an arbitrary extension of GF(qm).

Theorem 8.2 Let L(x) =
∑n

i=0 αix
qi , αi ∈ GF(qm), then it follows

that

(a) Property 1:

L(β + γ) = L(β) + L(γ), for all β, γ ∈ F.

(b) Property 2:

L(cβ) = cL(β), for all c ∈ GF(q), β ∈ F.
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Proof:

Property 1.
Given that L(β) =

∑n
i=0 αiβ

qi and that L(γ) =
∑n

i=0 αiγ
qi it follows

that

L(β + γ) =

n∑
i=0

αi(β + γ)q
i
=

n∑
i=0

αi(β
qi + γq

i
) = L(β) + L(γ).

Property 2.
Given that L(cβ) =

∑n
i=0 αi(cβ)

qi it follows that

L(cβ) =
n∑

i=0

αi(cβ)
qi =

n∑
i=0

αic
qiβqi =

n∑
i=0

αicβ
qi

= c

n∑
i=0

αiβ
qi = cL(β).

The following corollary is a consequence of properties 1 and 2 of L(x).

Corollary 8.3 For β3 = c1β1 + c2β2, β1 ∈ F, β2 ∈ F and c1 ∈
GF(q), c2 ∈ GF(q) it follows that

L(β3) = L(c1β1 + c2β2) = c1L(β1) + c2L(β2).

Because of properties 1 and 2 of L(z), if F is considered as a vector
space over GF(q), then L(x) induces a linear operator on F .

8.3 Properties of the roots of L(x)

Theorem 8.4 Let L(x) be a nonzero q-polynomial over GF(qm) and let
the extension field GF(qs) of GF(qm) contain all roots of L(x). Then
each root of L(x) has the same multiplicity, which is either 1 or a power
of q. Also, the roots form a linear subspace of GF(qs), where GF(qs) is
regarded as a vector space over GF(q).

Proof: From properties 1 and 2 it follows that any linear combi-
nation of roots with coefficients in GF(q) is again a root, and so the

roots of L(x) form a linear subspace of GF(qs). If L(x) =
∑n

i=0 αix
qi ,

then L′(x) = α0. Thus, if α0 �= 0 then L(x) and L′(x) are relatively
prime and therefore L(x) has simple roots only. Otherwise, assume
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α0 = α1 = · · · = αk−1 = 0 and αk �= 0, for some k ≥ 1, and then

L(x) =
n∑

i=k

αix
qi =

n∑
i=k

αqmk

i xq
i
=

[
n∑

i=k

αq(m−1)k

i xq
i−k

]qk

=

⎡
⎣n−k∑

j=0

αq(m−1)k

j+k xq
j

⎤
⎦qk

=

⎡
⎣n−k∑

j=0

αj+kx
qj

⎤
⎦qk

,

i.e., L(x) is expressed as the qk-power of a linearized polynomial with
simple roots only. Therefore, in this case, each root of L(x) has multi-
plicity qk.

In order to proceed the following result is required.

Lemma 8.5 Let β1, β2, . . . , βn be elements of GF(qm). Then

|Dn| =

∣∣∣∣∣∣∣∣∣∣

β1 βq
1 . . . βqn−1

1

β2 βq
2 . . . βqn−1

2
...

...
...

βn βq
n . . . βqn−1

n

∣∣∣∣∣∣∣∣∣∣
= β1

n−1∏
j=1

∏
cj∈Fq

(βj+1 −
j∑

k=1

ckβk),

and so, |Dn| �= 0 if and only if the βi, 1 ≤ i ≤ n, are linearly independent
over GF(q).

Proof: By induction on n the proof goes as follows. For n = 1, we
have |D1| = β1 if we consider the empty product on the right-hand side
equal to 1. Suppose the formula is true for some n ≥ 1 and consider the
polynomial

D(x) =

∣∣∣∣∣∣∣∣∣
βqn

1

Dn βqn

2
...

x xq . . . xq
n

∣∣∣∣∣∣∣∣∣
= xq

n |Dn|+
n−1∑
i=0

αix
qi

with αi ∈ GF(qm), 0 ≤ i ≤ n − 1. Assume first that the βi, 1 ≤
i ≤ n, are linearly independent over GF(q). We have D(βk) = 0, 1 ≤
k ≤ n, because of repeated rows (i.e., linearly dependent rows) in the
determinant. Also, since D(x) is a q-polynomial over GF(qm), all linear
combinations of the roots, i.e.,

n∑
i=1

ciβi, ci ∈ GF(q), 1 ≤ i ≤ n,



94 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

are roots of D(x). Thus D(x) has qn distinct roots, and we obtain the
factorization

D(x) = |Dn|
∏
ci∈Fq

(
x−

n∑
i=1

ciβi

)
. (8.1)

Now, if the βi, 1 ≤ i ≤ n, are linearly dependent over GF(q), then
|Dn| = 0 and

∑n
i=1 biβi = 0 for some choice of the bi ∈ GF(q), 1 ≤ i ≤ n,

not all of which are zero. It then follows that

n∑
i=1

biβ
qj

i =

(
n∑

i=1

biβi

)qj

= 0, for j = 0, 1, . . . , n,

and so the first n rows of D(x) are also linearly dependent over GF(q).
Thus D(x) = 0 and identity (8.1) is satisfied in all cases. Therefore,

|Dn+1| = D(βn+1) = |Dn|
∏
ci∈Fq

(
βn+1 −

n∑
i=1

ciβi

)
,

which proves the lemma.

Theorem 8.6 Let U be a linear subspace of GF(qm), considered as
a vector space over GF(q). Then for any non-negative integer k, the
polynomial

L(x) =
∏
β∈U

(x− β)q
k

is a q-polynomial over GF(qm).

Proof: Let L1(x) =
∏

β∈U (x− β). Let βi, 1 ≤ i ≤ n, be a basis for U

over GF(q). By forming a determinant |Dn| with these βi, 1 ≤ i ≤ n, as
in Lemma 8.5, it follows from Lemma 8.5 that |Dn| �= 0, and also that

L1(x) =
∏
β∈U

(x− β) =
∏
ci∈Fq

(
x−

n∑
i=1

ciβi

)
= |Dn|−1D(x)

from (8.1), and thus L1(x) is a q-polynomial over GF(qm). Notice that

L(x) = Lqk

1 (x) is also a q-polynomial over GF(qm) and the theorem is
thus proved.
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8.4 Finding roots of L(x)

Suppose that we are given L(x) =
∑n

i=0 αix
qi , a q-polynomial over

GF(qm), and we want to find all the roots of L(x) in the finite extension
GF(qs) of GF(qm). As mentioned before, L(x) induces a linear operator
on GF(qs), i.e., the mapping L : β ∈ GF(qs) → L(β) ∈ GF(qs) is a lin-
ear operator on the vector space GF(qs) over GF(q). Let {β1, β2, . . . , βs}
be a basis of GF(qs) over GF(q), so that every β ∈ GF(qs) can be writ-
ten as

β =
s∑

i=1

ciβi, ci ∈ GF(q), 1 ≤ i ≤ s.

Then, by properties 1 and 2, we have

L(β) = L

(
s∑

i=1

ciβi

)
=

s∑
i=1

ciL(βi).

Let L(βi) =
∑s

i=1 bijβj , 1 ≤ i ≤ s, bij ∈ GF(q), 1 ≤ i, j ≤ s, and let B
be the s × s matrix over GF(q) whose (i, j) entry is bij. Then we can
write

L(β) =

s∑
i=1

ciL(βi) =

s∑
i=1

ci

s∑
j=1

bijβj =

s∑
j=1

s∑
i=1

cibijβj =

s∑
j=1

djβj ,

if dj =
∑s

i=1 cibij , or, in matrix terms as

(c1, c2, . . . , cs)B = (d1, d2, . . . , ds),

where B is defined as

B =

⎡
⎢⎢⎢⎣

b11 b12 . . . b1s
b21 b22 . . . b2s
...

...
...

bs1 bs2 . . . bss

⎤
⎥⎥⎥⎦ .

Therefore, the equation L(β) = 0 is equivalent to

(c1, c2, . . . , cs)B = (0, 0, . . . , 0).

This is a homogeneous system of s linear equations for the unknowns
(c1, c2, . . . , cs). If the rank of B is r then the system has qs−r solution
vectors (c1, c2, . . . , cs). Each solution vector yields a root

β =
s∑

i=1

ciβi

of L(x) in GF(qs). The problem of finding roots of L(x) is thus converted
into the problem of solving a homogeneous system of linear equations.
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8.5 Affine q-polynomials
The method described earlier for finding roots of linearized polynomi-

als can be extended to a more general class of polynomials called affine
polynomials.

Definition 8.7 An affine q-polynomial over GF(qm) is a polynomial of
the form A(x) = L(x) − α, where L(x) is a linearized polynomial over
GF(qm) and α ∈ GF(qm).

It follows from Definition 8.7 that an element β ∈ F , where F is an
extension of GF(qm), is a root of A(x) if and only if L(β) = α, which by
the notation employed in Section 8.4 is equivalent to

(c1, c2, . . . , cs)B = (d1, d2, . . . , ds) (8.2)

with α =
∑s

k=1 dkβk. When the system of linear equations in (8.2)
is solved for (c1, c2, . . . , cs), each solution vector (c1, c2, . . . , cs) yields a
root β =

∑s
j=1 cjβj of A(x) in F. Finding roots of affine polynomials

is therefore an easier task than finding roots of polynomials f(x) over
GF(qm) in general.

It is described next a method for finding roots of an arbitrary polyno-
mial over a finite field F, which is an extension of GF(qm), using previous
knowledge about affine polynomials as follows.

(a) Determine a nonzero affine q-polynomial A(x) over GF(qm) that
contains f(x) as one of its factors. The polynomial A(x) is called
the affine multiple of f(x).

(b) Determine all the roots of A(x) in F, as described earlier.

(c) Calculate f(β) for all values of β such that β ∈ F and A(β) = 0,
selecting those β such that f(β) = 0. This step follows from the
observation that f(x) is a factor of A(x) and thus the roots of f(x)
in F are contained in the set of roots of A(x) in F.

In order to implement this procedure, the following question needs to
be answered. How can A(x) be found such that A(x) = f(x)g(x)? One
possible answer is as follows.

Let f(x) be a polynomial of degree n ≥ 1.

(a) For i = 0, 1, . . . , n−1 calculate the unique polynomial ri(x) of degree
at most n− 1 such that

xq
i ≡ ri(x) modf(x).
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(b) Choose αi ∈ GF(qm), 0 ≤ i ≤ n − 1, where αi �= 0 for at least one
value of i, such that

∑n−1
i=0 αiri(x) is a constant polynomial.

(c) Once a nontrivial solution has been found, i.e.,
∑n−1

i=0 αiri(x) = α
for some α ∈ GF(qm), it follows that:

n−1∑
i=0

αix
qi ≡

n−1∑
i=0

αiri(x) = α modf(x)

and thus

A(x) =

n−1∑
i=0

αix
qi − α

is a nonzero affine q-polynomial over GF(qm) which is a multiple
of f(x).

8.6 Problems with solutions
(1) Consider the 2-polynomial L(x) = x16+x8+αx4 over GF(4), where

α is a root of the primitive polynomial x2 + x+ 1 over GF(2), i.e.,
α ∈ GF(22) = GF(4) and α2 + α + 1 = 0. Consider GF(24) as
an extension of GF(4). Which are the roots of L(x) contained in
GF(16)?

Solution: Consider the basis {1, β, β2, β3} of GF(24) over GF(2),
where β is a root of the primitive polynomial x4+x+1 over GF(2).
The relation between α and β is the following. Since α3 = 1 and
β15 = 1, the value α = β5 can be chosen (other possible value is
α = β10), i.e., α = β2 + β modulo (β4 + β + 1). It follows that

L(x) = x16 + x8 + αx4 = (x4 + x2 + αx)4 = L4
1(x),

where L1(x) = x4+x2+αx and α = β5 = β2+β modulo β4+β+1
is considered, and

L1(1) = α = β2 + β

L1(β) = β4 + β2 + αβ = β3 + β + 1

L1(β
2) = β8 + β4 + αβ2 = β3 + β2 + 1

L1(β
3) = β12 + β6 + αβ3 = β2 + β,

B =

⎡
⎢⎢⎣

0 1 1 0
1 1 0 1
1 0 1 1
0 1 1 0

⎤
⎥⎥⎦ .
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The system of linear equations (c1, c2, c3, c4)B = (0, 0, 0, 0) leads to
the following set of equations:

c2 + c3 = 0
c1 + c2 + c4 = 0
c1 + c3 + c4 = 0

−→
c2 + c3 = 0

c2 = c1 + c4
c3 = c1 + c4

with solutions (0, 0, 0, 0) and (1, 0, 0, 1) for c2 = c3 = 0, and (0, 1, 1, 1)
and (1, 1, 1, 0) for c2 = c3 = 1. The roots of L1(x) in GF(16), gener-
ally denoted as δ =

∑3
i=1 ciβi, are the following:

δ1 = 0

δ2 = β3 + 1 = β14

δ3 = β3 + β2 + β = β11

δ4 = β2 + β + 1 = β10.

(2) Let f(x) = x4 +α2x3 +αx2 +α2x+1, f(x) ∈ GF(4)[x], where α is
a root of x2 + x + 1 which is primitive over GF(2). Find the roots
of f(x) belonging to GF(16).

Solution:

(a) Finding A(x), an affine multiple of f(x), with q = 2.

x = r0(x)

x2 = r1(x)

x4 ≡ α2x3 + αx2 + α2x+ 1 mod f(x) = r2(x)

x8 ≡ x3 + αx2 + α2x+ 1 mod f(x) = r3(x)

Consider the polynomial

α0r0(x) + α1r1(x) + α2r2(x) + α3r3(x) = θ (8.3)

i.e., a constant polynomial. Replacing r0(x), r1(x), r2(x) and
r3(x) in (8.3) by their corresponding values it follows that

α0x+α1x
2+α2(α

2x3+αx2+α2x+1)+α3(x
3+αx2+α2x+1) = θ

from which it follows:

α1 + αα2 + αα3 = 0
α0 + α2α2 + α2α3 = 0

α2α2 + α3 = 0
α2 + αα3 = θ.
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Choosing α3 = 1 the solution (α0, α1, α2, α3) = (α, 1, α, 1) and
θ = 0 is obtained, and thus A(x) = α3x

8+α2x
4+α1x

2+α0x−θ
is written explicitly as

A(x) = x8 + αx4 + x2 + αx.

(b) The roots of A(x) in GF(16) are calculated next. Since θ = 0,
the problem reduces to finding the roots of L(x) = 0 (a polyno-
mial in GF(4)) belonging to GF(16), where L(x) = A(x). Use
α = β5 where β is a primitive element of GF(16) satisfying the
relation β4 = β + 1. It follows that

L(1) = 0
L(β) = β2 + β + 1
L(β2) = β2 + β + 1
L(β3) = β2 + β + 1

⎫⎪⎪⎬
⎪⎪⎭ −→ (c1, c2, c3, c4)B = (0, 0, 0, 0)

with

B =

⎡
⎢⎢⎣

0 0 0 0
1 1 1 0
1 1 1 0
1 1 1 0

⎤
⎥⎥⎦ .

The matrix B has rank 1 and thus L(x) has 23 = 8 roots in
GF(16), namely δ1 = 0, δ2 = β + β2 = β5 = α, δ3 = β + β3 =
β9, δ4 = β2 + β3 = β6, δ5 = 1, δ6 = β10 = α2, δ7 = β7, δ8 =
β13. The roots of f(x) are δ2, δ3, δ4 and δ6, i.e., all roots of
f(x) lie in GF(16).





Chapter 9

GOPPA CODES

9.1 Introduction
The study of Goppa codes (Goppa 1970) is important for at least the

following reasons.

(a) Goppa codes generalize the narrow sense BCH codes.

(b) Their class contains arbitrarily long q-ary codes the dmin/n of which
strictly exceeds the asymptotic Gilbert bound for all q ≥ 49 and for
every rate R in a certain interval depending on q.

(c) They can be efficiently decoded up to their designed distance.

(d) They have been proposed for a public-key cryptosystem (McEliece
1978).

Before Goppa codes are formally defined some of the classic theory of
BCH codes is reviewed, however, cast in a light appropriate to what is
needed later.

Lemma 9.1 The n-tuple c = (c0, c1, . . . , cn−1) ∈ GF(q)n is a codeword
of the narrow sense BCH code over GF(q) defined by the roots α,α2, . . . ,
αd−1 of the generator polynomial g(x) if and only if

n−1∑
i=0

ciα
i(d−1)

[
xd−1 − α−i(d−1)

x− α−i

]
= 0. (9.1)

Proof: From the definition of narrow sense BCH codes (MacWilliams
and Sloane 1977, p.28) it follows that c is a codeword in this code if and
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only if
n−1∑
i=0

ciα
ij = 0, for 1 ≤ j ≤ d− 1.

However, by manipulating the left-hand side of (9.1) it follows that

n−1∑
i=0

ciα
i(d−1)

[
xd−1 − α−i(d−1)

x− α−i

]
=

n−1∑
i=0

ciα
i(d−1)

d−2∑
j=0

α−i(d−2−j)xj

=

d−2∑
j=0

n−1∑
i=0

ciα
i(j+1)xj

=

d−1∑
j=1

(
n−1∑
i=0

ciα
ij

)
xj−1 = 0.

Notice that for this last polynomial to be identically zero each of its
coefficients has to be zero. Thus c is a codeword if and only if (9.1)
holds and the lemma thus follows.

9.2 Parity-check equations
It is remarked that (9.1) defines a set of parity-check equations and

from them the code parity-check matrix is derived as now explained. An
intermediate result in the proof of Lemma 9.1 was the following:

d−1∑
j=1

(
n−1∑
i=0

ciα
ij

)
xj−1 = 0,

where,
n−1∑
i=0

ciα
ij = 0, for 1 ≤ j ≤ d− 1. (9.2)

In matrix form (9.2) can be written as

(c0, c1, . . . , cn−1)

⎡
⎢⎢⎢⎢⎣

1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

. . . . . . .

. . . . . . .

1 αd−1 α2(d−1) . . . α(d−1)(n−1)

⎤
⎥⎥⎥⎥⎦
T

= [0],

where [0] denotes a (d− 1)-place all-zero row matrix. Alternatively, this
result can be expressed as cHT = 0, whereH = [αij ], 0 ≤ i ≤ n−1, 1 ≤
j ≤ d− 1, and α is a primitive nth root of unity.
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Definition 9.2 Goppa codes: Let g(x) be a polynomial of degree
t, 1 ≤ t < n, with coefficients on an extension field GF(qm) of GF(q),
and let L = {γ0, γ1, . . . , γn−1} be a set of distinct elements of GF(qm)
such that g(γi) �= 0, 0 ≤ i ≤ n− 1. The Goppa code Γ(L, g) over GF(q),
with Goppa polynomial g(x), is the set of all n-tuples c = (c0, c1, . . . , cn−1)
∈ GF(q)n, i.e., with symbols from GF(q), such that the following identity

n−1∑
i=0

cig
−1(γi)

[
g(x)− g(γi)

x− γi

]
= 0 (9.3)

holds in the polynomial ring GF(qm)[x]. If g(x) is irreducible over
GF(qm), then Γ(L, g) is called an irreducible Goppa code.

If (9.3) reduced modulo g(x) is considered, an equivalent expression for
the definition of Goppa codes will result, i.e., the code is defined by the
set of all GF(q) n-tuples that satisfy the congruence

n−1∑
i=0

ci
x− γi

≡ 0 mod g(x). (9.4)

Example 9.3 Let g(x) = xd−1 and let L = α−i, 0 ≤ i ≤ n− 1, where

α ∈ GF(qm) is a primitive nth root of unity, then Γ(L, g) is defined by

n−1∑
i=0

ciα
i(d−1)

[
xd−1 − α−i(d−1)

x− α−i

]

which is exactly expression (9.1), i.e., the given Γ(L, g) defines a narrow
sense BCH code over GF(q) of block length n (and designed distance d).
The parenthesis was used to emphasize that knowledge about d was not
derived from the definition of Γ(L, g).

9.3 Parity-check matrix of Goppa codes
By expanding the left-hand side of (9.4) in powers of x, reduced mod-

ulo g(x), and then equating the coefficients to zero, the result is a set of
deg(g(x)) linear equations in GF(qm), involving the codeword compo-
nents ci, which can be viewed as defining a set of parity-check equations.
It is therefore concluded that Goppa codes are linear codes. Expression
(9.4) can be seen to define a subspace of the vector space GF(q)n, i.e.,
it restricts the c ∈ GF(q)n to those satisfying (9.4).

It is now of interest to find a parity-check matrix H for Γ(L, g), i.e., a
matrix H over GF(qm), such that the intersection of its null space with
GF(q)n is Γ(L, g). Let g(x) =

∑t
j=0 gjx

j, then it follows that
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g(x)− g(γ)

x− γ
=

t∑
j=0

gj
xj − γj

x− γ
=

t∑
j=0

gj

j−1∑
s=0

γ(j−1−s)xs

=

t−1∑
s=0

t∑
j=s+1

gjγ
(j−1−s)xs. (9.5)

By making hi = g−1(γi), 0 ≤ i ≤ n− 1, and using (9.4), it follows that
(9.3) is satisfied by c ∈ GF(q)n if and only if

t−1∑
s=0

n−1∑
i=0

ci

⎛
⎝hi

t∑
j=s+1

gjγ
(j−1−s)
i

⎞
⎠xs = 0,

i.e., if and only if

n−1∑
i=0

ci

⎛
⎝hi

t∑
j=s+1

gjγ
(j−1−s)
i

⎞
⎠ = 0, for 0 ≤ s ≤ t− 1. (9.6)

In matrix form (9.6) can be expressed as

c

⎡
⎢⎢⎢⎢⎣

h0gt · · · hn−1gt
h0(γ0gt + gt−1) · · · hn−1(γn−1gt + gt−1)
. · · · .
. · · · .

h0
∑t

j=1 gjγ
j−1
0 · · · hn−1

∑t
j=1 gjγ

j−1
n−1

⎤
⎥⎥⎥⎥⎦
T

= [0],

i.e., cHT = [0], where for H, since gt �= 0, after some elementary row
operations it follows that

H =

⎡
⎢⎢⎢⎢⎣

h0 h1 . . . hn−1

h0γ0 h1γ1 . . . hn−1γn−1

. . . . . .

. . . . . .
h0γ

t−1
0 h1γ

t−1
1 . . . hn−1γ

t−1
n−1

⎤
⎥⎥⎥⎥⎦ . (9.7)

The intersection of the null space ofH in (9.7) with GF(q)n, is Γ(L, g).
The elements of H belong to GF(qm). By mapping each GF(qm) entry
in H as a column m-tuple over GF(q) an equivalent (over GF(q)) parity-
check matrix results.

Theorem 9.4 The dimension k of the Goppa code Γ(L, g) is at least
n−mt and its minimum distance is at least t+ 1.
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Proof: Over GF(qm), H is a t × n matrix. When each entry of
H is mapped as a column m-tuple over GF(q) a matrix with rank at
most mt results. Thus, it follows that k ≥ n − mt. For the minimum
distance of Γ(L, g) it is noticed that, in a way similar as done for BCH
codes, any t columns of H can be chosen and, after simplification, a
Vandermonde determinant can be formed with the powers of t distinct
values of γi, 0 ≤ i ≤ n − 1. Therefore such a determinant is nonzero
and any t columns of H are linearly independent. Thus the minimum
distance of Γ(L, g) satisfies d ≥ t+ 1.

In practice most of the codes used are binary. For binary Goppa codes
the lower bound on the minimum distance can be improved as shown
next.

Theorem 9.5 A binary Goppa code whose Goppa polynomial has de-
gree t and contains no repeated irreducible factors over GF(2m), has a
minimum distance of at least 2t+ 1.

Proof: Let c ∈ GF(2)n be a codeword with Hamming weight w in
the binary Goppa code Γ(L, g) and let ci1 = ci2 = · · · = ciw = 1, with
0 ≤ i1 ≤ i2 ≤ . . . ≤ iw ≤ n − 1, be the nonzero positions of c. Let
L = {γ0, γ1, . . . , γn−1} ⊆ GF(2m), and define

f(x) =
w∏

j=1

(x− γij ) ∈ GF(2m)[x].

By multiplying (9.4) by f(x) it follows that

w∑
j=1

w∏
s=1,s �=j

(x− γis) = f ′(x) = 0 mod g(x),

which means that g(x) divides f ′(x). In fields of characteristic 2 the
derivative of a polynomial f(x), i.e., f ′(x), contains only even powers
of x and is therefore the square of a polynomial in GF(2m)[x]. Since,
by hypothesis, g(x) has no repeated irreducible factors over GF(2m) it
follows that g2(x) divides f ′(x), which implies that

w − 1 ≥ deg(f ′(x)) ≥ 2deg(g(x)) = 2t,

i.e., w − 1 ≥ 2t. Thus w ≥ 2t + 1 and so the minimum weight of any
non-zero codeword is at least 2t + 1, which by the code linearity also
implies dmin ≥ 2t+ 1.

It is remarked that this may not be a very good lower bound on dmin
but the deg(g(x)) plays for Goppa codes a more significant role than the
weight of the generator polynomial g(x) of ordinary cyclic codes.
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9.4 Algebraic decoding of Goppa codes
In general, the minimum distance of Goppa codes is not known ex-

actly. Theorems 9.4 and 9.5 provide only lower bounds on the minimum
distance. In the sequel procedures for decoding Goppa codes will be
presented, conditioned on the knowledge of lower bounds on minimum
distance.

The algebraic decoding of Goppa codes can be performed by using
the Euclidean division algorithm for polynomials. When decoded in this
manner, a Goppa code over GF(q), with generator polynomial of degree
2t, corrects up to t errors. In particular, over GF(2), a Goppa code with
generator polynomial of degree t can be decoded with the Euclidean
algorithm to correct up to t errors. Goppa codes with generator polyno-
mial g(x) = x2t can be efficiently decoded with the Berlekamp–Massey
algorithm (Massey 1969). Let c be the transmitted codeword, let e be
the error vector added by the channel and let r = c+ e be the received
n-tuple. It follows that

n−1∑
i=0

ri
x− γi

=
n−1∑
i=0

ci
x− γi

+
n−1∑
i=0

ei
x− γi

.

However, since c is a codeword it follows from (9.4) that
∑n−1

i=0
ci

x−γi
≡ 0

mod g(x) and it also follows that

n−1∑
i=0

ri
x− γi

≡
n−1∑
i=0

ei
x− γi

mod g(x). (9.8)

The syndrome polynomial S(x) is defined as

S(x) ≡
n−1∑
i=0

ri
x− γi

mod g(x), (9.9)

where it is noticed that the degree of S(x) is less than deg(g(x)). By
combining (9.8) and (9.9) it follows that

S(x) ≡
n−1∑
i=0

ei
x− γi

mod g(x).

Let M be the subset of L such that ei �= 0 if and only if γi ∈ M , then

S(x) ≡
∑
γi∈M

ei
x− γi

mod g(x). (9.10)
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The error locator polynomial σ(x) is defined as

σ(x) =
∏

γi∈M
(x− γi). (9.11)

The error evaluator polynomial η(x) is defined as

η(x) =
∑
γi∈M

ei
∏

γj∈M,j �=i

(x− γj). (9.12)

It is remarked that σ(x) and η(x) are relatively prime polynomials. The
formal derivative of (9.11) gives

σ′(x) =
∑
γi∈M

∏
γj∈M,j �=i

(x− γj). (9.13)

Hence, for each γi ∈ M it follows that

η(γi) ≡ ei
∏

γj∈M,j �=i

(γi − γj) = eiσ
′(γi),

and thus, ei = η(γi)/σ
′(γi).

The major effort in the algebraic decoding operation is spent to obtain
the locator polynomial σ(x) and the evaluator polynomial η(x). After
that is done the error vector is fully determined from

ei =

{
0 , if σ(γi) �= 0

η(γi)/σ
′(γi) , if σ(γi) = 0.

By multiplying (9.10) and (9.11) the right-hand side of (9.12) is ob-
tained, i.e.,

S(x)σ(x) ≡ η(x) mod g(x), (9.14)

which is called the key equation for decoding Goppa codes (Berlekamp
1973).
Given g(x) and S(x), the task of an algebraic decoding algorithm is to
find low-degree polynomials σ(x) and η(x) satisfying (9.14). Expression
(9.14) can be written as a system of deg(g(x)) linear equations in the
unknown coefficients of σ(x) and η(x), by reducing each power of x
mod g(x) and equating coefficients of the same degree on both sides.

In order to prove that the decoder can correct up to t errors, it is
sufficient to show that the system of linear equations in (9.14) has at
most one solution with deg(σ(x)) and deg(η(x)) sufficiently small.

Suppose that S(x)σ(x) ≡ η(x) mod g(x) has two distinct pairs of
solutions denoted by

S(x)σ(1)(x) ≡ η(1)(x) mod g(x), (9.15)

S(x)σ(2)(x) ≡ η(2)(x) mod g(x), (9.16)
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where gcd[σ(1)(x), η(1)(x)] = 1 and gcd[σ(2)(x), η(2)(x)] = 1. If σ(1)(x)
and g(x) had a common factor then η(1)(x) would be divisible by that
factor contradicting the fact that σ(1)(x) and η(1)(x) are relatively prime.
Thus, dividing (9.15) by σ(1)(x) it follows that

S(x) ≡ η(1)(x)

σ(1)(x)
mod g(x),

and proceeding similarly with (9.16) it follows that

S(x) ≡ η(2)(x)

σ(2)(x)
mod g(x),

and therefore

σ(1)(x)η(2)(x) ≡ σ(2)(x)η(1)(x) mod g(x). (9.17)

If deg(g(x)) = 2t and deg(σ(1)(x)) ≤ t, deg(σ(2)(x)) ≤ t, deg(η(1)(x)) <
t, deg(η(2)(x)) < t, then an equality in (9.17) follows, i.e.,

σ(1)(x)η(2)(x) = σ(2)(x)η(1)(x).

Since gcd[σ(1)(x), η(1)(x)] = 1 then σ(1)(x) divides σ(2)(x) and sim-
ilarly, if gcd[σ(2)(x), η(2)(x)] = 1 then σ(2)(x) divides σ(1)(x). The
σ’s are monic polynomials and thus it follows that σ(1)(x) = σ(2)(x)
and η(1)(x) = η(2)(x). Our conclusion is that if deg(g(x)) = 2t then
S(x)σ(x) ≡ η(x) mod g(x) has at most one solution with deg(η(x)) <
deg(σ(x)) ≤ t. This also implies that the associated system of lin-
ear equations in the unknown coefficients of σ(x) and η(x) must be
nonsingular.

9.4.1 The Patterson algorithm
In this section, we study the Patterson algorithm (Patterson 1975)

for decoding binary Goppa codes when the generator polynomial g(x),
of degree t, is irreducible over GF(2m). It is known (MacWilliams and
Sloane 1977, p.366) that the congruence

S(x)σ(x) = η(x) mod g(x),

has at most one solution with deg(σ(x)) ≤ t and deg(η(x)) < t, if
deg(g(x)) = 2t. For binary irreducible Goppa codes, with deg(g(x)) = t,
it is known that d ≥ 2t+ 1 (p.345).

The following procedure, as described in (Patterson 1975), allows the
correction of up to t errors. Let

σ(x) = α2(x) + xβ2(x), (9.18)
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and thus σ′(x) = β2(x), and deg(α(x)) ≤ t/2 and deg(β(x)) ≤ (t −
1)/2. Because g(x) is irreducible, by the Euclidean division algorithm
for polynomials h(x) can be found, with deg(h(x)) < t, such that

S(x)h(x) ≡ 1 mod g(x).

In the binary case, η(x) = σ′(x), thus

S(x)σ(x) = σ′(x)
S(x)[α2(x) + xβ2(x)] = β2(x)

α2(x) + xβ2(x) ≡ h(x)β2(x) mod g(x)

β2(x)[h(x) + x] ≡ α2(x) mod g(x). (9.19)

Let d2(x) = h(x) + x. Then (9.19) can be written as

d2(x)β2(x) ≡ α2(x) mod g(x),

and thus
d(x)β(x) ≡ α(x) mod g(x). (9.20)

Solving (9.20), i.e., finding α(x) and β(x), then from (9.18) σ(x) is
obtained.

Example 9.6 Consider the binary irreducible (8, 2, 5) Goppa code de-
fined by g(x) = x2 + x+ 1 with GF(23) as the extension field generated
by x3 + x + 1 having α as a root, i.e., α3 = α + 1. Let the transmitted
codeword be the all-zero 8-tuple and suppose that the error vector e is as
follows:

e = (1, 0, 0, 0, 0, 0, 0, 1).

(a) The syndrome S(x) is calculated as

S(x) =
1

x
+

1

x− α6
≡ α5x+ α2 mod (x2 + x+ 1).

(b) The polynomial h(x) is then obtained as

h(x) ≡ 1/S(x) mod (x2 + x+ 1),

i.e.,
h(x) = α3x+ α mod (x2 + x+ 1).

(c) From d2(x) = h(x)+x = αx+α mod (x2+x+1) it is easy to obtain
d(x) = α4x and then, from d(x)β(x) = α(x) mod (x2+x+1), both
β(x) = 1 and α(x) = α4x are found.

(d) It thus follows that

σ(x) = α2(x) + xβ2(x) = αx2 + x,

which has as roots σ1 = 0 and σ2 = α6, i.e., 0 and α6 are the error
location numbers.
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Table 9.1. Computing σ(x) with the Blahut algorithm.

i gi(x) ri(x) qi(x)

−1 0 x4 + x2 + 1 . . .

1 1 α3x3 + x2 + α4x+ α2 . . .

2 α4x+ α x2 + α6x+ α4 α4x+ α

3 σ(x) α6 α3x+ α6

9.4.2 The Blahut algorithm
By using the standard decoding algorithm for a Goppa code in the

binary case, with g(x) over GF(2m), of degree t and irreducible, this
decoder can only correct up to �t/2	 errors. However, it is known that,
in this case, d ≥ 2t+ 1 and one should be able to correct up to t errors.
Blahut (1983, p.237) observed that in this case it is still possible to
perform the correction of up to t errors, using the standard decoding
algorithm with no change in the code, but describing it modulo g2(x),
instead of modulo g(x).

Example 9.7 Consider again the same code, transmitted codeword and
error vector of the previous example. Now however the standard decod-
ing algorithm for Goppa codes is applied considering the results reduced
modulo g2(x) = x4 + x2 + 1. The resulting syndrome is as follows:

S(x) =
1

x
+

1

x− α6
≡ α3x3 + x2 + α4x+ α2 mod (x4 + x2 + 1).

By using the Euclidean algorithm σ(x) is obtained with the help of Ta-
ble 9.1 whose construction is described in (Clark and Cain 1981, pp.195–
201). Finally,

σ(x) = 1 + (α4x+ α)(α3x+ α6) = x2 + α6x,

and thus, as before, the values σ1 = 0 and σ2 = α6 are obtained.

9.5 The asymptotic Gilbert bound
Recall that a Goppa code for which the Goppa polynomial is irre-

ducible over GF(qm) is called an irreducible Goppa code. In this section
it will be shown that there exist long irreducible Goppa codes which
meet the asymptotic Gilbert bound (see Appendix A).
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As already seen in Subsection 5.5.3, the number of degree t polyno-
mials, irreducible over GF(qm), is given by

It =
1

t

∑
d:d|t

μ(d)(qm)(t/d),

where μ(d) is the Moebius function. In (Berlekamp 1968, p.80) the
author gives what he called a crude lower bound on It, which states that

It >
qmt

t

(
1− q−(mt/2)+1

)
.

The derivation of this bound will now proceed, i.e., it will be proven that

It =
1

t

∑
d:d|t

μ(d)(qm)(t/d) >
qmt

t

(
1− q−(mt/2)+1

)
.

By Corollary 5.6 it is known that

(qm)t =
∑
d:d|t

dId,

where Id ≥ 0. Thus, it follows that

qmt = tIt +
∑

d:d|t,d�=t,d�=1

dId + I1. (9.21)

However, I1 = qm and it follows from (9.21) that

qmt ≥ tIt + qm (9.22)

or, equivalently,

It ≤ 1

t

(
qmt − qm

)
.

It follows from (9.22) that qmt > tIt and thus it also follows that

t/2∑
j=0

qmj >

t/2∑
j=0

jIj >
∑

d|t,d�=t

dId. (9.23)

Therefore

qmt =
∑
d|t

dId = tIt +
∑

d|t,d�=t

dId < tIt +

t/2∑
j=0

jIj

< tIt +

t/2∑
j=0

qmj < tIt + q(mt/2)+1,
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where the first and second inequalities follow because of (9.23) and the

third inequality used the fact that
∑t/2

j=0 q
mj is part of a super increasing

sequence, and it thus follows that

It >
qmt

t

(
1− q−(mt/2)+1

)
. (9.24)

This derivation is similar to that in the proof of Theorem 5.10, however,
employing qm instead of q.

If c is a codeword with Hamming weight d, in the irreducible Goppa
code with Goppa polynomial g(x), then∑

γi

ci
x− γi

≡ 0 mod g(x),

where γi ∈ GF(qm) and g(γi) �= 0, is a rational function which can
be represented by a quotient where the numerator has degree at most
d − 1 and the denominator has degree d. By definition, the Goppa
polynomial of any Goppa code containing c must divide the numerator.
Also, such degree t Goppa polynomials, irreducible over GF(qm), are
pairwise relatively prime. Therefore, the number of irreducible Goppa
codes containing c is almost equal to the number of distinct degree t
factors of the numerator, i.e., almost equal to �(d − 1)/t	, where �x	
denotes the integer part of x.

The number of irreducible Goppa codes containing codewords of Ham-
ming weight ≤ D will now be counted. These are called bad irreducible
Goppa codes. If the number of bad irreducible Goppa codes is less than
the total number of distinct irreducible Goppa codes then there must be
some irreducible Goppa codes with minimum distance d > D.

The number of vectors of length qm and Hamming weight d is given
by (

qm

d

)
(q − 1)d

and each such vector may belong to at most �(d − 1)/t	 distinct ir-
reducible Goppa codes. Therefore, by summing over all d, such that
d ≤ D, the total number of bad irreducible Goppa codes is obtained. By
comparing this result to the lower bound for It it is concluded that if

D∑
d=0

⌊
d− 1

t

⌋
(q − 1)d

(
qm

d

)
<

qmt

t

(
1− q−(mt/2)+1

)
then there exist “good” irreducible Goppa codes, i.e., Goppa codes for
which d > D. For large n = qm, by setting t = (1 − R)qm/m, the
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irreducible Goppa codes have rate ≥ R and the above inequality is seen
to be only slightly weaker asymptotically than the Gilbert bound, i.e.,

D∑
d=0

(q − 1)d
(
n
d

)
< q(1−R)n.

Let R denote any given code rate, 0 < R < (q − 1)/q, and let ε > 0
denote any small positive constant. It then follows that almost all ir-
reducible q-ary Goppa codes of rate R and long block length n have
minimum distance no more than εn less than the corresponding value
provided by the Gilbert bound. From tm = (1 − R)qm it follows that
R = 1 − mt/qm, and if n = qm and n − k ≤ mt then k ≥ n − mt and
k/n ≥ 1−mt/n = R. Also, since

D∑
d=0

⌊
d− 1

t

⌋
(q − 1)d

(
qm

d

)
<

qmt

t

(
1− q−(mt/2)+1

)
for large n = qm it follows that

D∑
d=0

⌊
d− 1

t

⌋
(q − 1)d

(
n
d

)
<

q(1−R)n

t

or
D∑

d=t+1

t

⌊
d− 1

t

⌋
(q − 1)d

(
n
d

)
< q(1−R)n.

9.6 Quadratic equations over GF(2m)

The normal basis of GF(2m) has the form

γ, γ2, . . . , γ2
m−1

.

Any element β ∈ GF(2m) can be represented in terms of the normal
basis as

β = b0γ + b1γ
2 + · · · + bm−1γ

2m−1
, (9.25)

where bi ∈ {0, 1}, 0 ≤ i ≤ m− 1, and the trace of β, denoted as Tr(β),
is

Tr(β) = b0Tr(γ) + b1Tr(γ
2) + · · · + bm−1Tr(γ

2m−1
)

or
Tr(β) = b0 + b1 + · · ·+ bm−1 (9.26)

since γ is such that

Tr(γ) = Tr(γ2) = · · · = Tr(γ2
m−1

) = 1.
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Furthermore, it is noticed that

β2 = b0γ
2 + b1γ

4 + · · ·+ bm−2γ
2m−1

+ bm−1γ
2m

i.e., that

β2 = bm−1γ + b0γ
2 + b1γ

4 + · · · + bm−2γ
2m−1

.

The coefficients of β2 are obtained simply by shifting the coefficients of
β by one place to the right.

Theorem 9.8 The quadratic equation x2+x+β, β ∈ GF(2m), has two
roots in GF(2m) if Tr(β) = 0, and has no roots in GF(2m) if Tr(β) = 1.
Thus, f(x) = x2 + x + β = (x − λ1)(x − λ2), for λ1, λ2 ∈ GF(2m) if
Tr(β) = 0, but f(x) is irreducible over GF(2m) if Tr(β) = 1.

Proof: Let x and x2 be expressed in terms of the normal basis as

x = x0γ + x1γ
2 + . . .+ xm−1γ

2m−1

x2 = xm−1γ + x0γ
2 + . . .+ xm−2γ

2m−1
.

If x is a solution of x2+x+β = 0 it follows, by using (9.25) and equating

coefficients of γ2
i
, 0 ≤ i ≤ m− 1, that

x0 + xm−1 = b0
x1 + x0 = b1

...
...

...
xm−1 + xm−2 = bm−1 (+)

0 =
∑m−1

i=0 bi = Tr(β).

Thus, Tr(β) = 0 is a necessary condition for f(x) = 0 to have a solution
in GF(2m). On the other hand, if Tr(β) = 0 then f(x) = 0 will have
two solutions. Namely,

x0 = λ, x1 = λ+ b1, x2 = λ+ b1 + b2, . . . ,
xm−1 = λ+ b1 + b2 + . . .+ bm−1,

where λ = 0 or λ = 1. Thus Tr(β) = 0 is also a sufficient condition for
x2 + x+ β = 0 to have a solution in GF(2m).

Example 9.9 (a) f(x) = x2+x+1, in GF(2)[x], is irreducible because
Tr(1) = 1.

(b) f(x) = x2 + x + α2, in GF(4)[x], is irreducible because Tr(α2) =
α2 + α4 = 1, reducing modulo x2 + x+ 1, i.e., with α2 = α+ 1.
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(c) f(x) = x2 + x + α, in GF(8)[x], is reducible because Tr(α) = α +
α2 + α4 = 0, with reduction modulo x3 + x + 1, i.e., α3 = α + 1.
Actually, f(x) = (x+ α2)(x+ α6).

Theorem 9.10 Let β be a fixed element of GF(2m).

(a) If Tr(β) = 1 then, over GF(2m)[x], any irreducible quadratic ax2 +
bx+c can be transformed into A(x2+x+β), for some A ∈ GF(2m),
by a suitable affine transformation of variables (in GF(2m)).

(b) If Tr(β) = 0 then, over GF(2m)[x], any reducible quadratic ax2 +
bx+ c with distinct roots, can be transformed into A(x2+x+β), for
some A ∈ GF(2m), by an affine transformation of variables.

Proof:

(a) Let f(x) = ax2+bx+c be irreducible over GF(2m), with a �= 0, b �=
0, c �= 0. Notice that if a = 0 then f(x) = bx + c is no longer
quadratic. If b = 0 then f(x) is a perfect square, and if c = 0 then
f(x) = x(ax+ b) is reducible. Replacing x by xb/a in ax2 + bx+ c
it follows that

b2

a

(
x2 + x+

ac

b2

)
= A(x2 + x+ d),

where A = b2/a and d = ac/b2. By Theorem 9.8, Tr(d) = 1. Thus,

Tr(β + d) = Tr(β) + Tr(d) = 0.

Also, by Theorem 9.8, there exists λ ∈ GF(2m) such that

λ2 + λ+ (β + d) = 0.

By changing x+ λ for x in A(x2 + x+ d) it follows that

A[(x+λ)2 +(x+λ)+ d] = A[x2 +x+(λ2+λ+ d)] = A[x2+x+β],

where the last equality follows because λ2 + λ+ d = β.

(b) Let f(x) = ax2+ bx+ c be reducible over GF(2m), with two distinct
roots. Replacing x by xb/a in ax2 + bx+ c it results, as before

b2

a

(
x2 + x+

ac

b2

)
= A(x2 + x+ d),

where A = b2/a and d = ac/b2. By Theorem 9.8, Tr(d) = 0. Thus,

Tr(β + d) = Tr(β) + Tr(d) = 0.
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Also, by Theorem 9.8, there exists λ ∈ GF(2m) such that

λ2 + λ+ (β + d) = 0.

By changing x+ λ for x in A(x2 + x+ d) it follows that

A[(x+λ)2 +(x+λ)+ d] = A[x2 +x+(λ2+λ+ d)] = A[x2 +x+β],

where the last equality follows because λ2 + λ+ d = β.

9.7 Adding an overall parity-check digit
Let Γ(L, g) be a Goppa code over GF(q), of length n = qm, with

L = {0, 1, α, . . . , αn−2}, i.e., L consists of all the elements of GF(qm),
and let g(x) be a polynomial of degree t with no roots in GF(qm). Let
c = [c(0), c(1), . . . , c(αn−2)] be a codeword of Γ(L, g). This Γ(L, g) code
may be extended by appending an overall parity-check digit c(∞) to
each codeword, where c(∞) is given by

c(∞) = −
∑

γ∈GF(qm)

c(γ),

and thus c(∞) ∈ GF(qm). Equivalently,∑
γ∈GF(qm)∪{∞}

c(γ) = 0.

Recall from (9.4) that∑
γ∈GF(qm)

c(γ)

x− γ
≡ 0 mod g(x).

Adopting the convention that

c(∞)

x−∞ = 0,

(9.4) can be expressed as∑
γ∈GF(qm)∪{∞}

c(γ)

x− γ
≡ 0 mod g(x). (9.27)

Using the parity-check matrix H from (9.7) it follows that cHT = 0, i.e.,

n−1∑
i=0

cihiγ
j
i = 0, 0 ≤ j ≤ t− 1,
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where hi = g−1(γi) or, by using c = [c(0), c(1), . . . , c(γn−1)],∑
γ∈GF(qm)

γic(γ)

g(γ)
= 0, i = 0, 1, . . . , t− 1

or, by adding an overall parity-check digit∑
γ∈GF(qm)∪{∞}

γic(γ)

g(γ)
= 0, i = 0, 1, . . . , t (9.28)

with the convention that 1/∞ = 0.

9.8 Affine transformations
Definition 9.11 An affine transformation from GF(qm) to GF(qm) is
a transformation of the form

f(x) =
ax+ b

cx+ d

when ad− bc �= 0, a, b, c, d ∈ GF(qm).

Now we will consider the homomorphism from 2×2 matrices onto the
affine transformations as follows.

If σ1 : γ → (aγ + b)/(cγ + d)
σ2 : γ → (eγ + f)/(gγ + h)

then
σ1σ2 : γ → (iγ + j)/(kγ + l),

where [
i j
k l

]
=

[
a b
c d

] [
e f
g h

]
assuming a, b, c, d ∈ GF(qm), ad �= bc, and e, f, g, h ∈ GF(qm), eh �= fg,
and γ ∈ GF(qm) ∪ {∞}.

Denote the elements of GF(qm) ∪ {∞} by two-component column

vectors

[
r
s

]
, where

[
r
s

]
represents the elements r/s, if s �= 0.

[
r
0

]
represents ∞. It is also noticed that

[
r
s

]
and α

[
r
s

]
, α ∈ GF(qm),

represent the same element.

Example 9.12 Consider GF(23), with α being a primitive element sat-
isfying α3 = α+ 1, and consider the affine transformation

σ1 : γ → (γ + 1)/(α2γ + α4)
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If γ = α3 then

σ1 : α3 → (α3 + 1)/(α5 + α4) = α/1 = α

Using the matrix homomorphism it follows that

(a)

γ + 1

α2γ + α4
↔

[
1 1
α2 α4

]

(b)

α3 ↔
[
α3

1

]

(c)

α3 + 1

α2α3 + α4
↔

[
1 1
α2 α4

] [
α3

1

]
=

[
α3 + 1
α5 + α4

]
=

[
α
1

]
↔ α.

If γ = ∞ then

∞ ↔
[
1
0

]
∞+ 1

α2∞+ α4
↔

[
1 1
α2 α4

] [
1
0

]
=

[
1
α2

]
↔ 1

α2
= α5.

Recall from (9.28) that

∑
γ∈GF(qm)∪{∞}

γic(γ)

g(γ)
= 0, i = 0, 1, . . . , t.

If g1(γ) is obtained from g(γ) by an affine transformation

π : γ → aγ + b

cγ + d

where a, b, c, d ∈ GF(qm), ad �= bc, and γ ∈ GF(qm) ∪ {∞}, then the
code with Goppa polynomial g1(x) may be obtained from the code with
Goppa polynomial g(x) by the corresponding affine permutation of code
digits.
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9.9 Cyclic binary double-error correcting
extended Goppa codes

The topic addressed here was originally developed in (Berlekamp and
Moreno 1973). We consider binary Goppa codes with irreducible Goppa
polynomial g(x) = x2 + x+ β, over GF(2m)[x]. Since by Theorem 9.10,
by using a suitable affine transformation of variables in GF(2m) it is
possible to transform any irreducible quadratic into any other quadratic,
there is only one extended double error-correcting Goppa code of length
2m+1, which is the cardinality of the set GF(2m)∪{∞}. Therefore, the
choice of g(x) = x2 + x+ β incurs no loss of essential generality. Since
g(x) is irreducible, it follows from Theorem 9.8 that

Tr(β) =

m−1∑
i=0

β2i = 1.

Notice that if γ is a root of g(x) then γ + 1 and β/γ are also roots of
g(x). Hence, the code is invariant to the following permutations:

ρ1 : γ → γ + 1

ρ2 : γ → β/γ.

By squaring (9.27) we obtain

∑
γ∈GF(2m)∪{∞}

c(γ)

x2 + γ2
≡

∑
γ∈GF(2m)∪{∞}

c(γ)

x+ β + γ2
mod g(x),

and thus the code is also invariant under

ρ3 : γ → γ2 + β.

Notice that

ρ3 : γ → γ2 + β

ρ23 : γ → (γ2 + β)2 + β = γ4 + β2 + β

ρ33 : γ → (γ4 + β2 + β)2 + β = γ8 + β4 + β2 + β

...
...

...
...

ρm3 : γ → γ2
m
+Tr(β) = γ + 1,

So, ρm3 = ρ1.

Lemma 9.13 Extended binary Goppa codes with g(x) = x2 + x+ β, β ∈
GF(2m),Tr(β) = 1, are cyclic with block length n = 2m + 1.
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Proof: As remarked earlier, because of Theorem 9.10, g(x) = x2+x+β
causes no essential loss of generality. Suppose that λ and λ+ 1 are the
roots of g(x), neither of which belongs to GF(2m). We show next that
the permutation

ρ2ρ1 : → β/(γ + 1), (9.29)

obtained by applying ρ2 first and then ρ1, consists of a single cycle. It
is necessary and sufficient to show that, for a suitable β,[

0 β
1 1

]n [
1
0

]
= k

[
1
0

]
, k ∈ GF(2m), (9.30)

if and only if n is divisible by 2m + 1.

Any eigenvalue λ of

[
0 β
1 1

]
is a root of

∣∣∣∣ λ β
1 λ+ 1

∣∣∣∣ = λ2 + λ+ β = 0,

i.e., λ must be a root of g(x). Thus, from (9.30), it follows that

k = λn.

Let ζ ∈ GF(22
m
), ζ /∈ GF(2m), be a primitive root of x2

m+1 + 1, i.e.,
ζ2

m+1 + 1 = 0 implying ζ2
m
= ζ−1. Also, since(

ζ2
m
+ ζ

)2m
= ζ2

2m
+ ζ2

m
= ζ2

m
+ ζ,

it is concluded that ζ2
m
+ ζ = α ∈ GF(2m). It thus follows that

ζ2
m
+ ζ + α = 0

or

ζ−1 + ζ + α = 0 → ζ2 + αζ + 1 = 0.

Let λ = ζ/α. Then, from ζ2 + αζ + 1 = 0 we obtain λ2 + λ+ 1/α2 = 0.
So, λ is a root of x2+x+β with β = 1/α2. This is how β is selected. It
follows that λn = ζnα−n and λn ∈ GF(2m) if and only if ζn ∈ GF(2m),
which will be the case if and only if

(ζn)(2
m−1) = 1. (9.31)

However,

ζ2
2m−1 = ζ(2

m−1)(2m+1) = 1
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and gcd(2m−1, 2m+1) = 1, thus n must be divisible by 2m+1. Finally,
2m+1 is the smallest value of n for which (9.31) is satisfied and so (9.29)
consists of a single cycle.

We now consider the case when g(x) is reducible in GF(2m)[x].

Lemma 9.14 Extended binary Goppa codes with g(x) = x2 + x+ β, β ∈
GF(2m),Tr(β) = 0, are cyclic with block length n = 2m − 1.

Proof: The proof begins by noticing that because of Theorem 9.10
this form of g(x) causes no essential loss of generality. Suppose that λ
and λ+1 are the roots of g(x) over GF(2m). Consider the permutation

ρ2ρ1 : γ → β

γ + 1
(9.32)

where it is noticed that

λ → β

λ+ 1
= λ

and

1 + λ → β

λ
= 1 + λ,

i.e., the roots of g(x) are fixed by ρ2ρ1. It will now be proven that the
permutation ρ2ρ1 consists of a single cycle. Just as was done before, a
necessary and sufficient condition for that to happen is that[

0 β
1 1

]n [
1
0

]
= k

[
1
0

]
, k ∈ GF(2m)

for a suitable β, if and only n is divisible by 2m − 1. The eigenvalues λ

of

[
0 β
1 1

]
are the roots of g(x), λ2 + λ+ β = 0. As before, let ζ be a

primitive root of x2
m+1 + 1, ζ ∈ GF(22m), and it is noticed that(

ζ2
m
+ ζ

)2m
= ζ2

2m
+ ζ2

m
= ζ2

m
+ ζ = α ∈ GF(2m).

Thus, ζ2
m
+ ζ + α = 0 with ζ2

m
= ζ−1 leads to ζ2 + αζ + 1 = 0 and

by making λ = ζ/α, we obtain λ2 + λ + 1/α2 = 0. So, λ is a root of
λ2 + λ+ β = 0 with β = 1/α2. Now, consider

λn = ζnα−n

or
λn(2m+1) = α−n(2m+1), (9.33)

since ζ2
m+1 = 1, and it follows from (9.33) that

λ2n = α−2n
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because λ2m−1 = 1 and α2m−1 = 1. Thus either

(a) λ = α−1, which contradicts λ2 + λ+ 1/α2 = 0

or

(b) λ2n = α−2n = 1 which, since gcd(2, 2m − 1) = 1, implies (2m − 1)|n.
Finally, 2m−1 is the least value of n for which (9.33) holds and thus
(9.32) consists of a single cycle.

9.10 Extending the Patterson algorithm for
decoding Goppa codes

It is now considered the decoding of binary Goppa codes using the
Patterson algorithm, when the Goppa polynomial, of degree t, is a
product of non-repeated irreducible factors over GF(2m). In order to
succeed one must be able to find, as before, α(x), β(x) ∈ GF(2m)[x],
deg(α(x)) ≤ t/2, deg(β(x)) ≤ (t− 1)/2, to obtain

σ(x) = α2(x) + xβ2(x).

Start with the key-equation

S(x)σ(x) ≡ σ′(x) mod g(x),

where it is known that gcd(σ(x), σ′(x)) = 1. Suppose that gcd(S(x),
g(x)) = a(x). It follows that

σ′(x) = β2(x) = a2(x)b2(x).

Factoring a(x) out in the key-equation, it follows that

S1(x)σ(x) ≡ a(x)b2(x) mod g1(x)

where S(x) = a(x)S1(x) and g(x) = a(x)g1(x). Next it is required to
find h(x) such that

S1(x)h(x) ≡ 1 mod g1(x).

From

S1(x)σ(x) ≡ a(x)b2(x) mod g1(x)

and

S1(x)h(x) ≡ 1 mod g1(x)
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it follows that
σ(x) ≡ h(x)a(x)b2(x) mod g1(x)

i.e.,

α2(x) + xβ2(x) ≡ h(x)a(x)b2(x) mod g1(x)

α2(x) + xa2(x)b2(x) ≡ h(x)a(x)b2(x) mod g1(x)

α2(x) ≡ b2(x)[h(x)a(x) + xa2(x)] mod g1(x)

α2(x) ≡ b2(x)d2(x) mod g1(x).

Now, it is required to solve the congruence

α(x) ≡ b(x)d(x) mod g1(x)

to obtain α(x) and β(x). Notice that this congruence can be solved if

degα(x) + deg b(x) < deg g1(x)

or
degα(x) + [deg β(x)− deg a(x)] < deg g(x) − deg a(x)

i.e.,
degα(x) + deg β(x) < deg g(x),

which condition is satisfied by the initial assumption on the degrees of
α(x) and β(x). Thus, having α(x) and b(x) such that α(x) ≡ b(x)d(x)
mod g1(x) we obtain

σ(x) = α2(x) + xa2(x)b2(x) = α2(x) + xβ2(x).

It is noticed that if a(x) = 1 then gcd[S(x), g(x)] = 1, and thus not only
irreducible Goppa codes but in fact any binary Goppa code, with Goppa
polynomial of degree at most 2, can be decoded by the original Patterson
algorithm. This follows because, for any Goppa code gcd[σ(x), g(x)] = 1,
and if

σ(x) = σ2x
2 + σ1x+ σ0

then σ′(x) = σ1 is a scalar and one can always find h(x) such that
S(x)h(x) ≡ 1 mod g(x).

9.11 Problems with solutions
(1) Construct the parity-check matrix for the binary Goppa code with

Goppa polynomial g(x) = x in GF(8)[x].

Solution: Let α be a primitive element of GF(8). One can use
L = {1, α, α2, . . . α6} as the locator numbers since g(αi) = αi �=
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0, 0 ≤ i ≤ 6. By definition, the code is characterized by

6∑
i=0

ci
x− αi

≡ 0 mod x, ci ∈ {0, 1, }.

However, the x− αi, 0 ≤ i ≤ 6, are units in the ring of polynomials
modulo x, and thus it follows that

6∑
i=0

ci
x− αi

≡
6∑

i=0

ci
αi

≡
6∑

i=0

ciα
−i

and thus
H = [1 α−1 α−2 α−3 α−4 α−5 α−6],

or
H = [1 α6 α5 α4 α3 α2 α]

is the parity-check matrix. If α3 = α + 1 then, over GF(2), H is
written as

H =

⎡
⎣ 1 1 1 0 1 0 0

0 0 1 1 1 0 1
0 1 1 1 0 1 0

⎤
⎦

which is the parity-check matrix of a binary (7, 4, 3) Hamming code.

(2) Construct the parity-check matrix for the binary Goppa code with
Goppa polynomial g(x) = x2 in GF(8)[x].

Solution: Using the parity-check matrix in the form given in (9.7),
with t = 2, it follows that

H =

[
h0 h1 h2 h3 h4 h5 h6
h0γ0 h1γ1 h2γ2 h3γ3 h4γ4 h5γ5 h6γ6

]
where hi = g−1(αi) and γi = αi, thus H can be written as

H =

[
1 α5 α3 α α6 α4 α2

1 α6 α5 α4 α3 α2 α

]
If α3 = α+ 1 then, over GF(2), H is written as

H =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 1 1 0 1 0 0
0 1 1 1 0 1 0
0 1 0 0 1 1 1
1 1 1 0 1 0 0
0 0 1 1 1 0 1
0 1 1 1 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎦ .
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Notice that H has rank three over GF(2) because row 1 equals row
4, row 2 equals row 6, and the modulo 2 element-by-element modulo
2 addition of rows 2 and 3 equals row 5. Thus, as expected, the code
obtained is the same as that in the earlier problem.

(3) Use the Patterson algorithm to decode the code in Problem 1 when
the received polynomial is r(x) = x2, i.e., r = (0, 0, 1, 0, 0, 0, 0).

Solution: The syndrome is computed as

S(x) ≡
6∑

i=0

ri
x− αi

mod g(x)

S(x) ≡ 1

x− α2
mod x

or

S(x) ≡ 1

−α2
≡ α5 mod x.

Thus, S(x) ≡ α5 mod x and from S(x)h(x) ≡ 1 mod x one gets
h(x) ≡ α2 mod x. The key-equation is

S(x)σ(x) ≡ σ′(x) mod g(x)

and since one writes σ2(x) = α2(x) + xβ2(x), it follows that

S(x)[α2(x) + xβ2(x)] ≡ β2(x) mod g(x)

or

α2(x) + xβ2(x) ≡ β2(x)h(x) mod g(x)

i.e.

α2(x) ≡ d2(x)β2(x) mod g(x),

where d2(x) ≡ h(x) + x mod g(x).
Remark: If h(x) ≡ x mod g(x) then from S(x)h(x) ≡ 1 mod g(x),
i.e., S(x)x ≡ 1 mod g(x), one sets σ(x) = x and σ′(x) = 1, and ter-
minates.

In this problem one has

d2(x) ≡ h(x) + x = α2 + x ≡ α2 mod x

thus d(x) ≡ α mod x is taken into α(x) ≡ β(x)d(x) mod g(x),
and αβ(x) ≡ α(x) mod g(x) has a solution α(x) = α, β(x) = 1
producing σ(x) = α2 + x, which leads to the correct decoding
of r(x).
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(4) Use the Blahut algorithm to decode the received polynomial in
Problem 3.

Solution: The syndrome is computed as

S(x) ≡
6∑

i=0

ri
x− αi

mod g2(x)

S(x) ≡ 1

x+ α2
mod x2

or

S(x) ≡ α3x+ α5 mod x2,

and solving the key-equation

S(x)σ(x) ≡ σ′(x) mod x2

one obtains σ(x) = α4x+ α6, which has α2 as its single root.

(5) Apply the Patterson algorithm to decode the extended Goppa code
with g(x) = x(x+1) = x2+x in GF(8)[x], when the received n-tuple
is r = (0, 1, 0, 0, 0, 1, 0) and L = {∞, α, α2, α3, α4, α5, α6}, where ∞
stands for the location of the overall parity-check digit.

Solution: The syndrome is computed as

S(x) ≡ 1

x− α
+

1

x− α5
≡ α2x+ 1 mod x2 + x,

obtained by using α3 = α + 1, α being primitive in GF(8). Thus
h(x) can be found from S(x)h(x) ≡ 1 mod x2 + x as

h(x) ≡ α3x+ 1

and
d2(x) = h(x) + x ≡ αx+ 1 mod x2 + x

leads to
d(x) ≡ α4x+ 1 mod x2 + x.

It follows from α(x) ≡ d(x)β(x) mod x2 + x that

α(x) ≡ (α4x+ 1)β(x) ≡ (αx+ 1)β(x) mod x2 + x,

which is solved by β(x) = 1, α(x) = α4x+1. Thus, σ(x) = α2(x)+
xβ2(x) = αx2+x+1 has roots α and α5, and r is correctly decoded
as the all-zero codeword. Why did it work, since g(x) is reducible?



Chapter 10

CODING-BASED CRYPTOSYSTEMS

10.1 Introduction
In (Shannon 1949) it was explicitly stated that the problem of de-

signing good cryptosystems is basically equivalent to finding difficult
problems. A cryptosystem may be constructed in a manner that break-
ing it is equivalent to solving a problem known to be hard to solve.
In (McEliece 1978) the hard to solve problem selected to build a cryp-
tosystem was that of decoding a general linear code. In this chapter,
we look at cryptosystems which employ error-correcting codes in their
construction.

10.2 McEliece’s public-key cryptosystem
McEliece (1978) introduced a public-key cryptosystem of the block

cipher-type based on algebraic coding theory. The security of this system
relies on the computational complexity of solving the general decoding
problem for linear codes. This system presents the intended receiver with
an easy to solve problem which is the decoding of a t error-correcting
Goppa code, for which there is a fast decoding algorithm. Intruders,
however, are faced with the far more difficult task of decoding a lin-
ear t error-correcting code, for which there is no known fast decoding
algorithm.

10.2.1 Description of the cryptosystem
In the following we assume binary irreducible Goppa codes are used.

As already seen, for any irreducible polynomial g(x) over GF(2m), of
degree t and any integer n, 1 ≤ t < n ≤ 2m, there exists a binary irre-
ducible Goppa code Γ(L, g) of length n and dimension k, k ≥ n −mt,
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that can correct any t or fewer errors. The code block length n is deter-
mined by the size of the set L which is chosen as a subset of GF(2m). We
have also seen an algebraic (fast) decoding algorithm for such codes (see
Section 9.4). To set up this cryptosystem we choose integers t and n,
1 ≤ t < n ≤ 2m, and then randomly select a monic irreducible polyno-
mial g(x) of degree t over GF(2m). The probability of obtaining a monic
irreducible polynomial of degree t over GF(2m) in this way is given by
the ratio of the favorable cases Nt to the total number of possible choices
2mt, i.e., Nt/2

mt = 2−mt
∑

d|t μ(t/d)2
md. Once a polynomial is chosen, it

can be tested for irreducibility by applying the factorization techniques
previously studied.

A binary t error-correcting irreducible Goppa code Γ(L, g) of block
length n and dimension k, k ≥ n−mt has a binary (n− k)× n parity-
check matrix H. The code k×n generator matrix G is obtained from H.
This generator matrix G is then transformed by the operation SGP, i.e.,
by multiplying the matrices S, G, and P, in that order, where S denotes
a binary k × k invertible (dense) matrix and P denotes an n × n per-
mutation matrix. As will become clearer when we cover the deciphering
operation, the role of S is to scramble the data bits. Remember that a
permutation matrix has a single 1 per row and per column. Obviously
the identity matrix satisfies this definition but performs no permutation
of coordinates. We call G′ the matrix resulting from the product SGP.
It is easy to see that G′ generates a binary linear code equivalent to
the original Goppa code, i.e., a code with the same block length, same
dimension and same minimum distance as the original Goppa code. The
matrix G′ is made public, e.g., available from a directory, while matrices
S,G, and P are kept secret.

10.2.2 Encryption
At the sender’s side, encryption proceeds by generating enciphered

n-tuples as follows. The binary message is segmented into blocks of k
bits. Each k-bit block is then multiplied by G′. The generated n-tuple
is added to a random error pattern of weight t. The resulting n-tuple is
the enciphered message, ready for transmission or storage.

10.2.3 Decryption
On receiving an enciphered n-tuple, the intended receiver first per-

forms on it an inverse permutation P−1 in order to restore the Goppa
code. Notice that what results, after the application of P−1, is a code-
word of the Goppa code, containing t random errors. The decoding algo-
rithm for binary irreducible Goppa codes produces a scrambled k-tuple
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m′. Finally, the message is recovered by multiplying m′ by S−1, i.e.,
m = m′S−1, where S−1 denotes the inverse of the scrambling matrix S.

10.2.4 Cryptanalysis
The possibilities for an intruder to break this system are either by

finding G from G′, or by finding m directly from the enciphered n-
tuple, or by using a secret (so far unpublished) fast decoding algorithm
for linear binary codes. The parameters suggested by McEliece were
n = 210 = 1024 and t = 50. Notice that G′ is combinatorially equivalent
to G. Also, the number of codes which are combinatorially equivalent
to a given code is extremely large for n ≥ 100 and k ≥ 50. Therefore,
an attempt to factor G′ into SGP is bound to fail. There are ∼= 10149

possible irreducible Goppa polynomials of degree 50 over GF(210). The
suggested code dimension was 524 in order to make it unfeasible both
syndrome decoding and exhaustive search of all codewords. Later, it was
shown that the code parameters can be chosen in a way that increases the
cryptanalytic complexity of the system and decreases its data expansion
(Adams and Meijer 1989).

In the sequel, we will determine the optimum number of errors to be
added, to yield high security against a certain type of attack also to be
described. We will show that with high probability there is essentially
only one inverse transformation from G′ to an easily decodable Goppa
code, i.e., the inverse transformation known to the receiver. Let c =
mG′+e be the enciphered message n-tuple, where m is the cleartext k-
tuple, G′ is the modified Goppa code generator matrix and e is a weight
t random error pattern. Since m is a k-tuple, a possible attack is as
follows. Choose k bits from c, i.e.,

ck = mG′
k + ek, (10.1)

where ck = (ci1 , ci2 , . . . , cik), i.e., ck denotes any k components of c,
ek denotes the corresponding k components of e and G′

k is the square
matrix formed with columns i1, i2, . . . , ik of G′. From (10.1) we can
write

ck + ek = mG′
k,

or, if G′
k is invertible

(ck + ek)(G
′
k)

−1 = m. (10.2)

If the k components of ek are all-zero then (10.2) gives m directly. This
means that recovery of m is possible without conventional decoding.
We now look at the computational effort necessary to succeed in such
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an attack. The formula for computing the probability pk of choosing k
zero components for e is

pk =

(
n− t
k

)
(
n
k

) ,

because e has t 1’s and n − t 0’s and the choices are made without
replacement. An intruder must perform on average 1/pk attempts to
be successful. Each such attempt involves the inversion of the matrix
G′, which is estimated to require kα, 2 ≤ α ≤ 3 steps. Therefore, the
approximate number of steps required on average is

kα

(
n
k

)
(
n− t
k

) . (10.3)

By exhaustive search (Adams and Meijer 1989) it has been found that
(10.3) has a maximum for t = 37, which is ∼= 284.1. The value of (10.3)
for t = 50 is ∼= 280.7. As a consequence of using a lower value of t,
an increased value for the dimension k was obtained, namely 654, com-
pared with the old value 524. The resulting higher code rate means in
cryptographic terms lower data expansion.

10.2.5 Trapdoors
We will now estimate the likelihood of existing various distinct trans-

forms of the public-key G′ into an easily decodable code. Let F define
an equivalence relation on the set of k×n matrices of full rank as XFY
if and only if there exists an invertible k× k matrix S and an n×n per-
mutation matrix P such that X = SYP. In this way, by calling [X] the
equivalence class induced by F containing X, then the private matrix G
is in the equivalence class of the public matrix G′. We are interested in
the answer for the following question. Are there other equivalent Goppa
code generator matrices in the equivalence class [G′]? Let us suppose
that, over the set of all full rank k × n matrices, the Goppa code gen-
erator matrices are probabilistically distributed according to a uniform
probability distribution. Then it follows that the expected number, E,
of Goppa code generator matrices in an equivalence class F is given by

E = |G|/|C|,
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where |G| denotes the number of Goppa code generator matrices, for
given n and k, and |C| denotes the number of equivalence classes in F.
In the article (Adams and Meijer 1989) it is reasoned that, for t = 50 and
k = 524, |G| is not greater than the number of irreducible polynomials
of degree 50 over GF(1024), and that |C| is approximated by the ratio
between the number of full rank 524× 1024 matrices divided by the size
of an equivalence class. The value obtained was

E < 2504/2500000. (10.4)

For t = 37 and k = 654, an even smaller E results. Provided the uni-
form distribution assumption holds, the bound given in (10.4) indicates
that for practical purposes G is the only Goppa code generator matrix
contained in the equivalence class of G′.

10.3 Secret-key algebraic coding systems
Secret-key algebraic coding schemes, introduced by Rao and Nam

(1989), are similar to McEliece’s, however, they keep the generator ma-
trix G′ private, as well as the S, G and P matrices. Their interest-
ing aspect is the use of simpler error-correcting codes, thus requiring
a relatively lower computational overhead compared to their public-key
counterpart.

10.3.1 A (possible) known-plaintext attack
Try to independently solve matrices for each possible column vector

of G′. This requires a large number of m, c pairs. This attack can be
countered by a periodic change of the keys by the sender.

10.3.2 A chosen-plaintext attack
A chosen-plaintext attack essentially involves two steps.

(1) Find G′ using a large set of chosen m and associated c, i.e., chosen
m, c pairs.

(2) Then find unknown messages m from the intercepted c, using G′
found in step 1.

Notice that step 2 is exactly the same as that faced by a cryptanalist
in the public-key algebraic coding cryptosystem. The cryptanalist can
feed the message m = (0, 0, 0, . . . , 0, 1, 0, . . . , 0) containing a single 1
in the ith position. Since t is much smaller than n, most of the bits
in the corresponding ciphertext c are those of g′

i. We can then use a
majority logic decoding rule to estimate g′

i as follows. Let c represent
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one such estimate of g′
i. Then, for a fixed i, repeat this procedure and

obtain various estimates of g′
i. By taking a majority vote among these

estimates we obtain the correct value of g′
i, and thus find out g′

i, the ith
row of G′. If the system does not allow such a message, we can then
feed plaintexts m1 and m2 differing only in the ith position, and thus
m1−m2 = (0, 0, 0, . . . , 0, 1, 0, . . . , 0). Thus, by subtracting the associated
ciphertexts c1 and c2, and because the code is linear, we obtain

c1 − c2 = g′
i + e1 − e2,

where the weight of e1 − e2 is at most 2t. Since 2t is much smaller than
n, most of the bits in c1 − c2 are those of g′

i. Then, as described earlier,
we can use a majority logic decoding rule to estimate g′

i. By making
i = 1, 2, . . . , k, all rows of G′ can be thus be obtained. Having obtained
G′ we can proceed to step 2. If t is small, the work factor (average
number of steps) required in step 2 will be relatively small. Notice that
the majority rule attack works because the ratio t/n << 0.5.

10.3.3 A modified scheme
In this scheme (Rao and Nam 1989) it is proposed to use higher

Hamming weight error patterns, aiming at ratios t/n ≈ 0.5, to foil
the previous chosen-plaintext attack. This serves as an example of the
fact that cryptosystems based on computational complexity are always
subject to threats represented by the enemy finding short cuts to the
apparently difficult to solve problems.

Encryption
Using the already defined notation, encryption consists of the following
steps:

(1) Form the product G′ = SG.

(2) Multiply m by G′ and add a noise vector e to the resulting mG′.

(3) Multiply (mG′+e) byP and obtain the ciphertextC = (mG′+e)P.

The error patterns are now chosen from the standard array (see Section
2.4) for the code employed, one error pattern from each coset, each
error pattern having weight ∼= n/2. The total number of allowable error
patterns is thus 2n−k since this is the total number of cosets. The receiver
has to store in advance the table of pre-chosen error patterns. This
can represent a practical difficulty. Notice that the permutation P was
applied to mG′ + e. This has the effect of permuting (scrambling)
the error pattern. However, this system has no randomness associated
with it.
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Decryption

(1) Start with c = mG′P+ eP.

(2) Apply P−1 to c, i.e.,

c′ = cP−1 = m′G+ e.

(3) Recover m′ as follows. First find e by calculating the associated
syndrome as

c′HT = m′GHT + eHT = eHT,

and then using it to locate the error e in the error table. Recover
m′ by correcting the error pattern e.

(4) Finally, m = m′S−1.

Cryptanalysis
We consider the following a chosen-plaintext attack. Rewrite c as

follows:

c = (mSG+ e)P = mSGP+ eP = mG′′ + eP,

where G′′ = SGP = [g′′
i ] for i = 1, 2, . . . , k, and g′′

i is the ith row vector
of G′′.

Lemma 10.1 There are at least k! combinatorially equivalent (n, k, 3)
linear codes.

Lemma 10.2 The number Ns of non-singular k × k matrices S over
GF(2) is given by

Ns =

k−1∏
i=0

(2k − 2i)

and is lower-bounded as Ns > 2k
2−k.

The two lemmas given earlier serve to show the difficulties associated
with attacks aiming at finding S,G and P. Let cj and cl denote two
different ciphertexts that were extracted for the same chosen-plaintext
m. Then it follows that

cj = mG′′ + ejP

cl = mG′′ + elP,

and thus
cj − cl = (ej − el)P.
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This last step produces one value for (ej − el)P. It is repeated until
all possible pairs of error patterns are exhausted. The total number of
distinct pairs of error patterns is 2n−k(2n−k − 1)/2 ∼= 22(n−k)−1. Using a
pair of messages differing only in the ith position, we obtain (as we did
previously)

c1 − c2 = g′′
i + (e1 − e2)P,

and
g′′
i = c1 − c2 − (e1 − e2)P.

However, the correctness of the estimates of g′′
i cannot be tested inde-

pendently. This means that the complete G′′ matrix has to be obtained
and verified. The work factor involved in this task is

T ≥ (1/2)(22(n−k)−1)k,

i.e., an exponential function of both k and n−k. Thus this system can be
considered secure against the type of chosen-plaintext attack described.

10.4 Problems with solutions
(1) What is the meaning of breaking a cryptosystem?

Solution: According to (Massey 1998), breaking a cryptographic
system means that the enemy cryptanalyst is able, either always or
unacceptably often, to do the very thing that the system is intended
to prevent, i.e., to recover the plaintext from the enciphered trans-
mission or to trick the receiver into accepting a fraudulent message.

(2) In (Krouk 1993) the following public-key cypher based on error-
correcting codes was proposed. Consider the n-dimensional vector
space over GF(q). Let E denote a set of q-ary vectors of length
n, where the first l coordinates can be any l-tuple from GF(q) and
the remaining n− l coordinates are zeros. Let C be an (n, k) linear
block code over GF(q), with generator matrix G, capable of efficient
correction of errors represented by the elements in E . AssumeQ and
P are, respectively, l × n and (n − l) × n matrices over GF(q) and
suppose that M is an n× n matrix of the form

M =

[
Q
P

]
which has a multiplicative inverse M′ in GF(q), i.e., M′MT = In,
the n× n identity matrix. Let J be the matrix defined as

J =

[
Q
In−l

]
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and notice that eM = eJ. The set E and matrices Q and G′ =
GM constitute the public-key. Matrices G and M′ constitute the
private-key. The ciphertext consists of the n-tuple y = uG′ + eJ =
uG′ + eM, where u is a k-tuple message and e ∈ E is an error
vector. Decryption by the intended receiver consists of computing
r = y(M′)T = (uG′+eM)(M′)T = uG+e. A decoder for code C is
employed to correct the error e and produce the codeword c = uG.
Finally, u is extracted from the codeword c. Devise a way to break
Krouk’s public-key cipher.

Solution: The reader will find a detailed solution to this problem
in (Rocha Jr. and Macedo 1996).

(3) Prove Lemma 10.1.

Solution: The G matrix can be written in reduced echelon form
(see Section 2.2) as G = [Ik|g] where Ik is a k × k identity matrix
and g is a k × (n − k) matrix. There are k! row permutations of
the matrix g, all of which produce (n, k, 3) codes. All of these code
generator matrices can, by row permutation and column permuta-
tion, be obtained from G. Therefore they are all combinatorially
equivalent to G.

(4) Prove Lemma 10.2.

Solution: Let us consider the construction of non-singular S ma-
trices. The number of choices for the first row is 2k − 1, i.e., any
nonzero binary k-tuple will do. The second row must be linearly
independent from the first row. In binary this means just that they
are nonzero and distinct. Therefore, there are 2k − 2 choices for the
second row. The chosen two rows, by linear combination, give rise
to 22 = 4 linearly dependent rows. Thus, there are 2k − 22 choices
for the third row. Continuing in this way, we find that there are
2k − 2i−1 choices for the ith row and the equality in the lemma fol-
lows. The smallest term in the k-term product is 2k−2k−1 and thus
Ns > (2k − 2k−1)k = 2k

2−k.





Chapter 11

MAJORITY LOGIC DECODING

11.1 Introduction
Majority logic decoding is a well-established branch of the theory of

error-correcting codes. It draws heavily from the theory of finite geome-
tries, e.g., Euclidean and projective geometries, both for the construction
of codes and for their decoding. In general the resulting codes are not
very powerful but their decoders are both simple and very fast. For prac-
tical applications most attention is given to either cyclic block codes or
to convolutional codes of rate 1/n or (n− 1)/n because of the resulting
simplified decoders.

11.2 One-step majority logic decoding
Any (n, k) linear block code C, over GF(q), has a parity-check matrix

H and the codewords c, c ∈ C, satisfy cHT = 0. Denoting the jth row
of H by hj the following parity-check equation can be written

chT
j =

n−1∑
i=0

hjici = 0.

By linear combinations of the rows of H, up to qn−k parity-check equa-
tions can be formed. In the sequel conditions are derived which are to
be satisfied by the parity-check equations to be used for majority logic
decoding.

Definition 11.1 Given a (n, k) linear block code C, with codewords
c = (c0, c1, . . . , cn−1), ci ∈ GF(q), 0 ≤ i ≤ n − 1, a set of parity-
check equations in C is orthogonal on coordinate i if ci appears in every



138 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

parity-check equation of the set, and every cj, j �= i, appears in at most
one parity-check equation of the set.

Theorem 11.2 If a set of J parity-check equations in C is orthogonal
on coordinate i, then ci can be correctly decoded, provided that at most
�J/2	 errors occurred in the received n-tuple.

Proof: Let r = c+ e, where r denotes the received n-tuple, c denotes
the transmitted codeword and e denotes the error pattern n-tuple, or
the noise n-tuple. Since, by definition, ci appears in all J parity-check
equations, each parity-check equation in the set can be divided by the
corresponding hji, hji �= 0, i.e.,

Aj = h−1
ji

n−1∑
l=0

hjlrl = h−1
ji

n−1∑
l=0

hjlel

= ei +
∑
l,l �=i

h−1
ji hjlel.

(a) If ei = 0 then the at most �J/2	 errors will affect at most �J/2	
parity-check equations and thus at least J−�J/2	 parity-check equa-
tions, i.e., at least half of the parity-check equations are equal to
ei = 0.

(b) If ei �= 0 then the other, at most, �J/2	−1 errors will affect at most
�J/2	−1 parity-check equations and thus J−�J/2	+1 parity-check
equations, i.e., more than half of the parity-check equations (parity
sums) will equal ei.

Summarizing, we can correctly find ei by a majority vote over
the Aj.

Corollary 11.3 If for any i, 0 ≤ i ≤ n− 1, J parity-check equations
orthogonal on a coordinate i can be constructed, then the code can correct
�J/2	 errors.

The decoding procedure described in Theorem 11.2 is called one-step
majority logic decoding. The number of errors that can be corrected by
majority logic in one-step is denoted by tML = �J/2	. As a consequence
it follows that the code minimum distance dmin satisfies: dmin ≥ 2tML+1
and thus one-step majority logic decoding is efficient if �J/2	 is close to
�(dmin − 1)/2	.
Definition 11.4 If J = dmin − 1 parity-check sums orthogonal on ei,
1 ≤ i ≤ n − 1, can be formed, then the code is said to be completely
orthogonalizable in one step.
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LetH denote a parity-check matrix of an (n, k) code C over GF(q) and let
w1,w2, . . . ,wJ be a set of J orthogonal vectors in the row space of H. It
follows that any wi, 1 ≤ i ≤ J, can be expressed as a linear combination
of rows of H, where a row of H is denoted by hi, 0 ≤ i ≤ n− k− 1, i.e.,

wj = (wj0, wj1, . . . , wj,n−1) = aj0h0 + aj1h1 + · · ·+ aj,n−k−1hn−k−1,

where aji ∈ GF(q), 0 ≤ i ≤ n− k − 1.
If H is in reduced echelon form then it follows that

wj0 = aj0, wj1 = aj1, . . . , wj,n−k−1 = aj,n−k−1.

Let r = (r0, r1, . . . , rn−1) denote a received vector. The syndrome S
associated with r is given by

S = (s0, s1, . . . , sn−k−1) = rHT,

where si = rhT
i , 0 ≤ i ≤ n− k − 1.

Consider next the parity-check sums Aj, 1 ≤ j ≤ J , defined by the
dot product between wj and r, i.e., Aj = wjr.

Aj = (aj0h0 + aj1h1 + · · · + aj,n−k−1hn−k−1)r

= aj0h0r+ aj1h1r+ · · ·+ aj,n−k−1hn−k−1r

= aj0s0 + aj1s1 + · · ·+ aj,n−k−1sn−k−1.

It follows that the check-sums Aj can be written as a linear combination
of syndrome digits having for coefficients the first n− k digits of the wj

orthogonal vectors, 1 ≤ j ≤ J .

11.3 Multiple-step majority logic decoding I
Definition 11.5 A set of J parity-check equations is orthogonal on the
set of coordinates i1, i2, . . . , ir if for some GF(q) coefficients A1, A2, . . . ,
Ar the sum A1ci1 + A2ci2 + · · · + Arcir appears in every parity-check
equation of the set and every ci, i /∈ {i1, i2, . . . , ir}, appears in at most
one of the J parity-check equations of the set.

The following theorems establish the error correction capability of one-
step and of multi-step majority logic decoding.

Theorem 11.6 Let C be an (n, k) code, over GF(q), whose dual code
has minimum distance d. Then the number, denoted by J, of parity-check

sums orthogonal on an error digit is upper bounded by J ≤
⌊
n−1
d−1

⌋
.

Proof: Suppose there exist J vectors in the dual code of C which are
orthogonal on a given coordinate. Each of these J vectors has at least
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d − 1 nonzero components in the remaining n − 1 coordinates, i.e., a
total of at least J(d− 1) nonzero coordinates which are distinct because
of the orthogonality assumption. The quantity J(d − 1) cannot exceed
n− 1 and the theorem thus follows.

Theorem 11.7 Let C be an (n, k) code, over GF(q), whose dual code
has minimum distance d. Then the number, denoted by J, of parity-check

sums orthogonal on a set of digits is upper bounded by J ≤
⌊
2n
d

⌋
− 1.

Proof: Suppose there exist J vectors in the dual code of C which are
orthogonal on a set B of coordinates, containing b components. Exclud-
ing the b components in the set B, let al denote the number of other
digits checked at the lth parity-check equation. Since these equations
correspond to codewords in the dual code, which has minimum distance
d, it follows that

b+ al ≥ d.

Summing these J equations it follows that

Jb+

J∑
l=1

al ≥ Jd.

Because of the orthogonality condition in the set of J parity-check equa-
tions it follows that

J∑
l=1

al ≤ n− b.

Eliminating b by combining the last two inequalities the result is

Jn+

J∑
l=1

al ≥ J

(
d+

J∑
l=1

al

)
. (11.1)

Another condition is now derived to allow the elimination of
∑J

l=1 al
in (11.1). Subtracting two codewords orthogonal on the set B of co-
ordinates produces another codeword containing zeros in the b places
from B, having Hamming weight at least d, i.e.,

al + al′ ≥ d, for l �= l′.

The number of such distinct pairs of orthogonal equations is J(J − 1)/2
and each al appears in J − 1 such pairs. Adding all such equations gives

(J − 1)
J∑
l=1

al ≥ J(J − 1)

2
d
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which allows the elimination of
∑J

l=1 al in (11.1) to produce J ≤
⌊
2n
d

⌋
−1.

11.4 Multiple-step majority logic decoding II
Assume J check sums orthogonal on a sum of B digits and that the

dual code minimum distance d̄ is odd. Let al, l = 1, 2, . . . , J , denote
the number of other digits checked by the sum B in the lth parity-check
equation, i.e., the lth check sum. Since each check sum corresponds to
a codeword in the dual code, it follows that

B + al ≥ d̄. (11.2)

Due to the orthogonality condition among the J check sums, it follows
that

n−B ≥
J∑

l=1

al. (11.3)

Also, by summing the J inequalities given by (11.2) produces

JB +
J∑

l=1

al ≥ Jd̄. (11.4)

Combining (11.3) and (11.4) to eliminate B, it follows that

Jn ≥ (J − 1)

J∑
l=1

al + Jd̄. (11.5)

If d̄ is odd then at most one check sum could check only (d̄ − 1)/2 or
fewer other digits. All other check sums must check at least (d̄ + 1)/2
other digits. Pairing the check sum for which al ≤ (d̄ − 1)/2 with the
remaining J − 1 check sums, and then pairing those J − 1 check sums
for which al ≥ (d̄+ 1)/2 gives, for al �= a′l,

al + al′ ≥
⎧⎨
⎩

d̄, (J − 1) times

d̄+ 1, (J − 1)(J − 2)/2 times.

Since each al appears in J − 1 of the sums al + al′ , it follows that

(J − 1)
J∑

l=1

al ≥ (J − 1)d̄+
(J − 1)(J − 2)

2
(d̄+ 1). (11.6)
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Eliminating
∑J

l=1 al between (11.5) and (11.6) it follows that

J ≤ 2

(
n+ 2

d̄+ 1

)
− 1.

11.5 Reed–Muller codes
Reed–Muller (RM) codes are binary linear codes. For given positive

integers m and r, r < m, there is an RM code of block length 2m called
an rth order RM code of length 2m.

The generator matrix of RM codes is described in nonsystematic form,
because it is convenient for decoding. To construct the generator matrix
of RM codes the following definition is required.

Definition 11.8 Given two vectors a = (a0, a1, . . . , an−1) and b =
(b0, b1, . . . , bn−1), the Hadamard product ab is defined as

ab = (a0b0, a1b1, . . . , an−1bn−1),

i.e., the components of ab are obtained by the componentwise multipli-
cation of the corresponding components in a and b.

The generator matrix for the rth order RM code of length 2m is the
k × 2m matrix G defined as

G =

⎡
⎢⎢⎢⎣

G0

G1
...

Gr

⎤
⎥⎥⎥⎦ ,

where G0 denotes the all 1’s 2m-tuple; G1 is an m × 2m matrix where
the columns are all distinct m-tuples, and Gi, 2 ≤ i ≤ r, is a matrix
with rows consisting of all i-fold distinct Hadamard products of rows of
G1. It is immediate to check that the rows of G are linearly independent
and it thus follows that

k = 1 +

(
m
1

)
+

(
m
2

)
+ · · · +

(
m
r

)
=

r∑
i=0

(
m
i

)

n− k = 2m − k =
m−r−1∑
j=0

(
m
j

)
.

Also, every row of Gl has Hamming weight 2m−l which is an even num-
ber. Therefore, the resulting code contains only codewords of even
Hamming weight, because linear combinations of binary vectors with
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even Hamming weight must have an even Hamming weight. Because
the rows of Gr have Hamming weight 2m−r, the code minimum distance
is at most 2m−r.

By using the Reed decoding algorithm (Peterson and Weldon Jr. 1972,
p.316), i.e., multiple-step orthogonalization, up to (1/2)2m−r − 1 errors
can be corrected in any codeword. Thus the code minimum distance is
at least 2m−r−1, but because all codewords have even Hamming weight
it follows that dmin = 2m−r. In connection with RM codes it is worth
reading (Massey 1963).

11.6 Affine permutations and code construction
Cyclic codes are known to be invariant under a cyclic shift. A cyclic

shift is also called a cyclic permutation. There are cyclic codes which
are invariant under other permutations.

Let C be a cyclic code of block length n = qm − 1 generated by the
polynomial g(x). Let Ce be the code of length qm obtained by extending
C, by appending an overall parity-check denoted by c∞, where

c∞ = −(c0 + c1 + · · ·+ cn−1).

Consider the coordinates in a codeword vector labeled with elements of
GF(qm). The nonzero elements of GF(qm) are represented by αi, 0 ≤
i ≤ qm− 1, where α is a primitive element in the multiplicative group of
GF(qm). The zero element in GF(qm) will be denoted by α∞. A vector
c = (cn−1, . . . , c1, c0, c∞) in Ce will have component ci at location αi.

Definition 11.9 A group of permutations is called transitive if, for
every pair of locations (X,Y ) in a codeword, there is a permutation in
the group which sends X to Y , possibly rearranging other locations too.

Definition 11.10 A group of permutations is called doubly transitive
if, for every two pairs of locations (X1, Y1) and (X2, Y2) with X1 �= X2

and Y1 �= Y2, in an n-tuple, n = qm, there is a permutation in the
group which simultaneously sends X1 to Y1 and sends X2 to Y2, possibly
rearranging other locations too.

Definition 11.11 An affine permutation is a permutation which takes
the component at location X in an n-tuple to location aX + b, a �= 0,
where a and b are any fixed elements in GF(qm).

The set of all affine permutations forms a group under composition
because

(1) If location X goes to location Y = aX + b and location Y goes to
location Z = a′X+b′ then X goes to Z = aa′X+a′b+b = AX+B,
and
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(2) The inverse of Y = aX + b is the permutation a−1X − a−1b.

The group of affine permutations is doubly transitive because the pair
of equations

Y1 = aX1 + b associated with the pair (X1, Y1)

Y2 = aX2 + b associated with the pair (X2, Y2)

has a unique solution for given a and b, for X1 �= X2, Y1 �= Y2.

Theorem 11.12 Any code of block length n = qm that is invariant
under the group of affine permutations can be made into a cyclic code
by dropping the location at α∞.

Proof: Let α be the primitive element of GF(qm), used to indicate the
location numbers. The permutation Y = αX is an affine permutation
and performs a cyclic shift for the nonzero locations, keeping α∞ fixed.
By dropping the position at α∞ the theorem then follows.

Definition 11.13 Let n and k be integers with respective radix-q rep-
resentation

n = n0 + n1q + n2q
2 + · · ·+ nm−1q

m−1, 0 ≤ ni < q

k = k0 + k1q + k2q
2 + · · · + km−1q

m−1, 0 ≤ ki < q.

The integer k is called a radix-q descendent of n if ki ≤ ni, i = 0, 1, . . . ,
m− 1.

In general there is no alternative but to use Definition 11.13 to determine
whether a given integer k is a radix-q descendent of an integer n. For
the special case where q is a prime number p the following theorem is
applicable.

Theorem 11.14 (Lucas’s theorem) Let p be a prime number and let
n and k be two positive integers expressed in their radix-p expansion as

n = n0 + n1p+ n2p
2 + · · ·+ nm−1p

m−1,

k = k0 + k1p+ k2p
2 + · · ·+ km−1p

m−1,

then (
n
k

)
≡

m−1∏
i=0

(
ni

ki

)
mod p

and (nk) ≡ 0 modulo p if and only if k is not a radix-p descendent of n.
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Proof: The proof follows by expanding (1 + x)n in two different ways
and equating the coefficients of equal powers of x. Since p is a prime
number it follows that

(1 + x)p
i
= 1 + xp

i
mod p.

For an arbitrary n it follows that

(1 + x)n = (1 + x)n0+n1p+···+nm−1pm−1

= (1 + x)n0(1 + x)n1p · · · (1 + x)nm−1pm−1
. (11.7)

The binomial expansion is next applied to both sides of (11.7) to produce

n∑
k=0

(
n
k

)
xk =

⎡
⎣ n0∑
k0=0

(
n0

k0

)
xk0

⎤
⎦
⎡
⎣ n1∑
k1=0

(
n1

k1

)
xk1

⎤
⎦

· · ·
⎡
⎣ nm−1∑
km−1=0

(
nm−1

km−1

)
xkm−1

⎤
⎦

and equating the coefficients of xk on both sides it follows that(
n
k

)
=

∑
u

(
n0

k0

)(
n1

k1

)
. . .

(
nm−1

km−1

)
(11.8)

where u runs over all m-tuples (k0, k1, . . . , km−1) having ki < p, 0 ≤ i ≤
m− 1, such that

k = k0 + k1p+ k2p
2 + · · ·+ km−1p

m−1,

which is recognized as the radix-p expansion of k, which is unique. Thus
there is only one value for u to satisfy the equality in (11.8) and the sum
reduces to (

n
k

)
=

m−1∏
i=0

(
ni

ki

)
mod p.

The last part of the theorem follows because (ni
ki
) = 0 if ki > ni, i.e., the

case when k is not a radix-p descendent of n.

Next the characterization will be given of cyclic codes that can be ex-
tended to a code which is invariant under the group of affine
permutations.
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Theorem 11.15 Let α be a primitive element of GF(qm), where q is a
power of a prime number p. Let C be a cyclic code of block length qm−1
generated by a polynomial g(x), with g(1) �= 0, and let Ce be the code
obtained by extending C with an overall parity-check. The code Ce is
invariant under the group of affine permutations if and only if whenever
αk is a root of g(x) then, for all the nonzero k′ radix-p descendent of k,
αk′ is also a root of g(x).

Proof: Let X ′ = aX+b denote an affine permutation. Let X1,X2, . . . ,
Xs denote the location numbers of the nonzero components of a code-
word c and let Y1, Y2, . . . , Ys denote the values of these components.
Also, let X ′

1,X
′
2, . . . , X

′
s denote the location numbers of the nonzero

components under the affine permutation, i.e., X ′
i = aXi + b, 1 ≤ i ≤ s.

(a) Suppose that if g(αk) = 0 then g(αk′) = 0, where k′ �= 0 is a radix-p
descendent of k. It is next shown that the permutation of a codeword
is also a codeword. It is known that c(x) = m(x)g(x) and that

c∞ = −(c0 + c1 + · · ·+ cn−1).

Also, since c(x) =
∑n−1

i=0 cix
i it follows that

c(αj) =
n−1∑
i=0

ciα
ij =

s∑
l=1

YlX
j
l = 0 (11.9)

for every j such that g(αj) = 0. If desired, the symbol at location
α∞ could be included in the sum in (11.9) because it contributes
with zero to the sum.

For the permuted vector c′ = (c′0, c′1, . . . , c′n−1, c
′∞) to be a codeword

it is required that c′∞ + c′n−1 + · · ·+ c′1 + c′0 = 0, which is obviously
true after the permutation, and that

s∑
l=1

Yl(X
′
l)
j =

s∑
l=1

Yl(aXl + b)j

=

s∑
l=1

Yl

j∑
k=0

(jk)a
kXk

l b
j−k

=

j∑
k=0

(jk)c(α
k)akbj−k.

Now, (jk) ≡ 0 modulo p unless k is a radix-p descendent of j, in

which case c(αk) = 0 by hypothesis. Thus the permuted vector c′ is
a codeword. Next the converse will be proved.



Majority Logic Decoding 147

(b) Assume that Ce is invariant under the group of affine permutations.
Then every codeword satisfies

s∑
l=1

Yl(aXl + b)j = 0,

for every a and b, and every j such that g(αj) = 0 and, as seen
earlier, it follows that

j∑
k=0

(
j
k

)
c(αk)akbj−k = 0. (11.10)

Denoting by K the number of radix-p descendents of j and calling
them kl, l = 1, 2, . . . ,K, then (11.10) can be written as

K∑
l=0

(
j
kl

)
c(αkl)aklbj−kl = 0. (11.11)

Since

(
j
kl

)
�≡ 0 modulo p and the sum in (11.11) is equal to zero

for arbitrary a and b, it is concluded that c(αkl) = 0, because there
are (qm − 1)2 nonzero choices for pairs (a, b) and only K, K < j <
qm, values for c(αkl), and each such pair (a, b) leads to a distinct
permutation.

11.7 A class of one-step decodable codes
This section describes a class of cyclic codes over GF(q) of length

n = JL, L �= 0 mod p, q = ps, where p is a prime number and s is a
positive integer, which uses affine permutations and is one-step majority
logic decodable. The block length n is chosen as a primitive value which
is composite, i.e.,

n = qm − 1 = JL.

It follows that

xn − 1 = (xJ − 1)(1 + xJ + x2J + · · · + x(L−1)J )

and let
a(x) = 1 + xJ + x2J + · · ·+ x(L−1)J .

It is assumed throughout that xn−1 = g(x)h(x) and that h⊥(x) denotes
the reciprocal polynomial of h(x). The nonzero elements of GF(qm) are
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either zeros of xJ−1 or zeros of a(x), but not both. Let α be a primitive
element of GF(qm). Then αL is an element of order J , and the roots
of xJ − 1 are 1, αL, α2L, . . . , α(J−1)L. The roots of a(x) can be written
as αj , where j is not a multiple of L. Let h⊥(x) denote a dual code
generator polynomial whose roots are αj , 1 ≤ j ≤ qm − 1, where j or
a radix-q descendent of j is not a multiple of L. It follows that a(x) is
a multiple of h⊥(x). It is noticed that the code generated by h⊥(x) is
cyclic and, because of Lemma 11.16, it can be extended to a code with
the doubly transitive invariant property.

Lemma 11.16 Let S = {1, 2, . . . , qm − 1} be a set of integers where
q = ps, p is a prime number and s is a positive integer. Let S1 be a set
obtained from S, after deleting from S all elements which are multiples
of some integer L,L �= 0 modulo p, 1 ≤ L ≤ qm − 1. If j ∈ S1 then its
conjugates, i.e., jqi modulo qm − 1, 1 ≤ i ≤ m− 1, also belong to S1.

Proof: Since j ∈ S1 is not a multiple of L, and L �= 0 modulo p, it
follows that no jqi, where q = ps, can be a multiple of L and thus all
jqi modulo qm − 1, 1 ≤ i ≤ m− 1, belong to S1.

Notice that the codewords a(x), xa(x), . . . , xJ−1a(x) each has Ham-
ming weight L and it is easy to verify that no two of them have a nonzero
element in common. Next an overall parity-check will be added to each
one of these codewords. The result is J codewords of the extended code,
orthogonal on the extended symbol, which takes on the same value in
all J codewords and is nonzero because L �= 0 modulo p. Next these J
codewords are divided by the value of the extended symbol. Therefore
the value at location α∞ becomes 1 in all J codewords. By applying the
affine permutation Y = αX+αn−1 to these J codewords of the extended
code the result is J codewords with a 1 in location αn−1. By dropping
the symbol at location α∞ the result is a set of J codewords in the cyclic
code generated by h⊥(x) which are orthogonal on position αn−1. The
following theorem has been established.

Theorem 11.17 Let n = qm − 1 = JL and let C be a cyclic code over
GF(q) of block length n, whose dual code C⊥ has h⊥(x) for its generator
polynomial. The roots of h⊥(x) are specified by αj , 1 ≤ j ≤ qm − 1,
where j or a radix-q descendent of j is not a multiple of L. Then C is
majority logic decodable and has a minimum distance of at least J .

The roots of the generator polynomial g(x) for the cyclic code C are
characterized as follows. The polynomial g(x) has α−j as a root when-
ever j or a radix-q descendent of j is a multiple of L, including j = 0.
This result follows by noticing that, since C and C⊥ are dual, α−j is a
root of g(x) whenever αj is not a root of h⊥(x).



Majority Logic Decoding 149

Example 11.18 Let q = 2 and let n = 24 − 1 = 15 = 3 × 5. It follows
that

x15 − 1 = (x5 − 1)(x10 + x5 + 1),

where J = 5 and L = 3. Let α be primitive in GF(24) such that α4 =
α + 1. The following set of extended codewords of C⊥ are derived from
x10 + x5 + 1, namely codewords c1, c2, c3, c4 and c5.

Location ∞ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
c1 1 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0
c2 1 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0
c3 1 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0
c4 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0
c5 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1

The roots of x5−1 are 1, α3, α6, α9, α12 and the roots of a(x) = x10+x5+
1 are α,α2, α4, α5, α7, α8, α10, α11, α13, α14. It follows that the roots of
h⊥(x) are α,α2, α4, α8, α5, α10 and the roots of g(x) are 1, α−3, α−6, α−7,
α−9, α−11, α−12, α−13, α−14, i.e., 1, α, α2, α3, α4, α6, α8, α9, α12. It fol-
lows that

g(x) = (x+ 1)(x4 + x+ 1)(x4 + x3 + x2 + x+ 1)

= x9 + x6 + x5 + x4 + x+ 1.

Since d ≥ J + 1 and J = 5 it follows that d ≥ 6. However, since the
Hamming weight of g(x) is 6 it is concluded that d = 6.

11.8 Generalized Reed–Muller codes
The generalized Reed–Muller (GRM) codes over GF(q) constitute a

class of codes containing subclasses which are majority logic decodable.
The GRM codes are defined by extending a cyclic GRM code. Only
cyclic GRM codes of primitive block length will be considered in the
sequel. The GRM codes are obtained from the cyclic GRM codes by
appending an overall parity-check symbol to the codewords. Let α be a
primitive element in the multiplicative group of GF(qm).

Definition 11.19 Let s be a nonnegative integer with radix-q expansion

s = s0 + s1q + s2q
2 + · · · + sm−1x

m−1.

The radix-q weight of s is defined as

Wq(s) =
m−1∑
i=0

si.
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Definition 11.20 The cyclic GRM code of order r and block length
n = qm−1 over GF(q) is the cyclic code with generator polynomial g(x)
having αj for its roots, 1 ≤ j ≤ qm − 1, for all j such that

0 < Wq(j) ≤ (q − 1)m− r − 1.

The code of block length qm obtained by the expansion of this cyclic code
by an overall parity-check is called a GRM code of order r and block
length qm.

Example 11.21 Let q = 2,m = 3, and r = 1. Then n = 23 − 1 = 7
and

0 < W2(j) ≤ m− r − 1 = 3− 1− 1 = 1,

i.e., j = 1, 2, 4. Let α be a primitive element in GF(8) such that α3 =
α+ 1. It follows that

g(x) = (x− α)(x− α2)(x− α4) = x3 + x+ 1.

For this code d = 2m−r − 1 = 23−1 − 1 = 3.

Theorem 11.22 The cyclic binary GRM code of order r and block
length n = 2m − 1 is a subcode of the primitive BCH code of design
distance d = 2m−r − 1.

Proof: The number 2m−r − 1 is represented in radix-2 by an (m− r)-
bit number consisting of m − r ones. Any positive integer j smaller
than 2m−r − 1 will have less than m − r ones in the respective radix-2
representation. It thus follows that

W2(j) ≤ m− r − 1, for j = 1, 2, . . . , 2m−r − 2,

and thus αj will be a root of g(x) for those j. The code is therefore
a subcode of the primitive BCH code of design distance 2m−r − 1 be-
cause the αj , j = 1, 2, . . . , 2m−r − 2 consecutive roots guarantee that
the generator polynomial of the GRM code of order r is divisible by the
generator polynomial for the primitive BCH code with design distance
2m−r − 1.

The minimum distance of these binary GRM codes is at least 2m−r−1,
as follows from Theorem 11.23, since they are subcodes of BCH codes
of design distance 2m−r − 1.

Theorem 11.23 The dual of a GRM code over GF(q), of order r and
block length qm, is the GRM code over GF(q) of order r′ = (q−1)m−r−1
and block length qm.
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Proof: Let Cer denote the GRM code of order r and let Cr denote
the cyclic GRM code obtained by shortening Cer. The proof begins by
finding g⊥(x), the generator polynomial for the code C⊥

r , dual of Cr. Let
α be a primitive element of GF(qm). The generator polynomial of Cr has
roots αj , 1 ≤ j ≤ qm−1, for all j satisfying 0 < Wq(j) ≤ (q−1)m−r−1.
Notice that the roots of the parity-check polynomial h⊥(x), of C⊥

r , are
powers of α obtained by replacing j in αj by qm − 1 − j satisfying the
inequality Wq(q

m − 1− j) > (q − 1)m− r − 1. This is the case because
h⊥(x) is given by the reciprocal of the generator polynomial g(x) of code
Cr. It is now observed that if j + j′ = qm − 1 then

Wq(j + j′) = Wq(j) +Wq(j
′) = Wq(q

m − 1) = (q − 1)m

or

Wq(j) = (q − 1)m−Wq(q
m − 1− j),

and combining this result with the inequality

Wq(q
m − 1− j) > (q − 1)m− r − 1

it follows that

Wq(j) < r + 1

which characterizes j in αj , the roots of g⊥(x), including α0 = 1 as a
root of g⊥(x). The cyclic GRM code of block length qm − 1 and order
r′ = (q − 1)m − r − 1, denoted as Cr′ , has as roots of its generator
polynomial αj , 1 ≤ j ≤ qm − 1, where j satisfies

0 < Wq(j) ≤ (q − 1)m− (q − 1)m+ r + 1− 1 = r.

It is noticed that, with the exception of α0 = 1, the roots of the genera-
tor polynomial of code Cr′ are the same as those of g⊥(x) found earlier,
i.e., Cr′ contains C

⊥
r . It is further observed that both codes Cr and Cr′

have the all ones codeword since α0 = 1 is not a root in their respec-
tive generator polynomials. The generator matrices for these codes are
considered in the following form:

G =

[
1 1 . . . 1

G1

]
︸ ︷︷ ︸
qm − 1 columns

where G1 denotes the generator matrix for the subcode containing the
root α0 = 1 in its generator polynomial. By extending the generator
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matrices for codes Cr and C ′
r the result is

Ger =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
... 1
... 0

G1r
...

...
... 0

⎤
⎥⎥⎥⎥⎥⎦ Ger′ =

⎡
⎢⎢⎢⎢⎢⎣

1 1 . . . 1
... 1
... 0

G1r′
...

...
... 0

⎤
⎥⎥⎥⎥⎥⎦

where the row space of Ger is orthogonal to the row space of Ger′ and
the sum of the code dimensions is qm, therefore codes Ger and Ger′ are
dual.

The reader may wish to prove Theorem 11.23 by assuming that the
row space of Ger is orthogonal to the row space of Ger′ .

11.9 Euclidean geometry codes
Definition 11.24 Let r, s and m be positive integers, and let q = ps,
where p is a prime number. The Euclidean geometry code over GF(p), of
block length n = qm and order r, is the dual of the subfield subcode of the
GRM code over GF(q) of block length qm and order (q − 1)(m− r − 1).

Equivalently, a Euclidean geometry code can be characterized by the
following theorem.

Theorem 11.25 Let α be a primitive element of GF(psm). A Euclidean
geometry code over GF(p), with parameters r, s, and block length qm is
obtained by extending a cyclic code the generator polynomial of which
has αj for a root, 1 ≤ j ≤ qm − 1, if j satisfies the inequality

0 < maxWq(jp
i) ≤ (q − 1)(m − r − 1).

0 ≤ i < s

Proof: The roots αj , 1 ≤ j ≤ qm−1, of the generator polynomial of the
GF(p) subfield subcode of the cyclic GRM code of order (q−1)(m−r−1)
are characterized by those values of j and its p-ary conjugates satisfying

1 ≤ Wq(jp
i) ≤ (q − 1)m− (q − 1)(m− r − 1)− 1

0 ≤ i < s
= (q − 1)(r + 1)− 1.

Conversely, αj is a root of the parity-check polynomial h(x) if

Wq(jp
i) > (q − 1)(r + 1)− 1,

0 ≤ i < s
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or if j = 0. It is well known that the generator polynomial g⊥(x) of the
dual code is the reciprocal polynomial of h(x). Then αj′ is a root of
g⊥(x) if αn−j′ is a root of h(x), that is, if

Wq(n − j′) > (q − 1)(r + 1)− 1

or if n−j′ = 0, i.e., if j′ = 0 mod n for every j′ that is a p-ary conjugate
of j. However, to obtain the correct extended code it is necessary to
consider a cyclic code whose generator polynomial has the same roots as
g⊥(x), except for the root equal to 1, i.e., the value j′ = 0 is disregarded.
It is noticed in the proof of Theorem 11.23 that

Wq(n − j′) +Wq(j
′) = Wq(q

m − 1) = (q − 1)m.

Hence, it follows that

Wq(j
′) < (q − 1)m− (q − 1)(r + 1) + 1 = (q − 1)(m− r − 1) + 1

or
1 ≤ Wq(j

′) ≤ (q − 1)(m− r − 1)

for every j′ that is a p-ary conjugate of j.

In order to derive some important properties of Euclidean geometry
(EG) codes, e.g., its threshold decoding, the value of J and the number
of decoding steps, some concepts from Euclidean geometry are required.

A Euclidean geometry EG(m, q) of dimension m over GF(q), consists
of the set of qm points from the vector space GF(q)m, together with all
its subspaces and translation of subspaces called flats, as defined in the
sequel.

Concepts from Euclidean geometry
Definition 11.26 Affine subspace
An affine subspace is a translation of a vector subspace, i.e., a coset.

Definition 11.27 t-flat
Let v0, v1, . . . , vt be t+1 linearly independent points in EG(m, q), where
m > t. The set of qt points defined by

v0 + β1v1 + β2v2 + · · · + βtvt (11.12)

with βi ∈ GF(q), 1 ≤ i ≤ t, constitute a t-flat, or a t-dimensional hyper-
plane, which passes through the point v0.

(t + 1)-flats can be obtained recursively as distinct translations of the
smallest vector subspace containing a t-flat. That is, if Et is a t-flat then
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the set {βtv|βt ∈ GF(q), v ∈ Et} is the smallest subspace containing Et.
If vt+1 /∈ Et is a point in GF(q)m, then a (t+1)-flat Et+1 is obtained as
the set

Et+1 = {vt+1 + βtv|βt ∈ GF(q), v ∈ Et}.
Definition 11.28 Gaussian coefficients
The q-ary Gaussian coefficients are defined as[

m
i

]
=

i−1∏
j=0

qm − qj

qi − qj
, i = 0, 1, . . . ,m, and

[
m
0

]
= 1.

Theorem 11.29 EG(m, q) contains qm−t

[
m
t

]
distinct t-flats, for t =

1, 2, . . . ,m− 1.

Proof: A t-dimensional subspace can be constructed by choosing a set
of t linearly independent points in EG(m, q). The number of different
ways of choosing such t points is given by

(qm − 1)(qm − q) . . . (qm − qt−1). (11.13)

However, a number of such sets of t points generate the same t-
dimensional subspace. The number of identical t-dimensional subspaces
is given by

(qt − 1)(qt − q) . . . (qt − qt−1). (11.14)

The ratio between (11.13) and (11.14) is represented by

[
m
t

]
, and

gives the number of distinct t-dimensional subspaces in EG(m, q). Each
subspace has qm−t cosets, i.e., possible values of v0 in (11.12), and thus

there are qm−t

[
m
t

]
t-flats in EG(m, q).

Theorem 11.30 For any integers s and t, 0 ≤ s ≤ t < m, each s-flat

is contained in

[
m− s
t− s

]
distinct t-flats in EG(m, q).

Proof: Given an s-flat, it can be extended to a t-flat by choosing t− s
linearly independent points from GF(q)m, not yet included in the s-flat.
The number of possibilities for doing this is given by

(qm − qs)(qm − qs+1) . . . (qm − qt−1). (11.15)

However, some sequences of such t− s linearly independent points will
generate the same t-flat, precisely

(qt − qs)(qt − qs+1) . . . (qt − qt−1), (11.16)
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where the t− s points are chosen not using points from the s-flat. The

ratio between (11.15) and (11.16), denoted as

[
m− s
t− s

]
gives the de-

sired result.

Definition 11.31 Given a subset of elements of a set of size n, an
n-coordinate binary vector is constructed containing a “1” in the ith
coordinate if i is in the subset, otherwise a zero is placed in the ith
coordinate. Such a vector is called the incidence vector of the subset.

Lemma 11.32 Given two non-negative integers n and k, and a prime
p, if k is a radix-p descendent of n then k is also a radix-q descendent
of n for q = ps, where s > 0 is an integer.

Theorem 11.33 An EG code of order r and length qm, over GF(p), is
the largest linear code over GF(p) having in its null space the incidence
vectors of all (r + 1)-flats in EG(m, q).

Proof: The proof consists of showing that the GRM code of order
(q − 1)(m − r − 1), containing the dual of the EG code, is the smallest
linear code over GF(q) that contains all the incidence vectors stated in
the theorem. An incidence vector is in the GRM code if

(a) It is in the associated cyclic GRM code

(b) It has the correct extension symbol.

Notice that the incidence vector of an (r+1)-flat contains qr+1 nonzero
components, all of which are 1’s, and thus add to zero modulo p, since
q = ps. The extension symbol is thus always correct. Now it is only
necessary to prove that the incidence vector, with the extension symbol
deleted, belongs to the cyclic GRM code. This last vector will be referred
to as the shortened incidence vector. One way of proving that is by
showing that the shortened incidence vectors have in common the roots
αj , 1 ≤ j ≤ qm − 1, where j satisfies

1 ≤ Wq(j) ≤ (q − 1)m− (q − 1)(m− r − 1)− 1 = (q − 1)(r + 1)− 1,

and that, for other values of j, αj is not among their common roots.
Consider now the (r + 1)-flat

v0 + β1v1 + β2v2 + · · ·+ βr+1vr+1,

where βi ∈ GF(q), 1 ≤ i ≤ r + 1, and v0, v1, . . . , vr+1 are a set of r + 2
linearly independent points in the (r + 1)-flat.
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We denote a shortened incidence vector by a polynomial in x, f(x),
as follows:

f(x) =

n−1∑
i=0

fix
i,

where fi, 0 ≤ i ≤ n − 1, are the coordinates of the shortened incidence
vector, i.e., fi is either equal to zero or equal to one. If αj is a root of
f(x), it follows that

f(αj) =

n−1∑
i=0

fiα
ij = 0

or, in terms of the (r + 1)-flat,

f(αj) =

q−1∑
β1=0

q−1∑
β2=0

. . .

q−1∑
βr+1=0

(v0 + β1v1 + β2v2 + · · ·+ βr+1vr+1)
j = 0

since αi = v0 + β1v1 + β2v2 + · · ·+ βr+1vr+1, if fi = 1.
The next step is to determine those j for which f(αj) = 0. A multi-

nomial expansion of f(αj) gives

f(αj) =

q−1∑
β1=0

· · ·
q−1∑

βr+1=0

∑
h

j!

h0!h1! . . . hr+1!
v0

h0(β1v1)
h1 . . .

. . . (βr+1vr+1)
hr+1,

where the summation on h is over all (r + 2)-tuples (h0, h1, . . . , hr+1)
such that

∑r+1
i=0 hi = j. Interchanging the order of summation, to work

with terms of the form
∑q−1

βi=0(βiv)
h with h fixed, the following lemma

is used next.

Lemma 11.34

If h �= 0 then
∑q−1

βi=0(βi)
h =

{ −1, if h = a(q − 1), a �= 0
0, otherwise

and

if h = 0 then
∑q−1

βi=0(βi)
h = 0.

Therefore, every term in the sum for f(αj) is zero except when hl is a
nonzero multiple of (q − 1), for l = 1, 2, . . . , r + 1. The sum for f(αj)
can thus be written as

f(αj) = (−1)r+1
∑
h1

∑
h2

. . .
∑
hr+1

j!

h0!h1! . . . hr+1!
v0

h0vh1
1 . . . v

hr+1

r+1 ,
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where the sum is over all (h0, h1, . . . , hr+1) such that
∑r+1

l=0 hj = j, hl is
a nonzero multiple of q − 1 for l = 1, 2, . . . , r + 1, and h0 ≥ 0. Let the
multinomial coefficients be expressed as follows:

j!

h0!h1! . . . hr+1!
=

j!

h0!(j − h0)!

(j − h0)!

h1! . . . hr+1!

=
j!

h0!(j − h0)!

(j − h0)!

h1!(j − h0 − h1)!

(1− h0 − h1)!

h2! . . . hr+1!
= etc.

By Lucas’s theorem, if hl contributes to the sum then hl is a radix-p
descendent of j for l = 0, 1, . . . , r + 1, and it follows that hl is also a
radix-q descendent of j for l = 0, 1, . . . , r + 1. Furthermore, any sum of
hj ’s, contributing to the sum for f(αj), is a radix-p descendent of j and
therefore is a radix-q descendent of j, for q = ps.
Summary of conditions on terms that contribute to the sum
for f(αj):

(1)
∑r+1

l=0 hj = j

(2) hl = a(q − 1), a > 0, l ∈ {1, 2, . . . , r + 1}, h0 ≥ 0.

(3) Each coefficient of qi, 0 ≤ i ≤ m − 1, in the radix-q expansion of j
is the sum of the corresponding coefficients of the radix-q expansion
of the hl’s, and it follows that

Wq(j) =
r+1∑
l=0

Wq(hl). (11.17)

Finally, it is shown next that there are no terms that contribute to the
sum for f(αj) if Wq(j) < (q − 1)(r + 1).

Lemma 11.35 Consider the radix-q expansion of some integer k, i.e.,

k = k0 + k1q + k2q
2 + · · ·+ km−1q

m−1

and the radix-q weight of k, i.e.,

Wq(k) = k0 + k1 + k2 + · · ·+ km−1.

Then k is a nonzero multiple of q − 1 if and only if Wq(k) is also a
nonzero multiple of q − 1.

Proof: Consider the difference k −Wq(k), i.e.,

k −Wq(k) = k1(q − 1) + k2(q
2 − 1) + · · · + km−1(q

m−1 − 1) (11.18)
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The lemma follows by noticing that if either of the terms on the left side
in (11.18) is divisible by q − 1 then the other is also divisible by q − 1.

However, it follows from (11.17) and the fact that Wq(hl) is a nonzero
multiple of q − 1, for l = 1, 2, . . . , r + 1, that

Wq(j) =
r+1∑
l=0

Wq(hl) ≥ (q − 1)(r + 1),

where the j’s satisfying this inequality cause f(αj) �= 0. The theorem is
thus proved.

Theorem 11.36 Let q = ps. The EG code of order r and block length
qm over GF(p), can be L-step threshold decoded in L = r+1 steps, with

ability to correct at least
⌊
1
2
(qm−r−1)

(q−1)

⌋
errors.

Proof: Consider the incidence vectors of the (r + 1)-flats, i.e., a set
of codewords in the dual code. The incidence vectors of all (r + 1)-flats
that contain a given r-flat define a set of[

m− r
r + 1− r

]
=

[
m− r

1

]
=

qm−r − 1

q − 1

parity-check sums orthogonal on a sum of error digits associated with
the points of the r-flat. Using these (qm−r−1)/(q−1) parity-check sums
an estimate of the sum of error digits is obtained by majority voting,
where it is noticed that, for a given r-flat E, any point not belonging to
E is contained in a distinct (r+1)-flat that contains E. In this manner,
a new parity-check sum is obtained which corresponds to the incidence
vector of the r-flat E. This procedure can be repeated for all r-flats
that contain a given (r − 1)-flat, which in turn define a set of parity-
check sums orthogonal on that (r − 1)-flat. By induction, after r + 1
steps, a set of parity-check sums is obtained which is orthogonal on a
single error digit (associated with a 0-flat). The number of parity-check
sums orthogonal on a given sum of error digits is given at each decoding
step by

[
m− r

1

]
︸ ︷︷ ︸
step 1

<

[
m− (r − 1)

1

]
︸ ︷︷ ︸

step 2

<

[
m− (r − 2)

1

]
︸ ︷︷ ︸

step 3

· · · <

[
m− (r − r)

1

]
︸ ︷︷ ︸

step r + 1

and therefore the number of errors that can be corrected with this pro-

cedure is at least
⌊
1
2
(qm−r−1)

(q−1)

⌋
.
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11.10 Projective geometry codes
These codes are constructed from nonprimitive GRM codes of length

(qm − 1)/(q − 1).

Definition 11.37 Let r, s and m be any positive integers, and let q =
ps, where p is a prime. The projective geometry (PG) code over GF(p)
of length n = (qm − 1)/(q − 1) and order r is the dual of the subfield
subcode of the nonprimitive cyclic GRM code over GF(q) of the same
block length and order (q − 1)(m− r − 1).

Definition 11.38 (Nonprimitive GRM codes) Let b be a nontriv-
ial factor of qm − 1. The cyclic nonprimitive GRM code of order r
and block length (qm − 1)/b over GF(q) is the cyclic code whose gen-
erator polynomial has zeros at αjb, j = 1, 2, . . . , (qm − 1)/b, such that
0 < Wq(bj) ≤ (q − 1)m− r − 1.

The generator polynomial of a PG code is characterized by the following
theorem.

Theorem 11.39 A PG code over GF(p) of block length (qm−1)/(q−1)
and order r, with q = ps, is the cyclic code whose generator polynomial
has zeros at βj , 0 < j ≤ (qm − 1)/(q − 1), if j satisfies

0 < Wq[j(q − 1)pi] ≤ (q − 1)(m − r − 1)

where β = αq−1, and α is primitive in GF(qm).

PG codes can be threshold decoded by using concepts from projective
geometry. The projective geometry PG(m, q) has (qm−1)/(q−1) points
and is defined by using the nonzero elements of GF(q)m+1. The qm+1−1
nonzero elements of GF(q)m+1 are divided into (qm−1)/(q−1) sets, each
set represents one point of PG(m, q) and can be expressed as {λv|v �=
0,v ∈ GF(q)m+1, λ ∈ GF(q), λ �= 0}. The PG(m, q) of dimension m over
GF(q) is the set of these (qm − 1)/(q − 1) points together with subsets
of points called t-flats, for t = 0, 1, 2, . . . ,m.

Let vi ∈ Vi, for i = 0, 1, . . . , t. Consider t + 1 linearly independent
points vi in GF(q)m+1. A t-flat containing V0, V1, . . . , Vt is the set of
points in PG(m, q) which are the images of the points

β0v0 + β1v1 + · · ·+ βtvt,

in GF(q)m+1, where βi, 0 ≤ i ≤ t, are arbitrary GF(q) elements not all
zero.
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Theorem 11.40 The flats in a projective geometry satisfy the following:

(i) PG(m, q) contains

[
m+ t
t+ 1

]
distinct t-flats, t = 0, 1, . . . ,m.

(ii) For any s and t, 0 ≤ s ≤ t ≤ m, each s-flat is contained in[
m− s
t− s

]
distinct t-flats in PG(m, q).

Theorem 11.41 A PG code of order r and block length (qm−1)/(q−1)
over GF(p) is the largest linear code over GF(p) having in its null space
the incidence vectors of all r-flats in PG(m, q).

Projective geometry codes can be L-step threshold decoded and can
correct at least �12 (qm−r−1 − 1)/(q − 1)	 errors.

11.11 Problems with solutions
(1) Consider the (7, 3, 4) binary cyclic code with generator polynomial

g(x) = x4 + x2 + x+ 1, which is the dual of the Hamming (7, 4, 3)
code. Derive the parity-check matrix for this (7, 3, 4) code in reduced
echelon form.

Solution: The parity-check matrix for this (7, 3, 4) code in reduced
echelon form, is the following:

H =

⎡
⎢⎢⎣

1 1 0 1 0 0 0
0 1 1 0 1 0 0
1 1 1 0 0 1 0
1 0 1 0 0 0 1

⎤
⎥⎥⎦ .

(2) Derive a set of three parity-sums orthogonal on position e6 for the
code of Problem 1.

Solution:
A1 = e6 + e5 + e3 row 1
A2 = e6 + e2 + e1 rows 2⊕ 3
A3 = e6 + e4 + e0 row 4

(3) Let m = 3 and for n = 2m = 8 construct the matrices G0, G1, and
G2, which are building blocks for RM codes of block length 8.

Solution:

G0 =
[
1 1 1 1 1 1 1 1

]
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G1 =

⎡
⎣ 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎦

G2 =

⎡
⎣ 0 0 0 0 0 0 1 1

0 0 0 0 0 1 0 1
0 0 0 1 0 0 0 1

⎤
⎦

(4) Write the generator matrix for the first-order RM code of block
length 8.

Solution: The generator matrix for the first-order RM code of block
length 8 is the following 4× 8 matrix:

G =

[
G0

G1

]
=

⎡
⎢⎢⎣

1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

⎤
⎥⎥⎦

k1
k2
k3
k4

0 1 2 3 4 5 6 7

which generates the (7, 4, 3) Hamming code extended by an overall
parity-check bit to (8, 4, 4).

(5) Decode using the Reed algorithm (by majority voting) the G1 seg-
ment for the code of Problem 4.

Solution: Decoding by the Reed algorithm

(a) Decoding the G1 segment by majority voting, denoted as MAJ .
Suppose the received n-tuple is z = (z0, z1, z2, z3, z4, z5, z6, z7).

k4 : MAJ(z0 ⊕ z1, z2 ⊕ z3, z4 ⊕ z5, z6 ⊕ z7)

k3 : MAJ(z0 ⊕ z2, z1 ⊕ z3, z4 ⊕ z6, z5 ⊕ z7)

k2 : MAJ(z0 ⊕ z4, z1 ⊕ z5, z2 ⊕ z6, z3 ⊕ z7)

(b) Remove the effect of k4, k3, and k2 from the received n-tuple z.
The result is an n-tuple z′ from the r−1 = 1−1 = 0th order RM
code of block length 8, which is decoded by taking a majority
vote among its coordinates, i.e.,

k1 = MAJ(z′0, z
′
1, z

′
2, z

′
3, z

′
4, z

′
5, z

′
6, z

′
7).

(6) Letm = 2 and s = 2 and consider the Euclidean geometry EG(m, 2s)
over GF(2s). Determine the number of points and the number of
lines in EG(2, 4) over GF(4).
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Table 11.1. Points in EG(2, 4) over GF(4).

x0 = (0, 0), x1 = (0, 1), x2 = (0, α), x3 = (0, α2),
x4 = (1, 0), x5 = (1, 1), x6 = (1, α), x7 = (1, α2),
x8 = (α, 0), x9 = (α, 1), x10 = (α, α), x11 = (α, α2),
x12 = (α2, 0), x13 = (α2, 1), x14 = (α2, α), x15 = (α2, α2)

Table 11.2. Lines in EG(2, 4) over GF(4).

{x0,x1,x2,x3} {x4,x5,x6,x7} {x8,x9,x10,x11} {x12,x13,x14,x15}
{x0,x4,x8,x12} {x1,x5,x9,x13} {x2,x6,x10,x14} {x3,x7,x11,x15}
{x0,x5,x10,x15} {x1,x4,x11,x14} {x2,x7,x8,x13} {x3,x6,x9,x12}
{x0,x6,x11,x13} {x1,x7,x10,x12} {x2,x4,x9,x15} {x3,x5,x8,x14}
{x0,x7,x9,x14} {x1,x6,x8,x15} {x2,x5,x11,x12} {x3,x4,x10,x13}

Solution: The number of points in EG(m, 2s) over GF(2s) is 2ms,
i.e., (22)2 = 16 points, indicated in Table 11.1. The corresponding
number of lines (1-flat, see (11.12)) is 2(m−1)s(2ms−1)/(2s−1) = 20,
and are indicated in Table 11.2. Let α be a primitive element of
GF(4) whose minimal polynomial is x2+x+1, i.e. α2 = α+1. The
elements of GF(4) are denoted as {0, 1, α, α2}.
Applying the construction rule indicated in the proof of Theorem
11.29, we obtain (2ms − 1)/(2s − 1) = 5 linearly independent points,
namely, x1,x4,x5,x6, and x7. We obtain the following five sub-
spaces, {x0,x1,x2,x3}, {x0,x4,x8,x12},{x0,x5,x10,x15}, {x0,x6,
x11,x13}, and {x0,x7,x9,x14}.



Appendix A
The Gilbert Bound

A.1 Introduction
Let A be any finite set and letAn represent the set of all n-tuples v = (v1, v2, . . . , vn)

with components in A. Let |A| = q.
The Hamming sphere of radius t, non-negative, with center at the n-tuple v ∈ An,

is the set of all vectors v∗, v∗ ∈ An, such that dH(v,v∗) ≤ t, where dH(v,v∗) is the
Hamming distance between v and v∗.

The number of points, St, in a Hamming sphere of radius t is given by

St =

t∑
i=0

(ni )(q − 1)i.

For given positive integers n and d, 1 ≤ d ≤ n, a block code with minimum
Hamming distance dmin ≥ d can be constructed as follows. Choose one n-tuple
v1 ∈ An, arbitrarily among the qn n-tuples in An. Discard all n-tuples v∗ ∈ An which
are in the Hamming sphere of radius d−1 centered at v1. Repeat the procedure with
another n-tuple v2,v2 �= v1, selected from among the “surviving” n-tuples. This
procedure should be carried out as long as possible, at each step eliminating at most
Sd−1 n-tuples. The final subset of n-tuples, say of size M , which constitutes the code,
must satisfy

Sd−1M ≥ qn,

or

Sd−1 =

d−1∑
i=0

(ni )(q − 1)i ≥ qn(1−R), (A.1)

where R is the code rate and M = qnR. Expression (A.1) is known as the Gilbert
lower bound on d, which can be stated as follows.
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Gilbert lower bound: For any positive integers n and d, 1 ≤ d ≤ n, there exists a
q-ary block code with dmin ≥ d, whose rate R satisfies

∑d−1
i=0 (

n
i )(q − 1)i ≥ qn(1−R).

A.2 The binary asymptotic Gilbert bound
In practice, the greatest interest focus on the case where q = 2, i.e., the binary

case. The following inequalities (Massey 1985) hold for St

(t/
√
2n)2nh(t/n) < St ≤ 2nh(t/n), if t/n ≤ 1/2,

where h(p) = −p log2 p− (1−p) log2(1−p), 0 < p < 1, is the binary entropy function
(Cover and Thomas 2006, p.14). Thus, with the help of (A.1) we have

2n(1−R) < Sd−1 ≤ 2nh[(d−1)/n], or 1−R ≤ h[(d− 1)/n].

When n is sufficiently large the rate R satisfies

R ≥ 1− h(d/n), if dmin/n ≤ 1/2.

This is the asymptotic Gilbert bound, which holds for all n. As noted in (Massey
1985), the binary asymptotic Gilbert bound has now resisted for over 50 years all
attempts to improve it. Curiously enough, it can be shown that with probability
approaching 1 as n approaches infinite, a binary code of rate R obtained by the sta-
tistically independent selection of equally likely codewords from An will have dmin/n
satisfying the asymptotic Gilbert bound. This result means that virtually all binary
codes are as good as the Gilbert bound, however, no one has so far proved the exis-
tence of binary codes better than promised by the Gilbert bound for very large n. In
1982, for all q ≥ 49 and rates R in an interval depending on q, it was shown (Tsfas-
man, Vladut, and Zing 1982) that there exist arbitrarily long q-ary linear codes, in the
class of Goppa codes, whose dmin/n exceeds the corresponding asymptotic Gilbert
bound.

A.3 Gilbert bound for linear codes
Gilbert’s construction in general will not yield a linear code, even when the alpha-

bet A is GF(q). However, the idea behind the original construction can be adapted
to cover the linear case. Given a field GF(q) and integers n and d, 2 ≤ d ≤ n, the
generator matrix G of a linear code with dmin ≥ d can be constructed as follows.
Beginning with a list of all distinct qn n-tuples, one should delete all those n-tuples
in the Hamming sphere of radius d − 1 centered at 0. This means discarding all
n-tuples of weight less than d. Choose for the first row, g1, of G any of the remaining
n-tuples, then delete all n-tuples in the q−1 Hamming spheres of radius d−1 centered
at the n-tuples a1g1, a1 �= 0, a1 ∈ GF(q). Choose the second row of G, g2, as any
of the remaining n-tuples and delete all n-tuples in the q(q− 1) Hamming spheres of
radius d− 1 centered at the n-tuples a1g1 + a2g2, a2 �= 0, a2 ∈ GF(q). This process
of selection of n-tuples is continued until all n-tuples have been deleted. Since row
gi is chosen after qi−1 (possibly overlapping) Hamming spheres have been deleted,
it follows that the resulting linear code satisfies the following bound, known as the
Gilbert bound for linear codes.
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Gilbert bound for linear codes: For any positive integers n and d, 2 ≤ d ≤ n,
there exists a q-ary (n, k) linear code with dmin ≥ d, whose dimension k satisfies

Sd−1 ≥ qn−k. (A.2)

It is observed that the Gilbert bound for linear codes generally guarantees better
codes than its counterpart in (A.1). This results because, for linear codes, the rate
R has the form k/n. Expressions (A.1) and (A.2) are, however, formally identical
because k = Rn.





Appendix B
MacWilliams’ Identity for Linear Codes

B.1 Introduction
The MacWilliams’ identity for linear codes relates the Hamming weight distribu-

tion of a code to the Hamming weight distribution of its associated dual code. The
following derivation is based on probabilistic arguments and was first presented in
(Chang and Wolf 1980). It makes use of the probability of undetected error, which is
calculated in two different ways, and then the two results are equated. Applying the
same transformation to the Hamming distance distribution of a nonlinear code, one
obtains a set of nonnegative numbers with interesting interpretations in some cases.

B.2 The binary symmetric channel
The binary symmetric channel (BSC) with crossover probability ε, 0 ≤ ε ≤ 1, is

the binary-input binary-output channel where each input binary digit independently
has probability 1− ε of being correctly received and probability ε of being received in
error. In a BSC with crossover probability ε, the probability of a particular pattern
x of t errors in a block of n digits is given by

P (x) = εt(1− ε)n−t, 0 ≤ ε ≤ 1.

B.3 Binary linear codes and error detection
Let x be a binary n-component vector with Hamming weight w(x) = t. Consider an

(n, k, d) binary linear code V with parity-check matrix H. The syndrome associated
to x, denoted by S = S(x), is defined by S = HxT, where xT denotes the column
vector which is the transpose of x. The syndrome is zero, i.e., S(x) = 0, if and only
if x is a codeword. An expanded parity-check matrix H∗ is now defined which has as
rows all the vectors in the row space of H. Therefore H∗ has 2n−k rows. The rows
of H∗ are the codewords of the dual code of V . Associated to any binary n-vector x
the expanded syndrome S∗ = S∗(x) is defined as S∗ = H∗xT.

Lemma B.1 S∗(x) = 0 if and only if S(x) = 0. If S∗(x) �= 0 then it contains half
zeros and half ones among its 2n−k components.
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Proof: The proof follows by noticing that the components of S∗ are obtained by
taking all linear combinations of the components in S.

If a binary (n, k, d) code V is used only to provide error detection on a BSC, an
undetected error will occur if and only if the received word r is a codeword v′ different
from the transmitted codeword v.

Letting Ai, 0 ≤ i ≤ n, denote the number of codewords in V of Hamming weight
i, i.e., denote the code weight distribution, the probability of an undetected error,
Pue, is given by

Pue =
n∑

t=1

Atε
t(1− ε)n−t = (1− ε)n

n∑
t=1

At[ε/(1− ε)]t.

The weight enumerator of the code is defined as the polynomial

A(z) =

n∑
t=0

Atz
t,

and, since A0 = 1 one can write Pue as

Pue = (1− ε)nA[ε/(1− ε)]− (1− ε)n. (B.1)

This is one way of calculating Pue. The dual code weight distribution will now be
used to calculate Pue.

Let the dual code be denoted by V ⊥ = U = {u1,u2, . . . ,u2n−k}. Let r denote a
received binary n-tuple and let Fi denote the event ruT

i = 1, i.e., the event that ui

detects an odd number of errors in r. If w(ui) = wi, then P (Fi) is the probability
of the occurrence of an odd number of errors, caused by the BSC, in the wi nonzero
positions of ui. Thus,

P (Fi) =

wi∑
j=1

(
wi

j

)
εj(1− ε)wi−j , for j odd.

The expression for P (Fi) can be written as (see Section B.6)

P (Fi) = (1/2)[1 − (1− 2ε)wi ].

As a consequence of Lemma B.1, either none of the events Fi occur or exactly 2n−k−1

such events occur. Therefore,

2n−k∑
i=1

P (Fi) = 2n−k−1P (∪2n−k

i=1 Fi),

where
P (∪2n−k

i=1 Fi) = P (S∗ �= 0),

i.e., the summation on the left-hand side is equal to 2n−k−1 times the probability of
a nonzero syndrome. Thus, one can write

Pue = 1− (1− ε)n − P (S∗ �= 0) =

1− (1− ε)n − (1/2n−k−1)
2n−k∑
i=1

(1/2)[1 − (1− 2ε)wi ],
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since (1 − ε)n is the probability of a successful transmission. Let Bt, 0 ≤ t ≤ n,
denote the number of codewords of Hamming weight t in the dual code V ⊥. The
weight enumerator of V ⊥ is written as

B(z) =

n∑
t=0

Btz
t.

Thus,

Pue = 1− (1− ε)n − (1/2n−k)
2n−k∑
i=1

[1− (1− 2ε)wi ]

or,

Pue = 2−n+k
2n−k∑
i=1

(1− 2ε)wi − (1− ε)n.

However,

B(1− 2ε) =
n∑

t=0

Bt(1− 2ε)t =
2n−k∑
i=1

(1− 2ε)wi ,

and thus
Pue = 2−n+kB(1− 2ε)− (1− ε)n. (B.2)

Equating (B.1) and (B.2) and making z = 1− 2ε the desired formula results

B(z) = 2−k(1 + z)nA[(1− z)/(1 + z)], (B.3)

which is known as MacWilliams’ identity for binary linear codes.
The weight enumerator A(z) of the (n, k, d) linear binary code V uniquely deter-

mines B(z), the weight enumerator of the dual code V ⊥.

Example B.2 Consider the binary (7, 4, 3) Hamming code with the following
parity-check matrix:

H =

⎡
⎣ 0 0 0 1 1 1 1

0 1 1 0 0 1 1
1 0 1 0 1 0 1

⎤
⎦ =

⎡
⎣ u1

u2

u3

⎤
⎦ .

The extended parity-check matrix H∗ is thus

H∗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0
0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1
0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 0 1 1 0
1 1 0 1 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Let r be the received n-tuple. Then one has S = HrT, or

S = [u1r
T,u2r

T,u3r
T].

It follows that for S∗ one obtains

S∗ = [u1r
T,u2r

T, . . . ,u2n−kr
T],

where S∗ �= 0 if and only if S �= 0.
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Now let r = (0, 1, 0, 1, 0, 0, 0), then one obtains S = [1, 1, 0]T and S∗ = [0, 1, 1, 0, 0,
1, 1, 0]T with half ones and half zeros. Finally, since the weight distribution of the
(7,4,3) Hamming code is

A(z) = 1 = 7z3 + 7z4 + z7,

for its dual code, i.e., the m-sequence (7,3,4) code, one obtains through the application
of MacWilliams’ identity the following expression:

B(z) = 2−4(1 + z)7A[(1− z)/(1 + z)],

which after being expanded and simplified leads to

B(z) = 1 + 7z4.

B.4 The q-ary symmetric channel
The q-ary symmetric channel with crossover probability ε/(q − 1), 0 ≤ ε �= 1,

is the q-ary-input q-ary-output channel where each input symbol independently has
probability 1−ε of being correctly received and probability ε/(q−1) of being received
in error. The probability of a particular pattern x of t errors in a block of length n
digits is given by

P (x) = [ε/(q − 1)]t(1− ε)n−t, 0 ≤ ε ≤ 1.

B.5 Linear codes over GF(q)
For linear (n, k, d) codes over GF(q), the MacWilliams’ identity has the form

B(z) = q−k[1 + (q − 1)z]nA[(1− z)/(1 + (q − 1)z)]. (B.4)

For the derivation of (B.4), using the probability of undetected error argument, we
use the respective definitions given earlier for both the extended parity-check matrix
and the extended syndrome. For any received vector x, with coordinates in GF(q),
it is easy to show that the extended syndrome is either all-zero or contains each
element of GF(q) occurring the same number (q−1)qn−k−1 of times. The probability
of an undetected error, denoted by Pue, can be written in terms of the code weight
distribution Ai and weight enumerator A(z) as

Pue =

n∑
t=1

At(1− ε)n−t[ε/(q − 1)]t,

i.e.,
Pue = (1− ε)nA[ε/(q − 1)(1− ε)]− (1− ε)n, (B.5)

since A0 = 1.
Let Fi denote the event ruT

i �= 0, i.e., the event that ui detects one or more errors
in r. By a reasoning similar to the one used in the binary case, we have

qn−k∑
i=1

P (Fi) = (q − 1)qn−k−1P (∪qn−k

i=1 Fi),

where
P (∪qn−k

i=1 Fi) = P (S∗ �= 0).
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The probability of an undetected error can be written as

Pue = 1− (1− ε)n − P (S∗ �= 0) =

Pue = 1− (1− ε)n −
[

1

(q − 1)qn−k−1

] qn−k∑
i=1

P (Fi).

If w(ui) = wi, then P (Fi) is the probability of the occurrence of a parity-check failure
due to errors, caused by the q-ary symmetric channel, in the wi nonzero positions of
ui.

Lemma B.3 The expression for P (Fi) is given by

P (Fi) =
(q − 1)

q

[
1−

(
1− εq

q − 1

)wi
]
.

We give a proof of this lemma in Section B.6.
Thus one way of computing Pue is through the formula

Pue = 1− (1− ε)n − P (S∗ �= 0) =

1− (1− ε)n − 1

qn−k−1

qn−k∑
i=1

1

q

[
1−

(
1− εq

q − 1

)wi
]

or

Pue = q−n+k
qn−k∑
i=1

(
1− εq

q − 1

)wi

− (1− ε)n.

Let B(z) and Bt, 0 ≤ t ≤ n, denote respectively the weight enumerator and the
weight distribution of the dual code. Thus,

B(z) =
n∑

t=0

Btz
t.

However,

B

(
1− εq

q − 1

)
=

n∑
t=0

Bt

(
1− εq

q − 1

)t

=

qn−k∑
i=1

(
1− εq

q − 1

)wi

,

and we can write Pue in terms of B(.) as

Pue = q−n+kB

(
1− εq

q − 1

)
− (1− ε)n. (B.6)

Equating (B.5) and (B.6) we obtain

(1− ε)nA

[
ε

(q − 1)(1− ε)

]
= q−n+kB

(
1− εq

q − 1

)
, (B.7)

and finally, letting z = 1− εq
q−1

in (B.7) we obtain

B(z) = q−k[1 + z(q − 1)n]A

(
1− z

1 + z(q − 1)

)
, (B.8)

which represents the MacWilliams’ identity for q-ary linear codes.



172 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

B.6 The binomial expansion
Consider the expansion of the following binomials:

(a+ b)n =
n∑

i=0

(
n
i

)
bian−i (B.9)

(a− b)n =
n∑

i=0

(−1)ibian−i. (B.10)

An expression for the sum of the terms where i is an odd number is obtained by
subtracting (B.10) from (B.9), i.e.,

(a+ b)n − (a− b)n = 2

n∑
i=1

(
n
i

)
bian−i, for i odd. (B.11)

Substituting a = 1− ε and b = ε in (B.11), it follows that

1− (1− 2ε)wi = 2P (Fi),

which is the desired expression for P (Fi) in the binary case.

Proof: (of Lemma B.3) To visualize how a parity-check failure occurs, in the q-
ary case, let us draw a tree diagram as follows. Start with a single node which we
call node zero. From node zero we draw q − 1 branches and explain how the tree
grows by concentrating our description on one of these branches. Take any nonzero
element of GF(q), call it a1. Then label this chosen branch with B11 = a1ui1, which
is the product of a1 with the first nonzero component of ui. Label the node at the
end of B11 with S11 = B11. In the sequel, we denote the nonzero elements of ui by
uij , 1 ≤ j ≤ wi. Now extend the tree, from node S11 by drawing q − 1 branches,
corresponding to the nonzero elements of GF(q) as follows. Branch j, 1 ≤ j ≤ q − 1,
stemming from S11, is labeled with the sum B2j = a1ui1 + ajui2, aj �= 0, aj ∈ GF(q).
Obviously, only one of these sums will be zero because the congruence a1ui1+ajui2 ≡ 0
mod q, has a unique solution in the unknown variable aj �= 0 aj ∈ GF(q). Each
branch B2j leads to a node S2j , labeled as S2j = B2j , 1 ≤ j ≤ q − 1. The tree
is again extended by drawing q − 1 branches from each node S2j , 1 ≤ j ≤ q − 1.
Each new branch is now labeled with the sum B3j , 1 ≤ j ≤ q − 1, defined in a way
analogous to the previous sums. Now, however, we observe the important fact that
the node for which S2j = 0 can only lead to branches with B3j �= 0. This process of
expanding the tree is continued until we have used all the nonzero components of ui.
Since a1 can have q − 1 nonzero values, the following tree evolution rule is observed,
considering what occurs at the end of the kth step.

(a) The total number of nodes is (q − 1)k, k ≥ 1.

(b) Each of the nodes satisfying the parity-check equation leads to q − 1 branches,
none of which satisfy that parity-check equation.

(c) Each of the nodes nonsatisfying the parity-check equation leads to q−1 branches,
only one of which satisfies that parity-check equation.

Denote by Nk the number of nodes that do not satisfy the parity-check equation,
at the end of the kth step. It follows from the tree evolution rule that

Nk = (q − 1)k −Nk−1, k ≥ 1,
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which can be solved, by defining N0 = 1, to give

Nk =
k−1∑
e=0

(q − 1)k−e(−1)e.

Now one can write P (Fi) as

P (Fi) =

wi∑
s=1

(
wi

s

)
(1− ε)wi−s[ε/(q − 1)]sNs

=

wi∑
s=1

(
wi

s

)
εs(1− ε)wi−s

s−1∑
l=0

[−1/(q − 1)]l,

however,
s−1∑
l=0

[−1/(q − 1)]l =
1− [−1/(q − 1)]s

q/(q − 1)

thus,

P (Fi) =
(q − 1)

q

wi∑
s=1

(
wi

s

)
εs(1− ε)wi−s{1− [−1/(q − 1)]s}

=
(q − 1)

q

[
wi∑
s=1

(
wi

s

)
εs(1− ε)wi−s −

wi∑
s=1

(
wi

s

)( −ε
q − 1

)s

(1− ε)wi−s

]

=
(q − 1)

q

[
wi∑
s=0

(
wi

s

)
εs(1− ε)wi−s −

wi∑
s=0

(
wi

s

)( −ε
q − 1

)s

(1− ε)wi−s

]

=
(q − 1)

q

[
1−

(
1− εq

q − 1

)wi
]
.

B.7 Digital transmission using N regenerative
repeaters

In this section we observe that the expression for P (Fi) is precisely the same as that
for the probability of error in digital transmission, using N regenerative repeaters, in
a q-ary symmetric channel. Consider the transmission of a voltage level a, where a can
assume any one of q distinct values, through a cascade of N regenerative repeaters.
We assume that the noise between consecutive repeaters is of the same type, no matter
which pair of consecutive repeaters we choose, and that the associated channel can
be modeled as a q-ary symmetric channel. Due to the channel symmetry, the value
of P (Fi) is not dependent on the actual value of the level a.





Appendix C
Frequency Domain Decoding Tools

C.1 Finite Field Fourier Transform
Definition C.1 Let v = (v0, v1, . . . , vi, . . . , vn−1) be an n-tuple with coefficients
in GF(q), where n divides qm−1 for some positive integer m, and let α be an element
of multiplicative order n in GF(qm). The n-tuple V = (V0, V1, . . . , Vj , . . . , Vn−1)
defined over GF(qm), whose components are given by:

Vj =

n−1∑
i=0

αijvi, j = 0, 1, . . . , n− 1,

is called the finite field Fourier transform of v.

Vectors v and V constitute a Fourier transform pair, usually represented as:

v⇐⇒ V

or

{vi} ←→ {Vj}.
In conformity with the terminology employed in electrical engineering for the con-
ventional Fourier transform, indices i and j are referred to as time and frequency,
respectively. As a consequence of Definition C.1 some important properties of the
finite field Fourier transform are derived which have great utility in algebraic coding,
and are presented next.

PROPERTY 1. Over GF(q), a finite field of characteristic p, the components
vi, 0 ≤ i ≤ n− 1, of a vector v are related to the components Vj , 0 ≤ j ≤ n− 1, of
its finite field Fourier transform V through the expressions:

Vj =
n−1∑
i=0

αijvi

vi =
1

(n mod p)

n−1∑
j=0

α−ijVj .



176 ELEMENTS OF ALGEBRAIC CODING SYSTEMS

PROPERTY 2. Given a Fourier transform pair {vi} ↔ {Vj} and constants c, i0
and k, then:

(a) c{vi} ←→ c{Vj} (Linearity)
(b) {vi−i0} ←→ {Vjα

ji0} (Time shift)
(c) {vki} ←→ {Vj/k} (Scaling)(k, n) = 1.

PROPERTY 3. Given two Fourier transform pairs

{fi} ←→ {Fj}
and

{gi} ←→ {Gj},
then:

{figi} ←→ {(1/n)FkGj−k} (Frequency domain convolution).

Vectors v and V are also usually represented by polynomials as follows:

v(x) = vn−1x
n−1 + vn−2x

n−2 + · · ·+ v1x+ v0

V (z) = Vn−1z
n−1 + Vn−2z

n−2 + · · ·+ V1z + V0.

It follows from this polynomial representation of v and V that

Vj =

n−1∑
i=0

αijvi = v(αj)

vi = (1/n)

n−1∑
j=0

α−ijVj = (1/n)V (α−i).

In this manner, we obtain a relationship between the roots of a polynomial in one
domain and the components of the corresponding finite field Fourier transform pair
in the other domain. In other words, v(x) has a root αj , i.e., v(αj) = 0, if and only
if Vj = 0. Conversely, V (z) has a root α−i, i.e., V (α−i) = 0, if and only if vi = 0.

C.2 The Euclidean algorithm
The Euclidean algorithm (Clark and Cain 1981, p.195) is a technique which allows

the calculation of the greatest common divisor of two integers, or of two polynomials.
Our main interest is to solve the key equation for decoding cyclic codes, and not to
calculate the greatest common divisor. Beginning with two polynomials, a(z) and
b(z), the Euclidean algorithm employs the following relationship:

fi(z)a(z) + gi(z)b(z) = ri(z),

where, for any one of the polynomials fi(z), gi(z), or ri(z) replacing hi(z), the fol-
lowing recurrence relation is applied:

hi(z) = hi−2(z)− qi(z)hi−1(z),

subject to the following initial conditions:

f−1(z) = g0(z) = 1
f0(z) = g−1(z) = 0
r−1(z) = a(z)
r0(z) = b(z).
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The polynomial qi(z) is given by the integer part with non-negative exponents of the
quotient

ri−2(z)/ri−1(z).

To solve the key equation we consider

a(z) = z2t

and
b(z) = S(z),

and apply the Euclidean algorithm, stopping when the degree of ri(z) is less than t.
We then take

L(z) = gi(z).

The Berlekamp–Massey algorithm (Berlekamp 1968, Massey 1969), described in
Chapter 4, provides an alternative way for solving the key equation, slightly more
efficient than the Euclidean algorithm. Massey (1969) treats the Berlekamp–Massey
algorithm in a very thorough manner and allows the reader to understand the algo-
rithm in terms of a generalized sequence synthesis procedure.
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