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Abstract

This book describes the use of the statistical procedure called multiple
regression in business situations, including forecasting and understanding
the relationships between variables. The book assumes a basic understand-
ing of statistics but reviews correlation analysis and simple regression to
prepare the reader to understand and use multiple regression.

The techniques described in the book are illustrated using both Mi-
crosoft Excel and a professional statistical program. Along the way, several
real-world data sets are analyzed in detail to better prepare the reader for
working with actual data in a business environment.

This book will be a useful guide to managers at all levels who need to
understand and make decisions based on data analysis performed using
multiple regression. It also provides the beginning analyst with the de-
tailed understanding required to use multiple regression to analyze data

sets.
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Introduction

Imagine that you are a business owner with a couple of years’ worth of
data. You have monthly sales figures, your monthly marketing budget, a
rough estimate of the monthly marketing budget for your major competi-
tors, and a few other similar variables. You desperately want this data to
tell you something. Not only that, you are sure it can give you some busi-
ness insights if you know more. But what exactly can the data tell you?
And once you have a clue what the data might tell you, how do you get
to that information?

Really large companies have sophisticated computer software to do
data mining. Data mining refers to extracting or “mining” knowledge
from large amounts of data." Stated another way, data mining is the pro-
cess of analyzing data and converting that data into useful information.
But how, specifically?

While data mining uses a number of different statistical techniques,
the one we will focus on in this book is multiple regression. Why study
multiple regression? The reason is the insight that the analysis provides.
For example, knowing how advertising, promotion, and packaging might
impact sales can help you decide where to budget your marketing dol-
lars. Or knowing how price, advertising, and competitor spending affect
demand can help you decide how much to produce. In general, we use
multiple regression either to explain the behavior of a single variable, such
as consumer demand, or to forecast the future behavior of a single vari-
able, such as sales.

Before you can understand the operation of multiple regression and
how to use it to analyze large data sets, you must understand the opera-
tion of two simpler techniques: correlation analysis and simple regression.
Understanding these two techniques will greatly aid your understanding
of multiple regression.

Correlation analysis measures the strength of the linear relationship

between a pair of variables. Some pairs of variables, such as sales and
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advertising or education and income, will have a strong relationship
whereas others, such as education and shoe size, will have a weak relation-
ship. We will explore correlation analysis in more detail in chapter 1. As
part of that discussion, we will see what it means for a relationship to be
linear as well as what it means for the relationship to be strong or weak
and positive or negative.

When a pair of variables has a linear relationship, simple regression
calculates the equation of the line that describes that relationship. As part
of simple regression, one variable will be designated as an independent,
or explainer, variable and the other will be designated as a dependent, or
explained, variable. We will explore simple regression in more detail in
chapter 2.

Sometimes, a single variable is all we need to explain the behavior of
the dependent variable. However, in business situations, it almost always
takes multiple variables to explain the behavior of the dependent variable.
For example, due to the economy and competitor actions, it would be a
rare business in which advertising alone would adequately explain sales.
Likewise, height alone is not enough to explain someone’s weight. Mul-
tiple regression is an extension of simple regression that allows for the use
of multiple independent or explainer variables. We will explore multiple
regression in more detail in chapter 3.

When using multiple regression with its multiple independent vari-
ables, we face the issue of deciding which variables to leave in the final
model and which variables to drop from the final model. This issue is
made complex by the “diseases” that can affect multiple regression mod-
els. We will explore building complex multiple regression models in more
detail in chapter 4. It is when we get to model building that we will begin
to see the real-world use of multiple regression.

This book assumes you have a background in statistics. Specifically,
we will use the normal distribution, Student #distribution, and F distri-
bution to perform hypothesis tests on various model parameters to see
if they are significant. While it is helpful if you are familiar with these
concepts, it is not essential. The software today is advanced enough to
present the results in such a way that you can easily judge the significance
of a parameter without much statistical background. A brief review is

provided in chapter 1.
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Correlation, simple regression, and multiple regression can all be per-
formed using any version of Microsoft Excel. Most readers will be able
to perform all their analyses in Excel. However, some of the advanced
features of multiple regression require an actual statistical package. There
are many fine ones on the market, and any of them will perform all the
techniques we will discuss. The examples in this book are all either from

Excel or from a statistical package called SPSS.






CHAPTER 1

Correlation Analysis

We begin preparing to learn about multiple regression by looking at cor-
relation analysis. As you will see, the basic purpose of correlation analysis
is to tell you if two variables have enough of a relationship between them
to be included in a multiple regression model. Also, as we will see later,
correlation analysis can be used to help diagnose problems with a mul-
tiple regression model.

Take a look at the chart in Figure 1.1. This scatterplot shows 26 obser-
vations on 2 variables. These are actual data. Notice how the points seem
to almost form a line? These data have a strong correlation—that is, you
can imagine a line through the data that would be a close fit to the data
points. While we will see a more formal definition of correlation shortly,
thinking about correlation as data forming a straight line provides a good
mental image. As it turns out, many variables in business have this type of
linear relationship, although perhaps not this strong.

Now take a look at the chart in Figure 1.2. This scatterplot also shows
actual data. This time, it is impossible to imagine a line that would fit the

data. In this case, the data have a very weak correlation.
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Figure 1.1 A scatterplot of actual data
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Figure 1.2 Another scatterplot of actual data

Terms

Correlation is only able to find, and simple regression and multiple regres-
sion are only able to describe, linear relationships. Figure 1.1 shows a linear
relationship. Figure 1.3 shows a scatterplot in which there is a perfect rela-
tionship between the X'and Y'variables, only not a linear one (in this case,
a sine wave.) While there is a perfect mathematical relationship between X
and Y it is not linear, and so there is no linear correlation between Xand Y.

A positive linear relationship exists when a change in one variable
causes a change in the same direction of another variable. For example,
an increase in advertising will generally cause a corresponding increase in
sales. When we describe this relationship with a line, that line will have a
positive slope. The relationship shown in Figure 1.1 is positive.

A negative linear relationship exists when a change in one variable
causes a change in the opposite direction of another variable. For ex-
ample, an increase in competition will generally cause a corresponding
decrease in sales. When we describe this relationship with a line, that line
will have a negative slope.

Having a positive or negative relationship should not be seen as a
value judgment. The terms “positive” and “negative” are not intended to
be moral or ethical terms. Rather, they simply describe whether the slope
coeficient is a positive or negative number—that is, whether the line

slopes up or down as it moves from left to right.
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Figure 1.3 A scatterplot of nonlinear (fictitious) data

While it does not matter for correlation, the variables we use with
regression fall into one of two categories: dependent or independent vari-
ables. The dependent variable is a measurement whose value is controlled
or influenced by another variable or variables. For example, someone’s
weight likely is influenced by the person’s height and level of exercise,
whereas company sales are likely greatly influenced by the company’s level
of advertising. In scatterplots of data that will be used for regression later,
the dependent variable is placed on the Y-axis.

An independent variable is just the opposite: a measurement whose
value is not controlled or influenced by other variables in the study. Ex-
amples include a person’s height or a company’s advertising. That is not
to say that nothing influences an independent variable. A person’s height
is influenced by the person’s genetics and early nutrition, and a company’s
advertising is influenced by its income and the cost of advertising. In the
grand scheme of things, everything is controlled or influenced by some-
thing else. However, for our purposes, it is enough to say that none of the
other variables in the study influences our independent variables.

While none of the other variables in the study should influence inde-
pendent variables, it is not uncommon for the researcher to manipulate the
independent variables. For example, a company trying to understand the
impact of its advertising on its sales might try different levels of advertising

in order to see what impact those varying values have on sales. Thus the
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“independent” variable of advertising is being controlled by the researcher.
A medical researcher trying to understand the effect of a drug on a disease
might vary the dosage and observe the progress of the disease. A market
researcher interested in understanding how different colors and package
designs influence brand recognition might perform research varying the
packaging in different cities and seeing how brand recognition varies.

When a researcher is interested in finding out more about the rela-
tionship between an independent variable and a dependent variable, he
must measure both in situations where the independent variable is at dif-
fering levels. This can be done either by finding naturally occurring varia-
tions in the independent variable or by artificially causing those variations
to manifest.

When trying to understand the behavior of a dependent variable, a
researcher needs to remember that it can have either a simple or multiple
relationship with other variables. With a simple relationship, the value
of the dependent variable is mostly determined by a single independent
variable. For example, sales might be mostly determined by advertising.
Simple relationships are the focus of chapter 2. With a multiple relation-
ship, the value of the dependent variable is determined by two or more
independent variables. For example, weight is determined by a host of
variables, including height, age, gender, level of exercise, eating level, and
so on, and income could be determined by several variables, including
raw material and labor costs, pricing, advertising, and competition. Mul-

tiple relationships are the focus of chapters 3 and 4.

Scatterplots

Figures 1.1 through 1.3 are scatterplots. A scatterplot (which some ver-
sions of Microsoft Excel calls an XY chart) places one variable on the Y-
axis and the other on the X-axis. It then plots pairs of values as dots, with
the X variable determining the position of each dot on the X-axis and the
Y variable likewise determining the position of each dot on the Y-axis. A
scatterplot is an excellent way to begin your investigation. A quick glance
will tell you whether the relationship is linear or not. In addition, it will
tell you whether the relationship is strong or weak, as well as whether it

is positive or negative.
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Scatterplots are limited to exactly two variables: one to determine the
position on the X-axis and another to determine the position on the Y-
axis. As mentioned before, the dependent variable is placed on the Y-axis,
and the independent variable is placed on the X-axis.

In chapter 3, we will look at multiple regression, where one depen-
dent variable is influenced by two or more independent variables. All
these variables cannot be shown on a single scatterplot. Rather, each in-
dependent variable is paired with the dependent variable for a scatterplot.
Thus having three independent variables will require three scatterplots.
We will explore working with multiple independent variables further in

chapter 3.

Data Sets

We will use a couple of data sets to illustrate correlation. Some of these
data sets will also be used to illustrate regression. Those data sets, along
with their scatterplots, are presented in the following subsections.

All the data sets and all the worksheets and other files discussed in this
book are available for download from the Business Expert Press website
(heep:/ Iwww.businessexpertpress.com/books/business-applications-multi-
ple- regression). All the Excel files are in Excel 2003 format and all the
SPSS files are in SPSS 9.0 format. These formats are standard, and any later

version of these programs should be able to load them with no difficulty.

Number of Broilers

Figure 1.1 showed the top 25 broiler-producing states for 2001 by both
numbers and pounds, according to the National Chicken Council. The

underlying data are shown in Table 1.1.

Age and Tag Numbers

Figure 1.2 was constructed by asking seven people their age and the last two
digits of their car tag number. The resulting data are shown in Table 1.2. As
you can imagine, there is no connection between someone’s age and that per-

son’s tag number, so this data does not show any strong pattern. To the extent
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Table 1.1 Top 25 Broiler-Producing States in 2001

State Number of broilers Pounds liveweight
(millions) (millions)
Georgia 1,247.3 6,236.5
Arkansas 1,170.9 5,737.3
Alabama 1,007.6 5,138.8
North Carolina 712.3 4,202.6
Mississippi 765.3 3,826.5
Texas 565.5 2,714.4
Delaware 257.7 1,494.7
Maryland 287.8 1,381.4
Virginia 271.5 1,330.4
Kentucky 253.4 1,292.3
California 250.0 1,250.0
Oklahoma 226.8 1,111.3
Missouri 245.0 1,100.0
South Carolina 198.0 1,049.4
Tennessee 198.3 932.0
Louisiana 180.0 890.0
Pennsylvania 132.3 701.2
Florida 1153 634.2
West Virginia 89.8 368.2
Minnesota 43.9 219.5
Ohio 40.1 212.5
Wisconsin 31.3 137.7
New York 2.3 12.2
Hawaii 0.9 38
Nebraska 0.5 2.7
Other 924 451.0

that any pattern at all is visible, it is the result of sampling error and having a

small sample rather than any relationship between the two variables.
Return on Stocks and Government Bonds

The data in Table 1.3 show the actual returns on stocks, bonds, and bills
for the United States from 1928 to 2009." Since there are three variables
(four if you count the year), it is not possible to show all of them in one
scatterplot. Figure 1.4 shows the scatterplot of stock returns and treasury

bills. Notice that there is almost no correlation.
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Table 1.2 Age and Tag Number

Age Tag no.
55 2
21 28
78 42
61 78
44 66
63 92
32 9

Table 1.3 Return on Stocks and Government Bonds

Year Stocks (%) | Treasury bills (%) | Treasury bonds (%)
1928 43.81 3.08 0.84
1929 -8.30 3.16 4.20
1930 -25.12 4.55 4.54
1931 —43.84 231 -2.56
1932 -8.64 1.07 8.79
1933 49.98 0.96 1.86
1934 -1.19 0.32 7.96
1935 46.74 0.18 4.47
1936 31.94 0.17 5.02
1937 -35.34 0.30 1.38
1938 29.28 0.08 4.21
1939 -1.10 0.04 4.41
1940 -10.67 0.03 5.40
1941 -12.77 0.08 -2.02
1942 19.17 0.34 2.29
1943 25.06 0.38 2.49
1944 19.03 0.38 2.58
1945 35.82 0.38 3.80
1946 -8.43 0.38 3.13
1947 5.20 0.57 0.92
1948 5.70 1.02 1.95
1949 18.30 1.10 4.66
1950 30.81 1.17 0.43
1951 23.68 1.48 -0.30
1952 18.15 1.67 2.27

(continued)
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Table 1.3 Return on Stocks and Government Bonds (continued)

Year Stocks (%) | Treasury bills (%) | Treasury bonds (%)
1953 -1.21 1.89 4.14
1954 52.56 0.96 3.29
1955 32.60 1.66 -1.34
1956 7.44 2.56 -2.26
1957 -10.46 3.23 6.80
1958 43.72 1.78 -2.10
1959 12.06 3.26 -2.65
1960 0.34 3.05 11.64
1961 26.64 2.27 2.06
1962 -8.81 2.78 5.69
1963 22.61 3.11 1.68
1964 16.42 3.51 3.73
1965 12.40 3.90 0.72
1966 -9.97 4.84 291
1967 23.80 4.33 -1.58
1968 10.81 5.26 3.27
1969 -8.24 6.56 -5.01
1970 3.56 6.69 16.75
1971 14.22 4.54 9.79
1972 18.76 3.95 2.82
1973 -14.31 6.73 3.66
1974 -25.90 7.78 1.99
1975 37.00 5.99 3.61
1976 23.83 4.97 15.98
1977 -6.98 5.13 1.29
1978 6.51 6.93 -0.78
1979 18.52 9.94 0.67
1980 31.74 11.22 -2.99
1981 -4.70 14.30 8.20
1982 20.42 11.01 32.81
1983 22.34 8.45 3.20
1984 6.15 9.61 13.73
1985 31.24 7.49 25.71
1986 18.49 6.04 24.28
1987 5.81 5.72 -4.96
1988 16.54 6.45 8.22
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Year Stocks (%) | Treasury bills (%) | Treasury bonds (%)
1989 31.48 8.11 17.69
1990 -3.06 7.55 6.24
1991 30.23 5.61 15.00
1992 7.49 341 9.36
1993 9.97 2.98 14.21
1994 1.33 3.99 -8.04
1995 37.20 5.52 23.48
1996 23.82 5.02 1.43
1997 31.86 5.05 9.94
1998 28.34 4.73 14.92
1999 20.89 4.51 -8.25
2000 -9.03 5.76 16.66
2001 —11.85 3.67 5.57
2002 -21.97 1.66 15.12
2003 28.36 1.03 0.38
2004 10.74 1.23 4.49
2005 4.83 3.01 2.87
2006 15.61 4.68 1.96
2007 5.48 4.64 10.21
2008 -36.58 1.59 20.10
2009 2592 0.14 -11.12
L
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Figure 1.4 Stock returns and treasury bills, 1928 to 2009. X- and

Y-axes have been removed for readability
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Federal Civilian Workforce Statistics

Table 1.4% shows a state-by- state breakdown of the number of federal em-
ployees and their average salaries for 2007. Figure 1.5 shows the resulting

scatterplot. Notice that there appears to be a fairly weak linear relationship.

Table 1.4 Average Federal Salaries and Number of Employees by State

State Number of employees Average salary ($)
Alabama 33,997 64,078
Alaska 11,922 56,525
Arizona 33,871 55,393
Arkansas 12,090 54,176
California 139,804 66,212
Colorado 33,196 67,679
Connecticut 6,854 66,343
Delaware 2,864 57,176
DC 138,622 87,195
Florida 71,858 60,807
Georgia 66,314 61,376
Hawaii 20,759 55,470
Idaho 7,788 58,057
Illinois 42,382 67,385
Indiana 18,577 60,658
Towa 7,468 55,799
Kansas 15,796 57,528
Kentucky 20,737 52,242
Louisiana 19,011 57,446
Maine 9,128 57,336
Maryland 103,438 79,319
Massachusetts 24,532 67,035
Michigan 23,345 65,576
Minnesota 14,298 62,953
Mississippi 16,576 56,978
Missouri 32,947 56,159
Montana 8,858 55,997
Nebraska 8,826 57,406
Nevada 9,146 59,831




CORRELATION ANALYSIS 11

State Number of employees Average salary ($)
New Hampshire 3,433 75,990
New Jersey 26,682 72,313
Ohio 41,445 67,638
QOklahoma 33,652 56,603
Oregon 17,649 60,818
Pennsylvania 62,486 59,092
Rhode Island 5,882 73,502
South Carolina 17,158 57,057
South Dakota 7,166 53,000
Tennessee 23,514 57,349
Texas 113,364 59,618
Utah 27,438 54,379
Vermont 3,537 57,279
Virginia 121,337 73,224
Washington 45,948 62,571
West Virginia 13,292 58,964
Wisconsin 11,494 57,404
Wyoming 4,759 54,952

Public Transportation Ridership

Table 1.5° shows the largest urbanized areas by population, unlinked

passenger trips,® and passenger miles for 2008. Figure 1.6 shows the
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Figure 1.5 Number of federal employees by state and average salaries
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Table 1.5 Largest Urbanized Areas by Population, Unlinked
Passenger Trips, and Passenger Miles (2008)

Area Unlinked Passenger | Population
passenger miles (in (2000
trips (in thousands) Census)
thousands)
New York-Newark, NY-NJ-CT 4,159,309 21,699,268 17,799,861
Los Angeles-Long Beach- 697,825 3,342,876 11,789,487
Santa Ana, CA
Chicago, IL-IN 649,604 4,148,216 8,307,904
Washington, DC-VA-MD 481,776 2,506,203 3,933,920
San Francisco-Oakland, CA 442,185 2,543,376 3,228,605
Boston, MA-NH-RI 377,999 1,881,252 4,032,484
Philadelphia, PA-NJ-DE-MD 361,236 1,726,824 5,149,079
Seattle, WA 195,507 1,284,726 2,712,205
Miami, FL 172,464 1,000,246 4,919,036
Atlanta, GA 162,899 978,010 3,499,840
Baltimore, MD 119,141 764,602 2,076,354
Portland, OR-WA 111,693 467,372 1,583,138
San Diego, CA 104,806 579,977 2,674,436
Denver-Aurora, CO 101,176 554,091 1,984,889
Houston, TX 100,443 632,615 3,822,509
Minneapolis-St. Paul, MN 94,799 490,215 2,388,593
Dallas-Fort Worth-Arlington, 76,043 489,618 4,145,659
X
Phoenix-Mesa, AZ 72,589 315,105 2,907,049
Honolulu, HI 71,310 327,418 718,182
Pittsburgh, PA 69,175 322,026 1,753,136
Las Vegas, NV 66,168 228917 1,314,357
Cleveland, OH 57,681 263,847 1,786,647
San Juan, PR 56,513 264,342 2,216,616
St. Louis, MO-IL 56,206 315,327 2,077,662
Milwaukee, W1 53,703 178,718 1,308,913
Detroit, MI 53,178 286,301 3,903,377
San Antonio, TX 48,349 218,023 1,327,554
San Jose, CA 44,895 207,074 1,538,312
Salt Lake City, UT 41,714 359,527 887,650
Austin, TX 37,399 161,630 901,920
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Area Unlinked Passenger | Population
passenger miles (in (2000
trips (in thousands) Census)
thousands)
Sacramento, CA 37,287 182,727 1,393,498
Cincinnati, OH-KY-IN 30,011 154,207 1,503,262
Virginia Beach, VA 29,268 117,881 1,394,439
Tampa-St. Petersburg, FL 27,710 142,898 2,062,339
Orlando, FL 27,235 166,770 1,157,431
Buffalo, NY 26,173 91,346 976,703
Providence, RI-MA 22,851 110,179 1,174,548
Charlotte, NC-SC 22,721 127,925 758,927
Riverside-San Bernardino, CA 22,605 126,952 1,506,816
Tucson, AZ 18,858 69,853 720,425
Kansas City, MO-KS 17,821 78,210 1,361,744
Rochester, NY 17,653 57,971 694,396
Hartford, CT 17,184 111,520 851,535
Fresno, CA 17,148 37,449 554,923
Columbus, OH 16,662 63,078 1,133,193
New Orleans, LA 16,342 43,726 1,009,283
Louisville, KY-IN 15,593 62,153 863,582
Richmond, VA 14,682 62,340 818,836
Albany, NY 13,903 48,563 558,947
Madison, W1 13,719 48,258 329,533
El Paso, TX-NM 13,180 66,604 674,801
Durham, NC 12,840 61,570 287,796
Memphis, TN-MS-AR 11,514 59,322 972,091
Stockton, CA 5,575 67,948 313,392
Kennewick-Richland, WA 4,894 70,208 153,851

relationship between unlinked passenger trips and population. Notice

that almost all the data points are clustered in the bottom left corner of

the chart. That is because the New York system has so many more trips

(over 4 million versus the next highest of about 700,000) and such a

higher population (almost 18 million versus the next highest of almost

12 million) that its observation overpowers the remaining observations.

This type of observation outside the usual values is called an outlier.’
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Figure 1.6 Relationship between unlinked passenger trips and

population
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Figure 1.7 Figure 1.6 with the New York observation removed

Figure 1.7 shows the same chart with the New York observation removed.

Here you can begin to see how a line might be used to fit the data and
how the relationship is positive.

Figure 1.8 shows the relationship between passenger miles and popula-
tion, again with the New York observation removed. Once again, we see a
positive relationship. Figure 1.9 shows the relationship between unlinked
passenger trips and passenger miles, again with the New York observation

removed. This time, the data form an almost perfectly straight, positive line.

Correlation measures the degree of linear association between two vari-

ables. Correlation can only be measured between pairs of variables, and

Correlation
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Figure 1.8 Relationship between passenger miles and population with
New York observation removed
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Figure 1.9 Relationship between unlinked passenger trips and
passenger miles

it makes no distinction between dependent and independent variables—
that is, the correlation between height and weight is exactly the same as
between weight and height. The term correlation analysis is often used
interchangeably with correlation.

Correlation is measured using a statistic called the correlation coef-
ficient. The population symbol is the Greek letter rho (p), whereas the
sample symbol is the letter 7. The correlation coeflicient can take on any
value between negative one and positive one. A negative sign indicates a
negative relationship, whereas a positive sign indicates a positive relation-
ship. Two variables with a negative relationship will have a line with a
negative slope fitted to them, whereas two variables with a positive rela-

tionship will have a line with a positive slope fitted to them.
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Ignoring the sign, the closer the value is to one (or negative one), the
stronger the relationship. The closer the value is to zero, the weaker the
relationship. A value of 1 indicates perfect positive linear correlation—
that is, all the points form a perfect line with a positive slope. A value of
—1 indicates perfect negative linear correlation where all the points form
a perfect line with a negative slope. A value of zero indicates no correla-
tion—that is, there is no relationship between the two variables. When
this happens, the points will appear to be randomly dispersed on the
scatterplot.

It is important to note that correlation only measures /inear relation-
ships. Even a very strong nonlinear relationship will not be spotted by
correlation. So a correlation coefficient near zero only indicates that there
is no linear relationship, not that there is no relationship. If you look back
at Figure 1.3, for example, you can see a clear pattern to the data: a sine
wave. The data were generated using a sine wave formula, so a sine wave
fits it absolutely perfectly. However, the correlation coeflicient for this

data is, for all practical purposes, zero.6

Calculating the Correlation Coefficient by Hand

Most likely, you will never need to calculate a correlation coefficient by
hand. Excel can easily calculate the value for you, as can any statistical
software package. As such, feel free to skip this section if you like. How-
ever, seeing and working with the underlying formula can give you some
insight into what it means for two variables to be correlated.

The formula to compute the correlation coefficient is as follows:

Correlation Coefficient

(T 7)-(TX) ()
I (Ex)-(2x) [ [(Er)-(2r) ]

This is a long formula and it looks to be incredibly complex; however,
as we will see, it is not all that difficult to compute manually. The first

thing to note is that, except for 7 (the sample size), all the terms in this
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Table 1.6 Correlation Coefficient Calculations

Age Tag no. Age - Tag Age? Tag no.?
55 2 110 3,025 4
21 28 588 441 784
78 42 3,276 6,084 1,764
61 78 4,758 3,721 6,084
44 66 2,904 1,936 4,356
63 92 5,796 3,969 8,464
32 9 288 1,024 81
354 317 17,720 20,200 21,537

equation begin with a summation sign (Z). It is this characteristic that
will allow us to greatly simplify this formula. This is best seen with an
example.

Using the data on age and tag numbers from Table 1.2, Table 1.6
shows the interim calculations needed to determine the correlation coef-
ficient. The sample size is seven, so 7 = 7. We will arbitrarily assign Age as
X and Tag Number as ¥, so, using Table 1.6, XX = 354, XY = 317, XXV
= 17,720, £X* = 20,200, and XY = 21,537.7 The resulting calculations

are as follows:
_ (XX -Y)-(XX) ()
[P Ex)- () () -(2r ]
7(17,720) - (354)- (317)
J[7+(20,200)- 3547 ][ 7+(21,537) - (317)* ]
~ 124,040 112,218
~ J141,400-125,316]-[150,759 — 100,489

11,822 B
J16,084-50,270

0.4157

The resulting correlation coeflicient of 0.4157 is weak but not zero
as you might expect given the lack of a relationship between these two
variables. That is a result of the small sampling size and sampling error.
However, the real question is if this value is large enough to be szatistically

significant—that is, is this sample value large enough to convince us that
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the population value is not zero? We will explore this question in a later

section.

Using Excel

Naturally, these calculations can be performed easily using Excel. Excel
has two main approaches that can be used to calculate a correlation co-
efficient: dynamic and static. These two approaches can also be used to
compute some of the regression coeflicients discussed in later chapters.

The dynamic approach uses a standard Excel formula. Doing so has
the advantage of automatically updating the value if you change one of
the numbers in the data series. For the correlation coefficient, it uses the
CORREL function. This function takes two inputs: the range containing
the first data series and the range containing the second data series. Since
correlation makes no distinction between the independent and depen-
dent variables, they can be entered in either order.

The data in Figure 1.10 are entered in column format—that is, the age
variable is entered in one column and the tag number variable is entered
in a separate column but side by side. This is the standard format for sta-

tistical data: variables in columns and observations in rows. In this case,

A0 - A =CORREL(A2:A3B2BS)
A | B C 0 | E | F

1 Age TagNo.

2 55 2

3 21 28

4 78 42

5 61 78

6 44 66

7 63 42

8 32 9

9

10 [ 0.4157571

11

12

Figure 1.10 Calculating a correlation coefficient using the CORREL
function in Excel
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the data for age are in cells A2 to A8, and the data for tag number are in

cells B2 to B8. Row two, for example, represents one observation—that

is, someone 55 years old had a tag number that ended in a “02” value.
The following are a few other notes regarding this standard format for

statistical data:

1. There should not be any blank columns inside the data set. In fact,
having a blank column will cause some of the later procedures we
will perform to fail; however, blank columns would not affect cor-
relation analysis.

2. Having blank columns on either side of the data set is a good idea
because it sets the data off from the rest of the worksheet and makes
data analysis, like sorting, much easier.

3. Having column headings is good; however, they are not required.
Some of the later procedures will use these column headings to label
the results, which makes those results more readable. Column head-
ings should be meaningful but not too long,.

4. 'There should not be any blank rows inside the data set. While Excel
will ignore blank rows in the statistical procedures themselves, blank
rows make it more difficult to visualize the data as well as making
data sorting difficult.

5. While it does not matter for correlation analysis, since it ignores the
dependent/independent status of variables, it is required for multiple
regression that all the independent variables be in contiguous col-
umns so the dependent variable should be in either the left or right
column of the data set. The generally accepted approach is to use the

left column.

While some of these are just “good ideas” in Excel, most statistical
software will strictly enforce many of these rules. Figure 1.11 shows the
same car tag data inside a professional statistical software package called
SPSS.8 Notice the column format that looks almost identical to Excel,
only the variable names are not shown inside a cell the way they are in
Excel. Speaking of variable names, notice that the tag number is labeled
“Tag.Number” rather than “Tag no”. SPSS does not allow spaces in spaces

in variable names so a period is used in its place. The darta file you can
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| \\EM SPSS Statistics Processor is ready\ ‘ | ‘ ‘

Figure 1.11 The car tag data inside SPSS

download is in an older SPSU format that did not allow periods or up-
percase letters so it has the variables labeled “age” and “tagno”.

SPSS is a very powerful and widely used statistical package. In later
chapters, some of the techniques discussed will be too advanced to per-
form using Excel. These techniques will be illustrated using SPSS. How-
ever, any modern statistical package would be able to perform these
techniques in a similar manner.

Referring to Figure 1.10, the correlation coefficient is shown in cell
A10, and you can see the underlying formula in the formula bar. It is
“=CORREL(A2:A8,B2:B8)”. The CORREL function is used, and it pro-
vides the range of the two variables without the column labels.”

The static approach uses an Excel menu option to perform the calcu-
lation of the correlation coefficient. Excel computes the value and then
enters it into the worksheet as a hardwired number—that is, the actual
number is entered into a cell rather than a formula that evaluates to a
number. If you then change the data, the correlation coeflicient does not
change since it is just a number. To update its value, you must rerun the
menu option.

Before we demonstrate the static approach, we must warn you that
not all installations of Excel are ready to perform these calculations. For-
tunately, the necessary files are usually installed on the hard drive, and
the modification to make Excel ready is quick and only needs to be per-
formed one time. We will see how to prepare Excel before continuing

with the example.
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Figure 1.12 The office button dialog box in Excel

Click the Office button, which brings up the dialog box shown in

Figure 1.12. Click on the Excel Options button at the bottom, which

brings up the Excel Options dialog box shown in Figure 1.13. Click on
Add-Ins on the left and then hit the GO button next to Manage Excel Add-
Ins at the bottom to bring up the Add-In Manager shown in Figure 1.14.

Excel Options.

@)

[ —

@ Change the most popular options in Excel.

Formulas
Proofing Top options for working with Excel
Save Show Mini Toolbar on selection
Enable Live Preview &
Advanced
[[] Show Developer tab in the Ribbon &
Customize Always use ClearType
B Color scheme: ‘ Blue |
ol 3|
Trust Center SepzenTip style: ‘ Show feature descriptions in SereenTips v |

R Create lists for use in sorts and fill sequences: | Edit Custom Lists.

When creating new workbooks

Use this font: Body Font v
Font size: 11 (¥
Default view for new sheets: | Normal View v

Include this many sheets: |3 3

Personalize your copy of Microsoft Office

Username: MM
Choose the languages you want to use with Microsoft Office: | Language Settings..

o T

Figure 1.13 The Excel options dialog box
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Figure 1.14 Excel add-in manager under Excel 2010

Click on the Analysis ToolPak and Analysis ToolPak-VBA and hit OK to
enable them.

Now that you have the add-ins installed, to compute the correlation
coefficient using the static approach, select Data Analysis under the Data
tab from the Ribbon. This brings up the dialog box shown in Figure
1.15. By default, the procedure you last used during this session will be

Data Analysis

Analysis Tools

Anova: Single Factor
Anova: Two-Factor With Replication

Anova: Two-Factor Without F'.EEIicaﬁnn

Covariance

Descriptive Statistics
Exponential Smoothing

F-Test Two-Sample for Variances
Fourier Analysis

Histogram

iy

=l

Figure 1.15 Excel data analysis dialog box
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Figure 1.16 The Excel correlation dialog box

highlighted. You use this dialog box to select the statistical procedure to
perform—Correlation, in this case. Selecting Correlation and clicking on
OK brings up the dialog box shown in Figure 1.16.

You use the dialog box in Figure 1.16 to give Excel the information
it needs to perform the correlation analysis. At the top of the dialog box,
you enter the cells containing the data. If you include the column heading
in the range, which is a good idea, Excel will use those titles in the output.
If you do, you will need to check the Labels in first row box. Excel can
perform correlation analysis on data that is stored in either row or column
format, so you must tell Excel which format is used. Excel can usually
figure it out automatically when headings are included, but it sometimes
guesses wrong when only numbers are included in the range.

Finally, you must tell Excel where to store the results. Some statistical
procedures, especially regression analysis, take up a lot of space for their
output, so it is usually best to store the results in either a large blank area
or, even better, a blank worksheet tab, called a p/y on this dialog box. Just
to display the results of this single correlation analysis, for example, Excel
required nine worksheet cells. This is shown in Figure 1.16 on the right
side of the figure.

At first glance, the output in Figure 1.16 will seem more than a little
strange. To understand why this format is used, you need to know that
correlation analysis is often applied to many variables all at once. The cor-
relation coeflicient itself can only be calculated for pairs of variables, but
when applied to many variables, a correlation coefficient is calculated for
every possible pair of variables. When more than a couple of variables are
used, the format in Figure 1.16 is the most efficient approach to reporting

those results.
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This format is called a correlation matrix. The top row and left column
provide the names of the variables. Each variable has a row and column
title. Inside this heading row and column are the correlation coefficients.
The pair of variables associated with any particular correlation coeflicients
can be read off by observing the row and column heading for that cell.

Every correlation matrix will have a value of 1.000 in a diagonal line
from the top left cell to the bottom right cell. This is called the main
diagonal. The cells in the main diagonal have the same row and columns
headings and each variable is 100 percent positively correlated with itself,
so this diagonal always has a value of one. Notice too that Excel does not
show the numbers above the main diagonal. These numbers are a mirror
image of the numbers below the main diagonal. After all, the correlation
coefficient between age and tag number would be the same as the correla-
tion coeflicient between tag number and age, so it would be redundant to
give the same numbers twice.

The static approach avoids the problem of writing formulas and is
especially efficient when the correlation coefficient must be computed for
many variables, but it does have a significant drawback. Since the results
are static, you must always remember to rerun Correlation if you must

change any of the numbers.

Using SPSS

Earlier, we saw how SPSS stores data in column format similar to the way
it is stored in Excel. To perform correlation analysis, you click on Analyze,
Correlate, and Bivariate."’ This brings up the dialog box shown in Figure
1.17 where you select the variables to perform correlation analysis on. A
minimum of two variables is required (currently only one is selected), but
you can select as many as you like. With more than two variables, SPSS
performs correlation on every possible pair of variables.

The result of the correlation analysis in SPSS is shown in Figure 1.18.
As discussed, this format for displaying the data is known as a correlation
matrix. Notice that the correlation matrix has two other numbers in each
box besides the actual correlation. The first one is the significances using
a two-tailed test. This is also referred to as the p-value, which will be dis-

cussed later. Notice, too, that the p-value is missing on the main diagonal.
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Figure 1.17 The SPSS variable selection dialog box
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Figure 1.18 Correlation results in SPSS

This will always be the case as these values are always significant. The last

number is the sample size, or seven in this case.

Some Correlation Examples

We will now look at some more correlation examples using the data sets

discussed earlier.
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Broilers

Figure 1.1 shows a set of data that was very strongly correlated. This chart
shows the top 25 broiler-producing states for 2001 by both numbers and
pounds. The data are shown in Table 1.1. The resulting correlation is

0.9970. As expected, this value is both strong and positive.

Tag Numbers and Sine Wave

Figure 1.2 shows the tag number example, which is discussed earlier. That
correlation is 0.4158. Figure 1.3 shows the sine wave. As discussed, that

correlation is —0.0424, or about zero.

Stock and Bond Returns

Table 1.3 shows the actual returns on stocks, bonds, and bills for the
United States from 1928 to 2009. That dataset has four variables:

1. Year
2. Return on stocks
3. Return on treasury bonds

4. Return on treasury bills

Table 1.7 shows the correlation matrix for this data. Notice that none
of the correlations is very high. The value of 0.4898 between “Year” and
“Treasury bills” is the highest, whereas the correlation between “Stocks”

and “Treasury bonds” is virtually zero.

Federal Employees and Salary

Table 1.4 shows a state-by-state breakdown of the number of federal em-

ployees and their average salary for 2007. Figure 1.5 shows this data to

Table 1.7 Correlation Matrix for Stock and Bond Returns

Year Stocks | Treasury bills | Treasury bonds
Year 1.0000
Stocks 0.0212 1.0000
Treasury bills 0.4898 -0.0189 1.0000
Treasury bonds 0.2721 -0.0009 0.3146 1.000
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Table 1.8 Correlation Matrix for Transit Ridership Including New
York

Unlinked Passenger miles | Population
passenger trips
Unlinked passenger trips 1.0000
Passenger miles 0.9990 1.0000
Population 0.8610 0.8633 1.0000

have a weak, positive correlation. This is supported by the resulting cor-

relation value of 0.5350.

Transit Ridership

Table 1.5 shows the largest urbanized areas by population, unlinked pas-

senger trips, and passenger miles for 2008. That dataset has three variables:

1. Unlinked passenger trips in thousands
2. Passenger miles in thousands

3. Population from the 2000 Census

Figure 1.6 shows that the data had an outlier in the values for New York.
Its values in all three categories far exceed the values for any other transit
system. The single outlier does not affect correlation analysis as much as
it does the scatterplots. Table 1.8 shows the correlation matrix using all
the data and Table 1.9 shows the correlation matrix while excluding New
York. Notice that the correlations are all very strong, all very positive, and

not very different with or without New York.

Table 1.9 Correlation Matrix for Transit Ridership Excluding New
York

Unlinked Passenger miles | Population
passenger trips
Unlinked passenger trips 1.0000
Passenger miles 0.9885 1.0000
Population 0.8726 0.8544 1.0000
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Correlation Coefficient Hypothesis Testing'!

All the aforementioned data discussed are sample data. The sample cor-
relation coeflicients 7 computed on the aforementioned data are just an
estimate of the population parameter p. As with any other statistic, it
makes sense to perform hypothesis testing on the sample value. While
the mechanics of the hypothesis for the correlation coefficient are almost
identical to the single variable hypothesis tests of means and propor-
tions that you are likely familiar with, the logic behind the test is slightly
different.

With hypothesis testing on the sample mean or sample proportion,
the test is to see if the sample statistic is statistically different from some
hypothesized value. For example, you might test the average weight of
cans of peas coming off a production line to see if it is 16 ounces or not.
With the correlation coeflicient, the hypothesis testing is to see if a signifi-
cant population linear correlation exists or not. Therefore, our hypotheses

become
H, : The population correlation is not meaningful

H, : The population correlation is meaningful

Since a nonzero value represents a meaningful correlation, we opera-

tionalize these hypotheses as follows:

Hy:p=0
H:p#0

If we have reason to expect a positive or negative correlation, we can
also perform a one-tailed version of this test.

In virtually all instances, we are testing a one-or two-tailed version of
p = 0. The test we will use for this hypothesis is only good where the null
hypothesis assumes a correlation of zero. In the rare case that you wish to
test for a value other than zero, the Student #distribution does not apply
and the test discussed just after the next paragraph cannor be used. Read-
ers needing to test values other than zero are urged to consult an advanced
reference for the methodology.

Once the one-or two-tailed version of the hypotheses is selected,

the critical value or values are found in the Student ztable or from an
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appropriate worksheet in the normal fashion. However, this test has 7 — 2

degrees of freedom rather than 7 — 1. The test statistic is as follows:

Correlation Coeflicient Test Statistics
- r
n=2 (1 _ 72)
\ (n-2)
Notice that the hypothesized value is not used in this equation. That
is because it is always zero, and subtracting it would have no impact. Also

notice that none of the column totals is used in the calculations. All you

need is the sample correlation coefficient 7 and the sample size 7.

An Example Using Tag Numbers

In the tag number example, the sample size is seven and the sample cor-
relation is 0.4158. Since we have no reason to believe that tag numbers
should be positively or negatively correlated with age, we will perform a

two-tailed test—that is,
H,:p=0
H:p#0

With 7 = 7, we have five degrees of freedom (7 — 2), giving us a critical

value of +2.5706. The test statistic calculates as the following:

Hypothesis Test for Tag Numbers

7

1-r%)
(n—2)
__ 04158 _ 04158 _ o,
\/(1—0.41582) \/0.8271
(7-2) 5

Since 1.0223 is less than the critical value of 2.5706, we accept that

the null hypothesis is correct. Accepting the null hypothesis as correct
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means we conclude that the population correlation is not significantly
different from zero. In other words, there is no evidence of a population
correlation. Given the nature of the data, this is exactly what we would

expect.

Steps to Hypothesis Testing

To summarize, the steps to hypothesis testing of the correlation coefhi-

cient are as follows:

1. Select the null and alternative hypothesis based on your belief that
the correlation should or should not have a direction. You will al-
ways be selecting one of the three following sets of hypotheses:

a. When you have no reason to believe the correlation will have a

positive or negative value

Hy,:p=0
H:p#0

b. When you believe the variables will have a positive correlation

Hy:p<0
H:p>0

c. When you believe the variables will have a negative correlation

Hy:p=0
H:p<0

2. Set the level of significance, also known as alpha. In business data
analysis, this is almost always 0.05. For a more detailed discussion of
alpha, consult any introductory statistics textbook.

3. Find the critical value based on the Student #distribution and 7 — 2
degrees of freedom.

4. Compute the test statistic using the Correlation Coefficient Test Sta-
tistics formula.

5. Make a decision.

a. When you have no reason to believe the correlation will have a

positive or negative value, you accept the null hypothesis (that
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there is no correlation) when the test statistic is between the two
values. You reject the null hypothesis (and conclude the correla-
tion is significant) when the test statistic is greater than the posi-
tive value or less than the negative value.

b. When you believe the variables will have a positive correlation,
you accept the null hypothesis when the test statistic is less than
the positive critical value and reject the null hypothesis when the
test statistic is greater than the positive critical value.

c. When you believe the variables will have a negative correlation,
you accept the null hypothesis when the test statistic is greater
than the negative critical value and reject the null hypothesis

when the test statistic is less than the negative critical value.

The Excel Template

All these calculations can be automated using the Correlate XLS work-
sheet. We will demonstrate it using the example of the tag data. The Cor-
relate tab allows you to enter up to 100 pairs of values in cells A2 to B101.
It then shows the correlation coefficient to four decimal points in cell E3
and the sample size in cell E4. This is shown in Figure 1.19.

The red square in the worksheet, shown in gray here, outlines the area
where the data are to be entered. Only pairs of values are entered into the
calculations and values outside of the red square (shown in gray) are not
allowed. This is enforced by the worksheet. It is protected and no changes

can be made outside the data entry area.

Aol s s e TE ]

1 X Y

2 %5 2

3| 21 28 r=| 04158
4| 78 42 n= 7
5 61 78

6| 44 66

= 63 92

g 32 9

9
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Figure 1.19 Using the Excel template to perform correlation analysis
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Figure 1.20 The critical values tab of the template

The Critical Values tab of the worksheet is shown in Figure 1.20. Since
this hypothesis test is always performed using the Student #distribution,
those are the only values returned by this worksheet tab. Just as in the
hypothesis testing template, these values are not really needed since the
tab for hypothesis testing looks up the values automatically.

The Hypothesis Test tab of the worksheet is shown in Figure 1.21. This
tab automates much of the hypothesis testing. You enter the alpha level
in cell B2, the correlation coefficient in cell B5, and the sample size in
cell B6. The tab then performs all the calculations. You then simply select
the appropriate hypothesis. In this example, the two-tailed test returns
the test statistic of 1.0223, as computed in the Hypothesis Test for Tag
Numbers, and accepts the null hypothesis.

Using SPSS

Look back at Figure 1.18, which shows the correlation matrix for the tag
data. This has everything you need to perform the hypothesis test. In Fig-
ure 1.18, the value below the correlation is the two-tailed significance level,
or 0.354 in this case. This is also known as the p-value. For a two-tailed
test, you accept the null hypothesis when the p-value is greater than alpha
and reject the null hypothesis when the p-value is less than alpha. Since the
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A | B | T | D (|
| 1 |Hypothesis Information
2 |Alphaly [ oof]
| 3 |
| 4 |Sample Information
| 5 |Correlation coefficient 04158
| 6 |Size 7
|7 |
Positive or Assumed Assumed
| 8 | Negative Positive Negative
9 Hy: p=0 p=0 p=0
10 Hi: p#0 p=>0 p=0
|11 Critical value(left): -2.5706 -2.0150
| 12|  Critical vahie(right): 25706 2.0150
113 | Test statistics: 1.0223 1.0223 1.0223
| 14| Decision:]  Accept Null  Accept Nulll  Accept Null
15

Figure 1.21 A template for automating hypothesis testing of
correlation values

p-value of 0.354 is greater than our alpha value of 0.05, we accept the null
hypothesis and again conclude that the correlation is insignificant.

The process is almost as easy for a one-tailed hypothesis test—that is,
when you believe the correlation should be either positive or negative.
In this case, the hypothesis test is a two-step process. First, you compare
the sign of the correlation coeflicient. If it does not match your expecta-
tions—that is, if your alternative hypothesis is that it is positive but the
calculated value is negative—then you always accept the null hypothesis.
Second, if the signs match, then you compare alpha and the p-value as
in the first paragraph of this section, only you divide the p-value in half.

So if we believed the tag correlation should have been positive, then we
would have passed the first part since the calculated correlation was indeed
positive. Now we would compare 0.354 / 2 = 0.177 against the alpha value
0f 0.05. Since the new p-value of 0.117 is still larger than alpha, we would

again accept the null hypothesis and conclude the correlation is insignificant.

Broilers

Figure 1.1 shows a set of data that is very strongly correlated. This chart

shows the top 25 broiler-producing states for 2001 by both numbers and
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A | B | B D
| 1 |Hypothesis Information
[ 2 |Alpha 0.05
Ea0
| 4 |Sample Information
| 3 |Correlation coefficient 0.997
| & |Size 25
L
Positive or Assumed Assumed
_ 8 Negative Positive Negative
9 Hy: p=0 p=0 p=0
10 H;: p#0 p=0 p=0
L1 Critical vatue(left): -2.0687 -1.7139
[12|  Critical vahe(right): 2.0687 1.7139
(13 ] Test statistics: 61.7745 61.7745 61.7745
14 Decision: Reject Null Reject Nulll  Accept Null

Figure 1.22 Using the Excel template to test the broilers hypothesis

pounds. The data are shown in Table 1.1. The resulting correlation is
0.9970. Since more broilers should weigh more, we would expect a posi-
tive correlation. Figure 1.22 shows use of the Excel template to test the

correlation coefficient for significances, and it is significant.

Stock and Bond Returns

Table 1.3 shows the actual returns on stocks, bonds, and bills for the
United States from 1928 to 2009. Figure 1.23 shows the correlation ma-
trix on these variables from SPSS. As you can see, it flags the combinations
that are significant at the 0.05 level with one asterisk, as well as the higher

0.01 level with two asterisks. In this case, the following are significant:

1. “Treasury bills” with “Year”
2. “Treasury bonds” with “Year”
3. “Treasury bills” with “Treasury bonds”

Due to the large sample size, these are significant in spite of their relatively
low correlation values. In general, the larger the sample size, the weaker

the correlation can be and the correlation still be significant.
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& *Output5 [Document5] - IBM SPSS Statistics Viewer =B X
File Edit View Data Transform Insert Format Analyze Graphs Utilties Add-ons Window Help
- . &
" %I Oétlpézrrelalmns Correlations
[E] Title
[ hotes Correlations
Year Stocks TBills T Bonds
Year Pearson Correlation 1 o 490" 272
Sig. (2-tailed) 850 .000 013
N 82 82 A2 B2
Stocks Pearson Correlation 021 1 -.019 -001
Sig. (2-tailed) 850 866 594
N 82 82 82 82
TBills  Pearson Gorrelation 480" -019 1 315"
Sig. (2-1ailed) 000 866 004
N 82 82 82 82
TBonds  Pearson Correlation 272 -.001 315" 1
Sig. (2-tailed) 013 994 .004
N 82 82 B2 B2
** Correlation is significant atthe 0.01 level (2-tailed).
*. Gorrelation is significant atthe 0.05 level (2-tailed)
&=
1 0|
|Duuble click to edit Log IBM SPSS Statistics Processor is ready‘ | ‘H: 84, W: 992 pt.

Figure 1.23 SPSS correlation matrix for stock and bond data

Causality

Finding that a correlation coeflicient is significant only shows that the
two variables have a linear relationship. It does 7oz show that changes in
one variable cause changes in another variable. This is called causalizy, and
showing causality is much more complex than just showing correlation.

Consider the example in Box 1.1.

Box 1.1
Spelling and Shoe Size

If you walk into any elementary school in this nation and measure the
students’ spelling ability and shoe size (yes, shoe size), you will find a
strong positive correlation. In fact, the correlation coefficient will be
very close to +1 if you compute it separately for boys and girls! Does
this mean that big feet cause you to be able to spell better? Can we
scrap all the standardized tests that elementary school students take
and just measure their feet? Or does it mean that being a good speller
causes you to have bigger feet?

To make the matter even more confusing, if you walk into any
high school in this nation and make the same measurement, you will

find that the correlation coefficient is close to zero and, in fact, is
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insignificant. Can it be the case that having big feet only helps you
in elementary school? Or is correlation analysis telling us something
other than big feet cause good spelling?

Have you figured it out? In first grade, most students are poor spell-
ers and have small feet. As they get older and move into higher grades,
they learn to spell better and their feet grow. Thus the correlation be-
tween foot size and spelling ability really tells us that older elementary
school students spell better than younger ones. In addition, since boys
and girls grow at different rates, the correlation improves when each
gender is computed separately. By high school, much of this effect has
finished. Students no longer study spelling and are mostly reasonably
competent spellers. Thus any differences in spelling ability are due to
factors other than their age. Since age is no longer an indicator of spell-
ing ability, a surrogate measure like foot size is no longer correlated
with spelling. In addition, many students have completed the bulk of
their growth by high school, so differences in feet are more an indica-
tion of the natural variation of foot size in the population than they

are of age.

Simply stated, if we wish to show that A causes B, simply showing
that A and B are correlated is not enough. However, if A and B are not
correlated, that does show that A does not cause B—that is, the lack of
correlation between foot size and spelling ability in high school is, by
itself, enough to conclusively demonstrate that having larger feet does not
cause a student to spell better.

Three things are required in order to show that A causes B:

1. A and B are correlated.
2. If A causes B, then A must come before B. This is called a clear tem-
porary sequence.

3. There must be no possible explanation for the existence of B other
than A.

Of these three items, only the first item—that A and B are corre-

lated—is demonstrated using statistics. Thus it is never possible to
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demonstrate causality by just using statistics. Demonstrating the second
and third items requires knowledge of the field being investigated. For
this reason, they are not discussed in any detail in this textbook.

Think this spelling example is too esoteric to be meaningful? Think
again. At many businesses, we can show that as advertising rises, sales go
up. Does that mean that increases in advertising cause increases in sales?
It could be, but businesses have more income when sales increase, and
so they might simply elect to spend more of that income on advertis-
ing. In other words, does advertising — sales or does sales — income —
advertising? Another example might help.

Now suppose that we have a new marketing campaign that we are
testing, and we wish to show that the campaign causes sales of our prod-
uct to rise. How might this be accomplished?

Showing that the two are correlated would involve computing the
correlation of the level of expenditure on the new marketing campaign
and our market share in the various regions. Showing a clear temporary
sequence would involve looking at historical sales records to verify that
the sales in the areas receiving the marketing campaign did not go up
until after the marketing campaign had been started. In all likelihood,

accomplishing these first two steps would not be too difficult, especially

Box 1.2
Ice Cream Sales

When ice cream sales are high, the number of automobile wrecks is
also high. When ice cream sales are low, the number of automobile
wrecks is lower. Does this mean that sales of ice cream cause automo-
bile wrecks or that automobile wrecks drive the sale of ice cream?
Actually, it means neither. Just as income might drive advertising,
a third variable influences both ice cream sales and automobile wrecks.
In the summer, people drive more and so have more wrecks; they also
buy more ice cream. In the winter, people drive less and so have fewer
wrecks; they also buy less ice cream. Thus it is the season that is in-
fluencing both ice cream sales and automobile wrecks. Since they are

both influenced by the same variable, they are correlated.
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if the marketing campaign truly did cause additional sales. However, the
third step might be more difficult.

In deciding if anything other than your new marketing campaign
could explain the change in sales, you will need to look at the actions of
your competitors, changes in demographics, changes in weather patterns,
and much more. Of course, the specific items on this list would depend
on the product being investigated. Now imagine how difficult it is to rule
out all alternative explanations for more complex areas of study such as
something causing cancer. Clearly, showing causality is not a simple un-
dertaking. Fortunately, effective use of regression does not require show-
ing causality. Likewise, using the results of regression either to understand
relationships or to forecast future behavior of a variable does not require
showing causality.

For another, more detailed discussion of the problems showing cau-

sality, see Box 1.3.

Box 1.3
Working Mothers Have Smarter Kids

A few years ago, a rash of television and newspaper reports focused on

a research finding that stated that the children of working mothers had

* higher 1Q scores,
¢ |lower school absenteeism,
* higher grades,

e more self-reliance.

Any stay-at-home mother who saw these reports might reasonably
conclude that the best thing she could do for her children is to put the
kids in daycare and get a job!

The problem is the research was seriously flawed! But first, we will
review how the research was conducted. Only by knowing how the
research was conducted can you begin to see the flaws in that research.

Researchers selected 573 students in 38 states. The students were

in first, third, and fifth grades. They divided these students into two
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groups: those with working mothers and those with stay-at-home
mothers. On the measures of success used by the researchers, the first
group did better.

Do you see the problem? The researchers made no attempt to fig-
ure out why the mothers in the second group were at home. Naturally,
some of them were in families who were making the sacrifices neces-
sary so the mother could be home with the kids. If those were the only
ones in the second group, then it might make sense to conclude that
the mother’s staying at home did not improve the child’s performance.
However, this group of stay-at-home mothers included mothers who

were not working for the following reasons:

* They were on welfare.

* They were too sick to work.

* They could not find a job.

* They simply did not want to work.

* They did not speak English.

* They were alcoholics or drug users who were unemployable.
¢ They were unemployable for other reasons.

e They were under 18 and too young to work.

It is likely that the poor performance from children from these
groups was bad enough that it drove down the likely higher perfor-
mance by children who had loving, concerned mothers who stayed
home for their children.

Even if none of these factors were present and the data were com-
pletely valid, there is another equally likely explanation for the data:
Families are more likely to make the sacrifice for the mother to stay
home when the child is having problems. Thus the lower score for the
kids of stay-at-home mothers could be due to the mothers’ staying at
home to help kids with problems rather than the facts that the moms
are at home causing kids to have problems—that is, it could very well
be that poor performance by the children caused their mother to stay
at home rather than the mother staying at home causing the poor

performance.
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This study makes a point that every researcher and every consumer
of research should always keep in mind: A statistical relationship—
even a strong statistical relationship—does not imply that one thing
caused another thing. It also makes another very important point if
you wish to be an educated consumer of statistics: It is not enough to
know the results of the statistical analysis; in order to truly understand
the topic, you must know how the data were collected and what those

data collection methods imply.

Summary

In this chapter the topic of correlation was introduced. Beginning with a
scatterplot, we considered how two variables could be correlated. We also
considered the relationship between causality and correlation.

We saw that correlation measured if there was a significant relation-
ship between a pair of variables. In the next chapter, we will see how to

use simple regression to mathematically describe that relationship.



CHAPTER 2

Simple Regression

In the last chapter, we looked at correlation analysis where we measured
the linear relationship between pairs of variables. In this chapter we will
use simple regression to develop a model describing the relationship be-
tween a single dependent variable and a single independent variable. This
type of model is not frequently used in business, but understanding sim-
ple regression is a good way to begin our discussion of multiple regression.

Recall from high school geometry that the equation for a straight line

can be written as follows:

Straight Line
Y=mX+b

In this equation, 7 is the slope of the line and 4 is the Y-intercept, or
just intercept for short. Simple regression is a process for fitting a line to a
set of points so the result of that process will be a value for the slope and
intercept for that line. Regression uses different symbols from high school
geometry for the slope and intercept and writes the intercept first, giving

the following equation:

Simple Regression Equation

Y=Bo+[31X

where the 3 represents the intercept and the B, represents the slope. These

are population symbols; the sample symbols are 4, and &, respectively.
The assumptions of regression are discussed in full in the next chap-

ter, but one of the assumptions of regression is that the data set consists

of a random sample of pairs of X and Y variables from a population of
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all possible pairs of values. Because any sampling involves error, an error

term is often added to the equation:

Simple Regression Equation With Error Term
Y=B,+B,X+e

Although € simply stands for the error, it cannot be estimated. Also
note that it is common to refer to the error term as the residual.
Naturally, we wish to estimate the regression equation using sample

data, which is written in the following equation:

Sample Simple Regression Equation With Error Term
Y=b+6X+e

where b, estimates ), &, estimates B;, and e represents the observed
error—the leftover, or residual—from fitting the regression line to a spe-
<

cific set of data. This equation can be written with the subscript “7” to

represent the specific data points:

Sample Simple Regression Equation for Specific Data Points
Y=046,+bX, +e,

where 7 goes from 1 to 7 and ¢, is the distance between the line and the
first observed point, ¢, is the distance between the line and the second
observed point, and so on. When used to estimate values, the equation is

written as follows:

Sample Simple Regression Equation for Estimates

Y =b,+bX,

Here, ¥ (pronounced “y-hat”) is the value of the dependent variable ¥
that lies on the fitted regression line at point X. That is, ¥, is the result of
the equation for X, ;, ¥, is the value for X ,, and so on.!

Figure 2.1 shows a scatterplot for two variables. It also shows three
different lines that might be drawn to fit the data. Two have a positive

slope and appear to be almost parallel. The other has a negative slope. It is



SIMPLE REGRESSION 43

Figure 2.1 More than one line can be used to fit this data

the job of regression to examine all possible lines and to choose the single
line that best firs the dara.

The single line that best fits the data has specific criteria. To illustrate
this, Figure 2.2 shows a simplified set of data points with a single line
under consideration. For each point, the vertical distance between each
point and the line under consideration is measured. Distances that go up
are positive distances, whereas distances that go down are negative. To
avoid having the positive and negative distances cancel out, the distances
are squared. This makes them all positive and removes any potential for
cancellation. The resulting distances are added. This total is called a sum of
squares. The line with the smallest sum of squares is the line selected. This
procedure is called least squares regression.

Naturally, the techniques we will be using do not require you to actually
test every possible line. After all, there are an infinite number of potential
lines to consider. The mathematical development of the formulas used to
calculate the regression coeflicients guarantees that the sum of squares will

be minimized. However, it is nice to know the background of the formulas.
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Y

Z

X

Figure 2.2 Measuring the vertical distance between the point and the
line under consideration

We begin by noting that the sums of squares we just mentioned are
SSerrors (0F SSE) because they represent the mistake, or error, in the esti-
mate of the line. The following is the formula for SSE:

Sum of Squared Errors

ssE=Y =3 (v,-¥)

Using calculus, we can then take the partial derivatives of SSE with
respect to by and &, and, because we wish to minimize SSE, we set them

equal to zero. This yields the normal equations

Normal Regression Equations
Z;Yi =n-b,+4 -Z;Xi
and

Z;X"Yi = bo 'Z:;Xi +b] ,Z:’:le
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Solving for 4, and &,, and rewriting the equations, we obtain the fol-

lowing equations:

Regression Coefficients?

Intercept
,(ENEr)-(EEx
(Zx)-(2x)

Slope

, MZxr)-(Zx)(XY)
o AZe)-(Xx)

A few notes are in order regarding these formulas:

* As with the correlation coeflicient, these formulas only
compute sample estimates of population parameters.

* Unlike the correlation coefficient, &, and &, can take on any
value between negative infinity (—oo) and positive infinity
(+00).

* Itis important not to read too much into the relative
magnitudes of these coeflicients. The magnitude is a function
of the units used to measure the data. Measure sales in dollars
and the coeflicients will have one magnitude, measure those
same sales in millions of dollars and the coefficients will have
a very different magnitude.

* As with the correlation coeflicient, except for #, only totals are
used in this formula. As a result, the calculations will be very
similar to the calculations of the correlation coefhicient.

* These are point estimates of B, and 3, and these estimates
have variances. This, and the assumption of normalcy, allows
us to develop confidence interval estimates and to perform
hypothesis testing on them.

* This formula always results in the line going through the
point (X,Y).
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Normally, you would never perform regression on a data set with an
insignificant correlation coefficient. Correlation tests to see if a linear re-
lationship exists and then regression quantifies that relationship. If the
hypothesis test of the correlation coeflicient indicates that there is no cor-
relation, then there is no correlation for regression to quantify. Never-
theless, we will continue with one of the examples described in chapter
1 because the calculations are fairly straightforward and the sample size
was small. Additionally, we will show how to perform the calculations
by hand, although these are easily performed using Excel or a statistics
package, so there would rarely be an occasion to perform these hand

calculations.

Age and Tag Numbers

In Table 1.2, we showed the ages of seven people and the last two digits of
their tag numbers. A chart of this data was shown in Figure 1.2. Table 1.6
(repeated here) gave us the data needed to compute the correlation coef-
ficient of 0.4157. Hypothesis testing would then show this correlation
coeflicient to be insignificant. Table 1.6 also gave us the data we need to
compute the slope and intercept of the regression equation. Those regres-
sion calculations are shown here as well. Unlike correlation, it does matter
which variables are treated as the dependent and independent variables.
In chis case, it does not make intuitive sense to say that age influences
tag numbers or that tag numbers influence age so we will use Age as the

independent (X) variable and Tag Number as the dependent (Y') variable.

Table 1.6 Correlation Coefficient Calculations

Age Tag no. Age - Tag Age? Tag no.”
55 2 110 3,025 4
21 28 588 441 784
78 42 3,276 6,084 1,764
61 78 4,758 3,721 6,084
44 66 2,904 1,936 4,356
63 92 5,796 3,969 8,464
32 9 288 1,024 81
354 317 17,720 20,200 21,537
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Computing the Intercept
(£(Ex)-(EXEx1)
2
(2 X)-(X %)
b= (317)(20,200) — (354)(17,720)
! 7(20,200) — (354)°
6,403,400 - 6,272,880 130,520
© T 141,400-125,316 16,084

b, =

=8.1149

Computing the Slope
,_rZxr)-(3x)(XY)
1 2
(ZX)-(Xx)
_ 7(17,720) - (354)(317)
' 7(20,200) - (354
124,040-112,218 11,822
© 141,400-125,316 16,084

0.7350

1
So the regression equation is given by the line ¥ = 8.1149 + 0.7350X.

Using Excel

For the dynamic approach, Excel offers matrix functions that can be used
to calculate the regression coefficients and a few other pieces of informa-
tion, but the information reported by Excel using the static approach is so
much more extensive that it makes little sense to calculate regression any
other way in Excel. We will use the previous example to illustrate how to
use Excel to perform regression calculations.

Regression is performed using the Analysis Toolpak. You may need to
install this, as described in chapter 1. After doing this, the first step is to
load the data file containing the data on which you wish to perform re-
gression, TagNumber.xls in this case. The data will have to be entered in
column format. Whereas the data in TagNumber.xls is side by side, it is
not necessary to have the dependent variable in a column next to the inde-
pendent variables, although in practice it is a good idea. In the next chap-
ter, we will be working with multiple independent variables, and Excel

does require that all the independent variables be located side by side.
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El = i3
A | ® @ [ » [ ® [ ® | ® | m | = | -
1 Age! TagNo.
— s Regression &‘
3 211 28! — =
Bl ¥ npul
) Ok
% ?j: ;‘za Input ¥ Range: i _
] i -Can(el
6 443 665 I S $Af1:5A%8 EF
En \
|7 | 63) EE] Labels [ Constant is zera
|
8| EE N ] confidence Level: l:l e
9
10 Output options
1 O Qutput Rangs:
12 (5) Mew Workshest Ply:
13 ) New Workbook
14 Residuals
? [ Residuals [ Residual Floks
421 [[] Standardized Residuals [ Line Fit Flots
16
BTl Hormal Probability
— ["] Mormal Prababilicy Plats
18
1%
20

Figure 2.3 The Regression dialog box

Once the worksheet is loaded, you click on the Data tab and then
Data Analysis. This brings up the Data Analysis dialog box shown back
in Figure 1.15. This time, select Regression from this list. This brings up
the Regression dialog box shown in Figure 2.3. You use this dialog box to
feed the data into Excel, set options, and control what output you get and
where the output is placed.

The Input Y Range is the range of cells containing the dependent vari-
able, or B1 to B8 in this case. We have included this label, so we will have
to include the label for the other variable and we will have to check the
Labels box. Including labels is a good idea as it makes the printout easier
to read. There is no need to remember the range for the data; you can
click on the arrow to the right side of the input box and highlight the
range manually. The /npur X Range is the range of cells containing the
independent variable, or Al to A8 in this case.

You must tell Excel where to put the output. Regression generates a
lot of output, so it is always best to use a separate worksheet page for the
results. In this example, we have given that new page the name “Regres-
sion,” although you can give it any valid name.

Once everything is entered correctly in the Regression dialog box, you
click on OK to run the regression. Excel performs the calculations and
places the results in the new worksheet page, as specified. Those results are
shown in Figure 2.4. As you can see, the results are not all that readable.

Some of the labels and numbers are large and Excel does not automatically
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Al - #A SUMMARY OUTPTT
A B & D E E G H 1 I
| 1 [SUMMARY OUTPIT
2
3 | Begrassion Statistics
| 4 [Multiple B 0415757
| 5 |BSquars 0172854
| & |Adusted B 0007425
| 7 |Steandard B 24 46764
8 |Okeervation 7
5
10 | AR A
151 df R ME £ grlficance &
| 12 |Begression 1 1241337 1241337 1044881 0353574
| 13 |Eesidual 5 5940.091 1188.01%8
14 |Total 6 7181422
15
16 Coefficientandard Brn ¢ Sial Pvaie Tovwer 05%ppar 05%ower 03, 0%per 05,0
|17 |Intercept 8114837 3262633 0210084 0841835 911738 1074086 -91.1788 107 4086
18 |Age 0735016 0715057 1022194 0353574 -111338 2583412 -111338 2583412
REN
| 20 |
21
22|
| 23 |

Figure 2.4 Initially, the results of an Excel regression run are
jumbled together

change the column width to accommodate this wider information. In ad-
dition, Excel does not format the numbers in a readable format. While
the data are still highlighted, we can adjust the column widths by clicking
on the Home tab, in the Cells group clicking on Format, and under Cell
Size, clicking on AuzoFit Column Width. You can also format the numbers
to a reasonable number of decimal points. Those results are shown in Fig-

ure 2.5. Of course, adjusting the column widths would affect any other

A | B | - | D | E | T | G
1 |[SUMMARY OUTPUT
2
3 Regression Statistics
4 |Bultiple B 04158
| 5 |R Separe 0.172%
6 |Adusted R Square 0.0074
| 7 |Standard Error 344676
8 |Observations 7
5]
10 [ANOWA
11 df' S8 ME F Significance ¥
12 |Regression 1 1,241.3373 1,241.3373 1.0449 0.3536
13 |Residual 5 59400913 1,188.0183
14 |Total & 71814286
15
16 Cogfficienis | Standard Ervor i Siai Fvalus Lower 05% | Uppar 95%
|17 |Intercept 81148 38,6269 0.2101 0.841% -91.1788 107 4086
13 [Age 0.7350 07181 1.0222 0.3536 -1.1134 2.5834
198

Figure 2.5 The results of an Excel regression run after some formatting
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A | 3 | C | D I E F G H T
| 1 [SUMMARY GUTPUT
2
3 Regression Statistics
| 4 |Multiple R 04]58*@
|5 | Square 0 1729_@
| 6 |Adfusted R Suare 0.0074
| 7 |Standard Error 344676
8 [Observations 7
EX
10 |ANTOVA,
11 df S5 M 7 7
| 12 [Regression 1 1.2413373] 12413373 1.0449 U.BﬁBé*—@
13 |Residual 5 55400913 11830183
| 14 | Total 3 7,181.4286 [ m 1
15
16 Clogfficients | Standard Error | Stat Prvalue Lowsr 95% | Upper 95% | Lower 95% | Upper 95%
| 17 [ntercept 8.1148 38.6269 0.2101 0.8419 911788 107.4086] 911788  107.4086
18 |Age 07350 07191 10222 03536 L1134 25834 -11134 25834
[15]
oG
[21]
[22]

Figure 2.6 Reading an Excel printout

data that might be included on this worksheet page. This is yet another

reason for placing the regression output on a new page.

Reading an Excel Simple Regression Printout

Figure 2.6 shows Figure 2.5 with reference numbers added. We will be re-
ferring to these reference numbers in this discussion. The reference num-
bers do not, of course, show up in actual Excel results.

The following list explains each of the numbered captions shown in
Figure 2.6.

1. Excel shows a 95 percent confidence interval for each coefficient (4,
and 4,). We will see how to compute these later in this chapter. For
now, notice that each interval is given twice. This is somewhat of a
bug in Excel. The beginning dialog box allows you to select any given
confidence interval you like, and Excel will display that level along
with the 95 percent level. When you leave the confidence level at the
default value of 95 percent, Excel does not compensate and shows
the interval only once. For the remainder of this book, we will not
show this duplicate set of values, as we usually delete these two extra
columns from our worksheets.

2. In simple regression, the multiple r is the same as the correlation

coeflicient. This will 7ot be the case with multiple regression.
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3. Rsquared is the r value squared. This is true in both simple and mul-
tiple regression. R squared has a very specific meaning. It is the per-
centage of the variation in the dependent variable that is explained
by variations in the independent variables. So in this case, variations
in the ages of the respondents in the data set explained only 17.3
percent of the variation in the tag numbers. As expected, that is not
a very good showing. Because there is really no relationship between
these two variables, even this small value is only due to the small
sample size and sampling error.

4. Significant F is the p-value for testing the overall significance of the
model. In simple regression, this will always yield the same results as
a two-tailed significance test on the correlation coefficient, so it can
be ignored in simple regression. (If the correlation coefficient is sig-
nificant, then the overall model is significant. If the correlation coef-
ficient is not significant, then the overall model is not significant.)
Whereas this can be ignored in simple regression, it will become a
very important measure in multiple regression.

5. This is the intercept coeflicient.

6. This is the slope coeflicient.

More of the values shown on an Excel printout will be discussed later

in this chapter and in chapter 3.

Using SPSS

We saw the car tag data in SPSS back in Figure 1.11. To perform simple
regression, you click on Analyze, Regression, and then Linear. That brings
up the dialog box shown in Figure 2.7. From here, you click on the age
variable and the arrow to move it into the Independent(s) box and you
click on the tag number variable and the arrow to move it into the De-
pendent box. Once you have done this, the OK button will change from
gray to black and you click on it to run the simple regression. None of the
other options needs to be set for this scenario.

Figure 2.8 shows the results of running simple regression on the car

tag data in SPSS. The left side of the screen is used to navigate between
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& Tag Numbers.sav [DataSet4] - IBM SPSS Statistics Data Editor e X |
File Edt View Data Transform Analyze Graphs Utiities Add-ons Window Help
Oy [ = @
SEEH - ~ BB 4 BoE 0% "
|Visible: 2 of 2 Variables:
Age  |TagNumber| var | var il v s sl il il i il |
1 55.00 2.00 Linear Regression
2 21.00 28.00
1 Dependent
3 78.00 42.00 @ ’
4 61.00 78.00 | = ‘ l ‘
= 1| |# TagNumber B ey
5 44.00 6600/
6 63.00 92.00 Previous Next
7 32.00 9.00 | Independent(s):
8
9 (2]
10
12 Selection Variable
1 Rule
13 =
14 GCase Labels:
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16 1 WLS Weight:
17 [+
g
20 " " ” ” ” ” ||
= N |
[ [IBM SPSS Statistics Processorisready | | | | |
Figure 2.7 The Simple Regression dialog box in SPSS
#3 *Output? [Document7] - IBM SPSS Statistics Viewer el x ]
File Edit View Data Transform Insert Format Analyze GCraphs Utilities Add-ons Window Help
=+ {E] output A
& E] Regression Regression
Variables EnteredRemoved®
Wariahles Variables
Model Entered Removed Method
1 Age® Enter
a. Dependent Variable: Tag.Number
b All requested variables entered
Model Summary
Adjusted R Std. Error of
Model R R Squarz Square the Estimate
1 416° 173 007 34.46764
a. Predictors: (Constant), Age
ANOVA?
Sum of
Model Squares df Mean Square F Sig.
1 Regression 1241337 1 1241337 1.045 3540
Residual 5940.001 5 1188.018
Total 7181.429 [
a. Dependent Variable: Tag Number
b. Predictors: (Constant), Age
Coefficients™
Standardized
Unstandardized Ci c
Model B Std. Error Beta t Sig.
1 (Constant) 8116 38627 210 842
Age 735 719 A6 1.022 354
a. Dependent Variable: Tag Number
— ]|
‘IBM SPSS Statistics Processor is ready‘ ‘ |H: 144, W: 563 pt

Figure 2.8 The SPSS output of running a simple regression
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sections of the results. While it is not useful here, it can be very useful
when working with large models or multiple scenarios. To move to a new
section of the results, just click on that section.

Currently, the Title is “Regression,” but you can double-click on it
and change it to something meaningful like “Car Tag Simple Regression.”
This simple regression run has no Notes. The Variables Entered/Removed is
not meaningful here but is useful in complex model building. The Model
Summary area gives us the measures of model quality, 7, 7%, adjusted 72,
and the standard error of the estimate. Both 7 and 7* have already been
discussed. Adjusted 7* and the standard error of the estimate will be dis-
cussed later in this chapter.

The ANOVA? section is next and measures the statistical significance
of the model. The Coefficients section gives the slope and intercept for the
model along with measures of their statistical significance.

While Excel and SPSS present the results very differently, they both
present the same results, at least within rounding differences. That is to be
expected. Both tools do an excellent job of simplifying the calculation of
regression, both simple regression as we are calculating here and multiple
regression as we will calculate in the next chapter. However, what we will
find is that when the models get to be more complex, a statistical package

like SPSS has some very real advantages over a general-purpose tool like
Excel.

More on the Regression Equation

Look back at the regression equation for the car tag example:
Y= 8.1149 + 0.7350X.

What exactly does this mean? We can see this visually represented in Fig-
ure 2.9. In this chart, the original data points are shown as dots with
the regression overlaid as a line. Notice that the line slopes up. This is
expected from the positive slope of 0.7350. Notice that the regression line
crosses the Y-axis just above the X-axis. This, too, is to be expected from
the Y-intercept value of 8.1149. Finally, notice how the points are spread
out widely and are not close to the line at all. This behavior indicates a low

7%,0.1729 in this case. For a higher 77, the points would be less scattered.
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Figure 2.9 A chart of the car tag data and the resulting line

It is important not to read too much into the magnitude of the slope
or the Y-intercept, for that matter. Their values are a function of the
units used to measure the various variables. Had we measured the ages in
months or used the last three digits of the car tags, the magnitude of the
slope and Y-intercept would be very different. Furthermore, the 7 and 7
would remain the same. Because multiplying one or both variables by a
fixed number is a linear transformation, the linear relationship between
the variables remains the same. Therefore, the measures of that relation-
ship do not change. Finally, the standard error and ANOVA numbers
change because they are measured in the units of the variables. However,
the F-value and p-value of ANOVA do not change as they, too, are unaf-

fected by linear transformations.

Federal Civilian Workforce Statistics

We need to explore the simple regression results in more detail, but the
car tag example is a poor choice because the results are insignificant. We
have only used it so far because the limited number of observations makes
it easy to understand and even calculate some of the numbers by hand.
Table 1.4 showed a state-by-state breakdown of the number of federal
employees and their average salary for 2007. In chapter 1, we computed
the 7-value as 0.5350. Whereas that value is fairly low, in testing we found

that the correlation was statistically significant. That is important. When
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the correlation is significant, the simple regression will also be signifi-
cant. Likewise, when the correlation is insignificant, the simple regression
will be insignificant. Note, however, that this does not hold in multiple
regression.

We immediately have a problem with this data. For correlation, we
did not have to worry about which variable was the independent vari-
able and which was the dependent variable, but it does matter for simple
regression. Does salary depend on the number of workers or does the
number of workers depend on the salary? Both relationships make sense.
A higher salary would attract more workers, whereas having a large num-
ber of workers might drive down salaries. For this analysis, we will assume
the number of workers is the independent variable.

In your own work, you are unlikely to have this problem. You will
define the dependent variable you are looking to explain and then search
for one or more independent variables that are likely to help explain that

already-defined dependent variable.

The Results

Figure 2.10 shows the results of running a simple regression on the federal
civilian workforce data with the number of workers as the independent

variable. We will look at what many of the numbers in this printout mean:

A B z D i E G
| 1 [SUMMARY QUTPUT
2
3 Regression Siatisiics
| 4 |[Muluple B 0.5350
| 5 |B Square 0.2862
| 6 |Admsted R Square 0.2703
| 7 |Standard Error 6,331.6724
8 |[Observations 47
L2 |
10 | ANOWVA
ikt df S M 7 Significance F
| 12 |Regression 1| 7723,324,8283215 723,324,828.3215 18.0425 0.0001
| 13 |Residual 45] 1,804,053,415.3807  40,090,075.9862
14 |Total 46 2527378248
15
16 Cogfficients | Standard Error t Stat Fovalue Lower 5% Upper 95%
| 17 |Intercept 57,909.4559 1,256.7084 46.0802 0.0000 553783132 60,440.5885
18 |Number of Employees 0.1108 0.0261 4.2476 0.0001 0.0583 0.1634
18

Figure 2.10 The Excel simple regression results on the federal
civilian workforce data with the number of workers as the
independent variable
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* Multiple R. In simple regression, this is the same as the
correlation coefficient. It goes from —1 to +1 and measures the
strength of the relationship. The closer the value is to —1 or
+1, the stronger the relationship, and the closer it is to 0, the
weaker the relationship. This relationship is weak.

* Rsquared. In one respect, this is simply the multiple >
It goes from 0 to 1. The closer it is to 1, the stronger
the relationship, and the closer it is to 0, the weaker the
relationship. However, it is also the percentage of the
variation in the dependent variable explained by the
independent variable. We will see the reason for this later.

* Adjusted R squared. This is explained in more detail in chapter 3.
Adjusted 77 is not really an issue for simple regression. With
multiple regression, 7> goes up when you add new variables
even if those variables do not help explain the dependent
variable. Adjusted * adjusts for this issue so models with
different numbers of variables can be compared.

* Standard error. This is short for the standard error of ¥ given
X. It measures the variability in the predictions made based on
resulting regression model.

*  Observations. This is simply a count of the number of pairs of
observations used in the simple regression calculations.

* ANOVA. Most of these values are beyond the scope of this
chapter and will not be discussed. Some of these values will be
briefly discussed in chapter 3.

e Significant F. This is the one critical piece of information in
the ANOVA table that we need to discuss. The Significant F
expresses the significances of the overall model as a p-value.
Stated very simply, when this value is below 0.05, the overall
model is significant.” Likewise, when this value is above
0.05, the overall model is insignificant. This is not important
for simple regression because the significance of the model
mirrors the significance of the correlation coefficient, but that
relationship will not hold in multiple regression.

*  Coefficient. This gives the values for the intercept and slope, or
57,909.4559 and 0.1108, respectively, in this model.
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o Standard error. This standard error is the standard error
associated with either the intercept or the slope.

e t-stat. This is the calculated zstatistic used to test to see if the
intercept and slope are significant.

e p-value. When this value is less than 0.05, the corresponding
slope or intercept is significant, and when it is greater than
0.05, they are insignificant. As a general rule, we do not test
the intercept for significance as it is just an extension of the
regression line to the Y-intercept. In simple regression, if the
model is significant, the slope will be significant, and if the
model is insignificant, the slope will be insignificant.

*  Lower 95 percent and upper 95 percent. This is a 95 percent
confidence interval on the intercept and slope. It is calculated as

the coefficient value +1.96 times the standard error of that value.

Interpretation

So what do these values tell us? The Significant Fvalue of 0.0001 tells us the
overall model is significant at a = 0.05. The 7* of 0.2862 tells us variation in
number of employees explains less than 29 percent of the variation in sal-
ary, a very poor showing. The slope of 0.1108 tells us that for every one unit
increase in the number of employees, the average salary goes up by 11 cents.

You might be tempted to say that the model is insignificant simply
because the slope is only 11 cents; that would be a mistake. When there
is little variation in the dependent variable, even a very strong model
will have a relatively small slope. Likewise, when there is a large amount
of variation in the dependent variable, even a poor model can have a
relatively large slope. As a result, you can never judge the strength of the
model based on the magnitude of the slope. Additionally, the units used
to measure the data will directly affect the magnitude of the slope.

Why does this model do such a poor job? One possible explanation
is simply that the number of employees has little or even no impact on
salaries, and what correlation we are seeing is being driven by something
else. In this case, it is very likely that the cost of living in the individual
states is what is driving the salaries, and the size of states is driving the

number of employees.
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Number of Broilers

Now on to a realistic business example. Whereas realistic simple regres-
sion examples in business are few, this next example is actual business
data where simple regression works extremely well. Figure 1.1 showed the
top 25 broiler-chicken producing states for 2001 by both numbers and
pounds, according to the National Chicken Council. The underlying data
was shown in Table 1.1. When we explored the correlation in chapter 1,
it was very strong at 0.9970. That makes sense: The more broilers a state
produces, the higher the weight of those broilers should be. Additionally,
broilers likely weigh about the same state to state, so this relationship
should be very strong.

Figure 2.11 shows the resulting simple regression. Number of broil-
ers (in millions) is the independent variable and pounds liveweight (in
millions) is the dependent variable. The Significant F value of 0.0000
tells us the model is significant. The 7* = 0.9940 tells us that variation in
the independent variable explains over 99 percent of the variation in the
dependent variable.

The intercept is —0.2345 or almost 0. The intercept does not always
make sense because many times it is nothing more than an extension of
the regression line to a Y-axis that may be far away from the actual dara.
However, in this case you would expect 0 broilers to weigh 0 pounds, so

an intercept very near 0 makes perfect sense. The slope of 5.0603 means

A | B & D E F G
| 1 [SUMMARY OUTPUT
z
5 Ragressian Statistics
| 4 |[Muliiple R 0.5970
| 5 |RSquare 0.9540
| 6 |Adjusted B Square 0.9937
| 7 |Standard Error 14555973
8 |Observations 26
R
10 | ANOVA
11 dr 55 My F Stgrificance F
| 12 |Regression 1/83,833,686 3223 B3,833,686.3223  3,954.6851 0.0000
| 13 |Residual 24 5087657823 21,198.5743|
14 | Total 25 84,342,452 104&
15
16 Cagfficients | Standard Error ¢ Stat F-valus Lawer 93% Uppar $3%
| 17 |Intercept -0.2345 38.5871 -0.0061 0.9852 -79.8743 754054
12 [MNumber of Broilers (millions) 5.0603 0.0805 62,8863 0.0000 4.8942 52264
9

Figure 2.11 Simple regression on the data for number of broiler
chickens
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that an increase of 1 million broilers will increase the pounds liveweight
by 5.0603 million. In other words, 1 broiler chicken weighs, on average,

about 5 pounds—again exactly what you would expect.

Exploring the Broiler Model Further

This is a great model. The model is significant, it explains most of the
variation in the dependent variable, and all the coefficients make perfect
sense theoretically. You could not ask anything more of the model. That
makes this model a good foundation for some additional discussions.
Some of the material in this section is based on confidence intervals. You
may want to review material on confidence intervals from a prior statistics
course before continuing,.

The slope in this model is 5.0603. This is &;, a sample statistic and an
estimate of the population parameter (3;. That is, we estimate the popula-
tion slope to be 5.0603 based on this sample data. Had a different sample
been used—say, a selection of different states or the same data from an-
other year—then our estimate of the population slope would be different.
But how different would it have been? A confidence interval can give us
an indication. Recall that you calculate a 95 percent confidence interval

using the following formula:

Formula for a Confidence Interval on the Slope

b £ Lo.05,n-2 'Sg

The b, is, of course, the sample value for the slope, or 5.0603 in this
example. The 7 is the Student #value with o = 0.05 and 7 — 2 degrees of
freedom. Because 7 = 26 in this example, the degrees of freedom are 26 -2 =
24, giving us a -value of 2.0639. The s-value is the standard error, which the

printout tells us is 0.0805. The confidence interval is calculated as follows:

Confidence Interval Calculations

bl * 0.05,n-2 '55

5.0603 +2.0639 - 0.0805
[4.8942, 5.2264]
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This is, of course, the same interval shown in the Excel printout.
When this interval contains zero, the slope is insignificant. Because the
interval above does not contain zero, the interval is significant. In simple
regression, this test of model significance will always match the other two
tests (i.e., the hypothesis test on the correlation coeflicient and the F-test
on the regression model) we have already discussed.

Recall our regression equation.

Regression Equation

Y =-0.2345+5.0603X.

This is the equation we use to produce a forecast. If you look back
at the data, you will see that Georgia produced 1,247.3 million broilers
in 2001 with pounds liveweight of 6,236.5. Suppose we wished to esti-
mate how much pounds liveweight Georgia would have produced had
the state produced 1,300 million broilers. We simply plug 1,300 in for X
in the previous equation, and we see their pounds liveweight would have
increased to 6,578.2.

Forecast for 1,300 Million Broilers

Y =-0.2345+5.0603 X.
=-0.2345+5.0603(1,300)
=6,578.2

But how good a forecast is that? If it ranged from 3,000 to 10,000,
then it is not very useful. On the other hand, if it ranged from only 6,500
to 6,656, then it is a very useful estimate. The 6,578.2 is a point estimate
of a population value. Once again, we can compute a confidence interval
to find the 95 percent range.

The formula used for the confidence interval depends on the type of
interval you are constructing. You use the first formula shown when you
are computing the confidence interval for the average fitted value. That
is, the resulting interval would be the interval for the average of all states
that produce 1,300 broilers.

You use the second formula when computing the confidence interval

for a single prediction for a new value. Because this confidence interval
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for the second formula is for a single observation, there is no opportunity

for observations to average out, so it results in a wider interval.

Confidence Interval for Average Fitted Value

—\2
j’fito.os,n-z MSE - l+n(X’;X)

"X -X)

i=1

Confidence Interval for Predicted Value

—\2
9 Et05, |MSE- 1+l+ ”(Xi—X)

S (x-x)

i=1

Either equation uses several values Excel (or SPSS) does not give us
plus one value (mean squared error [MSE]) that we have not yet dis-
cussed. The value (X, — X)* is different for each confidence interval be-
cause the X-value is included in the formula. The value Z(Xi - Y)z is
not provided by Excel or SPSS either, but it is easy to compute in Excel.
For this problem X =322.5 and Z(X,. —)_()2 =3,273,902.4. It was
computed by subtracting the 322.5 from each observation, squaring the
result, and computing the total.

If you look at the ANOVA table in an Excel or SPSS printout, there
is a column labeled “MS.” MSE is the bottom number, the one on the
residual row. For this example, it is 21,198.57.

This gives us the information needed to compute both intervals. Be-
cause the only difference for the second interval is the additional “1+,” we

will take a few shortcuts in its calculation.

Confidence Interval for Average Fitted Value

—\2
i 00500 |MSE - 1+M

"3 (x-X)

i=1
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—
6,578.242.0639 [21,198.57 - 1, (1300-3225)
26 3,273,902.4

6,578.2£2.06394/21,198.57 -[0.03846 +0.2919]

6,578.2+£2.06394/7,002.22
6,578.2+172.7

[6,405.5,6,750.9

Confidence Interval for Predicted Value

i

—\2
P MmsE-|1+14 (X~ %)

i —70.05,n—2 n

"X -X)

i=1
6,578.2£2.0639,/21,198.57 - [1+0.03846+0.2919]
6,578.21346.6
[6,231.6,6,924.8]

Whereas SPSS does not give you the values needed to compute these
confidence intervals, it will compute them for you. To do this, begin by
entering the value of the independent variable you wish to forecast at the
bottom of the data set without entering a dependent variable. You can
see the 1,300 entered in Figure 2.12. While we are getting only a single
prediction here, SPSS can handle as many predictions as you like.

Now, begin as before and click on Analyze, Regression, and then Lin-
ear, which brings up the dialog box shown in Figure 2.7. From there,
click on the Save button. That brings up the dialog box shown in Figure
2.13. As shown in Figure 2.13, we wish to save the Mean and Individual
Confidence Intervals, and as always, we will use a 95 percent confidence
interval, although SPSS allows you to specify any value you like. You
click on Continue to the Linear Regression dialog box and continue your
regression as before.

In addition to producing the regression results, and adding more data
to the output display, SPSS adds four variables to the data file, as shown
in Figure 2.14. The variables LMCL_1 and UMCL_1 are the confidence
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) *Broilers sav [DataSet6] - IBM SPSS Statistics Data Editor (=[5 e
File Edit View Data Transform Analyze Graphs Utiities Add-ons Window Help
SHe 0« B, A0 M &
28 - Number [ |Visible: 2 of 2 Variables
Number “ Weight ‘| var ‘| var H var H var H var H var “ var “ var “ var “ var “ |
1 1247.30  6236.50
2 1170.90 5737.30
2 1007.60  5138.80
4 71230 4202.60
B 76530  3826.50
6 565.50  2714.40
7 25770  1494.70
8 287.80 138140
9 271.50 1330.40
10 25340  1292.30
11 250.00 1250.00
12 22680  1111.30
13 24500  1100.00
14 198.00  1049.40
15 198.30 932.00
16 180.00 890.00
17 132.30 701.20
18 115.30 634.20
19 89.80 368.20
20 43.90 219.50,
21 40.10 212.50
2 31.30 137.70
23 230 12.20
24 90 3.80
25 50 2
26 92.40 00
27 1300.00 . =
TF |
[ IBM SPSS Statistics Processorisready | | | | |

Figure 2.12 Data set up for having SPSS calculate a confidence
interval for a predicted value and an average fitted value

interval for the mean prediction confidence interval, and LICI_1 and
UICI_1 are the confidence interval for the single-value confidence interval.

The widths of the confidence intervals are not constant because the val-
ues of X; is included in the equation. In this example, the widths for the av-
erage value confidence interval range from a low of 59.2 to a high of 164.5.
The confidence interval is narrowest near X and widest at the extreme
values. Note that the last line of Figure 2.14 shows the two confidence in-

tervals for 1,300 and the values are the same as we computed earlier.

Some Final Thoughts on Simple Regression

The widespread use of spreadsheets and inexpensive statistical software
has made the use of regression analysis both easy and common. This has
both positive and negative consequences. On the good side, more people

now have access to a very powerful tool for analyzing relationships and
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Linear Regression: Save

rPredicted Values
[T] Unstandardized
[T] Standardized
[0 Adjusted
[[] S.E. of mean predictions

rResiduals
[[] Unstandardized

[C] Standardized

[C] Studentized

[C] Deleted
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rInfluence Statistics
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[C] Standardized DfBeta(s)
[ DfFit

[C] Standardized DfFit

[C] Covariance ratio

rCoefficient statistics

[T] Create coefficient statistics
@ Create a new dataset
Dataset name
@ Write a new data file
Eile.

rExport model information to XML file

| [Browse...

[ Include the covariance matrix

Figure 2.13 Telling it to save the confidence intervals in SPSS

sion inappropriately, we now offer a few suggestions:

performing forecasts. However, it has caused some people to use regres-
sion analysis without understanding it and in situations for which it was

not appropriate. To help the reader avoid the downfalls of using regres-

1. Never use regression, or for that matter any statistical tool, without un-

derstanding the underlying data. As we saw in the discussion of causality
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) *Broilers sav [DataSet6] - IBM SPSS Statistics Data Editor (=[5 oo
Fle Edt View Data Iransform Analyze Graphs Utiies Add-ons Window Help
SHe M e~ BLIAMD N 55 BAE ®
28 - Number [ |Visible: 6 of & Variables
Number | Weight | LMCI_1 I UMGI_1 I LG I uicl_1 [ var [ var |
1 124730 6236.50 6146.98006 6475.97782 5968.90199 6654 05580
2 1170.90  5737.30 577215146 6077.59243 5587.79238 6261.95151
3 1007.60  5138.80 497039598 5226 65362 4771.85053 542519907
4 71230 420260 3516 67999 360175586 320122014 391720670
5 76530  3826.50 3778 18084 396664691 3557 48698 418734077
6 56550  2714.40 278094338 2932.78759 2552 43656 3170.23491
7 25770 1494.70 1243 89665 1363.71355 997.39344 1610.21676
B 28780 138140 1396.90580 1515.33452 1149 84344 1762.39687
9 27150 133040 1314.09810 143317641 1067 29758 1679.97693
10 25340 129230 1222.00487 1342.08674 975.60821 1588 48340
1" 250.00  1250.00 1204.68929 1324.99227 058.38151 1571.30005
12 22680 111130 1086.40173 1208 48187 840.80688 1454.07672
13 24500  1100.00 1170.21508 1299 86257 033.04623 154603232
14 198.00  1049.40 93924812 1064.16214 694.78500 1308 62526
15 198.30 932.00 94078269 1065.66375 606.30645 1310.13099
16 180.00 890.00 847.11002 974.12940 603.48364 1217.75578
7 132,30 701.20 60237547 736.11125 36139534 977.09137
18 115.30 634.20 51497095 651.46553 275.06766 891.36882
19 89.80 368.20 38370254 524.65859 145.52827 762.83286
20 4390 219.50 146.98232 20684318 -87.78655 53161205
21 40.10 212,50 127.36179 278.00543 -107.11062 512.47783
22 31.30 137.70 81.91241 23430351 -151.86592 48817184
23 230 12.20 -67.97922 90.78768 -299.40249 32221095
24 ES) 380 7521960 8385022 -306.52678 315.16640
25 50 270 -77.28835 81.87973 -308.56232 31315370
26 92,40 451.00 307.00522 537.57048 158.73884 77593586
27 1300.00 . 6405.45815 6750.85545 6231.56784 6924.74577 % a
7 |
T
[ [IBM SPSS Statistics Processorisready | | | | |

Figure 2.14 The data file after running regression and saving the
intervals

in chapter 1, it takes a deep understanding of the data and the theory
behind it to establish causality. Without either a cause-and-effect rela-
tionship or some other theoretical reason for the two variables to move
in common, it makes no sense to try to model the variables statistically.

2. Never assume a cause-and-effect relationship exists simply because
correlation—even a strong correlation—exists between the variables.

3. Start off with a scatterplot and then correlation analysis before per-
forming simple regression. There is no point trying to model a weak
or nonexistent relationship.

4. When using regression to forecast, remember that the further away
you go from the range of data used to construct the model, the less

reliable the forecast will be.

We will return to these issues in multiple regression. As we will see, all
these items will not only still be issues but also be even more complex in

multiple regression.






CHAPTER 3

Multiple Regression

In the last chapter, we saw how to construct a simple regression model.
Simple regression described the linear relationship between one depen-
dent variable and a single independent variable. However, in most busi-
ness situations it takes more than a single independent variable to explain
the behavior of the dependent variable. For example, a model to explain
company sales might need to include advertising levels, prices, competi-
tor actions, and perhaps many more factors. This example of using vari-
ous independent variables—like advertising, price, and others—is a good
mental model to use when thinking about multiple regression.

When we wish to use more than one independent variable in our
regression model, it is called multiple regression. Multiple regression can
handle as many independent variables as is called for by your theory—at
least as long as you have an adequate sample size. However, like simple
regression, it, too, is limited to one dependent, or explained, variable.

As we will see, multiple regression is nothing more than simple regres-
sion with more independent variables. Most business situations are com-
plex enough that using more than one independent variable does a much
better job of either describing how the independent variables impact the
dependent variable or producing a forecast of the future behavior of the

dependent variable.

Multiple Regression as Several Simple Regression Runs

In addition to the name change, the procedure for calculating the regres-
sion model itself changes, although that is not immediately obvious when
performing those calculations using Excel. Before we get into that, we will

illustrate multiple regression using simple regression.
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A B [ @ | »m | ®m | ® | @ H=Z
Breakdown
| 1] Hours Age Operators
| 2 | 145 1 2
| 3| 205 1 1
| 4] 113 1 2
| 5| 161 1 1
| 6 | 174 1 1
| 7| 169 2 2
| 8 | 221 2 1
| 9| 153 2 2
| 10 181 2 2
| 11 195 2 2
|12 | 195 2 2
| 12| 297 3 1
| 14| 266 3 1
| 15 Zz0 3 2
| 16| 260 3 1
| 17 345 4 1
| 18 | 340 5 2
| 19 415 3 1
| 20 408 7 2
| 21 503 9 2 o
22 -
[4 4 |» | M Data i First Simple Data ‘With Error £ Second Simple N | LIJ_‘
Readly e e o o [

Figure 3.1 An Excel worksheet with one dependent variable and two
independent variables

Simple Regression Example

Figure 3.1 shows machine maintenance data for 20 machines in a me-
dium-sized factory. The first column shows the number of hours between
its last breakdowns, the second column shows the age of the machine
in years, and the third column shows the number of operators. Because
we have not yet seen how to use more than one independent variable in
regression, we will perform simple regression with breakdown hours as
the dependent variable and age as the independent variable. The results of
that simple regression are shown in Figure 3.2.

As you can see from Figure 3.2, the overall model is significant and the
variation in the age of the machine explains almost 92 percent (0.9177)
of the variation in the breakdown hours, giving the resulting regression

equation:

The Resulting Regression Equation
Breakdown Hours =111.6630 + 45.6957(Age)
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A B © D [ E | F [ G =
| 1 |SUMMARY OUTPUT
2
E} Regression Statistics
| 4 |Multiple B 0.9580
| 5 |R Square 0.9177
| 6 |Adjusted R Seuare 0.9132
| 7 |Standard Error 30.9311
8 |Observations 20
1 9 |
10 | ANOWVA
il df’ S5 MY F Significance F
| 12 |Regression 1 182,104,522 192,104 522 200792 0.0000
| 13 |Residual 12 17,221.228 956735
14 | Total 1% 209,325.750
15
16 Cosfficiants | Standard Hrror i Siai FPvalus Lowsr P5% Uppar 5%
| 17 |Intercept 111.6630 11.8925 5.38%4 0.0000 86.6779 136.6482
18 | Age 456857 3.2248 14.1701 0.0000 38.9206 524707 =
1% -
[l 4 (W] Data First Simple { Data With Error £ Second Simple £ Data for Manual £ [ 4| | _>|j_I
Ready =] = Il JI i

Figure 3.2 Using simple regression and one of the two independent
variables

As good as these results are, perhaps the addition of the number of op-
erators as a variable can improve it. In order to see this, we will begin by
computing the breakdown hours suggested by the model by plugging the
age of the machine into the previous equation. We will then subtract this
value from the actual value to obtain the error term for each machine.
Those results are shown in Figure 3.3.

Notice that the sum of the error terms is zero. This is a result of how
regression works and will always be the case. The error values represent
the portion of the variation in breakdown hours that are unexplained by
age, because, if age was a perfect explanation, all the error values would be
zero. Some of this variation is, naturally, random variation that is unex-
plainable. However, some of it might be due to the number of operators
because that varies among the machines. A good reason for calling this
a residual, rather than error, is that parts of this error might, in fact, be
explained by another variable—the number of operators in this case.

We can check by performing a second simple regression, this time
with residual as the dependent variable and number of operators as the
independent variable. Those results are shown in Figure 3.4.

Notice that this regression is also significant. The variable for the
number of operators explains 71 percent (0.7119) of the variation in the
residual term or 71 percent of the remaining 8 percent unexplained varia-

tion of the original simple regression model, giving the resulting equation:
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a | B @ |ITw e Tw s =]
Predicted
Breakdown Breakdown
| 1] Hours Age Hours Eiror Operators
| 2 | 145 1 157 -12.4 2
| 3 | 205 1 157 476 1
EX 118 1 157 -394 2
| 5 | 161 1 157 36 1
| 6 | 174 1 157 16.6 1
| 7 | 169 2 203 -34.1 2
| 8 | 221 2 203 17.% 1
| 9| 153 2 203 =501 2
10| 181 2 203 -22.1 2
| 11 195 2 203 -3.1 2
| 12 ] 195 2 203 -8.1 2
L3 297 3 249 483 1
| 14| 266 3 249 173 1
| 15 | 220 3 249 -28.8 2
| 16 | 260 3 249 113 1
| 17| 349 4 254 54.6 1
| 18 | 340 5 340 -0.1 2
| 18] 415 & 386 29.2 1
| 20 408 7 432 -23.5 2
21 503 9 523 -19.9 2
| 22 | 0.0 i
23 -
I4 |4 |» | M|% Data £ First Simple ), Data With Error ¢ Second Simple A | ﬂj_‘
Ready o B S [ B WO

Figure 3.3 Calculating the part of the breakdown hours not explained
by the age of the machine

A B © D E F G =

| 1 |SUMMARY OUTPUT

2

3 Regression Statistics
| 4 |Multiple R 0.8437
| 5 |R Square 07119
| 6 |Adusted B Square 06938
| 7 |Standard Error 16.6036

8 | Observations 20
| 9 |

10| ANOVA

11 df S5 ME F Significance F
| 12 |Regression 1 12,258.96%  12,258.969 44.468 0.0000
| 13 |Residual 18 4,962.258 275681

14 | Total 1% 17,221.228

15

16 Coafficients | Siandard Error £ Stat FPvaiue Lower 35% | Upper 95%
| 17 |Intercept 711358 12.1485 6.34%4 0.0000 516127 102.6550

18 | Operators -49.7650 74528 -6.66234 0.0000 -65.4438 -34.0863 |
| 15 |
144 » [pi]},Second Simple { Data for Manual Multiple Regression/ Correlation |4l | _rlj_l
Reachy ‘ [ [ [ [ | [ 4

Figure 3.4 Performing simple regression between the residual and the
number of operators
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Resulting Regression Equation

Residual = 77.1358 — 49.7650(Age)

Although this approach of using multiple simple regression runs seems to
have worked well in this simplified example, we will see a better approach
in the next section. Additionally, with more complex regression applica-
tions with many more variables, this approach would quickly become

unworkable.

Multiple Regression

In the previous example, we performed simple regression twice: once on
the dependent variable and the first independent variable and then on the
leftover variation and the second independent variable. With multiple
regression, we simultaneously regress all the independent variables against
a single dependent variable. Stated another way, the population regression
model for a single dependent variable Y and a set of 4 independent vari-

ables X, X, . .., X, gives the following:

Population Regression Model
Y=B,+BX +B,X,+-+B,X, +¢

where 3 is the Y-intercept, each of the B;’s for 7 = 1 to k is the slope of the
regression surface with respect to the variable X, and e is the error term.
This error term is also commonly referred to as the residual.

Of course, we rarely work with population data, so we are usually
interested in calculating the sample regression model as an estimate of the

population regression model:

Sample Regression Model
Y=b+6X +b0,X,+-+bX, +¢

where b, is the sample statistic that estimates the population parameter
B
As you may recall from the last chapter, the graph of the results of

simple regression is a line. That is because there are two variables, one
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independent variable and one dependent variable. With only two vari-
ables, the data are defined in two-dimensional space and thus a line. With
multiple regression, we have at least three dimensions and possibly many
more. When there are two independent variables and one dependent vari-
able, we have three-dimensional space and the results of the regression
are a plane in this space. When we exceed two independent variables,
we exceed three-dimensional space and, therefore, we exceed our ability
to graph the results as well as our ability to visualize those results. When
this happens, the results of the regression are said to be a hyperplane that

exists in hyperspace.

Assumptions for Multiple Regression

As you would expect, the assumptions for multiple regression are very

similar to the assumptions for simple regression:

1. For any specific value of any of the independent variables, the values
of the dependent variable ¥ are normally distributed. This is called
the assumption of normality. As a result of the dependent variable
being normally distributed, the error terms will also be normally
distributed.

2. The variance for the normal distribution of possible values for the
dependent variable is the same for each value of each independent
variable. This is called the equal variance assumption and is some-
times referred to as homoscedasticity.'

3. 'There is a linear relationship between the dependent variable and
each of the independent variables. This is called the /inearity assump-
tion. Because the technique of regression (simple or multiple) only
works on linear relationships, when this assumption is violated, that
independent variable is usually found to be insignificant. That is, it
is found not to make any important contribution to the model. As a
result, this assumption is self-enforcing.

4. None of the independent variables are correlated with each other.
Although this assumption does not have a name, we will refer to its
violation as multicollinearity in a later section, so we will refer to this

assumption as the nonmulticollinearity assumption.
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5. The observations of the dependent variable are independent of each
other. That is, there is no correlation between successive error terms,
they do not move around together, and there is no trend.? This is
naturally called the independence assumption. In a later section, we

will refer to the violation of this assumption as autocorrelation.

Using Excel to Perform Multiple Regression

Excel is able to perform the multiple regression calculations for us. The
steps are the same as with simple regression. You begin by clicking on the
Data tab, then Data Analysis, and then selecting Regression from the list
of techniques. Excel makes no distinction between simple and multiple
regression. Fill in the resulting dialog box just as before, only this time
enter the two columns that contain the two independent variables. This
is shown in Figure 3.5.

The steps for running multiple regression in Excel are the exact same
steps we performed to run simple regression in Excel. In fact, making a
distinction between simple and multiple regression is somewhat artificial.
As it turns out, some of the complexities that occur when you have two
or more independent variables are avoided when there is only one inde-
pendent variable, so it makes sense to discuss this simpler form first. Nev-

ertheless, both simple and multiple regression are really just regression.

T e e
Breakdown
o Ae Opemtars 2l
1 Input:
12| i L 2 I:Dutlﬂanga [sag1:5ag21 J=3| lLI
| 4 | 118 1 2 cancel
5 161 1 1 T 4 [seggceer 5
| 6 | 174 1 1 ¥ Labels I~ Con .
50 T 2 PR oot roistis)
8 221 2 1
o | 153 5 5 ~Cutput option:
o | 181 5 5 © Qubput Range: |
|11 195 2 3 1= nlew Worksheet Ply: Multiple Regression
|12 | 195 2 2 " New Workbook —
EE esidusls 5 .
13| 297 : i F_ | . . Lacation to place results
| 14 | 266 3 1 [~ Standarcized Residuals I Line Fit Plots
| 15| 230 3 B ‘
|16 260 El 1 I_U”V\luarmal Frobabilty Plcts
117 349 4 1
| 12| 340 5 2
| 12| 415 5 1
| 20| 408 7 2
| 21| 503 ] 2 i
22 -
|44 [» [¥]\Data § First Smple_{ Daka With Error 4 Second Simple . Data for Manual £ Ml | 4 | | ﬂj“
Ready T [ | | N

Figure 3.5 Performing multiple regression with Excel
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One note is critical regarding the way Excel handles independent
variables. Excel requires that all the independent variables be located in
contiguous columns. That is, there can be nothing in between any of the
independent variables, not even hidden columns. This is true regardless of
whether you have just two independent variables or if you have dozens.
(Of course, this is not an issue in simple regression.) It also requires that
all the observations be side by side. That is, all of observation 1 must be
on the same row, all of observation 2 must be on the same row, and so on.
It is not, however, required that the single dependent variable be beside
the independent variables or that the dependent variable observations be
on the same rows as their counterparts in the set of independent variables.
From a data management perspective, this is nevertheless a very good idea,
and this is the way that we will present all the data sets used as examples.

Additionally, Excel’s regression procedure sometimes becomes con-
fused by merged cells, even when those merged cells are not within the
data set or its labels. If you get an error message saying Excel cannot com-

plete the regression, the first thing you should check for is merged cells.

Example

Figure 3.6 shows the results of running multiple regression on the ma-

chine data we have been discussing. Notice that the results match the

A [ B [ c [ o [ E [ F [ G 5
| 1 | SUNMIMART CUTPUT '
2
3 Regression Statistics
| 4 Multiple R 0.4587
| 5 R Square 0.2104
| B Adpsted B Square 0.1879
| 7 |Standard Error 16.9516
8  Observatons 73
|9 |
10 [ ANOVA
11 df S5 ME F Significanca F
| 12 Regression 2 5,360.3338  2,680.1668 9.3270 0.0003
| 13 Residual 70 20,115.0087 287.3573
14 | Total 72 25475.3425
15
16 Cogfficients | Standard Error £ Stat Pvaiue Lower 05% Upper 03%
| 17 Intercept 4.507%3 278319 161970 010579 -1.04296 10.05882
| 18 Populanon (Million) 0.03746 0.01080 343563 0.00100 0.01571 0.05920
19 | GNP Per Capita (USE) 0.00056 0.0001% 2.99967 0.00374 0.0001% 000093
|<2\U< [ [#I[{ RandomData /£ Random Regression  Dataz ) Multiple Regressionz /| 4] | LIJ_I
Ready [T | [ o = Al

Figure 3.6 The result of running multiple regression on the machine
data discussed earlier in this chapter
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appearance of the simple regression results with the exception of having
one additional row of information at the bottom to support the addi-
tional independent variable. This is, of course, to be expected.

In the machine example, we had the first, simple regression equation:

First Simple Regression Equation

Y =111.6630+45.6957 X

and the second regression equation was

Second Regression Equation

Y = 77.1358-9.76506,

Adding these together, we obtain the following equation:

Combined Regression Equation

Y =183.7988+45.6957h, —49.76506,

Note that this is similar to, but not exactly equal to, the multiple

regression equation we just obtained:

Multiple Regression Equation
Y =185.3875+47.3511b, —50.7684b,

One of the assumptions of multiple regression is the nonmulticol-
linearity assumption: There is no correlation between the independent
variables. In this example, there is slight (0.1406) correlation between
the two independent variables. It is this slight correlation that prevents
the total of the individual simple regression equations from totaling to
the multiple regression equation. The higher the correlation, the greater
the difference there will be between the equations derived using these
two approaches. Because there is virtually always some degree of cor-
relation between independent variables, in practice we would never ap-
proach a multiple regression equation as a series of simple regression

equations.
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Another Example

Oftentimes, businesses have a lot of data but their data are not in the right
format for statistical analysis. In fact, this so-called dirty data is one of the
leading problems that businesses face when trying to analyze the data they
have collected. We will explore this problem with an example.

Figure 3.7 shows the medal count by country for the 2000 Olym-
pic Games in Sydney, Australia. It shows the number of gold, silver, and
bronze medals along with the total medal count. Also shown are the pop-
ulation and per capita gross national product (GNP) for each country. We
will use this information for another multiple regression example, but we

must address the dirty data first.

Data Cleaning

Before we continue with the multiple regression portion of this example,
we will take this opportunity to discuss data cleaning. Data cleaning is
when we resolve any problems with the data that keep us from using it for
statistical analysis. These problems must be resolved before these data can
be used for regression, or anything else for that matter. Otherwise, any
results you obtain will not be meaningful.

When this Sydney Olympics data set was first put together, it had a
couple of significant problems. The first problem is that population size
and GNP were not available for all the countries. For example, an esti-
mate of GNP was not available for Cuba. The number of countries for
which a full set of data was not available was very small, and their medal
count was minor so these countries were dropped from the data set.

The second problem was that the per capita GNP was naturally mea-
sured in their own currency and a standard scale was needed because it
makes sense to use a standard to compare values of a variable where each
observation was measured using a different scale. This was handled by
converting all the currencies to U.S. dollars, but this raised a third prob-
lem: Because the value of currencies constantly fluctuates against the U.S.
dollar, which conversion value should be used? We decided to use the
conversion value in effect around the time of the Olympics, and the data

shown is based on that conversion.



MULTIPLE REGRESSION 71

A N N O O = F [ [ [
Gold  Silver Bronze Total GNP Per

| 1 | Country Metals Metals Metals Metals  Population Capita (UUS$)
| 2 |United States 39 25 33 97 270,298,008 $29,240
| 3 |Russia 32 28 28 88 146,908,992 2,260
| 4 |People's Republic of China 28 16 15 59 1,238,599,424 §750
| 5 |Australia 16 23 17 38 18,751,000 $20,640
| B |Germany 14 17 26 57 82,047,000 $26,570
| 7 |France 13 14 11 38 58,847,000 $24,210
| 8 |Laly 13 8 13 34 57,589,020 $20,090
| 9 |Great Britain 11 10 7 28 59,055,000 $21.410
[ 10 |South Korea 8 9 11 28 46,430,000 8,600
| 11 |Romaria 11 6 9 26 22,503,000 $1,360
| 12 | Metherlands 12 8 4 23 15,698,000 $24,730
| 13 | Ukraine 3 10 10 23 50,295,000 $es0
[ 14 Tapan 5 8 5 18/ 126,410,000 $32,350
| 15 Hungary 2 6 3 17 10,114,000 $4,510
| 16 |Belarus 3 3 11 17 10,238,000 £2,180
[ 17 |Poland 6 5 3 14 38,666,152 £3,310
| 18 | Canada 3 3 8 14 30,301,000 $19,170
| 19 |Bulgaria 5 6 2 13 8,257,000 $1.220
| 20 |Greece 4 6 3 13 10,515,000 $11,740
| 21 |Sweden 4 5 3 12 10,515,000 $25,580
| 22 |Brazil 0 6 6 12)  1657873,632 $4,630
| 23 | Spain 3 3 5 11 39,371,000 $14,100
| 24 \Norway 4 3 3 10 4.432,000 $24,310
| 25 | Switzerland 1 6 2 9 7,106,000 $29,980
| 26 |Ethiopia 4 1 3 8 61,266,000 $100
| 27 | Czech Republic 2 3 3 8 10,294,900 $5,150
| 28 K azakhstan 3 4 0 7 15593490 $1,340
[ 28 |Kenya 2 3 2 7 29,284,910 $350
| 30 |Tamaica 0 4 3 7 2,576,000 £1.740
|31 |Denmark 2 3 1 6 5,301,000 $23,040
| 32 |Indonesia 1 3 2 6 203,678,368 $640
33 | Mexico 1 2 3 [ 93,843,380 £3,840
| 34 | Georgia 0 0 6 6 5442000 $e70
| 35 | Lithuania 2 0 3 5 3,703,000 $2,540
|36 | Stovakia 1 3 1 5 5,391,000 3,700
| 37 | Alzeria 1 1 3 5 29,921,570 £1.550
| 38 |Belgium 0 2 3 5 10,204,000 $25,380
[ 33 |South Aftica 0 2 3 5 41,402,392 $3,310
| 40 | Chinese Taipei 0 1 4 5 21,500,583 $13,726
[ 41 [Morocco 0 1 4 3 27,775,000 £1.240
42 |Tran 3 0 1 4 61,946,540 $1,650
43 | Turkey 3 0 1 4 63451,000 3,160
| 44 |Finland 2 1 1 4 5,153,000 $24,230
| 45 | Uzbekistan 1 1 2 4 24,051,000 $330
| 46 |New Zealand 1 0 3 4 3,792,200 $14,600
| 47 | Argentina 0 2 2 4 36,123,000 £3,030
| 48 | Austria 2 1 0 3 8,078,000 $26,830
| 49 | Arerbaijan 2 0 1 3 7,910,000 5480
| 50 | Larvia 1 1 1 3 2445 000 $2,420
|51 |Estonia 1 0 2 3 1448710 £3.360
| 52 | Thailand 1 0 2 3 61,201,000 £2,160
| 53 |Nigeria 0 3 0 3 120,817,264 $300
| 54 | Slovenia 2 0 0 2 1,982,000 £9,730
| 85 | Croatia 1 0 1 2 4,501,000 £4.,620
| 5B |Moldova 0 1 1 2 4,298,000 $380
| 57 |Saudi Arabia 0 1 1 2 20,738,920 $6,910
| 58 | Trinidad and Tobago 0 1 1 2 1,285,140 54,520
| 59 |Costa Rica 0 0 2 2 3,526,000 §2,770
| B0 Portugal 0 0 2 2 9,968,000 $10,670
| 61 |Cameroon 1 0 0 1 14,303,010 $610
| 62 | Colornbia 1 0 0 1 40,804,000 £2.470
| B3 Mozambique 1 0 0 1 16,947,000 $210
| 4 |Ireland 0 1 0 1 3,705,000 $18,710
| 65 | Uruguay 0 1 0 1 3,285,000 £6.070
| BB | Vietnam 0 1 0 1 76,520,000 $2350
| B7 | Armenia 0 0 1 1 3,795,000 $460
| 68 | Chile 0 0 1 1 14,222,000 £4,590
| B3 |Iceland 0 0 1 1 274,000 $27.830
| 70 |India 0 0 1 1 579,672,896 $440
| 71 [Torael 0 0 1 1 5,963,000 $16,180
| 72 |Kyreyzstan 0 0 1 1 4,695,000 $380
| 73 Macedora 0 0 1 1 2,009,900 §1,2%0
| 74 |Sri Lanka 0 0 1 1 18,778,000 $810
|75
Il4_«/» [p"\Data { Muliple Regression {55 { Random Data Random Regressionf Data2 £ Multiple Regression2
Ready == - J e 27

Figure 3.7 Data from the 2000 Olympic
Games in Sydney, Australia
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It is not uncommon for business data to require cleaning before being
ready for use in statistical analysis. In this context, we use statistical analy-
sis in a very broad sense and not just in reference to multiple regression.
As long as only a few data points are discarded and as long as any data
conversions are reasonable, the data cleaning should not have too much
of an impact on the results of any statistical analysis performed on the
data. In any case, we do not have much of a choice. Without cleaning, the

data would not be in a useable form.

Olympics Example Continued

Returning to our data set from the 2000 Sydney Olympics, we will use
total medal count® as the dependent variable and per capita GNP and
population as the independent variables. Figure 3.8 shows the dialog box
filled out to perform the multiple regression and Figure 3.9 shows the
results.

r? Can Be Low but Significant

Notice that in the Sydney Olympics example the variations in population
and per capita GNP explain only 21 percent (0.2104) of the variation
in total medals, yet the overall model is significant and the individual

variables are all significant as well. This is an important point. It is not

A B € I B [ E | F | G | RS S e e e
Gold  Silver Bromze| Total GINP Per
| 1 |Country Metals| Metals| Metals| Metals'  Population Capita (USS)
| 2 [Utited States 39 25 33 97 270,299,008 $29,240
JI s c2 i i BBOMONEI% e 21Xl
| 4 [People’s Republic of China 28 16 15 59( 1,238,599.424 {8
| 5 |Australia 16/ 25 17 58 18,751,000 | 1cie v pange: e = [ |
| & |Germany 14 17 26 57| 82,047,000 Cancel
| 7 |France 13 14 11 38 58,847,000 | IeutERenset s 3
|8 [naty 13 8 13 34 57,529,020 | el I~ Constant s Zoro _teb |
| 9 |Great Britain 1t 10 7 28] 59,055,000 || [ Confidence Level %
10| South R orea 8 B 1t 28] 46,430,000
= Output op
|11 [Romania 1 6 9 26 22,503,000 [ T
| 12 [Hetherlands 12 ) 4 25/ 15,698,000 D
113 |Ukraine 3 10 10 23| 50,295,000] | New Worksheet Ply Multple Regression
| 14 |Tapan 5 g 5 18| 126,410,000 || & New Werkbook
|15 Hungary 8 2 3 7 10,114,000 e I Resigual Plats
| 16 |Belarus 3 3 11 17| 10,239,000 | I standardized Residuaks I™ Line Fit Plots
17 [Poland 5 5 3 14| 38666,152
| jormal Probabiity ———————
|18 (Canada 3 3 8 14| 30.301,000 1} 1 ormel Frchabity Plets ‘
|18 |Bulgeria 5 5 2 13| 8257,000
20 |Greece 4 5 3 13| 10,515,000 — B
4] «[» M\ Data [ multiple Regression {55 Random Regression /4 Dataz /_ multiple Regres | « | | ﬂjJ

Ready

Figure 3.8 The dialog box used to perform multiple regression on the
2000 Olympic Games data set



MULTIPLE REGRESSION 79

A T B T B T il I E T F [ & [
SUMMARY OUTPUT

[¥]

Not much of the

Rogression Siafisiics ey ]

1]
2
El
| 4 | Multiple B
| & E Semare
B
7]
=]
N

Adjusted B Square

Standard Error 16.9516
Ohbservations 73
10 | ANOVA
11 id S5 ME 7 Significance F
| 12 |Regression 2 5,360.3338  2,680.166% 9.3270 0.0003
| 13 | Residual 70 20,115.0087 287.3573
14 | Total 7z 254753425
5
16 Cogjficienis | Standard Brror ¢ Stat FPvalus Both of the independent
|17 [Tntercept 45079 2.7832 16197 010d_ variables are significant.
18 |Population 0.0000 0.0000 34356 00010 000

18 | GITP Per Capita (US§) 0.0006 0.0002 2.9997 0.0037 0.0002 ooooy

20
[« 4 [#1]" Data } Multiple
Ready

ion /55 7 Random Data £ Random Regression{ Dat [ 4| I

|1 I o | | o o 7

Figure 3.9 The results of the multiple regression analysis on the
2000 Olympic Games data set

necessary for 7* to be high in order for the overall model to be significant.
This is especially true with larger data sets—that is, with higher numbers
of observations. When businesses analyze massive data sets, it is not un-
common for even unrelated variables to show significant correlations for
this very reason.

Students sometimes also make the mistake of thinking that only mod-
els with high 7 values are useful. It is easy to see why students might
believe this. Because 7 represents the percentage of the variation in the
dependent variable that is explained by variation in the independent vari-
ables, one might conclude that a model that explains only a small percent-
age of the variation is not all that useful.

In a business situation, this is, in fact, a reasonable assumption. A fore-
casting model that explained only 21 percent of the variation in demand
would not be very useful in helping to plan production. Likewise, a mar-
ket analysis that ends up explaining only 21 percent of the variation in
demand would likely have missed the more important explainer variables.

However, in other areas, explaining even a small percentage of the
variation might be useful. For example, doctors might find a model that
explained only 21 percent of the variation in the onset of Alzheimer’s
disease to be very useful. Thus the decision about how useful a model is,

at least once it has been found to be statistically significant, should be
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theory based and not statistically based. This requires knowledge of the
field under study rather than statistics. This is the main reason that statis-
ticians usually need help from knowledgeable outsiders when developing

models.

Example

We will now look at an example involving celebrities. Although this is
clearly a nonbusiness example (unless, of course, you are in the business of
making movies), the procedures and considerations are exactly the same
as performing a marketing analysis to try to understand why your product
is (or is not) popular.

Forbes collected the following information on the top 100 celebrities
for 2000:

 Earnings rank, or simply a rank ordering of 1999 earnings
* Earnings for 1999

* Web hits across the Internet

* Dress clips from Lexis-Nexis

* Magazine covers

¢ Number of mentions on radio and television

The data are collected in the worksheet Celebrities.xls, which is shown
in Figure 3.10. Forbes used this information to decide on a “power rank”
for each celebrity. We will use multiple regression to try to discover the
rationale behind the power rank. That regression is shown in Figure 3.11.

The 7? value is 0.9245, so over 92 percent of the variation in the

power rank is explained by this data, giving the resulting equation:

Power Rank Equation

Power Rank =17.2959 + 0.8270(Income Rank)
+0.00004" (Earnings)—0.000 1’(Web Hits) — 0.0005(Press Clips)
—2.4321(Magazine Covers) —0.0220(TV and Radio Mentions)

Some of the signs in this equation seem unusual. We will have more to

say about this later. But before we get into this, we need to discuss how to
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B B & 1l D =T s S (= | H
Power Income Magazine TV and Radio
Rank Name Rank Earnings  Web Hits Press Clips. Covers Mentions

1 Julia Roberts 12 $50,000,000 41,131 9,978 7 105

2 George Lucas 1 $400,000,000 52,199 10,195 1 82

3 Oprah Winfrey 2 $150,000,000 26,150 9,575 3 103

4 TomHanks 5 71,500,000 43278 10,141 1 126

5 Michael Jordan 2 $40,000,000 263572 38888 3 267

6 Roling Stones. 11 $50,000,000 70,999 18,158 0 130

7 Tiger Woods 17 $47,000,000 85,137 32,974 2| 7

8 Backstreet Boys 8 $60,000,000 49,810 10,157 H 40

9 Cher. 25 $40,000,000 93,670 12,987 3 130

10 Steven Spielberg 9 60,000,000 29,564 14,645 0 %

11 Bruce Wills 10 $54500,000 55385 7,151 1 7

12 ‘Shania Twain 16 $48,000,000 128,077, 9,096 i 42

13 Celine Dion 22 $43,000,000 36,931 9,235 3 97

14 Stephen King 7 $65,000,000 77420 8714 1 15

15 Harrison Ford 18 $46,500,000 55,358 5,497 H 38

16 Tom Clancy 6 $66,000,000 26,075 2923 0 53

17 Mike Tyson 33 $33000000 36877 14,082 1 61

18 Mel Gibson 19 $45,500,000 29,139 6,248 1 37

19 Jim Carrey 20 $45,500,000 28,219 6,126 0 55

20 ‘Tom Cruise 38 $27,000,000 26,747 9,825 1 111

21 John Grisham 27 $36,000,000 29,574 3,825 0 48

22 Bvander Holyfield 29 $35500,000 11441 12386 1 54

23 John Travolia F] $32,000,000 38,551 8013 0 69

24 Michael Schumacher 15 $49,000,000 31,238 77 0 1

25 TE. Rowling 24 $40,000,000 168,931 3,107, 0 12]

26 Ghorgio Armani 3 $135,000,000 5,499 1,930 0 9]

27 David Kelley 4 $118,000,000 5,639 461 0 22

28 Shaqule ONeal 35 31000000 22724 14,303 1 16

29 David Letterman 46 $20,000,000 39,898 9.672 0 59

30 Howard Stem 50 $18,000,000 38,920 35,868 0 42

31 ‘Andre Agassi 47 $20,000,000 15,599, 17,923 2| 36

32 ‘Adam Sandler 37 $28,000,000 18,982, 5,577 1 51

33 Grant Hill 42 $23,000,000 144,197 8,460 0 10/

34 Lennox Lewis E3 $29000000 10575 10,260 0 36

35 Roste O'Donnell 40 $25,000,000 15,111 6,995 0 83

36 Dale Earnhardt 39 $26,500,000 29,754 11,537 0 3

37 Oscar De La Hoya 21 $43,500,000 6,276 6,083 0 12]

38 Calvin Klein 45 $21,500,000 21,403 7.460 0 66

39 David Copperfield 13 $50,000,000 8,146 559 0 7

40 Rush Limbangh 43 $22,000,000 28854 2,390 0 54
41 Michael Cnchton 32 $33,500,000 15,865, 1,687 0 13
42 ‘Arnold Palmer 49 $19,000,000 47,133 8,031 0 20
43 Karl Malone 51 $18,000,000 15,820, 10,579 0 55
44 Bill Blass 14 $50,000,000 2,307 993 0 7
45 Tommy Hifiger 4 $22,000,000 8,506 6637 0 72
46 Patrck Bwing 57 $15000,000 23528 13214 0 31
47 Jeff Gordon 54 $17,000,000 29,364 13,649 0 9]
48 Cindy Crawford 67 $8,000,000 104,181 3,217 1 75
49 TJay Leno 55 $17,000,000 17,857 8,123 0 55
50 Mike Piazza 58 $15,000,000 12,173, 10,946 1 41
51 Martina Hings 62 $12000000 23121 17,097 0 39
52 Nicolas Cage 28 $36,000,000 7.625 369 1 1
53 Dean Koontz 31 $34,000,000 12,157 687 0 5
54 Siegfiied & Roy 30 $35,000,000 4,290, 1,040 0 8]
55 Kevin Garnett 53 $17,500,000 16,058, 7,266 1 9]
56 Colin Powell 81 $3,000,000 21,354 76,667 0 126
57 Domna Karan 48 $20,000,000 7,368 3442 0 22
58 AmaKounikova 63 $11,000,000 56742 1739 0 6
59 Kevin Brown 59 $15,000,000 10,704 9,437 1 11
60 Troy. an 56 $15,500,000 14,908 7,502 0 13
61 Ron Howard & Brian Grazer 26 $39,000,000 355 338, 0 1
62 Venus Willams 77 $5,000,000 17,146, 11,569 0 42
63 VemonJordan 85 $2500000 29307 7,080 0 983
64 Bizabeth Hurley 7 $7.000000 16914 10,173 0 18
65 Elizabeth Dole 91 $1,000,000 12,796, 19,049 0 445
66 Monica Seles 69 $7,500,000 8,939, 9,151 0 25
67 ‘Wolfgang Puck 65 $9,500,000 2,725 1,500 0 87
68 Serena Williams 75 $6,000,000 9,085 8,814 1 34
69 | Gerald Cassidy 52 $18,000,000 3,155 20 0 50,
70 Dr. Laura Schlessinger 61 $13,000,000 11295 1,260 0 20
7 Robert Rubin 94 $200,000 27,993 9,353 0 948
72 Phil Rosenthal 41 $25,000,000 3,714 383 0 2]
73 Claudia Schiffer 66 $9,000,000 25,547 1,544 1 4
74 Roseanne 68 $8,000,000 15,398 2,144 0 14/
75 Edgerrin James 60 $15,000,000 5294 5495 0 3
76 George and Barbara Bush 7 $6,000000 17359 1531 0 19
77 Don Imus 64 $10,000,000 3,260 1,306 0 20
78 Emenl Lagasse 80 $3,200,000 2,268 1,388 1 227
79 Haley Barbour 70 $7,500,000 2,137, 783 0 60
80 Tyra Banks 73 $6,500,000 16,647, 899 1 3
81 Maya Angelou 7 $3300000 10649 2177 0 1
82 Cindy Margolis 86 $2,100000 44,705 129 0 8
83 ‘The Rock. 82 $3,000,000 19,227 421 1 3
84 Christy Turlington 72 $7,000,000 5,085 467 1 1
85 David Blaine 78 $4,000,000 18,462, 395 0 1
86 Esther Dyson 90 $1,200,000 7,040, 723 0 24
87 LouBesa 76 $6,000,000 2,324 1,256 0 0
83 Pemn & Teler 83 $3,000,000 4914 741 0 7
89 Reed Hundt 88 $2,000,000 3,167 341 0 30
90 Dr. Joy Browne g7 $2,000,000 5,898 406 0 3
9 Jean-George Vongerichten &4 $3,000,000 32| 423 0 2]
92 ‘Veme Troyer 93 $300,000 4,951 498 0 5
93 Stevie Case 8 60,000 766 933 0 16
94 Charlie Palmer 89 $1,300,000 1,197 84 0 3
95 Harry Knowles 97 $100,000 5,609, 160 0 2]
96 Jim Romenesko 99 $60,000 276 26 0 13
97 Nobuyuli Matsuhisa 92 $1,000,000 65| 19/ 0 0]
98 [Steve Trwin 95 $200,000 304 244 0 0
99 Michael Marorna % $200,000 25 3 0 0
101 100 Makhir C: 100 $5,000° 109 51 0 0
14 » pi\Data {Hutipie Rgmssm Reduced /_Reduced | ssion £ Final Data / Final Regression / Chart1 / Chart2 { Chart3 / Charts /[ Charts.
Daar [ E L L L L L E 2

Figure 3.10 Forbes 2000 data on 100
celebrities
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A I B I @ l D I E I F G =
| 1 |SUMMARY OUTPUT
2
3 Regression Statistics
| 4 Multple R 0.8615
| 5 B Square 05245
| 6 |Adjusted B Seuars 08196
| 7 |Standard Error 82258
8 | Observations 100
| 9|
10 | ANOTA
11 il 5 ME F Significance F
| 12 |Regression 6 T70322789 128387132 1857431 0.0000
| 13 Residual 53 6,2927211 676637
14 Total B 83,325.0000
15
18 Cagfficients | Standard Error & Stat Fovalue Lawer 05% Upper 05%
| 17 |Intercept 17.2959 29486 58657 0.0000 11,4405 23.1513
| 18 Income Rank 0.8270 0.0406 20.3580 0.0000 07463 0.5077
| 19 Earnngs 0.0000 0.0000 0.2022 0.8402 0.0000 0.0000
| 20 |Web Hite -0.0001 0.0000 -2.5901 0.0026 -0.0001 0.0000
| 21 |Press Clips -0.0005 0.0001 -6.0757 0.0000 -0.0007 -0.0004
| 22 |Magazine Covers -24321 05219 -26381 0.0053 -4 2628 -0.6014
23 TW and Radio Mentions -0.0220 0.0060 -3.6445 0.0004 -0.0340 -0.0100 =
4[4[ » (W[ Bata jMultiple Regression  Reduced  Reduced Regression . Final Data 4 | 4] | |
Ready == 1] e o o 7

Figure 3.11 The multiple regression results on the year 2000 Forbes
data on 100 celebrities with Power Rank as the dependent variable

evaluate the significance of the overall model, as well as the significances

of the individual components.

The F-Test on a Multiple Regression Model

The first statistical test we need to perform is to test and see if the overall
multiple regression model is significant. After all, if the overall model is
insignificant then there is no point is looking to see what parts of the
model might be significant. Back with simple regression, we performed
the following test on the correlation coefficient between the single depen-
dent variable and the single independent variable and said that if the cor-

relation was significant then the overall model would also be significant:

H,:p=0
H:p#0

With multiple regression, we can no longer use that approach. The reason
is simple: If there are six independent variables, then there are six differ-
ent correlations between the single dependent variable and each of the

independent variables.®
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With simple regression, a significant correlation between the single
dependent and the single dependent variable indicated a significant
model. With multiple regression, we may end up with data where some of
the independent variables are significant whereas others are insignificant.
For this reason, we need a test that will test all the independent variables

at once. That is, we want to test the following:

H,:p,=p,= =B, =0
H1: B, # for some 7

In other words, we are testing to see that at least one B; is not equal
to zero.

Think about the logic for a minute. If all the B;s in the model equal
zero, then the data we have collected is of no value in explaining the de-
pendent variable. So, basically, in specifying this null hypothesis we are
saying that the model is useless. On the other hand, if at least one of the
B/s is not zero, then at least some part of the model helps us explain the
dependent variable. This is the logic behind the alternative hypothesis. Of
course, we will still need to delve into the model and figure out which part
is really helping us. That is a topic for a later section.

We will use analysis of variance (ANOVA) to perform the test on
the hypotheses shown previously. Before looking at the hypothesis test,
a couple of notes are in order regarding the aforementioned hypotheses.
First, notice that the null hypothesis does 7ot specify the intercept, 3. As
with simple regression, we are rarely interested in the significance of the
intercept. As discussed previously, it is possible that some of the B,s will
be significant whereas others will be insignificant. As long as any one of
them is significant, the model will pass the ANOVA test.

We will briefly review ANOVA as it relates to multiple regression hy-
pothesis testing. Interested students should refer to a statistics textbook
for more details. Figure 3.12 shows just the ANOVA section from the
2000 Sydney Olympics results regression shown previously. In this dis-
cussion, the numbers with arrows after them are shown in the figure as
references to the items under discussion. They are not, of course, nor-
mally a part of the ANOVA results.

We will now discuss each of the notes shown in Figure 3.12.
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A [ B [ c [ D [ E [ F ]
| 1 [STMIMARY OUTEUT I
2
3 Regression Statistics
| 4 Mliiple B 0.4587
| 6 |R Square 0.2104
| 6 |Adjusted R Square 0.187%
| 7 |Standard Error 16.8516
8 |Observations 73
El
10 | AOVA |
1 df S5 MY F Significance &
| 12 |Regression 1~ 2 4+ 53603338 7-2680.166% 9-+53270) 10—~ 0.0003
| 13 |Residual 2-70 5-20,115.0087 8~ 2873573
14 | Total 372 6254753425
5] -
144 [ [#], Data ' Multiple Regression /55 / RandomData  Random Rear | 4| | L|JJ
Realy |1’ 5 o o o [ 2

Figure 3.12 ANOVA section for the 2000 Sydney Olympics results

regression

10.

. 'The regression degrees of freedom is 4, the number of independent

variables (two in this case).

. 'The residual (or error) degrees of freedom is 7 — k-1, 0r 73 -2 -1 =

70 in this case.

. 'The total degrees of freedom is 7 —1, or 72 in this case.

This is the sums of squares (S5) regression. We will abbreviate this as
SSR. Its calculation will be discussed in more detail shortly.

This is SS residual. In order to avoid confusion with SS regression,
we will abbreviate this as SSE. Its calculation will be discussed in

more detail shortly.

. This is SS total. We will abbreviate this as SS7. Its calculation will be

discussed in more detail shortly.

. 'This is mean square regression, or MS regression. We will abbreviate

this as MSR. It is calculated as SSR/ k.

. 'This is mean square residual/error or MS residual. We will abbreviate

this as MSE. It is calculated as SSE/ (n — k- 1).

. 'The F ratio is calculated as MSR/MSE. This value is chi square dis-

tributed with &, — £ — 1 degrees of freedom.

This is the p-value for the F-test. When it is less than 0.05, the over-
all model is significant, and when it is greater than 0.05, the overall
model is not significant. That is, you reject the null hypothesis that

all the B, coeflicients are zero. If the overall model is not significant,
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S R D [ E F [ ® I 0 1 3

Total GNP Per| Regression =
11 Metals SSTotal Population  Capita (US$),  Estimate S8Error| SSRegression.
| 2 | a7 71894 270,298,008 $28,240 310 4360.5 354.0
13| 88 57551 146 508,992 §2,260 11.3 58870 0.8
| 4 | 59 2,194.9| 1,238,509,424 F750 513 58.9 1534.5
15| 58 2,102.2 18,751,000 $20,640 167 1702.4 211
| 6 | 57 20115 82,047,000 $26,570 224 11956 1055
17| 38 668.2 58,847,000 $24,210 an.2 3156 654
| 8 | 34 4774 57,585,020 $20,090 17.9 2586 329
19| 28 251.2 59,055,000 $21410 187 269 42.6
0 28 251.2 46,430,000 £8,600 11.1 2873 1.2
B 1 1243 14,222,000 54,950 79 469 125
| 69 | 1 1243 274,000 $27.830 201 3634 626
|70 1 1243 579,672,856 F440 41.5 16363 8585
|71 1 1243 5,963,000 $16,180 13.8 163.1 2.6
172 1 1243 4,695,000 $380 4.9 15.2 526
| 73] 1 1243 2,008,500 $1,290 53 18.5 46.9
1 74] 1 124.3 18,778,000 £810 57 218 42.1
| 75 | Total 254753425 20,115.0087) 5,360.3338

| 76 |Average 12,151 |

W4 [» W] Data £ Multiple Regression 3,55 { Random Data 4 Random Regression | 4 | LUJ

Reay [ o e [ [ [

Figure 3.13 The values from the data from the 2000 Sydney
Olympics that will be used to calculate the sums of squares values

that is, if all the B, coeflicients are equal to zero, then there is no

point in continuing with the regression analysis.

We will briefly review the calculation of SSR, SSE, and SST. However, be-
cause Excel and every other multiple regression program report these values,
no additional emphasis will be placed on their manual calculation. Figure
3.13 shows the data from the 2000 Sydney Olympics with the information
required to calculate all three sums of squares values. Note that some of the
rows are hidden in this figure. That was done to reduce the size of the figure.

From the data, the average of the number of medals won (¥) is 12.151,

giving the following equation for S57:
SST
sST=Y (v -7)
For row 1, 97 — 12.151 = 84.8 and 84.8% = 7,199.4.” For row 2,
88 — 12.151 = 75.8 and 75.8” = 5,753.1. These calculations are carried

out for each of the data points, and the total of these squared values is
25,475.3425. This is the S§7 value shown back in Figure 3.12.
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The formula for SSE is the following:

SSE

ssE=Y(r-v)

For row 1, the predicted ¥ value is 31.0 and (97 — 31.0)* = 4,360.5.
For row 2, the predicted Y value is 11.3 and (88 — 11.3)* = 5,887.0.
These calculations are carried out for all the data, and the total of these
squared values is 20,115.0087. This is the SSE value shown back in Fig-
ure 3.12.

At this point, there is no need to compute SSR because the formula

SST
SSR+ SSE = SST

allows us to compute it based on S§7 and SSE.® Nevertheless, SSR is rep-

resented by the following equation:

SSR
SSR=3 (V-7

For row 1, that gives us 31.0 — 12.151 = 18.8 and 18.8% = 354.0.
For row 2, 11.3 — 12.151 = —0.9 and —0.9% = 0.8. These calculations
are carried out for all the data, and the total of these squared values is
5,360.3338. This is the SSE value shown back in Figure 3.12.

How Good Is the Fit?

In the last chapter on simple regression, we saw that 7* represents the
percentage of the variation in the dependent variable that is explained
by variations in the independent variable. That relationship holds in
multiple regression, only now more than one independent variable is
varying. In the last chapter, we simply accepted this definition of *.
Now that we have discussed ANOVA, we are ready to see how r? is

calculated:
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Calculation of 72
_ SSR
SST

2

From this calculation and Figure 3.12, we have SSR = 5,360.3338 and
SST = 25,475.3425. That gives us 5,360.3338/25,475.3425 = 0.2104.
This is exactly the value shown in Figure 3.12 for 7*.

Notice that the numerator of this formula for #* is the variation ex-
plained by regression and the denominator is the total variation. Thus
this formula is the ratio of explained variation to total variation. In other
words, it calculates the percentage of explained variation to total variation.

The value of 7* suffers from a problem when variables are added. We

will illustrate this problem with an example.

Example

Figure 3.14 shows the data from the 2000 Sydney Olympics with four
variables added. Each of these variables was added by using the Excel
random number generator. These random numbers were then converted
from a formula (=RAND()) to a hardwired number’ so their value would
not change while the regression was being calculated and so you could
experiment with the same set of random numbers. Although the num-
bers are still random, they can just no longer vary. Because these numbers

were randomly generated, they should not help to explain the results at

A R T = F I [ ] T O S I |
Gold  Silver| Bronze Total GNP Per
| 1 | Comntry Metals Metals| Metals Metals  Population Capita (US$) Random, Random, Randomg Random
| 2 |United States 39 25! 33 97 270,289,008 £29,240 0.642 0.586 0.601 0.347
| 3 |Russia 32 28 28 88| 146,908,392 $2,260 0428 0.570 0.539 0927
| 4 |People's Republic of China 28 16 15 58 1,238,599.424 $750 0,542 0.560 0.363 0.918
| 5 |Australia 16 25 17 58 18,751,000 £20,640 0766 0.598 0.103 0156
| B |Germany 14 17 26 57, 82,047,000 $26,570 0591 0.558 0.321 0.570
| 7 |France 13 14 11 38 58,847,000 £24,210 0,959 0729 03525 0.3350
| 8 |Ttaly 13 2 13 34 57,589,020 $20,090 03590 0.909 0.202 0534
| 9 |Great Britain 1 10 7 28] 59.055,000 £21.410 0.041 0.543 0.802 0.665
| 10 | South Korea 8 9 11 28 46,430,000 $8,600 0214 0.576 0423 0752
| 68 | Chile 0 0 1 1 14,822,000 34,990 0.301 0.568 0.210 0.2%2
| B9 |Iceland 0 a 1 1 274,000 $27,830 0667 0.067 0.203 0.259
|70 | India 0 [ 1 1) 979,672,336 $440 0.063 0.493 0.033 0131
| 71 |Tsrael 0 0 1 1 5,963,000 §16,180 0121 0.576 0.001 0278
72 |Kyrgyzstan 0 [ 1 1 4,699,000 $330 0.842 0.337 0.862 0,689
| 73 Macedonia 0 0 1 1 2,009,300 $1,290 0916 0.600 0.184 0431
| 74 |5ri Lanka 0 0 1 1 18,778,000 $810 0,500 0.252 0.998 0508 =~
14 "] [pI[\ Data £ Multiple Regression £ 55 3 Random Data ¢ Random Regression /{ Dataz /_ Multiple Req | « | L]JJ
Reacy I | ] = 2

Figure 3.14 The data for the 2000 Sydney Olympics with four

completely random variables added



88 BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

A [ ] [ c [ 3] [ E__] F [ G =

| 1 STMMARY OUTPUT u

2

3 Regression Statistics
| 4 Multiple 05226
| 5 R Square 0.2731
| B Adpsted R Square 0.2070
| 7 | Standard Error 167503

8 | Observations 73
9]

10 ANOVA

11 qaf 55 M5 F Significance F

12 |Regression ) £,957.4875  1,158.3813 4.1329 0.0014

13 | Residual 66 18,517.8545 280.5736

14 Total 72 254753425

14

16 Coafficienis | Siandard Brror ¢ Stat FP-valus Lowar 95% Uppar 95%
| 17 Intercept -8.1259 74804 -1.0863 0.2813 -23.0610 £.80%1

18 Fopulation 0.0000 0.0000 3.1038 0.0028 0.0000 0.0000

19 | GITP Per Capita (US5) 0.0005 0.0002 2.9286 0.0047 0.0002 0.0003

20 Random] 5.5399 7.2537 0.7637 0.4477 -8.9426 20.0223

21 Random?2 12,3831 69561 1.7302 0.07%6 -1.5052 26.2714

22 Random3 -1.1878 68836 -0.1725 0.8635 -14.5312 12,5558

23 Randomd 11.4860 7.6953 1.4938 0.1400 -3.8682 26.8602 7
24 -
[ [«[» ({5 £ RandomData}Random ion { Dats2 {_ Muliple Regressionz__ [ 4] | Llj_I
Reay ‘ == [ [ =] I =z

Figure 3.15 The results of running multiple regression on the 2000
Sydney Olympics data with four completely random variables added

all. That is, they have absolutely no relationship to the number of med-
als won. As a result, you would expect that the percentage of variation
explained (r*) would also not change.

Figure 3.15 shows the results of the new multiple regression including
the four random variables. As expected, none of these variables is signifi-
cant. However, the 7 value goes up from 0.2104 when the regression was
run without the random variables to 0.2731 when the random variables
are included. Why?

With simple regression, the model is a line. A line is uniquely defined
by two points, so simple regression on two points will always perfectly de-
fine a line. This is called a sample-specific solution. That is, 72 will always be
1.00 even if the two variables have nothing to do with each other. For any
regression with 4 independent variables, a model with 4 + 1 observations
will be uniquely defined with % of 1.00. Additionally, as the number of
variables increases, even when those variables have no useful information,
the value of 72 will always increase. That is why 7* increased in the previous
example when the four random, and useless, variables were added. If we
were to add more variables containing purely random data, 7* would go

up again. The opposite is also true. If you drop a variable from a model,
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even a variable like these random numbers that have no relationship to
the dependent variable, 7* will go down.

To account for 72 increasing every time a new variable is added, an
alternative measure of fit, called the adjusted multiple coeflicient of deter-

mination, or adjusted 72, is also computed using the following formula:

Multiple Coefficient of Determination, or Adjusted r*

SSE

P Pn-e+ 1)

TSt
.

As with 72, the symbol R? is for the population value and 72 is for
the sample. Because this symbol is not used in computer printouts, we
will just use adjusted 7*. Although r* always increases when another vari-
able is added, the adjusted * does not a/ways increase because it takes into
account changes in the degrees of freedom. However, the adjusted r? may
also increase when unrelated variables are added, as it did in the previous
example, increasing from 0.1879 to 0.2070. When the adjusted 7* does
increase with the addition of unrelated variables, its level of increase will
generally be much less than 72, as was the case here.

In certain rare cases, it is possible for the adjusted 7* to be negative.
The reason for this is explained in the sidebar in more detail, but it hap-
pens only when there is little or no relationship between the dependent

variable and the independent variables.

Box 3.1
Negative Adjusted r*

The value of 7 must always be positive. There is no surprise there. In
simple regression, 7 is simply the correlation coefficient (7) squared,
and any value squared must be positive. In multiple regression, 72 is

calculated with the following formula:

Calculation of 72
, SSR
r=——
SST
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Because both SSR and SST are always positive, it follows that 72 is also
always positive.
As we saw earlier, 7 can be adjusted for the number of variables,

producing what was called adjusted 72, using the following formula:

Multiple Coefficient of Determination, or Adjusted *

SSE
7P il %ﬂ—(k+1))

SST
(n=1)

One would expect that adjusted 7* would also be positive and, for
the most part, that is the case. However, almost by accident, the author
noticed that adjusted 7 can sometimes be negative.

In developing an example of what would happen to 7* when there
was no relationship between the variables (»* is low but not zero), the
author put together a spreadsheet where the data were generated using
the Excel random number function. It looked much like the data set
shown in Figure 3.16. Although the data were generated with the ran-

dom number function, they were converted to fixed values. Otherwise,

A B ¢ | D E F G H 5

Y X X, X; X
0266582 0.977085 0166529 0695932 0447434
0042133 0.949903 0204603 0612854 0043472
0999541 0.258609) 0.008639 005795 0432269
0703245 0527332 013922 0493454 0425445
0780523 0.508793) 0.069123 0.071995 0276603
0661014 0.726881) 0.909166 0133997 0199827
0032211 0.709744) 0609357 0702559 0042972
0551196 0.237814) 0786361/ 0.028515 0092503
0505833 0634886 047795 0154627 0807349
099264 0.136804) 0.815983 0985101 0892236
0751554 0.859814) 0440877 006217 0785407
13| 0152784] 0691305 0513808 0.323988 0.099592
| 14| 0702264] 0303866 0475107 0.234943 0.590501
15| 0142858| 0526448 0459421 0180724 0.101871
|16 | 022433] 0.690650) 0.172524) 0569454 0814183
|17 | 0360608 0298169 0.524367 0.015759 0979313
18| 0749585 0.04231) 0.733218 0.149565 0098333
19 | 0885854] 0.938073] 0.022812) 0.246195 0099304
| 20| 0127809 0.472733] 0920155 0.056513 0230359
21| 0683704 0571501 0920325 0720145 0757543

bl

1|4 |» ¥ |*Data £ Regression 4] | L”ﬂ
Ready 1 o [N

= =

Figure 3.16 Random data
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A B © D IE) F G o

| 1 SUMMARY OUTPUT

2

3 Regression Statistics

4 Mulple B 0 417\’ g : - j
TR Square 02 Adjusted R Square is negative!
| 6 |Adjusted R Square -0.0079
| 7 |Standard Error 0.3214

8 |Observations 20
N

10 ANOWVA

11 dr S5 M5 F Significance F
| 12 |Regression 4 03979 0.0935 0.9627 0.4562
| 13 | Residual 15 1.5498 0.1033

14 Total 19 1.9476

15

16 Cogfficients | Standard Evror i Stat Pvalie Lower 05% | Upper 93.0%
| 17 |Intercept 0.7844 02722 2.8814 00114 0.2042 1.3647
|18 X1 -0.3721 0.3078 -1.2088 0.2455 -1.0281 0.2840
| 18 %2 -0.2999 0.2566 -1.1688 0.2607 -0.8469 0.2470
|20 %3 0.0188 0.2670 0.0704 0.5443 -0.5502 0.5878 —
21 X4 0.2593 0.2338 1.1085 0.2851 -0.2392 0.7578

22 -
(M4 (¥ [MI[", Dota , Regression 4] | L[j_‘
Ready | [ == [ [ [ A

Figure 3.17 The results of running multiple regression on the
random data
the data would change each time the worksheet was loaded and so the
results would not match the data.

When these data were used in regression, the 7* value was low
(0.2043), as expected, and the regression was insignificant, again as ex-
pected. These results are shown in Figure 3.17. What was unexpected
was the adjusted 72 value of —0.0079. At first, the author suspected a
bug in Excel, but after doing some research, it became clear that Excel
was working properly.

To see this, we will rewrite the equation for adjusted 7* shown previously:

Rewriting Adjusted 7> Formula
2, (SSE m—1
SST n—Fk-1
Because SSR = 1 —SSE and 7 = SST/SSR, we can rewrite this equa-

tion in terms of 72

Simplifying Equation
R =1-A4-(1-7)
where

_ n—1
n—k—1
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Notice that A is greater than one any time 4 (number of indepen-
dent variables) is greater than zero. If 72 were zero, then our equation

would reduce to the following:

Equation When 7* Is Zero

Adjusted 7> =1-A1-0)=1-4
Because 4 is greater than one for any regression run, adjusted 7
must be negative for any regression run with 7* = 0. Additionally, as
72 increases, the chance of A(1 — 7?) being greater than one slowly de-
creases. Thus adjusted 7* can be negative only for very low values of 7.

We can see this in the previous example. Here, 7 = 20, # = 4, and 2
=0.2043. That results in A = 19/15 = 1.2667 and 1.2667(1 — 0.2043)
= 1.0079. When we subtract 1.0079 from 1, we obtain the negative
adjusted 7* of — 0.0079.

When there are a large number of observations relative to the num-
ber of variables, the values of 7% and adjusted 7> will be close to one
another. As a general rule of thumb, we recommend a bare minimum
of 5 observations for each independent variable in a multiple regres-

sion model with 10 per independent variable being much better.

Testing the Significance of the Individual Variables in
the Model

So far, we have discussed our regression models in general terms, and
we have only been concerned with whether the overall model is signifi-
cant—that is, if it passes the F-test. As was discussed previously, passing
the F-test only tells us that the overall model is significant, and if there
are collinear variables, then one of the variables is significant, though 7oz
that all of them are significant. In other words, once one of these collinear
variables is dropped out, at least one variable will be significant. We now
need to explore how to test the individual 4; coeflicients.

This test was not required with simple regression because there was
only one independent variable, so if the overall model was significant,
that one independent variable must be significant. However, multiple re-

gression has two or more independent variables and the overall model will
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be significant if only one of them is signiﬁcant.lo Because we only want
significant variables in our final model, we need a way to identify insig-
nificant variables so they can be discarded from the model.

The test of significance will need to be carried out for each indepen-

dent variable using the following hypotheses:

H,:B, =0
H :B,#0

Of course, when there is reason to believe that the coefficient should
behave in a predetermined fashion, a one-tailed test can be used rather
than a two-tailed test. As always, the selection of a one-tailed or two-tailed
test is theory based. Before discussing how to perform this hypothesis
test on the slope coefficient for each variable, we need to discuss several

problems with the test.

Interdependence

All the regression slope estimates come from a common data set. For this
reason, the estimates of the individual slope coefficients are interdepen-
dent. Each individual test is then carried out at a common alpha value,
say a = 0.05. However, due to interdependence, the overall alpha value

for the individual tests, as a set, cannot be determined.

Multicollinearity

In muldple regression, we want—in fact we need—each independent
variable to have a strong and significant correlation with the dependent
variable. However, one of the assumptions of multiple regression is that
the independent variables are not correlated with each other. When this
assumption is violated, the condition is called multicollinearity. Multicol-
linearity will be discussed in more detail later. For now, it is enough to
know that the presence of multicollinearity causes the independent vari-
ables to rob one another of their explanatory ability. When a significant
variable has its explanatory ability reduced by another variable, it may test
as insignificant even though it may well have significant explanatory abili-

ties and even if it is an important variable from a theoretical perspective.
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Autocorrelation

One of the assumptions of multiple regression is that the error or residual
terms are not correlated with themselves. When this assumption is vio-
lated, the condition is called autocorrelation.!" Autocorrelation can only
occur when the data are time-series data—that is, measurements of the
same variables at varying points in time. More will be said about autocor-
relation later. For now, autocorrelation causes some variables to appear to
be more significant than they really are, raising the chance of rejecting the

null hypothesis.

Repeated-Measures Test

The problem of repeated measures is only a major concern when a large
number of variables need to be tested. Alpha represents the percentage
of times that a true null hypothesis (that the variable is insignificant
when used with regression) will be rejected just due to sampling error. At
o = 0.05, we have a 5 percent chance of rejecting a true null hypothesis
(Bz = 0) just due to sampling error. When there are only a few variables,
we need not be overly concerned, but it is not uncommon for regression
models to have a large number of variables. The author constructed a
regression model for his dissertation with over 200 variables. At o = 0.05,
on average, this model could be expected to reject as many as 10 true null
hypotheses just due to sampling error.'?

Recall the following hypotheses:

H,:B,=0
H, :B,#0

However, a one-tailed test could be performed if desired. The test
statistic is distributed according to the Student #distribution with 7 —(4 +

1) degrees of freedom. The test statistic is represented as follows:

Test Statistic for Individual Multiple Regression Slope Parameters

b
=

()
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where 5(4,) is an estimate of the population standard deviation of the
estimator s(b,). The population parameter is unknown to us, naturally,
and the calculation of the sample value is beyond the scope of this
textbook. However, the value 5(4,) is calculated by Excel and shown

in the printout.

2000 Sydney Olympics Example

Figure 3.18 shows the ANOVA from the 2000 Sydney Olympics data set
without the random numbers. This time, the population values have been
divided by 1,000,000 to lower the units shown in the results. This is a linear
transformation so only the slope coefficient and the values that build off of
it are affected. You can see this by comparing Figure 3.18 to Figure 3.9. In
general, any linear transformation will leave the impact of the variables in-
tact. Specifically, the linear transformation will not change the significance
of the variable or the estimate of ¥'made by the resulting model.

For the Population variable, the coefficient is 0.03746 and s(4,)
is 0.01090 so the test statistic is 0.03746/0.01090 = 3.43563. This
value is shown as t Stat in Figure 3.18. For the per capita GNP vari-
able, the coefficient is 0.00056 and s5(4,) is 0.00019 so the test statistic is
0.00056/0.00019 = 2.99967, which is also shown in Figure 3.18. For a

A [ B [ C [ D [ E [ F [ G i
| 1 |STMMARY OUTPUT o
Z)
3 Regression Statistics
| 4 Multple B 0.4587
| 5 R Separe 0.2104
| B Adusted B Square 0.1879
| 7 Stendard Error 16.9516
8  Observations 73
9]
10 | ANOVA
1 df S5 ME 7 Significance F
| 12 Regression 2 5,360.3338)  2,680.166% 93270 0.000%
| 13 |Besidual 70 20,115.0087 287.3573
14 | Total 72 25,475.3425
15
16 Cogfficients | Standard Error ¢ Stat F-vaiue Lower 95% Upper 95%
| 17 Intercept 4.50753 2778319 161970 0.1087% -1.04296 1005882
| 18 Population (Million) 0.03746 0.01080 343563 0.00100 0.01571 0.05%20
18 | GIP Per Capita (USE) 0.00056 0.0001% 2.95967 0.00374 0.00018 000083
|42\D4 [» [»il{ Random Data / Random Regression { Dataz ) Multiple i K} | L]j_l
Ready [T | [ | || A

Figure 3.18 The ANOVA from the 2000 Sydney Olympics data set

without the random numbers
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two-tailed test, the p-value is shown in Figure 3.18, and the null hypoth-
esis can be accepted or rejected based solely on this value.

For a one-tailed hypothesis test, you can double the p-value and com-
pare that value to alpha.’> However, you must be careful when you do
this as it is possible to reach the wrong conclusion. To be certain, for a
one-tailed test, the calculated test statistic should be compared with the
critical value.

In this example, we would expect that having a larger population
would give you a larger pool of athletes from which to select Olympic ath-
letes and so would increase the number of medals won. In other words,

we would use the following hypotheses:

H,:B, <0
H,:B,>0

Likewise, having a higher per capita GNP should lead to more
money to spend on athlete training. In other words, we could use these

hypotheses:

H,:B,<0
H, :B,>0

So both of these hypothesis tests should be performed as a one-tailed
right test. For a one-tailed right test with o0 = 0.05 and 70 degrees of
freedom, the critical Student #value is 1.66692. Both the test statistic
of 3.43563 for population and 2.99967 for per capita GNP exceed this

value, so both slope coeflicients are significant.

Forbes Celebrity Example

Looking back at Figure 3.10, we see the regression results for multiple
regression on the top 100 celebrities in 2000 from Forbes. The depen-
dent variable is Forbes’s power rank. The following are the independent

variables:

* Income rank (jB,)

* Earnings for 1999 (§3,)
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* Web hits across the Internet (85)
* Dress clips from Lexis-Nexis (34)
* Magazine covers (Bs)

e Number of mentions on radio and television (3;)

For income rank, 1 is highest and 100 is lowest, so we would expect
that the Jower the number, the higher the power ranking. For earnings,
web hits, press clips, and magazine covers, we would expect that a higher
value would indicate a higher power ranking. For the number of times
mentioned on radio and television, the relationship is not clear. Being
mentioned more could mean they are accomplishing good things and
raising their power ranking, or it could mean they are involved in a scan-
dal, which probably lowers their power ranking. Because the direction
is unclear, we will use a two-tailed test for this variable. The six sets of
hypotheses we need to test are therefore represented in Table 3.1.

With 93 degrees of freedom, the Student 7 critical value for a one-
tailed left test is —1.66140, for a one-tailed right it is +1.66140, and for a
two-tailed test it is £1.9858. Given that, the critical values and decisions
for the six variables are given in Table 3.2.

Note that had we used a two-tailed test for all the variables, only B,
would have been insignificant. This is most likely due to our poor un-
derstanding of the relationship between these variables and the power of
these celebrities. It is not uncommon for the results of regression to cause
researchers to rethink their theory. In any case, hypotheses should never
be redone just to make a variable significant. Rather, they should only be
changed when there is good reason to believe that the original theory is
flawed.

Because it is unlikely that Forbes went to all the trouble to collect and
report this data without then including it in its power ranking, we are
willing to believe that our original theory regarding the hypotheses was
wrong. Given that, we conclude that we do not know enough to set a
direction for the hypotheses and will use a two-tailed test for all variables.
Those results are shown in Table 3.3.

Note that income is still insignificant, but all the other variables are
significant. This is most likely due to income ranking and income explain-

ing the same variation and so income ranking is robbing the explanatory
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Table 3.1 Hypotheses Used

Income Rank Earnings for 1999 Web Hits
Hy: B, 20 Hy: B, <0 Hy: B30
H;: B, <0 H;: B, >0 H;: ;>0
Press Clips Magazine Covers Radio and TV
Mentions
Hy: By <0 Hy: Bs<0 Hy: Bs =0
H;: B, >0 H;:B5>0 Hi: B =0
Table 3.2. Hypothesis Test Results
Income Rank Earnings for 1999 Web Hits
Hy: B, 20 Hy: B, <0 He: B5<0
H;: B, <0 H;: B, >0 H: ;>0

Critical value: —1.66140

Critical value: +1.66140

Critical value: +1.66140

Test statistics: 20.3590

Test Statistics: 0.2022

Test statistics: —2.9901

Decision: Accept

Decision: Accept

Decision: Accept

Press Clips Magazine Covers Radio and TV
Mentions

Hq: By <0 Hy: B5<0 Ho: Bg =0

H;: B, >0 H;: Bs >0 H: Bs#0

Critical Value: +1.66140

Critical Value: +1.66140

Critical Value: +1.9858

Test Statistics: —=6.0797

Test Statistics: —2.6381

Test Statistics: —3.6445

Decision: Accept

Decision: Accept

Decision: Reject

Table 3.3 Hypothesis Test Results Using All Two-Tailed Tests

Income Rank Earnings for 1999 Web Hits
Hy: B, =0 Hy: B, =0 Hy: B =0
Hj: B, =0 Hp:B,#0 H;: ;=0

Critical Value: £1.9858

Critical Value: +1.9858

Critical Value: £1.9858

Test Statistics: 20.3590

Test Statistics: 0.2022

Test Statistics: —2.9901

Decision: Reject

Decision: Accept

Decision: Reject

Press Clips Magazine Covers Radio and TV
Mentions

Hy: By =0 Hp:B5=0 Ho:Bs=0

H;: B, =0 H: s =0 Hy: B =0

Critical Value: £1.9858

Critical Value: £1.9858

Critical Value: £1.9858

Test Statistics: =6.0797

Test Statistics: —2.6381

Test Statistics: —3.6445

Decision: Reject

Decision: Reject

Decision: Reject
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power from income. This must be treated before we have a final model.

We will revisit this again later in the chapter.

Automating Hypothesis Testing on the Individual Variables

Excel provides a p-value for each regression coeflicient that can be used to
perform variable hypothesis testing, as long as it is used with care. When
used carelessly, it can cause you to make the wrong decision. We will il-

lustrate this using an example.

Example

Figure 3.19 shows a set of fictitious simple regression data. Figure 3.20
shows a chart of this data. As you can see from Figure 3.20, the data
have a negative relationship. Figure 3.21 shows the resulting simple re-
gression run.

As you can see in Figure 3.21, the overall model is not significant
because the p-value for the F-test is only 0.0844. Notice that the p-value
for the Student #test on B, is also 0.0844. This will always be the case in
simple regression, but not, however, in multiple regression.

In the last chapter, we tested the correlation coefficient to see if it was
significant, so we will do the same here. Given the chart shown in Figure
3.20, we will assume that the relationship is negative. That is, we will

make the following hypotheses:

A | s | @ | ® E F G H i
| 1] Y X
|2 | 68 336
| 3 | 37 383
|4 82 375
| 5 | 17 £15
| 6 | 45 S50
|7 | 84 123 i
| 8 | an G077
| 9 | 14 389
|10 73 575
| 11| a7 73
12 J;l
44 |p [m]\Data { Chart £ Correlate £ Regression 3 S |
Ready 1 B [ B B

Figure 3.19 Fictitious simple regression data
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4|4 » | Data 3 Chart { Correlate £ Regression
Ready [ o o o [ o

Figure 3.20 A chart of the data

A B © D IE) F G -

| 1 [STUNMARY OUTPUT

2

3 Regression Statistics
| 4 |Multiple R 0.571465303
| 5 |R Square 0326573278
| 6 |Adusted B Square . 0.242354538
| 7 |Standard Error 2367064533

& |Observations 10
1 & |

10 [ANOVA

il dr Iy ME F Significance &
| 12 |Regression 1 2,173.7044 2,173.7044 3.8795 0.0844
| 13 |Resdual 8 4,482.3956 560.2995

14 | Total 9 £,656.1000

15

16 Cogfficients | Standard Error £ Stet FP-vaiue Lowar 93% Uppar 85% | ||
| 17 |Intercept 88.3256 18.1788 4.858% 0.0013 46,4083 130.2500
181X -0.0810 0.0411 -1.9657 0.0844 -0.1758 0.01358
I 7 Chiart £ Correlate_ Regression |« | 0
Ready =] I [ | A

Figure 3.21 The resulting simple regression run

H,:p=0
H :p<0

The correlation coefhicient (not shown) is —0.5715. This correlation coef-

ficient is significant.

At first, you may be concerned regarding the apparent discrepancy

between concluding the model was insignificant using the F-test and
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concluding it was significant by testing the correlation coefficient. How-
ever, there is no real discrepancy. The F-test tests the entire model at once.
When the model contains many variables, it would not be uncommon for
some of them to be tested as one-tailed right, others as one-tailed left, and
still others as two tailed. We assume a two-tailed F-test in multiple regres-
sion to avoid this issue. In simple regression, we only have one variable,
so we can tailor the test to fit that single variable. Note also that the F-test
can be converted to a one-tailed test by dividing the two-tailed p-value
by two, obtaining 0.0422 and making this model significant using the /-
test and matching our results under the hypothesis test on the correlation
coefficient.

Excel gives two-tailed p-values for both the F-test and the Student #
test for the individual coefficients. These can be converted to one-tailed p-
values by dividing them by two. We generally do not do this for the F-test
in multiple regression because all the coefficients are rarely in agreement
regarding their number of tails and direction of testing. However, this is
perfectly acceptable for the individual coefficients because we are testing
the variables one at a time. However, we must be careful not to allow this
shortcut to cause us to reach the wrong conclusion. We will continue with
our example to see how this might happen.

We already know from the previous example that this model is signifi-
cant when we assume a negative relationship. Now, what happens if we

assume a positive relationship? That is, we assume the following:

H,:p<0
H, :p>0

Therefore,
H,:B, <0
H,:B,>0

Just by looking at the chart back in Figure 3.20, we know that this as-
sumption will lead us to conclude that the relationship is insignificant.
However, if we simply take the Student #-value for the B, coefficient of
0.0844 from the regression in Figure 3.21 and divide by two, we ob-
tain 0.0422 and we therefore reject the null hypothesis and conclude the

model is significant. This time, we truly have a contradiction.
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Briefly, the problem is that Excel computes the test statistic and then
finds the area on both sides. It takes the smaller of these two values and
doubles it to compute the two-tailed p-value. Simply dividing by two to
obtain the one-tailed p-value gives no consideration to which side of the
mean the rejection region falls.

The way to avoid this is to compare the sign of B, as assumed in H,
and &, as calculated by regression. When these are the same, you cannot
reject the null hypothesis and conclude the variable is significant regard-
less of the p-value. After all, if the null hypothesis assumes the coefficient
is negative and the sample coeflicient is negative, we would never want
to conclude that this assumption was false. In the previous example, the
null hypothesis was that the B; was negative and &, was —0.0810. Be-
cause these have the same sign, we must assume that this variable is not

significant.

Conclusion

In this chapter, you have seen how to perform multiple regression, how to
test the overall model for significance, and how to avoid problems when
testing for significance. In the next chapter, we will see how to pull this

together and construct meaningful multiple regression models.



CHAPTER 4

Model Building

In business, we build regression models to accomplish something. Typi-
cally, either we wish to explain the behavior of the dependent variable or
we wish to forecast the future behavior of the dependent variable based on
the expected future behavior of the independent variables. Often, we wish
to do both. In order to accomplish this, we select variables that we believe
will help us explain or forecast the dependent variable. If the dependent
variable were sales, for example, then we would select independent vari-
ables like advertising, pricing, competitor actions, the economy, and so
on. We would not select independent variables like supplier lead time or
corporate income tax rates because these variables are unlikely to help
us explain or forecast sales. As was discussed in chapter 3, we want the
overall model to be significant and we want the individual independent
variables to also all be significant. In summary, our three criteria for a

multiple regression model are the following:

1. Variables should make sense from a theoretical standpoint. That is,
in business, it makes sense from a business perspective to include
each variable.

2. 'The overall model is significant. That is, it passes the F-test.

3. Every independent variable in the model is significant. That is, each

variable passes its individual Student #test.

In chapter 3, we saw how to test an overall model for significance, as well
as how to test the individual slope coefficients. We now need to investi-
gate how to deal with the situation where the overall model is significant
but some or all of the individual slope coefficients are insignificant.
Before we go on, you may have noticed that the previous sentence

states that “where the overall model is significant but some or all of the
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individual slope coefficients are insignificant.” Although rare, it is possible
for the overall model to be significant although none of the individual
slope coefficients is significant as we begin to work with the model. This
can only happen when the model has a great deal of multicollinearity.
When this happens, it will always be the case that the following pro-
cedures will result in at least one variable becoming significant. Stated
another way, when the overall model is significant, we must end up with
at least one significant slope coeflicient, regardless of how they appear in
the original results.

We call the process of moving from including every variable to only
including those variables that provide statistical value model building. In
business, we use these models to do something, such as produce a fore-
cast. Oftentimes, these models are used over and over. For example, a
forecasting model might be used every month. Building a model with
only variables that provide statistical value has the added benefit of mini-
mizing the cost of the data collection associated with maintaining that

model.

Partial F-Test

One way to test the impact of dropping one or more variables from a
model is with the partial F-test. With this test, the F statistic for the
model with and without the variables under consideration for dropping
is computed and the two values are compared. We will illustrate this using

the celebrities worksheet.

Example

When we first looked at this model in chapter 3, the earnings variable (3,)
appeared to be insignificant. The Student #value for magazine covers (Bs)

was also low, so we will include it with earnings to see if both should be
dropped. The model with all the variables included is called the fu// model.
It is of the following form:

Full Model

= Bo +Byx +B,x, + Bsxs B+ Bsxs + B,
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We already have the results for this model. They were shown back in
Figure 3.11. We will call the model with B, and bs dropped the reduced

model. It is of the following form:

Reduced Model

7=B +Bx + Baxs + B + By

This multiple regression run is shown in Figure 4.1. In this case, the

hypotheses for the partial F-test are the following:

H0:B2=B5:0
H, : B, # 0and/or B, #0

The partial F statistic is F distributed with 7,7 — (£ + 1) degrees of
freedom where 7 is the number of variables that were dropped to create
the reduced model (two in this case), 7 is the number of observations, and
k is the number of independent variables in the full mode. With o = 0.05
and 2,93 degrees of freedom, the value of the F statistic is 3.0943.

The partial F-test statistic is based on the sums of squares (SSE) for
the reduced and full model and the mean square error (MSE) for the full

model. It is computed as follows:

A E © D E I G =
| 1 |SUMMARY OUTPUT
2
E] Regression Statistics
| 4 Multiple B 0.9585
| 5 |R Sequare 0.9188
| 6 |Adusted R Square 0.8154
| 7 |Standard Error 84388
8 |Observations 100
| & |
10 ANOVA
11 2id S5 ME 7 Significance F
| 12 Regression 4 76,559.6845  19,139.8211 2687668 0.0000
| 13 |Residual 95 6,765.3155 71.2138
14 Total 99 £3,325.0000
15
16 Coafficients | Standard Error £ Stat P-valus Lower 23% Upper 95%
| 17 |Tntercept 158629 2.1840 7.3303 0.0000 11.5668 20.15%0
| 18 Income Rank 0.845% 0.0321 26.3826 0.0000 077823 0.9036
| 19 "Web Hits -0.0001 0.0000 -3.6116 0.0005 -0.0001 0.0000
| 20 |Press Clips -0.0006 0.0001 -6.1259 0.0000 -0.0007 -0.0004)
21 |TV and Radio Mentions -0.0228 0.0062 -3.6962 0.0004 -0.0350 -0.0105
14 [ 4 [¥ [¥]}Reduced Regression  Final Data J_Final Regression { Chartl £ charte / cha | ] | |
Ready |1 [ [ | |

Figure 4.1 The multiple regression run for the reduced celebrity
model
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Partial F-Test Statistic

(SSE, — SSEFV
Fo—o /7
MSE,

Where SSE is the SSE for the reduced model, SSE is the SSE for the
full model, 7 is the number of variables that were dropped to create the
reduced model, and MSE} is MSE for the full model. For the previous

examples, the partial F-test statistic is the following:

(SSER—SSEFV (6765.3155-6,2927211), 30

F= r =~3.49
MSE, 67.6637 67.66367

Because 3.49 is greater than the critical value of 3.0943, we reject the null
hypothesis and conclude that either 3, or B5 or both are not zero. This was to

be expected because we had already concluded that 5 was not equal to zero.

Partial F Approaches

The partial F-test can be carried out over any combination of variables in
order to arrive at a final model. As you can imagine, this would be very
tedious and is usually automated by a statistical package. There are four
overall approaches that a statistical package can take to select the variables

to include in the final model:!

1. All possible combinations of variables. The computer simply tries all
possible combinations of 4 independent variables and then picks the
best one. If we are considering 4 independent variables, then there
are 2°~1 possible sets of variables. Once all the possible models are
computed, the best one is selected according to some criteria, such
as the highest adjusted 7* or the lowest MSE.

2. Forward selection. The computer begins with the model containing
no variables. It then adds the single variable with the highest signifi-
cant F statistic. Once a variable has been added, the computer looks

at the partial F statistic of adding one more variable. It then adds the
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one with the highest 7 value to the model, as long as that variable
meets the significance requirement (e.g., o = 0.05). Once added,
this, and all the variables that are added later, remains in the model.
That is, once in, a variable is never discarded. The process contin-
ues until no more variables are available that meet the significance
requirement.

3. Backward elimination. The computer begins with the model con-
taining all the variables. It then computes the partial F statistic for
dropping each single variable. It then drops the variable that has
the lowest partial F statistic. This continues undil all the variables
remaining in the model meet the significance requirement. Once a
variable is dropped from the model, it is never considered for reentry
into the model.

4. Stepwise regression. This is a combination of forward selection and
backward elimination. The weakness of these two approaches is that
they never reevaluate a variable. Stepwise regression begins as for-
ward selection, finding the single variable to put into the model. It
then goes on to find the second variable to enter, as always, assuming
it meets the significance requirement. Once a second variable enters
the model, it uses backward elimination to make sure that the first
variable meets the criteria to stay in the model. If not, it is dropped.
Next, it uses forward selection to select the next variable to enter and
then uses backward elimination to make sure that all the variables
should remain. This two-step approach assures us that any interac-
tion (multicollinearity) between variables is accounted for. The pro-
cess continues until no more variables will enter or leave the model.
Stepwise is the most common approach to deciding on the variables

that are to remain in the model.

Forward, backward, and stepwise selection can be seen in operation in
Box 4.1.

When working with a large number of variables, model building can
be difficult and time-consuming with Excel. This is the situation when

there is a real business case for investing in a powerful statistical package
like SPSS.
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Box 4.1

Forward, Backward, and Stepwise
Regression in SPSS

The following shows the results of using a statistical package called
SPSS to perform forward, backward, and stepwise regression on the
data in the SellingPrice.xls worksheet. This worksheet is discussed in

more detail a lictle later in the chapter.

Forward Selection

With this approach, SPSS begins with the model containing no variables.
It then adds the single variable with the highest significant F statistic.

Variables Entered and Removed

Its first report, shown below, shows the variables that have entered the
model and the order in which they entered. In this case, the first variable

to enter was Asking Price and the second to enter was Time on Market.

Model Variables Entered Method

1 Asking Price Forward
(Criterion: Probability-of-F-to-enter <= .050)
2 Time on Market Forward

(Criterion: Probability-of-F-to-enter < = .050)

Model Summary

Its next report, shown here, summarizes each model as it is being built.
The report shows the 7, 72, adjusted 72, and standard error of the esti-

mate for each model.

Model R R Square Adjusted  Std. Error of the

R Square Estimate
1 992 985 984 $4,600.24
2 995 .990 989 $3,841.44

ANOVA

Its next report, shown here, shows the ANOVA table for each model
as it is being built.
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Model Sum of Squares df Mean Square F  Sig.
1 Regression 37,637,951,771 1 37,637,951,771 1,779 .000
Residual 592,542,895 28 21,162,246
Total 38,230,494,666 29
2 Regression 37,832,064,683 2 18,916,032,342 1,282 .000
Residual 398,429,983 27 14,756,666
Total 38,230,494,666 29
Coefficients

The next report shows the coefficients for each model as the model is

being built.

Unstandardized  Standardized

Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 8,832.825 3160.942 2.19%4 .009
Asking Price .876 .021 992 42.173 .000
2 (Constant) 11,536.825 2742.819 4.206 .000
Asking Price .888 .018 1.006 50.244 .001
Time on Market ~ -273.687 75.461 -.073 -3.627 .001

The final model is represented in the following equation:

Price = $11,536.825 + (0.888 x Asking Price)
—(273.687 x Time on Market)

Excluded Variables

The final report shows the variables that were excluded from each model.

Collinearity
Statistics
Model Beta t Sig. Partial Tolerance
In Correlation

1 Bedrooms -.088 -1.617 .117 =297 178
Bathrooms ~ —.081 -2.035 .052 —.365 316
Square Feet -.088 -1.282 .211 -.239 116
Age -039 -1.576 .127 -.290 .863
Time on -073 -3.627 .001 -.572 962

Market
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Collinearity
Statistics
Model Beta t Sig. Partial Tolerance
In Correlation

2 Bedrooms -009 -.166 .869 -.033 137
Bathrooms  -.028 712 483 -.138 249
Square Feet -.019 -306 .762 —.060 .103
Age -.024 -1.126 .270 -.216 .826

Backward Selection

With this approach, SPSS begins with the model containing all the
variables. It then computes the partial F-statistic for dropping each
single variable. It then drops the variable that has the lowest partial F-
statistic. This continues until all the variables remaining in the model
meet the significance requirement. The reports on this method, using

the same data, are shown on the pages that follow.

Variables Entered/Removed

Model Variables Entered Variables Method

Removed
1 Asking Price, Time on
Market, Age, Bathroom:s,
Bedrooms, Square Feet Enter
2 Asking Price  Backward
(Criterion: Probability of
F-to- remove > = .100).
3 Bathrooms Backward

(Criterion: Probability of
F-to- remove > = .100).

Model Summanry
Model R R Square  Adjusted R Std. Error of the
Square Estimate
1 997 993 991 $3,401.22
2 996 993 991 $3,416.73

3 .996 992 991 $3,509.24
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ANOVA
Model Sum of Squares df Mean Square  F
1 Regression  37,964,423,478 6 6,327,403,913  546.960
Residual 266,071,189 23 11,568,313
Total 38,230,494,667 29
2 Regression  37,950,317,903 5 7,590,063,581  650.166
Residual 280,176,764 24 11,674,032
Total 38,230,494,667 29
3 Regression  37,922,626,237 4 9,480,656,559  769.863
Residual 307,868,430 25 12,314,737
Total 38,230,494,667 29
Coefficients
Unstandardized ~ Standardized
Coefficients Coefficients
Model B Std. Error Beta t
1 (Constant) 49,579.707 12046.503 4.116
Bedrooms 13,488.252  4515.791 448 2.987
Bathrooms —6,202.340 3956.130 —.135 —-1.568
Square Feet 16.722 6.990 .386 2.392
Age -2,104.376  727.050 -191 -2.894
Time on Market  —517.636 128.547 -137  —4.027
Asking Price 257 232 291 1.104
2 (Constant) 61,929.842  4495.695 13.775
Bedrooms 17,001.038 3219.658 565 5.280
Bathrooms —6,119.732 3973.455 —.133  -1.540
Square Feet 24.197 1.748 .559 13.844
Age -2,877.174  197.901 -261 -14.538
Time on Market  —633.994 73.960 -168  -8.572
3 (Constant) 56,174.704  2567.304 21.881
Bedrooms 12,322.397 1095.710 409 11.246
Square Feet 25.617 1.525 592 16.798
Age -2,906.610  202.309 -264 -14.367
Time on Market —6,58.871 74.129 —.175 —8.888

111

Sig.
.000

.000

.000

Sig.
.000
.007
131
.025
.008
.001
281
.000
.000
137
.000
.000
.000
.000
.000
.000
.000
.000

In this case, the final model is represented in the following equation:
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Selling Price = 56,174.704 +12,322.397(Bedrooms)
+25.617(Square Feet) —2,906.610(Age)
—6,58.871(Time on Market)

This is the same model we will end up developing when we approach
this problem using Excel. This is to be expected, as the approach we will
be using closely mirrors backward selection. Note that this model is very

different from the model that was built using forward selection.

Excluded Variables
Collinearity
Statistics
Model Beta t Sig. Partial Tolerance
In Correlation
2 Asking 291 1.104 281 224 4.362E-03
Price
3 Asking 283 1.044 307 .208 4.364E-03
Price
Bathrooms  —.133 -1.540 .137 -300 4.070E-02

Stepwise Regression

Using this approach, SPSS finds the single variable to put into the model.
It then goes on to find the second variable to enter, as always, assuming
it meets the significance requirement. Once a second variable enters the
model, it uses backward elimination to make sure that the first variable
meets the criteria to stay in the model. If not, it is dropped. Next, it
uses forward selection to select the next variable to enter and then uses

backward elimination to make sure that all the variables should remain.

Variables Entered/Removed

Model Variables Variables Method
Entered Removed

1 Asking Stepwise (Criteria: Probability-of-F-to-enter
Price < =.050, Probability-of-F-to-remove < = .100).
2 Time on Stepwise (Criteria: Probability-of-F-to-enter

Market < =.050, Probability-of-F-to-remove < = .100).
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Model Summanry
Model R R Square  Adjusted R Std. Error of
Square the Estimate
1 992 .985 984 $4,600.24
2 995 .990 .989 $3,841.44
ANOVA
Model Sum of Squares df Mean Square F Sig.
1 Regression 37,637,951,771 1 37,637,951,771 1,778.542 .000
Residual 592,542,895 28 21,162,246
Total 38,230,494,667 29
2 Regression 37,832,064,683 2 18,916,032,342 1,281.864 .000
Residual 398,429,983 27 14,756,666
Total 38,230,494,667 29
Coefficients
Unstandardized  Standardized
Coefficients Coefficients
Model B Std. Error Beta t Sig.
1 (Constant) 8,832.825 3160.942 2.19%4 .009
Asking Price .876 .021 992 42.173 .000
2 (Constant) 11,536.825 2742.819 4.206 .000
Asking Price .888 .018 1.006 50.244 .000
Time on Market  -273.687 75.461 -.073 -3.6217 .001

Using stepwise regression, the model developed matches the for-

ward selection method. This is, of course, not always the case.

Excluded Variables
Collinearity
Statistics
Model Beta t Sig. Partial Tolerance
In Correlation
1 Bedrooms -088 -1.617 .117 -.297 178
Bathrooms  —.081 -2.035 .052 —.365 316
Square Feet -.088 -1.282 211 —.239 116
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Collinearity
Statistics
Model Beta t Sig. Partial Tolerance
In Correlation
Age -039 -1.576 .127 —-.290 .863
Time on -.073 -3.627 .001 -.572 962
Market
2 Bedrooms -.009 -166 .869 -.033 137
Bathrooms — —.028 712 483 —-.138 .249
Square Feet -.019 -306 .762 —-.060 103
Age -.024 -1.126 .270 -.216 .826
Summanry

The advantage of using any of these approaches in SPSS, rather than
building the model manually in Excel, is that SPSS completely auto-
mates the process. You simply select the approach to use and SPSS

does everything else for you.

None of these four methods for building a model guarantees that
we will find the one best model. Because the order of testing can make
a difference, it is possible, though not likely, that changing the order
in which the variables are entered into the computer will change the

results.

Model Building Using Excel

Unfortunately, Excel is not able to automate, or even easily perform, any
of the four model-building approaches discussed previously. For this rea-
son, it is always best to work with a dedicated statistics package when
trying to develop complex multiple regression models. However, not ev-
eryone has access to a dedicated statistics package, as they can be expen-
sive and difficult to use.

To compensate for Excel’s inability to automate building regression
models, the author has developed an approach to model building in

Excel that approximates backward elimination only using the »* value
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that Excel displays rather than the partial F that we would otherwise
have to manually compute for each regression run. For models with
fewer numbers of observations, the adjusted 7% can be used in place
of * in making the decisions. This approach has been found to work
well on actual data, but its application can be long and tedious when a
model has more than a couple of insignificant variables. To make mat-
ters worse, none of the steps can be automated. To make matters worse
still, the Excel requirement of having the independent variables in con-
tiguous columns causes a good deal of data manipulation problems.
For these reasons, readers with complex regression problems are again
encouraged to use a statistical program like SPSS or SAS to tackle these
more complex problems.

The steps for model building in Excel are as follows:

1. Run the regression with all the variables in the model. If the overall
model is insignificant, then stop. When this happens, none of the in-
dividual variables will be significant, so there is no point continuing.
This is not caused by any violation of regression assumptions. This is
usually caused by an error in the theory used to select the variables
o, less likely, by a problem with the data, such as having outliers in
the data.

2. Test each slope coefficient using the Student #test. If all the slope
coeflicients are significant, then stop; you have the final version of
the model.

3. If some of the variables are insignificant, make a list of all the insig-
nificant slope coeflicients.

4. One at a time, drop a single variable from this list and rerun the mul-
tiple regression. Record the resulting 7* and then reinsert the variable
into the data set.”

5. Once you have dropped all the insignificant variables one at a time,
look at all the 7* values you have recorded. For the run with the
highest 7%, permanently drop that variable from the dara set. That
is, drop the variable whose absence causes the least reduction in ex-
planatory power. This variable will be dropped forever and will not
be reconsidered for reentry into the model. To do otherwise would

be to greatly overwork the problem.
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6. Rerun the multiple regression without the variable permanently
dropped in step 5. If all the variables are significant, then stop; you
are finished. If not, then return to step 2 and continue until all the
slope coeflicients are significant. The steps for model building in

Excel are illustrated visually by the flowchart on page 117.

Selling Price Example

Understanding the real estate market is a common use of regression, a
use we will explore in the following example. This example also illustrates
using Excel to perform model building. The worksheet SellingPrice.xls
contains fictitious data where the dependent variable is the selling price

of a house and the independent variables are the following:

¢ The number of bedrooms

¢ The number of bathrooms

* The size of the house in square feet

 The age of the house in years

* The time the house was on the market before being sold, in
months

* The initial asking price

This is the same data set that was used to illustrate various approaches
to multiple regression using SPSS in Box 4.1. The data are shown in
Figure 4.2 and the initial regression run is shown in Figure 4.3.

To simplify matters and allow us to use the p-value for all the slope
coeflicients, we will assume that all the slope coefficient hypothesis tests
are two-tailed tests. Using these criteria, Figure 4.3 shows us that the fol-

lowing variables are not significant:

¢ The number of bathrooms

e The initial asking price

So we must drop each variable, in turn, and record the resulting value
of 7%, Rerunning the regression and dropping number of bathrooms

shows us the problems of using Excel to perform more than one multiple
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regression run on the same data. Specifically, there are two problems: one
more serious and one less so.
The more serious problem is that Excel requires independent variables

to be in contiguous columns and the number of bathrooms is in the
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A | B | ® | ® E F G
Sales Square Time On|  Asking
[ 1] Price| Bedrooms Bathrooms Feet| Age Marlket Price
2 | §101,200 2 2 2,100 9 12 §102,500
| 3 | $173,800 5 4 3,100 4 21 F183,600
4 | £183,100 5 4 4,200 5 28 $210,300
| 5 | $16%,400 5 4 3,800 g8 31 $187,300
5 | 112,300 2 2 2,400 5 27 $115,700
| 7 | 111,800 3 3 2,000 10 & 114,100
| 8 | £126,800 2 2 2,300 1 18 $130,300
| 8 | £137,600 3 3 2,300 5 4 §141,200
10| £127,400 2 2 1,900 1 11 §$130,600
11| £157,500 4 3 3,700 1 3 206,200
12| $8%,500 2 2 2,100 9 28| B57,500
13| £55,000 2 2 1,500 9 & $101,200
|14 | £123,400 2 2 2,400 5 & $127 800
|15 | £181,200 5 4 3,600 2 26 §205,700
|16 | £156,500 5 4 4.400 9 13 §216,400
|17 | £145,200 4 3 3,100 10 220 $154,500
|18 | £113,500 3 3 2,000 5 13 $124,900
|18 | £104,600 3 3 2,000 7 32 $111,300
|20 | $8%,700 2 2 2,100 10 19 §104,500
|21 | £184,800 5 4 3,100 1 21 $198,500
|22 | £110,100 2 2 2,300 9 3 $113,700
| 23 | £137,300 3 3 2,400 1 15 $153,400
|24 | £115,000 2 2 2,000 4 5 $120,300
|25 | £1086,500 3 3 2,200 10 28 £115,000
|26 | £115,300 2 2 1,900 4 2 $116,000
|27 | £111,300 3 3 2,100 5 26 $126,100
|28 | £132,200 3 3 2,400 4 15 $137,100
|28 | £20%,500 5 4 4,900 5 27 $234.400
| 30 | £121,600 2 2 2,300 1 21 §128,800
| 31| $181,500 4 3 3,300 1 2 $193,600
[ r)i » (b Datal (MR 1 f Dataz £MR 2 £ Datad /MR 3/ Datat £ MR 4 /

Ready T ] ] B o o o

Figure 4.2 The selling price data

middle of the data set. In order to meet the contiguous columns require-
ment, we must move the number of bathrooms data out of the way and
then cither delete the now blank column (if there is nothing else above or
below it) or move the remaining data over to remove the blank column.
Due to the chance of deleting other parts of the worksheet while doing
this or accidentally deleting part of your data, the author recommends

that you take two steps to protect yourself. First, move the regression
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A B @ D I E I F I G =
| 1 [SUMMARY OUTPUT
2
3 Regression Statistics
| 4 [Multiple R 0.597
| 5 [R Square 0.553
| 6 |Adjusted R Seuare 0.551
| 7 |Standard Error 3401222
8 | Observations 30
1 9|
10 | ANOVA
11 df i) M F F
| 12 |Regression 3 37,964,423 478 6,327,403,913 546.950 0.000
| 12 |Residual 23 266,071,189 11,568,213
14 | Total 28 38,230,494.667
15
16 & andard Error £ Stat F-valuz Lower 3% Upper B3%
| 17 |Tntercept 49,579.707 12,046.503 4.116 0.000 24,659.650) 74455764
| 18 |Bedrooms 13,488 252 4515791 2.987 0.007 4,146,638 22,820 865
| 18 [Bathrooms -6,202.340 3,956.130 -1.568 0131 -14,386.207 1,981.527
| 20 |3ruare Feet 16.722 6.990 2.352 0.025 2.263 31181
| 21 Age -2,104.376 727.050 -2.8%4 0.008 -3,608.391 -600.360
| 22 |Time On Market -517.636 128.547 -4.027 0.001 -783.555 -251.917
23 | Asking Price 0.257 0.232 1104 0.281 -0.224 0738 7
24 -
4[4 » [W] Datal %MR 1 {Data2 fMR 2 { Data3 {MR 3 { Datat SMR 4 / [« | LIJJ
Ready 1l [ [ | [ | 2

Figure 4.3. The initial regression run on the selling price data

data to its own worksheet tab so there is no chance of damaging other
data with while you move data and delete columns. Second, before you
begin, make a backup copy of your data on a second worksheet tab. That
way, if you accidentally delete data, you can go to this backup sheet and
recover it.

The less serious problem is that the regression function in Excel re-
members your last set of inputs and has no reset button. That means
you must remember to manually change the setting for the independent
variables and output sheet each time you run regression.

Dropping Number of Bathrooms results in an 7* value of 0.992. That
regression run is shown in Figure 4.4. We now put back in the Number
of Bathrooms and drop the Initial Asking Price. Dropping the Initial Ask-
ing Price results in an 7* value of 0.993. That regression run is shown in
Figure 4.5.

Dropping the Initial Asking Price results in a higher value for 7°.
(0.993 versus 0.992), so Initial Asking Price is permanently dropped from
the model. This run is shown in Figure 4.5. Number of Bathrooms re-
mains insignificant in this model, but now it is the only insignificant vari-
able so it is dropped from the model without any testing. Those results

are shown in Figure 4.6.
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A l B @ D E F G =
| 1 |SUMMARY OUTRFUT
2
3 Regression Statistics
| 4 |Multiple B 0.556
| 5 |R Square 0.552
| 6 |Adjusted R Square 0.551
| 7 |Standard Error 3,503.007
8 | Observations 30
El
10 [ATTOWA
11 di 58 ME F F
| 12 |Regression 5 37,935985,339 7,587,197 ,868 618.300 0.000
| 13 |Residual 24 254,505,328 12,271,055
14 |Total 28 38,230,434.667
13
16 & andard Error £ Stat F-valuz Lower 3% Upper B3%
| 17 |Intercept 44,080.548 11,865.417 3714 0.001 19,583.281 63,577.815
| 18 |Bedrooms 8,842,463 3,50%.505 2.520 0013 1,58%.203 16,085.723
| 19 | Square Feet 18.361 7.118 2.580 0018 3671 33.052
| 20 |Age -2,154.547 748.070 -2.821 0.008 -3,658.882 -611.005
| 21 |Time On Market -545.964 131.079 -4.165 0.000 -B16.4%8 -275.430
22 | Asking Price 0.250 0.239 1.044 0.307 -0.244 0.744
23] 1
24 -
4[4 » [M Datal £MR 1 Data2 JMR 2 { Data3 {MR 5 { Datad £ MR 4 [« LIJJ
Ready ll [ ] [ JA I 7
Figure 4.4 Dropping number of bathrooms from the model
A | B E D E F G =
| 1 SUMMARY OUTPUT
2
3 Regression Statistics
| 4 | Multiple B 0.996
| 5 R Square 0.993
| & Adjusted R Square 0.991
| 7 Standard Error 3416728
8 |Observations 30
B
10 | ANOVA
11 d4f S5 M 7 F
| 12 Repression 5 37,950,317,903 7,550,063,581 650.166 0.000
| 13 |Residual 24 280,176,764 11,674,032
14 | Total 29 38,230,454,667
15
16 e Frror i Stait Fvalue Lower 05% Upper 5%
| 17 Intercept 61,929.842 4,495,685 13775 0.000 52,651.185 71,208.459
| 18 Bedroomms 17,001,038 3,215.658 5.280 0.000 10,355.852 23,646.084
| 19 |Bathrooms -6,119.732 3,973.455 -1.540 0.137 -14,320.538 2,081.074
| 20 | Square Feet 24.197 1748 13.844 0.000 20,550 27.804
|21 Age -2,877.174 157.901 -14.538 0.000 -3,285.621 -2468727
22 Tine On Market -633.994 73.960 -8.572 0.000 -786.639 -431.348
23] i
24 -
14 4 [» [p] Datal (MR 1 { Dataz MR 2 £ Daka3 3 MR 3 { Datat MR 4 4] | LUJ
Ready [l [ || [ [ 4

Figure 4.5 Dropping asking price from the model

In this final version of the model, all the variables are significant. The
overall 7* has only dropped from 0.993 in the original model to 0.992 in
this final model. As expected, dropping insignificant variables had lictle
impact on 77,

In this example, all the variables that were insignificant in the original

model ended up being dropped from the final model and no additional



MODEL BUILDING 121

A B @ D | E | F I G =

| 1 [SUMMARY OUTPUT

2

3 Regression Statistics
| 4 Multiple B 0.996
| 5 R Square 0.993
| 6 |Adjusted R Square 0.991
| 7 Standard Error 3416728

& |Observations 30
19|

10 ANOVA

11 df a5 M F Significance F
| 12 |Regression 5 37,950,317,903 7,590,063,581 650.166 0.000
| 13 |Eesidual 24 280,176,764 11,674,032
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Figure 4.6 The final model with both Number of Bathrooms and
Asking Price dropped from the model

variables were dropped, so you may be wondering why it was necessary
to work through this process. As will be demonstrated with a later model,
this is not always the case. Because we cannot usually tell in advance when
significance will change as variables are dropped, it is always necessary to
go through this process when more than one variable is insignificant.
Before we move on, we will take a moment to consider this model

from a business, rather than a statistical, standpoint. How might a model
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like this be used? One possible use is appraisal. Because the model quan-
tifies the selling price of a house based on the house’s attributes, an ap-
praiser (tax appraiser or loan appraiser) can plug in the attributes of a
house under consideration and get an estimate of the value of that house.
That estimate is not exact because things like condition and aesthetics also
play a role, but it is a good starting point.

Likewise, a homeowner considering making an addition such as add-
ing a bedroom, or a contractor trying to sell an addition, could use the
model to estimate the improvement in the value of that addition. This, in
turn, might affect what the homeowner is willing to pay or the contractor

is able to charge.

Box 4.2
Using Regression to Schedule Meter Reading

Scheduling service personnel is very difficult when the services they
petform are not routine. For example, scheduling calls for a plumber
or cable repair person requires that you have at least a good estimate
of how long each job will take and how long the travel between jobs
will take. However, job time varies greatly depending on the specific
situation of the job, and travel time can vary greatly depending on the
time of day. We will explore these issues by way of an example from
the electric utility industry. Although the resulting model is specific to
the electric utility industry, the approach and techniques generalize to
a great many service industries.

Electric utility companies must periodically read their customer’s
electric meter for billing purposes. Even in this high-tech world, many
electric utilities get those readings by sending a meter reader out to
walk through residential neighborhoods and commercial areas to
physically look at each meter and record its readings. Research is on-
going on techniques for having the meters send their readings back to
a central computer automatically, either over the power lines or via a
cell phone network, but for many companies, physically reading the
meters each month is cheaper.

One utility company reads meters on a 21-day cycle. That is, a

meter reader reads one new route each day for 21 working days and
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then starts the set over again. With weekends and holidays, this 21-
day cycle results in the customer getting a bill about once a month.
The collection of meters that is read by a meter reader on a given day
is called a route. Routes remain static for, on average, 2 years and each
meter reader keeps the same set of 21 routes during this 2 years. This
allows the meter readers to become familiar with their routes. When
new construction takes place, those meters are added to the nearest
route. Because new construction is rarely evenly dispersed, this re-
sults in some routes growing much more than other routes. Every 2
years, each meter reading office reroutes—that is, they reallocate meters
among routes to try to level the workload.

In this box, we will work with actual meter-reading data from a
utility company and see how multiple regression can take that data and
develop a model that can be used to estimate (i.e., forecast) the time
that would be required by any set of meters. This can make the rerout-
ing process much easier and can result in routes that, at least at the
start of the 2-year period, have the workload more equally distributed.

This udility company is divided into districts, and many of the dis-
tricts are divided into local offices. Each local office has an assigned
area for meter readings, as well as other tasks. Meter-reading routes
never cross local office or district lines so the process of rerouting is
constrained to optimizing the routes within each local office indepen-
dently. Additionally, because each meter reader reads 21 routes, each
local office can have either 21 routes, 42 routes, or 63 routes, and so on.

Another major consideration in designing routes is how hard to
make the routes. Meter readers are expected to read meters for 6 hours
per day. They have 1 hour in the morning to get their paperwork ready
and drive to the start of their route. At the end of the day, they have
1 hour to drive back to the office, process their paperwork, and turn
in any money they collected for past-due bills. Thus do you design
the routes so that only an experienced meter reader who is familiar
with the route and working in good weather can possibly finish it in
6 hours, or do you design the routes so an inexperienced meter reader
who is unfamiliar with the route and working in poor weather has

time to finish? If you choose the former, then many routes will not
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be finished. If you choose the latter, then experienced meter readers
on familiar routes working in good weather will finish in well under
6 hours.

The term “route” is somewhat misleading. When reading a route,
a meter reader will walk between consecutive meter locations if they
are close together, as is usually the case for residential meters. If con-
secutive meters are located a considerable distance apart, as is some-
times the case with commercial meters, the meter reader will use a
company-furnished automobile to drive between meter locations.
However, one route does not have to be all walking or all driving.
Most neighborhoods and commercial office parks are too small to
take a meter reader all day to finish. Typically, a meter reader will read
meters in one area for a time, then drive to another area and begin
reading again. A route then may consist of two, three, or even more

route segments .

The Data

The data used in this analysis were collected from experienced meter
readers who were reading routes with which they were familiar. When
a route consisted of more than one segment, each segment was mea-
sured and recorded individually. When anything unusual happened
that significantly changed the reading time for that segment, that ob-
servation was dropped from the data set.

Additionally, certain routes have special circumstances that require
significant amounts of time and are always a factor. For example, one
of the meters at a local airport is on a radio tower on the opposite side
of a controlled runway. To read this meter, the meter reader must go to
the Federal Aviation Administration (FAA) office at the airport tower
and request that an FAA person drive him across the runway in an FAA
car. Once the FAA car is at the runway, both going and coming back,
the operator must contact the control tower and wait for clearance to
cross the active runway. As you can imagine, this greatly increases the
time required to read this meter. Although few meters take this long
to resolve, any route segment with a regular special circumstance was

excluded from this analysis.
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The variables collected for this analysis are explained next. Although
other variables might have been more helpful, this set was selected be-
cause it either was available from information already stored by the
utility company or was easy to measure for a given route segment.

Time. This is the time required by each meter reader to read a given
route segment, recorded in minutes. Utility company meter readers
use handheld computers to enter the meter readings, and these record
the time the reading was entered so the time for a route segment could
be calculated as the time for the last reading minus the time for the
first reading.

Number of residential (or nondemand) meters. Electric meters fall
into two major categories: nondemand and demand meters. Nonde-
mand meters have a continuously moving display showing the num-
ber of kilowatt-hours of electricity that have been consumed since the
meter was installed. If the reading last month was 40,000 and the read-
ing this month is 41,200, then 1,200 kilowatt-hours were consumed
between the two readings. With a nondemand meter, the meter reader
simply records the reading and continues on. Nondemand meters are
used almost exclusively for residents, although small business applica-
tions—roadside signs, apartment laundry rooms, and the like—might
also use nondemand meters. Nondemand meters are quick to read.

Number of demand meters. Demand meters, on the other hand, take
much longer to read. Like a nondemand meter, demand meters have
a kilowatt-hour consumption meter that must be read and recorded.
However, they also have a second meter, the demand, that records the
peak consumption for the last month. Because this meter records a peak,
it must be reset each month in case the following peak is lower. The
demand is a significant part of a commercial electric bill so, to keep the
customer from resetting the peak, the reset knob is locked with a color-
coded plastic seal. After reading and recording the peak, the meter reader
must break the seal, reset the meter, and install a new seal of a different
color. Naturally, reading a demand meter takes significantly longer than
reading a nondemand meter. Additionally, business meters (i.e., demand
meters) tend to be further apart than residential meters (i.e., nonde-

mand meters), a fact that the regression model will also consider.
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Number of locations. Reading 100 meters in an apartment complex
with 20 meters per building would take less time than reading 100
meters on the sides of 100 houses. This variable records the number of
separate locations for each route segment.

Number of collects. When a residential electric bill is 2 months past
due, this utility company expects its meter readers to try to collect for
that bill as they read their routes. They are given bill collection cards in
the morning that they must sequence into their routes. These cards are
marked as either collects or cuts. With a collect, the meter reader knocks
on the door and requests payment. If payment is given, then the meter
reader collects that money and gives them a receipt. If no one is home,
the meter reader leaves a preprinted note on the door. If the customer
refuses to pay or is not home, no other action is taken.

Number of cus. If the card is marked as a cut, then all the previously
mentioned steps take place, but if the meter reader does not receive pay-
ment for any reason, he cuts off power to that house. This is done by
cutting a seal on the meter box, removing the meter box cover, pulling
out the electric meter, putting plastic sleeves on plugs on the back of
the meter, reinstalling the meter, reinstalling the face plate, and locking
the meter. As complicated as it sounds, it can be completed in under
60 seconds by an experienced meter reader. Although the number of
collects and cuts will vary month to month, some routes are statistically
much more likely to have a higher number of collects and cuts than are
others. Interestingly, this is not always related to the average income of
the neighborhood. Meter readers only attempt collections and cut off
power for residential customers. Collections and cutoffs of commercial
and other classes of customers are handled by a special bill collector.

Miles walked. 1t would be nice to know the real number of miles a
meter reader needed to walk for a route. Residential meters can be on
the front, on either side, on the back of a house, or even in the base-
ment. This requires walking up the front yard, perhaps down one side,
and perhaps around the back of the house. Commercial meters can be
located anywhere around a building or in a power room or mainte-
nance room inside or even on the roof. Measuring all these distances
would take too long and would require the cooperation of all the meter

readers. Miles walked then is a surrogate. It is simply the mileage as
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measured by driving a car down the street along the route. Naturally,
the miles walked by the meter reader would be greater than this, but
regression can account for this.

Miles driven. When a route segment must be driven, this is simply
the mileage recorded using the automobile odometer. This does not
include travel to and from the route because that is not part of the 6
hours allotted to meter reading.

There are a number of additional factors that can affect meter-read-
ing times on a route. These considerations are best classified as random
variations or white noise in the meter-reading process. No effort was

made to quantify or measure these. Examples include the following:

Unfriendly dogs. An aggressive dog inside a fence is a problem
when the electric meter is inside that same fence. The meter reader
must either try to coerce the dog into allowing him entry or take
the time to knock on the door and get the owner to control the
dog while he reads the meter. An aggressive dog running loose can
cause the meter reader difficulty for any number of houses.

* Fences. Fenced yards require more walking to gain access
through the gates or the meter reader must climb over the
fence. Locked gates only exacerbate this problem.

*  Bushes. Bushes make it hard to get close to meters and to see
them.

e Traffic. While on the driving portion of a route, traffic can

delay the meter reader.

Experience indicates that the variations affect many routes in a
fairly random fashion. For this reason, they were not measured or in-

cluded in this analysis.

Data Analysis

Figure 4.7 shows the top of the data file. The data are stored in the Daza
tab of the Meter.xls worksheet. Figure 4.8 shows correlation analysis on
the independent variables. Multicollinearity is not much of a problem,

with only number of locations and miles walked clearing the 0.60 hurdle.



128  BUSINESS APPLICATIONS OF MULTIPLE REGRESSION

A | B I @ I D | E I F I G H =
[ 1] Time  Residential Commercial No. Locations Cuts Collects Miles Walked Miles Driven
| 2 | 73 107 1 81 0 1 170 0.00
1 3| 36 20 2 12 2 4 0.25 0.00| —
| 4 71 182 1 2z 1 5 0.55 0.00
| 5 43 12 21 20 0 0 0.10 170
| 6| 47 227 1 15 0 0 0.60 0.00
| 7 11 57 1 6 0 0 015 0.10
| 8 | 114 146 2 148 0 5 255 0.00
| 9 126 158 0 158 0 4 330 0.00
[ 10] 106 330 1 47 0 7 1.00 0.00
[ 11] a8 21 42 58 1] 0 075 7.00
|12 98 146 2 85 0 0 170 0.00
[13] &0 71 0 71 1] 1 140 0.00
| 14| 16 0 11 7 0 0 0.00 1.55
[ 15| 94 279 1 34 3 18 1.00 1.20
| 16 | a0 259 1 51 3 11 160 0.00
| 17 | 80 105 3 89 2 4 1.80 0.00
18 50 95 2 20 2 3 045 0.00 '~
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Figure 4.7 The top of the data file for the meter-reading data. The
full data set has 121 observations

A B C D E E G H B

i Residential | Commercial | No. Locations Cuts Clollects | Miles Walked | Miles Driven
| 2 Residential 1.0000
| 3 |Commercial -0.2862 1.0000
| 4 Mo Locations 0.3260 -0.035%4 1.0000
| 5 |Cuts 0.2670 -0.1433 0.0733 1.0000
| & Collects 0.442% -0.2277 0.2008 04140 1.0000 L.
| 7 |[Miles Walked 0.4871 -0.0137 0.6432 0.0114 0.2345 1.0000

8 Miles Driven -0.2324 0.4843 -0.0454 -0.0414 -0.0736 -0.1468 1.0000)
ﬁ ¥ [»i[% Data }, Correlation 4] | ol
Ready [ [ ==} || |

Figure 4.8 Correlation analysis results on the independent
variables for the meter-reading data

Figure 4.9 shows the initial regression run on the data. The varia-
tions in the independent variables explain 85 percent of the variations
in the dependent variable. Only the Number of cuts was insignificant,
so that variable was dropped from the analysis. Figure 4.10 shows the
resulting regression. This time, all the variables are significant, and still
about 85 percent of the variation is explained.

This gives this resulting regression equation:

Resulting Regression Equation
Times to Read Route (Minutes) =10.2563 +0.1596
(Number of Residential Meters)
+0.4439(Number of Commercial Meters) — 0.0834(Number of Locations)
+2.2049(Number of Collects) + 29.7468 (Miles Walked)
+4.0522(Miles Driven)
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A B E D E | F [ G =
| 1 |SUMMARY OUTPUT
2
E} Regression Statistics
| 4 |Multiple B 0.9219
| 5 |E Square 0.8500
| 6 |Adusted B Square 0.8407
| 7 |Standard Error 17.7134
8 |Observations 121
1 9|
10 | ANCVA
11 47 poiy ME F Significance F
| 12 |Regression 7 200,349 28,693 91 0.0000
| 13 |Eesidual 113 35455 314
14 | Total 120 236,304
15
16 Cogificients | Standard Error | Stai FPvalue Lower 95% Upper 05%
| 17 |Tntercept 96949 27202 3.5641 0.0005 4.3058 15.0840
| 18 |Residential 0.1533 0.0244 6.2783 0.0000 0.1050 0.201%
| 19 | Commercial 0.4464 0.1734 25741 0.0113 0.1028 0.7900
| 20 |Mo. Locations -0.0850 0.014%  -56300 3-6604) -0.1146 -0.0554
| 21 [Cuts 1.1828 0.7338 1.6118 -0.2710 2.6366
| 22 |Collects 1.9638 0.4381 4.4827 80086 1.0959 2.8318
| 23 |Miles Walked 30.3147 2.1834) 138343 0.0000 25.98%0 34.6404) —
24 |Miles Driven 4.0481 0.3772 107323 0.0000 3.3008 47853
14 4 [» [w" Data £ Correlation 3 Regression 1 = | 0|
Readly =] [ o o [ [ [

Figure 4.9 The initial regression results on the meter-reading data

Because Time was measured in minutes, this equation tells us
that adding 1 residential meter to the route, while holding everything
else constant, would add about 10 seconds (0.1596 x 60 seconds) to
the time it takes to read a route, whereas adding a commercial meter
would add about 27 seconds. Each collect adds a little over 2 minutes,
each mile walked adds almost half an hour, and each mile driven adds
a little over 4 minutes.

What is harder to understand, at first, is why the coefficient for
Number of locations is negative. After all, adding more locations
should increase the work. Recall, however, this is adding one location
while holding everything else constant. That means no additional me-
ters and no additional walking, so increasing the number of locations
reduces the meter density and implies that the meters must be closer
together because walking mileage does not change. This complexity is
likely the reason for the negative coeflicient, and its magnitude is so
small that it has litcle impact on the results so it also could just be a

statistical anomaly.
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Figure 4.10 The final regression results on the meter-reading data

So What?

The resulting equation uses only easily obtainable data for each route.
Using this equation would give management an easy way to manip-
ulate route contents during a rerouting in such a manner that the
resulting routes require very similar times to complete. This should
lead to greater equality among the meter-reading employees and less

dissatisfaction.

Including Qualitative Data in Multiple Regression

So far, all the variables that we have used in multiple regression have been
ratio-scale data. Some of them, such as square feet in the last model, have
been continuous, whereas others, such as number of bathrooms in the
last model, have been discrete, but they have all had meaningful numbers
attached to them. In this section, we will see how to include qualitative
data in multiple regression. For example, in the sales model we have men-

tioned several times, you might want to include whether a competitor
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is having a sale in the model. This is an example of a qualitative variable
because there is no meaningful number that can be attached to the yes or
no answer to if the competitor is having a sale.

Qualitative data are very useful in business. We might want to indi-
cate the make of the machines in a model to predict when maintenance
is required, we might want to include the season of the year in a model
to predict demand, or we might want to include a flag when demand was
influenced by a special event. All of these situations can be handled in the
same way.

When only two possible conditions exist, such as with gender or the
presence or absence of a special event, we use a special variable in the
regression model. This variable goes by several names: dichotomous vari-
able, indicator variable, or dummy variable. The dummy variable takes on
a value of one when the condition exists and a value of zero when it does
not exist.> For example, we would use a value of one when the special
event happened and a value of zero for those periods where it did not hap-
pen.* For gender, we would arbitrarily choose either one or zero for male
and use the other value for female.

Once the dummy variable is defined, no other special considerations
are required. We run the multiple regression the same way, we test overall
significance the same way, and we decide which variables to keep and
which to discard exactly the same way. Dummy variables can be dropped

for insignificance just like any other variable. An example follows.

Dummy Variable Example

The worksheet Dummy.xls contains fictitious data on two models of ma-
chines, a Wilson and a Smith, along with their average hours between
breakdown and their age. These data are shown in Figure 4.11. By cod-
ing the Smith as a zero and a Wilson as a one, these data can be used in
multiple regression. The coded data are shown in Figure 4.12, and the
resulting data are shown in Figure 4.13. Note that the dummy variable we
created is significant in the model, as is the age of the machine.
Including a dummy variable in multiple regression causes the inter-
cept to shift and nothing more. For this reason, dummy variables are also

called intercept shifters. This can best be seen using the previous example.
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Figure 4.12 The modified data set with the machine name coded
using a dummy variable
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A E E D e F =

| 1 |SUMMARY OUTPUT

2

E] Regressinn Statistics
| 4 |Mulnple B 0.9976
| 5 |E Zquare 08952
| 6 |Adpsted B Square 0.9946
| 7 |Standard Error 155024

8 | Observations 20
| 9|

10 |ANOVA

11 df S5 MY F Sigrificance F
| 12 |Regression 2| B3B,616.3067 4193081534 1,744.7682 0.0000
| 13 |Residual 17 4,085.4933 2403231

14 | Tetal 18 B42,701.8000

15

16 Coefficients | Standard Error i Stat FPvalue Lower 95% | Ubper 25%
| 17 |Intercept 727960 10.2761 7.0840 0.0000 51.1153 94,4767 T
| 18 |Age 99,5910 1.6961 58.9542 0.0000 96,4126 103.5654

19 Model 722459 7.1184 10.1482 0.0000 57.2274 37.2644
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Figure 4.13 The resulting regression run

Dummy Variable Example Continued

From Figure 4.13, we get the following regression equation:

Regression Equation

Hours Between Breakdown = 72.7960 + 99.9910(Age) + 72.2459(Model)

However, Model can only take on the values of either zero or one.

Substituting these values into the equation, we get the following:

Regression Equations Considering Dummy Variable
When Model =0,
Hours Between Breakdown = 72.7960 + 99.9910(Age) + 72.2459(0),
which reduces to
Hours Between Breakdown = 72.7960 + 99.9910(Age).

When Model =1,
Hours Between Breakdown = 72.7960 + 99.9910(Age) + 72.2459(1),
which reduces to
Hours Between Breakdown = 72.7960 + 99.9910(Age) + 72.2459,
which finally reduces to
Hours Between Breakdown =145.0419 +99.9910(Age).
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Figure 4.14 Charting the two regression lines, one when the dummy
variable is zero and the other when the dummy variable is one

Thus the only difference between the two equations is the intercept.

Figure 4.14 illustrates this using a chart.

More Than Two Possible Values

Of course, many times we wish to include a qualitative variable in the model
that has more than two possible conditions. Examples might include race or
eye color. We cannot simply define the variable using more than two values
for our one dummy variable. For example, it would not be correct to have
a dummy variable for competitor sale where 1 = no sale, 2 = minor sale,
3 = major sale, and 4 = clearance sale. The reason is based on the fact that
dummy variables shift the intercept. Setting the variable up this way presup-
poses that the shift in the intercept between no sale and minor sale is the
same as the shift between minor sale and major sale and the shift between
no sale and minor sale is twice that of between no sale and clearance sale. Of
course, we do not know this in advance, and it is likely not the case anyway.

Although we cannot code the single dummy variable in this fashion,
we can include this data using multiple dummy variables. In this case,
we would need three dummy variables. The first one would be a one for
when there was no sale and zero otherwise. The second would be one for

where there was a minor sale and zero otherwise. And the third would be
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one for when there was a major sale and zero otherwise. We do not need a
fourth variable for other sales because a zero for all three of these dummy
variables would automatically tell us that there must be a clearance sale.
In fact, including this fourth, unneeded, dummy variable would force at
least one of the dummy variables to be insignificant because any three
would uniquely define the fourth. In general, you need 7» — 1 dummy
variables to code 7 categories. In this case, you end up with 7 — 1 parallel
lines’ and 7 — 1 different intercepts.

The use of dummy variables when there are a large number of categories
can greatly expand the number of variables in use. One of the pieces of
information in the author’s dissertation was state. Coding this into dummy
variables required 49 (or 50 — 1) different variables. When the number of
variables grows in this fashion, you must make sure you have an adequate
sample size to support the expanded number of variables. As before, we
recommend a minimum of 5 observations for each variable, including each
dummy variable, with 10 per variable being even better. This was not a
problem for the author because he had over 22,000 observations.

It is also possible to include more than one dummy variable in a re-
gression model. For example, we might want to include both sale types
and whether it is a holiday period in our model. When we have multiple
dummy variables, each one is coded as described as done previously with-
out consideration of any other qualitative variables that might need cod-
ing. That is, we would need one dummy variable for whether it is a holiday
period and then three more for sale type, assuming the four categories
previously discussed. The result would be a great deal of intercept shifting.

As you can imagine, the list of qualitative data you might need to
include in a business model is quite long. Although no means compre-
hensive, that list includes model number, model characteristics, state
or region, country, person or group, success or failure, and many more.

Some of these are explored in Box 4.3.

Dummy Variable as Dependent Variable

It is also possible to use a dummy variable as the dependent variable. When
you do this, it is not called regression. Rather, it is called discriminate anal-
ysis. Other than the name change, discriminate analysis is performed the

same way as regression. This is discussed in more detail in Box 4.3.
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Box 4.3
The Business of Getting Elected to Congress

As stated previously, businesses often need to include a wide range of
qualitative data in statistical models. While the following example is
not a business example in the truest sense of the word, it does illustrate
the use of qualitative data both as a dependent variable and as inde-
pendent variables.

It takes a lot of money to get elected to Congress. Once elected,
it takes a lot of money to stay elected. In this box, we will use a form
of multiple regression analysis called discriminate analysis to see what
affects who gets elected to Congress. As was described in the chapter,
discriminate analysis is nothing more than multiple regression where
the dependent variable is a dummy variable. In this case, the depen-
dent variable will be whether they won their election.

The data for this sidebar came from Douglas Weber, a researcher at
the Center for Responsive Politics. PresidentialElection.com describes

the Center for Responsive Politics as follows:

The Center for Responsive Politics is a non-partisan, non-
profit research group based in Washington, D.C. that tracks
money in politics, and its effect on elections and public policy.
The Center conducts computer-based research on campaign fi-
nance issues for the news media, academics, activists, and the
public at large. The Center’s work is aimed at creating a more
educated voter, an involved citizenry, and a more responsive

gOVCI‘Ill’IlCIlt.6

The data for this analysis come from the 1996-2000 political cam-
paigns for the U.S. Congress. These data are stored in the Excel file
CandidateSpending1996-2000.xls in the Raw Data tab. The top of
this data file is shown in Figure 4.15. Altogether, there are 2,086 en-

tries. The variables stored are as follows:

*  Cycle. This is the election year. Members of the House of

Representatives are elected every 2 years. Members of the
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c B [ © [ o | E | E T | J [ K =
Opponent =
| 1| Cyee Office State DistID CID  Candidate Name Party Won/Lost CRPICO! Spending Spending
2| 2000 H AL ATO4 MO0003028 Aderhotr, Robert R K T $1,583278  $1,1346%
3| 2000 H AL AL07 MNM00003008 Hiliard, BarlF D W i $432,730 13,431
4| 2000 H AR AROI 100005455 Berry, Marion D W I $1,169,% $293,491
| 5| 2000 H AR AR02 NOO000B18S| Snyder, Vie D K i 623,489 $261,200
[ 6| 2000 H AR AR04 100009571 Ross, Michael Avery D W C $1626,164  $1786307
[ 7] 2000 H A7 A701 MO0009573| Flake, Jefiry Lane R ki ol $505,210 §74451
| 8| 2000 H A7 A702 NO0O06397 Pastor, Ed D K T 569,643 $80,565
9| 2000 H  AZ AZ03 100006473 Stmp, Bob R W ji $377,426 §6,993
[10] 2000 H 47 A705 NO0006486 Kolbe, Tm R K I 81535705 $552,735
11| 2000 H A7 A706 MN00006455 Hayworts, ]D R W I 51183832 §39,522
12|  zo00 3 AZ A752 MO0006406] Egl Jon R W T $2,5036M 21491
[13] 2000 H  CA  CAO1 MNO0007419| Thompson, Mike D W T $851,612 $11,730
|14 2000 H  CA  CAO3 1900007581 Ose, Douglas & R W ji 393,164 $253,524
[15] 2000 H  CA  CA04  NO0007556 Doslitde, John T R W T 587,722 §14,540
[16] 2000 H  CA  CAOS MN00007571) Matsui, Robert T D W i 759,342 44,395
17| 2000 H CA  CAOE  MO0007458 Woolsey, Lynn D W i $576,539 £17,979
[18] 2000 H  CA  CAO7 MNO0007390 Miler, George D W i $443,573 85,188
[1a| 2000 H  CA  CAI0 1900007422 Tasscher, Elen D W I $1,540.830  $1,127,901
l20| 2000 H  CA  CAI5 1N00012611 Honda, Michael Makoto D K O $2125541  $1429904
21| 2000 H  CA  CAI7 N00007312 Far, Sam D ki i 692,932 $29,951
l22| 2000 H CA  CAI3 100007502 Condi, Gary & D W i 636,683 31,087
l23| 2000 H  CA  CA19 NO0007507 Radanovich, George P R ki T 659,104 $179,555
|24 2000 H  CA  CA20 1900007251 Dosley, Cal D W I 31775089 §1,257,145
l2s| zo00 H  CA CA22 00007232 Capps, Lois D K I $1,498955 $770,000
2% 2000 H  CA  CA23 MN00007231 Gallegy, Blion R W I $1,022565 $726,953
l2z| 2000 H  CA  CA24 100006897 Sherman, Brad D ki i $539,122 $126,143
e —— 2 AT Tt Tt 1 E e 200 Pyl
Reach (=T T e[|

Figure 4.15 The top of the candidate data file

Senate are elected every 6 years, but the elections are staggered
so some senators are up for election every 2 years. In this data
set, the values for cycle are 1996, 1998, and 2000.

*  Office. This is the office for which the candidate is running. In
this data set, the values are H (House) or S (Senate).

e State. This is the two-digit postal code for the state that the
candidate is seeking to represent.

e DistID. This is an identification number for the district from
which the candidate is running.

e (CID. This is a universal identification number for a candidate
that is assigned by the Center for Responsive Politics and that
stays constant throughout the candidate’s career.

e Candidate Name. This is the name of the candidate.

* Party. This is the party of the candidate. Most of the candidates
are either Democrats (D) or Republicans (R). A few are third-
party candidates (3), independents (I), or Libertarians (L).

e Won/Lost. This tells if the candidate won (W) the election, lost
(L) the election, or if the election was undecided (U). This
variable will end up being the dependent variable.

* CRPICO. This is a code indicating whether the candidate is
an incumbent (I), challenger (C), or if the seat is open (O).
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An incumbent already holds the office for which he or she is
running, a challenger runs against an incumbent, and an open
election is one where there is no incumbent running.

» Spending. This is how much money the candidate spent on the
election.

*  Opponent Spending. This is how much money the candidate’s

opponents spent on the election.

Many of these variables must be modified or converted before they

can be used for discriminate analysis:

*  Cycle. This is a numeric variable and can be used as is.

* Office. This variable was converted to a dummy variable, with
zero for House and one for Senate.

o State. Different states would reasonably have different
spending levels for offices as well as many other likely
differences. In a complete analysis, the values for the 50
states would be converted to 49 dummy variables in order to
capture those effects. Given Excel’s difficulty in handling large
numbers of variables, it was decided to drop the state value
from the analysis.

* DistD. This has no statistical value and was dropped for
analysis.

e CID. This has no statistical value and was dropped for analysis.

* Candidate Name. This has no statistical value and was dropped
for analysis.

* Party. There are five possible values for this variable, so four
dummy variables are required. Those dummy variables are
Democrats, Republicans, Libertarians, and independents. Of
course, any entry with a zero for all four would be a third-
party candidate.

*  Won/Lost. This is the dependent dummy variable, so it was
moved to the left side of the data set to allow the independent
variables to be contiguous. A value of one was used for a win,

so a zero represented either a loss or an undecided election.
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Remember that a dummy variable can only have two values
(zero and one), and when used as the dependent variable, there
can only be one dummy variable, so it was not possible to
separate loss and undecided.

CRPICO. There were three possible values, so two dummy
variables are required. They are incumbent and challenger. A
zero for both variables indicates an open election.

Spending. This variable was used as is.

Opponent Spending. This variable was used as is.

Ratio. A new variable was created from the ratio of Spending

divided by Opponent Spending.

The top of this modified data set is shown in Figure 4.16.

The Analysis

The first step is to perform correlation analysis on the independent

variables. Those results are shown in Figure 4.17. Surprisingly, there

are only four pairs of variables where multicollinearity is likely to be

a problem:

A B [ © [ D ] E | F | G [ H [ [ J [ K T E‘

Opponent =
|1 | Won Cyce Office Democrat i Li i Challenger Spending Spending  Ratio
[ 2] 1 2000 0 i} 1 0 0] 1 0/ $1,583,278.00  §1,134.694.00 140
| 3 | 1 2000 0 1 0 0 i} 1 0 $432,730.00 $18.431.00 2348
| 4| 1 2000 0 1 o} 0 0] 1 0] $1,169,274.00 $298,491.00 392
5 1 2000 0 1 o} 0 0 1 0 $623,489.00 $261,200.00 239
|6 | 1 2000 0 1 0 0 0 0 1| $1,626,164.00  $1,786,307.00 0.91
2 1 2000 0 0 1 0 0] 0 0 $505,210.00 $74.451.00 679
| 8 | 1 2000 0 1 0 0 i} 1 0 $569,643.00 $80,566.00 707
| 9 | 1 2000 0 o} 1 0 0] 1 0 $377,426.00 $6,993.00 5397
[ 10 1 2000 0 o} 1 0 0 1 0/ %$1,535705.00 $552,735.00 278
[ 11 1 2000 0 o} 1 0 i} 1 0 $1,183,832.00 $39,522.00 29,83
[ 12| 1 2000 1 0 1 0 0] 1 0 $2,503,674.00 $21.491.00  116.50
| 13| 1 2000 0 1 o} 0 i} 1 0 $851,612.00 $11,730.00 72.60
[ 14 1 2000 0 0 1 0 0] 1 0 $593,164.00 $258,524.00 2.29
| 15 | 1 2000 0 o} 1 0 0 1 0 $587,722.00 $14,540.00 4042
[ 16 1 2000 0 1 0 0 i} 1 0 $769,342.00 $44,393.00 17.33
[17 | 1 2000 0 1 0 0 0] 1 0 $576,539.00 $17,979.00 32.07
| 18 | 1 2000 0 1 o} 0 0 1 0 $443,573.00 £5.188.00 85.50
[19] 1 2000 0 1 0 0 0 1 0 $1,540,830.00  §1,127,901.00 1.37
[ 20 1 2000 0 1 o} 0 0 0 0 $2,125,541.00 §1,429.504.00 149
|21 1 2000 0 1 0 0 i} 1 0 $692,932.00 $29,951.00 2314
| 22 | 1 2000 0 1 0 0 0] 1 0 $686,683.00 $31,087.00 22.08
23 1 2000 0 o} 1 0 0 1 0 $659,104.00 $179,555.00 367
|24 1 2000 0 1 0 0 0 1 0 $1,775,089.00  §1,257,145.00 141
[ 25| 1 2000 0 1 i} 0 0] 1 0] $1,498,%55.00 $770,000.00 185
[ 26| 1 2000 0 o} 1 0 0 1 0/ $1,022,565.00 £726,953.00 141
| 27 | 1 2000 0 1 o} 0 0] 1 0 $539,122.00 $126,148.00 4.27

€331 Rati bata ) Dat for analysis i (KR e o | ‘"ﬂ]ﬂ
Ready I L [ [ =0

Figure 4.16 The top of the candidate data file after the modifications

discussed have been made
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A & e [ ©m [ E [ F & [ = [ 71T [ J | & | 1L |§
Opponent |
1 Cycle | Qffice | Democrat | Republican  Independent | Libertarian  Iacumbent | Challenger | Spending | Spending | Ratio
| 2 [Cycle 1.0000°
| 3 |Office 0.0272)  1.0000
| 4 |Detocrat -0.0068  0.0003 1.0000°
| 5 |Republican -0.0066) 0.0030] -8.9791 1.0000
b |Independent 0.0154) 00144  -0.0531 -0.0532 1.0000:
zLabenanan 0.0449| -0.0183' -0.0574! -0.0575 -0.0031 1.0000
| 8 |Incumbent 0.0254) -0.0379  -0.0664 0.07%0 0.0074 -0.0506 1.0000!
| 8 |Challenger 0.0145 -0.0409 0.0652 -0.0834 0.0069 0.0659 -0.7678 1.0000°
| 10 |Spending 0.0717 0.4835 -0.0113 0.0188 -0.0135 -0.0230 0.0702 -0.1570 1.0000;
| 11 |Opponent Spending | 0.0717 0.4835 0.0162 -0.0121 -0.0072 -0.0148 -0.1586 0.0720] 0.5737 1.0000¢
12 |Ratio 0.0686 -0.0083 -0.0717 0.0772 -0.0073 -0.0178 0.2994 -0.2362 0.0474  -0.1068 1.0000
13
[l [ 4 TH Raw Data / Datafor Analysic ), Correlation 1« | e
Ready == [ [ s o

Figure 4.17 Correlation analysis of the independent variable in the
candidate data file

1. Democrat/Republican (—0.9791). This is not surprising because al-
most all the candidates are either Democrats or Republications,
you would expect a near perfect correlation, and we get it. The
negative correlation only means that as the Democrat dummy
variable goes up from zero to one, the Republican dummy vari-
able moves in the opposite direction, from one to zero. The fact
that the value is not exactly 1.00 simply indicates the presence of
a few candidates who are neither Democrats nor Republicans.

2. Opponent Spending/Office (0.4835). This does not pass our 0.60
threshold, but given the very small values for the other pairs, it
is noticeable. Since Office is a dummy variable with a zero for
House and one for Senate, this indicates a strong likelihood that
nonincumbent spending is higher for the Senate than for the
House. This is not surprising because the Senate is both more
prestigious and a statewide seat requiring statewide campaigning.

3. Spending/Office (0.4835). Like opponents, incumbents spend
more for the Senate than for the House. What is surprising is that
the correlation is the same for both spending variables.

4. Challenger/Incumbent (-0.7678). This is also not surprising be-
cause someone who is not a incumbent must be a challenger. The
reason for the less-than-perfect correlation is that some of the

elections are open elections where there is no incumbent.

The initial regression results are shown in Figure 4.18. Overall, the
model is able to explain a little over 70 percent of the variation in the

results. No doubt, candidate positions on specific issues and character
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A [ EER c [ O [ E | F [ & [
| 1 SUMMARY OUTPUT il
2
3 Regression Statistics
| 4 Nultiple B 083742
| 5 R Square 070128
| B |Adusted R Souare 0.69570
| 7 | Standard Brror 0.27406
& |Observations 2,086
EN
10 | ANOVA
1 df S5 MY F Significance F
| 12 Regression 11 36569031 33.24457 44263251 0.00000
| 13 Residual 2,074 15577086 0.07511
14 Total 2,085 52146117
15
18 Cogfficients | Standard Error i Stat FPovalue Lower 05% | Upper D5%
| 17 |Intercept -1.41231 728932 -0.19375 0.8463% -15.70745 12.88283
| 18 | Cycle 000093 000365 0.25470 0.7%3%2 -0.00622 0.00302
| 18 |Office -0.00064 0.0250% -0.02562 0.97956 -0.04974 0.04845
| 20 Democrat 0.06334 0o0%z1z 0.68757 045180 -0.11732 0.2435%
| 21 Republican 004315 0.0921% 0.46802 0.63982 -0.13765 0.2235%4
| 22 Independent 0.06304 0.14467 043573 0.66307 -0.22068 0.34675
| 23 Libertanian -0.00252 013511 -0.01826 0.98543 -0.27337 0.26833
| 24 |Incumbent 042584 001545 21.89817 0.00000 0.38770 0.46387
| 25 | Challenger -0.43667 001525 -22.68498 0.00000 -0.47442 -0.35852
| 26 Spending 0.00000 0.00000 5.03072 0.00000 0.00000 0.00000
| 27 | Opponent Spending 0.00000 0.00000 -4.8319% 0.00000 0.00000 0.00000
28 Ratio 0.00082 0.00028 2.54554 0.00326 0.00027 0.00136
4[4 » [M[\ RawData § Data for Analysis £ Correlation | ion 1 [ ﬂJJ
Ready =

Figure 4.18 The initial regression run

issues accounted for much of the remaining percentage. Additionally,
issues like these no doubt affected the candidate’s ability to raise money,
so some of those issues would be reflected in the spending variable.
Cycle is not significant, which seems to indicate that the impact of
the various variables has not changed over the relatively short period
of time represented in this data set. Office is not significant, indicating
that election patterns are fairly consistent for the House and Senate.
The Democrat and Republican dummy variables are not significant,
which is surprising. This seems to indicate that spending and being an
incumbent are much more important than party affiliations. Along the
same lines, Libertarian is also not significant, but because there were
only seven Libertarian candidates in this period, that is not surprising.
Incumbent was significant with a positive coefficient, as expected.
That is, being an incumbent strongly helps your chance of being
clected. Along the same lines, being a challenger was also signifi-
cant and, as would be expected, had a negative coefficient. Spending

and Opponent Spending are both significant and both have positive
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coeflicients. They appear to be zero because the dependent variable
is either zero or one and spending is measured in dollars and so has
values in the millions. This large difference in the units yields very
small coefficients. The spending ratio is also significant with a positive
coefficient, indicating that the higher a candidate’s spending relative to
his opponent’s spending, the better his or her chance of being elected.
Again, the magnitude of the spending ratio coefficient is due to the
magnitude of the ratios and not to its importance. Note that the larg-
est ratio was over 650.

Normally, we would need to work through these variables, drop-
ping them one at a time, to figure out which to drop. That work has
been done but is not shown. All the variables that are insignificant in
the first model end up dropping out of the final model, although when
cither the Democrat or Republican dummy variable is left in, which-
ever variable that is left in is almost significant.

Additionally, the two spending variables were both divided by
1,000,000, yielding spending expressed in millions of dollars. This is a
linear transformation, so it has no effect on correlation or 7% but does
keep the coeflicients for the spending variables from being so small.
Also, transforming the spending variables has no effect on their ratio,
so that variable stays the same. While not shown in a figure, this re-
duced data set is stored in the Daza2 tab of the worksheet.

The regression on this final, reduced data set is shown in Figure
4.19. Notice that everything is significant. Variations in these six vari-
ables explain 70 percent of the variation in who won the election. This

gives the following equation:

Final Regression Equation
Y =0.49609 + 0.42575(Incumbent) — 0.43639(Challenger) +
0.01684(Spending, in millions) —0.01616(Opponent Spending,
in millions) + 0.00080(Ratio)

All these variables have the sign that we would expect.
If we are careful, in discriminate analysis, then it is possible to
use the magnitude of the final coefficients to analyze the relative im-

pacts of the independent variables. Great care is required because the
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A | 8 | [ | D | E | = | G [ HZ
| 1 [SUNDARY OUTPUT u
2
3 Regression Statistics
| 4 [Multiple R 0.83712
| 5 |F Square 070078
| 6 |Adusted R Square 070006
| 7 |Standard Error 0.2738%
& |Observations 2,086
| a]
10 | ANOVA
11 a7 55 ME F Stgnificance F
| 12 [Repression 5 36543022 7308604 97428726 0.0000
| 13 [Residual 2,080 156.03095 0.07501
14 | Total 2,085 52146117
15
18 Cogfficients | Standard Error £ Stai Fvalue Lower 95% Upper 95%
| 17 |Intercept 043603 0.01731 28.65173 0.00000 046212 0.53005
| 18 [Incumbent 042575 0.01538 21.97055 0.00000 0.38775 046376
| 18 |Challenger -0.4363% 0.01%14 -22.80073 0.00000 -0.47392 -0.39885
| 20 |Spending 0.01684 0.00322 5.23369 0.00000 0.01053 002315
| 21 [Oppenent Spending -0.01616 0.00322 -5.01198 0.00000 -0.0224% -0.00984 o
22 |Ratio 0.00080 0.00028 2.88878 0.00391 0.00026 0.00134
23 -
[i4 [« [» [p1} Correlation { Regression 1 £ Data 2 %, ion 2  Forecast / [ KN] | L[J—‘
Ready i [ | [ [ 4

Figure 4.19 The final regression model for the candidate data file

magnitude of the coefficients, which is what we will be analyzing, is
greatly influenced by the units in which the variable was measured.

Of course, not all variables have a problem with units, as will be seen.

Understanding the Coefficients

Recall that our dependent variable was a dummy variable that had a
value of one if the candidate won the election and a value of zero if
the candidate lost the election. While all the observations in the data
set have a value of zero or one for this variable, the resulting regression
equation is not restricted to this 0—1 range. When this regression equa-
tion was applied to the 2,086 observations in this data set, on the Fore-
cast tab, values for the forecasted dependent variable ranged from —0.43
to 1.47. Nevertheless 2,051 of 2.086 (98.3 percent) of the forecasts did
fall within this range. Some of these results are shown in Figure 4.20.
Everything else being equal, the closer a candidate’s score is to one,
the higher the likelihood that they will win the election. Likewise, the
closer a candidate’s score is to zero, the lower the likelihood that they
will win the election. So the forecast that results from the regression
equation can roughly be treated as a probability of winning. This is only
a rough approximation because 30 percent of the variation is unex-

plained and because values below zero or greater than one are possible.
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A I o] [ 5] [ E [ F G ZI'

Wm Opponent —
| 1 | Forecast Won| In b Chall Spending Spending  Ratio
| 2 | 0.83 1 1 0 $1.5833 $1.1347 1.40
| 3 | 0.93 1 1 0 F0.4327 $0.0134 2348
| 4| 0.54 1 1 0 F1.16%3 $0.2585 3.92
| 5 | 0.93 1 1 0 B0.6235 $0.2612 2.39
| B 0.06 1 0 1 F1.6262 $1.7863 0.91
L2 | 0.50 1 0 0 F0.5052 F0.0745 6.9
| 8 | 0.93 1 1 0 B0.5696 $0. 0806 T3
| 8 | 0.93 1 1 0 £0.3774 $0.0070 5397
| 10| 0.54 1 1 0 $1.5357 $0.5527 278
| 11 | 0.54 1 1 0 £1.1838 $0.0395 2895
12 0.56 1 1 0 £2.5037 00215 11650
| 13 | 0.54 1 1 0 B0.8316 $0.0117 J260
| 14 | 0.93 1 1 0 $0.5932 $0.2585 2.28
| 16 | 0.93 1 1 0 B0.5877 $0.0145 4042
| 16 | 0.93 1 1 0 £0.7653 $0.0444 17.33
1 17 | 0.93 1 1 0 F0.5765 F0.0180 32.07

| 18 | 0.93 1 1 0 504436 $0.0052 85.50 =

14| 4 » [ RawData { Datafor Analysis £ Correlation £ Regression 1 |4T i S | : HMJ_‘

Readly = 1

Figure 4.20 Forecasting winning using the candidate data set

The intercept is 0.49609 or very nearly 50 percent. This is exactly
what we would expect. Without considering money or whether or
not a candidate is an incumbent, with two strong parties, a candidate
should have about a 50-50 chance.

Recall from above that the Democrat variable is almost significant.
If it is left in for the final regression, none of the above coefficients
changes more than a minor amount, and the Democrat variable has a
coefficient of 0.02079. That is, during the time range associated with
this data set, being a Democrat has a small (0.02079) positive impact
on the probability of winning. Of course, one of the problems with
handicapping political races using historical data is the 2002 elections,
where being a Democrat had a negative impact. Because the data we
are analyzing stops at 2000, the impact of the 2002 elections is not in-
cluded. This illustrates the difficulty of using historical data to forecast
elections.

Being the incumbent had a large (0.42575) positive impact on the
probability of winning, while being a challenger had a large (—0.43639)
negative impact on the probability of winning. Recall that spending is
now measured in millions of dollars, and spending an additional one

million dollars has only a small (0.01684) impact on the probability of
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winning. Of course, had spending been measured in tens of millions
of dollars, the coeflicient would be larger (0.1684), but the overall
impact of spending would be the same, thus the caveat regarding the
units used to measure the variables. Opponent spending had about the
same impact (—0.01616 versus 0.01684) for a million dollars spent,
thus candidate and opponent spending tend to offset one another. The
ratio of opponent spending has only a minor impact (0.00080) on the
probability of winning, so it takes a large imbalance to cause a large
swing in the probabilities. Of course, these data are all for national of-
fices with very large spending levels. This observation is not likely to

be true for state or local elections with their relatively small budgets.

Conclusion

This box has shown how election data can be used to build a model for
predicting the relative chances of a political hopeful being elected to
Congress based on the candidate’s and the candidate’s opponent’s in-
cumbent and spending status. The resulting model was able to explain
about 70 percent of the variation.

Now imagine that, rather than political data, this worksheet con-
tained income, debt, and spending data on consumers. Also imagine
that rather than election results, the dependent variable was a dummy
variable where one represented a good credit risk and zero represented
a bad credit risk. If that were the case, then column A in Figure 4.20
could contain credit scores rather than electability scores. Statistical
analysis of credit history similar to what is presented here is, in fact,

exactly how credit scores are developed.

Because regression, and therefore discriminate analysis, can have only
one dependent variable, it is only possible to use a dummy variable as
the dependent variable when you only have two possible categories, such
as repaying a loan (or not) or making a sale. These types of models are
often used by financial institutions where the dummy dependent vari-
able represents whether someone is a good credit risk. The purpose of
discriminate analysis is to assign each observation into one of the two

categories described by the dependent variable. In other words, we wish
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to discriminate between the two possible outcomes. The development of
this type of model is left to interested readers.

Because regression can only have one dependent variable, regression-
based discriminate analysis can only support two categories. There are
more advanced approaches for handling more than two categories. Inter-

ested students are referred to an advanced reference.

Testing the Validity of the Regression Model

There are three main problems, or diseases, that can affect multiple regression:

1. Multicollinearity
2. Autocorrelation

3. Heteroscedasticity

We will look at spotting and treating each of the problems individually.

Multicollinearity

Multicollinearity is a major problem that affects almost every set of data
to some degree. It is the sole reason we cannot just drop all the insignifi-
cant variables at once. As we will see, it can also cause coefficients to be
hard to understand, as well as an array of other problems. Were it not
for multicollinearity, developing multiple regression models would be an
order of magnitude easier.

The best way to see the impact of multicollinearity is to see how well
multiple regression performs without multicollinearity. An example of

this follows.

Example With No Multicollinearity

Figure 4.21 shows a data set that has one dependent variable, ¥, and
four independent variables, X, through X;. The independent variables
were constructed such that they have absolutely no multicollinearity.”
Because multicollinearity is correlation between the independent vari-

ables, the quickest way to test for multicollinearity is via a correlation
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A B @ D [ E e e e i |
L] Y X X X3 Xy
| 2 | 172 0,928 2.362 1.025 -0.658
L3 | 142 1327 -0.704 -0.3%0 -0.1%0
EX 126 0.127 -0.038 -2.280 -0.030
| 5 | 99 0.935 -1.401 1.665 -0.431
| 6 | 132 0.008 0.802 0.250 -1.24%
L7 | 104 0112 -0.00& 0.310 -1.508
| 8 | 113 -1.454 0.746 -0.817 -0.2%0
| 9| 120 0.146 -0.169 -1.218 0.586
| 10 28 -0.373 -0.656 0.285 -1.161
| 11 78 -0.747 -0.067 0.228 0.531
| 12 ] 124 -0.065 1.288 1648 1587
| 13| 136 1189 -1.077 -0.478 -1.402
| 14| 107 0.878 -0.454 -0.283 1.083
| 15 58 -2.268 -1.050 0.868 -0.666
| 16 | 118 0.571 -1.341 1311 1765
| 17 132 0.788 0.236 -0.624 0.26%
| 18] 153 0.746 0.31%9 -0.961 0.668
| 18] 113 -0.629 0.876 0.330 -0.885
| 20 147 -0.423 1.250 -0.412 1032 |
| 21| 73 -1.798 -0.927 -0.505 0878
\4994 » | M Data { Correlation 4 Multiple Regression 4 Multiple Rec 4] | LIJ_‘
Readly e O [ [ O

Figure 4.21 Made-up data set containing no multicollinearity

matrix containing just the independent variables. This is shown in Figure

4.22. As you can see, no correlation, and therefore no multicollinearity,

is present.

Figure 4.23 shows the initial regression run. Notice that X; and X are

not significant. Additionally, notice the equation:

Regression Equation

Y =117.0500+19.2927 X, + 16.7249X, —5.1565X,+0.7685X,

4 | B e e E s
1 Kl P K3 X4
|2 [x1 1
B2 0.0000 1 o
| 4 %3 0.0000 0.0000 1
5034 0.0000  0.0000 _0.0000 1
| & |
z -
14141 |11\ Dats )Correlation {_tiultipe Reression /{_Multple e | «| il
=) o

Figure 4.22 Results of running correlation analysis on this fictitious
data set that contains no multicollinearity
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A I B E D E F G =

| 1 [SUMMARY OUTPUT

2

3 Regression Statistics
| 4 [Multiple R 0.91584
| 5 |B Square 0.8435
| 6 |Adjusted B Square 02012
| 7 |Standard Error 126328

8 |Observations 20
1 2|

10 |ANOVA

1 d7r 55 ME F Significance £
| 12 |Regression 4 12,903 3,226 20.2131 0.0000
| 13 |Residual 15 2,394 160

14 | Total 13 15,297

15

16 Casfficients | Standard Errar ¢ Stat FP-vaius Lowar 95% | Upper 95%
| 17 |Intercept 117.0500 2.8248 41.4367 0.0000 111.0291 123.070%
| 18|x1 19.2927 2.8982 6.6569 0.0000 13.1154 25.4700
| 18 |32 167243 2.8982 57709 0.0000 10,5477 22.9022
120|303 -5.1565 2.8982 -1.77%2 0.0855 -11.3338 1.0208

21 |34 0.7685 2.8982 0.2652 0.7945 -5.4088 5.9458

14 [ 4 [» (Ml Data £ Correlation 3 Multiple

Multiple Regressionz /.

Readly

(K]
[

il
4

Figure 4.23 Results of the initial regression run on this fictitious data
set that contains no multicollinearity

Now we will simply drop the two insignificant variables. The results

are shown in Figure 4.24. Notice the resulting equation:

Regression Equation After Dropping Two Variables
Y =117.0500+19.2927 X, +16.7249.X,

A E < D E 5 G |
| 1 [SUMMARY OUTPUT
2
E] Regression Statisiics
| 4 [Multiple R 0.859%
| 5 |B Square 0.8087
| 6 |Adjusted B Square 07874
| 7 |Standard Error 13.0840
8 |Observations 20
| 9 |
10 | ANOVA
il d7 55 ME F Significance £
| 12 |Regression 2 12,387 6,193 36.1780 0.0000
| 13 |Residual 17 2,910 171
14 | Total 19 15,297
15
16 Casgfficients | Standard Errar ¢ Stat FP-vaius Lowar 85% | Upper 95%
| 17 |Intercept 117.0500 2.9257 40.0079 0.0000 110.8773 123.2226
| 18 X1 19.2827 3.0017 6.4273 0.0000 12.9597 25.6257
19 X2 16.7250 3.0017 55719 0.0000 10.3820 23.057%
| 20 | |
21
14 /4 [» (W[ Data £ Correlation £ Muliple Regression ), Multiple Regression2 =1 | ﬂJJ
Ready [T [ [T [ [ [0 4

Figure 4.24 Results of the final regression run with two variables
dropped on this fictitious data set that contains no multicollinearity
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A B € D E e e TEE
| 1| Y X X X Xy
| 2 | 71 &7 73 144 138
| 3 | 31 30 3z 66 58
N 34 33 37 72 68
L3 | 36 35 33 76 74
| 6| 10 10 13 24 19
| 7 | Z0 16 22 40 36
| 8 | 26 23 26 51 46
| 9| 99 95 101 200 196
| 10 3z 32 Ef) 69 £7
| 11 87 36 33 175 174
| 12 62 62 66 132 125
| 13 | 3 2 3 7 4
| 14| &0 59 &0 11% 11%
| 15| 13 9 15 26 24
| 16 | &7 63 n 137 130
| 17 68 &7 mn 138 135
| 18 | 60 57 54 122 118
| 18] z1 z0 25 45 45
| 20| TE 73 32 161 156 b
21 35 34 41 73 72 .
F b M|\Data  Correlation / Regression1 4 Dropping ¢/ Regre | 4 | | LIJJ
Reacly e e [ e A [

Figure 4.25 The high-multicollinearity fictitious data

Thus the intercept and coefficients for X; and X, did not change at all.
Additionally, there were only minor changes for the # statistic for X; and
X, and neither changed significance.

As the example shows, multiple regression behaves very smoothly
when there is no multicollinearity. It is the presence of multicollinearity
that causes much of our difficulties. Now we will look at an example with

more extreme multicollinearity.

High-Multicollinearity Example

The data in the HighMulticollinearity.xls worksheet were especially con-
structed to have a high degree of multicollinearity. These data are shown
in Figure 4.25. Figure 4.26 shows the resulting correlation matrix of just
the independent variables. Notice that each pair-wise correlation exceeds

0.99. This is high multicollinearity indeed.
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Ready

A T B [T @ [T B® [T 8% [ ® | & | = |5
1 Xl X2 3 X4
| 2 [x1 1
3 [ 0.9974 1 T
| 4 13 09987 0.9983 1
504 09991 09935 0.9991 1
| & |
7 =
¢ [¥-DIF\ Bt ), Correlation  Renression £ Dropping 4 £ Reie| 4| | LIJJ

o [ o [

Figure 4.26 Correlation analysis on the high-multicollinearity
fictitious data

Figure 4.27 shows the resulting multiple regression run. Notice the

following:

o 'The r* value is 0.9988 so almost 100 percent of the
variation in Yis being explained by the variation in the four
independent variables. From this perspective, you could not
ask for a better model.

¢ The overall model is significant. That is, it passes the F-test.
This is to be expected given the high 7* value.

* None of the independent variables is significant. Here, we
have an overall model that is significant yet none of the
variables used to construct the model is significant. This is a

very clear indicator of multicollinearity.

Ready

A | B | C [ T [ E [ F [ G =

| 1 |SUMMARY OUTPUT

2

3 Regression Statistics ‘ BEEECii Al ananon

explamed.

| 4 Multiple B
| 5 |R Square
| 6 |Adpsted B Square 0.8985
| 7 | Standard Error 1.0683

8 | Observations 20
| 9| The overall model
10 ANOVA 5 crarim

11 df S5 M5 F
| 12 Regression 4 14,331.4304) 35828376  3,139.2602 0.0000
| 13 |Residual 15 17.1136 1.1413

14 Total 1% 14,348.5500

15

16 Cogfficients | Standard Error i Siat FPovalue r INOneInthelrariah] Salare
| 17 | Intercept -0.1133 07334 -0.1533 0.38 significant.
|18 |X1 -0.0037 0.3236 -0.0116 0.390¢ = 60
| 18 %2 -0.0365 03735 -0.0877 09235 -0.8325 075585
| 20 %3 03058 0.1966 15558 0.1408 -0.1132 07245

21 34 02116 01823 1.1005 02883 -0.1982 06213 2
22 J;[
|4 4| » (W[ Data { Correlation ) Regression 1, Dropping + 4 Rearession 2 4 Dropping 3 4 4] | |

=T

Figure 4.27 Initial regression run on the high-multicollinearity

fictitious data
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A | B | C [ ) [ E [ F [ G =

| 1 |SUMMARY OUTPUT

2

3 Regression Siatistics
| 4 Muliple R 0.5994
| 5 |R Square 0.5987
| 6 |Adpsted B Square 0.5985
| 7 | Standard Error 10753

8 |Observations 20
9|

10 ANOVA

11 df 55 M F Significance F
| 12 Regression 3 143300482 47766827 4,130.7842 0.0000
| 13 |Residual 16 185018 1.1564

14 Total 1% 14,348.5500

15

16 Cogfiicients | Standard Error i Stat FPovalue Lower 93% | Upper 5%
| 17 Intercept -0.4751 0.6666 -0.7127 04363 -1.8883 05331
| 18 31 0.287% 0.1869 1.5400 0.1431 -0.1084 0.6841
| 18 %2 0.2574 0.2628 0.9794 0.3420 -0.2997 0.8145

20 |33 0.2265 0.1841 1.2303 0.2364 -0.1638 0.6168
B =
22 =
144 (¥ [M] Data £ Correlation / Regression 1/ Dropping ¢ hRegression 2, Dropping 3 4 [ <] | LIJJ
Ready =11 =] e o [ o 7|

Figure 4.28 Regression run with the X, variable dropped on the high-
multicollinearity fictitious data

Normally, we would need to drop all four variables one at a time and
record the resulting 7* values in order to decide which to drop. However,
the way the data was constructed for this example guarantees about the
same impact regardless of the variable dropped, so we will simply drop Xj.
The resulting multiple regression run is shown in Figure 4.28.

This time, notice the following:

e The 72 value does not change much, going from 0.9988 to
0.9987.

* The overall model is still significant.

* Again, none of the remaining independent variables is significant.

* The slope coeflicients for X; and X, change dramatically,
going from negative to positive. This will end up being one of

the important signs of multicollinearity.

This time, we will drop Xj. The resulting multiple regression run is

shown in Figure 4.29. This time, notice the following:

e The 72 value does not change much, going from 0.9987 to
0.9986.

* The overall model is still significant.
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A [ B | 5] [ T I E | T | G e

| 1 [SUMMARY OUTPUT

2

E] Regression Siatisiics
| 4 Multiple R 0.5993
| 3 |R Square 09986
| & |Adjusted B Square 0.5934
| 7 |Standard Error 10915

8 |Obzervations 20
EX

10 ANOWVA

il df S MS 7 Significance F
| 12 Regression 2 14,328.287%)  7.164.148%  6,013.7141 0.0000
| 153 Residual 17 20.2521 11913

14 Total 15 14,348.5500

15

18 Cogfficionts | Standard Error £ Stat Fovalue Lower 5% | Uppar 3%
| 17 |Intercept -0.3675 0.6708 -0.5478 0.5%909 -1.7827 1.0477
| 18 301 0.4583 0.1274 35984 0.0022 0.18%6 07271

19 X2 0.5428 0.1252 4.3353 0.0004 0.2787 0.8070
| 20 |
o1 =
1[4 [ Regression 2 £ Dropping 3 3, ion 3 4 Dropping 2/ Regression 4 K3 | LIJJ
Reay [ I o 577

Figure 4.29 Regression run with the X3 and X, variables dropped on
the high-multicollinearity fictitious data

¢ This time, the two remaining slope coeflicients are significant.
* Both of the remaining slope coefficients nearly double in

magnitude.

Although this model meets all our criteria, we will go ahead and drop
X;. The resulting simple regression run is shown in Figure 4.30. This time,

notice the following:

o The 7? value does not change much, going from 0.9986 to
0.9970.
* The overall model s still significant.

* The single remaining independent variable is significant.

Clearly, the model suffered serious problems relating to its high degree
of multicollinearity, although the final model in Figure 4.30 no longer has

a multicollinearity. Do you see why?

What Causes Multicollinearity?

Independent variables are selected based on their theoretical relationship

with the dependent variable, not their statistical suitability for using in
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A | 2 This r squared is almost as }Ligh\ﬁ E ‘ E ‘ G | =
| 1 [SUMMARY OUTPUT as the original r squared
2 (0.9988) with all four variables
3 Regression Siatisiics included.
| 4 |Multiple R 0.5985
| 3 R Square 058970
| & |Adjusted R Square 0.9965
| 7 |Standard Error 1.5392
8 |Obgervations 20
EX
10 ANOWVA
il df S MS 7 Significance F
| 12 Regression 1 14,305.9070) 143058070 6,038.6610 0.0000
| 153 Residual 18 42.6430 23691
14 Total 15 14,348.5500
15
18 Cogfficionts | Standard Errov & Stat Fovalue Lower 5% | Upper 3%
| 17 |Intercept 17030 06642 25638 0.0195 0.3075 3.0983
18 301 1.0091 0.0130 777088 0.0000 0.9818 1.0364
| 19|
| 20 |
o1 =
22 hd
14 4[» [¥i[{ Regression2_{ Dropping 3 { Regression 3/ Dropping 2 _yRegressiond /4] | LIJJ
Rearly [T | [ [ [ e [ 7

Figure 4.30 Regression run with the X,, X3, and X, variables
dropped on the high-multicollinearity fictitious data

multiple regression. Oftentimes, a natural relationship exists between
these variables.

For example, in the sales forecasting model we have been discussing,
two of the variables we would naturally collect are levels of advertising
and competitor actions, most likely in the form of competitor advertis-
ing. It is reasonable to assume that the higher our advertising spending,
the more our competitors are going to spend on advertising. That is,
when our advertising spending goes up, competitor spending is likely to
go up, and when our spending goes down, competitor spending is likely
to go down. In other words, these two independent variables are highly
correlated, and therefore we have multicollinearity. That natural multicol-
linearity does not mean that we should not collect data on both variables.
Remember, the decision on the independent variables to start with is a
theoretical decision, not a statistical decision. Rather, it simply means that
both variables may not make it to the final model or, if they do, the final
model will have multicollinearity between these two variables. Research-
ers must understand this relationship if they are to interpret the results
propetly. After all, if competitor advertising does not make it into the
final model, they need to understand why.

Flawed data-collection methods can also introduce multicollinear-

ity into the model. For example, if sales data were only collected from
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stores with a high level of competition, the data set would show a stronger
relationship between advertising spending and competitor spending on
advertising than would be the case if all locations were included in the
sample. That would introduce an unnaturally high level of multicollinear-

ity between the two variables.

Spotting Multicollinearity

In the previous examples, we have already seen some of the ways in which
multicollinearity can be spotted. In general, all of the following are indi-
cators of multicollinearity:

The first indicator is a high correlation between independent variables
in the correlation matrix. Unless they have been artificially created, as
shown previously, all independent variables will have some correlation
between them and this correlation will show up in the correlation ma-
trix. A rule of thumb is that a value of 0.60 or higher in the correlation
matrix is an indicator of multicollinearity strong enough to be concerned
about. This is the easiest rule to use, so it is recommended that you
produce a correlation matrix on each data set prior to running multiple
regression. Because you want a high degree of correlation between each
independent variable and the single dependent variable, you should only
include the independent variables in this correlation matrix so the high
values between the variables and the dependent variable does not confuse
its interpretation.

The second indicator is a low tolerance. One drawback to testing for
multicollinearity using correlations is that it only spots pairwise multicol-
linearity because it is based on pairwise correlation. It is possible to test
to see there is multicollinearity between more than two variables; that
is, if two or more independent variables combined together can explain
another independent variable. To do this, you run multiple regression
with one of the independent variables as the dependent variable and the
remaining independent variables (zo# the dependent variable) as the inde-

pendent variables. The tolerance is then computed as follows:

Tolerance

1—72
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for this reduced multiple regression run. It is the case that the smaller
the tolerance, the greater the multicollinearity regarding the independent
variable being used as the dependent variable. The smallest possible value
for tolerance is zero, and a good rule of thumb is that anything below
0.20 indicates a problem with multicollinearity. Two notes are in order.
First, with 4 independent variables, there will be # measures of tolerance,
as each independent variable is used, in turn, as the dependent variable.
Second, tolerance requires at least three independent variables because
with just two independent variables, the correlation coefficient is ade-
quate for measuring multicollinearity. Finally, due to the difficulty of per-
forming these repeated multiple regression runs, tolerance as a diagnostic
for multicollinearity is not emphasized in this textbook.

The third indicator is important theoretical variables that are not signifi-
cant. There are two main reasons why an important theoretical variable
might not be significant: Either the theory is wrong or there is multicol-
linearity.® If you are confident that the theory is correct, then the cause
is most likely that another variable is robbing the theoretically important
variable of its explanatory ability—in other words, multicollinearity.

The fourth indicator is coefficients that do not make sense theoretically.
In the sales forecast example, the theory says that increasing advertising
spending should increase sales, so we would expect a positive slope coef-
ficient for advertising spending. If that does not happen, then cither the
theory is wrong or, once again, multicollinearity is causing another vari-
able to rob the theoretically important variable of its explanatory ability
and therefore, in the process, altering its coeflicient.

Note that it is rarely possible to evaluate coeflicients theoretically be-
yond their signs. This is because the magnitudes of the coefficients are
determined by the units of the independent variable, the units of the
dependent variable, and if multicollinearity is present, the units of the
collinear variables. Change any of these units and the coeflicient changes.
That is, measure sales in thousands of dollars rather than dollars or ad-
vertising spending in minutes of television time instead of dollars and
the advertising spending coefficient changes. However, regardless of the
units, the sign of the slope coeflicient should behave according to theory.

The fifth indicator is when you notice that dropping a variable causes

dramatic shifis in the remaining coefficients. If there is no multicollinearity,
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then the explanatory power of a variable does not change as other vari-
ables come and go. We saw this in the previous example artificially cre-
ated without multicollinearity. Therefore, when coefficients shift as other
variables come and go, it is an indicator of multicollinearity. Thus we see
that the greater the shift, the larger the multicollinearity. As discussed
previously, the biggest concern is when the coeflicients change signs or
when values change by an order of magnitude.

The sixth indicator is when you notice that dropping a nonoutlier 0b-
servation causes dramatic shifts in the coefficients. Although rarely used in
practice, dropping a single observation that is not an outdlier should not
cause much of a shift in the coefficients. When it does, that is a sign of
multicollinearity. Of course, this is also a sign that the observation is pos-
sibly an outlier so you must be careful in its use. One of the reasons this is
not used much in practice is that it is the least likely of all the approaches

to generate an observable effect, plus researchers rarely wish to drop use-

ful data.

Treating Multicollinearity

When multicollinearity is present, any or all of the following can be used
to treat it.

Fix the sampling plan. It goes without saying that when the multicol-
linearity was introduced by a poor approach to gathering the data, new
data should be collected using a better sampling plan. It is much better to
work with good data than it is to try to fix bad data.

Transform the collinear variables. Multicollinearity is a linear correla-
tion between two (or more) variables. Transforming one or more of these
variables in a nonlinear fashion can reduce or eliminate the multicol-
linearity. Nonlinear transformations include taking the log, squaring, and
taking the square root. Multiplying by a number or adding a number are
both linear transformations and will not change multicollinearity.

The trouble with transforming the data is that it changes the data.
Changing the data makes it tougher to theoretically interpret the data.
For example, we know that a positive slope coeflicient for advertising
indicates that spending more money on advertising increases sales. If

sales and advertising are both measured in thousands of dollars, then a
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coeficient of 0.50 would indicate that for every additional thousand dol-
lars spent on advertising, sales go up by $500. But what would the coef-
ficient mean if we were using the log or square root of advertising dollars?
For this reason, variable transformations are usually only used in models
intended for prediction where there is little or no interest in understand-
ing the underlying processes.

Transform the data set. An advanced statistical process called fac-
tor analysis can be used to transform a collinear data set, or any subset
of that data set, into new, uncorrelated variables that explain the same
variation as the original data set. However, these new and uncorrelated
variables are even more manipulated than the simple variable transforma-
tions discussed previously, making them that much harder to theoretically
interpret. Students interested in this topic should consult an advanced
statistical textbook such as Philip Bobko’s Correlation and Regression:
Principles and Applications for Industrial/Organizational Psychology and
Managemenr (1995, McGraw-Hill). Factor analysis was the technique
used to create the completely uncorrelated variables used in an earlier
example in this chapter.

Use an advanced multiple regression approach. A type of multiple re-
gression called ridge regression is more adept at working with collinear
data. Excel is not able to perform ridge regression.

Drop one of the collinear variables. After all, if the two variables are
explaining the same, or mostly the same, variation, it makes little sense to
include both in the model. When the multicollinearity between two vari-
ables is too high, it is rarely the case that both will end up being signifi-
cant. Thus the model development procedures discussed previously will
automatically cause one in the pair of collinear variables to be dropped.
Even if they both end up being significant, they may end up biasing the
coeflicients to such an extent that one of them must be dropped so the
remaining coeflicients make theoretical sense.

Do nothing. If the collinear variables are all significant, then they help
improve the fit of the model. If the model is to be used mainly for pre-
diction, then any theoretical problems with the coefficients will not be a
problem. Even when the model is to be used for understanding, multicol-
linearity does not always have such a strong impact as to cause the coef-

ficients not to make theoretical sense.
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Autocorrelation

One of the assumptions of regression, both simple and multiple, is that
the error terms (€) are independent of each other. Stated another way,
€, is uncorrelated with €;,_; or €;_, or €;_3 and so on. When correlation
between one or more of these error terms exists, it is called autocorrelation.

Autocorrelation is only an issue when we have time-series data—that
is, data that were measured at different points in time. For example, if we
have quarterly measures of demand for several years, it is likely that the
demand for any quarter was related to quarterly demand a year ago, so it
is likely that €; is correlated with €;_ 4. This is called a lag four correlation.

This issue of lagged correlation can easily be illustrated with a figure.

Figure 4.31 shows a one-period lag in the correlation of the error terms.

Period Error
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Figure 4.31 An illustration of lag one correlation
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Period Error
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Figure 4.32 An illustration of lag two correlation

‘This is called first-order autocorrelation. Figure 4.32 shows a two-period
lag in the correlation. This is called second-order autocorrelation.

When the data are not time series, there is no reason to be concerned
about autocorrelation. After all, there is not likely to be any relationship
between the different dependent variable observations, so there is unlikely
to be any correlation of the error terms. Although it is technically possible
for the error terms to be correlated for non-time- series data (called cross
sectional data), we need not be concerned with this rare occurrence. After
all, if the data are not time-series data, there is no specific order for the
data. Therefore, we could simply rearrange the sequence of the data and

alter any lag correlations of the error terms.
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Durbin-Watson Test

Statistical software, like SPSS or SAS, can compute a Durbin-Watson test
to easily spot first-order autocorrelation. The hypotheses for the Durbin-

Watson test are the following:

Hy:p=0
H,:p#0

Of course, we can also perform a one-tailed version of the test. The hy-
potheses use a p; because the Durbin-Watson test can only spot first-order
autocorrelation.

The calculated Durbin-Watson statistic value can take on values be-
tween zero and four. A value of two, which is in the middle of this range,
indicates no autocorrelation. A value of zero indicates positive autocorre-
lation and a value of four indicates negative autocorrelation. When a table
is not available, a rule of thumb is that values of & between 1.5 and 2.5
indicates no autocorrelation. The Durbin-Watson test statistic  is defined

with the following equation:

Durbin-Watson Test Statistics

n 2
Zizz(ez' _ez‘—l)
2

=17

A couple of notes are in order regarding this formula. First, notice

d=

that although we are testing for the significance of a correlation, nei-
ther a sample () or assumed population (p) correlation coeflicient is
used in the calculations. Second, note that the top of the formula is
summed from “7 = 2 to »” whereas the bottom is summed from “7 = 1
to 7. This is because the top measures the lagged squares and ¢, — ¢,
is not defined.

The Durbin-Watson test first appears to work differently than the
other hypothesis tests we have looked at. For a one-tailed test,” the critical
values (4; and ;)" do not divide the distribution into acceptance and
rejection regions. Rather, they divide the distribution into five different

regions, as noted in Table 4.1.
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Table 4.1. Durbin-Watson Qutcome Regions

Area Outcome

0-d; Positive autocorrelation
d—dy Test is inconclusive

dy —4-dy; No autocorrelation

4-dy; - 4-d;. Test is inconclusive

4-d; — 4 Negative autocorrelation

The lack of clear boundaries between the acceptance and rejection
regions is, in fact, not due to the Durbin-Watson test working differ-
ently than other hypothesis tests. Rather, the actual boundaries of the
test depend on the regression coeflicients. Because printed tables cannot
easily reflect this, the ranges where the test is inconclusive represent the
range of possible values from the table for different values of the regres-

sion coeflicients.

Example

It is very common for businesses to collect data, such as sales data, over
time. Because these data are collected over time, it often has autocorrela-
tion. We will explore this issue with an example.

Figure 4.33 shows sales data for 20 periods, along with the advertising
and promotion data for the same period that will be used to explain the
sales. That is, Sales is the dependent variable and Advertising and Promo-
tion are the independent variables. This figure shows the data in Excel,
and it is saved in Durbin-WatsonExample.xls if you wish to experiment
with the data; however, the regression analysis will be performed using
SPSS.

Figure 4.34 shows the resulting multiple regression run. Note that
the overall model is significant, and both of the independent variables
are significant. This model explains 79.1 percent of the variation in sales.

The value of d from the model summary area is 2.087. Because we
do assume that the autocorrelation is either positive or negative and 4 is
between 1.5 and 2.5, we use a two-tailed test and conclude that there is

no autocorrelation.
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A | B | C | D =
| 1] Period Sales  Advertising Promotion
| 2 | 1 $227,000 £1,700 5630
| 3 | 2 $181,000 FE00 £1,750
EN 3 £203,000 $200 £1,500
L3 | 4 F214,000 £1,100 £1,250
| 6 | 5 $173.000 700 £1,300
| 7 | 6 $231,000 $2,000 F280
| 8 | 7 £195,000 Fe00 1,670
| 9| 2 $1%35,000 £1,600 E600
|10 9 $220,000 £1,600 j ]
| 11| 10 £158,000 £1,200 £1,040
| 12 | 11 $194,000 700 B1,520
| 13 12 $215.000 £1.400 RRT0
| 14 | 13 £187,000 F600 £1,650
| 15 14 $186,000 £1,100 £1,130
| 16 | 15 $208,000 £1,600 £640
| 17 16 $230,000 £1,600 Eann
| 15 | 17 $220,000 £1,600 £670
| 19 | 18 £176,000 F400 £1,950
| 20 | 1% £21%9,000 £2,000 £380
|21 | 20 $222,000 £2,000 F2s0 B
22 -
144 [ [m]Data i Regression £ Residuals [4] | LIJJ
Realy 1 o e B 7

Figure 4.33 Data for Durbin-Watson example in Excel

The value of d can be approximated using the following formula:

Approximating Durbin-Watson d
2(1—r)

where 7 is the correlation coefficient that measures the association be-
tween successive residuals.

Although not shown, the regression model for the Durbin-Watson
example was computed in Excel and the residuals were saved. The Residu-
als tab of the Durbin-WatsonExample.xls worksheet computes the cor-
relation coefficient between successive residuals. That value is —0.06491.
Applying the approximation formula above, we have 2[1 - (-0.06491)],
which equals 2(1 + 0.06491), which is about 2.12983. That is close to the
2.0869 calculated by SPSS.

Treating Autocorrelation

There are two things you can do to minimize the possibility of hav-

ing autocorrelation when dealing with time-series data. The first is to
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Regression
Variables Entered/Removed®
Variables Wariables
Model Entered Removed Method
1 Promotion,a Enter
Advertising
a. All reguested variables entered.
h. Dependent Yariable: Sales
Model Summary®
Adjusted Std. Errar of | Durbin-
fodal F F Sguare R Sguare the Estimate | YWatson
1 8RR 7391 TET R 2.087
a. Predictars: (Constanty, Promotian, Advertising
h. Dependent Wariable: Sales
ANOVA?
Sum of
hiodel Squares df hean Sguare F Sig.
1 Regression | 5.07E+09 2| 2534751502 32189 a2
Residual 1.34E+09 17 | TET46E8212
Total 6.41E+09 19
4. Predictors: (Constant), Promation, Advertising
h. Dependent Yariable: Sales
Coefficients®
Standardi
zed
Unstandardized Coefficien
Coefiicients is

hodel B Std. Error Beta t Sig.

1 {Zonstant) -18845.1 | 74853628 -.2582 804
Advertising 110729 32737 3181 3.382 o4
Fromaotion 51.663 32648 2.353 2.501 023

a. DependentVariable: Sales
Residuals Statistics®
Minimurm | Maximum hiean Std. Deviation [+

Fredicted Walue 20

Std. Predicted Value -1.441 1772 aoa 1.000 20

Std. Residual -1.680 1.263 .0ad 946 20

3. Dependent Variable: Sales

Figure 4.34 The results of running multiple

regression using SPSS

transform the data. When variables are measured in dollars over time,

state those dollars in a constant unit, such as discounted dollars. When

the dollars are left in their raw form,'" changes in the buying power of
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the dollar over time are built into the dependent variable but will not be
accounted for by any independent variable. Furthermore, those changes
over time are fairly regular and therefore correlated with one another,
leading to autocorrelation. Converting to discounted dollars removes
this time-based source of variation. In business, this is by far the most
common transformation. Another transformation that works well, es-
pecially with economic and financial data, is to restate the variables as
a percentage change.

When one or more independent variables are measured in their raw
form, they have a built-in variation that is not being used to explain the
dependent variable. As a result, this variation is transferred to the error
term, where it becomes autocorrelation. Converting the variables to dis-
counted dollars or percentage change removes this source of variation.

The second approach is to add a new independent variable, here
called Period, where Period is simply a measure of the changes over
time. This variable will explain this regular variation and keep it from
reaching the error term. If Period is significant, then autocorrelation
exists and Period treated it. If Period is not significant, then autocor-
relation is not present.

The period variable should be a linear variable when every one-unit
change in periods causes the same change in the period variable. The
most common approach is to label the first period 1, the second 2, and
so on. With annual data, using the actual year number would also work.
For quarterly data, you could use sequential period numbers or year
numbers with a.00, .25, .50, and .75 added for the different periods
within each year.

You must be careful in labeling your periods. It is often tempting
to use a labeling scheme that violates the assumption of equal units
between the periods. For example, none of the following methods is

appropriate:

* With monthly data, using 2002.01, 2002.02, . . . ,2002.11,
2002.12, 1991.01, and so on

* With quarterly data, using 2002.1, 2002.2, 2002.3, 2002.4,
2003.1, and so on

* With quarterly data, using 1, 2, 3, 4, 1, 2, 3, 4, and so on
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With each of these, the gap between some sequential pairs of periods
is different from other sequential pairs, and this nonlinear ordering of the

periods violates the linearity assumption of regression.

Second Durbin-Watson Example

Figure 4.35 shows a set of data especially constructed to contain posi-
tive autocorrelation. The data are stored in the Excel file DW-2.xIs for
easy manipulation. Figure 4.36 shows the initial multiple regression
run on this data. Note that the overall model is significant and both
independent variables are also significant. However, the model only
explains 53.1 percent of the variation in sales. This model has posi-
tive autocorrelation, as shown by the Durbin-Watson statistic of 0.101
shown in Figure 4.36.

To correct the autocorrelation, the period variable is added to the
model as a third independent variable. That regression run is shown in
Figure 4.37. Again, the overall model is significant and all three inde-
pendent variables are significant. The explanatory power of the model

goes up from 53.1 percent to 98.7 percent. This model has much less

A [ B [ @ [ D [ E F G H a
| 1] Period Sales  Advertising Promotion Tl
2] 1 $8350,000 $30,000 $2,000
L3 | 2 $B.535.000 £34,000 £3,000
1 4] 3 $5,585,000 $35,000 $4,000
L3 | 4 $10,215,000 $37.000 $6,000
1 6 | 5 B10,595,000 £27.000 £3,000
1 7| 6 $10,285,000 £33,000 £8,000
| B | 7 $10,100,000 $33,000 $7,000
Bl 8 £10,640,000 $35,000 £7,000
1 10| 9 $10,230,000 £31,000 £7,000
|11 10 $10,970,000 $40,000 $6,000
112 | 11 $11,145,000 $39,000 $6,000
113 | 12 §10,420,000 534,000 £6,000
114 | 13 $11,095,000 £32,000 £9,000
| 15| 14 $11,070,000 $32,000 $8,000
16 | 15 $11,345,000 $35,000 $2,000
117 16 B11,505,000 £37.000 56,000
| 18 | 17 $10,240,000 $30,000 $4,000
(19| 18 $10.400,000 $30,000 $4,000
120 | 19 B11,735000 £38,000 £5,000 N
121 20 $11,695,000 £37,000 £6,000

22 3
[k < » w)\Data/ Regression [ Regressonz / |< a3l
Ready

Figure 4.35 Data especially constructed to contain positive
autocorrelation
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Model Summany®
Adjusted Std. Errar of | Curhin-
Model R R Sguare F Square the Estimate | Watson
1 7249a A3 A4T6E | FE2B145.86 01
3. Predictors: {Constant), Promation, Adverising
b. DependentVariable: Sales
ANOVAR
Sum of
Model Sguares df Mean Square F Sig.
1 Regression | 7.59E+12 2 3.794E+12 Y616 nozs
Residual A.T1E+12 17 3.946E+11
Total 1.43E+13 14
3. Predictars: {Constant), Pramation, Advertising
b. DependentVariable: Sales
Coefficients?
Standardi
zed
Unstandardized Coeflicien
Coeflicients s
Model =] Std. Errar Beta t Sig.
1 (Constant) 49528405 1634119 3.034 ooy
Advertising 119.124 47 691 421 2498 023
Fromuotion 244,418 T8.529 825 3112 06

a. Dependent Variable: Sales

Figure 4.36 Initial regression on this fictitious data

autocorrelation, as shown by the Durbin-Watson statistic of 2.836

shown in Figure 4.37.

Heteroscedasticity

One of the assumptions of regression is that the error terms have equal
variance. We called this homoscedasticity. Violating the assumption of
homoscedasticity is called heteroscedasticity.12 Although heteroscedastic-
ity is a violation of the assumptions of regression, it is a fairly minor vio-
lation relative to multicollinearity and autocorrelation. However, when

heteroscedasticity is high, the researcher may need to build a separate
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Model Summany®
Adjusted Std. Errar of | Curhin-
Model R R Sguare F Square the Estimate | Watson
1 A84a EEH 885 | §107,220.24 2836
a. Predictors: (Constant), Period, Advertising, Promotion
b. DependentVariable: Sales
ANOVAR
Sum of

Model Sguares df Mean Square F Sig.

1 Regression | 1.41E+13 3 4. 704E+12 409.191 .nangs
Residual 1.84E+11 16 1.150E+10
Total 1.43E+13 14

3. Predictars: {Caonstanty, Period, Adverising, Pramoation
b. DependentVariable: Sales
Coefficients?
Standardi
zed
Unstandardized Coeflicien
Coeflicients s

Model =] Std. Errar Beta t Sig.

1 (Constant) 4411263 | 279877.0 14.761 .oon
Advertising 114.153 8.143 A04 14.018 .oon
Fromuotion 187.843 13613 A04 13.7949 .ono
Feriod 1007496 | 4229.344 BT 23.822 .00o

a. Dependent Variable: Sales

Figure 4.37 Redoing the regression model by adding period as a
variable

regression model for each range of the error term. That is, the research-

ers need to build one model for the range where the variance is high and

another for where it is low.

We will not be using a hypothesis test approach to testing for het-

eroscedasticity; rather, we will be using a visual approach. Specifically, we

will be looking at a plot of the residuals (error terms) once the model has

been built. Residuals are shown on the Y-axis. We must produce a plot for

each independent variable that makes it into the final model. Fortunately,

Excel makes this easy.
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Example

As we saw earlier, our Celebrities.xls worksheet has six independent vari-
ables and all of them are significant except for Earnings. We will now
drop Earnings, produce the final model, and get a plot of the residuals.
To add the plots to the output, we simply check Residual Plots in the
Regression dialog box. Excel produces the plots and stacks them on top
of each other, as shown in Figure 4.38. You click on the plot you wish to
see and that brings it to the front. Figures 4.39 through 4.42 show the
individual plots.

Figure 4.39 shows Residuals plotted against Income Rank. As Income

Rank increases, the residuals appear to be randomly distributed when

7 | ® | & | M ||l ¥ | @ p |l @ || B | 8 |
1
o Income Rank Residual Plot
3
T4 | 40 ‘Web Hits Residual Plot ‘
5] Eow
3 = W 40 Press Clips Residual Plot
— s 0 =
7| g 20 . -
g 200 F 9 a0 Magazine Covers Residual Plot
| = g w
9 Mool T o2 i . .
10 I 40 TV and Radio Mentions Residual
& 0 L]
11 ] T om Plot
12 2
—=1 ] 0
g
13| 4 a 50
14 -20 5 .
15 g ¢
61 ;;_1" 50 a0 400 &0 00 1000 1200
E TV and Radio Mentions
18]
13

Figure 4.38 The stacked plot of residuals

Income Eank Eesdual Plot

Figure 4.39 Residuals plotted against Income Rank
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fairly consistent variability, so heteroscedasticity is not an issue. Figure
4.40 shows Residuals plotted against Web Hits. Cleatly, the residuals are
neither randomly distributed nor have equal variability, a clear sign of
heteroscedasticity. Figure 4.41 shows Residuals plotted against Press Clip-
pings. As with Figure 4.40, heteroscedasticity is clearly evident.

Figure 4.42 shows Residuals plotted against Magazine Covers. With
this variable, it is much harder to visually gauge heteroscedasticity. Maga-
zine Covers can take only a limited number of discrete values and so
the residual values are bunched above these few values. Dummy vari-
ables have this problem as well as discrete variables, only with dummy
variables, there are only two columns of points. Although the variability

clearly declines as the number of Magazine Covers decreases, this may be

Web Hits Residual Plot

Figure 4.40 Residuals plotted against Web Hits

Press Clips Residual Plot
40
'; 2 i *
. +
1 N
- I'I,I'II'II'I .-‘!I'I,I'II'II'I & |,| ICC | |,| (RS i
Presz Chips

Figure 4.41 Residuals plotted against Press Clippings
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Magazine Covers Eesadual Plot

o M5
*

Resud uals

Magarine Covers

Figure 4.42 Residuals plotted against Magazine Covers

due more to the lower number of observations than to a decline in the
variance. Therefore, the best we can say regarding heteroscedasticity is
that we are uncertain.

Figure 4.43 shows Residuals plotted against TV and Radio Mentions.
The values on the left side of the chart appear to be randomly distributed
with fairly constant variability. The very few observations on the right
clearly have less variability but there are too few values to make any real
judgment. These could simply be oudliers. The most reasonable conclu-
sion is that the bulk of the data shows no heteroscedasticity.

The problem with gauging heteroscedasticity from these individual
plots is that they do not show the error terms relative to all the data at

once. It may be that large differences relative to one variable may not

TV and Eadio Mentions Eesidual

Plot
-; a
r ] : I‘* = ; ; ama
-850 00 400 A g0 1000 1am

TV and Radio Mentions

Figure 4.43 Residuals plotted against TV and Radio Mentions
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be too large when other variables are included in the comparison. The
way to gauge heteroscedasticity across all the variables at once is to use
a chart that Excel does not automatically compute—a plot of the stan-
dardized residuals against estimated values of the dependent variable. A
homoscedastic model will display a cloud of dots with no visible pattern,
whereas heteroscedasticity will be characterized by a pattern, such as a
funnel shape, indicating greater error as the dependent increases.

Using the Celebrities.xls worksheet discussed previously, multiple re-
gression was rerun, using SPSS and requesting a plot of the residuals. This
is shown in Figure 4.44. The Y-axis is the standardized residuals and the
X-axis is the standardized predicted values. With homoscedasticity, you
would expect the spread of the data to be fairly consistent as you move
from left to right. Because this data has a fairly narrow spread on both
ends with a wider spread in the middle, it is an indication of heterosce-
dasticity. This measure looks at all the variables at once. This plot can be
produced in Excel by having regression save the residuals, manually build
a formula to calculate the predicted values, and then manually produce

the plot. This exercise is left for interested readers.

Scatterplot
Dependent Variable: Power Rank

3
j— . s o
S o
E 2 I
o I e
= 1 H o o
i 8 - ° B og
= [n] o m o oo
g 0 I:||:| |:|n I:|I:| o E@ r; Dn : Dn I:I:I|:|
2 of m" o o o Bao o "og
E g & o f & ofg o ¢
w1 o Bg o g
c n o
[}
i O Op
$ -2 o o o
5
-3

-3 -2 -1 1] 1 2

Fegression Standardized Predicted Value

Figure 4.44 Plot of the residuals against predicted Y-values
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Treating Heteroscedasticity

Heteroscedasticity is a violation of the assumptions of regression; how-
ever, its effect is much smaller than either multicollinearity or autocor-
relation. Heteroscedasticity causes the least squares estimation method
to be less efficient. One approach to dealing with heteroscedasticity is to
use weighted least squares. Excel is not able to perform this, so we will not
explore it further.

A second approach is to transform the variable exhibiting heterosce-
dasticity using a nonlinear transformation such as squares, square roots,
or logs. These transformations are particularly effective when the data
show high variability on one side of the residual plot and low variabil-
ity on the other. However, a nonlinear transformation introduces all the
theoretical interpretation concerns raised earlier.

A third approach is to simply realize that heteroscedasticity exists in
the multiple regression model but to otherwise ignore it in the calculation
of the model. Given the minor impact of heteroscedasticity, this is the

approach often taken by researchers.

Summary

In this chapter we looked at model building, incorporating qualitative
data, and testing the validity of the model. You should now be ready to

build your own multiple regression models.
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Introduction

Jiawi Han and Micheline Kamber. (2006). Data mining: Concepts and tech-

niques San Francisco: Elsevier.

Chapter 1

Damodaran Online. The data page. Retrieved August 15, 2010, from
htep://pages.stern.nyu.edu/-adamodar/New_Home_Page/data.html as
part of a larger data set.

U.S. Office of Personnel Management. Federal Civilian Workforce Statistics:
The Fact Book, 2007 Edition. Retrieved from http://www.opm.gov/feddata/
factbook/2007/2007FACTBOOK.pdf

American Public Transportation Association. 2010 Public Transportation
Fact Book, 61st ed. April 2010. Retrieved from http://www.apta.com/re-
sources/statistics/Documents/FactBook/APTA_2010_Fact_Book.pdf
Unlinked passenger trips refers to the total number of passengers who board
public transit vehicles. Each passenger is counted each time that person
boards a vehicle even though the boarding may be the result of a transfer
from another route while on the same journey. Thus unlinked passenger
trips will be larger than actual ridership.

Outlier does not necessarily mean mistake or error. Here, the data for New
York City is absolutely correct; it is just well outside the range of any other
observation.

The actual calculation for this specific data set is —0.042, which is extremely
close to zero. The exact value would depend on the number of observations
included, but it would always be close to zero.

The assignment of Age as X and Tag Number as Y is completely arbitrary
and for correlation does not matter. The resulting value for the correlation
coefficient would be exactly the same if Age were assigned as Y and Tag
Number were assigned as X. The proof of this is left to interested readers.
SPSS stands for Statistical Program for the Social Sciences, but everyone
just calls it SPSS.

It actually does not hurt anything to include the cells with the column labels
(e.g., “=CORREL(A1:A8,B1:B8)”), as they are just ignored by Excel.
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10.

11.

NOTES

The “bi-” in “bivariate” comes from the Latin &is, meaning “twice” and bini,
meaning “in twos.”

It is helpful if the reader has a general knowledge of hypothesis testing on
means and proportions as well as the Student ~distribution. However, stu-
dents without familiarity with these topics should be able to read and com-

prehend most of this section.

Chapter 2

With simple regression, it is not uncommon to leave out the first subscript
of the Xs; that is, write X) | as X}, X, as X}, and so on. If you do this, you
must be careful as it can lead to confusion in multiple regression.

There is a second set of equations that can be used to calculate simple re-
gression coefficients. Normally, we would avoid giving two equations that
accomplish exactly the same thing. However, you may run into this set
of equations in other courses—such as operation management or forecast-

ing—so they are presented here for completeness:

=Y — 46X
XX Y-nXY
LY X o ax?

This set of equations gives the same results and they have no computational
advantage.
ANOVA is short for analysis of variance.

This statement assumes o = 0.05, as it usually does in business statistics.

Chapter 3

The term is the combination of somo, from the Latin homos meaning one
and the same or similar, and the Greek skedastokos, meaning able to disperse.
Thus the term refers to having equal or the same variances.

The assumption of normally distributed error terms uncorrelated with one
another automatically implies the independence of the error terms.
Interested students may wish to repeat our analysis using any or all of the
counts for bronze, silver, or gold as the dependent variable to see how they
compare with the results presented here.

The value of this coefficient is actually 4.69047952958057 x 107 or
0.000000000469047952958057. It is this low not because the variable is
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unimportant but rather because the units used to measure income (dol-
lars) are so large relative to the units used to measure rank. As a general
rule, you cannot gauge the importance of a variable by the magnitude of its
coefficient.

Again, the value is small due to the units used to measure Web Hits.

Recall from the last chapter that correlation is only defined between pairs of
variables.

In all these calculations, results are rounded for display but have been car-
ried out in all the calculations.

Once any two of SSR, SSE, and SST are computed, you can always find the
third using this formula.

Highlight the cells containing the formulas, right-click with the mouse, and
select Copy. With the formulas still highlighted, right-click again and under
the Paste options will be an icon of a clipboard with a 123 in the bottom
right corner. Select this Paste option. This replaces the formulas with their
current value.

As we will see later, in special cases, the overall model can be significant even
when none of the independent variables is significant or at least when they
are all included in the model.

“Auto” comes from the Greek autos, meaning same or self. Thus autocorrela-
tion refers to correlation with oneself. In this case, the error terms are being
correlated with themselves; more specifically, the correlation between pairs
of error terms is taken at a constant interval.

The calculations are not exactly this straightforward. Rejecting 10 true null
hypotheses (200 x 0.05) due to sampling error alone requires that all 200
null hypotheses be true—that is, that all 200 variables be insignificant. If
most of the variables were truly significant as they were in this case, then the
number of rejections of true null hypotheses would be correspondingly low
because rather than having (200 x 0.05) we would have a number much
smaller than 200 in this calculation.

Because of the way Excel handles p-values, you must divide the p-value by 2

for a one-tailed test.

Chapter 4

Most statistical packages support all or most of these. It is up to the operator
to select the actual procedure to be used.

Because 7% always goes up when you add variables, it will always go down
when you drop a variable. However, when dropping an insignificant vari-
able, this drop is often slight and may be hard to pick up if you normally

format 2 to four or five decimal points.
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10.
11.
12.

NOTES

The values of one and zero make the math easier to understand and the
model easier and are traditionally used, but any two numbers could be used
and would have the same overall effect.

Again, this simply makes understanding the model easier. We could as easily
code the data the other way—that is, zero for when the event happened and
one when it did not happen.

Or planes when there are two nondummy independent variable, or hyper-
planes when there are three or more nondummy independent variables.
heep://www.presidentialelection.com/follow_the_money/ accessed on April
9, 2011.

For the interested reader, this was accomplished using an advanced statistical
procedure called factor analysis. The operation of factor analysis is beyond
the scope of this textbook. Additionally, factor analysis cannot be performed
using Excel. The author created this data set using SPSS. Interested readers
are referred to an advanced statistical reference book, such as Bobko (1995),
Correlation and Regression: Principles and Applications for Industrial/Organi-
zational Psychology and Management. New York: McGraw-Hill.

Of course, this can also be caused by a bad sample.

For a two-tailed test, we double the alpha value shown in the table, and the
ranges 0 — d; and 4-d; — 4 simply become rejection regions.

Refer to an advanced statistics textbook for Durbin-Watson tables.

In finance, this raw form is called nominal dollars.

Recall from earlier that part of this term comes from the Greek skedastokos,
meaning able to disperse. The hetero comes from the Latin heteros, meaning

other than usual, other, or different.
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goodness of fit, 86-92
qualitative data in, including,
130-146
as several simple regression runs,
67-71
testing of significance, 92-102

Negative linear relationship, 2, 16

Nonmulticollinearity assumption, for
multiple regression, 72

Normality assumption, for multiple
regression, 72

Outlier, 13

Partial F-test, 104—114
Population regression model, 71
Positive linear relationship, 2, 16
Power rank equation, 80

p-value, 32-33, 57

Qualitative data in multiple
regression, including,
130-146

dummy variable, as dependent
variable, 135-146

dummy variable examples, 131-134

more than two possible values,

134-135

Regression
coefficients, 45
equations, normal, 44
least squares, 43
multiple. See Multiple regression
simple, 4, 41-65
model validity, testing
autocorrelation, 158—166
heteroscedasticity, 166-172
multicollinearity, 146-157
Repeated-measures test, 94-99
r squared, 56, 87-89

Sample regression model, 71
SAS, 115, 160
Scatterplots, 4-5
Second-order correlation, 159
Simple regression, 4, 41-65, 68-71
calculation of, 46—63
using Excel, 47-51
using SPSS, 51-53
equation, 41
with error term, 42
for estimates, 42—43
for specific data points, 42
SPSS, 115, 160
backward regression in, 110-112
correlation coefficient calculation
using, 19-20, 24-25
correlation coefficient hypothesis
testing, 32-33
forward regression in, 108-110



simple regression analysis using,
51-53

stepwise regression in, 112-114
Standard error, 56, 57
Straight line, equation for, 41
Strong correlation, 1
Sum of squared errors (SSE), 44
Sum of squares, 43

INDEX

t-statistic, 57

Weak correlation, 1, 2
Weighted least squares, 172

XY chart, 4-5

Zero correlation, 16
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