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Electromagnetics is not an easy subject for students. The subject 
presents a number of challenges, such as: new math, new physics, new 
geometry, new insights and difficult problems. As a result, every aspect 
needs to be presented to students carefully, with thorough mathematics 
and strong physical insights and even alternative ways of viewing and 
formulating the subject. The theoretician James Clerk Maxwell and the 
experimentalist Michael Faraday, both shown on the cover, had high 
respect for physical insights.

This book is written primarily as a text for an undergraduate course 
in electromagnetics, taken by junior and senior engineering and phys-
ics students. The book can also serve as a text for beginning graduate 
courses by including advanced subjects and problems. The book has been 
thoroughly class-tested for many years for a two-semester Electromagnet-
ics course at Syracuse University for electrical engineering and physics 
students. It could also be used for a one-semester course, covering up 
through Chapter 8 and perhaps skipping Chapter 4 and some other parts. 
For a one-semester course with more emphasis on waves, the instructor 
could briefly cover basic materials from statics (mainly Chapters 2 and 6) 
and then cover Chapters 8 through 12.

The authors have attempted to explain the difficult concepts of elec-
tromagnetic theory in a way that students can readily understand and 
follow, without omitting the important details critical to a solid under-
standing of a subject. We have included a large number of examples, sum-
mary tables, alternative formulations, whenever possible, and homework 
problems. The examples explain the basic approach, leading the students 
step by step, slowly at first, to the conclusion. Then special cases and 
limiting cases are examined to draw out analogies, physical insights and 
their interpretation. Finally, a very extensive set of problems enables the 
instructor to teach the course for several years without repeating problem 
assignments. Answers to selected problems at the end allow students to 
check if their answers are correct.

Preface 
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x PREFACE

During our years of teaching electromagnetics, we became interested 
in its historical aspects and found it useful and instructive to introduce 
stories of the basic discoveries into the classroom. We have included short 
biographical sketches of some of the leading figures of electromagnetics, 
including Josiah Willard Gibbs, Charles Augustin Coulomb, Benjamin 
Franklin, Pierre Simon de Laplace, Georg Simon Ohm, Andre Marie 
Ampère, Joseph Henry, Michael Faraday, and James Clerk Maxwell.

The text incorporates some unique features that include:

 • Coordinate transformations in 2D (Figures 1-11, 1-12).
 • Summary tables, such as Table 2-1, 4-1, 6-1, 10-1.
 • Repeated use of equivalent forms with R (conceptual) and 

|r−r′| (mathematical) for the distance between the source 
point and the field point as in Eqs. (2-27), (2-46), (6-18),  
(6-19), (12-21).

 • Intuitive derivation of equivalent bound charges from 
polarization sources, including piecewise approximation to 
non-uniform polarization (Section 3.3).

 • Self-field (Section 3.8).
 • Concept of the equivalent problem in the method of images 

(Section 4.3).
 • Intuitive derivation of equivalent bound currents from 

magnetization sources, including piecewise approximation to 
non-uniform magnetization (Section 7.3).

 • Thorough treatment of Faraday’s law and experiments 
(Sections 8.3, 8.4).

 • Uniform plane waves propagating in arbitrary direction 
(Section 9.4.1).

 • Treatment of total internal reflection (Section 10.4).
 • Transmission line equations from field theory (Section 

11.7.2).
 • Presentation of the retarded potential formulation in Chapter 

12.
 • Interpretation of the Hertzian dipole fields (Section 12.3).

Finally, we would like to acknowledge all those who contributed to 
the textbook. First of all, we would like to thank all of the undergraduate 
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 PREFACE xi

and graduate students, too numerous to mention, whose comments and 
suggestions have proven invaluable. As well, one million thanks go to Ms. 
Brenda Flowers for typing the entire manuscript and making corrections 
numerous times. We also wish to express our gratitude to Dr. Eunseok 
Park, Professor Tae Hoon Yoo, Dr. Gokhan Aydin, and Mr. Walid M. G. 
Dyab for drawing figures and plotting curves, and to Professor Mahmoud 
El Sabbagh for reviewing the manuscript. Thanks go to the University of 
Poitiers, France and Seoul National University, Korea where an office and 
academic facilities were provided to Professor Adams and Professor Lee, 
respectively, during their sabbatical years. Thanks especially to Syracuse 
University where we taught for a total of over 50 years. Comments and 
suggestions from readers would be most welcome.

Arlon T. Adams

Jay Kyoon Lee
leejk@syr.edu

June 2012
Syracuse, New York

Adams-Book2_FM_156145.indd   11 16/12/14   12:02 AM



Adams-Book2_FM_156145.indd   12 16/12/14   12:02 AM



# 156104   Cust: MP   Au: Adams  Pg. No. 1 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

CHAPTER 1

Introduction to Dielectrics

1.1 Introduction

We turn our attention now to ideal (perfect) dielectrics. Wood, glass, 
chalk, plastics, rubber, paper, quartz, and distilled water are all considered 
close to perfect dielectics. Ideal dielectrics do not contain free charges 
which can move from molecule to molecule. Instead they possess bound 
charges which are tightly bound to the atomic or molecular structure.

Now what happens when an electric field is applied to a dielectric as 
in Figure 1-1? The bound charges are not free to move from molecule 
to molecule but they can move over very small distances. Positive and 
negative charges tend to move in opposite directions. A typical result is 
shown in Figure 1-1 with dipoles existing in the body of the dielectric and 
surface charges on two surfaces. Dipoles are lined up with their dipole 
moments parallel to E. We say that the dielectric is polarized. We see that 
in Figure 1-1 bound surface charge density is formed on the right and 
left hand surfaces of the dielectric. Bound volume charge density may or 
may not exist inside the dielectric, depending on the type of polarization.

  +

  +  +  +  +  +

  +  +  +

  +

  +  +  +

  +  +  +  +

  +

  +  +

  +  +

P
  +

ps

E
Figure 1-1. A polarized dielectric
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We distinguish bound charges from free charges by adding a subscript 
p. Thus bound or polarization charges may exist as bound volume charge 
density ρpv or as bound surface charge density ρps. The net bound charge in a 
volume is represented as Qp. The definitions for ρpv, ρps are identical to Eqs. 
(2-2) except that ΔQ is replaced with ΔQp. Note that ρv, ρs, Q represent free 
charges; we add the subscript p for bound or polarization charge densities.

1.2 Polarization

We have seen an example of a polarized dielectric with dipoles existing 
within the body of a dielectric. Since dipoles give rise to electric fields and 
potentials, we need to characterize the strength of the dipoles within the 
dielectric. How many dipoles are there per unit volume and what are the 
dipole moments? We define a polarization vector P(x,y,z) to characterize 
the polarized state of the dielectric material. To calculate P at a particular 
point, we construct a small volume Δv around the point in question, and 
add vectorially all the dipole moments pi within the volume Δv.

Then

 
P P=

→ ∑lim
∆ ∆V 0 i

iv
1

  (1-1)

P is called the polarization or the dipole moment per unit volume. By defi-
nition it is automatically zero in vacuum (free space).

In the absence of an applied electric field, most dielectrics are unpo-
larized (P = 0) either because of an orderly arrangement of dipoles whose 
moments cancel as in Figures 2-17(a),(b) or because of a random orienta-
tion of dipoles. The individual molecules may be polarized or not. Non-
polar molecules have no net dipole moment. Polar molecules each have a 
net dipole moment but a random orientation often tends to produce an 
unpolarized dielectric macroscopically in the absence of an electric field.

There are some dielectrics which are permanently polarized, i.e., they 
may remain polarized in the absence of an electric field. An example is 
barium titanate, which is one of the ferroelectrics. Such materials are 
called electrets, the electrical analogue of magnets.

If an electric field is applied, dielectrics which were previously unpo-
larized become polarized (P ≠ 0), as in Figure 1-1, with a polarization P 
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which tends to be in the direction of the electric field E. There are several 
contributors to the polarization. First, consider an unpolarized dielectric 
with dipoles whose moments cancel in the absence of an electric field. The 
cancellation may be orderly or disorderly. Figure 1-2(a) shows an orderly 
cancellation. The application of an electric field leads to forces on the pos-
itive and negative bound charges which make up the dipoles. We assume 
that the dipoles can rotate slightly about their centers. The dipoles will 
tend to rotate to the new positions shown dotted, each rotation resulting 
in a dipole moment with an increased component in the direction of E. 
We also assume that the dipole can stretch or contract. Consider a dipole 
pair with moment parallel, antiparallel to E (Figure 1-2(b)). The applied 
field stretches one dipole and contracts another, in each case increasing 
the dipole moment in the direction of E. Figures 3-2(c), (d) show the 
effect of an applied field on an individual atom. The nucleus is displaced 
with respect to the center of the electron cloud. This produces a net dipole 
moment in the direction of E. Thus we see that given an unpolarized di-
electric (P = 0), the addition of an applied electric field tends to polarize 
the dielectric with a P in the direction of E.

+ +

++

E

+
+

+
+

E

(a) Dipole rotation. (b) Stretching or contraction of dipoles.  

+

+

E

(c) An atom. (d) An atom with applied field.

Nucleus

Electron
cloud

Center

Nucleus

Electron
cloud

Figure 1-2. Dipoles in an electric field
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We should emphasize that the movements of the bound charges and 
the resultant deformation of the structure, i.e., the resultant rotations and 
stretching of dipoles, are very small indeed. The basic reason for this is that 
the applied fields produce forces on the bound charges which are very small 
compared with the strong internal forces holding the structure together. 
The movement shown in our figures is much greater than that usually ob-
tained. The perturbation or deformation of the structure is usually mini-
mal and for this reason the process is often linear (P ~ E). On the other 
hand, if extremely large electric fields are applied, the bound charges may 
be torn from their molecules and breakdown will occur.

1.3 The Electric Field of a Polarized Dielectric

As we have seen, a dielectric becomes polarized in the presence of an elec-
tric field. An orderly arrangement of dipoles is created with a concomitant 
bound surface charge and perhaps, as we will soon see, a bound volume 
charge as well. What are the bound electric charge densities associated 
with the state of polarization and what is the electric field due to those 
charges?

First, let us consider the charge distribution of a uniformly polarized 
dielectric. Figure 1-3(a) shows a block of dielectric with uniform polariza-
tion P = az Po.

z

S

d

c

P
b

so

so+

z

d

so+

so

c

b

Figure 1-3 (a). A uniformly polarized block of dielectric. (b) An 
equivalent charge distribution

We note that an unknown uniform bound surface charge density ± ρso 
is present on top and bottom surfaces, respectively. There is no bound 
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volume charge density within the block since every small volume contains 
equal amounts of positive and negative charges, i.e., ρpv = 0. Since there 
is no volume charge density, we can represent the charges of the system 
as in Figure 1-3(b), which shows uniform surface charge densities ± ρso 
separated by a distance d. Now we will solve for ρso by requiring that the 
dipole moments of Figures 1-3(a), (b) be equal. We consider a small patch 
of surface Δs above and below and the intervening volume d(Δs). The 
dipole moment of the intervening volume in Figure 1-3(a) is az (Po d Δs) 
because Po is the dipole moment per unit volume. The dipole moment of 
the same volume in Figure 1-3(b) is az (q d) = az (ρso Δs d). The moments 
must be equal and therefore

 
ρso oP=   (1-2a)

We can also compare the total dipole moments of Figures 1-3(a), (b), i.e., 
az Po (bcd) = az ρso (bcd), with the same result. The bound surface charge 
density ρps of Figure 1-3(a) may be characterized as follows:

 

ρps o zP  on top and bottom
= 0 on vertical sides
= ± = ⋅ ±P a( )

  (1-2b)

or, in general,

 
ρps n= ⋅P a   (1-2c)

where an is the outward unit normal to the dielectric surface.

P
2

P
1

z z

P
z
(z)

z

to zP (z)
Step approximation 

P
2
(z)

Figure 1-4. A non-uniform polarization Pz(z)
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It is perhaps surprising that we can throw away all the dipoles in the 
body of the dielectric since the individual dipoles do produce electric 
fields. This is essentially the same process as replacing two dipoles laid 
end-to-end with the two end charges. The dipole moment doubles and 
two charges in the middle cancel.

Now let us consider what happens if P is not uniform but varies in one 
dimension. Assume that P is z-directed, P = az Pz, and let Pz be a continu-
ous function of z as shown in Figure 1-4.

We approximate the continuous function with a series of steps, each 
of length Δz. We then represent each step by a model such as that of 
Figure 1-3 with a uniform P in each step and bound surface charges at the 
beginning and end of each step. The resulting bound charges are shown 
in Figure 1-5.

The first two regions are represented by two slabs of uniformly 
polarized material with polarization P1 and P2, respectively. Since the po-
larization of the two slabs differ, there is a net surface charge density P1 − P2 
which is equal in magnitude to the step discontinuity at z = Δz. Assume a 
surface of cross section area of Δs at z = Δz. Then the total bound surface 
charge at z = Δz is given as follows:

∆ ∆ ∆ ∆ ∆Q = s P P s
P
z

z sP ps 1 2
zρ = − = −

∂
∂

( )

++++++++++ ++++

++++++++++ ++++

z

+P
2

P
2

P
1

ps =P
1

P
2

P
2

+P
1

P
1

Figure 1-5. The charge distribution for the step approximation to the 
non-uniform polarization Pz(z)

Now let’s spread the excess bound surface charge ΔQp over the region (one 
half subsection (or 

∆z
2

) to the right and one half subsection to the left) 
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to obtain a representation of the bound volume charge density ρpv. This is 
equivalent to taking smaller and smaller steps in the approximation of the 
continuous function Pz(Z). Then ∆ ∆ ∆ ∆ ∆Q = s z

P
z

s zP pv
zρ = −

∂
∂

 and

ρpv
zP

z
= −

∂
∂

If we consider additional components of P, then

 
ρpv

x y zP
x

P
y

P
z

= −
∂
∂

−
∂
∂

−
∂
∂

= −∇ ⋅P   (1-3)

The result above corresponds to the limit Δz → 0. As Δz → 0, we 
obtain an infinite number of steps in the approximation and the surface 
charge becomes volume charge density.

Table 1-1 gives the equivalent bound charge densities for polarized 
material. These are real bound charges that exist in polarized material. 
They are equivalent in the sense that we can obtain the electric field E by 
assuming those charges in free space (so that the formulations of Chapter 
2 apply). The bound charges are also called the polarization charges.

Table 1-1 Equivalent Bound Charge Densities

Surface Charge [C/m2]

ρps = P · an

Volume Charge [C/m3]

ρpv = − ∇ · P

Equations (1-2) and (1-3) above specify the bound charge densities which 
are associated with the polarization vector P. Note that P in Eq. (1-2) 
should be evaluated at the surface and an is a unit vector normal outward 
from the dielectric surface. The negative sign in Eq. (1-3) is due to the 
previous choice that dipole moment p is directed from negative to posi-
tive charges. We note that for uniform polarization P there is no volume 
charge:

 
ρpv  (if  is constant)= 0 P   (1-4)

Later we will see that uniform P is sufficient but not necessary, in order that 
ρpv = 0. We will see that ρpv = 0 if the dielectric is linear and homogeneous.
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Given polarization P, the bound volume and surface charge den-
sities are known. We can use this information to obtain the electric po-
tential V and the electric field E merely by substituting ρpv, ρps for ρv, ρs, 
respectively, in Eqs. (2-46) and (2-27), to obtain

 

V
dv

 or 
dv

R
for volume charge

0

pv

0

pv=
′

− ′
′

∫∫∫ ∫∫∫
1

4
1

4πε
ρ

πε
ρ

r r   (1-5a)

V
ds

 or 
ds

R
for surface charge

0

ps

0

ps=
′

− ′
′

∫∫ ∫∫
1

4
1

4πε
ρ

πε
ρ

r r

  
  (1-5b)

and

 

E
r r

r r
R

=
− ′ ′
− ′

′

∫∫∫

∫∫∫

1
4

1
4

3πε
ρ

πε
ρ

0

pv

0

pv
3

( )dv

or 
dv

R
for volume ccharge

   
  (1-6a)

E
r r

r r
R

=
− ′ ′
− ′

′

∫∫

∫∫

1
4

1
4

3πε
ρ

πε
ρ

0

ps

0

ps
3

( )ds

or 
ds

R
for surface chharge

   
  

(1-6a)

Note that Eqs. (2-46) ad (2-27) can now be interpreted in a more general 
light. A charge is a charge; bound and free charges contribute identically to V 
and E. Thus we can interpret ρv, ρs in Eqs. (2-46) and (2-27) as free charge 
densities, bound charge densities, or total (bound plus free) charge densities.
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Example 1-1. On-Axis Potential of a Permanently Polarized Cylinder 
(Electret)

Consider a uniformly polarized cylinder (Figure 1-6):

P a=
< <
≤ ≤









z o
1 2

P
a

z z z
0 ρ

Find the electrostatic potential along the z axis.

1

2

R
2

R
1

a
z

2

z
1

z

P

Field point
(0,0,z)

Figure 1-6. A permanently polarized dielectric cylinder (electret)

Solution:
First we find the bound charge densities.

ρps n o 2

o 2

P  (upper disk, z z
P  (lower disk, z z

= ⋅ = =
= − =

P a )
)

We can use directly the results from Example 2-9. Substituting (z − z2) for 
z everywhere in Eq. (2-49), we obtain the following contribution to the 
potential from the upper disk (ρps = Po):
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P
2

z z a z zo

0
2

2
2ε

( )− + − −





2

Subtracting a similar contribution from the lower disk (ρps = −Po), we 
obtain

 
V(z)

P
2

z z a z z a z z z zo

0
2

2
1

2
2 1= − + − − + − − + −



ε

( ) ( )2 2  (1-7)

which can also be expressed as

V(z)
P

R R R Ro

0
2 1 2 2 1 1= − − +[ ]

2ε
θ θ| sin | | sin |  (1-8)

Can you establish the following identity?

− − + − = − ≥
= − ≥
= − − ≤ ≤

z z z z z z z z
z z z z1

z z z z z z

2 1 2 1 2

1 2

2 1 1 2

( )
( )

( )2

Equation (1-7) can also be obtained by using Eq. (1-5b) for both upper 
and lower surfaces (z = z1, z2). The potential V(z) of Eq. (1-7) is continu-
ous along the z axis. The electric field Ez jumps (is discontinuous) at z = 
z1, z2 because of the bound surface charges on the upper, lower surfaces 
of the cylinder.

The on-axis electric field Ez may be obtained in several ways: 
(a) by using E = −∇V, (b) by direct application of Eq. (1-6b), (c) 
by using the results of Example 2-7 for both upper and lower discs 
at z = z1, z2.
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1.4 The Displacement Vector D

As we have noted before, free and bound charges are identical in their ef-
fect on V, E. Therefore, in the presence of dielectrics, we replace ρv with 
ρv + ρpv in Eq. (2-12) (Gauss’ law) to obtain

 
∇ ⋅ =

+
E

ρ ρ
ε

v pv

0

  (1-9a)

or

 
∇ ⋅ = +ε ρ ρ0 v pvE   (1-9b)

and note that

 
∇ ⋅ = −P ρpv   (1-3)

Equation (1-9) indicates that E lines begin and end on free or bound 
charges, going from positive to negative charges. Equation (1-3) indicates 
that P lines begin and end on bound charges, going from negative to posi-
tive charges. Adding Eqs. (1-9b) and (1-3),

 
∇ ⋅ + =( )ε ρ0 vE P   (1-10a)

The quantity εo E + P is defined as the displacement vector D:

 
D E P= +ε0   (1-11)

Then Eq. (1-10a) becomes

 
∇ ⋅ =D ρv   (1-10b)

D is thus a vector whose lines begin and end on free charges. We obtain 
the integral form of Eq. (1-10b) by integrating both sides over volume V 
and applying the divergence theorem:

 
' D s⋅ =∫∫ d Q f

S

  (1-12)

where Qf is the free charge enclosed within the surface S. Equation (1-12) 
should be recognized as a new form of Gauss’ law which is valid even in 
the presence of the dielectric. Equation (1-12) is more useful since we 
often know the free charges but not the bound charges. Table 1-2 sum-
marizes the two forms of Gauss’ law for D and E. Note that
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Q  dv (total free charge enclosed)f v
V

= ∫∫∫ρ

Q  dv (total bound charge enclosed)p pv
V

= ∫∫∫ρ

Table 1-2 Gauss’ law

Point Form Integral Form

∇ · D = ρv ' D s⋅ =∫∫ d Q f
S

∇ ⋅ = +E
1
ε

ρ ρ
0

v pv( ) ' E s⋅ =
+

∫∫ d
Q Qf p

0S ε

1.4.1 Linear Dielectrics

Many dielectrics are highly linear; thus we can assume that P is proportional to E.

 
P E= ε χ0 e   (1-13)

Then

 
D E P E E E= + = + = =ε ε χ ε ε ε0 0 e 0 r(1 )   (1-14)

χe, εr, ε are called electric susceptibility, relative permittivity (or dielec-
tric constant), permittivity, respectively. They represent three different 
ways of specifying the same linear relationship. We will usually specify the 
permittivity ε. The three parameters (χe, εr, ε) are not functions of E for 
linear dielectrics but may be functions of position (x,y,z). For homogeneous 
media they are constants. Thus ε(x,y,z) represents a linear, inhomogeneous 
medium, and ε = constant represents a linear, homogeneous medium.

For a linear dielectric medium,

        

D E

P E

=
= −

ε
ε ε( )0   

Linear dielectric medium (1-15)

and both D and P are known once E is known. Equation (1-15) is known 
as a constitutive relation. Table 1-3 shows some typical values of dielec-
tric constant εr.
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Table 1-3 Dielectric Constants

Material Dielectric Constant
Air 1.0006

Balsa Wood 1.4

Paper 2-4

Teflon 2.1

Polyethylene 2.25

Polystyrene 2.55

dry Soil 2.6

Glass 4 - 10

Quartz 4.3

Mica 6

Silicon 11.7

Alcohol 28

Water 80

Rutile 100

BaTiO3 500 - 4500

1.4.2 Linear, Homogeneous Dielectrics

If a medium is both linear and homogeneous, then D = ε E and ε is a 
constant. Thus

∇ ⋅ = ∇ ⋅ = ∇ ⋅ + ∇ ⋅ =D E E E( )
||

ε ε ε ρ

0

� v

(see Eq. (1-43)).

Then

∇ ⋅ = =
+

E
ρ
ε

ρ ρ
ε

v v pv

0

and

 
ρ

ε ε
ε

ρpv
0

v  Linar homogeneous dielectric= −
−





 
 (1-16)
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Also, since an ideal (perfect) dielectric has no free charge (ρv = 0),

 
ρ

ρv  Liner, homogeneous, perfect dielectric= 0
 

 (1-17)

Example 1-2. A Point Charge and a Dielectric Shell
Figure 1-7 shows a point charge q surrounded by a dielectric shell of radii 
a, b and permittivity ε1. Find the electric field in each region and the 
bound surface charges at r = a, b.
Solution:

Because of spherical symmetry, we expect that E and D will be radial.

E a D a= =r r r rE  D,

Apply Gauss’ law for the spherical surface of radius r.

Regardless of where r is chosen,

  

' D s⋅ = = =

=

< < < >

∫∫  d r D Q q

D
q
r

 everywhere

(r a, a r b, and r

2
r f

r 2

4

4

π

π
bb)

   (1-18)

a

bq

1

0

0

Figure 1-7. A point charge and a spherical dielectric shell

E
D q

r
 (a r b) in the dielectric shellr

r

1 1
2= = < <

ε πε4
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E
D q

r
 (r a, r b)r

r

0 0
2= = < >

ε πε4

The polarization (vector) P in the dielectric shell is given by

 
P E a= − =

−
< <( )

( )q
r

 (a r b)1 0 r
1 0

1
2ε ε

ε ε
πε4

  (1-19a)

Bound charges are:

ρ
ε ε

πε

ρ

ρ

ρ

v 2 2
1 0

1

s n

P
r r

r
r r

( )q
= −∇ ⋅ = − ∂

∂
( ) = − ∂

∂
−








=

= ⋅

1 1
4

02 Pr

P a == −
−







 = = −

=
−









ε ε
ε π

ε ε
ε π

1 0

1
2 n r

1 0

1
2

q
a

 at r a 

q
b

 a

4

4

[ ]a a

tt r b n r= = −[ ]a a

 (1-19b)

Note that the electric charge q has drawn up a negative bound charge at r = a and left 
a positive bound charge at r = b. This bound charge is related to free charge 
(that would be present if there were a conducting shell) by the ratio indicated 
in Eq. (1-16). It also weakens the electric field within the dielectric. Note also 
that although P is not uniform, ρρv = 0, which confirms Eq. (1-17).

Example 1-3. A Dielectric-Loaded Coaxial Transmission Line
Figure 1-8 shows a coaxial line of inner radius a, outer radius b, which 

is loaded with a dielectric of permittivity ε1. A voltage Vo is applied between 
inner and outer conductors. The inner conductor is the positive reference. 
Find the electrostatic fields and the bound and free charge densities.

2a 2b

Conductor

Dielectric1

1

a

b

1

Conductor

Dielectric

Conductor

Figure 1-8. A dielectric-loaded coaxial transmission line
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Solutions:
First we assume an unknown free charge ρℓ per unit length at ρ = a, 

which is drawn up by the application of voltage Vo. Then −ρℓ per unit 
length appears at ρ = b. Assuming that the coaxial line is infinitely long, 
the fields will be radial (ρ-directed) because of cylindrical symmetry.

Applying Gauss’ law for the cylinder of radius ρ and length ℓ,

' D s⋅ = = =

=






= =


∫∫  d  l D Q

D
2

 E
D

p f l

l

1

l

1

2 1

1
2

1

πρ ρ

ρ
π ρ ε

ρ
πε ρρ ρ

ρ,





To determine the (linear) relationship between applied voltage Vo and the 
resultant free charge ρℓ per unit length:

V d E  d
2

1
 d

2
b
ao

b

a
l

1 b

a
l

1

= − ⋅ = − = − =∫ ∫ ∫E � ρ ρ
ρ
πε ρ

ρ
ρ
πε

ln( )

and ρ
πε

l
1 o2  V
b
a

=




ln

The free surface charge density is

 

ρ
ρ
π

ε
ρs

1 o

2 a
 V

a b
a

 at a= =






=�

ln
  (1-20a)

 

=
−

=






=
ρ
π

ε
ρl 1 o

2 b
V

b b
a

 at b
ln

  (1-20b)

The electric field and the polarization are

 

E a a=






=










ρ ρ

ρ
πε ρ ρ

l

1

o

2
V

b
a

1 1

ln
  (1-21a)
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P E a= − =
−













( )
( )

ln
ε ε

ε ε
ρρ1 0

1 0 o V
b
a

1
 (1-21b)

The bound surface charge density is

ρ
ε ε

ρps n
1 0 o V

a b
a

a= = = −
−







=P a
( )

ln
( )  (1-22a)

=
−







=
( )

ln
( )

ε ε
ρ1 0 o V

b b
a

b  (1-22b)

Note that the bound and free surface charge densities at both ρ = a 
and ρ = b are related by

ρ
ε ε

ε
ρps

1 0

1
S= −

−





as in Eq. (3-16).

1.5 Boundary Conditions

We now turn to problems involving two or more media. To treat these 
problems, we need to understand how the vectors E, D behave at an in-
terface. First, we analyze the tangential component of the electric field E. 
Consider a particular point P lying on the interface between two arbitrary 
media 1, 2 (Figure 1-9).
  

E
2

E
1

P

l l

x
2

1

Figure 1-9. Tangential E at a boundary

Let x, y be rectangular coordinates of a point P located in the tangent 
plane to the interface between media 1 and 2. We construct a closed 
contour C around P as shown in Figure 1-9 and consider the line integral
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C
∫ ⋅E d�

The long side Δℓ is parallel to the x direction; Δℓ is made small so that 
E does not vary over the length. α is made arbitrarily small compared to 
unity so that the short side does not contribute to the line integral. E1, 
E2 are the electric fields at the interface in regions 1, 2, respectively. Then 
from the first law, of electrostatics, Eq. (2-11),

C
∫ ⋅ = − =E d E E1x 2x� �( )∆ 0

and E1x = E2x; similarly, E1y = E2y, therefore

 
E E1t 2t−   (1-24)

i.e., the tangential component of the electric field is continuous across the 
boundary.

Next we analyze the normal component of the displacement D. Con-
sider Figure 1-10 which shows a small closed surface S about the point 
P on the interface, with top and bottom (horizontal) surfaces of area Δs 
parallel to the tangent plane and vertical side of area αΔs normal to the 
tangent plane.

D1

D2

P

S S
1
2

(a)

an

an S
S

(b)

Figure 1-10. (a) Normal D at a boundary (side view).

(b) Full view of surface S

We consider the integral D s⋅∫∫ d  s
S

.� ∆  is made small so that D does 
not vary over S and α is made small compared to unity so that the flux 
through the vertical side does not contribute to D s⋅∫∫ d

S
� . A direction 

an normal to the interface is arbitrarily chosen pointing into region 1. 
Then if there exists a free surface charge ρs at the boundary, Gauss’ law, 
Eq. (1-12), leads to

Adams-Book2_156145.indd   18 16/12/14   12:01 AM



 INTROduCTION TO dIELECTRICS 19

# 156104   Cust: MP   Au: Adams  Pg. No. 19 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

  

' D s⋅ = − = =

− =

∫∫ d D D s Q s

D D
S

1n 2n f s

1n 2n s

( )∆ ∆ρ

ρ
 

(1-25)

Normal D is discontinuous by an amount equal to the free surface charge 
density. The polarities can be checked by noting that a normal vector D, 
upon encountering a positive charge, increases. Note that the normal di-
rection (an) was chosen pointing into region 1; Eq. (1-25) will change if 
the normal is chosen pointing into region 2.

Because we have used the two basic laws 
C

d∫ ⋅E �  and ' D s⋅ =∫∫ d Q
S

f , 
which are valid for any electrostatic problem, the boundary conditions are 
also valid for any electrostatic problem. They hold for any media whatsoever, 
i.e., dielectrics (perfect and imperfect) and vacuum and any combinations 
thereof. There are thus many special cases for regions 1, 2. Table 1-4 outlines 
a few of the most important cases.

Note that for arbitrary media, the jump (discontinuity) in normal 
D, E, P is proportional to ρs, ρs + ρps, −ρps respectively. At the interface 
between two ideal dielectrics, normal D is continuous. The boundary condi-
tions at an air-conductor interface, Eq. (2-67), can be obtained by setting 
ε1 = ε0 in the last case of Table 1-4.

Table 1-4 Boundary Conditions

Arbitrary Media

E1t = E2t, d1n − d2n = ρs

ε0 ( E1n − E2n ) = ρs + ρps

P1n − P2n = −ρps

Linear, Ideal Dielectrics (rs = 0)

E E D D

D D E E

P P

1t 2t 1n 2n

1t 2t
1

2
1n 2n

1

2

1t 2t
1

= =

=






=






=
−

ε
ε

ε
ε

ε εε
ε ε

ε ε
ε ε

ε
ε

0

2 0
1n 2n

1 0

2 0

2

1

P P
−







=
−
−
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Conductor, Dielectric
(Region #2 is a conductor)

E2 = D2 = P2 = 0; ε0 E1n = (ρs + ρps), E1t = 0

D1n = ρs

P1n = − ρps

Conductor, Linear Dielectric
(Region #2 is a conductor and Region #1 has permittivity ε1)

E D P2 2 2
1

1 0

1

0 0= = = = =

=

=






; ,

-

 E  E

D

P

1n
s

1t

1n s

1n s

ρ
ε

ρ

ρ
ε ε

ε

Example 1-4. Fields in a Parallel-Plate Region
Figure 1-11 shows the field lines for ε0E and P in a parallel plate region 

with a homogeneous dielectric and air gaps. The fringing fields near the edges 
are neglected. The electric field E is stronger in the air gap, due to the fact 
that some E lines terminate on bound charge. Note that the sum of ε0E + 
P equals D and that the D lines begin and end only on free charge. For a 
linear dielectric with permittivity ε ρ

ε ε
ε1

1 0

1

,  ps = −
−





 as in Eq. (3-16).

++++++++++ +++

+++++ +
+
0V

s

ps

0E P

0E

P

C��������

C��������

�������

�������

����������

Figure 1-11. Field lines in a dielectric-loaded parallel-plate region 
with air gaps
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1.6 Capacitance

In this section we study the capacitance of a capacitor. Consider two con-
ductors (1), (2) with charges Q, −Q, and electric field E and voltage V as 
shown in Figure 1-12(a).

Figure 1-12(a). Capacitance

A linear dielectric of permittivity ε exists in the region between the con-
ductors. The charge resides on the surfaces S1, S2 with a surface charge 
distribution ρs. Because of the linear relationships between ρs, E, V, there 
is a linear relationship between charge and voltage. Doubling one doubles 
the other. The ratio of charge to voltage is called the capacitance:

 
C

Q
V

=
 

 (1-26)

Note that the voltage V here is the potential difference between the two 
conductors. The unit of the capacitance is the farad [F] (named after 
Michael Faraday). The capacitance may also be expressed in terms of elec-
tric field E and displacement D:

V

E

Q
Q

Conductor

Conductor

1 2

S2

S1
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  (1-27a)

C
Q
V

 ds

d

D ds

d

s
S S1 1= =

− ⋅
=

⋅

− ⋅

∫∫

∫

∫∫

∫

ρ

E E� �
2

1

2

1

which reduces to the following form for a linear, homogeneous dielectric

 

C

 d

d

S1=
− ⋅

∫∫

∫

ε E s

E �
2

1   (1-27b)

(for a linear, homonogeneous dielectric)

The capacitance of a capacitor depends on the geometry of the capacitor 
and the dielectric property of the medium between the conductors. The 
capacitance C can be calculated by the following steps:

1. Assume charges +Q, −Q on the two conductors.

2.  Find the electric E, using one of the methods we learned so far.

3.  Calculate the potential difference, V d= − ⋅
−

+

∫ E �
( )

( )

.

4.  Find C by taking the ratio 
Q
V . 

Example 1-5. Parallel-Plate Capacitor
Consider a parallel-plate capacitor with dielectric material of uni-

form permittivity ε shown in Figure 1-12(b). The area of each plate is 
A and plate separation is d. Neglect the fringing fields. Determine the 
capacitance.
Solution:

First we assume charges Q, −Q on the plates, resulting in a surface 
charge ρs as shown in Figure 1-12(b), where

ρs
Q
A

=

We expect that the electric field is uniform as in Example 2-6. Applying 
the boundary condition at x = 0,
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D D E
Q
A

 E
Q
An x x s x= = = = =ε ρ

ε
;

and the potential V across the capacitor between plates can now be 
determined.

 V d E dx 
D d Qd

Ad
x

0

d
x= − ⋅ = = =∫ ∫E �

0

ε ε

E

+
+

+
+

+
+
+
+
+
+

+
E

s pspsps

x = 0 x = d

Area
A 

Figure 1-12(b). A parallel-plate capacitor

The capacitance is

 
C

Q
V

A
d

= = ε
  (1-28)

The bound charge ρps at x = 0 is determined from boundary conditions:

ρ
ε ε

ε
ε ε

ε
ρps n x

1 0
x

1 0
SD= ⋅ = ⋅ − = −

−
= −

−



P a P a( )

( )

as in Eq. (1-16). Note then an is normal outward from the dielectric.

Consider what happens when we insert the dielectric between parallel 
plates. Under constant charge conditions, bound charge is drawn up to 
weaken E and V, thereby increasing C. Under constant voltage condi-
tions, the electric field must be maintained. Additional free charge must 
be drawn up to maintain E despite the weakening effect of bound charge. 
Q and C are therefore increased. Insertion of a dielectric increases the 
capacitance. C is proportional to the area of the plate and inversely pro-
portional to the plate separation.
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Example 1-6. Spherical Capacitors (see Figure 1-13)

(a)The Isolated Sphere

Consider an isolated conducting sphere of radius a in free space. To 
find the capacitance, we assume a charge q uniformly distributed over 
the surface of the sphere. Here we assume that the negative terminal is at 
infinity. Applying Gauss’ law (see Example 2-4):

E
q

4 r
r a V(r)

q
4 r

V(a)
q

4 a
 V( ) 0r

0
2

0 0

= > = = ∞ =
πε πε πε

( ); ; ,

Then

 
C

q
V(a)

4 a0= = πε   (1-29)

The capacitance of the earth is therefore less than a millifarad.

b

a

2

b

a
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(a) A capacitor.

(c) Capacitors in parallel. (d) Capacitors in a series-parallel combination.

(b) Capacitors in series.  

a

c

1

2

b

Figure 1-13. Concentric spherical and cylindrical geometries.

Inner and outer surfaces are perfect conductors
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(b) Concentric Spheres (see Figure 1-13(a))
Consider concentric spheres (perfect conductors at r = a, b). The 

space between spheres is filled with a dielectric of permittivity ε. Assume 
a charge q at r = a and −q at r = b. Then

E
q

4 r
a r b V d

q
4 a b

q
4

b a
a br 2 ab

b

a

= < < = − ⋅ = − = −
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→ → ∞

πε

πε
             (1-30)

which agrees with Eq. (1-29).

(c)Capacitors in Series (Figure 1-13(b))
Figure 1-13(b) shows a spherical capacitor with two dielectrics. Two 

conductors are at r = a, c. We assume a charge q at r = a and −q at r = c. 
Applying Gauss’ law:
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q
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( )   (1-31)

Note that normal D is continuous across the boundary of two dielectrics 
at r = b as required by the boundary conditions. The electric fields are given by
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Vac is then evaluated as follows
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Note that the result corresponds to capacitances in series.
(d) Capacitors in Parallel (Figure 1-13(c))

Figure 1-13(c) shows a spherical capacitor with two dielectrics in par-
allel. We try a solution of the following form:

 
E

K
r

a r br 2= < <( )   (1-33)

in both dielectrics where K is an unknown constant. Note that tangential 
E is continuous at the interface of two dielectrics as required by the bound-
ary conditions. The free charge densities ρs1, ρs2 (at r = a) differ. Using the 
boundary condition (1-25), the total charge at r = a is given by
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The result corresponds to capacitors in parallel.
(e)A Series–Parallel Combination (Figure 1-13(d))

Figure 3-13(d) shows a capacitor with three dielectrics. We are 
tempted to call this a series–parallel combination. There is no simple form 
for E and normal D which will satisfy continuity of both tangential E and 
normal D. In fact, this is a difficult problem involving fringing fields and 
requiring numerical computation for precise results. However, for thin 
spherical shells, the fringing is less significant and the capacitance may be 
approximated by the result given below:
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The result in Eq. (1-35) corresponds to a series-parallel combination.

Example 1-7. A Concentric Cylindrical Capacitor (Figure 1-13(a))
Note that Figure 1-13 applies to both spherical and cylindrical 

geometries.
The cross section of a concentric cylindrical capacitor of infinite length 

is shown in Figure 1-13(a). Surfaces ρ = a, b are perfect conductors. Find 
the capacitance per unit length appropriate to this cylindrical geometry.
Solution:

We assume a charge ρℓ per unit length uniformly distributed 
over the surface ρ = a and −ρℓ at ρ = b. Then, applying Gauss’ law (see 
Example 1-3)
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The capacitance per unit length is given as follows:
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For a concentric cylindrical capacitor of finite length ℓ, fringing at the 
ends invalidates the results given in Eq. (1-37), which will, however, be 
reasonably accurate if � � a,b.

1.7 Benjamin Franklin (1706-1790) and the 
Beginnings of Electrical Science

Benjamin Franklin can accurately be described as a Renaissance man: he 
did so many things and he did them to perfection. The breadth and depth 
of his accomplishments are largely unparalleled. History remembers him 
as the inventor of the lightning rod, bifocals, and the Franklin stove. We 
recall his role in the American Revolution as Ambassador to France. He 
appears in numerous famous paintings: performing his kite experiment, 
presenting the Declaration of Independence to John Hancock, and in his 
fur cap and spectacles in Paris. As memorable as these well-known im-
ages are, they commemorate only a very small number of his accomplish-
ments. To gain some idea of the scope of his activities, we would have to 
read some of the biographies of Franklin; the 1938 biography by Carl Van 
Doren is still one of the best.

Benjamin Franklin was born in 1706, the youngest boy of a very large 
family. He attended school for about two years and, at age ten, began to 
work with his father, a soap and candle maker. At age twelve he was ap-
prenticed to his brother James, a printer. He ran away to Philadelphia at 
age seventeen, worked as a printer, and eventually set up his own print-
ing shop at age twenty-two. Within four years, he had started writing 
and printing “Poor Richard’s Almanac”, a yearly publication which would 
become immensely popular, eventually selling 10,000 copies a year and 
continuing for 27 years. By his late twenties, then, Franklin was well-
established as a local printer and businessman, and was well on his way 
to wider recognition.

Benjamin Franklin wrote two outstanding books during his lifetime. 
The first was a description of his discoveries in electricity, Experiments and 
Observations on Electricity, published in 1751. This first publication was 
crucial in establishing Franklin’s reputation as a scientist. In it, Franklin 
put forward the idea that lightning was electricity, proposed a specific 
experiment (the sentry box experiment) for verification of the theory, and 
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recommended the use of grounded rods to protect buildings from light-
ning strikes. A year later, several French scientists carried out his sentry 
box experiment, while Franklin performed his famous kite experiment, 
resulting in a thorough confirmation of his basic theory. The book and 
these lightning experiments catapulted Franklin into the limelight and es-
tablished him as one of the world’s foremost scientists and a leading figure 
in the new science of electricity. Accolades and awards from around the 
world followed soon after. Two years later, in 1753, Benjamin Franklin 
received the Copley medal, an award that carried prestige equivalent to 
today’s Nobel Prize.
Carl Van Doren, Benjamin Franklin, Bramhall House, 1987, Reprint of 
Viking Press, NY, 1938.

Benjamin Franklin wrote in a very clear and readable style. His judg-
ment in reaching for a conclusion or drawing an hypothesis is very sure. 
His style is engaging and frank, and he readily acknowledges his igno-
rance or uncertainty: “You require the reason. I do not know it. Perhaps 
you may discover it and then you will be so good as to communicate it to 
me.” His treatment of his own hypotheses was very refreshing. He readily 
acknowledged them as only tentative models and he was ready to aban-
don them if they proved inadequate: “I am still at a loss about the manner 
in which they (clouds) become charged with electricity; no hypothesis I 
have yet formed perfectly satisfying me.”

Benjamin Franklin’s second book is his Autobiography, which remains ex-
tremely popular to this day. Particularly interesting is the description of his 
self education and self discipline. It is the story of a brilliant and unusual man 
struggling to emerge from ignorance and poverty. He relates many of his mis-
takes and failures and does not bask in his successes and honors.

Throughout his life, Benjamin Franklin was also a prolific writer of 
newspaper articles. These were usually written to advance some social or 
political purpose. They were entertaining as well as educational, and their 
impact was always considerable. The undergraduate of today can read 
with edification and delight any of these famous articles, including “Miss 
Polly Baker,” “Rattlesnakes for Felons,” “The King of Prussia,” and “Rules 
by Which a Great Empire May be Reduced to a Small One.” In the age 
of Enlightenment, Franklin’s articles led to personal recognition and to 
profound respect for the power of his arguments.
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To return to Franklin’s role as a scientist, what were the key scientific ac-
complishments which established his reputation? To begin with, one of his 
initial contributions was his analysis of the “Leyden jar,” essentially a glass jar 
filled with water and held in one’s hand. We may think of it as a jar which 
is coated separately with a conductor on the inside and outside. The Leyden 
jar is thus a “warped” parallel plate capacitor. Because of the large surface area 
and the thinness of the glass, the capacity is large and considerable electric 
energy can be stored in the glass. The Leyden jar was a convenient source of 
energy and was therefore used in a wide variety of experiments after it was 
discovered by the Dutch physicist Pieter Van Mussenbroek in 1746.

Franklin demonstrated that the conductors inside and outside were 
oppositely charged, that the total charge was zero and was therefore un-
changed as the capacitor was discharged. He wrote: “These two states of 
electricity, the plus and the minus, are combined and balanced in this 
miraculous bottle in a manner that I can by no means comprehend”. 
The Leyden jar analysis led to a general theory of positive and negative 
charges, the conservation of total charge, and the single fluid theory. 
Franklin explained his experiments with the motion of a single type of 
charge, namely free electrons. He also concluded that the energy was con-
tained in the glass itself. He “unwrapped” the Leyden jar and formed the 
parallel plate capacitor. This was merely a flat glass plate coated with con-
ductors on both sides. He then combined a set of plates in either series or 
parallel combinations. The series combination was called a “battery”. The 
Leyden jar experiments were crucial because they led directly to Franklin’s 
general theory of electricity. His theory swept aside the vague previous 
theories of “effluvia” and “affluvia” espoused by the Abbé Nollet, one of 
the leading figures in the early study of electricity.

Franklin’s earliest writings on electricity in 1747 described some of 
his observations on the effects of pointed objects. His colleague Thomas 
Hopkinson had carried out some of the early experiments. By 1750 
Franklin had proposed the lightning rod as a protection for houses and 
for ships and had added the very important grounding wire for both. He 
had also proposed his “sentry box” experiment for determining whether 
clouds were electrified, and whether lightning was, in fact, electricity. In 
1752 the experiment was performed successfully in France with the sen-
try box and in America with the kite.
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The drama of these experiments cannot be overrated. Lightning was 
proven to be electrical in origin and identical to the small-scale sparks 
produced in the laboratory. The clouds were shown to be electrically 
charged and the cloud-earth combination analogous to a giant Leyden 
jar. Foremost, a solution to the important practical problem of lightning 
hazard was proposed, namely the grounded lightning rod. The potential 
usefulness of lightning rods was enormous. It is estimated that in one 
thirty-three year period in the eighteenth century 386 church towers were 
struck and 120 bell ringers were killed in Germany alone.

Ultimately, Benjamin Franklin’s most important contributions to 
electrical science were

(1)  The conservation of electric charge.
(2)  The single-fluid theory.
(3)  The concept of positive and negative charges.
(4)  The analysis and extension of the Leyden Jar.
(5)  The effects of pointed objects.
(6)  The grounded lightning rod.
(7) The electrification of clouds.

Now we begin to see why Franklin, who first organized in a coherent 
theory the basic ideas of electricity, was regarded in his time, and for some 
time after, as one of the leading scientists of electricity. His experiments 
and the book which described them gave order and structure to what had 
previously been a disorganized collection of theories. The importance of 
his work was immediately recognized by leading European scientists. He 
received the highest scientific awards of the day, including the prestigious 
Copley medal. He was also elected Fellow of the Royal Society and a 
member of the French Academy of Sciences. Long before the American 
Revolution, Franklin had established himself as the leading scientist of 
electrical phenomena.

So Franklin, in his time and for years afterwards, was widely recog-
nized for his pioneering work in electricity. In recent times, however, 
we seem to overlook Franklin’s scientific contributions. It is certainly 
possible that you do not think of Benjamin Franklin as a scientist, and 
there are several reasons for this oversight. Franklin left no equations 
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which we recognize as fundamental parts of the theory. We have ab-
sorbed many of his contributions and use them unconsciously. As 
well, he was a prolific inventor, and it is easy to think of his inven-
tions as representing his primary technical accomplishments, whereas 
they were actually the fruits of his scientific curiosity and scientific 
theories.

When Benjamin Franklin came to France as Ambassador, his 
scientific reputation preceded him. He was not an unknown Phila-
delphian, but an eminent scientist. His greatest experiment, the 
lightning experiment, had first been carried out by Frenchmen. His 
book had been translated into French and was in wide circulation. 
His greatest antagonist, the French Abbé Nollet, wrote two books at-
tacking the Franklinian theory; he was particularly averse to lightning 
rods. Franklin chose not to reply directly to any of the Abbé’s many 
attacks, and said, “I have an extreme aversion to public altercation 
on philosophic points, and have never yet disputed with anyone who 
thought fit to attack my opinions.” He was directly defended by sev-
eral Frenchmen, and, if anything, his reputation was enhanced by this 
controversy.

How much of his life did Benjamin Franklin devote to his key 
electrical experiments? We are surprised to note that it was a relatively 
short period of time, namely, the six years from 1747 thru 1752. 
Having achieved financial independence, Benjamin Franklin retired 
from the printing business in 1748 in order to devote himself more 
completely to his electrical research. His book on experiments was 
first published in 1751 and the lightning rod experiments were per-
formed in 1752.

Franklin was the quintessential public relationist. He was very 
conscious of his image and strove at an early age to project a positive 
one. This is not to say that the image necessarily conflicted with reality 
but that Franklin fully realized its importance. Thus, “To show that 
I was not above my business, I sometimes brought home the paper 
I purchased at the stores through the streets on a wheelbarrow.” In 
his scientific writings he projected the image of an open, receptive 
person. As a result, other scientists flocked to share their results with 
him and to perform experiments for him. When Franklin first came 
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to France as Ambassador during the American Revolution, he was 
already known as an eminent scientist. What image then was appro-
priate for the diplomat Franklin? Could he possibly outdo the other 
diplomats in their courtly finery? He decided to do just the opposite 
of what was expected and appeared in simple dress with a fur cap, 
thereby projecting a unique and lasting image.

Franklin was a very highly skilled diplomat. His efforts on behalf of 
the fledgling republic led to diplomatic recognition by France, to mas-
sive military aid, and to huge financial loans. There are many examples 
of Franklin’s diplomatic skill but one of the most striking occurred at 
the conclusion of the Peace Treaty negotiations. The Americans had 
decided to break their agreement with France and their instructions 
from Congress and carry out separate negotiations with England. Any 
other course of action would have made the negotiations almost im-
possible. An extremely favorable treaty had resulted, including exten-
sions of United States Territory to the Mississippi and to Canada. The 
negotiations could not have gone better. The Americans had come to 
the table with their most talented statesmen (Franklin, Adams, Jeffer-
son, Jay, Laurens) and had overwhelmed the English negotiators. Now 
it was necessary to tell the French about the negotiations. Franklin 
reported to his French counterpart, Charles Gravier, the comte de 
Vergennes, and sent him a copy of the treaty which had already been 
signed. Vergennes sent him back a note of reproach. Franklin now 
sent Vergennes a famous letter in which he put forth the American 
position in the most favorable light, made a partial apology, and said 
“the English, I just now learn, flatter themselves they have already di-
vided us.” Somehow this did the trick! Not only were fences mended 
but Vergennes arranged yet another much-needed loan to the United 
States. The years of careful diplomacy to establish cordial relationships 
with Vergennes combined with just the right touch in the letter, had 
preserved America’s unique relationship with France.

Additionally, Franklin had recognized early the injustice of the insti-
tution of slavery and had written many articles on the subject, including 
those that highlighted unrecognized talents of African Americans. Two 
months before his death he submitted to Congress a petition for the abo-
lition of slavery. It was turned down.
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1.8 The Force on a Conductor in an Electric Field

We turn now to the calculation of the force on a conductor in an electric 
field. This would seem to be straightforward matter but it’s not. There are 
subtleties involved which are concerned with the self field Es. In the course 
of the discussion we will learn the very useful fact that in calculating 
forces we can always subtract the self force. For the force on a conductor, 
this means that we can use (E − Es) in place of E.

To find the force on a conductor we need to consider only the forces 
on the electric charges which exist on the surface of the conductor. Figure 
3-14(a) shows a conductor with a typical patch of the surface with area ds, 
surface charge density ρs, and electric field E. The force dF on the patch 
is equal to the charge ρsds times the electric field vector. There is just one 
problem and that is, “which electric field?”

Conductor

+
+
+

ds z

s

E

Figure 1-14(a). A conductor in an electric field

Figure 1-14(b) shows a plot of the electric field near the surface of the 
conductor. We choose z as the direction normal to the patch. Ez is a step 
function which jumps from zero to 

ρ
ε

s

o
 at the surface of the conductor. 

For E should we use the value (zero) just inside the conductor, the value ρ
ε

s

o
 just outside, the average 

ρ
ε

s

o2
, or something else?

s
0

s
02

s
02

zE

szE

zE

szE

Inside Outside

z

Figure 1-14(b). The normal electric field Ez and a self field Esz at a 
conductor surface
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Before going any further, let’s remind ourselves of the behavior of 
the electric field E and also the behavior of the self field Es which is the 
contribution of the patch itself. We are interested in the behavior of these 
fields just inside and just outside the conductor surface.
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The self field Es due to the small patch itself is the same as that of an in-
finite plane of charge:
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Figure 1-14(b) shows a plot of E (solid) and Es (dotted). We note that E 
and Es have the same jump (discontinuity) at the surface and therefore 
we consider using their difference (E − Es) in calculating forces. This is 
legitimate since the conductor exerts no net force on itself. The difference 
E − Es is continuous:
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Now we see the culprit. It is the self field Es which is discontinuous at 
the surface. Its presence in E leads to an ambiguity; its removal resolves 
the ambiguity. Its removal is also equivalent to taking the average of fields 
inside and out (since Es is odd). Es is the field at the patch due to the patch 
itself; E − Es is the field at the patch due to the rest of the conductor, i.e., 
everything but the patch.

Thus the force F on a conductor in an electric field is given as
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1.9 Energy and Forces in the Electrostatic Field

In this section, we calculate the energy of, or the work required to as-
semble, electrostatic systems. In addition, we are interested in the forces 
exerted on portions of the system. First we consider the work required to 
assemble a collection of point charges.

1.9.1  Energy of a Collection of Point Charges

Figure 1-15 shows a set of N point charges at arbitrary locations. The 
distance between q1 and q2 is r12 and the distance between qi and qj is rij. 
Let us determine the work required to bring up the charges from infinity. 
We start with all the charges an infinite distance from the origin and from 
each other. The point charges have been given to us; we do not, for the 
moment, inquire into the work required to construct them.

No work is required to bring up the first charge (q1) since there are no 
forces exerted on it. Charge q2 is brought up working against the poten-
tial of q1. The potential through which q2 is moved is 

q
4 r

1

0 12πε ; the work 
required is thus 

q q
4 r

1 2

0 12πε . Similarly, charge q3 works against the forces of 
both q1 and q2. The work required to bring up q3, working against the 
forces of both q1 and q2, is

z

x

y

12r

1q

qN2q

Figure 1-15. A collection of point charges
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Finally, the work required to bring up qN is
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Consider an N × N matrix of terms 
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. We have taken into 

account all the terms above or below the main diagonal and may thus 

express the total electric energy We as follows:

 

W
q q

4 re
i j

0 ijj 1
j i

N

i 1

N

=
=
>

=
∑∑ πε

  (1-43a)

where j > i includes terms above the main diagonal. Because of symmetry 
about the main diagonal,

 

W
q q
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0 ijj 1
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=
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  (1-43b)
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0 ijj 1
j i
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i i
i 1

N

πε
  (1-44)

)

where Vi is the potential at the location of qi due to all charges except qi 

itself. The factor of 
1
2

 in Eq. (1-44) is related to the linear nature of the 

problem. The first charge is brought up through zero potential, the last 

charge is brought up through the total potential V, and the average charge 

is brought up through 
1
2

V .

1.9.2  Energy of Continuous Charge Distribution

For continuous charge distribution ρv(x,y,z), we divide it into infinitesi-
mally small volumes and consider the charge of an infinitesimally small 
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volume element to be dQ = ρvdv. We then use the summation of Eq. 
(1-44) which becomes an integral. Integrating over all volume elements 
yields

 
W x,y,z)V(x,y,z dve v= ( )∫∫∫

1
2

ρ   (1-45)

Eq. (1-45) is the energy expression for volume charge distribution. For 

surface charge distribution it reduces to 
1
2

ρs Vds∫∫  if the surface is a 

conductor it reduces to 
1
2

 where Q is the total charge on the conductor 

and V is the potential of the conductor, since the potential V is constant 

on the conductor. The energy stored in the capacitor, which consists of 

two conductors carrying charges

+Q, −Q (see Figure 1-12(a)), can be expressed as follows:

W QV ( Q)V Q(V V QV= CVe 1 1 1 2
2= + − = − =1

2
1
2

1
2

1
2

1
2

)

where V1 and V2 are the potentials of the two conductors and V is the 
potential difference or voltage.

Energy in Terms of Fields

A second general form may be obtained by extending the volume of Eq. 
(1-45) to infinity. This is permitted since ρv = 0 outside the charge distri-
bution. Then

W Vdv ( D)Vdv

V

e v
all space all space

= = ∇ ⋅

= ∇ ⋅ − ⋅ ∇

∫∫∫ ∫∫∫
1
2

1
2

1
2

ρ

( )D D VV dv
all space

{ }∫∫∫
where we have used the vector identity

∇ ⋅ = ∇ ⋅ + ∇ ⋅( ) ) ( )V V( VD D D
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We now use E = −∇V and apply the divergence theorem to the first term 
of the integral above to obtain

W  dv V ) de
all space sphere at 

= ⋅ + ⋅











∫∫∫ ∫∫

∞

1
2

E D D s'

For a charge distribution of finite extent,    
            

V
1
r

 | |~
1
r

 ds r  as r2
2~ , , ~ ,D → ∞

, 
and the surface integral above vanishes. Thus

 

W  dve
all space

= ⋅∫∫∫
1
2

E D   (1-46)

In Eq. (1-45), the energy is viewed as being stored with the charge source, 
whereas Eq. (1-46) shows the energy being stored with the fields. Both 
equations yield the same result for an electrostatic system, but for time-
varying sources and fields, Eq. (1-46) makes more sense because the fields 
move in space, carrying the energy,

Example 1-8. A Spherical Cloud of Charge
Consider a spherical cloud of uniform volume charge density ρv:

ρ ρv o  (r a)= <

Find the work required to assemble the cloud of charge.
Solution:
Applying Gauss’ Law:
  

' D ⋅ = = ≤

= ≥

∫∫∫ ds r D
4
3

r  (r a)

4
3

a  (r a)

S

2
r o

3

o
3

4π ρ π

ρ π

  
  

  

   

D E
r

3
r a

a
3r

r a

r o r
o

o
3

2

= = ≤

= ≥

ε
ρ

ρ

( )

( )

Adams-Book2_156145.indd   39 16/12/14   12:01 AM



40 PRINCIPLES OF ELECTROMAGNETICS 2 

# 156104   Cust: MP   Au: Adams  Pg. No. 40 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

The electric potential is given by

V d E dr
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dr
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3 r
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             (1-47)

(where Q a3
o= 4

3
π ρ ). We can also derive the same result, using the en-

ergy in terms of fields, Eq. (1-46) [see Problem 3-26]. Note that
We → 0 as a → 0 (ρo constant)
We → ∞ as a → 0 (Q constant)

This implies that (a) a small volume of uniform finite ρo has negligible 
energy and (b) a point charge Q has infinite energy.

1.9.3 Forces and Torques in Terms of Energy

Let us consider an electrostatic system consisting of conductors and di-
electrics. Allow one of the parts of the system to move under the influence 
of the force F acting upon it. We allow a small (virtual) displacement 
Δx of the movable part. Consider two situations: (a) constant charge for 
which conductors are isolated from each other and the total charge on 
each conductor remains constant during the displacement, (b) constant 
potentials for which potentials between conductors are constant during 
the displacement. Figure 1-16 shows parallel plates with a dielectric block 
partially inserted between plates. In the constant charge case the plates are 
unconnected and charge Q remains constant during a small displacement 
Δx. x is defined as the distance between a point on the fixed plates and the 
movable block of dielectric. In the constant voltage case an ideal voltage 
source is connected between plates. In this case, additional charge ΔQ is 
deposited on the upper plate during the displacement Δx.
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x d

x

Q

Q

1L

x d

x

1L

(a) Constant charge case. (b) Constant voltage case.

Figure 1-16. A dielectric slab partially inserted between parallel 
plates

Constant Charge

In the constant charge case, charge is fixed but potentials and fields may vary. 
Therefore the electrostatic energy We may vary with displacement Δx. As 
the dielectric block moves through displacement Δx, under the influence of 
force Fx, mechanical work FxΔx is done. The mechanical energy is thereby 
changed. It could be stored (as in a spring) or it could show up as kinetic 
energy ( )

1
2

mv2 . In any case, both the mechanical and electrostatic energy 
may change. Conservation of energy may be expressed as follows:

F x+Wx e= =∆ 0 .

 
F

W
x

W Q,x
x

as x 0x
e e= − → −

∂
∂

→
∆
∆

∆
( )

( )   (1-48a)

Constant Voltage

In the constant voltage case, the voltage is fixed but the charge may vary. 
If the charge is increased by ΔQ then the electrostatic energy, which is 
equal to 

1
2

VQ , increases by 
1
2

V Q∆  to 
1
2

V(Q Q)+ ∆ . The mechan-
ical work done is FxΔx as before. The battery is a third contributor to 
energy storage. The battery does work (supplies energy) V(ΔQ) in moving 
charge ΔQ through voltage V. Conservation of energy may be expressed 
as follows:

∆ ∆ ∆ ∆ ∆ ∆

∆
∆

W F x V Q W  (since W V Q).

F
W
x

W V,x
x

 a

e x e e

x
e e

+ = = =

= → −
∂

∂

2
1
2

( )
ss x 0∆ →

  
  (1-48b)

If the dielectric block is hinged at one end and free to rotate within 
the parallel plates, the mechanical work done is Tθ Δθ in each case, where 
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θ is an angle between the fixed plates and the rotatable block of dielectric. 
Tθ is the torque. The corresponding results are

 
T

W Q,
 constant charge)e

θ
θ

θ
= −

∂
∂
( )

(   (1-49a)

 
=

∂
∂

W V,
 constant voltage)e ( )
(

θ
θ

  (1-49b)

Forces and displacement in directions other than x may also be consid-
ered. The results may be generalized as follows:

 
F WQ e= −∇   (1-50a)

 
F WV e= +∇   (1-50b)

where the subscripts Q and V represent constant charge and voltage, 
respectively.

Example 1-9. Force on a Dielectric Block between Parallel Plates

Consider the configuration of Figure 1-16. The plates are rectangular 
with plate area equal to L1L2. Assuming that L1, L2 �  d, we neglect 
fringing fields. In other words, we assume that the electric field is uniform 
in the region between the plates and zero outside. The electrostatic energy 
of the system and the forces are given by

 
W QV

1
2

CV
Q
Ce

2
2

= = =1
2

1
2

  (1-51)

 
F

W V,x
x

V
dC(x)

dxx
e 2=

∂
∂

=
( ) 1

2
  (1-52a)

        
= −

∂
∂

= − 





=
W Q,x

x
Q

d
dx C(x)

Q
C

dC(x)
dx

e 2
2

2

( ) 1
2

1 1
2   

 (1-52b)

Note that the constant charge and constant voltage cases yield identi-
cal expressions, as they must, for Fx. Considering the configuration as a 
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parallel connection of two parallel-plate capacitors and using the result of 
Eq. (1-28),

C(x)=
L x
d

L (L x)
d

dC(x)
dx

L ( )
d

2 0 2 1

2 0

ε ε

ε ε

+
−

=
−

Then

 
F

V L ( )
2dx

2
2 0=

−ε ε
  (1-53)

Since ε > εo, Fx is always positive and the dielectric slab is pulled in be-
tween the plates. Note that we have assumed a uniform electric field in 
finding the force. However, it is not this uniform field but a nonuniform 
fringing field that pulls the dielectric into the capacitor. Without knowing 
the fringing field, which is difficult to calculate, we were able to find the 
force on the dielectric from the change in the electrostatic energy of the 
system.
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CHAPTER 2

Electric Currents and 
Conductive Materials

2.1 Introduction

Now we turn to problems which involve moving charges and resultant 
current flow. We are particularly interested in steady currents such as 
those which arise when steady voltages are applied across conductive or 
resistive materials. In Chapter 1, perfect dielectrics with zero conductivity 
were studied. Now we consider dielectrics with finite conductivity.

First we consider definitions of current. Then we establish some gen-
eral relationships, including the equation of continuity, Ohm’s law, Joule’s 
law, and relaxation time. These relationships may be applied to the gen-
eral time-varying case, as well as to the special case, of steady currents. Fi-
nally, we consider a new boundary condition which is required for steady 
currents, namely, the continuity of normal volume current density.

2.2 Electric Current

Let’s consider charges which are moving within a conductor. Consider 
any surface S within the conductor. Let Q(t) be the charge which has 
passed through the surface. Then the current I(t) through the surface is 
defined as

 
I(t)

dQ(t)
dt

=   (2-1)

The unit of current is the ampere [A], or coulomb/second, named after 
A. M. Ampère. The current is thus a measure of the rate at which charges 
are crossing the surface S.
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2.2.1 Volume Current Density

Consider charges which are moving through a volume. To define the vol-
ume current density J at a point, construct a small area ds perpendicular 
to current flow. dI is the current passing through the surface. Then the 
magnitude of vector J may be represented as follows:

 
J

dI
ds

 A/m2= [ ]   (2-2)

Vector J has magnitude J and a direction identical to that of positive 
charge movement or current flow. The current through a differential 
surface ds not necessarily perpendicular to current flow (Figure 2-1) 
is given by

dI d= ⋅J s

dsJ
S

Figure 2-1. Volume current flow through an arbitrary surface

and the total current I passing through surface S is

 
I d

S

= ⋅∫∫ J s   (2-3)

Next consider charges which are moving at a steady drift velocity v 
(Figure 2-2). Construct a rectangular solid of volume (ds v dt) as shown 
with surface ds perpendicular to current flow. In time dt all charges in the 
box will pass through the surface ds. Let there be N charges per unit vol-
ume, each of charge q. The current passing through the surface ds is then

dI
dQ(t)

dt
Nq(ds vdt)

dt
Nq dsv= = =

+
+

+
v

vdt

ds an

Figure 2-2. Drift velocity
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and  
J

dI
ds

Nq v where v

N q v

= = =

= =

| |v

J v vρ

 
J v= ρv   (2-4)

In the most general case where charges are of different types,   
  

J v v= =∑ ∑N qi i i
i

vi i
i

ρ

where Ni, qi, vi, ρvi are number of charges per unit volume, charge per 
carrier, velocity and volume charge density, respectively, for each type of 
charge carrier.

2.2.2 Surface Current Density

Surface current flows in a zero-thickness layer on a surface (Figure 2-3). 
To define the surface current density Js at a point we construct a line dℓ⊥. 
The subscript ⊥ denotes that the line is perpendicular to the direction of 
current flow. Then
   
   
   

Js
d

Figure 2-3. Surface current density Js 

            
J

dI
dl

A/ms =
⊥

[ ]   (2-5) 

and the vector Js has magnitude Js and a direction identical to that of 
current flow. Note that surface current density has the unit of amps/m 
whereas volume current density has the unit of amps/m2. The total cur-
rent passing through the strip (Figure 2-3) is given by

  
             

I J ds= ∫ ⊥�   (2-6)
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2.2.3 Line Current

For line current, that is, current which flows in a filament of zero cross 
section, we merely count the charges passing through a point to deter-
mine the current I there. Then

I
dQ
dt

=

I is the current vector, which has magnitude I and whose direction is that 
of current flow.

2.3 The Equation of Continuity

Current is produced by the motion of charges. Current and charge quan-
tities are thus related. The fundamental relationship may be obtained by 
considering an arbitrary volume V bounded by surface S (Figure 2-4). 
Current I(t) is flowing inward through the surface and charge Q(t) is ac-
cumulating within.
   

Q(t)
V

S

I(t)

J

Figure 2-4. The equation of continuity

The total current flowing into the volume V is

I(t) d  dv
S V

= ⋅ = − ∇ ⋅∫∫ ∫∫∫' J s J

(by the divergence theorem)

= = =
∂
∂∫∫∫ ∫∫∫

dQ(t)
dt

d
dt

dv
t

dvv
V

v

V

ρ
ρ

(by Leibnitz’s rule for the derivative of an integral)
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The above relationship is equivalent to conservation of charge within 
volume V.

∇ ⋅ =
∂
∂∫∫∫ ∫∫∫J dv
t

dv
V

v

V

ρ

The volume V of integration is arbitrary and thus the integrands must be 
equal:

 
∇ ⋅ = −

∂
∂

J
ρv

t
  (2-7)

Equation (2-7) is called the equation of continuity. It expresses the fun-
damental relationship between current and charge densities. It plays an 
important role for time-varying fields in Chapter 8.

In the steady-state (charge and current do not vary in time), Eq. (2-7) 
reduces to

 ∇ ⋅ =J 0   for steady currents (2-8)

2.4 Ohm’s Law and Conductive Materials

The electromagnetic form of Ohm’s law gives the relationship between 
volume current density J and the electric field E in a conducting material:

 J E= σ   (2-9)

where σ is the conductivity of the material. The conductivity of various 
materials is given in Table 2-2. The table includes both good conductors 
and good insulators. Silver, copper, and gold are the three best conduc-
tors. Silver is best but it is expensive and tarnishes readily which reduces 
the conductivity. Often materials are silver-plated to improve their con-
ductivity. Copper is much less expensive than silver or gold and so is the 
conductor of choice where large quantities are needed. Gold is often used 
in microelectronics. It is the most corrosion-free of the three. Finally, we note 
that rubber and fused quartz are two of the best insulators.
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Table 2-1 Conductivities

Material Conductivity (S/m)
Silver 6.2 × 107

Copper 5.8 × 107

Gold 4.1 × 107

Aluminum 3.5 × 107

Brass 2.6 × 107

Iron 107

Sea Water 4

Silicon 4.4 × 10−4

distilled Water 10−4

dry Earth 10−5

Glass 10−12

Rubber 10−15

Fused Quartz 10−17

To see that Eq. (2-9) is equivalent to the usual form of Ohm’s law 
in circuit theory, consider a rectangular conductor with uniform J, E, σ 
throughout (Figure 2-5). Multiply both sides of Eq. (2-9) by S, the cross 
sectional area, and equate components to obtain

JS ES
S

E= =σ σ
�
�( )

or

I
S
l

V (since I =JS, V =El).= σ

or

V
l
S

I=
σ

S
J

l
z

Figure 2-5. Uniform current flow in a resistor
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We have, then, a linear relationship between V and I. The term 
�

σS
 is called the resistance R. The familiar circuit relation

 V IR=   (2-10)

is thus obtained. The resistance,

 
R

V
I

l
S

= =
σ

  (2-11)

applies to any homogeneous resistor of length ℓ and uniform cross section 
S. 

l
√





 , the inverse of conductivity, is called resistivity.

“Why should J be proportional to E? Why should J not increase in-
definitely as electrons are accelerated by the electric field E?” To answer 
this question, we need to understand the processes of current flow in a 
conductor, which can be explained as follows. In the absence of an ap-
plied electric field, at room temperature, the conduction electrons are 
moving at about 106 m/s through the “lattice” structure of the material. 
The movement is in random directions so that the average vector velocity 
is zero and there is no net current (J = 0). We then apply a voltage across 
the conductor and an electric field E is established within the conduc-
tor. The conduction electrons are accelerated by the force qE = − eE and 
produce a current J in the direction of E. However, the electrons are 
accelerated for only a very short time about (about 10−14 s). They travel 
only a very short distance (about 10−8m) before colliding with the lattice 
structure and being scattered in arbitrary directions. Before collision, the 
electron motion contributes to current J in the direction of E. Immedi-
ately after collision, the direction is arbitrary and so the electron motion 
does not, on average, contribute to J in the direction of E. The contribu-
tion to current is “lost”, so to speak. Then the process starts all over again. 
The electron is accelerated, contributes to J between collisions and loses 
its contribution upon collision. There is however an average “drift” veloc-
ity contributing to J. This is merely the average velocity acquired during 
the brief acceleration period between collisions. The drift velocity is very 
slow, on the order of 10−4 m/s.

Thus we have electrons which are moving very rapidly (106 m/s) in 
random directions. Superimposed on this very rapid motion is a very slow 
drift velocity (10−4 m/s) which contributes to J in the direction of E. If we 
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double the voltage, the time between collisions (the acceleration period) 
is unchanged since it is determined primarily by the much larger random 
velocity. The acceleration time is constant, the acceleration force qE is 
doubled, and so the average “drift” velocity is doubled. Thus we have a 
linear system and J is proportional to E as in Eq. (2-9). The constant σ is 
called conductivity.

It should be pointed out that a conductor is usually electrically neutral. 
The moving negative charges travel through a stationary lattice structure 
which is oppositely charged. For linear homogeneous media characterized 
by a constant conductivity σ, the conductor or resistor is uncharged (ρv = 
0) within the volume. This is analogous to the case for the linear homo-
geneous dielectric (ρpv = 0). Surface charge will in general accumulate at 
interfaces. Volume charge density may exist (ρv ≠ 0) for inhomogeneous 
conductors.

2.5 Georg Simon Ohm (1789-1854) and the 
Discovery of Ohm’s Law

1827 should have been a very good year for Georg Simon Ohm. He had 
just published his comprehensive book on resistive circuits. He had in-
vestigated the subject very thoroughly and had confirmed his theory with 
very carefully performed experiments. He was now almost 40 years old. 
Surely he would receive the recognition which he deserved and with it, 
perhaps, the university appointment which he had long sought.

In his book, The Galvanic Circuit Mathematically Investigated, Ohm 
had explored the subject as completely as was possible at the time. He 
had shown that in a simple loop circuit with a battery of voltage V and 
uniform conductor size, the current in the wire is uniform throughout 
the length. Thus the circuit can be characterized with a single current, 
I. He also demonstrated that the potential falls uniformly with distance 
along the wire. Both of these essential facts, which are taken for granted 
by modern students, were unknown at the time.

Then, he had established the linear relationship between voltage and 
current

 V IR=   (2-10)
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where the resistance R of the circuit is proportional to wire length ℓ and 
inversely proportional to wire cross section S:

 
R

kl
S

l
S

= =
√

  (2-11)

where k is a constant, the resistivity, the inverse of conductivity, which 
depends on the material of the wire. Ohm also determined the relative 
conductivity of various metals, the best conductors being silver, copper, 
gold, in that order, as shown in Table 2-2. Ohm’s experiments were very 
sophisticated and reliable. He used the Seebeck thermoelectric battery, in-
vented in 1821, because of its predictable internal resistance. To measure 
the current and its magnetic field, he used the torsion balance compass 
needle galvanometer invented by Coulomb in his measurements of the 
inverse square law for magnetic poles.

There is a direct analogy between resistive circuits and heat flow. The 
quantity of heat flowing in a wire is proportional to the temperature dif-
ference between the ends of the wire and inversely proportional to ther-
mal resistance, which, in turn, is proportional to the length of the wire 
and inversely proportional to its cross-sectional area. Ohm had studied 
Fourier’s book, The Analytical Study of Heat, and had, with great insight, 
seen the analogy to electrical current flow. Voltage, current, and electrical 
resistance are analogous to temperature difference, heat flow, and thermal 
resistance, respectively.

Note that our familiar rules for combinations of resistances in series 
and parallel follow directly from Ohm’s law. For instance, placing two 
identical sections of wire in series doubles the resistance since total length 
ℓ is doubled; placing them in parallel halves the resistance since cross-
section area S is doubled.

Georg Ohm was born in Erlangen, Germany, in 1789, the son of a 
locksmith. He and his younger brother Martin were well-educated and 
Georg received a Ph.D. from the University of Erlangen in 1812. He then 
held several teaching positions in secondary schools, finally settling in 
Cologne, where he taught for about nine years. It was in Cologne that he 
carried out most of his basic research. It was a long and difficult process. 
He had to educate himself in the mathematics and science of the times 
and become an expert in the current experimental techniques of electri-
cal science, all the while carrying the heavy teaching load of a secondary 
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school. We are told that he was a very serious, effective and innovative 
teacher.

The early 19th century was a time of great advances in electrical sci-
ence. In 1800 Alessandro Volta invented the voltaic cell or battery, which 
supplied a steady source of current. This was much preferable to the Ley-
den jar or capacitor as a source. The voltaic cell served as a great stimulus 
to research. Oersted’s dramatic discovery in 1820 of the magnetic field of 
an electric current is described in Volume 4. Within a year, this discovery 
led to a method of measuring current by determining its magnetic field. 
This was done by noting the deflection of a compass needle. In this way, 
Volta and Oersted provided a steady current and the means to measure it, 
making it possible for Ohm to carry out his experiments.

Unfortunately, Ohm’s book was not well received in Germany. In 
fact, his theory was widely rejected, condemned as too complicated by 
some and too simple by others. In general, reaction to his work was very 
negative and the backward educational establishment criticized him in 
response. Ohm felt that he must resign his post in Cologne and went to 
teach at a military school in Berlin.

However, scientists in other countries slowly began to recognize his 
work and to give it the respect which it deserved. He received the Copley 
medal in 1841 and finally, in 1849, twenty-two years after the publica-
tion of his book, he was appointed Professor of Physics at the University 
of Munich, where he continued to teach, honored and revered, until his 
death at 65 in 1854.

Henry Cavendish and other researchers had preceded Ohm in his 
discovery of Ohm’s law but the thoroughness and completeness of Ohm’s 
work guaranteed that he would receive primary credit for the discovery.

2.6 Power – Joule’s Law

The power dissipated in a conductive or resistive material may be calcu-
lated from the electric field and the current density as follows:

 
P  dv [W]

V

= ⋅∫∫∫E J   (2-12)

where V is the volume of the resistor. E · J is thus a volume density of power 
dissipated with units of watts/m3. Equation (2-12) is known as Joule’s law.
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To see the correspondence with circuit theory, consider the resis-
tor of Figure 2-5 with uniform E, J, σ. Making use of Eq. (2-9), we have

P E  dv J  dv E Sl
J

(Sl)

El
S
l

V
R

JS

2

V

2

V

2
2

2

= = = =

= =

=

∫∫∫ ∫∫∫σ
σ

σ
σ

σ

1

2

( )

( )

( )22 l
S

I R

E dl J ds El JS)=VI

2

σ
=

= =∫ ∫∫ ( )(

2.7 Relaxation Time

In Volume 1, we noted that charges placed within a conductor move al-
most immediately by mutual repulsion toward the surface of the conduc-
tor. In other words, volume charge density disappears very rapidly giving 
rise to surface charge density. Now we are in a position to examine the 
phenomenon quantitatively and ask the question “how fast?”. Consider a 
linear homogeneous medium of conductivity σ, permittivity ε, volume V 
and surface S (Figure 2-6).

S

V v(r,t)
,

Figure 2-6. Relaxation time

We start with the equation of continuity:
 

∇ ⋅ = −
∂
∂

= ∇ ⋅ = ∇ ⋅ 





= ∇ ⋅ =

J E D

D

ρ
σ σ

ε
σ
ε

σ
ε

ρ

v

v

t

  [Eq.(3-10b) is u

( )

ssed.]

   

   

∂
∂

= −





ρ σ
ε

ρv
vt
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The solution to the differential equation above is

 ρ ρ
σ
ε

v vo

t
x, y, z, t x, y, z, t  e( ) ( )=

−
  (2-13)

or  

  ρ ρ τ
v vo

t/x, y, z, t x, y, z, t  e( ) ( )= −

where τ ε
σ

=  is called the relaxation time. We may interpret Eq. (2-13) 
in the following way.

Suppose we start with an initial volume charge density ρvo (x,y,z) within 
volume V at time t = 0. Then the volume charge density decays expo-
nentially at every point inside the volume. The net charge will eventually 
reside on the surface S since charge is conserved. So the surface charge 
density is increasing as the volume charge density decreases. τ is the time 
required for the volume charge density to decay to 1/e or about 37% of 
its value at any point in V. Table 2-2 shows relaxation times for some 
conductors and insulators. Relaxation time is so short, on the order of 
10−19 seconds, for good conductors, that we may consider the process to 
be practically instantaneous for good conductors.

Table 2-2. Relaxation Times

Material Relaxation Time
Copper 2.5 × 10−19 (s)

Sea Water 2 × 10−10 (s)

distilled Water 10−6 (s)

Fused Quartz 105 (s) or about 11 days

2.8 Boundary Conditions for Steady Currents

In the presence of steady currents it is necessary to add one boundary 
condition, namely, the continuity of normal J, to the basic boundary 
conditions already derived in Chapter 1. Figure 2-7 shows a boundary 
between two arbitrary media (1), (2) with characteristics (σ1, ε1) and (σ2, 
ε2), respectively.
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J1n

J2n

an1

2

1 1,

2 2,

Figure 2-7. Continuity of normal J

Consider the normal components J1n, J2n of volume current density at the 
interface. J2n specifies the charge flowing into the interface and J1n deter-
mines charge flowing out from the interface. J1n, J2n must be equal or else 
charge would accumulate indefinitely at the interface. Therefore

 J J  for steady currents1n 2n=   (2-14)

In summary, the three basic boundary conditions at an interface are:
E1t = E2t Tangential E is continuous
D1n − D2n = ρs Normal D is discontinuous by the amount of free 

surface charge
J1n = J2n Normal J is continuous

Example 2-2. Dissimilar Dielectrics in a Parallel Plate Capacitor
Figure 2-8 shows parallel plates of area A and separation d1 + d2. The 
parallel plate region is filled with two different materials of permittivity, 
conductivity, ε1, σ1, and ε2, σ2, respectively. The switch is closed and the 
steady state is eventually reached. Find the current, the total resistance, 
and the free surface charge at the interface between dissimilar materials.
  

d2

d1 1 1,

2 2,
s

Perfect conductor - Area A

V z

Perfect conductor - Area A

Figure 2-8. Dissimilar dielectrics in a parallel-plate capacitor

Solution:
In such problems, we concentrate on the current. Because of the conti-
nuity of normal J in the steady state, we assume a single volume current 
density for both regions:

J a J= − z o
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We find the voltage by applying Ohm’s law [Eq. (5-9)]:

V d E d E d
J d J d

J
d d

1 1 2 2
o 1

1

o 2

2
o

1

1

2

2

= − ⋅ = + = + = +




∫E �

σ σ σ σ

and   

J
V

d do
1

1

2

2

=
+





σ σ

then  

I d J A
VA

d do
1

1

2

2

= ⋅ = =
+







∫∫ J s

σ σand

 
R

V
I

d
A

d
A

1

1

2

2

= = +
σ σ

  (2-15)

Note that the potential at the interface (z = d1) is

  

E d J
d

 or V

d

d d1 1 o
1

1

1

1

1

1

2

2

= =
+σ
σ

σ σ

with respect to the potential at z = 0. It is determined solely by the con-
ductivities σ1, σ2.

To find the surface charge density at the interface we use the 
boundary condition for the normal component of D,

 D a D a1 1

0

= − = −

= − = −






⇒

z
o

1
1 z

o

2
2

S 2z 1z o
1

1

2

2

S

J  
J

D D J

σ
ε

σ
ε

ρ
ε
σ

ε
σ

ρ

,

  if 1

1

2

2

ε
σ

ε
σ

=

      
(2-16)
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Where did the charge ρs come from? Normal J is continuous in the 
steady state and leads to no charge accumulation. We may consider that 
the charge ρs is deposited on the interface during the transient period 
when normal J is not necessarily continuous. A net charge is deposited 
only if relaxation times are unequal.

2.9 A Relationship Between Capacitance and 
Resistance

Figure 2-9 shows two conductors in an infinite homogeneous medium of 
permittivity ε or conductivity σ or both.

E

+	Q
—	Q

Conductor

Conductor

1 2

V+

I

or 

Figure 2-9. A relationship between capacitance and resistance

Let’s consider first the ideal dielectric with permittivity ε. A voltage V is 
applied between (perfect) conductors, an electric field E is established in 
the dielectric and charges Q, −Q reside on the conductors. The capaci-
tance is
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C

Q
V

d

V

d

V
S S= =

⋅
=

⋅∫∫ ∫∫D s E sε

  
(2-17)

Next consider the resistor with conductivity σ. Voltage V is applied and 
a steady current I flows in the circuit and through the resistor (J = σ E in 
the resistor). The resistance is

 

R
1
G

V
I

V
d

S

= = =
⋅∫∫σ E s

  (2-18)

since        
I d d

S S

= ⋅ = ⋅∫∫ ∫∫J s E sσ

G, the inverse of resistance, is called the conductance. We assume 
that the voltage V is identical in the two cases. The electric field E then 
is also identical in the two cases because of uniqueness and, multiplying 
Eqs. (2-17) and (2-18), we obtain

 
RC

C
G

= = ε
σ   (2-19)

What happens as we change from a perfect to an imperfect dielec-
tric in Figure 5-9? The only thing that changes is that current flows and 
increases with increasing conductivity σ. V, E, Q, C remain unchanged 
as σ increases. Only J and R vary. Thus the resistance and capacitance 
problems are decoupled.

Example 2-2. Shunt Resistance and Capacitance of a Coaxial Line

Figure 2-10(a) shows the cross section of a coaxial line with inner, 
outer radii a, b, respectively and length ℓ. The coaxial line is completely 
filled with a material of permittivity ε and conductivity σ. A voltage V is 
applied between inner and outer conductors and a current I then flows 
radially outward from inner to outer conductor. Find the shunt resistance 
and capacitance.
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V a

b

,

,

d

J

=a

=b

,

(a) A coaxial line. (b) A thin cylindrical shell.

(c) A truncated wedge.

Figure 2-10. A coaxial line with inner, outer radii a, b, respectively 
and length ℓ

Solution:
The volume current density is independent of φ and varies as 

l
ρ







 so 
that the total current is independent of ρ:

 
J a= ρ πρ

I
2 �

  (2-20)

An integration over a cylindrical surface of radius ρ and length ℓ shows 
that the total current is I:

  

J s⋅ = =∫∫ ∫∫d
I

2 l
  d dz I

�l

πρ
ρ φ

0

2

0

Then   

E a= =J I
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and

 
R

V
I

I
ln(b/a)
2 l

= = =
πσ

  (2-21)

 
G

2
ln(b/a)

 
G 2

ln(b/a)
= =πσ πσ�

�
;   (2-22)

The charge Q in length ℓ (on the inner conductor) is determined as follows:

Q area area D 2 l
V

ln(b/a)
l
a

2 l
ln(b/a)

VS= = = =( ) ( ) ( )ρ πσ ε πε
ρ

Then

 
C

Q
V

2
ln(b/a)

 
C 2

ln(b/a)
= = =πσ πε�

�
;   (2-23)

Note that R in Eq. (2-21) and C in Eq. (2-23) satisy RC
C
G

= = ε
σ  as 

in Eq. (2-19).
The resistance R may also be determined by considering a thin cylin-

drical shell of radius ρ, length ℓ (Figure 2-10(b)).

dR
dl
A

d
2 l

= =
σ

ρ
πρσ

R dR
d

2 l
ln(b/a)
2 la

b

a

b

= = =∫ ∫
ρ

πσ ρ πσ

which agrees with Eq. (2-21).
The conductance G may be determined by considering a truncated 

wedge (Figure 2-10(c)) with radial current flow:
 

J a J s
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= ⋅ =

= = − ⋅ =

=

∫∫

∫

ρ

ρ

αρ

αρ σ α σ

I
d I

I
l

 V d
I ln(b/a)

l

R=
V
I

I ln

�

�

;

;

((b/a)
l

 G
l

I ln(b/a)
 (wedge)

α σ
α σ

; =

 
       
       
           (2-24)
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For a thin wedge of angle dφ,

dG
d
ln(b/a)

= φ σ�

 
and for the whole coaxial line,

G dG
l d

ln(b/a)
2 l

ln(b/a)0

= = =∫ ∫
σ φ πσπ2

which agrees with Eq. (2-22).

The power losses in the coaxial line are determined as follows:  

P  dv  E dv

V d d dz
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V l
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2 2

b 2
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2
2
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2
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= =

Example 2-3. A Truncated Conical Resistor
Figure 2-11 shows a truncated conical resistor bounded by surfaces 

r = a, r = b, and θ = 15°. The material of the resistor is inhomogeneous:
        
   

σ σ= o
r
a

A voltage V is applied between surfaces r = a, b. Find the electric field and 
the resistance between the surfaces r = a, b.

3 0˚

r=a

r=b

J

z

J

=15˚

V

+

Figure 2-11. A truncated conical resistor
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Solution:
First we assume a radial, inverse square current density which makes 

the total current independent of r:

J a= r
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C
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I d
C r  d d
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