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Preface

This text is an outcome of the lectures delivered by the author at
Addis Ababa University, Addis Ababa, Ethiopia. While dealing with
this course, I realized there is a need for text book on “ADVANCED
CALCULUS OF SEVERAL VARIABLES” which may give
comprehensive idea of basic concepts and may also function as a
companion for several variables. The primary purpose of this text is
to bring this new mathematical formalism into the education system,
not merely for its own sake, but as a basic framework for
characterizing the full scope of modern mathematics.

The contents have been selected with the intention of meeting
all requirement of graduate and undergraduate students in Science
and Engineering disciplines. The author has tried all the contents of
the book teaching four credit hours in one semester as a core course.
Author’s main aim is centralized around the theme how the reader
may continue to advanced level text by self study and develop research
oriented thoughts. Hence basic concepts and fundamental techniques
have been emphasized while highly specialized topics and methods
relegated to secondary one.

The author assumes that the reader is well acquainted with
elementary calculus and algebra. Most of the chapters consist of
unsolved problems just after relevant articles in the form of exercises.
This book has been written with the intention of a giving reasons so
that the reader may be able to work on the problems of Numerical
Analysis, Operations Research, Differential Equations and
Engineering applications. A bibliographic list has been incorporated
which may help the reader for further studies.

I am very thankful to those writers whose direct or indirect help
has been taken in this work by using their works as references.

Also, the author is thankful to Mr. S. Poothia (sachinpoothia
@yahoo.com) for technical and copy editing of this book using Latex.

Devendra Kumar
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Chapter 1

Euclidean n—Space R" and
Transformation

In this chapter we have discussed Euclidean n-space, norm, some
inequalities, linear transformation and its boundedness in R", dual
space, isometric transformation and proper rotations in R? and R3.

1.1 Euclidean n—Space

Definition 1.1.1. The Euclidean n—space R™ is the set R" of
all n—tuples (z',...,2") of real numbers z*,i = 1,...,n (called
vectors or points) on which the two operations of vector addition
and scaler multiplication are defined as follows:

(i) For any two points (x!,... 2") and (y',...,y") in R"

(xl,...,a:”)+(y1,...,y"):(:L‘1+y1,...,x”+y”)

ii) For any a € R and (z%,...,2") € R"
(i)

1 ny __ 1 n
a.(x,...,2") = (ax",...,az").
We can write a.(z!,...,2") = a(z!,...,2"). If z € R" then
x = (z',...,2") for some real numbers z!,... 2" and 2! is called

the i*" component of x.

R™is a vector space of dimension n. The vectors e; = (1,0,...,0),
co.ep=(0,...,0,1) in R" are called the standard basis vectors of
R"™. The vector 0 = (0,...,0) is called the zero vector in R".
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1.2 Norm in R"

Definition 1.2.1. The norm of a vector = in R™ denoted by |z| is
defined as:

ol = V@ s P
Theorem 1.2.1. If x € R" and a € R, then
(i) |z| > 0 and |z| =0 iff z = 0.
(ii) |ax| = |al.|z|.
(i) || < 320 |2

Proof. (i) Since (z')? + -+ + (2")? > 0, using the definition, we
get

V()24 4 (27)2 >0 = |z| > 0.

Now, if |z| = 0, then (z})? + -+ 4 (2™)? = 0, and hence ' =
0Ve =1,...,n. Hence x is a zero vector in R".

(ii)

jaz| = /(@@)?+ -+ (az")?
= /@) F - @)
— lallal

(iii) We have

2P = (a)? 4 (@) = [ P A 2

But 2!+ -+ [2"]? < (Jz'| + - - - 4+ |2"])?, and hence
2 < (2] + -+ "))

Now taking square roots we get

n
o] <l
i=1

Theorem 1.2.2. (Cauchy - Schwartz Inequality) If z,y € R"
then |>" x| < |z||y|, equality holds if and only if z and y are
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linearly dependent.

Proof. If x and y are linearly dependent then there exists A € R
such that y = Az or \y = x. Without loss of generality assume
y = Az,

|z ly| = |Al]]?.
But
S aty'l =D | = x| (@)?] = |Af2]
i=1 i=1 i=1
Hence
>ty = Jzlyl.
i=1

Now suppose x and y are not linearly dependent. Then Ay —
x # 0 for A € R. Hence 0 < |\y —z|? = D" (\y' — 2%)? =
A2 ()P =20 0ty + 30 (2)”

The last expression in the above equation is a quadratic in A
which never vanishes. Hence has no real root. The discriminant of
the quadratic

4 (Z xiyi> - 4Z(yi)2. Z(xi)z < 0.

i=1
Hence

2

n

=1

< lzllyl*

Taking square roots

n
E xzyz
=1

< |z(lyl.

Theorem 1.2.3. (Minkowski Inequality) If z,y € R" then



4 Chapter 1 Euclidean n—Space R"™ and Transformation

|z + y| < |z| + |y|, equality holds iff y = Az where A > 0 or z = 0.

Proof.

n n

’x_'_y|2:Z<xi+yi)2 _ Z(xi>2+Z(yi)2+Qinyi

=1 =1

2 + [y|* + 2|z||y|
= (|2 + |y])?

= |z +y| <|z|+ |yl

IN

If x = 0, clearly equality holds. Hence suppose Ax = y, where
A > 0. Then by Cauchy-Schwartz Inequality

n
E xzyz
i=1

= |z[y].
But
Z:Uiyi =\ Z(mZ)Q > 0.
i=1 i=1
Hence
i=1 i=1
and N
S aiyi = Jaljyl. (1.2.1)
i=1
But

|z +y|* = Z(ml +9')? = Z(ﬁ)z + Z(yZ)2 + Zinyi. (1.2.2)
i=1 i=1 i=1 i=1
Hence in view of (1.2.1) and (1.2.2), we get
@+ yl* = |2* + [y* + 2Jllyl = (J=| + |y])*

or

|z +y| = [z] + |yl
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Conversely suppose that |z + y| = |z| + |y| and « # 0. Then
o+ yl* =zl + [y[* + 2lzlly|.

But

o+ y* = o) + [y +2) 'yt
=1

Hence comparing the above equations, we get

> ayt=allyl
i=1

or

= ||[y].

n
E .CEZyl
=1

But by Cauchy-Schwartz Inequality there exists A € R such that
Axr =y since x # 0. Hence

n

A @ =Y @0 = 3ty =

=1

> 0,

n
E Izyz
i=1

since z # 0 = A > 0.

Corollary 1.2.1. If z,y € R" then |z — y| < |z| + |y|, equal-
ity holds iff y = Az where A <0 or z = 0.

Proof. Let 2 = —y. Then by Minkowski inequality
|7+ 2| <[z + ]2,
equality holds if and only if 2 = Az where A > 0 or x = 0.

Substituting z = —y and using the relation |z| = |y| the above
statement is equivalent to |x — y| < |z| + |y| equality holds if and
only if y = Ax where A < 0 or x = 0.

Corollary 1.2.2. If z,y € R" then |z| — |y| < |z — y].
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Proof. Clearly z = (x — y) +y. By Minikowski inequality

|z <[z =yl + |yl

Hence
|z — |y < |z —yl.

Similarly |y| — |z| < |y — |-

But [z —y| = |y —x].

Hence
2] = Jyl| < |z —yl.

Distance between two points in R"

Definition 1.2.2. Let z,y € R". The distance between x and
y denoted by d(z,y) is defined as:

d(z,y) = |z —y|

d is also called a metric on R". The distance function d has the
following properties:
For all x,y,z € R"

(i) d(x,y) > 0; equality holds if and only if z = y.
(i) d(z,y) = d(y, z).
(iii) d(z,z) < d(z,y) + d(y, 2).

Proof. The proof of (i) and (ii) is easy. For (iii) clearly, z — z =
(r —y) + (y — z). By Minkowski inequality

lt—2 = |(@—y)+W—2)| <|z—yl+|y— 2|
= d(z,z) < d(z,y)+dly, 2|
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1.3 Inner Product in R"

Definition 1.3.1. If z,y € R"™, the inner product of z and y
denoted by < z,y > is defined as:

Theorem 1.3.1. If x, x1, 22, y, Y1, y2 are vectors in R" and a € R,
then

(i) <z,y >=<y,z> symmetry
(i)

<ar,y >=<z,ay >=a<zx,Y >
< T+ To,y >=< 121,y > + < 29,y > ilinearity
<z, F Yo >=<x,Y1 >+ < x,Yp >

(i) <z,z>>0and < z,z >=0if and only if 2 =0  positive
definiteness

(iv) |z| =<z, 2> norm

_ lztylP—lz—y[?
(v) < 2,y >= lerlolet

polarization identity.

Proof.(i) < z,y >= Y7 2’y =Y 1" | y'a’' =< y,z >.

(ii) By (i) it suffices to prove that

<ar,y>=a<z,y> and <21+ o,y >=< 1,y >+ < T2,y > .

These follows from
<ar,y >= Z(axi)yi = ainyi =a<xy>
i=1 i=1
and

<ty >=) (Fi+ad)yt = D wyt+ D ahy
i=1 i=1 =1
= <2,y >+ < Ty >
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(iii)

n
<z, r >= Zl’l:ﬂl = Z(ml)Q > 0;
i=1

i=1

but

n
<z,x>=0 if and only if Z:(:)s’)2 =0,
i=1
if and only if z'=0Vi=1,... n.
if and only if z =0.

(iv)

2| = @2 -+ (@2 = /ST S
(v)

lz 4+ y> — |z —y]?
1

1
= Z|<x+y,x+y>—<x—y,x—y>]

1
= Z|<x,x>+2<x,y>—i—<y7y>

—<rrx>2<x,y>—<yy>|
= <z,Uy>.

Definition 1.3.2. If x,y € R", then z and y are called L or (or-
thogonal) if < z,y >= 0.

If vectors x1,...,x, in R™ form a basis in R™ and are pairwise
perpendicular then the given basis is called an orthogonal basis of
R™. And if in addition each vector x; has a unit norm, then the
given basis is called an orthonormal basis in R".

ie.
_J 0 if iy n
< €, €j >—{ 1 if i e1,...,en € R™.
Theorem 1.3.2. If x4,...,x, is an orthonormal basis of R", then

for any vector x in R™ we have
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1) z=>" <xm > 2y
(ii) |z>=>21, <z, @ >2

Proof. (i) Since z1,...,z, is a basis of R" there exist constants
C1y...,Cy such that @ =370 | ¢

n n
Hence < z,x; >=< )" | ciwy, x; >= ijl ¢ < xj, x>

But since x4, ..., x, is an orthonormal basis it follows that
0 of 15#y
<JI¢,I]'>:{ f 7&] ,
1 if i=7
n
ch <Zj, Ty >=¢ =< T,T; > ¢ for each ¢ = 1,...,n.
j=1
Hence

n
T = E <z, >,
i=1

(i) By 1) z =>"1", <z, x; > 2y

Hence
n n
lz)? =<z, > = Z<x,xi>xi,z<m,xi>xi
i=1 i=1
n n
= D wslels><ddy >< 2,z >
i=1 j=1

Again since the basis is orthonormal the above reduces to

n
Z <,z >2
=1

Theorem 1.3.3. If zq,...,x,, are non zero vectors in R"™ which
are pairwise perpendicular then they are linearly independent.

Proof. Suppose z1,...,z, are not linearly independent. Then
the exist real numbers ¢y, ..., ¢, not all zero and such that

m
E c;x; = 0.
i=1
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Hence

<

(2

CiT;, c;x; >= 0.

m
=1 i

m
=1

But

m m m

21 12
< E CiTy, g CiTy >= E Ci |4
i=1 i=1 i=1

m
ZC?’%F =0=cly>=0vi=1,...,m.

i=1

Butz; #0 = ¢; = 0Vi = 1,...,m, acontradiction = x1, ..., %,
are linearly independent.

The standard basis vectors in R" form an orthonormal basis in
R". If V is any subspace of R" it is not evident that V' has an or-
thonormal basis, and if it has how to find one such an orthonormal
basis. For complete answer we have.

Theorem 1.3.4. Every subspace V' of R" has an orthogonal basis.
(Gram-Schmidt Orthogonalziation Process).

Proof. Let w; = v; and hence w; # 0 (by induction). Define
_ <vg,wi>

W2 = V2 = ) > Wi

we # 0 because vy, v9 are independent. Direct computation gives

< Vg, W1 >
<wy,wy > = {Vy— —————wy,w;
< wi,wyp >

< Vo, w1 >< Wy, W, > —0

= <V, w1 > —
< wi,w >

= wjy is orthogonal to w;.



1.4 Linear Transformation on R™ 11

Continuing the process define ws, ..., w,, in R" as follows
< v3,W1 > Wy < V3, Wq >
w3 = U3z — - W2
< wi,wp > < Wg, Wq >
< Uy, Wy > < Upp, Wo >
Wy, = Upyp— —————— W] — Uy — ———————W»
< wi,wy > < Wg, Wo >
< U,y Wm—1 >
—_ e e — wm—]_-
< Wm—1, Wp—1 >
Suppose for k : 2 < k < m — 1,w,...,w, are non zero and
pairwise orthogonal. Then we will show that wy,, is orthogonal to
all w;,1 = 1,...,k and wg,1 # 0. Hence suppose ¢ is an integer
such that 1 <7 < k. Then
< Vg1, W1 >
< Wpy1, Wy > = (Vg1 — ————wy
< wp,w; >
< Vg1, Wi >
- Wy, Wy
< Wk, Wy, >
< Vg1, W1 >
= < Ugg1,W; > e 1 717 < w;,w; >=0.
< w;, w; >
And since wg.1 is a linear combination of vy, ..., g1 Where at

least the coefficient of vy is different from zero it follows w41 # 0.

Hence wy, ..., w,, are pairwise orthogonal non zero vectors in
V. Since wy, ..., w,, are independent and dimension of V' is m =
Wi, ..., W, is a basis of V.

1.4 Linear Transformation on R"

Let T : R® — R™ be a linear transformation.

e1,...,e, is the standard basis vectors in R", and

! ! . . .
€1,-..,€,, 1s the standard basis vectors in R™.
Suppose
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or

T(ey) = a11€/1+"'+am16,m:(a11>a217-"7am1>

T(e,) = alnell 4+ amne;n = (a1n, - -+ Q) -

Then the matrix A = (a;;) is the matrix representation of T
with respect to standard basis vectors in R"™ and R™.

Now if y = T'(z) for x € R" and y € R™, then the matrix
equation is

1 1
y (255 QA1n xz
y™ A1 ---  Qmn z"
To see this

T(IL') — T(l‘lel + o4 l‘nen) = l’lT(el) + 4 an(en)

- xl(alla asy, ... aml) + -+ xn(alna R amn)

n n
= ay;r ..., Ay T .

Hence
1 1
Yy 22—1 a1;T 711 Q1n x
m n 7 m
Yy Yoy G T N, x

Boundedness of Linear Transformation

Theorem 1.4.1. If T : R* — R™ is a linear transformation then
there exists M > 0 such that |T'(h)| < M|h|Vh € R".

Proof. Let the matrix representation 1" with respect to the stan-
dard basis vectors in R" and R™ be

ay; .- A1p

Am1  --- Qmp
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Then for any h = (h',...,h") in R"

a1 Q1n hy
I(h) = s
am1 Amn hn
Let A; = (a1, ..., ai),i=1,...,mor

or

n

Z ajihi

=1

j=1 i=1

[T (h)| < Z

Using Schwartz inequality

<> AR
j=1

Al Y 14
j=1
= |BIM(M =} |4))
j=1

or
|T(h)] < M|h|Vh € R™.

Corollary 1.4.1. If T : R — R™, where n
to one linear transformation then there exists m
|T(x)| > m|x|Vx € R™.

< m 1S a one
> 0

such that

Proof. Let the range of T'in R™ be denoted by V. T~ restricted
to V is a linear transformation.

Extend: T7! to R™ by defining T-'(z) = OVx € R™ V, and
denote the extension also by 7. Using Theorem 1.4.1 there exists
M > 0 such that |[T~(y)| < M|y|Vy € R™. But for all y € V, there
exists x € R™ such that y = T'(x), and conversely.
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Hence
71T (x))| < M|T(x)|Vo € R"
%|T—1(T(x))| < T(x)Vr € R™

1

Now if we set m = 5;, we have

m|z| < |T(x)|Vz € R".

1.5 Dual Space of R”

Definition 1.5.1. The dual space of R"™ is the set of all linear
transformation from R™ into R" denoted by (R™)* with vector ad-
dition and scaler multiplication defined on (R™)* as follows.

(i) If T, S are in (R™)* then (T'+ S)(z) = T'(x) + S(z)Vz € R".
(ii) If T € (R")* and a € R then (aT)(z) = a(Tx)Vx € R,

(R™)* is a vector space of dimension n.

Theorem 1.5.1. (Riesz Theorem). For each x € R", let
0. € (RM)* and given by ¢.(y) =< z,y > Yy € R"™. Define
T:R"— (R")* by T'(z) = ¢, for each z € R". Then

(i) T is a one to one linear transformation.
(ii) Foreach ¢ € (R")* there is a unique € R™ such that ¢ = ¢,.
Proof.(i). Let x and y be in R". Then Vz € R,
Ooty(2) =<z +y,2 >=< 2,2 >+ <y, 2 >= p,(2) + ,(2)
=
Paty = Pz + Py

Hence Vx,y € R"

T(x4+Y) = Pory = @z + 0y =T(x) + T(y).
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Let x € R" and A € R. Then Vz € R"

Oxn(2) =< Az, 2 >= X < 1,2 >= Ap,(2)

Oz = )\Qox

or for x € R" and \ € R,
T(Ax) = pry = A\p,. Hence T is a linear transformation.
To show that 7" is one to one.

Let z,y € R™ such that T'(z —y) = 0. Since T is linear it
follows that T'(z) = T'(y). But T'(z —y) = ¢,—,. Hence for all
2 € R @, y(2) =0 =< 2—y,z >= 0Vz € R" If we take
2z =x—vy, then < z —y,xr —y >= 0. Hence x —y = 0, which is
equivalent to x = y = T' is one to one.

(ii). Now since 7' : R" — (R")* is a one to one linear transfor-
mation where both the domain and range are spaces of dimension
n = T is onto = 7T is isomorphism. Hence for each ¢ € (R")*
there is a unique x in R™ such that ¢ = T'(x) = ¢,.

Definition 1.5.2. A linear transformation 7" : R" — R" is norm
preserving if |T'(x)| = |z|Vn € R", and inner product preserving if
<Tx, Ty >=<uz,y >Vr,y € R".

Theorem 1.5.2. Let T : R* — R" be a linear transformation.
T is norm preserving if and only if 7" is a inner product preserving.

Proof. Suppose T is norm preserving. Let x and y be any two
points in R". Then

[Tz +y)l =lz+yl and [T(z—y)| = |z -yl
By polarization identity

lz+y|* — |z —y?
y .

<z, >=
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Hence by substitution, and using polarization identity,

T(w+y)P — [T( — y)P
4
_ T@ 4 TWE - [T@) - TWE
4 Ty

<zy> =

Conversely, suppose T is inner product preserving.

Let x € R™. Then

T (z)]* =< T, Tx >=< z,v >= |z|*

T(2)| = |zl

Theorem 1.5.3. Let T : R™ — R" be a linear transformation. If
T is norm preserving then T is one to one, and further more 7! is
a norm preserving linear transformation.

Proof. T is one to one. To see this let x and y be in R™ such
that x # y. Then [Tz — Ty| = |T(x — y)| = |z — y| # 0.

Hence T'x # Ty. Since now T is a linear transformation from
R"™ into R™ i.e., one to one it must be onto. Hence T! exists. But
then we know 7! is also a linear transformation from R™ onto R™.
Now let z € R" and y € R" such that Ty = x. Then

T | = [T7H(Ty)| = ly|. But |Ty| = [y
Hence
|T~'z| = |Ty| = |z|, which shows T ' is norm preserving.

Definition 1.5.3. If z,y € R" are nonzero vectors, the angle
between z and y, denoted by Z(x,y) = arccos T;:@T A linear
transformation 7' : R" — R™ is angle preserving if 7" is one to one

and Vx,y € R™ and nonzero vectors we have

L(Tz, Ty) = ZL(x,y).
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Clearly, if T" is norm preserving then it is angle preserving. As
we can see easily

|z][y] T Tyl

= L(Tz,Ty) = ZL(x,y).

The converse of the above statement is obviously false.

Lemma 1.5.1. If T': R — R" is a linear transformation, a > 0
and |Tz| = a|z|Vz € R", then < Tx, Ty >= o? < x,y > Va,y €
R™.

Proof. Let x,y € R™. Then by polarization identity

| Tz + Ty]2 — Tz — Ty\2

<Tx,Ty> = 1
_ T +y)P - T -y

B 4
o’lz +y* — alz —y[?

B 4

2 K ¥

Lemma 1.5.2. Let T': R" — R™ be angle preserving linear trans-
formation. If x,y € R" such that |z| = |y| then |Tz| = |Ty|.

Proof. Suppose |z| = |y|. Then
lz| = |yl &<z, >=<y,y >o<z,2>— <y,y>=0.
But<z,x>—<y,y>=<zc+ty,cz—y>=><zx+y,rz—y >=0.
Since T is angle preserving =< T'(z + y), T (z —y) >= 0.

But < T'(z+y),T(x—y) >=< Tz+Ty, Tx—Ty >=< Tz, Tx >
— < Ty, Ty >.

Hence < Tx,Tx > — < Ty, Ty >= 0= |Tz| = |Tyl|.
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Theorem 1.5.4. Let T be a linear transformation from R"™ into
R"™. T is angle preserving iff |Tz| = a|z|Vz € R™ and some « > 0.

Proof. Suppose T is angle preserving. Let {ey,...,e,} be the usual
basisin R". Then {Tey,...,Te,} is an orthogonal basis of R™. This
can be seen easily as follows. Since {eq,...,e,} is a set of mutually
orthogonal vectors, as T' is angle preserving {Tey,...,Te,} is a set
of mutually orthogonal vectors and by Theorem 1.5.3., Tey,...,Te,
are linear independent.

Now using Lemma 1.5.1. Ja > 0 such that |Te;| = aVi =
1,...,n. Let x € R™.

Tz =< Tz, Tz > =

= |Tz| = ao|z|.

Conversely suppose that |Tz| = a|z|Vx € R™ and some o > 0.
Now using Lemma 1.5.1., we can write

<Tx,Ty>

< > <Txz,Ty >

Z(x, y) = arccos Y = arccos ITI(IITT | = arccos &
|z{[y] [Ta| [Ty] | Tx|| Ty

[} «

or
L(x,y) = £(Tx,Ty).

Furthermore, it is clear that |Tx| = 0 if and only if x = 0. Hence
T is one to one. Therefore T is angle preserving.

1.6 Isometric Transformation

Definition 1.6.1. A function 7 : R* — R" is called isometric if
Va,y € R", d(Tz, Ty) = d(x,y).
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Obviously a norm preserving (or inner product preserving) lin-
ear transformation is isometric because,

d(Tz,Ty) = |Tx — Ty| = |T(x — y)| = |x — y| = d(z,y)Vz,y € R".

Conversely if T': R™ — R™ is an isometric function such that it
keeps the origin fixed then 7" is norm preserving and inner product
preserving. This can be proved as follows.

The preservation of norm follows immediately from |Tz| = |Tz—
T(0)| = d(Tx,T0) = d(x,0) = |z — 0| = |z[Vx € R". Now for all x
and y in R",

Tz —Ty| = d(Tz,Ty) = d(z,y) = [z — y|.
But
Tx — Ty = Tz + |Ty|* +2 < Ta, Ty > .
Hence
Tx|> + [Tyl +2 < Tz, Ty >= |z|* + [y? + 2 < 2,y > .

Since we have proved already that 1" preserves norm, it follows
that < Tx, Ty >=< x,y > Va,y € R™.

The most interesting and surprising property of isometric func-
tions from R™ into R" is the one given by the following.

Theorem 1.6.1. If T': R* — R" is an isometric function which
keeps the origin fixed, then 7' is a linear transformation.

Proof. Let x and y be two vectors in R".

We claim T (x—;“y) = w

By triangle inequality

d(Tz,Ty) < d (Tx,T<x ; y)) +d (M,Ty) .

Since T is isometric, we have

d(Tz,Ty) = [Tz — Ty| = |z — yl.
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d(Tm,M) — Tx—T(x;y)‘:‘a:— ($+y>‘=1|x—y|,

2 2 2
and
T(x+vy) x4y x4y 1
dl ——=. Ty | =|T —Ty| = —y| = =lz —yl.
( 5 ,y) ( 5 y 5 Y| = 5lz—l
Hence

d(Tz, Ty) :d(T:v,T (%“’)) +d (T <x;y> ,y) .

Hence T (%) is the mid point of Tz + T'y.

Thus

T r+y\ Tx+Ty
2 2

=T (%) = @ by taking y to be zero vector and T'(0) = 0.

T(z+y) _ z+y\ _ Tx+Ty
= S50 =T (2=t

=T(x+y) =Tz+Ty.

To show that for any o € R and z € R",T(ax) = oT(x). We
proceed the case by case

(i) a =0, then T'(ax) =0 = oT'(z).

(i) « = n € N, then using the additive property established
above and induction T'(nx) = nT'(z).

(iii) «=2,n e N. Let y = £ then ny = z.
By (i) T(z) = T(ny) = nT(y) = nT (£).

(iv) a =" m,n € N. Using cases (iii) and (ii)

T (Tx) = mT (f) = (a).

n n n

(v) a>0and o € R. Let {r;} be a sequence of positive rational
numbers converging to o. Then
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laT(z) — T(ax)| < |oT(x)—rT(x)|+|rT(z) —T(az)|
= |aT(z) —r/T(x)|+ |T(riz) — T(ax)|
= 2la —ri|z|.

Since the above is true for all r;, it follows aT'(x) = T'(ax).

Case (vi) @ < 0, € R. First of all observe that by what we have
proved already.

T(x)+T(—x) _ T(x — ) _

T(ax) = T(—a.—«)
= —oT(—x)
= —a.—T(x)
aT'(x).

Definition 1.6.2. An isometric linear transformation from R"
onto R" is called a rotation. If A = (a;;) is the matrix of 7" then
detA = +1. The rotation T is called proper if detA = 1, and
improper if detA = —1.

1.7 Proper Rotation in R"

Let T be a proper rotation of R™, and ey, e5 the standard basis
of R™. Suppose Te; = aey + bey. By applying the pythagorean the-
orem and the isometry of T' we have a®+b* = 1. Since Tey L Te; =
Tey = £(—bey + aey).

Now T is a rotation implies

a

det T:i(b

o ) — (0 + 1),

Since the rotation 7T is proper detT = a® + b*>. Hence Tey =
—beq + aes.
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Now define an angle 6,0 < # < 7 such that a = cosf. Hence
b= +sind.

Thus T is given by

Te; = cosfe; + sinfesy
Te, = —sinfe; + cosfes
or
Te; = cosfe; + (—sinf)es
Tes = sinfe; + cosbesy
=
1 2y [ cost —sind !
T(z',2%) = < sinf cosé ) (x2 >
or

1 oy [ cos® sin@ x!
T(m’x)_(—sine cos@)(x2>'

The geometric interpretation of the above two transformation
is given below.

e, Te, e, Te,
T62
>¢,
. . \/9\)
ell <

1

Fig. 1.7.1

6 is the angle of rotation of the plane.

1.8 Rotation in R3

If T: R®* — R3is a rotation then there always exists a vector x
in R? and a real number |\| = 1 such that Tx = Az.

In other words a rotation in R® always has at least one eigen-
value. Moreover if T" is not the identity transformation, then there
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is exactly one eigenvalue. If T is proper rotation then the eigenvalue
of T"is 1. And in this case the line generated by the eigenvectors
of T is called axis of rotation.

The rotation angle of T is defined as the rotation of the plane
perpendicular to the axis of rotation.

Exercises 1

1. Prove that if A : R® — R™ is a linear transformation, then
|A| < oo and A is uniformly continuous mapping from R"™ to
R™.

2. Prove that if A, B: R" — R™ and o € R, then

|A+ Bl < |A]l +|B, |eA] = [of[A].

3. If |[A — B| = d(A, B) then linear transformation becomes a
normal space.

4. Prove that if A: R — R™,B : R™ — RP then B.A: R" —
RP and

|B.A| < |B|+ |A].

5. Let u and v be vectors in R™. Prove that if u = 0 or v =
au for some number «, then the Cauchy-Schwartz Inequality
becomes an equality.

Then prove the converse: If | < w,v > | = ||ul/[|v||, then
either u = 0 or v = au for some number .

6. Let u be a point in R", and suppose that ||u|| < 1. Show that
if visin R" and ||v —u|| < 1 — |Ju||, then ||v|] < 1.

7. Let u be a point in R™ and let r be a positive number. Suppose
that the points in R™ are at a distance less than r from the
point u. Prove that if 0 < ¢ < 1, then the point tv+ (1 —t)u)
is also at a distance less than r from w.
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Consider the two points u = (1,3, —2) and v = (2,2,4) in R3.
Find the norm of u and the norm of v, and show that u and
v are perpendicular. Show that

I+ V|2 = lull® + [lv]I*.

. Find a linear transformation 7' : R®> — R® that has the

property that 7'(1,1,1) = (0,2,0),7(1,1,—1) = (1,2,0) and
7(2,0,0) = (1,1,1).

Find the 2 x 2 matrix that is associated with the mapping in
the plane that rotates points 90° counterclockwise about the
origin.

For a point (z,y) in the plane R?, define T'(x,y) to be the
point on the line I = {(z,y) in R? : y = 2z} that is closest
to (x,y). Show that the mapping T': R* — R? is linear and
find the 2 x 2 matrix that is associated with this mapping.

Suppose that the mapping 7' : R — R" has the property
that there is another mapping S : R” — R" such that

T(S(z)) =S(T(z)) =z for all x in R".

Prove that 7" : R® — R™ is invertible and that its inverse is
the mapping S : R" — R".



Chapter 2

Topology on the Euclidean n—space R"

In this chapter we have discussed open and closed sets in R",
product of sets, compactness, dense and nowhere dense sets, se-
quence in R"™ and Lebesgue covering theorem.

2.1 Open and Closed Sets

Definition 2.1.1. Let a,b € R" such that a* < b',i = 1,...,n.
The closed rectangle in R" denoted by [a, b] is defined as the carte-
sian product [a', b] x - - - x [a", b"] of the closed intervals [a',b'],. ..,
[a™,b"] in R!. Similarly the open rectangle in R™ denoted by (a,b)
is defined as the cartesian product

(a',b') x -+ x (a™,b"),
of the open intervals (a',b'),..., (a",0") in R'.

Definition 2.1.2. (Open and closed sets in R"). A set U in R"
is said to be an open set in R" if for each x € R"™ there is an open
rectangle in R™ contained = and contained in U. A set V in R" is
closed in R" if its complement is an open set in R".

Proposition 2.1.1. An open rectangle is an open set.

Proof. Suppose (a,b) is an open rectangle in R™. Let z € (a,b).

Then the open rectangle (££2, %2) contains = and is contained by

(a,b). Hence (a,b) is an open set.
Proposition 2.1.2. A closed rectangle is a closed set.

Proof. Consider a point z € [a,b]°, and set r = min{ |z’ — V|, |z° —
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T

a’l,i = 1,...,n}. Denote by « the point (%,...,%) in R". Then
the open rectangle (r — o,z + «) C [a,b]°. Hence [a,b] is open,
and therefore [a, b] is closed.

Remark 2.1.1. The two sets R" and ¢ are both open and closed
sets in R™. There is no other subsets of R" that are both open and
closed.

Theorem 2.1.1.
(i) The union of any collection of open sets in R" is open.

(ii) The intersection of a finite collection of open sets in R™ is
open.

Proof.

(i) Let {0, : @ € A} be a family of open sets indexed by the
set A. Suppose z € Uyealy, then x € 0,, for some oy € A.
Since 0,, is open there is an open rectangle w C R" such that
x € w C 0,, But then w C Uyea0,. Hence Uyea0, is open.

(ii) Let {0, : o € A} be a family of open sets indexed by the set A
containing a finite number of elements. Suppose € Nyea0y;
then x € 0, for every a € A. Since for each a € A, 0, is open,
there is an open rectangle w, = (a4, bs) C R" 2 x € w, C 0,
for each a € A. Set r; = min{|z" —a’ |, |z* = V.|; i=1,...,n
and @ € A} § = (%,,%) Then the open rectangle
{z — B,z + B} C (an,bs) C 04 for cach a € A. Hence
{z = B,2+ B} C Naealy = Nueal, is an open set.

Now using, De Morgan’s laws, which states that for any family
{Uq, @ € A} of sets
(Uaeata) = Naeatl, and (Naeatla)’ = Ugeatis,.
Corollary 2.1.1.
(i) The intersection of any collection of closed sets in R" is closed.

(ii) The union of finite collection of closed sets is closed.
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Let J be the collection of all subsets of R™ that are open. Then
J satisfies the following conditions.

(i) ¢ € Jand R™ € J.
(ii) The union of any number of sets in J is in J.

(iii) The intersection of a finite number of sets in .J is in J.
R™ together with J whose elements satisfy (i),(ii),(iii) form a
topology space (R", J).
Note: The above topology J is called usual topology of R".
Alternative definition of open sets in R"
Definition 2.1.3. An open ball in R" with centre a in R™ and
radius r > 0 is denoted by B,(a) = {x € R" : |x — a| < r}.
Similarly closed ball B,(a) = {x € R* : |z —a| < 7}.

A set U in R" is open if for every x € U4 an open ball B con-
taining x such that € B C U.

The open sets in R"™ generated by using the above definitions
are identical with the open sets in R™ which were generated by pre-
vious definition. Which can be seen by the following theorem:

Theorem 2.1.2.

(i) Ifwis any open rectangle in R™ then for each x in w there is an
open ball B containing x and contained in w i.e., x € B C w.

(ii) If B is any open ball in R" then for each z in B there is
an open rectangle w containing x and contained in B i.e.,
rewCB.

Proof.

(i) Suppose w is any open rectangle in R", and = be any point
in w. Since w is an open rectangle in R™ there are two points
a,b in R™ such that w = (a,b). Hence let

r = min{|z" — a'|, |[2* = V'|,i =1,...,n}.
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Then the open ball B,(x) contains x and is contained in w.
(ii) Suppose B is an open ball in R". Then there is a € R" and
r > 0 such that B is an open ball with center a and radius
rie, B = B,(a). Let € B,(a),t = |x —a|, and s = r — 1.
Then Bg(x) C B,(a), or which is the same thing
{yeR":ly—z|<s}C{ye R":|ly—al <r}.
To see this suppose
ze{yeR": |y —z| < s}
By triangle inequality
|z—al <|z—2zx|+x—a|<s+t.
Hence
ze{yeR":|ly—al <r}

Now define the open rectangle w in R™ by

w—(azl—f:v1+f>>< x(x"—f$"+f>
N 21 D 2’ 2/

Clearly, w C Bs(z) C B,(a) and = € w.

Each of the two families of sets, namely the collection of open
rectangles and the collection of open balls, which generates the open
sets is called a basis (for the usual topology), and each elements of
a basis is called a basic open set.

Theorem 2.1.3. A subset A of R" is open iff A is the union
of a countable collection of open rectangles (balls).

Proof. Suppose A is a countable union of open rectangles = A is
open.

Conversely assume A is an open set. Let () denote the set
of all rational numbers. Then clearly Q™ N A is a countable set.
Hence suppose {ry, k € N} be an enumeration of @™ N A. For each
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k € N, let mj denote the smallest positive integer such that the
open rectangle w C R" defined by

1 1
W= Wik (r) = (Ti—m—,TiJr—) Xsee X

1
L= —,rr+— | C A
(rk p— T, + mk)
= UpeNWi/m, (T:) C A.

Now take any x € A,3m € N > wy,(x) C A. Clearly there
is a point y € R" with rational components > y € wy/,(z). ie.,
y = 1 for some k € N. Hence x € wym(ry) C wom(z) C A.
But wy/m(rk) C Wijm, (1%). Consequently z € wy/m, (ry). Hence
A C UpeNW1 /iy (Th)-

Corollary 2.1.2. A subset A of R" is closed iff A is the inter-
section of a countable collection of closed sets.

Exercises 2.1

1. Determine which of the following subsets A of R? are open in
R?, closed in R?, or neither open nor closed in R2.

() A={v=(z,y): 2" >y}

i) A={v=(z,y) : x>0,y > 0}.
(iii) A= {v = (x,y) : x is rational }.
(iv) A={v=(2,y) 2> +y* = 1}.

2. Let r be a positive number, and define 0 = {v € R™ : |v| > r}.
Prove that 0 is open in R"™ by showing that its complement
is closed in R™.

3. Let A be a subset of R™ and w be a point in R". The translate
of A by w is denoted by w + A and is defined by

w+A={w+v:ve A}l

(i) Show that A is open if and only if w + A is open.
(ii) Show that A is closed if and only if w + A is closed.
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4. Let y € X. Give an example where A is open in y but not
open in X. Give an example where A is closed in y but not
closed in X.

5. Let A C X. Show th_at if C'is a closed set of X and C contains
A, then C contains A.

2.2 Interior, Exterior and Boundary Points of
a Set

Definition 2.2.1. Let A be a subset of R”. A point x € R" is
called

(i) an interior point of A if there exists an open rectangle con-
taining x and contained in A, i.e., = € B C A.

(ii) an exterior point of A if there exists an open rectangle con-
taining x and contained in A¢ ie., x € BC A°orx € B C
R — A.

(iii) a boundary point of A if every open rectangle containing. =
has a nonempty intersection ball with A and A¢ ie., x €
B,BNA# ¢, BN A® # ¢.

The above three sets intA, extA and boundA- are mutually
disjoint and their union is the set R™.

Theorem 2.2.1. For any subset A of R", intA and extA are open
and boundA is closed.

Proof. We will prove the result by contradiction. Suppose intA
is not open. Then dx € intA > for every open rectangle w C R"
containing x, we have w N (intA)¢ # ¢. Hence w N (extA) # ¢ or
wN bound A) # ¢ for every open rectangle w C R™ containing x.

If forw C R",wN(extA) # ¢ = wNA® # ¢. Hence suppose wN
bounded A # ¢. Then Jy € wA bound A. Since y is a boundary
point, and w is an open rectangle containing y, = w N A¢ # ¢.
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Hence in any case w N A® # ¢V open rectangle w C R" which
contain x. Hence x is not an interior point of A contradiction.

Similarly, we can prove that extA is open. Now we have (bound
A)¢ = (intAU extA) = bound A is closed.

Cluster Point. A point x € R" is called a cluster point of
A C R" if every open rectangle containing x has a nonempty in-
tersection with A\ {z}. If x € A but it is not a cluster point of A
then x is called an isolated point of A, i.e., z€wnN A\ {z} # ¢,
reA wnA={z}.

A closed set every point of which is a cluster point of the set is
called a perfect set. A closed rectangle in R™ and a closed ball in
R™ are both perfect sets. A subset of R™ whose complement con-
tains no isolated point is called a dense set. The set () of rational
number is dense set in R, and the set () X --- x ), n product of )
is dense set in R".

Theorem 2.2.2. A subset of R" is closed iff the subset contains
all its cluster points.

Proof. Suppose A C R" is closed, and = is a cluster point of
A. If x € A then x € A°. Since A€ is open 3 an open rectangle
w > x € wand w C A°. Hence x is not a cluster point of A.
Contradiction = x € A.

Conversely suppose A C R" contains all its cluster points and
x € A°. Then 3 an open rectangle w such that r € w and w C A°.
Hence A€ is open, — A is closed.

The set of all cluster points of the set A C R"™ is denoted by A’,
and called the derived set of A. The set AU A’ is called the closure

of the set A and is denoted by A.
A= (a,b) or [a,b) or (a,b],[a,b]
A =[a,b], A’ = (a,b), b(A) = [a,b]
A = rational points in (0,1).

int(A) = int[0,1] = ¢, A is nowhere dense.
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Exercises 2.2

. Let r be a positive number, and define O = {v € R" : |[v| >

r}. Prove that O is open in R" by showing that every point
in O is an interior point of O.

. For a subset A of R", the closure of A, denoted by cl A =

intA U bdA.Prove that A C c¢lA , and that A = ¢l A if and
only if A is closed in R".

. Let A and B be subsets of R™ with A C B.

(i) Prove that int A C int B.
(ii) Is it necessarily true that b(A) C b(B) 7

. (i) Show that if @ is a rectangle, then () equals the closure of

it Q.

(ii) If D is a closed set, what is the relation in general between
the set D and the closure of int D 7

(iii) If U is an open set, what is the relation in general between
the set U and the interior of U 7

. If we denote the general point of R? by (z,y), determine int A,

ext A and b(A) for the subset A of R? specified by each of the
following conditions :

(a) x =

(b) z and y are rational.

(c) 0<z < 1.

(d) z is rational and y > 0.
() 0<a?+y?<1.
(f)
(&)
(h)

y < a2
0<zr<land0<y<l1.

y <o’
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2.3 Product of Sets
Definition 2.3.1. Let A C R" and B C R". The product of A&B
denoted by A x B is defined as
Ax B = {(ml,...,x”,yl,...,ym) N
€ A&(y',...,y™) € B}.

If v € A&y € B then the point (z',... 2" y' ... ,y™)in Ax B
is denoted by (z,y).

This product is different from the cartesian product of two sets.
From definition it is evident that A x B C R"™™, and in partic-
ular R" x R™ = R™™. This is not true if the product was cartesian.

Theorem 2.3.1. Let A ¢ R" and B C R™. Then

(i) A&B are open sets in R" and R™ respectively iff A x B is
open in R"T™,

(ii) A and B are closed sets in R™ and R™ respectively iff A x B
is closed in R""™.

Proof.
(i) Suppose A& B are open. Let x € A x B. Then 3 an open
rectangle w; C R™ 3 (x',...,2") € w; C A, and an open
rectangle wy C R™ > (2™, ... 2"™™) € wy, C B. Hence

wy X wy is an open rectangle 3 x € wy; X wy C A X B. Hence
A x B is open in R"™,

Conversely suppose A x B is on open set, and x € A. Then
pick y € B. Now (z',..., 2",y ...,4™) € A x B. Since
A x B is open 3 a rectangle w C R" 5 (x,y) € w C A X B.
Let u be the open rectangle in R", and v be the open rectangle
in R™, such that u x v = w. Clearly x € u C A. Hence A is
open. Similarly B is open.

(ii) Suppose A and B are closed, and € R™™ is not in A x B.
Then z € (A x B)¢. Clearly (z',...,2") ¢ A or (z", ...,
a"*t™) ¢ B. Suppose the first alternative holds. Since A
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is closed, A° is open. But then 3 an open rectangle u C
R" 3> (x',...,2") € u C A°. Hence the open rectangle
ux R™ C (A x B)¢ and contains z. Hence (A x B)¢ is
open and consequently A x B is closed. If the second alter-
native holds similar argument shows A x B is closed.

Conversely suppose A x B is closed but A or B is not closed.
Assume the first alternative holds. Then dx € R™, x is cluster
point of A but it does not belong to A. Pick y € B. Clearly
(x,y) ¢ Ax B. Now let w be an open rectangle in R"*™ con-
taining (z,y). But w = u x v where u is an open rectangle in
R" containing x and v is an open rectangle in R™ containing
y. Since x is cluster point of Adz # x > 2 € AN wu. Hence
(z,y) # (z,y) and (z,y) € wN (A x B). Hence (z,y) is a
cluster point of A x B. Hence A x B is not closed. Contra-
diction, hence A is closed. Similarly if B is not closed then
A x B is also not closed. Therefore B is also closed.

Exercises 2.3

. For each index ¢ with 1 <17 < n, let F}; be a closed subset of

R. Prove that the cartesian product
F1XF2><"'><Fn

is closed subset of R™.

. For each index 7 with 1 < i < n, let 0; be an open subset of

R. Prove that the cartesian product
0y X 0g x---x0,

is open subset of R".

. If (z,y) € R” and (z,w) € R™, then

(i) < (z,2),(y,w) >=<z,y >+ < z,w >.

(i) [(z,2)] = /][> + [2[>.

. Prove that:

(a) AUB=AUB.
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(b) ANBC AN B.
5. Prove that:

(a) If AC R" and B C R", and =z is a cluster point of ANB
then z is a cluster point of both A&B.

(b) If AC R",B C R", and z is a cluster point of A C B
then x is a cluster point of A or of B.

2.4 Compact Sets

The most important single concept in the topology of Euclidean
space that is crucial to the study of calculus is that of the concept
of compactness.

Definition 2.4.1. A collection O of open sets is an open cover
of A if every point x in A is in some open set in the collection O.

Example 2.4.1. (1/n,n),n € N is an open cover of the set (0,1)
in R.
(—n,n),n € N is an open cover of R.

Definition 2.4.2. A set A C R" is called compact if every open
cover O of A has a finite sub cover of A.

Theorem 2.4.1. Heine-Borel Theorem. A closed and bounded
interval in R" is compact.

— |
a % o % b
Fig. 2.4.1

WV

Proof. Let [a, ] be a closed and bounded interval in R', and O be
an open cover of [a,b]. Define the set A by A = {z: x € [a,b] and
la, z] is covered by a finite sub collection of O}. Clearly A is not
empty because a € A and is bounded by b. Hence A has an upper
bound. Call it a. We claim o € A and a = b. Suppose o ¢ A.
Since O covers [a, o] there exists an open set U € O > o € U. Let
a<x<adr,al CU. But then 3 a finite sub collection O of O
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that covers [a, z]. Consequently O"U{U} cover [a,a]. Hence o € A
contradicting the fact = a € A.

Suppose @ < b. Let U € O > a € A. Since U is open
J2' 5 a < 2’ < band |[o,2'] C U. But then the finite sub col-
lection O' U {U} cover [a,7] = 2' € A = ' < a. Contradicting
the fact. Hence av = b. Therefore [a, b] is compact.

Lemma 2.4.1. If B C R™ is compact and € R" then {z} x B
is compact in R"™™.

Proof. Suppose O is an open cover of {z} x B. Each (z,y) €
{z} x B is contained in some open set O, € O. Hence 3 an open
rectangle w, in R"*"3(z,y) € w, C O,. But then w, = u, x v,
where u, is an open rectangle in R" containing x and v, is an
open rectangle in R™ containing y. Consequently the collection on
{vy, : y € B} is an open cover of B and since B is compact 3 a

finite sub collection {v,,,..., v, } covering B. But then the open
rectangles

Uy, X Vyys ooy Uy, X Uy,
cover {z} x B. Since each u,, x v,, C Oy, = O,,...,0,, cover

{z} x B = {z} x B is compact.

Lemma 2.4.2. Suppose B C R™ and x € R". If B is com-
pact and O is an open cover of {x} x B, then there is an open set
u C R"™ and containing x and such that u x B can be covered by a
finite sub collection of O.

Proof. Each (z,y) € {x}x B is contained in some open set O, € O.
Hence 3 a rectangle w, € R"™™ 3 (z,y) € w, C O,. But then each
wy = Uy X vy, where u, C R" is an open rectangle containing x and
v, C R™ is open rectangle containing y. The collection {v, : y € B}
is an open cover of B. Since B is compact there exists a finite sub

collection {vy, ..., v, } that covers B. Now let u = wuy, N -+ Nuy,.
Clearly = € u, and u is open. Hence the collection of open sets
{uxvy,...;,uxy,} coverux B. But uxuv, CO,,i=1,... k.

Hence the finite sub collection O" = {O,,,...,0,,} cover u x B.
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Theorem 2.4.2. If A C R" and B C R™ are compact then
A x B C R"™™ is compact.

Proof. Let O be an open cover of A x B. For each x € A.
By Lemma 2.4.2 there exists an open set u, C R"™ and such that
u, X B is covered by a finite sub collection O, of O. But the col-
lection {u, : € A} of open sets is a cover of A. And since A is
compact there is a finite sub collection {uy,, ..., u,, } that covers A.
But then the union of the sub collections O,,,...,O0,, of O cover
A x B. Since each sub collection O,, is finite their union is also
finite. Hence a finite sub collection of O cover A x B. Hence A x B
is compact.

Corollary 2.4.1. If A, ¢ R"™,i = 1,...,k are compact then
Al X Ay X -+ x C Rt is compact.

In particular any closed rectangle w C R¥, k € N is compact.
Theorem 2.4.3. A C R" is compact iff A is closed and bounded.

Proof. Suppose A is compact. Consider the open sets
u, ={xr € R" : |z| <n},n € N.

The collection {u, : n € N} is an open cover of A. Since A is
compact 3 a finite sub collection {uy,...,u,} that cover A. But
then since the open sets are increasing A C u,,. Hence A is bounded.

To show that A is closed. Let ¢ ¢ A. Consider the collection of
closed sets F, = {x € R" : |c—xz| < 1/k},k € N. Clearly NgenFr =
{c}. Hence A C (NgenFi)¢. For each k € N, define H, = F}. Each
Hy, is an open set and furthermore A C (NgenF))¢ = UgenFY =
Uken Hy. Hence the collection {Hy, : k € N} is an open cover of
A. Since A is compact 3 a finite sub collection {Hy,, ..., Hy,} that
covers A. Let kg = max{ky,...,k;}. Obviously then A C Hy,, and
hence the interior of Fy, = {z € R": |z —c¢| < 1/ko} contains ¢ and
does not intersect A. Hence ¢ is not a cluster point of A. Hence A
is closed.

Conversely, suppose A is closed and bounded. Then 3 rectangle
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w C R"> A C w. Now suppose O is an open cover of A. Since A€
is open = O U {A°} is an open cover of w. Since w is compact 3
a finite sub collection O of O such that O" C {A¢} cover w. But
then O covers A. Hence A is compact.

Applications of Compactness

Theorem 2.4.4. (Bolzano-Weierstrass Theorem)
Every bounded infinite subset of R™ has a cluster point.

Proof. Let A be an infinite subset of R". Suppose A has no
cluster points. Hence each point of A is an isolated point. Con-
sequently for each z in A3 an open set u, > u, N A = {z}. The
collection {u, : x € A} is an open cover of A. But A is closed
because it contains all of its cluster points, and also bounded by
hypothesis. Hence it is compact. So there is a finite sub collection
of {u, : v € A} that covers A. But this is impossible. Hence A has
a cluster point.

Theorem 2.4.5. (Cantor Intersection Theorem)

Suppose Fj is a nonempty, closed and bounded subset of R"™, and
{F;}ien is a sequence of nonempty closed sets in R" such that

Proof. Suppose N;en F; is empty. Consider the collection of open
sets defined by {Ff : ¢ € N}. Since (NienF;)¢ = UjenFf =
Ujen Y = R". Hence Fy C UjenFY. But F} is closed and bounded
= it is compact. Hence there is a finite number of open sets
Fy, ..., F¢ that cover F;. Now using the hypothesis, we know that
Fy C --- C F{. Hence FYU---UF; = F;. Hence Fy C Ff.
But Fy N F, = ¢. However Fy, C F) by hypothesis and hence
N Fy, = F), = F} is non empty set. Contradiction. Hence N;en F;
is non empty.

Exercises 2.4

1. Suppose that the function f : R® — R is continuous, and
f(u) > |u| for every point u € R™. Prove that f~1([0,1]) is
compact.
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2. Determine which of the following subsets of R is compact.
(i) {z in [0,1] : z is rational }.
(ii) {z in R:2® — z}.
(iii) {z in R:e” —2? <0},

3. Let A and B be compact subsets of R. Define K = {(z,y) in
R?*:z € A,y € B}. Prove that K is compact.

4. Let u be a point in R", and let r be a positive number. Prove
that the set {v € R : d(u,v) <r} is compact.

2.5 Dense and Nowhere Dense Sets in R"

_Deﬁnition 2.5.1. A set A C R"™is said to be dense in B C R" if
A D B. If Aisdense in R" it is simply called a dense set.

Example.

1. Let A be the set of all rational numbers in [0,1] and B be the
closed interval [0,1], then A is dense in B.

2. Let A = Q, the set of all rational numbers and B = R!, then
A is dense in B.

3. Let A = Z, set of all integers and B = (), then A is not dense
in B.

4. Let A={1/n;n € N} and B = [0, 1], then A is not dense in
B.

5. Let A= {(z',...,2") € R": ' € Q} and B = R" then A is
dense in B.

Definition 2.5.2. A set A C R"™ is nowhere dense in B C R"™ if

BN (A)¢is dense in B. If A is nowhere dense in B = R" then A is
called simply a nowhere dense set.
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Example.

1. Let A={1/n:n € N} and B =[0,1].
A=AU{0}

BN (A)°*=10,1]-[{1/n:ne N}U{0}]

Hence BN (A)¢ = [0,1] = A is nowhere dense in B.

2. Let A=7 and B = R.

BN (A =Upez(n,n+1)

BN (Ae=R
= 7 is nowhere dense in R.

Theorem 2.5.1. A C R" is nowhere dense iff int(A) = ¢.

Proof. Suppose A is nowhere dense. Then by defenition (A)¢ is

/

dense = (A)c = R". Now let z € R". Then z € (A)° or z € (A%
If 2 € (A) then x ¢ A. Hence x ¢ intA. If v € (Ac)lihen for any
ball B(z), B(z) N A” # ¢. Hence x ¢ intA. Hence intA = ¢.

Conversely suppose that int(A) = ¢. If € A, then for any
ball B(z), B(x) N A" # ¢. Hence x € (A)° = A C (A)°. But then
A= AU(A) D A"UA=R"= A is dense set = A is nowhere
dense.

Corollary 2.5.1. Let F' be a closed set in R". F' is nowhere
dense iff it contains no open sets that is nonempty.

Proof. Suppose F is nowhere dense. By above theorem intF =
¢ = I contains no open set that is nonempty. Conversely suppose
F contains no nonempty open set = intF contains no nonempty
open set. Hence F' is nowhere dense.

Theorem 2.5.2. A C R" is nowhere dense iff for every nonempty
open set O there is an open ball contained in O\ A.

Proof. Suppose A is nowhere dense = intA = ¢. Now if O

is nonempty open set, then O N (A)¢ # ¢. Otherwise O C A
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which contradicts intA = ¢. Therefore let z € O N A°. But then
since A” is open 3 an open ball B(z) such that B(z) c ONA° =
B(z) € O\A = B(x) C O\A. Conversely suppose for every open
set O # ¢ there is an open ball contained in O\ A. Now take any
z € A, and let U be any open set containing z. Then there is a
ball B C U\A. Hence B C A° = B\U bound A = ¢. Other-
wise BN A # ¢ contradict B C A°. Hence B C A°. But then
U ¢ int(A) = z ¢ intA = intA = ¢.

Theorem 2.5.3. Let {c, : n € N} be a collection of nowhere
dense sets in R". Then U,ecnc, does not contain a nonempty open
set.

Proof. Let O be any nonempty open set. Since ¢; is nowhere
dense = there is an open ball B; C O — ¢;. Let D; be a closed
ball with same center as B; and having half of the radius of Bj.
Now consider the open ball D;. Again ¢, is nowhere dense = there
is an open ball By C Dy — ¢y. Let Dy be a closed ball same cen-
ter as By and having half of the radius of By. Following the same
procedure we construct by induction closed ball Dy, D, ..., D,, ...
such that each Enﬂ c D, — Cny1 and Enﬂ C D,Vn € N. Since
each closed ball D,,,n € N is bounded by Cantor Intersection The-
orem 3o € NpenyD,. But then 4 & U,cnc,. However since each
D,, C O,zy € O. Hence O Z Upencn.

Corollary 2.5.2. If {E, : n € N} is a collection of dense open
sets, then N,y F;, is nonempty.

Proof. For each n let ¢, = Ef. Hence ¢, = E,. Since ¢, is
closed = ¢, is a nowhere dense set. Hence U,cyc, does not con-
tain a nonempty open set. Hence R™ ¢ U,enc, = there exists
T & Upeney. But then € (Upencn)® = Muencs, = Npen En.

Corollary 2.5.3. (Baire Theorem) R" can not be the union
of a countable nowhere dense sets.

Proof. Let {¢, : n € N} be a collection of nowhere dense sets
in R" = Upenc, does not contain a nonempty open set = R" ,CZ
UnGNcn-
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Proposition 2.5.1. The set () of rational numbers is not the
intersection of a countable collection of open sets.

Proof. Assume ) = N,enU,, where U, is open in R. Let ¢, = U.
Then ¢, N Q = ¢ and ¢, is closed. Hence ¢, does not contain a
nonempty open set = ¢, is nowhere dense. Since () is countable let
{z,}°°, be an enumeration of Q. Now let D,, = ¢, U {z,},x € N.
Each D,, is nowhere dense. But R = U,cnyD,,. Contradicting the
Bair Theorem. Hence @ is not the intersection of a countable col-
lection of open sets.

Proof. 2.5.2. The set of all irrational numbers ()¢ is not the
union of a countable collection of closed sets in R.

Proof. Suppose Q¢ = U,enc, where ¢, is a closed set. For
each n € N define O,, = ¢. Then O, is open, and furthermore
Q = (Unentn)® = Nuenc’ = NpenO,.Contradicting to Proposition
2.5.1. Hence Q€ is not the union of a countable collection of closed
sets in R.

2.6 Sequence in R"

Definition 2.6.1. A function f : N — R" is called a sequence in
R".

As in the case of real numbers f is usually denoted or repre-
sented by {x;} where x; = f(k)Vk € N.

Convergence of a sequence in R". A sequence {z;} in R"
converges to a limit x in R" if for every ¢ > 03 a positive integer
ko such that

|z — x| <e for k> ky.

or limy_,oo X = & O T — X.

In the case of a sequence of real numbers a convergent sequence
in R™ has a unique limit.
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Theorem 2.6.1. Let {z;} be a sequence in R".xy — z iff z§ — 2!
foreachi=1,...,n.

Proof. Suppose {z\} converges to x. Let ¢ > 0 then 3 a posi-
tive integer ko such that |z, — x| < e,k > k.

But |2} — 2| < |zp — x| <&V i=1,...,n.

= {xi} converges to z* for each i = 1,...,n.

Conversely suppose {z}} converges to z' for each i = 1,...,n.
Let ¢ > 0. Then for each ¢ = 1,...,n3 a positive integer k; such

that |z}, — 2’| < £ whenever k > k;.
Let ko = max{ky,...,k,}. Then for all k > k.

o —a] < |op—at|+|ap—a® |4+ H e —af <S4+ E =k
= T — .

Theorem 2.6.2.

(i) A set A C R" is closed iff every convergent sequence {zy} in
A has its limit in A.

(i) For set B C R",x € B iff 3 a sequence {z;} in B which
converges to x.

Proof.

(i) Suppose A is closed, and the sequence {xy} in A is convergent
to z. Now if U is any open set containing x then dky € N
such that Vk > kg : 2, € U. Hence z is a cluster point of A.
But since A is closed = x € A.

Conversely suppose every convergent sequence in A has a limit
in A. Let z be a cluster point of A. Let z; € B(z,1)N A
distinct from x and for each positive integer £ > 1 let

zy € B(z,1/k)N A and distinct from zi,...,T) 1.

Then x;, is a sequence in A with limit + = x € A = Ais
closed.
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(ii) Proof is similar to (i).

Definition 2.6.2. A sequence {z;} in R" is a Cauchy sequence if
for every € > 0, 3 positive integer kg such that

|Tm — 21| < & whenever m,l > k.

Theorem 2.6.3. A sequence {z;} in R" converges to a point in
R™ iff it is a Cauchy sequence.

Proof. Suppose z;, — z, and € > 0. There exists kg € N such that
Vk > ko, |zr — 2| < 5. Hence Va1 > kg
€

£
]:Ck—xl\§|xk—x|+|xl—x|<§+§:5.

Hence {z;} is a Cauchy sequence.

Conversely, suppose {x} is a Cauchy sequence. For each i =
L...,n. |z, — | < |op —af = foreach i = 1,... . n,{z}} is a
Cauchy sequence. H_ence for each i = 1,...,n,{x}} converges to
some real numbers z*. Hence x; — x.

Example 1. f: N — R3
f(n) = (_%a n272n>
i = (3 X 72 2k)
{zr}2, is a sequence.

Example 2. z; = ( % %)
hmk_)oo T — (O O)
then {z;} = {—1+.&} .-, — (0,0)

Example 3. Let {z;} = (—1,1— 1), show that {z;} — (0,1).

Solution. Ve > 0,3ky € N such that [(—1,1—1) —(0,1)| <
evk > ko

(-31-7)- 0] = Jumes i

V2 V2

= k>— Ve>0,ky>—.
g g

I
N
VR
| =
~_
A
™
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Then |(—1,1— 1) = (0,1)] <& Vk >k > 2.

Theorem 2.6.4. A sequence {z;} — z iff for every open set U
containing x, there is a positive integer kg such that x, € UVE > k.

Proof. Suppose {x;} — z and let U be any open set contain-
ing z,x € U and U is open = 3¢ > 0,5 B.(z) C U.

{zr} — < fore > 03ky € N such that |z, — x| < eVk > ky

& 1 € Bo(x)Vk > ko. Thus V open set U3ky such that Vk >
]C(),l’k eU.

Conversely, suppose that V open set U containing x3ky € N
such that Vk > ko, x € U. We have to prove that {zy} — x. Let
e > 0, consider B.(x), B:(z) is an open set then Jky € N such that
Vk > ko, xp € B-(z) < |y —z| <e,Vk > ko = {xr} — .

Theorem 2.6.5. Given a set A C R",x € A iff there exists a
sequence {xy} in A which converge to .

Proof. Let A C R" and z € A we have to prove that 3 a se-
quence {z;}in A — z.

tceA=>zecAorze A

If x € A, then consider the constant sequence x; = xVk. Then

Suppose z € A', construct a sequence of terms in A that con-
verges to x.

Let {z,} be a sequence in A and {z,} — z. Then we have to
show that =z € A.

{zp,} — v =Ve>0,3ky € N such that z; € B.(z)Vk > k

Be(z)NA# ¢ = (i) Be(x)nA\fa}# ¢
(1) Be(z) N A\{z} = ¢

If (i) thenz € A" C A= 2 ¢€ A
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(ii) then z, =2 Vk > ko but 2, € A=z € A

Conversely suppose that {z,} is a sequence in A that converges
to x. Then we have to show that x € A = AU A If x € A, then
nothing to prove.

Suppose © ¢ A, {z,} — = = Ve > 0,3kq such that |z, — 2| <
eVk > ko, in particular Vr > 0, B,(x) contains infinitely many
points 3{x,, } have infinitely many points of A.

e, B (x)NA\{z} #p=> A =2 A

Lebsegue Covering Theorem.

Let A be a compact set in R™ and O an open cover of A. 3 a
positive number 3 such that Va,y € A, if |x — y| < B then there is
an open set in O containing z&y.

Proof. For each x € A, let B, be a ball with center x and con-
tained in some open set in O. Let ¢, be an open ball with center x
and radius half of that B,. The collection {c, : x € A} of open balls
covers A. Since A is compact 3 a finite sub collection {cy,, ..., ¢z, }
covering A. Let § = min{r(cy,),...,7(cs,)}.7(cs;) means radius of
;- Now suppose &y € A such that |z — y| < 5. Then z € c¢,,.
But then both &y € B,,. Hence x&y are both contained by some
open set in O that contains the ball B,,.

Problem 1. Prove that
If AC R" then AUb(A) = A = intAUb(A).

Solution.

)_
N A%
= (AUA)N(AUAY), AcCA
= AN(AuA°), A" cC A°

= ANR"=A
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intAUb(A) = intAU(ANA)
(intAUA) N (intAUAS), intAc Ac A
An{intA C (intA)°)

= ANR"=A

Exercises 2.6

1. Prove Pythagorean Theorem.

If x&y are in R", and are perpendicular then
|z +yl* = []* + [y

2. Prove Parallelogram law.

If x&y are in R™, then

|z +y|* + |z — y[* = 2|z* + 2|y|*.

3. If x&y are nonzero vectors in R", < z,y >= 0, and «, § are
real numbers such that g > a > 0 then prove that

|Bx + By| > |ax + By| > |ax + ayl.

4. Suppose T': R" — R is a l.t. and there exist an orthonormal

vectors xy,...,x, in R™ and real numbers \;, Ao, ..., A\, such
that T, = \jz;Vi. Then T is angle preserving iff all |\;| are
equal.

5. Let T': R® — R" be a function that preserve inner product.
Prove that 7' is additive. That is Vz,y in R"

T(x+y)=T(x)+T(y).
6. Show that |z + y||lz — y| < |z|* + |y|*.
(lo+yl = |z —yl)* > 0.

7. T : R™ — R™is al.t.. Show that there is a number M s.t.
|T(h)| < M|h| for h € R™.
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. Let (R™)* denote the dual space of the vector space R". If

r € R™ define ¢, € (R")* by p.(y) =< z,y >. Define
T:R"— (R")* by T(z) = ¢,. Show that T"is a 1 — 1 Lt.
and conclude that every ¢ € (R™)* is ¢, for a unique = € R".

. Let A C R"™. Prove that

(a) int A C A.
(b) int A(int A) = int A.
(c) int (AN B) =int ANint B.



Chapter 3

Functions of Several Variables

So far we have discussed the calculus of functions of single vari-
able. But, in the real world, physical quantities usually depends
on two or more variables, so in this chapter we turn our atten-
tion for functions of several variables and extend the basic ideas of
differential calculus of such functions.

3.1 Definitions and Properties

The temperature 1" at a point on the surface of the earth at any
given time depends on the longitude x and latitude y of the point.
We think T as being a function of the two variables z and y or as
a function of the point (x,y) denoted by T = f(z,y).

The volume V of a circular cylinder depends on its radius r and
height h. Here V = 7r?h and V is a function of 7 and h. Denoted
by V = nr?h =V (r,h).

Definition 3.1.1. Let D C R?> = R x R. A function f of two
variables is a rule that assigns to each ordered pair (z,y) in D a
unique real number denoted by f(z,y). The set D is the domain
of f and its range is the set of values that f takes on i.e., range

={f(z,y) : (z,y) € D}.

Remark 3.1.1. f: D C R? — R. For (z,y) € D C R? f(z,y) €
R.

Remark 3.1.2. We write z = f(x,y). The variables = and y
are independent variables and z is dependent variable.
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N/ f
D N
3 .
X ¢ —7
0 0 f(xy)
Fig. : 3.1.1

Remark 3.1.3. The value of a function f of three variables at a
point (x,vy, z) is denoted by f(x,vy,z) ie., f: D C R* — R such
that (z,y,2) € D = (v,y,2) € R* and f(z,y,2) € R.

e 1.y, 2z are independent variables.
e U = f(x,y, z) is dependent variables.
Example 3.1.1.
(a) f(x,y) =y for x,y > 0, area of a rectangle.

(b) f(z,y,2) = zyz for x,y,z > 0, volume of a rectangular par-
allelopiped.

Example 3.1.2. Find the domain of each of the functions and
evaluate f(3,2)
(2)  flz,y)=2=H= (b)  flo,y) =xhn(y’ - ).

r—1

Solution.

(a)

Domain D = {(z,y):x+y+1>0 and = # 1}

= {(z,y):y=—-x—1 and z # 1}
N e ES UG
-
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(b)
f(z,y) = zln(y® — ). Domain = {(x,9):9* -z >0}

f(3,2) =3In(2* —=3) =3In1 = 0.

3.2 Graphs and Level Curves

Definition 3.2.1. If f is a function of two variables with domain
D, the graph of f is the set S = {(z,y,2) € R®: z = f(x,y) for
xz,y € D}. This is a surface.

Z
/li E— =N —— < f(X’Y)
N\
Y-
7
— domain
- Fig. 3.2.1

Remark 3.2.1. Here we can consider combinations of functions of
several variables.

(i) For functions f and g of two variables, the following holds.
(a) (f£9)(x,y) = flx,y) £g(z,y).

() (fo)(z,y) = f(x,y).9(x,y).

(©) (f/9)(wy) = JE45 where g(z,y) # 0.

(ii) The formulas for functions of three variables analogous.
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 In both cases domain (f+¢g) = domain (fg) = domain fN domain
g and domain (f/g) = (domain fN domain g) : {(z,y) : g(x,y) #

0}.

Remark 3.2.2. If f is a function of two (three) variables and
g is a function of one variable then the composition gof is defined
and

x (gof)(x,y) = g(f(x,y)),(x,y) € domain f and f(z,y) € do-

main g.

domain g.

Example 3.2.1. Let f(z,y) = 2?2 — y* g(z,y) = 22% +y and
h(t) = 2t* +t. Then

L (f+9)(x+y) = flz.y) +9(z,y) =32 -y’ +y.

2. (f=9)@,y) = flz.y) —g(z,y) = =2 —y* —y.

(9@ y) = f(a,y).9(2,y) = 22" = 222y + 2%y — .
(f9)wy) = 188 = £y £ 202,

. (hof)(z,y) = h(f(z.y)) = h(z® —y*) = 2(2* —y?)*+ (2° —y°).

6. (hog)(x,y) = h(g(z,y)) = h(22*+y) = 2(22° +y)*+(22° +y).

w

=~

(@)

Example 3.2.2. Find the domain, range and sketch the graph of

flo,y) = V9 —a? —y2

Solution. Domain of f = {(z,y) : 9 — 2? — y? > 0} = {(x,y) :
z? + y? < 9} which is the disc with center (0,0) and radius 3.
Range of f = {z:2=+/9 — 22 —y2, (z,y) € domain f}.
Here 2z >0and 0 < z=4/9—22 —y2 <3 =range ={2:0<
2z <3}=10,3].
Example 3.2.3. Sketch the graph of function h(z,y) = 22 + y*.

Solution. h(z,y) = ? + y?, domain = R?,

Range = {2 : 2 = h(z,y) = 2> + ¥*},0 < 2 < o0,

Definition 3.2.2. If a surface is the graph in three space of
an equation of second degree. It is called a quadratic surface. The
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Y
X ‘/ Elliptic parabolid

Fig. 3.2.3

second degree equation has the form
Ax? + By + c2* + Day + Exz + Fyz + Hy + 12+ J = 0.

x Ellipsoid, elliptic parabolid, hyperbolic parabolid and elliptic cone
are quadratic surfaces.

Level Curves. In general it is not simple to sketch the graph
of functions of several variables. To overcome this problem we can
sketch what we call, its level curves.

Definition 3.2.3. The level curves of a function f of two variables
are the curve with equation f(z,y) = K, where K is a constant (in

the range).

Remark 3.2.3. For a function f of three variables f(x,y,2) = K
where k € range f is a level curve (contour line).

Example 3.2.4. Sketch the level curves of the function f(x,y) =
6 — 3x — 2y for the values K = —6,0,6, 12.

Solution. The level curves are 6 — 3z — 2y = K = 3x + 2y +
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(K —6) =0. Now
3
K:—6:>3x+2y—12:0:>y:—§x+6.
3
K:0:>3x+2y—6:0:>y:—§x+3.
3
K=6=3r+2y=0=y=—=x

2

3
K:12:>3x+2y+6:O:>y:—§a:—2.

y

y=3/2x+6

_y=3/2x+3

\ y=-3/2x
X

y=-3/2%2 \\ I=-6

k=0

k=6

k=12
Fig. 3.2.4

Remark 3.2.4. The contour line (level curve) where f assume the
value K shows exactly where the graph of f intersects the plane

{(z,y,2): 2= K}.
Remark 3.2.5. If f(x,y, z) denotes the temperature at any point
(r,y,2) in a space, then the level surface f(z,y,z) = K is the
surface on which the temperature is constantly K and is called an
isothermal surface.

Exercises 3.2
1. Let f:[a,b] — R. The graph of f is the subset
Gr={(z,y) 1y = f(a)}

of R?. Show that if f is continuous, G has measure zero in
R%.

2. Find the range of

(a) g(z,y) = —=

g

(b) g(x,y) = x?i@z

3. Sketch the graph of % + % + % =1.



3.2 Graphs and Level Curves 55

2

4. Sketch the graph of z = 3;—; - 5.

5. Sketch the level curves of the function g(z,y) = /9 — 22 — y?
for k =0,1,2,3.

6. Sketch the level curves of the functions:
(a) fla,y) = 22,

(b) f(z,y) = \/I;TyQ

(c) h(z,y) = 42> + 9>

7. Sketch the graph of the function

(a) flz,y) =3.
Hint. Graph = {(z,y,2) : z = 3}.
(b) flz,y) ==

(c) f(z,y) =2+ 99>
(d) f(z,y) = /16 — 2 — 16y2.

8. Draw a level curve of the following functions:

(a) f(z,y) =y

(b) f(z,y) =a*+9y°
(c) flz,y)=w/2.

(d) fz,y) =2* -y

9. The magnitude of the gravitational force exerted on a unit
mass at (x,y, z) by a point mass located at the origin is given
by

c
Flz,y,2z) = ———7+—
where ¢ is a positive constant. Describe the level surface of

F.

10. Suppose a thin metal plate occupies the first quadrant of the
x—y plane and the temperature at (x,y) is given by T'(x, y) =
xy. Describe the isothermal curves i.e., the level curves of T'.
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3.3 Limits and Continuity
Limits

Let f be a function of two variables, as (z, y) approaches (xo, vo), f(x,y)
approaches L (or L is the limit of f(z,y) if f(z,y) is as close
to L as we wish whenever (z,y) is close enough to (zg,yo) or

1 (2. )— (wo,p0) S (2, 4) = L.

Definition 3.3.1. Let f be a function of two variables defined
on a disk with center (zo,yo) except possibly at (zg,yo). Then we
say that the limit of f(z,y) as (z,y) — (xo,yo) is L and we write
lim (3 ) (ao.90) (@, y) = L, if for every number € > 0,3 a number
0 > 0 such that

0<V(z—w0)2+y—u)?><d=|fle,y) - L] <¢
or
0 < |[(z,y) = (o, yo)l| <0 = [f(z,y) — L] <¢
or
0<||P-HRl| <d=|f(P)—L|<e for P=(z,y), Py = (z0,y0).

Notation.

N
<
7
A4 ’_\;
&
=
e
.
/
=]
=
o A
+
(a2}
A 4

> e
(xl,y) L-¢

Vv
Fig. 3.3.1

Example 3.3.1. Show that lim ;) (z9.40) T = To and imz y)—(20,40)
Y = Yo-
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Solution. To show lim ) —(zgy0) T = To, given € > 0,30 > 0
such that

0<|(z,y) — (xo,%)| <0 = |z — 20| <.

0<V(r—x0)?<d=|r—m0| <&

Now § =ecthen 0 < |z —xo| < =¢e = |z — x| < &.
Similarly, we can prove lim, ) (zo.40) ¥ = Yo-

Note 3.3.1. For functions of single variable if lim, .+ f(z) #
lim, .- f(z) then lim, ., f(x) does not exist. But for functions
of two or more variables the situation is not simple, we let (z,vy)
approaches (g, yo) from an infinite number of directions.

« If the limit exists, then f(x,y) must approaches the same limit
no matter how (z,y) — (o, vo)-

« If we find two different paths of approach along which f(z,y) has
different limit, then it follows that lim, ,)—(z0.40) f(2,y) does not
exist.

If f(x,y) — Ly as (v,y) — (20, y0) along a path ¢; and f(z,y) —
Ly as (z,y) — (zo,v0) along a second path ¢y with Ly # Lo then
i (4 ) (z0,50) f (@, y) does not exist.

Example 3.3.2. Find lim ;) (00) %% if it exists.

2

Solution. Let f(z,y) = ;—;gi, along the z axis (y = 0) the func-
tion f(x,0) = i—z =1 for all z # 0.
flz,y) = 1 as (z,y) — (0,0).
Along the y axis (z = 0) and f(0,y) = ;Tf =—1,y #0.
fl@,y) = =1 as (x,y) — (0,0).

Hence f has two different limits along different lines. So the
given limit does not exist.

2,2
lim T Y _ 3.
(z,)—(0,0) 22 4 y2
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Example 3.3.3. If f(z,y) =

2+ 5 does limy, ) (0,0) f(x,y) exists.
Solution. If y = 0 then f(z,0) = 0. Thus f(z,y) = 0 as
(x,y) — (0,0). If z = 0 then f(0,y) = 0. Thus f(z,y) — 0
as (z,9) — (0,0).

Along the line y = z for x # 0, f(x,z) = % =1/2.
Thus f(l’ y) —as( 7y)_> 070)

Along the line y = —z,z # 0, f(z,—z) = 3% = —3, f(z,y) =
—1 as (z,y) — (0,0). Different limit along different path implies
the limit does not exist.

Example 3.3.4. Find lim (0,0 32> Y if it exists.

22 +y?

Solution. One can show that the limit along any line through
the origin is 0. To show this
Claim

_ 322y
lim ——
(z.y)—(0,0) 2 + y?

Using the definition given € > 0,34 > 0 such that if

322y 322 |y|
0<vVr2+y2<d= -0l < <e
y x2+y2 I2+y2
Now z? < 2% +y* = 2+2§1¢3§+'y2‘§3|y|

or
BVY <3Vt y?P<e= a2+ y?<e/3.
If we choose § =¢/3 and 0 < /22 + y? < 0 = ¢/3, then

322y
2 + y?

—0’§3 22 +y? <30 =3(¢/3) =e¢.

Thus

. 322y
lim ——— =
(z.9)—(0,0) 2 + 32
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3 3

Example 3.3.5. Show that lim ) _(—1,41) x2+z = 0.
Solution. Observe that lim(, ,)—(—11)z = —1 and lim xy) 1LY =
1. By this rule lim, )1, 3 = —1, hm (@) —(—1,1) Y3 =1,
hm(l«,y)ﬁ(,lgl) a:2 =1 and lim(%y) —(=1,1) y =1.
Thus
2+y? —14+1 0

lim = =—-=0.
(zy)—(—1,1) a:2+y 141 2

Continuity

Definition 3.3.2. Let f be a function of two variables defined
on disk with center (a,b). Then f is said to be continuous at (a, b)
if

lim  f(x,y) = f(a,b).

(z,y)—(a,b)

Remark 3.3.1. If dom f = D C R? then the above definition of
continuity of f is defined at the interior point of D.

Remark 3.3.2. For boundary point of D i.e., if a point (a,b)
is a boundary point of D then the definition for continuity is given
by € > 0,36 > 0 such that

0< \/(a:—a)2+(y—b)2<5:> |f<I,y)—L| <€7<xvy) €D.
Example 3.3.6. If f(z,y) = z, prove that f is continuous on R
Proof. Let (a,b) € R? then we have to prove that

lim r,y)= lim z=a= f(a,b).
(r,y)*(a,b)f( v) (z,y)—(a,b) flab)

Given ¢ > 0,36 > 0 such that

0<V(@—a)+(y—b2<d=|r—al<e
lz—al<V(@—a?+(y—D02<d=>|r—al<e
|z —a] <6 =|r—a|l <e. Now choose § =¢

( 1)1m f(z,y) = f(a,b) i.e., continuous at (a,b) € R*.
zy)—

U
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Example 3.3.7. Where the function f(x,y) = ii;gi is continuous
?

Solution. The function f is discontinuous at (0,0) because it is
not defined there. Because f is a rational function, it is continuous
on its domain which is the set D = {(z,y) : (z,y) # (0,0)}.

Example 3.3.8. Let

ﬂ%y):{ o if (z,y) # (0,0)

0 if (,9)

Here g is defined at (0, 0) but g is discontinuous at (0, 0) because
lim, y)—(0,0) 9(®,y) does not exist.

Example 3.3.9. Let

22 .
f(lL‘ y) — 5;752 Zf (x,y) 7& (070) .
0 if (z,y)=(0,0)
Show that f is continuous on R?.
Solution.
322y
lim T,Y) = im ———=0= f(0,0).
umﬁmmf( v) (@y)—(0,0) 22 + y? F0,0)

So f is continuous at (0,0) and so it is continuous on R?.

Example 3.3.10. Let R be the rectangular region consisting of
all points (z,y) such that 0 <z <1 and 0 <y < 2. Let

[ 4-x2—y for (r,y)€ER
f(ff,y)—{ 0 for (z,y)¢ R’

Show that f is continuous on R but f is not continuous function.

Solution. Since the polynomial 4 — x — y is continuous on R, f is
also continuous on R.

fleyy)=d—zc—y=4—(x4+y), fn=4—(14+2)=1
when (z,y) = (1,2).
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flxy) = W(z,y) € R = f(z,y) # 0 for (z,y) € R. But
f(z,y) = 0¥(z,y) ¢ R. By definition ,f has no limit point at any
boundary point of R and thus f is not continuous.

Exercises 3.3

1 If f(z,y) = % does lim 40,0y f (@, y) exists 7

Hint. y = ma,z = ¢, %.

2. (a) If limit exists at a point then it is unique.
(b) If lim, .,, f(p) = a and lim,_,,,, g(p) = b then
i limyp, (f(p) £ 9(p)) = a 0.

. lim, ., f(p)g(p) = ab.
iii. lim,_,, cf(p) = ca, c is a constant.

iv. limy, ., 283 = ¢ provided that b # 0.

3. If g(x,y) = y prove that g is continuous on R

4. If f(z,y) = ¢ (a constant function) then prove that f is con-
tinuous on R

5. If functions f and ¢ are continuous at a point p = (a,b) in
R?, then
(a) f =+ g is continuous at p = (a,b).
(b) fg is continuous at p = (a,b).
(c) f/g is continuous at p = (a,b), g(p) # 0.

6. If f is continuous at (a,b) and ¢ is a function of a single vari-
able that is continuous at f(a,b) then the composite function
h = gof defined by h(z,y) = g(f(z,y)) is continuous at (a, b).

7. Let

33y i .
CUR & i

show that ¢ is not continuous at (0, 0).

8. Find the limit,if it exists or show that the limit does not exists
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J—

im ) (0,3)(2%y* — 22y" + 3y).
z?yS4ady?—5

(b hm(z,y)a(l},o) 2xy
. 22yt
¢) lim(gy)(—2,1) b

M ) () @ 8100 (F2).

2 ay—2y°2
z2—y2

9. Discuss the continuity of the given function.

(a) g(z,y) = 5.

(b) f(x,y):{ DU if oAl

y if v=-1
I r.u) = - xfzs if (x,y)#(0,0)
(c) f(z,y) _ 5 (o) (0.0)
z.y) = % if (z,y) #(0,0)
(d) f(z,y) i e Z00)

3.4 Partial Derivatives

If f is a function of two variables x and y. Suppose we let x
very while keeping y fixed, say y = b (constant). Then f is a
function of single variable. Denote g(x) = f(z,y) = f(z,b). If g is
differentiable at a then we call partial derivative of f with respect
to x at (a,b) and denote it by f.(a,b). Thus f.(a,b) = ¢'(a) where
g(ZL‘) = f(l’,b)

J@ = lm gla+ h})L —g(a) _ lim g(x; - i(a)
fla+ h,b) — f(a,b)

= fola,) = lim o

— lim f(va)_f(a>b>
r—a r—a

Similarly, the partial derivative of f with respect to y at (a,b)
denoted by f,(a,b) is obtained by keeping z fixed (z = a) and
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o(y) = fla,y) ie.,

§10) =t N =00y fdt W= )

h—0 h—0 h

Definition 3.4.1. If f is a function of two variables, its partial
derivatives are the functions f, and f, defined by

(i) folz,y) = limy,_o Lottt @y,

(ii) f,(z,y) = limy, o {Ewth =y,

Notation 3.4.1. If z = f(x,y), then
(i) fy(-xay):fy:a% (3779):(2_;:D2f: (Dyf).

Remark 3.4.1. The above definition 3.4.1. is equivalent to (for a
point (a, b))

(a) fu(a,b) = lim,_,, Leteb=fab)

r—a

(b) fy(a,b) = lim,,_, [Ewte)

Example 3.4.1. If f(z,y) = 4—2? — 2y, find f,(1,1) and f,(1,1)
and interpret these numbers as slopes.

Solution. f(z,y) =4—2%—2y* = f.(z,y) = =2z and f,(z,y) =
—4y. Hence f,(1,1) = —2 and f,(1,1) = —4.

The graph of f(x,y) = 4 — 2? — 2y* and the vertical line y = 1
intersects it in the parabola z = 2 — 2%,y = 1. The slope of the
tangent line to this parabola at (1,1,1) in f,(1,1) = —2. Similarly,
graph of f and z = 1 intersected at the parabola z = 3—2y% = = 1.
The slope of the tangent line at (1,1,1) is f,(1,1) = —4.

Theorem 3.4.1. Suppose f and g are functions of two variables.
Also if fo(z,y), fy(7,9), g:(z,y) and g,(7,y) exist.

1. Sum and Difference rule
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—x(f(x,y)ig(:r,y)) = a%f(x,y)i%g(%y)

= fz(xvy) + gx(x>y)

é%(f(:]c,y) +g(z,y) = a%f(x,y) + a%g(x, )
= fy(z,y) £ gy(x,y)
= fy,£g,.
2. Product rule
(i)
a%(f(x, v).9(x,y) = folz,y)g(x,y) + f(2,9)9.(2, y)
= fo9+ [0
(ii)
a%(f(w, v).9(x,y) = fy(z,9)9(x,y) + f(z,9)g9(2, )
= fyg + fgy-

3. Quotient Rule

(1)

(i)
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Example 3.4.2. Let f(x,y) = { 22

0 if (z,y)=1(0,0)
then find f, and f,.
Solution 1. If (z,y) = (0,0) then

(i)

h—0 h
(i)

£0,0) = }Lli% f(O,O—i—hf)L— £(0,0)
_ g O - £O.0)
h—0 h

Here (0,0) is the point of discontinuity of f(z,y) but f.(0,0)
and f,(0,0) exist.

Solution 2. If (z,y) # (0,0) then by using quotient rule

2(y* — z%y)
(33'2 + y2>2

2(x® — y?x)

fol,y) = P R

and f,(z,y) =

Remark 3.4.2. Partial derivatives can also be defined for functions
of three or more variables, let u = f(x,y, z) then

(l’+h,y,2)—f($,y,2)

fe(r,y,2) = lim

h—0 h
o . f($7y+hvz>_f<x7yvz>

fy($7yvz) - ]1113% h
. f(a:,y,z—l—h)—f(:c?y,z)
fz($7yvz) - lllli% h .

Exercises 3.4

1. Find the indicated partial derivatives.
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234y 9z Oz
(a) 2= s 500 5o

(b) z==x —\%,%,g—;.

(d) zyz = cos(z +y + 2), &, g_;
(e) flz,y,2) =y, f,(0,1,2).

() flx,y,2) = /22 +y> + 22

2. If f(x,y) =sin (1+ ). Calculate and

3. Find az and 1f z is defined 1mphc1tly as a function of x and
y by the equatlon 3 4+ y3 + 22 + 6ayz = 1.

4. Find f,, f, and f, if f(z,y,2) = e™inz.

3.5 Higher Order Partial Derivatives

If f is a function of two variables, then its partial derivatives f,
and f, are also functions of two variables, so we can consider their
partial derivatives (fz)a, (f2)y, (fy)z and (f,), which are called the
second partial derivatives of f. If z = f(x,y) then

2
(fa)y = foy= D2D1f
(fy)y = fyx = D1D2f
(fy)y = fyy = DD, f.

oYy—xyY .
Example 3.5.1. Let f(z,y) = { z2-+y? Z.f (z,y) 7_é (0,0) '

Show that f,,(0,0) # f,.(0,0).
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Solution. We have

oty + 422y — P

fz(x7y) (IQ +y2>2
B 25— Azdy? —
fy<x7y) - (-T2+y2)2
fﬂf(0>0) = fy(0,0) =0
fz(()?y) = Y Yy 7é 0
fy<$,0) = T, 7£ 0
fay(0,0) = lim UL - L0.0 _

=1.

[2(0,0) = lim fy(h;0) . £,(0,0)

Remark 3.5.1. Suppose f is defined on a disk D that contains
the point (a,b). If the functions f;, and f,, are both continuous

on D. Then f,,(a,b) = fy.(a,b).

Remark 3.5.2. Partial derivatives of order 3 or higher can be
defined as

_ . _ 0 (&N _ &f
(few)y = Jayy = a_y <8y3x) - Py

and using Remark 3.5.2. we have f,,, = fyzy = fyye if these func-
tions are continuous.

Example 3.5.2. Calculate fy,,. if f(z,v, 2) = sin(3z + yz).

Solution.
flzyy,2z) = sin(3z 4+ yz)
fe(z,y,2) = 3cos(3z + yz)
fez(z,y.2) = —9sin(3z + yz)
faay(x,y,2) = —9cos(3z +yz).z

= —9zcos(3z + yz)
9yzsin(3z + yz) — 9cos(3z + yz).

fa:acyz(xv Y, Z)

Remark 3.5.2. Partial derivatives occur in partial differential
equation that express certain physical equations. For instance, the
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p.d.e. % + ‘22712‘ = 0 is called Laplace’s equation.

Remark 3.5.3. The wave equation ‘?9275‘ = a® g; = Uy = Uy,
describes the motion of a wave, which could be an ocean wave, a
sound wave, a light wave, ¢ =time, x =distance and a constant
(depends on the density of the string and on the tension in the
string).

Exercises 3.5

1. Find the second partial derivatives of f(x,y) = z3+x%y3—21°.

2. Show that the function u(z,y) = e"siny is a solution of
Laplace’s equation.

3. Verify that the function u(x,t) = sin(z— at) satisfies the wave
equation.

4. Show that the following functions satisfies Laplace’s equation
(a) z =t — 622y + y*.
(b) == log(z* +y?).
(c) u = sinx cos hy + cossin hy.

5. Show that each of the following function is solution of the
wave equation.

(a) u = sin kx sin akt.

[(@*t? = xy).

t
(c) u=(z—at)®+ (z+ at)S.

3.6 Differentiability and Gradient

Definition 3.6.1. A function f is differentiable at py = (¢, yo) iff
3 a first degree polynomial g(z,vy) = f(zo,yo)+ (x—z0)a+ (y —vo)b
such that

lim f('rhy)_g(m’y) — 0 where :fx(x())yO)
(z,y)—(x0,y0) \/($ — LEQ)Q + (y — y0)2 b = fy(x07 yO)*
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Remark 3.6.1. If f(x) is a function of one variable with F"(x) =
a, then

a=F'(xg) = IILI?M
= lim W—a =0
N ;Ln; EF(x)(F<$())+a)($xo))) o

Hence F'(x) is differentiable at x if there exist a linear function
G(z) = F(z,0) + a(x — o) for a = F'(x0) 3 lim, ., F@)-G@) _

T—x0

Theorem 3.6.1. Suppose that g(P) = f(po) + (P — FPy).M,(p =
(,y),p0 = (%0, y0), M = (a,b)) is a polynomial satisfying . Then

i) f is continuous at py.
ii) Dif and D, f exist at py.
iii) ¢ has the slope i.e., M = (f.(po), fy(po)) is the slope.

Proof. (i). Let f(p) = (>+Hp p y|f @) then lim,_,, f(p) =

llp— poll
lim,_,, g(p) + lim,_,, ||p — po|L&=4r) Hp = H ) ( because f is differentiable
at po)= limy,,, f(p) = limy,—p, 9(p) = g(po) = f(po) -Thus lim,_,,
f(p) = f(po). Hence f is continuous at py.
(ii) and (iii) can be prove similarly.

Definition 3.6.2. The gradient of f denoted by V[ at pg, is

the vector V f(po) = (Dvf (o), D2f (po)) = (fa(po), fy(po))- 1f both
partial derivatives exist.

Example 3.6.1. Find Vf if f(x,y) = sinx + ™.
Solution.

flz,y) = sinx+e™
Vf(l',y) (fl‘(xay)afy(x7y))7fx(x7y) :COSZ"i‘yexy
and f,(z,y) = xe™.
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Hence

Vi(z,y) = (cosx +ye™, ze™) and Vf(0,1) = (2,0).

Example 3.6.2. Let f(z,y,2) = \/ﬁ find Vf(2\/§, 2v/2, —3).
Solution.
Fle.y.) —— L(e2) —
x z) = 2\ Y, %) =
' Ys \/ma ) (I2 + y2 + 22)3/2
_ Y _ —
fylw,y,2) = (22 + 12 + 22)3/2fz(37>ya 2) = (22 + 92 + 32)3/2'

_ —zi—yj—zk
Hence Vf(z,y,z) = (@2 4y2+22)3/2

= Vf(2v2,2V2 = 3) = (—2v/2i — 2v/2j + 3k) 2=

The gradient vector plays a crucial role in the definition of the
plane tangent to the graph of a function of several variables.

Definition 3.6.3. Let f be differentiable at a point (zo, Yo, 20)
on a level surface S of f. If Vf(zo,v0,20) # 0, then the plane
through (o, yo, 20) whose normal is V f(zo, yo, z0) is the plane tan-
gent to S at (xg, Yo, z0) and V f(zo, Yo, 20) is normal to S.

Remark 3.6.2. Equation of tangent plane through (zo, o, z0) with
normal vector V f(zo, Yo, 20) is (p — po).V f (20, Yo, 20) = 0

(y — Z/o)fy(%, Yo, 20)

== (z — 20) fo(20, Y0, 20) +
+ (2 — 20) f-(%0, Y0, 20) = 0.

Example 3.6.3. Find an equation of tangent plane to the sphere
2% 4+ y? + 22 = 4 at the point (—1, +1,v/2).
Solution. The sphere is the level curve f(z,y,z) = 4 where
f(xa Y, Z) - $2+y2+22 = fac(*ra Y, Z) = ZZE, fy(xa Y, Z) = 2% fz(m7 Y, Z) =
QZVf(QZ', Y, Z) = (21’, 2y7 22) and Vf(_L 17 \/5) = (_27 27 2\/5)

Hence equation of the plane tangent at (—1,1,/2) is

2@+ D) +2( -1 +2vV22-V2) =0= -z +y+ V22 =0.
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Remark 3.6.3. If f is a function of two variables that is differen-
tiable at (zg,yo) then let g(z,y,2) = f(x,y) — 2z = 0. Hence the
graph of f is the level surface g(x,y,z) = 0. We can find a plane
tangent to the graph of f at (zg, yo, f(0,Y0)) and to be the plane
tangent to the level curve g(z,y, z) = 0.

Hence Vg(zo,%0, 20) = fx(To,%0)t + fy (20, %0))J — k.

Ja(@o,y0) (@ — o) + fy(20,%0) (Y —yo) — (2 — 20) =0
2= f(xo,y0) + fo(x0,v0)(x — 20) + fy(20,v0)(y — yo)
<0 = f(x(]ay())‘

Example 3.6.4. Find the tangent plane to the elliptic paraboloid
z = 2z% + y? at the point (1,1, 3).

Solution. Let f(z,y) = 22* + y* Then f.(r,y) = 4z and

fow,y) =2y = fo(1,1) =4 and f,(1,1) =2.
Thus equation of the tangent plane at (1,1, 3) is

z = fLD+ (0D -1+ f,(1L1)(E-1)
= 3+4(zx—-1)+2(y—1)
=2z = 3+4dr—-44+2y—-2 =4dr+2y—z=3.

The Chain Rule 1. Suppose that z = f(z,y) is a differentiable
function of x&y, where z = g(t) and y = h(t) are both differentiable
functions of ¢. Then z is a differentiable function of ¢ and

dz_0fdr 0fdy
dt — Oxdt Oydt

: 2 4 __ it o dz
Exercise. If z = 2%y + 3zy", where x = €',y = sint, find 7.

The Chain Rule 2. Suppose that z = f(z,y) is a differentiable
function of x and y, where z = ¢(s,t),y = h(s,t) and the partial
derivatives gs, g;, hs and h; exist. Then

0z 0z0x 0z0y
95  00s  0yos
0z 0z0x 0z0y
o owot oyt
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Example 3.6.5. If z = e”siny, where z = st?, y = s, find £
and %.

Solution. Using the above formula

0: _ 0z00  0:0y
0s Oxr ds Oy0ds
= e"siny(t?) + e” cosy(2st)
= 2" sin(s*t) + e cos(st).2st
0: _ 0z0n, 020
ot Ox Ot Oy ot
= ¢"siny(2st) + e¥ cosy(s?)
2ste®” sin(s%t) + % cos(s°t)(s?)

= 2ste” sin(st) 4 5% cos(s%t).
Remark 3.6.4. In z = f(z,y),z = g(s,t),y = h(s,t)
e s&t are independent variables.

e z&y are intermediate variables.

e 2 is the dependent variable.

Remark 3.6.5. To remember the chain rule it is helpful to draw
the tree diagram

w2
-
72
—

Fig. 3.6.1

0z _ 0z0r

920y i 9z
5 — os0s T 0y 05 similarly we can find .

Example 3.6.6. Let U = xcosyz?, v = sint,y = t* and z = €.
Find ad—[tj.

Solution. By corresponding chain rule, we have

dU  OUds 9Udy U dz

G Ordt oyt oz dt
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cos(yz?) cost — x2? sin(yz?)(2t) — 2xyzsin(yz?)e"

= cos(t?e*) cost — 2te' sintsin(t?e*) — 2t%e* sin t sin(t%e?).

Example 3.6.7. Let U = /x +y?2%, 2 = 1 + s? +t?,y = st and
z = 3s. Find %—g and %—(tj.

Solution. Consider the following chain rule

oU _ ovds oUdy  oUd:
ds Or 0s Oy ds 0z 0s
s
= — + 1355
14 5% +t2 ’
ou oU 0z  0Udy 0U Oz

o T oot oyor osot
= ;+5+55t.

Vit s®+ 12

Exercises 3.6

1. Find the equation of the tangent plane to f at the indicated
point.

(a) flz,y) =sinz +e™  (20,50) = (0,1).
(b) f(l',y) = -73293 — 4y (IL’o,yo) = (2, —1).

2. Let z = zlny,z = u? + v* and y = v? — v%. Find & and &.

3. Write out the Chain rule for the case where w = f(z,y, z,1)
and z = z(u,v),y = y(u,v), z = z(u,v) and t = t(u,v).

4. fU = 2*y+y?23, where x = rset,y = rs?e ! and z = t?ssint.
Find the value of % when r =2,s=1,t=0.

5. If g(S,t) = f(S? —t2,¢* — S?) and f is differentiable, show
that g satisfies the equation tg—g + S% = 0.
Hint. Let z = S?—? and y = t* — S?. Then g(S.t) = f(z,y)
and by the chain rule
dg 6f% af dy

95~ 905 T ayas 2025
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09 _0f0x 010y

. —2tf, -2
ot oot Togar e
dg dg

t% +S§ =0.

3.7 Directional Derivatives

Recall that if z = f(z,y), then f, and f, are defined and rep-
resent the rates of change of z in the x&y directions i.e., in the
directions of the unit vectors ¢ and j.

Now we wish to find the rates of change of z at (z¢, o) in the
direction of an arbitrary unit vector u = (a, b). To find this we use
the following definition.

Definition 3.7.1. Let f be a function of two variables defined
on a disk D centered at (x,yo) and let v = (a,b) be a unit vector.

Then the directional derivative of f at (xg,yo) in the direction of
u, denoted D, f(xq,yo) is defined by

h hb) —
Duf(.T(), yO) ¥ }lL{I%) f(l'() + a, Yo +h ) f(flfo, yO)

if limit exists.

Remark 3.7.1. If u = (1,0) = i then D,f = D,f = f, and if
u=(0,1) then D, f = D, f = f,.

Theorem 3.7.1. If f is a differentiable function of z and y then
f has a directional derivative in the direction of any unit vector

u=(a,b) and D, f(x,y) = fo(x,y)a+ f,(z,y)b =V f(z,y).u.

Proof. Define g(h) = f(zo + ha,yo + hb). This is single variable.

Hence

g (0) = lim gth) =90)  _ lim (o + ha, yo + hb) — (20, yo)

h—0 h h—0 h
- Duf(x()ayO) (*)

on the other hand, we can write g(h) = f(z,y) where z = ¢ +
ha,y = yo + hb. So by chain rule
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_ofde ofdy
~ Oxdu  Oydu

Now if h = 0 then ¢'(0) = fu(xo, vo)a + fy (o, yo)b (%)
From (x) and (), we have

g'(h) = fo.a+ fy.b.

Duf(wo,90) = fe(mo,y0)a+ fy(zo,y0)b
= Vf(zo,0)-(a,b).

Remark 3.7.2. If the unit vector U makes an angle # with the pos-
itive x—axis then we can write U = (cos @, sinf) and Dy f(xg, y0) =

fx(z0,y0) cos @ + f,(x0,yo)sinb.

Example 3.7.1. Let f(x,y) = 6 — 322 — y? and let

2 2
U=Zi+ \/7_3'. Find Dy f(1,2).

Solution. f(x,y) =6—322—y? = f.(zv,y) = =6z f,(xv,y) = —2y

Duf(1,2) =Vf(1,2),U = (fo(1,2),f,(1,2)). (% _T\/é>

= (=6,—4) (Li’ __\/§>

27 2
= —3V2+2V2=-V2

Example 3.7.2. Find the directional derivative Dy f(x, y) if f(x,y)
= 23 —3zy+4y? and U is the unit vector given by the angle § = /6.
What is Dy f(1,2) 7

Solution. By using the above remark
Dyf(z,y) = folz,y)cosl+ fy(x,y)sind
= (32® — 3y)cosm/6 + (—3x + 8y)sin7/6

3 1
— (3= )+ (<30 8) )

_ % { [3\/5332 _ 3x] + (8- 3\/5)11} :

Hence Dy f(1,2) = %[3\/3 —34+(8-3V3),2] = 13—1?/3‘
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Example 3.7.3. Find the directional derivative of the function
f(x,y) = 2%y* —1 at the point (2, —1) in the direction of the vector
V =(2,5).

Solution. f(z,y) = 2%y®—4y (x,y0) = (2,—1) and V = (2,5) =
Dyf(x,y) =V f(z,y).U, where U is the unit vector in the direction
of V.

V 1
- (fﬂc(x7y)7fy<x7y)) U where U= H - \/_2—9<275>

2 5
_ (20y®. 307 — 4 (_,_)
(2zy Y- —4) 55 755
2 — 4 2
= Duf(2a_1):<_478) (_7i) 8+ 0 ’
32

V29" V29 V20 V29

2

Ne}

= D f(2,—-1)= —.
Remark 3.7.3. The directional derivative in the direction of

an arbitrary nonzero vector V is defined to be Dy f(xg, ) where

_ v
U=

Definition 3.7.2. The directional derivative of f at (zo,yo, 20)
in the direction of a unit vector U = (a, b, ¢) is

h hb he) —
DUf(xo,yo,Zo)z}lLiLr%)f(x°+ a, Yo + ,z2+ ¢) — f(xo, Yo, 20)

if this limit exists.

Remark 3.7.4. If f(x,y, 2) is differentiable and U = (a, b, ¢) then
the same method that was used to prove the above theorem can be
used to show that

DUf(x7 Y, Z) - fm(‘ra Y, Z)CL + fy<x7 Y, Z)b + fz(xu Y, Z)C
= (fzvfya fz>-U = vf(x7y7 Z) U.
Example 3.7.4. If f(z,y,z) = xsinyz then find the directional
derivative of f at (1,3,0) in the direction of V' = (1,2, —1).

Solution.

f(w,y,z) = Vf(x,y,z) = (fx(w,y,z).fy(x,y,z).fz(x,y,z))

= (sinyz,xzcosyz, Ty cosyz).
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At (1,3,0) we have AV f(1,3,0) = (0,0,3) and the unit vector
U in the direction of V is

U=—(1,2,-1).

SE

Thus

1 2 -

Dyf(1,3,0) =V f(1,3,0).u = (0,0,3). (—,—6,—>

—_

(=)
(=}

3

3 —_—

V6 2
Question 3.7.1. In which directions does f change fastest and
what is the maximum rate of change ? The answers are given in
the following theorem.

Theorem 3.7.2. Suppose f is differentiable function of two or
three variables. The maximum value of the directional derivative
Dyf(x)is ||V f(x)| and it occurs when U has the same direction as
the gradient vector V f(z).

Proof. Dyf = VfU = [[Vf|ll U |lcosf = ||V f] cosh, @ is the
angle between V f and U.

The maximum value of cosf = 1 if § = 0.

Maximum value of Dy f = ||V f| at 6 = 0.

Example 3.7.5. If f(x,y) = ze¥

a) Find the rate of change of f at the point P(2,0) in the direc-
tion from P to Q(3,2).

b) In what direction does f have the maximum rate of change 7
what is the maximum rate of change ?

Solution.

PG _
a) DU f(2,0) =1 for :HT%W:(??)’%)_

b) f increases fastest in the direction of the gradient vector
V£(2,0) = (1,2). The maximum rate of change is ||V f(2,0)|| =
11, 2)] = V5.
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Example 3.7.6. Suppose that the temperature at a point (z,y, 2)
in space is given by T'(x,y, z) = m, where ¢ is measured in
C° and z, v, z in vectors. In which directions does the temperature
increase fastest at the point (1,1, —2) ? What is the maximum rate

of increase 7

Solution.

or. —or . . or
— 160z , —320y
(+22 + 2y% + 322)QZ i (14 2% 4 2y? + 322)2
—480z
(14 22+ 2y? + 322)2
160

- —, 2y, —32).
(14+ 22+ 292+ 322)2< T, =2y, —32)

J

At (1,1,-2),VT(1,1,-2) = 180(_1 -2 6) = 5(~1,-2,6)

Temperature increases fastest in the direction of the gradient
vector. The maximum rate of increase in the length U the gradient.

ie., [VT(1,1,-2)|| = 3[(—=1,-2,6)|| = 3v/1 + 4 + 36 = 2L,
Thus the maximum rate of increase of temperature is

541
8

~ 4°c/m.
Exercises 3.7

1. Define the function f: R? — R by

Fla,y) = { (x/\y!)v05€2 +y? z; 5j8

(i) Prove that the function f : R* — R is not continuous at
the point (0, 0).

(ii) Prove that the function f : R?*> — R has directional
derivatives in all directions at the point (0,0).
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(iii) Prove that if ¢ is any number, then there is a vector p of
the norm 1 such that

aof B
a—p(0,0) = C.

2. Consider the following assertions for a function f : R? — R:

(i) The function f: R* — R is continuously differentiable.

(i) The function f : R? — R has directional derivatives in
all directions at each point in R?.

(iii) The function f : R?* — R has first order partial deriva-
tives at each point in R?. Explain the implications be-
tween these assertions.

3.8 Tangent Plane Approximation

Recall that an equation of the tangent plane to the surface z =
f(x,y) at the point P(xq, Yo, 20) is

z—zp = fuo(20,90)(® — 7o) + fy(T0,%0) (Y — Yo)
=z = f(x0,90) + fa(zo, y0)(x — o) + fy(T0, %0) (Y — Yo)-

To discuss tangent plane approximation, let us define differen-
tiation.

For a function of one variable y = f(z), we defined the increment
of y as Ay = f(x+Ax)— f(x) and differential of y as dy = f (x)dx

Ay = f(a+ Az) — f(a) = change in the height of the curve

y = f(x).
dy = the change in the height of tangent line.
Now let. ¢ — Qu=dy _ [etin)—f@)-f(@dr _ [fatdo)—f@) _

, ) , Az Az Az
f(x)= f(z)—f(x) = 0as Az — 0.

Now for a function of two variables, z = f(z,y)

Then the differential dz, also called the total differential, is de-
fined by
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0z 0z
dz = fu(z,y)dx + f,(z,y)dy = %d:v + 8_ydy'

If we take de = Az =2 — a,dy = Ay =y — b then

dz = fu(a,b)(x —a)+ f,(a,b)(y —b)  (x).

But from equation of tangent plane at (a, b, f(a,b)) is
Z_f(aab) :fx(a7b)(l‘_a)+fy(a7b)(y_b> (**)

From (%) and (*x), we have dz = the change in height of the
tangent plane, where Az = the change in height of the surface
y = f(x,y) when (z,y) changes from (a,b) to (a + Az, b+ Ay).

Definition 3.8.1. A function f of two variables is differentiable at
(a,b) if there exist a disk D centered at (a,b) and functions £; and
€9 of two variables s.t.

fx.y) = f(a,b) = fula,b)(z —a)+ fy(a,b)(y —b) +ei(z,y)
(z —a)
- —|—52(l’,y)(y _ | b) for ([L‘,y) € Du
where lim; ) (a0 €1(2,y) = 0 and lim g ) (ap) €2(2, y) = 0.

Define Az — dz = e1Ax + e9/A\y where £,&e5 are functions of
Ax and Ay that approach 0 as Ax& Ay approach 0.

= Az —dz~0 and so Az ~dz.

Hence change in z is approximately equal to the differential dz
when Az and Ay are small.

= Az=f(a+ Az, b+ Ay) — f(a,b) ~ dz
= fla+ Az, b+ Ay) 2f(a,b)—l—dz:f(&,b)—i-%dx—i-g—;dy
= f(a,b) + fula,0)(x — a) + f,(a,b)(y — b).

Therefore in the approximation, we used the tangent plane at
(a.b, f(a,b)) as an approximation to the surface z = f(x,y) when
(x,y) is close to (a,b).
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Example 3.8.1. Let 2z = f(z,y) = 2* + 3ay — ¢*
a) find the differential dz.

b) If z changes from 2 to 2.05 and y changes from 3 to 2.9 com-
pare the values of Az and dz.

Solution.
a) f(r,y) = 2%+ 3zy — y? then

0z 0z
e “Zdy = (2 -2
dz axdx + ayaly (2z + 3y)dx + (3z — 2y)dy

= dz = (2o + 3y)dz + (3 — 2y)dy.

b) Putting x = 2, Az = dx = .5,y = 3 and Ay = dy = —0.04,
we get

dz = [2(2) = 3(3)](0.5) + [3(2) — 2(3)](—0.04) = 0.65.

The increment of z is
AZN=TVIR05, 22901 £ (62°3)
= [(2.05)* + 3(2.05)(2.96) — (2.96)?]
—[22 4+ 3(2)(3) — 37
= 0.6449.

observe that Az = dz but dz is easier to compute.

Example 3.8.2. Use differentials to find an approximate value for
V9(1.95)2 + (8.1)2.

Solution. Consider the function z = f(z,y) = /922 + 3% and
observe that we can easily calculate f(2.8) = 10 and f(1.95,8.1) =
V/9(1.95)2 + (8.1)2.

So take a = 2,b =8, dxr = dx = —0.05 and dy = Ay = 0.1.

9x Y
fo(z,y) = \/ﬁfy(%y) = \/ﬁ

we have
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£(1.95,8.1) = /9(1.95)2 + (8.1)2 =~ £(2,8) + d=z
= f(2,9) + f.(2,8)dx + f,(2,9)dy

18 8
= 10+ —(—0. —(0.1) = 9.99.
0+10( 005)+10(0 ) =9.99

Exercises 3.8

1. Find the differential of the function
(a) z = 2y
(b) u = e* cosxy.
(c) z=ye™.

2. If z = ba* + y? and (z,y) changes from (1,2) to (1.05,2.1)
compare the values of Az and dz.

3.9 Maxima and Minima (Extreme Values)

Partial derivatives are important to determine maximum and
minimum values of functions of two variables.

Definition. A function of two variables has a local maximum
at (a,b) if f(z,y) < f(a,b) for all points (z,y) in some disk with
center (a,b). The number f(a,b) is called a local maximum value.
If f(x,y) > f(a,b) for all (x,y) in such a disk, f(a,b) is local min-
imum value.

Remark 3.9.1. In the above definition, if the inequality hold for
all points (z,y) in the domain of f, then f has an absolute maxi-
mum (or absolute minimum at (a, b)).

Theorem 3.9.1. If f has a local extremum (i.e., local maximum
or minimum) at (a,b) and the first order partial derivatives of f
exist there, then f,(a,b) =0 and f,(a,b) = 0.

Proof. For any constant H, define the function

F(t) = f(A+tH) where A= (a,b)
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= F'(t) = HVf(A+tH) and F has a local extreme at ¢t = 0 hence
0= F'(0) = HVf(A), since H is arbitrary vector,
put H =V f(A)= Vf(A).Vf(A)=0=|Vf(A)]P=0

= Vf(A) =0= (f:c(A)7fy(A)) =0= fz(a7 b) =0
and f,(a,b) =0 for A = (a,b).

Remark 3.9.2. A point (a,b) such that f,(a,b) =0 and f,(a,b) =
0 or one of these partial derivatives does not exist is called a critical
point of f. If f has local extremum at (a,b) then (a,b) is a critical
point of f. But not all critical points give rise to extreme.

Example 3.9.1. Let f(z,y) = 2% + y? — 22 — by + 14, then

folz,y) =22 =2, f,(x,y) =2y — 6.

Hence

fo(z,y) =0 and fy(z,y)=0=> 22r-2=0=>zx=1
20—6=0=1vy = 3.
= (1, 3) is the only critical point.
And
flz,y) = 2> =20 4+14+9y>—6y+9+4
= (z-1)7%*+(y—3)*+4.

Since (z —1)? > 0 and (y — 3)? > 0, we have f(z,y) > 4Vz, y.

o f(1,3) =4 is a local minimum.

[In fact it is the absolute minimum]| Range [4, 00).
Example 3.9.2. Find the extreme values of f(x,y) = 3> — 2%
Solution. Since f, = —2z,f, = 2y, the only critical point is
(0,0). On the r—axis, we have y = 0 so f(z,y) = —2? < 0(if
x # 0) on the y—axis, we have z = 0. So f(z,y) = y* > 0 (if
y # 0). Thus every disk center (0,0) contains points where f takes
positive values as well as points where f takes negative values.

2. f(0,0) = 0 can not be an extreme value. So f has no ex-
treme value. Such point (0,0) is called a Saddle point of f. Range
(—00,00).
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The second derivatives of f usually helps to distinguish between
maximum, minimum and saddle points.

Theorem 3.9.2. (Second Derivative Test). Suppose the sec-
ond partial derivatives of f are continuous in a disk with center
(a,b), and suppose that f,(a,b) = 0and f,(a,b) =0 (i.e., A = (a,b)
is a critical point of f). Let

D = D(a,b) = fuz(a,b).fyy(a,0) = (fuy(a,b))?
a) If D >0 and f,.(a,b) >0, then f(a,b) is a local minimum.
b) If D >0 and f,.(a,b) <0 then f(a,b) is a local maximum.

c) If D <0, then f(a,b) is not a local extremum value on (a, b)
is called a saddle point of f.

Remark 3.9.3. If D = 0 then the test gives no information: f
could have a local maximum or local minimum at (a,b) or (a,b)
could be a saddle point of f.

Remark 3.9.4. To remember the formula for D write it as a
determinant

_ f:va: fzy
D=1t

Example 3.9.3. Find the local extreme of f(z,y) = z* + y* —
4oy + 1.

= fxmfyy - (fxy)Q'

Solution. To find the critical points,

fo = 42° ~dy=0=>2—y=0=y=2a"
fy = W—dr=0=¢y-2=0=>¢y"=0= (2" -2=0
—z(®=1)=0
= z(z' - 1)(2*+1)=0
= 22 —1)(2* - 1)(2*+1)=0
= z(z—1)(z+1D(@*+1)(z*+1)=0.
The real roots are z = 0,1, —1.
Hence critical points (0,0)(—1, —1)(1,1).
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The second partial derivatives are
fmc = 12$2 fxy = _47 fyy - 12y2
D(z,y) = foxfyy — (ftcy>2 = 144y — 16.
i) Since D(0,0) = —16 < 0 by Second Derivative Test (0,0) is
a saddle point.

i) Since D(—1,—1) = 144 — 16 = 128 > 0 and fop(—1,—1) =
12> 0, so f(—1,—1) = —1 is a local minimum.

iii) Since D(1,1) = 144 — 16 = 128 > 0 and fyu(1,1) = 12 > 0
by the above theorem f(1,1) = —1 is also a local minimum.

Example 3.9.4. Find the shortest distance from the point (1,0, —2)
to the plane x + 2y + z = 4.

Solution. Let (x,y,2) be on the plane and the distance d to the
point (1,0,—2) is d = \/(z — 1)2+ 32 + (2 + 2)2.

But (z,vy, 2) lies on the plane x + 2y + 2 =4 =z2=4—x — 2y
and so d = /(z —1)2+y> + (6 — z — 2y)?

= =@ +y"+6-2-2) = f(.y)
= fi=2(r—-1)4+2(6—2—2y)=4r+4y—14=0
fy=2y—4(6—z—2y)=4x+ 10y —24=0
then the only critical point is (11/6,5/3) and

fﬂca: = 47 fa:y = 47fyy = 10;fym =4.

Hence D(x,y) = foufyy — (fuy)? = 40 — 16 = 24 > 0 and
fzz > 0 = by Second Derivative Test f has a local minimum at
(11/6,5/3). Hence

d = (& =12 +y>+ (6 -z —2y)?

— VBT B P - 2

.. The shortest distance from (1,0, —2) to the plane x +2y + 2z =4

is %6.
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Example 3.9.5. A rectangular box without cover is to be made
from 12m? of card board. Find the maximum volume of such a box.

Solution. Consider the volume v = zyz.
Area of 4 side faces and bottom of the box is

20z + 2yz + vy = 12
12 — 12 —
L Ty Ty
20 +2y  2(z+vy)

:>V:xy(12—:zy>:12xy—$2y2’
2(x +y) 2(x +y)
Vo o (12 — 22y — 2?)

o 2(z +y)?

V., — 2(12_2“73/_92)

! 2w +y)2

V is minimum = V, = 0and V, = 0and x =0 ory = 0 =
V=0

= 12—-2zy—2°=0,12—22y —y* =0 = 2% =¢* and
r=uy.(z,y >0)
=122 2" =0=12-32"=0=>0=2=9y=2

and z = 1. By S.D.T. we can show that V' is maximum at x = 2
maximum volume V = 2.2.1 = 4m?3.

Example 3.9.6. Find the local extreme value of f(x,y) = 2*

+y? — 3y,
Solution. (0,0) saddle point, f(1,1) local minimum = —1.
Exercises 3.9

1. Find the maximum of {x + vy + z : || + |y| + |2| < 1} by
inspection.

2. Find the maximum of {z? + y* + 2% : 22% +¢* + 322 < 1}.
3. For numbers a,b and ¢, find the minimum of

{az 4+ by +cz : 2® +y* + 22 < 1}.
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4. Find the point on the plane ax +by+cz+d = 0 that is closest
to the point (0,0,0).

5. For positive numbers a, b and ¢ find a point on the ellipsoid

' 2 2
Sz{(aj,y,z) in R3:¥+ﬁ+§:1}

that is closest to the point (0,0, 0).

6. Show that = +y + 2z > 3 for all (z,y,z) in R® such that
x>0,y>0,2>0, and xyz = 1.

7. Use Exercise 6 to verify the following Geometric Mean/ Arith-
metic Mean Inequality : If aq, as and a3 are positive numbers,
then

a1 + as + as
(a1a2a3)1/3 < T
Generalize this inequality from n = 3 to general positive in-
teger n.

3.10 Absolute maximum and Minimum Values

Recall for a function f of one variable, if f is continuous on a
closed interval [a, b], then f has an absolute minimum value and an
absolute maximum value. There is a similar situation for function
of two variables just as a closed interval contains its end points. A
closed set in R? is one that contains all its boundary points.

Example 3.10.1. The disk D = {(z,y)/2* + y* < 1}.

Theorem 3.10.1. If f is continuous on a closed, bounded set
D in R% then f attains an absolute maximum value f(z1,y;) and
an absolute minimum value f(zq,y2) at some points (x1,7;) and
(x2,y2) in D.
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To find the absolute maximum and minimum value of a contin-
uous function f on a closed, bounded set D, we use the following
steps:

1. Find the values of f at the critical points of f in D.
2. Find the extreme values of f on the boundary of D.

3. The largest of the values from step 1 and step 2 is the absolute
maximum value; the smallest of these values is the absolute
minimum value.

Example 3.10.2. Find the absolute maximum and minimum value
of the function f(z,y) = x* — 2zy + 2y on the rectangle

D={(z,y)/0 <z <3,0<y<2}.

Solution. Since f is a polynomial, it is continuous on the closed
bounded rectangle. By the above theorem both absolute maximum
and absolute minimum values exist. Hence

i) By step 1 we can determine the critical points; thus

fe=2x—2y=0= (x,y) = (1,1) is the only critical point
fy=—"20+2=0
and f(1,1) = 1.

ii) By step 2 we took the values of f on the boundary of D i.e.,
along Ll, LQ, L3&L4.

= on Li,y=0 and f(2,0)=2> 0<ax<3f is T.

So minimum value is f(0,0) = 0 and maximum value is

£(3,0)=09.

- On Ly,x=3and f(3,y) =9—6y+2y=9—4y 0 <y <
2. f is decreasing function of y so its maximum value is
f(3,0) =9 and its minimum value is f(3,2) = 1.

- On Ly,y=2and f(z,2) =2 —4r+4 0 <z <3, but
f(x,2)=(x—2)* for 0 <2z < 3.
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minimum value is f(3,2) = 0 and maximum value is
f(0,2) = 4.

- Finally on Ly, we have x = 0 and f(0,y) = 2y for 0 <
y < maximum value f(0,2) = 4 and minimum value

f(0,0) = 0. Thus on the boundary, the minimum value
of f is 0 and the maximum value is 9.

iii) By step 3 comparing these values with f(1,1) = 1 (at the
critical point). We conclude that the absolute maximum value
of fand D is f(3,0) = 9 and the absolute minimum value is

f(0,0) = f(3,2) = 0.

Example 3.10.3. Find the absolute maximum and minimum value

of ) )
flo,y) =2+ 2042y — 2" —y

on the triangular plate in the first quadrant bounded by the line
r=0,y=0and y =9 — x.

Solution. f(z,y) = 2+2x+2y—x?>—y* and consider the following
figure

Since f is continuous and differentiable on R?, by the above
theorem f is continuous and differentiable on D and it has absolute
maximum and absolute minimum on D.

i) To determine critical point, we set
f=0 2-2x=0 B B
{ f,=0 =1 92— 9y =0 =zr=1Ly=1 (1,1)
is critical point . and f(1,1)=4.

ii) We determine the extreme values on the boundary of D.

- On OA,y = 0 then f(z,y) = f(x,0) = 2 + 22 — 22
where 0 < x <. Its extreme values may occur at the end

points:
r=0= f(0,0)=2

r=9= £(0,0) =20 —81 = —61
and at the interior points where f'(z,0) =2—22 =0 =
r=1

= f(z,0) = f(1,0) = 3.



90 Chapter 3 Functions of Several Variables

- On OB,z = 0 and f(z,y) = f(0,y) = 2 + 2y — ¥°
where 0 < y <. By symmetry of x and y in the above
calculation, the candidates on this segment are

- On AB,y =9 — z and we have

f@,9—2) = [flz,y)
= 2420 +209—2)—2>—(9—1)

= —61+ 18z — 222
= f/(x,9—:1c)
18 9
= 8—dr=0=>2r=—=-=
X X 4 2 y
9 9
- 9g_- ==
2 2

and f(5.5) = 5
.. candidates are 4,2, —61, 3, ’741.
Hence f(1,1) = 4 is absolute maximum and f(9,0) =

£(0,9) = —61 is absolute minimum value.
Exercises 3.10

1. Find the absolute maximum and minimum values on the set
D where

(a) f(z,y) =5 —3x+4y. D is the closed triangular region
with vertices (0,0), (4,0) and (4, 5).

(b) f(z,y) = 14+ a2y —x —y. D is the region bounded by
the parabola y = 22 and the line y = 4.

3.11 Lagrange Multipliers

Let f be a function of two variables, to maximize or minimize
f(x,y) subject to g(z,y) = k is to find the largest value of ¢ such
that the level curve f(z,y) = c intersects g(x,y) = k. This hap-
pens when these curves just touch each other. i.e. when they have
a common tangent value.
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This means that the normal lines at the point (xg,yy) where
their touch are identical. Therefore, the gradient vectors are parallel
i.e. for some scaler \. Where X is called Lagrange multiplier and
the procedure bases on equation

Vf(r,y,2) = AVg(z,y, z)

is called the method of Lagrange multipliers and is as follows.

To find the maximum and minimum values of f subject to the
constraint g(x,y, z) = k (assuming that the extreme values exist).

a) Find all values of x,y, z and A such that

Vi(z,y,2) = AVg(z,y, 2)
and g(x,y, z) = k.

b) Evaluate f at all the points (z,vy, z) that arise from step (a).
The largest of these values is the maximum value of f, the
smallest is the minimum value of f.

Remark 3.11.1. For a function of three variables we have

Vf=AVg = [f.=Ag
fy:)‘gy
fz:/\gz

and g(x,y,z) = k. This is a system of four equations in the four
unknowns z,y, z and \.
For a function of two variables we have

Vf(z,y) = AVyg(z,y) and g(z,y) =k
= fx = )‘gmfy - )‘gy and g(x,y) = k.

Examples 3.11.1. A rectangular box without a lid is to be from
12m? of cardboard. Find the maximum volume of such a box.

Solution. Let z,y and z be the length, width and height respec-
tively of the box in meters. Then we wish to maximize
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v=f(z,y,2) = zyz
subject to the constraint g(x,y, 2) = 2xz + 2yz + xy = 12.
By using the method of Lagrange multipliers we have
Vv =AVyg and g¢(z,y,2) = 12.

= Uy = Afa, Uy = AGY,V:NGz, 202+ 2yz +ay = 12

= U, =A2z24+y)......... (1)
T, =A22+x) (2)
Ty =A2x+2y)......... (3)
2z +2yz+ay=12......... (4)

xyz =A2xz+xY). . ... .. (5)
ryz = AN2yz+xy)......... (6)
2yz = AN2zz +2yz)......... (7)

observe that A # 0 because if A =0 = yz = xz = zy = 0 and by
(4) 0 =12 which is contradiction.
Hence from (5) and (6) we have

20z +xy = 2yz + 2y = 202 = 2yz
= zz=1yz. But z2#0 (Since z =0 gives v =0).

So x = y. From (6) and (7) we have
20z +xy =202 + 2yz = 20z =2y

and x # 0 implies y = 2z.
Hence © = y = 2z. From (4) we have

42 +42° +42° =12= 122" =12 = 2 =1 = 2 = £1.
Since x,y and z are all positive, we have r = 2,y = 2 and

Vimaw = 2.2.1. = 4m3.
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Example 3.11.2. Find the extreme values of the function f(z,y) =
22 + 2y? on the circle 2% + y? = 1.

Solution. We are asked for the extreme values of f subject to
the constraint for g(x,y) = 2 + y*> = 1. By using Lagrange mul-
tipliers we have Vf = AVg, g(z,y) = 1. Which can be written
as

fo=Nas fy =29y, gla,y) =1

= 2x=2z\......... (1)
dy =29\ ... ..., (2)
=1 (3)

From (1) we have x = 0 or A = 1. If 2 = 0 then (3) gives y = %1.
If A =1 then from (2), y = 0 so from (3), 22 =1 = z = +1.

.. [ has possible extreme values at the points (0, 1), (0, —1)(1,0)
and (—1,0). Evaluating f at these four points, we get

f(0,1)=2, f(0,-1)=2, f(1,0)=1, f(-1,0)=1.

Therefore, the maximum value of f on the circle 22 +y? =1 is
f(0,4£1) = 2 and the minimum value is f(+1,0) = 1.

Exercises 3.11

1. Find the points on the sphere 22 +y? + 2% = 4 that are closed
to and farthest from the point (3,1, —1).

2. Use Lagrange multipliers to find the maximum and minimum
values of f subject to the given constraints

(a) f(z,y) =2y : 2> +y*=1.
B) fley) =5+ m+p=1
() flz,y,2) =2 +2y°+322 v +y+2=1



Chapter 4

Functions, Limit and Continuity in R"

In this chapter we have studied the limits and continuity of
real and vector valued functions in R", compactness and conti-
nuity,connected and path connected sets and connectedness and
continuity in R".

4.1 Vector Valued Functions

Vector Function. A function f: A — R™ A C R" is called a
vector function of a vector variable.

Real Valued Function. f(z) = (f!(z),..., f™(z))Vz € A. Here
f’s are real valued function with the same domain as f and called
the component functions of f.

Elementary Operations. If f&g are two functions with the same
domain A C R"™ and range in R™ and c is any real number then,

(f+g9)x = f(z)+g(z) Ve e A
(c./(z) = c(f(x)) Voe A

If f:A— R"ACR'and g: B — R, B C R™, and such
that range f C B then

(gof)(x) = g(f(z))Vx € A.

4.2 Limit and Continuity of Vectors and Real
Valued Functions

Definition 4.2.1. (Limit of a function) Let f: A — R™ A C
R" and c is a cluster point of A. f is said to have a limit [ in R™
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at the point ¢ in R"™ if for every € > 0,3 > 0 such that Vo € A

O<|z—c|<d=|f(x) =1l <e, lim,.f(x)=1
Example 4.2.1. f: R?> — R%is defined by f(z,y,2) = (v+yz,x—
yz)-

lim x,y,z) = (2,0).
g F@y,2) = (2,0)

Solution.

[f(x,y,2) = (2,0)] (z +yz,2 —yz) — (2,0)]

lz+yz—2,2—yz|

< Jrtyz =20+ |z —yzl

= lz—14yz—1|+|z—1+1-yz|
< |e—=1+yz =1+ |z — 1] + |yz — 1]
= 2(lz = 1| +[yz — 1])

= 2(z =1 +[yz—y+y—1|)

< 2(lz =1+ [yllz = 1 + |y — 1))

SO
(9, 2) = (L, L) <6 = 2(]z =1+ [yllz = 1] + |y = 1]) <e.

Now assume 0 < 0 < 1. Then |y — 1| < 1= |y| < 2.
But then

< 2z —1|+4|z— 1]+ 2y —1].

Now choosing § = min[1, (¢/8)]

= o — 1+ 4z 1 +2ly—1] <25 +4° 125 —¢.
8 8 8

Hence

\(:U,y,z) o (17171)| <o= |f(x,y,z) T (270)‘ <E&.

Note. If f has a limit at ¢ along every straight line through
c # f has limit at c.
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Example 4.2.2. f: R?> - R

- +x
= x2_y2 y #

Let ¢ = (0,0), and straight line y = kx, k # £1, then

. ka? k
@ ke) = S T T Tk
lim )f(x,y) =0 along y = *u.

(z,y)—(0,0

Along y coordinate, limit — 0. So all limits are different so limit
does not exist.

Theorem 4.2.1. Let f: A — R™, where A C R" and c is cluster
point of A. lim, . f(x) = [ iff lim,_.. f'(z) =1" i=1,...,m.

Proof. Suppose lim,_.. f(z) = [, > 0. Choose § > 0 such that
Vie A:0<|z—c|<d=|f(x) - <e.
But

Ve, |fi(e) B < |f(x) ~ 1 < eyi=1,...,m
= Va,|f'(z) =l'|<ei=1,...,m0<|z—c| <.
= lim f'(z) =IVi=1,...,m.

Conversely suppose that lim, .. fi(z) = I,i = 1,...,m. Let
e > 0. For each i =, ..., m, choose §; > 0 such that Vo € A :

0<|z—c| <8 =|fi(x) =i <—, let 6 =min(s...,5,).
m

ThenVz € A,0< |z —c| <d=|f(x) =1 <|f (x) =1+ +
() —1] < .

= lim f(z) = 1.

r—c

Properties of Limits

Lemma 4.2.1. Suppose f: A — R, A C R" and c is a cluster
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point of A. If lim,_,. f(z) exists, then 3M > 0,0 > 0 such that
Ve e A

O0<|z—c| <éd=|f(x)] <M.

Proof. Let lim, . f(z) = [. By definition of limit 3§ > 0, such
that Ve € A, 0 < |z —c¢| <d = |f(z) =] < 1.
Hence

Vee A O<|z—c|<d = |flzx)|<1+]l] M=1+]]
= |f@)] <M.

Lemma 4.2.2. Suppose f: A — R, A C R"” and c is a cluster
point of A. If lim,_.. f(x) exists and is different from zero then
dm > 0,0 > 0 such that Vo € A,0 < |z —c| <0 = |f(z)| > m.

Proof. Let lim, .. f(x) =1 # 0. By definition of limit 36 > 0 such
that Vo € A,0 < |z —¢| <8 = |f(z) — 1| < L. = 1| < Ly | £ ()],
le.

]
2

il

Vee AO<|z—c/l<d = 5

<[f(x)] m=

Theorem 4.2.2. Let f&g be two real valued function with com-
mon domain A C R", and ¢ a cluster point of A. If lim, . f(z)
and lim,_.. g(z) exists, then

(1) limy—.(f + ¢)(z) = lim, . f(z) + lim,_. g(x)
(i) limg,_.(f.g9)(z) = lim,_. f(z).lim,_. g(x)
(iii) lim,—.(f/g9)(z) = lim,—. f(z)/lim,_. g(z) provided g& its
limit at ¢ not vanish.

Proof.

(i) Let e > 0;lim, . f(x) = 3, lim,_. g(x) = l5. Then by defini-
tion of limit, 30; > 0,5 > 0, such that Vo € A

O<|I—c|<5:>|f(x)—l1|<% and
5

O<‘$—C’<(52:>|g($)—l2|<2
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Choose § = min(dy,ds). Then Vo € A

O<le—c <d=|f(z) + glo)—hL =l <[f(z) -4

€ 9
—1 4z
+ Lo bl < S+

= £

= 1m(f(2) + g(x) = L + 1> = lm(f +g)(z) = lim f(2)

Tr—cC r—c

+ limg(z).

r—c

(ii) Let ¢ > 0,lim,_. f(z) = [; and lim,_..g(x) = l5. Then by

definition of limit and Lemma 4.2.1. 46; > 0,9 > 0,03 > 0
and M > 0 such that Vz € A,

O0<|z—c|<b=|flx)|]<M

€
O<|x—c|<52:>|g(x)—lg|<m

€
O<|lz—cl<ds=|f(z) -] < ——.

Now choose § = min(dy, ds,d3). Then Vo € A

0<|z—cl <d=|f(zx)g(x) — Ll
|f(2)g(x) — lof(x) + lof (x) — Lily]
|f(@)[|g(x) = Lao| + |L[| f(2) = L

€ e.ly e €

IN

74\

oM AG) T 2

(iii) Aslim,_..g(x) = ls, by definition

0 <|z—c|l <d = l|g(xr) —l] <e. Sincely # 0, choice of
e=ll o L] < |g(a)| < 22
and

lo@) — L] _ 2lg(x) — by
T @l S P

1 ‘9(95)—[2
g(x) Iy g(z)ly

Since € > 0 is arbitrary so (%) ¢ is also positive and 3 a

positive number d, such that

l 2
9(x) — 2] < %8,0 <z —c| < dy.
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For § = lim(ds,d4), we get

1

—— ——|<e&0<|z—¢l <
g(x) Iy

i 1 1
= lim — = —

a—eg(x) I

Applying the product law of limit we get

lim =lim f(z).llm — = ;.— = —.
T—cC g(gj) z—>cf( ) T—cC g(x) ! Iy Iy

Proposition 4.2.1. If f : A — R™ A C R" and c is a cluster
point of A such that lim, .. f(z) exists then lim,_.|f(z)| exists
and furthermore lim,_.. |f(z)| = | lim,_. f(x)].

Definition 4.2.2. (Continuity) A function f: A — R™ A C R"
is said to be continuous at a point a € A if a is not a cluster point

of Aorlim,_, f(z) = f(a).

Theorem 4.2.3. Let f : A - R™A C R" and a € A. f is
continuous at a iff f*.4 =1,...,m is continuous at a.

Proof. Suppose f is continuous at a, then lim,_, f(z) = f(a).
But lim, ., f'(x) = f%(a) for i = 1,...,m = each f is continuous
at a.

Conversely, suppose each component function f* is continuous
at a. Then lim,_, fi(x) = f'(a) for i = 1,...,m. Again by Theo-
rem lim, ., f(z) = f(a).

Now we have the following theorem which can be prove easily.
Theorem 4.2.4. Let f,g: A —- R" AC R"and p: A — R. If
f,g and ¢ are continuous at a € A, then f + g, (f.g) and ¢.f are
all continuous at a € A.

Proposition 4.2.2. If T : R* — R™ is a linear transformation,
then T' is continuous.
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Proof. Let ¢ > 0, and a € R". So IM > 0, such that |Th| <
M|h|V¥h € R". Let § = —%=. Hence Vx € R",

Myl
O<l|z—a|<d=|T,-T,)=|T(x—a)| < M|z —al <e
= lim7T, =1,

r—a

Identity Function. i : R" — R" such that i(z) = a2Vx € R". It
is continuous function.

Projection Function. 7, : R* — R,i = 1,...,n such that
m;(x) = 2'Vr € R". Since for all x € R",i(z) = (m1(x), ..., m(7)).
m; is continuous due to continuity of 7.

Constant Function. ¢: R" — R™ such that ¢(x) = ¢Vz € R". It
is also continuous.

Sum Function. S(z,y) =z+vy, S,p:R>— R.

Product Function. p(z,y) = zy.

Proposition 4.2.3. S and p are continuous functions.

Proof. To prove S is continuous. Let ¢ > 0, and (zg,y) € R We

see that [z — zo| < |(z,y) — (zo. yo)| and [y —yo| < |z, y) — (0, 30)

and |S(z,y) — S(@o, yo)| = |z +y — 2o — yo| < |z — zo| + |y — wol.
Let 6 = 5. Now

0 < [(z,y) = (To, )| < = |z — 20| <d,|y —yo| <6
5
2

= lim  S(z,y) = S(zo,%).
(z,y)—(x0,y0)

€
= |z —x| < §‘y—yo| < == [S(z,y) — S(xo,y0)| <€

To prove p is continuous. Let ¢ > 0 and (zg,yo) € R?. Again
[z — 20| < [(z,y) — (%0, Y0)I, [¥ — wol < [(z,y) — (0, ¥o)| and
Ip(z,y) — p(z0, y0)| = |y — 2oyo| = |2y — xYo + 2Yo — Toyo|
< [z[ly — ol + yollz — xo|.
Let 0 < 6 < 1. Then
’(.T,y) - (950>y0)| <6 = ‘ZL‘ —.CEO| <1
= 2] <1+ [0l
Hence V(z,y) such that
0< |($7y) - (330,?/0)| < (5, and
Ip(x,y) — p(xo, vo)| < (14 |zo])(Jy — yol) + |vollz — zol.



4.2 Limit and Continuity of Vectors and Real Valued Functions 101

Now § = min (1 ;>

? 1+|zol+]yol
then

0 < |(z,y) — (xo,%0)| <d = |p(z,y) — p(zo, vo)|

g
< 1 _—
< bl T

I
+ ol ———— =
Yol o+ ool

= 1Mz y)—(20.90) P(T: Y) = P(T0, Yo)-
Now we have

P(z',... 2") = Z iy (2D (™) k€ N,

0<ir+-+in<k

of n variables and degree k is a continuous function.

Lemma 4.2.3. Let f: A - R"and g : B — R, A C R"
and B C R™ such that B D range f. If lim, ., f(x) = b € B and
g is continuous at b then lim,c,(gof)(z) = g(b).

Proof. Let ¢ > 0. Since g is continuous at b3d; > 0 such that
Yy € B,0 <y —b| <1 = |g(y) —g(b)| <e.
Since lim,_, f(z) = b,30 > 0 such that Vo € A

0<|z—al<d=|f(x)—0b] <.
Hence Vo € A;0 < |z —a| <6 = |g(f(z)) —g(b)| < e.

= lim(gof)(x) = g(b).

r—a

Theorem 4.2.5. Let f: A — R™ g: B — R¥ A C R™ and such
that range f C B. Suppose f is continuous at a € A, and g is
continuous at f(a) € B. Then gof is continuous at a.

Example 4.2.3. Let f : R* — R defined by f(z,y,z,w) =
sin[cos(z + y + 2) + w?]. Show that f is continuous.

Solution.

f = sin0s(cos 0s(s(my, m2), m3), (74, T4)),
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continuity of f follows from the continuity of sin, cos, S, p and
m, Mo, 3 and my.

Theorem 4.2.6. Let f : A — R™ A C R". f is continuous
on A iff for every open set U C R™ there is an open set V C R"
such that f~1(U) =V N A.

Corollary 4.2.1. Let f : A — R™ A C R". f is continuous
on A iff for every closed set F' C R™ there is a closed set H C R"
such that f~'(F) = H N A.

Definition 4.2.3. Let f : A — R, A C R" be a bounded func-
tion, a € R". The oscillation O(f,a) of f at a is defined by
O(f,a) =lims_o[M(a, f,5) — m(a, f,d)], where

M(a, f,6) = sup{f(z):2 € A and |z —a| < d}
m(a, f,0) = inf{f(z):z€ A and |z —a| < d}.

Theorem 4.2.7. Let f: A — R, A C R" be a bounded function,
a € R™. f is continuous at a iff the oscillation of f at a is zero.

Proof. Suppose f is continuous at a. Let € > 0. Then 39 > 0 such
that Vx € A: |z —a| <d = [f(z) — f(a)| < 5.
=V e A,

J(@) =5 < J(@) < fa) + 5

= M(a, f,6) < f(a) + 5 and m(a.f,6) > f(a) — 5.

Hence

M(av [ 5) - m(&-f, 5) <

DN ™

Consequently for all 8 < 6, M(a, f,6) —m(a, f,§) < e

Hence
(lslil(l)[M(CL, fv 5) - m(a"f7 5)] <e
= (lsi_{r(l)[M(a, f,0) —m(a.f,0)] =0.

Conversely, suppose O(f,a) = 0. Let £ > 0,3 > 0 such that
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[M(a, f,6) — m(a.f,8)] < e¥6 < §. But then Vay, a9 €
B(a,0) N A : |f(x) = f(ze)] < e =Vr e A:|z—a < =
|f(z) — f(a)] < e = f is continuous.

Theorem 4.2.8. Let A C R" be closed. If f: A — Ris a
bounded function and € > 0, then {x € A: O(f,z) > €} is closed.

Proof. Let B = {x € A: O(f,x) > €}. Suppose x ¢ B. Then
either v ¢ Aorz € Aand O(f,z) < e. If v ¢ A then since A
is closed 3 an open ball B(xz) C A°. Hence B(z) C B®. Ifz € A
and O(f,z) < e then 30 > 0 such that M(x, f,0) — m(z, f,9) < e.
Now consider the open ball B(z,0). Let y € B(z,d) N A. Set
b = 6 — |z —y|. But then M(y, f,01) — m(y, f,01) < €. Hence
O(f,y) <e. Hence y ¢ B°. If y ¢ A then clearly y € B¢. Hence in
any case B(z,d) C B = B is closed set.

Corollary 4.2.2. Let A C R"beaclosedsetin R",and f : A — R
be a bounded function. Then the set of all points of discontinuity
of f is the union of a countable family of closed sets.

Proof. Let B, = {x € A: O(f,z) > 2}n € N. If f is dis-
continuous at a point ¢ € A then O(f,¢) > 0. Hence ¢ € B, for
some n, and conversely if ¢ € B,, for some n then f is not continu-
ous at c. Hence the set of all points of discontinuity of f is U,enB,,.
But each B,, is closed.

Exercises 4.2

1. Let m and n be positive integers. Show that the limit

n

'y
1m e
(@,9)—(0,0) T2 + 2

m

exists if and only if m +n > 2.

2. Give an example of a function f : R" — R such that ltm,_.q
f(z) = 0 but that lim,_of(z)/||z] # 0.

3. For a function f : R® — R and a positive integer m, show
that

lirré f(z)/||z||™" =0 implies that lir% f(x)/||z]|™ =0,
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but that the converse does not hold.

4. Define the function f : R?> — R by

f(2,y) = cos(x +y) + 2%y for (a,y) € R

Prove that f : R? — R is continuous.

5. Define O = {(x,y,2) in R®: (z,y,z) # (0,0,0)} and define
the function f: O — R by
T

fon)=mrpra

for (z,y,z) in O.

Prove that the function f : O — R is continuous.

6. Suppose that the function f : R® — R is continuous and
that f(u) > 0 if the point v in R™ has at least one rational
component. Prove that f(u) > 0 for all points v in R™.

7. For a point v in R" and define the function f : R" — R by

f(u) = (u,v) for u in R".
Prove that the function f : R" — R is continuous.

4.3 Compactness and Continuity

Theorem 4.3.1. If f: A — R™ A C R" is continuous and A4 is
compact then f(A) is compact.

Proof. Suppose f(A) is not compact. Then 3 an open cover O
of f(A) 3 no finite sub collection of O covers f(A). Let O' = {V C
R™: Vis openin R” and > u € O such that VN A : f~'(u)},0
is an open cover of A. Since A is compact 3 a finite sub collection
{V4,...,Vi} that covers A. But then the sub collection {ui, ..., uz}
of O where f~'(u;) =V;NAi=1,...,k covers f(A). Contradic-
tion. Hence f(A) is compact.

Corollary 4.3.1. Extremum Value Theorem. Let A C R", be
compact. If f: A — R is continuous then f takes on a maximum
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and minimum value on A.

Proof. f(A) is compact. Hence f(A) is closed and bounded in R.
Hence f(A) has a supremum and an infimum that are contained
in f(A). But then the supremum and infimum are respectively the
maximum and the minimum of f on A.

Corollary 4.3.2. Let A C R" be compact. If f: A — R™ is
continuous then | f| takes on a maximum and minimum value on A.

Proof. f is continuous = |f| is also continuous, and hence us-
ing above Corollary 4.3.1. to |f|, we get result.

Theorem 4.3.2. Let A C R"™ be compact. If f : A — R™ is
continuous and one to one then the inverse function is continuous.

Proof. Since f : A — R™ is one to one the inverse of f de-
noted by g : f(A) — A exists. Since A is compact = A is closed.
Let F' be any closed set in R™. Clearly

g F) = g (FNA) = f(FA).

F N Ais closed and bounded = it is compact. Hence f(F N A)
is compact = it is closed. But f(FNA) C f(A). Hence g7 (F) =
fA)NFEFNA)

= ¢ is continuous.

Definition 4.3.1. Given a function f : A — R™, f is said to
be uniformly continuous on A iff Ve > 0,3 > 0 such that

Ve,ye Atz —yl <d=|f(x) - fly)| <e

Note 4.3.1. If f is uniformly continuous on A, then f is continu-
ous at every point of A i.e., f is continuous on A.

Note 4.3.2. But f is continuous on A need not imply that f
is uniformly continuous on A.

Example 4.3.1. f:(0,1) = R, f(z)=1/z
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f is continuous on (0,1). But f is not uniformly continuous on
(0, 1), we have to show that Je > 0,V > 0 such that g, &yo € (0, 1)

|0 — yo| <6 but |f(x0) — f(yo)| > ¢
Taking

€d
5+1 5+1
< 4, (0<d<1)

4]
Iozé,yozm then |$0—y0 0 —

but
1 1

Zo Yo

| (xo) — f(wo)| =

n 5 |6 ’

Theorem 4.3.3. Let A C R"™ be compact. If f : A — R™ is
continuous then f is uniformly continuous.

Proof. f: A — R™ is continuous = for any a € A and Ve >
0,30 > 0 such that

|z —al < 0a = |f(x) — f(a)] <e/2.
The collection

S = {BT(L( ):a€ A} is an open cover of A.
Since A is compact 3 a finite sub collection
{Bil(al) Bisay (a), . ,B(SaTn(a/n)} of & covering A.

Nowleté-m1n{5a1 5“2,...,% .

Let z,y € A be any points such that |x — y| < §, then we have
to show that |f(z) — f(y)| < e.
Moreover y € A = y € Bsa,; for some j € {1,...,n}.
8

oa;
= |y —a4| < TJ <da; = |f(y) — fla;)| <e/2.
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[In fact for any z € A : |z — a;] < da; = |f(z) — f(a;)| < €]

|z —a;| < |z—y|l+|y—ay

< 5+%§(5aj:>\f(x)—f(aj)\<e.

Thus

|z —y| <0 = |z —y| <da;Vj.

|z —y| <z —a;| + |y — a;| < da,

= [f(x) = f(W)| < |f(2) = fla)| + [f(y) — flay)] <e.

Exercises 4.3

1. Can a symmetric neighborhood in R™ be compact ?

2. Let A be a subset of R" and the function f : A — R™ be
continuous. If A is bounded, is f(A) bounded 7

3. Suppose that the function f : R® — R is continuous, and
f(u) > |lu|| for every point u in R™. Prove that f~'([0,1]) is
compact.

4. Let A and B be compact subsets of R. Define K = {(z,y) €
R?:x € A,y € B}. Prove that K is compact.

5. Let u be a point in R", and let r be a positive number. Prove
that the set {v € R : d(u,v) <r} is compact.

6. Which of the following subsets of R is compact.

(a) {z € R: 2> x}.
(b) {z € R:e” — 2% <2}

4.4 Connected and Path-connected Sets

Definition 4.4.1. Let A C R and U,V open subsets of R". U&V
are said to be a separation of A if

(i) UN A # ¢.
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(i) VNA#o.
(iii) (UNA)N(VNA) =¢.
iv) UnA)U(VNA) = A.

Definition 4.4.2. A subset A of R™ is said to be a disconnected
set if it has a separation U and V. A is called connected if it is not
disconnected.

Example 4.4.1.

(i) A= R\{1} is a disconnected set.
Let U = (—00,1),V = (1,00),U&V are separation of A.

(i) A={(z,y) :y=1/aVx > 0} C {(z,y) : y =0,z > 0}.
Let C ={(z,y) :y=1/x,2 >0} B={(z,y):y=0,2>
0}.
A is not disconnected. Any open set containing B contains
some point of C.

Theorem 4.4.1. A set C' C R is connected iff it is an interval.

Proof. Let C' be a connected set. Suppose C' is not an inter-
val = Jdz&y € C,x < y such that [z,y] € C = 3z € (z,y)
such that z ¢ C. Now consider the open sets U = (—o0, z) and
V = (z,00),U&V are separation of C' = C'is not connected = C'
must be an interval.

Conversely, suppose now C' is an interval and assume that C' is
not connected. Let U&V be separation of C. Let w € U N C and
z € VNC and let w < z. Note that [w, z] C C. Consider now the
S1=A{x € [w,z]/[w,x) CU}
Sy =A{x € [w,z2]/[z,z) CV}
Both S1&S5 are non empty and bounded sets.
Let a = [ubS; and 3 = glbSs
a<zand f>w

sets and.

i) If @ € U, then since U is open 3z € U such that o < g and
[2,20) < U < a =sup 5.
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ii) If @ ¢ U, then since « € C,a € V and = glbSy; = ( < «.

[If 3 = a then § € V = Jz; € V such that z; <  and
(1,0] <V & to § = glbS,]

B <aeV Visopen = dry € V such that g < 2 < x.

(a) If ;1 € U, then 2y € intU and x; € intV
= (intU) N (intV') # ¢.

(b) If 1 ¢ U, then x; is an upper bound and z; < a <
since a = [ubU. Thus o € V' is not possible.

Hence o ¢ U and o ¢ V but o € C' and U&V are separation
of C.

=ac[UNClUVNnC]=C
saeU&ka eV,

which is a contradiction. Hence C' must be connected.
Exercises 4.4

1. Let @ be the set of rational numbers. Show that ) is not
connected.

2. Show that the set S = {(z,y) € R*: either z or y is rational
} is path-wise connected.

3. Let A and B be path-wise connected subsets of R whose in-
tersection AN B is nonempty. Prove that the union AU B is
also path-wise connected.

4. Let a and b be positive real numbers. Show that the ellipse
{(z,y) € R* : 2*/a® + */b* = 1}
is path-wise connected.

5. Let A and B be convex subsets of R". Prove that the inter-
section A N B is also convex. Is it true that the intersection
of two path-wise connected subsets of R" is also path-wise
connected 7



110 Chapter 4 Functions, Limit and Continuity in R"

6. Given a point v in R™ and a point v in R™, we define the
point (u,r) to be the point in R whose first n compo-
nents coincide with the components of u and whose last m
components coincide with those of v. Suppose A is subset of
R" and that F': A — R™ is continuous. The graph G of this
mapping is defined by

G={(u,v) € R :ue Av=F(u)}.

Show that if A is path-wise connected, then G is also path-
wise connected.

4.5 Connectedness and Continuity

Theorem 4.5.1. Let A C R" be a connected set. If f: A — R™
is continuous then f(A) is connected.

Proof. Suppose f(A) is disconnected. Then U,V C R™ open
sets which are separation of f(A).

f is continuous ,U&V are open sets = AUy, Vi C R" such that
fFRAUO)=UynAand f[FH(V)=VoNA

Claim. Uy and V; are separation of A.
() fFHU)NFHV) = ¢ (otherwiselet z € f~1(U)&x € f~1(V) =
f(x) e UnN f(A) and f(z) € VN f(A)
= [UnfA]n[VnfA)]#e.
Thus fHU)NfF(V)=¢p & (U NA)NVoNA) =
(i) (UoNnA)U(VynA)=A
let
reA= f(x)e f(A)=UNAUWVNA)
= f(x)e (UNA) or f(z)e (VNA)

= f(z) €U or f(x)eV
= z€f{U)orxef'(V)=2e(UnA)U((yNA.

Since (UpNA)U(VoNA) CA= (U NAU((VHNA) =A.
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(i) UNf(A) # o= fH(U)=UeNA#¢
VNfA)#o= fT1(V)=WNA#¢.
From (i) (ii) & (iii) A is disconnected f(A) must be connected.

Definition 4.5.1. A set ¢ C R" is said to be a convex set if
for all z,y € Cand t € [0,1],tx + (1 —t)y € C.

Note. z =tz + (1 —t)y

=y+t(z—y)

= every point on the line segment determined by the point z&y
in C.

convex set Not connected

Fig. 4.5.1

Theorem 4.5.2. Any convex set in R" is connected.

Proof. Let C be a convex set in R™. Suppose C' is not connected,
then d open sets U and V' in R" such that U and V' are separation
of C. Nowlet z € UNC # ¢ and y € VN C # ¢. Consider
the function f : [0,1] — C defined by f(t) =tz + (1 — t)y, f is
continuous on [0, 1]. Hence 3 open sets O; and Oy C R such that

fHU)=0:n[0,1] and f~H(V)=0,n10,1]
3f0)=y=0:N[0,1] # ¢, f(1) =2 = 0:N[0,1] # ¢
furthermore f~H(U)N f~4(V) =¢ and f~H(U)U f~1(V) =[0,1]

= Oy and O, are separation of [0, 1] (since [0, 1] is an interval).
Thus C' must be connected.

Corollary 4.5.1. R" is connected.
Proof. R™ is convex. (For any z,y € R™ and t € [0, 1]
tr+ (1 —t)y € R™.

Example 4.5.1. In R", the only subsets that are open and closed
are ¢ and R".
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Proof. Let S C R",S # ¢ and S # R"™ and S is both open
and closed. Let V = S and U = S¢. V and U are open sets, U # ¢
and V' # ¢.

(UNR)YN(VARY) =¢ and (UNR)U(VNR") = R"

= U and V are separations of R” =. Thus R" and ¢ are the only
subsets.

Example 4.5.2. Let A be a connected set and A C B C A.
Then B is also connected.

Proof. Let A is connected, we have to prove that B is connected.
Assume that B is not connected then 3 open sets U,V C R" such
that UN B # ¢,V N B # ¢.

(UnNnB)N(VNB)=9¢,(UNB)U(VNB)=B0B.

) =UNA#¢and VNA#¢ (UV are open sets and z €
B =z € Aor zis a limit point of A).

i) (UNA)NVNA)CUNB)N(VNB)=¢.

iii) (UNA)N(VNA)CA. Conversely let z € A
=reB=UnNB)U\VNB)=xecUNBorzecVNB
rzecUNAozeVNA=ACUNAUWVNA
= (UNA)N(VnNA) =A.

= A is not connected < B must be connected. It follows that A
is connected.

Definition 4.5.2. A set A C R™ is said to be a path connected set
if for every z,y € A, there is a continuous function f : [a,b] — A
such that f(a) =z and f(b) =y, where [a, b] is a closed interval.

i.e., A is path connected if any two points z,y € A can be con-
nected by a continuous curve which lie in A.

Theorem 4.5.3. Any path connected set is a connected set.
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Proof. Let A be a path connected set. Suppose A is not con-
nected. Then 3 open sets U&V C R"™ that separate A. Let
reUNAand y € VNA Since A is path connected there is
a continuous function f : [a,b] — A such that f(a) = z, f(b) = v,
then 3 open sets 01,0y C R such that f~1(U) = O; N [a,b] and
f~YV) = Oy N [a,b],0,&0, are separation of [a,b] = A is con-
nected.

Exercises 4.5

1. Prove that if A is open and connected, then it is path con-
nected.

2. Show that

3

1m 3 G does not exist .
(z,9)—(0,0) T + Y

3. Which subsets of R are both compact and connected ?

4. Let K be a compact subset of R". Prove that K is not con-
nected if and only if there are nonempty, disjoint subsets A
and B of K, with AN B = K and a positive number ¢ such
that d(u,v) > ¢ for all uw in A and all v in B. Is the assump-

tion of compactness necessarily for the existence of such an ¢
o

5. Suppose that A is a subset of R™ that fails to be connected,
and let u and v be open subsets of R™ that separate A. Sup-
pose that B is a subset of A that is connected. Prove that
either B <wuor B C .



Chapter 5

Differentiation in R"

In this chapter we consider functions mapping R" into R™, and
define the derivative of such functions.Chain rule, partial deriva-
tives, directional derivatives and Mean Value Theorem also have
been discussed. Two major results of this chapter are the inverse
function theorem, which give conditions under which a differen-
tiable function from R™ to R™ has a differentiable inverse, and the
implicit function theorem, which provides the theoretical under-
standing for the technique of implicit differentiation as studied in
calculus.Here we have simply generalized facts that are already fa-
miliar in calculus.

5.1 Introduction

Definition 5.1.1. Let A be an open set in R” and f: A — R™. f
is said to be differentiable at a € A if and only if there is a linear
transformation A : R* — R™ such that

L f(at ) = fa) = AR

h—0 || =0

If f is differentiable at every point of A, then f is said to be a
differentiable function.

Remark 5.1.1. The above definition is equivalent to say that
f is differentiable at a € A C R™ if 9 a linear transformation
A R" — R™ such that Ve > 0 there exists § > 0 such that
Vee A:lx—a| <d=|f(x)— fla) = ANz —a)|] <elz —al.

Example 5.1.1. Let f: R" — R™ be given by f(z) =c¢,c € R™
is constant then f is differentiable.
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Solution. A(h) = 0, the zero transformation, then

po L@t h) — f@) A fe—e—0]

h—0 |h| h—0 || 0.

= f is differentiable.

Example 5.1.2. Let f : R® — R™ be a linear transformation,
then f is differentiable.

Solution. Let A(h) = f(h), then

| fla+h) — fla) = A(h)] (@) + f(h) — f(a) — f(R)]

y 0 = 7 =0
= f is differentiable.
Theorem 5.1.1. Let A C R" be open. If f is differentiable at
a € A, then the linear transformation A : R — R™ is unique.
Proof. Let f be differentiable at @ € A and A : R* — R™ and
i R — R™ be linear transformations such that
@t ) = ) =AW Ifat b~ f(a) = ()]
h—0 |h’ h—0 ‘h‘
(5.1.1)
Note that Vo € R™ if we show
|u(x) — A(x)| = 0, then we are done.
Consider
ju(h) = Ah)| - p(h) — fla+h) + fla) + fla+ h) — fla) — A(h)]
| ||
[f(a+h) — fla) = A(h)]
B Id
L flath) = fla) = p(h)]
Id

using (5.1.1), we get

A T
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Let x # 0 be in R", then for any t € R

pltz) = A(t)] _ lu(e) = Ma)|

123 ||
Furthermore
Y 20 N 1165 R YCo B
M T ]
= u=A\

Definition 5.1.2. Let A C R" be open and the function f: A —
R™ differentiable. Then the unique linear map A\ : R" — R™ in the
definition of differentiability of f, is called the derivative of f at a
and is denoted by D f(a).

Example 5.1.3. If f: A — R, A C R, f is differentiable at a € A
means

lim M = lim

T—a Tr—a h—0

exists,

fla+h) = f(a)
h

and this limit is denoted by f'(a).
If we let A(h) = f(a)h, then

i L+ 1) = (@) = £ (@

i I =0.

Example 5.1.4. Let f : R?> — R be defined by f(z,y) = sinz.
Then D f(a,b) = X satisfies A(z,y) = cosa.x.

Solution. Note that
fla+h,b+ k) — f(a,b) — A(h, k)

lim
(h,k)—0 |(h, k)|
|sin(a + h) — sina — cos a.h|
= lim
(h,k)—0 |(h, )]

we have that

. |sin(a + h) —sina — cos a.h|
lim =
h—0 |h‘




5.1 Introduction 117

since |(h, k)| > |h], it is also true that

sin(a + h) —sina — cosa.h

= 0.

1m

h—0 |(h, k)|

Theorem 5.1.2. If f is differentiable at a then it is continuous at a.

Proof. We have to prove that lim,_o|f(a + h) — f(a)] = 0. f
is differentiable at a =.

i f@t ) = fla) = A

= 0.
h—0 ‘h‘

Note that

0<[f(z) = fla)| < [f(z)— fla) = Az —a)|+ Mz —a)
< |f(z) = f(a) = Az —a)| + M|z — al,
for some M > 0.

o 2@ @) Na =)l

z—a |z — al
= lim,_, |f(x) — f(a)| = 0. Therefore f is continuous at a.

Exercises 5.1

1. Let g : R — R be function of class C?. Show that

}lliﬂ% gla+h)— Qgh(Qa) + g(a—h) _ g//(a).

2. Show that the function f(z,y) = |zy| is differentiable at 0,
but is not of class C! in any neighborhood of 0.

3. Suppose that A is an m X n matrix. Define the mapping
F:R"— R™ by

F(z) = Az for every z in R".

Prove that DF(z) = A for all x in R".
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5.2 Chain Rule

If f: A— R™is differentiable at e € A C R" and g : B —
R? is differentiable at f(a) € B € R™, then gof : A — RY is
differentiable at a, and

D(gof)(a) = Dg(fa)0D f(a).

If m =n =1, we obtain the old Chain Rule.

Proof. Let b = f(a), let A = Df(a) and p = Dg(f(a)). If we
define

L. ¢(x) = f(x) — fla) = Mz —a): A: R* — R™.

4. lim,_., o] = 0 since f is differentiable at a.
5. lim,_ % = 0 g is differentiable at b.

and we need to show

o |f(_xi|| 0
Note.
S(x) = g(f(z)) —g(f(a)) — p(A(x — a))
= g(f(z)) —g(f(a)) — u(f(z) — fla) — ¢(z))
= g(f(2)) —g(f(a)) — pn(f(z) = fla)) + p(o(x))
9(f(x)) = g(b) — u(f(z) = b) + p(é(x))
S(x) = o(f(x))+ u(¢(z))
= [S@)] < Jo(f(@)|+ |lu(e())l.

Thus, if we show

0 g g @D
r—a |z — al r—a |z — al

Then we are done.
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[u(@(x))] < Mlo(x)], for some M.

T—a |{L‘ — (I| r—a |J} - a’|

=0.

Now we have

i LU
1 fw) = 0]

= Ve > 0 there exists 6; > 0 such that

|[f(2) = 0] <61 = [o(f(x))] <elf(x) - D]
and |f(x) —b] < é; and f is continuous at a = there exists § >

0,|x —a|l <= |f(z)—b| <.
Now |z —al < = |f(z) — b < 01 =

[p(f(x)) < elf(z) — bl = eld(x) + Mz — a)|
le(f(2)] < elg(x)| +e[Mz —a)
< elg(x)| +eM|z — a| for some M > 0.

=0 by (5).

Thus now Ve > 0 there exists § > 0 such that

[z —al < 0= [p(f(2))] <e(lo(x)] - M|z - al)

-t P00

= 0.

Hence since ‘|x£ )Il < |‘”‘§6f(af)‘ + |#|g:¢7(f2)l

Example 5.2.1. Let A C R™. If f : A — R™ is a constant function
i.e., for some ¢ € R™, f(x) = ¢ for some x € A. Then Df(a) =

Solution.

At )~ (@)~ 0
h—0 |h|

=0= Df(a) =0

Example 5.2.2. If f : R® — R™ is a linear transformation, then

Df(a) = f.
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Solution.

o @t h) = fla) =AM @)+ F0) = @) = f0)]
h—0 |h| h—0 || )
= Df(a) = f.

Example 5.2.3. Let A C R"™ be open, f : A — R™ is differ-
entiable at a € A if and only if each f? is differentiable and

Df(a) = (Df'(a),..., Df"(a)).

Solution. Suppose f is differentiable at a. Then since 7° (the
projection function) is differentiable with A = 7. i.e., Dn'(a) = 7'
and f is differentiable at a, the composition 7of is differentiable
at a (Chain Rule) and

D(r'of)(a) = Df(a)D(n'f(a)) = Dr'(f(a)oDf(a)) = ".Df(a)
= Df'(a) = Df(a) for each i.

Conversely, suppose each f? be differentiable at a.

Let A = (Df(a), Df*(a),...,Df™(a)),\' = Df(a).

Consider limy, ‘f(“+h)—‘£|(a)—>\(h)l

[f(a+h) = fla) - (ﬂ
= |fia+h) = fia) = XN(R),.... f"(a+h) = f"(a) = X"(D)]

< Z |fi(a+h) — fi(a) — N'(h)|

but
lim WZ\MM flla) = Nn)| =0
and
e = |h|Z|fza+h Fi(a) = X(h)|
L iy et D) — fl@) =

h—0 ‘h‘
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ie., f'(a) = Df(a) = (Df'(a).Df*(a),...,D™(a)) = \.

Example 5.2.4. S : R?* — R defined by S(z,y) = x + y is differ-
entiable with DS(a,b) = S. i.e., DS(a,b)(x,y) = S(z,y).

Solution. S is linear hence by (2), 3" =S = DS(a,b) = S.

Example 5.2.5. P: R?> — R be defined by P(z,y) = zy, then P
is differentiable and DP(a,b)(x,y) = bx + ay.
Then

P,(a, b) = (b,a).

Solution. P(x,y) = xy. Let A(z,y) = bz + ay, A\ = DP(a,b).
Then

|P(a+h,b+ k) — P(a,b) — A(h, k)|

|(h, k)]
_ |(a+h)(b+E)—ab—0bh—ak]  |hk| < h* + k2
|(h, k)| V24 kT VR kY
_[P(a+hb+k) = P(a,b) — A(h, k)|
lim = 0= Az,
(h)—(0,0) (7, &) ()
= bz + ay.

Thus it follows that the matrix representation of the linear
transformation f'(a) = (b, a).

Remark 5.2.1. Let f : A — R™ where A is an open set in
R". If f is differentiable at a € A. Then the matrix representation
of D f(a) with respect to the standard basis in R" and R™ is called
the Jacobian matrix of f at a and is denoted by f'(a).

Corollary 5.2.1. If f : A — R" is differentiable at « € A C R",
A open, then f'(a) is the m x n matrix whose i*" row is (f*)'(a).

Proof. We know that if each f? is differentiable at a then

Df(a) = (Df'(a),...,Df"(a)).

Suppose (f9)'(a) = (a1, ..., ai) fori =1,...,m. Then (f")(e;) =
a;jfori=1,...,mand j=1,...,n.
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Therefore

Df(a)(e;) = Dfl(a)ej, . Df™a)ej,i=1,...,n
= (fHa)(e), ..., (f™Ha)(e;),j=1,...,n

= (Qijy.- - Qmj),J=1,...,n
m

= 5 aje;, ] =1,...,n.
i=1

aix  -..0Q1p (fl)l(a)
= fly=] or flay=| |
m1 -+ Qmn (fm)l(a)

Example 5.2.6. P: R> - R, P(z,y) = xy, then

DP(a,b) =\ and A(z,y) = bx + ay
DP(a) = Df(a)

DPGbe0) = ) ()
P'(a,b) = (b, a).
Example 5.2.7. f(z,y) =
Df(a,b) =
f(a,b)(x, y) =cosa.x + 0.y
f(a,b) = (cosa,0).

=sinz, A(x,y)= cosa.z, then

Example 5.2.8. f(r,y,2) = (2r+ 2,y +32), f:R>— R?
f is linear, A = f, then

Df(a) = (Df'(a),Df*(a))
fi@) = f', Df*(a)=f?
Dfl(a)( y,z2) = 2x+z

Df*(a)(x,y,2) = y+32

pf@ens = (o] ;)(g)

= (2z+2z,y+32)
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Corollary 5.2.2. Let f,g : R* — R be differentiable at a € R",

then f + g, f.g and f/g for g(a) # 0 are all differentiable at a.
Furthermore

i) D(f +9)(a) = Df(a) + Dg(a).

ii) D(f.9)(a) = g(a)Df(a) + f(a)Dg(a).

i) D(f/g)(a) = 9(a)Df(a)~f(a)Dg(a)

l9(a)]?

Proof.

i) (f+9g)(x) =So(f,g)(x)

D(f+g)(a) = D(So(f, g)(a))
= DS(f(a),g(a))oD(f(a),g(a))
— So(Df(a), Dg(a))

D((f.g)(a)) = Dipo(f,g)(a)
= Dp(f(a),g(a))o(Df(a), Dg(a))
= g(a)Df(a) + f(a)Dg(a)

iii) First show that D (é) (a) = —[gf’a(ﬁ%, then apply (ii).
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To show D (é) (a) = — [j; (ga(ﬁ%, by direct computation we have

gla)g(a+h

, Dyfa)(1)llg(a)] — gla + h) ‘
9(@)Pgla + h)
gla+ 1)~ gla) ~ Doa)()| _ MIMlgle) — gla+ 1)
= g(@)gla 1 B)] (9(a)Rlga+ 1)
lim lg(a+h) —g(a) — Dg(a)(h)| 1
h—0 A lg(a)g(a+ h)|
Mlg(a) — gla+h)|
T T@Pgar R
LY oy Ly (Dala) _
= fim o (g>< th) = ”([g(an?)(’”‘ !
1 _ —Dg(a)
> D<g) "= Gae
f — l a a a l a ()
D(;) (a) = (g)( )Df(a) + £ >D(g< >) by (i)
1 f@Ds@

g(a) [9(a)]?
_ gla)Df(a) — f(a)Dg(a)
[9(a)]? '
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Remark 5.2.2. f: A — R ACR' g: B — R B C R"f
is differentiable at a and g is differentiable at f(a) then by Chain
Rule

D(g0f)(a) = Dg(f(a))oDf(a).

In terms of the Jacobian matrix this equation can be written as
(gof) (a) = g (f(a)).f ().
Remark 5.2.3. 7' : R" — R is projection Dr’(a) = 7' and
(7)) =(0,...,1,0...0).

Example 5.2.9. f(z,y) = sin(zy?), find f'(a,b) which is a 1 x 2
matrix.

Solution. f = sino(r!(7?)?).
f(a,0) = [sin'7'(n®)*(a,b)]. [(Wl)'(WQ)Q+7T1[((7T2)2)/](a7b)]
= cosab®[(7)(a.b)(7%)*(a, b) + 7'a, b)((7%)?) (a, )]
L0)b? + a[27%(7%) (a, b)]]
= cosab?[(b*,0) + a(2b(0,1))]
= cosab®(b?,2ab) = (b* cos(ab?), 2ab cos(ab?®)).

= cosab?[(1

[(m
(1
alt
(
Exercises 5.2

1. Find derivatives of the following:

(a) f(x,y,2) = (2¥, 2).

(b) f(x,y,2) = sin(xsiny)

(c) flz,y,2) = av**

(d) f(x,y) = (sin(zy),sin(zsiny), z¥).

2. Let f: R* — R and g : R?> — R be differentiable. Let
F : R? — R be defined by the equation

F(z,y) = f(z,y,9(z,y)).

(a) Find DF in terms of the partials of f and g.
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(b) If F(z,y) = 0 for all (x,y), find D¢ and Dsg in terms
of the partials of f.

. Let f: R?> - R? and g : R* — R? be given by the equations

flz) = (e 2“”2,3@—cosxl,xf+x2+2),
9(y) = By +2y2+ iyl —ys + 1).
(a) If F(z) =g(f(x)), find DF(0).

) =
(b) It G(y) = f(9(y)), find DG(0).

Suppose that the function h : R* — R is continuously differ-
entiable. Define the function 1 : R®> — R by

n(u,v,w) = (3u + 2v)h(v®, v?, uvw) for (u,v,w) in R>.

Find Dyn(u,v,w), Don(u,v,w) and Dsn(u, v, w).

Suppose that the functions ¢ : R — Rand h : R — R
have continuous second-order partial derivatives. Define the
function u : R?> — R by

u(s,t) = g(s —t) + h(s +1t) for (s,t) in R*.
Prove that 2:4(s,t) — 2%(s,t) = 0 for all (s,t) in R

Suppose that the functions f : R — R and g : R — R have
continuous second-order partial derivatives. Also that there
is a number A such that

f(x) = Af(x) and ¢ () = Ag(z) for all z in R.
Define the function u : R?* — R by
u(z,y) = f(2)g(y) for (z,y) in R*.
Prove that £ 52T, y) — (x y) = 0 for every (z,y) in R?.

Suppose that the function g : R" — R is continuously differ-
entiable. For points z and p in R", if ¢(t) = g(x + tp) for ¢
in R, then

¢'(t) =< Dg(x +tp),p > for every ¢ in R.

Show that this formula is a special case of the Chain Rule.
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8. Suppose that the function u : R — R is harmonic. Let a, b, c
and d be real numbers such that

A+ =1,"+d*=1 and ac+bd = 0.

Define the function v : R? — R by

v(z,y) = u(ax + by, cx + dy) for (x,y) in R%

Prove that the function v : R? — R is also harmonic.

5.3 Partial Derivative

Definition 5.3.1. Let A C R" be open. If f: A — R and a € A,
then the limit

hmf(al,...,ai—i—h,...,
h—0 h

a") — f(at,... a")

if it exists, is denoted by D; f(a), and called the i'" partial derivative
of f at a.

Duf(e) = i K100~ Sl0)

Suppose f: R" — R is a given function.

f(@) = Wiy, Ym) € R™.

Components of f: f: R*" —= R i=1,2,...,m,

f(x) = (fl(x)7f2(x)> R fm(aj))

Conversely if m functions ¢; : R* — R are defined then f :
(¢1, 02, ..., Pm) is a function from R — R™.
Let {e1,eq,...,e,} be the standard basis of R". We define for

f="(f1, f2s.-., fm) the function D, f; as:
Let E C R™ be an open set and x € F.

(Dyf)(z) = lim L8 T 1) = Ji(@)

h—0 h

provided the limit exists.
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or

afi
al'j.

Suppose [ : R® — R™ is differentiable at x € F,

(Djfi)x =

@+t = @) = @

t—0 |t|

Let t = he;, then we have

o Lt hey) = f(@)
h—0 h

= f'(@)(¢))-
Let us put the components of f in numerator of left hand side

m fl(q: + hej), fg(l’ + h€j>, ceey fm(ﬂf + h@j) — fl(.fC), fg(ﬂf), . ,fm(l’>

li

h—0 h

= f(x)(¢;)
ie.,
i fi(x + hej) — fi(x), falx + hej) — fax), ..., fm(x + he;) — fm(x)
hlg(lJ h )

Hence the individual limits
o File+ hes) = £i@)

1 =1.2,...,m.
h~>0 h ) ) b )

etc. exists.
Thus if f is differentiable at x € E then each component is also

differentiable.

But converse is not true:

1‘3

f(0,0)=0. f(x,y) :m,

function being ratio of polynomial is continuous on R? at (0,0)

3
x—_o 3
le:limmzlim <

=1.
z—0 x x—0 1’2 — X

Dyf : lim % = 0.
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at y =mx

limit is not unique.
Example 5.3.1. f(z,y,2) = zsin(zy?). Then

Dif(@,y,) = 2 cos(ay?) g = 2P cos(ay?)
Dyf(x,y,2) = 2zyxcos(zy?)
D3f(x7 Y, Z) - sin(myQ).
Remark 5.3.1.If D, f(z) exists Vo € A C R" we obtain a fix
D;f : A— R. Then i"* partial derivative of this function at x € A,

is denoted by D; ;f(x). D;;f(x) is called the second order partial
derivatives of f.

Remark 5.3.2. If D;;f and D;;f are continuous in an open
set contain a, then

D;;f(a) = Dj;f(a).
Lemma 5.3.1. Let A € R" be open and f : A — R be
differentiable at a € A, then the Jacobian matrix of f at a is

/

f(a)=(Dif(a),D2f(a),.... Dnf(a)).
Proof. Consider the function h: R — A C R" defined by
h(z) = (a*,...,d 2,0’ ... a").
h is differentiable at a’ (infect at any point ¢)

LB+ ) = B(t) = AR
k—0 k

_ lim|(O,...,O,I<:,O,...,0)—)\(k)|
k—0 k

= MNk)=(0,...,k,...,00) A:R—R"

is a linear transformation.
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Thus h is differentiable with

Now consider the function foh, since h is differentiable at a;
and f is differentiable at a = h(a;), foh is differentiable at a;- and
by Chain Rule

’ ’

(foh) (a;) = f

/

= D, f(a) = f (a).

i.e., Djf(a) is the j" component of f'(a).

= f(a) = (Dif(a),...,D,f(a)).
(foh) (a;) = lim LOMNG+F) = (Foh)(ay)

k—0 k

Inh, flar,...,a;+k,...,a,) — fla,...,an)
k—0 k

= Djf(a)

Theorem 5.3.1. Let A C R" be open set and f : A — R™ be
differentiable at a € A. Then D; f*(a) exists for each i = 1,...,m,

and j = 1,...,n. Furthermore the Jacobian of f at a f'(a) is given
by
DifY(a) Doft(a) ... D,fa)
fla)= :
Dif™(a) Dyf™(a) ... D,f™(a)

Proof. Let f = (f', f%,..., f™), differentiable at a, then for each
i=1,...,m, f!is differentiable at a.
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Furthermore
(7 @)
fl(a) = Y ) (a) fi:A— R for each i.
(f™) (a)

Thus by Lemma 5.3.1 (%) (a) = (D1 f'(a), Daf*(a), ..., D, f'(a))
= fz(a) = (Difj(a))mxn'

Note. Existence of partial derivatives need not imply differen-
tiability.

Example 5.3.2.Let

=i (2,y) #(0,0)
f“’y):{ 0" () = (0.0).

D1 f(0,0) =0, Dsf(0,0) =0, but f is not even continuous at (0, 0).

Example 5.3.3. Find the Jacobian matrix for each of the fol-
lowing.

a) fla,y,2) = (2%, 2)

b) f(z,y,2) = sin(z siny).

o) fla,y,2) = av+s.

d) f(z,y) = (wsin(z,y), sin(zsiny), 2¥).
Solution

a)

fl,y,2) = (a%2)
f == (flva
/ B Dy fY(a), Doft(a)Dsf(a)
fla) = (D1f2 , Dy f?(a)Ds f*(a) )
yay! xylogx 0
(5 )
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b) It can be find similarly.

c¢) It can also be find similarly.

d)
f(z,y) = (xsin(zy),sin(zsiny), ),
fo= (ffa f5) fi= filz,y),
fli(a) = wsin(ay)
f*(a) = sin(xsiny)
fia) = av.
DifY(a) Dofl(a)
fa) = | Dif*(a) Daf?(a)
Dif*(a) Daf*(a)
sin xy + zy sin(zy) 22 cos xy
= cos(zsiny)(sinxy) cos(xsiny)xcosy
Yyl x¥Ylnx

Theorem 5.3.2. Let A C R" be open and f: A — R™. If all
partial derivatives D; f*(z) exists in some open set containing a and
if each function D, f* is continuous at a, then f is differentiable at
a. (Such function f is called continuously differentiable at a).

Proof. First consider the case m = 1. Then f: A — R, AC R"
we have to show that

[f(a+h) — fla) = A(h)]

o ) =0
for some linear transformation A : R* — R. Note: a = (a!,...,a")
h=(h',... h").

Now f(a+h)— f(a) = f(a+h'e;) — f(a)+ f(a+h'e; + h?ey) —
fla+h'e))+ fla+h'ey+---+h'e;)— fla+hleg+--+hite; 1)+
fla+h)— fla+hle; +---+h" e, ).

But for each i, D;f(z) exists in some open set containing a
then by M.V.T. there exists t; between a' and a' + h' such that
Dy f(t1)h} = f(a + h'e;) — f(a). Thus in general for each i =
1,...,n, there exists t; between a’ and a’ + h’ such that

sz(tz)hz = f((l + hlel + -+ h’ez) — f(a + hlel R hi_lei_l).
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Thus now
fla+h) = fla) =Y Dif(t:)h'.
i—1
et h) — fl@) - S, Dif (@)
= 0
i [ DN = S, Dif(@)h]
= 0
IS D) - D@
o i
I (D)~ Dif(@)(k)
3 0
< lim > iy |1 Dif (t)) — Dif(a)||h']
3 0
< Im 2 ID.f(0) = D)

Since D; f is continuous at a = limy,_o D; f(t;) = D;f(a). There-

fath)=] (G)T}L‘Z?ZID”C (SR S f is differentiable at a.

fore limy,_.q

Remark 5.3.2. Suppose now f : A — R™ is in above theorem

and m > 1, let f = (f', f%...,f™), then for each i = 1,...,n,

D; f%(a) exists in some open interval containing a and D; f* is con-

tinuous at a = f* for each i = 1,...,m is differentiable at a.
Then it follows by theorem that f is differentiable.

Theorem 5.3.3. Let ¢1,...,9, : R" — R be continuously dif-
ferentiable at a and let f : R™ — R be continuously differentiable
at (gi1(a),...,gm(a)). Define F': R™ — R by

F(z) = f(91(x), ..., gm(x)). Then

m

D;F(a) = Z D;f(gi(a), ..., gm(a)).Dig;(a).

Proof. f: R™ — Ris continuously differentiable at (g1(a), ..., gm(a))
= [ is differentiable at (g1(a),...,gm(a)). Ineachi=1,...,m,g; :
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R" — R is continuously differentiable at a = g; is differentiable at
a. Thus by Chain Rule

= fog where g : R" — R™ g(a) = (gi(a),...,gm(a)) is
differentiable at a

!

F (a) = (D1F(a), DyF(a),...,D,F(a)

’ /

Fi(a) = f(g(a))-g(a)

= (D1f(g(a)), D2f(g(a)), .., Duf(g(a))
) Dngl(a)
) Dngs(a)

Digi(a
Digo(a

Dign(a) ... Dugu(a)

m

= ZDZf D1gz ZDf DQQz( ) RR)

i=1

ZDz’f(g(@))Dngi(a)> :

i=1

SBut F'(a) = (DF(a),...,D,F(a)).

m

D;F(a) = Z D; f(g(a))D;gi(a).

=1

Remark 5.3.3. Above theorem called weak Chain Rule because
it is weaker than Chain Rule. gof could be differentiable without
g; or f being continuously differentiable.

Example 5.3.4. Let F': R?> — R be given by
Fa,y) = f(g(z,y), h(x), k(y)).
Determine Dy F(x,y) and DyF(z,y).

Solution. In order to apply Theorem 5.3.3, we need slight modi-
fication of h,k : R — R. Define h,k : R> — R by h(x,y) = h(x)
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and k(z,y) = k(y). Then

Dy
D,

z,y) = h'(x) and Dyh(z, ):
z,y) = 0 and Dyk(z,y) =k (y

> =
—~~

0
)-

Thus now F(z,y) = f(g(z,y), h(z,y), k(z,y)) and letting b =
(9(z,y), h(z), k(y)).

D\ F(z,y) = Dif(b).Digi(x,y) + Dy f(b).D1ga(7,y)
+D; f(b) D1gs(z,y)
= Dyif(b)Digi(z,y) + Daf(b)-Dikt () + 0
DyF(x,y) = Dif(b)Dagi(w,y) + D3 f(b).Dags(z,y)
—  Dif(b)Dag.y) + Daf(b)Dok (z,y).

Example 5.3.5. F(x,y,2) =2z +xy* + 2y, x=v-+uy=
sinv, z = u+2v. Find D1 F(z,y,2) , DoF (x,y,2),and D3F(x,y, z).

Solution. Let f(x,y,2) =z +y+ z,
gl('ra Y, Z) - ZQJ,QQ(ZE, Y, Z) — xy2,gg(x,y, Z) = z2Y.
3
DyF(z,y,2) = Y D;f(g1,92 95)Digj(x,y, 2)
=1
= Dif(g1,92,93)D191(x,y,2) + D2 f (91, G2, 93) D192
+Ds3f(91.92,93) D193

= 1.2+ 142 +1.0=2+4~
DzF(.I',y,Z> = 2$y+Z,D3F(Q?,y72):y.

Example 5.3.6. Let F(z,y) = sin(z?y + x) + cos(z + y?),
giRZHRQ, g(x,y) = (gl(may>792($ay>)7

qi(z,y) = 2%y + 7, gao(w,y) = x + y*.

f:R*— R, f(x,y) =sinz + cosy,
f(91(z,y), g2(z, y)) = singi(z,y) + cos g2(z, ),

F = fog,
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2
D\ F(x,y) = ZDif(91792)-D19i($ay)

=1
= D1 f(91,92)D191(2,y) + Da2f (g1, 92) D1g2(,y)
= cosgi(2zy + 1) —singo(1)
= cos(2®y + 2)(2zy + 1) — sin(z + ).

DyF(x,y) = Dif(g1,92)D291(7,y) + Di(f (g1, 92) D2ga(7, y))

= cos gi(z?) — sin g.2y

= 2%cos(ry + x) — 2ysin(z + y?).

Exercises 5.3

1. For the function f : R? — R defined by

S owy/(@®+y?) if (z,y) #(0,0)
f(”“"’y)‘{ 0 if (zy) = (0,0,

show that neither the function df/0z : R?> — R nor the
function df/dy : R? — R is continuous at the point (0, 0).

. Suppose that the function g : R? — R has the property that

lg(z,y)| < 2®+9? for all (z,y) in RZ

Prove that g : R? — R has partial derivatives with respect to
both = and y at the point (0,0).

Given a pair of functions ¢ : R — R and ¢ : R?> — R, it is
often useful to know whether there exists some continuously
differentiable function f : R> — R such that

of

%(:my) = ¢(r,y) and g—g(m,y) = p(x,y) for(z,y) € R,

Such a function f : R? — R is called a potential function for
the pair of functions (¢, ¢).

(i) Show that if a potential function exists for the pair (¢, ¢),
then this potential is uniquely determined up to an addi-
tive constant that is, the difference of any two potentials
is constant.
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(ii) Show that if there is a potential function for the pair
of continuously differentiable functions ¢ : R — R and
¢ : R*> — R, then

d¢

(x,y) = 8—y(x,y) for all (z,y) in R%

9y
ox

4. Suppose that the function f : R? — R has continuous second
order partial derivatives and let (zg,y0) be a point in R
Prove that for each ¢ > 0 there exists a 6 > 0 such that if
0<|h| <dand0 < |k| <9, then

f(wo+h,yo + k) — f(xo+ h,y0) — f(w0,y0 + k) + (20, y0)
hk

0*f
0xdy

(w0, 0)| < €.

5. Define f : R?* — R by setting f(0) = 0, and f(z,y) = zy(2?—
y*)/ (@ +y?) if (2,y) # 0.

(a) Show that D;f and D, f exist at 0.

(b) Calculate D;f and Dyf at (z,y) # 0.

(c) Show f is of class C! in R2.

(d) Show that DoD;f and D;D,f exist at 0, but are not

equal there.

6. Show that if A C R™ and f : A — R, and if the partials
D;f exist and are bounded in a neighborhood of a, then f is
continuous at a.

5.4 Directional Derivatives

Definition 5.4.1. Let S C R" and f : S — R. Let a € S(S being
open) and let y be an arbitrary point in R", the derivative of f at
a with respect to ¥ is denoted by the symbol f'(a;%) and is defined
by the equation

oo . fla+hy) — f(a)
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when the limit on the right exists.

Example 5.4.1.

Definition 5.4.2. Let A C R"™ be open and f : A — R. Let
X € R™ be any vector, then directional derivative of f at a € A in

the direction of x is denoted by Dy f(a) and defined as

D, f(a) = lim

fla+1tx) = f(a)

t—0 t

provided this limit exist.

Remark 5.4.1. De;f(a) = D;f(a), X =e¢;

De;f(a) = lim

Theorem 5.4.1. Let f : A — R, A C R" open. If f is dif-
ferentiable at a € x then D, f(a) exists in any direction and

fotie) &) _p )

Dy f(a) = Df(a)(x).

Proof. Let \ =

=

=

Df(a), then for x # 0.

| fla+tx) = fla) = A(EX)

11—{% |t x | =0
lim fla+tx)— f(a) — A(tx) _0
t—0 tX B

tﬂ0|>< ’ t

11_{% f(a+txt>_f<a) —)\(X) =0
lg%f(a+t>;)_f(a) —)\(X)

D f(a) = Df(a)(x).

Note. The converse of the above theorem is not true.

Example 5.4.2. Let A= {(z,y) € R*: x> 0and 0 <y < 2*}.

If f: S — R is linear, then f(a + hy)
f(a) +hf(y). Then f(a;y) always exists and f'(a;y) = f(y).
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Define f : R?> — R by

0 z¢A
flo) = { 1 zeA
f is not continuous at (0,0) and hence f is not differentiable at

(0,0).
D, f(0,0) exists Vv.

f(0,0) + h(11,v2) — £(0,0)

D,f(0,0) = lim

h—0 h
_ iy S )
h—0 h

Now let v = (v1,15) € R%v # 0, then there exists h € R such
that hv ¢ A and for all t € R and |t| < |h|,tv ¢ A. In this case
then
f(hl/l, hVQ)

h

i.e., the directional derivative along any vector v exists.

D, f(0,0) = lim =0.

Corollary 5.4.1. Let A be an open subset of R" and a € A.
Let z,y € R"

i) If Dy f(a) exists then for any r € R, D, f(a) exists and
D, f(a) =rDy f(a).

ii) If f is differentiable at a, then
D:rerf(a) = D:rf<a) + Dyf<a>

Proof.

i) D, f(a) exists and for r € R we have

Dy f(a) = lim fla+hrx)— f(a)

h—0 h
o lim fla+ hrx)— f(a)
h—0 h,T’
L flatt)—f@)  t=rh
N T}ILE% t " t—0 as rh—0
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ii) f is differentiable at a = Dy f(a) = Df(a)(x). Then

Dyryfla) = Df(a)(z+y)
= Df(a)(x) + Df(a)(y)
= Duf(a) + Dyf(a).

Exercises 5.4

1. Consider the following assertions for a function f : R? — R:

(i) The function f: R* — R is continuously differentiable.

(i) The function f : R? — R has directional derivatives in
all directions at each point in R?.

(iii) The function f : R? — R has first order partial deriva-
tives at each point in R2.
Explain the implications between these assertions.

2. Define the function f : R> — R by

f(m,y):{ (/| /F2 T2 if y#0

0 if y=0.

(i) Prove that the function f: R* — R is not continuous at
the point (0, 0).

(ii) Prove that the function f : R*> — R has directional
derivatives in all directions at the point (0, 0).

(iii) Prove that if ¢ is any number, then there is a vector P
of norm 1 such that

of

a—P<O, O) = C.

3. Suppose that the functions f : R* — R and g : R — R are
continuously differentiable. Find a formula for D(gof)(z) in
terms of D f(x) and ¢'(f(z)).
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5.5 Mean Value Theorem

Mean Value Theorem. Let A C R"™ be open, f : A — R be
differentiable. If A contains the point a and b together with the line
segment forming a and b, then there exists ¢ on the line segment
join @ and b (i.e., on ab) such that

F(0) = f(a) = f(c)-(b —a)

or

f(b) = f(a) = Df(c)(b - a).

Proof. Consider the function g : [0,1] — A defined by g(t) =
(1 —t)a + tb, g is differentiable on (0, 1) (since it is linear). Now
let ' = fog : F :[0,1] — R. Since f and g are differentiable
function = F is differentiable with F'(t) = f'(g(t)).g' (t). Also F
is continuous on [0, 1] and differentiable on (0,1) = there exists
¢ € (0,1) such that

Fleo) = F(a) = F(0) _ f(g(1)) — f(g(0))

1—-0 N 1
f(b) = f(a) = f(g(c)).g ()
= f(b) = f(a) = f(d).(b—a),

d = g(c) is a point on the line on ab.

Lemma 5.5.1. Let A C R"™ be open and f : A — R™ be dif-
ferentiable. Let y € R™ and G : A — R is defined by G(x) =<
f(z),y >. Then G is differentiable on A; Moreover, for each x € A

DG(z)u =< Df(x)u,y > .
Proof. For each z € A define I, = R" — R by [, (z) =<

Df(z),y >, here [, is a linear map. Now consider
|Gz +h) = G(z) = l:(h)]
|Gz +h) = G(z) = L(h)]

| < flz+h)y>—<flz)y>

— < Df(x)h,y > |

| < fle+h) = fz) = Df(x)h,y > |
[f(z+h) = f(z) = Df(x)hlly]

IN
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[By Cauchy Schwartz inequality].

= hm—|G(x+h) G(z) — 1,(h)|

=
< lim W|f(x 1)~ f(x) - Df(x)h]ly]
< Jyllim | (2 + h) — f(2) ~ Df(x)h] =0

0 |h|

[ since f is differentiable ]

lim WG@; 4 h) = G(z) — L(h)| = 0= G

is differentiable on A.

IN

Theorem 5.5.1. Let A C R"™ be open, and f : A — R™ be
differentiable. Suppose A contains a and b together with the line
segment joining a and b. Then there exists ¢ € ab such that

|f(b) = f(a@)| < [Df(c)(b—a)l.
Proof. If f(b) — f(a) = 0, then done. Suppose f(b) # f(a). Let

_ ) - i@
70— f@)]’

Next define G : A — R by G(z) =< f(z),y >

= G~ Gla) = < f(B)— fla)y>
- m < F(b) - f(a). F(B) - f(a) >,

G(b) —Gla) = [f(b) = fla)|.
On the other hand by the Lemma 5.5.1 G : A — R is dif-

ferentiable. Thus there exists ¢ € ab such that G(b) — G(a) =
DG(c)(b—a) (M.V.T.)

S f(0) = fla)] = DG(c) (b — a)
/(@) — f(@)] = DG(e)(b— a) =< DF(O(b - a),y >
(Lemma 5.5.1)
= |f(b) — f(a)] < |Df(c)(b—a)|ly|(By Cauchy Schwartz)

= [f(b) = f(a)] < [Df(c)(b—a)l.
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Corollary 5.5.1. Let A C R" be open and connected and f: A —
R™ differentiable with D f(xz) = 0 for all x € A, then f is constant.

Proof. Let F,S € A. Since A is open and connected, there exists
X0, T1,...,T in A with g = a and z, = b and T;_17; € A. Hence
by the above theorem

|f(z;) — f(xizr)| < |Df(e;)(x; — x-1)| =0 for some ¢; on T;_17;

but

k

If(b) = fla)] = Zf(:vm) — (i)

= [(b) = f(a)

Since a and b are arbitrary hence f is constant on A.

< Z |f(z;) — f(xi1)] =0

i=1

Exercises 5.5
1. Define the function f: R* — R by
f(z,y,2) = 2yz + 2* + y* for (v,y,2) in R

The Mean Value Theorem implies that there is a number 6
with 0 < 6 < 1 for which
of of

f(1,1,1) — f(0,0,0) = %(9, 6.,0) + 0_y(9’9’9) +

of
—(0.0.0).
az( ,0,0)
Find the value of 6.

2. Suppose that the function f : R — R has first order partial
derivatives and that the point x in R" is a local minimizer for
f: R — R, meaning that there is a positive number r such
that

flx+n)> f(z) if d(xz,x+h) <.

Prove that Df(z) = 0.

3. Suppose that the function f : R" — R is continuously differ-
entiable. Define K = {x € R": ||z|| < 1}.
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(i) Prove that there is a point « in K at which the function
f: K — R attains a smallest value.

(ii) Now suppose also that if p is any point in R™ of norm
1, then < Df(p),p >> 0. Show that the minimizer = in
(7) has norm less than 1.

5.6 Surjective Function Theorem and Open Map-
ping Theorem
Definition 5.6.1. Let A C R" be an open set and f : A — R™.

f is said to be of class ¢! if the partial derivative of f exists on A
and are continuous.

Theorem 5.6.1. Let A C R" and f : A — R™ be a function
of class ¢!. Then for every compact set K C A and for every € > 0,
there exists 0 > 0 such that Vx,y € K :

lr —y| <d=|Df(x)u — Df(y)u| < elu|,Yu € R".

Proof. Let S: {u € R" : |u| = 1}. Define Df : K x S — R™ by
Df(x,u) = Df(x)u. But note that

Dif'(z) ... Duf'(x) Z;
Df(x,u) = Df(x)u= : :
D) o D) ) |

(s Eorer)

Since f is of class C!, D; f7 (m)uﬂ are all continuous, since K x S
is compact. Thus given € > 0,there exists ¢ > 0 such that |(z,u) —
(y,u)| <o

= [Df(z)u—Df(y)ul <e
= |r—y|<d=|Df(x)u—Df(y)u| <e. |u|=1.
Hence for z,y € K and u € R",

= lz—yl<d—|Df(z )U—Df(yM <€|U|-



5.6 Surjective Function Theorem and Open Mapping Theorem 145

Corollary 5.6.1. (Approximation Theorem). Let f : A C
R"™ — R™ be of class C*. Then for every compact set K C A and
every € > 0, there exists 6 > 0 such that Vz,y,z € K : =,y €

Bs(z) = |f(z) = fly) = Df(2)(z —y)| < elz —yl.

Proof. Let K C A be compact and ¢ > 0. For each a € K
there exists §; > 0 such that Bs (a) C A. Since By, (a) is com-
pact by Theorem 5.6.1. there exists d, such that x,y € Bs,(a)
and |z — y| < 0y = |Df(x)u — Df(y)u| < elu[Vu. Choose d(a) =
min {01, 2}. Now let 2,y € Bjq(a). Then z,y € Bs (a) and
|x—y|§|x—a|+|a—y|§2(52) % < §,. Thus we have z,y €
Bsy(a) = |Df(x)u — Df(y)u| < =[ul. Now let x,y,2 € Bj(a)
and V € R™.

< flx) = fW)Df(2)(x —y),V >
= <[f@)=f),V>+<-Df)z-y),V>

= D (@) = F{@)V'+ < =Df()(a —y)V >.

=1

By M.V.T. for each 7 = 1,2,...,m, there exists ¢; on the line
joining z and y such that

fi(@) = fi(y) = Df(c:)(z —y).

Thus the above expression is equivalent to

- Xm:D YV'+ < =Df(2)(x —y),V >

- (DFe), - DI (o))~
(Df'(er), -, Df™(em))(x —y
Now if we take V = f(z) — f(y) — Df(z)(x — y).
[f(z) = f(y) = Df(z)(z —y)]
= |(Dfler)... Df™(em)(z —y) = Df(2)(z — y)|

> I(Dfe) = DF ) — )

< V>+<-Dfz)(x-y),V>
= < Df(z)(x —y),V >.

),
) =

IN

m

£
< Y Sje-yl=clo—yl (59

=1
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Now we cover K by {BM(CL) ta € K}.
2
Since K is compact there exists Bs, (a1) ... Bs, (ax) that covers
2 2

K. Choose5:min{%,%2,...,%’“}. Then for z,y, 2z € K.
Claim : z,y € B(2,0) = [f(z) = f(y) = Df(2)(z —y)| <elz -
y|, z € Bs, (a;) for some i.
2
Then |z —a;| < |z — 2|+ |z —a;| <6+ & < &, ie. x € By, (a).
Similarly y € Bjs,(a). Thus by (xx) are yet |f(z) — f(y) —
Df(z)(x —y)| <elz -yl

Corollary 5.6.2. Let A C R" be open and f : A — R™ be a
function of class C'. Then if Df(a) is injective for a € A, then
there exists Bs(a) € A and m > 0 such that Vo € Bj(a) and
u € R |Df(x)u] > mlu|. Moreover if df (z) is injective for every
x in a compact set K C A then there exists m > 0 such that

|Df(x)u] > mlu|,Vo € K,Yu € R".

Proof. Since A is open there exists §; > 0 such that Bj,(a) C A.
Since D f(a) is injective there exists [ > 0 such that |D f(a)u| > lul.
Since B, (a) is compact by Theorem 5.6.1 there exists 4,0 < § < &;
such that

x € Bs(a) = |Df(a)u — Df(z)u| < %|u!

Then we have

Hul < |Df(a)ul |Df(a)u = Df(z)u+ Df(x)ul
|Df(a)u—Df(x)ul + Df(x)ul

Ll + DF)l

IN

IN

[
= Slul < D@l

Thus we choose m = £. Now if K C A is compact and D f(a)u is
continuous for each u € K. By the above technique for each a € K.
Construct Bsy(a) C A such that Vo € Byq)(a), |Df(x)u| > mqlul.

But {BM (a)} is an open cover of K and there exists B, (a1)
2 2

... Bsn (ay,) cover K. Choose m = min{may, ..., ma,}.
2
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Then
|Df()||u] = m[ul.

Corollary 5.6.3. (Injective Function Theorem) Let A C R"
be open and f : A — R™ be of class C'. If Df(a) is injective at
a € A then there exists Bs(a) C A and m > 0 such that Df(x) is
injective Vo € Bs(a) and Vz,y € Bs(a),|f(z) — f(y)| > M|z — y|.

Proof. By corollary 5.6.2, there exists Bj,(a) C Aand l > 0,
there exists Vz € By, (a)D f(z) is injective and

[Df(2)(x —y)| = U]z —y|Vz,y € R".
By approximation theorem there exists 09 > 0 such that Vx,y, z €
351 (CL)
l
2y, € By,(2) = [f(2) = f(y)| = Df(2)(z —y)| < lw —y
[
z,y, € By,(a) = |f(z) = f(y)| = Df(a)(z —y)| < glw —yl.

Let 6 = min{d;,d2}. Then for x,y € Bs(a)

£() ~ F(4) ~ DF @)~ )] < 5l 3]

= é|x —y| < |Df(a)(z —y)| — é|x —y| < [f(z) = fWl,

1
Setm—2

= |f(z) = f(y)| = M|z —y|.

Corollary 5.6.4. Let A C R™ be open, f : A — R™ be of class C!
and K be a compact subset of A. Then there existsM > 0 > Vx €
K

|Df(x)ul < Mlul.

Proof. By Theorem 5.6.1 for every a € K, there exists d(a) > 0
such that Vo € By (a) N K : |[Df(x)u— Df(a)u| < |u| (ie. chosen
e=1).

= [Df(z)ul < [ul +[Df(a)ul.
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But there exists mg > 0 such that |Df(a)u)| < molul,m =
1+ my.

Cover K by {Bs)(a)}ack, I is compact therefore there exists
a finite subcover {Bsq,)(a1) - - . Ds(a,)(@n)} which cover K. Choose
M = max{may, mas, ..., ma,} then |Df(x)u| < M|ul.

Theorem 5.6.2. (Surjective Function Theorem) Let A C R"
be open, f : A — R™ be of class C*. If Df(a) for a € A is

surjective then there exist positive numbers a and [ such that

Ba(a) € A, B (f()) C [(Bala)).

Proof. Since Df(a) is surjective, there exists uq, ug, ..., Uy, in R"
such that Df(a)u; = e; where e;’s are the usual basis of R™. Let
M : R™ — R" be the linear map

m

M (zm: CLZ‘GZ‘) = Zazul
=1

i=1

Then clearly Df(a)oM : R™ — R™ is the identity map. Set

5 1/2
I (Z yuﬁ) .
i=1

Fory =>"", a;e; € R™, we have

M) = 1) aw] < Jai]|u;]
(S la)” (X ll)™ = s

S M (y)| < Blyl. (5.6.1)

Now for € = % By approximation theorem there exists a > 0
such that

1
%,y € Ba(a) = () = f(y) = Df () (@ )| < gle =yl (562)
Now suppose y € E% (f(a)). We claim there exists © € B,(a)
such that y = f(x).
To show this we shall construct a sequence {z,}>2, with the
property that

IN
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(a) |op —2pa <5
(b) |lzp—a| < (1-3) o

Let 29 = a and z; = zo + M(y — f(a)).

Then
o =0l = [M(y = fla)] < Bly ~ flo)] < Bz =5
o —a| = |m—x0|§%:(1—%)a i ().

Suppose g, Z1,...,Z, satisfied the property (a)&(b). Define
Lp+1 by

Tpp1 = Tp — |M[f(2p) = f(2p1) = Df(a)(zp = 2pa)]]

Then by (5.6.1) and (5.6.2) it follows that
Claim: {x,}>2, is a Cauchy sequence.

[Tprk — p| < |Tprk — Tpyrot| + [ Tprr—1 — Tprr—2| + ...

+|xp+1 - Ip|

< & oy !
-  9ptk op+k—1 2p+1
a (1 1 1 o)
- %(WW+“'+5) AR e
. {xz,} is a Cauchy sequence.
i.e., x, — x for some z, but since |z, —a| < (1 — %) a

|z —a] <a= 1z € B,(a).

Claim Df(a)(xpt1 — zp) =y — f(z,).
We will show it by induction, for p = 0, by definition

z1 —x0=M(y — f(a))

= Df(a)(x1 —x0) = Df(a)M(y — f(a)) =y — f(a).
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By the definition of x,.,, we have

Df(a)(zpr —zp) = —Df(a).M(f(xp) — f(xp-1) —
Df(a)(zp — zp-1))
= Df(a)(wp — xp-1) — flzp) — f(2p-1)
= y— f@p-1) = (f(xp) = f(@p-1))
= y— f(zp)

Now since D f(a) is continuous and f is continuous

lim Df(a)(zpr1 —2p) = lim (y = f(z,))

0 = y— f(x)
=y = f(z).

Corollary 5.6.5. (Open Mapping Theorem) Let A C R" be
open, f: A — R™ be of class C!, if for each x € A, Df(x) is sur-
jective then G C A is open implies f(G) is open in R™.

Proof. Suppose G is open. Let ¢ € f(G) then there exists u € G
such that f(u) = c. By surjective function theorem there exist
a > 0,8 > 0such that By (u) C G and ovBe (f(u)) C f(Ba(u)) =

Be (f(u) C f(G) e, E%(c) C f(G) = f(G) is open.

Corollary 5.6.6. Let A C R"™ be open, f : A — R" be of class
Cl. If Df(x) is injective Vo € A. Then for G C A is open, f(G) is
open = f(A) is open.

Proof. Df(x) is injective = D f(x) is surjective and in view of
Corollary 5.6.5 we get the proof.

5.7 The Inverse and The Implicit Function The-
orem

As an application of surjective function theorem and open mapping
theorem we will prove two famous and fundamental theorems.

Lemma 5.7.1. f: R" — R™, g : R™ — RF such that D(gof)(a)
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and Dg(f(a)) exists, Dg(f(a)) is injective, f is continuous. Then
Df(a) exists and is given by

Df(a) = (Dg(f(a)))"".D(gof)(a).

Proof. By Injective function theorem there exists Bs(a) C A such
that D f(x) is injective Vo € Bs(a) and f|p,eita(a) is one to one. Let
U = Bs(a) and V = f(U) by Corollary 5.6.6, V' is open. Since
f : U — V is one one onto it has inverse g : V — U, again by
Corollary 5.6.6 g is continuous = (¢7'(G) = f(G) is open if G is
open in U).

Now fog : V' — V is the identity map. Thus D(fog)(x) = I,
Ve e V. But Df(gf(z)) = Df(x)Vx € U = Df(g(y)) exists and
is injective Vy € V. Thus it follows that Dg(y) exists Vy € V' and

Dg(y) = D(f(g9(y)))'oD(f0g)(y) = (Df(x))"" where y = f(z).

Theorem 5.7.1. (Inverse Function) Let A C R"™ be an open
set, f : A — R™ be a function of class C! and Df(a) is injective
at a € A. Then there are two open sets U&V in R™ such that
ac€UCA, f(a) € V,and f|y is one to one with range V' whose
inverse is also of class C'* and

Df ' (y) = (Df(z))"" where y = f(x).

Proof. To obtain the complete proof in view of above Lemma 5.7.1
it is remains to prove that ¢ is also of class C'.

9'(y) = (frgly)™

Let f!(x) = a;(z) = A(x), 9(y)
= 9'(y) = ai;(9(y))~". Now 1fg ( ) =
By the Cramer’s rule

(bij(y))an.

det A7 (g(y))
detA(g(y)) ’

where A% (y) is (n—1) x (n—1) matrix obtained by deleting the
i row and j* column from A(y). But determinant is continuous,
a;;’s are continuous, g is continuous, detA(g(y)) # 0. Thus b;;(y)

is continuous = ¢ is of class C1.

bij(y) = (=1)""7
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Theorem 5.7.2. (Implicit Function Theorem)

Let C € R™ x R™ be open, f : C' — R™ be a function of
class C* such that for (a,b) € C, f(a,b) = 0, the m x m matrix
(Dyy;f'(a,b)1 < 4,5 < m has a non-zero determinant. Then there
is an open set A C R" containing a and an open set B C R"
containing b and a unique C! function g : A — B such that

f(z,y(x)) =0,V € A.
Proof. Define F': C' — R™ x R™ by
Fz,y) = (z, f(z,y))V(z,y) € C.
Since f and identity functions are of class C*, so is F, and
1
0

F1<a7b) = lel(a,b)

D, f™(a,b)
= detF*(a,b) = det(Dyyj f(ay0))nxn # 0.

Hence by [.LF.T. there exists W C R" x R™ open set containing
F(a,b) = (a,0) and an open set V' C C': containing (a,b), F': V —
W has an inverse i.e., h : W — V which is of class C'. Without
loss of generality assume that V' = A x B where A is open in R"
and B is open in R™. Note that there exists N C A such that
N x {0} c W. Clearly h: W — A x B has the form

h(z,y) = (x, K(z,y)) where K : W — B is of class C, since F
is of this form.

Let m : R" X R™ — R™ given by 7(z,y) = y. Then mof = f.
And for (z,y) € W,

[z, K(z,y)) = (foh)(x,y) = (wof)oh(z,y)
= wo(Foh)(z,y) =n(z,y) =y.

Hence f(z, K(z,y)) = 0,Vx € N. Now let g : N — B be given
by

g(x) = K(z,0).
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Then g is the required function.

Exercises 5.7

1. Let f : R® — R™ be given by the equation f(z) = ||z|*.x.
Show that f is of class C"° and that f carries the unit ball
B(0,1) onto itself in a one-to-one fashion. Show, however,
that the inverse function is not differentiable at 0.

2. Let g : R?> — R? be given by the equation
g(w,y) = (2ye*, ze").
Let f: R? — R? be given by the equation

fla,y) = (Br -y, 20 +y,ay +y°).
(a) Show that there is a neighborhood of (0, 1) that ¢ carries
in a one-to-one fashion onto a neighborhood of (2,0).
(b) Find D(fog™!) at (2,0).

3. Let f: R?* — R%be of class O, write f in the form f(z, y1, y2).
Assume that f(3,—1,2) = 0 and

Df(3,—1,2) — { } _21 H

(i) Show there is a function g : B — R? of class C'' defined
on an open set B in R such that

flz,1(x),92(x)) =0

for x € B, and ¢(3) = (—1,2).
(ii) Find Dg(3).
(iii) Discuss the problem of solving the equation f(x,y1,y2) =

0 for an arbitrary pair of the unknowns in terms of the
third, near the point (3, —1,2).

4. Let f : R¥™ — R" be of class C'; suppose that f(a) = 0
and that Df(f) has rank n. Show that if ¢ is a point of R"
sufficiently close to zero, then the equation f(x) = ¢ has a
solution.
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5. Let f: R? — R be of class C*, with f(2,—1) = —1. Set

G(x,y,u) = f(z,y)+u°,
H(z,y,u) = wux+3y°+ud

The equations G(z,y,u) = 0 and H(z,y,u) = 0 have the
solution (z,y,u) = (2,—1,1).

(a) What conditions on D f ensure that there are C' func-
tions x = ¢(y) and u = h(y) defined on an open set in
R that satisfy both equations, such that g(—1) = 2 and
h(=1)=17

(b) Under the conditions of (a), and assuming that D f(2, —1) =
[1,-3], find ¢'(—1) and A/(—1).

6. Let A be open in R™; let f: A — R" be of class C", assume
D f(x) is non-singular for x € A. Show that even if f is not
one-to-one on A, the set B = f(A) is open in R".

7. Define the function f: R — R by

f(z) =2 -3z +1 for x in R.

At what points x in R does the Inverse Functions Theorem
apply 7

8. For each of the following mapping F : R?> — R?, apply the
Inverse Function Theorem at the point (zg,y0) = (0,0) and
calculate the partial derivatives of the components of the in-
verse mapping at the point (ug,vp) = F(0,0):

(a) F(z,y) = (x4 22+ €Y’ —x 4 y + sin(xy)) for (z,y) in
R%.
(b) F(x,y) = (e*"¥,e*7Y) for (z,y) in R%
9. Define the mapping F : R? — R? by
F(r,0) = (rcosf,rsinf) for (r,#) in R%

(a) At what points (rg, ) in R? can we apply the Inverse
Function Theorem to this mapping ?
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(b) Find some explicit formula for the local inverse about
the point (r,0) = (1,7/2).

10. Suppose that the function ¢ : R? — R is continuously differ-
entiable and define the mapping F : R? — R? by

F(l’,y) = <¢<x7y)> —C,D(SC,Z/» for (x,y) in Rz'

(a) Explain analytically why the hypotheses of the Inverse
Function Theorem fail at each point (zg, o) in R?.

(b) Explain geometrically why the conclusion of the Inverse

Function Theorem must fail at each point (xg, yo) in R2.

11. For a point (p, 0, $) in R?, define

F(p,0,¢) = (psin¢cosf, psinfsinb, pcos ).

At what points (po, 0, @) in R* does the Inverse Function
Theorem apply to the mapping F : R® — R3 ?

12. Use the Implicit Function Theorem to analyze the solutions
of the given systems of equations near the solution 0.

. (2 +y?+2%) —z242=0
' cos(x? +yt)  +e¢—2=0, (x,y,2) in R>.
5 (w)*  +u+s)P+t=0
O\ sin(ur)  4et* —1=0, (u,v,s,t) in R
13. In the proof of the Implicit Function Theorem, it was asserted
that the invertibility of the k& x k matrix D, F (o, yo) implies

the invertibility of the (n + k) x (n + k) matrix DH (zo, yo).
Verify this assertion.

14. Graph the solutions of the equation

y* —2?=0,(r,y) in R%

Does the Implicit Function Theorem apply at the point (0, 0)
? Does this equation define one of the components of a solu-
tion (x,y) as a function of other component ?
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15. Suppose that the function f : R? — R is continuously differ-
entiable and that there is a positive number C' such that

of

a—(cc,y) > ¢ for every (z,y) in R*.
Y

Prove that there is a continuously differentiable function g :
R — R with f(x,g(z)) = 0 for every z in R and that if

f(z,y) =0, then y = g(x).



Chapter 6

Multiple Integrals

In this chapter we have discussed the double integral over a rect-
angle, double integral over general region, double integral in polar
coordinates, application to center of mass and surface area, triple
integral, triple integral in cylindrical coordinates, triple integral in
spherical coordinates and change of variables in multiple integrals.

6.1 The Double Integral Over a Rectangle

Let R be a rectangle in the zy plane and f a continuous function on
R. To evaluate the double integral over the rectangle R, consider
the partition P of R into sub-rectangle Ry, Ro, ..., Rg, ..., R,.

YA\ R R

Rn
0 o >x

Fig. 6.1.1.

Since f is continuous on R and hence on each sub-rectangle
Ry, f attains its maximum and minimum value on Rj.

Let my be the minimum value of f on Ry
M}, be the maximum value of f on Ry
A Ay be the area of the sub-rectangle Ry.

Then miAAL < M AANE € {1, 2,... ,n}.
The sum Lg(P) = Y ,_, mpg/AAy is called the lower sum of f
with respect to P.
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The sum Uy(P) = > 7, MAAy is called the upper sum of f
with respect to P and we have

Ly(P) < Uy (P).
Example 6.1.1. Let f(x) = x + y be defined on the rectangle
R={(z,y):2<2<5,1<y<3}=1[2,5] x[1,3].
Find the lower and upper sum with respect to partition

P={ R =1[23]x[1,3/2],Rs = [2,3] x [3/2,3],
Ry = [3,4] x [1,3/2], Ry = [3,4] x [3/2, 3],
Rs = [4,5] x [1,3/2], Rs = [4,5] x [3/2,3]}.

Solution. We have

3
I R

0

| 1 | ] '] | 1 | ] x
H+ 11—
Fig. 6.1.2

mi = f(2,1)=2+1=3,M = f(3,3/2) =3+3/2=09/2

my — f(2,3/2):2+gzg,MQ:f(3,3):3+3:6

my — f(3,1):3+1:4,M3:f(4,3/2):4+3/2:%
me = F3.3/2)=3+3/2= 2 M= f(43)=4+3=7
ms = f(4,1):4+1:5,M5:f(5,3/2):5+g=§
me = f(4,3/2):4+§:%,M6:f(5,3):5+3:8.

6
Lf(P) = kaAAk = mlAA + mQAAQ + -+ mGAA(;
k=1
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DO W

)+ 4(5) +56) +5(3) + 5 (3) = -

—~
N Lo

6
Up(P) = Y MAA = MAA + MyAAy + -+ + MeAAg

— g(%) +6(3/2) + %(%) + 7(%) + g(%) + 8(%) = %.

Definition 6.1.1.(i) The unique number I satisfying the inequal-
ity Ly(P) < I < Uy(P) for every partition P of R is called the
double integral of f on R and denoted by [ [, f(z,y)dA.

(ii) If f is nonnegative and integrable on the rectangle R, then
the volume V' of the solid region between the graph of f and R is

given by
o= | /R £z, y)dA.

Example 6.1.2. Evaluate [ [, KdA, where R = [a,b] x [¢,d] and
K is a constant.

Solution. Consider f(z,y) = K, and partition P = {Ry, Ry, ..., R,}
of R.

mleZ:K\V/ZG{]_,Q,,TL}

Ly(P) = iKAAi:KiAAi:K(area ofR) = K(b—a)(d — c)

i=1 i=1

Uy(P) = Y KAA;=K(area ofR) = K(b—a)(d—c)
i=1

= L¢(P) = Uy(P) for every partition P of R.

= [ [ KdA = K(b—a)(d— c) since P is arbitrary.

Remark 6.1.1.(i) If K > 0, then [ [, KdA is the volume of the
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rectangular parallelopiped with hight K and base R.

(ii) [ [, KdA = [ [, Kdedy = [*([ Kdz)dy = [ K(b— a)dy =
K(b—a)(d-—c).

6.2

Exercises 6.1

For the generalized rectangle I = [0,1] x [0,1] in the plane
R?, define

5 if (r,y) is in [ and z >
f(x,y)—{ 1 if (z,y) is in [ and z <

M"“l\.’)l»—t

Show that the function f: I — R is integrable.

. For the rectangle I = [0, 1] x [0, 1] in the plane R?, define the

function f: I — R by f(z,y) = zy for (z,y) € I. Evaluate
it

For the rectangle I = [0, 1] x[—1,0] in the plane R?, define the
function f: I — R by f(z,y) = 2%y for (z,y) € I. Evaluate

It

For the rectangle I = [0,2] x [0, 1] in the plane R?, define the
function f: I — R by f(z,y) = 2%y for (z,y) € I. Evaluate

It

The Double Integral Over General Regions

Suppose R is any bounded region, that is contained in a rectangle
R’ and f is a function continuous on R. Extend f to all of R’ by
setting f equals to zero in R'/R, i.e., defined g by

g
Then

/),

_ | fley) if (vy) €ER
9(“”’”—{ 0" i (e e R/R

is continuous on R’ except possibly at the boundary of R.

f(x,y)dA:///g(x,y)dA if right hand side exists.
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Evaluation of double integral by iterated integral
1. Vertically simple (plane) region
Ry ={(z,y):a <z <bg(r) <y < gole)}

where g; and g9 are continuous functions over [a, b].

2. Horizontally simple region
Ry ={(z,y):c <y <d and h(y) <z < ho(y)}

where hy and hs are continuous functions over [c, d.

A region R is simple if R is both vertically and horizontally
simple.

eg. Let R be the region between the graphs of y = 22,y =
z —x and x = 0. Show that R is simple.

Simple R = {(z,y): 0 <2z <1,2° <y <2-—z}
YA\
2y\=2-x
1 (1.1
D
Yy =X
0 Fig. 6.2.2 P

it is vertically simple and
R = {(z,y):0<y<1,0<2 <y}t U{(z,y)
1<y<20<z<2-y}

or 0<y<l1
where hy(y) = 0 and h2(y)={ Q@y ior 1<_yy<_2 ’

is horizontally simple. So R is simple.
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3. [ [n, f(x,y)dA = f 992(;)f(1: y)dydx

and
h2(y
/ f(z,y)dA = / / f(z,y)dxdy
Ry hi1(y)
where f is continuous on R; and R,, respectively.

These integrals are called iterated integrals. For simple region

R
[ [ tamaa- // F(oy)dyds
:/C /hf;) f(z,y)dzdy.

Note 6.2.1. Constants of integration must be from outside.

Note 6.2.2. If both x and y range over constant limits of
integration, one can interchange freely.

Definition 6.2.1. The area A of a plane region R is given by
A= [, 1dA.

[ faa= [ [ avie= [uize = [ oo - o

Example 6.2.1. Let R = [—1,3] x [2,4]. Evaluate the double
integrals [ [,(2% — y?)dydz.

8
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Solution. We have

3 4
//(xQ—yQ)dyd:r = / /(xQ—yQ)dydx
R —-1J2
3 3
— [ ey Lptas
o 3

3
64 6
— / [42% — 3~ 22% + ~|dx

. 3
3
56
= 272 — —)d
/_l(x 3) T
22 56
= [?—E:ﬂ]il:—%

Example 6.2.2. Find the volume of the solid bounded by the
graph of z = 42% + y? and over the rectangular region R in the zy
plane having vertices (0,0,0)(0,1,0)(2,0,0)(2,1,0).

Solution. We have
R={(z,y):0<x<2,0<y<1}

Z/N
(2,0,0)
) oy

r
r L3
s

Ny
¥
X
010, /G0 2

~e ¢
y ~~< 12,10
Fig. 6.2.3

v—//(4x2—|—y2)dxdy
R

12 1,3
:/ / (42% + y*)dady = /[4§+y2x]gdy
o Jo 0
' 32
= [+
0

3
32 o8, 34
= Iyt 3h=3
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Note 6.2.3. If R is a union of non overlapping regions R;,i =
1,...,nie, R=U" R, then

/éf(x7y)dA=iil//1%if(x7y)dA

Example 6.2.3. Evaluate | [, ydA where R is the region bounded

_ __ 3m
by the graphs of y = cosx,y =sinz,r =0,z = =F.

Solution. We have

//RydA://RlydA+//RydA

X
cosT 3r/4  psinz
= / / ydydx + / / ydydz
7r/4 3mr/4 1
= /O 2(005 x — sin x)dm+//4 2(sm x — cos® r)dx
1 w/4 1 3r/4
= —/ cos 2xdx+—/ — cos 2zdx
2 0 2 w/4
1.1 - 1.1 - 3
= 2[2 sin 2], /4 2[5 Sm?x]i/f =7

Example 6.2.4. Find the volume of the solid between the cylinder
22 + 22> = 9 and the planes y = 0 and y + 2z = 4.

Solution. Consider y to play the role of z and f(z,2) =y =4—=z

R = {(:U z):—3§x§3—@§z§@}

V://fxzdzdx—// 4 — z)dzdx
-3 7912
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- /2[4\/@—( ) (—aVo =22 = e
- /ngcﬂx.

Put x = 3sin 6, dx = 3 cos 6db

w/2 w/2 1
= 72/ cos>0df) = 72/ —(1+ cos26)db

—7/2 —7/2

1
= 36[0 + 3 sin 29]7r/2 = 36.

Exercises 6.2

1. Let R =[0,1] x [7/2,w]. Evaluate the double integral

//xsingdydx.
R 2

2. Evaluate the iterated integrals

) f11/2 fOQm cos(mx?)dydzx.
b) f13 ffz ze¥’ dxdy.

3. Evaluate

[ Jp(x +y — 1)dxdy, where R is given by

R={(z,y): —1<2x<2and 2° <y <z+2}.

4. BEvaluate

1
// —dydz, R={(x,y): 5 r< 1,2 <y<e}
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6.3 Double Integral in Polar Coordinates

Suppose that h; and hy are continuous on [«, 5], where 0 <
B —a < 27 and that 0 < hy(0) < hy(f) for a« < 0 < 3. Let R
be the region between the polar graphs of r = hy(0),r = he(6) for
a<f<p.

If f is continuous on R, then

B rha(0)
//f(x,y)dA:/ / f(rcos@,rsin@)rdrdd.
R a Jhi(0)

Hence the transformation is x = rcos#,y = rsinf and

0(3579): % % _ | cosf rsind .
(r,0) = 5 sinf rcosf '

Fig. 6.3.1

Note 6.3.1. If f is nonnegative on R, the volume v of the
region between the graphs of f and R is

B rha(0)
L / / f(rcos@,rsin@)rdrdd
a Jhi(9)

and the area of R is

B rha(0)
A= / / rdrdf.
a Jhi(0)

Example 6.3.1. Use polar coordinates to evaluate

a va?—z?
/ / (22 + *)* 2dydz.
—a J0

Solution. We have

R = {(z,y): —a<z<a,0<y<Va—z?}
R = {(T,9)10§r§a70<9<7(}'
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T a 5
//(x2 + y2)3 2 dyds = / / (r2)*2rdrdf = o
R 0o Jo 5

Example 6.3.2. Express [ [, z*dA as an iterated integral in po-
lar coordinates and evaluate it where R is the region bounded by
r=2cosf.

Solution. We have

w/2 2cos 6
// r*dA = / (r? cos® O)rdrdf = 5.
R —r/2Jo

Example 6.3.3. Find the area of the region R that lies outside
the graph of 7 = a and inside the graph of r = 2asin 6.

Solution. First determine the intersection points

r = 2asinf
r? = 2arsiné
2?4+ = 2ay
2+ (y—a)P = d

r = 2asinf =a

sinf = —
2

& & [¢Orpp 5%

R = {(7‘,0) ra<r<2asinf, /6 <0< ‘%T}

57/6 pr2asind 57/6 TQ .
A - // 1dA - / / Td?“d@ = / [_]ZGSIHQdQ
R /6 a /6 2

/6 1,0 sin20
= / ~[4a”sin® § — a?]df = ~[4a®(= — o
s 2 QG T Ty

) . a20]57r/6

= a®[n/3+V3/2].
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Example 6.3.4. Evaluate

//(y—Qx)dxdy,R:1§x§2,3§y§5.
R

Solution. Consider
P, = (zg,x1,...,2,) as an partition of [1, 2]
Py = (Yo, %1, ---,Yn) as an partition of [3, 5]

P =P x Po={(z,y;) : x; € P1,y; € P>} as an partition of R.
On each rectangle R;; : ;-1 < x < x4, y;-1 <y < y;, the function
f(z,y) = y — 2z has a maximum M;; = y,; — 2x;_; (y maximized
and x is minimized) and minimum m;; = y;_1 — 22; (y minimized
and x maximized).

Thus

For each pair of integer 7 and j

1
Yj—127; < 5(% +yi—1) — (i +xim1) <yj — 2w

for arbitrary P we have

) < ZZ (Y5 +yj—1) — (@ + 2i1)] Az Ay < Up(P)

i=1 j=1

or

n m n

Z Z 5Ws + yj-1)DaAy; — Z Z(ﬂiz i) Azl

i=1 j=l1 i=1 j=1

[\Db—k

I*t sum

Z Z %Axi(y]? - .%2‘—1> =

i=1 j=1
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11" sum

SN oy = =Y @ -at )Y Ay
' i=1 j=1

or

[ -2ty =2

Example 6.3.5. Integrate f(z,y) = /22 + y? over the triangle
with vertices (0,0)(1,0)(1,v/3).

Solution. We have

tanf = 3 = 0 = 7/3

(1,33)

w/3  pl/cos® /3
I = / / raodrdd = / sec? 0dp
0 0 0

= —[secOtanf +

Wl Wl

1
3 log | sec 8 + tan 6’|]g/3

1 1
= — + -log[2+ V3]

/36
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Exercises 6.3
1. Integrate f(x,y) = cos(z? + y?).

(a) Over closed unit disc.

(b) the annular region 1 < 22 4 ¢* < 4.

2. Let f(z,y) =sin(z+y)on R:0<z<1,0<y <1 show

that
0< // sin(z + y)dxdy < 1
R

3. Let f = f(x,y) be continuous on the rectangle R : a < z <
b,c <y < d. Suppose that Lf(P) = Uy(P) for some par-
tition P of R. What can you conclude about f 7 what is

ffR (z,y)dzdy ?

Hint. [ [, f(z,y)dzdy = f(a,c)(b—a)(d — c). fis constant
on each sub rectangle.

6.4 Applications to Center of Mass

1. Consider a point mass m located at a point (z,y). The mo-
ments of the point mass about the x axis and y axis are

te = my and p,, = ma, respectively.

(measure of the tendency of the point mass to rotate about
the axis)

2. Consider two point masses, m; and mo located at points

(x1,t) and (x9,t).

YA\
(x1,t) (x2.1)
i m2 1

X2 > x

The moments of the masses about both axis:

1
i
[ ]
X

—

0
Fig. 6.4.1

i =mit  plor = mot
MYy = 1miTy [y = Maly
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if mix1 + maxs = 0 then the point masses are at equilibrium
and (0,t) is the point of equilibrium.

3. Suppose several point masses with masses my, ms, ..., m, are
located at the points (z1,v1), (z2,92), .-, (Zn, yn). The mo-
ment of the system of the point masses with respect to axis
are

o = M1Y1 + MoYs + -+ - + MpYn

Hy = M1T1 + MoZo + -+ + MypXy

respectively.

The system is at equilibrium with respect to the x axis (or
the y axis) if p, =0 (or p, = 0).

Now let m = mq +mso + - - -+ m,,. Then the center of gravity
(Z,7) of the system is given by

| =

— L
T = 7y_

3
3|F

Note 6.4.1. The center of mass of a lamina (plate) in the geomet-
rical center (like intersection point of the diagonals of a rectangle).

6.5 Application of Double Integral to Surface
Area

Definition 6.5.1. Let R be a vertically or horizontally simple
region and let f have continuous partial derivatives on R. The
surface area of the portion of the graph of f over R is

_ f o (Of\,
S—//R(\/<ax) + (G2 + DA

Example 6.5.1. Find the area of the part of the surface that lies
over the given region

z=zr+2y,R={(z,y):0<z <y 0<y <2}
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Solution. We have

flz,y)=x+2y Ssz(«/f%%—fy?—l—l)dfl

fa:(xa y) =1 _ 2y 2 2 —

fley) =2 = I P (V12422 + 1)dzdy = 2V/6.
Example 6.5.2. Find the surface area of the portion of the plane
x + vy + z = 4 which is inside the cylinder 2% + y? = 1.

Solution. We have to find the area of the shaded region above

the circle 2% + ¢y = 1.
AN

We have f(z,y) =z2=4—z—y, R={(z,y) : —/1 -2 <z <
\/1_927—1§?J§1}

fo(z,y) = =1, fy(z,y) = -1

s= [ [/ s sy = [ [ e
= /112\/5\/1—7%@
= 23 [ VT= iy =3

Example 6.5.3. Find the area of the portion of the sphere 22 +
y? + 2% = 16 lying within the circular parabolid z = 2% + 3%

Solution. Determine the intersection

Pyt = 16z
z = 2+
x2+y2+(z—8)2 — 82,
2+ 22 = 162
2(z—15) = 0
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if =0 then 2% + ¢y =0,
2z = 15 then 22 + y* = 15,
zZAN

Fig. 6.5.2
flx,y) =2=8+ /64 — a2 —y?
S=[E++1dA

falz,y) = \/7fy( y) = Jorey
I+ e = \/64 SxLy

S = ffR\/MTxdy_ fo
Put u = 64 — r?, du = —2rdr

2
= —dud@
/ 64 \/_
2
= / [— 8\/_]§Zd9:/ 8df = 167.
0 0

Exercises 6.5

1. Find the area of the portion of the circular parabolid z =
a2+ within the sphere #+°+2% = 162, [Ans. (S°7=1) ],

2. Calculate the area of the region enclosed by the curve r =
2(1 +sind). [Ans. 67]

6.6 Triple Integral

In R? consider the parallelopiped D written as
D={(z,y,2) ra1 S x < a,b; <y < by,c1 <2< o}
and

P =P, x P, x Py where P = (21,...,2m), P = (y1,--.,Yn),
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Py = (z1,...,7) partition of [ay,as], [b1,b2] and [e1, ca] respec-
tively. We know that
L{(P) < I <Uy(P)

for any partition of D.

The triple integral of f over D is defined by

-] /D F(z,9, 2)do = / /bb / F(z,y, 2)dzdyds.

Now let D take the form

D={(z,y,2) a1 Sz < a,01(x) <y < ga2(2), ha(z,y) < 2 < ho(z,y)}

then

as ha(z,y)
///f(x,y,z)dzdydx:/ / / f(z,y, z)dzdydx
D a1 Jgi( ha(z,y)

and volume of the region D is given by

v:///l.dzdyda:.
D

Example 6.6.1. Find the volume of the tetrahedron formed by
the planes x =0,y = 0,2 =0 and 2z 4+ y + 3z = 6.

Solution. We have

6 —2r—y

D={(z,y,2):0<2<30<y<6-27,0<2< 2
6—2x
v = dzdydzx
6—2x—y
3

6290 3 pr6—2x — 9 —
L e
0 Jo 3

= / ~[18 — 12z + 22%]dz = 6.
0 3
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Example 6.6.2. Find the volume of the solid that is bounded by
the cylinder y = 22 and by the planes y + z = 4 and z = 0.

Solution. We have

D={(z,y,2): 2<2<21°<y<40<2<4-y}

Fig. 6.6.2

2 p4 pdy
v:///l.dv = / // dzdydx
D —2J22 J0
4y pA-y
= (/ / / dzdxdy)
0 J-yJdo
2 pd 2 pd
= //[z]é_ydydx:/ /(4—y)dydx
-2 Jz2 -2 Jz2
2 2 2 4

= / [4y — y—]igdx = / (8 — 42® + x—)dm
i 2 i 2

256

15 °

6.6.1 Triple Integral in Cylindrical Coordinates

In the cylindrical coordinate system a point is given by P =
(r,0,z).
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B - __Srsesz)

r>0,0<6<2mx=rcosh,y=rsind, z=zr=/x2+1y?,
0 = tan™! 2. Consider the cylindrical parallelopiped given by

DC = {(T707z> : 81 S 0 S ‘92791(6> S r S 92<9)7
h1(07 9) S z S h2(07 9)}

and if f is continuous on D., then

75} Fs(rcosf,rsinf)
/ / f(z,y, 2)dzdydz = / / /
D, g1(60) (r cos6,rsin )

(rcosf,rsinf z)rdzdrd@
/92 /gz /

f(rcos@,rsin 9 , z)rdzdrdd.

h2(r,e)

02
v = / / / rdrdfdz.
01

For cylindrical transformation, the magnification factor is

oxr Oz 1
oz Oz cos@ —rsinf 0
O(z,y,2) _ % _?Z % = | sinf rcosf 0
o(r,0,z Loz 68
( ) gz %z G 0 0 1

cos —rsinf
= ) =7
sinf rcosf
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r=
Fig. 6.6.5

Example 6.6.3. Find the volume of the solid bounded by the cone
2z = 22 + y? and the parabolid 4z = 22 + 3.

Solution. Intersection of two surfaces as

A=ty =4 2(2-4)=0=>2=0,2=4.

The intersection is in a point (0,0,0) and in a circle whose pro-
jection onto xy—plane is 22 + 3% = 16.

l\?

D. = {(r6,z): O<r<40<9<27r—<z<7“}

4
v o= /// rdzdrdf
2m
= / / r—« drdQ
r PL 10 _ 32

Example 6.6.4. Evaluate the integral by changing to cylindrical
coordinates

2;B 2
/ / / \/x2 + y2dzdydzx.
—2x—22
Solution. We have

Dc:{(l',y,Z):0§3§§2’—\/2$_x2§y§ /2$_$2’

0<z<a’+y%}
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20—t =9y & 2w=a"+4°
2r cos ) = r?
(2cos —r)r =0
r=0,r=2cosf

D. = {(7“,9,2)5—g§9§g,0§r00s8,0§z§r}

w/2 2cosf pr?
/// Va2 +yidedydr = / / (r)yrdzdrdf
o 0 0

—7/2

/2 2cos @ 5
= / [r?2] drd6
—r/2.J0

w/2

w/2 2cos 6
= / / ridrdd
—7/2J0
/2 57 2cosf
—x2 L9 1o

4 w/2

:6— cos® Odh
0

C6aV3ys 512

5, 1 15

6.6.2 Triple Integral in Spherical Coordinates

Let (z,y,2) and (r,6,2) be sets of rectangular and cylindrical
coordinates for a point P in space, with r > 0,0 < 0 < 27.

Transformation from spherical to rectangular coordinates are as

— peosd = 2(p,6,0)
= psing
rsinf = psin¢sinf = y(p, ¢, 0)

B e 3w
Il

= rcosf = psingcost = x(p, p,0)
O<o<m.
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Fig. 6.6.6
In spherical transformation, the magnification factor

o ox on
0, 0 o6

8(x,y,z) _ QZ QZ Jy
- 0 0 o0

8(ﬁh(ﬁ,9) Qg Qﬁ oz
op 06 00

singcosf pcospcosf —psin@sind
= | sin¢sinf pcos¢sinfd psin¢pcosd
cos ¢ —psin ¢ 0

= p’sing.

Let hq, ho, F1, F5 be continuous functions with 0 < § — a <
21,0 < hy < hy < mand 0 < Fy < F, and the region Dg be
Ds={(p,¢,0) :a <0 < 3,h(0) < ¢ < hy(f) and Fi(¢,0) < p <
Fy(¢,0)} then [ [ [, f(z,y,2)dv = fﬁ th(e) fFQ(w)f (psin ¢ cos b,
psin ¢ sin @, pcos @).p? sin pdpdpdo.

Example 6.6.5. Find the volume of the solid inside the sphere
2?2 + 9% + 22 = 9 and outside the cone 2% = 2% + 12

Solution. We have

3
D, = {(p,o,9) 0<p<3%§¢§£

o= [ [ rav - // / / 7 sin ddpd6do

3r/4

_ / QW["_]g sin ¢dfdg

w/4

3mr/4 3m/4
_ / / 9 sin ¢dfd — / [96]27 sin ¢dgb

3r/4
= 187?/ sin ¢pdg = 18v/2.
/4

0<6<2r}



180 Chapter 6 Multiple Integrals

Example 6.6.6. Evaluate the integral by changing to spherical
coordinates.

f f_mf 5 552_11 f]: + y2 + ZQ)dZdydﬁE

b) fO\/Q fo\/4—y2 fo\/4—z2_y2 \/3:2 _|_y2 +220\/332 _|_y2 ~|—22dzdasdy.
Solution.

(a) We have D = {(2,9,2) : 2 < 2 <2, —V4d—22 <y <
VI T <2 = - 5)
r . x=-21%t0 x=2
y Pt =4-2t=>2t 4P =4
z z:\/ﬁgﬂto z2=1/8— a2 —y>?
2 =249 to 2+t +y2 =8
PP=8=p=2V2
sphere .

cone z > 0,

Intersection of the cone and sphere

8= 22422 +y? =22 +22 =22 = 2 =42, since z > 0,z = 2,
i.e., the projection of the intersection of the two surfaces is
the circle 22 + y? = 4,

D,={(p,#,0):0<p<2v/2,0< ¢ <7/4,0<6 <27},
f(@,y,2) =22 +y?> + 22 = p?,

///(x2+y2+z2)dzdydx
= / / / 2)p? sin gpdpdedd
= / " / 2f sin ¢dodd

/4
_ / / 128\/5 sin pddo
0 0 5
—128v2 [*
5 [
0

o|n/tdo = 2;(\/5 — .
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(b) We have

D = {(z,9,2): 0<y<v2,0<2<\/4—y2

0<z<+4—22-9y%}

- eyt =4

Tr =
z=\4d-2 -2 ettt =4

Dy = {(P,¢,9)i0§p§2,% <¢<7/2,0<6<7/2}.
Here y takes the place of z, x takes the place of y and =z

takes the place of x, hence y = pcos¢,x = psin¢sinf, z =

psingcost, v +y* + 22 = p2.

p)p* sin pdpdgpdd

///\/Td _

[
[
[

>J>|b \

0 sin ¢pdodl

/ 4 sin pdodd = 7v/2.

6.6.3 Change of Variables in Multiple Integrals

Let R be a region in the zy—plane, and suppose that x and y
are functions of a new set of variables u and v, i.e.,

T :gl(ua V)ay 292(u7 V)

where g, and g, have continuous partial derivatives in some region
S in the uv plane ((z,y) € R).

In the above transformation assume that each point (u,v) in S
is taken to exactly one point (z,y) in R.

Then

//Rf(x’y)dA://Sf(gl(u’y)’g?(“’”))|§Ez:i§|df4
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where

P
ou Ov

is the area magnification factor and is called the Jacobian of the

transformation.

Example 6.6.7. Evaluate [ [.(y — x)dA, where R is the region
bounded by the linesy =2+ 1,y =2 — z, and y = 2z — y.

Solution.

v=y+x.

Then the lines y = x + 1,y = 2 — x are transformed into the
linesu=1,v=2.

Since

utv = y—x+ytr=2
u—v = yYy—x—y+ax=-20

Uu 1%
r = —5—1—57 y=2zx—y
U v u—+v
YT gty T Tt
v =3u+ 38,

Oy _ o o |_|-3 3]__1
o(u,v) — ’a— a—H ; %“_5
_u 1% 1% o
prr=gtg gty =
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1 1 p3uts
//(y—x)dA://u|——|dA = / / —dvdu
R S 2 —2.J2 2
1
— [ Bagtdu=o.
o 2

Example 6.6.8. Evaluate [ [,(z — y)?sin®(z 4 y)dA by suitable
change of variables where R is the region bounded by the parallel-
ogram with vertices (m,0)(27, ), (7, 27) and (0, 7).
Solution. Let the transformation be

u=r—y,V=x+y.

Then if
y=x—m thenu=r—ax+n1=nm
y=m—x thenv=ax+n17—-—2=7
y=xz+7 then u=2—(x+7)=—7
y=3m—x then v =21+ (31 —x) = 37.
Now
(o - 1)? =, sin?(w + y) = sin?v,
then
ou Ou
I IR
gy v 1 1 :
dzr 0Oy
d(,y)
@-yPrpar = [ [ty "
//R S 6(u,y)

3T T 4
1 s

2 . 2
/7r /_Wu sin 1/]2|u1/ 3

Note 6.6.1. When solving for z and y in the integrand use the
relation

1
Nz,y)  Buw

O(u,v) — O(w,y)

Example 6.6.9. Evaluate [ [,(2° + y?)dxdy, where R is a region
bounded by 2% —y? = 1,2 — y* = 9,2y = 2,7y = 4.
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Fig. 6.6.8

Solution. Let 22 — y? = u, 22y = v

// z? + dxdy—// 2% + %) ) dudv
R V)
O(u,v) Uy Uy 20 —2y
= = 4
d(z,y) Vp Uy ' 2y 2z (=" 497,
(@ + %) = (2% —y?) + (2zy)*
= w4+
(2 +y") = Vur+v?
O(z,y) 1 1 1

Ou,v) e = 42 +4?) ~ auZ+ 07

dudy
1/uZ _|_ V2
//R1 dv/u? + v?

= - dudy = 8.
4 /u1 /y4

Remark 6.6.1. If a transformation is defined by

x = gi(u,v,w),y = ga(u,v,w), 2 = gs(u, v, w)

and it maps a region F in u,r,w space onto a region D in xyz
space, then

///fxy’ ///fgluuw g2, v, w),

0(z,y, 2)
o(u, v, w) @,

mov.w)
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where
dz Oz Oz
0wy _| % % B
O(u, v, w) Juo v G
ou Ov Ow

is the Jacobian of the transformation.
Remark 6.6.2. Suppose T is an object in the form of basic solid.

If T" has constant mass density A, then the mass of T"is M = \v. If
the mass density varies continuously over T" say A = A(z,y, z) then

M:///)\(J:,y, z)dxdydz,
T

coordinates of centroid are given by

EU—///xdxdydz,yv—///ydxdydz,
T T
zv—///zd:cdydz,
T

moment of inertia of T" about a line is given by

[:///T)\(x,y,z)[r(x,y,z)]dedydz

where r(z,y, z) is the distance of (z,y, z) from the line.

and

Example 6.6.10. Find the mass of a solid right circular cylin-
der of radius r and height H given that the mass density is directly
proportional to the distance from the lower base.

Solution. We have

z/N\

|
h
|

X
X + y2= r2
Y& Fig. 6.6.10



186 Chapter 6 Multiple Integrals

—r<zx<r—vr2—2<y<vrr—z20<z<hAz,y,z2) =
Kz, K >0M = [ [ [ Kzdxdydz

= / / / Kzdxdydz
—Vr2—z2
VrZ—z?
= / / K dyd:c
—rJ —/r2—z2
ViZ=a? pep2
= 4 / / dydx
o Jo 2

= 2Kh? / V2 — 22da.
0

Putting x = rsinf, dz = r cos 6d6,

w/2
= 2Kh2/ r? cos? 0d0,
0

Kh?r’n
5

Example 6.6.11. Set f(z,y,2) =xyzon [[ :0<z<1,0<y <
1,0 < 2z <1 and take P as the partition P; x P, x P;.

(a) Find L;(P) and Ug(P) given that

Pl = <$07I1)"'7$m)7p2 - (y07y17"'7yn)7p3 = (207217"'a2q)
are all arbitrary partitions of [0, 1].

(b) Use your answer to (a) to calculate

/// xyzdrdydz.

Solution.
(a) Let

m n q

Ly(P) = ZZinflyjflzkfleiijAZka
i=1 j=1 k=1
n q

Ug(P) = ZZZmiyjzkAxiijAzk.

i=1 j=1 k=1
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(b) Ti1Yj 1251 < (xi'i‘;i—l) (yj+2yj—1) (Zk‘f‘;k—l) < Ty %

Ti1Yj12k 188y Az < (37 — i 1) (%2-—%2'_1)
(zk 213_1) < 2zl ijAzk,

Ly(P) < %21‘11 2?:1 Z=1<x? - x?fl)(y? - 1/?4)(21% - 213—1)
< Ug(P).

The middle term can be written as

822 1( Tie 1)21 1(3/] y] D) 2= 1( Zk )= é-lll:

8

Example 6.6.12. Find the mass of the solid bounded above by
the parabolic cylinder z = u —y? and bounded below by the elliptic
parabolid z = 22 + 3y?, given that the density varies directly with
|z

Solution. We have

4—y° = 1:2+3y2:>4y2:4—:1:2,

M = // / k|x|dzdydx
\/4 z2 2+3y
= / / / Ka:dzdydx
x2+3y
128

2 2"
= 4K// 4o — 2 — day®)dydr = —K.

Exercises 6.6

1. Express fffD x,y,z)dv as an iterated integral where D
is the region in the ﬁrst octant boundeQd by the coordinate
planes and the graphs of z —2 = 2 + £ and z* + ¢y* = 1.
Hint. D ={(z,9,2) :0<2<1,0<y<v1—-220<2z<
2+ ¥ 42}

///Df(:c,y, z)dv:/o1 /Om/02+m2+f fx,y, 2)dzdydx.
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. Evaluate [ [ [, zzdv, where D is the solid region in the first

octant bounded above by the sphere 22 4 y? + 2% = 4, below
by the plane z = 0 and on the sides by the planes x = 0,y = 0
and the cylinder % + y? = 1.

. Express [ [ [,(2®+y?)dv as an iterated integral in cylindri-

cal coordinates and evaluate it, where D is the solid region
bounded by the cylinder 22 + > = 1 and the planes z = 0
and z = 4.

Hint. D = {(2,0,2) : 0 <r < 1,0 <0 < 27,0 < z < 4},
Ans. 2.

. Express [ [ [, f(x,y, z)dv as an iterated integral, where D is

the region in the [ y octant b20unded by coordinate plane and
the graphs of z —2 = 2> + £ and 2* + y* = 1.

. Find the volume of the solid that is bounded by the cylinder

y = 2 and by the planes y + z = 4 and z = 0.

Find the mass and center of mass of a solid hemisphere of
radius a if A at P is directly proportional to the distance
from the center of the base to P.

Hint. Center of mass is % from base along the axis of sym-

Ka*n
metry, Ans. 5.

Evaluate the integrals by changing to cylindrical coordinates

fol fo\/l_y2 N Aoty zdzdzdy.
b) 5 [ e fy T /a7 P dzdyde.

Evaluate the integrals by changing to spherical coordinates
8— Iz—y 2, .2

b) foﬁ fo\/4_y fo e \/mdzdxdy.

Sketch the region, use triple integrals and find v.

(a) z+ 22 =4,y+2=4,y=0,2=0, Ans. @
(b) y=2-2%y=z2"0+z2=42=0, Ans. 2



6.3 Double Integral in Polar Coordinates 189

10.

11.

12.

13.

14.

() v*+22=1Lxz+y+z=22=0, Ans. 27.
(d) 2=9—2%2=0,y=—1,y =2, Ans. 108.
1

(e) z=a%z=2a%y=2"y=0,Ans. =.

A region S is bounded by the surfaces z2 + 4% — 22 = 0,42 =
22 + 9% 22 = 2% + 2, use cylindrical coordinates to find the
volume v(5).

Hint. v o= ff |:‘/x2_|_y2_$21-y2:| dA _ f_T:{jQ OQCOS@(TQ .

2Ydrdf = 3 — 31,

A region F' above the z axis is bounded on the left by the
line y = —x, and on the right by the curve ¢ : 22 + 9% =

3v/2? + y? — 3z, find the area.

Hint. ¢ : the cardoid r = 3(1 — cosf),y = —x : the ray § =
G ={(r0):0<r<3(1—cosh),0 <O <3 AF) =

[ fpdA= [ [ rdrdd = [ 2070 rdrdg = (5 —4/2
1).

Use polar coordinates to evaluate [ [ /12 +y?dA, where F
is the region inside the circle 22 + 3* = 2.

Hint. [ [, /22 +y2dA = [70, [ r2drd) = 2

Evaluate using polar coordinates

V4 v? \/x2+y dzdy, Ans. 7.
f Ay

2 2+\/4—$

_sin(2® + y*)dzdy, Ans. 27.

16 — 22 — y2dydz, Ans. %% — 230,
) fol fﬂx2 + %) Y2dzdy, Ans. V3 — 1.

Find the volume of the solid bounded above by plane 2z =
44z below by the zy—plane, and on the sides by the cylinder
22 4+ y? = 2.

Hint. 72 = 2rcosf,r = 2cosf,cosf = 0,0 = +7/2,2 +
r/2cos,

v=[7/2, 02%59 f;wﬂme rdzdrdf = S
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15.

16.

17.

18.

19.

Chapter 6 Multiple Integrals

Find the volume of the solid that lies between the cylinder
2?2 +y? = 1 and 22 + y? = 4, and is bounded above by the
ellipsoid 2 + y2 + 422 = 36 and below by the zy plane.

Hint. v = [7 [ 2V pdzdrdd = T(35v/35 — 1281/2).

Find the volume of the solid T enclosed by the surface (z* +
Hint. p* = 2pcospp?sin®’¢p = p = 2cos ¢sin® ¢, here no
restriction on 6 thus 0 < ¢ < 27. Since p remains nonneg-
ative, ¢ can range only 0 < ¢ < 7/2,0 < p < 2sin? ¢ cos .

v — 027r O7r/2 025111 ¢ cos 6 2Slngbdpd¢d9 o

Find the mass of a right circular cone of radius r and height h
given that the density varies directly with the distance from
vertex.

Hint. D, = {(p,¢,0) : 0 <0 <2m,0 < ¢ < tan"'r/h,0 <
p < hsec¢p}

M = [ [ [ Kp*singdpdedd. Ans. LKrh[(r* + h*)** — h3).

Locate the center of mass of the upper half ball, center of the
ball is at the origin.

Hint. zv = [ W/2 fo p cos ¢)p? sin gpdpdpdl = U=
2TR® Z=1%R, (7.7.%) = (0,0, 2.

Let © be the first quadrant region bounded by the curve zy =
Ley=4,y =2,y = 4.

(a) Determine the area of €.

(b) Locate the centroid.

Hint.

(a) h =ay,v =y, then x = u/v,y = v, J(u,v) = 1/v.ay =
Loy=4=u=1lLu=4y=x,y=4r = 1> =u,1? =
4u. §is the set of all (z,y) with uv coordinates in the set

[:1<u<4, \/ESVSQ\/ﬂ,flf‘fldudV—SlogZ
(b) A = [! fm;gd du =17 = 5725 GA = [ [ dvdu =

14 —
3.9 = 910g2'
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20.

21.

Show that the ellipse b*z? + a?y? = a?b? has area wab setting
x =arcosf,y = brsinf.

Hint. J(r,0) = abr,0 <r < 1,0 <60 <21, A = abfo%fol
rdrdf = mwab.

Let T be the solid ellipsoid 2% /a®+y?/b*+ 2% /c* < 1, calculate
volume of T" by setting x = apsin ¢ cosf,y = bpsin ¢sinf, z =
cp cos ¢.

Hint. J = abep*sing,v = [77 [ [ abep® sin ¢pdpdpdd) =

4
37rabc.



Chapter 7

Integration

In this chapter we have studied the integral of real-valued func-
tion of several real variables, and its properties.The integral studied
here is called Riemann integral; it is a direct generalization of the
integral usually studied in a first course in single-variable analysis.

7.1 Basic Definitions

Definition 7.1.1. Let I = [a,b] = [a',b'] X [a®, %] x -+ x [a™, b"]
be a closed rectangle in R". Then the volume of [ is defined by

V() = H(bi —ah).

Definition 7.1.2. Let I = [a,b] be a closed rectangle in R". Then
a partition P of I isaset P = {Iy,I5,...,1I,} of closed sub rectan-
gles such that Uj_,I; = I and [; and ; intersects at most on their
boundaries.

Note that P = {Iy, I5,...,I,} is a partition of I (as in figure
below) then

Vi) =Y V).

Now suppose that f : I — R is a bounded function where [ is
a closed rectangle in R". Let P = {[;,...,I,} be a partition of I
for each i =, ..., n, define

m; = inf f(x), M; =sup f(x).

zel; zel;
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11 I2 17

L =T

Is Is | 1o Lo
Fig. 7.1.1

(m;&M; exists since function is bounded).

Then we define the upper and lower sum of f with respect to P
respectively as

=1 =1

clearly L;(P) < Us(P).

Definition 7.1.3. Let P and P’ be partitions of an rectangle
I, we say P’ is a refinement of P.

Lemma 7.1.1. Suppose P’ is a refinement of P. Then
Ly(P) < Ly(P') and Up(P') < Ug(P).

Proof. Let I; be a sub rectangle in P, then [; = UI;; where I;,’s
are sub rectangles in P’.

= m; <m;, and M, < M,
= > miV(J) <> my V(J
- w0 < S,

- Yy <zz%
= L;(P) < Lf(P)-

Similarly using M;;, < M;, one can show that Us(P’) < Us(P).

Corollary 7.1.1. If P and P’ are any two partitions then L(P) <
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Ur(P).
Proof. Let P” be a refinement of P and P’. Then by Lemma 7.1.1

"

Ly(P) < Ly(P") and Uy(P") < U(P") = Ly(P) < Us(P).

Note. From the above corollary it follows that the set of all upper
sums is bounded below and hence it has infimum, defined by

/i.e.,/ f=inf{U;(P): P is a partition of [}.
I I

Similarly the set of lower sums is bounded above and we define
the lower integral by

/ f=sup{Ls(P): P is a partition of [}.
L

One can easily see that T}f < T}f-

Definition 7.1.4. A bounded function f from an interval I to
R is said to be integrable if and only if

1{f—71f or [ f

Theorem 7.1.1. A bounded function f : I — R is integrable
if and only if Ve > 0, there exists P a partition of I such that
Uf(P) — Lf(P) < E.

Proof. Suppose f is integrable. Then sup{L¢(P) : P a parti-
tion} = inf{U;(P) : P a partition }. Let [ be the common value,
then there exists P a partition such that [ — 5 < Ly(Py) and P, a
partition such that Us(P,) <1+ 5.

Let P be a refinement of P, and Ps.

- g < Ly(P) < Ly(P) < U (P) < Uy(Py) <1+ g
= Usy(P)— Ly(P) <e.
Now suppose Ve > 0, there exists P : Ug(P) — L¢(P) <e.
Note that [, f < Uy(P) and Ly(P) < fzf
Tpf_iff < Up(P)—Ls(P) < ¢, since € was arbitrary = Tf =
[f = [ is integrable.
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Exercises 7.1

1. Suppose f : (Q — R is continuous. Show f is integrable over

Q.

2. Let [0,1]> = [0,1] x [0,1]. Let f :[0,1]> — R be defined by
setting f(x,y) = 01if y # x, and f(z,y) = 1 if y = z. Show
that f is integrable over [0, 1]2.

3. Let f: R — R be defined by setting f(z) = 1/q if x = p/q,
where p and ¢ are positive integers with no common factor,
and f(z) = 0 otherwise. Show f is integrable over [0, 1].

4. For the rectangle I = [0,1] x [0, 1] in the plane R?, define

Floy) = 5 if (x,y) is in [ and z > 1/2
TYT 1 s (r,y) is in I and x < 1/2.

Use the Integrability Criterian to show that the function f :
I — R is integrable.

5. Let I be a generalized rectangle in R" and suppose that the
function f : I — R assumes the value 0 except at a single
point z in I. Show that f : I — R is integrable. Then show
that [, f = 0.

6. Let I be a generalized rectangle in R" and suppose that the
bounded function f : I — R has the value 0 on the interior
of I. Show that f: I — R is integrable and that [, f = 0.

7. Let I be a generalized rectangle in R™ and suppose that the
function f : I — R is integrable. Let the number M have the
property that |f(z)| < M for all z in I. Prove that

|/f|§M vol I.
I

7.2 Measure Zero and Content Zero

A subset A C R"™ is said to be a set of measure zero if Ve > 0,
there is a countable collection {I,,} of closed rectangles such that

ACUIL and ¥, V(I,) < e.
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Example 7.2.1. A subset of a set of measure zero is a set of
measure Zzero.

Example 7.2.2. A one point set {u} is a set of measure zero.

Note. In the definition of a set of measure zero, the closed
rectangle can be replace by open or half open, half closed rectangle.

Theorem 7.2.1. If A;, Ay, ..., A, are set of measure zero, then
A= A UA; is a set of measure zero.

Proof. For each i, since A; is a set of measure zero, there ex-
ists {1;; 132, such that A; C U;l;; and 3, V() < 5.

But A C UJ;; and Zij V(i) =3, Zj V() <Y, s=e=>A

is a set of measure zero.

Example 7.2.3. Any countable subset of R" is a set of measure
Zero.

Proof. Let A = {uj,us,...} be a countable subset of R". Then
A = UA; where A; = {u;}, since each A; is a set of measure zero
by the above Theorem 7.2.1 so is A.

Definition 7.2.1. A subset A of R" is said to be a set of con-
tent zero if Ve > 0, there exist Iy, I, ..., I, rectangles such that
AChLU---Ul,and ), V(];) <e.

Clearly any set of content zero is of measure zero.

Theorem 7.2.2. If A is compact and has measure zero then A
has content zero.

Proof. Let A be compact set and of measure zero. Let £ > 0, there
exists {I;} open rectangle such that A C U°, I; and Y .o, V(I;) < e.
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But since A is compact there exists n such that

n

ACUL L, also » V(L)< Y V(L) <e
=1

i=1

= A is a set of content zero.
Exercises 7.2

1. Show that an unbounded set can not have content zero.
2. Q" is a set of measure zero in R".

3. Show that if C' is a set of content zero boundaryC' is also of
content zero.

4. Show that if A has measure zero in R", the set A and bound-
ary A need not have measure zero.

5. Show that no open set in R"™ has measure zero in R".
6. Show that the set R"~! x 0 has measure zero in R".

7. Let f:[a,b] — R. The graph of f is the subset

Gy ={(z,y)ly = f(z)}

of R?. Show that if f is continuous, Gy has measure zero in
R%.

8. Show that the set of irrationals in [0, 1] does not have measure
zero in R.

7.3 Integrable Functions

In this section we shall see the condition for integrability of a
bounded function on a closed rectangle.

Lemma 7.3.1. Let I be a closed rectangle and f : I — R. If
O(f,z) < e,Vx € I. Then there exists a partition P of I such that
Up(P) — Ly(P) < eV (I).
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Proof. For each x € I, there exists I, a closed rectangle which con-
tains x in its interior and My, (f)—my, (f) < e(M;, = sup,e;, f(t),ms, =
infye;, f(t)), since I is compact , finite rectangles I, I,,..., I,
covers it. Let P be a partition of I where each sub rectangle S in P
is contained in some I,,. Then for every S € P, Mg(f)—ms(f) < e

= Us(P) = Ly(P) = Y [Ms(f) —ms(f)]V(S)
< €Y V(S)=V(e.

Theorem 7.3.1. Let I be a closed rectangle and f : I — R in
bounded function. Let B = {x : f is not continuous at x}. Then f
is integrable if and only if B is a set of measure zero.

Proof. Suppose that B is a set of measure zero. Let ¢ > 0 and
B. ={z: O(f,x) > ¢}. Then B. C B and hence a set of measure
zero. But B, is closed. Thus B. is a set of content zero. Thus
there exist I, ..., I, closed rectangles whose interior covers B, and
Yo V(I;) < e. Let P be a partition of I such that every sub
rectangle of P is in one of two groups.

1. P, which consists of sub rectangles S such that S C I; for
some 1.

2. P,, which consists of sub rectangles S with SN B, = ¢.

Let |f(z)| < M,Vx € I. Then Mg(f)—ms(f) < 2M for any S.
Thus

> [Ms(f) =ms(AIV(S) < 2M Yy V(L) < 2Me.

SeP;

For S € P, and x € §',O(f,x) < e. Thus by Lemma 7.1.1 there
is a refinement P’ of P (the refinement made only on S such that
S € P,) such that

Y [Ms(f) —ms()IV(S) <eV(S).
S'e P
S cS
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Now
Up(P') = Ly(P) = > [Ms(f) —mg())V(S)
SeP;
+ > [Ms(f) = ms (HV(S)
S'CSePs
<2M.+ Y eV(S) < (2M + V(I))e.

SePy

Since M and V(I) are fixed, this shows that f is integrable.

Now suppose that f is integrable. Since B = By U B; /U B;/3U
..., where By, = {z : O(f,x) > 1/n} it suffice to show that each
By, is a set of measure zero. Let ¢ > 0, let P be a partition
such that Uy(P) — Lf(P) < £. Let Py be the collection of sub
rectangles which intersects B;,,. Then P, covers By;,. Moreover

for S € PLMs(f) — ms(f) > 1/n. Thus

CSVES) < S IMs() — ms(HIV(S)

< Y IMs(f) = ms(£V(S) < =

SeP
= D .sep, V(5) < e. Hence By, is a set of measure zero.
Now we define integral over any bounded set C'. Let C' be a

bounded set then C' C I where [ is a closed rectangle. We define
the characteristic function of C' to be

1 zeC
X710 rgC

/szflfxC.

Exercises 7.3

Then

1. Let f:[0,1] — R be given by

0 T irrational
f(z) = { 1 '
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(a) Show that f is discontinuous only at rational numbers
and f is integrable on [0, 1].

(b) Find [} f

. Let f:]0,1] x [0,1] — R be defined by

r<i
_ =+ =73

Show that f is integrable and f[o ixp £ =1/2.

. Let f be integrable on I. Show that |f]| is also integrable and

[5< [

. Let A be a rectangle in R"; let B be a rectangle in R"; let

Q =AxB. Let f:@Q — R be bounded function. Show that

if fQ f exists, then
/ flz,y)
yeB

exists for v € A — D, where D is a set of measure zero in R

. Let S7 and Sy be bounded sets in R"; let f : S — R be a

bounded function. Show that if f is integrable over S; and
So, then f is integrable over S; — Sy, and

foon =L L

. Let f,g: S — R; assume f and g are integrable over S.

(i) Show that if f and g agree except on a set of measure

/ / '
S S

(ii) Show that if f(x) < g(z) forz € S and [, f = [ g, then
f and g agree except on a set of measure zero.
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7. Let D be a compact, connected Jordan domain in R" with
positive volume, and suppose that the function f: D — R is
continuous. Show that there is a point x in D at which

1
f@FQMDLf

8. Let I be a rectangle in R™ and let the function f : I — R
be integrable. Denote the interior of I by D. Show that the
restriction f: D — R is integrable and that

-1

7.4 Iterated Integrals

Let R : [a,b] X [¢,d] be a rectangle, the volume over R under the
graph z = f(z,y) is given by

b
/(cross—sectional area at x)dx
a

a[%?mwmmzf[?wwwﬁ

This expression is called an iterated integral.

Example 7.4.1. Consider the iterated integral

1 p2 1 2y 2
/ / (14 2° + zy)dydr = / (1+2%)y+ T] dx
0 1 0 y=1

! 3
- / (14 2%+ §ar)dar
0

+x3+321 25
= r+—=—+-2 =—
34|, 12
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Example 7.4.2.

2 1 )
/ / xye” Y dydx
0o Jo1
2/ o1 .
= [ ([ werersay ) a
o \J1

-/ 2 (;H]) dz = 0] Since(ze”)y(e")

is odd function of yl.

Example 7.4.3. Find the volume of the region lying over the tri-
angle Q C R? with vertices at (0,0)(0,1) and (1,1) and bounded

byz:f(:c,y) =Ty.

Solution. We consider (2 as a subset of the square R = [0, 1] x [0, 1]
and define f: R — R by

f(x,y)z{ Ty Zf(l'?y) € )

0 otherwise

Note that for x fixed, fv(x,y) = 2y when 0 < y < z and is 0
otherwise. So

/fmydy—/ rydx + Ody—/ xydy
//fxydydx—/(/xa;ydy)d:v—/o (%:pyz]:o) dx:é.

7.5 Fubini’s Theorem, 2-Dimensional Case

Suppose f is integrable on a rectangle R = [a,b] X [c,d] C R
Suppose that for each x € [a, b], the function f(z,y) is integrable
n [c,d] ie., F(z) = fcdf(x,y)dy exists. Suppose next that the
function F is integrable on [a, b], i.e

/abF(x)dx - /ab (/cdf(x,y)dy) dz



7.5 Fubini’s Theorem 2-Dimensional Case 203

exists. Then we have

/RfdA = /ab (/cdf(x,y)dy) dz.

Proof. Let P be an arbitrary partition of R into rectangles R;; =
[xiflaxi] X [yjflayj]vi = 17 . '7k7j = 17 cee 7l'
When (z,y) € R;;, we have
my < f(z,y) < My
Yi

mij(yj - yj—l) S f(ZL‘ y)dy < Mzg( y] 1)
Yj—1

So now when x € [x;_1, z;], we have

l
Zmzj yjl /fxy SZ yjl

or

(Zm” . 1)(:@—@_1) < /( Cdf(:zz,y)dy) da
M,

l

A D

J=1

/a b ( / df(x,y>dy) da

!
(Z Mi;(y; — yj1)> X
j=1
But this can be rewritten as

Zklilmij area (R;) < /ab (/Cdf(x,y)dy) dx
ZZM” area (R;;).

i=1 j=1

i (Y5 — Y1) (i — zi1).

Summing over ¢, we have

DO iy — i) (@ — i)

i=1 j=1

IN

IA
i

(l’i — Ii_1>.

IA
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or

Ly(P) < /ab (/Cdf(x,ymy) dz < U(P).

Since f is integrable on R, if a number I satisfies Ly(P) < I <
Uy (P) for all partitions P of [a,b] then

I_/fdA

Corollary 7.5.1. Suppose f is integrable on the rectangle R =
la,b] X [a,d] and the iterated integrals

/ab /Cd f(z,y)dydz and /Cd /cbf(q:,y)d:cdy

both exist. Then

[Lb/cdf(x,y)dydx:/RfdA:/Cd/abf(x,y)dxdy.

Example 7.5.1. Find a function f on the rectangle R = [0,1] x
[0, 1] that is integrable but whose iterated integral does’t exist.

Solution. Take

_J L z=0,ye@
f(z,y) _{ 0, otherwise

The integral fo f(0,y)dy does not exist, but f is integrable and
Jr fdA=0.

Example 7.5.2. Find a function whose iterated integral exists
but that is not integrable.

Solution. Let
)1, yeq

Then fol y)dx = 1 for every y € [0, 1], so the iterated inte-
gral fo fo x,y dxdy exists and equals 1. Whether f is integrable
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on R = [0,1] x [0,1] we proceed as assume it is integrable then it
would also be integrable on R’ = [0, 1] x [0,1]. For any partition P
of R', we have Uy(P) = 3, whereas we can make L;(P) as close to

fol 01/ 2 2edrdy = i as we wish. Hence f is not integrable.

Example 7.5.3. Evaluate the iterated integral

/1/1 Sinxda:dy.
0 Y x

Solution. It is a classical fact that f Si%dx can not be evaluate in
elementary terms, and so we define

f(:v,y)Z{ ? ’ iig :

Then f is continuous and the iterated integral is equal to the
double integral [, fdA, where

Q={(z,y):0<y<ly<z <1}.
Now changing the order of integration we get

Q={(z,y):0<z<1,0<y <z}

and

1 T
/fdA - / </ Smxdy)da:
9 0 o T
z dx

Example 7.5.4. Let 2 =



206 Chapter 7 Integration

{reR":0<x, <z 1 <+ <ay<x; <1}. Then

1
1 1
= :/ = —.
o (n—1)! n!

Fubini’s Theorem in General Form
Let I C R™ and J C R™ be closed rectangles and let f : [ xJ — R
be integrable. For each z € I let g, : J — R defined by g.(y) =

f(z,y) and

Tn—1

dz,, . .. dzrodx,

vol(?) =

o

Tpn—2
xnfldl’nfl R dxgdxl

Tn—3 1

5.23721_2(1%”_2 ... dzodx

I
S— — —

[e=]

S(x) = L/ngzL/Jf(rc,y)dy
Nz) = U / g =U / £z, 9)dy.

Then & and N are integrable on I and

ENA
- [w [ ez
/ijf:/,N:/l<U/]f<:c,y)dy>dx.

Proof. Let P; be a partition of I and P; a partition of J. Together
they give a partition P of I x J such that any sub rectangle S of
Pis S; x S;and Sy € Prand S; € Py.

Li(P) =) _"ms(HV(S) = D ) mgus, (fHV(Sr x Sy)
S

St Sy

= 305 msyws, (N VSHV(S)).

St Sy
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Now if x € S, then clearly

mg,xs,(f) < mg,(g,) and
MSIXSJ(f) > MSJ(Qx)-

Consequently for z € S; we have

Similarly it can be shown that Ux(Pr) < Us(P).
Thus we obtain

Ly(P) < Ls(Pr) < Us(Pr) < Us(Pr) < Us(P)

<
= Q is integrable and [, 3= [, f.

Similarly from the fact that
Ly(P) < Ls(Pr) < Ln(Pr) < Ux(Pr) =< Uy (P)
this implies that N is integrable and

/ I><J

Remark 7.5.1. f: 1 x J — R is continuous. Then X(z) = (z)

and hence

/ / / f(x,y)dy)d

IxJ
Thus f: J = [a',b'] x [@* %] x -+ X [a",b"] — R is continuous,
then

/f / [/bnll...<aflf(xle...x”)da;)dx2>...dm”.

Example 7.5.5. Construct a function f : [0,1] x [0,1] — R such
that g, : [0,1] — R given by g.(y) = f(z,y) is integrable but f is
not.

Hint. Construct a set A C [0,1] x [0, 1] such that each vertical
or horizontal line contains at most one point of [0,1] x [0, 1] but

9A =1[0,1] x [0,1]
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Change of Variables

Theorem 7.5.1. Let A C R™ be an open set g : A — R™ a one one
continuously differentiable function such that detg’(x) # 0,Vz € A.
If f:9(A) — R is integrable function. Then

/g(A)f_/q(fOQ)‘detg’|,

Exercises 7.5

1. Let g : {r|r > 0} x (0,27r) — R? be given by g(r,0) =
(rcosf,rsin)

(i) Show that g is one one and continuously differentiable
with detg’ # 0.

(i) Let C = {(z,y) : r} < 2?2 + y> < r2} where r; <
T9,T1,T9 > 0.
If f:C — R is integrable show that

/cf = / (/0% f(rcosemsme)de) dr.

2. Show that [* e ®dz = /7
Hint. Note that

/ (/ e~ ) qydr = ,// e~**dx.

(a) Define C, = {(z,y)/2* + y* < r?} and show that

T 2m
/ e_($2+y2)dyda::// e " rdrdd.
Cr 0o Jo

b) Verify that lim, .o [. e~ @) dyde = [ [ f.
Cr 00 0o

/ / sin? z sin? ydxdy.
[0,1]x[0,1]

3. Evaluate
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4. Show that

/03 /14_y(33+y)dfc dy:/l2 [/04_m2(w+y)dy

5. Let A be open in R?; let f: A — R be of class C?. Let Q be
a rectangle contained in A.

241

do = 2=,
760

Use Fubini’s theorem and the fundamental theorem of calcu-
lus to show that

/QDQle:/DDlDQf.

6. Give and example where |[ 0 f exists and one of the iterated
integrals

/ f(z,y) and / fz,y)
z€A JyeB yeB JxcA

exists, but the other does not, where () = Ax B; A is rectangle
in R* and B is a rectangle in R” and f : Q — R be a bounded
function.

7. Let I =[0,1]; let @ = I x I. Define f : Q — R by letting
f(z,y) = 1/q if y is rational and = = p/q, where p and ¢
are positive integers with no common factor; let f(x,y) = 0
otherwise.

(a) Show that fQ f exists.
(b) Compute

[ S [ g

(¢) Verify Fubini’s theorem.

8. For a continuous function f : [a.b] X [a,b] — R, prove Dirich-
let’s formula

/ab Uf f(x,y)dy] dx = /ab {/ybf(w,y)dx} .



210 Chapter 7 Integration

9. Suppose that the function ¢ : R~ R is continuous. Prove that
for each x > 0,

[ [ o] ae= [ = sptas

10. Let g : {r|r > 0} x (0,27) — R? be given by g(r,¢) =
(rcosf,rsinf). Show that g is one-one and continuously dif-
ferentiable with determinant ¢’ # 0.

11. Let C = {(z,y) : ¥ < 2*+y? < r3} where r; < r9,71,72 > 0.
If f:C — is integrable show that

/Cf_ /T:Q (/OQﬂf(rcosﬁ,rsiHG)dG) dr.

12. Show that

/ e dr = /7.

o0

2
Hint. Note that [ <ffooo e_(’”2+y2)dydx> = [ffooo e_’”Qd:B} .

13. Define C, = {(z,y) : 2* + y* < r?} and show that

r 2w
/ e_(m2+92)dyd:p:// e " rdrdd.
Cr 0o Jo

Verify that

lim e_(“”2+92)dxdy:/ / I
r—oo oo o0 J—co

14. Let S be the tetrahedron in R? having vertices (0,0, 0), (1,2, 3),
(0,1,2) and (—1,1,1). Evaluate [¢f, where f(z,y,2) =
T+ 2y —z.

Hint. Use a suitable linear transformation g as a change of
variables.
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15.

16.

Let B be the portion of the first quadrant in R? lying between
the hyperbolas xy = 1 and xy = 2 and the two straight lines
y =z and y = 4z. Evaluate [, z%y°.

Hint. Set x = u/v and y = uv.

IV ={(r,y,2): 2>+ y* + 2* < a® and z > 0},

use the spherical coordinate transformation to express fv z as
an integral over an appropriate set in (p, ¢, ) space. Justify
your answer.



Bibliography

Here some references are given which are useful for further read-
ing as well as to look into some deep results which have been left
unproved in the text.

e Apostal, T.M, Mathematical Analysis, 2" edition, Addison
Wesley, 1974.

e Boothby, W.M., An Introduction to Differential Manifolds
and Riemannian Geometry, Academic Press, 1975.

e Devinatz, A., Advanced Calculus, Holt, Rinehart and Win-
ston, 1968.

e Fleming, W., Functions of Several Variables, Addison - Wes-
ley, 1965, Springer - Verlag, 1977.

e Fitzpatrick, Patrick, M., Advanced Calculus, PWS Pub. Co.
1996.

e Goldberg, R.P., Methods of Real Analysis, Wiley, 1976.

e Munkres, J.R., Analysis on Manifolds, Addison - Wesley, Pub.
Co., 1991.

e Munkres, J.R., Topology, A First Course, Prentice - Hall,
1975.

e Nickerson, H.K., Spenser, D.C. and Steenrod, N.E., Advanced
Calculus, Van Nostrand, 1959.

e Northcott, D.G., Multi-linear Algebra, Cambridge Univ. Press,
1984.

e Royden, H., Real Analysis, 3" edition, Macmillan, 1988.

e Rudin, W., Principles of Mathematical Analysis, 3" edition,
McGraw-Hill, 1976.

e Spivak, M., Calculus on Manifolds, Addison-Wesley, 1965.



Index

Absolute Maximum and Mini-
mum Values, 87

Angle preseving Linear Trans-
formation, 17
Applications
38
Approximation Theorem, 145

of Compactness,

Baire Theorem, 41
Bilinearity, 7
Bolzano-Weierstrass
38

Boundary Point of a Set, 30
Boundedness of Linear Trans-
formation, 12

Theorem,

Cantor Intersection Theore-
m, 38

Cauchy - Schwartz Inequality, 2
Cauchy Sequence, 44
Center of Mass, 170
Chain Rule, 118
Chain Rule 1, 71
Chain Rule 2, 71
Change of
157,181,208

Class C! Function, 132
Closed ball in R™, 27
Closed Set in R™, 25
Closed Rectangle, 192
Cluster Point, 31
Compact Sets, 35
Compactness, 104
Connected Sets, 107
Connectedness, 107, 110

Constant Function, 100, 119

Variables,

Content Zero, 195

Continuity, 56, 94, 98
Continuously Differentiable Fu-
nction, 134

Convex Set, 110

De Morgan’s Laws, 26

Dense Sets in R", 39

Derivative of a Function, 114
Differentiability, 68
Differentiation in R", 114
Directional Derivatives, 74, 137
Distance between two points in
R", 6

Double Integral in Polar Coor-
dinates , 160

Dual Space of R", 14

Euclidean n—Space,1

Exterior Point of a Set, 30
Extreme Values, 82

Extremum Value Theorem, 104

Fubinis Theorem, 202
Functions of Several Variables,
49

Gram-Schmidt
tion Process, 10
Graphs and Level Curves, 51

Orthogonalzia-

Heine-Borel Theorem, 35
Higher Order Partial Deriva-
tives, 66

Identity Function, 100
Implicit Function Theorem, 150,
152



Index

Injective Function Theorem, 147
Inner Product in R, 7
Integrable Functions, 197
Integration, 192

Interior Point of a Set, 30
Inverse Function Theorem, 150
Isometric Transformation, 18
Isometric Function, 19

Jacobian Matrix, 131, 185
Lagrange Multipliers, 91
Lebesgue Covering Theorem, 46
Level Curves, 53

Limits, 56,94

Linear Transformation on R",
11

Local Maximum Value, 84
Local Minimum Value, 84
Lower,Upper Sums, 157, 158

Maxima and Minima, 81
Mean Value Theorem, 141
Measure Zero, 195
Minkowski Inequality, 3

Norm in R", 2
Norm Preserving L.T., 17
Nowhere Dense Sets in R, 39

Open ball in R", 27

Open Cover, 37

Open Mapping Theorem, 144,
150

Open Set in R™, 25

Orthogonal Basis of R", 8
Oscillation, 8

Partial Derivative, 62, 127
Partition, 192

214

Path-Connected Sets, 107
Polarization Identity, 7

Product Function, 100

Product of Sets, 33

Product rule, 33

Projection Function, 100
Proper Rotation in R”, 21
Properties of Functions of Sev-
eral Variables, 50

Properties of Limits, 96

Real Valued Function, 94
Refinement of Partition, 193
Riesz Theorem, 14
Rotation, 21

Rotation in R?, 22

Second Derivative Test, 84
Sequence in R, 43

Simple Region, 161

Sum Function, 100

Surface Area, 171

Surjective Function Theorem,
144, 148

Tangent  Plane  Approxima-
tion, 79

Tetrahedron, 174

Topology on the FEuclidean

n—space R", 25
Triple Integral in Polar,Spherical
Coordinates, 157, 175, 178

Usual Topology, 27

Vector Valued Functions, 94
Volume of Closed Rectangle,
159

Weak Chain Rule, 134



	Title page
	Full title
	Copyright
	Preface
	Contents
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Bibliography
	Index



