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prerequisite of a basic (non-calculus) statistics course, this text is 
appropriate for the widest possible audience.
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by teaching the necessary statistical background topics (for 
example, hypothesis testing) and the necessary matrix algebra 
concepts as they are needed in teaching regression. Chapter 3 
continues the integrative approach of the text by giving a 
unified presentation of more advanced regression models, in-
cluding models using squared and interaction terms, models 
using dummy variables, and logistic regression models.

The book concludes with Chapter 4, which organizes the 
techniques of model building, model diagnosis, and model 
improvement into an easy to understand six step procedure.
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Abstract

Regression Analysis: Unified Concepts, Practical Applications, and Computer 
Implementation is a concise and innovative book that gives a complete 
presentation of applied regression analysis in approximately one-half the 
space of competing books. With only the modest prerequisite of a basic 
(non-calculus) statistics course, this text is appropriate for the widest 
possible audience.
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Preface

Regression Analysis: Unified Concepts, Practical Applications, and Computer 
Implementation is a concise and innovative book that gives a complete 
presentation of applied regression analysis in approximately one-half the 
space of competing books. With only the modest prerequisite of a basic 
(non-calculus) statistics course, this text is appropriate for the widest pos-
sible audience—including college juniors, seniors, and first year graduate 
students in business, the social sciences, the sciences, and statistics, as 
well as professionals in business and industry. The reason that this text 
is appropriate for such a wide audience is that it takes a very unique and 
integrative approach to teaching regression analysis. Most books, after a 
short chapter introducing regression, cover simple linear regression and 
multiple regression in roughly four chapters by beginning with a chapter 
reviewing basic statistical concepts and then having chapters on simple 
linear regression, matrix algebra, and multiple regression. In contrast, this 
book, after a short chapter introducing regression, covers simple linear 
regression and multiple regression in a single cohesive chapter, Chapter 2, 
by efficiently integrating the discussion of the two techniques. In addi-
tion, the same Chapter 2 teaches both the necessary basic statistical con-
cepts (for example, hypothesis testing) and the necessary matrix algebra  
concepts as they are needed in teaching regression. We believe that this 
approach avoids the needless repetition of traditional approaches and 
does the best job of getting a wide variety of readers (who might be stu-
dents with different backgrounds in the same class) to the same level of 
understanding.

Chapter 3 continues the integrative approach of the book by discuss-
ing more advanced regression models, including models using squared 
and interaction terms, models using dummy variables, and logistic regres-
sion models. The book concludes with Chapter 4, which organizes the 
techniques of model building, model diagnosis, and model improvement 
into a cohesive six step procedure. Whereas many competing texts spread 
such modeling techniques over a fairly large number of chapters that can 



seem unrelated to the novice, the six step procedure organizes both stan-
dard and more advanced modeling techniques into a unified presenta-
tion. In addition, each chapter features motivating examples (many real 
world, all realistic) and concludes with a section showing how to use SAS 
followed by a set of exercises. Excel, MINITAB, and SAS outputs are 
used throughout the text, and the book’s website contains more exercises 
for each chapter. The book’s website also houses Appendices B, C, and 
D. Appendix B gives careful derivations of most of the applied results in 
the text. These derivations are referenced in the main text as the applied 
results are discussed. Appendix C includes an applied discussion extend-
ing the basic treatment of logistic regression given in the main text. This 
extended discussion covers binomial logistic regression, generalized (mul-
tiple category) logistic regression, and Poisson regression. Appendix D 
extends the basic treatment of modeling time series data given in the main 
text. The Box-Jenkins methodology and its use in regression analysis are 
discussed

Author Bruce Bowerman would like to thank Professor David 
Nickerson of the University of Central Florida for motivating the writing 
of this book. All three authors would like to thank editor Scott Isenberg, 
production manager Destiny Hadley, and permissions editor Marcy 
Schneidewind, as well as the fine people at Exeter, for their hard work. 
Most of all we are indebted to our families for their love and encourage-
ment over the years.

Bruce L. Bowerman
Richard T. O’Connell

Emily S. Murphree
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CHAPTER 1

An Introduction to 
Regression Analysis

1.1  Observational Data and Experimental Data

In many statistical studies a variable of interest, called the response variable 
(or dependent variable), is identified. Data are then collected that tell us 
about how one or more factors might influence the variable of interest. 
If we cannot control the factor(s) being studied, we say that the data are 
observational. For example, suppose that a natural gas company serving 
a city collects data to study the relationship between the city’s weekly 
natural gas consumption (the response variable) and two factors—the 
average hourly atmospheric temperature and the average hourly wind 
velocity in the city during the week. Because the natural gas company 
cannot control the atmospheric temperatures or wind velocities in the 
city, the data collected are observational.

If we can control the factors being studied, we say that the data 
are experimental. For example, suppose that an oil company wishes 
to study how three different gasoline types (A, B, and C) affect the 
mileage obtained by a popular midsized automobile model. Here the 
response variable is gasoline mileage, and the company will study a 
single factor—gasoline type. Since the oil company can control which 
gasoline type is used in the midsized automobile, the data that the oil 
company will collect are experimental.

1.2  Regression Analysis and Its Objectives

Regression analysis is a statistical technique that can be used to analyze 
both observational and experimental data, and it tells us how the factors 
under consideration might affect the response (dependent) variable. In 
regression analysis the factors that might affect the dependent variable are 
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most often referred to as independent, or predictor, variables. We denote 
the dependent variable in regression analysis by the symbol y, and we 
denote the independent variables that might affect the dependent variable 
by the symbols x x x1, , . . . ,2     k. The objective of regression analysis is to 
build a regression model or prediction equation—an equation relating y to 
x x x1, , . . . ,2     k. We use the model to describe, predict, and control y on the 
basis of the independent variables. When we predict y for a particular set 
of values of x x x1, , . . . ,2     k, we will wish to place a bound on the error of 
prediction. The goal is to build a regression model that produces an error 
bound that will be small enough to meet our needs.

A regression model can employ quantitative independent variables, or 
qualitative independent variables, or both. A quantitative independent vari-
able assumes numerical values corresponding to points on the real line. 
A qualitative independent variable is nonnumerical. The levels of such a 
variable are defined by describing them. As an example, suppose that we 
wish to build a regression model relating the dependent variable

y = demand for a consumer product 

to the independent variables

x1 = the price of the product,
x2 = the average industry price of competitors’ similar products,
x3 = advertising expenditures made to promote the product, and
x4 = �the type of advertising campaign (television, radio, print media, 

etc.) used to promote the product.

Here x1, x2, and x3 are quantitative independent variables. In contrast, 
x4 is a qualitative independent variable, since we would define the levels 
of x4  by describing the different advertising campaigns. After construct-
ing an appropriate regression model relating y to x x x1 2 3, , , and x4, we 
would use the model

1.	to describe the relationships between y and x x x1 2 3, , , and x4. For 
instance, we might wish to describe the effect that increasing adver-
tising expenditure has on the demand for the product. We might 
also wish to determine whether this effect depends upon the price 
of the product;
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2.	to predict future demands for the product on the basis of future 
values of x x x1 2 3, , , and x4;

3.	to control future demands for the product by controlling the price of 
the product, advertising expenditures, and the types of advertising 
campaigns used.

Note that we cannot control the price of competitors’ products, nor 
can we control competitors’ advertising expenditures or other factors that 
affect demand. Therefore we cannot perfectly control or predict future 
demands.

We develop a regression model by using observed values of the depen-
dent and independent variables. If these values are observed over time, 
the data are called time series data. On the other hand, if these values are 
observed at one point in time, the data are called cross-sectional data. For 
example, suppose we observe values of the demand for a product, the 
price of the product, and the advertising expenditures made to promote 
the product. If we observe these values in one sales region over 30 conse
cutive months, the data are time series data. If we observe these values in 
thirty different sales regions for a particular month of the year, the data 
are cross-sectional data.





CHAPTER 2

Simple and Multiple 
Regression: An Integrated 

Approach

2.1  The Simple Linear Regression Model, and the 
Least Squares Point Estimates

2.1.1  The Simple Linear Regression Model

The simple linear regression model relates the dependent variable, which 
is denoted y, to a single independent variable, which is denoted x, and 
assumes that the relationship between y and x can be approximated by a 
straight line. We can tentatively decide whether there is an approximate 
straight-line relationship between y and x by making a scatter diagram, 
or scatter plot, of y versus x. First, data concerning the two variables are 
observed in pairs. To construct the scatter plot, each value of y is plotted 
against its corresponding value of x. If the y values tend to increase or 
decrease in a straight-line fashion as the x values increase, and if there is a 
scattering of the ( , )x y  points around the straight line, then it is reasonable 
to describe the relationship between y and x by using the simple lin-
ear regression model. We illustrate this in the following example, which 
shows how regression analysis can help a natural gas company improve its 
gas ordering process.

Example 2.1

When the natural gas industry was deregulated in 1993, natural gas com-
panies became responsible for acquiring the natural gas needed to heat 
the homes and businesses in the cities they serve. To do this, natural gas 
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companies purchase natural gas from marketers (usually through long-
term contracts) and periodically (daily, weekly, monthly, or the like) place 
orders for natural gas to be transmitted by pipeline transmission systems 
to their cities. There are hundreds of pipeline transmission systems in the 
United States, and many of these systems supply a large number of cities.

To place an order (called a nomination) for an amount of natural gas to 
be transmitted to its city over a period of time (day, week, month), a nat-
ural gas company makes its best prediction of the city’s natural gas needs 
for that period. The company then instructs its marketer(s) to deliver this 
amount of gas to its pipeline transmission system. If most of the natu-
ral gas companies being supplied by the transmission system can predict 
their cities’ natural gas needs with reasonable accuracy, then the overnom-
inations of some companies will tend to cancel the undernominations of 
other companies. As a result, the transmission system will probably have 
enough natural gas to efficiently meet the needs of the cities it supplies.

In order to encourage natural gas companies to make accurate trans-
mission nominations and to help control costs, pipeline transmission sys-
tems charge, in addition to their usual fees, transmission fines. A natural 
gas company is charged a transmission fine if it substantially undernom-
inates natural gas, which can lead to an excessive number of unplanned 
transmissions, or if it substantially overnominates natural gas, which can 
lead to excessive storage of unused gas. Typically, pipeline transmission 
systems allow a certain percentage nomination error before they impose 
a fine. For example, some systems do not impose a fine unless the actual 
amount of natural gas used by a city differs from the nomination by more 
than 10 percent. Beyond the allowed percentage nomination error, fines 
are charged on a sliding scale—the larger the nomination error, the larger 
the transmission fine.

Suppose, we are analysts in a management consulting firm. The nat-
ural gas company serving a small city has hired the consulting firm to 
develop an accurate way to predict the amount of fuel (in millions of 
cubic feet–MMcf–of natural gas) that will be required to heat the city. 
Because the pipeline transmission system supplying the city evaluates 
nomination errors and assesses fines weekly, the natural gas company 
wants predictions of future weekly fuel consumptions. Moreover, since 
the pipeline transmission system allows a 10 percent nomination error 
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before assessing a fine, the company would like the actual and predicted 
weekly fuel consumptions to differ by no more than 10 percent. Our 
experience suggests that weekly fuel consumption substantially depends 
on the average hourly temperature (in degrees Fahrenheit) measured in 
the city during the week. Therefore, we will try to predict the depen-
dent (response) variable weekly fuel consumption ( y) on the basis of the 
independent (predictor) variable average hourly temperature (x) during the 
week. To this end, we observe values of y and x for eight weeks. The data 
are given in the Excel output of Figure 2.1, along with a scatter plot of 
y versus x. This plot shows (1) a tendency for the fuel consumptions to 
decrease in a straight line fashion as the temperatures increase and (2) a 
scattering of points around the straight line.

To begin to find a regression model that represents characteristics (1) 
and (2) of the data plot, consider a specific average hourly temperature x.  
For example, consider the average hourly temperature 28°F, which was 
observed in week one, or consider the average hourly temperature 45.9°F, 
which was observed in week five (there is nothing special about these 
two average hourly temperatures, but we will use them throughout this 
example to help explain the idea of a regression model). For the specific 
average hourly temperature x that we consider, there are, in theory, many 
weeks that could have this temperature. However, although these weeks 
each have the same average hourly temperature, other factors that affect 
fuel consumption could vary from week to week. For example, these 
weeks might have different average hourly wind velocities, different ther-
mostat settings, and so forth. Therefore, the weeks could have different 
fuel consumptions. It follows that there is a population of weekly fuel 

TEMP
A B C D E F G H

28 12.4
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12.4
10.8
9.4
9.5

8
7.5
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1
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3
4
5
6
7
8
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11
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Figure 2.1  The fuel consumption data, and a scatter plot



8	 REGRESSION ANALYSIS

consumptions that could be observed when the average hourly tempera-
ture is x. Furthermore, this population has a mean, which we denote as 
my x|  (pronounced mu of y given x).

We can represent the straight-line tendency we observe in Figure 2.1 
by assuming that my x|  is related to x by the equation

m b by x| = +0 1 x

This is the equation of a straight line with y-intercept b0 (pronounced 
beta zero) and slope b1 (pronounced beta one). To better understand 
the straight line and the meanings of b0 and b1, we must first realize that 
the values of b0 and b1 determine the precise value of the mean weekly 
fuel consumption my x|  that corresponds to a given value of the average 
hourly temperature x. We cannot know the true values of b0 and b1, and 
in the next section we will learn how to estimate these values. However, 
for illustrative purposes, let us suppose that the true value of b0 is 15.77 
and the true value of b1 is -.1281. It would then follow, for example, that 
the mean of the population of all weekly fuel consumptions that could be 
observed when the average hourly temperature is 28°F is

m b by| ( )
. . ( )
.

28 0 1 28
15 77 1281 28
12 18

= +
= −
= MMcf of natural gas

As another example, it would also follow that the mean of the popu-
lation of all weekly fuel consumptions that could be observed when the 
average hourly temperature is 45.9°F is

m b by| . ( . )
. . ( . )

.

45 9 0 1 45 9
15 77 1281 45 9
9 89

= +
= −
= MMcf of natural gas

When we say that the equation m b by x| = +0 1x is the equation of a 
straight line, we mean that the different mean weekly fuel consumptions 
that correspond to different average hourly temperatures lie exactly on 
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a straight line. For example, consider the eight mean weekly fuel con-
sumptions that correspond to the eight average hourly temperatures in 
Figure 2.1. In Figure 2.2 we depict these mean weekly fuel consumptions 
as triangles that lie exactly on the straight line defined by the equation 

7

8

28.0

(a) The line of means and the error terms

(b) The slope of the line of means

(c) The y-intercept of the line of means

0

8
9

10
11
12
13
14
15

28 62.5

45.9 62.5

y

x

x

y

x

y

9

10

11

12

13

my28 = Mean weekly fuel consumption when x = 28

The error term for the first week (a positive error term)
12.4 = The observed fuel consumption for the first week

my45.9 = Mean weekly fuel consumption when x = 45.9

The error term for the fifth week
(a negative error term)

9.4 = The observed fuel consumption
for the fifth week

The straight line defined
the equation my28 = b0 + b1x 

b1

b1= The change in mean weekly consumption
       that is associated with a one-degree increase
       in average hourly temperature

b0= Mean weekly fuel consumption
       when the average hourly
       temperature is 0°F

b0 + b1c 

b0 + b1(c + 1) 

c c + 1

Figure 2.2  The simple linear regression model relating weekly fuel 
consumption to average hourly temperature
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m b by x| = +0 1x. Furthermore, in this figure we draw arrows pointing 
to the triangles that represent the previously discussed means my|28 and 
my| .45 9. Sometimes we refer to the straight line defined by the equation 
m b by x x| = +0 1  as the line of means.

In order to interpret the slope b1 of the line of means, consider two 
different weeks. Suppose that for the first week the average hourly tem-
perature is c. The mean weekly fuel consumption for all such weeks is

b b0 1+ ( )c

For the second week, suppose that the average hourly temperature is 
c +( )1 . The mean weekly fuel consumption for all such weeks is

b b0 1 1+ +( )c  

It is easy to see that the difference between these mean weekly fuel con-
sumptions is b1. Thus, as illustrated in Figure 2.2(b), the slope b1 is the 
change in mean weekly fuel consumption that is associated with a one-
degree increase in average hourly temperature. To interpret the meaning 
of the y-intercept b0, consider a week having an average hourly tempera-
ture of 0°F. The mean weekly fuel consumption for all such weeks is

b b b0 1 00+ =( )  

Therefore, as illustrated in Figure 2.2(c), the y-intercept b0 is the mean 
weekly fuel consumption when the average hourly temperature is 0°F. 
However, because we have not observed any weeks with temperatures 
near zero, we have no data to tell us what the relationship between mean 
weekly fuel consumption and average hourly temperature looks like for 
temperatures near zero. Therefore, the interpretation of b0 is of dubious 
practical value. More will be said about this later.

Now recall that the observed weekly fuel consumptions are not 
exactly on a straight line. Rather, they are scattered around a straight 
line. To represent this phenomenon, we use the simple linear regression 
model



	 Simple and Multiple Regression: An Integrated Approach	 11

y
x

y x= +
= + +

m e
b b e

|

0 1

This model says that the weekly fuel consumption y observed when 
the average hourly temperature is x differs from the mean weekly fuel 
consumption my x|  by an amount equal to e  (epsilon). Here e  is called an 
error term. The error term describes the effect on y of all factors other than 
the average hourly temperature. Such factors would include the average 
hourly wind velocity and the average hourly thermostat setting in the city. 
For example, Figure 2.2(a) shows that the error term for the first week is 
positive. Therefore, the observed fuel consumption y = 12.4 in the first 
week was above the corresponding mean weekly fuel consumption for all 
weeks when x = 28. As another example, Figure 2.2(a) also shows that the 
error term for the fifth week was negative. Therefore, the observed fuel 
consumption y = 9.4 in the fifth week was below the corresponding mean 
weekly fuel consumption for all weeks when x = 45.9. Of course, since 
we do not know the true values of b0 and b1, the relative positions of the 
quantities pictured in the figure are only hypothetical.

With the fuel consumption example as background, we are ready to 
define the simple linear regression model relating the dependent variable y to 
the independent variable x. We suppose that we have gathered n observa-
tions—each observation consists of an observed value of x and its corre-
sponding value of y. Then:

The simple linear regression model

The simple linear (or straight-line) regression model is

y xy x= + = + +m e b b e|    0 1

Here

1.	 m b by x x| = +0 1  is the mean value of the dependent variable y 
when the value of the independent variable is x.

2.	 b0 is the y -intercept. b0 is the mean value of y when x equals 0.
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An observed
value of y
when x equals x0

Error
term

Slope = b1

Mean value of y
when x equals x0

One-unit change
in x

y-intercept

0
x0 = A specific value of x

Straight line defined
by the equation
myx = b0 + b1x 

b0

x

y

Figure 2.3  The simple linear regression model b1 >( )0

The simple linear regression model (Continued)

3.	 b1 is the slope. b1 is the change (amount of increase or decrease) 
in the mean value of y associated with a one-unit increase in x. If 
b1 is positive, the mean value of y increases as x increases. If b1 is 
negative, the mean value of y decreases as x increases.

4.	e is an error term that describes the effects on y of all factors other 
than the value of the independent variable x.

This model is illustrated in Figure 2.3 (note that x0 in this figure 
denotes a specific value of the independent variable x). The y-intercept 
b0 and the slope b1 are called regression parameters. We will see how to 
estimate these parameters in the next subsection. Then, we will see how 
to use these estimates to predict y.

2.1.2  The Least Squares Point Estimates

Suppose that we have gathered n observations x y x y x yn n1 1 2 2, , , , . . , ,( ) ( ) ( )      
x y x y x yn n1 1 2 2, , , , . . , ,( ) ( ) ( )     , where each observation consists of a value of an independent 

variable x and a corresponding value of a dependent variable y. Also, 
suppose that a scatter plot of the n observations indicates that the simple 
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linear regression model relates y to x. In order to estimate the y-intercept 
b0 and the slope b1 of the line of means of this model, we could visu-
ally draw a line—called an estimated regression line—through the scat-
ter plot. Then, we could read the y-intercept and slope off the estimated 
regression line and use these values as the point estimates of b0 and b1. 
Unfortunately, if different people visually drew lines through the scatter 
plot, their lines would probably differ from each other. What we need is 
the best line that can be drawn through the scatter plot. Although there 
are various definitions of what this best line is, one of the most useful best 
lines is the least squares line.

To understand the least squares line, we let y xb b∧ = +0 1  denote the 
general equation of an estimated regression line drawn through a scatter 
plot. Here, since we will use this line to predict y on the basis of x, we call 
y∧ the predicted value of y when the value of the independent variable is x.  
In addition, b0 is the y-intercept and  b1 is the slope of the estimated regres-
sion line. When we determine numerical values for b0 and b1, these values 
will be the point estimates of the y-intercept b0 and the slope b1 of the line 
of means. To explain which estimated regression line is the least squares 
line, we begin with the fuel consumption situation. Figure 2.4 shows an 
estimated regression line drawn through a scatter plot of the fuel con-
sumption data. In this figure the dots represent the eight observed fuel 
consumptions and the squares represent the eight predicted fuel consump-
tions given by the estimated regression line. Furthermore, the line seg-
ments drawn between the dots and squares represent residuals, which are 

7
8
9

10
11
12
13
14
15
16

100 20 30 40 50

Observed fuel consumption

Residual

Predicted fuel
consumption

An estimated regression line
ŷ = b0 + b1x

60 70
x

y

Figure 2.4  An estimated regression line drawn through the fuel 
consumption scatter plot
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the differences between the observed and predicted fuel consumptions. 
Intuitively, if a particular estimated regression line provides a good “fit” to 
the fuel consumption data, it will make the predicted fuel consumptions 
“close” to the observed fuel consumptions, and thus the residuals given 
by the line will be small. The least squares line is the line that minimizes 
the sum of squared residuals. That is, the least squares line is the line posi-
tioned on the scatter plot so as to minimize the sum of the squared vertical 
distances between the observed and predicted fuel consumptions.

To define the least squares line in a general situation, consider an 
arbitrary observation ( , )x yi i  in a sample of n observations. For this obser-
vation, the predicted value of the dependent variable y given by an esti-
mated regression line is y b b xi i

∧ = +0 1 . Furthermore, the prediction error 
(also called the residual) for this observation is

e y y y b b xi i i i i= − = − +∧ ( )0 1

Then, the least squares line is the line that minimizes the sum of the 
squared prediction errors (that is, the sum of squared residuals)

SSE= e y y y b b xi
i

n

i i
i

n

i i
i

n
2

1 1

2
0 1

1

2

=

∧

= =
∑ ∑ ∑= − = − +( ) ( ( ))

To find the least squares line, we find the values of the y-intercept b0 
and slope b1 that give values of y = b +b xi 0 1 i

∧  that minimize SSE. These val-
ues of b0 and b1 are called the least squares point estimates of b0 and b1. Using 
calculus  (see Section B.1 in Appendix B), we can show that the least 
squares point estimates are as follows:

The least squares point estimates

For the simple linear regression model:

1.	The least squares point estimate of the slope b1 is b
SS

SS
xy

xx
1 = , where1

1 In order to simplify notation, we will often drop the limits on summations in this and 
subsequent chapters. That is, instead of using the summation 

i

n

=
∑

1
 we will simply write ∑.
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Example 2.2

In order to calculate least squares point estimates of the parameters b1 and 
b0 in the fuel consumption model

y
x

y x=  
=   + 

|  

 

m e
b b e

+
+0 1

we first consider the summations that are shown in Table 2.1. Using these 
summations, we calculate SSxy and SSxx  as follows:

SS =     

 3413.11   = 

xy i i
i ix y

x y
n

∑ − ∑ ∑

= − −

( )( )

( . )( . )351 8 81 7
8

1779 6475.

SS       

 16,874.76   = 1404.355

xx i
ix

x
n

= ∑ −
∑

= −

2
2

2351 8
8

( )

( . )

The least squares point estimates (Continued)

SS x x y y x y
x y

nxy i i i i
i i= − − = −

( )( )∑ ∑ ∑ ∑
( )( )

and

SS x x x
x

nxx i i
i= − = −

( )∑ ∑ ∑
( )

2 2

2

2.	The least squares point estimate of the y-intercept b0 is 
b y b x0 1= − , where

y
y

n
i= ∑  and x

x

n
i= ∑

Here n is the number of observations (an observation is an observed 
value of x and its corresponding value of y).
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It follows that the least squares point estimate of the slope b1 is

b
SS

SS
xy

xx
1

179 6475
1404 355

1279   =   = = − −.
.

.

Furthermore, because

y
yi= = =∑

8
81 7

8
10 2125

.
. and

 
x

xi= = =∑
8

351 8
8

43 98
.

.

the least squares point estimate of the y-intercept b0 is

b y b x0 1 10 2125 1279 43 98 15 84= − = − − =. ( . )( . ) .

Since b1 1279= −. , we estimate that mean weekly fuel consumption 
decreases (since b1 is negative) by .1279 MMcf of natural gas when average 
hourly temperature increases by one degree. Since b0 = 15.84, we esti-
mate that mean weekly fuel consumption is 15.84 MMcf of natural gas 
when average hourly temperature is 0°F. However, we have not observed 
any weeks with temperatures near zero, so making this interpretation  
of b0 might be dangerous. We discuss this point more fully in the next 
section.

Table 2.1  The calculation of the point estimates b0 and b1 of the 
parameters in the fuel consumption model y xy x== ++ == ++ ++n f b b f| 0 1  

yi xi xi
2 x yi i

12.4 28.0 (28.0)2 = 784 (28.0)(12.4) = 347.2

11.7 28.0 (28.0)2 = 784 (28.0)(11.7) = 327.6

12.4 32.5 (32.5)2 = 1,056.25 (32.5)(12.4) = 403

10.8 39.0 (39.0)2 = 1,521 (39.0)(10.8) = 421.2

  9.4 45.9 (45.9)2 = 2,106.81 (45.9)(9.4) = 431.46

  9.5 57.8 (57.8)2 = 3,340.84 (57.8)(9.5) = 549.1

  8.0 58.1 (58.1)2 = 3,375.61 (58.1)(8.0) = 464.8

  7.5 62.5 (62.5)2 = 3,906.25 (62.5)(7.5) = 468.75

Σyi = 81.7            Σ xi  = 351.8        Σ xi
2  = 16, 874.76              Σ x yi i = 3,413.11
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The least squares line

y b b x x∧ = + = −0 1 15 84 1279. .

is sometimes called the least squares prediction equation. In Table 2.2 we 
summarize using this prediction equation to calculate the predicted fuel 
consumptions and the residuals for the eight weeks of fuel consumption 
data. For example, since in week one the average hourly temperature was 
28°F, the predicted fuel consumption for week one is

y∧ = − =1 15 84 1279 28 12 2560. . ( ) .

It follows, since the observed fuel consumption in week one was  
y1 = 12.4, that the residual for week one is

e y y1 1 1 12 4 12 2560 1440= − = − =∧ . . .

If we consider all of the residuals in Table 2.4 and add their squared 
values, we find that SSE, the sum of squared residuals, is 2.568. If we 
calculated SSE by using any point estimates of b0  and b1  other than the 
least squares point estimates b0 = 15.84 and b1 = -.1279, we would obtain 
a larger value of SSE. The SSE of 2.568 given by the least squares point 
estimates will be used throughout this chapter.

Table 2.2  Predictions using the least squares point estimates  
b0 = 15.84 and b1 = –.1279

Week, i xi yi
ˆ . .yi i= −15 84 1279x e y yi i i= − ˆ

1 28.0 12.4 12.2560 .1440

2 28.0 11.7 12.2560 -.5560

3 32.5 12.4 11.6804 .7196

4 39.0 10.8 10.8489 -.0489

5 45.9 9.4 9.9663 -.5663

6 57.8 9.5 8.4440 1.0560

7 58.1 8.0 8.4056 -.4056

8 62.5 7.5 7.8428 -.3428

SSE = ei
i

2

1

8

2 568=
=
∑ .



18	 REGRESSION ANALYSIS

We next define the experimental region to be the range of the pre-
viously observed values of the average hourly temperature x. Referring 
to Figure 2.1, we see that the experimental region consists of the range 
of average hourly temperatures from 28°F to 62.5°F. The simple linear 
regression model relates weekly fuel consumption y to average hourly 
temperature x for values of x that are in the experimental region. For such 
values of x, the least squares line is the estimate of the line of means. This 
implies that the point on the least squares line that corresponds to the 
average hourly temperature x

y b b x
x

∧ = +
= −

0 1

15 84 1279. .

is the point estimate of m b by x x| = +0 1 , the mean of all weekly fuel con-
sumptions that could be observed when the average hourly temperature 
is x. In addition, we predict the error term e  to be zero. Therefore, y∧  is 
also the point prediction of an individual value y = +b b e0 1x + , which is 
the amount of fuel consumed in a single week that has an average hourly 
temperature of x. Note that the reason we predict the error term e  to be 
zero is that, because of several regression assumptions to be discussed in 
Section 2.3, e  has a 50 percent chance of being positive and a 50 percent 
chance of being negative.

Now suppose a weather forecasting service predicts that the average 
hourly temperature in the next week will be 40°F. Because 40°F is in the 
experimental region,

y∧ = −
=

15 84 1279 40
10 72

. . ( )

. MMcf of natural gas

is (1) the point estimate of the mean weekly fuel consumption when the 
average hourly temperature is 40°F and (2) the point prediction of an 
individual weekly fuel consumption when the average hourly tempera-
ture is 40°F. This says that (1) we estimate that the average of all possible 
weekly fuel consumptions that could potentially be observed when the 
average hourly temperature is 40°F equals 10.72 MMcf of natural gas, 
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and (2) we predict that the fuel consumption in a single week when the 
average hourly temperature is 40°F will be 10.72 MMcf of natural gas.

To conclude this example, note that Figure 2.5 illustrates both the 
point prediction y∧ = 10 72.  and the potential danger of using the least 
squares line to predict outside the experimental region. In the figure, we 
extrapolate the least squares line far beyond the experimental region to 
obtain a prediction for a temperature of -10°F. As shown in Figure 2.1, 
for values of x in the experimental region, the observed values of y tend 
to decrease in a straight-line fashion as the values of x increase. However, 
for temperatures lower than 28°F the relationship between y and x might 
become curved. If it does, extrapolating the straight-line prediction equa-
tion to obtain a prediction for x = -10 might badly underestimate mean 
weekly fuel consumption (see Figure 2.5).

The previous example illustrates that when we are using a least squares 
regression line, we should not estimate a mean value or predict an indi-
vidual value unless the corresponding value of x is in the experimental 
region—the range of the previously observed values of x. Often the value 

−10 0
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15
16
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19
20
21
22
23

True mean fuel
consumption when
x = −10

Estimated mean fuel
consumption when
x = −10 obtained by
extrapolating the
least squares line

17

10 20 30
28 62.5

Experimental region

40 50

The least squares line
ŷ = 15.84 −.1279x

The relationship between mean fuel consumption
and x might become curved at low temperatures

60 70
x

y

ŷ = 10.72

Figure 2.5  The point prediction ˆ .y = 10 72 and the danger of 
extrapolation



20	 REGRESSION ANALYSIS

x = 0 is not in the experimental region. For example, consider the fuel con-
sumption problem. Figure 2.5 illustrates that the average hourly tempera-
ture 0°F is not in the experimental region. In such a situation, it would not 
be appropriate to interpret the y-intercept b0 as the estimate of the mean 
value of y when x equals zero. In the case of the fuel consumption prob-
lem, it would not be appropriate to use b0 = 15.84 as the point estimate 
of the mean weekly fuel consumption when average hourly temperature is 
zero. Therefore, because it is not meaningful to interpret the y-intercept in 
many regression situations, we often omit such interpretations.

2.2  The (Multiple) Linear Regression Model,  
and the Least Squares Point Estimates  

Using Matrix Algebra

2.2.1  The (Multiple) Linear Regression Model

Regression models that employ more than one independent variable are 
called multiple regression models. We begin our study of these models by 
considering the following example.

Example 2.3

Part 1: The Data and a Regression Model

Consider the fuel consumption problem in which the natural gas company 
wishes to predict weekly fuel consumption for its city. In Section 2.1 we 
used the single predictor variable x, average hourly temperature, to predict 
y, weekly fuel consumption. We now consider predicting y on the basis 
of average hourly temperature and a second predictor variable—the chill 
index. The chill index for a given average hourly temperature expresses the 
combined effects of all other major weather-related factors that influence 
fuel consumption, such as wind velocity, cloud cover, and the passage of 
weather fronts. The chill index is expressed as a whole number between 
0 and 30. A weekly chill index near zero indicates that, given the average 
hourly temperature during the week, all other major weather-related fac-
tors will only slightly increase weekly fuel consumption. A weekly chill 
index near 30 indicates that, given the average hourly temperature during 
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the week, other weather-related factors will greatly increase weekly fuel 
consumption.

The company has collected data concerning weekly fuel consumption 
( y), average hourly temperature ( )x1 , and the chill index ( )x2  for the last 
eight weeks. These data are given in Table 2.3. Figure 2.6 presents a scatter 
plot of y versus x1. (Note that the y and x1 values given in Table 2.3 are 
the same as the y and x values given in Figure 2.1). This plot shows that 
y tends to decrease in a straight-line fashion as x1 increases. This suggests 
that if we wish to predict y on the basis of x1 only, the simple linear regres-
sion model (having a negative slope) 

y x= + +b b e0 1 1

relates y to x1. Figure 2.6 also presents a scatter plot of y versus x2. This plot 
shows that y tends to increase in a straight-line fashion as x2 increases. 
This suggests that if we wish to predict y on the basis of x2 only, the sim-
ple linear regression model (having a positive slope)

y x= + +b b e0 1 2

relates y to x2. Since we wish to predict y on the basis of both x1 and x2, it 
seems reasonable to combine these models to form the model

y x x  = + + +b b b e0 1 1 2 2

Table 2.3  Fuel consumption data

Week
Average hourly  
temperature, x1

Chill index,  
x2

Fuel consumption,  
y (MMcf)

1 28.0 18 12.4

2 28.0 14 11.7

3 32.5 24 12.4

4 39.0 22 10.8

5 45.9   8   9.4

6 57.8 16   9.5

7 58.1   1   8.0

8 62.5   0   7.5
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to relate y to x1 and x2. Here we have arbitrarily placed the b1x1 term 
first and the b2x2 term second, and we have renumbered b1 and b2 to 
be consistent with the subscripts on x1 and x2. This regression model 
says that

1.	 b b b0 1 1 2 2+ +x x  is the mean value of y when the average hourly tem-
perature is x1 and the chill index is x2. For instance,

b b b0 1 245 9 8+ +( . ) ( )

�is the average fuel consumption for all weeks having an average 
hourly temperature equal to 45.9 and a chill index equal to 8.
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Figure 2.6  Scatter plots of y versus x1 and y versus x2
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2.	 b b0, 1, and b2 are regression parameters relating the mean value of 
y to x1 and x2.

3.	e  is an error term that describes the effects on y of all factors other 
than x1 and x2.

Part 2: Interpreting the Regression Parameters b b0, 1
, and b2

The exact interpretations of the parameters b b0, 1, and b2 are quite simple. 
First, suppose that x1 0=   and x2 0= . Then

b b b b b b b0 1 1 2 2 0 1 2 00 0+ + = + + =x x ( ) ( )

So b0 is the mean weekly fuel consumption for all weeks having  
an  average hourly temperature of 0°F and a chill index of zero. The 
parameter b0 is called the intercept in the regression model. One might 
wonder whether b0 has any practical interpretation, since it is unlikely 
that a week having an average hourly temperature of 0°F would also 
have a chill index of zero. Indeed, sometimes the parameter b0 and other 
parameters in a regression analysis do not have practical interpretations 
because the situations related to the interpretations would not be likely 
to occur in practice. In fact, sometimes each parameter does not, by 
itself, have much practical importance. Rather, the parameters relate the  
mean of the dependent variable to the independent variables in an overall 
sense.

We next interpret the individual meanings of b1 and b2. To examine 
the interpretation of b1, consider two different weeks. Suppose that for 
the first week the average hourly temperature is c and the chill index is d . 
The mean weekly fuel consumption for all such weeks is

b b b0 1 2+ +( ) ( )c d

For the second week, suppose that the average hourly temperature is c +1 
and the chill index is d . The mean weekly fuel consumption for all such 
weeks is

b b b0 1 21+ + +( ) ( )c d
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It is easy to see that the difference between these mean fuel consumptions 
is b1. Since weeks one and two differ only in that the average hourly tem-
perature during week two is one degree higher than the average hourly 
temperature during week one, we can interpret the parameter b1 as the 
change in mean weekly fuel consumption that is associated with a one-
degree increase in average hourly temperature when the chill index does 
not change.

The interpretation of b2 can be established similarly. We can interpret 
b2 as the change in mean weekly fuel consumption that is associated with 
a one-unit increase in the chill index when the average hourly tempera-
ture does not change.

Part 3: A Geometric Interpretation of the Regression Model

We now interpret our fuel consumption model geometrically. We begin 
by defining the experimental region to be the range of the combinations of 
the observed values of x1 and x2. From the data in Table 2.3, it is reason-
able to depict the experimental region as the shaded region in Figure 2.7. 
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Figure 2.7  The experimental region
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Here the combinations of x1 and x2 values are the ordered pairs in the 
figure.

We next write the mean value of y when the average hourly tempera-
ture is x1 and the chill index is x2 as my x x| ,1 2

 (pronounced mu of y given x1 
and x2) and consider the equation

m b b by x x x x| ,1 2 0 1 1 2 2= + +

which relates mean fuel consumption to x1 and x2. Since this is a linear 
equation in two variables, geometry tells us that this equation is the equa-
tion of a plane in three-dimensional space. We sometimes refer to this 
plane as the plane of means, and we illustrate the portion of this plane 
corresponding to the ( , )x x1 2  combinations in the experimental region in 
Figure 2.8. As illustrated in this figure, the model

y
x x

y x x= +
= + + +

m e
b b b e

| ,1 2

0 1 1 2 2

Figure 2.8  A geometrical interpretation of the model  
y x x== ++ ++ ++b b b f0 1 1 2 2
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says that the eight error terms cause the eight observed fuel consumptions 
(the dots in the upper portion of the figure) to deviate from the eight 
mean fuel consumptions (the triangles in the figure), which exactly lie on 
the plane of means

m b b by x x x x| ,1 2 0 1 1 2 2= + +

For example, consider the data for week one in Table 2.3 ( y = 12.4, 
x1 = 28.0, x2 = 18). Figure 2.8 shows that the error term for this week 
is positive, causing y to be higher than my| . ,28 180  (mean fuel consumption 
when x1 = 28 and x2 = 18). Here factors other than x1 and x2 (for instance, 
thermostat settings that are higher than usual) have resulted in a positive 
error term. As another example, the error term for week 5 in Table 2.3 
( y = 9.4, x1 = 45.9, x2 = 8) is negative. This causes y for week five to be 
lower than my| . ,45 9 8 (mean fuel consumption when x1 = 45.9 and x2 = 8). 
Here factors other than x1 and x2 (for instance, lower-than-usual thermo-
stat settings) have resulted in a negative error term.

The fuel consumption model expresses the dependent variable as a 
function of two independent variables. In general, we can use a multiple 
regression model to express a dependent variable as a function of any num-
ber of independent variables. For example, the Cincinnati Gas and Elec-
tric Company predicts daily natural gas consumption as a function of four 
independent variables—average temperature, average wind velocity, aver-
age sunlight, and change in average temperature from the previous day. 
The general form of a multiple regression model expresses the dependent 
variable y as a function of k independent variables x x1 2 k, , ,… x . We call 
this general form the (multiple) linear regression model and express it as 
shown in the following box.

The linear regression model

The linear regression model relating y to x x xk1 2, , . . . ,     is

y x x xy x x x k kk
= + = + + + + +m e b b b b e| , ,..., ...

1 2 0 1 1 2 2 
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2.2.2 � The Least Squares Point Estimates Using Matrix 
Algebra

The regression parameters b b b b0 , , , ,1 2 … k in the linear regression model 
are unknown. Therefore, they must be estimated from sample data. We 
assume that we have obtained n observations, with each observation con­
sisting of an observed value of y and corresponding observed values of 
x x xk1 2, , . . . ,    . For i n= … 1  2   , , , , we let yi denote the ith observed 
value of y, and we let x x x ki i i1 2   , , ,…  denote the ith observed values of 
x x xk1 2, , . . . ,    . If b b b bk0, , , ,1 2 …  denote point estimates of b b b b0 , , , ,1 2 … k 
then a point prediction of

y x x xi i i k ik i= + + + + +b b b b e0 1 1 2 2 ...

is

 y b b x b x b xi i i k ik
∧ = + + + +0 1 1 2 2 . . .

Here, since the regression assumptions to be discussed in Section 2.3 
imply that the error term ei has a 50 percent chance of being positive 
and a 50 percent chance of being negative, we predict ei to be 0. Intui­
tively, if any particular values of b b b bk0, , , ,1 2 …  are good point estimates, 
they will make (for i n= … 1  2   , , , ) yi

∧  close to yi and thus the residual 

The linear regression model (Continued)

Here

1.	 m b b b by x x x k kk
x x x| , ,..., ...

1 2 0 1 1 2 2= + + + +  is the mean value of the 
dependent variable y when the values of the independent vari­
ables are x x xk1 2, , . . . ,    .

2.	 b b b b0 , , , ,1 2 … k are (unknown) regression parameters relating the 
mean value of y to x x xk1 2, , . . . ,    .

3.	e  is an error term that describes the effects on y of all factors other 
than the values of the independent variables x x xk1 2, , . . . ,    .
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e y yi i i= − ∧  small. We define the least squares points estimates to be the val-
ues b b b bk0, , , ,1 2 …  that minimize the sum of squared residuals

SSE = ( )y yi
i

n

i−
=

∧∑
1

2

Using calculus (see Section B.2), it can be shown that the least squares 
point estimates can be calculated by using a formula involving matrix 
algebra. We now discuss matrix algebra and explain the formula.

A matrix is rectangular array of numbers (called elements) that is com-
posed of rows and columns. Matrices are denoted by boldface letters. 
For example, we will use two matrices to calculate the least squares point 
estimates of the parameters b b0, 1  and b2 in the fuel consumption model

y x x= + + +b b b e0 1 1 2 2

These matrices are

	

Here, the matrix y  consists of a single column containing the eight 
observed weekly fuel consumptions y1 = 12.4, y2 = 11.7, … , y8 = 7.5 
(see Table 2.3). In addition, the matrix X consists of three columns contain-
ing the observed values of the independent variables corresponding to (that 
is, multiplied by) the three parameters in the model. Therefore, since the 
number 1 is multiplied by b0, the column of the X matrix corresponding to 
b0 is a column of 1s. Since the independent variable x1 is multiplied by b1, 
the column of the X matrix corresponding to b1 is a column containing the 
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observed average hourly temperatures x x x11 21 8128 28     62 5= = =, , . . . , . .  
The independent variable x2 is multiplied by b2, and thus the column of 
the X matrix corresponding to b2 is a column containing the observed chill 
indices x x x12 22 82 18  14      = = =, , . . . , 0.

The dimension of a matrix is determined by the number of rows and 
columns in the matrix. Since the matrix X has eight rows and three col-
umns, this matrix is said to have dimension 8 by 3 (commonly written 
8 3× ). In general, a matrix with m rows and n columns is said to have 
dimension m n  × . As another example, the matrix y has eight rows and 
one column. In general, a matrix having one column is called a column 
vector. In order to use the matrix X and column vector y to calculate the 
least squares point estimates, we first define the transpose of  X.

The transpose of a matrix is formed by interchanging the rows and 
columns of the matrix. For example, the transpose of the matrix X, which 
we denote as X ′  is

X ′ =




1
28 0
18

1
28 0
14

1
32 5
24

1
39 0
22

1
45 9
8

1
57 8
16

1
58 1
1

1
62 5
0

. . . . . . . .











We next multiply X ′ by X and X ′ by y. To see how to do this, we 
need to discuss how to multiply two matrices together. Consider two 
matrices A and B where the number of columns in A equals the number 
of rows in B. Then the product of the two matrices A and B is a matrix 
calculated so that the element in row i and column j of the product is 
obtained by multiplying the elements in row i of matrix A by the cor-
responding elements in column j of matrix B and adding the resulting 
products.

In general, we can multiply a matrix A with m rows and r columns 
by a matrix B with r  rows and n columns and obtain a matrix C with m 
rows and n columns. Moreover, cij , the number in the product in row i
and column j, is obtained by multiplying the elements in row i of A by 
the corresponding elements in column j of B and adding the resulting 
products. Note that the number of columns in A must equal the number 
of rows in B in order for this multiplication procedure to be defined. The 
multiplication procedure is illustrated in Figure 2.9.
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We multiply X ′ by X as follows:

X X′ =
1
28 0
18

1
28 0
14

1
32 5
24

1
39 0
22

1
45 9
8

1
57 8
16

1
58 1
1

1
62 5
0

. . . . . . . .
















1 28 0 18
1
1
1
1
1
1

28 0
32 5
39 0
45 9
57 8
58 1

14
24
22
8
16
1

1

.

.

.

.

.

.

.
662 5 0

8 0

.

.

































=
           351.8         103.0
351.8   16874.76    3884.1
103.0     3884.1      19001.0

















To understand this matrix multiplication, note that X ′ has three rows 
and eight columns and that X has eight rows and three columns. There-
fore, since the number of columns of X ′ equals the number of rows of X, 
we can multiply the two matrices together. Furthermore, since X ′ has three 
rows and X has three columns, multiplying X ′ by X will result in a matrix  
X ′X that has three rows and three columns. To obtain the element in row 
1 and column 1 of X ′X, we multiply the elements in row 1 of X ′ by the 

1

1 2

2

i

j n

m

1

2

i

m

1

2

r

r 1 2

j n1 2

cij

= Cm×n= 

Am×rBr×n = 

Figure 2.9  An illustration of matrix multiplication
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corresponding elements in column l of X and add up the resulting products 
as follows:

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 8( )( ) + ( )( ) + ( )( ) + ( )( ) + ( )( ) + ( )( ) + ( )( ) + ( )( ) =

To obtain the element in row 1 and column 2 of X ′X, we multiply the 
elements in row 1 of X ′ by the corresponding elements in column 2 of X 
and add up the resulting products as follows:

( )( . ) ( )( . ) ( )( . ) ( )( . ) ( )( . ) ( )( .1 28 0 1 28 0 1 32 5 1 39 0 1 45 9 1 57 8+ + + + + )) ( )( . ) ( )( . ) .+ + =1 58 1 1 62 5 351 8 
( )( . ) ( )( . ) ( )( . ) ( )( . ) ( )( . ) ( )( .1 28 0 1 28 0 1 32 5 1 39 0 1 45 9 1 57 8+ + + + + )) ( )( . ) ( )( . ) .+ + =1 58 1 1 62 5 351 8

Continuing this process, we obtain all the elements of X ′X. As one 
final example, we obtain the element in row 2 and column 3 of X ′X by 
multiplying the elements in row 2 of X ′ by the corresponding elements in 
column 3 of X and adding up the resulting products as follows:

( . )( ) ( . )( ) ( . )( ) ( . )( ) ( . )( ) ( .28 0 18 28 0 14 32 5 24 39 0 22 45 9 8 57+ + + + + 88 16 58 1 1 62 5 0 3 884 1)( ) ( . )( ) ( . )( ) , .+ + = 
( . )( ) ( . )( ) ( . )( ) ( . )( ) ( . )( ) ( .28 0 18 28 0 14 32 5 24 39 0 22 45 9 8 57+ + + + + 88 16 58 1 1 62 5 0 3 884 1)( ) ( . )( ) ( . )( ) , .+ + =

We continue using matrix multiplication and multiply X ′ by y as follows:

X y′ =
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We next consider the matrix

( )
.
.
.

.
.
.

X X′ − = −
−

− −
1

5 43405
085930
118856

085930
00147070
00165094

..
.
.

118856
00165094
00359276

















This matrix is called the inverse of X ′X because if we multiply X ′X by 
this matrix we obtain the identity matrix

I =
















1
0
0

0
1
0

0
0
1

In general, for a matrix A to have an inverse, it must be square (that is, 
its number of rows must equal its number of columns) and it must have 
linearly independent columns (that is, no one column can be expressed as a 
linear combination of the other columns). Then, the inverse of A, denoted 
A 1− , is another matrix such that if we multiply A by this other matrix we 
obtain the identity matrix (that is, a square matrix with 1s running down 
the main diagonal—from the upper left to the lower right—and 0s else-
where). To intuitively illustrate the idea of linear independence, consider 
the following matrix A and the following vectors c and d:

A c=
















=
















=
















3 1 2
1 5 0
2 0 4

2
1
0

1
0
2

. d

The elements in the column vector c are obtained by multiplying the 
elements in the second column of the matrix A by 2, and the elements in 
the column vector d are obtained by multiplying the elements in the third 
column of the matrix A by .5. Moreover, the elements in the first column 
of A are found by adding the corresponding elements of c and d together. 
This implies that all of the columns of A are not linearly independent 
and thus A does not have an inverse. However, in this book we define 
each matrix X in regression analysis so that all of its columns are linearly 
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independent. This can be shown to imply that all of the columns of  
X ′X are linearly independent and thus X ′X has an inverse. We obtain the 
inverse by using a statistical software package (there is a hand calculation 
procedure for obtaining inverses, but we will not discuss it).

In order to obtain the least squares point estimates b b0, 1, and b2 of the 
parameters b b0, 1, and b2 in the fuel consumption model

y x x= + + +b b b e0 1 1 2 2

we multiply (X ′X)-1 by X ′y as follows:

b
b
b

0

1

2

1

5 43405
085930
118856

085

















= =

= −
−

−

−b X X X y( )′ ′

.
.
.

. 9930
00147070
00165094

118856
00165094
00359276

.

.

.
.
.

−















881 7
3413 11
1157 4

13 1087
09001

08249

.
.
.

.
.

.

















= −
















We will interpret the meanings of these least squares point estimates in 
the next example. First, however, we give a general matrix algebra for-
mula for calculating the least squares point estimates b b b bk0, , , ,1 2 …  of the 
parameters b b b b0 , , , ,1 2 … k in the linear regression model

y x x xk k= + + + + +b b b b e0 1 1 2 2 ...

The general matrix algebra formula uses the following matrices:

                                                     0 1 2 . .        
                                             

. k
x x1 2               

= =

. . . x

y
y

y

x
x

x

x
k

n n

y X

1

2

11

21

1

11
1

1
� � �



















22

22

2

1

2x

x

x
x

xn

k

k

nk

� � � � �

⋅
⋅

⋅

⋅
⋅

⋅

⋅
⋅

⋅


















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Here, y is a column vector containing the n observed values of the 
dependent variable, y y yn1 2, , . . . ,    . Moreover, because the linear regres-
sion model uses k   +( )1  parameters b b b b0 , , , ,1 2 … k, the matrix X 
consists of k   +( )1  columns. The columns in the matrix X contain the 
observed values of the independent variables corresponding to (that is, 
multiplied by) the k   +( )1  parameters b b b b0 , , , ,1 2 … k. The columns of 
this matrix are numbered in the same manner as the parameters are num-
bered (see the preceding X  matrix). The general matrix algebra formula 
is then as follows:

The least squares point estimates

The least squares point estimates b b b bk0, , , ,1 2 …  are calculated by using 
the formula

b
b
b

bk

0

1

2
1

�























= = ′−b ( )X X X y′

We have demonstrated using this formula in calculating the least 
squares point estimates of the parameters in the fuel consumption model 
y x x= + + +b b b e0 1 1 2 2 . It is also important to note that when we use 
the simple linear regression model y x= + +b b e0 1  to relate a dependent 
variable y to a single independent variable x , then the column vector y 
and the matrix X used to calculate the least squares point estimates b0 and 
b1 of the parameters b0 and b1 are

y X= and =

y
y

y

x
x

xn n

1

2

1

2

1
1

1
� � �





































Here, y y yn1 2, , . . . ,     are the n observed values of y, and x x xk1 2, , . . . ,     are 
the n observed values of x. By using this y vector and X matrix it can be 
shown that
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b
b

y b x
SS

SS
xy

xx

0

1

1
1







 =

−















−b X X= ( ) =′ ′X y

These are the same formulas for b0 and b1 that we presented in  
Section 2.1.

Example 2.4

Figure 2.10 is the Minitab output of a regression analysis of the fuel con-
sumption data in Table 2.3 by using the model

y x x= + + +     b b b e0 1 1 2 2

This output shows that the least squares point estimates of b b0, 1 , and b2 
are b b0 113 1087 09001= = −   . , . , and b2 08249=  . , as have been calcu-
lated previously using matrices.

The point estimate b1 09001= −.  of b1 says we estimate that mean 
weekly fuel consumption decreases (since b1 is negative) by .09001 MMcf 
of natural gas when average hourly temperature increases by one degree 
and the chill index does not change. The point estimate b2 08249= .  of b2 
says we estimate that mean weekly fuel consumption increases (since b2 is 
positive)  by .08249 MMcf of natural gas when there is a one-unit increase 
in the chill index and average hourly temperature does not change.

The equation

y b b x b x
x x

∧ = + +
= − +

0 1 1 2 2

1 213 1087 09001 08249. . .

is called the least squares prediction equation. It is obtained by replacing 
b b0, 1, and b2 by their estimates b b0, 1, and b2 and by predicting the error 
term to be zero. This equation is given on the Minitab output (labeled as 
the “regression equation”—note that b b0, 1, and b2 have been rounded to 
13.1, –.0900, and .0825). We can use this equation to compute a predic-
tion for any observed value of y. For instance, a point prediction of y1 = 
12.4 (when x1 = 28.0 and x2 = 18) is

y1 13 1087 09001 28 0 08249 18 12 0733∧ = − + =. . ( . ) . ( ) .
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This results in a residual equal to

e y y1 1 1 12 4 12 0733 3267= − = − =∧ . . .

Table 2.4 gives the point prediction obtained using the least squares 
prediction equation and the residual for each of the eight observed 
fuel  consumption values. ln addition, this table tells us that the SSE 
equals .674.

The least squares prediction equation is the equation of a plane that 
we sometimes call the least squares plane. For combinations of values of 
x1 and x2 that are in the experimental region, the least squares plane is the 
estimate of the plane of means (see Figure 2.8). This implies that the point 
on the least squares plane corresponding to the average hourly tempera-
ture x1 and the chill index x2

y b b x b x
x x

∧ = + +
= − +

0 1 1 2 2

1 213 1087 09001 08249. . .

is the point estimate of my x x| ,1 2
, the mean of all the weekly fuel consump-

tions that could be observed when the average hourly temperature is x1 
and the chill index is x2. ln addition, since we predict the error term to 
be zero, y∧ is also the point prediction of y y x x  = +m e| ,1 2

, which is the 

Table 2.4  Predictions and residuals using the least squares point 
estimates . , .b b0 13 1 0900= = − 1 , and .b2 =  0825

Week x1 x2 y ˆ . . .y x x= − +13 1 0900 0 08251 2 e = y - ŷŷ
1 28.0 18 12.4 12.0733 .3267

2 28.0 14 11.7 11.7433 –.0433

3 32.5 24 12.4 12.1632 .2368

4 39.0 22 10.8 11.4131 –.6131

5 45.9 8   9.4   9.6371 –.2371

6 57.8 16   9.5   9.2259 .2741

7 58.1 1   8.0   7.9614 .0386

8 62.5 0   7.5   7.4829 .0171

SSE = (.3267)2 + (–.0433)2 + . . . + (.0171)2 = .674
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amount of fuel consumed in a single week when the average hourly tem-
perature is x1 and the chill index is x2.

For example, suppose a weather forecasting service predicts that in the 
next week the average hourly temperature will be 40°F and the chill index 
will be 10. Since this combination is inside the experimental region (see 
Figure 2.7), we see that

y∧ = − +
=

13 1087 09001 40 08249 10
10 333

. . ( ) . ( )

. MMcf of naturalgas

is

1.	The point estimate of the mean weekly fuel consumption when the 
average hourly temperature is 40°F and the chill index is 10.

2.	The point prediction of the amount of fuel consumed in a single week 
when the average hourly temperature is 40°F and the chill index is 10.

Notice that y∧ = 10.333 is given at the bottom of the Minitab output in 
Figure 2.10. Also, note that Figure 2.11 is the Minitab output that results 
from using the data in Figure 2.1 and the simple linear regression model

y x= + +b b e0 1

to relate y = weekly fuel consumption to the single independent variable 
x = average hourly temperature. This output gives the least squares point 
estimates b0 15 837=  .  and b1 12792= − .  that we have calculated in 
Example 2.2, as well as y∧ = − =( )15 837 12792 40 10 721. . . , the point 
estimate of mean weekly fuel consumption and the point prediction of 
an individual weekly fuel consumption when average hourly tempera-
ture is 40°F. Of course, the values of x = average hourly temperature in 
Figure 2.1 that are used to help fit the model y x= + +b b e0 1 1  are the 
same as the values of x = average hourly temperature in Table 2.3 that are 
used to help fit the model y x x= + + +b b b e0 1 1 2 2 . Throughout the rest 
of this chapter we will use the Minitab outputs in Figures 2.10 and 2.11 
to help compare these models and assess whether the extra independent 
variable x2 = the chill index makes the second model more likely to give a 
more accurate prediction of future weekly fuel consumptions.
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The regression equation is
FUELCONS = 15.8 – 0.128 TEMP

Predictor Coef SE Coef T Pg
Constant 15.8379a 0.8018c 19.75e 0.000
TEMP -0.12792b 0.01746d -7.33f 0.000
S = 0.654209h R-Sq = 89.9%i R-Sq(adj) = 88.3%
Analysis of Variance
Source DF SS MS F P
Regression 1 22.981j 22.981 53.69m 0.000n
Residual Error 6 2.568k 0.428
Total 7 25.549l

Fito SE Fitp 95% CIq 95% PIr
10.721 0.241 (10.130, 11.312) (9.015, 12.427)

Figure 2.11  Minitab output of a regression analysis using the fuel 
consumption model y = + x +0 1b b f , where x = average hourly 
temperature
a b c db b s sb b0 1 0 1

 e t  for testing H  f
0 0 0: b = t  for testing H  1

g
0 0: b = p-values for t-statistics  

hs  = standard error i jr2  Explained variation k SSE = Unexplained variation lTotal variation  
mF (model) statistic n p-value for F (model) o ŷ  when x = 40 p q95sˆ %y  confidence interval 
when x =  4 95r0 %  prediction interval when x = 40 

The regression equation is
FUELCONS = 13.1 – 0.0900 TEMP + 0.0825 CHILL

Predictor Coef SE Coefd Te Pf
Constant 13.1087a 0.8557 15.32 0.000
TEMP -0.09001b 0.01408 -6.39 0.001
CHILL 0.08249c 0.02200 3.75 0.013

S = 0.367078g R-Sq = 97.4%h R-Sq(adj) = 96.3%

Analysis of Variance

Source DF SS MS F P
Regression 2 24.875i 12.438 92.30l 0.000m
Residual Error 5 0.674j 0.135
Total 7 25.549k

Fitn SE Fito 95% CIp 95% PIq
10.333 0.170 (9.895, 10.771) (9.293, 11.374)

Figure 2.10  Minitab output of a regression analysis using the fuel 
consumption model y x x= + + +b b b f0 1 1 2 2  
a b c db b b sbj0 1 2  et-statistics fp-values for t-statistics g s = standard error h 2R  iExplained varia-
tion jSSE = unexplained variation kTotal variation lF(model) statistic m p-value for F(model) 
n o ps 95ˆ %ˆy y  confidence interval when x1 = 40 and x2 = 10 q95% prediction interval when  
x1 = 40 and x2 = 10
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Example 2.5

Suppose the sales manager of a company wishes to evaluate the perfor-
mance of the company’s sales representatives. Each sales representative 
is solely responsible for one sales territory, and the manager decides that 
it is reasonable to measure the performance, y, of a sales representative 
by using the yearly sales of the company’s product in the representative’s 
sales territory. The manager feels that sales performance y substantially 
depends on five independent variables:

x1 = �number of months the representative has been employed by the 
company (Time)

x2 = �sales of the company’s product and competing products in the 
sales territory (MktPoten)

x3 = �dollar advertising expenditure in the territory (Adver)
x4 = �weighted average of the company’s market share in the territory 

for the previous four years (MktShare)
x5 = �change in the company’s market share in the territory over the 

previous four years (Change)

Point estimation and point prediction in  
multiple regression

Let b b b bk0, , , ,1 2 …  be the least squares point estimates of the param-
eters b b b b0 , , , ,1 2 … k in the linear regression model, and suppose 
that x x x01 02 0, ,..., k are specified values of the independent variables  
x x x1 2, ,..., k. If the combination of specified values is inside the exper-
imental region, then

y b b x b x b xk k
∧ = + + + +0 1 01 2 02 0...

is the point estimate of the mean value of the dependent variable when 
the values of the independent variables are x x x01 02 0, ,..., k. In addition, 
y∧ is the point prediction of an individual value of the dependent variable 
when the values of the independent variables are x x x01 02 0, ,..., k. Here 
we predict the error term to be zero.
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In Table 2.5(a) we present values of y and x1 through x5 for 25 ran-
domly selected sales representatives. To understand the values of y and x2 
in the table, note that sales of the company’s product or any competing 
product are measured in hundreds of units of the product sold. Therefore, 
for example, the first sales figure of 3669.88 in Table 2.5(a) means that 
the first randomly selected sales representative sold 366,988 units of the 
company’s product during the year.

Plots of y  versus x1 through x5 are given in Table 2.5(b). Since each plot 
has an approximate straight-line appearance, it is reasonable to relate y to x1 
through x5 by using the regression model

y x x x x x= + + + + + +b b b b b b e0 1 1 2 2 3 3 4 4 5 5

Here, m b b b b b by x x x x x x x x| , ,...,1 2 5 0 1 1 2 2 3 3 4 4 5 5= + + + + +  is, intuitively, 
the mean sales in all sales territories where the values of the previously 
described five independent variables are x x x x1 2 3 4, , , , and x5. Furthermore, 
for example, the parameter b3 equals the increase in mean sales that is 
associated with a $1 increase in advertising expenditure x3( ) when the 
other four independent variables do not change. The main objective of the 
regression analysis is to help the sales manager evaluate sales performance 
by comparing actual performance to predicted performance. The manager 
has randomly selected the 25 representatives from all the representatives 
the company considers to be effective and wishes to use a regression model 
based on effective representatives to evaluate questionable representatives. 
Questionable representatives whose performance is substantially lower 
than performance predictions will get special training aimed at improving 
their sales techniques.

By using the data in Table 2.5(a) we define the column vector y and 
matrix X as follows:

y =

y
y
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Sales Time
Mkt­
Poten Adver

Mkt­
Share Change

3,669.88 43.10 74.065.11 4,582.88 2.51 0.34

3,473.95 108.13 58,117.30 5,539.78 5.51 0.15

2,295.10 13.82 21,118.49 2,950.38 10.91 -0.72

4,675.56 186.18 68,521.27 2,243.07 8.27 0.17

6,125.96 161.79 57,805.11 7,747.08 9.15 0.50

2,134.94 8.94 37,806.94    402.44 5.51 0.15

5,031.66 365.04 50,935.26 3,140.62 8.54 0.55

3,367.45 220.32 35,602.08 2,086.16 7.07 -0.49

6,519.45 127.64 46,176.77 8,846.25 12.54 1.24

4,876.37 105.69 42,053.24 5,673.11 8.85 0.31

2,468.27 57.72 36,829.71 2,761.76 5.38 0.37

2,533.31 23.58 33,612.67 1,991.85 5.43 -0.65

2,408.11 13.82 21,412.79 1,971.52 8.48 0.64

2,337.38 13.82 20,416.87 1,737.38 7.80 1.01

4,586.95 86.99 36,272.00 10,694.20 10.34 0.11

2,729.24 165.85 23,093.26 8,618.61 5.15 0.04

3,289.40 116.26 26,878.59 7,747.89 6.64 0.68

2,800.78 42.28 39,571.96 4,565.81 5.45 0.66

3,264.20 52.84 51,866.15 6,022.70 6.31 -0.10

3,453.62 165.04 58,749.82 3,721.10 6.35 -0.03

1,741.45 10.57 23,990.82    860.97 7.37 -1.63

2,035.75 13.82 25,694.86 3,571.51 8.39 -0.43

1,578.00 8.13 23,736.35 2,845.50 5.15 0.04

4,167.44 58.54 34,314.29 5,060.11 12.88 0.22

2,799.97 21.14 22,809.53 3,552.00 9.14 -0.74

Source: This dataset is from a research study published by Cravens, 
Woodruff, and Stamper (1972). We have updated the situation in our 
case study to be more modern.

Time

MktPoten

MktShare

Change

Adver
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Table 2.5  Sales territory performance data, data plots, and regression
(a) The data	 (b) Data plots
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If the appropriate matrix calculations are then done, the equation 
b X X X y= ′( ) ′− 1  then tells us that the least squares point estimates of the 
parameters b b b b b0, , , ,1 2 3 4, and b5 in the sales territory performance regres-
sion model are b b b b b0 1 2 3 41113 7879 3 6121 0421 1289 256= − = = = =         . , . , . , . , .99555 324 53355, . and  b =

b b b b b0 1 2 3 41113 7879 3 6121 0421 1289 256= − = = = =         . , . , . , . , .99555 324 53355, . and  b = . These point estimates are shown in 
Table 2.5(c), which is the SAS output of a regression analysis using the 
sales territory performance regression model. On this output x x x1 2 3 4x, , , , 
and x5 are denoted as Time, MktPoten, Adver, MktShare, and Change, 
respectively. Recalling that the sales values in Table 2.5(a) are measured 
in hundreds of units of the product sold, the point estimate b3 1289=  .  
says we estimate that mean sales increase by .1289 hundreds of units—
that is, by 12.89 units—for each dollar increase in advertising expen-
diture when the other four independent variables do not change. If the 
company sells each unit for $ .1 10, this implies that we estimate that 
mean sales revenue increases by $ . . $ .1 1 12 89   14 180( )( ) =  for each dollar 
increase in advertising expenditure when the other four independent 
variables do not change. The other b  values in the model can be inter-
preted similarly.

Consider a questionable sales representative for whom Time = 85.42, 
MktPoten = 35,182.73, Adver = 7281.65, MktShare = 9.64, and Change 
= .28. The point prediction of the sales corresponding to this combina-
tion of values of the independent variables is

y∧ = − + +
+

1113 7879 3 6121 85 42 0421 35 182 73
1289 7281 6

. . ( . ) . ( , . )
. ( . 55 256 9555 9 64 324 5335 28

4182 418 200
) . ( . ) . (. )

( , , )
+ +

= that is units

which is given on the SAS output. The actual sales for the question-
able sales representative were 3088. This sales figure is 1094 less than 
the point prediction y∧ =  4182. However, we will have to wait until we 
study prediction intervals to determine whether there is strong evidence 
that the actual sales figure is unusually low. In the exercises, the reader will 
further analyze the sales territory performance data by using techniques 
(including prediction intervals) that will be discussed in the rest of this 
chapter.
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2.3  Model Assumptions, Sampling,  
and the Standard Error 

2.3.1  Model Assumptions

In order to perform hypothesis tests and set up various types of intervals 
when using the linear regression model

y
x x x

y x x x

k k

k
= +
= + + + + +

m e
b b b b e

| , ,....,

...
1 2

0 1 1 2 2

we need to make certain assumptions about the error term e . At any 
given combination of values of x x x1 2 k  , , ,… , there is a population of 
error term values that could potentially occur. These error term values 
describe the different potential effects on y of all factors other than the 
given combination of values of x x x1 2 k  , , ,… . Therefore, these error term 
values explain the variation in the y values that could be observed at the 
given combination of values of x x x1 2 k  , , ,… . Our statement of the linear 
regression model assumes that my x x xk| , ,...,1 2

, the mean of the population of 
all y values that could be observed when the independent variables are 
x x x1 2 k  , , ,… , is b b b b0 1 1 2 2+ + + +x x xk k... . This model also implies that 
e b b b b= − + + + +y x x xk k( ... ),0 1 1 2 2  so this is equivalent to assuming 
that the mean of the population of potential error term values that could 
occur at a given combination of values of x x x1 2 k  , , ,… , is zero. In total, 
we make four assumptions—called the regression assumptions—about the 
linear regression model. Stated in terms of potential error term values, 
these assumptions are as follows.

Assumptions for the linear regression model

1.	At any given combination of values of x x x1 2 k  , , ,… , the popula-
tion of potential error term values has a mean equal to 0.

2.	Constant variance assumption: At any given combination of values 
of x x x1 2 k  , , ,… , the population of potential error term values has 
a variance that does not depend on the combination of values of 
x x x1 2 k  , , ,… . That is, the different populations of potential error 
term values corresponding to different combinations of values of 
x x x1 2 k  , , ,…  have equal variances. We denote the constant vari-
ance as s2.
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Taken together, the first three regression assumptions say that at any 
given combination of values of x x x1 2 k  , , ,… , the population of potential 
error term values is normally distributed with mean zero and a variance 
s2 that does not depend on the combination of values of x x x1 2 k  , , ,… . 
The model

y x x xk k= + + + + +b b b b e0 1 1 2 2   ...  

implies that at any given combination of values of x x x1 2 k  , , ,… , the 
variation in the y values is caused by and thus is the same as the variation 
in the e  values. Therefore, the first three regression assumptions imply 
that at any given combination of values of x x x1 2 k  , , ,… , the population 
of y values that could be observed is normally distributed with mean 
b b b b0 1 1 2 2+ + + +x x xk k...  and a variance s2 that does not depend on 
the combination of values of x x x1 2 k  , , ,… . These three assumptions are 
illustrated in Figure 2.12 in the context of the simple linear regression 

x

y

32.5 45.9

Population of
y values when
x = 32.5

12.4 = Observed value of y when x = 32.5

9.4 = Observed value of y when x = 45.9

The mean fuel consumption when x = 32.5

The straight line defined
by the equation myx = b0 + b1x
(the line of means)

The mean fuel consumption
when x = 45.9

Population of
y values when
x = 45.9

Figure 2.12  An illustration of the regression assumptions

3.	Normality assumption: At any given combination of values of 
x x x1 2 k  , , ,… , the population of potential error term values has 
a normal distribution.

4.	Independence assumption: Any one value of the error term e  is 
statistically independent of any other value of e . That is, the value 
of the error term e  corresponding to an observed value of y is 
statistically independent of the error term corresponding to any 
other observed value of y.
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model y xy x= + = + +m b b e| e 0 1  relating y = weekly fuel consumption 
to x = average hourly temperature. Specifically, this figure depicts the 
populations of weekly fuel consumptions corresponding to two values 
of average hourly temperature—32.5 and 45.9. Note that these popula-
tions are shown to be normally distributed with different means (each of 
which is on the line of means) and with the same variance (or spread) s2. 
To illustrate the first three regression assumptions using the two indepen-
dent variable fuel consumption model y x x= + + +b b b e0 1 1 2 2 , consider 
for example, the following two populations: The population of all weekly 
fuel consumptions that could be observed when the average hourly tem-
perature is 32.5°F and the chill index is 24, and the population of all 
weekly fuel consumptions that could be observed when the average hourly 
temperature is 45.9°F and the chill index is 8. Then, the first three regres-
sion assumptions say that, although these two populations have different 
means of, respectively, b b b0 1 232 5 24+ +( ) ( ).  and b b b0 1 245 9 8+ +( ) ( ). ,  
both populations are normally distributed with the same variance s2.

The independence assumption is most likely to be violated when time 
series data are utilized in a regression study. Intuitively, this assumption 
says that there is no pattern of positive error terms being followed (in 
time) by other positive error terms, and there is no pattern of positive 
error terms being followed by negative error terms. That is, there is no 
pattern of higher-than-average y values being followed by other higher-
than-average y values, and there is no pattern of higher-than-average y 
values being followed by lower-than-average y values.

It is important to point out that the regression assumptions very sel-
dom, if ever, hold exactly in any practical regression problem. However, it 
has been found that regression results are not extremely sensitive to mild 
departures from these assumptions. In practice, only pronounced depar-
tures from these assumptions require attention. In Chapter 4 we show 
how to check the regression assumptions. Until then, we will suppose that 
the assumptions are valid in our examples.

ln Sections 2.1 and 2.2 we stated that when we predict an individual 
value of the dependent variable, we predict the error term to be zero. To see 
why we do this, note that the regression assumptions state that at any given 
value of the independent variable, the population of all error term values that 
can potentially occur is normally distributed with a mean equal to zero. 
Since we also assume that successive error terms (observed over time) are 
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statistically independent, each error term has a 50 percent chance of being 
positive and a 50 percent chance of being negative. Therefore, it is reason-
able to predict any particular error term value to be zero.

2.3.2  Sampling and the Unbiased Least Squares Point Estimates

The least squares point estimates b b b bk0, , , ,1 2 …  of the parameters 
b b b b0 , , , ,1 2 … k of the linear regression model are calculated by using the matrix 
algebra equation b yX X X= ( )− ′ ′1  and thus depend upon the n observed 
values y y yn1 2, , ,  …  of the dependent variable y. Considered before yi was 
actually observed, yi could have been any value in the normally distributed 
population of all possible values of the dependent variable that could be 
observed when the values of the independent variables are x x xi i ik1 2, , ,  … .  
This is true for each of y y yn1 2, , ,  … , and thus there are an infinite number 
of different possible samples (or sets) of n values y y yn1 2, , ,  …  of the depen-
dent variable that could have been observed. Because each of these sam-
ples would yield its own unique values of b b b bk0, , , ,1 2 … , there is an infinite 
population of potential values of each of these least squares point estimates.

For example, consider the fuel consumption regression model 
y x x= + + +b b b e0 1 1 2 2 . Corresponding to each of the eight observed com-
binations of the average hourly temperature and the chill index, there is a 
normally distributed population of possible weekly fuel consumptions that 
could be observed. For example, (1) there is a normally distributed popula-
tion of possible weekly fuel consumptions that could be observed when the 
average hourly temperature is 28.0 and the chill index is 18 (as occurred in 
week 1); (2) there is a normally distributed population of possible weekly 
fuel consumptions that could be observed when the average hourly tempera-
ture is 28.0 and the chill index is 14 (as occurred in week 2); . . . ; (8) there 
is a normally distributed population of possible weekly fuel consumptions 
that could be observed when the average hourly temperature is 62.5 and the 
chill index is 0 (as occurred in week 8). Sample 1 in Table 2.6 is the sample 
of eight weekly fuel consumptions that we have actually observed from the 
eight normally distributed populations of possible weekly fuel consump-
tions. In Section 1.2 we have used sample 1 to calculate the least squares 
point estimates b0 13 1087=  . , b1 09001= − . , and b2 08249=  . , which are 
shown following sample 1 in Table 2.6. Samples 2 and 3 in Table 2.6 are 
two other samples of eight weekly fuel consumptions that we could have 
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observed from the eight normally distributed populations of possible weekly 
fuel consumptions. Below each sample are given the least squares point esti-
mates b b0, 1 , and b2 that would be calculated by using the sample. Because 
there are an infinite number of possible samples of eight weekly fuel con-
sumptions that could be observed from the eight populations of possible 
weekly fuel consumptions, there is an infinite population of potential values 
of each of the least squares point estimates b b0, 1 , and b2.

In general, let bj denote any particular one of the parameters 
b b b b0 , , , ,1 2 … k of the linear regression model, and let bj denote the least 
squares point estimate of bj. For example, if j =  1, we are considering b1 
and b1.. If j =  2, we are considering b2 and b2. It is, of course, highly unlikely 
that the least squares point estimate bj of bj that we calculate using the sam-
ple of n observed values y y yn1 2, , ,  …  of the dependent variable equals the 
true value of bj. However, it can be shown (see Section B.3) that mbj

, the 
mean of the population of all possible values of bj that could be calculated 
from all possible samples of n values of the dependent variable, is equal to  
bj. Because m bb jj

= , we say that bj is an unbiased point estimate of bj.

2.3.3  The Mean Square Error and the Standard Error

We next wish to find point estimates of s2 and s , the constant variance 
and standard deviation of each of the different populations of possible 

Table 2.6  Three samples of weekly fuel consumptions and their least 
squares point estimates

Week
Average hourly  
temperature, x1

The chill  
index, x2

Sample  
1

Sample 
2

Sample 
3

1 28.0 18 y1 = 12.4 y1 = 12.0 y1 = 10.7

2 28.0 14 y2 = 11.7 y2 = 11.8 y2 = 10.2

3 32.5 24 y3 = 12.4 y3 = 12.3 y3 = 10.5

4 39.0 22 y4 = 10.8 y4 = 11.5 y4 = 9.8

5 45.9 8 y5 = 9.4 y5 = 9.1 y5 = 9.5

6 57.8 16 y6 = 9.5 y6 = 9.2 y6 = 8.9

7 58.1 1 y7 = 8.0 y7 = 8.5 y7 = 8.5

8 62.5 0 y8 = 7.5 y8 = 7.2 y8 = 8.0

b0 = 13.1087 b0 = 12.949 b0 = 11.593

b1 = -.09001 b1 = -.0882 b1 = -.0548

b2 = .08249 b2 = .0876 b2 = .0256
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values of the dependent variable. We have seen that, for i n= …1 2, , ,    , s2 
measures the variation—around the mean b b b b0 1 1 2 2+ + + … +x x xi i k ik   

of all the possible values of the dependent variable that could be observed 
when the values of the independent variables are x x xi i ik1 2, , ,  … . Because 
the point estimate of the mean b b b b0 1 1 2 2+ + + … +x x xi i k ik   is 
y b b x b x b xi i i k ik
∧ = + + + +0 1 1 2 2 ... , it seems natural to use the sum of squared 
residuals ( )y yi i

i

n

− ∧

=
∑ 2

1  
 to help construct a point estimate of s2. It can be shown 

that if we divide SSE by n k− +( )1 , which is called the number of degrees of 
freedom associated with SSE, then we obtain an unbiased point estimate of s2 
(see Section B.3). That is, let s SSE n k2 1= − +( )      / , which we call the 
mean square error, be the point estimate of s2. Then, it can be shown that m

s2, 
the mean of all possible values of s2 that could be calculated from all possible 
samples, is equal to s2. Moreover, let s s= 2 , which we call the standard 
error, be the point estimate of s s= 2 . Unfortunately, s is not an unbiased 
point estimate of s . However, we use s as the point estimate of s  because it 
is intuitive to do so and because there is no easy way to calculate an unbiased 
point estimate of s . We summarize the point estimates of s2 and s  as follows:

The mean square error and the standard error

Suppose that the linear regression model

y x x xk k= + + + + +b b b b e0 1 1 2 2 ...

utilizes k independent variables and thus has k   +( )1  parameters 
b b b b0 , , , ,1 2 … k. Then, if the regression assumptions are satisfied, and 
if SSE denotes the sum of squared residuals for the model:

1.	A point estimate of s2 is the mean square error

s
SSE

n k
2

1
=

− +( )

2.	A point estimate of s  is the standard error

s
SSE

n k
=

− +( )1
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We will see in Section 2.7 that if a particular regression model gives 
a small standard error s, then the model will give short prediction inter-
vals and thus accurate predictions of individual y values. For example, 
Table 2.4 shows that SSE for the fuel consumption model

y x x= + + +b b b e0 1 1 2 2

is .674. To calculate SSE by the alternative formula, recall that

X y′ =
















81 7
3413 11
1157 40

.
.
.

It follows that

b X y′ ′ = − 

















13 1087 09001 08249
81 7

3413 11
1157 40

. . .
.
.
.

== + − +
=

13 1087 81 7 09001 3413 11 08249 1157 40
859 23

. ( . ) ( . ) . ) (. )( . )
. 66

The mean square error and the standard error  
(Continued)

Furthermore, the sum of squared residuals

SSE y yi i
i

n

= − ∧

=
∑( )2

1

can be calculated by the alternative formula

SSE yi
i

n

= − ′ ′
=
∑ 2

1

b X y

Here, ′ = [ ]b      b b b bk0 1 2, , , . . . ,  is a row vector (the transpose of b) 
containing the least squares point estimates, and ′X y is the column 
vector used in calculating the least squares point estimates.
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Furthermore, the eight observed fuel consumptions (see Table 2.1) can 
be used to calculate

y y y y
i

1
2

1

8

1
2

2
2

8
2

2 2 212 4 11 7 7 5 859 91
=
∑ = + + +

= + + + =

...

( . ) ( . ) ... ( . ) .

Therefore SSE can be calculated in the following alternative fashion:

SSE yi
i

= −

= −
=

=
∑ 2

1

8

859 91 859 236
674

b X y′ ′

. .
.

Since the aforementioned fuel consumption model utilizes k =  2 inde-
pendent variables and thus has k + = 1  3 parameters b b b0, ,1 2 and( ), a 
point estimate of s2 for this model is the mean square error

s
SSE

n k
2

1
674

8 3
674
5

1348=
− +

=
−

= =
( )

. .
.

and a point estimate of s  is the standard error s = =. .1348 3671. Note 
that SSE s  674   1348  135  and   36712= = ≈ =. , . . , .s  are given on the 
Minitab output in Figure 2.10.

Also, note that Table 2.4 tells us that SSE = 2.57 for the simple linear 
regression model y x= + +b b e0 1  relating y = weekly fuel consumption to 
x = average hourly temperature. Since the simple linear regression model 
utilizes k =  1 independent variable and thus has k + = 1  2 parameters  
(b0 and b1), a point estimate of s2 for this model is

s
SSE

n k
2

1
2 57
8 2

2 57
6

428=
− +

=
−

= =
( )

. .
.

and a point estimate of s  is s = =. .428 6542. Here, SSE s  2 57   428  and  65422= = =. , . , .s 
SSE s  2 57   428  and  65422= = =. , . , .s  are given on the Minitab output in Figure 2.11. 
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Moreover, notice that s = .3671 for the model using both the average hourly 
temperature and the chill index is less than s = .6542 for the model using 
only the average hourly temperature. Therefore, we have evidence that the 
two independent variable model will give more accurate predictions of 
future weekly fuel consumptions

2.4  Coefficients of Determination and Correlation

We indicated in the previous section that if a regression model gives a 
small s, then the model will accurately predict individual y values. For 
this reason, s is one measure of the usefulness, or utility, of a regression 
model. In this section we discuss several other ways to assess the utility of 
a regression model.

2.4.1  Measures of Variation, R2, and R

The coefficient of determination is a measure of the usefulness of the lin-
ear regression model y x x xk k  = + + + + +b b b b e0 1 1 2 2 ... . To define 
this quantity, we need to develop several measures of variation. There-
fore, suppose that we have observed n combinations of values of the 
dependent variable y and the independent variables x x x1 2 k, , ,… . If 
b b b b0 1 2, , ,..., k denote the least squares point estimates of b b b b0 , , , ,1 2 … k,  
then y b bi

∧ = + + + +0 b x x b xi i k ik1 1 2 2 ...  is the point prediction of yi, the  
ith observed value of the dependent variable. Moreover, let y  denote the 
mean of the n observed values of the dependent variable. Then, it follows 
that ( )y yi − , the total deviation of yi from y , can be partitioned into a 
deviation, ( )y yi

∧ − , that is explained by the linear regression model, plus a 
deviation ( )y yi i− ∧  that is left unexplained by the linear regression model. 
That is,

( ) ( ) ( )y y y y y yi i i i− = − + −∧ ∧

To understand this partitioning consider Figure 2.13, which shows the 
partitioning using the simple linear regression model y x= + +b b e0 1 .  
For this model, the least squares line fitted to the observed data gives the 
point prediction y b b xi i

∧ = +0 1  of yi. Moreover, Figure 2.13 shows that 
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the total deviation ( )y yi − , which is the total vertical distance from y  to 
yi, equals the explained deviation ( )y yi

∧ − , which is the vertical distance 
from y  to the point yi

∧  on the least squares line, plus the unexplained 
deviation ( )y yi i− ∧ , which is the vertical distance from yi

∧  to yi—a ver-
tical distance left unexplained by the least squares line. In addition, 
it can be shown (see Section B.4) that for the linear regression model 
y x x xk k  = + + + + +b b b b e0 1 1 2 2 ...

( ) ( ) ( )y y y y y yi
i

i i i
ii

− = − + −
=

∧ ∧

==
∑ ∑∑2

1

2 2

11

n nn

The sum of the squared total deviations, ( )y yi −∑ 2, is called the total 
variation and measures the variation of the yi values around their mean y .  
The sum of the squared explained deviations, ( )y yi

∧ −∑ 2, is called the 
explained variation and measures the amount of the total variation that is 
explained by the linear regression model. The sum of the squared unex-
plained deviations, ( )y yi i− ∧∑ 2, is called the unexplained variation (this 
is another name for SSE) and measures the amount of the total variation 
that is left unexplained by the linear regression model. We now define the 
coefficient of determination, denoted by R 2, to be the ratio of the explained 
variation to the total variation. That is R 2 = (explained variation)/(total 
variation), and we say that R 2 is the proportion of the total variation in 
the n observed values of y that is explained by the linear regression model. 
Neither the explained variation nor the total variation can be negative 

xi

yi

x

y

y

y

y

( ŷi −   ) = explained
deviation

ŷ i = b0 + b1xi

( yi − ŷi ) = unexplained
deviation

( yi −    )
= total deviation

Least
squares
line

Figure 2.13  The total, explained, and unexplained deviations
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(both quantities are sums of squares). Therefore, R 2 is greater than or equal 
to 0. Because the explained variation must be less than or equal to the 
total variation, R 2 cannot be greater than one. The nearer R 2 for a particular 
regression model is to one, the larger is the proportion of the total variation 
that is explained by the model, and the greater is the potential utility of the 
model in predicting y. If a model’s value of R 2 is not reasonably close to 
one, the model will probably not provide accurate predictions of y. In 
such a case we need to find a better model.

The coefficient of determination, R2

For the linear regression model:

1.	Total variation = ( )y y y nyi
i

n

i
i

n

− = −
= =
∑ ∑2

1

2 2

1

2.	Explained variation = ( )y y nyi
i

n
∧

=

− = −∑ 2

1

2b X y′ ′

3.	Unexplained variation = ( )y y yi i
i

n

i
i

n

− = −∧

= =
∑ ∑2

1

2

1

b X y′ ′

4.	Total variation = Explained variation + Unexplained variation
5.	The coefficient of determination is

R 2=
Explained variation

Total variation

6.	R 2 is the proportion of the total variation in the n observed values 
of the dependent variable that is explained by the overall regres-
sion model.

At the end of this section we will discuss some special facts about the 
coefficient of determination, R 2, when using the simple linear regression 
model. When using a multiple linear regression model (a model with 
more than one independent variable), we sometimes refer to R 2 as the 
multiple coefficient of determination, and we define the multiple correlation 
coefficient to be R = R 2 . For example, consider the fuel consumption 
model y x x= + + +b b b e0 1 1 2 2 .
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Using the fuel consumption data, we previously made the following 
calculations:

y y
y

i
i

i2

1

8
1

8

859 91 859 236
8

10 2125
=

=∑
∑

= = = =. . .b X y′ ′
i

Unexplained variation = SSE y y yi i
i

i
i

= − = −∧

= =
∑ ∑( )2

1

2

1

8 8

b X y′ ′

= − =859 91 859 236 674. . .

We can calculate the total variation to be

Total variation = 
8

( )

. ( .

y y y yi
i

i
i

− = −

= −
= =
∑ ∑2

1

2

1

8
28

859 91 8 10 21225
25 549

2)
.=

Moreover, we can calculate the explained variation by either of the 
following two methods:

Explained variation = Total variation  Unexplained variat− iion
=     25 549 674 24 875. . .− =  

or

Explained variation 
8

= −

= −

= −

∧

=
∑( )

. ( .

y y

y

i
i

2

1
28

859 236 8 10

b X y′ ′

22125 24 8752) .=

The Minitab output in Figure 2.10 tells us that the total, explained, and 
unexplained variations for this model are, respectively, 25.549, 24.875, and 
.674. This output also tells us that the multiple coefficient of determination is

R 2 24 875
25 549

974= = =Explained variation
Total variation

.

.
.
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The multiple correlation coefficient is R = =. .974 9869. The value of  
R 2 = .974 says that the fuel consumption model with two independent 
variables explains 97.4 percent of the total variation in the eight observed 
fuel consumptions.

2.4.2  Adjusted R2

Even if the independent variables in a regression model are unrelated to 
the dependent variable, they will make R 2 somewhat greater than zero. To 
avoid overestimating the importance of the independent variables, many 
analysts recommend calculating an adjusted coefficient of determination. 
To understand this idea, suppose that the values of the k independent 
variables are completely random (that is, randomly chosen from a pop-
ulation of numbers). It can be shown that these independent variables 
will still explain enough of the total variation in the observed values of 
the dependent variable to make R 2 equal to, on the average, k n/   −( )1 . 
Therefore, our first step in adjusting R 2 is to subtract this random expla-
nation and form the quantity R k n2 1− −( )   / .

If the values of the independent variables are completely random, 
then this adjusted version of R 2 is (on average) equal to zero. However, 
if the values of the independent variables are not completely random, 
then this quantity reduces R 2 too much. To see why, note that if R 2 
is equal to 1, then R k n2 1− −( )   /  is not equal to 1 but is equal to 
1 1 1 1− − = − − −( ) ( ) ( )           k n n k n/ / , which is less than 1, since 
n k n− − < −       1 1. To define an adjusted R 2 that is equal to 1 if R 2 is 
equal to 1, we multiply R k n n n k2 1 1 1− − − − −/ ( ) ( ) / ( )by . This gives 
the following adjusted coefficient of determination (adjusted R 2).

Adjusted R2

The adjusted coefficient of determination (adjusted R 2) is

R R
k

n
n

n k
2 2

1
1

1
= −

−






−
− −






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When using a multiple linear regression model, we sometimes refer 
to the adjusted coefficient of determination as the adjusted multiple coeffi-
cient of determination. For example, consider the fuel consumption model 
y x x= + + +b b b e0 1 1 2 2 . Because we have seen that the multiple coeffi-
cient of determination for this model is R 2 974= . , it follows that the 
adjusted multiple coefficient of determination for this model is

R R
k

n
n

n k
2 2

1
1

1

974
2

8 1
8 1

8 2 1

= −
−







−
− −







= −
−







−
− −




. 

= .963

Note that R 2 963= .  is given on the Minitab output in Figure 2.10.
If R 2 is less than k n/ ( )−1  (which can happen), then R 2 will be nega-

tive. In this case, statistical software systems set R 2 equal to zero. Histor-
ically, R 2 and R 2 have been popular measures of model utility—possibly 
because they are unitless and between 0 and 1. In general, we desire R 2 
and R 2 to be near one. However, sometimes even if a regression model 
has an R 2 and an R 2 that are near one, the standard error s is still too large 
for the model to predict accurately. The best that can be said for an R 2 
and an R 2 near one is that they give us hope that the model will predict 
accurately. Of course, the only way to know is to see if s is small enough. 
In other words, since we usually are judging a model’s ability to predict, s 
is a better measure of model utility than are R 2 and R 2. We will say more 
later about using s R, 2, and R 2 to help choose a regression model.

2.4.3 � Simple Coefficients of Determination and Correlation,  
r2and r

When we are using the simple linear regression model y x= + +b b e0 1 , 
we sometimes refer to R 2 and R 2 as, respectively, the simple coefficient of 
determination and the adjusted simple coefficient of determination. More-
over, we sometimes denote these quantities as r 2 and r 2. For example, 
the Minitab output in Figure 2.11 tells us that for the simple linear 
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regression model relating y = weekly fuel consumption to x = average 
hourly temperature, the explained variation is 22.981 and the total vari-
ation is 25.549. It follows that the simple coefficient of determination 
is r 2  22 981 25 549  899= =. / . .  and the adjusted simple coefficient of 
determination is

r r
k

n
n

n k
2 2

1
1

1
= −

−






−
− −







= −
−







−
− −





.899

1
8 1

8 1
8 1 1

= .883

These quantities are shown on the Minitab output in Figure 2.11. They 
are not as large as the R 2 of .974 and the R 2 of .963 given by the regression 
model that uses both the average hourly temperature and the chill index 
as predictor variables. We next define the simple correlation coefficient as 
follows.

The simple correlation coefficient

The simple correlation coefficient between y and x, denoted by r, is

r r= + 2  if b1 is positive and r r= − 2  if b1 is negative

where b1 is the slope of the least squares line relating y to x. This correla-
tion coefficient measures the strength of the linear relationship between y 
and x.

x

(a) (b) (c)
y

x

y

x

y

Figure 2.14  Some types of linear correlation (a) little correlation 
(b) positive correlation (c) negative correlation
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Because r 2 is always between 0 and 1, the simple correlation coeffi-
cient r is between -1 and 1. A value of r near 0 implies little linear relation-
ship or (correlation) between y and x as illustrated in Figure 2.14(a). A value 
of r  close to 1 says that y and x have a strong tendency to move together 
in a straight-line fashion with a positive slope and, therefore, that y and 
x are highly related and positively correlated. Positive correlation is illustrated 
in Figure 2.14(b). A value of r close to -1 says that y and x have a strong ten
dency to move together in a straight-line fashion with a negative slope and, 
therefore, that y and x  are highly related and negatively correlated. Negative 
correlation is illustrated in Figure 2.14(c). For the simple linear regression 
model relating y = weekly fuel consumption to x = average hourly tempera-
ture, we have found that b1 1279= −.  and r 2 899=  . . Therefore,

r r= = .899 .2− − = − 948

This simple correlation coefficient says that x and y have a strong ten-
dency to move together in a linear fashion with a negative slope. We 
have seen this tendency in Figure 2.1, which indicates that y and x are 
negatively correlated.

If we have computed the least squares slope b1 and r 2, the method 
given in the previous box provides the easiest way to calculate r. The sim-
ple correlation coefficient can also be calculated using the formula

r xy

xx yy

=
SS

SS SS

Here SSxy and SSxx have been defined in Section 2.1, and SS yy denotes 
the total variation, which has been defined in this section. Futhermore, 
this formula for r automatically gives r the correct (+ or -) sign. For instance, 
in the fuel consumption problem, SSxy = −179 6475. , SSxx = 1404 355. , and 
SS yy = 25 549.  (see Table 2.1 and Figure 2.11). Therefore,

r xy

xx yy

=
SS

SS SS
.

( . )( . )
.= − = −179 6475

1404 355 25 549
948
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It is important to point out that high correlation does not imply that a 
cause-and-effect relationship exists. When r indicates that y and x are highly 
correlated, this says that y and x have a strong tendency to move together 
in a straight-line fashion. The correlation does not mean that changes in 
x cause changes in y. Instead, some other variable (or variables) could be 
causing the apparent relationship between y and x. For example, sup-
pose that college students’ grade point averages and college entrance exam 
scores are highly positively correlated. This does not mean that earning a 
high score on a college entrance exam causes students to receive a high 
grade point average. Rather, other factors such as intellectual ability, study 
habits, and attitude probably determine both a student’s score on a col-
lege entrance exam and a student’s college grade point average. In general, 
while the simple correlation coefficient can show that variables tend to 
move together in a straight-line fashion, scientific theory must be used to 
establish cause-and-effect relationships.

2.5  The Overall F-Test

In previous sections, we have shown that s,  R
2, and R 2 help us to assess 

the utility of a regression model. In this and the next section we will dis-
cuss several hypothesis tests that help us to evaluate the importance of the 
independent variables in a regression model. To begin, note that the linear 
regression model

y x x xk k= + + + + +b b b b e0 1 1 2 2 ...

assumes that m b b b by x x x k kk
x x x| , ,..., ... .

1 2 0 1 1 2 2= + + + +  If each of
b b b1 2    and , , ,… k  equals zero, then m by x x xk| , ,...,1 2 0= . In this case, the 
mean value of y does not depend upon x1 or x2 or…or xk, and we would 
say that there is no overall regression relationship between the dependent 
variable y and the independent variables x x xk1 2, ,..., . On the other hand, 
if at least one of b b b1 2 or  or....or k does not equal zero, then the mean 
value of y depends upon at least one of x x xk1 2or or or... , and we would say 
that there is an overall regression relationship between y and x x xk1 2, ,..., . 
To test for an overall regression relationship between y and x x xk1 2, ,..., , we test 
the null hypothesis
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H k0 1 2 0: ...b b b= = = =  

which says that no overall regression relationship exists, versus the alter-
native hypothesis

Ha: At least one of b b b1 2, , ,… k  does not equal 0

which says that an overall regression relationship does exist. To test H0 
versus Ha, we use the test statistic

F
k

n
(model)

(Explained variation)/
(Unexplained variation) /[ (

=
− kk +1)]

A large value of F (model) would be caused by an explained varia-
tion that is large compared to the unexplained variation. This would 
occur if the mean value of the dependent variable y depends upon 
at least one of the independent variables x x xk1 2, ,..., , which would 
imply that H k0 1 2 0: ...b b b= = = =  is false and Ha: At least one of 
b b b1 2, , ,… k  does not equal 0 is true. To decide exactly how large  
F (model) has to be to reject H0, we consider the probability of a Type 
I error for the hypothesis test. A Type I error is committed if we reject 
H k0 1 2 0: ...b b b= = = =  when H0 is true. This means that we would 
conclude that an overall regression relationship exists when it does not. 
To perform the hypothesis test, we set the probability of a Type I error 
(also called the level of significance) for the hypothesis test equal to a 
specified value a . The smaller the value a  at which we can reject H0,  
the smaller is the probability that we have concluded that an overall 
regression relationship exists when it does not. Therefore, the stronger is 
the evidence that we have made the correct decision in concluding that 
an overall regression relationship exists.

In practice we usually choose a  to be between .10 and .01, with .05 
being the most common value of a . Note that we rarely set a  lower than 
.01 because doing so would mean that the probability of a Type II error 
(failing to conclude that an overall regression relationship exists when it 
does exist) would be unacceptably large.
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2.5.1  Using a Rejection Point

In order to set the level of significance for testing H k0 1 2 0: ...b b b= = = =  
equal to a specified value a , we use the fact that if H0 is true, then the 
population of all possible values of F(model) is described by a probability 
distribution called the F-distribution. (This fact is proven in Appendix 
B.5) The curve of the F-distribution is skewed with a tail to the right 
(see Figure 2.15), and the exact shape of this curve is determined by two 
parameters—the numerator degrees of freedom and the denominator degrees 
of freedom of the F-distribution. The F-distribution describing the popu-
lation of all possible values of F(model) has k numerator degrees of free-
dom and n k− +( )  1  denominator degrees of freedom . This leads to 
the following procedure for testing H k0 1 2 0: ...b b b= = = =  at level of 
significance a :

•	 Place the level of significance a  in the right-hand tail of 
the curve of the F -distribution having k numerator and 
n k− +( )  1  denominator degrees of freedom, and use the F  
table (see Table A1 in Appendix A) to find the rejection point 
F[ ]a . Here, F[ ]a  is the point on the horizontal axis under the 
curve of this F-distribution so that the tail area to the right of 
this point is a . (see Figure 2.15[a]).

•	 Reject H0 if and only if the test statistic F(model) is greater 
than F[ ]a .

For example, consider the fuel consumption model

y x x= + + +b b b e0 1 1 2 2

The Minitab output in Figure 2.10 tells us that the explained and unex-
plained variations for this model are, respectively, 24.875 and .674. It 
follows, since there are k =  2 independent variables, that

F
k

n
(model)

(Explained variation) /
(Unexplained variation)/[ - (

=
kk +1)]
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=
− +

=24 875 2
674 8 2 1

12 438
135

. /
. /[ ( )]

.
.

= 92 30.

Note that this F(model) statistic is given on the Minitab output . If we 
wish to test H0 1 2 0: b b= =   versus Ha : At least one of b1 or b2 does not 
equal 0 at level of significance a =  5.0 , we use the rejection point F Fa[ ] = [ ].05  
based on k =  2 numerator and n k− + = − + =( ) ( )           1 8 2 1 5 
denominator degrees of freedom. Using Table A1 in Appendix A, we 
find that F . .05 5 79[ ] =  . Since F Fmodel( ) = > =    92 30 5 7905. .[ ]. , we can 
reject H0 1 2 0: b b= =   at level of significance .05.

In general, if we can reject H k0 1 2: b b b= = … =   at a small level of 
significance a , we conclude at the small level of significance a  that the 
overall regression relationship (or regression model) is significant. This is the 

1 − a

F[a ]

F(model)

If F(model)  ≤ F[a ],
do not reject H0 in favor of Ha 

If F(model)  > F[a ], reject 
H0 in favor of Ha 

p− value

The curve of the F distribution having k numerator and
n−(k+1) denominator degrees of freedom

The curve of the F distribution having k numerator and
n−(k+1) denominator degrees of freedom

a = The probability
of a type I error

(a) The rejection point F[a ]  

(b) The p-value

Figure 2.15  An F-test for the linear regression model
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same as concluding at the small level of significance a  that at least one of 
the independent variables x x xk1 2, ,...,  in the regression model is significantly 
related to the dependent variable . Statistical practice has shown that

1.	If we can reject H0 at the .05 level of significance, then we have strong 
evidence that the regression model is significant;

2.	If we can reject H0 at the .01 level significance, then we have very 
strong evidence that the regression model is significant;

3.	If we can reject H0 at the .001 level of significance, then we have 
extremely strong evidence that the regression model is significant.

If we wish to use rejection points to test H0 1 2 0: b b= =   for the fuel 
consumption model y x x= + + +b b b e0 1 1 2 2  at the .01 and .001 levels of 
significance, we would need to compare F(model) = 92.30 with F .01[ ] and 
F .001[ ] based on two numerator and five denominator degrees of freedom. 
While tables of values of F .01[ ] and F .001[ ] are readily available in books of 
statistical tables, and values of both F .01[ ] and F .001[ ]  can be found using 
statistical software packages (including Excel), the p-value approach is an 
easier and more informative way to test a hypothesis.

2.5.2  Using a p-Value

The p-value for testing H k0 1 2 0:       b b b= = … = =  is defined to be 
the area under the curve of the F-distribution having k numerator and 
n k− +( )  1  denominator degrees of freedom to the right of F(model). This  
p-value is illustrated in Figure 2.15(b). When testing H0 1 2 0: b b= =   in 
the fuel consumption model y x x= + + +b b b e0 1 1 2 2 , the p-value is the 
area under the curve of the F-distribution having k =  2 numerator and 
n k− + = − + =( ) ( )           1 8 2 1 5 denominator degrees of freedom 
to the right of F(model) = 92.30. The Minitab output in Figure 2.10 says 
that this p-value is .000. When Minitab says that a p-value is .000, it 
means that the p-value is less than .001. If we use Excel, we can find that 
the p-value in this situation is .0000215. Interpreted as a probability, the 
p-value of .0000215 says that if the null hypothesis H0 1 2 0: b b= =   is 
true, then only about 2 in 100,000 of all F(model) statistics that could 
be observed are at least as large as 92.30 Thus the p-value of .0000215 
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leads us to reach one of two possible conclusions. The first conclusion is 
that H0 1 2 0: b b= =   is true and we have observed an F(model) statistic 
that is so rare that only .0000215 of all possible F(model) statistics are at 
least as large as this observed F(model) statistic. The second conclusion is 
that H0 1 2 0: b b= =   is false. A reasonable person would probably make 
the second conclusion. In general, how small does the p-value have to be 
before we reject H0? It depends upon the level of significance a  that we set 
for the hypothesis test. Moreover, once we have computed the p-value, 
we immediately know for any particular level of significance a whether 
we can reject H0. It turns out that we can reject H0 if the p-value is less than  
a. To understand this, suppose that the p-value, which is the area to the right of 
F(model), is less than a , which is the area to right of F[ ]a . Comparing Figures 
2.15 (a) and (b), we see that this implies that F(model) is greater than F[ ]a . 
But F(model) being greater than F[ ]a  is the previously discussed rejection point 
condition, and thus we can reject H0 at level of significance a . When testing 
H0 1 2 0: b b= =   in the fuel consumption model y x x= + + +b b b e0 1 1 2 2 ,  
the p-value of .0000215 is less than the a  values .05, .01, and .001. 
Therefore, we can reject H0 at levels of significance .05, .01, and .001. It 
follows that we have extremely strong evidence that the fuel consump-
tion model is significant. That is, we have extremely strong evidence that 
at least one of the independent variables x1 and x2 in the model is signifi-
cantly related to y.

We summarize the hypothesis test for the significance of the linear 
regression model as follows.

An F-test for the linear regression model

Suppose that the regression assumptions hold and that the linear 
regression model has k   +( )1  parameters, and consider testing

H k0 1 2 0: b b b= = … = =    

versus

Η a k: , ,..., At least one of does not equal 1 2b b b 0
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In general, the overall F-test just summarized is usually regarded as a 
preliminary test of significance. To understand this, suppose that the over-
all F-test allows us at a small value of a  (say, .05) to reject H0 and thus 
conclude that at least one of the independent variables in the regression 
model under consideration is significantly related to the dependent vari-
able. Statisticians then regard this result as a license to use individual t  
tests to decide which independent variables in the regression model are 
significantly related to the dependent variable. Such individual t  tests are 
discussed next.

2.6  Individual t Tests

Consider the linear regression model

y x x xk k= + + + + +b b b b e0 1 1 2 2 ...

An F-test for the linear regression model (Continued)

Define the overall F-statistic to be

F
k

n
(model)

(Explained variation) /
(Unexplained variation) /[

=  
 -- ( )]k +1

Also, define the p-value related to F(model) to be the area under 
the curve of the F-distribution having k numerator and n k− +( )  1  
denominator degrees of freedom to the right of F(model). Then, we 
can reject H0 in favor of Ha at level of significance a  if either of the 
following equivalent conditions holds:

1.	F(model) > F[ ]a

2.	p-value < a

Here the rejection point F[ ]a  is the point on the horizontal axis under 
the curve of the F  distribution having k numerator and n k− +( )  1  
denominator degrees of freedom so that the tail area to the right of this 
point is a .
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In order to gain information about which independent variables sig-
nificantly affect y, we can test the significance of a single independent 
variable. We arbitrarily refer to this variable as x j and assume that it is 
multiplied by the parameter b j. For example, if j =  1, we are testing the 
significance of x1, which is multiplied by b1  if  2; j = , we are testing the 
significance of x2, which is multiplied by b2. To test the significance of x j,  
we test the null hypothesis H j0 0: b =  . We usually test H0 versus the two-
sided alternative hypothesis Ha j: b ≠  0, which says that a nonzero change 
in the mean value of the dependent variable is associated with an increase 
in the value of the independent variable x j. In some situations we would 
know whether this change in the mean value of the dependent variable 
would be an increase or a decrease, and in such situations it would be 
appropriate to use a one-sided alternative hypothesis. For example, in the 
fuel consumption model y x x= + + +b b b e0 1 1 2 2 , we can say that if b1 is 
not zero, then it must be negative. A negative b1 would say that mean fuel 
consumption decreases as average hourly temperature x1 increases. Because 
of this, it would be appropriate to test H0 1 0: b =   versus the less than 
alternative Ha : b1 0<  . Similarly, we can say that if b2 is not zero, then 
it must be positive. A positive b2 would say that mean fuel consumption 
increases as the chill index x2 increases. Because of this, it would be appro-
priate to test H0 2 0: b =   versus the greater than alternative Ha : b2 0>  .  
Although it can be shown that using the appropriate one-sided alterna-
tive is slightly more effective than using a two-sided alternative, in some 
regression models it is difficult to know whether the appropriate one-
sided alternative should be a greater than alternative or a less than alterna-
tive. Moreover, even if we do know the appropriate one-sided alternative, 
there is little practical difference between using the appropriate one-sided 
alternative and using a two-sided alternative. For these reasons, statistical 
software packages (such as Minitab, SAS, and Excel) present results for 
testing the two-sided alternative, and, thus, we will emphasize testing the 
two-sided alternative. It follows that it is reasonable to conclude that the 
independent variable x j is significantly related to the dependent variable 
y in the regression model under consideration if we can reject H j0 0: b =   
in favor of H ja : b ≠  0  at a small level of significance a .

Here the phrase in the regression model under consideration is very 
important. This is because it can be shown that whether x j is significantly 
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related to y in a particular regression model can depend on what other 
independent variables are included in the model. This issue is discussed 
in detail in Chapter 4.

It can be proved (see Section B.6) that if the regression assumptions 
hold, the population of all possible values of the least squares point esti-
mate bj is normally distributed with mean b j and standard deviation

s sb jjj
c=

Here, s  is the constant standard deviation of the different error term 
populations (or different populations of possible values of the dependent 
variable), and c jj is the jth diagonal element of (X X′ )-1 (we illustrate how 
to find c jj in the next example). We denote the point estimate of sbj

 by sbj
 

and refer to sbj
 as the standard error of the estimate bj. Since we estimate s  

by s, it follows that

s s cb jjj
=

In order to test H j0 0: b =   versus Ha j: b ≠  0, we divide bj by sbj
 and 

form the test statistic

t
b
s

b
s

j

b

j

bj j

= =
− 0

This test statistic measures the distance between bj and zero (the value that 
makes the null hypothesis H j0 0: b =   true). If the absolute value of t  is 
large, this implies that the distance between bj and zero is large and pro-
vides evidence that we should reject H j0 0: b =  . Before discussing how 
large in absolute value t  must be in order to reject H j0 0: b =   at level of 
significance a , we first show how to calculate this test statistic.

Example 2.6 

Consider the fuel consumption model

y x x= + + +b b b e0 1 1 2 2   
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We have previously found that

                           
     

 
 

column

( )

row 0 1 2

1
2

0 5
1X X′ − =

.. . .
. . .
. .

43405 085930 118856
085930 00147070 00165094
118856

− −
−
− 000165094 00359276

00

 

                         

.






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








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c
c

11

22

















  

Here, we have numbered the rows and columns of (X X′ )-1  as 0, 1, and 2 
because the b ’s in the fuel consumption model are denoted as b b0, 1, and 
b2. Thus, the diagonal element of (X X′ )-1 corresponding to

1 5 43405 5 434
2 00147070 00147
3

0 00

1 11

2 22

. . .
. . .
.

b
b
b

is c
is c
is c

= ≈
= ≈
== ≈. .00359276 0036

Since we have seen in Section 2.3 that s = .3671, it follows that we  
calculate  s s sb b b0 1 2

, , , and the associated t-statistics for testing H0 0 0: b =  , 
H0 1 0: b =  , and H0 2 0: b =   as shown in Table 2.7. The sbj

 values and 
t  statistics shown in Table 2.7 are also given in the Minitab output in 
Figure 2.10.

2.6.1  Using a Rejection Point

It can be shown that, if the regression assumptions hold, then the pop-
ulation of all possible values of b sj j bj

−( )b /  is described by a probabil-
ity distribution called the t-distribution. The curve of the t  distribution 
is symmetrical and bell-shaped and centered at zero (see Figure 2.16), 
and the spread of this curve is determined by a parameter called the 
number of degrees of freedom of the t-distribution. The t-distribution 
describing the population of all possible values of b sj j bj

−( )b /  has  
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n k− +( )  1  degrees of freedom. It follows that, if the null hypothesis 
H j0 0: b =   is true, then the population of all possible values of the 
test  statistic t b b ssj b j bj j

= − =( ) 0 / /  is described by a t-distribution  
having  n k− +( )  1  degrees of freedom. This leads to the follow-
ing procedure for  testing H j0 0: b =   versus Ha j: b ≠  0 at level of 
significance a :

•	 Divide the level of significance a  in half, and place the area 
a / 2 in the right-hand tail of the curve of the t-distribution 
having n k− +( )  1  degrees of freedom. Then, use the t  table 
(see Table A2 in Appendix A) to find the rejection point t[ / ]a 2 . 
Here, t[ / ]a 2  is the point on the horizontal axis under the curve 
of the t  distribution having n k− +( )  1  degrees of freedom 
so that the tail area to the right of this point is a / 2 (see 
Figure 2.16[a]).

•	 Reject H0 if and only if |t|, the absolute value of the test 
statistic t b sj bj

= /  is greater than t[ / ]a 2 -that is, if t b sj bj
= /  is 

either greater than t[ / ]a 2  or less than -t[ / ]a 2 .

Table 2.7  Calculations of the standard errors of the bj values and the 
t-Statistics for testing :H0 0 0b =  , :H0 1 0b =  , and :H0 2 0b =   in 
the fuel consumption model y x x= + + +b b b f0 1 1 2 2

Independen valuet
variable

bj s s c t
b

s
p

b

b jj
j

b
j

j

= =

=

-

.Intercept 0 13 11087
13 1087

8557
15 32 000

3671 5 434
8557

0 00

11

s s c t

x b

b = = =

=
=

.
.

. .

. .

.

== = = =

=
=

− − −.
.

.
. .

. .

.

09001
09001

01408
6 39 001

3671 00147
01

1 11s s c tb

4408

08249
08249
0220

3 75 013

3671 0036

22 222
x b s s c tb= = = =

=
=

.
.
.

. .

. .

.00220
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For example, consider the fuel consumption model

y x x= + + +b b b e0 1 1 2 2   

We can test each of the null hypotheses H0 0 0: b =  , H0 1 0: b =  , and 
H0 2 0: b =  , at level of significance a  = .05 by using the rejection point 
t t[ ] [ ]/ . /a 2 05 2=   based on n k          − + = − +( ) ( ) =1 8 2 1 5 degrees of free-
dom. Utilizing Table A2 in Appendix A, we find that t[. ] .025 2 571=  . Table 
2.7 tells us that the test statistics for testing H0 0 0: b =  , H0 1 0: b =  , 
and H0 2 0: b =  , are, respectively, t =  15 32. , t = − 6 39. , and t =  3 75. .  
Because the absolute value of each of these test statistics is greater than 
t[. ] .025 2 571=  , we can reject each of H0 0 0: b =  , H0 1 0: b =  , and 
H0 2 0: b =  , at the .05 level of significance.

The curve of the
t-distribution having
n−(k+1) degrees of
freedom

The curve of the t-distribution having
n−(k+1) degrees of freedom

a /2a /2

t
 [a /2]−t

 [a /2] 0

0−t t

The area to the
right of t 

The area to the
left of −t 

p-value = twice the area
to the right of t

(b) The p-value

(a) The rejection points t
 [a /2] and −t

 [a /2]

If t > t
 [a /2],

reject H0 : bj = 0

If t > t
 [a /2],

reject H0 : bj = 0

If t < −t
 [a /2],

reject H0 : bj = 0

Figure 2.16  A t-test of :H0 bj 0==   versus :Ha j 0b π
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In general, consider the parameter b j that is multiplied by the inde-
pendent variable x j in the linear regression model. The smaller the level 
of significance a  at which we can reject H j0 0: b =  , the smaller is the 
probability that we have mistakenly concluded that the independent vari-
able x j is significantly related to the dependent variable y in the regression 
model under consideration. Thus, the stronger is the evidence that x j is 
significantly related to y in the regression model. Statistical practice has 
shown that

1.	If we can reject H j0 0: b =   at the .05 level of significance, we have 
strong evidence that the independent variable x j is significantly 
related to y in the regression model;

2.	If we can reject H j0 0: b =   at the .01 level of significance, we have 
very strong evidence that x j is significantly related to y in the regres-
sion model;

3.	If we can reject H j0 0: b =   at the .001 level of significance, we have 
extremely strong evidence that x j is significantly related to y in the 
regression model.

We can test H j0 0: b =   versus Ha j: b ≠  0 at different levels of signifi-
cance a  (for example, at a  values of .05, .01, and .001) by looking up 
the appropriate different rejection points t[ / ]a 2  (for example, t[ ].025 , t[ ].0 005 , 
and t[ ].0005 ) in a t-table. However, it is easier and more informative to use a  
p-value.

2.6.2  Using a p-Value

We define the p-value for testing H j0 0: b =   versus Ha j: b ≠  0 to be 
twice the area under the curve of the t-distribution having n k− +( )  1  
degrees of freedom to the right of t , the absolute value of t b sj bj

= / . This 
p-value is illustrated in Figure 2.16(b). For example, Table 2.7 tells us 
that the value of the test statistic for testing H0 1 0: b =  versus Ha : b1 0≠  
in the fuel consumption model y x x= + + +b b b e0 1 1 2 2    is t   = − 6 39. .  
Using Excel, we can find that the area under the curve of the t  dis-
tribution having n k      − + =( )1 5 degrees of freedom to the right of 
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t      = − =| . | .6 39 6 39  is .0007. Therefore, the p-value, which is twice 
this area, is 2(.0007) = .0014. (Note from Figure 2.10 that Minitab rounds 
this p-value to .001.) The symmetry of the curve of the t-distribution 
implies that the p-value, which is twice the area to the right of t   = 6 39. ,  
equals the area to the right of t   = 6 39.  plus the area to the left of 
− =t   − 6 39.  (see Figure 2.16[b]). It follows that the p-value of .0014 
says that, if we are to believe that H0 1 0: b =  is true, we must believe 
that we have observed a test statistic value (t   = − 6 39. ) that is so rare 
that only 14 in 10,000 of all possible test statistic values are at least as far 
from zero (positively or negatively) as this observed test statistic value. It 
is very difficult to believe that we have observed such a rare test statistic 
value. Moreover, in general, once we have computed the p-value, we 
immediately know for any particular level of significance a  whether we 
can reject H j0 0: b =  . It turns out we can reject H0 if the p-value is less 
than a . To understand this, note that if the p-value, which is twice the area 
to right of  t , is less than a , then the area to the right of t  is less than a /2. 
But this implies (examining Figures 2.16[a] and [b]) that t  is greater than 
t[ / ]a 2 . Therefore, we can reject H j0 0: b =   in favor of Ha j: b ≠  0 at level of 
significance a . When testing H0 1 0: b =  in the fuel consumption model 
y x x= + + +b b b e0 1 1 2 2   , the p-value of .0014 is less than .01 but not 
less than .001. Therefore, we can reject H0 1 0: b =  at the .01 level of 
significance but not at the .001 level of significance. It follows that we 
have very strong evidence, but not extremely strong evidence, that x1(the 
average hourly temperature) is significantly related to y in the fuel con-
sumption regression model. Similarly, the p-value for testing H0 2 0: b =   
can be calculated to be .013 (see the Minitab output in Figure 2.10). 
Because the p-value of .013 is less than .05 but not less than .01, we 
can reject H0 2 0: b =   at the .05 level of significance but not at the .01 
level of significance. It follows that we have strong evidence, but not very 
strong evidence, that x2 (the chill index) is significantly related to y in 
the fuel consumption regression model. Lastly, the p-value for testing 
H0 0 0: b =   can be calculated to be less than .001, which implies that 
we can reject H0 0 0: b =   at the .001 level of significance. Therefore, we 
have extremely strong evidence that the intercept b0 is significant in the 
fuel consumption regression model.
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We summarize the hypothesis test of H j0 0: b =   versus Ha j: b ≠  0 
in the linear regression model as follows.

Testing the significance of the independent variable xj

Define the test statistic

t
b
s

j

bj

  =

where s s cb jjj
= , and suppose that the regression assumptions hold. 

Also, define the p-value related to t  to be twice the area under the 
curve of the t-distribution having n k− +( )  1  degrees of freedom to 
the right of t , the absolute value of t . Then we can reject H j0 0: b =   
in favor of Ha j: b ≠  0 at level of significance a  if either of the follow-
ing equivalent conditions hold:

1.	 | that is,if ort t t t t t| [ / ] [ / ] [ / ]> − > < −a a a2 2 2

2.	p-value < a

Here the rejection point t[ / ]a 2  is the point on the horizontal axis under 
the curve of the t-distribution having n k− +( )  1  degrees of freedom 
so that the tail area to the right of this point is a / 2.

Not every independent variable that we initially include in a regres-
sion model will make the model better in terms of helping us to accu-
rately describe, predict, and control the dependent variable. One of the 
main uses of the individual t  tests of this section is to help decide which 
independent variables should be retained in a regression model. Statis-
tical practice indicates that if we can reject H j0 0: b =   at the .05 level 
of significance and thus conclude that there is strong evidence that the 
independent variable x j in a regression model is significantly related to 
the dependent variable y, then retaining x j in the model is likely to make 
the model better. Throughout this book we will discuss various ways to 
help us determine the “best” regression model.
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We have seen in Section 2.5 that the intercept b0 is the mean value  
of the dependent variable when all of the independent variables 
x x x1 2 k, , ,…  equal zero. In some situations it might seem logical that 
b0 would equal zero. For example, if we were using the simple linear 
regression model y x= + +b b e0 1  to relate x, the number of items pro-
cessed at a naval installation, to y, the number of labor hours required to 
process the items, then it might seem logical that b0, the mean number 
of hours required to process zero items, is zero. Therefore, if we fail to 
reject H0 0 0: b =   and cannot conclude that the intercept is significant at 
the .05 level of significance, it might be reasonable to set b0 equal to zero 
and remove it from the regression model. This would give us the model 
y x= +b e1 , and we would say that we are performing a regression anal-
ysis through the origin. We will give some specialized formulas for doing 
this in Section 2.9. In general, to perform a regression analysis through 
the origin in (multiple) linear regression (that is, to set the intercept b0 
equal to zero), we would fit the model by leaving the column of 1’s out 
of the X  matrix. However, in general, logic seeming to indicate that b0 
equals zero can be faulty. For example, the intercept b0 in the model 
y x    = + +b b e0 1  relating the number of items processed to processing 
time might represent a mean basic “set up” time to process any number 
of items. This would imply that b0 might not be zero. In fact, many 
statisticians (including the authors) believe that leaving the intercept in 
a regression model will give the model more “modeling flexibility” and 
is appropriate, no matter what the t  test of H0 0 0: b =   says about the 
significance of the intercept.

We next consider how to calculate a confidence interval for a regres-
sion parameter.

A confidence interval for the regression parameter bj

If the regression assumptions hold, a 100 1−( )a  percent confidence 
interval for the regression parameter b j is

b t sj bj
±



[ / ]a 2
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Example 2.9  Consider the fuel consumption model

y x x  = + + +b b b e0 1 1 2 2

The Minitab output in Figure 2.10 tells us that b1 09001= −.  and 
sb1

01408=  . .
If we wish to calculate a 95 percent confidence interval for b1, then 

100 1 95   − =( )a % %,  which implies 1 95  − =a .  and a = .05. There-
fore, we use the t  point t t t[ / ] [. / ] [. ] .a 2 05 2 025 2 571= = =  that is based on 
n k            − + = − + =( ) ( )1 8 2 1 5 degrees of freedom. It follows that 
a 95 percent confidence interval for b1 is

b t sb1 025 1
09001 2 571 01408

1262 0538

±  = − ±
= − −

[. ] [ . . (. )]

[ . , . ]

This interval says we are 95 percent confident that if average hourly tem-
perature increases by one degree and the chill index does not change, 
then mean weekly fuel consumption will decrease by at least .0538 MMcf 
of natural gas and by at most .1262 MMcf of natural gas. Furthermore, 
since this 95 percent confidence interval does not contain 0, we can reject 
H0 1 0: b =  in favor of Η a : b1 0≠   at the .05 level of significance.

To conclude this subsection, note that because we calculate the least 
squares point estimates by using the matrix algebra equation b X X X y= ( )-1′ ′ , 
the least squares point estimate bj of b j is a linear function of y y yn1 2, ,..., .  
For this reason, we call the least squares point estimate bj a linear point 
estimate (which, since m bb jj

= , is also an unbiased point estimate) of b j. An 
important theorem called the Gauss-Markov Theorem says that if regres-
sion assumptions 1, 2, and 4 hold, then the variance (or spread around b j)  
of all possible values (from all possible samples) of the least squares point 
estimate bj is smaller than the variance of all possible values of any other 
unbiased, linear point estimate of b j. This theorem is important because it 
says that the actual value of the least squares point estimate bj that we obtain 
from the actual sample we observe is likely to be nearer the true b j than 
would be the actual value of any other unbiased, linear point estimate of b j 
(we prove the Gauss-Markov Theorem in Sections B.6 and B.9).
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2.6.3 � Tests For b0 and b1  in the Simple Linear Regression 
Model

For the simple linear regression model y x    = + +b b e0 1 , the t  statistics 
used to test H0 0 0: b =   and H0 1 0: b =  are, respectively,

t
b
s

t
b
sb b

  and   = =0 1

0 1

where

s s c s
n SSb

xx
0

= = +00
1 2x

 
and

 
s s c

s
SSb

xx
1 11= =

Because the simple linear regression model uses k =  1 independent 
variable, we can reject H0 1 0: b =  in favor of Ha : b1 0≠  at level of 
significance a  if t b sb  = 1 1

/  is greater than t[ / ]a 2 , which is based on 
n k n n              − + = − + = −( ) ( )1 1 1 2 degrees of freedom. A second 
way to test H0 1 0: b =  versus Ha : b1 0≠  is to reject H0 at level of signif-
icance a  if the F(model) statistic for the simple linear regression model

F (model)
(Explained variation)/

(Unexplained variation)/[
=

−
k

n (kk

n

+

=
−

1

2

)]
(Explained variation)

(Unexplained variation)/

is greater than F[ ]a , which is based on k =  1 numerator and 
n k n        − + = −( )1 2 denominator degrees of freedom. Moreover, 
these two ways to test H0 1 0: b =  versus Ha : b1 0≠  are equivalent. Spe-
cifically, it can be shown that t F( ) =2  (model) and that ( )[ / ]t a 2

2 , which is 
based on n - 2 degrees of freedom, equals F[ ]a  based on 1 numerator and 
n - 2 denominator degrees of freedom. It follows that the rejection point 
condition t >t[ / ]a 2  for the t  test will hold if and only if the rejection point 
condition F(model) > F[ ]a  for the F  test holds. Furthermore, the p-values 
related to t  and F(model) can be shown to be equal.
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For example, for the simple linear regression model y x    = + +b b e0 1  
relating y = weekly fuel consumption to x  = average hourly temperature, 
we have found in Example 2.2 that b1 1279= − .  and SSxx =  1404 35. . 
Also, the Minitab output in Figure 2.11 tells us that the explained vari-
ation equals 22.981, the unexplained variation (SSE     ) equals 2.568, and s  
equals .6542. It follows that s SSb xx1

1404 35 =  /  = .6542/  = .01746s . ,  
and thus the t  statistic for testing H0 1 0: b =  versus Ha : b1 0≠  is 
t sb= = −b1/

1
1279 01746 7 3277. . . ./ = −  Using Excel, we find that the area 

under the curve of the t  distribution having n k          − + = − =( )1 8 2 6 
degrees of freedom to the right t   = 7 3277.  is .00015, and therefore 
the p-value for the t  test is 2(.00015) = .0003. It also follows that the 
unexplained variation   ( ) ( )−/ n 2  equals 2 568 8 2. /   −( ), or .428. Con-

sequently, since the explained variation equals 22.981, the F(model) statis-
tic for testing H0 1 0: b =  versus Ha : b1 0≠  is 22 981 428 53 6949. / . .  = .  
Using Excel, we find that the area under the curve of the F  distribution 
having k =  1 numerator and n k          − + = − =( )1 8 2 6 denominator 
degrees of freedom to the right of F(model) = 53.6949 is .0003. This is 
the p-value for the F  test and is the same as the p-value for the t-test. In 
addition, t F( ) ( ) ( )= − = =2 27 3277 53 6949   . . model .

The Minitab output in Figure 2.11 gives t b sb= 1 1
/ , F(model), and the 

corresponding p-value, which Minitab says is .000 (meaning less than 
.001). It follows that we can reject H0 1 0: b =  in favor of Ha : b1 0≠  at 
the .001 level of significance. Therefore, we have extremely strong evi-
dence that x (average hourly temperature) is significantly related to y in 
the simple linear regression model.

2.6.4  A Test for the Population Correlation Coefficient

It can be shown that the t  statistic t b sb= 1 1
/  for testing H0 1 0: b =  versus 

Ha : b1 0≠  in the simple linear regression model y x    = + +b b e0 1  equals

t
r n

r
= −

−
2

1 2

where r is the previously defined simple correlation coefficient between 
the n observed x and y values. The latter t  statistic is the statistic that 
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has historically been used to test the null hypothesis H0 0: r =   ver-
sus Ha : r ≠ 0, where r is the population correlation coefficient. Here r  
can intuitively be regarded as equaling what r would equal if we calculated 
r using the population of all possible observed combinations of values of  
x and y. More precisely, let  x and y be random variables (for example, 
average hourly temperature and weekly fuel consumption). Also, let mx 
and sx denote the mean and the standard deviation of all possible val-
ues of x, and let my and s y denote the mean and the standard deriva-
tion of all possible values of y. We then define the population correlation 
coefficient r to be cov x y x y, /( ) ( )s s , where cov x y,( ) is the covariance 
between x and y. That is, cov x y,( ) is the mean of all possible values of 
( )( )x yx y− −m m  that correspond to all possible observed combinations of 
x and y. In order for the test of H0 0: r =   versus Ha : r ≠ 0 to be valid, 
the population of all possible observed combinations of values of x and 
y must be described by a bivariate normal probability distribution. The 
formula for this probability distribution is
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Assuming that the population of all possible observed combinations of 
values of the average hourly temperature, x, and the weekly fuel con-
sumption, y are described by a bivariate normal probability distribution, 
and recalling that r for the n =  8 observed combinations of x and y is 
-.948, we calculate.

t
r n

r
= −

−
= − −

− −
= −2

1

948 8 2

1 948
7 3277

2 2

.

( . )
.

This t  statistic for testing H0 0: r =   versus Ha : r ≠ 0 equals the t  statistic 
t b sb= 1 1

/  for testing H0 1 0: b =  versus Ha : b1 0≠   that is given on the 
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Minitab output in Figure 2.11. Moreover, the p-value for both tests is 
the same, and the Minitab output tells us that this p-value is less than 
.001. It follows that we can reject H0 0: r =   in favor of Ha : r ≠ 0 at the 
.001 level of significance. Therefore, we have extremely strong evidence of 
a nonzero population correlation coefficient between the average hourly 
temperature and weekly fuel consumption. In Chapter 4 we will use tests 
of population correlation coefficients between the dependent variable and 
the potential independent variables and between just the potential inde-
pendent variables themselves to help us “build” an appropriate regression 
model.

To conclude this section, note that it can be shown that for large sam-
ples n ≥( )25 , an approximate 100 1−( )a  percent confidence interval for 
( / )ln[( ) / ( )]1 2 1 1+ −r r  is
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Moreover, if this interval is calculated to be a  b,[ ], it further follows 
that a 100 1−( )a  percent confidence interval for r is
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Note that, in calculating the first interval, z[ / ]a 2  is the point on the 
horizontal axis under the curve of the standard normal distribution so 
that the tail area to the right of this point is a / 2. Table A3 in Appendix A 
is a table of areas under the standard normal curve. For example, suppose 
that the sample correlation coefficient between the productivities and 
aptitude test scores of n =  250 word processing specialists is .84. To find 
a 95 percent confidence interval for ( / )ln[( ) / ( )]1 2 1 1+ −r r , we use z[. ]025 .  
Because the standard normal curve tail area to the right of z[. ]025  is .025,  
the standard normal curve area between 0 and z[. ]025  is . . .5 025 475− = .  
Looking up .475 in the body of Table A3, we find that z[. ] .025 1 96= . 
Therefore, the desired confidence interval is
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It follows that a 95 percent confidence interval for r is
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2.7  Confidence Intervals and Prediction Intervals

We have seen that

y b b x b x b xk k
∧ = + + + + 0 1 01 2 02 0...

is

1.	The point estimate of

m b b b by x x x k kk
x x x| , ,...., ...

01 02 0 0 1 01 2 02 0= + + + +

the mean value of the dependent variable y when the values of the 
independent variables are x x x k01 02 0, , ..., .

2.	The point prediction of

y
x x x

y x x x

k k

k
= +
= + + + + +

m e
b b b b e

| , ,....,

...
01 02 0

0 1 01 2 02 0

an individual value of the dependent variable y when the values of 
the independent variables are x x x k01 02 0, , ..., .

Because different samples give different values of the least squares 
point estimates b b b bk0 1 2, , ,..., , different samples give different values of 
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the point estimate and point prediction y∧. Unless we are extremely lucky, 
the value of y∧ that we calculate using the sample we observe will not 
exactly equal the mean value of y or an individual value of y. Therefore, it 
is important to calculate a confidence interval for the mean value of y  and a 
prediction interval for an individual value of y. Both of these intervals are 
based on a quantity called the distance value. We first define this quantity, 
show how to calculate it, and explain its intuitive meaning. Then, we 
find the confidence interval and prediction interval based on the distance 
value.

The Distance Value

The distance value is

Distance value = ′ −x X X x0( ) 0′ 1

where x0 01 02 01′ = [ ... ]x x x k    is a row vector containing 
the numbers multiplied by b b b bk0 1 2, , ,...,  in the equation for 
y b b x b x b xk k
∧ = + + + + 0 1 01 2 02 0... .

Example 2.7

In the fuel consumption problem, recall that a weather forecasting service 
has told us that the average hourly temperature in the future week will 
be x01 40 0=  .  and the chill index in the future week will be x0 02  1= . We 
saw in Example 2.4 that

y  b +b x +b x0 1 01 2 02
∧ =

= − +
=

13 1087 09001 40 0 08249 10
10 333

. . ( . ) . ( )

. MMMcf of naturalgas

is the point estimate of the mean fuel consumption when x1 equals 40 and 
x2 equals 10, and is the point prediction of the individual fuel consump-
tion in a single week when x1 equals 40 and x2 equals 10. To calculate the

Distance value = ′x X X x0
-1

0( )′
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note that ′x0 is a row vector containing the numbers multiplied by the 
least squares point estimates b b0, 1, and b2 in the point estimate (and pre-
diction) y∧. Since 1 is multiplied by b x0 0, 1 = 40.0 is multiplied by b1, and 
x0 02  1=  is multiplied by b2, it follows that

′ = =x0 01 021 1 40 10[ ] [ ]x x 

and
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Hence, since we have previously calculated ( )X X 1′ −  (see Example 2.3), it 
follows that

Distance value = ′ −x X X x0
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To intuitively understand the distance value, first note that the 
averages of the observed average hourly temperatures and the observed 
chill indices in Table 2.3 are x1 = 43 98.  and x2 = 12 88. . The point 
( , ) ( . , . )x x1 2 = 43 98 12 88  is shown in Figure 2.17 and is regarded as 
the center of the experimental region shown in that figure. Figure 
2.17 also shows the point ( , ) ( , )x x01 02 = 40 10  representing the average 
hourly temperature and the chill index for which we wish to estimate 
the mean weekly fuel consumption and predict an individual weekly 
fuel consumption. The length of the line segment drawn between the 
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point ( , ) ( , )x x01 02 = 40 10  and the point ( , ) ( . , . )x x1 2 = 43 98 12 88  is the 
distance in two-dimensional space between these points. It can be shown 
that the distance value ′ ′ =−x X X x0

1 2157( ) 0 .  is reflective of this distance. 
That is, in general, the greater the distance is between a point ( , )x x01 02  
and the center ( , ) ( . , . )x x1 2 = 43 98 12 88  of the experimental region, the 
greater is the distance value. For example, Figure 2.17 shows that the dis-
tance between the point ( , ) ( , )x x01 02 = 30 18  and ( , ) ( . , . )x x1 2 = 43 98 12 88  
is greater than the distance between the point ( , ) ( , )x x01 02 = 40 10  
and ( , ) ( . , . )x x1 2 = 43 98 12 88 . Consequently, the distance value corre-
sponding to the point ( , ) ( , )x x01 02 30 18= , which is calculated using 
x0 1 1 30 18′ = =[ ] [ ]x x01 02  and equals ′ ′ =−x X X x0

1 2701( ) 0 . , is greater 
than the distance value corresponding to the point ( , ) ( , )x x01 02 = 40 10 ,  
which is calculated using ′ = =x0 1 1 40 10[ ] [ ]x x01 02  and equals .2157.

In general, let x x x k01 02 0, , ...,  be the values of the independent vari-
ables x x x1 2 k, , ,…  for which we wish to estimate the mean value of the 
dependent variable and predict an individual value of the dependent vari-
able. Also, define the center of the experimental region to be the point 
( , ,..., )x x xk1 2 , where x1 is the average of the previously observed x1 values, 
x2 is the average of the previously observed x2 values, and so forth. Then, 

20

The distance
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(x01, x02) = (40, 10)
and
(x1, x2) = (43.98, 12.88)
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Figure 2.17  Distances in the experimental region
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it can be shown that the greater the distance is (in k-dimensional space) 
between the point x x x k01 02 0, , ...,  and ( , ,..., )x x xk1 2 , the greater is the dis-
tance value ′ ′ −x X X x0

1( ) 0, where ′ =x0 01 02 01[ ... ]x x x k   .
It can also be shown (see Section B.7) that, if the regression assump-

tions hold, then the population of all possible values of the point esti-
mate y b b x b x b xk k

∧ = + + + +0 1 01 2 02 0...  is normally distributed with mean 
my x x x k| , ,....,01 02 0

 and standard deviation s s∧ =
y

Distance value . Since the 
standard error s is the point estimate of σ, the point estimate of s

y∧
 is 

s s
y∧

= Distance value, which is called the standard error of the estimate y∧ .  
Using this standard error, we can form a confidence interval. Note that 
the t[ / ]a 2  point used in the confidence interval (and in the prediction 
interval to follow) are based on n k− +( )  1  degrees of freedom.

A Confidence Interval For a Mean Value of y

If the regression assumptions hold, a 100 1 −( )a  percent confidence 
interval for the mean value of y  when the values of the independent 
variables are x x x k01 02 0, , ...,  is

y t s∧ ±



[ / ]a 2 Distance value

We develop a prediction interval for an individual value of y when 
the values of the independent variables are x x x k01 02 0, , ...,  by considering 
the prediction error y y− ∧ . After observing a particular sample from the 
infinite population of all possible samples and calculating a point pre-
diction y∧ based on this sample, we could observe any one of an infinite 
number of different individual values of y y x x x k

= +m e| , ,...,01 02 0
 (because of 

different possible error terms). Therefore, there are an infinite number 
of different prediction errors that could be observed. If the regression 
assumptions hold, it can be shown (see Section B.7) that the population 
of all possible prediction errors is normally distributed with mean 0 and 
standard deviation s s

( )y y− ∧ = 1+Distance value . The point estimate of 

s
( )y y−∧  is s s

y y( )− ∧ = 1+Distance value, which is called the standard error of 
the prediction error. Using this quantity we obtain a prediction interval as 
follows.
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Comparing the formula [ ][ / ]y t s∧ ± a 2 Distance value  for a con-
fidence interval for the mean value my x x x k| , ,....,01 02 0

 with the formula 
[ ][ / ]y t s∧ ± a 2 1 Distance value+  for a prediction interval for an individ-
ual value y y x x x k

= +m e| , ,...,01 02 0
, we note that the formula for the prediction 

interval has an “extra 1” under the radical. This makes the prediction 
interval longer than the confidence interval. Intuitively, the reason for 
the extra 1 under the radical is that, although we predict the error term 
to be zero when computing the point prediction y∧ of an individual value 
y y x x x k

= +m e| , ,...,01 02 0
, the error term will probably not be zero. The extra 1 

under the radical accounts for the added uncertainly that the error term 
causes, and thus the prediction interval is longer. Also, note the larger the 
distance value is, the longer are the confidence interval and the prediction 
interval. Said another way, when (x x x k01 02 0, , ..., ) is farther from the cen-
ter of the observed data, y b b x b x b xk k

∧ = + + + +0 1 01 2 02 0...  is likely to be 
less accurate as a point estimate and point prediction.

Before considering an example, consider the simple linear regression 
model y x    = + +b b e0 1 . For this model y b b x∧ = +0 1 0  is the point esti-
mate of the mean value of y when x is x0 and is the point prediction of 
an individual value of y when x is x0. Therefore, since 1 is multiplied by 
b0 and x0 is multiplied by b1 in the expression y b b x∧ = +0 1 0 , it follows that 

′ =x0 011[ ]x . If we use ′x0 to calculate the distance value, it can be shown 
that

Distance value = ′ ′ = + −−x X X x0
1

21
( ) 0

0

n
( )x x

SSxx

A Prediction interval for an individual value of y

If the regression assumptions hold, a 100 1 −( )a  percent prediction 
interval for an individual value of y  when the values of the indepen-
dent variables are x x x k01 02 0, , ...,  is

y t s∧ ±



[ / ]a 2 1 Distance value+
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Example 2.8

In Example 2.7 we have seen that

y x x∧ = − +
= − +

13 1087 09001 08249
13 1087 09001 40 08249 1

01 02. . .
. . ( ) . ( 00

10 333
)

.= MMcf of natural gas

is the point estimate of mean weekly fuel consumption when x1 equals 
40 and x2 equals 10, and is the point prediction of the individual fuel 
consumption in a single week (next week) when x1 equals 40 and x2 
equals 10. We have also seen that the distance value equals .2157. There-
fore, since we recall from Section 2.3 that the standard error, s, is .3671, 
it  follows that a 95 percent confidence interval for the mean fuel con-
sumption is

y t s∧ ±





= ± [. ] . . (. ) .025 10 333 2 571 3671 2157Distance value 

= ±[ ]
=  

10 333 438

9 895 10 771

. .

. , .

Here, t[. ]025  = 2.571 is based on n k          − +( ) = − =1 8 3 5 degrees of 
freedom. This interval says we are 95 percent confident that mean weekly 
fuel consumption for all weeks having an average hourly temperature of 
40°F and a chill index of 10 is between 9.895 MMcf of natural gas and 
10.771 MMcf of natural gas. Furthermore, a 95 percent prediction inter-
val for the individual fuel consumption is

y t s∧
[ ]± +





= ±. . . (. ) .025 1 10 333 2 571 3671 1 2157Distance value  

= ±[ ]
=  

10 333 1 04

9 293 11 374

. .

. , .

This interval says that we are 95 percent confident that the amount of 
fuel consumed in a single week (next week) when the average hourly tem-
perature is 40°F and the chill index is 10 will be between 9.293 MMcf of 
natural gas and 11.374 MMcf of natural gas.



88	 REGRESSION ANALYSIS

The point prediction y∧ = 10.333 of next week’s fuel consumption 
would be the natural gas company’s transmission nomination (order of 
natural gas from the pipeline transmission service) for next week, This 
point prediction is the midpoint of the 95 percent prediction interval, 
[9.293, 11.374], for next week’s fuel consumption. As previously calcu-
lated, the half-length of this interval is 1.04, and the 95 percent predic-
tion interval can be expressed as [10.333 ± 1.04]. Therefore, since 1.04 is 
(1.04/10.333)100% = 10.07% of the transmission nomination of 10.333, 
the model makes us 95 percent confident that the actual amount of natural 
gas that will be used by the city next week will differ from the natural gas 
company’s transmission nomination by no more than 10.07 percent. That 
is, we are 95 percent confident that the natural gas company’s percentage 
nomination error will be less than or equal to 10.07 percent. It follows 
that this error will probably be within the 10 percent allowance granted 
by the pipeline transmission system, and it is unlikely that the natural gas 
company will be required to pay a transmission fine.

The bottom of the Minitab output in Figure 2.10 gives the point esti-
mate and prediction y∧ = 10.333, along with the just calculated confidence 
and prediction intervals. Moreover, although the Minitab output does not 
directly give the distance value, it does give s sy∧ = Distance value  under 
the heading “SE Fit.” Specifically, since the Minitab output tells us that  
s

y∧
 equals .170 and also tells us that s equals .3671, the Minitab output tells 

us that the distance value equals ( / ) (. / . ) . .s s
y∧

= =2 2170 3671 2144515  
The reason that this value differs slightly from the value calculated using 
matrices is that the values of s

y∧
 and s on the Minitab output are rounded.

In order to use the simple linear regression model y x    = + +b b e0 1  
to predict next week’s fuel consumption on the basis of just the aver-
age hourly temperature of 40°F, recall from Example 2.2 that 
b b x0 = = − =15 84 1279 43 981. , . , . , and SSxx =  14 4  3550 . . Also recall 
from Section 2.3 that s = .6542. The simple linear regression model’s point 
prediction of next week’s fuel consumption is y∧ = 15.84 - .1279(40) = 
10.72 MMcf of natural gas. Furthermore, we compute the distance value 
to be 1    1 8   4   43 98 14 4 355  2 2/ ( ) / / . / .n( ) + − = ( ) + −( ) =x x SSxx0 0 0 ..1362

be 1    1 8   4   43 98 14 4 355  2 2/ ( ) / / . / .n( ) + − = ( ) + −( ) =x x SSxx0 0 0 ..1362. Since t[. ]025  based on n k            − +( ) = − +( ) =1 8 1 1 6  
degrees of freedom is 2.447, a 95 percent prediction interval for next 
week’s fuel consumption is



	 Simple and Multiple Regression: An Integrated Approach	 89

y t s∧
[ ]± +





= ±
. . . (. ) .025 1 10 72 2 447 6542 1 1362Distance value  

= ±[ ]
=  

10 72 1 71

9 01 12 43

. .

. , .

Now, consider using the point prediction y∧ =  1 720.  given by the simple 
linear regression model as the natural gas company’s transmission nomi-
nation for next week. Also, note that the half-length of the 95 percent pre-
diction interval given by this model is 1.71, which is (1.71/10.72)100% 
= 15.91% of the transmission nomination. In this case we would 
be 95 percent confident that the actual amount of natural gas that will 
be used by the city next week will differ from the natural gas company’s 
transmission nomination by no more than 15.91 percent. That is, we 
would be 95 percent confident that the natural gas company’s percent-
age nomination error will be less than or equal to 15.91 percent. It fol-
lows that we would not be confident that the company’s percentage 
nomination error will be within the 10 percent allowance granted by 
the pipeline transmission system. Consequently, the natural gas com-
pany needs to base its natural gas nomination on the point prediction y∧ 
= 10.333 MMcf of natural gas given by the two independent variable fuel 
consumption model y x x= + + +b b b0 1 1 2 2 e .

To conclude this example, consider Figure 2.18. This figure illustrates- 
in the context of the fuel consumption model y x= + +b b e0 1  that uses 
only the average hourly temperature x - the effect of the distance value on 
the lengths of confidence intervals and prediction intervals. Specifically, 
this figure shows that as an individual value x0 of x moves away from the 
center of the experimental region (x  = 43.98), the distance value gets 
larger, and thus both the confidence interval for the mean value of y and 
the prediction interval for an individual value of y get longer.

2.8  Inverse Prediction In Simple Linear Regression

Ott and Longnecker (2010) present an example where an engineer wishes 
to calibrate a flow meter used on a liquid-soap production line. To perform 
the calibration, the engineer fixes the flow rate x on the production line at 10 
different values—1, 2, 3, 4, 5, 6, 7, 8, 9, and 10—and observes the correspond-
ing readings (y)—1.4, 2.3, 3.1, 4.2, 5.1, 5.8, 6.8, 7.6, 8.7, and 9.5—given 
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by the flow meter. If we consider fitting the simple linear regression model 
y x= + +b b e0 1  to these data, we find that x y= = =5 5 5 45 74 35. , . , . ,SSxy  

and SSxx =  82 5. . This implies that b S xy xx1  74 35 82 5  9 12= = =S SS/ . / . . 0  
and b b10 5 45 9012 5 5 4934= − = − =y x . . ( . ) . . Moreover, we find that  
SSE s SSE n= = −( ) = −( ) =. , / . / .0 0 0 0 0 006 8  2 6 8 1 2 762 , s s sb= = = =. / . / . .0076 0872 82 5 0096.0872, 

1
=  SSxx  

s s sb= = = =. / . / . .0076 0872 82 5 0096.0872, 
1

=  SSxx , and the t  statistic for test-
ing H0 0: b1  =  is t b s= = =1 1

 9 12 96  93 87/ . / . .b 0 00 . The inverse predic-
tion problem asks us to predict the x value that corresponds to a particular 
y value. That is, sometime in the future the liquid soap production line will 
be in operation, we will make a meter reading y of the flow rate and we 
would like to know the actual flow rate x. The point prediction of and a 100 
1 −( )a  percent prediction interval for x are as follows.

Inverse Prediction

If the regression assumptions are satisfied for the simple linear regres-
sion model, then

1.	A point prediction of the x value that corresponds to a particular 
y value is x y b b∧ = −( ) /0 1.
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Figure 2.18  Confidence and prediction intervals for the fuel 
consumption model y x= + +b b f0 1
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In order to discuss the prediction interval, note that 

c t s b SS t txx= [ ] [ ]a a/ // /2 1 2can be shown to equal

where t b= 1 1
/ sb . To use the prediction interval, we require that t t> [ / ],a 2  

which implies that c c< <1 12,  , and 1 2  −( )c  in the prediction interval 
formula is greater than zero and less than one. For example, suppose that we 
wish to have a point prediction of and a 1 1   9500 −( ) =a % % prediction 
interval for the actual flow rate x that corresponds to a meter reading of y =  4. 
The point prediction of x is x∧ = − = − =( ) / ( . ) / . . .y b b0 1 4 4934 9012 3 8910  
Moreover, t t[ / ] [. ]a 2 025=   (based on n - 2 = 10 - 2 = 8 degrees of freedom) 
is 2.306. Because t  has been previously calculated to be 93.87 and because 
t t  93 87  2 3 6 025= > =. . [. ]0  we can calculate a 95 percent prediction 
interval for x as follows:

c
t s
b xx

2 2
2 2

1
2

2

2

2 306 0076
9012 82 5

0006= = =
(

 SS
[ / ] ) ( . ) (. )

(. ) ( . )
.a

11 9994 5 52− = =−c x s. . =.0872

Inverse Prediction (Continued)

2.	A 100(1 - a) percent prediction interval for the x value that cor-
responds to a particular y value is [ x x∧ ∧

L U, ], where

x x
c

x x d

x x
c

x x d

d
t

∧ − ∧ −

∧ − ∧ −

= +
−

− −





= +
−

− +





=

L

U

1
1

1
1

2

2

( )

( )

a // [ / ]( )
( )

( ) ( )2

1

2 2 2
2 2

1
2

1
1[ ]

∧ −+ − + − =
s

b
n

n
c

x x
SS

c
t s
b SSxx xx

and a

Here t[ / ]a 2  is based on n - 2 degrees of freedom.
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x∧ = + −


+

U 5 5
1

9994
3 8910 5 5

2 306 0872
9012

11
10

9994

.
.

( . . )

. (. )
.

(. ) ++ − 





( . . )
.

3 8910 5 5
82 5

2

= + − + =

= + − −∧

5 5
1

9994
1 6090 2373 4 1274

5 5
1

9994
1 6090 2

.
.

( . . ) .

.
.

( . .xL 3373 3 6526) .=

Therefore, we are 95 percent confident that the actual flow rate  when the 
meter reading is y =  4 is between 3.6526 and 4.1274.

2.9  Regression Through the Origin in Simple  
Linear Regression

It can be shown that the least squares point estimate of b1 in the model 
y x= +b e1  is b x y xi i

i

n

i
i

n

1
1

2

1

=
= =
∑ ∑/ . We reject H0 0: b1  =  in favor of 

Ha : b1  ≠ 0 at level significance a  if t  = b s1 / b 1
 is greater in absolute 

value than t[ / ]a 2 , which is based on n  1−( ) degrees of freedom. Here 

s s xb i
i

n

1

2

1

1 2

=




=

∑/
/

, where s SSE n = /( 1)−  and SSE y b xi i

n

=
i

( )−
=
∑ 1

2

1

. If x0 

is an individual value of x, then a 100 1 −( )a  percent confidence inter-
val for the mean value of y is [ ][ / ]

/y t s x∧

=

± ∑a 2 0
2 2

1

1 2( / )ix
i

n

, and a 100 1 −( )a   
percent prediction interval for an individual value of y is 
[ ][ / ]

/y t s x∧

=

± ∑a 2 0
2 2

1

1 2(1+ / )ix
i

n

. Here, y b x∧ = 1 0.

2.10  Using SAS

In Figure 2.19 we present the SAS program needed to carry out a multiple 
regression analysis of the sales territory performance data in Table 2.5(a). 
This program gives the SAS output in Table 2.5(c).

2.11  Exercises

Exercise 2.1

Ott (1984) presents twelve observations concerning y = weight loss 
of a compound (in pounds), x1 = the amount of time the compound 
was exposed to the air (in hours), and x2 = the relative humidity of the 
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environment during exposure. The twelve observations of y are 4.3, 5.5, 
6.8, 8.0, 4.0, 5.2, 6.6, 7.5, 2.0, 4.0, 5.7, and 6.5. The corresponding 
observations of x1 are 4, 5, 6, 7, 4, 5, 6, 7, 4, 5, 6, and 7. The correspond-
ing observations of x2 are .20, .20, .20, .20, .30, .30, .30, .30, .40, .40, 
.40, and .40. If we use the regression model y x x= + + +b b b e0 1 1 2 2  to 
relate y to x1, and x2, then we define the following y vector and X  matrix 
and make the following calculations:

y X= =

4 3
5 5

6 5

1
1

1

4
5

7

20
20

40

.

.

.

.

.

.
� � � �

























































X X′ =
12
66
3 6

66
378
19 8

3 6
19 8
1 16. .

.
.

.

( )
.

.

.

.
.
.

.
.X X′ − = −

−

− −
1

3 2250
0 3667
3 7500

0 3667
0 0667
0 0000

3 7500
0 00000
12 5000

66 1
383 3
19 19.

.
.

.

































X y′ =  

Using the data given and these matrices, show that (within rounding):

(a)	b b b0 0= = = −66667 1 31667  and 81 2, . , . ; also, interpret the meaning 
of these least squares point estimates.

DATA TERR;
INPUT Sales Time MktPoten Adver Mktshare Change;
DATALINES;

3669 88
3473 95

2799 97

43 10
108 13

21 14
85 42

74065 11
58117 3

.

.

.
.

.
.

.

.

.

. 00

22809 53
35182 73

4582 88
5539 78

3552 00
7281 65

2 51
5 51

9 1
�

.

.

.

.

.

.

.

.

. 44
9 64

34
15

74
28.

.

.

.
.
−














→

PROC PRINT;
PROC REG DATA = TERR;
MODEL Sales = Time MktPoten Adver MktShare Change/P CLM CLI;

(Note: If we do not wish to have an intercept b0 in the model, we 
would add in the command “NOINT” after the slash in the MODEL 
statement).

Figure 2.19  Sales territory performance data SAS program

Sales territory
performance
data (See
Table 2.5)
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(b)	 SSE y s si
i

= − ′ ′ = = =
=
∑ 2

1

12
21 3450 14944 38658b X y . ; . ; . .

(c)	 y n y− −= = ′ ′ − =5 50833 31 124172. ; .Explained variation b X y

(d)	 Total variation = − =
=

−∑ y n yi
i

2

1

12
2 32 46917. .

(e)	R R2 2
958576=

−
. ; .also calculate

(f )	F(model) = 104.13; also test H0 1 2 0: b b= =   by setting a  equal to 
.05 and using a rejection point; what does the test tell you?

(g)	 s s c t b s s s c t b sb b b b0 0 1 100 0 11 169423 96 09981 13 1= = = = = = = =. , / . ; . , / . 99 1 36677 5 85
2 222 2; . , / . ;s s c t b sb b= = = = − 

s s c t b s s s c t b sb b b b0 0 1 100 0 11 169423 96 09981 13 1= = = = = = = =. , / . ; . , / . 99 1 36677 5 85
2 222 2; . , / . ;s s c t b sb b= = = = −  

also test each of H0 0 0: b =   versus H Ha : , :b b0 0 0≠ =  0 1  versus 
Ha : b1  ≠ 0, and H0 0: b2 =  versus Ha : b2 ≠ 0  by setting a  equal 
to .05 and using a rejection point. What does each test tell you?

(h)	Calculate 95 percent confidence intervals for b b0 , 1, and b2. Interpret 
what these intervals say.

(i)	Suppose that we are considering exposing the compound to the 
air for 6.5 hours at 35 percent relative humidity. Since we will 
expose many amounts of the same weight of the compound to the 
air, the mean weight loss per amount is of interest (because this 
mean multiplied by the number of amounts exposed approxi-
mates the total weight loss). Verify that y∧ = 6.425 is a point 
estimate of and [6.05269, 6.79731] is a 95 percent confidence 
interval for the mean weight loss when x1 = 6.5 and x2 = .35. 
Are we 95 percent confident that the mean weight loss when x1 
= 6.5 and x2 = .35 is less than 7 pounds. Explain. Find a point 
prediction of and a 95 percent prediction interval for the weight 
loss of an individual amount of the compound when x1 = 6.5 
and x2 = .35.

Exercise 2.2

Recall that Figure 2.11 is the SAS output of a regression analysis of the 
sales territory performance data in Table 2.5 by using the model

y x x x x x= + + + + + +b b b b b b e0 1 1 2 2 3 3 4 4 5 5
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(a)	Show how F(model) = 40.91 has been calculated by using other 
quantities on the output. The SAS output tells us that the p-value 
related to F(model) is less than .0001. What does this say?

(b)	The SAS output tells us that the p-values for testing the significance 
of the independent variables Time, MktPoten, Adver, MktShare, and 
Change are, respectively, .0065, < .0001, .0025, < .0001, and .0530. 
Interpret what these p-values say. Note: Although the p-value of 
.0530 for testing the significance of Change is larger than .05, we 
will see in Chapter 4 that retaining Change x2( )  in the model makes 
the model better.

(c)	Consider a questionable sales representative for whom Time = 
85.42, MktPoten = 35,182.73, Adver = 7281.65, MktShare = 
9.64, and Change = .28. In Example 2.5 we have seen that the 
point prediction of the sales corresponding to this combination of 
values of the independent variables is y∧ = 4182 (that is, 418,200 
units). In addition to giving y∧ = 4182, the SAS output tells us that 
s s
y∧

= Distance value  (shown under the heading “Std Error Pre-
dict”) is 141.8220. Since the SAS output also tells us that s for the 
sales territory performance model equals 430.23188, the distance 
value equals (s s

y∧
/ )2 = (141.8220/430.23188)2 = .109. Specify 

what row vector ′x0  SAS used to calculate the distance value by the 
matrix algebra expression ′ ′ −x X X x0( ) 1

0. Then, use y∧, the distance 
value, s, and t[.025] based on n k            − +( ) = − +( ) =1 25 5 1 19 
degrees of freedom to verify that (within rounding) the 95 per-
cent prediction interval for the sales corresponding to the ques-
tionable sales representative’s values of the independent variables 
is [3234, 5130]. This interval is given on the SAS output. Recall-
ing that the actual sales for the questionable representative were 
3082, why does the prediction interval provide strong evidence 
that these actual sales were unusually low?

Exercise 2.3

Consider the model y x= +b e1  describing regression through the ori-
gin in simple linear regression. For this model, the y column vector is 
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a column vector containing the n observed values     1 2 ny y y, , . . . ,  of the 
dependent variable, and the matrix X is a column vector containing the 
n observed values x x xn1 2, , ,…  of the independent variable. Show that 
X X′  equals x

n

i
i

2

1=
∑ , which implies that ( ) /X X′ −

=

= ∑1 2

1

1 x
n

i
i

. Then show that 
the matrix algebra formula b X X X y = ( )′ − ′1  gives the least squares point 
estimate b x y xi i

i

n

i
i

n

1
1

2

1
1=

= =
∑ ∑/ of  b .



CHAPTER 3

More Advanced  
Regression Models

3.1  Using Squared and Interaction Terms

One useful form of the linear regression model is what we call the qua-
dratic regression model. Assuming that we have obtained n observations—
each consisting of an observed value of y and a corresponding value of 
x—the model is as follows.

The quadratic regression model

The quadratic regression model relating y to x is

y x x= + + +β β β ε0 1 2
2

where

1.	β β β0 1 2
2

+ +x x  is my x| , the mean value of the dependent variable 
y when the value of the independent variable is x.

2.	β0, b1, and β2 are (unknown) regression parameters relating the 
mean value of y to x.

3.	e is an error term that describes the effects on y of all factors other 
than x and x 2.

The quadratic equation m b b by x x x| = + +0 1 2
2   that relates my x|  to x 

is the equation of a parabola. Two parabolas are shown in Figure 3.1(a) 
and (b) and help to explain the meanings of the parameters β0, b1, and β2.  
Here β0 is the y-intercept of the parabola (the value of my x|  when x = 0). 



98	 REGRESSION ANALYSIS

Furthermore, b1 is the shift parameter of the parabola: the value of b1 shifts 
the parabola to the left or right. Specifically, increasing the value of b1 
shifts the parabola to the left. Lastly, β2 is the rate of curvature of the parab-
ola. If β2 is greater than 0, the parabola opens upward (see Figure 3.1[a]). 
If β2 is less than 0, the parabola opens downward (see Figure 3.1[b]). If 
a scatter plot of y versus x shows points scattered around a parabola, or a 
part of a parabola (some typical parts are shown in Figure 3.1[c], [d], [e], 
and [f ]), then the quadratic regression model might appropriately relate 
y to x.

It is important to note that although the quadratic model employs 
the squared term x 2  and therefore assumes a curved relationship between 
the mean value of y and x, this model is a linear regression model. This is 
because the expression β β β0 1 2

2
+ +   x x  expresses the mean value of y 

as a linear function of the parameters β0, b1, and β2. In general, as long as 
the mean value of y is a linear function of the regression parameters, we are 
using a linear regression model.

Example 3.1

An oil company wishes to improve the gasoline mileage obtained by cars 
that use its premium unleaded gasoline. Company chemists suggest that 
an additive, ST-3000, be blended with the gasoline. In order to study the 

my

x

(a)

my

x

(b)

my

x

(c)

my

x

(d)

my

x

(e)

my

x

(f)

Figure 3.1  The mean value of y changing in a quadratic fashion as x 
increases
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effects of this additive, mileage tests are carried out in a laboratory using 
test equipment that simulates driving under prescribed conditions. The 
amount of additive ST-3000 blended with the gasoline is varied, and the 
gasoline mileage for each test run is recorded. Table 3.1 gives the results of 
the test runs. Here the dependent variable y is gasoline mileage (in miles 
per gallon, mpg) and the independent variable x is the amount of additive 
ST-3000 used (measured as the number of units of additive added to each 
gallon of gasoline). One of the study’s goals is to determine the number 
of units of additive that should be blended with the gasoline to maximize 
gasoline mileage. The company would also like to predict the maximum 
mileage that can be achieved using additive ST-3000.

Figure 3.2 gives a scatter plot of y versus x. Since the scatter plot has 
the appearance of a quadratic curve (that is, part of a parabola), it seems 
reasonable to relate y to x by using the quadratic model

y x x= + + +β β β ε0 1 2
2  

Table 3.1  Gasoline mileage data

Additive units (x) Gasoline mileage (y)
0 25.8

0 26.1

0 25.4

1 29.6

1 29.2

1 29.8

2 32.0

2 31.4

2 31.7

3 31.7

3 31.5

3 31.2

4 29.4

4 29.0

4 29.5
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Figure 3.3 gives the MINITAB output of a regression analysis of the 
data using this quadratic model. Here the squared term x 2 is denoted as 
UnitsSq on the output. The MINITAB output tells us that the least squares 
point estimates of the model parameters are b b0 125 7152 4 9762= =. , . ,
and b2 1 01905= − . . These estimates give us the least squares prediction 
equation

y x x∧ = + −25 7152 4 9762 1 01905 2. . .  

This is the equation of the best quadratic curve that can be fitted to the 
data plotted in Figure 3.2. The MINITAB output also tells us that the 
p-values related to x and x 2 are less than .001. This implies that we have 
very strong evidence that each of these model components is significant. 
The fact that x 2 seems significant confirms the graphical evidence that 
there is a quadratic relationship between y and x. Once we have such 
confirmation, we usually retain the linear term x in the model no mat-
ter what the size of its p-value. The reason is that geometrical consider-
ations indicate that it is best to use both x and x 2 to model a quadratic 
relationship.

The oil company wishes to find the value of x that results in the highest 
predicted mileage. Using calculus, it can be shown that the value x = 2 44.  
maximizes predicted gas mileage. Therefore, the oil company can maximize 
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Gas mileage vs units of ST-3000
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Figure 3.2  Scatter plot of gasoline mileage(y) versus number of units 
(x) of additive ST-3000
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predicted mileage by blending 2.44 units of additive ST-3000 with each 
gallon of gasoline. This will result in a predicted gas mileage equal to

y∧ = +
=

( ) − ( ) 
 miles per 

25 7152 4 9762 2 44 01905 2 44
31 7901

1 2. . . . .
. ggallon

This predicted mileage is the point estimate of the mean mileage 
that would be obtained by all gallons of the gasoline (when blended as 
just described) and is the point prediction of the mileage that would be 
obtained by an individual gallon of the gasoline. Note that y∧ = 31 7901.  
is given at the bottom of the MINITAB output in Figure 3.3. In addi-
tion, the MINITAB output tells us that a 95% confidence interval for 
the mean mileage that would be obtained by all gallons of the gasoline is 
[31.5481, 32.0322]. If the test equipment simulates driving conditions in 
a particular automobile, this confidence interval implies that an owner of 
the automobile can be 95% confident that he or she will average between 
31.5481 mpg and 32.0322 mpg when using a very large number of gallons 
of the gasoline. The MINITAB output also tells us that a 95% prediction 
interval for the mileage that would be obtained by an individual gallon of 
the gasoline is [31.1215, 32.4588].

Multiple regression models often contain interaction variables. We 
form an interaction variable by multiplying two independent variables 

The regression equation is
Milleage = 25.7 + 4.98 Units - 1.02 UnitsSq

S = 0.286079 R-Sq = 98.6% R-Sq(adj) = 98.3%

Fit SE Fit 95% CI 95% PI
31.7901 0.1111 (31.5481, 32.0322) (31.1215, 32.4588)

Analysis of Variance
Source DF SS MS F P
Regression 2 67.915 33.958 414.92 0.000
Residual Error 12 0.982 0.082
Total 14 68.897

Predictor Coef SE Coef T P
Constant 25.7152 0.1554 165.43 0.000
Units 4.9762 0.1841 27.02 0.000
UnitsSq -1.01905 0.04414 -23.09 0.000

Figure 3.3  MINITAB output for the gasoline mileage quadratic 
regression model
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together. For instance, if a regression model includes the independent 
variables x1 and x2, then we can form the interaction variable x1x2. It is 
appropriate to employ an interaction variable if the relationship between 
the dependent variable y and one of the independent variables depends 
upon the value of the other independent variable. In the following exam-
ple we consider a multiple regression model that uses a linear variable, a 
squared variable, and an interaction variable.

Example 3.2

Enterprise Industries produces Fresh, a brand of liquid laundry deter-
gent. In order to more effectively manage its inventory and make revenue 
projections, the company would like to better predict demand for Fresh. 
To develop a prediction model, the company has gathered data concern-
ing demand for Fresh over the last 30 sales periods (each sales period is 
defined to be a four-week period). The demand data are presented in 
Table 3.2. Here, for each sales period,

y = the demand for the large size bottle of Fresh (in hundreds of thou-
sands of bottles) in the sales period

x1 = the price (in dollars) of Fresh as offered by Enterprise Industries 
in the sales period

x2 = the average industry price (in dollars) of competitors’ similar 
detergents in the sales period

x3 = Enterprise Industries’ advertising expenditure (in hundreds of 
thousands of dollars) to promote Fresh in the sales period

x x x4 2 1= − = the “price difference” in the sales period
To begin our analysis, suppose that Enterprise Industries believes on 
theoretical grounds that the single independent variable x4 adequately 
describes the effects of x1 and x2 on y. That is, perhaps demand for Fresh 
depends more on how the price for Fresh compares to competitors’ prices 
than it does on the absolute levels of the prices for Fresh and other com-
peting detergents. This makes sense since most consumers must buy a 
certain amount of detergent no matter what the price might be.

Figures 3.4 and 3.5 present scatter plots of y versus x4 and y versus x3.  
Because the plot in Figure 3.4 shows a linear relationship between y 
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Table 3.2  Historical data, including price differences, concerning 
demand for Fresh detergent

Sales 
period

Price 
for 

Fresh 
x1($)

Average 
industry 
price, x2

($)

Price 
difference, 

x x x4 = −2 1 
($)

Advertising 
expenditure 
for Fresh, x3 

(    $ 100,000)

Demand for 
Fresh, y  

(    100,000 
bottles)

  1 3.85 3.80 -.05 5.50 7.38

  2 3.75 4.00 .25 6.75 8.51

  3 3.70 4.30 .60 7.25 9.52

  4 3.70 3.70 0 5.50 7.50

  5 3.60 3.85 .25 7.00 9.33

  6 3.60 3.80 .20 6.50 8.28

  7 3.60 3.75 .15 6.75 8.75

  8 3.80 3.85 .05 5.25 7.87

  9 3.80 3.65 -.15 5.25 7.10

10 3.85 4.00 .15 6.00 8.00

11 3.90 4.10 .20 6.50 7.89

12 3.90 4.00 .10 6.25 8.15

13 3.70 4.10 .40 7.00 9.10

14 3.75 4.20 .45 6.90 8.86

15 3.75 4.10 .35 6.80 8.90

16 3.80 4.10 .30 6.80 8.87

17 3.70 4.20 .50 7.10 9.26

18 3.80 4.30 .50 7.00 9.00

19 3.70 4.10 .40 6.80 8.75

20 3.80 3.75 -.05 6.50 7.95

21 3.80 3.75 -.05 6.25 7.65

22 3.75 3.65 -.10 6.00 7.27

23 3.70 3.90 .20 6.50 8.00

24 3.55 3.65 .10 7.00 8.50

25 3.60 4.10 .50 6.80 8.75

26 3.65 4.25 .60 6.80 9.21

27 3.70 3.65 -.05 6.50 8.27

28 3.75 3.75 0 5.75 7.67

29 3.80 3.85 .05 5.80 7.93

30 3.70 4.25 .55 6.80 9.26
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and  x4, we should use x4 to predict y. Because the plot in Figure 3.5 
shows a quadratic relationship between y and x3, we should use x3 and 
x3

2 to predict y. Moreover, if x4 and x3 interact, then we should use the 
interaction term x4x3 to predict y. This gives the model 

y x x x x x= + + + + +b b b b b e0 1 4 2 3 3 3
2

4 4 3

By using the data in Table 3.2, we define the column vector 

y =
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
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Figure 3.4  Plot of y versus x4
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and the matrix
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Thus we can calculate the least squares point estimates of b b b b0 1 2 3, , ,  and    
to be
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Figure 3.6 presents the SAS output obtained by using the interaction model 
to perform a regression analysis of the Fresh demand data. This output 
shows that each of the p-values for testing the significance of the intercept 
and the independent variables is less than .05. Therefore, we have strong 
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evidence that the intercept and each of x x x x x4 3 3
2

4 3, , ,   and  are significant. 
In particular, since the p-value related to x x4 3 is .0361, we have strong evi-
dence that the interaction variable x x4 3 is important. This confirms that the 
interaction between x4 and x3 that we suspected really does exist.

 Suppose that Enterprise Industries wishes to predict demand for Fresh 
in a future sales period when the price difference will be $.20 (x4 20= . ) and 
when the advertising expenditure for Fresh will be $650,000 (x3 6 50= . ).  
Using the least squares point estimates  in Figure 3.6, the needed point pre-
diction is 

	
y∧ = + − +     29 11329 11 13423 20 7 60801 6 50 67125 6 50 2. . (. ) . ( . ) . ( . )   

− 1.47772(.20)(6.50)

=  8.3272 (832,720 bottles)

This point prediction is given on the SAS output of Figure 3.6, which 
also tells us that the 95% confidence interval for mean demand when 
x4 equals .20 and x3 equals 6.50 is [8.2112, 8.4433] and that the 95% 
prediction interval for an individual demand when x4 equals .20 and x3

equals 6.50 is [7.8867, 8.7678]. Here, since

	
x′0

21 20 6 50 6 50 20 6 50 1 20 6 50 42 25 1 3= =[ . . ( . ) (. )( . )] [ . . . . ]

the distance value can be computed to be x (X X) x0
-1

0¢¢ ¢¢ = .07366. Since 
s   = .20634 and n k− + = − =( 1 30 5 25) , the 95% prediction interval for 
the demand is 

	
y t s∧ ± +





= ± +[. ] Distance value . . (. ) .025 1 8 3272 2 060 20634 1 073366

7 8867 8 7678

 
= [ . , . ]

This interval says that we are 95 percent confident that the actual demand 
in the future sales period will be between 788,670 bottles and 876,780 
bottles. The upper limit of this interval can be used for inventory con-
trol. It says that if Enterprise Industries plans to have 876,780 bottles on 
hand to meet demand in the future sales period, then the company can 
be very confident that it will have enough bottles. The lower limit of the 
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interval can be used to better understand Enterprise Industries’ cash flow 
situation. It says the company can be very confident that it will sell at least 
788,670 bottles in the future sales period.

To investigate the nature of the interaction between x3 and x4, consider 
the prediction equation

	
y x x x x x∧ = + − + −29 11329 11 13423 7 60801 67125 1 477724 3 3

2
4 3. . . . .

obtained from the least squares point estimates in Figure 3.6. Also, con-
sider the six combinations of price difference x4 and advertising expendi-
ture x3 obtained by combining the x4 values .10 and .30 with the x3 values 
6.0, 6.4, and 6.8. When we use the prediction equation to predict the 
demands for Fresh corresponding to these six combinations, we obtain 
the predicted demands ( y∧) shown in Figure 3.7(a) (Note that we con-
sider two x4 values because there is a linear relationship between y and x4,  
and we consider three x3 values because there is a quadratic relationship 
between y and x3). Now

1.	If we fix x3 at 6.0 in Figure 3.7(a) and plot the corresponding y∧ values 
7.86 and 8.31 versus the x4 values .10 and .30, we obtain the two 
squares connected by the lowest line in Figure 3.7(b). Similarly, if we 
fix x3 at 6.4 and plot the corresponding y∧ values 8.08 and 8.42 versus 
the x4 values .10 and .30, we obtain the two squares connected by the 
middle line in Figure 3.7(b). Also, if we fix x3 at 6.8 and plot the cor-
responding y∧ values 8.52 and 8.74 versus the x4 values .10 and .30, we 
obtain the two squares connected by the highest line in Figure 3.7(b). 
Examining the three lines relating y∧ to x4, we see that the slopes of 
these lines decrease as x3 increases from 6.0 to 6.4 to 6.8. This says that 
as the price difference x4 increases from .10 to .30 (that is, as Fresh 
becomes less expensive compared to its competitors), the rate of increase 
of predicted demand y∧ is slower when advertising expenditure x3 is 
higher than when advertising expenditure x3 is lower. Moreover, this 
might be logical because it says that when a higher advertising expendi-
ture makes more customers aware of Fresh’s cleaning abilities and thus 
causes customer demand for Fresh to be higher, there is less opportu-
nity for an increased price difference to increase demand for Fresh.
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2.	If we fix x4 at .10 in Figure 3.7(a) and plot the corresponding y∧ val-
ues 7.86, 8.08, and 8.52 versus the x3 values 6.0, 6.4, and 6.8, we 
obtain the three squares connected by the lower quadratic curve in 
Figure 3.7(c). Similarly, if we fix x4 at .30 and plot the corresponding 
y∧ values 8.31, 8.42, and 8.74 versus the x3 values 6.0, 6.4, and 6.8, 
we obtain the three squares connected by the higher quadratic curve 
in Figure 3.7(c). The nonparallel quadratic curves in Figure 3.7(c) 
say that as advertising expenditure x3 increases from 6.0 to 6.4 to 
6.8, the rate of increase of predicted demand y∧ is slower when the 
price difference x4 is larger (that is, x4 = .30) than when the price 
difference x4 is smaller (that is, x4 = .10). Moreover, this might be 
logical because it says that when a larger price difference causes cus-
tomer demand for Fresh to be higher, there is less opportunity for 
an increased advertising expenditure to increase demand for Fresh.

(a) (b)
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Figure 3.7  Interaction between x4 and x3 (a) predicted demands  
(y∧ values) (b) plots of y∧ versus x4 for different x3 values (c) plots of y∧ 
versus x3 for different x4 values
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To summarize the nature of the interaction between x4 and x3, we 
might say that a higher value of each of these independent variables some-
what weakens the impact of the other independent variable on predicted 
demand. In Exercise 3.1 we will consider a situation where a higher value 
of each of two independent variables somewhat strengthens the impact of 
the other independent variable on the predicted value of the dependent 
variable. Moreover, if the p-value related to x x4 3 in the Fresh detergent 
situation had been large and thus we had removed x x4 3 from the model 
(that is, no interaction), then the plotted lines in Figure 3.7(b) would have 
been parallel and the plotted quadratic curves in Figure 3.7(c) would have 
been parallel. This would mean that predicted demand always responds 
in the same way to a change in one independent variable, regardless of the 
other independent variable’s value.

As another example, if we perform a regression analysis of the fuel 
consumption data by using the model

y x x x x= + + + +β β β β ε0 1 1 2 2 3 1 2   

we find that the p-value for testing H0 3 0 787: .  is b = . Therefore, we 
conclude that the interaction term x x1 2 is not needed and that there is 
little or no interaction between the average hourly temperature and the 
chill index.

A final comment is in order. If a p-value indicates that an interaction 
term (say, x x1 2) is important, then it is usual practice to retain the corre-
sponding linear terms (x1 and x2) in the model no matter what the size of 
their p-values. The reason is that doing so can be shown to give a model 
that will better describe the interaction between x1 and x2. 

3.2  Using Dummy Variables to Model Qualitative 
Independent Variables

The levels (or values) of a quantitative independent variable are numer-
ical, whereas the levels of a qualitative independent variable are defined 
by describing them. For instance, the type of sales technique used by a 
door-to-door salesperson is a qualitative independent variable. Here we 
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might define three different levels—high pressure, medium pressure, and 
low pressure.

We can model the effects of the different levels of a qualitative inde-
pendent variable by using what we call dummy variables (also called indi-
cator variables). Such variables are usually defined so that they take on 
two values—either 0 or 1. To see how we use dummy variables, we begin 
with an example.

Example 3.3 

Part 1: The Data and Data Plots

Suppose that Electronics World, a chain of stores that sells audio and video 
equipment, has gathered the data in Table 3.3. These data concern store 
sales volume in July of last year ( y, measured in thousands of dollars), the 
number of households in the store’s area (x, measured in thousands), and 
the location of the store (on a suburban street or in a suburban shopping 
mall—a qualitative independent variable). Figure 3.8 gives a data plot of 
y versus x. Stores having a street location are plotted as solid dots, while 
stores having a mall location are plotted as asterisks. Notice that the line 
relating y to x for mall locations has a higher y-intercept than does the 
line relating y to x for street locations.

Table 3.3  The electronics world sales volume data

Store
Number of households, 

 x (    1000) Location
Sales volume,  

y (    1000)
  1 161 Street 157.27

  2 99 Street 93.28

  3 135 Street 136.81

  4 120 Street 123.79

  5 164 Street 153.51

  6 221 Mall 241.74

  7 179 Mall 201.54

  8 204 Mall 206.71

  9 214 Mall 229.78

10 101 Mall 135.22
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Part 2: A Dummy Variable Model 

In order to model the effects of the street and shopping mall locations, we 
define a dummy variable denoted DM  as follows: 

DM =






1
0

if a store is in a mall
otherwise

location

Using this dummy variable, we consider the regression model

y x DM= + + +β β β ε0 1 2

This model and the definition of DM  imply that

1.	For a street location, mean sales volume equals

b b b b b b
b b

0 1 2 0 1 2

0 1

0+ + = + +
= +

x D x
x

M ( )
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b0 + b2
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m = ( b0 + b2)+ b1x 
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Figure 3.8  Plot of the sales volume data and a geometrical interpre-
tation of the model y x DM== ++ ++ ++b b b f0 1 2
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2.	For a mall location, mean sales volume equals

b b b b b b
b b b

0 1 2 0 1 2

0 2 1

1+ + = + +
= + +

x D x
x

M ( )
( )

Thus the dummy variable allows us to model the situation illustrated 
in Figure 3.8. Here, the lines relating mean sales volume to x for street 
and mall locations have different y intercepts—β0 and β β0 2+( )  —and 
the same slope b1. It follows that this dummy variable model assumes 
no interaction between x and store location—note the parallel data pat-
terns for the street and mall locations in Figure 3.8. Also, note that β2 
is the difference between the mean monthly sales volume for stores in 
mall locations and the mean monthly sales volume for stores in street 
locations, when all these stores have the same number of households in 
their areas. If we use a computer software package, we find that the least 
squares point estimate of β2 is b2 = 29.216 and that the associated p-value 
is .0012. The point estimate says that for any given number of house-
holds in a store’s area, we estimate that the mean monthly sales volume in 
a mall location is $29,216 greater than the mean monthly sales volume 
in a street location.

Part 3: A Dummy Variable Model for Comparing Three Locations

In addition to the data concerning street and mall locations in Table 3.3, 
Electronics World has also collected data concerning downtown locations. 
The complete data set is given in Table 3.4 and plotted in Figure 3.9. Here, 
stores having a downtown location are plotted as open circles. A model 
describing these data is

y x D DM D= + + + +b b b b e0 1 2 3

Here, the dummy variable DM  is as previously defined, and the dummy 
variable DD is defined as follows:

DD =






1
0

if a store is in a downtown
otherwise

location
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Figure 3.9  Plot of the complete Electronics World sales 
volume data and a geometrical interpretation of the model 
y x D DM D= + + + +b b b b f0 1 2 3

Table 3.4  The complete electronics world sales volume data

Store

Number of  
households,  
x (    1000) Location

Sales volume,  
y (    1000)

  1 161 Street 157.27

  2 99 Street   93.28

  3 135 Street 136.81

  4 120 Street 123.79

  5 164 Street 153.51

  6 221 Mall 241.74

  7 179 Mall 201.54

  8 204 Mall 206.71

  9 214 Mall 229.78

10 101 Mall 135.22

11 231 Downtown 224.71

12 206 Downtown 195.29

13 248 Downtown 242.16

14 107 Downtown 115.21

15 205 Downtown 197.82
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It follows that	

1.	for a street location, mean sales volume equals

β β β β β β β β

β β

0 1 2 3 0 1 2 3

0 1

0 0+ + + = + + +

= +

x D D x
x

M D ( ) ( )

2.	for a mall location, mean sales volume equals

β β β β β β β β

β β β

0 1 2 3 0 1 2 3

0 2 1

1 0+ + + = + + +

= + +

x D D x
x

M D ( ) ( )
( )

3.	for a downtown location, mean sales volume equals

β β β β β β β β

β β β

0 1 2 3 0 1 2 3

0 3 1

0 1+ + + = + + +

= + +

x D D x
x

M D ( ) ( )
( )

Thus the dummy variables allow us to model the situation illustrated in 
Figure 3.9. Here the lines relating mean sales volume to x for street, mall, 
and downtown locations have different y-intercepts—β0, β β0 2+( ) ,  
and β β0 3+( ) —and the same slope b1. It follows that this dummy vari-
able model assumes no interaction between x and store location.

In order to find the least squares point estimates of b b b b0 1 2 3, , ,  and   
in the dummy variable model, we use the data in Table 3.4 to define the 
column vector y and matrix X that are shown in Figure 3.10. It then fol-
lows that the least squares point estimates of b b b b0 1 2 3, , ,  and   are 
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Part 4: Comparing the Locations

To compare the effects of the street, shopping mall, and downtown locations, 
consider comparing three means, which we denote as mh S, , mh M, , and mh D, . 
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These means represent the mean sales volumes at stores having h households 
in the area and located on streets, in shopping malls, and downtown, respec-
tively. If we set x h= , it follows that

m b b b b
b b

m b b b b
b b

h S

h M

h
h
h

,

,

( ) ( )

( ) ( )

= + + +
= +
= + + +
= +

0 1 2 3

0 1

0 1 2 3

0

0 0

1 0

11 2h + b

and

µ β β β β

β β β

h D h
h

, ( ) ( )= + + +

= + +

0 1 2 3

0 1 3

0 1

In order to compare street and mall locations, we look at

µ µ β β β β β βh M h S h h, , ( ) ( )− = + + − + =0 1 2 0 1 2

which is the difference between the mean sales volume for stores in mall 
locations having h households in the area and the mean sales volume for 
stores in street locations having h households in the area. Figure 3.11 gives 
the MINITAB output of a regression analysis of the data in Table 3.4 by 
using the dummy variable model. The output tells us that the least squares 
point estimate of β2 is b2 28 374=  . . This says that for any given number 
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Figure 3.10  The column vector y and matrix X using the data in 
Table 3.4 and the model y x D DM D== ++ ++ ++ ++b b b b f0 1 2 3
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of households in a store’s area, we estimate that the mean monthly sales 
volume in a mall location is $28,374 greater than the mean monthly sales 
volume in a street location. Furthermore, since the output tells us that 
sb2

4 461= . , and since t[ ].025  based on n k− + = − + =( ) ( )1 15 3 1 11 degrees 
of freedom is 2.201, a 95 percent confidence interval for β2 is

[ ] [ . . ( . )]
[ . , . ]

[. ]b t sb2 025 2
28 374 2 201 4 461
18 554 38 193

± = ±
=

This interval says we are 95 percent confident that for any given number 
of households in a store’s area, the mean monthly sales volume in a mall 
location is between $18,554 and $38,193 greater than the mean monthly 
sales volume in a street location. The MINITAB output also shows that 
the t-statistic for testing H0 2 0: β =  versus Ha :  β2 0≠  equals 6.36 and 
that the related p-value is less than .001. Therefore, we have very strong 
evidence that there is a difference between the mean monthly sales vol-
umes in mall and street locations.

In order to compare downtown and street locations, we look at

µ µ β β β β β βh D h S h h, , ( ) ( )− = + + − + =0 1 3 0 1 3

The regression equation is
y = 15.0 + 0.869 x + 28.4 DM +  6.86 DD

S = 6.34941 R-Sq = 98.7% R-Sq(adj) = 98.3%

Fit SE Fit 95% CI 95% PI
 217.07 2.91 (210.65, 223.48) (201.69, 232.45)

Analysis of Variance

Source DF SS MS F P
Regression 3 33269 11090 275.07 0.000
Residual Error 11 443 40
Total 14 33712

Predictor Coef SE Coef T P
Constant 14.978 6.188 2.42 0.034
x 0.86859 0.04049 21.45 0.000
DM 28.374 4.461 6.36 0.000
DD 6.864 4.770 1.44 0.178

Figure 3.11  MINITAB output of a regression analysis of the sales 
volume data using the model y x D DM D== ++ ++ ++ ++b b b b f0 1 2 3
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Since the MINITAB output in Figure 3.11 tells us that b3 6 864= . , we esti-
mate that for any given number of households in a store’s area, the mean 
monthly sales volume in a downtown location is $6,864 greater than the 
mean monthly sales volume in a street location. Furthermore, since the 
output tells us that sb3

4 770= . , a 95 percent confidence interval for b3 is

[ ] [ . . ( . )]
[ . , . ]

[. ]b t sb3 025 3
6 864 2 201 4 770

3 636 17 363
± = ±

= −

This says we are 95 percent confident that for any given number of house-
holds in a store’s area, the mean monthly sales volume in a downtown 
location is between $3,636 less than and $17,363 greater than the 
mean monthly sales volume in a street location. The MINITAB output 
also shows that the t-statistic and p-value for testing H0 3 0: β =  versus 
Ha : β3 0≠  are t = 1 44.  and p-value = .178. Therefore, we do not have 
strong evidence that there is a difference between the mean monthly sales 
volumes in downtown and street locations.

In order to compare mall and downtown locations, we look at

µ µ β β β β β β β βh M h D h h, , ( ) ( )− = + + − + + = −0 1 2 0 1 3 2 3

The least squares point estimate of this difference is

b b2 3 28 374 6 864 21 51− = − =. . .

This says that for any given number of households in a store’s area we 
estimate that the mean monthly sales volume in a mall location is $21,510 
greater than the mean monthly sales volume in a downtown location. 
There are two approaches for calculating a confidence interval for 
µ µh M h D, ,−  and for testing the null hypothesis H h M h D0 0: , , µ µ− = .  
Because µ µh M h D, ,−  equals the linear combination b b2 3−  of the β j’s in 
the model y x D DM D= + + + +β β β β ε0 1 2 3 , one approach shows how 
to make statistical inferences about a linear combination of β j’s. This 
approach is discussed in Section 3.5. The other approach, discussed near 
the end of this section, involves specifying an alternative dummy variable 
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regression model which is such that µ µh M h D, ,−  is equal to a single β j in 
that model. Using either approach, we will find that there is very strong 
evidence that the mean monthly sales volume in a mall location is greater 
than the mean monthly sales volume in a downtown location. In summary, 
the mall location seems to give a greater mean monthly sales volume than 
either the street or downtown location.

Part 5: Predicting a Future Sales Volume

Suppose that Electronics World wishes to predict the sales volume in a 
future month for an individual store that has 200,000 households in its 
area and is located in a shopping mall. The needed point prediction is 
(since DM  = 1 and DD = 0 when a store is in a shopping mall)

y b b b b∧ = + + +
= + +
=

0 1 2 3200 1 0
14 978 8686 200 28 374 1
217

( ) ( ) ( )
. . ( ) . ( )

.007

which is given at the bottom of the MINITAB output in Figure 3.11. 
Furthermore, since x0 1 200 1 0′ = [ ], the distance value can be com-
puted to be ′ ′ =x X X x0

1
0 21063( ) . .-  Since s =  6 34941. , a 95 percent pre-

diction interval for the sales volume is 

	
y t s∧ ± +





= ± +[. ] [ . . ( . ) .025 1 217 07 2 201 6 34941 1Distance value 221063

201 69 232 45

]

[ . , . ]=

This prediction interval, which is also given on the MINITAB output, 
says we are 95 percent confident that the sales volume in a future sales 
period for an individual mall store that has 200,000 households in its area 
will be between $201,690 and $232,450.

Part 6: An Interaction Model

In modeling the sales volume data we might consider using the model

y x D D xD xDM D M D= + + + + + +β β β β β β ε0 1 2 3 4 5
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This model implies that

1.	for a street location, mean sales volume equals (since DM  = 0 and 
DD = 0)

b b b b b b
b b

0 1 2 3 4 5

0 1

0 0 0 0+ + + + +
= +

 x x x
x

( ) ( ) ( ) ( )

2.	for a mall location, mean sales volume equals (since DM  = 1 and DD= 0)

b b b b b b
b b b b

0 1 2 3 4 5

0 2 1 4

1 0 1 0+ + + + +
= + + +

 x x x
x

( ) ( ) ( ) ( )
( ) ( )

3.	for a downtown location, mean sales volume equals (since DM  = 0 
and DD = 1)

b b b b b b
b b b b

0 1 2 3 4 5

0 3 1 5

0 1 0 1+ + + + +
= + + +

 x x x
x

( ) ( ) ( ) ( )
( ) ( )

As illustrated in Figure 3.12(a), if we use this model, then the straight 
lines relating mean sales volume to x for the street, mall, and downtown loca-
tions have different y-intercepts and different slopes. The different slopes 
imply that this model assumes interaction between x and store location. 
Specifically, note that the differently sloped lines in Figure 3.12(a) move 
closer together as x increases. This implies that the differences between 
the mean sales volumes in the street, mall, and downtown locations get 
smaller as the number of households in a store’s area increases. Of course, 
the opposite type of interaction, in which differently sloped lines move 
farther apart as x increases, is also possible. This type of interaction would 
imply that the differences between the mean sales volumes in the street, 
mall, and downtown locations get larger as the number of households in a 
store’s area increases. Figure 3.12(b) gives a partial SAS output of a regres-
sion analysis of the sales volume data using the interaction model, which 
is also called the unequal slopes model. Note that D D xDM D M, , ,   and xDD 

are labeled as DM DD xDM xDD, , , ,and  respectively, on the output. The 
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SAS output tells us that the p-values related to the significance of xDM  
and xDD are large—.5334 and .8132, respectively. Therefore, these inter-
action terms do not seem to be important. In addition, the SAS output 
tells as that the standard error s for the interaction model is s = 6 79953. ,  
which is larger than the s of 6.34941 for the no-interaction model 
y x D DM D= + + + +β β β β ε0 1 2 3  (see Figure 3.11). It follows that the 
no-interaction model, which is sometimes called the parallel slopes model, 
seems to be the better model describing the sales volume data. Recall that 
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Dependent Mean 176.98933 Adj R-Sq 0.9808
Coeff Var 3.841777

Variable

Intercept 7.90042
0.92070

42.72974
10.25503
-0.09172
-0.03363

17.03513
0.12343

21.50420
21.28319
0.14163
0.13819

0.46
7.46
1.99
0.48
-0.65
-0.24

0.6538
<.0001
0.0782
0.6414
0.5334
0.8132

x
DM
DD
XDM
XDD

Parameter
Estimate

Standard
Error t Value Pr > │t│

Figure 3.12  Regression analysis of the sales volume data using 
the model y x D D DM D M= + + + + + +b b b f0 1 2 3 DDb x4b x5b  
(a) Geometrical interpretation of the model (b) Partial SAS output
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this no-interaction model implies that m m b m m bh M h S h D h S, , , ,, ,− = − =2 3  
and µ µ β βh M h D, ,− = −2 3. That is, the no-interaction model implies that 
the differences between the mean sales volumes in the street, mall, and 
downtown locations do not depend upon the value h of x, the number 
of households in the area. Therefore, the previous and future statistical 
inferences for these differences made by using the no-interaction model 
are valid.

In general, if we wish to model the effect of a qualitative indepen-
dent variable having a levels, we use a −1 dummy variables. Consider the 
kth such dummy variable Dk (k = one of the values 1, 2, ..., a −1). The 
parameter bk multiplying Dk represents the mean difference between the 
level of y when the qualitative variable assumes level k and when it 
assumes the level a (where the level a is the level which we do not use 
a dummy variable to represent). For example, if we wish to use a con-
fidence interval and a hypothesis test to compare the mall and down-
town locations in the Electronics World example, we can use the model 
y x D DS M= + + + +b b b b e0 1 2 3 . Here the dummy variable DM  is as 
previously defined, and DS  is a dummy variable that equals 1 if 
a store is in a street location and 0 otherwise. Because this model 
does not use a dummy variable to represent the downtown location, the 
parameter β2 expresses the effect on mean sales of a street location com-
pared to a downtown location, and the parameter β3 expresses the effect 
on mean sales of a mall location compared to  a  downtown locat ion. 
That  i s  b m m b m m2 3= − = −h S h D h M h D, , , ,and . The Excel output tells 
us that the least squares point estimate of β3 is 21.51 and that the stan-
dard error of this estimate is 4.0651. It follows that a 95 percent confidence 
interval for µ µh M h D, ,−  is

[21.51 ± 2.201(4.0651)] = [ 12.563, 30.457]

This says we are 95 percent confident that for any given number of house-
holds in a store’s area, the mean monthly sales volume in a mall loca-
tion is between $12,563 and $30,457 greater than the mean monthly 
sales volume in a downtown location. The Excel output also shows that 
the t-statistic and p-value for testing the significance of µ µh M h D, ,−  are, 
respectively, 5.29 and 0.000256. Therefore, we have very strong evidence 
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that there is a difference between the mean monthly sales volumes in mall 
and downtown locations.

3.3  The Partial F-Test

We now present a partial F-test that allows us to test the significance of 
a set of independent variables in a regression model. That is, we can use 
this F-test to test the significance of a portion of a regression model. For 
example, recall that in the previous section we decided that the no-inte-
raction (or paralled slopes) model

y x D DM D= + + + +β β β β ε0 1 2 3

describes the sales volume data better than does the interaction (or 
unequal slopes) model

y x D D xD xDM D M D= + + + + + +b b b b b b e0 1 2 3 4 5

The reasons for this decision were that the no-interaction model has the 
smaller standard error s and the p-values related to the significance of xDM  
and xDD in the interaction model are large—.5334 and .8132—indicat-
ing that these interaction terms are not important. Another way to decide 
which of these models is best is to test the significance of the interaction 
portion of the interaction model. We do this by testing the null hypothesis

H0 4 5 0: b b= = 

which says that neither of the interaction terms significantly affects sales 
volume, versus the alternative hypothesis

 Coefficients Standard Error t Stat P-value
Intercept 21.84147001 8.55847513 2.552028216 0.026897774
x 0.868588415 0.040489928 21.45196249 2.51663E-10
DS -6.863776795 4.770476502 -1.438803187 0.178046589
DM 21.50997928 4.065091975 5.291388094 0.00025577

Figure 3.13  Partial Excel output for the model y x D DM= + + + +b b b b f0 1 2 S 3

y x D DM= + + + +b b b b f0 1 2 S 3
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Ha : At least one of  and  does not equal 0b b4 5  

which says that at least one of the interaction terms significantly affects 
sales volume.

In general, consider the regression model

y x x x xg g g g k k= + + + + + + +
+ +

β β β β β ε0 1 1 1 1... ...

Suppose we wish to test the null hypothesis

H g g k0 1 2 0: ...β β β
+ +

= = = =

which says that none of the independent variables x x xg g k+ +1 2, ,...,  affects y,  
versus the alternative hypothesis

Ha g g k: , ,...,At least one of  does not equal 0b b b+ +1 2

which says that at least one of the independent variables x x xg g k+ +1 2, ,...,  
affects y. If we can reject H0 in favor of Ha by specifying a small proba-
bility of a Type I error, then it is reasonable to conclude that at least one of 
x x xg g k+ +1 2, ,...,  significantly affects y. In this case we should use t-statistics 
and other techniques to determine which of x x xg g k+ +1 2, ,...,   significantly 
affects y. To test H0 versus Ha, consider the following two models:
Complete model: y x x x xg g g g k k= + + + + + + +

+ +
β β β β β ε0 1 1 1 1... ...

Reduced model: y x xg g= + + + +β β β ε0 1 1 ...
Here the complete model is assumed to have k independent variables, the 
reduced model is the complete model under the assumption that H0 is 
true, and ( )k g−  denotes the number of regression parameters we have set 
equal to 0 in the statement of H0.

To carry out this test, we calculate SSEC, the unexplained variation 
for the complete model, and SSER, the unexplained variation for the reduced 
model. The appropriate test statistic is based on the difference

SSE SSER C−  
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which is called the drop in the unexplained variation attributable to the 
independent variables x x xg g k+ +1 2, ,..., . In the following box we give the 
formula for the test statistic and show how to carry out the test. (The 
valdity of the test is proven in section B.8.)

The partial F-test: An F-test for a portion  
of a regression model

Suppose that the regression assumptions hold and consider testing

H g g k0 1 2 0: ...β β β
+ +

= = = =

versus

Ha g g k: , ,..., At least one of  does not equal b b b+ +1 2 0

We define the partial F-statistic to be

F
SSE SSE k g

SSE n k
R C

C

=
− −

− +

( ) / ( )
/[ ( )]1

Also define the p-value related to F  to be the area under the curve of 
the F  distribution [having k g−  and n k− +( )1  degrees of freedom] 
to the right of F . Then, we can reject H0  in favor of Ha at level of 
significance a  if either of the following equivalent conditions holds:

1.	F F> [ ]α

2.	 p-value <  α

Here the rejection point F[ ]a  is based on k g−  numerator and n k− +( )1  
denominator degrees of freedom.

It can be shown that the “extra” independent variables x x xg g k+ +1 2, ,...,  
will always explain some of the variation in the observed y values and, 
therefore, will always make SSEC  somewhat smaller than SSER. Condition 
1 says that we should reject H0 if 
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F
SSE SSE k g

SSE n k
R C

C

=
− −

− +

( ) / ( )
/[ ( )]1

is large. This is reasonable because a large value of F  would result from 
a large value of SSE SSER C− , which would be obtained if at least one of 
the independent variables x x xg g k+ +1 2, ,...,  makes SSEC  substantially smaller 
than SSER. This would suggest that H0 is false and that Ha is true.

Before looking at an example, we should point out that testing the 
significance of a single independent variable by using a partial F -test is 
equivalent to carrying out this test by using the previously discussed t-test. 
It can be shown that when we test H j0 0:  β =  versus Ha j: β ≠ 0 using a 
partial F -test

F t F t= =
2

2
2and [ ] [ / ]( )

α α

Here F[ ]a  is based on 1 numerator and n k− +( )1  denominator degrees of 
freedom and t[ ]/a 2  is based on n k− +( )1  degrees of freedom. Hence, the 
rejection conditions

| > andt t F F| [ / ] [ ]a a2 >
 

are equivalent. It can also be shown that in this case the p-value related to 
t  equals the p-value related to F .

Example 3.4

In order to test H0 4 5 0:    b b= =  in the Electronics World interaction 
model, we regard this model as the complete model:

Complete Model: y x D D xD xDM D M D= + + + + + +b b b b b b e0 1 2 3 4 5

Although the partial SAS output in Figure 3.12 (b) does not show the 
unexplained variation for this complete model, SAS can be used to show 
that this unexplained variation is 416.1027. That is, SSEC = 416 1027. .  
If the null hypothesis H0 4 5 0:    β β= =  is true, the complete model 
becomes the following reduced model:

Reduced Model: y x D DM D= + + + +b b b b e0 1 2 3
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which is the no-interaction (parallel slopes) model and has an unexplained 
variation of 443.4650. That is, SSER = 443 4650. . There are n = 15 obser-
vations in the Electronics World data set (see Table 3.4), and the complete 
model uses k = 5 independent variables. In addition, because two param-
eters b b4 5 and ( ) are set equal to 0 in the statement of H0 4 5 0:    β β= = ,  
we have that k g− = 2. Therefore:

F
SSE SSE k g

SSE n k
R C

C

=
− −

− +

−

( ) / ( )
/[ ( )]

( . . ) /
.

1
443 4650 416 1027 2

416 11027 15 6
2959

/ ( )
.

−

=

If we wish to set a  equal to .05, we compare F = .2959 with F[ ]. .05 4 26= , 
which is based on k g− = 2 numerator and n k− + = − =( ) 1 15 6 9 
denominator degrees of freedom. Since F = .2959 is less than F[ ]. .05 4 26= ,  
we cannot reject H0 4 5 0:    β β= =  at the .05 level of significance, and 
thus we do not have strong evidence that at least one of the interaction 
terms significantly affects sales volume. This is further evidence that the 
no-interaction model is the better model. Also, recalling that the no-in-
teraction model is sometimes called the parallel slopes model, the partial 
F-test just performed is sometimes called a test for parallel slopes. 

In Example 3.3 we used the no-interaction model

y x D DM D= + + + +β β β β ε0 1 2 3

to make pairwise comparisons of the street, mall, and downtown store 
locations by carrying out a t-test for each of the parameters b b2 3, ,  and
b b2 3− . There is a theoretical problem with this because, although we can 
set the probability of a Type I error equal to .05 for each individual test, it 
is possible to show that the probability of falsely rejecting H0 in at least one 
of these tests is greater than .05. Because of this problem, many statisticians 
feel that before making pairwise comparisons we should test for differences 
between the effects of the locations by testing the single hypothesis

H h S h M h D0 : , , ,µ µ µ= =
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which says that the street, mall, and downtown locations have the same 
effects on mean sales volume (no differences between locations).

To carry out this test we consider the following:

Complete model: y x D DM D= + + + +β β β β ε0 1 2 3

In Example 3.3 we saw that for this model

b m m b m m2 3= − = −h M h S h D h S, , , ,and

It follows that the null hypothesis H h S h M h D0 : , , ,m m m= =  is equivalent to 
H0 32 0:    β β= =  and that the alternative hypothesis

Ha h S h M h D: , ,, , ,At least two of and differm m m  

which says that at least two locations have different effects on mean sales 
volume, is equivalent to

H b ba : At least one of and does not equal2 3 0

Because of these equivalencies, we can test H0 versus Ha by using a partial 
F-test. For the just given complete model (which has k = 3 independent 
variables), we obtain an unexplained variation equal to SSEC = 443 4650. .  
The reduced model is the complete model when H0 is true. Therefore, 
we obtain 

Reduced model: y x= + +b b e0 1

For this model the unexplained variation is SSER = 2467 8067. . Noting that 
two parameters b b2 3 and ( ) are set equal to 0 in the statement of H0 2 3 0:   β β= =

H0 2 3 0:   β β= = , we have k g− = 2. Therefore, the needed partial F-statistic is

F
SSE SSE k g

SSE n k
R C

C

=
− −

− +

= −

( ) / ( )
/[ ( )]

( . . ) /
1

2467 8067 443 4650 2
4433 4650 15 4

25 1066
. /[ ]

.
−

=
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If we wish to set a  equal to .05, we compare F =  25 1066.  with 
F[ ]. .05 3 98=  , which is based on k g n k− = − + =( )   numerator and   2 1
15 4 11− =  denominator degrees of freedom. Since F = 25 1066.  is greater 
than F[ ]. .05 3 98=  , we can reject H0 at the .05 level of significance, and 
we have very strong statistical evidence that at least two locations have 
different effects on mean sales volume. Having reached this conclusion, 
it makes sense to compare the effects of specific pairs of locations. We 
have already done this in Example 3.3. It should also be noted that even 
if H0 were not rejected, some practitioners feel that pairwise comparisons 
should still be made. This is because there is always a possibility that we 
have erroneously decided to not reject H0. 

We next consider two statistics that provide descriptive information 
that supplements the information provided by a partial F-test.

Partial Coefficients of Determination  
and Correlation

1.	The partial coefficient of determination is

R x x x x
SSE SSE

SSEg k g
R C

R

2
1 1( , , | , , )+ =

−
… …

	 = �the proportion of the unexplained 
variation in the reduced model that 
is explained by the extra independent 
variables in the complete model

2.	The partial coefficient of correlation is

R x x x x R x x x xg k g g k g( , , | , , ) ( , , | , , )+ +=1 1
2

1 1… … … …

For example, consider the Electronics World situation. If we consider 
the complete model to be the model y x D DM D= + + ++β β β β ε0 1 2 3     
and the reduced model to be the model y x    = ++β εβ0 1 , then we 
have seen that SSEC =  443 4640.  and SSER =  2467 8067. . It follows 
that
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R D D x
SSE SSE

SSEM D
R C

R

2

2467 8067 443 4650
2467 806

( , | )

. .
.

=
−

= −
      

77
8206= .

That is, DM  and DD in the complete model explain 82.06 per-
cent of the unexplained variation in the reduced model. Also, 
R D D xM D( , | ) . .= =8206 9059

3.4  Statistical Inference for a Linear combination of 
Regression parameters

Consider the Electronics World dummy variable model

y x D DM D= + + + +b b b b e0 1 2 3

In Example 3.3 we have seen that b b2 3−  is the difference between the 
mean monthly sales volumes in mall and downtown locations. In order to 
make statistical inferences about b b2 3− , we express this difference as a lin-
ear combination of the parameters b b b b0 1 2 3, , ,  and   in the dummy vari-
able model. Specifically, letting l  denote the linear combination, we write

l = − = + + + −b b b b b b2 3 0 1 2 30 0 1 1( ) ( ) ( ) ( )

In general, let

l k k= + + + …+l b l b l b l b0 0 1 1 2 2

be a linear combination of regression parameters. A point estimate of l  is

l b b b bk k

∧
= + + + …+l l l l0 0 1 1 2 2

If the regression assumptions are satisfied, it can be shown (see Section 
B.9) that the population of all possible values of l

∧
 is normally distributed 

with mean l  and standard deviation 
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s s m m
l
∧

−= ′ ′( )X X 1

Here m¢¢ = … m m m m0 1 2 k  is a row vector containing the numbers multi-
plied by the b ’s in the equation for l . Since we estimate s  by s, it follows 
that

s s
l
∧

−= ′ ′( )X X 1
mm

We use s
l
∧ to calculate the t-statistic for testing H l0 0: =  and to calculate 

confidence intervals for l .

The t-statistic for testing H Ha0 0 0: :l l= ≠ versus  is

t l
s

l
sl

= =
∧ ∧

∧ −′ ′( )X X 1
mm

A 100 1( )%− a  confidence interval for l  is

l t s l t s
l

∧ ∧

[ ]±





= ±





∧a /2 [ ]a /2
−′ ′( )X X 1
mm

Example 3.5

Consider the Electronics World dummy variable model

y x D DM D= + + + +b b b b e0 1 2 3

Since we have seen in Example 3.3 that the least squares point estimates 
of β2 and β3 are b2 28 374=  .  and b3 6 864=  . , the point estimate of 
l = −b b2 3 is

l b b
∧
= − = − =2 3 28 374 6 864 21 51. . .
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Noting that

l = − = ( ) + ( ) + ( ) + −( )b b b b b b2 3 0 1 2 30 0 1 1

it follows that

m′ = − 0 0 1 1

and

m =

−



















0
0
1
1

Using m′ and m, m m¢¢ ¢¢X X -1( )  can be computed to be .409898. There-
fore, since s =  6 34941.  and n k− + = − =( )1 15 4 11, a 95 percent confi-
dence interval for l = −b b2 3 is

l t s
∧

[ ]±





= ± ( ) 
. . . . .025 21 51 2 201 6 34941 409898

= ± ( ) 
= [

21 51 2 201 4 0651
12 5627

. . .
. , 30.4573]

m′ (X′X)–1m

This says that we are 95 percent confident that for any given number 
of households in a store’s area the mean monthly sales volume in a mall 
location is between $12,563 and $30,457 greater than the mean monthly 
sales volume in a downtown location. 

We next point out that almost all of the SAS regression outputs we 
have looked at to this point were obtained by using a SAS procedure 
called PROC REG. This procedure will not carry out statistical infer-
ence for linear combinations of regression parameters (such as b b2 3− ).  
However, another SAS procedure called PROC GLM (GLM stands 
for “General Linear Model”) will do this. Figure 3.14 gives a partial 
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PROC GLM output of a regression analysis of the sales volume data 
using the previously given dummy variable model. On the output, the 
parameters b2 3 2 3, ,b b b and −  are labeled as MUMALL—MUSTR, 
MUDOWNTN—MUSTR, and MUMALL—MUDOWNTN. Notice 
that the point estimates, standard errors, t  statistics, and p-values we 
have used to analyze β2 and β3 are given on the output corresponding 
to MUMALL—MUSTR and MUDOWNTN—MUSTR. The point 
estimate, standard error of the estimate, t  statistic, and p-value for ana-
lyzing b b2 3−  are given on the output corresponding to MUMALL—
MUDOWNTN. Here, as calculated previously, the point estimate 
of b b2 3 2 3 21 51− − =is  b b .  and the standard error of this estimate 
is 4.0651. This allows us to calculate the 95 percent confidence inter-
val for b b2 3 21 51 2 201 4 0651 12 5627 30 4573− ( ) ± = [ ]as    . . . . , . .  
The SAS output also tells us that the t  statistic and p-value for test-
ing the significance of the linear combination b b2 3−  are, respectively, 
t = =   21 51 4 0651 5 29. / . .  and p-value  = .0003. Therefore, we have 
very strong evidence that there is a difference between the mean monthly 
sales volumes in mall and downtown locations. In summary, the mall loca-
tion seems superior to both street and downtown locations. Of course, this 
conclusion (and other interpretations in this situation) assumes that the 
regression relationships between y and x and the store locations apply to 
future months, and other stores. Thus we assume that there are no trends, 
seasonal, or other time-related influences affecting store sales volume.

3.5  Simultaneous Confidence Intervals

Each of the confidence and prediction intervals we have studied uses the 
t  point t a /2[ ] and is based on individual 100 1( )− a  percent confidence.

Parameter

MUMALL - MUSTR
MUDOWNTN - MUSTR
MUMALL - MUDOWNTN

28.37375607
6.86377679
21.50997928

1.44
5.29 0.0003 4.06509197

0.1780 4.77047650
6.36 0.0001 4.46130660

Estimate Parameter=0
T for HO:

Pr > │T│
Std Error of

Estimate

Figure 3.14  Partial SAS PROC GLM output for the model 
y x D DM D== ++ ++ ++ ++b b b b f0 1 2 3
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The Bonferroni procedure tells us that if we wish to calculate g  confidence 
and/or prediction intervals such that we are 100 1( )− a  percent confident 
that all g  intervals simultaneously meet their objectives (that is, contain 
the parameters that they are supposed to contain—in the case of confi-
dence intervals—or are such that the future y value of interest falls in the 
interval—in the case of prediction intervals), we should calculate each 
interval based on individual 100 1( )/− a g  percent confidence. (This result 
is proven in Section B.10.)

For example, using the Electronics World model y x D DM D       = + + ++β β β β ε0 1 2 3

y x D DM D       = + + ++β β β β ε0 1 2 3 , which has k = 3 independent variables and is fit to  
the n = 15 store location observations, we have previously calculated confi-
dence intervals for m m b m m b m m b b,M , , , ,M ,h h S h D h S h h D− = − = − = −2 2 3,  , and    3   

m m b m m b m m b b,M , , , ,M ,h h S h D h S h h D− = − = − = −2 2 3,  , and    3  based on individual 95 percent confidence and using 
t ta 2 025 2 201 

= =  [ ]. .  [based on n k− + = − + =( ) ( )1 15 3 1 11 degrees of 
freedom]. If we wish to be 95 percent confident that all g = 3 confidence 
intervals simultaneously contain the parameters they are attempting to 
estimate, we should base each interval on individual 100 1( )/ %− =a g  
100 1 05 3 100 983333 98 3333− = =( ) ( ). / % . % . % confidence, and thus 
use t t t[ ] . / .[ ] [ ]a /2 g = =  05 6 0083333 . We would have to find t[ ].0083333  using a com-
puter. Using the Excel look up menu, we find that t[ ]. .0083333 2 82004=  .  
Since this t  point is larger than t . . �025 2 201[ ] = , the Bonferroni simulta-
neous 95 percent confidence intervals are wider than the individual 95 
percent confidence intervals. Figure 3.14 tells us that the point esti-
mates of m m b m m b m m b bh,M h,S h,D h,S h,M h,D− = − = − = −  and 2 3 2 3, ,  are  
respectively, b2 28 374=  . , b3 6 864=  . , and l b b

∧
= − =2 3 21 51. . This  

figure also tells us that the standard errors of these point estimates are  
s s sb b l2 3

4 461 4 770 4 065= = =∧. , . , .  and . If follows that Bonferroni  
simultaneous 95 percent confidence intervals for m m b m m b m m b bh,M h,S h,D h,S h,M h,D− = − = − = −  and  2 3 2 3, , 

m m b m m b m m b bh,M h,S h,D h,S h,M h,D− = − = − = −  and  2 3 2 3, ,  are:

28 374 2 82004 4 461 15 794 40 954

6 864 2 82004 4

. . . . , .

. . .

± ( ) =  
± 7770 6 588 20 316( ) = − . , .

and

21 51 2 82004 4 065 10 046 32 974. . . . , .± ( ) =  
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These simultaneous 95 percent confidence intervals are wider 
than the previously calculated individual 95 percent confidence 
intervals, which were, respectively 18 554 38 193 3 636 17 363 12 563 30 457. , . , . , . , . , .     − and 

18 554 38 193 3 636 17 363 12 563 30 457. , . , . , . , . , .     − and . However, the first and third simultaneous 95 
percent confidence intervals still consist of all positive numbers and 
those make us simultaneously 95 percent confident that mh M,  is greater 
than mh S,  and is greater than mh D, . More specifically, the lower ends of 
the first and third simultaneous 95 percent confidence intervals make 
us simultaneously 95 percent confident that for any given number of 
households in a store’s area the mean monthly sales volume in a mall 
location is at least $15,794 more than the mean monthly sales volume 
in a street location and is at least $10,046 more than the monthly sales 
volume in a downtown location.

3.6  Logistic Regression

Suppose that in a study of the effectiveness of offering a price reduc-
tion on a given product, 300 households having similar incomes were 
selected. A coupon offering a price reduction, x, on the product, as well 
as advertising material for the product, was sent to each household. The 
coupons offered different price reductions (10, 20, 30, 40, 50, and 60 
dollars), and 50 homes were assigned at random to each price reduction. 
Table 3.5 summarizes the number, y, and proportion, p∧ , of households 
redeeming coupons for each price reduction, x (expressed in units of 
$10). In the middle of the left side of Table 3.5, we plot the p∧  values 
versus the x values and draw a hypothetical curve through the plotted 
points. A theoretical curve having the shape of the curve in Table 3.5 is 
the logistic curve

p x
e

e

x

x
( ) =

+

+( )

+( )

β β

β β

0 1

0 11

where p x( ) denotes the probability that a household receiving a coupon 
having a price reduction of x will redeem the coupon. The MINITAB 
output at the bottom of Table 3.5 tells us that the point estimates of β0 
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and b1 are b0 3 7456= − .  and b1 1 1109= . . (Estimation in logistic regres-
sion is usually done by maximum likehood estimation. This technique and 
extensions of logistic regression are discussed in Appendix C.) Using these 
estimates, it follows that, for example,

p e
e

∧
− + ( )( )

− + ( )( )( ) =
+

=
+

5
1

6 1037
1 6

3 7456 1 1109 5

3 7456 1 1109 5

. .

. .

.
..

.
1037

8593=

That is, p∧(5) = .8593 is the point estimate of the probability that a house-
hold receiving a coupon having a price reduction of $50 will redeem the 
coupon. The middle of the right side of Table 3.5 gives the values of  
p∧(x) for x =       and 1 2 3 4 5 6, , , , , . 

The general logistic regression model relates the probability that an 
event (such as redeeming a coupon) will occur to k independent variables 
x x xk1 2, , . . . ,      . This general model is 

p x x x
e

e
k

x x x

x x x

k k

k k
( , , , )1 2

0 1 1 2 2

0 1 1 2 21
…

…

…
=

+

+ + + +( )

+ + + +

b b b b

b b b b(( )

Table 3.5  The price reduction data and logistic regression
x
y

p̂

1
4

.08

2
7

.14

3
20
.40

4
35
.70

Price
reduction, x

Logistic Regression Table
Predictor Coef SE Coef Z P
Constant -3.7456 0.434355 -8.62 0.000
x 1.1109 0.119364 9.31 0.000

1
2
3
4
5
6

1

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

2 3
Price reduction, x

4 5 6

Probability
Estimate

5
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.88

6
46
.92

0.066943
0.178920
0.398256
0.667791
0.859260
0.948831
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where p x x xk1 2, , . . . ,      ( ) is the probability that the event will occur when 
the values of the independent variables are x x xk1 2, , . . . ,      . In order to esti-
mate β β β β0 1 2, , ,...,   k, we obtain n observations, with each observation 
consisting of observed values of x x xk1 2, , . . . ,      , and of a dependent vari-
able y. Here, y is a dummy variable that equals 1 if the event has occurred 
and 0 otherwise.

For example, suppose that the personnel director of a firm has 
developed two tests to help determine whether potential employees 
would perform successfully in a particular position. To help estimate 
the usefulness of the tests, the director gives both tests to 43 employ-
ees that currently hold the position. If an employee is performing 
successfully, we set the dependent variable Group equal to l; if the 
employee is performing unsuccessfully, we set Group equal to 0. Let 
x1 and x2 denote the scores of an employee on tests l and 2, and let 
p x x1 2,  ( ) denote the probability that the employee having the scores 
x1 and x2 will perform successfully in the position. We can estimate 
the relationship between p x x x x1 2 1 2,   and and ( )  by using the logistic 
regression model

p x x
e

e

x x

x x
( , )1 2

0 1 1 2 2

0 1 1 2 21
=

+

+ +( )

+ +( )

β β β

β β β

Of the 43 employees tested by the personnel director, 23 are perform-
ing successfully and 20 are performing unsuccessfully in the partic-
ular position. Each of the 23 successfully performing  employees is 
assigned a Group value of 1, and the combinations of scores on tests 
1 and 2 for the 23 successfully performing employees are (96, 85), 
(96, 88), (91, 81), (95, 78), (92, 85), (93, 87), (98, 84), (92, 82), 
(97, 89), (95, 96), (99, 93), (89, 90), (94, 90), (92, 94), (94, 84), 
(90, 92), (91, 70), (90, 81), (86, 81), (90, 76), (91, 79), (88, 83), 
and (87, 82). Each of the 20 unsuccessfully performing employees is 
assigned a Group value of 0, and the combinations of scores on tests 
1 and 2 for the 20 unsuccessfully performing employees are (93, 74), 
(90, 84), (91, 81), (91, 78), (88, 78), (86, 86), (79, 81), (83, 84), 
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(79, 77), (88, 75), (81, 85), (85, 83), (82, 72), (82, 81), (81, 77), 
(86, 76), (81, 84), (85, 78), (83, 77), and (81, 71). The source of 
the data for this example is Dielman (1996), and Figure 3.15 shows 
scatterplots of Group versus x1 (the score on test 1) and Group versus 
x2(the score on test 2). 

The MINITAB output in Figure 3.16 tells us that the point estimates 
of b b b0 1 2 0 2156 17 4833 1652, , . , . , .  and are   and b b b= − = = . Consider, 
therefore, a potential employee who scores a 93 on test 1 and an 84 on 
test 2. It follows that a point estimate of the probability that the potential 
employee will perform successfully in that position is

p e
e

∧
− + ( )+ ( )( )

− + ( )=
+

( , )
. . .

. .
93 84

1

56 17 4833 93 1652 84

56 17 4833 93 ++ ( )( ) = =
.

.

.
.

1652 84

14 206506
15 206506

9342

Figure 3.15   Scatterplots of group versus x1 and group versus x2
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To further analyze the logistic regression output, we consider several 
hypothesis tests that are based on the chi-square distribution.1 We first 
consider testing H0 1 2 0: β β= =  versus Ha : At least one of or  b b1 2 does 
not equal 0. The p-value for this test is the area under the chi-square 
curve having k = 2 degrees of freedom to the right of the test statistic 
value G = 31 483. . Although the calculation of G is too complicated to 
demonstrate in this book, the MINITAB output gives the value of G and 
the related p-value, which is less than .001. This p-value implies that we 
have extremely strong evidence that at least one of b1 or β2 does not equal 
zero. The p-value for testing H0 1 0:  b =  versus Ha :  b1 0≠  is the area 
under the chi-square curve having one degree of freedom to the right of 
the square of z b sb= = =( )( )/ . / . .1 1

4833 1578 3 06. The MINITAB out-
put tells us that this p-value is .002, which implies that we have very 
strong evidence that the score on test 1 is related to the probability of a 
potential employee’s success. The p-value for testing H0 2 0: b =  versus 
Ha :   b2 0≠  is the area under the chi-square curve having one degree of 
freedom to the right of the square of z b sb= = =( )( )/ . / . .2 2

1652 1021 1 62.  
The MINITAB output tells us that this p-value is .106, which implies 
that we do not have strong evidence that the score on test 2 is related to 
the probability of a potential employee’s success. In the exercises we will 
consider a logistic regression model that uses only the score on test 1 to 
estimate the probability of a potential employee’s success.

The odds of success for a potential employee is defined to be the prob-
ability of success divided by the probability of failure for the employee. 
That is,

1 Like the curve of the F-distribution, the curve of the chi-square distribution is skewed with a 
tail to the right. The exact shape of a chi-square distribution curve is determined by the (single) 
number of degrees of freedom associated with the chi-square distribution under consideration.

Predictor Coef SE Coef Z P Ratio LOwer Upper

Log-Likelihood = -13.959
Test that all slopes are zero: G = 31.483, DF = 2, p-value = 0.000

Test 1 0.483314 0.157779 3.06 0.002 1.62 1.19 2.21
Test 2 0.165218 0.102070 1.62 0.106 1.18 0.97 1.44

Constant -56.1704 17.4516 -3.22 0.001

Odds 95% CI

Figure 3.16  MINITAB output of logistic regression of the perfor-
mance data
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odds =

−

p x x
p x x
( , )

( , )
1 2

1 21

For the potential employee who scores a 93 on test 1 and an 84 on test 2, 
we estimate that the odds of success are . / . .9342 1 9342 14 2− =( ) . That is, 
we estimate that the odds of success for the potential employee are about 
14 to 1. It can be shown that e eb1 4833 1 62= =. .  is a point estimate of the 
odds ratio for x1, which is the proportional change in the odds (for any 
potential employee) that is associated with an increase of one in x1 when 
x2 stays constant. This point estimate of the odds ratio for x1 is shown 
on the MINITAB output and says that, for every one point increase in 
the score on test 1 when the score on test 2 stays constant, we estimate 
that a potential employee’s odds of success increases by 62 percent. Fur-
thermore, the 95 percent confidence interval for the odds ratio for x1, 
[1.19, 2.21], does not contain 1. Therefore, as with the (equivalent) chi-
square test of H0 1 0:  b = , we conclude that there is strong evidence that 
the score on test 1 is related to the probability of success for a potential 
employee. Similarly, it can be shown that e eb2 1652 1 18= =  . .  is a point 
estimate of the odds ratio for x2, which is the proportional change in the 
odds (for any potential employee) that is associated with an increase of 
one in x2 when x1 stays constant. This point estimate of the odds ratio for 
x2 is shown on the MINITAB output and says that, for every one point 
increase in the score on test 2 when the score on test l stays constant, we 
estimate that a potential employee’s odds of success increases by 18 per-
cent. However, the 95 percent confidence interval for the odds ratio for 
x2—[.97, 1.44]—contains l. Therefore, as with the equivalent chi-square 
test of H0 2 0: b = , we cannot conclude that there is strong evidence that 
the score on test 2 is related to the probability of success for a potential 
employee.

To better understand the odds ratio, consider the general logistic 
regression model

p x x x
e

e
k

x x x

x x x

k k

k k
( , , , )1 2

0 1 1 2 2

0 1 1 2 21
…

…

…
=

+

+ + + +( )

+ + + +

b b b b

b b b b(( )
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where p x x xk( , , , )1 2 …  is the probability that the event under consid-
eration will occur when the values of the independent variables are 
x x xk1 2, , ,… . The odds of the event occurring, which we will denote as  
odds( , , , )x x xk1 2 … , is defined to be p x x x p x x xk k( , , , ) / ( ( , ,..., ))1 2 1 21… − ,  
which is the probability that the event will occur divided by the proba-
bility that the event will not occur. Now, 1 1 2− p x x xk( , , , )…  equals

1
1

1

0 1 1 2 2

0 1 1 2 2

0 1

−
+

= +

+ + + +( )

+ + + +( )
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If the jth independent variable x j increases by 1 and the other 
independent variables remain constant, the odds ratio for x j is  
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This says that e bj is the point estimate of the odds ratio for x j, which is the 
proportional change in the odds that is associated with a one unit increase 
in x j when the other independent variables stay constant. Also, note that 
the natural logarithm of the odds is β β β β0 1 1 2 2+ + + +( )x x xk k… ,  
which is called the logit. If b b b bk0 1 2, , , ,…  are the point estimates of 
β β β β0 1 2, , , , ,… k  the point estimate of the logit, denoted by lg�, is 
( ).b b x b x b xk k0 1 1 2 2+ + + +…  It follows that the point estimate of the 
probability that the event will occur is

p x x x
e

e
e

e
k

b b x b x b x

b b x

k k
∧

+ + + +( )

+( ) = + =
+1 2 1 1

0 1 1 2 2

0 1 1
, , ,…

�

�

…lg

lg ++ + +( )b x b xk k2 2 …

To conclude this section, note that logistic regression can be used to 
find a confidence interval for p x x xk1 2, , ,…( ), the probability than an event 
will occur. For example, in the employee performance example, consider 
an employee who scores a 93 on test 1 and an 84 on test 2. The SAS output 
of a logistic regression of the performance data is given in Figure 3.17. The 
“Wald Chi-Square” for a variable on this output equals the [(Parameter 
Estimate)/(Standard Error)]2. The output tells us that a point estimate of 
and a 95 percent confidence interval for the probability that the employee 
will perform successfully in the particular position are, respectively, .93472 
and [.69951, .98877]. That is, our best single estimate of the probability 
that the employee will perform successfully is .93472. Moreover, we are 
95 percent confident that the probability that the employee will perform 
successfully is between .69951 and .98877.

Variable

INTERCPT
TEST1
TEST2

OBS Group TEST 1 TEST 2 PREDICT CLLOWER CLUPPER
44 . 93 84 0.93472 0.69951 0.98877
45 . 85 82 0.17609 0.04489 0.49286

-56.2601
0.4842
0.1653

17.4495
0.1576
0.1023

10.3952
9.4438
2.6136

0.0013
0.0021
0.1060

1.62
.

1.18

Parameter
Estimate

Standard
Error

Wald
Chi-Square

Pr >
Chi-Square

Odds
Ratio

Figure 3.17  SAS output of a logistic regression of the performance data
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3.7  Using SAS

In Exercises 3.3 through 3.9 we analyze the Fresh detergent demand data 
in Table 3.2 and Table 3.7 (on page 148) by using two models:

Model 1: y x x x x x= + + + + + + +β β β β β β β ε0 1 4 2 3 3 3
2

4 4 3 5 6D DB C

Model 2: y x x x x x x x= + + + + + + + + +β β β β β β β β β ε0 1 4 2 3 3 3
2

4 4 3 5 6 7 3 8 3D D D DB C B C

y x x x x x x x= + + + + + + + + +β β β β β β β β β ε0 1 4 2 3 3 3
2

4 4 3 5 6 7 3 8 3D D D DB C B C

Here, three advertising campaigns—A, B, and C—were used in the 30 
sales periods. For example, Table 3.7 tells us that advertising campaign B 
was used in sales periods 1, 2, and 3; advertising campaign A was used 
in sales period 4; advertising campaign C was used in sales period 5; and 
advertising campaign C was used in sales period 30. Advertising cam-
paign C will also be used in a future sales period. In the above model, 
DB = 1 if advertising campaign B is used in a sales period and 0 otherwise; 
DC = 1 if advertising campaign C is used in a sales period and 0 otherwise. 
Figure 3.18 presents the SAS program that gives the outputs used in Exer-
cises 3.3 through 3.9.

Figure 3.18  SAS programs for fitting models 1 and 2 (Continued)

DATA DETR;
INPUT Y X4 X3 DB DC;
X3SQ = X3*X3;
X43 = X4*X3;
X3DB = X3*DB;
X3DC = X3*DC;

DATALINES;
7.38 -0.05 5.50 1 0
8.51 0.25 6.75 1 0
9.52 0.60 7.25 1 0
7.50 0.00 5.50 0 0
9.33 0.25 7.00 0 1

9.26 0.55 6.80 0 1

PROC REG;
MODEL Y = X4 X3 X3SQ X43 DB DC/P CLM CLI;
T1: TEST DB=0, DC=0;

 0.20 6.50 0 1

}Performs partial F test of H0 : b5 =  b6 = 0

} Future sales period.

.

.

.



144	 REGRESSION ANALYSIS

Figure 3.18  SAS programs for fitting models 1 and 2

PROC GLM;

PROC GLM;

PROC REG;

ESTIMATE ‘MUDAB-MUDAA’ DB 1;
ESTIMATE ‘MUDAC-MUDAA’ DC 1;
ESTIMATE ‘MUDAC-MUDAB’ DB -1 DC 1;

MODEL Y = X4 X3 X3SQ X43 DB DC X3DB X3DC/P CLM CLI;

MODEL Y = X4 X3 X3SQ X43 DB DC/P CLI;

ESTIMATE ‘DIFF1’ DC 1 X3DC 6.2;
ESTIMATE ‘DIFF2’ DC 1 X3DC 6.6;
ESTIMATE ‘DIFF3’ DC 1 DB -1 X3DC 6.2 X3DB -6.2;

ESTIMATE ‘DIFF4’ DC 1 DB -1 X3DC 6.6 X3DB -6.6;

MODEL Y = X4 X3 X3SQ X43  DB DC X3DB X3DC/P CLI;

T2: TEST DB=0, DC=0, X3DB=0, X3DC=0;

T3: TEST X3DB=0, X3DC=0;

}
Tests  H0 : b5 =  b6 =  b7 =  b8 = 0

} Tests H0 : b7 =  b8 = 0

}Estimates b5

} Estimates b6 + b8 (6.2)

}

}
Estimates b6 − b5 + b8 (6.2) − b7 (6.2)

Estimates b6 − b5 + b8 (6.6) − b7 (6.6)

} Estimates b6 + b8 (6.6)

}Estimates b6
}Estimates b6−b5

Figure 3.19  SAS program for performing logistic regression using the 
performance data

data;

datalines;
1 96 85
1 96 85

.

.
1 87 82
2 93 74
2 90 84

.

.
2 81 71
. 93 84
. 85 82

input Group Test1 Test2;

proc logistic;
model Group = Test1 Test2;
output out=results P=PREDICT L=CLLOWER U=CLUPPER;
proc print;

Note: The 0’s (unsuccessful employees)
must be a “higher number” than the 
1’s (successful employees) when using SAS.
So we used 2’s to represent the
unsuccessful employees.
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3.8  Exercises

Exercise 3.1

In the article “Integrating Judgment With a Regression Appraisal”, pub-
lished in The Real Estate Appraiser and Analyst (1986), R. L. Andrews and 
J. T. Ferguson present ten observations concerning y = sales price of a 
house (in thousands of dollars), x1 = home size (in hundreds of square 
feet), and x2 = rating (an overall “niceness rating” for the house expressed 
on a scale from 1 [worst] to 10 [best], and provided by the real estate 
agency). The sales prices of the ten observed houses are 180, 98.1, 
173.1, 136.5, 141, 165.9, 193.5, 127.8, 163.5, and 172.5. The cor-
responding square footages are 23, 11, 20, 17, 15, 21, 24, 13, 19, and 
25, and the corresponding niceness ratings are 5, 2, 9, 3, 8, 4, 7, 6, 7, 
and 2. If we fit the model y x x x x x= + + + + +b b b b b e0 1 1 2 2 3 2

2
4 1 2  

to the observed data, we find that the least squares point estimates of 
the model parameters and their associated p-values (given in parenthe-
ses) are b b b b0 1 2 327 438 001 5 0813 001 7 2899 001 53= < = < = < = −( ) ( ) ( ). . , . . , . . , . 111 001 11473 0144. , . . .( ) ( )=and b

b b b b0 1 2 327 438 001 5 0813 001 7 2899 001 53= < = < = < = −( ) ( ) ( ). . , . . , . . , . 111 001 11473 0144. , . . .( ) ( )=and b .

(a)	A point prediction of and a 95 percent prediction interval for 
the sales price of a house having 2000 square feet x1 20=( ) and a 
niceness rating of 8 82x =( ) are 171.751 ($171,751) and [168.836, 
174.665]. Using the above model, show how the point prediction is  
calculated.

(b)	Table 3.6 gives predictions of sales prices of houses for six combi-
nations of x1 and x2, and Figure 3.20 gives plots of the predictions 
needed to interpret the interaction between x1 and x2. Carefully 
interpret this interaction.

Table 3.6  Predicted real estate sales prices
x1

x2

2 108.933

124.124

129.756

156.730

175.019

183.748

13 22

5

8
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Exercise 3.2 

Kutner, Nachtsheim, and Li (2005) present twenty observations which 
they use to relate the speed, y, with which a particular insurance inno-
vation is adopted to the size of the insurance firm, x, and the type of 
firm. The dependent variable y is measured by the number of months 
elapsed between the time the first firm adopted the innovation and the 
time the firm being considered adopted the innovation. The size of 
the firm, x, is measured by the total assets of the firm (in millions of 
dollars) and the type of firm—a qualitative independent variable—is 
either a mutual company or a stock company. The data consist of ten 
mutual companies, which have y values of 17, 26, 21, 30, 22, 0, 12, 
19, 4, and 16 and corresponding x values of 151, 92, 175, 31, 104, 
277, 210, 120, 290, and 238. The data also consists of ten stock com-
panies, which have y values of 28, 15, 11, 38, 31, 21, 20, 13, 30, and 
14 and corresponding x values of 164, 272, 295, 68, 85, 224, 166, 305, 
124, and 246.

(a)	Discuss why the data plot on the side of this exercise part indicates 
that the model y x DS= + + +b b b e0 1 2  might 
appropriately describe the obtained data. Here, DS 
equals 1 if the firm is a stock firm and 0 if the firm 
is a mutual firm

(b)	The model of part (a) implies that the mean adop-
tion time of an insurance innovation by mutual 

Size

Mutual
Stock

M
on

th
s

Figure 3.20  Predicted sales price interaction plots
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ŷ when x1 = 13

2 3 4 5 6 7 8
100
110
120
130
140
150
160
170
180
190

x2



	 More Advanced Regression Models 	 147

companies having an asset size x equals b b b b b0 1 2 0 10+ + = +( )x x  
and that the mean adoption time by stock companies having an asset size 
x equals b b b b b b0 1 2 0 1 21+ + = + +( )x xb b b b b b0 1 2 0 1 21+ + = + +( )x x . What does β2 represent?

(c)	If we fit the model of part (a) to the data, we find that the least squares 
point estimates of b b b0 1 2, ,  and  and their associated p-values (given 
in parentheses) are b b b0 1 233 8741 001 1017 001 8 0555 001= < = − < = <( ) ( ) ( ). . , . . , . .  and  ..

b b b0 1 233 8741 001 1017 001 8 0555 001= < = − < = <( ) ( ) ( ). . , . . , . .  and  .. Interpret the meaning of b2 8 0555= . .
(d)	If we add the interaction term xDS, to the model of part a, we find 

that the p-value related to this term is .9821. What does this imply?

Exercise 3.3 

Recall from Example 3.2 that Enterprise Industries has observed the 
historical data in Table 3.2 concerning y(demand for Fresh liquid laun-
dry detergent), x4(the price difference), and x3 (Enterprise Industries’ 
advertising expenditure for Fresh). To ultimately increase the demand 
for Fresh, Enterprise Industries’ marketing department is comparing 
the effectiveness of three different advertising campaigns. These cam-
paigns are denoted as campaigns A, B, and C. Campaign A consists 
entirely of television commercials, campaign B consists of a balanced 
mixture of television and radio commercials, and campaign C consists 
of a balanced mixture of television, radio, newspaper, and magazine ads. 
To conduct the study, Enterprise Industries has randomly selected one 
advertising campaign to be used in each of the 30 sales periods in Table 
3.2. Although logic would indicate that each of campaigns A, B, and 
C should be used in 10 of the 30 sales periods, Enterprise Industries 
has made previous commitments to the advertising media involved in 
the study. As a result, campaigns A, B, and C were randomly assigned 
to, respectively, 9, 11, and 10 sales periods. Furthermore, advertising 
was done in only the first three weeks of each sales period, so that the 
carryover effect of the campaign used in a sales period to the next sales 
period would be minimized, Table 3.7 lists the campaigns used in the 
sales periods.

To compare the effectiveness of advertising campaigns A, B, and C, we 
define two dummy variables. Specifically, we define the dummy variable 
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Table 3.7  Advertising campaigns used by enterprise industries

Sales  
period

Advertising 
campaign

Sales  
period

Advertising 
campaign

  1 B 16 B

  2 B 17 B

  3 B 18 A

  4 A 19 B

  5 C 20 B

  6 A 21 C

  7 C 22 A

  8 C 23 A

  9 B 24 A

10 C 25 A

11 A 26 B

12 C 27 C

13 C 28 B

14 A 29 C

15 B 30 C

DB to equal l if campaign B is used in a sales period and 0 otherwise. 
Furthermore, we define the dummy variable DC  to equal l if campaign 
C is used in a sales period and 0 otherwise. Figure 3.21 presents the SAS 
PROG REG output of a regression analysis of the Fresh demand data by 
using the model

y x x x x x D D B C= + + + + + + +b b b b b b b e0 1 4 2 3 3
2
3 4 4 3 5 6 

To compare the advertising campaigns, consider comparing three 
means, denoted m m[ , , ] [ , , ], ,d a A d a B  and m[ , , ]d a C . These means represent the 
mean demands for Fresh when the price difference is d , the advertising 
expenditure is a, and we use advertising campaigns A, B, and C, respec-
tively. If we set x d4 =  and x a3 =  in the expression

b b b b b b b0 + + + + + +   1 4 2 3
2
3 4 4 3 5 6x x x x x D DB C3

it follows that
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µ β β β β β β β

β β β β

[ , , ] ( ) ( )d a A d a a da

d a a

= + + + + + +

= + + + +

0 1 2 3
2

4 5 6

0 1 2 3
2

0 0

ββ

µ β β β β β β β

β β β

4

0 1 2 3
2

4 5 6

0 1 2

1 0

da

d a a da

d a
d a B[ , , ] ( ) ( )= + + + + + +

= + + + ββ β β3
2

4 5a da+ +

and

m b b b b b b b

b b b b
[ , , ] ( ) ( )d a C d a a da

d a a

= + + + + + +

= + + + +
0 1 2 3

2
4 5 6

0 1 2 3
2

0 1

bb b4 6da +

These equations imply that: m m b[ , , ] [ , , ]d a B d a A− = 5

m m b m m b b[ , , ] [ , , ] [ , , ] [ , , ]d a C d a A d a C d a B− = − = −6 6 5and

(a)	Use the least squares point estimates of the model parameters to find 
a point estimate of each of the three differences in means. Also, find 
a 95 percent confidence interval for and test the significance of each 
of the first two differences in means.

(b)	The prediction results at the bottom of the SAS output correspond 
to a future period when the price difference will be x4 20=  .  , the 
advertising expenditure x3 6 50=  . , and campaign C will be used. 
Show how y∧ =  8 5007.  is calculated. Identify and interpret a 95 
percent confidence interval for the mean demand and a 95 percent 

Parameter Estimates

Variable
Intercept
X3
X4
X3SQ
X4X3
DA
DC

Parameter
Estimate
25.82638
-6.53767
9.05868
0.58444

-1.15648
-0.21369
0.16809

Standard
Error

4.79456
1.58137
3.03170
0.12987
0.45574
0.06215
0.06371

t value
5.39
-4.13
2.99
4.50
-2.54
-3.44
2.64

Pr > │t│
<.0001
0.0004
0.0066
0.0002
0.0184
0.0022
0.0147

Figure 3.22  SAS PROC REG output for the fresh demand model 
y x x x x x D DB C= + + + + + +0 1 2 3 4 5 6b b b b b b b + f4 3 3

2
4 3
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prediction interval for an individual demand when x4 20= . , 
x3 6 50= . , and campaign C is used.

(c)	Consider the alternative model

y x x x x x D DA C      0 1 4 2 3 3
2
3 4 4 3 5 6= + + + + + + +b b b b b b b e

Here DA equals 1 if advertising campaign A is used and 0 otherwise. 
The SAS PROC REG output of the least squares point estimates of 
the parameters of this model is given in Figure 3.22. Since b6 com-
pares the effect of advertising campaign C with respect to the effect of 
advertising campaign B, b6 equals m m[ , , ] [ , , ]d a C d a B− . Find a 95 percent 
confidence interval for and test the significance of m m[ , , ] [ , , ]d a C d a B− .

(d)	Figure 3.23 presents the SAS output using the model

y x x x x x D D x D x DB C B C= + + + + + + + + +b b b b b b b b b e0 1 4 2 3 3
2
3 4 4 3 5 6 3 8 37

y x x x x x D D x D x DB C B C= + + + + + + + + +b b b b b b b b b e0 1 4 2 3 3
2
3 4 4 3 5 6 3 8 37

When there are many independent variables in a model, we 
might not be able to trust the p-values to tell us what is import-
ant. This is because of a condition called multicollinearity, which 
is discussed in Section 4.1. Note, however, that the p-value for 
x DC3  is the smallest of  the p-values for the independent variables  
D D x D x DB C B C, , , .   and 3 3  This might be regarded as “some evidence” 
that “some interaction” exists between advertising expenditure and 
advertising campaign. To further investigate this interaction, note 
that the model utilizing x DB3  and x DC3  implies that

		

µ β β β β β β β β β

µ

[ , , ]

[

( ) ( ) ( ) ( )d a A

d

d a a da a a= + + + + + + + +0 1 2 3
2

4 5 6 7 80 0 0 0

,, , ]

[ ,

( ) ( ) ( ) ( )a B

d a

d a a da a a= + + + + + + + +β β β β β β β β β

µ

0 1 2 3
2

4 5 6 7 81 0 1 0

,, ] ( ) ( ) ( ) ( )C d a a da a a= + + + + + + + +β β β β β β β β β0 1 2 3
2

4 5 6 7 80 1 0 1

(1) Using these equations verify that µ µ[ , , ] [ , , ]d a C d a A−  equals β β6 8+ a. 
(2) Using the least squares point estimates in Figure 3.23, show that 
a point estimate of µ µ[ , , ] [ , , ]d a C d a A−  equals .3266 when a = 6 2.  and 
equals .4080 when a = 6 6. . (3) Verify that µ µ[ , , ] [ , , ]d a C d a B−  equals 
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b b b b6 5 8 7− + −a a. (4) Using the least squares point estimates, 
show that a point estimate of µ µ[ , , ] [ , , ]d a C d a B−  equals .14266 when 
a = 6 2.  and equals .18118 when a = 6 6.  (5) Discuss why these 
results imply that the larger the advertising expenditure a is, then 
the larger is the improvement in mean sales that is obtained by using 
advertising campaign C rather than advertising campaign A or B.

(e)	Figures 3.21 and 3.23 give 95 percent prediction intervals of 
demand for Fresh in a future sales period when the price differ-
ence will be x4 20=  . , the advertising expenditure will be x3 6 50= . ,  
and campaign C will be used. Which model—the one in Figure 
3.21 that assumes that no interaction exists between advertising 
expenditure and advertising campaign, or the one in Figure 3.23 
that assumes that such interaction does exist—gives the shortest 
95 percent prediction interval? 

(f )	Using all the information in this exercise, discuss why it might be 
reasonable to conclude that a small amount of interaction exists 
between advertising expenditure and advertising campaign.

In Exercises 3.4 through 3.6 you will perform partial F tests by using the 
following three Fresh detergent models:

	
Model1 :

Model :

y x x x x x

y x x

= + + + + +

= + + +

b b b b b e
b b b

0 1 4 2 3 3 3
2

4 4 3

0 1 4 2 32 bb b b b e
b b b b b

3 3
2

4 4 3 5 6

0 1 4 2 3 3 3
2

4 43

x x x D D

y x x x x x
B C+ + + +

= + + + +Model : 33 5 6 7 3 8 3+ + + + +b b b b eD D x D x DB C B C

Model1 :

Model :

y x x x x x

y x x

= + + + + +

= + + +

b b b b b e
b b b

0 1 4 2 3 3 3
2

4 4 3

0 1 4 2 32 bb b b b e
b b b b b

3 3
2

4 4 3 5 6

0 1 4 2 3 3 3
2

4 43

x x x D D

y x x x x x
B C+ + + +

= + + + +Model : 33 5 6 7 3 8 3+ + + + +b b b b eD D x D x DB C B C

The values of SSE  for models 1, 2, and 3 are, respectively, 1.0644, .3936, 
and .3518.

Exercise 3.4 In Model 2, test H0 5 6 0: b b= =  by setting α equal 
to .05. Reason that testing H0 5 6 0: b b= =  is equivalent to testing 
H d a A d a B d a C0 : [ , , ] [ , , ] [ , , ]µ µ µ= = . Interpret what this says.

Exercise 3.5 In Model 3, test H0 5 6 7 8 0: b b b b= = = =  by setting α 
equal to .05. Interpret your results.
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Exercise 3.6 In Model 3, test H0 7 8 0: b b= =  by setting α equal to .05. 
Interpret your results.

Exercise 3.7 Figure 3.24 presents a partial SAS PROC GLM output 
obtained by using the model

y x x x x x D DB C= + + + + + + +β β β β β β β ε0 1 4 2 3 3 3
2

4 4 3 5 6

to analyze the Fresh demand data. On the output, MUDAB–MUDAA 
= − =m m b[ , , ] [ , , ]d a B d a A 5, MUDAC–MUDAA = − =m m b[ , , ] [ , , ]d a C d a A 6, and 
MUDAC–MUDAB = − = −m m b b[ , , ] [ , , ]d a C d a B 6 5 . The point estimate of 
� ��= − = − = − =b b6 5 6 5 38177617 21368626 16808991is . . . ,b b  which 
is given on the SAS output, and the standard error of this point estimate 
is  which is also given on the SAS output. 
Specify what the row vector lʹ equals and calculate a 95% confidence 
interval for µ µ β β[ , , ] [ , , ] .d a C d a B− = −6 5  Is this interval the same interval 
(within rounding) that you obtained using the alternative dummy vari-
able model in part (c) of Exercise 3.3?

Exercise 3.8 Use the information in Figure 3.24 to calculate Bonferroni 
simultaneous 95 percent confidence intervals for m m b m m b[ , , ] [ , , ] [ , , ] [ , , ], ,d a B d a A d a C d a A− = − =5 6

m m b m m b[ , , ] [ , , ] [ , , ] [ , , ], ,d a B d a A d a C d a A− = − =5 6  and µ µ β β[ , , ] [ , , ] ,d a C d a B− = −6 5. Interpret these 
intervals.

Exercise 3.9 Recall from Exercise 3.3 that we have used the Fresh deter-
gent demand model 

Parameter

MUDAB - MUDAA
MUDAC - MUDAA
MUDAC - MUDAB

Estimate Pr > │T│
Std Error of

Estimate
T for H0:

Parameter=0
0.21368626
0.38177617
0.16808991

3.44
6.23
2.64

0.0022
0.0001
0.0147

0.06215362
0.06125253
0.06370664

Figure 3.24  Partial SAS PROC GLM output for the fresh demand 
model y x x x x x D DB= + + + + + + +0 1 2 3 4 5 6b b b b b b b f4 3 3

2
4 3 C
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y x x x x x D D x D x DB C B C= + + + + + + + + +β β β β β β β β β ε0 1 4 2 3 3 3
2

4 4 3 5 6 7 3 8 3 
y x x x x x D D x D x DB C B C= + + + + + + + + +β β β β β β β β β ε0 1 4 2 3 3 3

2
4 4 3 5 6 7 3 8 3

to relate y to x4, x3, and the advertising strategy used to promote Fresh. 
Here DB equals 1 if advertising strategy B is used and 0 otherwise; DC 
equals 1 if advertising strategy C is used and 0 otherwise. Table 3.7 gives 
the advertising strategies used in the 30 sales periods. Noting that the 
advertising strategies employed in periods 1, 2, 3, 4, and 30 were B, B, B, 
A, and C, we use a column vector y containing the 30 demands in Table 
3.2 and the matrix X given in Figure 3.25 to calculate the least squares 
point estimates. Figure 3.25 also presents a partial PROC GLM output 
of a regression analysis using these matrices. 

(a)	Using X X′( )−1 and X y′ , show how the least squares point estimates 
have been calculated. 

(b)	Consider a single sales period when the price difference is $.20, 
advertising expenditure is $650,000, and advertising strategy C is 
used. The SAS output tells us that a point prediction of demand for 
Fresh in this sales period is (see Observation 31)

y b b b b b
b b

∧
= + + + +

+ +
0 1 2 3

2
4

5 6

20 6 50 6 50 20 6 50
0 1
(. ) ( . ) ( . ) (. )( . )

( ) ( ) ++ +
=

b b7 86 50 0 6 50 1
8 5118

( . )( ) ( . )( )
.

The SAS output also tells us that a 95 percent prediction interval for 
demand for Fresh in this sales period is [8.2249, 8.7988]. What is 
the row vector ′x0 that is used to calculate this prediction interval by 
the formula [ 1 + ]/ ]y t s∧ ± [a 2 x (X X) x0

-1¢¢ ¢¢ 0 ?
(c)	D1FF1, DIFF2, DIFF3, and DIFF4 on the SAS output are

DIFF1
DIFF2

= − = +
= − =

m m b b
m m

[ , , ] [ , , ]

[ , , ] [ , , ]

( . )d a C d a A

d a C d a A

6 8 6 2
bb b

m m b b b b
6 8

6 5 8 7

6 6
6 2 6 2

+
= − = − + −

( . )
( . ) ( . )[ , , ] [ , , ]DIFF3

DI
d a C d a B

FFF4 = − = − + −m m b b b b[ , , ] [ , , ] ( . ) ( . )d a C d a B 6 5 8 76 6 6 6
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Each of these differences is a linear combination of regression parameters 
(that is, the b j’s). The point estimate of l = = − + −DIFF4 6 6 6 66 5 8 7b b b b( . ) ( . ) 

l = = − + −DIFF4 6 6 6 66 5 8 7b b b b( . ) ( . )  is 

l b b b b
∧

= − + −
= − − − + −

6 5 8 76 6 6 6
93507 48068 20349 6 6 10

( . ) ( . )
. ( . ) . ( . ) . 7722 6 6

18095
( . )

.=

which is given on the SAS output. Moreover, note that 

= − + – = + + + +
+ −

b b b b b b b b b6 5 8 7 0 1 2 3 46 6 6 6 0 0 0 0 0
1

( . ) ( . ) ( ) ( ) ( ) ( ) ( )
( )bb b b b5 6 7 81 6 6 6 6+ + − + =( ) ( . ) ( . ) ,m b′

l

where l ′ = − −[ ]0 0 0 0 0 1 1 6 6 6 6        . . . It follows that the stan-
dard error of the estimate l

∧

, denoted s
l
∧, is calculated by the equa-

tion s s
l
∧ = ( )m m¢¢ ¢¢X X -1 . Here s = .1294 is the standard error for 

the model (that is, s SSE n k= − +/ ( ( ))1 ), and m m¢¢ ¢¢X X -1( )  for 
DIFF4 can be calculated to be .2482388. Therefore, s

l
∧ for DIFF4 is 

s m m¢¢ ¢¢X X -1( ) = . . , .1294 2482388 06447170or  (see Figure 3.25). Find  
m¢¢ for DIFF1, DIFF2, and DIFF3. Then, using the fact that m m¢¢ ¢¢X X -1( )  
for DIFF1, DIFF2, and DIFF3 can be calculated to be .2937858, 
.2379223, and .2926191, calculate s

l
∧ for DIFF1, DIFF2, and DIFF3. 

Also, calculate 95 percent confidence intervals for DIFF1, DIFF2, DIFF3, 
and DIFF4. Interpret what these intervals say. 

Exercise 3.10 If we use the logistic regression model p x e ex x( ) /[ ]( ) ( )
1

0 1 1 0 1 11= ++ +b b b b 
p x e ex x( ) /[ ]( ) ( )

1
0 1 1 0 1 11= ++ +b b b b  to analyze the performance data in Section 3.6, we obtain 

maximum likelihood estimates of b0 and b1 equal to –43.3684 and 
b1 4897= . . We also find that a point estimate of and a 95  percent 
confidence interval for the probability of successful performance for (1) 
a potential employee who scores a 93 on test 1 are .89804 and [.67987, 
.97336]; (2) a potential employee who scores 85 on test 1 are .14905 and 
[.03915, .42951]. Show how the point estimates have been calculated, 
and compare the lengths of the confidence intervals with the lengths of 
the corresponding confidence intervals in Figure 3.17. Also, calculate and 
interpret a point estimate of the odds ratio for x1.
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Exercise 3.11 Mendenhall and Sinicich (2011) present data that can 
be used to investigate allegations of gender discrimination in the hiring 
practices of a particular firm. Of the twenty-eight candidates who applied 
for employment at the firm, nine were hired. The combinations of edu-
cation x1, (in years), experience x2, (in years), and gender x3 (a dummy 
variable that equals 1 if the potential employee was a male and 0 if the 
potential employee was a female) for the nine hired candidates were  
(6, 6, 1), (6, 3, 1), (8, 3, 0), (8, 10, 0), (4, 5, 1), (6, 1, 1), (8, 5, 1),  
(4, 10, 1), and (6, 12, 0). For the nineteen candidates that were not hired, 
the combinations of values of x x x1 2 3, , and  were (6, 2, 0), (4, 0, 1), (4, 1, 0),  
(4, 2, 1), (4, 4, 0), (6, 1, 0), (4, 2, 1), (8, 5, 0), (4, 2, 0), (6, 7, 0),  
(6, 4, 0), (8, 0, 1), (4, 7, 0), (4, 1, 1), (4, 5, 0), (6, 0, 1), (4, 9, 0)(8, 1, 0),  
and (6, 1, 0). If p x x x( , , )1 2 3  denotes the probability of a poten-
tial employee being hired, and if we use the logistic regression model 
p x x x e ex x x x x x( , , ) /[ ]( ) ( )

1 2 3
0 1 1 2 2 3 3 0 1 1 2 2 3 31= ++ + + + + +b b b b b b b b  to analyze these 

data, we find that the point estimates of the model parameters and their 
associated p-values (given in parentheses) are 
b0 14 2483 0191= − ( ). . , b1 1 1549 0552= ( ). . , b2 9098 0341, . .= ( ), and 
b3 5 6037 0313= ( ). . . 

(a)	Consider a potential employee having 4 years of education and 
5 years of experience. Find a point estimate of the probability that 
the potential employee will be hired if the potential employee is a 
male, and find a point estimate of the probability that the potential 
employee will be hired if the potential employee is a female.

(b)	Using b3 5 6037= . , find a point estimate of the odds ratio for x3. 
Interpret this odds ratio. Using the p-value describing the impor-
tance of x3, can we conclude that there is strong evidence that gender 
is related to the probability that a potential employee will be hired?



CHAPTER 4

Model Building and Model 
Diagnostics

4.1  Step 1: Preliminary Analysis and Assessing 
Multicollinearity

Recall the sales territory performance data in Table 2.5. These data con-
sist of values of the dependent variable y (Sales) and of the indepen-
dent variables x1 (Time), x2 (MktPoten), x3 (Adver), x4 (MktShare), and 
x5 (Change). The complete sales territory performance data analyzed by 
Cravens, Woodruff, and Stomper (1972) consists of the data presented 
in Table 2.5 and data concerning three additional independent variables. 
These three additional variables are x6 = number of accounts handled by 
the representative (Accts); x7 = average workload per account, measured 
by using a weighting based on the sizes of the orders by the accounts and 
other workload-related criteria (Wkload); and x8 = an aggregate rating 
on eight dimensions of the representative’s performance, made by a sales 
manager and expressed on a 1 to 7 scale (Rating).

Table 4.1 gives the observed values of x x x6 7 8, , ,  and  and Figure 4.1 
presents the MINITAB output of a correlation matrix for the sales ter-
ritory performance data. Examining the first column of the matrix, we 
see that the simple correlation coefficient between Sales and Wkload is 
-.117 and that the p-value for testing the significance of the relationship 
between Sales and Wkload is .577. This indicates that there is little or no 
relationship between Sales and Wkload. However, the simple correlation 
coefficients between Sales and the other seven independent variables range 
from .402 to .754, with associated p-values ranging from .046 to .000. 
This indicates the existence of potentially useful relationships between 
Sales and these seven independent variables.

Although simple correlation coefficients (and scatter plots) give us 
a preliminary understanding of the data, they cannot be relied upon 
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Table 4.1  Values of Accts, Wkload, and Rating

Accounts, x6 Workload, x7 Rating, x8 
  74.86 15.05 4.9

107.32 19.97 5.1

  96.75 17.34 2.9

195.12 13.40 3.4

180.44 17.64 4.6

104.88 16.22 4.5

256.10 18.80 4.6

126.83 19.86 2.3

203.25 17.42 4.9

119.51 21.41 2.8

116.26 16.32 3.1

142.28 14.51 4.2

  89.43 19.35 4.3

  84.55 20.02 4.2

119.51 15.26 5.5

  80.49 15.87 3.6

136.58 7.81 3.4

  78.86 16.00 4.2

136.58 17.44 3.6

138.21 17.98 3.1

  75.61 20.99 1.6

102.44 21.66 3.4

  76.42 21.46 2.7

136.58 24.78 2.8

  88.62 24.96 3.9

alone to tell us which independent variables are significantly related to 
the dependent variable. One reason for this is a condition called multi-
collinearity. Multicollinearity is said to exist among the independent vari-
ables in a regression situation if these independent variables are related to 
or dependent upon each other. One way to investigate multicollinearity 
is to examine the correlation matrix. To understand this, note that all 
of the simple correlation coefficients not located in the first column of 
this matrix measure the simple correlations between the independent vari-
ables. For example, the simple correlation coefficient between Accts and 
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Time is .758, which says that the Accts values increase as the Time values 
increase. Such a relationship makes sense because it is logical that the lon-
ger a sales representative has been with the company the more accounts 
he or she handles. Statisticians often regard multicollinearity in a dataset 
to be severe if at least one simple correlation coefficient between the inde-
pendent variables is at least .9. Since the largest such simple correlation 
coefficient in Figure 4.1 is .758, this is not true for the sales territory 
performance data. Note, however, that even moderate multicollinearity 
can be a potential problem. This will be demonstrated later using the sales 
territory performance data.

Another way to measure multicollinearity is to use variance inflation 
factors. Consider a regression model relating a dependent variable y to a 
set of independent variables x x x x xj j j k1 1 1,...., , , ,..., .

− +
 The variance infla-

tion factor for the independent variable x j in this set is denoted VIFj and 
is defined by the equation

VIF
Rj

j

=

−

1
1 2

where Rj
2 is the multiple coefficient of determination for the regres-

sion model that relates x j to all the other independent variables 
x x x xj j k1 1 1,...., , ,...,− +  in the set. For example, Figure 4.2 gives the SAS 

Time
Sales Time

MktPoten

Mkt
Poten

Adver

Adver

MktShare

Mkt
Share

Change

Change

Accts

Accts

WkLoad

WkLoad

Rating

0.623
0.001
0.598
0.002
0.596
0.002
0.484
0.014
0.489
0.013
0.754
0.000

0.577
0.402
0.046

-0.117

0.454 Cell contents:Pearson correlation
P-Value0.023

0.249
0.230
0.106
0.613
0.251
0.225
0.758
0.000

0.391
0.101
0.631

-0.179

0.174
0.405

-0.211
0.312
0.268
0.195
0.479
0.016

0.212
0.359
0.078

-0.259

0.264
0.201
0.377
0.064
0.200
0.338

0.188
0.411
0.041

-0.272

0.085
0.685
0.403
0.046

0.087
-0.024
0.911

0.349

0.327
0.110

0.163
0.549
0.004

-0.288
0.341
0.229
0.272

-0.277
0.180

-0.199

Figure 4.1  MINITAB output of the correlation matrix
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output of the t-statistics, p-values, and variance inflation factors for the 
sales territory performance model that relates y to all eight independent 
variables. The largest variance inflation factor is VIF6 5 639= . . To calculate 
VIF6 , SAS first calculates the multiple coefficient of determination for 
the regression model that relates x x x x x x x x6 1 2 3 4 5 7 8 to       and , , , , , ,  to 
be R6

2 822673= . . It then follows that

VIF
R6

6
2

1
1

1
1 822673

5 639=

−

=

−

=

.
.

VIFj is called the variance inflation factor because it can be shown 
that σbj

2 , the variance of the population of all possible values of the 
least squares point estimate bj  is related to VIFj by the equation 
σ σb j x xj j j

VIF SS2 2
= ( ) /  where SS x xx x i j

i

n

jj j
= −

=
∑( ) .

1

2  If Rj
2 =0, that is, if

x j is not related to the other independent variables x x x xj j k1 1 1,..., , ,...,− +  
through a multiple regression model that relates x j to x x x xj j k1 1 1,..., , ,...,− + ,  
then the variance inflation factor VIF Rj j= −1 1 2/ ( ) equals 1. In this case 
σ σb x xj j j

SS2 2
= / . If R xj j

2 0> ,  is related to the other independent variables. 
This implies that 1 2

− Rj  is less than 1, and VIF Rj= −1 1 2/ ( ) is greater 
than 1.Therefore, σ σb j x xj j j

VIF SS2 2
= ( ) /  is inflated beyond the value of 

σbj

2 when Rj
2 0= . Usually, the multicollinearity between independent 

variables is considered (1) severe if the largest variance inflation factor is 
greater than 10 and (2) moderately strong if the largest variance inflation 
factor is greater than five. Moreover, if the mean of the variance inflation 
factors is substantially greater than one (sometimes a difficult criterion 

Time
Constant
Predictor

MktPoten
Adver
MktShare
Change
Accts
WkLoad
Rating

2.010
-1507.8

Coef

0.037205
0.15099
199.02
290.9
5.551
19.79
8.2

1.931
778.6

SE Coef

0.008202
0.04711

67.03
186.8
4.776
33.68
128.5

1.04
-1.94

T

4.54
3.21
2.97
1.56
1.16
0.59
0.06

0.313
0.071

P

0.000
0.006
0.009
0.139
0.262
0.565
0.950

3.343

VIF

1.978
1.910
3.236
1.602
5.639
1.818
1.809

Figure 4.2  The t statistics, p-values, and variance inflation factors 
for the eight independent variables model
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to assess), multicollinearity might be problematic. In the sales territory 
performance model, the largest variance inflation factor, VIF6 5 639= . , 
is greater than five. Therefore, we might classify the multicollinearity as 
being moderately strong.

If there is strong multicollinearity, then two slightly different samples 
of values of the dependent variable can yield two substantially different 
values of bj . To intuitively understand why strong multicollinearity can 
significantly affect the least squares point estimates, consider the so-called 
picket fence display in Figure 4.3. This figure depicts two independent 
variables (x x1 2 and ) exhibiting strong multicollinearity (note that as x1

increases, x2 increases). The heights of the pickets on the fence represent 
the y observations. If we assume that the model

y x x= + + +b b b e0 1 1 2 2

adequately describes this data, then calculating the least squares point esti-
mates is like fitting a plane to the points on the top of the picket fence. 
Clearly, this plane would be quite unstable. That is, a slightly different height 
of one of the pickets (a slightly different y value) could cause the slant of the 
fitted plane (and the least squares point estimates that determine this slant) 
to radically change. It follows that when strong multicollinearity exists, sam-
pling variation can result in least squares point estimates that differ substan-
tially from the true values of the regression parameters. In fact, some of the 
least squares point estimates may have a sign (positive or negative) that dif-
fers from the sign of the true value of the parameter (we will see an example 
of this in the exercises). Therefore, when strong multicollinearity exists, it is 
dangerous to individually interpret the least squares point estimates.

x1

y

x2

Figure 4.3  The picket fence display
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The most important problem caused by multicollinearity is that 
even when the multicollinearity is not severe, it can hinder our ability 
to use the t-statistics and related p-values to assess the importance of the 
independent variables. Recall that we can reject Η0 0:   =β j   in favor of 
Η a j: b ≠ 0 at level of significance a if and only if the absolute value of the 
corresponding t-statistic is greater than t

α / ,2[ ]
 or equivalently, if and only 

if the related p-value is less than α . Thus the larger (in absolute value) the 
t-statistic is and the smaller the p-value is, the stronger is the evidence 
that we should reject Η0 0: b j =  and the stronger is the evidence that 
the independent variable x j is significant. When multicollinearity exists, 
the sizes of the t-statistic and of the related p-value measure the additional 
importance of the independent variable x j over the combined importance of 
the other independent variables in the regression model. Since two or more 
correlated independent variables contribute redundant information, mul-
ticollinearity often causes the t-statistics obtained by relating a dependent 
variable to a set of correlated independent variables to be smaller (in abso-
lute value) than the t-statistics that would be obtained if separate regres-
sion analyses were run, where each separate regression analysis relates the 
dependent variable to a smaller set (for example, only one) of the cor-
related independent variables. Thus, multicollinearity can cause some of 
the correlated independent variables to appear less important—in terms 
of having small absolute t-statistics and large p-values—than they really 
are. Another way to understand this is to note that since multicollinear-
ity inflates σbj

 it inflates the point estimate sbj
 of σbj

. Since t b sj bj
= / , an 

inflated value of sbj
can (depending on the size of bj) cause t  to be small 

(and the related p-value to be large). This would suggest that x j is not 
significant even though x j may really be important.

For example, Figure 4.2 tells us that when we perform a regres-
sion analysis of the sales territory performance data using a model that 
relates y to all eight independent variables, the p-values related to Time, 
MktPoten, Adver, MktShare, Change, Accts, Wkload, and Rating are, 
respectively, .3134, .0003, .0055, .0090, .1390, .2621, .5649, and .9500. 
By contrast, recall from Table 2.5c that when we perform a regression 
analysis of the sales territory performance data using a model that relates 
y to the first five independent variables, the p-values related to Time, 
MktPoten, Adver, MktShare, and Change are, respectively, .0065, .0001, 
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.0025, .0001, and .0530. Note that Time (p-value = .0065) seems highly 
significant and Change (p-value = .0530) seems somewhat significant in 
the five-independent-variable model. However, when we consider the 
model that uses all eight independent variables, Time (p-value = .3134) 
seems insignificant and Change (p-value = .1390) seems somewhat insig-
nificant. The reason that Time and Change seem more significant in the 
model with five independent variables is that since this model uses fewer 
variables, Time and Change contribute less overlapping information and 
thus have additional importance in this model.

4.2  Step 2: Comparing Regression Models: Model 
Comparison Statistics

We have seen that when multicollinearity exists in a model, the p-value 
associated with an independent variable in the model measures the addi-
tional importance of the variable over the combined importance of the 
variables in the model. Therefore, it can be difficult to use the p-values 
to determine which variables to retain in and which variables to remove 
from a model. The implication is that we need to evaluate more than the 
additional importance of each independent variable in a regression model. 
We also need to evaluate how well the independent variables work together 
to accurately describe, predict, and control the dependent variable. One 
way to do this is to determine if the overall model gives a high R 2 and R 2,  
a small s, and short prediction intervals.

It can be proved that adding any independent variable to a regres-
sion model, even an unimportant independent variable, will decrease the 
unexplained variation and will increase the explained variation. There-
fore, since the total variation ( )y yi −∑ 2  depends only on the observed
y values and thus remains unchanged when we add an independent 
variable to a regression model, it follows that adding any independent 
variable to a regression model will increase the coefficient of determination 
R Explained variation Total variation2

= ( ) ( )  / . This implies that R 2 can-
not tell us (by decreasing) that adding an independent variable is unde-
sirable. That is, although we wish to obtain a model with a large R 2,  
there are better criteria than R 2 that can be used to compare regression 
models.
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One better criterion is the standard error

s
SSE

n k
=

− +( )1

When we add an independent variable to a regression model, the num-
ber of model parameters ( )k +1  increases by one, and thus the number 
of degrees of freedom n k− +( )1  decreases by one. If the decrease in
n k− +( )1 , which is used in the denominator to calculate s, is propor-
tionally more than the decrease in SSE (the unexplained variation) that 
is caused by adding the independent variable to the model, then s will 
increase. If s increases, this tells us that we should not add the independent 
variable to the model. To see one reason why, consider the formula for the 
prediction interval for y 

[ ][ / ]y t s∧ ± +a 2 1 Distance value

Since adding an independent variable to a model decreases the number 
of degrees of freedom, adding the variable will increase the t

α /2[ ]
 point 

used to calculate the prediction interval. To understand this, look at 
any column of the t-table in Table A2 and scan from the bottom of the 
column to the top—you can see that the t-points increase as the degrees 
of freedom decrease. It can also be shown that adding any independent 
variable to a regression model will not decrease (and usually increases) the 
distance value. Therefore, since adding an independent variable increases
t

α /2[ ]
 and does not decrease the distance value, if s increases, the length of 

the prediction interval for y will increase. This means the model will predict 
less accurately and thus we should not add the independent variable.

On the other hand, if adding an independent variable to a regression 
model decreases s, the length of a prediction interval for y will decrease 
if and only if the decrease in s is enough to offset the increase in t

α /2[ ]
 and 

the (possible) increase in the distance value. Therefore, an independent 
variable should not be included in a final regression model unless it reduces s 
enough to reduce the length of the desired prediction interval for y. However, 
we must balance the length of the prediction interval, or in general, the 
goodness of any criterion, against the difficulty and expense of using the 
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model. For instance, predicting y requires knowing the corresponding 
values of the independent variables. So we must decide whether including 
an independent variable reduces s and prediction interval lengths enough 
to offset the potential errors caused by possible inaccurate determination 
of values of the independent variables, or the possible expense of deter-
mining these values. If adding an independent variable provides predic-
tion intervals that are only slightly shorter while making the model more 
difficult and more expensive to use, we might decide that including the 
variable is not desirable.

Since a key factor is the length of the prediction intervals provided by 
the model, one might wonder why we do not simply make direct com-
parisons of prediction interval lengths (without looking at s). It is useful 
to compare interval lengths, but these lengths depend on the distance 
value, which depends on how far the values of the independent variables 
we wish to predict for are from the center of the experimental region. We 
often wish to compute prediction intervals for several different combina-
tions of values of the independent variables (and thus for several different 
values of the distance value). Thus we would compute prediction intervals 
having slightly different lengths. However, the standard error s is a con-
stant factor with respect to the length of prediction intervals (as long as 
we are considering the same regression model). Thus it is common practice 
to compare regression models on the basis of s(and s2). Finally, note that it 
can be shown that the standard error s decreases if and only if R 2 (adjusted R 2)  
increases. It follows that if we are comparing regression models, the model that 
gives the smallest s gives the largest R 2.

Example 4.1

Figure 4.4 gives MINITAB output resulting from calculating R R s2 2, ,and  
for all possible regression models based on all possible combinations of the 
eight independent variables in the sales territory performance situation (the 
values of C p  on the output will be explained after we complete this exam-
ple). The MINITAB output gives the two best models of each size in terms 
of s Rand 2—the two best one-variable models, the two best two-variable 
models, and so on. Examining Figure 4.4, we see that the three models 
having the smallest values of s and the largest values of R 2 are
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1.	the six-variable model that contains

Time, MktPoten, Adver, MktShare, Change, Accts 

and has s = 428 00.  and R 2 89 4= . ; we refer to this model as Model 1;
2.	the five-variable model that contains

Time, MktPoten, Adver, MktShare, Change

and has s = 430 23.  and R 2 89 3= . ; we refer to this model as Model 2;
3.	the seven-variable model that contains

Time, MktPoten, Adver, MktShare, Change, Accts, Wkload

and has s = 435 67.  and R 2 89 0= . ; we refer to this model as Model 3.

To see that s can increase when we add an independent variable to a 
regression model, note that s increases from 428.00 to 435.67 when we 
add Wkload to Model 1 to form Model 3. In this case, although it can 
be verified that adding Wkload decreases the unexplained variation from 
3,297,279.3342 to 3,226,756.2751, this decrease has not been enough to 
offset the change in the denominator of
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Figure 4.4  MINITAB output of the two best sales territory 
performance regression models of each size
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s
SSE

n k
2

1
=

− +( )

which decreases from 25 – 7 = 18 to 25 – 8 = 17. To see that prediction inter-
val lengths might increase even though s decreases, consider adding Accts to 
Model 2 to form Model 1. This decreases s from 430.23 to 428.00. How-
ever, consider a questionable sales representative for whom Time = 85.42, 
MktPoten = 35,182.73, Adver = 7281.65, MktShare = 9.64, Change = .28, 
and Accts = 120.61. The 95 percent prediction interval given by Model 2 for 
sales corresponding to this combination of values of the independent vari-
ables is [3234, 5130] (see Table 2.5c) and has length 5130 3234 1896− = .  
The 95 percent prediction interval given by Model 1 for such values can be 
found to be [3194, 5093] and has length 5093 - 3194 = 1899. In other 
words, the slight decrease in s accomplished by adding Accts to Model 
2 to form Model 1 is not enough to offset the increases in t

α /2[ ]
 and the 

distance value (which can be shown to increase from .109 to .115), and 
thus the length of the prediction interval given by Model 1 increases. In 
addition, the extra independent variable Accts in Model 1 can be verified 
to have a p-value of .2881. Therefore, we conclude that Model 2 is better 
than Model 1 and is, in fact, the “best” sales territory performance model 
(using only linear terms).

Another quantity that can be used for comparing regression models 
is called the C-statistic (also often called the Ck-statistic). This criterion 
evaluates the total mean squared error of the n fitted yi

∧  values for each pos-
sible regression model. In general, we know that if a particular regression 
model using k independent variables satisfies the regression assumptions, 
then m

y
i

∧ , the mean of all possible yi
∧  values equals

m b b b by i i k iki
x x x= + + + +0 1 1 2 2 ...

the mean yi value for the k independent variable model. If the k inde-
pendent variable model has been misspecified and the true model 
describing yi uses perhaps more independent variables that imply 
that the true mean yi value is myi

(True), we would want to consider the 
expected value of
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( ( )) [( ) ( ( )]y yi y i y y yi i i i

∧ ∧− = − + −∧ ∧m m m mTrue True)2 2

This expected value, which is called the mean squared error of the fitted 
value yi

∧  can be shown to equal

[ ( )]m m s
y y yi i i
∧ ∧− +True 2 2

where [ ( )]m m
y y

i i
∧ − True 2 represents the squared bias of the k independent 

variable model and s yi
∧
2  is the variance of yi

∧  for the k independent variable 
model. The total mean squared error for all n fitted y

i
∧  values is the sum of 

the n individual mean squared errors

[ ( )]m m s
y y

i

n

y
i

n

i i i
∧ ∧− +

= =
∑ ∑True 2

1

2

1

The theoretical criterion behind the C  statistic is
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where σ 2 is the true error variance. To estimate Γ, we first note that, if 
′ =xi [ ... ]1 1 2x x xi i ik , then

s s s
y

i

n

i

n

i

n

i
k∧

= = =
∑ ∑ ∑= ′ ( ) = ′( ) = +2

1

2

1

2

1

1[ X X x ] X X x1
i

1
ix xi i¢¢ ¢¢-- -- ( )ss2

Here, it can be proven that ′ ′ = +
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1

 for a model that uses
k independent variables. It can also be proven that if SSE denotes the 
unexplained variation for the model using k  independent variables, 
then

m m m sSSE y y
i

n

i i
n k= − + − +∧

=
∑[ ( )] [ ( )]True 2

1

21
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This implies that

[ ( )] [ ( )]m m m s
y y SSE

i

n

i
i

n k∧ − = − − +
=
∑ True 2

1

21

and thus we have that

Γ = − − + + + 

= − − +

1
1 1

2 1
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2 2
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s

SSE
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n k k

n k

[ ( )] ( )

[ ( )]

If we estimate mSSE by SSE , the unexplained variation for the model using 
k independent variables, and if we estimate s2 2by s p, the mean square error 
for the model using all p potential independent variables, then the estimate 
of Γ for the model using k independent variables is called the C statistic 
and is defined by the equation:

C
s

n k
p

= − − +
SSE

2 2 1[ ( )]

For example, consider the sales territory performance case. It can be ver-
ified that the mean square error for the model using all p = 8 indepen-
dent variables is 201,621.21 and that the SSE for the model using the 
first k = 5 independent variables (Model 2 in the previous example) is 
3,516,812.7933. It follows that the C-statistic for this latter model is

C = − − + =
3 516 812 7933

201 621 21
25 2 5 1 4 4, , ,

, .
[ ( )] .

Since the C-statistic for a given model is a function of the model’s SSE ,  
and since we want SSE  to be small, we want C  to be small. Although 
adding an unimportant independent variable to a regression model will 
decrease SSE , adding such a variable can increase C . This can happen 
when the decrease in SSE  caused by the addition of the extra independent 
variable is not enough to offset the decrease in n k− +( )2 1   caused by 
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the addition of the extra independent variable (which increases k by 1). 
It should be noted that although adding an unimportant independent 
variable to a regression model can increase both s2 and C , there is no exact 
relationship between s2and C .

Although we want C  to be small, note that if a particular model using
k  independent variable has no bias, then Γ = +k 1 and the expected 
value of C  is close to k +1. Therefore, we also wish to find a model for which 
the C -statistic roughly equals k +1, the number of parameters in the model. 
If a model has a C -statistic substantially greater than k +1, this model has 
substantial bias and is undesirable. Thus, although we want to find a model 
for which C  is as small as possible, if C  for such a model is substantially 
greater than k +1, we may prefer to choose a different model for which C  
is slightly larger and more nearly equal to the number of parameters in 
that (different) model. If a particular model has a small value of C  and C  
for this model is less than k +1, then the model should be considered desirable. 
Finally, it should be noted that for the model that includes all p potential 
independent variables (and thus utilizes p +1 parameters), it can be shown 
that C p= +1.1

If we examine Figure 4.4, we see that Model 2 of the previous example 
has the smallest C-statistic. The C-statistic for this model equals 4.4. Since
C = 4 4.  is less than k + =1 6 , the model is not biased. Therefore, this 
model should be considered best with respect to the C-statistic.

Thus far, we have considered how to find the best model using linear 
independent variables. In later discussions we illustrate, using the sales 
territory performance case, a procedure for deciding which squared and 
interaction terms to include in a regression model. We have found that 
this procedure often identifies important squared and interaction terms 
that are not identified by simply using scatter and residual plots.

4.2.2  Stepwise Regression and Backward Elimination

In some situations it is useful to employ an iterative model selection pro-
cedure, where at each step a single independent variable is added to or, 

1 That fact that C = +p 1 for the model using all p potential independent variables is not a recom-
mendation for choosing this model as the best model but a consequence of estimating s2 2by sp, 
which means that we are assuming that this model has no bias.



	 Model Building and Model Diagnostics	 173

deleted from a regression model, and a new regression model is evaluated. 
We begin by discussing one such procedure—stepwise regression.

Stepwise regression begins by considering all of the one-indepen-
dent-variable models and choosing the model for which the p-value related 
to the independent variable in the model is the smallest. If this p-value 
is less than aentry, an a  value for entering a variable, the independent  
variable is the first variable entered into the stepwise regression model 
and stepwise regression continues. Stepwise regression then considers the 
remaining independent variables not in the stepwise model and chooses 
the independent variable which, when paired with the first independent 
variable entered, has the smallest p-value. If this p-value is less than aentry, 
the new variable is entered into the stepwise model. Moreover, the stepwise 
procedure checks to see if the p-value related to the first variable entered 
into the stepwise model is less than a stay, an a value for allowing a variable 
to stay in the stepwise model. This is done because multicollinearity could 
have changed the p-value of the first variable entered into the stepwise 
model. The stepwise procedure continues this process and concludes when 
no new independent variable can be entered into the stepwise model. It is 
common practice to set both aentry and a stay equal to .05 or .10.

For example, again consider the sales representative performance data. 
We let x x x x x x x x1 2 3 4 5 6 7 8, , , , , , ,       and   be the eight potential indepen-
dent variables employed in the stepwise procedure. Figure 4.5a gives the 
MINITAB output of the stepwise regression employing these indepen-
dent variables where both aentry and a stay have been set equal to .10. The 
stepwise procedure (1) adds Accts (x6) on the first step; (2) adds Adver (x3)  
and retains Accts on the second step; (3) adds MktPoten (x2) and retains 
Accts and Adver on the third step; and (4) adds MktShare (x4) and retains 
Accts, Adver, and MktPoten on the fourth step. The procedure terminates 
after step 4 when no more independent variables can be added. Therefore, 
the stepwise procedure arrives at the model that utilizes x x x x2 3 4 6, , , .   and  
Note that this model is not the model using x x x x x1 2 3 4 5, , , , and  that was 
obtained by evaluating all possible regression models and that has the 
smallest C  statistic of 4.4. In general, stepwise regression can miss finding 
the best regression model but is useful in data mining, where a massive 
number of independent variables exist and all possible regression models 
cannot be evaluated.
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In contrast to stepwise regression, backward elimination is an itera-
tive model selection procedure that begins by considering the model that 
contains all of the potential independent variables and then attempts to 
remove independent variables one at a time from this model. On each 
step an independent variable is removed from the model if it has the 
largest p-value of any independent variable remaining in the model and 
if its p-value is greater than a stay, an α value for allowing a variable to 
stay in the model. Backward elimination terminates when all the p-values 
for the independent variables remaining in the model are less than a stay.  
For example, Figure 4.5b gives the MINITAB output of a backward 
elimination of the sales territory performance data. Here the backward 
elimination uses a stay = .05, begins with the model using all eight inde-
pendent variables, and removes (in order) Rating x8( ), then Wkload x7( ),  
then Accts x6( ), and finally Change x5( ). The procedure terminates when 
no independent variable remaining can be removed—that is, when no 
independent variable has a related p-value greater than a stay  =  .05—and 
arrives at a model that uses Time x1( ), MktPoten x2( ), Adver x3( ), and 
MktShare x4( ). Similar to stepwise regression, backward elimination has not 
arrived at the model using x x x x x1 2 3 4 5    and , , , ,  that was obtained by eval-
uating all possible regression models and that has the smallest C  statistic of 
4.4. However, note that the model found in step 4 by backward elimination 
is the model using x x x x x1 2 3 4 5    and , , , ,  and is the final model that would 
have been obtained by backward elimination if a stay had been set at .10.

The sales territory performance example brings home two important 
points. First, the models obtained by backward elimination and stepwise 
regression depend on the choices of aentry and a stay (whichever is appro-
priate). Second, it is best not to think of these methods as “automatic 
model-building procedures.” Rather, they should be regarded as processes 
that allow us to find and evaluate a variety of model choices.

4.2.3  Model Building with Squared and Interaction Terms

We have concluded that perhaps the best sales representative performance 
model using only linear independent variables is the model using Time, 
MktPoten, Adver, MktShare, and Change. We have also seen that using 
squared variables (which model quadratic curvature) and interaction 
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variables can improve a regression model. In Figure 4.6a we present the five 
squared variables and the ten (pairwise) interaction variables that can be 
formed using Time, MktPoten, Adver, MktShare, and Change. Consider 
having MINITAB evaluate all possible models involving these squared and 
interaction variables, where the five linear variables are included in each 
possible model. If we have MINITAB do this and find the best model of 
each size in terms of s, we obtain the output in Figure 4.6b. (Note that 
we do not include values of the C  statistic on the output because it can be 
shown that this statistic can give misleading results when using squared 
and interaction variables). Examining the output, we see that the model 
that uses 12 squared and interaction variables (or a total of 17 variables, 
including the 5 linear variables) has the smallest s (174.6) of any model. If 
we desire a somewhat simpler model, note that s does not increase substan-
tially until we move from a model having seven squared and interaction 
variables to a model having six such variables. Moreover, we might sub-
jectively conclude that the s of 210.70 for the model using seven squared 
and interaction variables is not that much larger than the s of 174.6 for the 
model using 12 squared and interaction variables. In addition, if we fit the 
model having seven squared and interaction variables to the sales territory 
performance data, it can be verified that the p-value for each and every 
independent variable in this model is less than .05. Therefore, we might 
subjectively conclude that this model represents a good balance between 
having a small s, having small p-values, and being simple (having fewer 
independent variables). Finally, note that the s of 210.70 for this model 
is considerably smaller than the s of 430.23 for the model using only lin-
ear independent variables (see Table 2.5c). This smaller s yields shorter 
95 percent prediction intervals, and thus more precise predictions for eval-
uating the performance of questionable sales representatives. For exam-
ple, consider the questionable sales representative discussed in Example 
2.5. The 95 percent prediction interval for the sales of this representative 
given by the model using only linear variables is [3234, 5130] (see Obs 26 
in Table 2.5c), whereas the 95 percent prediction interval for the sales 
of this representative given by the seven squared and interaction variable 
model in Figure 4.6b is much shorter—[3979.4, 5007.8] (see Obs 26 in 
Figure 4.6c).
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4.3  Step 3: Diagnosing and Remedying Violations of 
Regression Assumptions 1, 2, and 3

4.3.1  Residual Analysis

As discussed in Section 2.3, four regression assumptions must at least 
approximately hold if statistical inferences made using the linear regres-
sion model

y x x xk k= + + + + +b b b b e0 1 1 2 2 ...

are to be valid. The first three regression assumptions say that, at any 
given combination of values of the independent variables x x xk1 2, ,..., , the 
population of error terms that could potentially occur

1.	has mean zero;
2.	has a constant variance σ 2 (a variance that does not depend upon 

x x xk1 2, ,..., );
3.	is normally distributed.

The fourth regression assumption says that any one value of the error 
term is statistically independent of any other value of the error term. To 
assess whether the regression assumptions hold in a particular situation, 
note that the regression model implies that the error term ε is given by 
the equation e b b b b= − + + + +y x x xk k( ... )0 1 1 2 2 . The point estimate of 
this error term is the residual

e y y y b b x b x b xk k= − = − + + + +∧ ( ... )0 1 1 2 2

where y b b x b x b xk k
∧ = + + + +0 1 1 2 2 ...  is the predicted value of the depen-

dent variable y. Therefore, since the n residuals are the point estimates 
of the n error terms in the regression analysis, we can use the residuals to 
check the validity of the regression assumptions about the error terms. 
One useful way to analyze residuals is to plot them versus various criteria. 
The resulting plots are called residual plots. To construct a residual plot, we 
compute the residual for each observed y value. The calculated residuals 
are then plotted versus some criterion. To validate the regression assump-
tions, we make residual plots against (1) values of each of the independent 
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variables x x xk1 2, ,..., ; (2) values of y∧, the predicted value of the dependent 
variable; and (3) the time order in which the data have been observed (if 
the regression data are time series data).

Example 4.2

Quality Home Improvement Center (QHIC) operates five stores in a large 
metropolitan area. The marketing department at QHIC wishes to study 
the relationship between x, home value (in thousands of dollars), and y, 
yearly expenditure on home upkeep (in dollars). A random sample of 40 
homeowners is taken and survey participants are asked to estimate their 
expenditures during the previous year on the types of home upkeep prod-
ucts and services offered by QHIC. Public records of the county auditor 
are used to obtain the previous year’s assessed values of the homeowner’s 
homes. Figure 4.7 gives the resulting values of x  (see value) and y (see 
upkeep) and a scatter plot of these values. The least squares point estimates 
of the y-intercept β0 and the slope b1 of the simple linear regression model 
describing the QHIC data are b0 = −348 3921.  and b1 7 2583= . . Moreover, 
Figure 4.7 presents the predicted home upkeep expenditures and residuals 
that are given by the regression model. Here each residual is computed as

e y y y b y x= − = − = − − +∧ ( ) ( . . )0 1+b x 348 3921 7 2583

Figure 4.7  The QHIC data and residuals, and a scatter plot (Continued)

Home Value Unkeep Predicted Residual
  1 237.00 1,412.080 1,371.816   40.264

  2 153.08   797.200   762.703   34.497

  3 184.86   872.480   993.371 –120.891

  4 222.06 1,003.420 1,263.378 –259.958

  5 160.68   852.900   817.866   35.034

  6 99.68   288.480   375.112 –86.632

  7 229.04 1,288.460 1,314.041 –25.581

  8 101.78   423.080   390.354   32.726

  9 257.86 1,351.740 1.523.224 –171.484

10   96.28   378.040   350.434   27.606

11 171.00   918.080   892.771   25.309

12 231.02 1,627.240 1,328.412   298.828
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13 228.32 1,204.760 1308.815 –104.055

14 205.90   857.040 1,146.084 –289.044

15 185.72   775.000   999.613 –224.613

16 168.78   869.260   876.658   –7.398

17 247.06 1,396.000 1,444,835   –48.835

18 155.54   711.500   780.558   –69.056

19 224.20 1,475.180 1,278.911 196.269

20 202.04 1,413.320 1.118.068 295.252

21 153.04   849.140   762.413   86.727

22 232.18 1,313.840 1.336.832   –22.992

23 125.44   602.060   562.085   39.975

24 169.82   642.140   884.206 –242.066

25 177.28 1.038.800   938.353   100.447

26 162.82   697.000   833.398 –136.398

27 120.44   324.340   525.793 –201.453

28 191.10   965.100 1,038.662   –73.562

29 158.78   920.140   804.075   116.065

30 178.50   950.900   947.208   3.692

31 272.20 1,670.320 1,627.307   43.013

32   48.90   125.400       6.537 118.863

33 104.56   479.780   410.532   69.248

34 286.18 2,010.640 1,728.778 281.862

35   83.72   368.360   259.270 109.090

36   86.20   425.600   277.270 148.330

37   133.58   626.900   621.167   5.733

38   212.86 1,316.940 1,196.602   120.338

39   122.02   390.160   537.261 –147.101

40   198.02 1,090.840 1,088.889   1.951

2000

1000

0
100 200 300

Value

U
pk

ee
p

Figure 4.7  The QHIC data and residuals, and a scatter plot
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For instance, for the first home, when y = 1,412.08 and x = 237.00, the 
residual is

e = − − +

= − =

1 412 08 348 3921 7 2583 237
1 412 08 1 371 816 40 2
, . ( . . ( ))
, . , . . 664

The MINITAB output in Figure 4.8a and 4.8b gives plots of the residuals 
for the QHIC simple linear regression model against values of x (value) 
and y∧ (predicted upkeep). To understand how these plots are constructed, 
recall that for the first home y = 1,412.08, x = 237.00, y∧ = 1 371 816, . ,
and the residual is 40.264. It follows that the point plotted in Figure 4.8a 
corresponding to the first home has a horizontal axis coordinate of the x
value 237.00 and a vertical axis coordinate of the residual 40.264. It also 
follows that the point plotted in Figure 4.8b corresponding to the first 
home has a horizontal axis coordinate of the y∧ value 1,371.816, and a ver-
tical axis coordinate of the residual 40.264. Finally, note that the QHIC 
data are cross-sectional data, not time series data. Therefore, we cannot 
make a residual plot versus time.

4.3.2  The Constant Variance Assumption

To check the validity of the constant variance assumption, we examine 
plots of the residuals against values of x, y∧ and time (if the regression 
data are time series data). When we look at these plots, the pattern of 
the residuals’ fluctuation around 0 tells us about the validity of the con-
stant variance assumption. A residual plot that fans out (as in Figure 4.9a) 
suggests that the error terms are becoming more spread out as the hor-
izontal plot value increases and that the constant variance assumption 
is violated. Here we would say that an increasing error variance exists. A 
residual plot that funnels in (as in Figure 4.9b) suggests that the spread 
of the error terms is decreasing as the horizontal plot value increases and 
that again the constant variance assumption is violated. In this case we 
would say that a decreasing error variance exists. A residual plot with a 
horizontal band appearance (as in Figure 4.9c) suggests that the spread 
of the error terms around 0 is not changing much as the horizontal plot 
value increases. Such a plot tells us that the constant variance assumption 
(approximately) holds.
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As an example, consider the QHIC case and the residual plot in 
Figure 4.8a. This plot appears to fan out as x increases, indicating that the 
spread of the error terms is increasing as x increases. That is, an increasing 
error variance exists. This is equivalent to saying that the variance of the 
population of potential yearly upkeep expenditures for houses worth x 
(thousand dollars) appears to increase as x increases. The reason is that the 
model y x= + +b b e0 1  says that the variation of y is the same as the vari-
ation of ε . For example, the variance of the population of potential yearly 
upkeep expenditures for houses worth $200,000 would be larger than the 
variance of the population of potential yearly upkeep expenditures for 
houses worth $100,000. Increasing variance makes some intuitive sense 
because people with more expensive homes generally have more discre-
tionary income. These people can choose to spend either a substantial 

Residual

Increasing error variance

Decreasing error variance

Constant error variance

Residual

Residuals fan out

Residual

Residuals funnel in

Residuals from horizontal band

(a) 

(b) 

(c) 

Figure 4.9  Residual plots and the constant variance assumption
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amount or a much smaller amount on home upkeep, thus causing a rela-
tively large variation in upkeep expenditures.

Another residual plot showing the increasing error variance in the 
QHIC case is Figure 4.8b. This plot tells us that the residuals appear to fan 
out as y∧ (predicted y) increases, which is logical because y∧ is an increasing 
function of x. Also, note that the original scatter plot of y versus x in Figure 
4.7 shows the increasing error variance—the y values appear to fan out as 
x increases. In fact, one might ask why we need to consider residual plots 
when we can simply look at scatter plots. One answer is that, in general, 
because of possible differences in scaling between residual plots and scatter 
plots, one of these types of plots might be more informative in a particular 
situation. Therefore, we should always consider both types of plots.

When the constant variance assumption is violated, we cannot use the 
regression formulas presented in this book to make statistical inferences. 
Later in this section we will learn how to remedy violations of the con-
stant variance assumption.

4.3.3  The Assumption of Correct Functional Form

Consider the simple linear regression model y x= + +b b e0 1 . If for any 
value of x in this model the population of potential error terms has a 
mean of 0 (regression assumption 1), then the population of potential y 
values has a mean of m b by x x| = +  0 1 . But this is the same as saying that 
for different values of x the corresponding values of my x|  lie on a straight 
line (rather than, for example, a curve). Thus for the simple linear regres-
sion model we call regression assumption 1 the assumption of correct func-
tional form. If we mistakenly use a simple linear regression model when 
the true relationship between y and x is curved, the residual plot will have 
a curved appearance. For example, the scatter plot of upkeep expenditure, 
y, versus home value, x, in Figure 4.7 has either a straight-line or slightly 
curved appearance. We used a simple linear regression model to describe 
the relationship between y and x, but note that there is a dip or slightly 
curved appearance, in the upper left portion of the residual plots against 
x and y∧ in Figure 4.8a and 4.8b. Therefore, both the scatter plot and 
residual plots indicate that there might be a slightly curved relationship 
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between y and x. One remedy for the simple linear regression model’s 
violation of the correct functional form assumption is to fit the quadratic 
regression model y x x= + + +b b b e0 1 2

2  to the QHIC data. When we do 
this and plot the model’s residuals versus x (value), we obtain the residual 
plot in Figure 4.8d. The fact that this residual plot does not have any 
curved appearance implies that the quadratic regression model has rem-
edied the violation of the correct functional form assumption. However, 
note that the residuals fan out as x increases, indicating that the constant 
variance assumption is still being violated.

If we generalize the above ideas to the multiple linear regression model, 
we can say that if a residual plot against a particular independent variable 
x j or against the predicted value of the dependent variable y∧ has a curved 
appearance, then this indicates a violation of regression assumption 1 and 
says that the multiple linear regression model does not have the correct 
functional form. Specifically, the multiple linear regression model may 
need additional squared or interaction variables, or both. To give an illus-
tration of using residual plots in multiple linear regression, consider the 
sales territory performance data in Table 2.5a and recall that Table 2.5c 
gives the SAS output of a regression analysis of these data using the model

y x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 4 5 5

The least squares point estimates on the output give the prediction 
equation

y x x x x
∧

= − + + + + +1113 7879 3 6121 0421 1289 256 9555 324 53351 2 3 4. . . . . . xx5

y x x x x
∧

= − + + + + +1113 7879 3 6121 0421 1289 256 9555 324 53351 2 3 4. . . . . . xx5

Using this prediction equation, we can calculate predicted sales values 
and residuals for the 25 sales representatives. For example, observa-
tion 10 in this data set corresponds to a sales representative for whom
x x x x x1 2 3 4 5105 69 42 053 24 5673 11 8 85 31= = = = =. , , . , . , . , . and . If we 
insert these values into the prediction equation, we obtain a predicted 
sales value of y∧ =

1
 4143 597

0
. . Since the actual sales for the sales represen-

tative are y1 4876 370 0= . , the residual e10 equals the difference between
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y1  4876 370 0= .  and y∧ =
1

 4143 597
0

. , which is 732.773. A plot of all 25 
residuals versus each of the independent variables x x x x x1 2 3 4 5  , , and , ,  

can be verified to have a horizontal band appearance (the plot of the 
residuals versus x3, advertising, is shown in Figure 4.10), as does the plot  
of these residuals versus predicted sales (again, see Figure 4.10). There-
fore, the constant variance and correct functional form assumptions do 
not appear to be violated. Recall from Section 4.2, however, that add-
ing seven squared and interaction variables (see Figure 4.6) to the above 
model (that uses only the five linear terms) gives a model with a much 

Figure 4.10  Sales territory performance residual analysis
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smaller s that yields more accurate predictions. This illustrates that we 
need to use all of the model building and model diagnostic procedures in 
this book to find an appropriate final regression model.

4.3.4  The Normality Assumption

If the normality assumption holds, a histogram or stem-and-leaf display 
of the residuals should look reasonably bell-shaped and reasonably sym-
metric about 0, and a normal plot of the residuals should have a straight 
line appearance. To construct a normal plot, we first arrange the resid-
uals in order from smallest to largest. Letting the ordered residuals be 
denoted as e e e n( ) ( ), ,,1 2( ) … , we denote the ith residual in the ordered list-
ing as e i( ). We plot e i( ) on the vertical axis against a normal point z i( ) on 
the horizontal axis. Here z i( ) is defined to be the point on the horizontal 
axis under the standard normal curve so that the area under this curve 
to the left of z i( ) is 3 1 3 1i n− +( ) ( )/ . For example, recall in the QHIC 
case that there are n =  40 residuals in Figure 4.7. It follows that, when
i i= − = − +[ ] [ ] =1 3 1 1 3 40 1 0165, / ( ) / ( ) . (3 1) (3 +1)n . Using Table A3 to 
look-up the normal point z i( ), which has a standard normal curve area 
to its left of .0165 and thus an area of . . .5 0165 4835− =  between itself 
and 0, we find that z( ) .1 2 13= − . Because the smallest residual in Figure 
4.7 is e( ) .1 289 044= − , the first point plotted is e( ) .1 289 044= −  on the vertical 
axis versus z( ) .1 2 13= −  on the horizontal axis. Plotting the other ordered 
residuals e e e( ) ( ) ( ), , . . . ,2 3 40     against their corresponding normal points in 
the same way, we obtain the normal plot in Figure 4.8c. In a similar 
fashion, if we use the residuals for the sales territory performance model 
y x x x x x= + + + + + +b b b b b b e0 1 1 2 2 3 3 4 4 5 5 , we obtain the normal plot 
in Figure 4.10. Both normal plots essentially have a straight line appear-
ance. Therefore, there appears to be no violation of the normality assump-
tion in either case.

It is important to realize that violations of the constant variance and 
correct functional form assumptions can often cause a histogram and/or 
stem-and-leaf display of the residuals to look nonnormal and can cause 
the normal plot to have a strongly curved appearance. Because of this, it is 
usually a good idea to use residual plots to check for nonconstant variance 
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and incorrect functional form before making any final conclusions about 
the normality assumption.

4.3.5 � Handling Unequal Variances, and Weighted Least 
Squares

Consider the linear regression model

y x x xi i i k ik i= + + + + +β β β β ε0 1 1 2 2 ...

If the variances σ σ σ1
2

2
2 2, ,..., n  of the error terms are unequal and known, 

then the variances can be equalized by using the transformed model

y x x xi
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where h e si i i= / . This transformed model has the same parame-
ters as the original model and also satisfies the constant variance 
assumption. This is because the properties of the variance tell us 
that the variance of the error term ηi for the transformed model is  
s s s s s se s ehi i i ii i i

2 2 2 2 2 21 1= = = =( / ) ( / ) / . The least squares point estimates 
b b b bk0 1 2, , , ...,    of the parameters β β β β0 1 2, , , . . . ,     k of the transformed 
model are calculated by using the equation b X yX X
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Letting y b b x b x b xi i i k ik
∧ = + + +…+0 1 1 2 2   ,  the least squares point 

estimates b b b bk0 1 2, , , ...,    of the parameters of the transformed model 
minimize the following sum of squared residuals
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Now, if we consider the original, untransformed model

y x x xi i i k ik i= + + + …+ +b b b b e0 1 1 2 2   

the estimates b w b w b w b wk0 1 2( ) ( ) ( ) ( ), , , . . . ,        of the parameters 
β β β β0 1 2, , , ,    … k that minimize

SSE w y b w  b w x  b w x      b w xi
i

n

i i i k iW = − ( ) + ( ) + ( ) + + ( )
=
∑

1
0 1 1 2 2[ . . . kk{ }]2

are called the weighted least squares point estimates of β β β β0 1 2, , , ,    … k. 
Comparing the expression for SSE*  with the expression for SSEW, we see that 
the (ordinary) least squares point estimates b b b bk k0 1 2 0 1 2, , , , of , , , ,        … …b b b b 

b b b bk k0 1 2 0 1 2, , , , of , , , ,        … …b b b b  using the transformed model equal the weighted least 
squares point estimates b w b w b w b wk k0 1 2 0 1 2( ) ( ) ( ) ( ) …, , , . . . , , , , , ,        of     b b b b b w b w b w b wk k0 1 2 0 1 2( ) ( ) ( ) ( ) …, , , . . . , , , , , ,        of     b b b b

b b b bk k0 1 2 0 1 2, , , , of , , , ,        … …b b b b  using the original model, if we let the weight w i ni     equal fori1 1 22/ , , . . . ,s( ) = 
w i ni     equal fori1 1 22/ , , . . . ,s( ) = . This is important because it gives us two equivalent 

ways to remedy violations of the constant variance assumption and make 
appropriate statistical inferences:

1.	Use the transformed model to calculate the ordinary least squares 
point estimates and make statistical inferences based on these point 
estimates.

2.	Use the original, untransformed model to calculate the weighted 
least squares point estimates, where w ii = /1 s( )2 , and make statistical 
inferences based on these point estimates.

With respect to (2), statisticians have shown that the formula for the 
weighted least squares point estimates is
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In addition, formulas exist for the hypothesis test statistics, confidence 
intervals, and prediction intervals based on the weighted least squares 
point estimates. We will not present these formulas here, but sophisti-
cated statistical software systems such as SAS carry out weighted least 
squares regression analysis. If one is using a statistical software system that 
does not do this analysis, the transformed model can be used.

We will demonstrate using both the transformed model approach and 
the weighted least squares approach, but first note that we almost never 
know the true values of the error term variances s s s1

2
2

2 2, , , . … n  However, 
we can sometimes use the following three step procedure to estimate these 
variances and remedy a violation of the constant variance assumption:

Step 1: Fit the original, untransformed regression model using ordinary 
least squares and assuming equal variances.

Step 2: Plot the residuals from the fitted regression model against each 
independent variable. If the residual plot against increasing values of the 
independent variable x j fans out, plot the absolute values of the residuals 
versus the xij values. If the plot shows a straight line relationship, fit the 
simple linear regression model | |e xi ij i= ′ + ′ + ′b b e0 1  to the absolute val-
ues of the residuals and predict the absolute value of the ith residual to be

pabe = b +b xi ij′ ′0 1
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Step 3: Use pabei as the point estimate of si and use ordinary least squares 
to fit the transformed model
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or, equivalently, use weighted least squares to fit the original, untrans-
formed model, where w pabei i= ( )1 2/ .

Note that if in step 2 the plot of the absolute values of the residuals 
versus the xij values did not have a straight line appearance, but a plot of 
the squared residuals versus the xij values did have a straight line appear-
ance, we would fit the simple linear regression model e xi ij i

2
0 1= ′ + ′ +β β ε  

to the squared residuals and predict the squared value of the ith residual 
to be psqe b b xi ij= ′ + ′

0 1 . In this case we estimate σ i
2 by psqei and si by 

psqei , which implies that we should specify a transformed regression 
model by dividing all terms in the original regression model by psqei . 
Alternatively, we can fit the original regression model using weighted least 
squares where w psqei i= 1/ .

For example, recall that Figure 4.8d shows that when we fit the qua-
dratic regression model y x x= + + +b b b e0 1 2

2  to the QHIC data, the 
model’s residuals fan out as x increases. A plot of the absolute values of the 
model’s residuals versus the x values can be verified to have a straight line 
appearance. Figure 4.11 shows that when we use the simple linear regres-
sion model to relate the model’s absolute residuals to x, we obtain the 
equation pabe xi i= +22 23055 49067. .  for predicting the absolute values 
of the model’s residuals. For example, because the value x of the first home 
in Figure 4.7 is 237, the prediction of the absolute value of the quadratic 
model’s residual for home 1 is pabe1 22 23055 40967 237 138 519= + =( ). . . .  
This and the other predicted absolute residuals are shown in Figure 4.11. 
Figures 4.12 and 4.13 are the partial SAS outputs that are obtained if we 
use ordinary least squares to fit the transformed model
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Figure 4.11  Partial SAS output of a simple linear regression 
analysis using the model e xi ij i= + + ¢b b¢ ¢0 1 e , and the predictions 
pabe xii = +22 23055 49067. .  of the absolute values of the residuals 

Variable DF
Parameter

Estimate Error t Value Pr > │t│

Standard

Intercept 1 22.23055

0.49067

41.72626

0.22774

0.53

2.15 0.0376

0.5973
1

1
2
3
4
5
6
7
8
9

10

138.519
97.342

112.936
131.189
101.071
71.141

134.614
72.171

148.755
69.472

11
12
13
14
15
16
17
18
19
20

106.135
135.585
134.260
123.260
113.358
105.046
143.456
98.549

132.239
121.366

21
22
23
24
25
26
27
28
29
30

97.323
136.154
83.780

105.556
109.217
102.122
81.327

115.998
100.139
109.815

31
32
33
34
35
36
37
38
39
40

41

155.791
46.224
73.535
162.651
63.309
64.526
87.774
126.675
82.102
119.393
130.178

Value

Obs pabei Obs pabei Obs pabei Obs pabei

Variable

Dependent
Obs

41 . 9.5252 0.2570 9.0045 10.0459 6.9211 12.1293

Variable Value Mean Predict 95% CL Mean 95% CL Predict
Predicted Std Error

DF
Parameter
Estimate Error t Value Pr > │t│

Standard

inv_pabe
Value_star
Val_Sq_star

-41.63220
3.23363
0.01178

1
1
1

107.18869
1.55100
0.00510

-0.39
2.08
2.31

0.6999
0.0440
0.0267

Figure 4.12  Partial SAS output when using ordinary least squares to 
fit the transformed model y pabe x xi i i i i i i i/ / ) ( )(pabe pabe pabe= + + +( )b b b0 1 / /21

2 h 
y pabe x xi i i i i i i i/ / ) ( )(pabe pabe pabe= + + +( )b b b0 1 / /21

2 h

and weighted least squares, where w pabei i= ( )1 2/ , to fit the original 
model y x xi i i i= + + +b b b e0 1 2

2  to the QHIC data. A plot of the resid-
uals versus the xi values for the transformed model has a horizontal band 
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appearance, showing that the constant variance assumption approxi-
mately holds for the transformed model.

Suppose that QHIC has decided to send an advertising brochure to 
a home if the point prediction of y0, the yearly upkeep expenditure for 
the home, is at least $500. QHIC will also send a special, more elaborate  
advertising brochure to a home if its value makes QHIC 95 percent con-
fident that m0, the mean yearly upkeep expenditure for all homes having 
this value, is at least $1,000. Consider a home with a value of $220,000. 
That is, the x value for this home is x0 220= . The predicted absolute 
residual for a home for which x pabe0 0220 22 2305 49067 220 130 178= = + =( ) is . . .  

x pabe0 0220 22 2305 49067 220 130 178= = + =( ) is . . . , as shown in Figure 4.11. Therefore, the point prediction 
of y0 130 178/ .  and point estimate of m0 130 178/ .  obtained from the 
transformed model is

y
b b

x
b
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
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01178
220
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2

Figure 4.12 shows that y∧ =0 130 178 9 5252/ . . . It follows that 
y∧ = =( )0 9 5252 130 178 1240. . , which is shown in Figure 4.13 and can be 
obtained directly from the weighted least squares prediction equation as 
follows:

Variable

Dependent Predicted
Obs

41 . 1240 33.4562 1172 1308 900.9750 1579

Variable Value Mean Predict 95% CL Mean 95% CL Predict
Std Error

DF
Parameter
Estimate Error t Value Pr > │t│

Standard

Intercept
Value
Val_Sq

-41.63220
3.23363
0.01178

1
1
1

107.18869
1.55100
0.00510

-0.39
2.08
2.31

0.6999
0.0440
0.0267

Figure 4.13  Partial SAS output when using weighted least squares to 
fit the original model y x xi i ii = + + +b b b f0 1 2

2 , where w pabei i== 1/(( ))2
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y∧ = − + +( ) ( )
=

0
241 63220 3 23363 220 01178 220

1240
. . .

Because the point prediction y∧ =0 1240$  of the home’s yearly upkeep 
expenditure is at least $500, QHIC will send the home an advertising 
brochure. Figure 4.12 also shows that a 95 percent confidence inter-
val for m0 130 178 9 0045 10 0459/ . . , . is  [ ] m0 130 178 9 0045 10 0459/ . . , . is  [ ] . It follows that a 95 percent 
confidence internal for m0 9 0045 130 178 10 0459 130 178 1172 1308 is   . . , . . $ , $( ) ( )  =  

m0 9 0045 130 178 10 0459 130 178 1172 1308 is   . . , . . $ , $( ) ( )  =  , which is shown on the weighted least squares output 
in Figure 4.13. Because this interval says that QHIC is 95 percent confi-
dent that m0 is at least $1172, QHIC is more than 95 percent confident 
that m0 is at least $1000. Therefore, a home with a value of $220,000 will 
also be sent the special, more elaborate advertising brochure.

4.3.6 � Fractional Power Transformations of the Dependent 
Variable

To conclude this section, note that if a data or residual plot indicates 
that the error variance of a regression model increases as an indepen-
dent variable or the predicted value of the dependent variable increases, 
then another way that is sometimes successful in remedying the situ-
ation involves transforming the dependent variable by taking each y 
value to a fractional power. As an example, we might use a transfor-
mation in which we take the square root (or one-half power) of each y 
value. Letting y∗ denote the value obtained when the transformation  
is applied to y , we would write the square root transformation as  
y y∗ = . .5  Another commonly used transformation is the quartic root 
transformation. Here we take the y  value to the one-fourth power. That 
is, y y∗ = . .25  

If we consider a transformation that takes each y  value to a frac-
tional power (such as .5, .25, or the like), as the power approaches 
0, the transformed value y∗ approaches the natural logarithm of y
(commonly written ln y ). In fact, we sometimes use the logarithmic 
transformation y ln y∗ =  , which takes the natural logarithm of each  
y  value.
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For example, consider the QHIC upkeep expenditures in Figure 4.7. 
In Figure 4.14 we show the plots that result when we take the square 
root, quartic root, and natural logarithmic transformations of the upkeep 
expenditures and plot the transformed values versus the home values. To 
interpret these plots, note that when we take a fractional power (including 
the natural logarithm) of the dependent variable, the transformation not 
only tends to equalize the error variance but also tends to straighten out 
certain types of nonlinear data plots. Specifically, if a data plot indicates 
that the dependent variable is increasing at an increasing rate as the inde-
pendent variable increases (this is true of the QHIC data plot in Figure 
4.7), then a fractional power transformation tends to straighten out the 
data plot. A factional power transformation can also help to remedy a 
violation of the normality assumption. Because we cannot know which 
fractional power to use before we actually take the transformation, we rec-
ommend taking all of the square root, quartic root, and natural logarithm 
transformations and seeing which one best equalizes the error variance 
and (possibly) straightens out a nonlinear data plot. This is what we have 
done in Figure 4.14, and examining this figure, it seems that the square 
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root transformation best equalizes the error variance and straightens out 
the curved data plot in Figure 4.7. Note that the natural logarithm trans-
formation seems to overtransform the data—the error variance tends to 
decrease as the home value increases and the data plot seems to bend 
down. The plot of the quartic roots indicates that the quartic root trans-
formation also seems to overtransform the data (but not by as much as 
the logarithmic transformation). In general, as the fractional power gets 
smaller, the transformation gets stronger. Different fractional powers are 
best in different situations.

Because the plot in Figure 4.14 of the square roots of the upkeep 
expenditures versus the home values has a straight-line appearance, we 
consider the model y x∗ = + +b b e0 1 , where y y∗ = .5. If we fit this model 
to the QHIC data, we find that the least squares point estimates of b0 and 
b1 are b0 7 201=  .  and b1 127047= . . Moreover, a plot of the transformed 
model’s residuals versus x has a horizontal band appearance. Consider a 
home worth $220,000. Using the least squares point estimates, a point 
prediction of y∗ for such a home is y∧ = + =( )∗ 7 201 127047 220 35 151. . . .  
This point prediction is given on the MINITAB output in Figure 4.15,  
as is the 95 percent prediction interval for y∗, which is [30.348, 39.954]. 
It follows that a point prediction of the upkeep expenditure for a home 
worth $220,000 is (35.151)2 = $1,235.59 and that a 95 percent prediction 
interval for this upkeep expenditure is [(30.348)2, (39.954)2] = [$921.00, 
$1596.32]. Recall that QHIC will send an advertising brochure to any 
home that has a predicted upkeep expenditure of at least $500. It follows 
that a home worth $220,000 will be sent an advertising brochure. This 
is because the predicted yearly upkeep expenditure for such a home is (as 
just calculated) $1,235.59. Also, recall that QHIC will send a special, 
more elaborate advertising brochure to a home if its value makes QHIC 
95 percent confident that m0, the mean yearly upkeep expenditure for 
all homes having this value, is at least $1000. We were able to find a 95 
percent confidence interval for m0 using the transformed quadratic regres-
sion model of the previous subsection. However, although Figure 4.15 
gives a 95 percent confidence interval for the mean of the square roots 
of the upkeep expenditures, the mean of these square roots is not equal 
to m0 , and thus we cannot square both ends of the confidence interval 
in Figure 4.15 to find a 95 percent confidence interval for m0. This is a 
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disadvantage of using a fractional power transformation. However, if we 
are mainly interested in predicting an individual value of the dependent 
variable (as will be true in the time series prediction examples of the next 
subsection), then the fractional power transformation technique can be 
very successful.

4.3.7 � A Lack of Fit Test, and an Introduction to Nonlinear 
Regression

When a beam of light is passed through a chemical solution, a certain 
fraction of the light will be either absorbed or reflected and the remain-
der of the light will be transmitted. Graybill and Iyer (1994) give n = 12 
observations resulting from an experiment where the concentration, x,  
of a chemical is fixed at 12 values and corresponding optical readings 
of the amount, y, of transmitted light are made. The 12 fixed chemical 
concentration x values are 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5 6, and 6, and 
the corresponding optical reading y values are 2.86, 2.64, 1.57, 1.24, 
.45, 1.02, .65, .18, .15, .01, .04, and .36. The upper plot of y versus x 
in Figure 4.16 implies that myx, the mean amount of transmitted light 
corresponding to chemical concentration x, steadily decreases at a slower 
and slower rate as x increases and ultimately approaches a constant value. 
Hence, it does not seem appropriate to describe the data by using the 
simple linear regression model y x= + +b b e0 1 . However, noting that 
the data consists of a set of repeated y values for each x value, we can use 
the data and this model to demonstrate what is called a lack of fit test.

In general, the lack of fit test tests the hypothesis H0 that the func-
tional form of a particular regression model is correct versus the alterna-
tive hypothesis Ha that the functional form of the model is not correct. 
To carry out the test we start by calculating SSPE, the sum of squares due 
to pure error. To find SSPE, we find the deviation (Dev) of each y value 
from the appropriate set mean of y values, square each deviation, and 

Predicted Values for New Observations
New Obs Fit

35.151
SE Fit 95% CI
0.474 (34.191, 36.111)

95% PI
(30.348, 39.954)1

Figure 4.15  MINITAB output of prediction using the model 
y x y y** == ++ ++ ** ==b b f0 1 where .5
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sum the squared deviations. The appropriate set mean of y values for a 
particular y value is the mean of all of the y values that correspond to 
the same x value as does the particular y value. For the light data, the 
optical readings corresponding to the x values 0 and 0 are 2.86 and 2.64, 
which have a set mean of 2 86 2 64 2 2 75. . / .+( ) =  and associated devia-
tions of 2 86 2 75 11. . .− =  and 2 64 2 75 11. . .− = − . The optical readings 
corresponding to the x values 1 and 1 are 1.57 and 1.24, which have a 
set mean of 1.405 and associated deviations of 1 57 1 405 165. . .− =  and 
1 24 1 405 165. . .− = − . The optical readings corresponding to the x values 
2 and 2 are .45 and 1.02, which have a set mean of .735 and associated 
deviations of -.285 and .285. The optical readings corresponding to the 
x values 3 and 3 are .65 and .18, which have a set mean of .415 and asso-
ciated deviations of .235 and -.235. The optical readings corresponding 
to the x values 4 and 4 are .15 and .01, which have a set mean of .08 and 
associated deviations of .07 and -.07. The optical readings corresponding 
to the x values 5 and 5 are .04 and .36, which have a set mean of .20 and 
associated deviations of -.16 and .16. The sum of squares due to pure 
error for the light data, SSPE, is the sum of the squares of the 12 deviations 
that we have calculated and equals .4126. Also, if we fit the simple linear 
regression model to the data, we find that SSE , the sum of squared resid-
uals, is 2.3050. In general to perform a lack of fit test, we let the symbol 
m denote the number of distinct x values for which there is at least one y 
value ( m = 6  for the light data), and we let n denote the total number of 
observations (n = 12 for the light data). We then calculate the following 
lack of fit statistic, the value of which we show for the light data:

F LF
SS m
SS n m

SSE SS m
SS n m

LF

PE

PE

PE

( )
/ ( )
/ ( )

( ) / ( )
/ ( )

( .

= −
−

= − −
−

=

2 2

2 30050 4126 6 2
4126 12 6

1 8924 4
4126 6

6 88

− −
−

=

=

. ) / ( )
. / ( )

. /
. /

.

Because F LF( ) = 6 88.  is greater than F[. ] .05 4 53= , based on 
m − = − =2 6 2 4 numerator and n m− = − =12 6 6 denominator 
degrees of freedom, we reject the null hypothesis H0 that the functional 
form of the simple linear regression model is correct. Note that to test the 
null hypothesis that the functional form of a multiple regression model 
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is correct, we use m k− +[ ]( )1  as the numerator degrees of freedom in 
F LF( ). Here, k is the number of independent variables in the multiple 
regression model, and m is the number of distinct combinations of the k 
independent variables for which there is at least one y value. Moreover, 
in computing SSPE, the set mean of y values for a particular y value is the 
mean of all of the y values that correspond to the same combination of 
values of the k independent variables as does the particular y value.

One approach to remedying the lack of fit of the simple linear regres-
sion model to the light data is to transform the dependent variable by 
taking the natural logarithm of each y value. The lower plot in Figure 
4.16 shows that the natural logarithms decrease in a straight line fashion 
but with increasing variation as x increases. If the variation of the orig-
inal, decreasing y values had been decreasing as x increases, the natural 
logarithm transformation would have possibly equalized the variation. 
But, since the variation of the original, decreasing y values is reasonably 
constant as x increases (see the upper plot in Figure 4.16), the natural 
logarithm transformation has caused the variation of the decreasing nat-
ural logarithms to increase as x increases. Therefore, it is not appropri-
ate to fit the simple linear regression model ln y x = ′ + ′ + ′b b e0 1  to the 
natural logarithms, because this model assumes that the variation of the 
error terms and thus of the natural logarithms is constant as x increases. 
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Figure 4.16  Plots of the light data
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Note that we use the special symbols b b e0 1
′ ′ ′, , and  to represent the y- 

intercept, slope, and the error term in the simple linear regression model 
ln y x= ′ + ′ + ′b b e0 1  because, although this model is not appropriate, it 
can lead us to find an appropriate model. The reason is that the model 
ln y x= ′ + ′ + ′b b e0 1  is equivalent to the model

y e e e e

e

x x

x

= =

=

′ + ′ + ′ ′ ′ ′

−

( ) ( )( )( )b b e b b e

bb h

0 1 0 1

3
2

where b b b hb e
2 3 1

0= − = ′ =′ ′e e, , and . Just as the expression b b0 1
′ + ′x  

models the straight line decreasing pattern in the natural logarithms of the y’s,  
the expression β β

2
3e x−  measures the curvilinear (or exponential) decreasing 

pattern in the y’s themselves (see the upper plot in Figure 4.16). However, 
the error term h e= ′e  is multiplied by the expression b b

2
3e x−  in the model 

y e x
=

−

β η
β

2
3 . Therefore, this model incorrectly assumes that as x increases 

and thus β β

2
3e x−  decreases, the variation in the y’s themselves decreases. 

To model the fact that as x increases and thus b b
2

3e x−  decreases, the varia-
tion of the y’s stays constant (as we can see is true from the upper plot in 
Figure 4.16), we can change the multiplicative error h e= ′e  to an additive 
error term e . In addition, although the upper plot in Figure 4.16 implies 
that the mean amount of transmitted light my x|  might be approaching zero 
as x increases, we will add an additional parameter b1 into the final model 
to allow the possibility that my x|  might be approaching a nonzero value b1  
as x increases. This gives us the final model

y e x
= + +

−

β β ε
β

1 2
3

The final model is not linear in the parameters β β β1 2 3, ,   and , and nei-
ther is the previously discussed similar model y e x

=
−

β η
β

2
3 . However, by 

taking natural logarithms, the model y e x= −b hb
2

3  can be linearized to 
the previously discussed logarithmic model as follows:

ln ln( ) ln ln ln( )

ln

y e e e

x x

x x= = + +

= − + ′ = ′ + ′

− − ′b h b

b b e b b

b b e
2 2

2 3 0 1

3 3

++ ′e
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where b b b b0 2 1 3
′ = ′ = −ln  and . If we fit this simple linear regres-

sion model to the natural logarithms of the transmitted light values, we 
find that the least squares point estimates of b b0 1

′ ′ and  are b0 1 02′ = .  
and b1 7740′ = −. . Considering the models ln y x= ′ + ′ +b b e0 1  and 
y e x= ′ =−b h b bb

2 0 2
3 , since ln ,  it follows that b b

2
0= ′e ,  and thus a point esti-

mate of b2 is b e eb
2

1 020 2 77= = =′ . . . Moreover, since b b1 3
′ = − ,  it follows that 

b b3 1= − ′ ,  and thus a point estimate of b3 is b b3 1 7740 7740= ( )− ′ − − == . . .  
Although the nonlinear model y e x

= + +
−

β β ε
β

1 2
3  cannot be linearized 

(by using, for example, a natural logarithm transformation), recall that it is 
reasonable to conclude that b1 might be near zero. Therefore, we can use 0 as 
a preliminary estimate of b1 and the estimates b2 2 77 7740= =. .and 3b  for 
the model y e x= −b hb

2
3  as preliminary estimates of β2 and β3 in the model 

y e x
= + +

−

β β ε
β

1 2
3 . These preliminary (or initial) estimates are needed 

because we cannot use the usual matrix algebra formula b = (X X) X y1¢¢ ¢¢--  
to calculate the least squares point estimates of the parameters of a non-
linear regression model. Rather, statistical software systems start with 
user-specified preliminary estimates of the parameters of the nonlinear 
model and do an iterative search in an attempt to find the least squares 
point estimates. Figure 4.17a shows the results of the iterative search 
when we begin with the preliminary estimates 0, 2.77, and .7740 for 

Iter

Parameter Estimate
Approx

Std Error Approx 95% Conf Limits

(a) The interative search

(b) The final estimates and statistital inference

0
1
2
3

0
0.0352
0.0288
0.0288

2.7700
2.7155
2.7232
2.7233

0.7740
0.6797
0.6828
0.6828

0.5741
0.4611
0.4604
0.4604

beta1

beta1
beta2
beta2

0.0288
2.7233
0.6828

0.1715
0.2105
0.1417

-0.3593
2.2470
0.3623

0.4168
3.1996
1.0032

beta2 beta3
Sum of
Squares

Figure 4.17  Partial MINITAB output of nonlinear estimation for the 
light data.
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β β β1 2 3 and , , . Figure 4.17b shows that the final estimates obtained are 
b b b1 2 30288 2 7233 6828= = =. , . , .  and . Because the approximate 95 per-
cent confidence intervals for β2 and β3 do not contain zero, we have strong 
evidence that β2 and β3 are significant in the model. Because the 95 percent 
confidence interval for b1 does contain zero, we do not have strong evidence 
that b1 is significant in the model, However, we will arbitrarily leave b1 in 
the model and form the prediction equation y e x∧ −= +. . .0288 2 7233 6828 . 
A practical use of this equation would be to pass a beam of light through a 
solution of the chemical that has an unknown chemical concentration x,  
make an optical reading (call it y∗) of the amount of transmitted light,  
set  y∗ equal to . . .0288 2 7233 6828

+
−e x, and solve for the chemical concen-

tration x.

4.4  Step 4: Diagnosing and Remedying Violations of 
the Independence Assumption

4.4.1  Trend, Seasonal Patterns, and Autocorrelation

Regression Assumption 4, the independence assumption, is most likely 
to be violated when the regression data are time series data–that is, data 
that have been collected in a time sequence. Time series data can exhibit 
trend and/or seasonal patterns. Trend refers to the upward or downward 
movement that characterizes a time series over time. Thus trend reflects 
the longrun growth or decline in the time series. Trend movements can 
represent a variety of factors. For example, long-run movements in the 
sales of a particular industry might be determined by changes in con-
sumer tastes, increases in total population, and increases in per capita 
income. Seasonal variations are periodic patterns in a time series that 
complete themselves within a calendar year or less and then are repeated 
on a regular basis. Often seasonal variations occur yearly. For exam-
ple, soft drink sales and hotel room occupancies are annually higher in 
the summer months, while department store sales are annually higher 
during the winter holiday season. Seasonal variations can also last less 
than one year. For example, daily restaurant patronage might exhibit 
within-week seasonal variation, with daily patronage higher on Fridays 
and Saturdays.
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As an example, Figure 4.18 presents a time series of hotel room occu-
pancies observed by Traveler’s Rest, Inc., a corporation that operates four 
hotels in a midwestern city. The analysts in the operating division of the 
corporation were asked to develop a model that could be used to obtain 
short-term forecasts (up to one year) of the number of occupied rooms in 
the hotels. These forecasts were needed by various personnel to assist in 
hiring additional help during the summer months, ordering materials that 
have long delivery lead times, budgeting of local advertising expenditures, 
and so on. The available historical data consisted of the number of occupied 
rooms during each day for the previous 14 years. Because it was desired to 
obtain monthly forecasts, these data were reduced to monthly averages by 
dividing each monthly total by the number of days in the month. The 
monthly room averages for the previous 14 years are the time series val-
ues given in Figure 4.18. A time series plot of these values in Figure 4.18 
shows that the monthly room averages follow a strong trend and have a 
seasonal pattern with one major and several minor peaks during the year. 
Note that the major peak each year occurs during the high summer travel 
months of June, July, and August. Moreover, there seems to be some pos-
sible curvature in the trend, with the hotel room averages possibly increas-
ing at an increasing rate over time. Also, the seasonal variation appears to 
fan out over time. To attempt to straighten out the trend and remedy the 
violation of the constant variance assumption, we will try a square root, a 
quartic root, and a natural logarithm transformation. The uppermost plot 
in Figure 4.19 shows that the square roots ( ).y yt t

∗ = 5  of the room averages 
still fan out over time indicating that the square root transformation is not 
strong enough. The middle plot in Figure 4.19 shows that the quartic roots 
( ).y yt t

∗ = 25  of the room averages exhibit an approximately straight line trend 
with approximately constant variation, indicating that the quartic root 
transformation is appropriate. The lowest plot in Figure 4.19 shows that 
the natural logarithms ( ln )y yt t

∗ =  of the room averages might be increas-
ing at a slightly decreasing rate and might be exhibiting slightly decreasing 
variation over time, as is evidenced by seasonal swings that slightly fun-
nel in over time. Therefore, we might conclude that the natural logarithm 
transformation is too strong and over-transforms the data. In summary, the 
quartic root transformation seems best. Letting yt denote the hotel room 
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average observed in time period t , a regression model describing the quartic 
root of yt is

y t M M Mt M M M t
. ...25

0 1 1 1 2 2 11 11= + + + + + +b b b b b e

The expression β β0 1+( )t  models the linear trend evident in the middle 
plot of Figure 4.19. Furthermore, M , M , � � � ,M1 2 11  are seasonal dummy 
variables defined for months January (month 1) through November 
(month 11). For example, M1 equals 1 if a monthly room average was 
observed in January, and 0 otherwise; M2 equals 1 if a monthly room 
average was observed in February, and 0 otherwise. Note that we have 
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Figure 4.19  Time series plots of the square roots, quartic roots, and 
natural logarithms of the hotel room averages
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not defined a dummy variable for December (month 12). It follows that 
the regression parameters β β βM M M1 2 11, , ,  …  compare January through 
November with December. Intuitively, for example, βM1, is the differ-
ence, excluding trend, between the level of the time series ( yt

.25) in Jan-
uary and the level of the time series in December. A positive βM1 would 
imply that, excluding trend, the value of the time series in January can 
be expected to be greater than the value in December. A negative βM1 
would imply that, excluding trend, the value of the time series in January 
can be expected to be smaller than the value in December. In general, 
a trend component such as β1t  and seasonal dummy variables such as 
M M M1 2 11, , ,…  are called time series variables, whereas an independent 
variable (such as Traveler’s Rest monthly advertising expenditure) that 
might have a cause and effect relationship with the dependent variable 
(monthly hotel room average) is called a causal variable. We should use 
whatever time series variables and causal variables that we think might 
significantly affect the dependent variable when analyzing time series 
data. As another example, if we plot the demands for Fresh detergent in 
Table 3.2 versus time (or the sales period number), there is a clear lack of 
any trend or seasonal patterns. Therefore, it does not seem necessary to 
add any time series variables into the previously discussed Fresh demand 
model y x x x x x= + + + + +b b b b b e0 1 4 2 3 3 3

2
4 4 3 . Further verifying this 

conclusion is Figure 4.20, which shows that a plot of the model’s residuals 
versus time has no trend or seasonal patterns.
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Figure 4.20  Residual plot versus time for the fresh detergent model 
y x x x x x= + + + + +b b b b b f0 1 4 2 3 3 3
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Even when we think we have done our best to include the important 
time series and causal variables in a regression model describing a dependent 
variable that has been observed over time, the time-ordered error terms in 
the regression model can still be autocorrelated. Intuitively, we say that error 
terms occurring over time have positive autocorrelation when positive error 
terms tend to be followed over time by positive error terms and when nega-
tive error terms tend to be followed over time by negative error terms. Pos-
itive autocorrelation in the error terms is depicted in Figure 4.21, which 
illustrates that positive autocorrelation can produce a cyclical error term pattern 
over time. Because the residuals are point estimates of the error terms, if a plot 
of the residuals versus the data’s time sequence has a cyclical appearance, we 
have evidence that the error terms are positively autocorrelated and thus that 
the independence assumption is violated. Another type of autocorrelation 
that sometimes exists is negative autocorrelation, where positive error terms 
tend to be followed over time by negative error terms and negative error terms 
tend to be followed over time by positive error terms. Negative autocorrela-
tion can produce an alternating error term pattern over time (see Figure 4.22) 
and is suggested by an alternating pattern in a plot of the time ordered-re-
siduals. Both positive and negative autocorrelation can be caused by leaving 
important independent variables out of a regression model. For example, 

Figure 4.21  Positive autocorrelation

Figure 4.22  Negative autocorrelation

Error term

Time
1 2 3 4 6 7 8

95

Time
1 2 3 4 6 7 8

95

Error term
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the Fresh demand model y x x x x x= + + + + +b b b b b e0 1 4 2 3 3 3
2

4 4 3  does 
not include an independent variable that measures the advertising expen-
diture for a possible main competitor’s laundry detergent. Suppose that 
such a competitor advertises in a cyclical fashion, with, say, large advertising 
expenditures for five sales periods, followed by small advertising expendi-
tures for five sales periods, followed by a repeating pattern of this advertis-
ing behavior. This cyclical pattern might cause smaller than predicted Fresh 
demands for five sales periods (see the five negative residuals in periods 21 
through 25 in Figure 4.20) followed by larger than predicted Fresh demands 
for the next five sales periods (see the five positive residuals in periods 26 
through 30 in Figure 4.20) followed by a repeating pattern of this Fresh 
demand behavior. The residual plot in Figure 4.20 has an approximately 
random, horizontal band appearance until period 21, when a possible cycli-
cal pattern (as just described) begins. It follows that it is questionable as 
to whether the error terms for the Fresh demand model satisfy the inde-
pendence assumption or exhibit some possible positive autocorrelation. To 
remedy the possible positive autocorrelation might seem difficult, because 
the competing laundry detergent’s maker would not wish to tell us what its 
advertising expenditures have been in the past and what (for the purposes of 
our predicting future demands for Fresh) its advertising expenditures will be 
in the future. Moreover, in some situations we cannot identify what indepen-
dent variable is causing positive or negative autocorrelation. However, we will 
see at the end of this section that we can account for such autocorrelation by 
specifying a model that simply describes the relationship between the error 
terms without discovering the reason for the relationship. Finally, it can be 
verified that a plot of the residuals from the hotel room average regression 
model versus time does not have any apparent cyclical or alternating patterns.  
However, in the next subsection we will see that there is in fact both positive 
and negative autocorrelation of a rather complex kind in the model’s error 
terms.

4.4.2 � The Durbin-Watson Test and Modeling  
Autocorrelated Errors

One type of positive or negative autocorrelation is called first-order auto-
correlation. It says that ε t, the error term in time period t , is related 
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to et −1, the error term in time period t −1. To check for first-order 
autocorrelation, we can use the Durbin–Watson statistic. To calculate 
this statistic, we use the time ordered residuals e e en1 2, ,..., . For example, 
the residuals e e e e1 2 29 30, ,..., , and  from fitting the Fresh demand model 
y x x x x x= + + + + +b b b b b e0 1 4 2 3 3 3

2
4 4 3  to the fresh demand data 

in Table 3.2 are e e e1 2 29044139 122850 234223= − = − =. , . , ..., . , and
e30 245527= . . The definition of the Durbin Watson statistic and its 
value using the Fresh demand model residuals (where n = 30) is as follows:

d
e e

e

t t
t

n

t
t

n=
−

= − − − + +

−
=

=

∑

∑

( )

[ . ( . )] ... [.

1
2

2

2

1
2122850 044139 2455527 234223

044139 122850 245527
1 512

2

2 2 2

−
− + − + +

=

. ]
( . ) ( . ) ... (. )

.

Intuitively, small values of d  lead us to conclude that there is positive 
autocorrelation. This is because, if d  is small, the differences ( )e et t− −  1  
are small. This indicates that the adjacent residuals et and et −  1 are of the 
same magnitude, which in turn says that the adjacent error terms ft and 
ft −1 are positively correlated. Consider testing the null hypothesis H0 that 
the error terms are not autocorrelated versus the alternative hypothesis Ha 
that the error terms are positively autocorrelated. Durbin and Watson have 
shown that there are points (denoted dL,α and dU ,α) such that, if a is the 
probability of a Type I error, then

1.	If d dL< ,a, we reject H0.
2.	If d dU> ,a, we do not reject H0.
3.	If d d dL U, ,a a≤ ≤ , the test is inconclusive.

Table A4 give values of dL,α and dU ,α for a = .05 and different values of k, 
the number of independent variables used by the regression model, and n, 
the number of observations. (Tables of dL,α and dU ,α for different values of 
a can be found in more detailed books of statistical tables). Since there are 
n = 30 Fresh demands in Table 3.2 and k = 4 independent variables in the 
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Fresh demand model, Table A4 tells us that dL,. .05 1 14=  and dU,. .05 1 74= .  
Since d = 1 512.  for the Fresh demand model is between these points, the 
test for positive autocorrelation is inconclusive (as is the residual plot in 
Figure 4.20).

It can be shown that the Durbin–Watson statistic d  is always between 
0 and 4. Large values of d  (and hence small values of 4 − d ) lead us to 
conclude that there is negative autocorrelation because if d  is large, this 
indicates that the differences ( )e et t−

−  1  are large. This says that the adja-
cent error terms ε t and ε t −1 are negatively autocorrelated. Consider testing 
the null hypothesis H0  that the error terms are not autocorrelated versus the 
alternative hypothesis Ha  that the error terms are negatively autocorrelated. 
Durbin and Watson have shown that based on setting the probability of a 
Type I error equal to a, the points dL,α and dU ,α are such that

1.	If ( ) ,4 − <d dL a , we reject H0.
2.	If ( ) ,4 − >d dU a , we do not reject H0.
3.	If d d dL U, ,( )a a≤ − ≤ 4  the test is inconclusive.

For example, for the fresh demand model we see that 4 4 1 512 2 488− = − =( ) ( )d . . 
4 4 1 512 2 488− = − =( ) ( )d . .  is greater than dU ,. .05 1 74= . Therefore, on the basis 

of setting a equal to .05, we do not reject the null hypothesis of no auto-
correlation. That is, there is no evidence of negative (first-order) autocor-
relation.

We can also use the Durbin–Watson statistic to test for positive or neg-
ative autocorrelation. Specifically, consider testing the null hypothesis H0 
that the error terms are not autocorrelated versus the alternative hypothesis 
Ha that the error terms are positively or negatively autocorrelated. Durbin and 
Watson have shown that, based on setting the probability of a Type I error 
equal to a, we perform both the above described test for positive autocor-
relation and the above described test for negative autocorrelation by using the 
critical values dL, /α 2 and dU , /α 2 for each test. If either test says to reject H0, then 
we reject H0. If both tests say to not reject H0, then we do not reject H0. Finally, 
if either test is inconclusive, then the overall test is inconclusive.

As another example of testing for positive autocorrelation, consider 
the n = 168 hotel room averages in Figure 4.18 and note that when we fit 
the quartic root room average model



	 Model Building and Model Diagnostics	 211

y t M M Mt M M M t
. ...25

0 1 1 1 2 2 11 11= + + + + + +b b b b b e

to these data, we find that the Durbin-Watson statistic is d = 1 26. . 
Because the above model uses k =12  independent variables and there 
are n = 168 observations, the points dL,.05 and dU ,.05 are not in Table A4. 
However d = 1 26.  is fairly small and thus indicative of possible positive 
autocorrelation in the error terms. One approach to dealing with autocor-
relation in the error terms is to predict a future error term ε t by using an 
autoregressive model that relates ε t to past error terms ε εt t− −1 2, , .... One way 
to find such a model is to use SAS PROC AUTOREG. This procedure 
begins by fitting the quartic root room average model to the n =  168 hotel 
room averages and then performs a backward elimination on the residuals 
of this model to choose an appropriate autoregressive model describing 
the residuals. This model is an estimate of the model describing the error 
terms. The user must supply what is called a maximum lag q  and level 
of significance (denoted αstay) in order to use the backward elimination 
procedure. The procedure begins by assuming that ε t is described by the 
autoregressive model

e f e e f et t t q t q t= + + + +− − −1 1 2 2f ... a

where the a st’ , which are called random shocks, are assumed to be numer-
ical values that have been randomly and independently selected from 
a normally distributed population of numerical values having mean 0 
and a variance that does not depend on t . Estimates of the autoregressive  
model parameters are obtained by using all terms in the autoregressive 
model. Then the error term with the smallest (in absolute value) t  statistic 
is selected. If the t  statistic indicates that this term is significant at the 
αstay level (that is, the related p-value is less than αstay), then the proce-
dure terminates by choosing the error structure including all q terms. 
If this term is not significant at the a stay level, it is removed from the 
model, and estimates of the model parameters are obtained by using an 
autoregressive model containing all the remaining terms. The procedure 
continues by removing terms one at a time from the model describing the 
error structure. At each step a term is removed if it has the smallest (in 
absolute value) t  statistic of the terms remaining in the model and if it is 
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not significant at the a stay level. The procedure terminates when none of 
the terms remaining can be removed. The experience of the authors 
indicates that choosing a stay equal to .15 is effective and when monthly 
data is being analyzed, choosing q = 18 is also effective. When we make 
these choices to analyze the room average data, Figure 4.23 tells us that 
SAS PROC AUTOREG chooses the autoregressive model

e f e f e f e f e f et t t t t t= + + + +− − − − −1 1 2 2 3 3 12 12 18 18

When we use SAS PROC ARIMA to fit the quartic root room average 
model combined with this autoregressive error term model, we obtain the 
SAS output of estimation, diagnostic checking, and forecasting that is given in 
Figure 4.24. Without going into the theory of diagnostic checking, it can be 
shown that because each of the chi-square p-values in Figure 4.24b is greater 
than .05, the combined model has adequately accounted for the autocorrela-
tion in the data (see Bowerman et al. 2005). Using the least squares point 
estimates in Figure 4.24a, we compute a point prediction of y169

25. , the quar
tic root of the hotel room average in period 169 (January of next year) to be
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Figure 4.23  SAS PROC AUTOREG output of using backward elimi-
nation to find an autoregressive error term model for the error terms of 
the quartic root room average model (astay = .15 and q = 18)

Estimates of the Authoregressive Parameters
Lag
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-0.22113831
0.13817435

Std Error
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Here, the predictions e e e e e∧ ∧ ∧ ∧ ∧
168 167 166 157 151, , , and  of the error terms e e e e e168 167 166 157 151, , , , and 

e e e e e168 167 166 157 151, , , , and  are the residuals e e e e e168 167 166 157 151 and , , ,,  obtained 
by using the quartic root room average model to predict the quartic roots 
of the room averages in periods 168, 167, 166, 157, and 151. For example, 
because the quartic root of y1 7 7626 =  (see Figure 4.18) is 5.253984, and 
because period 167 is a November with bM11 = −.14464, we have e∧ = = − + + − =167 167 5 253984 4 80114 0035312 167 14464 007e . [ . . ( ) ( . )] . 77736.

e∧ = = − + + − =167 167 5 253984 4 80114 0035312 167 14464 007e . [ . . ( ) ( . )] . 77736. The  
point prediction 5.3788 of y169

25.  is given in Figure 4.24c and implies that 
the point prediction of y169 is 5 3788  837 24. .( ) = 0  [see Figure 4.24d]. 
Figure 4.24c also tells us that a 95 percent prediction interval for y169

25.  is 
[5.3318, 5.4257], which implies that a 95 percent prediction interval 
for y169 is [(5.3318)4, (5.4257)4] = [808.17, 866.63] (see Figure 4.24d). 
This interval says that Traveler’s Rest can be 95 percent confident that the 
monthly hotel room average in period 169 (January of next year) will be 
no less than 808.17 rooms per day and no more than 866.63 rooms per 
day. Lastly, note that Figures 4.24c and 4.24d also give point predictions 
of and 95 percent prediction intervals for y y y y170

25
180
25

170 180
. .,..., ,...,and  (the 

hotel room averages in February through December of next year).
In order to see how least squares point estimates like those in 

Figure 4.24(a) are calculated, consider, in general, a regression model 
that describes a time series of yt  values by using k time series and/or 
causal independent variables. We will call this model the original regres-
sion model, and to simplify discussions to follow, we will express it by 
showing only an arbitrary one of its k independent variables. Therefore, 
we will express this model as yt j tj tx= + + + +b0 � �b e . If the error 
terms in the model are not statistically independent but are described 
by the error term model e e e et t t t q tq a= − − −+ + + +j j j1 1 22 � , regression 
assumption 4 is violated. To remedy this regression assumption viola-
tion, we can use the original regression model to write out expressions for 
y y y yt t t t qq, , , ,j j j1 1 22− − −…  and then consider the transformed regres-

sion model

y y y yt t t q t q

q

j tj jx

−
=

− − −− − −
− − − − + +

−

j j j
b b j b j b j
b b j

1 1 2 2

0 0 1 0 2 0

1

�

� �
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− − −
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1 1 2 2
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�

� � qq



	 Model Building and Model Diagnostics	 215

This transformed model can be written concisely as y xt j tj t
∗ ∗ ∗ ∗= + + + +b b e0 � �  

y xt j tj t
∗ ∗ ∗ ∗= + + + +b b e0 � � , where, for t q q n= + +1 2, , , :…  y y y y yt t t t q t q

∗
− − −= − − − −j j j1 1 22 � 

y y y y yt t t t q t q
∗

− − −= − − − −j j j1 1 22 � , b b j j j0 0 1 21∗ = − − − −( )� q , x x x x xtj tj t j t j q t q j
∗

− − −= − − − −j j j1 1 2 2, , ,� 
x x x x xtj tj t j t j q t q j

∗
− − −= − − − −j j j1 1 2 2, , ,�  and e e j e j e j et t t t q t q

∗
− − −= − − − −1 1 2 2 � . The 

transformed model has independent error terms. This is because, since 
the error term model says that e j e j e j et t t q t q t= − − −+ + + +1 1 2 2 � a ,  
it follows that e e j e j e j et t t t q t q ta∗

− − −= =− − − −1 1 2 2 � , and the at ’s 
are the previously discussed random shocks that are assumed to be sta-
tistically independent. Unfortunately, we do not know the true values 
of j j j1 2, , , ,… q  and so we need to estimate these j  parameters. The 
Cochran-Orcutt procedure is a three step iterative procedure that estimates 
both the j  and the b  parameters in the original regression model. This 
procedure (1) uses the original regression model to calculate least squares 
point estimates b b b bj k0 1, , , , ,… …  based on the original observed yt  val-
ues and calculates residuals using the fitted model; (2) uses the residuals 
e e eq q n+ +1 2, , ,…  to find the least squares point estimates j j j∧ ∧ ∧

1 2, , ,… q of 
the parameters j j j1 2, , ,… q  in the model e e e et t t q t q= + + +− − −j j j1 1 2 2 � ;  
and (3) uses the transformed model y xt j tj t

∗ ∗ ∗ ∗= + + + +b b e0 � � , 
where, for t q q n= + +1 2, , , :…  y y y y yt t t t t qq

∗ = − − − −∧
−

∧
−

∧
−j j j1 1 2 2 �  

and x x x x xtj tj t j t j t q jq
∗ = − − − −∧

−
∧

−
∧

−j j j1 1 2 2, , ,�  to calculate new 
least squares point estimates b b b bj k0 1

∗, , , , , .… …  Note that because 
b b j j j0 0 1 21∗ = − − − −( ),� q  the new least squares estimate of b0  is 
b b q0 0 1 21= − − − −∗ ∧ ∧ ∧/ ( ).j j j�  If the new least squares point estimates 
are “close” to the original least squares point estimates, the procedure 
stops and uses j j j∧ ∧ ∧

1 2, ,� q  and the new least squares point estimates 
b b b bj k0 1, , , , ,… …  as the final least squares point estimates. Other-
wise, the new least squares point estimates are inserted into the origi-
nal regression model, new residuals are computed, and steps (2) and (3) 
are repeated. This iterative procedure continues until the least squares 
point estimates change little between iterations. Usually, a very small 
number of iterations is required, but if the procedure does not converge 
quickly, another procedure should be tried. Also note that the procedure 
losses information from the first q observations. If n is large, the loss 
of information is not severe, and there are methods to recoup the lost 
information. Finally note that although the Cochran-Orcutt procedure is 
iterative, it can be carried out using ordinary least squares. In contrast, the 
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Hildreth-Lu procedure does a numerical search to find the combination 
of estimates of j j j b b b1 2 1, , , , , , , ,… … …q j k  that minimizes the sum 
of squared differences between the yt

∗’s and the predictions of the yt
∗’s 

given by the transformed regression model. The procedure is not iterative 
but requires advanced computing techniques. The Cochran-Orcutt pro-
cedure, the Hildreth procedure, and other procedures are used by various 
statistical software systems. For example, SAS PROC ARIMA gives the 
user a choice between using the maximum likelihood method, the condi-
tional least squares method, and the unconditional least squares method of 
estimating the b  and f parameters. The estimates in Figure 4.24a were 
obtained by using the conditional least squares method. Appendix D 
extends the discussion of modeling time series data given here and con-
siders the Box-Jenkins methodology.

4.5  Step 5: Diagnosing and Using Information About 
Outlying and Influential Observations

An observation that is well separated from the rest of the data is called an 
outlier, and an observation may be an outlier with respect to its y value or 
its x values, or both. We illustrate these ideas by considering Figure 4.25, 
which is a hypothetical plot of the values of a dependent variable y against 
an independent variable x. Observation 1 in this figure is outlying with 
respect to its y value, but not with respect to its x value. Observation 2 is 
outlying with respect to its x value, but because its y value is consistent 
with the regression relationship displayed by the nonoutlying observa-
tions, it is not outlying with respect to its y value. Observation 3 is an 
outlier with respect to its x value and its y value.

Observation 1

Observation 2

Observation 3

x

y

Figure 4.25  Outlying observations
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It is important to identify outliers because (as we will see) outliers 
can have adverse effects on a regression analysis and thus are candidates 
for removal from a data set. Moreover, in addition to using data plots, 
we can use more sophisticated procedures to detect outliers. For example, 
suppose that the U.S. Nary wishes to develop a regression model based on 
efficiently run Navy hospitals to evaluate the labor needs of questionably 
run Navy hospitals. Table 4.2 gives labor needs data for 17 Navy hospitals. 
Specifically, this table gives values of the dependent variable Hours (y, 
monthly labor hours required) and of the independent variables X-ray (x1,  
monthly X-ray exposures), BedDays (x2, monthly occupied bed days—a 
hospital has one occupied bed day if one bed is occupied for an entire 
day), Length (x3, average length of patients’ stay, in days), Load (x4, average 
daily patient load), and Pop(x5, eligible population in the area, in thou-
sands). In the exercises the reader will show that the model describing 
these data that gives the smallest s and smallest C  statistic is the model 
y x x x= + + + +b b b b e0 1 1 2 2 3 3 . When we fit this model, which we will 
sometimes call the original model, to the data in Table 4.2, we obtain the 
SAS output of outlying and influential diagnostics in Figure 4.26a and the 
residual plot in Figure 4.26b. We will now interpret those diagnostics, and 
in a technical note at the end of this section we will learn how to calculate 
them.

4.5.1  Leverage Values

The leverage value for an observation is the distance value, discussed in 
Section 2.7, and is used to calculate a prediction interval for the y value of 
the observation. This value is a measure of the distance between the obser-
vation’s x values and the center of the experimental region. The leverage 
value is labeled as Hat Diag H on the SAS output in Figure 4.26a. If 
the leverage value for an observation is large, the observation is outly-
ing with respect to its x values and thus would have substantial lever-
age in determining the least squares prediction equation. To intuitively 
understand this, note that each of observations 2 and 3 in Figure 4.25 
is an outlier with respect to its x value and thus would have substantial 
leverage in determining the position of the least squares line. Moreover, 
because observations 2 and 3 have inconsistent y values, they would pull 
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Table 4.2  Hospital labor needs data

Hospital Hours y
Xray 

x1

BedDays 
x2

Length 
x3

Load 
x4

Pop 
x5

  1 566.52 2463 472.92 4.45 15.57 18.0

  2 696.82 2048 1339.75 6.92 44.02 9.5

  3 1033.15 3940 620.25 4.28  20.42 12.8

  4 1603.62 6505 568.33 3.90 18.74 36.7

  5 1611.37 5723 1497.60 5.50 49.20 35.7

  6 1613.27 11520 1365.83 4.60 44.92 24.0

  7 1854.17 5779 1687.00 5.62 55.48 43.3

  8 2160.55 5969 1639.92 5.15 59.28 46.7

  9 2305.58 8461 2872.33 6.18 94.39 78.7

10 3503.93 20106 3655.08 6.15 128.02 180.5

11 3571.89 13313 2912.00 5.88 96.00 60.9

12 3741.40 10771 3921.00 4.88 131.42 103.7

13 4026,52 15543 3865.67 5.50 127.21 126.8

14 10343.81 36194 7684.10 7.00  252.90 157.7

15 11732.17 34703 12446.33 10.78  409.20 169.4

16 15414.94 39204 14098.40 7.05  463.70 331.4

17 18854.45 86533 15524.00 6.35  510.22 371.6

Source: Procedures and Analysis for Staffing Standards Development: Regression Analysis Hand-
book (San Diego, CA: Navy Manpower and Material Analysis Center. 1979).

the least squares line in opposite directions. A leverage value is consid-
ered to be large if it is greater than twice the average of all of the lever-
age values, which can be shown to be equal to 2 1 nk +( ) / . For example, 
because there are n = 17 observations in Table 4.2 and because the model 
relating y to x x x1 2 3 and , ,  utilizes k = 3 independent variables, twice the 
average leverage value is 2 1 2 3 1 17 47 6k n+( ) = +( ) =/ / . 0 . Looking at 
Figure 4.26a, we see that the leverage values for hospitals 15, 16, and 17 
are, respectively, .682, .785, and .863. Because these leverage values are 
greater than .4706, we conclude that hospitals 15, 16, and 17 are out-
liers with respect to their x values. Intuitively, this is because Table 4.2 
indicates that x2 (monthly occupied bed days) is substantially larger for 
hospitals 15, 16, and 17 than for hospitals 1 through 14. Also note that 
both x1 (monthly X-ray exposures) and x2 (monthly occupied bed days) 
are substantially larger for hospital 14 than for hospitals 1 through 13. To 
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summarize, we might classify hospitals 1 through 13 as small to medium 
sized hospitals and hospitals 14, 15, 16, and 17 as larger hospitals.

4.5.2  Studentized Residuals and Studentized Deleted Residuals

To identify outliers with respect to their y values, we can use residu-
als. Any residual that is substantially different from the others is suspect. 
For example, note from Figure 4.26a that the residual for hospital 14, 
e14 163 5 3= 0 0. , seems much larger than the other residuals. Assuming 
that the labor hours of 10,343.81 for hospital 14 has not been misre-
corded, the residual of 1630.503 says that the labor hours are 1630.503 
hours more than predicted by the regression model. If we divide an obser-
vation’s residual by the residual’s standard error, we obtain a studentized 
residual. For example, Figure 4.26a tells us that the studentized resid-
ual (see “Student Residual”) for hospital 14 is 2.871. If the studentized 
residual for an observation is greater than 2 in absolute value, we have 
some evidence that the observation is an outlier with respect to its y value. 
However, a better way to identify an outlier with respect to its y value is 
to use a studentized deleted residual. To introduce this statistic, consider 
again Figure 4.25 and suppose that we use observation 3 to determine 
the least squares line. Doing this might draw the least squares line toward 
observation 3, causing the point prediction y∧3 given by the line to be near 
y3 and thus the usual residual y y3 − ∧

3 to be small. This would falsely imply 
that observation 3 is not an outlier with respect to its y value. Moreover, 
this sort of situation shows the need for computing a deleted residual. For 
a particular observation, observation i, the deleted residual is found by 
subtracting from yi the point prediction y

i
∧

( ) 
computed using least squares 

point estimates based on all n observations except for observation i. Stan-
dard statistical software packages calculate the deleted residual for each 
observation and divide this residual by its standard error to form the stu-
dentized deleted residual. The experience of the authors leads us to suggest 
that one should conclude that an observation is an outlier with respect to 
its y value if (and only if ) the studentized deleted residual is greater in abso-
lute value than t[.005], which is based on n k− − 2 degrees of freedom. For 
the hospital labor needs model, n k− − = − − =2 17 3 2 12, and therefore  
t[. .00 05] 3 55= . The studentized deleted residual for hospital 14, which 
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equals 4.5584 (see “Rstudent” in Figure 4.26a), is greater in absolute value 
than t[.005] = 3.055. Therefore, we conclude that hospital 14 is an outlier 
with respect to its y value.

4.5.3  An Example of Dealing with Outliers

One option for dealing with the fact that hospital 14 is an outlier with 
respect to its y value is to assume that hospital 14 has been run ineffi-
ciently. Because we need to develop a regression model using efficiently 
run hospitals, based on this assumption we would remove hospital 14 
from the data set. If we perform a regression analysis using a model 
relating y to x x x1 2 3and , ,  with hospital 14 removed from the data set 
(we call this Option 1), we obtain a standard error of s = 387 16. . This s 
is considerably smaller than the large standard error of 614.779 caused 
by hospital 14’s large residual when we use all 17 hospitals to relate y to 
x x x1 2 3and , , .

A second option is motivated by the fact that large organizations 
sometimes exhibit inherent inefficiencies. To assess whether there might be 
general large hospital inefficiency, we define a dummy variable DL that equals 
1 for the larger hospitals 14 to 17 and 0 for the smaller hospitals 1 to 13. If we 
fit the resulting regression model y x x x DL= + + + + +b b b b b e0 1 1 2 2 3 3 4  
to all 17 hospitals (we call this Option 2), we obtain a b4 of 2871.78 and a 
p-value for testing H0 0: β4  =  of .0003. This indicates the existence of a 
large hospital inefficiency that is estimated to be an extra 2871.78 hours 
per month. In addition, the dummy variable model’s s is 363.854, which 
is slightly smaller than the s of 387.16 obtained using Option1. In the 
exercises the reader will use the studentized deleted residual for hospital 
14 when using Option 2 (see Figure 4.26a) to show that hospital 14 is not 
an outlier with respect to its y value. This means that if we remove hos-
pital 14 from the data set and predict y14 by using a newly fitted dummy 
variable model having a large hospital inefficiency estimate based on the 
remaining large hospitals 15, 16, and 17, the prediction obtained indi-
cates that hospital 14’s labor hours are not unusually large. This justifies 
leaving hospital 14 in the data set when using the dummy variable model. 
In summary, both Options 1 and 2 seem reasonable. The reader will fur-
ther compare these options in the exercises.
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4.5.4  Cook’s D, Dfbetas, and Dffits

If a particular observation, observation i, is an outlier with respect to its 
y or x values, it might significantly influence the least squares point esti-
mates of the model parameters. To detect such influence, we compute 
Cook’s distance measure (or Cook’s D) for observation i, which we denote 
as Di. To understand Di, let F.50 denote the 50th percentile of the F  dis-
tribution based on k +( )1  numerator and n k− +( )1  denominator degrees 
of freedom. It can be shown that if Di is greater than F.50, then removing 
observation i from the data set would significantly change (as a group) 
the least squares point estimates of the model parameters. In this case we 
say that observation i is influential. For example, suppose that we relate 
y to x x x1 2 3and , ,  using all n = 17 observations in Table 4.2 Noting that 
k + =1 4 and n k− +( ) =1 13, we find (using Excel) that F.5 88450 = . .  
Figure 4.26a tells us that D16 897= .  and D17  5 33= .0 . Since both 
D16 897= .  and D17  5 33= .0  are greater than F.5  88450 = . , it follows that 
removing either hospital 16 or 17 from the data set would significantly 
change (as a group) the least squares estimates of the model parameters.

To assess whether a particular least squares point estimate bj  would 
significantly change, we consider the difference between the least squares 
point estimate bj of β j, computed using all n observations, and the least 
squares point estimate bj

i( ) of β j, computed using all n observations except 
for observation i. SAS calculates this difference for each observation and 
divides the difference by its standard error to form the difference in esti-
mate of β j statistic. If the absolute value of this statistic is greater than 2 (a 
sometimes-used critical value for this statistic), then removing observation 
i from the data set would substantially change the least squares point esti-
mate of β j. Figure 4.27 shows the SAS output of the difference in estimate 
of β j statistics (Dfbetas) for hospitals 16 and 17. Examining this output 
we see that for hospital 17 “INTERCEP Dfbetas” (=.0294), “X2 Dfbetas” 
(=1.2688), and “X3 Dfbetas” (=.3155) are all less than 2 in absolute value. 
This says that individual least squares point estimates of β β β0 , ,2 3 and  
probably would not change substantially if hospital 17 were removed from 
the data set. Similarly, all of the of Dfbetas statistics for hospital 16 and (it 
can be verified) for the other hospitals (1 to 15) not shown in Figure 4.27 
are less than 2 in absolute value. This says that the individual least squares 
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point estimates of β β β β0 , , ,1 2 3 and  would not change substantially if any 
one of hospitals 1 to 16 were removed from the dataset. However, for 
observation 17 “X1 Dfbetas” (= – 3.0114) is greater than 2 in absolute 
value and is negative. This implies that removing hospital 17 from the 
dataset would significantly decrease the least squares point estimate of the 
effect, β1, of monthly X-ray exposures on monthly labor hours. One pos-
sible consequence might then be that our model would significantly under-
predict the monthly labor hours for a hospital which (like hospital 17—see 
Table 4.2) has a particularly large number of monthly X-ray exposures.

To assess whether a particular point prediction, y∧ , would significantly 
change, consider the difference between the point prediction y

i

∧  of yi, 
computed using least squares point estimates based on all n observations, 
and the point prediction y

i
∧

( ) of yi, computed using least squares point 
estimates based on all n observations except for observation i. SAS calcu-
lates this difference for each observation and divides the difference by its 
standard-error to form the difference in fits statistic. If the absolute value 
of this statistic is greater than 2 (a sometimes used critical value for this 
statistic), then removing observation i from the dataset would substan-
tially change the point prediction of yi. For example, Figure 4.26a tells us 
that the difference in fits statistic (Dffits) for hospital 17 equals -4.9623, 
which is greater than 2 in absolute value and is negative. This implies 
that removing hospital 17 from the dataset would significantly reduce 
the point prediction of y17—that is, of the labor hours for a hospital that 
has the same independent variable values (including the large number 
of X-ray exposures) as hospital 17. Moreover, although it can be verified 
that using the previously discussed Option 1 or Option 2 to deal with 
hospital 14’s large residual substantially reduces Cook’s D, Dfbetas for x1,  
and Dffits for hospital 17, these or similar statistics remain or become 
somewhat significant for the large hospitals 15, 16, and 17. The practical 

Figure 4.27  SAS output for Dfbetas for hospitals 16 and 17

Obs
16
17

Dfbetas
INTERCEP

0.9880
0.0294

Dfbetas
X1

-1.4289
-3.0114

Dfbetas
X2

1.7339
1.2688

Dfbetas
X3

-1.1029
0.3155
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implication is that if we wish to predict monthly labor hours for question-
ably run large hospitals, it is very important to keep all of the efficiently 
run large hospitals 15, 16, and 17 in the data set. (Furthermore, it would 
be desirable to add information for additional efficiently run large hospi-
tals to the data set.)

4.5.5  Technical Note

Suppose we perform a regression analysis of n observations by using a 
regression model that utilizes k independent variables. Let SSE  and s 
denote the unexplained variation and the standard error for the regression 
model and consider the hat matrix:

H X X X 1== ′ ′( )− X  

which has n rows and n columns. For i n=  1  2   , , ... ,  we define the lever-
age value hi of the x values x x xi i ik1 2, , ... ,   to be the ith diagonal element of 
H. It can be shown that

h where x x xi i i i i i ik= ′ ′ ′ =−x X( ) [ ... ]X x x1
1 21       

is a row vector containing the values of the independent variables in the 
ith observation. Also, let e y yi i i= − ∧  denote the usual residual for obser-
vation i. In Section B.11 we show that the standard deviation of ei is 
s se ii

h= −1 , and thus the standard error of ei (that is, the point esti-
mate of sei

) is s s he ii
= −1 . This implies that the studentized residual for 

observation i equals e s hi i/ 1−( ). Furthermore, let d y yi i i= − ∧
( ) denote 

the deleted residual for observation i, where

y b b x b x b xi
i i

i
i

i k
i

ik
∧ = + + + +( )

( ) ( ) ( ) ( )...0 1 1 2 2

is the point prediction of y, calculated by using least squares point esti-
mates b b b bi i i

k
i

0 1 2
( ) ( ) ( ) ( ), , ,...,  which are calculated by using all n observations 

except for the ith observation. Also, let sdi
 denote the standard error of  

di. Then, it can be shown that the deleted residual di and the studentized 
deleted residual d si di

/  can be calculated by using the equations
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Next, if Di denotes the value of the Cook’s D statistic for observation i, 
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Moreover, let g b bj
i

j j
i( ) ( )

= − . If s
g j

i( )  denotes the standard error of this dif-
ference, then the difference in estimate of the β j statistic is defined to be 
g sj

i
g j

i
( ) / ( ). It can be shown that
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Here, rj i, , is the element in row j and column i of R X1  X X= ¢¢ ¢¢--( ) , and 
′rj  is row j of R .

Also, let f y yi i i= −∧ ∧
( ). If s fi

 denotes the standard error of this differ-
ence, then the difference in fits statistic is defined to be f si fi

/ . It can be 
shown that
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4.6  Step 6: Validating the Model

When we have used model comparison techniques and model diagnostics 
to select one or more potential final regression models, it is important to 
validate the models by using them to analyze a data set that differs from the 
data set used to build the models. For example, Kutner, Neter, Wasserman, 
Nachtsheim, and Li (2005) consider 108 observations described by the 
dependent variable y = survival time (in days) after undergoing a particular 
liver operation and the independent variables x1 = blood clotting score, x2 =  
prognostic index, x3 = enzyme function test score, x4 = liver function test 
score, x5 = age (in years), x6 = 1 for a female patient and 0 for a male 
patient, x7 = 1 for a patient who is a moderate drinker and 0 otherwise, 
and x8 = 1 for a patient who is a heavy drinker and 0 otherwise. A regres-
sion analysis relating y to x x x x1 2 3 4 and , , ,  based on 54 observations (the 
training data) had a residual plot that was curved and fanned out, sug-
gesting the need for a natural logarithm transformation. Using all possible 
regressions on the 54 observations, the models with the smallest PRESS 
statistic (the sum of squared deleted residuals), smallest C  statistic, and 
largest R 2 were the following models 1, 2, and 3 (see Table 4.3):

Model 1: ln  = 
Model 2: ln  = 

y x x x x
y x

b b b b b e
b b

0 1 1 2 2 3 3 8 8

0 1

+ + + + +
+ 11 2 2 3 3 6 6 8 8

0 1 1 2 2 3 3 5

+ + + + +
+ + + +

b b b b e
b b b b b

x x x x
y x x xModel 3: ln  = xx x5 8 8+ +b e

Note that although we did not discuss the PRESS statistic in Section 4.2, 
it is another useful model building statistic.

Each model was fit to the remaining 54 observations (the validation 
data) and also used to compute

MSPR = 
( )y y

n

i i
i

n
¢ − ∧

=
∑ 2

1

∗

∗

when n * is the number of observations in the validation data set, yi' is the 
value of the dependent variable for the i th observation in the validation 
data set, and yi

∧  is the prediction of yi' using the training data set model. 
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The values of MSPR for the three above models, as well as the values of 
PRESS, C , s2 , and R 2 when the three models are fit to the validation data 
set, are shown in Table 4.3. Model 3 was eliminated because the sign 
of the age coefficient changed from a negative b5 35= −.00  to a positive 
b5  25= .00  as we went from the training data set to the validation data 
set. Model 1 was chosen as the final model because it had (1) the smallest 
PRESS for the training data; (2) the smallest PRESS, C, and s2 for the val-
idation data; (3) the second smallest MSPR; (4) all p-values less than .01 
(it was the only model with all p-values less than .10); and (5) the fewest 
independent variables. The final prediction equation was

ln . . . . .y x x x x�
= + + + +3 852 073 0142 0155 3531 2 3 8

and thus y e y∧ = ln  �

Table 4.3  Comparisons of Models 1, 2, and 3

Model 1 
Training

Model 1 
Validation

Model 2 
Training

Model 2 
Validation

Model 3 
Training

Model 3 
Validation

PRESS 2.7378 4.5219 2.7827 4.6536 2.7723 4.8981

C 5.7508 6.2094 5.5406 7.3331 5.7874 8.7166

s2 0.0445 0.0775 0.0434 0.0777 0.0427 0.0783

R 2 0.8160 0.6824 0.8205 0.6815 0.8234 0.6787

MSPR 0.0773 – 0.0764 – 0.0794 –

0

0

(a) Plot of e(2) versus e¢(2) (b) Plot of e(3) versus e¢(3)
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Figure 4.28  Partial leverage residual plots
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4.7  Partial Leverage Residual Plots

Suppose that we are attempting to relate the dependent variable y to the 
independent variables x x x x xj j j k1 1 1,..., , , ,...,

− +
. Let b b b b bj j k0 1 1 1, ,..., , ,...,

− +
 

be the least squares point estimates of the parameters in the model

y x x x xj j j j k k= + + + + + + +
− − + +

β β β β β ε0 1 1 1 1 1 1... ...

and let ′ ′ ′ ′ ′
− +

b b b b bj j k0 1 1 1, ,..., , ,...,  be the least squares point estimates of the 
parameters in the model

x x x x xj j j j j k k= ′ + ′ + + ′ + ′ + + ′ +
− − + +

β β β β β ε0 1 1 1 1 1 1... ...

Then a partial leverage residual plot of

e y b b b x b xj j j j k k( ) ( ... ... )= − + + + + + +− − + +0 1 1 1 1x x1 j 1b

versus

′ = − ′ + ′ + + ′ + ′ + + ′− − + +e x b b x b x b x b xj j j j j j k k( ) ( ... ... )0 1 1 1 1 1 1

represents a plot of y versus x j, with the effects of the other independent 
variables x x x xj j k1 1 1,..., , ,...,− +  removed. When strong multicollinearity 
exists between x j and the other independent variables, a plot of y ver-
sus x j can reveal an (apparent) significant relationship between y and 
x j, while the partial leverage residual plot of e j( ) versus e j′

( )
 reveals very 

little or no relationship between e j( ) and e j′
( )

. This is a graphical illus-
tration of the multicollinearity and says that there is very little or no 
relationship between y and x j when the effects of the other independent 
variables are removed. In other words, x j has little or no importance in 
describing y over and above the combined importance of the other inde-
pendent variables. Finally, note that the least squares point estimate of 
the slope parameter β j in the simple linear model e ej j j j( ) ( ) ( )= + ′ +b b e0  
equals the least squares point estimate of the parameter β j in the model 
y x x xj j k k= + + + + + +β β β β ε0 1 1 ... ... .
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To illustrate partial leverage residual plots, recall that Table 4.2 
gives data concerning the need for labor in 17 U.S. Navy hospitals. It 
can be verified that data plots of y (labor hours) versus x1 (X-ray expo-
sures), x2 (BedDays), x4 (average daily patient load), and x5 (eligible 
population) show upward linear relationships. However, in the exer-
cises of this chapter the reader will show that there is extreme mul-
ticollinearity between x2 (BedDays), x4 (average daily patient load),  
and  x5 (eligible population). Therefore, the partial leverage resid
ual  plots  of  y versus x x x2 4 5 and , ,  do not show much of a relation
ship. For example, Figure 4.28a is a partial leverage residual plot that 
shows little relationship between e y b b b x b x( ) ( )2 0 1 3 3 4 4 5 5= − + + + +x b x1  
and ′ = − ′ + ′ + ′ + ′ + ′e x b b b x b x( ) ( )2 2 0 1 3 3 4 4 5 5x b x1 . In the exercises of this 
chapter the reader will also show that there is strong (although not 
extreme) multicollinearity between x1 (X-ray exposures) and the variables 
x x x2 4 5 and , , . Correspondingly it can be verified that the partial lever-
age residual plot of y versus x1 shows somewhat less of an upward linear 
relationship than does the usual data plot. Finally, the reader will show 
in the exercises of this chapter that there is not strong multicollinearity 
between x3 (average length of patients’ stay) and the other independent 
variables x x x x1 2 4 5 and , , ,( ). It can be verified that a data plot shows 
an upward linear relationship between y and x3. On the other hand, 
Figure 4.28b is a partial leverage residual plot that shows a downward 
linear relationship between e y b b b x b x( ) ( )3 0 1 2 2 4 4 5 5= − + + + +x b x1  
and ′ = − ′ + ′ + ′ + ′ + ′e x b b b x b x( ) ( )3 3 0 1 2 2 4 4 5 5x b x1 . Moreover, this is con-
sistent with the fact that the point estimate of β3 in the model 
y x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 4 5 5  is negative  b3 394 31= −( ). .  
In other words, for two hospitals with the same values of x x x and x1 2 4 5, , ,  
the hospital with a longer average length of patients’ stay can be 
expected to use fewer labor hours, possibly because there is less turnover 
of patients and thus less initial labor.

4.8  Ridge Regression, the Standardized Regression 
Model, and a Robust Regression Technique

When strong multicollinearity is present, we can sometimes use ridge 
regression to calculate point estimates that are closer to the true values 
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of the model parameters than are the usual least squares point estimates. 
We first show how to calculate ridge point estimates. Then we discuss the 
advantage and disadvantages of these estimates.

To calculate the ridge estimates of the parameters in the model

y x xi i k ik i= + + + +b b b e0 1 1 ...

we first consider the standardized regression model

′ = ′ ′ + + ′ ′ + ′y x xi i k ik ib b e1 1 ...

where
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Here, y  and s y are the mean and the standard derivation of the n observed 
values of the dependent variable y, and, for j k= … 1  2, , , ,� x j  and sx j
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Because rx xj j, ′  is the simple correlation coefficient between the independent 
variables x j and ′x j  and ry x j,  is the simple correlation coefficient between 
the dependent variable y and the independent variable x j, we say that the 
above defined quantities ′yi  and ′xij are correlation transformations of the ith 
value of the dependent variable y and the ith value of the independent 
variable x j.

Ridge Estimation

The ridge point estimates of the parameters b b1′ ′,..., k   of the standardized 
regression model are

′

′









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




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= − •

b
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R

k R
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.
( )X X X y
i i i¢¢ ¢¢+ I

Here, we use a biasing constant c ≥ 0. Then the ridge point estimates of 
the parameters β β β0 , , ,1 … k in the original regression model are

b
s
s

b j k

b y b x b x b

j R
y

x
j R

R R R k
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,. . . ,

...

=






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 ′ =

= − − − −

1

0 1 1 2 2 RR kx

To understand the biasing constant c, first note that if c =  0, then the 
ridge point estimates are the least squares point estimates. Recall that the 
least squares estimation procedure is unbiased. That is, µ βb jj

= . If c >  0, 
the ridge estimation procedure is not unbiased. That is, µ βb jj R.

≠  if c > 0. 
We define the bias of the ridge estimation procedure to be µ βb jj R.

−{ }. To 
compare a biased estimation procedure with an unbiased estimation pro-
cedure, we employ mean squared errors. The mean squared error of an esti-
mation procedure is defined to be the average of the squared deviations 
of the different possible point estimates from the unknown parameter. 
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This can be proven to be equal to the sum of the squared bias of the proce-
dure and the variance of the procedure. Here, the variance is the average 
of the squared deviations of the different possible point estimates from 
the mean of all possible point estimates. If the procedure is unbiased, the 
mean of all possible point estimates is the parameter we are estimating. In 
other words, when the bias is zero, the mean squared error and the vari-
ance of the procedure are the same, and thus the mean squared error of 
the (unbiased) least squares estimation procedure for estimating β j is the 
variance σbj

2. The mean squared error of the ridge estimation procedure is

[ ]
, ,

m b sb j bj jR R
− +2 2

It can be proved that as the biasing constant c increases from zero, the bias 
of the ridge estimation procedure increases, and the variance of this proce-
dure decreases. It can further be proved that there is some c >  0 that makes 
σbj R,

2  so much smaller than σbj

2 that the mean squared error of the ridge esti-
mation procedure is smaller than the mean squared error of the least squares 
estimation procedure. This is one advantage of ridge estimation. It implies 
that the ridge point estimates are less affected by multicollinearity than the 
least squares point estimates. Therefore, for example, they are less affected 
by small changes in the data. One problem is that the optimum value of c 
differs for different applications and is unknown.

Before discussing how to choose c, we note that, in addition to using 
the standardized regression model to calculate ridge point estimates, 
some statistical software systems automatically use this model to calculate 
the usual least squares point estimates. The reason is that when strong 
multicollinearity exists, the columns of the matrix X  obtained from 
the usual (multiple) linear regression model are close to being linearly 
dependent and thus there can be serious rounding errors in calculating  
(X X¢¢ )-1. Such errors can also occur when the elements of X X¢¢  have sub-
stantially different magnitudes. This occurs when the magnitudes of the 
independent variables differ substantially. Use of the standardized regres-
sion model means that ′

• •
X X consists of simple correlation coefficients, all 

elements of which are between –1 and 1. Therefore these elements have 
the same magnitudes. This can help to eliminate serious rounding errors 
in calculating ( ′

• •
X X)–1 and thus in calculating the least squares point 
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estimates ′ ′b bk1,..., . Of course, the standardized regression model is used to 
calculate the ridge point estimates for similar reasons.

One way to choose c is to calculate ridge point estimates for dif-
ferent values of c. We usually choose values between 0 and 1. Experi-
ence indicates that the ridge point estimates may fluctuate wildly as c is 
increased slightly from zero. The estimates may even change sign. Even-
tually, the values of the ridge point estimates begin to change slowly. It 
is reasonable to choose c to be the smallest value where all of the ridge 
point estimates begin to change slowly. Here, making a ridge trace can 
be useful. This is a simultaneous plot of the values of all of the ridge 
point estimates against values of c. Another way to choose c is to note 
that variance inflation factors related to the ridge point estimates of 
the parameters in the standardized regression model are the diagonal 
elements of the matrix

( + I) ( + I)1 1X X X X X X
∑∑ ∑∑ -- ∑∑ ∑∑ ∑∑ ∑∑
¢¢ ¢¢ ¢¢ --c c

As c increases from zero, the variance inflation factors initially decrease 
quickly and then begin to change slowly. Therefore, we might choose c 
to be a value where the variance inflation factors are sufficiently small. A 
related way to choose c is to consider the trace (the sum of the diagonal 
elements) of the matrix

H X X X Xc = + −∑∑ ∑∑ ∑∑ ∑∑
( I) 1¢¢ ¢¢c

It can be shown that as c increases from zero, this trace, denoted tr H( )c ,  
initially decreases quickly and then begins to decrease slowly. We might 
choose c to be the smallest value where tr H( )c  begins to decrease slowly. 
This is because at this value the multicollinearity in the data begins to 
have a sufficiently small impact on the ridge point estimates.

One disadvantage of ridge regression is that the choice of c is some-
what subjective. Furthermore, the different ways to choose c often con-
tradict each other. We have discussed only three such methods. Myers 
(1986) gives an excellent discussion of other methods for choosing c. 
Another major problem with ridge regression is that the exact probability 
distribution of all possible values of a ridge point estimate is unknown. 
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This means that we cannot (easily) perform statistical interference. Ridge 
regression is very controversial. Our view is that before using ridge regres-
sion one should use the various model-building techniques of this book 
to eliminate severe multicollinearity by identifying redundant indepen-
dent variables.

As an example of ridge regression, consider the hospital labor needs 
data in Table 4.2. Table 4.4 shows the ridge point estimates of the param-
eters in the model y x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 3 4 4 5 5 . Here, 
we have ranged c from 0.00 to 0.20 and also include the values of tr H( )c . 
Noting the changes in sign in the ridge point estimates, it is certainly not 

Table 4.4  The ridge point estimates for the hospital labor needs model

c b R0, b R1,
b R2, b R3, b R4, b R5, tr H( )c

0.00 1962.95 0.0559 1.5896 –394.31 –15.8517 –4.2187 5.0000

0.01 1515.07 0.0600 0.5104 –312.71 14.5765 –2.1732 3.6955

0.02 1122.83 0.0621 0.4664 –236.20 13.5101 0.2488 3.4650

0.03 839.55 0.0634 0.4358 –180.25 12.7104 1.9882 3.2867

0.04 624.89 0.0643 0.4130 –137.25 12.0993 3.2949 3.1427

0.05 456.27 0.0648 0.3951 –102.94 11.6180 4.3098 3.0227

0.06 320.08 0.0652 0.3808 –74.75 11.2286 5.1188 2.9206

0.07 207.65 0.0653 0.3690 –51.05 10.9066 5.7768 2.8320

0.08 113.17 0.0654 0.3591 –30.75 10.6353 6.3209 2.7541

0.09 32.61 0.0654 0.3507 –13.07 10.4031 6.7768 2.6848

0.10 –36.91 0.0654 0.3434 2.50 10.2016 7.1632 2.6225

0.11 –97.52 0.0653 0.3370 16.39 10.0247 7.4937 2.5661

0.12 –150.81 0.0652 0.3313 28.88 9.8679 7.7787 2.5145

0.13 –198.00 0.0651 0.3262 40.21 9.7276 8.0261 2.4671

0.14 –240.04 0.0649 0.3216 50.56 9.6010 8.2422 2.4233

0.15 –277.70 0.0648 0.3175 60.07 9.4860 8.4319 2.3827

0.16 –311.58 0.0646 0.3137 68.85 9.3808 8.5990 2.3447

0.17 –342.18 0.0644 0.3103 77.00 9.2841 8.7469 2.3092

0.18 –369.91 0.0642 0.3071 84.59 9.1948 8.8782 2.2758

0.19 –395.10 0.0640 0.3041 91.69 9.1118 8.9950 2.2443

0.20 –418.03 0.0638 0.3013 98.35 9.0343 9.0992 2.2146

c
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easy to determine the value of c at which they begin to change slowly. We 
might arbitrarily choose c =  16. . In contrast, the values of tr H( )c  seem 
to begin to change slowly at c =  1.0 . If we do a finer search by ranging c
in increments of .0001 from .0000 to .0010, the values of tr H( )c  begin 
to change slowly at c =  4.000 . The corresponding ridge point estimates 
can be calculated to be

b b b
b b b

R R R

R R

0 1 2

3 4 5

2053 33 12 5411 0565
6849 5 4249

, , ,

, ,

. . .
. .

= = =
= = − ,, .R = −416 09

Experience indicates that various criteria for choosing c tend to differ 
when the data set has one or more observations that are considerably 
different from the others. Recall from Section 4.5 that we have concluded 
that hospitals 14, 15, 16, and 17 are considerably larger than hospitals 1 
through 13. At any rate, before using the results of ridge regression we 
should attempt to identify redundant independent variables. The reader 
will show in the exercises of this chapter that there is extreme multicollinear-
ity between x2 (BedDays), x4 (average daily patient load), and x5 (eligible 
population) and also that perhaps the best model describing the hospital 
labor needs data in Table 4.2 is the model y x x x= + + + +β β β β ε0 1 1 2 2 3 3 .  
This model uses only one of x x x2 4 5, , and  and thus eliminates much 
multicollinearity. However, the reader will find in the exercises of this 
chapter that strong multicollinearity still exists in this best model, and 
thus we could again use ridge regression.

To conclude this section, recall from Section 4.5 that an outlying 
observation can significantly influence the values of the least squares 
point estimates. As an alternative to the least squares procedure, which 
chooses the point estimates that minimize the sum of the squared residu-
als (differences between the observed and predicted values of the depen-
dent variable), we could dampen the effect of an influential outlier by 
calculating point estimates that minimize the sum of the absolute values 
of the residuals.

The reader is referred to Kennedy and Gentle (1980) for a discus-
sion of the computational aspects of such a minimization. Also, note that 
minimizing the sum of absolute residuals is only one of a variety of robust 
regression procedures. These procedures are intended to yield point esti-



236	 REGRESSION ANALYSIS

mates that are less sensitive than the least squares point estimates to both 
outlying observations and failures of the model assumptions. For exam-
ple, if the populations sampled are not normal but are heavy tailed, then 
we are more likely to obtain a yi value that is far from the mean yi value. 
This value will act much like an outlier, and its effect can be dampened 
by minimizing the sum of absolute residuals. An excellent discussion of 
robust regression procedures is given by Myers (1986).

4.9  Regression Trees

Regression trees are a very powerful but conceptually simple method of 
relating a dependent variable to one or more independent variables with-
out stating a (parameter based) equation relating the dependent variable 
to the one more independent variables (this is called nonparametric regres-
sion). Regression trees partition the x x x1 2 k    , , . . . ,( ) space into rectangu-
lar regions, where each rectangular region has similar y  values. Then the 
mean of the observed y  values in each region serves as the prediction of 
any y  value in that region. To illustrate regression trees, we consider an 
example presented by Kutner, Nachtsheim, Neter, and Li (2005). In this 
example, we attempt to predict GPA at the end of the freshman year ( y) 
on the basis of ACT entrance test score (x1) and high school rank (x2). 
The data consisted if 705 cases-352 were used for the training data set and 
353 for the validation data set. The high school rank was the percentile 
at which the student graduated in his or her high school graduating class.

In the first step, illustrated in Figure 4.29a, we calculate y , the average of 
the 352 GPA’s in the training data set. Then we use y  to calculate

MSE
y y

n
MSPR

y y

n

i
i

n

i
i

n

= =
( ) ( )− ′ −

= =
∗

∑ ∑
∗

1

2

1

2

where yi is the ith GPA among the n =  352 GPA’s in the training data set 
and ′yi  is the ith GPA among the n∗ =  353 GPA’s in the validation data 
set. In the second step, we find the dividing point in the x x1 2,( ) = (ACT, 
H.S. Rank) space that gives the greatest reduction is MSE. As illustrated 
in Figure 4.29b the dividing point is a high school rank of 81.5, and the 
new MSE and MSPR are
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Figure 4.29  Regression tree analysis of the GPA data
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Here, y1 is the average of the n1 GPA’s in Region 1 of the training data 
set and y2 is the average of the n2 GPA’s in Region 2 of the training data 
set. Also, using the high school rank dividing point of 81.5 to divide the 
validation data set into Region 1 and Region 2, n∗

1  denotes the number of 
GPA’s in Region 1 of the validation data set and n∗

2 denotes the number of 
GPA’s in Region 2 of the validation data set. As illustrated in Figure 4.29, 
we continue to find dividing points, where the next dividing point found 
gives the biggest reduction in MSE. In step 3 the dividing point is an 
ACT score of 19.5, in step 4 the dividing point is an ACT score of 23.5, 
and in step 5 the dividing point is a high school rank of 96.5. We could 
continue to find dividing points indefinitely, until the entire x x1 2,( ) = 
(ACT, H.S. Rank) space in the training data set is divided into the orig-
inal 352 GPA’s and at each step MSE would decrease. However, there 
is a step in the dividing process where MSPR will increase, and in this 
example this occurs when we find the next dividing point after step 5. In 
general, we stop the dividing process when MSPR increases and use the 
sample means obtained at the previous step (step 5 in this situation) as the 
point predictions of the y values in the regions that have been obtained. 
To make it easy to find the point prediction of a y value in a particular 
region, statistical software packages present a regression tree such as the 
one shown in Figure 4.29f. 

Using the sample mean predictions given in the regression tree in 
Figure 4.29f, R 2 for the training data set is .256 and for the validation 
data set is .157. We conclude that GPA is related to H.S. Rank and 
ACT, but that the fraction of the variation in GPA explained by the 
regression tree is not high. If we use parametric regression, our model 
is y x x x x x x= + + + + + +β β β β β β ε0 1 1 2 2 3 1

2
4 2

2
5 1 2 . This model has an 

MSE of .333 and an MSPR of .296 as compared to an MSE of .322 and 
an MSPR of .318 for the regression tree model. Therefore, the regression 
tree model does about as well as the parametric regression model.

In general, regression trees are useful in exploratory studies when there 
is an extremely large number of independent variables—as in data mining.

4.10  Using SAS

Figure 4.30 gives the SAS program for making model comparisons using 
the sales territory performance data in Tables 2.5a and 4.1. Figure 4.31 
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DATA TERR;
INPUT SALES TIME MKTPOTEN ADVER MKTSHARE CHANGE

ACCTS WKLOAD RATING;

TMP = TIME*MKTPOTEN;
TA = TIME*ADVER;
TMS = TIME*MKTSHARE;
TC = TIME*CHANGE;
MPA = MKTPOTEN*ADVER;
MPMS = MKTPOTEN*MKTSHARE;
MPC= MKTPOTEN*CHANGE;

MSC= MKTSHARE*CHANGE;
SQT= TIME*TIME;
SQMP= MKTPOTEN*MKTPOTEN;
SQA= ADVER*ADVER;
SQMS= MKTSHARE*MKTSHARE;
SQC= CHANGE*CHANGE;
DATALINES;
3669.88
3473.95

43.10
108.13

74065.11
58117.30

4582.88
5539.78

2.51
5.51

0.34
0.15

24.86
107.32

15.05
19.97

4.9
5.1

2799.97

PROC PLOT;

PROC REG;

PROC REG DATA = TERR;

PROC CORR;
PLOT SALES*(TIME MKTPOTN ADVER MKTSHARE CHANGE ACCTS WKLOAD RATING);

MODEL SALES = TIME MKTPOTN ADVER MKTSHARE CHANGE ACCTS WKLOAD
RATING/VIF;

MODEL SALES=TIME MKTPOTN ADVER MKTSHARE CHANGE ACCTS WKLOAD
RATING/SELECTION=STEPWISE SLENTRY=.10 SLSTAY=.10;

MODEL SALES=TIME MKTPOTN ADVER MKTSHARE CHANGE ACCTS WKLOAD
RATING/SELECTION=RSQUARE RMSE ADJRSQ MSE RMSE CP;

MODEL SALES=TIME MKTPOTN ADVER MKTSHARE CHANGE SQT SQMP
MPMS TA TMS AMS AC / P CLM CLI;

MODEL SALES=TIME MKTPOTN ADVER MKTSHARE CHANGE MPMS TMP TA TMS
TC MPA MPC AMS AC MSC SQT AQMP SQA SQMS SQC / SELECTION = RSQUARE RMSE CP
ADJRSQ INCLUDE=5 BEST=1;

.

.

.
21.14

85.42 35182.73 7281.65 9.64 .28 120.61 15.72 4.5

22809.53 3552.00 9.14 -0.74 88.62 24.96 3.9

AMS= ADVER*MKTSHARE;
AC= ADVER*CHANGE;

(Note: To perform backward elimination with αstay  =.10, we would write
“SELECTION = BACKWARD SLSTAY = .10”)

(Note: This statement gives all of the one variable models ranked in terms of R2, then all of the two variable models
ranked in terms of R2, etc. There would be 256 models given. If we added in the statement “BEST = 2” at the end,
we would get the two best models of each size ranked in terms of R2, If after the equal sign following “SELECTION,”
we started with “ADJRSQ,” we would get all 256 models ranked, irrespective of size, in term of R2, s2, and s.
If we added in, for example, “BEST = 8,” we would get the best 8 models ranked, irrespective of size
in terms of R2, s2, and s)

(Note: This statement gives the single model of each size having the highest R2,
where all five linear independent variables are included in every model).

Figure 4.30  SAS program for model building using the sales territory 
performance data

gives the SAS program needed to perform residual analysis and to fit the 
transformed regression model and a weighted least squares regression 
model when analyzing the QHIC data in Table 4.7. Figure 4.32 gives the 
SAS program needed to analyze the hotel room average occupancy data in 
Figure 4.18. Figure 4.33 gives the SAS program for model building and 
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data qhic;
input value upkeep;
val_sq = value**2;
datalines;

data new2;

data new4;

set new1;

set new3;
y_star = upkeep/shat;
inv_pabe = 1/shat;
value_star = value/shat;
val_sq_star = val_sq/shat;
wt = shat**(-2);

proc plot;

proc reg;
model abs_res = value;
Output out = new3 p = shat;

proc reg;

proc reg;

weight wt;
plot r.*p.;

model y_star = inv_pabe value_star val_sq_star / noint clm cli;

model upkeep = value val_sq / clm cli;

plot r.*p.;

proc print;
var shat;

plot abs_res*value;

abs_res = abs(resid);

237.00
153.08

1412.08
797.20

122.02
198.02
220

Proc reg;
model upkeep = value val_sq:

output out = new1 r=resid p = yhat;
plot r.*value;

390.16
1090.84

(Note:  This statement places the residuals and the ŷ  values in a new data
set called “new1”. The command “r=resid” says that we are giving the name
“resid” to the residuals (r). The command “p = yhat” says that we are giving the name
“yhat” to the predicted values (p).

.

.

.

Figure 4.31  SAS program for analyzing the QHIC Data

residual analysis and for detecting outlying and influential observations 
using the hospital labor needs data in Table 4.2 and values of the dummy 
variable DL which equals 1 for large hospitals 14, 15, 16, and 17 and equals 
0 otherwise. Figure 4.34 gives the SAS program for fitting the nonlinear 
regression model y e x= + +−b b e1 2

3b  to the light data in Figure 4.16.
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DATA OCCUP;
INPUT Y M;
IF M = 1 THEN M1 = 1;

IF M = 2 THEN M2 = 1;
ELSE M1 = 0;

ELSE M2 = 0;

IF M = 11 THEN M11 = 1;
ELSE M11 = 0;
TIME = _N_;
LNY = LOG(Y);
SRY = Y**.5;
QRY = Y**.25;
PROC PLOT;
PLOT y*TIME;
PLOT LNY*TIME;
PLOT SRY*TIME;
PLOT QRY*TIME;
DATLINES;
501 1
488 2

877 12

(These statements fit the quartic root room average model assuming independent
errors and calculate the Durbin-Watson statistic.)

•
•

•
•

•
•

. 1

. 2

. 12

PROC REG DATA = 0CCUP;

PROC AUTOEG DATA=OCCUP;

PROC ARIMA DATA = OCCUP;
IDENIFY VAR = QRY CROSSCOR = (TIME M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11)
NOPRINT;
ESTIMATE INPUT = (TIME M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11) 
P = (1,2,3,12,18) PRINTALL PLOT;
FORECAST LEAD = 12 OUT = FCAST3;
DATA FORE3;
SET FCAST3;

FY = FORECAST**4;
Y = QRY**4;

L95CI = L95**4;
U95CI = U95**4;
PROC PRINT DATA = FORE3;
VAR Y L95CI FY U95CI;

MODEL QRY = TIME M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 M11/ P DW CLM CLI;

MODEL QRY = TIME M1 M2 M3 M4 M5 M6 M7 M8 M9
             M10 M11/ NLAG = 18 BACKSTEP SLSTAY=.15;

(These statements perform backward elimination on the quartic root room average model residuals
with q=18 and astay = .15. Recall that the error term model chosen is et = φ1 et–1 + φ2 et–2 + φ3 et–3 +
φ12 et–12 + φ18 et–18

. The following commands fit the quartic root room average model combined
with this error term model.)

Defines the
dummy variables
M1, M2, ...., M11

Hotel room average
occupancy data

Predicts next year’s
monthly room averages

Figure 4.32  SAS program to analyze the hotel room average 
occupancy data
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Figure 4.33  SAS program for model building and residual analysis  
and for detecting outlying and influential observations using the 
hospital labor needs data

DATA HOSP;
INPUT Y X1 X2 X3 X4 X5 D;
DATALINES;
566.52 2463 472.92 4.45 15.57 18.0 0
696.82 2048 1339.75 6.92 44.02 9.5 0

4026.52 15543 3865.67 5.50 127.21 126.8 0
10343.81 36194 7684.10 7.00 252.90 157.7 1
11732.17 34703 12446.33 10.78 409.20 169.4 1
15414.94 39204 14098.40 7.05 463.70 331.4 1
18854.45 86533 15524.00 6.35 510.22 371.6 1
. 56194 14077.88 6.89 456.13 351.2 1
PROC PRINT;
PROC CORR;
PROC PLOT;

PROC REG;

PROC REG;

PROC REG;

MSE RMSE CP;

MODEL Y = X1 X2 X3 X4 X5 D / VIF;

MODEL Y = X1 X2 X3 X4 X5 D / SELECTION = RSQUARE ADJRSQ

PLOT Y * (X1 X2 X3 X4 X5 D);

MODEL Y = X1 X2 X3 X4 X5 D / SELECTION = STEPWISE

MODEL Y = X1 X2 X3  D / P R INFLUENCE CLM CLI VIF;
OUTPUT OUT = ONE PREDICTED = YHAT RESIDUAL = RESID;
PRC PLOT DATA = ONE;
PLOT RESID * (X1 X2 X3 D YHAT);
PROC UNIVARIATE PLOT DATA = ONE;
VAR RESID;
RUN;

SLENTRY = .10 SLSTAY = .10;
Detects outlying
and influential
observations

Constructs
residual
and normal
plots

.

.

4.11  Exercises

Exercise 4.1

Suppose that the United States Navy wishes to develop a regres-
sion model based on efficiently run Navy hospitals to evaluate the 
labor needs of questionably run Navy hospitals. Table 4.2, which has 
been given in Section 4.5, gives labor needs data for 17 Navy hospi-
tals. Specifically, this table gives values of the dependent variable 
Hours ( y, monthly labor hours required) and of the independent 
variables X-ray (x1, monthly X-ray exposures), BedDays (x2, monthly  
occupied bed days—a hospital has one occupied bed day if one bed 
is occupied for an entire day), Length (x3, average length of patients’ 
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DATA TRANSMIS;
INPUT CHEMCON LIGHT;
DATALINES;

PROC NLIN;
PARAMETERS BETA1 = 0 BETA2 = 2.77 BETA3 = .774;
MODEL LIGHT = BETA1 + BETA2*EXP(-BETA3*CHEMCON);

0.0 2.86
0.0 2.64
1.0 1.57

5.0 0.36

.

.

.

light data in Section 4.3

NLIN is SAS’s nonlinear regression procedure

Figure 4.34  SAS program for fitting the nonlinear regression model 
y e== ++ ++--b b fb

1 2
3x  to the light data

stay, in days), Load (x4, average daily patient load), and Pop (x5, eligible  
population in the area, in thousands). Figure 4.35 gives MINITAB 
and  SAS outputs of multicollinearity analysis and model building for 
these data.

(a)	Discuss why Figure 4.35a and 4.35b indicate that BedDays, Load, 
and Pop are most strongly involved in multicollinearity. Note that 
the negative coefficient (that is, least squares point estimate) of 
b3 394 3= − .  for Length might be intutively reasonable because it 
might say that, when all other independent variables remain con-
stant, an increase in average length of patients’ stay implies less 
patient turnover and thus fewer start-up hours needed for the initial 
care of new patients. However, the negative coefficients for Load and 
Pop do not seem to be intuitively reasonable—another indication 
of extremely muticollnearity. The extremely strong multicollinearity 
between BedDays, Load, and Pop implies that we may not need all 
three in a regression model.

(b)	Which model has the highest adjusted R 2, smallest C statistic, and 
smallest s?

(c)	(1) Which model is chosen by stepwise regression in Figure 4.35? 
(2) If we start with all five potential independent variables and use 
backward elimination with an α stay of .10, the procedure removes 
(in order) Load and Pop and then stops. Which model is chosen by 
backward elimination? (3) Discuss why the model that uses Xray, 



244	 REGRESSION ANALYSIS

BedDays
BedDays

(a) MINITAB output of a correlation matrix

(b) MINITAB output of the variance inflation factors

(C) The SAS output of the best five models

Adjusted R-Square Selection Method
Adjusted
R-Square R-Square c(p) Variables in Model

Root
MSE

Number in
Model
3

3

4
4
4

0.9878

0.9870

0.9877
0.9875
0.9874

0.9901

0.9894

0.9908
0.9906
0.9905

2.9177

3.7142

4.0263
4.2643
4.3456

614.77942

634.99196

615.48868
622.09422
624.33413

Xray BedDays Length
Xray BedDays Length Pop
Xray Length Load Pop

Xray Length Load
Xray BedDays Length Load

Xray
0.907
0.000

0.447
0.072

0.907
0.000

0.910
0.000

0.945
0.000

0.671
0.003

1.000
0.000

0.933
0.000

0.986
0.000

0.671
0.003

0.463
0.061

0.579
0.015

0.936
0.000

0.986
0.000

0.940
0.000

Length

Length

Load

Load

Pop

Pop

Hours

Predictor
Constant
Xray
BedDays
Length
Load
Pop

Coef
1963

0.05593
1.590

-394.3
-15.85
-4.219

SE Coef
1071

0.02126
3.092
209.6
97.65
7.177

T
1.83
2.63
0.51

-1.88
-0.16
-0.59

P
0.094
0.023
0.617
0.087
0.874
0.569

VIF

7.9
8933.1

4.3
9597.6

23.3

Figure 4.35  MINITAB and SAS output of muticollinearity and model 
building for the hospital labor needs data in Table 4.2

BedDays, and Length seems to be the overall best model. (4) Which 
of BedDays, Load, and Pop does this best model use?

(d)	Consider a questionable hospital for which Xray = 56,194,  
BedDays = 14,077.88, Length = 6.89, Load = 456.13, and Pop =  
351.2. The least squares point estimates and associated p-values (given  
in parentheses) of the parameters in the best model, y x x x= + + + +b b b b e0 1 1 2 2 3 3 ,   

y x x x= + + + +b b b b e0 1 1 2 2 3 3 ,  are b0 0= ( )1523 3892 749. . , b1 05299 0= ( ). . 205 ,  
b2 97898 1= <( ). .000  and b3 32 95 8 563= − ( )0 0 0. . . Using this 
model, a point prediction of and a 95 percent prediction interval 
for the labor hours, y0, of an efficiently run hospital having the same 



	 Model Building and Model Diagnostics	 245

values of the independent variables as the questionable hospital 
are 16,065 and [14,511, 17,618]. Show how the point prediction 
has been calculated. If y0 turned out to be 17,821.65, what would 
you conclude? If y0 turned out to be 17,207.31 what would you 
conclude?

(e)	The variance inflation factors for the independent variables 
x x x1 2 3and , ,  in the best model can be calculated to be 7.737, 
11.269, and 2.493. Compare the multicollinearity situation in the 
best model with the multicollinearity situation in the model using all 
five independent variables.

Exercise 4.2

Table 4.5 shows data concerning the time, y, required to perform ser-
vice (in minutes) and the number of laptop computers serviced, x, for 
15 service calls. Figure 4.37 shows that the y values tend to increase in a 
straight line fashion and with increasing variation as the x values increase. 
If we fit the simple linear regression model y x= + +b b e0 1  to the data, 
the model’s residuals fan out as x increases (we do not show the residual 

Figure 4.36  MINITAB output of a stepwise regression of the hospital 
labor needs data a aentry stay 10= = .( )

Step
Constant

BedDays
T-value
p-value

Xray
T-value
p-value

Length

S

T-value

R-Sq
R-Sq (adj)
Mallows C-P

p-value

0.075
3.91
0.002

-321
-2.10
0.056

1
-28.13

1.117
22.90
0.000

958
97.22
97.03
20.4

2
-68.31

0.823
9.92
0.000

685
98.67
98.48

4.9

0.053
2.64
0.021

3
1523.39

0.978
9.31
0.000

615
99.01
98.78

2.9
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plot), indicating a violation of the constant variance assumption. A plot 
of the absolute values of the model’s residuals versus x can be verified to 
have a straight line appearance, and we obtain the prediction equation 
pabe xi i= − +8 06688 6 49919. . , which gives the predicted absolute residu-
als shown in Figure 4.38. Figures 4.39 and 4.40 are partial SAS outputs that 
are obtained when we use both least squares to fit the transformed regres-
sion model y pabe pabe x pabe ni i i i i i/ / /= ( ) + ( ) +b b0 11  and weighted 
least squares to fit the model y xi i i= + +b b e0 1  to the laptop service time 

Table 4.5  The laptop service time data

Service Time, y Laptops Serviced, x
  92 3

  63 2

126 6

247 8

  49 2

  90 4

119 5

114 6

  67 2

115 4

188 6

298 11

  77 3

151 10

  27 1

0
0

100

200

300

1 2 3 4 5 6
Laptops

T
im

e

7 8 9 10 11

Figure 4.37  Plot of the laptop service time data
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Figure 4.38  SAS output of the pabe si ’

Obs

1
2
3
4
5
6
7
8

Obs

9
10
11
12
13
14
15
16

Pabei
11.4307
4.9315

30.9283
43.9267
4.9315

17.9299
24.4291
30.9283

Pabei
4.9315
17.9299
30.9283
63.4243
11.4307
56.9251
-1.5677
37.4275

Parameter Standard
Variable

Dependent Predicted Std Error
Obs Variable Value
16 5.0157.

Mean Predict 95% CL Mean

0.3401 4.2809 5.7506

95% CL Predict

2.0768  7.9546

inv_pabe
laptops_star

1
1

1.66902
26.57951

3.52841
2.23770

0.47
11.88

0.6440
<.0001

DF Estimate Error t value Pr>│t│

Figure 4.39  Partial SAS output when using least squares to fit the 
tranformed model y pabe pabe x pabe ni i i i i i/ / /= ( ) + ( ) +b b10 1  

Figure 4.40  Partial SAS output when using weighted least squares to 
fit the orginal model y x1 iii = + +b b f0

Parameter Standard
Variable

Dependent Std Error
Obs Variable Value
16 . 187.7256

Mean Predict 95% CL Mean

12.7308 160.2224 215.2288

95% CL Predict

77.7288 297.7224

Intercept
laptops

1
1

1.66902
26.57951

3.52841
2.23770

0.47
11.88

0.6440
<.0001

DF Estimate Error t value Pr>│t│

Predicted

data. Observation 16 on the SAS output represents a future service call on 
which seven laptop computers will be serviced. The predicted absolute resid-
ual for such a service call is pabe0 8 06688 6 49919 7 37 4275= − + ( ) =. . . , 
as shown in Figure 4.38.

(a)	Show how the predicted service time y∧ =0 0/ . .37 4275 5 157 in Figure 
4.39 and the predicted service time y∧ =0 187 7256.  in Figure 4.40 
have been calculated by SAS.
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(b)	Letting m0 represent the mean service time for all service calls on 
which seven laptops will be serviced, Figure 4.39 says that a 95 
percent confidence interval for m0 / .37 4275 is [4.2809, 5.7506], 
and Figure 4.40 says that a 95 percent confidence interval for m0 is 
[160.2224, 215.2288]. If the number of minutes we will allow for 
the future service call is the upper limit of the 95 percent confidence 
interval for m0, how many minites will we allow?

Exercise 4.3

Western Steakhouses, a fast-food chain, opened 15 years ago. Each year 
since then the number of steakhouses in operation, y, was recorded. An 
analyst for the firm wishes to use these data to predict the number of steak-
houses that will be in operation next year. The data are given in Table 4.6, 
and a plot of the data is given in Figure 4.41. Examining the data plot, we 
see that the number of steakhouses in operation has increased over time 
at an increasing rate and with increasing variation. A plot of the natural 
logarithms of the steakhouse values versus time (see Figure 4.42) has a 

Table 4.6  The steakhouse data

Year, t Steakhouses, y
  1 11

  2 14

  3 16

  4 22

  5 28

  6 36

  7 46

  8 67

  9 82

10 99

11 119

12 156

13 257

14 284

15 403
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straight-line appearance with constant variation. Therefore, we consider 
the model ln 1y t tt = + +b b e0 . 1f we use MINITAB, we find that the least 
squares point estimates of b0 and b1 are b0 0 0= 2 7 12.  and b1 25688= . 0. 
We also find that a point prediction of and a 95 percent prediction interval 
for the natural logarithm of the number of steakhouses in operation next 
year (year 16) are 6.1802 and [5.9945, 6.3659].

(a)	Use the least squares point estimates to calculate the point prediction.
(b)	By exponentiating the point prediction and prediction interval—that 

is by calculating e 6 1802.  and [e e5 9945 6 3659. ., ]—find a point prediction of 
and a 95 percent prediction interval for the number of steakhouses in 
operation next year.

(c)	The model ln y tt t= + +b b e0 1  is called a growth curve model 
because it implies that y e e e et

t t t
t

t t= = =+ +( ) ( )( )( )b b e b b e h0 1 0 1
0 1a a

0
2

3

4

5

6

Time series plot of  nat log of y vs year

2 4 6

Year

In
(y

)

8 10 12 14 16

Figure 4.42  Logged steakhouses versus year

0
0

100

200y

300

400

Time series plot of y vs year

2 4 6

Year

8 10 12 14 16

Figure 4.41  Number of steakhouses in operation versus year
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where a0
0= e b , a1

1= e b  and h e
t e t= . Here a1

1= e b  is called the growth 
rate of the y values. Noting that the least squares point estimate of b1 
is b1 25688= . 0, estimate the growth rate a1.

(d)	We see that y yt
t

t
t

t t t= = ≈−
−a a a a a a0 1 0 1

1
1 1 1h h h( ) ( ) . This says that yt 

is expected to be approximately a1 times yt −1. Noting this, interpret 
the growth rate of part (c).

Exercise 4.4

In Section 4.4 we used e∧166 to help compute a point prediction of y169
25. , 

the quartic root of the hotel room average in period 169. Calculate e∧166.

Exercise 4.5

In Exercise 4.1 you concluded that the best model describing the hos-
pital labor needs data in Table 4.2 is y x x x= + + + +b b b b e0 1 1 2 2 3 3 . In 
Section 4.5 we concluded using the studentized deleted residual that 
hospital 14 is an outlier with respect to its y value. Option 1 for deal-
ing with this outlier is to remove hospital 14 from the data and fit the 
model y x x x= + + + +b b b b e0 1 1 2 2 3 3  to the remaining 16 observations. 
Option 2 is to fit the model y x x x DL= + + + + +b b b b b e0 1 1 2 2 3 3 4  to 
all 17 observations. Here, DL =  1 for the larger hospitals 14 to 17 and 0 
otherwise.

(a)	(1) Use the studentized deleted residuals in Figure 4.26a (see 
Option 1 Rstudent and Option 2 Rstudent) to see if there are any 
outliers with respect to their y values when using Options 1 and 
2. (2) Is hospital 14 an outlier with respect to its y value when 
using Option 2? (3) Consider a questionable large hospital (DL =  1)  
for which Xray = 56.194, BedDays = 14,077.88, and Length = 
6.89. Also, consider the labor needs in an efficiently run large hos-
pital described by this combination of values of the independent 
variables. The 95 percent prediction intervals for these labor needs 
given by the models of Options 1 and 2 are, respectively, [14,906, 
16,886] and [15,175, 17,030]. By comparing these prediction 
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intervals, by analyzing the residual plots for Options 1 and 2 given 
in Figure 4.26c and 4.26d, and by using your conclusions regarding 
the studentized deleted residuals, recommend which option should 
be used. (4) What would you conclude if the questionable large 
hospital used 17,821.65 monthly labor hours? If it used 17,207.31 
monthly labor hours?

(b)	When we remove hospital 14 from the data set and compare all 
possible regression models, we find that, although the model 
y x x x x= + + + + +b b b b b e0 1 1 2 2 3 3 4 4  has a slightly smaller  s than 
the model y x x x= + + + +b b b b e0 1 1 2 2 3 3 , this latter model has a 
smaller value of C  and gives a slightly shorter 95 percent prediction 
interval for the monthly labor needs of the questionable hospital. 
This justifies using the latter model when using Option 1. If we 
add the dummy variable DL to the data set and compare all possible 
regression models using all 17 observations, we find that the model 
y x x x DL= + + + + +b b b b b e0 1 1 2 2 3 3 4 , which is used in Option 2, 

is the “best model”. Justify this conclusion and perform all relevant 
diagnostic checks by using a statistical software system. Note: The 
SAS program for doing this is given in Figure 4.33.
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Statistical Tables

Table A1:  An F table: Values of F[.05]

Table A2:  A t-table: Values of t[γ]

Table A3:  A table of areas under the standard normal curve
Table A4:  Critical values for the Durbin—Watson d statistic (α = .05)
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Table A2.  A t-table: Values of t[γ]

df  t[.10] t[.05] t[.025] t[.01] t[.005]

  1 3.078 6.314 12.706 31.821  63.657

  2 1.886 2.920 4.303 6.965  9.925

  3 1.638 2.353 3.182 4.541  5.841

  4 1.533 2.132 2.776 3.747  4.604

  5 1.476 2.015 2.571 3.365  4.032

  6 1.440 1.943 2.447 3.143  3.707

  7 1.415 1.895 2.365 2.998  3.499

  8 1.397 1.860 2.306 2.896  3.355

  9 1.383 1.833 2.262 2.821  3.250

10 1.372 1.812 2.228 2.764  3.169

11 1.363 1.796 2.201 2.718  3.106

12 1.356 1.782 2.179 2.681  3.055

13 1.350 1.771 2.160 2.650  3.012

14 1.345 1.761 2.145 2.624  2.977

15 1.341 1.753 2.131 2.602  2.947

16 1.337 1.746 2.120 2.583  2.921

17 1.333 1.740 2.110 2.567  2.898

18 1.330 1.734 2.101 2.552  2.878

19 1.328 1.729 2.093 2.539  2.861

20 1.325 1.725 2.086 2.528  2.845

21 1.323 1.721 2.080 2.518  2.831

22 1.321 1.717 2.074 2.508  2.819

23 1.319 1.714 2.069 2.500  2.807

24 1.318 1.711 2.064 2.492  2.797

25 1.316 1.708 2.060 2.485  2.787

26 1.315 1.706 2.056 2.479  2.779

27 1.314 1.703 2.052 2.473  2.771

28 1.313 1.701 2.048 2.467  2.763

29 1.311 1.699 2.045 2.462  2.756

inf. 1.282 1.645 1.960 2.326  2.576

 Source: Reproduced by permission from Merrington (1941) © by the Biometrika 
Trustees.

g

t[g]0
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Table A3.  Standard normal distribution areas

 z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09
0.0 .0000 .0040 .0080 .0120 .0160 .0199 .0239 .0279 .0319 .0359

0.1 .0398 .0438 .0478 .0517 .0557 .0596 .0636 .0675 .0714 .0753

0.2 .0793 .0832 .0871 .0910 .0948 .0987 .1026 .1064 .1103 .1141

0.3 .1179 .1217 .1255 .1293 .1331 .1368 .1406 .1443 .1480 .1517

0.4 .1554 .1591 .1628 .1664 .1700 .1736 .1772 .1808 .1844 .1879

0.5 .1915 .1950 .1985 .2019 .2054 .2088 .2123 .2157 .2190 .2224

0.6 .2257 .2291 .2324 .2357 .2389 .2422 .2454 .2486 .2518 2549

0.7 .2580 .2612 .2642 .2673 .2704 .2734 .2764 2794 .2823 .2852

0.8 .2881 .2910 .2939 .2967 .2995 .3023 .3051 .3078 .3106 .3133

0.9 .3159 .3186 .3212 .3238 .3264 .3289 .3315 .3340 .3365 .3389

1.0 .3413 .3438 .3461 .3485 .3508 .3531 .3554 .3577 .3599 .3621

1.1 .3643 .3665 .3686 .3708 .3729 .3749 .3770 .3790 .3810 .3830

1.2 .3849 .3869 .3888 .3907 3925 .3944 .3962 .3980 .3997 .4015

1.3 .4032 .4049 .4066 .4082 .4099 .4115 .4131 .4147 .4162 .4177

1.4 .4192 .4207 .4222 .4236 .4251 .4265 .4279 .4292 .4306 .4319

1.5 .4332 .4345 .4357 .4370 .4382 .4394 .4406 .4418 .4429 .4441

1.6 .4452 .4463 .4474 .4484 .4495 .4505 .4515 .4525 .4535 .4545

1.7 .4554 .4564 .4573 .4582 .4591 .4599 .4608 .4616 .4625 .4633

1.8 .4641 .4649 .4656 .4664 .4671 .4678 .4686 .4693 .4699 .4706

1.9 .4713 .4719 .4726 .4732 .4738 .4744 .4750 .4756 .4761 .4767

2.0 .4772 .4778 .4783 .4788 .4793 .4798 .4803 .4808 .4812 .4817

2.1 .4821 .4826 .4830 .4834 .4838 .4842 .4846 .4850 .4854 .4857

2.2 .4861 .4864 .4868 .4871 .4875 .4878 .4881 .4884 .4887 .4890

2.3 .4893 .4896 .4898 .4901 .4904 .4906 .4909 .4911 .4913 .4916

2.4 .4918 .4920 .4922 .4925 .4927 .4929 .4931 .4932 .4934 .4936

2.5 .4938 .4940 .4941 .4943 .4945 .4946 .4948 .4949 .4951 .4952

2.6 .4953 .4955 .4956 .4957 .4959 .4960 .4961 .4962 .4963 .4964

2.7 .4965 .4966 .4967 .4968 .4969 .4970 .4971 .4972 .4973 .4974

2.8 .4974 .4975 .4976 .4977 .4977 .4978 .4979 .4979 .4980 .4981

2.9 .4981 .4982 .4982 .4983 .4984 .4984 .4985 .4985 .4986 .4986

3.0 .49865 .4987 .4987 .4988 .4988 .4989 .4989 .4989 .4990 .4990

4.0 .4999683

Source: Neter, Wasserman, and Whitmore (1972).

z0
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Table A4.  Critical values for the Durbin–Watson d statistic (α =.05)

k = 1 k = 2 k = 3 k = 4 k = 5

n dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05

15 1.08 1.36 0.95 1.54 0.82 1.75 0.69 1.97 0.56 2.21

16 1.10 1.37 0.98 1.54 0.86 1.73 0.74 1.93 0.62 2.15

17 1.13 1.38 1.02 1.54 0.90 1.71 0.78 1.90 0.67 2.10

18 1.16 1.39 1.05 1.53 0.93 1.69 0.82 1.87 0.71 2.06

19 1.18 1.40 1.08 1.53 0.97 1.68 0.86 1.85 0.75 2.02

20 1.20 1.41 1.10 1.54 1.00 1.68 0.90 1.83 0.79 1.99

21 1.22 1.42 1.13 1.54 1.03 1.67 0.93 1.81 0.83 1.96

22 1.24 1.43 1.15 1.54 1.05 1.66 0.96 1.80 0.86 1.94

23 1.26 1.44 1.17 1.54 1.08 1.66 0.99 1.79 0.90 1.92

24 1.27 1.45 1.19 1.55 1.10 1.66 1.01 1.78 0.93 1.90

25 1.29 1.45 1.21 1.55 1.12 1.66 1.04 1.77 0.95 1.89

26 1.30 1.46 1.22 1.55 1.14 1.65 1.06 1.76 0.98 1.88

27 1.32 1.47 1.24 1.56 1.16 1.65 1.08 1.76 1.01 1.86

28 1.33 1.48 1.26 1.56 1.18 1.65 1.10 1.75 1.03 1.85

29 1.34 1.48 1.27 1.56 1.20 1.65 1.12 1.74 1.05 1.84

30 1.35 1.49 1.28 1.57 1.21 1.65 1.14 1.74 1.07 1.83

31 1.36 1.50 1.30 1.57 Σ1.23 1.65 1.16 1.74 1.09 1.83

32 1.37 1.50 1.31 1.57 1.24 1.65 1.18 1.73 1.11 1.82

33 1.38 1.51 1.32 1.58 1.26 1.65 1.19 1.73 1.13 1.81

34 1.39 1.51 1.33 1.58 1.27 1.65 1.21 1.73 1.15 1.81

35 1.40 1.52 1.34 1.58 1.28 1.65 1.22 1.73 1.16 1.80

36 1.41 1.52 1.35 1.59 1.29 1.65 1.24 1.73 1.18 1.80

37 1.42 1.53 1.36 1.59 1.31 1.66 1.25 1.72 1.19 1.80

38 1.43 1.54 1.37 1.59 1.32 1.66 1.26 1.72 1.21 1.79

39 1.43 1.54 1.38 1.60 1.33 1.66 1.27 1.72 1.22 1.79

40 1.44 1.54 1.39 1.60 1.34 1.66 1.29 1.72 1.23 1.79

45 1.48 1.57 1.43 1.62 1.38 1.67 1.34 1.72 1.29 1.78

50 1.50 1.59 1.46 1.63 1.42 1.67 1.38 1.72 1.34 1.77

55 1.53 1.60 1.49 1.64 1.45 1.68 1.41 1.72 1.38 1.77

60 1.55 1.62 1.51 1.65 1.48 1.69 1.44 1.73 1.41 1.77

65 1.57 1.63 1.54 1.66 1.50 1.70 1.47 1.73 1.44 1.77

70 1.58 1.64 1.55 1.67 1.52 1.70 1.49 1.74 1.46 1.77

75 1.60 1.65 1.57 1.68 1.54 1.71 1.51 1.74 1.49 1.77

(Continued)
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k = 1 k = 2 k = 3 k = 4 k = 5

n dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05 dL,.05 dU,.05

80 1.61 1.66 1.59 1.69 1.56 1.72 1.53 1.74 1.51 1.77

85 1.62 1.67 1.60 1.70 1.57 1.72 1.55 1.75 1.52 1.77

90 1.63 1.68 1.61 1.70 1.59 1.73 1.57 1.75 1.54 1.78

95 1.64 1.69 1.62 1.71 1.60 1.73 1.58 1.75 1.56 1.78

100 1.65 1.69 1.63 1.72 1.61 1.74 1.59 1.76 1.57 1.78

Source: Reproduced by permission from Durbin and Waston (1951) © by the Biometrika 
Trustees.
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