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AbstrAct

This is the third book in a series designed to make the finite element 
method and adaptive refinement more accessible. The first book, A  Unified 
Approach to the Finite Element Method and Error Analysis  Procedures, 
laid the theoretical background for simplifying and extending the finite 
 element and finite difference methods by introducing the use of a  physically 
interpretable notation. This notation simplifies and extends  computational 
mechanics by reversing the usual mathematical approach of abstracting the 
notation used in the development. By introducing  variables that  represent 
rigid body motions and strain quantities, the modeling  capabilities of 
 individual elements and the solution algorithms can be evaluated for 
 accuracy by visual inspection. The second book, The  Essentials of Finite 
Element Modeling and Adaptive Refinement, demonstrated the validity of 
the derivations contained in the first book and extended the simplification 
of element formulation and improved the error measures.

This book, as its title indicates, presents a straightforward  introduction 
to the finite element method, error analysis, and adaptive refinement. 
As such, it provides an easy-to-read overview that allows the contents 
of other finite element books and finite element courses to be seen in 
 perspective as the various procedures are encountered. Furthermore, 
it  provides  developments that improve the procedures contained in the 
 standard finite element textbook. As a result, when this book is used 
alone or in conjunction with other presentations, the reader is capable of 
 critically assessing the capabilities of the finite element method.

KEYWORDS

adaptive refinement, error analysis, finite element method, symbolic 
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PrefAce

When I first approached thermodynamics, I was lucky enough to find a 
cogent overview of the subject entitled Understanding Thermodynamics 
by H. C. Van Ness. This short (107-page) book provided a useful intro-
ductory explanation of the law of thermodynamics and their relationship 
to each other. The foreknowledge provided by this overview significantly 
improved my ability to learn the subject.

The primary objective of this book is to provide a clear and easy to 
read overview of the finite element method for undergraduates in engi-
neering, applied mathematics, and physics. This book is not meant to 
compete with commonly used textbooks. It is designed to eliminate the 
mystery that often surrounds the study of a new discipline. That is to say, 
this book is designed to show the reader the purpose and function of the 
various components of the finite method and how they fit together.

The recommended background knowledge for making this book 
accessible is minimal. From calculus, readers should already be familiar 
with the meaning of a derivative and an integral. From linear algebra, they 
should have a basic understanding of the concept of linear independence. 
From engineering or physics, readers should be familiar with the concepts 
of equilibrium, Hooke’s law, and potential energy.

Understanding the concepts presented in this book does not require an 
intimate knowledge of computer programming. However, Chapters 5 and 
6 include MATLAB programs as appendixes. These programs are included 
for three reasons: (1) If any of the text seems ambiguous, the MATLAB 
programs with their extensive annotation will eliminate it because of the 
precision required in defining the computations; (2) the best way to learn 
programming skills is to dissect operating programs line-by-line; and 
(3) the capabilities presented provide the basis for expanding the material 
presented for class projects or publishable research.

Solid mechanics is chosen as the focus because of the importance of 
boundary conditions in the problems. Many introductory works address 
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scalar problems where the treatment of boundary conditions is much 
 simpler. Furthermore, most, if not all, scalar problems can be solved with 
the procedures for modeling solid mechanics problems.

The presentational style is driven by the point of view of two of my 
favorite technical authors. Cornelius Lanczos in his classic book The 
 Variational Principles in Mechanics observes the following:

Many of the scientific treatises of today are formulated in a 
half-mystical language, as though to impress the reader with the 
uncomfortable feeling that he is in the permanent presence of a 
superman. The present book is conceived in a humble spirit and 
written for humble people. (1966)

When Prof. O. C. Zienkiewicz presented the 1998 Timoshenko Medal 
lecture, he made the following comments:

After contact with Timoshenko’s Theory of Elasticity, I realized 
that even quite complex ideas could be presented in a lucid form. 
… I have tried to follow the master [Timoshenko] by avoiding the 
alternative process, very popular among some scientific writers. 
They follow the maxim …, which simply stated is “Why make it 
simple when you can make it complicated”

The following is a summary of the chapters of this overview of the 
finite element method.

Chapter 1—Introduction: The need to solve complex problems with 
approximate solution techniques is introduced. Then, the difficulties 
involved in producing solutions accurate enough for use are presented. 
Finally, procedures for achieving solutions of prescribed accuracy are 
outlined.

Chapter 2—Formulation of Global Stiffness Matrices: Many finite 
element books focus on the formation of the stiffness matrices before they 
clarify the role that elemental stiffness matrices play in the final model. 
This chapter starts with a stiffness matrix that is known to most readers 
from high school physics, namely, the force-displacement relationship of 
a linear spring. Then, the process of assembling these simple elements 
into the global stiffness matrix for a complete structure is presented in two 
ways. First, the basic theory of forming a potential energy expression and 
minimizing it in order to produce the equilibrium equations is presented. 
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Then, the element-by-element assembly process that is the shortcut used 
in all finite element programs is presented.

Chapter 3—Physically Interpretable Displacement Interpolation 
Functions: In solid mechanics problems, the primary unknowns are the 
displacements. However, the strains, which are functions of the deriva-
tives of the displacements, are usually the quantities sought by the analyst.

In this chapter, the interpolation polynomials that approximate the 
displacement in the finite element method are expressed in terms of rigid 
body motions and strain quantities. In other words, the displacements are 
expressed in terms of the quantities that produce them and are important to 
the analyst. It is this strain-based notation that makes this book so accessi-
ble to readers new to the finite element method and provides avenues for 
new research. This notation makes the finite element method transparent 
to the reader in a way not available with the standard notation.

This physically interpretable notation achieves its usefulness because 
it reverses the usual approach common to mathematics. Instead of 
expressing equations in terms of a notation that has arbitrary meaning, 
this notation is directly related to the concepts of continuum mechanics. 
When quantities that are important to solid mechanics are embedded in 
the  notation, the equations formed using this notation are directly related 
to the concepts and theory of continuum mechanics. As a result, the equa-
tions can be understood and evaluated by visual inspection.

Chapter 4—An Improved Stiffness Matrix Formulation Procedure: 
The use of the physically interpretable notation presented in Chapter 3 
simplifies and improves the finite element stiffness matrix formulation 
procedure. The number of integrals that must be evaluated is reduced, 
and they are simplified. Furthermore, errors in the strain representation of 
the individual elements can be visually identified during the formulation 
process because they are expressed in terms of strain quantities.

As a result of these characteristics, the standard isoparametric  element 
formulation procedure is rendered obsolete. The evaluation of fewer and 
simpler integrals eliminates the need for the approximate numerical inte-
gration procedure that is central to the isoparametric approach. In addi-
tion to complicating the formulation procedure, this numerical integration 
procedure introduces strain modeling errors into finite elements that do 
not have a regular shape. The very fact that strain modeling errors are 
inherent in any elements produced by the standard isoparametric process 
makes this process obsolete.

Chapter 5—The “distmesh_2d” Mesh Generation Program: The 
 distmesh_2d mesh generation program is used to generate the finite 
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 element meshes for the Kirsch problems solved here. The mesh generator 
is the product of a PhD thesis by Per-Olof Persson. It is available online 
and is contained in annotated form in the appendix of this chapter.  Persson 
and Strang give the following reasons for its creation:

Our goal is to develop a mesh generator that can be described in a 
few dozen lines of MATLAB. … our chief hope is that users will 
take this code as a starting point for their own work. …, but it can 
be simple and effective and public. (2004)

The introduction and application of an operational mesh generation 
program in a book that provides an overview of the finite element method 
is unique. This capability is included for two reasons. First, the availability 
of this capacity allows the reader to solve relatively complex problems 
that would otherwise be beyond their scope without putting in a concerted 
effort. Second, the availability of this capability in conjunction with the 
physically interpretable notation presented in Chapter 3 allows students 
new to the field to pursue state-of-the-art research in error analysis and 
mesh refinement. This is the case because the notation provides insights 
that are not available without this notation.

Chapter 6—Formulation of Finite Element Model of the Kirsch 
 Problem: This chapter integrates the concepts presented in the previous 
chapters by solving the Kirsch problem. This classic problem is often used 
to test the accuracy of approximate methods. It is chosen because of its 
simplicity and the existence of known stress concentrations.

The problem consists of a panel with a circular hole in the center that 
is loaded in tension. Two stress concentrations exist on the boundary of 
the interior cutout. In addition to integrating the previous material, this 
problem is used to demonstrate the error estimator and refinement guides 
developed and applied in the next two chapters.

Chapter 7—Pointwise Error Estimators: The need to identify the 
level of errors in the individual finite elements was outlined in the intro-
duction and reinforced in the previous chapter. In this chapter, error esti-
mators that evaluate the accuracy of individual points are presented. These 
error estimators are put on a solid theoretical basis. This is accomplished 
by showing that approximate finite difference solutions can be extracted 
from the finite element solutions. Since these two solutions must converge 
to the same result, any differences between the two approximate solutions 
are due to deficiencies in the finite element model. This error estimator 
identifies the level of error in the individual finite elements.
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Chapter 8—Simple and Effective Refinement Guides: Procedures for 
identifying the number of refinements that must be given to individual 
finite elements in order to improve the model are developed. A simple and 
effective refinement guide is developed and presented. It is based on the 
level of error estimated by the process developed in the previous chapter 
and the prescribed level of acceptable error.

The refinement guide presented produces rapid convergence of the 
solution to the specified level of accuracy in only two or three iterations 
of the adaptive refinement process that is outlined in the introduction 
and applied in this chapter. As would be expected, the more closely the 
 initial model  represents the problem, the quicker the adaptive refinement 
process converges to an accurate solution.  A more detailed approach for 
identifying the number of subdivisions that must be given to an element 
for rapid convergence, which was developed by the author in a previous 
book, is outlined.

Chapter 9—Summary and Observations: This  chapter compactly 
 summarizes the details of the previous eight  chapters and outlines 
approaches for further study and opportunities for possible research.





cHaPtER 1

introduction

1.1 PROBLEM DEfiNitiON

Exact solutions to real-world solid mechanics problems are generally 
impossible to find. The geometry, boundary conditions, and loading con-
ditions are often too complex to be captured by exact solution techniques. 
Consequently, approximations solutions are sought.

The finite element method is widely used to approximate such diffi-
cult problems. In this procedure, the problem is subdivided into a finite 
number of simple geometric shapes known as finite elements. Then, the 
equilibrium equations are formed and solved for the displacements at 
the finite number of nodes that are in the model. Finally, the stresses and 
strains are extracted from the nodal displacements.

Figure 1.1 depicts the mesh for a finite element model of a square 
panel with a circular hole. In this case, the finite elements are three-node 
triangles with nodes at the vertices.

In a finite element model, the displacements on an individual element 
are approximated by interpolating the nodal displacements. The displace-
ments u(x,y) and v(x,y) at any point on a three-node element are found 
using the following interpolation polynomials:

 

u x y N u N u N u

v x y N v N v N v

( , )

( , )

= + +

= + +

1 1 2 2 3 3

1 1 2 2 3 3

 (1.1)

where the N’s are linear functions in the form a1 + a2 x + a3 y and the ui’s 
and vi’s are the nodal displacements of the triangle.

Unfortunately, a  significant  difficulty  arises when an approximate 
solution technique is used. Since the solution is an approximation, how 
can we know that an approximate solution is accurate enough to be useful? 
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We cannot compare it to the exact result because the exact solution cannot 
be found.

In other words, it appears that we have replaced an impossible prob-
lem with a problem that seems to be nearly as difficult. Instead of facing 
the impossibility of finding an exact solution, we face two formidable 
tasks. First, we must determine how to assess the accuracy of an approx-
imate finite element solution. Then, we must devise ways to improve the 
finite element model so that the solution is accurate enough for use.

1.2 OBJEctiVES

The overall objective of this book is to provide a compact, intuitive, and 
theoretically solid presentation of a procedure for producing approximate 
solutions with a predefined level of accuracy. The presentation focuses on 
the finite element method and is aimed at readers who are new to compu-
tational mechanics. This objective is accomplished as follows:

1. The finite element method is introduced in a clear and concise 
 manner.

Figure 1.1. A finite element model.
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2. Error estimation procedures that assess the accuracy of a solution 
are presented in an intuitive manner with a solid theoretical foun-
dation.

3. A procedure is presented for rapidly improving the mesh with a 
rational, analytic method.

In combination, these three procedures define a capacity referred to 
as adaptive refinement.

1.3 aN OVERViEW Of aDaPtiVE REfiNEMENt

The adaptive refinement procedure is an iterative process that improves 
finite element models so that the solutions will possess a predetermined 
level of accuracy. This process is shown schematically in Figure 1.2.

As shown in the schematic diagram, the process begins by forming 
an initial finite element model. This model consists of the stiffness matrix, 
boundary conditions, and applied loads for the problem being solved. 
This problem is then solved for the nodal displacements. The stresses and 
strains used to evaluate the accuracy of the solution are extracted from the 
displacement approximations.

Once the solution portion of the procedure is completed, the errors in 
each element are estimated. Then, the accuracy of the solution is evalu-
ated. If the error in every element falls below a predefined level, the anal-
ysis is stopped. If the error in any element exceeds the predefined error 
threshold, the adaptive refinement of the model proceeds.

If the model contains elements with excessive levels of error, it must 
be improved. This is accomplished by determining the number of subdivi-
sions that must be given to each high-error element in order to achieve the 
desired level of accuracy. After the needed refinements are identified, the 

Figure 1.2. Adaptive refinement schematic.

Start

Form model Solve Error analysis

Identify refinement Evaluate solution

Stop
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subdivided elements are incorporated into a new finite element model. The 
process is repeated until the level of error in every element is acceptable.

1.4 aN EXaMPLE Of aDaPtiVE REfiNEMENt

The result of the application of the adaptive refinement process is pre-
sented in this section. The overall geometry of the problem is shown in 
Figure 1.1. The panel is put in tension by stretching it with the application 
of equal and opposite distributed loads on the left and right ends of the 
panel. Stress concentrations exist at the top and bottom of the internal 
cutout.

Only one-quarter of the panel needs to be modeled because of sym-
metries that exist in this problem. As a result of these symmetries, certain 
displacements in the problem are known to be zero. These zero displace-
ments are shown on the left-hand edge and the bottom edge of the problem 
with arrows in Figure 1.3.

The displacement in the x direction on the left side of the problem and 
the displacement in the y direction on the bottom edge of the problem are 
known to be zero. The nodal loads that represent the uniformly distributed 
loads on the right-hand edge of the panel are denoted by arrow heads.

The meshes in Figure 1.3 differ from the mesh in Figure 1.1. The 
mesh in Figure 1.1 consists of uniform triangles. The meshes in Figure 1.3 
are graduated. The sizes of the individual finite elements decrease as they 
get closer to the circular internal cutout. This occurs because at some point 
in the adaptive refinement process, the errors in these elements exceeded 

Figure 1.3. Adaptively refined stress concentration (Kirsch 
problem): (a) initial mesh and (b) adaptively refined mesh.
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the prescribed level of acceptable error. Since the stresses change rap-
idly in the neighborhood of a stress concentration, the smaller elements 
 capture the changes more accurately than do larger elements.

When the problem is analyzed with the initial mesh shown as 
 Figure 1.3a, the error at the stress concentration exceeds 70 percent. After 
the model is refined as shown in Figure 1.3b, the error is below 5 percent 
(Dow 1999, 415). The first mesh contains 215 nodes and the second mesh 
contains 5,700 nodes.

1.5 SPEciaL fEatuRES

As mentioned earlier, the displacements in the finite element model are 
approximated in the individual elements with interpolation polynomials. 
In the developments presented in Chapter 3, the arbitrary coefficients, the 
a’s and b’s that exist in the interpolation polynomials, are replaced with 
coefficients that have significant physical meaning in solid mechanics.

Specifically, the a and b coefficients are replaced with strains quanti-
ties (see Figure 3.1 and Equation 3.4). This change in notation produces 
the following important advantages:

1. The formulation of element stiffness matrices that form the equili-
brium equations is simplified.

2. A solid theoretical basis is given to the error estimators.
3. The procedures for identifying the number of subdivisions to give 

to an element with an excessive level of error are put on a rational 
foundation.

As we will see in the main text, this change in notation allows new 
approaches to error analysis and mesh refinement strategies to be devel-
oped. As a result, new research opportunities are made available to both 
new and experienced finite element practitioners.

This universal opportunity exists because the physically based nota-
tion provides a fresh starting point for developing these capabilities. 
Everyone is close to the starting line when procedures are reformulated 
with a notation that provides a clear vision of the problems.





cHaPtER 2

formuLAtion of gLobAL 
stiffness mAtrices

2.1 iNtRODuctiON

The finite element method is a direct extension of the matrix analysis of 
trusses (Turner et al, 1956).* The extension to two- and three-dimensional 
problems produced a profound change in computational mechanics. As 
a consequence of this change, higher dimension problems with complex 
boundary and loading conditions that were previously unapproachable 
could now be approximated.

The extension to multidimensional problems is due to changes in the 
interpolation functions. Finite element stiffness matrices are formed with 
two- and three-displacement interpolation functions instead of the one- 
dimensional function that is used for truss elements (see Figure 3.1 and 
Equation 3.4). In both cases, these interpolation functions approximate the 
displacements in terms of the nodal displacements.

2.2 OBJEctiVE

Since the finite element method is an extension of the analysis of skeletal 
structures, computational similarities exist between the two techniques. In 
both cases, the stiffness matrices for individual elements are assembled 
to form a global stiffness matrix. In this chapter, we exploit the computa-
tional similarities by using truss examples to present processes for forming 
global stiffness matrices that are also applicable for finite element models.

*Turner’s work is one of the first finite element papers.
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The objective of this chapter is to present both the theoretical and 
practical procedures for assembling global stiffness matrices. Trusses are 
featured because the matrices involved with one-dimensional problems 
are relatively small. This makes the presentation of the assembly process 
more compact and easier to follow.

The global stiffness matrices are formed for both trusses and finite ele-
ment models by forcing the displacements of the nodes of individual elements 
with common locations to have the same displacements. That is to say, dis-
placement compatibility is imposed at the nodes of the individual elements.

In order to reinforce the similarity between the two analysis tech-
niques and to justify the use of truss examples in this development, let us 
interpret the structure shown in Figure 2.1 as both a skeletal structure and 
a finite element model.

If the lines connecting any two nodes are considered as bars, the 
structure shown can be interpreted as a plane truss. In other words, the 
structure is a truss if the elements connecting nodes 1 and 2 and, say, 
nodes 4 and 5 are bar elements. From this point of view, the truss consists 
of 12 bar elements and 7 nodes.

There are displacements in the x and y direction at each of the 7 nodes 
for a total of 14 degrees of freedom, for example, u5 and v5 at node 5. The 
global stiffness matrix is formed by forcing each of the bars that connect at 
the same node to have identical displacements. For example, the three bars 
that connect at node 5 are forced to have the same displacement as node 5.

If, instead, each of the six triangular regions contained in Figure 2.1 
is thought of as a three-node finite element, the figure can be considered 

Figure 2.1. A generic structure.
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to be a plane stress model. In this interpretation, each of the three-node 
elements contains the central node and two nodes on the boundary of the 
figure, for example, nodes 1, 4, and 5.

As was the case for the truss model, there is a u and v displacement 
at each of the seven nodes. Therefore, the finite element model contains 
the same 14 degrees of freedom as the truss model. The global stiffness 
matrix for a finite element model is formed by requiring the nodes of the 
individual elements that meet at a common point to exhibit the same dis-
placement. For example, the nodes of the two, three-node elements that 
connect at node 5 will be forced to have the same displacement as node 5.

2.3 aPPROacH

The process for creating a global stiffness matrix is a five-step process. 
Each of the five steps in the outline that follows is keyed to the equations 
that develop the global stiffness matrix in the next section.

A matrix equation representing the strain energy for each of the individ-
ual elements of the structure is formed in its local coordinate system (step 1 
is accomplished in Equation 2.1). These individual strain energy matrices 
expressed in local coordinates are then inserted into a large matrix (step 2 
is accomplished in Equation 2.2). The strain energy expression formed in 
step 2 must be transformed from local to global coordinates in order to pro-
duce the global strain energy expression. The coordinate transformation 
from local to global coordinates is shown in Equation 2.3. The strain energy 
expression is transformed from local to global coordinates in Equation 2.4.

A work function expressed in terms of equivalent nodal loads and the 
nodal displacements is formed. Then, the strain energy and the work func-
tion expressed in terms of the global coordinates are summed to produce 
the potential energy expression that provides the basis for the mathemati-
cal model (this portion of step 5 is accomplished in Equation 2.5).

The final mathematical model, which consists of a global stiffness 
matrix and an applied load vector, is produced when the principle of min-
imum potential energy is applied to the potential energy function (see 
Equation 2.6). The global stiffness matrix emerges from the strain energy 
portion of the potential energy function (see Equation 2.7).

2.4  tHE fORMuLatiON Of tHE fiNitE ELEMENt 
StRuctuRaL MODEL

This section develops the procedure for creating the mathematical repre-
sentation of a truss or a finite element model. As we will see, the direct 
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formulation of the structural model is straightforward but the process is 
not computationally efficient. The matrices involved are extremely large 
and sparse. In practice, the model is formed with a less obvious approach 
that is computationally efficient (McGuire, Gallagher, and Ziemian 2000). 
Both procedures for forming the global stiffness matrices are presented in 
this chapter.

The unwieldy but theoretically transparent development of the global 
stiffness matrix consists of the following five steps:

Step 1: The strain energy expression for each of the individual ele-
ments is generated and has the following form:

 
SE 1/2 d K dn n

T
n n= { } [ ] { }  (2.1)

where {d}n is a column matrix that contains the displacement degrees of 
freedom of the nth element in local coordinates and [K]n is the symmetric 
stiffness matrix that describes the force-displacement properties of the nth 
element.

Step 2: The elemental strain energy expressions are assembled into 
one large matrix equation to give the following:
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Step 3: The transformation from local to global coordinates is formed 
and has the following structure:
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where [T]n is the nelemental × nGlobal transformation matrix that takes the local 
coordinates of the nth element to the global coordinate system and {u}Global 
is the column vector of the global coordinates.

Step 4: The global strain energy, that is, the total strain energy 
expressed in global coordinates, is formed by substituting Equation 2.3 
into Equation 2.2 to give the following:
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When the kernel of Equation 2.4a is expanded, the equation takes on 
the following form:
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 (2.4b)

 
SE 1/2 u K uGlobal Global

T
Global Global= { } [ ] { }  (2.4c)

Although, Equation 2.4 is theoretically correct and relatively easy to 
understand, it is not used in practice because of the size of the problems. It 
is not uncommon for practical problems to have several thousand or sev-
eral hundred thousand elements and a corresponding number of degrees 
of freedom. As a consequence, each of the transformation matrices [T]i in 
Equation 2.4b can be very large and very sparse making the computations 
impractical.

Equation 2.4b provides the basis for a computationally efficient pro-
cedure for forming global stiffness matrices that is used in practice. This 
procedure will be demonstrated in a later section.

Step 5: The governing equations for a structures problem are 
formed when the principle of minimum potential energy is applied. The 
potential energy function is formed when a work function is added to 
the strain energy expression defined in the previous step to give the 
following:

 PE SE WGlobal= +  (2.5a)

 
PE 1/2 u K u u FGlobal

T
Global Global Global

T
Global= { } [ ] { } +{ } { }  (2.5b)

where {F}Global is the vector of nodal loads applied to the structure.
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The application of the principle of minimum potential energy pro-
duces the following result for each of the n degrees of freedom contained 
in the model:

∂
∂
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(2.6)

When the symmetry of the global stiffness matrix is invoked and the 
n equations are consolidated, the mathematical model for the structure 
becomes the following:

 
K u F 0Global Global Global[ ] { } +{ } =  (2.7)

where [K]Global is an n × n matrix and {u}Global and {F}Global are n × 1 column 
vectors.

Equation 2.7 defines the structure of the finite element model for a 
problem. When Equation 2.7 is compared to Equation 2.5b, we can see 
that the finite element model can be formed without actually applying 
the principle of minimum potential energy. The governing equations can 
be formed directly by computing the global stiffness matrix, forming the 
applied load vector and relating them as indicated by Equation 2.7. The 
need to explicitly apply the principle of minimum potential energy is 
eliminated.

2.5  a DEMONStRatiON Of gLOBaL StiffNESS 
MatRiX fORMuLatiON

One component of the kernel of the strain energy expression contained 
in Equation 2.4b will be developed in this section. On the one hand, this 
is done to demonstrate the process. On the other hand, the result pro-
vides a standard against which to compare the result produced by the 
computationally efficient approach for forming global stiffness matrices 
presented in the next section.
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This demonstration consists of computing the contribution of element 
12 of the truss shown in Figure 2.1 to the global stiffness matrix. This 
computation consists of performing the triple matrix product contained in 
Equation 2.4b that is associated with element 12.

Element 12 connects nodes 2 to 7 of the truss. The local coordinates 
for the element are shown in Figure 2.2a. The global coordinates are 
shown in Figure 2.2b. This figure identifies the correspondence between 
the local and global coordinates that is used to form the transformation 
from local to global coordinates presented in Equation 2.8b.

The transformation matrix that relates the four local coordinates of  
element 12 to the 14 global coordinates of the overall problem is as follows:

 
d T u12 12 Global{ } = [ ] { }  (2.8a)
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Figure 2.2. Coordinate definitions for element 12: 
(a) element coordinates and (b) global coordinates.
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The local stiffness matrix for Element 12 is given in generic form as 
follows:
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 (2.9)

Note that this matrix is symmetric, that is, k kij ji
12 12= .

When the triple matrix product for element 12, as identified in 
 Equation 2.4b, is formed, the result is as follows:
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 (2.10)

The global coordinates corresponding to the rows and columns of the 
global stiffness matrix are listed across the top and along the left edge of 
the matrix. The identification of coordinates associated with the rows and 
columns of the partially complete global stiffness matrix lets us see how the 
elemental stiffness properties are distributed in the global stiffness matrix.

As can be seen in Equation 2.10, the stiffness properties of  element 12 
are associated with the coordinates that are present at nodes 2 and 7, 
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namely, u2, v2, u7, and v7. This result will be used to validate the implicit 
approach for forming the stiffness matrix that is presented in the next 
section.

2.6  tHE PRacticaL fORMuLatiON Of tHE 
gLOBaL StiffNESS MatRiX

We will now demonstrate a procedure for locating the stiffness proper-
ties of an elemental stiffness matrix in the global stiffness matrix without 
actually performing the multiplications indicated in Equation 2.4b. This 
computationally efficient approach will be demonstrated for the case of 
element 12 used in the previous section.

The locations in the global stiffness matrix of the stiffness compo-
nents of the individual stiffness matrices are contained in the data that 
defines a finite element model. The global coordinate associated with each 
of the elemental degrees of freedom is identified for each element in the 
input data.

The relationship between the local and global coordinates for element 
12 is shown in Figure 2.2. When the two coordinate systems are com-
pared, the following relationship exists between the local and the global 
coordinate systems:

 

Local Coord. No. 1 2 3 4

  Local Designation u u v v

  

12 12 12 12
1 2 1 2

GGlobal Designation u u v v
Global Coord. No. 7 2 14 9

7 2 7 2

 (2.11)

The locations of the elements of the local stiffness matrix for element 
12 in the global stiffness matrix are identified with the artifact shown in 
Equation 2.12. In this equation, the global coordinate numbers associated 
with the local coordinates are superimposed on the rows and columns of 
the elemental stiffness matrix as shown in the following:
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The row and column location in the global stiffness matrix for a stiff-
ness element is identified by the global coordinate numbers associated 
with an individual k in Equation 2.12. For example, diagonal element k11

12  
is located in row 7 and column 7 of the global stiffness matrix. Similarly, 
the two symmetric off-diagonal terms k34

12  are located in row 14 of column 
9 and row 9 of column 14, respectively.

The fact that this implicit process locates the elements correctly can be 
seen by comparing the locations identified for each element in  Equation 2.12 
with the elements located in Equation 2.10, which was formed by multi-
plying out the strain energy expression. Note that the off-diagonal elements 
are located symmetrically in the global stiffness matrix.

The process of locating an element stiffness matrix in the global stiff-
ness matrix will be demonstrated with another example. The objective of 
this example is to show how elements that are connected to each other in 
the structure are related in the global stiffness matrix.

The implicit coordinate transformation for element 1 in Figure 2.1 
that is similar to Equation 2.11 is the following:

 

Local Coord. No. 1 2 3 4

  Local Designation u u v v

  Glob

1 1 1 1
1 2 1 2

aal Designation u u v v
Global Coord. No. 2 1 9 8

2 1 2 1

 (2.13)

When the global coordinate numbers are associated with the local 
stiffness matrix for element 1, we have the following:
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These elemental stiffness quantities can be added to the global stiff-
ness matrix that already contains the stiffness properties for element 12 to 
give the following:
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 (2.15)

This partially constructed global stiffness matrix contains a feature 
that can be explained in physical terms. As shown in Figure 2.1, the two 
bar elements 1 and 12 are connected at node 2 in the assembled structure. 
The displacement in the x direction in the global system is identified as u2, 
and this displacement corresponds to global coordinate 2. Similarly, the 
displacement at node 2 in the y direction is v2 with the global coordinate 
number of 9.

As can be seen in Equation 2.15, there are stiffness properties for 
both elements 1 and 12 in the diagonal terms (2, 2) and (9, 9) and in the 
off-diagonal terms (2, 9) and (9, 2). The fact that these terms contain sums 
of stiffness elements from the two bars indicates that they have the same 
displacements and the stiffness of the overall structure is a combination of 
the stiffness of the two bars.

The locations of the other elements can be checked by comparing 
the locations identified by the artifact presented in Equation 2.12 with 
Equation 2.10. When this process is applied to all of the elements, the final 
global stiffness matrix is produced.



18  •  a cONciSE OVERViEW Of tHE fiNitE ELEMENt MEtHOD

2.7 SuMMaRY

The primary objective of this chapter has been accomplished. The theoret-
ical and practical approaches for forming the global stiffness matrices for 
finite element models have been made available to readers new to com-
putational mechanics. The assembly process is covered more extensively 
in matrix structural analysis book by McGuire, Gallagher, and Ziemian 
(2000) and in introductory finite element books.

It should be noted that the hexagonal truss featured in this chapter is 
used in the next chapter as vehicle for introducing the physically interpreta-
ble notation that provides the basis for the developments presented in later 
chapters. This notation can be viewed as a straightforward modification of 
the existing interpolation polynomials used in the finite element method.

In this modification, the coefficients are expressed in terms of strain 
quantities. Since strains are primary quantities that are sought in contin-
uum mechanics, the resulting equations are directly related to continuum 
mechanics concepts. The use of this physically interpretable notation 
allows the equations to be interpreted visually. This capability is demon-
strated in the next chapter.

The transparence provided by this modified notation is what makes 
this book useful to such a wide readership. On the one hand, the finite 
 element method, including the components of the adaptive refinement pro-
cess, is made more accessible to readers new to computational mechanics. 
On the other hand, the insight provided by the transparency of the notation 
lets advanced practitioners extend and improve the capabilities of compu-
tational mechanics.

The hexagonal truss structure shown in Figure 2.1 is a two-dimen-
sional version of Buckminster Fuller’s geodesic dome. The physically 
interpretable notation developed in the next chapter will be used to show 
that this truss has the same stiffness properties in every direction. This 
may seem counterintuitive for a structure composed of discrete elements, 
but it can be useful in practice when the directions of the critical loads are 
unknown. Structures composed of such trusses were tested by the author 
in 1991 for use in aerospace applications.

2.8 EXERciSES

1. Relate the local coordinates for the element connecting nodes 2 and 
3 in Figure 2.1 to the global coordinates. For compactness, refer to 
this element as element 6.
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2. Form a figure similar to Equation 2.14 and add the stiffness matrix 
for element 6 to the global stiffness matrix given by Equation 2.15.

3. Form the transformation matrix between the elemental and global 
coordinates for element 6 in Figure 2.1 that is similar to Equation 2.8.

4. Perform the triple matrix product given by Equation 2.4c and 
 compare the result to the answer to  Exercise 2.

5. Form the total stiffness matrix for the structure composed of three 
bar elements with the same stiffness characteristics that are in a 
straight line along the x axis. The stiffness matrix for each  element 

is: K
k k
k k

=
−

−








 . The capability of constructing stiffness matrices  

for simple structures like this is useful in testing algorithms, for 
example, eigenvalue solutions.

6. Add the stiffness characteristics of a single bar that connects nodes 
1 and 3 to the global stiffness matrix formed in Exercise 5. This bar 
has half of the stiffness of the other bars.





cHaPtER 3

PhysicALLy interPretAbLe 
disPLAcement interPoLAtion 

functions

3.1 iNtRODuctiON

When the one-dimensional displacement interpolation polynomials of 
matrix structural analysis were extended to two dimensions, the finite ele-
ment method was created. This extension has produced profound improve-
ments to computational mechanics. The advent of the finite element 
method allows problems with complex boundary and loading conditions 
that were previously unapproachable to be successfully approximated 
(Turner et al. 1956).

The interpolation polynomials are specialized for specific application 
to solid mechanics problems in this chapter. This specialization is accom-
plished by replacing the arbitrary coefficients in the interpolation functions 
with coefficients that have physical meaning with respect to continuum 
mechanics. As we will see, this improved notation simplifies element for-
mulation, identifies strain modeling errors during the formulation process, 
leads to a solid theoretical foundation for the error estimators, and allows 
the refinement guides to be directly related to the modeling capabilities of 
the element used to form the finite element model.

An example of this improvement is shown in Figure 3.1. In this  figure, 
the standard and the improved forms of the displacement interpolation 
functions for a three-node triangle are contrasted.

As can be seen in Figure 3.1a, the coefficients of the standard form 
of the interpolation polynomials are free of content. These arbitrary 
 coefficients are equally opaque to any problem to which they are applied. 
The meaning of these coefficients must be inferred by the context in 
which they are used. For example, they provide no direct assistance to the 
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understanding of the finite element method, its capabilities, or the results 
of the analysis.

In contrast, the coefficients of the interpolation polynomials shown in 
Figure 3.1b are expressed in terms of quantities that are directly related to 
solid mechanics, namely, rigid body motions and strain quantities. These 
quantities represent the phenomena that produce displacements and defor-
mations in the continuum. As a result, the meaning of any equation formed 
from these quantities can be interpreted visually by comparing it to the 
concepts of continuum mechanics. This transparency provides insights 
into the finite element method and its capabilities.

The insights provided by this transparency are important in two ways. 
First, all aspects of the finite element method are simplified and extended. 
These improvements occur because the theory of continuum mechanics 
and the solution techniques are directly connected by the notation.  Second, 
these insights provide new research opportunities for both new and experi-
enced users of the finite element method.

Research opportunities for readers new to the finite element method 
exist because the use of the physically interpretable notation does much 
to level the playing field between the novice and the expert. In contrast to 
other advances, this improvement simplifies the finite element method and 
provides the capacity for developments that were not previously available. 
Thus, these possibilities are equally accessible to both new and experi-
enced researchers.

3.2 SigNificaNcE Of tHE NOtatiONaL cHaNgE

The inclusion of physical meaning into the displacement interpola-
tion polynomials provides the following specific results and research 
opportunities.

Figure 3.1. Three-node element interpolation poly-
nomials: (a) standard interpolation polynomials and 
(b) physically interpretable interpolation polynomials.
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• The strain modeling characteristics of individual elements can be 
evaluated by visual inspection. As we will see, the limitations and 
capabilities of individual elements can be identified during the 
element formulation process. This a priori evaluation means that 
extensive experience with finite element models is not needed to 
gain an understanding of the modeling capabilities of an element.

• The element stiffness matrix formulation procedure is improved 
and simplified. A convoluted approximate integration scheme is 
replaced by an exact integration technique. A significant part of 
this simplification consists of the elimination of a coordinate trans-
formation that can introduce strain modeling errors into the finite 
element model. As a result of this development, the finite element 
method can be easily introduced to undergraduates.

• The computational effort required to form a stiffness matrix is 
reduced because fewer integrals must be evaluated. For  example, 
the number of integrals that must be evaluated for a six-node 
 element is reduced from 78 to 6.

• New research opportunities for improving error estimators are 
available because the errors can be estimated in terms of quanti-
ties that have direct significance in solid mechanics problems. The 
errors can be estimated in terms of pointwise values of stresses or 
strains. This contrasts with the commonly used metrics that are 
aggregated or averaged quantities. For example, the pointwise 
 values allow estimates to be related to the failure criteria for a 
 specific material.

• New research opportunities for improving mesh refinement guides 
are made possible. The number of elements needed to reduce the 
error to a predefined level can be identified by comparing an esti-
mate of the exact solution with the modeling capabilities of the 
individual elements. This rational approach to mesh refinement 
replaces the correlations with error estimates that are widely used.

3.3 OBJEctiVES

This chapter has two primary objectives. The first is to put the physically 
interpretable notation on a solid theoretical foundation. This is accom-
plished by recognizing that the interpolation polynomials are truncated 
Taylor series expansions. Then, the Taylor series coefficients are then 
interpreted in terms of rigid body motion and strain quantities.

The second objective is to clarify the meaning of the individual 
 coefficients and to demonstrate the usefulness of the notation. This is 
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accomplished with two examples that use the notation to identify modeling 
characteristics that would have otherwise gone unrecognized. In the first 
example, the modeling capabilities of two finite elements are evaluated. 
In the second example, a counterintuitive characteristic of the hexagonal 
truss that was formed in the previous chapter is identified.

Both examples provide background for the element stiffness matrix 
formulation procedure to be presented in the next chapter. The first 
 example introduces the strain representations used to form the element. 
The second example develops a coordinate transformation that introduces 
the nodal displacements into the analysis.

3.4  fiNitE ELEMENt DiSPLacEMENt 
iNtERPOLatiON POLYNOMiaLS

Before proceeding to a discussion of the notation, we will demonstrate a 
procedure for identifying the algebraic terms needed for the displacement 
interpolation polynomial of a specific finite element. These polynomi-
als are basic to individual finite elements in two ways. On the functional 
level, they implicitly define the modeling capabilities of an element. On 
the computational level, they are used to form a coordinate transformation 
that is required for computing the stiffness matrix for an element.

A modified form of Pascal’s triangle is used to identify the algebraic 
terms needed for a specific nodal configuration. The standard form of 
 Pascal’s triangle shown in Figure 3.2a is modified by rotating it as shown 
in Figure 3.2b. This orientation aligns the x’s and y’s of the triangle with 
the horizontal and vertical x and y axes so that the nodal pattern of an 
 element can be conveniently superimposed on the triangle.

In Figure 3.3, the nodal configurations for six- and nine-node ele-
ments are superimposed on the rotated form of Pascal’s triangle. As can be 

Figure 3.2. Two forms of Pascal’s triangle: (a) standard form and 
(b) rotated form.
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seen, each node is associated with a polynomial term that will be included 
in the displacement interpolation functions. Note that the nodal configura-
tions are not required to have the spacing that is shown. That is to say, the 
superposition is topologically correct, not geometrically accurate.

For the case of the six-node triangle, the polynomials representing the 
displacements in the x and y directions are the following:

 

u(x,y) a a x a y a x a xy a y

v(x,y) b b x b y b x b x
1 2 3 4

2
5 6

2

1 2 3 4
2

5

= + + + + +

= + + + + yy b y6
2

+

 (3.1)

where u and v are the displacements in the x and y directions, respectively.
The two displacement representations contained in Equation 3.1 are 

complete second-order polynomials with arbitrary or content-free coeffi-
cients. Specifically, these coefficients have no direct meaning with respect 
to continuum mechanics. For example, we cannot recognize that the term 
a2 represents the magnitude of the normal strain εx by visual inspection.

In the second example, we will identify the interpolation polynomials 
for the nine-node element shown in Figure 3.3b. When the terms associ-
ated with each node are included in the interpolation polynomial, we have 
the following:

u(x,y) a a x a y a x a xy a y a x y a x y a x y
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2
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2 2
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 (3.2)

Note that Equation 3.2 consists of augmented versions of the  six-node 
interpolation polynomials given by Equation 3.1. Both the u and v com-
ponents contain three additional terms, namely, x2y, xy2, and x2y2. In order 

Figure 3.3. Two nodal configurations: (a) six-
node triangle and (b) nine-node rectangle.
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to reinforce the fact that the arbitrary coefficients have no direct connec-
tion to solid mechanics, the reader might attempt to identify the strain 
quantities represented by the coefficients of these additional terms as an 
exercise.

3.5 PHYSicaLLY iNtERPREtaBLE NOtatiON

In this section, the physical meanings of the arbitrary coefficients con-
tained in Equation 3.2 with respect to continuum mechanics are identified 
with a two-step process. In the first step, the interpolation polynomials are 
recognized as Taylor series expansions.

When the displacement interpolation polynomials for the nine-node 
configuration given by Equation 3.2 are written as truncated Taylor series 
expansions, we have the following:

u(x,y) (u) ( u/ x) x ( u/ y) y ( u/ x ) x ( u/ x y) xy0 0 0
2 2

0
2 2

0= + ∂ ∂ + ∂ ∂ + ∂ ∂ + ∂ ∂ ∂ ++
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 (3.3b)

The recognition of the polynomials as Taylor series expansions is 
 significant because the arbitrary coefficients contained in Equation 3.2 
have been replaced with terms having physical meaning. The coefficients 
are now expressed in terms of displacements and their derivatives. The 
subscript zeros on the coefficients mean that the coefficients are evaluated 
at the local origin of the Taylor series expansion.

In the second step, the Taylor series coefficients are transformed 
to rigid body motions and strain quantities. This is significant because 
the coefficients are now expressed in terms of variables that produce the 
 displacements and deformations in the continuum.

When the Taylor series coefficients of Equation 3.3 are expressed 
in terms of rigid body and strain quantities, the result is the following 
(Boresi, Schmidt, and Sidebottom 1993; Dow 1999):
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As can be seen, the arbitrary coefficients of Equation 3.2 have been 
replaced by coefficients that have specific physical meaning in solid 
mechanics. The zeroth order coefficients are constants that represent the 
rigid body displacements (urb)0 and (vrb)0. The four first-order coefficients 
of the x and y terms (εx)0, (εy)0, and, (γxy)0 represent constant strains and the 
rigid body rotation (rrb)0 (see note 1 at the end of the chapter).

The higher-order terms represent gradients of the strain components. 
For example, the coefficients of the xy terms represent the rate of change 
of the normal strains in the coordinate directions. The term (εx,y)0 rep-
resents the change in (εx)0 in the y direction. Analogously, the term (εy,x)0 
represents the change in (εy)0 in the x direction.

3.6  VaLiDatiON Of tHE PHYSicaLLY 
iNtERPREtaBLE cOEfficiENtS

In this section, we will demonstrate that Equations 3.3 and 3.4 are equi-
valent with four examples. As noted earlier, all of the physically interpre-
table coefficients are derived in detail in Dow (1999, 2012).

The meaning of the leading constant term of Equation 3.3a, (u)0, 
is clear. It represents the displacement of the origin of the Taylor series 
expansion. In order to directly relate this term to continuum mechanics, 
we will interpret it as the rigid body displacement in the x direction and 
express it as (urb)0. In this interpretation, each point in the element is con-
sidered to move the same distance in the x direction as the origin.

The coefficient of the x term of Equation 3.3a, (∂u/∂x)0, is a gradient 
term that represents the rate of change of the displacement in the x direc-
tion. In the context of solid mechanics, the normal strain in the x direc-
tion, (εx)0, is defined by this term. When the coefficient of the x term 
is replaced by (εx)0, this expression now relates directly to continuum 
mechanics.
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Another coefficient that is relatively easy to interpret in terms of strain 
is the coefficient of x2 in Equation 3.3a, namely, (∂2u/∂x2)0. This quantity 
can be interpreted as the first derivative of εx with respect to x or (∂εx/∂x)0. 
In other words, this term express the rate of change in εx in the x direction 
at the local origin. In order to compress the notation, this gradient will 
be written more compactly as (εx,x)0. In this case, the subscript x after the 
comma indicates a derivative with respect to x.

A term whose physical meaning might not be obvious at first glance 
is the coefficient of the y term in Equation 3.3a, namely, (∂u/∂y)0. This 
quantity can be related directly to solid mechanics by introducing the 
 definitions of rigid body rotation around the z axis and shear strain in the 
x-y plane from linear elasticity. These quantities are defined as follows:
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As can be seen, the rigid body rotation, rrb, and the shear strain, γxy, 
are formed from the same two partial derivatives, ∂u/∂y and ∂v/∂x. Both 
derivatives are present in the Taylor series expansion. The derivative 
∂u/∂y is the coefficient of the y term in Equation 3.3a and the derivative 
∂v/∂x is the coefficient of the x term in Equation 3.3b.

The Taylor series coefficient of the y term in Equation 3.3a can be 
related directly to continuum mechanics with a linear combination of the 
definitions of rigid body rotation and shear strain that are given by Equa-
tion 3.5. The coefficient ∂u/∂y is formed by combining the rigid body 
rotation and the shear strain expressions as follows:
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Thus, the coefficient of the y term in Equation 3.3a becomes 
(γxy/2 − rrb)0. In an analogous development, the coefficient of the x term in 
 Equation 3.3b becomes (γxy/2 + rrb)0.

3.7  EVaLuatiON Of a fOuR-NODE fiNitE 
ELEMENt

In this demonstration of the capability of strain gradient notation, we 
will use the notation to evaluate the strain modeling characteristics of a 
four-node finite element. The strain representations are derived during the 
 formulation of the stiffness matrix.

This early evaluation is significant because it means that the strain 
modeling characteristics do not have to be deduced from the solution of 
problems. In other words, the knowledge that surfaces during the element 
formulation process is available to beginning analysts as well as to exp-
erienced users of the finite element method.

The first step in this process is to form the strain representations for 
an individual finite element. The strain models are created by applying 
the definitions of strains to the displacement interpolation polynomials 
that have been identified for this element. Since the strain representations 
are then expressed in terms of strain quantities, we can evaluate their 
 modeling characteristics by comparing the strain models to the theory of 
continuum mechanics.

The four-node element is chosen for evaluation because it contains 
several strain modeling errors. As we will see, the six-node element is 
chosen because it does not contain any modeling errors. Its only deficiency 
is due to the fact that it is limited to representing linear strains exactly. In 
other words, it cannot represent quadratic variations in the strains in the 
problem that it is attempting to represent. This limitation is inherent in the 
truncated interpolation polynomials used to form the linear strain element.

When the configuration of a four-node element is superimposed on 
a rotated Pascal’s triangle, the displacement interpolation polynomials 
 contain the following algebraic terms: 1, x, y, and xy. When we extract the 
components of Equation 3.4 that contain these terms, we have the follow-
ing displacement interpolation polynomials:
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The strain representations for a four-node element are found by apply-
ing the definitions of the three strain components from linear elasticity to 
Equation 3.7 to give the following:

 

ε ε ε

ε ε ε
x x 0 x,y 0

y y 0 y,x

(x,y) u/ x ( ) ( ) y

(x,y) ( v/ y) ( ) ( )

= ∂ ∂( ) = +

= ∂ ∂ = + 00

xy xy 0 x,y 0 y,x 0

x

(x,y) ( v/ x u/ y) ( ) ( ) x ( ) yγ γ ε ε= ∂ ∂ + ∂ ∂ = + +

 (3.8)

Note that the two normal strain representations are truncated Taylor 
series expansions. However, they are not complete linear polynomials. 
The normal strain in the x direction does not contain an x term with the 
required coefficient (εx,x)0. In a similar manner, the representation of εy 
does not contain a y term with the required coefficient (εy,y)0.

In contrast, the shear strain representation contains both an x term 
and a y term. In spite of the fact the shear strain model is a complete poly-
nomial, the four-node element representation of the shear strain represen-
tation contains strain modeling errors. Although, this element is capable 
of accurately representing constant strain because of the presence of the 
(γxy)0 term, this element, it cannot represent the linear variations in γxy. 
Specifically, the coefficients of the x and y terms should be (γxy,x)0 and 
(γxy,y)0, respectively.

The presence of the normal strain coefficients in the shear strain 
expression produces errors in the shear strain representation. In the ter-
minology of the finite element method, the existence of the normal strain 
terms in the shear strain expression is called shear locking. Shear locking 
indicates that excess shear strain occurs when there is a contribution by the 
normal strain gradient terms, (εx,y)0 and (εy,x)0.

Next, we will further analyze the three strain representations by com-
paring them to the requirements prescribed by the constitutive relationship 
for plane stress. The constitutive relationship is the following:
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 (3.9)

The most obvious strain modeling error occurs in the shear strain 
representation shown in Equation 3.8. As mentioned earlier, this error of 
commission consists of the presence of the two normal strain terms in 
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the expression. The existence of these terms constitutes a strain modeling 
error since the constitutive relationship for the shear given in Equation 3.9 
does not contain any normal strain contributions.

The strain modeling errors in the normal strain representations are 
not as obvious as the errors in the shear strain representation. This is the 
case because these errors are errors of omission, not errors of commission. 
Since the normal strain in the x direction does not contain the Taylor series 
term (εx,x)0 x, it cannot represent the Poisson effect when the strain state 
(εy,x)0 x exists in the problem being modeled. This defect makes the four-
node element overly stiff. An identical error exists in the representation 
of εy.

Furthermore, it is shown in Dow (1999) that the absence of these 
two terms in the normal strain representations causes the normal strain 
representation to vary with the orientation of the element. In other words, 
the normal strain representations are not invariant with the orientation of 
the element as should be the case.

In summary, we can conclude that a four-node element can only 
 accurately represent constant strains on its domain. In other words, a 
 four-node element cannot represent the strain distributions in the contin-
uum any better than a three-node constant strain triangle.

In Dow (1999), it is shown that any four-sided element contains 
errors that are analogous to those discussed for the four-node element. The 
eight- and nine-node elements can represent linear strain distributions, but 
they contain errors in the higher-order strain representations that are simi-
lar to those identified for the four-node element.

3.8  EVaLuatiON Of a SiX-NODE fiNitE 
ELEMENt

The strain modeling characteristics of the six-node element will now be 
evaluated. The displacement interpolation functions for the six-node tri-
angular element shown in Figure 3.3a are embedded in the representation 
for the nine-node representation given by Equation 3.4. As can be seen in 
Equation 3.1, the displacement interpolation polynomial for a six-node 
element consists of complete quadratic representations.

When the complete quadratic terms are extracted from Equation 3.4, 
we have the displacement interpolation polynomials for a six-node finite 
element expressed in strain gradient notation:
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The strain representations for a six-node element are found by apply-
ing the definitions of the three strain components from linear elasticity to 
Equation 3.10 to give the following:
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As can be seen, the three strain components are represented by com-
plete linear representations. In this case, the coefficients are those expected 
for a complete linear Taylor series expansion. The presence of the correct 
constant and linear terms in both of the normal strain components means 
that the Poisson effect is represented correctly.

The shear strain representation is a complete linear polynomial. In the 
six-node element, these are the correct shear strain terms. The linear terms 
are not normal strain terms as was the case for the four-node element.

We can conclude that a six-node element can accurately represent is 
a linear strain distribution. As might be expected, the six-node element is 
known as the linear strain triangle. If the actual strain distribution is more 
complex, the six-node element representation can only approximate the 
actual strain distribution.

The differences between the finite element representation and the exact 
solution are called discretization errors. This name is appropriate because 
the errors that exist are due to the attempt to represent an infinite degree-of-
freedom problem with a discrete or finite number of degrees-of freedom.

3.9 EQuiVaLENt cONtiNuuM PaRaMEtERS

The purpose of this example is to give explicit meaning to the physically 
interpretable coefficients. In this example, interpolation polynomials 
expressed in strain gradient notation are used to extract quantities that 
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represent Young’s modulus, Poisson’s ratio, and the shear modulus from 
the hexagonal truss that was developed in Chapter 2. The configuration of 
this truss which was originally shown in Figure 2.1 is repeated for con-
venience as Figure 3.4

The extraction of these equivalent continuum parameters identifies two 
counterintuitive characteristics of this truss. On the one hand, we will see 
that the equivalent continuum parameters are independent of its orientation. 
On the other hand, we will see that these equivalent continuum parameters 
are analogous to the constitutive relations for a plane stress problem. Later, 
we will see that these characteristics can be useful in the design of trusses.

The equivalent continuum parameters are computed by forming an 
analogous relationship to the strain energy expression for a continuous 
domain. The strain energy expression for a two-dimensional continuum 
is the following (Boresi 1965; Boresi, Schmidt, and Sidebottom 1993):
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where the matrix containing the Cs is the constitutive relationship and Ω 
denotes the domain of the problem.

The discrete analog of Equation 3.12 is formed from the following 
expression for the strain energy contained in a discrete structure:

 SE = 1/2 {d}T[K] {d} (3.13)

Figure 3.4. A repeated element.
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where [K] is the unrestrained stiffness matrix for the discrete structure and 
{d} is the vector of nodal displacements.

In order to form a strain energy expression for the truss that is anal-
ogous to Equation 3.12, we must transform the nodal displacements in 
Equation 3.13 to strain quantities. This transformation is formed using the 
following displacement functions:

 

u(x,y) (u ) ( ) x ( /2 r ) y

v(x,y) (v ) ( /2
i rb 0 x 0 i xy rb 0 i

i rb 0 xy

= + + −

= +

ε γ

γ ++ +r ) x ( ) yrb 0 i y 0ε i
 (3.14)

When Equation 3.14 is expressed in matrix form in preparation for 
forming the required coordinate transformation, we have the following:
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i i i
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{ }ε

rre , [ u v r ]0 rb rb rb x y xy 0
T

ε ε ε γ{ } =

 (3.15)

The six independent variables in equations 3.14 and 3.15 consist of 
the three rigid body motions, (urb)0, (vrb)0, and (rrb)0, and the three strain 
components, (εx)0, (εy)0, and (γxy)0.

The three rigid body motions are included in this demonstration for 
two reasons. On one hand, the rigid body motions are easy to visualize 
and, by definition, they produce no strain energy in a structure. On the 
other hand, as we shall see in the next chapter, the inclusion of the rigid 
body displacements simplifies the computation of the stiffness matrix of 
an element. Therefore, it is instructive to demonstrate how these quantities 
are exhibited in a discrete structure (see note 2).

The three strain gradient terms, (εx)0, (εy)0, and (γxy)0, are analogous 
to the pointwise strains, εx, εy, and γxy, that serve as the independent vari-
ables in Equation 3.12. Consequently, these quantities must be included in 
the coordinate transformation that will be used to change the independent 
variables in Equation 3.13 from nodal displacements to strain gradient 
quantities. This transformation allows the equivalent continuum para-
meters to be identified.

The required transformation is formed by substituting the coordinates 
of each node of the truss into the displacement interpolation functions given 
by Equation 3.15. Since the truss has seven nodes, the nodal coordinates 
for each node is substituted into Equation 3.15 to form the required coordi-
nate transformation. When these substitutions are made and the equations 
are combined, the coordinate transformation has the following form:
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 (3.16)

As can be seen in Equation 3.16, the transformation consists of six 
columns. Each column identifies the nodal displacements or shape that 
each of the strain gradient coefficients imposes on the truss. The value of 
the components of the strain gradient vector specifies the magnitude of the 
contribution that each of the shapes makes to the overall displacement of 
the structure. The nodal locations for the truss corresponding to yi and xi 
in Equation 3.16 are identified in Table 3.1.

For example, the second column of Equation 3.16 identifies the shape 
of the rigid body displacement in the y direction. The actual magnitude of 
the displacements is controlled by the size of the associated strain gradient 
coefficient. If the rigid body displacement coefficient in the y direction, 
(vrb)0, is equal to, say, 0.10 units, the product of column 2 with this scalar 

Table 3.1. Nodal coordinate locations

Node x y
1 0 0
2 −0.2 −0.3464
3 0.2 −0.3464
4 0.4 0
5 0.2 0.3464
6 −0.2 0.3464
7 −0.4 0
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value indicates that each of the seven nodes will be displaced by 0.10 units 
in the y direction.

We will now illustrate the meaning of Equation 3.16 in Figure 3.5 by 
superimposing the nodal displacements associated with four of the strain 
gradient configurations on the original nodal locations of the truss. The 
rigid body displacement in the y direction discussed previously is shown 
superimposed on the original location of the truss in Figure 3.5a. As can 
be seen, each node of the truss moves 0.10 units in the positive y direc-
tion. The truss moves as one piece without deformation. This is the very 
 definition of a rigid body motion.

The relative nodal displacements for a rigid body rotation in the 
x-y plane are contained in column 3 of Equation 3.16. If the truss is given 
a rigid body rotation, (rrb)0, that is equal to a value of 0.20 units, the truss 
rotates in a counterclockwise direction without deformation with respect 
to its original position as shown in Figure 3.5b.

Figure 3.5. Strain state displacements and deformations: (a) a rigid body 
displacement, (vrb)0; (b) a rigid body rotation, (rrb)0; (c) a normal strain, 
(εx)0; and (d) a shear strain, (γxy)0.
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In contrast to the rigid body motions, the truss is deformed when a 
normal strain in the x direction, (εx)0, is imposed on it. The displacement 
pattern for this strain condition is contained in column 4 of Equation 3.16. 
When (εx)0 is positive, nodes move in such a way as to produce a deforma-
tion pattern that is equivalent to tension in the continuum. Conversely, if 
(εx)0 is negative, the truss is compressed.

The displacements of the nodes relative to the original configuration 
are shown in Figure 3.5c when the truss is given a strain that is equal to 
0.20 of a unit. As would be expected for a normal strain in the x direction, 
no movement of the nodes occurs in the y direction. Note that the local 
origin which is positioned at node 1 does not move. This is consistent with 
the fact that the local x value at the origin is equal to zero. As can be seen 
in the figure, the truss stretches along the x axis, so it is in tension.

As a final example, let us consider the shear strain. The displacement 
pattern for this deformation is contained in column 6 of Equation 3.16. 
When the truss is given a shear strain (γxy)0 that is equal to 0.30 units, the 
truss is deformed relative to its initial position as shown in Figure 3.5d. Note 
that the truss lengthens along one diagonal and shortens along the other 
diagonal. Such a pattern is characteristic of a shear deformation (see note 2).

Now that the meanings of the individual strain gradient coefficients 
have been demonstrated, we are in the position to extract the equivalent 
continuum parameters from the stiffness matrix of the truss. In preparation 
for computing the equivalent continuum parameters for the truss, let us put 
Equation 3.16 in the following compact form:

 { } [ ]{ ,}d T= ε 0  (3.17)

where {d} indicates the nodal displacements, [T] identifies the transfor-
mation matrix, and {ε,}0 designates the vector of strain gradient terms.

When the expression for the strain energy in discrete coordinates 
given by Equation 3.13 is transformed to strain gradient coordinates by 
substituting Equation 3.17, we have the following:

SE = 1/2 {d}T[K] {d}

 = 1/2 {ε,}0
T [T]T[K] [T]{ε,}0

 (3.18)

The equivalent continuum parameters of the truss are contained in 
the kernel of Equation 3.18 which is given by [T]T[K] [T]. When the 
computation of the kernel identified in Equation 3.18 is performed for 
the  hexagonal truss for the orientation shown in Figure 3.1 and the nodal 
coordinates given in Table 3.1, the result is the following:
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As can be seen, the first three rows and columns which are associated 
with the rigid body motions are all equal to zero. This result is expected 
because a rigid body motion, by definition, does not deform the entity 
undergoing the motion. Therefore, no strain energy is produced. Even 
though this result is expected, it is significant. In the next chapter, we shall 
see that the presence of these rows and columns of zeros are instrumental 
in simplifying the formulation of the stiffness matrices for finite elements 
as well as reducing the number of integrals that must be evaluated.

The nonzero quadrant of Equation 3.19 is analogous to the strain 
energy of the two-dimensional continuum given by Equation 3.12. When 
we form the analogous strain energy expression for the truss, we have the 
following (Dow 2012):
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In order to explicate the meaning of the equivalent continuum para-
meters, let us interpret the nonzero values in Equation 3.19 in terms of 
the plane stress problem. The constitutive relationship for a plane stress 
problem has the following form:
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 (3.21)

where E is Young’s modulus, ν is Poisson’s ratio, and element (3, 3) is the 
shear modulus.

In Equation 3.19, the two elements that are indicated as being near 
zero are equal to 0.0002, which is very small when compared to the non-
zero terms. Thus, we can treat this hexagonal truss as a solid medium 
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with properties similar to, for example, steel or aluminum. This, in turn, 
means that we can treat a structure formed from repeated hexagonal truss 
elements as a plane stress problem.

When elements (1, 1) and (1, 2) of Equation 3.21 are equated to the 
equivalent elements of Equation 3.19, namely, 18.0 and 6.0, Young’s mod-
ulus is found to be equal to 16.0 and Poisson’s ratio is found to be equal to 
1/3. As a further confirmation, when these values are inserted into element 
(3, 3) of Equation 3.21, the result is found to be 6.0. This is identical to the 
value for the corresponding element in Equation 3.19.

The fact that the constitutive relationship for the hexagonal truss 
is analogous to the constitutive relationship of an isotropic material 
implies that the truss possesses the same properties regardless of its ori-
entation. At first, this concept seems implausible because of the differ-
ent shapes that the truss presents to the x and y axes when it is rotated. 
In the next section, we will demonstrate that this truss has isotropic 
properties.

3.10  DEMONStRatiON Of iSOtROPic 
EQuiVaLENt cONtiNuuM PaRaMEtERS

This section has two objectives. The first is to demonstrate the isotropic 
properties of the hexagonal truss. As a result of this characteristic, this 
hexagonal truss is designated as isogrid because iso- is the Greek prefix 
that means the same. The second objective is to show how the characteris-
tics of isogrid can be useful in the design.

The isotropic nature of isogrid is demonstrated by extracting the 
equivalent continuum parameters for the truss after it has been rotated 
through a series of angles as shown in Figure 3.6. This rotation is accom-
plished by finding the new locations of the nodal coordinates after the 
rotation with the following coordinate transformation:
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 (3.22)

When this transformation is applied for rotations of 5, 15, and 22.5 
degrees and the equivalent continuum parameters are computed, we have 
the result shown in Figure 3.6. As noted on the figures, the values of the 
equivalent continuum parameters are equal to those given in Equation 
3.19. In other words, the equivalent continuum parameters are identical 
regardless of the orientation of the truss.
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In this example, we have seen that the hexagonal truss has the same 
structural characteristics in the x and y directions regardless of it orien-
tation. This means that the orientation of the hexagonal truss need not be 
considered when designing a structure based on this configuration. Thus, 
great flexibility in the design of structures that use the hexagonal truss as 
the essential building block is provided.

An example of a structure that uses the hexagonal truss as its basic ele-
ment is shown in Figure 3.7. One of the repeated hexagonal truss elements 
is highlighted in this figure. The invariance of the equivalent continuum 
parameters for the hexagonal truss provides another interesting capability. 
This invariance means that a structure formed from the repeated use of this 
hexagonal element, such as that shown in Figure 3.7, can be analyzed as 
if it were a continuum.

In other words, the equivalent continuum parameters can be used 
in the governing differential equations from continuum mechanics to 

Figure 3.6. Hexagonal truss elements: (a) angle of rotation = 0 
degrees, (b) angle of rotation = 5 degrees, (c) angle of rotation = 15 
degrees, and (d) angle of rotation = 22.5 degrees.
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 analyze the overall behavior of a structure formed from the repeated use 
of this truss element. Since a discrete structure is being analyzed as if it 
were a continuous problem, this procedure can be viewed as an inversion 
of the finite element method (see note 3).

The ability to analyze a truss that is constructed from repeated hexag-
onal truss elements means that the displacements of the discrete structure 
can be approximated with the governing differential equations for plane 
stress. The governing differential equations are the following:
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where fx and fy are the applied loads, and the material properties are the 
equivalent continuum parameters.

In order to reaffirm the central role of strain quantities in solid 
mechanics, the governing differential equations for the plane stress prob-
lem given in Equation 3.23 can be expressed directly in terms of strain 
gradient quantities as follows:
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Figure 3.7. A truss formed from repeated hexagonal elements.
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As can be seen, these strain quantities are identical to terms in strain 
gradient notation.

3.11 SuMMaRY

In this chapter, the difficult task of convincing readers to embrace a change 
in notation was approached both directly and indirectly. In the direct 
approach, the physically interpretable notation was given a solid theoret-
ical foundation by showing it to be a specialized Taylor series expansion. 
Then the relationship of the notation to solid mechanics was demonstrated 
with two applications.

The first application demonstrated the direct connection to the finite 
element method by using the notation to evaluate the modeling capabilities 
of four- and six-node elements. The second application extracted equiva-
lent continuum properties from a truss structure to show that the notation 
was closely related to the constitutive relations for solid mechanics.

The indirect approach identified the advantages of the new notation 
and outlined the developments to come in later chapters. The primary 
advantages outlined consist of (1) simplification of the element formulation 
procedure, (2) visual identification of the modeling capabilities of individ-
ual elements, and (3) new research opportunities provided by the notation.

While valuable to those having extensive experience with the finite 
element method, the primary advantage of the development presented 
here is to those new to computational mechanics. This is the case for 
three reasons. In the first place, the resulting simplification allows the 
finite  element method to be presented at an earlier stage in the educational 
 process (see note 4). Moreover, the physical insights into the modeling 
capabilities of individual elements reduce the need for extensive experi-
ence to understand the behavior of finite element models. Finally, since 
up to now the use of this notation has not been embraced as the standard 
approach, the ability to develop improved error estimators and refinement 
guides is available to anyone with this knowledge regardless of their level 
of experience.

3.12 NOtES

1. The ability of a planar element to represent the three rigid body 
motions and the three constant strain states, εx, εy, and γxy, means 
that a model can represent the continuum accurately as it is refined 
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regardless of the number of elements it takes. In the limit, this 
means that the element can represent the motion and strains at indi-
vidual points. The ability to represent these conditions constitutes 
the convergence criteria for an individual element.

2. The classic example of a shear deformation is a sagging gate. When 
the gate sags, one diagonal gets longer and the other gets shorter. 
The constraint against shear in a gate is the diagonal element in a 
gate.

3. The extraction and use of equivalent continuum parameters and 
 further references to the procedure are contained in Chapter 6 of 
Dow (1999).

4. As a test of the ability of this notation to make the finite element 
method available to undergraduates, I had a freshman Introduction 
to Engineering Computing class to develop finite element stiffness 
matrices using strain gradient notation. They then solved one- 
dimensional problems with MATLAB. Of course, they were not 
told that they were doing anything that might be considered diffi-
cult. As far as they knew, they were applying interpolation poly-
nomials that matched the problem being solved.

3.13 EXERciSES

1. With a figure based on the rotated form of Pascal’s triangle show 
that the displacement interpolation polynomials for a four-node 
rectangle contain the following terms: 1, x, y, and xy.

2. Show that εx,xx is identical to the Taylor series coefficient d3u/dx3.
3. Reduce the displacement interpolation function given for u in 

Equation 3.6 or Equation 3.10 to one dimension, that is, retain only 
the x terms. Then, plot the nodal displacements for a three-node bar 
for a unit value of each of the strain states. Place the origin on the 
interior node with the positive x axis pointing to the right.

4. Redo exercise 3 with the origin located on the left hand node of 
the bar.





cHaPtER 4

An imProved stiffness 
mAtrix formuLAtion 

Procedure

4.1 iNtRODuctiON

This chapter presents an improved procedure for forming finite element 
stiffness matrices. The improvements take advantage of the use of the 
physically interpretable, strain gradient notation that was developed 
in the last chapter. This improved element stiffness matrix formulation 
 procedure renders the widely used isoparametric element formulation 
procedure obsolete in two ways.

First, the improved approach simplifies the formulation process 
and makes it easier to understand. Second, the improved approach does 
not contain the strain modeling errors that exist in some isoparametric 
 elements (Dow 1999).

Both improvements are made possible because a step that is basic to 
the isoparametric procedure is eliminated. In this step, the actual element 
geometry is mapped onto a regular shape. This is done in order to facili-
tate the numerical integrations that exist in the isoparametric formulation 
process. Hughes (2000), Argyris and Kelsey (1960), Tiag (1961) provide 
background concerning the isoparametric element formulation procedure.

An example of this mapping is depicted in Figure 4.1. The gen-
eral quadrilateral element with four, eight, or nine nodes is depicted in 
 Figure 4.1a. This element is mapped onto the square shown as Figure 4.1b. 
As can be seen, the different size quadrilateral subdivisions of the element 
are mapped onto the equal size subsquares of Figure 4.1b.
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However, this accommodation that facilitates the numerical integra-
tion is not without penalties. As a result of this mapping, the integrals 
that must be integrated are made more complicated. More significantly, 
strain modeling errors are introduced into isoparametric elements when 
the ratios of the subareas in the element and the square are not constant as 
is the case in Figure 4.1 (see note 1).

Examples of the strain modeling errors that exist in triangular 
six-node isoparametric elements that possess curved boundaries are 
shown in Figure 4.2 with contour plots. In Figure 4.2a, an element with 
a straight edge representing the strain state εx,y does not contain any 
error in the representation of εx which varies linearly across the ele-
ment in the y direction. This is the case because the triangles in the 
actual element map onto similar triangles that are used in the numerical 
integrations.

In contrast, the elements with curved boundaries shown in Figures 
4.2b and 4.2c do not have regular shapes. The bottom edges are curved 
by moving the center node toward the center by a fraction of the length of 
the side, L. As a result of this deviation from a triangle, the isoparametric 
procedure introduces strain modeling errors into these elements.

The element shown in Figure 4.2b contains a significant maximum 
error of −26.9 percent in the representation of εx. When the curvature on 
the boundary is increased as shown in Figure 4.2c, the maximum error in 
εx expands to −77.3 percent.

In addition to improving the element formulation process, the use of 
the physically interpretable notation provides the basis for new classes of 
error estimators and refinement guides. Error estimators and refinement 

Figure 4.1. A 2-D isoparametric 
mapping.
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guides are developed in Chapters 7 and 8, respectively. These capabilities 
comprise the heart of the adaptive refinement process.

4.2 OBJEctiVES

The primary objective of this chapter is to present the details for form-
ing finite element stiffness matrices by using the physically interpretable 
strain gradient notation. The theoretical and computational advantages of 
this approach are highlighted in the introduction.

On the pedagogical level, the advantages of these improvements can-
not be quantified. As discussed earlier, the stiffness matrix formulation 
procedure based on the use of the physically interpretable notation is less 
complicated than the isoparametric approach. In other words, the alternate 
approach is easier to learn (see notes 1 and 2).

An additional benefit derives from using the physically interpretable 
notation. Strain gradient notation provides the basis for showing that the 
finite element method and the finite difference methods share a common 
basis. This is significant because it allows the error analysis procedures 
developed in Chapter 7 and the refinement guides developed in Chapter 8 
to be put on a solid theoretical foundation.

4.3  aN OVERViEW Of tHE StiffNESS MatRiX 
fORMuLatiON PROcEDuRE

The stiffness matrices and the applied load vectors for individual finite 
elements are formed by applying the principle of minimum potential 
energy. The stiffness matrix and the applied load vector are embedded in 
the strain energy and work functions of the potential energy expression, 

Figure 4.2. Six-node elements with increasing curvature: (a) Δ = 0.0, 
(b) Δ = 0.1 L, and (c) Δ = 0.2 L.

-5

-26.9 -26.9 -77.3 -77.3

-5
-50 -50-25-25

+5 +5
+10 +10

0 0

0 0

(a) (b) (c)



48  •  a cONciSE OVERViEW Of tHE fiNitE ELEMENt MEtHOD

respectively. As a result, the stiffness matrix and the applied load vector 
can be formed in separate operations. The procedure for forming the stiff-
ness matrix is presented here. Since the formulation of the applied load 
vector is so simple, it is not discussed here in detail.

The steps for forming the finite element stiffness matrix using strain 
gradient notation are presented in Table 4.1. The individual steps are as 
follows:

Step 1 identifies the terms of the interpolation polynomials and, 
hence, the strain gradient quantities that serve as the independent 
 variables.

Step 2 forms and evaluates the strain representations that are derived 
from the displacement interpolation functions identified in Step 1.

Step 3 forms the strain energy expression in terms of strain gradient 
variables and identifies the small number of integrals that must be 
evaluated.

Step 4 evaluates the integrals identified in Step 3.
Step 5 forms the transformation from strain gradient coordinates to 

nodal coordinates in a two-step process. This transformation con-
tains the finite difference derivative operators.

Step 6 substitutes the transformation created in step 5 into the strain 
energy expression formed in steps 3 and 4 to put the strain energy 
expression in terms of nodal coordinates.

Step 7 is a formality that is not actually performed in practice because 
the stiffness matrix is directly available by inspection in Step 6.

It should be noted that steps 1 and 2 are identical to operations per-
formed in Chapter 3 to evaluate the modeling capabilities of the four- and 

Table 4.1. Strain gradient based stiffness matrix formulation procedure

1. Identification of the interpolation polynomials.
2. Formulation and evaluation of the strain model.
3. Formulation of strain energy expression in strain gradient 

 coordinates.
4. Integration of strain energy terms.
5. Formulation of strain gradient to nodal displacement transformation.
6. Transformation of strain energy expression to nodal coordinates.
7. Creation of the stiffness matrix by application of the principle of 

minimum potential energy to the strain energy expression.
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six-node elements. In addition, steps 5 and 6 are similar to the operations 
performed in Chapter 3 to identify the equivalent continuum parameters 
for the hexagonal truss. In Chapter 3, the strain energy for the discrete 
structure is transformed from nodal displacements to strain gradient 
 quantities in order to obtain an expression that is similar to the strain 
energy expression in the continuum.

4.4  aN EXaMPLE Of tHE StRaiN gRaDiENt 
fORMuLatiON PROcEDuRE

The element stiffness matrix formulation procedure is demonstrated with 
the six-node element. This element is chosen because it is the simplest 
element with which to highlight the advantages of the strain gradient 
approach to element formulation over the isoparametric procedure.

This element requires the evaluation of only six integrals and it 
 accurately represents the strains in an element with curved edges. The iso-
parametric version of this element requires the evaluation of 78 integrals 
and, as discussed in the introduction, introduces significant errors in the 
representations of the higher-order strain states if an element has a curved 
edge (see note 3).

STEP 1—POLYNOMIAL IDENTIFICATION

Three examples of six-node triangles with different configurations are 
shown in Figure 4.3. As can be seen, all three elements are represented 
by the same polynomial terms. These terms are identified by topologi-
cally superimposing the shape of these elements on the modified form of 
 Pascal’s triangle which was shown in Figure 3.1b.

Figure 4.3. Three six-node triangles.
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The displacement interpolation polynomials for the six-node element 
were identified in Equation 3.10. This equation is reproduced here for the 
convenience of the reader:

u(x,y) (u ) ( ) x ( /2 r ) y 1/2( ) x

( ) xy
rb 0 x 0 xy rb 0 x,x 0

2

x,y 0

= + + − +

+ +

ε γ ε

ε 11/2( ) y

v(x,y) (v ) ( /2 r ) x ( ) y 1/2(

xy,y y,x 0
2

rb 0 xy rb 0 y 0

γ ε

γ ε

−

= + + + + γγ ε

ε ε

xy,x x,y 0
2

y,x 0 y,y 0
2

) x

( ) xy 1/2( ) y

−

+ +

 (4.1)

These complete second-order polynomials contain the following 12 
linearly independent strain states that a six-node element can represent:

 (urb)0 (vrb)0 (rvb)0 (εx)0 (εy)0  (γxy)0 
(4.2)

(εx,x)0 (εx,y)0 (εy,x)0 (εy,y)0 (γxy,x)0 (γxy,y)0

The first six terms guarantee that the element can represent the rigid 
body motions and the constant strains states, which satisfy the conver-
gence criteria for a finite element. This means that the element can rep-
resent a problem exactly if it is refined sufficiently. The second six terms 
represent the linear variations of the three strain components in the two 
coordinate directions.

STEP 2—STRAIN FORMULATION AND EVALUATION

The finite element strain representations are found by taking the appro-
priate derivatives of the displacement interpolation polynomials given in 
Equation 4.1. These strain models were formed in Chapter 3 where they 
were presented as Equation 3.11.

These representations are reproduced here for the convenience of the 
reader as follows:

 

ε ε ε ε

ε ε

x x 0 x,x 0 x,y 0

y y 0

(x,y) u/ x ( ) ( ) x ( ) y

(x,y) v/ y ( ) (

= ∂ ∂ = + +

= ∂ ∂ = + εε ε

γ γ γ

y,x 0 y,y 0

xy xy 0 xy,x 0

) x ( ) y

(x,y) ( v/ x u/ y) ( ) ( ) x (

+

= ∂ ∂ + ∂ ∂ = + + γγ xy,y 0) y
 (4.3)
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As discussed in Chapter 3, these representations contain no inher-
ent modeling errors. However, the most complex strain distribution that 
these truncated Taylor series representations can model are linear strain 
conditions.

STEP 3—FORMULATION OF THE STRAIN ENERGY 
EXPRESSION

The strain energy expression for the continuous form of the plane stress 
problem is as follows:

where
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The strain energy expression for the six-node element is formed 
by transforming the continuous strains contained in Equation 4.4 to the 
discrete finite element strain approximations contained in Equation 4.3. 
When the transformation from the continuous strains {ε} to the discrete 
strain gradient quantities {ε,} is formed, we have the following:

 ε ε{ } = [ ]{ ,}T  (4.5)

where
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This strain representation differs slightly from the representation con-
tained in Equation 4.3 because it is augmented with the effects of the rigid 
body motions. Although the rigid body motions do not add to the strain 
energy of the element, they are included in the transformation in order to 
facilitate the upcoming change from strain gradient coordinates to nodal 
displacements.

The contributions of the rigid body motions to the strain energy 
are appended to the beginning of the transformation by the partition 
 designated as [T0]. Since this matrix contains only zeros, the rigid body 
motions contribute nothing to the strains in the stiffness matrix being 
formed.

When the coordinate transformation given by Equation 4.5 is sub-
stituted into the strain energy expression given by Equation 4.4 and 
the independent variables are factored from the integral, we have the 
following:
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(4.6)

It is in this step where the continuous problem is approximated with 
a discrete representation. We now have an approximation of the strain 
energy on the domain Ω which is represented by the finite element.

 STEP 4—INTEGRATION OF THE STRAIN ENERGY TERMS

When the integrals that must be evaluated to form the stiffness matrix are 
extracted from Equation 4.6, we have the following for a region with a 
thickness of t:
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Since the matrix [T0] is the null matrix, any partition of Equation 4.7 
containing this matrix is also a null matrix, that is, all of the terms are 
equal to zero. Consequently, we only have to integrate the nonzero terms 
contained in the fourth quadrant of Equation 4.7.

When the nonzero submatrix of Equation 4.7 is expanded, we have 
the following:

U t E
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22 2
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where
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The six integrals contained in Equation 4.9 are the area, the two first 
moments of the area, and the three second moments of area. Since these 
integrals have a simple form, they can be integrated exactly. This con-
trasts to the 78 relatively complex integrals that must be evaluated in the 
isoparametric stiffness matrix formulation process with an approximation 
(see note 3).

Equations 4.7 and 4.8 contain significant characteristics that derive 
from the power and usefulness of the physically interpretable notation. 
As a consequence of explicitly including the rigid body terms in the 
 displacement approximations, three quadrants of Equation 4.7 are known 
to contain only zeros from knowledge of continuum mechanics. As a 
result, these terms do not have to be integrated.

In the case of Equation 4.8, note that the integrals defined in 
 Equation 4.9 appear more than once. The identification of these inte-
grals in multiple locations in the strain energy expression means that the 
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 integrals only have to be evaluated once. This reduces the computational 
effort needed to form a stiffness matrix.

 STEP 5—FORMULATION OF THE COORDINATE 
TRANSFORMATION MATRICES

The strain energy function given by Equation 4.8 is expressed in terms 
of the strain gradient quantities. However, the independent variables of 
the strain energy expressions must be expressed in terms of nodal dis-
placements in order to assemble the individual stiffness matrices into a 
structure.

The transformation to nodal coordinates is produced in a two-step 
process. First, a transformation from nodal displacements to strain gradi-
ent variables is formed. Then, this transformation is inverted to give the 
result that is used in the computation of the stiffness matrix.

The first step is accomplished by forming a transformation from 
nodal displacement to strain gradient quantities using Equation 4.1. 
When these equations are expressed in matrix form, we have the 
following:

u
v

1 0 y x 0 y /2 x /2 y 0 x y 0 y

0 1 x 0 y x /2 0 x y x
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i

i i i i i
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i i i
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i i i i i i













=

− −
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2/2 x /2 y /2 0

,
−

















{ }ε

 
 (4.10)

where {ε,} is defined in Equation 4.5.
The transformation is formed by evaluating Equation 4.10 at 

each of the six nodes of the finite element. Note that this transforma-
tion is similar to the one given by Equation 3.17 which was formed 
in  Chapter 3 to compute the equivalent continuum parameters for the 
hexagonal truss.

When this transformation is formed, we have the following:

 {d} = [Φ] {ε,} (4.11)

where

{d} [ u u u u u u v v v v v v ]1 2 3 4 5 6 1 2 3 4 5 6
T

=

and
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The columns of the [Φ] give the displacements that identify the shape 
of the element when it represents the individual strain states. For example, 
the first column defines the displacements of the element when it is rep-
resenting the rigid body motion in the x direction. The magnitude of the 
displacements are defined by the size of the strain gradient variable (urb)0.

The independent variables in the strain energy expression formed in 
Step 3 and given by Equation 4.6 are the strain gradient quantities that 
are defined in Equation 4.5 as {ε,}. As mentioned earlier, the independent 
variables of the strain energy expression must be expressed in terms of 
the nodal displacements in order to assemble the finite element stiffness 
matrices.

The transformation that achieves the change of variables to nodal 
displacements is found by inverting Equation 4.11, which gives the 
following:

 {ε,} = [Φ]−1 {d} (4.12)

We are now in a position to complete the formulation of the finite ele-
ment stiffness matrix. In the next step, we will transform the strain energy 
expression from strain gradient coordinates to nodal displacements.

A significant aside: At this point, it can be seen that the finite ele-
ment and the finite difference methods have a common basis. When 
 Equation 4.12 is inspected, we see that we have strain gradient quantities 
being expressed in terms of nodal displacements. Since the strain gradient 
coefficients are simply a specialized form of the Taylor series coefficients, 
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the rows of Equation 4.12 can be seen to be finite difference operators 
(see note 4).

 STEP 6—TRANSFORMATION OF STRAIN ENERGY TO NODAL 
DISPLACEMENT COORDINATES

The strain energy expression given by Equation 4.6 can now be trans-
formed to nodal displacements by substituting the transformation given by 
Equation 4.12. When this is done, we have the following:
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− −
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(4.13)

It should be remembered that the matrix U  has already been com-
puted in Equation 4.7 and noted that [K] is symmetric.

 STEP 7—APPLICATION OF THE PRINCIPLE OF MINIMUM 
POTENTIAL ENERGY

The force–displacement relationship for a finite element is formed by 
applying the principle of minimum potential energy. The potential energy 
consists of two components: (1) the strain energy contained in the finite 
element and (2) the work done by the applied forces when the nodes of the 
element are displaced. Since the strain energy expression and work func-
tion are independent of each other, they will be treated separately.

The general expression for the principle of minimum potential energy 
for this application is the following:

 

∂ −

∂

= =
(SE W)

d
0; i 1,2, n

i
�  (4.14)

We will now extract the finite element stiffness matrix from the strain 
energy portion of Equation 4.14. When the derivative of the strain energy 
expression given by Equation 4.13 is performed for a representative 
 displacement variable, we have the following:
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(4.15)

The two components contained in the first line of Equation 4.15 can 
be summed because [K] is a symmetric matrix.

When the derivatives of all n of the independent displacement vari-
ables are taken and the results of the n derivatives are summed, we have 
the following:

 

∂

∂

=
SE
d

[K]{d}  (4.16)

The stiffness matrix being formed is equal to the [K] contained in 
Equation 4.16. Since we have recognized that the stiffness matrix is avail-
able without actually applying the principle of minimum potential energy, 
this means that the principle does not have to be applied in the computation 
of the stiffness matrix. The application of this principle is only required as 
a theoretical step to identify the stiffness matrix in the initial development.

The final force–displacement relationship for the finite element matrix 
is given as follows:

 [K] {d} = {F} (4.17)

The applied force vector is found by forming a work function that 
depends on the form of the applied force. If the applied force consists of a 
point load at a node, the total force is contained in the row associated with 
that node. If the load is a point load that is applied at some point on the 
domain of the element, fractions of the load are distributed to the various 
nodes. However, if a distributed load is applied, the equivalent nodal loads 
are found by integrating a function formed by multiplying the distributed 
load with the appropriate displacement interpolation function.
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4.5  tHE SOuRcE aND ROLE Of tHE 
cOMPatiBiLitY EQuatiON

The strain representations for a 10-node triangle are the following (Dow 
2012):

ε ε ε ε ε ε εx x 0 x,x 0 x,y 0 x,xx 0
2

x,xy 0 x,(x,y) ( ) ( ) x ( ) y ( ) x ( ) xy (= + + + + + yyy 0
2

y y 0 y,x 0 y,y 0 y,xx 0
2

y,xy 0

) y

(x,y) ( ) ( ) x ( ) y ( ) x ( )ε ε ε ε ε ε= + + + + xxy ( ) y

(x,y) ( ) ( ) x ( ) y ( )
y,yy 0

2

xy xy 0 xy,x 0 xy,y 0 xy,xx

+

= + + +

ε

γ γ γ γ γ 00
2

x,yy y,xx 0

xy,yy 0
2

x ( ) xy

( ) y

+ +
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ε ε
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 (4.18)

As can be seen in Equation 4.18, the two normal strain models are 
complete second-order polynomials with the expected Taylor series coef-
ficients. That is to say, the normal strain εx is expressed in terms of εx and 
its derivatives, and the normal strain εy is similarly represented.

However, the shear strain expression contains a term that, at first 
glance, seems to be an anomaly. The expected Taylor series coefficient for 
the xy term is (γxy,xy)0. When the expected term is equated to the coefficient 
that is actually present, we have the following:

 
( ) ( )xy,xy 0 x,yy y,xx 0γ ε ε= +  (4.19)

This relationship can be recognized as the compatibility equation for 
planar problems. The usual explanation for this equation is that it exists 
as a constraint equation because the three strain components are formed 
from only two displacements. This is, indeed, true but the rationale behind 
the derivation of the equation is rarely, if ever, stated. Furthermore, there 
is no clear explanation of how and where this constraint equation is used 
(Borg 1963).

When the 10-node triangle is formed using strain gradient notation, 
both the derivation and the role of the compatibility equation are made 
clear. The 10-node triangle is formed from displacement interpolation 
polynomials that are complete third-order polynomials. As a result, both 
the u and the v interpolation polynomials contain the following terms; x3, 
x2y, xy2, and y3. Thus, the two polynomials have eight coefficients.

However, as seen in Equation 4.18, the three strain representations 
for a 10-node triangle contain nine second-order strain coefficients. Since 
the nine coefficients for the strains are derived from the eight coefficients 
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of the displacement representations, there must be a term that is not inde-
pendent of the other strain quantities. The coefficient of the xy term of the 
shear strain expression is chosen to be the term that is dependent on the 
eight coefficients of the displacement expressions. That is the reason that 
it is not the expected (γxy,xy) term and it is a function of two second-order 
normal strain terms.

As a result of using the physically interpretable notation, we have a 
clear explanation of the source and the role of the compatibility equation 
as it relates to the finite element method. The compatibility equation is 
derived in detail in both Dow (1999, 2012).

Over the years, the author has found that the validity of a mathemat-
ical model is reinforced when some salient fact concerning the problem 
being solved emerges from the analysis process that was not explicitly 
built into the model. The emergence of the compatibility equation in both 
two- and three-dimensional applications was an unexpected result when 
the strain gradient notation was first derived.

In a further extension of the notation to higher-order applications, 
another unexpected result is produced. When the 15-node triangle was 
formed, it is found that higher-order compatibility equations exist. These 
constraint equations consist of derivatives of the well-known compati-
bility equation (Dow 1999).

The identification and possible discovery of these higher-order com-
patibility equations once again confirms the usefulness of strain gradient 
notation. A survey of approximately 20 well-known elasticity, continuum 
mechanics, and advanced mechanics of materials books did not even hint 
at the existence of higher-order compatibility equations. However, one 
lesser known book hinted at the existence of these terms (Borg 1963).

4.6 SuMMaRY aND cONcLuSiONS

The overt focus of this chapter has concerned improvements to the for-
mulation and capabilities of stiffness matrices. We have seen that the use 
of the physically interpretable notation has simplified element formula-
tion and allowed the modeling characteristics of individual elements to be 
identified by visual inspection.

The strain representation in elements formed with the alternative 
approach modeled the actual strain as well, as they could when the lim-
ited polynomial bases that are used to form an element is considered. 
This contrasted to the isoparametric approach which contained strain 
modeling errors in elements with a nonstandard shape. Mathematically, 
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a  nonstandard shape is defined as a configuration for which the Jacobian 
of the isoparametric transformation is not a constant. Examples of non-
standard shapes are triangles with curved edges and four-, eight-, and 
nine-node elements that are not parallelograms.

Although this chapter has focused on element formulation, the 
 identification of a common basis for the finite element and the finite 
 difference methods provides a starting point for significant improve-
ments to error analysis and model refinement guides. If the finite element 
solution is treated as an approximation of a finite difference solution, 
quantities can be extracted from the finite element result using finite dif-
ference templates. These quantities can be used to evaluate the accuracy 
of the finite element solution and guide the refinement of the existing 
model.

For example, if the finite difference strains are compared to the finite 
element strains, the differences can be used to form error estimators and 
refinement guides. These ideas are expanded and applied in Chapters 7 
and 8.

4.7 NOtES

1. The mapping that introduces the errors into the higher-order strain 
states is the source of the name for isoparametric elements. The 
mapping takes the original shape of the element onto a regular 
shape, that is, an equilateral triangle or a square of a fixed size. The 
coordinates of these regular shapes are the parametric coordinates.

This mapping has the same form as the displacement inter-
polation polynomials that are used to form the stiffness matrix. The 
Greek prefix iso- that means the same. The original shape is mapped 
onto the regular shape with a coordinate transformation that has 
the same form (iso) as the interpolation polynomials. This allows 
the Gauss quadrature approximate integration scheme to be used to 
evaluate the large number of integrals that exist in the isoparametric 
formulation procedure.

2. The pedagogical complexity of the isoparametric formulation 
 procedure can be attributed to the limited computer capabilities that 
existed when the finite element method was invented and devel-
oped. In order to reduce the computational effort, every element 
was mapped onto a predefined domain so that the integrals that 
must be evaluated could be computed with a simple numerical 
 procedure known as Gauss quadrature.
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3. The number of integrals that must be evaluated for a six-node iso-
parametric element is found as follows. The stiffness matrix is a 
symmetric, (12 × 12) matrix. The total number of terms is 144. The 
number of off-diagonal terms is (144 − 12) = 132. Since the matrix 
is symmetric, the number of unique off diagonal terms is 66. The 
total number of unique elements is 66 + 12 = 78.

4. As noted in the main text, Equation 4.12 identifies the fact that the 
finite element and the finite difference methods have a common 
basis. This is discussed at length in Part IV of Dow (1999). As a 
result, new life is breathed into the finite difference method.

4.8 EXERciSES

1. This exercise forms the stiffness matrix for a three-node bar 
 element with even spacing by applying the seven steps identified 
in Table 4.1.
a. Identify the interpolation polynomial using the x-axis.
b. Form the strain model and identify the strain states. Sketch 

these strain states with respect to the initial position of the bar. 
Hint: Put the origin at the center of the bar.

c. Write the strain energy expression for a continuous one-dimen-
sional bar. Then, transform the continuous expression to a finite 
number of strain gradient coordinates. Hint: Do not forget to 
include the rigid body displacement as was done in the text.

d. Give the bar an area of 1.0 square inch and a length of 36 inches 
and integrate the necessary term(s) in the strain energy 
 expression.

e. Formulate the transformation from displacements to strain 
 gradient terms for evenly spaced nodes. The three columns of 
the transformation matrix should correspond to the shape of the 
displacements associated with each of the three strain states. 
Sketch them on the initial position of the bar. Hint: First plot 
the horizontal displacements along the x-axis. Then plot them 
on the y-axis. Assume two magnitudes for the strain gradient 
quantities, ½ and 1.

f. Invert the transformation formed in item e to form the transfor-
mation from strain gradient quantities to nodal displacements. 
Check your inversion by multiplying it by the matrix that was 
inverted. Hint: This is a good application for MATLAB. You 
can perform the inversion numerically or symbolically.
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g. Assume that the bar has the following sets of displacements: 
0, 0, 2; 0, 1, 0; and 1, 0.5, −1. Using the results of item f, iden-
tify the contribution of each strain state to the displacements.

h. Form the stiffness matrix for the bar. Fix one end of the bar, 
that is, set the displacement equal to zero. Apply a force of 
100 units to the other end and find the displacements. Then, find 
the  participation of the strain gradients. Hint: Look at item g.

2. Redo problem 1 for an element with uneven nodal spacing. Place 
the nodes at the following locations: 0, 16, and 36 inches.



cHaPtER 5

the “distmesh_2d” mesh 
generAtion ProgrAm

5.1 iNtRODuctiON

Most finite element textbooks do not introduce mesh generators. As a 
result, there is no way to use the knowledge gained to create significant 
models unless some finite element package is also introduced.  Typically, 
either these packages are so complex as to be opaque or the code is 
 inaccessible to modification.

In this chapter, an easy-to-use and flexible mesh generator is 
 presented so that meaningful problems can be solved immediately. When 
this  capability is combined with the physically interpretable notation 
introduced in Chapter 3, new and experienced users have the capacity 
of immediately exploring the usefulness of the physically based notation. 
This capability can be used to extend the work on error estimators and 
mesh refinement guides presented here.

This mesh generator was chosen because it accomplishes the objec-
tive set by its authors:

Our goal is to develop a mesh generator that can be described in 
a few dozen lines of MATLAB. We could offer faster implemen-
tations and refinements of the algorithm, but our chief hope is 
that users will take this code as a starting point for their own 
work. It is understood that the software cannot be fully state-of 
the-art, but it can be simple and effective and public. Persson and 
Strang (2004)
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5.2 OBJEctiVES

This chapter has two objectives. The first is to present the mesh generation 
program as a stand-alone entity because of its importance in this work. 
The second objective is to make the MATLAB code transparent for those 
who want to extend the developments presented here.

The second objective is included for two reasons. First, it is always 
a good idea to understand the tools with which you are working. Second, 
the program uses MATLAB features that are far from elementary. This 
idea is presented directly in Persson and Strang (2004) with the following 
statement, “… the advanced MATLAB programming [was] contributed 
by the first author.”

5.3 OVERViEW Of tHE MESH gENERatOR

At its heart, the MATLAB function distmesh_2d forms meshes for 
domains that are identified by Venn diagrams. This means that meshes 
can be generated for practically any configuration by combining relatively 
simple shapes. For example, Figure 5.1 contains meshes formed from the 
difference between two domains, the union of two domains, and the inter-
section of two domains.

The meshes used to test the error estimators and mesh refinement 
guides developed in later chapters are created with this mesh generator. 
These error estimators and refinement guides are demonstrated with the 
Kirsch-type problem shown in Figure 5.1a. The domain of this problem is 
formed by subtracting a circle from the center of a square. The resulting 
finite element model is loaded in tension in the x direction. This produces 
well-defined stress concentrations at the top and bottom of the circum-
ference of the circle (Budynas 1999).

The program that created the meshes shown in Figure 5.1 is contained 
here as Appendix 5A. In addition to the three meshes shown in Figure 5.1, 
there are two variations on the Kirsch-like problem shown in Figures 5.2a 
and 5.2b that are available in this program.

The first variation is formed with a nonuniform mesh. The mesh has 
smaller elements near the boundary of the internal circle. The second vari-
ation is a square with a parabolic hole. A uniform mesh with smaller ele-
ments is shown for contrast. This problem contains stress concentrations 
at the apexes of the parabola that are more severe than those that exist on 
the boundary of a circle. These problems are included as a convenience for 
anyone who wants to extend the work presented here. Consequently, these 
problems provide a good starting point for further research.
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This overview of the mesh generator is followed by a detailed 
 description of its operation. Then, the operations performed by the indi-
vidual lines that make up the eight steps of the distmesh_2d code are pre-
sented. The function itself is contained in Appendix 5B. The m-files for 

Figure 5.1. Meshes formed as Venn diagrams: (a) difference 
between a square and a circle, (b) union of a rectangle and a 
square, and (c) intersection of two circles.
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Figure 5.2. Alternate Kirsch-like problems: (a) Kirsch-like problem with a 
nonuniform mesh and (b) Kirsch-like problem with a parabolic hole.
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ancillary MATLAB functions used in the mesh generator are presented in 
Appendix 5C.

5.4  a DEtaiLED DEScRiPtiON Of tHE MESH 
gENERatOR

This mesh generation process begins by forming an initial mesh that can 
be viewed as a blank sheet of paper. A boundary box is filled with nodes, 
as shown in Figure 5.3a. Then, the nodes in the odd-numbered rows are 
moved to the right, as shown in Figure 5.3b. These nodes are moved so 
that the resulting mesh consists largely of equilateral triangles. The suc-
cess of this strategy can be seen by the products of this process that are 
shown in Figures 5.1 and 5.2. The majority of the triangles are equilateral 
triangles or very close to this configuration.

In the next operation, the nodes outside of the desired configuration 
are removed. The key to removing these nodes is the use of a directed 
distance function. This function identifies whether a node is inside or out-
side the boundary. If a node is inside the boundary, the magnitude of its 
distance to the boundary is negative and it is retained in the mesh. If the 
nodal distance has a positive sign, it is removed unless it is within a small 
predefined distance outside the boundary. Nodes close to the boundary 
will be moved back to the boundary in a later operation.

After these nodes are removed, any desired fixed points are added to 
the mesh. The results of these two operations are shown in Figure 5.4 for 
the Kirsch-type problem. The four corners of the box and the two stress 
concentration points at the top and bottom of the circle are fixed. The six 
fixed points are designated with the stars in Figure 5.4b.

The nodal points that are retained are used to form a mesh with trian-
gular elements with the Delaunay algorithm. The Delaunay triangulation 

Figure 5.3. Initial mesh formulation steps: (a) original nodal locations and 
(b) shifted nodal locations.
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algorithm has two primary features. The first feature does not allow the 
nodes of adjacent triangles to exist in the smallest circumscribed circle for 
a triangle. This essentially does not allow the existence of any overlapping 
triangles. The second feature of the algorithm maximizes the minimum 
angle in each triangle. As can be seen in Figures 5.1 and 5.2, equilateral 
triangles are formed when possible by this algorithm.

However, there are two types of triangles that must be removed 
from the result of the Delaunay triangularization. The first type occurs if 
there is an internal hole. If there is an internal hole, the Delaunay triangu-
lation will populate this opening using nodes that exist on the boundary. 
These elements must be removed or the desired configuration will not 
be produced.

The second type of triangles that must be removed are degenerate 
triangles. On occasion, this algorithm defines a triangle on a boundary 
with three points that are in a straight line. Such a triangle is defined as a 
degenerate triangle because its area is equal to zero.

There will often be other points between the three points that define 
a degenerate triangle. This nodal configuration does not violate the con-
straint on the intrusion of nodes of one triangle into the circumscribing 
circle of another triangle because the radius of the circumscribing circle 
for a degenerate triangle is equal to zero.

Degenerate triangles must be removed because their existence 
would cause havoc with a finite element stiffness matrix. The stiffness 
matrix would be equal to zero because a degenerate triangle has no area. 
 Examples of degenerate triangles and their elimination will be presented 
later in this chapter.

As noted, the mesh generator strives to populate the domain of the 
problem with equilateral triangles. Equilateral triangles are desired 
because they have the highest quality. This concept is discussed at length 

Figure 5.4. Define and fix region: (a) remove points outside of region and 
(b) add fixed points.
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in McGuire, Gallagher, and Ziemian (2000). In the case of finite elements, 
the quality has to do with condition number, which is related to the ratio 
of the maximum and minimum eigenvalues. If the condition number 
of an element is too large, it can negatively affect the stability of the 
computations.

In graphical terms, the quality of a finite element can be quantified 
in terms of the ratio of the inscribed circle to the circumscribed circle 
with the following relationship: q = 2 rinscribed/rcircumscribed. This metric varies 
between 1 and 0. A triangle with a q value equal to or larger than 0.5 is 
considered a good triangle (Field 2000). The inscribed and circumscribed 
circles and their quality measurement for three triangles with different 
configurations are shown in Figure 5.5.

As can be seen, the quality metric for an equilateral triangle is equal to 
1.0, the highest possible value. The oblique triangle shown in Figure 5.5c 
does not quite satisfy the minimum requirement of 0.5 for an acceptable 
element. The quality measure for the right triangle shown in Figure 5.5b 
is more than acceptable.

When the initial mesh for the Kirsch-type problem shown in 
 Figure 5.4b is inspected, it is seen that very few mesh points are actually 
on the circumference of the circle. The triangulation of this initial mesh 
is shown in Figure 5.6. The circle is not very well represented by this 
mesh. There are very few nodal points on the circle, and the majority of 
the triangles around this crude representation of the circular hole are not 
close to being equilateral triangles. In addition, the two ends of the square 
are represented by oblique triangles. Inspection of Figure 5.1a shows that 
both of these conditions are corrected in the final mesh, which has been 
iteratively improved by the mesh generator.

This mesh generator remedies these deficiencies with an iterative pro-
cess that progressively improves the initial mesh by moving individual 

Figure 5.5. Triangles with circumscribed and inscribed circles: (a) equi-
lateral triangle, q = 1.0; (b) right triangle, q = 0.8168; (c) oblique triangle, 
q = 0.4173.
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nodes. The crux of the mesh generation program is in the way in which 
the nodes are moved to improve the mesh.

The mesh points are moved with two objectives. The first is to force the 
distances between the nodes to have nearly equal lengths. The second is to 
improve the representation of the functionally defined boundaries by mov-
ing two types of points to the boundary. Points that are either close to the 
inside or close to the outside of the boundary are moved to the boundary.

The goal of the first objective is to produce a mesh that is composed 
of triangles with high-quality ratings. The reason for the second objective 
is obvious. The goal is to have a mesh that matches the geometry that is 
specified.

The effectiveness of this strategy can be seen by comparing the final 
mesh for the Kirsch-type problem shown in Figure 5.1a to the initial mesh 
shown in Figure 5.6. Since there are more nodal points on the boundary 
of the circular cutout, the representation of the internal circular hole in the 
final mesh is significantly smoother than the representation in the initial 
mesh. In addition, the oblique triangles on the circumference of the cir-
cle have been replaced with triangles that are close to being equilateral 
triangles.

The iterative process also improves the representation of the boundar-
ies on the right and left ends of the square. There are more points on these 
boundaries, and the triangles on the two ends are nearer to equilateral 
triangles in the final mesh.

The iterative process that produces these improvements proceeds as 
follows. The nodes are moved by pseudo-forces that come from assum-
ing that the edges of the triangles are linear springs or bars that can be 
deformed. The lengths of these bars are computed from the positions 

Figure 5.6. A triangulated mesh.
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of the nodes that define the edges of the triangles. Then, these lengths 
are compared to a desired constant length. The differences between the 
desired lengths and the actual lengths produce loads in each of the springs. 
Only the loads that increase the separation between the nodes are retained. 
This is done to spread the nodes over the domain of the problem and to 
move interior nodes to the boundaries.

The vector sum of all of the retained forces at each node is computed 
and the node is moved in the direction of this vector sum by a proportion 
of its magnitude. If a node is moved outside of the functional boundary, it 
is pushed back to the boundary.

Intermediate results of this iterative process are shown in Figure 5.7. 
In these figures, the movements of the individual nodes for each iteration 
are superimposed on each other. In other words, these figures show how 
each node migrates as the mesh is improved. The small circles that sur-
round the original positions of the nodes are included to give scale to the 
movements.

In Figure 5.7a, the movements of the nodes from their initial positions 
are shown after 10 iterations. As can be seen, the majority of the move-
ment is bringing nodes to the boundaries of the domain of the problem. 
The continuing migration of these nodes to the boundary after 75 iterations 
can be seen in Figure 5.7b. Some of the nodes away from a boundary are 
rearranging themselves in order to produce triangles with a higher quality.

The iterative process that improves the mesh is terminated when the 
sum of the absolute values of the displacements of all of the points in the 
final iteration is below a predefined threshold. The termination criterion for 
the Kirsch-like problem is satisfied after 187 iterations. This contrasts to 
the limit of 500 iterations that is placed on the iterative process to eliminate 
infinite loops. This means that the termination criterion of the process was 
satisfied. A condition that produces an infinite loop will be discussed later.

Figure 5.7. Nodal migration in the mesh generator: (a) early iteration and 
(b) later iteration.
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The mesh generator creates the two geometric input variables needed 
for a finite element program, namely, the nodal coordinates and the ele-
ment topology. The nodal coordinates are presented in two columns that 
contain the x and y coordinates of each node in the order of the nodal 
numbers.

An example of element topology is presented in the final three col-
umns of Table 5.1. These three columns contain the node numbers of the 
three corners that identify the triangle. The first column identifies number 
of a triangular element for the convenience of the reader.

The four elements for which the element topology is given are high-
lighted in Figure 5.8. Figure 5.8a contains the element numbers for this 
section of the mesh. Figure 5.8b identifies the node numbers for this  section 

Table 5.1. Examples of element topology

Element no. Node no. Node no. Node no.
   

459 138 155 139
460 137 155 138
461 136 137 115
462 137 138 115
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Figure 5.8. (Continued )
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of the mesh. This figure consists of a section of the mesh that corresponds 
to the final mesh for the Kirsch-type problem shown in Figure 5.1a.

As advertised, this section has provided an overview of the mesh gen-
eration program. In the next section, the individual lines of the  distmesh_2d 
MATLAB function will be presented and their operation will be described 
in some detail. The full program and the mesh refinement function are 
contained in appendixes 5A and 5B, respectively.

5.5  a LiNE-BY-LiNE DEScRiPtiON Of tHE 
“DiStMESH_2D” fuNctiON

The eight individual steps that make up the mesh generator distmesh_2d 
are described in detail in this section. The eight steps are designated in the 
function itself presented as Appendix 5B (Persson and Strang 2004).

This line-by-line description makes the function of each step acces-
sible to readers, particularly those who are relatively new to MATLAB. 
Some of the lines of code are elegant or slick in that they accomplish 
several steps in one line using subtle characteristics of the operations. As a 
result of this advanced MATLAB programming, the objective of a specific 
line of code and how it is accomplished might not be obvious to anyone 
with a limited knowledge of MATLAB, such as the author of this book.
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Figure 5.8. A segment of the final Kirsch-like 
mesh: (a) element numbering and (b) nodal 
numbering.
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The eight steps are presented in detail, one step at a time. Each step 
is introduced with an overview of its function. Then, any inputs from the 
driver program are presented before the operation of the step is discussed.

 STEP 1—CREATE THE INITIAL DISTRIBUTION IN THE 
BOUNDING BOX

This step consists of three lines of code that produces the nodal coordi-
nates for a set of points that serve as the starting point for the final mesh. 
A rectangle or a square is filled with nodes in such a way that the final 
mesh consists of triangles that are equilateral or nearly so.

This step uses the following input from the main program:
Box=[-1.0,-1.0;1.0,1.0]; h0 = 0.01;

The quantities in the variable box identify the nodal locations of the 
corners of the box that contains the domain of the mesh being formed. 
This box can be viewed as a blank piece of paper on which the mesh is 
going to be created.

The variable h0 defines the nodal spacing in the x direction of the 
mesh points. The length of the base of the equilateral triangle is equal to 
h0. The spacing in the y direction is defined as part of this step such that 
the resulting triangles are equilateral. As we will see later, equilateral tri-
angles are desired because of their properties.

Line 1

[x,y] =   meshgrid(box(1,1):h0:box(2,1), box(1,2):h0*sqrt(3)/2: 
box(2,2));

The meshgrid function forms vectors of the x and y coordinates of the 
points that fill the box, as shown in Figure 5.2a. The spacing of the rows 
in the x direction is equal to h0. The spacing in the y direction is equal to 
h0/sqrt(3)/2 or h0/cos(30 degrees), which is the height of an equilateral 
triangle that has a base that is h0 long.

Line 2

x(2:2:end,:) = x(2:2:end,:) + h0/2;

This line of code shifts the even numbered rows of nodes formed in line 1 
in the positive x direction by one-half of the nodal spacing h0. This oper-
ation completes the process of positioning the nodes to form equilateral 
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triangles. The output of this line of code is shown in Figure 5.2b. Note that 
the nodes on the right-hand end of the even numbered rows are outside of 
the bounding box.

Line 3

p = [x(:), y(:)];

The x and y coordinates of the nodal locations formed in the previous two 
lines of code are assembled into the variable p (for points). The number 
and locations of the nodal points is modified as the program proceeds. This 
variable, in its final form, is one of the outputs of the function distmesh_2d.

 STEP 2—REMOVE POINTS OUTSIDE OF THE DESIRED 
GEOMETRY AND ADD FIXED POINTS

This step contains seven lines of code that removes points from those 
formed in the previous step. The points removed are outside of the bound-
ary of the configuration being formed by more than a small specified 
 distance. Then, a set of predefined fixed points are added. The number of 
points that remain after this step is retained throughout the analysis when 
uniform spacing is specified. The locations of many of these points will be 
moved to improve the mesh in a later step. The results of these operations 
are shown in Figure 5.3.

Four lines of code from the main program are used in this step. 
The first two lines for the Kirsch-type problem are the following inline 
functions:
fd =  inline(‘ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0, 

0,0.5))’,’p’);

fh = inline(‘huniform(p)’, ‘p’);

The output of an inline function can be treated like any other variable 
in MATLAB. The inputs to an inline function can be functions and vari-
ables. Any inline function can be replaced by a regular MATLAB function 
formed with an m-file. However, the use of inline functions produces a 
code that is less convoluted, albeit, slower.

The variable “fd” produced by the first inline function is at the 
heart of this mesh generator. The variable fd is the vector of the signed 
 distances that the points “p” are away from the closest boundary of the 
configuration being formed. If the sign for a given point is positive, the 
point is outside of the boundary. If the distance to a boundary is equal to 
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zero or negative, the point is on or inside of the boundary. This function 
is used in two steps in the mesh generator. In this step, it is applied to the 
nodal points. In the next step, it is applied to the locations of the centroids 
of the triangles.

In this inline function, the primary inputs are the function ddiff and 
the variable p. The inputs to the function ddiff are the functions drectangle 
and dcircle.

The function ddiff finds the distance for all points p from the bound-
ary of a domain formed by subtracting one region from another. In the 
problem formed here, a circle is removed from a rectangle. The functions 
ddiff, drectangle, and dcircle are contained in Appendix 5D as m-files.

The variable “hd” that is defined by the second inline function is 
 associated with forming a mesh with nonuniform spacing. This is done 
by removing selected points from the original set of evenly spaced points. 
In this work, only uniform nodal spacing is used so the procedure for 
forming nonuniform meshes is not discussed. The input function for this 
inline function huniform associates a value of 1 with each nodal point, 
so none of the points are removed. Nonuniform meshes are discussed in 
Dow (1999). The function huniform is contained in Appendix 5D.

The following two lines of code are contained in the main program 
and are used in this step:

pfix =[-1,-1;-1,1;1,-1;1,1];% This fixes the corner points 
of the rectangle.

pfix=[pfix;[0.0,0.5;0.0,-0.5]];% Fix stress concentration 
points on circle.

These two lines of code identify points that are fixed in the mesh. 
These points are defined according to the wishes of the user of the pro-
gram. These points are not moved by the iteration process. The first set 
of four fixed points identifies the corners of the square portion of this 
configuration. The second set of two fixed points are on the circumference 
of the circle. They define the locations of the stress concentrations for this 
problem.

Line 1

p = p( feval ( fd, p ) < geps, : );

This single line of code identifies the points in the mesh that are within the 
domain or no more than a small distance outside of the boundary defined 
by the variable geps, which is specified as input. This is accomplished 
with three different operations in this one line of code.
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The MATLAB function feval executes the function that is inside of 
its parentheses with the variables that are within the parentheses of feval. 
The variable fd identifies the shortest distance that every point p is from 
either the boundary of the square or the circle. These signed distances are 
produced by the inline function discussed earlier.

Then, the logical operation < is performed to determine if the point 
is within the domain or no more than the variable geps outside of the 
boundary. If the point satisfies this condition, a logical variable is set to 1 
otherwise it is set to zero. Finally, if the logical variable is equal to 1, the 
point p is retained. That is to say, all of the points inside or very close to 
the boundaries of the problem are retained. Any of these points that are 
outside of the boundary are pushed back to the boundary in a later step. 
The output of this operation is presented in Figure 5.3a.

Lines 2 and 3

r0 = 1 ./ feval ( fh, p ).^2;

p = [ pfix; p(rand(size(p,1),1) < r0 ./ max ( r0 ),: ) ];

These lines of code have the capacity to perform several operations if a 
nonuniform mesh is defined. However, since only uniform meshes will 
be used in this work, the procedure for forming nonuniform meshes will 
not be discussed. In this work, the inline function fh defines the mesh as 
being uniform.

Since only uniform meshes are used, these lines of code perform only 
one function. The fixed nodes are added to the top of the list of nodes in 
this step. The result of this operation is seen in Figure 5.3b.

Lines 4, 5, and 6

[ q, i, j ] = unique ( p, ‘rows’, ‘first’ );

k = unique ( i );

p = p(k,:);

These lines of code are described by a comment in the version of 
 distmesh_2d being used here as follows:

% The above obscure commands are written so that:

%  * We ALWAYS keep the fixed points at the beginning of 
the P array.

%     *  We remove any points which are duplicates of 
these points.
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%     That way, we do not later allow the fixed points 
to move,

%      because we know they are at the beginning of 
the array,

%       and DELAUNAYN stops complaining about dupli-
cate points.

% JVB (John Burkardt), 09 June 2012.

Line 7

N = size ( p, 1 );

This line of code identifies the number of nodes that remain in the mesh. 
It is used in later operations.

5.5.1 ITERATION PORTION OF THE FUNCTION

We have finished with the initialization of the mesh generation.
We now enter the iterative portion of the program with the following 

line of code:
while ( iteration < iteration_max )

This line of code stops the program after a predefined number of 
iterations are reached. In this application, the variable iteration_max is 
set to 500. This is to stop any possibility of an infinite loop. The desired 
termination of the mesh generator occurs in step 8 when the sum of the 
movements of the interior nodes is less than a predefined value, dptol. 
As mentioned earlier, the final mesh shown in Figure 5.1a is the result of 
187 iterations.

 STEP 3—TRIANGULATION BY THE DELAUNAY ALGORITHM

This step contains six lines of code that identifies the topology of the trian-
gles that are formed from the existing set of nodal points. Each triangle is 
identified by a row that contains the node numbers for the three nodes that 
define its vertices. Samples of this output are contained in the last three 
lines of Table 5.1.

The following operations are performed in this step. The current 
nodal points are saved for comparison with the next set of nodal locations 
in order to decide if any large movements have taken place. If there is any 
large movement of the nodes, the mesh is retriangulated. The centroids 
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of the triangles are then found in order to see if they are outside of the 
boundary or if they are inside of the boundary by a given small amount. 
If so, these triangles are eliminated. The first group is eliminated because 
they are outside of the boundary. The second group is eliminated because 
they are degenerate triangles (three points in a straight line) or very near 
to being such. Although triangles are eliminated, none of the nodal points 
are removed.

Line 1

if ( ttol < max ( sqrt ( sum ( ( p - pold ).^2, 2 ) ) / h0 ) )

This line determines if there is enough movement of the nodes to warrant 
a retriangulation. The absolute value of the movement of all of the nodes 
is scaled to the size of the initial mesh spacing. All of these values are 
summed. Finally, the sum is tested to see if it exceeds a threshold value. 
If the total movement exceeds a threshold level, retriangulation occurs.

Line 2

pold = p;

This line of code saves the current nodal locations. These values are com-
pared to the next set of displacements with the computations contained in 
line 1 in the next iteration.

Line 3

t = delaunayn ( p );

This line of code triangulates the current set of nodal points. The output 
variable t contains the topology of the individual triangles, that is, a row 
of three node numbers that define the triangle. As mentioned earlier, this 
function attempts to mesh the domain with equilateral triangles that do 
not overlap.

Line 4

triangulation_count = triangulation_count + 1;

This is a counter for identifying the number of times the mesh has been 
triangulated. This variable is initialized as zero in the main program.
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Line 5

pmid = ( p(t(:,1),:) + p(t(:,2),:) + p(t(:,3),:) ) / 3;

This line of code computes the centroid of each of the triangles. These 
values are used in the next line of code to determine if a triangle is to be 
eliminated.

The centroid of a triangle is computed by summing the coordinates of 
the three nodal points that identify the triangle and dividing by three. For 
example, the x component of the centroid of element 460 in Table 5.1 is 
computed with the following relationship: 

( p(137,1) + p(155,1) + p(138,1))/3.

The first step in this calculation is to identify the nodal topology for 
each element. This information is inserted into the nodal location vector 
contained in the variable p. However, the element topology is contained 
in the variable t. So, instead of directly inserting the element topology 
into the vector of nodal locations as is done in the previous paragraph, the 
element topology is inserted indirectly by referring to the location where 
it resides. That is to say, the following operation in line 5 p(t(460,1)) is 
identical to p(137,1).

In computer coding terms, the locations of the centroids are found 
using indirect addressing. The nodal locations are inserted indirectly. 
Instead of inserting the nodal numbers directly into the coordinate loca-
tions, the variable that contains these values is substituted into the variable 
that contains the nodal locations.

Line 6

t = t( feval ( fd, pmid ) < -geps, : );

This line of code is somewhat analogous to line 1 in step 2. Line 1 in step 2 
eliminates nodes that are outside of the domain of the problem by a small 
distance defined by the input variable, geps. In contrast, while eliminating 
triangles that are outside of the boundary, this line of code also eliminates 
triangles that are inside of the boundary by the small distance specified by 
the variable, geps.

Figure 5.9 identifies the centroids of the 34 triangles that are removed 
from the finite element model after the fourth iteration of the mesh gener-
ator. The centroids of the triangles to be eliminated are denoted by circles.

An example of a triangle with its centroid outside of the boundary is 
shown at the top of the circle in Figure 5.9. The three nodes that define the 



80  •  a cONciSE OVERViEW Of tHE fiNitE ELEMENt MEtHOD

triangle are indicated with stars. The circle with the cross inside of it iden-
tifies the centroid of this triangle. The triangle to be removed is identified 
with the three bold lines.

An example of a triangle that is not outside of the boundary of 
the domain is shown on the left-hand boundary of the square with a 
bold straight line in Figure 5.9. This example consists of a degenerate 
 triangle—a triangle with zero area formed by three nodes in a straight line.

The stars at the ends of this line indicate the locations of two of the 
nodes that make up this degenerate triangle. The third node is designated 
by the star near the bottom of the line. The centroid of this triangle is 
identified by the circle with the cross in it located at approximately y = 0.1.

A key point to note is that there are centroids for other degenerate 
triangles contained on the interior of this degenerate triangle. This implies 
that the radius of the circumscribed circle for a degenerate triangle is equal 
to zero since the Delaunay algorithm does not allow the nodes of other tri-
angles to be inside of the circumscribed circle of a triangle. It is important 
to note that the number of nodes in this mesh is unaffected by the removal 
of these triangles.

 STEP 4—IDENTIFIES THE THREE EDGES OF EACH 
TRIANGLE

This step consists of two lines of code that uniquely identifies the edges of 
each triangle in a column vector that contains the node numbers of the two 

Figure 5.9. Example triangles removed by line 7.
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nodes that define the edge. In other words, this step identifies the topology 
of the edges of the triangles.

This information is used in step 6 to find the lengths of the edges. By 
treating these edges as deformed bars, these lengths are used to find forces 
that move the nodes apart in order to improve the mesh. The forces are 
created by comparing the actual lengths of the bars to a desired length for 
the bars.

Line 1

bars = [ t(:,[1,2]); t(:,[1,3]); t(:,[2,3]) ];

This line of code identifies the nodal pairs for each edge of each of 
the  triangles. For example, when the expression t(:, [1,2]) is applied to 
Table 5.1, the result is [138 and 155], [137, 155], [136, 137], and [137,138]. 
That is to say, this is the nodal topology of the edges.

Each edge, except those on the boundary, will be contained in this 
vector two times. This is the case because each interior edge is associated 
with two triangles. For example, two triangles might have nodes 5 and 6 
in common. As a result, this pairing would be present in the output of this 
step twice. Note that the variable that designates these pairs of nodes is 
bars.

Line 2

bars = unique ( sort ( bars, 2 ), ‘rows’ );

This line of code performs three operations. The sort operation puts the 
smallest nodal number for a given edge or bar as the first element in each 
row. For example, an interior edge for two adjacent triangles could be 
defined in the output of line 1 as node 6 followed by node 5 in two places. 
The order would be changed by the sort operation to put the reference to 
node 5 first in both cases. As a result, there would be two identical entries 
for this edge, namely, [5 6].

The unique operation performs two functions. It rearranges the entries 
into descending order and eliminates repeated rows. As a result, only one 
entry for each edge is defined.

The MATLAB operations for forming this list are straightforward. 
However, the use of this list in step 6 is not straightforward. It utilizes a 
characteristic of the MATLAB function sparse that is not obvious.
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The physical interpretation of the output of this step is significant 
when it is used in step 6. This interpretation will be identified with the 
rows associated with nodes 1 and 7, which are the following:

 bars = 1 7
   1 8

    1 30
  .
  .
  .

   7 8
    7 30
    7 31
    7 32

As can be seen, node 1 is connected to nodes 7, 8, and 30. This means 
that node 1 connects with three other nodes. When the list for node 7 is 
viewed, it appears that node 7 is connected to four nodes, namely, nodes 8, 
30, 31, and 32. However, this list is not complete. As can be seen in the 
entries for node 1, node 7 is also connected to node 1. Thus, node 7 is 
actually connected to five nodes.

As we will see in step 6, the MATLAB function sparse recognizes 
this fact.

 STEP 5—CREATES THE GRAPHICAL OUTPUT FOR THIS 
MESH

This step plots the mesh of triangles for this iteration of the mesh genera-
tion procedure.
trimesh ( t, p(:,1), p(:,2), zeros(N,1), ‘EdgeColor’, ‘k’, 
‘Linewidth’, 1)

view(2), axis equal, axis([-1.25 1.25 -1.25 1.25]), 
drawnow, grid off

These are standard MATLAB commands. The topology of the trian-
gles is contained in the rows of the t matrix. The x and y coordinates are 
contained in the two columns of the p matrix.

 STEP 6—MOVES THE MESH POINTS BASED ON BAR 
LENGTHS AND FORCES

This step is the crux of this program. It generates the movement of the 
nodes with the goal of improving the mesh. This step moves nodes apart 
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and, hence, toward the boundaries while attempting to form equilateral 
triangles. This step contains nine lines of code.

These goals are pursued by treating the edges of the triangles as bars 
or linear springs. If the length of the element varies from a desired length, 
a force is generated on the nodal points at the two ends of the bar.

This desired length is equal to a scaled value computed in line 4 of 
this step. Only the forces that repel the nodes from each other are retained 
so that the nodes expand toward the borders. The repelling forces at the 
individual nodes are summed and the nodes are moved in the direction of 
the force. If a node is taken outside of the boundary, it is forced back to 
the boundary.

Any force that exists on a fixed point is set to zero so the point will 
not move.

Line 1

barvec = p(bars(:,1),:) - p(bars(:,2),:);

This line forms the vector components of the individual bar lengths by 
subtracting the nodal locations of one end of the bar from the other end 
of the bar.

Line 2

L = sqrt ( sum ( barvec.^2, 2 ) )

This line forms the actual length of the bars by first squaring the vector 
components of each bar length given by barvec. These two components 
are then added and the square root is taken to give the scalar length of 
each bar.

Line 3

hbars = feval ( fh, (p(bars(:,1),:)+p(bars(:,2),:))/2 );

As it is being used here, the mesh generation program is attempting to 
 create as uniform of a mesh as it can, that is, a mesh with elements of 
nearly equal shapes and sizes. The function “fh” can be used to create a 
mesh that is not uniform. However, in this work, only uniform meshes are 
used. Consequently, the function fh in this case is the function  uniform that 
generates a column vector of ones that has the same number of elements 
as there are bars. That is to say, in this case, line 3 could be replaced by 
hbars = ones(size(bars,1).
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Line 4

L0 = hbars * Fscale * sqrt ( sum(L.^2) / sum(hbars.^2) )

This line is forming vectors of desired lengths for each of the bars. In this 
case, these lengths will be uniform. This desired length consists of three 
multiplicative components: (1) The value for hbar formed in the previ-
ous step, (2) a program defined scale factor of 1.2, and (3) a scale factor 
based on the ratios of the actual length of the bars and hbar, which for the 
first iteration is equal to 0.1449. This contrasts to the initial nodal spacing 
 contained in the input of 0.1.

Line 5

F = max ( L0 - L, 0 )

This step forms a vector that acts as the magnitudes of pseudo-forces that 
move points in the process of improving the mesh. It consists of the differ-
ence between the desired length and the actual length of the bar.

Line 6

Fvec = F ./ L * [1,1] .* barvec;

This step creates the vector form of the pseudo-force. This is accomplished 
by multiplying the magnitude of the pseudo-force by the unit vector of the 
actual length of the bar in a three-step process. The force is first divided by 
the magnitude of the bar length. Then it is multiplied by the vector [1, 1] 
in order to form two components of equal size. Then it is multiplied by the 
components of the length of the bar.

Line 7

Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,
1,2],[Fvec,-Fvec],N,2))

This line uses the sparse operator to sum all of the forces that are applied 
to the individual nodes of the mesh.

Line 8

Ftot(1:size(pfix,1),:) = 0

This line sets the forces acting on the fixed points to zero.
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Line 9

p = p + deltat * Ftot;

This line adds the movement of the nodes due to the repelling forces to 
the position the nodes had on entering this iteration. In other words, the 
variable p is the new x and y coordinates of the individual points.

STEP 7—BRINGS OUTSIDE POINTS BACK TO THE 
BOUNDARY

The five lines of code of this step bring points outside of the boundary 
back to the boundary.

Line 1

d = feval ( fd, p );

This line forms a vector of the magnitudes of the distances that the indi-
vidual points are away from a boundary. If the distance is positive, the 
point is outside of the boundary. The inline function fd defined in step 2 
identifies the geometry of the problem.

Line 2

ix = d > 0;

This line identifies the points that are outside of the boundary with a 
 logical indicator. That is to say, if the value of the variable ix associated 
with a node is equal to 1, the point is outside of the boundary. If the value 
is 0, the point is either inside the boundary or on it.

Line 3

dgradx = ( feval(fd,[p(ix,1)+deps,p(ix,2)]) - d(ix) ) / deps;

This line forms the x component of the distance that a point is outside of 
the boundary.

Line 4

dgrady = ( feval(fd,[p(ix,1),p(ix,2)+deps]) - d(ix) ) / deps;

This line forms the y component of the distance that a point is outside of 
the boundary.
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Line 5

p(ix,:) = p(ix,:) - [ d(ix) .* dgradx, d(ix) .* dgrady ];

This line moves the points outside of the boundary back to the boundary.

STEP 8—TERMINATES THE PROCESS

If the sum of the movements of all of the points is less than a predefined 
constant, terminate the mesh refinement process.

Line 1

if (max(sqrt( sum ( deltat * Ftot ( d < -geps,:).^2, 2 ) ) 
/ h0 )< dptol)

This line computes the total movement of all of the points and compares 
it to a predefined value. If the computed value exceeds the termination 
value, the next iteration is started.

 break;
 end
 end

5.6 SuMMaRY aND cONcLuSiON

This chapter has provided a detailed description of the operation of this 
mesh generation program on three levels. First, an overview is presented 
that identifies the way in which the domains are defined. Second, a detailed 
description is given of the process by which the initial mesh is formed and 
then improved until it is deemed adequate for use. Finally, the individual 
lines of the distmesh_2d MATLAB function that performs these opera-
tions are described. These descriptions are augmented with figures that 
present meshes at various stages in the formulation process.

These descriptions are presented in order to make the operation of 
the mesh generator transparent. This allows the user to better understand 
its capabilities and limitations. For example, the mesh with the circular 
hole shown in Figure 5.1a provides a satisfactory representation of the 
problem. It is used in succeeding chapters in the development of the error 
estimators and refinement guides.
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This mesh was produced after 187 iterations. In other words, it 
 satisfied the prescribed termination criterion of a limited amount of move-
ment of the nodes as was described in step 8. The program currently has 
a limitation of 500 iterations in order to eliminate the possibility of an 
infinite loop.

In contrast, the domain with the parabolic hole shown in Figure 5.2b 
did not satisfy the termination criterion. It stopped after the arbitrary limit 
of 500 iterations was reached. As a result, this mesh is suspect. It should 
not be accepted without close scrutiny. When a section of this mesh is 
magnified as shown in Figure 5.10a, we see a reason for concern. Not all 
of the nodal points near the boundary are on the boundary.

In order to identify a reason for the lack of convergence, a close-up 
of the same region after 499 iterations is shown in Figure 5.10b. When the 
two figures are compared, we see the reason for the failure to converge. 
The nodes in iteration 499 are actually closer to the boundary than they are 
in the iteration 500. Thus, in this small region, there is significant move-
ment. As a result, the termination criterion would not be satisfied because 
the position of the nodes would oscillate. Without the limitation on the 
number of iterations, it seems that the attempt to improve this mesh would 
continue ad infinitum because the termination criterion is never satisfied.

In order to gather some insight into the behavior of the mesh gen-
erator, two variables that are involved with the movement of nodes and 
elimination of triangles were modified. This was done to see the effects 
on the final mesh and on the iterative process. These meshes that are the 
results of 500 iterations are shown in Figure 5.11. Thus, neither of these 
changes led to convergence.

Figure 5.10. Nonconvergence due to mesh oscillation: (a) mesh = 0.02, 
geps = 0.2h0, 500 iterations and (b) mesh = 0.02, geps = 0.2h0, 499 
 iterations.
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In Figure 5.11a, the variable geps was reduced from 0.2h0 to 0.00001h0 
as an experiment. This would reduce the distance for which nodes outside 
of the boundary would be removed and for which triangles inside of the 
boundary would be removed. As can be seen, the final mesh is unsatisfac-
tory for two reasons. The tentative boundary nodes did not make it to the 
boundary and there are triangles superimposed on each other.

In Figure 5.11b, the variable geps was increased from 0.2h0 to 0.4h0 
and the scale factor for the desired length of the bar elements in step 6 
was increased from 1.2 to 1.45. As can be seen, the nodes got closer to the 
boundary, but overlapping triangles still exist.

The increase in geps was designed to eliminate the overlapping trian-
gles. As can be seen, this was not completely successful because one over-
lapping triangle still exists. The increase in the scale factor was designed 
to increase the movement of the nodes toward the boundary. This seems 
to have been partially successful. However, the mesh still has nodes away 
from the boundary. This mesh is unacceptable.

The purpose of presenting these failed meshes is to reduce compla-
cency and to reinforce the reason for describing the mesh generator is such 
detail. With the understanding given by these descriptions, the diagnoses 
and possible strategies for forming adequate meshes are available.

The two most obvious are to experiment with the initial spacing and 
with the placing of fixed points on the boundary of the parabola. How-
ever, the best strategy would be to investigate the Delaunay algorithm for 
 triangulating the mesh to determine its behavior. Then, the mesh could be 
tailored to improve its operation.

In conclusion, this mesh generator delivers what it promises. It is 
 simple and accessible. It provides a successful starting point for the work 
presented here. It should be noted that there is a discussion of improvements  

Figure 5.11. Flawed meshes: (a) mesh = 0.2, geps = 0.00001h and 
(b) mesh = 0.2, geps = 0.4, Fscale = 1.45.
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that could be made to the mesh generator in Dow (1999). Furthermore, 
Dow (1999) indicates that this mesh generator is also applicable to the 
following applications: (1) moving boundaries, (2) meshes for where the 
boundaries are defined by images, and (3) three-dimensional problems.

5.7 EXERciSES

1. Use the MATLAB code contained in the appendixes to run one of 
the other problems that are available. For example, find the final 
mesh for the Kirsch-like problem with the variable mesh. Identify 
the number of nodes and the number of elements in the final mesh. 
How many iterations did it take to get this result?

2. Redo the case that was chosen for Exercise 1 with a finer mesh 
size. Identify the number of nodes and the number of elements in 
the final mesh. How many iterations did it take to get this result?

3. Redo the problem that you are using and insert some fixed points. 
These points can be on a boundary or on the interior of the domain. 
Observe how the mesh is changed. This problem is designed to 
show how the user can change the results of the mesh. This is a 
 precursor to how the error estimators are going to be used by the 
mesh refinement guide to introduce additional elements into regions 
of high stress concentration.

aPPENDiX 5a MatLaB cODE fOR MESH 
gENERatiON DRiVER

5A.1 INTRODUCTION

This appendix presents an annotated m-file for the driver program for 
the mesh generator distmesh_2d. This is the program that formed all of 
the figures contained in the main body of this chapter. The program text 
with the numbering came from inserting line 11 as a standalone entry in 
the Command Window of the MATLAB program as it is saved in the 
computer.

This program creates six different meshes as identified in lines 15 
through 20. As it stands now, the variable Mesh is set to 1. This case will 
create a Kirsch-like problem mesh shown in Figure 5.1a in the main text. 
By engaging the values for the variable Mesh of 2 to 6, the meshes shown 
in Figures 5.1b, 5.1c, 5.2a and 5.2b are created.
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In the succeeding chapters, other capabilities will be added. In   
Chapter 6, the capability of forming finite element models for the Kirsch-
like problem is presented. In Chapters 8 and 9, the capabilities of adding 
error estimators and then mesh refinement will be added.

5A.2 MATLAB CODE

1. clc
2. clear all
3. close all
4. format compact
5. %
6. % This program forms meshes for six problems using the 

mesh generation
7. % program Distmesh. At its heart, this program forms 

meshes for meshes that
8. % are identified with Venn diagrams. This program demon-

strates the difference,
9. % union and intersection operations.

10. %
11. %dbtype C:\DistMeshMain.m%This puts line numbers on 

this file.
12. %%
13. % Identify the problem for which to form mesh by eliminat-

ing the % from on of
14. % the cases, e.g., to form the mesh for the square with a 

 parabolic hole, Mesh=3.
15. Mesh=1 % square with circular hole, uniform mesh.
16. % Mesh=2 % Square with circular hole, mesh refined at cir-

cle boundary.
17. % Mesh=3 % Square with parabolic hole, uniform mesh.
18. % Mesh=4 % Symmetric 1/4 of rectangle with circular hole, 

 uniform mesh.
19. % Mesh=5 % Rectangle plus rectangle, uniform mesh.
20. % Mesh=6 % Intersecting circles
21. %
22. if (Mesh==1)
23.  % Start - Rectangle with circular hole, uniform mesh:
24.  % Formed with difference operation.
25.  %
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26.   box=[-1.0,-1.0;1.0,1.0]; % This defines the box in which the 
mesh is placed.

27.    fd = inline(‘ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5))’,‘p’);
28.   pfix=[-1,-1;-1,1;1,-1;1,1];% This fixes the corner points of the 

rectangle.
29.  pfix=[pfix;[0.0,0.5;0.0,-0.5]];% Fix critical pts on circle.
30.  %meshsize=0.05
31.  meshsize=0.1
32.   %[p,t] = distmesh_2d(fd,@huniform,meshsize,[-1,-1;1,1],500, 

pfix);
33.  [p,t] = distmesh_2d(fd,@huniform,meshsize,box,500,pfix);
34.  A=size(p); NoNodes=A(1,1)
35.  B=size(t); NoElements=B(1,1)
36.  figure(1)
37.  hold on
38.  plot([0.0,0.0],[+0.5,+0.4],‘k’,‘linewidth’,2)
39.  text(-.2,.35,‘Critical Pt.’,‘fontweight’,‘bold’)
40.  plot([0.0,0.0],[-0.5,-0.4],’k’,’linewidth’,2)
41.  text(-.2,-.35,‘Critical Pt.’,‘fontweight’,‘bold’)
42.  title(‘Rectangle with Circular Hole’,’fontsize’,14)
43.  xlabel(‘X Axis’,’fontsize’,14)
44.  ylabel(‘Y Axis’,’fontsize’,14)
45.  % Insert number of nodes and elements on figure.
46.  FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
47.  text(-1.0,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
48.  FigText2=sprintf(‘No. of Elements %d’,NoElements);
49.  text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
50.  % End - Rectangle with circular hole, uniform mesh:
51. end
52. %
53. if (Mesh==2)
54.   % Start - Rectangle with circular hole, refined at circle bound-

ary:
55.  % Formed with difference operation.
56.   fd = inline(‘ddiff(drectangle(p,-1,1,-1,1),dcircle(p,0,0,0.5))’, 

’p’);
57.  fh = inline(‘min(4*sqrt(sum(p.^2,2))-1,2)’,’p’);
58.   pfix=[-1,-1;-1,1;1,-1;1,1];% This fixes the corner points of the 

rectangle.
59.  pfix=[pfix;[0.0,0.5;0.0,-0.5]];% Fix critical pts on circle.
60.  %meshsize=0.05
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61.  meshsize=0.055
62.  [p,t] = distmesh_2d(fd,fh,meshsize,[-1,-1;1,1],500,pfix);
63.  A=size(p); NoNodes=A(1,1)
64.  B=size(t); NoElements=B(1,1)
65.  figure(1)
66.  hold on
67.  plot([0.0,0.0],[+0.5,+0.4],’k’,’linewidth’,2)
68.  text(-.2,.35,’Critical Pt.’,’fontweight’,’bold’)
69.  plot([0.0,0.0],[-0.5,-0.4],’k’,’linewidth’,2)
70.  text(-.2,-.35,’Critical Pt.’,’fontweight’,’bold’)
71.  title(‘Rectangle with Circular Hole’,’fontsize’,14)
72.  xlabel(‘X Axis’,’fontsize’,14)
73.  ylabel(‘Y Axis’,’fontsize’,14)
74.  % Insert number of nodes and elements on figure.
75.  FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
76.  text(-1.0,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
77.  FigText2=sprintf(‘No. of Elements %d’,NoElements);
78.  text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
79.    % End - Rectangle with circular hole, refined at circle boundary:
80. end
81. %
82. if (Mesh==3)
83.  % Start - Rectangle with parabolic hole, uniform mesh:
84.   % The major and minor axes are defined in dparabola as 0.3 

and 0.5.
85.  % Formed with difference operation.
86.   fd = inline(‘ddiff(drectangle(p,-1,1,-1,1),dparabo-

la(p,0,0))’,’p’);
87.   pfix=[-1,-1;-1,1;1,-1;1,1];% This fixes the corner points of the 

rectangle.
88.  pfix=[pfix;[0.0,0.5;0.0,-0.5]]% Fix critical pts on parabola.
89.  meshsize=0.05
90.  %meshsize=0.1
91.   [p,t] = distmesh_2d(fd,@huniform,meshsize,[-1,-1;1,1],500, 

pfix);
92.  A=size(p); NoNodes=A(1,1)
93.  B=size(t); NoElements=B(1,1)
94.  figure(1)
95.  hold on
96.  plot([0.0,0.0],[+0.5,+0.4],’k’,’linewidth’,2)
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97.  plot([0.0,0.0],[-0.5,-0.4],’k’,’linewidth’,2)
98.    text(0.0,-.3,’Critical Points.’,’rotation’,90,’fontweight’,’bold’)
99.  title(‘Rectangle with Parabolic Hole’,’fontsize’,14)

100.    xlabel(‘X Axis’,’fontsize’,14)
101.     ylabel(‘Y Axis’,’fontsize’,14)% Insert number of nodes and 

 elements on figure.
102.    FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
103.    text(-1.0,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
104.    FigText2=sprintf(‘No. of Elements %d’,NoElements);
105.    text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
106.    % End - Rectangle with parabolic hole, uniform mesh.
107. end
108. %
109. if (Mesh==4)
110.      % Start - Rectangle with circular hole, uniform mesh, 1/4 prob-

lem:
111.    % Formed with difference operation.
112.      fd = inline(‘ddiff(drectangle(p,-1,1,-1,1),dcircle(p,-1,-1,0.5))’, 

’p’);
113.     pfix=[-1,-1;-1,1;1,-1;1,1];% This fixes the corner points of the 

box.
114.    pfix=[pfix;[-1.0,-0.5;-0.5,-1.0]];% Fix corners on circle.
115.    %meshsize=0.05
116.    meshsize=0.1
117.      [p,t] = distmesh_2d(fd,@huniform,meshsize,[-1,-1;1,1],500,p-

fix);
118.    A=size(p); NoNodes=A(1,1)
119.    B=size(t); NoElements=B(1,1)
120.    figure(1)
121.    hold on
122.    plot([-1.0,-1.0],[-0.5,-0.62],’k’,’linewidth’,2)
123.    text(-1.15,-0.7,’Critical Pt.’,’fontweight’,’bold’)
124.    title(‘Rectangle with Circular Hole, 1/4 Problem’,’fontsize’,14)
125.    xlabel(‘X Axis’,’fontsize’,14)
126.    ylabel(‘Y Axis’,’fontsize’,14)
127.    % Insert number of nodes and elements on figure.
128.    FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
129.    text(-1.0,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
130.    FigText2=sprintf(‘No. of Elements %d’,NoElements);
131.    text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
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132.     % End - Rectangle with circular hole, uniform mesh, 1/4 prob-
lem:

133. end
134. %
135. if (Mesh==5)
136.    % Start - Rectangle plus rectangle, uniform mesh:
137.    % Ninety degree corner formed with union operation.
138.     fd = inline(‘dunion(drectangle(p,-1,0,-1,1),drectangle(p,0,1, 

0,1))’,’p’);
139.     pfix=[-1,-1;-1,1;0,1;1,1;1,0;0,0;0,-1];% This fixes the corner 

points.
140.    %meshsize=0.05
141.    meshsize=0.1
142.     [p,t] = distmesh_2d(fd,@huniform,meshsize,[-1,-1;1,1],500,p-

fix);
143.    A=size(p); NoNodes=A(1,1) % Number of nodes for  figure.
144.     B=size(t); NoElements=B(1,1) % Number of triangles for 

 figure.
145.    figure(1)
146.    hold on
147.    plot([0.0,0.2],[0.0,-0.2],’k’,’linewidth’,2)
148.    text(0.1,-0.3,’Critical Point.’,’fontweight’,’bold’)
149.    title(‘Ninety Degree Corner’,’fontsize’,14)
150.    xlabel(‘X Axis’,’fontsize’,14)
151.    ylabel(‘Y Axis’,’fontsize’,14)
152.    % Insert number of nodes and elements on figure.
153.    FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
154.    text(-1.0,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
155.    FigText2=sprintf(‘No. of Elements %d’,NoElements);
156.    text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
157.    % End - Rectangle plus rectangle, uniform mesh:
158. end
159. %
160. if (Mesh==6)
161.    % Start - Two circles intersecting:
162.    % Formed with intersection operation.
163.     fd = inline(‘dintersection(dcircle(p,0,0,1),dcircle(p,1,0,1))’, 

’p’);
164.    pfix=[0,0;1,0]; % Fixes the points on far left and right.
165.    %meshsize=0.05
166.    meshsize=0.1
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aPPENDiX 5B MatLaB cODE fOR tHE fuNctiON 
DiStMESH_2D

5B.1 INTRODUCTION

This appendix presents an annotated m-file for the mesh generator dist-
mesh_2d. It is discussed in detail in the main text and its source is Persson 
and Strang (2004) in the main text.

5B.2 MATLAB CODE

1. function [ p, t ] = distmesh_2d ( fd, fh, h0, box, iteration_max, 
pfix, ...

2. varargin )
3. 
4. %*************************************************

********************

167.     [p,t] = distmesh_2d(fd,@huniform,meshsize,[-1,-1;1,1],500, 
pfix);

168.    A=size(p); NoNodes=A(1,1) % Number of nodes for figure.
169.      B=size(t); NoElements=B(1,1) % Number of triangles for  

figure.
170.    figure(1)
171.    hold on
172.    axis([-0.2,1.2 -1.0 1.2])
173.    %plot([0.0,0.2],[0.0,-0.2],’k’,’linewidth’,2)
174.    title(‘Intersecting Circles’,’fontsize’,14)
175.    xlabel(‘X Axis’,’fontsize’,14)
176.    ylabel(‘Y Axis’,’fontsize’,14)
177.    % Insert number of nodes and elements on figure.
178.    FigText2=sprintf(‘No. of Nodes %d’,NoNodes);
179.    text(0.1,1.1,FigText2,’fontsize’,10,’fontweight’,’bold’)
180.    FigText2=sprintf(‘No. of Elements %d’,NoElements);
181.    text(0.1,0.95,FigText2,’fontsize’,10,’fontweight’,’bold’)
182.    % End - Two circles intersecting:
183. end
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5. %
6. %dbtype C:\ZZZDistmesh\distmesh_2d.m %This lists program 

with line nos.
7. %% DISTMESH_2D is a 2D mesh generator using distance 

functions.
8. %
9. % Licensing:

10. %  (C) 2004 Per-Olof Persson.
11. % See COPYRIGHT.TXT for details.
12. % Modified:
13. %  09 June 2012
14. % Author:
15. %  Per-Olof Persson
16. %  Modifications by John Burkardt
17. % Reference:
18. %
19. %  Per-Olof Persson, Gilbert Strang,
20. %  A Simple Mesh Generator in MATLAB,
21. %  SIAM Review,
22. %  Volume 46, Number 2, June 2004, pages 329-345.
23. %
24. % PARAMETERS:
25. %  INPUTS
26. %  function FD, signed distance function d(x,y).
27. %  function FH, scaled edge length function h(x,y).
28. %  real H0, the initial edge length.
29. %   real BOX(2,2), the bounding box [xmin,ymin; xmax,y-

max].
30. %   integer ITERATION_MAX, the maximum number of 

 iterations.
31. %   The iteration might terminate sooner than this limit, if the 

program
32. %  decides that the mesh has converged.
33. % real PFIX(NFIX,2), the fixed node positions.
34. %  VARARGIN, aditional parameters passed to FD and FH.
35. %
36. % OUTPUTS
37. % real P(N,2), the node positions.
38. % integer T(NT,3), the triangle indices.
39. %
40. % LOCAL PARAMETERS:
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41. % real GEPS, a tolerance for determining whether a point is 
“almost”

42. %   inside the region. Setting GEPS = 0 makes this an exact test. 
The

43. %   program currently sets it to 0.001 * H0, that is, a very small
44. %   multiple of the desired side length of a triangle. GEPS is also
45. %   used to determine whether a triangle falls inside or 

 outside the
46. %   region. In this case, the test is a little tighter. The 

 centroid
47. %  PMID is required to satisfy FD ( PMID ) <= -GEPS.
48. %
49.  dptol = 0.001;
50.  ttol = 0.1;
51.  Fscale = 1.2;
52.  deltat = 0.2;
53.  geps = 0.001 * h0;
54.  %geps = 0.000000001 * h0
55.  deps = sqrt ( eps ) * h0;
56.  iteration = 0;
57.  triangulation_count = 0;
58. %
59. % Step 1. Create the initial point distribution by generating a
60. % rectangular mesh in the bounding box.
61. %
62. [ x, y ] = meshgrid ( box(1,1) : h0 : box(2,1), ...
63.   box(1,2) : h0*sqrt(3)/2 : box(2,2) );
64. %
65. % Shift the even rows of the mesh to create a “perfect” mesh of
66. %     equilateral triangles. Store the X and Y coordinates 

together as our
67. %  first estimate of “P”, the mesh points we want.
68. %
69.  x(2:2:end,:) = x(2:2:end,:) + h0 / 2;
70.  p = [ x(:), y(:) ];
71. %
72. % Instead of a regular mesh, you can initialize P with random 

values here.
73. %
74. % Step 2. Remove mesh points that are outside the region, then 

satisfy the
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75. %  density constraint. Keep only points inside (or almost inside)
76. % the region, that is, FD(P) < GEPS.
77. %
78.  p = p( feval ( fd, p, varargin{:} ) < geps, : );
79. %
80. % Set r0, the relative probability to keep a point, based on the 

mesh
81. % density function.
82. %
83. r0 = 1 ./ feval ( fh, p, varargin{:} ).^2;
84. %
85. % Apply the rejection method to thin out points according to the 

density.
86. %
87.  p = [ pfix; p(rand(size(p,1),1) < r0 ./ max ( r0 ),: ) ];
88. %
89. % The following obscure commands are written so that:
90. % * We ALWAYS keep the fixed points at the beginning of the 

P array.
91. % * We remove any points which are duplicates of these points.
92. %  That way, we do not later allow the fixed points to move,
93. % because we know they are at the beginning of the array,
94. %  and DELAUNAYN stops complaining about duplicate 

points.
95. % JVB, 09 June 2012.
96. %
97. [ q, i, j ] = unique ( p, ‘rows’, ‘first’ );
98. k = unique ( i );
99. p = p(k,:);

100. 
101. N = size ( p, 1 );
102. %
103. % If ITERATION_MAX is 0, we’re almost done.
104. % For just this case, do the triangulation, then exit.
105. %     Setting ITERATION_MAX to 0 means that we can see the 

initial mesh
106. %   before any of the improvements have been made.
107. %
108. if ( iteration_max <= 0 )
109.    t = delaunayn ( p );
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110.    triangulation_count = triangulation_count + 1;
111.    return
112. end
113. 
114. pold = inf;
115. 
116. while ( iteration < iteration_max )
117. 
118.    iteration = iteration + 1;
119. 
120.   if ( mod ( iteration, 10 ) == 0 )
121.    fprintf ( 1, ‘ %d iterations, %d triangulations\n’, ...
122.      iteration, triangulation_count );
123.    end
124. %
125. % Step 3. Retriangulation by the Delaunay algorithm.
126. %
127. % Was there large enough movement to retriangulate?
128. %
129. % If so, save the current positions, get the list of
130. % Delaunay triangles, compute the centroids, and keep
131. % the interior triangles (whose centroids are within the region).
132. %
133.    if ( ttol < max ( sqrt ( sum ( ( p - pold ).^2, 2 ) ) / h0 ) )
134.      N = size ( p, 1 );
135.      pold = p;
136.      t = delaunayn ( p );
137.      triangulation_count = triangulation_count + 1;
138.      pmid = ( p(t(:,1),:) + p(t(:,2),:) + p(t(:,3),:) ) / 3;
139.      t = t( feval ( fd, pmid, varargin{:} ) < -geps, : );
140. %
141. % Step 4. Describe each bar by a unique pair of nodes.
142. %
143.      bars = [ t(:,[1,2]); t(:,[1,3]); t(:,[2,3]) ];
144.      bars = unique ( sort ( bars, 2 ), ‘rows’ );
145. %
146. % Step 5. Graphical output of the current mesh.
147. %
148.       trimesh ( t, p(:,1), p(:,2), zeros(N,1), ‘EdgeColor’, ‘k’, ‘Line-

width’, 1)
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149.      title ( sprintf ( ‘Iteration %d’, iteration ) );
150.       view(2), axis equal, axis([-1.25 1.25 -1.25 1.25]), drawnow, 

grid off
151. %
152. %   Put a “pause” command here if you’d like to see each new 

mesh.
153. %  pause
154.     end
155. %
156. % Step 6. Move mesh points based on bar lengths L and forces F.
157. %
158. % Make a list of the bar vectors and lengths.
159. % Set L0 to the desired lengths, F to the scalar bar forces,
160. % and FVEC to the x, y components of the bar forces.
161. %
162. % At the fixed positions, reset the force to 0.
163. %
164.    barvec = p(bars(:,1),:) - p(bars(:,2),:);
165.    L = sqrt ( sum ( barvec.^2, 2 ) );
166.     hbars = feval ( fh, (p(bars(:,1),:)+p(bars(:,2),:))/2, varargin{:} );
167.    L0 = hbars * Fscale * sqrt ( sum(L.^2) / sum(hbars.^2) );
168.    F = max ( L0 - L, 0 );
169.    Fvec = F ./ L * [1,1] .* barvec;
170.     Ftot=full(sparse(bars(:,[1,1,2,2]),ones(size(F))*[1,2,1,2],[Fve

c,-Fvec],N,2));
171.    Ftot(1:size(pfix,1),:) = 0;
172.    p = p + deltat * Ftot;
173. %
174. % Step 7. Bring outside points back to the boundary.
175. %
176. %  Use the numerical gradient of FD to project points back to the 

boundary.
177. %
178. d = feval ( fd, p, varargin{:} );
179. ix = d > 0;
180. dgradx = ( feval(fd,[p(ix,1)+deps,p(ix,2)],varargin{:}) - d(ix) ) / deps;
181. dgrady = ( feval(fd,[p(ix,1),p(ix,2)+deps],varargin{:}) - d(ix) ) / deps;
182. p(ix,:) = p(ix,:) - [ d(ix) .* dgradx, d(ix) .* dgrady ];
183. %
184. % Step 8. Termination criterion: All interior nodes move less 

than dptol
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aPPENDiX 5c MatLaB cODE fOR tHE M-fiLES 
uSED iN DiStMESH_2D

5C.1 INTRODUCTION

This appendix presents the m-files for the mesh generator distmesh_2d 
that are called by the six different meshes that are formed by the main 
driver program.

5C.2 MATLAB CODE

The separate m-files are listed here. They are also contained in Persson 
and Strang (2004) in the main text with the exception of dparabola.m.

5C.2a ddiff.m

5C.2b dcircle.m

1 function d= ddiff(d1,d2) % Difference
2 d=max(d1,-d2);

185. %  (scaled).
186. %
187.     if (max(sqrt( sum ( deltat * Ftot ( d < -geps,:).^2, 2 ) ) / h0 )< 

dptol)
188.      break;
189.    end
190.   end
191.   return
192. end

1 function d=dcircle(p,xc,yc,r) % Circle
2 d=sqrt((p(:,1)-xc).^2+(p(:,2)-yc).^2)-r;
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1 function d=dparabola(p,xc,yc)
2 aa=0.3; % Minor axis.
3 bb=0.5; % Major axis.
4 d=sqrt(((p(:,1)-xc)/aa).^2+((p(:,2)-yc)/bb).^2)-1;

1 function d=drectangle(p,x1,x2,y1,y2) % Rectangle
2 d=-min(min(min(-y1+p(:,2),y2-p(:,2)), ...
3 -x1+p(:,1)),x2-p(:,1));

1 function d=dunion(d1,d2)
2 d=min(d1,d2);

1 function h=huniform(p,varargin) % Uniform h(x,y) disstribution
2 h=ones(size(p,1),1);

1 function d= dintersection(d1,d2) % Intersection
2 d=max(d1,d2);

5C.2c dintersection.m

5C.2d dparabola.m

5C.2e drectangle.m

5C.2f dunion.m

5C.2g huniform.m



cHaPtER 6

formAtion of A finite 
eLement modeL of the 

Kirsch ProbLem

6.1 iNtRODuctiON

This chapter provides a compact overview of the finite element method 
and the nature of its results. This is accomplished by creating and solv-
ing the Kirsch problem with a sequence of finite element models that are 
formed with different sized elements. Because of its simplicity and the 
severity of its stress concentrations, this problem makes an ideal platform 
for the developments presented here.

Figure 6.1 shows a finite element model of this problem formed with 
a coarse mesh of three-node elements. This model consists of a square 
panel with a centrally located circular hole. It is loaded in tension at both 
ends with identical uniformly distributed loads. The loads are indicated by 
the triangles on the right- and left-hand boundaries in Figure 6.1. Stress 
concentrations exist at both the top and bottom of the circular cutout.

The stress distributions produced by the applied loads are compared 
for the sequence of problems in order to identify salient characteristics 
of finite element solutions. The two most significant characteristics are: 
(1) jumps or discontinuities that exist in the strains between adjacent 
 elements when the finite element result does not exactly represent the 
actual solution and (2) the magnitude of the jumps correlate with the level 
of error in the approximate finite element solution. These characteristics 
provide insights that lead to the creation of the error estimators and refine-
ment guides that are developed in the chapters that follow.
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6.2  aN OutLiNE Of tHE fiNitE ELEMENt MODEL 
fORMuLatiON PROcESS

The finite element model of the Kirsch problem is formed and solved 
by integrating and extending the contents of the previous chapters. The 
three-node elements used to form the model are developed using the pro-
cedures based on the physically interpretable notation that is developed 
in  Chapter 3 and applied in Chapter 4. The mesh generation program 
 presented in Chapter 5 is used to create the meshes for the problems solved 
in this chapter. The individual stiffness matrices in the model are based 
on the nodal locations produced by the mesh generator. These  elements 
are assembled to form the unrestrained global stiffness matrix using the 
 procedures presented in Chapter 2.

Finally, the unrestrained model is completed by applying the uni-
formly distributed loads to the two ends of the panel. At this stage of the 
model formulation, the finite element representation is the following:

 [K] {d} = {F} (6.1)

where [K] is the global, unrestrained stiffness matrix, {d} is the vector of 
nodal displacements, and {F} is the vector of applied loads.

Figure 6.1. Initial finite element model.
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In physical terms, an unrestrained stiffness matrix for a two-dimen-
sional problem can experience three rigid body motions, displacements in 
the x and y directions, and a rotation around the z axis. In mathematical 
terms, this means that the unrestrained stiffness matrix cannot be inverted 
so the problem cannot be solved for the displacements.

Since the unknowns in Equation 6.1 are the nodal displacements, the 
stiffness matrix must be inverted so that the displacements can be found 
for this statics problem. In order to make this possible, the finite element 
model must be constrained so that it cannot experience any of the three 
rigid body motions. The stiffness matrix is constrained by forcing three of 
the nodal displacements in the unrestrained finite element model to have a 
displacement equal to zero.

The constraints are applied to degrees of freedom that naturally 
have zero displacements because of the symmetries in the geometry and 
loading of the problem. Since the displacements that are forced to have 
zero displacement would have zero displacements anyway, the defor-
mations and, hence, the stress concentrations are not affected by these 
constraints.

After the stiffness matrix is restrained and inverted, the final finite 
element model has the following form:

 {d} = [K]−1 {F} (6.2)

where [K] is the global, restrained stiffness matrix, {d} is the vector of 
nodal displacements, and {F} is the vector of applied loads.

Once the displacements are found, the elemental strains are extracted. 
This is accomplished by using the strain–displacement relation that was 
used in the formulation of the finite element using Equations 4.5 and 4.13. 
Then the strains are inserted into the stress–strain relationship to produce 
the elemental stresses.

The three stress components for the elements on the boundary of 
the interior circle are shown in Figure 6.2. The stresses are presented 
with respect to a coordinate system that is rotated so that it is paral-
lel and perpendicular to the edge of each element. As can be seen in 
 Figure 6.2a, two stress concentrations exist on the boundary of the 
internal hole in the normal stress component that is tangential to the 
edge of the element.

The primary characteristic of a finite element solution that is critical 
to the development of error estimators and mesh refinement guides can be 
seen in Figure 6.2. Specifically, there are jumps in all three stress compo-
nents between the adjacent elements. These discontinuities exist because 
the strain distributions that an individual element is attempting to capture 
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Figure 6.2. Stress components on the bound-
ary of the circular hole: (a) tangential normal 
stress, (b) perpendicular normal stress, and 
(c) tangential shear stress.
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are more complex than a single element is capable of representing. In 
mathematical terms, the Taylor series representation of the actual stress 
distribution is of a higher order than that which a three-node constant 
strain element is capable of representing.

Note that the interelement jumps are larger for the critical stress 
shown in Figure 6.2a than for the other two stress components. This is the 
case because the gradients or the rates of change in the actual strain are 
higher for this component than for the other two components. Although 
the interelement jumps for the stress components shown in Figures 6.2b 
and 6.2c are smaller, they also represent modeling errors. Since these 
components represent the stress on an unloaded boundary, they should 
be equal to zero. However, as can be seen in Figures 6.2b and 6.2c, these 
stresses are not equal to zero.

In order to demonstrate how a finite element results behaves as the 
model is improved, the stresses for a sequence of models will be compared 
later in this chapter. Specifically, we will see that the interelement jumps 
in the stresses decrease and the stress representations improve as elements 
are added in regions with high strain gradients. This characteristic pro-
vides the basis for the error estimators and refinement guides developed in 
the next two chapters.

As previously noted, the interelement jumps and the associated errors 
derive from the inability of an element to represent the higher-order strain 
gradients that exist in the actual solution. It is this direct relationship 
between the source of the modeling errors and the strain gradient nota-
tion that gives the physically based notation presented here its usefulness 
and power. Consequently, this notation will be used to define the metrics 
that quantify the errors in a finite element solution as well as the level of 
 refinement in the mesh needed to produce acceptable results.

6.3  fORMuLatiON Of a tHREE-NODE 
cONStaNt StRaiN ELEMENt

This section applies the seven-step procedure presented in Chapter 4 to 
form the stiffness matrix for a three-node finite element. This formulation 
is based on the strain gradient notation that was introduced in Chapter 3.

 STEP 1—IDENTIFICATION OF THE DISPLACEMENT 
INTERPOLATION POLYNOMIALS

Example configurations of three-node elements are shown in Figure 6.3. 
The standard counter-clockwise numbering of the element nodes is shown 
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in Figure 6.3a. The displacement interpolation polynomials expressed in 
strain gradient notation for a three-node element are the following:

 

u x y u x r y

v x y v r
rb x xy rb

rb xy rb

( , ) ( ) ( ) ( / )

( , ) ( ) ( /

= + + −

= + +

0 0 0

0

2

2

ε γ

γ )) ( )0 0x yy+ ε
 (6.3)

The displacement interpolation polynomials and the modeling 
 capabilities for a three-node element are a subset of the interpolation poly-
nomials for the six-node element that were identified in Equations 4.1 and 
4.2. The displacement polynomials for a six-node element are complete 
quadratic representations. As can be seen in Equation 6.3, the displace-
ment representations for a three-node element are complete linear poly-
nomials. They do not contain the quadratic displacement representations. 
This means that a three-node element can only represent linear changes in 
the displacements. As we will see in the next step, this means that a three-
node element can only represent constant strains.

The following six linearly independent strain states contained in 
Equation 6.3 are capable of being represented by a three-node element:

 
(u ) (v ) (r ) ( ) ( ) ( )rb 0 rb 0 rb 0 x 0 y 0 xy 0ε ε λ  (6.4)

These terms indicate that a three-node element can represent the three 
rigid body motions and constant strain values for the three strain compo-
nents. The displacements in an element are produced by a linear combina-
tion of these six strain states.

It must be noted that the ability to represent the three rigid body 
motions and the three constant strain states satisfies the convergence 

Figure 6.3. Sample configurations of three-node elements: (a)  equilateral 
triangle cond. no. = 0.5358, (b) right triangle cond. no. = 0.2636, and 
(c) oblique triangle cond. no. = 0.0853.
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 criteria for a two-dimensional finite element. This means that with 
enough refinement any problem can be represented exactly with any 
 planar element that satisfies the convergence criteria. In physical terms, 
this means that, if required because of the complexity of the problem, 
very physical point in a problem can be represented by a single element. 
Since a single point can only experience rigid body motions and con-
stant strains, these conditions are within the capabilities of a three-node 
element.

STEP 2—STRAIN FORMULATION AND EVALUATION

The strain modeling capabilities and the limitations of these capabilities 
for a three-node element are presented in this step. The strain representa-
tions for a three-node element are identified by applying the linear elasti-
city definitions of the strain components to the displacement interpolation 
polynomials given by Equation 6.3 to produce the following:

 

ε ε
ε ε

γ

x x 0

y y 0

xy

(x,y) u/ x ( )
(x,y) v/ y ( )

(x,y) v/ x u/ y

= ∂ ∂ =
= ∂ ∂ =

= ∂ ∂ + ∂ ∂ == ( )xy 0γ

 (6.5)

Equation 6.5 shows that a three-node element can only represent 
constant strains. This means that an individual three-node element cannot 
accurately represent an actual strain distribution that is more complex. For 
example, a three-node element cannot represent a linear change in the εx 
strain component because the strain model for εx(x,y) does not include the 
εx,x x term in its representation. In contrast, a six-node linear strain element 
can represent linear strain distributions (see Equation 4.3).  However, a 
six-node element has its limitations: it cannot represent quadratic strain 
distributions because its displacement representations do not contain 
cubic terms.

Since a three-node element can only represent constant strain 
 distributions, a finite element model formed with these elements cannot 
 represent more complex strain distributions exactly. A finite element 
model formed with three-node elements represents the changes or gra-
dients in the actual solution with changing values of constant strains 
in the adjacent elements, as shown in Figure 6.2. It is this attempt 
to capture the exact result with a finite number of strain states that 
 produces the interelement jumps in the finite element stress and strain 
representations.
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When the strain representations for a three-node element are cast in 
the matrix form that is used to express the strain energy expression in the 
formulation of the element stiffness matrix, the result is the following:

 ε ε{ } = { }[ ] ,T  (6.6)

where    [ ]

, [(u ) (v ) (r ) ( ) ( )
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In this representation of the strain models, the strain expressions 
given by Equation 6.5 have been augmented with the rigid body motions 
of the element. The rigid body terms are needed in the strain representa-
tion so that the effects of rigid body motion are included in the stiffness 
matrix for the element.

By their very name, the rigid body motions do not deform the element 
so no strain energy is added when an element experiences a rigid body 
motion. The fact that the rigid body motions do not influence the strains 
is seen by their introduction into Equation 6.6 with the null matrix desig-
nated as [T0].

 STEP 3—FORMULATION OF THE STRAIN ENERGY 
EXPRESSION

The discrete form of the strain energy for a two-dimensional domain is 
formed by substituting the coordinate transformation given by  Equation 6.6 
into the continuous expression of the strain energy as follows:
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where
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When the expression for U is expanded using the partitioned transfor-
mation matrix of Equation 6.6, the result is the following:
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(6.8)

Since the matrix [T0] is the null matrix, the partitions of Equation 6.8 
containing this matrix are equal to zero when they are multiplied out. As 
a result, the only nonzero partition in this strain energy expression is U22.

The creation and recognition of these partitions in the strain energy 
expression containing only zeros are only possible because the rigid body 
motions are explicitly identified in strain gradient notation. As we will see 
in the next step, this simplifies the element formulation process because 
the number of integrals that must be evaluated is significantly reduced.

 STEP 4—INTEGRATION OF THE STRAIN ENERGY 
EXPRESSION

When the nonzero submatrix U22  of Equation 6.8 is expanded, we have 
the following:
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where

t thickness

I d which represents the area of the triangl1

=

= ∫ Ω
Ω

ee

As can be seen in Equation 6.9, every entry contains the term I1 
which is the area of the finite element. This contrasts to higher-order finite 
 elements that require the evaluation of other integrals in addition to the 
area integral.

The area of the element can be determined symbolically as a function 
of the three nodal points that define the triangular element with a determi-
nant as follows:

 

I 1
2

1 1 1
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y y y

x y x y x y x y x y x y /
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1 2 3
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=
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(6.10)

This determinant finds the volume of an area bounded by two sets 
of parallel lines (a rectangular parallelepiped) with a thickness of one 
unit that consists of two triangles that are identical to the shape of the 
finite  element. When the determinant is divided by two as is done in 
 Equation 6.10, the result is the area of the triangular element.

 STEP 5—FORMULATION OF THE TRANSFORMATION TO 
NODAL COORDINATES

As can be seen in Equation 6.7, the strain energy expression is given as 
a function of strain gradient coordinates. In order to be able to assemble 
the individual stiffness matrices into a global model, the individual stiff-
ness matrices had to be expressed in terms of Cartesian coordinates in 
the global x-y system. The need for this coordinate transformation was 
demonstrated in Chapter 2 when the stiffness matrix for the hexagonal 
truss was assembled from the truss elements.

Thus, we must transform the strain energy expression given by 
 Equation 6.7 from strain gradient coordinates to displacement coordinates. 
The transformation required for this change from physically interpretable 
to global Cartesian coordinates is formed from Equation 6.3.
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When Equation 6.3 is cast in matrix form, we have the following:
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where ε,{ }  is defined in Equation 6.6.
The transformation for expressing the strain energy given in the phys-

ically interpretable coordinates by Equation 6.7 to nodal coordinates is 
formed by evaluating Equation 6.11 at each of the three nodal points of the 
element to give the following:

 {d} ,= [ ]{ }Φ ε  (6.12)
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Note that the nodal displacements in the x direction precede the dis-
placements in the y direction. In this form, the structure of the rigid body 
displacements is clear. The first column represents the motion of the three 
nodes in the element when it is experiencing a rigid body displacement in 
the x direction with a magnitude of urb. As can be seen by the locations 
of the ones and zeros, the nodes will move in the x direction, not the 
y direction.

The normal strains are seen to depend on only the x and y displace-
ments. Finally, rigid body rotation in the third column and the shear strain 
representation in the sixth column can be seen to depend on the displace-
ments in both the x and y directions. Examples of these rigid body motions 
and deformations for the hexagonal truss are presented in Figure 3.5.

The inverse of the transformation from nodal displacements to 
strain gradient quantities is used in the element formulation process. 
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This is seen in Equation 6.7. When Equation 6.12 is inverted, we have 
the following transformation from strain gradient quantities to nodal 
displacements:

 { ,} {d}ε Φ= −[ ] 1  (6.13)

where

[ ]Φ
Φ Φ
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− −

− −
=













1 11
1

12
1

21
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22
1

The notation in Equation 6.13 is somewhat ambiguous. However, the 
partitions of this matrix are needed later to simplify the element formu-
lation process. In order to remove this ambiguity, the meaning of these 
partitions will be clarified. The key point is to note, for example, that 
Φ Φ11

1
11

1− −≠ [ ] . The matrix Φ11
1−  is extracted from [Φ]−1 after [Φ] is inverted. 

Similarly, when the transpose of this partition is formed, it is equal to 
[ ]Φ11

1− T. It is not equal to Φ11 11
− −≠T T[ ]Φ .

This partition of [Φ] is isolated because it is associated with the rigid 
body motions. Since the rigid body motions do not produce any strain 
energy, the terms containing this partition will be zero in the strain energy 
expression. Since the terms containing this partition are known to be zero, 
they do not need to be explicitly computed. As a result, the computation 
required to form the stiffness matrix for an element is reduced.

 STEP 6—TRANSFORMATION OF THE STRAIN ENERGY TO 
NODAL DISPLACEMENTS

The strain energy expression given by Equation 6.7 will now be trans-
formed to nodal displacement coordinates by substituting the coordinate 
transformation given by Equation 6.13. When this is done, we have the 
following:
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(6.14)

As noted in Chapter 4, the matrix U  has been evaluated in step 4 and 
[K] is symmetric.
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 STEP 7—APPLICATION OF THE PRINCIPLE OF MINIMUM 
POTENTIAL ENERGY

In Chapter 4, the principle of minimum potential energy was used to 
 identify the theoretical form of the element stiffness matrix. In this  version 
of step 7, we will evaluate the stiffness matrix for a three-node element 
in symbolic form using the theoretical result presented in Chapter 4. 
This will be accomplished by expanding the definition of [K] given in 
 Equation 6.14 as follows:
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When the final expression for the stiffness matrix is extracted from 
Equation 6.15, we have the following:

 
[K]

U U

U U
12

T
22 21

1
12

T
22 22

1

22
T

22 21
1

22
T

22 22
1

=




− − − −

− − − −

Φ Φ Φ Φ

Φ Φ Φ Φ









 (6.16)

The formulation of the three-node element stiffness matrix with 
 symbolic computation is presented in detail in Appendix 6A. This appen-
dix has two functions. The first is to clarify the strain gradient stiffness 
matrix formulation with a concrete example. The second is to provide an 
example of symbolic computation for those unfamiliar with this powerful 
tool (Dow 1999, 2012).

6.4 ELEMENt cONDitiON NuMBERS

Before continuing the formulation of the finite element model, let us 
 consider the quality of a finite element stiffness matrix. In the previous 
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chapter, the quality of a triangle was measured in terms of its geometry. 
The quality was measured by the ratio of the diameter of the inscribed 
circle to the diameter of the circumscribed circle for an element. This 
 measure essentially quantifies how close a triangle is to a circle. With 
this metric, an equilateral triangle has the largest condition number, so the 
closer a triangle is to an equilateral triangle the better it is considered to be.

The quality of the geometry of a triangle was of interest in the previ-
ous chapter because one of the goals of the mesh generator is to produce a 
mesh with triangles that are close to being equilateral triangles. This goal 
is significant for the finite element method because the closer a triangle is 
to an equilateral triangle, the better are its numerical characteristics.

In this section, the quality of a finite element stiffness matrix is 
 measured by the ratio of the minimum nonzero eigenvalue to that of the 
maximum eigenvalue. This measure, called the condition number, relates 
to the difference between the largest and the smallest number in the stiff-
ness matrix. Depending on the number of significant figures in the calcula-
tions, the condition number is related to the accuracy of the displacements 
found from Equation 6.1 due to the round-off in the computations. The 
two measures of quality are compared in Table 6.1.

As can be seen, the triangles shown in Figure 6.3 are ranked in the 
same order by both metrics. However, the condition number for the stiff-
ness matrices deteriorates more rapidly as the configuration departs from 
being an equilateral triangle.

At this point, a comment concerning the need to constrain the stiff-
ness matrix in Equation 6.1 can be made. The stiffness matrix for a single 
planar finite element is capable of representing three rigid body motions. 
In a similar manner, the unrestrained stiffness matrix for a finite element 
model is capable of representing three rigid body motions.

The existence of the three rigid body motions can be seen when an 
unrestrained stiffness matrix of an element or a full model is introduced 
into an eigenvalue solver. For the case of unrestrained stiffness matrices, 
three of the eigenvalues are found to be equal to zero. When the physical 
system is given the displacements associated with the zero eigenvalues, it is 
not deformed. In other words, the system is experiencing rigid body motion.

Table 6.1. Triangle quality metrics

Triangle type Condition number Geometric quality

Equilateral 0.5358 1.0
Right 0.2636 0.8168
Oblique 0.0853 0.4173
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One characteristic of the stiffness matrices for planar elements is 
worth noting. The stiffness matrices for planar elements with different 
sizes, but the same configuration, are identical. For example, the stiffness 
matrix for an equilateral triangle is the same regardless of its size. In other 
words, the stiffness matrices for planar elements are scale-free (Dow and 
Byrd 1981). The demonstration of this counterintuitive characteristic is 
left as an exercise at the end of this chapter.

Since the stiffness matrices for planar elements are scale-free, one can 
conceive of the usefulness of finite element stress concentration libraries. 
This idea which was suggested in Dow and Byrd (1981) can be easily 
implemented with a mesh generator and the error estimators and the mesh 
refinement guides being developed here. With such a library, highly accu-
rate models of stress concentrations with a reduced number of degrees of 
freedom can be inserted in larger problems.

6.5  cREatiON aND aPPLicatiON Of tHE fiNitE 
ELEMENt MODEL

In this section, the MATLAB program that creates the finite element mod-
els used in this presentation is outlined. All of the developments presented 
here are demonstrated with the Kirsch problem shown in Figure 5.2. The 
presentation consists of an outline of the seven steps that comprise the 
program. The outline, in conjunction with the mesh generation program 
presented in Chapter 5 and the element generation program presented in 
Appendix 6A, is presented in order to assist the reader if they choose to 
create a similar program.

The presentation is illustrated with a model formed from a mesh with 
a nodal spacing specified as h0 = 0.2 in the mesh generation program.

The program consists of the following seven steps:

1. Mesh generation
2. Identification of the nodal displacement constraints
3. Formulation of the unrestrained stiffness matrix
4. Formulation of the restrained stiffness matrix
5. Identification and introduction of applied loads
6. Solution of the model for the nodal displacements
7. Extraction of elemental and nodal strains

These seven steps will be discussed in turn.
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STEP 1—MESH GENERATION

The procedure for forming a mesh was presented in detail in Chapter 5. 
As was discussed at length, the output of the mesh generator consists of 
the locations of the nodal points that make up the model and the element 
topology. The x and y coordinates of the nodal points are contained in 
the rows of the matrix identified as p in the mesh generator. The element 
topology is given in the rows of the matrix identified as t and consists of 
the three nodal numbers that identify the individual triangles.

The results of the mesh generator are presented visually in Figure 6.4 
with plots of the mesh with the node and element numbers. As can be seen 
in Figure 6.4a, the four corners of the mesh, which are defined as the first 
four fixed points in the mesh generator, are identified as nodes 1 to 4. The 
coordinates for these four nodal locations are x = ±1 and y = ±1.

The element topology can be extracted from Figure 6.4. For example, 
the topology of element 60 located in the lower left-hand corner is given 
by the identification number of its three nodes, namely, t(60, 3) = 1, 9, 20.

 STEP 2—IDENTIFYING NODAL DISPLACEMENT 
CONSTRAINTS

In order to invert the stiffness matrix for this statics problem, it must 
be constrained so that the three rigid body motions cannot occur. Fur-
thermore, in order to eliminate any effect of the constraints on the stress 
concentration being studied, the constraints must be chosen so they do 

Figure 6.4. Graphical output of the mesh generation program: (a) mesh with 
node numbering and (b) mesh with element numbering.
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not affect the stresses or strains in the problem. This is accomplished by 
constraining three coordinates that have no motion because of the con-
figuration and loading of the problem. These constraints are shown in 
Figure 6.5.

In this case, the following three constraints are chosen. The displace-
ments in the x direction of nodes 5 and 6 that are centered on the top and 
bottom of the square panel are the first two constraints. These constraints 
are shown in Figure 6.5 with the nodes indicated by the circles and denoted 
by u = 0. The displacement of these nodal coordinates will be zero as a 
result of the symmetry of the geometry and the loading of the problem.

Similarly, the third constraint is chosen as the displacement of a node 
that will have zero displacement in the y direction. This constraint consists 
of the displacement in the y direction of node 7 that is designated by the 
circle on the right-hand side of the panel in the center at x = + 1.0 and 
y = 0.0. The displacement is designated as v = 0. These three constraints 
will not allow the model to exhibit either rigid body displacements in the 
two coordinate directions or rotation around the z axis.

 STEP 3—FORMULATION OF THE UNRESTRAINED 
STIFFNESS MATRIX

The assembly of the unrestrained global stiffness matrix for a truss, 
one element at a time, was developed, described, and demonstrated in 

Figure 6.5. Mesh with nodal constraints.
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Chapter 2. The procedure for creating the stiffness matrix for two- and 
three-dimensional finite element models is similar to that used to form 
truss models. In fact, the formulation process for finite element models is 
even simpler.

The feature of a multidimensional finite element that makes the assem-
bly of a global stiffness matrix simpler than for a truss model can be seen in 
Figures 6.4a or 6.4b. This figure shows that the orientation of the individual 
elements is defined in the mesh generation process. In other words, the ele-
mental stiffness matrices for these two-dimensional elements are computed 
directly in terms of global coordinates. This contrasts to the stiffness matri-
ces for truss elements that are initially computed in local coordinates. Then, 
they are rotated so that they are expressed in global coordinates.

 STEP 4—FORMULATION OF THE RESTRAINED STIFFNESS 
MATRIX

As discussed earlier, the unrestrained stiffness matrix must be constrained 
so it can be inverted. As we saw in Equation 6.2 and will see in step 6, the 
stiffness matrix must be inverted if we are to solve for the displacements. 
In step 2, we identified the nodal displacements that will be restrained in 
order to make the stiffness matrix invertible.

The restraining of the three coordinates simply means that we have 
defined the displacements of these degrees of freedom to be zero. In other 
words, we do not need to find these three displacements because they have 
been specified as zero. It is the incorporation of these known displace-
ments that provides the basis for forming the restrained stiffness matrix.

For convenience in the following development, let us assume that the 
three constrained coordinates are the last three coordinates in the uncon-
strained stiffness matrix. This assumption allows us to partition the unre-
strained stiffness matrix in a compact configuration because the final three 
displacements are equal to zero. Since the final three displacements are 
equal to zero, we can partition the unrestrained stiffness matrix as follows:

 

K K
K K
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F
F

11 12

21 22

1 1

2























=












 (6.17)

In this expression, the bottom partition contains the three rows asso-
ciated with the three constrained degrees of freedom. Similarly, the last 
three columns are associated with the three constrained coordinates.
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Thus, if the unrestrained stiffness matrix has n degrees of freedom, 
the four partitions in Equation 6.17 will have the following sizes: matrix 
K11 is a (n − 3) × (n − 3) matrix, matrix K22 is a 3 × 3 matrix, matrix K12 is 
a 3 × (n − 3) matrix, and matrix K21 is a (n − 3) × 3 matrix.

As a result of this partitioning, the top partition of Equation 6.17 can 
be rearranged as follows:

 

K d K 0 F

K d F K 0

K d F

11 1 12 1

11 1 1 12

11 1 1

[ ]{ }+ [ ]{ } = { }

[ ]{ } = { }−[ ]{ }

[ ]{ } = {{ }

 

(6.18)

Before continuing, let us interpret Equation 6.18. The partition [K11] 
of the unrestrained stiffness is the restrained stiffness matrix. It cannot 
undergo any rigid body motion, so all of its eigenvalues are nonzero. In 
other words, the partition [K11] is not singular, so it can be inverted. This 
means that we can now solve for the displacements d1 after we identify the 
load vector F1.

Note that if the constrained displacements are not zero and we denote 
them as d2, they would enter the solution as fictitious applied loads that are 
equal to –[K12]{d2}. Furthermore, if we desire, we can find the reactions 
at the location of the constrained displacements. The reaction forces are 
available from the lower partition of Equation 6.17 as follows:

 F K d2 21 2{ } = [ ]{ }  (6.19)

Before we can solve for the displacements in the Kirsch problem, we 
must first define the applied loads for this problem.

 STEP 5—IDENTIFICATION AND INTRODUCTION OF THE 
APPLIED LOADS

The loading of the Kirsch problem consists of equal and opposite distrib-
uted loads at the two ends of the panel. This loading is shown schemat-
ically in Figure 6.6 as triangles on the end nodes. The triangles on the 
right-hand end, which point to the right indicate tensile loads. In order 
to put the panel in equilibrium, a distributed load of equal magnitude is 
applied in the negative x direction. This is indicated on the figure by the 
triangles on the left-hand end, which point in the negative x direction.
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In the problems solved here, the total distributed load consists of 
10 units at each end of the panel. The total loads on the two ends of the 
panel are indicated in the center of Figure 6.6.

In a three-node finite element, a uniformly distributed load along an 
edge is evenly divided between the two nodes. This means that the loads 
on the top and bottom nodes at x = ±1 and y = ±1 are equal to one-half 
of the loads on the interior nodes since only one element contributes to 
the load.

In Figure 6.6, there are nine interior nodes and two corner nodes at 
each end of the panel. The load on each of the interior nodes is equal to 
one unit. The loads on the corner nodes are equal to one-half of a unit.

STEP 6—SOLVING FOR NODAL DISPLACEMENTS

The nodal displacements for the unrestrained nodes are found by solving 
Equation 6.18. That is to say, the displacements are found by inverting the 
restrained global stiffness matrix to give the following:

d K F

where  {d}
u
v

1 11
1

1{ } = [ ] { }

=












−  (6.20)

Figure 6.6. Mesh with applied loads identified.
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As noted earlier in Equation 6.12, the nodal displacements in the 
x direction, the u’s, are listed first in the displacement vector and the dis-
placements in the y direction, the v’s, are listed second. The displacements 
in the x direction for the problem shown in Figure 6.6 are presented in 
Figure 6.7.

As can be seen in Figure 6.7, the u displacements at the two ends of 
the panel behave as would be expected. The magnitudes of the displace-
ments on the top and bottom edges are smaller than the displacements 
that are closer to the hole. This occurs because the panel is softer in these 
regions because of the presence of the cutout.

 STEP 7—EXTRACTION OF ELEMENTAL STRAINS AND 
STRESSES

The elemental strains are extracted with equations that are used to develop 
the element stiffness matrix. The elemental strains are given in terms of 
the strain gradient quantities in Equation 6.6, which is reproduced here as 
follows:

 ε ε{ } = { }[T] ,  (6.21)

Figure 6.7. Displacements due to the end loads.
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where

ε ε ε γ

ε ε ε γ

{ } =

{ } =

T
x y xy

T
rb 0 rb 0 rb 0 x 0 y 0 xy 0

[ ]

, [(u ) (v ) (r ) ( ) ( ) ( ) ]

[T]] [ [T ] [T ] ]0= ε

Since the finite element model is solved for nodal displacements and 
the strains in Equation 6.21 are expressed in terms of strain gradient quan-
tities, we must use the transformation from the strain gradient to nodal 
displacements in order to find the elemental strains. This is accomplished 
by applying the transformation given by Equation 6.13 that is reproduced 
here for convenience:

 { ,} [ ] {d}1ε Φ= −  (6.22)

When Equations 6.21 and 6.22 are combined, we have the following 
expression for computing the elemental strains:

 ε Φ{ } = −[ ][ ] { }T d1  (6.23)

With the availability of the elemental strains, the elemental stresses 
are found by applying the constitutive relation that was defined in 
 Equation 6.7 during the element formulation process. The stress–strain 
relationship is the following:
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 (6.24)

We will now present samples of the stresses and strains produced 
for one mesh. In the next section, the stresses and strain produced by the 
finite element models formed with the refined meshes will be presented 
and compared in order to identify some characteristics of finite element 
solutions.

6.6  PRESENtatiON Of tHE POiNtWiSE aND 
ELEMENtaL StRESSES aND StRaiNS

The stress and strain distributions for planar problems can be seen most 
clearly in three dimensions when they are plotted as pointwise quantities. 
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If the distributions are plotted with elemental quantities, the plots are diffi-
cult to interpret because of the discontinuities that exist as the interelement 
jumps in the stresses and strains. In other words, the use of pointwise 
quantities smooth the plots.

In this presentation, the pointwise stresses and strains are computed 
as an average of the elemental quantities that intersect at a node. As an 
example, let us consider the nodal strain at node 21, which is in the lower 
left-hand corner in Figure 6.4a. The following six elements in Figure 6.4b 
can be seen to intersect at node 21: 2, 8, 61, 59, 33, 70, and 69. The nodal 
strains at node 21 are taken as the average of these quantities for the 
 individual elements.

These averaged nodal quantities will be referred to as smoothed quan-
tities or smoothed results in the text that follows. When the pointwise 
stresses are computed in this way, they can differ widely from the ele-
mental results. Later, when we compute error estimates, the differences 
between the smoothed quantities and the elemental quantities will be put 
to good use in estimating the errors in the finite element models.

The nodal values for the strain component εx are presented in 
 Figure 6.8a. As can be seen, the strains at two locations on the interior 
circle are significantly higher than the strains elsewhere on the panel. 
The strain distributions in the neighborhood of these critical regions are 
increasing rapidly. As we will see, it is the existence of large gradients in 
the strains that produces significant errors in a finite element result. This 
is the case because the limited strain modeling capability of the individual 
finite elements cannot capture the actual strain distribution.

The nodal stresses for the stress component σx are shown in 
 Figure 6.8b. The critical points contained in Figure 6.8a are seen as stress 
concentrations in Figure 6.8b. The maximum critical stress value for the 
nodal values is found to be 12.95 units/units of area.

Figure 6.8. Nodal strains and stresses for normal values in the x direction, 
h0 = 0.2: (a) nodal strain values for εx and (b) nodal stress values for σx.
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The plane shown in Figure 6.8b with a stress value of 15 units/unit 
area represents the magnitude of the stress concentration for a panel of 
infinite length and width (Budynas 1999). This plane contains an inter-
nal circular hole with a uniformly distributed load of 5 units/unit of area 
on the boundary at x = ±infinity. The actual stress concentration for the 
finite panel pictured here will be significantly higher than that for the 
infinite panel with an identical loading condition. This is the case because 
a smaller area is carrying the load at the critical points.

The preceding comparison with the maximum stress for the infinite 
panel is included to show that the nodal results for the stress concentra-
tions in this rather coarse mesh are not very accurate. The maximum stress 
value for the finite panel should be higher than the stress concentration for 
the infinite panel. As can be seen, the finite element model produced max-
imum stresses that are less than those for the infinite panel. As we will see, 
the mesh must be refined in order to get closer to the exact value for this 
finite problem. For the problem pictured in Figure 6.8, the nominal size of 
the mesh is defined by the variable h0 in the mesh generation program. In 
this case, h0 = 0.2 units.

As mentioned earlier, a plot of the elemental stresses and strains 
over the total domain of a problem is difficult to visualize because of the 
 discontinuities in the stresses. However, when the elemental stresses are 
plotted on the boundary of the internal hole and on the top boundary of 
the panel, salient characteristics of a finite element result are clearly seen. 
The three stress components on the two boundaries for the coarse mesh 
shown in Figures 6.3 to 6.8 will be presented in turn.

For this case, the elements on the boundary of the interior hole are 
identified in Figure 6.9. The locations of these elements in the overall 
mesh can be seen by comparing Figure 6.9 with Figure 6.4b.

Figure 6.9. Elements on the hole 
boundary.
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In order to get the three normal and tangential values for a given ele-
ment, we must transform the stresses in the x–y coordinate system to a 
coordinate system aligned with the edge of the individual elements. This 
requires a rotation of the coordinates through an angle θ, the angle from 
the positive x axis to the center of the element. The transformed strains are 
computed with the following stress transformation:
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 (6.25)

The three components of the stress on the boundary of the internal 
 circle are shown in Figure 6.10. The critical tangential normal stress is 
shown in Figure 6.10a. As can be seen, two stress concentrations are pres-
ent. They correspond to locations at the top and bottom of the hole shown 
in Figures 6.4 and 6.9. The maximum elemental stress value on the bound-
ary is approximately 17.55 unit/unit of area. The normal stress  components 

Figure 6.10. Stress components on the surface of the circular hole: 
(a)  tangential normal stress, (b) normal stress normal to hole, and  
(c) tangential shear stress.
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that are perpendicular to the surface of the individual elements on the cir-
cle are shown in Figure 6.10b. The shear stress components on the faces 
of the individual elements that define the circle are shown in Figure 6.10c.

The basic nature of a typical finite element result can be seen in the 
three stress components of Figure 6.10. Interelement jumps in the stresses 
exist between the elements. Later, we will see that the magnitudes of these 
jumps are indicative of the level of the modeling error at this location in 
the finite element approximation. In other words, the interelement jumps 
provide the basis for identifying the locations and magnitudes of the errors 
in a finite element representation. The model can then be refined in regions 
of excessive error in order to improve the accuracy of the results.

The interelement jumps exist when an element cannot represent the 
higher-order strain gradient conditions that are present in the exact solution 
on the domain of the element. These errors are called discretization errors 
because they are caused when a discrete representation cannot capture 
the continuous solution. As we will see in a later chapter, the refinement 
guides are based on the fact that the strain gradient notation is expressed 
in terms of the physical quantities that produce the displacements in the 
continuum, namely, rigid body motions and strain quantities. As a result, 
this notation can be used to quantify the inability of an individual finite 
element to capture the exact solution.

Another characteristic of a finite element solution is seen in 
 Figures 6.10b and 6.10c. In this model, these two components of stress 
should be equal to zero because the interior of the circle is a free boundary. 
In other words, the internal boundary is not loaded in this problem, so the 
normal and shear stresses on this boundary should be equal to zero.

The existence of errors in the boundary stresses is a characteristic of 
an inaccurate finite element solution. This is the case because the finite 
element method is a variational approach. Variational formulations are 
often referred to as weak formulations. This designation is used because 
only the displacement boundary conditions must be specified in varia-
tional formulations of plane stress. The stress boundary conditions are not 
specified in a variational formulation so the finite element representations 
only approach the actual result as the model is improved.

In contrast, finite difference models are referred to as strong formu-
lations. This is the case because both displacement and boundary stresses 
conditions must be specified in the model. In other words, the finite 
 element and the finite difference approximations are different types of 
solution techniques. We will use this distinction in the development of 
error measures in the next chapter.
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Finally, when the smoothed stresses, which are formed from the 
 average of the nodal stresses, are superimposed on the stresses in the indi-
vidual elements on the boundary of the cutout, the results are shown in 
Figure 6.11. As can be seen in Figure 6.11a, the two stress representations 
for the critical stress component vary widely.

When the maximum value of σx for the smoothed solution is compared 
to the maximum value for the elemental value for σx, there is a significant 
difference between the two values. When the two values are compared in 
an error calculation, ((17.38 – 12.95)/17.38) × 100, we get a difference of 
25.50 percent for the problem shown in Figure 6.4. In the next chapter, we 
will extend the idea of comparing the two types of representations to form 
a pointwise error estimator.

In the case of the two stress components on the boundary of the 
 cutout, they do not vary widely but they also do not satisfy the boundary 
condition on the interior of the circle. The normal stress on the boundary 

Figure 6.11. Comparison of stress components on the surface of the circular 
hole: (a) tangential normal stresses, (b) perpendicular normal stresses, and 
(c) tangential shear stresses.
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shown in Figure 6.11b, which should be zero, is nearly constant at approx-
imately 2 units. In contrast, the shear stress on the boundary of the cutout 
varies sinusoidally between plus +5 units and −5 units. It, too, should be 
equal to zero.

In contrast to the inaccurate representation of the exact solution by 
the finite element model on the interior of the cutout for this model, the 
finite element representation on the top boundary is nearly perfect. In this 
case, the smoothed and elemental stresses for the three stress components 
essentially coincide with each other. Furthermore, the interelement jumps 
are practically nonexistent. The smoothed stresses and the associated 
nodal points are presented in Figure 6.12.

The normal stress in the x direction presented in Figure 6.12a is nearly 
constant at 5 units per square unit. This is equal to the stress that is applied 
to the panel at the two ends. In other words, the top edge is far enough 
from the discontinuity in the panel that it is exhibiting the load that would 
exist if the circular cutout was not present. Similarly, the normal and shear 
boundary stresses shown in Figures 6.12a and 6.12b are nearly equal to 

Figure 6.12. Stress components on the top boundary of the panel: (a) normal 
stress in the x direction, (b) normal stress in the y direction, and (c) shear stress.
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zero along the full length of the panel. This is close to the result that would 
exist in the exact solution.

The accuracy of the stresses on the top boundary for this coarse mesh 
contrasts to the inaccurate results for the stresses on the internal hole. The 
difference is easy to explain. The stresses on the top edge are relatively 
constant. This means that the rate of change of the stresses on the top 
edge of the panel is close to zero. The finite element model is formed with 
three-node elements that are only capable of representing constant strains. 
Since these elements are representing strain states that they are capable of 
representing, they represent them well.

In contrast, the strain distributions on the boundary of the cutout 
are rapidly changing. This occurs because of the very nature of a stress 
concentration. The stress concentration is a high point that is surrounded 
by rapidly changing stresses. The stresses oscillate from a relatively low 
value to a maximum value and go down again.

Since a single three-node element can only represent constant val-
ues, the finite element model must present these changes with stepwise 
 discontinuities. As a result, this attempt to model a rapidly changing 
 continuous result with a finite number of low-order elements produces 
discontinuities. Consequently, the only way to improve the results with 
a model formed with three-node elements is to increase the number of 
elements in regions of rapidly changing strains.

As we will see in the next section, the errors in the finite element 
model in regions of rapidly changing strains are reduced as the mesh is 
refined. The interelement jumps are smaller, the boundary stresses get 
closer to zero, and the differences between the smoothed and the elemen-
tal stresses decrease. These improvements presage the fact that these three 
characteristics, in conjunction with the finite strain modeling characteris-
tics of individual elements, will be exploited to create error estimators and 
refinement guides in later chapters.

6.7 tHE EffEctS Of MESH REfiNEMENt

As just noted, the maximum stress value for the finite element model 
shown in Figure 6.4 is significantly different than the expected value for 
the less severe stress concentrations in an infinite panel. When the mesh 
size is halved by setting to h0 = 0.1 in the mesh generator, the resulting 
mesh is shown in Figure 6.13. Note that the total load for this case is the 
same as that for the coarser mesh shown in Figure 6.6.
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The pointwise strains and the stresses on the domain of the problem 
produced by this refined mesh are presented in Figure 6.14. As can be 
seen, the model has been improved. In fact, the maximum pointwise stress 
of 17.21 units/unit area exceeds the 15 units/unit area that exists in an 
infinite panel.

The elemental stresses on the boundary of the cutout are shown in 
Figure 6.15. As can be seen, the maximum critical stress has increased to 
20.93 from 17.38 in the previous case, and the boundary stresses are closer 
to zero. Note that the improvements in the three elemental stress results 
are accompanied by a reduction in the size of the interelement jumps.

Figure 6.13. Mesh with applied loads identified.
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The smoothed stresses on the cutout are shown superimposed on the 
elemental stresses in Figure 6.16. As can be seen when Figure 6.16 is 
compared to Figure 6.11, the smoothed stresses are closer to the elemental 
stresses than they were in the previous model.

In the previous mesh, we saw that the elemental representation of the 
critical stress was significantly different than the smoothed representation. 
The difference between the maximum stress values was 25.50 percent. In 
this case, a significant difference still exists between the two maximum 
stresses, but it is smaller than in the previous case. The maximum ele-
mental stress for the critical point shown in Figure 6.15a is equal to 20.57 
units/unit area. When the smoothed and elemental values are compared 
in an error computation, ((20.93 − 17.21)/20.93)*100, we get a differ-
ence of 17.80 percent. Again, note that the smaller differences between 
the smoothed and elemental stresses are accompanied by smaller inter-
elements jumps in the stresses.

When we compare the three components of the boundary stress 
shown in Figure 6.15 with those contained in Figure 6.10, we have direct 

Figure 6.15. Stress components on the boundary of the circular hole: 
(a) tangential normal stress, (b) perpendicular normal stress, and 
(c) tangential shear stress.

τtangential stresses on the circle boundary

St
re

ss
 m

ag
ni

tu
de

0 1 2 3

25
20
15
10
5
0

–15
–10
–5

–2–3 –1
Angular position on the circle

σnormal stresses on the circle boundary

St
re

ss
 m

ag
ni

tu
de

0 1 2 3

25
20
15
10
5
0

–15
–10
–5

–2–3 –1

σtangential stresses on the circle boundary

St
re

ss
 m

ag
ni

tu
de

0 1 2 3

25
20
15
10

5
0

–15
–10
–5

–2–3 –1
Angular position on the circleAngular position on the circle

(a) (b)

(c)



134  •  a cONciSE OVERViEW Of tHE fiNitE ELEMENt MEtHOD

visual evidence that the mesh refinement has improved the finite element 
representation. First, the magnitudes of the interelement jumps in all three 
stress components have been reduced. Second, the boundary stresses 
shown in Figures 6.13b and 6.13c are closer to zero than those shown in 
Figures 6.15b and 6.15c. That is to say, the boundary stresses are better 
represented in the refined model.

We could continue to uniformly refine the mesh until the stress and 
strain results converge indicating that we have arrived at an acceptable 
approximation of the actual solution. However, this strategy is both an 
impractical and unnecessary way to reach an acceptable solution. It is 
impractical because of the large number of elements that would exist in 
the model. It is unnecessary because the majority of the new elements 
would be located in regions of low error.

The problem with uniform refinement is demonstrated by  Figure 6.12. 
The results for the stresses on the top boundary produced by this coarse 
mesh are almost perfect. When this course mesh was uniformly refined, 
the stress results on the top boundary were, at most, imperceptibly 

Figure 6.16. Comparison of stress components on the surface of the circular 
hole: (a) tangential normal stresses, (b) perpendicular normal stresses, and 
(c) tangential shear stresses.
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improved. That is to say, the addition of new elements on this boundary 
did not improve the result. They were unnecessary.

The majority of the elements added in a uniform refinement are not 
needed because the strains that occur away from the stress concentration 
do not change rapidly. As a result, these regions are accurately repre-
sented with fewer elements. This fact is the driving force and motivation 
for developing error estimators and mesh refinement guides. With these 
two capabilities, the elements that are added to the model are placed only 
where they are needed in order to improve the model.

The impracticality of uniform refinement exhibits itself in the next 
example. In order to represent the regions with critical points with very 
small elements, the nonuniform mesh shown in Figure 6.17a had to 
be used. The model with a uniform mesh exceeded the memory of the 
 computer used to develop these examples.

In this example, the nominal size of the elements on the boundary 
of the cutout is specified as h0 = 0.005 units in the mesh generator. This 

Figure 6.17. A highly refined nonuniform finite element mesh: 
(a) fine, graduated mesh; (b) individual boundary elements; and 
(c) close-up of boundary elements.
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is 20 times smaller than the nominal element size of h0 = 0.1 used in the 
 previous example. The nonuniform mesh for this problem is shown in 
Figure 6.17a. It contains 17,785 elements and has 9,208 nodes.

The elements that form the boundary of the internal circle are 
shown in Figure 6.17b. There are 486 elements on this boundary. As 
can be seen in both Figures 6.17a and 6.17b, the elements on this 
boundary are too small to be distinguished separately. In Figure 6.17c, 
a portion of the boundary is expanded so the individual elements can 
be seen.

The critical stress is presented in Figure 6.18. As can be seen in 
 Figure 6.18a, the elements are so small that it is impossible to distinguish 

Figure 6.18. Critical stress component on the sur-
face of the circular hole: (a) tangential normal stress 
and (b) an expanded portion Figure 6.18a.
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individual elements. In Figure 6.18b, an expanded view of the stress 
 concentrations at the top of the circle is shown. The maximum value is 
23.92. This is significantly higher than the critical value for σx of 20.93 
found in the previous model. In addition, the interelement jumps in this 
figure are significantly smaller than in the previous models.

The smoothed stresses on the cutout are shown superimposed on the 
elemental stresses in Figure 6.19. As can be seen, the smoothed stresses 
and the elemental stresses are nearly identical for all three stress compo-
nents. As we will see later, this indicates that the finite element model is a 
good representation of the continuous problem.

Finally, when the maximums of the smoothed and elemental  values 
of σx are compared with an error computation, we get the following: 
((23.98 – 23.68)/23.98) × 100 = 1.23 percent. Since the two previous 
models produced error computations of 23.49 percent and 17.80 percent, 
respectively, this heavily refined model produced a significantly smaller 
difference.

Figure 6.19. Comparison of stress components on the surface of the circular 
hole: (a) tangential normal stresses, (b) perpendicular normal stresses, and 
(c) tangential shear stresses.
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The boundary stresses that should be equal to zero are shown in 
 Figure 6.19b and 6.19c. When these plots are compared to the equivalent 
stress components in Figures 6.11 and 6.15, we see that they are signifi-
cantly improved.

As noted earlier, this problem, with a nominal element size on the 
interior boundary of h0 = 0.005, is the largest problem that could be 
solved with the computer being used. When the problem was solved 
with h0 = 0.0055, the difference between the maximum elemental 
stresses for the two problems was 0.25 percent. As a result of this rela-
tive convergence, we can conclude that the error computation that com-
pares the elemental stresses to the pointwise stresses is indicative of the 
accuracy of the  solution. In other words, the estimate of 1.23 percent 
was a reasonable estimate of the accuracy of the representation of the 
critical stresses.

6.8 SuMMaRY aND cONcLuSiONS

In addition to presenting a compact tutorial for forming and solving finite 
element models, this chapter provided the intuitive basis for creating the 
error estimators and the refinement guides that will be presented in the 
next two chapters. The causes of the errors in finite element solutions and 
their effects on the solutions are identified and demonstrated.

It was seen that discontinuities are produced in the stress and strain 
representations when an individual finite element cannot represent the 
complexity of the strain distribution that exists on the portion of the domain 
it is representing. Another form of discontinuity was seen on the loaded 
boundaries of a finite element model. In the examples presented, we saw 
that the stresses on the free boundaries were not equal to zero as should be 
the case. However, they approached zero as the model was improved.

When a mesh is refined, each of the elements, by definition, 
 represents a smaller portion of the overall problem. Consequently, the 
complexity of the strain distribution over the domain of an individual 
element is reduced in critical regions where there are high strain gradi-
ents. As a result, the smaller element is better able to represent the strain 
distribution on its domain with its limited modeling capability. Since the 
individual elements are better able to represent the actual strain distri-
bution, the interelement jumps between the elements are reduced. This, 
in turn, causes the smoothed stresses to approach the elemental stress 
results as the mesh is refined because of the smaller differences between 
the adjacent elements.
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In the next chapter, a solid theoretical basis for the convergence of 
the smoothed and discontinuous solutions is presented. Then, pointwise 
error estimators are developed in terms of the differences between the two 
types of solutions.

6.9 EXERciSES

1. Use the contents of Appendix 6A to form the stiffness matrix for 
two elements of the same shape with different sizes. Note that the 
stiffness matrices are identical.

2. Compute the eigenvalues for a series of elements with different 
shapes and compare their condition numbers to an equilateral tri-
angle. The eigenvalue function can be found in MATLAB through 
the use of “help eig.”

3. Create a program using the outline presented in this chapter and the 
mesh generator presented in Chapter 5 and the three-node element 
presented in Appendix 6A to form a finite element model for the 
Kirsch problem.

aPPENDiX 6a SYMBOLic MatLaB fORMuLatiON 
Of a tHREE-NODE ELEMENt StiffNESS MatRiX

6A.1 INTRODUCTION

This appendix uses symbol manipulation to form the stiffness matrix for 
a three-node finite element representing plane stress. This presentation is 
made for three reasons:

1. To eliminate any ambiguity about the formulation of a stiffness 
matrix with strain gradient notation by relating the equations in 
the main text to MATLAB code and the results produced by these 
MATLAB operations.

2. To demonstrate the reason and to reinforce the fact that the strain 
gradient approach requires only a small number of integrals to be 
evaluated.

3. To demonstrate how operations can be precomputed symbolically 
so that the same calculation does not have to be repeated for every 
stiffness matrix that is formed.
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6A.2  MATLAB DRIVER FOR THREE-NODE STIFFNESS 
MATRIX FUNCTION

1. clc, format compact, clear all, close all % These operations 
 guarantee a clear machine.

2. display(‘dbtype E:\AAChapt6\ThreeNodeDriver’) % If executed, 
the code is listed with line numbers.

3. %
4. % This program drives the function that forms the 3-node stiff-

ness matrix that
5. % uses the output of a symbol manipulation program. This 

means that the computations
6. % are reduced because of observations made during the element 

formulation.
7. %
8. % Input Data: The physical parameters and the geometry for 

several elements.
9. %

10. % Enter physical quantities:
11. E=10.0 % Young’s modulus.
12. nu=0.3 % Poisson’s ratio.
13. t=1 % Thickness.
14. %
15. % Geometry for Triangle 1
16. % x=[0.0 2.0, 1.0], y=[0.0, 0.0, 1.0]
17. %
18. % Geometry for Triangle 2
19. % x(1)=0.0,x(2)=4.0,x(3)=2.0, y(1)=0.0,y(2)=0.0,y(3)=2.0
20. %
21. % Geometry for Triangle 3
22. % x(1)=-1.0,x(2)=1.0,x(3)=0.0, y(1)=0.0,y(2)=0.0,y(3)=1.0
23. %
24. % Geometry for Triangle 4, one-half triangle 3. Get same K.
25. %x=[-0.5 0.5 0.0], y=[0.0 0.0 0.5]
26. %
27. % Geometry for Triangle 5, Equilateral
28. x(1)=-1.0; x(2)=1.0; x(3)=0.0, y(1)=0.0;,y(2)=0.0;,y(3)=0.866*2
29. %
30. figure(1)
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31. plot([x(1,:),x(1,1)],[y(1,:),y(1,1)])
32. %
33. [K]=SymStiff3(x,y,E,nu,t)

1. function [K]=SymStiff3(x,y,E,nu,t)
2. % Form stiffness matrix for 3-node element using output of 

symbol manipulation program.
3. display(‘dbtype E:\AAChapt6\SymStiff3’)
4. %
5. % Input data
6. % x’s = x locations of element nodes.
7. % y’s = y locations of element nodes.
8. % E = Young’s modulus.
9. % nu = Poisson’s ratio.

10. % t = thickness of element.
11. %
12. % Internally generated parameters.
13. % a = Coefficient in the plane stress constitutive relation, 

a = (1-n)/2.
14. % m = multiplier in the plane stress constitutive relation, m = E/

(1-n^2).
15. % I1 = The single integral in the 3 node stiffness matrix, the 

area.
16. %
17. x1=x(1);x2=x(2);x3=x(3); y1=y(1);y2=y(2);y3=y(3); % Nodal 

coordinates.
18. %
19. n=nu, a=(1-n)/2, m=E/(1-n^2); % Physical quantities.
20. I1=(x1*y2-x2*y1-x1*y3+x3*y1+x2*y3-x3*y2)/2; % Area of 

triangle.
21. %
22. U22 =(I1*m*t)*[1, n, 0; n, 1, 0; 0, 0, a]; % Constitutive Relation.
23. %

6A.3  MATLAB FUNCTION FOR FORMING THREE-NODE 
STIFFNESS MATRIX
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24. PhiInv21 =[y2-y3,y3-y1,y1-y2;0,0,0;x3-x2,x1-x3,x2-x1]/(2*I1); 
% Eq. 6.13

25. PhiInv22 =[0,0,0;x3-x2,x1-x3,x2-x1;y2-y3,y3-y1,y1-y2]/(2*I1); 
% Eq. 6.13

26. PhiInvTran12 =[y2-y3,0,x3-x2;y3-y1,0,x1-x3;y1-y2,0,x2-x1]/
(2*I1); % Eq. 6.16

27. PhiInvTran22 =[0,x3-x2,y2-y3;0,x1-x3,y3-y1;0,x2-x1,y1-y2]/
(2*I1); % Eq. 6.16

28. %
29. % Now form the partitions that make up Eq. 6.16.
30. KPart11=PhiInvTran12*U22*PhiInv21; % Form the partition 

K11 for Eq. 6.16.
31. %
32. KPart12=PhiInvTran12*U22*PhiInv22; % Form the partition 

K12 for Eq. 6.16.
33. %
34. KPart22=PhiInvTran22*U22*PhiInv22; % Form the partition 

K22 for Eq. 6.16.
35. %
36. % Now assemble the full matrix, Eq. 6.16
37. K=[KPart11 KPart12; KPart12’ KPart22]



cHaPtER 7

Pointwise error estimAtors

7.1 iNtRODuctiON

The motivation, insight, and approach for creating elemental error esti-
mators were provided by the results presented in the previous chapter. 
The motivation for developing the ability to estimate errors in individual 
elements was demonstrated when uniform refinement was applied to the 
Kirsch problem shown in Figure 7.1.

It was shown that the strategy for improving a model by simply 
reducing the size of every element is both unnecessary and impractical. 
Uniform refinement is unnecessary because a majority of the elements are 
added in regions that already have acceptable accuracy. Repeated appli-
cation of the process is impractical because adding unneeded elements 
produces overly large and, hence, inefficient models.

A comparison of Figures 6.10a, 6.15a, and 6.18b reproduced here 
as Figure 7.2 provides the insight that allows the source of the errors 
that exist in finite element results to be identified. As can be seen, the 
 magnitudes and the accuracy of the critical stresses in the representations 
are increasing as the size of the elements is reduced. Correlated with the 
improvement in the solution is a reduction in the magnitudes of the inter-
element jumps in the stress. Thus, we can conclude that the jumps quantify 
the inability of the individual elements to represent the exact solution.

The relationship between the errors and the jumps can be explained 
as follows. As can be seen in Figure 7.2, two things occur when the size 
of an element is reduced. On the one hand, an individual element covers a 
smaller portion of the domain of the problem. On the other hand, the sizes 
of the interelement jumps decrease as the element size decreases.

In other words, the portion of the solution that a smaller element must 
represent in a region of high error is simpler than that for a larger element. 
In terms of a Taylor series representation, the lower order coefficients in 
this smaller portion of the exact solution contribute more to the represen-
tation than they did in the larger segment of the exact solution. As a result, 
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the low-order modeling capabilities of an individual element are better 
able to represent this smaller portion of the exact solution. Hence, the 
errors and the interelement jumps are smaller.

Figure 7.2. Tangential normal stress distributions: (a) nominal mesh size, 
h0 = 0.2; (b) nominal mesh size, h0 = 0.1; and (c) nominal mesh size, h0 
= 0.005.
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In addition to providing the insight for identifying the source 
of the errors in finite element models, an approach for estimating the 
 magnitude of the errors in individual elements was demonstrated in 
Chapter 6. In that demonstration, a smoothed solution was formed by 
averaging the elemental stresses at the nodes. The errors were estimated 
in terms of the difference between the discontinuous finite element 
stresses and the smoothed stress representations at the nodes. The use of 
this difference in stresses as an error measure is useful because it allows 
the errors to be expressed in terms of quantities that are important in 
the design process, namely, stresses or strains. However, the use of this 
difference between solutions as an error estimator was not put on a solid 
theoretical foundation.

One might argue that the smoothed solution is closer to the exact solu-
tion of the problem being solved than the finite element result because it 
does not contain discontinuities. This is an appealing argument because 
the size of interelement jumps is an indicator of the magnitude of the 
errors. However, this conjecture is difficult to support.

One reason for this difficulty is that the smoothed stresses in inter-
mediate refinements are often less accurate than the discontinuous finite 
element result. This is illustrated by comparing the initial results shown 
in Figure 6.11a to the nearly converged results shown in Figure 6.18a, 
which are presented here as Figure 7.3a and 7.3b, respectively. When 
these results are compared, we see that the smoothed result at the point of 
maximum stress in the initial model is further from the nearly converged 
result than is the discontinuous finite element result.

Since we cannot consider the smoothed solution as a better solution 
than the finite element result, the following question arises: How are we 
going to guarantee that the difference between the two types of solution 
can serve as a reliable error estimator? We will provide this guarantee 

Figure 7.3. Comparison of approximate solutions: (a) finite element and 
smoothed approximations and (b) nearly converged finite element result.
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by showing that the smoothed solution must also converge to the exact 
solution. Thus, the differences between the two distributions can be inter-
preted as deficiencies in the model. These differences will be quantified to 
give the error estimates.

7.2 OBJEctiVES

The primary objective of this chapter is to provide a solid theoretical basis 
for using the difference between the smoothed solution and the discontin-
uous finite element result as the basis for an error estimator. The secondary 
objective is to demonstrate the efficacy of using the smoothed solution in 
an error estimator.

The argument for using the difference between these two significantly 
different types of solution as the basis for an error estimator is expressed 
succinctly by Sherlock Holmes. When speaking to his associate Dr. John 
Watson, he says, 

When you follow two separate chains of thought,  Watson, you will 
find some point of intersection that should approximate the truth. 
(Doyle 1917)

By definition, the discontinuous finite element solution is a  product 
of the finite element method. In contrast, the smoothed solution is an approx-
imation of a finite difference solution. As we shall see, both solution tech-
niques produce results that will converge to exact solutions by minimizing 
the potential energy in the problem. However, the two methods use signifi-
cantly different approaches to minimize the potential energy and produce 
their solutions. These differences are described in detail in the next section.

In other words, both methods pursue the same goal, but with  different 
chains of thought. Thus, we shall conclude that the differences between 
the two approximate solutions are due to errors in the model that approxi-
mates the problem since they are derived from the same mesh. The effec-
tiveness of using the differences between the two solutions to identify 
error in finite element models is demonstrated in a later section.

In brief, the difference between the two approximate solution tech-
niques for minimizing the potential energy in the problem can be described 
as follows. The finite element method minimizes the strain energy in a 
model of the physical system. In contrast, the finite difference method 
models the governing differential equations and the boundary conditions 
at the nodal points. These equations supply the necessary and sufficient 
conditions for minimizing the potential energy.
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As a final note, it should be emphasized that the approximate 
finite difference solution used in the error analysis is derived from 
the finite element result. A finite difference model does not have to be 
formed and solved. This note is added because of a misapprehension 
that has occurred in several seminars and paper presentations made by 
the author.

7.3  a cOMPaRiSON Of tHE fiNitE ELEMENt 
aND fiNitE DiffERENcE MEtHODS

In this section, the similarities and the differences in finite difference and 
finite element methods are presented in detail. The two methods are shown 
schematically in Figure 7.4. As can be seen, the starting point for the two 
approximate solution techniques is identical. The objective of both meth-
ods is to find the displacements that minimize the strain energy in their 
respective models.

Furthermore, if the models have the same nodal locations, they will 
converge to the same result as the model is refined. However, the fact that 
they find these displacements in different ways is implied by the different 
paths the two methods take to reach their results.

Figure 7.4. A schematic of the finite element and finite 
difference methods.
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The starting point for both methods is the creation of the functional 
that expresses the potential energy for the problem. It is this quantity that 
must be minimized in order to find the displacements that are the solution 
to this problem. The functional for the plane stress problem is as follows 
(Dow 1999):
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Equation 7.1 is classified as a functional because it is a function of 
functions. When Equation 7.1 is examined, we see that it fits this category. 
This equation depends on the two displacement functions, u and v, and 
their derivatives over the domain of the problem, which is denoted as Ω. 
This means that the functions for both u and v that minimize the potential 
energy functional must be found to solve this problem exactly. In both the 
finite difference and finite element methods, the functions are approxi-
mated by finding the displacements at a discrete number of points.

Before a finite difference model can be created, one must identify the 
governing differential equations and the boundary conditions for the prob-
lem. As shown in Figure 7.4, the governing differential equations are found 
by applying the Euler–Lagrange equations to the potential energy functional.

Application of the Euler–Lagrange equations to a functional identifies 
the necessary and sufficient conditions for minimizing the functional. In 
this case, these conditions comprise the governing differential equations 
and the boundary conditions for the plane stress problem. This approach 
for finding these equations is used instead of applying equilibrium in 
order to show that both the finite difference and finite element methods 
are solving the same problem, namely, minimizing the potential energy in 
the problem. The Euler–Lagrange equations are derived and demonstrated 
in Chapter 2—The Calculus of Variations and in Chapter 3—The Plane 
Stress Problem of Dow (1999).

The application of the Euler–Lagrange equations to the potential 
energy functional for the plane stress problem produces the following 
equilibrium equations in the x and y directions:
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where px and py are the distributed loads in the x and y directions over the 
domain of the problem.
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Another significant difference between the finite element and finite 
difference methods can be seen by comparing Equations 7.1 and 7.2. 
The functional given by Equation 7.1 contains the functions u and v 
and their first derivatives. The governing differential equations given by 
 Equation 7.2 contain the second derivatives of the functions u and v. These 
differences show that the two approximation solution techniques follow 
different paths in order to form their solutions.

As would be expected in the finite difference method, the derivatives 
contained in the governing differential equations are approximated with 
difference approximations. The finite difference method for this problem 
is developed and applied in detail in “Part IV—The Strain Gradient Refor-
mulation of the Finite Difference Method” (Dow 1999). In this treatment 
of the finite difference method, it is seen that the finite difference method 
can also solve practically any problem that can be solved by the finite ele-
ment method. This extension of the method’s capabilities and the fact that 
it is easier to form finite difference models than finite element models may 
infuse the method with new life in solid mechanics.

In the application of the finite element method, the domain of the prob-
lem is subdivided into relatively simple regions as shown in  Figure 7.1. 
The strain energy expression and the work function due to the loads 
applied to the problem are formed as presented in Chapter 4. The resulting 
stiffness matrices and loads are assembled as demonstrated in Chapter 2. 
As noted in Chapter 2, the minimization procedure that is indicated in the 
flowchart for the finite element method shown in Figure 7.2 is implicitly 
contained in the element assembly process. The displacements are found 
by solving the resulting algebraic equations.

As a further reinforcement of the idea that the finite element and finite 
difference methods use different approaches to achieve the same objective, it 
can be seen that the structure of the equations solved by the two approaches 
are significantly different. The finite difference equations consist of an 
assembly of equations in the form of rows. The finite element equations are 
formed from the assembly of rectangular blocks of stiffness properties.

7.4  aN aLtERNatE fORMuLatiON Of a 
SMOOtHED StRESS REPRESENtatiON

This section develops a smoothed stress representation on the boundary 
of the internal cutout in the Kirsch problem that includes the zero stress 
boundary conditions. As a result, this smoothed solution is closer to an 
actual finite difference solution than the smoothed solution formed by 
averaging the finite element stresses at the nodes.
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This development has two objectives. The first is to show that the 
smoothed solution formed by averaging the finite element stresses will 
produce an effective error estimator. This is accomplished by demon-
strating that the two smoothed representations approach each other as the 
model is refined. The resulting error estimator is demonstrated in a later 
section.

The second objective of this section is to present and explain the pro-
cedure for introducing the stress boundary conditions into the smoothed 
solution. This procedure is presented for two reasons. The first is to 
show a further separation between the finite element and finite difference 
 methods. This, in turn, reinforces the idea that the error estimator is based 
on the difference between two dissimilar chains of thought.

The second reason is to clarify the procedure for introducing the 
stress boundary conditions into finite difference models. This feature of 
the finite difference method is rarely, if ever, discussed in detail in most 
treatments of the finite difference method. The finite difference method is 
too important to have a key feature that is not clearly understood. In many 
presentations of the finite difference method, the treatment of the bound-
ary conditions is so ambiguous as to discourage the use of the method.

The inclusion of boundary stresses introduces nodes that are not on 
the domain of the problem being solved. Examples of such nodes are 
shown in Figure 7.5 as circles on the interior of the cutout in the Kirsch 
problem. These nodes are called fictitious nodes because they are not on 

Figure. 7.5. Mesh with fictitious nodes.
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the domain of the problem. As can be seen in the figure, one fictitious node 
is present for each node on the boundary of the circle.

The fictitious nodes are similar to the nodes on the domain of the 
problem. Each fictitious node has two unknown displacements associated 
with it. These two unknown displacements provide an avenue for intro-
ducing the two boundary stresses into the problem. Since the interior of 
the circle is a free boundary, the normal stress and the shear stress on the 
boundary are equal to zero.

In this application, the fictitious nodes are used in conjunction with 
nodes on the domain of the problem to form a set of nodes that surround 
each of the nodes on the internal boundary. Since the node of interest is 
 surrounded, it is in the center of the group of nodes. The displacement of this 
central node and of the nodes surrounding it are used in conjunction with 
Taylor series expansions to form approximations of derivatives at the central 
node. Consequently, this group of nodes is referred to as a central difference 
template. A sample central difference template is shown in Figure 7.6. The 
central node for this template is the boundary node number 49.

The central difference templates are used in conjunction with the 
stress transformation given by Equation 6.22 to enforce the normal and 
shear stresses that exist at each node on the interior of the circle. The 
three stresses in the x–y coordinate system are expressed in terms of the 
displacements in the central difference template. The displacements are 
substituted into the stress transformation given by Equation 6.22 to pro-
duce two equations. These equations are used to find the displacements of 
the fictitious nodes.

Now that we know all of the displacements for the templates associ-
ated with a boundary node, we can compute the third stress component at 

Figure 7.6. Template example.
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each node on the circle. The third stress component, the tangential normal 
stress, is the critical stress component for this problem.

In other words, a smoothed stress representation is formed on the 
boundary that is a closer representation of a finite difference solution than 
what would be produced by averaging the finite element stresses. In the next 
section, the boundary stress found by this procedure will be compared to the 
stresses formed by smoothing the finite element stresses on the boundary.

7.5 a cOMPaRiSON Of SMOOtHED StRESSES

In the series of figures presented in this section, we will compare the 
two smoothed stress representations for the stresses on the boundary of 
the internal cutout in the Kirsch problem as the finite element model is 
refined. We will see that the smoothed stress formed by averaging the dis-
continuous finite element nodal stresses become practically indistinguish-
able from the smoothed stresses found by including the known boundary 
stresses using the central difference templates as the mesh is refined.

In other words, we are comparing the averaged nodal stresses to nodal 
stresses that are close to actual finite difference stresses. Since they become 
practically indistinguishable, we can conclude that the smoothed stress 
formed by averaging the discontinuous finite element nodal stresses can 
be considered as an approximate finite difference result. As a result, the 
smoothed stresses formed from the discontinuous finite element stresses 
and discontinuous finite element stress representations can be considered 
as coming from two significantly different solution techniques. Conse-
quently, we can conclude that any differences between the two smoothed 
solutions are due to errors in the finite element model. The comparison 
with actual finite difference solutions is left as an exercise for the reader.

The three stress components on the boundary of the internal cutout 
for the case where the nominal mesh size is h0 = 0.2 are presented in 
Figure 7.7. The three plots have the same scale so they can be easily com-
pared. As would be expected, both the shear and normal boundary stresses 
for the finite difference model are exactly zero since these quantities were 
imposed on the boundary with the central difference templates. As would 
be expected, the finite element representations are not zero because the 
boundary conditions are not imposed on finite element models. In fact, 
these boundary stresses will only reach zero in a fully converged finite 
element solution.

In the case of the critical stress, namely, the normal stress that is 
 tangent to the surface of the circle, the two approximations have the same 
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shape, but they are not identical. The conclusion to be drawn from this 
is that the approximate finite difference representation formed using the 
fictitious points is probably a better representation of the actual finite dif-
ference result than is the smoothed solution formed by averaging the finite 
element stiffness results.

The three stress components on the boundary of the internal cut-
out for the case where the nominal mesh size is h0 = 0.1 are presented 
in  Figure 7.8. Again, both the shear and normal boundary stresses for 
the finite difference model are exactly zero since these quantities were 
imposed on the problem. Again, the finite element representations are not 
zero. However, they are closer to zero than they were in the previous mesh.

More importantly, the critical stresses for the two smoothed solutions 
are closer to each other than they were in the previous case. In addition, 
the maximum critical stress has increased for both smoothed solutions. As 
the mesh is further refined and the errors are estimated, we will see that 

Figure 7.7. Smoothed stress comparisons for h0 = 0.2 units: (a) boundary 
shear stress, (b) boundary normal stress, and (c) critical normal stress.
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the maximum value for the critical stress is closer to the converged value 
than it was in the previous mesh.

The three stress components on the boundary of the internal cutout 
for the case where the nominal mesh size is h0 = 0.025 are presented 
in Figure 7.9. Again, both the shear and normal boundary stresses for 
the finite difference model are exactly zero since these quantities were 
specified. As in the previous cases, the finite element representations are 
not zero. Again, they are closer to zero than they were in the previous 
mesh. More importantly, the critical stress has gotten larger and the two 
smoothed solutions are nearly identical.

These results lead to the conclusion that the smoothed solution 
formed from the finite element stresses leads to acceptable error estimates. 
These error estimates are used as termination criteria. If the errors are 
below some predefined level for every element, the analysis is terminated 
because the solution is deemed accurate enough for use.

Figure 7.8. Smoothed stress comparisons for h0 = 0.1 units: (a) boundary 
shear stress, (b) boundary normal stress, and (c) critical normal stress.
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7.6 fORMuLatiON Of aN ERROR EStiMatOR

In this section, an error estimator for evaluating the modeling effective-
ness of individual elements is defined. This error estimator evaluates the 
error in the εx strain component of each element.

This metric is chosen for this presentation because the stresses at 
the critical point in the Kirsch problem are primarily due to this strain 
component. As a result, this becomes the simplest metric with which to 
demonstrate the efficacy of error estimators formed using smoothed finite 
element results.

One of the most useful characteristics of this approach to forming 
error estimators is that the errors can be estimated in practically any quan-
tity based on stresses or strains. For example, a metrics based on the mag-
nitude of the principal stresses in a material or the failure criteria based on 
shear quantities could be used for ceramic materials.

Figure 7.9. Smoothed stress comparisons for h0 = 0.025 units: (a) boundary 
shear stress, (b) boundary normal stress, and (c) critical normal stress.
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The error estimates for the individual three-node elements are com-
puted in the following way. The difference between the finite element 
strain component εx and the smoothed strain component εx is computed at 
each node in the element. Then, the largest magnitude of this difference 
for each element is taken as the error in the element. The error is then 
 normalized with respect to the largest magnitude of εx that exists in the 
model and is expressed as a percentage.

In equation form, the error measure for an individual element in the 
normal strain in the x direction is the following:
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where i refers to the element number and j refers to the smoothed 
strains at the three element nodes.

The errors at the nodes can be used in constant strain and linear strain 
elements, that is, three- and six-node triangles, because the largest magni-
tudes must exist at the nodes of the element. In the case of quadratic strain 
elements, that is, 10-node triangles, the maximum stresses and strains can 
exist on the interior of the element. However, this would only be the case 
at maximum or minimum points.

7.7 aPPLicatiON Of aN ERROR EStiMatOR

In this section, the error estimator formed in the previous section is applied 
to a series of refined meshes for the Kirsch problem. This error estimator 
evaluates the error in the εx strain component of each element.

The first model evaluated is formed with h0 = 0.2 as the basis for the 
mesh generator that was presented in Chapter 5. The estimated errors are 
presented in Figure 7.10. Figure 7.10a contains the error estimates for 
the εx component in the normal strain in every element on the mesh. As 
would be expected, the maximum errors occur in the region of the critical 
stresses. The maximum estimated errors of 59 and 61 percent are shown at 
the top and bottom of the internal cutout. Note that the errors on the outer 
boundary of the square domain range from 0 to 19 percent.

The errors in the elements that form the boundary of the internal 
 cutout are shown in Figure 7.10b. These boundary errors range from 6 
to 61 percent. This magnitude of the maximum error makes this result 
unacceptable for evaluating a design.
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When the nominal size of the elements in the mesh is halved by 
 setting h0 = 0.1 in the mesh generator, the estimated errors are presented 
in Figure 7.11. As can be seen in Figure 7.11a, the maximum error in 
the  critical strains is 41 percent in both the top and bottom locations 
of the cutout. The errors in the elements that form the boundary of the 
 internal cutout are shown in Figure 7.11b. These boundary errors range 
from 3 to 41 percent.

The maximum error of 41 percent is a reduction from the maximum 
of 61 percent that existed in the previous model. This maximum error 
is still unacceptably high. An acceptable value would depend on many 

Figure 7.10. Elemental strain errors in σx: (a) errors on problem domain and 
(b) errors on circle boundary.
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Figure 7.11. Elemental strain errors: (a) errors on problem domain and 
(b) errors on circle boundary.
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factors such as the size of the safety factor used in the design. Note that 
the maximum stress has increased to 18.56. In the previous model, the 
maximum stress was 12.71. In addition, the errors away from the stress 
concentration and on the outer boundary have been reduced from a maxi-
mum of 19 percent to a maximum of 9 percent

The estimated errors are presented in Figure 7.12 for the case where 
the nominal size of the elements in the mesh is halved again by setting 
h0 = 0.05 in the mesh generator. Here, the maximum error in the critical 
strains is 27 percent. This can be seen in the portion of the mesh at the top 
of the cutout presented in Figure 7.12a. The mesh in this model is so fine 
that the estimated errors are only discernable if a section of the mesh is 
expanded. The errors in the elements that form the boundary of the inter-
nal cutout are shown in Figure 7.12b. These boundary errors range from 
2 to 27 percent.

This is a reduction from the maximum of 41 percent that exists in 
the previous model. This error of 27 percent is still unacceptably high. 
Note that the maximum stress has now increased to 21.68. In the previous 
model, the maximum stress was 18.56. As can be seen, the errors away 
from the stress concentration continue to shrink.

The sequence of results just presented has shown that the error esti-
mates decrease as the mesh is refined as would be expected. We could 
continue to make incremental changes in the size of the mesh until an 
acceptable level of error has been achieved. Instead, we will present the 
results for a level of mesh refinement that produces an acceptable level 
of error.

When the nominal size of the elements in the mesh is reduced by a 
factor of 10 by setting h0 = 0.005 in the mesh generator, the estimated 

Figure 7.12. Elemental strain errors: (a) errors on problem domain and 
(b) errors on circle boundary.
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errors are presented in Figure 7.13. The maximum error in the critical 
strains is 4 percent. This can be seen in the portion of the mesh presented 
in Figure 7.13a. The errors in the elements that form the boundary of the 
internal cutout are shown in Figure 7.13b. These boundary errors range 
from 1 to 4 percent. The error in the critical region at the top of the cutout 
is 2 percent.

This results in a reduction from the maximum of 27 percent that 
existed in the previous model. An error of 2 to 4 percent is an acceptable 
value for design purposes. Note that the maximum stress has increased to 
24.01. In the previous model, the maximum stress was 21.68.

The upper left-hand corner of the mesh for this model is shown in 
Figure 7.14. The purpose of this figure is to show that the errors away from 
the stress concentration featured in Figure 7.13 are small.

Figure 7.13. Elemental strain errors: (a) errors on problem domain and 
(b) errors on circle boundary.
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Figure 7.14. Elemental strain errors.
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7.8 SuMMaRY aND cONcLuSiONS

In Chapter 6, we saw that the interelement jumps in stresses and strains 
were reduced as the mesh was refined. These jumps are interpreted as 
identifying when an element cannot capture the complexity of the stresses 
and strains that exist in the exact solution on its domain.

In this chapter, we demonstrated that these jumps could be exploited 
to form reliable error estimators with a solid theoretical foundation. This 
was accomplished by showing that a smoothed solution could be formed 
from the discontinuous finite element solution and that this could be taken 
as an approximate finite difference solution.

The difference between the approximate finite difference solution 
and the discontinuous finite element solution provides an estimate of the 
error in the finite element solution because both the finite element and 
the finite difference solutions converge to the exact solution as the mesh 
is improved. Since the two approximate methods seek their solutions in 
significantly different ways, the difference between the two solutions 
 indicates flaws in the discrete model.

In the next chapter, the results produced by the error estimator will 
be used as the basis for identifying elements that must be subdivided in 
order to achieve a desired level of error in the finite element solution. In 
addition, the error estimates will be used to identify the level of refine-
ment needed in order to reduce the error to the desired level in only a few 
refinements.

7.9 EXERciSES

1. Form the error estimators over the full domain of the problem.
2. Form the finite difference version of the smoothed solution with 

finite difference templates as a set of simultaneous equations where 
the finite difference templates contain three fictitious nodes.

3. Solve a sequence of refinements of the Kirsch problem with the 
finite difference method and compare the stress results to the 
smoothed solution formed by averaging the finite element stress 
results.



cHaPtER 8

simPLe And effective 
refinement guides

8.1 iNtRODuctiON

In the previous chapter, a procedure was created for estimating the magni-
tude of the errors in individual elements. When a model contains elements 
with high levels of error, these elements must be subdivided in order to 
improve the representation. In this chapter, a procedure is developed and 
demonstrated to identify the number of subdivisions that must be given to 
high-error elements in order to achieve the desired level of accuracy. The 
insight that provides the basis for the refinement guide is seen in Figure 8.1.

Figure 8.1 presents the tangential normal stress on the internal cutout 
of the Kirsch problem for a sequence of mesh refinements. This rapidly 
changing stress distribution contains the critical stress for this problem. As 
can be seen in Figure 8.1, the maximum stress increases in magnitude as 
the mesh is refined. The increasing maximum stresses in the three figures 
are 17.21 units, 20.93 units, and 23.98 units, respectively.

The reason for the correlation between the accuracy, which is embo-
died by the size of the interelement jumps, and the element size was 
 identified in the previous chapter. The interelement jumps decrease as the 
high-error elements are subdivided. This occurs because the portion of 
the exact solution that each subdivision represents is smaller than was 
represented by the original element. As a result, the contribution of the 
higher-order Taylor series terms in the exact solution that the element 
must represent are getting smaller since the size of the element is smaller. 
As a result, the elements are better able to represent the underlying exact 
solution and the interelement jumps are reduced.

We will use this knowledge in order to create a simple and effi-
cient refinement guide. The refinement guide estimates the number of 
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 subdivisions that must be given to the high-error elements in order to 
reduce the level of error in the model to a specified level. The refinement 
guide is formed by comparing the modeling capability of an element to an 
approximation of the exact solution that it is trying to represent.

8.2  a REPRESENtatiON Of tHE MODELiNg 
ERROR

We will now form a representation of the approximate modeling error that 
exists in an individual finite element. This will be done by first  forming a 
Taylor series approximation of the exact solution that exists on the domain 
of an element. This approximation is then compared to the modeling 
 capability of the element.

The development presented here is demonstrated by applying it to the 
normal strain in the x direction. This component was chosen because it 

Figure 8.1. Tangential normal stress distributions: (a) nominal mesh size, 
h0 = 0.2; (b) nominal mesh size, h0 = 0.1; and (c) nominal mesh size, 
h0 = 0.005.
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is the largest component of the critical stress in this problem. Analogous 
procedures apply to the other strain components as well as to the stress 
components. Evaluating another variable would only be repetitious.

The exact representation of the normal strain in the x direction that 
an individual element is attempting to represent can be expressed with the 
following infinite Taylor series expansion:

εx(x,y) = (εx)0 + (εx,x)0 x + (εx,y)0 y+½ (εx,xx)0 x
2 + (εx,xy)0 xy + ½ (εx,yy)0 y

2 +
 (8.1)

Since a three-node element can only represent the constant strain 
terms, the errors in the finite element representation of εx are due to the 
inability of the individual elements to model the higher-order terms. 
When the constant strain component is removed from Equation 8.1, the 
 components that an element cannot represent are left. In other words, the 
error in a three-node element is produced by the higher-order terms that it 
cannot represent, which is given as follows:

Error (εx) = (εx,x)0 x + (εx,y)0 y+ ½ (εx,xx)0 x
2 + (εx,xy)0 xy + ½ (εx,yy)0 y

2 + 
 (8.2)

In the refinement guides developed here, we will assume that the 
majority of the error is due to the inability of an element to represent 
the lowest-order terms in the error expressions. That is to say, the major-
ity of the error in a three-node element is assumed to exist because the 
 element cannot represent the linear terms in the strain representations. For 
the strain component under consideration here, the assumed error is given 
as follows:

 Assumed Error (εx) = (εx,x)0 x + (εx,y)0 y (8.3)

The significant feature of Equation 8.3 is the fact that the errors vary 
linearly with the dimensions of the element being analyzed. As the ele-
ment is subdivided, the dimensions of the element are, by definition, being 
reduced. Consequently, the errors are reduced. Note that the contribution 
of the quadratic and higher-order terms will decrease even faster than 
the linear terms as the element size is reduced. The errors in the εy and 
γxy strain components and the three stress components for a three-node 
 element have a similar linear form.

In contrast, if six-node elements are used to form a finite element 
model, these elements can represent the linear strain terms in addition 
to the constant strain terms. As a consequence, the assumed error in a 
six-node element is due to the quadratic terms that the element cannot 
represent. That is to say, the errors in a six-node element representation of 
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εx(x,y) are assumed to be largely due to the element’s inability to represent 
the following quadratic terms:

 Assumed Error (εx) = ½ (εx,xx)0 x
2 + (εx,xy)0 xy + ½ (εx,yy)0 y

2  (8.4)

In this case, the error terms vary quadratically with the dimensions of 
the element being evaluated. Since the errors in six-node elements decrease 
quadratically instead of linearly, a refinement of a six-node  element pro-
duces faster improvements in the solution than does the refinement of a 
three-node element.

In brief, the refinement guide developed here relates the modeling 
capability of an individual element to the assumed error in the portion of 
the exact solution that underlies the element. After the assumed error is 
computed, the number of subdivisions needed to reduce the interelement 
jumps between elements to below the prescribed level of acceptable error 
is estimated.

8.3 a LiMitatiON Of tHE REfiNEMENt guiDE

The refinement guides developed and demonstrated in later sections have 
a built-in limitation. An example of the source of this deficiency can be 
seen in Figure 8.2. In this figure, a bold line outlines a group of elements 
that surround an element that contains an unacceptable level of error. The 
element that is to be subdivided is designated as element 222. This group 
of elements is contained in a uniform mesh with h0 specified in the mesh 
generator as 0.01 units.

In this example, the magnitudes of the higher-order strain gradient 
terms that are assumed to be the major source of errors in element 222 are 
derived from the group of elements that surround the element. Since these 
terms are computed from a region that is larger than the element itself, the 
computation is not focused directly on the high-error element. As a result, 
the terms assumed to produce a majority of the error in an element are not 
as accurate as would be desired.

In photographic terms, this deficiency can be described in terms of 
the resolution of an image. In other words, the pixel containing the 13 ele-
ments in Figure 8.2 that is used to compute the estimate of the underlying 
exact solution is larger than the element being evaluated. Consequently, 
the desired result is somewhat blurred. As we will see in a later section, 
the resolution of the error-producing terms in the underlying exact solu-
tion sharpens as the mesh is refined and the size of the pixel gets smaller.

The source of the lack of focus on the element being subdivided can 
be seen in the following computation. The estimates of the Taylor series 
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coefficients of the exact solution that underlies the element being sub-
divided are computed with the following equation:

 {ε,} = [Φ]–1 {d} (8.5)

where {ε,} is the vector of the estimated strain gradient quantities that 
the element is trying to represent, {d} is the vector of nodal displacements 
for the group of elements, and  [Φ] is the matrix of nodal locations for the 
patch of elements.

Equation 8.5 is identical in form to Equation 4.12, which is used to 
generate an element stiffness matrix. For the case shown in Figure 8.2, this 
equation is based on the nodal locations for 13 elements. As a result, the 
Taylor series coefficients apply to the patch of elements and not just to the 
element being evaluated.

In addition to identifying a limitation in the refinement guide, the devel-
opment presented in this section provides the basis for another approach 
for forming error estimates. The computation contained in  Equation 8.5 
provides an estimate of the coefficients contained in  Equation 8.3. These 
coefficients are not used directly in the error estimator developed here. 
However, the investigation of their use in an error estimator is a possible 
research topic.

8.5  a SiMPLER cOMPutatiON Of tHE aSSuMED 
StRaiN ERROR tERMS

In this section, simpler and more efficient procedure is presented for com-
puting the coefficients of Equation 8.3. These coefficients are the strain 
gradient terms that are assumed to produce a majority of the errors in 

Figure 8.2. Element patch.

222
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 individual three-node finite elements. This computation  differs  significantly 
from the procedure presented in the previous section. In this computation, 
the error-producing terms are based on the smoothed strains at the three 
nodes of the element being evaluated. As a result, the matrix that must be 
inverted is only a three-by-three matrix. However, the  computation must 
be performed for each of the three strain components.

In the previous section, the error-producing terms are based on the 
nodal displacements in the patch of elements surrounding the element 
being evaluated. This means that one larger matrix must be inverted in 
order to get the desired error-producing terms.

The procedure presented in this section possesses the same limitation 
as the procedure presented in the previous section that uses the patch of 
elements. The approximation of the exact solution is not fully focused on 
the element being evaluated. This is the case because the smoothed strains 
used to compute the error-producing terms are themselves computed from 
the nodal displacements contained in a patch of elements that surround the 
element being evaluated.

The approximations of the strain gradient terms that are assumed to 
produce a majority of the errors in a finite element result are developed 
for three-node elements and are demonstrated for the Kirsch-like problem. 
The approximations are extracted from the Taylor series representation 
of the averaged nodal strains for the element. The approximation of each 
strain component contains three terms because the averaged strains are 
available at the three nodes of the finite element.

The Taylor series expansion for the strain component in the x direc-
tion, εx, formed from to these averaged strains is the following:

 εx(x,y) = (εx)0 + (εx,x)0 x + (εx,y)0 y (8.6)

where εx(x,y) is the strain at the point (x,y), (εx)0 is the strain gradient 
quantity that designates the constant strain state, (εx,x)0 is the strain gradi-
ent quantity that designates the rate of change of εx in the x direction, and 
(εx,y)0 is the strain gradient quantity that designates the rate of change of εx 
in the y direction.

When Equation 8.6 is used to create the transformation for computing 
the magnitudes of the strain gradient components that are due to the aver-
age strains at the nodes, we have the following:
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where (εx)i = The averaged nodal strain at node i of the element; xi 
and yi are the local coordinates of node i; and (εx)0, (εx,x)0, and (εx,y)0 are the 
strain gradient quantities at the origin of the element.

The strain gradient quantities are found by inverting Equation 8.7. 
The result of this operation is the following:
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The strain gradient quantities computed by Equation 8.8 are the  Taylor 
series coefficients that represent the εx strain component in the approxi-
mation of the exact solution against which the element being evaluated 
is compared. The two higher-order terms, (εx,x)0 and (εx,y)0, approximate 
complexities in the exact solution that an individual three-node element 
cannot represent. These terms are assumed to be the source of the majority 
of the errors in the finite element strain representations.

8.6  BEHaViOR Of tHE cRiticaL StRaiN ERROR 
tERMS

This section presents the characteristics of the estimates of the higher- 
order terms that are assumed to cause a majority of the errors in three-node 
elements. This presentation shows that the resolution of these high- order 
terms improves as the mesh is refined. This implies that the refinement 
guides more accurately predict the number of subdivisions needed to 
produce converged finite element results as the mesh is refined. This 
improvement occurs because the patch of elements used to compute these 
quantities is getting smaller.

As discussed earlier, the inability of three-node constant strain ele-
ments to represent linear strain variations is assumed to make the largest 
contribution to the errors in these elements. The objective of this section 
is to explain and demonstrate the behavior of these linear strain variations.

As we will see, two characteristics of the linear strain gradient terms 
might seem counterintuitive. On the one hand, these terms can be close to 
or equal to zero in regions of high error. This occurs if either a maximum 
or minimum point is located on the element. This is the case because the 
test for a maximum or a minimum is for the first derivative to equal to zero.
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On the other hand, these linear terms often increase as the mesh is 
refined. This increase occurs if an element that is subdivided envelops a 
region of rapidly changing strain. The initial element contains a weighted 
average of the rate of change on its domain. As an element is subdivided, 
one or more of the subelements can represent regions where the change 
is greater than the average. As a result, the linear strain gradient term 
will increase in these elements. However, the overall contribution to the 
elemental error will be smaller because the size of the element has been 
reduced.

This presentation focuses on the behavior of the (εx,x)0 and (εx,y)0 
terms. The strain component εx is featured because it makes the largest 
contribution to the stress concentration that exists in this problem. A dis-
cussion of the critical error terms for the other strain components would 
not add significant content. Figures 8.3 to 8.5 shows the values of the 
linear variations in εx, (εx,x)0 and (εx,y)0 that are contained in the elements 
in the region of the stress concentration on the lower edge of the cutout in 
the Kirsch problem.

Plots of the strain gradient terms εx,x and εx,y on the bottom edge 
of the cutout for the finite element model with a nominal mesh size of 
h0 = 0.20 are shown in Figure 8.3. The location of the stress concentra-
tion is marked by the x in these figures. The element containing the stress 
concentration is outlined. We will focus on the behavior of the linear 
strain gradient terms in the region of the element containing the stress 
concentration.

Of special interest is the fact that the εx,x term shown in Figure 8.3a for 
the element containing the stress concentration has a value of zero in the 
element. As shown in Figure 7.10, the error estimate for εx in this element 

Figure 8.3. Second-order strain gradient terms, h0 = 0.2: (a) strain gradient 
term, εx,x and (b) strain gradient term, εx,y.
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is 61 percent. It may seem counterintuitive that a zero or a low value exists 
for the term that is assumed to produce most of the error in an element 
with a high level of error. The reason for this counterintuitive behavior is 
easily explained as follows.

As can be seen in Figure 8.3a, the two elements flanking the element 
containing the stress concentration have values for εx,x of +1.74 and −1.74, 
respectively. The fact that these terms change sign as x increases indicates 
that a maximum value of εx exists in the element that is located between 
these two elements. In other words, the standard test from the Calculus for 
identifying a maximum or minimum point has identified the location of a 
local maximum value that we know exists.

The effect of this behavior does not debilitate the adaptive refinement 
process. At most, this counterintuitive behavior might add an iteration or 
two until an acceptable result is attained. The need for extra iterations 
may occur because the estimated error in the element might be somewhat 
reduced. As a result, fewer subdivisions than would be ideal could be 
given to the element.

The mesh shown in Figure 8.3 is refined in Figure 8.4 by reducing 
the nominal mesh size from h0 = 0.2 to h0 = 0.1. Plots of the εx,x and εx,y 
strain gradient terms for the refined model are presented in Figures 8.4a 
and 8.4b, respectively.

In this case, the element containing the stress concentration in the 
 previous mesh has been essentially replaced by four elements. These four 
elements are outlined with the heavy line in this figure. These four ele-
ments do not cover the exact domain of the single element that was out-
lined in the previous figure, but they are close to covering the original area.

Figure 8.4. Second-order strain gradient terms, h0 = 0.1: (a) strain gradient 
term, εx,x and (b) strain gradient term, εx,y.
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In Figure 8.4a, the two elements on the boundary of the cutout with 
magnitudes of approximately 2.5 represent the portion of the boundary 
covered by the initial element. These two elements contain the other 
 characteristic of the linear strain gradient terms that might seem counter-
intuitive. That is to say, the magnitudes of these terms are larger than they 
were in the element they replaced.

The fact that these two elements display opposite signs indicates they 
are representing the region containing a maximum value of εx. In contrast 
to Figure 8.3, the critical point is located at a nodal point instead of on the 
boundary of an element.

The increase in the linear strain gradient term as the mesh is refined 
also exists in the other two elements shown on the boundary of the cut-
out. The values of these quantities in these elements are +5.75 and −5.63, 
respectively. These elements comprise subdivisions of elements with 
linear strain variations of +1.74 and −1.74, respectively, in the previous 
mesh. This means that the rate of change in εx is higher in this smaller 
region than it is in the domain of the larger element.

When the behavior of εx,y shown in Figure 8.4b is examined, we 
see that it is similar to that of εx,x. The magnitudes on the boundary have 
increased, and one of the elements on the interior of the subdivision has a 
low value for the term.

When the mesh is refined again by halving the nominal size to h0 = 
0.05, the results for the critical error terms are presented in Figure 8.5. The 
behavior of the linear strain gradient terms mirror the behavior of these 
terms in the previous two refinements. This can be seen by examining 
these terms in the element that now contains the stress concentration.

Figure 8.5. Second-order strain gradient terms, h0 = 0.05: (a) strain gradient 
term, εx,x and (b) strain gradient term, εx,y.

(a) (b)
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The value of εx,x is small because the element contains the stress con-
centration. The value of εx,y is significantly larger than it was in the initial 
mesh. This is the case because as can be seen in Figure 6.14b, the strain 
is rapidly increasing in the y direction. In other words, the behavior of the 
linear strain gradient terms is as expected.

In the next section, we will develop the refinement guides in terms of 
these higher-order strain gradient terms. Then we will see that the increase 
in the magnitudes of these terms does not mean that more refinements are 
necessary. This is the case because the errors produced by the inability of 
these elements to represent these higher-order terms also depend on the 
size of the element. Since the size of the element is being reduced, the 
contribution to the error is reduced. Consequently, the level of refinement 
is reduced.

8.7  DERiVatiON Of a SiMPLE aND EffEctiVE 
REfiNEMENt guiDE

We will now derive a simple and effective refinement guide for finite 
 element models formed with three-node constant strain elements. In order 
to reduce the computation required to form the refinement guide, the level 
of refinement is found for one component of the stress or strain at a time. 
This development features the strain component εx. When the develop-
ment of a refinement guide for a three-node element is completed, we will 
show that the basic idea can be extended to higher-order elements.

As before, we will assume that the majority of the error in εx in a 
three-node element is due to its inability to represent the linear terms in the 
Taylor series expansion of the strains, namely, (εx,x)0 and (εx,y)0. As a result, 
the estimated error in the element can be taken to be as follows:

 Eestimated = delemental ((εx,x)0 + (εx,y)0) (8.9)

where delemental = the distance to the furthest point in the element from the 
local origin.

In Equation 8.9, the x and y distances from the local origin of the 
element to the most distant point are taken to be the same. This assumes 
that the element approximates an equilateral triangle, which, in turn, is the 
triangular equivalent of a circle. This concept was discussed in Chapter 5, 
where the quality of triangular geometry was quantified.

A refinement guide that is developed in Dow (1999) does not make 
the assumption that the x and y distances to the point furthest from the 
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local origin are the same. This more specialized refinement guide uses 
the higher-order strain gradient quantities similar to those computed 
in  Equation 8.8 as well as the actual element geometry to estimate the 
 number of needed subdivisions.

The goal of a refinement guide is to subdivide an element so that 
the subelements contain no more error than the acceptable level. In other 
words, we need to know the maximum size that an element can have so the 
error does not exceed this level. We assume that the subdivided elements 
have the same magnitudes of (εx,x)0 and (εx,y)0 as has the element to be 
subdivided. Therefore, the acceptable error in the subdivided element is 
related to the sources of the error (εx,x)0 and (εx,y)0 as follows:

 Eacceptable = dacceptable ((εx,x)0 + (εx,y)0) (8.10)

where Eacceptable = the level of error that is acceptable in the solution.
If we relate the actual size of the element to the acceptable size of the 

element as follows, we have:

 Delemental = n dacceptable (8.11)

where (n − 1) is the estimated number that the nominal size of element 
must be subdivided into in order to reduce the error in the element to the 
specified level of error.

When we divide Equation 8.9 by Equation 8.10 and substitute 
 Equation 8.11, we have the following:

 

E
E

n d
d
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acceptable

acceptable x,x x,y

acceptable
=

+( )ε ε 0

(( )ε εx,x x,y
n

+
=

0

 (8.12)

The number n is used to estimate the maximum distance from the 
local origin to the most distant point in the element being analyzed. That 
is to say, the maximum length in the new element that is estimated to 
reduce the level of error to the acceptable level is given by Equation 8.11 
as dacceptable = dactual/n.

By assuming that the subdivided elements will have approximately 
the same shape as the initial elements, the estimated nominal element size 
h0 in the refined model that will produce a finite element model with an 
acceptable level of error is (h0)new = (h0)old/n.

A refinement guide of the same form applies to the other strain com-
ponents as well as to the three stress components. This refinement guide 
will be demonstrated in the next section for both the strain and the stress 
components in the x direction for the Kirsch problem formed with three-
node elements.
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Before demonstrating the refinement guide that was just formed, the 
extension to a six-node element will be presented. In the case of a six-node 
element, the first set of higher-order strain gradient terms that the element 
cannot represent is the set of quadratic terms. These terms are the following 
for the strain component in the x direction: (εx,xx)0, (εx,xy)0, and (εx,yy)0. These 
quadratic terms are multiplied by x2, xy, and y2, respectively. By once again 
considering that the triangular element is well-conditioned, we can assume 
that the magnitudes of x and y are similar. When this is the case, the refine-
ment guide for six-node, linear strain elements is the following:
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acceptable
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( )ε ε ε+ +

=
0

 (8.13)

Equation 8.13 shows that the errors in a six-node linear strain triangle 
decrease with the square of the size reduction. This means that a model 
formed from six-node elements requires fewer elements to represent an 
acceptable result than does a model formed from three-node elements.

A refinement guide based on the direct use of the quadratic strain 
 gradient terms has already been developed and demonstrated for a three-
node, linear strain bar element in Dow (1999). However, this type of 
refinement guide has not yet been demonstrated for a six-node element.

8.8  DEMONStRatiONS Of a SiMPLE aND 
EffEctiVE REfiNEMENt guiDE

In this section, the effectiveness of this simple error estimator is demon-
strated for two levels of acceptable error, 10 and 5 percent. These two 
error levels have not been chosen at random. It is often the case that a 
finite element result converges at or between these levels of acceptable 
error. A model is said to have converged if the result of the finite element 
analysis changes very little between adaptive refinement cycles. Conse-
quently, the result is considered to be acceptable.

If, on the other hand, there is a significant change in the quantity being 
evaluated between the refinement cycles, an additional refinement cycle is 
recommended even though the acceptable error criterion has been satis-
fied. The easiest way to force an additional adaptive refinement cycle is to 
reduce the level of acceptable error and reapply the adaptive refinement 
procedure to the current finite element model. If the result of the criti-
cal variable does not change significantly, the result can be said to have 
converged.
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In the final analysis, the convergence of the solution overrides the 
achievement of the acceptable error that has been specified in the adap-
tive refinement procedure as the accuracy criterion. In other words, the 
primary function of the refinement guide is to reduce the number of itera-
tions needed to approach an acceptable answer. The efficacy of this simple 
refinement guide will now be demonstrated with three examples.

8.8.1 DEMONSTRATION 1

When the modified Kirsch problem is solved for a nominal mesh of 
h0 = 0.20 and the acceptable error is given as 10 percent, the results 
of the first iteration of the adaptive refinement process are presented in 
 Figure 8.6. The estimated error in each of the elements in the finite ele-
ment model is presented in Figure 8.6a.

As can be seen in Figure 8.6a, the majority of the elements have 
 estimated errors that are equal to or below 10 percent. In other words, 
they satisfy the specified acceptable error criterion. This is reflected in 
Figure 8.6b where the elements that satisfy the accuracy criterion have a 
recommended level of refinement of 1, which means that they do not need 
to be subdivided.

As expected, the highest levels of errors are in the regions of the stress 
concentrations that are indicated by the x’s on the top and bottom of the 
circular cutout. This is reflected in Figure 8.6b where the refinement guide 
indicates that all of the elements that are identified as needing refinement 
are near the two stress concentrations. The maximum error occurs on the 

Figure 8.6. Error estimates and refinement guides for σx, nominal mesh size 
= 0.20, acceptable error = 10%: (a) error estimate and (b) refinement guide.

(a) (b)
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bottom of the cutout and is estimated at 36 percent. The maximum stress 
in this element is 17.380 units.

The refinement guide recommends that four subdivisions must be 
given to the two elements with the highest level of estimated error in 
order to achieve an estimated error of less than or equal to 10 percent. 
Since the nominal mesh size for this model is h0 = 0.020, the nominal 
element size that is estimated to reduce the error to the acceptable level is 
h0 = 0.20/4 = 0.05.

Note that uniform refinement will be used in most of the examples 
presented here. This is contrary to the primary reason for implementing 
the adaptive refinement of finite element models, namely, to produce effi-
cient and accurate finite element models. If elements are subdivided that 
already represent the exact solution with a satisfactory level of accuracy, 
the subsequent uniformly refined finite element models will become larger 
than necessary and, hence, inefficient.

Uniform refinement is used in these demonstrations because the pri-
mary goal of this book is to present a compact overview of all aspects of 
the finite element method and adaptive refinement. In order to incorporate 
a form of adaptive refinement that only refines the elements that exceed 
the specified level of error, a significantly more complex mesh generator 
than the one presented in Chapter 5 would have to be introduced. How-
ever, the use of uniform refinement in these examples does not detract 
from demonstrating the effectiveness of the error estimator and refinement 
guide that are presented here.

When the modified Kirsch problem is solved for the recommended 
nominal mesh size of h0 = 0.05 and the acceptable error is maintained at 
10 percent, the results of the error analysis and the refinement guide are 
presented in Figure 8.7. Only the lower portion of the mesh is shown in 

Figure 8.7. Error estimates and refinement guides for σx, nominal mesh size 
= 0.050, acceptable error = 10%: (a) error estimate and (b) refinement guide.
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these figures because it contains the largest estimated error. This smaller 
portion of the mesh is shown because the error estimates and the refine-
ment guides in the figures would be too small to read if the full mesh were 
presented.

As can be seen in Figure 8.7a, the model has been significantly 
improved by the reduction in the size of the elements in the initial mesh. 
The estimate of the maximum error in the element containing the stress 
concentration has been reduced from 36 to 13 percent. The  maximum esti-
mated error is only above the acceptable limit by 3 percent instead of by 
the 26 percent that occurred in the previous mesh.

The refinement guide estimates that the acceptable error will be 
achieved by subdividing the element with the maximum error by a factor 
of two. This contrasts with the previous estimate of four subdivisions. 
Furthermore, the maximum stress for this model is found to be 23.924 
units. This compares to the initial result in the previous case of 17.380 
units. This maximum stress result is 27 percent higher than the stress from 
the previous case.

When the nominal mesh size for the model of the Kirsch problem is 
reduced to h0 = 0.05/2 = 0.025 as recommended by the refinement guide, 
the results are presented in Figure 8.8. As we can see in Figure 8.8a,  
the estimated error in every element is below the acceptable limit of 
10  percent. As would be expected, the refinement guide shown in   
Figure 8.8b does not indicate that any refinement is required to achieve the 
desired level of estimated error.

In this case, the maximum stress is found to be equal to 24.121 units. 
When this value is compared to the previous value for the maximum 
stress of 23.924, the change is equal to 0.8 percent. Consequently, as we 

Figure 8.8. Error estimates and refinement guides for σx, nominal mesh 
size = 0.025, acceptable error = 10%: (a) error estimate and (b) refinement 
guide.
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can infer by the small amount of change, the finite element model has 
converged.

8.8.2 DEMONSTRATION 2

Earlier in the chapter, we observed that the estimated error would be bet-
ter approximated for finer meshes. This is the case because the error in 
an element is estimated using the strains in the patch of elements that 
surround it, as shown in Figure 8.2. This means that the portion of the 
actual solution being modeled with a finer mesh is smaller than it would 
be for a coarser mesh. Consequently, the portion of the exact solution 
being represented by the smaller patch of elements is less complex than 
the  portion of the exact solution being represented by a larger patch. As a 
result, the low-order modeling capability of an individual element is better 
able to capture the actual solution. Therefore, the estimated error would be 
smaller and more accurate.

This concept was validated by the results of the previous example. 
The mesh formed with the nominal element size of h0 = 0.20 required two 
applications of the adaptive refinement procedure to produce a model that 
satisfied the criterion for an acceptable error. However, the mesh formed 
with the nominal element size of h0 = 0.050 required only one iteration of 
the adaptive refinement process to achieve an acceptable result.

As a further demonstration of the idea that a smaller initial element 
size produces more accurate error estimates and, hence, better refinement 
guides, the Kirsch problem is solved with an initial mesh size of h0 = 
0.1 and an acceptable error of 10 percent. This starting point is chosen 
because the initial mesh size is between h0 = 0.2 and h0 = 0.05. The error 
estimates and refinement guides are presented in Figure 8.9.

The initial error estimate in the region near the critical stress con-
centration point exceeds the specified limit of 10 percent. As expected, 
this maximum estimate of 22 percent is bracketed by the maximum 
error  estimates of the cases with the initial mesh sizes of h0 = 0.20 and 
h0 = 0.05, which are 36 percent and 13 percent, respectively.

Similarly, the level of refinement identified by the refinement guide 
is also bracketed by the estimates for h0 = 0.20 and h0 = 0.50. In this 
case, the recommended number of subdivisions is three instead of four and 
two, which was recommended in the two previous cases. Furthermore, 
the  critical stress found for this model is 21.111 units. This stress value is 
higher than the initial value of 17.380 units that was found for the model 
with h0 = 0.20. It is also lower than the value for the nominal element size 
of 0.050 of 23.924 units.
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When the mesh refinement value specified by the refinement guide of 
three subdivisions is applied, the mesh size that is estimated to produce 
the acceptable level of error of 10 percent or less is equal to h0 = 0.10/3 or 
h0 = 0.0333. When the finite element model with this mesh size is formed 
and solved, the resulting the error estimates and the refinement guides are 
presented in Figure 8.10.

As we can see in Figure 8.10a, the estimated error in every element 
is equal to or below the acceptable limit of 10 percent. As would be 
expected, the refinement guide shown in Figure 8.10b does not indicate 
that any refinement is required.

In this case, the maximum stress is found to be equal to 23.698 units. 
When this value is compared to the previous value for the maximum 

Figure 8.10. Error estimates and refinement guides for σx, nominal mesh 
size = 0.0333, acceptable error = 10%: (a) error estimate and (b) refinement 
guide.
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Figure 8.9. Error estimates and refinement guides for σx, nominal mesh size = 
0.10, acceptable error = 10%: (a) error estimate and (b) refinement guide.
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stress of 21.111 units, the change is equal to 10.1 percent. Although this 
model satisfied the criterion specified by the specified acceptable error 
of 10  percent, such an amount of change might recommend that another 
refinement be applied.

The results for such a refinement are available in Figure 8.8. In this case, 
the nominal mesh size is h0 = 0.25 and the maximum stress is 24.121 units. 
This represents a change of 1.8 percent from the 23.698 that was found 
when h0 = 0.0333. This result shows that the maximum stress value of 
23.698 found for the mesh shown in Figure 8.10 is a satisfactory result.

8.8.3 DEMONSTRATION 3

We will now look at the behavior of the adaptive refinement process when 
the acceptable error criterion is tightened from 10 to 5 percent. When a 
model with a nominal mesh size of h0 = 0.10 with a 5-percent level of 
acceptable error is solved, the results are presented in Figure 8.11.

The error estimates found for this case are identical to those found for 
the model shown in Figure 8.9. This is as expected because the nominal 
element size is identical. However, the results of the refinement guide are 
different because the acceptable error in this case is specified as 5 percent 
instead of 10 percent. Consequently, more subdivisions are recommended 
in order to achieve the desired level of error of 5 percent. In this case, five 
subdivisions of the nominal element size are recommended versus two 
subdivisions when the acceptable error is 10 percent. The maximum stress 
is equal to 21.111 units.

Figure 8.11. Error estimates and refinement guides for σx, nominal mesh 
size = 0.1, acceptable error = 5%: (a) error estimate and (b) refinement 
guide.
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When the mesh refinement value of five is applied, the mesh size that 
is estimated to produce the acceptable level of error of 5 percent or less is 
equal to h0 = 0.10/5 or h0 = 0.020. When the finite element model with 
this mesh size is formed and solved, the resulting the error estimates and 
refinement guides are presented in Figure 8.12.

The maximum stress for this case is 23.968 units. This compares to 
the maximum stress for the initial mesh of 21.111. The difference between 
these two values of maximum stress is 11.91 percent. It should be noted 
that the maximum stress for the case shown in Figure 8.8 where h0 = 0.025 
is equal to 24.121 units.

One might anticipate that the finer mesh, that is, h0 = 0.020, should 
give a more accurate result than the larger mesh, that is, h0 = 0.025. How-
ever, this need not be the case because this subdivision is not a child mesh 
of the previous model. A child mesh is a mesh that contains all of the 
nodes that are contained in the previous mesh in addition to other nodes. 
This means that the child mesh will represent the problem at least as well 
as the previous mesh. Therefore, if a mesh is not a child mesh, the result 
may not be as good as a coarser mesh that better models the exact solution.

When the mesh is refined as suggested, the nominal mesh size is h0 
= 0.020/2 = 0.010. When the problem is solved with this mesh, the results 
are presented in Figure 8.13.

As can be seen, the estimated errors in Figure 8.13a are all below the 
acceptable limit of 5 percent. As a result, no refinement is recommended 
in Figure 8.13b. The maximum stress is equal to 24.091 units. This is 
equal to a difference of 0.50 percent. Thus, we can assume that this is a 
converged result that can be used in the design process.

Figure 8.12. Error estimates and refinement guides for σx, nominal mesh 
size = 0.020, acceptable error = 5% (a) error estimate and (b) refinement 
guide.
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8.9 SuMMaRY aND cONcLuSiON

The refinement guide presented and demonstrated in this chapter success-
fully improved the representation of the critical variable in the Kirsch 
problem. In these examples, the refinement guide focused on improving 
the representation of the normal stress in the x direction.

The demonstrations presented here are not comprehensive since they 
focused on a single problem and a single variable. Furthermore, the mesh 
refinement was not focused only on elements with high levels of estimated 
error as is the case in the adaptive refinement process. The whole mesh 
was refined so that a more complex mesh generation program did not have 
to be introduced.

However, these examples demonstrated the essential features of the 
refinement guide that was developed here. The basic concepts developed 
and demonstrated here can be extended to the standard approach to adap-
tive refinement. This is the case because the error estimator and refinement 
guide developed here depend on the Taylor series basis of finite element 
representations.

An individual finite element can only represent a limited number of 
Taylor series terms. Errors are produced because an element cannot rep-
resent the higher-order Taylor series terms that exist in the exact solution. 
The refinement guide developed here assumes that the majority of the 
error is due to the inability of an element to represent the first Taylor series 
terms that the element cannot represent.

Figure 8.13. Error estimates and refinement guides for σx, nominal mesh 
size = 0.01, acceptable error = 5%: (a) error estimate and (b) refinement 
guide.
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In the case of three-node constant strain elements, an element can 
only represent rigid body motions and constant values for the three strain 
components. Consequently, the majority of the error in a three-node ele-
ment is assumed to be due to its inability to represent linear strains. Thus, 
the refinements estimated for three-node elements vary linearly with the 
level of error estimates.

On the other hand, a linear strain six-node element can represent 
 linear strain variations, as well as rigid body motions and constant strains. 
Consequently, the majority of the error in a six-node element is assumed 
to be due to its inability to represent strains that vary quadratically. Thus, 
the refinements estimated for six-node elements vary with the square of 
the level of the error estimates.

As mentioned in the text, a refinement guide that focuses exclusively 
on the estimate of the first Taylor series term that a given type of element 
cannot represent is developed in Dow (2012).

8.10 EXERciSES

1. Form a finite difference model for a rectangular plate with zero 
displacements on the boundary. Load the plate with a point load 
somewhere near the center. Use nine-node central difference tem-
plates to form the model. Find the displacements of the nodes and 
the strains at each node. Hint: Similar problems are solved in Dow 
(1999) of Chapter 7.



cHaPtER 9

summAry

9.1 iNtRODuctiON

The improvements to the finite element method presented here are derived 
from a fresh look at the displacement interpolation functions that form 
the basis of the finite element method. These improvements include the 
development of: (1) a simple and direct way to evaluate and formulate 
finite element stiffness matrices, (2) a theoretical basis for creating error 
estimators, (3) a simple and effective elemental error estimator, and (4) a 
refinement guide that produces rapidly converging meshes.

9.2  REiNtERPREtED iNtERPOLatiON 
POLYNOMiaLS

The standard form of the displacement interpolation polynomials used in 
the finite element method has arbitrary coefficients. Examples of these 
coefficients are contained in the following interpolation polynomials for a 
three-node element:

 

u(x,y) a a x a y
v(x,y) b b x b y

1 2 3

1 2 3

= + +

= + +

 (9.1)

The salient feature of these coefficients is that they have no specific 
meaning. In other words, these coefficients can be interpreted as tempera-
tures, displacements, or velocities, depending on the application. Without 
further analysis, it is impossible to relate these coefficients to the concepts 
of solid mechanics.
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The first step in this reinterpretation of the interpolation polynomials 
is to recognize that they are truncated Taylor series expansions. They have 
the following form when they are expressed as Taylor series expansions:

 

u(x,y) (u) ( u/ x) x ( u/ y) y
v(x,y) (v) ( v/ x) x ( v/

0 0 0

0 0

= + ∂ ∂ + ∂ ∂

= + ∂ ∂ + ∂ ∂yy) y0

 (9.2)

As can be seen, the coefficients in Equation 9.2 are significantly 
different than those in Equation 9.1 in that they have physical meaning. 
These coefficients are functions of the displacements u and v in the x and 
y directions, respectively. In this form, these coefficients are indirectly 
related to solid mechanics because displacements are the dependent vari-
ables in solid mechanics problems.

However, the coefficients of Equation 9.2 can be specialized so that 
they directly relate to solid mechanics problems. This is accomplished 
by expressing the coefficients in terms of rigid body motions and strain 
quantities. When the definitions of these quantities are introduced into 
Equation 9.2, we have the following:

 

u(x,y) (u ) ( ) x ( /2 r ) y

v(x,y) (v ) ( /2 r
rb 0 x 0 xy rb 0

rb 0 xy rb

= + + −

= + +

ε γ

γ )) x ( ) y0 y 0+ ε
 (9.3)

When Equation 9.3 is visually inspected, the six physically interpre-
table coefficients identify the modeling capabilities of a three-node finite 
element. The element can represent the three rigid body motions, (urb)0, 
(vrb)0, and (rrb)0, and the three constant values of the strain components, 
(εx)0, (εy)0, and (γxy)0.

The first hint of the power of this notation becomes evident when the 
strain representations for an element are formed from the displacement 
interpolation functions. When the definitions of strains given in section 
3.6 are applied to Equation 9.3, we have the following:

 

ε ε
ε ε

γ

x x 0

y y 0

xy

(x,y) u/ x ( )
(x,y) ( v/ y) ( )

(x,y) ( v/ x

= ∂ ∂( ) =
= ∂ ∂ =

= ∂ ∂ + ∂∂ ∂ =u/ y) ( )xy 0γ

 (9.4)

Visual inspection of Equation 9.4 shows that a three-node triangle 
can represent the constant terms of the three strain components. This rep-
resentation contains no modeling errors. Its only deficiency is that these 
truncated strain models can only represent constant strains.
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When the strain models for the four-node element are formed and 
visually inspected, Equation 3.8 shows that this element contains several 
strain modeling errors. In the case of a six-node element, Equation 3.9 
shows that the element contains no modeling errors and can represent 
 constant and linearly varying strains. These strain modeling characteris-
tics could not be seen by visual inspect if it were not for the physically 
interpretable notation.

When the actual strain distribution is too complex to be captured by 
the modeling capabilities of the finite elements, the result will contain 
errors. These errors are seen as interelement jumps in the strains. These 
modeling errors are called discretization errors. They exist because a con-
tinuous problem with an infinite number of degrees of freedom has been 
replaced by a discrete representation with a finite number of degrees of 
freedom.

9.3  iMPROVEMENtS iN ELEMENt StiffNESS 
MatRiX fORMuLatiON

The introduction of physical meaning into the interpolation polynomials 
improves the formulation of finite element stiffness matrices in two signif-
icant ways. First, the clear identification of the rigid body modes reduces 
the number of integrals that must be evaluated. This reduction occurs 
because any integral that contains a rigid body term is equal to zero. This 
is due to the fact that its contribution to the strain energy is equal to zero. 
As a result, these terms do not have to be integrated because their value is 
known by visual inspection.

In addition, the notation simplifies the integrals that must be inte-
grated. As a result of the existence of fewer and simpler integrals, the 
 integrals can be efficiently evaluated exactly. This eliminates the need 
to use an approximate integration scheme for evaluating these integrals. 
This, in turn, simplifies the element formulation process.

However, the most significant contribution of this physically based 
notation is the elimination of strain modeling errors in elements with non-
standard shapes, that is, elements with curved edges or elements that are 
not parallelograms. The very fact that these strain modeling errors exist in 
the standard isoparametric formulation procedure, albeit, only in certain 
elements, would seem to render this formulation procedure obsolete.

It should be remembered that the isoparametric formulation proce-
dure was developed when computers possessed only a tiny fraction of the 
capabilities of today’s machines. Consequently, it can be concluded that 
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the isoparametric approach continues to be taught and used because of 
inertia and the fact that it is embedded in existing code.

9.4 POiNtWiSE ERROR EStiMatORS

The error estimators developed in Chapter 7 have a higher resolution than 
most other error estimators because they evaluate the errors at individual 
points. The resolution is higher because the highest errors are not sub-
merged in the average error over the domain of the whole element as is the 
case in error estimators based on strain energy.

The error estimators are put on a solid theoretical foundation because 
they essentially compare the finite element solution to a finite difference 
solution. As discussed in Chapter 7, the two approximate solution tech-
niques must converge to the exact solution of the problem. Since the two 
methods use significantly different approaches to form their approxima-
tions, any differences in the approximate solutions are due to deficiencies 
in the model.

The previous paragraph implies that the error estimates are found by 
comparing a finite element result with an actual finite difference solution 
to the problem being solved. However, this is shown to be unnecessary. An 
approximation of a finite difference solution can be extracted from aver-
aging the nodal quantities in the finite element solution. In other words, 
an approximation of a finite difference solution can be extracted from the 
finite element solution in order to accurately estimate the errors in a finite 
element result.

9.5 aN OVERViEW Of REfiNEMENt guiDES

The type of refinement guide developed and demonstrated in Chapter 8 
essentially compares an estimate of the exact solution that underlies an 
individual element with the modeling capability of the element. Both 
the estimate of the underlying solution and the modeling capability of the 
 element are found using physically interpretable notation. As a result, the 
refinement guide has a solid theoretical basis.

In the simple version of the refinement guide demonstrated in 
 Chapter 8, the estimated error in an element is compared to the level of 
acceptable error specified in the analysis. This comparison estimates the 
number of subdivisions that must be given to elements with high levels of 
error in order to achieve the specified level of error. This error estimator 
leads to the rapid convergence of the finite element result.
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The simple refinement guide demonstrated in Chapter 8 is applied 
to models formed with constant strain triangles. It has not been tested on 
higher-order elements. However, another refinement guide that explicitly 
compares an estimate of the Taylor series expansion of the underlying 
exact solution to the highest modeling capability of the individual high- 
error elements is discussed in Chapter 8 (Dow 2012).

If every element in a finite element model satisfies the specified level 
of error, it does not mean that the solution has converged to the exact 
solution. It only means that the specified level of error in a stress or strain 
quantity has been achieved.

As discussed in Chapter 8, it is suggested that the change in the max-
imum stresses or strains between the iterations of the adaptive refinement 
procedure be computed. If the change exceeds the acceptable level of 
error, it is suggested that another improvement to the finite element model 
be made for safety’s sake. This is to insure that the errors in the surround-
ing elements do not overly affect the critical quantity.

9.6 RESEaRcH OPPORtuNitiES

As has been stated, the objective of this book is to provide a clear and 
easy-to-read overview of adaptive refinement for undergraduates so that 
the finite element method is readily accessible early in their education. 
This is deemed beneficial so that less time can be spent learning an ana-
lytic tool and more time can be spent using it. However, if students learn 
how a tool works and how it is constructed well enough that they can use 
it with confidence, they also can improve it if they so choose.

One of the questions I always put to my students is the following. By 
now you know that it is wise to presume that everyone working in com-
putational mechanics is intelligent and capable. So why have you and I 
been able to attack problems that have not been solved before? The correct 
answer, as I perceive it, is that we have tools available to us that were not 
previously available.

As noted earlier, all of the developments presented here derive from 
the use of the physically interpretable notation. Since the transparent 
nature of this notation provides insights into the finite element method 
and the finite difference method that have not been previously available, 
opportunities arise for improvements in these two powerful methods that 
are only possible now because of this notion.

Some specific research opportunities are identified in Dow (1999, 
2012). The most fruitful area may be in the reintroduction of the finite 
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difference method into solid mechanics problems. This method is used 
extensively in fluid mechanics problems without the use of strain gradi-
ent notation. By looking at some of the fluid mechanics techniques with 
the new eyes provided by this notation, who knows what might result? 
Remember, when pursuing research, the question is often more important 
than the answer.
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