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Chapter

1

PRELIMINARIES

In what follows, some very basic knowledge of Group Theory and a
little of Linear Algebra (vector spaces and matrices over fields such as
real numbers, complex numbers, etc.) are assumed. We begin with the
fundamentals of Ring Theory. While Group Theory involves the study of
only one binary operation, Ring Theory involves two binary operations
with some interrelations. We formally define what a ring is and give
some examples interspersed with a few elementary properties of rings.
The examples we give are what one usually comes across in various con-
texts (such as Algebra [Abstract, Linear, Differential]; Analysis [Real,
Complex, Functional]; Topology; Modules; etc.) and they serve to illus-
trate or counter-illustrate different aspects of rings.

Groups are among the most rudimentary forms of algebraic struc-
tures. Because of their simplicity, in terms of their definition, their com-
plexity is large. For example, vector spaces, which have very complex
definition, are easy to classify; once the field and dimension are known,
the vector space is unique up to isomorphism. In contrast, it is difficult
to list all groups of a given order, or even obtain an asymptotic formula
for that number.

In the study of vector spaces the objects are well understood and so
one focuses on the study of maps between them. One studies canoni-
cal forms (e.g., the Jordan canonical form), diagonalization, and other
special properties of linear transformations (normal, unitary, nilpotent,
etc.). In contrast, at least in the theory of finite groups on which this
course focuses, there is no comparable theory of maps. A theory exist
mostly for maps into matrix groups (such maps are called linear repre-
sentation and will not be studied in this course).

While we shall define such maps (called homomorphisms) between
groups in general, there will be a large set of so called simple groups for
which there are essentially no such maps: the image of a simple group
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under a homomorphism is for all practical purposes just the group itself.
The set of atoms is large, infinite in fact. The classification of all simple
groups was completed in the second half of the 20th century and has
required thousands of pages of difficult math.

1.1 Set Theory and Groups

The concept of set is most basic in Mathematics. Indeed almost all math-
ematical systems are certain collections of sets. All these mathematical
systems and their theories can be treated as parts of set theory. In the
theory of sets, the concepts of set, object, equality and ‘is an element of’
are undefined. Intuitively speaking, a set is synonymous with a collec-
tion of objects.

The basic knowledge of Group Theory which is one of the fundamen-
tal building blocks of the subject and a little of Linear Algebra (Vector
Spaces and matrices over fields such as real numbers, complex numbers
etc.) are assumed. While Group Theory involves only one binary op-
eration, Ring Theory involves two binary operations.The Group theory
is based on the concepts of set theory and number theory which will be
discussed first. Other notions introduced here are those of ideals, prime
ideal, associated primes and assassinator, etc.

1.1.1 Sets:

A set is a collection of objects called the elements of the set. We write
a ∈ A to mean that a is an element of the set A.

1.1.2 Remarks:

Recall the following for sets:

(1) A set having no element is called a null set or empty set, denoted
by ∅.

(2) A set S is a subset of a set A, written S ⊆ A, if every element of
S is an element of A. When S ⊆ A and S 6= T , we say that S is a
proper subset of A.The number of subsets of a set containing n
elements is 2n.

(3) For any set S the collection of all subsets of S is a set of P (S)
called the power set of S. Also P (S)∗ = P (S)−∅.
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(4) The difference of sets S and T is the set of elements which belong
to S but not to T denoted by S−T ; the intersection of S and T is
S∩T = {x ∈ S and x ∈ T}; the union of S and T is S∪T = {x ∈ S
or x ∈ T}.

(5) Two sets are said to be disjoint if there intersection is empty.

(6) If S is a finite set, the number of its elements is denoted by |S|, or
card S, and is called the cardinality of S.

(7) The cartesian product of two sets A and B, denoted by A×B,
is defined as {(a, b) | a ∈ A and b ∈ B}.

(8) Any R ⊆ A × B is a relation from the set A to the set B.When
A = B we say R is a relation on A.

(9) A relation R on a set S is called a partially order on S or a poset
if

(i) R is reflexive if for every s ∈ S, (s, s) ∈ R.

(ii) R is anti-symmetric if both (s, s1), (s1, s) ∈ R⇒ s = s1.

(iii) R is transitive if both (s, s1), (s1, s2) ∈ R⇒ (s, s2) ∈ R.

(10) The Axiom of Choice: For any non-empty set S there is a choice
function h : P (S)∗ → S satisfying h(A) ∈ A for every A ∈ P (S)∗.

(11) If ≤ is a partial order on S then T ⊆ S is a chain if for any t,
t′ ∈ T either t ≤ t′ or t′ ≤ t.

(12) For a poset S, ∅ 6= T ⊆ S has an upper bound d ∈ S if t ≤ d,
for all t ∈ T .

(13) A maximal element of a poset is any m ∈ S so that for s ∈ S,
m ≤ s⇒ m = s.

(14) Zorn’s Lemma: A non- empty poset S has a maximal element if
every chain in S has an upper bound in S.

Before looking at the basics of the ring theory, we define a group,
other concepts of the theory with relevant examples for the clarity of the
same. Some of its fundamental results are also stated.
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1.1.3 Group:

A non-empty set G together with a binary operation ∗ is called a group
if it satisfies the following :

(1) a, b, c ∈ G implies that (a ∗ b) ∗ c = a ∗ (b ∗ c) (associative law).

(2) There exists an element e ∈ G such that a ∗ e = e ∗ a = a, for all
a ∈ G (the existence of identity element in G).

(3) For every a ∈ G there exists an element b ∈ G such that a ∗ b =
b ∗ a = e. Such b is called the inverse of a and is usually denoted
by a−1.

1.1.4 Remarks:

Recall the following for a group:

(1) A group is said to be abelian if commutative law holds, i.e., for
every a, b ∈ G, a ∗ b = b ∗a. Otherwise it is said to be non-abelian.

(2) Let G be a group. The number of elements of G is called the order
of G and is denoted by o(G).

(3) The following properties hold in a group G:

(a) The identity element is unique.

(b) The inverse of each element a ∈ G is unique.

(c) For every a ∈ G, (a−1)−1 = a.

(d) For all a, b ∈ G, (a ∗ b)−1 = b−1 ∗ a−1.
(e) Cancelation laws hold in group G i.e., a ∗ b = a ∗ c ⇒ b = c

and b ∗ a = c ∗ a⇒ b = c.

(f) The equations x ∗ a = b and a ∗ y = b have a unique solution
in G.

(4) A non-empty subset H of a group G is said to be a subgroup of G
if under the operation in G, H itself forms a group. The criterion
for a nonempty subset H to be a subgroup are:

(a) H is a subgroup of G if and only if a, b ∈ H ⇒ ab ∈ H and
a ∈ H ⇒ a−1 ∈ H.
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(b) If H is a non-empty finite subset of a group G and H is closed
under multiplication, then H is a subgroup of G.

(5) If H is a subgroup of G, a ∈ G, then Ha = {ha | h ∈ H}. Ha is
called a right coset of H in G. Similarly left coset is defined as
aH = {ah | h ∈ H}. Following are some of the important results
related to cosets:

(a) There is a one-to-one correspondence between any two right
cosets of H in G.

(b) (Lagrange’s Theorem:) If G is a finite group and H is a
subgroup of G, then o(H) is a divisor of o(G).

(c) If G is a finite group a ∈ G, then o(a) is a divisor of o(G).

(d) (Fermat Theorem:) If p is a prime number and a is any
integer, then ap ≡ a(modp).

(e) HK is a subgroup of G if and only if HK = KH, where
HK = {x ∈ G | x = hk, h ∈ H, k ∈ K}.

(f) H, K are subgroups of the abelian group G, then HK is a
subgroup of G.

(g) If H, K are finite subgroups of group G, then o(HK) =
o(H)o(K)
o(H∩K) .

(h) Cauchy’s Theorem: Suppose G is a finite abelian group
and p | o(G), where p is a prime number. Then there is an
element a 6= e ∈ G such that ap = e.

(i) Sylow’s Theorem: If G is an abelian group of order o(G),
and if p is a prime number, such that pα | o(G), pα+1 - o(G),
then G is a subgroup of order pα.

(6) A subgroup N of G is said to be a normal subgroup of G if for
every g ∈ G, n ∈ N , gng−1 ∈ N . Recall the important facts of a
normal subgroup as:

(a) N is a normal subgroup of G if and only if gNg−1 = N for
every g ∈ G.

(b) The subgroup N of a group G is a normal subgroup of G if
and only if every left coset of N in G is a right coset of N in
G.
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(c) A subgroup N of a group G is a normal subgroup of G if and
only if the product of two right cosets of N in G is again a
right coset of N in G.

(d) If G is a group and N a normal subgroup of G, then G/N =
{Na : a ∈ G} is also a group. It is called the quotient group
or factor of G by N .

(e) If G is a finite group and N a normal subgroup of G, then
o(G/N) = o(G)/o(N).

(7) A mapping φ from a group G into a group G̃ is said to a homo-
morphism if for all a, b ∈ G, φ(ab) = φ(a)φ(b). If G = G̃, then φ
is said to be an automorphism.
Following are some of the important results of homomorphism:

(a) Suppose G is a group, N a normal subgroup of G. Define
a mapping φ from G to G/N by φ(x) = Nx, for all x ∈ G.
Then φ is a homomorphism of G onto G/N .

(b) If φ is a homomorphism of G into G̃, the kernel of φ, Kφ, is
defined by Kφ = {x ∈ G | φ(x) = ē, ē is identity of G̃}.

(c) If φ is a homomorphism of G into G̃ with kernel K, then K
is a normal subgroup of G.

(d) A homomorphism φ from G into G̃ is said to be an isomor-
phism, if φ is one-to-one. If φ is also onto, then G is iso-
morphic to G̃ and we write G ≈ G̃.

(e) A homomorphism φ from G into G̃ with kernel Kφ is an iso-
morphism of G into G̃ if and only if Kφ = e.

(f) (Fundamental Theorem ): Let φ be a homomorphism of
G into G̃ with kernel K. Then G/K ≈ G̃.

(g) If G is a group, then A(G), the set of automorphisms of G, is
a group.

1.1.5 Examples:

(1) The set of integers Z, real numbers R and complex numbers C
under usual addition form groups.

(2) The set of integers Z under usual subtraction does not form a
group.
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(3) Let G = 1,−1 under the multiplication of real numbers. Then G
is an abelian group of order 2.

(4) G, the set of all 2 × 2 matrices

(
a b
c d

)
over R is an infinite,

non-abelian group under multiplication.

(5) G, the set of all 2 × 2 matrices

(
a b
−b a

)
is an infinite, abelian

group under multiplication.

(6) G, the set of all 2 × 2 matrices

(
a b
c d

)
where a, b, c, d are

integers modulo p, p a prime number, such that ad − bc 6= 0 is a
finite, non-abelian group.

(7) Let G be the group of all 2×2 matrices

(
a b
c d

)
with ad−bc 6= 0

under matrix multiplication. Let H = {
(
a b
o d

)
∈ G | ad 6= 0}.

Then H is a subgroup of G.

(8) Let G be the group of all 2×2 matrices

(
a b
c d

)
with ad− bc 6= 0

under matrix multiplication. Let N =

(
1 b
0 1

)
. Then N is a

normal subgroup of G.

(9) Let M = {a + b
√

2 | a, b ∈ Z}. Then M is a group under usual
addition of real numbers. Define σ : M →M by

σ(a+ b
√

2) = a− b
√

2,

for all a, b ∈ Z. Then σ is an automorphism of M .

(10) Let f : Z → Z be defined by f(n) = 2n, for all n ∈ Z. Then f is
not an endomorphism.

(11) Let G be the group of all 2×2 matrices

(
a b
c d

)
with ad−bc 6= 0

under matrix multiplication. Let G̃ be the group of all non-zero
real numbers under multiplication .

Define φ : G → G̃ by φ

(
a b
c d

)
= ad − bc. Then φ is a homo-

morphism of G onto G̃.
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The basics of groups have been recalled in this section. The abstract
concept of a group has its origin in the set of mappings, or permutations,
of a set onto itself. In contrast, rings stem from another and more
familiar source, the set of integers. They are in fact generalizations of the
algebraic aspects of the ordinary integers. A ring is quite different from a
group in that it is a two- operational system; addition and multiplication.
The analysis of rings will follow the pattern already laid out for groups.

1.2 Rings

Up-till now we have considered sets with one binary composition only.
But there are non-void sets with more then one binary compositions
namely the set of integers, the set of rational numbers etc. We would like
to enrich the structure of group by attaching some additional properties
to it. In this way we are lead to the concept of ring which we define as
follows:

1.2.1 Ring:

A non-empty set R together with two binary operations called addition
(+) and multiplication (.) is called a ring if it satisfies the following :

(1) (R,+) is an abelian group.

(2) (R, .) is a semi group and

(3) Distributive laws of multiplication over addition hold.

If there exists an element u ∈ R such that a.u = u.a = a for every
a ∈ R; then R is a ring with identity element. u is usually denoted
by 1.

A ring R is said to be commutative if a.b = b.a, for all a, b ∈ R.

Before proceeding further let us pause to see examples of rings.

1.2.2 Examples:

(1) The sets of integers Z, rational numbers Q, real numbers R and
complex numbers C with usual addition and multiplication are
rings. In fact, they are commutative rings with identity element 1.

(2) The set of even integers under the usual addition and multiplication
is a commutative ring but it has no identity element.
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(3) Let n ∈ N. The set of all square matrices of order n over R is
a ring with usual addition and multiplication of matrices. This
ring is with identity element (the identity matrix of order n) but
is non-commutative.

(4) Zn = {0, 1, 2, ..., n− 1} is a ring with respect to addition modulo n
and multiplication modulo n.

We now give a brief about the use of Zn in enciphering and decipher-
ing:

Algebraic Cryptosystem:
We discuss how an algebraic system can be used to devise an enci-

phering algorithm. Let A be the common alphabet for a plaintext and
the cipher text. Let S be a finite algebraic system such that n(A) = n(S).
Choose a fixed bijective map φ : A → S. Then for any permutation σ
of S, the composite map f = φ−1σφ : A → A is bijective, and hence
a permutation of A. Thus every permutation of S provide an encipher-
ing key A→φ S →σ S →φ−1

A More generally, if the plaintext alphabet
and the cipher text alphabet are different, we have the following schemes:

A →ρ S →σ S →ψ B where ρ and ψ are injective mappings. The
mappings ρ and ψ are fixed, but σ is variable and determined by the
values of the parameters in the algorithm. Clearly, the sets A, B and
the mappings ρ and ψ have no bearing on the algorithm. In fact, we may
treat S itself as the plain text alphabet as well as the cipher alphabet.

Now we describe examples of algebraic enciphering algorithms of this
kind.

Modular enciphering and Affine Cipher:

Let n be the number of characters in the plain text alphabet A. Let
S = Zn be the ring of integers modulo n. An enciphering that makes
use of the algebraic operations in Zn is called modular enciphering. The
simplest example of a modular enciphering is an affine cipher.

Let a, b ∈ Zn and suppose a is relatively prime to n. Then a is an
invertible element in the ring Zn. Hence the mapping σ : Zn → Zn given
by σ(x) = ax+ b is bijective.

In the notation of the usual addition and multiplication operations
in Z, the mapping σ is given by σ(x) = (ax+ b)modn
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(Recall that xmodn denotes the remainder left on dividing x by n).

The inverse of the mapping σ is given by σ−1(y) = a−1(y − b) =
a−1y − a−1b (because y = σ(x) = ax+ b implies that x = a−1(y − b)).

If the plain text alphabet A is the usual set of letters A,B, ..., Z, then
n = 26. We take the preliminary mapping ρ : A → Z26 as given in the
table below.

A B C D E F G H I J K L M
1 2 3 4 5 6 7 8 9 10 11 12 13
N O P Q R S T U V W X Y Z
14 15 16 17 18 19 20 21 22 23 24 25 0

Illustration:

Use the mapping A→ Z26 and the affine cipher σ(x) = (5x+3)mod26
to encipher UNIVERSITY.

Solution:

We note that (5, 26) = 1, so σ is bijective. We Replace each letter
in the plaintext with its corresponding number x as given in the table
mentioned above and apply the mapping σ. Then we write the letter
corresponding to σ(x) and encipher as follows.

plain text U N I V E R S I T Y
x 21 14 9 22 5 18 19 9 20 25
5x+3 108 73 48 113 28 93 98 48 103 128
(5x+3)mod26 4 21 22 9 2 15 20 22 25 24
cipher text D U V I B O T V Y X

Therefore, we have UNIV ERSITY → DUV IBOTV Y X

Let us now decipher DUVIBOTVYX:

In Z26; 5−1 = 21, therefore,

σ−1(y) = a−1(y − b) = a−1y − a−1b = 21y − 63 = 21y + 15

and we have the following table:
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cipher text D U V I B O T V Y X
y 4 21 22 9 2 15 20 22 25 24
21y+15 99 456 477 204 57 330 435 477 540 519
mod 26 21 14 9 22 5 18 19 9 20 25
plain text D U V I B O T V Y X

1.2.3 Proposition:

The following properties hold in a ring R which can be proved easily by
the reader. They are:

(1) The additive identity (known as zero element) is unique.

(2) The additive inverse of an element (known as negative of the ele-
ment) is unique.

(3) The equations xa = b and ay = b have a unique solution in R.

(4) 0.a = 0 = a.0, for all a ∈ R.

(5) n(ab) = (na)b = a(nb), for all a, b ∈ R, n ∈ Z.

(6) (mn)a = m(na) = n(ma), for all a, b ∈ R, m, n ∈ Z.

Further,

1.2.4 Remarks:

(1) If the semi-group (R, .) has an identity, it is unique denoted by 1R
called the identity element or unity of R.

(2) Let R be a ring with 1. An element u ∈ R is said to be a unit
or invertible if there exists v ∈ R such that u.v = v.u = 1. Such
a v is called the multiplicative inverse (or just inverse) of u and is
denoted by u−1. The set of units in R is denoted by U(R).

(3) For a ring R and φ 6= S ⊆ R, S is a sub-ring of R if S itself is a
ring under the operations of R.

We now have the following definitions:
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1.2.5 Zero divisor:

An element 0 6= a ∈ R is said to be a left zero-divisor if there exists b 6= 0
such that a.b = 0. Similarly a is called the right zero-divisor if there is a
c 6= 0 such that c.a = 0. An element a ∈ R is called a zero-divisor if a is
either a left or a right zero divisor.

1.2.6 Remark:

In any ring R with at least two elements, 0 is the trivial zero-divisor.

1.2.7 Nilpotent element:

An element a ∈ R is said to be nilpotent if there is a positive integer n
(depending on a) such that an = 0.

1.2.8 Integral domain:

A non-zero ring R is called an integral domain if there are no non-trivial
zero-divisors in R. The rings Q, R, C are integral domains.

1.2.9 Division ring:

A ring is said to be a division ring if its non- zero elements form a group
under multiplication.

1.2.10 Field:

A field is a commutative division ring. The rings Q, R, C are fields.

1.2.11 Remark:

Every field is an integral domain. But the converse is not true. For, Z
is an integral domain but not a field.

1.2.12 Proposition:

A finite integral domain is a field.

Proof. Let R = {0, x1, x2, ..., xn}. Total number of elements of R = n+1.
Let x1 6= 0. Consider, S = {0, x21, x1x2, ..., x1xn}. If x1xi = x1xj , i 6=
j ⇒ x1(xi−xj) = 0. But x1 6= 0⇒ xi = xj which is a contradiction.Since
all the entries of S are distinct. Clearly, since R is a ring, S ⊂ R. Number
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of elements of S = Number of elements of R = n + 1. S = R. Now
1 ∈ R⇒ 1 ∈ S. Therefore 1 = x1xj for some xj ∈ R. But xjx1 = x1xj .
Hence xjx1 = 1 = x1xj . By the same process every non-zero element
has an inverse. R is a field.

1.2.13 Proposition:

(1) There exists an element 1 ∈ D such that a.1 = a for every a ∈ D.

(2) For every element a 6= 0 ∈ D there exists an element b ∈ D such
that a.b = 1.

Proof. Let x1, x2, ..., xn be all the elements of D, and suppose that a 6=
0 ∈ D. Consider the elements x1a, x2a, ..., xna; they are all in D. We
claim that they are all distinct. For suppose that xia = xja for i 6= j;
then (xi−xj)a = 0. Since D is an integral domain and a 6= 0. Therefore,
xi−xj = 0 and so xi = xj , contradicting i 6= j. Thus x1a, x2a, ..., xna are
n distinct elements of D, which has exactly n elements. Therefore every
element y ∈ D can be written as xia for some xi. In particular, since a ∈
D, a = xi0a for some xi0 ∈ D. Since D is commutative, a = xi0a = axi0.
We will show that xi0 is a unit element for every element of D. Since
y = xia for some xi ∈ D, and so yxi0 = (xia)xi0 = xi(axi0) = xia = y.
Thus xi0 is a unit element for D and we write it as 1. Similarly, by
previous argument 1 ∈ D, is a multiple of a; that is, there exists a b ∈ D
such that 1 = ba. Hence the result.

1.3 Ideals

In this section, we study one of the most important aspects of rings,
namely the so called “ideals”. Some of these (i.e., the two-sided ideals)
correspond to the “normal” subgroups in the study of groups. Almost
all properties of the two-sided ideals have their parallels for normal sub-
groups. Now let us define an ideal of a ring and see what are the different
types of ideals.

1.3.1 Left ideal:

Let R be a ring. A subset I of R is called a left ideal of R if

(1) I is a subgroup of (R,+) i.e., a, b ∈ R⇒ a− b ∈ I and

(2) I is closed for arbitrary multiplication on the left by elements of R
i.e., a ∈ I, r ∈ R⇒ ra ∈ I.
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1.3.2 Right ideal:

A subset I of R is called a right ideal of R if

(1) I is a subgroup of (R,+) i.e., a, b ∈ R⇒ a− b ∈ I and

(2) I is closed for arbitrary multiplication on the left by elements of R
i.e., a ∈ I, r ∈ R ⇒ ar ∈ I. A subset I of R which is both a left
ideal and a right ideal is called a two sided ideal.

1.3.3 Remarks:

(1) A subset I is a left/right/2-sided ideal in R implies I is a subring
of R. The converse is not true. For example: Let R be ring of real
numbers and Z be set of integers.Then Z is a subring of R but not
an ideal of R because for 3 ∈ Z, 3

4 ∈ R⇒ 3.34 = 9
4 is not an integer.

(2) Sum of two ideals of same kind is an ideal of same kind whose
addition is defined as

I+J = {x+ y | x, y ∈ I} ⊆ R where I and J are ideals of R. Also
addition of ideals is commutative and associative.

(3) Product of two ideals of same kind is again an ideal of same kind.
Product of ideals is associative but need not be commutative.
Product of ideals is defined as IJ = {x1y1 + x2y2 + ... + xnyn |
xi ∈ I, yi ∈ J , 1 ≤ i ≤ n, n ∈ N}.

In fact,

(1) IJ is a left ideal if I is a left ideal and J a subset of R.

(2) IJ is a right ideal if J is a left ideal and I a subset of R.

(3) IJ is a two sided ideal if I is a left ideal and J a right of R.

(4) In commutative ring, the notions of left, right and two-sided ideals
all coincide.

To clarify the concepts, let us see the examples of ideals:
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1.3.4 Examples:

(1) (0) is an ideal in R called the zero ideal. R and (0) are ideals of R
called trivial ideals.

(2) Let R = M2(Z), I1 = {
(
a b
0 0

)
| a, b ∈ Z} and I2 = {

(
a 0
b 0

)
| a, b ∈ Z} are respectively right and left ideals of R.

1.3.5 Definition:

Let S be any subset of a ring R. Then ideal A of R is said to be generated
by S if

(1) S ⊆ A

(2) for any ideal B of R, S ⊆ B ⇒ A ⊆ B.

We write A =< S >. Clearly, from the definition, < S > is the intersec-
tion of all those ideals of R which contain S.

1.3.6 Principal ideal:

If an ideal A is generated by a singleton, say A = (a), a ∈ A, then A is
said to be a principal ideal written as A = (a).

1.3.7 Maximal left ideal:

A left ideal I in R is said to be a maximal left ideal in R if

(1) I 6= R and

(2) For a left ideal J of R, I ⊆ J ⊆ R ⇒ J = I or J = R, i.e., there
are no left ideals strictly in between I and R .

In other words, an ideal of R is said to be maximal if it is impossible
to squeeze an ideal between it and the ring R. Given a ring it is
not necessary that it has maximal ideals. If a ring has an identity
element, this can be proved by applying axiom of choice (proved
in the theorem that follows).
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1.3.8 Minimal left ideal:

A left ideal I in R is said to be a minimal left ideal in R if

(1) I 6= (0) and

(2) For a left ideal J of R, (0) ⊆ J ⊆ I ⇒ J = (0) or J = I, i.e., there
are no left ideals strictly in between (0) and I.

Maximal (respectively minimal) right/two-sided ideals are defined in a
similar manner.

1.3.9 Theorem:

If R is a ring with 1 and I is a (left/right/two-sided ) ideal of R such
that I 6= R, then there is a maximal ideal M of the same kind such that
I ⊆M .

Proof. We shall prove the result for left ideals, it will be on the same
lines for right ideals and hence will follow for 2-sided ideals. Let I 6= R be
a left ideal in R. Consider the family F of all left ideals in R containing
I except the unit ideal R, i.e., F = {J | J is a left ideal in R, J ⊇ I,
J 6= R}. The theorem is equivalent to showing that F has a maximal
element with set inclusion as the partial order( i.e., for all J1, J2 ∈ F,
J1 ≤ J2 if J1 ⊆ J2). Since I ∈ F,F 6= φ. To apply Zorn’s lemma to the
family of F, we have to verify that every totally ordered subset T of F
has an upper bound in F. Given such a T , let TO = ∪T∈T T . We will
show that To ∈ F. We have To ⊇ I.

(1) T0 is a left ideal of R. Let x, y ∈ To ⇒ x ∈ T1 and y ∈ T2 for
some T1, T2 ∈ T . Since T is totally ordered, we have T1 ⊆ T2 or
T2 ⊆ T1, say T1 ⊆ T2. Hence x, y ∈ T2. But T2 is a left ideal,
hence x− y ∈ T2 and so x− y ∈ To i.e., To is an additive subgroup
of R.

(2) To 6= R

For if To = R then 1 ∈ To. Hence 1 ∈ T for some T ∈ T . But then
T = R which is a contradiction.

Now by Zorn’s lemma, F has a maximal element, say M . Since
M ∈ F, we have M 6= R, M ⊇ I and M is a left ideal.
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(3) M is a maximal left ideal of R.

For, suppose J is a left ideal such that M ⊆ J ⊆ R. If J 6= Rthen
J ∈ F. By maximality of M in F, we get that M = J , as required.

1.3.10 Example:

The above theorem is not true if R is without identity (even if R is
commutative). (Q,+) is an abelian group which is a ring with trivial
multiplication (∗), i.e., a ∗ b = 0 for all a, b ∈ Q. Since all sub-groups
are ideals. Therefore, a maximal ideal in (Q,+, ∗) is simply a maximal
subgroup of (Q,+). Clearly (Q,+) has no maximal subgroups, hence
ring (Q,+, ∗) which is without 1, has no maximal ideals.

1.3.11 Remark:

Above theorem need not be true for minimal ideals of R even if R is
commutative with 1. For example, let R = Z and I = 2Z. Any ideal
J ⊆ 2Z is of the form J = 2kZ, K ∈ N. Here J cannot be minimal as
J = 2kZ ⊇ 4kZ 6= (0) and 4kZ 6= 2kZ.

1.3.12 Prime ideal:

Let R be a commutative ring. An ideal I of R is said to be a prime ideal
if

(1) I 6= R

(2) x, y ∈ R, xy ∈ I ⇒ either x ∈ I or y ∈ I.

1.3.13 Example:

In the set of integers Z, the ideal Q = (p), the multiples of p is a prime
ideal, whenever p is prime.

1.3.14 Remark:

Any nilpotent element in R is in all prime ideals of R i.e., if N = {a ∈ R
| an = 0 for some n ∈ N} and N ′ = ∩PP where the intersection is taken
over all prime ideals of R, then N ⊆ N ′.

We now have the following important theorem which establishes a
relationship between set of nilpotent elements and prime ideals.
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1.3.15 Theorem:

The set of all nilpotent elements in a commutative ring R with 1 is the
intersection of all prime ideals, i.e., N = N ′.

Proof. On the same lines as of Theorem (1.3.9) and above note.

1.3.16 Prime radical:

The prime radical of a ring R is the intersection of all the prime ideals
of R.
Note that a ring is semi prime if and only if its prime radical is zero.

1.3.17 Example:

(1) Let R =

(
F F
0 F

)
, where F is a field,

Then P (R) =

(
0 F
0 0

)

(2) Let Z2 be the ring of integers modulo 2 and R = Z2
⊕
Z2.

Then R is a commutative reduced ring with P (R) = {(0, 0)}.

(3) Let R = F [x] be the polynomial ring over a field F . Then R is a
commutative domain, and so it is 2-primal with P (R) = {0}.

1.3.18 Completely prime ideals:

An ideal P of R is said to be completely prime if ab ∈ P implies a ∈ P
or b ∈ P for a, b ∈ R.

In commutative case completely prime ideal and prime have the same
meaning. We also note that every completely prime ideal of a ring R is
a prime ideal, but converse need not be true.

1.3.19 Example:

Let R =

(
Z Z
Z Z

)
= M2(Z). If p is a prime number, then the ideal

P = M2(pZ) is a prime ideal of R, but is not completely prime, since for

a =

(
1 0
0 0

)
and b =

(
0 0
0 1

)
, we have ab ∈ P , even though a /∈ P

and b /∈ P .
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1.3.20 Nil ideal:

An ideal I in an ring R is called a nil ideal if every element of I is
nilpotent.

1.3.21 Remarks:

(1) Every nilpotent ideal is a nil ideal but converse is not true. For
this consider the following example. Let R =

∏∞
n=1 Zn2 . Let I be

an ideal of all nilpotent elements in R. Then I is a nil ideal. But I
is not nilpotent, therefore if In = (0) for some n, then xn = 0, for
all x ∈ I. Take xn = (0, 0, ..., 2̄, 0, 0, ...), with 2̄ at (n + 1)th place.
Then xn+1

n = 0 but xnn 6= 0.

(2) In fact, for a commutative ring R, a nil ideal I is nilpotent if it is
finitely generated.

1.3.22 Minimal prime ideal:

A minimal prime ideal in a ring R is any prime ideal of R that does not
properly contain any other prime ideals.

For instance, if R is a prime ring, then 0 is a minimal prime ideal of
R, and it is the only one.

1.3.23 Definition:

The set of prime ideals in a ring R is called the prime spectrum of R,
denoted as Spec(R).

1.3.24 Definition:

The set of minimal prime ideals in a ring R is called minimal prime
spectrum of R, denoted as MinSpec(R).

1.3.25 Quotient ring:

Let I be an ideal of a ring R. The set of all distinct cosets of I in R is
denoted by the symbolR/I. It is a ring under addition and multiplication
defined as (a + I) + (b + I) = (a + b) + I and (a + I)(b + I) = ab + I,
called the quotient ring.
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1.3.26 Theorem:

Let R be a commutative ring with 1 and I an ideal in R. Then

(1) R/I is an integral domain if and only if I is a prime ideal in R.

(2) R/I is a field if and only if I is a maximal ideal in R. If I is
maximal, R/I is called the residue field of R at I.

Proof. (1) Suppose I is an ideal of R such that R/I is an integral
domain. To prove that I is a prime ideal, let a, b ∈ R be such that
ab ∈ I. We have to show that a ∈ I or b ∈ I. Since ab ∈ I, we have
(a+I)(b+I) = ab+I = I, i.e., (a+I)(b+I) = 0 in R/I. But R/I
is an integral domain. Therefore, either a+ I = I or b+ I = I, i.e.,
a ∈ I or b ∈ I as required.

Conversely, let I be a prime ideal in R. Let a+I, b+I be non-zero
elements of R/I. Then a+I 6= I and b+I 6= I. Let (a+I),(b+I) ∈
R/I be such that (a + I)(b + I) = I. Then ab + I = I ⇒ ab ∈ I
which implies that a ∈ I or b ∈ I (because I is a prime ideal of R).
So a+ I = I or b+ I = I, i.e., R/I is an integral domain.

(2) Suppose R/I is a field. Then R/I contains at least two elements,
i.e., R/I 6= I. This implies I 6= R. Suppose J is an ideal such that
I ⊆ J ⊆ R. If J 6= I, then there is an a in J − I. Now a+ I 6= I,
i.e., a+ I 6= 0 in R/I. Thus a+ I is invertible in R/I. Hence there
is some b ∈ R such that (a + I)(b + I) = ab + I = 1 + I. This
implies that ab− 1 ∈ I ⊆ J . Since J is an ideal and ab ∈ J , we get
that 1 = ab− (ab− 1) ∈ J . Hence J = R, as required.

Conversely, let I be a maximal ideal of R. Since I 6= R, we have
R/I 6= I. Take any non-zero element a + I ∈ R/I. Since I is
maximal, we get that I + (a) = R. Therefore 1 ∈ I + (a) which
implies 1 = x + ya for some x ∈ I and y ∈ R. Therefore 1 + I =
x+ ya+ I = (x+ I) + (ya+ I) = ya+ I (since x+ I = I). Then
1 + I = ya+ I = (y + I)(a+ I) which implies y + I is the inverse
of a+ I in R/I. Hence R/I is a field.

Immediate consequence of this theorem are:
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1.3.27 Corollary:

A maximal ideal (in a commutative ring) is a prime ideal but not con-
versely.

Proof. I is a maximal ideal in R ⇒ R/I is a field ⇒ R/I is an integral
domain ⇒ I is a prime ideal, as required.

In Z, (0) is a prime ideal but not maximal.

1.3.28 Corollary:

For 2 ≤ n ⊆ N, the ring Z/nZ is a field ⇔ Z/nZ is an integral domain
⇔ n is a prime number.

Proof. The first implication is obvious since a field is an integral do-
main and secondly a finite commutative integral domain is a field. We
now prove that Z/nZ is an integral domain if and only if n is a prime.
Let Z/nZ be an integral domain and if possible, suppose n is not a
prime, say n = n1n2 with 1 < n1, n2 < n. Let m̄ = m + nZ. Then
n1.n2 = n1n2 = n = 0 with n1 6= 0 and n2 6= 0 in Z/nZ. This is a
contradiction. Therefore n is prime.

Conversely, suppose that n is prime. Consider any x 6= 0 ∈ Z/nZ.
We may assume that x 6= 1, i.e., we can choose a ∈ Z such that (a, n) =
1(since n is prime). Then there exists r andm ∈ Z such that ar+nm = 1.
This implies that ra ≡ 1(modn). Therefore r̄ā = 1 in Z/nZ i.e., ā is a
unit in Z/nZ. Hence Z/nZ is a field.

1.3.29 Square free:

Any n ∈ N is called square free if d ∈ N with d2 | n⇒ d = 1.

1.3.30 Example:

35 is square free.

1.3.31 Proposition:

For n ≥ 2, the ring Z/nZ has no non-trivial nilpotent element if and
only if n is square free.
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Proof. Suppose Z/nZ has no non-trivial nilpotent elements. Let n =
pa11 p

a2
2 ...p

ar
r be the prime decomposition of n, i.e., pi’s are distinct primes

and ai ∈ N.

Let, if possible, n be not square free, say a1 ≥ 2. Consider m =
p1p

a2
2 ...p

ar
r so that m < n, i.e., m̄ 6= 0 in Z/nZ. But ma1 = (p1p

a2
2 ...p

ar
r )a1

which is a multiple of n. Thus ma1 = 0 in Z/nZ, i.e., m is non -trivial
and nilpotent, a contradiction. Therefore n is square free.

Conversely, suppose n is square free and Z/nZ has non-trivial nilpo-
tent elements, say ār = 0 in Z/nZ and ā 6= 0. Then n divides ar but not
a. Writing n = p1p2...ps as the product of distinct primes, we get that
each pi divides (n and hence divides )ar which implies that pi divides a.
But then it follows that their product p1p2...ps = n divides a which is a
contradiction. Therefore Z/nZ has no non-trivial nilpotent element.

1.4 Divisibility

We assume R to be a commutative integral domain with 1 and R∗ =
R−(0) unless otherwise stated and hence we’ve the following definitions,
concerning divisibility concepts.

1.4.1 Divisor:

Let a, b ∈ R, a 6= 0. Then a divides b or a is a divisor (or factor) of b
written a|b if there exists c ∈ R such that b = ac.

1.4.2 Associates:

Two elements a and b in R∗ are said to be associates of each other if a|b
and b|a. a and b are associates of each other if and only if (a) = (b).

1.4.3 Example:

In Z, 3 and −3 are associates and in Z[i], 1, −1, i and −i are associates.

1.4.4 Theorem:

Let R be a commutative ring with unity, then the following hold:

(1) The relation of being associates is an equivalence relation on R.
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(2) If R is an integral domain and a, b are two non - zero elements of
R then a ∼ b if and only if a | b and b | a.

(3) If a, b are two non - zero elements of R then a | b and b | a if and
only if < a >=< b >.

Proof. (1) For all x ∈ R, x = 1.x i.e., x ∼ x, so ∼ is reflexive. If a ∼ b
then a = bu for some unit u ∈ R ⇒ b = au−1 ⇒ b ∼ a as u−1

is again a unit in R. Thus ∼ is symmetric. Finally if a ∼ b and
b ∼ c then a = bu and b = cv for some units u, v ∈ R. This gives
a = cuv; however u, v being units in R implies that uv is again a
unit in R. Thus a ∼ c and this implies that ∼ is transitive. Hence
∼ is an equivalence relation on R.

(2) If a ∼ b then a = bu for some unit u ∈ R⇒ b | a. Also b = au−1 ⇒
b | a. Conversely, if a | b and b | a we get b = ac and a = bd for
some c, d ∈ R; thus b = bdc⇒ 1 = dc as b 6= 0 and R is an integral
domain; thus d is a unit. Hence a ∼ b.

(3) a ∼ b ⇒ b = ac for some c ∈ R ⇒ b ∈< a >⇒< b >⊆< a >.
Similarly, b | a ⇒< a >⊆< b >, hence < b >=< a >. Conversely,
< a >=< b >⇒ a ∈< b >⇒ a = br for some r ∈ R ⇒ b | a.In the
same manner < b >=< a >⇒ a | b.

1.4.5 Remark.

Being associates is an equivalence relation on R∗. For a ∈ R∗, the
equivalence class through a is {ua ∈ R | u is a unit in R} i.e., the
equivalence classes are orbits in R∗.

1.4.6 Irreducible element:

A non-zero, non-unit a∈ R is said to be irreducible if a = bc , then either
b or c is a unit i.e., a cannot be written as a product of two non-units or
equivalently, the only divisors of a are its associates or units.

1.4.7 Prime element:

A non-zero, non unit a ∈ R is said to be a prime if a|bc (b, c ∈ R), then
either a|b or a|c. Now let us prove some results on these concepts
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1.4.8 Proposition:

A prime element is irreducible but not conversely.

Proof. Let p be a prime in R. Suppose p = ab. Then obviously p|ab,
hence p|a or p|b, say p|a. Then a = pc for some c ∈ R. Now we have
p = ab = pcb, hence 1 = cb by canceling (the non zero) p. Thus b is a
unit in R. Hence p is irreducible, as required.

To see that the converse is not true. Consider R = Z[i
√

3]. The only
units in R are ±1. Also the element 1+ i

√
3 is irreducible but not prime.

1.4.9 Theorem:

Let a be a non-zero non-unit in a commutative integral domain R. Then

(1) The element a is irreducible in R if and only if the ideal (a) is max-
imal among all principal ideals other than R, properly containing
(a).

(2) The element a is prime in R if and only if the ideal (a) is a non-zero
prime ideal in R.

Proof. (1) Suppose a is irreducible. Let (a) ⊆ (b) 6= R for some b ∈ R.
Now a ∈ (b), implies that a = bc for some c ∈ R. Since a is irre-
ducible, either b or c is a unit in R. Since (b) 6= R, b cannot be a
unit. Therefore c must be a unit. But then, b = c−1a ∈ (a), i.e.,
(b) ⊂ (a). Thus (a) = (b), as required.

Conversely, suppose (a) is maximal among all principal ideals other
than R. We show a is irreducible. Suppose that a = bc and that
b is not a unit. Then (a) ⊆ (c) and (a) 6= (c). This contradicts
the maximality of (a) unless (c) = R which means c is a unit, as
required.

(2) Suppose a is a prime element of R. Since a is a non-unit, (a) 6= R.
Suppose that xy ∈ (a). So xy = ab for some b ∈ R. Now a|ab, i.e.,
a|xy, hence a|x or a|y, say a|x, i.e., x = ac for some c ∈ R, hence
x ∈ (a), showing that (a) is a prime ideal in R and obviously it is
a non-zero as a 6= 0.
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Conversely, suppose (a) is a non-zero prime ideal in R. Since (a) 6=
R, a is not a unit. If a|xy, then xy ∈ (a), so either x ∈ (a) or
y ∈ (a) as (a) is a prime ideal. Say, x ∈ (a) which means a|x, i.e.,
a is a prime element of R.

1.5 Euclidean Domain

The class of rings that is discussed now is motivated by several exam-
ples already discussed - the ring of integers,the Gaussian integers and
polynomial rings.

1.5.1 Definition:

A commutative integral domain R (with or without unity) is called an
Euclidean domain if there is a map d : R+ → Z+.

(1) for all a, b ∈ R∗, a|b ⇒ d(a) ≤ d(b) or equivalently, d(x) ≤ d(xy)
and

(2) for all a ∈ R and b ∈ R+, there exists q, r ∈ R (depending on a
and b) such that b = qa+ r with either r = 0 or else d(r) < d(b).

The map d is called the algorithm map and the property (2) is called the
Euclidean algorithm. The elements b, a, q and r in the equation b = qa+r
are respectively called the dividend, divisor, quotient and remainder.

1.5.2 Examples:

(1) Any field K is Euclidean with algorithm map as the constant map
d : K → Z+, i.e., d(x) = 1, for all x ∈ K+.

(2) The ring of integers Z is Euclidean, with algorithm map as the
absolute map d : Z→ Z+, i.e., d(n) = |n|, for all n ∈ Z+.

1.5.3 Proposition:

An Euclidean domain R has unity and group of units of R is given by
U(R) = {a ∈ R+ | d(a) = d(1)}.

Proof. By definition of an integral domain, we have R∗ 6= φ. Now look at
the image d(R∗) ⊆ Z+, i.e., d(R∗) is a non-empty subset of Z and hence
has a least element (by well the ordering -principle). Let l ∈ d(R∗) be
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the least in d(R∗), say l = d(e) for some e ∈ R∗. We have d(e) ≤ d(a),
for all a ∈ R∗.

Claim: R has unity. First, we observe that e|a, for all a ∈ R. For,
since e 6= 0, by the Euclidean algorithm, there exists q, r ∈ R such that
a = qe+ r with either r = 0 or else d(r) ≤ d(e), we get that r has to be
zero.Thus a = qe, as required.

In particular, e|e, say e = q0e for some q0 ∈ R. Now we shall show
that this q0 is the unity of R. Given x ∈ R, we have xq0e = xe (since
q0e = e). So we get (xq0 − x)e = 0 which implies xq0 − x = 0 (since
e 6= 0). Thus q0 = 1 is the unity of R.

To characterize the units in R, first note that d(1) = d(e) because
d(1) ≤ d(1e) = d(e) and d(e) is the least in d(R∗). Now suppose x is a
unit in R. We have d(x) ≤ d(xx−1) = d(1), so d(x) = d(1). On the other
hand, suppose x ∈ R∗ is such that d(x) = d(1). Then, using Euclidean
algorithm, there exists q, r ∈ R such that 1 = qx+ r with either r = 0 or
else d(r) < d(x) = d(1). But the latter is not possible and hence r = 0
which means x is a unit in R, as required.

1.6 Principal Ideal Domain

1.6.1 Definition:

A commutative integral domain R is called a Principal ideal domain
(PID) if every ideal of R is principal i.e., generated by one element.

1.6.2 Example:

The ring of integers Z is a PID.

1.6.3 Theorem:

Every Euclidean domain is a PID (with 1).

Proof. Let R be a Euclidean domain. By Proposition (1.5.3), R has a
unity. Let I be an ideal in R. If I = (0), it is a principal ideal. Assume
that I 6= (0). Now I∗ 6= φ, hence d(I∗) is a non-empty subset of Z+ and
so d(I∗) has a least element, say d(a) for some a ∈ I∗.
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Claim: I = (a). To see this, first note that (a) ⊂ I since a ∈ I. To
prove that I ⊂ (a), take any x ∈ I. By Euclidean algorithm, there exists
q, r ∈ R such that x = qa + r with either r = 0 or else d(r) < d(a).
Since r = (x − qa) ∈ I and d(a) is least in d(I∗), it is not possible that
d(r) < d(a) and so r = 0, i.e., x = qa ∈ (a), as required.

1.6.4 Example:

The ring of even integers R = 2Z is a trivial example of a PID which is
not Euclidean, since it has no unity.

1.6.5 Theorem:

Let R be a PID with 1. Then

(1) Every irreducible element is a prime in R.

(2) Every non- zero prime ideal is maximal in R.

Proof. (1) Let a be an irreducible element in R. We have to show
that the ideal (a) is prime in R. In fact, we shall show that (a)
is a maximal ideal. Since a is a non-unit, we have (a) 6= R and
hence, by Zorn’s lemma, there exists a maximal ideal M such that
(a) ⊆ M . Since R is a PID, M = (p) for some p in R. Thus
(a) ⊆ (p) and hence a is an associate of p which means that a is a
prime.

(2) Let P be non-zero prime ideal in R. Since R is a PID, P = (p) for
some prime p. We have already shown above in Theorem (1.4.9)
that (p) is a maximal ideal. Hence the theorem.

1.6.6 Remark:

Every non- zero, non - unit element in a PID R is divisible by an irre-
ducible element.

1.6.7 Unique factorization domain:

An integral domain R is a Unique factorization domain (UFD) if it sat-
isfies the following conditions:

(1) Every non-unit of R is a finite product of irreducible factors.
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(2) The factorization is unique up to order and unit factors. i.e., if
a = p1p2...pm = q1q2...qn where pi and qj are irreducible, then
m = n and pi and qj are associates i = 1, 2, ...,m.

1.6.8 Remark:

If only condition (1) is satisfied then R is called a factorization do-
main.

1.6.9 Examples:

(1) The ring of integers.

(2) The ring of polynomials in any number of indeterminate, with co-
efficients in a field.

(3) Z[
√
−5] is not a UFD.

1.6.10 Theorem:

An integral domain R is a UFD if and only if R is a factorization domain
in which every element is a prime.

Proof. The implication ⇒ is the theorem above. To prove the reverse
implication ⇐, we have to prove the uniqueness of factorization. Let
x ∈ R∗ have two factorizations into irreducibles (i.e., primes), sayx =
up1p2...pr = vq1q2...qs with u, v units and pi, qj primes. Now proceed
by induction on r. If r = 0, then x is a unit implying that any factor
of x is a unit and hence s = 0. Assume that r ≥ 1 and the induction
hypothesis. Note then that s ≥ 1. Since p1|x and p1 is a prime, we get
that p1|qj for some j. Now q(j) is also a prime, it follows that pi and qj
are associates, and so there exists a unit α ∈ R such that q(j) = αp1.
Upon substituting for qj in the factorizations of x and canceling p1, we
get that

x́ = up2...pr = vq1q2...qi−1qi+1...qs.

The result follows with the same process in a finite number of steps.
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1.6.11 Theorem:

In a UFD, every irreducible element is a prime.

Proof. Let R be a UFD and a ∈ R be an irreducible element. Let
x, y ∈ R∗ be such that a|xy. We have to show that either a|x or a|y.
Now a|xy, so there exists b ∈ R∗ such that ab = xy. Also R is a
UFD implies that there exists units u, v and irreducibles pi, qj ; 1 ≤ i ≤
r, 1 ≤ i ≤ s such that x = up1p2...pr and y = vq1q2...qs. Now we
have ab = xy = uvp1p2...prq1q2...qs. Since the irreducible a occurs in
one factorization of xy, it should be an associate of some irreducible
occurring in any other factorization of xy into irreducibles. Hence a is
an associate of some pi or qj . Say, aα = pi for some unit α. Thus we get
that x = up1p2...pr = up1p2...pi−1aαx́ for some x́ ∈ R∗ and hence a|x,
as required.

1.6.12 Remark:

An integral domain R is a UFD if and only if every non-zero non-unit in
R can be factored into a product of primes.

1.6.13 Theorem:

Every PID is a UFD.

Proof. Let a ∈ R be any non - zero, non - unit element. Then a is
divisible by some irreducible element p1. p1 | a ⇒ a = a1p1 for some
a1. If a1 is irreducible, we can express a1 as a product of finite number
of irreducible elements. Suppose a1 is not irreducible, then there exists
an irreducible element p2 such that p2 | a1 ⇒ a1 = p2a2 for some a2.
Continuing the above process and considering the chain of ideals (a) ⊆
(a1) ⊆ (a2) ⊆ ..., because as x ∈ (a) ⇒ x = ar = p1a1r ∈ (a1) etc.
Thus we get an ascending chain of ideals which must terminate after
a finite number of steps. Hence we get an irreducible element an so
that a = p1p2...pnan i.e., a is expressed as a product of finite number of
irreducible elements. It can be easily shown that this representation is
unique. Hence the theorem.
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1.7 Modules

The notion of modules is a generalization of that of a vector space; here
the scalars will be elements of an arbitrary ring. Let us discuss the
modules, its types and important results.

1.7.1 Left module:

Let R be a ring (with or without 1, commutative or not). By a left R
-module M , we mean, an abelian group (M,+) together with a map R×
M → M , (a, x) → ax, called the scalar multiplication or the structure
map, such that for all a, b ∈ R and x, y ∈M

(1) a(x+ y) = ax+ ay

(2) (a+ b)x = ax+ bx

(3) (ab)x = a(bx).

Elements of R are called scalars.

A right R− module is defined similarly.

1.7.2 Remarks:

(1) In case M = (0), whatever R be, a left module on M with scalar
multiplication, a.0 = 0 for all a ∈ R, called the zero module over
R.

(2) In case R has 1 and the scalar multiplication defined as 1.x0 = 0
for all x0 ∈ M , then ax0 = (a.1)x0 = a(1.x0 = a.0 = 0), for all
a ∈ R. Thus if 1.x = 0, for all x ∈ M . It follows that a.x = 0, for
all x ∈ R and x ∈M . Thus M is a trivial left R-module.

1.7.3 Unitary Module:

A left R-module M is said to be a unitary left-module if 1.x = x, for all
x ∈M .

1.7.4 Examples:

(1) Let V be a vector space over the field F . Then V is a right as well
as a left F- module.
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(2) Unitary modules over Z are abelian groups.

(3) If R is any ring, R is a left and also a right R- module with usual
multiplication in R as the scalar multiplication.

1.7.5 Submodule:

Let M be a right R-module. A non-empty subset N of M is called an
R-submodule of M if

(1) N is an additive subgroup of M i.e., x, y ∈ N ⇒ x− y ∈ N and

(2) N is closed for scalar multiplication i.e., x ∈ N , a ∈ R⇒ ax ∈ N .
i.e., the restrictions to N of addition and scalar multiplication in
M make N into an R-module.

1.7.6 Remark:

Suppose M and N are submodules of a module P over R. Then M∩N =
(0) if and only if every element z ∈ M + N can be uniquely written as
z = x+ y with x ∈M and y ∈ N .

1.7.7 Direct sum:

If M is an R- module and if M1,M2, ...,Mn are submodules of M , then
M is said to be the direct sum of M1,M2, ...,Mn if every element m ∈M
can be written in a unique manner as m = m1 + m2 + ... + mn, where
mi ∈Mi, 1 ≤ i ≤ n.

1.7.8 Definition:

Suppose M is an R-module and X a subset of M , then the submodule
generated or spanned by X is defined as the smallest submodule of M
containing X, or equivalently, it is the intersection of all the submodules
N and M each containing X. Note that this intersection is over a non-
empty family because M is a member of this family. It can be seen to be
equal to {Σfinite

i aixi | ai ∈ R, xi ∈ X} if R is with 1 and M is unitary.

Otherwise, it is equal to {Σfinite
i (ni+ai)xi | ai ∈ R, xi ∈ X and ni ∈ Z}.

1.7.9 Cyclic module:

An R- module M is said to be cyclic if there is an element mo ∈M such
that every m ∈M is of the form m = rm0 where r ∈ R.
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1.7.10 Example:

For R, the ring of integers, a cyclic R− module is a cyclic group.

1.7.11 Remarks:

(1) The submodule generated by ∅ is (0).

(2) If X = {x}, then the submodule generated by x is {ax | a ∈ R} if
R is with 1 or {ax+ nx | a ∈ R, n ∈ Z}, otherwise. This is called
the cyclic or monogenic submodule generated by x.

1.7.12 Finitely generated module:

An R- module M is said to be finitely generated if there exists elements
a1, a2, ..., an ∈ M such that every m ∈ M is of the form m = r1a1 +
r2a2 + ...+ rnan for ri ∈ R.

1.7.13 Definition:

Given a submodule N of an R- module M , the quotient group M/N has
a natural structure of an R-module viz

R× (M/N)→ (M/N),

(a, x + N) → ax + N , for all a ∈ R and x ∈ M . Clearly, M/N is an R
-module called the quotient of M by N .

1.7.14 Homomorphism of modules:

Given two R− modules M and N then the mapping T from M into N
is called a homomorphism if

(1) T (m1 +m2) = T (m1) + T (m2)

(2) T (rm1) = rT (m1), for all m1,m2 ∈M and all r ∈ R.

1.7.15 Maximal submodule:

A submodule N of a module M is called a maximal submodule if

(1) N 6= M and

(2) N ⊆ P ⊆ M , P a submodule of M ⇒ P = N or P = M , i.e., the
only submodules of M containing N are N and M .
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1.7.16 Minimal submodule:

A submodule N of a module M is called a minimal submodule if

(1) N 6= (0) and

(2) P ⊆ N , P a submodule of M ⇒ P = (0) or P = N , i.e., the only
submodules of M contained in N are (0) and N .

1.7.17 Simple module:

A module M is called simple module if

(1) M 6= (0) and

(2) the only submodules of M are (0) and M .

1.7.18 Remarks:

(1) Any one-dimensional vector space is simple.

(2) Any minimal submodule is simple.

(3) A submodule N of M is maximal in M ⇔ M/N is simple.

(4) A non-zero module M is simple ⇔ 0 is a maximal submodule of
M ⇔ M is a minimal submodule of M ⇔ every non-zero element
of M generates M .

1.7.19 Some of the important results are stated as:

(1) Fundamental Theorem on finitely generated modules: Let
R be a Euclidean ring; then any finitely generated R− module, M ,
is the direct sum of a finite number of cyclic submodules.

(2) Schur’s Lemma: Let N and M be simple R-modules. Then
any R-linear map f : M → N is either 0 or an isomorphism. In
particular, D = EndR(M) is a division ring.

1.7.20 Annihilator:

Let A be a right module over a ring R. Given any subset X ⊆ A, the
annihilator of X is the set Ann({x}) or Ann(x) = {r ∈ R | xr = 0, for
all x ∈ X}. It is also written as r.Ann(X), as A is a right module. When
X consists of a single element x, we write Ann({x}).
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1.7.21 Example:

The annihilator of a left ideal of R in a right R−module A is a submodule
of A, and similarly the annihilator of a right ideal of R in a left R−
module A is a submodule of A.

1.7.22 Remark:

For X ⊆ R, a left annihilator is defined and denoted as l.Ann(X) = {r ∈
R | rx = 0, for all x ∈ X}.

1.7.23 Faithful:

A module A over a ring R is a faithful R -module if

AnnR(A) = 0.

1.7.24 Examples:

(1) A faithful module over a non-zero ring must be non-zero.

(2) The annihilator of an R− module A is an ideal of R and that A is
a faithful module over R/AnnR(A).

(3) In a prime ring every non zero right or left ideal is faithful.

1.7.25 Fully faithful:

A right module A over a ring R is fully faithful provided A and all non
zero submodules of A are faithful right R-modules. If A is a non zero
R-module which is fully faithful on a module over R/AnnR(A), then A
is called a prime module.

1.7.26 Proposition:

Let A be a non zero right module over a ring R. Suppose that there exists
an ideal P maximal among the annihilators of non zero submodules of
A. Then P is a prime ideal of R, and AnnA(P ) is a fully faithful (R/P )-
module.

Proof. Suppose that A is a right R-module. Then is a non zero submod-
ule B in A such that P = Ann(B), and P 6= R because B 6= 0. Suppose
that I and J are ideals of R, properly containing P , such that IJ ⊆ P .
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Then BI 6= 0 and Ann(BI) ⊇ J ⊃ P , contradicting the maximality of
P . Thus P is prime.

Now set C = AnnA(P ) and note that C is a submodule of A with
P ⊆ Ann(C), because B ⊆ C. Thus C is a faithful right (R/P )- module.
Any non zero submodule D ⊆ C, we have P = Ann(C) ⊆ Ann(D),
where P = Ann(D) by maximality of P . Therefore C is fully faithful as
a right (R/P )-module.

1.7.27 Uniform module:

A uniform right module is a non zero module A such that the intersection
of any two non - zero submodules of A is non zero.

Note that all non - zero submodules are uniform.



36 Algebra and its Applications

1.8 Exercises

(1) Show that the intersection of two sub-rings of a ring is a sub-
ring. What about the union. Justify with example. Under what
condition will the union of two sub-rings be a sub-ring.

(2) In any ring R, show that ab is nilpotent if and only if ba is nilpotent.

(3) Show that an element in a finite ring with 1 is a unit if it is not a
zero divisor.

(4) Show that the intersection of two prime ideals is a prime ideal if
and only if one of them is contained in the other.

(5) Show that a prime ideal in a finite commutative ring with 1 is
maximal.

(6) If A and B are submodules of M prove

(a) A ∩B is a submodule of M

(b) (A+B)/B is isomorphic to A/(A ∩B).

(7) Let M be an R- module; if m ∈ M let λ(m) = {x ∈ R | xm = 0}.
Show that λ(m) is a left ideal of R. It is called the order of m.

(8) Let M be an R- module and λ a left ideal of R. Show that for
m ∈M , λ(m) = {xm | x ∈ λ} is a submodule of M .

(9) Let M be an R− module and let E(M) be the set of all R− homo-
morphisms of M into M . Make appropriate definitions of addition
and multiplication of elements of E(M) so that it becomes a ring.

(10) Prove that in a UFD all minimal prime ideals are principal and are
exactly those ideals which are generated by irreducible elements.

(11) Let R be a PID, then n non - zero elements a1, a2, ..., an ∈ R are
relatively prime if and only if there exists x1, x2, ..., xn ∈ R such
that a1x1 + a2x2 + ...+ anxn = 1.



Chapter

2

POLYNOMIAL RINGS

Polynomials not only help us to construct new and useful examples
of rings and fields but are of interest in themselves. The “ring” of poly-
nomials in one variable has two binary operations - addition and multi-
plication. In mathematics, especially in the field of abstract algebra, a
polynomial ring is a ring formed from the set of polynomials in one or
more variables with coefficients in another ring. Polynomial rings have
influenced much of mathematics, from the Hilbert basis theorem, to the
construction of splitting fields, and to the understanding of a linear op-
erator.

Many important conjectures involving polynomial rings, such as Serre’s
problem, have influenced the study of other rings, and have influenced
even the definition of other rings, such as group rings and rings of formal
power series. The polynomial ring K[X] is remarkably similar to the
ring Z of integers in many respects. This analogy and the arithmetic of
the ring of polynomials were thoroughly investigated by Gauss and his
theory served as a model for development of abstract algebra in the sec-
ond half of the nineteenth century in the works of Kummer, Kronecker,
and Dedekind.

The first property of the polynomial ring is elementary and says
that a product of two non-zero polynomials is also a non-zero polyno-
mial. The next property of the polynomial ring is much deeper. Already
Euclid noted that every positive integer can be uniquely factored into a
product of primes this statement is now called the fundamental theorem
of arithmetic. Polynomial rings have been generalized in a great many
ways, including polynomial rings with generalized exponents, power se-
ries rings, noncommutative polynomial rings, and skew-polynomial rings.

2.1 Ring of Polynomials

From the early school days we have been studying different types of poly-
nomials, factoring them, adding, subtracting, multiplying, dividing and
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simplifying them. We have also studied them as functions, checking their
continuity, finding derivatives, their integrals, maxima and minima. Now
we will study polynomials as elements of a certain ring and the theory
based on it. In this direction we start with the following definitions.

2.1.1 Definition

Ring of polynomials: Let R be a ring. Let x be an indeterminate or
a variable over R. Let R[x] be the set of all polynomial expressions in x
with coefficients in R, i.e.,

R[x] = {a0 + a1x+ a2x
2 + ...+ arx

r | ai ∈ R, r ∈ Z+}.

Equality in R[x]: Let p(x) = a0 + a1x + a2x
2 + ... + arx

r and
q(x) = b0 + b1x + b2x

2 + ... + bsx
s be in R[x]. Then p(x) = q(x) if

and only if r = s and ai = bi, for all i, 0 ≤ i ≤ r. In particular,
a0 + a1x+ a2x

2 + ...+ arx
r = 0 if and only if ai = 0, for all i. Thus two

polynomials are equal if and only if their corresponding coefficients are
equal.

Addition and multiplication in R[x]: Let p(x) = a0+a1x+a2x
2+

... + arx
r and q(x) = b0 + b1x + b2x

2 + ... + bsx
s be in R[x], (assume

r ≤ s). Define
p(x) + q(x)
= (a0 + a1x+ a2x

2 + ...+ arx
r) + (b0 + b1x+ b2x

2 + ...+ bsx
s)

= (a0+b0)+(a1+b1)x+(a2+b2)x
2+...+(ar+br)x

r+br+1x
r+1+...+bs)x

s.
p(x)q(x)

= (a0 + a1x+ a2x
2 + ...+ arx

r)(b0 + b1x+ b2x
2 + ...+ bsx

s)
= (a0b0) + (a0b1 + a1b0)x+ (a0b2 + a1b1 + a2b0)x

2 + ...+ (a0bi + a1bi−1 +
...+ aib0)x

i + ...+ (arbs)x
r+s.

It can be easily seen that the set R[x] is a ring under the above oper-
ations. Elements of this ring are called polynomials in x with coefficients
in R.

2.1.2 Definition:

If p(x) = a0 + a1x+ a2x
2 + ...+ arx

r 6= 0, we may assume that ar 6= 0.
Then ar is called the leading coefficient of p(x) and r is called the
degree of p(x). Thus the degree is the largest integer i for which the
coefficient of p(x) is non- zero. We say a polynomial is constant if its
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degree is 0.

The term a0 is called the constant term of p(x). A polynomial
whose constant term is zero is called a polynomial without constant
term. If R has 1, a non-zero polynomial whose leading coefficient is 1 is
called a monic polynomial.

2.1.3 Remarks:

Let R be an integral domain. Then:

(1) If p(x) and q(x) are two non-zero elements ofR[x], then deg(p(x)q(x)) =
deg(p(x) + deg(q(x).

(2) R[x] is an integral domain.

(3) (Euclidean algorithm): Given two polynomials p(x) and q(x) 6=
0 in R[x], there exist two polynomials t(x), r(x) ∈ R[x] such that
p(x) = t(x)q(x) + r(x) where r(x) = 0 or deg(r(x)) < deg(q(x)).

Now let us discuss some of the important results involving rings and
other concepts discussed in the previous chapter.

2.1.4 Theorem:

Suppose R is a commutative ring with 1. Then a(x) = a0 +a1x+a2x
2 +

... + arx
r ∈ R[x] is a unit in R[x] if and only if a0 is a unit in R and

a1, a2, ..., ar are all nilpotent in R.

Proof. Suppose a(x) = a0+a1x+a2x
2+...+arx

r is such that a0 is a unit
in R and a1, a2, ..., ar are all nilpotent in R. Since R is commutative,
we get that a1x, a2x

2, ..., arx
r are all nilpotent and hence also their sum,

i.e., z = a1x+ a2x
2 + ...+ arx

r is nilpotent. Now a−10 z is nilpotent and
so 1 + a−10 z is a unit. Thus a(x) = a0 + z = a0(1 + a−10 z) which is a
product of two units in R[x] is a unit.

Conversely, suppose a(x) = a0 + a1x + a2x
2 + ... + arx

r is a unit in
R[x]. It follows immediately that a0 must be a unit in R. Now take any
prime ideal P in R. For a ∈ R, let ā = a + P in R/P . Look at the
natural map fp : R[x]→ (R/P )[x], b(x) = b0 + b1x+ b2x

2 + ...+ bsx
s 7→

b̄0 + b̄1x + ... + b̄sx
s. This fp preserves addition and multiplication.

Secondly, it takes identity of R[x] to that of (R/P )[x] and hence it takes
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units to units. In particular, fp(a(x)) = ā0 + ā1x+ ...+ ārx
r is a unit in

(R/P )[x]. Since P is a prime ideal, R/P is an integral domain and hence
(R/P )[x] is an integral domain. Now ā0 + ā1x + ... + ārx

r is a unit in
(R/P )[x] means that ā0 is a unit in R/P and ā1 = ā2 = ... = ār = 0, i.e.,
a1, a2, ..., ar ∈ P . This shows that a1, a2, ..., ar belong to the intersection
of all prime ideals in R which is nothing but the set of all nilpotent
elements in R. Thus a1, a2, ..., ar are all nilpotent in R.

2.1.5 Theorem:

Let I be an ideal of R, then I[x] is an ideal of R[x] and the quotient ring
R[x]/I[x] is naturally isomorphic to (R/I)[x].

Proof. Let I be an ideal in R. Clearly, I[x] = {a0 + a1x + a2x
2 +

... + arx
r | ai ∈ I} is an ideal in R[x]. Now look at the natural map

f : R[x] → (R/I)[x], defined by a(x) = a0 + a1x + a2x
2 + ... + arx

r 7→
ā0 + ā1x + ... + ārx

r (where ā = a + I, for all a ∈ R). It can be easily
checked that this is an epimorphism. Now
Ker(f) = {a(x) ∈ R[x] | ā0 + ā1x+ ...+ ārx

r = 0̄}

= {a(x) ∈ R[x] | ā0 = 0, ā1 = 0, ..., ār = 0}

= {a0 + a1x+ a2x
2 + ...+ arx

r | ai ∈ I} = I[x].

Hence, R[x]/I[x] ≈ (R/I)[x].

2.1.6 Remarks:

(1) Any field K is Euclidean. The algorithm map is the constant map
d : K∗ → Z+, i.e., d(x) = 1, for all x ∈ K∗. The Euclidean
algorithm is the trivial property that x = (xa−1)a + 0, for all
x ∈ K and for all a ∈ K∗.

(2) R = K[x], the polynomial ring in one variable over a field K is
Euclidean. The algorithm map is the degree map d : K[x]∗ → Z+,
namely, d(f(x)) = degree of f(x) for a non-zero polynomial f(x).
The Euclidean algorithm is the usual division of polynomials.
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2.1.7 Theorem:

For a commutative integral domain R with unity, the following are equiv-
alent

(1) R is a field.

(2) R[x] is an Euclidean domain.

(3) R[x] is a PID.

Proof. By Remark (2.1.6) and Theorem (1.6.3), (1) ⇒ (2) ⇒ (3). We
have only to show that (3) ⇒ (1). Since x is a prime in R[x], the ideal
(x) is a non-zero prime ideal in R[x] and hence maximal which implies

that R[x]
x w R is a field.

To prove the most important theorem of Gauss for unique factoriza-
tion domains in next section, we need the following definitions (here R
stands for a UFD and K = Q(R), its field of fractions). We begin with
the following definition:

2.1.8 Greatest common divisor:

If a, b ∈ R then d ∈ R is said to be a greatest common divisor of a and
b if

(1) d|a and d|b.

(2) Whenever c|a and c|b then c|d. It is denoted by the symbol d =
(a, b).

2.2 Content of a Polynomial and Primitive Polynomials

2.2.1 Content of a polynomial:

Given a non-zero polynomial f(x) in R[x], the gcd of the coefficients of
f(x) is called the content of f(x) and is denoted by c(f(x)) or simply
c(f).

2.2.2 Example:

Let f(x) = 4x2 − 6x+ 12 ∈ Z(x), c(f) = 2.
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2.2.3 Primitive polynomial:

A non-zero polynomial f(x) ∈ R[x] is called primitive if its content is 1.

2.2.4 Example:

Let f(x) = 9x2 − 12x+ 8 ∈ Z(x), c(f) = 1. Therefore f(x) is primitive.

2.2.5 Remarks:

(1) Any non-zero polynomial f(x) ∈ R[x] can be written as a product

of a non-zero scalar and a primitive polynomial because f(x)
c(f(x)) is

primitive and c(f(x)) is a non-zero scalar.

(2) Any irreducible polynomial is primitive.

2.2.6 Proposition:

The content of a product of polynomials is the product of their contents
and in particular, the product of primitive polynomials is primitive.

Proof. In view of the Remark (2.1.6), it suffices to prove the result for
the case of primitive polynomials. Letf(x), g(x) be primitive in R[X].
Let h(x) = f(x)g(x). We have to show that c(h) is identity in R. If not,
take a prime divisor p of c(h). Write

f(x) = a0 + a1x+ a2x
2 + ...+ amx

m

and

g(x) = b0 + b1x+ b2x
2 + ...+ bnx

n

where ambn 6= 0. Since c(f) = c(g) = 1, we can find r, s least such that
p is not a divisor of ar or bs, 0 ≤ r ≤ m, 0 ≤ s ≤ n. Note that

p|ai, 0 ≤ i ≤ r − 1 and p|bj , 0 ≤ j ≤ s− 1

by the choice of r and s. Now look at the coefficient of h(x), namely,
Σi+j=r+saibj . Since p is a prime divisor of c(h), it is a divisor of this
coefficient of h(x). On the other hand, since p is a divisor of ai, 0 ≤ i ≤
r− 1 and of bj , 0 ≤ j ≤ s− 1, it follows that p is a divisor of arbs which
is a contradiction to the fact that p is not a divisor of ar or bs. Hence
c(h) = 1, as required.
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2.3 Ring of Polynomials over a UFD

2.3.1 Gauss Lemma:

[Theorem (4.5.11) of [71]]. A primitive polynomial f(x) ∈ R[x] is irre-
ducible in R[x] if and only if f(x) is irreducible in K[x] where K is the
field of fractions of R.

Proof. Assume that f(x) is primitive and irreducible in R[x]. Let, if pos-
sible, f(x) be irreducible in K[x], say f(x) = g(x)h(x) with g(x), h(x) ∈
K[x]. We can write g(x) = (ab )p(x) and h(x) = ( cd)q(x) with a, b, c,
d ∈ R∗, p(x), q(x) ∈ R[x]∗ and both p(x) and q(x) primitive.

Now, we can write f(x) = (αβ )p(x)q(x) for some α, β ∈ R∗ with α, β
coprime. Thus we get βf(x) = αp(x)q(x) and hence comparing contents
on either side, we have βc(f) = αc(p)c(q), i.e., β = α which means
f(x) = p(x)q(x) in R[x] contradicting the irreducibility of f(x).

Conversely, if f(x) ∈ R[x] is irreducible in K[x], then it is obviously
irreducible in R[x] since f(x) is primitive.

2.3.2 Gauss Theorem:

[Theorem (4.5.12) of [71]]. Let R be an integral domain. Then R[x] is a
UFD if and only if R is a UFD.

Proof. If R[x] is a FD so is R since (for degree reasons) all factors in R[x]
of an element in R belong to R. Moreover, elements of R are irreducible
(resp. prime) in R if and only if they are irreducible (resp. prime) in
R[x]. Consequently, if R[x] is a UFD and a ∈ R is irreducible, then a is
prime in R[x] and so a prime in R. Thus R is a UFD.

Conversely, suppose that R is a UFD. Since R is an FD, it is easy
to see, for degree reasons, that R[x] is also a FD. The difficult part is
the uniqueness of factorization. It suffices to prove that every irreducible
polynomial in R[x] is a prime. This is assured by Gauss Lemma. To see

this; let p(x) be irreducible in R[x] and suppose that p(x)
f(x)g(x) in R[x].

Since p(x) is irreducible in R[x], by Gauss Lemma, it is is irreducible
in K[x]. But K[x] is a UFD since K is a field. Therefore p(x) is prime

in K[x] and so p(x)
f(x) or g(x) in K[x], say p(x)

f(x) , i.e., f(x) = p(x)q(x)

for some q(x) ∈ K[x]. We can write q(x) = (ab )q0(x) with a, b ∈ R∗,
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a, b coprime and q0(x) ∈ R[x]∗, q0(x) primitive. Now substituting we
get bf(x) = ap(x)q0(x) in R[x]. Taking contents on either side, we get
bc(f) = a and hence on cancelation we get that f(x) = c(f)p(x)q0(x)

in R[x] which means p(x)
f(x) in R[x] implying p(x) is a prime in R[x], as

required.

2.4 Eisenstein’s Irreducible Criterion

2.4.1 Theorem:

[Theorem (4.6.1) of [71]]. Let R be a UFD and f(x) ∈ R[x]∗ be a
primitive polynomial, say

f(x) = a0 + a1x+ a2x
2 + ...+ arx

r, ar 6= 0.

Suppose there is a prime p in R such that

(i) p|ai, 0 ≤ i ≤ r − 1 and p - ar, i.e., p divides all but the leading
coefficient and

(ii) p2 - a0. Then f(x) is irreducible.

Proof. Let f(x) be irreducible, say f(x) = g(x)h(x) where g(x) = b0 +
b1x + b2x

2 + ... + bmx
m and h(x) = c0 + c1x + c2x

2 + ... + cnx
n with

bmcn 6= 0. We shall prove that either g(x) or h(x) is a unit. Since f(x) is
primitive, so are g(x) and h(x) by Gauss lemma. Since p|a0 = b0c0, we
get that p|b0 or p|c0, say p|b0. Furthermore, p cannot divide c0 since p2

does not divide a0. On the other hand, since p does not divide ar = bmcn,
p cannot divide bm or cn. Let l be least such that p does not divide bl. We
get that 1 ≤ l ≤ m. If n 6= 0, we get that l ≤ m < m+ n = r. But then,
p|al where al =

∑
i+j=l bicj implying that p|blc0 (since p|bi, 0 ≤ i ≤ l− 1

and p|al). This is a contradiction. Hence n = 0 which means that c0 is
a unit since h(x) = c0 is primitive. Thus f(x) is irreducible.

2.4.2 Remark:

The Eisenstein’s Criterion is only a sufficient condition but not necessary.

For example, the polynomial f(x) = 1+x+x2+...+xp−1 is irreducible
in Z[x] for any prime number p in Z, yet obviously there is no prime
satisfying the conditions of the criterion. To see the irreducibility of f(x),
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first note that f(x) is irreducible if and only if f(x + 1) is irreducible.

We have f(x) = ( (x
p−1)

(x−1) and so

f(x+ 1) = [(x+ 1)p − 1]/x = xp−1 + pxp−2 + ...+ p.

This is a monic polynomial for which Eisenstein’s Criterion can be ap-
plied with the prime p and hence irreducible, as required.
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2.5 Exercises

(1) Show that the number of roots of a non-zero polynomial over a
commutative integral domain R is atmost its degree.

(2) Let R be commutative with 1. Let f(x) = a0 + a1x + a2x
2 +

... + amx
m in R[x] be such that a0 is a unit and a1, ..., an are all

nilpotent in R. Show that f(x) is a unit in R[x].

(3) Show that 1+x2 is prime and is coprime to 1+x+x3 +x6 in Z[x].

(4) Let R be a commutative ring such that R[x] has a non-trivial zero-
divisor f(x). Show that af(x) = 0 for some non-zero element
a ∈ R. Is the commutativity of R essential?

(5) Show that 1 +x+x3 +x6 is not irreducible in R[x] for any domain
R with 1.

(6) Let R be a domain and f(x) ∈ R[x] be a polynomial of positive
degree. Show that f(x) is irreducible if and only if f(x + a) is
irreducible for any domain a ∈ R.

(7) Let f(x) be a monic polynomial in Z[x]. Suppose that a rational
number r is a root of f(x). Then show that r is an integer. Gen-
eralize this statement to an arbitrary UFD R in place of Z, i.e., if
an element x of Q(R) is a root of a monic polynomial in R[x], then
show that x ∈ R.

(8) Show that for a commutative ring R, the principal ideal (x) is
prime in R[x] if and only if R is an integral domain.

(9) Show that for any prime ideal P of a commutative ring R,the ideal
P [x] is prime in R[x].

(10) Prove that R[x] is a commutative ring with unit whenever R is.

(11) If R is an integral domain with unit element, prove that any unit
in R[x] must already be a unit in R.



Chapter

3

MODULES WITH CHAIN
CONDITIONS

In this chapter, we shall study the basic properties of an important
class of modules and rings, (‘Artinian and Noetherian’), which have some
very special properties. Our study of ring theory in class covered a wide
variety of areas in and uses of the topic. Field theory and polynomial
rings were of particular interest with the end goal being Galois theory.
One topic that was briefly introduced was Noetherian and Artinian rings.

These two characterizations for rings are worth deeper study. The
essential features are the ascending and descending chain conditions on
submodules. In a sense, Artinian and Noetherian rings have some mea-
sure of finiteness associated with them. In fact, the conditions for Ar-
tinian and Noetherian rings, called respectively the descending and as-
cending chain conditions, are often termed the minimum and maximum
conditions. These properties make Artinian and Noetherian rings of
interest to an algebraist. Furthermore, these two types of rings are re-
lated. In (1921), Emmy Noether introduced the ACC for the first time
in mathematics literature. She was considering ideals in commutative
rings. After Noether’s introduction of the ACC, work in this area of
ring theory exploded. Her results were expanded to non-commutative
settings. In addition, other similar conditions for ideals in a ring were
introduced. In particular, Emil Artin formulated the DCC in (1927),
which provided a minimum condition to complement the maximum con-
dition given by the ACC.

It was later discovered, first by Noether herself and then more for-
mally by Hopkins and Levitzki, that the DCC is actually the stronger
condition. Specifically, a consequence of the Akizuki Hopkins Levitzki
Theorem (3.6.4) is that a left (right) Artinian ring is automatically a left
(right) Noetherian ring. This is not true for general modules, that is, an
Artinian module need not be a Noetherian module. Over a commutative
ring, every cyclic Artinian module is also Noetherian, but over noncom-
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mutative rings cyclic Artinian modules can have uncountable length.
The Noetherian condition as well as the Artinian condition can also be
defined on bimodule structures as well. It has proved advantageous to
study these conditions separately - in the form of Noetherian modules
and Artinian modules as well as together. Unless otherwise stated, R
stands for a ring with 1 (commutative or not) and all modules considered
are assumed to be unitary modules.

3.1 Chain Conditions: Artinian Modules, Noetherian Mod-
ules

Before we discuss Noetherian and Artinian rings, it is important to in-
troduce the concepts behind them. In particular, we need definitions for
the maximum and minimum conditions that characterize the two types
of rings. We will state these definitions in terms of rings, but they can be
generalized to apply to other algebraic objects besides rings. In addition,
the definitions depend on ideals. Our discussion was primarily limited
to commutative rings. Because of this, all ideals we discussed were two
sided. In non-commutative rings, this does not have to be the case. In
order to solidify what is meant, we provide the following definition.

3.1.1 Definition:

Let R be a ring and I be a subring of R. For an element r ∈ R, let
Ir = {ar | a ∈ I}. I is a right ideal of R if Ir ⊂ I for all r ∈ R.

Left ideals can be defined in an entirely analogous manner by replac-
ing right with left and Ir with rI. In a commutative ring, it is clear
that if the condition for a right ideal is met, then the condition for a left
ideal must also be met. In non-commutative rings, right and left ideals
do not have to coincide and in general do not. The definitions below use
the term ideal loosely. That is, the term ideal can refer to right, left, or
two-sided ideals. However, it is only referring to one type of ideal at a
time. That being said, we introduce the following definition.

3.1.2 Ascending chain conditions ACC for modules:

Let R be a ring and M a right R-module. Then M satisfies the ACC for
its submodules if any ascending sequence of submodules of M say

M1 ⊆M2 ⊆M3 ⊆ ... ⊆Mi ⊆Mi+1 ⊆ ..... (3.1)
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is stationary.
i.e., there exists n ∈ N such that Mn = Mn+1 = ....
In this case we say that the sequence (3.1) terminates.
i.e., M1 ⊆M2 ⊆M3 ⊆ ... ⊆Mn.

3.1.3 Definition:

Let R be a ring. Let I1, I2, ... be an arbitrary chain of ideals in R such
that I1 ⊂ I2 ⊂ ....
If there exists an N ∈ N such that In = IN for n ≥ N , then R is said to
satisfy the Ascending Chain Condition (ACC).

3.1.4 Definition:

Let R be a ring. Then a module MR has the maximum condition for
submodules if for any non-empty family A of submodules of MR, has a
maximal member.

i.e., N ∈ A is called maximal member of A if for N ′ ∈ A with
N ⊆ N ′, we have N = N ′. ACC can be understood as a maximum con-
dition on ideal chains in a ring R. A ring satisfying ACC has chains of
ideals that always top out. Such a ring is called Noetherian. This name
comes from the mathematician Emmy Noether. If ACC is met on right
ideals, the ring is right Noetherian. If it is met on left ideals the ring is
left Noetherian. The term Noetherian is reserved for rings that satisfy
ACC on both right and left ideals. In commutative rings, all three of
these conditions coincide.

Like ACC, there is a similar minimum condition for ideal chains in a
ring. This condition is given in the definition below.

3.1.5 Descending chain conditions DCC for modules:

Let R be a ring and M a right R-module. Then M satisfies the DCC
for its submodules if any descending sequence of submodules of MR say

M1 ⊇M2 ⊇M3 ⊇ ... ⊇Mi ⊇Mi+1 ⊇ ..... (3.2)

is stationary.
i.e., there exists n ∈ N such that Mn = Mn+1 = ....
In this case we say that the sequence (3.2) terminates.
i.e., M1 ⊇M2 ⊇M3 ⊇ ... ⊇Mn.
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3.1.6 Definition:

Let R be a ring. Let I1, I2, ... be an arbitrary chain of ideals in R such
that I1 ⊃ I2 ⊃ ... .
If there exists an N ∈ N such that In = IN for n ≥ N , then R is said to
satisfy the Descending Chain Condition (DCC).

3.1.7 Definition:

Let R be a ring. Then a module MR has the minimum condition for
submodules if for any non-empty family A of submodules of MR, has a
minimal member.

i.e., N ∈ A is called minimal member ofA if for N ′ ∈ A with N ′ ⊆ N ,
we have N = N ′.

The minimum condition provided by DCC is equivalent to saying that
all ideal chains in a ring R bottom out. Rings satisfying DCC are called
Artinian after mathematician Emil Artin. As with ACC, the terms right
and left Artinian come into play for right and left ideals respectively.
Artinian rings meet DCC on left and right ideals. Once again, all three
conditions coincide for commutative rings.

3.1.8 Definition:

Let R be a ring. A submodule NR of a module MR is said to be finitely
generated if

NR = x1R+ x2R+ ...+ xnR; xi ∈ N

and n ≥ 1 are integers.

In this case, x1, x2, ..., xn are called generators of NR.

Historically, Hilbert was the first mathematician to work with the
properties of finitely generated submodules. He proved an important
theorem known as Hilbert’s basis theorem which says that any ideal in
the multivariate polynomial ring of an arbitrary field is finitely generated.
However, the property is named after Emmy Noether who was the first
one to discover the true importance of the property. Notice the similarity
between the ACC and DCC definitions. Together, they provide some
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sense of boundedness or finiteness for rings. It is also the case that
Artinian and Noetherian rings share many properties.

3.1.9 Artinian Modules

Theorem: The following are equivalent for an R-module M .

(1) Descending chain condition holds for submodules of M .

(2) Minimum condition for submodules holds for M .

Proof. (1) ⇒ (2): Let F = {Mi, i ∈ I} be a non-empty family of sub-
modules of M . Pick any index i1 ∈ I and look at Mi1 . If Mi1 is min-
imal in F , we are through. Otherwise, there is an i2 ∈ I such that
Mi1 ⊃ Mi2 ,Mi1 6= Mi2 . If this Mi2 is minimal in F , we are through
again. Proceeding thus, if we do not find a minimal element at any fi-
nite stage, we would end up with a non-stationary descending chain of
submodules of M , namely, Mi1 ⊃ Mi2 ⊃ ... ⊃ Min ⊃ ...... contradicting
(1).

(2)⇒ (1) Let M1 ⊇M2 ⊇M3 ⊇ ... ⊇Mn ⊇ ... ⊇ ... be a descending
chain of submodules of M . Consider the non-empty family F = {Mi, i ∈
N} of submodules of M . This must have a minimal element, say Mr,
for some r. Now we have Ms ⊆ Mr, for all s ≥ r which implies by
minimality of Mr that Ms = Mr, for all s ≥ r.

3.1.10 Artinian module:

A module M is called Artinian if DCC (or equivalently, the minimum
condition) holds for M .

3.1.11 Examples:

(1) A module which has only finitely many submodules is Artinian. In
particular, finite abelian groups are Artinian as modules over Z.

(2) Finite dimensional vector space are Artinian (for reasons of dimen-
sion) whereas infinite dimensional ones are not Artinian.

(3) Infinite cyclic groups are not Artinian. For instance, Z has a non-
stationary descending chain of subgroups , namely,
Z = (1) ⊃ (2) ⊃ (4) ⊃ ... ⊃ (2n) ⊃ ... ⊃ ...
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3.1.12 Proposition:

Let N be a submodule of a module M . Then M is Artinian if and only
if N and M/N are both Artinian.

Proof. Let M be Artinian and N be a submodule of M . Any family of
submodules of N is also one in M and hence the result follows. On the
other hand, any descending chain of submodules of M/N corresponds to
one in M (wherein each member contains N and hence the result).

Conversely, let

M1 ⊇M2 ⊇M3 ⊇ ... ⊇Mn ⊇ ... ⊇ ...

be a descending chain in M . Intersecting with N gives the descending
chain in N , namely,

N ∩M1 ⊇ N ∩M2 ⊇ N ∩M3 ⊇ ... ⊇ N ∩Mn ⊇ ... ⊇ ...

which must be stationary, say N ∩Mr = N ∩Mr+1 for some r. On the
other hand, we have the descending chain in M/N , namely,

N+M1
N ⊇ N+M2

N ⊇ N+M3
N ⊇ ... ⊇ N+Mn

N ⊇ ... ⊇ ...

which must be also stationary, say

N+Ms
N = N+Ms+1

N = ...

for some s. Now we prove the following.

Claim : Mn = Mn+1, for all n ≥ (r + s).

This is an immediate consequence of the four facts , namely,

(1) Mn ⊇Mn+1, ∀ n ∈ N,

(2) N ∩Mn = N ∩Mn+1, for all n ≥ r,

(3) N+Mn
N = N+Mn+1

N , for all n ≥ s and

(4) N+Mn
N ' Mn

N∩Mn
, for all n ≥ N.

Putting together we get that

Mn
N∩Mn

= N+Mn
N = N+Mn+1

N = Mn+1

N∩Mn+1

which implies the claim and hence the result.
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3.1.13 Corollary:

Any finite direct sum of Artinian modules is Artinian.

Proof. For, let M1, ...,Mn be Artinian submodules of a module M . Let
N =

∑n
i=1Mi. To prove N is Artinian, proceed by induction on n. If

n = 1, there is nothing to prove. Let n ≥ 2 and assume, by induction,
that N ′ =

∑n−1
i=1 Mi is Artinian. Now look at

N
Mn

= N ′+Mn
Mn

' N ′

N ′∩Mn

which is Artinian being a quotient of the Artinian module N ′. Thus
both Mn and N/Mn are Artinian and hence N is Artinian, as required.
the case of a direct sum is an immediate consequence because if

M = ⊕ni=1Mi,

then M is a finite sum of the Artinian submodules Mi and hence Ar-
tinian.

3.1.14 Corollary:

If R is a right/left Artinian ring, then all finitely generated right/left
R-modules are Artinian.

Proof. If R is a finitely generated right R-module, then R ∼= F/K for
some finitely generated free right R-module F and some submodule K ≤
F . Since F is isomorphic to a finite direct sum of copies of the Artinian
module RR, it is Artinian by Corollary (3.1.13). Then by Proposition
(3.1.12), R must be Artinian.

3.1.15 Remarks:

(1) Direct sum of an infinite family of non-zero Artinian modules is not
Artinian (because it contains non-stationary descending chains).

(2) However, a sum of an infinite family of distinct Artinian modules
could be Artinian. (For example, the Euclidean plane R2 is a sum
of all the lines passing through the origin and is a direct sum of
any two of them).

(3) Minimal submodules exist in a non-zero Artinian module because
a minimal submodule is simply a minimal element in the family of
all non-zero submodules of M .
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3.1.16 Corollary:

Every non-zero submodule of an Artinian module contains a minimal
submodules.(Obvious by Remark (3.1.15(3))).

3.1.17 Noetherian Modules

Theorem: The following are equivalent for an R-module M .

(1) Ascending chain condition holds for submodules of M .

(2) Maximum condition for submodules holds for M .

Proof. (1) ⇒ (2): Let F = {Mi, i ∈ I} be a non-empty family of sub-
modules of M . Pick any index i1 ∈ I and look at Mi1 . If Mi1 is maximal
in F , we are through. Otherwise, there is an i2 ∈ I such that Mi1 ⊂Mi2 ,
Mi1 6= Mi2 . If this Mi2 is maximal in F , we are through again. Pro-
ceeding thus, if we do not find a maximal element at any finite stage,
we would end up with a non-stationary ascending chain of submodules
of M , namely,

Mi1 ⊂Mi2 ⊂ ... ⊂Min ⊂ ......

contradicting (1).

(2) ⇒ (3) Let N be submodule of M . Consider the family F of all
finitely generated submodules of N . This family is non-empty since the
submodule (0) is a member. This family has a maximal member, say
N0 = (x1, ..., xr). If N0 = N , pick an x ∈ N , x /∈ N0. Now

N1 = N0 + (x) = (x, x1, x2, ..., xr)

is a finitely generated submodule of N and hence N1 ∈ F . But then this
contradicts the maximality of N0 in F since N0 ⊂ N1, N0 6= N1 and so
N0 = N is finitely generated.

(3) ⇒ (1) Let M1 ⊆ M2 ⊆ M3 ⊆ ... ⊆ Mn ⊆ ... ⊆ ... be a ascending
chain of submodules of M . Consider the submodule

N = ∪∞i=1Mi

of M which must be finitely generated, say N = (x1, x2, ..., xn). It
follows that xi ∈Mr, for all i, 1 ≤ i ≤ n for some r(� 0). Now we have
N ⊆Ms ⊆ N , for all s ≥ r and so

N = Mr = Mr+1 = ....
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3.1.18 Noetherian module:

A module M is called Noetherian if ACC (or equivalently, the maximum
condition or the finiteness condition) holds for M .

3.1.19 Note:

The finiteness condition has no parallel in the Artinian case. This addi-
tional property makes Noetherian modules rather special and the study
more interesting.

3.1.20 Examples:

(1) A module which has only finitely many submodules is Noetherian.
In particular, finite abelian groups are Noetherian as modules over
Z.

(2) Finite dimensional vector space are Noetherian (for reasons of di-
mension) whereas infinite dimensional ones are not Noetherian.

(3) Unlike the Artinian case, infinite cyclic groups are Noetherian be-
cause every subgroup of a cyclic group is again cyclic.

Our first few results concerning Noetherian modules are completely
analogous to the corresponding results for Artinian modules (see Propo-
sition (3.1.12), Corollary (3.1.13), Corollary (3.1.14)). The proofs of
the Noetherian results may be obtained by imitating the proofs in the
Artinian case, reversing inclusions when necessary.

3.1.21 Proposition:

Let N be a submodule of a module M . Then M is Noetherian if and
only if N and M/N are both Noetherian.

3.1.22 Corollary:

Any finite direct sum of Noetherian modules is Noetherian.

3.1.23 Corollary:

If R is a right/left Noetherian ring, then all finitely generated right/left
R-modules are Noetherian.
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3.1.24 Remark:

(1) Direct sum of an infinite family of non-zero Noetherian modules
is not Noetherian (because it contains non-stationary ascending
chains).

(2) Maximal submodules exist in a non-zero Noetherian module be-
cause a maximal submodule is simply a maximal element in the
family of all (proper) submodules N of M , N 6= M .

(3) However, maximal submodules exist in any finitely generated non-
zero modules, even if the module is not Noetherian. (This is a
simple consequence of Zorn’s lemma applied to the family of all
proper submodules of such a module). (See (3.1.27)(4) below, for
an example of a finitely generated module which is not Noetherian).

3.1.25 Corollary:

Every non-zero submodule of a Noetherian module is contained in a
maximal submodule. (Obvious by Remark (3.1.24)(2)).

3.1.26 Definition:

Consider the abelian group µp∗ of all complex (pn)th roots of unity or a
fixed prime number p and all n ∈ N. For each positive integer n, let µpn

denote the cyclic group of all complex (pn)th roots of unity so that we
have

µp ⊂ µp2 ⊂ ... ⊂ µpn ⊂ ... ⊂

and hence

µp∗ =
⋃∞
n=1 µpn .

3.1.27 Some Pathologies:

(1) An Artinian module need not be finitely generated.

(2) Maximal submodules need not exist in an Artinian module.

(3) An Artinian module need not be Noetherian.

(4) A finitely generated module need not be Noetherian.
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(5) Minimal submodules need not exist in an Noetherian module.

(6) An Noetherian module need not be Artinian.

(7) There are modules which are neither Artinian nor Noetherian.

Now we give some counter-examples.

Example A: The group µp∗ is Artinian but not Noetherian, not
finitely generated and does not have maximal subgroups. This justifies
the statements (1), (2) and (3).

Example B: Let R = Z[X1, X2, ..., Xn, ..., ...] be the polynomial ring
in infinitely many variables. We know that R, as a module over itself,
is generated by 1 but R is not Noetherian because it has non-stationary
ascending chain of ideals, namely,

(X1) ⊂ (X1, X2) ⊂ (X1, ..., Xn) ⊂ ... ⊂ ...

This serves the purpose for statement (4).

Example C: The finite cyclic group Z is Noetherian but not Ar-
tinian and it has no minimal subgroups. This justifies statements (5)
and (6).

Example D: Direct sum of any infinite family of non-zero modules,
in particular, an infinite dimensional vector space, is neither Artinian
nor Noetherian.

3.2 Modules of Finite Length

Recall that a module M is called simple if

(1) M 6= (0) and

(2) M has no submodules other than (0) and M .

3.2.1 Remark:

Simple submodules exist in a non-zero Artinian module while simple
quotients exist for a non-zero Noetherian one.
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3.2.2 Definition:

A composite series for a module A is a chain of submodules

A0 = 0 < A1 < ... < An = A

such that each of the factors Ai/Ai−1 is a simple module. The number
of gaps (namely n) is called the length of the composition series, and the
factors Ai/Ai−1 are called the composition factors of A corresponding to
this composition series. By convention, the zero module is considered to
have a composition series of length zero, with no composition factors. A
module of finite length is any module which has a composition series.

3.2.3 Remark:

For a non-zero module M , a composition series may or may not exist. If
one exists, we notice that M would have a simple submodule Mm−1 and
a maximal submodule M1 (i.e., a simple quotient M0/M1).

3.2.4 Examples:

(1) A vector space V having a finite basis has a composition series of
length m, namely,

V = V0 ⊃ V1 ⊃ ... ⊃ Vm = (0)

where Vi = span of vi+1, vi+2, · · ·, vm for all i, 0 ≤ i ≤ m with
Vm = 0. (However, a vector space having an infinite basis cannot
have a composition series.)

(2) A finite abelian group has a composition series.

(3) An infinite cyclic group cannot have a composition series since it
has no minimal submodules.

3.2.5 Proposition:

A module A has a finite length if and only if A is both Noetherian and
Artinian.

Proof. If A has finite length, then (since simple modules are clearly
Noetherian and Artinian) it follows from Propositions (3.1.12) and (3.1.21)
that A must be Noetherian and Artinian. Conversely, assume that A
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satisfies both chain conditions and set A0 = 0. If A 6= 0, then, by
the DCC, A contains a minimal non-zero submodule A1, that is, A1 is
simple. Similarly, if A1 < A, then A/A1 contains a simple submod-
ule A2/A1 and we continue in this manner. By the ACC, the chain
A0 < A1 < A2 < ... must terminate at some integer n. Then An = A,
and the chain A0 < A1 < ... < An is a composition series for A.

For instance, if R is an algebra over a field k, then any R-module
which is finite dimensional over k has finite length.

3.2.6 Theorem:

(1) Submodules and quotient modules of a module of finite length are
modules of finite length.

(2) If a module M has a submodule N such that both N and M/N
are of finite length, then M is of finite length.

Proof. Put together (3.1.12), (3.1.21) and (3.2.6) above.

3.2.7 Theorem (Jordan-Holder):

[Theorem (4.11) of [41]]. If a module A has finite length, then any two
composition series for A are isomorphic. In particular, all composition
series for A have the same length.

Proof. Consider two composition series

A0 = 0 < A1 < ... < An = A

and

B0 = 0 < B1 < ... < Bt = A

By Theorem (4.10) [41], these two submodules have isomorphic refine-
ments, say

C0 = 0 < C1 < ... < Cm = A

and

D0 = 0 < D1 < · · · < Dm = A.

There is a permutation σ of {1, 2, ...,m} such that Ck
Ck−1

∼= Dσ(k)
Dσ(k)−1

for all

k = 1, ...,m.



60 Algebra and its Applications

Since each of the factors Ai/Ai−1 is simple, there are no submod-
ules lying strictly between Ai−1 and Ai. Consequently, the refined series
C0 ≤ C1 ≤ ... ≤ Cm consists of the submodules A0, A1, ..., An in order
but with possible repetitions. Hence, among the factors Ck/Ck−1, each
factor Ai/Ai−1 occurs exactly once, and the remaining factors are all
zero. Similarly, among the factors Dσ(k)/Dσ(k)−1, each factor Bj/Bj−1
occurs once, and the remaining factors are all zero.

Since

Ck
Ck−1

6= 0

if and only if

Dσ(k)
Dσ(k)−1

6= 0,

we conclude that n = t and that there exists a permutation π of {1, 2, ..., n}
such that, whenever

Ck
Ck−1

= Ai
Ai−1

,

then

Dσ(k)
Dσ(k)−1

=
Bπ(i)
Bπ(i)−1

.

Therefore

Ai
Ai−1

∼= Bπ(i)
Bπ(i)−1

for i = 1, ..., n. Which proves that the given composition series are
isomorphic.

3.2.8 Definition:

If A is module of finite length, the common length of all composition
series for A is called the length (or the composition length) of A, and we
shall denote it by length(A).

For instance, the only module of length 0 is the zero module, and
the modules of length 1 are precisely the simple modules. Note that a
finitely generated semisimple module A has finite length, and if A is a
direct sum of n simple submodules, then length(A) = n.
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3.2.9 Proposition:

Let A be a module of finite length. If B is any submodule of A, then

length(A) = length(B)+length(A/B).

Proof. Since this is clear if either B = 0 or B = A, we may assume that
0 < B < A. In this case, choose composition series

B0 = 0 < B1 < ... < Bm = B

C0/B = 0 < C1/B < ... < Cn/B = A/B

for B and A/B. Since the chain

B0 = 0 < B1 < ... < Bm < C1 < ... < Cn = A

is a composition series for A, the result follows.

In particular, if A1, ..., An are modules of finite length, then

length(A1 ⊕ ...⊕An) = length(A1) + ...+length(An).

3.3 Artinian Rings

3.3.1 Artinian ring :

A ring R is called (left) Artinian if it is Artinian as a left module over
itself, i.e., DCC or minimum condition holds for left ideals of R.

3.3.2 Examples:

Fields, division rings, finite rings are all Artinian. The ring of integers
Z is not Artinian.

3.3.3 Proposition:

A quotient ring of an Artinian ring is Artinian (whereas a subring need
not be Artinian.)

Proof. If I is a 2-sided ideal of an Artinian ring R, then R/I is Artinian
as a R-module. But the family of all left ideals of R/I is precisely the
family of all left ideals of R each containing I and hence it follows that
R/I is an Artinian ring, as required. The subring Z of the Artinian ring
Q is not Artinian.
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3.3.4 Proposition:

A finitely generated module over an Artinian ring is Artinian.

Proof. If a module M is generated by n elements, then M is a quotient of
cartesian product Rn which is Artinian (since R is Artinian) and hence
M is Artinian, as required.

3.3.5 Corollary:

Matrix rings over Artinian rings with unity, (in particular, over division
rings), are Artinian.

Proof. Let R be Artinian ring and S = Mn(R) be a matrix ring over R.
It is clear that any left ideal of S is also an R-submodule of S. But S
is Artinian as a R-module since it is finitely generated over R, (in fact,
it is a free R-module with a basis having n2 elements). Hence S is an
Artinian ring as required.

3.3.6 Theorem:

Let R be an Artinian ring with unity. Then we have the following.

(1) Every non-zero divisor in R is a unit. In particular, an Artinian
integral domain is a division ring.

(2) If R is commutative, every prime ideal is maximal. (In particular,
a commutative Artinian integral domain is a field).

Proof. (1). Let x ∈ R be a non-zero divisor. Note then that xr is not
a zero-divisor for any r ∈ N. Since R is Artinian. the descending
chain of principal left ideals, namely,

(x)l ⊃ (x2)l ⊃ ... ⊃ (xn)l ⊃ ...

must be stationary, say

(xr)l = (xr+1)l = ... =

for some r ∈ N. Since (xr) ∈ (xr+1)l, we can write (xr) = y(xr+1)
for some y ∈ R. This gives (1 − yx)(xr) = 0 and hence 1 = yx
(on canceling xr which is not a zero-divisor). Now we have x =
x(yx) = (xy)x and hence (1− xy)x = 0 implying 1 = xy (on can-
celing x). Thus we get that yx = 1 = xy.
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(2). If R is commutative Artinian and P is a prime ideal in R, then R/P
is an Artinian integral domain and hence every non-zero element
(being not a zero-divisor) is a unit, i.e., R/P is a field, i.e., P is a
maximal ideal, as required.

3.3.7 Corollary:

For a ring R, the following conditions are equivalent:

(a) R is right Artinian and semiprime.

(b) R is left Artinian and semiprime.

(c) R is semiprime.

Proof. Combine Theorem (3.6.2) and Corollary (3.6.5).

3.3.8 Corollary:

For a ring R, the following conditions are equivalent:

(a) R is prime and right Artinian.

(b) R is prime and left Artinian.

(c) R is simple and right Artinian.

(d) R is simple and left Artinian.

(e) R is simple and semisimple.

(f) R ∼= Mn(D) for some positive integer n and some division ring D.

Proof. (a)⇒ (f) by Corollary (3.3.7) and Theorem (4.4) of [41], (f)⇒
(e) by Exercise 4G of [41], (e)⇒ (c) by Theorem (3.6.2), and (c)⇒ (a)
is clear. By symmetry, (b), (d), and (f) are also equivalent.

Because of the symmetry in Corollary (3.3.8), the rings characterized
there are referred to as simple Artinian rings.
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3.3.9 Theorem:

If R is a nonzero right or left Artinian ring, then all prime ideals in R
are maximal.

Proof. If R contains a non maximal prime ideal P , then R/P is a prime
right or left Artinian ring which is not simple, contradicting Corollary
(3.3.8).

3.3.10 Theorem:

If R is a commutative Noetherian ring, then R is Artinian if and only if
all prime ideals in R are maximal.

Proof. Assume that all prime ideals in R are maximal. By Theorem
(3.4) of [41] there are (minimal) prime ideals P1...Pn in R such that
P1P2...Pn = 0. If I0 = R and Ij = P1P2...Pj for j = 1, ..., n, then each
of the factors Ij−1/Ij is finitely generated module over R/Pj . Moreover,
since Pj is maximal, R/Pj is a field and hence Artinian. It follows from
Corollary (3.1.14) that each Ij−1/Ij is Artinian, and we then conclude
from Proposition (3.1.12) that R is Artinian.

3.4 Noetherian Rings

3.4.1 Definition:

A ring R is called (left) Noetherian if it is Noetherian as a left module
over itself, i.e., ACC or maximal condition holds for left ideals or every
left ideal is finitely generated.

3.4.2 Examples:

Fields, division rings, finite rings, principal ideal rings, etc., are all
Noetherian. In particular, the ring of integers Z is Noetherian.

3.4.3 Proposition:

A quotient ring of a Noetherian ring is Noetherian (whereas a subring
need not be Noetherian).

Proof. If I is a 2-sided ideal of a Noetherian ring R, then R/I is Noethe-
rian as an R-module. But the family of all left ideals of R/I is precisely
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the family of all left ideals of R each containing I and hence it follows
that R/I is a Noetherian ring, as required.

3.4.4 Proposition:

A finitely generated module over a Noetherian ring is Noetherian.

Proof. If a module M is generated by n elements, then M is a quotient
of the cartesian product Rn which is Noetherian (since R is Noetherian)
and hence M is Noetherian, as required.

3.4.5 Theorem:

In a right or left Noetherian ring R, there exist only finitely many min-
imal prime ideals, and there is a finite product of minimal prime ideals
(repetitions allowed) that equals zero.

Note. The following proof does not require the full force of the right or
left Noetherian hypothesis, but only ACC on two-sided ideals.

Proof. It suffices to prove that there exist prime ideals P1, ..., Pn in R
such that P1P2...Pn = 0. To see this, note that after replacing each Pi
by a minimal prime ideal contained in it, we may assume that each Pi is
minimal. Since any minimal prime P contains P1P2...Pn, it must contain
some Pj , whence P = Pj by minimality. Thus the minimal prime ideals
of R are contained in the finite set {P1, ..., Pn}.

Suppose that no finite product of prime ideals in R is zero. Let K
be the set of those ideals K in R that do not contain a finite product
of prime ideals. Since K contain 0, it is nonempty. By the Noetherian
hypothesis (not Zorn’s Lemma!), there exists a maximal element K ∈ K.

As R/K is a counterexample to the theorem, we may replace R by
R/K. Thus we may assume, without loss of generality, that no finite
product of prime ideals in R is zero, while all nonzero ideals of R contain
finite products of prime ideals.

In particular, 0 cannot be a prime ideal. Hence, there exist nonzero
ideals I, J ∈ R such that IJ = 0. Then there exist prime ideals
P1, ..., Pm, Q1, ..., Qn in R with P1P2...Pm ⊆ I and Q1Q2...Qn ⊆ J .
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But then

P1P2...PmQ1Q2...Qn = 0,

contradicting our supposition.

Therefore some finite product of prime ideals in R is zero.

3.4.6 Corollary:

Let S be a subring of a ring R. If S is right Noetherian and R is finitely
generated as a right S-module, then R is right Noetherian.

Proof. By Corollary (3.1.23), R is Noetherian as a right S-module. Since
all right ideals of R are also right S-submodules, the ACC on right ideals
follows.

Using Corollary (3.4.6), we obtain some easy examples of noncom-
mutative Noetherian rings.

3.4.7 Proposition:

If R is a module-finite algebra over a commutative Noetherian ring S,
then R is a Noetherian ring.

Proof. The image of S in R is a Noetherian subring S′ of the center of
R such that R is a finitely generated (right or left) S′-module. Apply
Corollary (3.4.6).

For instance, let S = Z+Zi+Zj+Zk, a subring of the division ring
H. Since S is a finitely generated module over the Noetherian ring Z,
Proposition (3.4.7) shows that S is a Noetherian ring. For another exam-
ple, Proposition (3.4.7) shows that, for any positive integer n, the ring
of all n× n matrices over a commutative Noetherian ring is Noetherian.
This also holds for matrix rings, as follows.

3.4.8 Corollary:

Matrix rings over Noetherian rings with unity, (in particular, over divi-
sion rings), are Noetherian.

Proof. Let R be Noetherian and S = Mn(R) be a matrix ring over R.
It is clear that any left ideal of S is also an R-submodule of S. But S
is Noetherian as an R-module since it is finitely generated over R, (in
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fact, it is a free R-module with a basis having n2 elements). Hence S is
a Noetherian ring, as required.

3.4.9 Theorem (Hilbert Basis theorem):

[Theorem (1.9) of [41]]. Let S = R[x] be a polynomial ring in one
indeterminate. If the coefficient ring R is right (left) Noetherian, then
so is S.

Proof. The two cases are symmetric; let us assume that R is right
Noetherian and prove that any right ideal I of S is finitely generated.
We need only consider the case when I 6= 0.

Step 1. Let J be the set of leading coefficients of elements of I,
together with 0. More precisely,

J = {r ∈ R | rxd + rd−1x
d−1 + ...+ r0 ∈ I for some rd−1.....r0 ∈ R}.

Then check that J is a right ideal of R. (Note that if r, r′ ∈ J are leading
coefficients of elements s, s′ ∈ I with degrees d, d′, then, after replacing
s and s′ by sxd

′
and s′xd, we may assume that s and s′ have the same

degree.)

Step 2. Since R is right Noetherian, J is finitely generated. Let
r1.....rk be a finite list of generators for J ; we may assume that they are
all nonzero. Each ri occurs as the leading coefficient of a polynomial
pi ∈ I of some degree ni. Set n = max{n1, ..., nk} and replace each pi
by pix

n−ni . Thus, there is no loss of generality in assuming that all the
pi have the same degree n.

Step 3. Set

N = R+Rx+ ...+Rxn−1 = R+ xR+ ...+ xn−1R,

the set of elements of S with degree less than n. This is not an ideal of S,
but it is a left and right R-submodule. Viewed as a right R-module, N
is finitely generated, and so it is Noetherian by Corollary (3.1.23). Now
I ∩N is a right R-submodule of N , and consequently it must be finitely
generated. Let q1.....qt be a finite list of right R-module generators for
I ∩N .

Step 4. We claim that p1, ..., pk, q1, ..., qt generate I. Let I0 denote
the right ideal of S generated by these polynomials; then I0 ⊆ I and
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it remains to show that any polynomial p ∈ I actually lies in I0. This
is easy if p has degree less than n, since in that case p ∈ I ∩ N and
p = q1a1 + ...+ qtat for some aj ∈ R.

Step 5. Suppose that p ∈ I has degree m ≥ n and that I0 contains
all elements of I with degree less than m. Let r be the leading coefficient
of p. Then r ∈ J , and so r = r1a1 + ... + rkak for some ai ∈ R. Set
q = (p1a1 + ... + pkak)x

m−n, an element of I0 with degree less than m.
Now p − q is an element of I with degree less m. By the induction
hypothesis, p− q ∈ I0, and p ∈ I0.
Therefore I = I0 ad we are done.

It immediately follows that any polynomial ring R[x1, ..., xn] in a
finite number of indeterminates over a right(left) Noetherian ring R is
right (left) Noetherian, since we may view R[x1, ..., xn] as a polynomial
ring in the single indeterminate xn with coefficients from the ring
R[x1, · · ·, xn−1].

3.4.10 Corollary:

Let R be an algebra over a field k. If R is commutative and finitely
generated as a k-algebra, then R is Noetherian.

Proof. Let x1, ..., xn generate R as a k-algebra, and let

S = k[y1, ..., yn]

be a polynomial ring over k in n independent indeterminates. Since
R is commutative, there exists a k-algebra map φ : S → R such that
φ(yi) = xi for each i, and φ is surjective because the xi generate R.
Hence,

R ∼= S
ker(φ) .

By the Hilbert Basis Theorem, S is a Noetherian ring, and therefore R
is Noetherian.

3.4.11 Theorem:

Let V be a vector space over a division ring D and R = EndD(V ) be the
ring of D-linear endomorphism of V . Then the following are equivalent:

(1) R is Artinian.
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(2) V is finite dimensional over D.

(3) R is Noetherian.

Proof. (1) ⇔ (2): Let R be Artinian. Suppose V is not finite dimen-
sional over D. Pick up any countably infinite linearly independent subset
{v1, v2, ...vn, ..., ...} of V . For each i ∈ N, let Vi be the subspace spanned
by first i vectors v1, v2, ..., vi. We get an infinitely ascending chain of
subspaces of V , namely,

V1 ⊂ V2 ⊂ ... ⊂ Vn ⊂ ... ⊂ ...

This gives an infinitely descending chain of left ideals of R, namely,

I1 ⊃ I2 ⊃ ... ⊃ In ⊃ ... ⊃ ...

Where Ii = {f ∈ R | f(Vi) = 0, i ∈ N} contradicting (1). Hence V is fi-
nite dimensional. Conversely, if V is finite dimensional, then R ≈Mr(D)
where r = dimD(V ) and so R is Artinian by (3.3.5) above.

(2) ⇔ (3): If V is finite dimensional, then R = Mr(D) which is
Noetherian by (3.4.8) above. Conversely, suppose R is Noetherian and
assume, if possible, V is not finite dimensional. As before choose any
countably infinite linearly independent subset {w1, w2, ..., wn, ..., ...} of
V . For each i ∈ N, let Wi be the subspace spanned by omitting the first
i − 1 vectors. We get an infinitely descending chain of subspaces of V ,
namely,

W1 ⊃W2 ⊃ ... ⊃Wn ⊃ ... ⊃ ...

This gives an infinitely ascending chain of left ideals of R, namely,

J1 ⊂ J2 ⊂ ... ⊂ Jn ⊂ ... ⊂ ...

Where Ji = {f ∈ R | f(Wi) = 0, i ∈ N} contradicting (3). Hence V is
finite dimensional, as required.

3.4.12 Corollary:

The ring R = EndD(V ) is a module of finite length as an R-module if
and only if V is finite dimensional over D.

Proof. Immediate from (3.4.11) and (3.2.5) above.
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3.4.13 Remark:

If dimD(V ) = r, then R = EndD(V ) is a module of finite length as a
module over D as well as over itself. Its lengths are given by lRR = r
whereas lD(R) = r2. The second follows simply because dimD(R) =
dimD(Mr(D)) = r2. The first follows because R has a composition
series, namely, R = R0 ⊃ R1 ⊃ ... ⊃ Rr = (0) where Ri is the left ideal
consisting of all matrices whose first i columns are zero, 0 ≤ i ≤ r.

In the rest of this section, R stands for a commutative ring with 1,
integral domain or not.

3.4.14 Theorem (Cohen):

[Theorem (6.5.11) of [71]]. Let R be as above. Then R is Noetherian if
and only if every prime ideal of R is finitely generated.

Proof. The implication “⇒ ” is obvious since every ideal is finitely gen-
erated. The converse is the interesting part.

Suppose every prime ideal of R is finitely generated. Let F be the
family of all ideals of R which are not finitely generated. we want to
show that F = φ. Assume otherwise and apply Zorn’s lemma to F .
If T is a chain in F and T0 = ∪T∈T T , then T0 is clearly an ideal of
R and T0 cannot be finitely generated (otherwise, it would follow that
T0 = T ′ ∈ T ⊆ F implying that F contains a finitely generated ideal
T0 which cannot be). Thus T0 ∈ F is an upper bound for T and hence
F has a maximal element, say J . Since J is not finitely generated, J
cannot be a prime ideal. Hence there exists x, y ∈ R such that x /∈ J
and y /∈ J but xy ∈ J .

Now the ideal J + yR ⊃ J , J + yR 6= J and so J + yR is not a
member of F which means that J+yR is finitely generated, say J+yR =
(y1, y2, ..., yr). Each yi can be written as yi = ai + αiy for some ai ∈ J
and αi ∈ R, 1 ≤ i ≤ r. On the other hand, look at the ideal of R which
contains J and the element x, namely,

J : yR = {z ∈ R | zy ∈ J}

This again is not a member of F and so finitely generated, say J : yR =
(x1, x2, ..., xs). By definition, we have bj = xjy ∈ J , 1 ≤ j ≤ s. It is an
easy exercise to see now that J is finitely generated, in fact, we have



Chapter 3: Modules With Chain Conditions 71

J = (a1, a2, ..., ar; b1b2, ..., bs)

contradicting the fact that J is not finitely generated and so F = φ, as
required.

3.4.15 Theorem:

The ring R of Complex entire functions is neither Artinian nor Noethe-
rian.

Proof. R is not Artinian because it is a commutative integral domain
which is not a field. That R is not Noetherian follows because it is not
even a factorization domain. However, we shall now give a direct argu-
ment (from first principles) as follows.

Consider the discrete subset N of C which is without limit points.
For each r ∈ N, let Ir be the set of all entire functions vanishing at the
integral points m ∈ N, for all m ≥ r, i.e.,

Ir = {f ∈ R | f(r) = f(r + 1) = ... = 0}

Thus we get an ascending chain of ideals of R, namely

I1 ⊂ I2 ⊂ ... ⊂ In ⊂ ... ⊂ ...

This chain is infinitely strictly ascending because of the following well
known theorem.

Theorem (Weierstrass): For each positive integer r, there exists a
Complex entire function f(z) such that f(r) 6= 0 but f(r+1) = f(r+2) =
... = 0, i.e., f(z) ∈ Ir+1 but f(z) /∈ Ir.

This is a very special case (for D = N) of a much stronger theorem of
Weierstrass which gives the existence of Complex entire functions with
prescribed zeros (each of specified order) at any discrete set D without
limit points.

3.4.16 Theorem:

In a commutative Noetherian ring, every ideal contains a product of
prime ideals.
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Proof. Let F be the set of all ideals I in R such that I does not contain
any product of prime ideals. If F 6= φ, it has a maximal element, say A.
This A cannot be prime ideal itself and hence there exist x, y ∈ R such
that xy ∈ A with x, y /∈ A. Now let I = A+Rx and J = A+Ry so that
A ⊆ I∩J and A 6= I and A 6= J . Hence by maximality of A in F , we get
that I, J /∈ F ,i.e., both I and J contain some products of prime ideals.
But then it follows that IJ contains a product of prime ideals and so does
A because xy ∈ A and so we have IJ = (A+Rx)(A+Ry) ⊆ A+Rxy = A.
This contradiction proves that F = φ, as required.

3.4.17 Corollary:

In a commutative Noetherian ring the ideal (0) is a product of prime
ideals, say

(0) = P ε11 .P ε22 ...P εnn (3.3)

with Pi distinct prime ideals and εi ∈ N. Consequently, the set of min-
imal prime ideals of R is finite (it being the set of minimal elements in
{P1, ..., Pn}). This follows at once since any prime ideal contains the
product in 3.3 and hence contain one of the P ′is.

3.5 Radicals

3.5.1 Radical ideal:

A two-sided ideal I in a ring R with 1 is called a radical ideal with respect
to a specified property P if

(1) the ideal I posses the property P and

(2) the ideal I is maximal for the property P, i.e., if J is a 2-sided
ideal of R having the property P, then J ⊆ I.

There are several kinds of radicals defined and studied in a ring in
various contexts. Notable among them are two radicals called nil radical
and the Jacobson radical. There are other like the Amitsur radical, the
Brown-McCoy radical, the Levitzki radical, etc. We shall introduce the
first two of these radicals and prove some basic properties thereof.

3.5.2 Nil Radical

Definition. The nil radical of a ring R is defined to be the radical ideal
with respect to the property that “A 2-sided ideal is nil” and is denoted
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by N(R), i.e., N(R) is the largest 2-sided ideal of R such that every
element of N(R) is nilpotent.

3.5.3 Examples:

(1) If R has no non-trivial nilpotent elements, in particular, R an in-
tegral domain, then N(R) = (0).

(2) If R is commutative, then the set N(R) of all nilpotent elements of
R which is an ideal, is the nil radical of R. (If R has 1, then N(R)
is the intersection of all prime ideals of R.)

(3) If R is a nil ring, i.e., every element of R is nilpotent, then N(R) =
R. For instance, R = 2Z/4Z or R = strictly upper triangular
matrices over any ring.

(4) N(Mr(D)) = (0) for any division ring D because R = Mr(D) is
not a nil ring and it has no 2-sided ideals other than (0) and R.
(Note that R has nilpotent elements if r ≤ 2 but they do not form
an ideal.)

3.5.4 Theorem:

For any ring R, the nil radical N(R) exists and it is characterized by
N(R) = {a ∈ R | the principal 2-sided ideal (a) is a nil ideal}.

Proof. We have to first prove that N = N(R) as above is a 2-sided ideal
and secondly that it is the largest for that property.

(1) Since 0 ∈ N , N 6= φ. If a ∈ N and x ∈ R, then (xa) and (ax) and
so both (xa) and (ax) are nil ideals hence ax,xa ∈ N . Thus we
have only to prove the following.

(2) N is an additive subgroup of R.
To see this, for a, b ∈ N , we have to show that (a− b) is a nil ideal.
Since (a− b) ⊆ (a) + (b), every element x ∈ (a− b) can be written
as x = y+ z for some y ∈ (a) and z ∈ (b). Since (a) and (b) are nil
ideals, both y and z are nilpotent, say yn = 0 and zn = 0 for some
n � 0. Now look at xn = (y + z)n = yn + z′ = 0 + z′ where z′ is
a sum of monomials in y and z in each of which z is a factor, i.e.,
z′ ∈ (z) ⊆ (b) and so z′ is nilpotent and hence x is nilpotent, i.e.,
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(a− b) is a nil ideal, as required.

Finally, let I be any 2-sided nil ideal of R. Then trivially, (a) ⊆ I,
for all a ∈ I and hence (a) is a nil ideal, i.e., I ⊆ N , as required.

3.5.5 Corollary:

We have N(R/N(R)) = (0) for any ring R.

Proof. Let a = a+N ∈ N(R/N) where N = N(R) and a ∈ R. Then the
2-sided principal ideal a is a nil ideal in R/N , i.e., the 2-sided ideal (a)
in R is nil modulo N . Hence it follows that (a) is a nil ideal in R (since
N is a nil ideal), i.e., a ∈ N and so a = o, i.e., a ∈ N , as required.

3.5.6 Jacobson Radical

Definition. The Jacobson radical of ring R with 1 is defined as the
radical ideal of R with respect to the property that “A 2-sided ideal I is
such that 1− a is a unit in R for all a ∈ I” and it is denoted by J(R).
In other words, J(R) is the largest 2-sided ideal of R such that 1− a is
a unit for all a ∈ J(R).

3.5.7 Examples:

(1) J(Z) = (0).

(2) J(Mr(D)) = (0), for all r ∈ N and D a division ring (since Mr(D)
has no 2-sided ideals other than (0) andMr(D and the latter cannot
be a candidate).

(3) If R is a commutative local ring with its unique maximal ideal M ,
then obviously J(R) = M .

To prove the existence of the Jacobson radical, first we define the so
called left and right Jacobson radicals, Jl(R) and Jr(R) and show them
to be equal. Secondly, we show that Jl(R) = Jr(R) = J(R) is the one
we are looking for.
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3.5.8 Examples:

For any ring R with 1, the intersection of all maximal left ideals of R
is called the left Jacobson radical or simply the left radical of R and is
denoted by Jl(R).

In case R is commutative, Jl(R) is the intersection of all maximal
ideals of R.

3.5.9 Examples:

(1) The left radical of a division ring is (0). More generally, the left
radical of Mn(D) is (0) for all n ∈ N where D is a division ring.

(2) The (left) radical of Z is (0).

(3) The (left) radical of a local ring is its unique maximal ideal.

(4) The (left) radical of Z/nZ is mZ/nZ where m is the product
of all distinct prime divisors of n. For instance, Jl(Z/36Z) =
(6Z/36Z), Jl(Z/64Z) = (2Z/64Z) and Jl(Z/180Z) = (30Z/180Z).

3.5.10 Primitive ideals:

An ideal P in a ring is right (left) primitive provided P = annR(A) for
some simple right (left) R-module A. A right (left) primitive ring is any
ring in which 0 is a right (left) primitive ideal, i.e., any ring which has a
faithful simple right (left) module.

3.5.11 Theorem (Noether):

For any ring R, the following conditions are equivalent:

(a) All right R-modules are semisimple.

(b) All left R-modules are semisimple.

(c) RR is semisimple.

(d) RR is semisimple.

(e) Either R is zero ring or R ∼= Mn1(D1) × ... × Mnk(Dk) for some
positive integers ni and some division rings Di.

Proof. See Theorem (4.4) of [41]
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3.5.12 Semi-simple ring:

A ring satisfying the conditions of Theorem (3.5.11) is called a semi-
simple ring.

3.5.13 Local ring:

In ring theory, local rings are certain rings that are comparatively simple,
and serve to describe what is called “local behaviour”, in the sense of
functions defined on varieties or manifolds, or of algebraic number fields
examined at a particular place, or prime. Local algebra is the branch of
commutative algebra that studies local rings and their modules.

In practice, a commutative local ring often arises as the result of the
localization of a ring at a prime ideal.

For instance, all fields (and skew fields) are local rings, since 0 is the
only maximal ideal in these rings.

3.5.14 Theorem:

For any ring R, its left radical Jl(R) is the intersection of the annihilators
of all simple left modules over R. In particular, Jl(R) is a 2-sided ideal
of R.

Proof. (1). If m is a maximal left ideal of R, then m is the annihilator of
the non-zero element 1 = 1 +m in the simple R-module S = R/m.

(2). If S is a left simple R-module and x ∈ S is a non-zero element, then
S = Rx and the natural map fx : R→ S, defined by fx(a) = ax is
an epimorphism whose kernel is the annihilator of the element x.
Thus we have

R
Ker(fx)

≈ Rx = S

which is simple and hence Mx = Ker(fx) is a maximal left ideal
of R. This shows that the annihilator of any non-zero element of
a simple module is a maximal left ideal of R. In other words, the
family of all maximal left ideals of R is the same as that of the
annihilators of non-zero elements of all simple left modules over R.
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(3). The annihilator of any left module M is a 2-sided ideal of R and it
is the intersection of the annihilators of all elements of M .

(4). If M is the set of all maximal left ideals of R and L is the family
of all simple left modules over R, then we have Jl(R) = ∩M∈MM
which in turn can be written as

Jl(R) = ∩S∈L(∩x∈SMx) = ∩S∈LAnnR(S)

(where Mx is the annihilator of the element x ∈ S) and so Jl(R) is
the intersection of the family {AnnR(S) | S ∈ L} of 2-sided ideals
and hence 2-sided, as required.

3.5.15 Proposition:

Given a ring R with its left radical Jl(R), the left radical of the quotient
R/Jl(R) is zero, i.e., Jl(R/Jl(R)) = (0).

Proof. Let η : R → R/Jl(R) be the natural homomorphism. Then the
assignment M 7→ η(M) is a bijection between the setMR of all maximal
left ideals of R and that of R/Jl(R) since each M ∈MR contains Jl(R).
Hence it follows that

Jl(R/Jl(R)) = ∩M∈MRη(M).

But then we have

∩M∈MRη(M) = η(∩M∈MRM) = η(Jl(R)) = (0).

3.5.16 Theorem:

Jl(R) = {x ∈ R | 1− yx is a unit, for all y ∈ R}.

Proof. (⇒:) Let x ∈ Jl(R). For any y ∈ R, if 1− yx has no left inverse
in R, we can find a maximal left ideal M containing 1 − yx. But then
1 = (1−yx) +yx would be in M since M is a left ideal containing x and
1 − yx which is a contradiction. Let z ∈ R be such that z(1 − yx) = 1.
If this z has no left inverse, we can find another maximal left ideal M ′

containing z. But then M ′ contains z as well as x and hence it contains
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1 = z(1 − yx) = z − zyx which is again a contradiction. Thus z is in-
vertible whose inverse is 1− yx, i.e., 1− yx is a unit, as required.

(⇐:) Let x ∈ R be such that 1 − yx is a unit for all y ∈ R. If
X /∈ Jl(R), then x /∈ M for some M ∈ M. But then we get that
M + Rx = R and so we can write that z = 1− ax for some z ∈ M and
a ∈ R which means that z = 1−ax is invertible and is an element of the
maximal left ideal M , a contradiction. Hence x ∈ Jl(R).

3.5.17 Theorem:

Jl(R) is the largest left ideal of R such that 1 − a is a unit for every
a ∈ Jl(R).

Proof. By the theorem above, it is obvious that 1 − x is a unit for all
x ∈ JL(R). Let now I be a left ideal of R such that 1 − a is a unit for
every a ∈ I. Let x ∈ I and y ∈ R then yx ∈ I since I is a left ideal of
R. But then by assumption 1 − yx is a unit (no matter what y is) and
so x ∈ Jl(R), i.e., I ⊆ Jl(R), as required.

3.5.18 Right Jacobson radical:

For any ring R with 1, the intersection of all maximal right ideals of R
is called the right Jacobson radical or simply the right radical of R and
is denoted by Jr(R).

3.5.19 Remarks:

Proceeding as above, we can prove that Jr(R) has the following proper-
ties.

(1) Jr(R) is a 2-sided ideal of R.

(2) Jr(R) = {x ∈ R | 1− xy a unit, for all y ∈ R}

(3) Jr(R) is the largest right ideal of R such that 1− b is a unit for all
b ∈ Jr(R).

3.5.20 Theorem:

For any ring R, the left and right Jacobson radicals coincide ant the
2-sided ideal J(R) = Jl(R) = Jr(R) is the Jacobson radical of R. In
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particular, the Jacobson radical of a local ring is its (unique) maximal
ideal.

Proof. We have Jr(R) ⊆ Jl(R) since Jr(R) (being 2-sided) is also a left
ideal such that 1−a is a unit for all a ∈ Jr(R). Similarly, Jl(R) ⊆ Jr(R),
as required.

3.5.21 Theorem:

For any ring R, N(R) ⊆ J(R) and equality need not hold.

Proof. Let a ∈ N(R). Since N(R) is a nil ideal, a is nilpotent, say an = 0
for some n ∈ N. Now we have

1 = 1− an = (1− a)(1 + a+ a2 + ...+ an−1)

implying that 1− a is a unit in R and so a ∈ J(R), as required.

3.5.22 Note:

For the local ring Qp = {a/b ∈ Q, (p, b) = 1} where p is a fixed prime
number, we have N(Qp) = (0) whereas J(Qp) = (p) 6= (0).

3.5.23 Lemma (Nakayama):

[Lemma (6.6j.13) of [71]]. If M is a finitely generated module over a ring
R such that J(R)M = M , then M = (0). (Recall [71] (2.5.3)that for any
subset A of R, the set AM stands for the submodule of M generated by
elements of the form ax for all a ∈ A and x ∈M).

Proof. Suppose M is generated by X = {x1, x2, ..., xr}, a finite subset of
M . We may assume that X is a minimal set of generators in the sense
that no proper subset of X generates M . Since J = J(R) is a right ideal
of R, we find that JM is the submodule of M generated by

{axi | for all a ∈ J , 1 ≤ i ≤ r}.

Since xi ∈M = JM and J is a left ideal, we can write

x1 = Σr
i=1aixi

for some ai ∈ J , 1 ≤ i ≤ r. This gives

(1− a1)x1 = Σr
i=2aixi.
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Since a1 ∈ J , (1 − a1) is a unit in R and so by multiplying on the left
with b1 = (1 − a1)−1, we get x1 = Σr

i=2b1aixi which means that x1 is
an R-linear combination of the x′1s, 2 ≤ i ≤ r , i.e., the proper subset
X ′ = {xi, 2 ≤ i ≤ r} of X generates M , a contradiction and so X = φ,
i.e., M = (0).

3.5.24 Remark:

The assumption thatM is finitely generated is necessary in the Nakayama
lemma. For instance, we have

J(Qp)Q = (p)Q = Q but Q 6= (0)

because Q is not finitely generated over Qp. (see [71] (5.9.7)).

3.6 Radical of an Artinian Ring

3.6.1 Proposition:

The Jacobson radical of an Artinian ring is the intersection of some
finitely many maximal left (resp. right) ideals.

Proof. Let R be an Artinian ring. Let M be the set of all maximal left
ideals of R. Let F be the family of all left ideals of R each of which is
an intersection of finitely many maximal left ideals of R. Obviously this
family is non-empty sinceM⊆ F . Since R is Artinian, F has a minimal
member, say

J0 =
⋂n
i=1Mi, Mi ∈M.

We have J ⊆ J0 where J = J(R). On the other hand, if M ∈ M, then
J0 ∩M being a member of F must be equal to J0 by the minimality of
J0 which means that J0 ⊆M , for all M ∈M. Thus we get that

J ⊆ J0 ⊆
⋂
M∈MM = J

and hence J = J0, as required.

3.6.2 Theorem (Weddeburn, Artin):

[Theorem (4.13) of [41]]. For a ring R, the following conditions are
equivalent:

(a) R is right Artinian and J(R) = 0.
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(b) R is left Artinian and J(R) = 0.

(c) R is semisimple.

Proof. (a)⇒ (c): Let B be the set of those right ideals I of R such that
R/I is a semisimple module and note that B is nonempty (e.g., R ∈ B).
Since R is right Artinian, we may choose a right ideal K minimal in B.
If K 6= 0, then, since J(R) = 0, there is a maximal right ideal M in R
such that K �M . Since M is maximal, K +M = R, and hence

R
K∩M

∼= R
K ⊕

R
M

But then R/(K ∩M) is semiprime, and since (K ∩M) < K, this con-
tradicts the minimality of K. Therefore K = 0, and so RR is semisimple.

(c)⇒ (a): Write RR = S1 ⊕ ...⊕ Sn, where each Si is a simple right
R-module. (The direct sum must be finite because RR is finitely gener-
ated.) Corollary (4.6) of [41] shows that R is right Artinian (since each
Si is clearly Artinian). Each of the annihilators r.AnnR(Si) is a right
primitive ideal of R and so contains J(R). Thus SiJ(R) = 0 for each i,
and consequently J(R) = 0.

(b)⇔ (c) : By symmetry.

3.6.3 Definition:

The socle series of a module A is the ascending chain

soc0(A) ≤ soc1(A) ≤ soc2(A) ≤ ...

of submodules of A defined inductively by setting soc0(A) = 0 and

socn+1(A)/socn(A) = soc(A/socn(A))

for all nonnegative integers n.

For example, if A = Z/pkZ for some prime integer p and some positive
integer k, then

socn(A) = pk−nZ/pkZ

for n = 0, 1, ..., k and socn(A) = A for all n ≥ k.



82 Algebra and its Applications

3.6.4 Theorem (Hopkins, Levitzk):

[Theorem (4.15) of [41]]. If R is a right Artinian ring, then R is also
right Noetherian, and J(R) is nilpotent.

Proof. Set J = J(R). Since the powers of J form a descending chain
of ideals, there must exist a positive integer n such that Jn+1 = Jn. In
view of Proposition (4.14) [41], it follows that socn+1(RR) = socn(RR).
Hence, if I = socn(RR), then soc((R/I)R) = 0.

If I 6= R, then R/I has a minimal nonzero right submodule M . But
then M is a simple right submodule of R/I, contradicting the fact that
soc((R/I)R) = 0. Thus I = R. Hence, by Proposition (4.14) of [41],
I.AnnR(Jn) = socn(RR) = R, and so Jn = 0. Therefore J is nilpotent.

Set Ai = soci(RR) for i = 0, 1, ..., n. These Ai form a chain

A0 = 0 ≤ A1 ≤ ... ≤ An = R

of right ideals of R. Each of the factors Ai/Ai−1 is a semisimple right
R-module and so is a direct sum of simple modules, by Proposition (4.1)
[41].

Suppose that one of the factors Ai/Ai−1 is a direct sum of an infi-
nite family B of simple modules. Choose distinct B1, B2, ... in B and for
k = 1, 2, ... let Ck = ⊕∞j=kBj . Then C1 > C2 > ... is strictly descending
chain of submodules of Ai/Ai−1, whence Ai/Ai−1 is not Artinian. As
RR is Artinian, this is impossible.

Thus Ai/Ai−1 is a finite direct sum of simple right R-modules. As
simple modules are Noetherian. Corollary (3.1.22) shows that Ai/Ai−1
is Noetherian. Using Proposition (3.1.21), we consider that each Ai is
Noetherian. Therefore, since RR = An, the ring R is right Noetherian.

3.6.5 Corollary:

For a right or left Artinian ring, the Jacobson radical equals the prime
radical.

Proof. Since every primitive ideal is prime, the intersection of the prim-
itive ideals contains the intersection of the prime ideals, so that the
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Jacobson radical contains the prime radical in any ring. Conversely,
Theorem (3.6.4) shows that the Jacobson radical of a right or let Ar-
tinian ring is nilpotent, and it is thus contained in the prime radical by
Corollary (3.9) [41].

3.6.6 Theorem:

The Jacobson radical of an Artinian ring R is nilpotent. In fact, J(R) is
the largest nilpotent (left or right or 2-sided) ideal of R and consequently,
N(R) = J(R).

Proof. Sice R is Artinian, the descending chain of ideals

J ⊇ J2 ⊇ ... ⊇ Jn ⊇ ... ⊇

is stationary where J = J(R). Say, Jm = Jm+1 = ... = for some m� 0.
Write I = Jm. Now we have I = I2 and JI = I. (If we know that
I is finitely generated then Nakayama lemma would have implied that
I = (0) which is what we are looking for. But there seems no way to
ensure this crucial fact.) The following is an elementary but a subtle
argument to achieve the goal.

Assume, if possible, that I 6= (0). Consider the family F of all left
ideals K of R such that IK 6= (0). Since I2 = I 6= (0), I ∈ F and
so F 6= φ. Note that (0) 6= F . Since R is Artinian, F has a minimal
member, say K, i.e., K is a left ideal of R such that IK 6= (0) and K is
minimal for this property. On the other hand, since IK 6= (0), we can
find a ∈ I and b ∈ K such that ab 6= 0 which implies that I(Rb) 6= (0),
i.e., Rb ∈ F . But Rb ⊆ K and so Rb = K by minimality of K. Thus K
is a principal left ideal of R.

Finally, we have (IJ).Rb = I · Rb = Ib 6= (0) and J.Rb = J.b ⊆ Rb
and J.Rb 6= (0) which give,(again by minimality of K = Rb in F),
that J.Rb = Rb. Now Nakayama lemma gives that K = Rb = (0), a
contradiction to the assumption that I 6= (0). Hence I = Jn = (0).

3.6.7 Corollary:

In an Artinian ring, every nil ideal is nilpotent (since such an ideal is
contained in the radical which is nilpotent).
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3.6.8 Theorem:

There are only finitely many maximal ideals in a commutative Artinain
ring, i.e., it is a semi-local ring.

Proof. Let R be Artinian. We know by Proposition (3.6.1) above, that
J = J(R) is an intersection of finitely many maximal ideals, say

J =

n⋂
i=1

Mi ⊇M1.M2...Mn.

Claim: The only maximal ideals of R are the M ′is, 1 ≤ i ≤ n.
For, since J is nilpotent, we have Jr = (0) for some r ∈ N and

(0) = Jr ⊇ (M1.M2...Mn)r = M r
1 .M

r
2 ...M

r
n.

If M is any maximal ideal of R, then M ⊇ (0) = M r
1 .M

r
2 ...M

r
n and hence

M ⊇ M r
i , for some i (1 ≤ i ≤ n). But then M ⊇ Mi (because M is

a prime ideal). Now both being maximal, it follows that M = Mi, as
required.

3.6.9 Remark:

We have seen examples of Artinian modules which are not Noetherian
and vice-versa and some which are neither. On the other hand, there
are Noetherian rings which are not Artinian and some which are neither.
However, it is a remarkable fact that

“EVERY ARTINIAN RING IS NOETHERIAN”.

We shall first prove this in the commutative case and offer a comment
about the other case. We begin with the following easy but crucial step.

3.6.10 Theorem:

Let R be a commutative local ring whose maximal ideal is nilpotent.
Then R is Artinian if and only if it is Noetherian.

Proof. Let M be the maximal ideal of R with M r = (0). Let K = R/M
be the residue field of R. It is obvious that R is Artinian (resp. Noethe-
rian) if and only if M is so. Now M is Artinian (resp. Noetherian) if
and only if both M/M2 and M2 are so, etc. Secondly, since M annihi-
lates M i/M i+1, it is a vector space over the field K and the R-module
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structure is the same as the vector space structure. But then we know
that M i/M i+1 is Artinian (resp. Noetherian) if and only if M i/M i+1 is
finite dimensional over K.

Suppose R is Artinian (resp. Noetherian). Then M i/M i+1 is Ar-
tinian (resp. Noetherian) and hence finite dimensional over K, for all
i = 0, 1, ..., r − 1. Consequently, each is Noetherian (resp. Artinian).
Now M r−1 = M r−1/M r and M r−2/M r−1 are both Noetherian (resp.
Artinian) implies that M r−2 is Noetherian (resp. Artinian), etc. pro-
ceeding thus we get that M is Noetherian (resp. Artinian).

3.6.11 Example:

A commutative local ring R whose maximal ideal is nilpotent but R is
not Artinian (hence not Noetherian):-
Let K be a field and R = K[Xi, i ∈ N]/M2 where M is the ideal
generated by Xi, i ∈ N, The maximal ideal of R is of square 0 and is
infinite dimensional over its residue field K.

3.6.12 Theorem:

A commutative Artinian ring is Noetherian and conversely a commuta-
tive Noetherian ring in which every prime ideal is maximal is Artinian.

Proof. Let R be a commutative Artinian ring. By (3.6.8) above, R is
semi-local with its maximal ideals, (say) M1...Mn and

(0) = Jr = M r
1 ...M

r
n.

Since the maximal ideals Mi are pairwise co-prime, their powers M r
i are

also pairwise co-prime, by (see [71] Exercise (2.9.25)). Consequently, by
the Chinese Remainder Theorem, (see [71] Exercise (3.6.6)), we get that

R ' R/M r
1 × ...×R/M r

n.

Since each R/M r
i is Artinian local ring whose maximal ideal, i.e., Mi/M

r
i

is nilpotent, it follows that it is Noetherian (by (3.6.10) above). Thus R
is finite direct product of Noetherian rings, as required.

Conversely, suppose R is Noetherian in which every prime ideal is
maximal. Then each maximal ideal is also a minimal prime ideal and so
it is semi-local (by [71] (6.5.15)). Furthermore, we have



86 Algebra and its Applications

(0) = M ε1
1 ...M

εr
r

for some maximal ideals Mi and εi ∈ N, etc. but then it follows that

R ' R/M ε1
1 × ...×R/M εr

n

from where the argument is identical with the above.

3.6.13 Remark:

The idea of the proof in the non-commutative Artinian case is just the
same as above except for a little formalism required from the semi-simple
rings (see [71] Exercise (5.10.21)), to prove the crucial facts that both J
and R/J are Noetherian (using of course that J is nilpotent).
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3.7 Exercises

(1) Let P and Q be submodules of a module M such that both M/P
and M/Q are Artinian (resp. Noetherian). Show that M/(P ∩Q)
and M/(P +Q) are Artinian (resp. Noetherian).

(2) Let M be a Noetherian R-module with its annihilator ideal I =
rR(M). Show that R/I is a Noetherian ring.

(3) Show that for a Boolean ring R, the following are equivalent.

• R is Artinian.

• R is Noetherian.

• R is a finite Cartesian power of the field of 2 elements.

(4) Let R be a commutative Noetherian local ring with its maximal
ideal M . Show that I = ∩∞i=1M

i = (0).

(5) Show that for any simple R-module S, (R commutative or not),
JS = (0).

(6) Let N be a submodule of a finitely generated R-module M such
that M = N + JM . Then show that N = M .

(7) Show that the ring of real valued continuous functions on the closed
interval [0, 1] is neither Artinian nor Noetherian.

(8) Suppose that all the coefficients of an element f(X) ∈ R[[X]] are
nilpotent where R is a commutative Noetherian ring. Then show
that f(X) is nilpotent.

(9) Show that if a ring R is Noetherian then every homomorphism of
R onto itself is 1− 1.

(10) Prove that every Artinian ring possesses a finite number of proper
prime ideals.

(11) Show that R is Noetherian if and only if R[[X]] is.

(12) Show that the following are equivalent for a semi-simple module
M .

• M is finitely generated.

• M is Artinian.

Chapter 3: Modules With Chain Conditions
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• M is Noetherian.

• M is of finite length.

(13) Let I be a non-zero ideal of Principal Ideal Domain R. Prove that
R/I is both Artinian and Noetherian.

(14) Prove that the intersection of all prime ideals in a Noetherian ring
is nilpotent.

(15) Let R be a Noetherian ring. Show that the ring of n× n matrices
Rn over R is also Noetherian.

(16) Let R be a left Artinian integral domain with more than one ele-
ment. Show that R is a division ring.

(17) Show that a left Artinian ring cannot possess an infinite direct sum
⊕ΣAi of left ideals Ai of R.



Chapter

4

SKEW POLYNOMIAL RINGS

Skew polynomial rings in several variables with coefficients in a field
K were introduced by Noether and Schmeidler (1920); one of the cases
they were particularly interested in was K[xi, ..., xn;σ1, ..., σn], where
K consists of (C∞) functions in variables y1, ..., yn and each σi is the
automorphism of K sending yi to yi + 1 and fixing the other yj . It is
desired, however, that each polynomial should be expressible uniquely in
the form Σxiai for some ai ∈ R. This applies of course, to the elements
ax, for any a ∈ R; but, in order that degrees behave appropriately, (i.e.
deg(f(x)g(x)) ≤ degf(x) + degg(x), it is required that ax ∈ xR + R,
ax = xσ(a) + δ(a) say. Under these conditions it is apparent that σ, δ
are endomorphisms of the underlying additive group R+ of R. Moreover,

(ab)x = xσ(ab) + δ(ab)

and

a(bx) = xσ(a)σ(b) + δ(a)σ(b) + aδ(b).

Thus σ is a ring endomorphism of R and δ satisfies

δ(ab) = δ(a)σ(b) + aδ(b)

which is the defining property of a σ-derivation. Note in particular that
σ(1) = 1 and δ(1) = 0. We continue the study of skew polynomial
rings, by first discussing the case where the multiplication is twisted by
a derivation, and then developing a general case. Since our main mo-
tivation for looking at skew polynomial rings is to be able to construct
and work with further important examples of Noetherian rings.

We consider skew polynomial rings which have twists coming from au-
tomorphisms and derivations acting together. Also for efficiency’s sake,
it is good to develop a context in which the two different types of skew
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polynomial rings can be treated simultaneously.

Later, Ore produced a systematic investigation of skew polynomial
rings in one variable over a division ring (1933); he in particular observer
that, in the relation xr = σ(r)x + δ(r), the map σ must be a ring
endomorphism and the map δ must be an σ-derivation.

4.1 Endomorphisms and Derivations

A ring R always means an associative ring with identity. Q denotes the
field of rational numbers. Spec(R) denotes the set of prime ideals of R.
MinSpec(R) denotes the set of minimal prime ideals of R. P (R) and
N(R) denote the prime radical and the set of nilpotent elements of R
respectively. Let R be a ring and σ an automorphism of R. Let I be an
ideal of R such that σm(I) = I for some m ∈ N. We denote ∩mi=1σ

i(I) by
I0. For any two ideals I, J of R, I ⊂ J means that I is strictly contained
in J .

4.1.1 Derivation:

Let R be a ring, a map δ : R→ R is called a δ-derivation if for every a,
b ∈ R

(1) δ(a+ b) = δ(a) + δ(b)

(2) δ(a.b) = δ(a).b+ a.δ(b).

4.1.2 Example:

Let R = F [x], where F is a field.

Define δ : R→ R by
δ(f(x)) = d

dx(f(x))

Therefore, δ(f(x) + g(x)) = d
dx(f(x) + g(x))

= d
dxf(x) + d

dxg(x)
= δ(f(x)) + δ(g(x))

Similarly, δ(f(x).g(x)) = d
dx(f(x).g(x))

= d
dxf(x).g(x) + f(x). ddxg(x)

= δ(f(x)).g(x) + f(x) · δ(g(x))
Therefore, δ is a derivative.



Chapter 4: Skew Polynomial Rings 91

4.1.3 Derivation (endomorphism type):

Let R be a ring and σ an endomorphism of R, a mapping δ : R → R is
called a σ-derivation if
δ(a.b) = δ(a).σ(b) + a.δ(b).

4.1.4 Example:

Let R ba a ring and δ : R → R any map. Let φ : R → R be a map
defined by

φ(r) =

(
σ(r) 0
δ(r) r

)
Then δ is a σ-derivation of R if and only if φ is a homomorphism.
For any a, b ∈ R,
φ(a+ b) = φ(a) + φ(b)

implies

(
σ(a+ b) 0
δ(a+ b) a+ b

)
=

(
σ(a) 0
δ(a) a

)
+

(
σ(b) 0
δ(b) b

)
=

(
σ(a) + σ(b) 0
δ(a) + δ(b) a+ b

)
=

(
σ(a+ b) 0
δ(a) + δ(b) a+ b

)
because, σ is an endomorphism .

Comparing both sides, we get
δ(a+ b) = δ(a) + δ(b)
Also, φ(a.b) = φ(a).φ(b)

Implies

(
σ(ab) 0
δ(ab) ab

)
=

(
σ(a) 0
δ(a) a

)(
σ(b) 0
δ(b) b

)
=

(
σ(a)σ(b) + 0δ(b) σ(a)0 + 0b
δ(a)σ(b) + aδ(b) ab

)
=

(
σ(a)σ(b) 0

δ(a)σ(b) + aδ(b) ab

)

=

(
σ(ab) 0

δ(a)σ(b) + aδ(b) ab

)
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Comparing both sides, we have
δ(ab) = δ(a)σ(b) + aδ(b)
Therefore, δ is a σ-derivation.

4.1.5 2-Primal Rings:

A ring R is 2-primal if and only if set of nilpotent elements and prime
radical of R are same if and only if the prime radical is a completely
semi prime ideal.

4.1.6 Example:

(1) Let R = F [x] be the polynomial ring over the field F . Then R is
2-primal with P (R) = {0}.

(2) Let R = M2(Q), the set of 2 × 2 matrices over Q. Then R[x] is
a prime ring with non-zero nilpotent elements and, so can not be
2-primal.

4.1.7 δ-Ring:

Let R be a ring. Let σ be an automorphism of R and δ be a σ-derivation
of R. Then R is a δ-ring if aδ(a) ∈ P (R) implies a ∈ P (R).

4.1.8 σ-Rigid:

A ringR is σ-rigid if there exists an endomorphism ofR with the property
that aσ(a) = 0 implies a = 0 for a ∈ R.

4.1.9 Example:

(1) Let R = C and σ : C→ C be the map defined by

σ(a+ ib) = a− ib; a, b ∈ R.

Then σ is rigid endomorphism.

(2) Let R =

(
F F
0 F

)
where F is a field.

Then P (R) =

(
0 F
0 0

)
Let σ : R→ R defined by σ(

(
a b
0 c

)
) =

(
a 0
0 c

)
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Then σ is an endomorphism.
Let 0 6= a ∈ F . Then(

0 a
0 0

)
σ(

(
0 a
0 0

)
) =

(
0 0
0 0

)
but

(
0 a
0 0

)
6=
(

0 0
0 0

)
Thus, R is not σ-rigid.

4.1.10 σ(∗)-Ring:

Kwak defines a σ(∗)-ring to be a ring if aσ(a) ∈ P (R) implies a ∈ P (R)
for a ∈ R.

4.1.11 Examples:

(1) Let R = C and σ : C→ C be the map defined by
σ(a+ ib) = a− ib; a, b ∈ R. Then R is σ(∗)-ring.

(2) Let R = F [x] be the polynomial ring over the field F . Let σ : R→
R be an endomorphism defined by σ(f(x)) = f(0).
Then R is not a σ(∗)-ring.

4.1.12 Remark:

Every σ(∗)-ring is a 2-primal ring but converse need not be true.

4.1.13 Proposition:

Let R be a ring and σ an automorphism of R. Then R is a σ(∗)-ring
implies R is 2-primal.

Proof. Let a ∈ R be such that a2 ∈ P (R). Then
aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a)
∈ σ(P (R)) = P (R).
Therefore aσ(a) ∈ P (R) and hence a ∈ P (R).

4.1.14 Example:

Let R = F [x] be the polynomial ring over the field F . Then R is 2-primal
with P (R) = {0}.
Let σ : R→ R be an endomorphism defined by σ(f(x)) = f(0).
Then R is not a σ(∗)-ring.
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4.1.15 Definition (Ouyang [76]):

Let R be a ring and σ an endomorphism of R such that aσ(a) ∈ N(R)
if and only if a ∈ N(R) for a ∈ R. Then R is called a weak σ-rigid ring.

4.1.16 Example:

[Example (2.1) of Ouyang [76]]. Let σ be an endomorphism of a ring R
such that R is a σ-rigid ring. Let

A = {

 a b c
0 a d
0 0 a

 | a, b, c, d ∈ R}
be a subring of T3(R), the ring of upper triangular matrices over R. Now
σ can be extended to an endomorphism σ of A by σ((aij)) = (σ(aij)).
Then it can be seen that A is a weak σ-rigid ring.

Ouyang has proved in [76] that if σ is an endomorphism of a ring R,
then R is σ-rigid if and only if R is weak σ-rigid and reduced.

4.1.17 Definition:

An ideal I of R is called 2-primal if P (R/I) = N(R/I). A ring R is
called strongly 2-primal if every proper ideal I of R is 2-primal, where
the term proper means only I 6= R.

4.2 Skew Polynomial Rings of Endomorphism Type

In the prologue we saw several examples of rings that look like polyno-
mial rings in one indeterminate but in which the indeterminate does not
commute with the coefficients- rather, multiplication by the indetermi-
nate has been “skewed” or “twisted” by means of an automorphism of
the coefficient ring, or a derivation, or a combination of such maps. To
help the reader get used to constructing and working with such twisted
polynomial rings, we begin here by concentrating on the case where the
twisting is done by an automorphism. In next sections, we move on to
twists by derivations and then to general skew polynomial rings.

Thus let R be a ring, σ an automorphism of R, and x an indetermi-
nate. Let S be the set of all formal expressions a0 + aix + ... + anx

n,
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where n is a nonnegative integer and the ai ∈ R. It s often convenient
to write such an expression as a sum Σiaix

i, leaving it understood that
the summation runs over a finite sequence of nonnegative integers i, or
by thinking of it as an infinite sum in which almost all of the coefficients
ai are zero. We define an addition operation in S in the usual way:

(Σiaix
i) + (Σibix

i) = Σ(ai + bi)x
i.

As for multiplication, we would like the coefficients to multiply together
as they do in R, and we would like the powers of x to multiply following
the usual rules for exponents. We take the product of an element a ∈ R
with a power xi (in that order) to be the single-term sum axi. It is in a
product of the form xia that the twist enters. We define xa to be σ(a)x
and iterate that rule to obtain xia = σi(a)x. This leads us to define the
following multiplication rule in S:

(Σiaix
i)(Σjbjx

j) = Σi,jaiσ
i(bj)x

i+j = Σk(Σi+j=kaiσ
i(bj))x

k.

This leads us to the following definition.

4.2.1 Definition:

Let R be a ring and σ an automorphism of R. We write S = R[x;σ]
(where S and x may or may not already occur in the discussion) to mean
that

(a) S is a ring, containing R as a subring;

(b) x is an element of S;

(c) S is a free left R-module with basis {1, x, x2, ...};

(d) xr = σ(r)x for every r ∈ R.

Thus, the expression S = R[x;σ] can be used either to introduce a new
ring S (constructed as above) or to say that a given ring S and element
x satisfy conditions (a)− (d). Whenever S = R[x;σ] we say that S is a
skew polynomial ring over R.

Throughout this section R is an associative ring with identity. Recall
that an ideal I of a ring R is called σ invariant if σ(I) = I. Also I is
called completely prime if ab ∈ I implies a ∈ I or b ∈ I for a, b ∈ R. We



96 Algebra and its Applications

also note that in a right Noetherian ring R, MinSpec(R) is finite (The-
orem (2.4) of Goodearl and Warfield [38], and for any P ∈MinSpec(R),
σi(P ) ∈ MinSpec(R) for all integers i ≥ 1. Therefore there exists an
integer u ≥ 1, such that σu(P ) = P for all P ∈MinSpec(R). We use the
same u henceforth, and as mentioned above, we denote ∩ui=1σi(P ) by P 0.

The above discussion shows that, given R and σ, a skew polynomial
ring S = R[x;σ] does exist. As in the case for ordinary polynomial
rings, we would like S to be unique, up to appropriate isomorphisms.
We prove this with the help of the following universal mapping property,
in which the map ψ may be thought as an analog of an evaluation map
on ordinary polynomials in the commutative theory.

4.2.2 Lemma:

Let R be a ring, σ an automorphism of R and S = R[x;σ]. Suppose
that we have a ring T , a ring homomorphism φ : R→ T , and an element
y ∈ T such that yφ(r) = φσ(r)y + φδ(r) for all r ∈ R. Then there is a
unique ring homomorphism ψ : S → T such that ψ|R = φ and ψ(x)y.

Proof. Clearly any such map would have to be given by the rule

ψ(Σiaix
i) = Σiφ(ai)y

i

and so there is at most one possibility for ψ. This rule does give a well-
defined function ψ : S → T such that ψ|R = φ and ψ(x) = y , and so
we just need to show that ψ is a ring homomorphism. It is clear that
ψ is additive and that ψ(1) = 1. The rule yφ(r) = φσ(r)y implies (by
induction that) y′φ(r) = φσ′(r)y′ for all i ∈ Z+ and r ∈ R. Hence,

First observe that if t = Σjbjx
j s an arbitrary element of S, then

[ψ(Σiaix
i)][ψ(Σjbjx

j)] = [Σiφ(ai)y
i][Σjφ(bj)y

j ]

= Σi,jφ(ai)φσ
i(bj)y

i+j = Σk(Σi+jφ(ai)φσ
i(bj))y

k

= ψ[Σk(Σi+j=kaiσ
i(bj))x

k] = ψ[(Σiaix
i)(Σjbjx

j)]

for all elements Σiaix
i and Σjbjx

j in S. Therefore ψ is a ring homomor-
phism, as required.
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4.2.3 Corollary:

Let R be a ring, σ an automorphism of R. Suppose that S = R[x;σ]
and S′ = R[x′;σ]. Then there is a unique ring isomorphism ψ : S → S′

such that ψ(x) = x′ and ψ|R is the identity map on R.

Proof. First apply Lemma (4.2.2) with φ : R → S′ being the inclu-
sion map: we obtain a unique ring isomorphism ψ : S → S′ such that
ψ(x) = x′ and ψ|R = φ. We may rephrase the last property by saying
that ψ|R is the identity on R. By symmetry, Lemma (4.2.12) also pro-
vides a ring homomorphism ψ′ : S′ → S such that ψ′(x′) = x and ψ′|R
is the identity on R.

Now ψ′ψ : S → S is a ring homomorphism such that (ψ′ψ)(x) = x
and (ψ′ψ)|R is the identity on R. The identity map on S enjoys the
same properties. Hence, the uniqueness part of Lemma (4.2.2) (where
now T = S and y = x) implies that ψ′ψ equals the identity map on S.
Similarly, ψψ′ equals the identity map on S′.

Therefore ψ and ψ′ are mutually inverse isomorphisms

4.2.4 Proposition:

[Proposition (2.1)[11]]. Let R be a right Noetherian ring. Let σ be an
automorphism of R. Then σ(N(R)) = N(R).

Proof. Denote N(R) by N . We have σ(N) ⊆ N as R is right Noetherian,
therefore, σ(N) is a nilpotent ideal of R by Theorem (5.18) of Goodearl
and Warfield [38]. Now let n ∈ N . Then σ being an automorphism of R
implies that there exists a ∈ R such that n = σ(a). Now I = σ−1(N) =
{a ∈ R such that σ(a) = n ∈ N} is an ideal of R. Now I is nilpotent, so
I ⊆ σ(N), which implies that N ⊆ σ(N). Hence σ(N) = N .

4.2.5 Proposition:

[Proposition (2.2)[11]]. Let R be a Noetherian ring. Let σ be as usual.
Then S(N(R)) = N(S(R)).

Proof. It is easy to see that S(N(R)) ⊆ N(S(R)). We will show that
N(S(R)) ⊆ S(N(R)). Let f = Σm

i=0x
iai ∈ N(S(R)). Then (f)(S(R)) ⊆

N(S(R)), and (f)(R) ⊆ N(S(R)). Let ((f)(R))k = 0, k > 0. Then
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equating leading term to zero, we get (xmamR)k = 0. This implies on
simplification that

xkmσ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0.

Therefore σ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0 ⊆ P ,
for all P ∈MinSpec(R). Now there are two cases: u ≥ m, or m ≥ u. If
u ≥ m, then we have

σ(k−1)u(amR).σ(k−2)u(amR).σ(k−3)u(amR)...amR ⊆ P.

This implies that σ(k−j)u(amR) ⊆ P , for some j, 1 ≤ j ≤ k, i.e., amR ⊆
σ−(k−j)u(P ) = P . So we have amR ⊆ P , for all P ∈ MinSpec(R).
Therefore am ∈ P (R) = N(R). Now xmam ∈ S(N(R)) ⊆ N(S(R))
implies that Σm−1

i=0 x
iai ∈ N(S(R)), and with the same process, in a finite

number of steps, it can be seen that ai ∈ P (R) = N(R), 0 ≤ i ≤ m− 1.
Therefore f ∈ S(N(R)). Hence N(S(R)) ⊆ S(N(R)) and the result.

We now establish a relation between the minimal prime ideals of R
and those of S(R) in the following theorem.

4.2.6 Theorem:

[Theorem (2.3) [11]]. Let R be a Noetherian ring and σ be an auto-
morphism of R. Then P ∈ MinSpec(S(R)) if and only if there exists
L ∈MinSpec(R), such that S(P ∩R) = P and P ∩R = L0.

Proof. Let L ∈ MinSpec(R). Then σu(L) = L for some integer u ≥ 1.
Let L1 = L0. Then by [[68], (10.6.12) ] and by [[38], Theorem (7.27) ],
Q2 = S(L1) ∈MinSpec(S(R)).

Conversely, suppose that P ∈ MinSpec(S(R)). Then P ∩ R = U0

for some U ∈ Spec(R) and U contains a minimal prime U1. Now P ⊇
S(R)U0

1 , which is a prime ideal of S(R). Hence P = S(R)U0
1 .

4.2.7 Theorem:

[Theorem (2.4) [11]]. Let R be a 2-primal Noetherian ring. Then S(R)
is 2-primal Noetherian.

Proof. The fact that R is Noetherian implies S(R) is Noetherian follows
from Hilbert Basis Theorem, namely Theorem (1.12) of [38]. Now R
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is 2-primal implies N(R) = P (R) and Proposition (4.2.4) implies that
σ(N(R)) = N(R). Therefore S(N(R)) = S(P (R)). Now by Proposition
(4.2.5) S(N(R)) = N(S(R)).

We now show that S(P (R)) = P (S(R)). It is easy to see that
S(P (R)) ⊆ P (S(R)). Now let g = Σt

i=0x
ibi ∈ P (S(R)). Then g ∈ Pi,

for all distinct Pi ∈ MinSpec(S(R)). Now Theorem (4.2.6) implies
that there exists Ui ∈ MinSpec(R) such that Pi = S((Ui)

0). Now it
can be seen that Pi are distinct implies that Ui are distinct. Therefore
g ∈ S((Ui)

0). This implies that bi ∈ (Ui)
0 ⊆ Ui. Thus we have bi ∈ Ui,

for all Ui ∈ MinSpec(R). Therefore bi ∈ P (R), which implies that
g ∈ S(P (R)). So we have P (S(R)) ⊆ S(P (R)), and hence S(P (R)) =
P (S(R)). Thus we have P (S(R)) = S(P (R)) = S(N(R)) = N(S(R)).
Hence S(R) is 2-primal.

4.2.8 Theorem:

Let R be a Noetherian ring, which is also an algebra over Q. Letσ be an
automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation
of R such that σ(δ(a)) = δ(σ(a)), for all a ∈ R and R is a δ-ring. Then
R[x;σ, δ] is 2-primal Noetherian.

Proof. We show that σ(U) = U for all U ∈ MinSpec(R). Suppose U =
U1 is a minimal prime ideal of R such that σ(U) 6= U . Let U2, U3, ..., Un
be the other minimal primes of R. Now σ(U) is also a minimal prime
ideal of R. Renumber so that σ(U) = Un. Let a ∈ ∩n−1i=1 Ui. Then
σ(a) ∈ Un, and so aσ(a) ∈ ∩ni=1Ui = P (R). Therefore a ∈ P (R), and
thus ∩n−1i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some i 6= n, which is
impossible. Hence σ(U) = U . Now the rest is obvious.

We now prove some of above results without the condition that
σ(δ(a)) = δ(σ(a)), for all a ∈ R. Towards this we have the following:

4.2.9 Theorem:

Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and
δ a σ-derivation of R. Then:

(1) P1 ∈MinSpec(R) such that σ(P1) = P1 implies O(P1) ∈MinSpec
(O(R)).
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(2) P ∈MinSpec(O(R)) such that σ(P ∩R) = P ∩R implies P ∩R ∈
MinSpec(R).

Proof. (1) Let P1 ∈ MinSpec(R) with σ(P1) = P1. Let T = {a ∈ P1

such that δk(a) ∈ P1, for all positive integers k}. The it can be seen that
T ∈ Spec(R). Also δ(T ) ⊆ T . Now T ⊆ P1, and P1 being a minimal
prime ideal of R implies that T = P1. Hence δ(P1) ⊆ P1.
Now on the same lines as in Theorem (2.22) of Goodearl and Warfield
[38], it can be easily seen that O(P1) ⊆ Spec(O(R)). Suppose that
O(P1) /∈ MinSpec(O(R)), and P2 ⊂ O(P1) is a minimal prime ideal
of O(R). Then we have P2 = O(P2 ∩ R) ⊂ O(P1) ∈ MinSpec(O(R)).
Therefore P2 ∩ R ⊂ P1, which is a contradiction as P2 ∩ R ∈ Spec(R).
Hence O(P1) ∈ Spec(O(R)).

(2) Let P ∈ MinSpec(O(R)) with σ(P ∩ R) = P ∩ R. Then on the
same lines as in Theorem (2.22) of Goodearl and Warfield [38], it can
be seen that P ∩ R ∈ Spec(R) and O(P ∩ R) ∈ Spec(O(R)). Therefore
O(P ∩R) = P . We now show that P ∩R ∈MinSpec(R). Suppose that
U ⊂ P ∩ R, and U ∈ MinSpec(R). Then O(U) ⊂ O(P ∩ R) = P . But
O(U) ∈ Spec(O(R)) and, O(U) ⊂ P , which is not possible. Thus we
have P ∩R ∈MinSpec(R).

4.2.10 Theorem:

Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a σ-
derivation ofR such thatR is a δ-ring, σ(P ) = P for all P ∈MinSpec(R)
and δ(P (R)) ⊆ P (R). Then O(R) is 2-primal.

Proof. Let P1 ∈ MinSpec(R). Then it is given that σ(P1) = P1, and
therefore Theorem (4.2.9) implies that O(P1) ∈ MinSpec(O(R)). Sim-
ilarly for any P ∈ MinSpec(O(R)) such that σ(P ∩ R) = P ∩ R Theo-
rem (4.2.9) implies that P ∩ R ∈ MinSpec(R). Therefore, O(P (R)) =
P (O(R)), and now the result is obvious by using Theorem (4.6.6).

4.2.11 Corollary:

Let R be a Noetherian Q-algebra, σ an automorphism of R and δ a σ-
derivation ofR such thatR is a δ-ring, σ(P ) = P for all P ∈MinSpec(R).
Then O(R) is 2-primal.
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Proof. Let P1 ∈MinSpec(R) with σ(P1) = P1. Then as in the proof of
Theorem (4.2.9) δ(P1) ⊆ P1, and therefore δ(P (R)) ⊆ P (R). Now the
rest is obvious using Theorem (4.2.10).

4.2.12 Theorem:

Let R be a Noetherian ring, which is also an algebra over Q. Let σ be an
automorphism of R such that R is a σ(∗)-ring and δ be a σ-derivation
of R such that R is a δ-ring. Then R[x;σ, δ] is 2-primal Noetherian.

Proof. We show that σ(U) = U for all U ∈ MinSpec(R). Suppose U =
U1 is a minimal prime ideal of R such that σ(U) 6= U . Let U2, U3, ..., Un
be the other minimal primes of R. Now σ(U) is also a minimal prime
ideal of R. Renumber so that σ(U) = Un. Let a ∈ ∩n−1i=1 Ui. Then
σ(a) ∈ Un, and so aσ(a) ∈ ∩ni=1Ui = P (R). Therefore a ∈ P (R), and
thus ∩n−1i=1 Ui ⊆ Un, which implies that Ui ⊆ Un for some i 6= n, which is
impossible. Hence σ(U) = U . Now the rest is obvious.

4.3 Skew Polynomial Ring of Derivation Type

Several of the examples discussed in the Prologue [see [41]] appear as
polynomial rings in which multiplication by the indeterminate is twisted
by a derivation rather than by an automorphism. This situation has
several new features - in particular, the characteristic of the ring plays
an important role - but it is still significantly simpler than the general
case, in which both an automorphism and a derivation act. Thus, we
begin the section by studying the derivation case.

Differential operator ring R[x.δ] is the usual polynomial ring with
coefficients in R in which multiplication is subject to the relation ax =
xa + δ(a) for all a ∈ R. We take any f(x) ∈ R[x, δ] to be of the form
f(x) = Σn

i=0x
iai. We denote R[x, δ] by D(R). If I is δ-invariant (i.e.,

δ(I) ⊆ I) ideal of R, then I[x, δ] is an ideal of D(R). We denote I[x, δ]
as usual by D(I).

Let R be a ring, δ a derivation on R, and x an indeterminate. Let S
be the set of all formal expressions a0 + a1x+ ...+ anx

n, where n ∈ Z+

and the ai ∈ R, and define addition on S in the usual way. Now we
would like to build a multiplication in S such that xa = ax+ δ(a) for all
a ∈ R. To fully describe this multiplication, we must iterate the above
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rule, which leads us to the formula xia = Σi
l=0(

i
l)δ

i−l(a)xl for i ∈ Z+ and
a ∈ R. Thus, we define multiplication in S as follows:

(Σiaix
i)(Σjbjx

j) = Σi,jΣ
i
l=0(

i
l)aiδ

i−l(bj)x
l+j

= Σk(Σ
k
l=0Σi≥l(

i
l)aiδ

i−l(bk−l))x
k.

4.3.1 Exercise:

Verify that the set S together with the operations discussed above is a
ring, containing R as a subring. Give a formal description of S without
using the symbol x, analogous to Exercise 1H of [41].

4.3.2 Definition:

Let R be a ring and δ a derivation of R. We write

S = R[x; δ]

to mean that

(a) S is a ring, containing R as a subring;

(b) x is an element of S;

(c) S is a free left R-module with basis {1, x, x2, ...};

(d) xr = rx+ δ(r) for every r ∈ R.

In this situation we say that S is a skew polynomial ring over R or a
formal differential operator ring over R. It is also a helpful way to dis-
tinguish between R[x; δ] and the skew polynomial rings R[x;σ] studied
in the previous section.

Note that, given R and δ, Exercise (4.3.1) shows that there does exist
a differential operator ring R[x; δ].

4.3.3 Proposition:

[Proposition (1.1) [10]]. Let R be a Noetherian Q-algebra. Let δ be a
derivation of R. Then δ(P (R)) ⊆ P (R).
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Proof. Let P1 ∈ MinSpec(R). Let T = R[[t]], the formal power series
ring. Now it can be seen that etδ is an automorphism of T and P1T ∈
MinSpec(T ). We also know that (etδ)k(P1T ) ∈ MinSpec(T ) for all
integers k ≥ 1. Now T is Noetherian by Exercise (1ZA(c)) of [38], and
therefore Theorem (2.4) of [38] implies that MinSpec(T ) is finite. So
exists an integer n ≥ 1 such that (etδ)n(P1T ) = P1T ; i.e., (entδ)(P1T ) =
P1T . But R is a Q-algebra, therefore, etδ(P1T ) = P1T . Now for any
a ∈ P1, a ∈ P1T also, and so etδ(a) ∈ P1T ; i.e., a + δ(a) + tδ(a) +
(t2/2!)δ2(a) + ... ∈ P1T , which implies that δ(a) ∈ P1. Therefore δ(P1 ⊆
P1.

Now P (R) ⊆ P , for all P ∈ MinSpec(R) implies that δ(P (R)) ⊆
δ(P ) ⊆ P , for all P ∈MinSpec(R). Therefore

δ(P (R)) ⊆ ∩p∈MinSpec(R)P = P (R).

4.3.4 Proposition:

[Proposition (1.2) [10]]. Let R be a Noetherian Q-algebra. Let δ be as
usual. Then D(N(R)) = N(D(R)).

Proof. It is easy to see that D(N(R)) ⊆ N(D(R)). We will show
that N(D(R)) ⊆ D(N(R)). Let f = Σm

i=0x
iai ∈ N(D(R)). Then

(f)(D(R)) ⊆ N(D(R)), and (f)(R) ⊆ N(D(R)). Let

((f)(R))k = 0, k > 0.

Then equating leading term to zero, we get (xmamR)k = 0. This implies
on simplification that xkm(amR)k = 0. Therefore (amR)k = 0 ⊆ P , for
all P ∈ MinSpec(R). So we have amR ⊆ P , for all P ∈ MinSpec(R).
Therefore am ∈ P (R) = N(R). Now xmam ∈ D(N(R)) ⊆ N(D(R))
implies that

Σm−1
i=0 x

iai ∈ N(D(R)),

and with the same process, in a finite number of steps, it can be seen
that ai ∈ P (R) = N(R), 0 ≤ i ≤ m− 1. Therefore f ∈ D(N(R)). Hence
N(D(R)) ⊆ D(N(R)) and the result.
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4.3.5 Theorem:

[Theorem (1.1) [10]]. Let R be a Noetherian Q-algebra and δ be a deriva-
tion of R. Then P ∈MinSpec(D(R)) if and only if P = D(P ∩R) and
P ∩R ∈MinSpec(R).

Proof. Let P1 ∈ MinSpec(R). Then δ(P1) ⊆ P1 by Proposition (4.3.3).
Therefore by [[68], (14.2.5) (ii)], D(P1) ∈ Spec(D(R)). Suppose P2 ⊂
D(P1) is a minimal prime ideal of D(R). Then

P2 = D(P2 ∩R) ⊂ D(P1) ∈MinSpec(D(R)).

So P2 ∩R ⊂ P1 which is not possible.

Conversely suppose that P ∈ MinSpec(D(R)). Then P ∩ R ∈
Spec(R) by Lemma (2.21) of Goodearl and Warfield [38]. Let P1 ⊂ P ∩R
be a minimal prime ideal of R. Then D(P1) ⊂ D(P ∩ R) and as in
first paragraph D(P1) ∈ Spec(D(R)), which is a contradiction. Hence
P ∩R ∈MinSpec(R).

4.3.6 Theorem:

[Theorem (1.2) [10]]. Let R be a 2-primal Noetherian Q-algebra. Then
D(R) is 2-primal Noetherian.

Proof. R is Noetherian implies D(R) is Noetherian follows from Hilbert
Basis Theorem, namely Theorem (1.12) of Goodearl and Warfield [38].
Now R is 2-primal implies N(R) = P (R) and Proposition (4.3.3) im-
plies that δ(N(R)) ⊆ N(R). Therefore D(N(R)) = D(P (R)). Now by
Proposition (4.3.4) D(N(R)) = N(D(R)).

We now show that D(P (R)) = P (D(R)). It is easy to see that
D(P (R)) ⊆ P (D(R)).

Now let

g = Σt
i=0x

ibi ∈ P (D(R)).

Then g ∈ Pi, for all Pi ∈ MinSpec(D(R)). Now Theorem (4.3.3) im-
plies that there exists Ui ∈ MinSpec(R) such that Pi = D(Ui). Now it
can be seen that Pi are distinct implies that Ui are distinct. Therefore
g ∈ D(Ui). This implies that bi ∈ Ui. Thus we have bi ∈ Ui, for all Ui ∈
MinSpec(R). Therefore bi ∈ P (R),which implies that g ∈ D(P (R)). So
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we have P (D(R)) ⊆ D(P (R)), and hence D(P (R)) = P (D(R)).

Thus we have

P (D(R)) = D(P (R)) = D(N(R)) = N(D(R)).

Hence D(R) is 2-primal.

4.3.7 Proposition:

[Proposition (3.1) [10]]. Let R be a Noetherian Q-algebra and δ be a
derivation of R. Then δ(P ) ⊆ P , for all P ∈MinSpec(R) and δ(P (R)) ⊆
P (R).

Proof. See [[38], Lemma (2.20)].

4.3.8 Theorem:

[Theorem (3.3) [10]]. Let R be a 2-primal Noetherian Q-algebra and let
δ be a derivation of R such that N(D(R)) = D(N(R)). Then D(R) is
2-primal Noetherian.

Proof. First of all we note that D(P (R)) is well defined by Proposition
(4.3.7). Also D(R) is Noetherian by Theorem (1.12) of [38]. Now R
is 2-primal implies that N(R) = P (R). We will show that P (D(R)) =
D(P (R)). Now let

g = Σt
i=0x

ibi ∈ P (D(R)).

Then g ∈ Pi, for all distinct Pi ∈ MinSpec(S(R)). Now Theorem
(4.3.5) implies that Pi ∩ R ∈ MinSpec(R) and that Pi = D(Pi ∩ R).
Denote Pi ∩ R by Ui. Now it can be seen that Ui are distinct. There-
fore g ∈ D(Ui). This implies that bi ∈ Ui. Thus we have bi ∈ Ui,
for all Ui ∈ MinSpec(R). Therefore bi ∈ P (R), which implies that
g ∈ D(P (R)). So we have P (D(R)) ⊆ D(P (R)). Now let h = Σm

i=0x
ici ∈

D(P (R)). Then ci ∈ D(P (R)) ⊆ Ti, for all distinct Ti ∈ MinSpec(R).
Now Theorem (4.3.5) implies that D(Ti) ∈ MinSpec(D(R)). Denote
D(Ti) by Li. Now it can be seen that Li are distinct and therefore
h ∈ Li for all Li ∈ MinSpec(D(R)). Thus h ∈ P (D(R)) and therefore
D(P (R)) ⊆ P (D(R)).
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So we have P (D(R)) = D(P (R)). Now it is given that N(D(R)) =
D(N(R)) and thus we have

P (D(R)) = D(P (R)) = D(N(R)) = N(D(R)).

Hence D(R) is 2-primal.

4.4 Skew-Laurent Rings

One way to view a differential operator ring R[θ, δ] is that it is a ring
extension of R in which δ becomes an inner derivation (since δ(r) =
θr − rθ for all r ∈ R). If we start with an automorphism σ of R and
seek a ring extension in which σ becomes an inner automorphism, we
need a ring extension containing a unit θ such that σ(r) = θrθ−1 for all
r ∈ R, that is, θr = σ(r)θ for all r ∈ R. This suggests constructing
a ring extension of the skew polynomial ring R[θ;σ] in which θ has an
inverse. We will give a direct construction of such a ring by analogy with
Proposition (1.10) of [38] , where this time we will work with additive
endomorphism of the Laurent polynomial ring R[x, x−1].

4.4.1 Definition:

Let R be a ring and σ an automorphism of R. We write

T = R[x±1;σ]

to mean that

(a) T is a ring, containing R as a subring;

(b) x is invertible element of T ;

(c) T is a free left R-module with basis {1, x, x−1, x2, x−2, ...};

(d) xr = σ(r)x for all r ∈ R.

When T = R[x±1;σ], we say that S is a skew-Laurent ring over R, or a
skew Laurent extension of R.

4.4.2 Definition:

Let k be a field and q ∈ k×. The quantized coordinate ring of (k×)2

(corresponding to the choice of q) is the k-algebra O((k×)2) presented
by generators x, x′, y, y′ and relations

xx′ = x′x = yy′ = y′y = 1
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xy = qyx.

In brief, we may say that O((k×)2) is presented by generators x± and
y± satisfying xy = qyx. In algebraic geometry, (k×)2 is known as an
algebraic torus (of rank 2), and hence O((k×)2) picks up the nickname
quantum torus.

4.4.3 Definition

Let k be a field and q = (qij) a multiplicatively antisymmetric n × n
matrix over k. The corresponding multiparameter quantum torus is
the k-algebra Oq((k×)n) presented by x±11 , ..., x±1n and relations xixj =
qijxjxi for all i, j. The single parameter version Oq((k×)n), for q ∈ k×,
is the special case when qij = q for all i < j.

4.4.4 Proposition:

Let R be a ring and let σ be an automorphism of R. Then there exists a
ring S, containing R as a subring, with a unit θ ∈ S such that S is a free
left R-module with a basis of the form 1, θ, θ−1, θ2, θ−2, ... and θr = σ(r)θ
for all r ∈ R.

Proof. Let E = EndZ(R[x, x−1]) where x is an indeterminate, and em-
bed R in E (as a subring) via left multiplications. Extend σ to an
automorphism of R[x, x−1] where σ(rxi) = σ(r)xi for all r ∈ R and
i ∈ Z. Then define θ ∈ E according to the rule θ(f) = σ(f)x, and ob-
serve that θr = σ(r)θ for all r ∈ R. Moreover, θ is invertible in E, and
θ−1(f) = σ−1(f)x−1 for all f ∈ R[x, x−1]. As in the proof of Proposition
(1.10) of [38], the set S = Σi∈ZRθ

i is a subring of E, and the powers of
θ are left linearly independent over R.

A SKEW HILBERT BASIS THEOREM

We derive a version of the Hilbert Basis Theorem for the skew polyno-
mial rings R[x;σ] discussed above; an analogous result for skew-Laurent
rings will follow as a Corollary.

4.4.5 Theorem:

[Theorem (1.14) of [41]]. Let σ be an automorphism of a ring R and
S = R[x;σ]. If R is right (left) Noetherian, then so is S.
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Proof. Case I. Let us first assume that R is right Noetherian and prove
that any nonzero right ideal I of S is finitely generated. We follow the
steps in the proof of Theorem (3.4.9), but some details require extra care.

Step I. Let J be the set of leading coefficients of elements of I,
together with 0:

J = {r ∈ R | rxd + rd−1x
d−1 + ...+ r0 for some rd−1, ..., r0 ∈ R}

As before, it is easy to see that J is an additive subgroup of R. Now
consider elements r ∈ J and a ∈ R; we need to show that ra ∈ J . There
is some skew polynomial of the form p = rxd+ [lower terms] in I. While
pa ∈ I, this does not help us, since pa = rσd(a)xd+ [lower terms], which
only yields rσd(a) ∈ J . To obtain ra instead, we should replace a by
σ−d(a). More precisely, we have pσ−d(a) ∈ I and

pσ−d(a) = raxd + [lower terms],

whence ra ∈ J . This shows that J is a right ideal of R.

Step 2. Since R is right Noetherian, J is finitely generated; say
r1, ..., rk is a finite list of nonzero generators for J . There exist p1, ..., pk ∈
I such that pi has leading coefficient ri and some degree ni. Set n =
max{n1, ..., nk}, and note that p− ixn−ni is an element of I with leading
coefficient ri but with degree n. Thus, there is no loss of generality in
assuming that all the pi have the same degree n, that is,

pi = rix
n+[lower terms].

Step 3. Set N = R+Rx+ ...+RXn−1,the set of elements of S with
degree less than n. Observe that N = R+ xR+ ...+Xn−1R, since

b0 + b1x+ ...+ bn−1x
n−1 = b0 + xσ−1(b1) + ...+ xn−1σ1−n(bn−1)

c0 + xc1 + ...+ xn−1cn−1 = c0 + σ(c1)x+ ...+ σn−1(cn−1)x
n−1

for all bj , cj ∈ R. Consequently, N is a right (as well as left) R-module
of S. Viewed as a right R-module, N is finitely generated, and so it
is Noetherian by Corollary (3.1.23). Hence, its submodule I ∩ N is a
finitely generated right R-module, say q1, ..., qt generate I ∩N .

Step 4.Let I0 be the right ideal of S generated by p1, ..., pk, q1, ..., qt.
Then I0 ⊆ I, and we claim that they are equal. If p ∈ I with degree less
than n, then p ∈ I ∩N and p = q1a1 + ...+ qtat for some aj ∈ R, whence
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p ∈ I0.

Step 5. Now consider some p ∈ I with degree m ≥ n, and suppose
that all elements of I with degree less than m lie I0. Let r be the leading
coefficient of p; thus

p = rxm + [lower terms]

Since p ∈ I, its leading coefficient r is in J , and so r = r1a1 + ...+ rkak
for some ai ∈ R. We wish to construct an element of I0 which also
has degree m and leading coefficient r, but the combination (p1a1 + ...+
Pkak)x

m−n that we used in the proof of Theorem (3.4.9) no longer works.
The problem and solution are the same as in Step I- we should apply
appropriate negative powers of σ to the ai. More precisely, observe that

piσ−n(ai) = riaix
n + [lower terms]

for all i. Consequently, if q = (p1σ
−n(a1) + ... + pkσ

−n(ak))x
m−n, then

q ∈ I0 and

q = rxm+ [lower terms].

Now p − q is an element of I with degree less than m. By induction
hypothesis, p− q ∈ I0, and thus p ∈ I0.

This induction has shown that I = I0, so that I is finitely generated.
Therefore, S is right Noetherian.

Case II.Assume now that R is left Noetherian, and let I be an ar-
bitrary nonzero left ideal of S. Here one should try to follow the line
of Case I just enough to understand the difficulties. There is a pitfall
right at the beginning in Case II, the set J as defined in Step 1 need
not be closed under addition. (The problem is that, since we are only
allowed to multiply elements of I on the left by power of x, we cannot
guarantee that an element of J which occurs as the leading coefficient of
some element of I with degree d will also occur as a leading coefficient
for elements of I with degrees greater that d.)

The way around such difficulties is to reverse the order of multiplica-
tion in all our expressions - including those that just display coefficients
of skew polynomials. In other words, for the duration of the proof of
Case II, all elements of S should be written with right-hand coefficients
(that this is always possible is shown by equations like those displayed
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in Step 3). Note that this changes the definition of “leading coefficient”
(but not that of “degree”) for elements of S. With this change, analogs
of Steps 1−5 are easily carried out: we leave the details to the reader. A
more efficient way to deal with the switch from left-hand to right-hand
coefficients is to work with opposite rings - see Exercise 1Q of [41].

Immediate consequences of Theorem (4.4.5) are that the quantum
planes Oq(k2) are Noetherian and (by induction) the quantum n-spaces
Oq(kn) are Noetherian.

4.4.6 Corollary:

Let R be a ring and let σ be an automorphism of R. If R is right
(left) Noetherian, then skew-Laurent ring T = R[σ, σ−1;σ] is right(left)
Noetherian.

Proof. Set S = R[x;σ] ⊆ S and remember that S is a subring of T . We
proceed by relating the right ideals of T to those of S, as follows.

Claim: If I is a right ideal of T , then (I ∩ S) is right ideal of S and
I = (I ∩ S)T .

It is clear that I ∩ S is a right ideal of S and that (I ∩ S)T ⊆ I. If
p ∈ I, then

p = amx
m + am+1x

m+1 + ...+ anx
n

for some integers m ≤ n and coefficients ai ∈ R. Since px−m ∈ I ∩ S
and p = (px−m)xm, we see that p ∈ (I ∩ S)T , and the claim is proved.

Now suppose that R is right Noetherian, and let I1 ⊆ I2 ⊆ ... be
an ascending chain of right ideals of T . Then I1 ∩ S ⊆ I2 ∩ S ⊆ ... is
an ascending chain of right ideals of S. Since S is right Noetherian by
Theorem (4.4.5), there is an index n such that Im ∩ S = In ∩ S for all
m ≥ n. Thus

Im = (Im ∩ S)T = (In ∩ S)T = In

for all m ≥ n, which establishes the ACC for right ideals of T . Therefore
T is right Noetherian.

The left Noetherian case is proved symmetrically.

From this Corollary we immediately obtain that all quantum tori
Oq((k×)n) are Noetherian.



Chapter 4: Skew Polynomial Rings 111

4.4.7 Theorem (Hall):

[Theorem (1.16) of [41]]. If k is a field and G a polycyclic-by-finite group,
then the group algebra k[G] is a Noetherian ring.

Proof. By assumption, there exists subgroups

G0 = (1) ⊂ G1 ⊂ ... ⊂ Gn ⊆ Gn+1 = G

such that each Gi−1 is a normal subgroup of Gi and Gi/Gi−1 is infinite
cyclic for i = 1, ..., n, while G/Gn is finite. There is a corresponding
ascending sequence of subalgebras

k[G0] = k ⊂ k[G1] ⊂ ... ⊂ k[Gn] ⊂ k[G],

and we shall prove that each k[Gi] is Noetherian. This is clear for
i = 0.

Now let 1 ≤ i ≤ n and assume that k[Gi−1] is Noetherian. Choose
a coset Gi−1x which generates the infinite cyclic group Gi/Gi−1. Then
Gi is the disjoint union of the cosets Gi−1x

j for j ∈ Z, and so the rule
(g, j) 7→ gxj gives a bijection Gi−1 × Z→ Gi. Consequently,

k[Gi] =
⊕
j∈Z

⊕
g∈Gi−1

kgxj =
⊕
j∈Z

(
⊕

g∈Gi−1

kg)xj =
⊕
j∈Z

k[Gi−1]x
j ,

that is, k[Gi] is a free left module over k[Gi−1] with basis {xj |j ∈ Z}.
Since Gi−1 is a normal subgroup of Gi, we have xGi−1x

−1 = Gi−1, and
hence x(k[Gi−1])x

−1 = k[Gi−1]. As a result, the rule σ(r) = xrx−1

defines an automorphism σ of k[Gi−1]. By definition of σ, we have
xr = σ(r)x for all r ∈ k[Gi−1], and thus k[Gi] = k[Gi−1][x

±;σ]. Corol-
lary (4.4.6) now shows that k[Gi] is Noetherian.

Thus, by induction, we conclude that k[Gn] is Noetherian. Now G
is a finite union of cosets , ..., Gnyt, and so k[G] = Σt

j=1Σg∈Gnkgyj =
Σt
j=1k[Gn]yj , that is, k[G] is finitely generated as a left k[Gn]-module.

Therefore k[G] is left Noetherian by Corollary (3.4.6), and by symmetry
it is right Noetherian as well.
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4.4.8 Definition:

A simple ring is any nonzero ring R such that the only ideals of R are
0 and R. (This terminology is only supposed to suggest that the ideal
theory of R is simple, not that the structure of R is necessarily simple
in any other respect).

The only commutative simple rings are fields.

4.4.9 Definition:

Let σ be an automorphism of a ring R. An σ-ideal of R is any ideal I
of R that is stable under σ, that is, σ(I) = I. The ring R is said to be
σ-simple provided R is nonzero and its only σ-ideals are 0 and R.

4.4.10 Theorem:

Let T = R[x±;σ], where σ is an automorphism of R. Then T is a simple
ring if and only if the following hold:

(a) R is an σ-simple ring,

(b) No positive power of σ is an inner automorphism of R.

Proof. As noted, Exercises 1T and 1U of [41] show the necessity of con-
ditions (a) and (b). Conversely, assume that (a) and (b) hold.

Let I be a nonzero ideal of T ; we must show that I = T . Set S =
R[x;σ] and recall from the proof of Corollary (4.4.6) that I = (I ∩ S)T .
Thus, I ∩ S 6= 0. Since I is an ideal in T , we are allowed to multi-
ply it by either x or x−1. Thus xIx−1 ⊆ I and x−1Ix ⊆ I, whence
xIx−1 = I. We also have xSx−1 = S (Exercise 1R of [41]), and there-
fore x(I ∩ S)x−1 = I ∩ S.

Let n be the least degree that occurs for nonzero elements of I ∩ S,
and set

J = {r ∈ R | rxn + rn−1x
n−1 + r0 ∈ I ∩ S for some rn−1, ..., r0 ∈ R}.

As in step I of Theorem (4.4.5), we check that J is an ideal of R, nonzero
by choice of n. Given r ∈ J , there is a skew polynomial p ∈ I ∩ S of the
form p = rxn+ [lower terms]. The skew polynomial xpx−1 = σ(r)xn +
[lower terms] also lies in I ∩ S, whence σ(r) ∈ J . Hence, σ(J) ⊆ J , and

SIMPLICITY IN SKEW LAURENT RINGS
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a similar argument show that σ−1 ⊆ J . Thus, σ(J) = J .

Now J is a nonzero σ-ideal of R. Since R is σ-simple, we must have
J = R, whence 1 ∈ J . Therefore there is an element p ∈ I ∩ S of the
form

p = xn + an−1x
n−1 + ...+ a0

with the ai ∈ R. If a0 = 0, then px−1 = xn−1 + an−1x
n−2 + ... + a1

would be a nonzero element of I ∩S with degree n−1, contradicting the
minimality of n. Hence, a0 6= 0. Observe that

xpx−1 = xn + σ(an−1)x
n−1 + ...+ σ(a0),

and so xpx−1 − p is an element of I ∩ S with degree at most n− 1. The
minimality of n implies that xpx−1 − p = 0, and thus σ(ai) = ai for all
i.

Next, consider an arbitrary element r ∈ R, and note that

pr = σn(r)xn + an−1σ
n−1(r)xn−1 + ...+ a0r

σn(r)p = σn(r)xn + σn(r)an−1x
n−1 + ...+ σn(r)a0.

Then pr−σn(r)p is an element of I∩S with degree at most n−1, and so
pr − σn(r)p = 0. In particular, it follows that a0r = σn(r)a0. Since this
holds for any r ∈ R, we see that a0R ⊆ Ra0. On the other hand, taking
r = σ−n(r′) yield r′a0 = a0σ

−n(r′) for all r′ ∈ R, whence Ra0 ⊆ a0R.
Therefore a0R = Ra0.

Now a0R = Ra0 is a nonzero two-sided ideal of R, and it is an α-ideal
because σ(a0) = a0. Since R is σ-simple, we find that a0R = Ra0 = R,
which tells us that a0 is invertible in R. Consequently, the equations
a0r = σn(r)a0 imply that σn is an inner automorphism of R. Assumption
(b) then forces n = 0. But now p = 1, and since p ∈ I, we conclude that
I = T . Therefore T is a simple ring.

4.4.11 Corollary:

Let k be a field and q ∈ k×. Then Oq((k×)2) is a simple ring if and only
if q is not a root of unity.

Proof. Set T = Oq((k×)2). By Exercise (1Q) of [41], T = R[x±;σ],
where R = K[y±1] and σ is the k-algebra automorphism of R such that
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σ(y) = qy. Since R is commutative, the only inner automorphism of R
is the identity.

If q is a root of unity, say qn = 1 for some positive integer n, then σn

is the identity on R, and so Theorem (4.4.10) shows that T is not simple
in this case.

Conversely, assume that q is not a root of unity. Then σn(y) = qny 6=
y for all n > 0, and so no positive power of σ is inner. It remains to verify
condition (a) of Theorem (4.4.10). Thus, let I be a non-zero σ-ideal of
R; we must show that I = R.

Observe that I ∩ k[y] is nonzero, and choose a monic polynomial
f ∈ I ∩ k[y] of minimal degree, say f = ym + am−1y

m−1 + ... + a0 for
somem ∈ Z+ and ai ∈ k. Since I is a σ-ideal, we also have σ(f) ∈ I∩k[y].
Now

σ(f) = qmym + qm−1am−1y
m−1 + ...+ a0

and so σ(f)− qmf is a polynomial in I ∩k[y] with degree at most m−1.
By the minimality of m, we must have σ(f) − qmf = 0, from which it
follows that qiai = qmai for all i, that is, (qm−i − 1)ai = 0. Since q is
not a root of unity, we conclude that ai = 0 for all i 6= m. Consequently,
f = ym, which is invertible in R. Therefore I = R, as desired.

Observe that the quantum tori Oq((k×)2) are never division rings -
for instance, x+ 1 has no inverse in these algebras.

4.5 General Skew Polynomial Rings

The discussion above leads us to try to construct a skew polynomial
ring in which the multiplication is twisted by a ring endomorphism and
associated skew derivation. Our goal may be defined in parallel with the
earlier cases, as follows.

4.5.1 Definition:

Let R be a ring, σ an endomorphism of R and δ a σ-derivation of R.
The skew polynomial ring R[x;σ, δ] is the usual set of polynomials over
R. We shall write S = R[x;σ, δ] = {

∑n
i=0 x

iai : ai ∈ R} provided

(a) S is a ring, containing R as a subring;
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(b) x is an element of S;

(c) S is a free left R-module with basis {1, x, x2, ...};

(d) xr = σ(r)x+ δ(r) for every r ∈ R

Such a ring is called a skew polynomial ring over R, or an Ore extension
of R (honoring O. Ore, who first systematically studied the general case).

Skew polynomial ring is also known as Ore-Extension. These rings
were introduced by Oystein Ore in (1933). The reader should be warned
that some authors prefer their skew polynomial rings to have right-hand
coefficients. To achieve this, one starts with a ring R, an endomorphism
σ of R, and a right σ-derivation δ on R. The corresponding skew poly-
nomial ring is a free right R-module with a basis {1, x, x2, ...}, where
rx = xσ(r) + δ(r) for all r ∈ R.

In order to proceed as we did in the cases R[x;σ] = R[x;σ, 0] and
R[x; δ] = R[x; idR, δ], we would need to work out a general formula
expressing xir, for any i ∈ N and r ∈ R, as a polynomial with left-hand
coefficients. However, this soon gets rather involved - for instance,

x3r =
σ3(r)x3+[δσ2(r)+σδσ(r)+σ2δ(r)]x2+[δ2σ(r)+δσδ(r)+σδ2(r)]x+δ3(r).

Exercise (2E) [41] provides a clue as to how we might proceed. The
point of that exercise was to show that any formal differential operator
ring R[x; δ] isomorphic to a ring of actual differential operators on a ring
T . If we had not already constructed R[x; δ], we could proceed to define
the ring T and the derivation d as in Exercise 2E [41], identify R with
its image in EndZ(T ) (as left multiplication operators), and then check
that, the subring of EndZ(T ) generated by R ∪ d is the required skew
polynomial ring R[x; δ]. Thus, let us try R[x;σ, δ] as a ring of operators
(i.e., additive endomorphisms) of some abelian group. In particular, such
a construction will give us the ring axioms for free.
Still anticipating the existence of S = R[x;σ, δ], we observe that S will
embed in the additive endomorphism ring EndZ(S) as left multiplication
operators. To express elements of R in this fashion only requires us to
know the R-module structure of S, and multiplication by x will be given
by the rule
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x(Σirix
i) = Σi(σ(ri)x+ δ(ri))x

i = Σ(σ(ri)x
i+1 + δ(ri)x

i).

In other words, we can readily express both x and elements of R as
operators on the additive group of S, and can then construct S as the
ring generated by these operators. To avoid confusion between the two
roles S plays here - as abelian group and as skew polynomial ring - it is
helpful to rewrite the abelian group (S,+) as a polynomial ring in a new
variable, say z.

In case, δ is zero map, then the ring R[x;σ] is a skew polynomial
ring, where multiplication is subject to the relation ax = xσ(a). In case,
σ is the identity map, then the ring D(R) = R[x; δ] is known as ring
of differential operators, where multiplication is subject to the relation
ax = xa+ δ(a).

4.5.2 Proposition:

[Proposition (2.3) of [41]]. Given a ring R, a ring endomorphism σ of R,
and an σ-derivation δ on R, there exists a skew polynomial ring R[x;σ, δ].

Proof. Let E = EndZ(R[z]), where R[z] is an ordinary polynomial ring
over R. Since R[z] is a left R-module, there is a ring homomorphism
λ : R → E sending elements of R to left multiplication operators, that
is, λ(r)(p) = rp for r ∈ R and p ∈ R[z]. Clearly, λ is injective (e.g.,
because λ(r)(1) = r for all r ∈ R). Thus, we can identify R with the
subring λ(R) ⊂ E.

Next,define x ∈ E according to the rule

x(Σiriz
i) = Σi(σ(ri)z

i+1 + δ(ri)z
i),

and let S be the subring of E generated by R ∪ {x}. For any r ∈ R and
any polynomial p = Σiriz

i in R[z], we compute that

(xr)(p) = x(Σirriz
i) = Σi(σ(rri)z

i+1 + δ(rri)z
i)

= Σiσ(r)σ(ri)z
i+1 + Σi(σ(r)δ(ri) + δ(r)ri)z

i

= σ(r)Σi(σ(ri)z
i+1 + δ(ri)zi) + δ(r)Σirizi = (σ(r)x+ δ(r))(p).

Thus xr = σ(r)x+ δ(r) for all r ∈ R. In particular, xR ⊆ Rx+R.
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From the relation xR ⊆ Rx+R, it follows by induction that

xiR ⊆ Rxi +Rxi−1 + ...+Rx+R

for all i ∈ Z+, and consequently (Rxi)(Rxj) ⊆ (Rxi+j) + (Rxi+j−1) +
...+(Rxj) for all i, j ∈ Z+. Hence, the set Σ∞i=0Rx

i is a subring of E, and
therefore S = Σ∞i=0Rx

i. This shows that the set {1, x, x2, ...} generates
S as a left R-module. All that remains is to show that this set is left
linearly independent over R, so that S will be free left R-module with
basis {1, x, x2, ...}.

Thus, consider an operator r0 + r1x+ ...+ rnx
n in S for some ri ∈ R.

We shall apply this operator to the element 1 = z0 ∈ R[z]. Note that
x(zj) = zj+1 for all j ≥ 0, whence xi(1) = zi for all i. Consequently,

(r0 + r1x+ ...+ rnx
n)(1) = r0 + r1z + ...+ rnz

n

and so the operator r0 + r1x + ... + rnx
n can be the zero map only if

the polynomial r0 + r1z + ... + rnz
n is zero, and that happens only if

all the ri = 0. Therefore, the elements 1, x, x2, ... are indeed left linearly
independent over R, as required.

4.5.3 Example:

Let f = (xa+ b) and g = (xc+ d) ∈ R[x]

Therefore, f + g = (xa+ b) + (xc+ d)
= xa+ b+ xc+ d
= x(a+ c) + b+ d

Also, f.g = (xa+ b)(xc+ d)
= xa.xc+ xa.d+ b.xc+ bd
= x(ax)c+ xa.d+ (bx)c+ bd
= x(xσ(a) + δ(a))c+ xa.d+ [xσ(b) + δ(b)]c+ bd
= x2σ(a)c+ xδ(a)c+ xad+ xσ(b)c+ δ(b)c+ bd
and, g.f = (xc+ d)(xa+ b)
= xcxa+ xcb+ dxa+ db
= x(cx)a+ xc.b+ (dx)a+ db
= x[xσ(c) + δ(c)]a+ xcb+ [xσ(d) + δ(d)]a+ db
= x2σ(c)a+ xδ(c)a+ xcb+ xσ(d)a+ δ(d)a+ db
Implies f.g 6= g.f for every f, g ∈ R[x].
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4.5.4 Definition:

Let k be a field and q ∈ kx. We write Aq1(k) to denote the k-algebra
presented by two generators x and y and one relation xy−qyx = 1. This
algebra is known as a quantized Weyl algebra over k. (Quantized Weyl
algebras with more pairs of generators have been defined and extensively
studied, but we shall not introduce them here). Of course, Aq1(k) =
A1(k) = k[y][x; d/dy] when q = 1. When q 6= 1, we obtain the skew
polynomial ring given above.

4.5.5 Definition:

Let R[x;σ, δ] be a skew polynomial ring. Any non-zero element p in
R[x;σ, δ] can be uniquely expressed in the form

p = rnx
n + rn−1x

n−1 + ...+ r1x+ r0

for some nonnegative integer n and some elements ri ∈ R with rn 6= 0.
The integer n is called the degree of p, abbreviated deg(p), and the ele-
ment rn is called the leading coefficient of p. (In the differential operator
ring case, namely R[x;σ], it is common to call n the order of p rather
that the degree.) The zero element of R[x;σ, δ] is defined to have degree
−∞ and leading coefficient 0.

Strictly speaking, n and rn should be called the left degree and the
left leading coefficient of p, since if p can be written with right-hand
coefficients, that is,

p = xmr′m + xm−1r′m−1 + ...+ xr′1 + r′0

for some r′i ∈ R with r′m 6= 0 (which is not always possible), it can easily
happen that n 6= m or that rn 6= rm. The Exercise (2O) [41] implies
that if r′m ∈ ker(σm), then n < m, while if r′m /∈ ker(σm), then n = m
and rn = σn(r′n).

Now let us show the uniqueness of skew polynomial rings R[x;σ, δ].
This follows from a universal mapping property exactly parallel to Lemma
(4.2.2) and Exercise (2F )(a) [41]. However, the proof of the universal
mapping property for R[x;σ, δ] is a bit different because we do not have
an explicit formula for products in this ring.
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4.5.6 Proposition:

[Proposition (2.4) of [41]]. Let S = R[x;σ, δ] be a skew polynomial ring.
Suppose that we have a ring T , a ring homomorphism φ : R → T , and
an element y ∈ T such that yφ(r) = φσ(r)y + φδ(r) for all r ∈ R. Then
there is a unique ring homomorphism ψ : S → T such that ψ|R = φ and
ψ(x)y.

Proof. There is well-defined additive map ψ : S → T given by the rule

ψ(Σirix
i) = Σiφ(ri)y

i

with ψ|R = φ and ψ(x) = y. It is clear that this is the only possibility
for ψ, and so it is enough to show that ψ is a ring homomorphism.

First observe that if t = Σjbjx
j s an arbitrary element of S, then

ψ(xt) = ψ(Σjσ(bj)x
j+1 + Σjδ(bj)x

j) = Σjφσ(bj)y
j+1 + Σjφδ(bj)y

j

Σj(φσ(bj)y + φδ(bj))y
j = Σjyφ(bj)y

j = yψ(t).

It follows by induction that ψ(xit) = yiψ(t) for all i ∈ Z+ and t ∈ S.
Moreover, if a ∈ R, then

ψ(at) = Σjφ(abj)y
j = Σjφ(a)φ(bj)y

j = φ(a)ψ(t).

Consequently, given any s = Σiaix
i in S, we have

ψ(st) = Σiψ(aix
it) = Σiφ(ai)ψ(xit) = Σiφ(ai)y

iψ(t) = ψ(s)ψ(t)

Therefore ψ is a ring homomorphism.

4.5.7 Corollary:

[Corollary (2.5) of [41]]. Let R be a ring, σ a ring endomorphism of R,
and δ an σ-derivation on R. If S = R[x;σ, δ] and S′ = R[x′;σ, δ], there
is a unique ring isomorphism ψ : S → S′ such that ψ(x) = x′ and ψ|R is
the identity map on R.

Proof. As Corollary (4.2.3).

• A GENERAL SKEW HILBERT BASIS THEOREM •

We now turn to the question whether (or when) R[x;σ, δ] is Noethe-
rian. In our treatment of the case R[x;σ] (Theorem (4.4.5)), we made
several uses of the hypothesis that σ was an automorphism. In face,
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that theorem can fail when σ is not an automorphism, as the following
examples show. Consequently, we shall mainly restrict attention to skew
polynomial rings R[x;σ, δ] when σ is an automorphism.

4.5.8 Exercises:

[Exercise (2P) of [41]].

(a) Let R = k[t] be a polynomial ring over a field k, and let σ be the
k-algebra endomorphism of R given by the rule σ(f(t)) = f(t2).
Then R[x;σ] is neither right nor left Noetherian.

(b) Now let R = k[t] be the quotient field of k[t] and extend σ to the k-
algebra endomorphism of R given by the same rule σ(f(t)) = f(t2).
Then R[x;σ] is not right Noetherian.

4.5.9 Theorem:

[Theorem (2.6) of [41]]. Let S = R[x;σ, δ], where σ is an automorphism
of R. If R is right (left) Noetherian, then so is S.

Proof. In the right Noetherian case, we can follow the same steps as
in Theorem (4.4.5), with some help from Exercise (2O) [41] to keep
track of leading coefficients. The set equation R + Rx + ... + Rxn−1 =
R+ xR+ ...+Xn−1R in Step 3 still holds, although a bit more work is
needed to check it (Exercise (2O) [41] is helpful there too).

Now suppose that R is left Noetherian. Then Rop is right Noetherian,
and Exercise (2R) [41] shows that R[x;σ, δ] = R[x;σ−1,−δσ−1], where
σ−1 is viewed as an automorphism of Rop. By the case above, R[x;σ, δ]op

is right Noetherian, and therefore R[x;σ, δ] is left Noetherian.

4.6 Skew Polynomial Rings (particular cases)

Let R be a ring and σ an endomorphism of a ring R. Recall that R is
said to be a σ(∗)-ring if aσ(a) ∈ P (R) implies a ∈ P (R) for a ∈ R, where
P (R) is the prime radical of R. We also recall that R is said to be a
weak σ-rigid ring if aσ(a) ∈ N(R) if and only if a ∈ N(R) for a ∈ R,
where N(R) is the set of nilpotent elements of R. Also recall that when
P (R) = N(R), then R is a 2-primal ring.
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4.6.1 Theorem:

Let R be a Noetherian Q-algebra. Let σ be an automorphism of R
and δ be a σ-derivation of R such that σ(δ(a)) = δ(σ(a)), for a ∈ R.
Then P ∈ MinSpec(O(R)) such that σ(P ∩ R) = P ∩ R implies P ∩
R ∈ MinSpec(R) and P1 ∈ MinSpec(R) such that σ(P1) = P1 implies
O(P1) ∈MinSpec(O(R)).

Proof. Let P1 ∈ MinSpec(R) with σ(P1) = P1. Let T = R[[t, σ]], the
skew power series ring. Now it can be seen that etδ is an automor-
phism of T and P1T ∈ MinSpec(T ). We also know that (etδ)k(P1T ) ∈
MinSpec(T ) for all integers k ≥ 1. Now T is Noetherian by Exer-
cise (1ZA(c)) of [38], and therefore Theorem (2.4) of [38] implies that
MinSpec(T ) is finite. So exists an integer n ≥ 1 such that (etδ)n(P1T ) =
P1T ;i.e. (entδ)(P1T ) = P1T . But R is a Q-algebra, therefore, etδ(P1T ) =
P1T . Now for any a ∈ P1, a ∈ P1T also, and so etδ(a) ∈ P1T ;i.e.
a+ δ(a) + tδ(a) + (t2/2!)δ2(a) + ... ∈ P1T , which implies that δ(a) ∈ P1.
Therefore δ(P1 ⊆ P1.

Now it can be easily seen that O(P1) ∈ Spec(O(R)). Suppose that
O(P1) /∈ MinSpec(O(R)), and P2 ⊂ O(P1) is a minimal prime ideal
of O(R). Then we have P2 = O(P2 ∩ R) ⊂ O(P1) ∈ MinSpec(O(R)).
Therefore P2 ∩ R ⊂ P1, which is a contradiction as P2 ∩ R ∈ Spec(R).
Hence O(P1) ∈ Spec(O(R)).

Conversely, let P ∈ MinSpec(O(R)) with σ(P ∩ R) = P ∩ R. Then
it can be easily seen that P ∩R ∈ Spec(R) and O(P ∩R) ∈ Spec(O(R)).
therefore O(P ∩ R) = P . We now show that P ∩ R ∈ MinSpec(R).
Suppose that P3 ⊂ P ∩ R, and P3 ∈ MinSpec(R). Then O(P3) ⊂
O(P ∩R) = P . But O(P3) ∈ Spec(O(R)) and, O(P3 ⊂ P ), which is not
possible. Thus we have P ∩R ∈MinSpec(R).

4.6.2 Proposition:

Let R be a 2-primal ring. Let σ be an automorphism of R and δ be a
σ-derivation of R such that δ(P (R)) ⊆ P (R). If P ∈ MinSpec(R) is
such that σ(P ) = P , then δ(P ) ⊆ P .

Proof. Let P ∈ MinSpec(R). Now for any a ∈ P there exists b /∈ P
such that ab ∈ P (R) by Corollary(1.10) of [86].
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Now δ(P (R)) ⊆ P (R), and therefore δ(ab) ∈ P (R); i.e., δ(a)σ(b) +
aδ(b) ∈ P (R) ⊆ P . Now aδ(b) ∈ P implies that δ(a)σ(b) ∈ P . Also
σ(P ) = P and by Proposition (1.11) of [86], P is completely prime, we
have δ(a) ∈ P . Hence δ(P ) ⊆ P .

4.6.3 Theorem:

Let R be a δ-ring. Let σ and δ be as above such that δ(P (R)) ⊆ P (R).
Then R is 2-primal.

Proof. Define a map ρ : R/P (R) → R/P (R) by ρ(a + P (R)) = δ(a) +
P (R) for a ∈ R and τ : R/P (R) → R/P (R) a map by τ(a + P (R)) =
σ(a) + P (R) for a ∈ R, then it is clear that τ is an automorphism of
R/P (R) and ρ is a τ -derivation of R/P (R).Now aδ(a) ∈ P (R) if and only
if (a+P (R))ρ(a+P (R)) = P (R) in R/P (R). Thus as in Proposition(5)
of [47], R is a reduced ring and, therefore R is 2-primal.

4.6.4 Proposition:

Let R be a ring. Let σ and δ be as usual. Then:

(1) For any completely prime ideal P of R with δ(P ) ⊆ P , P [x;σ, δ] is
a completely prime ideal of R[x;σ, δ].

(2) For any completely prime ideal U of R[x;σ, δ], U∩R is a completely
prime ideal of R.

Proof. (1) Let P be completely prime ideal of R. Now let f(x) =∑n
i=0 x

iai ∈ R[x;σ, δ] and g(x) =
∑m

j=o x
jbj ∈ R[x;σ, δ] be such

that f(x)g(x) ∈ P [x;σ, δ]. Suppose f(x) /∈ P [x;σ, δ]. We will
show that g(x) ∈ P [x;σ, δ]. We use induction on n and m. For
n = m = 1, the verification is easy. We check for n = 2 and
m = 1. Let f(x) = x2a + xb + c and g(x) = xu + v. Now
f(x)g(x) ∈ P [x;σ, δ] with f(x) /∈ P [x;σ, δ]. The possibilities are
a /∈ P or b /∈ P or c /∈ P or any two out of these three do not be-
long to P or all of them do not belong to P . We verify case by case.

Let a /∈ P . Since x3σ(a)u + x2(δ(a)u + σ(b)u + av) + x(δ(b)u +
σ(c)u + bv) + δ(c)u + cv ∈ P [x;σ, δ], we have σ(a)u ∈ P , and so
u ∈ p. Now δ(a)u+ σ(b)u+ av ∈ P implies av ∈ P and so v ∈ P .
Therefore g(x) ∈ P [x;σ, δ].
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Let b /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then σ(a) ∈ P and
therefore a, δ(a) ∈ P . Now δ(a)u + σ(b)u + av ∈ P implies that
σ(b)u ∈ P which in turn implies that b ∈ P , which is not the case.
Therefore we have u ∈ P . Now δ(b)u+σ(c)u+ bv ∈ P implies that
bv ∈ P and therefore v ∈ P . Thus we have g(x) ∈ P [x;σ, δ].

Let c /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then as above a, δ(a) ∈
P . Now δ(a)u+σ(b)u+av ∈ P implies that σ(b)u ∈ P . Now u /∈ P
implies that σ(b) ∈ P ; i.e., b, δ(b) ∈ P . Also δ(b)u+σ(c)u+bv ∈ P
implies σ(c) ∈ P and therefore σ(c) ∈ P which is not the case.
Thus we have u ∈ P . Now δ(c)u + cv ∈ P implies cv ∈ P , and so
v ∈ P . Therefore g(x) ∈ P [x;σ, δ].

Now suppose the result is true for k, n = k > 2 and m = 1. We will
prove for n = k + 1. Let f(x) = xk+1ak+1 + xkak + ...+ xa1 + a0,
and g(x) = xb1 + b0 be such that f(x)g(x) ∈ P [x;σ, δ], but f(x) /∈
P [x;σ, δ]. We will show that g(x) ∈ P [x;σ, δ]. If ak+1 /∈ P ,
then equating coefficients of xk+2, we get σ(ak+1)b1 ∈ P , which
implies that b1 ∈ P . Now equating coefficients of xk+1, we get
σ(ak)b1 + ak+1b0 ∈ P , which implies that ak+1b0 ∈ P , and there-
fore b0 ∈ P . Hence g(x) ∈ P [x;σ, δ].

If aj /∈ P , 0 ≤ j ≤ k, then using induction hypothesis, we get that
g(x) ∈ P [x;σ, δ]. Therefore the statement is true for all n. Now
using the same process, it can be easily seen that the statement is
true for all m also.

(2) Let U be a completely prime ideal of R[x;σ, δ]. Suppose a, b ∈ R
are such that ab ∈ U ∩R with a /∈ U ∩R. This means that a /∈ U
as a ∈ R. Thus we have ab ∈ U ∩ R ⊆ U , with a /∈ U . Therefore
we have b ∈ U , and thus b ∈ U ∩R.

4.6.5 Corollary:

Let R be a δ-ring, where σ and δ be as usual such that δ(P (R)) ⊆ P (R).
Let P ∈ MinSpec(R) be such that σ(P ) = P . Then P [x;σ, δ] is a
completely prime ideal of R[x;σ, δ].
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Proof. R is 2-primal by Theorem(4.6.3) and so by Proposition (4.6.2)
δ(P ) ⊆ P . Further more P is completely prime ideal by Proposi-
tion(1.11) of [53]. Now by Proposition(4.6.4) the result is obvious.

4.6.6 Theorem:

Let R be a δ-ring, where σ and δ be as usual such that δ(P (R)) ⊆ P (R)
and σ(P ) = P for all P ∈ MinSpec(R). Then R[x;σ, δ] is 2-primal if
and only if P (R)[x;σ, δ] = P (R[x;σ, δ]).

Proof. LetR[x;σ, δ] be 2-primal. Now by Corollary (4.6.5) P (R[x;σ, δ]) ⊆
P (R)[x;σ, δ]. Let f(x) =

∑n
j=0 x

jaj ∈ P (R)[x;σ, δ]. Now R is a 2-
primal subring of R[x;σ, δ] by Theorem (4.6.3), which implies that aj
is nilpotent and thus aj ∈ N(R[x;σ, δ]) = P (R[x;σ, δ]), and so we
have xjaj ∈ P (R[x;σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x;σ, δ]). Hence P (R)[x;σ, δ] = P (R[x;σ, δ]).

Conversely, suppose P (R)[x;σ, δ] = P (R[x;σ, δ]). We will show that
R[x;σ, δ] is 2-primal. Let g(x) =

∑n
i=0 x

ibi ∈ R[x;σ, δ], be such that
(g(x))2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]. We will show that g(x) ∈
P (R[x;σ, δ]). Now leading coefficient σ2n−1(bn)bn ∈ P (R) ⊆ P , for all
P ∈MinSpec(R). Now σ(P ) = P and P is completely prime by Propo-
sition (1.11) of [53]. Therefore we have bn ∈ P , for all P ∈MinSpec(R);
i.e., bn ∈ P (R). Now since δ(P (R)) ⊆ P (R) and σ(P ) = P for all
P ∈ MinSpec(R), we get (

∑n−1
i=0 x

ibi)
2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite
number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have
(g(x)) ∈ P (R)[x;σ, δ];i.e. (g(x)) ∈ P (R[x;σ, δ]). Therefore P (R[x;σ, δ])
is completely semiprime. Hence R[x;σ, δ] is 2-primal.

4.6.7 Theorem:

Let R be a δ-Noetherian Q-algebra such that σ(δ(a)) = δ(σ(a)), for all
a ∈ R; σ(P ) = P for all P ∈ MinSpec(R) and δ(P (R)) = P (R), where
σ and δ are as usual. Then R[x, σ, δ] is 2-primal.

Proof. We use Theorem (4.6.2) to get that P (R)[x, σ, δ] = P (R[x, σ, δ])
and now the result is obvious by using Theorem (4.6.5).



Chapter 4: Skew Polynomial Rings 125

4.6.8 Corollary:

Let R be a commutative δ-Noetherian Q-algebra such that σ(δ(a)) =
δ(σ(a)), for all a ∈ R; σ(P ) = P for all P ∈ MinSpec(R), where σ and
δ are as usual. Then R[x, σ, δ] is 2-primal.

Proof. Using Theorem (1) of [84] we get δ(P (R)) = P (R). Now rest is
obvious.

Now we give a relation between a σ(∗)-ring and a weak σ-rigid ring.
We also give a necessary and sufficient condition for a Noetherian ring
to be a weak σ-rigid ring.

4.6.9 Proposition:

[Proposition (1) of [14]]. Let R be a ring and σ an automorphism of R.
Then R is a σ(∗)-ring implies P (R) is completely semiprime.

Proof. See Proposition (4.1.13).

4.6.10 Proposition:

[Proposition (2) of [14]]. Let R be a Noetherian ring and σ an automor-
phism of R. Then R is a σ(∗)-ring implies that R is 2-primal.

Proof. By Proposition (4.6.9) P (R) is completely semiprime. Therefore,
R is 2-primal.

4.6.11 Theorem:

Let R be a Noetherian ring, and σ an automorphism of R. Then R is a
σ(∗)-ring if and only if for each minimal prime U of R, σ(U) = U and U
is completely prime ideal of R.

Proof. Let R be a Noetherian ring such that for each minimal prime U
of R, σ(U) = U and U is completely prime ideal of R. Let a ∈ R be
such that aσ(a) ∈ P (R) = ∩ni=1Ui, where Ui are the minimal primes of
R. Now for each i, a ∈ Ui or σ(a) ∈ Ui as Ui are completely prime. Now
σ(a) ∈ Ui = σ(Ui) implies that a ∈ Ui. Therefore a ∈ P (R). Hence R
is a σ(∗)-ring.

Conversely, suppose that R is a σ(∗)-ring and let U = U1 be a min-
imal prime ideal of R. Now by Proposition (4.6.9), P (R) is completely
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semiprime. Let U2, U3, ..., Un be the other minimal primes of R. Sup-
pose that σ(U) 6= U . Then σ(U) is also a minimal prime ideal of R.
Renumber so that σ(U) = Un. Let a ∩n−1i=1 Ui. Then σ(a) ∈ Un, and
so aσ(a) ∈ ∩ni=1Ui = P (R). Therefore a ∈ P (R), and thus ∩n−1i=1 ⊆ Un,
which implies that Ui ⊆ Un for some i 6= n, which is impossible. Hence
σ(U) = U .

Now suppose that U = U1 is not completely prime. Then there exist
a, b ∈ R U with ab ∈ U . Let c be any element of b(U2 ∩ U3 ∩ ... ∩ Un)a.
Then c2 ∈ ∩ni=1Ui = P (R). So c ∈ P (R) and, thus b(U2 ∩ U3 ∩ ... ∩
Un)a ⊆ U . Therefore bR(U2 ∩ U3 ∩ ... ∩ Un)Ra ⊆ U and, as U is prime,
a ∈ U,Ui ⊆ U for some i 6= 1 or b ∈ U . None of these can occur, so U is
completely prime.

4.6.12 Proposition:

[Proposition (3) of [14]]. Let R be a Noetherian ring which is also an
algebra overQ. Let σ be an automorphism of R such that R is a σ(∗)-ring
and δ a σ-derivation of R. Then δ(U) ⊆ U for all U ∈MinSpec(R).

Proof. We note that Proposition (4.6.9) implies that P (R) is completely
semiprime. Let U ∈ MinSpec(R). Then Theorem (4.6.11) implies that
σ(U) = U .

Let now T = {a ∈ U | such that δk(a) ∈ U for all integers k ≥ 1}.
First of all, we will show that T is an ideal of R. Let a, b ∈ T . Then
δk(a) ∈ U and δk(b) ∈ U for all integers k ≥ 1. Now δk(a − b) =
δk(a) − δk(b) ∈ U for all k ≥ 1. Therefore a − b ∈ T . Therefore T is a
δ-invariant ideal of R.

We will now show that T ∈ Spec(R). Suppose T /∈ Spec(R). Let
a /∈ T, b /∈ T be such that aRb ⊆ T . Let t, s be least such that δt(a) /∈ U
and δs(b) /∈ U . Now there exists c ∈ R such that δt(a)cσt(δs(b)) /∈
U . Let d = σ−t(c). Now δt+s(adb) ∈ U as aRb ⊆ T . This implies
on simplification that δt(a)δt(d)σt(δs(b)) + u ∈ U , where u is sum of
terms involving δl(a) or δm(b), where l < t and m < s. Therefore by
assumption u ∈ U which implies that δt(a)σt(d)σt(δs(b)) ∈ U . This
is a contradiction. Therefore, our supposition must be wrong. Hence
T ∈ Spec(R). Now T ⊆ U , so T = U as U ∈ MinSpec(R). Hence
δ(U) ⊆ U .
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4.6.13 Proposition:

[Proposition (4) of [14]]. Let R be a Noetherian ring which is also an
algebra over Q. Let σ be an automorphism of R such that R is a σ(∗)-
ring. Then U ∈ MinSpec(R) implies that UO(R) = U [x;σ, δ] is a
completely prime ideal of O(R) = R[x;σ, δ].

Proof. Proposition (4.6.9) implies that P (R) is completely semiprime
ideal of R. Let U ∈ MinSpec(R). Then Theorem (4.6.11) implies that
σ(U) = U and U is completely prime. Also by Proposition (4.6.12)
δ(U) ⊆ U . Now Theorem (4.6.4) implies that UO(R) = U [x;σ, δ] is a
completely prime ideal of O(R) = R[x;σ, δ].

4.6.14 Theorem:

[Theorem (5) of [14]]. Let R be a Noetherian ring. Let σ be an automor-
phism of R such that R is a σ(∗)-ring. Then R is a weak σ-rigid ring.
Conversely a 2-primal weak σ-rigid ring is a σ(∗)-ring.

Proof. Let σ be an automorphism of R such that R is a σ(∗)-ring. Now
Proposition (4.6.10) implies that R is 2-primal, i.e., N(R) = P (R). Thus
aσ(a) ∈ N(R) = P (R) implies that a ∈ P (R) = N(R). Hence R is weak
σ-rigid ring.

Conversely let R be 2-primal weak σ-rigid ring. Then N(R) = P (R)
and aσ(a) ∈ N(R) implies that a ∈ N(R). Therefore, aσ(a) ∈ P (R)
implies that a ∈ P (R). Hence R is a σ(∗)-ring.

4.6.15 Theorem:

[Theorem (6) of [14]]. Let R be a commutative Noetherian ring. Let σ
be an automorphism of R. Then R is a weak σ-rigid ring implies that
N(R) is completely semiprime.

Proof. First of all we show that σ(N(R)) = N(R). We have σ(N(R) ⊆
N(R) as σ(N(R)) is a nilpotent ideal of R. Now for any n ∈ N(R), there
exists a ∈ R such that n = σ(a). So

I = σ−1(N(R)) = {a ∈ R such that σ(a) = n ∈ N(R)}

is an ideal of R. Now I is nilpotent, therefore I ⊆ N(R), which implies
that N(R) ⊆ σ(N(R)). Hence σ(N(R)) = N(R).
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Now let R be a weak σ-rigid ring. We will show that N(R) is
completely semiprime. Let a ∈ R be such that a2 ∈ N(R). Then
aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(N(R)) = N(R). Therefore aσ(a) ∈
N(R) and hence a ∈ N(R). So N(R) is completely semiprime.

4.6.16 Corollary:

[Corollary (1) of [14]]. Let R be a commutative Noetherian ring. Let σ
be an automorphism of R. Then R is a 2-primal weak σ-rigid ring if and
only if for each minimal prime U of R, σ(U) = U and U is completely
prime ideal of R.

Proof. Combine Theorem (4.6.11) and Theorem (4.6.15).

4.6.17 Proposition:

[Proposition (5) of [14]]. Let R be a commutative Noetherian ring. Let σ
be an automorphism of R such that R is a σ(∗)-ring. Then O(N(R)) =
N(O(R)).

Proof. Proposition (4.6.10) implies that R is 2-primal. Now it is easy to
see that O(N(R)) ⊆ N(O(R)). We will show that N(O(R)) ⊆ O(N(R)).
Let f = Σm

i=0x
iai ∈ N(O(R)). Then (f)(O(R)) ⊆ N(O(R)), and

(f)(R) ⊆ N(O(R)). Let ((f)(R))k = 0, k > 0. Then equating lead-
ing term to zero, we get

(xmamR)k = 0.

After simplification equating leading term to zero, we get

xkmσ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0.

Therefore

σ(k−1)m(amR).σ(k−2)m(amR).σ(k−3)m(amR)...amR = 0 ⊆ P,

for all P ∈MinSpec(R).This implies that σ(k−j)m(amR) ⊆ P , for some
j, 1 ≤ j ≤ k. Therefore, amR ⊆ σ−(k−j)m(P ). But σ−(k−j)m(P ) = P
by Theorem (4.6.11). So we have amR ⊆ P , for all P ∈ Min.Spec(R).
Therefore, am ∈ P (R), and R being 2-primal implies that am ∈ N(R).
Now xmam ∈ O(N(R)) ⊆ N(O(R)) implies that Σm−1

i=0 x
iai ∈ N(O(R)),

and with the same process, in a finite number of steps, it can be seen
that ai ∈ P (R) = N(R), 0 ≤ i ≤ m− 1. Therefore f ∈ O(N(R)). Hence
N(O(R)) ⊆ O(N(R)) and the result.
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We note that if σ is an endomorphism of a ring R and δ a σ-derivation
of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then σ can be extended
to an endomorphism (say σ) of R[x;σ, δ] by

σ(Σm
i=0x

iai) = Σm
i=0x

iσ(ai).

Also δ can be extended to a σ-derivation (say δ) of R[x;σ, δ] by

δ(Σm
i=0x

iai) = Σm
i=0x

iδ(ai).

We now prove the following:

4.6.18 Theorem:

[Theorem (7) of [14]]. Let R be a 2-primal commutative Noetherian
ring. Let σ be an automorphism of R and δ a σ-derivation of R such
that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then R is a weak σ-rigid ring
implies that O(R) = R[x;σ, δ] is a weak σ-rigid ring.

Proof. Let R be a weak σ-rigid ring. Then Theorem (4.6.14) implies
that R is a σ(∗)-ring. Also Proposition (4.6.17) implies that O(N(R)) =
N(O(R)). We show that R[x;σ, δ] is a weak σ-rigid ring.

Let f ∈ O(R) (say f = Σm
i=0x

iai) be such that fσ(f) ∈ N(O(R)).
We use induction on m to prove the result. For m = 1, f = xa1+a0. Now
fσ(f) ∈ N(O(R)) implies that (xa1 +a0)(xσ(a1) +σ(a0)) ∈ N(O(R)) =
O(N(R)), i.e.,

x2σ2(a1) +xδ(a1)σ(a1) +xσ(a0)σ(a1) + δ(a0)σ(a1) +xa1σ(a0) +a0σ(a0)

∈ O(N(R)) (4.1)

Therefore, σ2(a1) ∈ N(R). Now σ(N(R)) = N(R) implies that σi(a1) ∈
N(R) for all i ≥ 1. So (1) implies that a0σ(a0) ∈ N(R), and R being a
weak σ-rigid ring implies that a0 ∈ N(R). Therefore, f ∈ O(N(R)) =
N(O(R)).

Suppose the result is true for m = k. We prove for m = k + 1. Now
fσ(f) ∈ N(O(R)) implies that

(xk+1ak+1 + ...+ a0)(x
k+1σ(ak+1) + ...+ σ(a0)) ∈ N(O(R)) = O(N(R)),

i.e.,

x2k+2σk+2(ak+1) + x2k+1(σk(ak+1)σ(ak) + σk+1(ak)σ(ak+1)) + gσ(g)
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∈ O(N(R)),

whereg = Σk
i=0x

iai . Therefore, σk+2(ak+1) ∈ N(R) implies that ak+1 ∈
N(R). Also σk(ak+1)σ(ak) + σk+1(ak)σ(ak+1) ∈ N(R) implies that
gσ(g) ∈ N(O(R)), but degree of g is k, therefore, by induction hypoth-
esis, the result is true for all m.

4.6.19 Corollary:

Let R be a Noetherian σ(∗)-ring, where σ is an automorphism of R.
Then P ∈ MinSpec(S(R)) if and only if there exists Q ∈ MinSpec(R)
such that S(Q) = P and (P ∩R) = Q.

Proof. R is a Noetherian σ(∗)-ring, therefore U0 = U for any U ∈
MinSpec(R) by Theorem (4.6.11). Now use Theorem (2.4) of [9].

4.6.20 Corollary:

Let R be a Noetherian σ(∗)-ring, where σ is an automorphism of R.
Then P (R)[x;σ] = P (R[x;σ]).

4.6.21 Theorem:

Let R be a Noetherian σ(∗)-ring, where σ is an automorphism of R.
Then R[x;σ] is also a Noetherian σ(∗)-ring.

Proof. R[x;σ] is Noetherian by Hilbert Basis Theorem (Theorem (1.12)
of Goodearl and Warfield [38]). Now we have P (R)[x;σ] = P (R[x;σ])
by Corollary (4.6.20). Let f(x) = Σn

i=0x
iai ∈ R[x;σ] be such that

f(x)σ(f(x)) ∈ P (R[x;σ]) = P (R)[x;σ]; i.e.

(xnan + ...+ a0)(x
nσ(an) + ...+ σ(a0)) ∈ P (R)[x;σ],

or
x2nσn(an)σ(an) + ...+ a0σ(a0) ∈ P (R)[x;σ],

which implies that a0σ(a0) ∈ P (R), and therefore a0 ∈ P (R), as R is a
σ(∗)-ring.

Therefore g(x)σ(g(x)) ∈ P (R)[x;σ], where g(x) = σni=1x
iai. With

the same process as above, in a finite number of steps, we get that
ai ∈ P (R) for all i, 1 ≤ i ≤ n. Thus f(x) ∈ P (R)[x;σ] = P (R[x;σ]).
Hence R[x;σ] is also a Noetherian σ(∗)-ring.



Chapter 4: Skew Polynomial Rings 131

4.6.22 Proposition:

LetR be a NoetherianQ-algebra, σ an automorphism and δ a σ-derivation
of R. Then etδ is an automorphism of T = R[[t, σ]], the skew power series
ring.

Proof. The proof is on the same lines as in Seidenberg [84] and in the
noncommutative case on the same lines as provided by Blair and Small
in [18].

4.6.23 Lemma:

LetR be a NoetherianQ-algebra, σ an automorphism and δ a σ-derivation
of R. Then an ideal I of R is δ-invariant if and only if TI is etδ-invariant.

Proof. Let TI be etδ-invariant. Let a ∈ I. Then a ∈ TI. So etδ(a) ∈ TI;
i.e. a+ tδ(a) + (t2δ2/2!)(a) + ... ∈ TI. Therefore δ(a) ∈ I.

Conversely suppose that δ(I) ⊆ I and let f = Σtiai ∈ TI. Then
etδ(f) = f + tδ(f) + (t2δ2/2!)(f) + ... ∈ TI, as δ(ai) ∈ I. Therefore
etδ(TI) ⊆ TI. Replacing etδ by e−tδ, we get that etδ(TI) = TI.

Let σ be an automorphism of a ring R, and I be an ideal of R such
that σ(I) = I. Then it is easy to see that TI ⊆ IT and IT ⊆ TI. Hence
TI = IT is ideal of T .

4.6.24 Proposition:

Let R be a Noetherian σ(∗)-ring and T as usual. Then:

(1) U ∈MinSpec(R) implies that UT ∈MinSpec(T ).

(2) P ∈ MinSpec(T ) implies that P ∩ R ∈ MinSpec(R) and P =
(P ∩R)T .

Proof. (1) Let U ∈ MinSpec(R). Then σ(U) = U by Theorem 4.6.11.
Now UT ∈ Spec(T ). Suppose UT /∈ MinSpec(T ) and J ⊂ UT is a
minimal Prime ideal of T . Then (J ∩ R) ⊂ UT ∩ R = U which is a
contradiction, as (J ∩R) ∈ Spec(R). Therefore UT ∈Min.Spec(T ).

(2) Let P ∈MinSpec(T ). Then P∩R ∈ Spec(R). Suppose (P∩R) /∈
MinSpec(R) and M ⊂ P ∩R is a minimal prime ideal of R. Then MT ⊂
(P ∩ R)T ⊆ P , which is a contradiction, as MT ∈ Spec(R). Therefore
(P ∩R) ∈MinSpec(R). Now it is easy to see that (P ∩R)T = P .
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4.6.25 Proposition:

Let R be a Noetherian σ(∗)-ring which is also an algebra over Q, where
σ is an automorphism of R and δ a σ-derivation of R. Then P ∈
MinSpec(R) implies δ(P ) ⊆ P .

Proof. Let T be as usual. Now by Proposition (4.6.22) etδ is an auto-
morphism of T . Let P ∈ MinSpec(R)). Then by Proposition (4.6.24)
PT ∈ MinSpec(T ).Therefore there exists an integer n ≥ 1 such that
(etδ)n(PT ) = PT ;i.e. (entδ)(PT ) = PT . But R is a Q-algebra, there-
fore, etδ(PT ) = PT and now Lemma (4.6.23) implies δ(P ) ⊆ P .

4.6.26 Proposition:

Let R be a σ(∗)-ring, which is also an algebra over Q and σ is an au-
tomorphism of R. Let U ∈ MinSpec(R). Then U(O(R)) = U [x;σ, δ] is
a completely prime ideal of O(R) = R[x;σ, δ], where δ a σ-derivation of
R.

Proof. Let U ∈MinSpec(R). Then σ(U) = U by Theorem (4.6.11), and
δ(U) ⊆ U by Proposition (4.6.25). Now R is 2-primal by Proposition
(4.1.13) and furthermore U is completely prime by Theorem (4.6.11).
Now we note that σ can be extended to an automorphism σ of R/U
and δ can be extended to a σ-derivation δ of R/U . Now it is well known
that O(R)/U(O(R)) ' (R/U)[x;σ, δ] and hence U(O(R)) is a completely
prime ideal of O(R).

4.6.27 Theorem:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q and
σ is an automorphism of R. Let δ be a σ-derivation of R. Then P ∈
MinSpec(O(R)) implies that P ∩R ∈MinSpec(R), and conversely P1 ∈
MinSpec(R) implies that O(P1) ∈Min.Spec(O(R).

Proof. Let P1 ∈ MinSpec(R). Then σ(P1) = P1 by Theorem (4.2.8),
and δ(P1) ⊆ P1 by Proposition (4.6.25). Now it can be seen that
O(P1) ∈ Spec(O(R)). Suppose that O(P1) /∈ MinSpec(O(R)), and
P2 ⊂ O(P1) is a minimal prime ideal of O(R). Then we have P2 =
O(P2 ∩ R) ⊂ O(P1) ∈ MinSpec(O(R)). Therefore P2 ∩ R ⊂ P1, which
is a contradiction as P2 ∩R ∈ Spec(R). Hence O(P1) ∈ Spec(O(R)).
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Conversely, let P ∈ MinSpec(O(R)) with σ(P ∩ R) = P ∩ R. Then
it can be easily seen that P ∩R ∈ Spec(R) and O(P ∩R) ∈ Spec(O(R)).
therefore O(P ∩ R) = P . We now show that P ∩ R ∈ MinSpec(R).
Suppose that P3 ⊂ P ∩ R, and P3 ∈ MinSpec(R). Then O(P3) ⊂
O(P ∩R) = P . But O(P3) ∈ Spec(O(R)) and, O(P3 ⊂ P ), which is not
possible. Thus we have P ∩R ∈MinSpec(R).

4.6.28 Corollary:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q and
σ is an automorphism of R. Let δ be a σ-derivation of R. Then
P (R[x;σ, δ]) = P (R)[x;σ, δ].

4.6.29 Theorem:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q and σ
is an automorphism of R. Let δ be a σ-derivation of R. Then R[x;σ, δ]
is 2-primal if and onlyP (R[x;σ, δ]) = P (R)[x;σ, δ].

Proof. LetR[x;σ, δ] be 2-primal. Now by Proposition (4.6.26) P (R[x;σ, δ])
⊆ P (R)[x;σ, δ]. Let f(x) =

∑n
j=0 x

jaj ∈ P (R)[x;σ, δ]. Now R is a 2-
primal subring of R[x;σ, δ] by Proposition (4.1.13), which implies that
aj is nilpotent and thus aj ∈ N(R[x;σ, δ]) = P (R[x;σ, δ]), and so we
have xjaj ∈ P (R[x;σ, δ]) for each j, 0 ≤ j ≤ n, which implies that
f(x) ∈ P (R[x;σ, δ]). Hence P (R)[x;σ, δ] = P (R[x;σ, δ]).

Conversely, suppose P (R)[x;σ, δ] = P (R[x;σ, δ]). We will show that
R[x;σ, δ] is 2-primal. Let g(x) =

∑n
i=0 x

ibi ∈ R[x;σ, δ], be such that
(g(x))2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]. We will show that g(x) ∈
P (R[x;σ, δ]). Now leading coefficient σ2n−1(bn)bn ∈ P (R) ⊆ P , for
all P ∈ MinSpec(R). Now σ(P ) = P and P is completely prime by
Theorem (4.6.11). Therefore we have bn ∈ P , for all P ∈ MinSpec(R);
i.e., bn ∈ P (R). Now δ(P (R)) ⊆ P (R) for all P ∈ MinSpec(R) by
Proposition (4.6.25), we get (

∑n−1
i=0 x

ibi)
2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]

and as above we get bn−1 ∈ P (R). With the same process in a finite
number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have
(g(x)) ∈ P (R)[x;σ, δ]; i.e., (g(x)) ∈ P (R[x;σ, δ]). Therefore P (R[x;σ, δ])
is completely semiprime. Hence R[x;σ, δ] is 2-primal.
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4.6.30 Theorem:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q and σ
is an automorphism of R. Let δ be a σ-derivation of R. Then R[x;σ, δ]
is 2-primal Noetherian.

Proof. R[x;σ, δ] is Noetherian by Hilbert Basis Theorem (Theorem (1.12)
of Goodearl and Warfield [38]). We now use Theorem (4.6.27) to get that,
P (R)[x;σ, δ] = P (R[x;σ, δ]) and the result now follows from Theorem
(4.6.28).

The following example shows that if R is a Noetherian ring, then
R[x;σ, δ] need not be 2-primal.

4.6.31 Example:

Let R = Q ⊕ Q with σ(a, b) = (b, a). Then the only σ-invariant ideals
of R are 0 and R and, so R is σ-prime. Let σ : R → R be defined by
σ(r) = ra − aσ(r), where a = (0, α) ∈ R. Then δ is a σ-derivation of
R and R[x;σ, δ] is prime and P (R[x;σ, δ]) = 0. But (x(1, 0))2 = 0 as
δ(1, 0) = −(0, α). Therefore R[x;σ, δ] is not 2-primal. If δ is taken to be
the zero map, then even R[x;σ] is not 2-primal.

The following example shows that if R is a Noetherian ring , then
even R[x] need not be 2-primal.

4.6.32 Example:

Let R = M2(Q), the set of 2× 2 matrices over Q. Then R[x] is a prime
ring with non-zero nilpotent elements and, so can not be 2-primal.

4.6.33 Theorem:

Let R be a Noetherian ring and σ an automorphism of R. Then:

(1) If P ∈ MinSpec(S), then P = (P ∩ R)S and there exists U ∈
MinSpec(R) such that P ∩R = U0.

(2) If U ∈MinSpec(R), then U0S ∈MinSpec(S).

Proof. (1) Let P ∈Min.Spec(S). Then x /∈ P , as it is not a zero-divisor,
therefore P ∩ R is a σ-prime ideal of R and (P ∩ R)S is a prime ideal
of S by Lemma (10.6.4)(ii, iii) and Proposition (10.6.12) of [68]. Hence
P = (P ∩R)S. Now (P ∩R)S is prime, so it the intersection ∩ni=1Ui of



Chapter 4: Skew Polynomial Rings 135

the primes that are minimal over it and these form a single orbit under
σ. Therefore P ∩R = U0

i for each i. Let B be a minimal prime ideal of
R with B ⊆ Ui. Then B0 is σ-prime and B0 ⊆ U0

i = P ∩ R. Therefore
B0S is a prime ideal contained in P = (P ∩ R)S. So B0S = (P ∩ R)S
and, hence B0 = P ∩R.

(2) Let U ∈ MinSpec(R). Then U0 is σ-prime and U0S is a prime
ideal of S by Proposition (10.6.12) of [68]. Now it must contain a minimal
prime ideal P of S (Proposition (2.3) of [38]). Now by paragraph (1)
above P = (P ∩ R)S and P ∩ R = B0 for some B ∈ MinSpec(R).
Therefore B0S ⊆ U0S and B0 ⊆ U0. So σi(B) ⊆ U for some i and
therefore σi(B) = U by the minimality of U . Hence B0 = U0 and
U0S = P is minimal.

4.6.34 Proposition:

Let R be a σ(∗)-ring and U ∈ MinSpec(R) be such that σ(U) = U .
Then US = U [x;σ] is a completely prime ideal of S = R[x;σ].

Proof. R is 2-primal by Proposition (4.1.13) and further more U is com-
pletely prime by Proposition (1.11) of Shin [86]. Now we note that σ can
be extended to an automorphism σ of R/U . Now it is well known that
S/US ' (R/U)[x;σ] and hence US is a completely prime ideal of S.

4.6.35 Theorem:

Let R be a Noetherian σ(∗)-ring, σ an automorphism of R. Then R[x;σ]
is 2-primal if and only if P (R)[x;σ] = P (R[x;σ]).

Proof. LetR[x;σ] be 2-primal. Now by Proposition (4.6.34) P (R[x;σ]) ⊆
P (R)[x;σ]. Let f(x) =

∑n
j=0 x

jaj ∈ P (R)[x;σ]. Now R is a 2-primal
subring of R[x;σ] by Proposition (4.1.13), which implies that aj is nilpo-
tent and thus aj ∈ N(R[x;σ]) = P (R[x;σ]), and so we have xjaj ∈
P (R[x;σ]) for each j, 0 ≤ j ≤ n, which implies that f(x) ∈ P (R[x;σ]).
Hence P (R)[x;σ] = P (R[x;σ]).

Conversely, suppose P (R)[x;σ] = P (R[x;σ]). We will show that
R[x;σ] is 2-primal. Let g(x) =

∑n
i=0 x

ibi ∈ R[x;σ], be such that
(g(x))2 ∈ P (R[x;σ]) = P (R)[x;σ]. We will show that g(x) ∈ P (R[x;σ]).
Now leading coefficient σ2n−1(bn)bn ∈ P (R) ⊆ P , for all P ∈MinSpec(R).
Now σ(P ) = P and P is completely prime by Proposition (1.11) of [86].
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Therefore we have bn ∈ P , for all P ∈MinSpec(R);i.e. bn ∈ P (R). Now
since σ(P ) = P for all P ∈ MinSpec(R) by , we get (

∑n−1
i=0 x

ibi)
2 ∈

P (R[x;σ]) = P (R)[x;σ] and as above we get bn−1 ∈ P (R). With the
same process in a finite number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤
n. Thus we have (g(x)) ∈ P (R)[x;σ];i.e. (g(x)) ∈ P (R[x;σ]). Therefore
P (R[x;σ]) is completely semiprime. Hence R[x;σ] is 2-primal.

4.6.36 Theorem:

Let R be a Noetherian σ(∗)-ring. Then R[x;σ] is 2-primal.

Proof. We use Theorem (4.6.33) to get that P (R)[x;σ] = P (R[x;σ]),
and now the result is obvious by using Theorem (4.6.35).

4.6.37 Proposition:

LetR be a NoetherianQ-algebra, σ an automorphism and δ a σ-derivation
of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then etδ is an automor-
phism of T = R[[t, σ]], the skew power series ring.

Proof. The proof is on the same lines as in Seidenberg [84] and in the
noncommutative case on the same lines as provided by Blair and Small
in [18].

4.6.38 Lemma:

LetR be a NoetherianQ-algebra, σ an automorphism and δ a σ-derivation
of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Let I be an ideal of R
such that σ(I) = I. Then I is δ-invariant if and only if IT is etδ-invariant.

Proof. Let IT be etδ-invariant. Let a ∈ I. Then a ∈ IT . So etδ(a) ∈ IT ;
i.e. a+ tδ(a) + (t2δ2/2!)(a) + ... ∈ IT . Therefore δ(a) ∈ I.

Conversely, suppose that δ(I) ⊆ I and let f = Σtiai ∈ IT . Then
etδ(f) = f + tδ(f) + (t2δ2/2!)(f) + ... ∈ IT , as δ(ai) ∈ I. Therefore
etδ(IT ) ⊆ IT . Replacing etδ by e−tδ, we get that etδ(IT ) = IT .

Assumption: Henceforth we assume that R is a ring and T as usual
such that for any U ∈MinSpec(R) with σ(U) = U , UT ∈MinSpec(T ).
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4.6.39 Proposition:

Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and
δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then
P ∈MinSpec(R) with σ(P ) = P implies δ(P ) ⊆ P .

Proof. Let T be as usual. Now by Proposition (4.6.37) etδ is an au-
tomorphism of T . Let P ∈ MinSpec(R)). Then by assumption PT ∈
MinSpec(T ).Therefore there exists an integer n ≥ 1 such that (etδ)n(PT ) =
PT ;i.e. (entδ)(PT ) = PT . But R is a Q-algebra, therefore, etδ(PT ) =
PT and now Lemma (4.6.38) implies δ(P ) ⊆ P .

4.6.40 Proposition:

LetR be a σ(∗)-ring, which is also an algebra overQ and U ∈MinSpec(R).
Then U(O(R)) = U [x;σ, δ] is a completely prime ideal of O(R) =
R[x;σ, δ], where δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a)) for
all a ∈ R.

Proof. Let U ∈MinSpec(R). Then σ(U) = U by Theorem (4.6.11), and
δ(U) ⊆ U by Proposition (4.6.39). Now R is 2-primal by Proposition
(4.1.13) and furthermore U is completely prime by Theorem (4.6.11).
Now we note that σ can be extended to an automorphism σ of R/U
and δ can be extended to a σ-derivation δ of R/U . Now it is well known
that O(R)/U(O(R)) ' (R/U)[x;σ, δ] and hence U(O(R)) is a completely
prime ideal of O(R).

4.6.41 Theorem:

Let R be a Noetherian Q-algebra. Consider O(R) as usual such that
Let R be a σ(∗)-ring and σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then P1 ∈
MinSpec(R) with σ(P1) = P1 implies that O(P1) ∈MinSpec(O(R).

Proof. Let P1 ∈ MinSpec(R). Then by Theorem (4.2.8) σ(P1) = P1 ,
and by Proposition (4.6.39) δ(P1) ⊆ P1 . Now Proposition (3.3) of [39]
implies that O(P1) ∈ Spec(O(R)). Suppose O(P1) /∈ MinSpec(O(R)),
and P2 ⊂ O(P1) is a minimal prime ideal of O(R). Then P2 = O(P2 ∩
R) ⊂ O(P1) ∈ MinSpec(O(R)). Therefore P2 ∩ R ⊂ P1, which is a
contradiction as P2 ∩R ∈ Spec(R). Hence O(P1) ∈ Spec(O(R)).

Conversely, let P ∈ MinSpec(O(R)) with σ(P ∩ R) = P ∩ R. Then
it can be easily seen that P ∩R ∈ Spec(R) and O(P ∩R) ∈ Spec(O(R)).
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therefore O(P ∩ R) = P . We now show that P ∩ R ∈ MinSpec(R).
Suppose that P3 ⊂ P ∩ R, and P3 ∈ MinSpec(R). Then O(P3) ⊂
O(P ∩R) = P . But O(P3) ∈ Spec(O(R)) and, O(P3 ⊂ P ), which is not
possible. Thus we have P ∩R ∈MinSpec(R).

4.6.42 Theorem:

Let R be a Noetherian σ(∗)-ring, which is also an algebra over Q, σ an
automorphism of R and δ a σ-derivation of R such that σ(δ(a)) = δ(σ(a))
for all a ∈ R. Then R[x;σ, δ] is 2-primal if and only P (R[x;σ, δ]) =
P (R)[x;σ, δ].

Proof. LetR[x;σ, δ] be 2-primal. Now by Proposition (4.6.40) P (R[x;σ, δ])
⊆ P (R)[x;σ, δ]. Let

f(x) =
n∑
j=0

xjaj ∈ P (R)[x;σ, δ].

Now R is a 2-primal subring of R[x;σ, δ] by Proposition (4.1.13), which
implies that aj is nilpotent and thus

aj ∈ N(R[x;σ, δ]) = P (R[x;σ, δ]),

and so we have xjaj ∈ P (R[x;σ, δ]) for each j, 0 ≤ j ≤ n, which implies
that f(x) ∈ P (R[x;σ, δ]). Hence P (R)[x;σ, δ] = P (R[x;σ, δ]).

Conversely, suppose that P (R)[x;σ, δ] = P (R[x;σ, δ]). We will show
that R[x;σ, δ] is 2-primal. Let

g(x) =

n∑
i=0

xibi ∈ R[x;σ, δ], bn 6= 0

be such that

(g(x))2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ].

We will show that g(x) ∈ P (R[x;σ, δ]). Now leading coefficient σ2n−1(bn)bn
∈ P (R) ⊆ P , for all P ∈ MinSpec(R). Also σ(P ) = P and P is
completely prime by Theorem (4.6.11). Therefore we have bn ∈ P , for
all P ∈ MinSpec(R); i.e., bn ∈ P (R). Now δ(P (R)) ⊆ P (R) for all
P ∈MinSpec(R) by Proposition (4.6.39), we get

(

n−1∑
i=0

xibi)
2 ∈ P (R[x;σ, δ]) = P (R)[x;σ, δ]
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and as above we get bn−1 ∈ P (R). With the same process in a finite
number of steps we get bi ∈ P (R) for all i, 0 ≤ i ≤ n. Thus we have
(g(x)) ∈ P (R)[x;σ, δ]; i.e., (g(x)) ∈ P (R[x;σ, δ]). Therefore P (R[x;σ, δ])
is completely semiprime. Hence R[x;σ, δ] is 2-primal.

4.6.43 Theorem:

Let R be a Noetherian, which is also an algebra over Q. Let σ be an
automorphism of R such that R is σ(∗)-ring and δ a σ-derivation of R
such that σ(δ(a)) = δ(σ(a)) for all a ∈ R. Then O(R) = R[x;σ, δ] is
2-primal Noetherian.

Proof. R[x;σ, δ] is Noetherian by Hilbert Basis Theorem (Theorem (1.12)
of Goodearl and Warfield [38]). We now use Theorem (4.6.41) to get that,
P (R)[x;σ, δ] = P (R[x;σ, δ]) and the result now follows from Theorem
(4.6.42).
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5

PRIMARY DECOMPOSITION

The classical theory of primary decomposition due to Emmy Noether
plays an important role in the study of commutative Noetherian rings
(see for example Reid [79] or Sharp [85]). Generalizing this concept to
the noncommutative case we have a primary decomposition theory which
was first considered by Gordon in [43]. This approach reduces to the
classical case when the ring is commutative and seems to be particularly
useful. Unfortunately not all Noetherian rings admit such a decomposi-
tion as an example of Brown [[22], Example (6.4)] shows. However many
reasonable classes of rings do. Gordon in [[43], Corollary (2.4)] shows
that every right fully bounded right Noetherian ring has a right primary
decomposition, and Jategaonkar [[50], Theorem (8.3.9)] proves the same
result for Noetherian rings with the second layer condition. In this chap-
ter we present a straight forward generalization of these results for both
right and two sided Noetherian rings. Explicitly, it is shown that if the
right associated prime ideals satisfy a version of the second layer con-
dition, such rings must have a right primary decomposition (Theorem
(5.3.2), Theorem (5.3.9)).

Investigation into the existence of primary decomposition of rings has
largely taken place within a Noetherian setting (as an exception to this
there are a couple of results in Nastasescu [72]). In this, there are some
non-Noetherian cases also. It is shown that if the right associated prime
ideals are minimal then both right Goldie rings, and rings with right
Krull dimension, do have a right primary decomposition Theorem (5.7.3)
and Proposition (5.7.4)). In this chapter, there are relationship between
primary decomposition in rings and their quotient rings, for example,
that a right primary decomposition is inherited by a right order in a
right Noetherian quotient ring that has a right primary decomposition
Theorem (5.8.7).
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5.1 Associated Prime Ideals

All rings are associative with an identity element. All modules are uni-
tary. If I is a right ideal of a ring R we may use the notation I Cr R.
For a two-sided ideal we write I CR.

Let MR be a right R-module and let X be a subset of M . The (right)
annihilator of X in R is the right ideal Ann(X) = {r ∈ R | Xr = 0}.
Similarly lM (Y ) = {m ∈ M | mY = 0} is the annihilator of a subset Y
of R in M .

5.1.1 Definition:

A submodule N ⊆ M is essential in M , denoted N ⊆ess M , if N has
non-zero intersection with all non-zero submodules of M .

For instance, Z ⊆ess Q. Given a prime integer p and a positive integer
n, all nonzero submodules of Z/pnZ are essential. At the other extreme,
the only essential submodules (subspace) of a vector space V is V itself.

5.1.2 Note:

(1) If I is an ideal of a ring R then C′(I) = {c ∈ R | cx ∈ I implies
that x ∈ I}. Similarly C = {c ∈ R | xc ∈ I implies that x ∈ I}.
The set of elements of elements that are regular modulo I is C(I) =
C(I) ∩ C′(I).

(2) A ring Q is called a quotient ring if every regular element of Q is
invertible. Given a quotient ring Q, a subring R is called a right
order in Q (or Q is said to be the right quotient ring of R) if each
q ∈ Q has the form rc−1 for some r, c ∈ R with c ∈ C(0). Let S
be a multiplicatively closed subset of a ring R. We say that S is
a right Ore set if for any given a ∈ R and c ∈ S there exist b ∈ R
and d ∈ S such that ad = cb. A ring R has a right quotient ring if
and only if S = C(0) is a right Ore set.

5.1.3 Annihilator prime:

An annihilator prime for right module m over a ring R is any prime ideal
P of R which equals the annihilator of some non - zero submodule of M .

AnnM (P ) is clearly non - zero and is a faithful (R/P )-module.
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5.1.4 Associated prime:

A prime ideal P of a ring R is an associated prime of a right module MR

if there exists a non-zero submodule N ⊆ M such that P = r(N ′) for
all non-zero submodules N ′ ⊆ N . The set of associated prime ideals of
a Noetherian ring R (viewed as a right R-module over itself) is denoted
by Ass(RR). We note that any ideal which is maximal among the anni-
hilators of non-zero submodules of a module M is an associated prime
of M .

Proposition (1.7.26) shows that any ideal maximal among the anni-
hilators of non zero submodules of a right module A is an associated
prime of A. Not every associated prime arises on a maximal annihila-
tor, however. For instance, the Z-module Z⊕ (Z/2Z) has two associated
primes, 0 and 2Z, and 0 is certainly not maximal among the annihilators
of nonzero submodules of this module. And the module A over the ring
Z, which is the direct sum of the cyclic modules Z/pZ for all primes p
is an example of a module whose annihilator is the prime ideal 0 but for
which 0 is not an associated prime.

Over the ring Z, the module A which is the direct sum of the cyclic
modules Z/pZ for all primes p is an example of a module whose annihi-
lator is the prime ideal 0 but for which 0 is not an associated prime.

5.1.5 Remarks:

(1) If B is a submodule of a module A,then

Ass(BR) ⊆ Ass(AR) and Ass(AR) ⊆ Ass(BR) ∪Ass((A/B)R).

(2) If every non zero submodule of A has a non zero intersection with
B,then Ass(AR) = Ass(BR).

5.1.6 Definition:

A right R-module M is called primary if it has a unique associated prime.
In this case Ass(M) = {P} we say that M is P-primary. A P -primary
module M is called P-prime if Ass(MR) = P = Ann(M). It is easy to
show that UR is a uniform right module such that Ass(UR) 6= φ then
U is primary. Also it is well known (see for example Stenstrom [89],
(7.1.2), (7.1.3)) that Ass(NR) ⊆ Ass(MR) for any submodule N ⊆ M
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and Ass((
⊕

i∈IMi)R) =
⋃
i∈I Ass((Mi)R) for any right R-modules Mi

and non-empty set I.

5.1.7 Definition:

A module MR has a primary decomposition if it has finitely many sub-
modules N1, ..., Nm such that

⋂m
i=1Ni = 0 and each (M/Ni)R is a pri-

mary module.

5.1.8 Definition:

A right Goldie ring is any ring R such that RR has finite rank and R
has the ascending chain condition on right annihilators.

For example, every right Noetherian ring is right Goldie. (Goodearl
and Warfield [38])

5.1.9 Definition:

A ring R is called right primary if the module RR is primary. We say a
ring R has a right primary decomposition if there exist a finite number
of ideals T1, ..., Tn in R such that

⋂n
i=1 Ti = 0 and (R/Ti)R is a primary

module for each i.

5.1.10 Definition:

Let R be a ring with a prime ideal P such that R/P is a right Goldie
ring. Let U be a uniform P -primary right R-module. Then U is called
P-tame, or simply tame, if lU (P ) is torsion free as a right R/P -module.
A right R-module is tame if all its uniform submodules are tame. A
module MR has a tame decomposition if it has a primary decomposi-
tion right tame decomposition if it has a right primary decomposition⋂n
i=1 Ti = 0, where each Ti is an ideal of R and each (R/Ti)R is a tame

module.

5.1.11 Definition:

Let P and Q be prime ideals of a ring R. We say that Q is a right
linked to P (via A), denoted by Q P , if there exist s an ideal A with
QP ⊆ A $ Q ∩ P , such that Q ∩ P/A is torsion free as a right R/P -
module and fully faithful as a left R/Q-module. A set of prime ideals X
is said to be right link closed if P ∈ X and Q P implies that Q ∈ X.
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5.1.12 Definition:

The right clique, or right link closure, of a prime ideal P , denoted Ωr(P ),
consists of P along with those Q ∈ Spec(R) for which there exists a finite
sequence Q = P1, ..., Pn = P of prime ideals with Pi  Pi+1 for each i.
For a set X ⊆ Spec(R) we use the notation Ωr(X) =

⋃
P∈X Ωr(P ). A

set X of prime ideals is said to satisfy the incomparability condition if
for P , Q ∈ X such that P ∈ Q we must have P = Q.

5.1.13 Definition

A right R-module M is said to be finitely annihilated if there exist el-
ements m1, ...,mn ∈ M such that Ann(M) =

⋂n
i=1Ann(mi). We say

M is a ∆-module if R satisfies the descending chain condition (d.c.c) on
right annihilators of subsets of M . We note that if M is finitely anni-
hilated then (R/Ann(M))R embeds in a finite direct sum of copies of
M .

5.1.14 The Second Layer condition

Throughout the chapter there are a number of different variations of the
definition of the second layer condition. This presents a confusing pic-
ture. To try to avoid this we will use the naming system as in Kim and
Krause [54]. The following definition of the strong second layer condition
was introduced by Jategaonkar [[50], pp.220].

A prime ideal P of a right Noetherian ring R satisfies the right strong
second layer condition if for every prime ideal Q $ P , every finitely gen-
erated P/Q-primary right R/Q-module is unfaithful over R/Q.

A prime ideal P of a right Noetherian ring R satisfies the right re-
stricted strong second layer condition if for every prime Q $ P , every
finitely generated P/Q-tame right R/Q-module is unfaithful over R/Q.

A set X of prime ideals of R satisfies the right (restricted) strong
second layer condition if every P ∈ X does so. The ring R satisfies
the right (restricted) strong second layer condition if Spec(R) does. The
left (restricted) strong second layer condition we mean both the left and
right versions hold. For a P -tame right R-module M , We call M/lM (P )
the second layer of M .
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A prime ideal P in a right Noetherian ring R is said to satisfy the
right second layer condition if every uniform module in the second layer
of ER(R/P ), the injective envelope of (R/P )R is tame.

Let P be a prime ideal of a right Noetherian ring. If P satisfies
the right restricted strong second layer condition it satisfies the right
second layer condition (Kim and Krause [54], Proposition (5.4)(i)). The
converse does not hold as [Goodearl and Warfield [38], Exercise (11M)]
shows. Now, we have the following results:

5.1.15 Proposition:

[Kim and Krause [54], Corollary (5.6)]. A right Noetherian ring satisfies
the right restricted strong second layer condition if and only if it satisfies
the right second layer condition.

5.1.16 Theorem:

[Kim and Krause [54], Theorem (4.2)]. Let R be a right Noetherian
ring and P be a prime ideal of R with the right restricted strong second
layer condition. Then any finitely generated P -tame right R-module is
a ∆-module.

5.1.17 Assassinator primes:

If U is a uniform right module over a right Noetherian ring R, the unique
associated prime of U is called the assassinator of U and is denoted by
Assas(UR).

5.1.18 Lemma:

Let P be a prime ideal in a right Noetherian ring R, and let U be a
uniform right ideal of R/P . Then E(UR) is a uniform injective right
R-module, and its assassinator is P .

Proof. See Lemma (5.27) of [40].

5.2 Primary Decomposition of Modules

The following is an important characterization of primary modules:
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5.2.1 Lemma:

Let P be a prime ideal of a ring R and let MR be a non-zero module.
Suppose that R has the property that every non -zero submodule of M
has at least one associated prime. Then M is P -primary if and only if
lM (P ) ⊆ess M and P contains every ideal that annihilates a non-zero
submodule of M.

Proof. Let M be P -primary and take any non-zero submodule K ⊆M .
There exists a non-zero submodule K ′ ⊆ K such that Ann(K ′) = Q
where Q ∈ Ass(KR). Now Ass(KR) ⊆ Ass(MR) and so Q = P . Hence
L = lM (P ) must be essential in M . Suppose P does not contain every
ideal that annihilates a non-zero submodule of M . Let I = Ann(N), 0 6=
N ⊆M be such that I * P . We have N ∩ L 6= 0 as L is essential in M ,
so replace N by N ∩ L and we may assume I % P . However there ex-
ists Q ⊇ I, where Q ∈ Ass(NR). Hence Q ∈ Ass(MR) = {P} and I ⊆ P .

For the converse note that lM (P ) ⊆ess M we have P contained in
every associated prime of M . We see that P contains every associated
prime by the second part of the statement.

5.2.2 Lemma:

Let MR be a right R-module, and let 0 = N1 ∩ ... ∩ Nn be a pri-
mary decomposition of MR where the intersection is irredundant. Then⋃n
i=1Ass((M/Ni)R) = Ass(MR).

Proof. Suppose (M/N1)R is P1-primary. Set N̂1 = N2∩ ...∩Nn and note
that this is non-zero. Now (N̂1)R embeds as a submodule of (M/N1)R.

Thus ˆ(N1)R is P1-primary. As N̂1 ⊆ MR, we then have P1 ∈ Ass(MR).
Similarly Pi ∈ Ass(MR) for each i.

For the converse we note that as M embeds in M/N1⊕...⊕M/Nn. We
see that Ass(MR) ⊆ Ass(

⊕n
i=1(M/Ni)R) =

⋃n
i=1Ass((M/Ni)R).

5.2.3 Lemma:

Any module MR with finite uniform dimension has a finite number of
submodules V1, ..., Vn such that each M/Vi is uniform and

⋂n
i=1 Vi = 0.

Furthermore if we assume prime factor rings of R are right Goldie and
MR is also a tame module then each factor M/Vi is Pi-tame for some
prime ideal Pi ∈ Ass(MR).
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Proof. Choose a uniform submodule U1 of M . By Zorn’s lemma we can
choose a submodule V1 of M such that V1 is maximal with respect to the
property U1 ∩V1 = 0. Now U1 embeds into (M/V1)R and by maximality
of V1 we have M/V1 uniform since U1 is isomorphic to an essential sub-
module of it.

If V1 = 0 then M is uniform and we are done. If V1 6= 0 there exists
a uniform module U2 ⊆ V1. As before choose V2 maximal with respect
to U2 ∩V2 = 0. Now, (U1 +U2)∩ (V1 ∩V2) = 0 for otherwise there exists
a nonzero element u1 + u2 ∈ V1 ∩ V2, where ui ∈ Ui. As u2 ∈ U2 ⊆ V1
then u1 = (u1 + u2) − u2 ∈ V1. Hence u1 ∈ U1 ∩ V1 = 0. Now u2 ∈ V2
and we have u2 = 0.

As before U2 is isomorphic to an essential submodule of M/V2 and
therefore M/V2 is uniform. Hence if V1 ∩ V2 = 0 we are done. Other-
wise take a uniform module U3 ⊆ V1 ∩ V2 and choose V3 maximal with
respect to U3 ∩ V3 = 0. Hence M/V3 is uniform and similar to before
(U1 + U2 + U3) ∩ (V1 ∩ V2 ∩ V3) = 0.

We continue in this way and note that this process must stop because
the sum U1 + ...+ Um is direct. Hence V1 ∩ ... ∩ Vn = 0 for some n.

If M is a tame module then all of its uniform submodules are tame.
Therefore Ui is Pi-tame for some prime ideal Pi ∈ Ass(MR). Let
Li = lUi(Pi). Then Li is isomorphic to a submodule L

′
i of M/Vi. As

lM/Vi(Pi) is an essential extension L
′
i and essential extensions of torsion

free modules are torsion free, we conclude that M/Vi is Pi-tame.

This lemma is enough to give us a primary decomposition of a finite
dimensional module over a ring which has the property that uniform
modules are primary. In the next section we will use the primary de-
composition of the module RR to get a primary decomposition of the
ring R.

5.3 Primary Decomposition in Noetherian Rings

5.3.1 Proposition:

[Kim and Krause [54], Proposition (3.1)]. Let R be a right Noetherian
ring. Suppose a prime ideal P satisfies the right strong second layer
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condition. If M is a finitely generated P -primary right R-module then
the direct product M I is P -primary for any non-empty set I.

Proof. Let MR be finitely generated P -primary and suppose Q ∈ Ass
((M I)R). Choose n = (ni)i∈I ∈ M I such that Q = Ann(nR). Now
Q =

⋂
i∈I Ann(niR) = Ann(

∑
i∈I niR). Since M is Noetherian, N =∑

i∈I niR) ⊆ M is finitely generated P -primary. We must have Q ⊆ P ,
and N is a faithful R/Q-module. Since P satisfies the right strong second
layer condition Q = P .
Note that this property is a characterization of primes with the right
strong second layer condition (see Kim and Krause [54]).

5.3.2 Theorem:

Let R be a right Noetherian ring and suppose the set Ass(RR) satisfies
the right strong second layer condition. Then R has a right primary
decomposition.

Proof. See Theorem (3.4.2) in Convington [28].

5.3.3 Corollary:

Any right Noetherian ring with the right strong second layer condition
has a right primary decomposition.

5.3.4 Corollary:

[Gordon [43], Corollary (2.4)]. Let R be a right Noetherian ring fully
bounded ring. Then R has a right primary decomposition.

Proof. Right fully bounded right Noetherian rings satisfy the right strong
second layer condition.

5.3.5 Corollary:

[Krause [55], Theorem (3.5) and Remark]. Let R be a right Noetherian
ring such that Ass(RR) ⊆ MinSpec(R). Then R has a right primary
decomposition.

Proof. Follows as minimal primes satisfy the strong second layer condi-
tion.
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5.3.6 Example:

Let S = A1(C) be the 1st Weyl Algebra over the complex numbers.
Consider the following ring which is right but not left Noetherian and is
not right fully bounded,

R =

(
C S
0 S

)
.

The only prime ideals of R are

P =

(
C S
0 0

)
and P

′
=

(
C S
0 S

)
.

so R satisfies the right strong second layer condition and therefore must
have a primary decomposition. Indeed R is right P -primary.

We now take the left and right Noetherian case.

5.3.7 Proposition:

[Kim and Krause [54], Proposition (4.1)]. Let R be a right Noetherian
ring. Suppose a prime ideal P satisfies the right restricted strong second
layer condition. If M is a finitely generated P -tame right R-module then
the direct product MI is P -tame for any non-empty set I.

Proof. Firstly note that MI is P -primary by a similar method to Propo-
sition (5.3.1) Suppose that there exists a P -prime submodule xR of
MI that is torsion over the ring R/P . Then Ann(x)/P is an essen-
tial right ideal of R/P . If x = (mi)i∈I , then r(x) =

⋂
i∈I Ann(mi),

so each Ann(mi)/P is essential as a right ideal of R/P . Similarly
Ann(mia)/P ⊆ess R/P for any a ∈ R. Thus miR is a P -prime C(P )-
torsion submodule of M . This is impossible as M is assumed to be
P -tame.

5.3.8 Proposition:

Suppose R is a right Noetherian ring in which all ideals are finitely
annihilated on the right. Then there exists an irredundant intersection
0 =

⋂n
i=1 Ii of right ideals of R such that each R/Ii is a Pi-tame right

module for some Pi ∈ Ass(RR).
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Proof. It is straightforward to show that right ideals are also finitely
annihilated on the right. Therefore if U is a uniform right ideal of R we
have a P -prime submodule V = lU (P ). As V is finitely annihilated VR/P
must be torsion free. Hence U and therefore RR is tame. The result now
follows by Lemma (5.2.3).

5.3.9 Theorem:

Let R be a right Noetherian ring in which ideals are finitely annihilated
on the right. Suppose the set Ass(RR) satisfies the right restricted strong
second layer condition. Then R has a right tame decomposition.

Proof. See Proposition (3.4.10) in Convington [28].

In particular ideals are finitely annihilated on the right in a left and
right Noetherian ring. The following corollary is due to Jategaonkar.

5.3.10 Theorem:

[Jategaonkar [50], Theorem (8.3.9)]. Any Noetherian ring with the right
second layer condition has a right primary decomposition.

Proof. Use Proposition (5.1.15) along with Theorem (5.3.9).

5.4 Krull dimension

To discuss primary decomposition of non-Noetherian rings, we need the
following:

5.4.1 Definition:

Let R be a ring and let M be a right R-module. The Krull dimension
(named after Wolfgang Krull) of M , denoted by k(M), if it exists, is
defined as follows, k(M) = −1 if and only if M = 0. If α ≥ 0 is an ordi-
nal such that all modules with Krull dimension strictly less than α are
known, then k(M) ≤ α if for every chain M = M0 ⊇ M1 ⊇ M2 ⊇ ... of
submodules of M there is a positive integer n such that k(Mi/Mi+1) < α
for all i ≥ n.

Note that k(M) = 0 if and only if M is nonzero Artinian. In this
sense, the Krull dimension of a module can be thought of as a measure
of how far the module is from being Artinian. It is interesting, however,
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that many properties of modules with Krull dimension are similar (or
identical) to those of Noetherian modules.

5.4.2 Definition:

A ring R is said to have right Krull dimension if the right R-module RR
has Krull dimension and is denoted by r.k(R).

5.4.3 Lemma:

Let R be a ring, let M be a right R-module and let N be a submodule
of M . Then k(M) = sup{k(M/N), k(N)} if either exists.

Proof. See (McConnell and Robson [68], Lemma (6.2.4)).

5.4.4 Corollary:

Let R be a ring with right Krull dimension and let M be a finitely
generated right R-module. Then M has Krull dimension and k(M) ≤
r.k(R)

Proof. This follows by repeated applications of Lemma (5.4.3).

5.4.5 Lemma:

Let R be a ring and let M be a Noetherian right R-module. Then M
has Krull dimension.

Proof. Suppose that the result is false. Using the Noetherian property we
may assume that all proper factor modules of M have Krull dimension.
Let

α = sup {k(M/N) | N is a nonzero submodule of M}.

Let M = M0 ⊇ M1 ⊇ M2 ⊇ ... be any descending chain of nonzero
submodules of M . Then the factors in this chain have Krull dimension
and satisfy k(Mi/Mi+1) ≤ α for each i ≥ 0. It follows that M has Krull
dimension with k(M) ≤ α+ 1, a contradiction.

The following is one of many Noetherian-like properties of modules
with Krull dimension.
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5.4.6 Lemma:

A module with Krull dimension has finite uniform dimension.

Proof. Suppose that the result is false. Let M with Krull dimension,
say k(M) = α. Since M does not have finite uniform dimension there
exist nonzero submodules Ni of M such that M ⊇ ⊕∞i=1Ni. Set Mn =
⊕∞j=1N2nj for each integer n ≥ 0. Then M0 ⊇ M1 ⊇ M2 ⊇ ... is a
descending chain of submodules of M such that each factor Mn/Mn+1

contains an infinite direct sum and so has infinite uniform dimension.
Since k(Mn/Mn+1) ≤ k(M) it follows, by the minimality of α, that
k(Mn/Mn+1) = α for all n ≥ 0. Thus k(M) > α, a contradiction.

5.4.7 Lemma:

Let R be a ring and let M be a right R-module with Krull dimension
such that M is a sum of submodules each of which has Krull dimension
at most α for some ordinal α. Then k(M) ≤ α.

Proof. See (McConnell and Robson [68], Lemma (6.2.17)).

5.4.8 Lemma:

Let R be a ring with right Krull dimension and let M be a right R-
module. If M has Krull dimension then k(M) ≤ r.k(R).

Proof. This follows from Lemma (5.4.7), since M is the sum of its cyclic
submodules, each of which is isomorphic to a factor module of RR.

5.5 Krull Dimension of Polynomial and Skew Polynomial
Rings

Earlier the problem of Krull dimension was investigated only for some
particular cases, namely for Weyl algebras (Rentschler and Gabriel [80]),
a ring of differential operators (Goodearl and Lenagan [37]), as well as
for rings of Laurent skew polynomials (Hodges [46]).

The rings we will study are mainly skew polynomial rings. Among
these, the ordinary polynomial ring R[x] is particularly important, and
it also turns out that knowing the Krull dimension of R[x] gives us some
control on the Krull dimensions of more general skew polynomial rings
R[x;σ, δ]. The next lemma shows that the Krull dimensions of certain
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modules over R[x] are all that is needed to control the Krull dimension
of R[x] and of R[x;σ, δ].

Let T = R[x], the polynomial ring over a right Noetherian ring R.
If M is a right R-module, then there is a corresponding right T -module,
namely M ⊗R T . It is convenient to write this module as M [x], since
every element of M ⊗R T can be written as a polynomial

f = (m0 ⊗ 1) + (m1 ⊗ x) + ...+ (mn ⊗ xn) ≡ m0 +m1x+ ...+mnx
n

for some mi ∈ M . If n is the index of the largest nonzero term in
an expression for f , then n is the degree of f and mn is the leading
coefficient. Similarly if S = R[x;σ, δ], we write the induced module M⊗R
S as M [y], and we define degrees and leading coefficients for elements of
M [y] as in M [x].

5.5.1 Lemma:

Let R be a right Noetherian ring, S = R[x;σ, δ] a skew polynomial ring,
and T = R[x] a polynomial ring. Assume that σ is an automorphism of
R. If M is any finitely generated right R-module, then

k(M [y]) ≤ k(M [x])

Moreover, if V is a nonzero S-submodule of M [y], there exist a nonzero
element m ∈M and a non-negative integer n such that

k(M [y]/V ) ≤ k(M [x]/mxnT ).

Proof. If A is a submodule of M [y], then for i = 0, 1, ... let gi(A) be the
subset of M consisting of 0 together with the leading coefficients of the
nonzero elements of A of degree i. Since σ is an automorphism, each
gi(A) is a submodule of M . Note that g0(A) ≤ g1(A) ≤ .... Now let

g(A) = g0(A) + g1(A)x+ g2(A)x2 + ....

Clearly, g(A) is a submodule of M [x], and if A ≤ B ≤ M [y], then
g(A) ≤ g(B). Next observe that if A and B are submodules of M [y]
with A < B, then g(A) < g(B). Suppose not; then g(A) = g(B) and so
gi(A) = gi(B) for all i. Let b be an element of B not in A, and choose b
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to be of least possible degree, say degree j. Since gj(A) = gj(B), there
is an element a ∈ A of the same degree and with the same leading coef-
ficient as b. But then b − a is an element of B of lower degree and not
in A, a contradiction. Thus g(A) < g(B), as claimed.

Also, k(M [y]) ≤ k(M [x]) from Exercise(15Q) of Goodearl and Warfield
[41]. If V is a nonzero submodule of M [y], choose a nonzero element of
V , say with degree n and leading coefficient m, and note that mxnT ≤
g(V ). Now follows from second application of (15Q) of Goodearl and
Warfield [41], using the map A/V 7→ g(A)/mxnT from submodules of
M [x]/mxnT .

5.5.2 Theorem:

[Rentschler-Gabriel [80]]. Let R be a right noetherian ring, M a nonzero
finitely generated right R-module, and x an indeterminate. Then

k(M [x]) = k(M) + 1.

In particular, if R is nonzero, then r.k(R[x]) = r.k(R) + 1.

Proof. Let T = R[x] and U = M [x], and let β = k(M). Now M can be
made into a right T -module in a natural way, by letting x act trivially,
and if we do this, then k(MR) = k(MT ). Next, note that Uxn/Uxn+1 ∼=
M (as right T -modules) and

k(Uxn/Uxn+1) = β

for all n, whence k(U) > β. (Here we use the fact that x is the central
element of T )

Now use a critical composition series for M to reduce to the case in
which M is a β-critical module, and we may assume by induction for
ordinals smaller than β. We will show, in fact, that U is (β+ 1)-critical.

To show that U is (β + 1)-critical, it is sufficient to show for every
nonzero submodule V of U , that k(U/V ) ≤ β. Let us first assume that
V has the special form V = mxnT (i.e., V is generated by a monomial).
Now we already know that k(U/Uxn) ≤ β, and so we only need to
consider the factor Uxn/mxnT , which is isomorphic to U/mT . Since
U/mT ∼= (M//mR)[x] and M is β-critical, it follows by induction that
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k(Uxn/mxnT ) = k(U/mT ) = k(M/mR) + 1 ≤ β,

and hence that k(U/mxnT ) ≤ β.

To prove the theorem, we reduce the general case to this specific case.
If we set α = 1 and δ = 0 in Lemma (15.16) of Goodearl and Warfield
[41], then M [y] = M [x] = U , and the lemma provides a nonzero element
m ∈ M and a non-negative integer n such that k(U/V ) ≤ k(U/mxnT ).
Then k(U/V ) ≤ β, which completes the proof of the theorem.

5.5.3 Corollary:

Let R be a right Noetherian ring and S = R[x;σ, δ], where σ is an
automorphism of R. If M is any finitely generated right R-module, then

k(M) ≤ k(M ⊗R S) ≤ k(M) + 1.

In particular, r.k(R) ≤ r.k(S) ≤ r.k(R) + 1.

Proof. If M = 0, then M and M ⊗RS both have Krull dimension -1 and
the desired inequalities are clear. Assuming M 6= 0, we have

k(M ⊗R S) = k(M [y]) ≤ k(M [x]) = k(M) + 1

by Lemma (5.5.1) and Theorem (5.5.2). On the other hand, since S
is a free left R-module, it is left faithfully flat over R (Exercise 15T of
Goodearl and Warfield [41]), and thus k(M) ≤ k(M ⊗R S) by Exercise
(15U) of Goodearl and Warfield [41].

5.5.4 Theorem:

If S = R[x;σ], where R is a nonzero right Noetherian ring and σ an
automorphism, then r.k(S) = r.k(R) + 1.

Proof. Let β = r.k(R). Then r.k(S) ≤ β + 1 by Corollary (15.18) of
Goodearl and Warfield [41]. Observe that R ∼= S/yS as right R-modules
and that, under this isomorphism, the right ideals of R correspond to
the right S-submodules of S/yS. Hence, k((S/yS)S) = k(RR) = β.
Since left multiplication by y provides an injective endomorphism of
SS , it follows from Lemma (15.6) of Goodearl and Warfield [41] that
r.k(S) ≥ β + 1, and the theorem is proved.
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5.6 Ideal Krull-symmetry of Polynomial rings

In this section we consider Krull dimension of right R-modules and left
R-modules. We also discuss the Krull dimension of a ring R as a right
R-module and as a left R-module. Therefore for the sake of convenience
we have the following notations:

For any right R-module K, the right Krull dimension of K is denoted
by | K |r and the annihilator of a subset S of K is denoted by r(S).
Similarly if J is a left R-module, then the left Krull dimension of J is
denoted by | J |l and the annihilator of a subset L of K is denoted by
l(L). Recall that the right Krull dimension of a ring R is defined as the
Krull dimension of R (viewed as a right module over itself). Left Krull
dimension of a ring R is defined similarly.

5.6.1 Definition:

A ring R is said to be Krull-symmetric if |R|r = |R|l. R is said to be
right Krull-homogeneous if |R|r = |I|r, for all nonzero right ideals I of
R. Left Krull-homogeneity is defined in a similar way. We also recall
that a ring R is said to be ideal Krull-symmetric if | I |r=| I |l, where I
is any ideal of R.

5.6.2 Definition:

Let S be a ring and R a subring of S. We say an element a ∈ S
centralizes R if ar = ra for each r ∈ R. If SR has a finite set of generators
{ai, 1 ≤ i ≤ n} each of which centralizes R, then S is called a finite
centralizing extension of R.

5.6.3 Proposition:

Let R be a Noetherian ring and Ij , 1 ≤ j ≤ n be ideals of R such that
0 = ∩Ij . Let S = Π(R/Ij), 1 ≤ j ≤ n. Then S is a finite centralizing
extension of R.

Proof. It is easily seen that there exists a monomorphism f : R → S.
Let

x1 = (1 + I1, 0, ..., 0)

and
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xj = (0, 0, ..., 0, 1 + Ij , 0...0), 1 ≤ j ≤ n.

For any s ∈ S, let

s = (r1 + I1, r2 + I2, ..., rn + In) =
∑

(xj)(rj).

Now (xj)r = r(xj) for all r ∈ R, 1 ≤ j ≤ n. Hence the result.

5.6.4 Proposition:

If S is a Noetherian centralizing extension of R, then:

(1) | S |r = | R |r and | S |l = | R |l.

(2) For any ideal I of S, S/I is a finite centralizing extension of R/(I ∩
R).

Proof. (1). See Corollary (10.1.11) of [68].
(2). See Lemma (10.2.2) of [68].

5.6.5 Proposition:

Let R be a Noetherian ring with ideals Ij such that 0 = ∩Ij , 1 ≤ j ≤ n
and each R/Ij is Krull-symmetric, right and left Krull-homogeneous.
Then R is ideal Krull-symmetric.

Proof. Let S = Π(R/Ij), 1 ≤ j ≤ n. Now by Proposition (5.6.3) S is a
centralizing extension of R. Let I be an ideal of R. Consider the ideal
I = Π(I + Ij/Ij) of S. Now it is easy to see that I is a Krull-symmetric
ideal of S. Therefore,

| I |r = | I |l.

Now

| I |r = | S/r(I) |r and | I |l = | S/l(I) |l
Therefore,

| I |r = | S/r(I) |r = | S/l(I) |l = | I |l.

Now notice r(I) = r(I) ∩ R, where r(I) is in S, and similarly l(I) =
l(I) ∩ R. Now by Proposition (5.6.4) S/r(I) is a centralizing extension
of R/r(I). Therefore,

| S/r(I) |r=| R/r(I) |r
by Proposition (5.6.4) and similarly,
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| S/l(I) |l=| R/l(I) |l

and as noted above

| S/r(I) |r=| S/l(I) |l.

Thus | I |r=| I |l.

5.6.6 Proposition:

Let R be a commutative Noetherian ring and A be any of S(R), L(R)
or D(R). Then A is Krull-symmetric.

Proof. S(R) case:
R is commutative Noetherian implies that R is an FBN ring. Therefore
Corollary (6.4.10) of [68] implies that R is Krull-symmetric. Now Propo-
sition (6.5.4) (i) of [68] implies that | R |r=| S(R) |r. Therefore, S(R) is
Krull-symmetric.

For L(R) and D(R) case see (6.9.1) of [68].

5.6.7 Definition:

Let R be a commutative Noetherian ring and P a semiprime ideal of R.
Let k ≥ 1 be an integer. Then the symbolic power of P is denoted by
P (k) and is defined as P (k) = {a ∈ R | there exists d ∈ C(P ) such that
ad ∈ P k}.

5.6.8 Proposition:

Let R be a commutative Noetherian ring and P a semiprime ideal of R.
Then P (k) is an ideal of R.

Proof. Let a, b ∈ P (k). Then there exist d1, d2 ∈ C(P ) such that ad1 ∈
P k and bd2 ∈ P k. Now ad1d2 ∈ P k and bd1d2 ∈ P k; i.e. (a−b)d1d2 ∈ P k
and since d1d2 ∈ C(P ), so (a − b) ∈ P (k). Now let a ∈ P (k) and r ∈ R.
Then there exists d ∈ C(P ) such that ad ∈ P k. Now ard ∈ P k and since
d ∈ C(P ), we have ar ∈ P (k). Hence P (k) is an ideal of R.
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5.6.9 Proposition:

Let R be a commutative Noetherian ring and σ be an automorphism of
R. For any associated prime ideal P of R, we have:

(1) σm(P ) = P for some integer m ≥ 1.

(2) σm(P (k)) = P (k), m as above.

Proof. (1). We know that Ass(RR) is a finite set and for any P ∈
Ass(RR) and any integer j ≥ 1, σj(P ) ∈ Ass(RR). Therefore, there
exists an integer m ≥ 1 such that σm(P ) = P .

(2). Denote σm by θ. We have θ(P ) = P . Let a ∈ P (k). Then
there exists some d ∈ R, d ∈ C(P ) such that da ∈ P k. Therefore,
θ(da) ∈ θ(P k); i.e., θ(d)θ(a) ∈ (θ(P ))k = P k. Now θ(d) ∈ C(P ) implies
that θ(a) ∈ P (k). Therefore, θ(P (k)) ⊆ P (k). Hence θ(P (k)) = P (k).

5.6.10 Proposition:

Let R be commutative Noetherian ring which is also an algebra over Q.
Let δ be a derivation of R. Let P be a semiprime ideal of R such that
δ(P ) ⊆ P . Then δ(P (k)) ⊆ P (k).

Proof. Let a ∈ P (k). Then there exists d ∈ C(P ) such that da ∈ P k. Let

da = p1.p2...pk, pi ∈ P .

Now δ(da) ∈ P k as δ(P ) ⊆ P ; i.e., δ(d)a + dδ(a) ∈ P k. Now δ(d)a ∈
P (k), therefore, there exists d1 ∈ C(P ) such that d1δ(d)a ∈ P k. Now
d1δ(d)a+d1.dδ(a) ∈ P k. Therefore d1dδ(a) ∈ P k, and since d1.d ∈ C(P ),
we have δ(a) ∈ P (k). Hence δ(P (k)) ⊆ P (k).

5.6.11 Theorem:

Let R be a commutative Noetherian ring and A be any of S(R), L(R)
or D(R) (In case of D(R), R is a moreover an algebra over Q). Then:

(1) A is ideal Krull-symmetric.

(2) For any ideal L of A, | A/L |r<| A |r if and only if | A/L |l<| A |l.
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Proof. (1) Since R is a commutative Noetherian ring, the ideal (0) has
a reduced primary decomposition say (0)= ∩Ij , 1 ≤ j ≤ n. For this see
Theorem (4), page 209 of [92] . Let

√
Ij = Pj , where Pj is a prime ideal

belonging to Ij . Now by Theorem (23), page 236 of [92] there exists a

positive integer k such that P
(k)
j ⊆ Ij , 1 ≤ j ≤ n. Therefore, ∩P (k)

j = 0.
Now by the first uniqueness Theorem Pj ∈ Ass(RR), 1 ≤ j ≤ n. Now
since Ass(RR) is finite and σj(P ) ∈ Ass(RR) for any P ∈ Ass(RR),
and for all integers j ≥ 1, there exists an integer m ≥ 1 such that

σm(Pj) = Pj and σm(P
(k)
j ) = P

(k)
j by Proposition (5.6.9). Now δ(Pj) ⊆

Pj by Theorem (1) of [84], and therefore, δ(P
(k)
j ) ⊆ P (k)

j by Proposition
(5.6.10). Let

Tj = ∩σi(P (k)
j ), i = 1, 2, ...,m.

Then σ(Tj) = Tj and so Tj [x, σ] is an ideal of S(R). Let Uj = S(T
(k)
j ),

L(T
(k)
j ) and D(P

(k)
j ) in case of S(R), L(R) and D(R) respectively. Then

0 = ∩Uj , 1 ≤ j ≤ n.
Let

T =
∏

(A/Uj), 1 ≤ j ≤ n.

Now by Proposition (5.6.3), T is a centralizing extension of A.

Let I be an ideal of A. Consider the ideal

I∗ = Π(I + Uj/Uj), 1 ≤ j ≤ n

of T . Then it is easy to see that I∗ is a Krull-symmetric ideal of T .
Therefore,

| I∗ |r=| T/r(I∗) |r=| T/l(I∗) |l=| I∗ |l.

Let f : A → T be the natural monomorphism. Now r(I) = r(I∗) ∩ A
and similarly l(I) = l(I∗) ∩ A. Now by Proposition (5.6.4) T/r(I∗) is a
centralizing extension of A/r(I). Therefore, Proposition (5.6.4) implies
that

| T/r(I∗) |r=| A/r(I) |r
and similarly,

| T/l(I∗) |l=| A/l(I) |l.

But

| T/r(I∗) |r=| T/l(I∗) |l.
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Therefore, we have

| I |r=| I |l.

Hence A is ideal Krull-symmetric.

(2) Let L be an ideal of A such that

| A/L |l<| A |l.

Suppose

| A/L |r=| A |r.

Now

| A/L |r=| A/P |r=| A |r,

where P is a prime deal of A such that L ⊆ P . Now N(A) = ∩S(Pj),
1 ≤ j ≤ n (in case A = S(R)) and since

I∗j = S(P kj ) ⊆ S(P
(k)
j ) = Ij ,

we have ∩I∗j = 0, 1 ≤ j ≤ n. Now every S(Pj), 1 ≤ j ≤ n is associated to
A, we get that P is associated to A and P = S(Pj) for some j, 1 ≤ j ≤ n.
Let A1 = A/Ij . Then since L+ Ij ⊆ Pj and Ij ⊆ L+ Ij ⊆ Pj , we have

| A1/L+ Ij |r=| A/L+ Ij |r=| A/Pj |r.

Now

| A |r=| A |l,

and by Proposition (5.6.4) in A1 = A/Ij , we have

| A1/L+ Ij |l=| A1/L+ Ij |r=| A/L |l=| A |l.

This is a contradiction. Hence

| A/L |r<| A |r.

The cases A = L(R) or D(R) can be proved in a similar way.

Converse on the same lines as above.
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5.7 Primary Decomposition in Non-Noetherian Rings

To proceed we recall some basic properties of modules and rings with
Krull dimension. Firstly a module with Krull dimension has finite uni-
form dimension (McConnell [68], Lemma (6.26)). Any ring with right
Krull dimension has the ascending chain condition on prime ideals (Gor-
don [43], Theorem (7.1)). Any ideal I in a ring with right Krull dimension
contains a product of prime ideals where each of the prime ideals in the
product contains I (Gordon [43], Theorem (7.4)). The following result
is similar to [Gordon [43], Theorem (8.3)].

5.7.1 Proposition:

Let M be a right R-module over a ring R with right Krull dimension.
Then Ass(MR) 6= φ.

Proof. Suppose I = Ann(N) for some nonzero submodule N ⊆ M . We
know that I contains a product of primes P1...Pn where Pi ⊇ I. We may
assume P1...Pn−1 " I (here we use the convention that a product of zero
terms equals R). Therefore Pn annihilates a nonzero submodule of M ,
namely NP1...Pn−1.

Among the (non-empty) set of prime ideals of R that annihilate
nonzero submodules of M we can choose P maximal. Let L = lM (P )
and we will show that L is P -primary. Suppose not, so choose L

′ ⊆ L
such that Ann(L

′
) % P . We know that Ann(L

′
) contains a product of

primes, and by the method of above we see that there exist a prime ideal
Q ⊇ Ann(L

′
) that annihilates a nonzero submodule of L′ . This contra-

dicts the maximality of P . Hence L is P -primary and P ∈ Ass(MR).

5.7.2 Corollary:

Let R be a ring with right Krull dimension and letM be a right R-module
with finite uniform dimension. Then MR has a primary decomposition.

Proof. Use the decomposition in Lemma (5.2.3) and the observation that
uniform modules over rings with right Krull dimension are primary.
We remark that in Corollary (5.7.2) if M is also a tame right R-module
then we get a tame decomposition of the module M .
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5.7.3 Theorem:

Let R have right Krull dimension and Ass(RR) ⊆ MinSpec(R). Then
the ring R has a right primary decomposition.

Proof. Choose a decomposition
⋂n
i=1 Vi = 0 in terms of right ideals as

in Corollary (5.7.2). It is enough to show that each ring R/Ann(R/Vi)
is right primary. Therefore we fix i, assume Ann(R/Vi = 0) and replace
Vi by its image in R/Ann(R/Vi).

We know that (R/Vi)R is P -primary for some prime ideal P . Suppose
that Q = Ann(I) ∈ Ass(RR) is a prime ideal of R where I is some right
ideal of R. As Vi contains no non-zero ideals, we have RI + Vi/Vi is a
non-zero submodule of R/Vi. Now

RIx(RI + Vi/Vi) ⊆ Vi,

and as the left hand side is an ideal contained in Vi it must be equal to
zero. In other words Ann(RI + Vi/Vi) ⊆ Q. Obviously Q ⊆ Ann(RI +
Vi/Vi) and so we have equality. As Q is the annihilator of a submodule
of R/Vi, we must have Q ⊆ P . We now get Q = P since P is a minimal
prime.

We note that if RR is also tame, for example when R has d.c.c on
right annihilators, then it is possible to show that R has a right tame
decomposition in the above situation.

The method of Theorem (5.7.3) could be used to prove the right
Noetherian case of Theorem (5.3.2). To see this note that in the above
RI + Vi/Vi is a faithful P/Q-primary right R/Q-module. This contra-
dicts P having the right strong second layer condition unless Q = P .
Theorem (5.3.9) can also be proven in a similar way.

Along the same lines as Theorem (5.7.3) we can get another primary
decomposition result.

5.7.4 Proposition:

Let R be a right Goldie ring with Ass(RR) ⊆MinSpec(R). Then R has
a right primary decomposition.
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Proof. We note that each uniform right ideal of R is primary as R has
the ascending chain condition on right annihilators. We choose a decom-
position

⋂n
i=1 Vi = 0 of RR as in Lemma (5.2.3). As each (R/Vi)R is an

essential extension of a module isomorphic to a uniform right ideal Ui
of R, it is easy to check that each (R/Vi)R is uniform and Pi-primary
for some prime ideal Pi, i = 1, ..., n. The rest of the proof now fol-
lows in a similar way to Lemma (5.4.3), although we need to check that
Ass((R/Ann(R/Vi)R)) is non-empty. Let Xi = Ann(R/Vi). We can
reduce to the case where

⋂
Xi = 0 is an irredundant intersection. Hence

each (R/Xi)R contains a submodule isomorphic to a right ideal of R.
Therefore Ass((R/Xi)R) is non-empty.

5.8 Primary Decomposition in Rings with Quotient Rings

In this section we look at the interplay between primary decomposition
in rings that have quotient rings.

5.8.1 Proposition:

Let R have a right quotient ring Q. Then

(1) If I Cr R then IQ Cr Q and every element of IQ is expressible as
xc−1, where x ∈ I and c ∈ CR(0).

(2) If K Cr Q then K ∩RCr R and (K ∩R)Q = K.

(3) If Q is right Noetherian and AC r then AQCQ.

(4) RR ⊆ess QR.

(5) If B Cr Q and BQ ⊆ess QQ then (B ∩R)R ⊆ess RR.

Proof. See [McConnell [68], Proposition (2.1.16), Lemma (2.2.12)] and
the proof of Goodearl and Warfield [[38], Lemma (5.11)].

5.8.2 Lemma:

[Chatters [24], Lemma (1.30)(a)]. Let R be a ring with the ascending
chain condition on right annihilators, and let S be a right Ore set. Sup-
pose S ⊆′ C(0). Then S ⊆ C(0).
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5.8.3 Proposition:

[Ludgate [64], Lemma (4)]. Let R have a right quotient ring Q. Suppose
A is a proper ideal of R, then CR(0) ⊆ CR(A) if and only if AQ is an
ideal of Q and AQ ∩R = A.

5.8.4 Proposition:

Let R be a ring with the ascending chain condition on right annihilators.
Let X be a non-zero right ideal of R, and set A = Ann(X). Suppose R
has a right quotient ring Q, then AQ is an ideal of Q.

Proof. First note that A = AQ∩R since XAQ = 0 implies AQ∩R ⊆ A,
and the reverse inclusion is obvious. Suppose xc ∈ A where x ∈ R and
c ∈ C. Now xcc−1 ∈ R, so x ∈ A and C(0) ⊆′ C(A).

We will now show that C ⊆ C′(A), and then the result follows by
Proposition (5.8.3). To do this it is enough to apply Lemma (5.8.2) to
the ring R/A. Therefore it remains to show that R/A has a.c.c on right
annihilators. This follows as R/AR embeds in the direct product RXR via
the map r → (xr)x∈X . As R has a.c.c on right annihilators, R has a.c.c
on annihilators of subsets of RX . To see this suppose xth coordinate of
an element of Y . Thus Ann(Y ) is equal to a right annihilator of R. Now
we see that R has a.c.c on right annihilators.

The next result is our showing that a ring can inherit primary prop-
erties from its quotient ring.

5.8.5 Theorem:

Let R has a right quotient ring Q where Q has the ascending chain
condition on right annihilators. Then if Q is right Π-primary for some
prime ideal Π of Q, R is right (Π ∩R)-primary.

Proof. By Lemma (5.2.1), L = lQ(Π) is an essential right ideal of Q.
Let P = Π ∩ R and K = lQ(P ). Of course K ⊇ L. By Lemma (5.8.1),
L ∩ R ⊂ess RR and hence K ∩ R = lR(P ) ⊆ess RR. It remains to show
that P is the unique maximal ideal among the annihilators of non-zero
right ideals of R.

Suppose A = Ann(B) for some non-zero right ideal B of R. By
replacing B by the non-zero intersection B ∩ lR(P ) we may assume that
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A ⊇ P . If A % P then AQ % PQ = Π. However by Proposition (5.8.4),
since R inherits the ascending chain condition on right annihilators from
Q, we have AQ is an ideal of Q. Therefore BQAQ = BAQ = 0 and AQ
annihilates a non-zero right ideal of Q. This cannot happen since Π is
maximal among the annihilators of non-zero right ideals of Q. Therefore
P must be the unique maximal right annihilator for R. This shows us
that P is prime and R is right P -primary.

5.8.6 Theorem:

Let R be a right P -primary ring, where P is a prime ideal of R. Suppose
that R has a right quotient ring Q and also has the ascending chain
condition on right annihilators. Then Q is right PQ-primary.

Proof. As L = lR(P ) is an essential submodule of RR, and hence QR, it
follows that LQ is an essential right ideal of Q. Let Π = PQ. As P is
a right annihilator of R, Π is an ideal of Q by Proposition (5.8.4). Now
LQΠ = LΠ = LPQ = 0. Hence lQ(Π) is an essential right ideal of Q.
Suppose there exists A = AnnQ(X), where X is a non-zero right ideal of
Q. If we replace X by X ∩ lQ(Π) 6= 0 we may assume that A ⊇ Π. Then
P ⊆ R ∩ A ⊆ Ann(X ∩ R), where X ∩ R is a non-zero right ideal of R.
By the maximality of P among the annihilators of non-zero submodules
of RR, we have P = R ∩ A and therefore PQ = (R ∩ A)Q = A. Hence
Π must be maximal among the annihilators of non-zero right ideals of
Q and therefore is a prime ideal of Q. The result now follows from the
note after Lemma (5.2.1).

We now show that in certain situations a ring can inherit a primary
decomposition from its quotient ring.

5.8.7 Theorem:

Let R be a ring with a right quotient ring Q where Q is right Noetherian.
If Q has a right primary decomposition, so does R.

Proof. Let J1 ∩ ... ∩ Jn be a right primary decomposition for Q, where
Ji is an ideal of Q and (Q|Ji)Q is Πi-primary for some prime ideal Πi

of Q. We will show that (J1 ∩ R) ∩ ... ∩ (Jn ∩ R) is a right primary
decomposition for R, where each R/(Ji ∩R)R is (Πi ∩R) is a right pri-
mary decomposition for R, where each R/(Ji∩RR)R is (Πi∩R)-primary.
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Without loss of generality we consider (Q/J1)Q . Now L = lQ/J1(Π1)
is an essential Q-submodule of Q/J1 by Lemma (5.2.1). Let P = Π1 ∩R
and note L = lQ/J1(PQ) = lQ/J1(P ). We will now consider Q/J1 as a
right R-module. We claim that L is an essential submodule of (Q/J1)R.
Choose any submodule N and let M be the inverse image of N in Q.
Elements of M are of the form m = rc−1, where r ∈ R, c ∈ CR(0). Note
that r = mc ∈ R ∩M . Similarly elements of MQ can be written in the
form rc−1, where r ∈ M, c ∈ CR(0), and in particular m /∈ J1. However
mc−1QΠ1 ⊆ J1 as n ∈ L. Therefore mQΠ1 ⊆ J1. Hence m+J1 ∈ L∩N
proving the claim.

We now have

(Q/J1)R ⊇ (R+ J1/J1)R ∼= (R/R ∩ J1)R,

and P annihilates an essential submodule of all of these terms. The last
step is to show that P is the unique maximal ideal among the annihila-
tors of non-zero submodules of (Q/J1)R, and the theorem then follows
using Lemma (5.2.1) to show that (Q/J1)R is P -primary and hence so
is R/R ∩ J1. Suppose not, let A = Ann(B), where B ⊆ (Q/J1)R is a
non-zero submodule and A * P . Replace B by the non-zero intersection
of B and L, the annihilator of P in (Q/J1)R, so that AQ is an ideal of Q,
for as A annihilates a non-zero R- submodule of (Q/J1)R, it annihilates
non-zero elements of (Q/J1)Q. Hence so does AQ. But if AQ is an ideal,
this now means AQ annihilates a non-zero Q-submodule of (Q/J1)Q and
AQ % PQ = Π1. This contradicts Q/J1 being Π1-primary.

The fact that AQ is an ideal follows from Proposition (5.8.1). It
remains to note that as P is maximal among the annihilators of (Q/J1)R,
it must be a prime ideal.

Note that if R is right Noetherian then Q is automatically right
Noetherian.

As right Artinian rings have a right primary decomposition and are
also right Noetherian we get the following corollary:
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5.8.8 Corollary:

If R is a ring with a right Artinian right quotient ring then R has a
right primary decomposition. A version of this corollary can be found in
[Nastasescu [72], Corollary (2.7)].

The following example is similar to [Chatters [24], Example (9.1)]. It
illustrates the interplay between Theorem (5.8.5) and Theorem (5.8.6)
in a non-Noetherian setting.

5.8.9 Example:

Let

R =

(
Z C
0 Z

)
and Q =

(
Q C
0 Q

)
,

Q is the quotient ring of R and Q (and therefore R) has the ascending
chain condition on right annihilators. Let

P =

(
Z C
0 0

)
and P

′
=

(
Q C
0 0

)
.

Then R is right P -primary and Q is right P
′
-primary.

5.9 Artinian Embedding

Many standard examples of Noetherian rings are known to be subrings
of Artinian rings because they have a primary decomposition and the
primary factors are subrings of Artinian rings. For example this is the
case for Noetherian rings with the second layer condition, which have
primary decomposition by Corollary (5.3.10) and the primary factors
have Artinian quotient rings by [[50], Proposition (8.3.5)].

5.9.1 Theorem:

[Krause [55], Theorem (3.1), Proposition (3.2)]. Let k be a field. The
following are equivalent for a right Noetherian right primary k-algebra
with finite Gelfand- Kirillov dimension.

(1) Each ideal of R is finitely annihilated on the right.
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(2) R embeds in a simple Artinian ring.

5.9.2 Theorem:

Let R be a right Noetherian k- algebra with finite Gelfand-Kirillov di-
mension. Suppose Ass(RR) satisfies the right restricted strong second
layer condition. Then R embeds in an Artinian ring if and only if ideals
of R are finitely annihilated on the right.

Proof. We can choose a right tame decomposition 0 =
⋂n
i=1 Ji, where

each Ji is an ideal of R, by Theorem (5.3.9). It follows that each
R/J1⊕ ...⊕R/Jn, where each R/Ji is a primary k-algebra with d.c.c on
right annihilators and finite Gelfand-Kirillov dimension, we use Theorem
(5.9.1) to get an Artinian embedding.

The converse holds trivially.

5.9.3 Corollary:

[Krause [55], Corollary (3.3)]. A right Noetherian, right fully bounded
k-algebra with finite Gelfand-Kirillov dimension can be embedded in a
simple Artinian ring. To finish we note that obtaining Artinian embed-
ding using a primary decomposition is not restricted to Noetherian rings.
Recall the following result of Goldie and Krause.

5.9.4 Theorem:

[Goldie [36], Corollary (2), Corollary (7)]. LetR be a ring thatAss(RR) ⊆
MinSpec(R) and ideals are finitely annihilated on the right. If Ωr(P )
satisfies the incomparability condition for every P ∈ Ass(RR) then R
embeds in a right Artinian ring.

By inspecting the proof of [Goldie [36], Corollary (7)], and noting
that each Ei in the proof is finitely annihilated, it is easy to see that this
embedding result is obtained via a tame decomposition.

Looking at this form the other direction, we could use the primary
decomposition result of Theorem (5.7.3) (in fact this is a tame decom-
position if R has ideals finitely annihilated on the right), along with
the following proposition to get Theorem (5.9.4). Precise details can be
found in Convington [28].
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5.9.5 Proposition:

Let R be a right P -primary ring with right Krull dimension, where P is
a prime ideal of R. Then R has a right Artinian right quotient ring if
and only if the following three conditions hold

(1) Ideals of R are finitely annihilated on the right.

(2) P is a minimal prime ideal.

(3) Ωr(P ) satisfies the incomparability condition.

Proof. If follows by inspecting the proof of [Goldie [36], Corollary (7)].
For the converse, (1) and (2) are easy to show. (3) can be proved using
the methods of Goldie [36].

We note that condition (2) is superfluous if R is right Noetherian.
Indeed so is condition (1) if R right and left Noetherian. For more
details see Convington [28]. By way of illustration consider the following
examples considered by Blair and Small in [18].

5.9.6 Example:

Consider the ring

R =

(
f(0) g(x)

0 f(x)

)
where k is a field and f(x), g(x) ∈ k[x]. R is a right Noetherian affine
k-algebra which is not left Noetherian. R has a prime ideal

P =

(
0 k[x]
0 0

)
and R is right P -primary. By applying Theorem (5.9.2) we see that
R embeds in a simple Artinian ring. However Ωr(P ) doesnot satisfy
the incomparability condition and R doesnot have a right Artinian right
quotient ring.

Now consider the ring the nonembeddable right Noetherian ring.

T =

(
C B
0 S

)
,
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where S = A1(C) and B is a simple right S-module. Note that we can
view B as a left C-module and hence as a C − S-bimodule. We have a
prime ideal

Q =

(
C B
0 0

)
and T is right Q-primary (but not Q-tame). The ring T has finite
Gelfand-Kirillov dimension and Q satisfies the strong second layer con-
dition. However the ideal (

0 B
0 0

)
is not finitely annihilated so Theorem (5.9.2) does not apply.
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6

PRIMARY DECOMPOSITION OF

SKEW POLYNOMIAL RINGS

The classical study of any commutative Noetherian ring is done by
studying its primary decomposition. Further there are other structural
properties of rings, for example the existence of quotient rings or more
particularly the existence of Artinian quotient rings or more particularly
the existence of Artinian quotient rings etc. which can be nicely tied to
primary decomposition of a Noetherian ring.

It is shown in Blair and Small [18] that if R is embeddable in a right
Artinian ring and has characteristic zero, then the differential operator
ring R[x; δ] embeds in a right Artinian ring, where δ is a derivation of
R. It is also shown in Blair and Small [18] that if R is a commutative
Noetherian ring and σ is an automorphism of R, then the skew polyno-
mial ring R[x;σ] embeds in an Artinian ring.

6.1 Associated Prime Ideals of Skew Polynomial Rings of
Automorphism Type

A non-commutative analogue of associated prime ideals of a Noetherian
ring has also been discussed. We also note that considerable work has
been done in the investigation of prime ideals (in particularly minimal
prime ideals and associated prime ideals) of skew polynomial rings (K.
R. Goodearl and E. S. Letzter [40], C. Faith [29], S. Annin [1], Leroy and
Matczuk [62], Nordstrom [74] and Bhat [9]).

Carl faith has proved that if R is a commutative ring, then the associ-
ated prime ideals of the usual polynomial ring R[x] (viewed as a module
over itself) are precisely the ideals of the form P [x], where P is an asso-
ciated prime ideal of Goodearl and Warfield proved in (2ZA) of [38] that
if R is a commutative Noetherian if σ is an automorphism of R, then an
ideal I of R is of the form P ∩R for some prime ideal P of R[x;x−1, σ]
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if and only if there is a prime ideals of R and a positive integer m with
σm(S) = S, such that I = ∩mi=1σ

i(S). Gabriel proved in [33] that if R is
a right Noetherian ring which is also an algebra over Q and P is a prime
ideal of R[x; δ], then P ∩ R is a prime ideal of R. In Theorem (2.2) of
[1], S. Annin has proved the following:

Theorem (2.2) of Annin [1]: Let R be a ring and M be a right
R-module. Let σ be an endomorphism of R and S = R[x;σ]. Let MR be
σ-compatible. Then Ass((M [x])S)) = {P [x] such that P ∈ Ass(MR)}.

H. Nordstrom has proved the following result in [74]:

Theorem (1.2) of Nordstrom [74]: Let R be a ring with identity
and σ be a surjective endomorphism of R. Then for any right R-module
M , Ass((M [x;σ])R) = {I[x;σ], I ∈ σ −Ass(MR)}.

In Corollary (1.5) of [74], Nordstrom has been proved that if R is a
Noetherian ring and σ is an automorphism ofR, thenAss((M [x, σ])S)) =
{Pσ[x, σ], P ∈ Ass(MR)}, where Pσ = ∩i∈Nσ−i(P ) and S = R[x, σ].

Concerning associated prime ideals of full Ore extensions R[x;σ, δ],
S. Annin generalizes the above in the following way:

Definition (2.1) of Annin [2]: Let R be a ring and MR be a right
R-module. Let σ be an endomorphism of R and δ be a σ-derivation of
R. MR is said to be σ-compatible if for each m ∈ M , r ∈ R, we have
mr = 0 ⇔ mσ(r) = 0. Moreover MR is said to be δ-compatible if for
each m ∈ M , r ∈ R, we have mr = 0 ⇒ mδ(r) = 0. If MR is both
σ-compatible and δ-compatible, MR is said to be (σ − δ)-compatible.

Theorem (2.3) of Annin [2]: Let R be a ring. Let σ be an
endomorphism of R and δ be a σ-derivation of R and MR be a right
R-module. If MR is (σ − δ)-compatible, then Ass((M [x])S)) = {P [x] |
P ∈ Ass(MR)}.

In [62] Leroy and Matczuk have investigated the relationship between
the associated prime ideals of an R-module MR and that of the induced
S-module MS , where S = R[x;σ, δ] (σ is an automorphism and δ is a
σ-derivation of a ring R). They have proved the following:
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Theorem (5.7) of Leroy and Matczuk [62]: Suppose MR con-
tains enough prime submodules and let for Q ∈ Ass(MS). If for every
P ∈ Ass(MR), σ(P ) = P , then Q = PS for some P ∈ Ass(MR).

Bhat [9] has investigated the nature of associated prime ideals of
certain skew polynomial rings over a Noetherian ring R and their relation
with those of the coefficient ring R.

6.1.1 Proposition:

Let R be a right Noetherian ring and σ be an automorphism of R. Then
there exists an integer m ≥ 1 such that σm(P ) = P for all P ∈ Ass(RR).

Proof. We know that Ass(RR) is finite and σ(P ) ∈ Ass(RR) for any P ∈
Ass(RR), therefore there exists an integer m ≥ 1 such that σm(P ) = P
for all P ∈ Ass(RR)

6.1.2 Proposition:

Let R be a semiprime right Goldie ring. Let σ be an automorphism of
R and δ be an σ-derivation of R. Let O(R) = R[x;σ, δ]. If f ∈ O(R) is
a regular element, then there exists g ∈ O(R) such that gf has leading
coefficient regular in R.

Proof. Let S = {am ∈ R such that xmam + ... + a0 ∈ O(R) for some
m} ∪ {0}. Then since O(R) is semiprime and Noetherian, O(R)f is
an essential left ideal of O(R), and therefore S is an essential left ideal
of R. So S contains a left regular element, and since R is semiprime,
Proposition (3.2.13) of Rowen [83] implies that S contains a regular
element. Therefore there exists g ∈ O(R) such that gf has leading
coefficient regular in R.

6.1.3 Theorem:

(Proposition (2.3) of Bhat [9]). Let R be right Noetherian ring and
σ be an automorphism of R. Let K(R) be any of S(R). Let P ∈
Ass(K(R)K(R)). Then there exists Q ∈ Ass(RR) with σm(Q) = Q
for some integer m ≥ 1 such that P ∩ R = Q0 = ∩mi=1σ

i(Q). Also
K(P ∩R) = P .
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Proof. Choose a right ideal I of K(R) with P = Ann(I) = Assas(IR),
and choose f ∈ I to be nonzero of minimal degree (with leading coeffi-
cient an). Without loss of generality, Q = Ann(anR) = Assas((anR)R).
This implies that fQ = 0. Therefore fK(R)Q0 ⊆ fQK(R) = 0. So
Q0 ⊆ (P ∩ R). But it is clear that (P ∩ R) ⊆ Q, and (P ∩ R) is σ-
invariant. Thus (P ∩ R) ⊆ Q0. Now by Jategaonkar [50], K(P ∩ R) is
a prime ideal of K(R). Suppose K(P ∩ R) 6= P . Then by Proposition
(6.1.2) there exists g ∈ C(K((P ∩R)), and h1 ∈ K(R) such that h1g has
leading co-efficient regular modulo P ∩ R. Let h1g =

∑k
i=0 x

idi. Now
P ⊆ Ann(frR), r ∈ R and since h1g ∈ P , we have frRh1g = 0. There-
fore xn+kσk(an)σk(r)Rdk+...+a0rRd0 = 0. So σk(an)σk(r)Rdk = 0; i.e.
σ−k(dk) ∈ Ann(anrR) = Q, but dk ∈ C(P ∩R), therefore dk ∈ C(P ∩R),
therefore dk ∈ C(σj(Q)) for all j ≥ 1 which is a contradiction. Hence
K(P ∩R) = P .

6.1.4 Theorem:

(Theorem (2.4) of Bhat [9]). Let R be a Noetherian ring and σ be an
automorphism of R. Let K(R) be any of S(R). Then:

(1) P ∈ Ass(K(R)K(R)) if and only if there exists Q ∈ Ass(RR) such
that K(P ∩R) = P and (P ∩R) = Q0.

(2) P ∈ MinSpec(K(R)) if and only if there exists Q ∈ MinSpec(R)
such that K(P ∩R) = P and (P ∩R) = Q0.

Proof. (1) Let Q = Ann(cR) = Assas((cR)R), c ∈ R. Now σm(Q) = Q
for some integer m ≥ 1 by Proposition (6.1.1). Now using Proposition
(6.1.2) as used in Theorem (6.1.3), we have K(Q0) = Ann(chK(R)) for
all h ∈ K(R). Therefore K(Q0) = Ann(cK(R)) = Assas((cK(R))R).
Converse is true by Theorem (6.1.3).

(2) Let Q ∈ Min.Spec(R). Then σm(Q) = Q for some integer
m ≥ 1. Let Q1 = Q0. Then by Proposition (10.6.12) of McConnell
and Robson [68] and Theorem (7.27) of Goodearl and Warfield [38],
Q2 = K(Q1) ∈MinSpec(K(R)).

Conversely suppose that P ∈ MinSpec(K(R)). Then P ∩ R = Q0

for some Q ∈ Spec(R) and Q contains a minimal prime Q1. Then P ⊇
K(R)Q0

1, which is a prime ideal of K(R). Hence P = K(R)Q0
1.
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In this section a structure of associated prime ideals and minimal
prime ideals of the skew polynomial rings S(R) = R[x;σ] and L(R) =
R[x;x−1, σ] is given, where σ is an automorphism of a right Noetherian
ring R. This structure is also given for R[x; δ], where δ is a derivation of
a right Noetherian Q-algebra R.

6.2 Associated Prime Ideals of Skew Laurent Rings

Goodearl and Warfield proved in (2ZA) of [38] that if R is a commutative
Noetherian ring, and if σ is an automorphism of R, then an ideal I of R
is of the form P ∩R for some prime ideal P of R[x, x−1;σ] if and only if
there is a prime ideal S of R and a positive integer m with σm(S) = S,
such that I = ∩σi(S), i = 1, 2, ...,m.

6.2.1 Theorem:

(Proposition (2.3) of Bhat [9]). Let R be right Noetherian ring and
σ be an automorphism of R. Let K(R) be any of L(R). Let P ∈
Ass(K(R)K(R)). Then there exists Q ∈ Ass(RR) with σm(Q) = Q
for some integer m ≥ 1 such that P ∩ R = Q0 = ∩mi=1σ

i(Q). Also
K(P ∩R) = P . (Same as Theorem (6.1.3)).

Proof. Choose a right ideal I of K(R) with P = Ann(I) = Assas(IR),
and choose f ∈ I to be nonzero of minimal degree (with leading coeffi-
cient an). Without loss of generality, Q = Ann(anR) = Assas((anR)R).
This implies that fQ = 0. Therefore fK(R)Q0 ⊆ fQK(R) = 0. So
Q0 ⊆ (P ∩ R). But it is clear that (P ∩ R) ⊆ Q, and (P ∩ R) is σ-
invariant. Thus (P ∩ R) ⊆ Q0. Now by Jategaonkar [50], K(P ∩ R) is
a prime ideal of K(R). Suppose K(P ∩ R) 6= P . Then by Proposition
(6.1.2) there exists g ∈ C(K((P ∩R)), and h1 ∈ K(R) such that h1g has
leading co-efficient regular modulo P ∩ R. Let h1g =

∑k
i=0 x

idi. Now
P ⊆ Ann(frR), r ∈ R and since h1g ∈ P , we have frRh1g = 0. There-
fore xn+kσk(an)σk(r)Rdk+...+a0rRd0 = 0. So σk(an)σk(r)Rdk = 0; i.e.,
σ−k(dk) ∈ Ann(anrR) = Q, but dk ∈ C(P ∩R), therefore dk ∈ C(P ∩R),
therefore dk ∈ C(σj(Q)) for all j ≥ 1 which is a contradiction. Hence
K(P ∩R) = P .

6.2.2 Theorem:

(Theorem (2.4) of Bhat [9]). Let R be a Noetherian ring and σ be an
automorphism of R. Let K(R) be any of L(R). Then:
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(1) P ∈ Ass(K(R)K(R)) if and only if there exists Q ∈ Ass(RR) such
that K(P ∩R) = P and (P ∩R) = Q0.

(2) P ∈ MinSpec(K(R)) if and only if there exists Q ∈ MinSpec(R)
such that K(P ∩ R) = P and (P ∩ R) = Q0. (Same as Theorem
(9.4)).

Proof. (1) Let Q = Ann(cR) = Assas((cR)R), c ∈ R. Now σm(Q) = Q
for some integer m ≥ 1 by Proposition (9.1). Now using Proposition
(6.1.2) as used in Theorem (6.1.3), we have K(Q0) = Ann(chK(R)) for
all h ∈ K(R). Therefore K(Q0) = Ann(cK(R)) = Assas((cK(R))R).

Converse is true by Theorem (6.1.3).

(2) Let Q ∈ MinSpec(R). Then σm(Q) = Q for some integer
m ≥ 1. Let Q1 = Q0. Then by Proposition (10.6.12) of McConnell
and Robson [68] and Theorem (7.27) of Goodearl and Warfield [38],
Q2 = K(Q1) ∈MinSpec(K(R)).

Conversely suppose that P ∈ MinSpec(K(R)). Then P ∩ R = Q0

for some Q ∈ Spec(R) and Q contains a minimal prime Q1. Then P ⊇
K(R)Q0

1, which is a prime ideal of K(R). Hence P = K(R)Q0
1.

6.3 Associated Primes Ideals of Skew Polynomial Rings
of Derivation Type

Goodearl and Warfield in Theorem (2.22) of [38] that if δ is a derivation
of a commutative Noetherian ring R which is also an algebra over Q and
P is a prime ideal of R[x; δ], then P ∩R is a prime ideal of R and if S is
a prime ideal of R with δ(S) ⊆ S, then S[x; δ] is a prime ideal of R[x; δ].
Gabriel proved in [33] that if R is a right Noetherian ring which is also
an algebra over Q and P is a prime ideal of R[x; δ], then P ∩R is a prime
ideal of R.

6.3.1 Proposition:

Let R be a Noetherian Q-algebra, σ an automorphism of R and δ be a
derivation of R such that σ(δ(a)) = δ(σ(a)), for all a ∈ R. Then etδ is
an automorphism of T = R[[t]].

Proof. The proof is on the same lines as in Seidenberg [84] and a sketch
in the non-commutative case is provided in Blair and Small [18].
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6.3.2 Lemma:

Let R be a Noetherian Q-algebra and δ be a derivation of R. Let T as
usual. Then an ideal I of R is δ-invariant if and only if IT is etδ-invariant.

Proof. Proof is obvious.

6.3.3 Proposition:

Let R be a ring and T as usual. Then:

(1) Q ∈ Ass(RR) implies that QT ∈ Ass(TT ).

(2) P ∈ Ass(TT ) implies that (P ∩R) ∈ Ass(RR) and P = (P ∩R)T .

Proof. Proof is obvious

6.3.4 Proposition:

Let R be a ring and T be as usual. Then:

(1) P ∈ MinSpec(T ) implies that (P ∩ R) ∈ MinSpec(R) and P =
(P ∩R)T .

(2) Q ∈MinSpec(R) implies that QT ∈MinSpec(T ).

Proof. (1) Let P ∈ MinSpec(T ). Then (P ∩ R) ∈ Spec(R). Let
(P ∩ R) /∈ MinSpec(R). Suppose P1 ⊂ (P ∩ R) is a minimal prime
ideal of R. Then P1T ⊂ (P ∩R)T ⊆ P .

(2) LetQ ∈MinSpec(R). ThenQT ∈ Spec(T ). LetQT /∈MinSpec(T ).
Suppose Q1 ⊂ QT is a minimal Prime ideal of T . Then (Q1 ∩ R) ⊂
QT ∩R = Q

6.3.5 Theorem:

(Theorem (3.6) of Bhat [9]). Let R be a Noetherian Q-algebra and δ be
a derivation of R. Let P ∈ Ass(RR) ∪MinSpec(R). Then δ(P ) ⊆ P .

Proof. Let T = R[[t]]. Now by Proposition (6.3.1) etδ is an automor-
phism of T . Let P ∈ Ass(RR) ∪ MinSpec(R). Then by Proposition
(6.3.3) and Proposition (6.3.4) PT ∈ Ass(TT ) ∪MinSpec(T ). There-
fore there exists an integer n ≥ 1 such that (etδ)n(PT ) = PT ; i.e.,
entδ(PT ) = PT . But R is a Q-algebra, therefore etδ(PT ) = PT , and
now Lemma (6.3.2) implies that δ(P ) ⊆ P .
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6.3.6 Proposition:

(Theorem (3.7) of Bhat [9]). Let R be a Noetherian Q-algebra and δ be
a derivation of R. Then:

(1) P ∈ Ass(D(R)D(R)) if and only if P = D(P ∩ R) and P ∩ R ∈
Ass(RR).

(2) P ∈ MinSpec(D(R)) if and only if P = D(P ∩ R) and P ∩ R ∈
MinSpec(R).

Proof. (1) Let P1 ∈ Ass(RR). Then δ(P1) ⊆ P1 by Theorem (6.3.5). Let
P1 = Ann(cR) = Assas((cR)R), c ∈ R. Now by Proposition (14.2.5)(ii)
of McConnell and Robson [68] D(P1) ∈ Spec(D(R)) and for any h ∈
D(R), D(P1) = Assas((ch.D(R))R).
Converse can be proved on the same lines as in Theorem (6.2.1).

(2) Let P1 ∈ MinSpec(R). Then δ(P1) ⊆ P1 by Theorem (6.3.5).
Therefore by Proposition (14.2.5)(ii) of McConnell and Robson [68]D(P1) ∈
Spec(D(R)). Suppose P2 ⊂ D(P1) is a minimal prime ideal of D(R).
Then P2 = D(P2 ∩ R) ⊂ D(P1) ∈ MinSpec(D(R)). So P2 ∩ R ⊂ P1

which is not possible.

Conversely suppose that P ∈ MinSpec(D(R)). Then P ∩ R ∈
Spec(R) by Lemma (2.21) of Goodearl and Warfield [38]. Let P1 ⊂ P ∩R
be a minimal prime ideal of R. Then D(P1) ⊂ D(P ∩ R) and as in
first paragraph D(P1) ∈ Spec(D(R)), which is a contradiction. Hence
P ∩R ∈MinSpec(R).

For more details and some basic results for the rings R[x;σ, δ], R[x;σ]
and R[x; δ], refer to Chapters (1) and (2) of Goodearl and Warfield [38],
[41].

6.4 Completely Prime Ideals of Skew Polynomial Rings

We begin with the following:

6.4.1 Lemma:

Let R be a ring. Let σ be an automorphism of R.

(1) If P is a prime ideal of S(R) such that x /∈ P , then P ∩ R is a
prime ideal of R and σ(P ∩R) = P ∩R.
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(2) If U is a prime ideal of R such that σ(U) = U , then S(U) is a
prime ideal of S(R) and S(U) ∩R = U .

Proof. The proof follows on the same lines as in Lemma (10.6.4) of Mc-
Connell and Robson [68].

6.4.2 Lemma:

[Theorem (3.22) of Goodearl and Warfield [41]]. Let R be a commutative
Noetherian Q-ring. Let δ be an derivation of R.

(1) If P is a prime ideal of D(R), then P ∩R is a prime ideal of R and
δ(P ∩R) ⊆ P ∩R.

(2) If U is a prime ideal of R such that δ(U) ⊆ U , then D(U) is a
prime ideal of D(R) and D(U) ∩R = U .

Proof. 1) This is contained in Lemmas (3.18) and (3.21) of Goodearl and
Warfield [41].

2) See Lemma (3.19) of Goodearl and Warfield [41].

Regarding the relation between the completely prime ideals of a ring
R and those of O(R), we have the following:

6.4.3 Theorem:

(Theorem (2.4) of Bhat [13]). Let R be a ring, σ an automorphism of R
and δ a σ a σ-derivation of R. Then:

(1) For any completely prime ideal P of R with δ(P ) ⊆ P and σ(P ) =
P , O(P ) is a completely prime ideal of O(R).

(2) For any completely prime ideal U of O(R), U ∩ R is a completely
prime ideal of R.

Proof. (1) Let P be a completely prime ideal of R. Now let

f(x) =
∑n

i=0 x
iai ∈ O(R) and g(x) =

∑m
j=0 x

jbj ∈ O(R)

be such that f(x)g(x) ∈ O(P ). Suppose f(x) 6= O(P ). We will show
that g(x) ∈ O(P ). We use induction on n and m. For n = m = 1 the
verification is easy. We check for n = 2 and m = 1. Let

f(x) = x2a+ xb+ c and g(x) = xu+ v.
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Now f(x)g(x) ∈ O(P ) with f(x) 6= O(P ). The possibilities are a 6= P or
b 6= P or c 6= P or any two out of these three do not belong to P . We
verify case by case.

Let b /∈ P . Now σ(a)u ∈ P . Suppose u /∈ P , then σ(a) ∈ P and
therefore, a ∈ P , δ(a) ∈ P . Now δ(a)u + σ(b)u + av ∈ P implies that
σ(b)u ∈ P which in turn implies that b ∈ P , which is not the case.
Therefore we have u ∈ P . Now δ(b)u + σ(c)u + bv ∈ P implies that
bv ∈ P and therefore, v ∈ P . Thus we have g(x) ∈ O(P ).

Let c /∈ P . Now σ(a)u ∈ P . Suppose, u /∈ P , then as above a ∈ P ,
δ(a) ∈ P . Now δ(a)u + σ(b)u + av ∈ P implies that σ(b)u ∈ P .
Now u /∈ P implies that σ(b) ∈ P ; i.e. b ∈ P , δ(b) ∈ P . Also
δ(b)u + σ(c)u + bv ∈ P implies σ(c)u ∈ P and therefore, σ(c) ∈ P
which is not the case. Thus we have u ∈ P . Now δ(c)u+ cv ∈ P implies
cv ∈ P , and so v ∈ P . Therefore g(x) ∈ O(P ).

Now suppose the result is true for k, n = k > 2 and m = 1. We will
prove for n = k + 1. Let

f(x) = xk+1ak+1 + xkak + ...xa1 + a0, and g(x) = xb1 + b0

be such that f(x)g(x) ∈ O(P ), but f(x) /∈ O(P ). We will show that
g(x) ∈ O(P ). If ak+1 /∈ P , then equating coefficients of xk+2, we get
σ(ak+1)b1 ∈ P , which implies that b1 ∈ P . Now equating coefficients of
xk+1, we get σ(ak)b1 + ak+1b0 ∈ P , which implies that ak+1b0 ∈ P , and
therefore, b0 ∈ P . Hence g(x) ∈ O(P ).

If aj /∈ P , 0 ≤ j ≤ k, then using induction hypothesis, we get that
g(x) ∈ O(P ). Therefore the statement is true for all n. Now using the
same process, it can be easily seen that the statement is true for all m
also.

(2) Let U be a completely prime ideal of O(R). Suppose a, b ∈ R are
such that ab ∈ U ∩R with a /∈ U ∩R. This means that a /∈ U as a ∈ R.
Thus we have b ∈ U , and thus b ∈ U ∩R.

6.5 Strongly Prime Ideals of Skew Polynomial Rings

Recall that a prime ideal P of a ring R is said to be strongly prime if for
all a, b ∈ R, either aP ⊆ bR or bR ⊆ aP .
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The following example shows that extension of a strongly prime ideal
need not be a strongly prime ideal:

6.5.1 Example:

(Bhat [13]). Let R = Q[t] = (t2). Let σ = id and δ = 0. For all
pt /∈ Q[t], we denote by p(t) the image of p(t) under the natural projec-
tion Q[t]→ R.

Now P = tR is a strongly prime ideal of R. Let a = 1 and b = x
and J = PR[x] = tR[x]. Then neither aJ ⊆ bR[x] nor bR[x] ⊆ aJ .
Therefore, J is not a strongly prime ideal of R[x].

6.5.2 Example:

(Bhat [13]). Let R = Zp. This is in fact a discrete valuation domain,
and therefore, its maximal ideal P = pR is strongly prime. But pR[x] is
not strongly prime in R[x] because it is not comparable with xR[x] (so
the condition of being strongly prime in R[x] for a = 1 and b = x).

Motivated by these developments we introduce a stronger type of
primary decomposition (known as transparency) for a non-commutative
Noetherian ring.

6.6 Transparent Rings and Their Extensions

We begin this section with the following:

6.6.1 Definition:

A Noetherian ring R is said to be a transparent ring if there exist irre-
ducible ideals Ij , 1 ≤ j ≤ n such that ∩nj=1Ij = 0 and each R/Ij has
a right Artinian quotient ring. It can be easily seen that an integral
domain is a transparent ring, a commutative Noetherian ring is a trans-
parent ring and so is a Noetherian ring having an Artinian quotient ring.
A fully bounded Noetherian ring is also a transparent ring.

6.6.2 Corollary:

Let R be a semiprime Noetherian ring and σ an automorphism of R.
Then T = R[[x;σ]] is also a semiprime Noetherian ring.
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6.6.3 Lemma:

Let R be a Noetherian ring and T as usual. Then:

(1) Let U ∈ MinSpec(R) be such that σ(U) = U . Then UT ∈
MinSpec(T ).

(2) P ∈MinSpec(T ) implies P ∩R ∈MinSpec(R) and P = (P ∩R)T .

Proof. (1) Let U ∈ MinSpec(R). Then UT ∈ Spec(T ) by Corollary
(8.6). Suppose UT /∈ MinSpec(T ). Let U1 ⊂ UT be a minimal prime
ideal of T . Then U1 ∩ R ⊂ UT ∩ R = U which is not possible as
U1∩R ∈ Spec(R) and U ∈MinSpec(R). Therefore UT ∈MinSpec(T ).

(2) Let P ∈MinSpec(T ). Then P∩R ∈ Spec(R). Suppose (P∩R) /∈
MinSpec(R). Let P1 ⊂ P ∩ R be a minimal prime ideal of R. Then
P1T ⊂ (P ∩ R)T ⊂ P which is not possible as P ∈ MinSpec(T ) and
P1T ∈ Spec(T ). Therefore P ∩R ∈MinSpec(R).

We also know that if R is a Noetherian ring and U ∈ Min.Spec(R),
then σj(U) ∈MinSpec(R) for all positive integers j. Also MinSpec(R)
is finite by Theorem (2.4) of Goodearl and Warfield [38]. Therefore there
exists a positive m such that σm(U) for all U ∈MinSpec(R). In Lemma
(3.4) of [33], Gabriel proved that if R is a Noetherian Q-algebra and δ is a
derivation of R, then δ(P ) ⊆ P for all P ∈MinSpec(R). In this chapter
we generalize this results for a σ-derivation δ and prove the following:

6.6.4 Lemma:

Let R be a Noetherian Q-algebra. Let σ be an automorphism of R and
δ a σ-derivation of R. Then:

(1) σ(N(R)) = N(R).

(2) If P ∈MinSpec(R) is such that σ(P ) = P , then δ(P ) ⊆ P .

Proof. (1) The proof is obvious.

(2) Let T be as usual. Now by Lemma (6.3.1) etδ is an automorphism
of T . Let P ∈MinSpec(R). Then by Lemma (6.6.3) PT ∈MinSpec(T ).
So there exists an integer n ≥ 1 such that (etδ)n(PT ) = PT ; i.e.,
entδ(PT ) = PT . But R is a Q-algebra, therefore etδ(PT ) = PT , and so
Lemma (6.3.2) implies that δ(P ) ⊆ P .
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6.6.5 Lemma:

Let R be a right Noetherian ring. Then there exists irreducible ideals
Ij , 1 ≤ j ≤ n of R such that ∩nj=1Ij = 0 (proof is obvious)

6.6.6 Lemma:

Let R be a Noetherian ring having a right Artinian quotient ring. Then
R is a transparent ring.

Proof. Let Q(R) be the right quotient ring of R. Now for any ideal J
of Q(R), the contraction Jc of J is an ideal of R and the extension of
Jc is J ; i.e., Jce = J . For this see Proposition (9.19) of Goodearl and
Warfield [38]. Let Ij , 1 ≤ j ≤ n be the irreducible ideals of Q(R) such
that 0 = ∩nj=1Ij . Also each Q(R)/Ij is an Artinian ring. Let Icj = Kj .
Then it is not difficult to see that R/Kj has Artinian quotient ring
Q(R)/Ij . Moreover ∩nj=1Kj = 0. Hence R is a transparent ring.

6.6.7 Definition:

Let P be a prime ideal of a commutative ring R. Then the symbolic
power of P for a positive integer n is denoted by P (n) and is defined
as P (n) = {a ∈ R such that there exists some d ∈ R, d /∈ P such that
da ∈ Pn}. Also if I is an ideal of R, define as usual

√
I = {a ∈ R such

that an ∈ I for some n ∈ Z with n ≥ 1}.

6.6.8 Lemma:

LetR be a commutative Noetherian ring and let σ be an automorphism of
R. Then there exists a positive integer m such that, for all P ∈ Ass(RR):

(1) σm(P ) = P .

(2) σm(P (k)) = P (k) for all k ≥ 0.

Proof. (1) Since Ass(RR) is a finite set and σj(P ) ∈ Ass(RR) for any
integer j ≥ 1 whenever P ∈ Ass(RR), there exists an integer m ≥ 1 such
that σm(P ) = P .

(2) Denote σm by θ. We have θ(P ) = P . Let a ∈ P (k). Then there
exists some d ∈ R, d /∈ P such that da ∈ P k. Therefore θ(da) ∈ θ(P k);
i.e., θ(d)θ(a) ∈ (θ(P ))k = P k. Now θ(d) /∈ P implies that θ(a) ∈ P (k).
Therefore θ(P (k)) ⊆ P (k). Hence θ(P (k)) = P (k).
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6.6.9 Lemma:

Let R be a commutative Noetherian Q-algebra. Let σ be an automor-
phism of R and δ a σ-derivation of R. Let P be a prime ideal of R such
that σ(P ) = P and δ(P ) ⊆ P . Then δ(P (k)) ⊆ P (k), for any integer
k ≥ 1.

Proof. Let a ∈ P (k). Then there exists d /∈ P such that da ∈ P k. Let
da = p1p2...pk, pi ∈ P . Then

δ(da) = δ(p1p2...pk−1)σ(pk) + p1p2...pk−1δ(pk)

= δ(p1p2...pk−2)σ(pk−1)σ(pk) + p1p2...pk−2δ(pk−1)σ(pk) + p1p2...pk−1δ(pk)

.

.

.

= δ(p1)σ(p2...pk) + ...+ p1p2...pk−2δ(pk−1)σ(pk) + p1p2...pk−1δ(pk).

This lies in P k as σ(P ) = P and δ(P ) ⊆ P ; i.e., σ(d)δ(a) + δ(d)a ∈
P k. Now a ∈ P (k), and, therefore σ(d)δ(a) ∈ P (k). Now d1σ(d)δ(a) +
d1δ(d)a ∈ P k, which implies that d1σ(d)δ(a) ∈ P k and since d1σ(d) /∈ P ,
we have δ(a) ∈ P (k)

6.6.10 Theorem:

(Theorem (2.11) of Bhat [8]). Let R be a ring which is an order in a
right Artinian ring S. Then O(R) is an order in a right Artinian ring.

Proof. By using (Proposition (2.1), Lemma (2.5) and Theorem (2.6)) of
Bhat [8], we get a result.

6.6.11 Theorem:

Let R be a commutative Noetherian Q-algebra, σ be an automorphism
of R. Then there exists an integer m ≥ 1 such that the skew-polynomial
ring R[x;α, δ] is a transparent ring, where σm = α and δ is an α-
derivation of R such that α(δ(a)) = δ(α(a)), for all a ∈ R.

Proof. R[x;α, δ] is Noetherian by Hilbert Basis Theorem, namely The-
orem (1.12) of Goodearl and Warfield [38]. Now R is a commutative
Noetherian Q-algebra, therefore, the ideal (0) has a reduced primary
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decomposition. Let Ij , 1 ≤ j ≤ n be irreducible ideals of R such that
(0) = ∩nj=1Ij . For this see Theorem (4) of Zariski and Samuel [92]. Let√
Ij = Pj , where Pj is a prime ideal belonging to Ij . Now by The-

orem (23) of Zariski and Samuel [92] there exists a positive integer k

such that P
(k)
j ⊆ Ij , 1 ≤ j ≤ n. Therefore we have ∩nj=1P

k
j = 0. Now

Pj ∈ Ass(RR), 1 ≤ j ≤ n by first uniqueness Theorem. Now each Pj
contains a minimal prime ideal Uj by Proposition (2.3) of Goodearl and
Warfield [38] and since MinSpec(R) is finite, there exists an integer
m ≥ 1 such that σm(Uj) = Uj . Denote σm by α. Now α(Uj) = Uj ,

and therefore, α(U
(k)
j ) = U

(k)
j by Lemma (6.6.8). Also δ(Uj) ⊆ Uj

by Lemma (6.6.4) and therefore, δ(U
(k)
j ) ⊆ U

(k)
j by Lemma (6.6.9).

Thus U
(k)
j [x;α, δ] is an ideal of R[x;α, δ]. Now R/U

(k)
j has no embed-

ded primes, therefore R/U
(k)
j has an Artinian quotient ring by Theorem

(2.11) of Robson [81]. Now by Theorem (6.6.10) R[x;α, δ]/U
(k)
j [x;α, δ]

has an Artinian quotient ring. Moreover ∩nj=1U
(k)
j [x;α, δ] = 0, therefore,

Lemma (6.6.6) implies that R[x;α, δ] is a transparent ring.

6.6.12 Remarks:

(1) Let R be a Noetherian ring having an Artinian quotient ring. Let σ
be an automorphism of R and δ a σ-derivation of R. Then R[x;σ, δ]
is a transparent ring.

(2) Let R be a commutative Noetherian ring and σ be an automor-
phism of R. Then the skew polynomial ring R[x;σ] is a transparent
ring.

(3) Let R be a commutative Noetherian ring and σ be an automor-
phism of R. Then the skew Laurent polynomial ring R[x;x−1, σ]
is a transparent ring.

(4) Let R be a commutative Noetherian Q-algebra and δ a derivation
of R. Then the differential operator ring R[x; δ] is a transparent
ring.

6.7 Transparent Skew Polynomial Rings (special cases)

In this section we study the Transparent ring property for O(R) =
R[x;σ, δ].
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6.7.1 Corollary:

LetR be a Noetherian σ(∗)-ring and U ∈MinSpec(R). Then U(S(R)) =
U [x;σ] is a completely prime ideal of S(R) = R[x;σ].

Proof. Let U ∈ MinSpec(R). Then σ(U) = U by Theorem (4.6.11).
Now result follows from Proposition (4.6.9).

6.7.2 Proposition:

(Proposition (4) of Bhat [15]). Let R be a Noetherian σ(∗)-ring which
is also an algebra over Q and δ a σ-derivation of R such that δ(σ(a)) =
σ(δ(a)), for all a ∈ R. Then δ(U) ⊆ U for all U ∈MinSpec(R).

Proof. Let U ∈ MinSpec(R). Then σ(U) = U by Theorem (4.6.11).
Consider the set

T = {a ∈ U | such that δk(a) ∈ U for all integers k ≥ 1}.

First of all, we will show that T is an ideal of R. Let a, b ∈ T . Then
δk(a) ∈ U and δk(b) ∈ U for all integers k ≥ 1. Now δk(a − b) =
δk(a) − δk(b) ∈ U for all k ≥ 1. Therefore a − b ∈ T . Therefore T is a
δ-invariant ideal of R.

We will now show that T ∈ Spec(R). Suppose T /∈ Spec(R). Let
a /∈ T , b /∈ T be such that aRb ⊆ T . Let t, s be least such that δt(a) /∈ U
and δs(b) /∈ U . Now there exists c ∈ R such that δt(a)cσt(δs(b)) /∈ U .
Let d = σ−t(c). Now δt+s(adb) ∈ U as aRb ⊆ T . This implies on
simplification that

δt(a)σt(d)σt(δs(b)) + u ∈ U ,

where u is sum of terms involving δl(a) or δm(b), where l < t and m < s.
Therefore by assumption u ∈ U which implies that δt(a)σt(d)σt(δs(b)) ∈
U . This is a contradiction. Therefore, our supposition must be wrong.
Hence T ∈ Spec(R). Now T ⊆ U , so T = U as U ∈MinSpec(R). Hence
δ(U) ⊆ U .

6.7.3 Remark:

In above Proposition the condition that δ(σ(a)) = σ(δ(a)), for all a ∈ R
is necessary. For example if s = t = 1, then a ∈ U , b ∈ U and therefore,
σi(a) ∈ U , σi(b) ∈ U for all integers i ≥ 1 as σ(U) = U . Now δ2(adb) ∈ U
implies that
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δ(a)σ(d)δ(σ(b)) + δ(a)σ(d)σ(δ(b)) ∈ U .

If δ(σ(a)) 6= σ(δ(a)), for all a ∈ R, then we get nothing out of it and if
δ(σ(a)) = σ(δ(a)), for all a ∈ R, we get δ(a)σ(d)σ(δ(b)) ∈ U which gives
a contradiction.

6.7.4 Theorem:

Let R be a commutative Noetherian σ(∗)-ring, which is also an algebra
over Q, (σ an automorphism of R). Let δ be a σ-derivation of R such
that δ(σ(a)) = σ(δ(a)), for all a ∈ R. Then O(R) = R[x;σ, δ] is a
Transparent ring.

Proof. R is a commutative Noetherian Q-algebra, therefore, the ideal (0)
has a reduced primary decomposition. Let Ij , 1 ≤ j ≤ n be irreducible
ideals of R such that (0) = ∩nj=1Ij . For this see Theorem (4) of Zariski

and Samuel [92]. Let
√
Ij = Pj , where Pj is a prime ideal belonging to

Ij . Now Pj ∈ Ass(RR), 1 ≤ j ≤ n. Therefore we have ∩nj=1P
(k)
j = 0.

Now each Pj contains a minimal prime ideal Uj by Proposition (2.3)

of Goodearl and Warfield [38], therefore ∩nj=1U
(k)
j = 0. Now Theorem

(4.6.11) implies that σ(Uj) = Uj , for all j, 1 ≤ j ≤ n. Therefore Propo-
sition (6.7.2) implies that δ(Uj) ⊆ Uj , for all j, 1 ≤ j ≤ n. Now Lemma

(6.6.8) implies that σ(Uj)
(k) = U

(k)
j and Lemma (6.6.9) implies that

δ(Uj)
(k) ⊆ U (k)

j , for all j, 1 ≤ j ≤ n and for all k ≥ 1. Therefore O(U
(k)
j )

is an ideal of O(R) and ∩nj=1O(U
(k)
j ) = 0.

Now R/U
(k)
j has an Artinian quotient ring, as it has no embedded

primes, therefore O(R)/O(Uj)
(k) has also an Artinian quotient ring by

Theorem (2.11) of Bhat [8]. Hence O(R) = R[x;σ, δ] is Transparent
ring.

Before we study the transparency of Ore extensions over weak σ-rigid
rings, we have the following:

Recall that an ideal I of a ring R is said to be completely semiprime
if a2 ∈ I implies that a ∈ I.

We now have the following Theorem:
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6.7.5 Theorem:

(Theorem (6) of Bhat [16]). Let R be a Noetherian ring such that N(R)
is an ideal of R. Let σ be an automorphism of R. Then R is a weak
σ-rigid ring implies that N(R) is completely semiprime.

Proof. See Theorem (4.6.15).

6.7.6 Corollary:

Let R be a commutative Noetherian ring. Let σ be an automorphism
of R. Then R is a weak σ-rigid ring if and only if N(R) is completely
semiprime ideal of R.

Proof. R is commutative Noetherian implies that N(R) is an ideal of R.
It is easy to see that σ(N(R)) = N(R).

Now let R be a weak σ-rigid ring. We will show that N(R) is com-
pletely semiprime. Let a ∈ R be such that a2 ∈ N(R). Then

aσ(a)σ(aσ(a)) = aσ(a)σ(a)σ2(a) ∈ σ(N(R)) = N(R).

Therefore, aσ(a) ∈ N(R) and hence a ∈ N(R). So N(R) is completely
semiprime.

Conversely let N(R) be completely semiprime. We will show that
R is a weak σ-rigid ring. Let a ∈ R be such that aσ(a) ∈ N(R). Now
aσ(a)σ−1(aσ(a)) ∈ N(R) implies that a2 ∈ N(R), and so a ∈ N(R).
Hence R is a weak σ-rigid ring.

6.7.7 2-primal skew polynomial rings

Recall that a ring R is called a 2-primal if P (R) = N(R), i.e. if the
prime radical is a completely semiprime ideal. Minimal prime ideals of
2-primal rings have been discussed by Kim and Kwak in [53]. 2-primal
near rings have been discussed by Argac and Groenewald in [3].

2-primal rings have been studied in recent years and are being treated
by authors for different structures. In [65], G. Marks discusses the 2-
primal property of R[x;σ, δ], where R is a local ring, σ an automorphism
of R and δ a σ-derivation of R. In G. Marks [65], it has been shown
that for a local ring R with a nilpotent maximal ideal, the ore extension
R[x;σ, δ] will or will not be 2-primal depending on the δ-stability of the
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maximal ideal of R. In the case where R[x;σ, δ] is 2-primal, it will satisfy
an even stronger condition; in the case where R[x;σ, δ] is not 2-primal,
it will fail to satisfy an even weaker condition.

We note that a reduced ring (i.e., a ring with no non-zero nilpotent
elements) is 2-primal and a commutative ring is also 2-primal. For fur-
ther details on 2-primal rings, we refer the reader to [3, 10, 53, 65].

Example: Let R = Q ⊕ Q with σ(a, b) = (b, a). Then the only
σ-invariant ideals of R are 0 and R, and so R is σ-prime. Let δ: R→ R
be defined by δ(r) = ra − aσ(r), where a = (0, α) ∈ R. Then δ is
a σ-derivation of R and R[x;σ, δ] is prime and P (R[x;σ, δ]) = 0. But
(x(1, 0))2 = 0 as δ(1, 0) = −(0, α). Therefore R[x;σ, δ] is not 2-primal.
If δ is taken to be the zero map, then even R[x;σ] is not 2-primal.

6.7.8 Proposition:

(Proposition (2) of Bhat [16]). Let R be a 2-primal right Noetherian ring
which is also an algebra over Q. Let σ be an automorphism of R such
that R is a weak σ-rigid ring and δ a σ-derivation of R. Then σ(U) = U
and δ(U) ⊆ U for all U ∈MinSpec(R).

Proof. Let R be 2-primal weak σ-rigid ring. Then N(R) = P (R), i.e.
P(R) is completely semiprime.

We next show that σ(U) = U for all U ∈ MinSpec(R). Let U = U1

be a minimal prime ideal of R. Now Theorem (2.4) of Goodearl and
Warfield [38] implies that MinSpec(R) is finite. Let U2, U3, ..., Un be
the other minimal primes of R. Suppose that σ(U) 6= U . Then σ(U)
is also a minimal prime ideal of R. Renumber so that σ(U) = Un.
Let a ∈ ∩n−1i=1 Ui. Then σ(a) ∈ Un, and so aσ(a) ∈ ∩ni=1Ui = P (R).
Now P (R) is completely semiprime implies that a ∈ P (R) and thus
∩n−1i=1 Ui ⊆ Un which implies that Ui ⊆ Un for some i 6= n, which is im-
possible. Hence, σ(U) = U for all U ∈MinSpec(R).

Let now T = {a ∈ U | such that δk(a) ∈ U for all integers k ≥ 1}.
First of all, we will show that T is an ideal of R. Let a, b ∈ T . Then
δk(a) ∈ U and δk(b) ∈ U for all integers k ≥ 1. Now δk(a − b) =
δk(a)− δ(k)(b) ∈ U for all k ≥ 1. Therefore a− b ∈ T . Therefore T is a
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δ-invariant ideal of R.

We will now show that T ∈ Spec(R). Suppose T /∈ Spec(R). Let
a /∈ T , b /∈ T be such that aRb ⊆ T . Let t, s be least such that δt(a) /∈ U
and δt(b) /∈ U , i.e. δm(a) ∈ U and δk(b) ∈ U for m < t and k < s.

Now there exists c ∈ R such that δt(a)cσt(δs)(b) /∈ U . Let d = σ−t(c).
Now δt+s(abd) ∈ U as aRb ⊆ T . This implies on simplification that
δt(a)σt(d)σt(δs(b)) + u ∈ U , where u is sum of terms involving δl(a) or
δm(b), where l < t and m < s. Therefore by assumption u ∈ U which
implies that δt(a)σt(d)σt(δs(b)) ∈ U . This is a contradiction. Therefore,
our supposition must be wrong. Hence T ∈ Spec(R). Now T ⊆ U , so
T = U as U ∈MinSpec(R). Hence δ(U) ⊆ U .

6.7.9 Lemma:

Let R be a right Noetherian ring which is also an algebra over Q. Let σ
be an automorphism of R such that R is a weak σ-rigid ring and δ be a
σ-derivation of R. Then

(1) If U is a minimal prime ideal of R, then O(U) is a minimal prime
ideal of O(R) and O(U) ∩R = U

(2) If P is a minimal prime ideal of O(R), then P ∩ R is a minimal
prime ideal of R.

Proof. (1) Let U be a minimal prime ideal of R. Then by Proposition
(6.7.8) σ(U) = U and δ(U) ⊆ U . Now on the same lines as in Theorem
(2.22) of Goodearl and Warfield [38] we have O(U) ∈ Spec(O(R)). Sup-
pose L ⊂ O(U) be a minimal prime ideal of O(R). Then L ∩ R ⊂ U is
a prime ideal of R, a contradiction. Therefore O(U) ∈MinSpec(O(R)).
Now it is easy to see that O(U) ∩R = U .

(2) We note that x /∈ P for any prime ideal P of O(R) as it is not
a zero divisor. Now the proof follows on the same lines as in Theorem
(2.22) of Goodearl and Warfield [38] using Lemma(2.1) and Lemma(2.2)
of Bhat [7] and Proposition (6.7.8).

6.7.10 Theorem:

(Theorem (5) of Bhat [16]). Let R be a commutative Noetherian weak
σ-rigid ring, which is also an algebra over Q. Let σ be an automorphism
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of R and δ a σ-derivation of R. Then O(R) = R[x;σ, δ] is a Transparent
ring.

Proof. Now R is a commutative Noetherian Q-algebra, therefore, the
ideal (0) has a reduced primary decomposition. Let Ij , 1 ≤ j ≤ n be
irreducible ideals of R such that (0) = ∩nj=1Ij . For this see Theorem (4)

of Zariski and Samuel [92]. Let
√
Ij = Pj , where Pj is a prime ideal

belonging to Ij . Now Pj ∈ Ass(RR), 1 ≤ j ≤ n by first uniqueness
Theorem. Now by Theorem (23) of Zariski and Samuel [92], there exists

a positive integer k such that P
(k)
j ⊆ Ij , 1 ≤ j ≤ n. Therefore we

have ∩nj=1P
k
j = 0. Now each Pj contains a minimal prime ideal Uj by

Proposition (2.3) of Goodearl and Warfield [38], therefore ∩nj=1U
k
j =

0. Now R is commutative implies that R is 2-primal, and therefore,
Proposition (6.7.8) implies that σ(Uj) = Uj and δ(Uj) ⊆ Uj , for all j,

1 ≤ j ≤ n. Now Lemma (6.6.8) implies that σ(Uj)
(k) = U

(k)
j and Lemma

(6.6.9) implies that δ(U
(k)
j ) ⊆ U (k)

j , for all j, 1 ≤ j ≤ n and for all k ≥ 1.

Therefore, O(U
(k)
j ) is an ideal of O(R) and ∩nj=1O(U

(k)
j ) = 0.

Now R/U
(k)
j has an Artinian quotient ring, as it has no embedded primes,

therefore O(R)/O(U
(k)
j ) has also an Artinian quotient ring by Theorem

(2.11) of Bhat [8]. Hence O(R) = R[x;σ, δ] is transparent ring.

Now we take the case, when R is not necessarily commutative.

6.7.11 Theorem:

(Theorem (6) of Bhat [16]). Let R be a semiprime Noetherian weak σ-
rigid ring, which is also an algebra over Q. Let σ be an automorphism of
R and δ a σ-derivation of R. Then R is a transparent ring and O(R) =
R[x;σ, δ] is also a Transparent ring.

Proof. R is Noetherian therefore, Theorem (2.4) of Goodearl and Warfield
[38] implies that MinSpec(R) is finite. Also R is semiprime implies that
∩P∈MinSpec(R)P = 0. Now Proposition (6.7.8) implies that σ(P ) = P
and δ(P ) ⊆ P , for all P ∈ MinSpec(R). Therefore O(P ) = P [x;σ, δ] is
an ideal of O(R) and ∩P∈MinSpec(R)O(P ) = 0. In fact O(P ) is a minimal
prime ideal of O(R) by Lemma (6.7.9). Now R/P has a right Artinian
quotient ring by Theorem (5.12) of Goodearl and Warfield [38], and
∩P∈MinSpec(R)P = 0 implies that R is a Transparent ring. Now Theorem
(2.11) of Bhat [8] implies that O(R)/O(P ) has a right Artinian quotient
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ring and hence ∩P∈MinSpec(R)O(P ) = 0 implies that O(R) = R[x;σ, δ] is
a Transparent ring.



Chapter

7

APPLICATIONS OF SKEW

POLYNOMIAL RINGS

Over the past ten years, Skew polynomials have been successfully
applied in many areas, including for example solving Ordinary differen-
tial Equations (see Bronstein and Petkousek [21], Chyzak and B. Salvy
[25], Van Hoeij [90] and Singer [87], e.t.c.), Control Theory (see Chyzak -
Quadrat - Robertz [26], Fliess Mounier [30] and Gluesing-Luerssen [35],
etc.) and Coding Theory (see McEliece [69] and Piret [77], etc.)

7.1 Coding Theory

The problem of reliable communication is a very old one. Coding theory
on the other hand is rather young. It was born in a now classic paper
from (1948) “A mathematical theory of communication” by Shannon.
The model is as follows. A sender wants to communicate a message to
the receiver. Rather than sending it directly, the sender encodes the
message and sends it through the noisy communication channel. When
the message is received it might contain errors. We would like to prevent
errors like this occurring in the digital world and somehow make sure we
received the right message before we decode it. This ground breaking
ideal of error correcting codes is due to Hamming. He developed it in
his famous paper “error detecting and error correcting codes” in (1950).
The coding theory is thus concerned with developing codes that have ef-
ficient encoding and decoding algorithms as well as the ability to detect
and correct the errors in the communication.

This chapter is related to study of Skew codes, the codes over non-
commutative polynomial rings which are a generalization of the usual
ring of polynomials This was motivated by a paper of Boucher, Geisel-
mann and Ulmer [19] where they introduce them. Chapter 7 gives an
introduction to basic principles of coding theory. It introduces a large
family of linear codes, and within them, the cyclic codes and BCH (Bose
Chaudhuri Hocquenbghem) codes.
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7.1.1 Block Codes

By a code we will always mean a block code. A block code is a set of
words (codewords, blocks) of length n, that take entries from an alphabet∑

with q symbols and can be decoded independently from each other. If
we denote by

∑n a set of all possible words of length n that take entries
from

∑
, then a block code C is a subset of

∑n.

Codes that are not block codes, i.e. that have words which are not
of constant length, are called convolutional codes.

We begin with some important definitions that we will use through
out the chapter.

7.1.2 Definition:

The Hamming distance d(x, y) between two words x, y ∈
∑n is defined

as a number of positions in which they differ:

d(x, y) = ]{i : xi 6= yi, 1 ≤ i ≤ n}

It can easily be checked that Hamming distance is a metric on
∑n:

(1) d(x, y) = d(y, x);

(2) d(x, z) ≤ d(x, y) + d(y, z);

(3) d(x, y) = 0⇔ x = y.

7.1.3 Definition:

The minimum distance of code C is

min {d(x, y) : x, y ∈ C, x 6= y}.

7.1.4 Definition:

The Hamming weight w(x) of a codeword x is the number of non-zero
coordinates of x.
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7.1.5 Hamming Codes:

Let n := qk−1)
(q−1) . The [n, n-k] Hamming code over Fq is a code for which

the parity check matrix has columns that are pairwise linearly indepen-
dent (over Fq), i.e. the columns are a maximal set of pairwise linearly
independent vectors.

7.1.6 Theorem:

[Theorem (3.3.2) in Lint [63]]. Hamming codes are perfect.

Proof. By definition of a Hamming code of length n and dimension k over

Fq we have n = qk−1)
(q−1) . We know Hamming codes are 1-error correcting,

so we want to consider disjoint spheres of radius one centered around
codewords of C. Let c be a codeword. Then the number of n-tuples in
Fq in a sphere of radius one centered around c, |B1(c)|, is

|B1(c)| =
(
n
0

)
+

(
n
1

)
= 1 + n(q − 1) = qk.

The number of codewords of C is qn−k. Then qn−kqk = qn, which is all
of the Fnq . Thus C is perfect.

7.1.7 Example:

[Example (3.3.3) in Lint [63]]. The [7, 4] binary Hamming code C has
parity check matrix

H =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


If we consider two columns of H and the sum of these two (e.g. the first
three columns of H), then there is a word of weight 3 in C with 1s in the
positions corresponding to these columns (e.g. (1110000)). Therefore C
has seven words of weight 3 which listed as rows of a matrix, form PG(2,
2).

7.1.8 Definition:

A code that is able to detect up to e errors is called e- error detecting.
If it correct up to e errors, We call such a code e- error-correcting.
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To introduce some algebraic structure into codes, we let the alphabet∑
be a finite field Fq with q a prime power. The space

∑n then becomes
an n-dimensional vector space Fnq over Fq.

7.1.9 Linear Codes

Let Fq be a field with q elements and n an integer. A linear code C of
length n and dimension k is a k dimensional linear subspace of Fnq . We
use notation [n, k] to refer to such a code. In other words, a linear code
C is a subset of Fnq such that

(1) 0 ∈ C

(2) if x, y ∈ C, then x+ y ∈ C

(3) for all x ∈ C and λ ∈ Fq, we have λx ∈ C.

Codewords of a linear code are thus n-tuples over Fq. An advantage
of a linear code over a nonlinear one is that it is very easy to represent it.
For a linear [n, k] code C any k × n matrix whose rows from a basis for
C completely determines the code. We call such a matrix a generating
matrix of a code C.

We saw that the information rate of a code was defined as
logq |C|
n . For

a linear code the number of codewords is |C| = qk so the information
rate then simplifies to k

n . Another simplification we gain from impos-
ing structure on a code is in computing its minimum distance. For an
arbitrary, unstructured code one must check the distances between all
possible pairs of words in order to find the minimum distance.

7.1.10 Theorem:

[Theorem (3) in Lekic [61]]. Let C be a linear code. Then its minimum
distance is equal to the minimum weight.

Proof. Note that the weight function of a codeword x was defined as
the number of non-zero coordinates of x and so we have w(x) = d(0, x).
Then

d(x, y) = d(x− y, 0)

= w(x− y)

= w(z)
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Since x and y are in C which is linear, it follows that z is also a word in
C.

7.1.11 Cyclic Codes

Cyclic codes are a small subset of the set of linear codes. They are
the most common block codes used in practice. These are a few reasons
cyclic codes are nice to study. One is that they have a very rich algebraic
structure, and another is that many important codes (BCH codes for
example) are cyclic.

7.1.12 Definition:

A code C of length n is called cyclic if for every codeword

c = (c0, c1, ..., cn−1) in C.

We have that

c
′

= (cn−1, c0, ..., cn−2) is also in C.

Even though we said cyclic codes were linear, it is not clear why that
is the case from this definition. In principle it is possible to have nonlin-
ear cyclic codes since the way we defined them does not require linearity.
However, because of the advantages of imposing linearity it is common
to only consider linear cyclic codes.

For a given c ∈ C any number of right or left shifts on c also gives a
codeword. This suggest the following construction. Let G denote a set
of all possible right shifts of a word c. Then the linear span of G is the
smallest linear cyclic code C containing c. By this construction it is clear
that a single word determines a code. We call such a word a generator.
A generator need not be unique. This deserves a more precise treatment.
In order to do that it is convenient to think of codewords as polynomials
in the following way. Let Fq denote a finite field of q elements and Fq[x]
a ring of polynomials in x with coefficients in Fq. To every codeword

c = (c0, c1, ..., cn−1) ∈ Fnq

we associate the code polynomial
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c(x) = c0 + c1x+ ...+ cn−1x
n−1 ∈ Fq[x]/(xn − 1).

With this convention established we can sometimes abuse the notation
and call a code polynomial c(x) a codeword in C.

Note that a shifted codeword c
′

= (cn−1, c0, ..., cn−2) in C has asso-
ciated polynomial

c
′
(x) = cn−1 + c0x+ ...+ cn−2x

n−1

and that c
′
(x) = xc(x) modulo xn − 1. In this way we can represent a

single right cyclic shift between two codewords in C with a multiplica-
tion by x in a ring of polynomials modulo xn − 1.

We know that applying any number of cyclic shifts on c ∈ C gives us
another codeword

x
′
c(x) mod xn − 1 ∈ C

so that any linear combination of words in C produces another word in
C

∑d
i=0 aix

ic(x) mod xn − 1 ∈ C

where ai ∈ Fq. In other words, for any polynomial a(x) ∈ Fq[x]/(xn− 1)
and any codeword c(x) ∈ C the product a(x)c(x) is also in C.

7.1.13 Example:

Over F2 we have

x7 − 1 = (x− 1)(x3 + x+ 1)(x3 + x2 + 1).

There are altogether eight cyclic codes of length 7. One of these has 0 as
the only code word and one contains all possible words. The code with
generator x− 1 contains all words of even weight. The [7, 1] cyclic code
has 0 and 1 as codewords. The remaining four codes have dimension 3,
3, 4 and 4 respectively. For example, taking g(x) := (x−1)(x3+x+1) =
x4 + x3 + x2 + 1, we find a [7, 3] cyclic code. This code is an example
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of the irreducible cyclic codes(Minimal cyclic codes are called irreducible
cyclic codes).

7.1.14 BCH Codes

This class of cyclic codes was discovered by R. C. Bose and D. K. Ray-
Chaudhuri in (1960) and independently by A. Hocquenbghem in (1959)
and thus the codes are known as BCH codes. Practically they are in-
teresting because of a simple decoding procedure that requires only a
very simple decoding device rather than a computer. Mathematically
they are interesting for their flexibility: apart from sharing many good
properties with cyclic codes they allow for a certain control of minimum
distance.

7.1.15 Definition:

A BCH code of designed distance δ is a cyclic code of length n over
Fq whose generating polynomial g(x) is a least common multiple of the
minimal polynomials of βl, βl+1, ..., βl+β−2, where β is a primitive nth
root of unity and l some integer.

Usually l in the definition above is taken to be l = 1. We call such
a coda a narrow-sense BCH code. Note that β is a primitive element
of Fqm we call such a code a primitive BCH code. Note that if β is a
primitive element of Fqm an nth root of unity, then n = qm − 1.

7.1.16 Theorem:

[Theorem (5) in Lekic [61]]. The minimum distance of a BCH code C
with designed distance d is greater than or equal to d.

The above theorem is usually called the BCH bound. From now on we
usually consider narrow sense BCH codes. If we start with l = 0 instead
of l = 1 we find the even weight subcode of the narrow sense code.

7.1.17 Example:

[Lint [63]]. Let n = 31, m = 5, q = 2 and d = 8. Let α be a primitive
element of F32. The minimal polynomial of α is

(x− α)(x− α2)(x− α4)(x− α8)(x− α16).



Chapter 7: Applications of Skew polynomial rings 201

In the same way we find the polynomial m3(x). But

m5(x) = (x− α5)(x− α10)(x− α20)(x− α9)(x− α18) = m9(x).

It turns out that g(x) is the least common multiple of m1(x), m3(x),
m5(x), m7(x) and m9(x). Therefore the minimum distance of the prim-
itive BCH code with designed distance 8 (which are obviously at least
9) is in fact at least 11.

Skew Cyclic Codes

In this section we discuss a generalization of cyclic codes by consider-
ing more general polynomial rings with the usual addition of polynomials
and non-commutative multiplication. The reason these codes are inter-
esting is that they share most of the properties of cyclic codes and their
class is much larger, so the chance of finding good codes is also better.
The idea of defining codes over noncommutative polynomial rings was
developed in (1985) in a paper of Gabidulin [32]. Boucher, Geiselmann
and Ulmer gave a slightly different approach in (2007) in [19]. Later
Boucher and Ulmer generalized their approach in [20] to consider an
even larger class of codes, not necessarily cyclic, over skew rings.
We start this section by introducing skew rings and their properties.
After that we will discuss both skew cyclic and general skew codes as
described by Boucher and Ulmer [20].

7.2 Codes over Skew polynomial rings

Let Fq denote a finite field of q elements, θ an automorphism on Fq and
|〈θ〉| its order. Let Fq[x, θ] denote a set of all polynomials with coefficients
always written on the left

Fq[x, θ] = {a0 + a1x+ ...+ an−1x
n−1 : ai ∈ Fq, n ∈ N}.

Define a0 + a1x + ... + an−1x
n−1 = b0 + b0x + ... + bn−1x

n−1 if ai = bi
∀i. Let addition of elements of Fq[x, θ] be given by (a0 + a1x + ...) +
b0 + b1x + ...) = (a0 + b0) + (a1 + b1)x + ... and let multiplication be
defined by the rule

xa = θ(a)x.
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This rule is further extended to all elements of Fq[x, θ] by application of
the distributive law. Note that multiplication defined in this way is not
commutative. The set Fq[x, θ] with operations defined as forms a ring
called the skew polynomial ring over Fq with automorphism θ.

7.2.1 Example:

Consider F4[x, θ]. Then Frobenius automorphism is given by

θ : F4 → F4
α 7→ α2.

Let α be a generator of the multiplicative group of F4. Take f = x + a
and g = ax2 + 1 for example. Then

fg = (x+ a)(ax2) + 1

= xax2 + x+ a2x2 + a

= θ(a)x3 + a2x2 + x+ a

= a2x3 + a2x2 + x+ a

If f = a0+a1x+...+anx
n with an 6= 0 we say f has degree n. It is not

hard to see that f, g ∈ Fq[x, θ] we have that deg(fg) = deg(f) + deg(g)
and deg(f + g) ≤ max{deg(f), deg(g)}. This also implies that there are
no zero divisors.

7.2.2 Example:

Note that Fq[x, θ] is not a unique factorization domain. Consider again
F4[x, θ]. Listed below are all monic right factors of degree 2 of x6 + ax3.

x6 + ax3 = (x4 + ax)(x2)

= (x4 + ax3 + x2)(x2 + ax)

= (x4 + ax3)(x2 + ax+ 1).

Furthermore, Fq[x, θ] is a ring endowed with right and left division
algorithms. The right division algorithm is analogous to the one in com-
mutative Euclidean domain: given two polynomials f, g ∈ Fq[x, θ] we are
looking for h, r ∈ Fq[x, θ] such that

f = hg + r and deg(r) < deg(g).
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Polynomials h and r obtained in the right division algorithm are unique
in Fq[x, θ]. Existence of right division implies the existence of right Eu-
clidean algorithm, which in turn implies the existence of greatest com-
mon right divisors (gcrd) and least common left multiples (lclm). The
gcrd of f1 and f2 is the unique monic polynomial g ∈ Fq[x, θ] of highest
degree such that there exist k1, k2 ∈ Fq[x, θ] with f1 = k1g and f2 = k2g.
The lclm of f1, f2 is the unique monic h of lowest degree such that there
exist l1, l2 ∈ Fq[x, θ] with h = l1f1 and h = l2f2.

The left division is similarly defined. Given two polynomials f, g ∈
Fq[x, θ] we are looking for two polynomials h

′
, r
′ ∈ Fq[x, θ] such that

f = gh
′
+ r

′
and deg(r

′
) < deg(g

′
).

Recall that a left ideal I is a subset of a non-commutative ring R
such that I is an additive subgroup of R and for all r ∈ R and all a ∈ I

ra ∈ I.

Similarly, a right ideal I is an additive subgroup of R such that for all
r ∈ R and all a ∈ I

ar ∈ I.

7.2.3 Lemma:

Let Fq be a field with q elements and θ an automorphism. Then every
right ideal in Fq[x, θ] principal.

Proof. To see that Fq[x, θ] is a principal right ideal domain, let I be any
of its non-zero right ideals. Let g ∈ I be a polynomial of least degree
not equal to zero. Let f be some polynomial in I. By left division
algorithm we have that there exist h and r such that f = gh + r with
deg(r) < deg(g). But r = f − gh is in I and so it must be that r = 0
by minimality of g in I. Then f = gh and I is a principal right ideal
domain.

Similar argument shows that any left ideal is principal.
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7.2.4 Lemma:

A polynomial g ∈ Fq[x, θ] generates a two sided ideal if and only if g is
of the form g = xth with t a fixed integer, h ∈ F [xm, θ] and m the order
of θ.

Proof. ⇐ First we show that g of such form generates a two-sided ideal.
Note that h is a central element and thus (h) is two sided. It is clear
that xt also generates a two-sided ideal. Then for every f ∈ Fq[x, θ] we
have

gf = xthf = xtfh = f
′
xth = f

′
g.

for some f
′ ∈ Fq[x, θ]. The first and last equality hold by definition,

while the second equality holds because h commutes with all elements
of Fq[x, θ] and third because (xt) is two sided. Similarly, for any s in
Fq[x, θ] we have

sg = sxth = xts
′
h = xths

′
= gs

′

for some polynomial s
′

in Fq[x, θ]. We conclude that (g) is a two sided
ideal.

⇒ Let g = g
′
xt = g0x

t + g1x
t+1 + ... + gdx

t+d. Since xt generates a
two-sided ideal, it is clear that g generates a two-sided ideal if and only
if g

′
does. Thus we may assume that g = g

′
= g0 + g1x+ ...+ gdx

d with
g0 6= 0. So let g = g0 + g1x + ... + gdx

d with g0 6= 0 be a generator of a
two-sided ideal. This means that for all a ∈ Fq there exists b ∈ Fq[x, θ]
such that ag = gb. In fact, from examining the degrees it follows that
b ∈ Fq. Then from

ag = ag0 + ag1x+ ...+ agdx
d,

gb = g0b+ g1xb+ ...+ gdx
db

= g0b+ g1θ(b)x+ ...+ gdθ
d(b)xd.

We get that a = b = θ(b) = θ2(b) = ... = θd(b). But since a is an
arbitrary element of Fq we must have that all powers of x are multiples
of m, the order of θ. Thus g(x) is of the form g(x) = g0 + g1x

m + ... +
gdx

dm.
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7.2.5 Definition:

[Definition (1) in Boucher, Geiselmann and Ulmer [19]]. Let Fq be a
finite field with q elements and θ an automorphism. A linear code C of
length n is called θ-cyclic if for every codeword

c = (c0, c1, ..., cn−1) ∈ C

we have that

c
′

= (θ(cn−1)), θ(c0)), ..., θ(cn−2)) ∈ C

Similarly to how polynomial representation of cyclic codes was defined
over commutative polynomial rings F[x], here we associate to every word

c = (c0, c1, ..., cn−1) ∈ Fnq

its skew polynomial representation

c(x) = c0 + c1x+ ...+ cn−1x
n−1 ∈ Fq[x, θ]/(xn − 1).

The observation that c
′
(x) = c(x)x mod xn − 1 leads to the following

important results about the structure of the cyclic code.

7.2.6 Lemma:

[Lemma (1) in Boucher [19]]. Let Fq be a finite field, θ an automorphism
and n an integer divisible by the order |〈θ〉| of θ. Then

(1) The ideal generated by xn − 1 in Fq[x, θ] is a two sided ideal.

(2) Ring Fq[x, θ]/(xn − 1) is a principal left ideal ring in which ideals
are generated by right divisor of xn − 1 in Fq[x, θ].

Proof. Proof as same as Lemma (1) in Boucher, Geiselmann and Ulmer
[19].

7.3 The length of a θ-code

We will study that any g ∈ Fq[X, θ] divides a polynomial f ∈ Fq[X, θ]
generating a two sided ideal and therefore is the generating polynomial
of some code. For more details, see Boucher and Ulmer [20].
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7.3.1 Definition:

[Jacobson [49]]. An element P ∈ Fq[X, θ] is bounded if the left ideal (P )
contains a two sided ideal (P ∗). The monic polynomial P ∗ of minimal
degree is the bound of P .

Since P ∗ generates a two sided ideal, it must be of the form (b0 +
b1X

m + b2X
2m + ... + bsX

s−m)Xt, where m = | < θ > | and bi ∈ Fθq
the fixed field of θ. From Theorem (15) in Jacobson [49] we get that all
elements of Fq[X, θ] are bounded. The discussion before Theorem (15)
also shows:

7.3.2 Lemma:

Let m = | < θ > | and t = [Fq : (Fq)θ]. If P ∈ Fq[X, θ] is of degree n,
then the bound P ∗ is of degree at most m.t.n.

Proof. The elements in Fq[X, θ] of degree less than n form a Fq vector
space of dimension n and therefore a (Fq)θ vector space of dimension t.n.
Considering the remainders of the division

Xm.i = P.Qi +Ri, i = 0, 1..., t.n,

with deg(Ri) < n, there exists a non trivial linear combination

t.n∑
i=0

δiRi = 0

where δ ∈ (Fq)θ. This shows that∑t.n
i=0 δiX

m.i = P.
(∑t.n

i=0 δiQi

)
.

The above polynomial
∑t.n

i=0 δiX
m.i is a bound for P . According to

Theorem (12) in Jacobson [49], the bound P ∗ of P is a divisor of this
polynomial.

This proves that an element g ∈ F4[X, θ] of degree r has a bound of
degree at most 4r. Computations tend to suggest the conjecture that
the degree of the bound of g is at most 2r. The existence of θ-codes of
type [n, k] for k < n

2 is due to the fact that the degree of the bound of g
can be less than 2r.
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7.3.3 Lemma:

[Lemma (5) in Lekic [61]]. The bound of a polynomial of degree r in
F4[X, θ] is of degree at most 2r.

Proof. Let

g =

r∑
i=0

gix
i

g̃ =

r∑
i=0

θi+1(gi)x
i =

r∑
i=0

xiθ(gi).

Then we compute gg̃ and order the terms:

gg̃ =
r∑
i,j

gix
i+jθ(gi)

=

2r∑
k=0

∑
i+j=k

gix
kθ(gi)

=
2r∑
k=0

∑
i+j=k

giθ
k+1(gi)x

k.

Let

ak =
∑

i+j=k giθ
k+1(gj).

Consider now the parity of k. For terms with odd k we use the fact that
k+ 1 is even and that we are in F22 which implies that every even power
of θ is an identity map and k + 1 terms cancel out:

ak =
∑
i+j=k

giθ
k+1(gj)

=
∑
i+j=k

gi(gj)

= g0gk + g1gk−1 + ...+ gk−1g1 + gkg0

= 2g0gk + ...+ 2g k−1
2
g k+1

2

= 0.
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For terms with even k, we have

ak =
∑
i+j=k

giθ
k+1(gj)

=
∑
i+j=k

giθ(gj).

But note that

θ(ak) =
∑
i+j=k

θk+1(gi)gj

=
∑
i+j=k

θ(gi)gj

= ak.

So ak ∈ F2 and because ak = 0 for odd k we have that gg̃ ∈ F2[x2]. The
degree of gg̃ is 2r and it generates a two sided ideal. Thus the bound on
g is of degree at most 2r.

7.3.4 Example:

Let F4 = F2(α), α2 = α + 1, α3 = 1, θ(α) = α2. In F4[X, θ], the
polynomial

g = X12 +X11 +αX10 +X9 +α2X8 +X6 +X5 +α2X4 +X2 +X +α2

is a right divisor of f = X14 +X12 +X10 + 1 ∈ F4[X, θ]. Therefore the
bound of g is of degree at most 14 and (g)/(f) ⊂ F4[X, θ]/(f) is a θ-code
which is a [14, 2, 11] code with best possible distance 11.

Lemma (7.2.4) gives a constructive way to compute the bound of a
given polynomial. An alternative approach is to note that the bound of a
product is a divisor of the product of the bounds of its factors (Jacobson
[49], Theorem (12)).

7.3.5 Example:

In the above example, the polynomial

g = X12 +X11 +αX10 +X9 +α2X8 +X6 +X5 +α2X4 +X2 +X +α2
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factors as g = (X4 +X + 1)2(X + α)(X + α)(X + 1)2. Furthermore the
bound of X +α is X2 + 1 whereas (X4 +X + 1)2 and (X + 1)2 are both
polynomials of F2[X2]. So one can construct the bound of g as the prod-
uct (X4 +X + 1)2(X + 1)(X + 1)(X + 1)2 = X14 +X12 +X10 + 1 which
is the polynomial f of above example. The following table reproduces
the best distance for [n, k]θ-codes over F4. We write Cd if this code is
cyclic of distance d, Cθd if the code is θ-cyclic of distance d and θd if the
code is θ-central of distance d. If we don’t obtain such a code matching
the distance of the best known code in Magma 2.13 , then we indicate
the difference in the distance by a negative number. The notation Cθ3a
means that the code is θ-cyclic of distance 3 and autodual.

n/r 2 3 4 5 6 7 8 9 10
4 Cθ3a C4

6 C2 C4 Cθ4 C6

8 C2 Cθ3 Cθ4a Cθ5 Cθ6 C8

10 C2 θ3 Cθ4 Cθ5 Cθ6 θ6 θ8 Cθ10
12 C2 θ3 θ4 C4 Cθ6a Cθ6 Cθ7 Cθ8 Cθ9
14 C2 Cθ3 Cθ4 Cθ4 Cθ5 Cθ6a Cθ7 -1 -1
16 C2 -1 -1 Cθ4 -1 -1 -1 -1 Cθ8
18 C2 -1 θ3 θ4 -1 -1 Cθ6 -1 Cθ8
20 -1 θ3 θ3 θ4 -1 -1 θ6 Cθ7 Cθ8
22 θ2 θ2 θ3 θ4 θ4 θ5 -1 Cθ6 Cθ7
24 Cθ2 Cθ2 θ3 Cθ4 Cθ4 -1 -1 Cθ6 Cθ7
26 θ2 θ2 θ3 θ4 θ4 -1 -1 Cθ6 -1
28 Cθ2 Cθ2 θ3 Cθ4 Cθ4 -1 θ5 Cθ6 Cθ6
30 Cθ2 Cθ2 Cθ3 Cθ4 Cθ4 -1 Cθ5 Cθ6 Cθ6
32 Cθ2 Cθ2 -1 -1 θ4 -1 θ5 Cθ2 θ6
34 θ2 θ2 -1 -1 θ4 -1 Cθ5 Cθ6 Cθ6
36 Cθ2 Cθ2 -1 -1 θ4 -1 -1 -1 θ6
38 θ2 θ2 -1 -1 θ4 -1 -1 -1 θ6
40 Cθ2 Cθ2 -1 -1 θ4 -1 -1 -1 θ6
42 Cθ2 Cθ2 -1 Cθ3 Cθ4 -1 -1 -1 Cθ6
44 Cθ2 Cθ2 -1 θ3 θ4 θ4 -1 -1 -1

The table indicates that, with increasing length, the best θ-codes are
no longer all cyclic or θ-cyclic. We note that the best codes given in
Magma often have a poor weight distribution and that the θ-codes allow
to find codes with a much better distribution.
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7.4 Skew polynomial rings for an analysis of control sys-
tem

Some applications of the theory of non-commutative rings to control the-
ory are due to Jezek [52]. However, Jezek’s works are rather focused on
the background mathematics of non-commutative rings than control the-
ory itself. A real application to control systems is done in (Moog et al.
[70]) where a class of nonlinear time-delay systems is studied. The dis-
turbance decoupling problem for nonlinear time-delay systems is tackled
in (Moog et al. [70]) and the system inversion of nonlinear time-delay
systems is discussed in Marquez-Martinez, Moog, and Velasco-villa [67].

This section describe some results concerning modules over Ore rings
that are directly related to the algebraic approach to control systems and
it also fills some mathematical gaps in the study of nonlinear time-delay
systems (Marquez-Martinez and Moog [66]; Moog et al. [70]). We then
study a special class of nonlinear systems with delays, called Generalized
Roesser Systems.

7.4.1 Nonlinear time-delay systems

Consider a nonlinear system with time delays described by

ẋ(t) = F (t) := f(x(t− i), i ∈ S−) +
s∑
j=0

gj(x(t− i), i ∈ S−)u(t− j)

y(t) = h(x(t− i), i ∈ S−) (7.1)

x(t) = ϕ(t);u(t) = u0, ∀t ∈ [t0 − s, t0]

where x ∈ Rn, u ∈ Rm , y ∈ Rp denote the state, input, output of
the system, respectively, and f , gj and h are meromorphic functions,
S− := {0, 1, ..., s is a finite set of constant time delays, f(x(t − i), i ∈
S−) := f(x(t), x(t−1), ..., x(ts)), and ϕ denotes a continuous function of
initial conditions; see (Conte, Moog, and Perdon [27]; Marquez-Martinez,
Moog, and Velasco-villa [67]; Moog et al. [70]). It is further assumed
that no relationship like

φ(x(t− i), u(t− i), ..., u(k)(t− i)) = 0 (7.2)

exists for a non-trivial meromorphic function φ.
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Let C := {x(t− i), u(k)(t− i); i, k ∈ Z+} and let K denote the field of
meromorphic functions of a finite number of variables from C.

For any element a ∈ K, the derivative along the dynamics of (7.1) is
defined as usual, and it is easy to see that ȧ ∈ K. Note that an element
of K can be regarded as a time function a = a(t) if the dependence on x
and u is not emphasized.

Denoting now the differentials of x(t−i), u(k)(t−i); i, k ≥ 0 by dx(t−
i), du(k)(t− i); i, k ≥ 0. Then the normal differentials of the functions in
K span over the field K an vector space E , that is, E = spanKdK. E is
endowed with a natural differential structure (Conte, Moog, and Perdon
[27]) and it can also be used in the case of systems with delays.

7.4.2 The ring of polynomials

Let K(δ] denote the set of polynomials of the form

a(δ] = a0(t) + a1(t)δ + ...+ ara(t)δra , (7.3)

in which ai(t) ∈ K. If addition in K(δ] is defined as usually, while
multiplication by

a(δ].b(δ] =

ra+rb∑
k=0

i≤ra,j≤rb∑
i+j=k

ai(t)bj(t− i)δk, (7.4)

then K(δ] is a ring. Unlike the usual polynomial ring K[δ], K(δ] is not
commutative. In addition, this ring is not a skew polynomial ring, due
to the definition of K (Jezek [52]).

The ring K(δ] introduce the concept of a module over it, which is
the basic step in founding an algebraic framework for the analysis and
synthesis of non-linear delay systems.

7.4.3 Lemma:

For any a(δ], b(δ] ∈ K(δ], there exist non-zero polynomials c(δ].a(δ] =
d(δ].b(δ]. Due to this lemma, we have the following:

7.4.4 Theorem:

K(δ] is a left Ore ring. Also K(δ] has the following properties:
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7.4.5 Theorem:

SupposeM and N are two modules over K(δ], and N is a submodule of
M. S and T are two bases of N . Then |S| = |T |.

7.4.6 Theorem:

A finitely generated submodule N of M over K(δ] is Noetherian.

7.4.7 Roesser Systems

We generalize the above algebraic approach to a class of nonlinear sys-
tems of the following format:

ẋ(t) = F(t) := f(x(t), z(t), u(t))

z(t+ 1) = g(x(t), z(t), u(t)) (7.5)

y(t) = h(x(t), z(t), u(t))

in which the continuous state x ∈ Rn, the discrete state z ∈ Rq, the input
u ∈ Rm and the output y ∈ Rp. f , g and h are meromorphic functions.

This class of systems can be seen as a nonlinear extension of the
Roesser model (Roesser [82]) widely used for studying linear 2-D sys-
tems. Also, since model (7.5) displays a continuous and discrete dynam-
ics, it has been considered as a particular class of hybrid dynamic system
by some authors (Ye, Michel, and Hou, [91]; Iglesias, [48]; Francis and
Georgiou, [31]).

The form of a time-delay system (7.1) is not closed under pure shifted
dynamic compensator defined in (Moog et al. [70]). However, the class
of systems (7.5) is closed under such feedback.

It synthesizes theoretically three broad classes of systems. In par-
ticular, the nonlinear time-delay systems (7.1) can also be written in
the above format. Actually, if q ∈ N is the maximal delay occurring
in the equations of (7.1), then defining, for i = 1, ..., q, z1i = x(t − i),
z2i(t) = u(t − i), then we have the following discrete-time dynamics for
the delay system:

z1(t+ 1) = A1z1(t) +B1x(t) (7.6)
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z2(t+ 1) = A2z2(t) +B2u(t) (7.7)

in which Ai =


0 0 . . . 0 0
Ii 0 . . . 0 0

. . .

0 0 . . . Ii 0

, Bi =


Ii
0
...
0

 and I1 is the n di-

mensional identity matrix, I2 is the m dimensional identity matrix.

To generalize the algebraic framework to the system (7.5), let C =
{x(t − i), u(k)(t − i), k ≥ 0, i ∈ N}, let K be the field of meromorphic
functions of the variables in C. We also include the meromorphic func-
tion of infinite number of variables of C in K.

Define the ring of polynomials K(δ] exactly as before. then we have
all the properties of the ring of the polynomials. In particular, K(δ] is a
left Ore ring.

Since K(δ] is a left Ore ring, it admits a classical left ring of fractions.
We denote this ring by K〈δ). We also denote any element b(δ] a(δ] ∈ K〈δ)
by b−1(δ]a(δ], and any element, denoted by ω〈δ), of K〈δ) is called a ra-
tional function.

Similarly, we define the following sequence of modules over K〈δ).

Given a set of symbols {dx, du, du̇, ..., du(k), ...}, an increasing se-
quence of left K〈δ) modules can be defined by

Mk = spanK〈δ){dx, du, du̇, ..., du(k)}.

The limit of this sequence is denoted byM. Following the algebraic tra-
dition, those modules over the division ring K〈δ) are called vector spaces
over K〈δ).

Still the normal differentials of the function in K span over the field
K span over the field K a vector space E , that is, E = spanKdK, and any
differential one from ω ∈ E can be associated with an element inM. For
simplicity, we will abuse the notation dα to denote also its association
in Ms.
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From the second equation of the system (7.5), we can generate the
following nonlinear equation in z(t):

z(t) = g(x(t− 1), z(t− 1), u(t− 1)) (7.8)

If there is an element φ ∈ K such that when z(t) = φ satisfies the
equation (7.8), then the system (7.5) is called well-posed.

It can be easily seen that the nonlinear time-delay system (7.1) is
well posed, because the solution to the corresponding equation (7.8) is
z1i(t) = x(t− i− 1), z2i(t) = u(t− i− 1).

Now we extend the operation of differentiation to elements in K〈δ)
and vectors in M:

(1) for any element a(x(t − i), u(k)(t − i), i ∈ N, k ≥ 0) ∈ K, the
derivative along the dynamics of the system (7.5) is defined usual,
in which z(t) is replaced by φ in the expression of F(t).

(2) for any polynomial a(δ] =
∑ra

i=0 aiδ
i ∈ K(δ], the derivative ȧ along

the dynamics of the system (7.5) is a fraction in K〈δ) defined by
ȧi is the derivative of ai ∈ K along the dynamics of (7.5).

(3) for any element ω〈δ) = b−1(δ]a(δ] ∈ K〈δ), the derivative along the
dynamics of (7.5) is defined by

ω̇〈δ) = (db)−1(dȧ− ca). (7.9)

(4) for any vector ω ∈ Mk (or M), the derivative ω̇ of ω = κ−1dx +∑k
i=0 κidu

(i) along the dynamics of (7.5) is a vector of some Ms,

s > k, (or M), defined by ω̇ = κ̇−1dx +
∑k

i=0 κ̇idu
(i) + κ−1df +∑k

i=0 κdu
(k+1), in which κ̇i, for i = −1, 0, 1, ..., k, are the derivative

of κi along the dynamics of (7.5), df ∈ Ms is the association of
differential of f .

Because of the natural association, we will also call an element in

Mκ (or M) a differential one form. For any κ ∈ K, dκ =
︷︸︸︷
dκ .

The above development seems to be dependent on the availability of
the solution z(t) = Φ to the equation (7.8). This is however unnecessary
for many of our purposes. Remember that our analysis and design of
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the system (7.5) usually begins with the differential dq of a function (as
the output of the system, for example) of the form q = q(x(t), z(t), u(t)).
The idea is to treat dq as a vector in M. Since

dq = ∂q
∂x(t)dx(t) + ∂q

∂z(t)dz(t) + ∂q
∂u(t)du(t),

we need only find dz to put dq in M.

To find dz, we do not actually need the explicit form of the solution
z(t) = Φ.

If we write the second equation of the system (7.5) as z(t + 1) =
g(x(t), z(t), u(t)), we can define a symbol dz for discrete variable z(t) by
doing some formal manipulation on the above equation

dz = (I − δa)−1(δbdx+ δcdu). (7.10)

where I is the identity matrix and a = ∂g
∂z(t) , b = ∂g

∂x(t) , c = ∂g
∂u(t) .

Applying the above to the discrete dynamics (7.6) and (7.7) of nonlin-
ear time-delay systems, we have that dz1i = δidx, dz2i = δidu. Note that
in this case dzij are linear combinations of dx and du with coefficients
in the ring of polynomials K(δ]. This also helps to explain why modules
over K(δ] were used to study nonlinear time-delay systems (Moog et al.,
[70]).

7.4.8 Observability of Nonlinear Time-Delay systems

To study the observability of the nonlinear time-delay system (7.1), we
have two approaches. The first one sees the system as one over K(δ].
Define

Yk = spanK(δ]{dy, dẏ, ..., dyk}

U = spanK(δ]{du, du̇, ...}

and X = spanK(δ]{dx}. Then

(Y0 + U) ∩ X ⊂ (Y1 + U) ∩ X ⊂ ... ⊂ (Yk + U) ∩ X ⊂ ...
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is an increasing sequence of submodules of X . By Theorem (7.4.6), for
k ≥ n

(Yk + U) ∩ X = (Yn + U) ∩ X

Denote O = (Yn + U) ∩ X and O is called the polynomial observation
submodule of the system (7.1).

The second approach sees the system as one over K〈δ), and similarly
define

Ȳk = spanK〈δ){dy, dẏ, ..., dyk}

Ū = spanK〈δ){du, du̇, ..., }

and X̄ = spanK(δ]{dx}. Then, the corresponding increasing sequence of
submodules of X̄

(Ȳ0 + Ū) ∩ X̄ ⊂ (Ȳ1 + Ū) ∩ X̄ ⊂ ... ⊂ (Ȳk + Ū) ∩ X̄ ⊂ ...

will stabilize in a finite number of steps. Thus,

(Ȳk + Ū) ∩ X̄ = (Ȳn + Ū) ∩ X̄

Denote Ō = (Ȳn + Ū)∩ X̄ and define Ō as the rational observation sub-
module of the system (7.1).

We will say that the system (7.1) is weakly observable if rank(K〈δ)Ō =
n.

7.5 Ordinary Differential equation with Skew polynomial
rings

Skew polynomial rings have a number of important structural properties
which make them mathematically rich, correspond to real applications,
and also allow for effective and efficient algorithms.

One important property of skew polynomials is that R[x;σ, δ] is a
principal right ideal domain if σ is injective and R is a division ring.
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Therefore, the Euclidean algorithms hold in skew polynomial rings.

One of the significant differences between the usual polynomial rings
and skew polynomial rings is that skew polynomial rings are not unique
factorization domains. For example, let k = C(X) and L = ∂2. Then

there are two factorizations ∂2 = ∂o∂ = (∂+ f
′

f )(∂− f
′

f ) with f a monic
polynomial in z of degree ≤ 1. If we only consider the degrees, Ore
[75] gave the following uniqueness theorem, which can be proven as a
consequence of the Jordan-Holder theorem, see Jacobson [49].

7.5.1 Theorem:

(Ore [75]). If f ∈ R[x;σ, δ] factors completely as

f = f1f2 . . . fn

= g1g2 . . . gm

where f1, . . . , fn, g1, . . . , gm ∈ R[x;σ, δ] are irreducible, then n = m
and there exists a permutation φ of 1, . . . , n such that for 1 ≤ i ≤ n,
deg(fi) = deg(gφ(i)).

We refer to Singer and van der Put [88] for more details. Moreover,
the usual Gauss lemma does not apply. An indicative example of this is
as follows:

7.5.2 Example:

Let R = C̄[t][x; δ], with δ(t) = 1 be a polynomial ring, where C̄ is the
algebraic closure of a field C. It is easy to check that

tx2 + t2x− t = (x+ t)(tx− 1)

Clearly the GCD of the leading coefficients of x + t and tx − 1 is 1,
but the coefficients of the left hand side can be divided by t. That is,
Gauss lemma does not hold! This unfortunate property makes the study
of skew polynomials considerably more difficult than that of the usual
polynomials. In particular, factoring algorithms are inherently much
more complex.

Since the (1990)’s skew polynomials have attracted the interest of
many computer algebraists. A primary reason is that one can use them
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to compute with ordinary differential equations. In fact, this was Ore’s
starting point in the (1930)’s, but development was not continued, pos-
sibly due to the lack of computers at that time. Many authors worked
on differential factoring algorithms, for example, Brostein and Petkovsek
[21], Giesbrecht [34], van Hoeij [90] and Singer [87].

Algorithms for factoring and decomposing skew polynomials are very
important in computer algebra, and are used for solving systems of dif-
ferential and difference operators, for example in Maple. The earliest
and most famous method for factoring differential operators goes back
to Beke [4] in (1894). Since then a number of authors have pursued dif-
ferent approaches, and developed a number of distinct algorithms. Some
of these have been implemented in well-known mathematical software
systems such as Mathematica and Maple. However, none of these previ-
ous algorithms run in time polynomial in the input size.

In the (1920)’s, J. L. Burchnall and T. W. Chaundy [23], discovered
in a series of papers a remarkable connection between complex algebraic
curves and pairs of commuting differential connection between complex
algebraic curves and pairs of commuting differential operators. They
found that given two operators

P :=
∑n

i=0 pi∂
i and Q :=

∑m
i=0 qi∂

i, such that PQ−QP = 0,

and where pi, qi ∈ C[[t]] are analytic, there is a canonical, and explicity
computable, complex algebraic curve BC with equation F (x, y) ∈ C[x, y]
such that F (P,Q) = 0. This curve is computable via a differential re-
sultant, i.e., the determinant of the matrix formed by the coefficients
in

∂k(P − x), k = 0, 1, ...,m− 1, ∂l(Q− y), l = 0, 1, ..., n− 1.

It is then a fact that the power of t in all terms of the expanded deter-
minant are the same and can thus be factored out, leaving a polynomial
in x, y with complex coefficients annihilating the operators P and Q.

Moreover, the points (x, y) on the curve BC are exactly the eigenval-
ues of the joint eigen problem Pψ = xψ and Qψ = yψ. This defines a
vector bundle over BC with sections being the eigen functions.
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Hellstrom and Silvestrov [45] was proved an analogous theorem of
Burchnall and Chaundy for q-difference operators. This q-analog simply
showed the existence of an annihilating curve, no procedure was given to
actually construct one. However, in Larsson and Silvestrov [60], an ana-
log of the resultant scheme of Burchnall and Chaundy [23] was proposed
and proved in a series of examples to yield a correct annihilating curve.
No general proof was given to the effect of showing that this construction
works in all cases.

This problem was addressed in Jeu, Svensson and Silvestrov [51],
where a proof was given that this q-resultant scheme actually works to
produce such an annihilating curve of two commuting q-difference opera-
tors. To be precise, they produce a family of algebraic curves annihilating
the two given operators.

The first thing to note is that q-difference operators are special cases
of so called σ-differential operators, built from σ (twisted) derivations
in the same way differential operators are built from derivations. A σ-
derivation is a k-linear maps ∂σ on a k-algebra A such that

∂σ(ab) = ∂σ(a)b+ σ(a)∂σ(b),

where σ is a k-algebra endomorphism. In the case of q-difference opera-
tors on an algebra of functions (say over C),

σ(f(x)) = f(qx) and ∂σ(f(x)) = σ(f(x))− f(x) = f(qx)− f(x).

There are also various options of re-scaling these operators. Then a
σ-differential operator is an operator on the form:

P =
∑n

i=0 pi∂
i
σ, where pi ∈ A.

Secondly, we use a representation of these twisted operators as ele-
ments of Ore extension ring (skew-polynomial rings). Now, given two
commuting skew-polynomials representing two commuting twisted op-
erators P and Q, the result of Li [93] is used to produce a family of
commutative polynomials in two indeterminates (over subrings of the
ring A generated by the coefficients of P and Q) annihilating P and Q.



220 Algebra and its Applications

In the beginning we will define a general version of Ore extensions and
we call these M -valued Ore extensions. We also give a general definition
of twisted derivation operators and then show how to represent such
operators in terms of an elements of an Ore extension.

7.5.3 M-valued Ore Extensions

Let k be a commutative ring, A a k- algebra and M an A-module. We
denote the action of a ∈ A on m ∈M by a.m.

Assume further that σ ∈ Endk(A) and that ∆A is a σ-derivation on
A, this is k-linear map satisfying the σ-twisted Leibnitz rule

∆A(ab) = ∆A(a)b+ σ(a)∆A(b).

Extend ∆A to a k-linear ∂σ : M →M by

∂σ(a.m) := ∆A(a).m+ σ(a)∂σ(m).

In fact, by the associativity of the module structure of M , it is also nec-
essary that ∆A is a σ-derivation on A.

Let πni denote the sum of all permutations of (n − i) mappings ∂σ
and i mappings σ Lam and Leroy [58]. As an example π31 = ∂2σoσ +
∂σoσo∂σ + σo∂2σ. Note in particular that πkk = σk and πk0 = ∂kσ. We also
put πnk = 0 for n < k and k < 0. The lemma and proposition below can
be found in Lam and Leroy [58].

7.5.4 Lemma:

πn+1
k = ∂σoπ

n
k + σoπnk−1.

Proof. Simple induction.

7.5.5 Proposition:

The following holds on an algebra A (not necessarily commutative)

(1) πnk (ab) =
∑n

i=k π
n
i (a)πni (a)πik(b) for i ≤ n and a, b ∈ A.

(2) ∂nσ (ab) =
∑n

i=0 π
n
i (a)∂nσ (a)∂iσ(b) (Leibnitz’s rule for σ-derivations).
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Proof. 1) Follows by an induction on n using the above Lemma and (2)
follows from (1) by taking k = 0. An alternative and much simpler way
to prove (1) is indicated in Lam and Leroy [58].

Put N0 := N ∪ {0} and form

A[N0] :=
⊕

i∈N0
Aei.

This is clearly a left A-module. We impose a right A-module structure
as well by putting

ena :=
∑n

i=0 π
n
i (a)ei,

where πni is the sum of all possible permutations of i-times σ and (n− i)
times ∆A. The A-bimodule A[N0] can be made into an N0-graded A-
algebra when A is commutative by declaring eiej = ei+j . From this
follows that e0 = 1A[N0] act on M by the rule

aei(m) := a.∂iσ(m).

7.5.6 Lemma:

[Lemma (2.3) in Larsson [59]]. This action is well-defined, that is, the
action is associative

aei(bej(m)) = (aeibej(m)).

Proof. The proof follows easily by induction and the associativity of ∂nσ
as follows. we have for j ≥ 0.

ae0(bej(m)) = abej(m) = ((ab).∂iσ)(m) = (a.∂0σb.∂
j
σ)(m) = (ae0bej)(m).

Assume that i ≥ 0 and that the result holds for i− 1. Then

aei(bej(m)) = aei−1(σ(b)ej+1 + ∆A(b)ej)(m)

= aei−1(σ(b)ej+1(m) + aei−1∆A(b)ej)(m)

= (aei−1(σ(b)ej+1)(m) + (aei−1∆A(b)ej)(m)

= (aeibej)(m).

Extending linearly proves the theorem.
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We refer to the pair (A[N0],M) as an M -valued Ore extension on M . El-
ements in (A[N0],M) are called skew-polynomials (or Ore polynomials).
The classical case of Ore extensions is when M = A[N0] and ∂σ = ∆A.
We will follow the traditional way of writing A[N0] as a polynomial ring
A[z].

7.6 General derivations and σ-differential operators

Let Λ and M be A-modules and suppose given a k-linear action µ of Λ
on M , µ : Λ ⊗M → M . Then a general derivation on (A,Λ,M) is a
quadruple (σ, τ,∆, ∂σ) where

• σ,∆ : Λ→ Λ, and

• τ, ∂σ : M →M ,

are all k-linear maps such that

∂σ(µ(g ⊗m)) = ∂σ(g.m)

= µ(∆(g)⊗ τ(m)) + µ(σ(g)⊗ ∂σ(m))

= ∆(g).τ(m) + σ(g).∂σ(m), g ∈ Λ,m ∈M.

In our case τ = id.

7.6.1 Difference modules

Recall that all algebras are assumed to be integral domains.

Assume that f : A → B is a morphism of k-algebras. Then a σ-
differential equation) is an equation of the form

PΨ =
∑n

i=0 pi∂
i
σΨ = 0, where p1 ∈ A and Ψ ∈ B.

We will assume that A = B for simplicity. There is another, closely
related, and in fact in many cases equivalent, formulation of σ-differential
equations.

7.6.2 Definition:

A σ-difference ring is a ring A together with a σ ∈ End(A); a (Φ, σ)-
difference module (M,Φ, σ) is a module over a difference ring (A, σ)
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together with a σ-linear endomorphism Φ.

To recall, the notion σ-linear means that

Φ(am) = σ(a)Φ(m), for a ∈ A,m ∈M .

A σ-difference equation is an equation of the form

∑n
i=0 piσ

iΨ = 0, where Ψ, pi are elements in A

We will assume that all difference modules are free.

To every difference equation can be associated a difference module
and conversely. Notice first that, just as in the case of differential equa-
tions, a difference equation

∑n
i=0 piσ

iΨ = 0, with pn = 1 can be written
as

σX̄ = PX̄, X̄ =


X1

X2
...
Xn

 , xi ∈ A (7.11)

with

P =



0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

. . .
...

...
0 0 0 0 1 0
0 0 0 0 0 1
−p0 −p1 −p2 · · · −pn−2 −pn−1


invertible, i.e., p0 6= 0. Then the associated difference module is (An, P−1σ).
A solution to (7.11) lies in ker(id − Φ), where Φ := P−1σ. Conversely,
any element in ker(id− Φ) is a solution to (7.11). It is easy to see that
Φ is a σ-linear and Φa = σ(a)Φ.

On the other hand, given a difference module (M,Φ), we can always
turn this into a difference equation by

σX̄ = P−1σX̄,
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where P is the matrix of Φ in the basis for M . This can easily be shown
to be independent on the choice of basis, in that a different choice yields
an equivalent structure. For all this see Marius and Singer [78].

7.6.3 Proposition:

(Proposition 2.4 in Larsson [59])Every σ-difference operator
∑

i aiσ
i over

a σ-difference ring (A, σ) can uniquely be expressed as a σ-differential
operator

∑
i ci∂

i
σ, where ∂σ := a(id − σ) for some a ∈ A. The converse

statement also holds, i.e., given P =
∑

i ci∂
i
σ with ∂σ := a(id − σ), we

can re-write this uniquely as P =
∑n

i=1 ciσ
i.

Proof. Notice first that if ∂σ := a(id − σ) then ∂nσ can be written as a
linear combination of terms (id − σ) with coefficients in A, Indeed, for
n = 2 we have

∂2σ = a∂σ(a)(id− σ) + aσ(a)(id− σ)2

and the general case is exactly the same. Therefore every operator
P =

∑n
i=1 pi∂

i
σ can also be written as a linear combination of powers

of (id − σ) after re-arranging. Hence, expanding the powers of (id − σ)
and re-arranging once more yield the last statement. The first follows im-
mediately from the following lemma (after suitable re-arrangement).

7.6.4 Lemma:

Prove

σn =

n−1∑
i=0

(
n
i

)
(id− σ)i + (−1)n(id− σ)n. (7.12)

Proof. We will use the following identities

(a)

(
n
i

)(
n
j

)
=

(
n− j
i− j

)
;

(b)
∑k

i=0(−1)i
(
n
i

)
= (−1)k

(
n− 1
k

)
.

It is easily seen that formula (7.12) holds for n = 2 and n = 3. For
induction assume that it holds for all i < n.

From the binomial identity (id−σ)n =
∑n

i=0(−1)i
(
n
i

)
σi follows that

(−1)n+1
∑n−1

i=0 (−1)i
(
n
i

)
σi + (−1)n(id− σ)n.
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To simplify notation we use α := id−σ. Using the induction hypothesis
we have

σn = (−1)n+1
n−1∑
i=0

(−1)i
(
n
i

)
σi + (−1)nαn

= (−1)n+1
n−1∑
i=0

(−1)i
(
n
i

) i∑
j=0

(−1)j
(
i
j

)
αj + (−1)nαn

= (−1)n+1
n−1∑
i=0

i∑
j=0

(−1)i+jαj + (−1)nαn.

After some re-arranging this can be written as

σn = (−1)n+1
∑n−1

i=0

∑n−1
j=i (−1)i+j

(
n
j

)(
j
i

)
αi + (−1)nαn

By the identity (a) above this can be written as

σn = (−1)n+1
n−1∑
i=0

n−1∑
j=i

(−1)i+j
(
n
j

)(
j
i

)
αi + (−1)nαn

= (−1)n+1
n−1∑
i=0

(−1)i
(
n
i

) n−1∑
j=i

(−1)j
(
n− i
j − i

)
αi + (−1)nαn.

By shifting indices in the innermost sum, putting l = j− i, that sum can
be computed as

∑n−i−1
l=0 (−1)l+i

(
n− i
l

)
= (−1)i

∑n−i−1
l=0 (−1)l

(
n− i
l

)
,

and using (b) this can be written as

(−1)i
∑n−i−1

l=0 (−1)l
(
n− i
l

)
= (−1)n−1

(
n− i− 1
n− i− 1

)
= (−1)n−1.
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Hence,

σn = (−1)n+1
n−1∑
i=0

(−1)i
(
n
i

) n−1∑
j=i

(−1)j
(
n− i
j − i

)
αi + (−1)n+1

= (−1)n+1
n−1∑
i=0

(−1)i
(
n
i

)
(−1)n−1αi + (−1)n+1αn

= (−1)n+1
n−1∑
i=0

(−1)n+i−1
(
n
i

)
αi + (−1)n+1αn

=

n−1∑
i=0

(−1)i
(
n
i

)
αi + (−1)n+1αn,

proving the lemma.
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