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Electromagnetics is not an easy subject for students. The subject presents 
a number of challenges, such as: new math, new physics, new geometry, 
new insights and difficult problems. As a result, every aspect needs to be 
presented to students carefully, with thorough mathematics and strong 
physical insights and even alternative ways of viewing and formulating 
the subject. The theoretician James Clerk Maxwell and the experimental-
ist Michael Faraday, both shown on the cover, had high respect for physi-
cal insights.

This book is written primarily as a text for an undergraduate course 
in electromagnetics, taken by junior and senior engineering and phys-
ics students. The book can also serve as a text for beginning graduate 
courses by including advanced subjects and problems. The book has been 
thoroughly class-tested for many years for a two-semester Electromagnet-
ics course at Syracuse University for electrical engineering and physics 
students. It could also be used for a one-semester course, covering up 
through Chapter 8 and perhaps skipping Chapter 4 and some other parts. 
For a one-semester course with more emphasis on waves, the instructor 
could briefly cover basic materials from statics (mainly Chapters 2 and 6) 
and then cover Chapters 8 through 12.

The authors have attempted to explain the difficult concepts of elec-
tromagnetic theory in a way that students can readily understand and 
follow, without omitting the important details critical to a solid under-
standing of a subject. We have included a large number of examples, sum-
mary tables, alternative formulations, whenever possible, and homework 
problems. The examples explain the basic approach, leading the students 
step by step, slowly at first, to the conclusion. Then special cases and 
limiting cases are examined to draw out analogies, physical insights and 
their interpretation. Finally, a very extensive set of problems enables the 
instructor to teach the course for several years without repeating problem 
assignments. Answers to selected problems at the end allow students to 
check if their answers are correct.

Preface 
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During our years of teaching electromagnetics, we became interested 
in its historical aspects and found it useful and instructive to introduce 
stories of the basic discoveries into the classroom. We have included short 
biographical sketches of some of the leading figures of electromagnetics, 
including Josiah Willard Gibbs, Charles Augustin Coulomb, Benjamin 
Franklin, Pierre Simon de Laplace, Georg Simon Ohm, Andre Marie 
Ampère, Joseph Henry, Michael Faraday, and James Clerk Maxwell.

The text incorporates some unique features that include:

•• Coordinate transformations in 2D (Figures 1-11, 1-12).
•• Summary tables, such as Table 2-1, 4-1, 6-1, 10-1.
•• Repeated use of equivalent forms with R (conceptual) and 

|r−r′| (mathematical) for the distance between the source 
point and the field point as in Eqs. (2-27), (2-46), (6-18),  
(6-19), (12-21).

•• Intuitive derivation of equivalent bound charges from 
polarization sources, including piecewise approximation to 
non-uniform polarization (Section 3.3).

•• Self-field (Section 3.8).
•• Concept of the equivalent problem in the method of images 

(Section 4.3).
•• Intuitive derivation of equivalent bound currents from 

magnetization sources, including piecewise approximation to 
non-uniform magnetization (Section 7.3).

•• Thorough treatment of Faraday’s law and experiments 
(Sections 8.3, 8.4).

•• Uniform plane waves propagating in arbitrary direction 
(Section 9.4.1).

•• Treatment of total internal reflection (Section 10.4).
•• Transmission line equations from field theory (Section 

11.7.2).
•• Presentation of the retarded potential formulation in Chapter 

12.
•• Interpretation of the Hertzian dipole fields (Section 12.3).

Finally, we would like to acknowledge all those who contributed to 
the textbook. First of all, we would like to thank all of the undergraduate 

x	 PREFACE
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and graduate students, too numerous to mention, whose comments and 
suggestions have proven invaluable. As well, one million thanks go to Ms. 
Brenda Flowers for typing the entire manuscript and making corrections 
numerous times. We also wish to express our gratitude to Dr. Eunseok 
Park, Professor Tae Hoon Yoo, Dr. Gokhan Aydin, and Mr. Walid M. G. 
Dyab for drawing figures and plotting curves, and to Professor Mahmoud 
El Sabbagh for reviewing the manuscript. Thanks go to the University of 
Poitiers, France and Seoul National University, Korea where an office and 
academic facilities were provided to Professor Adams and Professor Lee, 
respectively, during their sabbatical years. Thanks especially to Syracuse 
University where we taught for a total of over 50 years. Comments and 
suggestions from readers would be most welcome.

Arlon T. Adams

Jay Kyoon Lee
leejk@syr.edu

June 2012
Syracuse, New York
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CHAPTER 1

Introduction to Magnetic 
Fields

1.1  Introduction

In the year 1820, a startling discovery was announced. A Danish scientist 
Hans Christian Oersted reported that an electric current flowing in a 
wire produced a magnetic field. The magnetic field was perpendicular to 
the wire and consisted of circles about the axis of the wire. His original 
paper, written in Latin, was published in July 1820 and was immedi-
ately translated into several languages. Before Oersted’s discovery, most 
scientists had assumed that electricity and magnetism were unconnected. 
The two fields had been studied separately for centuries and no one had 
theorized any relationship between them, although a few researchers had 
begun to speculate that the two sciences might be connected in some 
way. Oersted proved that a steady or dc electric current produced a steady 
or static magnetic field. His finding had apparently come about during a 
classroom demonstration designed to show that electric current in a wire 
caused the wire to glow.

When the wire was connected to a battery, a compass needle nearby 
suddenly moved to a position nearly perpendicular to the wire. Eureka! 
Electricity and magnetism could no longer be viewed as separate phe-
nomena. They were connected in some as yet unknown manner.

The response to Oersted’s discovery was striking. Oersted’s work was 
reported to the French Academy in September 1820. New results were 
then reported by Ampere and Biot almost every week. Ampère published 
ten papers in 1820; Biot published four papers that year, including the 
beginnings of the Biot-Savart law. By the end of 1820, they had begun to 
delineate the relation between electricity and magnetism.
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In this chapter, we consider steady (dc) electric currents in free space. 
The resultant magnetic fields are constant, i.e., they do not vary with 
time. Thus we are concerned with static magnetic or magnetostatic fields. 
In practical situations, we often deal with ac current sources. The mag-
netostatic analysis is very useful for situations in which fields are varying 
slowly with time. The study of magnetostatics yields insight into funda-
mental magnetic phenomena.

1.2  Magnetic Field

We define the magnetic induction or magnetic flux density B by con-
sidering the forces on a small test charge q. Suppose the charge q is placed 
in the region where both the electric field E and the magnetic field B 
exist. If the charge is at rest, it experiences only the electric force Fe where

	
F qe = E  	 (1-1)

If the charge is in motion with velocity v, then it experiences an additional 
force Fm, the magnetic force, where

	 F q = ×v B  	 (1-2)

The total force F on the moving test charge is

	 F q (  Lorentz Force= + ×E v B)  	 (1-3)

Eq. (1-3) is called the Lorentz force equation. It can serve as a definition 
of both E and B which can be determined by measurement. For a station-
ary test charge, v = 0, and E can be determined by a single measurement 
of force. Once E is known, the components of B may be determined by 
two different measurements of force F for two orthogonal velocities v 
(see Example 1-1). Although B is formally named magnetic flux density 
or magnetic induction, people often call it simply magnetic field. We will 
also use the latter term. The unit of B is the tesla [T]. From Eq. (1-3) we 
see that the unit of B can be represented as force divided by charge times 
velocity:

1 T
N

C m
sec

Nsec
Cm

= =
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	 Introduction to Magnetic Fields	 3

Example 1-1. Determination of Magnetic Flux Density B from 
Measurements

Determine B from the Lorentz force equation and measurements.
Solution:

Assume that E has already been determined from a rest velocity mea-
surement (v = 0) of the force and therefore components Ex, Ey, Ez are 
known.

Consider a velocity v in the x direction only. We move the charge at 
velocity v = ax vx and measure the force F.

v a B a a a

F E v B a a a

F

= = + +
= + × = + +
=

x x x x y y z z

x x y y z z

v  Let B B B
q q F F F
q 

;

EE a v a a a

a a a a

+ × + +
= + +

q( B B B
(qE (qE (qE (qv B

x x x x y y z z

x x y y z z z x

) [ ]
) ) ) yy y x z(qv B) )− a

Taking z components, we obtain B
F

q v
E
vy

z

x

z

x

= −

Taking y components, we obtain B
F

q v
E
vz

y

x

y

x

=
−

−

You can complete the determination of B by considering a velocity 
in either the y or z direction. Therefore E, B can be determined by the 
Lorentz force equation and three measurements of vector force F.

1.3  Basic Laws of Magnetostatics

The basic laws of magnetostatics specify the divergence and curl of the 
static magnetic field B in free space just as the basic laws of electrostatics 
specify the divergence and curl of E. The first law, in point form (or dif-
ferential form) and integral form, is

	 ∇ ⋅ =B B0  is a solenoidal field  	 (1-4) 

and

	
' B s⋅ =∫∫ d

S

0  	 (1-5)
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where S is any closed surface. The integral form ' B s⋅ =∫∫ d
S

0  may be derived 
from the point form by integrating both sides over an arbitrary volume 
V and applying the divergence theorem: ∇ ⋅ ⋅ = ⋅ =∫∫∫ ∫∫B B sdv d

V S

' 0  
where S bounds V. It is also possible to derive the point form from the 
integral form; the point and integral forms are thus identical statements. 
It can also be shown from Eq. (6-5) that the magnetic flux B s⋅∫∫ d

S

 
through an open surface S is independent of surface as long as the surfaces 
are bounded by the same contour C. This is a property of a solenoidal field 
just as the line integral is independent of path for conservative fields.

The second law, in point and integral form, is

	 ∇× =B J¼0  	 (1-6)

and

	 C
0 encd I  AmpŁre’s law∫ ⋅ =B  µ  	 (1-7) 

where Ienc is the total current enclosed by C and μ0 = 4π × 10−7 [T · m/A] 
or [H/m]. μ0 is a universal constant, called the permeability of free space. 
J is the volume current density measured in A/m2. The direction of Ienc is 
related to C by a right-hand rule.

The integral form may be derived from the point form. Integrate 
both sides of the point form over an arbitrary surface S and apply Stokes’ 
theorem:

∇ × ⋅ = ⋅ = ⋅ =∫∫ ∫ ∫∫B s B J sd d d I
S C

0
S

0 enc µ µ

Stokes’ theorem specifies a right-hand rule relationship between C and 
J s⋅∫∫ d

S

 is the current Ienc in the direction ds. Therefore Ienc is the total 
current passing through S (enclosed by C) in a direction ds related by a right-
hand rule to path C. The second law is called Ampère’s law. The point 
form of the second law may also be derived from the integral form and 
thus the point and integral forms are identical statements. The first and 
second laws may also be derived from the Biot-Savart law in Section 1.5.
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	 Introduction to Magnetic Fields	 5

1.4  Ampère’s Law

Ampère’s law,

	 C
0

S
0 encd d I∫ ∫∫⋅ = ⋅ =B J s µ µ

allows us to treat certain magnetostatic problems involving symmetry to 
obtain the magnetic field B, given the current distributions (J, Js, I). In 
the expression above, the closed path C bounds the surface S and the 
directions of C and ds are related by a right-hand rule, as in Stokes’ theo-
rem. Ienc is the total current passing through the surface S, in the direction 
ds, enclosed by the closed path C.

We assume that current J is specified and thus the right-hand side of 
Eq. (1-7) is known or can be determined. B is unknown. If B were parallel to 
path C and constant in magnitude over the path chosen, then we could take 
the unknown outside the integral and solve for B. The key to an Ampère’s law 
problem is to choose a closed path or contour C so that it is parallel to the B 
field lines and the magnitude of B is constant along the path C. The examples 
which follow will give us some idea of the applicability of Ampère’s law. They 
will also introduce us to some typical field configurations in magnetostatics. 
The steps of applying Ampère’s law are as follows:

1. 	 Recognize the symmetry.
2.	  Sketch the magnetic field lines.
3. 	 Choose C parallel to the field lines. Form a closed contour.
4.	  Solve for B.

Example 1-2. Current-Carrying Filaments, Wires and Cylinders.
(a)	 A Current-Carrying Filament
Figure 1-1 shows a straight current-carrying filament of infinite length 

which lies along the z axis.

I

z

C

Figure 1-1. A current-carrying filament
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The filament is of zero cross-sectional area and carries a current I. We first 
note that, by the curl relationship between B and J, the magnetic field B 
will curl or circulate around the z-directed current source (I); we expect 
that B is φ-directed (circumferential), i.e., B = aφ Bφ. We have also seen a 
φ-directed magnetic field in Oersted’s 1820 experiment. Figure 1-1 also 
shows a circle C of radius ρ, centered on the z axis and lying in a plane 
z = constant. 

C

d∫ ⋅B   becomes B dφρ φ∫  and Bφ is constant over C 
by rotational symmetry (∂/∂φ = 0). The current Ienc enclosed by C, in a 
direction related to that of C by a right-hand rule, is I. Then application 
of Ampère’s law, Eq. (1-7), leads to

	 C 0
0d B d B 2 I∫ ∫⋅ = = =B  φ φ φρ πρ µ

π2

and

	
B

I
2

0
φ

µ
πρ

=  	 (1-8) 

Note that Eq. (1-8) satisfies both basic laws, i.e., Eqs. (1-4) and (1-6). 

(b) A Current-Carrying Wire of Radius a
Figure 1-2 shows a current-carrying wire of radius a with current I. 

The current is assumed to be uniformly distributed throughout the cross 
section and thus the volume current density is

	
J a= 



z 2

2I
a

 [A/m ]
π

This is a two-region problem. B is circumferential, i.e., B = aφ Bφ. 
Figure 1-2 shows circle C of radius ρ about the axis for the two cases ρ ≤ 
a and ρ ≥ a. Circles C lie in constant z planes. Bφ will again be constant 
along C.

	
J

a

C ( a)>

C ( a)<

Figure 1-2. A current-carrying wire
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	 Introduction to Magnetic Fields	 7

Consider first the field inside the wire (ρ ≤ a):

C
0

S
0 2

0 2

d B 2 d
I
a

d d

I
a

∫ ∫∫ ∫∫⋅ = = ⋅ = 





= 




B J s φ πρ µ µ
π

ρ ρ φ

µ
π

ρπ

00

2

 = ≤πρ
µ ρ

ρ2 0
2

2

I
a

a( )
Then

	
B

I
2 a

 a0
2φ

µ ρ
π

ρ= ≤( )

Next consider the field outside the wire (ρ ≥ a):

C
0d B 2 Á I a∫ ⋅ = = ≤B  φ π µ ρ( )  (since the entire current I is 

enclosed),
and

	
B

 I
2

 a0
φ

µ
πρ

ρ= ≤( )

Collecting expressions for Bφ:

	
B I

2 a
 Á a0

2φ
µ ρ
π

= ≤( )  	 (1-9a)

	
= ≥

µ
π

ρ0I
2 Á

 a( )  	 (1-9b)

Notice that the f﻿ield Bφ outside (ρ ≥ a) is identical to the field of a 
filament.

(c)	 A Current-Carrying Hollow Cylinder
Figure 1-3 shows a hollow current-carrying cylinder of radius a and 

infinite length. The cylinder carries a longitudinal (z-directed) current I. 
The current is uniformly distributed over the surface and thus the surface 
current density is

	
J a= 



z

I
2 a

 [A/m]
π

 	 (1-10)

This is also a two-region problem. B will be circumferential. Now 
consider circles C of radius ρ for the two cases (ρ < a) and (ρ > a), as 
shown in Figure 1-3:
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C

0

d B 2  a  (since no current I is enclosed)

I 

∫ ⋅ = = <

=

B  φ πρ ρ

µ

0 ( )

(( a) (since the total current I is enclosed)ρ >

a

I or Js

C ( a)>

C ( a)<

Figure 1-3. A current-carrying hollow cylinder

Thus

	
B  aφ ρ= <0 ( )  	 (1-11a)

	
= >

µ
πρ

ρ0  I
2

 a( )  	 (1-11b)

Note that the magnetic field inside a hollow cylinder with uniform sur-
face current is zero.
(d) Concentric Current-Carrying Cylinders (Coaxial Line)
Figure 1-4 shows concentric hollow cylinders of infinite length and radii 
a, b carrying total currents I, −I, respectively, in the z direction. This is the 
configuration of a coaxial line.

a

I

b

C C C

I

Figure 1-4. Concentric current-carrying cylinders

The surface current densities are

J a

a

s x

z

I
2 a

 ( a)

I
2 b

 ( b)

= 



 =

= −



 =

π
ρ

π
ρ
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This is a three-region problem.
Consider circles C of radius ρ for the three cases (ρ < a), (a < ρ < b) 

and (ρ > b):

C

0

0 0

d B 2  a

I a b
I I  b

∫ ⋅ = = <

= < <
= + − >

B  φ πρ ρ

µ ρ
µ µ ρ

0 ( )

( )
( ) ( )

Thus

	
B  aφ ρ= <0 ( )  	 (1-12a)

	
= < <

µ
πρ

ρ0I
2

 a a( )  	 (1-12b)

	 = >0 a( )ρ  	 (1-12c)

Note that, in each of the examples (a)-(d), there is a region with fields 
identical to that of a current-carrying filament along the z axis.

Example 1-3. Current-Carrying Toroids and Infinite Solenoid of Arbi-
trary Cross-Sections.

Figure 1-5(a) shows a toroid of doughnut shape and rectangular cross 
section, which is closely wound with N turns of wire carrying current I. 
The toroid has an inner radius a and an outer radius b. Find the magnetic 
field B everywhere.

a

NI

b

NI

C

z

2a

2b

dC C

Figure 1-5(a). A toroid of rectangular cross-section
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Solution:
The problem has azimuthal symmetry (∂/∂φ = 0). This is a good ap-

proximation for a large number of turns, assuming that the winding is 
uniform and tight so that each turn can be considered as a closed loop of 
current. Then the magnetic fields B point perpendicular to the loop cross 
section and thus are circumferential about the z axis at all points, both in-
side and outside the toroidal coil. B = aφ Bφ. Consider circles C of radius 
ρ for three cases (ρ < a), (a < ρ < b), (ρ > b). We further limit ourselves to 
the case 0 < z < d.
Then

C
0 enc

0

d B 2 I  a

NI a b
 b

∫ ⋅ = = = <

= < <
= >

B  φ πρ µ ρ

µ ρ
ρ

0

0

( )

( )
( )

Notice that the geometry is very similar to that of Example 1-2(d). For 
the cases (z < 0) and (z > d) the current enclosed is zero.
Thus

	
B

NI
2

 (inside the toroid)0
φ

µ
πρ

=  	 1-13a)

	

	 = 0 (outside the toroid)  	 (1-13b)

Note that we have not limited our results in any way to the rectangular 
cross-section. In fact, Eq. (1-13) is valid for a toroid of any arbitrary cross-
section including the circular cross-section (doughnut).

Now consider what happens in a toroid of very large radius. Let a, b 
become very large as (b−a) remains constant. Then the percentage varia-
tion of (1/ρ) over the toroid (a < ρ < b) is negligible. The flux density B, 
is constant over the toroid. Let Nℓ denote the number of turns per unit 
length of the toroid. Then

N N=


( )2πρ

Substituting this in Eq. (1-13a) yields

	
B

NI
2

N 2 I
2

N I0 0 l
0 lφ

µ
πρ

µ πρ
πρ

µ= = =  	 (1-14a)
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Thus the flux density is uniform throughout the toroid. For other toroid 
cross-section shapes let a, b be minimum and maximum radii, respec-
tively, and the above discussion still holds.

An infinite solenoid with its axis along the z axis (Figure 1-5(b)) and 
with circumferential windings may be regarded as a toroid of infinite 
radius.

z

Js

N I

Figure 1-5(b). A solenoid of infinite length and arbitrary cross-section

The flux density is uniform throughout the solenoid and z-directed:

	 B N Iz 0 l= µ  	 (1-14b)

The conclusions (Eqs. (1-14a,b)) apply to toroids and infinite solenoids of 
any cross-sectional shape such as circular, elliptical cross sections. NℓI may 
also be interpreted as surface current density (Js).

Another class of problems that can be handled by Ampère’s law is the 
uniform current distributions on infinite sheet or slab.

Table 1-1 summarizes the magnetostatic fields and potentials for cer-
tain simple current distributions. The flux density B is obtained by Am-
père’s law. Magnetic vector potentials A are obtained by integrating the 
differential equation ∇ × A = B, as shown in the next section (see Example 
1-8). Note the simple dependence on distance for the particular cases 
shown:

For cylindrical symmetry ( ) : ~ ; ~ ln
∂

∂
= ∂

∂
=

φ ρ
ρ

z
  0

1
B A

For planar symmetry ( )
∂
∂

= ∂
∂

=
x y

0 : B is constant; A ~ z
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Table 1-1 Basic Magnetostatic Fields and Potentials

Current Distribution Magnetic Flux 
Density

Magnetic Vector 
Potential

Filament

I = az I
B

I
2

0
φ

µ
πρ

= A
I

2z
0

0

=
µ

π
ρ
ρ

ln
 

Reference point: ρ = ρ0

Cylindrical Shell 

J az z
I

2 a
a= =

π
ρ( )

B
I

2
 (p a)

 ( a)

0
φ

µ
πρ
ρ

= >

= <0

A
I

2
  ( a)z

0

0

= ≥
µ

π
ρ
ρ

ρln ( )
 

Reference point: ρ = a

Coaxial Shell

J a

a

z z

z

I
2 a

a

I
2 b

b

= =

= − =

π
ρ

π
ρ

( )

( )

 

 
B

I
2

 (a p b)

 ( a, b)

0
φ

µ
πρ
ρ ρ

= < <

= < >0

A
I

2
 

a
 (a b)z

0= ≤ ≤
µ

π
ρ ρln ( )

Reference point: ρ = a

Toroid (any cross section)

N turns Current I
B

NI
2

 (inside)

 (outside)

0
φ

µ
πρ

=

= 0

A
NI

2
  (inside)

constant (outside)

z
0

0

=

=

µ
π

ρ
ρ

ln ( )

 
Reference point: ρ = ρ0

Solenoid (any cross section)

Nt turns per unit length 
Current I

Bz = μ0 N1 I = μ0 Js

(inside)

= 0 (outside)

Circular Cross section 
(radius a) 

A
N I
2

 ( a)

N I
2

a
 ( a)

z
0 l

0 l
2

= ≤

= ≥

µ
ρ ρ

µ
ρ

ρ

Current Sheet

Js = ay Jsy (z = 0)
B

J
2

(z 0)
(z 0)

 x
0 sy= ±

+ >
− <

µ
A m

J
2

z y
0 sy=

µ

 
Reference point: z = 0

Anti-parallel Current 
Sheets 
Js = ay Jsy (z = 0) = −ay Jsy 
(z = d)

Bx = μ0 Jsy (0 < z < d) = 0 (z 
< 0, z > d)

Ay = − μ0 Jsy z (0 < z < d)

Reference point: z = 0
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1.5  The Magnetic Vector Potential And The Biot-
Savart Law (The Magnetic Fields of Arbitrary Current 

Distributions)

In this section we consider the magnetic field B due to an arbitrary steady 
current distribution J. The methods developed are completely general but 
are more difficult than the Ampere’s law methods of the previous sec-
tion. We develop two forms for the fields of arbitrary steady currents, one 
which utilizes a magnetic vector potential A and another (the Biot-Savart 
law) which determines B directly. First let us consider the vector potential 
A.

The magnetic field B is divergenceless by the first law of Section 1.3; 
therefore it can be expressed as the curl of a vector A which we will call 
the magnetic vector potential.

	 B = ∇ × A  	 (1-15)

Recall now that a vector is completely defined by its curl and divergence. 
Therefore Eq. (1-15) only partially defines A; we are free to choose ∇ · A 
for convenience. Choose ∇ · A = 0; this will turn out to be convenient 
mathematically. It also corresponds to the choice made in Helmholtz’s 
theorem and is called the Coulomb condition or Coulomb gauge.

	 ∇ ⋅ =A 0  	 (1-16)

Now take the curl of Eq. (1-15) and utilize the second law (Ampère’s 
law) of Section 1.3 (Eq. (1-6)) and the vector identity ∇ × ∇ × A = ∇(∇ 
· A) − ﾑ2 A.

	
∇ × = ∇ × ∇ × = ∇ ∇ ⋅ − ∇ =B A A A J( ) 2 µ0

Making use of Eq. (1-16), we obtain

	 ∇ = −2A Jµ0  	 (1-17)

or, in rectangular coordinates,

∇ = ∇ = − ∇ =2 2 2A J  A J  A Jx 0 x y 0 y z 0 zµ µ µ; ;

Eq. (1-17) is similar to Poisson’s equation, (4-3), in Chapter 4 and 
thus it is called vector Poisson’s equation. The scalar equations encountered 
here have already been solved in electrostatics:
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∇ = − ⇒ =

′
∫∫∫2 1

4
V V

dv
Rv 0

0

vρ ε
πε

ρ
/

 	
(1-46a)

Hence

∇ = − ⇒ =
′

∫∫∫2

4
A J V A

J dv
Rx 0 x x

0 xµ
µ
π

Collecting the solutions for Ax, Ay, Az:

	

A(x, y, z)
J(x , y , z )dv

R
J(x , y , z )dv

|

0

0

=
′ ′ ′ ′

=
′ ′ ′ ′

∫∫∫
µ
π

µ
π

4

4 r −− ′∫∫∫ r |

 	 (1-18a)

where r, r′ are the position vectors of the field and source points, 
respectively.

For the cases of surface and filamentary currents, J dv′ is replaced with 
Js ds′ and I dℓ′, respectively, to obtain

A
J

=
′

∫∫∫
µ
π
0 sds

R4
 for surface current density Js  (1-18b)

= ′∫
µ
π
0 dl

R4
I

 for filamentary current I (1-18c)

Eq. (1-18) can also be obtained directly from Helmholtz’s theorem 
(Eq. (1-49)) since (∇× F)′ = (∇ × B)′ = μ0 J(x′, y′, z′). Note that A has 
1/R dependence just as V has 1/R dependence in Eq. (2-46).

Eq. (1-18) allows us to obtain the vector potential A for an arbitrary 
current distribution, then B is obtained by taking the curl of A. Alterna-
tively, we may obtain a direct expression for B by taking the curl of 
Eq. (1-18):

B A
J= ∇ × = ∇ × 



 ′∫∫∫

µ
π
0

R
dv

4

and, using the vector identity for the curl of a product of a vector and a 
scalar

∇ × 



 = 



 ∇ × ′ ′ ′ + ∇



 + = ×J

J J J
R

R R
x , y , z

R R3

1 1
( )
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Note that ∇ × J(x′,y′,z′) = 0 since J is a function of primed coordinates. 

∇(1/R) is equal to − 



 = −a RR 2

3

R
R

1
/ ; it may be found by calculat-

ing the gradient in spherical coordinates.

Thus

	

B
a

(x, y, z)
J(x , y , z )  dv

R
J(x , y , z )

0 R
2

0

=
′ ′ ′ ′

=
′ ′ ′ ×

∫∫∫
µ
π

µ
π

4

4
RR

r r
r r

 dv
R

J(x , y , z )  dv
| |

3

0
3

′

=
′ ′ ′ × − ′ ′

− ′

∫∫∫

∫∫∫
µ
π4

( )

 	 (1-19a)

where R = r − r′, R = | r − r′ |.
For the surface and filamentary currents, J dv′ is replaced with Js ds′ 

and I dℓ′, respectively, to obtain

	        
B

J R
J=

× ′
∫∫∫

µ
π
0 s

3 s

ds
R

 for surface current density 
4

 (1-19b)

= × ′ = ′ ×
∫ ∫

µ
π

µ
π

0
3

0
3

 dl
R

I d
R

 for filamentary current 
4 4

I R R
I



		
		

(1-19c)

(dℓ’ has the direction of I)

Eq. (1-19) is known as the Biot-Savart law. Note that B has 1/R2 depen-
dence just as E has 1/R2 dependence in Eq. (2-27).

Eqs. (1-18) and (1-19) provide two methods for the determination of 
B from current distributions:

1.  Find A directly from (1-18), then B = ∇ × A.
2.  Find B directly from (1-19) (Biot-Savart law).

Each method has certain advantages. Method 1 has a simpler integral but 
involves two steps. Method 2 involves a more complex integral but has 
only one step. One method may have distinct advantages in a particular 
problem. However, for most magnetostatic problems, we use method 2 
(Biot-Savart law).

To find the vector potential A from the current distribution J, we have 
a choice of two methods:
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1. 	 Find A directly from (1-18).
2.  Find B f﻿irst either from (1-19) or by Ampere’s law, then integrate the 

equation B = ∇ × A
to find A (Example 1-8).

Example 1-4. On-Axis Field of a Current-Carrying Loop
(a)Complete Loop

Figure 1-6 shows a circular current-carrying loop of radius a with cur-
rent I. Find the magnetic field B on the loop axis.

z

x

y

z R

a

I

Field point (0,0,z)

Source point (a, ,0)

a z

I

= +
=

R a az

I a

Figure 1-6. A current-carrying loop

Solution:
We use Eq. (1-19c) appropriate to a filamentary current:

B
I R= ×

∫
µ
π
0

34
 dl

R
We then identify the fixed field point (0, 0, z) and the variable 
source point (ρ′, φ′, z′) = (a, φ’, 0) in cylindrical coordinates. 

Then

r a r a a

R r r a a a

= ′ = ′ =
= − ′ = − ′

z

z

z; a
 a+ z (  is a function of 

ρ ρ

ρ ρ

ρ
φ ))

I (  is a function of )

R a +z  dl a d
I

2 2

I a a

I R a

= ′

= ′ = ′
× =

φ φ

φ

φ

φ;
( )) ( ) ( ) ( )

( ) ( ) ( )
× − + = +

= + ′ + ′
a a a a

a a a
ρ ρ

φ φ
a z Ia Iz

Ia Izcos Izsin
z z

z x y
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Take the z component of B:

	
B

4
Ia d

[a +z ]
Ia

2[a +z ]z
0

2

2 2 3/2
0

2

2 2 3/2
0

2

= ′ =∫
µ
π

φ µπ

 	 (1-20) 

It can be easily shown that Bx = By = 0. Note that a φ-directed current 
produces a z-directed magnetic field on the axis.

For a distant point (z a)
, the loop appears small and the field 

approaches that of the magnetic dipole which is discussed in the next 
section:

B
I a

2 z
m

2 zz
0

2

3
0

3⇒ =
µ π

π
µ
π

( )

Compare this result with Eq. (1-31).
(b)	Partial Loop

Consider a partial loop which is part of a closed circuit:

I a= = ≤ ≤ =φ ρ φ φ φ I ( a,  z 0)1 2 ,

Find the magnetic field B along the z axis.
Solution:

B
a a a

=
+ ′ + ′

+
′∫

µ
π

φ φ
φ

φ

φ
0 z x y

2 24
Ia Izcos Izsin

a z
 ad

( ) ( ) ( )
[ ] /3 2

1

2

	
B

Ia
4 [a z ]z

0
2

2 2 3/2=
−

+
µ φ φ

π
( )2 1

	
 (1-21a)

	
B

Ia z
4 [a z ]x

0
2

2 2 3/2=
+

−
µ

π
φ φ(sin sin )2 1  	 (1-21b)

	
B

Ia z
4 [a z ]y

0
2

2 2 3/2=
+

−
µ

π
φ φ(cos cos )1 2

	
 (1-21c)

Example 1-5. The On-Axis Field of a Solenoid of Circular Cross Section
Figure 1-7 shows a tightly wound solenoid of length ℓ and radius a. There 
are N turns of wire carrying a current I. This corresponds to a surface 
current as follows:
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J as
NI
l

A
m

= 



φ

Find the magnetic field B along the z axis.

z

Js NI

z a

R

Field point (0,0,z)

Source point (a, ,z )

z 0=

z =
2

z =
2

z z

a (z z )

NI
( )

= +

=

z

s

R a a

J a

Figure 1-7. A solenoid of circular cross-section

Solution:
We use Eq. (1-19b) appropriate to surface current:

B
J R

=
× ′

∫∫
µ
π
0

4
s

3

ds
R

The fixed field point is (0, 0, z) and the variable source point is (ρ′, φ′, 
z′) = (a, φ′, z′).
Then
							      r a r a a

R a a

J R a a a

= ′ = = ′
= − − + − ′

× = × − + − ′

z

z

s z

z; a z
a (z z )

NI
l

a (z

ρ ρ

ρ

φ ρ( ) zz )

NIa
l

NI(z z )
l

R a +(z z )  ds ad d

z

2 2

( )
= 



 + − ′





= − ′ ′ = ′ ′

a aρ

φ; zz

Taking the z component of B:
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B
NIa d  dz

l[a z z ]
 
Let z z z

dz dzz

2

2
0

= ′ ′
+ − ′

′′ = − ′
′′ = − ′

µ
π

φπ
0

2

2

4 3
2( )∫∫∫

∫

−

+

−

= ′
+ ′′

= − ′′

1
2

1
2

0
2

1
2

1
2

0

4 23
2

µ
π

µNIa dz
l[a z ]

NIa
l

z
a

2

2

z

z
2

2( ) aa z

NI
l

z

a z

z

a z

2
z

z

2 2

+ ′′













=
+

+ +
−

−

+ −

+

−

( )

( ) (

2
1
2

1
2

0

22

1
2

1
2

1
2µ

11
2

2)

















 		

		

1-22a)

and Bx = By = 0 as shown in Example 1-4(a).

At the center (z = 0):

	

B
NI

a

NI
l

N I (when l ? a)z
2

l=
+ 





⇒ =
µ µ

µ0
2

0
0

2 1
2

 		
		  (1-22b)

where Nℓ = N/ℓ (turns per unit length).

At the end (z = ℓ/2):

	
B

NI
a l

NI
2l

N I
2

 (when l ? a)z 2
l=

+
⇒ =

µ µ µ0
2

0 0

2
 		

		  (1-22c)

Thus for long, thin solenoids ( a)� � , the on-axis field Bz at the ends 
(z = ± ℓ/2) is half that at the center. Also, compare Eq. (1-22b) with Eq. 
(1-14b) and note that the on-axis field at the center approaches that of 
the infinite solenoid.

Example 1-6. The Magnetic Vector Potential and Field of a Straight 
Current-Carrying Wire.
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Figure 1-8 shows a straight section of current-carrying wire which is 
part of a closed circuit. The filament carries current I between z = z1 and 
z = z2. Find the magnetic field B and the vector potential A due to this 
section of a closed circuit.

R
z

z

z2 z z

I

z1

Field point ( , , z)

(z z )

I

+R = a az

I = az

Figure 1-8. A straight current-carrying wire

Solution:
(a)	 Magnetic Flux Density B

We again use

B
J R

=
× ′

∫
µ
π
0 s

3

dl
R4

We identify the field point (ρ, φ, z) and the source point (0, 0, z′). Then

r a a r a

R a a
I a

I R a a a

= + = ′ = ′
= − ′
=

× = × + −

ρ

ρ

φ

ρ

ρ
ρ

ρ

z z

z

z z

z z
+ (z z )

I

I (z z’)( ) (( ) = aφ ρ( )I

(A z-directed current produces a φ-directed magnetic field)

R z z  dl dz2= + − ′ ′ = ′ρ ( );

Since aφ is independent of z′, B = aφ Bφ:
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B
I  dz

l[ z z’ ]
 (Let z z z

I d

2
z

z

2

1

2

φ
µ
π

ρ
ρ

µ
π

ρ

= ′
+ −

′′ = − ′

=
−

∫0
2

0

4

4

3
2( )

)

′′
+ ′′

= − ′′
+ ′′











−

−

−

∫
z

z ]
 I z

z2
z z

z z

2 2
z1

2

[ ( ) ( )ρ
µ ρ

π ρ ρ2
0

23
2 4

zz

z z

1
2

1

2
2

2

1

2

I z z
z z

z z
z z

−

=
+

+ +
−

−
+ −













µ
πρ ρ ρ
0

2 24 ( ) ( )

(1-23a)

Several special cases are of interest here:
For a semi-infinite wire (z1 = − ∞, z2 = 0):

	

B
I

l
z

z2 2φ
µ
πρ ρ

= −
+













0

4
 	 (1-23b)

	
⇒ =

µ
πρ
0

4
I

 (z 0)  	 (1-23c)

Thus in the plane (z = 0) perpendicular to an end, the field of a semi-infinite 
wire is half that of the infinite wire. For an infinite wire (z1 = −∞, z2 = +∞):

B
I

φ
µ
πρ

= 0

4

which agrees with Eq. (1-8).
(b)	Magnetic Vector Potential A

To find the magnetic vector potential A we use the filamentary form 
of A:

A I= ′∫
µ
π
0

4
dl
R

Since I = azI, A = az Az:
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Now the magnetic field B can also be calculated by B = ∇ × A = −a,φ 
∂Az/∂ρ. You can obtain the result of Eq. (1-23a). The results of this example 
must be used with care. They are valid only when used as a portion of a closed 
circuit.

Example 1-7. On-Axis Field of a Square Loop
Figure 1-9 shows a square loop of side a and current I. Find the on-

axis field B. The loop is in the xy plane, with sides parallel to x, y axes, and 
is centered at the origin.

z

z R

a

I

a
2

x

y
x

Field point (0,0,z)

a
Source point (x , ,0)

2

a
x z

2
= +

=

R ax ay az

I axI

Figure 1-9. A square loop

Solution:
We conclude from a sketch of the field lines that only Bz exists along 

the z axis. We will calculate only the z component of the contribution 
of one side of the loop and then multiply by four since all sides are sym-
metrically disposed with respect to the axis.

B
I R

B
I R

I R

= ×
′

=
×

′

=
×

′

∫

∫

µ
π

µ
π
µ
π

0
3

0 z
3

Loop

0 z
3

Si

R
dl

R
dl

4
R

dl

4

4

4

( )

( )

( )

dde
∫

Choosing one side on the right, we have the source point ( , )′x , 
a
2

0  
and the field point (0, 0, z) as shown in Figure 1-9.

Then
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		  (1-24)

Note that as z → ∞:

B
Ia

2 z
(Ia )

2 z
m

2 zz

2

3

2

3 3⇒ = =
µ

π
µ

π
µ
π

0 0 0

in agreement with Eq. (1-31). At distant points (z ? a), the loop appears 
small and the field approaches that of a magnetic dipole. The component 
By contributed by this side is cancelled by the side opposite.

Example 1-8 Magnetic Vector Potential of a Long Filament
In this example, we show how the vector potential A can be obtained 

from the magnetic field B for an infinitely long current-carrying filament 
(see Table 1-1). In Example 1-2(a), we obtained B using Ampère’s law:

B a= φ
µ
πρ
0I

2
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Note that Bρ = Bz = 0 and Bφ depends only on ρ. The vector potential A 
satisfies

∇ × =A B  

whose scalar equation for the φ-component is

∂
∂

−
∂
∂

=
A
z

A
Bzρ

φρ  

Noting the rotational symmetry (∂/∂φ = 0) and z-independence (∂/∂z = 
0), we conclude that

A a= z zA ( )ρ

where Az satisfies
−

∂
∂

= =
A

B
I

2
z 0

ρ
µ
πρφ

Integrating with respect to ρ and taking ρ = ρ0 as a reference point, we 
obtain

A
I

2
d

I
2

ln 
I

2z
0 0 0

0

= − = − [ ] = −∫
µ
πρ

ρ
µ

π
ρ

µ
π

ρ
ρρ

ρ

ρ

ρ

0
0

ln
 

The vector potential of other current distributions in Table 1-1 can be 
obtained in a similar way.

1.6  The Magnetic Dipole*

In this section we consider the magnetic field B at an arbitrary point (not 
necessarily along the z-axis) of a small current-carrying loop. We will find 
that the field B is identical in form to the electric field of an electric di-
pole. We will also find that many of the characteristics of the loop can be 
simplified by defining a magnetic dipole moment for the loop.

*The mathematical detail of this section may be omitted.
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Figure 1-10(a) shows a circular loop of radius a and current I.

I

a

r

Field point ( , , z)

z

y

x

z

a

a

Source point (a, ,0)

0

0

x

y
a

a

0=

Symmetrical element

Current element

(b) A projection on the xy plane.

I cos ) I sin( )= +I a a(

(a) A small circular loop (r >> a).

Figure 1-10. Magnetic Dipole

The loop lies in the xy plane and is centered at the origin. The source 
point is (a, φ′, 0) and the field point is (ρ, φ, z). It can be shown that the 
current vector I can be written in terms of φ′, φ, aρ, aφ as follows:

	
I a a= − ′ + − ′φ ρφ φ φ φI cos( ) I sin( )  	 (1-25)

where aρ, aφ are unit vectors with respect to the field point. See Problem 1-31.
The vector potential A is

A I
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At far points (r a)
,
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Similarly, we can show that

A = − ′ ′ =∫
µ

π
φ φ φπ

0

0

Ia
4

sin( )d
R

2

0

Substituting our expression for (1/R) in the integral for Aρ, we obtain 
integrals of sin(φ−φ′) and sin(φ−φ′) cos(φ−φ′) (which is equal to 1/2 
sin2(φ−φ′)), each of which yields zero when integrated over a range of 
2π. It can also be seen by symmetry that Aρ = 0 since for each current ele-
ment there is a symmetrically disposed element whose contribution to Aρ 
is opposite (see Fig. 1-10(b) which shows a projection on the xy plane.)
Thus

	
A a= φ

µ π
π

θ0
2

2

(I a
4 r

)
sin  	 (1-26)

and

	
B A a a= ∇ × = +

µ π
π

θ θφ
0

2

2 r
(I a
4 r

)
)
( cos sin2  	 (1-27) 

The fields above are identical in form to the electric f﻿ields of an electric di-
pole. Recognizing this identity, we call a small loop of current a magnetic 
dipole and define a magnetic dipole moment m as follows:

	 m = = =a m a (I a a ISz z
2

nπ ) ( )  	 (1-28)

where S is the surface area of the loop and an is the normal to the plane of 
the loop with a right-hand rule relationship to the current I.
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Then the vector potential A and field B of the loop of Figure 1-10 may 
be expressed as follows:

	
A

m a
a0=

×
=

µ
π

µ
π

θφ
r

2
o

2r
m
r4 4

sin  	 (1-29)

	
B a a= +

µ
π

θ θθ
o

3 r
m
r4

2( cos sin )

 	

		  (1-30)

Along the loop axis (z-axis) where θ = 0°, r = z and ar = az:

	
B

m
rz

0
3=

µ
π2

 	 (1-31)

which was shown earlier in Example 1-4. In the plane of the loop (xy 
plane) where θ = 90°:

	
B

m
r

0
3θ

µ
π

=
4

 	 (1-32)

We note that Eqs. (1-29) and (1-30) are valid for any shape of the loop, 
as long as it is small (a r)

. We can also view Eq. (1-30) as the field at 
far points (r a)

 of a current-carrying loop. The magnetic dipole plays 
an important role in explaining the behavior of magnetic field in matter 
in Chapter 2.

1.7  Forces and Torques on Currents in Magnetic 
Fields

In this section we consider the forces on currents in the presence of mag-
netic fields. Since the charge in motion experiences a force in the region of 
B, the currents, which consist of charges in motion, experience a force in 
the presence of magnetic fields. First let us consider the elementary force 
on a portion of a volume current distribution J. Figure 1-11(a) shows a 
volume element of current in the presence of the field B.

B

J

dv

v
I

B

(a) An element of volume
      current J in �eld B.

(b) An element of �lamentary
      current in �eld B.

d

Figure 1-11. A volume current and an element of filamentary current
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The results that follow can be used to find the force acting on a current-
carrying wire, a conducting surface or a semiconductor.

The magnetic force Fm on a charge q moving at velocity v is

F v Bm q = ×

so that if current J consists of charges moving at drift velocity v then the 
elementary force dFm on the volume element dv is

	
d dq dv m vF v B v B= × = ×ρ

d
dv

force per unit volumem
v

F
v B J B= × = × =( )ρ

where Eq. (5-4) has been used. For surface current Js the force per unit 

area is d
ds

m
s

F
J B= ×  and, finally, for filamentary current I (see Figure 

1-11(b)), the force per unit length is 
d
dl

mF I B= × .

This latter expression may also be written as dFm = I (dℓ × B) if dℓ is 
chosen as a vector in the direction of I. Table 1-2 summarizes the force 
relationships.

Table 1-2 Magnetic Forces on Currents

                            

d
dv

mF J B= ×
                                    

(1-33a)

                           

d
ds

m
s

F
J B= ×

                           
(1-33b)

                

d
dl

 or d I dm
m

F
I B F B= × = ×

               
(1-33c)

To obtain the magnetic force on an entire current distribution we merely 
integrate over the current distribution

	
F J Bm  dv for volume current= ×∫∫∫  	 (1-34a)

	
= ×∫∫ J  ds for surface currents B  	 (1-34b)



# 156104     Cust: MP     Au: Adams    Pg. No. 29 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

	 Introduction to Magnetic Fields	 29

	
= × = ×∫ ∫I B B dl I d  for filamentary current

C



	
(1-34c)

Note that there is no net force Fm on a filamentary loop in a uniform field 
B since

F B Bm
C C C

I d I d  (since d= × =








 × = =∫ ∫ ∫  0 0)

Now let’s consider the torque on current-carrying loops. The torque is 
important in addition to the force since the torque may exist even though 
the net force is zero. Recall the definition of torque. Figure 1-12 shows a 
force F applied at point r.

F

r

z

x

y

Figure 1-12. The definition of torque T

The torque T about a reference point at the origin is defined as

	 T r F= ×  	 (1-35)

Note that the torque about any other reference point will, in general, 
be different. However, if the total force on an object is zero, then the 
torque is independent of reference.

To calculate the torque on a current-carrying loop we first consider 
the torque dT on an elementary portion of the loop:

d d mT r F= ×

For a filamentary loop, we integrate over the loop C to obtain

	
T r B= × ×∫

C

d( )
 	 (1-36)

Eq. (1-36) is the general expression for the torque on a filamentary 
loop. If B is uniform over the loop, the net force Fm is zero and the torque 
(independent of reference) is given by
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	 T m B= ×  	 (1-37)

where m is the magnetic dipole moment of the loop. For derivation of 
Eq. (1-37), see Reitz, Milford and Christy (1993).*

Example 1-9. The Force Between Parallel Current-Carrying Wires
Figure 1-13 shows two parallel current-carrying filaments of infinite 

length, separated by a distance d. Find the force per unit length between 
wires.

I1

I2
d

d

z

Figure 1-13. Two parallel current-carrying wires

Solution:
We will find the force per unit length on wire 2 with current I2. This will 
of course be the negative of the force on the other wire. We treat I1 as 
the source current, which produces the field B, and I2 as the test current, 
which experiences a force. We consider the force on an elementary length 
dℓ of wire 2:

d I dm 2F B= ×

We need to consider only the field due to wire 1. The field due to 
wire 2 is non-zero, but it cannot exert any net force on itself. Otherwise it 
could propel itself through space. Therefore we consider only the field at 
wire 2 due to wire 1, which is aφ(μ0 I1/2πρ).

	
d I d I dm 2 0 1F a a= ×( ) /z  φµ π2

 
	 		

	
=

= −

a

F
a

ρ

ρ

µ
π

µ
π

0 1 2

m 0 1 2

I I
2 d

dl

d
dl

I I
2 d

 	 (1-38)

The force is attractive if currents are parallel (I1, I2 both positive or negative) 
and is repulsive if currents are anti-parallel (one positive, one negative).

*J. R. Reitz, F. J. Milford, and R. W. Christy, Foundations of Electromagnetic T﻿heory, 
Addison-Wesley, 1993, 4th Ed., Section 8-2.
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Example 1-10. The Force Between a Filament and a Square Loop
Figure 1-14(a) shows a filament of infinite length with current I1. Nearby 
is a square loop of side ℓ with two sides parallel to the filament. The square 
loop carries a current I2. clockwise. The distance between the loop and the 
filament is d. Find the force between the loop and the filament.

d

I2
I1

z

(a) A �lament and a square loop. (b) Forces on the square loop.

Figure 1-14. A filament and a square loop

Solution:
We first choose the filament as the source current and the loop as the 

test current because it is easy to calculate the field due to a filament. To 
find the force on the loop, we consider the field B at the loop (due to 
filamentary current I1) which is aφ (μ0I1/2πρ). B points into the paper. 
We ignore the self field as before. Figure 1-14(b) shows a sketch of the 
forces I2 dℓ × B exerted on different portions of the loop. The z-directed 
forces cancel but the ρ-directed forces do not because the magnitude of 
B decreases as 1/ρ.

F I B

a a a a
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z 2
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0 1
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a

a
))

2 d(d l)π +

 

		

(1-39)

The force is attractive if I1, I2 have the same sign. Note that for this prob-
lem it will be very difficult to calculate the force acting on the filament 
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due to the field of the loop because of difficulty in calculating the field 
of a loop.

Consider the torque on the loop. There is no torque about the center but 
there is a torque about one of the corners of the loop. Can you calculate it?

1.8  Ampère’s Force Law

A particular application of the theory of Section 1.7 is the calculation of 
the force on a current-carrying loop due to the field B produced by an-
other loop. Figure 1-15 shows two current-carrying loops with currents 
I1, I2.

 
Figure 1-15. Two current-carrying loops

Typical points on loops (1), (2) are (x1, y1, z1), (x2, y2, z2), respectively, 
specified by vectors r1, r2.

F B B B1 1
C

1
C

Force on loop (1)=I d I d= × = × +∫ ∫ 1 11 12( )

(where B11, B12 are the fields at loop (1) due to currents I1, I2, respectively)
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C 12
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

(see Eq. (1-19c))

Thus

F
R

1
0 1 2

CC 12
3

I I
4

d d
R

 AmpŁre’s froce law
21

=
× ×

∫∫
µ

π
 1 1 12( )

 (1-40)

where R12 = r1 − r2.
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1.9  A. M. Ampère (1775-1836) and the Magnetic 
Fields of Steady Currents

Andre Marie Ampère was a French scientist who made contributions 
to an astonishing number of different fields. He was a mathematician, 
chemist, physicist, engineer, and philosopher. He possessed encyclopedic 
knowledge and moved easily from one field to another. He devised a uni-
versal language. He wrote a drama about Columbus called L’Americide. 
He invented a table of elements before Mendeleev. His most lasting con-
tribution, however, was his complete exposition of the magnetic fields 
and forces due to steady electric currents. The chapter which you are read-
ing now is essentially Ampère’s chapter. He combined experiment and 
theory, and amazing insight, in a comprehensive, thorough study unlike 
any of his other works. Maxwell said of his work: “The whole, theory and 
experiment, seems as if it had leaped, full grown and full armed, from 
the brain of the ‘Newton of electricity’. It is perfect in form, and unas-
sailable in accuracy, and it is summed up in a formula from which all the 
phenomena may be deduced, and which must always remain the cardinal 
formula of electrodynamics.” Ampère coined the word electrodynamics to 
describe his area of study. It is no longer used since his work is limited to 
steady currents.

A. M. Ampère was born in Lyon in southeastern France into a pros-
perous middle class family. When Ampère was seven, his father, Jean 
Jacques Ampère, retired and moved his family to Poleymieux, a small 
village of several hundred inhabitants perched on a mountainside about 
10 kilometers from Lyon. There was no school in Poleymieux and, as a re-
sult, Ampère had no formal schooling. He was largely self-educated under 
the guidance of his father. Ampère described the process as follows: “He 
never required me to study anything, but he knew how to inspire in me a 
desire to know.” He became interested in mathematics at an early age and 
eventually was reading the encyclopedia and carrying out the calculations 
of Laplace’s Celestial Mechanics.

The French Revolution had erupted in 1789 and it came to Lyon in 
1792. Ampère’s father found himself caught up in the struggle between 
two rival revolutionary groups, the moderate republican Girondins and 
the radical republican Jacobins. Jean Jacques was a justice of the peace 
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when the Girondins took over Lyons. In this position, he certified the 
arrest of a Jacobin leader who was later guillotined. When the Jacobins 
took over a few months later after a siege of Lyon, Jean Jacques was ar-
rested, tried, and guillotined. In his final letter home, he pardoned his 
executioners and wrote, “As for my son, there is nothing that I do not 
expect of him.” Ampère had had a very close relationship with his father 
and was devastated by the loss. He went into a deep depression for over a 
year. After he recovered, he resumed his studies, eventually tutored math-
ematics in Lyon, and taught physics in Bourg. In 1801 the young Ampère 
presented a lecture in which he rejected action-at-a-distance in electricity: 
“Bodies which do not touch each other cannot interact.” Therefore he 
rejected Coulomb’s law. He retained an aversion to action-at-a-distance 
throughout much of his life.

He began a short but very happy marriage in 1799. His son, named 
Jean Jacques, was born in 1800. His wife Julie died in 1803. In 1804 Am-
père went to Paris to teach at the Polytechnic School. Over the next ten 
years he made numerous contributions to mathematics and chemistry, 
leading to his election to the French Academy of Sciences in 1814.

In the fall of 1820, Ampère first learned of Oersted’s discovery, which was 
reported to the Academy on Sept. 11 by François Arago, who had verified 
some of the results. This discovery was a shock to Academy members, as it 
was to scientists all over the world, especially because their highly respected 
colleague Coulomb had posited many years earlier that there could not be 
any connection between electricity and magnetism. It would be interesting 
to know the thoughts of the Academy members as they left that meeting of 
11 Sept. 1820. At that time the French Academy included many of the lead-
ing scientists in the world. Certainly many of them recognized the historic 
importance of the discovery and some were determined to play a role in the 
development of this new theory. All over the world, scientists began to study 
the interaction of electricity and magnetism. Within a few years the scientific 
literature on the subject grew to enormous proportions. Ampère and Biot 
would lead the way in the development of the theory.

Ampère immediately set to work. He repeated Oersted’s experiment, 
but with the terrestrial field cancelled out. In the absence of the earth’s 
field, the compass needle rotated fully to end up perpendicular to the 

* James R. Hofmann, André-Marie Ampère, Blackwell Science Biographies, Cam-
bridge, MA., p. 341, 1995.
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long-wire current and perpendicular to a radial line from wire to field 
point (compass location). In this final position, the compass needle was 
either attracted to, or repelled by, the current-carrying wire. If attracted, 
then it would be repelled if the compass direction were reversed. Ampère 
also concluded that the earth’s magnetic field is caused by electric cur-
rents in the earth. These discoveries were made during his first week’s 
work, which was reported on 18 Sept. 1820. Thereafter, he reported to 
the Academy almost every week for several months. It’s not possible to 
describe here all of his accomplishments but we’ll describe a few of the 
more significant ones. Ampère showed in late September that parallel/
antiparallel current-carrying wires attract/repel as shown in Example 1-9 
and Eq. (1-38). He showed that helical current-carrying wires (solenoids) 
act like bar magnets. See Example 1-5 for an approximation to a very 
tightly-wound solenoid. This work led him to conclude that long bar 
magnets carry electric currents circumferentially around their periphery 
as in Figure 1-7. Later he concluded that every small portion of the cross 
section carried circumferential “Ampèrian” currents as in Figure 2-1(b). 
These Ampèrian currents then would add up to produce circumferential 
currents around the entire cross section as shown in Figure 2-1(c). These 
currents then correspond to those of the air-filled solenoid of Figure 1-7.

Since he was able to explain everything in terms of electric currents, 
Ampère had no need for the various theories of vortices, magnetic fluids, 
and magnetic charges with which the theory of magnetism was so bur-
dened. He came to the conclusion that magnetic charges did not exist 
and insisted emphatically on the primacy of electric currents in explain-
ing magnetic phenomena. He showed, however, that the magnetic charge 
model was equivalent mathematically to the electric current model. Once 
Ampère had become convinced that electric currents were the source of 
magnetism, he then recognized the primary importance of the force be-
tween two current-carrying elements. He set about in a very determined 
way to find this basic force law. This is a very complex relationship, as we 
can see by observing the double cross-product of Eq. (1-40), which is ob-
tained by combining the single cross products of Eqs. (1-19) and (1-33). 
Ampère started with a special case, namely two short z-directed current 
elements, both located in the x-y plane. He verified that the force between 
elements was attractive, inverse square, and of the form F = K I1 dℓ1 I2 dℓ2 / R12

2, 
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where K is a constant and R12 is the distance between elements. From this 
simple result to Eq. (1-40) is a long journey but somehow Ampère was 
able to get there. Actually his form was equivalent to Eq. (1-40) for the 
current loops of steady currents. Ampère was handicapped by his belief 
that the basic force must be radial, along the line connecting the ele-
ments. We can see by Eq. (1-40) that this is not necessarily so. The basic 
force law embedded in Eq. (1-40), or its equivalent, was the fundamental 
result which was praised so highly by Maxwell in the beginning of this 
section.

Ampère also showed that an inverse square force law (1/r2) between 
elements leads to an inverse force law (1/p) between an element and a 
long current-carrying wire. In other words, if the field of a current ele-
ment/point charge is of the form (1/r2), then the field of a long cur-
rent-carrying wire/long line charge is of the form (1/p). This is shown 
in Examples 1-2(a), 1-6, Laplace and Biot also showed this principle at 
about the same time (Laplace was apparently the first). Ampère is also 
given credit for the force law dF = I dℓ × B, Eq. (1-33), which gives the 
force exerted on a current element in a magnetic field B. Ampère was a 
person of tremendous insight. He proposed the electron shell. He postu-
lated Ampèrian currents. He guessed that the electromagnetic wave was 
transverse and he invented a telegraphic arrangement, which was first put 
to use a year after his death.

1.10  The Hall Effect

If a current-carrying conductor is placed in a magnetic field it experiences 
a separation of charge due to the magnetic force Fm and a resultant Hall 
voltage VH appears across the resistor. This effect can be used to measure 
magnetic fields. Consider a conductor of thickness d, width w, and vol-
ume current density J. The current is y-directed (electrons flow in the 
negative y direction). The magnetic force on an electron is

F v B a a am y 0 x 0 z 0 0q e( v B ) ( ev B= × = − − × = −( ) )

Thus there is a magnetic force deflecting electrons downwards, leading to 
a charge separation as shown in Figure 1-16. The charge separation creates 
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an electric field EH (the Hall field) and a voltage VH (the Hall voltage). 
Associated with EH is an electric force qEH which opposes the magnetic 
force.

++++++++ +
EH J VH

B
B

J

I

z

x

y

J = ayJ0
v = –ayv0 (electrons)
B = axB0

Figure 1-16. The Hall effect

How long does this charge buildup continue and what is the magni-
tude of the electric field EH? Clearly the charge buildup continues until 
electric and magnetic forces cancel and equilibrium is reached. Equilib-
rium is reached in about 1014 seconds for copper (relaxation time). At 
equilibrium the total force on a charge is zero:

	 F E v B= + × =q H( ) 0

	
E v BH = − ×  	 (1-41)

For the example of Figure 1-16:

	
E aH z 0 0 H 0 0v B  V v B d= − × = ×( ),

we have assumed a parallel-plate relationship between EH and VH).
If the sample of Figure 1-16 were a semiconductor with both positive 

and negative charge carriers, the positive charge carriers would produce a 
charge separation opposite to that of Figure 1-16 with an opposing con-
tribution to EH, VH. If the principal charge carriers are positive, then the 
direction of the Hall voltage in Figure 1-16 is reversed (assuming current 
direction unchanged). The Hall effect may thus be used to determine 
whether semiconductors are p-type or n-type. The Hall effect was discov-
ered by Edwin Hall in 1879.
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CHAPTER 2

Magnetic Fields in Matter

 
2.1  Introduction

In this chapter, we study some of the characteristics of magnetic materials. 
We note the close relationships to dielectric materials, but the magnetic 
effects are much stronger and much more important in everyday life. 
Whenever we ring a doorbell, start a car, or use a motor or generator, we 
see firsthand the effects of magnetism.

Shortly after the astounding discoveries of Oersted, Ampère produced 
a relatively complete formulation for magnetostatic fields, as we have 
seen. One is amazed at the rapidity of the scientific response and the swift 
communication between countries. We will see further evidence of this 
breakthrough in scientific communication and the rapidity of scientific 
advancement. Within a few years Michael Faraday will discover the effects 
of time-varying magnetic fields and magnetic induction and will invent 
the first electric generator (the disc generator). Joseph Henry will precede 
Faraday in the first discoveries by a few months but will lay aside his work 
and will not publish immediately. Voilà!! Faraday’s law instead of Henry’s 
law. We should not feel unduly sorry for Henry because there will be 
ample credit for both.

But to return to the years immediately following Oersted’s discovery, 
it is in the 1820’s that Ampère has a most amazing insight into magnetic 
effects in material objects. He concludes that there are tiny circulating 
currents within magnetic materials and that they are the source of the 
magnetic fields of a magnet. Recall that this is about 70 years before any 
knowledge of the atom was available. This is certainly an amazing in-
sight and we call the microscopic currents that do indeed exist Ampèrian 
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currents in recognition of his insight. Ampère also concludes that, if the 
currents are oriented with parallel magnetic (dipole) moments, a surface 
current will result. Recall that a small loop of current is a magnetic dipole 
as discussed in the previous chapter.

Figure 2-1 shows an Ampèrian model of a cylindrical magnet. Here 
we assume that the Ampèrian currents are identical throughout the body 
of the material and that their magnetic moments are all z-directed. It is 
clear from Figure 2-1(b) that adjacent currents cancel each other and that 
the remaining current is a surface current. This is called a bound surface 
current denoted Jms and is to be distinguished from free surface current Js. 
There are no net currents within the volume; the bound volume current 
density Jm is zero within (Figure 2-1(c)). Therefore, the magnetic material 
may be represented in terms of the equivalent surface currents Jms. We can 
ignore the currents within the volume because they cancel.

Jm = 0

z

Jms

Jms Jms

(a) 3-D view

(b) Top view (c) Equivalent currents

Figure 2-1. A magnetized cylinder

The model of Figure 2-1 will be useful in describing the magnetic 
effects that occur in the presence of material objects. In the absence of 
an applied field B some materials are unmagnetized either because of 
an orderly arrangement of magnetic moments which cancel or because 
of a random arrangement with macroscopic cancellation. In addition, 
some materials are permanently magnetized. In the presence of an 
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applied field B, most materials show an increase in magnetic moments 
parallel to the applied field, thus producing a net orderly arrangement 
of magnetic dipoles such as that of Figure 2-1.

2.2  Magnetization

We define a magnetization M (x,y,z) to characterize the magnetized state 
of the material. To calculate M at a point, we construct a small volume 
Δv about the point and add vectorially the individual magnetic dipole 
moments mi within the volume Δv. Then

	
M m( ) limx,y,z

vv 0 i
i

∆ ∆→ ∑1
 	 (2-1)

M is called the magnetization or the magnetic dipole moment per unit 
volume. By definition it is automatically zero in vacuum (free space). 

Magnetization M has the units of magnetic moment per unit volume or 
IS

volume




  which is equal to (amps/m).

Referring to Figure 2-1, we see that our assumption there is that the 
magnetization is uniform:

M a= z 0M

2.3  The Magnetic Field B of a Magnetized Material

We mentioned earlier that a magnetic material becomes magnetized in 
the presence of an applied field B. An orderly arrangement of net Am-
pèrian currents and their net dipole moments is created such as that of 
Figure 2-1. For a uniform magnetization M, there is a uniform surface 
current Jms. What is the relationship between M and Jms? If M is known, 
what is Jms? To obtain the relationship we require that the magnetized 
material, and the equivalent currents, have the same distant fields. This is 
certainly necessary and it will be sufficient to determine the result.

First we consider a uniformly magnetized piece of material. Figure 
2-2(a) shows a cylinder of magnetized matter. It is uniformly magnetized 
with M = az M0. Figure 2-2(b) shows its equivalent bound currents in free 
space. Currents cancel macroscopically within the volume and there is a 
uniform surface current Jms on the cylindrical surface.
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=M    a zM0
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y
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view
top 

view

0

0

M  at x 0

+ M  at x d

=
=

−

=
y

y

a

a

(a) A cylinder - magnetic moments. (b) A cylinder - current model.

(c) An infinite slab of thickness d.

M

Figure 2-2. Uniformly magnetized material

Now we require that the fields produced by the magnetized mate-
rial M and by the equivalent currents Jms be the same at distant points. 
This requires that the magnetic dipole moments of M and Jms are equal. 
The dipole moment of the magnetized cylinder is m = M0(volume) = 
M0(πa2ℓ) (because the magnetization M0 is the dipole moment per unit 
volume) and that of the cylindrical surface current is m = IS = (Jmsℓ) (πa2). 
Both are z-directed. Thus

( ) ( )J a M ams
2

0
2

 π π=

Therefore,

	
J Mms 0=

In general, the result is independent of cross-sectional shape and Jms = M0 
in all cases. By taking into account the directions of Jms and M, Jms = M0 
can be rewritten, in vector form, as	
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J M ams n= ×

			    (2-2)

where an is the outward unit vector normal to the surface of the magnetic 
material. As an example, it can be easily shown from Eq. (2-2) that an 
infinite slab of uniformly magnetized material (M = azM0) has two sheets 
of oppositely directed uniform surface currents Jms = ay M0 as shown in 
Figure 2-2(c).

Now what happens if the magnetization is not uniform but is a func-
tion of position? First we consider a one-dimensional variation Mz(x) as 
shown in Figure 2-3(a). We can approximate the function Mz(x) by step 
functions. The first two regions can thus be approximated by two slabs of 
uniformly magnetized material side by side (Figure 2-3(b)).

M2

M1

Mz (x)

x

Mz (x)

Step approximation

x

1M 2M

z

x

–M1 +M1 – M2 +M2 

M1 M2

 at x x=
Jms = ay (M1 – M2)

(a)Step approximation Mz (x). (b)Two slab model.

Figure 2-3. Non-uniform magnetization Mz(x)

Surface currents on each side of the slabs are proportional to magne-
tization as in Figure 2-2(c). Since the magnetization of the two slabs dif-
fer, there is a net surface current density at x = Δx. The magnitude of the 
surface current density at x = Δx is equal to the difference M1−M2 which 
is the magnitude of the step discontinuity at x = Δx. The total current ΔI 
in a length Δℓ is

∆ ∆ ∆ ∆ ∆I J a a= = − = −
∂
∂





ms y 1 2 y

zl M M l
M
x

x l( ) ( )( )

Now let’s spread the excess surface current ΔI over the region (one half 
subsection (Δx/2) to the right and one half subsection to the left) to form 
the bound volume current Jm. This is equivalent to smaller steps and 
greater accuracy in the approximation.
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∆ ∆ ∆ ∆ ∆I J a= = −

∂
∂ms y

zx l
M
x

x l)( ) (

Thus the z-directed M nonuniform in x-direction leads to the y-directed 
bound current:

	
J

M
xms

z= −
∂
∂

We add an additional magnetization Mx(z) which can be treated in 
exactly the same way. Then

J
M
z

M
xms

x z=
∂
∂

−
∂
∂

Finally, consider all components and variations (these can be treated by 
coordinate rotations of Figure 2-3(b)) to obtain

	 J Mm = ∇ ×  	 (2-3)

Table 2-1 gives the equivalent bound current densities for magnetized 
material. These are real bound currents that exist in magnetized material 
and they are equivalent in the sense that we can obtain the magnetic flux 
density B by assuming those currents in free space (so that the formula-
tions of Chapter 6 apply). The bound currents are also called the magne-
tization currents.

Table 2-1 Equivalent Bound Current Densities

Surface Current [A/m] Volume Current [A/m2]

Jms = M × an Jm = ∇ × M

2.4  The Magnetic Intensity H

Free and bound currents are identical in their effect upon magnetic flux 
density B, as we have seen. The fundamental reason for this is that B is 
defined in terms of the Lorentz force law F = q(E + v × B) and bound cur-
rents exert forces in the same way as free currents. Therefore, in the pres-
ence of magnetized materials we can replace J with (J + Jm) in Ampère’s 
law 1-6) to obtain

	
∇ × = +B J Jµ0 m( )  	 (2-4a)
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Rewriting Eq. (2-4a),

	
∇ ×







= +B
J J

µ0
m  	 (2-4b) 

Substituting Jm = ∇ × M,

∇ × −






=B
M J

µ0

The quantity B/μo − M is defined as the magnetic intensity H:

B
M H

µ0

− =

One often calls it also the magnetic field H. The magnetic field B can be 
written as

	
B H M= +µ µ0 0  	 (2-5)

Then Eq. (2-4b) becomes

	 ∇ × =H J  	 (2-6)

H has the units of amps/m. It is a vector which curls around the free 
current only. Eq. (2-6) can be recognized as a new Ampère’s law in point 
form. We can obtain an integral form of Eq. (2-6) by integrating both 
sides over surface S and applying Stokes’ theorem:

	  
	

∇ × ⋅ = ⋅ = ⋅ =∫∫ ∫ ∫∫H H Jds d ds I
S C S

f

	 C
fd I∫ ⋅ =H 

 (Ampère’s law in matter) (2-7) 

where If is the free current passing through the surface S in direction ds 
which is related by a right-hand rule to C. It is thus the current enclosed 
by C, with a right-hand relationship between the directions of I and C. 
Eq. (2-7) is a new integral form of Ampère’s law. In some cases it is more 
useful since the free current, in contrast to the bound current, can easily 
be measured. Ampère’s law for B in the presence of magnetic materials 
can be obtained by integrating Eq. (2-4a) over the surface S and applying 
Stokes’ theorem: 
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			   C
0 f md (I I∫ ⋅ = +B  µ )

      	      (2-4b)

where If is the free current and Im is the bound current passing through 
S bounded by the closed loop C. Table 2-2 summarizes the two forms of 
Ampère’s law for H and B.

Table 2-2 Ampère’s Law for Magnetic Fields in Matter

Point Form Integral Form
∇ × H = J

C
fd I∫ ⋅ =H 

∇ × B = μ0 (J + Jm)

C
0 f md (I I∫ ⋅ = +B  µ )

2.4.1 Linear Magnetic Materials

For linear magnetic materials, the magnetization M is proportional to 
magnetic intensity H:

M H= χm

T﻿hen

B H M H H H= + = + = =µ µ µ χ µ µ µ0 0 0 m 0 r(1 )

χm, μr, μ are called magnetic susceptibility, relative permeability, and perme-
ability, respectively. They represent three alternative ways of characteriz-
ing the linear relationship. We will usually specify the permeability μ. The 
three parameters (χm, μr, μ) may be functions of position. Thus μ(x, y, z) 
represents an inhomogeneous, linear medium and μ = constant represents 
a homogeneous, linear medium.
For a linear medium, we have

B H H

M

= + =

=
−





µ χ µ

µ µ
µ

0 m

0

0

(1   for a linear magnetic medium)

HH
 (2-8) 
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Values of μ for a variety of magnetic materials are given in Section 2.10.

2.4.2 Linear, Homogeneous Magnetic Materials

If a material is both linear and homogeneous, then
B H

B J J H H J

J

= =
∇ × = + = ∇ × = ∇ × =

=
−





µ µ
µ µ µ µ

µ µ
µ

;
( ) ( )

 constant

0 m

m
0

0

JJ

For a non-conducting magnetic material (σ = 0, J = 0),
Jm = 0 for a linear, homogeneous, non-conducting material.

Example 2-1. On-Axis Fields of a Magnetized Cylinder
Consider a uniformly magnetized cylinder of length ℓ, radius a as 

shown in Figure 2-2(a):

	
M a= ≤ ≤ − ≤ ≤z 0 M  (0 a, z

1
2

)ρ 1
2

Find the on-axis fields B, H both inside and outside the cylinder.
Solution:

First we find the equivalent bound currents Jm and Jms:

	 J M Mm  (because  uniform)= ∇ × = 0

	
J M ams n= ×

where an is the outward unit vector normal to the cylinder. It is equal to 
± az on top and bottom surfaces, respectively, and is equal to aρ on the 
curved surface ρ = a.

J a ams z 0 zM  on top and bottom surface= × ± =( ) ( ) 0  

J a a ams z 0 0M M  on the curved surface a= × = =( ) .ρ φ ρ
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Now the equivalent currents Jms may be placed in free space (ε0, μ0) and 
the field B can then be determined by the Biot-Savart law. To determine 
the magnetic intensity H, we must invoke the general relationship 
(Eq. (2-5)) between B, M, H.

The equivalent currents Jms are identical in form to those of the solenoid 
of Example 1-5 and Figure 1-7; NI/ℓ is replaced everywhere by M0.

The on-axis field Bz is thus obtained by replacing NI/ℓ in Eq. (1-22a) by 
M0

:

	

B
M
2

z 1/2
a z 1/2

z 1/2
a z 1/2

z
0 0

2 2
= +

+ +
− −

+ −













µ
( ) ( )2 2  	 (2-9)

Eq. (2-9) is valid on the z axis both inside and outside the cylinder. To 
obtain H along the z axis, we use Eq. (2-5):

	
B H M= +µ µ0 0

	
H

B
M= −

µ0

which gives

H
M
2

z 1/2
a z 1/2

z 1/2
a z 1/2

M zz
0

2 2 0= +
+ +

− −
+ −













− <
( ) ( )

(| | )
2 2

1
2

 

		  (2-10a)

= +
+ +

− −
+ −













>
M
2

z 1/2
a z 1/2

z 1/2
a z 1/2

 z0
2 2( ) ( )

(| | )
2 2

1
2

 	 (2-10b)

Example 2-2. Fields at the Center of a Magnetized Sphere
Figure 2-4 shows a magnet sphere of radius a which is uniformly 
magnetized:

M a= ≤z 0M  (r a)
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Find the fields B, H at the center of the sphere.

M

z z

Jms R
Jms

Jms     R

(a) Magnetic dipole model (b) Surface current model

+

Figure 2-4. A uniformly magnetized sphere

Solution:
First, the equivalent bound currents are determined as follows:

J M M

J M a a a a a
m

ms n z 0 r 0 r

 (because  uniform)
M M cos

= ∇ × =
= × = × = −

0
( ) ( θ θθ

φ

θ
θ

sin )
M   (at r 0)

r

0

×
= =

a

a sin

Next we apply the Biot-Savart law:

	
B

J R
=

× ′
∫∫

µ
π
0 ms

3
S4

ds
R

The typical source point is a point (r′, θ′, φ′) = (a, θ′, φ′) on the surface 
of the sphere. The field point is at the center of the sphere.

Then

	 R a r r a= − = = ′ =r r a; R a (since  a)0,

J R a a

a a a
ms 0 r

0 z 0

M a
( M ( M

× = ′ × −
= − ′ = − ′ −

( sin ) ( )
sin ) cos sin )(

φ

φ ρ

θ
θ θ θ aasin ′θ )

	 ( ) sinJ Rms z 0M× = ′2 θ

By symmetry, the ρ component of B is cancelled out, giving rise to the 
z-directed B field:
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B
J R

a

=
× ′

=
′ ′ ′ ′

∫∫

∫∫

µ
π
µ
π

θ θ θ φππ

0 ms
3

z
0 0

2 2

3
0

z

4
ds

R

4
M asin a d d

a

B

sin

0

2

== = 



 =∫

µ
θ θ

µ µ0
0

3

0

�
0 0 0 0

2
M sin  d

M
2

2 M
3

4
3

       

(2-11)

and

	
H

B
M

M
3z

z

0
z

0= − = −
µ

 	 (2-12)

Note that Bz and Hz are oppositely directed, a demagnetizing effect. It is 
interesting to note that the magnetic field is given by Eq. (2-11) at all 
points inside the sphere. The fields at arbitrary points both inside and 
outside the sphere for this problem can be found using the magnetic scalar 
potential approach and using the solutions of Laplace’s equation in.

Example 2-3. Current-Carrying Filaments, Wires, Cylinders and Toroids 
with Permeable Materials

The problems treated by Ampère’s law in Examples 1-2 and 1-3 can 
readily be modified in the presence of permeable magnetic materials. For 
instance, consider Example 1-2(a) with a filament of infinite length and 
current I in an unbounded medium of meability μ. We apply Ampère’s 
law for H to the geometry of Figure 1-1, which is modified by replacing 
free space (μ0) with material of permeability μ:

C 0
fd H d H 2 =I I∫ ∫⋅ = = =H  φ

π

φρ φ πρ
2

Then

	
H =

I
2φ πρ

 	 (2-13a)

and

	
B = H

I
2φ φµ µ

πρ
=

	
 (2-13b)
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Note that in the presence of highly permeable (μ   μ0) material, the flux 
density B is greatly increased as compared to that of free space.

All of the problems of Examples 1-2 and 1-3 can be treated in this man-
ner. Let the field regions (the regions in which fields are non-zero) be 
completely filled with material of permeability μ. Equations (1-8), 
(1-11b), (1-12b), (1-13a), (1-14a), and (1-14b) are modified by replacing 
μ0 with μ.

For the wire of finite radius (Example 1-2(b)), let the wire of radius 
a be of permeability μ1, and the region outside (ρ > a) be of permeability 
μ2. Then μ0 is replaced with μ1 in Eq. (1-9a) and μ0 is replaced with μ2 in 
Eq. (1-9b).

· See, for example, D. K. Cheng, Field and Wave Electromagnetics, 
Addison-Wesley, 1989, pp. 242-249.

2.5  Boundary Conditions

Boundary conditions are fundamental to magnetostatics, as to electro-
statics. We need to understand the behavior of the fields B and H at an 
interface, i.e., a boundary, between two different media.

First we consider the normal component of B using the divergence 
property that Ñ · B = 0. For this component we could carry out a pillbox 
analysis. However, let’s use the mathematical analogy between electro-
statics and magnetostatics and merely substitute B for D. Consider the 
divergence law and boundary condition concerning D:

∇ ⋅ = ⋅ = − =∫∫D D sρ ρv
S

f ln 2n sd Q  and D D,  '

Let ρv = 0 in regions 1, 2:

∇ ⋅ = ⋅ = −∫∫D D s0 d 0 and D D
S

ln 2n, '

Substituting B for D:

∇ ⋅ = ⋅ = −∫∫B B s B B0 d 0 and 
S

ln 2n, '
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Hence, normal B is continuous.

	 B Bln 2n− 	  (2-14)

Next we consider the tangential component of H using the curl law ∇ × 
H = J. Figure 2-5 shows an interface between two arbitrary media.

an2

1

2

H2

H1

z

C Js

y
1 1 1,µ ,

2 2 2,µ ,

Figure 2-5. Tangential H at a point on a boundary

We are interested in the behavior of H at a point on the boundary. At 
that point we construct a coordinate system (x, y, z) so that the normal is 
z-directed. The x, y directions lie in the tangent plane. Contour C lies in 
a plane normal to the interface. Δℓ is made small so that H1, H2 do not 
vary over C. α is made arbitrarily small compared to unity so that the end 
sections of C do not contribute to 

C

d∫ ⋅H 
.

Then, orienting length Δℓ in the y direction:

∇ × = ⋅ = − ∇ = = ∇∫H J H; ( ) d H H I J
C

2y 1y f sx  

if there exists an x-directed free surface current (Jsx). Thus,

H H J2y 1y sx− = −

If we orient length Δℓ in the x direction, we have

	
H H J2x 1x sy− = −

Combining the above results:

	
a H H Jn2 s× − −( )1 2  	 (2-15) 

where an2 is a unit vector normal outward from region 2, i.e, it points 
into region 1. Equation (2-15) indicates that a free surface current on the 
boundary, in the tangent plane, causes a jump in the tangential component of 
H, also lying in the tangent plane, orthogonal to Js.
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If there is no Js on the surface, then tangential H is continuous, i.e,

	
H H1 2t t−  if Js = 0 	 (2-16)

Returning to the general boundary condition (Eq. (2-15)) for tangen-
tial H, we note that H determines Js but not vice versa. Js can be deter-
mined by a specification of H1, H2. Js determines the odd portion of H 
but not the even portion.

We might at this point raise the question, “when can (free) surface 
current Js exist at a boundary?” The answer is quite simple. In some cases, 
we wish to place an ideal source Js at the interface to represent, for in-
stance, thin current-carrying wires wound around a magnetic material. In 
no other cases will Js arise except at the surface of a perfect conductor (σ 
= ∞). If conductivity σ is finite, volume currents may arise but no surface 
currents.

2.5.1 Linear Magnetic Materials

For linear magnetic materials, the following relationships are obtained

B H M H= =
−





µ
µ µ

µ
;  0

0

	 B Bln 2n=  	 (2-17a) 

	
H Hln

2

1
2n=

µ
µ

 	 (2-17b) 

	
M

1
1

Mln
1r

2r
2n=

−
−

1
1

/
/
µ
µ

 	 (2-17c) 

And if, in addition, Js = 0, then

	
H H1t 2t=  	 (2-18a) 

	
B B1t 2t

1

2

=






µ
µ

 	 (2-18b)

	
M M1t

1r

2r
2t=

−
−







µ
µ

1
1

 	 (2-18c)
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Behavior of B, H Lines at an Interface
Figure 2-6 shows a vector B at an interface between two linear isotro-

pic media (B = μ1 H1, B2 = μ2 H2).

1

2

1

2

B1

B2

an2

Figure 2-6. B, H lines at an interface 

We are interested in the relationship of angles θ1, θ2. In other words, how 
does the direction of the vector change in passing from one medium to 
another? Let B1, B1n, B1t represent the magnitudes of total B, normal B, 
and tangential B, respectively, in region 1 at the interface. Then

 
B B
B B

1n 1 1

1t 1 1

=
=

cos
sin

θ
θ

and tanθ1
1t

1n

B
B

; similarly, tanθ2
2t

2n

B
B

. Using H1t = H2t and B1n = B2n, 
we obtain

 
	

tan
tan

θ
θ

µ
µ

1

2

1

2

=  	 (2-19) 

Note that Eq. (2-19) is also valid for the H vector since H is parallel to B. 
The directions of B and H are thus identical but the magnitude changes 
across the interface differ since

 
B
B

H
H

2

1

2

1

2

1

=
µ
µ

In some cases the ratio μ2/μ1 may be very large, for instance, μr ≈ 5000 
for medium silicon steel and μr ≈ 1 for air. In this case the field lines for 
B, H will be, for the most part, nearly normal to the interface in air and 
nearly parallel to the interface in the steel. The B, H lines passing from 
steel to air are bent very sharply towards the normal. Note that Eq. (2-19) 
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is also valid for vectors D, E at the interface between two isotopic linear 
dielectric media if we replace μ1/μ2 with ε1/ε2.

2.6  Inductance

In this section, we study the inductance of the current circuit. Consider a 
current-carrying loop with current I (Figure 2-7a).

ds
I

C

ds

ds

I C

C

S1

S2

(a) Planar surface (b) Non-planar surface

Figure 2-7. Current-carrying loops

Path C is chosen in the direction of I. The magnetic flux density B 
may be obtained by the Biot-Savart law (Eq. 1-19c)):

 B
R= ⋅

∫
µ

π
0

C
3

I
4

d
R


The magnetic flux Φ through the loop (through any surface bounded by 
the loop*) is defined as

Φ = ⋅∫∫B sd
S

where S is bounded by C and ds is related to C by a right-hand rule rela-
tionship. Then the inductance L (or self-inductance) is defined by

 
	

L=
I
Φ

 	 (2-20) 

* Ñ · B = 0, therefore  ' B s⋅ =∫∫ d
S

0 , and the flux through C is indepen-
dent of the open surface bounded by C.
Note that we are free to choose any surface S bounded by C. For instance, 
with a circular loop (Figure 2-7b) we may choose the planar surface S1, or 
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the hat-shaped surface S2. The unit of inductance is the henry [H] (named 
after Joseph Henry). 1 H (henry) is equal to 1 (T · m2/A) or (Webers/A).

There are two steps in the process of finding L. Assuming the current 
I, we first find B. Then we integrate to find the flux Φ and thus Φ/I. 
The current I will cancel in the process. L is independent of excitation 
and depends only on geometry and the surrounding medium. L is always 
positive. It increases as the wire cross section is reduced. For a coil of N 
turns, the flux Φ linking all turns should be counted:

	
Φ Φ= N s  	 (2-21)

where Φs is the flux through a surface bounded by a single turn. The 
above result (Eq. (2-21)) assumes that the same flux links all turns. When 
would this be a reasonable approximation?
Network Model for Inductance

Figure 2-8 shows the network model for an inductance L.

v

i

L

−

+

 
Figure 2-8. Inductance (network model)

The network relationship between v and i across the inductor is:

 v
d
dt

d
dt

Li L
di
dt

i
dL
dt

L
di
dt

 (if 
dL
dt

=0)= = = + ⇒Φ
( )

	
v L

di
dt

=  	 (2-22)

Note that v
d
dt

= Φ
 comes from Faraday’s law that will be discussed later 

in Volume 4.
Mutual Inductance

Consider a set of N current loops with currents I1, … , IN as shown in 
Figure 2-9.

C1
I1

S1

N1

NC NI

SN    

NN

C2
I2

S2   

2

2 N

N

1

 
Figure 2-9. Mutual inductance
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Consider the total f﻿lux Φj through loop j:

 Φ Φ Φ Φ Φj j1 j2 jN jk
k 1

N

= + + + =
=

∑

where Φjk is the flux through loop j due to current Ik (all other currents 
set equal to zero):

Φ jk k
S

d
j

= ⋅∫∫B s

Then the mutual inductance Ljk is defined as follows:

 
	

L
Ijk

jk

k

=
Φ

 	 (2-23) 

If Nj is the number of turns in loop j, then Ljk is proportional to (Nj Nk). 
The inductance Lkk is a self inductance, of course. It can be shown that

	
L Ljk kj=  	 (2-24)

for wires in free space and in general unless a non-reciprocal material such 
as ferrite is present. Since Lij is usually equal to Lji we can choose to calcu-
late either Φij or Φji. The calculations may differ considerably.

Note also that Lii ≥ Lji since all of the flux generated by loop i passes 
through loop i but only a portion passes through (or links) loop j. Mutual 
inductance Lij may be positive or negative. Switching the direction of cur-
rent Ij will switch the sign of Lij. Similarly, reversing one set of terminals 
in the network model switches the sign.

Network Model

Figure 2-10 shows the network (two-port) model for a pair of coupled 
coils.

i1

v1

i2

v2

L11

L22

L12

L21

+

−

+

−

Figure 2-10. Coupled coils (network model)
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The network v-i relationships are:

 
	

v L
di
dt

L
di
dt1 11

1
12

2= +  	 (2-25a) 

	
v L

di
dt

L
di
dt2 21

1
22

2= +  	 (2-25b) 

(if L11, L12, L21, L22 are all constant in time). Then, for a set of N coupled 
coils,

	
v t L

di
dtj jk

k

k 1

N

( ) =
=

∑
	

 (2-25c) 

Just as capacitance was increased by the addition of dielectrics, inductance 
is greatly increased by the addition of magnetic materials.

Example 2-4. The Inductance of a Toroid
Consider the toroid of Figure 2-5(a), of rectangular cross section, with 
N turns and current I. The toroid is completely filled with material of 
permeability μ. Find the inductance of the toroid.
 
Solution:
As discussed in Example 2-3, the flux density in the toroid with magnetic 
core is obtained from Eq. (2-13a) by replacing μ0 by μ:

 
	

B = < < < <
µ

πρ
ρ0IN

2
 (a b, 0 z d)  	 (2-26) 

Next we find Φs, the flux through the surface bounded by a single turn, 
i.e, the cross-section surface of the toroid:

Φs
0

a

bd IN d dz
2

I Nd
2

b
a

= =∫∫
µ ρ

πρ
µ

π0

ln

Then the total flux is

 Φ Φ= =N
I N d ln(b/a)

2s

2µ
π

Therefore,
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L

I
N d ln(b/a)

2

2

= =Φ µ
π  	       

(2-27)

Note that the inductance is proportional to the permeability (μ) and the 
square of turns (N2). Addition of highly permeable materials greatly in-
creases the inductance.

Example 2-5 The Inductance per Unit Length of an Infinite Solenoid
The inductance per unit length of an infinite solenoid may be ob-

tained readily. Consider the field B of an infinite solenoid of arbitrary 
cross-section as given in Eq. (1-14b):

B N I z 0= µ
  

Now find the flux Φ linked by a unit length of the solenoid with Nℓ turns:

Φ = N N I  A,0 

( )µ

where A is the cross-section area of the solenoid. Then the inductance per 
unit length (L/ℓ) is given by

 
	

L
l I

N A0 1
2= =Φ µ  	 (2-28) 

The above result is valid for arbitrary cross-section.

Example 2-6. The Mutual Inductance of a Filament and a Square Loop.
Consider the filament and square loop of Figure 1-14(a). Find the 

mutual inductance.
 
Solution:

It is simpler to find the flux Φ21 through the square loop due to the 
filament of current I1 than finding Φ12 through the filament due to the 
loop current:

 Φ21 1
S

0 1

d

d l
1 1

l

d
I d dz
2

I l
2

d l
d

2

= ⋅ = = +



∫∫ ∫∫

+

B s
µ ρ

πρ
µ

π0

ln

where we have used Eq. (1-8) for B1. Then
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L L

I

l d l
d

21 12
21

1

0

= = =

+



Φ

µ

π

ln

2
  	       

(2-29) 

Example 2-7. T﻿he Mutual Inductance of a Filament and a Toroid.
Figure 2-11 shows a filament of infinite length and current I1 along 

the axis of a toroid of rectangular cross-section, with current I2 and N2 
turns. Find the mutual inductance.

I2

I1

a

b

Figure 2-11. A filament and a toroid 

Solution:
Once again it is simpler to find the flux through the toroid due to the 

filament. The B field is given by Eq. (1-8). The total flux Φ21 is N2 times 
the flux Φ21s through the surface bounded by a single turn of the toroid, 
i.e., the cross-section of the toroid (air core):

Φ21s
0 1

a

1 1
d I d dz

2
I d

2
b/a= =∫∫

µ ρ
πρ

µ
π

b

ln( )
0

Φ Φ21 = =N
I dN ln(b/a)

22 21s
0 1 2µ

π

	
L L

I
dN ln(b/a)

2
21

1

0 2
21 12= = =

Φ µ
π 	

 (2-30) 

Example 2-8. The Mutual Inductance of Two Loops.
Figure 2-12(a) shows two loops, each centered on the z axis, with radii 

a, b and currents I1, I2, respectively. The loop axis of each is the z axis. 
The loops are separated by a distance ℓ where ℓ   a, b   a. Find the 
mutual inductance.
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(a) Loop geometry

b

1

S2

(b) Surface S2 for calculation of L21

a

b

z

I1

I 2

Figure 2-12. Two coaxial loops

Solution:
Method 1 - Using the Field B2 due to I2:

Since ℓ a and b a, we may assume that the field at loop 1 due 
to current I2 is approximately equal to the on-axis field of loop 2 (see 
Example 1-4). The on-axis field B2z of loop 2 at z = ℓ is

	  
	

B

B s

2z
0 2

2

2 2 3/2

12 2
S

0 2
2

2 2 3/2
2

I b
2[b l ]

d
I b

2[b l ]
a

L

1

=
+

= ⋅ =
+∫∫

µ

µ
πΦ ( )

112
12

2

0
2 2

2 2 3/2I
a b

2[b l ]
= =

+
Φ µ π

 	

(2-31)

Method 2 – Using The Field B1 due to I1:
Since ℓ a, we may use the magnetic dipole field developed in Sec-

tion 1.6 for the field at loop 2 due to loop 1. To find the flux Φ21, we need 
to integrate over a surface bounded by loop 2. It is more convenient to use 
a spherical surface of radius 

2 2+ b  as shown in Figure 2-12(b) rather 
than a planar surface because of the form of the magnetic dipole fields. 
The radial component B1r of loop 1 at r = +l b2 2  is

B
I ( a

4 [l b ]1r
0 1

2

2 2 3/2=
+

µ π
π

θ
)

( cos )2
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and
L

I
a b

2[l b
21

1

0
2 2

2 221 3 2= =
+

Φ µ π
] /

which agrees with Eq. (2-31). This confirms that Eq. (2-24), the recipro-
cal property, is satisfied.

2.7  Joseph Henry (1797-1878) and the Discovery of 
Magnetic Induction

In the summer of 1831, Joseph Henry, an instructor at the Albany Acad-
emy in Albany, New York, knew that he was on the verge of an important 
discovery and ready to make a name for himself in the new science of 
electromagnetism. Henry was already beginning to be known throughout 
the United States for his practical work with powerful new magnets. He 
had started by insulating wires from each other by carefully wrapping 
them in silk (from his wife’s petticoat). Thus he was able to use a very large 
number of turns. He was able to produce electromagnets of great lifting 
power by (1) insulating wires as described (2) using powerful batteries in 
series to produce high voltage and (3) using many coils in parallel. These 
were simple techniques, but clearly the young Henry knew what he was 
doing. Prof. Silliman of Yale requested that Henry construct an electro-
magnet for his laboratory. Built in 1831, this magnet was able to lift a ton 
and was the most powerful electromagnet of its day.

Henry, however, had his sights set on bigger fish. For several years he 
had been experimenting on magnetic induction (which is explained in 
Volume 4). His powerful magnets were very useful because they created 
large magnetic fields which magnified the small effects of induction. By 
August of 1831, he had completed his work. He understood that induc-
tive effects occurred only when magnetic fields were changing. He was 
ready to publish but he had not heard anything at all from Europe on 
the subject and assumed that he was several years ahead of everyone else. 
He could afford to set aside his work until next summer and publish later 
with more complete results. Unfortunately, Michael Faraday, an English 
chemist and the greatest experimental scientist of his time, was hot on his 
trail. In ten famous days of experiment in the fall of 1831, he wrapped up 
the problem very effectively. Faraday read his results on November 1831 
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and published them in 1832. Henry received the paper in May 1832 and 
learned that he had been thoroughly beaten.

At first, he was in despair, as he was no longer a young man and had 
missed his great opportunity. But his friend Professor Silliman encour-
aged him to publish anyway. Thereby he secured the primacy of his work 
in self-induction, which would lead eventually to the naming of the unit 
of inductance as the Henry.

There are several similarities between Henry and Faraday. They were 
both raised in somewhat impoverished circumstances. Both had minimal 
schooling, could barely read and, by happenstance almost, both became 
avid readers. Both became outstanding lecturers who prepared their talks 
very thoroughly, with dramatic experimental display. Both were inter-
ested primarily in scientific principles and would not develop or patent 
their discoveries. Both worked primarily on their own.

Henry was born in Albany, NY. His father was a day laborer who 
died young. Joseph Henry had very little schooling and worked as a farm 
hand and store clerk. He was apprenticed at 14 to a watchmaker and sil-
versmith. He was a member of an amateur theatrical company. At age 16 
he became very interested in scientific questions while reading a book on 
general science. Later in life, he said, “This book, although by no means a 
profound work, has under providence exerted a remarkable influence on 
my life. It opened to me a new world of thought and enjoyment, fixed my 
mind on the study of nature, and caused me to resolve that I would im-
mediately commence to devote my life to the acquisition of knowledge.” 
Attending the Albany Academy, he soon learned enough to become a 
teacher in a country school. He began his college education at the Albany 
Academy in 1819 and finished in 1822, studying and teaching simultane-
ously with a 16 hour schedule.

It was said that the young Henry easily made major decisions but had 
difficulty with some minor ones. The story is told of a pair of shoes which 
he ordered. He changed the order from square to round toes and back so 
many times that the cobbler, out of frustration, finally delivered his shoes 
with one round and one square toe.

Henry made many additional contributions before retiring from re-
search in 1846. He produced a motor (in 1831), which he regarded as a 
“scientific toy” and did not patent. It had the basic elements of a D.C. 
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motor including a commutator. He also invented the electric relay and 
the electric telegraph. He built a telegraph line in 1835 but did not patent 
it. He also built a transformer capable of stepping the voltage up or down.

Joseph Henry possessed significant talents as an administrator. In 
1846, he left Princeton, where he had been a professor since 1832, and 
became head of the new Smithsonian Institution, where he served ably 
until his death. He was a key scientific advisor to Abraham Lincoln dur-
ing the Civil War, and served on many government advisory boards. He 
played a role in the founding of the National Academy of Sciences, the 
American Association for the Advancement of Science, the Philosophi-
cal Society of Washington, the Lick Observatory, and the U.S. Weather 
Bureau. In 1893 the International Electrical Congress honored him by 
naming the unit of inductance the Henry.

2.8  Magnetic Energy

In Volume 2 we obtained the electric energy required to assemble a set of 
charges in the presence of dielectrics. In this section we derive the mag-
netic energy of a system of current-carrying coils in the presence of mag-
netic materials. There are many similarities with the analysis of Volume 2 
and it may be helpful to make comparisons. Except for the very first steps, 
the analysis is limited to the linear case (Φ = Li). It is also assumed that all 
changes are made slowly enough so that the maximum system dimension 
is small compared to wavelength. This is called the quasistatic condition. 
It is necessary to ensure that radiation does not occur.

First we consider the magnetic energy Wm of a single current-carrying 
loop (Figure 2-13).

i(t) v(t)

µ
I

+
−

Figure 2-13. A current-carrying loop in the presence of magnetic 
materials

Magnetic materials may be present. The current of an ideal current source 
i(t) is increased slowly from zero to a final value I. Final flux is Φ. You 
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may recall that the current in an inductor does not change readily; work is 
required. The work Wm done in establishing the current and flux is

	

W P(t) dt v(t) i(t) dt
d
dt

 i dt i d

W i d

m

m

= = = =

=

∫ ∫ ∫ ∫
∫

Φ Φ

Φ
 	(2-32) 

Eq. (2-32) is the general relationship for magnetic energy. It is valid 
for nonlinear problems, too. Note that v = dΦ/dt comes from Faraday’s 
law. For linear problems where Φ = Li,
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 (2-33) 

In the process described above, current and voltage change with time but 
inductance is constant since there is no distortion of the loop or motion 
with respect to magnetic materials present. Now consider N coupled coils 
in the presence of magnetic materials (Figure 2-14).

•••2v2

µ

1

I1 I 2 IN

v1i1 i 2 iN
+
− NvN

+
−

+
−

Figure 2-14. N coupled coils in the presence of magnetic materials

The currents are increased slowly from zero to their final values I1, …, 
IN. For simplicity, bring i1(t) to its final value I1 with i2, ..., iN zero. Then 
bring i2(t) to its final value I2 with i1 = I1 and i3, ... , iN zero, etc. From our 

network model (Eq. 2-25) we know that v t L  di dtj jk k
k 1

N

( ) /=
=

∑  and 

that the total work done is

 W i t  v t  dt L i t  dim j j
j 1

N

jk j k
k 1

N

j 1
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= ==

( ) ( ) ( )
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Consider the contribution of the pair of numbers (1, 2) which is

 L i  di L i  di L i  di L i  di11 1 1
0

I

21 2 1
2

I

22 2 2
2

I

12 1 2
2

I1 1 2 2

∫ ∫ ∫ ∫+ + +

Now note that i2 = 0 in the second integral and i1 = I1 in the fourth 
integral. The contribution of (1, 2), i.e., the total work for N = 2, is

W L I L I L I I

L I I  (assuming

m 11 1
2

22 2
2

12 1 2

jk j k
k 1

2

j 1

= + +

=
==
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1
2

1
2

1
2

2

  reciprocity, i.e., L L )12 21=
 

		  (2-34)
For each pair of numbers (j, k) we have four integrals which yield con-

tributions 1
2

1
2

L I L I L I Ijj j
2

kk k
2

jk j k+ +  as before. One of the integrals is 
zero because one of the currents (say, ij) is raised to its final value when 
the other (say, ik) is zero. Every pair of numbers has a similar contribution 
and the final result, assuming reciprocity, is
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 	 (2-35)

Note also that

	
W Im j j

j 1

N

=
=
∑1

2
Φ  	 (2-36)

To see this, substitute Φ j jk j
k 1

N

L I=
=

∑  in Eq. (2-36) to obtain Eq. 
(2-35).

Magnetic Energy of Volume Current Distributions
Next let’s consider a current-carrying loop of finite cross section with 

volume current density J. Divide the loop into a large number N of loops 
in parallel. The typical loop has cross section ΔSk about path Ck, current 
ΔIk and flux Φk. Then

 Φk
S S C

d d d  by Stokes’ theorem
k k k

= ⋅ = ∇ × ⋅ = ⋅∫∫ ∫∫ ∫B s A s A( ) ( )
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where Ck bounds Sk. Using Eq. (2-36),
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A J A J

A J

∆
 (2-37) 

 

Note that Eq. (2-37) involves an integration over that volume V of space 
which includes currents since J = 0 elsewhere. The magnetic energy is 
expressed in terms of the current density and the vector potential distri-
bution just as the electric energy was in terms of the charge density and 
the scalar potential distribution.
 
Magnetic Energy in Terms of Fields
An alternative form of Wm may be obtained by expanding the range of 
integration to cover a larger volume V′ which includes V.
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The above result is valid for any volume V′ which includes V. As V′ ap-
proaches the entire region of space (say, it’s a sphere of radius r) then the 
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surface integral vanishes as r → ∞ because |A| ~ 1/r and |H| ~ 1/r2 for a 
current distribution J of finite extent, and the surface area of the sphere is 
proportional to r2. Thus

 
	

W dvm
all space

= ⋅∫∫∫
1
2

B H  	 (2-38) 

In Eq. (2-37), the energy is viewed as being stored with the current 
source, whereas Eq. (2-38) shows the energy being stored with the fields. 
Both equations yield the same results for a magnetostatic system, but for 
time-varying sources and fields, Eq. (2-38) makes more sense because the 
fields move in space, carrying the energy, as will be shown in Volume 4.

Finally, we note that Eqs. (2-37) and (2-38) can be used to deter-
mine the inductance of a circuit, using the relationship Wm = 1/2 LI2. 

	
L

2W
I I

 dv
I

 dvm
2 2 2= ⋅ = ⋅∫∫∫ ∫∫∫

1 1
B H A J  	 (2-39) 

We can drop the volume specifications at this point. The integrals exist 
over the regions of (B, H) and (A, J), respectively.

2.9  Magnetic Forces and Torques

Just as the electric force can be calculated from the electric energy for 
some system as shown in Volume 2, the magnetic force can also be cal-
culated from the magnetic energy for some systems. Consider a solenoid 
into which is inserted a bar of magnetic material (Figure 2-15).

µ

x

x

Fx

Constant flux

I

Constant current

Figure 2-15. The force on a bar of magnetic material in a solenoid
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Its location is specified by the variable x. The source may be either an 
ideal current source or an ideal flux source. We may think of an ideal flux 
source as a device which senses flux and varies current to maintain flux 
constant. Thus it could be merely a variable current or voltage source. 
With the ideal flux source connected, I varies with x. With the ideal cur-
rent source connected, Φ varies with x. Magnetic energy may be expressed 
as Wm(Φ, x) or Wm(I, x).

Let’s consider the two cases shown in Figure 2-15, the constant flux 
case (shown solid) and the constant current case (shown dotted) separately.

2.9.1 Constant Flux Case

Consider a small movement dx of the bar. Flux does not change and 
therefore the f﻿lux generator does no work since ∫ i(t) v(t) dt = ∫ i dΦ = 0 
(upper and lower limits are identical). In general there is a force Fx on the 
bar. It is either attracted towards or repelled from the solenoid. Mechani-
cal work done is Fx dx. The mechanical work done may lead to mechani-
cal energy stored in a spring or to kinetic energy. When x varies, the fields 
B, H may change, leading to a change dWm in magnetic energy storage. 

Conservation of energy thus requires that
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. In general,

	 F = −∇W x,y,z  (constant flux)m( , )Φ 	  (2-40a) 

If the bar is free to rotate in the θ direction, then work done is (Torque) 
dθ and

	
Torque

W
 (constant flux)m= −

∂
∂
( , )Φ θ
θ

 	 (2-40b) 
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2.9.2 Constant Current Case

First we disconnect the constant flux source and connect the constant 
current source. Then consider a small movement dx. Flux changes from 
Φ to (Φ + dΦ). Wm changes from 1/2 IΦ to 1/2 I(Φ + dΦ); dWm is 1/2 
I dΦ. Work done by the current source is ∫ i(t) v(t) dt = ∫ i dΦ = I dΦ 
= 2 dWm. Therefore energy supplied by the current source is equally di-
vided, half to Wm and half to mechanical energy. Conservation of energy 
requires that

F dx dW dW

F
dW

dx
W x

x

x m m

x
m

I const.
m

+ =

= −
∂

∂

2
( , )Φ

 
In general,

	 F = ∇W I x,y,z  (constant current)m( , ) 	  (2-41a)

If the bar is free to rotate in the θ direction,

	
Torque

W I
 (constant current)m= −

∂
∂

( , )θ
θ

 	 (2-41b) 

Example 2-9. The Force Between Coupled Coils
Consider the force between two coupled coils (see Figure 1-15). Let 

coil 1 be fixed and let coil 2 be free to move.
Then

W L I L I L I Im 11 1
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12 1 2= + +1
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The force between the two coils is
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F I I
L
yy 1 2
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and the total force on coil 2 is

	 F = ∇I I L1 2 12  	 (2-42)
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2.10  Magnetic Materials

Before we close this chapter, we discuss physical characteristics of magnetic 
materials. There are several types of magnetic materials with distinctly dif-
ferent characteristics. Three of the most common are diamagnetic, para-
magnetic, and ferromagnetic materials. We call a material

diamagnetic if |χm|   1, χm negative.

paramagnetic if |χm|   1, χm positive.

ferromagnetic if |χm|   1.

Table 2-3 shows typical values of μr, χm for some magnetic materials. 

Table 2-3 Magnetic Susceptibilities of Magnetic Materials

Diamagnetic Materials

Material
χm

Aluminum Oxide − 0.5 × 10−5

Copper − 0.94 × 10−5

Gold − 3.6 × 10−5

Lead − 1.7 × 10−5

Silver − 2.6 × 10−5

Bismuth − 1.7 × 10−4

Sodium Chloride − 1.2 × 10−5

Paramagnetic Materials

χm

Aluminum 2.1 × 10−5

Cr2 O3 1.7 × 10−3

Platinum 2.9 × 10−4

Palladium 8.2 × 10−4

Oxygen 1.8 × 10−6

Ferromagnetic Materials

μr ≈ χm

Nickel 250

Cobalt 600

Iron 5 × 103

Permalloy 105

Super Malloy 106
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Since μr = χm + 1, the relative permeability of diamagnetic and para-
magnetic materials is very close to unity. For ferromagnetic materials 
μr and χm are practically equal. Note that |χm|   1 for both diamag-
netic and paramagnetic materials. Typical values of χm are ± 10−5. 
Thus the magnetization M is much smaller in magnitude than the 
applied field H since

M H= χm

For instance, consider a long thin solenoid with a current I and N turns 
per unit length. In the air-filled case, the magnetic flux density is

B H NI.1 0 0= =µ µ

If the solenoid is completely filled with a diamagnetic or paramagnetic 
material, then

B H M NI(1 ) B (1 )2 0 0 0 m 1 m= + = + = +µ µ µ χ χ

The fractional change in flux density is of the order of 105. Thus the ef-
fect of the insertion of the cylindrical bar of diamagnetic or paramagnetic 
material is practically negligible.

Diamagnetic and paramagnetic materials are often called nonmag-
netic materials because of the small magnitude of the magnetic effects. 
For instance, silver and aluminum are often described as non-magnetic 
although one is diamagnetic and the other paramagnetic. Michael Fara-
day discovered diamagnetism and paramagnetism in 1846. He noted that 
certain materials are attracted towards regions of higher fields and certain 
materials are repelled. Diamagnetic materials are repelled and all other 
materials are attracted (Figure 2-16).

Another example is shown in Figure 2-15. We recall Volume 2 that 
the electric force attracting a dielectric block into a parallel plate capaci-
tor is proportional to (ε−ε0 or χe ε0). By analogy, the magnetic force at-
tracting a bar into a solenoid is proportional to (μ−μ0 or χm μ0). Thus the 
force in Figure 2-15 is repulsive if χm is negative (diamagnetic). There is 
no dielectric effect corresponding to diamagnetism because there are no 
materials with negative χe.

Diamagnetic and paramagnetic effects can be explained in terms of 
the magnetic moments of the molecules involved. There are two principle 
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contributions to the magnetic moment, namely, (1) the orbital motion 
of electrons about the nucleus and (2) electron spin. (There is also a very 
small nuclear spin moment).

B B
Diamagnetic materials
are repelled

All others are
attracted 

Figure 2-16. Diamagnetic material

A diamagnetic material has molecules with zero net magnetic moment 
due to (1) and (2) in the absence of an applied magnetic field. When a 
magnetic field is applied, the forces on the moving electron change the 
orbital velocity to create a net magnetic moment for the magnetic dipole 
(an electron in an orbital motion constitutes a tiny loop of current). The 
net magnetic moment m and the magnetization M per unit volume are 
such as to oppose the applied field. Thus

B 0 0= +µ µH M

where H is the applied field and M opposes H. When the applied field H is 
removed, the magnetization M returns to zero, i.e., the effects are reversible.

In diamagnetic materials, there are other effects which occur but the 
principal one is the effect of the applied field upon the electron orbital 
motion. Even though the diamagnetic effect is very small, it is always 
present in all materials. Its effect may be hidden by other, more powerful, 
effects. The diamagnetic effect is linear as we might expect because of its 
small, perturbational effect. μr and χm are independent of temperature 
for diamagnetic materials. χm is of the order of 10−5 for most diamag-
netic materials. The largest negative magnetic susceptibility χm is that of 
Bismuth, the material used by Faraday in his discovery of diamagnetism.
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In paramagnetic materials, the molecules each have a net magnetic 
moment m, but magnetization M = 0, because of random orientation, 
in the absence of an applied field. If a magnetic field H is applied, there 
are several effects which occur. The principal one is the effect of the ap-
plied field upon the electron spin moments, which tend to align parallel 
to the direction of the applied field. However, random thermal agitation 
reduces significantly the magnetization M obtainable by this alignment 
of spins. Temperature would have to be lowered to a few degrees kelvin to 
approach the maximum effect. At room temperatures the random ther-
mal motion almost completely overwhelms the tendency to align leaving 
only a very small magnetic moment in the direction of the applied field. 
This moment is, however, strong enough to overcome the diamagnetism 
which is always present. As we might expect, temperature has a signifi-
cant effect on χm, which decreases rapidly as temperature increases from 
absolute zero.
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of, 48–50

Mutual inductance, 56, 57, 59–62
of filament, 59–60
of square loop, 59–60
of toroid, 59–60
of two loops, 60–62

Oersted, Hans Christian, 1

Parallel current-carrying wires, force 
between, 30

Permeability, 46
of free space, 4

Relative permeability, 46

Solenoid of circular cross section, on-
axis field of, 17–19

Square loop
and filament, force between, 31–32
mutual inductance of, 59–60
on-axis field of, 22–23

Steady currents, magnetic  
fields of, 33–36

Straight current-carrying wire, 19–22
magnetic flux density of, 20–21
magnetic vector potential of, 21–22

Toroid
inductance of, 58–59
mutual inductance of, 59–60

Torque(s)
on currents in magnetic  

field, 27–32
definition of, 29

Two loops, mutual  
inductance of, 60–62

Vector Poisson’s equation, 13
Volume current distributions, 

magnetic energy of, 66–67
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