
AUTOMATION AND CONTROL
COLLECTION

Flexib
le Test A

uto
m

atio
n

A
R

PA
IA

 • D
E

 M
A

TTE
IS • IN

G
LE

SE

EBOOKS
FOR THE
ENGINEERING
LIBRARY
Create your own
Customized Content
Bundle — the more
books you buy,
the higher your
discount!

THE CONTENT
• Manufacturing

Engineering
• Mechanical

& Chemical
Engineering

• Materials Science
& Engineering

• Civil &
Environmental
Engineering

• Electrical
Engineering

THE TERMS
• Perpetual access for

a one time fee
• No subscriptions or

access fees
• Unlimited

concurrent usage
• Downloadable PDFs
• Free MARC records

For further information,
a free trial, or to order,
contact:
sales@momentumpress.net

Flexible Test Automation
A Software Framework for Easily
Developing Measurement Applications
Pasquale Arpaia • Ernesto De Matteis •
Vitaliano Inglese
In laboratory management of an industrial test division, a test
laboratory, or a research center, one of the main activities is
producing suitable software for automatic benches by satisfying
a given set of requirements. This activity is particularly costly
and burdensome when test requirements are variable over
time. If the batches of objects have small size and frequent
occurrence, the activity of measurement automation becomes
predominating with respect to the test execution.

Flexible Test Automation shows the development of a
software framework as a useful solution to satisfy this exigency.
The framework supports the user in producing measurement
applications for a wide range of requirements with low effort
and development time.

Pasquale Arpaia holds an MS and PhD in electrical engineering
from University of Naples Federico II, where he is professor
of instrumentation and measurements. He is team leader at
European Organization for Nuclear Research (CERN).

He is associate editor of the Elsevier Journal Computer
Standards & Interfaces and is an invited speaker in several
scientific conferences.

Ernesto De Matteis received his bachelor’s and master’s
degrees in telecommunications engineering at University of
Sannio, Benevento, Italy. He interned, for his MS thesis on
the Large Hadron Collider (LHC), at European Organization
for Nuclear Research (CERN), collaborating with “Flexible
Framework for Magnetic Measurements” (FFMM) Project.
Currently he is a PhD student on Information Engineering at
University of Sannio, Benevento, Italy.

Vitaliano Inglese received his master’s degree in automation
engineering at the University of Sannio in 2006, and his PhD in
electrical engineering at University of Naples Federico II in 2010.

During his PhD, he worked on measurement techniques
for particle accelerator magnets, ADC testing, digital instru-
mentation and software for magnetic measurements. He
published scientific papers both in journals and in conference
proceedings. He is currently working at CERN as engineer in
the domain of electricity and controls applied to cryogenics.

Flexible Test
Automation
A Software Framework
for Easily Developing
Measurement
Applications

Pasquale Arpaia
Ernesto De Matteis
Vitaliano Inglese

ISBN: 978-1-60650-383-6

FLEXIBLE TEST
AUTOMATION

FLEXIBLE TEST
AUTOMATION

A SoftwAre frAmework for
eASily Developing meASurement

ApplicAtionS

PASQUALE ARPAIA,
ERNESTO DE MATTEIS, AND

VITALIANO INGLESE

MOMENTUM PRESS, LLC, NEW YORK

Flexible Test Automation: A Software Framework for Easily Developing
Measurement Applications
Copyright © Momentum Press®, LLC, 2015.

All rights reserved. No part of this publication may be reproduced, stored
in a retrieval system, or transmitted in any form or by any means—
electronic, mechanical, photocopy, recording, or any other—except for
brief quotations, not to exceed 400 words, without the prior permission
of the publisher.

First published by Momentum Press®, LLC
222 East 46th Street, New York, NY 10017
www.momentumpress.net

ISBN-13: 978-1-60650-383-6 (print)
ISBN-13: 978-1-60650-385-0 (e-book)

Momentum Press Automation and Control Collection

DOI: 10.5643/9781606503850

Cover and interior design by Exeter Premedia Services Private Ltd.,
Chennai, India

10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

AbStrAct

In laboratory management of an industrial test division, a test laboratory,
or a research center, one of the main activities is producing suitable soft-
ware for automatic benches by satisfying a given set of requirements. This
activity is particularly costly and burdensome when test requirements are
variable over time. If the batches of objects under test have small size
and frequent occurrence, the activity of measurement automation becomes
predominating with respect to the execution.

In this book, the development of a software framework is shown to be
as a useful solution to satisfy this exigency. The framework supports the
user in producing measurement applications for a wide range of require-
ments with low effort and development time. Furthermore, the software
quality, in terms of flexibility, usability, and maintainability, is maximized.

After a background on software for measurement automation and the
related programming techniques, the structure and the main components
of a software framework for measurement applications are illustrated.
Their design and implementation are highlighted by referring to a prac-
tical application: the Flexible Framework for Magnetic Measurements
(FFMM) at the European Organization for Nuclear Research (CERN).
Finally, an experimental approach to the software flexibility assessment
of measurement frameworks is presented by highlighting its application
to FFMM.

KEYWORDS

application software, automatic programming, magnetic measurements,
measurement automation, particle accelerators, software frameworks,
software systems

vii

contentS

List of Figures xi

List of Tables xvii

Summary xix

Acknowledgments xxi

Convention about the notation xxiii

Introduction xxv

PART I Background 1

1 Software for Measurement Applications 3
1.1 Overview 3
1.2 Basics 3
1.3 Main Market Solutions 5
1.4 Research: State of the Art 14
References 23

2 Software Frameworks for Measurement Applications 33
2.1 Overview 33
2.2 General Concepts 33
2.3 Why a Framework for Measurements? 36
2.4 Domain Specific Languages 38
2.5 Requirements of a Framework for Measurement Applications 41
References 43

viii • COntEntS

3 Object- and Aspect-Oriented Programming
for Measurement Applications 47
3.1 Overview 47
3.2 Object-Oriented Programming 47
3.3 Aspect-Oriented Programming 56
References 62

PART II Methodology 65

4 A Flexible Software Framework for Measurement
Applications 67
4.1 Overview 67
4.2 Framework Paradigm 68
4.3 Fault Detector 79
4.4 Synchronizer 85
4.5 Measurement-Domain Specific Language 95
4.6 Advanced Generator of User Interfaces 101
References 109

5 Quality Assessment of Measurement Software 115
5.1 Overview 115
5.2 Software Quality 115
5.3 The Standard ISO 9126 120
5.4 Quality Pyramid 122
5.5 Measuring Flexibility 126
References 128

PART III Case Study 131

6 The Flexible Framework for Magnetic Measurements
at CERN 133
6.1 Overview 133
6.2 Methods for Magnetic Field Measurements 134
6.3 Automatic Systems for Magnetic Measurements 139
6.4 Software for Magnetic Measurements at CERN 140
6.5 Flexibility Requirements for Magnetic Measurement

Automation 142

COntEntS • ix

6.6 The Framework FFMM 146
References 165

7 Implementation 171
7.1 Overview 171
7.2 Base Service Layer 172
7.3 Core Service Layer 187
7.4 Measurement Service Layer 191
7.5 User Service Layer 198
7.6 Software Quality Assessment 209
References 222

8 Framework Component Validation 225
8.1 Overview 225
8.2 Fault Detector 226
8.3 Synchronizer 236
8.4 Domain Specific Language 241
8.5 Advanced User Interfaces Generator 247
References 249

9 Framework Validation on LHC-Related Applications 251
9.1 Overview 251
9.2 On-Field Functional Tests 252
9.3 Flexibility Experimental Tests 272
9.4 Discussion 277
References 278

Index 281

xi

liSt of figureS

Figure 1.1. Main market solutions tree: leaders and products. 7
Figure 1.2. Plot of technical product categories versus producers. 13
Figure 1.3. State of art research tree: software for measurement

applications. 15
Figure 2.1. Test engineer and application user exploit a

measurement software framework. 43
Figure 3.1. Architecture of a simple measurement and control

system: (1) a first event triggers the model (abstract
factory), (2) the model produces a system software
instance (measurement item), (3) the instance drives the
sensor to carry out a measurement, (4) the sensor returns
back the reading, (5) the model instance processes the
data, and (6) drives the actuator suitably. 55

Figure 3.2. Example of a crosscuttings concern in measurement
software: The fault detection. 57

Figure 3.3. (a) Code scattering and (b) tangling. 58
Figure 3.4. An example of a straightforward AOP program

implemented in AspectJ. 60
Figure 4.1. Working principle of a framework for measurement

applications. 70
Figure 4.2. Layered architecture model of the SFMA. 71
Figure 4.3. Architecture of a SFMA. 72
Figure 4.4. The UML model of the framework kernel. 73
Figure 4.5. UML diagram of the multilayered architecture of the

framework (for the sake of simplicity the User service
layer is not reported). 74

Figure 4.6. Measurement framework event handling architecture. 76

xii • LiSt Of figuRES

Figure 4.7. Measurement framework actions and listeners
infrastructure. 77

Figure 4.8. Logger architecture of the framework. 78
Figure 4.9. An excerpt of the hierarchy of the Fault Detector. 83
Figure 4.10. Levels of faults interception. 83
Figure 4.11. Fault notification publish-subscribe architecture. 84
Figure 4.12. Working example of the Execution Graph. 89
Figure 4.13. Code lines for the Execution Graph definition. 90
Figure 4.14. Example of a Petri net. 90
Figure 4.15. Architecture of Synchronizer’s classes. 92
Figure 4.16. Implementation of the Execution Graph entities

(nodes and arrows). 93
Figure 4.17. A generic Task Manager uses the Synchronizer to

select an executable task. 94
Figure 4.18. A generic task manager uses the Synchronizer to

trace the change of the tasks execution status. 95
Figure 4.19. MDSL process according to the pattern

“source-to-source”. 98
Figure 4.20. Semantic model and MDSL architecture. 99
Figure 4.21. Model-Viewer-Interactor (MVI) approach. 105
Figure 4.22. Example of (a) a View model and (b) its final aspect. 106
Figure 4.23. View XML description example. 107
Figure 4.24. MDSL script example. 108
Figure 4.25. Abstract factory pattern for the GUI engine. 109
Figure 5.1. The ISO 9126 quality model. 121
Figure 5.2. Approaches to software quality according to

ISO 9126. 122
Figure 5.3. The three major aspects quantified by the overview

pyramid. 123
Figure 5.4. Example of a completed overview pyramid

(the metrics values refer to an application example). 123
Figure 6.1. Rotating coils measurement principle. 136
Figure 6.2. Layout of the rotating-coil based measurement system

controlled by MMP. 141
Figure 6.3. An excerpt of the hierarchy of the Fault Detector. 147
Figure 6.4. Levels of faults interception. 149

LiSt Of figuRES • xiii

Figure 6.5. Fault notification architecture “publish-subscribe”
for the device EncoderBoard. 150

Figure 6.6. Device creation/destruction interception. 151
Figure 6.7. Collaboration scenario started by createDevice

interception on EncoderBoard. 152
Figure 6.8. Sequence diagram showing the detection of a wrong

parameter configuration of an EncoderBoard instance. 153
Figure 6.9. AOP-based architecture of a Synchronizer for an

automatic measurement system. 155
Figure 6.10. MDSL implementation in FFMM. 157
Figure 6.11. Specific grammar example of MDSL in Xtext. 158
Figure 6.12. Domain-specific Builder rules of MDSL in Xpand. 159
Figure 6.13. Main window. 161
Figure 6.14. Code for the FdiClusterFrame. 161
Figure 6.15. FdiClusterFrame window. 162
Figure 6.16. Code for the EncoderFrame. 162
Figure 6.17. EncoderFrame window. 163
Figure 6.18. Code example for the GIC. 163
Figure 6.19. Windows generated by the GIC. 164
Figure 6.20. Code for the plot function. 164
Figure 6.21. Code for the FDI data plot function. 165
Figure 6.22. Plot window. 165
Figure 7.1. Structure of the configurator CommunicationBus. 172
Figure 7.2. Structure of the communication services. 174
Figure 7.3. Active component design for logging infrastructure. 176
Figure 7.4. Diagram of the class Transducer. 177
Figure 7.5. Circuit schematic of the physical cryo-thermometer

RTD, CERNOX CX. 179
Figure 7.6. Diagram of the class MotorController. 181
Figure 7.7. Acceleration (a) and velocity (b) profiles. 182
Figure 7.8. Wizard to start new Xtext project. 201
Figure 7.9. DSL grammar. 203
Figure 7.10. Generate Xtext artefacts. 203
Figure 7.11. Deployment of the DSL plug-ins. 204
Figure 7.12. Xpand template. 205

xiv • LiSt Of figuRES

Figure 7.13. Example of assignment operators in FFMM project. 206
Figure 7.14. Entity. 207
Figure 7.15. Abstract type rule. 207
Figure 7.16. Token rule expressed. 208
Figure 7.17. Comments. 208
Figure 7.18. DSL test engineer steps. 209
Figure 7.19. Assistance to the measurement procedure. 209
Figure 7.20. The part of the Script in C++. 210
Figure 7.21. The same Script of Figure 7.20 in DSL. 211
Figure 7.22. ISO 9126 subcharacteristics in FFMM 3.0

(0 indicates the best quality level). 214
Figure 7.23. ISO 9126 characteristics in FFMM 3.0

(0 indicates the best quality level). 215
Figure 7.24. Overview Pyramid for the FFMM 3.0 source code. 215
Figure 8.1. Layout of the rotating coil measurement setup. 228
Figure 8.2. The abstract FaultDetector aspect. 230
Figure 8.3. Excerpt of DigitalIntegrator_FaultDetector. 230
Figure 8.4. Percentage lines of code (LOC%) of fault detection

concern in device modules for OOP and AOP versions. 232
Figure 8.5. (a) DOS and (b) DOF comparisons of OOP and AOP

versions with respect to Fault Detection concern. 232
Figure 8.6. (a) Total average and (b) worst case overhead times

spent in aspect runtime. The pointcut expressions
numbering refers to Table 8.2. 236

Figure 8.7. Layout of the split-coil permeability measurement
setup. 237

Figure 8.8. Current cycles. 238
Figure 8.9. FFMM script fragment defining the Execution Graph. 238
Figure 8.10. Execution graph of the case study on permeability

measurement. 240
Figure 8.11. Hysteresis curve of the material. 241
Figure 8.12. Superconducting magnet test script. 242
Figure 8.13. Measured normal sextupolar “decay” and “snapback”

as a function of (a) the time and (b) as a function of the
measured current for different supply current cycles
(data are scaled to be compared). 244

LiSt Of figuRES • xv

Figure 8.14. Permeability measurement MDSL script. 245
Figure 8.15. Permeability measurement results for different current

ramp rates: (a) 0.5 A/s and (b) 0.01 A/s. 246
Figure 8.16. FDI configuring forms. 248
Figure 8.17. A window plotting some current cycles. 248
Figure 8.18. Relative permeability versus magnetic field curve. 249
Figure 9.1. Split-coil permeameter. 253
Figure 9.2. (a) Architecture and (b) experimental setup of the

permeability measurement bench at CERN. 255
Figure 9.3. MDSL script for permeability measurement. 257
Figure 9.4. Measured current and computed magnetic field without

sample. 258
Figure 9.5. First magnetization curve of the soft steel sample. 259
Figure 9.6. Relative permeability of the soft steel sample. 259
Figure 9.7. Architecture (a) and experimental setup (b) of the

automatic measurement station based on rotating coils
at CERN. 261

Figure 9.8. Superconducting magnet test script. 263
Figure 9.9. Measured sextuple component b3 versus (a) current

and (b) time, in units (10−4 fraction of the main field
component). 264

Figure 9.10. Computed MSCs powering current cycle for sextupole
compensation. 267

Figure 9.11. Architecture of the tracking test measurement station. 268
Figure 9.12. LHC standard current cycle. 269
Figure 9.13. DSL script for rotating coil-based measurement. 270
Figure 9.14. Integral b3 component versus current with and without

compensation, in the dipole magnet MB2524 during
an LHC cycle. 271

Figure 9.15. Residual integral b3 component versus current with
compensation, in the dipole magnet MB2524 during
an LHC cycle. 272

Figure 9.16. Estimation of the sextupole with the old standard
and the FFMM platform (FAME). 273

xvii

liSt of tAbleS

Table 2.1. Main software characteristics and users they address 43
Table 3.1. Classification of patterns 53
Table 5.1. Metrics catalog 117
Table 5.2. Metrics catalogue (NDD, AHH, DOF, and DOS are

proportions) 119
Table 6.1. Main software characteristics and users they address 145
Table 7.1. Computation of the sensor resistance Rthm 180
Table 7.2. Complexity and Object-Oriented metrics with their

target values 212
Table 7.3. FFMM 3.0 size metrics summary 212
Table 7.4. FFMM 3.0 complexity metrics 213
Table 7.5. FFMM 3.0 Object-Oriented metrics 213
Table 8.1. Fault detection code in each device module and

computation of percentage DOF and DOS metric for
both OOP and AOP versions (OOP: Object-Oriented
Programming; AOP: Aspect-Oriented Programming;
LOC: Lines of code; DOF: Degree of focus;
DOS: Degree of scattering) 231

Table 8.2. Worst average times spent in aspect runtime with
respect to device creation and destruction and fault
detection point cuts 235

Table 9.1. Injection harmonic tolerance (in hundreds of ppm
of the main dipole) 260

Table 9.2. Generalized evolutions cost metric for different classes
of changes in FFMM 274

SummAry

What we need, then, is a new “paradigm”—a new vision of reality;
a fundamental change in our thoughts, perceptions, and values.
The beginnings of this change, of the shift from the mechanistic to the
holistic conception of reality, are already visible in all fields and are
likely to dominate the present decade.... The purpose of this book is to
provide a coherent conceptual framework that will help them recognize
the communality of their aims. Once this happens, we can expect the
various movements to flow together and form a powerful force for social
change. The gravity and global extent of our current crisis indicate
that this change is likely to result in a transformation of unprecedented
dimensions, a turning point for the planet as a whole.

—Fritjof Capra, The Turning Point: Science,
Society, and the Rising Culture

This book covers the specification, design, prototyping, and validation of
a software framework for supporting the development of programs for
measurement control and data acquisition. It is completed also by a true
case study on an actual software package developed at the European Orga-
nization for Nuclear Research (CERN) in cooperation with the University
of Sannio: the Flexible Framework for Magnetic Measurements (FFMM).
FFMM is currently in use at the section of Magnetic Measurement of
CERN and constitutes the software part of the new platform for magnetic
measurements, including also high-performance hardware.

In laboratory management, one of the main activities is producing
suitable software for automatic benches in satisfying a given set of test
requirements. This activity is particularly costly and burdensome when
test requirements are variable over time. When a batch of objects to be
tested arrives, if the test is burdensome to be carried out manually, the
need for developing an automatic bench arises. Test engineers define the
measurement requirements, and the automatic bench is designed and
developed. If the batches of objects have small size and frequent occur-
rence, the activity of measurement automation becomes predominating
with respect to the test execution. Most significant efforts are devoted to
instrumentation interfacing and software development.

xx • SUMMARY

A software framework for measurement applications is conceived as
a unified solution to drive all the existing and future park of measurement
systems in a generic field for an industrial test division, a test laboratory, or
a research center. It allows the easy development of software for measure-
ment and test applications under highly and fast-varying requirements.
The framework supports the user in producing measurement applications
for a wide range of requirements with low effort and development time.
As a matter of fact, the development effort is reduced and finalized, by
relieving the test engineer of development details. Furthermore, a frame-
work allows the software quality, in terms of flexibility, usability, and
maintainability, to be maximized. The framework can be configured for
satisfying a large set of measurement applications in a generic field for an
industrial test division, a test laboratory, or a research center.

In this book, the development of a software framework for measure-
ment and test applications is illustrated in order to reach these goals by
addressing the aforementioned issues of laboratory management. The
framework exploits (a) Object-Oriented Programming (OOP) and (b) an
innovative technology, the Aspect-Oriented Programming (AOP). AOP
extends the Object-Oriented paradigm in order to encapsulate features
transversal to several functional units (crosscutting concerns) by means of
new software modules, the aspects.

A software framework for measurement and test applications includes
utilities for (a) fault detection, (b) software synchronization, (c) automatic
generation of user interfaces, and (d) a Measurement Domain Specific
Language to provide the test engineer with an easy and fast way to write
measurement scripts containing formal descriptions of the test protocols.

The framework is designed to be flexible, maintainable, reusable,
and efficient. To assess the fulfillment of these project goals, the internal
quality of its source code is to be assessed by means of suitable metrics,
according to the reference model defined in the standard ISO 9126.

Finally, an experimental approach to the software flexibility assess-
ment of measurement frameworks is presented by highlighting its appli-
cation in the context of FFMM. The effectiveness of this approach is
proven by reporting in this book the tests carried out on the field at CERN
with different protocols and measuring equipment. The framework’s
effectiveness is evidenced in the development of software for measure-
ments with very different requirements. In the first five years of FFMM
operation, increasing grades of flexibility were surveyed, by moving
from programming to user script level, from the point of view of both the
developer and the test engineer.

AcknowleDgmentS

This book originates from the PhD Thesis of Vitaliano Inglese, supervised
by Prof. Pasquale Arpaia of the University of Sannio, and defended at the
Department of Electrical Engineering of the University of Naples Federico
II, under the Tutorship of Prof. Nello Polese and Dr. Marco Buzio, which
the Authors acknowledge gratefully.

The PhD Thesis is based on research work carried out mainly at
CERN in Geneva, Switzerland, under the framework of two collabora-
tions between the University of Sannio and the CERN in 2007 and in
2010, whose support the Authors acknowledge gratefully.

The Authors would like to express their gratitude to all the persons
who, in different ways, have contributed to the realization of this book.
Their help and support from the first elaboration of the idea of a frame-
work for measurement applications to the direct involvement in the design
and implementation phases, and their comments and proofreading during
the long process of writing this book were precious to the Authors.

First of all, the Authors would like to thank Felice Cennamo for
inspiring their research work as a whole and for convincing Pasquale
Arpaia to start his first leave at CERN. Alessandro Masi deserves a partic-
ular mention, both for originating the Authors’ work at CERN, and for his
timeless good mood.

Authors would like to thank Nello Cimitile, at that time Rector of the
University of Sannio, and Pasquale Daponte, head of LESIM, for grant-
ing special permission allowing Pasquale Arpaia to work at CERN for
the past nine years. Nello understood the strategic importance of such a
work seven years before the CERN worldwide resonance due to the Higgs
boson finding.

A special thank is given to Philippe Lebrun, head of the “joyful war
machine” for research and development that was the Accelerator Technol-
ogies (AT) Department at CERN. AT was a free forge of ideas that had a
determining role in the growth of the Authors, as well as, a little bit more
importantly, in the success of the Large Hadron Collider.

This book would never have been conceived without Luca Bottura’s
special ability of looking ahead into the future, from whom came the

xxii • Acknowledgments

first idea of launching the research project of the Flexible Framework for
Magnetic Measurements (FFMM) at CERN.

The Authors would like to thank Louis Walckiers, head of the CERN
Magnetic Measurements Group for his friendly management of the project
FFMM, and Marco Buzio for his help and encouragement in the develop-
ment of the idea of a framework for magnetic measurements. A fruitful
role was played by Laurent Deniau that beset the Authors with all his
suggestions and patience in conceptual discussions.

The Authors would really like to thank Giuseppe Di Lucca and
Mario Luca Bernardi of the University of Sannio, whose collaboration
was precious for the first refinement of the framework core architecture,
and, above all, for the introduction of the Aspect-Oriented approach to the
design of important components of the framework.

The Authors are also grateful to Giovanni Spiezia, Stefano Tiso,
Domenico Della Ratta, Giancarlo Golluccio, Giuseppe Montenero, Carlo
Petrone, Lucio Fiscarelli, Fabio Corrado, Giuseppe La Commara, Felice
Romano, and Juan Garcia Perez who remarkably contributed to the defini-
tion of the framework core and components, and for their implementation
in the FFMM at CERN.

Authors would also like to thank Walter Scandale for his constant
encouragement and frank criticisms.

Finally, the Authors would like to thank Mario Girone, Carlo
Baccigalupi, Liliana Viglione, Domenico Caiazza, Alessandro Parrella,
Luca Sabato, Stefano Troisi, Giordana Severino, Donato De Paola, and
Mario Kazazi, who helped in the proofreading of the chapters.

Authors’ gratitude and appreciation go to Joel Stein and Millicent
Treloar of Momentum Press, for their support, incitation, and patience
during the preparation of this book. Their professionalism and helpful-
ness has considerably helped the Authors in overcoming all the difficulties
arisen during book planning and writing.

Last but not least, Pasquale Arpaia thanks Marida Corso Arpaia for
her patience during his long absence from home and, above all, for her
impassable capability of supporting his work with a timeless and noble
smile.

convention About the
notAtion

Throughout the text of the book, we use the following notation common
in software development.

All the names of components, subcomponents, superclasses, abstract
classes, classes, and objects are written in italics and with the initial letter
in capital.

Some technical terms at the first occurrence are reported in italics in
order to emphasize their importance by definition.

All the names of well-known techniques or components/projects have
the first letter in capital case.

Typical examples for the sake of reader ease are:
• a specific software component: the Synchronizer (italics and first

letter capitalization)
• a specific class: the FaultDetector (italics and first letter

capitalization)
• a well-known software technique: Object-Oriented Programming

(first letter capitalization)
• a well-known software language: Measurement Domain Specific

Language (first letter capitalization)
• a well-known software component: Graphical User Interface

(first letter capitalization)
• a software project: Flexible Framework For Magnetic Measure-

ment (first letter capitalization)
• a hardware component: Micro-Rotating Unit (first letter capital-

ization).

introDuction

First we build the tools, then they build us.
―Marshall McLuhan

In a modern test and measurement laboratory, one of the key activities in
carrying out an assigned test is the realization of proper software for an
automatic station. In small-size laboratories, test requirements vary over
time, according to the requests of the market or the operating environment.
This activity of test production turns out to be significantly expensive and
troublesome. When a batch of objects to be tested arrives, and the test is
too burdensome to be carried out manually, an automatic measurement
station is developed. Test engineers define the measurement requirements
that are used in designing and developing the automatic station. If the
batches of objects under test are of small size and frequent occurrence, the
activity of the bench automation predominates the test execution. Most
significant efforts are devoted to instrumentation interfacing and software
development.

In past years, the problem of easy-to-assemble and -configure hardware
has been progressively faced encountered and effectively solved. Standard
interfaces for operating the instrumentation remotely by PC (e.g., IEC 626,
VXI, PXI, and so on) have become more and more widespread. Further-
more, devices based on automatic switches for cabling automatically the
measurement circuit in order to carry out sequences of different tests on
the same object under test have been successfully defined and made avail-
able on the market (e.g., ADLINK PXI-7921 [1] and National Instruments
(NI) PXI-2529 [2]).

For the software, a different strategy has been followed, going
through an approach of purely abridging the programming, such as for the
standard de-facto LabVIEW™ by National Instruments [3]. A graphical
programming language, the G, exploits graphical icons and wires symbol-
izing the data flow to make the program development easier. The approach
is to conceptualize the application in terms of the involved objects and
the exchanged data among them. However, the temporal sequence of the
single actions to be executed in the measurement procedure is hidden in
specific graphical constructs organized as frames in a movie. Conversely,

xxvi • IntroductIon

imperative programming languages (e.g., C, Python, and so on) point out
the operation’s order and allow the temporal constraints of a measurement
procedure to be managed in an easier way.

However, by this approach, for a laboratory operating with highly
and rapidly varying test requirements, although the development effort is
reduced indirectly by simplifying the programming phase, the software
production quality, in terms of flexibility, usability, and maintainability,
is not fostered intrinsically. An example of this problem is the experi-
ence gathered by the Authors at the European Organization for Nuclear
Research (CERN), in the context of the magnetic measurements for the
world’s largest and highest-energy particle accelerator, the Large Had-
ron Collider (LHC) [4]. The LHC accelerates two counter-rotating par-
ticle beams with an energy of 7 TeV and forces them to collide at four
intersection points. Magnetic fields up to 8.33 T are required to bend and
focus the particle beams. A high current density is required to generate
such a field level. For this reason, a superconducting magnet system was
designed, including 1232 dipoles and 392 quadrupoles to bend and focus
respectively the particle beams along their circular trajectories. The beam
control imposes stringent constraints on the field quality, needing to be
supported by adequate techniques for magnet testing [5, 6]. In the last few
years, fast transducers (rotating units [7]) have been developed in order to
increase the bandwidth of magnet quality tests by two orders of magnitude
(from 10 to 100 Hz), by keeping a typical resolution of 10 ppm, simulta-
neously [7, 8]. The transducers produce voltage signals to be integrated
in order to get the magnetic flux, according to Faraday’s law (such as in
rotating coils, fixed coils, stretched wire, and so on) [9–12], and are com-
plemented by other techniques (such as Hall plates) [13]. A multipurpose
numerical measurement instrument, the Fast Digital Integrator (FDI), has
been, therefore, developed at CERN in cooperation with the University of
Sannio, with the aim of reducing the flux acquisition time down to 4 µs
while increasing the metrological performance [14]. The new integrator
was conceived with the specific aim of being general-purpose, as much as
possible, in order to become a sound basis for satisfying a wide range of
magnetic measurement requirements over the years.

Furthermore, after the end of the LHC series tests, and on the medium
term, the expectation is to have a number of very specific tests to be rapidly
adapted and performed on single prototypes or relatively small batches of
magnets [15]. These tests require the control of various devices, such as
transducers, actuators, trigger and timing cards, power supplies, and other
devices, not yet completely specified. Moreover, for different measure-
ment techniques, different algorithms have to be implemented. All these

IntroductIon • xxvii

conditions demand for re-engineering the measurement and acquisition
software in order to be adequate for the new measurement requirements,
and to manage the challenge of the new hardware.

In software development, a framework is a defined support struc-
ture for organizing and developing another software project [16]. It may
include support programs, libraries, a scripting language, and other soft-
ware tools to help develop and connect together the different components
of a software project. Frameworks are designed mainly for simplifying
software production, by allowing design engineers to spend more time on
the application requirements, rather than on the low-level implementation
details.

According to the Object-Oriented paradigm, a framework can be
seen as a partial design and implementation for an application in a given
domain [17]. It is described by a set of abstract classes, and instances of
how those classes collaborate. The functionalities and architecture of the
framework can be adapted and combined to create complete applications.
Thus, frameworks allow a high level of reuse in Object-Oriented systems
and a considerable reduction in the effort necessary for the realization of
new applications.

While test programs are usually designed to solve specific problems
with extremely limited capability to evolve, a framework for a given mea-
surement domain, suitably conceived [17] in order to satisfy a wide range
of requirements, could constitute a unified solution to drive all the existing
and future park of measurement applications.

Namely, it is an effective way to implement a flexible measurement
system, specifically useful when a test laboratory, in an industrial test
division or a research center, is called to face highly and fast-varying
test requirements [18–20]. A number of developments worldwide try to
address this issue. Bosch applied the concept of framework in the mea-
surement field, by proposing an Object-Oriented project capable of sat-
isfying a wide range of applications [21]. Although this proposal leads to
solving the issues of measurement software reusability and quality, the
drawback of a higher programming skill for the test engineer arises.

In practice, the ideal situation would be to have a flexible software
framework providing a robust library to control remotely all the instru-
mentation involved in the tests, including the new high-performance hard-
ware, as well as all the tools the test engineer will need in the design of
new measurement procedures.

A number of developments worldwide are trying to address these
issues. At the commercial level, National Instruments (NI) proposes
the product NI TestStand [22] for supporting the design of new test

xxviii • IntroductIon

applications,by integrating software modules developed in different pro-
gramming languages (C, C++, LabVIEW). However, NI TestStand does
not support the development of single software modules, and, as a result,
standard development and reusability are intrinsically limited. The Front-
End Software Architecture (FESA) paradigm, adopted at CERN for the
LHC controls [23] was developed to provide a suitable front-end for
all the PCs interfacing with the LHC control instruments. However, the
analysis of this software showed that a strong collaboration and involve-
ment at the lowest level of FESA would be required in order to adapt
the architecture to the aforementioned applications. At the Fermi National
Accelerator Laboratory (FNAL), a new software system to test accelerator
magnets was developed to handle various types of hardware, as well as
to be extensible to all the measurement technologies and analysis algo-
rithms [24]. Other subnuclear research centers (Alba, Soleil, Elettra, and
ESRF) collaborated in order to develop a suitable software framework for
testing accelerator magnets [25]. This Consortium proposes TANGO, an
Object-Oriented system to handle different measurement applications. At
that time, the software of FNAL and the Object-Oriented system Tango
were still under development and not yet accessible worldwide.

The exposition of this book covers the specification, design, imple-
mentation, and validation of a software framework for measurement con-
trol and data acquisition. The framework’s objective is it to maximize the
measurement software quality, in terms of flexibility, reusability, main-
tainability, and portability, by simultaneously keeping high efficiency lev-
els. Moreover, the framework can be configured for satisfying a large set
of measurement applications in a specific measurement application field.
It is characterized by (a) flexibility in the rapid and cost effective realiza-
tion of “scriptable” applications, including prototyping in an R&D con-
text, (b) a modular architecture to mix and reuse components chosen from
an incremental library, and (c) high performance to exploit the increased
throughput of the new transducers and acquisition systems.

The examples of framework applications in this book refer to an
implementation in C++, mainly based (a) on Object-Oriented Program-
ming (OOP) and (b) on an innovative technology, the Aspect-Oriented
Programming (AOP) [26]. The latter technique extends the objects capa-
bilities in order to encapsulate features transversal to several functional
units (crosscutting concerns) by means of new software modules, the
aspects.

Moreover, after the kernel and the main components of the framework
are available, the framework’s key user, the test engineer, needs an easy
and fast way to formalize the test procedure by means of measurement

IntroductIon • xxix

scripts. To achieve this goal, a Measurement Domain Specific Language
(MDSL) is presented in this book.

Finally, also suitable means for automatically generating user inter-
faces are illustrated. The practical goal is to allow programmers, as test
engineers, who are not typically trained to design graphical interfaces,
to easily produce good Graphical User Interfaces (GUIs) for their
applications.

In the following, the main contents of the book are outlined.
In Chapter 1, an overview of the world of software for measurement

and test applications is given. For this purpose, the application software is
classified in two main groups: (a) measurement software in market solu-
tions and (b) software in the state of the art of research. In the first group,
the main solutions of measurement software producers are reviewed, by
establishing criteria for classifying the related products. In the second
group, software applications developed in the field of instrumentation and
measurement research are examined, by looking for a conceptual classifi-
cation of the related scenario.

In Chapter 2, software frameworks are presented and the main
related concepts are introduced. Subsequently, these principles are
examined in the more specific case of software frameworks for measure-
ment automation applications, by discussing their rationale and main
features. Then, a section is dedicated to the introduction of Domain
Specific Languages (DSLs). Finally, the requirements and desirable
features of a software framework for measurement applications are pre-
sented in relation to the different types of users who would interact with
such a system.

Chapter 3 continues the travel throughout the software for measure-
ment applications, by focusing attention on one of the most important
paradigms of the last decades: the Object-Oriented Programming. First,
the main concepts of object-oriented programming are presented. Then,
main concepts of design patterns of Object-Oriented Programming are
highlighted. Finally, the main concepts of Aspect-Oriented paradigm are
illustrated by emphasizing the advantage of its use in measurement appli-
cations.

Chapter 4 presents the design of a software framework for automatic
measurements application, based on Object-Oriented and Aspect-Oriented
programming. Initially, the paradigm of the framework is introduced, by
highlighting the basic ideas leading to its conception and design, as well
as its architecture at the structural and functional level. Then, the main
components of the framework are described, by firstly introducing the
corresponding state of the art, the leading concepts, and the architecture

xxx • IntroductIon

with their main modules. The review starts with the Fault Detector, aimed
at identifying and locating failures and faults, transparently, to the user.
Fault detection is a crosscutting concern; therefore, the design is led by
an Aspect-Oriented approach. Then, the Synchronizer, aimed at coordi-
nating measurement tasks with well-defined high-level software events
(e.g., start and stop, or device events), is presented. The review continues
with the Measurement Domain Language, aimed at specifying complete,
easy-to-understand, -reuse, and -maintain applications efficiently and
quickly by means of a script. Finally, the Automatic Generator of User
Interface, aimed at separating the user interfaces easily from the applica-
tion logic for enhancing the flexibility and reusability of the software, is
illustrated.

In Chapter 5, the assessment of the software quality for measurement
software frameworks is presented. First, main concepts of software qual-
ity are introduced very synthetically from a general perspective. Then, the
approach proposed in the standard ISO 9126 is chosen as reference model
for the quality assessment of measurement and test software. Finally, a
method based on specific metrics for assessing the degree of flexibil-
ity achieved by a software framework for measurement applications is
presented.

In Chapter 6, an overview of a case study of the software framework
for magnetic measurements realized at CERN in cooperation with the
University of Sannio, the FFMM [27], is provided. Initially, a background
on the application context of testing magnets for particle accelerators is
given. In the second part of the chapter, an outline of the FFMM project is
given. In particular, the FFMM is presented by introducing its main design
concepts and architecture. Subsequently, its main components, the Fault
Detector, and the Synchronizer, are described, by highlighting their archi-
tectures and the implementation of their classes. Finally, the application of
the Measurement Domain Specific Language (MDSL) and the Graphical
User Interface engine are reported.

In Chapter 7, some implementation examples in C++ code of the most
significant part of the framework FFMM at CERN are illustrated. The
examples are chosen by referring to the main layers of the framework
architecture. In particular, for each service layer, implementation details
about the layer structure and some devices classes are shown.

In Chapter 8, the validation of the framework components, the Fault
Detector, the Synchronizer, the MDSL and the Advanced Generator of
User Interfaces is treated. Each component was validated in different
case studies. The Fault Detector was analysed in a rotating coil system
for magnetic measurements; the Synchronizer in a magnetic permeability

IntroductIon • xxxi

measurement system; the MDSL in a superconducting magnet testing and
magnetic permeability measurement, and the Advanced Generator of User
Interfaces in a magnetic permeability measurement system.

In Chapter 9, a specific discussion on the goal achievement in func-
tional terms is presented for the FFMM as a whole. FFMM was used to
develop applications for different measurement activities currently car-
ried out at CERN. Different application scenarios are a good test bed for
checking FFMM’s capability on offering an environment for a fast devel-
opment of several measurement applications with different requirements.
The discussion is focused on describing the measurement procedure, the
test station, and the experimental results for measuring the magnetic per-
meability by means of the split-coil permeameter and the magnetic field
by means of the rotating coils, as well as for testing and compensating the
field distortion of the superconducting cryo-magnets of the LHC. Finally,
a specific assessment of the flexibility of the FFMM is presented on the
basis of the method presented in Chapter 5. The impact of adding or mod-
ifying a device, changing service strategies, and implementing new mea-
surement algorithms is highlighted.

rEFErEncES

[1] “PXI-7921: 24-CH 2-Wire Multiplexer Module.” ADLink Technologies:
Switches. http://www.adlinktech.com/PD/marketing/Datasheet/PXI-7921/
PXI-7921_Datasheet_1.pdf

[2] “High-Density Multiconfiguration Matrix Modules: NI PXI-2529 Specifica-
tions.” National Instruments. http://sine.ni.com/ds/app/doc/p/id/ds-375/lang/en.

[3] National Instruments. n.d. What is NI LabVIEW? http://www.ni.com/web-
cast/2696/en/

[4] CERN. 2004. LHC Design Report. CERN 2004-003.
[5] Bottura, L., and K.N. Henrichsen. September 2004. “Field measurements.”

CERN Laboratory for Particle Physics. http://cds.cern.ch/record/597621/
files/lhc-2002-020.pdf

[6] Amet, S., L. Bottura, L. Deniau, and L. Walckiers. March 2002. “The Multi-
poles Factory: An Element of the LHC Control.” Applied Superconductivity,
IEEE Transactions 12, no. 1, pp. 1417–21. doi: http://dx.doi.org/10.1109/
tasc.2002.1018668

[7] Brooks, N.R., L. Bottura, J.G. Perez, O. Dunkel, and L. Walckiers. June
2008. “Estimation of Mechanical Vibrations of the LHC Fast Magnetic
Measurement System.” Applied Superconductivity, IEEE Transactions 18,
no. 2, pp. 1617–20. doi: http://dx.doi.org/10.1109/tasc.2008.921296

xxxii • IntroductIon

[8] Haverkamp, M., L. Bottura, E. Benedico, S. Sanfilippo, B. ten Haken, and
H.H.J. ten Kate. “Field Decay and Snapback Measurements Using a Fast
Hall Plate Detector.” Applied Superconductivity, IEEE Transactions 12,
no. 1, pp. 86–89. doi: http://dx.doi.org/10.1109/tasc.2002.1018357

[9] Elmore, W.C., and M.W. Garrett. 1954. “Measurement of Two-Dimensional
Fields, Part I: Theory.” Review of Scientific Instrument 25, no. 5, pp. 480–85.
doi: http://dx.doi.org/10.1063/1.1771105

[10] Dayton, I.E., F.C. Shoemaker, and R.F. Mozley. 1954. “Measurement
of Two-Dimensional Fields, Part II: Study of a Quadrupole Magnet.”
Review of Scientific Instruments 25, no. 5, pp. 485–89. doi: http://dx.doi.
org/10.1063/1.1771107

[11] DiMarco, J., and J. Krzywinsky. March 1996. “MTF Single Stretched Wire.”
Technical Report, Fermi National Accelerator Laboratory.

[12] DiMarco, L., H. Glass, M.J. Lamm, P. Schlabach, C. Sylvester, J.C. Tompkins,
and J. Krzywinsky. 2000. “Field Alignment in Quadrupole Magnets for the
LHC Interaction Region.” IEEE Transactions on Applied Superconductivity
10, no. 1, pp. 127–30. doi: http://dx.doi.org/10.1109/77.828515

[13] Bottura, L., L. Larsson, S. Schloss, M. Schneider, and N. Smirnov. 2000.
“A Fast Sextupole Probe for Snapback Measurement in the LHC Dipoles.”
IEEE Transactions on Applied Superconductivity 10, no. 1, pp. 1435–38. doi:
http://dx.doi.org/10.1109/77.828509.

[14] Arpaia, P., V. Inglese, and G. Spiezia. July 2009. “Performance Improvement
of a DSP-Based Digital Integrator for Magnetic Measurements at CERN.”
Instrumentation and Measurement, IEEE Transactions 58, no. 7, pp. 2132–
38. doi: http://dx.doi.org/10.1109/tim.2008.2006723

[15] Arpaia, P., L. Bottura, M. Buzio, D. Della Ratta, L. Deniau, V. Inglese,
G. Spiezia, S. Tiso, and L. Walckiers. May 1−3, 2007. “A Software Frame-
work for Magnetic Measurements at CERN.” Proceedings of the Instrumen-
tation and Measurement Technology Conference. Warsaw, Poland: IEEE.

[16] Anderson, J.L. 2005. “How to Produce Better Quality Test Software.” IEEE
Instrumentation and Measurement 8, no. 3, pp. 34–38. doi: http://dx.doi.
org/10.1109/mim.2005.1502445

[17] van Gurp, J., and J. Bosch. 2001. “Design, Implementation and Evolution of
Object-Oriented Frameworks: Concepts and Guidelines.” Software Practice
and Experience 31, pp. 277–300. doi: http://dx.doi.org/10.1002/spe.366

[18] Hashempour, H., F. Lombardi, W. Necoechea, R. Mehta, and T. Alton. 2007.
“An Integrated Environment for Design Verification of ATE Systems.” IEEE
Transactions on Instrumentation and Measurement 56, no. 5, pp. 1734–43.
doi: http://dx.doi.org/10.1109/tim.2007.895611

[19] Guo, Z., P. Chen, Y. Feng, Y. Jiang, and F. Hong. 2010. “ISDP: Interactive
Software Development Platform for Household Appliance Testing Indus-
try.” IEEE Transactions on Instrumentation and Measurement 59, no. 5,
pp. 1439–52. doi: http://dx.doi.org/10.1109/tim.2010.2040931

IntroductIon • xxxiii

[20] Anderson, J.L., R. Rajsuman, N. Masuda, and K. Yamashita. 2005. “Archi-
tecture and Design of an Open ATE to Incubate the Development of Third-
Party Instruments.” IEEE Transactions on Instrumentation and Measurement
54, no. 5, pp. 1678–98. doi: http://dx.doi.org/10.1109/tim.2005.856714

[21] Fayad, M.E., and R.E. Johnson. 1999. Domain-Specific Application Frame-
works, pp. 177–205. New York, NY: Wiley.

[22] “TestStand.” n.d. National Instruments. http://www.ni.com/teststand/
[23] Guerrero, A., J.J. Gras, J. Nougaret, M. Ludwig, M. Arruat, and S. Jackson.

13−17 October 2003. “CERN Front-End Software Architecture for Accelera-
tor Controls.” 9th International Conference on Accelerator and Large Experi-
mental Physics Control Systems, Gyeongiu, Korea, pp. 342–44.

[24] Nogiec, J.M., J. DiMarco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge,
and M. Tartaglia. 2006. “A Configurable Component-Based Software Sys-
tem for Magnetic Field Measurements.” IEEE Transactions on Applications
Superconducting 16, no. 2, pp. 1382–85. doi: http://dx.doi.org/10.1109/
tasc.2005.869672

[25] Abeille, G., S. Pierre-Joseph, J. Guyot, and M. Ounsy. 10–14 October 2011.
“Tango Archiving Service Status.” In 13th International Conference on
Accelerator and Large Experimental Physics Control Systems, pp. 127–30.
Grenoble, France: EFDA.

[26] Arpaia, P., M. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. 2010. “An
Aspect-Oriented Programming-based Approach to Software Development
for Fault Detection In Measurement Systems.” Computer Standards & Inter-
faces 32, no. 3, pp. 141–52. doi: http://dx.doi.org/10.1016/j.csi.2009.11.009

[27] Inglese, V. 2009. A Flexible Framework for Magnetic Measurements
(CERN-THESIS-2010-019, CERN).

PART I

bAckgrounD

CHAPTER 1

SoftwAre for meASurement
ApplicAtionS

The real danger is not that computers will begin to think like men,
but that men will begin to think like computers.

—Sydney J. Harris

1.1 OVERVIEW

Main objective of this chapter is to analyze the world of software for mea-
surement and test applications. With this aim, two main groups are con-
sidered: (a) measurement software in market solutions and (b) software
in the state of the art of research. In the first group, the main solutions of
producers are reviewed, by establishing criteria for classifying the related
products. In the second group, software applications developed in the field
of instrumentation and measurement research are examined, by looking
for a trend in the related scenario.

1.2 BASICS

Automatic test and measurement (or data acquisition) systems are used to
assess experimentally parameter values of a process or a product. They are
different from the monitoring systems integrated in process/plant super-
vision and control, because the measured values are not used directly
(i.e., as a part of the same system) to automatically adjust the system under
test [1].

Moreover, for both the cases, increasing automation in the produc-
tion process amplifies more and more the need for accurate measurement

4 • FLEXIBLE TEST AUTOMATION

systems for quality control and, consequently, the need for developing
related software. The choice of the right application software for an auto-
matic measurement system is an important step for all the test operators.
As a matter of fact, the software is the core of modern automatic measure-
ment systems, and the main imperative in the selection of a development
tool is the scalability as the measurement systems matures, in order to
avoid rewriting the code.

But software developers also face the challenge of producing reliable
and high-quality applications in a very-short time [1]. Moreover, another
ongoing need is the integration of different families of various measure-
ment instruments, by minimizing configuration and measurement time.
Finally, the software for measurement applications should be highly
effective in exploiting first the increased throughput of the new trans-
ducer and acquisition systems and, at the same time, keep flexibility, reus-
ability, maintainability, and portability, in order, to maximize its quality.
In particular, in this context,

1. flexibility means the capability of satisfying a large set of mea-
surement applications, possibly in different fields, with rapid and
cost-effective realization, especially in research and development
environment;

2. reusability of components is aimed at adding new features with
minor code alterations, as well as with reduced implementation
time and bugs probability, owing to the preceding testing and use;

3. maintainability is aimed both at an easy revision after release, in
order to correct faults and improve performance or other attributes
and error correction, and at optimizing performance and features,
by removing obsolete capabilities; in fact, during the software life,
evolution is unavoidable, thus suitable mechanisms must be set up
for crafting, assessing, and tracing modifications; and

4. portability, by suitably abstracting between application logic and
system interfaces, for exploiting the same code in diverse environ-
ments, in order to reduce development cost when producing for
several computing platforms.

In the upcoming sections, main measurement software applications
are reviewed in order to highlight key features, analyze principal market
solutions, companies, and products (Section 1.3). Then, the horizon of the
investigation is broadened to the software for research and development,
in order to focus on the main motivations and needs in current innovation
trends (Section 1.4).

SOFTWARE FOR MEASUREMENT APPLICATIONS • 5

1.3 MAIN MARKET SOLUTIONS

In this section, first the main criteria for addressing the right choice of
software for automatic measurement systems are highlighted; then, the
corresponding main market solutions are analyzed.

1.3.1 CRITERIA FOR CHOOSING SOFTWARE

Generally, the main criteria for choosing the right software environment for
developing successfully and effectively a high-quality measurement appli-
cation are the flexibility respect to the application, the usability for nonspe-
cialized users, the integrability with existing applications, the information
availability, and the software history (i.e., stability and longevity) [2].

About flexibility, software applications range from ready-to-run
programs to environments for developing fully customizable applications.
Although the choice of a software environment is based on the current
development requirements, an important factor is how the application can
scale and solve problems over time. Specific measurement procedures
use software tools with a set of features for a limited subset of hardware
options. The current and over-time scaled requirements are met by suit-
ably selecting a development environment allowing custom applications
to be created. Development environments for measurement application are
extremely flexible, allowing instrumentation drivers to be integrated into
the software and a custom user interface to be developed. The only trade-off
is the time spent learning their use and the related programming language.
Although this could seem a negative aspect, the development environments
provide a variety of information resources, including online and live train-
ing, getting-started examples, community forums to share code, and so on.

Another key criterion for a good selection is the usability of the soft-
ware application, that is, the time needed to learn the new software. This
is different for each user and depends on the type of the software appli-
cation. Users spend considerable time to learn the language used within
the development environment. Ready-to-run software tools are the easiest
and fastest to learn, because programming details are excluded from the
users. If the choice of a new environment requires one to learn a new
programming language, the users consider the software as aimed at solv-
ing the current application problem, rather than at low-level encoding.
Programming languages, such as C++, are more challenging to learn for
their complex grammar and syntax rules. Graphical programming lan-
guages are easier to learn for their intuitive nature, but are not as wide-

6 • FLEXIBLE TEST AUTOMATION

spread as standard de facto traditional languages [2]. Moreover, their level
of abstraction is higher, and does not provide the possibility of program-
ming at low-level by accessing directly hardware features for optimizing
time and memory use in constraining real-time applications.

Integrability is the capability of the application software to be inter-
faced effectively with instrumentation and measurement setup, and with
other software tools for data analysis, visualization, and storage. In most
cases, the existence of a software driver of a measuring device is not
sufficient for its direct integration into the automatic measurement system.
The most important thing is to choose a software driver or a tool directly
compatible with the software application as a whole. In most measure-
ment applications, tools for data analysis are designed directly for data
acquisition through suitable signal manipulation aids [2]. Furthermore,
the application software usually should have an easy way to visualize the
acquired data. Finally, the application software should integrate easily
with system and data management software to store data of tests.

About information availability, the chosen development software
should be surrounded by a certain amount of knowledge. A wealth of
resources and information makes learning a new software tool easy for
each user, by guiding the application development with suitable feedback.
Before choosing a development tool, the best practice is to take the infor-
mation about existing case studies and gain as much knowledge as possi-
ble about their positive and negative aspects.

The reuse and scalability of a measurement system depends on the sta-
bility and longevity of the application software, in order to avoid obsoles-
cence in short time. For software reuse, the abstraction plays a central role
in order to make intuitive and expressive the application software. More-
over, scalability, conceived as the “ability of a program to adapt effectively
to variation in data size,” allows the measurement software to process well
both small and large data sets, independently of the device setup size.

1.3.2 MARKET LEADERS AND PRODUCTS

In this subsection, the software market for measurement applications is
analyzed according to the aforementioned criteria in order to depict a sce-
nario of the commercial products. The resulting tree of the main market
solutions is represented in Figure 1.1, highlighting producers and their
software. A further important objective criterion is that the producers con-
sidered in Figure 1.1 have been leaders in the market for at least the last
30 years. The tree does not have the presumption to be neither exhaustive

SOFTWARE FOR MEASUREMENT APPLICATIONS • 7

Fi
gu

re
 1

.1
.

M
ai

n
m

ar
ke

t s
ol

ut
io

ns
 tr

ee
: L

ea
de

rs
 a

nd
 p

ro
du

ct
s.

M
ai

n
m

ar
ke

t s
ol

ut
io

ns

N
at

io
na

l i
ns

tru
m

en
ts

N
I T

es
tS

ta
nd

La
bV

IE
W

La
bV

IE
W

Si
gn

al
Ex

pr
es

s

N
I V

er
iS

ta
nd

La
bW

in
do

w
s M

ea
su

re
m

en
t

st
ud

io

O
pe

nL
A

B
A

gi
le

nt
B

en
ch

V
ue

In
st

ru
m

en
t

C
on

tro
l

Fr
am

ew
or

k
(I

C
F)

A
gi

le
nt

A
gi

le
nt

 V
EEA

zi
m

ut
h

Sy
st

em
s

D
ire

ct
or

 II
te

st
m

an
ag

em
en

t
so

ftw
ar

e

TY
X

 T
es

tB
as

e

TR
D

 sy
st

emSi
gB

as
e

A
ct

iv
A

TE
te

st
 p

la
tfo

rm
PA

W
S

EA
D

S
N

or
th

 A
m

er
ic

a

M
ea

su
re

m
en

tp
oi

nt
fr

am
ew

or
k

V
IB

po
in

t
fr

am
ew

or
k

D
at

a
Tr

an
sl

at
io

n
So

ftw
ar

eY
ok

og
aw

a

PU
LS

E
pl

at
fo

rm

D
ig

ita
l

M
et

ro
lo

gy
So

lu
tio

ns

O
th

er
s

8 • FLEXIBLE TEST AUTOMATION

nor objective, in the sense that the classification is made according only
to the earlier criteria and, above all, for purposes functional to the book
exposition. Moreover, the classification does not express any judgment
about a scale of quality of the products, and reflects only personal ideas
of the Authors. Finally, the corresponding market picture is taken at the
moment of the book publication, without any presumption to be durable
over a long time.

In particular, the following main producers are highlighted:
(1) National Instruments, (2) Agilent Technologies, (3) Azimuth Systems,
(4) EADS North America, and (5) others. Indeed, these producers are the
leaders of measurement application systems, as producers, above all, of
measurement instrumentation (devices, sensors, transducers, analyzers,
and so on), and, only after, of software for measurement application. This
aspect is common to all the producers, main leaders, and other producers
(Figure 1.1).

By analyzing the products, the flexibility is not really a global factor,
but in some case it depends on the application field. Software integrability
is subject to the use of proprietary instrumentation. Regard to usability,
resource availability, and history, all the producers are leaders in the mar-
ket for at least 30 years, and for this reason their products are recognized
as stable and reliable.

In the following, a short overview of the producers and their main
products is presented.

National Instruments (NI) offers a complete software and hard-
ware platform for building an automatic test system [3]. By means of this
platform, NI offers service programs for supporting users throughout the
application life cycle—from planning and development up to deploy-
ment and on-going maintenance. According to the aforementioned basic
criteria, the highest performance NI products are the Test Management
and Development Software (NI TestStand, NI VeriStand, NI LabVIEW,
NI LabWindows/CVI, and NI Measurement Studio) [3]. NI TestStand is
a test management software for speeding the development of automated
test and experimental validation systems without programming knowl-
edge. Test sequences integrating code modules written in any test pro-
gramming language can be developed. The sequences specify execution
flow, database logging, connectivity, and reporting to other enterprise sys-
tems. NI VeriStand allows real-time tasks (I/O, profiles, and alarms) to be
configured, system simulations to be implemented, and a run-time edit-
able user interface to be created. Control algorithms, simulation models,
and other tasks from NI and third-party software environments can be
imported.

SOFTWARE FOR MEASUREMENT APPLICATIONS • 9

LabVIEW [4] is an intuitive graphical programming environment
to help the user in quickly developing complex test software with sup-
port for thousands of technologies and instruments, such as multicore and
field-programmable gate arrays (FPGAs). LabVIEW platform has seen its
user base grow to more than one million consumers worldwide this past
decade, to become a true de facto standard. The programming language of
LabVIEW is a dataflow programming language, inspired by G-code. The
execution structure is determined by a graphical block diagram (different
function-nodes connected by drawing wires). In addition to graphical pro-
gramming, the main benefits of LabVIEW are: (a) interfacing, as access to
many different drivers for devices and hardware instrumentation; (b) large
libraries, a large number of function block for data acquisition, analysis,
mathematic, signal processing, and so on; (c) code reuse, reusability of
code without modification; and (d) parallel and multithreading program-
ming, easy to program multitask for hardware automation.

In the LabVIEW platform, further measurement application soft-
ware can be found, such as LabVIEW SignalExpress. SignalExpress is
an interactive software package for data-logging, as well as for acquiring
and presenting data from hundreds of data acquisition devices and instru-
ments, by allowing their analysis without programming. From a technical
point of view, LabVIEW SignalExpress is a signal analysis software pack-
age, because the core of its features is specifically customized for this task.

LabWindows/CVI is a proven ANSI C integrated development envi-
ronment, providing test engineers with a comprehensive set of program-
ming tools, including instrument drivers and functions, analysis libraries,
multicore programming capabilities, and assistants to auto-generate code.
With respect to LabVIEW, hardware features of the instruments can be
accessed at low level owing to the programming in C.

Measurement Studio is a plug-in of NI for Microsoft Visual
Studio [5], considerably reducing application development time for creat-
ing test applications, by providing an integrated suite of measurement and
automation controls, tools, and class libraries, specific for .NET program-
mers. The developer productivity is increased by extending the Microsoft
.NET Framework and by providing measurement and automation classes
as well as Windows Forms and Web Forms controls for Visual Basic .NET
and Visual C#. Most important features of Measurement Studio are the
advanced analysis and signal processing libraries, the engineering-specific
user interface controls, the hardware integration, the compatibility with NI
TestStand, the automation of the test process, and the flexible debugging.

Agilent Technologies represents a company leader in the field of
measurement instrumentation and application software [6]. Its software

10 • FLEXIBLE TEST AUTOMATION

and informatics portfolio covers a broad range of analytical workstations,
applications, workflows, and laboratory management solutions to meet the
needs of the life sciences and chemical industries. The analysis of Agilent’s
software and informatics portfolio points out many software tools for
measurement application, but only few of them meet the criteria of the
present analysis. Particularly interesting is the “Liquid Chromatography:
Instrument Control Framework (ICF)” [7]. The ICF is a software pack-
age that makes fast and easy for third-party software providers the control
of Agilent liquid chromatography systems through their data systems or
workstations. ICF contains instrument drivers and user interfaces, and pro-
vides a simple programming interface for third-party software connectiv-
ity. The main technical feature of ICF is the application-oriented nature of
software, though limited to liquid chromatography systems, and the strict
linking with specific Agilent instrumentation. OpenLAB Laboratory
Software Framework is an Agilent software tool with a new approach for
managing laboratory data [8]. Agilent OpenLAB is more than a laboratory
database, in particular it represents a framework for managing laboratory
content and work processes. The main features of OpenLAB are: scalable
architecture, protect and secure data, centralized management, support for
laboratory business processes, and flexible deployment [8]. Agilent VEE
(Visual Engineering Environment) [9] is a graphical language environ-
ment, designed to provide a quick path to measurement and analysis. The
main features of VEE are: (a) a virtual environment (objects or instru-
ments, wires, data flows, and so on), to design the measurement setup;
(b) tools to create and to debug programs easily; and (c) multithreading
technology and multicore programming. Agilent BenchVue [10] is an
intuitive software environment that accelerates testing by providing mul-
tiple instrument measurement visibility and data capture without program-
ming. The main specifications of BenchVue are: viewing, capturing, and
exporting measurement data.

Azimuth Systems is a leading provider of wireless broadband test
equipment and channel emulators for LTE-Advanced, LTE, WiMAX, and
other 2G/3G/4G technologies [11]. Azimuth’s products are used by the
world’s foremost wireless semiconductor and system vendors, as well as
by leading service providers, to speed time-to-market and improve wire-
less service quality. Azimuth’s fully integrated software architecture is
designed to efficiently manage all the aspects of wireless testing, from test
configuration to results analysis. In particular, Azimuth DIRECTOR™ II
is a flexible software management tool that enables automation of custom
test plans, runs standard scripts, and manages all the devices in the test-
bed [12]. Director II has a modular architecture, with five primary appli-

SOFTWARE FOR MEASUREMENT APPLICATIONS • 11

cations: (a) TestBed Manager, providing a common, centralized interface
to control and manage all the test bed devices within the test environment;
(b) Test Builder, enabling engineers to easily construct flexible test scripts
without knowledge of Test Control Language programming; (c) Test
Driver, providing an intuitive interface to Azimuth’s standard scripts for
performance and certification and to custom developed scripts; (d) Test
Scheduler, a batching and scheduling application allowing users to orga-
nize and batch a group of test scripts, with sequence and scheduling flexi-
bility; and (e) Test Editor, a script editor enabling engineers to create their
own customized test scripts.

EADS North America Test and Services, a division of EADS North
America, is a complete test and measurement systems provider [13], offer-
ing a full-range of products and capabilities, such as integrated test solu-
tions, complete turn-key hardware and software systems, custom designs,
commercial-off-the-shelf (COTS) instrumentation, engineering solutions,
and test software. EADS North America Test and Services has a leading
role in software development for test instrumentation that supports flight
hardware, guidance systems, aircraft engines, and other mission-critical
systems. The ActivATE platform and the TYX product line (PAWS,
TestBase, SigBase, and Test Requirements Document (TRD), not pointed
out in Figure 1.1 for conciseness) represent the main software products
[14] in the measurement application software. ActivATE is a platform to
develop software, providing both runtime and development environments
for Automatic Test Equipment (ATE). It is an open architecture Integrated
Development Environment (IDE), allowing the user to rapidly and intu-
itively build test programs for ATE. The ActivATE™ Test Platform is a
software environment based on the .Net architecture. PAWS Developers
Studio is a product to compile, modify, debug, document, and simulate the
operation of the Abbreviated Test Language for All Systems (ATLAS), a
military standard language for automatic testing of avionics equipment
[15] test programs in a modern Windows NT Platform environment. A full
range of the most-commonly used ATLAS Language subsets is supported.
A PAWS Toolkit can modify the ATLAS Language subset to meet the
particular ATE configuration. TestBase is a test executive supporting the
visual development, database storage, and run-time execution of test strat-
egies (also known as test plans or test sequences). TestBase modular and
open architecture enables system integrators and end-users to custom-
ize and extend the product and to integrate additional third-party appli-
cations. The entire ATE lifecycle (new, rehost, and legacy) is supported
through common user interfaces, configuration management capabilities,
and automatic generation of development documentation. SigBase is an

12 • FLEXIBLE TEST AUTOMATION

IEEE-1641 [16] compliant signal-based test environment, supporting the
visual organization and execution of IEEE-1641 strategies created from
basic signal components and test signal frameworks. SigBase is also an
International Traffic in Arms Regulations (ITAR)-controlled product [17],
that is, SigBase is considered a defense-related service, so the export and
import of this is controlled by ITAR.

The TRD System helps users to develop and document the strategy
and structure of test programs, using suitable screens, flowchart genera-
tion tools, and documentation formats, all in accordance with the most
popular military standard formats or with unique custom formats. ATLAS
test program can be automatically generated from the information pro-
vided by the user. Like SigBase, TRD is an ITAR-controlled product.

The producers labeled others (Figure 1.1) represent a group of mea-
surement application creators of market impact not comparable to the
aforementioned companies. Indeed, PULSE platform, Data Transla-
tion, Yokogawa, and Digital Metrology Solutions have products meet-
ing the previously mentioned basic criteria of flexibility and integration of
software. Most important drawbacks are related to the resource availabil-
ity, usability, stability, and general history. This makes it impossible as a
plausible comparison with the main leader producers.

From a strict technical point of view, all the aforementioned products
of all the producers can be classified in four categories: Test Management
Software, Test Development Software, Application-based Software,
and Signal Analysis Software. A corresponding cataloging of the technical
categories versus producers of software packages is plotted in Figure 1.2.

The Test Management Software products (Director II, ActivATE Test
Platform, NI TestStand, and VeriStand) are flexible measurement software
packages integrated in a full management tool. They foster and manage
the most important measurement steps: (1) management of all the devices
within the test environment, (2) flexible construction of test scripts, (3) test
driver by an intuitive interface, (4) test batching and scheduling, and
(5) test editor for implementing measurement scripts. The main difference
between the classes of Test Management Software and Test Development
Software products is the management aspect. In effect, test development
software products are measurement–oriented, that is, they represent suit-
able environments for developing a measurement application. Some prod-
ucts (Instrument Control Framework, PAWS, TRD System, Pulse Platform,
and VIBpoint) show management and development features, but in specific
measurement step or application. As an example, ICF and Pulse Platform
are full measurement application platforms, but their fields of application
are specific, liquid chromatography and sound and vibration measurements,

SOFTWARE FOR MEASUREMENT APPLICATIONS • 13

Fi
gu

re
 1

.2
.

Pl
ot

 o
f T

ec
hn

ic
al

 P
ro

du
ct

 C
at

eg
or

ie
s v

er
su

s P
ro

du
ce

rs
.

Te
st

M
an

ag
em

en
t

So
ftw

ar
e

Te
st

D
ev

el
op

m
en

t
So

ftw
ar

e

A
pp

lic
at

io
n

B
as

ed
So

ftw
ar

e

Si
gn

al
 A

na
ly

si
s

So
ftw

ar
e

E
cv
gi
qt
kg
u

R
tq
f
w
eg
tu

N
I T

es
tS

ta
nd

N
I V

er
iS

ta
nd

La
bV

IE
W

La
bW

in
do

w
s

M
ea

s.
St

ud
io

La
bV

IE
W

Si
gn

al
Ex

pr
es

s

P
cv
kq
p
cn

Kp
uv
tw
o
gp
vu

O
pe

nL
A

B
D

ire
ct

or
 II

V
is

ua
l

En
gi

ne
er

in
g

En
vi

ro
nm

en
t

In
st

ru
m

en
t

C
on

tro
l

Fr
am

ew
or

k

B
en

ch
V

ue

C
ik
ng
p
v

C
|k
o
w
vj

U
{u
vg
o
u

A
ct

iv
A

TE
te

st
 p

la
tfo

rm

Te
st

B
as

e

PA
W

S

TR
D

 sy
st

em
s

Si
gB

as
e

G
C
F
U

 M
ea

su
re

m
en

tP
oi

nt
So

ftw
ar

e

Pu
ls

e
Pl

at
fo

rm

V
IB

po
in

t

Y
ok

og
aw

a
So

ftw
ar

e

D
ig

ita
l M

et
ro

lo
gy

So
lu

tio
ns

 S
of

t.

Q
vj
gt
u

14 • FLEXIBLE TEST AUTOMATION

respectively. For this reason, this kind of products difficultly matches other
fields of application, and they are inserted in the category of Applica-
tion-based Software. In the category of Signal Analysis Software, products
such as LabVIEW Signal Express, BenchVue, and SigBase of EADS, for
analyzing the signals in an easy and quick way are included.

1.4 RESEARCH: STATE OF THE ART

During the last decade, the need for automated tools specifically supporting
quality control inside the actual production process is rising more and more.
As a matter of fact, the increased quality and the improved automation level
inside the production process require monitoring and control systems with
higher and higher performance. This trend has dramatically enlarged the
necessity for research and development of automatic measurement systems.

Although a substantial part of these systems is developed at a hard-
ware level, that is, connected directly to the physical world through sev-
eral sensors and actuators, an automatic measurement system contains a
considerable amount of software. Furthermore, nowadays the need for an
automatic support to their development is evident also [1]. As a direct
consequence, this interest spurred the research in the field of software
applied to measurement and test systems. The objective of this section is
to analyze the research and the development of software in measurement
applications, such as for industry, science, and other fields.

With respect to the previous section on main market solutions, the basic
criteria for analyzing the state of the art in research on innovative software
applications for automatic measurement systems are conceptually different.
Talking about resource availability, history and stability, as well as usability
is meaningless for scanning the research trends. Flexibility and integration
concepts are again used, but mainly at a technical level. In scientific liter-
ature, the measurement-oriented software is integrated in automatic test or
real-time monitoring systems. The software applied to measurement meth-
ods can be flexible with respect to the specific application field.

A more useful strategy for classifying the research state of the art is to
analyze the software applied to automatic measurements from a technical
point of view. From this viewpoint, in research papers, four main classes
can be identified (Figure 1.3): Hardware and Software Platforms, Specific
and Custom Software, Application Field Software, and Development
Environments.

A platform includes a hardware architecture and a software framework
combined to run application software. Typical platforms include operating

SOFTWARE FOR MEASUREMENT APPLICATIONS • 15

Fi
gu

re
 1

.3
.

St
at

e
of

 a
rt

R
es

ea
rc

h
Tr

ee
: S

of
tw

ar
e

fo
r M

ea
su

re
m

en
t A

pp
lic

at
io

ns
.

Fl
ex

ib
le

 M
ea

s.
Sy

st
em

[1
8,

19
]

SW
 fr

am
ew

or
ks

[2
0,

21
,2

2,
23

,2
4,

25
,2

6,
27

,2
8,

29
,3

0,
31

,3
2,

33
,3

4,
35

,3
6,

37
,3

8,
39

,4
0,

41
,4

2]

Sp
ec

ifi
c

H
W

[4
3,

44
,4

5,
46

,4
7,

48
,4

9]

D
ev

el
op

m
en

t E
nv

iro
nm

en
ts

D
SL [3
2]

X
M

L
[3

0,
40

]
.N

et
[3

4,
40

]

V
is

ua
l S

tu
di

o
[4

3,
46

]

O
bj

ec
t O

rie
nt

ed
[2

2,
27

,2
9,

31
,6

2]

Ja
va

[2
6,

30
,4

9,
55

,6
4,

65
,

66
,6

7,
88

]

C
++

[2
0,

27
,3

0,
83

]

M
at

La
b

[3
9,

47
]

H
W

 a
nd

 S
W

 P
la

tfo
rm

s

D
is

tri
bu

te
d

an
d

D
ia

gn
os

tic
s

[5
0,

51
,5

2,
53

,5
4,

55
,5

6,
57

,5
8,

59
]So

ftw
ar

e
fo

r M
ea

su
re

m
en

t A
pp

lic
at

io
ns

Sp
ec

ifi
c

an
d

C
us

to
m

So

ftw
ar

e
D

ed
ic

at
ed

 D
ev

ic
e

[8
7,

88
,8

9,
90

,9
1,

92
,

93
,9

4,
95

,9
6]

N
at

io
na

l I
ns

tr.

La
bv

ie
w

[2
1,

39
,4

6,
56

,5
8,

59
,6

1,
63

,
69

,7
0,

72
,7

3,
77

,7
8,

79
,8

0,
84

,
85

,8
7,

89
,9

1,
93

,9
4,

95
,9

6]

La
bw

in
do

w
sC

V
I

[4
6,

71
,7

4]

M
ea

s.
St

ud
io

[4
6]

Pr
op

rie
ta

ry
 S

of
tw

ar
e

[8
1]

G
en

er
al

 P
ur

po
se

[8
2]A

pp
lic

at
io

n
Fi

el
d

1.
 E

le
ct

ro
ni

cs
[3

9,
46

,4
7,

57
,6

1,
62

,6
3,

72
,7

3,
75

,8
6,

92
,9

6]
2.

 D
ia

gn
os

tic
s

[2
5,

33
,3

6,
37

,4
0,

50
,5

2,
53

,5
4,

69
,7

8,
83

]
3.

 P
hy

si
cs

[2
0,

22
,2

7,
28

,3
0,

32
,4

1,
68

,7
5,

87
]

4.
 E

ne
rg

y
[3

8,
48

,5
8,

71
,7

9,
80

,8
2,

85
,9

4,
95

]
5.

 M
ec

ha
ni

cs
 [5

9,
76

,7
7,

91
]

6.
 M

ed
ic

in
e

[2
4,

35
,4

4,
45

]
7.

 B
io

lo
gy

 [2
1,

56
,8

4]
8.

 M
et

eo
ro

lo
gy

 [5
5,

88
,9

3]
9.

 C
om

pu
tin

g
[2

6,
51

]
10

. G
eo

sc
ie

nc
e

[2
3,

81
]

11
. O

pt
ic

s [
89

]
12

. S
pa

ce
 [9

0]

A
ut

om
at

ic
 a

nd
C

on
tro

l S
ys

te
m

s
[7

0,
71

,7
2,

73
,7

4,
75

,7
6,

77
,

78
,7

9,
80

,8
1]Se

ns
or

 N
et

w
or

k
[8

2,
83

,8
4,

85
,8

6]
W

eb
 B

as
ed

[6
0,

61
,6

2,
63

,6
4,

65
,6

6,
67

,6
8,

69
]

16 • FLEXIBLE TEST AUTOMATION

system, computer architecture, programming languages, and related user
interface (run-time system libraries or graphical user interface).

On the market, specific or custom software (also known as bespoke
software or tailor-made software) is expressly developed for some definite
organizations or users. In scientific research, the concept is analogous, but the
organization and the user are replaced by specific instrumentation, devices,
sensors networks ,or particular setup, applied and found in literature.

The third possible synthesis approach is to classify the software of
research according to the application field, although the experimental
measurement software touches multiple field of research.

Finally, the software can be classified (Figure 1.3) according to the
environment or language used for implementing the measurement system
(.Net, Object-Oriented, Matlab, etc.).

A development environment is a crucial element in software produc-
tion. An environment might be defined in the simplest case, even, as a
place to launch software. Application software can depend on the features
of the particular environment, either on the hardware and operating sys-
tem, or the virtual machine it runs on. This is a transversal criterion com-
mon to all the aforementioned classes, for this reason the related research
trends were classified separately at the bottom of Figure 1.3.

In the following, the synthesis tree of Figure 1.3 is discussed, by
referring to its previously mentioned main classes of research trends:
(a) Hardware and Software Platforms, (b) Specific and Custom Software,
(c) Application Field Software, and (d) Development Environments.

1.4.1 HARDWARE AND SOFTWARE PLATFORMS

In literature, the research trends related to Hardware and Software Plat-
forms point out different features, mainly of hardware and software nature,
or specific technical keywords, such as flexible, frameworks, distributed,
and so on. Accordingly, the corresponding branch of the tree in Figure 1.3
is divided in two main trend sets: Flexible Measurement Systems and
Distributed and Diagnostics Systems.

1.4.1.1 Flexible Measurement Systems

In general, research trends on flexible measurement systems put main
design focus on flexibility, modularity, generality, and hardware
independence [18]. They represent software architectures meeting specifi-
cally these requirements by innovative solutions, and structures expressly

SOFTWARE FOR MEASUREMENT APPLICATIONS • 17

conceived for implementing versatile measurement systems. Typically,
flexible measurement systems are based on software packages (monitoring
with data acquisition, processing, transmission, and storing, as well as result
analysis), with various possibility of communication [19]. They are applied
to different industrial operation, such as the protection of plants operation,
system supervision, fault detection, and provision of measured values. In
research trends about flexible systems, the other two specific classes can
be distinguished as: Software Frameworks and Specific Hardware systems
emphasizing software and hardware aspects, respectively.

Software Frameworks

All the innovative measurement systems exploiting a software framework
privilege flexibility and integration. A framework allows software for mea-
surement and test applications under highly and fast-varying requirements
to be developed easily. The framework can be configured in satisfying a
large set of measurement applications in a generic field for an industrial
test division, a test laboratory, or a research center [20]. A software plat-
form can be designed for particular hardware or functional requirements,
but with the specific aim of providing the development of new features
[21, 22]. Other types of frameworks are general tools for automatically
analyzing the measurement data [23–25], or the dependability of measure-
ments and algorithms on distributed systems [26].

The generic Object-Oriented based frameworks present the main
advantages of Object-Oriented Programming: encapsulation, inheritance,
flexible-construction, and multitask options. These features make the
measurement approach strongly oriented to software integration, with the
effect of supporting dynamic modeling and data fusion of instruments.
This allows both Object-Oriented databases to be created for measure-
ment, and expert systems or test platforms to be built for processing
measurement information [27–31].

A model-driven paradigm for defining measurement/test procedures,
configuring instruments, and synchronizing tasks is applied to a flexible
framework for maximizing the software quality [20, 32]. The final goal
of the project, presented in [33], is to design, implement, and deploy an
extensible, flexible, and dynamic system. A framework can be provided by
a powerful mechanism to adapt component-based distributed applications
to changing environmental conditions [34].

An increasing research trend is arisen aimed at conceiving measure-
ment frameworks [35, 36] for general-purposes and rapid prototyping of

18 • FLEXIBLE TEST AUTOMATION

applications for end-to-end sensing systems, in order to monitor and diag-
nose problems on a wide-area network [37]. In [38, 39], global framework
for monitoring, control, and optimization of power electronics systems
are described. Component-based frameworks for data stream processing
are presented for highly distributed measurement systems [40, 41]. Other
software development environment, framework-based, provide a graphi-
cally programming way to quickly build automatic test and measurement
systems [42].

Specific Hardware

Sometimes, software packages are present in specific hardware-based
measurement systems for keeping specifically the feature of flexibility.
This class of works treats different measurement fields (monitoring), and
aspects (analysis, simulation, and design).

About monitoring and analysis, as an example, in [43], the data acqui-
sition hardware platform of three-dimensional machining force measure-
ment presents a flexible software package for online monitoring, analysis,
and testing. Analogously, flexible monitoring and signal processing plat-
forms with modular software were developed for biomedical application
[44, 45] and vibration analysis [46].

Regarding simulation and design aspects, a flexible radar system sim-
ulator applied for tank level measurement emulates the effects of antenna
designs, thus to accelerate the verification process [47]. In [48], the design
of an experimental flexible energy measurement system, consisting of dis-
tributed sensor networks with versatile and agent-based communication
software is treated. A structured graphical method applied to design and
implement intelligent instruments is presented in [49], where the concep-
tualization of the system is put in a new graphical Object-Oriented tool.

1.4.1.2 Distributed and Diagnostics Systems

In literature, a subgroup of research trends on flexible measurement sys-
tems is devoted to distributed and diagnostics-oriented measurement
systems. Differently from a traditional centralized data acquisition, the
approach is to distribute the devices around the specific application, in
order to both interact locally in the test environment, and have a cheaper
and low complex system. Research is devoted to integrated software
platforms for test and diagnosis based on data services, packages, and
definition of interfaces [50–52]. New software tools are applied to

SOFTWARE FOR MEASUREMENT APPLICATIONS • 19

measure the temperature and humidity accurately with low cost [53, 54].
Particular attention is paid to the management software of the acquired
data, in monitoring applications [51, 55], to automate the measurement
tasks [56, 57]. The development of virtual instrumentation is presented in
[58], applied to torsional vibration and phasor measurement, respectively.
A platform for simulation and real-time autonomous guided vehicles nav-
igation [59] employs software architecture and code to reduce develop-
ment time necessary for debugging, optimizing control algorithms, and
identifying system.

Web-based

A further significant research trend is devoted to distributed measurement
systems classified as web-based (Figure 1.3), owing to their feature of
remote control and monitoring by the internet. In this class, other sub-
trends can be identified, according to the application (integrated labora-
tory, and industrial process), software programming (Object Oriented),
and environment (WWW-based). In [60–63], integrated laboratory envi-
ronments are aimed at providing remote access to heterogeneous equip-
ment for a multiplicity of users. Web tools, based on Object-Oriented
programming and client/server communications, have been developed for
allowing remote configuration and flexible management of remote instru-
ments [64–66]. In [67] and [68], WWW-based software environments are
used for the design of panels of virtual measuring instruments, and for
measurement data access, respectively. Integrated systems, again based
on the web, are applied to remote monitoring and control of industrial
processes [69].

1.4.2 SPECIFIC AND CUSTOM SOFTWARE

In the state of the art of research, often software applied to measurement
is difficult to identify, and most of the times, it’s hidden in the hardware
description. From this point of view, another category of software appli-
cation, Specific and Custom Software, is identified (Figure 1.3). In this
category, the software applied to measurement systems, which cannot
be considered as platforms or flexible systems, is included. However, by
analyzing the literature, different technical features of these specific and
custom systems can be distinguished. The technical features are referred
to the following particular application system: (1) Automatic and Control
Systems, (2) Sensor Networks, and (3) Dedicated Devices. In the follow-
ing, a general discussion of these software applications is presented.

20 • FLEXIBLE TEST AUTOMATION

1.4.2.1 Automatic and Control Systems

Among the specific and custom software, a first significant category is rep-
resented by software applied to automatic and control systems. The nature
of a control system of a process involves first a comparison between the
current measurements and a reference value, and, then, in presence of
differences, a suitable feedback response. The main feature of this kind
of systems is the specific application to be controlled, and from this, the
relative software is specific and customized to the control application.
An additional sub-classification can be carried out according to the control
field (energy, transmission, motion, monitoring, and graphical).

About energy control software, typical significant examples are vir-
tual instrument software, developed for automatic measurement systems
applied to power systems monitoring [70], or to battery resistance mea-
surement [71]. Moreover, a multifunctional virtual instrument system for
harmonic measurement of voltage and current signals is designed and
implemented in [72].

In the transmission control field, an UHF radio-frequency identifica-
tion tag test and measurement system based on virtual instrument program-
ming is proposed in [73]. In a power flow controller of AC transmission
system, a software development system for measurement and control field
is employed for the system application [74].

For measurement and control on high-precision motion platforms
[75, 76], software systems are implemented to controlling the main com-
ponents of high-precision system. Based on the principle of virtual instru-
ment, a measurement and control system for sling stretch test machine
was constructed via the software platform [77], and for motion control of
pipeline inspection robot [78].

For condition monitoring application, the design and development of
the data-acquisition and storage parts of a measurement system include
pc-based software implementation of virtual instruments [79, 80].

Finally, a graphical software tool with user interface was imple-
mented to assist the selection of extrapolation methods for moving-boat
ADCP streamflow measurements [81].

1.4.2.2 Sensor Networks

A sensor network consists of spatially distributed autonomous sensors
for monitoring physical and environmental conditions. Most modern
networks are wireless and bidirectional, also to enable complex plants

SOFTWARE FOR MEASUREMENT APPLICATIONS • 21

control, and are used in many industrial and consumer applications, such
as health monitoring, industrial process, machine control, and so on. Sim-
ilar to the previous class of automatic and control systems, the sensor net-
works depend strongly on the field application, and on the particular case
of study. For this reason, the related software can be considered as specific
and case study-oriented.

For continuous monitoring with multisensor data acquisition GPS-
based technology, the measurement techniques are based on gener-
al-purpose [82] and on embedded software [83]. In [84], a temperature
measurement and control system for constant temperature reciprocator
platelet preservation box is designed based on Fuzzy-PID control, and vir-
tual instrument software. A Multipoint Wireless Measurement System is
presented with multiple sensors transmission and virtual instrument inter-
face for data processing [85]. A virtual instrumentation support system
that permits to run several concurrent virtual instruments has been devel-
oped like a multitasking graphical environment [86].

1.4.2.3 Dedicated Devices

The class of software for dedicated devices includes all the packages
designed and conceived for custom devices set apart for special applica-
tions. In this class, different purposes or trends can be identified, such as
integration, control, flexible or user friendly features, general measure-
ment, and monitoring systems.

About the integration and control, for the online diagnosis of reactive
plasmas, a flexible data acquisition and automatic control system based
on virtual instrument programming [87] was designed to control and inte-
grate all the stand-alone measurement instruments including a spectrom-
eter, a high-performance oscilloscope, a laser system, and a digital delay
generator into a single personal computer-based control unit. In [88], for
the Ionospheric Bubble Seeker, a new post processing technique based on
the Java programming language was developed for all the operating sys-
tems and allowing also a remote control. Also integration-oriented are the
virtual instruments presented in [89, 90], the former is an auto-measure-
ment system of wave-plates phase retardation, and the former a software
for tests of the Large Binocular Telescope. In [91], the control software of
an ultrasonic sensor for pressure measurements is constituted by a virtual
instrument.

About the flexibility aspect and the capability of making user friendly
a particular hardware, typical examples are related to a virtual instrument

22 • FLEXIBLE TEST AUTOMATION

integrated with a power network analyzer [92] or the implementation of
the measurement communication of a weather station [93].

Other dedicated devices are inserted in traditional measurement and
monitoring systems, such as the system applied to the leakage current of
insulators using a virtual instrument for analyzing the data [94], and the
grounding measurement system of substations adopting a virtual instru-
ment to implement the small electric current method [95].

Finally, in [96], custom software is implemented for measuring RF
chip properties and for simulating the system.

1.4.3 APPLICATION FIELD

The objective of this section is to highlight the main application fields
touched by the development of new measurement software in research lit-
erature. Starting from the aforementioned analysis (Platform and Specific
Software) of the state of the art, Electronics [39, 46, 47, 57, 61–63, 72, 73,
75, 86, 92, 96], represent the main investigation topic, and thus, the first
and main subject in the tree (Figure 1.3) is logically the development of
electronics applied to measurement. Main contributions can be found in
Diagnostics [25, 33, 36, 37, 40, 50, 52–54, 69, 78, 83], Physics [20, 22,
27, 28, 30, 32, 41, 68, 75, 87] and Energy [38, 48, 58, 71, 79, 80, 82, 85,
94, 95] fields.

During the last decade, the main innovation demands have occurred
in the field of automatic control and industrial measurement for enhance-
ment of the product quality. Regarding world research centers, the growth
in number and size of the research centers has prompted the development
of new software for the management of the procedures and methods of
measurement. In the field of Energy, the greatest stimulus for the devel-
opment of new software has been given by the growing economic inter-
ests and the need for managing the distribution network. Other promising
fields where the measurement–oriented software has grown are repre-
sented by Biology [21, 56, 84], Medicine [24, 35, 44, 45], and Mechanics
[59, 76, 77, 91].

1.4.4 SOFTWARE ENVIRONMENTS

In literature, different platforms or programming languages, used for
developing the measurement applications, can be identified. In first anal-
ysis, main consideration regards the impossibility of finding a direct link
between technical software features and the used software platform. How-

SOFTWARE FOR MEASUREMENT APPLICATIONS • 23

ever, two main trends can be identified: the former is related to the trans-
versal use of user-friendly platforms, and the latter to the link between
the nature of the measurement application and the choice of the imple-
mentation environment. For the first trend, the graphical programming
language (LabVIEW of NI, in Figure 1.3) shows usability greater than
the Object-Oriented programming in all the custom applications and
in few flexible measurement systems. This aspect depends both on the
typology of measurement application, and on the possibility of reusing
the ready-implemented software. From this point of view, the commercial
software platforms, such as LabVIEW, are advantaged with respect to the
custom platforms to provide programming developed from scratch. About
this second trend, the choice of implementation platform depends strictly
on the size and type of measurement application. In the research project
application of large size and particular typology, the trend of using the
Object-Oriented Programming can be identified.

REFERENCES

[1] Bosch, J. 1998. “Design of an Object-Oriented Framework for Measurement
Systems.” Object-Oriented Application Frameworks Conference.

[2] National Instruments. 2013. Choosing the Right Software Application
Development Environment (ADE), http://www.ni.com/white-paper/3091/en/

[3] National Instruments. 2014. Homepage, http://www.ni.com/
[4] National Instruments. 2014. LabVIEW, http://www.ni.com/LabVIEW/
[5] National Instruments. 2014. Measurement Studio, http://www.ni.com/

mstudio/
[6] Agilent Technologies. 2014. Homepage, http://www.agilent.com/home
[7] Agilent Technologies. 2014. Liquid Chromatography—Instrument Con-

trol Framework, http://www.chem.agilent.com/en-US/products-services/
Instruments-Systems/Liquid-Chromatography/Pages/lcf.aspx

[8] Agilent Technologies. 2005. Agilent OpenLAB Laboratory Software
Framework, http://www.chem.agilent.com/Library/datasheets/Public/5989-
3712en_lores.pdf

[9] Agilent Technologies. 2013. Agilent VEE Pro, http://cp.literature.agilent.
com/litweb/pdf/5990-9117EN.pdf

[10] Agilent Technologies. 2014. BenchVue Software, http://www.home.agilent.
com/en/pd-2368912-pn-34840B/benchvue-software

[11] Azimuth Systems. 2014. Homepage, http://www.azimuthsystems.com/
[12] Azimuth Systems. 2014. Director II Test Management Software, http://www.

azimuthsystems.com/products/azimuth-director/
[13] EADS North America Test and Services. 2014. Homepage, http://www.

ts.eads-na.com/

24 • FLEXIBLE TEST AUTOMATION

[14] EADS North America Test and Services. 2014. Software, http://www.
ts.eads-na.com/software

[15] EADS North America Test and Services. 2013. ATLAS, http://www.eads-tes.
co.uk/Standards/ATLAS/ATLAS.htm

[16] EADS North America Test and Services. 2014. SigBase, http://www.
ts.eads-na.com/software/sigbase

[17] U.S. Department of State—Directorate of Defense Trade Controls. 2014.
The International Traffic in Arms Regulations (ITAR), http://www.pmddtc.
state.gov/regulations_laws/itar.html

[18] Stenvard, P., A. Hansebacke, and N. Keskitalo. May 1–3, 2007.
“Considerations When Designing and Using Virtual Instruments as Build-
ing Blocks in Flexible Measurement System Solutions.” Instrumentation
and Measurement Technology Conference Proceedings, IMTC 2007, Vol. 6
(Session 2), pp. 1–5. Warsaw, Poland: IEEE.

[19] Bitoleanu, A., M. Popescu, E.G. Subtirelu, and O.D. Dobriceanu. September
2009. “Electrical Stations Real-time Monitoring Using Combined Protec-
tion and Control Systems.” IEEE International Symposium on Diagnostics
for Electric Machines, Power Electronics and Drives, (SDEMPED 2009),
pp. 1–6. Cargese, France: IEEE.

[20] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. July 2012. “A Software
Framework for Developing Measurement Applications under Variable
Requirements.” Review of Scientific Instruments 83, no. 11, p. 115103. doi:
http://dx.doi.org/10.1063/1.4764664

[21] Langer, D., M. Van’t Hoff, C. Nagaraja, A.J. Keller, O.A. Pfaffli, M. Goldi,
H. Kasper, and F. Helmchen. February 2013. “HelioScan: A Software
Framework for Controlling In Vivo Microscopy Setups with High Hard-
ware Flexibility, Functional Diversity and Extendibility.” Journal of
Neuroscience Methods 215, no. 5, pp. 38–52. doi: http://dx.doi.org/10.1016/j.
jneumeth.2013.02.006

[22] Gateau, M., M. Marchesotti, A. Raimondo, A. Rijllart, and H. Reymond.
September 2005. “Experience with Configurable Acquisition Software
for Magnetic Measurement Experience.” 14th International Magnetic
Measurement Workshop (IMMW14), Geneva, Switzerland: CERN.

[23] Leung, Y., J.H. Ma, and M.F. Goodchild. December 2004. “A General
Framework for Error Analysis in Measurement-Based GIS Part 4: Error
Analysis in Length and Area Measurements.” Journal of Geographical
Systems 6, no. 4, pp. 403–28. doi: 10.1007/s10109-004-0141-4

[24] Armitage, P.A., C.S. Rivers, B. Karaszewski, R.G.R. Thomas, G.K. Lymer,
Z. Morris, and J.M. Wardlaw. March 2012. “A Grid Overlay Framework
for Analysis of Medical Images and Its Application to the Measurement of
Stroke Lesions.” European Radiology 22, no. 3, pp. 625–32. doi: 10.1007/
s00330-011-2284-2

[25] Giachetti, R.E., L.D. Martinez, O.A. Saenz, and C.S. Chen. October 2003.
“Analysis of the Structural Measures of Flexibility and Agility Using a

SOFTWARE FOR MEASUREMENT APPLICATIONS • 25

Measurement Theoretical Framework.” International Journal of Production
Economics 86, no. 1, pp. 47–62. doi: 10.1016/S0925-5273(03)00004-5

[26] Bondavalli, A., A. Ceccarelli, L. Falai, and M. Vadursi. April 2010. “A New
Approach and a Related Tool for Dependability Measurements on Distrib-
uted Systems.” IEEE Transactions on Instrumentation and Measurement 59,
no. 4, pp. 820–31. doi: 10.1109/TIM.2009.2023815

[27] Shen,, X., X. Song, and J. Chen. August 2009. “Implementation and
Evaluation of Object-Oriented Flexible Measurement System.” Electronic
Measurement & Instruments, ICEMI’09, 9th International Conference,
pp. 3–310, 3–314. Beijing, China: IEEE.

[28] Deniau, L. September 2005. “Experience with Field Quality Analysis
Software and Future Projects.” 14th International Magnetic Measurement
Workshop (IMMW14), Geneva, Switzerland: CERN.

[29] Yang, Q., and C. Butler. February 1998. “An Object-Oriented Model
of Measurement Systems.” IEEE Transactions on Instrumentation and
Measurement 47, no. 1, pp. 104–7. doi: 10.1109/19.728800

[30] Nogiec, J.M., J. DiMarco, S. Kotelnikov, K. Trombly-Freytag,
D. Walbridge, and M. Tartaglia. June 2006. “A Configurable Component-
Based Software System for Magnetic Field Measurements.” IEEE Trans-
actions on Applied Superconductivity 16, no. 2, pp. 1382–5. doi: 10.1109/
TASC.2005.869672

[31] Xiao-liang, X., L.Y. Wang, and H. Zhou. September 22–25, 2003. “An
Object-Oriented Framework for Automatic Test Systems.” AUTOTESTCON
2003, IEEE Systems Readiness Technology Conference Proceedings, ISSN:
1080-7725, pp. 407–10, Anaheim, CA: IEEE.

[32] Arpaia, P., L. Fiscarelli, G. La Commara, and C. Petrone. December 2011.
“A Model-Driven Domain-Specific Scripting Language for Measurement-
 System Frameworks.” IEEE Transactions on Instrumentation and Measure-
ment 60, no. 12, pp. 3756–66. doi: 10.1109/TIM.2011.2149310

[33] Nogiec, J.M. 2007. “Architecture and Features of an Extensible Measure-
ment System Framework.” 15th International Magnetic Measurement
Workshop (IMMW15), Batavia, Illinois, USA: Fermi National Accelerator
Lab (FNAL).

[34] Rasche, A., and A. Polze. May 14–15, 2003. “Configuration and Dynamic
Reconfiguration of Component-based Applications with Microsoft .NET.”
Object-Oriented Real-Time Distributed Computing 2003, Sixth IEEE
International Symposium, pp. 164–71. Hakodate, Japan: IEEE.

[35] Gupta, R., and J.N. Bera. December 1–2, 2012. “A Framework for Cardiac
Patient Monitoring Using an Intelligent Wireless System for Rural Healthcare
in India.” First International Conference on Intelligent Infrastructure the
47th Annual National Convention at Computer Society of India (CSI - 2012),
Kolkata, India: Mc Graw Hill.

[36] Chen, P.H. September 21–23, 2011. “Smart Browser: Network Measure-
ment System Based on perfSONAR Framework.” Network Operations

26 • FLEXIBLE TEST AUTOMATION

and Management Symposium (APNOMS), 2011 13th Asia-Pacific, pp. 1–4.
Taipei, Taiwan: IEEE.

[37] Brusey, J., E.I. Gaura, D. Goldsmith, and J. Shuttleworth. November 2009.
“FieldMAP: A Spatiotemporal Field Monitoring Application Prototyping
Framework.” IEEE Sensors Journal 9, no. 11, pp. 1378–90. doi: 10.1109/
JSEN.2009.2021799

[38] Atitallah, R.B., E. Senn, D. Chillet, M. Lanoe, and D. Blouin. February
2013. “An Efficient Framework for Power-Aware Design of Heterogeneous
MPSoC.” IEEE Transactions on Industrial Informatics 9, no. 1, pp. 487–501.
doi: 10.1109/TII.2012.2198657

[39] Deshmukh, A., F. Ponci, A. Monti, L. Cristaldi, R. Ottoboni, M. Riva, and
M. Lazzaroni. April 24–27, 2006. “Multi Agent Systems: An Example of
Dynamic Reconfiguration.” IMTC 2006 – Instrumentation and Measurement
Technology Conference Sorrento. Italy: IEEE.

[40] Horak, G., D. Vasic, and V. Bilas. May 1–3, 2007. “A Framework for Low
Data Rate, Highly Distributed Measurement Systems.” Instrumentation and
Measurement Technology Conference - IMTC 2007, pp. 1–4. Warsaw, Poland:
IEEE.

[41] Nogiec, J.M., and K. Trombly-Freytag. September 27–October 1, 2004.
“A Dynamically Reconfigurable Data Stream Processing System.”
Computing in High-Energy Physics (CHEP ‘04), pp. 429–32. Interlaken,
Switzerland.

[42] Xiao-liang, X., W. Le-yu, and Z. Hong. September 22–25, 2003. “Frame-
work Design and Implementation for Virtual Instrument Component Library
of GPP.” Proceedings IEEE Systems Readiness Technology Conference
AUTOTESTCON 2003, pp. 22–25. Anaheim, CA, USA: IEEE.

[43] Dong, D., X. Luo, and H. Xu. July 2011. “Development of Flexible
Three-dimensional Machining Force Measurement and Analysis System.”
Mechanic Automation and Control Engineering (MACE). Hohhot, North
China: IEEE.

[44] Camacho, J., B. Yelicich, L. Moraes, A. Biestro, and C. Puppo. September
2010. “Development of a Multimodal Monitoring Platform for Medical
Research.” Conf Proc IEEE Engineering in Medicine and Biology Society
2010, 32nd Annual International Conference, pp. 2358–61. Buenos Aires,
Argentina: IEEE.

[45] Edström, U., J. Skönevik, T. Bäcklund, and J.S. Karlsson. September 1–4,
2005. “A Flexible Measurement System for Physiological Signals in Mobile
Health Care.” Proceedings of the 2005 IEEE Engineering in Medicine and
Biology 27th Annual Conference, pp. 2161–62. Shanghai, China: IEEE.

[46] Vişan, D.A. and I.B. Cioc. May 2010. “Virtual Instrumentation Applica-
tion for Vibration Analysis in Electrical Equipments Testing.” 2010 33rd
International Spring Seminar on Electronics Technology (ISSE), pp. 216–9.
Warsaw, Poland: IEEE.

SOFTWARE FOR MEASUREMENT APPLICATIONS • 27

[47] Zietz, C., E. Denicke, and I. Rolfes. October 2009. “A Flexible System Sim-
ulator for Antenna Performance Evaluation of Radar Level Measurements.”
EuRAD 2009, pp. 513–6. Rome, Italy: IEEE.

[48] Driesen, J., G. Deconinck, J. Van Den Keybus, B. Bolsens, K. De Brabandere,
K. Vanthournout, and R. Belmans. May 21–23, 2002. “Development of a
Measurement System for Power Quantities in Electrical Energy Distribution
Systems.” IEEE Instrumentation and Measurement Technology Conference
Anchorage, Vol. 19. Anchorage, Alaska, USA: IEEE.

[49] Dapoigny, R., P. Barlatier, E. Benoit, and L. Foulloy. July 29–31, 2003. “An
Ontology-Based Graphical Tool for Intelligent Instruments.” ClMSA 2003 -
International Symposium on Computational Intelligence for Measurement
Systems and Applications, pp. 150–5. Lugano, Switzerland: IEEE.

[50] Xu, B., L.W. Guo, and J.S. Yu. December 2012. “Software Platform
for General Purpose Test and Diagnosis.” Applied Mechanics and 1241-4,
pp. 284–7. doi: 10.4028/www.scientific.net/AMM.241-244.284.

[51] Abadi, D.J., D. Carney, U. Çetintemel, M. Cherniack, C. Convey, S. Lee,
M. Stonebraker, N. Tatbul, and S. Zdonik. 2003. “Aurora: A New Model and
Architecture for Data Stream Management.” The VLDB Journal 12, no. 2,
pp. 120–39. doi: 10.1007/s00778-003-0095-z

[52] Angelov, P., V. Giglio, C. Guardiola, E. Lughofer, and J.M. Luján.
2006. “An Approach to Model-Based Fault Detection in Industrial
Measurement Systems with Application to Engine Test Benches.”
Measurement Science and Technology 17, no. 7, pp. 1809–18. doi:
10.1088/0957-0233/17/7/020

[53] Ma, Y., J. Zhou, D. Pan, Y. Peng, and X. Peng. December 2012. “A Novel and
Intelligent Integrated-Distributed Measurement Platform for Multisensors.”
Instrumentation, Measurement, Computer, Communication and Control
(IMCCC), 2012 Second International Conference, pp. 266–71. Hangzhou,
China: IEEE.

[54] Manuel, A., J. Del Rio, S. Shariat, J. Piera, and R. Palomera. May 2005.
“Software Tools for a Distributed Temperature Measurement Systems.”
IMTC 2005, Vol. 2, pp. 1566–70. Ottawa, Canada: IEEE.

[55] Sorribas, J., J. del Río, E. Trullols, and A. Mànuel-Làzaro. October 2006. “A
Meteorological Data Distribution System Using Remote Method Invocation
Technology.” IEEE Transactions on Instrumentation and Measurement 55,
no. 5, pp. 1794–803. doi: 10.1109/TIM.2006.881572

[56] Drakakis, E.M., Y. Hua, M. Lim, A. Mantalaris, N. Panoskaltsis,
A. Radomska, C. Toumazou, and T. Cass. May 2007. “An On-line,
Multi-Parametric, Multi-Channel Physicochemical Monitoring Platform for
Stem Cell Culture Bioprocessing.” ISCAS 2007, pp. 1215–8. New Orleans,
LA, USA: IEEE.

[57] Wenyue, X., and Y. Haiwen. August 16–19, 2011. “A Development
Platform for Complex Data Acquisition System.” ICEMI’2011, The Tenth

28 • FLEXIBLE TEST AUTOMATION

International Conference on Electronic Measurement & Instruments, Vol. 1,
pp. 321–4. Chengdu, China: IEEE.

[58] Laverty, D.M., R. Best, P. Brogan, I. Al-Khatib, L. Vanfretti, and
D.J. Marrow. April 2013. “The OpenPMU Platform for Open-Source
Phasor Measurements.” IEEE Transactions on Instrumentation and Mea-
surement 62, no. 4, pp. 701–9. doi: 10.1109/TIM.2013.2240920

[59] Baglivo, L., M. De Cecco, F. Angrilli, F. Tecchio, and A. Pivato. June 1–4,
2005. “An Integrated Hardware/Software Platform for Both Simulation and
Real-Time Autonomus Guided Vehicles Navigation.” Proceedings 19th
European Conference on Modelling and Simulation, ECMS 2005, Riga,
Latvia: ResearchGate.

[60] Billaud, M., D. Geoffroy, P. Cazenave, and T. Zimmer. October–December,
2009. “A Distance Measurement Platform Dedicated to Electrical Engineer-
ing.” IEEE Transactions on Learning Technologies 2, no. 4, pp. 312–9. doi:
http://dx.doi.org/10.1109/tlt.2009.45

[61] Davoli, F., G. Spanò, S. Vignola, and S. Zappatore. October 2006. “LAB-
NET: Towards Remote Laboratories with Unified Access.” IEEE Transac-
tions on Instrumentation and Measurement 55, no. 5, pp. 1551–8. doi: http://
dx.doi.org/10.1109/tim.2006.880919

[62] Arpaia, P., F. Cennamo, P. Daponte, and M. Savastano. June 4–6, 1996.
“A Distributed Laboratory Based on Object-Oriented Measurement Sys-
tems.” IEEE Instrumentation and Measurement Technology Conference,
Vol. 19 (Session 3), pp. 207–15. Brussels, Belgium: IEEE.

[63] Tawfik, M., E. Sancristobal, M. Sergio, R. Gil, G. Diaz, A. Colmenar,
K. Nilsson, J. Zackrisson, L. Håkansson, and I. Gustafsson. January–March,
2013. “Virtual Instrument Systems in Reality (VISIR) for Remote Wiring
and Measurement of Electronic Circuits on Breadboard.” IEEE Transactions
on Learning Technologies 6, no. 1, pp. 60–72. doi: http://dx.doi.org/10.1109/
tlt.2012.20

[64] Grimaldi, D., L. Nigro, and F. Pupo. February, 1998. “Java-Based Distrib-
uted Measurement Systems.” IEEE Transactions on Instrumentation and
Measurement, Vol. 47, no. 1, pp. 100-3. doi: 10.1109/19.728799.

[65] Bertocco, M., S. Cappellazzo, A. Carullo, M. Parvis, and A. Vallan. June, 2003.
“Virtual Environment for Fast Development of Distributed Measurement
Applications.” IEEE Transactions on Instrumentation and Measurement 52,
no. 3, pp. 681–5. doi: http://dx.doi.org/10.1109/vims.2001.924901

[66] Pianegiani, F., D. Macii, and P. Carbone. June 2003. “An Open
Distri buted Measurement System Based on an Abstract Client-Server
Architecture.” IEEE Transactions on Instrumentation and Measurement 52,
no. 3, pp. 686–92. doi: http://dx.doi.org/10.1109/tim.2003.814699

[67] Michal, K., and W. Wieslaw. May 21–23, 2001. “A New Java-Based Soft-
ware Environment for Distributed Measurement Systems Designing.”
IEEE Instrumentation and Measurement Technology Conference 51, no. 6,
pp. 1340–6. doi: http://dx.doi.org/10.1109/imtc.2001.928847

SOFTWARE FOR MEASUREMENT APPLICATIONS • 29

[68] Nideröst, B., M. van de Giessen, W. Lourens, and J. Krom. June 2002. “The
WebUmbrella Web-Based Access to Distributed Plasma-Physics Measure-
ment Data.” IEEE Transactions on Nuclear Science 49, no. 3, pp. 1579–83.
doi: http://dx.doi.org/10.1109/tns.2002.1039703

[69] Nikolakopoulos, G., M. Koundourakis, and A. Tzes. July 21–29, 2003.
“An Integrated System Based on WEB and/or WAP Framework for
Remote Monitoring and Control of Industrial Processes.” VEClMS 2003 -
International Symposium on Virtual Environments, Human-Computer Inter-
faces, and Measurement Systems, pp. 201–6. Lugano, Switzerland: IEEE.

[70] Bai, Y.W., and W.-C. Kuo. November, 2010. “Design and Implementation of
an Automatic Measurement System for DC-DC Converter Efficiency on a
Motherboard.” IECON 2010, pp. 1323–8. Phoenix, AZ, USA: IEEE.

[71] Yongjie, F. August, 2011. “Design of the Battery Resistance Measurement
System.” Electronic Measurement & Instruments (ICEMI) 2011, Vol. 2,
pp. 240–3. Chengdu, China: IEEE.

[72] Tang, Q., Y. Wang, and S. Guo. October 18–20, 2008. “Design of Power
System Harmonic Measurement System Based on LabVIEW.” Natural
Computation, 2008. ICNC ‘08. Fourth International Conference, Vol. 5, pp.
489–93, Washington, DC, USA: IEEE.

[73] Nikitin, P.V., and K.V. Seshagiri Rao. July 2009. “LabVIEW-based UHF
RFID Tag Test and Measurement System.” IEEE Transactions on Indus-
trial Electronics 56, no. 7, pp. 2374–81. doi: http://dx.doi.org/10.1109/
tie.2009.2018434

[74] Chen Y. March, 2009. “Electric Quantity Test System of Unified Power
Flow Controller Model on LabWindows/CVI.” APPEEC 2009, Wuhan,
China: IEEE.

[75] Batusov, V.Y., M.V. Lyablin, and N.D. Topilin. May 2011. “Development
and Application of the Complex Hardware/Software System for Con-
trolled Assembly of the ATLAS Hadron Tile Calorimeter.” Physics of
Particles and Nuclei 42, no. 3, pp. 438–59. doi: http://dx.doi.org/10.1134/
s1063779611030026

[76] Xiaolong, K., G. Yinbiao, and G. Longxing. April 2009. “Study on Software
and Hardware Control of High-precision Measurement Platform for Optical
Aspheric Surface.” 2009 International Conference on Measuring Technol-
ogy and Mechatronics Automation, Zhangjiajie, China: IEEE.

[77] Chen, C., and F. Hu. May 30–31, 2010. “Design of Measurement and Con-
trol System for Sling Stretch Test Machine Based on LabVIEW.” 2010
2nd International Conference on Industrial Mechatronics and Automation,
ICIMA2010, Vol. 2, pp. 389–92. Wuhan, China: IEEE.

[78] Cao, J., L. Lin, Y. Li, T. Huo, and F. Dai. August 8–10, 2011. “The
Measurement and Control System for Pipe Inspection Robot Based on
LabVIEW.” Artificial Intelligence, Management Science and Electronic
Commerce (AIMSEC), 2011 2nd International Conference, pp. 4497–500.
Deng Feng, China: IEEE.

30 • FLEXIBLE TEST AUTOMATION

[79] Wang, P., X. Liu, and Y. Han. December 2012. “A Single-phase Electric
Harmonic Monitoring System Design Based on the LabVIEW.” Advanced
Materials Research, Vol. 605–7, pp. 664–8. doi: 10.4028/www.scientific.net/
AMR.605-607.664.

[80] Poza, F., P. Mariño, S. Otero, and F. Machado. April 2006. “Programma-
ble Electronic Instrument for Condition Monitoring of In-Service Power
Transformers.” IEEE Transactions on Instrumentation and Measurement 55,
no. 2, pp. 625–34. doi: http://dx.doi.org/10.1109/tim.2006.870122

[81] Mueller, D.S. January 2013. “extrap: Software to Assist the Selection of
Extrapolation Methods for Moving-boat ADCP Streamflow Measurements.”
Computers & Geosciences 54, pp. 211–8. doi: 10.1016/j.cageo.2013.02.001

[82] Locci, N., C. Muscas, and S. Sulis. November 2008. “A Flexible GPS-Based
System for Synchronized Phasor Measurement in Electric Distribution Net-
works.” IEEE Transactions on Instrumentation and Measurement 57, no. 11,
pp. 2450–6. doi: http://dx.doi.org/10.1109/tim.2008.924930

[83] Li, S., J. Tian, Z. Yang, and F. Qiao. March 2013. “Research and Implement
of Remote Vehicle Monitoring and Early-Warning System Based on GPS/
GPRS.” International Conference on Graphic and Image Processing (ICGIP
2012), Singapore: SPIE.

[84] Jiang, X., L. Zhang, and H. Xue. 2008. “Designing a Temperature Measure-
ment and Control System for Constant Temperature Reciprocator Platelet
Preservation Box Based on LabVIEW.” Fourth International Conference on
Natural Computation, Jinan, China: IEEE.

[85] Yang Z., X. Hu, and G. Chang. May 25–27, 2012. “Research of Torsional
Vibration Monitoring Platform for Turbine Generator.” Computer Science
and Automation Engineering (CSAE), 2012 IEEE International Conference,
pp. 577–80. Zhangjiajie, China: IEEE.

[86] Brito Palma, L.F.F., and A.R.F. da Silva. 1998. “A Virtual Instrumentation
Support System.” Electronics, Circuits and Systems, 1998 IEEE Interna-
tional Conference on, Lisbon, Portugal, Vol. 1, pp. 301–4. Lisboa, Portugal:
IEEE.

[87] Feng, C.L. June, 2011. “Laser Mass-spectrometry for Online Diagnosis of
Reactive Plasmas with Many Species.” Review of Scientific Instruments 82,
no. 6, p. 063110.

[88] Magdaleno, S., M. Herraiz, and S.M. Radicella. May 2012. “Ionospheric
Bubble Seeker: A Java Application to Detect and Characterize Ionospheric
Plasma Depletion from GPS Data.” IEEE Transactions on Geoscience and
Remote Sensing 50, no. 5, pp. 1719–27. doi: http://dx.doi.org/10.1109/
tgrs.2011.2168965

[89] Yanhao, L., Q. Xiaosheng, W. Dongguang, L. Jiaben, and H. Keliang. August
24–26, 2010. “Research on Auto Measurement System of Phase Retarda-
tion of Wave Plates Based on LabVIEW.” 2010 International Conference
on Computer, Mechatronics, Control and Electronic Engineering (CMCE),
Vol. 3, pp. 29–32. Changchun, China: IEEE.

SOFTWARE FOR MEASUREMENT APPLICATIONS • 31

[90] Polsterer, K.L., M. Jütte, V. Knierim, M. Lehmitz, and H. Mandel. June 27,
2006 “Lucifer VR: A Virtual Instrument for the LBT.” Advanced Software
and Control for Astronomy, Vol. 6274. Orlando, Florida, USA: SPIE.

[91] Wenhai, H. August 2007. “Design of the Measurement System of the Pump
Based on LabVIEW.” The Eighth International Conference on Electronic
Measurement and Instruments ICEMI’2007 2, pp. 375–78, 16–18. Xian,
China: IEEE.

[92] Kaminsky, D. September 2010. “Modular and Flexible Power Network
Analyzer.” Conference on Applied Electronics (AE) 2010, pp. 1–4. Pilsen,
Czech Republic: IEEE.

[93] Branzila, M., F. Mariut, and D. Petrisor. October 25–27, 2012. “Virtual
Instrument Developed for Adcon Weather Station.” 2012 International Con-
ference and Exposition on Electrical and Power Engineering (EPE 2012),
pp. 853–6. Iasi, Romania: IEEE.

[94] Chunhua, F., W. Jianguo, L. Yang, C. Junjie, X. Nianweng, S. Zhen, and
Z. Mi. November 9–12, 2008. “Composite Insulators Leakage Current
Measurement System Based on LabVIEW.” 2008 International Conference
on High Voltage Engineering and Application, Chongqing, China: IEEE.

[95] Liu, Z., J. Gao, and S. Zhang. October 10–11, 2009. “Research of the
Grounding Measurement System Based on LabVIEW in Substation.” 2009
Second International Conference on Intelligent Computation Technology
and Automation, Vol. 2, pp. 328–31. Changsha, Hunan, China: IEEE.

[96] Jung, S., Y. Eo, Y. Chun, W. Kim, S. Woo, S. Sohn, J. Rho, and J. Cha.
September 28–30, 2011. “UWB Sensor Chip Measurement System Imple-
mentation Using Labview and MCU Board.” 2011 International Conference
on ICT Convergence (ICTC), pp. 649–51. Seoul, Korea: IEEE.

CHAPTER 2

SoftwAre frAmeworkS for
meASurement ApplicAtionS

If you want to teach people a new way of thinking, don’t bother trying
to teach them.
Instead, give them a tool, the use of which will lead to new ways of
thinking.

―Richard Buckminster Fuller

2.1 OVERVIEW

In this chapter, the general topic of software frameworks is presented
and the main related concepts are introduced. Subsequently, these prin-
ciples are examined in the more specific case of software frameworks for
measurement applications, by discussing their rationale and main fea-
tures. Then, a further section is dedicated to introduce the related theme
of Domain Specific Languages that are vital for software frameworks.
Finally, the requirements and the desirable features of a software frame-
work for measurement applications are summarized in relation to the dif-
ferent types of users who would interact with such a system.

2.2 GENERAL CONCEPTS

In software development, a framework is a well-defined support structure
for organizing and developing a software project. The user is provided
with more or less integrated (but surely helpful) tools and interfaces in
order to facilitate the development of projects. A framework may include
support programs, libraries, a scripting language, and other software

34 • FLEXIBLE TEST AUTOMATION

tools to help develop and link the different components of a software
project.

The design of a framework usually addresses issues not correspond-
ing to the final applications produced through the framework itself.
Frameworks are realized with the aim of facilitating software develop-
ment usually abstracting to the single specific application. The main objec-
tive is to allow final users to spend more time on meeting the application
requirements, rather than dealing with the low level details for the imple-
mentation of a working system. Framework design should be, as much as
possible, general and independent on the details of a specific target appli-
cation, so it can be easily adapted to the needs of new applications, which
were not originally foreseen at an early development stage. At the same
time, a suitable design approach should be employed in order to allow the
resulting framework to effectively produce high-quality software for each
target application.

From a structural point of view, according to the Object-Oriented
Paradigm, a framework can be seen also as a partial design and imple-
mentation of an application in a given domain [1]; it is therefore defined
by a set of abstract classes and the way the instances of those classes inter-
act. The features and the architecture of the framework can be adapted
and combined to create complete applications. Thus, frameworks pro-
vide Object-Oriented systems with a higher level of reuse and allow for
a considerable reduction of the effort necessary for the realization of new
applications.

Frameworks should not be confused with libraries of classes, because
some essential features differentiate these two categories. The main and
peculiar difference is that the framework, besides containing a set of
classes and interfaces, includes also a suitable infrastructure specifically
aimed at a substantial reuse of the code (e.g. for managing flow control,
objects interaction, and so on). In the framework operation, this feature
results in a significant reduction of the amount of additional code required
for the development of new applications. Furthermore, once the infra-
structure has been tested and validated, its reuse will produce applications
that are intrinsically robust to small-term variations in requirements, that
is, flexible in the short term.

Obviously, these benefits demand in return a different approach to
the development of new software applications, where the advantages of a
framework are achieved in the long term. Correspondingly, the develop-
ment of a framework demands a greater effort in terms of design, imple-
mentation, and also user training, when compared to a single stand-alone
application, but when the number of applications to be handled grows over

SOFTWARE FRAMEWORkS • 35

time and new programs have to be developed, the benefits of the frame-
work become evident.

A traditional classification of frameworks can be found in [2], where
three categories are proposed:

• Application frameworks, which encapsulate software expertise
at a professional level applicable to a wide range of programs.
These frameworks include a horizontal set of functions, common
to professional software and independent of the application, to be
exploited across the user domains, for example, Graphical User
Interfaces, documents, databases, and so on.

• Domain frameworks, which help to implement programs for a given
application domain. Frameworks of this type include a vertical set
of functions, related to the application domain; they are specifically
designed for reducing the amount of work required to develop an
application in the target domain.

• Support frameworks, which address very-specific system-level
applications like memory management, or file systems, and are
sometimes used with the aforementioned application or domain
frameworks to simplify the development of programs.

Another classification proposed in [2], is based on how a framework
is used, namely, depending on whether the user can derive new classes or
rather instantiate and combine already existing ones:1

• Architecture-driven frameworks use inheritance for customization.
Users tailor the behavior of the framework through the derivation
of new classes and the overriding of member functions.

• Data-driven frameworks use mainly object composition for cus-
tomization. Users tailor the behavior of the framework through
combinations of different objects. The combined objects affect
the framework performance, but it’s up to the framework itself to
define how the objects can be combined.

Frameworks that can be used by inheritance only are also called
white-box frameworks, because they cannot be extended without a deep
knowledge of their internal working. Frameworks that can also be used

1This categorization can be referred to in different ways, typically as
architecture-driven versus data-driven, or inheritance-focused versus composi-
tion-focused.

36 • FLEXIBLE TEST AUTOMATION

by configuring existing components are called black-box frameworks,
because they provide components to be used by means of interfaces and
specifications only (“black-box reuse”). Black-box frameworks are gen-
erally easier to use, because their internal mechanisms are intentionally
hidden, completely or partially. In this case, the main drawback is that the
adoption of a black-box reuse strategy limits the possibility of framework
expansion to the set of components already provided by the framework
developers [3].

In most cases, a framework does not exactly match any one of the
categories presented earlier, but can be rather described as a combination
of some of them. In this way, the design can be more effective in fulfilling
the requirements for which the system is developed.

As an example, heavy architecture-driven frameworks might result in
being difficult to use because they oblige their users to write considerable
amounts of additional code to produce the desired behavior. Conversely,
data-driven frameworks are generally easier to use but may show limits on
achieving the desired behavior.

One approach for building frameworks both easy to use and exten-
sible is to provide an architecture-driven base with a data-driven layer.
Most frameworks provide users with twofold ways on both how to use the
built-in functions and modify or extend those functions. Typically, frame-
works’ built-in functions are used by instantiating classes and calling their
member functions. Users can extend and modify a framework’s function
by deriving new classes and overriding member functions. In other words,
frameworks usually offer both white-box and black-box mechanisms; they
have (a) a white-box layer, consisting of interfaces and abstract classes,
providing the architecture to be used for white-box reuse, and (b) a black-
box layer, consisting of concrete classes and components inherited from
the white-box.

2.3 WHY A FRAMEWORk FOR MEASUREMENTS?

In the management of a test and measurement laboratory, one of the main
activities is the production of suitable software for an automatic bench,
satisfying a given set of test requirements. This activity is particularly
costly and burdensome when the test requirements are variable in time,
for example, in a small metrological laboratory in charge of calibration
of bench instruments, such as multimeters, impedance meters, digital
counters, digital scopes, and so on. When a batch of objects to be tested
arrives, if the test is burdensome to be carried out manually, the need for

SOFTWARE FRAMEWORkS • 37

developing an automatic bench arises. Test engineers define measurement
requirements, and the automatic bench is designed and developed by lab
technicians.

If the objects batches under test have small size, time-varying nature
and composition, and frequent occurrence, the activity of bench automa-
tion becomes predominating with respect to the test execution. In this
case, most significant efforts are devoted to software development.

In the last years, the problem of easy-to-assemble and -configure
hardware has been faced progressively and effectively solved. Both
instrumentation standard interfaces (e.g., IEC 626, VXI, PXI, and so on)
and automatic circuit cabling devices (e.g., ADLINK PXI-7921 [4] and
NI PXI-2529 [5]) have been successfully defined and made available on
the market.

For the software, a different strategy has been set up, going through
an approach of merely simplifying the programming, such as the standard
de facto LabVIEW of National Instruments [6]: the graphical program-
ming language G, using graphical icons and wires symbolizing the data
flow. The approach is to emphasize the objects involved in the application
and the exchange of data among them, with little care for the temporal
sequences of the actions to be executed. Conversely, imperative program-
ming languages (e.g., C, Python, and so on) point out the operation’s order
and allow the temporal constraint in a measurement application to be man-
aged easily.

However, for laboratory operating with rapidly- and highly-varying
test requirements, simplifying programming reduces the effort only
indirectly. Moreover, the quality of the produced software, in terms of
flexibility, usability, and maintainability, is not fostered intrinsically [7].

With the aim of developing test and measurement software, a par-
ticular type of domain framework is needed, conceived with measure-
ment applications as target domain, namely, with the purpose of allowing
the production of high-quality measurement applications with reduced
effort [7]. Further specific necessities are to be addressed when developing
an automated measurement system—for example, real-time constraints or
hardware-related requirements.

Standalone test programs are designed to solve specific problems with
extremely limited capability to evolve. Conversely, a framework for mea-
surement applications is suitably conceived [2] to provide support for sat-
isfying a wide range of requirements. This framework could constitute a
unified solution to drive all the existing and future park of automatic mea-
surement systems to be developed within an organization. As explained
earlier, it would prove to be useful when a number of very specific tests

38 • FLEXIBLE TEST AUTOMATION

are expected to be developed, rapidly adapted, and performed on single
prototypes or relatively small batches of units [7].

These tests require the control of various devices, such as transduc-
ers, actuators, trigger/timing cards, power supplies, and other devices not
completely specified yet. Moreover, for different measurement techniques
and tests, different algorithms have to be implemented.

The ideal situation would be to have a flexible software frame-
work, providing a robust library to remotely drive all the instrumentation
involved in the tests, as well as the tools to help the user in the design of
new measurement procedures for different measurement techniques. This
has to be done while taking care of maximizing the measurement software
quality, in terms of flexibility, reusability, maintainability, and portability,
and by simultaneously keeping high efficiency levels.

2.4 DOMAIN SPECIFIC LANGUAGES

In recent years, the Model-Driven Engineering (MDE), a software devel-
opment methodology creating models and abstractions closer to some par-
ticular domain concepts, has been exploited fruitfully [8]. Its main aim is
to increase the software productivity, by simplifying and standardizing the
process of design and implementation. For software frameworks, this par-
adigm finds a concrete application in Domain Specific Languages (DSLs):
“MDE technologies offer a promising approach to address the inability of
third-generation languages to alleviate the complexity of platforms and
express domain concepts effectively” [8]. As a matter of fact, in the con-
text of model-driven software development, the domain specific language
is often exploited: MDE and DSLs are complementary and they are both
necessary for a successful model-driven approach.

MDE allows application-domain variability to be handled, by pro-
viding modeling dimensions for subject areas and architectural aspects.
For example, in [9], a specific kind of automation system, called test bed,
used in the automotive industry for developing combustion engines, is
illustrated. Due to the ever-changing measurement tasks during engine
development, test beds must be extremely flexible and customizable.
MDE approach allows configuration data to be derived automatically.

Kent [10] defines two additional categories of dimensions needed for
MDE. The former category includes various dimensions of interest, like
different subject areas and system aspects. The latter category is less con-
cerned with the technical aspects of a system and more with organizational
issues, like: authorship, version (as in version and configuration control),

SOFTWARE FRAMEWORkS • 39

location (in case the system development is distributed across sites), and
stakeholder (e.g., business expert or programmer).

When building models in a software development process, the model
is exploited at an intersection of the dimensions. The intersecting dimen-
sions play an important role in the choice for a modeling language (mostly
indicated as a DSL [11]) for that particular model. For example, the sub-
ject area, the stakeholders, and the level of abstraction influence the mod-
eling language. However, a DSL for a modeling language doesn’t mean
that it should be a visual/graphical DSL. A model is just an abstract rep-
resentation of reality and it can also be expressed using a textual DSL. In
short: MDE methodology defines a framework of dimensions with their
intersections, and, in this way, defines also the different models needed to
describe a certain software application.

According to this approach, a DSL can be defined as in [11]: a pro-
gramming language, or an executable specification language, that offers,
through appropriate notations and abstractions, expressive power focused
on, and usually restricted to, a particular problem domain. Therefore, the
peculiarity of DSL is its focused expressive power. A DSL can be regarded
as a programming or specification language dedicated to a particular
domain or problem. The benefit of a DSL with respect to a general-purpose
language is the capability of providing appropriate built-in abstractions
and notations. In particular, DSLs use terms derived from a model created
for a specific problem domain and utilized for defining components or
complete solutions to be exploited in that domain [12].

In synthesis, main advantages of DSLs are (a) to express solutions in
the idiom and at the level of abstraction of the problem area; thus, domain
experts can understand, validate, modify, and often even develop pro-
grams directly by themselves; (b) to enhance quality, productivity, reli-
ability, maintainability, portability, and reusability of the software; and
(c) to allow a direct validation at the domain level: the language rules can
include the domain regulation.

Conversely, some drawbacks arise: cost of designing, implementing,
and maintaining a new language, as well as related to the development
tools, burden of learning a new language, and potential loss in efficiency
compared with hand-written code.

A new language involves the development of new parser, builder,
and all the tools for a profitable use. This discourages the growth of new
DSLs [13]. The break-even point can be taken down if the aforementioned
components and tools are already available as generic elements [14] and
they have to be only specialized to the domain of interest. If DSL develop-
ers also take care about designing the constructs of the language in a simple

40 • FLEXIBLE TEST AUTOMATION

way and with meaning related to the domain concepts, the new language
will be easy to learn and exploited fruitfully by the domain operators.

Recently, practical [15, 16] and theoretical [17, 18] tools for DSL
development have also been proposed, by demonstrating the increasing
interest in such methods. Examples of useful exploitation of DSL concepts
can be found in home automation [12], network performances testing [19],
and programming of network devices [20]. Generally, a program written
in a DSL is called domain-specific description (DSD) and it is compiled,
interpreted, or analyzed by a domain-specific processor. After the com-
pilation, a textual (e.g., in a general-purpose programming language) or
binary format output is obtained.

Furthermore, external or internal DSLs can be defined. An external
DSL is a domain-specific solution, represented in a natural-like language
separate from the main programming environment. It has its own custom
syntax and a specific parser (to be implemented). An internal (or embed-
ded) DSL, instead, expresses new domain constructs within the syntax of
a general-purpose language, suitably modified for this purpose.

A language is a set of terms and expressions bounded by a set of
syntax and semantic rules and used for communication within a domain.
General Purpose Languages (GPLs) are not specialized and are suited
for a wide area of applications from business processing up to scientific
computing. Conversely, DSLs are explicitly tailored to a target domain:
“DSLs offer substantial gains in expressiveness and ease of use compared
with GPLs in their domain of application” [21]. Complex constructs and
abstraction of the domain are offered within the language, thus increasing
its expressiveness in comparison to GPLs. The higher abstraction level,
the compactness, and consequently the better readability/writability, allow
expert programmers to be productive using the DSLs. This also improves
productivity, because solutions for domain problems can be expressed by
smaller effort, and decreases maintenance costs.

As mentioned earlier, a DSL has potential shortcomings; in fact,
the main drawback is the related development effort. A DSL developer
needs, at least, experience in language design and knowledge about the
target domain. The developer has to find suitable abstractions and the right
tradeoff between GPL and DSL constructs, as well as the language must
be implemented and maintained.

Other problems are tool availability, user training costs, and perfor-
mance. While GPLs have a strong tool support, the corresponding tools
for a new DSL have to be created. Proper development methods and suit-
able tools have to be chosen in order to avoid the DSL development costs
from surpassing the estimated savings derived from its usage.

SOFTWARE FRAMEWORkS • 41

Finally, a DSL might lead to a performance loss with respect to other
languages. If performance is not critical, the other benefits overcome this
problem. Otherwise, the developer has to pay special attention to achieve
negligible performance loss.

2.5 REQUIREMENTS OF A FRAMEWORk
FOR MEASUREMENT APPLICATIONS

Regarding the software, a traditional approach to the development of a
measurement application often leads to limitations in the measurement con-
trol and acquisition programs, mainly associated with the relatively long
time needed for development iterations (cycles composed by the steps of
specification-programming-debugging-validation). As an example, mea-
surement programs often implement a large spectrum of preprogrammed
configurations that are accessible by the user, but they require software
specialists for extending the set of configurations to cover new test and
analysis requirements. For this reason, more advanced design principles in
the field of software engineering have to be considered by introducing the
concept of framework, as previously discussed in this chapter.

The framework should facilitate the development of new measure-
ment programs, mainly by allowing easy modifications and extensions
of already existing test software simultaneously. Given a set of measure-
ment requirements to be satisfied by the available hardware, the flexible
and reconfigurable platform being developed should allow an effective
automatic measurement system to be generated by low cost and develop-
ment time.

The resulting system, besides reproducing key operating capabilities
of traditional software, has to allow user-driven and traceable configu-
ration of the hardware as well as of the test protocols, in order to bear a
maximum capability to evolve.

A framework should be characterized by (a) flexibility, for rapid and
cost-effective realization of measurement applications, including proto-
typing in an R&D context; (b) a modular architecture, to mix and reuse
components chosen from an incremental library; and (c) high performance,
to exploit the increased throughput of new transducers and acquisition
systems.

Frameworks should also aim at maximizing the measurement soft-
ware quality, in terms of flexibility, reusability, maintainability, and porta-
bility, by simultaneously keeping high efficiency levels. In particular, the
flexibility, the modification easiness of a system or component for its use

42 • FLEXIBLE TEST AUTOMATION

in applications or environments other than those for which it was specifi-
cally designed [7], is definitely one of the most desirable properties of any
system to face changes in operational environment during its life. This is
particularly true for software systems, both because they are often sub-
ject to extremely rapid technological development and because some of
them are specifically conceived to be employed in environments spanning
a wide range of functional requirements, not fully predictable at the design
stage. This means that a framework for measurements should be easy to
configure for satisfying a large set of measurement applications in one or
more measurement fields.

The users involved in the framework life cycle can be classified in
different categories:

• The developer/administrator user has suitable knowledge about
the framework’s internal structure and can access it at any level.

• The test engineer has main knowledge about the framework’s
features and knows functions only through their corresponding
interfaces; he can therefore provide a formal description of the
measurement protocol to be translated transparently into a suitable
executable application by the framework.

• The end user interacts with the resulting executable measurement
application in order to perform the tests.

The roles of the test engineer and the application user (i.e., end user)
during the exploitation of a measurement software framework are high-
lighted in Figure 2.1. Initially, the test engineer expresses the measure-
ment procedure in a formal way through a script, puts this script in the
framework, and obtains an executable measurement application. In a
second phase, the measurement application user executes the correspond-
ing measurement application, interacts with the measurement station by
providing the required input and configuring hardware setup, and finally
starts the measurement process on the devices [22].

The aforementioned roles of the different users should not be rigidly
divided. For example, if the test engineer needs to modify or add a compo-
nent, the internal structure of the framework should be accessible.

The main goal of a framework for measurement applications is to
satisfy the various needs of the different users by means of both the previ-
ously mentioned white-box and black-box mechanisms, according to the
classification provided in Table 2.1.

The main responsibility of the test engineer is to interact in the eas-
iest and most effective way with the framework through its interface in

SOFTWARE FRAMEWORkS • 43

order to build the measurement applications. This can be achieved through
flexibility and reusability, without necessarily including any requirements
on the framework’s internal organization, excluding that of producing an
effective test application. This latter point is of interest for the end user
performing the tests.

Conversely, the internal structure of the framework and its properties
are of great interest for developers and administrator users, who will ben-
efit from features like maintainability and reusability.

REFERENCES

[1] Bosch, J., P. Molin, M. Mattson, and P. Bengtsson. 1999. “Object-Oriented
Frameworks—Problems and Expectations.” In Building Application

Figure 2.1. Test engineer and application user exploit a measurement software
framework.
Source: Arpaia et al. [22].

Measurement
SW

framework

Measurement
application

Device 1

Device n

Test engineer

Application user

…

Eqpvgzv

Eqpvgzv

Table 2.1. Main software characteristics and users they address

Software characteristic User
Flexibility Test engineer
Maintainability Developer/administrator user
Reusability Developer/administrator user, test engineer
Efficiency Test engineer, end user

44 • FLEXIBLE TEST AUTOMATION

Frameworks: Object-Oriented Foundation of Framework Design, eds. M.E.
Fayad, D.C. Schmidt, and R.E. Johnson. London, England: Wiley and Sons.

[2] Taligent Inc. 1994. “Building Object-Oriented Frameworks.” https://lhcb-
comp.web.cern.ch/lhcb-comp/Components/postscript/buildingoo.pdf.

[3] van Gurp, J., and J. Bosch. 2001. “Design, Implementation and Evolution of
Object-Oriented Frameworks: Concepts and Guidelines.” Software Practice
and Experience 31, no. 3, pp. 277–300. doi: http://dx.doi.org/10.1002/
spe.366

[4] AD-Link. “PXI-7921.” http://www.adlinktech.com/PD/marketing/Datasheet/
PXI-7921/PXI-7921_Datasheet_1.pdf

[5] National Instruments. “NI PXI-2529.” http://sine.ni.com/ds/app/doc/p/id/
ds-375/lang/en

[6] National Instruments. January 2011. “What Is LabVIEW?” LabVIEW
System Design Software. http://www.ni.com/labview/

[7] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications under Variable
Requirements.” AIP Review of Scientific Instruments 83, no. 11, 115103. doi:
10.1063/1.4764664.

[8] Schmidt, D.C. February 2006. “Model-Driven Engineering.” IEEE Com-
puter 39, no. 2, pp. 25–31. doi: http://dx.doi.org/10.1109/mc.2006.58

[9] Altendorfer, S., and H. Zsifkovits. 2013. “A Model-Driven Engineering
Approach for Production Systems illustrated on an Automotive Test Case.”
Proceedings in Manufacturing Systems 8, no. 3, pp. 159–64. ISSN 2067-
9238.

[10] Kent, S. May 2002. “Model Driven Engineering.” IFM ‘02 Proceedings
of the Third International Conference on Integrated Formal Methods,
pp. 286–98. Turku, Finland: Springer Berlin Heidelberg.

[11] Fowler, M. October 2010. Domain Specific Languages. 1st ed. Reading,
MA: Addison-Wesley.

[12] Jimenez, M., F. Rosique, P. Sanchez, B. Alvarez, and A. Iborra. July/
August 2009. “Habitation: A Domain-Specific Language for Home Automa-
tion.” IEEE Software 26, no. 4, pp. 30–38. doi: http://dx.doi.org/10.1109/
ms.2009.93

[13] Hudak, P. June 1998. “Modular Domain Specific Languages and Tools.”
In Software Reuse, 1998. Proceedings. Fifth International Conference,
pp. 134–42. Victoria, British Columbia, Canada: IEEE.

[14] Steinberg, D., F. Budinsky, M. Paternostro, and E. Merks. Decem-
ber 2008. EMF: Eclipse Modeling Framework. 2nd ed. Reading, MA:
Addison-Wesley.

[15] Kourie, D.G., D. Fick, and B.W. Watson. February 2009. “Virtual Machine
Framework for Constructing Domain-Specific Languages.” IET Software 3,
no. 1, pp. 1–13. doi: http://dx.doi.org/10.1049/iet-sen:20060068

[16] Gronback, R.C. March 2009. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. 1st ed. Reading, MA: Addison-Wesley.

SOFTWARE FRAMEWORkS • 45

[17] Fowler, M. July/August 2009. “A Pedagogical Framework for
Domain-Specific Languages.” IEEE Software 26, no. 4, pp. 13–14. doi:
http://dx.doi.org/10.1109/ms.2009.85

[18] Dib, A.A., L. Féraud, I. Ober, and C. Percebois. April 2008. “Towards a
Rigorous Framework for Dealing with Domain Specific Language Fami-
lies.” In Information and Communication Technologies: From Theory to
Applications, 2008. ICTTA 2008. 3rd International Conference, pp. 1–6.
Damascus, Syria: IEEE.

[19] Pakin, S. October 2007. “The Design and Implementation of a
Domain-Specific Language for Network Performance Testing.” Parallel and
Distributed Systems, IEEE Transactions, 18, no. 10, pp. 1436–49. doi: http://
dx.doi.org/10.1109/tpds.2007.1065

[20] Muller, G., J.L. Lawall, S. Thibault, and R.E. Voel Jensen. August 2003.
“A Domain Specific Language Approach to Programmable Networks.” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev. 33, no. 3, pp. 370–81. doi: http://
dx.doi.org/10.1109/tsmcc.2003.817364

[21] Mernik, M., J. Heering, and A.M. Sloane. December 2005. “When and How
to Develop Domain-Specific Languages.” ACM Computing Surveys (CSUR)
37, no. 4, pp. 316–44. doi: http://dx.doi.org/10.1145/1118890.1118892

[22] Arpaia, P., L. Fiscarelli, G. La Commara, and C. Petrone. 2011.
“A Model-Driven Domain-Specific Scripting Language for Measure-
ment System Frameworks.” IEEE Transactions on Instrumentation and
Measurement 60, no. 12, pp. 3756–66. doi: http://dx.doi.org/10.1109/
tim.2011.2149310

CHAPTER 3

object- AnD ASpect-
orienteD progrAmming for
meASurement ApplicAtionS

Science and technology multiply around us.
To an increasing extent, they dictate the languages in which we speak

and think.
Either we use those languages, or we remain mute.

―J.G. Ballard

3.1 OVERVIEW

This chapter continues our travel throughout the measurement applica-
tions software, by focusing the attention on one of the most important
paradigms of the last decades: Object-Oriented Programming. The main
concepts of Object-Oriented Programming and the related design patterns
are presented. Finally, the main concepts of Aspect-Oriented paradigm
are illustrated by emphasizing the advantage of its use in measurement
applications.

3.2 OBJECT-ORIENTED PROGRAMMING

3.2.1 LEADING CONCEPTS

In the last decades, from a technological point of view, hardware and soft-
ware have become increasingly complex, and their management, particu-
larly software, turns out to be more and more a priority for the automation
project engineer. Modular programming, having prevailed for several
years (structured programming), focused prominently on the actions of a

48 • FLEXIBLE TEST AUTOMATION

module (subroutine), rather than on its data. Furthermore, the subroutine
was conceived as an independent logic unit aimed at reusing the code and
enabling collaboration with other subroutines by means of suitable links.
Researchers studied the way, by means of the so-called Object-Oriented
Programming, to foster easy software production by strongly emphasiz-
ing discrete, reusable units of programming logic [1]. The main leading
strategy has been to hide as much possible details about code working
mechanism and low-level data structure to enhance reusability. The sense
is that a logic unit (e.g., a modular procedure) is to be “plugged into” a
higher-level structure easily. Details about internal working mechanism
are not essential to the structure operation as a whole, provided the unit
accomplishes its job properly. For example, a modular unit could include
actions to configure a multimeter to trigger a measurement, wait for the
measurement to end, read the results, and save the data in a file. Details
about how the unit stores the measured records are hidden to the appli-
cations and systems using this module. Analogously, the programming
details of the various procedures are also obscured (principle of “infor-
mation hiding” of software engineering, while the mechanism for restrict-
ing access to some of the object’s components is called “encapsulation”).
For the sake of simplicity, only the behavior (interface) of the existing
procedures and the corresponding accessible data is made available.
Object-Oriented Programming focuses on data rather than processes, with
procedures constituted of independent generic modules (“classes”), whose
instance (“objects”) contains all the information needed to manipulate its
own data structure (“members”) [2].

In an Object-Oriented program, different types of objects correspond
to different kinds of complex data to be managed, and each of them cor-
responds to a real-world object or concept (device, person, etc.). Multiple
copies of each type of object might be contained in a generic program.

Concepts are represented as “classes” with data fields (“attributes”
describing the object) and associated procedures (“methods”). The objects
interact to design applications and computer programs [2]. At its very
basis, Object-Oriented Programming has an approach pointed toward
problem solving, by requiring careful application of abstractions and sub-
dividing problems into manageable pieces. Compared with procedural
programming, the Object-Oriented code tends to break a program into
vast numbers of small trivially verifiable pieces [3]. In the conventional
model, the program is a list of tasks or subroutines to be performed, while
the Object-Oriented program is a collection of interacting objects. The
objects are capable of exchanging messages and processing data. Each
object has a distinct role or responsibility as an independent apparatus.

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 49

The possible actions on these objects are defined by the methods and are
closely associated with the object. Indeed, Object-Oriented data structures
have the property of carrying their own operators or, at least, of inheriting
them from a similar object or class.

Conversely, non-object-oriented programs may be seen as a “long”
list of commands. In more complex programs, smaller sections of com-
mands are inserted into functions or subroutines to perform a specific task.
In this case, the designer tends to define the program’s data as “global,”
that is, accessible from any part of the program. When code increases
in dimension, permitting any procedure to modify any data, this might
involve bugs with wide-ranging consequences.

On the other hand, Object-Oriented philosophy encourages the pro-
grammer to put data where there is no direct access by the rest of the pro-
gram. In this approach, the data can be used only by the methods, grouped
with the data, retrieving and modifying the controlled data. At this point,
the object becomes the programming construct that combines data with
a set of methods for accessing and managing those data. Using subrou-
tines for examining or modifying certain kinds of data is a practice used
in non-object-oriented modular programming, before of Object-Oriented
Programming.

Through a set of designed functions, objects encapsulate and ensure
that their data are used in an appropriate way. The methods typically include
functions of check and guarantee integrity of the data types. Simple-to-
use, and standardized methods are defined for performing particular oper-
ations on its data, concealing how those tasks are accomplished. In this
way, the internal structure or methods of an object can be altered without
requiring modifications to the rest of the program. This approach can also
be used to propose standardized methods across different types of objects.
As an example [4], several different types of objects might offer mea-
surement procedures. Each of them might implement the measurement
differently, reflecting the different kind of method it contains, but all the
different measurement methods might be called in the same standardized
manner from elsewhere in the program. This becomes particularly useful
when more than one programmer is contributing to a project or when the
goal is to reuse code between projects.

In the literature of the last 40 years [4], the main group of fundamen-
tal concepts for Object-Oriented Programming can be identified. The main
concepts are: Class, Object, Instance, Method, Message Passing, Inheri-
tance, Abstraction, Encapsulation, Polymorphism, Decoupling, Dynamic
Dispatch, and Open Recursion. In the following, all these main concepts
are reviewed [2–6].

50 • FLEXIBLE TEST AUTOMATION

Class: It defines the abstract characteristics of an entity (object), includ-
ing the entity’s characteristics (its attributes or fields) and its behavior
(the things it can do, methods or operations). Classes provide modular-
ity and structure in an object-oriented program. A class should naturally
be decipherable to a nonprogrammer familiar with the problem domain,
that is, the features of the class should have sense in the application con-
text. Furthermore, its code should be quite self-contained (generally using
encapsulation). Together, the properties and methods defined by a class
are called members.

Object: It refers to a specific instance of a class. Each object has a struc-
ture similar to other objects of the class, but can have peculiar characteris-
tics. An object can also call functions, or methods, specific to that object.

Instance variable: It is a variable defined in a class (i.e., a member vari-
able), for which each object of the class has a separate copy, or instance.

Method: It is a subroutine (or procedure) associated with a class. Meth-
ods define the behavior to be demonstrated by instances of the associated
class at program runtime. Methods have the special property at runtime of
having access to data stored in an instance of the class (or class instance
or class object or object) they are associated with and are thereby able to
control the state of the instance.

Message Passing: It is a procedure call from one function to another. The
message passing is the process by which an object sends data to another
object or asks the other object to invoke a method.

Inheritance: It is a mechanism allowing data and behavior of one class to
be included in or used as the basis for another class.

Abstraction: It is the action of defining classes to model aspects of reality
using distinctions inherent to the domain of interest.

Encapsulation: It is a technique for designing classes and objects that
restricts access to data and behavior by defining a limited set of messages
that an object of that class can receive.

Polymorphism: It defines the ability of different classes to respond to the
same message, implementing each method appropriately.

Decoupling: It refers to careful controls separating code modules from
specific use cases, aimed at increasing code reusability.

Dynamic dispatch: It is the selection of the implementation technique for
a polymorphic operation (method or function) to call at runtime.

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 51

Open recursion: It is a feature allowing a method body to invoke another
method body within the same object via a special variable.

3.2.2 PATTERNS

Design is one of the main challenges in software development for mea-
surement and test automation, and Object-Oriented Programming pro-
vides several specific methodologies. The design pattern is the most
common methodology, as codified by [7]. In software design, the term
“design patterns” is a general, repeatable solution to a frequently aris-
ing problem. From the operating viewpoint, it is a description or template
for solving a problem in many different situations. This is not a finished
design, and it cannot be transformed directly into source or machine code.
In the application, the programmer implements the patterns that are most
suitable in that case.

In particular, Object-Oriented design patterns typically represent rela-
tionships and interactions between classes or objects, and the final appli-
cation of classes or objects is not specified. In functional programming
languages, patterns are not applicable if they imply object-orientation or
more generally a mutable state.

In general, a pattern has four essential elements [7]:

1. The pattern name is used to describe synthetically a design prob-
lem, its solutions, and effects. It makes it easier to think about
designs and to communicate them and their trade-offs to others.

2. The problem describes when to use the pattern. It describes the
problem addressed by the pattern and its context. It might define a
particular design. Sometimes the problem will include a list of con-
ditions that must be met before it makes sense to apply the pattern.

3. The solution describes the elements of the design, their relation-
ships, tasks, and collaborations. It doesn’t describe a particular con-
crete design or implementation, because a pattern is like a template
to be applied in different circumstances. Conversely, the pattern
offers a conceptual description of a design problem, and how a
general arrangement of elements (classes and objects in our case)
solves it.

4. The consequences are the results and trade-offs of the pattern
application. Though often hidden when design decisions are
described, consequences are critical for evaluating design alterna-
tives and for understanding the costs and benefits of the pattern

52 • FLEXIBLE TEST AUTOMATION

usage. Consequences often deals with space and time trade-offs.
They can also tackle language and implementation matters. Fre-
quently, the consequences of a pattern include its impact on a sys-
tem’s flexibility, extensibility, reusability, or portability. Defining
consequences helps their understanding and evaluation.

In software architecture, there are different levels of design. At a
higher level, there are architectural patterns, describing an overall pattern
followed by an entire system. At a lower level, there is the architecture
specifically related to the purpose of the application. Still another level
down, the architecture of the modules and their interconnections reside
[8]. This is the domain of design patterns, packages, components, and
classes.

There are many types of design patterns:

• The strategy pattern defines a family of algorithms, encapsulates
them, and makes them interchangeable. It lets the algorithm vary
independently from the using clients.

• Computational design patterns are related to key computation iden-
tification.

• Execution patterns refer to supporting application execution, com-
prising strategies in accomplishing streams of tasks and building
blocks to support task synchronization.

• Implementation strategy patterns are suitable for implementing
source code to support (1) program organization, and (2) the com-
mon data structures specific to parallel programming.

• Structural design patterns address the development of high-level
structures of applications being developed.

Design patterns are composed of several sections. The main sec-
tions of a design pattern are Structure, Participants, and Collaboration.
They describe a design motif—a prototypical microarchitecture—used by
developers and adapted to their particular designs for solving the recurrent
problem described by the design pattern. A microarchitecture is a set of
constituents (e.g., classes and methods) and their relationships. A design
pattern is used by software developers for introducing the prototypical
microarchitecture of their designs, that is, the implemented design motif
will have the same structure and organization of the chosen microar-
chitectures pattern. Another important feature of design patterns is to
allow developers to communicate using well-known names for software
interactions.

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 53

3.2.2.1 Patterns Classification and List

The design patterns can be classified by two criteria [7]: purpose and
scope (Table 3.1). The first criterion reveals what the pattern really does.
Consequently, design patterns are grouped into the following categories:

• Creational patterns are related to the process of object creation.
• Structural patterns are related to the structure of classes or objects.
• Behavioral patterns distinguish the modes how classes or objects

interact and distribute responsibility.

The second scope-based criterion specifies whether the pattern applies
primarily to classes or to objects [7]. Class patterns manage the relation-
ships between classes and their subclasses. The relationships are created
through inheritance, in order to be, static and fixed at compile-time. Object
patterns manage object relationships, which are more dynamic because
they change at run-time. Almost all patterns use inheritance to some
extent, and for this, the only patterns labeled “class patterns” are those
focusing on class associations. Most patterns are in the Object scope.

A description of these patterns is out of the scope of this book and can
be found in [7].

A key issue with the general design patterns is to define their opti-
mal use-area, that is, the particular types of software where they can be
used with highest efficiency. It is also problematic to determine in which

Table 3.1. Classification of patterns

Purpose
Creational Structural Behavioral

Scope

Class Factory Method Adapter Interpreter
Template Method

Object

Abstract Factory
Builder
Prototype
Singleton

Adapter
Bridge
Composite
Decorator
Façade
Proxy

Chain of Responsibility
Command
Iterator
Mediator
Memento
Flyweight
Observer
State
Strategy
Visitor

54 • FLEXIBLE TEST AUTOMATION

context or in which part of the system the patterns’ attributes can be used
[9]. A Domain Specific Design Pattern is a set of objects and components
that form a highly encapsulated, cohesive partition with clear boundaries,
which can be used in a specific software domain [10]. It would be a pat-
tern that is in some way optimal for that particular domain [9]. In litera-
ture, different examples of domain-specific patterns can be found, such as
user interface design patterns [11], information visualization [12], secure
design [13], “secure usability” [14], Web design [15], and business model
design [16].

3.2.3 ADVANTAGES IN MEASUREMENT APPLICATIONS

The development of an automatic measurement system is generally aimed
at optimizing the final operation performance and cost ratio by simulta-
neously achieving the metrological target. In practice, structures of data
acquisition systems have been quite standardized at hardware level, by
mainly leaving the burden of software implementation for customizing the
specific measurement application. For this reason, the need for reusability
of existing software and flexibility of running applications is increased.
In this context, the application to measurement systems of Object-Ori-
ented paradigm carries significant advantages and satisfies the require-
ments of reusability and flexibility. When basing a measurement system
on Object-Oriented principles, the actual world is modeled in terms of
objects representing real-world entities as closely as possible [17]. In
principle, all the steps of a test procedure and the components of a mea-
surement system can be represented by an object (trigger, model, sensor,
actuator, etc., as shown in Figure 3.1 [17]).

In literature, the application of the Object-Oriented paradigm is
exploited for easily developing software for measurement and test appli-
cations under highly- and fast-varying requirements [18]. This paradigm
associated to a partial design is a support structure where a measurement
application can be organized and developed. An Object-Oriented system
can be configured for satisfying a large set of measurement applications in
a generic field for an industrial test division, an experimental laboratory,
or a research center [18].

If the measurement system is conceived as a collection of active
and cooperating entities (Figure 3.1), this approach improves the decom-
position of the system in subsystems easier to be analyzed, decreases
the dependencies between the various parts, and increases the system
flexibility [17].

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 55

While test programs have been designed so far to solve specific prob-
lems with extremely limited capability to evolve, an Object-Oriented sys-
tem for a given measurement domain, suitably conceived in order to be
configurable for satisfying a wide range of requirements, could constitute
a unified solution to drive all the existing and future park of measurement
applications [18].

Although this approach leads to satisfy the need for reusability, flex-
ibility, and quality of measurement software, the main drawback is the
higher programming knowledge of final user or test engineer.

At commercial level, some products are provided for supporting
the user in designing new tests (NI TestStand and Veristand, Director II
Azimuth Systems, Activate Test Platform, see Chapter 1), by integrating
software modules developed in other programming languages (C, C++,
LabVIEW) [18]. However, these commercial platforms do not support
the user in developing single software modules, and, as a result, stan-
dard development and reusability are intrinsically limited. Some exam-
ples of this approach are presented in [19, 20], where packages written in
LabVIEW and LabWindows/CVI are designed for microscope control
and for battery resistance measurement, respectively. In [21, 22], software
development systems are proposed for measurement and control of data
acquisition system. In [23], each task is best performed within a dedicated
environment: LabVIEW, Matlab, custom simulators, and more.

At research level, the main advantages of Object-Oriented para-
digm are used in the Object-Oriented Flexible Measurement System
(OFMS) [24], and the Flexible Framework for Magnetic Measurements

Figure 3.1. Architecture of a simple measurement and control system [17]: (1) a
first event triggers the model (abstract factory), (2) the model produces a system
software instance (measurement item), (3) the instance drives the sensor to carry
out a measurement, (4) the sensor returns back the reading, (5) the model instance
processes the data, and (6) drives the actuator suitably.

Sensor Abstract factory

Actuator

Measurement
 item Trigger

3
1

6

5
4

2

56 • FLEXIBLE TEST AUTOMATION

(FFMM) developed by the University of Sannio in cooperation with
CERN [18]. In these research projects, main emphasis is given to encap-
sulation, inheritance, flexible-construction, and multitask options. For a
distributed measurement laboratory, an open architecture characterized
by high reconfigurability, modularity, extendibility, and reusability is
implemented by the development of Object-Oriented Programming [25].
The model, proposed in [26], represents the measurement systems by an
Object-Oriented method, and in addition, highlights the limitations of the
conventional function-oriented models. At Fermilab, the Object-Oriented
software for magnetic measurements, EMS, allows easy reconfiguration
and runtime modification, as well as various user interface, data acquisi-
tion, analysis, and data persistence components to be configured to form
different measurement systems [27]. Again at CERN, Object-Oriented
software for measurement and test applications allow the software quality
in terms of flexibility, usability, and maintainability to be maximized [18].

3.3 ASPECT-ORIENTED PROGRAMMING

3.3.1 MOTIVATION AND BASIC CONCEPTS

Software systems can be viewed from multiple perspectives, referring even
to different conceptual models. The model used to decompose a software
system into modules has a radical impact on the modularization properties
of the resulting software, and thus on its reusability and flexibility.

The decomposition criteria, in any way chosen, improve the modular-
ization of some sets of functionalities widely needed in the system, called
concerns, without affecting the others. The ideal situation would be not
to choose the right criteria for modularization, but rather to have the pos-
sibility to decompose the system according to a set of criteria for each of
the relevant concerns. Traditional Object-Oriented languages supporting
only hierarchical decomposition do not provide developers with mecha-
nisms powerful enough to accomplish this task: They lead the developer
to a dominant decomposition that takes into accounts a certain number
of “main” concerns (often called primary concerns). The others, often
called crosscutting concerns, overlap on the hierarchy shaped by primary
concerns.

In Figure 3.2, the example of the functions needed for the fault detec-
tion of some measuring devices is shown. These functions are spread over
several objects, even if they have a common logic, which could give rise
to a further component, the Fault Detector.

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 57

The word “crosscutting” refers to the fact that such concerns are
spread over the hierarchical modules of the dominant decomposition. The
presence of crosscutting concerns in software systems has mainly two
observable effects on the source code, called (a) “tangling,” when in a
single modularization unit there is code related to different concerns, and
(b) “scattering,” meaning that the implementation of a concern is spread
across several different modularization units. Figure 3.3 highlights typical
situations of (a) code scattering and (b) tangling.

In particular, in Figure 3.3, the vertical bars represent the modular-
ization units and the different nuances of gray the diverse concerns. In the
representation of Figure 3.3a, a highly scattered code has high level of dis-
tribution of a concern (rectangle with the same gray nuance) over different
units (vertical bars). In the representation of Figure 3.3b, a highly tangled
code has a high level of distribution of concerns (rectangles with a given
gray nuance) over the same unit (vertical bar).

Crosscutting concerns are related to issues transversal to many mod-
ules, and thus cause the duplication of portions of code in several differ-
ent modules, by negatively affecting maintainability and reusability. This
means that at run-time each component must encapsulate its part of infor-
mation related to the crosscutting concern even when it does not need it
(thus wasting memory resources).

Crosscutting concerns can negatively affect the quality of even well
modularized systems implemented by means of Object-Oriented [17],
component-based [27], and agent-based techniques [28]. Aspect-Oriented
Programming (AOP) [29] is an extension of the Object-Oriented paradigm

Figure 3.2. Example of a crosscuttings concern in measurement software: The
fault detection [18].

Rctgpv

Fgxkeg3

Fgxkeg303

Fgxkeg4

Fgxkeg403

Hcwnv"fgvgevqt

Fgxkeg404

Etquu/ewvvkpi"eqpegtpu

E
nc
uu
gu

58 • FLEXIBLE TEST AUTOMATION

that provides new specific constructs for improving the separation of con-
cerns and supporting their crosscutting. AOP defines specific program
units, the aspects, for specifying concerns separately, and rules for weav-
ing them to produce the overall system to be run. The Aspect-Oriented
architecture enforces, as much as possible, a centralized design, where
the state of crosscutting concerns is maintained in dedicated modules, the
aspects [29]. Each of them encapsulates a crosscutting concern for all the
components involved with it. When a component does not need the fea-
ture of the crosscutting concern, the related data are not stored for it in the
aspect, without corresponding memory waste.

As an example, tracing is aimed at recording report about code run-
ning for debugging or diagnosis purposes. The corresponding code is
present approximately inside all the modules. This limits the reusability
because this code is specific for the single module as well as for the appli-
cation. According to the AOP approach, the aspect of tracing has to be
removed from the functional concerns of the other modules and isolated
in a specific module. Like a class of objects, an aspect introduces a new
user-defined type into the system type hierarchy, with its own methods,
fields, and static relationships to other types. Accordingly, an AOP system
can be seen as composed by two parts: (a) a first one, consisting of tradi-
tional modularization units (e.g., classes, functions) and referred to as the
base system, or core concern, and (b) a second one, consisting of aspects,
encapsulating the crosscutting concerns involved in the system, and usu-
ally referred to as the secondary concern.

Figure 3.3. (a) Code scattering and (b) tangling.

(a) (b)

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 59

3.3.2 JOIN POINT MODEL

AOP provides twofold specific features for implementing crosscutting
concerns in aspects: (a) dynamic crosscutting features, implementation of
crosscutting concerns by modifying the runtime behavior of a program,
and (b) static crosscutting features, modification of the static and struc-
tural properties of the system.

Dynamic crosscutting is implemented by using advices and pointcuts.
An advice is a code fragment executed at specified points during the pro-
gram runtime. The points in the dynamic control flow, where the advice
code is executed, are called join points. A pointcut defines the events (such
as a method call or execution, field get and set, exception handling and
softening) triggering the execution of the associated advices. A pointcut is
an expression pattern matched during execution to join points of interest.
Each advice is associated to a pointcut by defining the join point(s) at
which it must be applied. Advice code can be executed before, after, or
around the intercepted join point. A join point shadow is the static coun-
terpart, in the code, of a join point; equally, a join point is a particular
execution of a join point shadow.

The aspects are inserted in the base program statically by a weaving
process. The weaver is the component of an AOP programming language
environment (such as AspectJ [30]) in charge of the weaving process. The
weaver inserts instructions at join point shadows in order to execute the
advice to be applied at the corresponding join points. The weaver may
need to add runtime checks to the code inserted at a join point shadow in
order to perform binding parameters, and other requested computations.
The static crosscutting features of AOP implement crosscutting concerns
by modifying the static structure of the system. An aspect has specific
features (intertype declarations) for

• introducing new members (i.e., fields, methods, and constructors)
to a class, or interface;

• changing or adding parents to classes or interfaces;
• extending a class from the subtype of the original super-class or

implement a new interface.

3.3.3 SAMPLE IMPLEMENTATION

An example of a straightforward program (an AO version of the “Hello
World” program implemented in AspectJ [31]), enlightening AO basic
working, is reported in Figure 3.4. In the figure, the code of the class

60 • FLEXIBLE TEST AUTOMATION

HelloWorld and the aspect GreetingsAspect are reported. The aspect
defines a pointcut and two advices. The callTellMessage() captures calls to
all public static methods with names that start with “tell.” In the example,
the pointcut captures the calls to the methodstell(...) and tellPerson(...) in
the class HelloWorld taking any arguments. The two advices, one before
and one after, associated to the pointcut callTellMessage() will cause the
printing of the “Good morning!” and “Bye Bye!” text strings just before
and after, respectively, each message printed by the methods tell() and
tellPerson().

3.3.4 ADVANTAGES IN MEASUREMENT APPLICATIONS

Software parts of an automatic measurement system are usually devel-
oped by exploiting Object-Oriented [17], component-based [27], and
agent-based techniques [28]. They aim at organizing the software in mod-
ules, each one responsible for specified features, reducing their coupling,
and maximizing their internal cohesion.

Crosscutting concerns can result in a significant quality loss even in
well modularized automatic measurement systems designed by means
of these techniques [32]. Typical crosscutting concerns related to issues
transversal to many modules are the synchronization and fault detection
tasks. They cause the duplication of portions of code in several different
modules, and negatively affect its maintainability and reusability.

The good separation of concerns allowed by an AOP-based approach,
conversely, influences positively software quality. It allows a high level of
maintainability and reusability of the code: For each new element added to

Figure 3.4. An example of a straightforward AOP program implemented in
AspectJ [31].

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 61

a measurement program, the code needed to handle a crosscutting concern
for that new element is added to the hierarchy of the aspect modeling that
concern.

This means that all the code related to the crosscutting concern is
well modularized in aspects and subaspects of this hierarchy, therefore,
the commonalities among the different subaspects can be well structured
and factored out. As a consequence, the AOP design, with respect to the
“traditional” OOP approach, exhibits a much more centralized design,
decreasing code duplication and significantly growing the possibility of
code reuse. This is because, a piece of software is more reusable if it has
as few dependencies as possible in the context of its usage, and this is
exactly the case of software modules implementing a single concern. In
addition to that, an AOP-based architecture is usually not targeted at a spe-
cific system component, and the same architecture can be reused to handle
a crosscutting concern in different components.

Properties like comprehensibility and maintainability are also
improved by AOP. If each concern is implemented in a separate module
that can be understood independently of the others, the system structure
has no need to be understood as a whole in order to understand a part of it.
The comprehension efforts can be then focused on the concern of interest
while ignoring the other concerns.

In a software system, maintenance requires adding, removing, or
changing a particular feature of the system. In order to change a fea-
ture, two main issues have to be addressed: (a) feature localization and
(b) implementation update. When a concern is not clearly separated from
the others (being spread over a large part of the code), its localization
can become a very difficult and expensive task, because it is necessary to
find all the pieces of code contributing to that particular concern. Similar
observations apply to the addition or the elimination of concerns. In the
first case, all the locations where code has to be inserted have to be found,
while in the latter case, all the locations where code has to be removed.
Moreover, adequate testing to make sure that the changes in all scattered
fragments do not introduce faults or subtle side effects is highly nontrivial.
A good separation of concerns is one of the focal points of an AOP design;
therefore, in systems developed according to such an approach, the main-
tainability is highly increased.

In the context of software engineering, separation of concerns is
strictly related to composition and decomposition mechanisms, constructs
and patterns as supported or enforced by programming languages and
frameworks. Software composition and decomposition tasks lead to the
partitioning of a software system into smaller parts that are less complex

62 • FLEXIBLE TEST AUTOMATION

(decomposition task) and the assembly of software systems in terms of
these smaller parts to build up the entire system (the composition task).
In the past, most software systems were developed under the assumption
of interaction with a static external environment with no (or very-limited)
capability to evolve. Under such an assumption, developers were con-
sidering requirements stable and evolution as a problem to avoid. This
assumption is not suitable in the field of software for measurement appli-
cations when high capability to evolve is needed in order to meet variable
and changing requirements.

As a consequence, software for measurement applications greatly
benefits from features that make system composition and decomposition
more flexible and dynamic, with run-time binding in which the relation-
ship among elements is established at run-time. This is another of the
advantageous features offered by AOP.

Finally, when working with an AOP design, it is possible to focus on
every single concern, ideally without caring about the others. This means
that domain and technology experts can be assigned to each particular
portion of the system, each one addressing a well-defined concern. This
also means that tasks can be divided into smaller and more specific pieces
that can be concurrently carried out by different people. With a good sep-
aration of concerns, the required coordination is minimized, because only
people working on the same concern need to be coordinated.

REFERENCES

[1] Odei Bempong, B. 2013. “The Cognitive Programming Paradigm—The
Next Programming Structure.” American Journal of Software Engineer-
ing and Applications 2, no. 2, pp. 54–67. doi: http://dx.doi.org/10.11648/j.
ajsea.20130202.15

[2] 2007. “Object Oriented Programming, OOP.” TechTerms. http://www.tech-
terms.com/definition/oop.

[3] 2014. “Object_Oriented_Programming.” WikiBooks. http://en.wikibooks.
org/wiki/Object_Oriented_Programming.

[4] Armstrong, D.J. February 2006. “The Quarks of Object-Oriented Develop-
ment.” Communications of the ACM, 49, no. 2, pp. 123–8. doi: http://dx.doi.
org/10.1145/1113034.1113040.

[5] Slagell, M. 2008. “Methods.” http://www.rubyist.net/~slagell/ruby/methods.
html

[6] AbdelGawad, M. 2012. NOOP: A Mathematical Model of Object-Oriented
Programming, Doctoral Thesis, Rice University’s digital scholarship
archive, Rice University, Houston Texas. http://scholarship.rice.edu/han-
dle/1911/70199

OBJECT- AND ASPECT-ORIENTED PROGRAMMING • 63

[7] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. 1994. Design Patterns:
Elements of Reusable Object Oriented Software, http://www.uml.org.cn/
c++/pdf/DesignPatterns.pdf

[8] Martin, R.C. 2000. Design Principles and Design Patterns. www.objectmen-
tor.com

[9] Gustavsson, R., J. Ala-Kurikka, and S. Rulli. (2002). Domain Specific Design
Patterns, A Report in the Course Object-Oriented Programming Advanced
Course. Mälardalen University, Västerås, Sweden. http://www.idt.mdh.se/
kurser/cd5130/msg/2002lp3/download/CD5130%20VT02%20DomainSpe-
cificPatterns.pdf

[10] 1998. “Prototype Design Pattern.” Sourcemaking. http://sourcemaking.com/
design_patterns/prototype.

[11] Laakso, S.A. Collection of User Interface Design Patterns. University of
Helsinki, Department of Computer Science, (January 31, 2008). http://www.
cs.helsinki.fi/u/salaakso/patterns/

[12] Heer, J., and M. Agrawala. 2006. “Software Design Patterns for Information
Visualization.” IEEE Transactions on Visualization and Computer Graphics
12, no. 5, pp. 853–60. doi: http://dx.doi.org/10.1109/tvcg.2006.178

[13] Dougherty, C., K. Sayre, R.C. Seacord, D. Svoboda, and K. Togashi. 2009.
“Secure Design Patterns,” Software Engineering Institute, Carnegie Mellon
University. http://www.cert.org/archive/pdf/09tr010.pdf

[14] Garfinkel, S.L. 2005. “Design Principles and Patterns for Computer Systems
that Are Simultaneously Secure and Usable.” Simson Garfinkel’s PhD thesis.
http://simson.net/thesis/

[15] 2012. “Yahoo! Design Pattern Library.” Yahoo Developer Network. http://
developer.yahoo.com/ypatterns/

[16] 2010. “How to Design Your Business Model as a Lean Startup.” The
Metho dologist. http://torgronsund.com/2010/01/06/lean-startup-business-model-
pattern/

[17] Bosch, J. 1999. “Design of an Object-Oriented Framework for Measurement
Systems.” In Domain-Specific Application Frameworks, eds. M. Fayad,
D. Schmidt, and R. Johnson, pp. 177–205. New York, NY: John Wiley. ISBN
0-471-33280-1.

[18] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications Under Variable
Requirements.” Review of Scientific Instruments 83, no 11, 115103. doi:
http://dx.doi.org/10.1063/1.4764664

[19] Langer, D., M.V. Hoff, A.J. Keller, C. Nagaraja, O.A. Pfäffli, M. Göldi, H.
Kasper, and F. Helmchen. February 2013. “Helioscan: A Software Framework
For Controlling In Vivo Microscopy Setups With High Hardware Flexibility,
Functional Diversity And Extendibility.” Journal of Neuroscience Methods
215, no. 1, pp. 38–52. doi: http://dx.doi.org/10.1016/j.jneumeth.2013.02.006

[20] Yongjie, F. August 2011. “Design of the Battery Resistance Measurement
System.” In Electronic Measurement & Instruments (ICEMI) 2011, 2,
pp. 240–243. Chengdu, China: IEEE.

64 • FLEXIBLE TEST AUTOMATION

[21] Chen, Y. March 2009. “Electric Quantity Test System of Unified Power Flow
Controller Model on LabWindows/CVI.” APPEEC 2009, pp. 1–4. Wuhan,
China: IEEE.

[22] Vişan, D.A., and I.B. Cioc. May 2010. “Virtual Instrumentation Applica-
tion for Vibration Analysis in Electrical Equipments Testing.” ISSE 2010,
pp. 216–219. Warsaw, Poland: IEEE.

[23] Deshmukh, A., F. Ponci, A. Monti, L. Cristaldi, R. Ottoboni, M. Riva, and
M. Lazzaroni. April 24–27, 2006. “Multi Agent Systems: An Example of
Dynamic Reconfiguration.” IMTC 2006—Instrumentation and Measurement
Technology Conference. Sorrento, Italy: IEEE.

[24] Shen, X., X. Song, and J. Chen. August 16–19, 2009. “Implementation and
Evaluation of Object-Oriented Flexible Measurement System.” Electronic
Measurement & Instruments, ICEMI ‘09. 9th International Conference.
Beijing, China: IEEE.

[25] Arpaia, P., F. Cennamo, P. Daponte, and M. Savastano. June 4–6, 1996.
“A Distributed Laboratory Based on Object-Oriented Measurement Sys-
tems.” IEEE Instrumentation and Measurement Technology Conference,
pp. 27–32. Brussels, Belgium: IEEE.

[26] Yang, Q., and C. Butler. February 1998. “An Object-Oriented Model of Mea-
surement Systems.” IEEE Transactions on Instrumentation and Measure-
ment 47, no. 1, pp. 104–07.

[27] Nogiec, J.M., J. DiMarco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge,
and M. Tartaglia. June 2006. “A Configurable Component-Based Software
System for Magnetic Field Measurements.” IEEE Transactions on Applied
Superconductivity 16, no. 2, 1382–85.

[28] Jennings, N.R. 1999. “Agent-Based Computing: Promises and Perils.”
Proceedings of the Sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), Vol. 2, pp. 1429–36. Stockholm, Sweden: Thomas
Dean.

[29] Kiczales, G., J. Lampin, A. Mendhekar, C. Maeda, C. Videira Lopes, J.M.
Loingtier, and J. Irwin. 1997. “Aspect-Oriented Programming.” In Proceed-
ings of the 11th European Conference on Object-Oriented Programming
(ECOOP), Vol. 1241, pp. 220–42. Jyväskylä, Finland: Springer-Verlag,

[30] Kiczales, G., E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W.G.
Griswold. 2001. “An overview of AspectJ.” In Proceedings of the 15th
European Conference on Object-Oriented Programming (ECOOP 01), Vol.
2072, pp. 220–42. Budapest, Hungary: Springer-Verlag.

[31] 2014. “AspectJ.” Eclipse Foundation. http://www.eclipse.org/aspectj/
[32] Pfister, C., and C. Szyperski. 1996. “Why Objects are Not Enough.” In

Proceedings First International Component Users Conference (CUC 96), 3,
pp 141–7. Munich, Germany: SIGS Book.

PART II

methoDology

CHAPTER 4

A flexible SoftwAre
frAmework for

meASurement ApplicAtionS

4.1 OVERVIEW

This chapter presents the design of a software framework for automatic
measurement applications, based on Object-Oriented and Aspect-Oriented
Programming. The objective of the framework is to make the development
of new measurement programs simple and cost-effective, simultaneously
allowing for easy modification and extension of existing test software.
First, the paradigm of the framework is introduced, by highlighting the
basic ideas leading to its conception and design, as well as its architecture
at the structural and functional level. Then, the main components of the
framework are described, by firstly introducing their corresponding state
of the art, leading concepts, and architecture with their main modules. The
review starts with the Fault Detector, aimed at identifying and locating
failures and faults transparently to the user. Fault detection is a crosscut-
ting concern; therefore, the design is led by an aspect-oriented approach.
The reader will also find a meaningful practical example, based on actual
on-field experience, of the design of an Aspect-Oriented Programming
(AOP)-based component for measurement applications. Then, the Syn-
chronizer, aimed at coordinating measurement tasks with well-defined
high-level software events (e.g., start and stop, or device events) is pre-
sented. In particular, the reader will understand how the use of a Petri net
(PN) modeling the execution path allows software synchronization to be
abstracted above the code level, by leaving the test engineer to work at a
more intuitive level. The review continues with the Measurement Domain

68 • FLEXIBLE TEST AUTOMATION

Specific Language (MDSL), aimed at defining specifications for com-
plete, easy-to-understand, -reuse, and -maintain applications efficiently
and quickly by means of a script. The related sections highlight the design
for abstracting key concepts of the domain allowing the test engineer to
write more concise and higher-level programs with natural language-like
sentences in a shorter time without being a skilled programmer. Finally,
the Automatic Generator of User Interface, aimed at separating the user
interfaces easily from the application logic for enhancing the flexibility
and reusability of the software, is illustrated. The corresponding sections
highlight how a model-based approach, the Model-View-Interactor Para-
digm, allows the designer to focus on the “interaction” typical in a soft-
ware framework for measurement applications (SFMA) between the final
user and the automatic measurement system.

4.2 FRAMEWORK PARADIGM

Chapter 2 highlighted how software frameworks are cohesive artifacts of
design and implementation. This section defines a framework specific for
measurement applications and highlights the specific relationships with
its environment. The environment includes use-relationship-based (black-
box) clients, inheritance-based (white-box) extension clients, and further
classes the framework exploits [1, 2]. A black-box framework is expected
to work out of the box: A client (object) can use the framework by instan-
tiating classes and composing the instances to suit its needs. A white-box
framework requires clients to supply new subclasses first, before objects
can be created and composed. The approach presented here combines
both the characteristics, by providing both readily usable classes and
abstract classes to be subclassed in order to provide application-specific
classes [3].

Another very general and very powerful principle exploited in the
framework design is the separation of concerns presented in Chapter 3.
Specifically for the framework, Aspect-Oriented Programming has the
ability to identify, describe, and handle peculiar and critical facets of a
measurement system separately. Concerns are always related to a goal
a measurement field stakeholder wants to achieve, or to anticipations or
expectations he or she has on the final measurement [4]. Aspect-Oriented
approach provides a technique that is able to achieve a higher degree of
separation of concerns vital for achieving flexibility.

In the following, (a) the basic ideas, (b) the architecture, and (c) the
design of the framework are presented.

A FLEXIBLE SOFTWARE FRAMEWORK • 69

4.2.1 BASIC IDEAS

From prior considerations, in the following, the basic ideas underlying
the conception of a generic framework for measurement applications are
summarized:

1. A group of interfaces and abstract classes represents a white-box
layer defining the high-level structure of a measurement framework
for generating new parts of the framework itself; this allows poten-
tiality and flexibility to be extended.

2. A group of modules represents a black-box layer, allowing both
module reusability and ease of use to be attained, even by test engi-
neers without knowledge of internal framework mechanisms.

3. Aspect-Oriented Programming improves the reusability and main-
tainability of a software framework [5]: In large projects, several
concepts are transversal to many modules (cross-cutting concerns);
they are extrapolated from the native units and implemented in sep-
arated modules (aspects), in order to improve the system modular-
ity and enhance maintainability.

4. A library of reusable modules is built incrementally during the
start-up of the framework up to a “saturation” condition inside an
application domain, allowing progressively further requirements in
the same domain to be satisfied by a limited effort.

5. A suitable definition of the code structure allows standard modules
to be developed: Such modules represent a sound basis for a library
both for implementing new components and for extending old ones.

According to these ideas, the working principle of a software frame-
work for measurement applications (SFMA) is derived (Figure 4.1).

The test engineer produces a description of the measurement appli-
cation, the User Script, whose syntactic correctness is verified by a Script
Checker. Then, from the User Script, the Builder assembles the Measure-
ment Program, according to the architecture of the Scheme by picking up
suitable modules from the Software Module Library. If some modules are
not available in the library, a template is provided to the user (administra-
tor user) in order to implement them according to a suitable predisposed
structure. Once debugged and tested, the Measurement Program will be
stored in the Database (DB) in order to be reused.

According to the analysis of typical measurement use-case tests
(or procedures), the generic User Script is organized into the following
phases:

70 • FLEXIBLE TEST AUTOMATION

• Definition of the measurement components;
• Specification of mechanical and electrical connections;
• Definition of dynamic parameters, that is, configurable during

run-time of the Measurement Program;
• Component checking (fault detection);
• Storing of measurement conditions;
• Configuration of measurement devices;
• Description of the measurement procedure;
• Preliminary data analysis;
• Data saving.

4.2.2 ARCHITECTURE

The framework for measurement applications has a layered architecture
(Figure 4.2), where each layer has an internal Object-Oriented organiza-
tion. In this way, the objects interact only inside the layer horizontally,
among entities of the same level. The layer features are realized by the
corresponding objects, using in turn the capabilities of the upper level only
through a suitable interface, such is typical in layered systems.

In the Basic Service Layer, all the services needed to implement the
high-level logic of the framework are collected. Subcomponents for envi-
ronment abstraction, memory management, error handling, file-system
abstraction, and processes and threads handling are included. Further-
more, abstract communication services to higher-layer components allow

Figure 4.1. Working principle of a software framework for measurement
applications.

Measurement
Program

User
Script

DB

Software
Modules
Library

Measurement Application
Framework Architecture

Script
Checker

Scheme

B
u
i
l
d
e
r

A FLEXIBLE SOFTWARE FRAMEWORK • 71

data to be extracted from actual devices and external interfaces, by per-
mitting communication mechanisms to be changed without significant
performance loss.

In the Core Service Layer, several packages exposing main function-
alities related to components (in particular measurement devices), event
handling infrastructure, fault detection, and logging, are included.

In the Measurement Service Layer, a minimal but extensible infra-
structure for managing a measurement procedure is offered by: (a) the Test
Manager, encapsulating the user script for its execution in a controlled
environment, and providing the user with core services for implementing
the measurement process; (b) the Measurement Tasks, created to manage
specific jobs of the instrumentation; and (c) the Synchronizer, for syn-
chronizing the Measurement Tasks with well-defined high-level software
events (e.g., start and stop, or device events).

Figure 4.2. Layered architecture model of the SFMA.

User service layer

User interface generation Integrated development
environment

GUI generation engine MDSL engine

Measurement service layer

Synchronizer Task manager

Measurement task

Core service layer

Logging service Fault detection Event handling

Device driver

Basic service layer

Basic functionality Communication
service

ANSI++ standard
and external library

Win32 Posix Others

72 • FLEXIBLE TEST AUTOMATION

The User Service Layer provides services needed for interacting with
the framework users mainly by means of two modules: The User Inter-
face Generation, supported by the graphical user interface (GUI) engine,
devoted to the test engineer for easily generating professional GUIs for
the application user; and, the Integrated Development Environment, sup-
ported by the Measurement Domain Specific Language (MDSL) Engine
for defining the script easily.

Multilayer functional structure corresponds to the operating architec-
ture of the framework depicted in Figure 4.3. This operating architecture
is the direct derivation at the operation level of the working principle in
Figure 4.1. The test engineer produces the User Script in MDSL by means
of a suitable interface based on the Integrated Development Environment.
The MDSL also allows the final user interface to be specified for the
automatic GUI generation.

4.2.3 DESIGN

The UML model of the framework kernel is shown in Figure 4.4, where
its main components and the relations among them are highlighted.
The TestManager organizes the test by knowing the device under test
(UnitUnderTest), the measurands (Quantity), the measurement configu-
ration, and the measurement procedure (written in MDSL within the User
Script). The TestManager has an association with the Devices (software
representation of the measurement devices). Among Devices, the PC can
control remotely the VirtualDevices through a CommunicationBus. The
system also represents the sensors and transducers in dedicated class hier-
archies. The Synchronizer and the FaultDetector are critical modules for a

Figure 4.3. Architecture of a SFMA [6].

UHOC Class library Automatic GUI
generation

Script
checker Builder

Source code

Compiler

Test Engineer Interface

Domain Specific Measurement
Language Script

Executable

A FLEXIBLE SOFTWARE FRAMEWORK • 73

measurement application: The former allows the measurement algorithm
timing at the software level, while the latter fosters the identification and
the location of failures and faults transparently to the user.

Both such features are transversal to several functional units (cross-
cutting concerns): The synchronization policy involves all the measure-
ment devices and all the test procedures, while the fault detection is a
fundamental part of all the devices, as well as of the measurement system
as a whole. The Synchronizer and the Fault Detector can be, therefore,
encapsulated in aspects according to the AOP approach. The synchroni-
zation policy and fault management strategy can be extrapolated from the
single modules and handled separately. In this way, future changes related
to these topics will affect only the Synchronizer and the Fault Detector
modules, without involving all the related classes, directly or indirectly, to
the fault or synchronization events.

The architecture is further detailed in Figure 4.5, where its multilayered
structure is shown (for the sake of simplicity, the User Service Layer is not
represented). In this structure, the abstraction level grows bottom-up from
the hardware toward to the user discretely layer by layer. Single layers
have an Object-Oriented internal organization corresponding to the same
abstraction level. Thus, the interaction among objects takes place hori-
zontally, among entities of the same abstraction level. The features of the

Figure 4.4. The UML model of the framework kernel.

<<aspect>>
U{pejtqpk|gt

<<aspect>>
Hcwnv"Fgvgevqt

Nqiigt
WpkvWpfgtVguv

Fgxkeg
Vguv"Ocpcigt

Eqppgevqt

Eqoowpkecvkqp"Dwu Xktvwcn"Fgxkeg

Ogcuwtgogpv"Fgxkeg

Swcpvkv{

1 1

11

1

1
1

1 1

1 1

1 1

1
1

11

74 • FLEXIBLE TEST AUTOMATION

level i are realized by the objects of the corresponding layer, by exploiting
the capabilities offered by level i-1, through a suitably defined interface,
as typically happens in layered systems. However, this layered structure
is not rigid. Even though it would be better to use, while programming
in a level, only functions implemented in the next lower layer, the user is
allowed to call the functionalities of all the underlying levels, in order to
improve the design flexibility.

In the bottom layer (Basic service), all the lower-level basic services
needed to implement higher-level logic are placed. This layer includes
subcomponents for environment abstraction, memory management, error
handling, and file system abstraction, as well as processes and threads han-
dling. It also defines abstract communication services to higher-level com-
ponents within the measurement framework layers, in order to extract data
from actual devices and external interfaces, by allowing the exchangeabil-
ity of the communication mechanisms without incurring performance pen-
alties. The interface ICommunicationBus is used to send and receive data
to and from components in an abstract way. Concrete implementations of
such interface are required to handle specific communication devices.

Figure 4.5. UML diagram of the multilayered architecture of the framework (for
the sake of simplicity the User service layer is not reported).

A FLEXIBLE SOFTWARE FRAMEWORK • 75

The middle layer in Figure 4.5 (Core Service) includes several pack-
ages exposing main functionalities related to components (in particular
measurement devices), event handling infrastructure, fault detection, and
logging. In the design of the event handling architecture, a variant of
the Observer design pattern [4] is used in order to keep synchronized
the state of cooperating components (e.g., VirtualDevices). The Observer
enables one-way propagation of changes: One publisher notifies any
number of subscribers about changes of its state, thus providing a form
of loosely coupled signaling from publisher to subscribers. In Figures 4.6
and 4.7, the main architecture and the related infrastructure, respectively,
are shown.

Logging facilities are also provided at this level of the architecture
(Figure 4.5, Core Service). The class Logger handles the storage of config-
uration and measurement data, as well as system warnings and exceptions.
The logger architecture is detailed in Figure 4.8. Data can be stored in a
text or binary file. In any case, the final destination of the logged messages
has to be kept decoupled with the format of the messages themselves.
With this aim, two different responsibilities arise: logged message format-
ting and logged message recording. The formatter does not take care about
where the message is recorded, and the recorder does not care about the
format of the message. Therefore, the class Logger implements the design
pattern Strategy [4]: The concrete logger can be configured with the right
formatter and the right recorder keeping them decoupled.

Based on the services provided at this level of architecture, the Mea-
surement service layer (top of Figure 4.5) implements a minimal but
extensible infrastructure, based on the class TestManager, in order to han-
dle and perform measurement sessions. For the measurement layer, two
main features are needed:

• A test session director, the TestManager, encapsulating the user
script and executing it in a controlled environment. Within the
user scripts, core services are made available to the user in order to
implement its measurement process.

• The capability of creating groups of data acquisition tasks (mea-
surement tasks) to be synchronized with well-defined events (e.g.,
start and stop, or device events). In the measurement framework,
the component realizing this high-level software synchronization
of data acquisition is the Synchronizer (Figure 4.5).

In the following sections, further details about the most important
components of the framework architecture are presented.

76 • FLEXIBLE TEST AUTOMATION

Fi
gu

re
 4

.6
.

M
ea

su
re

m
en

t f
ra

m
ew

or
k

ev
en

t h
an

dl
in

g
ar

ch
ite

ct
ur

e.

A FLEXIBLE SOFTWARE FRAMEWORK • 77

Fi
gu

re
 4

.7
.

M
ea

su
re

m
en

t f
ra

m
ew

or
k

ac
tio

ns
 a

nd
 li

st
en

er
s i

nf
ra

st
ru

ct
ur

e.

78 • FLEXIBLE TEST AUTOMATION

Fi
gu

re
 4

.8
.

Lo
gg

er
 a

rc
hi

te
ct

ur
e

of
 th

e
fr

am
ew

or
k.

A FLEXIBLE SOFTWARE FRAMEWORK • 79

4.3 FAULT DETECTOR

The Fault Detector is one of most critical modules in the design of a
framework for measurement application. This module promotes the iden-
tification and location of failures and faults transparently to the user. As
highlighted in previous sections, the fault detection is a transversal service
and a fundamental part of all the devices, as well as of a measurement
system as a whole. In AOP approach, the Fault Detector is encapsulated in
aspects. In this way, fault management strategy can be extrapolated from
the single modules and handled separately, and future changes related to
this topic will affect only the Fault Detector, without involving all the
related classes, directly or indirectly, to the fault events.

In the following, an AOP-based approach to the development
of software for fault detection in automatic measurement systems is
described. In particular, (a) a short introduction to fault detection in mea-
surement automation, (b) the basic ideas underlying the design, and (c) the
architecture of the Fault Detector are highlighted.

4.3.1 FAULT DETECTION IN MEASUREMENT AUTOMATION

In measurement and test automation involving several instruments, one
of the key design issues of smart systems is the capability of assuring
a proper termination to the test process in case of an anomaly. Further-
more, a prompt detection of the anomaly improves the maintenance effec-
tiveness of the measurement system, by highlighting possible sources of
failures before their actual occurrence. With these goals in mind, a suitable
software strategy for automatic fault detection turns out to be an adequate
reaction to anomalous working, both at the software and hardware level
[7, 8]. Devices provide information about their status continuously and, in
case of abnormal working, a fault condition is pointed out. Compared to
a fully hardware implementation, it has the advantage of higher flexibility
and cost effectiveness. Today, it is a widely used technique, and the emer-
gence in the area of application for cost-effective dependable systems will
further increase its importance [9]. Thus, the software implementation of a
fault detector also affects the overall system quality, in particular in terms
of maintainability and reusability.

The analysis of the state-of-the-art automatic measurement sys-
tems highlights that fault detection is usually scattered all over different
software components, and, in particular, mainly over the devices hierar-
chy [10]. This means that often the concrete classes of virtual devices
contain duplicated code for fault detection, thus making harder their

80 • FLEXIBLE TEST AUTOMATION

comprehension, testing, and maintenance. The Aspect-Oriented Program-
ming shown here is capable of overcoming the drawbacks arising from
the intrinsic crosscutting nature of the fault detection components. The
crosscutting concerns related to fault detection of a large measurement
software project are separated and handled better by encapsulating them
into aspects. In this way, the reusability of system modules is improved.

4.3.2 BASIC IDEAS

Most common faults in an automatic measurement system can be clas-
sified according to (a) their sources, and (b) the synchronization of the
related handling operations [10].

According to their sources, faults can be classified as arising from

• Hardware devices, when in a faulty internal state due to hardware
anomaly or to an external condition. A device’s internal fault detec-
tion can scale from very basic internal information to very complex
routines forcing the device in different states. Correspondingly,
concrete aspects of the fault detection subsystem must be capa-
ble of intercepting relevant changes in the device status, decoding
them, and broadcasting high-level faults description to the inter-
ested components;

• The measurement environment, when affected by external or inter-
nal alterations. A typical example is an anomalous alteration of
temperature or electromagnetic noise arising from the system under
test and affecting the instrument’s behavior;

• Software components, when in any nonconsistent state, owing to an
incorrect use violating pre- and post-conditions, or to the presence
of unresolved or undiscovered bugs.

According to the synchronization of the related handling operations,
faults can be classified as in the following:

• Synchronous, when an anomalous operation is attempted. In this
case, the following policies can be applied, according to the criti-
cality level and the kind of the fault:
{{ k-times retry: Some operations are retried until the device goes

back in a consistent state successfully, without any performance
constraint on the operation. As an example, an initialization
reset tried several times during a slow start up of a multimeter.

{{ Multicast warning and continue: For operations commanded
under wrong conditions, the corresponding requests can be

A FLEXIBLE SOFTWARE FRAMEWORK • 81

ignored by issuing only a notification warning. As an example,
a digital scope is triggered when previous data digitization is
not ended, or when a stop or an abort is issued on an already
stopped instrument.

{{ Multicast fault and deny operation: For operations not to be
executed when specified faults occur. In this case, the operation
is denied and the fault information is sent to pertinent compo-
nents in order to be properly handled. This is the case when a
multimeter has a fusible broken fusible during a measurement
of an extremely high current value and it is not capable of car-
rying out the measurement.

{{ Multicast an immediate shutdown request and deny operation:
In the most critical situations, a fault in a risky device during a
critical operation should be blocked at the lowest level. More-
over, the system as a whole is to be shutdown gracefully as fast
as possible, thus a high-priority request of system shutdown is
sent to the fault handler component. This is the case when an
overheating occurs in a shunt resistor owing to a wrong value of
current setting. These faults are handled suitably by wrapping
operations through concrete pointcuts, surrounded by advices
defined by abstract aspects of the fault detector component.

• Asynchronous: Faults generated by hardware or environment
anomalies occurred in whatever instant not synchronized with the
measurement operations. The related detection is based on field
access point-cut expressions bound to the decoding logic used to
detect changes in the status of devices.

4.3.3 ARCHITECTURE

The architecture of the Fault Detector is based on two main subsystems:

• A fault detection subsystem, designed for
{{ monitoring the “health” status of the measurement devices;
{{ catching software faults such as stack overflow, live-lock, dead-

lock, and application-defined faults, as soon as they occur.
• A fault notification subsystem, responsible for [10]

{{ constantly receiving the sequence of occurring faults in real
time from all the system components;

{{ storing the detection history and providing access to other com-
ponents or to external humans in order to react to faulty events
adequately.

82 • FLEXIBLE TEST AUTOMATION

These two subsystems exploit three key software components: (a) a
FaultDetector aspect hierarchy (Figure 4.9), allowing the code related to
the fault detection logic to be removed from the modules implementing
the virtual devices; (b) FaultDecoder tables, needed by concrete aspects
for decoding status representation specific of concrete VirtualDevices; and
(c) FaultListeners in order to dynamically bind (obliviously) components
responsible for the fault management to the ones acting as fault sources.

The aspects in the FaultDetector hierarchy intercept faults by means
of the FaultDecoder classes. The decoders are capable of handling groups
of similar devices and knowing internal state structure and encoding. They
provide the aspect logic by FaultTable instances encapsulating fault infor-
mation to be sent to the interested components through a FaultNotifier layer.

In Figure 4.9, the FaultDetector hierarchy is depicted, by highlight-
ing the static relationships among VirtualDevice classes, FaultDetector
aspects, and some concrete virtual devices. The figure shows the role
played by the FaultDecoder and FaultTable for a generic VirtualDevice1.
Encoded fault information is extracted from the device VirtualDevice1 by
context interception and is decoded by a concrete VirtualDevice1_Fault-
Decoder.

The decoded information is then provided to the VirtualDevice1_
FaultDetector, responsible for enforcing fault management policies
according to the fault kind. Moreover, the VirtualDevice1_FaultDetector
sends the fault data to the interested software components.

The FaultDetector is responsible for defining high-level point-cuts
capturing relevant operations affecting the status of devices. In the mea-
surement system, the VirtualDevice hierarchy [10] models and organizes
all the physical devices involved in the measurement process. Each device
has an internal status; modifications to such status are captured by means
of concrete sub-aspects executing the logic needed to decode it, as well as
detecting if and where a device notified an internal fault. In each FaultDe-
tector sub-aspect, associated to main devices categories, the mapping logic
toward concrete devices classes belonging to the same family is defined
and the common behaviors can be factorized, as needed. The coarseness
of the mapping among aspects and concrete devices allows a very flexible
reuse of fault detection logic for similar devices by encapsulating it in few
modules (instead of spreading it all over the device classes).

Figure 4.10 depicts the different levels of fault interceptions, accord-
ing to the fault types. The bottom level takes care about very specific issues
and features of concrete devices to encapsulate in dedicated subaspects. At
the middle level, concrete aspects, by using decoders, perform continuous
monitoring of devices’ status.

A FLEXIBLE SOFTWARE FRAMEWORK • 83

Figure 4.9. An excerpt of the hierarchy of the Fault Detector.

Unkeg"Encuu

-Xktvwcn"dqqv"ejgemFgxkegUvcvwu*+
-Xktvwcn"kpv"fgeqfgGttqt*+
-Xktvwcn"xqkf"cffNkuvgpgt*+
-Xktvwcn"xqkf"tgoqxgNkuvgpgt*+

+Virtual_Device(in :string, in :string, in :string)
+~Virtual_Device()
+SetCommunication_Bus(in :int) : int
+get_id() : int

Concrete aspects:
Pointcuts to capture faults
by intercepting change to
device status.

Fgxkeg4

Concrete vitual devices
acts as fault sources.
Each time a fault happens
the devices status
changes triggering the
aspect logic to be
executed.

Fgxkeg3

+createDevice()
+deleteDevice()
+set_Communication_Bus(in : int) : int
+startDevice()
+stopDevice()
+resetDevice()

XktvwcnFgxkeg3

+createDevice()
+deleteDevice()
+set_Communication_Bus(in : int) : int
+startDevice()
+stopDevice()
+resetDevice()

XktvwcnFgxkeg4

+<<pointcut>>+checkOperationalStatus()
+<<pointcut>>+checkForValidConfiguration()

+<<pointcut>>+devices()
+<<advice>>+devices() : Slice Class
+void addToMonitor(in ffmm::core::devices::Virtual_Device* m)
+void removeFromMonitor(in ffmm::core::devices::Virtual_Device* m)
+static void showMonitoredDevices()
+void CheckStatus(in ffmm::core::devices::Virtual_Device* m)
+<<pointcut>><<advice>> +device_constrution()
+<<pointcut>><<advice>> +device_destrution()

XktvwcnaFgxkeg

>>curgev@@HcwnvFgvgevqt

-_mdevs: Vector Virtual_Device*

-faultTable:VirtualDevice1_FaultTable
-decoder:VirtualDevice1_FaultDecoder

>>@curgev@XktvwcnFgxkeg3aHcwnvFgevqt

+<<pointcut>>+checkOperationalStatus()
+<<pointcut>>+checkForValidConfiguration()

-faultTable:VirtualDevice2_FaultTable
-decoder:VirtualDevice2_FaultDecoder

>>curgev@@XktvwcnFgxkeg4aHcwnvFgvgevqt

Figure 4.10. Levels of faults interception.

CduvtcevHcwnvFgvgevqt
Status modification
interception by
means of
interface-based
pointcuts

FgxkegV{rg3aHcwnvFgvgevqt FgxkegV{rg4aHcwnvFgvgevqt Fgxkegv{rgPaHcwnvFgvgevqt

XktvwcnFgxkeg

Context
intercepting by
means of very
device-specific
pointcuts

<<intercepted>>

FgxkegP

FgxkegP3aHcwnvFgvgevqt FgxkegPOaHcwnvFgvgevqt

<<intercepted>>

<<intercepted>>
FgxkegPO

84 • FLEXIBLE TEST AUTOMATION

Fi
gu

re
 4

.1
1.

 F
au

lt
no

tif
ic

at
io

n
pu

bl
is

h-
su

bs
cr

ib
e

ar
ch

ite
ct

ur
e.

Fa
ul

ts
 a

re
 c

ap
tu

re
d

by
 F

au
ltD

et
ec

to
r

hi
er

ar
ch

y X
kt
vw
cn
F
gx
ke
g3
aH
cw
nv
N
ku
vg
p
gt

+v
irt

ua
l v

oi
d

on
B

ad
Pa

ra
m

et
er

Se
tti

ng
(in

 B
ad

Pa
ra

m
Se

tti
ng

Ev
en

t)
+v

irt
ua

l v
oi

d
on

Er
ro

r(
in

 E
rr

or
Ev

en
t)

+v
irt

ua
l v

oi
d

on
Fa

ul
t(i

n
Fa

ul
tE

ve
nt

)
+o

nB
ad

Pa
ra

m
et

er
Se

tti
ng

()
<<

in
je

ct
ed

>> >
>
cu
r
ge
v@
@
X
kt
w
cn
F
gx
ke
g3
aH
cw
nv
J
cp
f
ng
t

+v
irt

ua
ld

ev
ic

e1
()

 :
Sl

ic
e

C
la

ss
+g

et
Li

st
en

er
()

 :
V

irt
ua

lD
ev

ic
e1

_F
au

ltL
is

te
ne

r

U
nk
eg
"E
nc
uu

+v
irt

ua
l b

oo
l c

he
ck

D
ev

ic
eS

ta
tu

s(
)

+v
irt

ua
l i

nt
 d

ec
od

eE
rr

or
()

+v
irt

ua
l v

oi
d

ad
dL

is
te

ne
r(

)
+v

irt
ua

l v
oi

d
re

m
ov

eL
is

te
ne

r(
)

Th
is

 fa
ul

t h
an

dl
er

as
pe

ct
 li

nk
s t

he
Fa

ul
tH

an
dl

er
 w

ith
co

nc
re

te
 c

la
ss

es
th

at
 n

ee
ds

 to
 b

e
no

tif
ie

d
ab

ou
t

fa
ul

ts
.

X
kt
vw
cn
F
gx
ke
g3

+c
re

at
eD

ev
ic

e(
)

+d
el

et
eD

ev
ic

e(
)

+S
et

_C
om

m
un

ic
at

io
n_

B
us

(in
 :

 in
t)

: i
nt

+s
ta

rtD
ev

ic
e(

)
+s

to
pD

ev
ic

e(
)

+r
es

et
D

ev
ic

e(
)

<<
in

te
rc

ep
te

d>
>

>
>
cu
r
ge
v@
@
"H
cw
nv
F
gv
ge
vq
t

-_
m

de
vs

: V
ec

to
r V

irt
ua

l_
D

ev
ic

e*

+<
<p

oi
nt

cu
t>

>+
de

vi
ce

s(
)

+<
<a

dv
ic

e>
>+

de
vi

ce
s(

) :
 S

lic
e

C
la

ss
+v

oi
d

ad
dT

oM
on

ito
r(

in
 ff

m
m

::c
or

e:
:d

ev
ic

es
::V

irt
ua

l_
D

ev
ic

e*
 m

)
+v

oi
d

re
m

ov
eF

ro
m

M
on

ito
r(

in
 ff

m
m

::c
or

e:
:d

ev
ic

es
::V

irt
ua

l_
D

ev
ic

e*
 m

)
+s

ta
tic

 v
oi

d
sh

ow
M

on
ito

re
dD

ev
ic

e(
)

+v
oi

d
C

he
ck

St
at

us
(in

 ff
m

m
::c

or
e:

:d
ev

ic
es

::V
irt

ua
l_

D
ev

ic
e*

 m
)

+<
<p

oi
nt

cu
t>

><
<a

dv
ic

e>
>+

de
vi

ce
_c

on
st

ru
ct

io
n(

)
+<

<p
oi

nt
cu

t>
><

<a
dv

ic
e>

>+
de

vi
ce

_d
es

tru
ct

io
n(

)

A FLEXIBLE SOFTWARE FRAMEWORK • 85

The top level includes abstract aspects implementing the fault detection
logic reusable in concrete subaspects. In Figure 4.11, the aspect-mapping
layer of the fault notification is shown. The services necessary to associate
dynamically the handlers to fault sources in the measurement system are
provided. The subaspects of the FaultHandler aspect have the responsibil-
ity for making aware the concrete classes (like the TestManager, responsi-
ble of performing the test session) of the faults that happens in the system.

This solution allows fault handling logic to be reused in the super-
aspects and does not force concrete classes in the system to implement
fault handling code. Any component in the system can react to specific
faults that occur anywhere in the system and perform the needed actions to
handle them. Moreover, since concrete classes (TestManager or any other
components interested in monitoring faults) are oblivious of being faults
handlers, the monitoring relationships can be changed by simply acting
on aspect mapping [10]. Commonalities among different fault handling
logics can be factored out in the aspects, while multiple observations of
different kinds of faults can be easily accomplished by defining several
mapping aspects for a single concrete class.

4.4 SYNCHRONIZER

In this section, a PN-based approach to software synchronization in auto-
matic measurement systems is presented. Tasks are synchronized by
means of a PN modeling an execution graph, where nodes represent tasks,
while arrows among nodes point out time succession among the corre-
sponding tasks [11]. This allows software synchronization to be abstracted
above the code level, by leaving the test engineer to work at a more intu-
itive level.

In particular, in the following, (a) a short introduction to software syn-
chronization in measurement automation, (b) the basic ideas underlying
the component design, and (c) the design with an evolution example of the
Synchronizer are described.

4.4.1 SOFTWARE SYNCHRONIZATION IN MEASUREMENT
AUTOMATION

In automatic measurement systems, usually asynchronous tasks have to
be run concurrently on the same platform. A crucial issue is the capabil-
ity of assuring a proper synchronization to the measurement procedure.
Whereas severe time constraints require a dedicated hardware, at software

86 • FLEXIBLE TEST AUTOMATION

level, task’s interaction often requires programming strategies capable
of dealing with events generated asynchronously and notified to the pro-
cesses once a synchronization point is reached [12, 13]. Today, software
synchronization is a technique used widely, and emerging application
areas for cost-effective dependable systems will further increase its impor-
tance [14]. Typical examples of software synchronization are: (a) one or
more tasks must wait for the termination of other tasks before starting,
(b) events have to be notified to one or more tasks, and (c) a task has to be
enabled to start when a particular event is triggered, and so on.

In the past, various types of “synchronization objects” have been used
in coordinating the execution of multiple threads and processes. A com-
mon type of synchronization object is a mutex (short for mutual exclu-
sion) [11, 15]. A mutex may be used to guarantee exclusive access to a
shared resource, typically by controlling access to the resource through
operations of “lock” and “unlock.” This technique of waiting for a mutex
is often called “blocking” on a mutex, because the thread or process is
actually blocked and cannot continue until the mutex is released. Other
types of synchronization objects include semaphores and queues [15, 16].

Generally, test engineers managing automatic measurement systems
are not skilled programmers. Thus, they often find it difficult to implement
the execution of software synchronization properly by using objects such
as mutex, semaphores, or rendezvous [17]. Therefore, any systems and
methods for supporting the synchronization of measurement tasks turn out
to be very useful. In particular, it would be desirable to abstract synchro-
nization above the code level, so that the test engineer can work at a more
intuitive level [11].

Recently, a new generation of frameworks supporting software pro-
duction for test applications is arising [18]. In particular, at a commercial
level, with TestStand of National Instruments [19], steps, such as indi-
vidual tests, measurements, actions, or commands can be automated in a
sequence, but not in parallel or in event-driven configuration. At research
level, in the proposal of the consortium Tango [20], if the test engineer
wants to decompose its application in multiple tasks, he will be forced to
design a client application adequately, by managing threads, semaphores,
and so on. In the Extensible Measurement System (EMS) of FermiLab
[21], the application description language (ADL), a proprietary dialect of
XML, allows sequences of control events to be described. However, only
common actions, that is, initialize or start, can be executed in parallel.

Recently, PNs, graphical and mathematical modeling tools applicable
in different environments and in measurement systems also, have been a
focus of scientific interest in (a) evaluating CAN-bus performance [22],

A FLEXIBLE SOFTWARE FRAMEWORK • 87

(b) monitoring systems based on microcontrollers [23], (c) failure
monitoring systems for protection in distribution network [24, 25], (d)
modeling and analyzing test systems [26], (e) detecting and diagnosing
faults in industrial environments [27], and (f) some measuring medical
applications [28]. PN algorithms have been also used successfully in the
design of distributed measurement systems [29], or, more specifically, in
modeling its data acquisition modules [30]. In these applications, they per-
mit to describe and model information processing systems characterized
as concurrent, asynchronous, distributed, parallel, nondeterministic, and
stochastic [31]. Each part of the measurement system is easily modeled at
a high level, leading to a whole library of partial models considering time
dependencies within the system.

4.4.2 BASIC IDEAS

A measurement procedure includes actions to be performed sequentially
or concurrently. Let’s assume the test engineer responsible for writing
the measurement script corresponding to the procedure (Figure 2.1) does
not have software skills. Suitable tools for scheduling the execution of
measuring tasks in a simple and intuitive way have to be provided. The
Synchronizer helps the test engineer to think at a high level, in terms of:
(a) “the task A has to be executed first,” (b) “task B has to be executed after
task C,” and (c) “the task D has to be executed when the event E occurs.”

On this basis, the main leading concept of the Synchronizer design is
to make available to the test engineer a software component for schedul-
ing the execution of a procedure at a high level, by modeling sequential
and parallel executions of tasks, tracing their dynamic status, and deter-
mining the available task, step by step. In this way, the test engineer can
(a) subdivide a generic measurement application in different measurement
tasks and (b) determine their order of execution, without worrying about
details of time synchronization.

With this aim, the Synchronizer is based on a Petri net, allowing the
dynamics of execution to be organized step by step fully transparently to
the test engineer. In literature, Petri nets have been used either for assess-
ing performance of systems or for carrying out simulations. In particular,
several years of research have established Petri nets as a powerful mod-
eling formalism. Their formal semantics make them suitable for complex
concurrent processes’ description, for software performance evaluation
[32, 33], for system simulation [34], for project modeling and simulation
[35], in the field of communication networks [36], and other several fields.

88 • FLEXIBLE TEST AUTOMATION

In conceiving the Synchronizer, their use turns out to be useful at the
exploitation level:

1. Preliminarily, in a static way, in order to store the execution graph,
defined by the test engineer in the measurement script when each
declared task is executed.

2. Successively, in a dynamic way, the active properties of Petri net’s
are exploited for tracing the tasks already executed and, by leaving
the net to evolve, to obtain the list of tasks ready for execution.

The major aim of the framework is to make software production
easier. The Synchronizer simplifies a step-wise decomposition of a mea-
surement application by allowing measurement task-level details to be
separated from high-level overviews. This makes the measurement proce-
dure specification easier by using the divide-and-rule principle.

Therefore in synthesis, the main basic idea of the Synchronizer is
just the twofold uses of the Petri nets: At application level, for generating
measurement applications in a stand-alone general-purposes module for
task synchronization, and, at exploitation level, in combining static and
dynamic properties for separating static easy task description from com-
plex concurrent management.

In particular, the concept of Petri nets-based Execution Graph is uti-
lized: (a) a node represents a task or an event, (b) an arrow from a task
node A to a task node B implies that the task node B has to be executed
after the task node A is completed, and (c) an arrow from an event node
E to a task node C implies that the task node C has to be executed when
event E occur [11].

Two key software components, the Test Manager and the Synchro-
nizer, are conceived. In particular, the Test Manager is responsible for

• requiring the list of tasks to be executed by the Synchronizer;
• starting the execution of each Measurement Task, by notifying the

Synchronizer of this;
• detecting when a measurement task ends its execution, by notifying

the Synchronizer also of this.

The Synchronizer [11] is responsible for

• managing a data structure implementing the Execution Graph;
• getting the notification of a task start and termination and evolving

the Execution Graph status consequently.

A FLEXIBLE SOFTWARE FRAMEWORK • 89

From a dynamic point of view, at each execution step:

1. The Test Manager asks the Synchronizer for the list of executable
tasks.

2. The Synchronizer checks the status of the Execution Graph, and
provides the Test Manager with the list of executable tasks.

3. If the list is empty and no other tasks are in execution, the measure-
ment application is terminated.

4. If the list is empty, but other tasks are in execution, the procedure
skips to step 7.

5. If the list isn’t empty, the Test Manager launches the execution of
each task in the list, and notifies the Synchronizer of each execution.

6. When the Synchronizer receives a notification from the Test Man-
ager, it evolves the status of the Execution Graph.

7. The Test Manager waits for the end of a task; then, it notifies the
Synchronizer of this event.

When an event occurs, the Synchronizer evolves the status of the Exe-
cution Graph.

In Figure 4.12, a straightforward example, highlighting the working
mechanism of the conceived Execution Graph, is shown:

1. The measurement begins with the execution of the task T0.
2. When T0 is completed, the task T1 is executed.
3. When T1 is completed, the tasks T2 and T3 are started simultaneously.
4. When the event E1 is triggered, for example, during the execution

of T1, the tasks T4 and T5 are started simultaneously, and
5. So on.

Figure 4.12. Working example of the Execution Graph [11].

T0

T1

T2 T3

T4

T5

E1

T6

Root task node

Event Node

Event relation

Sequence relation

Inner task node

90 • FLEXIBLE TEST AUTOMATION

In the measurement script, the Execution Graph is codified by the test
engineer through the following commands provided by the Test Manager:

• ADD_TASK(task name)
• ADD_TASK_AFTER_TASK(previous task name, following task

name)
• ADD_TASK_AFTER_ EVENT(event name, task name)

With respect to the example pointed out in Figure 4.12, the test engi-
neer, after the definition of the tasks separately, defines the Execution
Graph by means of a set of code lines as shown in Figure 4.13.

Another leading idea of the Synchronizer is to model the Execu-
tion Graph by means of a Petri net aimed at presenting simultaneously
control and data flows in a concurrent system [17]. Its graphical repre-
sentation (Figure 4.14) is a dual graph containing two types of nodes,

Figure 4.13. Code lines for the Execution Graph definition [11].

Figure 4.14. Example of a Petri net [11].

Transition

Place free

Token

A FLEXIBLE SOFTWARE FRAMEWORK • 91

called “places” and “transitions.” Only nodes of different types can be
connected by directed arcs. The places (symbolized as circles or ellipses)
represent states, while the transitions (rectangles) simulate events. The
places in the network contain tokens, represented by dots. Displacement
and flow of the tokens determines dynamics in the system, that is, its
changes in time.

The PN of the Synchronizer is extended by a Labeled Petri net (LPN)
[37] in order to offer a more consistent way of the measurement procedure
description, as well as to simplify its modeling and analysis. In the LPN,
each place and transition has an associated label in order to allow different
classes of places and transitions to be modeled and managed. In synthesis,
the LPN allows

• a task state (e.g., in execution, terminated, …);
• a temporal relation between the execution of two tasks (e.g., run

task T2 after task T1); and
• a relation between a task execution and events (e.g., run task T5

after event E1), to be modeled easily and consistently.

4.4.3 DESIGN

On the basis of the aforementioned basic ideas, the design of the Synchro-
nizer is aimed at satisfying the following requirements:

• Building the execution graph, by adding a node, an event, or an
arrow.

• Querying the execution graph, by determining the executable
nodes, the end-node, and the loop detection.

• Updating the execution graph, by forcing the execution graph
dynamics: Execute a node, terminate a node, freeze a node, unfreeze
a node, notify an event, and set an executable node.

The previous requirements are satisfied by means of the following
classes (Figure 4.15):

• PetriNet, supplying all basic methods to manage a Petri net.
• Place, allowing tokens, labels, inner, and outer arcs to be managed.
• Transitions, allowing transitions to be enabled or disabled, as well

as labels and inner and outer arcs to be managed.
• Synchronizer, supplying all methods to manage the Execution

Graph.

92 • FLEXIBLE TEST AUTOMATION

• TestManager, supplying all methods to manage the execution of
measurement tasks [11].

Basically, the class PetriNet provides all the methods necessary to
build a generic PN (addPlace, addTransition, and so on), by using the
basic classes Place and Transition.

The class Synchronizer provides all the methods to build and to man-
age the Execution Graph by using a private Petri-net object. As an exam-
ple, the method addRootNode permits to add a node (task) to be executed
as the first, while the method getRootNodes permits to obtain all the root
nodes. In this way, the Synchronizer hides the details of the PN and per-
forms high-level methods for using the Execution Graph. In particular,
three kinds of nodes are provided: (a) the event node, representing a task
to be executed when a particular event occurs; (b) the task node, repre-
senting a task to be executed after another node (task) is terminated; and
(c) the root node, a special task node to be executed when the measure-
ment application starts.

In Figure 4.16, details about the implementation of the event and task
nodes are shown:

• The event nodes are characterized by a transition named “trig”
connected by an inner arrow to a place named “triggered.” One or

Figure 4.15. Architecture of Synchronizer’s classes [11].

A FLEXIBLE SOFTWARE FRAMEWORK • 93

more outgoing arrows allow the EventNode to be connected to one
or more TaskNodes.

• The task nodes trace three different states by means of three places,
named “in execution,” “freezed,” and “terminated,” and two tran-
sitions, named “start” and “stop.” Inside the TaskNode, the arrows
model the right sequence of the task states and one or more out-
going arrows allow the TaskNodes to be connected to other nodes.

• The root nodes are particular task nodes, characterized by the
absence of incoming arrows. In fact, the task associated with the
root nodes starts at the beginning of the measurement application.

4.4.3.1 Evolution Example

In this section, a straightforward example, highlighting how a generic
Task Manager can use the Synchronizer, is described. Furthermore, the
LPN dynamic evolution for tracing the execution status of each task is
illustrated, by highlighting specifically how, on demand, the list of the
tasks available for the execution is provided.

Let the sequential and parallel executions of tasks T1, T2, T3, and T4
be modeled by using the Execution Graph [11]. The following actions are
carried out (Figure 4.17a):

1. When the Task Manager is ready to carry out the Execution Graph
(runTasks), as a first step, the list of the nodes to be executed
(getExecutableNodes) are required to the Synchronizer, at this time,
they are the root nodes (only T1 in Figure 4.17b).

Figure 4.16. Implementation of the Execution Graph entities (nodes and
arrows) [11].

Event node

TRIG Triggered

Start

Task node

In execution

Freezed

Terminated

Stop

94 • FLEXIBLE TEST AUTOMATION

2. The Synchronizer
• checks on its LPN if there is a “start” transition enabled;
• finds T1 “start” transition enabled;
• returns a list with the task T1 to the Task Manager (nodeList[T1]).

3. The task manager notifies the Synchronizer of executing T1,
(execute (nodeList[T1])).

4. The Synchronizer modifies (Figure 4.17c) the execution status of T1

(from “ready” to “in execution”) by
• disabling the “start” transition of T1;
• adding a token to the “exec” state of T1;
• enabling the “start” transition of T1.

5. When the Task Manager catches the termination event of T1
(Figure 4.18a), it also notifies the Synchronizer of the termination
of T1.

6. The Synchronizer, modifies (Figure 4.18c) again the execution
status of T1 (from “in execution” to “terminated”) by
• removing the token from the “exec” state of T1;
• disabling the “stop” transition of T1;
• adding a token to the “wait” state of T1.

Figure 4.17. A generic Task Manager uses the Synchronizer to select an execut-
able task [11].

Task manager
runTasks()

getExecutableNodes()

nodesList{T1}
execute(nodesList{T1})

Synchronizer

*e+"Ncdgnngf"rgvtk"pgv"

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Transition disabled
Transition enabled

Place free

Place busy

Place busy

T1

T2 T3

T4

*d+"Gzgewvkqp"itcrj

Node in Execution

Node Terminated

Node Ready

*c+"Kpvgtcevkqp"fkcitco

A FLEXIBLE SOFTWARE FRAMEWORK • 95

7. Moreover, the Synchronizer modifies to “ready” the execution sta-
tus of all tasks whose execution starts after the termination of T1,
that is tasks T2 and T3 by
• enabling the “start” transition of T2;
• enabling the “start” transition of T3; and

8. So on, like in the step 1, for T2 and T3 [11].

4.5 MEASUREMENT-DOMAIN SPECIFIC
LANGUAGE

In Chapter 2, domain specific languages (DSLs) are defined as languages
specialized for a given domain. While general-purpose languages are
designed to describe whatever procedures, DSLs are limited: One will
never write an application with 3D graphics in SQL, for example. Con-
versely, within their own domain, DSLs performs better than general-
purpose languages. DSL abstractions shorten the development cycle and
makes maintenance easier. In some cases, DSLs can be specialized enough
to allow them to be used even by nonprogrammer domain experts.

Figure 4.18. A generic task manager uses the Synchronizer to trace the change of
the tasks execution status [11].

Task manager
runTasks()

getExecutableNodes()

nodesList{T1}
execute(nodesList{T1})

terminate(T1)
onStop(T1)

Synchronizer

*e+"Ncdgnngf"rgvtk"pgv

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Exec

Start Freezed Stop

Terminate

Transition disabled
Transition enabled

Place free

Place busy

Place busy

T1

T2 T3

T4

*d+"Gzgewvkqp"itcrj

Node in Execution

Node Terminated

Node Ready

*c+"Kpvgtcevkqp"fkcitco

96 • FLEXIBLE TEST AUTOMATION

In this section, a measurement-domain specific language, based on a
model-driven paradigm for measurement test procedure definition, instru-
ment configuration, and tasks synchronization, is presented. This formal
language, particular for a specific measurement field (e.g., magnetic mea-
surements, automotive tests, and so on), aims at specifying complete,
easy-to-understand, -reuse, and -maintain applications efficiently and
quickly by means of a script. The script is checked and integrated into the
existing software framework automatically by a specific parser-builder
chain, in order to produce the measurement application. Constructs for
abstracting key concepts of the domain allow the test engineer to write
more concise and higher-level programs by natural language-like sen-
tences in a shorter time without being a skilled programmer [38].

In particular, in the following, (a) a short introduction to languages
in measurement automation, (b) the basic ideas underlying the design,
and (c) the architecture by detailing its Parser and Builder of the
measurement-domain specific language are described.

4.5.1 INTRODUCTION

In the context of the research trend on programming languages for devel-
oping automatic measurement and test systems, graphical environments
characterized by graphical icons and wires symbolizing the data flow (such
as LabVIEW by National Instruments [39]) are very popular. The underly-
ing approach of the programming language (e.g., the G for LabVIEW [40])
emphasizes the objects involved in the application and the data exchange,
with less emphasis on the representation of the temporal sequence, even
if both serial and parallel executions are possible. Conversely, in scien-
tific and academic communities, scripting languages are commonly used
and preferred [41]. They point out the order of operations and allow the
temporal constraint in the measurement application to be managed eas-
ily. Advanced software techniques (e.g., software framework, scripting,
new programming languages) have been exploited recently in the area
of magnetic-field measurements [21]. These solutions lead to maximum
software-component reuse, but final users have to manipulate code writ-
ten in extensible markup language and Python. Successful examples of
new programming languages for improving measurement applications
and reducing the development effort can also be found in network perfor-
mance testing [42] and in monitor and control systems [43].

In this section, these points are taken into consideration and
model-driven-development (MDE) concepts are exploited [44] for

A FLEXIBLE SOFTWARE FRAMEWORK • 97

highlighting a measurement-domain-specific scripting language (MDSL)
aimed at defining test procedure scripts, configuring instruments, and syn-
chronizing measurement tasks [45].

4.5.2 BASIC IDEAS

The MDSL goal is achieved by fulfilling the following requirements of
providing instructions for:

1. defining logical, numeric, and temporal conditions;
2. defining conditional branching;
3. defining events based on measurement values or attribute changes,

time changes, external event notifications, or user inputs;
4. subscribing and unsubscribing to events and responding to them

with behaviors including messages to users or commands;
5. setting, configuring, and commanding the devices;
6. enabling, configuring, and disabling software services (e.g., log,

fault detection, etc.); and
7. interacting with the user through graphical or textual interfaces

[45].

The basic idea for conceiving a DSL for measurement applications
arises logically from the analysis of a typical measurement procedure [45].
Usually, a measurement description should be expressed by a few special-
ized commands concerning device management, the temporal sequence
of actions, and data treatment. At the abstraction level of the commands
for physical (i.e., hardware devices connected by a bus) or virtual objects
(purely software components providing some services), the measurement
description can be seen as a script. The script is a relatively short program
composed of a sequence of synthetic instructions controlling the opera-
tion and performing a work task all in one batch. The power of a script
organization of the test program, instead of a graphical representation
(such as in LabVIEW), is mainly related to the immediacy of translating
a well-defined procedure in a logically ordered synthetic set of high-level
commands. The approach presented here consists of defining a new DSL
for measurement application, the MDSL, for producing batch applications
within a software framework. As with any programming language, MDSL
has its own lexicon, syntax, and semantics. A low level of complexity
is provided by keeping the lexicon bounded and often using mnemonic
words from the domain, and by simplifying the syntax through straight-

98 • FLEXIBLE TEST AUTOMATION

forward command structures, for example, the commands for piloting a
device are divided into categories of similar meaning (e.g., settings, exe-
cution, and so on) and with the same use.

The new language is combined with the software basis of the
existing framework, by decoding the MDSL code through a custom
parser (i.e., a measurement-domain-specific parser) first, and then
by translating it to the target language (C++) through a builder (i.e.,
a measurement-domain-specific builder). Such an approach can be
ascribed to the creational pattern “source-to-source transformation” [46]
(Figure 4.19).

4.5.3 ARCHITECTURE

The MDSL is based on a separated semantic model [43], conceived as a
part of a framework domain model. Generally, the semantic model con-
sists of a network of concepts and the relationships among those con-
cepts. In this context, concepts are particular ideas or topics from the
user perspective with which the user is concerned. In the MDSL, the
semantic model describes the measurement-test-procedure core structure
and determines its behavior. The model is separated from the MDSL in
order to:

1. think about the semantics of the domain without getting tangled up
in the MDSL syntax or parser;

2. be able to test the semantic model by creating objects in the model
and manipulating them directly;

3. follow an incremental approach by starting with a simple internal
MDSL and then adding an external MDSL; and

4. be able to evolve the model and the language separately: A change
in the model can be explored without changing the MDSL by add-
ing the necessary constructs, or new syntaxes for the MDSL can be
experimented by just verifying the creation of the same objects in
the model.

Figure 4.19. MDSL process according to the pattern “source-to-source” [38].

MDSL code MDSL
compilation

Host Language
Code

A FLEXIBLE SOFTWARE FRAMEWORK • 99

The separation of the semantic model and the MDSL syntax mirrors
the separation of the domain model and presentation suggested in [47]:
The MDSL can be thought of as another form of user interface.

In Figure 4.20, another benefit of using a semantic model is high-
lighted: The code generator or builder is decoupled from the parser, and
a code generator can be written without having to understand anything
about the parsing process. This makes possible independent testing.

4.5.4 MEASUREMENT-DOMAIN SPECIFIC LANGUAGE
PARSER

Parsing is a strong hierarchical operation [48]. When a text is parsed, the
chunks are arranged into a tree structure. Let us consider the simple struc-
ture of a list of two events in a measurement procedure where an encoder
generates a trigger signal for a motor controller in order to start the rota-
tion of a shaft:

Events
EncoderBoard_StartTrigger EB_ST
MotorController_StartRotation MC_ST

End

In this composite structure, a list contains events with their own name
(e.g., EncoderBoard_StartTrigger) and code (EB_ST). The explicit notion
of an overall list is missing, and each event is still a hierarchy of events
with their own name symbol and code string.

Therefore, the MDSL script is represented as a hierarchy, that is,
the “syntax tree” (or “parse tree”). A syntax tree is a much more useful
representation of the MDSL script than the words [38]: It can be manip-
ulated in many ways by walking up and down the tree. Basically, the

Figure 4.20. Semantic model and MDSL architecture [38].

DSL script
Measurement

domain
specific parser

Measurement domain specific
semantic model

Measurement
Domain Specific

Builder

Generated
code

100 • FLEXIBLE TEST AUTOMATION

measurement-domain-specific parser reads the textual MDSL script, builds
syntax trees, and translates them to obtain the measurement-domain-specific
semantic model (Figure 4.20). The syntax tree is built by means of a
specific grammar, that is, a set of rules describing how a stream of text is
turned into a syntax tree. Grammar consists of a list of production rules,
where each rule has a term and a statement of how it gets broken down.

The measurement-domain-specific parser is designed by defining the
grammar rules taken from the measurement domain. Such a parser ana-
lyzes the MDSL script and provides the measurement-domain-specific
builder by an exhaustive specific semantic model.

4.5.5 MEASUREMENT DOMAIN SPECIFIC LANGUAGE BUILDER

The model-driven architecture (MDA) is an approach to the software
development of the Object Management Group [49]. A tool implementing
the MDA concept allows developers to produce models of the applica-
tion and generate the corresponding code for a target platform by means
of suitable transformations. The MDA is a sound groundwork for auto-
matic code generation. As a matter of fact, the basis of automatic code
generation is to read project artifacts (such as class diagrams, activity
diagrams, and requirement documents) and turn them into a meaningful
and correct source code. The implementation of automatic code gener-
ators relies on the fact that most artifacts are created in the early stages
of software. These artifacts are repetitive and have design patterns; thus,
they can be automated. Most simple implementations of automatic code
generators use only the class diagram to create a source code. Class dia-
grams have been the easiest to implement because of the inherited design
pattern to Object-Oriented languages such as Java and C++. In general,
code-generation techniques give rise to the production of a nonoptimized
code. However, in a delimited command vocabulary such as the mea-
surement domain, a specialized builder allows an easiness and efficiency
tradeoff, not too costly in terms of computation.

In the MDSL architecture (Figure 4.20), the measurement
domain-specific builder is responsible for the code generation according
to the MDA approach. From the domain-semantic model instance pro-
duced by the measurement-domain-specific parser, specific situations are
represented in order to create the corresponding code. The builder, rather
than a class diagram, takes from the parser the structured semantic model
as input. It is able to recognize the classes, the methods, and the sequence
of actions to be carried out, as well as to translate the model into the
final code.

A FLEXIBLE SOFTWARE FRAMEWORK • 101

4.6 ADVANCED GENERATOR OF USER
INTERFACES

In this section, a model-based approach, the Model-View-Interactor Para-
digm [50], for automatically generating user interfaces [51] in a software
framework for measurement systems is illustrated. The paradigm is dedi-
cated to the “interaction” typical in a software framework for measurement
applications (Figure 2.1): The final user interacts with the automatic mea-
surement system executing a suitable high-level script previously written by
a test engineer. According to the main design goal of frameworks [52], this
approach allows the user interfaces to be separated easily from the applica-
tion logic for enhancing the flexibility and reusability of the software.

In particular, in the following, (a) a short introduction to graphical
interfaces in measurement automation, (b) the Model-Viewer-Interactor
paradigm, and (iii) the Graphical User Interfaces engine are described.

4.6.1 USER INTERFACES IN MEASUREMENT AUTOMATION

In the first phase of designing a measurement software framework, the test
engineer prepares a script where the required test procedure is expressed
formally and synthetically by the MDSL. Then, the framework processes
the script suitably and generates an executable measurement software
application. In the second phase [52], the final user (a) executes the soft-
ware application, (b) interacts with the software by providing at runtime
the required input, and (c) finally starts the measurement process on the
devices. The application user needs to interact with the software applica-
tion through a convenient graphic interface to carry out the measurement
procedure easily and quickly. Therefore, the test engineer should deal with
its implementation.

Such as, for most interactive applications, producing an attractive
Graphical User Interface (GUI) for a measurement software framework
is not a trivial task [51, 52] because graphical representations depending
on run-time data cannot be drawn in advance. The powerful GUI libraries
offered by operating systems can be used of course, but the offered level
of abstraction is, in general, rather low. Therefore, a visual editor, such as
many commercial programming environments, should be used. Such tools
turn out to be very user-friendly, although integrating the provided and
existing codes is in general not easy.

Summarizing, a visual editor is a useful tool for simple applications,
but for more complicated professional measurement applications, the test

102 • FLEXIBLE TEST AUTOMATION

engineer has to still struggle with a low-level programming code devoted
to GUIs. In addition, the quality of self-made GUI development depends
strongly on the experience of the designers as well as on their skills in the
platform and development graphic tools.

For these reasons, user interface generation has been object of
research for many years, sometimes under the diction of “model-based
user interfaces” [51]. As a matter of fact, interfaces are generated by divid-
ing the application domain in models. The original contribution of this
research field has been to allow programmers, as test engineers, not typi-
cally trained to design interfaces, to produce user interfaces customized to
their own applications.

On the other hand, the main feature of automatic techniques for gener-
ating interfaces is to allow the designer to specify them at a very-high level,
with the details of the implementation provided by the system [51]. Never-
theless, this approach is very unspecific and further effort is required to tai-
lor the model to a definite context, such as the frameworks for measurement
software products. Designing interaction rather than interfaces attempts to
enhance the quality of the interaction between user and computer, fitting
the key paradigm: “User interfaces are the means, not the end” [52].

In the context of measurement software products, LabVIEW [39] is
very popular. It is a graphical programming environment used to develop
measurement and test systems by using graphical icons and wires well
symbolizing the data flow [40]. The input-output of the measurement
program (called in such a context, the Virtual Instrument) is provided
directly in the visual form of a GUI looking like the panel of an instru-
ment. However, although powerful and intuitive from the GUI viewpoint,
the approach of the programming language G exploited by LabVIEW is
to not point out immediately the temporal sequence of the actions to be
executed. Conversely, in a scientific and academic community, scripting
languages are usually preferred [41].

In the following, an evolution of model-based user interface gener-
ation in a measurement software framework based on domain specific
language for scripting [38], the Model-View-Interactor paradigm, is pre-
sented. This paradigm is mainly aimed at shifting the focus of the test
engineer’s work from the burden of implementing the interface to the con-
ception of its abstract interactions.

4.6.2 THE MODEL-VIEWER-INTERACTOR PARADIGM

In the model-based approach to GUI generation [50], analysis, design,
and implementation are based on a common repository of models. In this

A FLEXIBLE SOFTWARE FRAMEWORK • 103

context, a model is a declarative specification of some single coherent
aspects of a user interface, such as the appearance, the interaction with
the user, and the layer of the underlying measurement application. The
most important property of the model in this context is that it can be
expressed in a highly specialized notation by focusing the attention on a
single aspect of an interactive system [51]. This property makes the devel-
opment and maintenance easier. Unlike conventional software engineer-
ing where designers construct artifacts whose meaning and relevance can
diverge from the delivered code, in the model-based approach, designers
first build models of critical system attributes, and then analyze, refine,
and synthesize these models into running systems. This separation greatly
simplifies and improves the quality of the development.

Early examples of model-based tools included Cousin [53] and
HP/Apollo’s Open-Dialogue [54], which provided the designer with a
declarative language for listing the input and output requirements of the
user interface. The system then generated dialogs to display and request
data. These evolved into model-based systems, such as Mike [55], Jade
[56], UIDE [57], ITS [58], and Humanoid [59]. They exploit specific tech-
niques, such as heuristic rules, to automatically select interactive compo-
nents, layouts, and other details of the interface.

Generating interfaces automatically is a very difficult task, because
the corresponding automatic and model-based systems constrain signifi-
cantly the kinds of interfaces they can produce. A related and very-common
problem is that the generated user interfaces are generally not as good as
those created by conventional and custom programming techniques. How-
ever, in specific domains with very few particular graphical requirements,
such as the measurement domain, automatic techniques can be used suc-
cessfully.

Model-based GUI generation relies on the principle that develop-
ment and support environments may be built around declarative models1
of a system [60]. Developers using this paradigm build the interface by

1Declarative programming is a software design approach focusing more on the
computation logic rather than its control flow [62]. Main effort is to define what
the code should do in terms of the problem domain, rather than as a succession
of programming instructions. This is in contrast with imperative programming,
where algorithms are implemented by categorical steps. Examples include
database query languages (e.g., SQL, XQuery). The program of a declarative
model includes directly equations, rather than imperative statements, defining
(“declaring”) behavioral relationships. In this case, the procedure carries out
algebraic operations to best express the solution algorithm. Typical examples are
Modelica and Simile.

104 • FLEXIBLE TEST AUTOMATION

specifying declarative models, rather than writing a program. Generally,
for any interactive system, three kinds of models can be derived [61]:

• Presentation models, specifying the appearance of user interfaces
in terms of their widgets and the related behavior.

• Application models, specifying the parts (functions and data) of
applications accessible from the user interface.

• Dialogue models, specifying end-user interactions, their order, and
how they affect the presentation and application.

In the following, (a) the basic concepts, (b) the View, (c) the Interactor,
and (d) the Model of the Model-View-Interactor paradigm are illustrated.

4.6.2.1 Basic Concepts

The approach presented here to generate interfaces in measurement sys-
tem frameworks starts from a fundamental consideration: Usually test
engineers are not trained to design interfaces, but at the same time they
would like to maintain a high level of usability in measurement applica-
tions. In this case, test engineers are responsible mainly for preparing test
scripts [6], where the interaction between measurement application and
final user are described at high level [38], without any indication of GUI
aspects.

Therefore, the main concept underlying the approach presented here
is the interaction between the user and the GUI. Interaction is a kind of
action occurring when two or more objects have an effect upon one another.
Examples of simple interactions in measurement software are reading a
user input or displaying a value. Test engineers are prevented from deal-
ing with raw graphical characteristic of software measurement system,
by separating functional from look aspects of the interface. Accordingly,
the architecture is organized by a three-way decomposition: (1) the parts
representing the model of the underlying application domain, (2) the way
the model is presented to the user, and (3) the way the user interacts with
it. This is called the Model-View-Interactor approach [63] (Figure 4.21),
derived as an evolution of the Model View Controller and Model View
Presenter [64].

The Model represents the model domain, and, in case of measurement
software framework, is constituted by the core classes. The Views consist
in the aspect of the generated GUI, defined by a GUI expert, completely
transparent to the test engineer using the framework. In particular, the

A FLEXIBLE SOFTWARE FRAMEWORK • 105

GUI expert defines a set of presentation models used to generate the final
user interface. The Interactor represents the tie between model and view,
by making available a different component specifying the GUI desired
behavior.

In this way, the test engineer can define the interaction between the
measurement application and the user by means of a set of specific objects:
The Graphic Interactor Component (Section 4.6.2.3).

4.6.2.2 View

The view description is an XML-file containing all the presentation fea-
tures of the GUI. XML stands as a solution for the standardization of the
interoperability between applications. Therefore, XML-based languages
can be employed to define user interfaces. They are the XML-compliant
user interface definition languages (XML-UIDL) [65] and their advantage
is to be transparent to different interface technologies and to provide a
homogeneous resource for heterogeneous ways of interaction.

Generally, at a graphical level, the user-interface content can be orga-
nized in areas, represented usually by a rectangular bounding shape. These
rectangular areas are referred to as a box. Graphical user interface lay-
outs can be seen as a container subdivided in to boxes, where the graphic
components (text editor component, buttons, menu item, and so on) can
be placed. One box can contain others boxes, and so on. Two types of
boxes can be distinguished: (a) horizontal boxes (HBox), with elements
aligned horizontally, and (b) vertical boxes (VBox), with elements aligned
vertically.

Figure 4.21. Model-Viewer-Interactor (MVI) approach.

DSL script
“INTERACTOR”

XML description
“VIEW”

Framework
core

“Model”

MVI approach

DSL
Xpand

XML
parser

Framework
classes

GUI
Engine

GUI
Application

106 • FLEXIBLE TEST AUTOMATION

As an example, in Figure 4.22a, the View model used in a form asking
for an input value to the final user is considered. The layout as a whole is
formed by 3 VBox (Box_1, Box_2, and Box_3):

• Box_1 will contain a text component for the title.
• Box_2 is formed by two HBox: Box_4 and Box_5. The former will

contain a text component for a description, and the latter will con-
tain a text editor component to read an input value.

• Box_3 is formed by two HBox: Box_6 and Box_7. Both of them
will contain a button component. The button in Box_6 will com-
mand an action to confirm inserted input value, while button in
Box_7 will command an action to discard the operation.

End user will see a form appearing as shown in Figure 4.22b. The
View model in Figure 4.22a is stored as a declarative model, containing
also the information about the GUI component properties (character font,
text component color and text editor component positions, background and
foreground colors, as well as further information related to the GUI aspect).

Basically the approach presented here is based on a database of differ-
ent View models, associated to one or more interactive components, such
as shown in the next section.

The view description example for a simple window is depicted in
Figure 4.23. The view description file is written by the application engi-
neer during the software development phase in order to define the GUI
presentation look. Then, at run time, this file is read by the XML-Parser,
and the framework uses the information to generate the graphical elements.

4.6.2.3 Interactor

The main aim of the Model-View-Interactor paradigm is to permit the test
engineer to develop complicated GUI applications by a minimal effort

Figure 4.22. Example of (a) a View model and (b) its final aspect.

*c+

Box_1

Box_2

Box_3

Box_4 Box_5

Box_6 Box_7

*d+

Input form
value 123

OK Cancel

Input window

A FLEXIBLE SOFTWARE FRAMEWORK • 107

and moreover without graphical knowledge. This aim is achieved mainly
through the Graphic Interactive Component (GIC), allowing any custom-
izable graphical component to be derived. This component encapsulates
all common aspects of graphical components [66, 67]. It is generated auto-
matically for any type T, for example, int, float, double, or more complex
data types.

Namely, the GICT, defined for the type T, can

• be used by a test engineer to display automatically any value of
type T;

• be used by a test engineer to plot on screen an array of type T;
• be used by an application user to view and edit some value of type T;
• communicate any value change made by the user or by the program

with any other depending component.

For any concrete type T, the compiler is able to derive automatically
an instance function of this meta-description for the given type.

The test engineer, in the writing phase of the MDSL script [38] (Fig-
ure 4.24), defines the component contained in the GUI and their input and
output data by using the GIC components. Then, after building the script
by means of the DSL-Xpand component, the framework can generate the
application with the desired GUI.

4.6.2.4 Model

The Model is composed of data structures and classes of the framework
involved in the GUI generation. A typical example is offered by the device

Figure 4.23. View XML description example.

108 • FLEXIBLE TEST AUTOMATION

classes related to the configuration step of the measurement procedure.
During this phase, a broad interaction with the user is required to set up the
devices. The data needed for the configuration are structured in the class
definition where the data variables are preset for type and number by the
application developers.

4.6.3 THE GRAPHICAL USER INTERFACE ENGINE

The classes’ architecture allowing the automatic user interface generation
is named GUIengine and is shown in Figure 4.25.

The GUIengine is composed of several classes: (a) GIC, provid-
ing the TestManager the input and output features without graphi-
cal details; (b) GenericWindow, giving the interface for all the frames;
(c) InputWindow, OutputWindow, and PlotWindow, the concrete win-
dows; and (d) LayoutManager, responsible for instantiating concrete win-
dows defining the graphical features parsing the view description file and
computing the dimension and position parameters [68]. The View is kept
clear-cut from the Interactor by implementing the GUIengine complying
with the abstract factory pattern,2 often employed to separate the details
of GUI implementation from its general use.

As an example, if the test engineer needs to ask as an input, an integer
value at runtime, he will use the capture method of a GIC object in the
measurement script [6]:

• Def GIC “InputParam”
• Capture InputParam with (param,1, “Input form,” “value”)

2The abstract factory pattern allows a group of individual factories with a common
theme to be encapsulated without specifying their concrete classes.

Figure 4.24. MDSL script example.

A FLEXIBLE SOFTWARE FRAMEWORK • 109

By inserting in the script only these instructions, a form is displayed,
and the value entered by the user is stored in the variable pointed.

REFERENCES

[1] Riehle, D. 2000. Framework Design: A Role Modeling Approach (PhD
Thesis, No. 13509), Zürich, Switzerland, ETH Zürich.

[2] Johnson, R.E., and B. Foote. June−July 1988. “Designing Reusable Classes.”
Journal of Object-Oriented Programming 1, no. 2, pp. 22–35.

[3] Riehle, D., and T. Gross. 1998. “Role Model Based Framework Design and
Integration.” In Proceedings of the 1998 Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA ’98),
117–33. New York: ACM Press.

[4] Gamma, E., R. Helm, R. Johnson, and J. Vlissides. October 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Boston, MA:
Addison Wesley.

[5] Kiczales, G., J. Lamping, A. Mendhekar, C. Maeda, C.V. Lopes, J.M.
Loingtier, and J. Irwin. 1997. “Aspect-Oriented Programming.” In
Proceeding of the 11th European Conference on Object-Oriented Program-
ming (ECOOP), eds. M. Aksit and S. Matsuoka, 220–42. Berlin, Germany:
Springer-Verlag.

[6] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications Under Variable
Requirements.” AIP Review of Scientific Instruments 83, no. 11, pp. 115103.
doi: 10.1063/1.4764664

[7] Postolache, O., J.M.D. Pereira, M. Cretu, and P.S. Girao. 1998. “An Ann
Fault Detection Procedure Applied in Virtual Measurement Systems Case.”
In Proceeding of IEEE Instrumentation and Measurement Technology
Conference, IMTC/98, Vol. 1. St. Paul, MN: IEEE.

Figure 4.25. Abstract factory pattern for the GUI engine.

Vguvocpcigt

<<uses>>

<<uses>>

Nc{qwvocpcigt

<<instance>>

Kprwvykpfqy

Qwvrwvykpfqy

Rnqvykpfqy

<<uses>> IgpgtkeykpfqyIKE

110 • FLEXIBLE TEST AUTOMATION

[8] Catelani, M., and S. Giraldi. March 1999. “A Measurement System for Fault
Detection and Fault Isolation of Analog Circuits.” Measurement 25, no. 2,
pp. 115–22. doi: http://dx.doi.org/10.1016/s0263-2241(98)00072-4

[9] Arpaia, P., G. Lucariello, and A. Zanesco. October 2007. “Automatic Fault
Isolation by Cultural Algorithms with Differential Influence.” IEEE Trans-
actions on Instrumentation and Measurement 56, no. 5, pp. 1573–82. doi:
http://dx.doi.org/10.1109/tim.2007.903604

[10] Arpaia, P., M.L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. 2010.
“An Aspect-Oriented Programming-Based Approach to Software Develop-
ment for Fault Detection in Measurement Systems.” Computer Standards
& Interfaces 32, no. 3, pp. 141–52. doi: http://dx.doi.org/10.1016/j.
csi.2009.11.009

[11] Arpaia, P., L. Fiscarelli, G. La Commara, and F. Romano. January 2011.
“A Petri Net-Based Software Synchronizer for Automatic Measurement
Systems.” Instrumentation and Measurement, IEEE Transactions 60, no. 1,
pp. 319–28. doi: http://dx.doi.org/10.1109/tim.2010.2046602

[12] Gupta, R.K., C.N. Coelho, and G. De Micheli. 1992. “Synthesis and Sim-
ulation of Digital Systems Containing Interacting Hardware and Software
Components.” 29th ACM/IEEE Design Automation Conference, pp. 225–30.
Anaheim, CA: IEEE.

[13] von Praun, C., H.W. Cain, J. Choi, and K.D. Ryu. 2006. “Conditional
Memory Ordering.” Proceeding of the 33th International Symposium on
Computer Architecture (ISCA), Vol. 34, pp. 41–52. Washington, DC: IEEE
Computer Society.

[14] Arpaia, P., M.L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. May
2008. “Aspect Oriented-based Software Synchronization in Automatic
Measurement Systems.” Instrumentation and Measurement Technology
Conference Proceedings, 2008 (IMTC 2008), pp. 1718–21. Victoria, BC:
IEEE.

[15] Birrell, A., J. Guttag, J. Horning, and R. Levin. November 8–11, 1987.
“Synchronization Primitives for a Multiprocessor: A Formal Specification.”
In Proceeding of the 11th ACM Symposium Operating System Principles,
94–102. Austin, TX: ACM Press.

[16] Anderson, T.E., B.N. Bershad, E.D. Lazowska, and H.M. Levy. February
1992. “Scheduler Activations: Effective Kernel Support for the User-Level
Management of Parallelism.” ACM Transactions On Computer Systems
(TOCS) 10, no. 1, pp. 53–79. doi: http://dx.doi.org/10.1145/121132.121151

[17] Murata, T. April 1989. “Petri Nets: Properties, Analysis and Applica-
tions.” In Proceedings of IEEE 77, no. 4, pp. 541–80. doi: http://dx.doi.
org/10.1109/5.24143

[18] Bosch, J. 1999. “Design of an Object-Oriented Framework for Measurement
Systems.” In Domain-Specific Application Frameworks, eds. M. Fayad,
D. Schmidt, and R. Johnson, pp. 177–205. ISBN 0-471-33280-1. New York:
John Wiley.

A FLEXIBLE SOFTWARE FRAMEWORK • 111

[19] Stoyanov, B., S. Stefanov, J. Beyazov, and V. Peichev. 2006. “Contemporary
Methods and Devices for Automatic Measurement.” Problems of Engineer-
ing Cybernetics and Robotics 57, pp. 79–86.

[20] Plone Fundation, 2014. Welcome to the TANGO Controls website. [Online].
http://www.tango-controls.org/

[21] Nogiec, J.M., J. Di Marco, S. Kotelnikov, K. Trombly-Freytag, D.Walbridge,
and M. Tartaglia. June 2006. “Configurable Component-Based Software
System for Magnetic Field Measurements.” IEEE Transactions on Applied
Superconductivity 16, no. 2, pp. 1382–5. doi: http://dx.doi.org/10.1109/
tasc.2005.869672

[22] Ding, L., and Y. Shen. May 5–7, 2009. “Real Time Performance Analysis
and Evaluation of CAN Bus with an Extended Petri Net Model.” In Proceed-
ing of the IEEE I2MTC, 1081–84. Singapore: IEEE.

[23] Frankowiak, M.R., R.I. Grosvenor, and P.W. Prickett. June 1 2005. “A Petri-
Net Based Distributed Monitoring System Using Pic Microcontrollers.”
Microprocessors and Microsystems 29, no. 5, pp. 189–96. doi: http://dx.doi.
org/10.1016/j.micpro.2004.08.003

[24] Calderaro, V., V. Galdi, A. Piccolo, and P. Siano. August 19–24, 2007.
“DG and Protection Systems in distribution network: Failure Monitoring
System Based on Petri Nets.” In Proceeding of the Bulk Power System
Dynamics and Control–VII. Revitalizing Operational Reliability, 2007 iREP
Symposium, pp. 1–7. Charleston, SC: IEEE

[25] Hadjicostis, C.N., and G.C. Verghese. September 2000. “Power System
Monitoring Using Petri Net Embeddings.” In Proceeding Institute of Elec-
trical Engineering—Generation, Transmission and Distribution 147, no. 5,
pp. 299–303. doi: http://dx.doi.org/10.1049/ip-gtd:20000657

[26] Huiqin, Z., G. Jun, X. Youbao, and L. Wei. August 16–18, 2007. “Modeling
and Analysis of a Testing System Using Hybrid Petri Net.” In Proceeding of
the 8th ICEMI, 1465–70. Xi’an, China: IEEE.

[27] Xiaoli, W., C. Guangju, X. Yue, and G. Zhaoxin. August 16–18, 2007. “Fault
Detection and Diagnosis Based on Time Petri Net.” In Proceeding of the 8th
ICEMI, 3259–63. Xi’an, China: IEEE.

[28] Lindner, G., M. Heiner, and T. Kobienia. October 14–17, 1996. “Deadlock
Detection in a Distributed Implementation of a Visualization System for
Medical Measurement Signals.” In Proceeding of the IEEE International
Conference on Systems, Man, and Cybernetics, Vol. 3, pp. 2299–04. Beijing,
China.

[29] Lukaszewski, R., and W. Winiecki. May 2008. “Petri Nets in Measuring
Systems Design.” IEEE Transactions on Instrumentation and Measurement
57, no. 5, 952–62. doi: http://dx.doi.org/10.1109/imtc.2006.328678

[30] Bilski, P., and R. Lukaszewski. September 6−7 2007. “Petri Nets Model of
DAQ Block in the Measurement System.” In Proceedings at the 4th IEEE
Workshop on Intelligent Data Acquisition and Advanced Computing Sys-
tems: Technology and Applications, pp. 268–73. Dortmund, Germany.

112 • FLEXIBLE TEST AUTOMATION

[31] Papelis, Y.E., and T.L. Casavant. March 1992. “Specification and Analysis
of Parallel/Distributed Software and Systems by Petri Nets with Transition
Enabling Functions.” IEEE Transactions on Software Engineering 18, no. 3,
pp. 252–61. doi: http://dx.doi.org/10.1109/32.126774

[32] Woodside, M. 2000. “Software Performance Evaluation by Models.” In
Performance Evaluation: Origins and Directions, eds. G. Haring, C. Linde-
mann, and M. Reiser. Berlin, Germany: Springer-Verlag.

[33] Topic, G., D. Jevtic, and M. Kunstic. 2008. “Petri Net-Based Simulation and
Analysis of the Software Development Process.” In Knowledge-Based Intel-
ligent Information and Engineering Systems, eds. I. Lovrek, R.J. Howlett,
and L.C. Jain. Berlin, Germany: Springer-Verlag.

[34] Zhou, M., and K. Venkatesh. 1999. Modeling, Simulation, and Control of
Flexible Manufacturing Systems: A Petri Net Approach. Singapore: World
Scientific, ser. Series in Intelligent Control and Intelligent Automation.

[35] Kumanan, S., and K. Raja. 2008. “Modeling and Simulation of Projects with
Petri Nets.” American Journal of Applied Sciences 5, no. 12, pp. 1742–49.
doi: http://dx.doi.org/10.3844/ajassp.2008.1742.1749

[36] Billington, J., M. Diaz, and G. Rozenberg. 1999. Application of Petri Nets to
Communication Networks. New York: Springer-Verlag.

[37] Cortadella, J., M. Kishinevsky, A. Kondratyev, L. Lavagno, and A. Yakovlev.
1997. “Petrify: A Tool for Manipulating Concurrent Specifications and Syn-
thesis of Asynchronous Controllers.” IEICE Transactions on Information
and Systems, Vol. E80-D, no. 3, pp. 315–25.

[38] Arpaia, P., L. Fiscarelli, G. La Commara, and C. Petrone. Decem-
ber 2011. “A Model-Driven Domain-Specific Scripting Language for
Measurement-System Frameworks.” IEEE Transactions on Instrumentation
and Measurement 60, no. 12, pp. 3756–66. doi: http://dx.doi.org/10.1109/
tim.2011.2149310

[39] Product Information: “What is NI LabVIEW?” January 2011. http://www.
ni.com/labview/whatis/

[40] G Programming Reference Manual. January 2011. http://www.ni.com/pdf/
manuals/321296b.pdf

[41] Scripting Languages and NI LabVIEW. January 2011. ftp://ftp.ni.com/pub/
devzone/pdf/tut_7671.pdf

[42] Pakin, S. October 2007. “The Design and Implementation of a
Domain-Specific Language for Network Performance Testing.” IEEE Trans-
actions on Parallel and Distributed Systems 18, no. 10, pp. 1436–49. doi:
http://dx.doi.org/10.1109/tpds.2007.1065

[43] Bennett, M., R. Borgen, K. Havelund, M. Ingham, and D. Wagner, November
2010. “Prototyping a Domain-Specific Language for Monitor and Control
Systems.” Journal of Aerospace Computing, Information, and Communica-
tion 7, no. 11, pp. 338–64. doi: http://dx.doi.org/10.2514/1.40331

[44] Schmidt, D.C. February 2006. Model-Driven Engineering. IEEE Computer
Society 39, no. 2.

A FLEXIBLE SOFTWARE FRAMEWORK • 113

[45] Arpaia, P., M. Buzio, L. Fiscarelli, V. Inglese, G. La Commara, and
L. Walckiers. May 2009. “Measurement-Domain Specific Language for
Magnetic Test Specifications at CERN.” In Proceedings of IEEE Conference
on Instrumentation and Measurement Technology, pp. 1716–20. Singapore:
IMT.

[46] Spinellis, D. February 2001. “Notable Design Patterns for Domain-Specific
Languages.” Journal of Systems and Software 56, no. 1, pp. 91–9. doi: http://
dx.doi.org/10.1016/s0164-1212(00)00089-3

[47] Bosch, J., and G. Hedin. April 1996. Proceedings of Workshop Compiler
Techniques for Application Domain Languages and Extensible Language
Models, pp. 96–173. Lund University, Lund, Sweden: Lund University,
Department of Computer Science.

[48] Chapman, N.P. January 1998. LR Parsing: Theory and Practice. 1st ed.
Cambridge, U.K.: Cambridge Univ. Press.

[49] OMG Mission Statement. January 2011. http://www.omg.org/gettingstarted/
gettingstartedindex.htm

[50] Arpaia, P., L. Fiscarelli, and G. La Commara. 2010. “Advanced User Inter-
face Generation in the Software Framework for Magnetic Measurements
at CERN.” Metrology and Measurement Systems 17, no. 1, pp. 27–38. doi:
http://dx.doi.org/10.2478/v10178-010-0003-y

[51] Mayers, B., S.E. Hudson, and R. Pausch. 2000. “Past, Present and Future
of User Interface Software Tools.” ACM Transactions on Computer-Human
Interaction 7, no. 1, pp. 3−28. doi: http://dx.doi.org/10.1145/344949.344959.

[52] Beaudouin-Lafon, M. 2005. “Interactions as First-class Objects.” In Pro-
ceedings of the ACM CHI 2005 Workshop on the Future of User Interface
Design Tools. ACM Press.

[53] Hayes, P.J., P. Szekely, and A. Richard. April 14–18, 1985. “Design Alter-
natives for User Interface Management Systems Based on Experience with
COUSIN.” CHI ’85 Proceedings of the SIGCHI Conference on Human Fac-
tors in Computing Systems, pp. 169−75. San Francisco, CA: ACM.

[54] Schulert, A.J., G.T. Rogers, and J.A. Hamilton. April 1985. “ADM-A Dia-
logue Manager,” CHI ’85 Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, pp. 177−83. San Francisco, CA: ACM.

[55] Olsen, D.R. 1986. “Mike: The Menu Interaction Kontrol Environment.”
ACM Transactions on Graphics 5, no. 4, pp. 318−44. doi: http://dx.doi.
org/10.1145/27623.28868

[56] Vander Zanden, B., and B.A. Myers. April 1−5 1990. “Automatic, Look-and-
Feel Independent Dialog Creation for Graphical User Interfaces.” In CHI ’90
Proceedings of the Conference on Human Factors in Computing Systems,
pp. 27−34. Seattle, WA: ACM.

[57] Sukaviriya, P., J.D. Foley, and T. Griffith. 1993. “A Second Generation User
Interface Design Environment: The Model and The Runtime Architecture.”
In Proceedings of the INTERACT ‘93 and CHI ’93 Conference on Human
Factors in Computing Systems, pp. 375−82. Amsterdam, the Netherlands.

114 • FLEXIBLE TEST AUTOMATION

[58] Wiecha, C., W. Bennett, S. Boies, J. Gould, and S. Greene. 1990. “ITS:
A Tool for Rapidly Developing Interactive Applications.” ACM Trans-
actions on Information Systems 8, no. 3, pp. 204−36. doi: http://dx.doi.
org/10.1145/98188.98194

[59] Szekely, P., P. Luo, and R. Neches. 1993. “Beyond Interface Builders:
Model-Based Interface Tools.” In Proceedings on CHI ‘93 Conference
on Human Factors in Computing Systems, pp. 383−90. Amsterdam, The
Netherlands.

[60] Palanque, P., and F. Paternò. 1997. “Using Declarative Descriptions to
Model User Interfaces With MASTERMIND.” Formal Methods in Human
Computer Interactions. Berlin, Germany: Springer-Verlag.

[61] Stirewalt, K., and S. Rugaber, 1998. “Automating UI Generation by Model
Composition.” Submitted to Automated Software Engineering, ASE ’98,
13th IEEE International Conference.

[62] Lloyd, J.W. 1994. “Practical advantages of declarative programming.” Joint
Conference on Declarative Programming, GULP-PRODE, Vol. 94.

[63] Arpaia, P., M. Buzio, L. Fiscarelli, V. Inglese, and G. La Commara. Sep-
tember 2009. “Automatically-Generated User Interfaces for Measurement
Software Frameworks: A Case Study on Magnetic Permeability at CERN.”
XIX IMEKO World Congress, Fundamental and Applied Metrology. Lisbon,
Portugal: Curran Associates.

[64] Krasner, G., and S. Pope. August 1988. “A Cookbook for Using the
Model-View-Controller User Interface Paradigm in Smalltalk-80.” Journal
of Object-Oriented Programming 1, no. 3, pp. 26−49.

[65] Abrams, M., C. Phanouriou, A.L. Batongbacal, S. Williams, and J.E. Shuster.
1999. “UIML: An Appliance- Independent XML User Interface Language.”
In Proceedings of the Eighth International WWW Conference. Toronto,
Canada: Elsevier North-Holland.

[66] Achten, P., M. van Eekelen, and R. Plasmeijer. 2004. “Compositional
Model-Views with Generic Graphical User Interfaces.” In Practical Aspects
of Declarative Programming, PADL04, vol. 3057 of LNCS. Edinburgh, UK:
Springer.

[67] Achten, P., M. van Eekelen, and R. Plasmeijer. 2003. “Generic Graphical
User Interfaces.” Selected Papers of the 15th Int. Workshop on the Imple-
mentation of Functional Languages, IFL03, vol. 145 of LNCS. Edinburgh,
UK: Springer.

[68] Lutteroth, C., and G. Weber. 2008. “Modular Specification of GUI Layout
Using Constraints.” In Proceedings at ASWEC 2008—19th Australian
Conference on Software Engineering, IEEE Press.

CHAPTER 5

QuAlity ASSeSSment of
meASurement SoftwAre

Men acquire a particular quality by constantly acting a particular
way...
you become just by performing just actions, temperate by performing
temperate actions,
brave by performing brave actions.

―Aristotle

5.1 OVERVIEW

In this chapter, the assessment of the software quality for measurement
software frameworks is presented. First, main concepts of software qual-
ity are introduced very synthetically from a general perspective. Then,
the approach proposed in the standard ISO 9126 is chosen as a reference
model for the quality assessment of measurement and test software. In
particular, a practical approach, the quality pyramid, to software quality
is presented for (a) characterizing the design of an Object-Oriented proj-
ect, (b) finding possible problems, and (c) defining the related corrective
actions. Finally, a method based on specific metrics for assessing the
degree of flexibility achieved by a software framework for measurement
applications is presented.

5.2 SOFTWARE QUALITY

Quality is a key issue in professional software development. In general,
quality can be defined in two, not-exclusive, ways, as the degree to which

116 • FLEXIBLE TEST AUTOMATION

a system, component, or process meets: (a) specified technical working
requirements and (b) customer or final user needs or expectations [1]. This
definition offers the corresponding two most common interpretations of
the word “quality” at (a) an engineering level, as conformance to require-
ments (inner quality) and (b) a marketing level, as measure of user satis-
faction (outer quality).

Software quality can be approached from different perspectives
[2–4], but a specific common definition is provided as “the capability of
a software product to satisfy stated and implied needs when used under
specified conditions” [5]. Pursuing software quality is always worthwhile,
because the cost of achieving a high quality level is widely overtaken by
the cost of nonquality (i.e., of having software unable of providing the
required features when needed).

5.2.1 SOFTWARE QUALITY METRICS

Software quality cannot be assessed without a clear definition of a method
for its measurement in an objective way. For this reason, as a first step,
several metrics have been introduced for this aim. The term metric is
defined as a “measure of the degree to which a process or product pos-
sesses a certain quality characteristic” [6]. In this chapter, only the metrics
most suitable for assessing the quality of software frameworks for mea-
surement applications are discussed. They are listed in Tables 5.1 and 5.2,
by providing a brief description for each of them.

For an objective assessment, when using metrics the two major issues
are (a) to define a suitable reference and (b) above all, for this reference,
to determine proper levels (quality thresholds). The main objective is to
not look for thresholds perfect from a theoretical viewpoint, but for values
turning out to be useful in a practical perspective, in order to detect pos-
sible software artefacts. Two major sources of useful threshold levels can
be identified [7]:

• Probability information, leading to thresholds based on statis-
tical significance. One or more reference points are used to split
numerical spaces into meaningful intervals (acceptance or rejec-
tion regions in statistical decision making). By applying simple
statistical techniques to the data collected for each metric, the
average (AVG) can be used to estimate the typical values, and the
standard deviation (STD) to define higher/lower margins of the
confidence interval as AVG ± STD.

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 117

Table 5.1. Metrics catalog [8]

Metric Description
Cyclomatic complexity
(CYCLO)

Logic complexity of a software module, as
the number of linearly independent paths.

Essential complexity
(ESS)

Cyclomatic complexity after replacing all
well-structured control structures by a
single statement.

Class depending child
(CDC)

Class depending at least on one of its
children.

Class depth (DEPTH) Depth of a class within the inheritance
hierarchy.

Multiple inheritance
(FAN IN)

Number of immediate base classes.

Response for class (RFC) Number of methods, including inherited
ones.

Coupling between objects
(CBO)

Number of other classes using a type, data,
or member from that class (coupling). All
the couplings to a given class counts as
one toward the metric total.

Lack of cohesion of meth-
ods (LOCM/LCOM)

Cohesion between class data and methods.

Weighted methods for
class (WMC)

Sum of cyclomatic complexity of all nested
functions or methods.

Access to foreign data
(ATFD)

Number of attributes from unrelated classes
accessed directly or through accessory
methods.

Changing classes (CC) Number of classes in which the methods
calling the measured method are defined.

Coupling intensity (CINT) Number of distinct operations called by the
measured operation.

Changing methods (CM) Number of distinct methods that call the
measured method.

Lines of code (LOC) The number of lines that contains source
code.

Tight class cohesion
(TCC)

Relative number of method pairs of a class
that access in common at least one attri-
bute of the measured class.

Weight of a class (WOC) Number of public methods divided by the
total number of public members.

(Continued)

118 • FLEXIBLE TEST AUTOMATION

Table 5.1. (Continued)

Metric Description
Number of accessory
methods (NOAM)

Number of accessory (getter and setter)
methods of a class.

Number of public
attributes (NOPA)

Number of public attributes of a class.

Number of accessed
variables (NOAV)

Number of variable accessed directly by the
measured operation.

Locality of attribute
accesses (LAA)

Number of attribute from the method defi-
nition class, divided by the total number of
variable accessed.

Foreign data providers
(FDP)

Number of classes in which the attributes
accessed are defined.

Maximum nesting level
(MAXNESTING)

Maximum nesting level of control structures
within an operation.

• Generally accepted semantics, leading to thresholds based on infor-
mation considered as common, widely accepted knowledge. This
knowledge could be in turn based on former statistical observa-
tions, but in general their values have become, to some extent, part
of our culture and can be inferred without a statistical assessment.

5.2.2 SOFTWARE QUALITY MODELS

The correct use of metrics is tuned, and correspondingly their misuse is
avoided, by assessing them within the frame of a quality model. A model
is an abstraction of reality, allowing useless details to be discarded and
entities or concepts to be viewed from a particular perspective [9], by
understanding simultaneously the interactions among the parts forming
the whole system of interest. The quality of a system is the result of the
quality of its elements and their interactions. A model can be used to
predict or assess the quality, the latter being the aim of this chapter.

A considerable amount of work has been devoted to the formulation
of the so-called quality models. One of the first was proposed by Gilb [10],
according to whom any quality characteristic can be measured directly.
The quality concept is broken into component parts until each can be stated
in terms of directly measurable attributes. Other models were proposed by
Bohm [6] and McCall [11]. These are hierarchical models, based on the

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 119

assumption of the existence of several important high-level quality factors
determined by lower level criteria, supposed much easier to measure than
the corresponding factors. Actual measures, the metrics, are proposed for
the criteria. The model describes all the relationships between factors and
criteria, so that the former can be quantified in terms of measures of their
dependent criteria. This conception of modeling quality was more recently

Table 5.2. Metrics catalogue (NDD, AHH, DOF, and DOS are
proportions)

Metric Description
Coupling dispersion
(CDISP)

Number of classes in which the operation
called from the measured operation are
defined, divided by CINT.

Number of packages
(NOP)

Number of high level packages (e.g., packages
in Java or namespaces in C++).

Number of classes
(NOC)

Number of classes defined in the software
system, not including library classes.

Number of operations
(NOM)

Number of user-defined operations (methods
and global functions).

Number of operation
calls (CALL)

Number of distinct operation calls (invoca-
tions) made by all the user-defined opera-
tions.

Number of called
classes (FOUT)

Sum of the classes whose operations call
methods, for all the operations defined by the
user.

Number of direct
descendants (NDD)

Average of subclasses for each class tells to
what extent abstractions are refined by means
of inheritance. Interfaces are not counted.

Height of inheritance
tree (HIT)

Average number of inheritance levels in a
class hierarchy.

Average hierarchy
height (AHH)

Average length of the paths from a root class
to its farthest subclasses, measures the deep-
ness of the class hierarchy. Interfaces are not
counted.

Degree of focus (DOF) Measure of the level of dedication of a com-
ponent to every concern in the system.

Degree of scattering
(DOS)

Measure of the level of scattering of a concern
within all the modules in the systems.

120 • FLEXIBLE TEST AUTOMATION

the basis of international efforts that led to the development of a standard
for software quality measurement, defining for the software (a) a quality
model (ISO 9126 [12–15]), (b) a measurement process (ISO 15939 [16]),
and (c) an evaluation process (ISO 14598 [17]). The standard ISO 9126-1
[12] recommends six quality characteristics, further refined in subcharac-
teristics, as the basic set for quality evaluation. Furthermore, the standards
ISO 9126-2, -3, and -4 [13–15] define metrics for measuring characteris-
tics and subcharacteristics. Anyway, the metric list is not finalized and no
clear indications are provided about its mapping to the quality characteris-
tics. Given a particular problem, techniques like the Goal-Question-Metric
(GQM) [18] can help in identifying which measures are to be taken into
account to monitor and improve quality in the specific case.

5.3 THE STANDARD ISO 9126

A definition of software quality, along with guidance for its assessment, is
provided by international standards [12–17]. This section aims at assess-
ing the level of quality achievable by a software framework for measure-
ment applications, according to the guidelines set by these standards.

In particular, the software quality model provided by the standard
ISO 9126 defines six quality characteristics (Figure 5.1) [12]:

• Functionality: “The capability of the software product to provide
functions meeting stated and implicit needs, when the software is
used under specified conditions.”

• Reliability: “The capability of the software product to main-
tain a specified level of performance when used under specified
conditions.”

• Efficiency: “The capability of the software product to provide
appropriate performance, relative to the amount of resources used,
under stated conditions.”

• Usability: “The capability of the software product to be understood,
learned, used, and attractive to the user, when used under specified
conditions.”

• Portability: “The capability of the software product to be trans-
ferred from one environment to another.”

• Maintainability: “The capability of the software product to be
modified. Modifications may include corrections, improvements,
or adaptation of the software to changes in environment, and in
requirements and functional specifications.”

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 121

The standard defines also an additional quality characteristic:

• Quality in use: The capability of the software product to enable
specified users to “achieve specified goals with effectiveness, pro-
ductivity, safety, and satisfaction in specified contexts of use.”

The quality characteristics have well-defined subcharacteristics, and
the standard allows the user to define his or her own sub-subcharacteristics
according to a hierarchical structure. The ISO framework is completely
hierarchical; each subcharacteristic is related to only one characteristic.

The corresponding quality model defines three categories of quality:

i. Software quality in use, related to the software application inside its
operational environment, for carrying out certain tasks by specific
users.

ii. External software quality, providing a black-box view of the soft-
ware and addressing properties related to the execution of the soft-
ware on a computer hardware and applying an operating system.

iii. Internal software quality, providing a white-box view and address-
ing properties of the software product typically available during the
development.

Figure 5.1. The ISO 9126 quality model [12].

Functionality

Reliability

Efficiency

Usability

Portability

Maintainability

Learnability
Operability
Understandability

Accuracy
Compliance
Interoperability
Security
Suitability

Fault tolerance
Maturity
Recoverability

Resource behaviour
Time behaviour

Adaptability
Installability
Replaceability

Analysability
Changeability
Stability
Testability

122 • FLEXIBLE TEST AUTOMATION

Internal software quality is mainly related to static properties of the
software and has an impact on its external quality, which in turn affects
quality in use (Figure 5.2). As shown in the figure, internal and external
attributes refer to product quality, while quality in use reflects the user’s
view of the product. The process through which this product is obtained is
not taken into account.

At the development stage of a software framework, the system is not
yet widely employed by users others than the developers, thus making
premature the assessment of the quality in use. Therefore, the quality
assessment presented in the following sections is dedicated to a finished
product. More technically, the properties of the software’s design and code
(internal quality) are analyzed at a static level by means of purely internal
metrics [14].

5.4 QUALITY PYRAMID

A more practical approach to software quality is presented in [7], for
(a) characterizing the design of the Object-Oriented part of a software
framework, (b) finding the possible problems, and (c) proposing the cor-
responding corrective actions. According to this approach, some design
metrics [19], namely, capable of capturing the quality of the design at a
certain point in the software development cycle, are used in the frame of
the Goal-Question-Metric (GQM)1 technique [18] to effectively character-
ize and evaluate the design of an Object-Oriented system.

As a matter of fact, the quality characterization of an Object-Oriented
system is a complex task that cannot rely on the evaluation of single

1Usually the Goal-Question-Metric (GQM) model is described as a six-step pro-
cess, where the first three objectives aim at fastening the identification of the right
metrics, while the other three phases belong to the data obtained and specifically
to how to process the actual measurement results for making effective decisions.

Figure 5.2. Approaches to software quality according to ISO 9126 [12].

Process

Process
quality

Process
measures

Influences

Depends on

Internal
quality

attributes

Software product

Internal
measures

External
measures

External
quality

attributes

Effect of software
product

Quality in
use

attributes

Quality in use
measures

Contexts
of use

Depends on Depends on

Influences Influences

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 123

metrics in a nonorganized way. It requires choosing suitable metrics, com-
puting their values, and above all correlating them in a proper manner in
order to draw significant conclusions. Moreover, effective metrics have to
reflect three main aspects (Figure 5.3) [7]: (a) size and complexity, to take
into account how big and complex a system is; (b) coupling, to know to
which extent classes are mutually coupled; and (c) inheritance, to assess
how much and how well the concept of inheritance is used.

To better clarify and understand these three aspects, the Overview
Pyramid was introduced in [7].

The pyramid is a metric-based means to both describe and characterize
the overall structure of an Object-Oriented system by quantifying its com-
plexity, coupling, and inheritance. It can be seen as “a graphical template
for presenting and interpreting system-level measurements of software
quality in a unitary manner” [7]. An overview pyramid is composed of three
parts, corresponding to the aforementioned characteristics (Figure 5.4):
(a) system size and complexity (filled in dark grey in Figure 5.4), (b) system
coupling (in light grey in Figure 5.4), and (c) system inheritance (in white).

5.4.1 SYSTEM SIZE AND COMPLEXITY

The left bottom side of the pyramid (filled in dark grey in Figure 5.4)
gathers information characterizing size and complexity of the software

Figure 5.3. The three major aspects quantified by the overview pyramid [7].

Inheritance

Size & Complexity Coupling

Figure 5.4. Example of a completed overview pyramid (the metrics values refer
to an application example).

PFF
JKV
PQR

PQE
PQO

NQE
E[ENQ

PQO
ECNN

HQWV

2037
;094

;064
42043

2053
2034
3;
5:6

583:
57397
779;

3734:
:7;2

603:

2078

124 • FLEXIBLE TEST AUTOMATION

system, provided by metrics directly computed on the source code. These
simple and widely used metrics refer to the most significant modularity
unit of an Object-Oriented system, in sequence from the highest (pack-
ages or namespaces) to the lowest level (lines of code, LOC). The pyra-
mid provides each unit by a specific metric for measuring its quality. The
considered metrics, placed one per line according to a top-down scheme,2
are: the number of packages (NOP), the number of classes (NOC), the
number of operations (NOM), the LOC, and the cyclomatic complexity
(CYCLO) (Tables 5.1 and 5.2). From these basic absolute metrics, some
proportions among the direct metrics (the values on the left in Figure 5.4)
are computed by dividing the value of a metric by the next upper one. For
example, the value of the proportion in the bottom left corner is obtained
as ratio of the CYCLO and the LOC metrics and is equal to 0.15.

These proportions, unlike the direct metrics, have two important char-
acteristics: (a) they are mutually independent, thus each value provides a
distinct measure of a specific characteristic of the code organization, and
(b) they simplify the comparison with other projects, because they are
defined as ratios of absolute values and are therefore independent of the
project size.

From this part of the overview pyramid, the further following propor-
tions can be assessed about:

i. high-level structuring, the number of classes by package, computed
as the ratio NOC/package, provides a clue on the packaging level
of the system, namely if the packages tend to be coarse-grained or
fine-grain;

ii. class structuring, the number of operations by class, as the ratio
NOM/Class, gives a clue on the quality of class design, by measur-
ing the distribution of operations among classes;

iii. operation structuring, the number of code lines by operation, as
the ratio LOC/Operation, indicating if the code is well distributed
among operations, that is, if the procedural programming is well
structured;

iv. intrinsic operation complexity, the number of linearly-indepen-
dent paths (cyclomatic complexity) by code line, assessed as ratio
CYCLO/Code line, characterizing the conditional complexity
found in the operations (density of branches with respect to the
lines).

2In the pyramid, only the lines of code belonging to methods are counted.

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 125

5.4.2 SYSTEM COUPLING

The right part of the overview pyramid (filled in light grey in Figure 5.4)
concerns the level of coupling in the software system, presented in terms
of operation invocations. Two direct metrics are used to establish how the
coupling is intensive and dispersed in the system (Tables 5.1 and 5.2):
(a) CALL, that is, the number of distinct operation calls (invocations)
made by all the user-defined operations, and (b) FOUT, that is, the sum of
the classes whose operations call methods, for all the operations defined
by the user. Also in this case, from these basic absolute metrics, propor-
tions among the direct metrics (again reported in Figure 5.4) are computed
by dividing the value of a metric by the next upper one.

Although these metrics describe the total amount of coupling of a
software system, they are difficult to use for characterizing the system.
Alternatively, two proportions can be calculated using the number of oper-
ations (NOM):

i. Coupling intensity (CALL/Operation), denoting the extent of cou-
pling (collaboration) between the operations. This proportion tells,
on average, the number of distinct operations called from each
operation. High values indicate excessive coupling among opera-
tions in the code, that is, that the collaboration among operations is
not well designed.

ii. Coupling dispersion (FOUT/Operation call), indicating how many
classes are involved in the coupling, namely the sum of the classes
whose operations call methods, for all the user-defined operations,
by operation call.

5.4.3 SYSTEM INHERITANCE

The upper part of the overview pyramid (filled in white in Figure 5.4)
is composed of two proportion metrics that globally characterize the
use of inheritance. They give a clue of the extent to which some typical
Object-Oriented features (generalization and polymorphism) are used.
The two proportions are NDD, that is, the average of subclasses for each
class, and HIT, that is, the average number of inheritance levels in a
class hierarchy (Table 5.2). These two metrics apply to class hierarchies
and characterize their shape by capturing two important complementary
aspects: their width and height.

126 • FLEXIBLE TEST AUTOMATION

5.4.4 INTERPRETING THE PYRAMID

According to this approach, for characterizing an Object-Oriented system,
the aforementioned eight proportions have to be computed. The propor-
tions are preferred to the absolute metrics because they are independent of
the project size, thus making their assessment easier. Moreover, they allow
the use of thresholds based on statistical measurements, as explained in
Section 5.2.1. In particular, metrics collected from a statistical base of
Java and C++ projects are highlighted in [7].

5.5 MEASURING FLEXIBILITY

Classic and contemporary literatures in software design recognize the
central role of flexibility. Moreover, one of the most significant attributes
of software quality is the flexibility. Flexibility is maximized by means
of structured design, modular design, Object-Oriented design, software
architecture, design patterns, and component-based software engineering,
among others.

During its life cycle, a flexible software system is forced to face
variable requirements. As a consequence, the implementation has to be
adapted to provide a solution to problems in new application domains. An
evolution step is defined as the unit of evolution referred to a particular
change in the implementation.

It has been observed that predicting the class of changes is the key
to understanding software flexibility. During the phases of design and
development of the software, initially the changes that are likely to occur
over the lifetime of the product are characterized. Since it is impossible to
predict the actual changes, the predictions will refer to classes of possible
changes [20].

The notion of evolution step can be used for estimating software flex-
ibility [21]: Software is more flexible than a given value b toward a par-
ticular evolution step, if the number of changes required for the software
upgrade is smaller than the number of changes required for b. Thus, the
complexity of an evolution step measures how inflexible the implemen-
tation is toward a particular class of changes: Fewer changes are needed,
the more flexible it is.

Therefore, it is useful to organize the software so that the items that
are most likely to change are confined to a small amount of code, thus
only this limited portion would be affected [20]. In other words, flexibility

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 127

(measured in terms of the cost of the evolution process) is directly linked
to the amount of code affected by the changes required in a particular
evolution phase. Thus, a first approximation to measuring the cost of an
evolution step ε is given by the evolution cost metric counting the number
of modules affected by ε. Under the assumption that the costs of adding,
removing, or changing each modular unit commensurate, the evolution
cost metric is computed as the number of modules added, removed, or
adjusted as a result of the evolution. This number is obtained by calculat-
ing the symmetric set difference between the sets of classes in the old (iold)
versus the adjusted (iadjusted) implementations.

Formally [21]:

C

Classes i Classes i Classes i
classes

old adjusted ad

()

() () (

ε =

−()∪ jjusted oldClasses i) ()−()
 (5.1)

This evolution cost metric is inadequate in some situations: When the evolu-
tion of different modules do not commensurate, the modules are not imple-
mented yet, and the programming language does not support classes at all
or adds other programming units (such as in the case of the Aspect-Oriented
programming). Therefore, the metric is to be accommodated for varying
degrees of modular granularity, as well as information on each module.
This leads to the definition of the generalized cost metric [21, 22]:

 C i i mModules m Modules old adjusted
µ

ε µ() (,) ()= ∑
∈∆

 (5.2)

where ∆Modules (iold, iadjusted) is the symmetric set difference between the
set of modules in iold and the set of modules in iadjusted.

The generalized metric is parameterized by the variables Modules
and µ:

• The variable Modules represents any notion of module appropriate
for the circumstances, such as class, procedure, method, aspect, and
package [22];

• µ represents any software complexity metric meaningful in relation
to a particular module m [22].

Finally, evolution complexity is a measure of growth, not an absolute
value, and therefore it does not measure the actual cost of the evolution
process, but rather how it grows.

128 • FLEXIBLE TEST AUTOMATION

REFERENCES

[1] IEEE Std 610-1990. 1991. IEEE Standard Computer Dictionary: A Compila-
tion of IEEE Standard Computer Glossaries. (ANSI).

[2] Garvin, D. Fall 1984. “What Does “Product Quality” Really Mean?” In
Sloan Management Review, pp. 25–45.

[3] Kitchenham, B., and S.L. Pfleeger. 1996. “Software Quality: The
Elusive Target.” IEEE Software 13, no. 1, pp. 12–21. doi: http://dx.doi.
org/10.1109/52.476281

[4] Tervonen, I., and P. Kerola. 1998. “Towards deeper Co-Understanding of
Software Quality.” Information and Software technology 39, no. 14–15,
995–1003. doi: http://dx.doi.org/10.1016/s0950-5849(97)00060-8

[5] ISO. 1994. “ISO 8402: Quality Management and Quality Assurance—
Vocabulary.” International Organization for Standardization, 2nd ed.
Geneva, Switzerland.

[6] Boehm, B.W., J.R. Brown, and M. Lipow. 1976 “Quantitative Evaluation
of Software Quality,” Proceedings of the 2nd International Conference on
Software engineering (ICSE ’76) pp. 592–605. San Francisco, CA, USA:
IEEE Computer Society Press.

[7] Lanza, M., and R. Marinescu, 2006. Object-Oriented Metrics in Practice.
Secaucus, NJ: Springer-Verlag New York, Inc.

[8] Scitools Understand. 2014. Metrics. [Online]: https://scitools.com/sup/
metrics-2/.

[9] Fenton, N.E. 1991. Software Metrics: A Rigorous Approach. New York, NY:
Chapman & Hall.

[10] Gilb, T. 1987. Principals of Software Engineering Management. Reading,
MA: Addison-Wesley.

[11] McCall, J.A., P.K. Richards, and G.F. Walters. 1977. “Factors in Software
Quality,” volume 1, 2, and 3, US. Rome Air Development Center Reports
NTIS AD/A-049 014, NTIS AD/A-049 015 and NTIS AD/A-049 016.
Springfield, VA: U.S. Department of Commerce.

[12] International Standard ISO/IEC 9126-1. 2001. “Software Engineering—
Product Quality—Part 1: Quality Model,” International Organization for
Standardization, International Electro technical Commission.

[13] International Standard ISO/IEC 9126-2. 2003. “Software Engineering—
Product Quality—Part 2: External Metrics,” International Organization for
Standardization, International Electrotechnical Commission.

[14] International Standard ISO/IEC 9126-3. 2003. “Software Engineering—
Product Quality—Part 3: Internal Metrics,” International Organization for
Standardization, International Electrotechnical Commission.

[15] International Standard ISO/IEC 9126-4. 2004. “Software Engineering—
Product Quality—Part 4: Quality in Use Metrics,” International Organiza-
tion for Standardization, International Electrotechnical Commission.

QUALITY ASSESSMENT OF MEASUREMENT SOFTWARE • 129

[16] International Standard ISO/IEC 15939. 2002. “Software Engineering—
Software Measurement Process,” International Organization for Standard-
ization, International Electrotechnical Commission.

[17] International Standard ISO/IEC 14598. 2000. “Software Engineering—
Product Evaluation,” International Organization for Standardization, Inter-
national Electrotechnical Commission.

[18] van Solingen, R., and E. Berghout. 1999. The Goal/Question/Metric Method:
A Practical Guide for Quality Improvement of Software Development.
McGraw-Hill Inc., USA.

[19] Lorenz, M., and J. Kidd. 1994. Object-Oriented Software Metrics: A
Practical guide. Upper Saddle River, NJ: Prentice-Hall.

[20] Parnas, D.L. May 1994. “Software Aging.” In Proceeding International
Conference Software Engineering-ICSE. Los Alamitos, CA: IEEE Computer
Society Press, pp. 279–87.

[21] Eden, A.H., and T. Mens. June 2006. “Measuring Software Flexibility.” IEEE
Proceedings Software 153, no. 3, 113–25. doi: http://dx.doi.org/10.1049/
ip-sen:20050045

[22] Arpaia, P. 2012. “A Software Framework for Developing Measurement
Applications Under Variable Requirements.” Review of Scientific Instru-
ments 83, no. 11, 115103. doi: http://dx.doi.org/10.1063/1.4764664

PART III

cASe StuDy

CHAPTER 6

the flexible frAmework
for mAgnetic meASurementS

At cern

Some of the greatest discoveries...consist mainly in the clearing away
of psychological roadblocks which obstruct the approach to reality;
which is why, post factum they appear so obvious.

―Arthur Koestler, The Sleepwalkers: A History of Man’s
Changing Vision of the Universe

6.1 OVERVIEW

In this chapter, an overview of a case study of the software framework for
magnetic measurements realized at the European Organization for Nuclear
Research (CERN) in cooperation with the University of Sannio, the Flex-
ible Framework for Magnetic Measurements (FFMM) [1], is provided.

In the first part of the chapter, a background on the application context
of testing magnets for particle accelerators is given. In particular, initially,
the main magnetic measurement methods for magnets testing are exam-
ined. Subsequently, the automatic systems for magnetic measurements in
use at the main research centers for high-energy physics are reviewed.
Special attention is paid to the software package for measurement auto-
mation for magnets harmonic analysis, that is, the Magnetic Measurement
Program (MMP), which was in use at CERN before the FFMM.

In the second part of the chapter, an outline of the FFMM project is
given. In particular, primarily, the need for flexibility, arising from the
experience of other measurement systems previously employed at CERN,
is analyzed. Although the main topic of this book is the software for mea-
surement control and data acquisition, FFMM is the main part of a wider

134 • FLEXIBLE TEST AUTOMATION

project aimed at developing an entire platform for automating magnetic
measurements, including new high-performance hardware. Therefore, a
brief overview of main hardware components is provided, for the sake of
completeness of the measurement automation approach. Then, the FFMM
is presented by introducing its main design concepts and architecture.
Subsequently, its main components, the Fault Detector and the Synchro-
nizer, are described, by highlighting their architectures and the implemen-
tation of their classes. Finally, the application of the Measurement Domain
Specific Language (MDSL) and the Advanced User Interface Generator to
the magnetic measurements for magnet testing is reported.

6.2 METHODS FOR MAGNETIC FIELD
MEASUREMENTS

The main objectives of the High-Energy Particle (HEP) accelerators are
(a) to explore matter at a very small scale (down to 10−18 m), by means
of radiations of wavelength smaller than the dimension to be resolved;
(b) to produce new, massive particles in high-energy collisions (like the
Higgs particle, discovered in July 2012); (c) to reproduce locally the
very-high temperatures occurring in stars or in the early universe, and
investigate nuclear matter in these extreme conditions; and (d) to exploit
the electromagnetic radiation the hadrons emit when accelerated, partic-
ularly when the beam trajectory is curved by a magnetic field (centripe-
tal acceleration), for medical application, as an example. CERN, one of
the most important HEP laboratories, located at Geneva in Switzerland,
was founded in 1953 to provide a deeper understanding of the matter and
its contents. The last CERN achievement is the Large Hadron Collider
(LHC), the biggest machine ever built by man: A circular accelerator that
collides proton beams or heavier ions into lead and is housed in a 27-km
long underground tunnel.

In the development of the LHC, superconductivity played a crucial
role. It is a special phenomenon of zero electrical resistance and the expul-
sion of magnetic fields occurring in certain materials when cooled below
a characteristic “critical” temperature, usually in the order of a few K, or
tens of K (in this case, they are referred to as high-temperature supercon-
ductors) [2]. In the LHC design, superconductivity was exploited both
to achieve high electrical current levels by reducing ohmic losses for
magnetic conditioning of HEP beams and to keep compact the size of
the machine in order to save capital cost and simultaneously reduce elec-
trical power consumption. High-energy, high-intensity machines produce

THE FLEXIBLE FRAMEWORk • 135

beams with MJ energy, so that conversion efficiency from the power grid
to the beam must be maximized, by reducing ohmic losses. The beams
circulating into the LHC are bent, focused, and corrected by electromag-
nets, many of them needing nominal currents of about 12 kA. In electro-
magnets, superconductivity suppresses ohmic losses, thus the only power
consumption is related to the associated cryogenic refrigeration to achieve
a critical temperature of a few K [3].

The coils of the LHC superconducting magnets are wound with
cables of niobium–titanium (NbTi) (7,000 km in total),1 working in super-
fluid helium either at 1.9 K or at 4.5 K. A vertical dipolar field B of 8.33 T
is required to bend the proton beams, whereas the quadrupole magnets are
designed for a gradient of 223 Tm−1 and a peak field of about 7 T.

In storage rings like the LHC, stable beams have to run as long as
possible on the circular orbit in order to increase the number of collisions
between the counter-rotating beams. This imposes strong constraints on
the tolerable field perturbations along the trajectory. Deviations from the
dipole and quadrupole fields, even if short in both space and time, can
induce instabilities reducing the life time of the beam. Higher-order multi-
poles correctors are required to compensate the unavoidable imperfections
of dipole and quadrupole magnets.

The production of magnets, with high field quality, has been invariably
assisted by various measurements, based on different methods depending
on the goal and accuracy of the desired analysis.

The quantities of relevance for the magnetic field produced by accel-
erator magnets are the strength and direction of the produced field, the
errors with respect to the ideal field profile (the so called multipoles), and
the location of the magnetic center in case of gradient fields. For all the
LHC magnets, the previous quantities are required as an integral or aver-
age over the magnet’s length, because the global behavior of the magnet is
desired for the beam conditioning.

In the following, an overview of the main methods for magnetic mea-
surements is provided. Owing to their relevance in magnet testing for
particle accelerators, in the following chapters of this book, more details
are provided about the rotating coil method and the related harmonic
analysis.

1In a LHC cable, each of the 6,000 to 9,000 superconducting filaments of NbTi is
about 0.007 mm thick, that is, about 10 times thinner than a human hair. If all the
filaments are added together, they would stretch to the Sun and back 6 times with
enough left over for about 150 trips to the Moon [4].

136 • FLEXIBLE TEST AUTOMATION

6.2.1 ROTATING COILS

The rotating coil method [5, 6] is widely used for magnets with cylindrical
bore, owing to its capability of measuring all the properties of the mag-
netic field (field strength, nonideality, angle, direction, and so on) inte-
grated over the coil length with high precision. An induction coil is placed
on a circular support and is rotated in the field (Figure 6.1). The coil’s
angular position is measured by an angular encoder, rigidly connected to
the rotating support. The coil rotating in the field cuts the flux lines, and
a voltage V is induced at the terminals. The voltage is integrated between
two predefined angles φ by obtaining the flux change as a function of
angular position.

6.2.1.1 Magnetic Field Harmonic Analysis

The LHC dipoles are 15-meters long with a beam aperture of 50 mm
in diameter, giving indicating the possibility of considering the coils as
infinitely long and in evaluating the magnetic field on the transversal plane
x-y of the orthogonal radial section by neglecting the longitudinal compo-
nent z. This 2-dimensional approximation is very convenient in describing
the magnetic field B in terms of a complex variable z. In the central part of
the dipole taking into account the properties of the analytical functions, it
can be postulated that the generated magnetic field B can be expanded in
the complex plane in a power series [7]:

B z B

C R
B

z
R

B c z
Rn

n ref
n

ref

n

n
n

ref
() =

=

=

∞ −
−

=

∞

∑ ∑1
1

1

1

1

1
1

⋅

−

−

n 1
410

(6.1)

where Cn is in units of T · m1−n while c Cn n
R
B
ref
n

=

−1

1
 are the multipoles

normalized to the main dipole field and referred to a reference radius
Rref (17 mm for LHC main dipoles test). In this way, all the series

Figure 6.1. Rotating coils measurement principle.

Gpeqfgt"Rwnugu

Tqvcvkpi"Eqkn
Eqpfkvkqpkpi

cpf
Fkikvk|kpi

*Vkog"Fqockp+

Fkikvcn
Kpvgitcvkqp

*Cpiwnct"Fqockp+
V = - ∂ϕ

∂t

THE FLEXIBLE FRAMEWORk • 137

coefficients cn do not have dimension and are expressed in so-called units
of the main field at the reference radius. They are then multiplied by a
scaling factor (104 for LHC main dipoles test), namely, the order of the
ratio between the main field and the field errors. In the complex plane, the
coefficient Cn can be decomposed in its normal and skewed term, that is,
real and imaginary part, respectively [8]:

 C B iAn n n= + (6.2)

By using the aforementioned decomposition, and by applying the scal-
ing factor to the normal and skew field components deduced from Equa-
tion 6.2, the field components in units of the main field B1 can be expressed:

a A
R
B

b B
R
B

n n
ref
n

n n
ref
n

= ⋅

= ⋅

−

−

1

1

4

1

1

4

10

10

(6.3)

The existence of non-null bn or an, or both, coefficients reflects the fact that
the magnetic field generated by the superconducting coil, for example, in
a dipole is not ideally dipolar, but conversely it is affected by higher-order
components (multipoles, e.g., quadrupole, sextupole, and so on). The mul-
tipole components are generated by the difference between the ideal and
the actual current distribution in the electromagnetic coil. All undesired
multipole components other than the main field are referred to as field
errors. They can be associated with the geometry approximation of the
superconducting coils, but also they can have origins from the different
elements and materials used in the magnet as a whole.

The rotating coil method eliminates the time dependence [9], that is,
the influence of variations in the rotation speed. As a matter of fact, the
field is integrated between two successive measurement angular points
and the resulting value depends only on the initial and final points, and not
on the time needed to achieve them, by relaxing requirements for uniform
rotation greatly.

Differential measurements are beneficial to increase the resolution of
high-order multipoles, several orders of magnitude smaller than the main
field. This is realized by using a set of compensation coils mounted on
the rotation support [10]. The signal from the compensation coils is used
to suppress analogically the strong contribution from the main field. The

138 • FLEXIBLE TEST AUTOMATION

compensated signal is analyzed in Fourier series together with the abso-
lute signal of the outermost rotating coil in order to obtain the main field,
as well as the high-order multipoles [8]. The overall uncertainty of the
integral field strength and of the harmonics depends on the rotating shaft
type. The new system developed at CERN can reach a bandwidth of har-
monic measurement up to 100 Hz with a resolution of ±10 ppm.

6.2.2 STRETCHED WIRE

The stretched-wire technique is based on the induction method [11, 12].
A thin wire, with a diameter of 0.1 mm, is stretched in the magnet’s bore
between two precision stages. A motion results in a voltage at the two ends
of the wire, whose integral is the magnetic flux through the area scanned
by the motion. The method, a robust null technique with very-high reso-
lution, provides a measurement of the integral field, of the field direction,
and of the magnetic axis.

Metrological performance depends on the accuracy of the precision
stages driving the wire motion (±1 µm), on the effectiveness of the sag
correction, and on the alignment errors during installation. The overall
uncertainty on the integrated strength and on the angle measurement was
estimated as ±5 units and ±0.3 mrad, respectively [11, 12].

6.2.3 MAGNETIC RESONANCE TECHNIQUE

The nuclear magnetic resonance technique is considered as the primary
static standard for calibration. It is frequently used, not only for calibration
purposes, but also for high-accuracy field mapping. Based on an easy and
accurate frequency measurement, it is independent of temperature vari-
ations. Commercially available instruments measure fields in the range
from 0.011 T up to 13 T, with an accuracy better than ±10 ppm.

In practice, a sample of water is placed inside an excitation coil, pow-
ered from a radiofrequency oscillator. The precession frequency of the
nuclei in the sample is measured either as nuclear induction (coupling into
a detecting coil) or as resonance absorption [13]. The measured frequency
is directly proportional to the strength of the magnetic field with coeffi-
cients of 42.57640 MHz/T for protons and 6.53569 MHz/T for deuterons.

Main advantages of the method are its very-high accuracy, its linearity,
and the static operation of the system. The main disadvantage is the need for
a rather homogeneous field in order to obtain a sufficiently coherent signal.

THE FLEXIBLE FRAMEWORk • 139

6.2.4 HALL PROBES

Hall probes exploit the Hall effect to measure magnetic fields [14]. When
a current is flowing in a solid penetrated by a magnetic field, this field gen-
erates a voltage perpendicular to the current and the field itself. This volt-
age is large enough to be practical only for semiconductors [15]. The main
uncertainty factor is due to the temperature coefficient of the Hall voltage.

The Hall probes permit the analysis of inhomogeneous fields because
they measure the field locally. Conversely, the integral measurement over
the entire magnet’s length is more challenging, because the Hall sensors
are quite small requiring either long and complex probes or many mea-
surements steps.

6.3 AUTOMATIC SYSTEMS FOR MAGNETIC
MEASUREMENTS

The need for automatic measurement systems applied to magnetic mea-
surements buds from their complexity, in particular from the variety of
tests employing various hardware setups and procedures. Usually, in
accelerator systems, magnetic measurements require many measurement
setups with different organization and technology. A commercial system
to satisfy the need for automatic systems applied to magnetic measure-
ments is not available on the market. For this reason, in the last few years,
the main research centers have developed automatic systems integrating
hardware (devices, instrumentation) with software (data acquisition, anal-
ysis, user interfacing).

At CERN for the LHC [16], the paradigm of the Front-End Software
Architecture (FESA), provides a suitable PC front-end for interfacing the
control instrumentation. The FESA infrastructure includes the following
components: (a) an Object-Oriented real-time framework, to implement
common functions with reusable components; (b) a graphical tool, namely
a XML editor, in order to develop design, deployment, and instantiation
schemas; (c) code generation; and (d) test environment. However, a strong
collaboration and involvement at the lowest level of FESA is still required
in order to adapt the architecture to the control requirements.

At the Fermi National Accelerator Laboratory, a new software sys-
tem to test accelerator magnets was developed to be extensible to all the
magnetic measurements, as well as to handle various types of hardware
technologies and analysis algorithms [17]. The software is a configu-
rable component-based framework, allowing for easy reconfiguration and

140 • FLEXIBLE TEST AUTOMATION

runtime modification. Data acquisition, user interface, and analysis can be
configured to create different measurement systems, tailored to specific
requirements. Each test can be controlled and configured by a dedicated
script.

Other subnuclear research centers (Alba, Soleil, Elettra, and ESRF)
collaborated to develop a suitable software framework for testing accelera-
tor magnets [18]. This Consortium proposes TANGO, an Object-Oriented
system, to handle measurement applications. Tango is a distributed control
system, where all the objects are representations of devices. The devices can
be distributed or remotely interconnected. An archiving service stores data
coming from the Tango control system into different types of databases.

6.4 SOFTWARE FOR MAGNETIC
MEASUREMENTS AT CERN

Many magnetic measurement systems are currently used at CERN (rotat-
ing coils, stretched wire, and so on), and different software packages are
employed for control, data acquisition, and analysis. These systems were
developed incrementally during the years, without focusing specifically
on their software quality, namely flexibility and reusability.

An example of such a software packages is the MMP [19], used in
the past for the series tests of the LHC superconducting magnets. For its
importance in the test activities carried out at CERN, mainly based on the
rotating coil technique [20], and for its characteristic representative of the
previous generation of control and acquisition systems, more details about
MMP are provided in the following.

6.4.1 THE MAGNETIC MEASUREMENT PROGRAM

MMP was internally developed at CERN in LabVIEW with the main focus
on measuring the field in the LHC magnets by means of the rotating coils
method. The software includes a control and measurement system. The
control system drives the hardware used for the measurements (motors,
power supplies, and so on) and monitors the main parameters of the sys-
tem allowing proper operation to be verified. The user interacts with the
system through a graphical user interface. The measurement system mea-
sures the field and other parameters to be used in the magnet’s analysis.

A principle layout of a typical magnetic field measurements system is
shown schematically in Figure 6.2. For each measurement, the software

THE FLEXIBLE FRAMEWORk • 141

delivers as a result the measured raw data and exploits suitable analysis
routines to compute the main field, its direction, the higher-order harmon-
ics, and the magnetic axis coordinates. At the end of each run, the col-
lected raw data are transferred to a database.

The system provides a predefined set of measurement procedures,
adjustable to the current needs only through the definition of a limited
number of parameters for hardware configuration. As a consequence, the
system shows a remarkable lack of flexibility, because it implements a
fixed measurement algorithm and an analysis procedure, both based on
rotating coils, and requires changes in the LabVIEW code in order to mod-
ify them. Each modification therefore requires a long time and the work
of expert programmers.

The same approach was used for the development of other programs
exploiting different measurement techniques.

As a consequence, before the FFMM project, a plurality of systems
was employed, resulting to be not flexible, especially in the test proto-
col, and difficult to adapt to measurement requirements different from the
original design.

This major limitation pushed the research activities, carried out at
CERN in the field of magnetic measurements, to move from standalone
measurement programs toward the more modern and useful concept of
framework.

Data
Base

TCP/IP

Trigger

DVM
Power
supply

Magnet under test

Shaft

Coils

Axial
motor

Angular
motor

Angular
encoder

Force &
Torsion

Shaft control

Analog signals

Ampli

MXI Bus

Sun workstation

VME Integrators

Figure 6.2. Layout of the rotating-coil based measurement system controlled by
MMP.

142 • FLEXIBLE TEST AUTOMATION

6.5 FLEXIBILITY REQUIREMENTS FOR MAGNETIC
MEASUREMENT AUTOMATION

6.5.1 PAST EXPERIENCES AND NEED FOR FLEXIBILITY

At CERN, the series tests for the LHC’s superconducting and resistive mag-
nets were carried out by means of a control and acquisition measurement
system developed during the past half a decade. This automatic test system
was developed under highly-variable conditions of evolving hardware and
software configurations, as well as measurement requirements. As a matter
of fact, requirements arose from several test needs incrementally, as well as
from preseries requests from different manufacturers of the magnets. The
result was a test bench implemented in all major test locations for magnetic
measurements at CERN, and adopted successfully for the warm and cold
tests both at CERN and in the companies producing the magnets.

The corresponding software for the automation of magnetic measure-
ments at CERN bears a long heritance of the evolution from the original
version of the magnetic measurement programs (implemented in C lan-
guage for a VME bus-based station) to the last version in use in the test
stations after the end of the test series campaign for LHC (in excess of
1,000 Sun workstations with Virtual Instruments running on LabVIEW of
National Instruments). Data acquisition throughput of this system became
to be considered as already too slow during the commissioning period of
the LHC with beams, and, therefore, calls for immediate streamlining, as
soon as the series tests were completed.

Furthermore, a new hardware of enhanced performance (i.e., digital
integrators [21] and rotating units for coils [22]) was developed in order
to provide new standards for magnetic measurements. All these condi-
tions demanded a strong redesign and re-engineering of the control and
acquisition software as a whole, according to more advanced and unitary
paradigms, in order to be adequate for the new measurement requirements
and in managing the challenge of the new hardware.

6.5.2 THE PLATFORM FOR MAGNETIC MEASUREMENTS
AT CERN

The previous discussion highlights the reasons leading to the launch of the
development of a new platform for magnetic measurements at CERN. This
new platform was required to evolve from the accumulated knowledge
of the developments pursued in the past, by allowing the measurement

THE FLEXIBLE FRAMEWORk • 143

capability to be extended in harmony with the new available hardware
and measurement and test requirements. Although directly aimed at flux
measurements (fixed and rotating coils), the new control and acquisition
software was expected to bear a large degree of generality to allow exten-
sion to other type of measurements (e.g., fast voltage signals from quench
detectors in main superconducting magnets, Hall plates, and so on), in
order to achieve the benefits of unifying the diverse systems used at that
time for superconducting magnets tests.

The aim of the case study presented in this book is to highlight the
work carried out to design and prototype a flexible platform for instru-
ments control and data acquisition, integrating the new hardware and soft-
ware developed suitably, and satisfying a wider range of measurement
requirements, variable and evolvable during the time.

6.5.3 HARDWARE OVERVIEW

During the year before the launch of the project for the new platform, a
new generation of fast transducers [22, 23] was developed at CERN. These
transducers were conceived in order to achieve an increase of up to two
orders of magnitude in the bandwidth of harmonic measurements (10 to
100 Hz), when compared to the standard rotating coil technique (typically
1 Hz or less), and still maintaining a typical amplitude resolution of 10 ppm.

In particular, a new Micro Rotating Unit (µRU) [22] was designed to
turn faster and provide harmonic measurements at rates in the range from
1 to 10 Hz. Fast measurements require that the coils rotate continuously in
one direction and at higher speeds (i.e., up to 10 rps). The µRU is capable
of turning continuously in one direction up to 8 rps thanks to 54-channel
slip rings. The coils are connected in series arbitrarily by means of a patch
panel. This permits changes in the compensation schemes or combination of
several coils in virtual “super segments,” used to measure the integral field.

These developments paved the way for a major improvement of the
theoretical and experimental analysis of superconducting accelerator mag-
nets. However, at the same time, they pushed the performance demands
on the digital instrumentation used for acquisition [24–26]. Standard mag-
netic measurements of accelerator magnets require fast and accurate data
acquisition with integrating voltmeters. So far, the standard de facto in
most subnuclear research centers was the Portable Digital Integrator [24].
The core of this instrument is a voltage-to-frequency converter, whose
resolution is intrinsically limited by the counting frequency. As a result,
this instrument could not follow the evolution of the test requirements

144 • FLEXIBLE TEST AUTOMATION

arising from the new generation of magnetic transducers described earlier
[22], especially considering the increasing need to measure superconduct-
ing magnets supplied by high-frequency current cycles and pulses arising
at that time [27]. A number of developments worldwide tried to address
this issue [25, 26]. At CERN, a multipurpose numerical measurement
instrument, the Fast Digital Integrator (FDI), was developed and con-
stituted as one of the main components of the platform hardware [28].
Besides the increased metrological performance [21], the FDI is capable
of reducing the flux acquisition time down to 4 µs.

For the development of the FDI, a new generation of high-resolution
(18 bit) and high sampling rate (500 kSa/s) ADCs, Successive Approx-
imation Register (SAR) was employed. A DSP was added for on-line
processing, thus allowing the decimation of the input samples, with a
Signal-to-Noise Ratio (SNR) improvement by means of oversampling
[21]. After the realization of a first prototype, a digitizer model was devel-
oped using the results from experimental tests in order to enhance the
design and further improve the performance [29]. Then, the instrument
was exploited in the field [21], by achieving (a) ±10 ppm of uncertainty in
the measurement of the main field for superconducting magnets character-
ization, (b) ±0.02% of field uncertainty in quality assessment of small-ap-
erture resistive magnets, and (c) ±0.15% of drift, in an excitation current
measurement of 600 s under cryogenic conditions.

6.5.4 SOFTWARE REQUIREMENTS

As far as the software is concerned, the effort for the series test of the
LHC superconducting magnets at CERN highlighted limitations in the
measurement control and acquisition programs. In particular, main draw-
backs arose from the relatively long time needed for the cycle of specifi-
cation-programming-debugging-validation (i.e., a development iteration).
As an example, the aforementioned MMP [19] used at CERN at the time
of the LHC series tests had a large spectrum of preprogrammed configura-
tions accessible to the user, but required software specialists for extending
the set of configurations to cover new test and analysis requirements. For
this reason, more advanced design principles in the field of software engi-
neering became necessary to be considered [16–18].

Furthermore, after the end of the LHC series tests, and during the
medium term, the expectation was to have a number of very specific tests
to be rapidly adapted and performed on single prototypes or relatively
small batches of magnets. This was due to the fact that, apart internal

THE FLEXIBLE FRAMEWORk • 145

magnet projects for LHC upgrade (e.g., LINAC4 [30]) or study of new
accelerators (e.g., CLIC [31]), CERN has been involved mainly in the
cooperation for realizing new accelerators over the world (like MedAus-
tron [32], Sesame [33], and so on.) These tests require the control of
various devices, such as transducers, actuators, trigger and timing cards,
power supplies, and other devices not yet completely specified. Moreover,
for different measurement techniques and tests, different algorithms have
to be implemented. In practice, the ideal situation would be to have a
flexible software framework, providing the tools to help the user in the
design of new measurement algorithms, as well as a robust library to con-
trol remotely all the instrumentation involved in the tests.

The new system, besides reproducing key operating capabilities of
the previous software (reference for comparison is MMP [19]), had to
(a) extend the acquisition and control capabilities to the new hardware, and
(b) allow user-driven and traceable configuration of the hardware, as well
as of the test protocol, in order to bear a maximum capability to evolve.

The new project aimed at maximizing the measurement software
quality, in terms of flexibility, reusability, maintainability, and portabil-
ity, by simultaneously keeping high efficiency levels. In particular, the
flexibility, the modification easiness of a system, or component for use
in applications or environments, other than those for which it was specif-
ically designed [34], is definitely one of the most desirable properties of
any system to face changes in operational environment during its life. This
is particularly true for software systems, both, because they are often sub-
ject to extremely rapid technological development, and because some of
them are specifically conceived to be employed in environments spanning
a wide range of functional requirements, not fully predictable at the design
stage. This is the case of the new software project, which should be easy
to configure for satisfying a large set of measurement applications in the
magnetic measurement field.

The main goals of the new project (flexibility, maintainability, reus-
ability, and efficiency) are meant to satisfy the various needs of the differ-
ent users, according to the classification provided in Table 6.1.

Table 6.1. Main software characteristics and users they address

Software characteristic User
Flexibility Test engineer
Maintainability Developer/administrator user
Reusability Developer/administrator user, test engineer
Efficiency Test engineer, end user

146 • FLEXIBLE TEST AUTOMATION

6.6 THE FRAMEWORk FFMM

In this section, the software framework realized at CERN (FFMM) is pre-
sented by introducing its main design concepts and architecture. Subse-
quently, its main components, the Fault Detector and the Synchronizer,
are described, by highlighting their architectures and the implementation
of their classes. Then, the application of the MDSL (see Section 4.5) and
the Advanced User Interface Generator (see Section 4.6) are reported.
Finally, implementation details and examples are reported in order to drive
the reader to realization.

6.6.1 DESIGN

The FFMM design follows the UML model presented in Chapter 4 (see
Figure 4.4). The TestManager plays a central role among the device under
test, measurands, and the measurement configuration and procedure. The
CommunicationBus allows the remote control of the Devices by Virtual-
Devices. At software level, the measurement timing is performed by the
Synchronizer (Section 4.4), and the fault and failure detection is managed
by Fault Detector (Section 4.3). The Synchronizer and the Fault Detector
are, therefore, encapsulated in aspects according to the Aspect-Oriented
approach. The scheme of synchronization policy and fault management
strategy allows the corresponding modules to be modified, without involv-
ing the classes and the framework structure. The layered structure of the
framework (Section 4.2.2) is flexible and the functionalities of one layer
can be used to form the high level ones. In the following section, the
FFMM architecture is presented.

6.6.2 ARCHITECTURE

The framework FFMM has a layered architecture (Chapter 4), shown in
Figure 4.2. The internal organization of each layer is object oriented-based,
where the objects interact only inside the layer horizontally, among enti-
ties of the same level. The upper level capabilities are accessible only
through a suitable interface. The architecture presents four different lay-
ers: Basic, Core, Measurement, and User service layers.

In the Base Service Layer, subcomponents for environment abstrac-
tion, memory management, error handling, file-system abstraction, and
processes and threads handling are included. Communication services are

THE FLEXIBLE FRAMEWORk • 147

defined to allow the extraction of data from devices and external inter-
faces. In the Core Service Layer, measurement devices, event handling
infrastructure, fault detection, and logging are included. In the Measure-
ment Service Layer, the components for the management of the measure-
ment procedure are defined: (a) the Test Manager, (b) the Measurement
Tasks, and (c) the Synchronizer (defined in Section 4.2.2). The User
Service Layer defines services, such as the User Interface (supported by
the GUI engine) and the Integrated Development Environment (supported
by the MDSL) for the interaction of the framework with the final users
(test engineers and application users).

6.6.3 FAULT DETECTOR

In Figure 6.3, the hierarchy FaultDetector of FFMM is reported, by
illustrating the static relationships among Virtual_Device classes, the

Data [

<<aspect>>

-_mdevs: Vector Virtual_Device*

<<pointcut>>+devices()
<<advice>>+devices() : slice class
+void addToMonitor(ffmm::core::devices::Virtual_Device* m)
+void removeFromMonitor(ffmm::core::devices::Virtual_Device* m)
+static void showMonitoredDevices()
+void CheckStatus(ffmm::core::devices::Virtual_Device* m)
<<pointcut>><<advice>>+device_construction()
<<pointcut>><<advice>>+device_destruction()

FkikvcnKpvgitcvqtaHcwnvFgvgevqt

-faultTable : DigitalIntegrator_FaultTable
-decoder : DigitalIntegrator_FaultDecoder

<<pointcut>>+checkOperationalStatus()

FkikvcnKpvgitcvqt

+createDevice()
+deleteDevice()
+Set_Communication_Bus(: int) : int
+setTimeOut()
+getTimeOut()
+setFDI()
+setGain()
+get_id() : int
+getGain() : double
+Calibrate()
+start()
+Stop_Acquisition()
+Finite_Acquisition()
+Reset()
+fireFdiErrorEvent()
+fireFdiReadingTimeoutEvent()

Concrete virtual devices
act as fault sources.
Each time a fault happens
the devices status
changes triggering the
aspect logic to be
executed.

HcuvFK

Unkeg"Encuu

+virtual bool checkDeviceStatus()
+virtual int decodeError()
+virtual void addListener()
+virtual void removeListener()

XktvwcnaFgxkeg

+Virtual_Device(: string, : string, : string)
+~Virtual_Device()
+Set_Communication_Bus(:int) :int
+get_id() : int

Concrete aspects:
Pointcuts to capture faults
by intercepting change to
device status.

GpeqfgtDqctfaHcwnvFgvgevqt

-faultTable : EncoderBoard_FaultTable
-decoder : EncoderBoard_FaultDecoder
<<pointcut>>+checkOperationalStatus()
<<pointcut>>+checkForValidConfiguration()

GpeqfgtDqctf

+createDevice()
+deleteDevice()
+EncBoardAction()
+Set_Trig_Mode()
+Get_Trig_Mode()
+Reset_Config_Reg()
+Set_Display_Mode()
+Reset_Display()
+Get_Status_Reg()
+Set_Encoder_Trigger()
+Start_Encoder_Trigger()
+Stop_Encoder_Trigger()
+waitEncoderStop()
+Set_Mode_Enc_Trig()
+Get_Timestamp()
+Set_Synthetic_Trigger()
+Start_Synthetic_Trigger()
+Stop_Synthetic_Trigger()
+waitSyntheticStop()

FaultDetectorArchitecture]rcemcig

HcwnvFgvgevqt

<<aspect>> <<aspect>>

Figure 6.3. An excerpt of the hierarchy of the FaultDetector.

148 • FLEXIBLE TEST AUTOMATION

FaultDetector aspect with its subaspects, and some concrete virtual
devices (DigitalIntegrator and EncoderBoard). In the figure, the role
played by the classes FaultDecoder and FaultTable is highlighted.

For the sake of clarity, an example related to two devices, typical
of magnetic measurement applications, a digital integrator (namely the
Fast Digital Integrator, FDI [28]), and an encoder board, with the corre-
sponding classes FastDI and EncoderBoard, respectively, is reported in
the same figure. Encoded fault information is extracted from the FastDI
device by context interception and is decoded by means of a concrete
class DigitalIntegrator_FaultDecoder. As an example of AOP design, the
aspect DigitalIntegrator_FaultDetector is hence responsible for enforcing
fault management policies according to the fault kind. It defines the appro-
priate listener and, when a device is registered in the FaultDetector, an
instance of the listener is subscribed to the concrete instance of the device.
The FaultDetector is responsible for defining pointcuts capturing creation
and destruction of devices.

The hierarchy Virtual_Device, models and organizes all the physical
devices involved in the measurement process. Each device has an internal
status: modifications to such a status are captured by means of concrete
FaultDetector subaspects. The subaspects execute the logic needed to
decode the modification, as well as an appropriate method (i.e., fireFault,
fireBadParameter, fireError, and so on) in order to broadcast fault infor-
mation to the concrete FaultListener registered during the device creation
and to all the other interested components.

Each FaultDetector subaspect is associated to the main devices cat-
egories and defines the mapping logic toward concrete device classes
belonging to the same family. Indeed, the mapping coarseness between
aspects and concrete devices allows the fault detection logic to be reused
in similar devices in a flexible manner, as well as to be encapsulated in a
few modules (instead of being spread all over the device classes).

In Figure 6.4, the different levels of fault interceptions are depicted
according to the fault types. The bottom level takes care of very specific
issues and features of concrete devices to be encapsulated in dedicated
subaspects. At the middle level, concrete aspects perform continuous
monitoring of devices’ status, by means of appropriate pointcut expres-
sions and decoders. The top level includes abstract aspects implementing
the fault detection logic, reusable in concrete subaspects.

The fault notification strategy has been implemented by means of the
architecture “publish-subscribe,” such as shown in Figure 6.5, in the case
of the device EncoderBoard. In particular, the cooperation among Fault-
Detector and its subaspects (in order to associate handlers to fault sources

THE FLEXIBLE FRAMEWORk • 149

in the measurement system dynamically) is highlighted. The subaspects
of the aspect FaultHandler have the responsibility to make aware the con-
crete classes of the faults occurring in the system (e.g., the TestManger is
responsible for supervising the test session).

The aspect EncoderBoard_FaultHandler defines a concrete imple-
mentation for the abstract slice class specific for the EncoderBoard
devices. Such an implementation is responsible for registering and dereg-
istering the EncoderBoardFaultListener when an EncoderBoard device
is created or destructed. Moreover, the subaspect defines the pointcut
expressions to intercept and decode faults by calling the appropriate fault
broadcasting methods.

This solution allows fault handling logic to be reused in the super-
aspects and does not force concrete classes in the system to implement
fault handling code. Any component in the system can reply to specific
faults occurring anywhere in the system by carrying out the related han-
dling actions.

The concrete classes (TestManager or any other components inter-
ested in monitoring faults) are oblivious of being faults’ handlers, thus
the monitoring relationships can be changed by acting simply on aspect

CduvtcevHcwnvFgvgevqt
XktvwcnFgxkeg

Status modification
interception by
means of
interface-based
pointcuts

FkikvcnKpvgitcvqtFkikvcnKpvgitcvqtHcwnvFgvgevqt

<<intercepted>>

CevwcvqtHcwnvFgvgevqt

<<intercepted>>

<<intercepted>>
HcuvFKHcuvFKHcwnvFgvgevqtRFKHcwnvFgvgevqt

Context
intercepting by
means of very
device-specific
pointcuts

<<aspect>>

<<aspect>><<aspect>>

<<aspect>>

<<aspect>>

Figure 6.4. Levels of faults interception.

150 • FLEXIBLE TEST AUTOMATION

D
at

a
[

Fa
ul

tN
ot

ifi
ca

tio
ns

]
r
ce
m
ci
g

H
cw
nv
F
gv
ge
vq
t

-_
m

de
vs

: V
ec

to
r V

irt
ua

l_
D

ev
ic

e*
<<

po
in

tc
ut

>>
+d

ev
ic

es
()

<<
ad

vi
ce

>>
+d

ev
ic

es
()

 :
Sl

ic
e

C
la

ss
+v

oi
d

ad
dT

oM
on

ito
r(

 ff
m

m
::c

or
e:

:d
ev

ic
es

::V
irt

ua
l_

D
ev

ic
e*

 m
)

+v
oi

d
re

m
ov

eF
ro

m
M

on
ito

r(
 ff

m
m

::c
or

e:
:d

ev
ic

es
::V

irt
ua

l_
D

ev
ic

e*
 m

)
+s

ta
tic

 v
oi

d
sh

ow
M

on
ito

re
dD

ev
ic

es
()

+v
oi

d
C

he
ck

St
at

us
(f

fm
m

::c
or

e:
:d

ev
ic

es
::V

irt
ua

l_
D

ev
ic

e*
 m

)
<<

po
in

tc
ut

>>
<<

ad
vi

ce
>>

+d
ev

ic
e_

co
ns

tru
ct

io
n(

)
<<

po
in

tc
ut

>>
<<

ad
vi

ce
>>

+d
ev

ic
e_

de
st

ru
ct

io
n(

)

<<
in

te
rc

ep
te

d>
>

G
p
eq
f
gt
D
qc
tf

+c
re

at
eD

ev
ic

e(
)

+d
el

et
ed

ev
ic

e(
)

+E
nc

B
oa

rd
A

ct
io

n(
)

+S
et

_T
rig

_M
od

e(
)

+G
et

_T
rig

_M
od

e(
)

+R
es

et
_C

on
fig

_R
eg

()
+S

et
_D

is
pl

ay
_M

od
e(

)
+R

es
et

_D
ip

la
y(

)
+G

et
_S

ta
tu

s_
R

eg
()

+S
et

_E
nc

od
er

_T
rig

ge
r(

)
+S

ta
rt_

En
co

de
r_

Tr
ig

ge
r(

)
+S

to
p_

En
co

de
r_

Tr
ig

ge
r(

)
+w

ai
tE

nc
od

er
St

op
()

+S
et

_M
od

e_
En

c_
Tr

ig
()

+G
et

_T
im

es
ta

m
p(

)
+S

et
_S

yn
th

et
ic

_T
rig

ge
r(

)
+S

ta
rt_

Sy
nt

he
tic

_T
rig

ge
r(

)
+S

to
p_

Sy
nt

he
tic

_T
rig

ge
r(

)
+w

ai
tS

yn
th

et
ic

St
op

()

Th
is

 fa
ul

t h
an

dl
er

as
pe

ct
 li

nk
s t

he
Fa

ul
tH

an
dl

er
 w

ith
co

nc
re

te
 c

la
ss

es
th

at
 n

ee
ds

 to
 b

e
no

tif
ie

d
ab

ou
t

fa
ul

ts
.

<<
in

je
ct

ed
>>

G
p
eq
f
gt
D
qc
tf
aH
cw
nv
J
cp
f
ng
t

+e
nc

od
er

B
oa

rd
s(

) :
 sl

ic
e

cl
as

s
+g

et
Li

st
en

er
()

 :
En

co
de

rB
oa

rd
Fa

ul
tL

is
te

ne
r

Fa
ul

ts
 a

re
 c

ap
tu

re
d

by
 F

au
ltD

et
ec

to
r

hi
er

ar
ch

y.

G
p
eq
f
gt
D
qc
tf
H
cw
nv
N
ku
vg
p
gt

+v
irt

ua
l v

oi
d

on
B

ad
Pa

ra
m

et
er

Se
tti

ng
(e

vt
 :

B
ad

Pa
ra

m
Se

tti
ng

Ev
en

t)
+v

irt
ua

l v
oi

d
on

Er
ro

r(
 e

vt
 :

Er
ro

rE
ve

nt
)

+v
irt

ua
l v

oi
d

on
Fa

ul
t(

ev
t :

 F
au

ltE
ve

nt
)

+o
nB

ad
Pa

ra
m

et
er

Se
tti

ng
()

U
nk
eg
"E
nc
uu

+v
irt

ua
l b

oo
l c

he
ck

D
ev

ic
eS

ta
tu

s(
)

+v
irt

ua
l i

nt
 d

ec
od

eE
rr

or
()

+v
irt

ua
l v

oi
d

ad
dL

is
te

ne
r(

)
+v

irt
ua

l v
oi

d
re

m
ov

eL
is

te
ne

r(
)

<<
as

pe
ct

>>

<<
as

pe
ct

>>

Fi
gu

re
 6

.5
.

Fa
ul

t n
ot

ifi
ca

tio
n

ar
ch

ite
ct

ur
e

“p
ub

lis
h-

su
bs

cr
ib

e”
 fo

r t
he

 d
ev

ic
e

En
co

de
rB

oa
rd

.

THE FLEXIBLE FRAMEWORk • 151

mapping. Shared characteristics among different fault handling logics can
be factored out in the aspects, while multiple observations of different
kinds of faults can be easily accomplished by defining several listeners for
a single concrete class.

In the following, two typical scenarios are discussed in order to high-
light the system behavior at run-time. In Figures 6.6 and 6.7, a class and
a communication diagram, showing the interception of a device creation
and the messages exchanged by key involved components, respectively,
are depicted.

In Figure 6.8, a sequence diagram, modeling (a) the typical behavior
after listener registration, when faults can happen during normal device
operations, and (b) another typical scenario, when a device accesses inter-
nal state by means of read and write operations, is reported.

While the proposed architecture is suitable for removing the fault
detection code from the devices completely, in a first pilot implementa-
tion, the design team decided not to affect the event handling protocol
of the framework. Therefore, the code of the fault and error broadcast-

Data [rcemcig CreationDestructionInterception]

HcwnvFgvgevqt

-_mdevs: Vector Virtual_Device*

<<pointcut>>+devices()
<<advice>>+devices() : Slice Class
+void addToMonitor(ffmm::core::devices::Virtual_Device* m)
+void removeFromMonitor(ffmm::core::devices::Virtual_Device* m)
+static void showMonitoredDevices()
+void CheckStatus(ffmm::core::devices::Virtual_Device* m)
<<pointcut>><<advice>>+device_construction()
<<pointcut>><<advice>>+device_destruction()

FkikvcnKpvgitcvqt

+createDevice()
+deleteDevice()

OqvqtEqpvtqnngt

+createDevice()
+deleteDevice()

GpeqfgtDqctf

+createDevice()
+deleteDevice()

Device instantiation and
destruction are captured by
pointcut expression in
FaultDetector aspect and
wrapped by around advices.
Such advices insert newly
created devices into the list of
checked devices and perform
the first inital checks (after
creation) to ensure operational
state.

<<aspect>>

…

…

…

Figure 6.6. Device Creation/Destruction interception.

152 • FLEXIBLE TEST AUTOMATION

ing routines still lies in the component implementing the devices. This
approach was aimed at carrying out a concern-driven adoption of AOP.

From this point of view, the event handling is itself a concern to be
migrated to the AOP paradigm in future work.

6.6.4 SYNCHRONIZER

As already discussed, a key issue in automatic measurement systems is
the capability of assuring proper software synchronization to the test pro-
cedure [35–37]. Today, software synchronization is a “widely used tech-
nique, and emerging application areas for cost-effective” [38] dependable
systems will further increase its importance. The implementation strate-
gies of task synchronization not only affect the system performance, but
also its quality, in particular the modularity, reusability, and maintainabil-
ity [39–42]. Nevertheless, crosscutting concerns can negatively affect the
quality of even well modularized synchronization systems implemented
by these techniques [43]. In this section, a further example of how AOP [1]
can overcome such shortcomings in the implementation of synchroniza-
tion task is reported. Synchronization tasks are handled more easily by
isolating and encapsulating into aspects the crosscutting concerns related
to the synchronization of large measurement software. Indeed, in this way
only the aspects have to be managed when changes occur, or to reuse them
in new systems.

The main goals of the AOP-based design for the software synchro-
nization of measurement tasks are mainly related to achieving better

 AddToMonitorCollaboration]

1.1: addToMonitorList(target_dev)

<"HcwnvFgvgevqt

1.3: addListener()
1.3.2: addEncoderBoardListener(lis)

1.2: push_back(target_dev) 1: createDevice()intercepted

vctigvafgx"<"Gpeqfgt"Dqctf"Unkeg"Encuu ofgxu"<"Xgevqt vctigvafgx"<"GpeqfgtDqctf

1.3.1: lis = getListener()

<"GpeqfgtDqctfaHcwnvJcpfngt

AddToMonitorCollaboration[

<<aspect>>

<<aspect>>

kpvgtcevkqp"

Figure 6.7. Collaboration scenario started by createDevice interception on
EncoderBoard.

THE FLEXIBLE FRAMEWORk • 153

modularization for concurrency and synchronization concerns while guar-
anteeing system correctness, better performance, and increased safety.

The solution highlighted here is based on an abstract aspect layer,
composed of a simple aspect framework to be reused in the development
of synchronization control in different application domains. The modular-
ization achievable through the proposed design makes the synchronization
control easy to evolve and simplifies the complexity of the remaining parts
of the software, such as devices, fault detection, or logging modules, by
decoupling concurrency and synchronization control code from them.

Synchronization is a crosscutting concern particularly hard to modular-
ize through Object-Oriented Programming and design patterns. The AOP-
based architecture shown in this book is the result of the analysis of several
existing Object-Oriented software systems implementing synchronization
and concurrency, which revealed some typical deficiencies of OOP imple-
mentation for synchronization. In particular, the lacks are related mainly to
the following quality attributes of synchronization software:

• Extensibility: It is related to the possibility of easily making abstrac-
tion of synchronization policies. An optimal synchronization policy

kpvgtcevkqp FaultDetectionScenario [FaultDetectionScenario]

1: Start_Synthetic_Trigger() <<before>>

<<after>>

2: checkForVoidConfiguration()
cnv

[configuration
valid]

[configuration
invalid]

[status invalid]

qrv

3: Start_Synthetic_Trigger()

4: fireBadParameterSettingEvent()

5: onBadParameterSetting()

9: virtual void onError(-)

8: fireError(evt : ErrorEvent)

7: checkOperationalStatus()

6: Get_Status_Reg()

uetkrv"<"VguvOcpcigt fgx"<"GpeqfgtDqctf
<"GpeqfgtDqctfaHcwnvFgvgevqt

fgx"<"Unkeg"Encuu <"GpeqfgtDqctfHcwnvNkuvgpgt<<aspect>>

Figure 6.8. Sequence diagram showing the detection of a wrong parameter
configuration of an EncoderBoard instance.

154 • FLEXIBLE TEST AUTOMATION

cannot be found for all situations, the architecture must assure high
levels of customizability (with respect to the kind of domain objects
and semantics of their operations). For instance, in measurement
systems, objects that frequently access data sources require a pes-
simistic policy, whereas other objects not requiring such critical
timing can use a more efficient optimistic policy.

• Modularity: It is intended as the separation of the code related to
the synchronization concern from the code of the base system. In
general, synchronization is orthogonal to the other components of a
measurement system. Therefore, options like synchronization pol-
icy switching (without modifying the other components), as well as
incremental introduction of synchronization, are interesting prop-
erties considered for the proposed architecture that can be easily
enforceable by means of AOP.

• Encapsulation: This is related to the modularity and requires that
synchronization is placed within aspects rather than scattered out
among synchronized object and their clients. An OOP decentral-
ized design forces to “spread” synchronization state in several
objects. This means that each component must encapsulate its part
of “synchronization” information at run-time even when it doesn’t
need synchronization (thus wasting memory resources). The AOP
architecture enforces, as much as possible, a centralized design in
which synchronization state is maintained in the related aspects:
components to be synchronized are involved by the aspect encap-
sulating the synchronization information for all components. When
a component doesn’t need synchronization no data is stored for it in
the aspect and no memory is wasted at all.

• Reusability: Synchronization is a characteristic feature of a mea-
surement system, thus reusability has to be strongly considered and
applied to reuse both synchronization and functionality code in an
independent fashion. AOP implementation allows aspects imple-
menting synchronization concerns to be reused in an easier way.

6.6.4.1 Architecture

In Figure 6.9, the UML class diagram of the architecture for synchro-
nization in automatic measurement stations, a variant of the design
pattern Synchronization Manager based on AOP, is depicted. The stereo-
type “aspect” has been used to distinguish the aspects from the classes
defined in the architecture. All the aspects in the diagram are abstract. The

THE FLEXIBLE FRAMEWORk • 155

synchronization aspects can be easily integrated and reused in other archi-
tectures and software systems. Indeed, just the components and services
to be synchronized, as well as the policy for their synchronization, have
to be identified.

The abstract aspect Synchronizer provides reusable code and behav-
ior for implementing and modularizing the synchronization logic and pol-
icies. Concrete aspects will have the responsibilities of: (a) intercepting
components and services interactions to be synchronized and (b) enforc-
ing the right specified policy in the correct context.

The architecture separates the main issues related to the synchroniza-
tion management: the policy to be adopted, the conditions to be defined, and
the specification of the context making use of synchronized elements. The
architecture separates these three components allowing the synchroniza-
tion logic to be reused in the superaspects, without forcing concrete classes
in the base system to implement synchronization-handling code. Moreover,
concrete classes are oblivious of being synchronized, thus the synchroniza-
tion policies can be changed by simply acting on aspect mapping.

Common features among different synchronization handling logics
can be factored out in the aspects, while multiple observations of different
kinds of synchronization can be easily accomplished by defining several
mapping aspects for a single concrete class.

In the framework illustrated in this chapter, different aspects are
responsible for diverse policies defined in order to support the most

<<aspect>>
Synchronization

<<aspect>>
ReaderWriterSynchronization

<<aspect>>

KU{pejtqpk|cvkqpEqpfkvkqp

+setTask(ITaskInterface)

HkgnfEqpfkvkqp QrgtcvkqpEqpfkvkqp VcumUvctvEqpfkvkqp GxgpvEqpfkvkqp

<<aspect>>
PessimisticReaderWriter

<<aspect>>
DynamicPriorityReaderWriter

<<aspect>>
RepeatSynchronization

<<aspect>>
SequentialSynchronization

<<aspect>>
JoinSynchronization

<<aspect>>
TimerSynchronization

+onFieldRead() +execute()

+addAction(…)

+execAtTiming(…)+addAction(…)

+setEventListener(…)
+setEventFilter(…)+onFieldWrite()

OptimisticReaderWriter

Figure 6.9. AOP-based architecture of a synchronizer for an automatic measure-
ment system.

156 • FLEXIBLE TEST AUTOMATION

interesting scenarios arising from a measurement session. The following
policies are defined to synchronize data transfers among devices:

• Joined, repeated, sequential task execution
• Optimistic and pessimistic readers and writers
• Dynamic priority readers and writers
• Producer and consumer policy
• Active devices synchronization supporting different multithreading

internal structures (scaling from single thread to a cooperating pool
of k threads)

As far as the synchronization conditions are concerned, the architec-
ture provides basic conditions to be aggregated in order to build more
complex conditions. They can be used in association with existing or new
synchronization policies. The basic implemented conditions are related
to field read and write events, operation execution or invocations, and
well-defined role execution events.

The resulting architecture is extensible because concrete aspects
implementing specific synchronization policies can be easily added and
designed to implement new kinds of policies when needed. The added
policies only need to implement interface and concrete mapping logic to
intercept the client contexts.

The architecture fosters reusability, because existing policies can
be reused in several different contexts and the synchronization logic is
completely decoupled from the client code. To summarize the benefits
of an Aspect-Oriented approach to software synchronization in automatic
measurement systems key advantages are just code maintainability and
reusability. For each new device added to the station, the related synchro-
nization code can be added to the synchronization hierarchy. All the code
is encapsulated in few subaspects, thus common features among different
synchronization logics are well structured and factored out. As a conse-
quence, the AOP Synchronizer design, with respect to a traditional OOP
version, exhibits a better modularized design by eliminating code scatter-
ing and tangling, and increasing the possibility of code reuse.

6.6.5 MEASUREMENT DOMAIN SPECIFIC LANGUAGE

The implementation of the Measurement Domain Language (MDSL)
inside FFMM exploits main features of the Eclipse Modeling Project
[44, 45], a modeling framework and code generation facility for building

THE FLEXIBLE FRAMEWORk • 157

tools and other applications. Eclipse is based on a structured data model
consisting of

• interfaces and implementation classes for all the classes in the
model, plus a factory and package (meta data) implementation
class;

• implementation classes that adapt the model classes for editing and
display; and

• a properly structured editor, conforms to the recommended style for
model editors of Eclipse Modeling Framework (EMF), serving as a
starting point for customization.

In FFMM, the MDSL is conceived as a form of user interface [46]
aimed at providing an additional view of FFMM, specifically conceived
for the test engineer. The developer can operate with C++ at any level
in the system, including the definition of a measurement script. On the
other hand, the test engineer, with limited effort and programming skills,
can operate at script level by means of the DSL. In Figure 6.10, a sche-
matic representation of the MDSL implementation in FFMM is provided.
The Measurement Domain Specific Description (MDSD) contains the
Measurement Test Procedure written by the test engineer.

First, this script is read by the MDSL Parser, subsequently the Builder
generates the C++ code performing the required test procedure by means
of FFMM classes.

In particular, MDSL has been developed by the Eclipse’s features of
Xtext and Xpand [45]. Xtext is a tool for developing domain-specific and
textual programming languages. It provides a language-specific integrated

C++
FFMM core

MDSD script
MDSL
parser
builder

C++
script

HHOO

HHOO"encuugu

Exe
measurement
application

Figure 6.10. MDSL implementation in FFMM.

158 • FLEXIBLE TEST AUTOMATION

development environment and, in addition to common parser generators
(like e.g., JavaCC [47] or ANTLR [48]), generates

• an incremental, ANTLR3-based parser to read models from MDSD
script;

• a serializer, both to write models back to text and to produce the
measurement specific semantic model;

• a linker, to establish cross links between model elements;
• the integration of the language into the Eclipse integrated develop-

ment environment (IDE).

In Xtext, the script structure can be set up by embedding the rules of
the new language specific grammar. In Figure 6.11, a resumed example of
MDSL grammar implementation is shown.

Figure 6.11. Specific grammar example of MDSL in Xtext.

THE FLEXIBLE FRAMEWORk • 159

According to the example: a script (between the hot words BEGIN_
SCRIPT and END_SCRIPT) can contain only measurement task state-
ments; a task (between the hot words BEGIN_MTASK and END_MTASK)
can be composed of either device definition statements (starting with DEF),
or device configuration statements (starting with CFG), or device com-
mand statements (starting with CMD), and the order must be respected. In
the statements declaration organized by typology, for example, the defini-
tion statement in Figure 6.11, the list of permitted methods is specified. If
the item is preceded by the symbol “|”, the order is not mandatory. Basi-
cally, a grammar tree can be defined in Xtext by adding the grammar rules
from the generic to the specific ones. In particular, the example is tailored
to the FDI and a motor controller, specific devices exploited in the Case
Studies Section.

Some of the IDE features, either derived from the grammar or easily
implementable, are: syntax coloring, model navigation, code completion,
outline view, and code templates.

Xpand is a tool specializing in code generation based on EMF models
and used as a builder to produce the C++ code suitable for FFMM frame-
work. Each object already defined in the grammar (Xtext), has to be treated
by the Domain-Specific Builder (Xpand). The rules of code generation are
specified in the Xpand file. In Figure 6.12, two examples of builder rules,
for the FDI instrument and a motor controller, are pointed out.

By reiterating the same process for all the devices supported by
FFMM, the whole MDSL has been developed. In general, all the com-
mands related to standard acquisition boards, multimeters, digital integra-
tors, precision positioning stages, motor controllers, and encoder boards
are already implemented. In addition, some commands related to user
interface programming and the data presentation are included [49]. To

Figure 6.12. Domain-specific Builder rules of MDSL in Xpand.

160 • FLEXIBLE TEST AUTOMATION

give an idea, the effort for adding a new device into the specific grammar
of the already defined language can be quantified in about 20 new lines
code for the device creation and about 10 lines for each method by which
the device is composed.

6.6.6 ADVANCED USER INTERFACE GENERATOR

The Advanced User Interface Generator is an important component of
the framework, because it allows the test engineer to easily produce an
Application User Interface permitting the final user (e.g., the test techni-
cian) to interact with the software application. In a script-based applica-
tion in FFMM, all the software functions should be set and configured by
the script. This chapter highlights (a) the configuration and the use of the
graphical user interface within the script, (b) how to perform the input and
output of values by using the Graphic Interaction Component, and (c) how
to use the plotting features.

6.6.6.1 Configuration of the Graphical User Interface in the
User Script

In the FFMM measurement script, the test engineer can select which
graphical window he wants to show during the measurement procedure,
by defining their appearance order and their effect on the script. At the
beginning of each script, the main window (Figure 6.13), with the basic
controls, can be activated by adding the macro MAIN_WINDOW.

In the main window, there is:

• a file and directory selector, where the user will insert the name and
the path of all the result files of the measurement;

• the main script controls, in particular the buttons:
{{ start, to trigger the start of the script execution;
{{ stop, to stop the measurement (only if needed);
{{ abort, to launch a fatal fault from the user;
{{ exit, to force the end of the program;

• a log area, where the log information are displayed.

Just like the main window, other windows can be activated from the
script. For example, to obtain the user’s configuration parameters needed
to set up a FDI Cluster, the test engineer can use the FdiClusterFrame

THE FLEXIBLE FRAMEWORk • 161

(Figure 6.14). The next code fragment shows how the window can be cre-
ated and displayed and how the data can be retrieved from it.

In Figure 6.15, the window look is shown.
In the same way, the EncoderFrame, a window asking the applica-

tion’s user the parameters for the encoder board setting, can be displayed
(Figures 6.16 and 6.17).

Figure 6.13. Main window.

Figure 6.14. Code for the FdiClusterFrame.

162 • FLEXIBLE TEST AUTOMATION

Figure 6.15. FdiClusterFrame window.

Figure 6.16. Code for the EncoderFrame.

THE FLEXIBLE FRAMEWORk • 163

6.6.6.2 Input/Output of Values with the Graphic Interaction
Component

During a measurement procedure, information is exchanged several times
between the user and application; the test engineer can decide when and
where in the script the input and output (I/O) process takes place and the
values (how many and which type) are involved. Generally, for the I/O
in the configuration or setting phase of the script, the Graphic Interac-
tion Component (GIC) can be used. The GIC class is a template: When
declared, as shown in Figure 6.18, the type (char, int, float, double, and
so on) is preset and the object is created in order to manage the values of

Figure 6.17. EncoderFrame window.

Figure 6.18. Code example for the GIC.

164 • FLEXIBLE TEST AUTOMATION

selected type. In the figure, the code fragment shows how to instantiate a
GIC object of the integer type and how to use its functionalities.

The GIC class provides two methods for the interactive I/O:

• input(…), to ask the user some values
• output(…), to display on the screen some values

In Figures 6.19, the resulting windows in the case of an integer GIC
are shown.

6.6.6.3 Plotting Functions of Numeric Values

Another important feature of the graphic interface is the plotting func-
tions. If during the measurement procedure a set of value, for example, an
array of double, has to be displayed in a plot format, the graphic function-
alities of the FPlot can be used as shown in Figure 6.20.

If data come out from an acquisition device, such as an FDI, there is a
proper way to plot them on line. As shown in Figure 6.21, the class FPlot
has a useful method (SetFdi(…)) to connect the plot (Figure 6.22) with
the data coming from the device and to display a window auto-updating
with the rate specified.

Figure 6.19. Windows generated by the GIC.

Figure 6.20. Code for the plot function.

THE FLEXIBLE FRAMEWORk • 165

REFERENCES

[1] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications Under Vari-
able Requirements.” AIP Review of Scientific Instruments 83, no. 11. doi:
10.1063/1.4764664

[2] Blundell, S.J. 2009. Superconductivity: A Very Short Introduction. New
York, NY: Oxford. ISBN-10: 019954090X.

[3] Gareyte, J. 1996. “Impact of superconductors on LHC design.” In CERN
96-03, pp. 335–46, Geneva, Switzerland: CERN.

[4] CERN Communication Group. February 2009. CERN LHC Guide, https://
cds.cern.ch/record/1165534/files/CERN-Brochure-2009-003-Eng.pdf

[5] Elmore, W.C., and M.W. Garrett. 1954 “Measurement of Two-dimensional
Fields, Part I: Theory.” Review of Scientific Instrument 25, no. 5, pp. 480–5.
doi: http://dx.doi.org/10.1063/1.1771105

[6] Dayton, I.E., F.C. Shoemaker, and R.F. Mozley. 1954. “Measurement of
Two-dimensional Fields, Part II: Study of a Quadrupole Magnet.” Review
of Scientific Instruments 25, no. 5, pp. 485–9. doi: http://dx.doi.org/
10.1063/1.1771107

Figure 6.21. Code for the FDI data plot function.

Figure 6.22. Plot window.

166 • FLEXIBLE TEST AUTOMATION

[7] Jain, A.K. April 1997. “Harmonic Coils.” CERN Accelerator School Pro-
ceedings, pp. 175–217. Anacapri, Italy: CERN Document Server.

[8] Bottura, L., and K.N. Henrichsen. 1997. “Standard Analysis Procedures
for Field Quality Measurement of the LHC Magnets—Part I: Harmonics.”
CERN Internal note EDMS 313621. Geneva, Switzerland: CERN Document
Server.

[9] Bottura, L., and K.N. Henrichsen. May 2002. “Field Measurements.” CERN
Accelerator School Proceedings. Erice, Sicily, Italy: CERN Document
Server.

[10] Bidon. S., J. Billan, F. Fischer, and C. Sanz. 1995. “New Technique of Fab-
rication of Search Coil for Magnetic Field Measurement by Harmonic Anal-
ysis.” In CERN Internal Note AT-MA 95-117. Geneva, Switzerland: CERN.

[11] DiMarco, J., and J. Krzywinsky. March 1996. Mtf Single Stretched Wire.
Technical report, Fermi National Accelerator Laboratory.

[12] DiMarco, J., H. Glass, M.J. Lamm, P. Schlabach, C. Sylvester, J. C. Tomp-
kins, and J. Krzywinsky. 2000. “Field Alignment in Quadrupole Magnets for
the LHC Interaction Region.” IEEE Transactions on Applied Superconduc-
tivity 10, No. 1, pp. 127–30. doi: http://dx.doi.org/10.1109/77.828192

[13] Bloenbergen, N., Purcell, E.M., and R.V. Pound. 1948. “Relaxation Effects
in Nuclear Magnetic Resonance Absorption.” Physical Review 73, no. 7,
pp. 679–712. doi: http://dx.doi.org/10.1103/physrev.73.679

[14] Hall, E.H. 1879. “On a New Action of the Magnet on Electric Currents.”
American Journal of Mathematics 2, no. 3, pp. 287–92. doi: http://dx.doi.
org/10.2307/2369245

[15] Pearson, G.L. 1948. “A Magnetic Field Strength Meter Employing the
Hall Effect in Germanium.” Review of Scientific Instruments 19, no. 4,
pp. 263–65. doi: http://dx.doi.org/10.1063/1.1741240

[16] Guerrero, A., J-J. Gras, J-L. Nougaret, M. Ludwig, M. Arruat, and
S. Jackson. 2003. “CERN Front-end Software Architecture for Accelerator
Controls.” In Proceedings of ICALEPCS2003. Gyeongiu, Korea: CERN.

[17] Nogiec, J.M., J. Di Marco, S. Kotelnikov, K. Trombly-Freytag, D. Walbridge,
and M. Tartaglia. Jun. 2006. “Configurable Component-based Software
System for Magnetic Field Measurements.” IEEE Tranactions On Applied
Superconductivity 16, no. 2, pp. 1382–85. doi: http://dx.doi.org/10.1109/
tasc.2005.869672

[18] Abeille, G., S. Pierre-Joseph, J. Guyot, M. Ounsy, S. Rubio, G. Strangolino,
and R. Passuello. October 10–14, 2011. “TANGO Archiving Service Sta-
tus.” 13th International Conference on Accelerator and Large Experimental
Physics Control Systems, pp. 127–30. Grenoble, France: Joint Accelerator
Conferences Website (JACoW).

[19] Madaro, L., A. Rijllard, R. Saban, L. Walckiers, L. Bottura, and P. Legrand.
1996. “A VME-Based Labview System for the Magnetic Measurements of
the LHC Prototype Dipoles.” In Proceedings of EPAC 96. Barcelona, Spain:
CRC Press.

THE FLEXIBLE FRAMEWORk • 167

[20] Walckiers, L. May 1992. “The Harmonic Coil Method.” In CERN Accelera-
tor School on Magnetic Measurements and Alignment. Geneva, Switzerland:
CERN.

[21] Arpaia, P., L. Bottura, L. Fiscarelli, and L. Walckiers. February 2012. “Per-
formance of a Fast Digital Integrator in On-field Magnetic Measurements for
Particle Accelerators.” AIP Review of Scientific Instruments 83, no. 2. doi:
10.1063/1.3673000

[22] Brooks, N.R., L. Bottura, J.G. Perez, O. Dunkel, and L. Walckiers. June
2008. “Estimation of Mechanical Vibrations of the LHC Fast Magnetic Mea-
surement System.” IEEE Transactions on Applied Superconductivity 18,
no. 2, pp. 1617–20. doi: http://dx.doi.org/10.1109/tasc.2008.921296

[23] Haverkamp, M., L. Bottura, E. Benedico, S. Sanfilippo, B. ten Haken, and
H.H.J. ten Kate. March 2002. “Field Decay and Snapback Measurements
Using a Fast Hall Plate Detector.” IEEE Transactions on Applied Supercon-
ductivity 12, no. 1, pp. 86–89. http://dx.doi.org/10.1109/tasc.2002.1018357

[24] Galbraith, P. 1993. “Portable Digital Integrator.” In Internal Technical Note
93-50, AT- MA/PF/fm. Geneva, Switzerland: CERN.

[25] Evesque, C. September 1999. “A New Challenge in Magnet Axis Transfer.”
In Proceedings of International Magnetic Measurement Workshop IMMW11.
Upton, NY: Brookhaven National Laboratory (USA).

[26] Carcagno, R., J. DiMarco, S. Kotelnikov, M. Lamm, A. Makulski,
V. Maroussov, R. Nehring, J. Nogiec, D. Orris, O. Poukhov, F. Prakoshin,
P. Schlabach, J.C. Tompkins, and G.V. Velev. 2006. “A Fast Continuous
Magnetic Field Measurement System Based on Digital Signal Processor.”
Applied Superconductivity, IEEE Transactions 16, no. 2, pp. 1374–77. http://
dx.doi.org/10.1109/TASC.2005.869702

[27] Pellico, W., and P. Colestock. May 12–16, 1997. “Pulsed Magnetic Field
Measurement Using a Ferrite Waveguide in a Phase Bridge Circuit.”
In Proceedings of the Particle Accelerator Conference 3, pp. 3716–8.
Vancouver, BC: IEEE.

[28] Arpaia, P., A. Masi, and G. Spiezia. April 2007. “A Digital Integrator for Fast
Accurate Measurement of Magnetic Flux by Rotating Coils.” IEEE Trans-
actions on Instrumentation and Measurement 56, no. 2, pp. 216–20. doi:
10.1109/TIM.2007.890787

[29] Arpaia, P., V. Inglese, G. Spiezia, and S. Tiso. June 2009. “Surface-Re-
sponse-Based Modeling of Digitizers: A Case Study on a Fast Digital Inte-
grator at CERN.” IEEE Transactions on Instrumentation and Measurement
58, no. 6, pp. 1919–28. doi: http://dx.doi.org/10.1109/tim.2008.2005855

[30] Arpaia, P., M. Buzio, O. Dunkel, D. Giloteaux, and G. Golluccio. May 3–6,
2010. “A Measurement System for Fast-Pulsed Magnets: A Case Study on
Linac4 at CERN.” IEEE International Instrumentation and Measurement
Technology Conference. Austin, TX: IEEE.

[31] Battaglia, M., A. De Roeck, J. Ellis, and D. Schulte. 2004. Physics at
the CLIC Multi-TeV Linear Collider. Technical Report, Report of the

168 • FLEXIBLE TEST AUTOMATION

CLIC Physics Working Group, CERN Report, ref. hep-ph/0412251, CERN-
2004-005.

[32] Golluccio, G., et al. June 3–7, 2013. “Overview of the Magnetic Measure-
ments Status for the MedAustron Project.” 18th International Magnetic Mea-
surement Workshop (IMMW18), Brookhaven, GA. Online: https://indico.bnl.
gov/conferenceDisplay.py?confId=609

[33] Sesame Computing Group. 2011. SESAME—Synchrotron-light for Experi-
mental Science and Applications in the Middle East, http://www.sesame.org.
jo/sesame/

[34] IEEE. 1999. Standard Glossary of Software Engineering Terminology
610.12-1990, Vol. 1. Los Alamitos, CA: IEEE Press.

[35] Gupta, R.K., C.N. Coelho, and G. De Micheli. 1992. “Synthesis and Sim-
ulation of Digital Systems Containing Interacting Hardware and Software
Components.” In Proceedings of the 29th ACM/IEEE Design Automation
Conference, pp. 225–30. Anaheim, CA: IEEE.

[36] Graunke, G., and S. Thakkar. June 1990. “Synchronization Algorithms for
Shared Memory Multiprocessors.” Computer 23, no. 6, pp. 68–69. doi:
http://dx.doi.org/10.1109/2.55501

[37] Praum, C. von, H.W. Cain, J. Choi, and K.D. Ryu. 2006. “Conditional Mem-
ory Ordering.” In Proceedings of the 33rd IEEE ISCA, pp. 41–52. Yorktown
Heights, NY: IBM T.J. Watson Research Center.

[38] Arpaia, P., L. Fiscarelli, G. La Commara, and F. Romano. January 2011 “A
Petri Net-Based Software Synchronizer for Automatic Measurement Sys-
tems.” IEEE Transactions on Instrumentation and Measurement 60, no. 1,
pp. 319–28. doi: http://dx.doi.org/10.1109/tim.2010.2046602

[39] Bosch, S.J. 1999. “Design of an Object-Oriented Framework for Measure-
ment Systems.” In Domain-specific Application Frameworks, eds. M. Fayad,
D. Schmidt, and R. Johnson, pp. 177–205. New York, NY: John Wiley ISBN:
0-471-33280-1.

[40] Wang, S., and K.G. Shin. August 2002. “Constructing Reconfigurable Soft-
ware for Machine Control Systems.” IEEE Transaction on Robotics and Auto-
mation 18, no. 4, pp. 474–86. doi: http://dx.doi.org/10.1109/tra.2002.802235

[41] Beck, J.E., J.M. Reagin, T.E. Sweeney, R.L. Anderson, and T.D. Garner.
June 2000. “Applying a Component-based Software Architecture to Robotic
Workcell Applications.” IEEE Transaction on Robotics and Automation 16,
no. 3, pp. 207–17. doi: http://dx.doi.org/10.1109/70.850639.

[42] Jennings, N.R. 1999. “Agent-based Computing: Promises and Perils.” In
Proceeding of the sixteenth International Joint Conference on Artificial
Intelligence (IJCAI), vol. 2, pp. 1429–36. Stockholm, Sweden: Morgan
Kaufmann.

[43] Pfister, C., and C. Szyperski. July 1996. “Why Objects Are Not Enough.” In
Proceeding of the First International Component Users Conference (CUC).
Munich, Germany: SIGS Publishers.

THE FLEXIBLE FRAMEWORk • 169

[44] Steinberg, D., F. Budinsky, M. Paternostro, and E. Merks. December 2008.
EMF: Eclipse Modeling Framework. 2nd ed. Reading, MA: Addison-Wesley.

[45] Gronback, R.C. March 2009. Eclipse Modeling Project: A Domain-Specific
Language (DSL) Toolkit. 1st ed. Reading, MA: Addison-Wesley.

[46] Bosch, J., and G. Hedin. April 1996. “Editors’s Introduction.” In Proceed-
ings ALEL’96 Workshop on Compiler Techniques for Application Domain
Languages and Extensible Language Models, Technical Report LU-CS-TR,
pp. 96–173. Lund, Sweden: Lund University.

[47] JavaCC is a Parser/Scanner Generator. January 2011. Java.net, http://java.
net/projects/javacc/

[48] Parr, T. December 2009. Language Implementation Patterns: Create Your
Own Domain-Specific and General Programming Languages. 1st ed.
Raleigh, NC: Pragmatic Bookshelf.

[49] Arpaia, P., L. Fiscarelli, and G. La Commara. February 2010. “Advanced
User Interface Generation in the Software Framework for Magnetic
Measurements at CERN.” Metrology and Measurement Systems 17, no. 1,
pp. 27–38. doi: http://dx.doi.org/10.2478/v10178-010-0003-y

CHAPTER 7

implementAtion

It is not enough for code to work.
―Robert C. Martin, Clean Code:

A Handbook of Agile Software Craftsmanship
tags: software 7 likes like

Every successful hardware has a software behind
―Thiru Voonna

7.1 OVERVIEW

In this chapter, a few implementation examples in C++ code of the most
significant parts of the Flexible Framework for Magnetic Measurements
(FFMM) at CERN are illustrated. The examples are chosen by referring to
the main layers of the framework architecture. In particular, for the base
service layer, implementation details for some of the active devices and
transducer classes are shown. For the core service layer, coding particu-
lars both about FaultDetector, the main class implementing the service of
fault detection, and IFault, the interface providing the prototypes of the
methods used by the service are presented. For the measurement service
layer, the implementation of both the Petri net’s based component aimed
at managing the software synchronization and its main classes, Labeled
Petri Net and Synchronizer, are shown in detail. For the user service layer,
in general, the creation of a new project in Eclipse, in order to define a
new domain specific language and, in particular, the implementation of the
Measurement Domain Specific Language (MDSL) are illustrated. Finally,
the chapter is completed by the analysis of the software quality of the
FFMM source code according to the standard ISO 9126: In particular,
main code quality metrics are computed by the tool Understand C++ and
architecture and design quality are assessed through the overview pyramid
by the tool inFusion.

172 •  FLEXIBLE TEST AUTOMATION

7.2 BASE SERVICE LAYER

In the following, implementation examples of the classes, (a) Commu
nicationBus, (b) Active Devices, and (c) Transducer of the Base Service
Layer are detailed.

7.2.1 CLASS COMMUNICATIONBUS

An automatic measurement system is composed of several cooperating
instruments. In most cases, the devices are connected to a central control
node (normally a PC) by means of different communication buses (e.g.,
IEEE488, PXI), handled by software components (communication ser-
vices) grouped in the base service layer of the framework architecture.

The communication services are designed according to the pattern
“Service Configurator” [1], for the following main motivations:

• A communication service must be initiated, suspended, resumed,
and terminated dynamically.

• A communication between the device and the controller is simpli-
fied by exploiting multiple independently developed and dynami-
cally configurable communication services.

• Multiple communication services can be managed easily or opti-
mized by configuring them through a single administrative unit.

Therefore, the configurator CommunicationBus [2] was introduced
with the following key participants (Figure 7.1):

• ICommunicationBus, specifying the interface containing the abs
tract methods (e.g., methods for initialization and termination) used

Figure 7.1. Structure of the configurator CommunicationBus.

EqphkiwtcvqtTgrqukvqt{

EqoowpkecvkqpDwuEqphkiwtcvqt

Components
ICommunicationBus

+openConnection() : void
+closeConnection() : void
<<setter>>+setConfiguration(i : lBusConfigurator) : void
+read(address : int, data, length : int)
++read(address : int, data : byte, length : int) : void()()
+write(address : int, data, length : int)

YqtfHKR TU454 RZK

IMPLEMENTATION •  173

by a CommunicationBusConfiguratorbased application to dynam-
ically configure each concrete communication bus.

• Concrete communication bus (e.g., WordFIP. RS232, PXI), imple-
menting the ICommunicationBus methods.

• ConfiguratorRepository, maintaining a repository of all communi-
cation buses. This allows the behavior of the communication ser-
vices to be managed and controlled by an administrative entity.

The behavior of the class managing the communication services Com
municationBus is characterized by three main phases (not all mandatory):

• Bus initialization. The configurator dynamically creates, initializes,
and adds a component to its repository that manages it at runtime.

• Bus use. In an application, a communication device performs its
processing tasks. The component configurator can suspend and
resume existing communication buses temporarily, for example,
during a reconfiguration.

• Bus termination. The configurator has the responsibility of shutting
down communication buses when they are no longer needed, in
order, to clean up their resources before terminating. After termina-
tion, the configurator removes the communication bus from the com-
ponent repository and unlinks it from the application’s address space.

Such a design is capable of providing the communication with an effi-
cient centralized administration. Furthermore, modularity and reusability
are improved. A communication bus does not need a predefined configu-
ration at run time, but it could be configured according to userspecified
settings. Figure 7.2 shows the class diagram of the communication ser-
vices architecture. The interface IBusConfigurator includes a method for
identifying the concrete bus configurator.

For each physical bus, a concrete configurator inherits IBusConfig
urator and implements a specific behavior. If a device changes its com-
munication channel (i.e., from RS232 to USB), only the concrete bus
configurator is to be substituted with another appropriate type.

The interface ICommunicationBus defines a mechanism for send-
ing and receiving data to and from components in an abstract way. Spe-
cific implementations are defined in the concrete communication buses
(e.g., the class PXI). The configuration at run time is carried out via a set
method in the communication bus.

A concrete CommunicationBus is instantiated by the static method
CreateCommunicationBus, provided by the class FactoryBus. Each
device uses the FactoryBus to obtain the specific bus instance depending

174 •  FLEXIBLE TEST AUTOMATION

Fi
gu

re
 7

.2
.

St
ru

ct
ur

e
of

 th
e

co
m

m
un

ic
at

io
n

se
rv

ic
es

.

+c
re

at
eI

C
om

m
un

ic
at

io
nB

us
(b

us
C

on
f :

 IB
us

C
on

fig
ur

at
or

)
: I

C
om

m
un

ic
at

io
nB

us

H
ce
vq
t{
D
w
u

<<
us

e>
>

<<
us

e>
>

IB
us

 c
on

fig
ur

at
or

+g
et

ID
()

 :
St

rin
g

I
R
KD
eq
p
hk
iw
tc
vq
t

G
vj
gt
p
gv
eq
p
hk
iw
tc
vq
t

Y
qt
nf
H
KR
eq
p
hk
iw
tc
vq
t

R
Z
KR
N
;2
52
eq
p
hk
iw
tc
vq
t

T
U
45
4e
qp
hk
iw
tc
vq
t

I
R
KD

T
U
45
4

R
Z
KR
N
Z
;2
52

IC
om

m
un

ic
at

io
nB

us

+s
et

C
on

fig
ur

at
io

n
: v

oi
d“

vi
rtu

al
 $

”
=

0

+o
pe

nC
on

ne
ct

io
n(

) :
 v

oi
d

+c
lo

se
C

on
ne

ct
io

n(
) :

 v
oi

d
+r

ea
d(

 a
dd

re
ss

 :
in

t,
da

ta
 :

vo
id

“$
 *

”,
 le

ng
th

 :
in

t)
 :

vo
id

+w
ri

te
(a

dd
re

ss
 :

in
t,

da
ta

 :
vo

id
“$

 *
”,

 le
ng

th
 :

in
t)

 :
vo

id
+g

et
By

te
Re

ad
y(

) :
 in

t

G
vj
gt
p
gv

+s
et

C
on

fig
ur

at
io

n
: v

oi
d“

vi
rtu

al
 $

”
-r

ea
dB

yt
es

 :
in

t

+E
th

er
ne

t()
 :

in
t

+~
Et

he
rn

et
()

+o
pe

nC
on

ne
ct

io
n(

) :
 v

oi
d

+c
lo

se
C

on
ne

ct
io

n(
) :

 v
oi

d
+r

ea
d(

 a
dd

re
ss

 :
in

t,
da

ta
 :

vo
id

“$
 *

”,
 le

ng
th

 :
in

t)
 :

vo
id

+w
rit

e(
 a

dd
re

ss
 :

in
t,

da
ta

 :
vo

id
“$

 *
”,

 le
ng

th
 :

in
t)

 :
vo

id

+g
et

B
yt

es
R

ea
d(

) :
 in

t Y
qt
nf
H
KR

IMPLEMENTATION •  175

on the configurator parameters. Bus implementation details are hidden to
devices, only the configurator has to be known.1

7.2.2 CLASS ACTIVE DEVICE

The class Active device [3] allows a wide reusability and flexibility of the
FFMM infrastructure to be achieved. The main design concept is the view
of objects as concurrent processes according to the design pattern “devices
like active objects” [3]. The “active object” can change its internal state
according to its internal operations executing within the object itself. The
object’s process recurrently executes these operations without any suspen-
sion due to other running processes.

Conceptually, an object or device requests a service from another
object, by sending a “service request” message. Apart from specific cases
to be treated separately, a serial execution, where an object waits for the
completion of a requested service before starting another one, is not nec-
essarily needed. Thus, the general model of interaction allows objects to
be executed concurrently as parallel processes [4].

In this context, an efficient strategy of measurement synchronization
can be introduced, where

• an active entity communicates with other objects by sending
messages;

• an object is composed of data, a communication module, an incom-
ing message queue, and its own execution context;

• each active object communicates only by sending messages, thus
they can run concurrently (each device runs in a separate thread).

A first design of this “active object” concept was applied to the log-
ging functions of FFMM [5]. Figure 7.3 highlights the communication
infrastructure between the active “object devices” and the Logging sub
system, used to store the data acquired by the measurement devices.

The FFMMLogger, the Synchronizer and the Devices can be viewed
as concurrent objects running in separate threads. As soon as the user (or
the TestManager [6]) asks for saving data, the Synchronizer sends a trig
ger message to the devices involved in the measurement session and to the
Logger Receiver. When the trigger message is received, the devices save

1An exhaustive treatment of the communication between the FFMM classes and
the actual devices can be found in [1].

176 •  FLEXIBLE TEST AUTOMATION

both their status and the measured data (e.g., a voltage value for the Mul
timeter or the position of the shaft from a MotorController). Finally, the
Logger Receiver sends a message to interrogate the devices and retrieve
the measurement data. Once collected, data are formatted in strings and
saved by the FFMMLogger in a file or another stream.

7.2.3 CLASS TRANSDUCER

The class Transducer was designed as a specialization of the interface
Measurement Device, common to all the devices used to handle a physical
measurement instrument controlled directly from the PC through a com-
munication bus (Figure 7.4).

Next, the use of the class Transducer in the application domain of
superconducting magnets tests, namely the measurement of (a) the sup-
ply current and (b) the temperature of a Large Hadron Collider dipole at
CERN, is highlighted.

For this purpose, specific methods are required in order to handle one
or more multimeters.

7.2.3.1 Class Current Meter

The high intensity of the current flowing in the winding of a LHC
superconducting magnet does not allow its direct measurement, and a

FFMMlogger
5. FFMMlogger formats the
string, following the Formatter
Pattern and save it Recorder

Data string to format

Logger receiver

3. Events from
device,

Data ready

Device 1 Device 2 Device 3 Device 4 Device 5

2. Data updating by
device

1. Software
trigger
event

Synchronizer

4. Logger reciever
read the data and put

It in a string

Device 6

Figure 7.3. Active component design for logging infrastructure.

IMPLEMENTATION •  177

highaccuracy Direct CurrentCurrent Transformer (DCCT, [7]) has to be
used. The primary current (equal to the current in the magnet) induces a
current in the secondary DCCT winding, injected in a stable resistor to
realize a voltage signal, where the signal is measured by a multimeter. The
primary current is subsequently computed as the product of this voltage
and the transduction factor, defined as the ratio between the maximal cur-
rent on the primary and maximum value of the voltage output.

The class Transducer provides three methods to carry out the current
measurement:

• static Transducer* createDevice (std::string name,MultimeterI*
mlVC)

• void setCurrentMeasurement(double Imax, double Vmax
• double getCurrent()

The method createDevice2 creates the Transducer object used to man-
age the measurement. Two parameters (name and mlVC) have to be pro-
vided. The name attribute uniquely identifies the object in the system. The
second one is a generic object implementing the multimeter interface.
The interface provides the transducer with the capability of using a mul-
timeter object irrespective of the particular underlying physical device.
An object, handling the multimeter connected to the DCCT, is passed to
the createDevice. A reference to the transducer performing as the object
Current Meter is returned.

2Each device in the FFMM project has a constructor method hidden in the create
Device in order to implement the singleton pattern: The instance of the device is
identified by a unique name; if a createDevice is used with a name of an already
present device, nothing is created and a reference to the existing object is returned.

Measurement_Device

Vtcpufwegt

+createDevice(multimeter1 : Multimeterl, multimeter2 : Multimeterl, name : String) : Transducer
+createDevice(multimeter1 : Multimeterl, name : String)

Figure 7.4. Diagram of the class Transducer.

178 •  FLEXIBLE TEST AUTOMATION

The setCurrentMeasurement method sets the transduction factor for
the considered DCCT, therefore Imax and Vmax have to be specified.

After creating and properly setting the object, the measurement of the
magnet current is carried out by means of the getCurrent method.

7.2.3.2 Class Cryo-Thermometer

The assessment of the magnet temperature is based on the measurement
of the resistance (Rthm) of a Resistance Temperature Detector (RTD), CER-
NOX CX [8]. Figure 7.5 shows the schematic of the employed circuit.
The sensor is placed inside the magnet on the steel collar, surrounding the
superconducting coils. The upper block is configured to carry out a four
leads resistance measurement. The conditioning block generates three
different excitation currents, I, through the sensor, depending on the resis-
tance range. The conditioner provides two corresponding outputs: VARI and
Vout. VARI is the Analog Range Indicator (ARI), indicating the resistance
range, and Vout the output signal. The resistance of the sensor is finally
computed as shown in Table 7.1.

Once the thermometer resistance Rthm has been calculated, the tem-
perature can be obtained by substituting Rthm in the calibration curve:

T R Z

R
Rthm

i

N

i
thm

i

() ln=

∑

0
(7.1)

where the resistance Rthm of the sensor is expressed in Ω, R0 is the resis-
tance at 0°C, Zi (i = 1, 2, …, 9) are the calibration coefficients in K used to
compute the curve [9], and T is the temperature in K. Usually, Equation 7.1
is provided in a tabular form, and the temperature is then computed via
linear interpolation.

Two multimeters are used to measure the two voltages VARI and Vout.
Analogous to the Current Meter, the class Transducer defines three

methods to implement the CryoThermometer object:

• static Transducer* createDevice(std::string name,MultimeterI*
ml1Data,MultimeterI* ml2G

• void setTemperatureMeasurement(std::string fileName)
• double getTemperature()

IMPLEMENTATION •  179

4 leads measurement
resistance scheme Thermometre CERNOX CX

1

U+ U+ U+ U+

U+ U− I+ I−
2 3 4

1 2 3 4 5 6

+24V DC

+24V

0V

0V 0=10VSTMS1

1 2 3 4
V+ V− I+ V−

+out −DNE +24v d1 d0

5

6

7 8 9 10 11 12

Conditioning block

Vout = 0-10V VARI = 2/4/6 V

Figure 7.5. Circuit schematic of the physical cryothermometer RTD, CERNOX
CX.

180 •  FLEXIBLE TEST AUTOMATION

The createDevice method creates an object Transducer working as a
Cryothermometer. It is an overloaded method. Its signature distinguishes
it from the analogous method used to create a Current Meter. The parame-
ter name identifies univocally the object in the system. Two generic multi-
meter objects, ml1Data and ml2IG, are needed in order to read VARI and Vout.

The setTemperatureMeasurement has as argument the name of the file
containing a tabular representation of Equation 7.1, and loads the table.

The getTemperature carries out the temperature measurement by
reading the VARI and Vout, computing Rthm, and interpolating the data stored
in the table to obtain the magnet’s temperature.

7.2.4 CLASS MIDIMOTORCONTROLLER

The class MidiMotorController is implemented in order to control a step-
per motor SIMPA 1 AXE [9]. The controller provides the functions to
drive the shaft of the rotating units used at CERN for the measurements
based on rotating coils (Chapter 6, Section 6.2.1).

Figure 7.6 shows the diagram of the class MotorController. Its inter-
face IMotorController identifies the methods common to different physi-
cal motor controllers.

The MidiMotorController implements the abstract class IMotor
Controller, with a specific code capable of handling the particular under-
lying physical object. An object MidiMotorController is created by the
following method:

Table 7.1. Computation of the sensor resistance Rthm

I VARI

30 Ω < Rthm < 400 Ω 100 µA 6 V Rthm = 40 × Vout

400 Ω < Rthm < 4000 Ω 10 µA 4 V Rthm = 400 × Vout

4000 Ω < Rthm < 40000 Ω 1 µA 2 V Rthm = 4000 × Vout

static MidiMotorController* createDevice(std::string name, std::string
mod, std::string ser_num, std::string man, int reduction, int comPort).

The method requires the following parameters identifying the devices:
name (unique name of the device), mod (model), ser_num (serial number),
and man (manufacturer). The second to last parameter reduction depends

IMPLEMENTATION •  181

on the particular gear mounted on the motor shaft, and, finally, comPort is
the RS232 port address, connected to the remote controller.

The method void EraseMotorMemory() erases the controller memory
in order to prevent instruction conflicts.

The interface IMotorController defines possible operation modes for
the motors, while the method void OperationMode(int OpMode) sets the
operation mode of the specified motor controller. Such a method is inher-
ited and implemented by MidiMotorController.

In the following, the three operation modes are described. In velocity
mode, the motor can turn in continuous rotation. The user can define a
target velocity and the acceleration and deceleration profile used to reach
it. An example is provided in Figure 7.7.

The following methods are available in velocity operation mode:

• void setVelocity(int velocity): sets the velocity in rpm (revolution per
minutes, positive in the clockwise direction or negative vice versa).

• void setAcceleration(int Acceleration): sets the acceleration or the
deceleration profile the motor has to follow to reach the desired
velocity.

IMotorController

+setOriginPosition()
+setAcceleration(accele : int)
+setVelocity(vel : int)
+getAcceleration() : int
+getTargetVelocity() : int
+getPosition() : int
+getTargetPosition : int()
+moveToAbsolutePosition()
+moveToRelativePosition()
+moveToOrgin()
+start()
+stop()
+convertToStep(degree : float)

OczqpaGrqu REW4222 Okfkoqvqteqpvtqnngt

Figure 7.6. Diagram of the class MotorController.

182 •  FLEXIBLE TEST AUTOMATION

Ceegngtcvkqp"*tro1u+

Ceegngtcvkqp"Rtqhkng""xu"Vkog

*c+

Xgnqekv{"*tro+

Xgnqekv{"xu"Vkog

*d+

Figure 7.7. Acceleration profile (a) and velocity profile (b).

• int getTargetVelocity(): returns the velocity set by setVelocity (rpm).
• int getAcceleration(): returns the acceleration set by setAccelera

tion (rpm/s).
• void start(): enables a continuous rotation with the desired target

velocity and acceleration profile.
• void stop(): the motor is stopped with the desired deceleration.

IMPLEMENTATION •  183

The set and get methods, discussed for the velocity mode, are avail-
able also with the positioning mode operation. In this case, the motion of
the motor starts and ends in a defined angular position, determined by an
angular encoder. The positioning motion can be absolute or relative. In
the former case, the end point is determined by an absolute position value
defined with respect to a zero position, identified by means of a home
sensor. In the relative position mode, the end point is defined with respect
to the current position.

The following methods are used for the absolute and relative
positioning:

• void moveToAbsolutePosition(int step) moves the axis to the abso-
lute position referred to a null point, whose default value can be
changed through the OriginPosition()3 method. The parameter
value is the number of steps. As an example, for the motor consid-
ered, a whole turn is completed in 1611 steps.

• void moveToRelativePosition(int step) moves the axis of the given
number of steps starting from the current position. The step value
can be either positive or negative according to the direction. To
simplify the motor shaft positioning, a method to convert angu-
lar position in degrees to the corresponding number of steps was
implemented.

• int convertToStep(float degree): returns the value of step corre-
sponding to the degree value.

7.2.5 CLASS Fast Digital Integrator

The class FastDI allows the remote control of the Fast Digital Integrator
(FDI) by means of the PXI communication bus [10]. The files FastDI.h and
FastDI.cpp contain the definition of the class and the implementation of their
methods, respectively. In the file headers, all the methods are described, by
specifying the functions, the input and output parameters, and the method
preconditions. In the following, the main functions of the class are outlined.

The constructors are hidden in the methods createDevice. In particular:

• static FastDI* createDevice(std::string name) is the default
function; and

3setOriginPosition(), defined in the interface and implemented in the MidiMo
torController class, sets the actual position as zero reference for the motor controller.

184 •  FLEXIBLE TEST AUTOMATION

• static FastDI* createDevice(std::string name, std::string mod,
std::string ser_num, std::string man), where
{{ name is the name of the device;
{{ mod is the device model;
{{ ser_num is the device serial number; and
{{ man is the device manufacturer.

creates the device FDI and specifies its communication parameters.

The following methods specify the communication bus parameters
and open the communications:

• void configure(int bus, int slot, U8 barindex = 2, bool remap = 0,
ACCESS_TYPE ac = BitSize32, int to_meas = 25)

• int Set_Communication_Bus(int bus, int slot, U8 barindex = 2, bool
remap = FALSE, ACCESS_TYPE ac = BitSize32, int to_meas = 25)

By means of the following parameters:

• bus, specifying the bus position in the PXI crate
• slot, specifying the slot position in the PXI crate
• barindex, a communication parameter with default value 2
• remap, controlling the virtual remapping; remap = 0 implies no vir-

tual addressing (default value)
• ac, the access type on the bus
• to_meas, specifying the maximum time interval between two mea-

surement points. It must be set according to the trigger frequency
• int Close_Communication_Bus(), closing the communication bus

{{ static void deleteDevice(std::string name), deleting the device

The parameters of the devices are set for the desired type of measurement
by means of the following methods:

1. int setGain(double gain), setting the gain value
2. int set_ADC_Rate(int rate), setting the ADC sampling
3. int setSamplesNumber(int sample) sets the parameter “sam-

ple” (sample number) and specifies the number of samples to
be acquired in case of a finite acquisition by setting the internal
parameters NumberofTurn and Number_of_trigger_per_turn. The
product of those parameters is the sample number to be acquired.
NumberofTurn is the register of FDI containing number of turn for a
finite acquisition (as a power of two). Number_of_trigger_per_turn
is the number of trigger in each turn

IMPLEMENTATION •  185

4. int Set_Number_of_Turns(int sample), setting the number of sam-
ples per turn

5. void setTimeoutMeas(int timeout) setting the timeout measurement,
defined as the maximum time to waiting for the start of measurement

6. int Set_Number_of_Trigger_per_Turn(int trigger), setting the num-
ber of triggers per turn and establishing the total number of samples
to be read in case of finite acquisition

7. int set_Buffer_Acquisition_Size(int size), setting the FDI’s param-
eter BufferSizeAcquisition and specifying the block length of the
FDI memory to be read. The size value must be a power of 2 and
cannot be greater than the half of the FDI memory size (4096 word
of 32 bit)

8. int set_Reading_Number_Per_Event(int events), setting the param-
eter Reading_Number_per_Event and specifying the number of
values to be read for each trigger pulse

The set methods are summarized in the method setFDI(int sample
Number, double gain, SAMPLE_MODE mode, double rate, int buffsize,
int timeoutMeas, int readEvent), which applies all the main settings of the
instrument.

The following methods sets the FDI:

• int getADCRate(double *rate), saving in “rate” the ADC sampling
rate

• int getGain(double *gain), saving in “gain” the FDI gain
• int getSampleNumber(int *sampleNumber), holding in “sample-

number” the parameter set by “setSampleNumber”
• int getTimeoutMeas () const, holding in “timeout” the value set by

“setTimeoutMeas”
• int Read_Number_of_Turns (int*), getting the number of samples

per turns
• int Read_Number_of_Trigger_per_Turn(int*), setting the number

of trigger events per turn
• int Read_Buffer_Acquisition_Size (int* buffsize), saving in “buff-

size” the value set by “int set_Buffer_Acquisition_Size”
• int Read_Reading_Number_per_Event (int* event), holding in

“event” the value of the FDI parameters Reading_Number_per_
Event

The FDI is calibrated by means of the following functions:

• int Calibrate(double gain). It calibrates the gain specified as input
parameter. If the input parameter is −1, then the calibration of all the

186 •  FLEXIBLE TEST AUTOMATION

gains is launched. The method called without arguments launches
the calibration for the current gain.

• void Calibrate_Cmd (), sending the calibration command.
• int Calibrate (void), launching the calibration for the current gain.

Capabilities of status check are provided in order to control the opera-
tion of the device. The method used to read the status register is:

• int Read_state(int *state), which reads the instrument status regis-
ter and saves the value in the argument pointer.

The acquisition procedure consists of four steps by the following
functions:

• void start(), which puts the FDI in Measurement acquisition wait-
ing for the first trigger.

• int PollingDataready(): It waits for the set of the bit dataready, it
returns 0 if the operation was successful.

• int ReadBlock (int Address, float * pData), reading a memory block
of the size specified by bufferAcquisitionsize (32 bit) after the poll-
ing on the dataready bit. Address is the starting address, pData is
the pointer for the data.

• int ReadBlock2 (int Address, void *pData), reading a block mem-
ory of the size specified by bufferAcquisitionsize (32 bit). Polling
is not done in this function. Address is the starting address, pData
is the pointer for the data.

• Int stop(), stops the acquisition if a continue acquisition is set. If
the acquisition is a finite acquisition, the stop has no effect, because
the measure procedure stops when the given sample number is
reached.

• int Finite_Acquisition (std::string file_name), handles an acquisi-
tion of a finite number of samples previously specified. It manages
also the start of the acquisition and data saving. It is a blocking
function, so it will be called in a separate thread. It’s arranged in
three parts: start, polling, and read Block. Until the number of
sample (set by setNumberOfSample) is reached it calls the poll
ingReady(). If the return value of the pollingReady() is zero, it
invokes readBlock().

• int Stop_Acquisition (),stops the current acquisition.

When an acquisition starts and stops, the FDI sends an event to the lis-
teners. These events (start and stop event) don’t contain any data. The read

IMPLEMENTATION •  187

block event informs the framework about the reading of a FDI’s memory
block. The generated event object contains the read data, a pointer to the
current read block, and the number of remaining blocks. The following
method is used to generate timeout event:

• int FDITimeout(time_t tstart, int timeout) detects a timeout con-
dition; it starts counting from tstart; if m_timeout is exceeded the
function returns 1, otherwise 0. If a timeout elapses, an error event
will be launched containing the timeout reached, a time out condi-
tion can be detected by FDITimeout, when the block is due to an
internal error of FDI, but the same error will be launched conse-
quently to a communication bus timeout.

7.3 CORE SERVICE LAYER

7.3.1 FAULT DETECTOR

In this section, the classes implementing the service of fault detection are
detailed. The objective of such classes is to handle device faults. This ser-
vice is hidden to the FFMM user. As in the Event Handling service, the
fault detection strategy uses the Event_info objects to store information
about Fault Events. For each device, the Event_info, fault_info, is defined.
In this case, the Event_info is composed of four nodes:

• “DEV_TYPE”: identifies the device
• “SENDER_METHOD”: the method of device that threw the fault
• “STATUS”: the device status
• “ERROR”: the error type

Each Fault Event notification can be either preceded or followed by
fault_info as in the following:

fault_info.erase_insert(“SENDER_METHOD”,”NameMethod”)
fault_info.erase_insert(“STATUS”, “NameStatus”)
fault_info.erase_insert(“ERROR”,”Message Error”)
name_fault.notify(this,fault_info)

The structured information is used by the Fault Detector to know
exactly where the Fault Event was notified, and how to react.

Then, in the following section, the implementation of the Fault Detec
tor class and the IFault interface are shown.

188 •  FLEXIBLE TEST AUTOMATION

7.3.1.1 Class FaultDetector

The fault detection policy is based on the communication of Fault Events
from the device involved in a measurement application to the Fault Detec
tor. The reaction to a faulty condition consists of (a) adding the Fault
Detector as listener of the Fault Events, and (b) for each fault category,
implementing a reaction method (invoked at the occurrence of a fault).

The constructor method is used in a macro DEVICE_CREATION
inside the method script defined in the file ffmm.h:

• Fault_Detector(TestManager* tm)
{{ In such a way, the Fault Detection service in FFMM is hidden to

the final user. About reaction methods, different types of Faults
are available: Fatal, Configuration, Warning, and Local, with
corresponding distinct reaction methods. Methods to add and
remove listener to Fault events are defined too. The architec-
ture of the Fault Detector is analogous to the Event Handling.
In fact, the method adding and removing are implemented by
using the Delegate by POCO libraries.

In the following, the implementation of the fault methods is illustrated.

Fatal Fault Methods

The occurrence fault classified as fatal involves the end of the measure-
ment operations. For this reason, the Fault Detector policy is centralized
in the following methods:

• void addOnFatalFault(vector<Virtual_Device*> vl).
/*Precondition: An array of all the registered devices has to be
available (referring to the class Virtual Device). Postcondition: On
all the registered devices, the Fault Detector is added as listener
of the event fatal fault.*/ The method addOnFatalFault enables to
handle the fatal faults that can occur in a measurement session. The
argument is the array of the registered Virtual_Device, which con-
tains the pointers to the overall Devices involved in the measure-
ment application.
When a Fatal Fault occurs, the Fault Detector calls the reaction
method:

• void reactFatalFault(const void* pSender, Event_info& arg);

IMPLEMENTATION •  189

The arguments “pSender” and “arg” are the sender device and
the fault info, respectively. The method reactFatalFault ends the
application, after which all the devices are brought back to the safe
state. Each device implements the response to a Fatal Fault via the
method onFatalFault, called by the Fault Detector.

Configuration Fault Methods

A Configuration Fault can occur during the devices configuration phase.

• void addOnConfigurationFault()
/*Precondition: A vector of all registered devices has to be avail-
able (that vector has to be set by addOnFatalFault before using
the method). Postcondition: on all the registered devices the Fault
Detector is added as unique listener of the Event Configuration
Fault*/ Such a method is used in the macro DEVICE_CONFIGU-
RATION inside the script method defined in the ffmm.h header file.
About the reaction method to Configuration Fault, the FAULT
DETECTOR calls the methods onConfigurationFault implemented
in each devices.

• void reactConfigurationFault(const void* pSender, Event_info& arg)
The method aims at reacting to a wrong state of the device bus open
connection operation.

Warning Fault Methods

The warning fault can occur during each phase of a measurement applica-
tion. The following method enables to handle the Warning fault:

• void addOnWarningFault()
/*Precondition: a vector of all the registered devices has to be avail-
able (the same vector set in addOnFatalFault(). Postcondition: for
all the devices, the Fault Detector is added as listener of Warning
Fault.*/ In the ffmm.h header file, this method is used in a macro
SET_DEVICE. Different from other faults, the reaction method
calls other private methods, which are implemented in the class
Fault Detector. The response depends on the device.

• void reactWarningFault(const void* pSender, Event_info& arg).
The Fault Detector manages the Warning Fault Occurrence using
other specified methods specialized for each device and called in

190 •  FLEXIBLE TEST AUTOMATION

the reaction methods. In particular, only the reaction to warning
fault was directly implemented: more sophisticated behaviors were
not needed.4 Private methods are implemented in order to provide
better warning handling:
{{ void FDI_warningFault(Virtual_Device* dv, Event_info& arg)
{{ void FDI_Cluster_warningFault(Virtual_Device* dv, Event_

info& arg)
{{ void EncoderBoard_warningFault(Virtual_Device*dv, Event_

info& arg)
{{ void MidiMotorController_warningFault(Virtual_Device* dv,

Event_info& arg)
{{ void Maxon_Epos_warningFault(Virtual_Device* dv, Event_

info& arg)
{{ void Keithley2k_warningFault(Virtual_Device* dv, Event_

info& arg)
{{ void LVPowerSupply_warningFault(Virtual_Device* dv,

Event_info & arg)

In such a way, each device has a different warning fault policy. The
policy concerns in particular the logging of messages.

Local Fault Methods

The Local Fault notifies a situation of a component in a not recoverable
faulty status. In this case, the component is excluded from the application.
The method that defines the listener of this fault is:

• void addOnLocalFault().
/* Precondition: a vector of all the registered devices has to be
available (the same vector set in addOnFatalFault). Postcondition:
on all the devices the Fault Detector is added as listener of Local
Fault*/. In the ffmm.h header file, this method is used in the macro
SET_DEVICE. In order to properly react to a local fault, the Event_
info has to be filled with the following format: “Device_Type,” that
identifies the device; “Method,” the method of the device that threw
the fault; and “fault ID,” fault identification code. Then the reaction
method is defined as:
{{ void reactLocalFault(const void* pSender, Event_info& arg).

4The other fault types are handled within the reaction method.

IMPLEMENTATION •  191

7.3.1.2 Interface IFault

The interface IFault provides the prototypes of the methods used by the
Fault Detection service. This interface is inherited by all the devices. The
concrete implementation of the interface is carried out inside the devices.
In the following, the IFault interface is shown:

• virtual void onFatalFault(){}
• virtual void onConfigurationFault(){}
• virtual void onWarningFault(){}
• virtual void onWarningFault(int level){}
• virtual void onLocalFault(){}

The method onFatalFault is the primary response to Fatal Fault, and
it is implemented in order to stop the devices and the application. Inside of
every device, the onConfigurationFault is implemented in a similar way;
it deals with the configuration of a device. In regards to the onWarning
Fault, there are two versions of prototypes. In case of a Warning Fault,
the response is usually the logging of messages to console, to file, or both.
Dealing with the onLocalFault, not all the devices implement the method.
The method either excludes the device from the application or carries it
toward the ready state. The remaining method is:

• virtual Event_info onCleanFault(){Event_info inf; return inf;}

In all the devices, this method is used for cleaning a device ad state
(from a previous anomalous application end).

7.4 MEASUREMENT SERVICE LAYER

7.4.1 SYNCHRONIZER

In the following, the implementation of the Petri net’s (PN) based com-
ponents, the classes Labeled Petri Net (LPN) and Synchronizer, are
described. The basic idea is to have a software component being able to
manage the execution of several generic tasks.

The Synchronizer illustrated here is based on the concept of an Exe-
cution Graph (Figure 4.12, Chapter 4). The Execution Graph is a set of
nodes (task or event), and arrows interconnecting them. To model an Exe-

192 •  FLEXIBLE TEST AUTOMATION

cution Graph, the Synchronizer uses the object PN. There are two types
of node: Place and Transition. Each node is connected via an oriented arc
(Figure 4.12, Chapter 4). Therefore, Place, Transition, and Arc are the basic
components of a PN. As described in Chapter 4, an LPN is proposed for
extending the PN. In the LPN, each Place and Transition has an associated
label in order to allow the definition of different classes for both of them.

7.4.1.1 Basic Petri Net Component

In the following, the implementation of the classes and the interfaces for
(a) Place, (b) Transition, and (c) Arc are described.

• Place
The Place object represents the condition status of a node. Each
Task Node has three Places, defining the three available states:
EXECUTE, FREEZE, and TERMINATE, while each Event Node
has one Place, TRIGGERED. The Places can contain tokens; the
current state of the modeled system is given by the number (and
type if they are distinguishable) of tokens in each place. This oper-
ation is called “marking” of tokens. The constructor method is:
{{ Place(string id, string label, int tokens)

The string id defines a member of a node, the string label identifies
the Place type within the node and the int tokens is the value giving
the number of tokens inside Place. In this class, two private vectors
are defined:

{{ vector<Arc*> inArcs
{{ vector<Arc*> outArcs

useful to store all the Arcs objects that entry and exit from a Place.
For this, the methods Add(Arc) and Get(Arc) are implemented:
• void addInArc(Arc* inArc)

{{ void addOutArc(Arc* outArc)
{{ vector<Arc*> getInArcs(void)
{{ vector<Arc*> getOutArcs(void)

• Transition
The object Transition represents the events or actions that can occur
in a graph between two Places. Transitions are active components,
defining the two Events of Task Node, START and STOP, and one
event of the Event Node, TRIG. They model the activities (the tran-
sition fires), thus changing the state of the system (the marking of
the PN). Transitions are only allowed to fire if they are enabled,

IMPLEMENTATION •  193

which means that all the preconditions for the activity must be ful-
filled (there are enough tokens available in the input Places). When
the transition fires, it removes tokens from its input Places and adds
some of them at all of its output Places. The number of tokens
removed and /added depends on the cardinality of each Arc. In the
constructor method:

• Transition(string id, string label, int priority, bool enable = true)
the string id defines the node of membership, the string label iden-
tifies the Transition type within the node, the int priority establishes
if one Transition has priority, and the bool enable defines if the
Transition is enabled. The following methods are implemented:
{{ bool isEnable(void), verifying if the transition is enabled
{{ void setEnable(bool enable), setting the enabled transition
{{ bool tryToEnable(void), it trying to enable the transition

Such as the class Place, two vectors to store the Inner Arc and
Outer Arc of Transition, and the methods Add(Arc) and Get(Arc)
are implemented.

• Arc
The object Arc represents the connection between Places and Tran
sitions. Input Arcs connect Places with Transitions, while Output
Arcs start at a Transition and end at a Place. In the constructor
method:
{{ Arc(string id, string label, Place* place, Transition* transition,

int weigh = 1),
the string id defines the node of membership, the label identifies the
Arc type, Inner or Outer, place and transition are pointers at Place
and Transitions, respectively; and the integer weigh is the cardinal-
ity of the Arc (this establishes the number of tokens removed and
added). Also in this case, Set and Get methods are implemented for
these arguments.

7.4.1.2 Class Labeled Petri Net

PN is a formalism particularly suited for asynchronous and parallel system
specification and analysis. The basic feature is the capability of simultane-
ously presenting control and data flows in concurrent systems. The graph-
ical representation of the network is a dual graph containing two types of
nodes, Places and Transitions. The nodes are connected by directed Arcs.
An Arc cannot connect the nodes of the same type. Places in the network
contain tokens and are represented as circles or ellipses (states), while

194 •  FLEXIBLE TEST AUTOMATION

Transitions are displayed as rectangles (simulating events). Classical PNs
are extended as LPNs in order to offer a more consistent description, and
to simplify modeling and analysis. In an LPN, each Place or Transition has
an associated label to model, in addition to, managing different classes. In
the following, the implementation of LPN class is shown for (1) Place,
(2) Transition, and (3) Arc methods.

Place Methods

The following Place Methods are implemented to insert and carry out a
Place in the reference graph:

• Place* addPlace(string id, string label, int nTokens): It adds a
new place with specified id (identification nod), label (identifica-
tion type of Place), and number of Tokens. The label string can
assume three values in Task Node (EXECUTE, FREEZE, and
TERMINATE), and one value in Event Node (TRIGGERED).

• Place* getPlace(string id, string label): it looks for a Place with
specified id and label (to see addPlace).

Transition Methods

Analogously, add and get Methods are implemented:

• Transition* addTransition(string id, string label, int nTokens): It
adds a new Transition in the graph. The variable id is the identi-
fication Node, label is the type of Transition, and nTokens is the
number of Tokens. The label string can assume two values in a Task
Node (START and STOP), and one value in an Event Node (TRIG).

• Transition* getTransition(string expectedTransId, string expect
edTransitionLabel): it looks for a Transition with specified id and
label (to see addTransition).

The following methods are used to get information about the state
of a Transition, that is, if it is enabled or disabled. Both the methods use
getTransition to identify the specified Transition, and they check the state
by means of method isEnable (Transition class).

• Transition* getTransitionEnabled(string expectedTransId, string
expectedTransitionLabel)

• Transition* getTransitionDisabled(string expectedTransId, string
expectedTransitionLabel)

IMPLEMENTATION •  195

Moreover, the last method about Transition implements the possibil-
ity to check all the Transitions enabled in a PN:

• vector<Transition*> getTransitionsEnabled(void)

Regarding the Transition of type TRIG, the following method was
implemented, which is usually used when a Transition is to be triggered
with another one (Event Node):

• bool trigTransition(string transitionId, string transitionLabel, string
transitionOutArcId = “”, string transitionOutArcLabel = “”)

The implementation of the precedent method follows these steps:

• Verify that transition is enabled and disable it
• Remove n tokens from previous places (with n = in arc weigh)

{{ Select one arc to pass through
{{ Select the first out arc (lazy trigger)

• Select the required out arc (deterministic trigger)
• Add n tokens to the place pointed by selected out arc (with n = out

arc weigh)
• Enable transition with inarc weigh greater of inplace tokens

Arc Methods

Arc Methods manage all the connections between Places and Transitions:

• Arc* addPlaceToTransitionArc(string id, string label, Place* place,
Transition* transition, int weigh = 1): it defines a new Arc from
Place to Transition;

• Arc* addTransitionToPlaceArc(string id, string label, Transition*
transition, Place* place, int weigh = 1): it defines a new Arc from
Transition to Place.

7.4.1.3 Class Synchronizer

The class Synchronizer is aimed at building the Execution Graph, by add-
ing a node, an event, or an arrow, with the possibility of querying the Exe-
cution Graph, by determining the executable nodes, the end node, and the
loop detection. Moreover, another feature is the capability of updating the
graph, by forcing the execution dynamics: execute, terminate, or freeze
a node, notify an event, and so on. To achieve this objective, the class
Synchronizer uses LPN, Transition, Place, and Arc classes.

196 •  FLEXIBLE TEST AUTOMATION

In the ensuing text, the implementation of the Synchronizer is pre-
sented. The constructor method is:

• Synchronizer(void): it creates a new Petri Net object, and the
destructor method

• ~Synchronizer(void): it deletes the Petri Net object.

The methods are divided into three groups: Task Node, Event Node,
and Node Status.

Task Node Methods

In succession, the methods for adding a Task Node in the Execution Graph
are:

• void addRootNode(string nodeId): it adds a Root Task Node to the
Execution Graph, with nodeId defined.

• void addInnerNode(string nodeId): it adds an Inner Task Node;

A Task Node has three possible Places (states) and two possi-
ble Transitions (events). In the implementation, the first two methods,
addRootNode and addInnerNode use a private method, addNode. The fol-
lowing method has the aim of defining an Arrow (connection) between
two Task Nodes:

• void addTaskToTaskArrow(string idSrcNode, string idDstNode)

It takes like arguments, the idSrcNode string of Source Node, and the
idDstNode string of Destination Node.

Two Get methods are implemented to know which Nodes are execut-
able, and the end nodes to execute:

• vector<string> getExecutableNodes(void): It gets a vector with
all the executable nodes. Nodes are executable when their transi-
tions are with “START” label.

• set<string>* getEndNodes(void): it gets all end Task Node.

Event Node Methods

In the following, the entire Event Node methods are described. An Event
Node is made up of two elements, a Place (TRIGGERED) and a Transi
tion (TRIG). The following method:

IMPLEMENTATION •  197

• void addEventNode(string genericEventId)
adds an Event Node. The following method defines an Arrow (con-
nection) between a Task Node and an Event Node:

• void addEventToTaskArrow(string idSrcGenericEvent, string
idDstNode).

It takes like arguments, the idSrcGenericEvent string of Source Event
Node, and the idDstNode string of Destination Task Node. For the Event
Node, another method:

• bool notifyEvent(string nodeId)

is used to notify an Event. The Event notification gives the start to TRIG
Transition of Event Node. This mechanism allows the execution of the
Task Nodes connected to Event Node.

Node Status Methods

The following methods are implemented for managing and checking the
Node Status, by allowing a Node to be set in a particular state. The status
methods are as follows:

• void setNodeExecutable(string nodeId): It sets a Task Node in Exe-
cutable status. This method enables the START Transition in the
node to make the EXECUTE Place available.

• bool execute(string nodeId): It sets the nodeId Node in EXECUTE
Place, throwing the trigTransition.

• bool terminate(string nodeId): It sets the Node in terminate status.
This method enables the STOP Transition that makes available the
TERMINATE Place, by means of STOP_TERMINATE Arc.

• bool freeze(string nodeId): It sets the Node in freeze status. This
method enables the STOP Transition that makes available the
FREEZE Place by means of STOP_FREEZED Arc.

• bool unFreeze(string nodeId): It sets the Node in unfreeze status.
This method enables the START Transition that makes available
the EXECUTE Place.

The last method is used to check the status of the Execution Graph, by
checking the possible Loop status, that is, the lack of End Nodes:

• bool checkLoop(void)

198 •  FLEXIBLE TEST AUTOMATION

7.5 USER SERVICE LAYER

7.5.1 MEASUREMENT DOMAIN SPECIFIC LANGUAGE

The first part of this section shows how to create a new project in Eclipse
by using the plugin openArchitectureWare (oAW) in order to define a new
DSL. The second part shows how the new language Measurement Domain
Specific Language (MDSL) is implemented.

7.5.1.1 Eclipse Platform

The free and open source software platform Eclipse is exploited for DSL
development. Eclipse is a multilanguage platform that includes an inte-
grated development environment (IDE) and a plugin system for its exten-
sion. It is written primarily in Java and is used to develop applications
using the same language, but by means of various plugins, other languages
can also be utilized in code writing, namely, C, C++, COBOL, Python,
Perl, PHP, and so on.

Eclipse employs plugins in order to provide all of its functions on top
of (and including) the runtime system, in spite of some other applications
where the function is typically hard coded. The runtime system of Eclipse
is based on Equinox, an OSGi standard compliant implementation. This
plugin mechanism is a lightweight software componentry framework.

The key to the seamless integration (but not of seamless interoper-
ability) of tools with Eclipse is the plugin. Except for a small runtime
kernel, everything in Eclipse is a plugin. This means that each developed
plugin integrates with Eclipse exactly as other plugins; in this respect, all
features are created equal. Eclipse provides plugins for a wide variety of
features, some of which arise from third parties using both free and com-
mercial models. Examples of plugins include UML plugin for Sequence
and other UML diagrams, plugin for Database explorer, and many others.
The Eclipse SDK includes the Eclipse Java Development Tools, offer-
ing an IDE with a builtin incremental Java compiler and a full model of
the Java source files. This allows for advanced refactoring techniques and
code analysis. The IDE also makes use of a workspace, in this case a set
of metadata over a flat filespace allowing external file modifications as
long as the corresponding workspace “resource” is refreshed afterwards.
Eclipse’s widgets are implemented by a toolkit for Java called Standard
Widget Toolkit (SWT), unlike most Java applications, which use the stan-
dard Abstract Window Toolkit (AWT) or Swing. Eclipse’s user interface

IMPLEMENTATION •  199

also uses an intermediate GUI layer called JFace, which simplifies the
construction of applications based on SWT.

openArchitectureWare

When starting a new project in order to define a new language, first a
xText project must be created. In this book, xText projects are based on the
Eclipse plugin architecture openArchitectureWare (oAW). This section
aims at illustrating the definition of external DSLs using tools from the
Eclipse Modeling Project (EMP).

oAW is currently one of the most used frameworks. Much of this suc-
cess derives from its flexibility: Rather than providing premade generator
templates, oAW serves as a generator toolkit and enables users to easily
create tailored generator solutions that really fit their needs. Besides this
flexibility, oAW users benefit also from the tight integration with Eclipse:
Not only does oAW come with an array of editors that make writing tem-
plates and workflows an easy task but also delivers refactoring support,
easy navigation, an incremental project builder, and a debugger. It sup-
ports parsing of arbitrary models, and a language family to check and
transform models, as well as generate code based on them. Supporting
editors are based on the Eclipse platform. oAW has strong support for
Eclipse Modeling Framework (EMF)based models but can work also
with other models, for example, UML2, XML, or simple JavaBeans. At
the core, a workflow engine allows the definition of generator and trans-
formation workflows. A number of prebuilt workflow components can be
used for reading and instantiating models, checking them for constraint
violations, transforming them into other models, and, then finally, for gen-
erating code. In other words, oAW helps with meta-modeling, constraint
checking, code generation, and model transformation.

More recently, the framework xText has been developed to support the
creation of textual DSLs. First, the DSL is defined in an xText grammar,
then the xText framework is exploited to generate a parser, an Ecorebased
metamodel, and a textual editor for Eclipse. Afterwards, the DSL and
its editor are refined by means of xTend extensions. Finally, the template
language xPand is exploited to generate code out of textual models. The
actual content of this example is rather trivial: The DSL will describe enti-
ties with properties and references between them from which Java classes
are generated according to the JavaBean conventions, a rather typical data
model. In an actual scenario, also persistence mappings and so on can be
generated from the same models.

200 •  FLEXIBLE TEST AUTOMATION

xText Project

xText is part of the oAW project, which is in turn part of Eclipse Genera-
tive Modeling Technologies (GMT). Based on an Extended Backus–Naur
Form (EBNF) like notation, xText generates the following artefacts:

• A set of Abstract Syntax Tree (AST) classes represented as an
EMFbased metamodel.

• A parser that can read the textual syntax and returns an EMFbased
AST (model).

• A number of helper artifacts to embed the parser in an oAW
workflow.

• An Eclipse editor that provides syntax highlighting, code com-
pletion, code folding, a configurable outline view, and static error
checking for the given syntax.

xText starts from a description of a textual syntax (the grammar) and
derives an AST class model (the metamodel) from that concrete syntax defi-
nition. Cross references within the same model or through different models
can be linked separately from the textual syntax description. Linking can
be a quite complicated process if scopes, namespaces, and visibility of ele-
ments are considered: It is crucial for a textual language framework to allow
parsing and linking to be separated. Parsing and linking separation helps to
implement more sophisticated linking logic independently of the concrete
syntax. Additionally, the AST can be checked before doing additional link-
ing and transformations. In some cases, the user doesn’t even want to link
references upfront, but wants them to be looked up dynamically.

Linking in xText can be done in several ways. The easiest way is to
make use of so called extensions, that is, operations that can be annotated
to existing meta-classes. Another solution is to transform the AST to an
“actual” metamodel. This has the additional advantage that the concrete
syntax can be changed, or several different concrete syntaxes can be cre-
ated for the same metamodel. The necessary transformation is relatively
straightforward to define, because it is basically a onetoone mapping
with some additional linking logic.

To create a new textual DSL with xText, up to three files that depend
on each other are needed, according to the following steps:

• Start up Eclipse with oAW installed in a fresh workspace.
• Select File > New... > Project... > openArchitectureWare > Xtext

Project.

IMPLEMENTATION •  201

• Specify the project settings in the wizard dialog.
• Click Finish (Figure 7.8).

The wizard creates three files, my.dsl, my.dsl.editor, and my.dsl.
generator:

• my.dsl is the language project, where the grammar for the DSL is
created. After running the Xtext generator, this model also contains
a parser for the DSL and a metamodel representing the language.

• my.dsl.editor will contain the DSL editor.
• my.dsl.generator contains an oAW code generator skeleton.

Defining the Grammar

An xText grammar consists of a number of rules (Model, Message, Field,
and Type). A rule is described using sequences of tokens. A token is either
a reference to another rule or one of the builtin tokens (STRING, ID,
LINE, and INT). xText automatically derives the meta model from the
grammar. Conversely, the meta model is basically a data structure whose
instances represent the structure of sentences in the language.

Figure 7.8. Wizard to start new Xtext project.

202 •  FLEXIBLE TEST AUTOMATION

A rule results in a meta type, and the tokens used in the rule are
mapped to properties of that type (comments, name, and fields). Dif-
ferent assignment operators are used. The equals sign (=) just assigns
the value returned from the token to the respective property (the prop-
erty will have the type of the token) and “+=” adds the value to the
property.

Thus, after creating the new xText project, the grammar is created (an
example is shown in Figure 7.9). The grammar specifies the metamodel
and the concrete syntax for the desired MDSL.

7.5.1.2 The MDSL Editor

For the MDSL editor, the grammar language provided by xText is
exploited. The following screen shots in this section show how the
syntax is described for the FFMMDSL. In fact, language and tooling
used for describing the DSL syntax are bootstrapped, that is, they are
implemented using the xText framework itself. Bootstrapping is a com-
mon technique in the field of language and compiler development. If
language and tools can be bootstrapped, this proves a certain level of
maturity of the tools.

After specifying the grammar, the DSL editor can now be generated:

• Rightclick inside the xText grammar editor to open the context menu.
• Select Generate xText Artefacts to generate the DSL parser, the

corresponding metamodel and, last but not least, the DSL editor
(Figure 7.10).

Running the Editor

To see the generated editor in action, the plugins must be run in an Eclipse
installation. The most convenient way to do this is to start a new Eclipse
application from within the running Eclipse:

• Select the editor plugin and choose Run As > Eclipse Application
from its context menu.

The generated editor can also be deployed into an existing Eclipse
installation. Note that the editor has to be redeployed on every change
applied to the plugins. To install the editor into the Eclipse currently run-
ning, the following steps are needed:

IMPLEMENTATION •  203

Figure 7.9. DSL grammar.

Figure 7.10. Generate Xtext artefacts.

204 •  FLEXIBLE TEST AUTOMATION

• Choose Export... > Deployable plug-ins and fragments...
• The Export dialog appears. Select the three DSL plugins.
• Enter the path of the Eclipse installation. Make sure the selected

directory contains the Eclipse executable and a folder named
plugins. Usually, the directory is called eclipse.

• Choose Finish (Figure 7.11).
• Restart Eclipse.

Code generation With xPand

The xText wizard already created a generator project. In this design, the
FFMMs class is shown to be connected with the new language DSL.

Part of the implemented xPand is shown in Figure 7.12.

The Grammar Language

At the heart of xText lies its grammar language, like an extended Backus−
Naur Form (BNF), but it doesn’t describe only the concrete syntax, but
can be also used to describe the abstract syntax (metamodel).

As stated before, the grammar is not only used as input for the parser
generator, but it is also used to compute a metamodel for the DSL.

Figure 7.11. Deployment of the DSL plugins.

IMPLEMENTATION •  205

The text analysis is divided into two separate tasks: the lexing and the
parsing.

The lexer is responsible for creating a sequence of tokens from a
character stream. Such tokens are identifiers, keywords, whitespace, com-
ments, operators, and so on. xText comes with a set of built-in rules that
can be extended or overwritten if necessary.

The parser gets the stream of tokens and creates a parse tree out of
them.

Type Rules

The name of the rule is used as name for the metatype generated by Xtext.

Assignment tokens/Properties

Each assignment token within an xText grammar is not only used to create
a corresponding assignment action in the parser but also to compute the

Figure 7.12. Xpand template.

206 •  FLEXIBLE TEST AUTOMATION

properties of the current metatype. Properties can refer to the simple types
such as String, Boolean, or Integer, as well as to other complex metatypes.
It depends on the assignment operator and the type of the token on the right,
that is, the actual type. There are three different assignment operators:

• Standard assignment “=”: The type will be computed from the
token on the right.

• Boolean assignment “?=”: The type will be Boolean.
• Add assignment “+=”: The type will be List. The inner type of the

list depends on the type returned by the token on the right.

An example in FFMM project of these assignment operators is shown
in Figure 7.13.

Cross References

Parsers construct parse trees not graphs. In the model, crosslinks are usu-
ally implemented by linking. However, xText supports the specification
of linking information in the grammar, so that the metamodel contains
cross references and the generated linker links the model elements auto-
matically. Linking semantic can be arbitrarily complex. xText generates a
default semantic which can be selectively overwritten.

Let’s take a look at the optional extends clause. The rule name Entity
on the right is surrounded by squared parenthesis (Figure 7.14). By default,
the parser expects an identifier to point to the referred element.

Metatype Inheritance

After the definition of metatypes and their features, type hierarchies using
the grammar language of xText have to be described. Different kinds of

Figure 7.13. Example of assignment operators in FFMM project.

IMPLEMENTATION •  207

“Features” (Figure 7.14) can be created by means of an abstract type rule
such as shown in Figure 7.15.

The transformation creating the metamodel normalizes the type hier-
archy automatically. This means that properties defined in all subtypes
will be moved automatically to the common supertype.

The ID Token

The identifier token (ID) is the token rule expressed in AntLR grammar
syntax, such as shown in Figure 7.16. The return value of the ID token is
a String. Thus, if the usual assignment operator “=” is used, the assigned
value will be of type String.

Figure 7.14. Entity.

Figure 7.15. Abstract type rule.

208 •  FLEXIBLE TEST AUTOMATION

Figure 7.16. Token rule expressed.

Figure 7.17. Comments.

Comments

There are two different kinds of comments automatically available
(Figure 7.17) in any xText language. Note that those comments are ignored
by the language parser by default.

Defining the MDSL

The goal was to create a simple scripting language for the test engineer;
this problem has been addressed through the definition of a DSL. The test
engineer has to follow the steps shown in Figure 7.18 to define, set, and
execute a measurement task.

More precisely, the test engineer should first define the object (or
device) that he intends to use, then configure its setting, and use it through
appropriate commands, defined in device interfaces, which should be
known by the test engineer. To make this task easier, the MDSL project
provides one of the most useful things: the assistance to the measurement
procedure definition.

While he writes the script, the test engineer can click on CTRL+SPACE
to see the menu where all the possibilities are shown (Figure 7.19).

It is possible to appreciate the ease of writing and the flexibility of soft-
ware. In the following, for the sake of comparison, two script fragments
are shown. Figure 7.20 refers to a C++ script for permeability measure-
ments, while Figure 7.21 shows the same procedure written in DSL. The
improvements in clarity and conciseness are evident.

IMPLEMENTATION •  209

7.6 SOFTWARE QUALITY ASSESSMENT

7.6.1 ISO 9126 CHARACTERIZATION

The analysis of the software quality of FFMM was carried out by means
of the tool Understand C++ [11]. Heuristic thresholds were employed, as
proposed in literature [12–15], in order to define the metrics target values.
An example of the metrics and the corresponding target values is reported
in Table 7.2 [12, 16].

In particular, the complexity metrics (such as Essential Complexity
and Cyclomatic Complexity [17]) measure the logic complexity of the
software modules and hence the effort required for testing and maintaining

Define

Configure

Set

Command

Figure 7.18. DSL test engineer steps.

Figure 7.19. Assistance to the measurement procedure.

210 •  FLEXIBLE TEST AUTOMATION

Figure 7.20. The part of the Script in C++.

IMPLEMENTATION •  211

Figure 7.20. (Continued).

Figure 7.21. The same Script of Figure 7.20 in DSL.

them. The ObjectOriented metrics, taken from wellknown metrics suites
[18–21] (LCOM, FAN IN, CBO, RFC, WMC, and DEPTH) measure the
extent to which features typical of ObjectOriented systems are exploited
(e.g., inheritance) or achieved (e.g., lack of coupling and cohesion).
Table 7.3 reports a short summary of size metrics computed on FFMM.

At first glance, the complexity metrics (Essential Complexity and
Cyclomatic Complexity) show that, although in FFMM the average com-
plexities respect the heuristic upper bounds, the maximum values exceed
them in a significant way (Table 7.4). This means that the complexity is

212 •  FLEXIBLE TEST AUTOMATION

concentrated in few points that need to be simplified in order to decrease the
effort required for software testing and maintenance. Analogous remarks
can be made from the analysis of the ObjectOriented metrics (Table 7.5):
Most of them show maximum values significantly exceeding the heuristic
thresholds, potentially causing problems to system developers and users.

The values of the FAN IN metric exceeding the threshold are the
result of a conscious design choice, since all the devices implemented
in FFMM inherit from two abstract classes. These two classes are com-
pletely independent from each other, therefore the multiple inheritance is
not expected to cause any undesired side effects.

Table 7.2. Complexity and ObjectOriented metrics with their target
values

Metric Target
Cyclomatic Complexity (CYCLO) ≤ 10
Essential Complexity (ESS) ≤ 4
Class Depending Child (CDC) FALSE
Class Depth (DEPTH) ≤ 7
Multiple Inheritance (FAN IN) ≤ 1
Response for Class (RFC) ≤ (W M C * DEPTH)

+ 1
Coupling between Objects (CBO) ≤ 2
Lack of Cohesion of Methods (LOCM/LCOM) ≥ 0.75
Weighted Methods for Class (WMC) ≤ 14

Table 7.3. FFMM 3.0 size metrics summary

Blank Lines 4’115
Classes 96
Code Lines (LOC) 16’253
Comment Lines 6’977
Comment to Code Ratio 0.43
Declarative Statements 4’779
Executable Statements 8’642
Files 131
Functions 1’082
Inactive Lines 172
Lines 28’119

IMPLEMENTATION •  213

An attempt to use internal metrics, computed on the source code,
according to the model ISO 9126 for an automatic metric based quality
control, is presented in [22, 23]. This approach proposes a set of metrics
and a quality matrix mapping them into factors and criteria of the model.

Heuristic thresholds [12–15] were used to evaluate the percentages
of classes exceeding the acceptable values for the considered metrics. The
quality matrix allows the translation of these properties into the levels at
which quality characteristics are achieved.

The quality model presented in [23] refers to an adapted quality model
where reusability replaces usability, evaluated on the basis of both nonob-
jectoriented metrics (mainly referring to size) and to ObjectOriented met-
rics (mainly referring to cohesion, coupling, and inheritance). The results
obtained through this approach are shown in Figures 7.22 and 7.23. The
values vary in the range [0,1], with 0 corresponding to the best quality
level. The aforementioned connections between static metric analysis and
internal software qualities have been proposed recently, are only partially
validated, and still need improvements and confirmations to be widely
accepted by the technical community. In other words, the automatic
assessment of software quality defined by the ISO standards using internal
metrics is still an open question. Therefore, the results presented in this
section are intended to be only as suggestive of the quality level achieved

Table 7.4. FFMM 3.0 complexity metrics

Metric Average Max Std Target % OK (program units)
ESS 1.2 19 1.1 ≤ 4 99
CYCLO 2.4 40 3.2 ≤ 10 97

Table 7.5. FFMM 3.0 ObjectOriented metrics

Metric Average Max Std Target
% OK

(classes)
CDC FALSE FALSE - FALSE 100
DEPTH 1 4 1.2 ≤ 7 100
FAN IN 0.7 2 0.7 ≤ 1 85
RFC 20 138 31 ≤ (W M C

*DEPTH)+1
45

CBO 3.9 21 4.6 ≤ 2 50
LOCM/LCOM 0.42 1 0.40 ≥ 0.75 40
WMC 13 103 18 ≤ 14 74

214 •  FLEXIBLE TEST AUTOMATION

by FFMM. Furthermore, no direct indications are provided on how to
improve quality. For this reason, in the following, the quality analysis is
complemented by introducing a more practical approach.

7.6.2 QUALITY PYRAMID CHARACTERIZATION

The Overview Pyramid obtained from the FFMM source code by means
of the analysis tool inFusion [24], is presented in Figure 7.24.

In order to provide a graphical aid to its interpretation, different grey
tonalities are associated to the computed proportions. In particular, a
medium grey rectangle is used if the value contained in it is closer to the
low threshold, a dark grey rectangle if it is closer to the average threshold,
and a light grey rectangle if it is closer to the high one. An analysis of the
resulting computed proportions allows the following conclusions to be
drawn for the FFMM source code:

• Class hierarchies tend to be tall and narrow, that is, inheritance trees
tend to have many depthlevels and baseclasses with few directly
derived subclasses.

• Classes tend to be rather large (they define many methods) and
organized in finegrained packages (few classes per package).

• Methods tend to be average in length and have an average logical
complexity (conditional branches).

InteroperabilityReplacability

Adaptability

Testability

Stability

Changeability

Analyzability

Resouce utilization

Time behaviour Attract. for reuse

Operab. for reuse
programm.

Learn. for reuse

Understand. for reuse

Recoverability

Fault-tolerance

Maturity

Security0.00

0.20

0.40

0.60

0.80

1.00

Figure 7.22. ISO 9126 subcharacteristics in FFMM 3.0 (0 indicates the best qual-
ity level).

IMPLEMENTATION •  215

In the development of a software system it is often difficult to find the
appropriate design, the responsibilities of objects, and their distribution.
Once this has been done, it is important to be able to state whether the com-
plexity due to the design choices is balanced by the benefits they introduce.

Although the Overview Pyramid allows the graphic characterization
of an ObjectOriented system through the quantification of some suitable
chosen metrics, it is not enough to completely understand and evaluate the
design. Metrics and thresholds must be meaningful and put in the right
context [12, 25], in order to assess the quality level of the project design
and eventually to ameliorate it. An application, a class, and a method
should be implemented in a harmonious way, in terms of size, complexity,
and functionality, with respect to itself, its collaborators, and its ancestors

Functionality

Portability

Maintainability Re-Usability

Efficiency

Reliability

0.00

0.20

0.40

0.60

0.80

1.00

Figure 7.23. ISO 9126 characteristics in FFMM 3.0 (0 indicates the best quality
level).

PFF
JKV
PQR

PQE
PQO

NQE
E[ENQ

PQO
ECNN

HQWV

2044
32082

3403;
40;2

204:
205:
43
99

;5;
;:::
4527

3734:
:7;2

3095

205;

Figure 7.24. Overview Pyramid for the FFMM 3.0 source code.

216 •  FLEXIBLE TEST AUTOMATION

and descendants. In other words, the system has to achieve an overall har-
mony, composed of three distinct measurable parts [12]:

• Identity harmony, related to the extent to which a software entity
implements a specific concept and how well (Does it implement
too many things? Is it not doing enough to exist as an autonomous
entity?).

• Collaboration harmony, expressing the extent to which an entity
collaborates with others, and how well (Does an entity use other
entities? How many?).

• Classification harmony, combining elements of the other two har-
monies in the context of inheritance (Are inherited services used by
subclasses? Some or all of them?).

The design evaluation, from the point of view of the aforementioned
harmonies, intents ,therefore, on questioning if every software entity has
appropriate place, size, and complexity within the system.

Disharmonies are revealed by means of metricbased heuristics to
detect and locate ObjectOriented design flaws from the source code. For
the quantification of complex design rules, the evaluation of a single met-
ric is not sufficient. Therefore, detection strategies, composed of logical
conditions based on proper sets of metrics and thresholds, are used to
evaluate design quality of an ObjectOriented system through quantify-
ing deviations from good design heuristics and principles. Design rules
can in this way be made quantifiable, so that parts of the source code
with specific properties (typically denoting a design problem) can be
detected. The result of this stage of detection is a list of software enti-
ties suspected of being affected by some flaw. These entities need subse-
quently to be inspected to find those that cause the most severe problems
and determine how to refactor them. This insight into the class structure
is needed to understand its static structure, that is, the way attributes are
accessed, methods called, inheritance used, and decide if there is need for
intervention.

Among the 11 design disharmonies classified in [12], the three cate-
gories presented earlier, those that were detected in FFMM, are discussed
in the following. It is worth pointing out that no significant code duplica-
tion was found. This is an important achievement of the FFMM design,
because code duplication can be very harmful: It breaks the uniqueness
of certain functionalities within the entities in the system, and causes an
increase of size, complexity, error proneness, and also problems of coevo-
lution of duplicated code.

IMPLEMENTATION •  217

Identity Disharmonies

A design flaw is referred to as an identity disharmony if it affects single
entities, such as classes and their methods. The disharmonies of a sin-
gle entity are related to three aspects: size, interface, and implementation.
These aspects can be summarized by three rules of identity harmony [12]:

• A harmonious size is a desirable feature of operations and classes.
• The interface of each class should be a set of services, which imple-

ment only one responsibility and provide a unique behavior.
• Data and operations semantically belonging to the same class

should collaborate harmoniously within that class.

A violation in the proportion rule, often due to excessive size and com-
plexity of a class, is a typical and easily recognizable indication of identity
disharmonies, and one of the causes could be a massive presence of code
duplication. Another sign of disharmony could be a reduced cohesiveness of
behavior (presentation and implementation rule) and the tendency to include
in a single class too many features and services, thus producing a God Class
[26, 27]. A consequence of this disharmony is usually a Feature Envy [27],
because if a class becomes a God Class, other classes tend to become Data
Classes [26], which are simple data containers not providing much func-
tionality. The God Class will contain methods which will be likely to access
attributes of other classes rather than those of the class itself. The Feature
Envy consists of this excessive interest of a class in external data.

God Class

The God Class design flaw is due to classes that tend to centralize too
much intelligence and functionalities of the system [26]. A God Class tries
to do too much work, collaborating with a set of simple classes to which it
delegates only trivial tasks, and using extensively data contained in other
classes. This situation has often a negative effect on reusability and under-
standability.

In FFMM, the three classes were detected as God Classes because:
(a) some of their methods access directly (or via getter and setters) attri-
butes from external classes, (b) the methods are very complex, that is,
have many branches, and (c) the classes are noncohesive with respect to
the way methods use the attributes of the class. An analysis of the results
shows that:

218 •  FLEXIBLE TEST AUTOMATION

1. The methods accessing attributes from external classes are the same
for the three God Classes, and are used for data type conversion,
bus configurations, or thread handling. In all cases, they result from
precise implementation choices and are not considered a source of
problems.

2. The cohesiveness of all the classes is only slightly below the limit
of one third. As a consequence of these considerations, the prob-
lem represented by the God Classes can be classified as noncrit-
ical. Anyway, it could be useful to reduce the complexity of the
methods, because this might affect understandability, usability, and
maintainability.

Data Class

A Data Class [27, 28] is a trivial class acting as simple data holder, not
providing complex functions, but rather extensively used by other classes.
The lack of functions may indicate that the data contained in the class are
not kept in the same place with the related behavior. In other words, Data
Classes provide almost no function through their interfaces, which mainly
exposes data fields either directly or through accessory methods.

In FFMM, the three detected Data Classes do not produce any Feature
Envy. This implies that, although they do not provide complex function-
ality, the data they contain are not significantly accessed by methods of
other classes. The problem represented by the detected Data Classes can
be therefore reappraised if correctly put into this perspective. They do not
contain misplaced data needed by other parts of the system, but are the
result of a precise design choice for handling the communication buses
and their configurators.

Brain Class

This design flaw refers to the situation where an excessive amount of
intelligence is accumulated in a single class, often concentrated in Brain
Methods. It recalls the God Class, but the two disharmonies are distinct.
A God Class, besides being complex and centralizing a large amount of
the system intelligence, breaks the encapsulation principle by accessing
attributes from other classes, and showing a lack of cohesion. The Brain
Class detection strategy is complementary to that of the God Class, catch-
ing very complex classes which do not break encapsulation and do not
manifest a significant lack of cohesion.

IMPLEMENTATION •  219

The main characteristic of a Brain Class is that it is very likely to
contain Brain Methods; therefore, the first improvement action should
concern these methods, as discussed in the relative section. On the other
hand, if the class is detected as a Brain Class owing to its lack of cohesion,
it should be split into an appropriate number of more cohesive classes.
However, it is often the case where a Brain Class does not cause any sig-
nificant problem in the system, that is, if it is simply a mature complex
utility class. In such cases, if no maintenance problems arise during the
system history [29], it is not worth starting a costly refactoring phase just
to get better metric values.

In FFMM, the six Brain Classes contain only 1 or 2 Brain Methods,
and are characterized by high complexity and low cohesion. As corrective
actions, the Brain Methods should first be split. In case of maintenance
problems, the involved classes could also be split into smaller and more
cohesive units.

Feature Envy

One of the goals of ObjectOriented Programming is to keep together
a set of data and the operations processing that data. The Feature Envy
design flaw [27] refers to methods that access, directly or through acces-
sory methods, more data of other classes than of their own class. The Fea-
ture Envy disharmony is often an indication that a method is misplaced
and should be moved to another place in the system. The problem can be
solved if the method, or a part of it, is extracted from its current class and
moved to the class containing the envied data [27, 28].

The Feature Envy problem is often due to the presence of Data
Classes, which make the classes using them to envy their data. When
a method is affected by Feature Envy, it is probable that there are data
classes among the classes from which the method accesses data. The fact
is that in FFMM the two methods affected by Feature Envy do not access
Data Classes, highlighting that the problem is isolated to two methods
which are used in handling the polling tasks of a class. Even though this
is detected as a violation of the encapsulation principle of the ObjectOri-
ented design, it is the result of an implementation choice for the threads
executing the polling methods. Moreover some metrics are very close to
the lower detection threshold. It is therefore concluded that the observed
Feature Envy does not represent a critical issue in the system, and that
the cost of a possible code improvement action would not be balanced by
proportionate benefits.

220 •  FLEXIBLE TEST AUTOMATION

Brain Method

Brain Methods centralize excessively the functionality of a class (propor-
tion and implementation rules), in a way similar to that of a God Class
which centralizes the functionality of the whole system or of one of its
parts, making it hard to understand, maintain, and reuse [12].

The 14 Brain Methods detected result in being rather complex (both
for conditional branching and nesting) and long, and they employ a very
large number of variables. For the negative impact of this design flaw on
understandability, maintainability, and reusability, these methods require
a refactoring. In this case, the Brain Methods do no not exhibit either sig-
nificant code duplication or Feature Envy, thus there is no cloned code to
remove or Data Classes to where some of the behavior complexity can be
moved. In literature it is suggested that in almost all cases a Brain Method
should be split into one or more simpler methods [27], by finding appro-
priate cutting points.

Collaboration Disharmonies

Collaboration disharmonies are design flaws that affect several entities at
once in terms of the way they collaborate to perform a specific functional-
ity. All the authors propose low coupling as a design rule for ObjectOri-
ented system.5 Anyway, a tradeoff has to be found between the intent of
low coupling and the need for a certain amount of collaboration among
objects of the same system. The collaboration harmony consists in the
achievement of a balance between the aforementioned opposing demands.

All this can be summarized in the following rule:

• Collaborations should be only in terms of methods invocations and
should have a limited extent, intensity, and dispersion;

where extent refers to the number of other classes; intensity, to the number
of services provided by other classes; and dispersion, to the distance of
collaborating classes (two classes can be in the same hierarchy, package,
etc.). The rule refers both to incoming and outgoing dependencies. Exces-
sive outgoing dependencies are undesirable because they make a class

5To this purpose, an event handling infrastructure (Chapter 5) is used whenever
possible in FFMM, minimizing the coupling introduced by the necessary commu-
nications among objects.

IMPLEMENTATION •  221

more vulnerable to changes and bugs from other classes. On the other
hand, excessive incoming dependencies are undesirable because they cre-
ate the need of stability and, therefore, make the class less evolvable.6
Collaboration disharmonies are captured using two detection strategies:
Intensive Coupling and Dispersed Coupling. The former refers to the case
where a method uses intensively a reduced number of classes, the latter to
situations where the dependencies are dispersed over many classes. More-
over, on the server method side, it might happen that a method is exces-
sively invoked by numerous methods located in various other classes
(Shotgun Surgery [27]). In this case, a small change in a part of the system
can cause a lot of changes in many other classes.

Intensive Coupling

Coupling reduction has the main aim of using a component apart from
others, or making easy its replacement with another one. A usual refactor-
ing action that allows solving the problem consists of defining a new more
complex service in the provider class, and replacing the multiple calls
with a single call to the new method. In some cases the design flaw might
be due to misplaced operations. This is in the case of FFMM, where the
intensive coupling involves two methods contained in the classes model-
ing two motor controllers. These methods access many (11) methods of
another class. The origin of the problem is the fact that the methods were
developed at a very low abstraction level in the system, that is, in a device.
In fact, each method involves two devices, and once inserted in one of
them, it has to call many methods of the other class. On the basis of this
consideration, it is clear that it should be implemented at a higher level,
as a measurement routine employing both the aforementioned devices.
Placing the method into a library of measurements routines would solve
the coupling problem, besides removing the code duplication, by leaving
only one instance of the method.

Shotgun Surgery

Unlike the intensive coupling, the Shotgun Surgery refers to the cases where
the incoming dependencies can cause problems, that is, where a change in

6It is to be noted that, at the same time, incoming dependencies could mean high
degree of code reuse in the system, with the condition of having stable interfaces.

222 •  FLEXIBLE TEST AUTOMATION

an operation implies many changes to a lot of other components (methods
and classes) in the system [27]. Similarly, if this method has bugs, it will
have a significant negative effect on the parts of the system that are using
it. In such a situation, maintenance and evolution problems could arise.

A possible refactoring action to solve the problem consists in moving
more responsibility to the classes containing Shotgun Surgeries, above all,
for small and noncomplex methods and classes with tendency to become
Data Classes [12]. Anyway, this is not the case in FFMM, where this design
flaw involves five methods of two classes designed in order to favor code
reuse for interacting with the user and handling the communication buses
(and, consequently, massively accessed by methods in other classes). The
characteristics of these methods come therefore from a conscious design
choice, and do not cause any problems under the assumption that they are
used through stable interfaces.

REFERENCES

[1] Jain, P., and D.C. Schmidt. June 1997. “Service Configurator.” Proceedings
of the Third USENIX Conference on ObjectOriented Technologies and Sys
tems. Portland, OR: Usenix.

[2] Arpaia, P., and M.L. Bernardi. 2007. “Executive Project.” FFMM Project
Tecnichal Notes, CERN 0711. Giuseppe Di Lucca University of Sannio.

[3] Lavender, R.G., and D.C. Schmidt. September 1995. “Active Object—An
Object Behavioral Pattern for Concurrent Programming.” Proceedings of the
Second Pattern Languages of Programs Conference (PLoP). Monticello, IL:
AddisonWesley Longman.

[4] Sommerville, I. Software Engineering. 1992. 4th ed. Harlow, England: Addi-
son Wesley.

[5] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications Under Vari-
able Requirements.” AIP Review of Scientific Instruments 83, no. 11. doi:
10.1063/1.4764664

[6] Arpaia, P., M.L. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. Sep-
tember 20–21, 2007. “Fault SelfDetection of Automatic Testing Systems
by Means of Aspect Oriented Programming.” IMEKO’07 Conference. Iasi,
Romania: IMEKO.org.

[7] Ballarino, A., G. Montenero, and P. Arpaia. 2014. “Transformerbased Mea-
surement of Critical Currents in Superconducting Cables: Tutorial 51.”
Instrumentation & Measurement Magazine, IEEE 17, no. 1, pp. 45–55. doi:
10.1109/MIM.2014.6782997

[8] Ramsbottom, H.D., S. Ali, and D.P. Hampshire. 1996. “Response of a New
CeramicOxynitride (Cernox) Resistance Temperature Sensor in High

IMPLEMENTATION •  223

Magnetic Fields.” Cryogenics 36, no. 1, pp. 61–63., doi: 10.1016/0011
2275(96)807727

[9] MidiInginierie. 2008. Midi Motor Controller Simpa, http://www.midiinge-
nierie.com/NEW/DataSheet/__SIMPA/sm01_cd_fr.pdf

[10] Agilent Technologies. 2013. “PXI Interoperability—How to Achieve
MultiVendor Interoperability in PXI Systems.” Application note. Santa
Clara, CA: Agilent technologies.

[11] Understand C++. 2014. http://www.scitools.com/products/understand/
[12] Lanza, M., and R. Marinescu. 2006. ObjectOriented Metrics in Practice.

Secaucus, NJ: SpringerVerlag New York, Inc.
[13] French, V.A. September 1999. “Establishing Software Metric Thresholds.”

In WSM 99: International Workshop on Software Measurement, pp. 43–50.
Lac Supérieur, QC: IEEE.

[14] Le metriche e il loro utilizzo nello sviluppo del software (in Italian). 2005.
http://www.dia.uniroma3.it/ torlone/sistelab/annipassati/sbavaglia.pdf

[15] Nikora, A.P. et al. 2002. “Software metrics in use at JPL applications
and research.” http://trsnew.jpl.nasa.gov/dspace/bitstream/2014/8671/1/02
1209.pdf

[16] Metrics available in understand C++. 2014. http://www.scitools.com/
documents/metrics.php

[17] McCabe, T.J. December 1976. “A Complexity Measure.” IEEE Trans
actions on Software Engineering 2, no. 4, pp. 308–20. doi: 10.1109/
TSE.1976.233837

[18] Chidamber, S.R., and C.F. Kemerer. June 1994. “A Metrics Suite for Object
Oriented Design.” IEEE Transactions on Software Engineering 20, no. 6,
pp. 476–93. doi: 10.1109/32.295895

[19] Li, W., and S. Henry. May 1993. “Maintenance Metrics for the Object Ori-
ented Paradigm.” In IEEE Proceedings of the First International Software
Metrics Symposium, pp. 52–60. Baltimore, MD: IEEE.

[20] Bieman, J.M., and B.K. Kang. April 1995. “Cohesion and Reuse in an
ObjectOriented System.” In Proceedings of the ACM Symposium on Soft
ware Reusability, ACM, vol. 20, pp. 259–62. Seattle, WA, USA: ACM.

[21] Hitz, M., and B. Montazeri. October 1995. “Measure Coupling and Cohesion
In ObjectOriented Systems.” In ISACC’95: Proceedings of International
Symposium on Applied Corporate Computing, pp. 24, 25, 274, 279. Monter-
rey, Mexico: Citeseer.

[22] Lincke, R., and W. Lowe. July 2006. “Validation of a Standard and Met-
ricBased Software Quality Model.” In 10th ECOOP Workshop on Quan
titative Approaches in ObjectOriented Software Engineering (QAOOSE).
Nantes, France: Växjö University.

[23] Lincke, R. and W. Lowe. April 2007. “Compendium of Software Quality
Standards and Metrics.” http://www.arisa.se/compendium/

[24] Invensys. 2010. Infusion http://iom.invensys.com/EN/pdfLibrary/Data-
sheet_InFusion_InFusionView_0810.pdf

224 •  FLEXIBLE TEST AUTOMATION

[25] Salehie, M., S. Li, and L. Tahvildari. 2006. “A MetricBased Heuristic
Framework to Detect ObjectOriented Design Flaws.” In International Col
legiate Programming Contest (ICPC) 2006: Proceedings of the 14th IEEE
International Conference on Program Comprehension, pp. 159–68. Athens
Greece: IEEE.

[26] Riel, A. 1996. ObjectOriented Design Heuristics. Boston, MA: Addison
Wesley.

[27] Fowler, M., K. Beck, J. Brant, W. Opdyke, and D. Roberts. 1999. Refactor-
ing: Improving the Design of Existing Code. Boston: Addison Wesley

[28] Demeyer, S., S. Ducasse, and O. Nierstrasz. November 2013. “ObjectOri-
ented Reengineering Patterns.” Boston, MA: Morgan Kaufmann.

[29] Rajiu, D., S. Ducasse, T. Girba, and R. Marinescu. October 2004. “Using
History Information to Improve Design Flaws Detection.” In CSMR’94:
Proceedings Eighth Euromicro Working Conference on Software Mainte
nance and Reengineering, pp. 223–32. Los Alamitos, CA: IEEE. Computer
Society.

CHAPTER 8

frAmework component
vAliDAtion

The test of the machine is the satisfaction it gives you. There isn’t any
other test.

If the machine produces tranquility it’s right.
If it disturbs you it’s wrong until either the machine or your mind is

changed.
—Robert M. Pirsig, Zen and the Art of Motorcycle Maintenance:

An Inquiry into Values

8.1 OVERVIEW

In this chapter, the on-field validation of the main framework components,
the Fault Detector, the Synchronizer, the Measurement Domain Specific
Language (MDSL), and the Advanced Generator of User Interfaces is
highlighted in the context of the Flexible Framework for Magnetic Mea-
surement (FFMM), developed at CERN in cooperation with the Univer-
sity of Sannio. Each component is validated in a different case study of the
FFMM at CERN. The Fault Detector is analyzed in a rotating coil system
for superconducting magnet testing by assessing its (a) internal quality, in
terms of the modularity improvement derived from the Aspect-Oriented
Programming (AOP) introduction, and (b) external quality, by verifying
these benefits do not introduce side effects during run-time performance.
The Synchronizer is validated in a magnetic permeability measurement
system, used for validating the twofold expected advantages of the sim-
plification of the measurement script and the speeding up of its definition.

226 • FLEXIBLE TEST AUTOMATION

The Domain Specific Language (DSL) is evaluated in a superconducting
magnet testing and a magnetic permeability measurement in order to
verify its benefits in terms of simplicity, effectiveness, and flexibility in
the production of measurement software applications. Finally, the perfor-
mance of the Advanced Generator of User Interfaces is validated in a
magnetic permeability measurement system by featuring how test engi-
neers are supported during usual FFMM operations at CERN.

8.2 FAULT DETECTOR

In this section, the validation of the AOP-based architecture of fault
detection software components illustrated in Chapter 4 is presented. In
particular, a case study on a rotating coil system for superconducting
magnet testing is illustrated as a highlight: (a) the actual improvement
of the software quality of the AOP version with respect to the previous
existing OOP version for the fault detector, and (b) that the new AOP
architecture does not have a negative impact on run-time performance of
the overall system (due to a possible overhead of the aspect runtime inter-
ception). Thus, the software quality attribute of modularity is assessed
to highlight the first point and some runs of the results of tests on an
adequately instrumented version of the system are illustrated in order to
verify the second point.

8.2.1 A CASE STUDY ON ROTATING COILS

FFMM has been employed at CERN for characterizing the superconduct-
ing magnets of the Large Hadron Collider (LHC). In particular, a huge
measurement effort has been devoted to the investigation of the dynamic
field errors (“multipoles”) of the main dipole magnets [1]. Rapidly varying
magnetic fields are measured by a new measurement station with high-
speed rotating coils units and Fast Digital Integrators (FDI) [2].

The Fault Detector has been tailored on the FFMM, by specifying:
device under test, quantity to be measured, measurement instruments,
measurement circuit configuration, measurement algorithm, and data
analysis. The objective was to handle anomalous working events in the
actual measurement application [3].

Next, (a) the measurement procedure, (b) the analysis of fault detec-
tion software, (c) the modularity comparison, and (d) the performance
verification, are illustrated.

FRAMEWORk COMPONENT VALIDATION • 227

8.2.2 THE MEASUREMENT PROCEDURE

The measurement procedure is based on the “rotating coil” method illus-
trated in Section 6.2.1 (Figure 8.1 [3]): A set of coil-based transducers are
placed in the magnet bores, supported by a shaft turning coaxially inside
the magnet.

The coil signal is integrated according to Faraday’s law in the angu-
lar domain, by exploiting the pulses of an encoder mounted on the shaft,
in order to get the induction field. Several coil segments are placed on
the shaft by covering the length of the magnet. Each segment, in turn, is
made up of three overlapped coils: The external one measures the mean
field (absolute signal), while the series connection of the external and the
central coils in opposition of phase allows the main field to be deleted in
order to measure the field harmonics only (compensated signal). The field
quality in the accelerator magnets is expressed in terms of the magnitude
of undesirable harmonics (multipoles).

The coil shaft inside the magnet is turned by the Micro-Rotating
Unit (μRU) whose motor is driven by a controller (Maxon Epos 24). The
magnet under test is supplied power converters with digital control, with
varying capacity depending on the test conditions: Tests are carried out
in cold (up to 1.9 K) and warm (room temperature) conditions by using a
14 kA, 15 V, and a 20 A, 135 V power converter, respectively. The cur-
rent is read by a digital multimeter through a high-accuracy Direct Cur-
rent-Current Transformer (DCCT). The coil signals are integrated into the
angular domain by digital integrators (i.e., an FDI [4], implemented by
the FastDI class), by exploiting the trigger pulses coming out from a con-
ditioning board (developed at CERN, implemented by the EncoderBoard
class), suitably processing the output of the encoder mounted on the mRU.
The FDI boards, the encoder conditioning board, and the motor control-
ler are remotely controlled by a PC running the test program created by
FFMM, produced according to a suitable script [5].

8.2.3 ANALYSIS OF FAULT DETECTION SOFTWARE [6]

The rotating coil testing technique is a typical application involving sev-
eral different devices, each one with its own state and error messages.
During the operation of the measurement station of Figure 8.1, one or
more faults can affect the devices at different levels. At the lowest level,
a fault can influence one of the communication buses (e.g., PXI, RS-232,
WorldFIP, IEEE-488 GPIB). At this level, possible faults created on the

228 • FLEXIBLE TEST AUTOMATION

Fi
gu

re
 8

.1
.

La
yo

ut
 o

f t
he

 ro
ta

tin
g

co
il

m
ea

su
re

m
en

t s
et

up
 [3

].

Tw
o

Et
he

rn
et

 c
ab

le
s (

R
x/

Tx
)

(F
as

t E
th

er
ne

t I
EE

E8
02

.3
.u

)

R
Z
KU
/5
54
2"
ej
cu
uk
u

G
PI

B

R
E
"o
cp
ci
go
gp
v"
uv
cv
kq
p

R
S2

32
Y
qt
nf
H
KR
"i
gv
cy
c{

W
F

bu
s

Et
he

rn
et

 c
ab

le

R
Z
K/
:7
92

U
kp
in
g"
H
F
K

G
p
eq
f
gt
"d
qc
tf

O
qv
qt
"e
qp
vt
qn
ng
t

12
 c

om
pe

ns
at

e
si

gn
al

s
12

 a
bs

ol
ut

 si
gn

al
A

 p
ai

r t
o

ea
ch

 F
D

I
R
kr
gu

T
W

C
p
vk
/e
t{
qu
vc
v

T
qv
cv
kp
i"
eq
kn
u"
uj
ch
v

R
qt
vc
d
ng
"F
E
E
V

O
ci
p
gv
"w
p
f
gt
"v
gu
v

O
nl

y
in

 w
ar

m
 c

on
di

tio
ns

*4
2C
+"
R
qy
gt
"u
w
r
r
n{

FG
C

I

R
qy
gt
"e
qp
xg
tv
gt

F
ki
kv
cn
"o
w
nv
ko
gv
gt

µ

FRAMEWORk COMPONENT VALIDATION • 229

buses are: (a) communication timeout, (b) device not found on the bus,
and (c) error on an open, read, write, or close command. All these kinds of
faults require that the data acquired until the fault occurrence be saved, log
some of the diagnostic information about the state of the measurement sta-
tion, and reset the devices in order to return them back to a consistent state.

At a higher level, some faults can involve the devices controlled
through the communication buses, namely the FDI, the encoder board, and
the motor controllers. In particular, the FDI can be affected by the following
faults: (1) A timeout can occur during the time interval between the trans-
mission and the execution of a command, or when the measurement starts
and the integrator waits for the trigger pulses from the encoder; (2) an incon-
sistency of the internal status of the instrument; and (3) a wrong parameter
value is set. The last two fault conditions can occur for the encoder board
and the motor controllers. For the motor controller, another fault can arise
from the handshake procedure on the communication bus (RS-232).

Within the AOP fault detection architecture, faults of the type (1)
and (2) are detected by means of specific pointcut expressions associated to
the advices capturing the access to an internal devices’ status and eventually
sending fault events to interested components. Conversely, the faults of type
(3) are detected by means of pointcut expressions, associated with a device
operations’ signatures in order to enforce the constraint related to incoming
parameter settings and eventually configured to enforce a retry policy.

In all these cases, the fault turns out to be fatal (failures) and requires
the component to be reset after saving the data and logging all the addi-
tional information, as well as saving the bad parameter setting in order to
detect this situation and asking for new parameter values.

In particular, the aspect FaultDetector realizes the infrastructure
needed to add or remove fault monitoring services on device creation or
destruction. Its subaspects provide advice logic for different kinds of fault
handling policies, discussed in Section 7.3.1.1. Furthermore, such sub-
aspects define pointcut expressions needed to capture interesting context
in which the status of a device must be checked, to perform status decod-
ing, and eventually to send a fault event by means of the logic provided by
the classes FaultListener.

Figures 8.2 and 8.3 show an excerpt of the code of the FaultDetector
advice (and its subaspect related to FastDI digital integrator device) and
of the DigitalIntegrator_FaultDetector, respectively.

Twofold analysis were carried out (a) assessing the modularity
improvement derived from AOP introduction (internal quality) and (b)
evaluating its performance to verify that these benefits do not introduce
run-time side effects (external quality).

230 • FLEXIBLE TEST AUTOMATION

8.2.4 MODULARITY COMPARISON

The software quality of the AOP version of the Fault Detector was evalu-
ated by comparing it with the corresponding OOP version that previously
existed inside the FFMM. With this aim, the software quality attribute of

Figure 8.2. The abstract FaultDetector aspect [6].

Figure 8.3. Excerpt of DigitalIntegrator_FaultDetector [6].

FRAMEWORk COMPONENT VALIDATION • 231

modularity was assessed for both the AOP and OOP versions by evalu-
ating (a) the percentage of lines of source code related to fault detection
logic present in each module with respect to the total lines of code (LOC)
of the same module and (b) the Degree of Scattering (DOS) and Degree
of Focus (DOF) metrics [7], for each module and fault detection concern.
The analysis was focused on the most relevant fault sources of the FFMM,
that is, the modules implementing devices.

In Table 8.1, the analysis results along with the ratio of code dupli-
cated in the different software modules (cloned code ratio) are reported.
In the OOP version of the Fault Detector, a high level of cloned code
exists, because in each device’s operation often the same tests against the
internal status are requested. Conversely, in the AOP version, this ratio is
drastically reduced. An ideal implementation of the fault detection con-
cern would have a null DOS and a DOF equal to one, for each device
module (i.e., each device is focused only on the base concern and does
not contribute at all to the Fault Detector concern). Table 8.1 shows that
the OOP version has a very-low value of DOF, for each module (i.e., all
modules contribute to the fault detection concern), and a DOS for the fault
detection concern near to the maximum (uniformly scattered). This means
that the fault detection concern in the OOP version has absolutely unac-
ceptable values of modularity.

Thus, a not trivial maintenance (or evolution) is very difficult, because
each modification could affect and require changes in many different soft-
ware modules (i.e., mainly all device modules).

Table 8.1. Fault detection code in each device module and computation of
percentage DOF and DOS metric for both OOP and AOP versions (OOP:
Object-Oriented Programming; AOP: Aspect-Oriented Programming;
LOC: Lines of code; DOF: Degree of focus; DOS: Degree of scattering)

Device

OOP
FD

% LOC

OOP
Cloned
% LOC

OOP
DOF

OOP
DOS

AOP
% LOC

AOP
DOF

AOP
DOS

FastDI 15.75 10.93 0.17 0.81 0.97
Maxon Epos 18.04 9.78 0.21 0.73 0.97
EncoderBoard 21.53 14.27 0.28 0.96 0.97 0.98 0.13
PowerSupply 18.36 12.70 0.24 0.97 0.90
Transducer 21.15 8.24 0.27 0.97 0.93
Keithley2k 18.48 11.32 0.16 0.97 0.97

232 • FLEXIBLE TEST AUTOMATION

Instead, in Table 8.1, DOS values of the AOP version are near to the
minimum: The fault detection concern is well modularized in one module
(the FaultDetector aspect), and each device module is marginally involved
in the concern (such as mentioned before, this is due to the fault and error
broadcasting methods not yet removed from the devices). This result is
better highlighted in Figures 8.4 and 8.5. In particular, in Figure 8.4, the
percentage LOC (%LOC) of the Fault Detection concern for all the device
modules are compared for both AOP and OOP versions. In the figure, the
ratio of the cloned LOCs in the OOP implementation, completely removed

H
cw
nv
"f
gv
ge
vk
qp
"'
"N
Q
E

FastDI Maxon_Epos Encoder
board

Power
supply

Transducer Keithley2k

OOPP FD
% LOC

OOP
CLONED
% LOC

AOP
% LOC

25.00

20.00

15.00

10.00

5.00

0.00

Figure 8.4. Percentage lines of code (LOC%) of fault detection concern in
device modules for OOP and AOP versions.

FastDI Maxon_Epos Encoder
board

Power
supply

Transducer Keithley2k

OOP
DOF

AOP
DOF

F
gi
tg
g"
qh
"h
qe
w
u"
*F
Q
H
+

Fgxkegu

H
cw
nv
"f
gv
ge
vk
qp

xg
tu
kq
p

AOP
DOS

OOP
DOS

AOP
DOS; 0.13

OOP
DOS; 0.96

0.00 0.20 0.40 0.60 0.80 1.00 1.20
Fgitgg"qh"uecvvgtkpi"*FQU+

*d+

*c+
1.00
0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

Figure 8.5. (a) DOS and (b) DOF comparisons of OOP and AOP versions with
respect to fault detection concern.

FRAMEWORk COMPONENT VALIDATION • 233

in the AOP version, is reported. Of course, the cloned code makes worse
the maintainability and increases the probability of introducing bugs in
the code.

In Figure 8.5, the level of DOF (a) and DOS (b) for each device mod-
ule with respect to Base System and Fault Detection concerns is reported.
The results show a radically increased modularity for the AOP version,
because each device module is much more focused on the base concern
with respect to the OOP version. Moreover, the fault detection concern is
highly scattered in the OOP version (high values of DOS), while it is very
focused in the AOP implementation (very low values for DOS).

8.2.5 PERFORMANCE VERIFICATION

The analysis was aimed at verifying experimentally that the AOP archi-
tecture would not have a negative impact on run-time performance of the
overall system (due to aspect runtime interception overhead). With this
intent, the AOP system was instrumented to gather execution times of the
aspect overheads. In both versions, fault detection times related to fault
decoding and handling, are present. They were filtered out from the anal-
ysis. Therefore, main attention was paid to evaluate the overheads added
by the AOP interception mechanism to the fault detection time in order
to assess the effectiveness of the AOP architecture, that is, that the AOP
response times are not worse than the OOP version. The afore-described
analysis was carried out by running two versions of the software in the
same conditions. The runs were performed by causing some previously
described faults in the measurement station. Those faults were induced
intentionally in different ways, for example:

• by providing devices with wrong parameter values,
• by interrupting the communication between the PC and the devices

(device not found, or communication timeout if the communication
with device had already been established),

• by starting the FDI acquisition procedure without feeding the
instrument with the required trigger signal (measurement timeout),

• and by adding a delay in the execution of some commands (com-
mand timeout).

The worse average times in several different categories of fault detec-
tion pointcut expressions (i.e., device creation/destruction, interception of
device operations) were selected, and the time spent in the aspect runtime

234 • FLEXIBLE TEST AUTOMATION

to jump to fault detection routines was collected. These are reported in the
last column of Table 8.2 (in percentage of the total time spent in the aspect).
For the sake of clarity, the results of Table 8.21 are reported in Figure 8.6.

Times needed to handle creation and destruction of devices (pointcut
expressions from rows 1 to 8) are greater than those required to handle
faults during measurement tasks (pointcut expressions from rows 9 to
15). In the former cases, the fault detector infrastructure must be set up
for devices being created. This requires more time than the other kind of
pointcut expressions, which have only to capture the context of an oper-
ation, issuing a fault event if necessary. These times are comparable to
those of the OOP version, where listeners are explicitly registered with
the created devices to handle faults. In these cases, the aspect overhead
is particularly reduced with respect to the entire fault detection tasks.
Pointcut expressions ranging from row 9 to row 15 are related to fault
detection during normal device operations. Their goal is to capture the
entire context in which the device state changes to check its validity. In
the developed AOP implementation, the worst overheads due to aspect
interception mechanism (see the last column in Table 8.2) are always less
than 1.5% of the fault detection times (the worst case is for the intercep-
tion of calls to EncoderBoard device operations with complex arguments
matching expression to check preconditions; related to pointcut expres-
sion at row 9). Therefore, the suitability of such performance overhead
in the concrete measurement scenario was assessed, and all the timing
constraints were satisfied.

8.2.6 DISCUSSION

The AOP architecture allows a high level of flexibility by performing very
complex and bendable run-time binding among sources and handlers of
the faults, without affecting significantly the performance, while keep-
ing the detection code well modularized in its hierarchy. Another main
advantage of such a technique is the maintainability and the reusability of
the code: for each new device added to the framework, the related fault
detection code is added to the fault detection hierarchy. Since all fault
detection code is well modulated in few subaspects, commonalities among
different fault detection logic are well structured and factored out. As a
consequence, the FaultDetector design, with respect to “traditional” OOP

1The times refer to a Pentium IV 1.3 GHz machine, with 512 Mb of RAM running
the instrumented AOP version.

FRAMEWORk COMPONENT VALIDATION • 235

Ta
bl

e
8.

2.
 W

or
st

 a
ve

ra
ge

 ti
m

es
 sp

en
t i

n
as

pe
ct

 ru
nt

im
e

w
ith

 re
sp

ec
t t

o
de

vi
ce

 c
re

at
io

n
an

d
de

st
ru

ct
io

n
an

d
fa

ul
t d

et
ec

tio
n

po
in

t c
ut

s

Po
in

tc
ut

 e
xp

re
ss

io
ns

To
ta

l T
im

e
(m

s)

sp
en

t i
n

as
pe

ct

Ti
m

e
(m

s)
 sp

en
t

in
 m

at
ch

in
g

ad
vi

ce
s

Ti
m

e
(m

s)

sp
en

t i
n

as
pe

ct

ru
nt

im
e

%
Ti

m
e

sp
en

t
in

 a
sp

ec
t

ru
nt

im
e

1
En

co
de

rB
oa

rd
 c

on
st

ru
ct

io
n

13
,0

29
64

1
13

,0
28

84
0

0,
00

08
01

0,
00

6%
2

Fa
st

D
I c

on
st

ru
ct

io
n

45
,9

12
23

4
45

,8
93

47
8

0,
01

87
56

0,
04

1%
3

FD
IC

Iu
st

er
 (1

 e
le

m
en

t)
co

ns
tru

ct
io

n
59

,0
62

98
2

59
,0

10
51

9
0,

05
24

63
0,

08
9%

4
M

ax
on

–E
po

s c
on

st
ru

ct
io

n
14

,0
13

89
1

14
,0

11
99

3
0,

00
18

98
0,

01
4%

5
En

co
de

rB
oa

rd
 d

es
tru

ct
io

n
10

,2
82

88
3

10
,2

82
65

2
0,

00
02

31
0,

00
2%

6
Fa

st
D

I d
es

tru
ct

io
n

18
,5

11
72

2
18

,5
11

30
2

0,
00

04
20

0,
00

2%
7

FD
IC

Iu
st

er
 (1

 e
le

m
en

t)
de

st
ru

ct
io

n
6,

03
43

12
6,

03
40

96
0,

00
02

16
0,

00
4%

8
M

ax
on

–E
po

s d
es

tru
ct

io
n

11
,0

45
25

6
11

,0
45

01
3

0,
00

02
43

0,
00

2%
9

w
ith

in
(E

nc
od

er
B

oa
rd

)&
&

ca
ll(

%
) &

&
 a

rg
s(

...
)

2,
88

03
26

1
2,

84
27

84
0,

03
75

42
1,

30
3%

10
w

ith
in

co
de

(F
as

tD
I)

 &
&

 c
al

l(p
lx

->
w

rit
e)

1,
14

66
75

1,
14

44
12

0,
00

22
63

0,
19

7%
11

w
ith

in
co

de
(F

as
tD

I)
 &

&
 c

al
l(p

lx
->

re
ad

)
1,

48
66

75
1,

47
66

75
0,

01
00

00
0,

67
3%

12
w

ith
in

co
de

(M
ax

on
–E

po
s)

 &
&

 e
xe

cu
tio

n(
se

t%
)

0,
98

21
02

0,
98

01
02

0,
00

20
00

0,
20

4%
13

w
ith

in
co

de
(M

ax
on

–E
po

s)
 &

&
 e

xe
cu

tio
n(

ge
t%

)
0,

90
23

45
0,

89
90

15
0,

00
33

30
0,

36
9%

14
w

ith
in

co
de

(M
ax

on
–E

po
s)

 &
&

 e
xe

cu
tio

n(
sta

rt(
))

2,
89

67
35

2,
88

67
35

0,
01

00
00

0,
34

5%
15

w
ith

in
co

de
(M

ax
on

–E
po

s)
 &

&
 e

xe
cu

tio
n(

sto
p(

))
2,

41
63

75
2,

40
68

75
0,

01
00

00
0,

41
4%

236 • FLEXIBLE TEST AUTOMATION

version, exhibits a much more centralized design, greatly increasing the
possibility of code reuse, and reducing code duplication [6]. Finally, the
AOP architecture is not targeted at a specific system component, and
the same fault detector architecture can be reused to detect different kinds
of faults in different components.

8.3 SYNCHRONIZER [8]

The Petri-net Synchronizer is validated in a magnetic permeability mea-
surement system by highlighting the twofold expected advantages of the
simplification of the measurement script and the speeding up of its defi-
nition. In the following, (a) the case study on magnetic permeability and
(b) the corresponding measurement procedure, exploiting the Petri net-
based Synchronizer, are illustrated.

8.3.1 CASE STUDY ON MAGNETIC PERMEABILITY
MEASUREMENT

In the following, a case study on the method of the split-coil permeameter
[9] for measuring the magnetic permeability is described. The split-coil
permeameter is composed of two coils wound in a toroidal shape, which
can be opened allowing a toroidal specimen of the material under test to

*c+

*d+

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Lqkp"rqkpvu

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Rqkpvewv"gzrtguukqpu

V
ko
g"
*o
u+

V
ko
g"
*'
"t
gu
r
0v
qv
cn
+ 1.40%

1.00%
1.20%

0.80%
0.60%
0.40%
0.20%
0.00%

0,000
10,000
20,000
30,000
40,000
50,000
60,000

Figure 8.6. (a) Total average and (b) worst case overhead times spent in aspect
runtime. The pointcut expressions numbering refers to Table 8.2.

FRAMEWORk COMPONENT VALIDATION • 237

be wrapped. One coil is needed to excite the field and the other one to
capture the flux.

A PC (Figure 8.7), hosting the FFMM with the Synchronizer, is linked
to a data acquisition board (DAQ [10]), in order to control the Voltage
Controlled (VC) Power Supply to the excitation coil of the split-coil per-
meameter by the analog output. A PXI crate containing

• a Fast Digital Integrator (FDI [4]), a CERN proprietary
general-purpose digital board, configured for the coil signal acqui-
sition and numerical integration;

• a CERN proprietary trigger board, for managing and feeding the
trigger input of the FDIs;

• a further FDI, to acquire the excitation current and the relative flux
linked to the measurement coil, and to generate the trigger for the
acquisition by the trigger board.

8.3.2 MEASUREMENT PROCEDURE

The specimen is magnetized gradually by using a current waveform
(Figure 8.8) made by a series of linear ramps and plateau with exponen-
tially increasing amplitude (cycles). A current cycle is composed of an ini-
tial plateau, a linear ramp with constant ramp rate, and a final plateau [8].

After the devices’ setup, the measurement algorithm is composed of
the following steps [8]:

1. Demagnetization of the specimen [9]
2. Acquisition of current and flux

VC power
supply

Split-coil
permeameter

PXI rack

DAQ

Figure 8.7. Layout of the split-coil permeability measurement setup [8].

238 • FLEXIBLE TEST AUTOMATION

3. Generation of one cycle of the signal controlling the power supply
4. Waiting for the completion of the actual current cycle
5. Stopping the acquisition of the flux
6. Starting the generation of the next current cycle and going to 3 or, if

the maximum value of current is reached, stopping the acquisition
7. Data conversion

In such a measurement procedure, several tasks have to be executed
with time constraints. This is introduced easily into a FFMM script by
using the new features of the Synchronizer. The test engineer first has to
write the short high-level procedures describing each step of the whole
measurement algorithm in separate tasks by exploiting the related tools of
the FFMM [11]. Then, for the synchronization, he adds each task to the
execution tree effortlessly, such as shown in Figure 8.9, without worrying
about the time synchronization of parallel or series tasks.

As an example, to add a task to be executed after another one, the test
engineer has to use the statement ADD_TASK_AFTER_TASK(first_task,
second_task) such as shown in the case study (Figure 8.9) to the Set_Next_
Cycle task, scheduled in series to the Demagnetization task. Otherwise,

E
w
tt
gp
v"
]C
_

Vkog"]u_

10

5

0

-5

-10

0 50 100 150 200 250

Figure 8.8. Current cycles [8].

Figure 8.9. FFMM script fragment defining the Execution Graph [8].

FRAMEWORk COMPONENT VALIDATION • 239

if the test engineer wants to arrange the start of the execution of one task
after another task’s event and, then, to let both tasks be active in paral-
lel, he has to exploit the statement ADD_TASK_AFTER_EVENT(event,
second_task) like shown in Figure 8.9, where the Current_Cycle task is
scheduled after the event next_cycle.

The measurement algorithm, previously described step by step,
is codified in the script, and the related Execution Graph is shown in
Figure 8.10 [8].

The first task to be active is the Demagnetization, at the end of
this task the execution passes to the Set_Next_Cycle task (series execu-
tion); Set_Next_Cycle sets up the actual cycle of current and starts the
Current_Cycle by throwing the event next_cycle; Current_Cycle first
starts the task Start_Acquisition that enables the acquisition of flux and
current, then begins the generation of the actual current cycle, then stops
the acquisition by throwing the event stop_cycle; the task Stop_Acquisi-
tion triggers a new execution of Set_Next_Cycle that restarts the loop up
till the last scheduled current cycle or enables the Data_Conversion in
order to format the output data.

In Figure 8.11, the result of the measurement is shown graphically,
by referring to a series of current cycles starting from 0 up to 10 A and
their corresponding magnetic field from 0 to 6000 A/m. The right trend
of the hysteresis curve of the iron specimen highlights the validity of the
proposal.

8.3.3 DISCUSSION

Petri nets have shown to be an appropriate formalism in managing asyn-
chronous measurement tasks scheduling. The method presented in this
book turns out to be well suited in assuring a proper software synchro-
nization of the test procedure because it allows the temporal dimension
to be abstracted from a flat description of the sequences of events, by
discovering the actual temporal relations between the events. In particular,
the Synchronizer allows a test engineer, without software skill, to schedule
concurrent, sequential, and event-based tasks, with an intuitive approach,
by thinking, into the time domain, in terms of a simple relation like “after
that” or “at the same time of.”

This approach was tested on the field in the permeability measure-
ment of the FFMM at CERN. The main advantage is the simplification
of the measurement script and the speeding up of its design. As a conse-
quence, the test engineer can concentrate his attention on the measurement

240 • FLEXIBLE TEST AUTOMATION

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

V
tk
i

V
tk
ig
tt
gf

V
tk
i

V
tk
ig
tt
gf

V
tk
i

V
tk
ig
tt
gf

V
tk
i

V
tk
ig
tt
gf

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

G
zg
e

H
tg
g|
gf

U
vq
r

U
vc
tv

V
gt
o
kp
cv
g

F
go
ci
p
gv
k|
cv
kq
p

U
gv
aP
gz
va
E
{e
ng

G
p
f
aO
gc
uw
tg
o
gp
v

P
gz
va
E
{e
ng

F
cv
ca
E
qp
xg
tu
kq
p

E
w
tt
gp
va
E
{e
ng

U
vq
r
aE
{e
ng

U
vc
tv
aC
es
w
ku
kv
kq
p

U
vq
r
aC
es
w
ku
kv
kq
p

U
vc
tv
aE
{e
ng

Fi
gu

re
 8

.1
0.

 E
xe

cu
tio

n
gr

ap
h

of
 th

e
ca

se
 st

ud
y

on
 p

er
m

ea
bi

lit
y

m
ea

su
re

m
en

t [
8]

.

FRAMEWORk COMPONENT VALIDATION • 241

matters and not worry about software design and programming details like
threads and semaphores. The corresponding, satisfying results motivated
a wide use of the Synchronizer in other measurement layouts at CERN.

8.4 DOMAIN SPECIFIC LANGUAGE

An experimental case study, conceived specifically for testing the Mea-
surement Domain Specific Language (MDSL) in an actual measurement
application, was envisaged in the frame of the FFMM [5] at CERN. The
main objective is to verify on the field its benefits in terms of simplicity,
effectiveness, and flexibility in the measurement software applications
production.

In the following, the MDSL implementation and application results
are highlighted by referring to two practical examples: superconducting
magnet testing and permeability measurements.

8.4.1 CASE STUDY ON SUPERCONDUCTING MAGNET
TESTING [12]

In the example, the data are treated as 32-bit floating point and stored in
ASCII format in order to simplify the exchange among different tools.

In Figure 8.12, the MDSL script as a whole for the procedure of super-
conducting magnet test already described in Section 8.2 is shown. The

H
nw
z"
]X
,u
_

-0.2 -0.1 0 0.1 0.2
Ewttgpv"]C_

0.02

-0.02

-0.03

0.01

-0.01

0

Figure 8.11. Hysteresis curve of the material [8].

242 • FLEXIBLE TEST AUTOMATION

script is composed by four tasks: (a) “Devices_definition,” for pointing out
the devices to be used [3]; (b) “Devices_configuration,” where the device
connections are configured; (c) “Devices_setting” for selecting the mea-
surement parameters; and (d) “Measurement,” where the actual measure-
ment is started and stopped. In particular, the measurement is carried out
by using five different devices: (a) a set of FDIs (FDI_CLUSTER), (b) an
encoder board (ENCODER_BOARD), (c) a motor controller (MAXON_
EPOS), (d) a power generator (POWER_CONTROLLER), and (e) timing
board (TIMING_BOARD). In the device definition task, each instrument
is declared with a unique name as a string. In the device configuration and
setting tasks, the configuration and setting methods of the already defined
devices are called with the requested parameters suggested by the IDE
during the script writing (usually strings or numbers). The measurement
task contains the commands related to the actions of the devices (Start,
Wait, Stop, and so on) and usually their argument is the device unique
name as string. After the definition, each task is added to the execution
tree [8], where in this case only a sequential run is needed.

Figure 8.12. Superconducting magnet test script [12].

FRAMEWORk COMPONENT VALIDATION • 243

Each task section contains a small number of methods (less than 15
usually). In general, these methods are implemented into the C++ class con-
trolling the specific device. MDSL inherits this kind of methods from host
framework classes, and the benefit of the new language is related to the sug-
gestion and the check of the arguments to be passed and the right use of the
device methods in the script, for example, for MAXON_EPOS motor device:
Wait can be used only after Start, and Start can be used only after Set.

In Figure 8.13, the measured integral sextuple component is shown as
a function of the time and current. In both plots, the data are scaled by a
constant value in order to make comparable the curves and to emphasize
the “decay” and “snapback” phenomena [13], typical in superconductive
magnets. In particular, the measurements at 2 kA and 6 kA, having com-
mon powering history parameters, are shown. The plots are obtained after
a data postprocessing by using other tools (MATLAB®).

The MDSL script for superconducting magnet test emphasizes the
power of the method presented in this book. With less than 50 code lines (a
compression ratio of 1:10 compared to C++ code) organized in few coher-
ent sections, a whole measurement application involving several different
devices can be produced. By taking into account (a) the decrease of the
number of code lines and (b) the help provided by specific grammar rules
embedded into the IDE, measurement software applications turn out to be
easier to produce than in standard programming languages.

8.4.2 CASE STUDY ON MAGNETIC PERMEABILITY
MEASUREMENT

In the following, the MDSL script performing the permeability measure-
ment by means of the split-coil permeameter described in Section 8.3 [14]
is presented.

The measurement algorithm described earlier in Section 8.3.2 is cod-
ified in the script in six tasks. In Figure 8.14, the script structure is shown.
The commands in each task are omitted in order to emphasize the script
structure and make it more readable.

The first task to be active is the Demagnetization, at the end of this
task the execution passes to the Set_Next_Cycle task (series execution);
Set_Next_Cycle sets up the actual cycle of current and starts the Current_
Cycle by throwing the event next_cycle; Current_Cycle first starts the task
Start_Acquisition that enables the acquisition of flux and current, then
begins the generation of the actual current cycle, then stops the acquisition
by throwing the event stop_cycle; the task Stop_Acquisition triggers a new

244 • FLEXIBLE TEST AUTOMATION

execution of Set_Next_Cycle that restarts the loop up till the last scheduled
current cycle or enables the End_Test to set in stand by the devices.

The difference from the previous example is that in this case the task
execution tree is more complicated, and it is composed of serial and parallel
running tasks started by events. Simultaneous tasks can be managed in the
script at a very high level of abstraction. Race conditions and execution tree

*c+

*d+

run 1 (2 kA)
*d
51
d
3+
⋅3
26

*d
51
d
3+
⋅3
26

Vkog"*u+

OD4746"Crgtvwtg4

OD4746"Crgtvwtg4

0 200 400 600 800 1000

1

0.8

0.6

0.4

0.2

0

760 770 780 790 800

K"*C+

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

run 2 (2 kA)
run 3 (6 kA)
run 5 (6 kA)

run 1 (2 kA)

run 2 (2 kA)

run 3 (6 kA)

run 5 (6 kA)

Figure 8.13. Measured normal sextupolar “decay” and “snapback” as a function
of (a) the time and (b) as a function of the measured current for different supply
current cycles (data are scaled to be compared).

FRAMEWORk COMPONENT VALIDATION • 245

of serial and parallel tasks in the script have only to be described by using
the task-related commands (ADD_TASK, ADD_TASK_AFTER_TASK,
ADD_TASK_AFTER_EVENT). The control of the race conditions is del-
egated to a specific software component, that is, the software synchronizer,
implemented in the host language [8]. The method presented here allows
the production of complex measurement applications by a composition of
simple steps: test engineer after the definition of atomic tasks can arrange
them into an elaborate layout without increasing the script complexity.

In Figure 8.15, the results of two measurements of the same steel
specimen are shown: The effects of eddy currents can be appreciated at
different current ramp rates. The plots are obtained after a data postpro-
cessing by using other tools (MATLAB).

Figure 8.14. Permeability measurement MDSL script [12].

246 • FLEXIBLE TEST AUTOMATION

8.4.3 DISCUSSION

A DSL with specialized constructs concerning the automation of mea-
surement procedures is presented. The technique is based on the Mod-
el-Driven Engineering concepts and DSL solutions. Basic idea is to
provide unskilled programmers with means of producing concise and bug-
free specific measurement applications by using scripts written in a high-
level and domain-representative language, with the effect of improving
the resulting applications and reducing the development effort. Moreover,

*d+

- 3000 - 2000 - 1000 0 1000 2000 3000
J"*C1o+

D
"*
V
+

2

1.5

1

0.5

0

-0.5

- 1

- 1.5

- 2

*c+

2

1.5

1

0.5

0

-0.5

- 1

- 1.5

- 2
- 3000 - 2000 - 1000 0 1000 2000 3000

J"*C1o+

D
"*
V
+

Figure 8.15. Permeability measurement results for different current ramp rates:
(a) 0.5 A/s and (b) 0.01 A/s.

FRAMEWORk COMPONENT VALIDATION • 247

a set of domain rules can be embedded in the language definition with a
straightforward advantage in preventing errors during the early phases of
the development. The on-field applications of the new technique point out
the benefits in terms of simplicity, effectiveness, and flexibility in the mea-
surement software applications production, and the positive feedbacks
from users are fostering a wider use.

8.5 ADVANCED USER INTERFACES
GENERATOR [15]

This section is focused on highlighting how the approach presented in this
book supports test engineers in generating a GUI, automatically, during a
usual FFMM operation at CERN [6, 16]. FFMM, in addition to satisfying
all the functional [15] requirements, can provide means to generate the
graphical user interface.

Next, (a) the case study of magnetic permeability measurement and
(b) the measurement results are reported.

8.5.1 CASE STUDY ON MAGNETIC PERMEABILITY
MEASUREMENT

The case study is tasked at highlighting how the approach presented in
this book supports test engineers in generating the GUI automatically for
a measurement procedure based on the methods of the split-coil permeam-
eter illustrated in Section 8.3.1 (Figure 8.7) [14]. The procedure is codified
in the application script and processed by the FFMM framework in order
to produce an executable file. The devices involved in the measurement
procedure are configured by means of the automatically-generated user
interface (AUI) features of FFMM [15].

As an example, at the beginning of the measurement script, the test
engineer needs to configure the FDIs: the number of FDI and their bus are
required to start the acquisition. Thus, the test engineer enters the follow-
ing statements in to the script [15]:

• Def GIC “InputParam”;
• Capture InputParam with (numFDI 1, “Parameter Request:”,

“number of FDI”);
• Capture InputParam with (bus, numFDI, “Parameter Request:”,

“FDI bus”).

248 • FLEXIBLE TEST AUTOMATION

Then, during the application execution, the forms are generated
(Figure 8.16).

As a further example, during the measurement, the test engineer can
program the application to show the user the current flow by using the plot
feature of the GIC object. Thus the following statements have to be placed
in the script:

• Def GIC “CurrentPlot”
• Plot CurrentPlot with (currentData)

During the application execution, the window with the plot is gener-
ated as shown in Figure 8.17 [15].

A steel specimen was tested and, according to the afore-explained
procedure [14], the permeability characteristic curve may be obtained by
analyzing the data.

By validating the AUI using the Model-View-Interactor paradigm, the
relative magnetic permeability versus the magnetic field curve is reported
in Figure 8.18.

Figure 8.16. FDI configuring forms [15].

Figure 8.17. A window plotting some current cycles [15].

FRAMEWORk COMPONENT VALIDATION • 249

8.5.2 DISCUSSION

The Model-View-Interactor paradigm for AUI is mainly for test engineers
using FFMM to easily produce the GUI for their measurement applica-
tions. The advantages of the technique presented in this book meet the
requirements of software framework for measurements systems and agree
with the basic idea, primarily by decreasing the performance and cost ratio
of the application development even with a graphical interface.

REFERENCES

[1] Bottura, L. April 11–17, 1997. “Field Dynamics in Superconducting Mag-
nets for Particle Accelerators.” CERN Accelerator School on Measurement
and Alignment of Accelerator and Detector Magnets, pp. 79–105. Anacapri,
Italy: CERN

[2] Arpaia, P., L. Bottura, L. Fiscarelli, and L. Walckiers. 2012. “Performance
of a Fast Digital Integrator in on-Field Magnetic Measurements for Particle
Accelerators.” Review of Scientific. Instruments 83, no. 2, article id. 024702.
doi: http://dx.doi.org/10.1063/1.3673000

[3] Bottura, L., and K.N. Henrichsen. 2004–2008. “Field measurements.” CERN
Accelerator School, p. 118. Erice, Italy: CERN report.

[4] Arpaia, P., A. Masi, and G. Spiezia. April 2007. “A Digital Integrator for
Fast and Accurate Measurement of Magnetic Flux by Rotating Coils.” IEEE

Figure 8.18. Relative permeability versus magnetic field curve [15].

3500

3000

2500

2000

1500

1000

500

0
101 102 103

J"*C1o+

T
gn
cv
kx
g"
r
gt
o
gc
d
kn
kv
{

250 • FLEXIBLE TEST AUTOMATION

Transactions on Instrumentation and Measurement 56, no. 2, pp. 216–20.
doi: http://dx.doi.org/10.1109/tim.2007.890787.

[5] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012. “A Soft-
ware Framework for Developing Measurement Applications Under Variable
Requirements.” AIP Review of Scientific Instruments 83, no. 11, article id.
115103. doi: 10.1063/1.4764664

[6] Arpaia, P., M.L. Bernardi, G.Di Lucca, V. Inglese, and G. Spiezia. 2010. “An
Aspect-Oriented Programming-Based Approach to Software Development
for Fault Detection in Measurement Systems.” Computer Standards & Inter-
faces 32, no. 3, pp. 141–52. doi: http://dx.doi.org/10.1016/j.csi.2009.11.009

[7] Eaddy, M., T. Zimmermann, K.D. Sherwood, V. Garg, G.C. Murphy, N.
Nagappan, and A.V. Aho. 2008. “Do Crosscutting Concerns Cause Defects?”
IEEE Transactions on Software Engineering 34, no. 4, pp. 497–515. doi:
http://dx.doi.org/10.1109/tse.2008.36

[8] Arpaia, P., L. Fiscarelli, G. La Commara, and F. Romano. January 2011. “A
Petri Net-Based Software Synchronizer For Automatic Measurement Sys-
tems.” IEEE Transactions on Instrumentation and Measurement 60, no. 1,
pp. 319–28, doi: 10.1109/TIM.2010.2046602

[9] Henrichsen, K.N. 1967. “Permeameter.” In Proceeding second Internationa.
Conference on Magnet Technology, pp. 735–9. Oxford, U.K: Rutherford
Laboratory.

[10] National Instruments. 2010. DAQ, http://www.ni.com/data-acquisition/
[11] Arpaia, P., M. Buzio, L. Fiscarelli, V. Inglese, and G. La Commara. May 5–7,

2009. “Measurement-Domain Specific Language for Magnetic Test Specifica-
tions at CERN.” In Proceeding. IEEE I2MTC, pp. 1716–20. Singapore: IEEE.

[12] Arpaia, P., L. Fiscarelli, G. La Commara, and C. Petrone. 2011. “A Mod-
el-Driven Domain-Specific Scripting Language for Measurement System
Frameworks.” IEEE Transactions on Instrumentation and Measurement 60,
no. 12, pp. 3756–66. doi: 10.1109/TIM.2011.2149310

[13] Bottura, L., L. Walckiers, and R. Wolf. June 1997. “Field Errors Decay and
‘Snapback’ in Lhc Model Dipoles.” IEEE Transactions Applied Supercon-
ductivity 7, no. 2, pp. 602–5. doi: http://dx.doi.org/10.1109/77.614576

[14] Arpaia, P., M. Buzio, L. Fiscarelli, G. Montenero, and L.Walckiers. May
3–6, 2010. “High Performance Permeability Measurement: A Case Study at
CERN.” In Proceeding of the International Instrumentation and Measure-
ment Technology. Conference, pp. 58–61. Austin, TX: IEEE.

[15] Arpaia, P., L. Fiscarelli, and G. La Commara. 2010. “Advanced User Inter-
face Generation in the Software Framework for Magnetic Measurements
at CERN.” Metrology and Measurement Systems 17, no. 1, pp. 27–38. doi:
http://dx.doi.org/10.2478/v10178-010-0003-y

[16] Arpaia, P., M. Bernardi, G. Di Lucca, V. Inglese, and G. Spiezia. May 12–15,
2008. “Aspect Oriented-based Software Synchronization in Automatic Mea-
surement Systems.” Instrumentation and Measurement Technology Confer-
ence Proceedings, pp. 1718–21. Victoria, BC: IEEE.

CHAPTER 9

frAmework vAliDAtion on
lhc-relAteD ApplicAtionS

It’s supposed to be automatic, but actually you have to push this button.
―John Brunner, Stand on Zanzibar

9.1 OVERVIEW

At CERN, in the last few years, the Flexible Framework for Magnetic
Measurements (FFMM) [1] has been used to develop applications for sev-
eral test activities. These scenarios have been a valid test bed for checking
the FFMM capability of offering an environment for a fast develop-
ment of different measurement applications with disparate requirements.
A specific discussion of the goal achievement in functional terms was pre-
sented in Chapter 8 for main FFMM components. In this chapter, for some
case studies typical of the CERN magnetic measurements, the attention is
focused on the application software as a whole. For each case study, the
measurement procedure, the test station, and the experimental results are
illustrated. In particular, the applications for measuring the magnetic per-
meability by means of the split-coil permeameter and the magnetic field
by means of the rotating coils, as well as for testing and compensating the
field distortion of the superconducting cryo-magnets of the Large Hadron
Collider (LHC), are illustrated. Finally, a specific assessment of the flex-
ibility of the FFMM is presented on the basis of the method presented in
Chapter 5. The impact of adding and modifying a device, changing service
strategies, and implementing new measurement algorithms is assessed.

252 • FLEXIBLE TEST AUTOMATION

9.2 ON-FIELD FUNCTIONAL TESTS

In the following, three case studies of FFMM exploitation at CERN are
presented:

1. The first case aims at measuring the magnetic permeability of a
material sample through a fixed coil transducer.

2. The second application is based on the rotating coil technique and
is focused on assessing the quality field of the superconducting
cryo-magnets of the LHC.

3. In the third case study, the field errors due to nonideality of the LHC
superconducting dipoles are estimated and compensated for the
tracking tests, that is, the experiments for validating the synthetic
magnetic model of the machine.

9.2.1 MAGNETIC PERMEABILITY MEASUREMENTS

Magnetic permeability measurements are of main interest in order to
exploit the properties of materials to improve accelerator technologies.
In particular, for the LHC, it is important to characterize the magnetic
properties of the laminated low-carbon steel used for the magnet yokes.

In practice, toroidal specimens are used for magnetic permeability
measurements of soft materials in order to avoid test problems related to
bars or strips samples, namely end-effects and gaps or joints in the mag-
netic circuit [2]. Furthermore, a ring-shaped specimen allows the mean
magnetizing force to be computed accurately from a measurement of the
magnetizing current, the dimensions of the specimen, and the number of
turns in the magnetizing windings. Therefore, this kind of a specimen is
the closest to the ideal case when considering the testing principle, even if
it’s not suitable when only just end usage aspects have to be investigated.

The split-coil permeameter built and used for the magnetic property
characterization at CERN is shown in Figure 9.1.

The permeameter consists of three toroidal windings, which can be
opened for placing the sample. The two outer coils form the 180-turn exci-
tation winding and the inner 90-turn coil the flux measurement winding.
The maximum excitation current, passing through the coil, is limited to
40 A in order to avoid overheating, thus the maximum magnetizing field is
approximately 24,000 A/m at room temperature.

Acquisition systems developed in the past before the FFMM provided
a low sampling rate of the hysteresis curve for the new generations of

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 253

magnetic materials under test, as well as a low level of flexibility in the
measurement definition.

The current acquisition system exploits the state-of-the-art per-
formance of FFMM [1] and Fast Digital Integrator (FDI) [4] in order
to improve the accuracy of the whole measurement and to increase the
application domain. In the following, (a) the background, (b) the experi-
mental set up, (c) the test procedure, (d) the FFMM implementation, and
(e) the experimental results of the automatic measurement bench based
on FFMM realized at CERN for the magnetic permeability measurements
are presented.

9.2.1.1 Background

The principles of permeability measurements are recalled here for the par-
ticular case of tests on a ring-shaped specimen by means of a fluxmeter,
when the material is subject to a particular steady state (magnetostatic
test), or is changed from one magnetostatic condition to another.

Figure 9.1. Split-coil permeameter [3].

254 • FLEXIBLE TEST AUTOMATION

Points on the curve of first magnetization are measured by bringing
a magnetic field H to bear on the sample. Switching the field to opposite
directions causes a change in the flux density B equal to twice its value.
Repetition of the measurement by a gradual increase in the field will pro-
duce the set of values (B, H) determining the curve.

The value of the average magnetic induction is assessed properly by
correcting for the flux contribution from the applied magnetic field outside
the bulk of the sample measured by the sensing coil. For this reason, two
measurements are carried out and combined, with and without the speci-
men inside the permeameter. Subsequently, the values of B and H can be
calculated as [2]:

 B k k I= −2 3φ (9.1)

 H N I
r

=
1

02π

with

 k H
I1 0= µ

 k
N Sa

2
2

1
2

=

 k k
I

k3 2
0

1= −
φ

 2 20π πr
r r
r r
ext int

ext int
=

−

−ln ln

where N1 is the number of excitation windings, N2 the number of windings
of the sensing coil, 2πr0 the sample average magnetic length, rint and rext the
inner and outer radius of the sample, respectively, φ and φ0 the integrated
signal of the permeameter with and without sample, respectively, and Ss
the sample section area. The area Ss might be difficult to assess, especially
when laminated samples are used. In these cases, by knowing the den-
sity of the material and by measuring its mass, the sample volume V, and
hence Ss, can be computed as V

r rint extp +()
.

9.2.1.2 Experimental Set Up

In Figure 9.2a, the architecture of the automatic bench for magnetic
permeability measurement based on FFMM is shown. A PC hosting the

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 255

measurement application produced by FFMM is connected to a data
acquisition board (DAQ) [5], in order to control the Voltage-Controlled
(VC) Power Supply of the excitation coil of the Split-coil Permeameter by
the analog output. The PC controls a PXI Rack containing (a) two FDIs
configured for current acquisition and voltage integration, respectively,
and (b) a board developed at CERN (Encoder Board), generating pulses
used to trigger synchronously the FDIs acquisition. In Figure 9.2b, the
experimental setup of the permeability measurement bench is depicted.

9.2.1.3 Test Procedure

The assessment of the magnetic permeability requires two measurements,
with and without sample inside the split coils. Moreover, a preliminary
demagnetization cycle is needed for bringing the sample under test into a
“virgin” state. The complete measurement procedure can be summarized
as follows:

1. Measurement of the average magnetic induction without the speci-
men to retrieve the correction factor

2. Demagnetization cycle
3. Measurement of the average magnetic induction with the specimen

inside the permeameter

Figure 9.2. (a) Architecture and (b) experimental setup of the permeability
measurement bench at CERN.

*c+

VC power
supply

Split-coil
permeameter

PXI rack

DAQ

*d+

256 • FLEXIBLE TEST AUTOMATION

The demagnetization procedure, tuned by experimental studies, is
carried out by feeding the excitation windings of the permeameter with
several current plateaus. The first current plateau of 40 A generates a
magnetization field sufficient to bring the sample into a saturation state.
Subsequently, the current is decreased from 40 A down to 1 mA, with
three ranges of attenuation factors according to a geometric progres-
sion. From 40 A down to 0.2 A, each plateau equals the previous divided
by 1.5; then, by 1.2 down to 85 mA, and finally by 1.1 to 1 mA. Each
plateau lasts 4 s.

Each measurement cycle, with and without sample, is carried out by
powering the excitation windings through a current cycle made by increas-
ing plateaus of opposite signs, linked by ramps of fixed slope 1.5 A/s.
The voltage signal induced on the sensing coil is integrated to obtain the
variation of the linked flux. The current is measured via a feedback signal
of the VC Power Converter, synchronously with the flux by exploiting a
common trigger signal.

9.2.1.4 FFMM Implementation

The software application for magnetic permeability measurement is
obtained from FFMM through a formal description provided in a user
script. An excerpt of the high-level user script is provided in Figure 9.3
Besides the hardware synchronization of the two FDIs by means of trigger
pulses generated by the Board, a software synchronization of the devices
is handled by the FFMM Synchronizer. In particular, suitable constructs
are used to schedule the execution of the following actions without worry-
ing about the time synchronization of parallel or series tasks:

1. Demagnetization of the specimen;
2. Start acquisition of flux and current;
3. Start generation of one cycle of the signal controlling the power

converter;
4. Wait for the completion of the present current cycle;
5. Stop the acquisition of the flux;
6. Start the generation of the next current cycle and go to 3) or, if the

maximum value of current is reached, stop the acquisition;
7. Convert the data obtained from the FDIs to a suitable format.

The specimen is magnetized gradually by using a current waveform
consisting of a series of linear ramps and plateaus with exponentially-in-

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 257

creasing amplitude. The current cycle referred at point 3 is composed
of an initial plateau, a linear ramp with constant ramp rate, and a final
plateau [3].

As an example [6], the test engineer adds a task to be executed after
another one by using the statement ADD_TASK_AFTER_TASK(first_task,
second_task), such as shown in the case study (Figure 9.3) for the task
Set_Next_Cycle scheduled in series to the demagnetization task.

Otherwise, if the test engineer wants to arrange the start of the execu-
tion of one task after an event produced by another task and then to let both
the tasks active in parallel, he has to exploit the statement ADD_TASK_
AFTER_EVENT(event, second_task), such as shown in Figure 9.3 for the
task Current_Cycle scheduled after the event next_cycle. The first task to
become active is the Devices_definition and then the Demagnetization.
At the end of these tasks, the execution passes to the task Set_Next_Cycle

Figure 9.3. MDSL script for permeability measurement.

258 • FLEXIBLE TEST AUTOMATION

(series execution); Set_Next_Cycle sets up the actual cycle of current and
starts the Current_Cycle by throwing the event next_cycle. Current_Cycle
first starts the task Start_Acquisition that enables the acquisition of flux and
current, and then begins the generation of the actual current cycle. Finally,
the test engineer stops the acquisition by throwing the event stop_cycle.
The task Stop_Acquisition triggers a new execution of Set_Next_Cycle
that restarts the loop up till the last scheduled current cycle or enables the
Data_Conversion in order to format the output data.

9.2.1.5 Experimental Results

The on-field working of the FFMM-based automatic measurement system
is highlighted by a test on a laminated soft steel sample. As a first step,
the current and the flux without the sample are acquired by means of the
experimental setup. In Figure 9.4, an example of the measured current
cycle and the corresponding reconstructed field H are shown.

Subsequently, the test current cycle is repeated with the sample inside
the permeameter. By combining the results of the two acquisitions, as pre-
viously explained, the first magnetization curve of the sample material is
obtained (Figure 9.5). Finally, the sample relative permeability is estimated
from the points of this curve as ratio of the fields B and H (Figure 9.6).

Figure 9.4. Measured current and computed magnetic field without sample.

K"
*"
C
"+

50

0

0 2010 30 40 50 60 70 80
-5

v"*u+

-50

5
x 104

0

O
ci
p
gv
ke
"H
kg
nf
"*
"C
1o
"+

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 259

9.2.2 ROTATING COILS

FFMM has been employed at CERN for characterizing the supercon-
ducting magnets of the LHC. The LHC has unprecedented demands on
the control of the magnetic field and its distortion, during the phases of

Figure 9.5. First magnetization curve of the soft steel sample.

D
"*
V
+

J"*C1o+
101 102 103

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 9.6. Relative permeability of the soft steel sample.

T
gn
cv
kx
g"
r
gt
o
gc
d
kn
kv
{

J"*C1o+

101 102 103

3500

3000

2500

2000

1500

1000

500

0

260 • FLEXIBLE TEST AUTOMATION

injection, acceleration, and collision. One of the most stringent require-
ments during the operation of the LHC is to have a constant ratio between
dipole-quadrupole and dipole-dipole fields in order to control the vari-
ation of the betatron tune1 and ensure a constant beam orbit throughout
the acceleration phase, hence avoiding particle losses. Furthermore, super-
conducting magnets for particle accelerators are affected by characteristic
dynamic effects, leading to field errors in the magnetic aperture of the
order of a few 10−4 relative to the main harmonic component. These errors,
observed and studied systematically for the first time at Tevatron [7], are
due mainly to unbalanced currents in the strands that compose the super-
conducting cable. In particular, LHC double-aperture 15-m long, 8.34 T
main dipole magnets are affected by a slow decay of the sextupole (b3)
and decapole (b5) components during the low-field phase of particle injec-
tion. Subsequently, as the field is ramped up for beam acceleration, these
error components “snap back” abruptly to their initial value, unbalancing
the beam orbit and giving rise to significant particle losses [8]. The tol-
erances on the sextupole and decapole correction are calculated from the
beam requirements [9] providing a specification for the maximum allowed
field errors. These calculations [9] yield the tolerances shown in Table 9.1
for commissioning and nominal operation phases.

Therefore, a significant measurement effort is devoted to the investiga-
tion of the dynamic field error of the main dipole magnets [10]. Fast-vary-
ing magnetic fields have been measured by designing a new measurement
station with high-speed rotating coils units and FDI [4]. A background on
this measurement method is given in Section 6.2.1 of this book.

In the following, (a) the experimental setup, (b) the FFMM imple-
mentation, and (c) the experimental results of the automatic measurement
bench based on the FFMM realized at CERN for characterizing the super-
conducting magnets of the LHC are presented.

1If a particle, along its circular path through the accelerator magnets, for any rea-
son deviates from its nominal trajectory, it passes far from the axis of the focus-
ing quadrupoles and oscillates around its nominal orbit (betatron oscillation). The
tune is the number of betatron oscillations per turn.

Table 9.1. Injection harmonic tolerance (in hundreds of ppm of the main
dipole)

Commissioning Nominal Operation
b3 0.35 0.02
b5 - 0.1

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 261

9.2.2.1 Experimental Setup

The architecture and experimental setup of the automatic measurement
station based on rotating coils at CERN [1] are illustrated in Figures 9.7 (a)
and (b), respectively. A rotating shaft, composed by 12 ceramic segments,
each one holding three tangential, equal, and parallel sensing coils, equips
both the apertures of the magnet (Figure 9.7b). One coil is exploited to
measure the dipole field component (the so-called “absolute” signal). The
connection in series opposition with a second coil provides cancellation of
the dipole (“compensated” signal) for the measurement of harmonic error
components with higher noise rejection [1].

Figure 9.7. Architecture (a) and experimental setup (b) of the automatic measure-
ment station based on rotating coils at CERN [1].

*c+

*d+

Motor

Encoder

Magnet

Slip
rings Segments

FDIs

Encoder
board

PXI rack

PC

Magnet

Coil shaft

Acquisition system

Rotating unit

Sliding support

262 • FLEXIBLE TEST AUTOMATION

In the actual setup, the signals from consecutive segments are con-
nected in series by three groups of four “super-segments,” in order to limit
the number of FDIs to six per aperture [1]. Two motors provide a rotation
rate of up to 480 rpm in order to get signals at the desired time resolution.
The absolute and compensated signals from each super-segment are con-
nected to the integrator in order to measure the magnetic flux. The inte-
grators are provided by the trigger signal from the two angular encoders,
one for each motor, through a trigger board (encoder board). The magnet’s
supply current is read directly from the power converter’s WorldFIP inter-
face and synchronized with the acquisition trigger by means of a timing
board.

9.2.2.2 FFMM Implementation

In Figure 9.8, the measurement script for superconducting magnet test is
shown.

The script consists of four tasks: (a) “Devices_definition,” for point-
ing out the devices to be used; (b) “Devices_configuration,” where the
device connections are configured; (c) “Devices_setting,” for selecting the
measurement parameters; and (d) “Measurement,” where the actual mea-
surement is started and stopped [1].

In particular, the test is carried out by using five different software
devices (Figure 9.8): (a) a set of FDIs (FDI_CLUSTER), (b) an encoder
board (ENCODER_BOARD), (c) a motor controller (MAXON_EPOS),
(d) a power generator (POWER_CONTROLLER), and (e) and a timing
board (TIMING_BOARD).

In the device definition task, each instrument is declared with a unique
name as a string. In the device configuration and setting tasks, the config-
uration and setting methods are called with the requested parameters sug-
gested by the IDE during the script writing (usually strings or numbers).
The measurement task contains the commands related to the actions of the
devices (Start, Wait, and so on) and their argument usually is the device
name as a string. After the definition, each task is added to the execution
tree [11], where in this case only a sequential run is needed.

9.2.2.3 Experimental Results

In Figures 9.9a and 9.9b, the measured sextuple component b3 as a func-
tion of the current and the time, respectively, expressed in units (hun-
dreds of ppm), namely as 10−4 fraction of the main field component, are

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 263

Figure 9.8. Superconducting magnet test script.

264 • FLEXIBLE TEST AUTOMATION

Figure 9.9. Measured sextuple component b3 versus (a) current and (b) time, in
units (10−4 fraction of the main field component).

d
5"
*w
p
kv
u+

-0.5

-1.0

-1.5

-2.5

-2.0

700 750 800
Ewttgpv"*C+

850 900

*c+

*d+

Vkog"*u+

d
5"
*w
p
kv
u+

0.0

-0.5

-1.0

-1.5

0 200 400 600 800 1000

highlighted. The “decay” and “snapback” phenomena [12], typical in
superconducting magnets, are visible clearly [1].

9.2.3 LHC TRACKING TEST

A further specific test (tracking test) has been performed on the LHC
cryo-magnets with twofold purposes:

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 265

1. Generate the current ramps for the main superconducting magnets
producing the expected magnetic fields.

2. Generate the current ramps to supply the corrector magnets and com-
pensate the sextupole and decapole field errors in the main dipole.

Next, (a) the background, (b) the experimental setup, (c) the test pro-
cedure, and (d) the experimental results of the tracking test are presented.

9.2.3.1 Background

The decay amplitude is affected by the power history of the magnet, and
particularly by the precycle flat top current and duration. The system
Field Description for the LHC (FiDeL) [13], modeling the field variations
during injection, acceleration, and collision, was developed to cope with
the differences between the current cycles during the tests and the expected
cycles in the actual machine operation. FiDel is a feed-forward system
used to forecast and compensate the field variations within the commis-
sioning tolerance, in order to bring the beam to its nominal parameters by
means of suitable controls.2 In practice, the LHC ring is divided into eight
sectors, where the compensation actions are actuated independently by
means of power converters supplying the series of correctors. An average
parametric field model for each sector is therefore necessary. The model is
based on the identification and decomposition of the effects that contribute
to the total field in the LHC dipoles. Each effect is modeled theoretically
or empirically. The parameters of the model are obtained from a synthesis
of the information available from magnetic field measurements in warm
and cold conditions, in particular from the measurements of (a) all the
magnets at room temperature and (b) one fifth of the magnets at cryogenic
temperature (1.9 K).

In this section, the application of FFMM to the rotating coil technique
devoted to the field harmonic correction of the tracking test is presented.
This procedure strongly relies on field harmonic analysis, for which rotat-
ing coils are one of the most accurate techniques. In particular, in the fol-
lowing, the compensation of the sextupole term for the commissioning
phase is reported.

2For the LHC, a system solely based on beam feedback may be too demanding.
The LHC beam control therefore requires a forecast of the magnetic field and the
multipole field errors to reduce the burden on the beam-based feedback.

266 • FLEXIBLE TEST AUTOMATION

Past measurement campaigns [9] highlighted the need to improve
the harmonic compensation of the third-harmonic (b3) component of the
main LHC dipoles. In particular, measurements had already been carried
out by means of the standard measurement equipment [14], but the time
resolution obtained in the field estimation was intrinsically limited by
the acquisition hardware, so that a new harmonic value was available
only every 20 s. A new, fast hardware was developed to overcome this
limitation [15]. Currently the harmonic estimation can be updated at a
rate of 8 S/s. Anyway, the new hardware is still needed for proper acqui-
sition and control software. This software was realized by means of the
FFMM.

The sextupole harmonic component in the LHC dipole is compen-
sated by applying to the magnets a current I(t) computed from (a) the
integral B3 and (b) the sextupole corrector Transfer Function (TF). TF
(expressed in T m/A) is obtained by averaging the ratio of the measured
fields and currents of the correctors on the two apertures of the dipole:

 TF L mean
B t

I t
mean

B t
I tt

MCS

t

MCS

=
()

()

+
()

()

2
3

1
3

2

 (9.2)

where L is the length of the super segment used for sextupole magnets mea-
surement (Figure 9.7a). The integral B3 (expressed in T m) is defined as:

 B t L B t
i

i i3
1

3

3() = ()

=

∑ , (9.3)

where Li and Bi,3(t) are the effective length and the measured third har-
monic of the i-th super segment, respectively. The effective length is
adjusted to take into account the contribution of the gaps between the
coils. All harmonic field values are expressed in T measured at a given
reference radius, conventionally 17 mm for the LHC.

Finally, by combining Equation 9.2 and Equation 9.3, the current for
dipole harmonic compensation turns out to be:

 I t
B t
TFMCS () = −
()3 (9.4)

The average value of the TF (9.2) of 95 T/A is consistent with the previous
measurements of the sextupoles installed in the machine [9], and the RMS
fit error of 3 µT/A proves a satisfying TF linearity.

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 267

In Figure 9.10, the current curve for the corrector magnets computed
through (9.4) is shown.

9.2.3.2 Experimental Setup

In Figure 9.11, the architecture of the measurement system is shown. The
core is the fast equipment for harmonic coils measurements. Varying mag-
netic fields are measured by designing the measurement station according
to the main specification of improving the bandwidth. This is achieved by
means of high-speed rotating units and associated electronics. The algo-
rithm for harmonic resolution enhancement presented in Section 6.2.1 was
not employed, because the current limitations of the power converter con-
trol system makes it pointless. Both the apertures of the cryo-assembly
are equipped with a rotating shaft, made of 12 pivoting ceramic segments
each holding three tangential, equal, and parallel pick-up coils [16].

One coil is normally used to measure the dipole field component (the
so-called “absolute” signal), while the connection in series opposition
with a second coil provides cancelation of the dipole (“compensated” sig-
nal) and ensures higher noise rejection for the measurement of harmonic
error components. The shaft covers the whole length of the LHC dipole
and the last segment captures the sextupole corrector field in its entirety. In
this configuration, such as already explained, the signals from consecutive

Figure 9.10. Computed MSCs powering current cycle for sextupole compensation.

100

80

60

40

20

0

-20

800 1000 1200 1400 1600 1800 2000 2200 2400
Vkog"*u+

E
w
tt
gp
v"
*C
+

268 • FLEXIBLE TEST AUTOMATION

segments are connected in series by three groups of four segments, con-
stituting three “super segments” with the purpose of limiting the number
of necessary integrators to six per aperture. Two Micro Rotating Units
[15] provide a rotation speed of up to 8 rps in order to get voltage signals
with the desired time resolution. The absolute and compensated signals,
from each super segment, are the input of a FDI [17] measuring the mag-
netic flux linked with the super segment coils. The pulses from the angular
encoders trigger the integration time of the FDIs and the acquisition of the
supply magnet current: The synchronization between the magnetic flux
sample and current measurement is thus ensured. The software used to
handle the station and to retrieve the current reading, via Ethernet con-
nection from the power supply controller, is obtained through the FFMM.

9.2.3.3 Test Procedure

The test procedure for the harmonic compensation is composed of the
following steps:

1. Measurement of the integral dipole field and error components
during a nominal LHC machine cycle;

2. Measurement of the transfer function of the two superconducting
sextupole corrector magnets (MCS) installed in line with each
dipole aperture in the same cryo-assembly [18];

Figure 9.11. Architecture of the tracking test measurement station.

OTW

RZK"/ejcuuku"HFKu

RZK"dwu

Vtkiigt"dqz

Fkrqng OEU

YqtnfHKR"icvgyc{

Gvjgtpgv"eqppgevkqp

HHOO"uqhvyctg

36mC

Power
converters

822"C

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 269

3. Computation of the compensation current for the MCS from the
results of points 1 and 2;

4. Measurement of the integral field when the main dipole performs
an LHC cycle and the MCS are supplied with the compensation
current, and estimation of the residual field errors.

The first step is aimed at characterizing the LHC dipole magnet during
a nominal machine cycle (LHC cycle, Figure 9.12) [19].

In particular, the measurement is carried out to get a reference behav-
ior, without compensation, of the integral harmonic component B3. The
nominal LHC cycle has a ramp-up at 10 A/s from 350 A to an injection
current plateau at 760 A, lasting about 1000 s, to simulate the particle
injection at constant field (Figure 9.12). This is followed by a Parabolic
Exponential Linear Parabolic (PELP) [19] profile, a 1000 s flat top at a
nominal current of 11,850 A, and a ramp-down at 10 A/s to the minimum
current of 350 A.

The LHC cycle is preceded by a precycle aimed at bringing the mag-
net into a reproducible magnetic state. The repeatability of the sextupole
obtained in the characterization phase of the magnet is in the order of
10−4 units. Regardless, without well-defined cycling procedures, the
reproducibility of the sextupole during LHC cycles is ~ 0.1 units [9].
For obtaining the target value of 0.02 units in the compensation of b3
(Table 6.1), suitable cycling procedures are therefore defined.

Figure 9.12. LHC standard current cycle.

14000

12000

10000

8000

6000

4000

2000

0
0 1000 2000 3000 4000 5000

v"*u+

E
w
tt
gp
v"
*C
+

LHC cyclePre-cycle

Linear ramp

Injection plateau
Exponential ramp

Linear ramp

Acceleration ramp
Ramp
down

Collision plateau

Parabolic ramp
Beam dumpNominal current plateau

Parabolic ramp

270 • FLEXIBLE TEST AUTOMATION

The second step is aimed at (a) computing the TF, that is, the ratio
between the field and the current, for the two sextupole correctors, and (b)
verifying the linearity of such a TF. The resulting TF allows the required
sextupole excitation current to be computed for the compensation of the B3
field inside the dipole. The field is measured during several ramp cycles,
that is, from 0 A up to the nominal current of 550 A, down to −550 A and
back to 0 A with a ramp rate of ±10 A/s.

The third step is the main measurement procedure. The sextupole is
fed with the current curve computed via the TF and at the same time the
LHC dipole is fed with the nominal LHC cycle, both cycles being tightly
synchronized (<1 ms). The results of such a measurement highlight the
quality of compensation for the third harmonic in the dipole.

In Figure 9.13, a domain specific language (DSL) user script for
rotating coil-based measurements is provided. The script contains two

Figure 9.13. DSL script for rotating coil-based measurement.

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 271

measurement tasks handling devices setting and flux measurement proce-
dure. The FFMM Synchronizer is in charge for scheduling their execution
in sequence.

The desired sextupole excitation cycle is to be approximated by inter-
polating the current curve of Figure 9.12 with few linear segments, owing
to limitations of the power converter control system (to be updated in the
near future). The harmonic measurements are performed at 1 S/s, that is,
with a coil rotation speed of 1 rps, which is still well below the theoreti-
cal bandwidth of the instrumentation, albeit 20 times faster than with the
instrumentation available during the series tests of the LHC magnets.

9.2.3.4 Experimental Results

The preliminary results reported in this section focuses on highlighting
the capability of the new setup of attaining at the first iteration a compen-
sation level of the integral sextupole harmonic very close to the previous
campaign [9].

In Figure 9.14, the integral b3 in units, measured during the refer-
ence measurement of the LHC cycle in the aperture 1 of the dipole
MB2425, is shown. In the same figure, the integral b3 during the harmonic

Figure 9.14. Integral b3 component versus current with and without compensa-
tion, in the dipole magnet MB2524 during an LHC cycle.

d
5"
*W
P
KV
U
+

0.5

0.0

-0.5

-1.0

-1.5

-2.0

2.5

-3.0

-3.5

700 800 900 1000 1100 1200 1300
Ewttgpv"*C+

b3 with compensation

b3 without compensation

272 • FLEXIBLE TEST AUTOMATION

Figure 9.15. Residual integral b3 component versus current with compensation, in
the dipole magnet MB2524 during an LHC cycle.

d
5"
*W
P
KV
U
+

0.5

0.4

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

-0.4

-0.5
700 800 900 1000 1100 1200 1300

Ewttgpv"*C+

compensation measurement, with the linear interpolated current supply-
ing the MCSs, is reported. A more detailed view of the residual b3 with
compensation is provided in Figure 9.15. A tolerance of 0.6 units, roughly
corresponding to a reduction by a factor of 3 of the snapback swing, is
achieved already at the first iteration. The decay and snapback transient is
detected with unprecedented detail, in particular, considering the ampli-
tude of the peak [15].

The increased resolution is highlighted in the comparison with the
results of the standard measurement equipment shown in Figure 9.16, for
an acquisition on a single segment with the new acquisition system run-
ning at maximum speed (8 rps).

9.3 FLEXIBILITY EXPERIMENTAL TESTS

This section deals with the flexibility test of software frameworks for mea-
surement applications, and, in particular, of the FFMM. After prototyp-
ing, experimental applications, and analysis of code quality, a flexibility
characterization of the framework is needed. As part of the wider scenario
aimed at the characterization of the framework started in Chapter 5, the

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 273

twofold purposes of this section is (a) to introduce specific metrics suitable
for assessing the degree of flexibility achieved by a software framework
for measurement applications and (b) to present experimental results for
some typical application scenarios from the CERN release 3.0 of FFMM.

9.3.1 EXPERIMENTAL RESULTS

The FFMM at CERN was designed in order to satisfy the requirements
for a wide range of magnetic measurement applications, thus the most
probable scenarios to deal with are the different techniques currently used
for testing magnets for accelerators, besides those that will be developed
in the future.

The framework is based on Object-Oriented and Aspect-Oriented
Programming (OOP and AOP), therefore the modules involved in these
scenarios are methods, classes, and aspects. In a preliminary analysis
phase, the classes of changes due to the different measurement techniques
were classified (by increasing flexibility) as: (1) adding or modifying soft-
ware modules implementing the devices, (2) changing the strategies for
handling the services provided by the framework (e.g., fault detection,

Figure 9.16. Estimation of the sextupole with the old standard and the FFMM
platform (FAME).

25

20

15

10

5

0

-5

-10

-15
0 2000 4000 6000 8000 10000 12000

Ewttgpv"*C+

-7

-8

-9

-10

700 800 900 1000 1100 1200
Ewttgpv"*C+

FAME platform

d
5"
*W
P
KV
U
+

d
5"
*W
P
KV
U
+

Standard platform

274 • FLEXIBLE TEST AUTOMATION

logging, and synchronization), and (3) implementing new measurement
algorithms. The classes of changes involve different users of the frame-
work, namely (1) and (2) the developer, and (3) the test engineer [1].

In the following, some preliminary experimental results of the flexi-
bility assessment are illustrated. The tests were carried out at CERN on the
release 3.0 of FFMM for different measurement methods. The experimen-
tal results are summarized in Table 9.2.

The generalized evolution cost metric is obtained by fixing
µ = CYCLO � (Cyclomatic Complexity [20], a measure of the number of
linearly independent paths through a program source code and therefore
of its logical complexity), thus yielding the metric CModules

CYCLO . This met-
ric is used to compare the degree of flexibility of the different classes of
changes, and not as an absolute measure of flexibility. A high cyclomatic
complexity (>10 [21–24]) denotes a complex procedure hard to under-
stand, test, and maintain. Therefore, the lower the cyclomatic complexity
(and consequently CModules

CYCLO), the higher the flexibility.

9.3.1.1 Adding or Modifying a Device

When new devices are required by a measurement application, the effort
for their implementation cannot be avoided completely. In this case, the
flexibility is, as a consequence, limited intrinsically [1]. Nevertheless,
FFMM is fairly flexible toward this class of changes, because it helps
the user effectively in developing the related new components. Namely, it
provides services, such as fault detection and event handling, whose infra-
structure is accessible easily and whose implementation is customizable
with limited effort.

Table 9.2. Generalized evolutions cost metric for different classes of
changes in FFMM

In
cr

ea
si

ng
 fl

ex
ib

lit
y Class of change User involved CModules

CYCLO

Add device Developer ∝ #methods,events,faults
Change device interface Developer ∝ depth inheritance

hierarchy
Change fault detection
strategy

Developer ∝ #faultsinvolved

Change measurement
procedure

Test engineer 0

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 275

The possible changes at device level can be classified as (a) adding the
device into the framework from scratch and (b) modifying it to satisfy new
requirement when it already exists, by adapting some method implemen-
tation or its interface. The cost of adding a new device strongly depends
on its size. Formally, rather than through the lines of code (LOC), this
cost can be expressed as the sum of the cyclomatic complexity of all its
methods, including additional code devoted to faults and events handling
[1]. It is computed as the average cyclomatic complexity of a software unit
(method) multiplied by the number of units implemented. The generalized
evolution cost metric results therefore proportional to the number of mem-
ber functions, events, and faults of the new class (Table 9.2). The member
functions of the class are likely to be more complex than the methods
handling the events and faults, thus the generalized evolution cost metric
usually depends more on the former set of functions. If a class interface
has to be modified, for example, by adding or removing a method, the
change will involve many modules because typically a device is part of a
hierarchy of classes in a generalization relationship. The effort to add or
remove a method is fixed and determined by its own complexity, thus the
growth of the evolution cost metric depends only on the depth of the inher-
itance hierarchy (Table 9.2). In the design phase of FFMM, the maximum
depth was kept to a reasonable value, thus this class of changes requires
a limited effort. The evolution cost estimation strongly depends on the
device considered.

In order to provide a quantitative example, in the following the driver
for the device Encoder Board, developed at CERN and employed in differ-
ent scenarios typical of the magnetic measurements, is taken into account.
The device is part of the hierarchy of classes. Adding the device requires
a considerable programming effort, anyway FFMM provides support in
the following ways: Libraries implementing communication features on
different buses are supplied, so that all the required functionalities are
already available and accessible through a suitable interface. Furthermore,
FFMM already implements and makes available infrastructures for event
handling and fault detection. The tasks of exploiting events and improving
system fault tolerance are therefore extremely simplified for the user. He
just needs to add few small modules to extend the event structure and the
fault detection logic. The generalized evolution cost metric, computed as
the sum of the total cyclomatic complexity of the modules to be added,
has a value of 301 in the particular case considered. This value is provided
just as an example, since it strongly depends on the evolution step under
analysis. Anyway, to give insight on its meaning, it can be observed that
in FFMM an average device has 35 member functions, and an average

276 • FLEXIBLE TEST AUTOMATION

device member function has CYCLO = 2. Therefore, since the complexity
of a device lies mainly in its member functions, on average adding a new
device costs 35 × 2 = 70. With respect to this value, the Encoder Board is
found to be significantly above the average complexity level.

9.3.1.2 Changing Service Strategies

FFMM provides many services to help the user in employing the frame-
work and enlarging its application domain. The choice of OOP reduces
the number of modules affected by possible changes, thus assuring a
good level of flexibility. Moreover, some services (Chapters 4 and 7)
were implemented by means of AOP. As an example, here only the fault
detection is considered, because it is a fundamental part of all the devices
(Section 4.3). By this solution, the classes of FFMM are oblivious of trig-
gering the execution of a specific code in the related aspects providing the
services. Classes and aspects are therefore completely decoupled, further
increasing software flexibility. Namely, a change in the fault detection
strategy typically involves only one module, without affecting in any way
the corresponding device. The complexity of such a change can be esti-
mated as the average complexity of a fault handling method multiplied by
the number of methods to be modified, and is therefore proportional to the
number of faults involved in the change (Table 9.2).

To provide an assessment, for the fault detection code specific of the
Encoder Board, a CModules

CYCLO = 4 is achieved, while for fault detection code
common to other devices, a CModules

CYCLO = 25 , for a total generalized evolu-
tion cost of 29.

9.3.1.3 Implementing New Measurement Algorithms

Several measurement techniques are currently employed for testing
accelerator magnets, such as fixed and rotating coils, as well as stretched
wire [25]. FFMM was designed to reduce drastically the amount of code
affected by modifying the measurement procedure.

The test engineer interacts with the framework mainly through the
User Script, which is a formal description of the measurement procedure.
All the changes required by a new measurement algorithm are focused
in the User Script, without affecting any other modules. In this case, the
framework provides the highest degree of flexibility, with CModules

CYCLO
= 0

(Table 9.2). This result was proven experimentally by developing the

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 277

application for permeability measurements described in Section 9.2.1
by means of devices already developed and previously employed for
the rotating coil benches. The system for permeability measurement was
developed at CERN in the 1960s, and since then has been used by means
of a semiautomatic test station [26]. It is therefore remarkable the possi-
bility to develop quickly from scratch the required control and acquisition
software through FFMM.

9.4 DISCUSSION

In this chapter, the FFMM was shown to be employed successfully in
the field to produce the software applications required by current needs
at the CERN test facilities. In particular, the framework proved its effec-
tiveness in developing software for measurements with very different
requirements, based both on rotating and fixed coils. The former tech-
nique was employed for the estimation and compensation of the sextupo-
lar component of the field generated by a superconducting LHC dipole.
The latter technique was used to estimate the permeability of a soft steel
sample.

The results of harmonic compensation and permeability measurement
were presented, highlighting the resolution improvement attained in the
harmonic estimation and the capability of FFMM of producing quickly,
and with a limited effort, the acquisition and control software for both
applications, in particular, for the split-coil permeameter, for which an
automatic test station had never been developed before

An experimental approach to the software’s flexibility assessment of
measurement frameworks is shown. In particular, this approach is applied
in the context of the FFMM at CERN. FFMM was designed to be flex-
ible, reusable, maintainable, and portable. A complete release of FFMM
is available, and its effectiveness on the field has already been proven in
Chapter 6, thus the evaluation of its degree of flexibility completes the
more comprehensive phase of software quality assessment, aimed at stat-
ing the fulfillment of the challenging project goals.

The flexibility of the system cannot be stated in absolute terms, but
only with respect to specified classes of changes, involving different users.
The results highlight that the framework achieves increasing degrees of
flexibility moving from the programming level to the user script level, and
at the same time from the point of view of the developer to that of the test
engineer. The highest flexibility is attained for the changes involving the
measurement procedure, namely at the level where flexibility was mainly
required.

278 • FLEXIBLE TEST AUTOMATION

REFERENCES

[1] Arpaia, P., M. Buzio, L. Fiscarelli, and V. Inglese. November 2012.
“A Software Framework for Developing Measurement Applications Under
Variable Requirements.” AIP Review of Scientific Instruments 83, no. 11. doi:
10.1063/1.4764664

[2] Dieterly, D.C., R.F. Edgar, A.H. Fredrick, J.W. Hale, D.H. Jones, H.W.
Lamson, W.T. Mitchell, R.E. Mundy, C.D. Owens, A.C. Beiler, I.L. Cooter,
W.S. Eberly. 1970. Direct-Current Magnetic Measurements for Soft Magnetic
Materials. Baltimore, Md: American Society for Testing and Materials.

[3] Arpaia, P., M. Buzio, L. Fiscarelli, G. Montenero, and L.Walckiers. May
3–6, 2010. “High Performance Permeability Measurement: A Case Study
at CERN.” In Proceeding International Instrumentation and Measurement
Technology Conference, pp. 58–61. Austin, TX: IEEE.

[4] Arpaia, P., L. Bottura, L. Fiscarelli, and L. Walckiers. 2012. “Performance
of a Fast Digital Integrator in On-Field Magnetic Measurements for Particle
Accelerators.” Review of Scientific Instruments 83, no. 2, 024702. doi:
http://dx.doi.org/10.1063/1.3673000

[5] National Instruments. 2014. NI M Series Multifunction DAQ for PCI, PXI,
and USB, http://sine.ni.com/nips/cds/view/p/lang/en/nid/14114

[6] Arpaia, P., L. Fiscarelli, G. La Commara, and C. Petrone. 2011.
“A Model-Driven Domain-Specific Scripting Language for Measurement
System Frameworks.” IEEE Transactions on Instrumentation and Measure-
ment 60, no. 12, pp. 3756–66. doi: 10.1109/TIM.2011.2149310

[7] Finley, D.A., D.A. Edwards, R.W. Banft, R. Johnson, A.D. MC Inturff, and
J. Strait. 1987. “Time Dependent Chromaticity Changes in the Tevatron.”
Presented at the 12th Particle Accelerator Conference. Batavia, IL: Fermilab.

[8] Ambrosio, G., P. Bauer, L. Bottura, M. Haverkamp, T. Pieloni, S. Sanfilippo,
and G. Velev. June 2005. “A Scaling Law for the Snapback in Superconduct-
ing Accelerator Magnets.” IEEE Transaction on Applied Superconductivity
15, no. 2, pp. 1217–20. doi: http://dx.doi.org/10.1109/tasc.2005.849535

[9] Xydi, P., N. Smmut, R.A. Fernandez, L. Bottura, G. Deferne, M. Lamont,
J. Miles, S. Sanfilippo, M. Strrzelczy, and W. Delsolaro. 2008. “A Demon-
stration Experiment for the Main Field Tracking and the Sextupole and
Decapole Compensation in the LHC Main Magnets.” In LHC Project Report
1083, CERN. Geneva, Switzerland.

[10] Bottura, L. April 11–17, 1997. “Field Dynamics in Superconducting
Magnets for Particle Accelerators.” CERN Accelerator School on Mea-
surement and Alignment of Accelerator and Detector Magnets, pp.79–105.
Anacapri, Italy: CERN.

[11] Fowler, M., and R. Parsons. 2010. Domain-Specific Languages.:
Addison-Wesley. Westford, MA, USA.

[12] Bottura, L., L. Walckiers, and R. Wolf. June 1997. “Field Errors Decay and
‘Snapback’ in LHC Model Dipoles.” IEEE Transactions on Applied Super-
conductivity 7, no. 2, pp. 602–5. doi: http://dx.doi.org/10.1109/77.614576.

FRAMEWORk VALIDATION ON LHC-RELATED APPLICATIONS • 279

[13] Sammut, N., L. Bottura, and J. Micallef. 2006. “A Mathematical Formulation
to Predict the Harmonics of the Superconducting LHC Magnets.” Physicals
Review Special Topics–Accelerators and Beams 9, no 1, p. 012402. doi:
http://dx.doi.org/10.1103/physrevstab.9.012402

[14] Billan, J., L. Bottura, M. Buzio, G. D’Angelo, G. Deferne, O. Dunkel,
P. Legrand, A. Rijllart, A. Siemko, P. Sievers, S. Schloss, and L. Walckiers.
2000. “Twin Rotating Coils for Cold Magnetic Measurements of 15 m Long
LHC Dipoles.” IEEE Transactions on Applied Superconductivity 10, no. 1,
pp. 1422–26. http://dx.doi.org/10.1109/77.828506

[15] Brooks, N.R., L. Bottura, J.G. Perez, O. Dunkel, and L. Walckiers. June
2008. “Estimation of Mechanical Vibrations of the LHC Fast Magnetic Mea-
surement System.” IEEE Transactions on Applied Superconductivity 18,
no. 2, pp. 1617–20. doi: http://dx.doi.org/10.1109/tasc.2008.921296

[16] Arpaia, P., M. Buzio, L. Fiscarelli, G. Montenero, J.G Perez, and L. Walckiers.
May 3–6, 2010. “Compensation of Third-Harmonic Field Error in LHC Main
Dipole Magnets.” In Proceedings of the IEEE Instrumentation and Measure-
ment Technology Conference. Austin, TX: IEEE.

[17] Arpaia, P., A. Masi, and G. Spiezia. April 2007. “Digital Integrator for Fast
Accurate Measurement of Magnetic Flux by Rotating Coils.” Instrumenta-
tion and Measurement, IEEE Transactions 56, no. 2, pp. 216–20. doi: http://
dx.doi.org/10.1109/tim.2007.890787

[18] CERN. 2004. LHC Design Report. Geneva, Switzerland: CERN.
[19] Sanfilippo, S., L. Bottura, M. Buzio, and E. Effinger. 2002. “Magnetic Mea-

surements for 15-M Long Dipoles–Extended Program of Tests.” Internal
note LHC-MTA-IN-2002-183

[20] McCabe, T.J. December 1976. “A Complexity Measure.” IEEE Transactions
on Software Engineering 2, no. 4, pp. 308–20. doi: http://dx.doi.org/10.1109/
tse.1976.233837.

[21] Lanza, M., and R. Marinescu. 2006. Object-Oriented Metrics in Practice.
Secaucus, NJ, USA: Springer-Verlag New York, Inc.

[22] French, V.A. September 1999. “Establishing Software Metric Thresholds.”
In WSM 99: International Workshop on Software Measurement, pp. 43–50.
Lac Superieur, Canada: IEEE.

[23] Sbavaglia, R., 2005. “Le metriche e il loro utilizzo nello sviluppo del
software” (in Italian). http://torlone.dia.uniroma3.it/sistelab/annipassati/
sbavaglia.pdf

[24] Nikora, A.P. et al. 2002. “Software Metrics in Use at JPL Applications and
Research” http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/8671/1/02-12
09.pdf.

[25] Henrichsen, K.N. April 1997. “Overview of Magnet Measurement Methods.”
CERN Accelerator School on Measurement and Alignment of Accelerator
and Detector Magnets, pp.79–105. Anacapri, Italy: CERN.

[26] Henrichsen, K.N. 1967. “Permeameter.” In Proceeding Second International
Conference on Magnet Technology. pp. 735–9. Oxford, U.K: Rutherford
Laboratory.

inDex

A
abstraction, 50
ActivATE platform, 11
Active device, 175–176
Advanced User Interface

Generator
configuration, 160–163
discussion, 249
input/output values, 163–164
magnetic permeability

measurement, 247–249
plotting functions, 164–165

Agilent BenchVue, 10
Agilent Technologies, 9–10
Agilent VEE (Visual Engineering

Environment), 10
AOP. See Aspect-Oriented

Programming
Application-based Software, 12
Application Field Platform, 22
application frameworks, 35
application models, 104
architecture-driven frameworks,

35
arc method, 195
Aspect-Oriented Programming

(AOP)
advantages, 60–62
crosscutting concerns, 56–58
join point model, 59
sample implementation, 59–60

Asynchronous faults, 81

automatic and control systems, 20
automatic magnetic measurement

systems
at CERN, 139–140
flexibility requirements

hardware overview, 143–144
past experiences and needs,

142
platform at CERN, 142–143
software requirements, 144

Azimuth DIRECTOR™ II, 10
Azimuth Systems, 10

B
Basic Service Layer

implementation classes
Active device, 175–176
CommunicationBus, 172–175
CurrentMeter, 176–178
Cyro-Thermometer, 178–180
Fast Digital Integrator,

183–187
MidiMotorController,

180–183
Transducer, 176

SFMA architecture, 70–71
behavioral patterns, 53
bespoke software, 16
black-box frameworks, 36
brain class, 218–219
brain method, 220

282 • Index

C
CERN. See European Organization

for Nuclear Research
class, 50
class Labeled Petri Net

Arc Method, 195
Place Method, 194
Transition Method, 194–195

class structuring, 124
class Synchronizer

Event Node method, 196–197
Node Status method, 197
Task Node method, 196

collaboration disharmonies,
220–221

CommunicationBus, 172–175
computational design pattern, 52
configuration fault methods, 189
core service layer

Fault Detector
configuration fault methods,

189
fatal fault methods, 188–189
local fault methods, 190
warning fault methods,

189–190
interface IFault, 191
SFMA architecture, 71

coupling dispersion, 125
coupling intensity, 125
creational patterns, 53
crosscutting concerns, 56–58
cross references, 206
Cryo-Thermometer, 178–180
CurrentMeter, 176–178

D
Data Class, 218
data-driven frameworks, 35
Data Translation, 12
decoupling, 50
dedicated devices, 21–22
developer/administrator user, 42
development environment, 16
dialogue models, 104

Digital Metrology Solutions, 12
disharmonies, 217
distributed and diagnostics

systems, 18–19
domain frameworks, 35
domain specific design pattern, 54
Domain Specific Languages

(DSL), 38–41
DSL. See Domain Specific

Languages
dynamic crosscutting, 59
dynamic dispatch, 50

E
EADS North America Test and

Services, 11
encapsulation, 50
end user, 42
energy control field, 20
European Organization for

Nuclear Research (CERN),
133, 139–140, 142–143

Event Node method, 196–197
event nodes, 92–93
execution pattern, 52
external software quality, 121

F
Fast Digital Integrator (FDI),

183–187
fatal fault methods, 188–189
fault detection software analysis,

227–230
fault detection subsystem, 81
Fault Detector

Flexible Framework For
Magnetic Measurements,
147–152

software framework for
measurement applications

architecture, 81–85
concepts, 80–81
measurement automation,

79–80

Index • 283

validation
discussion, 234–236
fault detection software

analysis, 227–230
measurement procedure, 227
modularity comparison,

230–233
performance verification,

233–234
on rotating coils, 226

fault interception, 83
fault notification publish-subscribe

architecture, 84
fault notification subsystem, 81
FDI. See Fast Digital Integrator
Feature Envy problem, 219
Fermi National Accelerator

Laboratory, 139
FFMM. See Flexible Framework

for Magnetic Measurements
flexibility, 4–5
flexibility experimental tests

adding/modifying device,
274–276

changing service strategies, 276
description, 272–273
experimental results, 273–274
implementing new measurement

algorithms, 276–277
Flexible Framework for Magnetic

Measurements (FFMM)
Advanced User Interface

Generator
configuration, 160–163
input/output values, 163–164
plotting functions, 164–165

architecture, 146–147
design, 146
FaultDetector, 147–152
Measurement Domain Specific

Language, 156–160
Synchronizer, 152–156

Flexible Measurement Systems
description, 16–17
software frameworks, 17–18

specific hardware, 18
frameworks

application, 35
architecture-driven, 35
classification, 35
data-driven, 35
domain, 35
domain specific languages,

38–41
for measurements, 36–38
requirements for measurement

applications, 41–43
support, 35

G
generally accepted semantics, 118
General Purpose Languages

(GPLs), 40
GIC. See Graphic Interaction

Component
God Class, 217–218
GPLs. See General Purpose

Languages
grammar language, 204–205
graphical control field, 20
Graphical User Interface engine,

108–109
Graphic Interaction Component

(GIC), 163–164

H
Hall probes, 138
Hardware and Software Platforms

Distributed and Diagnostics
Systems, 18–19

Flexible Measurement Systems
description, 16–17

Software Frameworks, 17–18
Specific Hardware, 18

hardware devices, 80
harmonies, 216
High-Energy Particle (HEP)

accelerators, 134
high-level structuring, 124

284 • Index

I
identifier token, 207
implementation strategy patterns,

52
information availability, 6
inheritance, 50
instance variable, 50
integrability, 6
intensive coupling, 221–222
interface IFault, 191
internal software quality, 121–122
intrinsic operation complexity, 124
ISO 9126 characterization,

209–214

J
join point model, 59

K
k-times retry, 80

L
Labeled Petri Net (LPN), 91
LabVIEW, 9
LabVIEW SignalExpress, 9
LabWindows/CVI, 9
Large Hadron Collider (LHC),

134–135
LHC. See Large Hadron Collider
LHC tracking test

background, 265–267
experimental results, 267–268,

271–272
purpose, 264–265
test procedure, 268–271

Local Fault methods, 190
LPN. See Labeled Petri Net

M
Magnetic Field Harmonic

Analysis, 136–138
Magnetic Field Measurements

Hall probes, 138
HEP accelerators, 134

Large Hadron Collider, 134–135
Magnetic Field Harmonic

Analysis, 136–138
magnetic resonance technique,

138
rotating coil method, 136
stretched-wire technique, 138

Magnetic Measurement Program
(MMP), 140–141

magnetic measurement systems
automatic, 139–140
software, 140–141

magnetic permeability
measurements

Advanced User Interface
Generator, 247–249

Measurement Domain Specific
Language, 243–246

On-Field Functional Tests
background, 253–254
description, 252–253
experimental results, 258–259
experimental set up, 254–255
FFMM implementation,

256–258
test procedure, 255–256

Petri-net Synchronizer, 236–237
magnetic resonance technique, 138
maintainability, 4
MDE. See Model-Driven

Engineering
MDSL. See Measurement Domain

Specific Language
Measurement Domain Specific

Language (MDSL)
architecture, 98–99
builder, 100
description, 95–97
discussion, 246–247
Eclipse platform, 198–202
editor

assignment tokens/properties,
205–206

code generation with xPand,

Index • 285

204
comments, 208
cross references, 206
defining, 208–029
grammar language, 204–205
identifier token, 207
metatype inheritance,

206–207
running, 202–204
type rules, 205

FFMM, 156–160
goals, 97–98
magnetic permeability

measurement, 243–246
parser, 99–100
superconducting magnet testing,

241–243
measurement environment, 80
Measurement Service Layer

class Labeled Petri Net
arc method, 195
place method, 194
transition method, 194–195

class Synchronizer
event node method, 196–197
node status method, 197
task node method, 196

Petri Net components
arc, 193
place, 192
transition, 192–193

SFMA architecture, 71
Measurement Studio, 9
message passing, 50
metatype inheritance, 206–207
method, 50
MidiMotorController, 180–183
MMP. See Magnetic Measurement

Program
Model-Driven Engineering

(MDE), 38
Model-Viewer-Interactor

paradigm, 102–104
monitoring control field, 20

motion control field, 20
mutex, 86

N
National Instruments, 8
node status method, 197

O
object, 50
Object-Oriented Programming

advantages, 54–56
concepts, 47–51
Patterns

classification and list, 53–54
design, 52
elements, 51–52

On-Field Functional Tests
LHC tracking test

background, 265–267
experimental results, 267–

268, 271–272
purpose, 264–265
test procedure, 268–271

magnetic permeability
measurements

background, 253–254
description, 252–253
experimental results, 258–259
experimental set up, 254–255
FFMM implementation,

256–258
test procedure, 255–256

rotating coils
description, 259–260
experimental results, 262–264
experimental setup, 261–262
FFMM implementation, 262

OpenLAB Laboratory Software
Framework, 10

open recursion, 51
operation structuring, 124

P
parsing, 99–100

286 • Index

PAWS Developers Studio, 11
Petri Net components

arc, 193
place, 192
transition, 192–193

Petri-net Synchronizer
discussion, 239–241
magnetic permeability

measurement, 236–237
measurement procedure,

237–239
place method, 194
polymorphism, 50
portability, 4
presentation models, 104
probability information, 116
PULSE platform, 12

Q
quality pyramid

characterization
Brain Class, 218–219
Brain Method, 220
collaboration disharmonies,

220–221
Data Class, 218
disharmonies, 217
Feature Envy problem, 219
FFMM source code, 214–216
God Class, 217–218
harmonies, 216
intensive coupling, 221–222
Shotgun Surgery, 222

interpretation, 126
system coupling, 125
system inheritance, 125
system size and complexity,

123–124

R
reusability, 4
reuse software, 6
root nodes, 93
rotating coil method

magnetic field measurements,
136

On-Field Functional Tests
description, 259–260
experimental results, 262–264
experimental setup, 261–262
FFMM implementation, 262

S
scalability, 6
sensor networks, 20–21
SFMA. See Software Framework

for Measurement Applications
Shotgun Surgery, 222
SigBase, 11–12
Signal Analysis Software, 12
software components, 80
software environments, 22–23
Software Framework for

Measurement Applications
(SFMA)

architecture, 70–72
concepts, 69
design, 72–78
working principle, 69–70

software magnetic measurement
systems, 140–141

software market solutions
criteria for software selection,

5–6
market leaders and products,

6–14
software quality

assessment
ISO 9126 characterization,

209–214
pyramid characterization,

214–222
description, 115–116
external, 121
internal, 121–122
metrics, 116–118
models, 118–120
standard ISO 9126, 120–122

Index • 287

in use, 121
software selection criteria

information availability, 6
reuse, 6
scalability, 6
usability, 5–6

Specific and Custom Software
automatic and control systems,

20
dedicated devices, 21–22
sensor networks, 20–21

standard ISO 9126, 120–122
static crosscutting, 59
strategy pattern, 52
stretched-wire technique, 138
structural design patterns, 52
structural patterns, 53
structured graphical method, 18
superconducting magnet testing,

241–243
support frameworks, 35
Synchronizer, 152–156

concepts, 87–91
design, 91–93
evolution example, 93–95
measurement automation, 85–87
Petri-Net

discussion, 239–241
magnetic permeability

measurement, 236–237
measurement procedure,

237–239
Synchronous faults, 80–81

T
tailor-made software, 16
task node method, 196
task nodes, 93
TestBase, 11

Test Development Software, 12
test engineer, 42
Test Management Software, 12
Test Requirements Document

(TRD), 11–12
Transducer, 176
transition method, 194–195
transmission control field, 20
TRD. See Test Requirements

Document

U
usability, 5–6
user interfaces

concepts, 104–105
Graphical User Interface engine,

108–109
interactor, 106–107
measurement automation,

101–102
model-viewer-interactor

paradigm, 102–104
view description, 105–106

User Service Layer
Measurement Domain Specific

Language
Eclipse platform, 198–202
editor, 202–209

SFMA architecture, 72

W
warning fault methods, 189–190
Web-based distributed and

diagnostics systems, 18–19
white-box frameworks, 35

Y
Yokogawa, 12

THIS TITLE IS FROM OUR AUTOMATION AND
CONTROL COLLECTION. MORE TITLES THAT

MAY BE OF INTEREST INCLUDE…

Measurement and Monitoring
By Vytautas Giniotis and Anthony Hope

Momentum Press is one of the leading book publishers in the field of engineering,
mathematics, health, and applied sciences. Momentum Press offers over 30 collections,

including Aerospace, Biomedical, Civil, Environmental, Nanomaterials, Geotechnical,
and many others.

Momentum Press is actively seeking collection editors as well as authors. For more
information about becoming an MP author or collection editor, please visit

http://www.momentumpress.net/contact

Announcing Digital Content Crafted by Librarians

Momentum Press offers digital content as authoritative treatments of advanced engineering top -
ics by leaders in their field. Hosted on ebrary, MP provides practitioners, researchers, faculty,
and students in engineering, science, and industry with innovative electronic content in sensors
and controls engineering, advanced energy engineering, manufacturing, and materials science.

Momentum Press offers library-friendly terms:

•	 perpetual	access	for	a	one-time	fee
•	 no	subscriptions	or	access	fees	required
•	 unlimited	concurrent	usage	permitted
•	 downloadable	PDFs	provided
•	 free	MARC	records	included
•	 free	trials

The Momentum Press digital library is very affordable, with no obligation to buy in future years.

For	more	information,	please	visit	www.momentumpress.net/library or to set up a trial in the US,
please contact mpsales@globalepress.com.

AUTOMATION AND CONTROL
COLLECTION

Flexib
le Test A

uto
m

atio
n

A
R

PA
IA

 • D
E

 M
A

TTE
IS • IN

G
LE

SE

EBOOKS
FOR THE
ENGINEERING
LIBRARY
Create your own
Customized Content
Bundle — the more
books you buy,
the higher your
discount!

THE CONTENT
• Manufacturing

Engineering
• Mechanical

& Chemical
Engineering

• Materials Science
& Engineering

• Civil &
Environmental
Engineering

• Electrical
Engineering

THE TERMS
• Perpetual access for

a one time fee
• No subscriptions or

access fees
• Unlimited

concurrent usage
• Downloadable PDFs
• Free MARC records

For further information,
a free trial, or to order,
contact:
sales@momentumpress.net

Flexible Test Automation
A Software Framework for Easily
Developing Measurement Applications
Pasquale Arpaia • Ernesto De Matteis •
Vitaliano Inglese
In laboratory management of an industrial test division, a test
laboratory, or a research center, one of the main activities is
producing suitable software for automatic benches by satisfying
a given set of requirements. This activity is particularly costly
and burdensome when test requirements are variable over
time. If the batches of objects have small size and frequent
occurrence, the activity of measurement automation becomes
predominating with respect to the test execution.

Flexible Test Automation shows the development of a
software framework as a useful solution to satisfy this exigency.
The framework supports the user in producing measurement
applications for a wide range of requirements with low effort
and development time.

Pasquale Arpaia holds an MS and PhD in electrical engineering
from University of Naples Federico II, where he is professor
of instrumentation and measurements. He is team leader at
European Organization for Nuclear Research (CERN).

He is associate editor of the Elsevier Journal Computer
Standards & Interfaces and is an invited speaker in several
scientific conferences.

Ernesto De Matteis received his bachelor’s and master’s
degrees in telecommunications engineering at University of
Sannio, Benevento, Italy. He interned, for his MS thesis on
the Large Hadron Collider (LHC), at European Organization
for Nuclear Research (CERN), collaborating with “Flexible
Framework for Magnetic Measurements” (FFMM) Project.
Currently he is a PhD student on Information Engineering at
University of Sannio, Benevento, Italy.

Vitaliano Inglese received his master’s degree in automation
engineering at the University of Sannio in 2006, and his PhD in
electrical engineering at University of Naples Federico II in 2010.

During his PhD, he worked on measurement techniques
for particle accelerator magnets, ADC testing, digital instru-
mentation and software for magnetic measurements. He
published scientific papers both in journals and in conference
proceedings. He is currently working at CERN as engineer in
the domain of electricity and controls applied to cryogenics.

Flexible Test
Automation
A Software Framework
for Easily Developing
Measurement
Applications

Pasquale Arpaia
Ernesto De Matteis
Vitaliano Inglese

ISBN: 978-1-60650-383-6

	Cover
	Flexible Test Automation:A Software Framework for Easily Developing Measurement Applications
	Contents
	List of Figures
	List of Tables
	Summary
	Acknowledgments
	Convention about the Notation
	Introduction
	Part I: Background
	Chapter 1: Software for Measurement Applications
	Chapter 2: Software Frameworks for Measurement Applications
	Chapter 3: Object- and Aspect-Oriented Programming for Measurement Applications

	Part II: Methodology
	Chapter 4: A Flexible Software Framework for Measurement Applications
	Chapter 5: Quality Assessment of Measurement Software

	Part III: Case Study
	Chapter 6: The Flexible Framework for Magnetic Measurements at CERN
	Chapter 7: Implementation
	Chapter 8: Framework Component Validation
	Chapter 9: Framework Validation on LHC-Related Applications

	Index
	Ad page
	Backcover

