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Abstract

Many empirical researchers yearn for an econometric model that bet-
ter explains their data. Yet these researchers rarely pursue this objective
for fear of the statistical complexities involved in specifying that model.
This book is intended to alleviate those anxieties by providing a practical
methodology that anyone familiar with regression analysis can employ—
a methodology that will yield a model that is both more informative and
is a better representation of the data.

Most empirical researchers have been taught in their undergraduate
econometrics courses about statistical misspecification testing and respeci-
fication. But the impact these techniques can have on the inference that
is drawn from their results is often overlooked. In academia, students are
typically expected to explore their research hypotheses within the context
of theoretical model specification while ignoring the underlying statis-
tics. Company executives and managers, by contrast, seck results that are
immediately comprehensible and applicable, while remaining indifferent
to the underlying properties and econometric calculations that lead to
these results.

This book outlines simple, practical procedures that can be used to
specify a better model; that is to say, a model that better explains the
data. Such procedures employ the use of purely statistical techniques per-
formed upon a publicly available data set, which allows readers to follow
along at every stage of the procedure. Using the econometric software
Stata (though most other statistical software packages can be used as
well), this book shows how to test for model misspecification, and how
to respecify these models in a practical way that not only enhances the
inference drawn from the results, but adds a level of robustness that can
increase the confidence a researcher has in the output that has been gener-
ated. By following this procedure, researchers will be led to a better, more

finely tuned empirical model that yields better results.
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Preface

As the title states, this book is about using relatively easy-to-perform
methods in order to find a better econometric model—but methods that
don't rely on any theory that is specific to a particular field. The meth-
ods employed in this book rely entirely upon the statistical assumptions
underlying any ordinary least squares (OLS) type of econometric model,
and, therefore, transcend all disciplines.

Regression analysis is perhaps the most widely used method for
evaluating data. It is used in academics, large and small companies, and
some may even use it to forecast their household budgets (although these
individuals are probably rare). One of the issues some have had over the
years, however, is the fact that sometimes their models provide a poor
explanation of the data, or generate results that do not make sense within
the context of the analyst’s respective area. And even if the models these
analysts employ do in fact generate results that make sense, good research-
ers frequently wonder whether they can generate even better results with
regard to the robustness of the estimates, and the overall fit of the model
to the data. This is where this book tries to help out.

This book starts with a basic outline of the concept of statistical ade-
quacy and what it means within the context of an econometric model. And
even though this topic is reviewed within the realm of OLS regressions,
all models whether they are ordered logistic, probit, and so on, employ
similar probabilistic assumptions that researchers shouldnt ignore.

Basically speaking, statistical adequacy of an econometric model
means that in the finite sample, the model embodies what it needs to in
order to satisfy the underlying distributional properties imposed upon
it, a priori, by the researcher. It is all too common for analysts to ignore
these properties and simply run regressions. Their excuse is usually that
the central limit theorem absolves all of their responsibility toward attain-
ing statistical adequacy in the finite sample because everything’s normal
at the limit, right? But what they fail to realize is the fact that for years

scientists have constructed finite sample misspecification tests for these
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probabilistic assumptions. The reason is that if the assumptions are sat-
isfied in the finite sample, there is no need to employ the central limit
theorem in this context. In other words, if a distribution is normal in the
finite sample, of course it’s normal at the limit! From this then, it seems
to make sense that if the assumptions are satisfied in the finite sample,
the results the model generates will be more trustworthy than the results
generated by a model that relies solely upon the properties of the central
limit theorem. The critical dichotomy in thought here is the idea that
the latter group of scientists actually realize that no one ever has an infi-
nite number of observations, nor will anyone ever approach an infinite
number of observations. The former group of scientists must then live on
another planet, one for which infinity is less a concept and more a reality.
But here on the Earth, infinity is still just a concept.

From this area of discussion, I generate baseline results using cross-
section and panel models that the reader can also employ with publically
available data from the World Bank. In fact, throughout the book, the
same data, same cross-sectional model, and panel model will be used
letting the reader follow along with their own econometric software; 1,
however, employ the use of Stata. We then pursue misspecification test-
ing and respecification for the cross-sectional model in the first half of the
book, and panel model misspecification testing and respecification in the
second half of the book. Since it is rare that a researcher simultaneously
uses cross section and panel models in the same research piece, each of
these sections are written in a way that is mostly independent from the
other. For the most part, if the reader is using a panel model, they will not
have to read the chapters on cross-sectional specification in order to inter-
pret what is said in the panel section—they can just jump straight from
Chapter 4 to Chapter 7. And lastly, within each section, if misspecification
is found to be present the models are respecified accordingly and a discus-
sion takes place that compares the newly respecified model to the baseline
results. In the end, we will have a “better” model than we started with.

Having said all this, the purpose of this book isn't necessarily to fully
attain statistical adequacy in the finite sample. In fact, it’s unlikely that
any empirical researcher can achieve complete adequacy especially if their
data is sociologically generated data collected from multiple sources such

as most economic data. But my purpose in this book is to rely upon the
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concept of statistical adequacy in order to come as close as possible to sat-
isfying our underlying probabilistic assumptions. To that end, this book
serves its purpose; and hopefully, the researchers who read this book will
find that it does as well. I sincerely hope you enjoy reading it as much as

I enjoyed writing it!






CHAPTER 1

What Is a Statistically

Adequate Model and Why
Is It Important!?

For an ordinary least squares (OLS)-type regression, the researcher assumes
that the errors are normally, identically, and independently distributed
(NIID). In practice, it is the residuals (the estimated errors) that must sat-
isfy these assumptions in order for the researcher to draw valid inference
from the results of their regression. In other words, if the residuals are not
NIID in the finite sample, the model is considered to be misspecified, and
at least some of the inference drawn from the results cannot be trusted.
Sometimes it is the standard errors of the coefficients that are biased, and
sometimes it is the coeflicients themselves, or both. Either way, any con-
clusions made from the results are likely to be tenuous at best.

Many would argue that the central limit theorem absolves any respon-
sibility from the researcher to assure that a model is statistically adequate;
after all, everything is normal at the limit, right? First, no its not. A non-
normal distribution is non-normal period! Secondly, the central limit
theorem only holds under certain conditions—conditions that can be
violated. Thirdly, researchers like me have shown that assuming asymp-
totic normality produces substantially different results than assuming nor-
mality in the finite sample (Edwards and McGuirk 2004; Edwards et al.
2006). Lastly, no one ever has an infinite number of observations. Think
about it, if you could approach infinity, just how far from infinity would
you still be? You would still be an infinite number of observations away
from infinity!

Buct if normality is established in the finite sample then one does not
have to rely on the central limit theorem. This is why for many years

econometricians have developed a variety of ways to test for NIID in the
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finite sample; unfortunately, these tests are usually ignored by empirical
researchers even though all of them learned these testing methods in their
undergraduate days.

It certainly seems to be common sense that if NIID is established
in the finite sample, the inference you draw from your results are more
reliable and robust, giving your research far more validity (Edwards et al.
2006; Spanos 1999; McAleer 1994; McAleer et al. 1985). So why don’t
more researchers make conscious efforts to satisfy the NIID assumptions
in finite samples? This is a good question that has four possible answers:
(1) they do not know any better, which is a scary thought in itself; (2) it
is simply too difficult, time consuming, or both, to test for mispecifica-
tion; (3) if mispecification is discovered, it is too difficult to respecify
the models; or (4) they are afraid that the results from their respecified
model would not support their research hypotheses. To the extent that
I do not want to lose complete faith in the empirical research commu-
nity, I will go with the excuse that most researchers do not pursue more
statistically adequate models because it is too difficult to respecify them
and actually attain NIID residuals, and the models that one may end up
with may not make sense given the researcher’s objective. Let me clarify
this statement.

Some data sets are fairly easy to work with, are relatively homogene-
ous in their observations across individuals or over time, or both, and
are collected by relatively few sources allowing someone to more easily
justify merging them together. Other data sets are the complete opposite.
Some are collected from hundreds, if not thousands of different sources,
each with seemingly different collection criteria even when collecting the
same variable(s). Some have extreme levels of heterogeneity both over
time and across individuals. Some are simply so poorly constructed that
they are almost impossible to work with, much less model. And some
data sets have all three issues. In essence, when modeling some data sets,
one may not be able to attain NIID in the finite sample, no matter what
the specification of their model is. This may be a good reason why so
many researchers simply regress (pardon the pun) to the simple linear
model and ignore any misspecification issues. However, this is not a wise
thing to do because the closer one comes to NIID, even if not exactly

conforming to all of the NIID assumptions, the more robust and reliable
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the inference will be that they draw from their results. This is what we set
out to do in this book, beginning with this chapter. We will do our best
to achieve NIID given our finite sample data sets; but in the end, even
if we do not quite get there, our results will be more reliable than they
otherwise would have been had we just ignored our probabilistic assump-
tions in the first place.

To the extent that I do not want to get too technical in this book
and simply outline a practical methodology to attain a model that more
accurately reflects the data, I will henceforth focus on a list of typical
misspecification issues. Correcting these problems may or may not make
your model satisfy a// of the underlying NIID conditions, but it will allow
you to have far more confidence with the inference you draw from your
results. In addition, the reader can easily test for these using most econo-
metric software packages as the simpler tests are usually canned in the
package as prewritten commands that can be engaged simply by typing
one or two words; and if they are not canned, the construction of the un-
canned tests are also quite easy.

A more sophisticated reader will notice that the paragraph they just
read gives the impression that we will be testing for misspecification.
I should probably clarify what I mean as one never tests for misspeci-
fication, he or she actually tests for correct specification. For instance,
one never tests for heteroskedasticity, he or she tests for homoskedastic-
ity; therefore, for a test such as this, homoskedasticity would be the null
hypothesis. If the null is not satisfied, then it is possible that heteroske-
dasticity exists. So, when someone tests for misspecification, he or she is
actually testing for correct specification; any test results that come back
showing that the modeler does not have the correct specification, then
the modeler can assume that the misspecification might lie in the area of
the probabilistic assumption of that specific test. Having said this, in the
context of this book and its purpose, which is to provide the reader with
basic methods both to find misspecifications and correct for them, I focus
on the (possible) misspecification instead. I have found that students of
empirical work better understand deviations from probabilistic assump-
tions and how to correct for them when put in this context. Therefore,
I do hope that the expert will ultimately allow (or better yet, ignore) this

rhetorical faux pas of mine throughout the remainder of the book.
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Types of Misspecification Covered in This Book

The basic misspecification issues that we will focus on are as follows:

1. Heteroskedasticity

2. Intercept heterogeneity

3. Dependent variable dynamics in panel data
4. Slope heterogeneity

5. Statistical omitted variable bias

For the more advanced reader and modeler, we can add to this list the

following issues:

6. Variance heterogeneity
7. Consistent and balanced panels

8. Dynamic parametric heterogeneity

Misspecifications 1 through 5 are the most important for empirical
research. If one’s objective is to draw fairly reliable inference but not get
into the quagmire of sophisticated econometric techniques, the bare min-
imum of misspecification issues one should correct are these. A less novice
researcher may find excluded from the misspecification issues listed earlier
endogeneity between x and y, dependence among the residuals, and spa-
tial dependence—these omissions are not by accident.

One of the underlying assumptions made in regression analysis is that
any variable that lies on the right-hand side of the equation causes y to
change (or not) and not the other way around; in other words, x deter-
mines y (this is where the word determinant comes from). However, if
y causes any of the right-hand side variables to change, then we say the
relationship between x and y is endogenous implying that information
contained in y feeds back into the right-hand side. In this book, endoge-
neity is not addressed as a theoretically anticipated feedback from y to x;
but it is addressed by misspecification (3) as a purely statistical issue when
performing dynamic regressions using panel data.

In the theoretical case, if we assume that y does feedback to x, we

must get that assumption from some theoretical relationship we anticipate
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must exist given that particular data set. For instance, if we run a regres-
sion of the growth rate in gross domestic product (GDP) for the United
States on gross domestic investment in the United States, an underly-
ing assumption is that investment causes growth. However, it can also be
argued that increased growth will in turn cause firms to invest more. This
is a purely theoretical argument and not a statistical one.

In this book, I only focus on the statistical aspects of finding a bet-
ter model and to a great extent avoid theoretical implications. Having
said all chis, I will actually use models that already satisfy the exogeneity
assumption by lagging the variables in the conditioning set by one period.
This is a common way of circumventing endogeneity when using longi-
tudinally collected data. The cross-sectional model will utilize averages of
two time spans over years of data. I use more recent year-span averages
for the left-hand-side variable and less recent year-span averages for the
right-hand-side variables. The panel model will use one-year lags of all
variables on the right-hand side. This variable construction procedure will
necessarily correct any endogeneity issues simply because an event that
happens today cannot cause something to occur yesterday. Therefore, by
definition our right-hand-side variables must cause our left-hand-side and
not the other way around.

With regard to error and spatial dependence, we partially address
the former (again in misspecification (3)), and simply ignore the latter.
We address error dependence by including dependent-variable dynamics
into our panel regression model. To go much beyond that would involve
a level of sophistication that exceeds the intentions of this book—that
is, quick and easy ways to attain a better model. The same argument is
applied to spatial dependence. However, the suggested readings at the
end of this chapter will help those interested in these two particular mis-

specification issues.

Suggestions for Further Reading

Readers interested in furthering their knowledge of statistical adequacy in

econometric modeling should read:

Edwards, J.A.; and A. McGuirk. “Statistical Adequacy and the Reliability of
Inference.” Econ Journal Watch 1, no. 2 (August 2004), pp. 244-59.
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Edwards, J.A., A. Sams; and B. Yang. “A Refinement in the Specification of
Empirical Macroeconomic Models as an Extension to the EBA Procedure.”
The BE Journal of Macroeconomics 6, no. 2 (October 20006), pp. 1-26.

McAleer, M. “Sherlock Holmes and the Search for Truth: A Diagnostic Tale.”
Journal of Economic Surveys 8, no. 4 (December 1994), pp. 317-70.

Spanos, A. Probability Theory and Statistical Inference: Econometric Modeling with
Observational Data. Cambridge: Cambridge University Press, 1999.

Readers interested in the basics of misspecification issues, including spatial
dependence, should read:

Anselin, L. Spatial Econometrics: Methods and Models. New York, NY: Springer
Publishing, 1988.

Gujarati, D.N. Basic Econometrics. New York, NY: McGraw-Hill Publishing, 2003.



CHAPTER 2

Basic Misspecifications

In explaining each of the misspecification issues 1 through 5, I start from

a basic model of the form

y=a,+ax+e 2.1)

Typically the errors, ¢, are assumed NIID. However, if any one of the mis-
specifications 1 through 5 exist, some area of this assumption is violated.
It is these violations that we will identify and, if encountered, will correct
for. Correcting for these basic forms of misspecification will allow the
empirical researcher to draw more accurate inference from their results
and, therefore, have more confidence that the outcomes they reach are
some of the best attainable.

The order with which I describe, test, and correct for each misspecifi-
cation is not by accident. The ordering of these misspecification issues is
one that I've personally developed, and one that is most likely to result in
an adequately specified model with the least amount of effort. Many mis-
specifications can mask themselves in ways that lead the researcher away
from the true cause. For instance, a quadratic relationship could poten-
tially mask itself as slope and intercept heterogeneity (issues discussed in
length later). In other words, one could test for a quadratic relationship
and find that one exists according to the test used; but the actual mis-
specification issue at hand is a totally different one from what the test
was supposed to catch. Furthermore, respecifying a model may actually
produce misspecification in another probabilistic assumption. In essence,
finding an adequate model can sometimes become a circular process and
be quite frustrating at times. The order I outline in this book is one that

P've found reduces (although doesn't eliminate) this frustration.
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Heteroskedasticity

One of the implications of identically distributed errors is that the condi-
tional variance of y is not a function of x. If it is, we have heteroskedastic-
ity; if it isn’t, we have homoskedasticity. Mathematically, homoskedasticity

is represented by

E(?) = ¢? (2.2)

where heteroskedasticity is represented by

E(e?) = o?(x) (2.3)

The reader will notice a slight deviation here from what they probably
learned earlier in their academic career as there is no subscript on ¢ or x.
A heteroskedastic variance is different from a heterogeneous variance. The
former is a function of x, whereas the latter is a function of some deter-
ministic change in ¢ that may or may not be a function of x. We address
variance heterogeneity later in this book.

An easy way to spot if heteroskedasticity might be present is to plot
the absolute value of the residuals, 7 over increasing values of x. (If one
remembers from undergraduate econometrics courses, the residual is the
estimated error. Therefore, the residual is the empirical representation of
the error, and hence the variable one uses to test for misspecification.)
Heteroskedasticity exists if there is an obvious correlation between |7|
and x. Figure 2.1 shows a homoskedastic relationship and Figure 2.2 a
heteroskedastic one. The reader should keep in mind, however, that the
heteroskedastic plot reflects only one version of this phenomenon. But
any correlation or pattern other than no correlation would be indicative
of heteroskedasticity.

There are many quantitative tests for homoskedasticity; however, most
researchers these days don’t even test for it, they simply assume heteroske-
dasticity exists and by default correct for it. They do this mostly because
it is easy and the procedure for correction is built into all programming
packages and usually consists of adding a word at the end of the regres-

sion’s programming line. (For instance, in Stata a researcher would simply
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Figure 2.2 Heteroskedastic residuals getting larger with x

add the word “robust” to the end of the line containing the regression
command.) Their argument for automatically applying the correction
procedure is that if the errors don’t need correcting, then the respeci-
fication procedure used to correct for heteroskedasticity will not create
substantial problems when drawing accurate inference from the coefli-
cient estimates. At worst, correcting for heteroskedasticity when none is
present will err on the side of an insignificant finding resulting in no
statistically significant relationship between x and y (at least in practice).

On the other hand, one can easily argue that correcting for something
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that isn’t there seems a flawed concept in itself and doesn’t coincide with

. <« . ”»
conducting “good econometrics.

Intercept Heterogeneity

Another concept of identically distributed errors is the idea that if we
cluster or order the errors in “some meaningful way” they don’t reveal any
obvious patterns. An intercept with no heterogeneity would be math-

ematically represented as

a,(it) = a, (2.4)

where 7 represents some obvious clustering of the data, and # represents
a time dimension within each 7. On the other hand, if heterogeneity did

exist we would have

a(it) = a;, (2.5a)

or

a,(it) = a,, (2.5b)
where (2.5a) reflects clustering heterogeneity, and (2.5b) reflects time
heterogeneity. Heterogeneity of the form in (2.5a) can exist when using
cither cross section or panel data, whereas that of the form (2.5b) can
only exist with panel data. Of course, we could have both simultaneously
if panel data is used. If not explicitly modeled, each of these phenomena
would be identified as either shifting or trending residuals when ordered
over clusters, time, or both.

When modeling intercept heterogeneity, we have to remember that
the residual is all the information contained in y that is not accounted
for by whatever is on the right-hand side. Potentially, there are an infinite
number of variables that can be included to fully explain y. Think about
it, for any given complex variable like economic growth, would we ever be

able to run a regression of growth on a set of variables and get an adjusted
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R* = 1.00? I think not. This is because not all explanatory variables are
available to the researcher at the time the research is being conducted.
However, there are variables that can be constructed by the researcher with
very little effort. These are dummy variables and time trend variables; and
it is these variables that we use to attempt to pick up patterns in meaning-
fully ordered residuals. As we probably already know, a dummy variable
is a binary, zero-one variable that takes the value 1 for some characteristic
of y and 0 otherwise. A time trend variable is a variable that is ordinal on
a discreet interval, say, 1, 2, 3, and so on, within each 7.

And while the construction of the time trend variable is obvious, clus-
ters are more complicated. Examples of such clustering could be gen-
der, regions in the United States, types of manufacturing, race, and so
on. Even continuous variables, such as income, population growth rates,
countries” development levels, and so on, can be made discreet and used
as clustering variables as long as these clusters make intuitive sense. As an
example, while income data is usually continuous, we could cluster this
dara to reflect high income, middle income, and low income. Whereby
the development of a nation is usually determined by its per capita wealth
(or some proxy of it), which is also a continuous variable, we could cluster
countries by developed, developing, and emerging economies by delin-
eating each at some predetermined level of wealth. But one thing is for
sure, not accounting for clustering can make any inference drawn from
an estimation, tenuous.

To make the concept of intercept heterogeneity clearer, especially
in the case of clustering, assume that we run a regression of economic
growth on domestic investment for all of the states in the United States
and Mexico. Also assume that our data weren’t sorted by country. Since a
regression minimizes the sum of the squared residuals without reference
to heterogeneity, because it’s the researcher who must define likely areas of
heterogeneity, our plot of the residuals over the individual states, 7, would
probably look like those in Figure 2.3. Notice how all of the residuals are
nicely centered around zero and their spread is fairly random. But this is
not the case if we sort these same residuals by country. Figure 2.4 tells us
that when the residuals are sorted by country, conditional mean growth
rates in the United States were underestimated, and those for the Mexican

states were overestimated! Hence, inference drawn from the model that
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Figure 2.4 Same residuals but clustered by country

produced Figure 2.3 would not represent the data as well as a model that

accounted for the variation in the residuals like in Figure 2.4.

Dependent Variable Dynamics in Panel Data

A very common issue that exists when using panel data are time dynam-
ics within the left-hand-side variable. Whatever your “dependent” vari-
able is, as long as it is continuous (it doesn’t have to be however, but we

won't go into that here) and has a relatively short time interval between
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observations, it is usually safe to assume that this period’s observation of
y is dependent upon last periods’ observation of y. Mathematically, this
would be depicted as

-yit = ﬂO + ﬂlyiz—l + eit (26)

Alternatively, we would see it in a plot of y like in Figure 2.5. Look famil-
iar? This is what a business cycle looks like (of course this is a perfect busi-
ness cycle as the data was generated; a typical business cycle would not be
as “smooth” so to speak). Since so much darta, economic or not, is influ-
enced by business cycles, it makes sense that if there is a time dimension
to your data, it will probably exhibit this pattern. And since the errors are
simply the information in y not accounted for by the right-hand side, it
is easy to see that the violation that would occur is of the independence
assumption—that is, the first I in NIID.

In theory, this sort of misspecification issue does not produce bias
in the slope coefficient estimates, only their standard errors and, there-
fore, inference drawn from them. Having said that, if what is occurring is
indeed business cycle dynamics, an argument could be made that without
holding the short-run dynamics of y constant, the effect that x has on y
could be muddled as you would be including both short- and long-run

effects in x’s slope coefficient.

.8
6 ° ° ° .
o o o o o o ° o
. ° . ° . . . .
= 4
° o ° o ° o
2 . . o
04
0 10 20 30 40
Time

Figure 2.5 Dependency in y over time
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Slope Heterogeneity

Like intercept heterogeneity whereby the intercept changes as a function
of something that is structurally determined, slope heterogeneity is when
the slope coefhicient, #,in equation (2.1), changes because of some struc-
tural characteristic. These characteristics are exactly the same as those pos-
sible for intercept heterogeneity, such as gender, region, income level, and

so on. This type of heterogeneity can be mathematically represented as

y=a,+ax+a,Dx+e (2.7)

where D is a dummy variable representing the predetermined clustering
of the darta that the researcher chooses. In many cases, both slope and

intercept heterogeneity must be modeled. If this is the case, (2.7) would

look like

y=ay+a,D+ax+aDx+e (2.8)

To get a visual idea of slope heterogeneity and the misleading infer-
ence drawn from it, assume we have two variables, x and y, as depicted in
Figure 2.6. In this plot, there is an obvious positive correlation between
x and y; the estimated relationship we see in Figure 2.7. However, if y

could be clustered into two groups, for instance, we could actually have

61 . .
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Figure 2.6 Scatter plot showing positive relationship between x and y
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Figure 2.8 Same relationship but accounting for slope heterogeneity

the relationship depicted in Figure 2.8. One can obviously see that the
depiction in Figure 2.8 is considerably different than that in 2.7. In fact,
it could be the case that the effect x has on y for one group is significant,
but that for the other group is not—emphasizing the need to control for
different slopes across clusters. To this end, it behooves the researcher to
investigate possible clustering to account for any slope heterogeneity that

may be present in the data.
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Statistical Omitted Variable Bias

Onmitted variable bias will take two forms—a theoretically driven bias,

and a statistically driven bias. Assume we have the functional form

JEaytax+az+e (2.9)

One of the fundamental properties of an OLS-type regression is that the
errors are not correlated with the other variables on the right-hand side.
Theoretical omitted variable bias (a term I coined) is when z is not actu-
ally modeled like it is in (2.9), but is contained in ¢ and is correlated with
x; but z must also be a completely different variable from x. An example
of two such variables would be housing starts in the United States and
yearly rainfall amounts. If; for instance, lumber prices were regressed on
housing starts (i.e., lumber prices on the left and housing starts on the
right), the coefficient representing the effect housing starts has on lumber
prices would be biased if rainfall amounts were not also included in the
data (I'm obviously ignoring the endogeneity as well as the supply and
demand aspects of this argument—this example is solely for exposition
purposes). This is because rainfall amounts are obviously correlated with
housing starts (can't start a house if it’s raining a lot), and with lumber
prices (can't timber land if it’s raining a lot). But this argument implies that
rainfall should be included only because there exists a purely theoretical
reason that it should be included.

For another example on a macro level, assume y is growth in GDP
for a broad cross section of countries, and x is foreign direct investment
for these countries. It could certainly be argued that economic growth
in an economy is affected by that country’s political stability; the more
unstable a country’s political system is, the lower its growth rate should
be. The same argument holds for foreign direct investment as outside
investors are unlikely to send much capital to an economy if their political
structure is in disarray—there would be too much risk involved in such
an investment. Therefore, to get an accurate picture (or unbiased picture)
of the effect that foreign investment has on growth, one must control
for political instability as well; hence, according to this purely theoretical

argument, z should be included.
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This book makes no theoretical assumptions on these grounds as they
can only be made case by case (i.c., depending upon what the dependent
variable and the conditioning set is). Furthermore, this argument could
be made for all models that have any amount of error! Couldn’t it always
be the case that an argument exists for the inclusion of some z-variable?
Because of this, we only approach the idea of omitted variable bias as a
statistical concept and not a theoretical one.

Statistical omitted variable bias (another term I coined) exists when z

is a direct function of x. In the typical case, this is when
7 = x? (2.10)

It is obvious that if (2.10) holds and (2.9) is the true model, but instead
we run the regression without z, we will be leaving out a variable that is
directly correlated with x and y. Now its not the case that we couldn
construct a theoretical argument why the relationship between x and y
should be a quadratic one (think of a production function for example),
but there doesn’t have to be such an argument. For instance, assume we
have the relationship between x and y as depicted in Figure 2.9. Now
assume we run a regression without z; in other words, an additively linear

regression of the basic form of (2.1) from earlier, that is

y=ay+ax+e (2.11)
40 _—
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Figure 2.9 Scatter plot of nonlinear relationship between x and vy
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If we did this we would get the estimated relationship as in
Figure 2.10.

But this would clearly be an inaccurate regression line. The observa-
tions in the center are below the line, while those at the ends are above the

line (generally speaking). A more accurate regression model to estimate

would be
y=ayrax+axt+e (2.12)
40 . e
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Figure 2.10 Estimated linear relationship between x and y
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Figure 2.11 Estimated nonlinear regression line
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If we fitted this line to the scatter plot we would get Figure 2.11.
Obviously, regression model (2.12) is a more accurate reflection of the
relationship between x and y. Did we have to make any theoretical argu-
ments to come to this conclusion? Certainly not—that’s why I call this
statistical omitted variable bias and differentiate it from other forms of

omitted variable bias.






CHAPTER 3

Misspecifications for the

More Advanced Reader

As implied earlier, the next three topics are not for the faint of heart but
often rear their ugly heads in most regression-based studies. The problem
is that most researchers either dont know these issues could exist, or if
they believe these issues can exist they dont know how to check for them
outside of time-series analyses, and they certainly never correct for these

problems if they believe they can exist and know how to check for them.

Variance Heterogeneity

Variance heterogeneity is a strange beast. It is perhaps the most widely
misinterpreted and misrepresented misspecification issue in the history of
econometrics. Here’s why. From earlier we know that heteroskedasticity

is represented as

E(e?) = o?(x) (3.1)

Implying that the conditional variance is a function of x. If you also
remember, the subscript was purposely left off to indicate that this is
purely a function of x and nothing else. On the other hand, variance het-

erogeneity takes the form

E(?) = a%(i, 1) (3.2)

Hence, variance heterogeneity means that the conditional variance is a
function of the y variable’s subscript. Like intercept heterogeneity, this
implies that the conditional variance is a function of some sort of cluster-

ing, ordering, or both of the squared residuals.
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Imagine a case whereby we are regressing GDP growth on a set of
determinants for a broad cross section of countries. Eventually the ques-
tion should be asked, do growth rates vary more in developing countries
than they do in developed countries? Of course they do. But this DOES
NOT mean that the variation in growth is a function of x; on the contrary,
it is a function of a dummy variable that would equal one for developing
countries, and zero otherwise. The variance can also be a function of time.
Have growth rates become more or less volatile since the great depression?
I think it would be reasonable enough to argue that on average, they have
become less volatile, possibly in a fairly linear and deterministic way. Of
course, both of these hypothetical arguments would have to be tested
empirically, but the reader should get the gist of what I am saying.

To make the comparison to heteroskedasticity clearer, assume we have

the model (2.1) from Chapter 2 as before, repeated in the following:

y=ay+ax+e (3.3)

We estimate this model and obtain the residuals, 7. Roughly speaking,

we could test for heteroskedasticity by running the following regression

r=by+ bx+u (3.4)

If b,= 0, then r’= b, which is a constant, meaning heteroskedasticity is

not present. To test for variance heterogeneity, we would run the regression

ri= ¢+ oD+ (3.5)

whereby D is a dummy variable representing either a clustering of 7 or a
time-dependent structural change. In this case, if ¢, is significant, it would
indicate that we do have heterogeneity in the conditional variance. But
unless this D is in the group of variables making up x, equation (3.4)
would never pick up what equation (3.5) found; this means that tests for
heteroskedasticity would never pick up this phenomenon and, therefore,
the standard heteroskedasticity correction procedure would never correct

for it!
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The vast majority of researchers continue to believe that heteroske-
dasticity testing and subsequent correction procedures necessarily address
variance heterogeneity as well. They think this, believe it or not, because
the subscript for x tends to be the same subscript for y. Unfortunately,
sophisticated graduate programs teaching econometrics have not done a
good job deciphering the two for their students. We will do exactly this

later in this text.

Consistent and Balanced Panels

Using balanced, consistent panels, or both in panel data regression analy-
sis is a purely conceptual idea of misspecification, but an important one;
it is also one that many researchers either overlook because they simply
don't think about it being a problem, or ignore it to maximize the number
of usable observations in their data set.

Balanced panels simply mean that exactly the same number of peri-
ods are covered for each 7. Balanced panels are critical because to a great
extent, panel data regression coeflicients reflect the average of individual
cross-sectional relationships. For instance, coeflicient estimates obtained
using panel data covering 6 months, that is, each 7 contains up to 6 obser-
vations, to a great extent reflect the average of the cross-sectional relation-
ships between x and y over that period. Hence, if you were to run six
separate monthly cross-sectional regressions, you would get six different
values of the slope coeflicient. If you were then to take the average of these
six values, you would get a value close to the value obtained if you had just
estimated the relationship using the entire panel data set. Because of this,
it makes sense that the relationship between x and y should be “averaged”
over the same number of periods for each 7. In an extreme case you could
consider two separate relationships between x and y whereby in one case
each 7 has only one period, but for the other each 7 has six periods; obvi-
ously, the chance that the relationships are capturing similar “averages” is
unlikely.

For a more intuitive example, assume that you are assembling a data
set to study unemployment rates in the United States. You wish to regress
these unemployment rates on the percentage of welfare aid that each

state provides to its citizens as a fraction of state GDP. To increase the
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likelihood that your regression results are capturing a similar cyclical aver-
age (i.e., a balanced empirical relationship between x and y), a researcher
should use the same number of years across states to capture equal lengths
of each states” business-cycle component.

Something else to consider would be consistency within this same
data set. Obviously, business cycles are going to play an important role
in this relationship as both unemployment and welfare aid tend to rise
in contractions and fall in expansions. If on average a complete business
cycle that covers peak to trough and back again lasts 12 years, then each
state should have balance panels and contain 12 years worth of data. Fur-
thermore, one should be consistent by starting that time dimension for
each state in the same location—that is, all states should start and end in
the same year. In other words, the data for each state would contain not

only the same length of business cycle, but exactly the same business cycle.

Dynamic Parametric Heterogeneity

And our last misspecification issue that someone may want to address in
order to draw more accurate inference from regression results is that of
dynamic parametric heterogeneity. This is a misspecification issue that
is rarely thought about by researchers; yet could have a huge impact on
current dominant paradigms in many empirical disciplines if it was rec-
ognized and accounted for in regression modeling.

Normally, researchers assume that all slope coefficients are constant
over time. This means that we assume all relationships between x and y are

also constant. In other words, researchers typically assume that

a,(t) = a, (3.6)

But what if the relationship between x and y isn't constant over time? Lets
think about what this means. (In 2009, I published a paper on this very
topic [Edwards and Kasibhatla 2009]. The outline of this misspecifica-
tion issue will be largely drawn from that piece of work.) Assume that a
researcher estimates economic growth with one variable, for instance, the

ratio of investment to GDP. Now assume that the relationship is either
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Figure 3.2 A shifting coefficient estimate

trending upward (or downward) over time, or has a structural shift part-
way through the time period covered. The former is depicted in Figure 3.1,
and the latter in Figure 3.2. The graphs show hypothetical yearly cross-
sectional estimates for the coefficient of investment, with the average of
the estimates depicted by the solid line. Obviously, to base long-run infer-
ence on the horizontal line would be problematic. Since many studies
tend to use data sets that range over different periods, one can easily see
that the estimated long-run value could actually be relatively low or high
depending upon whether the data set covers more of the earlier years, or
the latter years. Furthermore, as the data set expands into the future, the
long-run coeflicient value would creep upward. This would imply that

drawing inference from a single long-run point estimate may not be wise.



26 BUILDING BETTER ECONOMETRIC MODELS

Mathematically, these phenomena can be represented within the mar-

ginal effect of the variable in question, for instance, x. If our regression is
the simple one from earlier

_)/:ﬂ0+6llx+€

(3.7)
Then the marginal effect of x on y would be simply
)
i =4 (3.8)

In the former case where the coeflicient is trending in a deterministic

fashion over time, our regression function would have to take the form

y=ay+a(Bx+e,

(3.9)

such that the marginal effect now becomes a function of a time trend
variable

gy =a(r), (3.10)
where
a,(t) = by + byt (3.11)

Now, if the marginal effect is not trending in a significant fashion over
time, then

b,=0 (3.12)

and, therefore, the marginal effect is constant, or

a,(t) = b, (3.13)
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and we are back to our original specification in (3.7). In the second case,
(3.11) would instead take the form

a,(t) = b, + bD (3.14)

where D is a dummy variable representing some break in the marginal
effect, perhaps delineated by a significant one-time event in the history
of the relationship. In this case, of course, we would be testing whether
b,=0.1f it does, we are again back to a constant marginal effect delineated

by the simple model in (3.7).






CHAPTER 4

Original Specification and
Drawing Inference From It

Two Related Models

This chapter begins our attempt at understanding how to specify a better
econometric model. We will be using two types of data—cross-sectional
data and panel data. The data were obtained from the World Bank’s, World
Development Indicators Database, 2013 version, and is downloadable at
heep://data.worldbank.org/data-catalog/world-development-indicators.
It covers 172 countries, and contains unbalanced panels with an aver-
age of 21.8 observations per country. These are the data sets that will
be used for the remainder of this book; it would definitely behoove the
reader to download these data and follow along. A brief word of caution,
however. Keep in mind that you may find that as you follow along, not
all of your estimates will be similar to mine. This is simply because this is
a rather large data set that is continually updated. But, if you download
the variables that we use here in their entirety, and follow the instructions
I lay out subsequently, your estimates should be close. Regardless, it is the
methodology that should interest you most, and not the duplication of
the results.

At this point the reader is probably wondering why cross-country
macroeconomic data are being used instead of say microeconomic census
data or some other data. The reason is simple, I am very familiar with
these data as this is my own area of expertise (i.e., growth and develop-
ment) and it seems as though every econometrics book out there to a
large extent uses microeconomic data, so I wanted to change it up some,
so to speak. Having said that, it really doesnt matter what data set is

used because the procedures are the same regardless of data. This book
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addresses specification as a purely statistical phenomena and is applicable
to all continuous variables used from any data set.

This chapter focuses on setting up the discussion for the remainder
of the book. It probably doesnt do much good talking about misspeci-
fication issues and accurate inference if we don’t first have base regres-
sions to start from. And even though these base regressions may seem like
simple additively linear regressions, which they are, they are perhaps the
most widely used. We start with the following cross-sectional regression

model:

Growth, = ay+al, , +a, FDI, | +a, School, | + a, Trade,_,
t+a, Pop,_ +a, G, +e, (4.1)

while the panel model we subsequently use takes the form

Growth, = a, + a1,

it—1

+a, Pop,  +a, G, +e, (4.2)

+a, FDI, | + a; School,

it—1

+a; Trade,_,

The reader can quickly tell that the only real difference between the two
models is the subscript. The 7 subscript indicates an individual coun-
try, and the 7 subscript indicates the time dimension. Obviously, cross-
sectional data has no relevant time dimension and, therefore, lacks the
¢ subscript. However, as mentioned earlier our base regressions already
account for possible endogeneity problems. Therefore, the right-hand side
variables in (4.1) are averages calculated over a block of years, which are
prior to the block of years used to calculate the average for Growth; each
calculation also uses about the same number of years for consistency’s
sake. For instance, if a country has observations that span the 20 years
from 1991 to 2010, Growth would be a mean value calculated over the
years 2001 to 2010, while, for example, foreign direct investment (#DJ)
will be a mean calculated over the years 1991 through 2000. This is why
the subscript for the right-hand side variables in (4.1) include a —1 indi-
cating that “last periods” averages were used. Furthermore, if the country
covers an odd number of years the mean for the right-hand side variables
willinclude oneless year in their calculation than the mean for the left-hand

side variable. In the panel data model (4.2), one period lags (a period is
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1 year in this case) of each variable are used on the right-hand side and
this is represented by the #—1 in the subscript.

The variables and respective World Development Indicator codes
from left to right are annual growth in per capita real GDP (Growth:
NY.GDPPCAPKD.ZG), gross domestic investment as a percentage of
GDP (I: NE.GDLTOTL.ZS), foreign direct investment (inflows) as a
percentage of GDP (FDI: BX.KLT.DINV.WD.GD.ZS), gross secondary
school attendance in percentages (School: SE.SEC.ENRR), total trade as
a percentage of GDP (77rade: NE.TRD.GNEFS.ZS), annual population
growth rates (Pop: SPPOR.GRDW), and general government final con-
sumption expenditure as a percentage of GDP (G: NE.CON.GOVT.ZS).

All of the data have been purged of both missing observations and of
country groups, such as Arab League Countries, OECD countries, and
so on. The World Development Indicators not only gives data on specific
countries, but also on predefined groups of countries. Obviously, if we
want to avoid the double counting of countries, then we would want to
remove all of the predetermined country groups and only use data on the
individual countries themselves. As already implied, the cross-sectional
regressions will contain 172 observations, while the panel regressions will
contain 3,758 observations. The econometric software package used for
this book will be Stata. Hence, screenshots of the output will be in Stata
as well. However, any econometric software package should be able to
conduct all of the tests and respecification procedures we outline in this
book although a basic level of programming knowledge for your package

will be required.

Base Regressions and Inference

The screenshot of Stata output for regression (4.1) is in Figure 4.1. The
first outcome one will notice is the adjusted sample correlation coefhi-
cient, also known as the adjusted R*. Given that this is a cross section of
172 countries (i.e., about 90% of all countries in the world), this simple
model only explains about 6 percent of the variation in Growzh. Neither
School, Trade, nor Pop contribute to economic growth because the p-values

are below 0.100—our cutoff criteria for statistical significance that we
will use for the remainder of the book. The other variables, 7, FDI, and
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. reg Growth I FDI School Trade Pop G i
Source 55 df MsS Humber of obs = 172
F({ & 165) = 2.74
Model 158.243503 6 26.3739171 Prob > F = 0.0146
Residual 1590.05762 165 9.63671285 R=squared = 0.0905
Adj R-squared = 0.0574
Total 1748.30112 171 10.2239832 Root MSE = 3.1043
Growth Coef. std. Err. t P>1t| [95% Conf. Interval]
I .072636 .0351418 2.07 0.040 .0032505 -1420214
FDI .1548584 .0761523 2.03 0.044 .0044209 -3052958
School -.0017549 -0102823 -0.17 0.865 -.0220567 .018547
Trade -.0043139 -00E8811 -0.63 0.532 -.0173004 -0092725
Pop -.294129 .2343673 -1.26 0.211 -. 7568845 -1EBE0ES
G -.0813147 . 0390172 -2.08 0.039 =-.158352  -.0042774
cona 2.7840865 1.17108 2.38  o0.019 4718304 5.096299

Figure 4.1 Base regression using cross-sectional data
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. reg Growth I FDI School Trade Pop G {
Source - df MS Number of obs = 3758
F{ & 3751) = 40.44
Model 5528.16667 6 921.361112 Prob > F = 0.0000
Residoal B5461.5668 3751 22.7836755 R-aquared = 0.0608
Adj R=aquared = 0.0583
Total 90989.7335 3757 24.2187207 Root MSE - 4.7132
Growth Coef . Std. Err. t Pitl [95% Conf. Interval]
I -0651611 -ol01488 6.42 0.000 -0452634 .0as058%
FDI -0383863 -0148533 2.58 0.010 - 005265 -0675077
School =.0063934 - 0030552 =-2.09 0.038 =.0123834 -. 0004035
Trade -0076248 -0021665 3.52 0.000 -0033763 .0118732
Pop -.6520073 .0733874 -8.88 0.000 =.7958904 -.5081241
G =-.0932771 ~0124254 =7.51 0.000 =.1176383 -.0689158
_cons 2.834752 -3871349 7.32  0.000 2.075737 3.593767

Figure 4.2 Base regression using panel data

G, do contribute to Growzh. Countries with high levels of 7and FDI tend
to have higher growth rates, whereas countries with high levels of G tend
to have lower growth rates. Again, we do not go into the theoretical rea-
sons for these outcomes and whether or not they jibe with conventional
wisdom. All we did here was run a regression on a sample of data and the
outcome is what it is. Figure 4.2 shows the panel regression outcome.

The panel estimates are certainly different in magnitude from the
cross-sectional estimates, and there are more significant coeflicients as
well; in fact, all of the variables have a statistically significant effect on
Growth. The inference for I, FDI, and G is the same as it was for the cross-
sectional outcome, but in this case countries with high levels of Schoo/and
Pop have lower growth in GDP, but countries with high levels of Zrade
will have higher growth in GDP.
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It is at this point that we must make the reader aware of a couple of
issues regarding each of the regressions. The first is that we have not cor-
rected for heteroskedasticity, which as indicated in the previous chapter
is nearly always automatically corrected for by researchers regardless of
whether it is needed or not. However, these are base regressions from
which we will test for misspecification and respecify if needed. We will not
assume that a problem exists when it may not. The second issue is that
we did not run a fixed-effects regression with our panel data; fixed-effects
regressions are also quite commonly employed from the outset. But again,
we are starting from the most basic setup to allow the reader to actually
see how different the outcomes will be once a misspecification issue is

corrected for. All of these we address in the next chapter.






CHAPTER 5

Basic Misspecification
Testing and Respecification

The Cross-Sectional Case

In this chapter we test for and correct (if needed) misspecification issues
(1), (2), (4), and (5) from Chapter 1 specifically for cross-sectional cases.
Issue (3) isn’t addressed in this chapter because it only applies to models
that use panel data. The algorithm outlined in this chapter (and for the
panel models later on in the book) is one developed by myself over years
of performing empirical research, analyzing other authors’ research, and
publishing many articles that address the topic of model specification.
The reason I call the step-by-step process an algorithm is because it can
be recursive in nature. Many of the misspecifications listed in 1 through
5 can mask themselves as other issues. In fact, there have been instances in
my past empirical work whereby I test for one misspecification issue, find
that it exists, and correct for it, but have to go back and address it again
after correcting for a completely different misspecification issue! And
although we won't specifically address the recursive nature of this process
in this book for the sake of brevity, one should not just perform the steps
we are getting ready to outline and be done with it; after we think we have
a good model, a researcher should reanalyze the early procedures to ensure
that something else hasn’t reared its ugly head. In addition, not all mis-
specification can be corrected in just one way. What I mean by this is that
some form of misspecification, heterogeneity in particular, may need to
be investigated from different angles, not just an angle with a quick fix in
mind. More about this will be explained subsequently. For ease of reading

and referencing, I have again displayed the base model results from the
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. reg Growth I FDI School Trade Pop G
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Source 88 df MS Number of obs = 172
-+ - F{ & 165) = 2.74

Model 158.243503 € 26.3739171 Prob > F = 0.0146
Residual 1590.05762 165 9.63671285 R-squared = 0.0905
= 0.0574

Total 1748.30112 171 10.2235832 = 3.1043
Growth Coef. Std. Err. t P>t [95% Conf. Interval]
I 072636 .0351418 2.07 0.040 .0032505 .1420214

FDI .1548584 .0761523 2.03 0.044 .0044209 -3052958
School -.001754%  .0102823 -0.17 0.865 -.0220567 018547
Trade -.004313% 0068811 -0.63 0.532 -.0179004 -0092725
) -.29413% 2343673 -1.26 ©0.211 -. 7568845 -1686065
-.0813147 0390172 -2.08 0.039 -.158352  -.0042774

0.019 4718304 5.096299

cons | 2.784065 1.17108 2.38

Figure 5.1 Duplicated base model results for cross section

previous chapter in Figure 5.1. We will track these results and how they

change as we move through this chapter.

Heteroskedasticity

Heteroskedasticity has always been considered a relatively minor problem
with an easy fix if it exists. A visual test for heteroskedasticity was used in
Chapter 2 whereby one can simply create a scatter plot of the absolute value
of the residuals on x and look for a correlation. Another would be to gener-
ate a scatter plot of y on x and check for unequal spread as x changes. But
both of these are cumbersome when the model has many right-hand-side
variables. One test that is preprogrammed into nearly every software pack-
age is the White’s test (White 1980), and one that is often preprogrammed
is some form of the Breusch—Pagan test (Breusch and Pagan 1979).

Glossing over the gory details, both tests basically construct an auxil-
iary regression whereby a mathematical permutation of the residuals are
regressed upon a conditioning set that is a function of the x’s used in the
original regression. If a correlation exists then the null of homoskedastic-
ity must be rejected. In our case, both the White’s, and Breusch—Pagan
tests return p-values of 0.000, meaning that we can reject the null of
homoskedasticity.

The most common way of correcting for heteroskedasticity is to use
some form of a robust command in your statistical software package. In
Stata this command is attached to the end of your regression command

line. Most of these robust commands are constructed using some form of
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Growth Coef. Std. Err. t Pxit] [95% Conf. Interval]

I -072636 -0624779 1.16 0.247 -.0507233 -1959952

FDI .1548584 -1823451 0.85  0.387 -.2081721 -5148888

Schoal -.0017549 -0084727 =0.21 0.838 -.0184838 -0145741

Trade -.0043139 -0106607 -0.40 0.686 -.0283629 +016735

Pop -.294129 2556565 =1.15 0.252 -.7989188 -2106409

G -.0813147 0356049 -2.28 0.024 =-.1516146 -.0110148

cons 2.784065 1.708832 1.63  0.105 -.5899322 6.158061

Figure 5.2 Heteroskedasticity corrected cross-sectional results

White’s heteroskedasticity corrected standard errors (White 1980). The
nice thing about this procedure is that it only corrects the standard errors
and doesn’t affect the estimates of the coefficients like a feasible general-
ized least squares (FGLS) procedure would.

Rerunning the regression for the cross-sectional model with the robust
command added to the end of our command line we find relatively large
changes in the p-values of some of our coeflicients. When comparing
Figure 5.2 with Figure 5.1, the p-values for the coeflicients of 7 and FDI
have changed substantially. Before, the coefficient for 7 had a p-value of
0.040, and for FDI it was 0.044 indicating that these variables had a
statistically significant effect on growth. Now they are 0.247 and 0.397
respectively. In fact, only G has a significant influence on growth. All this
said, none of the coeflicient values have changed. This is one of the nice
properties of White’s correction versus FGLS.

The reader will also notice that there is no more indication of an
adjusted R? value like there was in the original base regression output. This
is because when the robust command is employed using Stata, it drops this
particular statistic from its output screen. To be honest, 'm not sure exactly
why this happens. But it’s not really relevant in this case anyway, and if

truly interested it can still be retrieved through the e(r2_a) command.

Intercept Heterogeneity

We now move on to testing for intercept heterogeneity, and of course

correcting for it if it exists. Testing for intercept heterogeneity on
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a cross-sectional model is easy. You would simply include a dummy vari-
able (or variables) that equals 1 for some quasi-obvious clustering of data
across the i-dimension, and equals 0 otherwise.

In our case since the dependent variable is growth in real per capita
GDP across a broad cross section of countries, an obvious way to cluster
this data would be to delineate wealthier nations from those that are less
wealthy. The reasoning for this grouping comes from economic theory
whereby countries that have lower stocks of capital are not as far along
on their production functions as countries with relatively high levels of
capital stock; so these countries should be growing at a relatively higher
rate because they are sitting at a point on their production function that
is steeper than nations with larger levels of capital stock.

Another possible grouping of this data would be regions of the world.
The question one would ask here to justify clustering our data in this
fashion would be: Do countries in Asia tend to grow more on average than
countries in Africa? Or, do countries in North America tend to grow more
rapidly on average than countries in Europe? If the answer is yes, then
clustering countries by region of the world may be appropriate as well.

Again, these groupings are based upon what makes sense regarding
the dependent variable and its characteristics within the discipline for
which it is being examined. For instance, assume our left-hand-side vari-
able was trade in goods and services. Then delineating by region of the
world might be better than economic status as trading within a region is
typically cheaper in terms of transportation costs than trading with over-
seas countries. For quasi-micro data of a single country, you could cluster
data by region or state within that country. For industry data one could
cluster data by firm size, type of industry, regions, or states where firms in
the industry reside, and so on.

Now assume that there are K'income groups in our data set. We would
test for heterogeneity by constructing K dummies and including them
into our heteroskedasticity corrected regression from the previous sec-
tion. We can determine the presence of intercept heterogeneity by testing
the equality of coefficients across dummy variables. However, note that
since we are including all K groups in these tests, the constant will have
to be dropped from the regression due to perfect collinearity; you can

reinstate the constant after the tests are completed. A p-value greater than
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0.100 would indicate that there is no significant difference between
groups and therefore no difference in their intercepts. A p-value less than
this would indicate differences in intercepts that should be addressed.

You could also test for statistically significant differences in intercepts
by running a regression with A~1 dummies and retaining the constant.
In this case, the coefficient for the constant would reflect the intercept for
the control group of whatever delineation you choose, while the coefli-
cients attached to the K~1 dummies would reflect the difference between
the control group intercept and that for the other groups. The problem
with this method is that the modeler must take into consideration the
sign of the coefficient for the K~1 dummies relative to the coeflicient’s
sign for the constant. If they are of opposite signs, it doesn’t necessarily
mean that the sum of the two coeflicients is different from zero. There-
fore, evaluating it relative to zero may be problematic.

The World Bank dataset roughly delineates three income groups as
low, middle, and high. (Note that the middle-income countries are actu-
ally broken down into lower middle and upper middle; I do not make
that distinction here and combine those two groups.) Not that in real-
ity there aren’t more than this, obviously there are. But since they have
already done much of our work for us, let’s just pretend that these are
the only three that we conduct our test with. We represent each of these,
respectively, as low, mid, and high in our regression output.

The reader can see in Figure 5.3 that there is not a substantial dif-
ference in magnitude between the coefficient estimates of the income
dummy variables; in fact, they only range from 2.079 to 2.743. The
p-value for a test measuring the simultaneous equality of all of the income
coefficients is 0.727, indicating that we can accept the null that the coef-
ficients are equal to each other as a group; we can thus conclude that
intercept heterogeneity does not exist in a statistically significant sense.
However, we will continue to work with this model through testing for
slope heterogeneity before we consolidate any of the intercepts. The rea-
son we want to do this is because many times if the slope differs so does
the intercept, even though when tested on its own there is no appar-
ent difference in intercepts. There is no theoretical or statistical justi-
fication for this relationship, it's simply one I've noticed to occur over

the years.
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1.08 0.281 -.0571461 .1955178

.1505231 .1924964 0.78 0.435 -.2295851 .5306313

L00311587 0141025 0.22 0.825 -. 0247314 -0309628

-.003859% 0113104 =0.24 0.723 -. 0261937 -0184738

-. 2688626 2307139 -1.17  0.246 -. 724436 -1867107

e =.0796517  .0351075 =2.27 0.025 =.1489759  -.0103275

low 2.488832 1.486479 1.67 0.096 =. 4464063 5.42407

mid 2.743547 1.48565 1.85 0.067 =.1900529 5.677148
0.098 v

high 2.079666 1.25153 1.66 .3916354 4.550968

Figure 5.3 Intercept heterogeneity regression

A minor point highlighted in Figure 5.3 that the reader should be
aware of is the value of R?. It is far higher than it was before—0.440 versus
0.090. Keep in mind that the calculation of this statistic requires that
the regression contain a constant, and this one doesn’t. The issue lies in
the fact that R? is a function of the deviation in the actual data from the
left-hand-side variables’ mean, and this is where the constant plays a role.
So, without the constant, the regression software uses an arbitrary mean,
for lack of a better term, from which to calculate this deviation; hence,
the value of R will always be inflated, and should be ignored.

Slope Heterogeneity

As mentioned in Chapter 2, slope heterogeneity is much like intercept
heterogeneity, but when the slope differs in a statistically significant way
across some obvious clustering of the dependent variable. Injecting slope

heterogeneity into equation (2.1) from Chapter 2 we would have

y=a,+aDx+a,D,x+e (5.1)

where D, is a dummy variable that equals 1 when characterizing one
group and 0 otherwise, and D, would represent, say, a second group if it
equals 1 and 0 otherwise. And while (5.1) is the best for conducting the
initial tests of differences in slopes as will be obvious subsequently, a more

common form is
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y=a,+ax+a,Dx+e (5.2)

where D is a dummy variable that is equal to 1 for some cluster and equal
to 0 for some other cluster. Therefore, the slope for a control group would
simply be «, but the slope for the delineated cluster would be 4, + a,.
Hence, 2, measures the difference between the control group’s slope and
that for the delineated cluster.

In our case, an obvious clustering of our dependent variable, Growth,
would be by income group—the same clustering we explored for inter-
cept heterogeneity. The reader should keep in mind that testing for slope
and intercept heterogeneity across the same grouping is recommended. It
would make little sense to test the intercepts for income, but test differ-
ences in slopes for groups delineated by geographical region.

As mentioned earlier, in the case of a cross-sectional model in par-
ticular, always leave the intercept heterogeneity components in the model
when testing for slope heterogeneity, even if there is not a statistically sig-
nificant difference between the intercepts when tested separately. This is
because it is often the case that slopes and intercepts differ simultaneously,
but when checked individually, they don’.

Figure 5.4 gives us our first look at simultaneously controlling for

intercept and slope heterogeneity for the cross-sectional model. Even
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Robust
Growth Coef. Std. Err. t P>t [95% Conf. Interval]
I_high .2154285 1671306 1.29 0.199 -.114788 .545645
FDI_high .2605446 .251976 1.03 0.303 -.2373094 .7583985
School_high -.0709579 .0324656 -2.19 0.030 -.1351034 -.0068124
Trade_high -.0087865 .0161787 -0.54 0.588 -.0407524 .0231795
Pop _high -.2128313 .4157835 -0.51 0.609 -1.034336 .60B6733
G_high .0917256 .1033148 0.89 0.376 -.1124037 .2958549
I mid .0168272 .0385955 0.44 0.663 -.0594298 .0930841
FDI mid -.0426921 .1183682 -0.36 0.719 -.2765638 .1911796
School_mid .0340134 .0124047 2.74 0.007 .0095041 .0585227
Trade mid -.0048122 .0106298 =-0.45 0.651 -.0258146 .0161901
Pop_mid =.3170557 2690493 =1.18 0.240 -.B486431 .2145317
G mid -.0743136 .032006 -2.32 0.022 -.137551 -.0110762
I low .1250085 1176248 1.06 0.290 -.1073934 .3574124
FDI_low 1.176926 .4337015 2.711 0.007 .3200195 2.033833
School_low .03139856 .0221322 1.42 0.158 -.0123332 .0751244
Trade_low -.0006048 .0278854 -0.02 0.983 -.0557008 .0544912
Pop_low .1737549 .5273 0.33 0.742 -.B6B08B39 1.215594
G low -.2594946 0769471 -3.37 0.001 -.4115265 -.1074627
low 1.124048 2.211986 0.51 0.612 -3.246391 5.454488
mid 2.956464 1.18792 2.49 0.014 .6093716 5.303556
high 1.660136 4.640907 0.36 0.721 -7.509363 10.82964

Figure 5.4 Slope heterogeneity regression
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though Figure 5.4 gives us the estimates of our growth model while con-
trolling for intercept and slope heterogeneity, it doesn’t really tell us much
at this point. What we need to do now is test the equality of the intercepts
and slopes for each variable across income groups. If we find that these do
not differ for some variable(s), then we can drop that particular deline-
ation from our regression. To this end, the p-value for equal intercepts
is 0.753 indicating that like before, the intercepts do not differ across
groups. For the slopes we find p-values of 0.375, 0.962, and 0.709 for the
variables /, Trade, and Pop, respectively; this means that we can consoli-
date income groups for these variables as well. But testing the slopes for
FDI we get a p-value of 0.020, School we get 0.010, and G we get 0.018.
Therefore, we cannot consolidate the slopes of these groups.

As you can see, accounting for differences in slope substantially
changed the inference we can draw from our model. In this cross-
sectional case we find that FDI has no effect on Growth for middle- and
high-income countries, but has a large positive effect for low-income
countries. And while School has a positive effect on middle- and low-
income countries, it actually has a negative effect on high-income nations.
G, or government spending, negatively affects growth in middle- and low-
income countries, but doesn’t have a significant effect on high-income
economies. The model depicted in Figure 5.5, however, is not in its most
parsimonious form. To come to that form, we must now test whether any

two seemingly similar income-level effects are equal, and if so, combine
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Linear regreasion Humber of oba = 172 l
F( 12, 159) = 6.47
Prob > F = 0.0000 i
R=squared = 0.3017
Root MSE - 2.7709
Robust
Growth Coef, Std. Err. t Pzitl [95% Conf. Interval]
1 L0687735 -0520097 1.34 o0.182 -. 0329454 -1724524
Trade =.0074983 .0121671 =0.62 0.539 =.0315282 .0165317
Pop =.2645145 .2091444 =1.26 0.208 -.6775739 .148545
FDI_high .3129326 .2833281 1.10 0.271 -.2466393 -B725044
FDI_mid -.0457913 .1102523 -0.42 0.678 -.2635392 -1718567
FDI_low 1.292061 .332193 3.89 0.000 .6359813 1.948141
School_high -.0625313 .0305082 -2.08 0.042 -.1227849 -.0022777
School _mid .0302894 .0113813 2.66 0.009 .0078113 .0527674
School_low .0297883 -0166962 1.78  0.076 -.0031866 -0627632
G_high ~1682013 .1318029 1.28  0.204 -.092108 -4285116
G_mid -.1150285 . 0379113 -3.14 0.002 -.1939031  -.044153%
G_low -. 2072219 -052146 =3.87 0.000 =-.31021 -.1042337
cona | 2.816502 1.098291 2.5 0.011 6473019 4.985621

Figure 5.5 Regression corrected for slope heterogeneity
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Rabust
Growth Coef. Std. Err. t P=it] [95% Conf. Interval]
I .070178% .056448 1.24 0.216 -.0412951 -1816529
Trade -.0010126 .0088035 -0.12 0.909 -.0183977 .0163725
Fop -.2491279 -2139408 -1.16 0.246 -. 6716199 -1733641
FDI - 0940256 -1490552 0.63 0.529 -.2003258 -388380%9
FDI_low 1.136485 . 3022526 3.76 0.000 . 5355936 1.733376
School 0235474 -010086 2.33 o.021 0036254 -0434654
School_high -.085612 0335585 -2.5% 0.012 =-.1518837 -.0193403
G .1755802 1512213 1.16 0.247 =-.1230529 -4742133
G_mid =.3158101 1727749 =1.83 0.069 =.6570073 .025387
G_lew =.3880325 -1643058 =2.36 0.019 =.712505 =.06356
_cons 2.657844 1.236318 2.15 0.033 .2163531 5.099336

Figure 5.6 Final model moving into next section

them. Also, when all is said and done, common practice dictates that our
model be left in the form of equation (5.2), not equation (5.1).

Testing the equality of high-income FD/ with middle-income FDI,
we get a p-value of 0.214 indicating that we can combine these two,
thereby separating these effects from the low-income effect. Testing
low- and middle-income School we get a p-value of 0.977; again, we can
combine these two effects. Testing middle- and low-income G we get
a p-value of 0.062, indicating that we cannot combine these effects, so
they will be left as is. Combining (or not) these slopes and converting our
model to the more popular form of equation (5.2) as shown previously, the

cross-sectional model we will move forward with will be that in Figure 5.6.

Statistical Omitted Variable Bias

I speak about statistical omitted variable bias in my other book (Edwards
2013), and how it differs from what I call theoretical omitted variable
bias. I also described it back in Chapter 2 of this book. Most researchers
lump them both together and call them simply omitted variable bias, but
I like to differentiate theoretical bias from the more objective and purely
statistical bias.

A perfect example of statistical omitted variable bias is the inclusion
of a squared x. If a squared x is needed but not included on the right-
hand side prior to running the regression, bias in the relationship of inter-

est would result. And while we could hypothesize why there would exist
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a nonlinear relationship between x and y, for the most part, testing for it
is simply to paint a more statistically accurate picture of the relationship
with Growth. Theoretical omitted variable bias is different. The idea of it
relies only on theory. We may have such bias if (1) there exists a variable
that we have access to that is correlated with Growth, and (2) it is simul-
taneously correlated with our variable of interest. Both (1) and (2), of
course, are based purely on theory and are nearly always likely to be true
with at least one variable that is not in your regression. In this sense, as
long as any residual at all exists from our regression, that is, as long as our
R? is less than 1.00, our estimators will always be biased! This is why, in
my opinion, theoretical omitted variable bias is a concept that has tenu-
ous argumentative support at best.

While Figures 2.9 to 2.11 show perfectly a hypothetical nonlinear
relationship between x and y, when there are more than one x, graphically
testing for statistical bias can be problematic. Furthermore, statistical
omitted variable bias proper actually involves more than just the quad-
ratic specification issue, it also involves interactions. A regression model

addressing the former would look like equation (2.12) in Chapter 2, or

y=a,+ax +a,x’ +e (5.3)

Buct a regression model addressing the latter would look like

y=dy+ax, +ax, +axx, +e (5.4)

whereby x, and x, are different x’s.

The reason why I only presented the quadratic case in Chapter 2 is
because I know from experience that empirically testing for the interaction
of variables can lead to outcomes that are theoretically tenuous, and therefore
difficult if not impossible for the researcher to explain. For instance, let’s
assume we found that domestic investment interacts with government

spending such that the marginal effect of investment on growth is

BGS%M:% +a4,G (5.5)
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Equation (5.5) states that the marginal effect of 7 on Growth is a function
of government spending. This is easy to explain since we know from basic
macroeconomics that the two can affect each other through crowding
out type of arguments—especially if G represents deficit spending. The
deficit would push interest rates up reducing the quantity demanded of
loanable funds, thereby reducing 7 and Growth as a result. But, what if
we found that 7rade and School interacted with each other, thereby affect-
ing their own separate relationships with Growrh? That would be much
harder to explain. To this end, we only explore the quadratic issue in this
book and not interactions. However, please be aware that this problem
can indeed exist and should be explored. In my own work, I empirically
explore these interactions only if there are strong theoretical reasons why
they should exist.

The most common way of testing for quadratic relationships is to
simply include squared «’s into the regression and evaluate the statisti-
cal significance of their coefficients. To this end, Figure 5.7 is just such a
regression of our cross section. The coefficient estimates for each of the
squared variables are indicated by an “sq” after the variable abbreviation.

What we find is that nearly all coeflicients are insignificant. This is
not uncommon with this operation. Just like when we try to force a linear
model on a nonlinear relationship, we could get insignificance of the lin-
ear relationship because the relationship is actually quadratic. In the same

sense, trying to force a nonlinear relationship on a linear one can cause
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Iaq .0071636 0048416 1.48 0.141 -.0024025 0167287
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Tradesq .0000531 0000507 1.0%8  0.297 =. 000047 0001532
Pop .0036563  .5535024 0.01  0.995 -1.089953 1.097266
Popaq -.0515583 .1140995 =0.45 0.652 =.276996 .1738795
FDI 2642997 2478324 1.07 0.288 -.2253672 . T539666
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FDI_low 2.279046 .B142506 2.80 0.006 6702509 3.887842
FDT=q_low ~.2384613 +167051 ~1.43 0.156 ~.5685206 .0915979
School . 0000819 .0418323 0.00 0.998 -.0825703 .082734
Schoolsq .0003154 . 0004074 0.77 0.440 -.0004896 0011204
School_high -.050043 0758158 -0.66 0.510 -.15983587 0997537
Schoolsg_high -.0004385 000533 -0.82 0.412 -.0014916 -000EL4E
G .4021595 3841781 1.08 0.297 -.3568582 1.161258
Gag -.0062347  .0069323 =-0.80 0.370 -.0199316 0074622
G_mid -.3173092  .3333623 -0.95  0.343 -. 9759661 -2413477
Gag_mid -.0000332  .0067947 =0.00 0.996 =.0134581 0133918
G_low -.4930795 .346533 =1.42 0.157 =1.177759 1916
Gag_low .0038001 0068027 0.56 0.577 =. 0096406 0172408
_cons 6.001799 2.026351 2.96 0.004 1.998136 10.00546
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Figure 5.7 Regression checking for statistical omitted variable bias
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that same issue—that is, the linear relationship can become insignificant
when it is actually the correct relationship. Therefore, we can safely drop
all of the squared right-hand-side variables and return to the output in

Figure 5.6 as being the final cross-sectional model.

The Final Cross-Sectional Model and the

Inference We CanDraw From It

At this point, I want to elaborate on the inference we can draw from
these results. For ease of referencing, our final estimates are repeated in
Figure 5.8, while the model and output we started with is repeated in
Figure 5.9.

Since there is heterogeneity in three of the relationships, inference

from those particular results must be drawn according to the delineated
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I .0701789 .056448 1.24 0.216 =.0412851 -1816529
Trade =.0010126 . 0088035 =0.12 0.909 =.0183977 .0163725
Pop -.2491279 .2139408 =1.16 0.246 -.6716199 -1733641
FDI .0940256 .1490552 0.63 0.529 -.2003298 -3883809
FDI_low 1.136485 .3022526 3.76 0.000 .5395936 1.733376
School .0235474 .010086 2.33 0.021 .0036294 - 0434654
School_high -.085612 -0335585 -2.55 ©0.012 -.1518837 -.0133403
G +1755802 -1512213 1.16 ©0.247 -.1230529 -4742123
G_mid -.3158101 .172774%9 -1.83 0.069 -.6570073 -025387
G_low -.3880325 .1643088 -2.36 ©0.01% =. 712508 -. 06356
cona 2.657844 1.236218 2.15  0.033 2163531 5.099336

Figure 5.8 Final model using cross-sectional data
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Growth Coef. Std. Err. £ B>t [95% Conf. Interval]

I 072636 .03s1418 2.07 0.040 .0032505 -1420214

FDI .1548584 .0761823 2.03 0.044 .0044209 .3052958

School =.0017549 .0102823 =0.17 0.865 =.0220567 .018547

Trade -.0043139 .0068811 -0.63 0.532 -.0179004 .0092725

Pop ~-.254139 -2343673 -1.26 0.211 -.7568845 -1686065

G -.0813147 .03%0172 -2.08 0.039 -.158352 -.0042774

_cons 2.784065 1.17108 2.38  0.019 -4718304 5.096299

Figure 5.9 Duplicated base model results for cross section
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groups. However, for the other three right-hand-side variables, this dis-
tinction is not necessary. Regardless of income group, neither 7, Trade, nor
Pop have any effect on economic growth in real per capita GDP. However,
for low-income groups, increasing injections of FD/ will have a positive
effect on Growth, but no effect for high- and middle-income countries.
School also has a positive effect on Growth for both low- and middle-
income countries. But unlike the income delineated outcome for FDI, we
cannot infer the same for high-income School. The FDI coeflicients are of
the same sign, but the School coeflicients estimates are of opposite signs.
This means that we will actually have to test whether the effect of Schoo/
in high-income economies is negative. A test such as this is necessary
because the high-income coefficient estimate is larger in absolute value
than the low and middle estimate, yet negative; therefore, we are testing
whether the sum of the two estimates, which is approximately —0.0621,
is a statistically significant negative coefficient. The p-value of this test is
0.064 which is well below our 0.100 threshold, and therefore we can con-
clude that School has a positive influence on growth in low- and middle-
income countries, but a negative effect on high-income countries. For the
astute reader, one would notice that this coefficient was also significant in
Figure 5.5 where we separately delineated each income group instead of
modeling the differences in groups. However, that p-value is misleading as
we hadn’t yet combined the low- and middle-income countries.

Moving on to Gs effect on Growth, we have the same issue just for
different income groups. In this case we will have to test whether 0.1755
plus —0.3158 is different from zero, and whether 0.1755 plus —0.3880 are
different from zero. Conducting the first test returns a p-value of 0.001,
and the second returns a p-value of 0.000. Therefore, the inference for the
effect G has on Growh is that it has no effect for high income economies,
but does have a negative effect on low- and middle-income countries.

It should be obvious that these results are considerably different from
those obtained at the beginning of this lesson—that is, the base model
results repeated in Figure 5.9. It is also the case that the final model
explains far more of the variation in Growth than the base model did.
In fact, the R? for the base model is only 0.090, but is 0.267 for the
respecified model. This is an increase of nearly 200 percent in explanatory

power! And while many applied researchers correct for heteroskedasticity
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regardless of whether they have it or not, this correction alone would not
lead us to our final model. One can see then that the model generating the
results in Figure 5.8 is in fact the better model. But for the more sophis-
ticated reader, we still aren’t finished. We must now check for variance
heterogeneity—a concept we explore in the next chapter. But, for the less
initiated, following the basic testing and correction procedures explored
in Chapter 5 will at least provide the researcher with more reliable and

robust inference, and produce a model that better explains the data.



CHAPTER 6

Variance Heterogeneity

The Cross-Sectional Case

If we recollect from Chapter 3, variance heterogeneity can rarely be
detected with a test for homoskedasticity. To reiterate equation (3.5) from

that chapter, we have

2

rt=c,+ D+, (6.1)

which tells us that in the case of variance heterogeneity, a correlation
would exist between the squared residuals and a set of dummy variables
representing a particular clustering of the data like in intercept and slope
heterogeneity. However, we run into an issue if we perform a regression
specified exactly like (6.1). That is because the dependent variable is chi-
squared distributed since it is a squared version of a normally distributed
variable (at least we hope it’s normally distributed). Park (1966) recom-
mended using the natural log of the squared residuals instead, resulting

in the regression

In(r*)=¢, +¢,D +. (6.2)

This is the representation we will use.

Figure 6.1 shows the screenshot of our Stata output when we run a
regression of the natural log of our squared residuals from the final model
in Chapter 5 on the income level dummy variables we created previously.
We find that coefficients for the dummy variables are all insignificant, but
like intercept heterogeneity, it is not the actual values we are necessarily

interested in, but the differences in these values from each other. After
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S dae 8 430,00

. reg larsq low mid high, nocons i
Source 33 df w5 Number of cbs = 172 i
1 F{ 3, 169} = 0.24
Model 4.89706582 3 1.63235661 Prob > F = 0.8687
Residual 115862582 169 6.85877408 R-squared = 0.0042
T —~ Adj R-aquared = -0.0135
Total | 1163.52289 172 6.76466796 Root MSE = 2.6184
lnraq Coef. Std. Err. t P>t [95% Conf. Interval]
Low .1220012 - 4780437 0.26 0.7%9 -.8217052 1.065707
mid -089859% -2791174 0.32  0.748 -. 4611068 - 6409048
high -.2631483 -35e3128 -0.74 0.461 -. 9665455 -4402488

Figure 6.1 Regression testing for variance heterogeneity

conducting an equality test of the low, mid, and high coeflicients we get
a p-value of 0.702, indicating that the coeflicients are not different from
each other in a statistically significant sense, and therefore, no variance
heterogeneity exists. But, what if the result of this test were different,
exactly how would we correct for variance heterogeneity if it did exist?

Let’s assume that variance heterogeneity did indeed exist. The correc-
tion for it would entail using a generalized least squares (GLS) type of
method. Nearly all undergraduate textbooks address this methodology
when used for heteroskedasticity correction. But, GLS is only good if you
know the true nature of the heterogeneity in the variance; in our case,
however, we are estimating it. To this end, we must use a variant called a
feasible generalized least squares procedure (FGLS). This is perhaps the
best way to correct for variance heterogeneity when it is known to be pre-
sent (Edwards et al. 2006). The way someone would perform an FGLS in
this case is as follows.

Again, let us assume that each of our low, mid, and high coeflicients
in Figure 6.1 are different from each other in a statistically significant
sense. Then, given these estimates we would estimate the natural log of

the squared residuals as

In(*)=C, +C,D (6.3)

Specifically, in our case we would have the function

In(*) = 0.122 low + 0.089 mid — 0.263 high (6.4)
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We would then take these estimates of In(r?), and convert them to sim-
ply 7 by first exponentiating, and then taking the square root of whats
left. To correct for heterogeneity, we would then weight all of the variables
in our model, including the constant. Hence, reflecting on model (2.1) in

Chapter 2, our new model would look like

(6.5)

S
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Completing this operation for the final regression from Chapter 5, and
rerunning that regression, we get the output in Figure 6.2.

The “w” in front of each of the coefficient or variable names stands for
that variable weighted by the 7 that we generated earlier. The reader will
notice that none of the relevant p-values changed in any dramatic way—
at least in a way that would cause a re-evaluation of the inference we drew
from the results of our final model in Chapter 5. But we expected this.
The reason is that since we didn't find any variance heterogeneity in the
results from Figure 6.1, all of those standard errors, and therefore the
p-values generated from them, were unbiased; remember, we only con-
ducted this experiment for expositional purposes. Having said this, there
are a couple of differences in this latest batch of output that the reader
should be aware of.

The first difference is in the sample correlation coefficient—that is,
the R%. The R* depicted in Figure 5.8 was 0.267, but the one depicted

T o Do G Stmn e e
WA N D00

Linear regression Humber of obs = 172 i
F{ 11, 161} = 26.38 -
Prab > F = 0.0000 i
R=squared = 0.5306
Root MSE - 2.9757
Robuat
wiirowth Coef. Std. Err. = Exit] [95% Conf. Intervall
wl .0847894 . 0665509 1.27 0.204 -.0466358 -2162146
wTrade -.00185 .0099419 -0.19 0.853 -.0214833 .0177833
whop -.2489578 -2348451 -1.06 0.291 -.7127318 -2148162
wEDI .1214842 - 1660685 0.73  0.466 -. 2064652 -4494376
WEDI_low 1.115628 -3045038 3.66 0.000 .5143016 1.716975
wSchool 0219289 0106421 2.06 0.041 .0009128 042545
wichool_high -.0850351 .03230851 -2.63 0.009 -.14088356  -.0212427
Wi .1668387 1416739 1.18 0.241 =.1129401 -4466174
wGE_mid =.3162949 1674732 =1.89 0.061 =-.6470223 .0144325
WE_low =.3851943 .1571388 =-2.45 0.015 =.6955133 =.0748754
woons 2.55269 1.393706 1.83 0.069 =.1996123 5.304993

Figure 6.2 FGLS model if variance heterogeneity existed
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in Figure 6.2 is 0.530, or nearly twice as high. This is a false reading. The
reason is the same as it is for an R? that is generated from a regression
that doesn’t have a constant term such as that used to generate the results
in Figure 5.3, which also had an inflated R?. The calculation of the R?
assumes that a constant exists, otherwise captured in 7, which is one
of the main components in the calculation of the correlation coeflicient
itself; therefore, any calculation of this statistic when a constant doesn’t
exist is biased. In our case, the constant is divided by 7 which is a variable,
and therefore the entire term itself, 4, %, is no longer constant.

The other difference in the two batches of output one should notice
is that the coefficient estimates themselves have changed, albeit not by
much. This is the main drawback of correcting for variance heterogeneity.
Although asymptotically unbiased, after performing the FGLS procedure
the coefficients do not maintain the nice finite sample properties that they
had before the procedure was completed. To this end, the researcher must
use discretion when evaluating the benefits of variance heterogeneity cor-
rection, such as the benefit of accounting for substantial bias in p-values
versus the changes in the coefficient estimates themselves. The rule of
thumb I use is that if the magnitudes of the coefficients are important for
forecasting specific levels of the left-hand-side variable, then I will prob-
ably ignore the heterogeneity because any change in the coefficient values
may greatly change those forecasts. But if the actual values of the coef-
ficients aren’t important, and only the sign of the coefficient is important,
then I will probably correct for variance heterogeneity.

To be honest, I have absolutely nothing to support my reasoning.
It’s simply a personal condition I apply to my own work. But it doesn’t
matter; as long as the researcher is aware of these issues and weighs the
pros and cons of variance correction using the FGLS procedure, then
one should be able to make an educated decision whether to perform it

or not.



CHAPTER 7

Basic Misspecification
Testing and Respecification

The Panel Data Case

In this chapter we test for and correct (if needed) misspecification issues
1 through 5 from Chapter 1 specifically for panel data regressions. The
order of the misspecification testing and respecification procedures cer-
tainly works well for me when using cross-sectional models, and it seems
to work particularly well with panel data models. Exactly why, I don’t
knows; but, I suspect it has much to do with the fact that panel data has an
extra dimension—a time dimension. Hence, we need to add misspecifica-
tion (3) to our list of procedures—dependent variable dynamics in panel
data. I've found that once (3) is addressed, the theoretical interpretation
of the results from (4) and (5) tend to be less awkward.

To repeat myself from Chapter 5 (if you read that chapter, but it’s not
necessary if your only interest is in panel data modeling), the algorithm
outlined in this chapter is one developed by myself over years of perform-
ing empirical research, analyzing other author’s research, and publishing
many articles that address the topic of model specification. The reason
I call the step-by-step process an algorithm is because it can be recursive
in nature. There have been instances in my past empirical work whereby
I'll test for one misspecification issue, find that it exists and correct for it,
but have to go back and address it again after correcting for a completely
different misspecification issue! Therefore, one cannot just perform the
steps we are getting ready to outline and be done with it, even though for
brevity’s sake, we will do just that in this book. But the reader should take
it upon themselves to recheck their assumptions after any major respeci-

fication takes place.
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. rag Growth I FDI School Trade Pop O i
Source | 55 df M5 Number of obs = 3758
F( & 3751) = 40.44
Model 5528.16667 6 921.361112 Prob > F = 0.0000
Residual B5461.5668 3751 22.7836755 R-squared - 0.0608
hdj R-squared = 0.0593
Total 90989.7335 3757 24.2187207 Root MSE - 4.7732
Growth Coef. Std. Err. t P>t [95% Conf. Intervall]
1 0651611 0101468 6.42 0.000 0452634 -0850589
FDI 0383863 0148533 2.58 ©0.010 009265 -0675077
Sehool -.0063934 .0030552 -2.09 0.036 =.0123834  -.0004035
Trade .0076248  .0021669 3.52  0.000 0033763 .0118732
Pop -.6520073  .0733874 -8.88 0.000 -.7958904  -.5081241
G -.0932771  .0124254 =7.51  0.000 -.1176383  -.0689158
_cons 2.834752 3871349 7.32  0.000 2.075737 3.593767

Figure 7.1 Base regression using panel model

Just to reiterate the base model results we obtained earlier in the book,
Figure 7.1 is the same as that from Figure 4.2 in Chapter 4. We will track

these results and how they change as we move through this chapter.

Heteroskedasticity

Heteroskedasticity has always been considered a relatively minor problem
with an easy fix if it exists. A visual test for heteroskedasticity was used
in Chapter 2 whereby one can simply create a scatter plot of the absolute
value of the residuals on x and look for a correlation. Another would
be to generate a scatter plot of y on x and check for unequal spread as x
changes. But both of these are cumbersome when the model has many
right-hand-side variables. Furthermore, using panel data incorporates an
extra dimension to the data which, theoretically at least, adds another
area for heteroskedastic errors to exist. In other words, not only could
the squared residuals be a function of x for some contemporaneous time
period like in a cross-sectional framework, but the squared residuals could
also be a function of past observations of y as well.

The tests for heteroskedasticity in a panel framework are the same as
those for cross-sectional data. (Of course, this isn't entirely true because of
the added layers of difficulty in modeling panel data in general, such as the
existence of possibly many panels, each with its own time series; but, at this
level of sophistication, these tests are sufficient for one to determine whether
heteroskedasticity proper exists or not.) One test that is preprogrammed

into nearly every software package is the White’s test (White 1980), and



BASIC MISSPECIFICATION TESTING AND RESPECIFICATION 55

one that is often preprogrammed is some form of the Breusch—Pagan test
(Breusch and Pagan 1979). Both tests construct an auxiliary regression,
whereby a mathematical permutation of the residuals is regressed upon a
conditioning set that is a function of the x’s used in the original regression.
If a correlation exists then the null of homoskedasticity must be rejected.
In our case, both the Whites, and Breusch—Pagan tests return p-values of
0.000, meaning that we can reject the null of homoskedasticity.

The most common way of correcting for heteroskedasticity is to use
some form of a robust command in your statistical software package. In
Stata this command is attached to the end of your regression command
line. Most of these robust commands are constructed using some form of
White’s heteroskedasticity corrected standard errors (White 1980). The
nice thing about this procedure is that it only corrects the standard errors
and doesn’t affect the estimates of the coefficients like a feasible general-
ized least squares (FGLS) procedure would.

Rerunning the regression for the panel model with the robust com-
mand added to the end of our command line we find relatively large
changes in the p-values of some of our coefficients. When comparing
Figures 7.1 and 7.2, there are substantial increases in the p-values of the
coefhicients for DI and School. Even though still statistically significant,
the p-value for FDI has increased by a factor of five, while that of Schoo/
has nearly doubled. Having said this, the overall inference that was drawn
back in Chapter 4 is still the same.

The reader will notice that there is no more indication of an adjusted
R? value like there was in the original base regression output. This is

T —————
PR FIre s Fi=g1-]

i
. reg Growth I FDI School Trade Pop G, robust

Linear regression Humber of cbs = 3758 i

F( &, 3751) = 22.08

Prob > F = 0.0000

R=squared = 0.0608

Root MSE - 4.7732

Robust

Growth Coef. Std. Err. t P>t [95% Conf. Interval]

1| .0651611 .0174086 3.74 0.000 .03103 .0992923

FDI .0383863 .0195279 1.97 0.049 .0000999 0766727

School -.0063934 .0033516 -1.8% 0.059 -.0130431 .0002562

Trade .0076248 .0024038 3.17 0.002 .002912 .0123376

Pop -.6520073 - 0867304 -6.74 0.000 -.8416565 -.462358

G -.0932771 . 0147447 -6.33  0.000 -.1221855 -.0642686

cona 2.834752 .5107782 5.55 o.000 1.833322 3.836182

Figure 7.2 Heteroskedasticity-corrected panel results
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because when the robust command is employed using Stata, it drops this
particular statistic. To be honest, exactly why this is 'm not sure. Bug, it’s
not really relevant in this case anyway, and if truly interested, it can still
be retrieved through the e(r2_a) command. But what the reader will also
notice is that none of the coefficient values have changed. This is one of

the nice properties of White’s correction versus FGLS.

Intercept Heterogeneity

Moving on to intercept heterogeneity, while the general tests are the same
for both the cross-sectional and panel cases, the construction of the cor-
rection variables is somewhat different. Therefore, the test construction
we used in Chapter 5 is quite different from what we will be using in this
chapter. Let us address the testing phase first.

As mentioned in Chapter 5, testing for intercept heterogeneity on a
cross-sectional model is easy. You would simply include a dummy vari-
able (or variables) that equals 1 for some quasi-obvious clustering of data
within the 7 dimension, and 0 otherwise. Likewise, for panel data that
has both a small 7 and # dimension, one should rely entirely on the cross-
sectional procedure and cluster the 7’s in some meaningful way as previ-
ously described. But for all other cases, for example, panel models with
a small 7 dimension and at least several observations over # for each 7, or
a relatively large 7 and # dimension, and so on, you should construct a
dummy variable for each 7 and run the same test of equality across the
coefhicients. In this latter case, however, because the i dimension can be
large like our current case where 7 equals 172, testing the equality of coef-
ficients can be quite tedious, all with the result that you will probably find
significant heterogeneity across 7 (I know I always have). This is why most
researchers, like myself, simply assume it exists and make the necessary
corrections.

The only real difference between large panel intercept heterogeneity
correction procedures and that for the cross section is that in the panel
case, researchers correct for this issue at a smaller level than they would
in a cross section. Ideally, it is always better to address intercept and slope
heterogeneity at the smallest possible level as long as the researcher doesn’t

overspecify their model, thereby swamping the effects the x’s have on y. In
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the cross-sectional case we checked for heterogeneity using income delin-
cated dummies. The inclusion of these three dummy variables are not
enough to swamp the effects 7, FDI, and so on, have on Growth, yet they
are enough that if intercept heterogeneity did exist, they would pick it up.
Obviously, we wouldn’t have been able to use country-level dummies sim-
ply because there aren’t enough observations. But because of the relatively
large number of observations we have to work within our panel data set,
each 7 having over 20 observations on average, correcting intercept het-
erogeneity at the country level is now possible. To this end, when using
panel data that contain at least several # observations for each 7, research-
ers will commonly use a technique known as a within regression. Within
regressions can be easily performed with most regression packages.

A within regression goes something like this. We begin with equa-
tion (7.1)

Jie =@ T ax;, e, (7.1)

Now, if we assume that this relationship is consistent over time, then we

can rewrite (7.1) as

Y, =a; tax; t+e;

1

(7.2)

5

where the bar across the top of each variable stands for that variable’s time

mean within country . Now, subtracting (7.2) from (7.1), we get,

(e =7 =2y —a,0) + & (x;, — %)+ (e, — ). (7.3)

Since the constants do not vary over time, they cancel each other out,

resulting in the equation

(e = J)=a(x, —x,)+ (e, —¢). (7.4)

Hence, there is no need to construct dummy variables for each country.
We just transform the data as shown and we will get the same slope coef-
ficient estimates as earlier. And since we are only interested in the 4s

anyway, we can still draw the inference needed to conduct our research.
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R-sg: within = 0.0320 Oba per group: min = 2 i
botwean = 0.0633 avg = 21.8
overall = 0.0271 max = 41
Fg,171) - 7.41
corriu_i, Xb) = -0.3709 Prob > F = 0.0000
(3td. Err. adjuated for 172 clusaters in groups)
Robuat
Growth Coef. Std. Err. - B>it] [95% Conf. Interval]
1 =.0193745 . 0289915 =0.67 0.505 -.0766018 -0378529
FDI . 0488816 .0317518 1.54 0.126 =. 0137943 -1115575
School -.0289112  .0081062 =3.57 0.000 =.0449124 =.01291
Trade .0321435  .0098268 3.27  0.001 .012746 051541
Pop -.6962079 1704176 -4.08  0.000 -1.032601 -.3598148
G -.0849227 0406368 -2.08 0.038 -.1651371  -.0047082
_cons 4.242131  1.077201 3.94  0.000 2.115807 6.368455
]

Figure 7.3 Within regression results

Applying this technique to the heteroskedasticity corrected panel model
we get the output in Figure 7.3.

Comparing these results with those of Figure 7.2, we find that there
was substantial bias in many of the estimates. With the exception of Pop
and G, the other estimates changed substantially in terms of magnitude
and significance. In fact, no longer are / and FDI significant determinants
of economic growth across these countries.

There are three caveats that should be mentioned with regard to the
within results. First, the reader will notice that although we performed
the within transformation, the output in Figure 7.3 still has a coefli-
cient estimate for _cons—that is, it still estimated an intercept term. The
researcher can actually drop this from the regression with a nocons com-
mand at the end of the regression line; but, it’s not necessary. The reason
comes directly from a Stata webpage, “The results that (the appropriate
Stata command) xzreg, fe reports have simply been reformulated so that
the reported intercept is the average value of the fixed effects (if they
were explicitly modeled) (http://www.stata.com/support/faqs/statistics/
intercept-in-fixed-effects-model/).” Therefore, there is no need to worry
in our case; the coefficient is reported simply for convenience.

Second, the sample correlation coefficient in Figure 7.3, also known
as the R?, is not entirely accurate; and to a great extent, this inaccuracy
transcends regression packages. This R? is calculated using equation (7.4),
where there are no dummy variables representing the countries—they’ve

been subtracted out before hand. Hence, the within R* actually reflects
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the fit of the regression as it pertains to the right-hand-side x’s and not
any intercepts. Because of this, if the researcher is truly interested in an
accurate R?, they will have to run a regression of the form (7.1) and use
that R? value instead. The slope values will be the same as in Figure 7.3,
but that R? will be the more accurate one.

The final caveat is the fact that the degrees of freedom are not obvious.
For a researcher who wants to perform subsequent testing by hand (i.e.,
programmed testing that is not canned in the econometric software pack-
age), this can be a huge issue. Typically, the degrees of freedom for an OLS
type of regression equal the number of observations minus the number
of right-hand-side variables plus the intercept. In a cross-sectional model,
if  equals the number of observations and 4 equals the number of right-
hand-side variables, then the degrees of freedom would be /- £ —1. The
1 in this case represents the intercept. In a rudimentary panel model, the
number of observations would equal /7, where 7 reflects the total num-
ber of time-period observations and [ reflects the number of 7 groups, in
our case here these are individual countries. Therefore, without correcting
for intercept heterogeneity, the degrees of freedom would be /7— 4 —1.
But when running a regression of the form (7.1), we must subtract out
all of the intercepts, not just one of them. So the degrees of freedom in
this case would be /7' — & —1. Believe it or not, the degrees of freedom for
equation (7.4) is exactly the same as it is for (7.1) even though there are
not any actual intercepts modeled in (7.4); this is why any subsequent
programming by hand must account for these larger degrees of freedom.

Moving back to the purpose of this chapter, that is, heterogeneity
testing, there is one last heterogeneity issue that must be tested for when
using panel data that isnt an issue for cross-sectional data, and that is
heterogeneity as a function of # Time heterogeneity, as I like to call i,
simply means that y conditioned on the x’s is trending either upward or
downward over time, on average, for each 7. In this case of heterogeneity,

equation (7.1) would look like

Jie =@ Tayx;, taxt; te,. (7.5)

Testing for this form of misspecification is easy as all you need to do is

construct a discreet ordinal variable that starts at one and continues to the
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Robust
Growth Coef. Std. Err. t P>t [95% Conf. Interval]
I =.0176229 .0291792 =0.60 0.547 =.0752206 .0399749
FDI .0468228 .0311892 1.50 0.135 -.0147425 .1083882
School -.0349342 .0130498 -2.68 0.008 -.0606937 -.0091748
Trade -0309677 .0102823 3.0 0.003 .0106513 .051284
Pop -.6983936 1705763 -4.09 0.000 -1.0351 -.3616871
G -.0837694 .0408519 -2.08 0.042 -.1644084 -.0031303
t -013012% -0230753 0.56 0.574 -.0325361 -0585619
_cons 4.467535  1.156746 3.86 0.000 2.184156 6.750875
L]

Figure 7.4 Testing for time heterogeneity

end of each 7s time span. One then simply includes this in their heter-
oskedasticity and intercept-corrected regression and evaluates whether its
coefficient is statistically significant or not. In our case, the coeflicient for
¢ in Figure 7.4 is highly insignificant indicating that on average, growth
is not trending upward or downward over time. Therefore, we can drop
it from our subsequent analyses. And it actually makes sense when one
thinks about the dynamics of economic growth. Growz) is not a stock
variable, it is a flow variable. Trending would mean that Growsh either
increases in a linear way without bound, or decreases in the same fashion;
but Growrh (i.e., the percentage change in GDP) will always be bounded
in some way whether by business cycle dynamics or because the long-run
trend in GDP cannot be exponential. On the other hand, if we were to
model a country’s level of GDD, that is, a stock variable, it would indeed
trend in a deterministic way. Hence, a researcher should be aware of the
type of variable they are using and whether they would be expecting it to

trend or not.

Dependent Variable Dynamics

Failing to control for dependent variable dynamics in panel regressions is
perhaps the second most critical misspecification issue; the most critical
being statistical omitted variable bias which we will investigate next. The

reason that controlling for dynamics is so critical is simply that nearly
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every continuous regressand, or y, related to economics has a cyclical
component to it. In our case, annual growth in per capita real GDP actu-
ally defines, and in the short run is defined by, a business cycle. Even vari-
ables like migration have cyclical components to them. And even though
ignoring the cyclical component itself does not result in biased estimators,
if the right-hand-side variable of interest responds to this dynamic, then
a correlation between the regressor and the error of the model would
result. Furthermore, simply as a case of drawing the purest inference pos-
sible from the true relationship between the variable of interest and the
dependent variable, subtracting out the effects of the dynamic compo-
nent in y is critical.

Mathematically, dependent variable dynamics can be modeled as

Y = by, ax, e, (7.6)

The dynamic component comes in through Ji-1. I've allowed for one lag
to start our particular case. But more than 1 year should also be tested for
if the coefficient estimate for the first lag, &, is larger than 0.500. For data
that has a higher frequency, however, you may need to include even more
lags regardless of the coefficient value of the first lag.

Modeling the dynamic component of y, may look straightforward—
that is, include one lag of itself on the right-hand side of the equation and
simply run the regression; but one significant problem arises when this
operation is performed using a within regression. Assume we run a stand-
ard within regression like (7.4), but include a lagged dependent variable
on the right-hand side as in (7.7)

(e =7)=b(y, —¥) +a(x, —x)+ (e, — ). (7.7)

It is apparent from (7.7) that the y, on the right-hand side is correlated
with the ¢, (revisit equation (7.2) from earlier in this chapter and the
correlation is easy to see). This means that there will exist dependence
between the residuals and transformed lagged dependent variable. For-
tunately, overcoming this obstacle is easy although another issue arises,

which we will address later.
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Anderson and Hsaio (1982) recognized that the best way to treat this
issue is to take first differences of (7.6) rather than use a within transfor-
mation method. Model (7.7) will then look like

(.J’it - .yit—l) = bl (.yitfl -2 ) +4 (xit - xitfl) + (ez'z - 6’14!71) (78)

But this form presents another issue—the fact that now Ji-1 is corre-
lated with e;,_;. One way to overcome this problem is to instrument

(Jieet = Yi—2) with Yi-2 so that (7.8) now becomes

(.yit - .yitfl) = bl.yitfz +4 (xit X1 ) + (eit | ) (79)

Another way is to instrument (Y-t = Yi-2) with (Ja—2 = Ji-3) so that

(7.8) now becomes

Die = Vi) =6 (Jiy = yis) + a (x;, =5, ) + (e, —€;,)- (7.10)

Most researchers performing this operation simply use the second lagged
level Yi— and run a regression of the form (7.9). Having said this, a more
sophisticated method that takes advantage of the maximum number
of moments is something called a dynamic panel generalized method of
moments (GMM) operation that uses both lagged levels as well as lagged
differences as instruments (Arellano and Bond 1991; Arellano and Bover
1995; Blundell and Bond 1998). There are a few technical issues when
performing this operation that one should be aware of. I suggest that a
researcher using this methodology consult Roodman 2006, 2009.

In our case, since I've been using this methodology many years now,
I'm about as close to an expert in dynamic panel modeling as one can
get (other than Roodman, of course). To this end, I will simply portray
the output of our model and the reader can have confidence that the
technical details are appropriately addressed during the operation. Hav-
ing said that, even though many packages such as Stata now have this
feature preprogrammed into their software, the programmer will need to
remain vigilant that the technical details (most of which are outlined in

Roodman’s manuscripts) are within the bounds of reasonable statistical
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Growth
Ll. 2632475 .0507251 5.19 0.000 .1638282 - 3626668
I -.0037258 .0BEBE2Y -0.04 0.966 -.1740131 -1665615
FDI -.1720876& -1042867 -1.65 0.089 -.3764858 -0323106
Schoal -0199657 .0253787 0.79 0.431 -.0297756 -063707
Trade ~0368333 .0230783 1.80 0.110 -. 0083333 -Daz12339
Pop .4530587 6729513 0.67 0.501 -, 8659016 1.772019
G .0953309 .0973947 0.98 0.328 -.0955592 .286221

_cons -4.541274 4.048859 =1.12 0.262 =12 47689 3.394343

Figure 7.5 Dynamic panel regression

outcomes. Some of these preprogrammed versions of the GMM method
are not as flexible as the user written versions are. Ultimately, if the
researcher is not comfortable using this procedure, they should consider
using the Anderson and Hsaio method instead.

Controlling for cyclical components in Growsh we get the output
in Figure 7.5. First, the coeflicient for lagged Growth, labeled as Growth
L1, is highly significant meaning that there is a dynamic component to
Growth. Comparing the results in Figure 7.5 with those of Figure 7.3, we
find that dependent variable dynamics did indeed play a role in influenc-
ing the estimates of the other coeflicients. The coefficient for FDI changed
signs and is now marginally statistically significant. On the other hand,
whereas School, Trade, Pop, and G were significant before, no longer are
they. What this means is that the other variables were simply picking up
(or mimicking if you will) the dynamic component of Growzh, obscuring
their true long-run relationship with Growth. (For the more sophisticated
reader, the Hansen test for overriding restrictions returned a p-value of
0.442, the AB Test for AR(1) returned a p-value of 0.000 as expected, and
that for AR(2) is 0.201. All of these are well within the bounds of reason-
able test statistics for the GMM process. Problems would exist if these test
statistics approached their bounds of 0.000 and 1.000. Only one lag was
used to instrument lagged Growsh, resulting in 81 instruments; this is far
less than the number of groups which is 172.)

At this point it would interest the reader to keep in mind that

the dynamic panel GMM regression we just ran already controls for
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endogeneity between all of the other variables and current growth (see
model (4.2) in Chapter 4). Because we lagged 1, FDI, School, Trade, Pop,
and G prior to putting them into our regression, there is no need to use
the GMM methodology with these variables. Using this method on all
of the right-hand-side variables would lead to a large number of instru-
ments, overspecification, and significant problems with test statistics and
statistical inference. And even though the GMM methodology has varia-
tions of it that can address this issue (such as the collapse function which
respecifies matrices into simpler forms), to realize the full potential of
such a method, and unless you are very familiar with this routine, it is
not recommended that these procedures be performed. However, if the
researcher has a particular variable of interest, say FDI, it may behoove
that person to perhaps keep that variable in its contemporaneous form
and perform the GMM dynamic method to it as well, while keeping the
other variables as simple one-period lags. The choice is the researchers to
make; but again, be aware of using too many instruments and the prob-
lems it poses (see Roodman’s work mentioned earlier for a full explana-

tion of these issues).

Slope Heterogeneity

It’s time now that we go back to exploring heterogeneity, but this time
in the slope and not the intercepts. As mentioned in Chapter 2, slope
heterogeneity is much like intercept heterogeneity but when the slope dif-
fers in a statistically significant way across some obvious clustering of the

dependent variable. Rewriting equation (2.7) in Chapter 2 we would have

y=ay, +aDix+a,D,x +e, (7.11)

where D, is a dummy variable that equals 1 when characterizing one
group and 0 otherwise, and D, another. And while (7.11) is the best
for conducting the initial tests of differences in slopes as will be obvious

below, a more common form is

y=ay,+ax+a,Dx+e, (7.12)
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where D is a dummy variable that is equal to 1 for some cluster and equal
to 0 for all other clusters. Therefore, the slope for a “control” group would
simply be #, but the slope for the delineated cluster would be 4, + a,.
Hence, 2, measures the difference between the control group’s slope and
that for the delineated cluster.

In our case, an obvious clustering of our dependent variable, Growih,
would be by income group—the same clustering we explored for inter-
cept and slope heterogeneity in the cross-sectional case. Let us now per-
form the same procedure on the panel data model.

There are interesting results in Figure 7.6. First, as expected, econo-
mies of all developmental levels have robust business cycles as the coef-
ficients on all of the lagged Growrh variables are highly significant. Also,
it seems as though the business cycle in high-income countries has more
memory as the value of its lagged Growth coeflicient is more than twice
as large as middle and lower income economies. What's also interesting
is the fact that only high-income FDI, high-income 77ade, and middle-
income G, have significant coeflicients—only about one-half of the num-
ber of significant coeflicients than the cross-sectional case. That said, we
have to remember that this is a fixed effects regression that accounts for
changes in intercepts at a far smaller level, that is, country level, than we
accounted for in the cross-sectional model, that is, income groups. To
that end, we are accounting for far more heterogeneity in the data and

this could be washing out the differences in the effects of the individual

T O G St b — .
S a8 000
Prob > chiz = 0,000 max = a1 ?i'
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i i a

Figure 7.6 Slope heterogeneity regression
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economic components like 7, School, and so on. However, all of this dis-
cussion is meaningless until we actually test for equality across the slopes.

Testing the equality of the slope coefficients for the panel model
yields p-values from 0.192 for the Pop coeflicients to 0.623 for the /
coefficients. These tests tell us that there is no statistically significant
difference in slope coeflicient estimates across the income groups for
any of the x variables. However, the same p-value for the lagged Growzh
coeflicients is 0.001, telling us that business cycle memory does indeed
differ across income groups. The coefficient for lagged growth of the
high-income group is 0.457, while those for the middle- and low-
income groups, respectively, are 0.176, and 0.146; in other words, the
middle- and low-income groups are quite close, while the high-income
group, as mentioned earlier, is much larger. Therefore, performing
a test of equality on the lagged Growzh coeflicients for the low- and
middle-income groups we get a p-value of 0.757; hence, we will com-
bine these countries. The final panel model we will move forward with
is that in Figure 7.7.

One result we see in this permutation of the panel model estimates
is probably expected, while the other is a direct result of correcting for
slope heterogeneity. First, high-income nations generally have business
cycles that contain more memory. In other words, this period’s growth is

more reliant on last period’s growth than for middle and lower income
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G -0714583 -076238 0.54 0.349 -.0779654 .220882
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Figure 7.7 Regression corrected for slope heterogeneity
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countries. This makes sense as higher income economies tend to be more
developed and less erratic. Second, if we remember back in Figure 7.5
only the coefficient for DI was significant, and marginally at that. Here,
however, the p-value for this coeflicient fell by about 17 percent, from
0.099 to 0.082, making it even more significant. Since adding the high
income lagged Growrh variable is all we did differently from the regres-
sion model that generated the results in Figure 7.5, this fall in p-value
is a direct result of that misspecification issue. But that’s not the only
one. The reader will also notice that the coefficient estimate for 7rade was
0.036 in Figure 7.5, now it’s 0.031—not much of a change in estimates.
However, the p-value has fallen substantially from 0.110 to 0.030—a fall
of about 70 percent! Now, Tiade does indeed have a significant effect
on Growth.

Statistical Omitted Variable Bias

I speak about statistical omitted variable bias in my other book (Edwards
2013), and how it differs from what I call theoretical omitted variable
bias; I also describe it earlier in Chapter 2 of this book. Most researchers
lump them both together and call them simply omitted variable bias, but
I like to differentiate theoretical bias from the more objective and purely
statistical bias. A perfect example of statistical omitted variable bias is the
inclusion of a squared x. If a squared x is needed but not included on the
right-hand side prior to running the regression, bias in the relationship of
interest would result. And while we could hypothesize why there would
exist a nonlinear relationship between x and y, for the most part, testing
for it is simply to paint a more statistically accurate picture of the rela-
tionship with Growrh. Theoretical omitted variable bias is different. The
idea of it only relies on theory. We may have such bias if (1) there exists a
variable that we have access to that is correlated with Growth, and (2) it is
simultaneously correlated with our variable of interest. Both (1) and (2),
of course, are based purely on theory and are nearly always likely to exist
with at least one variable that is not in your regression. In this sense, as
long as any residual at all exists from our regression, our estimators will
always be biased! This is why, in my opinion, theoretical omitted variable

bias is a concept that has tenuous argumentative support at best.
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Figures 2.9 to 2.11 show perfectly a hypothetical nonlinear relation-
ship between x and y; but when there are more than one x, pictorially test-
ing for statistical bias can be problematic. Furthermore, statistical omitted
variable bias actually involves more than just the quadratic specification
issue, it also involves interactions. A regression model addressing the for-

mer would look like equation (2.12) in Chapter 2, or

y=a,+ax +a,x’ +e. (7.13)

Buct a regression model addressing the latter would look like

y=dy+ayx +ayx, +azxx, +e, (7.14)

where by x, and x, are different x’s.

The reason why I only presented the quadratic case in Chapter 2 is
because I know from experience that empirically testing for the inter-
action of variables can lead to outcomes that are theoretically tenuous,
and therefore difficult if not impossible for the researcher to explain. For
instance, assume we found that domestic investment interacts with gov-

ernment spending such that the marginal effect of 7 on Growrh is

LD — i+ 0,6 715)

meaning that the marginal effect is a function of government spending.
Well, this is easy to explain since we know from basic macroeconomics
that the two can affect each other through the crowding out type of argu-
ments. Hence, these interactions can easily translate to domestic invest-
ments effect on growth. But, what if we found that 7rade and School
interacted with each other, thereby affecting their own relationships with
Growth? That would be much harder to explain. To this end, we only
explore the quadratic issue in this book and not interactions. But again,
please be aware that this problem can indeed exist and should be explored.
In my own work, I empirically explore these interactions only if there are

strong theoretical reasons why they should exist.
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The most common way of testing for quadratic relationships is to
simply include squared x’s into the regression and evaluate the statistical
significance of their coefficients. Notice that I did not mention the inclu-
sion of squared lagged y’s for the panel regression. This is because the coef-
ficient to lagged y is already picking up a dynamic nonlinear relationship
by definition as long as the coefficient estimate is less than 1.000 in abso-
lute value. Furthermore, what exactly does it mean when we say that cur-
rent economic growth is a function of squared lagged economic growth?
I'm not sure anyone can answer that question. Hence, there is no need
to include squared lagged dependent variables when performing this test.

Performing the same operation on the panel model, the output in
Figure 7.8 tells us that only 7 has a significant nonlinear effect on Growrh.
But before we attempt to draw inference from this result, let us drop the
other squared terms, leaving us with a far more parsimonious form. This
we see in Figure 7.9. Investigating the simpler model in Figure 7.9, we
find that FDI and Trade continue to have a significant effect on Growrh.
Furthermore, high-income economies continue to have a different busi-
ness cycle to middle- and low-income economies. However, the interest-
ing inference lies in the coefficient estimates for /and Isq.

From Figure 7.7 we found that the effect 7 has on Growsh is insignifi-
cant. The results in Figure 7.9 paint a different picture. Since the effect is
quadratic and concave downward, there will exist a maximum. We know

it's concave downward because the second derivative of Growth with
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Figure 7.8 Regression checking for statistical omitted variable bias
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Figure 7.9 Regression after correcting for statistical omitted variable bias

respect to / is negative. The real question is whether the maximum lies
within the relevant sample space of 1. To this end, we take the derivative

of the function

Growth,, =0.2681, —0.0041,° (7.16)
to get
Growth
ag%”” =0.268 - 0.0081,. (7.17)

We then set this equal to zero and solve for / to find our maximum. The
maximum of this function is at 7, = 33.5, which is well within our rel-
evant sample space. Since / is in percentages in our case, this means that
increases in (lagged) investment positively impacts economic growth at
a decreasing rate for countries that have investment to GDP below 33.5
percent, but further increases in (lagged) investment negatively impacts
growth at an increasing rate for countries with higher levels of invest-
ment. What this means is that if we were to draw inference from the

linear effects in Figure 7.7, that inference would be incorrect.

Final Panel Model and the Inference
We Can Draw From It

To finish this chapter of the book, it is very apparent, just like it was in

the cross-sectional case, that to have drawn accurate inference from the
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original results depicted in Figure 7.1 would have been a premature task
to perform. I put the two results together so we can analyze them simul-
taneously. Figure 7.1 is repeated in Figure 7.10, and Figure 7.9 is repeated
in Figure 7.11.

If we were to stop drawing inference at the results from our base regres-
sion, Figure 7.10, we would have concluded that all of our right-hand-side
variables affect economic growth in a statistically significant way. And
they probably do; just not in the way we think they do, nor in the way
our model was intending. To elaborate on this, I must bring in my own
expertise in modeling cross-country growth in real per capita GDP.

When a researcher puts real per capita growth on the left-hand side
of a regression function, the intention is to model long-run growth, not

short-run growth. What the results in Figure 7.10 are capturing are the
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Figure 7.10 Base regression results
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Figure 7.11 Final regression results
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long-run and short-run components of growth. But, after controlling for
the short-run component through the lagged Growrh variable, we can
now determine what influences long-run growth; only domestic invest-
ment, foreign direct investment, and total trade volume as a percentage
of GDP affect Growth; on the other hand, neither schooling, population
growth, nor government spending influence long-run growth. But this
begs the question, would we have expected School, Pop, or G, to impact
short-run growth as the output in Figure 7.10 says they do? Absolutely
not! Only G should influence short-run growth through fiscal policy.
Both School and Pop are long-run determinants by definition because you
can’t change the amount of schooling a nation has, or its rate of popula-
tion growth overnight like you can its level of government spending. This
means that not only were the results in Figure 7.10 capturing both short-
run and long-run influences on Growzh, but they were also substantially
biased meaning the inference a researcher would draw from them couldn’t
be trusted in the first place!

In general, unlike cross-sectional models, we have seen that panel
models are far more dynamic and close attention must be paid to the
plethora of possible misspecification issues contained within these models.
To have simply stopped at the simple linear form would have been an injus-
tice to the realm of macroeconomic growth and led policymakers down
the wrong path for their countries. But it isnt just with this data set that
one must explore these issues; unfortunately, all data sets are just as likely
to contain them. Microeconomists, macroeconomists, those performing
medical research in the fields of psychology, medicine, neuroscience, biol-
ogy, or any empirical field for that matter, must pay very close attention to
model misspecification, and at the very least, to the items outlined in this
chapter. When one wonders why data doesn’t hold up to theory, misspeci-
fication is usually the answer that is the most quickly ignored.

Moving forward throughout the remainder of the book we will use
the model that generated the results found in Figure 7.11 only when
considering the next two topics—variance heterogeneity and consistency
in panels. As will also become apparent, the topics of consistency and
dynamic parametric heterogeneity should not be taken in sequence as the
data and conditioning sets will change substantially, rendering the final

model found in Chapter 7 incomparable.



CHAPTER 8

Variance Heterogeneity

The Panel Data Case

If we remember from Chapter 3, variance heterogeneity can rarely be
detected with a test for homoskedasticity. To reiterate equation (3.5) from

that chapter, we have

rr=c + D+, (8.1)

which tells us that in the case of variance heterogeneity, a correlation
would exist between the squared residuals and a set of dummy variables
representing a particular clustering of the data, much like in intercept and
slope heterogeneity. However, we run into an issue if we perform a regres-
sion specified exactly like (8.1). That is because the dependent variable is
a squared version of a normally distributed variable (at least we hope it’s
normally distributed). Park (1966) recommended using the natural log of

the squared residuals instead, resulting in the regression

In(r?) =¢, D+ (8.2)

This is the representation we will explore.

Figure 8.1 shows the screenshot of our Stata output when we run a
regression of the natural log of our squared residuals from the final model
in Chapter 7 on the income-level dummy variables we created previously.

A test for the overall equality of the coefficients for the three income
levels returns a p-value of 0.000 indicating that the coefficients are not
equal to one another. Viewing the estimates in Figure 8.1, it seems as

though the coeflicients for the low- and mid- income groups are nearly
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F( 3, 3755) = 476.46
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Adj R-squared = 0.2751
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Figure 8.1 Regression testing for variance heterogeneity
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high =.7997816 .0BOBTEE =5.89 0.000 =.9583482 =.6412149
_cons 1.682441 0476414 35.31 0.000 1.589035 1.775846

Figure 8.2 Variance regression using low and mid as the control
group

identical, while those for the 4igh group are only about one-half of the
others. This actually makes sense as it is well known that developed
nations tend to have less volatile economies than emerging or developing
countries.

Conducting a separate test on the equality of the /ow- and mid- income
countries, we get a p-value of 0.683. This means that as expected, the
low- and mid- coefficients are not significantly different from one another
and their groups can be combined. Rerunning the same regression but
lumping the low- and mid- countries together and using them as the con-
trol group, that is, letting that group act as the overall constant for the
regression, we get the results in Figure 8.2.

While the results in Figure 8.1 reflected the actual levels of volatility
for each income group with the bigh group having the lowest volatility,
the constant in Figure 8.2 reflects the weighted average level of volatil-
ity across the low and mid groups, with the high group coeflicient being
the difference between the control group and the high-income countries.

This means that on average, high-income countries have 0.799 percentage
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points of lower volatility in real per capita GDP growth than volatility in
lower income countries. The procedure now is to correct for this mis-
specification by performing a feasible generalized least squares procedure

(FGLS) regression on the final model from Chapter 7.

Correcting for Variance Heterogeneity

The correction for variance heterogeneity will entail using a generalized
least squares (GLS) type of method. Nearly all undergraduate textbooks
address this methodology when used as an alternative to heteroskedastic-
ity correction. But, GLS is only good if you know the true nature of the
heterogeneity in the variance; in our case, however, we are estimating it.
To this end, we must use a variant called an FGLS. This is perhaps the
best way to correct for variance heterogeneity when it is known to be pre-
sent (Edwards et al. 20006). The way someone would perform an FGLS in
this case is as follows.

Using the procedure we just performed, that is, estimating the natural

log of the squared residuals as

In(+*) =c, +¢,D (8.3)

and specifically in our case we would have the function

In(+*) =1.682 low mid —0.799 high (8.4)

We would then take these estimates of In (%), and convert them to simply
7 by first exponentiating, and then taking the square root of what’s left. To
correct for heterogeneity, we would then weight all of the variables in our
final Growth model, including the constant. Hence, reflecting on model

(1) in Chapter 2, our new model would look like

+a (8.9)

=t

:d()

§>|\<
N> | =

~ | R
\>|('D

Completing this operation for the final regression from Chapter 7, and

rerunning that regression, we get the output in Figure 8.3. For easier
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Dynamic panel-data estimation, two-step system GMM
Group variable: groups Number of obs = 3758
Time variable : €& Number of groups = 172
Number of instruments = 158 Obs per group: min = 2
Wald chi2(9) = 116.21 avg = 21.85
Prob > chi2 - 0.000 max = 41
Corrected

wGrowth Coef. Std. Err. z Bxlz]| [95% Conf. Interval]

wLlGrowth .1385385 .0534325 2.59 0.010 .0338128 .2432642

wl_Growth_high .319041 .0886121 3.60 0.000 .1453644 .4927176

wl -.0220514 .109085 -0.20 0.840 -.235854 .1917512

wisg =-.0011041 .0015078 -0.73 0.464 -.0040593 .0018511

wFDI -.157077 .1019572 -1.54 0.123 -.3569095 .0427556

wSchool -.0055286 .0162229 -0.34 0.733 -.0373249 .0262677

wlrade .0349019 .0139472 2.50 0.012 .0075658 .062238

wPop -.3512925 .4302865 -0.82 0.414 -1.194638 .4920535

Wi .0092943 .0752447 0.12 0.902 -.1381825 .1567712

Figure 8.3 Regression corrected for variance heterogeneity

comparison, Figure 8.4 depicts the output from the final regression model
generated in Chapter 7.

The “w” in front of each of the coefficient or variable names stands
for that variable weighted by the 7 that we generated earlier. The reader
should also keep in mind that Figure 8.4 reports a coeflicient value for
_cons, but Figure 8.3 doesn’t. As discussed back in Chapter 7, _cons is the
average value of the intercepts had they been estimated instead of sub-
tracted out before hand by the within transformation. Therefore, when
conducting the FGLS weighting procedure, there is no actual constant
term to weight like there was for the cross-section case; it doesn't appear
in the results of Figure 8.3 because it was purposely dropped when the
regression was executed. I didn’t want to add any confusion to the discus-
sion of the output.

Now reporting on the results, not only are there substantial changes in
the magnitudes of many of the coeflicients, but also substantial changes
in many of the coeflicient’s p-values when compared with the results from
Chapter 7 in Figure 8.4. In fact, it seems that only Trade has an effect
on Growth that is robust to the respecification of this model. The rela-
tively large changes in coefficient magnitude are the main drawback of
correcting for variance heterogeneity. Although asymptotically unbiased,
after performing the FGLS procedure the coefficients do not maintain the
nice finite sample properties that they had before the procedure was com-

pleted. To this end, the researcher must use discretion when evaluating
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Growth
Ll. -1642797 -0526261 3.2 0.002 0611344 L267425
1_Growth_high .3311508 -0958733 3.45 0.001 -1432826 -5190985
I .2685281 -1435354 1.87  0.061 =.0127992 -54984923
Lag -.0043521 -0015772 -2.20 0.028 =-.0082273  -.0004769
FDI =.1821244 -1021464 -1.78 0.07% =-.3823275 .0180788
School =-.0122542 -0174681 =-0.70 0.482 =. 046491 .0219826
Trade 0299761 -0156887 1.9 0.056 =-.0007732 0607254
Pop -.0285638 .450181 -0.06 0.94% =. 9109024 .B53T749
G .0422488 -0795041 0.53  0.595 =-.1135765 198074
cona =-3.864113 2.957739 =-1.31 0.191 -9.661175 1.53285

Figure 8.4 Regression without correcting for variance heterogeneity

the benefits of variance heterogeneity correction, like that of correcting
for substantial bias in p-values, versus the changes in the coefficient esti-
mates themselves.

The rule of thumb I use is that if the magnitudes of the coeflicients
are important for forecasting specific levels of the left-hand-side varia-
ble, then I will probably ignore the heterogeneity because any change in
the coeflicient values may greatly change those forecasts. But if the
actual values of the coeflicients arent important, and only the sign of
the coefficient is important, then I will probably correct for variance
heterogeneity.

To be honest, I have absolutely nothing to support my reasoning or
justification for these bounds. It’s simply a personal condition I apply to
my own work. But it doesn’t matter; as long as the researcher is aware of
these issues and weighs the pros and cons of variance correction using the
FGLS procedure, then one should be able to make an educated decision
to perform it or not. However, this case is considerably more complicated
as one of the relationships is quadratic in nature. Even though the invest-
ment part of the growth function continues to be concave downward, the
new maximum exists at [i[ = —11. This means that as a nation increases
domestic investment, economic growth will fall at an increasing rate from
the beginning! If we remember from Chapter 7, / increased growth up
to about 33 percent of GDDP, then decreased growth thereafter. Since
we know without a doubt that investment increases growth at least over

some range of investment (reference a standard production function, for
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example), this latter result makes far more sense than the result we get
after correcting for variance heterogeneity.

Given the inference we just conducted, I would conclude that cor-
recting for variance heterogeneity in this case would not be the correct
thing to do. I say this for two reasons. The first is simply because the
amount of variation in the conditional variance that is explained by the
income effects is quite low. When we look back at Figure 8.2, only about
2.5 percent of the variation in the conditional variance is explained with
the inclusion of these dummy variables. The second reason I would forego
the FGLS operation in this case is because the large changes to inference
do not justify its use especially when so little heterogeneity is explained
by these dummy variables. Having said that, once again, this situation is
likely to be quite unique to the data set I am using. Any other permuta-
tion of this data set, much less using a completely different data set, might
produce coeflicient estimates that only change slightly, but produce
p-values that change substantially. In cases such as this, it might behoove
the researcher to use the respecified results. And even though coeflicient
estimates are considerably different in our particular case, at least we know
that the standard errors are constant and conform to our original proba-

bilistic assumptions we made at the beginning of our empirical work.



CHAPTER 9

Consistent and Balanced
Panels

To reiterate the gist of the explanation given in Chapter 3, balanced pan-
els simply mean that each 7 has the same number of 7 observations. In our
case, this means that if one country covers 9 years’ worth of data, then all
countries cover 9 years worth of data. Which years each country covers is
not an issue with the concept of balanced panels; this is where consistent
panels come into play. Consistency in panel data simply means that each
of the balanced panels start in the same year and end in the same year.
Therefore, you can have balanced but inconsistent panels, but you cannot
have consistent but unbalanced panels.

There are perhaps three main reasons why researchers don't, or won'’,
recognize these concepts as actual misspecification. The first is the fact
that researchers are only interested in drawing inference across 7 anyway,
and not at all interested in the time dimensional inference from their
estimates. Another is that by generating consistency, they may lose a
large number of observations, and even a large number of individuals,
hence dramatically changing their empirical experiment(s). And lastly,
a researcher may not account for unbalanced and inconsistent panels
because it is not a proper form of misspecification in a purely statistical
sense. In other words, balancing of panels is not necessary to attain NIID.
Buct researchers should indeed be aware that results obtained using unbal-
anced and inconsistent panels can generate false inference for the reasons
outlined in Chapter 3. For the purpose of our exposition here, however,
we will implement consistency in our panel data regardless of the loss in
observations, groups, or both. Having said that, a loss of observations is
certainly a concern that should be considered before taking on this mis-

specification issue.
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Figure 9.1 Year-on-year frequency distribution of observations

Figure 9.1 is a frequency distribution of our panel data delineated by
year. The left-hand side of each column represents the actual year of the
observations, and the right-hand side of each column lists the number
of countries that have observations for that year. The reader can see that
with the exception of the two latest years of data, the closer one gets to the
present the more countries per year one has. For instance, the year 1979
has 81 countries in it.

Currently, our regressions have included 172 countries. Obviously,
none of the yearly cross sections have that many countries. Why is this?
This is because many countries have data that either stops or begins
toward the middle of the coverage of observations. This means that this
frequency distribution isn’t of much use. Bug, it does give us some indica-
tion of where to begin our balancing act.

Even though each type of panel data set is different, especially within
the context of the empirical area (i.e., this is a cross-country macroeco-
nomic data set, but the type of data for a microeconomist may have sub-
stantially different characteristics with regard to the 7 and # dimensions),
in our specific case we would like to have at least 10 years’ worth of data
for each country. According to Figure 9.1, the number of countries starts
to drop off significantly after about 2008; so to start, I'll drop all observa-
tions after that date. We also see that the number of yearly observations

starts to substantially increase at about 1976—so I'll drop all observations
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before that date. Then what I do is generate a variable with my econo-
metric software that keeps track of the maximum number of observations
per country (in my case with Stata, the command would incorporate the
“egen varname = max(trendvariable)” function). I'll then use this variable
to drop all countries that have less than the maximum number of obser-
vations that are equal to the spread between 1976 and 2008, or 33 years’
worth of observations. I'll then run an arbitrary within regression to see
how many countries are used in it, as well as how many observations there
are per country. I'll then move the lower year from 1976 to 1977, and tell
the maximum observation command to drop all countries with observa-
tions less than 32 years’ worth of data, rerun the regression, and document
the number of countries and observations per country this regression cov-
ered. I'll continue this procedure until (1) I reach the highest number of
countries possible with more than 10 years’ worth of data, or (2) I reach
10 years’ worth of data for each country.

In our case, the best I could do is a data set with 10 years’ worth of
data covering 51 countries. If I let each country cover more years, I would
have had fewer countries. If I wanted to have more countries, I would
have had fewer years per country—as [ said, it’s a balancing act. It cer-
tainly becomes apparent why most researchers do not use consistent pan-
els in their regressions. Doing so in our case has led to 121 fewer countries
covered in our data set, and a loss of 3,248 observations! Furthermore,
our results have changed substantially as we can see in Figure 9.2 com-
pared with the final model from Chapter 7.

The reader will notice that no longer is the business-cycle memory
for high-income countries different from low- and middle-income coun-
tries. This outcome actually makes sense as most countries with consistent
data are likely to be relatively more developed than countries with spo-
radic data, and thereby have business cycles more like developed econo-
mies. On comparing these results with the final regression output from
Chapter 7 shown in Figure 7.11, one will also find that the relationship
between [ and Growrh remains quadratic, but has changed concavity.
Before this relationship was concave downward with a maximum at
I,,=33.5; now this function is concave upward with a minimumat 7, = 25.5.
Therefore, instead of 7 positively affecting Growth at a decreasing rate up

to 33.5 percent of GDP, and negatively affecting Growzh thereafter, it
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Growth
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Iaq .0231837 .0054643 4.24 0.000 -012474 .0338935
FDI -.2080008 -1511813 -1.38 0.169 -.5043108 -0883051
School -.001725 - 0365403 -0.08 0.962 -. 0733427 0638927
Trade .D204161 -0235045 0.85 0.393 -.0264258 067268
Pop -.8859918 -6702211 -1.32 0.186 -2.199601 -4276175
G -.2446692 - 2852535 -0.86 0.391 -.8037558 +3144174
_cons 20.28389 11.38484 1.78 0.075 =2.029987 42.59776

Figure 9.2 Regression using consistent panels

now negatively affects Growth at a decreasing rate up to 25.5 percent of
GDPD, and positively affects it at an increasing rate thereafter. And the final
difference between this output and that in Figure 7.11 is the fact that
no longer are the coefficients for FDI and Trade statistically significant,
meaning that they no longer have a significant effect on Growth.

These changes in estimates are quite dramatic, which then begs the
question—at this point in our exposition, should we have implemented a
consistent panel procedure and compare it to earlier results? The answer is
an emphatic no! The reason is simple. Unless the data set is balanced in its
initial design, artificially balancing and creating consistent panels should
only be done from the beginning of your research. Obviously, employing
this method at this late stage is pointless, unless of course you just love to
program econometric software. Is this really an important specification
issue to consider then? Of course it is because as the reader has seen, the
inference you would draw from a balanced and consistent panel would
be dramatically different from an unbalanced panel. But, as mentioned
before, sometimes the loss of data prevents one from using consistent
panels in their research. Think about it this way. Assume you are a growth
and development economist like myself. Is it more important to cover as
many countries as possible in your empirical analyses and have as many
observations as you can find, or is it more important to have consistency
in a business cycle component across countries like we have here with all
our data starting in 1999 and ending in 20082 Again, it simply depends

on the question(s) the researcher is trying to answer.



CHAPTER 10

Dynamic Parametric
Heterogeneity

Harking back to the explanation of dynamic parametric heterogeneity
outlined in Chapter 3, typically researchers assume that all slope coeffi-
cients are constant over time. This means that we assume all relationships

between x and y are also constant. In other words, given the simple model

y=a,+a(t)x+e, (10.1)

researchers typically assume that

a,(t)=a. (10.2)

But instead, what if we actually had

J
a—izal(t), (10.3)

where
a,(t)=b, +bt. (10.4)

Or, on the other hand, the marginal effect has a structural shift some-

where in time such that

a(t)=b, + 4D, (10.5)

where D is a dummy variable representing some break in the marginal
effect, perhaps delineated by a significant one-time event in the history

of the relationship. In either of these cases the inference the researcher
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would draw from their results would not be accurate if they assumed
the relationship was constant when it obviously isn't. So, in testing for
dynamic parametric heterogeneity, we are testing whether 4, = 0. If it is,
then this phenomena doesn’t exist; if it isn’t, then it does exist and should
be modeled as such.

A simple type of regression known as a rolling window regression is
sufficient to tell a researcher whether their coeflicients are trending or
shifting over time. The rolling windows methodology goes like this (much
of it is from Edwards and Kasibhatla 2009). A rolling window algorithm
is essentially a recursive-least-squares estimation that does not hold the
initial observations stationary (Baum 2001; Spanos 1986). A regression
of (10.1) is performed across all individuals, 7, over a multiperiod interval
starting at the beginning period of data. The coefficient value, z (1), is
then recorded. The modeler then lets the window roll one period such
that the regression is run across all 7 over the same multiperiod interval
but spanning the second period to the end of the multiperiod interval.
The coefhicient value, 7 (2), is again recorded. The researcher then lets
the window roll one more period so that the span now covers the third
period to the end of the multiperiod interval, and records the coefficient
estimate, Z,(1). The process continues until all periods are exhausted and

we are left with the full set of estimated coefficients

4, =1{a,(1),4,(2),4,3),....a,(T)}. (10.6)

When using yearly data that is subject to cyclical behavior, such as
economic growth, the rolling window technique works best if performed
using as large an interval as possible. This will reduce much of the single
period variance in the coefficients—that is, it will smooth out the results
much like using seasonally adjusted data. It also does not place rather ad
hoc weights on prior observations like an exponential smoother, or force
a particular model form such as with a Hole—Winters smoother. This is
particularly important since we are unaware of the underlying distribu-
tion within each panel across any particular time period. It is the coefhi-
cient estimates in (10.6) that we test for dynamic heterogeneity. The way
we test for dynamic heterogeneity using these coeflicients is to plot them

over time along with their estimated standard errors. Visually, if at any
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point(s) the lower (upper) bound of the standard errors crosses the upper
(lower) bound, then the changes in the coefficient estimate is a statisti-
cally significant one.

Having outlined the procedure, I would normally start running the
rolling window regressions and get on with the inference from the results.
Buct there is one issue that must be considered; do we use balanced or
consistent panels, or both? After very little thought, the answer is obvi-
ously to use consistent data. The reason lies in the fact that it is a dynamic
operation with the purpose of investigating parametric stability. Let me
explain this further.

What exactly is panel data? It is essentially a number of cross sections
stacked one on top of another. In our case, each cross section contains
exactly one year’s worth of data. A rolling window procedure would then
start at the first year and roll through untdl the end. So, would it make
sense to start this procedure at different years for different 7’s? This would
mean that the first regression window would contain a different num-
ber of 7s than other windows would. If we are interested in measuring
dynamic stability in coeflicients estimates, we would naturally want to
have exactly the same 7s in every window as well as those windows start-
ing and ending in exactly the same years. To this end, we will test the
most basic form of our regression model using a version of the consist-
ent data set we generated in Chapter 9. The only misspecification issues
we will incorporate into our beginning model will be dependent variable
dynamics because it could be argued that unless we control of dynamics
in the dependent variable, coefficient estimates would naturally change
over time. For simplicity’s sake, we will ignore all other forms of mis-
specification.

We also have one other issue to address regarding our particular mod-
eling case and data set; and that is the number of observations per coun-
try. If we use exactly the data set generated in Chapter 9, we will only have
10 observations per country. Reviewing the description for performing
the rolling window regression, we know that our window must contain
multiple observations; I generally prefer at least five time observations for
my windows. But then this would only yield six coefficient and standard
error estimates. This makes it difficult to discern whether heterogeneity

exists or not. Because of this, I will reformat the data set constructed in
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Chapter 9 by sacrificing countries and overall observations for a longer
time dimension for each country.

The data set we will use for this analysis will cover 18 countries with
360 observations. Each country has 21 years’ worth of data from 1988 to
2008 inclusive. Because of losing one observation due to the inclusion of
lagged Growth on the right-hand side, there are a total of 20 years’ worth
of data for each country that can be used for the rolling window method.
In our case, 5 years worth of data across the 18 countries will make up the
window. The window will effectively start in 1989. We will run a regres-
sion spanning all countries from 1989 to 1993 and record the estimated
coeflicients and their standard errors. We then move this window 1 year
to cover 1990 to 1994 and do the same recording. This continues until
the upper end of the window reaches the year 2008. We will then plot
these estimates and evaluate the graph for heterogeneity in the estimates
over time.

Figure 10.1 lists the output from our basic regression using this data
set. Again, we are ignoring all other misspecification issues except depend-
ent variable dynamics. Optimally, however, a researcher would perform
this analysis after at least correcting for the basic misspecification issues
outlined in this book. Again, we don’t do this here simply because the
data set used for this example does not resemble that used previously in
the book. So, to avoid redundancy, I will pretend that all the procedures
performed earlier have already been applied.

The initial estimates tabled in Figure 10.1 tell us that just like earlier in
the book, there does exist a small amount of business cycle memory as the
coefhicient for lagged Growth is statistically significant. Furthermore, it
appears as though increases in Pop and G lower Growth, while increases in
Trade increase Growth. Let us now move on to the rolling window results.

We will start with the rolling window plot of the coeflicient estimate
for 7 in Figure 10.2. I've embedded a reference line at zero to make it
easier to determine areas of statistical significance. The upper and lower
90 percent confidence interval bounds are drawn with dashed lines,
while the coefficient estimate itself is marked with a solid line that lies in
between the two dashed lines.

It quickly becomes apparent that there is some dynamic heteroge-

neity in this parameter. Remember, we can distinguish a statistically
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: reg Growth 1.Growth I FDI School Trade Fop G
Source 55 df NS
Model 302.604797 T 43.2292867
Residual 2906.70287 352 8.25767861
Total | 3209.30767 359 8.93957567
Growth Coef. Std. Err. =
Growth
Ll. .1665339 .0512781 3.25
I .0037742 .022149 0.17
FDI -.0072075 .0390898 -0.18
School -.0039577 .0077335 -0.51
Trade .0171971 .0047741 3.80
Pop -.7650574 -3214418 -2.28
G =.1068445 . 0359016 -2.58
cona 3.674047  1.365248 2.69

B>t

0.001

0.865
0.854
0.609
0.000
0.018
0.003
0.007

Humber of oba
F( 7. 352)
Prob > F
R-agquared
Ad] R-squared
Eoot MSE

[95% Conf.

.0656839

~.0397869
~.0B40864
-.0191674

.0078078
-1.357245
-.1774538%

L 9EBITEY
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5.24
0.0000
0.0943
0.0763
2.8736

Interval]
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.D265864
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-.0262364
6.359116

Figure 10.1 Base regression for dynamic parametric heterogeneity
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Figure 10.2 Rolling window coefficient estimate of 1

significant amount of dynamic parametric heterogeneity by recognizing
areas whereby the upper bound of the 90 percent confidence interval falls
below the lower bound of the same interval, and of course vice versa. In
Figure 10.2 we see this occur around the years 2002 and 2003. I men-
tioned that there is “some” evidence of heterogeneity as it is only the esti-
mate in 2002 that causes this occurrence. Therefore, in this case, I would

be inclined to ignore this instability—it simply doesn't last long enough to

T
2010

justify changing our model. Now we move on to the coeflicient for FDI.
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Figure 10.3 Rolling window coefficient estimate of FDI

When viewing Figure 10.3, the coeflicient estimate for FDI seems
to be very stable over time. With the exception of a large amount of
variation around the beginning of globalization in the early 1990s, FDI’s
effect on economic growth remains very consistent, although highly
insignificant. Moving on to the coeflicient for School in Figure 10.4, we
find something quite interesting. Even though the static estimate from
Figure 10.1 is about —0.004 and highly insignificant with a p-value
of 0.609, there exists a statistically significant structural change in the
coefficient’s standard errors at about the year 2006. Bug, this is not enough
to be captured by modeling this shift in the conditional mean. Interacting
dummy variables that designate the periods before 2006 and from 2006
onward with the schooling variable still resulted in insignificance for the
later period. We have to remember that the data has been smoothed out
over a five-year period. This narrowing of the standard errors could be due
to a one-period shock in the errors, which is not captured appropriately
by the rolling window. And even though dummying out for the single
year 2008 did produce statistical significance in the negative coeflicient
estimate, modeling a shock of just one period is inappropriate as you
would be essentially modeling noise and not an empirical regularity. A

researcher using later period data, however, would want to keep an eye on
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Figure 10.5 Rolling window coefficient estimate of Trade

this outcome. As more of these periods are added to the data, it could be
the case that significance could be observed.

Evaluating the coeflicient estimate for Zrade in Figure 10.5, it’s clear
that the driving forces behind the significant coefficient in Figure 10.1 are

the first 5 or 6 years of data. After that the coeflicient estimate converges
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toward zero, but for the most part remains significant. And even though
it appears that many times after 1997, the lower bound of the 90 percent
confidence interval is below zero implying insignificance, again, these are
5-year smoothed estimates; hence, we cannot be completely sure of sig-
nificance until we actually model that area of the plot.

Modeling this area of heterogeneity by including a dummy variable
into the regression that separates the years 1989 through 1994, from the
remainder of the time period produces an estimate for the earlier period
0f0.027 and a p-value of 0.000; and for the period 1995 to 2008 we get
an estimate of 0.018 and a p-value of 0.000. Looking again at the plot,
it seems as though the earlier period estimate should be even larger, but
again, we can’t see what the estimates where prior to the five-year average
coefficient estimate beginning at 1992. They may be considerably lower
pulling that periods’ estimate downward. But are the coeflicients we just
estimated different from one another in a statistically significant sense?
That is a completely separate question. Performing a test for the equality
of the two estimates produces a p-value of 0.074 indicating that they are
significantly different from one another and should be modeled as such.

Moving on to the coefficient for Pop, in Figure 10.6 we find rela-

tively good stability from about 1995 onward. Furthermore, there is only

Coefficient estimate

—4

T T T T T
1990 1995 2000 2005 2010

Years

Figure 10.6 Rolling window coefficient estimate of Pop
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one small area whereby the lower bound crosses the upper bound, and
that is around the period 1993 through 1994. When delineating this
in our regression we get two coeflicients estimates that are over 0.400
apart; however, when testing whether this difference is significant, we get
a p-value of 0.112 indicating that even though a large separation in mag-
nitude exists, it is not a statistically significant one. Therefore, we must
deem this coefficient to be a stable coefhicient.

And finally we come to the rolling window estimation for the coef-
ficient of G. The rolling window plot in Figure 10.7 shows substantial
instability. Like the others, there is no real trending going on here, but
simply structural shifts in estimates over time. It seems as though prior
to 1998, the relationship between G and Growrh is definitely negative.
But then something occurs that reduces the coeficient estimate in abso-
lute value, driving it toward zero. The bottom line is that one can obvi-
ously see that there is a difference in estimates over time. To once again
highlight the deception that could occur by relying solely on the plot,
however, placing a breakpoint anywhere other than at 1993/1994 results
in nearly identical estimates of the two periods. Only when a dummy var-
iable separating the period 1989 through 1993, from 1994 onward do we

get a significantly different result. The coeflicient estimate for the earlier
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Figure 10.7 Rolling window coefficient estimate of G
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. reg Growth 1.Growth I FDI School Trade Trade DES_%4 Pop G G_DBS_33 I

Source 88 df MS Number of obs = 360 L
Ft 9, 350} = 7.65
Model 527.784543 9 58.6427271 Prob > F = 0.0000
Residual 2681.52312 350 7.66145464 R-squared = 0.1645
-T ) Adj R-squared = 0.1430
Total 3209.30767 359 8, 93957567 Root MSE - 2.767%
Growth Coef. Std. Err. t P>t [95% Conf. Interval)

Growth
Ll. .142427 . 0495956 2.87 0.004 .D448841 .23997
1 -.010881 .0222885 -0.49 0.626 -.0547173 .0329553
FD1 . 000061 .0358497 0.00 0.999 ~-.078314 .078436
School -.00B8942 0075072 -1.20 0.232 -.0237582 - 0057707
Trade (0136268 0047009 2.90 0.004 0043813 -0228725
Trade_D89_54 .034896% 0069257 5.04 0.000 0212758 .0485181
Fop -1.153322 3229503 =3.57 0.000 -1.7884%  -.5181551
G =.10991 0359624 =3.06 0.002 =.1806396 =-.0391803
G_D8% %3 =. 1487709 .0291963 =5.10 0.000 =, 2061932 =.0913487
cons 5.220425 1.358414 3.84 0.000 2.548745 7.892106
1 L]

Figure 10.8 Regression correcting for dynamic parametric
heterogeneity

period is —0.128, and for the latter period it is —0.088; a p-value testing
the equality of the two coeflicients is 0.053 indicating that the estimates
for these periods are statistically different from one another.

It is at this point that we need to respecify our model and compare
it to the results in Figure 10.1. In Figure 10.8, the 77ade and G coefh-
cients represent the effect these variables have on Growth for the periods
1995 onward and 1994 onward, respectively. The coeflicient estimates in
Figure 10.8 pertaining to Trade_D89_94 and G_D89_93 are the differ-
ences from the latter period estimates. The reader can see that they are
both highly significant differences. But we also see that correcting for
dynamic parametric heterogeneity more accurately models the data we
have. The best indication of this is the fact that the adjusted & for the
model in Figure 10.1 was 0.076, but this same value for the model that
generated the results in Figure 10.8 is nearly double that at 0.143! As
the name of this book implies, this is a “better” model than it would
have been had we ignored the misspecification of dynamic parametric

heterogeneity.



Conclusion

It is quite apparent that if someone performed the typical sort of regression
analysis whereby a researcher runs a simple linear regression, the inference
they would draw from their models would be substantially different from
the inference drawn from models that have been respecified as outlined
in this book. This is even true when we only corrected for the basic mis-
specification issues outlined in items 1 through 5 in Chapter 1. This is
perhaps why it has always bothered me why these topics are ignored by
a large portion of the empirical research community; items 1 through 5
are so easy to test for and resolve that there is no reason to ignore them.
Furthermore, in every case, the model that resulted after respecification
fits the darta better than before respecification. In other words, we ended
up with a better model.

Again, I don’t want to lose complete faith in the empirical research
community, so I'll simply assume that there are good reasons why research-
ers do not broach these topics. But let’s hope it’s not because they are
simply unaware of them (which means that their instructors weren’t very
thorough either), or are mining their results by relying on misspecified
models simply because they give them the results they want.

Perhaps the most important objective that has been accomplished in
this book, however, is the fact that all of our final models are “better” than
our beginning models. They make sense within the context of the disci-
pline, they fit the data better, and we didn’t have to worry about issues
specific to any discipline such as theoretical omitted variable bias. To this
end, I hope that I have influenced the researchers who read this book to
take the time and try to find a better model using this methodology; it has

always worked for me and I'm sure it will work for you.
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