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Abstract

This book describes the use of the statistical procedure called multiple 
regression in business situations, including forecasting and understanding 
the relationships between variables. The book assumes a basic understand-
ing of statistics but reviews correlation analysis and simple regression to 
prepare the reader to understand and use multiple regression.

The techniques described in the book are illustrated using both Mi-
crosoft Excel and a professional statistical program. Along the way, several 
real-world data sets are analyzed in detail to better prepare the reader for 
working with actual data in a business environment.

This book will be a useful guide to managers at all levels who need to 
understand and make decisions based on data analysis performed using 
multiple regression. It also provides the beginning analyst with the de-
tailed understanding required to use multiple regression to analyze data 
sets.

Keywords

correlation, forecasting, model building, multiple regression, regression





Contents

Introduction ..........................................................................................ix
Chapter 1 Correlation Analysis ..........................................................1
Chapter 2 Simple Regression ...........................................................41
Chapter 3 Multiple Regression.........................................................67
Chapter 4 Model Building .............................................................103

Notes..................................................................................................173
Index .................................................................................................177





Introduction

Imagine that you are a business owner with a couple of years’ worth of 
data. You have monthly sales figures, your monthly marketing budget, a 
rough estimate of the monthly marketing budget for your major competi-
tors, and a few other similar variables. You desperately want this data to 
tell you something. Not only that, you are sure it can give you some busi-
ness insights if you know more. But what exactly can the data tell you? 
And once you have a clue what the data might tell you, how do you get 
to that information?

Really large companies have sophisticated computer software to do 
data mining. Data mining refers to extracting or “mining” knowledge 
from large amounts of data.1 Stated another way, data mining is the pro-
cess of analyzing data and converting that data into useful information. 
But how, specifically?

While data mining uses a number of different statistical techniques, 
the one we will focus on in this book is multiple regression. Why study 
multiple regression? The reason is the insight that the analysis provides. 
For example, knowing how advertising, promotion, and packaging might 
impact sales can help you decide where to budget your marketing dol-
lars. Or knowing how price, advertising, and competitor spending affect 
demand can help you decide how much to produce. In general, we use 
multiple regression either to explain the behavior of a single variable, such 
as consumer demand, or to forecast the future behavior of a single vari-
able, such as sales.

Before you can understand the operation of multiple regression and 
how to use it to analyze large data sets, you must understand the opera-
tion of two simpler techniques: correlation analysis and simple regression. 
Understanding these two techniques will greatly aid your understanding 
of multiple regression.

Correlation analysis measures the strength of the linear relationship 
between a pair of variables. Some pairs of variables, such as sales and 
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advertising or education and income, will have a strong relationship 
whereas others, such as education and shoe size, will have a weak relation-
ship. We will explore correlation analysis in more detail in chapter 1. As 
part of that discussion, we will see what it means for a relationship to be 
linear as well as what it means for the relationship to be strong or weak 
and positive or negative.

When a pair of variables has a linear relationship, simple regression 
calculates the equation of the line that describes that relationship. As part 
of simple regression, one variable will be designated as an independent, 
or explainer, variable and the other will be designated as a dependent, or 
explained, variable. We will explore simple regression in more detail in 
chapter 2.

Sometimes, a single variable is all we need to explain the behavior of 
the dependent variable. However, in business situations, it almost always 
takes multiple variables to explain the behavior of the dependent variable. 
For example, due to the economy and competitor actions, it would be a 
rare business in which advertising alone would adequately explain sales. 
Likewise, height alone is not enough to explain someone’s weight. Mul-
tiple regression is an extension of simple regression that allows for the use 
of multiple independent or explainer variables. We will explore multiple 
regression in more detail in chapter 3.

When using multiple regression with its multiple independent vari-
ables, we face the issue of deciding which variables to leave in the final 
model and which variables to drop from the final model. This issue is 
made complex by the “diseases” that can affect multiple regression mod-
els. We will explore building complex multiple regression models in more 
detail in chapter 4. It is when we get to model building that we will begin 
to see the real-world use of multiple regression.

This book assumes you have a background in statistics. Specifically, 
we will use the normal distribution, Student t-distribution, and F distri-
bution to perform hypothesis tests on various model parameters to see 
if they are significant. While it is helpful if you are familiar with these 
concepts, it is not essential. The software today is advanced enough to 
present the results in such a way that you can easily judge the significance 
of a parameter without much statistical background. A brief review is 
provided in chapter 1.
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Correlation, simple regression, and multiple regression can all be per-
formed using any version of Microsoft Excel. Most readers will be able 
to perform all their analyses in Excel. However, some of the advanced 
features of multiple regression require an actual statistical package. There 
are many fine ones on the market, and any of them will perform all the 
techniques we will discuss. The examples in this book are all either from 
Excel or from a statistical package called SPSS.





We begin preparing to learn about multiple regression by looking at cor-
relation analysis. As you will see, the basic purpose of correlation analysis 
is to tell you if two variables have enough of a relationship between them 
to be included in a multiple regression model. Also, as we will see later, 
correlation analysis can be used to help diagnose problems with a mul-
tiple regression model.

Take a look at the chart in Figure 1.1. This scatterplot shows 26 obser-
vations on 2 variables. These are actual data. Notice how the points seem 
to almost form a line? These data have a strong correlation—that is, you 
can imagine a line through the data that would be a close fit to the data 
points. While we will see a more formal definition of correlation shortly, 
thinking about correlation as data forming a straight line provides a good 
mental image. As it turns out, many variables in business have this type of 
linear relationship, although perhaps not this strong.

Now take a look at the chart in Figure 1.2. This scatterplot also shows 
actual data. This time, it is impossible to imagine a line that would fit the 
data. In this case, the data have a very weak correlation.

CHAPTER 1

Correlation Analysis

Figure 1.1 A scatterplot of actual data
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Terms

Correlation is only able to find, and simple regression and multiple regres-
sion are only able to describe, linear relationships. Figure 1.1 shows a linear 
relationship. Figure 1.3 shows a scatterplot in which there is a perfect rela-
tionship between the X and Y variables, only not a linear one (in this case, 
a sine wave.) While there is a perfect mathematical relationship between X 
and Y, it is not linear, and so there is no linear correlation between X and Y.

A positive linear relationship exists when a change in one variable 
causes a change in the same direction of another variable. For example, 
an increase in advertising will generally cause a corresponding increase in 
sales. When we describe this relationship with a line, that line will have a 
positive slope. The relationship shown in Figure 1.1 is positive.

A negative linear relationship exists when a change in one variable 
causes a change in the opposite direction of another variable. For ex-
ample, an increase in competition will generally cause a corresponding 
decrease in sales. When we describe this relationship with a line, that line 
will have a negative slope.

Having a positive or negative relationship should not be seen as a 
value judgment. The terms “positive” and “negative” are not intended to 
be moral or ethical terms. Rather, they simply describe whether the slope 
coefficient is a positive or negative number—that is, whether the line 
slopes up or down as it moves from left to right.

Figure 1.2 Another scatterplot of actual data
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While it does not matter for correlation, the variables we use with 
regression fall into one of two categories: dependent or independent vari-
ables. The dependent variable is a measurement whose value is controlled 
or influenced by another variable or variables. For example, someone’s 
weight likely is influenced by the person’s height and level of exercise, 
whereas company sales are likely greatly influenced by the company’s level 
of advertising. In scatterplots of data that will be used for regression later, 
the dependent variable is placed on the Y-axis.

An independent variable is just the opposite: a measurement whose 
value is not controlled or influenced by other variables in the study. Ex-
amples include a person’s height or a company’s advertising. That is not 
to say that nothing influences an independent variable. A person’s height 
is influenced by the person’s genetics and early nutrition, and a company’s 
advertising is influenced by its income and the cost of advertising. In the 
grand scheme of things, everything is controlled or influenced by some-
thing else. However, for our purposes, it is enough to say that none of the 
other variables in the study influences our independent variables.

While none of the other variables in the study should influence inde-
pendent variables, it is not uncommon for the researcher to manipulate the 
independent variables. For example, a company trying to understand the 
impact of its advertising on its sales might try different levels of advertising 
in order to see what impact those varying values have on sales. Thus the 

Figure 1.3 A scatterplot of nonlinear (fictitious) data
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“independent” variable of advertising is being controlled by the researcher. 
A medical researcher trying to understand the effect of a drug on a disease 
might vary the dosage and observe the progress of the disease. A market 
researcher interested in understanding how different colors and package 
designs influence brand recognition might perform research varying the 
packaging in different cities and seeing how brand recognition varies.

When a researcher is interested in finding out more about the rela-
tionship between an independent variable and a dependent variable, he 
must measure both in situations where the independent variable is at dif-
fering levels. This can be done either by finding naturally occurring varia-
tions in the independent variable or by artificially causing those variations 
to manifest.

When trying to understand the behavior of a dependent variable, a 
researcher needs to remember that it can have either a simple or multiple 
relationship with other variables. With a simple relationship, the value 
of the dependent variable is mostly determined by a single independent 
variable. For example, sales might be mostly determined by advertising. 
Simple relationships are the focus of chapter 2. With a multiple relation-
ship, the value of the dependent variable is determined by two or more 
independent variables. For example, weight is determined by a host of 
variables, including height, age, gender, level of exercise, eating level, and 
so on, and income could be determined by several variables, including 
raw material and labor costs, pricing, advertising, and competition. Mul-
tiple relationships are the focus of chapters 3 and 4.

Scatterplots

Figures 1.1 through 1.3 are scatterplots. A scatterplot (which some ver-
sions of Microsoft Excel calls an XY chart) places one variable on the Y-
axis and the other on the X-axis. It then plots pairs of values as dots, with 
the X variable determining the position of each dot on the X-axis and the 
Y variable likewise determining the position of each dot on the Y-axis. A 
scatterplot is an excellent way to begin your investigation. A quick glance 
will tell you whether the relationship is linear or not. In addition, it will 
tell you whether the relationship is strong or weak, as well as whether it 
is positive or negative.



 CORRELATION ANALYSIS 5

Scatterplots are limited to exactly two variables: one to determine the 
position on the X-axis and another to determine the position on the Y-
axis. As mentioned before, the dependent variable is placed on the Y-axis, 
and the independent variable is placed on the X-axis.

In chapter 3, we will look at multiple regression, where one depen-
dent variable is influenced by two or more independent variables. All 
these variables cannot be shown on a single scatterplot. Rather, each in-
dependent variable is paired with the dependent variable for a scatterplot. 
Thus having three independent variables will require three scatterplots. 
We will explore working with multiple independent variables further in 
chapter 3.

Data Sets

We will use a couple of data sets to illustrate correlation. Some of these 
data sets will also be used to illustrate regression. Those data sets, along 
with their scatterplots, are presented in the following subsections.

All the data sets and all the worksheets and other files discussed in this 
book are available for download from the Business Expert Press website 
(http://www.businessexpertpress.com/books/business-applications-multi-
ple- regression). All the Excel files are in Excel 2003 format and all the 
SPSS files are in SPSS 9.0 format. These formats are standard, and any later 
version of these programs should be able to load them with no difficulty.

Number of Broilers

Figure 1.1 showed the top 25 broiler-producing states for 2001 by both 
numbers and pounds, according to the National Chicken Council. The 
underlying data are shown in Table 1.1.

Age and Tag Numbers

Figure 1.2 was constructed by asking seven people their age and the last two 
digits of their car tag number. The resulting data are shown in Table 1.2. As 
you can imagine, there is no connection between someone’s age and that per-
son’s tag number, so this data does not show any strong pattern. To the extent 
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that any pattern at all is visible, it is the result of sampling error and having a 
small sample rather than any relationship between the two variables.

Return on Stocks and Government Bonds

The data in Table 1.3 show the actual returns on stocks, bonds, and bills 
for the United States from 1928 to 2009.1 Since there are three variables 
(four if you count the year), it is not possible to show all of them in one 
scatterplot. Figure 1.4 shows the scatterplot of stock returns and treasury 
bills. Notice that there is almost no correlation.

Table 1.1 Top 25 Broiler-Producing States in 2001

State Number of broilers 
(millions)

Pounds liveweight 
(millions)

Georgia 1,247.3 6,236.5

Arkansas 1,170.9 5,737.3

Alabama 1,007.6 5,138.8

North Carolina 712.3 4,202.6

Mississippi 765.3 3,826.5

Texas 565.5 2,714.4

Delaware 257.7 1,494.7

Maryland 287.8 1,381.4

Virginia 271.5 1,330.4

Kentucky 253.4 1,292.3

California 250.0 1,250.0

Oklahoma 226.8 1,111.3

Missouri 245.0 1,100.0

South Carolina 198.0 1,049.4

Tennessee 198.3 932.0

Louisiana 180.0 890.0

Pennsylvania 132.3 701.2

Florida 115.3 634.2

West Virginia 89.8 368.2

Minnesota 43.9 219.5

Ohio 40.1 212.5

Wisconsin 31.3 137.7

New York 2.3 12.2

Hawaii 0.9 3.8

Nebraska 0.5 2.7

Other 92.4 451.0
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Table 1.2 Age and Tag Number

Age Tag no.
55 2

21 28

78 42

61 78

44 66

63 92

32 9

Table 1.3 Return on Stocks and Government Bonds

Year Stocks (%) Treasury bills (%) Treasury bonds (%)
1928 43.81 3.08 0.84

1929 -8.30 3.16 4.20

1930 –25.12 4.55 4.54

1931 –43.84 2.31 –2.56

1932 –8.64 1.07 8.79

1933 49.98 0.96 1.86

1934 –1.19 0.32 7.96

1935 46.74 0.18 4.47

1936 31.94 0.17 5.02

1937 –35.34 0.30 1.38

1938 29.28 0.08 4.21

1939 –1.10 0.04 4.41

1940 –10.67 0.03 5.40

1941 –12.77 0.08 –2.02

1942 19.17 0.34 2.29

1943 25.06 0.38 2.49

1944 19.03 0.38 2.58

1945 35.82 0.38 3.80

1946 –8.43 0.38 3.13

1947 5.20 0.57 0.92

1948 5.70 1.02 1.95

1949 18.30 1.10 4.66

1950 30.81 1.17 0.43

1951 23.68 1.48 –0.30

1952 18.15 1.67 2.27

(continued)
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Year Stocks (%) Treasury bills (%) Treasury bonds (%)
1953 –1.21 1.89 4.14

1954 52.56 0.96 3.29

1955 32.60 1.66 –1.34

1956 7.44 2.56 –2.26

1957 –10.46 3.23 6.80

1958 43.72 1.78 –2.10

1959 12.06 3.26 –2.65

1960 0.34 3.05 11.64

1961 26.64 2.27 2.06

1962 –8.81 2.78 5.69

1963 22.61 3.11 1.68

1964 16.42 3.51 3.73

1965 12.40 3.90 0.72

1966 –9.97 4.84 2.91

1967 23.80 4.33 –1.58

1968 10.81 5.26 3.27

1969 –8.24 6.56 –5.01

1970 3.56 6.69 16.75

1971 14.22 4.54 9.79

1972 18.76 3.95 2.82

1973 –14.31 6.73 3.66

1974 –25.90 7.78 1.99

1975 37.00 5.99 3.61

1976 23.83 4.97 15.98

1977 –6.98 5.13 1.29

1978 6.51 6.93 –0.78

1979 18.52 9.94 0.67

1980 31.74 11.22 –2.99

1981 –4.70 14.30 8.20

1982 20.42 11.01 32.81

1983 22.34 8.45 3.20

1984 6.15 9.61 13.73

1985 31.24 7.49 25.71

1986 18.49 6.04 24.28

1987 5.81 5.72 –4.96

1988 16.54 6.45 8.22

Table 1.3 Return on Stocks and Government Bonds (continued)
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Year Stocks (%) Treasury bills (%) Treasury bonds (%)
1989 31.48 8.11 17.69

1990 –3.06 7.55 6.24

1991 30.23 5.61 15.00

1992 7.49 3.41 9.36

1993 9.97 2.98 14.21

1994 1.33 3.99 –8.04

1995 37.20 5.52 23.48

1996 23.82 5.02 1.43

1997 31.86 5.05 9.94

1998 28.34 4.73 14.92

1999 20.89 4.51 –8.25

2000 –9.03 5.76 16.66

2001 –11.85 3.67 5.57

2002 –21.97 1.66 15.12

2003 28.36 1.03 0.38

2004 10.74 1.23 4.49

2005 4.83 3.01 2.87

2006 15.61 4.68 1.96

2007 5.48 4.64 10.21

2008 –36.58 1.59 20.10

2009 25.92 0.14 –11.12

Figure 1.4 Stock returns and treasury bills, 1928 to 2009. X- and 
Y-axes have been removed for readability
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Federal Civilian Workforce Statistics

Table 1.42 shows a state-by- state breakdown of the number of federal em-
ployees and their average salaries for 2007. Figure 1.5 shows the resulting 
scatterplot. Notice that there appears to be a fairly weak linear relationship.

Table 1.4 Average Federal Salaries and Number of Employees by State

State Number of employees Average salary ($)
Alabama 33,997 64,078

Alaska 11,922 56,525

Arizona 33,871 55,393

Arkansas 12,090 54,176

California 139,804 66,212

Colorado 33,196 67,679

Connecticut 6,854 66,343

Delaware 2,864 57,176

DC 138,622 87,195

Florida 71,858 60,807

Georgia 66,314 61,376

Hawaii 20,759 55,470

Idaho 7,788 58,057

Illinois 42,382 67,385

Indiana 18,577 60,658

Iowa 7,468 55,799

Kansas 15,796 57,528

Kentucky 20,737 52,242

Louisiana 19,011 57,446

Maine 9,128 57,336

Maryland 103,438 79,319

Massachusetts 24,532 67,035

Michigan 23,345 65,576

Minnesota 14,298 62,953

Mississippi 16,576 56,978

Missouri 32,947 56,159

Montana 8,858 55,997

Nebraska 8,826 57,406

Nevada 9,146 59,831
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State Number of employees Average salary ($)
New Hampshire 3,433 75,990

New Jersey 26,682 72,313

Ohio 41,445 67,638

Oklahoma 33,652 56,603

Oregon 17,649 60,818

Pennsylvania 62,486 59,092

Rhode Island 5,882 73,502

South Carolina 17,158 57,057

South Dakota 7,166 53,000

Tennessee 23,514 57,349

Texas 113,364 59,618

Utah 27,438 54,379

Vermont 3,537 57,279

Virginia 121,337 73,224

Washington 45,948 62,571

West Virginia 13,292 58,964

Wisconsin 11,494 57,404

Wyoming 4,759 54,952

Public Transportation Ridership

Table 1.53 shows the largest urbanized areas by population, unlinked 
passenger trips,4 and passenger miles for 2008. Figure 1.6 shows the 

Figure 1.5 Number of federal employees by state and average salaries



12 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Table 1.5 Largest Urbanized Areas by Population, Unlinked 
Passenger Trips, and Passenger Miles (2008)

Area Unlinked 
passenger 
trips (in 

thousands)

Passenger 
miles (in 

thousands)

Population 
(2000 

Census)

New York-Newark, NY-NJ-CT 4,159,309 21,699,268 17,799,861

Los Angeles-Long Beach-
Santa Ana, CA

697,825 3,342,876 11,789,487

Chicago, IL-IN 649,604 4,148,216 8,307,904

Washington, DC-VA-MD 481,776 2,506,203 3,933,920

San Francisco-Oakland, CA 442,185 2,543,376 3,228,605

Boston, MA-NH-RI 377,999 1,881,252 4,032,484

Philadelphia, PA-NJ-DE-MD 361,236 1,726,824 5,149,079

Seattle, WA 195,507 1,284,726 2,712,205

Miami, FL 172,464 1,000,246 4,919,036

Atlanta, GA 162,899 978,010 3,499,840

Baltimore, MD 119,141 764,602 2,076,354

Portland, OR-WA 111,693 467,372 1,583,138

San Diego, CA 104,806 579,977 2,674,436

Denver-Aurora, CO 101,176 554,091 1,984,889

Houston, TX 100,443 632,615 3,822,509

Minneapolis-St. Paul, MN 94,799 490,215 2,388,593

Dallas-Fort Worth-Arlington, 
TX

76,043 489,618 4,145,659

Phoenix-Mesa, AZ 72,589 315,105 2,907,049

Honolulu, HI 71,310 327,418 718,182

Pittsburgh, PA 69,175 322,026 1,753,136

Las Vegas, NV 66,168 228,917 1,314,357

Cleveland, OH 57,681 263,847 1,786,647

San Juan, PR 56,513 264,342 2,216,616

St. Louis, MO-IL 56,206 315,327 2,077,662

Milwaukee, WI 53,703 178,718 1,308,913

Detroit, MI 53,178 286,301 3,903,377

San Antonio, TX 48,349 218,023 1,327,554

San Jose, CA 44,895 207,074 1,538,312

Salt Lake City, UT 41,714 359,527 887,650

Austin, TX 37,399 161,630 901,920
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Area Unlinked 
passenger 
trips (in 

thousands)

Passenger 
miles (in 

thousands)

Population 
(2000 

Census)

Sacramento, CA 37,287 182,727 1,393,498

Cincinnati, OH-KY-IN 30,011 154,207 1,503,262

Virginia Beach, VA 29,268 117,881 1,394,439

Tampa-St. Petersburg, FL 27,710 142,898 2,062,339

Orlando, FL 27,235 166,770 1,157,431

Buffalo, NY 26,173 91,346 976,703

Providence, RI-MA 22,851 110,179 1,174,548

Charlotte, NC-SC 22,721 127,925 758,927

Riverside-San Bernardino, CA 22,605 126,952 1,506,816

Tucson, AZ 18,858 69,853 720,425

Kansas City, MO-KS 17,821 78,210 1,361,744

Rochester, NY 17,653 57,971 694,396

Hartford, CT 17,184 111,520 851,535

Fresno, CA 17,148 37,449 554,923

Columbus, OH 16,662 63,078 1,133,193

New Orleans, LA 16,342 43,726 1,009,283

Louisville, KY-IN 15,593 62,153 863,582

Richmond, VA 14,682 62,340 818,836

Albany, NY 13,903 48,563 558,947

Madison, WI 13,719 48,258 329,533

El Paso, TX-NM 13,180 66,604 674,801

Durham, NC 12,840 61,570 287,796

Memphis, TN-MS-AR 11,514 59,322 972,091

Stockton, CA 5,575 67,948 313,392

Kennewick-Richland, WA 4,894 70,208 153,851

relationship between unlinked passenger trips and population. Notice 
that almost all the data points are clustered in the bottom left corner of 
the chart. That is because the New York system has so many more trips 
(over 4 million versus the next highest of about 700,000) and such a 
higher population (almost 18 million versus the next highest of almost  
12 million) that its observation overpowers the remaining observations. 
This type of observation outside the usual values is called an outlier.5 



14 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Figure 1.7 shows the same chart with the New York observation removed. 
Here you can begin to see how a line might be used to fit the data and 
how the relationship is positive.

Figure 1.8 shows the relationship between passenger miles and popula-
tion, again with the New York observation removed. Once again, we see a 
positive relationship. Figure 1.9 shows the relationship between unlinked 
passenger trips and passenger miles, again with the New York observation 
removed. This time, the data form an almost perfectly straight, positive line.

Correlation

Correlation measures the degree of linear association between two vari-
ables. Correlation can only be measured between pairs of variables, and 

Figure 1.6 Relationship between unlinked passenger trips and 
population

Figure 1.7 Figure 1.6 with the New York observation removed
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it makes no distinction between dependent and independent variables—
that is, the correlation between height and weight is exactly the same as 
between weight and height. The term correlation analysis is often used 
interchangeably with correlation.

Correlation is measured using a statistic called the correlation coef-
ficient. The population symbol is the Greek letter rho (ρ), whereas the 
sample symbol is the letter r. The correlation coefficient can take on any 
value between negative one and positive one. A negative sign indicates a 
negative relationship, whereas a positive sign indicates a positive relation-
ship. Two variables with a negative relationship will have a line with a 
negative slope fitted to them, whereas two variables with a positive rela-
tionship will have a line with a positive slope fitted to them.

Figure 1.8 Relationship between passenger miles and population with 
New York observation removed

Figure 1.9 Relationship between unlinked passenger trips and 
passenger miles
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Ignoring the sign, the closer the value is to one (or negative one), the 
stronger the relationship. The closer the value is to zero, the weaker the 
relationship. A value of 1 indicates perfect positive linear correlation—
that is, all the points form a perfect line with a positive slope. A value of 
–1 indicates perfect negative linear correlation where all the points form 
a perfect line with a negative slope. A value of zero indicates no correla-
tion—that is, there is no relationship between the two variables. When 
this happens, the points will appear to be randomly dispersed on the 
scatterplot.

It is important to note that correlation only measures linear relation-
ships. Even a very strong nonlinear relationship will not be spotted by 
correlation. So a correlation coefficient near zero only indicates that there 
is no linear relationship, not that there is no relationship. If you look back 
at Figure 1.3, for example, you can see a clear pattern to the data: a sine 
wave. The data were generated using a sine wave formula, so a sine wave 
fits it absolutely perfectly. However, the correlation coefficient for this 
data is, for all practical purposes, zero.6

Calculating the Correlation Coefficient by Hand

Most likely, you will never need to calculate a correlation coefficient by 
hand. Excel can easily calculate the value for you, as can any statistical 
software package. As such, feel free to skip this section if you like. How-
ever, seeing and working with the underlying formula can give you some 
insight into what it means for two variables to be correlated.

The formula to compute the correlation coefficient is as follows:

Correlation Coefficient

∑ ∑ ∑
∑ ∑ ∑ ∑

( ) ( ) ( )
( ) ( ) ( ) ( )

=
⋅ − ⋅

⋅ −





⋅ ⋅ −





r
n X Y X Y

n X X n Y Y2 2 2 2

This is a long formula and it looks to be incredibly complex; however, 
as we will see, it is not all that difficult to compute manually. The first 
thing to note is that, except for n (the sample size), all the terms in this 
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equation begin with a summation sign (Σ). It is this characteristic that 
will allow us to greatly simplify this formula. This is best seen with an 
example.

Using the data on age and tag numbers from Table 1.2, Table 1.6 
shows the interim calculations needed to determine the correlation coef-
ficient. The sample size is seven, so n = 7. We will arbitrarily assign Age as 
X and Tag Number as Y, so, using Table 1.6, ΣX = 354, ΣY = 317, ΣXY 
= 17,720, ΣX 2 = 20,200, and ΣY  2 = 21,537.7 The resulting calculations 
are as follows:

∑ ∑ ∑
∑ ∑ ∑ ∑

( ) ( ) ( )
( ) ( ) ( ) ( )

[ ] [ ]

=
⋅ − ⋅

⋅ −





⋅ ⋅ −





=
− ⋅

⋅ −  ⋅ ⋅ − 

=
−

− ⋅ −

⋅
=

r
n X Y X Y

n X X n Y Y

7(17,720) (354) (317)

7 (20,200) (354) 7 (21,537) (317)

124,040 112,218
141,400 125,316 150,759 100,489

11,822
16,084 50,270

0.4157

2 2 2 2

2 2

The resulting correlation coefficient of 0.4157 is weak but not zero 
as you might expect given the lack of a relationship between these two 
variables. That is a result of the small sampling size and sampling error. 
However, the real question is if this value is large enough to be statistically 
significant—that is, is this sample value large enough to convince us that 

Table 1.6 Correlation Coefficient Calculations

Age Tag no. Age · Tag Age2 Tag no.2

55 2 110 3,025 4

21 28 588 441 784

78 42 3,276 6,084 1,764

61 78 4,758 3,721 6,084

44 66 2,904 1,936 4,356

63 92 5,796 3,969 8,464

32 9 288 1,024 81

354 317 17,720 20,200 21,537
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the population value is not zero? We will explore this question in a later 
section.

Using Excel

Naturally, these calculations can be performed easily using Excel. Excel 
has two main approaches that can be used to calculate a correlation co-
efficient: dynamic and static. These two approaches can also be used to 
compute some of the regression coefficients discussed in later chapters.

The dynamic approach uses a standard Excel formula. Doing so has 
the advantage of automatically updating the value if you change one of 
the numbers in the data series. For the correlation coefficient, it uses the 
CORREL function. This function takes two inputs: the range containing 
the first data series and the range containing the second data series. Since 
correlation makes no distinction between the independent and depen-
dent variables, they can be entered in either order.

The data in Figure 1.10 are entered in column format—that is, the age 
variable is entered in one column and the tag number variable is entered 
in a separate column but side by side. This is the standard format for sta-
tistical data: variables in columns and observations in rows. In this case, 

Figure 1.10 Calculating a correlation coefficient using the CORREL 
function in Excel
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the data for age are in cells A2 to A8, and the data for tag number are in 
cells B2 to B8. Row two, for example, represents one observation—that 
is, someone 55 years old had a tag number that ended in a “02” value.

The following are a few other notes regarding this standard format for 
statistical data:

 1. There should not be any blank columns inside the data set. In fact, 
having a blank column will cause some of the later procedures we 
will perform to fail; however, blank columns would not affect cor-
relation analysis.

 2. Having blank columns on either side of the data set is a good idea 
because it sets the data off from the rest of the worksheet and makes 
data analysis, like sorting, much easier.

 3. Having column headings is good; however, they are not required. 
Some of the later procedures will use these column headings to label 
the results, which makes those results more readable. Column head-
ings should be meaningful but not too long.

 4. There should not be any blank rows inside the data set. While Excel 
will ignore blank rows in the statistical procedures themselves, blank 
rows make it more difficult to visualize the data as well as making 
data sorting difficult.

 5. While it does not matter for correlation analysis, since it ignores the 
dependent/independent status of variables, it is required for multiple 
regression that all the independent variables be in contiguous col-
umns so the dependent variable should be in either the left or right 
column of the data set. The generally accepted approach is to use the 
left column.

While some of these are just “good ideas” in Excel, most statistical 
software will strictly enforce many of these rules. Figure 1.11 shows the 
same car tag data inside a professional statistical software package called 
SPSS.8 Notice the column format that looks almost identical to Excel, 
only the variable names are not shown inside a cell the way they are in 
Excel. Speaking of variable names, notice that the tag number is labeled 
“Tag.Number” rather than “Tag no”. SPSS does not allow spaces in spaces 
in variable names so a period is used in its place. The data file you can 
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download is in an older SPSU format that did not allow periods or up-
percase letters so it has the variables labeled “age” and “tagno”.

SPSS is a very powerful and widely used statistical package. In later 
chapters, some of the techniques discussed will be too advanced to per-
form using Excel. These techniques will be illustrated using SPSS. How-
ever, any modern statistical package would be able to perform these 
techniques in a similar manner.

Referring to Figure 1.10, the correlation coefficient is shown in cell 
A10, and you can see the underlying formula in the formula bar. It is 
“=CORREL(A2:A8,B2:B8)”. The CORREL function is used, and it pro-
vides the range of the two variables without the column labels.9

The static approach uses an Excel menu option to perform the calcu-
lation of the correlation coefficient. Excel computes the value and then 
enters it into the worksheet as a hardwired number—that is, the actual 
number is entered into a cell rather than a formula that evaluates to a 
number. If you then change the data, the correlation coefficient does not 
change since it is just a number. To update its value, you must rerun the 
menu option.

Before we demonstrate the static approach, we must warn you that 
not all installations of Excel are ready to perform these calculations. For-
tunately, the necessary files are usually installed on the hard drive, and 
the modification to make Excel ready is quick and only needs to be per-
formed one time. We will see how to prepare Excel before continuing 
with the example.

Figure 1.11 The car tag data inside SPSS



 CORRELATION ANALYSIS 21

Click the Office button, which brings up the dialog box shown in 
Figure 1.12. Click on the Excel Options button at the bottom, which 
brings up the Excel Options dialog box shown in Figure 1.13. Click on 
Add-Ins on the left and then hit the GO button next to Manage Excel Add-
Ins at the bottom to bring up the Add-In Manager shown in Figure 1.14. 

Figure 1.13 The Excel options dialog box

Figure 1.12 The office button dialog box in Excel
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Click on the Analysis ToolPak and Analysis ToolPak-VBA and hit OK to 
enable them.

Now that you have the add-ins installed, to compute the correlation 
coefficient using the static approach, select Data Analysis under the Data 
tab from the Ribbon. This brings up the dialog box shown in Figure 
1.15. By default, the procedure you last used during this session will be 

Figure 1.14 Excel add-in manager under Excel 2010

Figure 1.15 Excel data analysis dialog box
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highlighted. You use this dialog box to select the statistical procedure to 
perform—Correlation, in this case. Selecting Correlation and clicking on 
OK brings up the dialog box shown in Figure 1.16.

You use the dialog box in Figure 1.16 to give Excel the information 
it needs to perform the correlation analysis. At the top of the dialog box, 
you enter the cells containing the data. If you include the column heading 
in the range, which is a good idea, Excel will use those titles in the output. 
If you do, you will need to check the Labels in first row box. Excel can 
perform correlation analysis on data that is stored in either row or column 
format, so you must tell Excel which format is used. Excel can usually 
figure it out automatically when headings are included, but it sometimes 
guesses wrong when only numbers are included in the range.

Finally, you must tell Excel where to store the results. Some statistical 
procedures, especially regression analysis, take up a lot of space for their 
output, so it is usually best to store the results in either a large blank area 
or, even better, a blank worksheet tab, called a ply on this dialog box. Just 
to display the results of this single correlation analysis, for example, Excel 
required nine worksheet cells. This is shown in Figure 1.16 on the right 
side of the figure.

At first glance, the output in Figure 1.16 will seem more than a little 
strange. To understand why this format is used, you need to know that 
correlation analysis is often applied to many variables all at once. The cor-
relation coefficient itself can only be calculated for pairs of variables, but 
when applied to many variables, a correlation coefficient is calculated for 
every possible pair of variables. When more than a couple of variables are 
used, the format in Figure 1.16 is the most efficient approach to reporting 
those results.

Figure 1.16 The Excel correlation dialog box
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This format is called a correlation matrix. The top row and left column 
provide the names of the variables. Each variable has a row and column 
title. Inside this heading row and column are the correlation coefficients. 
The pair of variables associated with any particular correlation coefficients 
can be read off by observing the row and column heading for that cell.

Every correlation matrix will have a value of 1.000 in a diagonal line 
from the top left cell to the bottom right cell. This is called the main 
diagonal. The cells in the main diagonal have the same row and columns 
headings and each variable is 100 percent positively correlated with itself, 
so this diagonal always has a value of one. Notice too that Excel does not 
show the numbers above the main diagonal. These numbers are a mirror 
image of the numbers below the main diagonal. After all, the correlation 
coefficient between age and tag number would be the same as the correla-
tion coefficient between tag number and age, so it would be redundant to 
give the same numbers twice.

The static approach avoids the problem of writing formulas and is 
especially efficient when the correlation coefficient must be computed for 
many variables, but it does have a significant drawback. Since the results 
are static, you must always remember to rerun Correlation if you must 
change any of the numbers.

Using SPSS

Earlier, we saw how SPSS stores data in column format similar to the way 
it is stored in Excel. To perform correlation analysis, you click on Analyze, 
Correlate, and Bivariate.10 This brings up the dialog box shown in Figure 
1.17 where you select the variables to perform correlation analysis on. A 
minimum of two variables is required (currently only one is selected), but 
you can select as many as you like. With more than two variables, SPSS 
performs correlation on every possible pair of variables.

The result of the correlation analysis in SPSS is shown in Figure 1.18. 
As discussed, this format for displaying the data is known as a correlation 
matrix. Notice that the correlation matrix has two other numbers in each 
box besides the actual correlation. The first one is the significances using 
a two-tailed test. This is also referred to as the p-value, which will be dis-
cussed later. Notice, too, that the p-value is missing on the main diagonal. 
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This will always be the case as these values are always significant. The last 
number is the sample size, or seven in this case.

Some Correlation Examples

We will now look at some more correlation examples using the data sets 
discussed earlier.

Figure 1.17 The SPSS variable selection dialog box

Figure 1.18 Correlation results in SPSS
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Broilers

Figure 1.1 shows a set of data that was very strongly correlated. This chart 
shows the top 25 broiler-producing states for 2001 by both numbers and 
pounds. The data are shown in Table 1.1. The resulting correlation is 
0.9970. As expected, this value is both strong and positive.

Tag Numbers and Sine Wave

Figure 1.2 shows the tag number example, which is discussed earlier. That 
correlation is 0.4158. Figure 1.3 shows the sine wave. As discussed, that 
correlation is –0.0424, or about zero.

Stock and Bond Returns

Table 1.3 shows the actual returns on stocks, bonds, and bills for the 
United States from 1928 to 2009. That dataset has four variables:

 1. Year
 2. Return on stocks
 3. Return on treasury bonds
 4. Return on treasury bills

Table 1.7 shows the correlation matrix for this data. Notice that none 
of the correlations is very high. The value of 0.4898 between “Year” and 
“Treasury bills” is the highest, whereas the correlation between “Stocks” 
and “Treasury bonds” is virtually zero.

Federal Employees and Salary

Table 1.4 shows a state-by-state breakdown of the number of federal em-
ployees and their average salary for 2007. Figure 1.5 shows this data to 

Table 1.7 Correlation Matrix for Stock and Bond Returns

Year Stocks Treasury bills Treasury bonds

Year 1.0000

Stocks 0.0212 1.0000

Treasury bills 0.4898 -0.0189 1.0000

Treasury bonds 0.2721 -0.0009 0.3146 1.000
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have a weak, positive correlation. This is supported by the resulting cor-
relation value of 0.5350.

Transit Ridership

Table 1.5 shows the largest urbanized areas by population, unlinked pas-
senger trips, and passenger miles for 2008. That dataset has three variables:

 1. Unlinked passenger trips in thousands
 2. Passenger miles in thousands
 3. Population from the 2000 Census

Figure 1.6 shows that the data had an outlier in the values for New York. 
Its values in all three categories far exceed the values for any other transit 
system. The single outlier does not affect correlation analysis as much as 
it does the scatterplots. Table 1.8 shows the correlation matrix using all 
the data and Table 1.9 shows the correlation matrix while excluding New 
York. Notice that the correlations are all very strong, all very positive, and 
not very different with or without New York.

Table 1.8 Correlation Matrix for Transit Ridership Including New 
York

Unlinked 
passenger trips

Passenger miles Population

Unlinked passenger trips 1.0000

Passenger miles 0.9990 1.0000

Population 0.8610 0.8633 1.0000

Table 1.9 Correlation Matrix for Transit Ridership Excluding New 
York

Unlinked 
passenger trips

Passenger miles Population

Unlinked passenger trips 1.0000

Passenger miles 0.9885 1.0000

Population 0.8726 0.8544 1.0000
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Correlation Coefficient Hypothesis Testing11

All the aforementioned data discussed are sample data. The sample cor-
relation coefficients r computed on the aforementioned data are just an 
estimate of the population parameter ρ. As with any other statistic, it 
makes sense to perform hypothesis testing on the sample value. While 
the mechanics of the hypothesis for the correlation coefficient are almost 
identical to the single variable hypothesis tests of means and propor-
tions that you are likely familiar with, the logic behind the test is slightly 
different.

With hypothesis testing on the sample mean or sample proportion, 
the test is to see if the sample statistic is statistically different from some 
hypothesized value. For example, you might test the average weight of 
cans of peas coming off a production line to see if it is 16 ounces or not. 
With the correlation coefficient, the hypothesis testing is to see if a signifi-
cant population linear correlation exists or not. Therefore, our hypotheses 
become

 

H  The population correlation is not meaningful
H  The po

0

1

:
: ppulation correlation is meaningful

Since a nonzero value represents a meaningful correlation, we opera-
tionalize these hypotheses as follows:

 H : 0
H : 0

0

1

ρ
ρ

=
≠

 

If we have reason to expect a positive or negative correlation, we can 
also perform a one-tailed version of this test.

In virtually all instances, we are testing a one-or two-tailed version of 
ρ = 0. The test we will use for this hypothesis is only good where the null 
hypothesis assumes a correlation of zero. In the rare case that you wish to 
test for a value other than zero, the Student t-distribution does not apply 
and the test discussed just after the next paragraph cannot be used. Read-
ers needing to test values other than zero are urged to consult an advanced 
reference for the methodology.

Once the one-or two-tailed version of the hypotheses is selected, 
the critical value or values are found in the Student t-table or from an 
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appropriate worksheet in the normal fashion. However, this test has n – 2 
degrees of freedom rather than n – 1. The test statistic is as follows:

Correlation Coefficient Test Statistics
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Notice that the hypothesized value is not used in this equation. That 
is because it is always zero, and subtracting it would have no impact. Also 
notice that none of the column totals is used in the calculations. All you 
need is the sample correlation coefficient r and the sample size n.

An Example Using Tag Numbers

In the tag number example, the sample size is seven and the sample cor-
relation is 0.4158. Since we have no reason to believe that tag numbers 
should be positively or negatively correlated with age, we will perform a 
two-tailed test—that is,
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With n = 7, we have five degrees of freedom (n – 2), giving us a critical 
value of ±2.5706. The test statistic calculates as the following:

Hypothesis Test for Tag Numbers
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Since 1.0223 is less than the critical value of 2.5706, we accept that 
the null hypothesis is correct. Accepting the null hypothesis as correct 
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means we conclude that the population correlation is not significantly 
different from zero. In other words, there is no evidence of a population 
correlation. Given the nature of the data, this is exactly what we would 
expect.

Steps to Hypothesis Testing

To summarize, the steps to hypothesis testing of the correlation coeffi-
cient are as follows:

 1. Select the null and alternative hypothesis based on your belief that 
the correlation should or should not have a direction. You will al-
ways be selecting one of the three following sets of hypotheses:
a. When you have no reason to believe the correlation will have a 

positive or negative value

 

H : 0
H : 0

0

1

ρ
ρ

=
≠

b. When you believe the variables will have a positive correlation

 

H : 0
H : 0

0

1

ρ
ρ

≤
>  

c. When you believe the variables will have a negative correlation

 

H : 0
H : 0

0

1

ρ
ρ

≥
<  

 2. Set the level of significance, also known as alpha. In business data 
analysis, this is almost always 0.05. For a more detailed discussion of 
alpha, consult any introductory statistics textbook.

 3. Find the critical value based on the Student t-distribution and n – 2 
degrees of freedom.

 4. Compute the test statistic using the Correlation Coefficient Test Sta-
tistics formula.

 5. Make a decision.
a. When you have no reason to believe the correlation will have a 

positive or negative value, you accept the null hypothesis (that 
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there is no correlation) when the test statistic is between the two 
values. You reject the null hypothesis (and conclude the correla-
tion is significant) when the test statistic is greater than the posi-
tive value or less than the negative value.

b. When you believe the variables will have a positive correlation, 
you accept the null hypothesis when the test statistic is less than 
the positive critical value and reject the null hypothesis when the 
test statistic is greater than the positive critical value.

c. When you believe the variables will have a negative correlation, 
you accept the null hypothesis when the test statistic is greater 
than the negative critical value and reject the null hypothesis 
when the test statistic is less than the negative critical value.

The Excel Template

All these calculations can be automated using the Correlate.XLS work-
sheet. We will demonstrate it using the example of the tag data. The Cor-
relate tab allows you to enter up to 100 pairs of values in cells A2 to B101. 
It then shows the correlation coefficient to four decimal points in cell E3 
and the sample size in cell E4. This is shown in Figure 1.19.

The red square in the worksheet, shown in gray here, outlines the area 
where the data are to be entered. Only pairs of values are entered into the 
calculations and values outside of the red square (shown in gray) are not 
allowed. This is enforced by the worksheet. It is protected and no changes 
can be made outside the data entry area.

Figure 1.19 Using the Excel template to perform correlation analysis
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The Critical Values tab of the worksheet is shown in Figure 1.20. Since 
this hypothesis test is always performed using the Student t-distribution, 
those are the only values returned by this worksheet tab. Just as in the 
hypothesis testing template, these values are not really needed since the 
tab for hypothesis testing looks up the values automatically.

The Hypothesis Test tab of the worksheet is shown in Figure 1.21. This 
tab automates much of the hypothesis testing. You enter the alpha level 
in cell B2, the correlation coefficient in cell B5, and the sample size in 
cell B6. The tab then performs all the calculations. You then simply select 
the appropriate hypothesis. In this example, the two-tailed test returns 
the test statistic of 1.0223, as computed in the Hypothesis Test for Tag 
Numbers, and accepts the null hypothesis.

Using SPSS

Look back at Figure 1.18, which shows the correlation matrix for the tag 
data. This has everything you need to perform the hypothesis test. In Fig-
ure 1.18, the value below the correlation is the two-tailed significance level, 
or 0.354 in this case. This is also known as the p-value. For a two-tailed 
test, you accept the null hypothesis when the p-value is greater than alpha 
and reject the null hypothesis when the p-value is less than alpha. Since the 

Figure 1.20 The critical values tab of the template



 CORRELATION ANALYSIS 33

p-value of 0.354 is greater than our alpha value of 0.05, we accept the null 
hypothesis and again conclude that the correlation is insignificant.

The process is almost as easy for a one-tailed hypothesis test—that is, 
when you believe the correlation should be either positive or negative. 
In this case, the hypothesis test is a two-step process. First, you compare 
the sign of the correlation coefficient. If it does not match your expecta-
tions—that is, if your alternative hypothesis is that it is positive but the 
calculated value is negative—then you always accept the null hypothesis. 
Second, if the signs match, then you compare alpha and the p-value as 
in the first paragraph of this section, only you divide the p-value in half.

So if we believed the tag correlation should have been positive, then we 
would have passed the first part since the calculated correlation was indeed 
positive. Now we would compare 0.354 / 2 = 0.177 against the alpha value 
of 0.05. Since the new p-value of 0.117 is still larger than alpha, we would 
again accept the null hypothesis and conclude the correlation is insignificant.

Broilers

Figure 1.1 shows a set of data that is very strongly correlated. This chart 
shows the top 25 broiler-producing states for 2001 by both numbers and 

Figure 1.21 A template for automating hypothesis testing of 
correlation values
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pounds. The data are shown in Table 1.1. The resulting correlation is 
0.9970. Since more broilers should weigh more, we would expect a posi-
tive correlation. Figure 1.22 shows use of the Excel template to test the 
correlation coefficient for significances, and it is significant.

Stock and Bond Returns

Table 1.3 shows the actual returns on stocks, bonds, and bills for the 
United States from 1928 to 2009. Figure 1.23 shows the correlation ma-
trix on these variables from SPSS. As you can see, it flags the combinations 
that are significant at the 0.05 level with one asterisk, as well as the higher 
0.01 level with two asterisks. In this case, the following are significant:

 1. “Treasury bills” with “Year”
 2. “Treasury bonds” with “Year”
 3. “Treasury bills” with “Treasury bonds”

Due to the large sample size, these are significant in spite of their relatively 
low correlation values. In general, the larger the sample size, the weaker 
the correlation can be and the correlation still be significant.

Figure 1.22 Using the Excel template to test the broilers hypothesis
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Causality

Finding that a correlation coefficient is significant only shows that the 
two variables have a linear relationship. It does not show that changes in 
one variable cause changes in another variable. This is called causality, and 
showing causality is much more complex than just showing correlation. 
Consider the example in Box 1.1.

Figure 1.23 SPSS correlation matrix for stock and bond data

Box 1.1
Spelling and Shoe Size

If you walk into any elementary school in this nation and measure the 
students’ spelling ability and shoe size (yes, shoe size), you will find a 
strong positive correlation. In fact, the correlation coefficient will be 
very close to +1 if you compute it separately for boys and girls! Does 
this mean that big feet cause you to be able to spell better? Can we 
scrap all the standardized tests that elementary school students take 
and just measure their feet? Or does it mean that being a good speller 
causes you to have bigger feet?

To make the matter even more confusing, if you walk into any 
high school in this nation and make the same measurement, you will 
find that the correlation coefficient is close to zero and, in fact, is 
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Simply stated, if we wish to show that A causes B, simply showing 
that A and B are correlated is not enough. However, if A and B are not 
correlated, that does show that A does not cause B—that is, the lack of 
correlation between foot size and spelling ability in high school is, by 
itself, enough to conclusively demonstrate that having larger feet does not 
cause a student to spell better.

Three things are required in order to show that A causes B:

 1. A and B are correlated.
 2. If A causes B, then A must come before B. This is called a clear tem-

porary sequence.
 3. There must be no possible explanation for the existence of B other 

than A.

Of these three items, only the first item—that A and B are corre-
lated—is demonstrated using statistics. Thus it is never possible to 

insignificant. Can it be the case that having big feet only helps you 
in elementary school? Or is correlation analysis telling us something 
other than big feet cause good spelling?

Have you figured it out? In first grade, most students are poor spell-
ers and have small feet. As they get older and move into higher grades, 
they learn to spell better and their feet grow. Thus the correlation be-
tween foot size and spelling ability really tells us that older elementary 
school students spell better than younger ones. In addition, since boys 
and girls grow at different rates, the correlation improves when each 
gender is computed separately. By high school, much of this effect has 
finished. Students no longer study spelling and are mostly reasonably 
competent spellers. Thus any differences in spelling ability are due to 
factors other than their age. Since age is no longer an indicator of spell-
ing ability, a surrogate measure like foot size is no longer correlated 
with spelling. In addition, many students have completed the bulk of 
their growth by high school, so differences in feet are more an indica-
tion of the natural variation of foot size in the population than they 
are of age.
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demonstrate causality by just using statistics. Demonstrating the second 
and third items requires knowledge of the field being investigated. For 
this reason, they are not discussed in any detail in this textbook.

Think this spelling example is too esoteric to be meaningful? Think 
again. At many businesses, we can show that as advertising rises, sales go 
up. Does that mean that increases in advertising cause increases in sales? 
It could be, but businesses have more income when sales increase, and 
so they might simply elect to spend more of that income on advertis-
ing. In other words, does advertising → sales or does sales → income → 
 advertising? Another example might help.

Now suppose that we have a new marketing campaign that we are 
testing, and we wish to show that the campaign causes sales of our prod-
uct to rise. How might this be accomplished?

Showing that the two are correlated would involve computing the 
correlation of the level of expenditure on the new marketing campaign 
and our market share in the various regions. Showing a clear temporary 
sequence would involve looking at historical sales records to verify that 
the sales in the areas receiving the marketing campaign did not go up 
until after the marketing campaign had been started. In all likelihood, 
accomplishing these first two steps would not be too difficult, especially 

Box 1.2
Ice Cream Sales

When ice cream sales are high, the number of automobile wrecks is 
also high. When ice cream sales are low, the number of automobile 
wrecks is lower. Does this mean that sales of ice cream cause automo-
bile wrecks or that automobile wrecks drive the sale of ice cream?

Actually, it means neither. Just as income might drive advertising, 
a third variable influences both ice cream sales and automobile wrecks. 
In the summer, people drive more and so have more wrecks; they also 
buy more ice cream. In the winter, people drive less and so have fewer 
wrecks; they also buy less ice cream. Thus it is the season that is in-
fluencing both ice cream sales and automobile wrecks. Since they are 
both influenced by the same variable, they are correlated.
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if the marketing campaign truly did cause additional sales. However, the 
third step might be more difficult.

In deciding if anything other than your new marketing campaign 
could explain the change in sales, you will need to look at the actions of 
your competitors, changes in demographics, changes in weather patterns, 
and much more. Of course, the specific items on this list would depend 
on the product being investigated. Now imagine how difficult it is to rule 
out all alternative explanations for more complex areas of study such as 
something causing cancer. Clearly, showing causality is not a simple un-
dertaking. Fortunately, effective use of regression does not require show-
ing causality. Likewise, using the results of regression either to understand 
relationships or to forecast future behavior of a variable does not require 
showing causality.

For another, more detailed discussion of the problems showing cau-
sality, see Box 1.3.

Box 1.3
Working Mothers Have Smarter Kids

A few years ago, a rash of television and newspaper reports focused on 
a research finding that stated that the children of working mothers had

•	 higher	IQ	scores,
•	 lower	school	absenteeism,
•	 higher	grades,
•	 more	self-reliance.

Any stay-at-home mother who saw these reports might reasonably 
conclude that the best thing she could do for her children is to put the 
kids in daycare and get a job!

The problem is the research was seriously flawed! But first, we will 
review how the research was conducted. Only by knowing how the 
research was conducted can you begin to see the flaws in that research.

Researchers selected 573 students in 38 states. The students were 
in first, third, and fifth grades. They divided these students into two 
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groups: those with working mothers and those with stay-at-home 
mothers. On the measures of success used by the researchers, the first 
group did better.

Do you see the problem? The researchers made no attempt to fig-
ure out why the mothers in the second group were at home. Naturally, 
some of them were in families who were making the sacrifices neces-
sary so the mother could be home with the kids. If those were the only 
ones in the second group, then it might make sense to conclude that 
the mother’s staying at home did not improve the child’s performance. 
However, this group of stay-at-home mothers included mothers who 
were not working for the following reasons:

•	 They	were	on	welfare.
•	 They	were	too	sick	to	work.
•	 They	could	not	find	a	job.
•	 They	simply	did	not	want	to	work.
•	 They	did	not	speak	English.
•	 They	were	alcoholics	or	drug	users	who	were	unemployable.
•	 They	were	unemployable	for	other	reasons.
•	 They	were	under	18	and	too	young	to	work.

It is likely that the poor performance from children from these 
groups was bad enough that it drove down the likely higher perfor-
mance by children who had loving, concerned mothers who stayed 
home for their children.

Even if none of these factors were present and the data were com-
pletely valid, there is another equally likely explanation for the data: 
Families are more likely to make the sacrifice for the mother to stay 
home when the child is having problems. Thus the lower score for the 
kids of stay-at-home mothers could be due to the mothers’ staying at 
home to help kids with problems rather than the facts that the moms 
are at home causing kids to have problems—that is, it could very well 
be that poor performance by the children caused their mother to stay 
at home rather than the mother staying at home causing the poor 
performance.
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Summary

In this chapter the topic of correlation was introduced. Beginning with a 
scatterplot, we considered how two variables could be correlated. We also 
considered the relationship between causality and correlation.

We saw that correlation measured if there was a significant relation-
ship between a pair of variables. In the next chapter, we will see how to 
use simple regression to mathematically describe that relationship.

This study makes a point that every researcher and every consumer 
of research should always keep in mind: A statistical relationship—
even a strong statistical relationship—does not imply that one thing 
caused another thing. It also makes another very important point if 
you wish to be an educated consumer of statistics: It is not enough to 
know the results of the statistical analysis; in order to truly understand 
the topic, you must know how the data were collected and what those 
data collection methods imply.



In the last chapter, we looked at correlation analysis where we measured 
the linear relationship between pairs of variables. In this chapter we will 
use simple regression to develop a model describing the relationship be-
tween a single dependent variable and a single independent variable. This 
type of model is not frequently used in business, but understanding sim-
ple regression is a good way to begin our discussion of multiple regression.

Recall from high school geometry that the equation for a straight line 
can be written as follows:

Straight Line

 Y mX b= +

In this equation, m is the slope of the line and b is the Y-intercept, or 
just intercept for short. Simple regression is a process for fitting a line to a 
set of points so the result of that process will be a value for the slope and 
intercept for that line. Regression uses different symbols from high school 
geometry for the slope and intercept and writes the intercept first, giving 
the following equation:

Simple Regression Equation

 Y X= +β β0 1

where the β0 represents the intercept and the β1 represents the slope. These 
are population symbols; the sample symbols are b0 and b1, respectively.

The assumptions of regression are discussed in full in the next chap-
ter, but one of the assumptions of regression is that the data set consists 
of a random sample of pairs of X and Y variables from a population of 

CHAPTER 2

Simple Regression
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all possible pairs of values. Because any sampling involves error, an error 
term is often added to the equation:

Simple Regression Equation With Error Term

 Y X= + +β β ε0 1

Although ε simply stands for the error, it cannot be estimated. Also 
note that it is common to refer to the error term as the residual.

Naturally, we wish to estimate the regression equation using sample 
data, which is written in the following equation:

Sample Simple Regression Equation With Error Term

 Y b b X e= + +0 1

where b0 estimates β0, b1 estimates β1, and e represents the observed 
error—the leftover, or residual—from fitting the regression line to a spe-
cific set of data. This equation can be written with the subscript “i” to 
represent the specific data points:

Sample Simple Regression Equation for Specific Data Points

 Y b b X ei i= + +0 1

where i goes from 1 to n and e1 is the distance between the line and the 
first observed point, e2 is the distance between the line and the second 
observed point, and so on. When used to estimate values, the equation is 
written as follows:

Sample Simple Regression Equation for Estimates

 = +Y b b Xˆ
0 1 1

Here, Ŷ (pronounced “y-hat”) is the value of the dependent variable Y 
that lies on the fitted regression line at point X. That is, Ŷ1 is the result of 
the equation for X1,1, Ŷ2 is the value for X1,2, and so on.1

Figure 2.1 shows a scatterplot for two variables. It also shows three 
different lines that might be drawn to fit the data. Two have a positive 
slope and appear to be almost parallel. The other has a negative slope. It is 
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the job of regression to examine all possible lines and to choose the single 
line that best fits the data.

The single line that best fits the data has specific criteria. To illustrate 
this, Figure 2.2 shows a simplified set of data points with a single line 
under consideration. For each point, the vertical distance between each 
point and the line under consideration is measured. Distances that go up 
are positive distances, whereas distances that go down are negative. To 
avoid having the positive and negative distances cancel out, the distances 
are squared. This makes them all positive and removes any potential for 
cancellation. The resulting distances are added. This total is called a sum of 
squares. The line with the smallest sum of squares is the line selected. This 
procedure is called least squares regression.

Naturally, the techniques we will be using do not require you to actually 
test every possible line. After all, there are an infinite number of potential 
lines to consider. The mathematical development of the formulas used to 
calculate the regression coefficients guarantees that the sum of squares will 
be minimized. However, it is nice to know the background of the formulas.

Figure 2.1 More than one line can be used to fit this data
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We begin by noting that the sums of squares we just mentioned are 
SSerrors (or SSE) because they represent the mistake, or error, in the esti-
mate of the line. The following is the formula for SSE:

Sum of Squared Errors
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Using calculus, we can then take the partial derivatives of SSE with 
respect to b0 and b1 and, because we wish to minimize SSE, we set them 
equal to zero. This yields the normal equations

Normal Regression Equations
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Figure 2.2 Measuring the vertical distance between the point and the 
line under consideration
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Solving for b0 and b1, and rewriting the equations, we obtain the fol-
lowing equations:

Regression Coefficients2

Intercept

 

b
Y X X X Y

n X X
0

2
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∑ ∑

Slope
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n X Y X Y
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1 2 2=
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∑ ∑

A few notes are in order regarding these formulas:

•		 As	with	the	correlation	coefficient,	these	formulas	only	
compute sample estimates of population parameters.

•		 Unlike	the	correlation	coefficient,	b0 and b1 can take on any 
value between negative infinity (–∞) and positive infinity 
(+∞).

•		 It	is	important	not	to	read	too	much	into	the	relative	
magnitudes of these coefficients. The magnitude is a function 
of the units used to measure the data. Measure sales in dollars 
and the coefficients will have one magnitude, measure those 
same sales in millions of dollars and the coefficients will have 
a very different magnitude.

•		 As	with	the	correlation	coefficient,	except	for	n, only totals are 
used in this formula. As a result, the calculations will be very 
similar to the calculations of the correlation coefficient.

•		 These	are	point	estimates	of	β0 and β1 and these estimates 
have variances. This, and the assumption of normalcy, allows 
us to develop confidence interval estimates and to perform 
hypothesis testing on them.

•		 This	formula	always	results	in	the	line	going	through	the	
point ( , )X Y .
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Normally, you would never perform regression on a data set with an 
insignificant correlation coefficient. Correlation tests to see if a linear re-
lationship exists and then regression quantifies that relationship. If the 
hypothesis test of the correlation coefficient indicates that there is no cor-
relation, then there is no correlation for regression to quantify. Never-
theless, we will continue with one of the examples described in chapter 
1 because the calculations are fairly straightforward and the sample size 
was small. Additionally, we will show how to perform the calculations 
by hand, although these are easily performed using Excel or a statistics 
package, so there would rarely be an occasion to perform these hand 
calculations.

Age and Tag Numbers

In Table 1.2, we showed the ages of seven people and the last two digits of 
their tag numbers. A chart of this data was shown in Figure 1.2. Table 1.6 
(repeated here) gave us the data needed to compute the correlation coef-
ficient of 0.4157. Hypothesis testing would then show this correlation 
coefficient to be insignificant. Table 1.6 also gave us the data we need to 
compute the slope and intercept of the regression equation. Those regres-
sion calculations are shown here as well. Unlike correlation, it does matter 
which variables are treated as the dependent and independent variables. 
In this case, it does not make intuitive sense to say that age influences 
tag numbers or that tag numbers influence age so we will use Age as the 
independent (X) variable and Tag Number as the dependent (Y ) variable.

Table 1.6 Correlation Coefficient Calculations

Age Tag no. Age · Tag Age2 Tag no.2

55 2 110 3,025 4

21 28 588 441 784

78 42 3,276 6,084 1,764

61 78 4,758 3,721 6,084

44 66 2,904 1,936 4,356

63 92 5,796 3,969 8,464

32 9 288 1,024 81

354 317 17,720 20,200 21,537
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Computing the Intercept
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Computing the Slope
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So the regression equation is given by the line Ŷ = 8.1149 + 0.7350X.

Using Excel

For the dynamic approach, Excel offers matrix functions that can be used 
to calculate the regression coefficients and a few other pieces of informa-
tion, but the information reported by Excel using the static approach is so 
much more extensive that it makes little sense to calculate regression any 
other way in Excel. We will use the previous example to illustrate how to 
use Excel to perform regression calculations.

Regression is performed using the Analysis Toolpak. You may need to 
install this, as described in chapter 1. After doing this, the first step is to 
load the data file containing the data on which you wish to perform re-
gression, TagNumber.xls in this case. The data will have to be entered in 
column format. Whereas the data in TagNumber.xls is side by side, it is 
not necessary to have the dependent variable in a column next to the inde-
pendent variables, although in practice it is a good idea. In the next chap-
ter, we will be working with multiple independent variables, and Excel 
does require that all the independent variables be located side by side.
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Once the worksheet is loaded, you click on the Data tab and then 
Data Analysis. This brings up the Data Analysis dialog box shown back 
in Figure 1.15. This time, select Regression from this list. This brings up 
the Regression dialog box shown in Figure 2.3. You use this dialog box to 
feed the data into Excel, set options, and control what output you get and 
where the output is placed.

The Input Y Range is the range of cells containing the dependent vari-
able, or B1 to B8 in this case. We have included this label, so we will have 
to include the label for the other variable and we will have to check the 
Labels box. Including labels is a good idea as it makes the printout easier 
to read. There is no need to remember the range for the data; you can 
click on the arrow to the right side of the input box and highlight the 
range manually. The Input X Range is the range of cells containing the 
independent variable, or A1 to A8 in this case.

You must tell Excel where to put the output. Regression generates a 
lot of output, so it is always best to use a separate worksheet page for the 
results. In this example, we have given that new page the name “Regres-
sion,” although you can give it any valid name.

Once everything is entered correctly in the Regression dialog box, you 
click on OK to run the regression. Excel performs the calculations and 
places the results in the new worksheet page, as specified. Those results are 
shown in Figure 2.4. As you can see, the results are not all that readable. 
Some of the labels and numbers are large and Excel does not automatically 

Figure 2.3 The Regression dialog box
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change the column width to accommodate this wider information. In ad-
dition, Excel does not format the numbers in a readable format. While 
the data are still highlighted, we can adjust the column widths by clicking 
on the Home tab, in the Cells group clicking on Format, and under Cell 
Size, clicking on AutoFit Column Width. You can also format the numbers 
to a reasonable number of decimal points. Those results are shown in Fig-
ure 2.5. Of course, adjusting the column widths would affect any other 

Figure 2.4 Initially, the results of an Excel regression run are 
jumbled together

Figure 2.5 The results of an Excel regression run after some formatting
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data that might be included on this worksheet page. This is yet another 
reason for placing the regression output on a new page.

Reading an Excel Simple Regression Printout

Figure 2.6 shows Figure 2.5 with reference numbers added. We will be re-
ferring to these reference numbers in this discussion. The reference num-
bers do not, of course, show up in actual Excel results.

The following list explains each of the numbered captions shown in 
Figure 2.6.

 1. Excel shows a 95 percent confidence interval for each coefficient (b0 
and b1). We will see how to compute these later in this chapter. For 
now, notice that each interval is given twice. This is somewhat of a 
bug in Excel. The beginning dialog box allows you to select any given 
confidence interval you like, and Excel will display that level along 
with the 95 percent level. When you leave the confidence level at the 
default value of 95 percent, Excel does not compensate and shows 
the interval only once. For the remainder of this book, we will not 
show this duplicate set of values, as we usually delete these two extra 
columns from our worksheets.

 2. In simple regression, the multiple r is the same as the correlation 
coefficient. This will not be the case with multiple regression.

Figure 2.6 Reading an Excel printout
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 3. R squared is the r value squared. This is true in both simple and mul-
tiple regression. R squared has a very specific meaning. It is the per-
centage of the variation in the dependent variable that is explained 
by variations in the independent variables. So in this case, variations 
in the ages of the respondents in the data set explained only 17.3 
percent of the variation in the tag numbers. As expected, that is not 
a very good showing. Because there is really no relationship between 
these two variables, even this small value is only due to the small 
sample size and sampling error.

 4. Significant F is the p-value for testing the overall significance of the 
model. In simple regression, this will always yield the same results as 
a two-tailed significance test on the correlation coefficient, so it can 
be ignored in simple regression. (If the correlation coefficient is sig-
nificant, then the overall model is significant. If the correlation coef-
ficient is not significant, then the overall model is not significant.) 
Whereas this can be ignored in simple regression, it will become a 
very important measure in multiple regression.

 5. This is the intercept coefficient.
 6. This is the slope coefficient.

More of the values shown on an Excel printout will be discussed later 
in this chapter and in chapter 3.

Using SPSS

We saw the car tag data in SPSS back in Figure 1.11. To perform simple 
regression, you click on Analyze, Regression, and then Linear. That brings 
up the dialog box shown in Figure 2.7. From here, you click on the age 
variable and the arrow to move it into the Independent(s) box and you 
click on the tag number variable and the arrow to move it into the De-
pendent box. Once you have done this, the OK button will change from 
gray to black and you click on it to run the simple regression. None of the 
other options needs to be set for this scenario.

Figure 2.8 shows the results of running simple regression on the car 
tag data in SPSS. The left side of the screen is used to navigate between 



52 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Figure 2.7 The Simple Regression dialog box in SPSS

Figure 2.8 The SPSS output of running a simple regression
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sections of the results. While it is not useful here, it can be very useful 
when working with large models or multiple scenarios. To move to a new 
section of the results, just click on that section.

Currently, the Title is “Regression,” but you can double-click on it 
and change it to something meaningful like “Car Tag Simple Regression.” 
This simple regression run has no Notes. The Variables Entered/Removed is 
not meaningful here but is useful in complex model building. The Model 
Summary area gives us the measures of model quality, r, r 2, adjusted r 2, 
and the standard error of the estimate. Both r and r 2 have already been 
discussed. Adjusted r 2 and the standard error of the estimate will be dis-
cussed later in this chapter.

The ANOVA3 section is next and measures the statistical significance 
of the model. The Coefficients section gives the slope and intercept for the 
model along with measures of their statistical significance.

While Excel and SPSS present the results very differently, they both 
present the same results, at least within rounding differences. That is to be 
expected. Both tools do an excellent job of simplifying the calculation of 
regression, both simple regression as we are calculating here and multiple 
regression as we will calculate in the next chapter. However, what we will 
find is that when the models get to be more complex, a statistical package 
like SPSS has some very real advantages over a general-purpose tool like 
Excel.

More on the Regression Equation

Look back at the regression equation for the car tag example:

Ŷ  = 8.1149 + 0.7350X.

What exactly does this mean? We can see this visually represented in Fig-
ure 2.9. In this chart, the original data points are shown as dots with 
the regression overlaid as a line. Notice that the line slopes up. This is 
expected from the positive slope of 0.7350. Notice that the regression line 
crosses the Y-axis just above the X-axis. This, too, is to be expected from 
the Y-intercept value of 8.1149. Finally, notice how the points are spread 
out widely and are not close to the line at all. This behavior indicates a low 
r 2, 0.1729 in this case. For a higher r 2, the points would be less scattered.
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It is important not to read too much into the magnitude of the slope 
or the Y-intercept, for that matter. Their values are a function of the 
units used to measure the various variables. Had we measured the ages in 
months or used the last three digits of the car tags, the magnitude of the 
slope and Y-intercept would be very different. Furthermore, the r and r 2 
would remain the same. Because multiplying one or both variables by a 
fixed number is a linear transformation, the linear relationship between 
the variables remains the same. Therefore, the measures of that relation-
ship do not change. Finally, the standard error and ANOVA numbers 
change because they are measured in the units of the variables. However, 
the F-value and p-value of ANOVA do not change as they, too, are unaf-
fected by linear transformations.

Federal Civilian Workforce Statistics

We need to explore the simple regression results in more detail, but the 
car tag example is a poor choice because the results are insignificant. We 
have only used it so far because the limited number of observations makes 
it easy to understand and even calculate some of the numbers by hand.

Table 1.4 showed a state-by-state breakdown of the number of federal 
employees and their average salary for 2007. In chapter 1, we computed 
the r-value as 0.5350. Whereas that value is fairly low, in testing we found 
that the correlation was statistically significant. That is important. When 

Figure 2.9 A chart of the car tag data and the resulting line
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the correlation is significant, the simple regression will also be signifi-
cant. Likewise, when the correlation is insignificant, the simple regression 
will be insignificant. Note, however, that this does not hold in multiple 
regression.

We immediately have a problem with this data. For correlation, we 
did not have to worry about which variable was the independent vari-
able and which was the dependent variable, but it does matter for simple 
regression. Does salary depend on the number of workers or does the 
number of workers depend on the salary? Both relationships make sense. 
A higher salary would attract more workers, whereas having a large num-
ber of workers might drive down salaries. For this analysis, we will assume 
the number of workers is the independent variable.

In your own work, you are unlikely to have this problem. You will 
define the dependent variable you are looking to explain and then search 
for one or more independent variables that are likely to help explain that 
already-defined dependent variable.

The Results

Figure 2.10 shows the results of running a simple regression on the federal 
civilian workforce data with the number of workers as the independent 
variable. We will look at what many of the numbers in this printout mean:

Figure 2.10 The Excel simple regression results on the federal 
civilian workforce data with the number of workers as the 
independent variable



56 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

•	 Multiple R. In simple regression, this is the same as the 
correlation coefficient. It goes from –1 to +1 and measures the 
strength of the relationship. The closer the value is to –1 or 
+1, the stronger the relationship, and the closer it is to 0, the 
weaker the relationship. This relationship is weak.

•	 R squared. In one respect, this is simply the multiple r 2. 
It goes from 0 to 1. The closer it is to 1, the stronger 
the relationship, and the closer it is to 0, the weaker the 
relationship. However, it is also the percentage of the 
variation in the dependent variable explained by the 
independent variable. We will see the reason for this later.

•	 Adjusted R squared. This is explained in more detail in chapter 3. 
Adjusted r 2 is not really an issue for simple regression. With 
multiple regression, r 2 goes up when you add new variables 
even if those variables do not help explain the dependent 
variable. Adjusted r 2 adjusts for this issue so models with 
different numbers of variables can be compared.

•	 Standard error. This is short for the standard error of Y given 
X. It measures the variability in the predictions made based on 
resulting regression model.

•	 Observations. This is simply a count of the number of pairs of 
observations used in the simple regression calculations.

•	 ANOVA. Most of these values are beyond the scope of this 
chapter and will not be discussed. Some of these values will be 
briefly discussed in chapter 3.

•	 Significant F. This is the one critical piece of information in 
the ANOVA table that we need to discuss. The Significant F 
expresses the significances of the overall model as a p-value. 
Stated very simply, when this value is below 0.05, the overall 
model is significant.4 Likewise, when this value is above 
0.05, the overall model is insignificant. This is not important 
for simple regression because the significance of the model 
mirrors the significance of the correlation coefficient, but that 
relationship will not hold in multiple regression.

•	 Coefficient. This gives the values for the intercept and slope, or 
57,909.4559 and 0.1108, respectively, in this model.
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•	 Standard error. This standard error is the standard error 
associated with either the intercept or the slope.

•	 t-stat. This is the calculated t-statistic used to test to see if the 
intercept and slope are significant.

•	 p-value. When this value is less than 0.05, the corresponding 
slope or intercept is significant, and when it is greater than 
0.05, they are insignificant. As a general rule, we do not test 
the intercept for significance as it is just an extension of the 
regression line to the Y-intercept. In simple regression, if the 
model is significant, the slope will be significant, and if the 
model is insignificant, the slope will be insignificant.

•	 Lower 95 percent and upper 95 percent. This is a 95 percent 
confidence interval on the intercept and slope. It is calculated as 
the coefficient value ±1.96 times the standard error of that value.

Interpretation

So what do these values tell us? The Significant F value of 0.0001 tells us the 
overall model is significant at α = 0.05. The r 2 of 0.2862 tells us variation in 
number of employees explains less than 29 percent of the variation in sal-
ary, a very poor showing. The slope of 0.1108 tells us that for every one unit 
increase in the number of employees, the average salary goes up by 11 cents.

You might be tempted to say that the model is insignificant simply 
because the slope is only 11 cents; that would be a mistake. When there 
is little variation in the dependent variable, even a very strong model 
will have a relatively small slope. Likewise, when there is a large amount 
of variation in the dependent variable, even a poor model can have a 
relatively large slope. As a result, you can never judge the strength of the 
model based on the magnitude of the slope. Additionally, the units used 
to measure the data will directly affect the magnitude of the slope.

Why does this model do such a poor job? One possible explanation 
is simply that the number of employees has little or even no impact on 
salaries, and what correlation we are seeing is being driven by something 
else. In this case, it is very likely that the cost of living in the individual 
states is what is driving the salaries, and the size of states is driving the 
number of employees.
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Number of Broilers

Now on to a realistic business example. Whereas realistic simple regres-
sion examples in business are few, this next example is actual business 
data where simple regression works extremely well. Figure 1.1 showed the 
top 25 broiler-chicken producing states for 2001 by both numbers and 
pounds, according to the National Chicken Council. The underlying data 
was shown in Table 1.1. When we explored the correlation in chapter 1, 
it was very strong at 0.9970. That makes sense: The more broilers a state 
produces, the higher the weight of those broilers should be. Additionally, 
broilers likely weigh about the same state to state, so this relationship 
should be very strong.

Figure 2.11 shows the resulting simple regression. Number of broil-
ers (in millions) is the independent variable and pounds liveweight (in 
millions) is the dependent variable. The Significant F value of 0.0000 
tells us the model is significant. The r 2 = 0.9940 tells us that variation in 
the independent variable explains over 99 percent of the variation in the 
dependent variable.

The intercept is –0.2345 or almost 0. The intercept does not always 
make sense because many times it is nothing more than an extension of 
the regression line to a Y-axis that may be far away from the actual data. 
However, in this case you would expect 0 broilers to weigh 0 pounds, so 
an intercept very near 0 makes perfect sense. The slope of 5.0603 means 

Figure 2.11 Simple regression on the data for number of broiler 
chickens
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that an increase of 1 million broilers will increase the pounds liveweight 
by 5.0603 million. In other words, 1 broiler chicken weighs, on average, 
about 5 pounds—again exactly what you would expect.

Exploring the Broiler Model Further

This is a great model. The model is significant, it explains most of the 
variation in the dependent variable, and all the coefficients make perfect 
sense theoretically. You could not ask anything more of the model. That 
makes this model a good foundation for some additional discussions. 
Some of the material in this section is based on confidence intervals. You 
may want to review material on confidence intervals from a prior statistics 
course before continuing.

The slope in this model is 5.0603. This is b1, a sample statistic and an 
estimate of the population parameter β1. That is, we estimate the popula-
tion slope to be 5.0603 based on this sample data. Had a different sample 
been used—say, a selection of different states or the same data from an-
other year—then our estimate of the population slope would be different. 
But how different would it have been? A confidence interval can give us 
an indication. Recall that you calculate a 95 percent confidence interval 
using the following formula:

Formula for a Confidence Interval on the Slope

 
b t Sn b1 0 05 2 1

± ⋅−. ,  

The b1 is, of course, the sample value for the slope, or 5.0603 in this 
example. The t is the Student t-value with α = 0.05 and n – 2 degrees of 
freedom. Because n = 26 in this example, the degrees of freedom are 26 – 2 = 
24, giving us a t-value of 2.0639. The s-value is the standard error, which the 
printout tells us is 0.0805. The confidence interval is calculated as follows:

Confidence Interval Calculations

 

b t sn b1 0 05 2 1

5 0603 2 0639 0 0805

4 8942 5 2264

± ⋅
± ⋅

 

−. ,

. . .

. , .
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This is, of course, the same interval shown in the Excel printout. 
When this interval contains zero, the slope is insignificant. Because the 
interval above does not contain zero, the interval is significant. In simple 
regression, this test of model significance will always match the other two 
tests (i.e., the hypothesis test on the correlation coefficient and the F-test 
on the regression model) we have already discussed.

Recall our regression equation.

Regression Equation

 = − +Y Xˆ 0.2345 5.0603 .  

This is the equation we use to produce a forecast. If you look back 
at the data, you will see that Georgia produced 1,247.3 million broilers 
in 2001 with pounds liveweight of 6,236.5. Suppose we wished to esti-
mate how much pounds liveweight Georgia would have produced had 
the state produced 1,300 million broilers. We simply plug 1,300 in for X 
in the previous equation, and we see their pounds liveweight would have 
increased to 6,578.2.

Forecast for 1,300 Million Broilers

 

= − +
= − +

=

Y Xˆ 0.2345 5.0603 .
0.2345 5.0603(1,300)

6,578.2  

But how good a forecast is that? If it ranged from 3,000 to 10,000, 
then it is not very useful. On the other hand, if it ranged from only 6,500 
to 6,656, then it is a very useful estimate. The 6,578.2 is a point estimate 
of a population value. Once again, we can compute a confidence interval 
to find the 95 percent range.

The formula used for the confidence interval depends on the type of 
interval you are constructing. You use the first formula shown when you 
are computing the confidence interval for the average fitted value. That 
is, the resulting interval would be the interval for the average of all states 
that produce 1,300 broilers.

You use the second formula when computing the confidence interval 
for a single prediction for a new value. Because this confidence interval 
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for the second formula is for a single observation, there is no opportunity 
for observations to average out, so it results in a wider interval.

Confidence Interval for Average Fitted Value
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Either equation uses several values Excel (or SPSS) does not give us 
plus one value (mean squared error [MSE]) that we have not yet dis-
cussed. The value ( )X Xi − 2  is different for each confidence interval be-
cause the X-value is included in the formula. The value X Xi −( )∑ 2

 is 
not provided by Excel or SPSS either, but it is easy to compute in Excel. 
For this problem X = 322 5.  and X Xi −( ) =∑ 2

3 273 902 4, , . . It was 
computed by subtracting the 322.5 from each observation, squaring the 
result, and computing the total.

If you look at the ANOVA table in an Excel or SPSS printout, there 
is a column labeled “MS.” MSE is the bottom number, the one on the 
residual row. For this example, it is 21,198.57.

This gives us the information needed to compute both intervals. Be-
cause the only difference for the second interval is the additional “1+,” we 
will take a few shortcuts in its calculation.
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Whereas SPSS does not give you the values needed to compute these 
confidence intervals, it will compute them for you. To do this, begin by 
entering the value of the independent variable you wish to forecast at the 
bottom of the data set without entering a dependent variable. You can 
see the 1,300 entered in Figure 2.12. While we are getting only a single 
prediction here, SPSS can handle as many predictions as you like.

Now, begin as before and click on Analyze, Regression, and then Lin-
ear, which brings up the dialog box shown in Figure 2.7. From there, 
click on the Save button. That brings up the dialog box shown in Figure 
2.13. As shown in Figure 2.13, we wish to save the Mean and Individual 
Confidence Intervals, and as always, we will use a 95 percent confidence 
interval, although SPSS allows you to specify any value you like. You 
click on Continue to the Linear Regression dialog box and continue your 
regression as before.

In addition to producing the regression results, and adding more data 
to the output display, SPSS adds four variables to the data file, as shown 
in Figure 2.14. The variables LMCL_1 and UMCL_1 are the confidence 
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interval for the mean prediction confidence interval, and LICI_1 and 
UICI_1 are the confidence interval for the single-value confidence interval.

The widths of the confidence intervals are not constant because the val-
ues of Xi is included in the equation. In this example, the widths for the av-
erage value confidence interval range from a low of 59.2 to a high of 164.5. 
The confidence interval is narrowest near X  and widest at the extreme 
values. Note that the last line of Figure 2.14 shows the two confidence in-
tervals for 1,300 and the values are the same as we computed earlier.

Some Final Thoughts on Simple Regression

The widespread use of spreadsheets and inexpensive statistical software 
has made the use of regression analysis both easy and common. This has 
both positive and negative consequences. On the good side, more people 
now have access to a very powerful tool for analyzing relationships and 

Figure 2.12 Data set up for having SPSS calculate a confidence 
interval for a predicted value and an average fitted value
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performing forecasts. However, it has caused some people to use regres-
sion analysis without understanding it and in situations for which it was 
not appropriate. To help the reader avoid the downfalls of using regres-
sion inappropriately, we now offer a few suggestions:

 1. Never use regression, or for that matter any statistical tool, without un-
derstanding the underlying data. As we saw in the discussion of causality 

Figure 2.13 Telling it to save the confidence intervals in SPSS
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in chapter 1, it takes a deep understanding of the data and the theory 
behind it to establish causality. Without either a cause-and-effect rela-
tionship or some other theoretical reason for the two variables to move 
in common, it makes no sense to try to model the variables statistically.

 2. Never assume a cause-and-effect relationship exists simply because 
correlation—even a strong correlation—exists between the variables.

 3. Start off with a scatterplot and then correlation analysis before per-
forming simple regression. There is no point trying to model a weak 
or nonexistent relationship.

 4. When using regression to forecast, remember that the further away 
you go from the range of data used to construct the model, the less 
reliable the forecast will be.

We will return to these issues in multiple regression. As we will see, all 
these items will not only still be issues but also be even more complex in 
multiple regression.

Figure 2.14 The data file after running regression and saving the 
intervals





CHAPTER 3

Multiple Regression

In the last chapter, we saw how to construct a simple regression model. 
Simple regression described the linear relationship between one depen-
dent variable and a single independent variable. However, in most busi-
ness situations it takes more than a single independent variable to explain 
the behavior of the dependent variable. For example, a model to explain 
company sales might need to include advertising levels, prices, competi-
tor actions, and perhaps many more factors. This example of using vari-
ous independent variables—like advertising, price, and others—is a good 
mental model to use when thinking about multiple regression.

When we wish to use more than one independent variable in our 
regression model, it is called multiple regression. Multiple regression can 
handle as many independent variables as is called for by your theory—at 
least as long as you have an adequate sample size. However, like simple 
regression, it, too, is limited to one dependent, or explained, variable.

As we will see, multiple regression is nothing more than simple regres-
sion with more independent variables. Most business situations are com-
plex enough that using more than one independent variable does a much 
better job of either describing how the independent variables impact the 
dependent variable or producing a forecast of the future behavior of the 
dependent variable.

Multiple Regression as Several Simple Regression Runs

In addition to the name change, the procedure for calculating the regres-
sion model itself changes, although that is not immediately obvious when 
performing those calculations using Excel. Before we get into that, we will 
illustrate multiple regression using simple regression.
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Simple Regression Example

Figure 3.1 shows machine maintenance data for 20 machines in a me-
dium-sized factory. The first column shows the number of hours between 
its last breakdowns, the second column shows the age of the machine 
in years, and the third column shows the number of operators. Because 
we have not yet seen how to use more than one independent variable in 
regression, we will perform simple regression with breakdown hours as 
the dependent variable and age as the independent variable. The results of 
that simple regression are shown in Figure 3.2.

As you can see from Figure 3.2, the overall model is significant and the 
variation in the age of the machine explains almost 92 percent (0.9177) 
of the variation in the breakdown hours, giving the resulting regression 
equation:

The Resulting Regression Equation

 Breakdown Hours Age= +111 6630 45 6957. . ( )

Figure 3.1 An Excel worksheet with one dependent variable and two 
independent variables
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As good as these results are, perhaps the addition of the number of op-
erators as a variable can improve it. In order to see this, we will begin by 
computing the breakdown hours suggested by the model by plugging the 
age of the machine into the previous equation. We will then subtract this 
value from the actual value to obtain the error term for each machine. 
Those results are shown in Figure 3.3.

Notice that the sum of the error terms is zero. This is a result of how 
regression works and will always be the case. The error values represent 
the portion of the variation in breakdown hours that are unexplained by 
age, because, if age was a perfect explanation, all the error values would be 
zero. Some of this variation is, naturally, random variation that is unex-
plainable. However, some of it might be due to the number of operators 
because that varies among the machines. A good reason for calling this 
a residual, rather than error, is that parts of this error might, in fact, be 
explained by another variable—the number of operators in this case.

We can check by performing a second simple regression, this time 
with residual as the dependent variable and number of operators as the 
independent variable. Those results are shown in Figure 3.4.

Notice that this regression is also significant. The variable for the 
number of operators explains 71 percent (0.7119) of the variation in the 
residual term or 71 percent of the remaining 8 percent unexplained varia-
tion of the original simple regression model, giving the resulting equation:

Figure 3.2 Using simple regression and one of the two independent 
variables



70 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Figure 3.3 Calculating the part of the breakdown hours not explained 
by the age of the machine

Figure 3.4 Performing simple regression between the residual and the 
number of operators
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Resulting Regression Equation

 Residual Age= −77 1358 49 7650. . ( )

Although this approach of using multiple simple regression runs seems to 
have worked well in this simplified example, we will see a better approach 
in the next section. Additionally, with more complex regression applica-
tions with many more variables, this approach would quickly become 
unworkable.

Multiple Regression

In the previous example, we performed simple regression twice: once on 
the dependent variable and the first independent variable and then on the 
leftover variation and the second independent variable. With multiple 
regression, we simultaneously regress all the independent variables against 
a single dependent variable. Stated another way, the population regression 
model for a single dependent variable Y and a set of k independent vari-
ables X1, X2, . . . , Xk gives the following:

Population Regression Model

 Y X X Xk k= + + + + +β β β β ε0 1 1 2 2 L

where β0 is the Y-intercept, each of the βi’s for i = 1 to k is the slope of the 
regression surface with respect to the variable Xi, and e is the error term. 
This error term is also commonly referred to as the residual.

Of course, we rarely work with population data, so we are usually 
interested in calculating the sample regression model as an estimate of the 
population regression model:

Sample Regression Model

 Y b b X b X b Xk k= + + + + +0 1 1 2 2 L ε

where bi is the sample statistic that estimates the population parameter 
βi.

As you may recall from the last chapter, the graph of the results of 
simple regression is a line. That is because there are two variables, one 
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independent variable and one dependent variable. With only two vari-
ables, the data are defined in two-dimensional space and thus a line. With 
multiple regression, we have at least three dimensions and possibly many 
more. When there are two independent variables and one dependent vari-
able, we have three-dimensional space and the results of the regression 
are a plane in this space. When we exceed two independent variables, 
we exceed three-dimensional space and, therefore, we exceed our ability 
to graph the results as well as our ability to visualize those results. When 
this happens, the results of the regression are said to be a hyperplane that 
exists in hyperspace.

Assumptions for Multiple Regression

As you would expect, the assumptions for multiple regression are very 
similar to the assumptions for simple regression:

 1. For any specific value of any of the independent variables, the values 
of the dependent variable Y are normally distributed. This is called 
the assumption of normality. As a result of the dependent variable 
being normally distributed, the error terms will also be normally 
distributed.

 2. The variance for the normal distribution of possible values for the 
dependent variable is the same for each value of each independent 
variable. This is called the equal variance assumption and is some-
times referred to as homoscedasticity.1

 3. There is a linear relationship between the dependent variable and 
each of the independent variables. This is called the linearity assump-
tion. Because the technique of regression (simple or multiple) only 
works on linear relationships, when this assumption is violated, that 
independent variable is usually found to be insignificant. That is, it 
is found not to make any important contribution to the model. As a 
result, this assumption is self-enforcing.

 4. None of the independent variables are correlated with each other. 
Although this assumption does not have a name, we will refer to its 
violation as multicollinearity in a later section, so we will refer to this 
assumption as the nonmulticollinearity assumption.
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 5. The observations of the dependent variable are independent of each 
other. That is, there is no correlation between successive error terms, 
they do not move around together, and there is no trend.2 This is 
naturally called the independence assumption. In a later section, we 
will refer to the violation of this assumption as autocorrelation.

Using Excel to Perform Multiple Regression

Excel is able to perform the multiple regression calculations for us. The 
steps are the same as with simple regression. You begin by clicking on the 
Data tab, then Data Analysis, and then selecting Regression from the list 
of techniques. Excel makes no distinction between simple and multiple 
regression. Fill in the resulting dialog box just as before, only this time 
enter the two columns that contain the two independent variables. This 
is shown in Figure 3.5.

The steps for running multiple regression in Excel are the exact same 
steps we performed to run simple regression in Excel. In fact, making a 
distinction between simple and multiple regression is somewhat artificial. 
As it turns out, some of the complexities that occur when you have two 
or more independent variables are avoided when there is only one inde-
pendent variable, so it makes sense to discuss this simpler form first. Nev-
ertheless, both simple and multiple regression are really just regression.

Figure 3.5 Performing multiple regression with Excel
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One note is critical regarding the way Excel handles independent 
variables. Excel requires that all the independent variables be located in 
contiguous columns. That is, there can be nothing in between any of the 
independent variables, not even hidden columns. This is true regardless of 
whether you have just two independent variables or if you have dozens. 
(Of course, this is not an issue in simple regression.) It also requires that 
all the observations be side by side. That is, all of observation 1 must be 
on the same row, all of observation 2 must be on the same row, and so on. 
It is not, however, required that the single dependent variable be beside 
the independent variables or that the dependent variable observations be 
on the same rows as their counterparts in the set of independent variables. 
From a data management perspective, this is nevertheless a very good idea, 
and this is the way that we will present all the data sets used as examples.

Additionally, Excel’s regression procedure sometimes becomes con-
fused by merged cells, even when those merged cells are not within the 
data set or its labels. If you get an error message saying Excel cannot com-
plete the regression, the first thing you should check for is merged cells.

Example

Figure 3.6 shows the results of running multiple regression on the ma-
chine data we have been discussing. Notice that the results match the 

Figure 3.6 The result of running multiple regression on the machine 
data discussed earlier in this chapter
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appearance of the simple regression results with the exception of having 
one additional row of information at the bottom to support the addi-
tional independent variable. This is, of course, to be expected.

In the machine example, we had the first, simple regression equation:

First Simple Regression Equation

 = +Y Xˆ 111.6630 45.6957

and the second regression equation was

Second Regression Equation

 = −Y bˆ 77.1358 9.7650 2

Adding these together, we obtain the following equation:

Combined Regression Equation

 = + −Y b bˆ 183.7988 45.6957 49.76501 2  

Note that this is similar to, but not exactly equal to, the multiple 
regression equation we just obtained:

Multiple Regression Equation

 = + −Y b bˆ 185.3875 47.3511 50.76841 2

One of the assumptions of multiple regression is the nonmulticol-
linearity assumption: There is no correlation between the independent 
variables. In this example, there is slight (0.1406) correlation between 
the two independent variables. It is this slight correlation that prevents 
the total of the individual simple regression equations from totaling to 
the multiple regression equation. The higher the correlation, the greater 
the difference there will be between the equations derived using these 
two approaches. Because there is virtually always some degree of cor-
relation between independent variables, in practice we would never ap-
proach a multiple regression equation as a series of simple regression 
equations.
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Another Example

Oftentimes, businesses have a lot of data but their data are not in the right 
format for statistical analysis. In fact, this so-called dirty data is one of the 
leading problems that businesses face when trying to analyze the data they 
have collected. We will explore this problem with an example.

Figure 3.7 shows the medal count by country for the 2000 Olym-
pic Games in Sydney, Australia. It shows the number of gold, silver, and 
bronze medals along with the total medal count. Also shown are the pop-
ulation and per capita gross national product (GNP) for each country. We 
will use this information for another multiple regression example, but we 
must address the dirty data first.

Data Cleaning

Before we continue with the multiple regression portion of this example, 
we will take this opportunity to discuss data cleaning. Data cleaning is 
when we resolve any problems with the data that keep us from using it for 
statistical analysis. These problems must be resolved before these data can 
be used for regression, or anything else for that matter. Otherwise, any 
results you obtain will not be meaningful.

When this Sydney Olympics data set was first put together, it had a 
couple of significant problems. The first problem is that population size 
and GNP were not available for all the countries. For example, an esti-
mate of GNP was not available for Cuba. The number of countries for 
which a full set of data was not available was very small, and their medal 
count was minor so these countries were dropped from the data set.

The second problem was that the per capita GNP was naturally mea-
sured in their own currency and a standard scale was needed because it 
makes sense to use a standard to compare values of a variable where each 
observation was measured using a different scale. This was handled by 
converting all the currencies to U.S. dollars, but this raised a third prob-
lem: Because the value of currencies constantly fluctuates against the U.S. 
dollar, which conversion value should be used? We decided to use the 
conversion value in effect around the time of the Olympics, and the data 
shown is based on that conversion.
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Figure 3.7 Data from the 2000 Olympic 
Games in Sydney, Australia
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It is not uncommon for business data to require cleaning before being 
ready for use in statistical analysis. In this context, we use statistical analy-
sis in a very broad sense and not just in reference to multiple regression. 
As long as only a few data points are discarded and as long as any data 
conversions are reasonable, the data cleaning should not have too much 
of an impact on the results of any statistical analysis performed on the 
data. In any case, we do not have much of a choice. Without cleaning, the 
data would not be in a useable form.

Olympics Example Continued

Returning to our data set from the 2000 Sydney Olympics, we will use 
total medal count3 as the dependent variable and per capita GNP and 
population as the independent variables. Figure 3.8 shows the dialog box 
filled out to perform the multiple regression and Figure 3.9 shows the 
results.

r 2 Can Be Low but Significant

Notice that in the Sydney Olympics example the variations in population 
and per capita GNP explain only 21 percent (0.2104) of the variation 
in total medals, yet the overall model is significant and the individual 
variables are all significant as well. This is an important point. It is not 

Figure 3.8 The dialog box used to perform multiple regression on the 
2000 Olympic Games data set



 MULTIPLE REGRESSION 79

necessary for r 2 to be high in order for the overall model to be significant. 
This is especially true with larger data sets—that is, with higher numbers 
of observations. When businesses analyze massive data sets, it is not un-
common for even unrelated variables to show significant correlations for 
this very reason.

Students sometimes also make the mistake of thinking that only mod-
els with high r 2 values are useful. It is easy to see why students might 
believe this. Because r 2 represents the percentage of the variation in the 
dependent variable that is explained by variation in the independent vari-
ables, one might conclude that a model that explains only a small percent-
age of the variation is not all that useful.

In a business situation, this is, in fact, a reasonable assumption. A fore-
casting model that explained only 21 percent of the variation in demand 
would not be very useful in helping to plan production. Likewise, a mar-
ket analysis that ends up explaining only 21 percent of the variation in 
demand would likely have missed the more important explainer variables.

However, in other areas, explaining even a small percentage of the 
variation might be useful. For example, doctors might find a model that 
explained only 21 percent of the variation in the onset of Alzheimer’s 
disease to be very useful. Thus the decision about how useful a model is, 
at least once it has been found to be statistically significant, should be 

Figure 3.9 The results of the multiple regression analysis on the 
2000 Olympic Games data set
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theory based and not statistically based. This requires knowledge of the 
field under study rather than statistics. This is the main reason that statis-
ticians usually need help from knowledgeable outsiders when developing 
models.

Example

We will now look at an example involving celebrities. Although this is 
clearly a nonbusiness example (unless, of course, you are in the business of 
making movies), the procedures and considerations are exactly the same 
as performing a marketing analysis to try to understand why your product 
is (or is not) popular.

Forbes collected the following information on the top 100 celebrities 
for 2000:

•	 Earnings	rank,	or	simply	a	rank	ordering	of	1999	earnings
•	 Earnings	for	1999
•	 Web	hits	across	the	Internet
•	 Press	clips	from	Lexis-Nexis
•	 Magazine	covers
•	 Number	of	mentions	on	radio	and	television

The data are collected in the worksheet Celebrities.xls, which is shown 
in Figure 3.10. Forbes used this information to decide on a “power rank” 
for each celebrity. We will use multiple regression to try to discover the 
rationale behind the power rank. That regression is shown in Figure 3.11.

The r 2 value is 0.9245, so over 92 percent of the variation in the 
power rank is explained by this data, giving the resulting equation:

Power Rank Equation

 

= +
+ − −
− −

Power Rank 17.2959 0.8270(Income Rank)
0.00004 (Earnings) 0.0001 (Web Hits) 0.0005(Press Clips)
2.4321(Magazine Covers) 0.0220(TV and Radio Mentions)

4 5

Some of the signs in this equation seem unusual. We will have more to 
say about this later. But before we get into this, we need to discuss how to 
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Figure 3.10 Forbes 2000 data on 100 
celebrities
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evaluate the significance of the overall model, as well as the significances 
of the individual components.

The F-Test on a Multiple Regression Model

The first statistical test we need to perform is to test and see if the overall 
multiple regression model is significant. After all, if the overall model is 
insignificant then there is no point is looking to see what parts of the 
model might be significant. Back with simple regression, we performed 
the following test on the correlation coefficient between the single depen-
dent variable and the single independent variable and said that if the cor-
relation was significant then the overall model would also be significant:
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With multiple regression, we can no longer use that approach. The reason 
is simple: If there are six independent variables, then there are six differ-
ent correlations between the single dependent variable and each of the 
independent variables.6

Figure 3.11 The multiple regression results on the year 2000 Forbes 
data on 100 celebrities with Power Rank as the dependent variable
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With simple regression, a significant correlation between the single 
dependent and the single dependent variable indicated a significant 
model. With multiple regression, we may end up with data where some of 
the independent variables are significant whereas others are insignificant. 
For this reason, we need a test that will test all the independent variables 
at once. That is, we want to test the following:

 

β = β = = β =
β ≠

H : 0
H1: for some

k

i

0 1 2

i

In other words, we are testing to see that at least one βi is not equal 
to zero.

Think about the logic for a minute. If all the βi’s in the model equal 
zero, then the data we have collected is of no value in explaining the de-
pendent variable. So, basically, in specifying this null hypothesis we are 
saying that the model is useless. On the other hand, if at least one of the 
βi’s is not zero, then at least some part of the model helps us explain the 
dependent variable. This is the logic behind the alternative hypothesis. Of 
course, we will still need to delve into the model and figure out which part 
is really helping us. That is a topic for a later section.

We will use analysis of variance (ANOVA) to perform the test on 
the hypotheses shown previously. Before looking at the hypothesis test, 
a couple of notes are in order regarding the aforementioned hypotheses. 
First, notice that the null hypothesis does not specify the intercept, β0. As 
with simple regression, we are rarely interested in the significance of the 
intercept. As discussed previously, it is possible that some of the βi’s will 
be significant whereas others will be insignificant. As long as any one of 
them is significant, the model will pass the ANOVA test.

We will briefly review ANOVA as it relates to multiple regression hy-
pothesis testing. Interested students should refer to a statistics textbook 
for more details. Figure 3.12 shows just the ANOVA section from the 
2000 Sydney Olympics results regression shown previously. In this dis-
cussion, the numbers with arrows after them are shown in the figure as 
references to the items under discussion. They are not, of course, nor-
mally a part of the ANOVA results.

We will now discuss each of the notes shown in Figure 3.12.
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 1. The regression degrees of freedom is k, the number of independent 
variables (two in this case).

 2. The residual (or error) degrees of freedom is n – k–1, or 73 – 2 – 1 = 
70 in this case.

 3. The total degrees of freedom is n –1, or 72 in this case.
 4. This is the sums of squares (SS) regression. We will abbreviate this as 

SSR. Its calculation will be discussed in more detail shortly.
 5. This is SS residual. In order to avoid confusion with SS regression, 

we will abbreviate this as SSE. Its calculation will be discussed in 
more detail shortly.

 6. This is SS total. We will abbreviate this as SST. Its calculation will be 
discussed in more detail shortly.

 7. This is mean square regression, or MS regression. We will abbreviate 
this as MSR. It is calculated as SSR / k.

 8. This is mean square residual/error or MS residual. We will abbreviate 
this as MSE. It is calculated as SSE / (n – k – 1).

 9. The F ratio is calculated as MSR/MSE. This value is chi square dis-
tributed with k,n – k – 1 degrees of freedom.

 10. This is the p-value for the F-test. When it is less than 0.05, the over-
all model is significant, and when it is greater than 0.05, the overall 
model is not significant. That is, you reject the null hypothesis that 
all the βk coefficients are zero. If the overall model is not significant, 

Figure 3.12 ANOVA section for the 2000 Sydney Olympics results 
regression



 MULTIPLE REGRESSION 85

that is, if all the βk coefficients are equal to zero, then there is no 
point in continuing with the regression analysis.

We will briefly review the calculation of SSR, SSE, and SST. However, be-
cause Excel and every other multiple regression program report these values, 
no additional emphasis will be placed on their manual calculation. Figure 
3.13 shows the data from the 2000 Sydney Olympics with the information 
required to calculate all three sums of squares values. Note that some of the 
rows are hidden in this figure. That was done to reduce the size of the figure.

From the data, the average of the number of medals won (Y) is 12.151, 
giving the following equation for SST:

SST

 
SST Y Y= −( )∑ 2

For row 1, 97 – 12.151 = 84.8 and 84.82 = 7,199.4.7 For row 2, 
88 – 12.151 = 75.8 and 75.82 = 5,753.1. These calculations are carried 
out for each of the data points, and the total of these squared values is 
25,475.3425. This is the SST value shown back in Figure 3.12.

Figure 3.13 The values from the data from the 2000 Sydney 
Olympics that will be used to calculate the sums of squares values
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The formula for SSE is the following:

SSE

 ∑( )= −SSE Y Ŷ
2

For row 1, the predicted Y value is 31.0 and (97 – 31.0)2 = 4,360.5. 
For row 2, the predicted Y value is 11.3 and (88 – 11.3)2 = 5,887.0. 
These calculations are carried out for all the data, and the total of these 
squared values is 20,115.0087. This is the SSE value shown back in Fig-
ure 3.12.

At this point, there is no need to compute SSR because the formula

SST

 SSR SSE SST+ =  

allows us to compute it based on SST and SSE.8 Nevertheless, SSR is rep-
resented by the following equation:

SSR

 ∑( )= −SSR Y Yˆ 2

For row 1, that gives us 31.0 – 12.151 = 18.8 and 18.82 = 354.0. 
For row 2, 11.3 – 12.151 = –0.9 and –0.92 = 0.8. These calculations 
are carried out for all the data, and the total of these squared values is 
5,360.3338. This is the SSE value shown back in Figure 3.12.

How Good Is the Fit?

In the last chapter on simple regression, we saw that r 2 represents the 
percentage of the variation in the dependent variable that is explained 
by variations in the independent variable. That relationship holds in 
multiple regression, only now more than one independent variable is 
varying. In the last chapter, we simply accepted this definition of r 2. 
Now that we have discussed ANOVA, we are ready to see how r 2 is 
calculated:
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Calculation of r 2

 
r

SSR
SST

2 =

From this calculation and Figure 3.12, we have SSR = 5,360.3338 and 
SST = 25,475.3425. That gives us 5,360.3338/25,475.3425 = 0.2104. 
This is exactly the value shown in Figure 3.12 for r 2.

Notice that the numerator of this formula for r 2 is the variation ex-
plained by regression and the denominator is the total variation. Thus 
this formula is the ratio of explained variation to total variation. In other 
words, it calculates the percentage of explained variation to total variation.

The value of r 2 suffers from a problem when variables are added. We 
will illustrate this problem with an example.

Example

Figure 3.14 shows the data from the 2000 Sydney Olympics with four 
variables added. Each of these variables was added by using the Excel 
random number generator. These random numbers were then converted 
from a formula (=RAND()) to a hardwired number9 so their value would 
not change while the regression was being calculated and so you could 
experiment with the same set of random numbers. Although the num-
bers are still random, they can just no longer vary. Because these numbers 
were randomly generated, they should not help to explain the results at 

Figure 3.14 The data for the 2000 Sydney Olympics with four 
completely random variables added
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all. That is, they have absolutely no relationship to the number of med-
als won. As a result, you would expect that the percentage of variation 
explained (r 2) would also not change.

Figure 3.15 shows the results of the new multiple regression including 
the four random variables. As expected, none of these variables is signifi-
cant. However, the r 2 value goes up from 0.2104 when the regression was 
run without the random variables to 0.2731 when the random variables 
are included. Why?

With simple regression, the model is a line. A line is uniquely defined 
by two points, so simple regression on two points will always perfectly de-
fine a line. This is called a sample-specific solution. That is, r 2 will always be 
1.00 even if the two variables have nothing to do with each other. For any 
regression with k independent variables, a model with k + 1 observations 
will be uniquely defined with r 2 of 1.00. Additionally, as the number of 
variables increases, even when those variables have no useful information,  
the value of r 2 will always increase. That is why r 2 increased in the previous  
example when the four random, and useless, variables were added. If we 
were to add more variables containing purely random data, r 2 would go 
up again. The opposite is also true. If you drop a variable from a model, 

Figure 3.15 The results of running multiple regression on the 2000 
Sydney Olympics data with four completely random variables added
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even a variable like these random numbers that have no relationship to 
the dependent variable, r 2 will go down.

To account for r 2 increasing every time a new variable is added, an 
alternative measure of fit, called the adjusted multiple coefficient of deter-
mination, or adjusted r 2, is also computed using the following formula:

Multiple Coefficient of Determination, or Adjusted r 2

 

R
SSE

n k
SST

n

2 1
1

1
= −

− +( )
−

( )

( )

As with r 2, the symbol R 2  is for the population value and r 2  is for 
the sample. Because this symbol is not used in computer printouts, we 
will just use adjusted r 2. Although r 2 always increases when another vari-
able is added, the adjusted r 2 does not always increase because it takes into 
account changes in the degrees of freedom. However, the adjusted r 2 may 
also increase when unrelated variables are added, as it did in the previous 
example, increasing from 0.1879 to 0.2070. When the adjusted r 2 does 
increase with the addition of unrelated variables, its level of increase will 
generally be much less than r 2, as was the case here.

In certain rare cases, it is possible for the adjusted r 2 to be negative. 
The reason for this is explained in the sidebar in more detail, but it hap-
pens only when there is little or no relationship between the dependent 
variable and the independent variables.

Box 3.1

Negative Adjusted r 2

The value of r 2 must always be positive. There is no surprise there. In 
simple regression, r 2 is simply the correlation coefficient (r) squared, 
and any value squared must be positive. In multiple regression, r 2 is 
calculated with the following formula:

Calculation of r 2

r
SSR
SST

2 =



90 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Because both SSR and SST are always positive, it follows that r 2 is also 
always positive.

As we saw earlier, r 2 can be adjusted for the number of variables, 
producing what was called adjusted r 2, using the following formula:

Multiple Coefficient of Determination, or Adjusted r 2

R
SSE

n k
SST

n

2 1
1

1
= −

− +( )
−

( )

( )

One would expect that adjusted r 2 would also be positive and, for 
the most part, that is the case. However, almost by accident, the author 
noticed that adjusted r 2 can sometimes be negative.

In developing an example of what would happen to r 2 when there 
was no relationship between the variables (r 2 is low but not zero), the 
author put together a spreadsheet where the data were generated using 
the Excel random number function. It looked much like the data set 
shown in Figure 3.16. Although the data were generated with the ran-
dom number function, they were converted to fixed values. Otherwise, 

Figure 3.16 Random data
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the data would change each time the worksheet was loaded and so the 
results would not match the data.

When these data were used in regression, the r 2 value was low 
(0.2043), as expected, and the regression was insignificant, again as ex-
pected. These results are shown in Figure 3.17. What was unexpected 
was the adjusted r 2 value of –0.0079. At first, the author suspected a 
bug in Excel, but after doing some research, it became clear that Excel 
was working properly.

To see this, we will rewrite the equation for adjusted r 2 shown previously:

Rewriting Adjusted r 2 Formula

= − ⋅
−

− −




R

SSE
SST

n
n k

1
1

1
2

Because SSR = 1 –SSE and r 2 = SST/SSR, we can rewrite this equa-
tion in terms of r 2:

Simplifying Equation

R A r

A
n

n k

2 21 1

1
1

= − ⋅ −( )

= −
− −

where

Figure 3.17 The results of running multiple regression on the 
random data
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Testing the Significance of the Individual Variables in 
the Model

So far, we have discussed our regression models in general terms, and 
we have only been concerned with whether the overall model is signifi-
cant—that is, if it passes the F-test. As was discussed previously, passing 
the F-test only tells us that the overall model is significant, and if there 
are collinear variables, then one of the variables is significant, though not 
that all of them are significant. In other words, once one of these collinear 
variables is dropped out, at least one variable will be significant. We now 
need to explore how to test the individual bi coefficients.

This test was not required with simple regression because there was 
only one independent variable, so if the overall model was significant, 
that one independent variable must be significant. However, multiple re-
gression has two or more independent variables and the overall model will 

Notice that A is greater than one any time k (number of indepen-
dent variables) is greater than zero. If r 2 were zero, then our equation 
would reduce to the following:

Equation When r 2 Is Zero

Adjusted r A A2 1 1 0 1= − − = −( )

Because A is greater than one for any regression run, adjusted r 2 
must be negative for any regression run with r 2 = 0. Additionally, as 
r 2 increases, the chance of A(1 – r 2) being greater than one slowly de-
creases. Thus adjusted r 2 can be negative only for very low values of r 2.

We can see this in the previous example. Here, n = 20, k = 4, and r 2 
= 0.2043. That results in A = 19/15 = 1.2667 and 1.2667(1 – 0.2043) 
= 1.0079. When we subtract 1.0079 from 1, we obtain the negative 
adjusted r 2 of – 0.0079.

When there are a large number of observations relative to the num-
ber of variables, the values of r 2 and adjusted r 2 will be close to one 
another. As a general rule of thumb, we recommend a bare minimum 
of 5 observations for each independent variable in a multiple regres-
sion model with 10 per independent variable being much better.
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be significant if only one of them is significant.10 Because we only want 
significant variables in our final model, we need a way to identify insig-
nificant variables so they can be discarded from the model.

The test of significance will need to be carried out for each indepen-
dent variable using the following hypotheses:
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Of course, when there is reason to believe that the coefficient should 
behave in a predetermined fashion, a one-tailed test can be used rather 
than a two-tailed test. As always, the selection of a one-tailed or two-tailed 
test is theory based. Before discussing how to perform this hypothesis 
test on the slope coefficient for each variable, we need to discuss several 
problems with the test.

Interdependence

All the regression slope estimates come from a common data set. For this 
reason, the estimates of the individual slope coefficients are interdepen-
dent. Each individual test is then carried out at a common alpha value, 
say α = 0.05. However, due to interdependence, the overall alpha value 
for the individual tests, as a set, cannot be determined.

Multicollinearity

In multiple regression, we want—in fact we need—each independent 
variable to have a strong and significant correlation with the dependent 
variable. However, one of the assumptions of multiple regression is that 
the independent variables are not correlated with each other. When this 
assumption is violated, the condition is called multicollinearity. Multicol-
linearity will be discussed in more detail later. For now, it is enough to 
know that the presence of multicollinearity causes the independent vari-
ables to rob one another of their explanatory ability. When a significant 
variable has its explanatory ability reduced by another variable, it may test 
as insignificant even though it may well have significant explanatory abili-
ties and even if it is an important variable from a theoretical perspective.
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Autocorrelation

One of the assumptions of multiple regression is that the error or residual 
terms are not correlated with themselves. When this assumption is vio-
lated, the condition is called autocorrelation.11 Autocorrelation can only 
occur when the data are time-series data—that is, measurements of the 
same variables at varying points in time. More will be said about autocor-
relation later. For now, autocorrelation causes some variables to appear to 
be more significant than they really are, raising the chance of rejecting the 
null hypothesis.

Repeated-Measures Test

The problem of repeated measures is only a major concern when a large 
number of variables need to be tested. Alpha represents the percentage 
of times that a true null hypothesis (that the variable is insignificant 
when used with regression) will be rejected just due to sampling error. At 
α = 0.05, we have a 5 percent chance of rejecting a true null hypothesis 
(βk = 0) just due to sampling error. When there are only a few variables, 
we need not be overly concerned, but it is not uncommon for regression 
models to have a large number of variables. The author constructed a 
regression model for his dissertation with over 200 variables. At α = 0.05, 
on average, this model could be expected to reject as many as 10 true null 
hypotheses just due to sampling error.12

Recall the following hypotheses:
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However, a one-tailed test could be performed if desired. The test 
statistic is distributed according to the Student t-distribution with n –(k + 
1) degrees of freedom. The test statistic is represented as follows:

Test Statistic for Individual Multiple Regression Slope Parameters
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where s(bi) is an estimate of the population standard deviation of the 
estimator s(bi). The population parameter is unknown to us, naturally, 
and the calculation of the sample value is beyond the scope of this 
textbook. However, the value s(bi) is calculated by Excel and shown 
in the printout.

2000 Sydney Olympics Example

Figure 3.18 shows the ANOVA from the 2000 Sydney Olympics data set 
without the random numbers. This time, the population values have been 
divided by 1,000,000 to lower the units shown in the results. This is a linear 
transformation so only the slope coefficient and the values that build off of 
it are affected. You can see this by comparing Figure 3.18 to Figure 3.9. In 
general, any linear transformation will leave the impact of the variables in-
tact. Specifically, the linear transformation will not change the significance 
of the variable or the estimate of Y made by the resulting model.

For the Population variable, the coefficient is 0.03746 and s(b1) 
is 0.01090 so the test statistic is 0.03746/0.01090 = 3.43563. This 
value is shown as t Stat in Figure 3.18. For the per capita GNP vari-
able, the coefficient is 0.00056 and s(b2) is 0.00019 so the test statistic is 
0.00056/0.00019 = 2.99967, which is also shown in Figure 3.18. For a 

Figure 3.18 The ANOVA from the 2000 Sydney Olympics data set 
without the random numbers
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two-tailed test, the p-value is shown in Figure 3.18, and the null hypoth-
esis can be accepted or rejected based solely on this value.

For a one-tailed hypothesis test, you can double the p-value and com-
pare that value to alpha.13 However, you must be careful when you do 
this as it is possible to reach the wrong conclusion. To be certain, for a 
one-tailed test, the calculated test statistic should be compared with the 
critical value.

In this example, we would expect that having a larger population 
would give you a larger pool of athletes from which to select Olympic ath-
letes and so would increase the number of medals won. In other words, 
we would use the following hypotheses:
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Likewise, having a higher per capita GNP should lead to more 
money to spend on athlete training. In other words, we could use these 
hypotheses:
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So both of these hypothesis tests should be performed as a one-tailed 
right test. For a one-tailed right test with α = 0.05 and 70 degrees of 
freedom, the critical Student t-value is 1.66692. Both the test statistic 
of 3.43563 for population and 2.99967 for per capita GNP exceed this 
value, so both slope coefficients are significant.

Forbes Celebrity Example

Looking back at Figure 3.10, we see the regression results for multiple 
regression on the top 100 celebrities in 2000 from Forbes. The depen-
dent variable is Forbes’s power rank. The following are the independent 
variables:

•	 Income	rank	(β1)
•	 Earnings	for	1999	(β2)
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•	 Web	hits	across	the	Internet	(β3)
•	 Press	clips	from	Lexis-Nexis	(β4)
•	 Magazine	covers	(β5)
•	 Number	of	mentions	on	radio	and	television	(β6)

For income rank, 1 is highest and 100 is lowest, so we would expect 
that the lower the number, the higher the power ranking. For earnings, 
web hits, press clips, and magazine covers, we would expect that a higher 
value would indicate a higher power ranking. For the number of times 
mentioned on radio and television, the relationship is not clear. Being 
mentioned more could mean they are accomplishing good things and 
raising their power ranking, or it could mean they are involved in a scan-
dal, which probably lowers their power ranking. Because the direction 
is unclear, we will use a two-tailed test for this variable. The six sets of 
hypotheses we need to test are therefore represented in Table 3.1.

With 93 degrees of freedom, the Student t critical value for a one-
tailed left test is –1.66140, for a one-tailed right it is +1.66140, and for a 
two-tailed test it is ±1.9858. Given that, the critical values and decisions 
for the six variables are given in Table 3.2.

Note that had we used a two-tailed test for all the variables, only β2 
would have been insignificant. This is most likely due to our poor un-
derstanding of the relationship between these variables and the power of 
these celebrities. It is not uncommon for the results of regression to cause 
researchers to rethink their theory. In any case, hypotheses should never 
be redone just to make a variable significant. Rather, they should only be 
changed when there is good reason to believe that the original theory is 
flawed.

Because it is unlikely that Forbes went to all the trouble to collect and 
report this data without then including it in its power ranking, we are 
willing to believe that our original theory regarding the hypotheses was 
wrong. Given that, we conclude that we do not know enough to set a 
direction for the hypotheses and will use a two-tailed test for all variables. 
Those results are shown in Table 3.3.

Note that income is still insignificant, but all the other variables are 
significant. This is most likely due to income ranking and income explain-
ing the same variation and so income ranking is robbing the explanatory 



98 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Table 3.1 Hypotheses Used

Income Rank Earnings for 1999 Web Hits
H0: β1 ≥ 0 H0: β2 ≤ 0 H0: β3 ≤ 0

H1: β1 < 0 H1: β2 > 0 H1: β3 > 0

Press Clips Magazine Covers Radio and TV 
Mentions

H0: β4 ≤ 0 H0: β5 ≤ 0 H0: β6 = 0

H1: β4 > 0 H1: β5 > 0 H1: β6 ≠ 0

Table 3.2. Hypothesis Test Results

Income Rank Earnings for 1999 Web Hits
H0: β1 ≥ 0 H0: β2 ≤ 0 H0: β3 ≤ 0

H1: β1 < 0 H1: β2 > 0 H1: β3 > 0

Critical value: –1.66140 Critical value: +1.66140 Critical value: +1.66140

Test statistics: 20.3590 Test Statistics: 0.2022 Test statistics: –2.9901

Decision: Accept Decision: Accept Decision: Accept

Press Clips Magazine Covers Radio and TV 
Mentions

H0: β4 ≤ 0 H0: β5 ≤ 0 H0: β6 = 0

H1: β4 > 0 H1: β5 > 0 H1: β6 ≠ 0

Critical Value: +1.66140 Critical Value: +1.66140 Critical Value: ±1.9858

Test Statistics: –6.0797 Test Statistics: –2.6381 Test Statistics: –3.6445

Decision: Accept Decision: Accept Decision: Reject

Table 3.3 Hypothesis Test Results Using All Two-Tailed Tests

Income Rank Earnings for 1999 Web Hits
H0: β1 = 0 H0: β2 = 0 H0: β3 = 0

H1: β1 ≠ 0 H1: β2 ≠ 0 H1: β3 ≠ 0

Critical Value: ±1.9858 Critical Value: ±1.9858 Critical Value: ±1.9858

Test Statistics: 20.3590 Test Statistics: 0.2022 Test Statistics: –2.9901

Decision: Reject Decision: Accept Decision: Reject

Press Clips Magazine Covers Radio and TV 
Mentions

H0: β4 = 0 H0: β5 = 0 H0: β6 = 0

H1: β4 ≠ 0 H1: β5 ≠ 0 H1: β6 ≠ 0

Critical Value: ±1.9858 Critical Value: ±1.9858 Critical Value: ±1.9858

Test Statistics: –6.0797 Test Statistics: –2.6381 Test Statistics: –3.6445

Decision: Reject Decision: Reject Decision: Reject
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power from income. This must be treated before we have a final model. 
We will revisit this again later in the chapter.

Automating Hypothesis Testing on the Individual Variables

Excel provides a p-value for each regression coefficient that can be used to 
perform variable hypothesis testing, as long as it is used with care. When 
used carelessly, it can cause you to make the wrong decision. We will il-
lustrate this using an example.

Example

Figure 3.19 shows a set of fictitious simple regression data. Figure 3.20 
shows a chart of this data. As you can see from Figure 3.20, the data 
have a negative relationship. Figure 3.21 shows the resulting simple re-
gression run.

As you can see in Figure 3.21, the overall model is not significant 
because the p-value for the F-test is only 0.0844. Notice that the p-value 
for the Student t-test on β1 is also 0.0844. This will always be the case in 
simple regression, but not, however, in multiple regression.

In the last chapter, we tested the correlation coefficient to see if it was 
significant, so we will do the same here. Given the chart shown in Figure 
3.20, we will assume that the relationship is negative. That is, we will 
make the following hypotheses:

Figure 3.19 Fictitious simple regression data
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The correlation coefficient (not shown) is –0.5715. This correlation coef-
ficient is significant.

At first, you may be concerned regarding the apparent discrepancy 
between concluding the model was insignificant using the F-test and 

Figure 3.20 A chart of the data

Figure 3.21 The resulting simple regression run



 MULTIPLE REGRESSION 101

concluding it was significant by testing the correlation coefficient. How-
ever, there is no real discrepancy. The F-test tests the entire model at once. 
When the model contains many variables, it would not be uncommon for 
some of them to be tested as one-tailed right, others as one-tailed left, and 
still others as two tailed. We assume a two-tailed F-test in multiple regres-
sion to avoid this issue. In simple regression, we only have one variable, 
so we can tailor the test to fit that single variable. Note also that the F-test 
can be converted to a one-tailed test by dividing the two-tailed p-value 
by two, obtaining 0.0422 and making this model significant using the F-
test and matching our results under the hypothesis test on the correlation 
coefficient.

Excel gives two-tailed p-values for both the F-test and the Student t-
test for the individual coefficients. These can be converted to one-tailed p-
values by dividing them by two. We generally do not do this for the F-test 
in multiple regression because all the coefficients are rarely in agreement 
regarding their number of tails and direction of testing. However, this is 
perfectly acceptable for the individual coefficients because we are testing 
the variables one at a time. However, we must be careful not to allow this 
shortcut to cause us to reach the wrong conclusion. We will continue with 
our example to see how this might happen.

We already know from the previous example that this model is signifi-
cant when we assume a negative relationship. Now, what happens if we 
assume a positive relationship? That is, we assume the following:
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Just by looking at the chart back in Figure 3.20, we know that this as-
sumption will lead us to conclude that the relationship is insignificant. 
However, if we simply take the Student t-value for the β1 coefficient of 
0.0844 from the regression in Figure 3.21 and divide by two, we ob-
tain 0.0422 and we therefore reject the null hypothesis and conclude the 
model is significant. This time, we truly have a contradiction.
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Briefly, the problem is that Excel computes the test statistic and then 
finds the area on both sides. It takes the smaller of these two values and 
doubles it to compute the two-tailed p-value. Simply dividing by two to 
obtain the one-tailed p-value gives no consideration to which side of the 
mean the rejection region falls.

The way to avoid this is to compare the sign of β1 as assumed in H0 
and b1 as calculated by regression. When these are the same, you cannot 
reject the null hypothesis and conclude the variable is significant regard-
less of the p-value. After all, if the null hypothesis assumes the coefficient 
is negative and the sample coefficient is negative, we would never want 
to conclude that this assumption was false. In the previous example, the 
null hypothesis was that the β1 was negative and b1 was –0.0810. Be-
cause these have the same sign, we must assume that this variable is not 
significant.

Conclusion

In this chapter, you have seen how to perform multiple regression, how to 
test the overall model for significance, and how to avoid problems when 
testing for significance. In the next chapter, we will see how to pull this 
together and construct meaningful multiple regression models.



CHAPTER 4

Model Building

In business, we build regression models to accomplish something. Typi-
cally, either we wish to explain the behavior of the dependent variable or 
we wish to forecast the future behavior of the dependent variable based on 
the expected future behavior of the independent variables. Often, we wish 
to do both. In order to accomplish this, we select variables that we believe 
will help us explain or forecast the dependent variable. If the dependent 
variable were sales, for example, then we would select independent vari-
ables like advertising, pricing, competitor actions, the economy, and so 
on. We would not select independent variables like supplier lead time or 
corporate income tax rates because these variables are unlikely to help 
us explain or forecast sales. As was discussed in chapter 3, we want the 
overall model to be significant and we want the individual independent 
variables to also all be significant. In summary, our three criteria for a 
multiple regression model are the following:

 1. Variables should make sense from a theoretical standpoint. That is, 
in business, it makes sense from a business perspective to include 
each variable.

 2. The overall model is significant. That is, it passes the F-test.
 3. Every independent variable in the model is significant. That is, each 

variable passes its individual Student t-test.

In chapter 3, we saw how to test an overall model for significance, as well 
as how to test the individual slope coefficients. We now need to investi-
gate how to deal with the situation where the overall model is significant 
but some or all of the individual slope coefficients are insignificant.

Before we go on, you may have noticed that the previous sentence 
states that “where the overall model is significant but some or all of the 
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individual slope coefficients are insignificant.” Although rare, it is possible 
for the overall model to be significant although none of the individual 
slope coefficients is significant as we begin to work with the model. This 
can only happen when the model has a great deal of multicollinearity. 
When this happens, it will always be the case that the following pro-
cedures will result in at least one variable becoming significant. Stated 
another way, when the overall model is significant, we must end up with 
at least one significant slope coefficient, regardless of how they appear in 
the original results.

We call the process of moving from including every variable to only 
including those variables that provide statistical value model building. In 
business, we use these models to do something, such as produce a fore-
cast. Oftentimes, these models are used over and over. For example, a 
forecasting model might be used every month. Building a model with 
only variables that provide statistical value has the added benefit of mini-
mizing the cost of the data collection associated with maintaining that 
model.

Partial F-Test

One way to test the impact of dropping one or more variables from a 
model is with the partial F-test. With this test, the F statistic for the 
model with and without the variables under consideration for dropping 
is computed and the two values are compared. We will illustrate this using 
the celebrities worksheet.

Example

When we first looked at this model in chapter 3, the earnings variable (β2) 
appeared to be insignificant. The Student t-value for magazine covers (β5) 
was also low, so we will include it with earnings to see if both should be 
dropped. The model with all the variables included is called the full model. 
It is of the following form:

Full Model

 y x x x x x x= + + + + + +β β β β β β β0 1 1 2 2 3 3 4 4 5 5 6 6  
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We already have the results for this model. They were shown back in 
Figure 3.11. We will call the model with β1 and b5 dropped the reduced 
model. It is of the following form:

Reduced Model

 y x x x x= + + + +β β β β β0 1 1 3 3 4 4 6 6  

This multiple regression run is shown in Figure 4.1. In this case, the 
hypotheses for the partial F-test are the following:

 

β = β =
β ≠ β ≠
H : 0

H : 0and/or 0
0 2 5

1 2 5  

The partial F statistic is F distributed with r,n – (k + 1) degrees of 
freedom where r is the number of variables that were dropped to create 
the reduced model (two in this case), n is the number of observations, and 
k is the number of independent variables in the full mode. With α = 0.05 
and 2,93 degrees of freedom, the value of the F statistic is 3.0943.

The partial F-test statistic is based on the sums of squares (SSE) for 
the reduced and full model and the mean square error (MSE) for the full 
model. It is computed as follows:

Figure 4.1 The multiple regression run for the reduced celebrity 
model
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Partial F-Test Statistic
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Where SSER is the SSE for the reduced model, SSEF is the SSE for the 
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examples, the partial F-test statistic is the following:

F
SSE SSE

r
MSE

R F

F

=
−( )

=
−

=
( , . , . )

.
.6 765 3155 6 292 7211

2
67 6637

236 29722
67 66367

3 49
.

.≈

Because 3.49 is greater than the critical value of 3.0943, we reject the null 
hypothesis and conclude that either β2 or β5 or both are not zero. This was to 
be expected because we had already concluded that β5 was not equal to zero.

Partial F Approaches

The partial F-test can be carried out over any combination of variables in 
order to arrive at a final model. As you can imagine, this would be very 
tedious and is usually automated by a statistical package. There are four 
overall approaches that a statistical package can take to select the variables 
to include in the final model:1

 1. All possible combinations of variables. The computer simply tries all 
possible combinations of k independent variables and then picks the 
best one. If we are considering k independent variables, then there 
are 2k–1 possible sets of variables. Once all the possible models are 
computed, the best one is selected according to some criteria, such 
as the highest adjusted r 2 or the lowest MSE.

 2. Forward selection. The computer begins with the model containing 
no variables. It then adds the single variable with the highest signifi-
cant F statistic. Once a variable has been added, the computer looks 
at the partial F statistic of adding one more variable. It then adds the 
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one with the highest F value to the model, as long as that variable 
meets the significance requirement (e.g., α = 0.05). Once added, 
this, and all the variables that are added later, remains in the model. 
That is, once in, a variable is never discarded. The process contin-
ues until no more variables are available that meet the significance 
requirement.

 3. Backward elimination. The computer begins with the model con-
taining all the variables. It then computes the partial F statistic for 
dropping each single variable. It then drops the variable that has 
the lowest partial F statistic. This continues until all the variables 
remaining in the model meet the significance requirement. Once a 
variable is dropped from the model, it is never considered for reentry 
into the model.

 4. Stepwise regression. This is a combination of forward selection and 
backward elimination. The weakness of these two approaches is that 
they never reevaluate a variable. Stepwise regression begins as for-
ward selection, finding the single variable to put into the model. It 
then goes on to find the second variable to enter, as always, assuming 
it meets the significance requirement. Once a second variable enters 
the model, it uses backward elimination to make sure that the first 
variable meets the criteria to stay in the model. If not, it is dropped. 
Next, it uses forward selection to select the next variable to enter and 
then uses backward elimination to make sure that all the variables 
should remain. This two-step approach assures us that any interac-
tion (multicollinearity) between variables is accounted for. The pro-
cess continues until no more variables will enter or leave the model. 
Stepwise is the most common approach to deciding on the variables 
that are to remain in the model.

Forward, backward, and stepwise selection can be seen in operation in 
Box 4.1.

When working with a large number of variables, model building can 
be difficult and time-consuming with Excel. This is the situation when 
there is a real business case for investing in a powerful statistical package 
like SPSS.
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Box 4.1
Forward, Backward, and Stepwise  

Regression in SPSS

The following shows the results of using a statistical package called 
SPSS to perform forward, backward, and stepwise regression on the 
data in the SellingPrice.xls worksheet. This worksheet is discussed in 
more detail a little later in the chapter.

Forward Selection

With this approach, SPSS begins with the model containing no variables. 
It then adds the single variable with the highest significant F statistic.

Variables Entered and Removed

Its first report, shown below, shows the variables that have entered the 
model and the order in which they entered. In this case, the first variable 
to enter was Asking Price and the second to enter was Time on Market.

Model Variables Entered Method
1 Asking Price Forward

(Criterion: Probability-of-F-to-enter <= .050)

2 Time on Market Forward

(Criterion: Probability-of-F-to-enter < = .050)

Model Summary

Its next report, shown here, summarizes each model as it is being built. 
The report shows the r, r 2, adjusted r 2, and standard error of the esti-
mate for each model.

Model R R Square Adjusted  
R Square

Std. Error of the 
Estimate

1 .992 .985 .984 $4,600.24

2 .995 .990 .989 $3,841.44

ANOVA

Its next report, shown here, shows the ANOVA table for each model 
as it is being built.
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Model Sum of Squares df Mean Square F Sig.
1 Regression 37,637,951,771 1 37,637,951,771 1,779 .000

Residual 592,542,895 28 21,162,246

Total 38,230,494,666 29

2 Regression 37,832,064,683 2 18,916,032,342 1,282 .000

Residual 398,429,983 27 14,756,666

Total 38,230,494,666 29

Coefficients

The next report shows the coefficients for each model as the model is 
being built.

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) 8,832.825 3160.942 2.794 .009

Asking Price .876 .021 .992 42.173 .000

2 (Constant) 11,536.825 2742.819 4.206 .000

Asking Price .888 .018 1.006 50.244 .001

Time on Market –273.687 75.461 –.073 –3.627 .001

The final model is represented in the following equation:

Price = $11,536.825  (0.888  Asking Price)
(273.687  Ti

+ ×
− × mme on Market)

Excluded Variables

The final report shows the variables that were excluded from each model.

Collinearity 
Statistics

Model Beta 
In

t Sig. Partial 
Correlation

Tolerance

1 Bedrooms –.088 –1.617 .117 –.297 .178

Bathrooms –.081 –2.035 .052 –.365 .316

Square Feet –.088 –1.282 .211 –.239 .116

Age –.039 –1.576 .127 –.290 .863

Time on 
Market

–.073 –3.627 .001 –.572 .962



110 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Collinearity 
Statistics

Model Beta 
In

t Sig. Partial 
Correlation

Tolerance

2 Bedrooms –.009 –.166 .869 –.033 .137

Bathrooms –.028 –.712 .483 –.138 .249

Square Feet –.019 –.306 .762 –.060 .103

Age –.024 –1.126 .270 –.216 .826

Backward Selection

With this approach, SPSS begins with the model containing all the 
variables. It then computes the partial F-statistic for dropping each 
single variable. It then drops the variable that has the lowest partial F-
statistic. This continues until all the variables remaining in the model 
meet the significance requirement. The reports on this method, using 
the same data, are shown on the pages that follow.

Variables Entered/Removed

Model Variables Entered Variables 
Removed

Method

1 Asking Price, Time on 
Market, Age, Bathrooms, 
Bedrooms, Square Feet Enter

2 Asking Price Backward

(Criterion: Probability of 
F-to- remove > = .100).

3 Bathrooms Backward

(Criterion: Probability of 
F-to- remove > = .100).

Model Summary

Model R R Square Adjusted R 
Square

Std. Error of the 
Estimate

1 .997 .993 .991 $3,401.22

2 .996 .993 .991 $3,416.73

3 .996 .992 .991 $3,509.24
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ANOVA

Model Sum of Squares df Mean Square F Sig.
1 Regression 37,964,423,478 6 6,327,403,913 546.960 .000

Residual 266,071,189 23 11,568,313

Total 38,230,494,667 29

2 Regression 37,950,317,903 5 7,590,063,581 650.166 .000

Residual 280,176,764 24 11,674,032

Total 38,230,494,667 29

3 Regression 37,922,626,237 4 9,480,656,559 769.863 .000

Residual 307,868,430 25 12,314,737

Total 38,230,494,667 29

Coefficients

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) 49,579.707 12046.503 4.116 .000

Bedrooms 13,488.252 4515.791 .448 2.987 .007

Bathrooms –6,202.340 3956.130 –.135 –1.568 .131

Square Feet 16.722 6.990 .386 2.392 .025

Age –2,104.376 727.050 –.191 –2.894 .008

Time on Market –517.636 128.547 –.137 –4.027 .001

Asking Price .257 .232 .291 1.104 .281

2 (Constant) 61,929.842 4495.695 13.775 .000

Bedrooms 17,001.038 3219.658 .565 5.280 .000

Bathrooms –6,119.732 3973.455 –.133 –1.540 .137

Square Feet 24.197 1.748 .559 13.844 .000

Age –2,877.174 197.901 –.261 –14.538 .000

Time on Market –633.994 73.960 –.168 –8.572 .000

3 (Constant) 56,174.704 2567.304 21.881 .000

Bedrooms 12,322.397 1095.710 .409 11.246 .000

Square Feet 25.617 1.525 .592 16.798 .000

Age –2,906.610 202.309 –.264 –14.367 .000

Time on Market –6,58.871 74.129 –.175 –8.888 .000

In this case, the final model is represented in the following equation:
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Selling Price (Bedrooms)
(Squar

= +
+
56 174 704 12 322 397

25 617
, . , .

. ee Feet) (Age)
(Time on Market)

−
−

2 906 610
6 58 871

, .
, .

This is the same model we will end up developing when we approach 
this problem using Excel. This is to be expected, as the approach we will 
be using closely mirrors backward selection. Note that this model is very 
different from the model that was built using forward selection.

Excluded Variables

Collinearity 
Statistics

Model Beta 
In

t Sig. Partial 
Correlation

Tolerance

2 Asking 
Price

.291 1.104 .281 .224 4.362E-03

3 Asking 
Price

.283 1.044 .307 .208 4.364E-03

Bathrooms –.133 –1.540 .137 –.300 4.070E-02

Stepwise Regression

Using this approach, SPSS finds the single variable to put into the model. 
It then goes on to find the second variable to enter, as always, assuming 
it meets the significance requirement. Once a second variable enters the 
model, it uses backward elimination to make sure that the first variable 
meets the criteria to stay in the model. If not, it is dropped. Next, it 
uses forward selection to select the next variable to enter and then uses 
backward elimination to make sure that all the variables should remain.

Variables Entered/Removed

Model Variables 
Entered

Variables 
Removed

Method

1 Asking 
Price

Stepwise (Criteria: Probability-of-F-to-enter 
< = .050, Probability-of-F-to-remove < = .100).

2 Time on 
Market

Stepwise (Criteria: Probability-of-F-to-enter  
< = .050, Probability-of-F-to-remove < = .100).
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Model Summary

Model R R Square Adjusted R 
Square

Std. Error of 
the Estimate

1 .992 .985 .984 $4,600.24

2 .995 .990 .989 $3,841.44

ANOVA

Model Sum of Squares df Mean Square F Sig.
1 Regression 37,637,951,771 1 37,637,951,771 1,778.542 .000

Residual 592,542,895 28 21,162,246

Total 38,230,494,667 29

2 Regression 37,832,064,683 2 18,916,032,342 1,281.864 .000

Residual 398,429,983 27 14,756,666

Total 38,230,494,667 29

Coefficients

Unstandardized 
Coefficients

Standardized 
Coefficients

Model B Std. Error Beta t Sig.
1 (Constant) 8,832.825 3160.942 2.794 .009

Asking Price .876 .021 .992 42.173 .000

2 (Constant) 11,536.825 2742.819 4.206 .000

Asking Price .888 .018 1.006 50.244 .000

Time on Market –273.687 75.461 –.073 –3.627 .001

Using stepwise regression, the model developed matches the for-
ward selection method. This is, of course, not always the case.

Excluded Variables

Collinearity 
Statistics

Model Beta 
In

t Sig. Partial 
Correlation

Tolerance

1 Bedrooms –.088 –1.617 .117 –.297 .178

Bathrooms –.081 –2.035 .052 –.365 .316

Square Feet –.088 –1.282 .211 –.239 .116
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Collinearity 
Statistics

Model Beta 
In

t Sig. Partial 
Correlation

Tolerance

Age –.039 –1.576 .127 –.290 .863

Time on 
Market

–.073 –3.627 .001 –.572 .962

2 Bedrooms –.009 –.166 .869 –.033 .137

Bathrooms –.028 –.712 .483 –.138 .249

Square Feet –.019 –.306 .762 –.060 .103

Age –.024 –1.126 .270 –.216 .826

Summary

The advantage of using any of these approaches in SPSS, rather than 
building the model manually in Excel, is that SPSS completely auto-
mates the process. You simply select the approach to use and SPSS 
does everything else for you.

None of these four methods for building a model guarantees that 
we will find the one best model. Because the order of testing can make 
a difference, it is possible, though not likely, that changing the order 
in which the variables are entered into the computer will change the 
results.

Model Building Using Excel

Unfortunately, Excel is not able to automate, or even easily perform, any 
of the four model-building approaches discussed previously. For this rea-
son, it is always best to work with a dedicated statistics package when 
trying to develop complex multiple regression models. However, not ev-
eryone has access to a dedicated statistics package, as they can be expen-
sive and difficult to use.

To compensate for Excel’s inability to automate building regression 
models, the author has developed an approach to model building in 
Excel that approximates backward elimination only using the r 2 value 
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that Excel displays rather than the partial F that we would otherwise 
have to manually compute for each regression run. For models with 
fewer numbers of observations, the adjusted r 2 can be used in place 
of r 2 in making the decisions. This approach has been found to work 
well on actual data, but its application can be long and tedious when a 
model has more than a couple of insignificant variables. To make mat-
ters worse, none of the steps can be automated. To make matters worse 
still, the Excel requirement of having the independent variables in con-
tiguous columns causes a good deal of data manipulation problems. 
For these reasons, readers with complex regression problems are again 
encouraged to use a statistical program like SPSS or SAS to tackle these 
more complex problems.

The steps for model building in Excel are as follows:

 1. Run the regression with all the variables in the model. If the overall 
model is insignificant, then stop. When this happens, none of the in-
dividual variables will be significant, so there is no point continuing. 
This is not caused by any violation of regression assumptions. This is 
usually caused by an error in the theory used to select the variables 
or, less likely, by a problem with the data, such as having outliers in 
the data.

 2. Test each slope coefficient using the Student t-test. If all the slope 
coefficients are significant, then stop; you have the final version of 
the model.

 3. If some of the variables are insignificant, make a list of all the insig-
nificant slope coefficients.

 4. One at a time, drop a single variable from this list and rerun the mul-
tiple regression. Record the resulting r 2 and then reinsert the variable 
into the data set.2

 5. Once you have dropped all the insignificant variables one at a time, 
look at all the r 2 values you have recorded. For the run with the 
highest r 2, permanently drop that variable from the data set. That 
is, drop the variable whose absence causes the least reduction in ex-
planatory power. This variable will be dropped forever and will not 
be reconsidered for reentry into the model. To do otherwise would 
be to greatly overwork the problem.
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 6. Rerun the multiple regression without the variable permanently 
dropped in step 5. If all the variables are significant, then stop; you 
are finished. If not, then return to step 2 and continue until all the 
slope coefficients are significant. The steps for model building in 
Excel are illustrated visually by the flowchart on page 117.

Selling Price Example

Understanding the real estate market is a common use of regression, a 
use we will explore in the following example. This example also illustrates 
using Excel to perform model building. The worksheet SellingPrice.xls 
contains fictitious data where the dependent variable is the selling price 
of a house and the independent variables are the following:

•	 The	number	of	bedrooms
•	 The	number	of	bathrooms
•	 The	size	of	the	house	in	square	feet
•	 The	age	of	the	house	in	years
•	 The	time	the	house	was	on	the	market	before	being	sold,	in	

months
•	 The	initial	asking	price

This is the same data set that was used to illustrate various approaches 
to multiple regression using SPSS in Box 4.1. The data are shown in 
 Figure 4.2 and the initial regression run is shown in Figure 4.3.

To simplify matters and allow us to use the p-value for all the slope 
coefficients, we will assume that all the slope coefficient hypothesis tests 
are two-tailed tests. Using these criteria, Figure 4.3 shows us that the fol-
lowing variables are not significant:

•	 The	number	of	bathrooms
•	 The	initial	asking	price

So we must drop each variable, in turn, and record the resulting value 
of r 2. Rerunning the regression and dropping number of bathrooms 
shows us the problems of using Excel to perform more than one multiple 
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regression run on the same data. Specifically, there are two problems: one 
more serious and one less so.

The more serious problem is that Excel requires independent variables 
to be in contiguous columns and the number of bathrooms is in the 

Run regression
with all variables

is model
significant

no
stop

yes stop model
done

Permanently drop

single variable that

dropped r2 the least

is every slope
significant

Drop each

insignificant

variable and

record r2
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middle of the data set. In order to meet the contiguous columns require-
ment, we must move the number of bathrooms data out of the way and 
then either delete the now blank column (if there is nothing else above or 
below it) or move the remaining data over to remove the blank column.

Due to the chance of deleting other parts of the worksheet while doing 
this or accidentally deleting part of your data, the author recommends 
that you take two steps to protect yourself. First, move the regression 

Figure 4.2 The selling price data
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data to its own worksheet tab so there is no chance of damaging other 
data with while you move data and delete columns. Second, before you 
begin, make a backup copy of your data on a second worksheet tab. That 
way, if you accidentally delete data, you can go to this backup sheet and 
recover it.

The less serious problem is that the regression function in Excel re-
members your last set of inputs and has no reset button. That means 
you must remember to manually change the setting for the independent 
variables and output sheet each time you run regression.

Dropping Number of Bathrooms results in an r 2 value of 0.992. That 
regression run is shown in Figure 4.4. We now put back in the Number 
of Bathrooms and drop the Initial Asking Price. Dropping the Initial Ask-
ing Price results in an r 2 value of 0.993. That regression run is shown in 
Figure 4.5.

Dropping the Initial Asking Price results in a higher value for r 2. 
(0.993 versus 0.992), so Initial Asking Price is permanently dropped from 
the model. This run is shown in Figure 4.5. Number of Bathrooms re-
mains insignificant in this model, but now it is the only insignificant vari-
able so it is dropped from the model without any testing. Those results 
are shown in Figure 4.6.

Figure 4.3. The initial regression run on the selling price data
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In this final version of the model, all the variables are significant. The 
overall r 2 has only dropped from 0.993 in the original model to 0.992 in 
this final model. As expected, dropping insignificant variables had little 
impact on r 2.

In this example, all the variables that were insignificant in the original 
model ended up being dropped from the final model and no additional 

Figure 4.4 Dropping number of bathrooms from the model

Figure 4.5 Dropping asking price from the model
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variables were dropped, so you may be wondering why it was necessary 
to work through this process. As will be demonstrated with a later model, 
this is not always the case. Because we cannot usually tell in advance when 
significance will change as variables are dropped, it is always necessary to 
go through this process when more than one variable is insignificant.

Before we move on, we will take a moment to consider this model 
from a business, rather than a statistical, standpoint. How might a model 

Figure 4.6 The final model with both Number of Bathrooms and 
Asking Price dropped from the model
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like this be used? One possible use is appraisal. Because the model quan-
tifies the selling price of a house based on the house’s attributes, an ap-
praiser (tax appraiser or loan appraiser) can plug in the attributes of a 
house under consideration and get an estimate of the value of that house. 
That estimate is not exact because things like condition and aesthetics also 
play a role, but it is a good starting point.

Likewise, a homeowner considering making an addition such as add-
ing a bedroom, or a contractor trying to sell an addition, could use the 
model to estimate the improvement in the value of that addition. This, in 
turn, might affect what the homeowner is willing to pay or the contractor 
is able to charge.

Box 4.2
Using Regression to Schedule Meter Reading

Scheduling service personnel is very difficult when the services they 
perform are not routine. For example, scheduling calls for a plumber 
or cable repair person requires that you have at least a good estimate 
of how long each job will take and how long the travel between jobs 
will take. However, job time varies greatly depending on the specific 
situation of the job, and travel time can vary greatly depending on the 
time of day. We will explore these issues by way of an example from 
the electric utility industry. Although the resulting model is specific to 
the electric utility industry, the approach and techniques generalize to 
a great many service industries.

Electric utility companies must periodically read their customer’s 
electric meter for billing purposes. Even in this high-tech world, many 
electric utilities get those readings by sending a meter reader out to 
walk through residential neighborhoods and commercial areas to 
physically look at each meter and record its readings. Research is on-
going on techniques for having the meters send their readings back to 
a central computer automatically, either over the power lines or via a 
cell phone network, but for many companies, physically reading the 
meters each month is cheaper.

One utility company reads meters on a 21-day cycle. That is, a 
meter reader reads one new route each day for 21 working days and 
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then starts the set over again. With weekends and holidays, this 21-
day cycle results in the customer getting a bill about once a month. 
The collection of meters that is read by a meter reader on a given day 
is called a route. Routes remain static for, on average, 2 years and each 
meter reader keeps the same set of 21 routes during this 2 years. This 
allows the meter readers to become familiar with their routes. When 
new construction takes place, those meters are added to the nearest 
route. Because new construction is rarely evenly dispersed, this re-
sults in some routes growing much more than other routes. Every 2 
years, each meter reading office reroutes—that is, they reallocate meters 
among routes to try to level the workload.

In this box, we will work with actual meter-reading data from a 
utility company and see how multiple regression can take that data and 
develop a model that can be used to estimate (i.e., forecast) the time 
that would be required by any set of meters. This can make the rerout-
ing process much easier and can result in routes that, at least at the 
start of the 2-year period, have the workload more equally distributed.

This utility company is divided into districts, and many of the dis-
tricts are divided into local offices. Each local office has an assigned 
area for meter readings, as well as other tasks. Meter-reading routes 
never cross local office or district lines so the process of rerouting is 
constrained to optimizing the routes within each local office indepen-
dently. Additionally, because each meter reader reads 21 routes, each 
local office can have either 21 routes, 42 routes, or 63 routes, and so on.

Another major consideration in designing routes is how hard to 
make the routes. Meter readers are expected to read meters for 6 hours 
per day. They have 1 hour in the morning to get their paperwork ready 
and drive to the start of their route. At the end of the day, they have 
1 hour to drive back to the office, process their paperwork, and turn 
in any money they collected for past-due bills. Thus do you design 
the routes so that only an experienced meter reader who is familiar 
with the route and working in good weather can possibly finish it in 
6 hours, or do you design the routes so an inexperienced meter reader 
who is unfamiliar with the route and working in poor weather has 
time to finish? If you choose the former, then many routes will not 
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be finished. If you choose the latter, then experienced meter readers 
on familiar routes working in good weather will finish in well under 
6 hours.

The term “route” is somewhat misleading. When reading a route, 
a meter reader will walk between consecutive meter locations if they 
are close together, as is usually the case for residential meters. If con-
secutive meters are located a considerable distance apart, as is some-
times the case with commercial meters, the meter reader will use a 
company-furnished automobile to drive between meter locations. 
However, one route does not have to be all walking or all driving. 
Most neighborhoods and commercial office parks are too small to 
take a meter reader all day to finish. Typically, a meter reader will read 
meters in one area for a time, then drive to another area and begin 
reading again. A route then may consist of two, three, or even more 
route segments.

The Data

The data used in this analysis were collected from experienced meter 
readers who were reading routes with which they were familiar. When 
a route consisted of more than one segment, each segment was mea-
sured and recorded individually. When anything unusual happened 
that significantly changed the reading time for that segment, that ob-
servation was dropped from the data set.

Additionally, certain routes have special circumstances that require 
significant amounts of time and are always a factor. For example, one 
of the meters at a local airport is on a radio tower on the opposite side 
of a controlled runway. To read this meter, the meter reader must go to 
the Federal Aviation Administration (FAA) office at the airport tower 
and request that an FAA person drive him across the runway in an FAA 
car. Once the FAA car is at the runway, both going and coming back, 
the operator must contact the control tower and wait for clearance to 
cross the active runway. As you can imagine, this greatly increases the 
time required to read this meter. Although few meters take this long 
to resolve, any route segment with a regular special circumstance was 
excluded from this analysis.
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The variables collected for this analysis are explained next. Although 
other variables might have been more helpful, this set was selected be-
cause it either was available from information already stored by the 
utility company or was easy to measure for a given route segment.

Time. This is the time required by each meter reader to read a given 
route segment, recorded in minutes. Utility company meter readers 
use handheld computers to enter the meter readings, and these record 
the time the reading was entered so the time for a route segment could 
be calculated as the time for the last reading minus the time for the 
first reading.

Number of residential (or nondemand) meters. Electric meters fall 
into two major categories: nondemand and demand meters. Nonde-
mand meters have a continuously moving display showing the num-
ber of kilowatt-hours of electricity that have been consumed since the 
meter was installed. If the reading last month was 40,000 and the read-
ing this month is 41,200, then 1,200 kilowatt-hours were consumed 
between the two readings. With a nondemand meter, the meter reader 
simply records the reading and continues on. Nondemand meters are 
used almost exclusively for residents, although small business applica-
tions—roadside signs, apartment laundry rooms, and the like—might 
also use nondemand meters. Nondemand meters are quick to read.

Number of demand meters. Demand meters, on the other hand, take 
much longer to read. Like a nondemand meter, demand meters have 
a kilowatt-hour consumption meter that must be read and recorded. 
However, they also have a second meter, the demand, that records the 
peak consumption for the last month. Because this meter records a peak, 
it must be reset each month in case the following peak is lower. The 
demand is a significant part of a commercial electric bill so, to keep the 
customer from resetting the peak, the reset knob is locked with a color-
coded plastic seal. After reading and recording the peak, the meter reader 
must break the seal, reset the meter, and install a new seal of a different 
color. Naturally, reading a demand meter takes significantly longer than 
reading a nondemand meter. Additionally, business meters (i.e., demand 
meters) tend to be further apart than residential meters (i.e., nonde-
mand meters), a fact that the regression model will also consider.
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Number of locations. Reading 100 meters in an apartment complex 
with 20 meters per building would take less time than reading 100 
meters on the sides of 100 houses. This variable records the number of 
separate locations for each route segment.

Number of collects. When a residential electric bill is 2 months past 
due, this utility company expects its meter readers to try to collect for 
that bill as they read their routes. They are given bill collection cards in 
the morning that they must sequence into their routes. These cards are 
marked as either collects or cuts. With a collect, the meter reader knocks 
on the door and requests payment. If payment is given, then the meter 
reader collects that money and gives them a receipt. If no one is home, 
the meter reader leaves a preprinted note on the door. If the customer 
refuses to pay or is not home, no other action is taken.

Number of cuts. If the card is marked as a cut, then all the previously 
mentioned steps take place, but if the meter reader does not receive pay-
ment for any reason, he cuts off power to that house. This is done by 
cutting a seal on the meter box, removing the meter box cover, pulling 
out the electric meter, putting plastic sleeves on plugs on the back of 
the meter, reinstalling the meter, reinstalling the face plate, and locking 
the meter. As complicated as it sounds, it can be completed in under 
60 seconds by an experienced meter reader. Although the number of 
collects and cuts will vary month to month, some routes are statistically 
much more likely to have a higher number of collects and cuts than are 
others. Interestingly, this is not always related to the average income of 
the neighborhood. Meter readers only attempt collections and cut off 
power for residential customers. Collections and cutoffs of commercial 
and other classes of customers are handled by a special bill collector.

Miles walked. It would be nice to know the real number of miles a 
meter reader needed to walk for a route. Residential meters can be on 
the front, on either side, on the back of a house, or even in the base-
ment. This requires walking up the front yard, perhaps down one side, 
and perhaps around the back of the house. Commercial meters can be 
located anywhere around a building or in a power room or mainte-
nance room inside or even on the roof. Measuring all these distances 
would take too long and would require the cooperation of all the meter 
readers. Miles walked then is a surrogate. It is simply the mileage as 
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measured by driving a car down the street along the route. Naturally, 
the miles walked by the meter reader would be greater than this, but 
regression can account for this.

Miles driven. When a route segment must be driven, this is simply 
the mileage recorded using the automobile odometer. This does not 
include travel to and from the route because that is not part of the 6 
hours allotted to meter reading.

There are a number of additional factors that can affect meter-read-
ing times on a route. These considerations are best classified as random 
variations or white noise in the meter-reading process. No effort was 
made to quantify or measure these. Examples include the following:

•	 Unfriendly dogs. An aggressive dog inside a fence is a problem 
when the electric meter is inside that same fence. The meter reader 
must either try to coerce the dog into allowing him entry or take 
the time to knock on the door and get the owner to control the 
dog while he reads the meter. An aggressive dog running loose can 
cause the meter reader difficulty for any number of houses.

•	 Fences. Fenced yards require more walking to gain access 
through the gates or the meter reader must climb over the 
fence. Locked gates only exacerbate this problem.

•	 Bushes. Bushes make it hard to get close to meters and to see 
them.

•	 Traffic. While on the driving portion of a route, traffic can 
delay the meter reader.

Experience indicates that the variations affect many routes in a 
fairly random fashion. For this reason, they were not measured or in-
cluded in this analysis.

Data Analysis

Figure 4.7 shows the top of the data file. The data are stored in the Data 
tab of the Meter.xls worksheet. Figure 4.8 shows correlation analysis on 
the independent variables. Multicollinearity is not much of a problem, 
with only number of locations and miles walked clearing the 0.60 hurdle.
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Figure 4.9 shows the initial regression run on the data. The varia-
tions in the independent variables explain 85 percent of the variations 
in the dependent variable. Only the Number of cuts was insignificant, 
so that variable was dropped from the analysis. Figure 4.10 shows the 
resulting regression. This time, all the variables are significant, and still 
about 85 percent of the variation is explained.

This gives this resulting regression equation:

Resulting Regression Equation

Times to Read Route (Minutes)
(Number of Res

= +10 2563 0 1596. .
iidential Meters)

(Number of Commercial Meters)+ −0 4439 0 08. . 334
2 2049 29 746

(Number of Locations)
(Number of Collects)+ +. . 88

4 0522
(Miles Walked)

(Miles Driven)+ .

Figure 4.7 The top of the data file for the meter-reading data. The 
full data set has 121 observations

Figure 4.8 Correlation analysis results on the independent 
variables for the meter-reading data
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Because Time was measured in minutes, this equation tells us 
that adding 1 residential meter to the route, while holding everything 
else constant, would add about 10 seconds (0.1596 × 60 seconds) to 
the time it takes to read a route, whereas adding a commercial meter 
would add about 27 seconds. Each collect adds a little over 2 minutes, 
each mile walked adds almost half an hour, and each mile driven adds 
a little over 4 minutes.

What is harder to understand, at first, is why the coefficient for 
Number of locations is negative. After all, adding more locations 
should increase the work. Recall, however, this is adding one location 
while holding everything else constant. That means no additional me-
ters and no additional walking, so increasing the number of locations 
reduces the meter density and implies that the meters must be closer 
together because walking mileage does not change. This complexity is 
likely the reason for the negative coefficient, and its magnitude is so 
small that it has little impact on the results so it also could just be a 
statistical anomaly.

Figure 4.9 The initial regression results on the meter-reading data
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So What?

The resulting equation uses only easily obtainable data for each route. 
Using this equation would give management an easy way to manip-
ulate route contents during a rerouting in such a manner that the 
resulting routes require very similar times to complete. This should 
lead to greater equality among the meter-reading employees and less 
dissatisfaction.

Figure 4.10 The final regression results on the meter-reading data

Including Qualitative Data in Multiple Regression

So far, all the variables that we have used in multiple regression have been 
ratio-scale data. Some of them, such as square feet in the last model, have 
been continuous, whereas others, such as number of bathrooms in the 
last model, have been discrete, but they have all had meaningful numbers 
attached to them. In this section, we will see how to include qualitative 
data in multiple regression. For example, in the sales model we have men-
tioned several times, you might want to include whether a competitor 
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is having a sale in the model. This is an example of a qualitative variable 
because there is no meaningful number that can be attached to the yes or 
no answer to if the competitor is having a sale.

Qualitative	data	are	very	useful	in	business.	We	might	want	to	indi-
cate the make of the machines in a model to predict when maintenance 
is required, we might want to include the season of the year in a model 
to predict demand, or we might want to include a flag when demand was 
influenced by a special event. All of these situations can be handled in the 
same way.

When only two possible conditions exist, such as with gender or the 
presence or absence of a special event, we use a special variable in the 
regression model. This variable goes by several names: dichotomous vari-
able, indicator variable, or dummy variable. The dummy variable takes on 
a value of one when the condition exists and a value of zero when it does 
not exist.3 For example, we would use a value of one when the special 
event happened and a value of zero for those periods where it did not hap-
pen.4 For gender, we would arbitrarily choose either one or zero for male 
and use the other value for female.

Once the dummy variable is defined, no other special considerations 
are required. We run the multiple regression the same way, we test overall 
significance the same way, and we decide which variables to keep and 
which to discard exactly the same way. Dummy variables can be dropped 
for insignificance just like any other variable. An example follows.

Dummy Variable Example

The worksheet Dummy.xls contains fictitious data on two models of ma-
chines, a Wilson and a Smith, along with their average hours between 
breakdown and their age. These data are shown in Figure 4.11. By cod-
ing the Smith as a zero and a Wilson as a one, these data can be used in 
multiple regression. The coded data are shown in Figure 4.12, and the 
resulting data are shown in Figure 4.13. Note that the dummy variable we 
created is significant in the model, as is the age of the machine.

Including a dummy variable in multiple regression causes the inter-
cept to shift and nothing more. For this reason, dummy variables are also 
called intercept shifters. This can best be seen using the previous example.
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Figure 4.11 The original data set with the machine name

Figure 4.12 The modified data set with the machine name coded 
using a dummy variable
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Dummy Variable Example Continued

From Figure 4.13, we get the following regression equation:

Regression Equation

Hours Between Breakdown (Age) (Model= + +72 7960 99 9910 72 2459. . . ))

However, Model can only take on the values of either zero or one. 
Substituting these values into the equation, we get the following:

Regression Equations Considering Dummy Variable

When Model
Hours Between Breakdown (Age)

=
= + +

0
72 7960 99 9910

,
. . 772 2459 0

72 796

. ( ),

.
which reduces to

Hours Between Breakdown = 00 99 9910+ . (Age).

 

When Model
Hours Between Breakdown (Age)

=
= + +

1
72 7960 99 9910

,
. . 772 2459 1

72 796

. ( ),

.
which reduces to

Hours Between Breakdown = 00 99 9910 72 2459+ +. . ,(Age)
which finally reduces to

Hours Betweeen Breakdown (Age).= +145 0419 99 9910. .

Figure 4.13 The resulting regression run
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Thus the only difference between the two equations is the intercept. 
Figure 4.14 illustrates this using a chart.

More Than Two Possible Values

Of course, many times we wish to include a qualitative variable in the model 
that has more than two possible conditions. Examples might include race or 
eye color. We cannot simply define the variable using more than two values 
for our one dummy variable. For example, it would not be correct to have 
a dummy variable for competitor sale where 1 = no sale, 2 = minor sale, 
3 = major sale, and 4 = clearance sale. The reason is based on the fact that 
dummy variables shift the intercept. Setting the variable up this way presup-
poses that the shift in the intercept between no sale and minor sale is the 
same as the shift between minor sale and major sale and the shift between 
no sale and minor sale is twice that of between no sale and clearance sale. Of 
course, we do not know this in advance, and it is likely not the case anyway.

Although we cannot code the single dummy variable in this fashion, 
we can include this data using multiple dummy variables. In this case, 
we would need three dummy variables. The first one would be a one for 
when there was no sale and zero otherwise. The second would be one for 
where there was a minor sale and zero otherwise. And the third would be 

Figure 4.14 Charting the two regression lines, one when the dummy 
variable is zero and the other when the dummy variable is one
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one for when there was a major sale and zero otherwise. We do not need a 
fourth variable for other sales because a zero for all three of these dummy 
variables would automatically tell us that there must be a clearance sale. 
In fact, including this fourth, unneeded, dummy variable would force at 
least one of the dummy variables to be insignificant because any three 
would uniquely define the fourth. In general, you need n – 1 dummy 
variables to code n categories. In this case, you end up with n – 1 parallel 
lines5 and n – 1 different intercepts.

The use of dummy variables when there are a large number of categories 
can greatly expand the number of variables in use. One of the pieces of 
information in the author’s dissertation was state. Coding this into dummy 
variables required 49 (or 50 – 1) different variables. When the number of 
variables grows in this fashion, you must make sure you have an adequate 
sample size to support the expanded number of variables. As before, we 
recommend a minimum of 5 observations for each variable, including each 
dummy variable, with 10 per variable being even better. This was not a 
problem for the author because he had over 22,000 observations.

It is also possible to include more than one dummy variable in a re-
gression model. For example, we might want to include both sale types 
and whether it is a holiday period in our model. When we have multiple 
dummy variables, each one is coded as described as done previously with-
out consideration of any other qualitative variables that might need cod-
ing. That is, we would need one dummy variable for whether it is a holiday 
period and then three more for sale type, assuming the four categories 
previously discussed. The result would be a great deal of intercept shifting.

As you can imagine, the list of qualitative data you might need to 
include in a business model is quite long. Although no means compre-
hensive, that list includes model number, model characteristics, state 
or region, country, person or group, success or failure, and many more. 
Some of these are explored in Box 4.3.

Dummy Variable as Dependent Variable

It is also possible to use a dummy variable as the dependent variable. When 
you do this, it is not called regression. Rather, it is called discriminate anal-
ysis. Other than the name change, discriminate analysis is performed the 
same way as regression. This is discussed in more detail in Box 4.3.
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Box 4.3
The Business of Getting Elected to Congress

As stated previously, businesses often need to include a wide range of 
qualitative data in statistical models. While the following example is 
not a business example in the truest sense of the word, it does illustrate 
the use of qualitative data both as a dependent variable and as inde-
pendent variables.

It takes a lot of money to get elected to Congress. Once elected, 
it takes a lot of money to stay elected. In this box, we will use a form 
of multiple regression analysis called discriminate analysis to see what 
affects who gets elected to Congress. As was described in the chapter, 
discriminate analysis is nothing more than multiple regression where 
the dependent variable is a dummy variable. In this case, the depen-
dent variable will be whether they won their election.

The data for this sidebar came from Douglas Weber, a researcher at 
the Center for Responsive Politics. PresidentialElection.com describes 
the Center for Responsive Politics as follows:

The Center for Responsive Politics is a non-partisan, non-
profit research group based in Washington, D.C. that tracks 
money in politics, and its effect on elections and public policy. 
The Center conducts computer-based research on campaign fi-
nance issues for the news media, academics, activists, and the 
public at large. The Center’s work is aimed at creating a more 
educated voter, an involved citizenry, and a more responsive 
government.6

The data for this analysis come from the 1996–2000 political cam-
paigns for the U.S. Congress. These data are stored in the Excel file 
CandidateSpending1996-2000.xls in the Raw Data tab. The top of 
this data file is shown in Figure 4.15. Altogether, there are 2,086 en-
tries. The variables stored are as follows:

•	 Cycle. This is the election year. Members of the House of 
Representatives are elected every 2 years. Members of the 
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Senate are elected every 6 years, but the elections are staggered 
so some senators are up for election every 2 years. In this data 
set, the values for cycle are 1996, 1998, and 2000.

•	 Office. This is the office for which the candidate is running. In 
this data set, the values are H (House) or S (Senate).

•	 State. This is the two-digit postal code for the state that the 
candidate is seeking to represent.

•	 DistID. This is an identification number for the district from 
which the candidate is running.

•	 CID. This is a universal identification number for a candidate 
that is assigned by the Center for Responsive Politics and that 
stays constant throughout the candidate’s career.

•	 Candidate Name. This is the name of the candidate.
•	 Party. This is the party of the candidate. Most of the candidates 

are either Democrats (D) or Republicans (R). A few are third-
party candidates (3), independents (I), or Libertarians (L).

•	 Won/Lost. This tells if the candidate won (W) the election, lost 
(L) the election, or if the election was undecided (U). This 
variable will end up being the dependent variable.

•	 CRPICO. This is a code indicating whether the candidate is 
an incumbent (I), challenger (C), or if the seat is open (O). 

Figure 4.15 The top of the candidate data file
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An incumbent already holds the office for which he or she is 
running, a challenger runs against an incumbent, and an open 
election is one where there is no incumbent running.

•	 Spending. This is how much money the candidate spent on the 
election.

•	 Opponent Spending. This is how much money the candidate’s 
opponents spent on the election.

Many of these variables must be modified or converted before they 
can be used for discriminate analysis:

•	 Cycle. This is a numeric variable and can be used as is.
•	 Office. This variable was converted to a dummy variable, with 

zero for House and one for Senate.
•	 State. Different states would reasonably have different 

spending levels for offices as well as many other likely 
differences. In a complete analysis, the values for the 50 
states would be converted to 49 dummy variables in order to 
capture those effects. Given Excel’s difficulty in handling large 
numbers of variables, it was decided to drop the state value 
from the analysis.

•	 DistID. This has no statistical value and was dropped for 
analysis.

•	 CID. This has no statistical value and was dropped for analysis.
•	 Candidate Name. This has no statistical value and was dropped 

for analysis.
•	 Party. There are five possible values for this variable, so four 

dummy variables are required. Those dummy variables are 
Democrats, Republicans, Libertarians, and independents. Of 
course, any entry with a zero for all four would be a third-
party candidate.

•	 Won/Lost. This is the dependent dummy variable, so it was 
moved to the left side of the data set to allow the independent 
variables to be contiguous. A value of one was used for a win, 
so a zero represented either a loss or an undecided election. 
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Remember that a dummy variable can only have two values 
(zero and one), and when used as the dependent variable, there 
can only be one dummy variable, so it was not possible to 
separate loss and undecided.

•	 CRPICO. There were three possible values, so two dummy 
variables are required. They are incumbent and challenger. A 
zero for both variables indicates an open election.

•	 Spending. This variable was used as is.
•	 Opponent Spending. This variable was used as is.
•	 Ratio. A new variable was created from the ratio of Spending 

divided by Opponent Spending.

The top of this modified data set is shown in Figure 4.16.

The Analysis

The first step is to perform correlation analysis on the independent 
variables. Those results are shown in Figure 4.17. Surprisingly, there 
are only four pairs of variables where multicollinearity is likely to be 
a problem:

Figure 4.16 The top of the candidate data file after the modifications 
discussed have been made
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 1. Democrat/Republican (–0.9791). This is not surprising because al-
most all the candidates are either Democrats or Republications, 
you would expect a near perfect correlation, and we get it. The 
negative correlation only means that as the Democrat dummy 
variable goes up from zero to one, the Republican dummy vari-
able moves in the opposite direction, from one to zero. The fact 
that the value is not exactly 1.00 simply indicates the presence of 
a few candidates who are neither Democrats nor Republicans.

 2. Opponent Spending/Office (0.4835). This does not pass our 0.60 
threshold, but given the very small values for the other pairs, it 
is noticeable. Since Office is a dummy variable with a zero for 
House and one for Senate, this indicates a strong likelihood that 
nonincumbent spending is higher for the Senate than for the 
House. This is not surprising because the Senate is both more 
prestigious and a statewide seat requiring statewide campaigning.

 3. Spending/Office (0.4835). Like opponents, incumbents spend 
more for the Senate than for the House. What is surprising is that 
the correlation is the same for both spending variables.

 4. Challenger/Incumbent (–0.7678). This is also not surprising be-
cause someone who is not a incumbent must be a challenger. The 
reason for the less-than-perfect correlation is that some of the 
elections are open elections where there is no incumbent.

The initial regression results are shown in Figure 4.18. Overall, the 
model is able to explain a little over 70 percent of the variation in the 
results. No doubt, candidate positions on specific issues and character 

Figure 4.17 Correlation analysis of the independent variable in the 
candidate data file
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issues accounted for much of the remaining percentage. Additionally, 
issues like these no doubt affected the candidate’s ability to raise money, 
so some of those issues would be reflected in the spending variable.

Cycle is not significant, which seems to indicate that the impact of 
the various variables has not changed over the relatively short period 
of time represented in this data set. Office is not significant, indicating 
that election patterns are fairly consistent for the House and Senate. 
The Democrat and Republican dummy variables are not significant, 
which is surprising. This seems to indicate that spending and being an 
incumbent are much more important than party affiliations. Along the 
same lines, Libertarian is also not significant, but because there were 
only seven Libertarian candidates in this period, that is not surprising.

Incumbent was significant with a positive coefficient, as expected. 
That is, being an incumbent strongly helps your chance of being 
elected. Along the same lines, being a challenger was also signifi-
cant and, as would be expected, had a negative coefficient. Spending 
and Opponent Spending are both significant and both have positive 

Figure 4.18 The initial regression run
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coefficients. They appear to be zero because the dependent variable 
is either zero or one and spending is measured in dollars and so has 
values in the millions. This large difference in the units yields very 
small coefficients. The spending ratio is also significant with a positive 
coefficient, indicating that the higher a candidate’s spending relative to 
his opponent’s spending, the better his or her chance of being elected. 
Again, the magnitude of the spending ratio coefficient is due to the 
magnitude of the ratios and not to its importance. Note that the larg-
est ratio was over 650.

Normally, we would need to work through these variables, drop-
ping them one at a time, to figure out which to drop. That work has 
been done but is not shown. All the variables that are insignificant in 
the first model end up dropping out of the final model, although when 
either the Democrat or Republican dummy variable is left in, which-
ever variable that is left in is almost significant.

Additionally, the two spending variables were both divided by 
1,000,000, yielding spending expressed in millions of dollars. This is a 
linear transformation, so it has no effect on correlation or r 2 but does 
keep the coefficients for the spending variables from being so small. 
Also, transforming the spending variables has no effect on their ratio, 
so that variable stays the same. While not shown in a figure, this re-
duced data set is stored in the Data2 tab of the worksheet.

The regression on this final, reduced data set is shown in Figure 
4.19. Notice that everything is significant. Variations in these six vari-
ables explain 70 percent of the variation in who won the election. This 
gives the following equation:

Final Regression Equation

Y Incumbent Challenger
S

= + − +0 49609 0 42575 0 43639
0 01684

. . ( ) . ( )
. ( ppending, in millions Opponent Spending,

in millio
) . (− 0 01616

nns Ratio) . ( )+ 0 00080

All these variables have the sign that we would expect.
If we are careful, in discriminate analysis, then it is possible to 

use the magnitude of the final coefficients to analyze the relative im-
pacts of the independent variables. Great care is required because the 
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magnitude of the coefficients, which is what we will be analyzing, is 
greatly influenced by the units in which the variable was measured. 
Of course, not all variables have a problem with units, as will be seen.

Understanding the Coefficients

Recall that our dependent variable was a dummy variable that had a 
value of one if the candidate won the election and a value of zero if 
the candidate lost the election. While all the observations in the data 
set have a value of zero or one for this variable, the resulting regression 
equation is not restricted to this 0–1 range. When this regression equa-
tion was applied to the 2,086 observations in this data set, on the Fore-
cast tab, values for the forecasted dependent variable ranged from –0.43 
to 1.47. Nevertheless 2,051 of 2.086 (98.3 percent) of the forecasts did 
fall within this range. Some of these results are shown in Figure 4.20.

Everything else being equal, the closer a candidate’s score is to one, 
the higher the likelihood that they will win the election. Likewise, the 
closer a candidate’s score is to zero, the lower the likelihood that they 
will win the election. So the forecast that results from the regression 
equation can roughly be treated as a probability of winning. This is only 
a rough approximation because 30 percent of the variation is unex-
plained and because values below zero or greater than one are possible.

Figure 4.19 The final regression model for the candidate data file
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The intercept is 0.49609 or very nearly 50 percent. This is exactly 
what we would expect. Without considering money or whether or 
not a candidate is an incumbent, with two strong parties, a candidate 
should have about a 50-50 chance.

Recall from above that the Democrat variable is almost significant. 
If it is left in for the final regression, none of the above coefficients 
changes more than a minor amount, and the Democrat variable has a 
coefficient of 0.02079. That is, during the time range associated with 
this data set, being a Democrat has a small (0.02079) positive impact 
on the probability of winning. Of course, one of the problems with 
handicapping political races using historical data is the 2002 elections, 
where being a Democrat had a negative impact. Because the data we 
are analyzing stops at 2000, the impact of the 2002 elections is not in-
cluded. This illustrates the difficulty of using historical data to forecast 
elections.

Being the incumbent had a large (0.42575) positive impact on the 
probability of winning, while being a challenger had a large (–0.43639) 
negative impact on the probability of winning. Recall that spending is 
now measured in millions of dollars, and spending an additional one 
million dollars has only a small (0.01684) impact on the probability of 

Figure 4.20 Forecasting winning using the candidate data set
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winning. Of course, had spending been measured in tens of millions 
of dollars, the coefficient would be larger (0.1684), but the overall 
impact of spending would be the same, thus the caveat regarding the 
units used to measure the variables. Opponent spending had about the 
same impact (–0.01616 versus 0.01684) for a million dollars spent, 
thus candidate and opponent spending tend to offset one another. The 
ratio of opponent spending has only a minor impact (0.00080) on the 
probability of winning, so it takes a large imbalance to cause a large 
swing in the probabilities. Of course, these data are all for national of-
fices with very large spending levels. This observation is not likely to 
be true for state or local elections with their relatively small budgets.

Conclusion

This box has shown how election data can be used to build a model for 
predicting the relative chances of a political hopeful being elected to 
Congress based on the candidate’s and the candidate’s opponent’s in-
cumbent and spending status. The resulting model was able to explain 
about 70 percent of the variation.

Now imagine that, rather than political data, this worksheet con-
tained income, debt, and spending data on consumers. Also imagine 
that rather than election results, the dependent variable was a dummy 
variable where one represented a good credit risk and zero represented 
a bad credit risk. If that were the case, then column A in Figure 4.20 
could contain credit scores rather than electability scores. Statistical 
analysis of credit history similar to what is presented here is, in fact, 
exactly how credit scores are developed.

Because regression, and therefore discriminate analysis, can have only 
one dependent variable, it is only possible to use a dummy variable as 
the dependent variable when you only have two possible categories, such 
as repaying a loan (or not) or making a sale. These types of models are 
often used by financial institutions where the dummy dependent vari-
able represents whether someone is a good credit risk. The purpose of 
discriminate analysis is to assign each observation into one of the two 
categories described by the dependent variable. In other words, we wish 
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to discriminate between the two possible outcomes. The development of 
this type of model is left to interested readers.

Because regression can only have one dependent variable, regression-
based discriminate analysis can only support two categories. There are 
more advanced approaches for handling more than two categories. Inter-
ested students are referred to an advanced reference.

Testing the Validity of the Regression Model

There are three main problems, or diseases, that can affect multiple regression:

 1. Multicollinearity
 2. Autocorrelation
 3. Heteroscedasticity

We will look at spotting and treating each of the problems individually.

Multicollinearity

Multicollinearity is a major problem that affects almost every set of data 
to some degree. It is the sole reason we cannot just drop all the insignifi-
cant variables at once. As we will see, it can also cause coefficients to be 
hard to understand, as well as an array of other problems. Were it not 
for multicollinearity, developing multiple regression models would be an 
order of magnitude easier.

The best way to see the impact of multicollinearity is to see how well 
multiple regression performs without multicollinearity. An example of 
this follows.

Example With No Multicollinearity

Figure 4.21 shows a data set that has one dependent variable, Y, and 
four independent variables, X1 through X4. The independent variables 
were constructed such that they have absolutely no multicollinearity.7 
Because multicollinearity is correlation between the independent vari-
ables, the quickest way to test for multicollinearity is via a correlation 
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matrix containing just the independent variables. This is shown in Figure 
4.22. As you can see, no correlation, and therefore no multicollinearity, 
is present.

Figure 4.23 shows the initial regression run. Notice that X3 and X4 are 
not significant. Additionally, notice the equation:

Regression Equation

 = + + − +Y X X X Xˆ 117.0500 19.2927 16.7249 5.1565 0.76851 2 3 4

Figure 4.21 Made-up data set containing no multicollinearity

Figure 4.22 Results of running correlation analysis on this fictitious 
data set that contains no multicollinearity



148 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Now we will simply drop the two insignificant variables. The results 
are shown in Figure 4.24. Notice the resulting equation:

Regression Equation After Dropping Two Variables

 = + +Y X Xˆ 117.0500 19.2927 16.72491 2

Figure 4.23 Results of the initial regression run on this fictitious data 
set that contains no multicollinearity

Figure 4.24 Results of the final regression run with two variables 
dropped on this fictitious data set that contains no multicollinearity
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Thus the intercept and coefficients for X1 and X2 did not change at all. 
Additionally, there were only minor changes for the t statistic for X1 and 
X2 and neither changed significance.

As the example shows, multiple regression behaves very smoothly 
when there is no multicollinearity. It is the presence of multicollinearity 
that causes much of our difficulties. Now we will look at an example with 
more extreme multicollinearity.

High-Multicollinearity Example

The data in the HighMulticollinearity.xls worksheet were especially con-
structed to have a high degree of multicollinearity. These data are shown 
in Figure 4.25. Figure 4.26 shows the resulting correlation matrix of just 
the independent variables. Notice that each pair-wise correlation exceeds 
0.99. This is high multicollinearity indeed.

Figure 4.25 The high-multicollinearity fictitious data
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Figure 4.27 shows the resulting multiple regression run. Notice the 
following:

•	 The	r 2 value is 0.9988 so almost 100 percent of the 
variation in Y is being explained by the variation in the four 
independent variables. From this perspective, you could not 
ask for a better model.

•	 The	overall	model	is	significant.	That	is,	it	passes	the	F-test. 
This is to be expected given the high r 2 value.

•	 None	of	the	independent	variables	is	significant.	Here,	we	
have an overall model that is significant yet none of the 
variables used to construct the model is significant. This is a 
very clear indicator of multicollinearity.

Figure 4.26 Correlation analysis on the high-multicollinearity 
fictitious data

Figure 4.27 Initial regression run on the high-multicollinearity 
fictitious data
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Normally, we would need to drop all four variables one at a time and 
record the resulting r 2 values in order to decide which to drop. However, 
the way the data was constructed for this example guarantees about the 
same impact regardless of the variable dropped, so we will simply drop X4. 
The resulting multiple regression run is shown in Figure 4.28.

This time, notice the following:

•	 The	r 2 value does not change much, going from 0.9988 to 
0.9987.

•	 The	overall	model	is	still	significant.
•	 Again,	none	of	the	remaining	independent	variables	is	significant.
•	 The	slope	coefficients	for	X1 and X2 change dramatically, 

going from negative to positive. This will end up being one of 
the important signs of multicollinearity.

This time, we will drop X3. The resulting multiple regression run is 
shown in Figure 4.29. This time, notice the following:

•	 The	r 2 value does not change much, going from 0.9987 to 
0.9986.

•	 The	overall	model	is	still	significant.

Figure 4.28 Regression run with the X4 variable dropped on the high-
multicollinearity fictitious data
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•	 This	time,	the	two	remaining	slope	coefficients	are	significant.
•	 Both	of	the	remaining	slope	coefficients	nearly	double	in	

magnitude.

Although this model meets all our criteria, we will go ahead and drop 
X2. The resulting simple regression run is shown in Figure 4.30. This time, 
notice the following:

•	 The	r 2 value does not change much, going from 0.9986 to 
0.9970.

•	 The	overall	model	is	still	significant.
•	 The	single	remaining	independent	variable	is	significant.

Clearly, the model suffered serious problems relating to its high degree 
of multicollinearity, although the final model in Figure 4.30 no longer has 
a multicollinearity. Do you see why?

What Causes Multicollinearity?

Independent variables are selected based on their theoretical relationship 
with the dependent variable, not their statistical suitability for using in 

Figure 4.29 Regression run with the X3 and X4 variables dropped on 
the high-multicollinearity fictitious data
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multiple regression. Oftentimes, a natural relationship exists between 
these variables.

For example, in the sales forecasting model we have been discussing, 
two of the variables we would naturally collect are levels of advertising 
and competitor actions, most likely in the form of competitor advertis-
ing. It is reasonable to assume that the higher our advertising spending, 
the more our competitors are going to spend on advertising. That is, 
when our advertising spending goes up, competitor spending is likely to 
go up, and when our spending goes down, competitor spending is likely 
to go down. In other words, these two independent variables are highly 
correlated, and therefore we have multicollinearity. That natural multicol-
linearity does not mean that we should not collect data on both variables. 
Remember, the decision on the independent variables to start with is a 
theoretical decision, not a statistical decision. Rather, it simply means that 
both variables may not make it to the final model or, if they do, the final 
model will have multicollinearity between these two variables. Research-
ers must understand this relationship if they are to interpret the results 
properly. After all, if competitor advertising does not make it into the 
final model, they need to understand why.

Flawed data-collection methods can also introduce multicollinear-
ity into the model. For example, if sales data were only collected from 

Figure 4.30 Regression run with the X2, X3, and X4 variables 
dropped on the high-multicollinearity fictitious data
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stores with a high level of competition, the data set would show a stronger 
relationship between advertising spending and competitor spending on 
advertising than would be the case if all locations were included in the 
sample. That would introduce an unnaturally high level of multicollinear-
ity between the two variables.

Spotting Multicollinearity

In the previous examples, we have already seen some of the ways in which 
multicollinearity can be spotted. In general, all of the following are indi-
cators of multicollinearity:

The first indicator is a high correlation between independent variables 
in the correlation matrix. Unless they have been artificially created, as 
shown previously, all independent variables will have some correlation 
between them and this correlation will show up in the correlation ma-
trix. A rule of thumb is that a value of 0.60 or higher in the correlation 
matrix is an indicator of multicollinearity strong enough to be concerned 
about. This is the easiest rule to use, so it is recommended that you 
produce a correlation matrix on each data set prior to running multiple 
regression. Because you want a high degree of correlation between each 
independent variable and the single dependent variable, you should only 
include the independent variables in this correlation matrix so the high 
values between the variables and the dependent variable does not confuse 
its interpretation.

The second indicator is a low tolerance. One drawback to testing for 
multicollinearity using correlations is that it only spots pairwise multicol-
linearity because it is based on pairwise correlation. It is possible to test 
to see there is multicollinearity between more than two variables; that 
is, if two or more independent variables combined together can explain 
another independent variable. To do this, you run multiple regression 
with one of the independent variables as the dependent variable and the 
remaining independent variables (not the dependent variable) as the inde-
pendent variables. The tolerance is then computed as follows:

Tolerance

 1 2− r
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for this reduced multiple regression run. It is the case that the smaller 
the tolerance, the greater the multicollinearity regarding the independent 
variable being used as the dependent variable. The smallest possible value 
for tolerance is zero, and a good rule of thumb is that anything below 
0.20 indicates a problem with multicollinearity. Two notes are in order. 
First, with k independent variables, there will be k measures of tolerance, 
as each independent variable is used, in turn, as the dependent variable. 
Second, tolerance requires at least three independent variables because 
with just two independent variables, the correlation coefficient is ade-
quate for measuring multicollinearity. Finally, due to the difficulty of per-
forming these repeated multiple regression runs, tolerance as a diagnostic 
for multicollinearity is not emphasized in this textbook.

The third indicator is important theoretical variables that are not signifi-
cant. There are two main reasons why an important theoretical variable 
might not be significant: Either the theory is wrong or there is multicol-
linearity.8 If you are confident that the theory is correct, then the cause 
is most likely that another variable is robbing the theoretically important 
variable of its explanatory ability—in other words, multicollinearity.

The fourth indicator is coefficients that do not make sense theoretically. 
In the sales forecast example, the theory says that increasing advertising 
spending should increase sales, so we would expect a positive slope coef-
ficient for advertising spending. If that does not happen, then either the 
theory is wrong or, once again, multicollinearity is causing another vari-
able to rob the theoretically important variable of its explanatory ability 
and therefore, in the process, altering its coefficient.

Note that it is rarely possible to evaluate coefficients theoretically be-
yond their signs. This is because the magnitudes of the coefficients are 
determined by the units of the independent variable, the units of the 
dependent variable, and if multicollinearity is present, the units of the 
collinear variables. Change any of these units and the coefficient changes. 
That is, measure sales in thousands of dollars rather than dollars or ad-
vertising spending in minutes of television time instead of dollars and 
the advertising spending coefficient changes. However, regardless of the 
units, the sign of the slope coefficient should behave according to theory.

The fifth indicator is when you notice that dropping a variable causes 
dramatic shifts in the remaining coefficients. If there is no multicollinearity, 
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then the explanatory power of a variable does not change as other vari-
ables come and go. We saw this in the previous example artificially cre-
ated without multicollinearity. Therefore, when coefficients shift as other 
variables come and go, it is an indicator of multicollinearity. Thus we see 
that the greater the shift, the larger the multicollinearity. As discussed 
previously, the biggest concern is when the coefficients change signs or 
when values change by an order of magnitude.

The sixth indicator is when you notice that dropping a nonoutlier ob-
servation causes dramatic shifts in the coefficients. Although rarely used in 
practice, dropping a single observation that is not an outlier should not 
cause much of a shift in the coefficients. When it does, that is a sign of 
multicollinearity. Of course, this is also a sign that the observation is pos-
sibly an outlier so you must be careful in its use. One of the reasons this is 
not used much in practice is that it is the least likely of all the approaches 
to generate an observable effect, plus researchers rarely wish to drop use-
ful data.

Treating Multicollinearity

When multicollinearity is present, any or all of the following can be used 
to treat it.

Fix the sampling plan. It goes without saying that when the multicol-
linearity was introduced by a poor approach to gathering the data, new 
data should be collected using a better sampling plan. It is much better to 
work with good data than it is to try to fix bad data.

Transform the collinear variables. Multicollinearity is a linear correla-
tion between two (or more) variables. Transforming one or more of these 
variables in a nonlinear fashion can reduce or eliminate the multicol-
linearity. Nonlinear transformations include taking the log, squaring, and 
taking the square root. Multiplying by a number or adding a number are 
both linear transformations and will not change multicollinearity.

The trouble with transforming the data is that it changes the data. 
Changing the data makes it tougher to theoretically interpret the data. 
For example, we know that a positive slope coefficient for advertising 
indicates that spending more money on advertising increases sales. If 
sales and advertising are both measured in thousands of dollars, then a 
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coefficient of 0.50 would indicate that for every additional thousand dol-
lars spent on advertising, sales go up by $500. But what would the coef-
ficient mean if we were using the log or square root of advertising dollars? 
For this reason, variable transformations are usually only used in models 
intended for prediction where there is little or no interest in understand-
ing the underlying processes.

Transform the data set. An advanced statistical process called fac-
tor analysis can be used to transform a collinear data set, or any subset 
of that data set, into new, uncorrelated variables that explain the same 
variation as the original data set. However, these new and uncorrelated 
variables are even more manipulated than the simple variable transforma-
tions discussed previously, making them that much harder to theoretically 
interpret. Students interested in this topic should consult an advanced 
statistical textbook such as Philip Bobko’s Correlation and Regression: 
Principles and Applications for Industrial/Organizational Psychology and 
Management (1995, McGraw-Hill). Factor analysis was the technique 
used to create the completely uncorrelated variables used in an earlier 
example in this chapter.

Use an advanced multiple regression approach. A type of multiple re-
gression called ridge regression is more adept at working with collinear 
data. Excel is not able to perform ridge regression.

Drop one of the collinear variables. After all, if the two variables are 
explaining the same, or mostly the same, variation, it makes little sense to 
include both in the model. When the multicollinearity between two vari-
ables is too high, it is rarely the case that both will end up being signifi-
cant. Thus the model development procedures discussed previously will 
automatically cause one in the pair of collinear variables to be dropped. 
Even if they both end up being significant, they may end up biasing the 
coefficients to such an extent that one of them must be dropped so the 
remaining coefficients make theoretical sense.

Do nothing. If the collinear variables are all significant, then they help 
improve the fit of the model. If the model is to be used mainly for pre-
diction, then any theoretical problems with the coefficients will not be a 
problem. Even when the model is to be used for understanding, multicol-
linearity does not always have such a strong impact as to cause the coef-
ficients not to make theoretical sense.
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Autocorrelation

One of the assumptions of regression, both simple and multiple, is that 
the error terms (ε) are independent of each other. Stated another way, 
εi is uncorrelated with εi – 1 or εi – 2 or εi – 3 and so on. When correlation 
between one or more of these error terms exists, it is called autocorrelation.

Autocorrelation is only an issue when we have time-series data—that 
is, data that were measured at different points in time. For example, if we 
have quarterly measures of demand for several years, it is likely that the 
demand for any quarter was related to quarterly demand a year ago, so it 
is likely that εi is correlated with εi – 4. This is called a lag four correlation.

This issue of lagged correlation can easily be illustrated with a figure. 
Figure 4.31 shows a one-period lag in the correlation of the error terms. 

Figure 4.31 An illustration of lag one correlation
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This is called first-order autocorrelation. Figure 4.32 shows a two-period 
lag in the correlation. This is called second-order autocorrelation.

When the data are not time series, there is no reason to be concerned 
about autocorrelation. After all, there is not likely to be any relationship 
between the different dependent variable observations, so there is unlikely 
to be any correlation of the error terms. Although it is technically possible 
for the error terms to be correlated for non-time- series data (called cross 
sectional data), we need not be concerned with this rare occurrence. After 
all, if the data are not time-series data, there is no specific order for the 
data. Therefore, we could simply rearrange the sequence of the data and 
alter any lag correlations of the error terms.

Figure 4.32 An illustration of lag two correlation



160 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

Durbin-Watson Test

Statistical software, like SPSS or SAS, can compute a Durbin-Watson test 
to easily spot first-order autocorrelation. The hypotheses for the Durbin-
Watson test are the following:
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Of course, we can also perform a one-tailed version of the test. The hy-
potheses use a ρ1 because the Durbin-Watson test can only spot first-order 
autocorrelation.

The calculated Durbin-Watson statistic value can take on values be-
tween zero and four. A value of two, which is in the middle of this range, 
indicates no autocorrelation. A value of zero indicates positive autocorre-
lation and a value of four indicates negative autocorrelation. When a table 
is not available, a rule of thumb is that values of d between 1.5 and 2.5 
indicates no autocorrelation. The Durbin-Watson test statistic d is defined 
with the following equation:

Durbin-Watson Test Statistics
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A couple of notes are in order regarding this formula. First, notice 
that although we are testing for the significance of a correlation, nei-
ther a sample (r) or assumed population (ρ) correlation coefficient is 
used in the calculations. Second, note that the top of the formula is 
summed from “i = 2 to n” whereas the bottom is summed from “i = 1 
to n.” This is because the top measures the lagged squares and e1 – e0 
is not defined.

The Durbin-Watson test first appears to work differently than the 
other hypothesis tests we have looked at. For a one-tailed test,9 the critical 
values (dL and dU)10 do not divide the distribution into acceptance and 
rejection regions. Rather, they divide the distribution into five different 
regions, as noted in Table 4.1.
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The lack of clear boundaries between the acceptance and rejection 
regions is, in fact, not due to the Durbin-Watson test working differ-
ently than other hypothesis tests. Rather, the actual boundaries of the 
test depend on the regression coefficients. Because printed tables cannot 
easily reflect this, the ranges where the test is inconclusive represent the 
range of possible values from the table for different values of the regres-
sion coefficients.

Example

It is very common for businesses to collect data, such as sales data, over 
time. Because these data are collected over time, it often has autocorrela-
tion. We will explore this issue with an example.

Figure 4.33 shows sales data for 20 periods, along with the advertising 
and promotion data for the same period that will be used to explain the 
sales. That is, Sales is the dependent variable and Advertising and Promo-
tion are the independent variables. This figure shows the data in Excel, 
and it is saved in Durbin-WatsonExample.xls if you wish to experiment 
with the data; however, the regression analysis will be performed using 
SPSS.

Figure 4.34 shows the resulting multiple regression run. Note that 
the overall model is significant, and both of the independent variables 
are significant. This model explains 79.1 percent of the variation in sales.

The value of d from the model summary area is 2.087. Because we 
do assume that the autocorrelation is either positive or negative and d is 
between 1.5 and 2.5, we use a two-tailed test and conclude that there is 
no autocorrelation.

Table 4.1. Durbin-Watson Outcome Regions

Area Outcome
0 – dL Positive autocorrelation

dL – dU Test is inconclusive

dU – 4-dU No autocorrelation

4-dU – 4-dL Test is inconclusive

4-dL – 4 Negative autocorrelation
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The value of d can be approximated using the following formula:

Approximating Durbin-Watson d

 2 1( )− r

where r is the correlation coefficient that measures the association be-
tween successive residuals.

Although not shown, the regression model for the Durbin-Watson 
example was computed in Excel and the residuals were saved. The Residu-
als tab of the Durbin-WatsonExample.xls worksheet computes the cor-
relation coefficient between successive residuals. That value is –0.06491. 
Applying the approximation formula above, we have 2[1 – (–0.06491)], 
which equals 2(1 + 0.06491), which is about 2.12983. That is close to the 
2.0869 calculated by SPSS.

Treating Autocorrelation

There are two things you can do to minimize the possibility of hav-
ing autocorrelation when dealing with time-series data. The first is to 

Figure 4.33 Data for Durbin-Watson example in Excel
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Figure 4.34 The results of running multiple regression using SPSS

transform the data. When variables are measured in dollars over time, 
state those dollars in a constant unit, such as discounted dollars. When 
the dollars are left in their raw form,11 changes in the buying power of 
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the dollar over time are built into the dependent variable but will not be 
accounted for by any independent variable. Furthermore, those changes 
over time are fairly regular and therefore correlated with one another, 
leading to autocorrelation. Converting to discounted dollars removes 
this time-based source of variation. In business, this is by far the most 
common transformation. Another transformation that works well, es-
pecially with economic and financial data, is to restate the variables as 
a percentage change.

When one or more independent variables are measured in their raw 
form, they have a built-in variation that is not being used to explain the 
dependent variable. As a result, this variation is transferred to the error 
term, where it becomes autocorrelation. Converting the variables to dis-
counted dollars or percentage change removes this source of variation.

The second approach is to add a new independent variable, here 
called Period, where Period is simply a measure of the changes over 
time. This variable will explain this regular variation and keep it from 
reaching the error term. If Period is significant, then autocorrelation 
exists and Period treated it. If Period is not significant, then autocor-
relation is not present.

The period variable should be a linear variable when every one-unit 
change in periods causes the same change in the period variable. The 
most common approach is to label the first period 1, the second 2, and 
so on. With annual data, using the actual year number would also work. 
For quarterly data, you could use sequential period numbers or year 
numbers with a.00, .25, .50, and .75 added for the different periods 
within each year.

You must be careful in labeling your periods. It is often tempting 
to use a labeling scheme that violates the assumption of equal units 
between the periods. For example, none of the following methods is 
appropriate:

•	 With	monthly	data,	using	2002.01,	2002.02,	.	.	.	,2002.11,	
2002.12, 1991.01, and so on

•	 With	quarterly	data,	using	2002.1,	2002.2,	2002.3,	2002.4,	
2003.1, and so on

•	 With	quarterly	data,	using	1,	2,	3,	4,	1,	2,	3,	4,	and	so	on
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With each of these, the gap between some sequential pairs of periods 
is different from other sequential pairs, and this nonlinear ordering of the 
periods violates the linearity assumption of regression.

Second Durbin-Watson Example

Figure 4.35 shows a set of data especially constructed to contain posi-
tive autocorrelation. The data are stored in the Excel file DW-2.xls for 
easy manipulation. Figure 4.36 shows the initial multiple regression 
run on this data. Note that the overall model is significant and both 
independent variables are also significant. However, the model only 
explains 53.1 percent of the variation in sales. This model has posi-
tive autocorrelation, as shown by the Durbin-Watson statistic of 0.101 
shown in Figure 4.36.

To correct the autocorrelation, the period variable is added to the 
model as a third independent variable. That regression run is shown in 
Figure 4.37. Again, the overall model is significant and all three inde-
pendent variables are significant. The explanatory power of the model 
goes up from 53.1 percent to 98.7 percent. This model has much less 

Figure 4.35 Data especially constructed to contain positive 
autocorrelation
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Figure 4.36 Initial regression on this fictitious data

autocorrelation, as shown by the Durbin-Watson statistic of 2.836 
shown in Figure 4.37.

Heteroscedasticity

One of the assumptions of regression is that the error terms have equal 
variance. We called this homoscedasticity. Violating the assumption of 
homoscedasticity is called heteroscedasticity.12 Although heteroscedastic-
ity is a violation of the assumptions of regression, it is a fairly minor vio-
lation relative to multicollinearity and autocorrelation. However, when 
heteroscedasticity is high, the researcher may need to build a separate 
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Figure 4.37 Redoing the regression model by adding period as a 
variable

regression model for each range of the error term. That is, the research-
ers need to build one model for the range where the variance is high and 
another for where it is low.

We will not be using a hypothesis test approach to testing for het-
eroscedasticity; rather, we will be using a visual approach. Specifically, we 
will be looking at a plot of the residuals (error terms) once the model has 
been built. Residuals are shown on the Y-axis. We must produce a plot for 
each independent variable that makes it into the final model. Fortunately, 
Excel makes this easy.
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Example

As we saw earlier, our Celebrities.xls worksheet has six independent vari-
ables and all of them are significant except for Earnings. We will now 
drop Earnings, produce the final model, and get a plot of the residuals. 
To add the plots to the output, we simply check Residual Plots in the 
Regression dialog box. Excel produces the plots and stacks them on top 
of each other, as shown in Figure 4.38. You click on the plot you wish to 
see and that brings it to the front. Figures 4.39 through 4.42 show the 
individual plots.

Figure 4.39 shows Residuals plotted against Income Rank. As Income 
Rank increases, the residuals appear to be randomly distributed when 

Figure 4.38 The stacked plot of residuals

Figure 4.39 Residuals plotted against Income Rank
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Figure 4.40 Residuals plotted against Web Hits

Figure 4.41 Residuals plotted against Press Clippings

fairly consistent variability, so heteroscedasticity is not an issue. Figure 
4.40 shows Residuals plotted against Web Hits. Clearly, the residuals are 
neither randomly distributed nor have equal variability, a clear sign of 
heteroscedasticity. Figure 4.41 shows Residuals plotted against Press Clip-
pings. As with Figure 4.40, heteroscedasticity is clearly evident.

Figure 4.42 shows Residuals plotted against Magazine Covers. With 
this variable, it is much harder to visually gauge heteroscedasticity. Maga-
zine Covers can take only a limited number of discrete values and so 
the residual values are bunched above these few values. Dummy vari-
ables have this problem as well as discrete variables, only with dummy 
variables, there are only two columns of points. Although the variability 
clearly declines as the number of Magazine Covers decreases, this may be 
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due more to the lower number of observations than to a decline in the 
variance. Therefore, the best we can say regarding heteroscedasticity is 
that we are uncertain.

Figure 4.43 shows Residuals plotted against TV and Radio Mentions. 
The values on the left side of the chart appear to be randomly distributed 
with fairly constant variability. The very few observations on the right 
clearly have less variability but there are too few values to make any real 
judgment. These could simply be outliers. The most reasonable conclu-
sion is that the bulk of the data shows no heteroscedasticity.

The problem with gauging heteroscedasticity from these individual 
plots is that they do not show the error terms relative to all the data at 
once. It may be that large differences relative to one variable may not 

Figure 4.43 Residuals plotted against TV and Radio Mentions

Figure 4.42 Residuals plotted against Magazine Covers
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be too large when other variables are included in the comparison. The 
way to gauge heteroscedasticity across all the variables at once is to use 
a chart that Excel does not automatically compute—a plot of the stan-
dardized residuals against estimated values of the dependent variable. A 
homoscedastic model will display a cloud of dots with no visible pattern, 
whereas heteroscedasticity will be characterized by a pattern, such as a 
funnel shape, indicating greater error as the dependent increases.

Using the Celebrities.xls worksheet discussed previously, multiple re-
gression was rerun, using SPSS and requesting a plot of the residuals. This 
is shown in Figure 4.44. The Y-axis is the standardized residuals and the 
X-axis is the standardized predicted values. With homoscedasticity, you 
would expect the spread of the data to be fairly consistent as you move 
from left to right. Because this data has a fairly narrow spread on both 
ends with a wider spread in the middle, it is an indication of heterosce-
dasticity. This measure looks at all the variables at once. This plot can be 
produced in Excel by having regression save the residuals, manually build 
a formula to calculate the predicted values, and then manually produce 
the plot. This exercise is left for interested readers.

Figure 4.44 Plot of the residuals against predicted Y-values
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Treating Heteroscedasticity

Heteroscedasticity is a violation of the assumptions of regression; how-
ever, its effect is much smaller than either multicollinearity or autocor-
relation. Heteroscedasticity causes the least squares estimation method 
to be less efficient. One approach to dealing with heteroscedasticity is to 
use weighted least squares. Excel is not able to perform this, so we will not 
explore it further.

A second approach is to transform the variable exhibiting heterosce-
dasticity using a nonlinear transformation such as squares, square roots, 
or logs. These transformations are particularly effective when the data 
show high variability on one side of the residual plot and low variabil-
ity on the other. However, a nonlinear transformation introduces all the 
theoretical interpretation concerns raised earlier.

A third approach is to simply realize that heteroscedasticity exists in 
the multiple regression model but to otherwise ignore it in the calculation 
of the model. Given the minor impact of heteroscedasticity, this is the 
approach often taken by researchers.

Summary

In this chapter we looked at model building, incorporating qualitative 
data, and testing the validity of the model. You should now be ready to 
build your own multiple regression models.



Introduction

 1. Jiawi Han and Micheline Kamber. (2006). Data mining: Concepts and tech-
niques San Francisco: Elsevier.

Chapter 1

 1. Damodaran Online. The data page. Retrieved August 15, 2010, from 
http://pages.stern.nyu.edu/~adamodar/New_Home_Page/data.html as 
part of a larger data set.

 2. U.S. Office of Personnel Management. Federal Civilian Workforce Statistics: 
The Fact Book, 2007 Edition. Retrieved from http://www.opm.gov/feddata/
factbook/2007/2007FACTBOOK.pdf

 3. American Public Transportation Association. 2010 Public Transportation 
Fact Book, 61st ed. April 2010. Retrieved from http://www.apta.com/re-
sources/statistics/Documents/FactBook/APTA_2010_Fact_Book.pdf

 4. Unlinked passenger trips refers to the total number of passengers who board 
public transit vehicles. Each passenger is counted each time that person 
boards a vehicle even though the boarding may be the result of a transfer 
from another route while on the same journey. Thus unlinked passenger 
trips will be larger than actual ridership.

 5. Outlier does not necessarily mean mistake or error. Here, the data for New 
York City is absolutely correct; it is just well outside the range of any other 
observation.

 6. The actual calculation for this specific data set is –0.042, which is extremely 
close to zero. The exact value would depend on the number of observations 
included, but it would always be close to zero.

 7. The assignment of Age as X and Tag Number as Y is completely arbitrary 
and for correlation does not matter. The resulting value for the correlation 
coefficient would be exactly the same if Age were assigned as Y and Tag 
Number were assigned as X. The proof of this is left to interested readers.

 8. SPSS stands for Statistical Program for the Social Sciences, but everyone 
just calls it SPSS.

 9. It actually does not hurt anything to include the cells with the column labels 
(e.g., “=CORREL(A1:A8,B1:B8)”), as they are just ignored by Excel.

Notes
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 10. The “bi-” in “bivariate” comes from the Latin bis, meaning “twice” and bini, 
meaning “in twos.”

 11. It is helpful if the reader has a general knowledge of hypothesis testing on 
means and proportions as well as the Student t-distribution. However, stu-
dents without familiarity with these topics should be able to read and com-
prehend most of this section.

Chapter 2

 1. With simple regression, it is not uncommon to leave out the first subscript 
of the Xs; that is, write X1,1 as X1, X1,2 as X2, and so on. If you do this, you 
must be careful as it can lead to confusion in multiple regression.

 2. There is a second set of equations that can be used to calculate simple re-
gression coefficients. Normally, we would avoid giving two equations that 
accomplish exactly the same thing. However, you may run into this set 
of equations in other courses—such as operation management or forecast-
ing—so they are presented here for completeness:
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  This set of equations gives the same results and they have no computational 
advantage.

 3. ANOVA is short for analysis of variance.
 4. This statement assumes α = 0.05, as it usually does in business statistics.

Chapter 3

 1. The term is the combination of homo, from the Latin homos meaning one 
and the same or similar, and the Greek skedastokos, meaning able to disperse. 
Thus the term refers to having equal or the same variances.

 2. The assumption of normally distributed error terms uncorrelated with one 
another automatically implies the independence of the error terms.

 3. Interested students may wish to repeat our analysis using any or all of the 
counts for bronze, silver, or gold as the dependent variable to see how they 
compare with the results presented here.

 4. The value of this coefficient is actually 4.69047952958057 × 10–09 or 
0.000000000469047952958057. It is this low not because the variable is 



 NOTES 175

unimportant but rather because the units used to measure income (dol-
lars) are so large relative to the units used to measure rank. As a general 
rule, you cannot gauge the importance of a variable by the magnitude of its 
coefficient.

 5. Again, the value is small due to the units used to measure Web Hits.
 6. Recall from the last chapter that correlation is only defined between pairs of 

variables.
 7. In all these calculations, results are rounded for display but have been car-

ried out in all the calculations.
 8. Once any two of SSR, SSE, and SST are computed, you can always find the 

third using this formula.
 9. Highlight the cells containing the formulas, right-click with the mouse, and 

select Copy. With the formulas still highlighted, right-click again and under 
the Paste options will be an icon of a clipboard with a 123 in the bottom 
right corner. Select this Paste option. This replaces the formulas with their 
current value.

 10. As we will see later, in special cases, the overall model can be significant even 
when none of the independent variables is significant or at least when they 
are all included in the model.

 11. “Auto” comes from the Greek autos, meaning same or self. Thus autocorrela-
tion refers to correlation with oneself. In this case, the error terms are being 
correlated with themselves; more specifically, the correlation between pairs 
of error terms is taken at a constant interval.

 12. The calculations are not exactly this straightforward. Rejecting 10 true null 
hypotheses (200 × 0.05) due to sampling error alone requires that all 200 
null hypotheses be true—that is, that all 200 variables be insignificant. If 
most of the variables were truly significant as they were in this case, then the 
number of rejections of true null hypotheses would be correspondingly low 
because rather than having (200 × 0.05) we would have a number much 
smaller than 200 in this calculation.

 13. Because of the way Excel handles p-values, you must divide the p-value by 2 
for a one-tailed test.

Chapter 4

 1. Most statistical packages support all or most of these. It is up to the operator 
to select the actual procedure to be used.

 2. Because r 2 always goes up when you add variables, it will always go down 
when you drop a variable. However, when dropping an insignificant vari-
able, this drop is often slight and may be hard to pick up if you normally 
format r 2 to four or five decimal points.



 3. The values of one and zero make the math easier to understand and the 
model easier and are traditionally used, but any two numbers could be used 
and would have the same overall effect.

 4. Again, this simply makes understanding the model easier. We could as easily 
code the data the other way—that is, zero for when the event happened and 
one when it did not happen.

 5. Or planes when there are two nondummy independent variable, or hyper-
planes when there are three or more nondummy independent variables.

 6. http://www.presidentialelection.com/follow_the_money/ accessed on April 
9, 2011.

 7. For the interested reader, this was accomplished using an advanced statistical 
procedure called factor analysis. The operation of factor analysis is beyond 
the scope of this textbook. Additionally, factor analysis cannot be performed 
using Excel. The author created this data set using SPSS. Interested readers 
are referred to an advanced statistical reference book, such as Bobko (1995), 
Correlation and Regression: Principles and Applications for Industrial/Organi-
zational Psychology and Management. New York: McGraw-Hill.

 8. Of course, this can also be caused by a bad sample.
 9. For a two-tailed test, we double the alpha value shown in the table, and the 

ranges 0 – dL and 4-dL – 4 simply become rejection regions.
 10. Refer to an advanced statistics textbook for Durbin-Watson tables.
 11. In finance, this raw form is called nominal dollars.
 12. Recall from earlier that part of this term comes from the Greek skedastokos, 

meaning able to disperse. The hetero comes from the Latin heteros, meaning 
other than usual, other, or different.
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