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Electromagnetics is not an easy subject for students. The subject presents 
a number of challenges, such as: new math, new physics, new geometry, 
new insights and difficult problems. As a result, every aspect needs to be 
presented to students carefully, with thorough mathematics and strong 
physical insights and even alternative ways of viewing and formulating 
the subject. The theoretician James Clerk Maxwell and the experimental-
ist Michael Faraday, both shown on the cover, had high respect for physi-
cal insights.

This book is written primarily as a text for an undergraduate course 
in electromagnetics, taken by junior and senior engineering and phys-
ics students. The book can also serve as a text for beginning graduate 
courses by including advanced subjects and problems. The book has been 
thoroughly class-tested for many years for a two-semester Electromagnet-
ics course at Syracuse University for electrical engineering and physics 
students. It could also be used for a one-semester course, covering up 
through Chapter 8 and perhaps skipping Chapter 4 and some other parts. 
For a one-semester course with more emphasis on waves, the instructor 
could briefly cover basic materials from statics (mainly Chapters 2 and 6) 
and then cover Chapters 8 through 12.

The authors have attempted to explain the difficult concepts of elec-
tromagnetic theory in a way that students can readily understand and 
follow, without omitting the important details critical to a solid under-
standing of a subject. We have included a large number of examples, sum-
mary tables, alternative formulations, whenever possible, and homework 
problems. The examples explain the basic approach, leading the students 
step by step, slowly at first, to the conclusion. Then special cases and 
limiting cases are examined to draw out analogies, physical insights and 
their interpretation. Finally, a very extensive set of problems enables the 
instructor to teach the course for several years without repeating problem 
assignments. Answers to selected problems at the end allow students to 
check if their answers are correct.

Preface 
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During our years of teaching electromagnetics, we became interested 
in its historical aspects and found it useful and instructive to introduce 
stories of the basic discoveries into the classroom. We have included short 
biographical sketches of some of the leading figures of electromagnetics, 
including Josiah Willard Gibbs, Charles Augustin Coulomb, Benjamin 
Franklin, Pierre Simon de Laplace, Georg Simon Ohm, Andre Marie 
Ampère, Joseph Henry, Michael Faraday, and James Clerk Maxwell.

The text incorporates some unique features that include:

•• Coordinate transformations in 2D (Figures 1-11, 1-12).
•• Summary tables, such as Table 2-1, 4-1, 6-1, 10-1.
•• Repeated use of equivalent forms with R (conceptual) and 

|r−r′| (mathematical) for the distance between the source 
point and the field point as in Eqs. (2-27), (2-46), (6-18),  
(6-19), (12-21).

•• Intuitive derivation of equivalent bound charges from 
polarization sources, including piecewise approximation to 
non-uniform polarization (Section 3.3).

•• Self-field (Section 3.8).
•• Concept of the equivalent problem in the method of images 

(Section 4.3).
•• Intuitive derivation of equivalent bound currents from 

magnetization sources, including piecewise approximation to 
non-uniform magnetization (Section 7.3).

•• Thorough treatment of Faraday’s law and experiments 
(Sections 8.3, 8.4).

•• Uniform plane waves propagating in arbitrary direction 
(Section 9.4.1).

•• Treatment of total internal reflection (Section 10.4).
•• Transmission line equations from field theory (Section 

11.7.2).
•• Presentation of the retarded potential formulation in Chapter 

12.
•• Interpretation of the Hertzian dipole fields (Section 12.3).

Finally, we would like to acknowledge all those who contributed to 
the textbook. First of all, we would like to thank all of the undergraduate 
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and graduate students, too numerous to mention, whose comments and 
suggestions have proven invaluable. As well, one million thanks go to Ms. 
Brenda Flowers for typing the entire manuscript and making corrections 
numerous times. We also wish to express our gratitude to Dr. Eunseok 
Park, Professor Tae Hoon Yoo, Dr. Gokhan Aydin, and Mr. Walid M. G. 
Dyab for drawing figures and plotting curves, and to Professor Mahmoud 
El Sabbagh for reviewing the manuscript. Thanks go to the University of 
Poitiers, France and Seoul National University, Korea where an office and 
academic facilities were provided to Professor Adams and Professor Lee, 
respectively, during their sabbatical years. Thanks especially to Syracuse 
University where we taught for a total of over 50 years. Comments and 
suggestions from readers would be most welcome.

Arlon T. Adams

Jay Kyoon Lee
leejk@syr.edu

June 2012
Syracuse, New York
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CHAPTER 1

Introduction to Reflection 
and Transmission of 

Electromagnetic Waves

1.1  Introduction

In Volume 4 we considered a wave propagating in a single unbounded me-
dium which can be lossless or lossy, along with its propagation characteristics, 
dispersion, and polarization. We will now consider what happens when an 
electromagnetic wave hits the boundary of another medium. We expect that a 
part of the wave will be reflected from the surface and a part of it will transmit 
through the second medium. Thus we study the reflection and transmission 
of the wave at a boundary separating two different media. In each medium 
the fields satisfy Maxwell’s equations with appropriate medium parameters 
or constitutive relations. At the interface, the fields on both sides must satisfy 
the boundary conditions that are given by Eq. volume 4 (1-27). Depend-
ing on the types of the media, the boundary conditions may take different 
forms. Here we solve the boundary value problems for time-varying fields in 
bounded media. First we consider the problem of a wave incident normally 
upon a dielectric interface, which is simpler to solve. Then we solve the prob-
lem of oblique incidence with two different distinct polarizations—perpen-
dicular and parallel. The interpretation of the results on the solutions for the 
fields is given. Interesting phenomena such as total internal reflection and 
Brewster’s angle effect are discussed. Lastly, the reflection (and no transmis-
sion) of waves from a perfectly conducting surface is studied along with the 
concept of standing waves.

1.2  Normal Incidence at a Dielectric Boundary

Let’s consider a uniform plane wave, propagating in the +x direction in 
medium 1 having material constants ε1, μ1. The wave is incident normally 
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upon medium 2 having material constants ε2, μ2. The interface is at x = 
0 (yz plane) as shown in Figure 1-1. We assume now that both media are 
lossless dielectrics (σ1 = σ2 = 0), but each of them can be lossy in our for-
mulation, in which case ε1 and/or ε2 can be simply replaced by complex 
effective permittivities, making our results still valid for lossy media.

Er

x

z

Medium 1
),( 1

Medium 2
),( 2

Hr

Ei

Hi

Et

Ht

Figure 1-1. Reflection and transmission of waves at normal incidence

Assuming the incident wave is linearly polarized in the y direction 
(we can assume z-polarization, which will give the same result), since the 
wave propagates in the +x direction, its electric and magnetic fields can 
be written as

	 E ai y 0
jk xE e 1= −  	 (1-1a) 

	
H a E ai

1
x i z

0

1

jk xE
e 1= × = −1

η η
 	 (1-1b) 

where

	
k1 1= ω µ ε1  	 (1-2a) 

	

η
µ
ε1

1

1

=  	 (1-2b)
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	 REFLECTION AND TRANSMISSION OF ELECTROMAGNETIC WAVES	 3

k1 is the propagation constant of the incident wave and η1 the intrinsic 
impedance of medium 1. We have used the property of the uniform plane 
wave in deriving Eq. (1-1b), instead of using Ampère’s law. The pres-
ence of the boundary gives rise to a reflected wave in medium 1 and a 
transmitted wave in medium 2. Since the reflected wave travels in the −x 
direction in medium 1, its electric and magnetic fields can be written in 
the following form:

	 E a ar y r
jk x

y 0
jk xE e RE e1 1= ≡+  	 (1-3a) 

	
H a E ar

1
x r z

0

1

jk xRE
e 1= − × = −1

η η
( )  	 (1-3b) 

where

	
R

E
E

r

0

≡  	 (1-4)

is the ratio of E field amplitudes of the reflected vs. incident waves, called 
the reflection coefficient. Note that the reflected wave has the same 
k and η as the incident wave but its spatial dependence is changed to 
exp(+jk1x). The transmitted wave propagates in +x direction in medium 2 
and its fields are written as

	 E a at y t
jk x

y 0
jk xE e TE e2 2= ≡− −  	 (1-5a) 

	
H a E at

2
x t z

0

2

jk xTE
e 2= × = − −1

η η
 	 (1-5b) 

where

	
k2 2 2= ω µ ε  	 (1-6a) 

	

η
µ
ε2 = 2

2
 	 (1-6b) 

k2 is the propagation constant of the transmitted wave and η2 is the in-
trinsic impedance of medium 2.

	
T

E
E

t

0

≡  	 (1-7)
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is the ratio of E field amplitudes of the transmitted vs. incident waves, 
called the transmission coefficient.

All the parameters are known except the two coefficients, R and T. 
They are determined by applying the boundary conditions for the fields 
at the boundary (x = 0). Although we have four boundary conditions 
in Eq. volume 4 (1-27), we only need to use two of them on tangential 
components, i.e., Eqs. volume 4 (1-27a) and (1-27b). E1, H1 consist of 
the incident and reflected fields and E2, H2 have only transmitted fields. 
Since medium 2 is not a perfect conductor for the given problem, there 
exists no surface current at the boundary, i.e., Js = 0. Thus we have the 
following two boundary conditions at the dielectric interface:

	
E E1t 2t=  	 (1-8a)

	
H H1t 2t=  	 (1-8b)

where the subscript “t” means the tangential component.
For this problem, we have

	
E E Ei r t  at x 0+ = =  	 (1-9a)

	
H H Hi r t  at x 0+ = =  	 (1-9b)

Substituting x = 0 in Eqs. (1-1), (1-3), (1-5) and applying Eq. (1-9), we 
obtain

	 1 R T+ =  	 (1-10a)

	

1
1

1
η η1 2

R T( )− =  	 (1-10b) 

Solving Eq. (1-10) for R and T, we obtain 

	  
R  (Reflection coefficient for normal incidence)=

−
+

η η
η η

2 1

2 1 	
(1-11a) 

 T  (Transmission coefficient for normal incidence)=
+

2 2

2 1

η
η η

		
		

(1-11b)

Note that |R| ≤ 1, although the magnitude of T may exceed 1. R and T are 
real when both media are lossless, and they become complex when either 
one of the two is lossy. As will be seen later in Section 2.7, the expression 
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of R is very similar to that for the reflection coefficient of the voltage wave 
along the transmission line.

Let’s calculate the Poynting vectors of the incident, reflected and trans-
mitted waves and find the relationships regarding the power conservation. 
The time-average Poynting vectors are given by (assuming lossless media) 

	
S E H aav,i i i x

0

1

E
2

= ×( ) =1
2

2

Re *

η
 	 (1-12a) 

 

	
S E H aav,r r r x

0

1

R
E
2

= ×( ) = −1
2

2
2

Re *

η
 	 (1-12b) 

 

	
S E H aav,t t t x

0

2

T
E
2

= ×( ) =1
2

2
2

Re *

η
 	 (1-12c) 

According to the conservation of power, it should hold that

	
P P Pi r t= +  	 (1-13a)

or

	
S S Sav,i av,r av,t= =  	 (1-13b)

where Pi, Pr, Pt are the powers of the incident, reflected and transmitted 
waves, respectively. Eq. (1-13b) reduces to

	  
	

1 2 2= +R T1

2

η
η  	 (1-14) 

Eq. (1-14) can be easily verified by substituting Eq. (1-11). The frac-
tion or percentage of power reflected from the boundary is given by 

	

P
P

Rr

i

av,r

av,i

= =
S

S
2  	 (1-15) 

and the fraction of power transmitted through medium 2 is given by 
		  P

P
T Rt

i

av,t

av,i

= = = −
S

S
2 1

2

21
η
η

		        (1-16) 

Note that the fraction of power transmitted is not equal to |T|2.
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Example 1-1.
An electromagnetic plane wave of 1 MHz is incident normally on On-
ondaga Lake. Assume that the lake water has ε = 81 ε0, μ = μ0, and σ = 
10−4 [S/m].
(a)	 Calculate the reflection and transmission coefficients of the incident 

wave, ignoring the loss (σ = 0).
(b)	Calculate the reflection and transmission coefficients, including the 

loss (σ = 10−4). Write down the complete expression for the electric 
field of the transmitted wave.

Solutions:
(a)	 When the wave is incident from air upon the lake, η1 and η2 are given by 

η
µ
ε

η η
µ
ε

µ
ε

η1 2
2

2
0 

81
1
9

= = = = =0

0
0

2

2

,

R and T are given by Eq. (1-11):

R

T

=
−
+

=
−

+
=

−

+
= −

=
+

=
⋅

η η
η η

η η

η η

η
η η

η

2 1

2 1

0 0

0 0

2

2 1

0

1
9
1
9

1
9

1

1
9

1
0 8

2 2 1
9

.

11
9

2
9

1
9

1
0 2

0 0η η+
=

+
= .

Note that R and T satisfy the relationship 1 + R = T.

(b)	When the lake is lossy, η2 becomes complex and 

η̆
µ

ε
µ

ε σ
ω

2
2,eff

0

08 j
= =

−
2

1

At

f = = =
⋅ × ×

=
−

−

1
10

2 81 36 0 022 1
4

 MHz, L.T.
10

10
6

9

σ
ωε π π . 

 
The lake is slightly lossy at f = 1 MHz, so 

σ
ω

ε ε  = 81 0  and 

η̆
µ

ε
η2

2

0
081

≈ = 1
9

, which is approximately the same as η2 when the 

lake is lossless. Thus,
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R  T=
−
+

≈ − =
+

≈
˘
˘ . ,

˘
˘ .

η η
η η

η
η η

2 1

2 1

2

2 1

0 8
2

0 2
 

You can calculate η̆2  exactly in complex numbers and find more accu-
rate results for R and T. Since the lake is lossy, the transmitted wave will 
propagate with some attenuation and the electric field can be written as 

E a at y 0
j( j )x

y 0
j x xTE e 0.2E e e= =− − − −β α β α

 
where E0 is the amplitude of the incident electric field and β and α can 

be calculated from Eq. volume 4 (2-89) for slightly lossy media:

β ω µε µ ε π

α σ µ
ε

≈ = ⋅ = ⋅ ⋅ ⋅
×

= × 





≈ =

2 81 2 9
1

3 10
1 88 10

2

0 0 8
3� 10

rad
m

6f .

110
2 81

10
2

377
9

2 09 10
4

0

0

4
3

− −
−= ⋅ = × 





µ
ε

.
Np
m

1.3  Oblique Incidence at a Dielectric Boundary

x

z

Reflected
Wave

Incident
Wave

Transmitted
Wave

kr

t

i

r

Er

Hr

Ei

Hi

Et

Ht

ki

kt

Medium 2
),( 2 µ2

Medium 1
),( 1 µ1

Figure 1-2. Reflection and transmission of waves with perpendicular 
polarization at oblique incidence

We now consider the case when a uniform plane wave is incident from 
medium 1 at an oblique angle upon medium 2 as shown in Figure 1-2. 
The interface is at x = 0. The angle between the incident wave vector ki 
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and the normal of the boundary (x axis) is θi, called the angle of incidence. 
Let the angle between the reflected wave vector kr and the normal be θr, 
called the angle of reflection and the angle between the transmitted wave 
vector kt and the normal be θt, called the angle of transmission. The objec-
tive of the problem is to determine the fields of the reflected and trans-
mitted waves along with θr, θt, given the fields of the incident wave with 
angular frequency ω at an angle θi. In the case of oblique incidence, the 
polarization of the incident wave affects how much the wave is reflected 
and transmitted. Thus we decompose the fields of the incident wave into 
two linearly polarized waves, orthogonal to each other. The decomposi-
tion is done with respect to a plane, known as the plane of incidence, 
which is formed by the incident wave vector (ki) and the normal of the 
boundary (x axis). In Figure 1-2, the xz-plane is the plane of incidence. 
We decompose the electric field into a component perpendicular to the 
plane of incidence and one parallel to the plane of incidence, and solve 
each problem separately. The former is said to have perpendicular po-
larization, horizontal polarization, s-polarization (s for “senkrecht”, the 
German word for perpendicular), or TE (transverse electric) polarization. 
The latter is said to have parallel polarization, vertical polarization, p-
polarization (p for “parallel”), or TM (transverse magnetic) polarization.

1.3.1 Perpendicular Polarization

First we assume the incident wave is perpendicularly polarized. Since the 
electric field Ei is perpendicular to the plane of incidence, it has only the 
y component (see Figure 1-2). Since the incident wave propagates in the 
positive x and positive z directions, the wave vector can be written as

	 k a ai x x z zk k= +  	 (1-17)

The electric and magnetic fields of the incident wave are written as

	 E a ai y 0
jk r

y 0
jk x jk zE e E e x z= =− ⋅ − −1  	 (1-18a) 

	
H

E
a ai

i

1
x z z x

0

1

jk x jk z

j
k k )

E
e x z=

∇ ×
−

= − + − −

ωµ ωµ
(  	 (1-18b)

Note that the magnetic field is parallel to the plane of incidence for a 
perpendicularly polarized wave and Eq. (1-18b) can also be obtained by 
H

k E
i

i i

1

=
×

ωµ
 from Eq. (1-65). The components of the wave vector, kx 



# 156104     Cust: MP     Au: Adams    Pg. No. 9 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

	 REFLECTION AND TRANSMISSION OF ELECTROMAGNETIC WAVES	 9

and kz, can be expressed in terms of medium constants, the frequency of 
the wave, and the angle of incidence as follows:

	 k kx i i 1 i= =k cos cosθ θ  	 (1-19a)

	 k kz i i 1 i= =k sin sinθ θ  	 (1-19b)

	 k k kx
2

z
2

1
2+ = = ω µ ε2

1 1  	 (1-19c)

Since the reflected wave propagates in the negative x and positive z 
directions, its wave vector and fields can be written as

	 k a ar x rx z rzk k= − +  	 (1-20)

	 E a ar y r
jk r

y o
jk x jk zE e R E er rx rz= =− ⋅

⊥
+ −  	 (1-21a) 

	
H

E
a ar

r

1
x rz z rx

0

1

jk x jk z

j
k k )

R E
e rx rz=

∇ ×
−

= − + ⊥ −

ωµ ωµ
(  	 (1-21b) 

where R⊥ is the reflection coefficient for the perpendicularly polarized 
wave. Because of the choice of signs in Eq. (1-20), krx and krz are con-
sidered to be positive and they can be expressed in terms of the angle of 
reflection θr.

	 k krx r r 1 r= =k cos cosθ θ  	 (1-22a)

	 k krz r r 1 r= =k sin sinθ θ  	 (1-22b)

	 k k krx
2

rz
2

1
2

1+ = = ω µ ε2
1  	 (1-22c)

Note that |kr| = k1 = |ki| because the reflected wave propagates in the same 
medium as the incident wave. For the transmitted wave, we can write

	
k a at x tx z tzk k= − +  	 (1-23)

	 E a at y t
jk r

y 0
jk x jk zE e T E et tx tz= =− ⋅

⊥
− −  	 (1-24a)

	
H

E
a at

t

1
x tz z tx

0

2

jk x jk z

j
k k )

T E
e tx tz=

∇ ×
−

= − + ⊥ − −

ωµ ωµ
(

	
 (1-24b)

where T⊥ is the transmission coefficient for the perpendicularly polarized 
wave. Similarly, ktx and ktz satisfy

	 k ktx t t 2 t= =k cos cosθ θ  	 (1-25a)
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k ktz t t 1 t= =k sin sinθ θ  	 (1-25b)

	
k k ktx

2
tz
2

2
2+ = = ω µ ε2

2 2  	 (1-25c)

Now the problem reduces to determining θr, θt, R⊥, T⊥, given θi, ω, 
(ε1, μ1), (ε2, μ2). Once we obtain θr, θt, R⊥, T⊥, we have a full knowl-
edge on the reflected and transmitted waves. As we have done in Section 
1.2, we apply the boundary conditions, Eq. (1-8), to determine these 
unknowns. For this problem, the tangential component of H is only its z 
component. Substituting x = 0 in Eqs. (1-18), (1-21), (1-24) and apply-
ing Eq. (1-8), we obtain

	 Ey
jk z jk z jk ze R e T ez rz tz:= + =−

⊥
−

⊥
−  	 (1-26a)

	
Hz

x

1

jk z rx

1

jk z tx

2

jk zk
e

k
R e

k
T ez rz tz:= − =−

⊥
−

⊥
−

ωµ ωµ ωµ
 	 (1-26b)

In order that Eq. (1-26) be satisfied at all points on the boundary (x = 0), 
i.e., for all values of z, the following condition must be met first:

	 k k kz rz rz= =  	 (1-27)

so that the exponential functions match on both sides. Eq. (1-27) implies 
that the tangential components of three wave vectors ki, kr, kt are equal. 
The condition is known as the phase matching condition. Substituting Eqs. 
(1-19b), (1-22b), (1-25b) into Eq. (1-27) gives rise to

	 k k k1 i 1 r 2 tsin sin sinθ θ θ= =  	 (1-28)

The first equality gives

	
θ θi r  (law of reflection)=  	 (1-29)

It says that the angle of reflection is equal to the angle of incidence. Mak-
ing use of Eqs. (1-19c) and (1-25c), the second equality gives

	
µ ε θ µ ε θ1 21 i 2 tsin sin=

 
or

	 n n  (Snell’s law)1 i 2 tsin sinθ θ=  	 (1-30)

where n1, n2 are the indices of refraction of media 1, 2, respectively. Eq. 
(1-30) is known as Snell’s law or law of refraction, from which θt can be 
expressed in terms of θi as
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θ θt
1

2
i

n
n

=






−sin sin1

 	

(1-31)

Eqs. (1-29) and (1-30) are well-known fundamental laws of geometrical 
optics.

Making use of Eq. (1-27), Eq. (1-26) becomes

	 1+ =⊥ ⊥R T  	 (1-32a)

	

k
1 R

k
Tx

1

tx

1µ µ
−( ) =⊥ ⊥  	 (1-32b)

where we have used

	 k k krx x 1 i= = cosθ  	 (1-33)

because of Eq. (1-29). Now solving Eq. (1-32) for R^ and T^, we obtain

	
R

k k
k k

Reflection coefficient for
perpendic

2 x 1 tx

2 x 1 tx
⊥ =

−
−

µ µ
µ µ uular polarization







 	(1-34a)

	
T

2 k
k k

Transmission coefficient
for perpendicula

2 x

2 x 1 tx
^ =

−
µ

µ µ rr polarization






 		
		

(1-34b)

Making use of Eqs. (1-19), (1-25), (1-2), (1-6), Eq. (1-34) can be written 
as

	
R 2 i 1 t

2 i 1 t
⊥ =

−
−

η θ η θ
η θ η θ

cos cos
cos cos

 	 (1-35a)

	
T

2 2 i

2 i 1 t
⊥ =

−
η θ

η θ η θ
cos

cos cos
 	 (1-35b)

where η1, η2 are intrinsic impedances of the two media. These are known 
as the Fresnel equations. We note that at normal incidence (θi = θt = 0), 
Eq. (1-35) reduces to Eq. (1-11). When both media are non-magnetic, 
i.e., μ1 = μ2 = μ0, Eq. (1-35) reduces to

 
    

R

T
2

1 i 2 t

1 i 2 t

1 i

1 i 2

⊥

⊥

=
−
+

=
+

η θ η θ
η θ η θ

η θ
η θ η θ

cos cos
cos cos

cos
cos cos tt

Fresnel coefficients for
non-magnetic media
for  polariza⊥ ttion

















   (1-36)

where n1, n2 are refractive indices of the two media.
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Example 1-2. Reflection and transmission of perpendicularly polarized 
wave
A 1 GHz uniform plane wave with 2 V/m is incident obliquely at θi = 60° 
from air upon a lossless dielectric (glass) of ε = 1.96 ε0 and μ = μ0, whose 
surface is at x = 0 (see Figure 1-2). The incident wave has perpendicular 
polarization.
(a)	 Find the complete expression for the electric field Ei of the incident 

wave.
(b)	Find the electric field Er of the reflected wave.
(c)	 Find the magnetic field Ht of the transmitted wave.

Solutions:
(a)	 Assuming that the plane of incidence is the xz plane, the electric f﻿ield 

of the perpendicularly polarized wave is given by

E ai y 0
j(k x k z)E e x z= − +

where

 E V/m  k
c

in air
10

10
rad/m0 1

9

9= = = ×
×

= [ ]2
2
3

20
3

[ ], ( )
ω π π

 

k k
3 3 3

k k
3

x 1 i

z 1 i

= = = ⋅ = =

= =

cos cos .

sin sin

θ π π π

θ π

20
60

20 1
2

10
10 47

20



660
20 3

2
10

3 18 14 = ⋅ = =

∴ = =
− + − +

π π

π
3 3

2e 2ei y

j
10

3
x 3z

y
j 10.5x

.

( ) (E a a 118.1z V/m)[ ]

(b)	First, we need to find θr and θt to calculate R.
By the law of reflection, θr = θi = 60°.
By Snell›s law,
where
	

θ θt
1

2
i

n
n

1
1.96

60=






= 





=− −sin sin sin sin .1 1 38 2 
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n
1.96

2
0

0 0= =
⋅

= =
µ ε
µ ε

µ ε
µ ε

2 2

0 0 0

1 96 1 4. . .
 

The electric field of the reflected wave is given by

E a ar y 0
jk x jk z

y
j x zR E e e V/mx z= = −( )⊥

+ − + −0 75 10 5 18 1. [ ]( . . )

where 

R
n n
n n

1 i 2 t

1 i 2 t
⊥ =

−
−

= −cos cos
cos cos

cos . cos .
cos

θ θ
θ θ

1 60 1 4 38 2
1 6

 

00 1 4 38 2
0 375

 +
= −

. cos .
. [ ]V/m

 
Note that the sign of the normal (x–) component of the k vector is changed.

(c)	 The magnetic field of the transmitted wave is given by

H a at x tz z tx
0

2

jk x jk zk k )
T E

e tx tz= − + ⊥ − −(
ωµ

where

T
2

R

k 1.96

i

1 i 2 t

2 2 0 0

⊥ ⊥=
+

= + =

= = ⋅ =

η θ
η θ η θ

ω µ ε ω µ ε

1

2

1 0 625

1

cos
cos cos

.

.. . .

. , cos .

4 1 4
20

3
29 32

10
3 18 14 1 4

20

k

k k
3

 k k

1

tz z tx 2 t

= × =

= = = = = ×

π

π θ ππ

ωµ π π
3

18.1
2

i x

cos . .

.

(

38 2 23 04

2 10 4 10 7 90 109 7 3

 =

= × × × = ×

∴ = − +

−

H a a zz
4 j(23.0x 18.1z)23.0)1.58 10 e A/m× − − + [ ]

Note that the tangential (z-) component of the k vector is unchanged 
(due to the phase matching condition) and the normal (x-) component is 
changed.

1.3.2 Parallel Polarization

In the second case, we assume the incident wave is parallel polarized. Since 
the electric field is parallel with the plane of incidence, the magnetic field 
H is perpendicular to the plane of incidence as shown in Figure 1-3. In 
this case it is advantageous to formulate the magnetic field first.
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x

z

Reflected
Wave

Incident
Wave

Transmitted
Wave

kr

t

i

r

Er

Hr

Ei

Hi

Et

Ht

ki

kt

Medium 2
),( 2 µ2

Medium 1
),( 1 µ1

Figure 1-3. Reflection and transmission of waves with parallel 
polarization at oblique incidence

Considering the direction of the incident wave vector as shown, the 
magnetic and electric fields of the incident wave are written as follows:

	  
	 H a ak

i y t
j r

y 0
jk x jk zH e H ei x z= =− ⋅ − −  	 (1-37a)

	
E

H
a ai

i

1
x z z x

0

1

jk x jk z

j
k k )

H
e x z=

∇ ×
= + − −

ωε ωε
(  	 (1-37b)

where H0 is the amplitude of the incident magnetic field and kx, kz are 

given in Eq. (1-19). Ei can also be obtained by E
k H

i
i i

1

=
×

−ωε
 from Eq. 

volume 4 (2-66). The fields of the reflected and transmitted waves can be 
formulated in the similar way as done in Section 1.3.1.

	 H a ak
r y r

j r
y || 0

jk x jk zH e R H er rx rz= =− ⋅ + −  	 (1-38a)

	
E

H
a ar

r

1
x rz z rx

|| 0

1

jk x jk z

j
k k )

R H
e rx rz=

∇ ×
= + −

ωε ωε
(  	 (1-38b)

	 H a ak
t y t

j r
y 0

jk x jk zH e TH et tx tz= =− ⋅ − −
|  	 (1-39a)
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E
H

a at
t

1
x tz z tx

0

1

jk x jk z

j
k k )

T H
e tx tz=

∇ ×
= − − −

ωε ωε
( ||

 	
(1-39b)

where R∙ and T∙ are, respectively, the reflection and transmission coef-
ficients for the magnetic field for the parallel polarized wave. krx, krz, ktx, 
ktz are given in Eqs. (1-22) and (1-25). Now the problem again reduces 
to determining θr, θt, R∙, T∙, given θi, ω, (ε1, μ1), (ε2, μ2). Applying the 
boundary conditions – continuity of tangential components of H (y com-
ponent) and E (z component) – at x = 0, we obtain

	 Hy
jk z jk z jk ze R e T ez rz tz: | ||= + =− − −  	 (1-40a)

	
E z

x

1

jk z rx

1

jk z tx

2

jk zk
e

k
R  e

k
T  ez rz tz: || ||= − + =− − −

ωε ωε ωε
 	(1-40b)

Following the same procedures done in Section 1.3.1 in solving Eq. 
(1-40), we find the same law of reflection and Snell’s law given by Eqs. (1-
29) and (1-30) and R∙, T∙ are obtained as follows.

	
R

k k
k k

Reflection coefficient for 
for pa

2 x 1 tx

2 x 1 tx
|| =

−
−

ε ε
ε ε

H

rrallel polarization






 	(1-41a) 

T
2 k

k k

Transmission coefficient for 
for paral

2 x

2 x 1 tx
|| =

−
ε

ε ε
H

llel polarization




 	

(1-41b)

The results in Eq. (1-41) can also be obtained simply by replacing μ by 
ε in Eq. (1-34) for perpendicular polarization, because the mathematical 
expressions for E and H for parallel polarization, given by Eqs. (1-37), 
(1-38), (1-39), are identical to those for perpendicular polarization, given 
by Eqs. (1-18), (1-21), (1-24), if we replace E by H, H by −E, ε by μ, and 
μ by ε. This is known as duality in electromagnetic theory. Making use of 
Eqs. (1-19), (1-25), (1-21), (1-6), Eq. (1-41) can be rewritten in terms of 
angles of incidence and transmission.

	
R 1 i 2 t

1 i 2 t
||

cos cos
cos cos

=
−
+

η θ η θ
η θ η θ

 	 (1-42a)

	
T

2 1 i

1 i 2 t
||

cos
cos cos

=
+

η θ
η θ η θ

 	 (1-42b)
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We note that at normal incidence (θi = θt = 0), Eq. (1-42) doesn’t 
reduce to Eq. (1-11) because Eqs. (1-41) and (1-42) are the ratio of mag-
netic fields. If we take the ratios of the z components of the electric fields, 
we find the reflection and transmission coefficients for E for parallel po-
larization as follows.

R
E
E

R
Reflection 

E rz

iz

2 t 1 i

2 t 1 i
|| ||

cos cos
cos cos

= = − =
−
+

η θ η θ
η θ η θ

ccoefficient for 
for parallel polarization

E





 

		  (1-43a)

T
E
E

T
k
k

2 Transmiss
E tz

iz

tx 1

x 2

2 t

2 t 1 i
|| ||

cos
cos cos

= = = =
−

ε
ε

η θ
η θ η θ

iion coefficient for 
for parallel polarization

E





 

		  (1-43b)

Now at normal incidence, Eq. (1-43) reduces to Eq. (1-11) as expected. 
When both media are non-magnetic, i.e., μ1 = μ2 = μo, Eqs. (1-42) and 
(1-43) reduce to

	

R
n n
n n

T
2n

n n

2 i 1 t

2 i 1 t

2 i

2 i 1

||

||

cos cos
cos cos

cos
cos co

=
−
−

=
−

θ θ
θ θ

θ
θ ss ||θt

Fresnel coefficients for
non-magnetic media
for  polariization

















 

		

(1-44a)

	

R
n n
n n

R

T
2n1

n

E 1 t 2 i

1 t 2 i
P

E i

1

||

||

cos cos
cos cos

cos
cos

=
−
+

= −

=

θ θ
θ θ

θ
θtt 2 in+ cosθ

 	 (1-44b)

		  (1-45)

Power Conservation

In order to observe power conservation, the time-average Poynting vec-
tors of the incident, reflected and transmitted waves for the perpendicular 
polarization are calculated from the fields in Eqs. (1-18), (1-21), (1-24).

	
S E H a aav

i
i i

0

1
x x z z

E
2

k k= ×( ) = +{ }1
2

2

Re *

ωµ
 	 (1-46a)

	
S E H a aav

r
r r

0

1
x x z z

E
2

R k k= ×( ) = − +{ }⊥
1
2

2
2Re *

ωµ
(1-46b)
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S E H a aav
t

t t
0

2
x tx

*
z z

E
2

T k k= ×( ) = +{ }⊥
1
2

2
2Re Re*

ωµ  

(1-46c) 

where Eqs. (1-27) and (1-33) have been used. Note that ktx can become 
complex in some instances as will be discussed later. Power conservation 
holds for the x components of the power. The fraction of power reflected 
is given by

	

P
P

Rr

i

av,x
r

av,x
t= = ⊥

S

S
2

 	 (1-47a)

The fraction of power transmitted is given by

	

P
P

T
k

k
t

i

av,x
t

av,x
t

1

2

tx
*

x

= = ⊥

S

S
2 µ

µ
Re( )

 	 (1-47b)

Substituting Eq. (1-34) into Eq. (1-47), one can show that

	

P
P

P
P

 or P P Pr

i

t

i
i r t+ = = +1  	 (1-48)

We can derive the same power conservation relationship (1-48) for paral-
lel polarization (see Problem 1-16). Eq. (1-47b) should be adjusted for 
parallel polarization. The reflection and transmission coefficients for per-
pendicular and parallel polarized waves are summarized in Table 1-1.

Table 1-1. Reflection and Transmission Coefficients

1. Perpendicular (TE) Polarization

R
E
E

 n nr

i

2 i 1 t

2 i 1 t
1 i 2 t⊥ = =

−
+

=
η θ η θ
η θ η θ

θ θ
cos cos
cos cos

sin sin

T
E
E

2
  it

i

2 i

2 i 1 t
i

i

i
⊥ =

+
= =

η θ
η θ η θ

η
µ
ε

cos
cos cos

, ,1 2
 

Example 1-3. Reflection and transmission of parallel polarized wave
A uniform plane wave whose electric field is given by

E a ai x z
j(2x 2 3z)3 )e V/m= − − +( [ ]
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is incident from air upon a lossless dielectric (glass) of ε = 1.96 ε0 and μ 
= μ0, whose surface is at x = 0 (see Figure 1-3).
(a)	 Determine the angles of incidence, reflection and transmission.
(b)	Find the electric field of the reflected wave.
(c)	 Find the magnetic field of the transmitted wave.
(d)	Calculate the fraction of power reflected from the dielectric surface.

Solution:
(a) Noting that kx = 2, kz = 2 3 , we find

k k k

k k
k
k

1 x
2

z
2

z 1 i i
z

1

= + = + =

= → =






=− −

( ) ( )

sin sin sin

2 2 3 42 2

1 1θ θ 22 3
4







= 60

By the law of reflection, θr = θi = 60°
By Snell’s law, 
	  

θ θt
1

2
i

n
n

=






= 





=− −sin sin sin
.

sin .1 1 1
1 96

60 38 2 

(b) Since the incident electric field E is parallel to the plane of incidence 
(xz plane), the incident wave is parallel polarized. Because the reflec-
tion (Rp) and transmission (Tp) coefficients for parallel polarized are 
defined in terms of ratio of magnetic fields, we calculate the magnetic 
field Hi of the incident wave

H
E a E

a a a ai
i

1

k i

1
x z x z

j(2x 2 3z)

j
1
2

3
2

) )e1=
∇ ×
−

=
×

= + × −

=

− −

ωµ η
1

377
3( (

aa y
j(2x 2 3z)e A/m

2
377

− + [ ]

 

where

 a
k a a

a aki
i

1

x z
x zk

= =
+

= +
2 2 3

4
1
2

3
2

As expected, Hi is perpendicular to the plane of incidence. Now we cal-
culate Rp and Tp:
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R
n n
n np

2 i 1 t

2 i 1 t

=
−
+

= −cos cos
cos cos

. cos cos .

. co
θ θ
θ θ

1 4 60 1 38 2
1 4

 

ss cos .
.

.
60 1 38 2

0 058

1 0 942

 +
= −

= + =T Rp p

The fields of the reflected wave are given by

H a a

E

r y p
j(2x 2 3  z)

y
j(2x 2 3  z)

r 1

R
2

377
e e A/m= = − ×

=

+ − − + −3 08 10 4. [ ]

η HH a a a a

a a

r k p y x z
j(2x 2 3  z)

p x z
j(2

r
R e

R e

× = × − +






= +( )

+ −

+

2
1
2

3
2

3 xx 2 3  z)
x z

j(2x 2 3  z)e V/m− + −= − +( )0 058 3. [ ]a a

Note that one component of the reflected electric field is changed in sign 
because the sign of the x component of kr is changed.
(c) The magnetic field of the transmitted wave is given by

H a ar y p
j(2x 2 3  z)

y
j(4.40x 2 3  z)T

2
377

e e A/m= = ×− + − − −5 0 10 3. [ ]

where

k k 1.96 k 38.2tx 2 t o t 1= = = =cos cos . cos . .θ ω µ ε θο 1 4 4 40

(d) The fraction (or percentage) of the power reflected is given by

P
P

Rr

i
p= = − =

2 20 058 0 0034. .

Thus, 0.34% of the incident power is reflected at θi = 60°.

1.4  Total Internal Reflection

Let us examine Snell’s law in Eq. (1-30) or equivalently, the phase match-
ing condition in Eq. (1-27) or (1-28). We first note:

If n1 < n2, then θi > θt

If n1 > n2, then θi < θt

When the wave is incident from a less dense medium to a denser me-
dium, for example, from air to glass, the transmitted wave is bent toward 
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the normal. When the wave is incident from a denser medium to a less 
dense medium, the transmitted wave is bent toward the surface. This can 
be illustrated graphically by the kx−kz diagram shown in Figure 1-4, (a) 
and (b). The radius of the semicircle represents the wave number (k) for 
each of the incident, reflected and transmitted waves (k1 and k2). Since 
k ni i i i o o= =ω µ ε ω µ ε , the less dense medium has smaller semi-
circle. The arrows are the wave vectors, ki, kr and kt. The phase matching 
condition in Eq. (1-27) or (1-28) requires that the z component of k or 
the component parallel to the boundary should match. In (a), since k1 < 
k2, we have θt < θi. In (b), since k1 > k2, we have θt > θi.

kz

kx
t

ik1 k2

(a) n1 < n 2 (b) n1 > n 2 (c) n1 > n 2

zk

kx

),( 1 µ1 2 ),( 2 µ2 2),( 1 µ1 ),( µ22),( 1 µ1 ),( 2 µ2

t

ik1 k2

kz

kx
t

ck1
k2

Figure 1-4. Snell’s law and total internal reflection

Now in the case of n1 > n2, there exists an angle of incidence (θi = 
θc) such that the angle of transmission becomes 90°, as shown in Figure 
1-4(c).

n n 90 n1 c 2 2sin sinθ = =

or

θ

ε
ε

c
2

1

n
n

 (critical angle)

 (for non-magnetic 

=

=

−

−

sin

sin

1

1 2

1

mmedia)		   (1-49) 

θc is called the critical angle. It is interesting to see what happens when 
the angle of incidence exceeds the critical angle (θi > θc). For discussion, 
let us repeat the dispersion relations and Snell’s law here.

	
k k k

c
nx

2
z
2

1
2

1 1+ = = = 



ω µ ε ω2

1

2

 	 (1-19c)
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	 k k k
c

ntx
2

tz
2

1
2

2 2+ = = = 



ω µ ε ω2

2

2

	 (1-25c)

	 k k  or k kz tz 1 i 2 t+ =sin sinθ θ  	 (1-28)

When θi > θc,

k k k k 90 kz 1 i 1 c 2 2= > = =sin sin sinθ θ 

T﻿hen, from Eq. (1-25c) and Eq. (1-27),

k k k k k ktx
2

2
2

tz
2

tz
2

2
2

z
2= − = = − < 0

Thus ktx has to become purely imaginary, so we let

	
k jtx 2= − α  	 (1-50)

where

	
α θ2 z

2
2
2

1
2

i 2
2k k k k= − = −sin  	 (1-51)

is real. Note that we choose −jα2 instead of jα2 so that Et does not grow, 
i.e., jα2 gives a physically unacceptable solution. The transmitted electric 
field in Eq. (1-24) for perpendicular polarization becomes

	 E at y 0
x jk zT E e e2 tz= ⊥

− −α  	 (1-52)

The transmitted wave propagates in the z direction (parallel to the sur-
face) with the phase constant ktz = kz = k1 sinθi and attenuates exponen-
tially in the x direction. It is a nonuniform plane wave propagating along 
the boundary because E t 0

xT E e 2= ⊥
−α  is not constant over a plane 

perpendicular to the direction of propagation (xy plane) but is attenuated 
away from the boundary. Such a wave is called the surface wave. The 
wave can be tightly bound to the surface of the interface if α2 is large. 
More importantly, this wave carries no real power into medium 2. We 
show this by examining the reflection coefficient for perpendicular polar-
ization in Eq. (1-34a).

	

R
k k
k k

k j
k j

j
k

j
2 x 1 tx

2 x 1 tx

2 x

2 x 2

x

2 x
⊥ =

−
+

=
+
−

+

−

µ µ
µ µ

µ µ α
µ µ α

µ α
µ1 2

1

11

1
µµ α
µ

1 x

2 xk

 	 (1-53)
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The fraction of power reflected is given by

	

P
P

R
k

k

r

i

x

2 x

x

2 x

= =
+





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+






=⊥
2

1

2

1

2

1

1

1

µ α
µ

µ α
µ

 	

							           (1-54a)

or

	
P P  P P P 0r i t i r= = − =,  	 (1-54b)

The wave is totally reflected and there is no time-average (or real) power 
transmitted in the x direction or into medium 2. Hence we call this 
phenomenon total internal reflection. This can also be shown by 
substituting Eq. (1-50) into Eq. (1-46c). The total internal reflection 
is the major principle of the dielectric waveguide such as optical fiber 
which guides the light beam with very little loss because the metal is 
not used.

In summary, there are two conditions for total internal reflection 
(TIR) to occur:

(i) n1 > n2

(ii) θ θi c
2

1

n
n

> = −sin 1

The consequences of TIR are:

(i) ktx = −jα2 → Et becomes a surface wave.
(ii) |R⊥| = 1 . The wave is totally reflected.

As a final note, although we illustrated TIR for perpendicular polariza-
tion, it also applies to parallel polarized wave

Example 1-4. Guidance of a light wave along optical fiber
An optical fiber is a dielectric pipe made of two concentric glass cylinders 
as shown in Figure 1-5. The inner cylinder, called the core, has the refrac-
tive index n1 and the outer cylinder, called the cladding, has the index n2, 
which is slightly smaller than n1, i.e., n2 < n1. Light waves traveling in the 
core are totally reflected from the cladding and thus guided if their angle 
of incidence is greater than the critical angle.
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i

n2 n2

n2

n1
n1

cladding

core

Figure 1-5. Optical fiber

(a)	 A silica glass fiber has n1 = 1.475 and n2 = 1.460. What should the 
angle between the fiber axis and a light ray be in order that the light 
will propagate along the fiber?

(b)	When the cladding is removed, i.e., when the core is surrounded by 
air, what should that angle be?

Solution:
(a)	 In order for the TIR to occur at the interface between the core 
and the cladding, θi must be greater than the critical angle (θc).

	
θ θi c

2

1

n
n

> = = =− −sin sin
.
.

.1 1 1 460
1 475

81 8

Then the angle between the f﻿iber axis and the ray (α) should be

	
α θ θ= − < − =90 90 8 2  

i c .

(b)	When the core is surrounded by air, n2 = 1.

	
θ θi c> = =−sin

.
.1 1

1 475
42 7

Then α < 90° − θc = 47.3°

1.5  Brewster Angle Effect

Let us now investigate how the reflection coefficients vary as a function 
of incidence angle θi. The expressions for R^ and R∙ for electric fields are 
given in Eqs. (1-36) and (1-45) in the case of non-magnetic media. Con-
sider the case when the wave is incident from air (n1 = 1) upon glass with 

ε2 = 4εo. The glass has the index of refraction n2
o

o o

= =
µ ε
µ ε

2 2 .

Figure 1-6(a) shows the plot of |R⊥| and |R∙| versus θi when n1 = 1, 
n2 = 2. It is observed that as θi varies from 0° (normal incidence) to 90° 
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(grazing), |R⊥| increases monotonically, reaching a maximum value of 1 
at 90°, while |R∙| decreases initially, reaches a minimum value of 0 at some 
angle θi = θB and then increases up to 1 at 90°.

1.0

0.5

0 o30 o60 o90
i

R
i

1n1=

2n2=

2n1=

1n2 =

R

R

1.0

0.5

0 o60 o90
i

i

R

R

   n2(a) n1    n2(b) n1

R

B C

Figure 1-6. Reflection coefficients vs. incidence angle

Thus we have

(i)	|R⊥| ≥ |R∙| for all angles θi

(ii) 	R∙ = 0 at θi = θB

The perpendicularly polarized wave is reflected more than is the parallel 
polarized wav e. There exists an angle of incidence θi = θB at which R∙ = 0, 
i.e., there is no reflection, thus total transmission for parallel polarized wave. 
Such an angle θB is called Brewster’s angle. θB can be calculated by letting 
R∙ = 0 in Eq. (1-45) for non-magnetic media, with the use of Snell’s law. 
Letting R∙ = 0 leads to

	 n n1 t 2 Bcos cosθ θ=  	 (1-55)

From Snell’s law, Eq. (1-30), we have

	 n n2 t 1 Bsin sinθ θ=  	 (1-56)

Eliminating θt from Eqs. (1-55) and (1-56), we derive Brewster’s angle as 
follows (see Problem 1-28):

	
θB

2

1

n
n

Brewster’s angle
for non-magnetic media

=






−tan 1  	 (1-57)
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When n1 = 1, n2 = 2, Brewster’s angle occurs or θB = 63.4°. When the 
wave with elliptical polarization or the unpolarized wave is incident on 
the dielectric surface exactly at Brewster’s angle, the reflected wave will 
contain only the perpendicularly polarized component because the paral-
lel polarized component of the incident wave is totally transmitted into 
the dielectric. The reflected wave becomes linearly polarized. Polaroid 
sunglasses reduce glares based on this principle. When the unpolarized 
sunlight is reflected from the ground such as the asphalt and snow surface, 
the reflected light, that is, the glare becomes partially polarized, having 
mostly the perpendicularly polarized component for which the electric 
field is horizontal with respect to the reflecting surface. The material used 
in sunglasses is anisotropic such that it passes the vertical component of 
the electric field but blocks (or absorbs) the horizontal component (per-
pendicularly polarized component).

In Figure 1-6(b), |R⊥| and |R∙| versus θi are plotted when the wave 
is incident from glass (denser, n1 = 2) upon air (less dense, n2 = 1). We 
find similar characteristics except that |R^| = |R∙| = 1 for θi ≥ θc = sin−1 n2/
n1 = 30° because of the total internal reflection, as discussed in Section 
1.4. Brewster’s angle occurs at θB = tan−1 n2/n1 = 26.6°. Finally, we note 
that Brewster’s angle exists only for parallel polarized waves when both 
media are non-magnetic (μ1 = μ2 = μo). There can exist Brewster’s angle for 
perpendicularly polarized wave when two media have different magnetic 
properties (μ1 ≠ μ2) (see Problem 1-30).

1.6  Reflection from Perfect Conductor – Standing 
Waves

In this section we consider the situation when the wave is incident upon a 
perfectly conducting medium which has an infinite conductivity. Referring 
to Figure 1-2, we consider the oblique incidence of the perpendicularly 
polarized wave whose fields are given by Eq. (1-18). Now the medium 2 
has μ2, ε2 and σ2 = ∞. First we note that inside a perfect conductor the 
fields are zero, therefore, we have

	 E Ht t  in medium 2= = 0  	 (1-58)
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and there will be no transmitted wave, i.e., T⊥ = 0. The electric and mag-
netic fields of the reflected wave can be written as in Eq. (1-21). The 
boundary conditions at the surface of the perfect conductor (x = 0) are 
given from Eqs. Volume 4 (1-27 a b) by letting E2 = H2 = 0 or

	
E1t = 0  	 (1-59a)

	
a H Jn 1 s2 × =

 	 (1-59b)

where Js is the (free) surface current density. Substituting x = 0 in Eqs. 
(1-18a), (1-21a) and applying the boundary condition, Eq. (1-59a), we 
obtain

	 e R ejk z jk zz rz−
⊥

−+ = 0  	 (1-60)

Following a similar procedure shown in Section 1.3, we have

	 k k  or z rz r i= =θ θ

and

	
1 0+ =⊥R

Thus we have

	 R  T⊥ ⊥= − =1 0,  	 (1-61)

At the surface of the perfectly conducting medium, the wave is totally 
reflected, i.e., the perfect reflection occurs, and there will be no trans-
mission. This fact becomes a major principle of metallic waveguides 
for which the wave bounces off the conducting walls by perfect reflec-
tion and is guided in a certain direction. We can also obtain the results 
of Eq. (1-61) from the results of a dielectric boundary, Eq. (1-35), by 
treating the medium 2 as a lossy dielectric with infinite conductivity, 

ε ε
σ
ω

σ2,eff 2
2

2j  = − → ∞,
 

η
µ

ε σ
ω

σ2
2

2

2
j

 as =
−

→ → ∞
2

0 .
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Letting η2 = 0 in Eq. (1-35) leads to Eq. (1-61).
In the case of a parallel polarized wave, substituting x = 0 in Eqs. (1-

37b), (1-38b) and applying Eq. (1-59a), we obtain

	
R  T|| ||= =1 0,  	 (1-62a)

	
R  T||

E
||
E= − =1 0,

 	 (1-62b)

We note that the reflection coef﻿ficient is +1 for the magnetic field and −1 
for the electric field. For both polarizations, we find that

	
P P  Pr i t= =, 0  	 (1-63)

Standing Waves

Let us now look at the total f﻿ields in medium 1 for the perpendicular 
polarization and observe the field pattern as a function of distance from 
the surface of the perfect conductor (or medium 2).

	

E E E a a

a

1 i r y 0
jk x jk z

y 0
jk x jk z

y 0
jk z jk

E  e E  e

E  e e

x z x z

z x

= + = −

=

− − −

− − xx jk x
y m

jk z
xe E  e k xx z−{ } = −a sin( )

 (1-64a)

where

E j2Em 0= − .

Similarly, we can obtain

H H H a a1 i r
0

1

jk z
y z x z x x

2E
e jk k x k k xz= + = +{ }−

ωµ
sin( ) cos( )

		  (1-64b)

Assuming Em
jAe= φ , the electric field in real time is given by

E r E a1 1( ) Re,t e A sin(k x) sin( t k z )j t
y x z= { } = − +ω ω φ  	 (1-65)

The wave represented by Eqs. (1-64) and (1-65) propagates in the +z 
direction but does not propagate or travel in the x direction. Such a wave 
is called a standing wave in the x direction while e jk xx−  and ejk xx  repre-
sent traveling waves. The amplitude of the electric field is given by
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	 E1 = E k xm xsin( ) 	  (1-66)

and plotted as a function of x in Figure 1-7. It gives a periodic pattern for which the 
minima (with zero value) occur at x = − nπ/kx (n = 0, 1, 2, ….) and the maxima (with 
the value of 2|Eo|) at x n �/k nx= − +



 =1

2
0 1 2( , , ,....). The period of the 

standing wave pattern is

	

π π
θ

λ
θk kx 1 i i

= =
cos cos

1

2
1

 	 (1-67)

Note that at normal incidence (θi = 0), the period is half the wavelength 
(λ/2).

x

E1

E02

032

kxkx2 kx2 kx2

5

kx

Figure 1-7. Standing wave pattern

Noting that 

E1 0
1

0 1 2= = − = − = at x n
k

n
2

 n
x i

π λ
θcos

, , , ,....,

perfectly conducting plates can be placed at these points without affect-
ing the solution between the original and added conductors. This inter-
pretation will be quite useful in understanding the field solutions of the 
metallic waveguide. In fact, the total fields we just discussed are proved 
to be the TE (transverse electric) mode solutions for the parallel-plate 
waveguide as we shall see in Chapter 2.

The time-average power density or Poynting vector of the total wave 
is given by
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S E H a aav 1 1 z
0

1
z x z
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1
i x

E
k k x

E
k= ×( ) = =1

2
2 22

2

2

2Re sin ( ) sin sin (*

ωµ η
θ xx)

 	
(1-68)

Thus, the time-average power flow is in the +z direction. Note that the x 
component of Sav is zero because Ey and Hz are 90° out of phase in time. 
The phase velocity in the z direction is given by

v
k k

v
p

z 1 i

1

i

= = =ω ω
θ θsin sin

where v1 is the phase velocity of a wave in an unbounded medium 1.
Now, if we use the second boundary condition given in Eq. (1-59b), 

we can obtain the surface current Js that flows on the surface of the perfect 
conductor from the magnetic field as follows.

	
J a H a as x x y z x y

0

1
x

jk zH
2E

k e z= − × = == =

−( ) 1 0 0 ωµ
 	 (1-69)

If the conducting plate is replaced by a grating of parallel conducting 
wires arranged in the direction of the surface current flow (y direction 
in this case), these wires can serve as a good reflector as effectively as a 
solid conducting plate. The gratings are used often as reflecting antennas 
because they reduce weight, save material cost, and reduce wind loading.

Normal Incidence
As a special case, when the wave is incident normal to the boundary, let-
ting θi = 0, we obtain the following results:
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We can also obtain similar results and interpretations when the parallel 
polarized wave is incident upon a perfectly conducting medium.

Example 1-5. Standing wave in front of a perfect conductor
A uniform plane wave of 1 GHz is incident normally on a large copper 
plate at x = 0 (see Figure 1-1). The electric field is z-polarized and has an 
amplitude of 10 V/m.
(a)	 Find the total electric field and the locations of its f﻿irst maximum and 

minimum in front of the plate.
(b)	Find the total magnetic field and the locations of its f﻿irst maximum 

and minimum.
Solutions:
(a)	 The electric fields of the incident and reflected waves can be written as

E a

E a

i z
jkx

8

r z
j

10e  k=
c 3 10

 
�

k
m

10e

= = ×
×

= = =

=

−

+

, , [ ]
ω π π λ2 10 20

3
2

30
9

kkx  Note that R  for = −1 E.

The total electric field is given by

E E E a1 i r z j20 kx= + = −( )sin( )
The first maximum occurs at

kx
2

x
2

 x
4

mmax= = − = − = −π
λ

π λ
, . [ ]7 5

The first minimum (excluding x = 0) occurs at

kx
2

x  x
2

mmin= = − = − = −π
λ

π λ
, [ ]15

(b)	The magnetic fields are given by

H a E a

H a E a

i
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x i y
jkx
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x r y
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e
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= × = −

= − × = −

−
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1 10
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1 10
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The first maximum (excluding x = 0) occurs at

 kx  x
2

mmax= − = − = −π λ
, [ ]15

The first minimum occurs at kx
2

 x
4

mmin= − = − = −π λ
, . [ ]7 5

Note that the electric and magnetic fields alternate their maxima and 
minima. This behavior is similar to that of the transmission line with 
short-circuited load for which the voltage and current alternate their max-
ima and minima, as will be shown in Section 2-7.
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CHAPTER 2

Basics of Waveguides, 
Resonators and Transmission 

Lines

 
2-1  Introduction

In the previous chapters we studied propagation, polarization, reflection, 
and transmission of electromagnetic waves. In this chapter, we study how 
the electromagnetic wave is “guided” from one point to another, using 
certain transmission structures called waveguides. There are two ways to 
guide the wave in a bounded system, i.e., use either highly conducting 
materials or dielectric materials. When very good (so-called perfect) con-
ductors such as metals are used, the wave is guided due to total reflection 
of waves on a perfectly conducting surface and the system is called the 
metallic waveguide. When dielectric material is used, the wave is guided 
based on the principle of total internal reflection and the system is called 
dielectric waveguide.

There are various forms of metallic waveguides. The simplest structure 
would be to use a pair of good conductors where the waves bounce off 
these conducting walls and are guided along the axis of these conducting 
structures. The examples are the parallel plate waveguide, the two-wire 
transmission line and the coaxial cable as shown in Figure 2-1(a)-(c). All 
of these waveguides support the transverse electromagnetic (TEM) mode 
which has no cutoff frequency. They are also called transmission lines. 
The TEM mode can propagate along these waveguides from dc up to 
some high frequency where the cross-section of the waveguide becomes 
electrically large. Hence they are useful in guiding signals with relatively 
low frequencies.
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(a) (b) (c)

(d) (e) (f)

metal dielectric

Figure 2-1. Various waveguides. (a) Parallel-plate waveguide, 
(b) two-wire transmission line, (c) coaxial cable, (d) rectangular 
waveguide, (e) circular waveguide, (f) optical fiber

At high frequencies such as microwaves, the use of a two-conductor 
guiding system becomes impractical because the attenuation of TEM 
waves along the waveguide due to conductor loss (because the conduc-
tor is imperfect) increases with frequency. So at microwave frequencies, 
other forms of transmission system are used. The single-conductor hollow 
waveguides [see Figure 2-1(d), (e)] are able to transmit or guide waves in 
the GHz range over long distances without incurring large losses. Since 
metal pipes are single conductors with large surface areas, we expect that 
the attenuation due to conductor loss would be smaller. As will be shown, 
the hollow waveguides do not support the TEM mode but higher order 
modes – the TM (transverse magnetic) and TE (transverse electric) modes.

At optical frequencies higher than 1 THz, the metallic waveguides 
become impractical again due to increased conductor loss at higher fre-
quencies, but the dielectric waveguides such as optical fibers shown in 
Figure 2-1(f ) can provide guidance of optical signals with very small loss.

In this chapter we first discuss the general solution methods for wave-
guides with uniform cross section and introduce the concepts of TE, TM 
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and TEM modes. We consider the following waveguides and resona-
tors and find the solutions for the electric and magnetic fields and their 
applications.

1.	Parallel plate waveguide
2.	Rectangular waveguide
3.	Coaxial cable
4.	Rectangular cavity resonator

In the last section, we study characteristics of the transmission lines and 
their TEM mode analysis using the concepts of the voltage, current, and 
impedance.

2.2  Solution Methods for Uniform Waveguides

For the waveguiding structure whose cross section is uniform (or invari-
ant) along certain direction (say, z-axis), the following method of analy-
sis is generally applicable. We assume that the metallic walls are perfect 
conductors (σ = ∞) and the medium inside the waveguide is lossless (σ 
= 0) and has the real material constants μ, ε, as shown in Figure 2-2. The 
medium could be air.

In the medium within the guiding structure, E and H satisfy the 
Helmholtz wave equation

 

z

x

y

Perfect
conductor

( , ) µ

Figure 2-2. Uniform Waveguide
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( )∇ + =2 0k2 E  	 (2-1a)

	 ( )∇ + =2 0k2 H  	 (2-1b)

where

	 k2 = ω µε2  	 (2-2)

Let us assume that we wish to guide the wave in the +z direction. Then 
the field solutions are assumed to take the following form:

	 E E( ) ˘( )x, y, z x, y e jk zz= −  	 (2-3a)

	 H H( ) ˘ ( )x, y, z x, y e jk zz= −
	  (2-3b)

because e jk zz−  represents a wave traveling in the +z direction.
Noting that

	

∂
∂









= −






z

jkz

E
H

E
H

,  	 (2-4) 

substitution of Eq. (2-3) into Eq. (2-1) yields

	  
	

∂
∂

+ ∂
∂

− +




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







=
2 2

0
x y

k k2 2 z
2 2

E
H

 	 (2-5)

Making use of the identity, Eq. (2-4), from the two Maxwell’s vector curl 
equations

	 ∇ × = −E Hjωµ  	 (2-6a)

	 ∇ × =H Ejωε  	 (2-6b)

we obtain the following six scalar equations:

	  
	

∂
∂

+ = −
E
y

jk E j Hz
z y xωµ  	 (2-7a) 

	  
	

− −
∂
∂

= −jk E
E
x

j Hz x
z

yωµ
	

(2-7b)

	  
	

∂
∂

−
∂
∂

= −
E
x

E
y

j Hy x
zωµ  	 (2-7c)
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and

	

∂
∂

+ =
H
y

jk H j Ez
z y xωε

	
 (2-8a) 

	
− −

∂
∂

=jk H
H
x

j Ez x
z

yωε  	 (2-8b) 

	

∂
∂

−
∂
∂

= −
H
x

H
y

j Ey x
zωε  	 (2-8c) 

Because of the assumed form of the z dependence, from Eqs. (2-7a,b) and 
(2-8a,b) we can express Ex, Ey, Hx, Hy in terms of Ez and Hz. For example, 
from Eq. (2-7b), we find

	  
	

H
k

E
1

j
E
xy

z
x

z= +
∂
∂ωµ ωµ

 	 (2-9) 

Substituting Eq. (2-9) into Eq. (2-8a) and solving for Ex, we obtain
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1 ωµ
	

 (2-10a) 

Similarly, we can derive (see Problem 2-1)
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k k

jk
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H
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∂
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



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

1 ωε  	 (2-10d) 

Note that Ex and Hy are derived from Eqs. (2-7b) and (2-8a), while Ey 
and Hx are derived from Eqs. (2-7a) and (2-8b). Here we have expressed 
the transverse components (Ex, Ey, Hx, Hy) of the fields in terms of the 
longitudinal components (Ez, Hz) of the fields. We mean “transverse” with 
respect to the direction of guidance (z axis in this case). Thus we only 
need to solve for the z components (Ez, Hz) of the fields, which satisfy the 
following wave equation from Eq. (2-5).
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Eqs. (2-11) are the second-order partial differential equations which 
are similar to Laplace’s equation we treated in Volume 6 except for the 
existence of the third term. Thus the general solutions can be obtained by 
using the same technique, that is, the method of separation of variables. As 
will be shown in Section 2.4, the general solutions of Eq. (2-11) for Ez (or 
Hz) take the following form.

E x, y, z Asink x Bcosk x  Csink y Dcosk y ez x x y y
jk zz( ) = +{ } +{ } −    (2-12)

for which kx, ky, kz should satisfy the dispersion relation:

	
k k k k =x

2
y
2

z
2 2+ + = ω µε2  	 (2-13)

The allowed or acceptable values for kx, ky and some of the coefficients 
(A, B, C, D) are determined by applying the appropriate boundary con-
ditions at the surface of the conducting walls, i.e., Etan = 0, in the case of 
metallic waveguide.

It is convenient to classify the propagating waves in a waveguiding system 
into three types according to whether Ez or Hz exists.

(i) Ez = 0 , Hz ≠ 0 : Transverse electric (TE) mode
(ii) Hz = 0 , Ez ≠ 0 : Transverse magnetic (TM) mode
(iii) Ez = Hz = 0 : Transverse electromagnetic (TEM) mode

It will be easier to find solutions for each type, separately. This also reduces 
the complexity of finding general waveguide solutions. For TE modes, the 
electric field has only transverse (x- and y-) components while the mag-
netic field may have both transverse and longitudinal (z-) components. 
Thus in order to obtain the TE mode solutions we only need to determine 
Hz ; then all the other components of E and H can be obtained through 
Eq. (2-10). For TM modes, the magnetic field has only transverse com-
ponents while the electric field may have both components. Thus for the 
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TM mode solutions we seek to determine Ez first, from which all the 
other components can be calculated. In the case of the TEM mode, one 
has to find the transverse component directly. It is known that there exists 
a TEM mode for a two-conductor transmission system such as a two-
wire transmission line, a parallel-plate waveguide and a coaxial cable. The 
TEM wave does not exist for a one-conductor system such as rectangular 
waveguide as will be shown later.

In summary, to obtain the field solutions for metallic waveguides 
whose cross section is uniform in the z direction, we take the following 
steps:

Step 1.	 Solve for Ez (for TM modes) or Hz (for TE modes) that sat-
isfy Eq. (2-11), subject to the boundary conditions on the 
perfectly conducting surface [Etan = 0].

Step 2.	 Determine the transverse components (Ex, Ey, Hx, Hy) from 
Ez or Hz, using Eq. (2-10).

We will start with the simplest waveguide, the parallel-plate waveguide, 
and then consider the rectangular waveguide and also the rectangular cav-
ity resonator, whose solutions are a simple extension of the rectangular 
waveguide solutions.

2.3  Parallel-Plate Waveguide

A parallel-plate waveguide consists of two perfectly conducting plates 
separated by a distance a and filled with a medium having material con-
stants μ, ε as shown in Figure 2-3. The width w of the conducting plate 
is assumed to be much greater than the separation a. for the purpose of 
finding simple and analytical solutions we assume that the cross section 
is infinite in extent in the y direction, i.e., w → ∞. As mentioned in the 
previous section, we look for waves propagating in the +z direction.

First of all, because the plates are infinite in extent in the y direction 
and edge effects are neglected, we assume that all fields do not vary in the 
y direction. They are independent of y and all derivatives with respect to 
y are zero, i.e., ∂

∂
=

y
0 .
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Figure 2-3. A parallel-plate waveguide

Then Eqs. (2-10) reduce to

 E
jk
k

E
x

 E
j
k

H
xx

z

x
2

z
y

x
2

z= −
∂
∂

=
∂
∂

,
ωµ

	
H

jk
k

H
x

 E
j
k

E
xx

z

x
2

z
y

x
2

z= −
∂
∂

= −
∂
∂

,
ωµ

	
(2-14)

where

	 k k kx
2 2

z
2= −  	 (2-15)

Eqs. (2-11) reduce to
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=
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=
2 2

0 0
E
x

+k E
H
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+k Hz
2 x

2
z

z
2 x

2
z,  	 (2-16) 

Eq. (2-16) has two independent solutions, sin kxx and cos kxx. We now 
consider two types of solutions separately.

2.3.1 TM Mode Solutions

For TM modes, Hz = 0 and we seek the solutions for Ez(x,z) which satisfy 
Eq. (2-16). The solutions for Ez can be written as

	  
	 E x,z A sin k x B cos k x ez x x

jk zz( ) = +{ } −  	 (2-17)
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where A and B are arbitrary constants. We now apply the boundary con-
ditions (BC’s) on the surface of the perfect conductor:

E tan y z or E E  at x 0 and x a= = = = =0 0

Since we have formulated Ez, we can apply the BC’s on Ez.

BC (i) E  at x 0z = =0

BC (ii) E  at x az = =0

BC (i) leads to B = 0, thus

	 E A sin(k x)ez x
jk zz= −  	 (2-18)

BC (ii) gives the following condition and determines the allowed values 
of kx.

sin(kxa) = 0 → kxa = mp, m = integer

	
k

m
a

 m 1,2,3,...x = =π
,  	 (2-19) 

The values obtained for kx are known as the eigenvalues or the characteris-
tic values. Making use of Eq. (2-15) and Eq. (2-2), we obtain the follow-
ing dispersion relation:

 
	

k k k  or 
m
a

kx
2

z
2 2

z
2+ = 



 + =π ω µε2

	
 (2-20)

 
Therefore, the final solutions for Ez for TM modes are

	  
	

E E
m
a

x e  TM  modez 0
jk z

m
z= 



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−sin ,
π

 	 (2-21)

where

	
k

m
a

 m 1, 2, 3, ....z = − =ω µε π2 2( ) ,  	 (2-22) 

We have let A = Eo in Eq. (2-18). Eq. (2-22) is obtained from Eq. (2-20). 
It is to be noted that the field distribution and the propagation constant 
kz depend on the value of m; thus given m we call it the TMm mode.

The transverse components of the fields are obtained from Eq. (2-14):
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(2-23)

Propagating Mode vs. Cutoff
First of all, as seen in Eq. (2-21), we note that in order for the wave to be 
guided in the z direction without attenuation the propagation constant kz 
must be real. From Eq. (2-22), we observe that

(i)	 When ω µε π> m
a , kz becomes real.

				  

k
m
az ≡ = −β ω µε π2 2( )						    

			         (2-24) 
then the wave propagates.

(ii)	When ω µε π< m
a , kz becomes purely imaginary. 

									          
	

k j j
m
a

e ez
jk z zz= − = − − → =− −α π ω µε α( )2 2

           
(2-25)

	 then the wave attenuates rapidly with z and is called an evanescent 
wave. We say that the wave is in the cutof﻿f region. The frequency at 
which cutoff occurs, i.e., where the propagation constant kz changes 
from β to −jα, is called the cutoff frequency and it is obtained by 
letting kz = 0 in Eq. (2-24).

	  
	

( )2
1π µε π
µε

f
m
a

f
m
2a

v
2a

mc c= → = =  	 (2-26) 

The cutoff frequency depends on the mode number m. Eq. (2-26) gives 
the cutoff frequency for the TMm mode. Then the propagating mode vs. 
cutoff are determined by whether the operating frequency f is greater than 
the cutoff frequency fc.

(i)	If f f
v

2a
mc,m> = , then the TMm mode propagates.
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(ii)	 If f f
v
2a

mc,m< = , then the TMm mode is cutoff.

Dominant Mode

The mode that has the lowest cutoff frequency is called the dominant 
mode. From Eq. (2-26), when m = 0, fc = 0, thus the lowest possible value 
for the cutoff frequency. Therefore, the TM0 mode is the dominant mode 
among the TM modes of the parallel-plate waveguide. When m = 0, it is 
seen from Eqs. (2-21) and (2-23) that

E  E E e  H
E

e  for TM  modez x 0
jkz

y
0 jkz

0= = ′ =
′− −0, ,

η
 	(2-27) 

where we have redefined ′ = −E j
k

m /a
E0

z
0π

 and used kz = k and kz

ωε
η=  when m = 0.

 
In this case, Ez = 0 as well as Hz = 0. Both electric and magnetic fields are 
transverse to the direction of guidance (z). Thus the TM0 mode is a TEM 
(transverse electromagnetic) mode. The mode that has the next higher 
cutoff frequency is the TM1 mode for which

	  
	

f
v

2ac,1 =  	 (2-28)

and the corresponding cutoff wavelength is

	  
	

λc,1
c,1

v
f

=2a=  	 (2-29)

If we choose the operating frequency such that fc,o < f < fc,1 or  
0 f

v
2a

< <  or λ > 2a, only the dominant TEM mode will prop-
agate and all the higher-order modes will be cutoff, because 
f f

v
2a

m (m 1, 2, ....)c,m< = = . Such choice is known as the single 
mode operation. In most practical applications, the waveguide operates 
this way because the presence of multiple modes creates a dispersion 
problem where each mode propagates with different velocity, leading to 
the distortion of the signal.
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Guide Wavelength, Phase Velocity and Group Velocity
When the wave is in the propagating mode, the phase constant is given by

	  
	

k
v
f

m
2a

k 1
f
fz
c≡ = = − = −β ω µε 1 2 2( ) ( )  	 (2-30)

The corresponding wavelength in the waveguide, called the guide wave-
length, is given by

	  
	

λ π π λ
g

z c c
ck k 1 f f 1

f
f

 f f≡ =
−

=
−

>2 2
2

2( / ) ( )
,  	 (2-31)

where λ is the wavelength of the wave in an unbounded medium. We 
note that λg > λ.

The phase velocity of the wave in the waveguide is given by

	
V

k
k 1

f
f

v

1
f
f

 f fp
z c c

c≡ =
−

=
−

>ω ω

( ) ( )
,

2 2 	 (2-32) 

where v is the phase velocity of the wave in an unbounded medium. We 
note that vp > v and vp depends on the frequency and the mode number. 
Thus the waveguide is a dispersive transmission system, similar to the dis-
persion in a lossy medium. The group velocity will be different from the 
phase velocity and is given by

	  
	

V
k

1
k v 1

f
fg

z z

c= ∂
∂

= ∂
∂

= −ω

ω
( )

( )2  	 (2-33) 

We note that vg < v , i.e., the group velocity cannot exceed v because the 
velocity of the energy transport in a lossless waveguide is equal to the 
group velocity.

Wave Impedance

The wave impedance defined as the ratio of the electric and magnetic 
fields in their transverse components is given by
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f
f

, f  > fTM
x

y

z c
c≡ = = −

ωε
η ( )2  	 (2-34)

It is to be noted that while the wave impedance is real in the propagating 
mode (when f > fc), it becomes purely imaginary or reactive when the 
wave is cutoff (f < fc) because kz = −jα.

Time-Average Power Flow

The time-average Poynting vector for the TMm mode is given by
·D. K. Cheng, Field and Wave Electromagnetics, pp. 541-543, Addison-
Wesley Publishing Co., 1989, 2nd ed.
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		  (2-35)

when the wave is in the propagating mode. E Hz y
*  is purely imaginary. 

When the wave is cutoff, kz becomes purely imaginary and Sav = 0, i.e., 
the wave will not propagate as expected. The time-average power flowing 
through the waveguide can be easily calculated by integrating Sav over the 
cross section of the waveguide.

Finally we interpret the propagation of the wave within the waveguide 
as represented by the field solutions. The solutions given in Eqs. (2-21) 
and (2-23) represent a standing wave in the x direction and a traveling 
wave in the z direction. The standing wave can be written as a superposi-
tion of two oppositely traveling waves:
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Thus
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(2-36) 

The first term represents a plane wave traveling in the +x and +z directions 
and the second term represents a wave traveling in the −x and +z direc-
tions. These two waves can be illustrated in Figure 2-4 where the upward 
traveling wave corresponds to the first term and the downward traveling 
wave corresponds to the second term, which is due to the perfect reflec-
tion from the upper conducting boundary. The ratio of the amplitudes 
of the two waves should be a reflection coefficient for an electric field at 
the perfectly conducting surface, R = −1. Eq. (2-36) is consistent with 
this interpretation. When m ≠ 0, the wave doesn’t travel straight down 
within the waveguide but bounces between the two conducting walls as 
it is guided.

 
x

z

E

H

k E = ax Ex + az Ez
H = ay Hy

x=a

x=0
 
Figure 2-4. Guidance of the TM wave in a parallel-plate waveguide

2.3.2 TE Mode Solutions

For the second type of solutions, the TE modes, Ez = 0 and we seek the 
solutions for Hz(x,z) which satisfy Eq. (2-16). The solutions for Hz can be 
similarly written as

	 H x,z C sin k x D cos k x ez x x
jk zz( ) = +{ } −  	 (2-37) 

where C and D are arbitrary constants. The boundary conditions (BC’s) 
on the conducting plates are
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	 E

j
k

H
x

 at x 0 and x ay
x
2

z=
∂
∂

= = =
ωµ

0

The first BC, E
H
xy

z∝
∂
∂

= 0  at x = 0, leads to C = 0, thus

	  
	

H D cos(k x)ez x
jk zz= −

 	
(2-38) 

The second BC, E
H
xy

z∝
∂
∂

= 0  at x = a, determines the allowed values 
of kx.

	  
	

sin( ) , , , ,...k a k
m
a

 mx x= → = =0 1 2 3
π

 	 (2-19) 

which is the same result as that of the TM modes, Eq. (2-19). kx and kz 
will also satisfy the same dispersion relation, Eq. (2-20).

The final solutions for Hz for the TE modes are

	  
	

H H
m
a

x e  TE  modez 0
jk

m
z= 





−cos ,
π z  	 (2-39) 

where

	
k

m
a

 m 1, 2, 3, ....z = − =ω µε π2 2( ) ,  	 (2-22) 

We have let D = Ho in Eq. (2-38). We again notice that the field distribu-
tion and the propagation constant kz depend on the mode number m. 
The transverse components of the fields are obtained from Eq. (2-14) as 
follows.

 
	

E j
m /a

H
m
a

x e

H j
k

m /a
H

m
a

x e

y 0
jk z

x
z

0

z= − 





= 



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−ωε
π

π

π
π

sin

sin −−

= =

jk z

x y

z

E H 0

 	

(2-40) 
 
 
 
 

The TM and TE solutions for the parallel-plate waveguide are summarized 
in Table 2-1.
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Table 2-1 Field solutions for parallel-plate waveguide

TMm mode TEm mode
E = axEx + azEz

H = ay HY

E E
m
a

x e

E
jk

m /a
E

m
a

x e
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z o
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z

o
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y

z
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π
π
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x e
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π
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All the discussions about the cutoff frequency, guide wavelength, phase 
velocity, group velocity, wave impedance and the standing wave interpre-
tation, presented in the previous section, are valid also for the TE modes 
except the following differences.

(i)		  The dominant TE mode which has the lowest cutoff frequency 
among the TE modes is not the m = 0 mode but the TE1 mode for 
which fc,1 = v/2a.

		  When m = 0, Ey = Hx = 0; such mode does not exist. Overall, the 
TMo or TEM mode is the dominant mode for parallel plate wave-
guide. The field lines for the TE1 mode and the TM1 mode are 
shown in Figure 2-5.

(ii)		 The wave impedance for the TE mode is given by
			 

Z
E
H k

1
f
f

 f fTE
y

x z c
c= − =

−
>ωµ η

( )
,

2

	  	  
 
 

					        				          

(2-41)

		  We note that ZTM < η and ZTE > η for the propagating modes and 
both ZTM and ZTE approach η (the intrinsic impedance of the me-
dium) as f → ∞.

(iii)		 The time-average Poynting vector for the TEm mode is given by

S E H a a a

a a

av y y x x z z

x y z
*

z y x
*

E H H

E H E H

= ×{ } = × +( ){ }
= +

1
2

1
2

1
2

Re * Re

Re

*

{{ }
= −{ } = >a az y z

*
z z

2
0 c

1
2

E H
1
2

k (
a

m
) H

m
a

x  f fωµ
π

π2 2sin ( ),

Note that when the wave is in the propagating mode, E Hy z
*  is purely 

imaginary.
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(a)  TM1 mode

(b)  TE1 mode

z

x

0

a

Magnetic field lines
Electric field lines

Magnetic field lines
Electric field lines

z

x

0

a

Figure 2-5. Field lines for the TM1 and TE1 modes in a parallel-plate 
waveguide

Example 2-1. Microstrip Line
Mircrostrip line is one of the most commonly used planar transmission 
line structures in microwave integrated circuits because it can be easily 
fabricated by printed- circuit techniques. It consists of a metallic strip of 
width w and a large conducting ground plane separated by a thin layer of 
dielectric substrate of thickness d as shown in Figure 2-6.

The complete analysis of the electromagnetic fields that propagate in 
microstrip line is very complicated. The fields exist inside the dielectric 
layer as well as in the upper air region. However, if the width of the strip 
is much larger than the thickness of the layer, then the microstrip line can 
be modeled as a parallel-plate waveguide and the fields of the dominant 
mode can be approximated by the TEM mode (or the TMo mode) dis-
cussed earlier.
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d

w
metal strip

metal ground plane

dielectric substrate

Figure 2-6: Microstrip transmission line

Suppose the microstrip line has w = 0.7 cm and d = 1.4 mm, and the 
substrate has ε = 1.96 εo, μ = μo, σ = 0.
	 (c)	 What is the range of frequencies for which only the dominant 

mode propagates?
	 (d)	 Calculate the time-average power for the dominant mode that is trans-

mitted by the line when the amplitude of the electric field is 7 kV/m.
Solutions:

(c)	 If we model the microstrip line as parallel-plate waveguide, the domi-
nant mode is the TEM mode which has no cutoff frequency (or zero 
cutoff frequency fc,0 = 0) and the next higher mode is either TM1 or 
TE1 mode whose cutoff frequency is given by

f
v

2d
1

2dc,1
o o

= = =
× ×

= ×
× ×

=− −

1 1
1 96

1
2 1 4 10

3 10
1 4 2 8 10

7 63

8

3µε µ ε. . . .
. 55 1010× Hz

Thus the range of frequencies for which only the dominant mode propa-
gates is
	 0 76 5< <f  GHz.
(d)	For the TEM mode, the fields are given by

E a H a= =− −
x o

jkz
y

o jkzE  e  
E

 e,
η

 
The time-average Poynting vector is given by
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The time-average power for the TEM mode transmitted by the line is 
approximately obtained by integrating over the dielectric cross section of 
width w and thickness d:

 
P d

E
2

dxdy
E wd

2
1.96

av av
o

o

d

o

w
o

o

o

2

= ⋅ = = =
×( ) ⋅ ×

∫∫ ∫∫
−

S s
η µ

ε

7 10 7 103 2 3 ⋅⋅ ×

×
= [ ]

−1 4 10

2 377
1 4

0 89
3.

.

. w

 
Note that we have ignored the field that exists in the dielectric beyond 
the width w.
Example 2-2. Dielectric Breakdown
A dielectric substrate in a waveguide breaks down when a strong elec-
tric field is applied. The maximum electric field magnitude that a dielec-
tric material can withstand without breakdown is called the dielectric 
strength of the material. Suppose you design a parallel-plate waveguide 
that has w = 20 d, filled with the dielectric (polystyrene) whose dielectric 
constant is 2.6 and dielectric strength is 20 × 106 V/m. What is the small-
est thickness of the dielectric that can propagate 1 kW of power?

Solutions:
Assuming that the dominant (TEM) mode propagates in the waveguide, 
the time-average power transmitted (see Example 2-1) is given by

P
E
2

wd
E

2
2.6

d
E

d wav
o o

o

o

2 o 22 2

= = =
×

= [ ]
2 2 2

320
2 233 8

20 10
η µ

ε
.

 

Since the dielectric strength is 20×106 V/m, |Eo| ≤ 2×107 [V/m].
The thickness of the dielectric should be

d
E

m
o

= × × ≥ ×
×( )

= × −10 2 233 8
20

10 233 8
2 10

7 65 10
3

2

2

7 2
6. .

. [ ]

Attenuation in the Waveguide

In this analysis, we have assumed that the conducting plates are perfect 
conductors (σ = ∞). In practice, the metals that are used in the waveguide 
are not perfect and they have high, but finite, conductivities. Thus the 

* L. C. Shen and J. A. Kong, Applied Electromagnetism, PWS Publishing Company, 
1995, 3rd Ed.
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wave can penetrate into the conducting walls as it propagates along the 
waveguide. Some of the power leaks into the conducting surfaces and is 
dissipated as heat. Then the signal in the waveguide is attenuated as it 
propagates. The attenuation constant (α) can be obtained by calculating 
the power flowing along the waveguide and the power dissipated on the 
conducting walls

Additional Notes on Solution Method

In our approach we have formulated the longitudinal components first, 
namely, Ez for TM modes and Hz for TE modes and then we obtained 
the transverse components, Ex, Hy for the TM modes and Ey, Hx for 
TE modes. There is another approach taken by others [Shen and Kong 
(1995)*] for the parallel-plate waveguide. They formulate the transverse 
components first, namely, Hy for TM modes and Ey for TE modes and 
then calculate the remaining components of the fields using Maxwell’s 
curl equations. This approach works for the parallel-plate waveguide but 
doesn’t work for the rectangular waveguide because the fields depend on 
both x and y. For the parallel-plate waveguide for which 

∂
∂

=
y

0 , the 
fields for the TE and TM modes are obtained as follows.

TE (Transverse electric) modes:

	
E a H a a= = +

=
∂
∂

= −
∂
∂

y y x x z z

x
y

z
y

E  H H

H
1

j
E
z

 H
1

j
E
x

,

,
ωµ ωµ

 		
		  (2-42)

 
TM (Transverse magnetic) modes:

	

H a E a a= = +

= −
∂
∂

=
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y y x x z z

x
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y

H  E E

E
1

j
H
z
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1

j
H
x

,

,
ωµ ωµ

 		
		  (2-43)

11.4  Rectangular Waveguide

In practice, we cannot construct an “ideal” parallel-plate waveguide that is 
infinite in extent in one (y) direction. Since the width w in the y direction is 



54	 PRINCIPLES OF ELECTROMAGNETICS 5

# 156104     Cust: MP     Au: Adams    Pg. No. 54 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

finite, we will have some fringing fields at both ends. This leads to some loss 
of energy and imperfect guidance. Such a problem can be avoided by placing 
another two parallel conducting walls at both ends in the y direction. Then 
it becomes a rectangular waveguide. Now the waves inside the waveguide 
bounce off the side walls as well as the top and bottom conductors as they 
are guided within the closed structure. Since all four conducting walls are 
connected, they form a one-conductor transmission system. The geometry of 
a rectangular waveguide is shown in Figure 2-7. We again assume that the 
metallic walls are perfect conductors (σ = ∞) and the medium inside the 
waveguide is lossless (σ = 0) and has the real material constants μ, ε. The x 
and y dimensions of the cross section are a and b, respectively.

b

a
( , )µ

x

=

=

0

y

z

Figure 2-7. A rectangular waveguide

2.4.1 General Field Solutions

Since the cross section of the waveguiding structure is uniform (it is a rect-
angle), the method of analysis described in Section 2.2 is applicable. We will 
first find the general form of field solutions for the longitudinal components 
Ez, Hz by solving Eq. (2-11) with the method of separation of variables. The 
unknown coefficients that appear in Eq. (2-12) are determined separately for 
the TM and TE modes, by applying the boundary conditions. Finally, the 
transverse components are obtained by Eq. (2-10).

First we rewrite the wave equation for uniform waveguides that Ez and 
Hz should satisfy.
		

(2-11a) 
∂
∂

+
∂
∂

+ − =
2 2

0
E
x

E
y

k k Ez
2

z
2

2
z
2

z( )
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In order to separate the two variables, we assume the solution of Eq. (2-
11a) for Ez(x,y,z) in the following form:

	 E x,y,z X(x) Y(y)ez
jk zz( ) = −

	 (2-44)

where X(x) and Y(y) are functions of only x and y, respectively. Substitu-
tion of Eq. (2-44) into Eq. (2-11a) yields

Y(y)
X(x)
x

X(x)
Y(y)
x

k k X(x) Y(y) 0
2

2

2

2
2

z
2∂

∂
+

∂
∂

+ − =( )  	(2-45)
 
Dividing Eq. (2-45) by X(x) Y(y), we obtain

 
	

1
X(x)

d X(x)
dx

1
Y(y)

d Y(y)
dy

k k2 2
2

z
2

2 2

0+ + − =( )  	 (2-46) 

Note that the partial derivatives are replaced by the ordinary derivatives 
because X(x) and Y(y) are functions of one variable. In Eq. (2-46), we 
observe that the first term is a function of x only, the second term is a 
function of y only, the third term is a constant, and the sum has to be 
zero. In order for Eq. (2-46) to be satisfied for all values of x and y, each 
term must be a constant which is independent of x and y.

Thus we let

 
	

1
X(x)

d X(x)
dx

C k
d X(x)

dx
k X(x)2 1 z

2
2 z

2
2 2

0= ≡ − → + =  		
		

(2-47a)

1
Y(y)

d Y(y)
dy

C k
d Y(y)

dy
k Y(y)2 2 z

2
2 z

2
2 2

0= ≡ − → + =	   	
	
		

(2-47b)

A choice of separation constants in a particular form allows the solutions 
of Eq. (2-47) to be written in a physically meaningful way. As discussed 
in Volume 6 the general solutions of Eqs. (2-47a) and (2-47b) are, when 
kx ≠ 0, ky ≠ 0, respectively,

	 X(x) A sin(k x) B cos(k x)x x= +  	 (2-48a) 
 

	 Y(y) C sin(k y) D cos(k y)y y= +  	 (2-48b) 
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Therefore, the general solution for Ez(x,y,z) or Hz(x,y,z) can be written as

F(x,y,z) Asin k x Bcos k x Csin k y Dcos k y e

F(x,y
x x y y

jk zz= +{ } +{ } −

,,z) E (x,y,z) or H (x,y,z)z z=
		

		  (2-49)

We recognize that the fields in Eq. (2-49) represent a standing wave in 
both the x and y directions and a traveling wave in the z direction, as ex-
pected. The values of kx and ky are not arbitrary but related to the propa-
gation constant kz. The relationship, known as the dispersion relation, is 
obtained by substituting Eq. (2-47) into Eq. (2-46).

	
k k k k =x

2
y
2

z
2 2+ + = ω µε2  	 (2-50)

As was done in Section 2.3, we will seek field solutions for the TM and 
TE modes, separately.

2.4.2 TM Mode Solutions

For TM modes, Hz = 0 and we seek the solutions for Ez(x,y,z) in the form 
of Eq. (2-49). The boundary conditions are

	 E tan = 0 on four counducting walls

Thus we have

	
( ) ,i  E  E  at x 0z y= = =0 0  	 (2-51a)

	
( ) ,ii  E  E  at x az y= = =0 0  	 (2-51b)

	 ( ) ,iii  E  E  at y 0z x= = =0 0  	 (2-51c)

	 ( ) ,iv  E  E  at y bz x= = =0 0  	 (2-51d)

Since we have formulated Ez, we can use the boundary condition (BC), 
Ez = 0 directly. We follow the similar procedures which were used in the 
parallel-plate waveguide.

BC (i): E X(x)  at x 0 X(x) A sin(k x)z x= → = = → =0 0

BC (iii): E Y(y)  at y 0 Y(y) C sin(k y)z y= → = = → =0 0
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Then Ez(x,y,z) can be written as

	 E x,y,z E k x k y ez z x y
jk zz( ) sin( )sin( )= −  	 (2-52)

where Eo = AC. The separation constants kx, ky are determined by apply-
ing the BC’s, (ii) and (iv).
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BC (iv): E Y(y)  at y b sink b=0

k b n  or k
n
b

 n

z y

y y

= → = = →

= = =

0 0

1π π
, ,22 3, ,...   (2-53b)

Note that when m or n = 0, the field vanishes. Each choice of the integers 
m and n yields the TMmn mode. The final solution for Ez for the TM 
modes is then given by
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(2-54)

The propagation constant (or phase constant) kz is obtained from Eq. 
(2-50).
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(2-55)

The transverse components of the fields can be calculated by using Eq. 
(2-10) with Hz = 0. They are listed in Table 2-2. Unlike the parallel-plate 
waveguide, we have all four components of the fields, Ex, Ey, Hx, Hy.

Propagating Mode vs. Cutoff
As explained in Section 2.3, in order for the wave to be guided in the z 
direction without attenuation the propagation constant kz must be real. 
From Eq. (2-55), we observe that

		  (i) When ω µε π π> 



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m
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22

, kz becomes real.
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then the wave propagates.
		  (ii)	When , kz becomes purely imaginary.
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(2-57)
		  then the wave attenuates rapidly with z and becomes an evanescent 

wave. The wave is in the cutoff region. The frequency at which cutoff 
occurs, the cutoff frequency, is obtained by letting kz = 0 in Eq. (2-56).
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(2-58)

The cutoff frequency depends on the mode numbers m and n. Eq. (2-58) 
gives the cutoff frequency for the TMmn mode. Then the propagating 
mode vs. cutoff are determined by whether the operating frequency f is 
greater than the cutoff frequency fc.
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, then the TMmn mode is cutoff.

Dominant Mode
For TM modes, m and n cannot be zero because m = 0 or n = 0 leads to 
no fields. The mode that has the lowest cutoff frequency occurs when m = 
1, n = 1. Thus the TM11 mode is the dominant mode among TM modes 
of the rectangular waveguide. Its cutoff frequency is given by
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	 (2-59)

The field lines of the TM11 mode are plotted in Figure 2-8.
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Figure 2-8. Field lines of the TM11 mode in a rectangular waveguide

When the wave is in the propagating mode, the phase constant (kz = 
β), the guide wavelength (λg), the phase velocity (vp) and the group veloc-
ity (vg) are given by the same expressions obtained for the parallel-plate 
waveguide, namely, Eqs. (2-30), (2-31), (2-32), and (2-33), respectively, 
except that fc is given by Eq. (2-58). If we take the ratios of the transverse 
components of the electric and magnetic fields, we obtain the wave im-
pedance as follows.

	  
	

Z
E
H

E
H

k
1

f
f

 f fTM
x

y

y

z

z c
c= = − = = − 
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,  	 (2-60) 

Again the wave impedance is real in the propagating mode and it be-
comes purely imaginary or reactive when the wave is cutoff (f < fc). The minus 
sign in the second ratio is due to the wave traveling in the +z direction.

The time-average Poynting vector for the TMmn mode of the rectan-
gular waveguide consists of two terms:
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(2-61)

where we have used the following relationships:

	
E Z H  E Z Hx TM y y TM x= = −,  	 (2-62)

The time-average power flowing through the waveguide can be calculated by 
integrating Sav over the cross section of the waveguide (0 < x < a, 0 < y < b).

We can interpret the propagation of the wave within the rectan-

gular waveguide as represented by the field solution in Eq. (2-54). sin 

sin
m
a

x
π



  represents a standing wave in the x direction which con-

sists of two oppositely traveling (in ±x) waves as described in Section 

2.3.1. The wave bounces off two conducting walls at x = 0 and x = a as it 

is guided. sin sin
n
b

x
π



  similarly represents a standing wave in the y 

direction, which consists of two oppositely traveling (in ±y) waves. The 

wave bounces off two conducting walls at y = 0 and y = b. Overall the 

wave doesn’t travel straight down within the waveguide but bounces be-

tween the four conducting walls and travels zigzag as it is guided.

2.4.3 TE Mode Solutions

For transverse electric (TE) modes, we let Ez = 0 and seek the solutions for 
Hz(x,y,z) in the form of Eq. (11-49).

H (x,y,z) A sink x B cosk x C sink y D cosk y ez x x y y
jk zz= +{ } +{ } −  		

		
(2-49)

T﻿he boundary conditions are given by Eqs. (2-51). From Eq. (2-10) with 
Ez = 0, we have
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We now apply the four boundary conditions (BC’s).

BC (i): E
H
x

 at x 0 X(x) B cos(k x)
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0 0
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Then Hz(x,y,z) can be written as

	 H x,y,z H k x k y ez 0 x y
jk zz( ) cos( )cos( )= −  	 (2-64) 

where H0 = BD. Note that Hz for TE modes has the cosine dependence in x, y 
directions whereas Ez for TM modes has the sine dependence in x, y directions. 
The separation constants kx, ky are again determined by the remaining BC’s 
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(2-65a)
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(2-65b)

Note that the results in Eqs. (2-65) are identical to Eqs. (2-53) for TM 
modes except that m or n can be zero for TE modes. Each choice of the 
integers m and n defines the TEmn mode. The final solution for Hz for the 
TE modes is then given by	
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(2-66)

The propagation constant (or phase constant) kz is again given by Eq. (2-
55). The transverse components of the fields can be calculated by using 
Eq. (2-10) and Ez = 0. They are listed in Table 2-2.

All the discussions about the cutoff frequency, guide wavelength, 
phase velocity, wave impedance, time-average Poynting vector and the 
standing wave interpretation, presented in the previous section, are valid 
also for the TE modes except the following differences.
(i)	The wave impedance for the TE mode is given by
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>ωε η
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,
	      (2-67)

From Eqs. (2-60) and (2-67), we find that ZTM < η and ZTE > η for the 
propagating modes and both ZTM and ZTE approach the intrinsic imped-
ance of the medium as f → ∞. We also note that Eqs. (2-61) and (2-62) 
for the time-average Poynting vector are valid for TE modes when ZTM is 
replaced by ZTE.
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(ii) Dominant Modes

One of the most important issues in any waveguide system is the question 
of what the dominant mode is because waveguides are often designed so 
as to support the lowest-order mode and suppress all the higher-order 
modes. Recall that the lowest-order (dominant) mode for TM modes is 
the TM11 mode because when m = 0 or n = 0 fields vanish. However, for 
TE modes in rectangular waveguides, either m or n can be zero, but not 
both. If m = n = 0, then all the transverse components of the fields vanish 
and Hz alone would not satisfy Maxwell’s equations. Thus the lowest-or-
der mode for TE modes can be either the TE01 mode (m = 1, n = 0) or the 
TE01 mode (m = 0, n = 1). Which mode gives the lowest cutoff frequency 
depends on the sizes a,b. If a > b (we will assume this throughout the 
book), the TE10 mode is dominant. If b > a (recall that a is the x dimen-
sion and b is the y dimension), the TE01 mode is dominant. Assuming a 
> b, the TE10 mode is the dominant mode overall, considering all TM and 
TE modes in rectangular waveguide, because it gives the lowest cutoff 
frequency which is obtained from Eq. (2-58) by letting m = 1, n = 0.
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µε
 	 (2-68) 

The corresponding cutoff wavelength is given by
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Eq. (2-69) is easy to remember. The cutoff wavelength is twice the longer 
(x) dimension of the rectangular waveguide. The TE10 mode is of par-
ticular importance because it also gives the lowest attenuation among all 
modes of the rectangular waveguide. It is useful to know the field distri-
butions of the dominant TE10 mode, which are given by

		  (2-70) 
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The electric field of the TE10 mode is polarized only in one (y) direction 
everywhere. The field distributions are identical to those of the TE1 mode 
of the parallel-plate waveguide. The field lines of the TE10 mode are plot-
ted in Figure 2-9. It is to be emphasized that the TEM mode does not 
exist in the rectangular waveguide. In general, a single conductor waveguid-
ing system does not support a TEM mode.

y
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Electric field lines
Magnetic field lines

z
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Magnetic field lines
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Figure 2-9. Field lines of the TE10 mode in a rectangular waveguide

Example 2-3. X-band Waveguide
Consider an air-filled rectangular waveguide having dimensions of a = 

0.9 in. (2.286 cm) and b = 0.4 in (1.016 cm).

(a)	 Suppose only one mode (i.e., the dominant mode) should be trans-
mitted. What is the range of frequencies that can be used?

(b)	When the operating frequency is 18 GHz, which TE and TM modes 
can propagate in the waveguide?
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Solutions:
(a)	 The dominant mode of the rectangular waveguide is TE10 mode and 

its cutoff frequency is given by

 f
v
a

Hzc,10 = = ×
× ×

= ×−2
3 10

2 2 286 10
6 56 10

8

2
9

.
. [ ]

The next possible higher-order mode is either TE01 or TE20 mode:

 f
v
b
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× ×

= ×−2
3 10

2 1 016 10
13 56 10

8

2
9

.
. [ ]

f
v
b

Hz fc,20 c,01= ⋅ = ×
×

= × <−2
2

3 10
2 286 10

13 12 10
8

2
9

.
. [ ]

Thus, the range of frequencies for single-mode operation is

6.56 GHz f  GHz< < 13 12.
Note that this waveguide is used for radar applications at X-band frequen-
cies (8 – 12.4 GHz).
(b) Since f = 18 GHz > fc,10, fc,01, fc,20, all the above three modes will 

propagate. The next higher-order modes to be considered are 11, 21 
and 30 modes:

 f
v

a b
16.16 GHz f  GHzc,11 2 2= + = < <

2
1 1

18

f
v

a b
19.74 GHz fc,21 2= 



 + = >

2
2 12

f
v

 GHz fc,30 = ⋅ = >
2

3 19 68.

Therefore, TE10, TE20, TE01, TE11 and TM11 modes can propagate.

Example 2-4
A rectangular waveguide having dimensions of a = 3.484 cm and b = 1.58 
cm (WR-137 waveguide) is filled with polyethylene (ε = 2.25 εo, μ = μo). 
The operating frequency is 4 GHz.

(a)	 Find the phase constant (β), the guide wavelength (λg), the phase 
velocity (υp), the group velocity (υg), and the wave impedance (Z) of 
the dominant mode.
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(b)	Compute the propagation constant when the operating frequency is 2 
GHz. How much does the wave attenuate over the distance of 2 cm?

Solutions:
(a)	 The cutoff frequency of the dominant (TE10) mode is

 f
a

c
2.25

1
2a

[Hz]c,10 = = = ×
× ×

= ×−

υ
2

2 10
2 3 484 10

2 87 10
8

2
9

.
.

Since most of the above quantities can be written in terms of 1
f
f
c− 





2

, 
we calculate this factor first:

 

F 1
f
f
c≡ − 





= − ×
×







=
2 9

91
2 87 10

4 10
0 697

.
.

 

Using Eqs. (2-30) – (2-33) and (2-41), we obtain

k F
m

k 87.5

z

g
z

= = = × × ×
×

× = 





= =

β ω µε π

λ π π

2 4 10
1

2 10
0 697 87 5

1

2 2

9
8 . .

==

= = × = × 





= = × ×

7 17

2 10
0 697

2 87 10

2 10 0

8
8

8

. [ ]

.
.

.

 cm

F
m
s

F

p

g

υ υ

υ υ 6697 1 39 10

1 377
1 5

1
0 697

360 6

8= × 





= = = ⋅ =

.

. .
.

m
s

Z
F 2.25 FTE

o

o

η µ
ε

  [ ]Ω

(b)	When f = 2 GHz, since f < fc,10 the wave is in the cutoff region (eva-
nescent wave) and kz becomes purely imaginary:

k j j
a

j
f
f

j
2 2 10

2 10

z
2 c

9

9

= − = − 



 − = − 





−

= − × ×
×

α π ω µε ω µε

π

2
2

2

1

22 87
2 0

1
2.

.




 − = − 



j64.7

1
m
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The field attenuates as e−αz and over 2 cm propagation the field am-

plitude is reduced by a factor of e− =64 7 0 02 0 274. . .x , which is a quite 

rapid attenuation. This demonstrates that the signal attenuates very 

rapidly with distance when its frequency is below the cutoff frequency.

 
2.5  Rectangular Cavity Resonator

In the rectangular waveguide, if we place two perfectly conducting 
walls normal to the z axis (direction of guidance), then the fields will 
form a standing wave in the z direction, too. The structure becomes 
a resonator. The electromagnetic fields exist in a source-free region 
enclosed by a perfect conductor, i.e., in a cavity and they exist only at 
specific frequencies, called resonant frequencies, which will depend on 
the geometry of the resonator. This cavity resonator behaves like an 
LC resonator of low frequencies. At high frequencies (microwaves), 
ordinary lumped circuit elements such as capacitors and inductors 
become impractical due to their sizes comparable to operating wave-
length and their large losses at high frequencies. The losses come from 
radiation and high resistance. The cavity resonator having an enclo-
sure with a large area of conducting surface can eliminate radiation 
and resistive losses, yielding a very high quality factor (Q).

Figure 2-10 shows the geometry of a rectangular cavity resonator. 
It consists of six perfectly conducting (σ = ∞) walls at x = 0, x = a, y = 0, 
y = b, z = 0, and z = d. The medium inside the resonator is assumed to 
be lossless (σ = 0) and has permittivity ε and permeability μ.

Since the resonator is constructed of the rectangular waveguide 
with two additional perfect conductors at z = 0 and z = d, the field 
solutions for the resonator can be obtained by taking the solutions of 
the rectangular waveguide and applying two additional boundary con-
ditions at the added two walls. Thus we will again seek the field solu-
tions for the TM and TE modes, separately. It is to be noted that here 
the TM and TE modes are with respect to the z direction, although 
they can also be formulated with respect to the x or y direction.
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x

y

z

b
d

a

Figure 2-10. A rectangular cavity resonator

2.5.1 TM Mode Solutions

For TM modes, Hz = 0 and we seek solutions for Ez(x,y,z). In addition to 
four boundary conditions at x = 0, x = a, y = 0, and y = b, given by Eq. 
(11-51), the fields must also satisfy

	
( ) ,v  E  E  at z 0x y= = =0 0  	 (2-71a)

	
( ) ,vi  E  E  at z dx y= = =0 0  	 (2-71b)

The TMmn mode of the rectangular waveguide, shown in Eq. (2-54), rep-
resents a guided wave traveling in +z direction. In the rectangular cavity 
resonator, there will be a combination of a wave traveling in +z direction 
( e jk zz− ) and a wave traveling in −z direction ( ejk zz ) due to reflections 
from the conducting walls at z = 0 and z = d, forming a standing wave 
in the z direction. Therefore, the z dependence of the field can be written 
as a linear combination of e jk zz−  and ejk zz  or a linear combination of 
sin(kzz) and cos(kzz). Hence the solution for Ez for the TM (to z) modes 
can be written as

    
E (x,y,z)

m
a

x
n
b

y Fe Gez
jk z jk zz z= 









 +{ }− +sin sin

π π
 	(2-72)

 
From Eq. (11-10) with Hz = 0, we have
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k k
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x

 E
jk

k k
E
yx

z
2

z
2

z
y

z
2

z
2

z=
−

−
∂
∂

=
−

−
∂
∂

,  	 (2-73)
 
for the wave traveling in +z direction ( e jk zz− ). Similarly, for the wave 
traveling in −z direction ( ejk zz ), we will have

	  
	

E
jk

k k
E
x

 E
jk

k k
E
xx

z
2

z
2

z
y

z
2

z
2

z=
−

∂
∂

=
−

∂
∂

,  	 (2-74) 

Now we apply the two boundary conditions (BC’s):

 

BC (v): E F e G e  at z 0 F G

BC (vi): E
x

jk z jk z

x

z z= → − + = = → =

= → −

−0 0

0 FF e G e  at z d

F e e F(2j) sin(k d)=

jk z jk z

jk d jk d
z

z z

z z

−

−

+ = =

−( ) =

0

00

k d p  or k
p
d

 pz z= = =π
π

, , , ,...0 1 2

 		
		   
			 
		  (2-75)

We can also rewrite

F e G e F e e Fcos(k z)jk z jk z jk z jk z
z

z z z z− −+ = +{ } = 2

The final solution for Ez for the TM mode is then given by

	 E (x,y,z) E
m
a

x
n
b

y
p
d

z  TMz o mnp= 















sin sin cos ,

π π π
  mode

  
		  (2-76)

	 m n p= = =1 2 3 1 2 3 0 1 2, , ,...; , , ,...; , , ,....

Each choice of the integers m, n, p defines a particular mode 

( ). ,TM  k
m
a

 k
n
bmnp x y= =π π

 and k
p
dz =
π

 should satisfy the following 

dispersion relation (see Eq. (2-50)):

	

m
a

n
b

p
d

k2π π π
ω µε



 + 



 + 



 = =

2 2 2
2

	
 (2-77)

It means that each mode exists only at a certain single frequency that 
satisfies Eq. (2-77):



	  
	

ω π
µε

π π π

µε

= 



 + 



 + 





= 



 +

2

2

2 2 2

2

f=
1 m

a
n
b

p
d

f
1 m

a
n
bb

p
d

fr,mnp




 + 



 ≡

2 2

 		
		  (2-78)

This frequency is called the resonant frequency of the TMmnp mode. The 
mode that has the lowest resonant frequency among TM modes is the 
TM110 mode whose fr is given by

 
 

	

f
1 1

a
1
b

v
2

1
a

1
br,110 2 2= 



 + 



 = +

2

2 2

µε
	

(2-79
)

The remaining field components (Ex, Ey, Hx, Hy) can be obtained by 

using Eqs. (2-10) with substitution of − ∂
∂

jk  by 
zz  and k k2

z
2−  by 

k k
m
a

n
bx

2
y
2+ = 



 + 





π π2 2

. The fields of the dominant TM110 mode 

are given by

E a

E a

= 











=

z o 110

o
x

E
a

x
b

y  TM  mode

jE
b a

sin sin ,

sin

π π

ωµ
π π

xx
b

y
a a

x
b

yy










 − 



















sin cos sin
π π π π

a

  
		   
		  (2-80)

 
2.5.2. TE Mode Solutions

For TE modes, we let Ez = 0 and seek the solutions for Hz(x,y,z). The 
boundary conditions are still given by Eq. (2-71). We again take the TEmn 
mode solutions of the rectangular waveguide, shown in Eq. (2-66), and 
consider the standing wave (in z direction) nature of the resonator as dis-
cussed earier. The solution for Hz for the TE (to z) modes can be written 
as

	  
H (x,y,z)

m
a

x
n
b

y Fe Gez
jk z jk zz z= 









 +{ }−cos cos

π π

 	
(2-81)

From Eq. (2-10) with Ez = 0, we have
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∂
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=
−

∂
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ωµ ωµ
,  	 (2-82) 

This time Eq. (2-82) is valid for the wave traveling in either +z or −z direc-
tion. Now we apply two BC’s at z = 0 and z = d:

BC (v): E  or 
H
y

F e G e  at z 0 F G

BC (

x
z jk z jk zz z=

∂
∂

= → + = = → = −−0 0 0

vvi): E 0 or 
H
y

F e G e  at z d

F e e

x
z jk z jk z

jk d j

z z

z

=
∂
∂

= → + = =

−

−

−

0 0

kk d
z

z z

z F( j2) sin(k d) 0

k d p  or k
p
d

 p

( ) = − =

= = =π
π

, , , , ,...0 1 2 3

  
 

		

(2-83)

We can also rewrite,

Fe Ge F e e j Fsin(k z)jk z jk z jk z jk z
z

z z z z− −+ = +( ) = −( )2

The final solution for Hz for the TE modes is then given by

 H (x,y,z) H
m
a

x
n
b

y
p
d

z  TEz o mnp= 















cos cos sin ,

π π π
  mode  		

		  (2-84)

m = 0, 1, 2, …; n = 0, 1, 2, …; p = 1, 2, 3, …
m = n = 0 is excluded

Note that p cannot be zero because it leads to no field. Each 
choice of the integers m,n,p defines a particular mode (TEmnp). Again m

a
n
b

p
d

π π π
, ,  satisfies the dispersion relation, Eq. (2-77), which gives 

the same expression, Eq. (2-78), for the resonant frequency of the TEmnp 
mode. The mode that has the lowest resonant frequency among TE modes 
is the TE101 mode (when a > b) or the TE011 mode (when b > a). Assum-
ing a >b, the resonant frequency of the dominant TE mode is given by

 
	

f
1 1

a
1
d

v
2

1
a

1
dr,101 2 2= 



 + 



 = +

2

2 2

µε  	 (2-85)

Comparing Eq. (2-85) with Eq. (2-79), the overall dominant mode (in-
cluding both TE and TM modes) depends upon d > b or b > d. The 
dominant mode of a rectangular cavity resonator is
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TE  mode when a d b or d a b
TM  mode when a b d

101

110

≥ > > >
> >

The remaining field components (Ex, Ey, Hx, Hy) can again be obtained by 
using Eqs. (2-10) with appropriate substitutions. The fields of the domi-
nant TE101 mode are given by

E a

H a

= − 











=

y
o
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o z

( j )
E
/a a

x
d

z  TE  mode

H

ωµ
π

π π
sin sin ,

coos sin sin cos
π π π π
a

x
d

z
a
d a

x
d

zx










 − 
















a


 		
		  (2-86)

2.5.3. Quality Factor of the Cavity Resonator

In practice, the conducting enclosure is not perfect (finite σ) and there 
will be power dissipated in the walls. The quality factor (or Q) of the reso-
nator measures the bandwidth of the resonator and the degree of power 
loss. As in the case of lumped resonant circuits, the quality factor is de-
fined by

	
Q

W
P

f
time-average energy stored

time-average powerd
r= =ω π2

( )
(   dissipated)

 	(2-87) 

An alternative definition of Q is

	  
	

Q
f
B

r= =ω
ω∆

 	 (2-88)

where fr is the resonant frequency and B is the bandwidth or the differ-
ence in frequencies between two half-power points where the oscillation 
amplitude is reduced from its maximum value at fr by 3 dB. Q or B in-
dicates the sharpness of resonance; a high Q means narrower bandwidth 
and smaller loss.

Example 2-5 Quality factor for TE101 mode
Find the quality factor for the TE101 mode of the rectangular cavity reso-
nator with dimensions a × b × d.
Solution:

Letting ( )− =j H
a

Eo oωµ
π

 in Eq. (2-86), the time-average electric energy 
stored in the resonator volume is given by
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4

2Re *E D Eε 	 (11-89)

where a factor of ½ is due to the time average.
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The time-average magnetic energy stored in the resonator is
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(2-90)

It can be shown that at the resonant frequencies (f = fr or ω = 2πfr), We = 
Wm Thus, the total time-average stored energy is

	  
	

W W W W
1
8

H abd
a
de m m o= + = = + 



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
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


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2 12
2

µ  	 (2-91)
 

The time-average power dissipated or power loss per unit area of a con-
ducting wall is given by

	  
	

P
1
2

H R W/md tan s
2=  

2
 	 (2-92)

where Htan is the tangential component of the magnetic field on the conduct-
ing surface and Rs is the surface resistance of the conducting wall. Recogniz-
ing that the power losses on two opposite sides of the walls are equal to each 
other, the time-average power dissipated on six walls is calculated by
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	 (2-93)
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Substituting Eqs. (2-91) and (2-93) into Eq. (2-87), we obtain Q for the 
TE101 mode:

	  
	

Q
f abd a d

2a b bd a d ad
r,101

2

3 3 3 3=
+( )

+ + +
π µ 2

2  	 (2-94) 

For an air-filled cavity with a = d = 2b = 2 cm, the resonant frequency 
of the dominant mode is 10.6 GHz and the quality factor (Q) is approxi-
mately 104 when the cavity is made of copper walls Q is considerately 
larger than that of lumped-circuit resonator at much lower frequencies.

2.6  Coaxial Cable

The coaxial line, commonly known as the coaxial cable, is probably one 
of the most commonly used two-conductor waveguiding structures. The 
coaxial line can be viewed as a circular cylindrical version of a parallel 
plate waveguide. It consists of an inner conductor of radius a and an outer 
conductor of radius b, as shown in Figure 2-11(a). The space in between 
is normally filled with the dielectric of permittivity ε and permeability μ. 
Both conductors are usually made with many strands of thin copper wire 
in order to provide flexibility. Polyethylene or Teflon is commonly used 
for dielectric filling in coaxial cable.

 

y

x

z

a

µ( , )

(a) (b)

Electric field lines
Magnetic field lines

b

Figure 2-11. Coaxial cable: (a) geometry (b) field lines of a TEM 
mode
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One major advantage of the coaxial line is that the fields are com-
pletely conf﻿ined within the dielectric region while in parallel plate wave-
guide there will be fringing or leakage fields at the edges of parallel plates.

The field solutions for the coaxial line include the TEM mode as the 
dominant mode (because it has two conductors) as well as higher-order 
TE and TM modes, just as in the case of the parallel plate waveguide. The 
general solution for the fields can be obtained by solving the Helmholtz 
wave equation, Eq. (2-1), in cylindrical coordinates, which involves the 
Bessel functions. This is beyond the scope of this book, so we will not con-
sider general higher-order TE and TM solutions. However, the dominant 
TEM mode solution can be obtained without advanced mathematics.

2.6.1. TEM Mode Solution

First of all, for the TEM mode, Ez = Hz = 0 since both electric and mag-
netic f﻿ields are transverse to the direction of guidance (z). Since the coaxial 
line can be viewed as a cylindrical version of the parallel plate waveguide 
(PPW), we expect that the TEM mode fields of the coax (short word for 
coaxial line) will behave much like those of the PPW. From Eq. (2-27), 
we re-write here the fields of the TEM mode of the PPW of Figure 2-3.

	  
	

E a H a= =− −
x o

jkz
y

o jkzE e  
E

e,
η

 	 (2-95)

where

	
k k  z( ) ,= = =ω µε η µ

ε 	 (2-96)
Noting that for the PPW, E has only a component normal to the surface 
of the conductors and H has only a component tangential to the conduc-
tor surface, we assume that for the coaxial line the E and H fields take the 
following form:

	 E a H a= =− −
ρ ρ φ φρ ρ E ( )e  H ( )ejkz jkz,  	 (2-97)

whose field lines are sketched in Figure 2-11(b). Note that E is normal to 
the conductor surface and H is tangential to the conductor surface. Note 
also that no φ dependence is assumed due to azimuthal symmetry of the 
geometry.
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Substituting Eq. (2-97) into ∇ · E = 0 and ∇ × E = −jωμH (see Eqs. 
(2-19)), we obtain

1
0

ρ ρ
ρ

ρ

ωµ ωµ

ρ ρ

ρ
ρ φ φ

∂
∂

= → =

∂
∂

= − = − = −− −

( )

%

E E
K

E
z

jkE e j H j H e

% % o

% jkz jkz

→→ = =H E
k E Ko

φ ρ
ρ

ωµ η ηρ
% %

%

where Ko is an arbitrary constant.
Therefore, the field solutions for the TEM mode in a coaxial line are

	  
	

E a H a= =− −
ρ φρ ηρ

K
e  

K
eo jkz o jkz,  	 (2-98)

 
where k and η are given by Eq. (2-96). It can be shown that these fields 
satisfy also ∇ · H = 0 and ∇ × H = jωε E (see Problem 2-38). We observe 
that E

Ko
ρ ρ

=  behaves much like a static electric field of an infinitely 
long line charge and of a coaxial cable with opposite charges H

Ko
φ ηρ

=  
behaves much like a static magnetic field of an infinitely long current-
carrying wire and of two concentric cylinders carrying opposite currents. 
Thus, the TEM mode solutions can be obtained by multiplying the static 
field solutions by e−jkz (wave characteristic). The same argument can also 
be applied to the TEM mode solutions of the PP waveguide. It is to be 
emphasized that the TEM mode of the coax has no cutoff frequency, i.e., 
its cutoff frequency is zero just like the TEM mode of the PP line. The 
coaxial cable is typically used at lower frequencies because its loss due to 
imperfect conductors increases dramatically at higher frequencies.

For example, the RG6 75Ω coaxial cable, made by CommScope, has 
the attenuation 0.70 dB/100 ft. (or 2.30 dB/100 m), 2.01 dB/100 ft, and 
7.45 dB/100 ft at 10 MHz, 100 MHz, and 1 GHz, respectively. Today 
coaxial cables are widely used in the broadband cable TV industry. The 
subscribers are served by an HFC (Hybrid Fiber Coax) architecture which 
consists of optical fiber cables, transmitters and receivers’ amplifiers in 
the transport segment and coaxial cables, amplifiers and splitters in the 
distribution segment that directly serves homes.
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Example 2-6
Find the total time-average power transmitted along the coaxial line for 
the TEM mode, assuming that the voltage between the two conductors 
is Vo in its amplitude.

Solution:
For the TEM mode fields, given by Eq. (11-98), the voltage or potential 
difference between the two conductors is obtained by

	

V d
K

e d K
b
a

e

V e K
V

ln(b

o jkz

b

a

o
jkz

o
jkz

o
o

= − ⋅ = − ⋅ =

= → =

∫ ∫ − −

−

E a a

ρ
ρρ ρ ln

//a)
 	 (2-99)

Thus

	
E a= −

ρ ρ
V

ln(b/a)
1

eo jkz  	 (2-100)

The time-average Poyinting vector is given by

S a E H a a aav z
o

2 z
o

2

1 1 K V
b/a

= ×( ) = × =
2 2

1 1
2

1
2

2Re
[ln( )]

*
ρ φ η ρ η ρ

The time-average power transmitted is

P d
V
b/a

d d
V
b/aav

o
2

a

b
o= ⋅ = =∫∫ ∫∫S s

1
2

1
2

2
0

2 2

η ρ
ρ ρ φ

π
η

π

[ln( )] ln( )

When you calculate the current flowing through the conductors from the 
magnetic field and define its amplitude to be Io, it can be shown that the 
time-average power can be obtained from ½ Re (VoIo

*)

2.7  Transmission Lines

In previous sections we learned that a two-conductor waveguiding system 
such as parallel-plate waveguide and coaxial cable can support a TEM 
wave for which both electric and magnetic fields are transverse to the di-
rection of propagation or guidance. Such a two-conductor transmission 
system is often called a transmission line. Examples, as shown in Figure 
2-1(a)-(c), include the parallel-plate waveguide (also called parallel-plate 
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transmission line), the two-wire transmission line, and the coaxial line. 
The parallel-plate (PP) line is fabricated in microstrip circuits at mi-
crowave frequencies, the two-wire transmission line is seen in overhead 
power and telephone lines, and the coaxial line is used in telephone, TV 
and internet cables.

When we deal with only the TEM wave in transmission lines, it is 
very convenient to introduce the concepts of the voltage, current, and 
impedance in the analysis and application of the transmission lines, since 
you are familiar with these concepts from circuit theory. We can use the 
voltage V(z) and current I(z), instead of the electric and magnetic fields, 
to describe the propagation and reflection of the wave. They satisfy a pair 
of coupled differential equations, known as the transmission-line equa-
tions, which are equivalent to the two Maxwell’s curl equations. These 
equations will include the circuit parameters such as inductance, capaci-
tance, resistance and conductance. Many characteristics of a TEM wave 
guided by transmission lines are very similar to the characteristics of a 
uniform plane wave in an unbounded lossless or lossy medium that you 
learned in Previous chapters.

2.7.1 The Transmission-Line Equations – Lumped-Circuit Model

Let’s consider a section of a two-conductor transmission line shown in 
Figure 2-12(a). We assume that V(z) is the voltage across the conductors 
at z = z and I(z) is the current flowing through one conductor section at 
z = z, implying that the same current flows through the other conductor 
section in the opposite direction. Assuming that the section length (Δz) 
is much smaller than the operating wavelength, the equivalent circuit can 
be drawn in Figure 2-12(b).

I(z) I(z +   z) I(z +   z)

V(z)

z = z

V(z +   z) V(z +   z)

z = zz = z +   z z = z +   z

+ +

L z R z

C z

I(z)

V(z)
+ +

G z

N

(a) (b)

Figure 2-12. A transmission line and its lumped-circuit model
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A differential section (Δz) of a transmission line (T.L.) is described by 
four circuit parameters:

L = inductance per unit length in H/m
R = resistance per unit length in Ω/m
C = capacitance per unit length in F/m
G = conductance per unit length in S/m

When the T.L. is lossless, R and G are zero. R comes from the loss due to 
the imperfect conductors and G comes from the imperfect dielectric fill-
ing the T.L., i.e., the dielectric loss. Note that L and R are series elements 
and C and G are shunt elements.

First, we apply the Kirchhoff voltage law (KVL) around the loop and 
obtain:

 V(z) j L R z I(z) V z z
V z z V(z)

z
j L R I(z)

= +( ) + +( )

→
+( ) −

= − +( )
ω

ω

∆ ∆
∆
∆

 
Thus we have, as Δz → 0 (incrementally small),

	  
	

dV
dz

j L R I ZI= − +( ) = −ω  	 (2-101) 

where Z = jωL + R is the series impedance per unit length in Ω/m of the 
T.L.

Secondly, we apply the Kirchhoff current law (KCL) at the node N 
and obtain:

 
I(z) j C G z V(z z) I z z

I z z I(z)
z

j C G V(z

= +( ) + + +( )

→
+( ) −

= − +( ) +

ω

ω

∆ ∆ ∆
∆
∆

∆∆z)

Thus we have, as Δz → 0 (incrementally small),

	  
	

dV
dz

j C G V YV= − +( ) = −ω
	

 (2-102)

where Y j C G= +ω  is the shunt admittance per unit length in S/m of 
the T.L. Eqs. (2-101) and (2-102) are a pair of coupled, first-order differ-
ential equations for V(z) and I(z), which are called the transmission-line 
equations.
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Differentiating Eq. (2-101) with respect to z and substituting Eq. (2-
102), we obtain

 
	

d V
dz

ZYV(z) or 
d V
dz

k V(z) 0
2

2

2

2
2= + =  	 (2-103)

where

	 k ZY j L R j C G2 = − = − +( ) +( )ω ω  	 (2-104)

Eq. (2-103) is the wave equation for the voltage V(z). Similarly, we can 
show that I(z) satisf﻿ies the same wave equation:

	  
	

d I
dz

ZY I(z) or 
d I
dz

k I(z) 0
2

2

2

2
2= + =  	 (2-105)

 
V(z) and I(z) can now be seen as the voltage wave and the current wave, 
respectively.

Lossless Transmission Line

In the absence of loss, R = G = 0 and

	
k j L j C LC k LC2 2= −( )( ) = → =ω ω ω ω  	 (2-106)

The general solution to Eq. (2-103) can be written as

	 V(z) V e V eo
+ jkz

o
jkz= +− − −

	  (2-107)

just like the field solutions in Ep. volume 4 (2-40). The first and second 
terms represent the voltage waves traveling in +z and −z directions, respec-
tively. k plays the same pole as k of the uniform plane wave, so k is called 
the propagation constant. Substituting Eq. (2-107) into Eq. (2-101), we 
obtain

	
I(z)

Z
(V e V e

o
o
+ jkz

o
jkz= −− − −1

)  	 (2-108)

where

	
Z

L
k

L
Co = = [ ]ω Ω  	 (2-109)

 
Zo, known as the characteristic impedance of the T.L., is the ratio of 
the voltage amplitude vs. the current amplitude and plays the same role 
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as the wave impedance of a uniform plane wave – ratio of electric and 
magnetic field amplitudes – which is equal to the intrinsic impedance of 
the medium η µ ε=( )/ .

In the presence of conductor loss (R) and/or dielectric loss (G), k in 
Eq. (2-104) becomes complex (β − jα) and the voltage and current waves 
will experience attenuation as they propagate along the T.L.

2.7.2. The Transmission-Line Equations from Field Theory

The T.L. equations shown in Eqs. (2-101) and Eq. (2-102) can also be 
derived from Maxwell’s equations by relating the voltage V(z) and the 
current I(z) to the electric field E and the magnetic field H of a TEM 
wave in a two-conductor T.L. For illustration, we will consider the lossless 
parallel-plate waveguide. The following procedure gives us the physical 
insight as to how field concepts are converted to circuit concepts.

As shown in Section 2.3.1, the dominant TEM (or TMo) mode fields 
of a parallel-plate transmission line of Figure 2-3 are described by

	  
	

E a

H a

=
=

x x

y y

E z
H z

( )
( ) 	

 (2-110) 

Substituting Eq. (2-110) into ∇ × E = −jωμH and ∇ × H = jωεE, we 
obtain

	

∂
∂

= −
E
z

j Hx
yωµ  	 (2-111a) 

	

∂
∂

= −
H
z

j Ey
xωε  	 (2-111b)

Now express the voltage V(z) and the current I(z) in terms of the fields 
using the electrostatic and magnetostatic theory. The voltage across the 
two conductors is related to E by

	
V(z) d

C1

= − ⋅∫ E 
 	 (2-112a)

where C1 is the integration path from one conductor to the other. The 
current flowing through each conductor is related to H by Ampère’s law:

	
I(z) d

C2

= ⋅∫ H 
 	 (2-112b)
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where C2 is the closed loop that encloses one conductor. The current can 
also be related to H by using the boundary condition at the conductor 
surface, an × H = Js. The integration paths are shown in Figure 2-13,

C1
C1

C1

C2

C2

C2

(a) (b) (c)

Figure 2-13. Integration paths defining the voltage and the current

In the case of the PP line, Eqs. (2-112) gives

	 V(z) E z ax= ( )  	 (2-113a)

	
I(z) H z wy= ( )  	 (2-113b)

Making use of V−Ex and I−Hy relationships above, Eqs. (2-111) reduce to

	  
	

dV
dz

j
a
w

I(z)= j LI= − −ωµ ω
	

 (2-114a)

	  
	

dI
dz

j
a
w

V(z)= j CV= − −ωµ ω  	 (2-114b)

where we def﻿ine

 
	
L

a
w

inductance per unit length of a PP line= =µ  (2-115a)

C
a
w

capacitance per unit length of a PP line= =ε  (2-115b)

Eqs. (2-114) are, in fact, the transmission-line equations for a lossless (R 
= G = 0) T.L., as shown earlier in Eqs. (2-101) and (2-102).

Eliminating Hy in Eqs. (2-111), Ex satisfies

	

∂
∂

+ = =
2

20
E
z

k  E  kx
2

2
x

2, ω µε  	 (2-116)
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Eliminating I in Eqs. (2-114), V satisfies

	  
	

∂
∂

+ + = =
2

0
V

z
k V  k LC2

2 2 2, ω  	 (2-117) 

From Eq. (2-115), it is seen that the following relationship holds:

	 LC = µε  	 (2-118)

For the wave traveling in +z direction, we have

 
	

E a H a= =− −
x o

+ jkz
y

o
+

jkzE e  
E

e,
η

 	 (2-119) 

	
V V e  I

V
Z

eo
+ jkz o

o

jkz= =−
+

−,  	 (2-120) 

The time-average power along the PP transmission line can be obtained 
by

	  
	

P dx dy
E

waav
o
+

= ×( ) ⋅ =∫∫
1
2 2

2

Re *E H a z η  	 (2-121) 

or

 
	

P V(z)I(z)
V
Zav
o
+

o

= { }⋅ =1
2 2

2

Re  	 (2-122) 

It can be easily shown that Eq. (2-121) and Eq. (2-122) are equal, 
using

	  
	

Z
L
C

a
w

 for a PP lineo = = 





µ
ε  	 (2-123) 

The analogy between the characteristics of the voltage and the current on 
the T.L. and those of the electric and magnetic fields of a uniform plane 
wave or a TEM mode on the T.L. is summarized in Table 2-3.
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Table 2-3. Analogy between Transmission-Line Waves and Uniform 
Plane Waves (or TEM Waves)

Transmission Line (Lossless) Uniform Plane Wave or TEM 
Wave

V(z) d
C1

= − ⋅∫ E 

I(z) d
C2

= ⋅∫ H 

E = ax Ex(z)

H = ay Hy(z)

dV
dz

j L)I

dI
dz

j C)V

= −

= −

(

(

ω

ω

∂
∂

= −

∂
∂

= −

E
z

j H

H
z

j E

x
y

y
x

ωµ

ωµ

d V
dz

k V 0

d I
dz

k I 0

k LC

2

2
2

2

2
2

2 2

+ =

+ =

= ω

∂
∂

+ =

∂
∂

+ =

=

2

2

2

0

0

E
z

k  E

H
z

k  H

k

x
2

2
x

y
2

2
y

2 ω µε

V(z) V e V e

I(z)
1

Z
(V e V e

Z
V
I

L

o
+ jkz

o
jkz

o
o
+ jkz

o
jkz

o
o
+

o
+

= +

= +

= =

− −

− − )

CC

characteristic
impedance







E (z) E e E e

H (z)
1

(E e E e

E
H

x o
+ jkz

o
jkz

y o
+ jkz

o
jkz

o
+

o
+

= +

= −

= =

− −

− −

η

η µ

)

εε

intrinsic
impedance







P VIav
*= 1

2
Re( ) S E Hav = ×( )1

2
Re *

2.7.3. Transmission-Line Circuit Parameters

As shown in the transmission-line equations, the properties of a T.L. are 
characterized by its four circuit parameters L, C, R and G. We would 
like to learn how to calculate these parameters for a given T.L. from the 
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electromagnetic analysis. These parameters depend on the geometry and 
the medium parameters of the T.L.

The capacitance (C) and inductance (L) per unit length are calculated 
from the electrostatic and magnetostatic analysis as they are defined by

	  
	

C
Q/l
V

Charge per unit length
Potential difference

= =
( )

( )
 	 (2-26) 

	
L

/l
I

Magnetic flux per unit length
Current of closed l

= =Φ ( )
( ooop)

 	 (2-20) 

Since L and C are related to με through Eq. (2-118), if L is known for a 
T.L., C can be easily obtained, and vice versa.

The shunt conductance (G) per unit length is due to dielectric loss 
when the dielectric medium (of permittivity ε) in the T.L. has a small 
conductivity σ. In Volume 2, we have shown a relationship between ca-
pacitance and conductance when the dielectric medium surrounding two 
conductors has ε and σ as follows:

	  
	

C
G

= ε
σ  	 (2-19) 

Hence once C of a T.L. is known, G can be calculated easily by

	  
	

G C= σ
ε  	 (2-124) 

Finally, the series resistance (R) per unit length is due to conductor 
loss when the conductors of the line are not perfectly conducting, i.e., 
σc (conductivity) is finite. For good conductors at high frequencies, the 
current mainly flows or penetrates over the skin depth as discussed in Vol-
ume 4. Thus R can be approximately calculated by assuming that the total 
currents in the conductors are uniformly distributed over the skin depth 
dp. The resistance of a homogeneous resistor of length ℓ and uniform cross 
sections S is obtained in Section 5.4 as follows.

R
l
S

=
σ



# 156104     Cust: MP     Au: Adams    Pg. No. 87 
Title: Principles of Electromagnetics 1—

K 
Short / Normal

DESIGN SERVICES OF

S4CARLISLE
Publishing Services

	 Basics of Waveguides, Resonators and Transmission Lines	 87

For the transmission line of unit length that has two conductors, the se-
ries resistance per unit length (R) is given by

	  
	

R R R
1 1

S
1
S2

1
d

1
C

1
C21 2

c 1 c p 1

= + = +






= +




σ σ

 	(2-125) 

where C1 and C2 are the widths or the circumferences of the two conduc-
tors. The skin depth dp of the good conductor is given by Eq. (1-90):

	  
	

d
2 1

fp
c c c c

= =
εµ σ π µ σ  	 (2-126) 

where μc is the permeability of the conductor. Note that 
1
d 2c p

c

cσ
ωµ

σ
=  

is known as the surface resistance (Rs) of the conductor. For a parallel plate 
line,

	

R R
d w

R
w1

c p
s= = =2

2 2
σ

	
 (2-127)

Example 2-7 Transmission line parameters of a coaxial line
Find L, C, R, G and Zo of a coaxial transmission line of Figure 2-11.

Solution:
The capacitance per unit length of a coaxial line is obtained from the 
capacitance of a concentric cylindrical capacitor

	  
	

C
ln b

a

=






2πε
 	 (2-128) 

 

Making use of the relationship, LC = με, we obtain the inductance per 
unit length:

	
L

C 2
ln

b
a

= = 





µε µ
π

 	 (2-129) 

which is also treated in Problem 7-34. Applying the C-G relationship in 
Eq. (2-124), we obtain

	

G
2

ln b
a

=






πσ

	

 (2-130)
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when σ is the conductivity of the dielectric filling. The series resistance 
per unit length is obtained from Eq. (2-125) by substituting C1 = 2πa, 
C2 = 2πb:

	  
	

R
d a b

R
a b2 p

s= +



 = +





1 1
2

1
2 2

1 1
σ π π π  	 (2-131) 

T﻿he characteristic impedance is obtained by

	  
	

Z
L
C

b
a 2

b
ao = = 



 =µ

ε π
η
π

1
2

ln ln  	 (2-132) 

The transmission line parameters (L, C, R, G and Zo) are summarized 
in Table 2-4 for three types of transmission lines – parallel-plate line, co-
axial line and two-wire line.
 
Table 2-4. Transmission Line Parameters (L, C, R, G, Zo)

Parameters Parallel-
Plate Line

Coaxial  
Line

Two-Wire Line

L
µ a

w
µ
π2

b
a

ln
µ
π

cosh ,− 



 =1 D

2a
 D separation

C
ε w

a
2

ln(b/a)
πε πε

cosh D/2a1− ( )
R

R
2
ws

R
2 a b

s

π
1 1+





R
a

 R
d 2

s
s

c p

c

cπ σ
ωµ

σ
, = =1

G
σ w

a
2

ln(b/a)
πσ πσ

cosh D/2a1− ( )

Zo
η a

w
η
π2

b
a

ln
η
π

cosh
D
2a

1− 





2.7.4 Finite Transmission Line with Load

Let’s consider a section of transmission line of characteristic impedance 
Zo terminated with a load impedance ZL as shown in Figure 2-14. We 
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investigate the wave characteristics, in particular, how the wave reflected 
from the load is related to the wave traveling to the right at any point on 
the T.L.

Incident wave

Reflected wave

Zo

ZL

Z
z 0=z=

==Zin       Z(z         1)

Figure 2-14. A finite transmission line terminated with load

The general solution for the voltage wave on the line can be written as

	

V(z)=V e +          V e

14 2 43 14 2 43

forward

o
+ -jkz        

o
- jkz

  travelling     backward travelling
incident wave            reflected wave 	

 (2-107)

T﻿he current wave on the line is similarly given by

	  
	

I(z)
V
Z

e
V
Z

eo
+

o

jkz o

o

jkz= +−
−

 	 (2-108) 

At the location of the load (z = 0),

	

V(z 0) V V V

I(z 0) I
Z

V V

L o
+

o

L
o

o
+

o

= = = +

= = = +( )

−

−1
 	 (2-133) 

If we define the ratio of Vo
−  (reflected amplitude) and Vo

+  (incident 
amplitude) to be the reflection coefficient ΓL (at the load)

	  
	

ΓL
o

o
+

V
V

≡
−

 	 (2-134) 
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We can express ΓL in terms of Zo and ZL using the following relationship:

 
	

V
I

Z
V V

1
Z

V V
Z

V
V
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L
L

o
+

o

o
o
+

o

o
o
+

L

o
+

L
o

L

L

=
+

+( )
=

+
−

=
+
−

−

−

( )
( )
1
1

1
1

Γ
Γ

Γ
Γ

 
which leads to

	
ΓL

L 0

L 0

Z Z
Z Z

=
−
+

 	 (2-135) 

Note that the reflection coefficient in Eq. (2-135) is very similar to the 
reflection coefficient of a uniform plane wave normally incident from the 
medium of η1 upon the medium of η2, as shown in Section 2.2:

	  
	

R 2 1

2 1

=
−
+

η η
η η  	 (2-116a) 

We observe the following three special cases:

(i)	Short circuit ( ) :Z  
V
VL L

o

o
+= = = −
−

0 1Γ . This is equivalent to having a 
perfect conductor in the second medium for the uniform plane wave 
problem.

(ii)	Open circuit ( ) :Z  
V
VL L

o

o
+= ∞ = =
−

Γ 1. In this case, I(z = 0) = 0.

(iii)	Matched load ( ) :Z Z   or VL o L o= = =−Γ 0 0 . There is no re-
flected wave.

The impedance Z(z) at any point on the line is defined as

	  
	

Z(z)
V(z)
I(z)

Z
V e e

V e eo
o

jkz
L

jkz

o
jkz

L
jkz

= =
+( )
−( )

+ −

− −

Γ

Γ
 	 (2-136)

At the source end (z = −ℓ) of the line, looking into the line, we see an 
input impedance Zin = Z(z = −ℓ):
 		
Z(z l) Z

e e
e e

Z
(Z Z )e (Z Z )e

o

jkz
L

jkz
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L

jkz o
L o
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−
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+ + −−
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Γ
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L o
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o
L o
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(Z Z )e (Z Z )e

Z
Z kl Z j kl
Z j

+ − −

=
+

−

2 2
2

cos( ) sin( )
siin( ) cos( )

tan( )
tan( )kl Z kl

Z
Z jZ kl
Z jZ klo

o
L o

o L+
=

+
+2

		
		  (2-137)
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Thus, we can evaluate the input impedance as a function of line length ℓ, 
given the characteristic impedance of the line and load impedance. Z(−ℓ) 
will vary periodically with period kℓ = (2π/λ)ℓ = π or ℓ = λ/2. There are a 
few special cases for discussion:
(i)		  Short circuit (ZL = 0): Z(−ℓ) = jZo tan(kℓ). (2-138)
		  Zin is reactive. For a short section (kℓ   1), Z(−ℓ) ≈ jZo kℓ. The 

short-circuited line behaves like an inductor.

(ii)		  Open circuit ( ) : cot( )Z  Z( l)
Z

j tan(kl)
jZ klL

o
o= ∞ − = = −  

(2-139)

		  Zin is also reactive. For a short section ( ),k  Z( l) j
Z
kl

o� �1 − ≈ − . 

The open-circuited line behaves like a capacitor.
(iii)		   Matched load (ZL = Zo): Z(−ℓ) = Zo. The input impedance is equal 

to the characteristic impedance at all points because there is no 
reflected wave.

(iv)		   Quarter-wave section (ℓ = λ/4): kℓ = π/2, tan kℓ → ∞

Z
Z

Z
Z

in

o

L

o

=






−1

 

	
Z

Z
Zin

o
2

L

=
 or

	 (2-140)
		    A quarter-wave lossless transmission line transforms the normalized 

load impedance (normalized by Zo) to its inverse. It is called the 
quarter wave transformer. For example, an open-circuited, quar-
ter wave line appears as a short circuit.

(v)		  Half-wave section (ℓ = λ/2): kℓ = π, tan kℓ = 0, Zin = ZL, as expected. 
When the length of a line is an integer multiplier of λ/2, Zin does not 
change.

Analysis of generalized reflection coefficient and the impedance of the 
transmission line involves tedious manipulations of complex numbers. A 
graphical chart, known as the Smith Chart, greatly simplifies the analysis. 
See D.K. Cheng (1993) or Shen and Kong (1995) for detailed analysis 
using the Smith Chart.
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Standing Wave Pattern

Whenever the load is mismatched (ZL ≠ Zo), ΓL ≠ 0 and Vo
− ≠ 0 . Then 

both forward and backward waves propagate on the line. The total volt-
ages and currents are the superposition of these two and form a stand-
ing wave just like the standing wave formed by a uniform plane wave 
incident upon a perfect conductor as discussed in Section 2.6. Voltage 
maxima occur where the two (incident and reflected) waves are in phase; 
minima where they are 180° out of phase. Similarly, there are maxima and 
minima for current along the line. There are local accumulations of elec-
tric energy at voltage maxima and of magnetic energy at current maxima, 
which may reduce the power handling capacity of the line.

Defining the generalized reflection coefficient (at z)

	  
	

Γ Γ( ) ,z
V e
V e

eo
jkz

o
jkz L

j2kz= =
−

+ −
 	 (2-141) 

the voltage wave from Eq. (2-107) can be re-written as

	 V z V e zo
jkz( ) ( )= +{ }+ − 1 Γ  	 (2-142)

The current wave is similarly given by

 
	

I z
V
Z

e zo

o

jkz( ) ( )= −{ }
+

− 1 Γ  	 (2-143) 

It is observed from Eq. (2-139) that for a lossless line

	 Γ Γ( )z L=

Since |Γ(z)| is constant while its phase varies with z, the amplitude of 
V(z), i.e., |V(z)|, will be a maximum when Γ(z) = |ΓL|, and it will be a 
minimum when Γ(z) = −|ΓL|. But the current amplitude |Γ(z)| is a mini-
mum at the maximum of the voltage and vice versa. The ratio of the volt-
age maximum to the voltage minimum is defined as (voltage) standing 
wave ratio or VSWR:

	
VSWR

V(z)
V(z) 1

L

L

= =
+
−

max

min

1 Γ
Γ

 	 (2-144) 

|ΓL| can also be written in terms of VSWR:
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ΓL =
VSWR
VSWR

−
+

1
1  	

(2-145)

Note that since the distance between Γ(z) = |ΓL| and Γ(z) = −|ΓL| is λ/4 
(2kd = π), the distance between two maxima is λ/2. Thus, although V(z) 
and I(z) are periodic with λ, |V(z)| and |I(z)| are periodic with λ/2. Two 
special cases are for discussion.
(i)	Matched load (ZL = Zo): ΓL = 0, VSWR = 1, V(z) V eo

+ jkz= − . There 
is no standing wave.

(ii)	Short circuit (ZL = 0): ΓL = −1, VSWR → ∞. |V(z)| will be minimum 
(zero) and |I(z)| will be maximum at the load. They will switch at z 
= −λ/4.

The standing wave patterns for |V(z)| and |I(z)| of the above two cases are 
plotted in Figure 2-15.

z

maxV

maxI

42
3
4

oV +

o

o

V
Z

+

z

V(z)
I(z)

(a) (b)

Figure 2-15. Standing wave patterns on a transmission line with (a) 
matched load and (b) short-circuited load
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Ampère’s law, 82
Angle of incidence, 8
Angle of reflection, 8
Angle of transmission, 8
Attenuation, in waveguide, 52–53

Brewster angle effect, 23–25

Capacitance (C), 86
Characteristic impedance, 81, 88
Characteristic values, 41
Circular waveguide, 34
Coaxial cable, 34, 75

TEM mode solution, 76–78
Critical angle, 20
Cutoff frequency, 42, 48, 59, 60

Dielectric breakdown, 52
Dielectric waveguides, 33, 34
Dispersion relation, 56
Dominant mode, 43, 48,  

59, 60–62, 64
Duality, in electromagnetic  

theory, 15

Eigenvalues, 41
Electromagnetic waves, reflection and 

transmission of
Brewster angle effect, 23–25
normal incidence, 1–7, 29
oblique incidence, 7–19
power conservation, 16–19
reflection from perfect  

conductor, 25–31
standing waves, 27–29
total internal reflection, 19–23

Evanescent wave, 42, 60

Fresnel equations, 11

Group velocity, 44
Guide wavelength, 44, 48

Helmholtz wave equation, 35
HFC (Hybrid Fiber Coax) 

architecture, 77
Horizontal polarization. See 

Perpendicular polarization

Inductance (L), 86

Kirchhoff current law (KCL), 80
Kirchhoff voltage law (KVL), 80

Law of refraction. See Snell’s law
Load impedance, 88
Lossless transmission line, 81–82, 85
Lumped-circuit model, 79–82

Metallic waveguides, 33, 34
Microwaves, 34
Mircrostrip line, 50–51

Normal incidence, at dielectric 
boundary, 1–7

Oblique incidence
at dielectric boundary, 7–19
parallel polarization, 13–16
perpendicular polarization, 8–13

Optical fiber, 22–23, 34

P-polarization. See Parallel polarization
Parallel-plate (PP) line, 79
Parallel plate waveguide (PPW),  

34, 39, 76
additional notes on solution 

method, 53
attenuation in waveguide, 52–53
dielectric breakdown, 52
field lines, 50
field solutions, 48
microstrip line, 50–52
TE mode solutions, 46–49
TM mode solutions, 40–46
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Parallel polarization, 13–16
Perfect conductor, reflection from, 

25–31
Perpendicular polarization, 8–13
Phase constant, 48, 59
Phase matching condition, 10
Phase velocity, 44, 48
Plane of incidence, 8
Polaroid sunglasses, 25
Polyethylene, 75
Power conservation, 16–19
Poynting vectors, 5

time-average, 45, 49, 51, 61
Propagating mode vs. cutoff, 42–43, 

57, 60
Propagation constant, 3, 81

Quality factor, of cavity resonator, 73–75
Quarter wave transformer, 91

Rectangular cavity resonator, 68–69
quality factor, 73–75
TE mode solutions, 71–73
TM mode solutions, 69–71

Rectangular waveguide, 34, 53–54
examples, 65–68
field lines, 60–61, 65
field solutions, 54–56, 58–59
TE mode solutions, 62–65
TM mode solutions, 56–62
X-band waveguide, 65–66

Reflection coefficients, 3, 89–90, 92
for parallel polarization, 15
for perpendicular polarization, 11, 17
vs. incidence angle, 23–24

Resonant frequencies, 68, 71
Resonator, 68

S-polarization. See Perpendicular 
polarization

Separation of variables, method of, 38
Series resistance (R), 86–87
Shunt conductance (G), 86
Single mode operation, 43
Smith Chart, 91
Snell’s law, 10

Brewster angle, 24
and total internal reflection, 19–20

Standing waves, 27–31, 45
pattern, 92–93

Surface resistance (Rs), 87
Surface wave, 21

TE (transverse electric) polarization. 
See Perpendicular polarization

Teflon, 75
Time-average power flow, 45, 62
TM (transverse magnetic) 

polarization. See Parallel 
polarization

Total internal reflection (TIR), 19–23
Transmission coefficient, 4

for parallel polarization, 15
for perpendicular polarization, 11, 17

Transmission-line equations
from field theory, 82–85
lumped-circuit model, 79–82

Transmission lines, 33, 78
circuit parameters, 85–88
with load, 88–93

Transverse components, 37, 53
Transverse electromagnetic (TEM) 

mode, 33–34. See also Coaxial 
cable; Parallel plate waveguide; 
Rectangular cavity resonator; 
Rectangular waveguide

TE (transverse electric) mode, 38–39
TM (transverse magnetic) mode, 

38–39
Two-wire transmission line, 34, 79

Uniform plane wave, 85
Uniform waveguides

solution methods for, 35–39

Vertical polarization. See Parallel 
polarization

Voltage standing wave ratio (VSWR), 
92–93

Wave impedance, 44–45, 48
for TE mode, 49, 63

Waveguides, 33. See also specific 
waveguides

X-band waveguide, 65–66
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