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Abstract

If you are a business person, who desires to forecast demands and sales, or 
a researcher, who wishes to predict a future event, this textbook is for you. 
The book is also written for upper-division undergraduate students, first 
year MBA students, and other readers who wish to acquire fundamental 
knowledge of quantitative forecasting.

A team of fictional characters is introduced to enhance your learning 
experience. They comprise two instructors and 10 students. They will 
share their learning and working experiences with you.

The book emphasizes applied aspects of forecasting, so the only 
prerequisites for the course are high-school statistics and college algebra. 
The book discusses most of the forecasting methods frequently used in 
practice. All in-book analyses are accompanied by numerical examples 
that can easily be performed on a handheld calculator or Microsoft Excel, 
which is the only technical software required for all demonstrations and 
exercises in the book.

Two Excel folders are provided without charge on the BEP website. 
The first folder, Excel Demos, comprises all Excel files to reproduce the 
demonstrations in this book, including the data and commands in the 
cells corresponding to the ones in the text. The second folder, Exercise 
Data, consists of all data for the exercises in the book.

A folder including all solutions to the exercises is available to instruc-
tors once a book order is placed.
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associative analyses, business, economics, Excel, forecasting, time series
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Preface

This textbook is written for business persons who desire to forecast 
consumer demands and sales. It is also written for economic, financial, 
governmental, and private practitioners who want to make informed 
decisions based on costs, benefits, economic trends, and growth. 
Additionally, any researcher who wishes to predict a future event will 
benefit from this book. Finally, the book is written for upper-division 
undergraduate students, first year MBA or MA students, and other 
readers who wish to acquire a fundamental knowledge of quantitative 
forecasting for the purpose of pursuing jobs related to data analyses or 
making personal plans for the future.

Fictional Characters in This Book

Quantitative topics are often very abstract, and students sometimes lose 
focus on the subjects. To enhance your learning experience, a team of 
characters is introduced in this textbook. These characters are global citizens 
who will share their working and learning experiences with you through-
out the book. By observing the applications of theoretical concepts into 
the business lives of these characters, you will learn the practical aspects of 
forecasting. Now, let me introduce our professors and classmates to you.

Professors

Dr. App is from Africa. She is an applied researcher and will teach applied 
forecasting in this course. Dr. Theo is from South America. He is a basic 
researcher and will be responsible for explaining any theoretical concept 
in this course.

Students

i.	Ex and I are from Asia. Ex works for an import–export company 
called Excellency. My name is Na, and I am the owner of a nail salon 
called Nailight in this city.



x	 PREFACE

ii.	Alte and Rea are from the Pacific Islands. Alte runs an alteration 
service called Alcorner, and Rea works as a real-estate agent for a 
company called Realmart. 

iii.	Arti and Fligh are from North America. Arti is the director of an 
arts school called Artistown, and Fligh works for an airline company 
called Flightime.

iv.	Sol and Mo are from Europe. Sol works for a solar energy company 
called Solarists, and Mo currently works for a motorcycle dealer 
called Motorland.

v.	Fin is from Africa and works as an independent financial advisor.
vi.	Cita is from South America and works for the city government.

The 10 of us are attending a forecasting class to either manage our 
businesses more efficiently or help our family and friends do so. We will 
join you in making the quantitative topics in this course more enjoyable 
to learn.

A Practical Approach

This book emphasizes the applied aspects of forecasting, so the only pre-
requisites for the course are high-school statistics and college algebra. 
The book discusses most of the forecasting methods frequently used in 
practice. All in-book analyses are accompanied by numerical examples 
that can be easily performed on a handheld calculator or Microsoft Excel, 
which is the only technical software required for all demonstrations and 
exercises in the book.

Two Excel folders are provided without charge on the BEP website. 
The first folder, Excel Demos, contains all Excel files that accompany the 
Excel demonstrations in this book, including the data and commands 
corresponding to the Excel applications in the text. Data in this folder 
are organized into chapters, and each of them is titled corresponding to 
the chapter number, for example, the file Ch01.xls consists of all data and 
commands for Chapter 1, with Sheet 1 for Figure 1.1 in the text, Sheet 2 
for Figure 1.2 in the text, and so on. The second folder, Exercise Data, 
consists of all data for the exercises in the text. The data in this second 
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folder are not accompanied by Excel commands so that you can become 
an active participant in the process of writing your own commands. 

Topics in This Textbook

This book discusses most of the forecasting methods frequently used in 
practice, such as time  series analyses, demand and sales, investment, 
short-term planning, long-term growth, and regression analyses. As the 
regression-based forecasts in this book are designed to be self-explanatory, 
knowledge of econometrics or time series modeling is not a prerequi-
site although it might be helpful. To keep the book concise, only a brief 
introduction to the autoregressive integrated moving average (ARIMA) 
models and the Box–Jenkins procedure is provided. Readers who wish 
to gain in-depth knowledge of ARIMA models are encouraged to read a 
book written specifically for time series modeling.

A folder including all solutions to the exercises is available to instruc-
tors once a book order is placed.
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PART I

Basics

This part contains three chapters:

•	 Chapter 1 Introduction
•	 Chapter 2 Elementary Time Series Techniques
•	 Chapter 3 Evaluations and Adjustments





CHAPTER 1

Introduction

As you know from the preface, Mo works at Motorland in this city to 
supplement his college expenses. Presently, his boss wants him to estimate 
the demand for Honda motorcycles from their store next quarter so that 
they can place an order with their supplier. Here is what his boss says, 
“Hey Mo, we cannot afford to go by ear any more. Two years ago, we 
under-ordered and lost at least $10,000 in sales to our local competitors. 
The following year, we compensated by doubling our order, which left us 
with a warehouse full of unsold motorcycles. I want to limit our error. 
I don’t want to under-order or over-order by more than 20 percent. Let’s 
try to work on it.”

Mo understands his boss’ frustration and collects data on the sales of 
motorcycles from his store for the past 12 quarters. However, the first day 
of class will not start until the following week, and Mo does not know 
how to start his forecasting. Thus, he contacts Dr. Theo, who advises him 
to read this chapter and says that once he completes it, he will be able to:

1.	Describe the basic steps of forecasting.
2.	Distinguish qualitative from quantitative forecasting and choose the 

right method for his estimations.
3.	Explain basic concepts of statistics.
4.	Apply Excel operations into simple calculations, and chart, and 

obtain descriptive statistics for his data.

Mo sails through the section on “Starting” and one half of the section 
on “Basic Concepts” with ease. Here is what he reads in these sections.

Starting

Forecasting is used whenever the future is uncertain. Although forecast 
values are often not what actually occur, no one can have a good plan 
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without a reasonable approach to form an educational guess on the future, 
which is called forecasting.

There are four basic steps in forecasting.

Step 1: Determining the Problem

A forecaster has to define what future information is needed and the time 
frame of the forecasts. For example, a firm must forecast how much of 
each good it should produce in the next several months so that it can 
order inputs from the supply chain and make a delivery plan to the 
market. To make this decision, the forecaster for the firm needs to under-
stand the basic principles in production planning and communicate with 
people who have access to the monthly output data. The firm’s leaders, 
then, have to decide how far into the future the information is needed 
(e.g., a month or a quarter ahead). This future period is the forecast 
horizon. Finally, the firm needs to decide how often the forecasts have to 
be updated and revised (e.g., weekly or monthly). This is the adjustment 
interval or forecast frequency.

Step 2: Selecting the Forecasting Method

Depending on the problem and the availability of the information, an 
appropriate method of forecasting should be decided. For the preceding 
example, historical data on the firm’s production, constraints in labor, 
capital, and raw materials can be obtained. Hence, a quantitative method 
of a data analysis is appropriate. For many other situations, when historical 
data are not comprehensive or experiences are more important, a qualita-
tive method utilizing the expertise of the professionals can be employed.

Step 3: Collecting and Analyzing the Data

Data can be collected directly by the user (primary data) or by someone 
other than the user (secondary data). Data analyses consist of construct-
ing time series plots, obtaining descriptive statistics, and calculating 
the forecast values. Data analyses are crucial in the process of selecting 
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a reliable model. No single model is good for all situations. When a 
theoretical model is introduced, data analysis should be performed based 
on this model. When no theoretical model is developed, a forecaster 
should experiment with several models. For the example in Step 1, a 
theoretical model of profit maximization or cost minimization is available 
and should be used.

Step 4: Evaluations and Adjustments

Evaluations are performed based on historical data to select the best 
model with the smallest forecast errors. Based on the magnitude of the 
forecast errors, adjustments are made to the existing models. Monitoring 
is then carried out because forecasting is a long-term process. Business 
and economic conditions change over time as do the forecasts. A good 
forecaster needs to track the changes so that the causes are pinpointed. 
New forecast errors need to be calculated. Either a new model might be 
developed, or a combination of several models might be introduced.

Basic Concepts

Qualitative Forecasting

There are three main qualitative methods in addition to the naïve approach 
of taking the current-period value as the forecast of the next-period value.

Individual judgment is a forecast made by an expert in a field based 
on the person’s experience, the past performance of the market, and the 
current status of the business and economy. The expert can employ: 
(i) analogy-analysis technique by comparing similar items, (ii) analyzing 
possible scenarios in the near future, or (iii) collecting qualitative data by 
sending out survey forms to the respondents and performing a qualitative 
analysis of these data.

Panel of experts is a forecast made by a group of professionals, whose 
opinions are combined, averaged, and adjusted based on discussions 
and evaluations by all members of the group. An executive officer can 
lead the discussions but consensus has to be obtained at the end. All the 
techniques used in the individual judgment can be utilized.



6	 SEEING THE FUTURE

Delphi method is similar to the panel of expert method, but the experts 
are not allowed to discuss the problem with each other. Instead, they are 
given an initial set of questions, to which their answers are anonymous to 
guarantee the objectivity of each member. Their answers to the first set of 
questions are the basis for the next set, and the process is repeated with 
the hope that the answers gradually converge. (Sometimes they do not 
obtain any consensus, and the process breaks down.)

Quantitative Forecasting

There are two large groups of quantitative forecast methods. The first 
group comprises time series analyses, and the second consists of asso-
ciative analyses. Both share a common denominator of performing data 
analyses to draw conclusions on possible future outcomes.

Time series analyses examine only historical data of the time series itself 
instead of adding any external factor. The method comes from the notion 
that past performance might dictate the future performance of a market. 
Techniques for the time series analyses comprise moving averages, expo-
nential smoothing, decomposition, autoregressive (AR), and autoregres-
sive moving average (ARMA/ARIMA) models.

Associative analyses are based on the investigation of various external 
factors that affect the movements of a market. The associative analysis 
contains regression analysis and nonregression analysis. The regression 
analysis is based on the econometric technique and always involves an 
equation with a dependent variable on the left-hand side and one or more 
explanatory variables on the right-hand side. For example, spending 
on motorcycles at Motorland depends on the income level of the city 
residents.

The nonregression analysis involves variables that are related to each 
other in a certain manner that is not appropriate for the regression 
technique. For example, to forecast a turning point in the economy, 
various measures called economic indicators are developed. Each indicator 
depends on several factors. A composite index, which involves the most 
important indicators, is then calculated for each month. A forecaster can 
predict a turning point based on the changing direction of this index over 
time. Thus, a nonregression technique is appropriate for this case.
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The focus of this book is on quantitative forecasting. Hence, all the 
aforementioned techniques for quantitative forecasting will be discussed. 
Most of them will be followed by Excel demonstrations. Once you master 
the quantitative forecast methods, you can combine quantitative and 
qualitative methods to obtain the best forecasting results.

Statistics Overview

Probability

Mo learns that probability is the likelihood of an event occurring and is 
measured by the ratio of the favorable case to the total number of possible 
cases. As an example, we can conduct the following experiment.

Let variable X equal throwing a coin, and let getting a head side of the 
coin be the objective, which is the favorable case in our question, then

x1 = getting a head side = 1
x2 = getting a tail side = 0

If the coin is fair, then you have the probability of getting a head P(1) = 
f (x1) = 0.5 = ½ and the probability of getting a tail P(0) = f (x2) = 0.5 = ½.

Throw the coin three times, and we will have a table of all probabilities 
as follows:

Probability Number of heads
P(0,0,0) �= 0.5 * 0.5 * 0.5 

= 0.125
0 (= probability of getting no head three times in a row)

P(0,0,1) = 0.125 1

P(0,1,0) = 0.125 1

P(0,1,1) = 0.125 2

P(1,0,0) = 0.125 1

P(1,0,1) = 0.125 2

P(1,1,0) = 0.125 2

P(1,1,1) = 0.125 3

The graph of this table is the probability distribution function (pdf ).
A discrete variable has only a handful of values. The variable X in 

the preceding example is a discrete variable. A continuous variable has 
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numerous values, so its distribution is the area under a smooth curve. 
For example, if we let variable Y equal throwing the coin 10,000 times, 
then the variable Y can be considered a continuous variable. Graphing 
the pdf of this variable yields a smooth, bell shaped curve, which is called 
a normal distribution.

Measures of Central Tendency

Mo also understands that descriptive statistics are usually obtained 
before performing forecasts, and the following concepts are important 
to remember.

If X and Y are any two random variables whereas a and b are any two 
constants, then the expectation of X is the weighted mean (the weighted 
average) of all xs:

	 E(X ) = x1P(X = x1) + x2P(X = x2) + … + xnP(X = xn)

	 E(X + Y ) = E(X ) + E(Y )

	 E(aX ) = aE(X )

At this point, Mo gets lost. The formulas scare him. Luckily, time flies 
fast, and the class starts today. The following is Dr. Theo’s example of the 
expectation concept.

“Think of a student’s GPA for this course. Suppose there are equal 
weights to the two midterm exams and the final exam. If the student 
makes a C (2 points) in Midterm 1, a B (3 points) in Midterm 2, and an 
A in the Final Exam (4 points), what is your expectation of the student’s 
GPA for this course?”

We all can answer this question as GPA = (2 + 3 + 4)/3 = 3
“So the student makes a B,” we say in unison. Dr. Theo agrees and 

continues.
“Suppose that Midterm 1 receives a 20 percent weight, Midterm 

2 receives a 30 percent weight, and Final Exam receives a 50 percent 
weight in this class. What is your expectation of the student’s GPA for 
this course?”

We  apply the  new weights: GPA = 0.20 * 2 + 0.30 * 3 + 0.5 * 4 = 3.3.
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“Wow, the guy now makes a B+. That is cool! This is because he scored 
best (an A) on the highest-weighted exam (the final),” we exclaim. We 
now understand the concept of expectation and move on to the variance.

The variance of X is the average of the squared difference between X 
and E(X ).

The variance measures the dispersion of a distribution:

Var(X ) = s2 = E[X − E(X )]2 = E(X 2)[E(X )]2

	 Var(aX ) = a2 Var(X )

Alte raises her hand and asks, “Why do we need to calculate the square 
of the difference?”

Dr. Theo replies with another example, “There is an avocado tree in 
my backyard with a lot of ripe avocados, but they are very high above the 
ground. I tried to hit a fruit with a long pole. At the first strike, I missed 
the fruit roughly five inches to the right. At the second strike, I missed 
it roughly five inches to the left. May I boast to you that on average I got 
the avocado because the average distance from my hits to the avocado is 
D = (5 − 5)/2 = 0?”

We all laugh. Of course, the value cannot be zero.
Hence, Dr. Theo concludes, “If we do not square the distance before 

taking the average of the difference, then the negative values cancel out 
the positive ones, and the average is zero, so we cannot measure the dis-
persion of X. The covariance is also easy to understand if you think of 
your relationship with your mom, who is much closer to you than to a 
person on the street.”

We find that the formula for the covariance is similar to the one for 
the variance, except that we enter Y in place of another X. And thus, the 
covariance of X and Y measures the linear association between them:

Cov(X, Y ) = E{[(X − E(X )][Y − E(Y )]}

If the two are independent, they have zero covariance, but the reverse 
is not true. For example, Y and X in the function Y 2 + X 2 = 1 have 
zero covariance because the equation is not linear. However, these two 
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variables belong to a nonlinear equation, so they are not independent of 
each other:

	 Var(X + Y ) = Var(X ) + Var(Y ) + Cov(X, Y )

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y ) + ab Cov(X, Y )

If the two are independent or not correlated linearly, then:

Var(X + Y ) = Var(X ) + Var(Y )

Var(aX + bY ) = a2 Var(X ) + b2 Var(Y )

We all understand now. The next several concepts are easy and so we 
do not need further explanations.

The median is the value of the middle observation.
The standard deviation (SD = s) is the square root of the variance.
The standard error (SE = s) is the sample version of the SD.
The skewness is the asymmetry of a distribution.

	 SKEW(X) = E[X − E(X )]3

	� A left-skewed (negatively skewed) distribution has a long left tail.
	� A right-skewed (positively skewed) distribution has a long right tail.
	 Also, a left-skewed sample has the mean smaller than the median.
	 A right-skewed sample has the mean greater than the median.
	 A symmetrical dataset has the mean equal to the median.
	 A perfectly normal distribution has skewness = 0.
	 Any distribution with |SKEW| > 1 is considered far from normal.

Next, we come to a little more abstract concept: the Kurtosis.

The Kurtosis is the peakedness (the height) of the distribution (Poirier 
1996).

It can also be a measure of the thickness of the tail (Greene 2012):

	 KUR(X ) = E[X − E(X )]4

Excess Kurtosis = EK = |KUR| − 3 (Davidson and MacKinnon 2004)
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Dr. Theo reminds us that details of Kurtosis are explained in Brown 
(2014).

A perfectly normal distribution has KUR = 3 or an EK = 0.
Any distribution with EK > 1 is considered far from normal.

Rea raises a doubt, “Does that mean that if KUR = 5, then we do 
not have a normal distribution?” Sol volunteers to answer, “I think so, 
because in that case, EK = 5 - 3 = 2 > 1.”

Dr. Theo commends Sol on her correct answer and asks if we have 
any question on the next two terms. We think these new terms are easy 
to understand:

The mode is the value that occurs most frequently.
The range is the difference between the highest and the lowest values.

Hence, nobody asks anymore questions. Dr. Theo concludes the 
theoretical section with a summary of the important concepts and reminds 
the class to read the next section, which will be taught by Dr. App.

Basic Excel Applications

Dr. App starts with easy mathematical operations in Excel.

Mathematical Operations

We learn that all Excel calculations start with an equal sign (=). 
For example, to add variable X in cell A2 to variable Y in cell B2, type

= A2 + B2 and press Enter.

To form a product (or quotient) of X and Y, type

= A2 * B2 (or A2/B2) and press Enter

For consistency, the notation * will denote a multiplicative operation 
throughout this book.
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To calculate X 1/2, type

= A2^(1/2) and press Enter

To take the logarithm of variable X, type

= ln(A2) and press Enter

Excel uses only parentheses for all mathematical operations. For exam-
ple, to enter this mathematical formula, {[(XY − Y ) + (X + Y )2] − Y 3}/X, 
type in Excel

= (((A2 * B2 − B2) + (A2 + B2)^2) − (B2)^3)/A2 and press Enter.

Dr. App reminds the class that once a formula is formed, you can copy 
and paste it into any cell using the copy and paste commands. She also 
assures us that more operations will come later. We then proceed to play 
around with the data. The following are the topics that we are learning.

Data Operations

Three Types of Data

There are cross-sectional, time series, and longitudinal (panel) data. 
Cross-sectional data are for many identities in a single period. The iden-
tities could be persons, companies, industries, regions, or countries. Time 
series data are for a single identity over many periods. The periods could 
be days, weeks, months, quarters, years, or many years. Longitudinal and 
panel data are for many identities over many periods.

Figure 1.1 provided an example of the three datasets on the number 
of associate degrees awarded for three economic regions in the United 
States from 2002 to 2010. Dr. App reminds us that all demonstrations 
are available in the Excel Demos folder. Data for Figure 1.1 are in the 
file Ch01.xls (see sheet Fig.1.1). The cross-sectional dataset is for three 
economic regions in the United States in one period (2002–2004). 
The time series dataset is for one region over three periods (2002–2004, 
2005–2007, and 2008–2010), and the panel dataset is for the three 
regions over the three periods.
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Charting Tools

These tools can be used to construct a time series plot and examine its 
pattern and trend.

Alte raises her hand and says that she has a dataset from her Alcorner 
with which she wishes to construct a plot. We are happy to accommodate 
her. Its plot is displayed in Figure 1.2, where her weekly sale values are 
rounded off to hundreds of dollars. Dr. App tells us to open the file  
Ch01.xls, Fig.1.2. She says that we should first obtain a simple image of 
the time series and then perform the following steps:

Remove the label in cell B1 if there is any.
Highlight cell B1 through C10.
Click on the Insert tab from the Ribbon.
Click on Line icon under the Chart section.
Select any 2D line you wish to use.
For example, clicking on the first choice beneath the Line icon gives 

us the plot in Figure 1.2.

We now have a simple plot sketched and decide to retype the label in 
cell B1 (Time in Figure 1.3). Dr. App says that to label the axes, we have 
to open the file Ch01.xls, Fig.1.3, and perform the following steps:

Click on the graph and go to Layout under the Chart Tools section.
In the Layout click on Axis Titles.

Figure 1.1  Three types of data

Data Source: Adapted into three-year intervals from the yearly data from National Center for 
Education Statistics, United States. 
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In Primary Horizontal Axis Title, choose Title below Axis.
Type a title in the box below the axis.
Repeat the same for the vertical axis if you wish to add a title to it.
To add a trend line, right click on the chart line.
A list of commands will appear. Choose Add Trendline.
A new dialog box will appear. Choose Linear (nonlinear is possible) 

and click Close.

We can also change the line style and color style in the file Ch01.xls, 
Fig.1.4, by following these steps:

Right click on the chart line.
Choose Format Data Series from the dropdown menu.
A dialog box will appear.
Click on Line Style from the menu on the left-hand side column.
To experiment, click on the arrow in the Dash Type box to open a drop 

down menu.

Figure 1.3  Obtaining a detailed time series plot

Figure 1.2  Obtaining a simple image of a time series



	 INTRODUCTION	 15

Click on the Round Dot option and then click Close to obtain the 
result shown in Figure 1.4.

We learn that we can follow the same procedure to change the color.

Add-in Tools

Next we need to install a tool to perform data analysis, so we work with 
Dr. App, who gives the following instruction.

For Microsoft Office (MO) 1997 to 2003:

Go to Data Tools, click on Add-Ins from the drop down menu.
Click on Analysis Toolpak from the new drop down menu then click 

OK.
Whenever you need this tool, click on Data Tools and then Analysis 

ToolPak.

For MO 2007:

Click on the office logo at the top left that you have to click to open 
any file.

Click on Excel Options at the bottom center.
Click on Add-Ins from the menu at the bottom of the left column in 

the Excel Options.
The View and Manage Microsoft Office Add-Ins window will appear.
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Figure 1.4  Changing line style
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In this window, click on Go at the bottom center.
A new dialog box will appear, check the Analysis ToolPak box and then 

click OK.
Whenever you need this tool, click on Data and then Data Analysis 

on the Ribbon.

For MO 2010:

Click on File and then Options at the bottom left column.
Click on Add-Ins from the menu at the bottom of the left column in 

the Excel Options.
The View and Manage Microsoft Office Add-Ins window will appear.
In this window, click on Go at the bottom center.
A new dialog box will appear, check the Analysis ToolPak box and then 

click OK.
Whenever you need this tool, click on Data and then Data Analysis 

on the Ribbon.

Data Manipulations

We learn that if a column is not wide enough, Excel displays ##, as shown 
in the left-hand cells of Figure 1.5, instead of values. To change the 
display, we need to open the file Ch01.xls, Fig.1.5, and follow these steps:

Highlight columns B, C, and D.
Click on Format on the Ribbon then choose Column Width.
A dialog box will appear.
Enter a value larger than the default value.

Figure 1.5  Changing column width

Data Source: U.S. Department of Agriculture.
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In this case, enter 12 and then click OK.
The results are shown in the right-hand cells of Figure 1.5.

Fligh discovers that we can follow a similar procedure to change the 
row height, and we are delighted to follow him.

Dr. App points out that data are always analyzed with time displayed 
vertically. However, many data sources have time displayed horizontally 
to ulilize the available space as shown in the left-hand cells of Figure 1.6. 
She says that to change from a horizontal to a vertical time arrangement, 
we need to open the file Ch01.xls, Fig.1.6, and perform the following 
steps:

Copy cells A2 through D5 then right click cell F2.
Under Paste Options choose Paste Special.
A dialog box will appear. Choose Transpose and then click OK.

We now see the new vertical time arrangement displayed in the 
right-hand cells of Figure 1.6.

Formating Cells

Arti, the director of Artistown, raises her hand and says that her school 
usually keeps a spreadsheet of the books demanded from her students 
with reserve quantity equaling 50 percent of the demand. She shows 
us Figure 1.7, which displays the reserved books with decimal places in 
column D. This is incorrect because the numbers of books are always in 
integers. So she asks, “How can I change the quantity of books to inte-
gers?” Dr. App commends her on the question and says that we need to 
open the file Ch01.xls, Fig.1.7, and perform the following steps:

Figure 1.6  Transposing the data

Data Source: U.S. Department of Agriculture.
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Highlight colum D then right click on this column.
Click on Format Cells from the dropdown menu.
A dialog box will appear.
Click on Number that is on the left-hand side of the box.
Use the arrow in the Decimal Places box to select 0 then click OK.
We now see that the correct quantities are in column H of Figure 1.7.

We learn that we can change any cell’s format by following similar 
steps in the Format Cells dialog box.

Descriptive Statistics

This is an abstract concept, so Dr. App reminds us that descriptive statis-
tics provide information on a specific sample used in forecasting instead 
of information on a whole population. It gives an overall feeling on the 
data without concerns on the whole market it represents. She then tells us 
to open the file Ch01.xls, Fig.1.8 and Fig.1.9, and perform the following 
steps to obtain descriptive statistics:

Go to Data and click on Data Analysis on the Ribbon in Excel.
A dialogue box will appear; select Descriptive Statistics and click OK.
Another dialog box will appear as shown in Figure 1.8.
Enter C1:C10 in the Input Range box.
Choose Label in the First Row and Summary Statistics.
Check the Output Range button and enter E1.
Click OK. A new dialogue box will appear.
Click OK to overwrite data in range.
The Descriptive Statistics are shown in Figure 1.9.

Figure 1.7  Removing decimal places in column D to obtain integers 
in column H
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Ex points out that it is also helpful to sort the data so that we can have 
a visual image of the series. He shares his experience in sorting the data 
with the class.

To sort the data from the smallest value to the largest one in Figure 1.9:

Copy the series in cells C2 to C10 and paste it into cells D2 to D10; 
name the column as Sorted Data.

Highlight D1:D10 then go to Data on the Ribbon and click on Sort.
Choose Continue with the Current Selection and then click Sort.
A new dialog box will appear as shown in Figure 1.10.

Figure 1.8  Dialog box for the descriptive statistics

Figure 1.9  The descriptive statistics and sorted data
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Choose Sorted Data in the 1st box and Values in the 2nd box.
Choose Smallest to Largest in the 3rd box and click OK to obtain the 

results in column D of Figure 1.9.

Dr. App says that the descriptive statistics provide a hint of what the 
sample looks like and what you should do with it in order to obtain 
reliable forecast values. For example, if the mean and the median are very 
different from each other, you might have an outlier that needs to be 
eliminated before data analyses can be performed. In Figure 1.9, since the 
mean and the median are close to each other, there is no need to eliminate 
any observation. A glance through the sorted data reveals that the median 
and the mode are indeed $6,000 and $5,000, respectively.

We finish with the applied section of the chapter and look forward 
to the next chapter, where we will learn about the simplest techniques of 
forecasting.

Exercises

1.	Given a discrete variable X that is a single roll of a fair die,
	 a.	What is the probability that X = 2?
	 b.	What is the probability that X = 2 or 3?

2.	Let X be a discrete random variable with the values x = 0, 1, 2 and let 
the probabilities be	

P(X = 0) = 0.25
P(X = 1) = 0.50
P(X = 2) = 0.25.

Figure 1.10  Sorting a time series
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	 a.	Calculate E(X )
	 b.	Find E(X 2)
	 c.	Find Var(X )
	 d.	Given a new function

g(X ) = 3X + 2

Find the expectation and variance of this function.
3.	Data for the Alcorner are provided in the file Alter.xls of the folder 

Exercise Data. Provide a time series plot of this sample, including 
the axis labels and a linear trend line. Give comments on the trend.

4.	Data on sale values from Solarists are provided in the file Sales.xls of 
the folder Exercise Data. The sale values are in hundreds of dollars. 
Sort the data and then obtain descriptive statistics for this sample. 
Compare the mean to the median. Are they very close? What is the 
implication?





CHAPTER 2

Elementary Time Series 
Techniques

Having finished reading Chapter 1, Mo decides that he has collected 
enough historical data to employ a quantitative forecasting method. 
However, he worries that he does not know any quantitative techniques. 
Dr. Theo assures him that this chapter will introduce the two easiest ones: 
simple moving averages (MA) and exponential smoothing (ES). Both 
of them are used to obtain one-period forecasts. As Mo has to forecast 
how many Honda motorcycles to order next quarter, these techniques are 
good starting steps for his task. Dr. Theo says that once we finish with this 
chapter, we will be able to:

1.	Describe the four components of a time series.
2.	Distinguish the MAs from the weighted moving averages (WMs).
3.	Explain the ES technique.
4.	Apply the Excel commands into calculating one-period forecasts.
5.	Analyze and demonstrate the technique of converting nominal 

values to real values.

Mo looks through the chapter and sees that the section on 
“Components of Time Series” is easy and fun to read.

Components of Time Series

Time series data comprise trend, seasonal, cyclical, and random components.
The trend component measures the overall direction of a time series, 

which could have an upward, a downward, or an ambiguous moving 
direction (not having a trend). Figure 2.1 shows a plot of the monthly 
visitor arrivals by air at Honolulu.
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Dr. Theo reminds us that the data and Excel commands for this 
chapter are in the file Ch02.xls. The monthly dataset comes from Fligh, 
an employee of Flightime Airlines. He has carried out a research on the 
visitor arrivals to U.S. cities and is eager to share the information with 
us. This monthly dataset is available in the file Ch02.xls, Fig.2.1, for the 
period from January 2011 to February 2014. The trend line reveals an 
upward direction in this case.

The seasonal component is the short-term movement that occurs period-
ically in a single year. To see this pattern more clearly, we chart the monthly 
data from the file Ch02.xls, Fig.2.2, for the period from February 2012 to 
January 2013 and display the plot in Figure 2.2. From this figure, the peak 
seasons of tourists coming to Honolulu are clear. Visitor arrivals are high 
in December followed by the month of August. And visitor arrivals are low 
in April followed by the month of November.

The cyclical component is the long-term fluctuation that also occurs peri-
odically, for several years and sometimes for several decades. For example, 
Hawaiian tourism experienced a long declining period from 1992 to 2002 
without any substantial interruption. Hence, we chart yearly data from the 
file Ch02.xls, Fig.2.3, for the period 1992–2013 to see a full cyclical pattern 
from a lowest point (the trough) to a highest point (the peak). Figure 2.3 
reports the results, which reveal a full cycle of peak-to-peak from 1992 to 
2006, or trough-to-trough from 2002 to 2009.

The random component represents the unpredictable fluctuations of 
any time series. They are the irregular movements resulting from shocks 
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that affect supplies or demands in the economy. Examples of these shocks 
are hurricanes, earthquakes, wildfires, wars, and so on. This component 
is the remaining movement once the other three components, trend, 
seasonal, and cyclical, are factored out. Not all random movements are 
identifiable. However, when identification is possible, we can incorporate 
the randomness into our forecasts.

Dr. Theo emphasizes, “In this chapter, we assume that the seasonal 
and cyclical components of a dataset are not clear, that is, the time series 
comprises only a deterministic (with clear pattern) component and a 
stochastic (random movement) component. Under this assumption, 
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forecast values can be obtained using the MA and ES techniques to 
smooth out any randomness in the data.”

At this point Dr. Theo reminds the class that the section on “Moving 
Averages” is very important because it is the basis for the later chapters. 
The class starts smoothly with the following section.

Moving Averages

Concept

We learn that the MA technique is the simplest in time series analyses. 
This technique can be used for short-term forecasts; for example, Mo has 
to forecast how many Honda motorcycles to order next quarter based 
on the historical data of the sales at his Motorland store. The technique 
assumes that the forecast value for the next period is an average of the 
previous and current-period values.

Simple MAs

The MA model assigns equal weights to past values and a current value 
with regard to their influences on the future values. Mathematically, a 
simple MA of order k can be written as:

	 F k
A

kt t

i
i t k

t

+
= − += =
∑

1
1MA( ) 	 (2.1)

where
Ft+1 = the forecast value for period (t + 1)
	 At = the actual value for period t
	 k = the order of the MAs
	 t = the time period.

At this point, Ex raises his hand and says that he does not understand 
why the formula has two parameters k and t in it. Dr. Theo explains that 
k and t are separate because k is fixed while t is moving in this formula: 
Each average value is formed by removing the oldest observation while 
adding the newest.
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He then asks if any student can provide some examples. Cita says she 
can. Dr. Theo encourages her to go to the board, and she enthusiastically 
stands up. Cita offers the following discussion.

As an example, if you wish to experiment with an MA of order 
3 (k = 3), and you have data for four periods, then the forecasting value 
for period 4 (Ft+1 = F4) is the MA of the first three periods, MA(3)3, at time 
period t = 3:

	
F

A A A
4 3

1 2 33
3

= =
+ +

MA( ) 	 (2.2)

Thus, the sum in Equation 2.1 starts with:
i = t − k + 1 = 3 − 3 + 1 = 1

and ends with i = t = 3.
Cita cheerfully fills the white board with her calculations. We are all 

awe-struck by her mathematical skills. Cita continues:
Next, the forecasting value for period 5 (Ft +1 = F5) is the MA of the 

second through the fourth periods, MA(3)4, at time period t = 4:

	
F
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5 4
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3
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+ +

MA( ) 	 (2.3)

Hence, the sum in Equation 2.1 starts with
i = t − k + 1 = 4 − 3 + 1 = 2

and ends with i = t = 4.
Ex understands now and even volunteers to go to the board to pro-

vide the class with an example from his import–export company: The 
actual sale values from his company in August, September, October, and 
November are A1 = 20, A2 = 30, A3 = 40, and A4 = 35, respectively, all 
in thousands of dollars. Thus, the forecasts for his company’s sales in 
November and December will be:

FNovember = F4 = MA(3)3 = (20 + 30 + 40)/3 = 30 ($ thousands)
	 = $30,000

FDecember = F5 = MA(3)4 = (30 + 40 + 35)/3 = 35 ($ thousands)
	 = $35,000
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The class is very impressed with Ex’s demonstration. Dr. Theo then 
reminds us that a forecaster will have to experiment with several orders 
and perform evaluations to choose the best model with the lowest forecast 
errors, which will be discussed in Chapter 3. With that, we feel ready to 
move on, and Dr. Theo leads us to the next section.

Weighted Moving Averages

The WM technique is a little more advanced than the MA technique. 
A forecaster often assigns a higher weight to the more current values. The 
weights in the WM technique are often integers, which are assigned arbi-
trarily, that is, there is no limitation on the weights. Thus, Equations 2.2 
and 2.3 will be transformed to the following equations:
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Sol remarks that in the previous example given by Ex, if we assign the 
weights of 1, 2, and 3 to August, September, and October, respectively, then 
the forecasts for his company’s sales in November and December will be:

F4 = WM(3)3 = (20 * 1 + 30 * 2 + 40 * 3)/6 = (20 + 60 + 120)/6 
	 = 33.33 ($ thousands)

F5 = WM(3)4 = (30 * 1 + 40 * 2 + 35 * 3)/6 = (30 + 80 + 105)/6 

	 = 35.83 ($ thousands)

Dr. Theo is very pleased, saying that her calculations are correct. 
He  also points out that the simple MA and WM techniques in this 
chapter only provide one-period forecasts, and that Chapter 4 will discuss 
forecasting techniques that provide forecasts for two or more periods 
ahead. We are very excited to hear this.
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Excel Applications

Dr. App starts our Excel application section with the simplest model.

Simple MA

We see that Mo is very generous to share his data with us. He also reminds 
us that the data and commands are in the file Ch02.xls, Fig.2.4. Dr. App 
points out that Figure 2.4 displays the quarterly data on demand for 
Honda motorcycles from the Motorland for the period September 2011 
through June 2014, the MA(3) and MA(4) values, and the forecast values 
using the simple MA technique. We learn that we should follow these 
steps to obtain the MA(3) forecasts:

In cell E5, type = (D3 + D4 + D5)/3 and press Enter
Copy and paste this formula into cells E6 through E14
To obtain forecasting values Ft +1(3), copy cells E5 through E14
Right click cell F6 and select Paste Special
When the dialog box appears, select Values, then click OK
Excel will paste the values (instead of the formula) from column E into 

column F
The forecast value for the third quarter of 2014 using MA(3) is shown 

in cell F15

Figure 2.4  Simple MA: obtaining forecast values
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Repeat the same procedure for the MA(4) forecasts:

In cell G6, type = (D3 + D4 + D5 + D6)/4 and press Enter
Copy and paste this formula into cells G7 through G14
To obtain forecasting values Ft+1(4), copy cells G6 through G14
Right click cell H7 and select Paste Special
When the dialog box appears, select Values, then click OK
The forecast value for the third quarter of 2014 using MA(4) is shown 

in cell H15

Weighted Moving Averages

For comparative purpose, we use the same quarterly data on demand as 
in Figure 2.4. We find that Figure 2.5 displays the data, WM(3) values, 
WM(4) values, and the forecast values. The data are available in the file 
Ch02.xls, Fig.2.5. To proceed with WM(3), we do the following steps:

In cell E5, type = (1 * D3 + 2 * D4 + 3 * D5)/6 and press Enter
Copy and paste this formula into cells E6 through E14
To obtain forecasting values Ft+1(3), copy cells E5 through E14
Right click cell F6 and select Paste Special
When the dialog box appears, select Values and click OK

Figure 2.5  WM: obtaining forecast values
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Excel will paste the values from column E into column F
The forecast value for the third quarter of 2014 using WM(3) is 

shown in cell F15

For WM(4), repeat the same procedure:

In cell G6, type = (1 * D3 + 2 * D4 + 3 * D5 + 4 * D6)/10 and press 
Enter

Copy and paste this formula into cells G7 through G14
To obtain forecasting values Ft+1(4), copy cells G6 through G14
Right click cell H7 and select Paste Special
When the dialog box appears, select Values and click OK
The forecast value for the third quarter of 2014 using WM(4) is 

shown in cell H15

Dr. App concludes this section by reminding us that the Data Analy-
sis tools in Excel has commands for MA and ES. Additionally, we can use 
the Math Function in Excel to calculate the average. However, she points 
out that one saves more time doing the techniques manually rather than 
using the Math Function, and a manual calculation helps us understand 
the concepts more clearly. We are happy to follow her advice.

Exponential Smoothing 

Dr. Theo takes over the class with the next theoretical section on ES.

Concept

We learn that similar to the WM technique, the ES technique assumes that 
the forecast value for the next period is a weighted average of the previous 
and current-period values. Different from the WM, only one weight is used 
in ES models, and the weight is confined between zero and one. This weight 
is also changeable and depends on the changes in market conditions. Math-
ematically, the equation of forecasts using the ES model can be written as:

	 F aA a Ft t t+ = + −1 1( ) 	 (2.5)
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where  Ft+1 and At are the same as in Equation 2.1
Ft is the forecast value for period t
a is the smoothing factor, also called smoothing constant (0 < a <1).

This equation states that the forecast value of period (t + 1) is equal to the 
weighted actual value of period t plus the weighted forecast value of period 
t. There are two common ways to obtain the first forecast value: calculate 
an average of the first several values in the actual data or take the first actual 
value. Montgomery, Jennings, and Kulahci (2008) also recommend a third 
approach of calculating an average of all values in the available data. How-
ever, this might result in a very large first value if the series moves upward 
sharply over time. For this reason, most textbooks take either the first value 
or the average of the first several values in the actual data.

Our textbook follows Hyndman and Athanasopoulos (2014), Krueger 
(2010), and Lawrence, Klimberg, and Lawrence (2009) in taking the first 
value in the actual data, that is, F1 = A1, so
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Because of this gradual approach, the series does not settle until reaching 
period 4 and up. Also, since there is only one weight varying between zero 
and one, the weights assigned to past periods decrease so that the current 
period is given more weight. We notice the pattern of changes as follows:

	 F aA a Ft t t+ = + −1 1( )

	 F aA a F aA a aA a Ft t t t t t+ + + += + − = + − + −2 1 1 11 1 1( ) ( )[ ( ) ]

	 = + − + − −+aA a a A a a Ft t t1 1 1 1( ) ( )( )

Since 0 < a < 1, the weight decreases over time.
To this point, Fligh raises his hand and asks for an example. 

Fin volunteers to go to the board. The following is his discussion.



	 ELEMENTARY TIME SERIES TECHNIQUES	 33

For example, if a = 0.2, then the weight assigned to the actual value 
in each period is as in the following table and continues with higher 
exponential orders:

Time period Cumulative value Weight
Current period 0.2 0.2

One period apart 0.2 * (1 − 0.2) 0.16

Two periods apart 0.2 * (1 − 0.2) * (1 − 0.2)  
= 0.2 * (1 − 0.2)2

0.128

“Smart guy!” We exclaim. Now we know why the technique bears the 
name exponential smoothing.

Dr. Theo also emphasizes the advantage of using ES over WM: there 
is only one weight, which can be adjusted easily from zero to one, with 
a larger smoothing factor resulting in more weight given to the current 
period. For example, if a = 0.9, then the weight for the current period is 
0.9, and the following weight drops sharply to 0.09.

Alte asks, “Does that means that if a = 0.1, then the weights are almost 
equal?” Dr. Theo commends her on the remark because in this case, the 
weight for the current period is 0.1, and the following weight is still 0.09, 
which is very close to 0.1.

Dr. Theo also reminds us that the sum of all weights over time equals 
to one.

At this point, Arti mentions that yesterday she read a book, in which 
Lawrence, Klimberg, and Lawrence (2009) offer a different way to look at 
the ES model by manipulating the original equation further:

	 F aA a F aA F aF F F a A Ft t t t t t t t t t+ += + − = + − → = + −1 11( ) ( )   (2.7)

The last expression (At − Ft) is the forecast error, which measures the 
difference between the actual value and the forecast value. In view of 
Equation 2.7, the ES technique provides the next-period forecast, which 
equals the sum of the current-period forecast and the weighted adjustment 
of the forecast error in the current-period forecast.

Dr. Theo is very pleased, and we find that this alternative way to look 
at the ES model is interesting because it shows that the ES process adjusts 
itself based on the forecast errors.
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Rea raises his hand and suggests that we calculate the sale values 
from Ex’s company in the section on “Moving Averages,” again using 
Equation  2.5 and a calculator with the actual sales for the first three 
months A1 = 20, A2 = 30, and A3 = 40.

Sol asks, “So what smoothing factor should we use?” Ex says, “Let’s 
use the smoothing factor a = 0.5, because our company doesn’t emphasize 
too much on the current period but does not ignore it completely either.” 
Mo then adds that we should let F1 = A1 because the sales at Ex’s company 
increase quite rapidly over time; if we calculate the average of the three 
values, the initial forecast might be too large. We all think this is a good 
idea and work on the calculations shown in the following text.

August:	 F1 = A1 = 20
September:	 F2 = 0.5 * 20 + (1 − 0.5) * 20 = 20
October: 	 F3 = 0.5 * 30 + (1 − 0.5) * 20 = 15 + 10 = 25
November:	 F4 = 0.5 * 40 + (1 − 0.5) * 25 = 20 + 12.5 = 32.5

Dr. Theo reminds us that we can verify our calculations using 
Equation 2.7 when we get home and to read the Excel application in the 
following section.

Excel Application

Dr. App starts this section by showing us Figure 2.6, which displays the 
data and the forecast values using the same dataset in Figures 2.4 and 2.5, 
setting F1 = A1, with three different smoothing factors, a = 0.3, a = 0.5, 
and a = 0.7. The data are in the file Ch02.xls, Fig.2.6. We learn that we 
should perform the following steps to obtain the ES forecasts:

In cell E3, type = 0.3 * D2 + (1 − 0.3) * E2 and press Enter
In cell F3, type = 0.5 * D2 + (1 − 0.5) * F2 and press Enter
In cell G3, type = 0.7 * D2 + (1 − 0.7) * G2 and press Enter
Copy and paste the formulas in cells E3, F3, and G3 into cells E4 

through E14, F4 through F14, and G4 through G14, respectively

Dr. App reminds us that we can experiment with Equation 2.7 
using our knowledge of Excel mathematical operations learned in 
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Chapter 1 and type the formula into corresponding cells in the dataset 
for Figure 2.6, and that we should be able to obtain the same results 
using either equation.

We then move to the next topic of transforming the data to obtain 
real values, which are adjusted against inflation, so that we can produce 
more accurate forecasts.

Nominal versus Real Values

Concept

We learn that in real life situations, some data are in quantity values that 
are not distorted by inflation or deflation, for example, data on build-
ing permits, quantity of books demanded, and so on. However, some 
data are expressed in currency values, for example, data on sales, gross 
domestic product (GDP), or house prices are in domestic currencies. 
If  the values in the data are reported using different price levels for 
different periods (called current prices), then these values are called 
nominal values. The  nominal values have to be converted to the real 
values, which are values calculated using the price level in a base period 
(called the constant price).

To this point, Rea asks, “Why is using real values important?” Arti 
offers her own experience, “Two years ago, my school made a profit of 
$250,000. Last year, we made $256,000. The board members and I were 

Figure 2.6  ES: obtaining forecast values
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happy that we were growing. My accountant then pointed out to us that 
we were worse off because our growth rate was:

	 G = (256,000 − 250,000)/250,000 = 0.024 = 2.4%

However, the inflation rate during that period was 3.4 percent, so our 
real growth rate was 1 percent. It was a wake-up call to us. Since then, my 
school has been very determined to use real value in our data so that we 
can compensate for the inflation rate.”

“Wow, that is a good example!” We say in unison and now understand 
why we have to master this section.

The data conversion helps a forecaster avoid inflation and deflation 
distortions before applying any forecast technique. The nominal values 
are converted to the real values using price indexes. The two frequently 
used price indexes are the consumer price index (CPI) and the GDP 
deflator (GDPD).

Consumer Price Index

The CPI is the cost of a fixed basket of goods and services purchased by a 
consumer representative in the urban areas in a current year relative to the 
cost of the same basket in a base year. We are surprised to learn that the 
measurement was introduced over a century ago by the German economist 
and statistician, Etienne Laspeyres (1834–1913). Dr. Theo points out that 
the CPI measures the cost of living and so it is often used when consumer 
goods are examined. The equation for calculating the CPI for a current 
year using a base year is:
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where
CPIC = the consumer price index for the current year
	 Qi,b = the fixed quantity of good i in the base year
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Pi,c = the price of good i in the current year
Pi,b = the price of good i in the base year.

We then break into small groups to work on an example. Alte, Fligh, 
and I are in the same group. Here is the exercise.

Suppose the representative consumer buys a nominal value of $11,000 
in consumer goods in 2014 and the real value of this basket in 2010 was 
$10,000, then the CPI for this basket in 2014 using 2010 as the base is:

	 CPI2014 = ($11,000/$10,000) * 100 = 110

Rea raises a question, “Does the result reveal that the inflation for the 
period 2010–2014 is 10 percent, implying an inflation rate of 2.5 percent 
per year on average?” Dr. Theo commends him on the correct interpre-
tation and leads us to the next calculation: When the nominal value of 
$11,000 and the CPI of 110 are provided, the real value is:

	 Real value = ($11,000/110) * 100 = $10,000

We now know that we should use this real value to perform forecast-
ing instead of the nominal value.

GDP Deflator 

The GDPD was introduced by the German economist and statistician 
Hermann Paasche (1851–1925) and has been often used in macroeco-
nomics. The index is also called the implicit price level, or the implicit 
GDPD. The equation for calculating the GDPD for a current year using 
a base year is:
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where
GDPDC = the GDPD for the current year
	 Qi,c = the quantity of good i in the current year
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	 Pi,c = the price of good i in the current year
	 Pi,b = the price of good i in the base year
NGDPC	= the nominal GDP for the current year
RGDPC	= the real GDP for the current year.

For example, when the NGDP = $10.8 million and the GDPDC = 108, 
then

	 RGDP = ($10.8 million/108) * 100 = $10 million.

We find it is interesting to know that the GDPD has an advantage 
of not using a fixed basket of goods and services the way the CPI does. 
Hence, the disappearance of a good or appearance of a new one in a 
current year will be reflected in GDPD. However, the GDPD has a dis-
advantage of not including imported goods and imported services as the 
CPI does. For this reason, the GDPD usually understates the price level 
whereas the CPI overstates it.

At this moment, Dr. Theo asks us to give an example, and Fligh raises 
his hand to provide one: A hurricane destroys all oranges in Florida, so 
the overall price level of a few imported oranges increases sharply. Since 
the quantity of oranges in the CPI basket does not change, the rise in the 
orange price causes the CPI in Florida to go up a great deal and overstates 
the inflation in the state. In the meantime, the quantity of oranges is 
dropped from the GDPD calculation for Florida, so the total value of 
oranges in the GDPD is zero, and the GDPD understates the inflation 
in Florida.

We are truly impressed with Fligh’s intelligence. Dr. Theo is very 
pleased with the class and lets Dr. App work with us on the next section.

Excel Application

Ex has studied the market for exports in order to help his company and 
is able to provide us with the data on the exports from China to Canada. 
The data are in the file Ch02.xls, Fig.2.7. We see that Figure 2.7 displays 
data from 2000 to 2011 in current U.S. dollars and the GDPD with 
2004 as the base.
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Since this is a macroeconomic dataset, Dr. App says that using GDPD 
is appropriate. We learn that to convert the nominal values to the real 
ones, we have to perform the following steps:

In cell F2, type = (D2/E2) * 100 and press Enter
Copy and paste the formula into cells F3 through F13
The real values are displayed in column F

Dr. App explains that a similar process can be followed to obtain real 
values using CPI. She also reminds us to read Chapter 3 of the textbook 
so that we can learn how to evaluate and adjust our forecasts in the 
following class.

Exercises

1.	Data on the actual number of permits for residential buildings in 
the city are provided by Rea from Realmart and can be found in the 
file Real.xls. The data are from December 2012 to February 2014. 
Perform the WM(4) procedure on this dataset to obtain one-period 
forecasts with the weights of 1, 2, 3, and 4 for periods 1, 2, 3, and 
4, respectively. Construct columns in Excel similar to the ones in 
Figure 2.5.

Figure 2.7  Converting nominal values to real values

Data Source: IMF.com: Direction of Trade Statistics (2014).
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2.	Perform the ES procedures with a = 0.4 and a = 0.6 on the data-
set Real.xls to obtain one-period forecasts and construct columns in 
Excel similar to the ones in Figure 2.6.

3.	Use the dataset Sales.xls, a handheld calculator, and the ES technique 
with a = 0.8 to calculate forecasts for weeks 2 through 5 of this series. 
Show how the steps of your calculations are similar to those in the 
section “Concept” under “Exponential Smoothing.”

4.	The file Revenue.xls contains data on monthly revenue in current 
dollars for Artistown and the monthly CPI index for the city. 
Convert the nominal revenue values into real values.



CHAPTER 3

Evaluations and Adjustments

At the end of our last class, we obtained the one-period forecasts for 
Motorland store. Alte raises a question, “In Chapter 2, a long series of 
data is analyzed only to obtain one forecast value for the 13th period. All 
other ‘forecasts’ are current values that are known to us. Why do we need 
a long time series then?”

Dr. Theo commends Alte on asking a good question and explains, 
“We need a long series because we have to compare the forecast values 
with the actual values in order to evaluate the accuracy of our forecast 
models.” Mo exclaims, “Oh yes, my boss did not want to under-order 
or over-order by more than 20 percent, so we had better check on our 
model.” Dr. Theo says, “Right, so the error interval in this case is (–20%; 
+20%). Hence, we want to know if this interval condition is met. If not, 
adjustments can be made to the model to improve its predictive power. 
Monitoring then can be carried out to obtain the best forecast model. 
These are the topics of this chapter, so once we finish with the chapter, 
you will be able to:

1.	Explain the concept of error measurements.
2.	Apply the concept into calculating each error measurement using 

Excel.
3.	Adjust our forecast models based on these error measurements.
4.	Explain other methods of model evaluations.
5.	Apply these other methods into model evaluations and adjustments.”

We are excited to hear that we can evaluate our models. However, 
when we look through the chapter, we see that the section on “Error 
Evaluations” is quite abstract and we freak out. Dr. Theo then promises to 
go slow and to provide the class with numerous examples. With that, we 
start our next theoretical section.
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Error Evaluations

We learn that error measurements are crucial in evaluating and adjusting a 
forecast model. As the future is not certain, there are always forecast errors.

Concept

The forecast error is the deviation of the forecast value from its actual 
counterpart:

	 ft = At − Ft	 (3.1)

where
ft = the forecast error for period t
At = the actual value in period t
Ft = the forecast value for period t.

The simplest way to see the difference is to plot the two series. 
We examine the plots in Figure 3.1, which displays the actual demand 
and forecast values from Figures 2.4 and 2.5 using the moving average of 
order 3 (MA(3)) and the weighted moving average of order 3 (WM (3)). 
We are able to find the data in the file Ch03.xls, Fig.3.1, and gain a 
hands-on experience by charting the plots ourselves.

Observing this figure, we see that forecast values obtained by the WM 
technique (the solid line) appear to mimic the actual data more closely 
than the simple MA (the dashed line). Overall, both techniques underes-
timated the sale values. Dr. Theo says that this is a common characteristic 
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Figure 3.1  Comparing MA(3) and WM(3) forecasts by charting
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of elementary forecast techniques, including the exponential smoothing 
(ES), partly because they ignore the trend in their data analyses. Chapter 4 
will add this trend and introduce more advanced techniques.

Dr. Theo then asks us whether we can say for sure that the WM is 
better than the MA. We all agree that we cannot be sure because no 
quantitative value is provided, so more sophisticated measures have to be 
learned. Dr. Theo then guides us through the quantitative measurements 
in the following section.

Standard Deviation of the Forecast

This measure is similar to that in statistics except that the standard devi-
ation of the forecast (SDF) measures the deviation from the mean of the 
forecast errors instead of the deviation from the mean of a population. 
Some textbooks use the notation s (sigma) for this measure:

	 SDF = −E f E f{| | | |}2 	 (3.2)

Since this is a complicated formula, we study Table 3.1, which 
provides an example of the SDF for a dataset with A as the actual value 
and F as the forecast value. We are divided into groups, and we discuss 
how to calculate the SDF following step by step instruction in Table 3.1.

Sol and Rea and I are in the same group. Rea points out that the results 
in column (5) come from the calculation of E| f  | = (1 + 2 + 3)/3 = 2. I am 
very grateful for his remark because I have not noticed so.

We are continue to look through Table 3.1 when Fin from the adja-
cent group calls out, “I think that taking the average of the results in 
column (6) gives us the variance of the forecast error.” I look over Fin’s 
shoulders to see that he is writing: E{| f  | − E | f  |}

2 = (1 + 0 + 1)/3 = 2/3.
Dr. Theo praises Fin for his correct observation, so all we have to do is 

to take the square root of the variance to obtain SDF:

	 SDF = =2 3 0 8165/ .

Dr. Theo guides us through every step of the calculation, and we feel 
a little better now.
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Mean Squared Error

The mean squared error (MSE) is the average of the squared errors of the 
forecasts. This concept is easier to learn. Dr. Theo reminds us that since 
we use the squared errors, MSE gives greater weight to the larger errors 
and can be a good measure if the objective is to minimize the larger errors:
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We then work on an MSE example, using the information on (A − F ) 
in column (4) of Table 3.1. Because all fs will be squared, the sign does 
not matter:

	 MSE = (12 + 22 + 32)/3 = (1 + 4 + 9)/3 = 4.67	

Alte points out that she often sees the square root of MSE, which is 
calculated as:

	 RMSE MSE= = =4 67 2 16. . 	

Dr. Theo commends her on the remark and says that this measure is 
called root mean squared error.

Mean Absolute Error

The mean absolute error (MAE) is also referred to as mean absolute 
deviation (MAD) in several textbooks. In our class, we use the terminology 
MAE stipulated by Greene (2012). In calculating MAE, the absolute 

Table 3.1  Calculating the expression {|f | − E|f |}2

(1) (2) (3) (4) (5) (6)

Period A F |f| = |A − F| E|f| {|f| − E|f|}2

4 9 8   |9 − 8|= 1 2 {1 − 2}2 = 1

5 10 8 |10 − 8|= 2 2 {2 − 2}2 = 0

6 8 11 |8 − 11|= 3 2 {3 − 2}2 = 1
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value of each forecast error is used to find the average of the deviation 
from the actual values. This overcomes the problem of the negative and 
the positive errors cancelling each other out. It can be a good measure if 
the objective is to minimize all errors equally:

	 MAE = E f| | = | |A F

T

t t
t
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1
	 (3.4)

For example, from column (4) of  Table 3.1, MAE = E |  f  | = (1 + 2 + 3)/3 = 2.

Mean Absolute Percentage Error

The mean absolute percentage error (MAPE) measures the MAE in 
percentage. MAPE provides a more precise evaluation of error relative 
to the actual value. To see the difference, Dr. Theo asks the class, “Does 
anyone know why the percentage difference is important?”

I raise my hand and volunteer to give the following story: “Two 
months ago, the total profit from my Nailight Salon was $11,000 whereas 
my competitor across the street made $10,000 in total profit. Thus, we 
made $1,000 more than they did. Last month we decided to launch an 
aggressive campaign by giving out nail files and flyers to our customers 
and increased our profit to $15,100 while my competitor made $14,000 
in profit. I later heard that they also launched massive promotions by 
giving out nail polish removers and posting Internet advertisements. Our 
profit was still $1,100 more than theirs last month. My partner was happy 
thinking that we improved because we were $1,100 instead of $1,000 
ahead of them. I pointed out to her that they might surpass us one day if 
we progress at this rate. The reason is:

($1,000 / $10,000) * 100% = 10% (we were 10 percent ahead of them 
two months ago)

($1,100 / $14,000) * 100% = 7.9% (we were only 7.9 percent ahead 
of them last month).”

Dr. Theo commends me for the example. He then says that the same 
is true for the error measurement: An error of 20 units relative to the 
actual value of 100 units (a 20 percent error) is 10 times as large as an 
error of 20 units relative to an actual value of 1,000 units (a 2 percent 
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error). For this reason, the MAPE measures the accuracy of a forecast 
model better than the preceding measurements.
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We then work in small groups on an example using the information 
in column (4) of Table 3.1 again to calculate:
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Deviation in Percentage

The deviation in percentage (DPE) measures the percentage deviation 
from the mean of the errors:

	 DPE
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Cita is quick to point out that Table 3.2 displays the calculation of 
DPE for the example in Table 3.1. Ex then notices that column (4) in 
Table 3.1 becomes column (2) in Table 3.2. Dr. Theo confirms their 
observations and asks us to break into small groups again and discuss the 
calculations with each other.

Table 3.2  Calculating the expression [{|f|/A} * 100 − MAPE]2

(1) (2) (3) (4)

Period |f| = |A − F| (|f|/A) * 100
[(|f|/A) * 100 − 

MAPE]2

4 |9 − 8|= 1 (1 / 9) * 100 = 11.11 {11.11 − 22.87}2 = 138.30

5 |10 − 8|= 2 (2 / 10) * 100 = 20 {20 − 22.87}2 = 8.24

6 |8 − 11|= 3 (3 / 8) * 100 = 37.5 {37.5 − 22.87}2 = 214.04
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From the results in Table 3.2, we are able to calculate the DPE:

	 DPE = 
138 30 8 24 214 04

3
120 19 10 96

. . .
. . (%)

+ + = = 	

Forecast Bias

The forecast bias (FB) measures the direction of the errors to see whether 
the forecast model understates (downward bias) or overstates (upward 
bias) the actual values. Hence, the sign of the error becomes important 
in this measure:
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Dr. Theo reminds us to pay attention to the definition of the forecast 
error, which is f = A − F. Hence, if forecast values on average are lower 
than its actual values, then the value of FB is positive, and we have a 
downward bias, where the model underestimates the actual values. 
Therefore, we are advised to avoid using the term positive bias when 
FB  > 0 because this term creates an impression of an overestimation, 
which is incorrect in this case. Similarly, we should also avoid the term 
negative bias when FB < 0.

To observe this point, we work on an example from columns (2) and 
(3) in Table 3.1, where (A − F ) values are: 9 − 8 = 1, 10 − 8 = 2, and 
8 − 11 = −3. Hence, FB = (1 + 2 − 3)/3 = 0, that is, there is no bias in 
this forecast.

Next, we experiment with changing the last forecast error in Table 3.1 
from −3 to −2 and find that the FB = (1 + 2 − 2)/3 = 1/3, which is a 
positive number and implies a downward bias (an underestimation of the 
actual values).

Finally, we also experiment with changing the last forecast value in 
Table 3.1 from −3 to −4 and find that the FB = (1 + 2 − 4)/3 = −1/3, 
which implies an upward bias (an overestimation of the actual values).

The theoretical section is then adjourned, and we work with Dr. App 
on the following section.
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Excel Applications

Obtaining SDF

Dr. App points out that Figure 3.2 displays the actual demand and the 
MA(3) forecasts from Figure 2.4 for periods 4 through 12, as well as steps 
of calculations to obtain the SDF. The forecast value for period 13 is 
not displayed because actual demand for this period is not available. She 
also reminds us that the data are available in the file Ch03.xls, Fig.3.4. 
We learn that we need to perform the following steps:

In cell D2, type = ABS(B2 − C2) and press Enter
Copy and paste the formula into cells D3 through D10
In cell D11, type = average (D2:D10) and press Enter
Copy the value in cell D11
Right click cell E2 and select Paste Special
When the dialog box appears, select Values then click OK
Excel will paste the value (instead of the formula) from cell D11 into 

cell E2 (Henceforth, this command will read “paste-special the 
value(s) from cell … into cell ….”)

Paste the value from cell E2 into cells E3 through E10

In cell F2, type = (D2 − E2)^2 and press Enter
Copy and paste the formula into cells F3 through F10
In cell F11, type = average (F2:F10) and press Enter
In cell E11, type = F11^(1/2) and press Enter

Figure 3.2  Obtaining SDF for the MA(3) and WM(3) forecasts in 
Figures 2.4 and 2.5
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The value in cell E11 is the SDF for the MA(3). Dr. App asks us to 
repeat the same process for the WM(3) forecasts in Figure 2.5 once we get 
home so that we can compare the two standard deviations. She also points 
out that the SDF for the WM(3) is displayed in cell K11.

Obtaining MSE, MAE, and FB

Since these are simple mathematical operations, we are provided with 
Excel commands without accompanied figures in the text. (For fur-
ther reference, the commands are in the file Ch03.xls, on the sheet  
MSE-MAE-FB.) We follow her guidance to obtain the results for the 
MA(3) by performing the following steps.

RMSE: In cell D2, type = B2 − C2 and press Enter
In cell E2, type = D2^2 and press Enter
Copy and paste the formulas into cells D3 through D10 and 

E3 through E10
In cell E11, type = average (E2:E10) and press Enter to obtain 

the MSE
In cell E12, type =SQRT(E11) and press Enter to obtain the 

RMSE
MAE:   In cell F2, type = ABS(B2 − C2) and press Enter

Copy and paste the formula into cells F3 through F10
Copy and paste the formula in cell E11 into cell F11 to obtain 

the MAE
FB:	� Copy and paste the formula in cell E11 into cell D11 to  

  obtain the FB

Ex discovers that we can repeat the same procedure to obtain RMSE, 
MAE, and FB for the WM(3) model. We are very impressed with his 
discovery.

Obtaining MAPE

Sol notices that Figure 3.3 displays the actual demand, the MA(3) fore-
casts, and the WM(3) forecasts. The data are available in the file Ch03.xls,  
Fig.3.5.
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To find the MAPE for the MA(3) forecasts, we have to perform the 
following steps:

In cell D2, type = ABS(B2 − C2) and press Enter
Copy and paste the formula into cells D3 through D10
In cell E2, type = (D2/B2) * 100 and press Enter
Copy and paste the formula into cells E3 through E10
In cell E11, type = average (E2:E10) and press Enter to find the  

MAPE = 11.91 (%)
Repeat the same process for the WM(3) forecasts
As displayed in cell J11 for the WM(3), the MAPE = 9.79 (%)

Obtaining DPE

Cita is the first person to observe that Figure 3.4 displays data from the 
file Ch03.xls, Fig.3.6, and the steps to calculate the DPE. She also notices 
that column E in Figure 3.3 becomes column C in Figure 3.4. We learn 
that to find the DPE for the MA(3) forecast, the following steps are 
needed:

Copy and paste-special the value in cell C11 into cells D2 through 
D10

In cell E2, type = (C2 − D2)^2 and press Enter
Copy and paste the formula into cells E3 through E10
In cell E11, type = average (E2:E10) and press Enter to find the 

DPE = 19 (%)

Figure 3.3  Obtaining MAPE for the MA(3) and WM(3) forecasts in 
Figures 2.4 and 2.5
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Repeat the same process for the WM(3) forecasts
As displayed in cell I11, the DPE for the WM(3) is 18 (%)

We come to the class the next day to learn that Dr. Theo caught the 
flu, so Dr. App will teach both the theoretical and the applied sections.

Adjustments Based on Error Evaluations

Concept

To start the lecture, Dr. App emphasizes that interpretation and adjust-
ments are important in order to improve a model’s prediction power over 
time.

Interpretation

Once the error measurements are calculated, compare and contrast all 
measurements to obtain some meaningful interpretation. The model that 
has the greatest amounts of smaller error measurements is the best to use.

At this moment, Arti raises a question, “How can you know if a 
model with the greatest amounts of smaller error measurements is reliable 
enough to use in your forecasting?”

Dr. App responds that it all depends on the costs and benefits of your 
data analysis. If you just want to have an overall feel of the market, the 
simple techniques in Chapter 2 might be sufficient because they are easy 
to use and so the costs of developing the models and tracking for the 
changes are low. However, if you want to make a decision on how much 

Figure 3.4  Obtaining DPE for the MA(3) and WM(3) forecasts from 
Figures 2.4 and 2.5



52	 SEEING THE FUTURE

stock is needed to appropriately fill your inventory for future sales, you 
might want to use more advanced forecast techniques introduced in the 
following chapters to reduce the errors.

Adjustments

We are relieved to learn that regardless of the forecast techniques, instant 
adjustments can be made to obtain a more reliable model.

Dr. App first introduces the method of central-tendency adjustment, 
which uses some of the information on the error measures such as FB 
and SDF. Theoretically, forecast errors are supposed to have a zero mean, 
implying a forecast bias FB = 0, and a constant SDF. If the FB is greater 
than zero, then the forecast series can be adjusted upward by adding the 
bias to the forecast values.

Mo raises his hand to ask, “But markets change very frequently. How 
can we make just one instant adjustment and be sure that the model is 
appropriate?” Dr. App praises him for a good question and says that mar-
kets change frequently due to changes in consumer preferences, improve-
ments in technology, company realignments, or any supply shocks such 
as gasoline price changes, wars, and so on. These changes necessitate the 
need to monitor the forecast errors and adjust the model over time once 
an instant adjustment is made.

We learn that the SDF should be monitored over time based on 
the common practice of keeping a band of the lower bound and upper 
bound between three standard deviations of the forecast (±3SDF). If the 
forecast values fall out of this band for two consecutive periods, market 
research should be carried out to discover the causes and the patterns of 
the changes so that adjustments can be made to the model.

Next, we learn the method of error MA adjustments. The method 
calculates the MAs of the forecast errors and then adds these MAs to the 
original forecast values to adjust for the error differences.

Finally, we learn that once a model is adjusted, we need to set an adjust-
ment interval to collect new data and continue the evaluation and adjust-
ment process over time. The adjustment intervals can be weekly, monthly, 
quarterly, and so on depending on the sensitive level of the market.

Dr. App then instructs us to open the data for practicing evaluations 
and adjustments.
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Excel Applications

To compare and contrast the two models in the section on “Error 
Evaluations,” we study Table 3.3, which reports all performance measures 
for the MA(3) against the WM(3). Alte raises her hand and asks, “How 
come MAE and FB have the same values in this example?” For which Fin 
replies, “I think because all forecast values are below the actual values for 
both models, so the absolute values of the forecast errors are identical to 
the errors themselves.”

Dr. App commends both of them for being such active learners. We also 
find that the results support our observation on the underestimation 
(downward bias) of the two models, as shown in Figure  3.1, because 
the FB values are positive for both models. The results also confirm our 
intuition from looking at the chart in Figure 3.1 that the WM(3) is a 
better forecast model than the MA(3): the former has smaller values than 
the latter in five out of six error measures.

Dr. App reminds us that the same process can be used to compare and 
contrast the three ES models with different smoothing factors presented 
in Chapter 2.

Rea then asks, “Since Table 3.3 reveals that the FB values are positive, 
implying a downward bias, can each forecast curve be adjusted by adding 
a constant equal to the FB?” We all say, “Yeah…let’s try it” and work on 
the adjustment. We find the data in the file Ch03.xls, Fig.3.8, and display 
the results in Figure 3.5.

As you see, once the value FB = 1563 is added to the MA(3) curve 
and FB = 1282 is added to the WM(3) curve, the two models mimic the 
actual data more closely.

Table 3.3  Performance measures for the MA(3) and the WM(3)

Measures

Model

MA(3) WM(3)
SDF 538 542

RMSE 1,653 1,392

MAE 1,563 1,282

FB 1,563 1,282

MAPE 11.91% 9.39%

DPE 19% 18%
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We then apply the method of error MA adjustments by calculating 
MAs of the forecast errors and then adding these MAs to the original fore-
cast values. Figure 3.6 displays the data from the file Ch03.xls, Fig.3.9, 
and the results of our new calculations. Here is what you have to do to 
get along with us:

In cell E4, type = (D2 + D3 + D4)/3 and press Enter
Copy and paste this formula into cells E5 through E10
Copy and paste-special the values of cells E4 through E10 into cells 

F5 through F11
In cell G5, type = C5 + F5 and press Enter.
Copy and paste this formula into cells G6 through G11 to obtain new 

forecasts.
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Figure 3.5  Adjusting the MA(3) and WM(3) by adding the FB 
values

Figure 3.6  Adjusting MA(3) and WM(3) forecasts by adding the 
forecast-error MA(3)



	 EVALUATIONS AND ADJUSTMENTS	 55

Repeat the same for WM(3) in columns H through K.
(We can skip one step for WM because the values in columns E and F 

are the same)

We are delighted to see that the new forecast values are closer to the 
actual values than the original forecasts.

Dr. App points out that there are several other methods of evaluations 
and adjustments that we might want to learn.

Other Evaluations and Adjustments

Holdout Samples

Holdout-sample evaluations and adjustments are also called out-of-sample 
forecasts, which consist of two techniques: (i) knife jacking for recalcula-
tions of the errors and (ii) cross validation for recalculations of the forecast 
values. First introduced by Michaelsen (1987), the strategies are discussed 
in detail by Mason (2004). Both techniques split the historical data on 
actual values into at least two subsets called in-sample and out-sample that 
are available for in-of-sample forecasts and out-of-sample evaluations and 
adjustments. Since past performances do not guarantee the same future 
performances, the idea is to create a forecast model of the future instead of 
making only an excellent description of the historical data.

In both techniques, a subset of several periods in the actual data is not 
used in the forecast model and is called the holdout subset, out-sample 
subset, or missing subset. The forecasting is performed using only the 
in-sample subset.

The knife-jacking strategy is used to recalculate the forecast errors 
employing all possible combination of the in-sample subset. The cross-
validation strategy is used to recalculate the forecast values by employing 
the in-sample subset followed by the holdout subset to reduce bias for the 
forecasts.

For example, we can leave out the last four quarters of the actual series 
in Figure 2.4. Hence, the forecast model is first developed using data 
from September 2011 to June 2013 and provide forecast values up to 
June 2014. The forecast error measures are then calculated by comparing 
the forecast values with the actual values for the period September 2013 
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through June 2014. The forecast values are then recalculated based on 
these error measures.

Dr. App notifies us that the holdout sample has practical uses in 
multiperiod forecasting and so we will work on an Excel demonstration 
in Chapter 4 instead of doing it in this chapter.

At this point, Alte puts forth an issue at her Alcorner store: She and 
her partner were able to use the ES technique to obtain a series of forecast 
data for their next month’s supplies, but they are not sure whether the 
forecast series requires further improvement.

Dr. App is quite pleased with her question because this is the very 
issue to be discussed next in the class.

Data Randomness

This approach investigates whether a model can be further improved by 
looking at the randomness of the forecast data. Time series forecasts are 
based on the notion that there are patterns in the past performance of a 
market that can be used to forecast its future performance. If a forecast 
series no longer exhibits any pattern, then it is random, and no further 
improvement can be made by adjusting the model.

Dr. App tells us Bradley (1968) is the researcher who offers a very 
helpful technique to check on the randomness of a forecast model. This 
technique is called the run test, which is summarized here for us. We first 
learn about a run.

Given a sample mean, a run is defined as a series of values above the 
mean or a series of values below the mean. A new run is formed each time 
the series moves from below to above the mean and vice versa. For exam-
ple, the series 2, 5, 5, 6, 3, 2, 9, 8, 3, 1 has the sample mean:

	 x = + + + + + + + + + =( ) / .2 5 5 6 3 2 9 8 3 1 10 4 4

Hence, this series has 5 runs around its mean: (2) (5 5 6) (3 2) (9 8) 
and (3 1).

And so the number of runs in this series = R = 5.
The number of values above the mean = n1 = 5 (consists of 5, 5, 6, 9, 

and 8).
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The number of values below the mean = n2 = 5 (consists of 2, 3, 2, 
3, and 1).

The run test is performed in four steps:

i.	The null and the alternative hypotheses
H0: the series is random
Ha: the series is not random

ii.	The test statistic

	 Z
R R

sR
STAT = − 	 (3.8)
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iii.	Find the critical value of a normal distribution, Z-critical (Zc ), for a 
two-tail test.

iv.	Decision: If |ZSTAT| > Zc, reject the null, meaning the data is not ran-
dom and implying improvements can be made by further adjusting 
the model.

As an example, the class breaks into groups and performs the test for 
the preceding series:

i.	The hypotheses
H0: the series is random
Ha: the series is not random

ii.	The test statistic

	
R

n n
n n
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+

+ =
+

+ =2
1 2 5 5

5 5
1 61 2

1 2

* *
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iii.	The critical value: we choose a = 0.05 (a 5 percent significance level), 
so a/2 = 0.025 and 1 − a = 0.975.

Fin has a table of the critical values for a normal distribution and 
is able to find that Z-critical = Zc = Z0.975 = 1.96

It turns out that we do not need Fin’s table because Excel provides 
Z-critical values. All we have to do is to type in any cell = NORMS-
INV (0.975) and press Enter

Excel will report the Zc = 1.9599, which we can round it off to 
1.96.

iv.	Decision: |−0.67| = 0.67 < 1.96, so we do not reject the null.
Meaning: The forecast series is random.
Implication: Improvements cannot be made, that is, no further 
adjustments of the model are needed.

Dr. App reminds us that if the forecast series is not random, then 
another round of forecasting should be performed using any technique 
discussed in this textbook and then the run test can be carried out again 
until adjustments are no longer needed.

Mo raises his hand and tells us another story: His boss now wants 
to raise the bar with the forecast results obtained by the class using Mo’s 
data. He is wondering whether a model with a smaller error than the ones 
we have obtained can be developed. Dr. App assures us that the next sec-
tion of the lecture will address this issue.

Combining Forecast Models

After trying many forecast models, with none of them providing highly 
desirable results, we learn that combining several of them might yield 
a better model. The simplest method is to calculate the average of the 



	 EVALUATIONS AND ADJUSTMENTS	 59

individual forecasts. For example, if the three forecast values are F1 = 4, 
F2 = 6, and F3 = 8, then the simple average forecast is:

	 FA = (4 + 6 + 8)/3 = 6

Suppose that the actual demand is A = 5.5, then the forecast error is:

	 f = 5.5 − 6 = −0.5.

Most of the time, this approach is too simple to produce a better model. 
Hence, a weighted adjustment technique is usually preferable. Any mea-
sures discussed in the section on “Error Evaluations” can be used for a com-
bined model. For example, if MSE is used, the weight can be written as

	

w
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F F F F
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i

i n

=
+ + + + +

1
1 1 1 1

1 2

/ ( )

( ) ( )
...

( )
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The weighted forecast value is

	 FW = w1 F1 + w2 F2 +…+ wi Fi +…+ wn Fn	 (3.12)

At this point, Dr. App asks us to go back to the preceding example 
and work on an exercise. She gives us the actual demand as A = 5.5. Addi-
tionally, she gives us the corresponding MSE of the three forecast values 
as follows:

F1 = 4, and MSEF 1 = 1.2
F2 = 6, and MSEF 2 = 2.4
F3 = 8, and MSEF 3 = 2.8
We proceed to calculate the weights as

	 w w1 2
1 1 2

1 1 2 1 2 4 1 2 8
0 5185

1 2 4
1 6071

0 2593=
+ +

= = =/ .
/ . / . / .

. ;
/ .

.
. 	

	 w3
1 2 8
1 6071

0 2222= =/ .
.

.
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We then calculate the weighted forecast value:

Fw = 0.5185 * 4 + 0.2593 * 6 + 0.2222 * 8

	 = 2.074 + 1.5558 + 1.7776 = 5.4074

Hence, the forecast error is:

	 f = 5.5 − 5.4074 = 0.0926

Comparing to the simple average forecast, which has the forecast error 
of –0.5, we conclude that the weighted forecast has a smaller forecast 
error and so is a better technique to follow.

Finally, Dr. App tells us that model adjustments be done by computer 
programs. The adaptive smoothing is a computer program that adjusts the 
smoothing factors whenever the computer notices a change in the pat-
tern of the error terms. The focus forecasting allows you to try a variety 
of forecast models (Heizer and Render 2011). She says that if we want 
to become professional forecasters, we might want to invest or ask our 
company to invest in any professional software developed specifically for 
forecasting to improve our models and the subsequent results. However, 
she also warns us that no machine can replace a human being and so we 
still have to periodically keep an eye on the computer.

Exercises

1.	The file Demand.xls contains data for the two forecast models with 
a = 0.3 and a = 0.7. Use the Excel commands learned in this chapter 
to calculate the SDF, MAPE, and DPE for each of the two models. 
Construct a table similar to the one shown in Table 3.3. Which 
model is better?

2.	Use a handheld calculator to calculate the MAE and FB for the 
forecasts in Exercise 3 of Chapter 2.

3.	Use a handheld calculator to perform the run test at 5 percent 
significance level for the series in the dataset Sales.xls, and show all 
four steps of the test, including the meaning and implication of your 
decision.
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4.	Use the method of MA adjustments to calculate the MA(3) of the 
forecast errors for the forecasts in Figure 2.6 with a = 0.3 then add 
this MA(3) to the original forecasts to obtain new forecast values. 
Construct an Excel spreadsheet similar to the one in Figure 3.6.





PART II

Intermediate Forecast 
Techniques

This part contains two chapters:

•	 Chapter 4 Intermediate Time Series Techniques
•	 Chapter 5 Simple Linear Regressions





CHAPTER 4

Intermediate Time Series 
Techniques

Mo comes to the class today with exciting news: His boss is very happy 
with the results from our combined forecasting. Additionally, his company 
is going to open a new branch in the south side of the city. For  that 
reason, his boss asks him to extend the model to allow for forecasts for 
several periods so that they can stock up the inventory for the new branch. 
Ex tells us what one of his customers had asked him. “I heard that you are 
taking a forecasting class. Are you able to forecast your sales correctly?” 
For which Ex answered, “Sometimes yes, sometimes no, I guess that my 
forecasts are not always correct because there is a lot of uncertainty in 
the future.”

Dr. App assures us that this week we will discuss multiperiod forecast-
ing and interval forecasts, which address the future uncertainty. She says 
that after studying this chapter, we will be able to:

1.	Explain the concept of double moving averages (DMs).
2.	Explain the concept of double exponential smoothing (DE).
3.	Apply the concepts in (1) and (2) while calculating multiperiod 

forecasts.
4.	Obtain interval forecasts to account for the future uncertainty.

Dr. App informs the class that Dr. Theo is still on a sick leave, so she 
will start our new chapter.

Double Moving Average

As the name suggests, the DM technique calculates the MAs a second 
time. Dr. App notifies us that for notational simplicity, the first MA 
henceforth is notated as M ′ while the second MA is notated as M ″.
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Concept

In the DM technique, we have to calculate second MAs from the simple 
MAs and then combine with a trend equation to calculate the forecast 
values. Since we call the first MA M ′, Equation 2.1 becomes:

	
′ = = − +

∑
M

A

kt

i
i t k

t

1 	 (4.1)

and the equation for second MA, M ″, is

	
′′ =
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where the variable definitions are the same as those in Chapter 2 except 
for M ′ and M ″.

Theoretically, you can choose a different order for M ″. Empirically, 
the two MAs are almost always selected to have the same orders. Therefore, 
k is used solely to denote the order of both MAs in this textbook. 
For comparison, Dr. App extends the simple example in Chapter 2 with 
three additional periods. The new dataset is displayed in Table 4.1.

Table 4.1  Calculating M¢ and M≤

Period
Actual 
value M¢ M≤

1 20

2 30

3 40 (20 + 30 + 40)/3 = 30

4 35 (30 + 40 + 35)/3 = 35

5 40 (40 + 35 + 40)/3 = 38.33 (30 + 35 + 38.33)/3 = 34.44

6 50 (35 + 40 + 50)/3 = 41.67 (35 + 38.33 + 41.67)/3 = 38.33

7 60 (40+50+60)/3 = 50 (38.33 + 41.67 + 50)/3 = 43.33
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Dr. App asks Cita to go over the simple MA technique using the data 
in Table 4.1. She is able to provide the forecast value for period 6 as:

	 F6, MA = M ′5 = 38.33

Ex then volunteers to calculate the forecast error for this simple MA 
as follows:

	 The error f6, MA = A6 − F6 = 50 − 38.33 = 11.67	

We learn that the DM technique includes an equation for the trend 
Tt, which is written as:

	
T

k
M Mt t t=

−

′ − ′′
2

1
( ) 	 (4.3)

so T5 = [2/(3 − 1)] * (M5′ − M5″) = 1 * (38.33 − 34.44) = 3.89

At this point, Alte asks, “Dr. App, can you explain Equation 4.3 to us?”
Dr. App says, “Yes, I will explain it very soon, but I want you to have 

fun calculating the forecast value for period 6 with the DM technique 
first so that you can compare the forecast error of the F6, MA with that of 
the F6, DM. The equation for one-period forecasts using DM technique is:

	 Ft+1 = M ′t + (M ′t − M ″t ) + Tt	 (4.4)

where the term (M ′t − M ″t ) in (4.4) is the adjustment made by a fore-
caster upon learning of the error between the two MAs.”

Fligh volunteers to calculate the forecast for period 6 using 
Equation 4.4:

	 F6, DM = 38.33 + (38.33 − 34.44) + 3.89 * 1 = 46.11

Arti then calculates the forecast error as follows:

The error f6, DM = 50 − 46.11 = 3.89
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We all say “Wow, this forecast error is much smaller than that of the 
MA.” Clearly, the DM technique can produce a better forecast model 
than the MA does.

Dr. App emphasizes that multiperiod forecasts are made available by 
using a trend line. Hence, we will calculate forecasts for period 7 and 
beyond after she explains the trend equation.

Trend Line in DMs

The trend is the slope of a line by definition. In the DM technique, it is 
the change in MAs, ΔM, over one unit change in time, Δt:

	 Trend T M tt= = ∆ ∆/ 	 (4.5)

The problem is that when MAs are taken, the changes in time are often 
not one period, so an adjusting factor is needed. Figure 4.1 displays three 
groups: M′(3) and M″(3) in columns A through D, M′(4) and M″(4) in 
columns F through I, and M′(5) and M″(5) in columns K through N. 
We learn that all the data and commands for this chapter are available in 
the file Ch04.xls.

For heuristic purpose, Dr. App uses a dataset with small values so that 
we can practice using a handheld calculator. Moreover, the series of the 
actual values has a constant slope of 2 for easy comparison. For all MAs 
the change in M is shown as follows:

	 ΔM = M ′ − M ″

Figure 4.1  Changes in time when MAs are taken
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The change in time when k = 3 is exactly one period as shown in cells 
C5 and D6 with boldfaced numbers for easy recognition of the change. 
Hence, for the denominator of Equation 4.5, the time change is from 
period 4 to period 5, whereas the numerator is ΔM = 7 − 5 = 2. However,

	 k − 1 = 3 − 1 = 2

Thus, Δt = 1 = (k − 1)/2 = (3 − 1)/2.

Suppose you wish to use k = 5, then you are taking averages of a 
five-period subset and the change in time is two periods as shown in 
cells M8 and N10, again with boldfaced numbers to emphasize the time 
change from period 7 to period 9 while the numerator is:

	 ΔM = M ′ − M ″ = 13 − 9 = 4

and the denominator is:

	 Δt = 2 = (k − 1)/2 = (5 − 1)/2

When k = 4, as in columns F through I, it is a little more difficult to see 
because the interval falls between periods 5 and 6 where

	 (6 + 8)/2 = 7 = the value in cell I8.

This implies that the change in time is 1.5.
Since k = 4, we now have the denominator as

	 Δt = (k − 1)/2 = (4 − 1)/2 = 1.5

and the numerator is:

	 ΔM = M ′ − M ″ = 10 − 7 = 3.

Dr. App then says, “You should convince yourself when you get home 
that in any case, you always have Δt = (k − 1)/2 and that the trend equation is
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Therefore, Equation 4.3 holds and implies that the trend changes 
from one period to the next, as long as M ′ and M ″ can be calculated.”

We all understand the trend equation now and start to calculate 
forecasts for the next periods.

Multiperiod Forecasts

We realize that we have already calculated the value T5:

	 T5 = [2/(3 − 1)] * (M ′5 − M ″5) = 1 * (38.33 − 34.44) = 3.89

So we continue by calculating the next period trends:

	 T6 = 1 * (41.67 − 38.33) = 3.34

	 T7 = 1 * (50 − 43.33) = 6.67

Hence, forecast values for periods 7 and 8 are

	 F7, DM = M′6 + (M ′6 − M ″6) + T6 = 41.67 + (41.67 − 38.33) + 3.34 
	 = 48.35

	 F8, DM = M ′7 + (M ′7 − M ″7) + T7 = 50 + (50 − 43.33) + 6.67 = 63.34

Fin exclaims, “We have run out of trends already, T7 is the last one!”
Dr. App smiles, “Yes, that is true. However, the trend itself can 

be projected into the future. For any period beyond period 8, some 
researchers use the last trend value (T7 = 6.67 in the preceding example) 
multiplied by the number of periods ahead to be forecasted:

	 Ft+m = gt + Tt m,  gt = M′t + (M′t − M″t),	 (4.6)

where m is the number of periods ahead that have to be forecasted. Since 
T7 is the last trend available, we have to use T7 and g7  (= 50 + 50 − 43.33 
= 56.67) to calculate the forecast value for all later periods. For example,
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	 F9, DM = g7 + 2 * T7 = 56.67 + 2 * 6.67 = 70.01

	 F10, DM = g7 + 3 * T7 = 56.67 + 3 * 6.67 = 76.68

	 F11, DM = g7 + 4 * T7 = 56.67 + 4 * 6.67 = 83.35, and so on.	 (4.7)

However, the fact that you have many trend values also implies that 
you can utilize them to obtain a forecast series that mimics the market 
movement more closely. Here are two examples: (1) you can calculate the 
averages of all trend values and (2) you can calculate averages of the trend 
subgroups and then use them alternatively. In the preceding sample, 
if you calculate the average of all trend values, Ta, then

	 Ta = (3.89 + 3.34 + 6.67)/3 = 4.63

	 F9, DM = g7 + 2 * Ta = 56.67 + 2 * 4.63 = 65.93

	 F10, DM = g7 + 3 * Ta = 56.67 + 3 * 4.63 = 70.56

	 F11, DM = g7 + 4 * Ta = 56.67 + 4 * 4.63 = 75.19, and so on.	 (4.8)

If you calculate averages of the trend subgroups with a priority given 
to the current trend and use the results alternatively, then the trends 
could be

	 Ta1 = (3.89 + 6.67)/2 = 5.28

	 Ta2 = (3.34 + 6.67)/2 = 5.01

From Table 4.1, g6 = 41.67 + (41.67 − 38.33) = 45.01.
Hence, the forecasts will be

	 F9, DM = g6 + 3 * Ta1 = 45.01 + 3 * 5.28 = 60.85

	 F10, DM = g7 + 3 * Ta2 = 56.67 + 3 * 5.01 = 71.70

	 F11, DM = g6 + 5 * Ta1 = 45.01 + 5 * 5.28 = 71.41, and so on.	 (4.9)

In brief, adding the trends enables you to forecast multiple periods 
ahead.”
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We are relieved that we are not running out of trends. We then turn 
to applied exercises.

Excel Applications

Figure 4.2 displays the data from the file Ch04.xls, Fig.4.3. We proceed 
with the following steps:

Copy and paste the formula for simple MA in cell E4 into cells F6 
through F13

In cell G6, type = 2/(3 − 1) * (E6 − F6) and press Enter
Copy and paste the formula in cell G6 into cells G7 through G13
In cell H7, type = E6 + (E6 − F6) + G6 and press Enter
Copy and paste the formula in cell H7 into cells H8 through H14 to 

obtain Ft+1

Regarding forecast values for the next three periods, use the last trend value:

In cell H15 type = $E$13 + ($E$13 − $F$13) + C3 * $G$13 and 
press Enter

(the $ signs are used to keep the same values throughout the cells. 
Additionally, Cell C3 is used because it has number 2 that will 
change into 3 and 4 in lower cells)

Copy and paste the formula in cell H15 into cells H16 and H17

Figure 4.2  DM with alternative trends for multiple-period forecasts
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To use the average of all trend values:

In cell G14, calculate the average Ta using the average command 
learned in Chapter 2

In cell I15, type = $E$13 + ($E$13 − $F$13) + C3 * $G$14 and press 
Enter

Copy and paste the formula in cell I15 into cells I16 and I17

To use the two average trends alternatively:

In cell J12, type = (G11 + G13)/2 and press Enter
In cell J13, type = (G12 + G13)/2 and press Enter
In cell J15, type = E12 + (E12 − F12) + 3 * J12 and press Enter
Copy and paste the formula in cell J15 into cell J16
In cell J17, type = E12 + (E12 − F12) + 5 * J12 and press Enter

We then construct simple plots of these series against each other. 
Figure 4.3 displays these plots.

We notice that Ft+m(1) and Ft+m(2) only provide straight-line trends 
while Ft+m(3) mimics the small fluctuations of the actual series. All three 
approaches yield better results than those of simple MAs.

Ex says, “I think it is hard to tell which DM model is the best.” 
Dr. App replies, “That is true, so evaluations are needed. For this pur-
pose, using hold-out sample is the best strategy if the sample for actual 
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Figure 4.3  DM: plots of forecasts against actual demand
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demand is large enough to split the historical data.” With that comment, 
we proceed to experiment with the holdout sample technique.

Dr. App says, “Suppose that actual data from September 2014 
through June 2015 are available, we can then use data from 2011 through 
June 2014 for forecasting and hold data from September 2014 through 
June 2015 for evaluations and adjustments. This hypothetical case is 
illustrated in Figure 4.4, where we see that the third technique of alter-
nating the time trend mimic the actual data most closely.”

Dr. App then encourages us to experiment with longer-term alter-
natives when we get home, for example, by taking the average of a 
three-period trend and alternating it with another three-period trend.

Double Exponential Smoothing 

We learn that there are two approaches to DE: (1) Brown’s double 
exponential smoothing or Brown’s one-parameter double exponential 
smoothing, hereby called Brown’s DE, and (2) Holt’s two-parameter 
double exponential smoothing, hereby called Holt’s DE.

Brown’s DE

The Brown’s DE approach uses a single smoothing parameter, a, for both 
the smoothing and the trend equations (Brown 1963). To obtain Brown’s 
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Figure 4.4  Plots of forecasts against actual demand using holdout 
sample
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DE forecasts, we need to calculate the simple exponential smoothing (ES) 
(E ′), the second ES (E ″), and then add a trend equation. For all these 
calculations, the condition that 0 < a < 1 still holds.

First, we need to review the ES equation from Chapter 2. Cita 
volunteers to write it on the board. Arti says that she has read the section 
and volunteers to extend Cita’s equation to the following smoothing 
equations:

	
′ = + − = + − ′
′′ = ′ + − ′′

−

−

E aA a F aA a E
E aE a E

t t t t t

t t t

( ) ( )
( )
1 1
1

1

1
	 (4.10)

Fin says he has also read the section carefully and can provide the 
forecast equation as:

	 Ft+m = gt + Tt m

where	

	 gt = E′t + (E′t − E ″t)

T is the trend, which is written as

	 Tt = [a/(1 − a)] * (E ′t − E″t).	 (4.11)

Dr. App is very pleased with the class’ initiative for active learning. 
She then asks if anyone can provide a suggestion for the initial value E′ 
in Equation 4.10.

Rea says he believes the initial E ′ value can be calculated in multiple 
ways as discussed in the ES technique section in Chapter 2: (1) to take 
the average of a subset of the actual values, (2) to take the first value of 
the actual data, or (3) to follow Montgomery et al. (2008) and take the 
average of all values in the available data.

Dr. App praises him on his correct comment and says, “For simplicity 
we choose Rea’s option (2), E′1 = A1, and hence

	 E ″1 = E ′1 = A1 and g1 = A1	
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Also, we can choose T
a

a
E E1 1 11

0=
−

′ − ′′ =( )

Alternatively,	T
a

a
A A1 2 11

=
−

−( ) 	 (4.12)

We will now work on an example.” We see that Table 4.2 displays 
calculations and forecasts for the first five periods of the data in Table 4.1 
using the smoothing factor a = 0.5, E ′1 = A1, and T1 = 0. This demon-
stration can be followed using a handheld calculator. For simplicity, the 
calculations in this figure are rounded off to one decimal place.

Sol points out that the value in column (3) is only E ′, and the forecast 
value is in column (6), which is a good point as it reminds us that we are 
using DE instead of the ES technique.

Dr. App also mentions that it takes longer for the series to settle using 
DE but it will predict the market movements better than the ES thanks to 
the combination of the two ES calculations and the added trend.

We then move to Holt’s DE technique.

Holt’s DE

We learn that in Holt’s DE, two different smoothing parameters are used 
(Holt 1957). The first parameter, a, is used for the smoothing equation 
and can still be experimented with various factors between zero and one:

Table 4.2  Brown’s DE: calculating the forecast values using a = 0.5

(1) (2) (3) (4) (5) (6)

T At Et¢ E≤t Tt Ft+1

1 20 = A1 = 20 = A1 = 20 0.5/0.5 *  
(20 − 20) = 0

2 30 0.5 * 30 + 0.5 * 
20 = 25

0.5 * 25 + 0.5 * 
20 = 22.5

1 * (25 − 22.5) 
= 2.5

20 + 0 = 20

3 40 0.5 * 40 + 0.5 * 
25 = 32.5

0.5 * 32.5 + 0.5 
* 22.5 = 27.5

1 * (32.5 − 
27.5) = 5

25 + 25 − 22.5 
+ 2.5 = 30

4 35 0.5 * 35 + 0.5 * 
32.5 = 33.8

0.5 * 33.8 + 0.5 
* 27.5 = 30.7

1 * (33.8 − 
30.7) = 3.1

32.5 + 32.5 − 
27.5 + 5 = 42.5

5 40 33.8 + 33.8 − 
39.7 + 3.1 = 40
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	 Et = aAt + (1 − a) (Et −1 + Tt −1), where 0 < a < 1	 (4.13)

The second parameter, b, is used to smooth the trend Tt, which is 
calculated as:

	 Tt = b(Et − Et −1) + (1 − b) Tt −1, where 0 < b < 1	 (4.14)

Dr. App says that we can also try to use various factors for parameter b 
and that the equation for the multiperiod forecasts is quite simple:

	 Ft+m
 = Et + Tt m	 (4.15)

The initial value for T can be either of the following:

	 T A A1 2 1= − , or T
A A

n
n

1
1

1
=

−( )
−

,

where n is the number of the actual observations, or

	
T

A A A A
1

2 1 4 3

2
=

−( ) + −( )
, or

	
T

A A A A A A
1

2 1 3 2 4 3

3
=

−( ) + −( ) + −( )
.	 (4.16)

Dr. App then asks the class to make suggestions for the initial value 
of E. We all guess correctly that this initial value for E can be calculated 
following Rea’s suggestions in the section “Brown’s DE.”

To help us understand the concept, we study Table 4.3, which dis-
plays the same dataset from Table 4.2 and shows the steps to calculate 
Holt’s DE. Similar to the reports in Table 4.2, the calculations in this 
figure are also rounded off to one decimal place.

We work on the problem using a handheld calculator and applying 
Equation 4.15 with the two parameters specified as a = 0.5, b = 0.4, and 
E1 = A1. We notice again that the value in column (3) is only Et, and the 
forecast value is in column (5).

Dr. App says that Holt’s DE process takes even longer to settle due to 
its use of two different parameters.
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Cita raises her hand and asks, “Does that mean that Holt’s DE tech-
nique produces better results than Brown’s DE technique?” Dr. App 
responds, “No, it does not necessarily work that way. Evaluations and 
monitoring are crucial to find the best model with the smallest error 
measurements, as we learned in Chapter 3.”

She then asks the class to open the Excel file and go to the applied 
section.

Excel Applications

We find that Figure 4.5 displays the data and calculations from the file 
Ch04.xls, Fig.4.8, to obtain Brown’s DE forecasts using the smoothing 
factor a = 0.3 and E1 = A1. The following steps are needed for this exercise:

In cell E3, type = 0.3 * D3 + (1 − 0.3) * E2 and press Enter
Copy and paste the formula in cell E3 into cells E4 through E13 and 

F3 through F13
In cell G2, type = (0.3/0.7) * (E2 − F2) and press Enter
Copy and paste the formula in cell G2 into cells G3 through G13
In cell H3, type = E2 + (E2 − F2) + G2 and press Enter
Copy and paste the formula in cell H3 into cells H4 through H14 to 

obtain Ft+1

Table 4.3  Holt’s DE: calculating the forecast values using a = 0.5 
and b = 0.4

(1) (2) (3) (4) (5)

T A Et (a = 0.5) Tt (b = 0.4) Ft+1

1 20 = A1 = 20 [(30 − 20) +  
(35 − 40)]/2 = 2.5

2 30 0.5 * 30 + 0.5 *  
(20 + 2.5) = 26.3

0.4(26.3 − 20) + 0.6  
* 2.5 = 4

20 + 2.5 = 22.5

3 40 0.540 + 0.5 *  
(26.3 + 4) = 35.2

0.4(35.2 − 26.3) +  
0.6 * 4 = 6

26.3 + 4 = 30.3

4 35 0.5 * 35 + 0.5 *  
(35.2 + 6) = 38.1

0.4(38.1 − 35.2) +  
0.6 * 6 = 4.8

35.2 + 6 = 41.2

5 40 38.1 + 4.8 = 42.9
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To obtain Ft+m using the last period trend:

In cell H15, type =$E$13 + ($E$13 − $F$13) + C3 * $G$13 and 
press Enter

Copy and paste the formula in cell H15 into cells H16 and H17
For the average trend and the alternative trends, refer to the section on 

“Excel Applications” under “Double Moving Averages”

Suddenly, Arti exclaims, “Oh, how come the value in cell E3 of 
Figure 4.5 is different from that in cell E3 of Figure 2.6?”

We all look at the cells and see that she is correct.
Dr. App assures us, “Yes, the one in Figure 4.5 represents the term 

E ′2, which could be the forecast for period three (F3) if you use the ES 
technique whereas the one in Figure 2.6 represents the forecast for period 
two (F2). If you wish to scrutinize this point, you can compare the two 
figures and find that in Figure 4.5, the value in cell E3 is E ′2 = 8064, 
which equals the forecast for period three F3 = 8064 in Figure 2.6, using 
the same smoothing factor a = 0.3. The forecasts of Brown’s DE are in 
column H.” Now it is clear to us.

We then experiment with Holt’s DE using the smoothing factor 
a = 0.7, b = 0.4, and E1 = A1. Figure 4.6 displays the data from the file 

Figure 4.5  Brown’s DE with a = 0.3
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Ch04.xls, Fig.4.9, for this exercise. We learn that the following steps should 
be carried out:

In cell E3, type = 0.7 * D3 + (1 − 0.7) * E2 and press Enter
Copy and paste the formula in cell E3 into cells E4 through E13
In cell F2, type = ((D3 − D2) + (D5 − D4))/2 and press Enter
In cell F3, type = 0.4 * (E3 − E2) + (1 − 0.4) * F2 and press Enter
Copy and paste the formula in cell F3 into cells F4 through F13
In cell G3, type = E2 + F2 and press Enter
Copy and paste the formula in cell G3 into cells G4 through G14
The forecast value for period 13 is in cell G14

To obtain Ft+m using the last period trend:

In cell G15, type= $E$13 + C3 * $F$13 and press Enter
Copy and paste the formula in cell G15 into cells G16 and G17

Dr. App then says, “You can experiment with the average trend, the 
alternative trends, and various smoothing factors for Brown’s DE and 
Holt’s DE when you get home.”

Figure 4.6  Holt’s DE with a = 0.7 and b = 0.4
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We also chart the actual demand against Brown’s DE and Holt’s DE 
forecasts using the data from the file Ch04.xls, Fig.4.10, and display them 
in Figure 4.7.

Dr. App concludes this section by reminding us that the holdout sam-
ple is again an appropriate strategy for evaluations in these multiperiod 
forecasts. She also says that Dr. Theo has recovered from his flu and is very 
happy to return to the class to lead us into the following section.

Interval Forecasts

Dr. Theo says that we have only learned to make point forecasts, that is, 
one value for each period. We learn that a point forecast does not account 
for the inherent fluctuation in the market. Obtaining an interval forecast 
will allow us to state with a certain level of confidence that the actual 
value will likely fall between the upper and lower bounds of this range.

Concept

Alte gives us an example from her Alcorner store. She used to buy zippers 
from an online source on a weekly basis. Since the shipping takes two 
weeks to arrive, she had to place the order on a rolling scheme: the pack-
age needed for the third week has to be ordered by the first week of a 
month, the package needed for the fourth week has to be ordered by the 
second week, and so on. Last month, she read the section on multiperiod 
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Figure 4.7  DE: plots of the forecasts against actual demand
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forecasts and, based on her calculations, decided to place one large order 
of zippers for four weeks in place of her usual rolling scheme orders. 
However, by week four, she had run out of zippers and had to rush to a 
local store to buy them at twice the online cost. Hence, she guessed that 
the uncertainty is what she did not account for in her four-week forecast.

Dr. Theo thanks her for sharing her experience with us and says that 
she should have used interval forecasts instead of point forecasts for plac-
ing her orders. In Chapter 3, we learned that the mean absolute error 
(MAE) can be used to evaluate a forecast model. This same MAE can be 
used to construct an interval forecast. First, Equation 3.4 in Chapter 3 is 
for one-period MAE. For multiperiod forecasts, the uncertainty increases 
over time, so the simplest approximation is to adjust the MAE to MAEt+m:

	 MAE
A F

T mt m

t t
t

T

+
=≈

−

−

∑| |
1 	 (4.17)

where m is the number of periods ahead to be forecasted.
The standard error of the forecast, se(  f   )t+m, then can be written as:
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T
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To calculate interval forecasts, a Z-critical value of a normal distribu-
tion, Zc, which is similar to the one we learned in Chapter 3, is given so 
that:

	 P F Z se f A F Z se fc t m c t m− ≤ ≤ +[ ] = −+ +* ( ) * ( ) 1 a 	 (4.19)

The interval is called a 100(1 − α)% confidence interval. For example, 
if we choose α = 0.05, then the confidence interval is 95 percent, that is, 
we are 95 percent confident that the actual value will fall between the 
upper and lower bounds of the interval.

We then break into groups to work on the problem for Alte’s store. 
Alte tells us the four-week forecast for Alcorner is F = 50. We follow the 
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instruction in Chapter 3 and find that the sum of |At − Ft| is 96. Alte’s data 
contain 16 periods, but her forecast is four periods ahead, that is, m = 4. 
Thus, the standard error of the forecast for the fourth period is:

	 se f t( ) . *+ =
−

=4 1 25 96
16 4

10

We decide to choose α = 0.05. Similar to the procedure in Chapter 3, 
α/2 = 0.025, so a normal distribution table will give Zc = Z(0.975) = 1.96, 
and the 95 percent confidence interval forecast for Alte’s store is:

	 50 ± 1.96 * 10 = (30.4; 69.6) ≈ (30; 70)

Thus, we are 95 percent confident that the number of zippers needed 
for her store will be between 30 and 70. Alte is very happy. From now 
on, she will make sure to order 70 zippers instead of 50 for her four-week 
supply.

Dr. Theo is quite pleased and says that he will continue to guide us 
through the next section because the Excel application is simple.

Excel Application

The interval forecasts have a lower bound and an upper bound, so we 
need the regions for the two tails of a normal distribution. For example, 
if α = 0.05, then:

	 α/2 = 0.025, so 1 − α/2 = 0.975.

After that, all we have to do is to type in any cell

	 = NORMSINV(1 − α/2) and press Enter.

For example, type

	 = �NORMSINV(0.975) and press Enter. This yields 
95 percent Z-critical value = 1.9599 ≈ 1.96.
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Once the Z-critical is obtained, we can calculate the interval forecasts 
using the Excel mathematical operations introduced in Chapter 1.

Dr. Theo concludes the section by saying that this technique is the 
simplest one. In Chapters 5 and 6, we will learn more sophisticated 
techniques of calculating interval forecasts.

Exercises

1.	The file Maui.xls contains data on visitor arrivals at Maui in Hawaii. 
Perform the DM(4) procedure on an Excel spreadsheet with the last 
trend value as the long-term trend for Ft+m up to m = 4. Construct 
columns in Excel similar to the ones in Figure 4.2.

2.	Use the dataset Maui.xls to perform Brown’s DE procedure on an 
Excel spreadsheet with a = 0.7 and the long-term trend as an average 
of all previous trends for Ft+m up to m = 4. Construct columns in 
Excel similar to the ones in Figure 4.5.

3.	Use a handheld calculator to perform the DM(3) on the first six 
observations in the dataset Sales.xls. Organize the results into a table 
similar to the one in Table 4.1.

4.	Use a handheld calculator to perform Brown’s DE with a = 0.2 and 
then Holt’s DE with a = 0.2 and b = 0.7 on the first four observa-
tions in the dataset Sales.xls. Organize the results into tables similar 
to the ones in Tables 4.2 and 4.3.

5.	The file Electricity.xls contains data on demand for electricity in 
Hawaii. Perform Holt’s DE on an Excel spreadsheet with a = 0.3 
and b = 0.6 and with the last period trend as the long-term trend for 
Ft + m up to m = 4.

	 a.	Construct columns in Excel similar to the ones in Figure 4.6.
	 b.	Construct a 95 percent confidence interval for the three-period 

forecast (m = 3).



CHAPTER 5

Simple Linear Regressions

Rea tells the class a story about his Realmart Company. A customer asked 
him, “You provided me with numerous sale prices of the past and nothing 
else. Do you really believe that these past prices are the only factors that 
affect future prices in the real estate market?” Rea admitted that many 
other factors might affect consumer spending and the subsequent home 
prices, but he did not know how to incorporate these determinants into 
his analysis. He promised the customer that in three weeks he would find 
out how to account for these factors.

Ex says that he too heard that China’s yuan had appreciated 10 percent 
against the U.S. dollars from 2010 to 2013 before it tumbled 2 percent in 
2014. He wants to how this exchange rate fluctuation will affect China’s 
spending on the U.S. exports so that he can advice his boss.

Luckily, this week and next week we are going to learn one of the 
techniques used in associative relations—the linear regression analysis. 
Dr. Theo tells us that once we finish with this chapter, we will be able to:

1.	Explain the concept of an econometric model used in associative 
analyses.

2.	Develop models for simple linear regressions and discuss conditions 
for using them.

3.	Discuss the econometric forecasting approach using simple linear 
regressions.

4.	Analyze numerous methods of evaluations and adjustments in simple 
linear regressions.

5.	Perform regressions and obtain forecasts using Excel.
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Basic Concept

Chapters 5 and 6 depart from time series analyses to present one of the 
associative analyses, the linear regressions, in which the performance of 
a variable depends on other variables in addition to its past performance. 
A linear regression is performed on an econometric equation, which 
contains a dependent variable on the left-hand side and one or more 
explanatory variables on the right-hand side. Other types of associative 
analyses, the nonregression models, will be discussed in Chapters 8, 9, 
and 10.

Econometric Models

Dr. Theo says that an econometric model answers the question “by how 
much” whereas an economic model reflects general theory. For example, 
economic theory posits that personal consumption (CONS) depends on 
personal income:

	 CONS = a1 + a2 INCOME	 (5.1)

where a1 is a constant representing the average consumption by a person 
with no income, INCOME = 0, and a2 is the marginal propensity to 
consume, which is the change in consumption due to a unit change in 
personal income.

An econometric model is developed so that you can collect data and 
estimate the value of a’s:

	 CONS = a1 + a2 INCOME + e	 (5.2)

where a1 and a2 are the intercept and the slope of the regression line, 
respectively. The error term e captures the random component of CONS. 
We can generalize the model in Equation 5.2 to any variables:

	 y = a1 + a2 x + e	 (5.3)
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For cross-sectional data, the six classic assumptions for a simple linear 
regression are:

i.	The model is yi = a1 + a2 xi + ei

ii.	E(ei ) = E (  yi) = 0
iii.	Var(ei ) = Var(  yi) = s2

iv.	Cov(ei, ej ) = Cov(  yi, yj ) = 0 for i ≠ j
v.	xi is not random and must take at least two different values

vi.	ei ~ N(0, s2); yi ~ ([a1 + a2 xi ], s
2)

If assumptions (i) through (v) hold, then the Gauss–Markov theorem 
states that the simple linear regression will produce the best linear 
unbiased estimators (BLUE) using the least squares technique, which 
is also called the ordinary least squares (OLS) estimation. The OLS 
technique minimizes the sum of the squared errors to the regression line, 
hence the name least squares. If assumption (vi) holds, then test results are 
valid. In practice, assumption (vi) only needs to hold in approximation.

Under the central limit theorem, when the sample size is sufficiently 
large, the error terms and the OLS estimators have a distribution that 
approximates a normal distribution.

Cita then asks, “So how large is large enough?” Dr. Theo commends 
her on the question and says that the justification of sufficiently large is a 
matter of interpretation, but a cross sectional dataset of 30 observations 
or a time series dataset of 20 observations is usually considered sufficient.

For time-series data, assumptions (i), (ii), (iii), (iv), and (vi) are still 
applied except that the subscript i is changed to t, and the subscript j is 
changed to z. Assumption (v) changes to:

v.	yt and xt are stationary random variables, and et is independent of 
current, past, and future values of xt.

We learn that for Chapters 5 and 6, a stationary series is one that 
is neither explosive nor wandering aimlessly. More discussions on this 
concept will come in Chapter 7.
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Estimations

The simple linear regression is applied when y is a linear combination of 
the parameters in Equation 5.3. For example, the model y = a1 + a2 x

2 + e  
is considered linear because the squared term is not for parameters a1 
and a2. Thus, we can let w = x2 so that the model is y = a1 + a2 w + e. 
Similarly, the model y = a1 + a2 ln(x) + e is linear in logarithm if we set 
w = ln(x).

The estimated version of Equation 5.3 for a particular sample is:

	 y∧ i = â1 + â2 xi,  yi = y∧ i + êi = â1 + â2 xi + êi 	 (5.4)

Specific values for the parameters â1 and â2 are called point estimates 
of the OLS regressions, and the general estimators can be calculated as:
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,
 

and	  a y a x∧ ∧= −1 2 	 (5.5)

where x  and y  are the sample means of x and y, respectively.
For example, Table 5.1 displays a small dataset of three observations 

and the steps needed to calculate the numerator and denominator in the 
formula for â2.

Hence, â2 = 3/6 = 1/2 = 0.5, and â1 = 2 − (1/2) * 1 = 2 − (1/2) = 3/2 
= 1.5, so the equation for the regression line becomes

	 y∧ i = 1.5 + 0.5 xi	

Table 5.1  Calculating numerator and denominator in formula for â2

Variable x x y y (x - x)2 (x - x) (y - y)
2 1 2 2 (2 − 1)2 = 1 (1)(2 − 2) = 0

−1 1 1 2 (−1 − 1)2 = 4 (−2) (1 − 2) = 2

2 1 3 2 (2 − 1)2 = 1 (1)(3 − 2) = 1

where x = (2 − 1 
+ 2) /3;

y = (2 + 1  
+ 3)/3

( )x x− =∑ 2 6 ( )( )x x y y− − =∑ 3
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where 1.5 is the intercept and 0.5 is the slope of the line. Suppose y is 
weekly consumption and x is weekly income per person, and both are in 
hundreds of dollars. Then the results imply that:

i.	The weekly consumption of a person with no income is $150  
(= 1.5 * $100).

ii.	A $100 increase in weekly income raises consumption by $50  
(= 0.5 * $100).

To calculate interval estimates, a t-distribution for a sample of N 
observations is given as:

	
t

a a
se a

tk k

k
N=

−∧

∧ −( )
~ ( )2  for k = 1 or 2 in simple regression

where
N − 2 = the degrees of freedom (df ) for the simple linear regressions

	 âk = the coefficient (parameters) to be estimated
se(âk) = the standard error of the coefficient estimate.

Using the same procedure learned in Chapter 4 for interval forecasts, 
we have

	 P a t se a a a t se ak c k k k c k[ * ( ) * ( )]∧ ∧ ∧ ∧− ≤ ≤ + = −1 a 	 (5.6)

Equation 5.6 provides a formula for calculating an interval estimator of ak.
For example, suppose the sample size is N = 32 (df = 30), â2 = 0.5, 

and se (â2)= 0.2.
For a 95 percent confidence interval, α = 0.05, so α/2 = 0.025, and 

typing = TINV(0.05, 30) into any Excel yields tc = t(0.975, 30) = 2.042. 
Hence, the interval estimate for a2 is:

	 0.5 ± 2.042 * 0.2 = (0.0916; 0.9084).

Predictions and Forecasts

Predictions

Predictions are used only when cross-sectional data are available and so 
we can only make predictions for the near future. For example, if the 
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data in Table 5.1 are cross sectional, the prediction for y when x = 4 (in 
hundreds of dollars) can be calculated using Equation 5.4:

	 y∧ = 1.5 + 0.5 * 4 = 1.5 + 2 = 3.5 ($ hundreds) = $350.

Thus, a person with a weekly income of $400 will spend $350 on average.
Interval prediction accounts for any uncertainty in the future. Let y∧1 = 

â1 + â2 x1, then the standard error of the forecast se(  f ) can be approximated 
as in Kmenta (2000):
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x x

x x
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where
	 s = the standard error of the regression.
SSE = the sum of the squared errors (called the residuals in Excel).

The interval prediction is calculated in similar manner as in 
Equation 5.6:

	 P t se f y t se fc c[ ( ) ( )]y y∧ ∧− ≤ ≤ + = −1 1 1 1 a 	 (5.8)

For example, if se( f  ) = 0.1, N = 32, and α = 0.05, then tc = 2.042, so the 
prediction for weekly consumption is:

	 3.5 ± 2.042 * 0.1 = (3.2958; 3.7042) = ($329.58; $370.42)

Therefore, we predict with 95 percent confidence that a person with 
a weekly income of $400 will spend between $329.58 and $370.42 
weekly.

Forecasts

For time series data, we can write the model with two different periods:

	 yt = a1 + a2 xt−1 + et	 (5.9)
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Multiperiod forecasts can be performed if x’s are known for more than 
one period ahead. For example, if the data in Table 5.1 are time series, 
and x’s are known with xt = 2 while xt+1 = −1, then the forecasts for y are:

	 yt+1 = 1.5 + 0.5 * 2 = 2.5

	 yt+2 = 1.5 + 0.5 * (−1) = 1

Dr. Theo tells us that if the future values of x’s are unknown, one of 
the techniques from the previous chapters can be used. This is a forecast 
of forecast technique, where the independent variable has been forecasted 
before the dependent variable is forecasted. For example, if x’s in Table 5.1 
are xt–2 = 2, xt–1 = −1, and xt = 2, then MA(3) can be calculated to obtain 
xt+1 = (2 − 1 + 2)/3 = 1, and the forecasts for y are:

	 yt+1 = 1.5 + 0.5 * 2 = 2.5

	 yt+2 = 1.5 + 0.5 * 1 = 2

We learn that one-period interval forecasts can be calculated using 
Equation 5.8, adapted for time series data with the estimated equation  
y∧ t+1 = â1 + â2 xt and N = T (Pindyck and Rubinfeld 1998). For multiperiod 
forecast, he says that the simplest way to obtain an approximation of 
Equation 5.7 is:
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(5.10)

Dr. Theo also tells us that Dr. App is away at a conference, so he will 
work with us in the following section.

Excel Applications

Cross-Sectional Data

Rea has collected data on personal income (INCOME) and residential- 
property investment (INV) for 50 states in the United States and 
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Washington, DC, in 2012. He tells us that the dataset is too large to dis-
play but is available in the file Ch05.xls, Fig.5.2 and Fig.5.3, and that the 
units are in thousands of dollars. We open the data and follow these steps 
to perform a regression of INV on INCOME (i.e., INV and INCOME 
are the dependent and independent variables, respectively):

Click on Data and then Data Analysis on the Ribbon
Select Regression in the list instead of Descriptive Statistics and click OK
A dialog box will appear as shown in Figure 5.1
In the Input Y Range box, enter B1:B52
In the Input X Range box, enter C1:C52
Choose Labels and Residuals
Check the Output Range button and enter F1
Click OK. Another dialogue box will appear
Click OK to overwrite the data and obtain the regression results

The Excel Summary Output (henceforth called the results) is displayed 
in Figure 5.2.

Figure 5.1  Performing regression: commands in dialog box
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From these results, the estimated equation can be written as:

	 INVi = –3613 + 0.136 INCOMEi

To calculate the prediction value for INV in 2013, we need to sub-
stitute a particular value of INCOME into this equation. It turns out 
that Excel automatically calculates predicted values and reports them next 
to the residuals. For example, you can find the predicted INV for Con-
necticut in cell G25 of the data file, which is 26419.19 (in thousands of 
dollars) = $26,419,190. Note that Excel also reports the upper and lower 
95 percent bounds for the coefficient estimates in cells G14 through H15. 
Commands for interval forecasts will be provided in the following section.

Time-Series Data

Ex has collected data on China–United States real exchange rate (EXCHA) 
and exports from the United States to China (EXPS) in millions of dollars 
for the period 1981–2012 from the International Monetary Fund (IMF) 
website. The hypothesis is that the exchange rate affects exports, so we 
regress EXPSt on EXCHAt–1 using the data in the file Ch05.xls, Fig.5.4:

Click on Data and then Data Analysis on the Ribbon
Select Regression in the list and click OK
A dialog box will appear

Figure 5.2  Cross-sectional data: simple linear regression results

Data Source: Bureau of Economic Analysis.com (2014).
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In the Input Y Range box, enter B1:B33
In the Input X Range box, enter C1:C33
Choose Labels and Residuals
Check the Output Range button and enter P1
Click OK, and a dialogue box will appear. Click OK to overwrite the 

data

The results of the estimated coefficients are displayed in Figure 5.3.
In the data file, the forecast value of EXPS2013 is in cell Q56. The value 

can be verified by the following equation:

	 EXPS2013 = −9929.6148 + 4807.4210 EXCHA2012

	  = −9929.6148 + 4807.4210 * 6.98 

	 ≈ 23,626 (in millions of dollars).

Obtaining Interval Forecasts

To obtain the interval forecasts for this series:

In cell B36, type = TINV(0.05,30) and press Enter
(this is the 95 percent t-critical value, which is 2.042)
Copy the Predicted EXPS and the Residuals in cells Q25 through R56
Paste these values into cells D3 through E34

Figure 5.3  Time series data: simple linear regression results

Data Source: IMF.com: IMF Data and Statistics (2014).
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In cell F3, type = E3^2 and press Enter (this is the squared error)
Copy and paste this formula into cells F4 through F34
In cell F35, type = SUM(F3:F34), then press Enter (this is the sum of 

the squared errors)
In cell F36 type = F35/(32 – 2) and press Enter
(This is s2, we will take the square-root of it in cell L3 later)
Copy and paste-special the value in cell F36 into cells G3 through 

G34
In C34, type = AVERAGE(C2:C33), then press Enter (this is the aver-

age of x, called xbar)
Copy and paste-special the value in cell C34 into cells H3 through 

H34
In cell I3, type = (C2 – H3)^2 and press Enter (this is [xt – xbar]2)
Copy and paste the formula in cell I3 into cells I4 through I34
In cell I35, type =SUM(I3:I34), then press Enter (this is the sum of 

[xt – xbar]2)
Copy and paste-special the value in cell I35 into cells J3 through J34
(This is the sum of [xt – xbar]2 for all cells in question)
In cell K3, type = G3 * (1+(1/32) + (I4/J3)), then press Enter (this is 

var[ f  ])
In cell L3, type =K3^0.5 and press Enter (this is se[ f ])
Copy and paste the formulas in cell K3 and L3 into cells K4 through 

L34
In cell M3, type =D3 − 2.042 * L3, then press Enter (this is the lower 

95 percent bound)
In cell N3, type =D3 + 2.042 * L3, then press Enter (this is the upper 

95 percent bound)
Copy and paste the formulas in cell M3 and N3 into cells M4 through 

N34
These are the lower 95 percent and upper 95 percent bounds for all 

forecast values

The interval forecasts for 2013 are displayed in cell M34 and N34, 
which are:

(Lower 95 percent bound: −42,295.11; and upper 95 percent bound: 
89,547.48)
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Since export values are nonnegative, the interval should be rewritten as:
(Lower 95 percent bound: 0; and upper 95 percent bound: 89,547.48), 

or
Interval forecast2013 = (0; 89,547.48)
Alternatively, you can take the standard error of the regression (s) 

from cell C6 in Figure 5.3 or from cell Q7 in the file Ch05.xls, Fig.5.4.

Evaluations and Adjustments

We learn that the evaluation methods in linear regression are quite 
different from the time series analyses. First, we have to perform tests to 
see whether or not the estimated coefficients are statistically significant 
or have the expected values. We then have to perform tests on several 
common problems encountered in econometric forecasting concerning 
the errors. Dr. Theo reminds us that under the central limit theorem, 
when the sample size is sufficiently large, the errors and the OLS 
estimators have a distribution that approximates a normal distribution; 
so test results are valid.

Testing Estimated Coefficients

To verify the statistical significance or the expected values of estimated 
coefficients, t-tests are performed.

Procedure

i.	State the hypotheses
H0: ak = c where c is a constant, which is our conjecture
Ha: ak > c, or Ha: ak < c, or Ha: ak ≠ c.

ii.	The test statistic

	 t t
a c
se a

tk

k
NSTAT = =

−∧

∧ −( )
~ ( )2  for k = 1 or 2 in simple regression.  (5.11)

iii.	The rejection region: the critical t-value shows the boundary of this 
region. The significance levels of the test are often at 1, 5, or 10 percent.

iv.	Decision: If the t-statistic value falls into one of the two rejection 
regions, then we reject the null hypothesis. Otherwise, we do not 
reject the null.
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A test with the null hypothesis (H0) stated as a2 = 0 is called a test 
of significance because if a2 is zero, there is no significant relationship 
between the dependent and independent variables, so the latter does not 
help in predicting the former.

Examples of t-Tests

Arti offers an example: Yesterday she performed a regression using data 
for a class of 40 students at her school. The dependent variable is their 
spending on music lessons (SPEND), and the independent variable is 
their income (INCOME). She found the following relationship between 
the two: SPEND = 0.10 * INCOME, and se (â2) = 0.02. Dr. Theo wants 
us to test the significance of the slope, that is, whether or not the slope is 
zero against the alternative hypothesis that the slope is positive. We find 
that the degrees of freedom is N − 2 = 38, and we need to perform the 
tests in the four standard steps as follows.

Right-Tail Test (>):  we want to test the alternative hypothesis a2 > 0.
i.	H0: a2 = 0; Ha: a2 > 0

ii.	tSTAT = t(N-2) = (0.10 − 0)/0.02 = 5
iii.	We decide to choose a = 0.05, so tc = t(0.95, 38) = 1.686 from a t-table.

Dr. Theo says that Excel always reports a two-tail critical value, 
so to find t-critical for one tail test, type into any cell = TINV(2a, 
df ), then press Enter.

For example, type = TINV(0.10, 38) and press Enter, this yields 
1.68595 ≈ 1.69.

iv.	 Decision: Since t(N-2) > t(0.95, 38), we reject the null, meaning a2 > 0, 
and implying that the students’ income has a positive effect on their 
music-lesson expenditures.

Left-Tail Test (<):  Dr. Theo wants us to test the alternative hypothesis 
a2 < 0.14

i.	H0: a2 = 0.14; Ha: a2 < 0.14
ii.	tSTAT = t(N-2) = (0.10 – 0.14)/0.02 = −2.0

iii.	We continue to choose a = 0.05, so tc = t(0.95, 38)  =  1.686, and  
–tc = −1.686.
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iv.	Decision: tSTAT < −tc, so we reject the null, meaning a2 < 0.14 and 
implying that the students tend to spend less than 14 percent of their 
rising income on music lessons.

Two-Tail Test:  This time, Sol wants to test the alternative a2 ≠ 0, and 
Dr. Theo agrees.
	 i.	H0: a2 = 0; H1: a2 ≠ 0
	 ii.	tSTAT = t(N-2) = (0.10 – 0)/0.02 = 5
	 iii.	Since this is a two-tail test, Dr. Theo reminds us to use a/2 = 0.025, 

and so tc = t(0.975, 38)= 2.024
For a two-tail test, we have to type into any cell = TINV(a, df ).
Hence, we type = TINV(0.05, 38), then press Enter. Excel gives 

us 2.02439.
	 iv.	Decision: Since tSTAT > tc, we reject once more the null, meaning a2 ≠ 0  

and implying that the students’ income helps in predicting their 
music-lesson expenditures.

Error Diagnostics

Dr. Theo then discusses two common problems with the errors. The first is 
heteroskedasticity, which can occur with either cross-sectional or time-series 
data. The second is autocorrelation, which is a specific problem in time-se-
ries regressions. We find that the two problems have the same consequences:

i.	The OLS estimators are no longer the BLUE.
ii.	The standard errors are incorrect, so statistical inferences are not reliable.

Heteroskedasticity

This problem refers to the violation of the classic assumption (iii), which 
states that the variance of the errors is a constant. Errors exhibiting chang-
ing variance are said to be heteroskedastic. To see the problem, we all look 
at the original equation:

	 yi = a1 + a2 xi + ei	 (5.12)
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Dr. Theo reminds us that we need to obtain var( )ei = s 2. If var( )ei i= s 2 
(note the subscript i), the dispersion changes when the identity changes, 
and we have a heteroskedasticity problem.

For example, if s si ix2 2= , where s2 = 150, and the variable xi 
changes from $100 to $144, then s s1

2 2
1 150 10 1500= = =x * ,  

but s s2
2 2

2 150 12 1800= = =x * . Thus, the variance is no longer a 
constant. The same problem could occur with time-series data.

To this point, Fin says, “Oh yes, suppose we want to perform a regres-
sion of food expenditures on food prices, then the variance of the errors 
might change if it depends on the prices.”

Dr. Theo praises him and says that to detect heteroskedasticity, a 
Lagrange Multiplier (LM) test is usually performed (testing a variance 
function). Theoretically, given the model Equation 5.12, we hypothesize 
that the variance is a function of a variable w:

	 var( ) ( ) ( )e E e f c c wi i i= = = +s 2 2
1 2 	

If only c1 is significant, then c2 is zero, and var(e) is a constant, so the 
hypotheses are:

	 H0: c2 = 0; Ha: c2 ≠ 0

There are several LM tests. We are only required to learn the White 
version, which let w = x and uses the chi-squared distribution, c( )K −1

2
, 

where K is the number of estimated coefficients (parameters) and (K − 1) 
is the degree of freedom (df ). To perform this LM test, we need to:

Estimate the original equation: yi = a1 + a2 xi + ei

Obtain e∧i and generate e∧i
2 then estimate the variance function:

	 e∧ = + +i i ic c x v2
1 2 	 (5.13)

Using the same four-step procedure for any test:

i.	H0: c2 = 0; Ha: c2 ≠ 0
ii.	Calculate LMSTAT = N * R2
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iii.	Find c cc K
2

1
2= −( ) using either a chi-square distribution table or Excel

iv.	If LMSTAT LMSTAT c> c 2, we reject the null hypothesis, meaning c2 is different 
from zero and implying that the heteroskedasticity exists.

For example, estimating e∧ = + +i i ic c x v2
1 2  yields R2 = 0.32, N = 40, 

so LMSTAT = 40 * 0.32 = 12.8. The 5 percent critical value of c( )2 1
2

−  is 
3.84. Hence, we reject the null, meaning that c2 is different from zero and 
implying that the data has a heteroskedasticity problem.

We learn that to find critical values of chi-squared distribution in 
Excel, we need to type in any Excel cell = CHIINV(a, df ). For example, 
type = CHIINV(0.05,1) and press Enter. This yields 3.8415 ≈ 3.84.

Autocorrelation

This problem is also called serial correlation and occurs when the classic 
assumption (iv) for time series, Cov(et, ez) = 0 for t ≠ z, is violated. The 
common form of autocorrelation is:

	 yt = a1 + a2 xt−1 + et  and  et = r et−1 + vt, so:	 (5.14)

	 yt = a1 + a2 xt−1 + r et−1 + vt	 (5.15)

For the LM test on autocorrelation, we use e∧ −t 1  and v∧t  from Equation 
(5.14):

	 yt = a1 + a2 xt−1 + r e∧ −t 1  + v∧t , but

	 yt = â1 + â2 xt−1 + et
∧  so

	 â1 + â2 xt−1 + et
∧ = a1 + a2 xt−1 + r e∧ −t 1  + v∧t

	 et
∧  = (a1 – â1)+ (a2 – â2) xt−1 + r e∧ −t 1  + v∧t

	 et
∧ = c1+ c2 xt−1 + r e∧ −t 1  + v∧t ,	 (5.16)

where 

	 c1 = a1 – â1, and c2 = a2 – â2
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Hence, to perform the LM test, we need to:
Estimate the original equation: yt = a1 + a2 xt–1 + et

Obtain et
∧  and generate e∧ −t 1  

Estimate Equation 5.16 and obtain R2 for the four-step LM test:

i.	H0: r = 0; Ha: r ≠ 0
ii.	Calculate LMSTAT = T * R2

iii.	Find c cc
2 2= ( )J using either a chi-square distribution table or Excel.

J is the degree of freedom and equals the number of restric-
tions, in this case J = 1 because we only have to test et−1.

iv.	If LMSTAT LM cSTAT > c 2, we reject the null hypothesis, meaning r is different 
from zero and implying that autocorrelation exists.

Next, we work on an example: Suppose estimating model 
Equation 5.16 yields R2 = 0.26, and the sample size T = 35, then LMSTAT =  
35 * 0.26 = 9.1. In this case, J = 1, and c( ) . .1

2 3 84=  Since LMSTAT > c( )1
2 ,  

we reject the null, meaning r ≠ 0 and implying that the autocorrelation 
exists.

Adjustments

An Insignificant Coefficient

If a t-test reveals that a2 is not significantly different from zero, then x does 
not help predict y, so the original model needs adjustments. First, a new 
independent variable similar to the original might be chosen. For exam-
ple, if you regress labor productivity on high-school enrollments and find 
that a2 is statistically insignificant, you might want to replace the dataset 
on enrollments with a dataset on labor force with high-school education.

Second, you can transform the original model to a new model by 
changing x to x′, for example, x′ = x2, or x′ = ln(x), or also change y to y′ = 
ln(y). When both y and x are changed to logarithmic form, the model is 
called a log–log model. The advantage of using the log–log model is three-
fold. First, it allows the use of a linear regression technique on a nonlinear 
model, which might help in predicting the nonlinear trend of the series. 
Second, it reduces the volatility of the data, especially in a time series. 
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Finally, a2 becomes the elasticity of y with respect to x. Elasticity is a useful 
forecast approach in business as discussed in Froeb and McCann (2010).

To this point, Alte offers an example of using elasticity in forecasting: 
Her Alcorner store is located next to a hair-style service on a university 
campus. She heard that there will be a 1 percent increase in faculty salary 
this year. She has read this chapter and decided to estimate a model relat-
ing logarithm of spending on hair-style service (HAIR) to logarithm of 
income (INCOME). Her regression results are:

	 ln(HAIR)t = 0.2 + 0.2 ln(INCOME)t–1

Thus, she was able to predict that this 1 percent rise in income 
will increase spending on hair styling by 0.2 percent. She advised the 
hair-styling owner to stock up his inventory, and he was very grateful.

Forecasting with Heteroskedasticity

We learn that the generalized least squares (GLS) instead of OLS esti-
mators are often used to correct for heteroskedasticity. There are several 
approaches to GLS estimations. The simplest one is to divide both sides 
of Equation 5.12 by xi :

	
′ = ′ = ′ = ′ =y

y
x

x
x

x
x
x

e
e
xi

i

i
i

i
i

i

i
i

i

i
; ; ; .1 2

1 	 (5.17)

Regress the transformed equation:

	 ′ = ′ + ′ + ′y a x a x ei i i i1 1 2 2 	 (5.18)

Note that the model no longer has a constant because ′xi1 changes 
with each observation. The problem is solved because var(e′i) = 
 

var(e ) var var( ) .′ =








 = = =

i
i

i i
i

i
i

e
x x

e
x

x
1 1 2 2s s

The predicted values are for y′, so we need to multiply y∧′ by xi  to 
obtain y∧ for forecasts. The interval forecasts then can be calculated as 
usual. Dr. Theo advises us that sometimes transforming the model by xi  



	 SIMPLE LINEAR REGRESSIONS	 103

alone is not enough. In that case, we can transform the model once more 
by dividing both sides of the model by s∧  so that

	 var(e ) var var( )′ = 





= = =i
i

i
e

e
s s s

s1 1 12 2
2 (a constant).

Forecasting with Autocorrelation

We also learn that we should use GLS estimators to obtain corrected 
coefficient estimates when an autocorrelation problem exists. Given:

	 yt = a1 + a2 xt–1 + et  and et = r et–1 + vt, so:	

	 yt = a1 + a2 xt + r et–1 + vt	

Retrogress one period: yt–1 = a1 + a2 xt–1 + et–1, so: et–1 = yt–1 − a1 − a2 xt–1 	

	 yt = a1 + a2 xt + r (yt–1 − a1 − a2 xt–1) + vt

	 = a1 + a2 xt + r yt–1 − ra1 − ra2 xt–1 + vt	

	 yt = a1 (1 − r) + a2 xt + r yt–1 − a2r xt–1 + vt

	 yt − r yt–1 = a1 (1 − r) + a2 (xt − r xt–1) + vt.

Hence,

	
′ = ′ + ′ +y a x a x v

t t t t1 1 2 2 ,

where

	 ′yt  = yt – r yt–1, ′ = − ′ = − −x r x x rxt t t t1 2 11 , 	 (5.19)

Note again that the model no longer has a constant because ′xt1 
changes over time. Estimating model Equation 5.19 will yield a BLUE 
estimator because the troublesome error, e, is substituted. Empirically, r 
is nonexistent, and we need the estimated autocorrelation coefficient of 
the errors r∧k:

	 r e e e∧ ∧ ∧ ∧= −
= + =
∑ ∑k t t k

t k

T

t
t

T
( ) /

1

2

1

; for k =1, r e e e∧ ∧ ∧ ∧= −
= =
∑ ∑1 1

2

2

1
( ) /t t
t

T

t
t

T
	 (5.20)
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The predicted values are for ′yt  = yt − r yt–1, so we need to calcu-
late y y r∧ ∧ ∧= + −t t ty 1, where yt–1 is the actual value of y at period (t − 1). 
The forecast values are then calculated and the interval forecasts can be 
obtained as usual.

Other Measures

p-Value

A probability value is abbreviated as a p-value and indicates the probabil-
ity that a random variable falls into the rejection region. For example, a 
p-value = 0.02 implies that we reject the null at a 2 percent significance 
level (between 1 percent and 5 percent significance levels).

We find that most econometric software, including Excel, report 
p-values. This is great news because we can look at p-values of the esti-
mated coefficients and avoid looking at the t-table or calculating t-critical 
values. We learn that we can reject the null if the p-value ≤ a. For example, 
if we choose a = 0.05, then we reject the null if the p-value ≤ 0.05. These 
are commonly used values for a test of significance:

If the p-value ≤ 0.01:	� the estimated coefficient 
is highly significant

If 0.01 < the p-value ≤ 0.05:	 the estimated coefficient is significant
If 0.05 < the p-value ≤ 0.10:	� the estimated coefficient 

is weakly significant
If the p-value > 0.10:	� the estimated coefficient  

is insignificant
Dr. Theo tells us to look at Figure 5.2 so that we can see how easy it is 

to interpret p-values: The estimated coefficient of the intercept is weakly 
significant (with p-value = 0.08) whereas that of INCOME is highly 
significant (with p-value = 7.25 * 10−32). In Figure 5.3, the estimated 
coefficient of the intercept is insignificant (with p-value = 0.53) whereas 
that of EXCHAt–1 is significant (with p-value = 0.035).

R-squared (R2)

An R2 value measures the model goodness-of-fit. Given an estimation 
equation, y = b1 + b2 x + e, we want to know how much the variation in y 
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can be explained by the variation in x. In the section “Basic Concept” of 
this chapter, we have:

	 y y y yi i i i i i= + → − = − +∧ ∧ ∧ ∧y e y e

Hence, we can write ( ) ( )y y yi i i− == − +∑ ∑ ∑∧ ∧2 2 2y e ,   (5.21)
where

( )y yi −∑ 2 	 = the total sum of squares (SST)
( )y∧ −∑ i y 2 	 = the sum of squares of the regression (SSR)

	 e∧∑ i
2 	 = the sum of squared errors (SSE)

R2 is the coefficient of determination and is defined as:

	 R2 1= = −SSR
SST

SSE
SST

	 (5.22)

A model is a perfect fit if R2 = 1. In reality, 0 < R2 < 1 and is reported 
by all econometric packages. For example, in Figure 5.2, R2 = 0.94, 
which is a very good fit and implies that 94 percent of the variation in 
residential-property investment can be explained by personal income. 
In Figure 5.3, R2 = 0.14, which is not a very good fit and implies that only 
14 percent of the variation in exports from the United States to China is 
explained by the exchange rate between the two countries.

Dr. Theo points out that Excel reports all three measures, SSR, SSE, 
and SST, in its summary output, with the error called as Residual in 
Excel. For example, in Figure 5.3, they are in cells D10, D11, and D12, 
respectively. We are happy to hear that R-squared is always reported by all 
econometric packages, so we will not have to calculate it.

Standard Errors

Dr. Theo reminds us that two standard errors are introduced in the 
section “Predictions” of this chapter. The first is the standard error of 
the forecast, se( f ), and the second is the standard error of the regression, 
(s). Holding other factors constant, the smaller these values become, the 
better it is for the fitness of the regression and the forecasts. The standard 
error of the regression is conveniently reported in most econometric 
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software. The  se( f ) can be calculated as discussed in the section “Excel 
Applications” under “Predictions and Forecasts.”

To conclude the section, Dr. Theo tells us that several measures in 
Chapter 3, such as MAE and RMSE, can be used to evaluate models in 
Chapters 5 and 6 as well.

Excel Applications

Dr. App has just returned from her conference and will work with us in 
this section.

Testing Heteroskedasticity

The yearly data on per capita income and consumption are from the 
U.S. Bureau of Economic Analysis and are available in the file Ch05.xls, 
Fig.5.5. First, we regress CONS on INCOME:

Click on Data and then Data Analysis on the Ribbon
Select Regression and click OK
In the Input Y Range box, enter B1:B34
In the Input X Range box, enter A1:A34
Choose Labels and Residuals
Check the Output Range button and enter F1
Click OK and then OK again to override the data range
Copy and paste the residuals (e) from cells H24 through H57 into cells 

C1 through C34
Generate e-squared (e2) by typing = C2(^2) into cell D2, then press 

Enter
Copy and paste this formula into cells D3 through D34

Next, we need to regress e2 on INCOME:

Click on Data and then Data Analysis on the Ribbon
Select Regression and click OK
In the Input Y Range box, enter D1:D34
In the Input X Range box, enter A1:A34
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Choose Labels
Check the Output Range button and enter P1
Click OK and then OK again to override the data range

Figure 5.4 shows a section of the second regression with the number 
of observations and R2.

From this figure, N = 33 and R2 = 0.4389, so LMSTAT = 33 * 0.4389 
= 14.48.

Typing =CHIINV(0.05,1) into any cell gives you c c
2
 = c( )2 1

2
−  = 3.84.

Since LMSTAT > c c
2, we reject the null hypothesis.

Testing Autocorrelation

The same yearly data on per capita income and consumption are used for 
this test and are available in the file Ch5.xls, Fig.5.6.

First, we regress CONS on INCOME:

Click on Data and then Data Analysis on the Ribbon
Select Regression and click OK
In the Input Y Range box, enter B1:B34
In the Input X Range box, enter A1:A34
Choose Labels and Residuals
Check the Output Range button and enter G1
Click OK and then OK again to override the data range
Copy and paste the residuals (e) from cells I24 through I57 into cells 

C1 through C34
Generate e(t–1) by copy and paste cells C2 through C34 into cells D3 

through D35
Copy and paste INCOME in column A into column E

Figure 5.4  Sections of regression results for heteroskedasticity test
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Next, we regress the Residuals (e) on e(t–1) and INCOME:

Click on Data and then Data Analysis on the Ribbon
Select Regression and click OK
For Input Y Range, enter B3:B34
For Input X Range, enter D3:E34
Uncheck the box Labels, that is, do not use Labels
Check the Output Range button and enter Q1
Click OK and then OK again to override the data range

Figure 5.5 shows a section of this second regression with the number of 
observations and R2.

From this figure, T = 32 and R2 = 0.7175, so LMSTAT = 32 * 0.7175 
= 22.96.

Typing =CHIINV(0.05,1) into any cell gives you c c
2 = c( )1

2  = 3.84.
Since LMSTAT > c c

2, we reject the null hypothesis.

Forecasting with Heteroskedasticity

The yearly data on per capita income and consumption are used again 
in this demonstration and are available in the file Ch05.xls, Fig.5.7. 
We learn to perform the following steps:

In cell C2, type = A2^(1/2), then press Enter (this is INCOME1/2)
Copy and paste the formula into cells C3 through C34
In cell D2, type = B2/C2 (this is CONS′)
Copy and paste the formula into cells D3 through D34
In cell E2, type = 1/C2 (this is X1′)
Copy and paste the formula into cells E3 through E34
In cell F2, type = A2/C2 (this is INCOME′)
Copy and paste the formula into cells F3 through F34

Figure 5.5  Sections of regression results for autocorrelation test
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Next, we need to regress CONS′ on X1′ and INCOME′:

Go to Data Analysis and choose Regression
In the Input Y Range box, enter D1:D34
In the Input X Range box, enter E1:F34
Check the box Labels, Constant is Zero, and Residuals
(Note: Make sure that you check the box Constant is Zero, because the 

model no longer has a constant.)
Check the Output Range button and enter J1
Click OK and then OK again to obtain the regression results

The regression results are displayed in Figure 5.6. From this figure, the 
estimated equation is:

	 CONS′t = 1381 X1′t + 0.044 INCOME′t 	 (5.23)

Because CONS′ = CONS/(INCOME)1/2, to obtain predicted values 
of CONS:

Copy and paste the values in cells K25 through K58 into cells G1 
through G34

In cell H2, type = G2 * C2, then press Enter (this is CONS = [CONS′] 
* [INCOME]1/2)

Copy and paste the formula into cells H3 through H34

Figure 5.6  Forecasting with heteroskedasticity: regression results
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We learn that once the predicted values are obtained, we can calculate 
interval forecasts as usual.

Forecasting with Autocorrelation

The same yearly data for the section “Testing Autocorrelation” are used 
here and are available in the file Ch05.xls, Fig.5.8. The residuals e in col-
umn C and their lagged values e(t − 1) in cells D3 through D35 are from 
Figure 5.5. The commands for this section will continue from that step.

In cell E3, type = C3^2 and press Enter (this is e2)
Copy and paste the formula into cells E4 through E34
In cell F3, type = C3 * D3 and press Enter (this is et * et–1)
Copy and paste the formula into cells F4 through F34
In cell E35, type = SUM(E3:E34) and press Enter (this is the sum of e2)
Copy and paste the formula into cells F35 (this is the sum of et * et–1)
In cell G3, type = F35/E35, then press Enter (this is r∧1, called r-hat in 

the Excel file)
Copy and paste-special the value in cell G3 into cells G4 through G34
Copy and paste the values in cells B2 through B34 into cells H3 

through H35
(this is the lagged values of CONS)
Copy and paste the values in cells A2 through A34 into cells I3 

through I35
(this is the lagged values of INCOME)
In cell J3, type = B3 − (G3 * H3), then press Enter (this is CONS′)
Copy and paste the formula into cells J4 through J34
In cell K3, type = 1 − G3 and press Enter (this is X1′)
Copy and paste the formula into cells K4 through K34
In cell L3, type = A3 − (G3 * I3), then press Enter (this is INCOME′)
Copy and paste the formula into cells L4 through L34

Next, we need to regress CONS′ on X1′ and INCOME′:

Go to Data Analysis and choose Regression and click OK
In the Input Y Range box, enter J2:J34
In the Input X Range box, enter K2:L34
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Check the boxes Labels, Constant is Zero, and Residuals
Check the Output Range button and enter P1
Click OK and then OK again to obtain the regression results dis-

played in Figure 5.7.

From this figure, the estimated equation is:

CONS′t = 3736 X1′t–1 + 0.0012 INCOME′t–1 	

Because CONS′t = CONSt − r CONt–1, to obtain predicted values of 
CONSt:

Copy and paste the values in cells Q25 through Q57 into cells M2 
through M34

In cell N3, type = M3 + G3 * H3, then press Enter (this is CONSt = 
CONS′t + r CONt–1)	

Copy and paste the formula into cells N4 through N34.

We learn that once the predicted values are obtained, we can calculate 
point and interval forecasts as usual.

Exercises

1.	Data on employment (EMP) and residential investment (INV) for 
50 states and Washington, DC, in 2012 are in the file Emp.xls.
a. �Regress INV on EMP (i.e., y = INV, x = EMP) and provide 

comments on the results, including the significances of a1 and a2, 
R2, and the standard error of regression.

Figure 5.7  Forecasting with autocorrelation: regression results
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b. �Write the estimated equation and find the point prediction for 
investment.

2.	Data on the CPI growth (CPIGt) and unemployment rates 
(UNEMPt–1) from the end of January 2012 through the end of 
February 2014 are in the file Unemp.xls.
a. �Regress CPIGt on UNEMPt–1 (y = CPIG, x = UNEMP) and pro-

vide comments on the results, including the significances of â1 and 
â2, R

2, and the standard error of regression.
b. �Write the estimated equation and calculate the one-period point 

forecast for CPIG (at the end of March 2014) using either a hand-
held calculator or Excel, showing every step of your calculations.

3.	Use the results in Exercise 2 to calculate the one-period interval fore-
cast for CPIG (at the end of March 2014) at a 95 percent confidence 
interval using either a handheld calculator or Excel, showing every 
step of your calculations.

4.	Use the results in Exercise 2 to test the following hypotheses at a 
1 percent significance level:
a. �The slope is −3 against the alternative hypothesis that the slope is 

smaller than –3.
b. �The slope is zero against the alternative hypothesis that the slope 

is different from zero.

Write the testing procedure in four standard steps similar to those in 
the section “Evaluations and Adjustments” of this chapter. The calcula-
tions of the t-statistics might be performed using a handheld calculator 
or Excel.



PART III

Advanced Forecast 
Techniques

This part contains two chapters:

•	 Chapter 6 Multiple Linear Regressions
•	 Chapter 7 Advanced Time Series Techniques





CHAPTER 6

Multiple Linear Regressions

Having learned the concept of econometric forecasting, Rea is looking 
forward to the multiple linear regression technique so that he can show 
the determinants of home prices to his customers at Realmart. Fin also 
tells us that the U.S. stock market has performed very well since 2010, 
and he wonders how this factor affects consumer spending. Ex then 
says that incomes are rising worldwide thanks to the recoveries from the 
global recession and adds that he wishes to see how they will affect the 
U.S. exports. Dr. Theo tells us that all these issues will be discussed this 
week and that once we finish with the chapter, we will be able to:

1.	Develop models for multiple linear regressions and discuss condi-
tions for using them.

2.	Discuss the econometric forecasting approach using multiple linear 
regressions.

3.	Analyze numerous methods of evaluations and adjustments.
4.	Describe and address common problems in panel-data forecasting.
5.	Perform regressions and obtain forecasts using Excel.

We learn that this chapter will involve two or more explanatory variables.

Basic Concept

In business and economics, we often see more than one factor affecting 
the movement of a market. Hence, a new model needs to be introduced.

Econometric Model

An economic model with more than one determinant of consumption 
(CONS) will look like this:

	 CONS = a1 + a2 INCOME + a3 STOCKP	 (6.1)
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where CONS and INCOME are the same as in Chapter 5, and 
STOCKP is the average stock price, which might affect consumer 
wealth and subsequent spending. The interpretation of a1 and a2 is the 
same as in Chapter 5, and a3 represents the change in consumption due 
to one unit change in the average stock price.

Converting the economic model in Equation 6.1 into an econometric 
model yields:

	 CONSi = a1 + a2 INCOMEi + a3 STOCKPi + ei	 (6.2)

The generalized version of this econometric model for cross-sectional 
regressions is:

	 yi = a1 + a2 xi2 +…+ ak xik + ei	 (6.3)

where y is the dependent variable, and xs are usually called explanatory 
variables or the regressors instead of independent variables, because the 
presence of more than one x implies that the xs might not be completely 
independent of each other.

The six classic assumptions in multiple linear regressions for cross-
sectional data are as follows:

i.	The model is yi = a1 + a2 xi2 +…+ ak xik + ei

ii.	E(ei) = E( yi) = 0
iii.	Var(ei) = Var( yi) = s2

iv.	Cov(ei, ej) = Cov( yi, yj) = 0 for i ≠ j
v.	Each xik is not random, must take at least two different values, 

and xs  are not perfectly correlated to each other (called the 
multicollinearity problem)

vi.	ei ~ N(0, s2); yi ~ ([a1 + a2 xi2 +…+ ak xik ], s
2)

Dr. Theo reminds us, “Assumption (v) only requires that xs are not 
100  percent correlated to each other. In practice, any correlation of 
less than 90 percent can be acceptable depending on the impact of the 
correlation on a specific problem.”
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Regarding time-series data, assumption (v) changes to:

	 a.	y and xs are stationary random variables, and et is independent of 
current, past, and future values of xs.

	 b.	when some of the xs are lagged values of y, et is uncorrelated to all 
xs and their past values.

If assumptions (i) through (v) hold, then the multiple linear regres-
sions will produce the best linear unbiased estimators (BLUE) using the 
ordinary least squares (OLS) technique. If assumption (vi) holds, then 
test results are valid. The central limit theorem concerning the distribu-
tion of the errors and the OLS estimators continues to apply.

Estimations

The estimated version of Equation 6.3 on a particular sample is:

y∧ i = â1 + â2 xi2 +…+ âk xik,  yi = y∧ i + êi = â1 + â2 xi2 +…+ âk xik + êi

  (6.4)

Point Estimates:

Suppose that estimating Equation 6.2 yields the following results:

	 CONS = 1.5 + 0.5 * INCOME + 0.02 STOCKP	 (6.5)

where the units continue to be in hundreds of dollars, then the results 
imply the following:

i.	Weekly consumption of a person with no income is $150.
ii.	Holding the stock price constant, $100 increase in weekly income 

raises weekly consumption by $50.
iii.	Holding the personal income constant, $100 increase in the average 

stock price increases weekly consumption by $2 (= 0.02 * 100).
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Interval Estimates:

We learn that the equation for interval estimate is the same as Equation 5.8, 
which is rewritten here:

	 P t se a t sek c k k k c k[ * ( ) * ( )]a a a a∧ ∧ ∧ ∧− ≤ ≤ + = −1 a 	 (6.6)

The only change is that t-critical bears (N − K  ) degrees of freedom 
instead of (N − 2) because we have K parameters (coefficients) to be 
estimated in multiple regressions.

Predictions and Forecasts

Predictions

We then work on an example by substituting values of personal income 
and price level into Equation 6.5 and find that a person with a weekly 
income of $400 when the average stock price is $1,000 can expect a 
weekly consumption of:

  CONSi = 1.5 + 0.5 * 4 + 0.02 * 10 = 3.7 ($ hundreds) = $370	 (6.7)

Dr. Theo says that interval predictions can also be made for multiple 
regressions with similar formulas as those in Equation 5.9, except for the 
estimated variance of the error terms:
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The interval prediction is also calculated in a similar manner as in 
Equation 5.10:

	 P t se f y t se fc c[ ( ) ( )]y y∧ ∧− ≤ ≤ + = −1 1 1 1 a 	 (6.9)

In the consumption example in Equation 6.7, if N = 33 so that the 
df = 33 − 3 = 30, se( f ) = 0.1, then the 95 percent confidence interval 
prediction is

	 3.7 ± 2.042 * 0.1 = (3.4958; 3.9042) = ($349.58; $390.42)	
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Hence, we predict with 95 percent confidence that a person with a 
weekly income of $400 will spend between $349.58 and $390.42 weekly 
when the stock price is added to the econometric model.

Forecasts

For the multiple linear regressions using time series data, the econometric 
model with one-period lag is written as:

	 yt = a1 + a2 xt−1, 2 +…+ ak xt−1, k + et	 (6.10)

For example, the forecast for period (t + 1) is:

	 CONSt+1 = 1.5 + 0.5 * INCOMEt + 0.02 * STOCKPt	

Multiple linear regressions also have great advantage over simple regres-
sions when more than one lag is involved because multiperiod forecasts 
can be obtained without the need of using MA or exponential smoothing 
(ES) techniques. For example, if we have:

CONSt+1 = �5 + 0.4 * INCOMEt + 0.02 * STOCKPt +  
0.1 * INCOMEt−1 + 0.01 STOCKPt−1

then two-period forecasts can be obtained, and this model is called a 
distributed lagged (DL) model. Another model that includes lagged-
dependent variables in addition to other explanatory variables is called 
autoregressive distributed lagged (ARDL) model. For example:

	 CONSt+1 = 100 + 0.4 * INCOMEt + 0.2 * CONSt

The ARDL model allows long-term forecasts thanks to the lagged-
dependent variable (hence the name autoregressive). Assuming that 
income remains constant over time, once CONSt+1 is obtained, substitute 
CONSt+1 into the model and continue the next substitutions to find:

	 CONSt+2 = 100 + 0.4 * INCOMEt + 0.2 * CONSt+1

	 CONSt+3 = 100 + 0.4 * INCOMEt + 0.2 * CONSt+2
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Suppose INCOMEt = $4000 monthly and CONSt = $2000 for the 
first month, then:

	CONSt+1 = 100 + 0.4 * 4000 + 0.2 * 2000 = 100 + 1600 + 400 = 2100

	CONSt+2 = 100 + 0.4 * 4000 + 0.2 * 2100 = 100 + 1600 + 420 = 2120

	CONSt+3 = 100 + 0.4 * 4000 + 0.2 * 2120 = 100 + 1600 + 424 = 2124

This process can be extended far into the future. It is called recursion 
by the law of iterated projections (henceforth called the recursive principle) 
and is proved formally in Hamilton (1994). Since income is not changing 
every month, the model is quite realistic and convenient for long-term 
forecasts.

Dr. Theo then reminds us that one-period interval forecasts can be 
calculated using Equation 6.8, which is adapted for time series data with 
N = T. He also says that the simplest approximation to Equation 6.8 for 
multiple periods ahead is:
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We learn that this is only one of the several ways to approximate 
the multiperiod interval forecasts. More discussions of this topic will be 
presented in Chapter 7.

Excel Applications

Dr. App just returned from the conference and is very happy to see 
us again. She says that the procedures for performing multiple linear 
regressions are very similar to those for simple linear regressions except 
for the correlation analysis.

Cross-Sectional Data

The dataset is again offered by Rea and is available in the file Ch06.xls, 
Fig.6.1 and Fig.6.2. Data on financial aid by local governments (LOCAID) 
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are added to the original data on personal income (INCOME) and residen-
tial-property investment (INV) in Chapter 5. The units are in thousands of 
dollars. The dependent variable is INV, and the two explanatory variables 
are LOCAID and INCOME. First, we carry out a correlation analysis:

Go to Data then Data Analysis on the Ribbon
Select Correlation instead of Regression and click OK
A dialog box will appear as shown in Figure 6.1

In the Input Range, enter C1:D52
Check the box Labels in the First Row
Check the button Output Range and enter O1 then click OK
A dialogue box will appear, click OK to overwrite the data

The result reveals that the correlation coefficient between INCOME 
and LOCAID is 0.8981, which is quite high but acceptable to perform a 
regression (in the data file, you can find this correlation coefficient in cell 
P3. We copy and paste it into cell G3 in Figure 6.2).

Next, we perform a regression of INV on LOCAID and INCOME:

Go to Data then Data Analysis, select Regression then click OK
The input Y range is B1:B52, the input X range is C1:D52
Check the boxes Labels and Residuals
Check the button Output Range and enter F1 and click OK
A dialogue box will appear, click OK to overwrite the data

Figure 6.1  Dialog box for correlation analysis
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The regression results are given in Figure 6.2.
From these results, the estimated equation can be written as:

	 INVi = –5141 + 0.0939 INCOMEi + 0.3846 LOCAIDi

The predicted values are next to the residuals in the data file, and 
interval prediction can be calculated using Equations 6.8 and 6.9.

Time Series Data

Ex again shares with us the dataset, which is available in the file Ch06.xls,  
Fig.6.3. Data on Real GDP (RGDP) for China are added to data on 
China–United States real exchange rate (EXCHA) and exports from the 
United States to China (EXPS) for the period 1981–2012. The new data 
on RGDP are from World Bank’s World Development Indicators (WDI) 
website and are in billions of dollars, which are converted to millions of 
dollars before adding to the original data. The dependent variable is EXPSt, 
and the two explanatory variables are RGDPt−1 and EXCHAt−1. We first 
perform a correlation analysis:

Go to Data then Data Analysis, select Correlation then click OK
In the Input Range, enter C1:D33
Check the box Labels in the First Row
Check the button Output Range and enter O1 then click OK
A dialogue box will appear, click OK to overwrite the data

Figure 6.2  Cross sectional data: multiple regression results
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The results of the correlation and the estimated coefficients are dis-
played in Figure 6.3. The correlation between INCOME and LOCAID is 
0.4226, which is quite low, so the regression results are reliable. Next, we 
perform a regression of EXPSt on RGDPt−1 and EXCHAt−1:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is B1:B33, the input X range is C1:D33
Check the boxes Labels and Residuals
Check the button Output Range and enter F1 then click OK
A dialogue box will appear, click OK to overwrite the data

From the results, the estimated equation is:

	 EXPSt+1 = −970.0661 − 649.6924 EXCHAt + 0.0193 RGDPt

You can find the forecast value of EXPS2013 in cell G57.
Again, the predicted values for EXPS are next to the residuals in the 

data file, and interval forecasts can be calculated using Equation 6.11.

Evaluations and Adjustments

We learn that a t-test can still be used to evaluate each of the estimated 
coefficients. Additionally, testing for the joint significance of two or more 
coefficients is performed using an F-test. For example, in Figure 6.3, the 

Figure 6.3  Time series data: multiple linear regression results

Data Source: IMF.com: IMF Data and Statistics (2014); World Bank.com (2014).
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coefficient of EXCHA is no longer significantly different from zero, but 
EXCHA might be jointly significant with RGDP. In that case, EXCHA 
should not be eliminated from the model even though its coefficient is 
statistically insignificant.

F-Tests

Dr. Theo says that F-tests are used to evaluate the joint significance of two 
or more coefficients or the significance of a model.

Testing the Joint Significance

Consider an equation for multiple regressions with three explanatory 
variables:

	 INV = a1 + a2 INCOME + a3 LOCAID + a4 FED + e	 (6.12)

where INCOME and LOCAID are the same as in the section 
“Predictions and Forecasts” of this chapter, and FED is federal tax credits 
to residential-property investment. The model in Equation 6.12 is called 
an unrestricted model. Suppose the regression results for Equation 6.12, 
with the standard errors of the corresponding coefficients in parentheses, 
are as follows:

	 INV = −23 + 0.086 INCOME + 0.32 LOCAID + 0.12 FED	

	 (se) (−11) (0.01)   (0.04) (0.09)

	 Number of Observations = 51	

	 SSEU = 150

where U stands for unrestricted.
From these results, the coefficient of FED is not statistically signifi-

cant. However, if FED and LOCAID are jointly significant, or FED and 
INCOME are jointly significant, then FED should not be eliminated 
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from the model. To test the joint significance of FED and LOCAID, 
perform a regression on the restricted model:

	 INV = a1 + a2 INCOME + e

Suppose the results for this restricted model are as follows:

	 INV = –12 + 0.986 INCOME   (se) (−5) (0.02)	

	 SSER = 180

where R stands for restricted.
The test is performed in four steps as follows:

i.	The hypotheses
	 H0: a3 = a4 = 0; Ha: a3 and a4 are jointly significant.

ii.	The F-statistic

	 F F
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where J is the number of restrictions, in this case J = 2 (a3 and a4), 
and (N − K  ) is the degrees of freedom (df ), in this case the df = 47 
(= 51 − 4). Hence,

	 FSTAT = − = =( ) /
/ .

.180 150 2
150 47

15
3 19

4 7

iii.	The F-critical value, Fc, can be found from any F-distribution table. 
For example, if α = 0.05 is Fc = F(0.95, 2, 47) ≈ 3.195
In Excel, to obtain Fc type = FINV(α, J, N − K  ) and then press Enter.

For example, type = FINV(0.05, 2, 47) then press Enter, this will 
give 3.195.

iv.	Decision: Since FSTAT > Fc, we reject the null, meaning the two 
coefficients are jointly significant and implying that we should 
include FED in the regression.
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Testing the Model Significance

To this point, Arti raises her hand and asks, “What if all coefficients of 
the explanatory variables in a model are zero? Cita also asks, “Does that 
mean that the model does not predict anything?” Dr. Theo praises them 
for raising the issue and says that in this case the model should be revised. 
Thus, the four-step procedure for the test is as follows:

i.	H0: All ak are zeros for k = 2, 3,…, K; Ha: at least one ak ≠ 0.
For example, in Equation 6.12, we can state that

H0: a2 = a3 = a4 = 0; Ha: at least one ak ≠ 0.
ii.	The F-statistic:
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J is the number of restrictions. In the test for model significance, 
only a1 is not included in the null hypothesis, so J = K − 1, and in 
the preceding example, J = 4 − 1 = 3.

iii.	F-critical: This step is similar to the test for the joint significance.
iv.	Decision: If FSTAT > Fc, we reject the null hypothesis, meaning at least 

one ak ≠ 0 and implying that the model is significant.

Fligh then asks, “Can anyone analyze the relationship between 
t-tests and F-tests?” Mo volunteers to address the issue. Here is his 
discussion.

F-tests and t-tests are both testing for the significance or the expected 
values of the estimated coefficients. The comparison and contrast of F-test 
to t-test are as follows:

1.	In F-test we have joint hypotheses.
2.	For the test with ak ≠ 0, the t-test is a two-tail test whereas the F-test 

is a one-tail test.
3.	F distribution has J numerator df and (N − K  ) denominator df.
4.	When J =1, the t- and F-tests are equivalent.
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Dr. Theo is very pleased saying that all four points are correct and that 
we can now move to the next section.

Error Diagnostics

Heteroskedasticity and Autocorrelation

The testing procedures on these two problems in multiple linear regressions 
are similar to those in simple linear regressions except that the hypotheses 
are stated for multiple coefficients.

Testing Heteroskedasticity

Estimate the original equation y a a x a x ei i K iK i= + + + +1 2 2 ...
Obtain e∧i  and generate e∧ i

2 then estimate the variance function:

	 e∧ = + + + +i i s ik ic w c w2
1 2 2c ... v  	 (6.15)

Obtain R2 for the LMSTAT = N * R 2

Using the same four-step procedure for any test, state the hypotheses as:
H0: c2 = c3 = … = ck = 0; Ha: at least one c is not zero
The next three steps are similar to the one for simple regressions with 

df = K − 1

Testing Autocorrelation

Estimate equation y a a x a x et t k tk t= + + + +1 2 2 ...
Obtain e∧i  and generate e e e∧ ∧ ∧

− − −t t t k1 2, ,...,
Estimate the equation

	 e e e e v∧ ∧ ∧ ∧ ∧= + + + + + +− − −t t t t k t k tc c x r r r1 2 1 1 2 2 ... 	 (6.16)

Obtain R2 for the LMSTAT = T * R 2

The hypotheses are stated as
H0: r1 = r2 = … = rk = 0; Ha: at least one r ≠ 0

The next three steps are similar to the one for simple regressions, where 
df = the number of restrictions.
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Testing Endogeneity

Dr. Theo says that endogeneity is also called the problem of endogenous 
regressors and occurs when assumption (v), which states that x is not 
random, is violated. Given the equation

	 y a a x a x ei i k ik i= + + + +1 2 2 ... 	 (6.17)

Suppose that xi2 is random then xi2 might be correlated with the error 
term. In this case the model has an endogeneity problem. The conse-
quences of the endogeneity are serious:

i.	OLS estimators are biased in small samples and do not converge to 
the true values even in a very large sample (the estimators are incon-
sistent).

ii.	The standard errors are inflated, so t-tests and F-tests are invalid.

To detect endogeneity, a Hausman test must be performed. Dr. Theo 
says that the original Hausman test requires knowledge of matrix algebra, 
so he teaches us the modified Hausman test, which is discussed in 
Kennedy (2008).

The theoretical justification of the modified Hausman test is simple. In 
Equation 6.17, the exogenous variables are xjs, where x x x xj i i ik= 1 3, ,.., . 
When the endogenous variable xi2 is regressed on these xjs, the part of xi2, 
which is explained by xjs, will be factored out. The rest of xi2 is explained 
by the residual, vi, from the estimation:

	 x b b x b x b x vi i i k ik i2 1 2 1 3 3= + + + + +..  	 (6.18)

The vi from Equation 6.18 can be added to Equation 6.17 in the 
subsequent regression:

	 y a a x a x cv ei i k ik i i= + + + + +1 2 2 ... 	 (6.19)

A t-test on the estimated coefficient of vi is then performed. If this 
coefficient is not statistically different from zero, then xi is not correlated 
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with the error term, and the model does not have an endogeneity prob-
lem. Hence, the steps to perform the test are as follows:

i.	Regress xi2 on all xjs and obtain the residuals v∧ .
ii.	Include the residuals in the subsequent regression of Equation 6.17.

iii.	Perform the t-test on the coefficient of v∧  with the hypotheses: 
H0: c = 0; Ha: c ≠ 0.

iv.	If c ≠ 0, then the null hypothesis is rejected, meaning xi is correlated 
with the error and implying that the model has an endogeneity 
problem.

Dr. Theo then asks the class, “Suppose adding v∧  into Equation 6.19 
for the second regression yields c∧ = 2.5 with its standard error se (c∧) = 2.5,  
and N = 32. Can you find the t-statistic and make your decision?” We are 
able to calculate tSTAT = 2.5/2.5 = 1. Thus, c is not statistically different 
from zero, and we do not reject the null, meaning that x2 is not correlated 
with the error and implying that the model does not have an endogeneity 
problem.

Adjustments

Heteroskedasticity and Autocorrelation

We learn that adjustments for these two problems are similar to the cases 
of simple linear regressions except that the procedures are performed on 
multiple explanatory variables.

Forecasting with Endogeneity

Dr. Theo then says that endogeneity problems are corrected by using the 
method of moments (MM). Theoretically, the purpose of the MM esti-
mation is to find a variable w to use as a substitute for x. Theoretically, 
MM estimators will satisfy the condition that cov(w, e) = 0. Empirically, 
w almost satisfies this condition by minimizing cov(w, e), and w is called 
the instrument variable (IV). The MM estimators are the IV estimators. 
In the following section, we continue to assume that xi2 is the endogenous 
variable.
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The instrumental variable w has to satisfy two conditions:

i.	w is not correlated with e, so that cov(w, e) = 0.
ii.	w is strongly (or at least not weakly) correlated with xi2.

In the first stage, we perform a regression of the endogenous variable 
xi2 on all exogenous variables, including the IV, which is wi:

	 xi2 = b1 + b3 xi3 + b4wi + …+ vi	 (6.20)

We then estimate the original equation with the predicted value of xi2, 
x∧i2, in place of xi2. Because of this second stage, the IV estimators are also 
called two stages least squares (2SLS) estimators:

	 y a a a x ei i k ik i= + + + + +∧
1 2 3 3x xi2 a ... 	 (6.21)

The problem is solved because x∧ i2 does not contain vi, x b x∧ = + + +i2 1 3 3 4b b xi ik...  
x b x∧ = + + +i2 1 3 3 4b b xi ik... , hence y∧ i does not contain v either, y x a x∧ ∧= + + + +i i k ika a a x1 2 3 3i2 ... 

y x a x∧ ∧= + + + +i i k ika a a x1 2 3 3i2 ... .

Other Measures

Goodness of Fit

Although an R2 value is still reported by Excel, using more than one 
variable decreases df. Hence, an adjusted R2 value is a better measure to 
account for the decreasing df:

	
Adjusted SSE

SST
R R

N K
N

2 2 1
1

= = − −
−

/ ( )
/ ( )

	 (6.22)

Model Specification

Dr. Theo reminds us that multiple regression models have more than 
one explanatory variable, so the issue of how many variables should be 
included in the model becomes important.
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An omitted variable causes significant bias of the estimated coeffi-
cients. For example, if we remove FED from Equation 6.12 reasoning 
that FED is not statistically significant, then the estimated coefficients 
will be biased because FED and LOCAID are jointly significant. Hence 
eliminating FED will cause an omitted variable.

Including irrelevant variables will not significantly bias the estimated 
coefficients, but may inflate the variances of your coefficient estimates, so 
the tests are less reliable. For example, adding social assistance (SOCIAL) 
to Equation 6.12 will yield these results:

INV = �−22 + 0.085 INCOME + 0.33 LOCAID + 0.12 FED  
+ 0.08 SOCIAL

(se)   (−11) (0.055)    (0.08) (0.09) (0.07)	

where the standard error of the coefficient estimate for INCOME is 
greatly inflated. In this case, the t-test result implies that the coefficient 
of INCOME is not statistically significant whereas it actually would be 
significant had we removed SOCIAL from Equation 6.12.

We now see that choosing a correct model is crucial. Dr. Theo says 
that we might want to use a piecewise-downward approach starting from 
all theoretically possible variables with all available data. F- and t-tests 
then are used to eliminate the highly insignificant variables. He says that 
we can also use a piecewise-upward approach, which starts from a single 
explanatory variable. However, the downward approach is preferable 
because this approach avoids the omitted variable problem that might 
arise if you use the piecewise-upward approach.

Excel Applications

Dr. App reminds us that the F-tests can be performed using a handheld cal-
culator except for the critical value, the command of which has already been 
given in the section “F-Tests.” Also, Excel applications for the heteroskedas-
ticity and autocorrelation tests have been given in Chapter 5. Hence, she 
only discusses Excel applications for the endogeneity test and correction.
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Data on sale values (SALEt ), advertisement expenditures (ADSt ), 
income (INCt  ), and values of sale coupons (COUPt−1) are from the file 
Ch06.xls, Fig.6.4 and Fig.6.5. The model is as follows:

	 SALE INC ADSt t t ta a a e= + + +1 2 3 	 (6.23)

However, we suspect that ADSt is endogenous and so we prefer using 
COUPt−1 as an IV for ADSt. Since COUPt−1 is in period (t − 1), it is 
not correlated to et. Since most companies include sale coupons with 
their advertisements and calculate the coupon values before sending out 
advertisements, COUPt−1 is correlated with ADSt. This makes COUPt−1 a 
good IV for ADSt. To perform the modified Hausman test for endogeneity, 
we first regress ADS on COUP and INC:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E35, the input X range is C1:D35
Check the Labels box
Check the button Output Range and enter J1 then click OK
A dialogue box will appear, click OK to overwrite the data

The results are displayed in Figure 6.4.
The results support our argument that COUPt−1 is correlated with ADSt 

because the estimated coefficient of COUPt−1 has the p-value = 0.00124 < 
0.05. Additionally, by the classic assumptions, COUPt−1 is not correlated 
to et. Therefore, COUPt−1 satisfies both conditions to be a good IV.

Next, copy the Residuals from cells L25 through L59 and paste into 
cells F1 through F35

Figure 6.4  Qualification of COUP t−1 as an instrument  variable
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Finally, perform the regression of the original equation with the 
Residuals (v∧ t) added:

	 SALE INC ADSt t t t ta a a c e= + + + +∧
1 2 3 v

Go to Data then Data Analysis, select Regression and click OK
The input Y range is B1:B35, the input X range is D1:F35
Check the Labels box
Check the button Output Range and enter N22
Click OK and then OK again to overwrite the data

The main results displayed in Figure 6.5, reveal that the estimated coeffi-
cient of v∧ t, called Residuals, is significant with a p-value of 0.02 (you can find 
this value in cell R41 in the Excel file), so the endogeneity problem exists.

To correct this endogeneity problem:

Copy and paste Predicted ADS from cells K25 through K59 into cells 
G1 through G35

Second, copy INC in column D and paste INC into column H next 
to Predicted ADS

Finally regress the original equation with Predicted ADS in place of 
ADS:

	 SALE INC Predicted ADSt t ta a a e= + + +1 2 3

Go to Data then Data Analysis, select Regression then click OK
The input Y range is B1:B35, the input X range is G1:H35
Check the box Labels
Check the button Output Range and enter A37
Click OK and then OK again to overwrite the data

Figure 6.5  Modified Hausman test results
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This will correct the endogeneity problem. F-tests should be 
performed on the joint significance and the model significance before 
point and interval forecasts can be calculated.

Forecasts with Panel Data

Concept

Dr. Theo reminds us that panel data comprise cross-sectional identities 
over time and advises us to carry out forecasts using these data when-
ever they are available. Arti asks, “What do we gain from using panel 
data?” Alte volunteers to explain. Here is her discussion, “First, the 
sample size is enlarged. For example, if we have a time series dataset on 
TV sales in Vietnam for 16 months and another dataset on TV sales in 
Cambodia for the same 16 months, then combining the two datasets 
gives us 32  observations. Second, being able to observe more than one 
identity over time provides us with additional information on the charac-
teristics of the market. For example, we can understand demand for TV 
in Indochina by studying their sales in Cambodia and Vietnam. Finally, 
we are able to carry out comparative study over time. For example, we 
can compare demand in Vietnam with demand in Cambodia and develop 
different strategies to increase sales in each country.”

Dr. Theo commends her on a good analysis and says that performing 
forecasts on a panel dataset is simple if the two identities share the same 
behavior, for example, if sales in Vietnam and Cambodia share the same 
market characteristics, then the coefficient estimates will be the same for 
the two countries. In that case, we only have to stack one dataset above 
the other as shown in Figure 1.1, columns G through I, of Chapter 1, 
and perform an OLS estimation called pooled OLS to enjoy a dataset of 
32 observations.

Most of the time, the two markets do not share the same behavior. In 
this case, the classic OLS estimators using all 32 observations are biased, 
and the diagnostic tests are invalid. Hence, panel-data techniques are 
needed. One way to write the forecast equation is:

	 y a a x a x eit i i it i it it= + + +1 2 2 3 3 	 (6.24)
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Dr. Theo reminds us to note the subscript “i” in a1i indicates different 
intercepts across the identities. For example, Vietnam is different from 
Cambodia. Another way to write the relations is to also allow differences 
in the slopes.

Forecasting with Fixed Effect Estimators

Dr. Theo then introduces us to a way to solve the problem by using the 
“fixed effect” estimators. For introductory purposes, he discusses the dif-
ference in intercepts first. Theoretically, the adjustment is made by taking 
the deviation from the mean, so we first take an average of Equation 6.24:

	 y a a x a x eit i it it it= + + +1 2 2 3 3 	 (6.25)

Next, we subtract Equation 6.25 from Equation 6.24:

	 y y a x x a x x e eit it it it it it it it− = − + − + −2 2 2 3 3 3( ) ( ) ( )

Then we can perform forecasts on the transformed model using OLS:

	 � � � �y a x a x eit it it it= + +2 2 3 3 	 (6.26)

where
	 � � � �y y y x x x x x x e eit it it it it it it it it it it= − = − = − =; ( ); ( ); (2 2 2 3 3 3 −− eit )

The fixed-effect problem is solved because the intercept is removed 
from Equation 6.26.

Empirically, the most convenient and flexible way to perform fore-
casts on a fixed-effect model is to use the least squares dummy variable 
(LSDV) approach whenever the number of identities is not too large (less 
than 100 identities are manageable). To obtain the LSDV estimators, 
we generate a dummy variable for each of the identities. For example, 
if we have eight different identities, then

D
i

i1
1 1
0

=
=


 otherwise

  D
i

i2
1 2
0

=
=


 otherwise
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i8
1 8
0

=
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
 otherwise



136	 SEEING THE FUTURE

Then Equation 6.24 can be adjusted as:

	 yit = a11 D1i + a12 D2i +…+ a18 D8i + a2 x2it+ a3 x3it + eit	 (6.27)

Dr. Theo reminds us that the constant is removed, so the regression 
does not have a constant.

We then go back to the example of the TV sales in Vietnam 
and Cambodia, we need to add two dummies: DV = Vietnam and 
DC = Cambodia. Thus, Equation 6.23 can be written as:

	 SALE INC ADSit V C it it ita D a D a a e= + + + +11 12 2 3

Ex asks, “What if the two markets might also differ over time?” 
Dr. Theo says, “Then adding time dummies to the equation will solve 
the problem:”

	
SALE INC ADSit V C it it

T T

a D a D a a b t b t
b t e

= + + + + +
+ + +

11 12 2 3 11 1 12 2

1... iit

Fin asks, “How about the differences in the slopes of the two markets.” 
Alte suggests, “Then we can add the slope dummies to the equation:”

	

SALE INC ADSit V C it it

T T

a D a D a a b t b t
b t

= + + + + + +
+ + +
11 12 2 3 11 1 12 2

1... cc D c D
d D d D e

V it C it

V it C it it

1 2

1 2

( * ) ( * )
( * ) ( * )

INC INC
ADS ADS

+ +
+ + +

	

Dr. Theo praises her for the correct answer. He then says that point 
and interval forecasts can be obtained in the same manner as those in the 
section on “Forecasts” of this chapter.

Dr. Theo also tells us that three other approaches to correct for the 
problem of different characteristics in panel data are first differencing, 
random effect, and seemingly unrelated estimations. The first differenc-
ing approach is similar to the one used in time series analysis for AR(1) 
models, which will be discussed in Chapter 7. The other two methods are 
beyond the scope of this book. He encourages us to read an econometric 
book if we are interested in learning more techniques on panel data.
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Detecting Different Characteristics

We want to test if the equations for Vietnam and Cambodia have iden-
tical coefficients so that OLS can be performed. This is a modified F-test 
for which the restricted model is:

	 SALE INC ADSit it it ita a a e= + + +11 2 3

The unrestricted model needs only one dummy because a11 already 
catches one country’s effect:

	
SALE INC ADSit C it it ita a D a a e= + + + +11 12 2 3

If the two countries share the same trait, then a12 = 0, so the hypoth-
eses are stated as:

	 H0: a12 = 0; Ha: a12 ≠ 0.

Under assumptions of equal error variances and no error correlation, 
this F-test is similar to the F-tests discussed in the section on “Evaluations 
and Adjustments” of this chapter:

	
F

J
NT K

R U

U
STAT

SSE SSE
SSE

= −
−

( ) /
/ ( )  

and F Fc J NT K= −( , )	 (6.28)

where  NT = the number of observations.
Dr. Theo reminds us that if we reject H0, then the two equations do 

not have identical coefficients, and a panel-data technique is needed for 
estimations and forecasts.

Excel Applications

Ex shares with us a yearly dataset on per capita income and imports for 
Australia, China, and South Korea from the years 2004 to 2012 from the 
World Bank website. Since one lagged variable is generated, we have data 
for the years 2005–2012 to perform the regressions and tests. We find 
that the data are from the file Ch06.xls, Fig.6.6.
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Testing Different Characteristics

The restricted model is:

	 IMPS PERCAit i t ita a e= + +−11 2 1,

where IMPS is imports, and PERCA is per capita income.
The unrestricted model is:

	 IMPS PERCAit A A C C i t ita a D a D e= + + + +−11 1 1 1, 	 (6.29)

DA and DC are the dummies for Australia and China, respectively.
To perform the cross-equation test on the three countries, we first 

estimate the restricted model by regressing IMPS on PERCA:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E25, the input X range is G1:G25
Check the box Labels
Check the button Output Range and enter L1
Click OK and then OK again to overwrite the data

Second, we regress IMPS on PERCA, DA and DC:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E25, the input X range is G1:I25
Check the box Labels
Check the button Output Range and enter L20
Click OK then OK again to overwrite the data

The ANOVA sections with the sums of the squared errors for the two 
models are displayed in Figure 6.6: SEER in cell Q5 and SSEU in cell V5 
(in the Excel file, they are in cells N13 and N32, respectively).

From the results in Figure 6.6, the four steps for the test are as follows:

i.	H0: a1A = a1C = 0; Ha: a1A ≠ 0, or a1C ≠ 0, or both ≠ 0.

ii.	FSTAT = −
−

=( . * . * ) /
. * / ( )

.2 37 10 5 71 10 2
5 71 10 24 4

31 51
9 8

8 .
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iii.	We decide to use α = 0.05. Typing = FINV (0.05, 2, 20) into any cell 
in Excel gives us Fc = 3.49.

iv.	F-statistic is greater than F-critical, so we reject the null, meaning 
at least one pair of coefficients is different and implying that a 
panel-data technique is needed.

Forecasting with Panel Data

We find that the data are from the file Ch06.xls, Fig.6.7. We are going to 
perform an LSDV estimation, so the regression equation is:

	 IMPS PERCAit A A C C K K i t ita D a D a D e= + + + +−1 1 1 1, 	

We learn to perform the following steps:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E25, the input X range is G1:J25
Check the boxes Labels and Constant is Zero, and check the Residuals 

button
Check the button Output Range and enter L1
Click OK and then OK again to overwrite the data

The main results are reported in Figure 6.7.
Note that the three dummies are employed to control for the fixed 

effects. To recover the intercept for predictions and forecasts, recall the 
theoretical equation:

	 y a a xit it= +11 2 2 , so:

	 a y a xit it11 2 2= − 	 (6.30)

Figure 6.6  ANOVA sections of the results for the restricted and 
unrestricted models
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Once the intercept is recovered, substitute it into the estimated equa-
tion to calculate the point and interval forecasts as usual. We also learn that 
more issues and solutions using panel data are discussed in Baltagi (2006).

Exercises

1.	The file RGDP.xls contains data on RGDP, CONS, INV, and EXPS. 
The data are for the United States from the first quarter in 2006 to 
the first quarter in 2014. Given RGDP as the dependent variable:
a.	Perform a correlation analysis for the three explanatory variables.
b.	Perform a multiple regression of RGDP on the other three variables. 

Provide comments on the results, including the significances of a1, 
a2, and a3, R

2, adjusted R2, and the standard error of regression.
2.	Write the estimated equation for the regression results for Exercise 1,  

enter the standard errors below the estimated coefficients, adding 
the adjusted R2 next to the equation. Obtain the point forecast for 
the second quarter of the year 2014 based on this equation using a 
handheld calculator.

3.	Use the results in Exercise 1 and carry out an additional regression 
on a restricted model as needed to test the joint significance of INV 
and EXPS at a 5 percent significance level. Write the procedure in 
four standard steps similar to those in the section “Evaluations and 
Adjustments” of this chapter. The calculations of the F-statistics 
might be performed using a handheld calculator or Excel.

4.	The file Exps.xls contains data on EXPS, the EXCHA, and RGDP. 
The data are for the United States from the first quarter in 2006 to 
the first quarter in 2014. Given EXPS as the dependent variable:

Figure 6.7  Main regression results for Equation 6.28



	 MULTIPLE LINEAR REGRESSIONS	 141

a.	Perform a multiple regression of EXPS on the other two variables.
b.	Construct a 99 percent confidence interval for the one-period 

forecast (for Quarter 2, 2014).
c.	Obtain  point forecasts for two periods by applying the MA(3) for 

explanatory variables using either a handheld calculator or Excel.
5.	The file Growth.xls contains data on GDP growth (GROW), INV, 

and money growth (MONEY) for four regions A, B, C, and D, in 
10 years. Assuming that the four regions differ in intercepts only:
a.	Perform a regression of GROW on INV and MONEY using the 

LSDV technique.
b.	Provide point and interval forecasts for two periods ahead (m = 2).





CHAPTER 7

Advanced Time Series 
Techniques

Fligh raises a question in today’s class, “Dr. Theo, so far my boss has 
been satisfied with my demand forecasts for Flightime Airlines. How-
ever, he says that the holiday season is coming and that he expects high 
volumes of visitor arrivals by air. So he has asked me to adjust for the 
seasonal and cyclical effects but I don’t know how to estimate them.” 
Dr. Theo assures him that this week we will learn how to adjust for these 
two components. Some of the estimations require regression techniques 
learned in Chapters 5 and 6. He says that once we finish with this 
chapter, we will be able to:

1.	Discuss the concept of decomposing a time series.
2.	Analyze triple exponential technique.
3.	Explain the AR( p) and ARMA/ARIMA ( p, d, q) models.
4.	Apply Excel while obtaining forecasts using the models learned in 

(1), (2), and (3).

The seasonal and cyclical components of a time series will be discussed 
in several sections of the chapter.

Decomposition

Dr. Theo reminds us that we were introduced to four components of a 
time series in Chapter 2. Each of these components now can be isolated 
and calculated before they are combined together to form the final 
forecasts.
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Concept

In Chapter 6, we assume an additive model for multiple linear regressions. In 
this chapter, we assume a multiplicative model for decomposing a time series:

	 At = Tt * Rt * St* Ct	 (7.1)

where
At = the actual data at time t
Tt = the trend component at time t
Rt = the random component at time t
St = the seasonal component at time t
Ct = the cyclical component at time t

Three-Component Decomposition

For introductory purposes, Dr. Theo first teaches us a decomposition 
technique that can be performed without the cyclical component similar 
to the one in Lawrence, Klimberg, and Lawrence (2009). The three-
component model can be written as:

	 At = Tt * Rt * St	 (7.2)

The decomposition process is performed in four steps:

1.	Construct seasonal-random indices (SRt ) for individual periods.
2.	Construct a composite seasonal index (St ).
3.	Calculate the trend-random value (TRt ) for each period.
4.	Calculate the forecast values by replacing At with Ft in Equation 7.2: 

Ft = TRt * St.

Dr. Theo then discusses each of these four steps in detail.

Constructing Seasonal-Random Indices for Individual Periods  The sea-
sonal-random component is written as:

	 SR = St * Rt = At / Tt	 (7.3)
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Equation 7.3 implies that our main task in step (1) is to obtain the 
de-trended data. The following technique consists of calculating a center 
moving average (CMA). Since data come in either quarterly or monthly, 
the exact center is either between the second quarter and the third quar-
ter, or between June and July, respectively.

Suppose we have five years of quarterly data, making a total of 
20 quarters. Let Q1 denote quarter 1, Q2 denote quarter 2, and so on. 
Then the following steps should be performed for quarterly data:

First, calculate the early moving average: EMA = (Q1 + Q2 + Q3 + 
Q4)/4.

Second, calculate the late moving average: LMA = (Q2 + Q3 + Q4 + 
Q5)/4.

Third, calculate the trend Tt = central moving average = CMA = (EMA 
+ LMA)/2.

Finally, calculate SRt = At /Tt following Equation 7.3.

For example, data for A3, T3 for Q3, are provided, and SR3 are calcu-
lated as follows:

Time A3 CMA3 = T3 SR3 

Q3year1 64.5 65.8625 64.5/65.8625 = 0.9793

Q3year2 59.4 60.3875 59.4/60.3875 = 0.9836

Q3year3 70.1 68.85     70.1/68.85 = 1.0182

Q3year4 70.8 70.75     70.8/70.75 = 1.0007

Q3year5 72.4 73.0375 72.4/73.0375 = 0.9913

Ex then asks, “How about monthly data?” Dr. Theo answers, “You 
can analyze monthly data in the same manner, except that 12-month 
moving averages will be calculated.”

Constructing a Composite Seasonal Index  Dr. Theo continues, “Since 
the seasonal-random indices are for individual quarters, and since there 
is some randomness in the series, an average seasonal index (AS) must be 
calculated.”
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Dr. Theo then asks us to calculate the average seasonal index for the 
third quarter (AS3), and we are able to find the answer as follows:

	 AS3 = (0.9793 + 0.9836 + 1.0182 + 1.0007 + 0.9913)/5 ≈ 0.9946

Dr. Theo continues that 1.00 is the average index, so the sum of the 
four quarters must be 4.00:

	 AS1 + AS2 + AS3 + AS4 = 4.00

However, this is not the case most of the time due to the randomness 
of a time series. Hence, an adjusted average has to be calculated by scaling 
down all values to obtain a composite index (SQ ) for each quarter, with 
S1 for Q1, S2 for Q2, and so on. For example, if the sum of four quarters 
is 4.1347, then the equation for scaling down the preceding third quarter 
is derived as follows:
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We learn that an index lesser than 1.00 indicates a low season, and 
an index greater than 1.00 implies a high season. Also, some researchers 
multiply the index by 100 to obtain it in hundreds.

Calculating the Trend-Random Values (TRt )  In the section 
“Constructing Seasonal-Random Indices for Individual Periods,” we 
estimate each period trend so that we can divide the data by the trend 
to obtain the seasonal-random index. In this step, we need to obtain 
trend-random values by deseasonalizing the data:

	 TRt = Tt * Rt = At /St	 (7.4)

Dr. Theo says that the regression technique is used for this purpose, 
and the econometric equation for the trend values is written as:

	 TRt = b1 + b2 t + et	 (7.5)
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where  TRt = the predicted value of the TRt line at time t
b1	 = the intercept of the TRt line
b2	 = the slope of the TRt line

For example, suppose the regression results on the quarterly data yield 
this equation:

	 TRQ = 62.9 + 0.49 * t

Then the forecasted TRt for period 3 is:

	 TR3 = 62.9 + 0.49 * 3 = 64.37

Obtaining Forecast Values  We learn that the forecast values can be 
obtained by replacing At with Ft in Equation 7.2:

	 Ft = TRt * St 	 (7.6)

For example, the composite seasonal index for Q3 is S3 = 0.9622 and 
the trend TR3 = 64.37, therefore:

	 F3 = 64.37 * 0.9622 = 61.94

Dr. Theo reminds us to note the subscript t in Equation 7.6 for Ft instead 
of t + 1 as in Chapters 2 through 4. In the decomposition technique, we 
assume that the cycle will repeat itself in the years ahead so that the calculated 
indices can be used to forecast for a whole new year or years ahead instead of 
one-period forecasts. In the preceding example, data are available up to the 
fourth quarter of the fifth year, so we can use the calculated indexes to obtain 
forecasts for the four quarters in the sixth year, the seventh year, and so on. 
This will become clear when we get to the section on “Excel Applications.”

Adding the Cyclical Component

Dr. Theo now adds the cyclical component, so the four-component model is:

	 At = Tt * Rt * St * Ct	 (7.7)

where Ct is the cyclical component at time t.
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He reminds us that calculations of the composite seasonal index SQ 
and time-random index TRQ are the same as earlier except that a cyclical 
component is assumed. Hence, we can use the same SQ and TRQ. The 
next step is to calculate the cyclical-random index, which can be obtained 
using the following equation:

	 CRt = Ct * Rt = At / (St * TRt) 	 (7.8)

Once CRt is calculated, the cyclical component C is isolated from 
CR (i.e., we are derandomizing the cyclical component) by calculating 
moving averages of the CR data to smooth out the randomness. 
The order of the moving average depends on the length of the business 
cycle. For example, if MA(5) is selected, then the results are put in the 
center of each five-period horizon. The values of MA(3) can be adopted 
for shorter cycles.

Once the cyclical component C is obtained, the random component 
R can be isolated:

	 Rt = CRt /Ct	  (7.9)

A random index of 1.00 implies no randomness in the series. Dr. Theo 
reminds us that this random component is not needed to calculate the 
forecast values because it has been incorporated into TRt. This random 
component is just to show how random the time series is. Finally, forecast 
values are calculated using Equation 7.7 with Ft in place of At:

	 Ft = TRt * St * Ct	 (7.10)

To conclude this theoretical section, Dr. Theo reminds us that 
an additive model for the decomposition technique is possible and is 
discussed in Gaynor and Kirkpatrick (1994).

Excel Applications

Fligh is collecting data on tourism and shares with us one of his datasets 
on hotel occupancy in Maui, Hawaii. The data are from the first quarter 
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of 2008 through the second quarter of 2013 and are available in the file 
Ch07.xls, Fig.7.1.

Dr. App tells us that it is more convenient to obtain the regression 
results for the TRt line first so that the steps of decomposition calculations 
can be grouped together in one figure.

Estimating the TRt Line

We learn that we need to perform the following steps:

Go to Data then Data Analysis, select Regression then click OK
Enter the input Y range C1:C23 and the input X range D1:D23
Check the Labels box and the button at the Output Range box
Enter F1 into the box then click OK and then OK again to overwrite 

the data.

Figure 7.1 displays the results of the regression with the hotel occu-
pancy as a dependent variable and the time period as an independent 
variable. From this figure, you can see that the coefficient estimate of the 
TRt line is positive and statistically significant, implying an upward trend.

The data in this figure also reveal that the high season is in the first 
quarter and the low season is in the second quarter. Additionally, the 
hotel occupancy reached a high value of 80.9 percent in the first quarter 

Figure 7.1  Regression results for the TRt line

Data Source: Department of Business, Economic Development, and Tourism: State of Hawaii 
(2014).
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of 2008, dropped to a trough of 56.3 percent in the second quarter of 
2009, and it again rose to 80.2 percent in the first quarter of 2013. Since 
the seasonal pattern is clear, decomposition is the appropriate technique.

Three-Component Decomposition

Constructing Seasonal-Random Indexes for Individual Quarters (SRt)  
The file Ch07.xls, Fig.7.2, shows the same quarterly data on the Maui 
hotel occupancy as those in the file Ch07.xls, Fig.7.1. We must proceed 
as follows:

In cell E4, type = (D2 + D3 + D4 + D5)/4 and press Enter
Copy and paste the formula into cells E5 through E23
In cell F4, type = (D3 + D4 + D5 + D6)/4 and press Enter
Copy and paste the formula into cells F5 through F23
In cell G4, type = (E4 + F4)/2 and press Enter
Copy and paste the formula into cells G5 through G23
In cell H4, type = D4/G4 and press Enter
Copy and paste the formula into cells H5 through H23

The seasonal-random indexes for individual quarters is displayed in 
column H of Figure 7.2.

Figure 7.2  Decomposition without the cyclical componet: obtaining 
forecast values
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Obtaining a Composite Seasonal Index (S)  Cells I4 through I7 display 
the calculations of the average indexes ASQ, and cell I8 displays their 
sum. We need to perform the following steps:

In cell I4, type = (H4 + H8 + H12 + H16 + H20)/5 and press Enter
Copy and paste the formula into cells I5 through I7
In cell I8 type = SUM (I4:I7) and press Enter
In cell J4 type = I4 * 4/$I$8 and press Enter
Copy and paste the formula into cells J5 through J7
Copy and paste the formula in cell I8 into cell J8 to see that the sum 

is 4.00.
Copy and paste-special the values in cells J4 through J7 into cells K4 

through K27

(We assume that the cycle will repeat itself in the next four quarters.)

Dr. App reminds us that the indexes in cells J4 through J7 are the 
composite seasonal indexes SQ. Thus, you can paste repeatedly and extend 
the periods to t = 26 for forecast values.

Calculating the Trend-Random Values (TRt)  The TRt values are 
calculated by applying the regression results for the TRt line in 
Figure 7.1 into the 26 periods from 1 to 26. Hence,

In cell L4, type = 62.9026 + 0.49424 * B4 and press Enter
Copy and paste the formula into cells L5 through L27.

Obtaining Forecast Values (St * TRt)  We learn that the following steps 
must be performed:

In cell M4, type = K4 * L4 and press Enter
Copy and paste the formula into cells M5 through M27.
The forecast values for the next four periods are displayed in cells M24 

through M27.

Dr. App reminds us that we can extend the forecasts into the long-term 
future by simply extending data in columns K and L as far as you need.
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Adding Cyclical Component

We find that the file Ch07.xls, Fig.7.3, retains most of the data from the 
file Ch07.xls, Fig.7.2, except for the calculations of the seasonal indexes. 
We proceed with this exercise as follows:

In cell G4, type = D4/(E4 * F4) and press Enter
Paste the formula into cells G5 through G23
Copy and paste-special the values in cells G20 through G23 into cells 

G24 through G27
In cell H6, type = (G4 + G5 + G6 + G7 + G8)/5 and press Enter
Copy and paste the formula into cells H7 through H25
In cell I6, type = G6/H6 and press Enter
Copy and paste the formula into cells I7 through I25
(The results in column I are only used to show the randomness of the 

data. They are not used for forecasting)
In cell J6, type = E6 * F6 * H6 and press Enter
Copy and paste the formula into cells J7 through J25

The forecast values for the next two periods are in cells J24 and J25.

Figure 7.3  Decomposition with cyclical component: obtaing forecast 
values
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Triple Exponential Smoothing

The first approach to the triple exponential smoothing is called Holt–
Winters exponential smoothing (HWE) thanks to Winters (1960) who 
modified the original model by Holt (1957). The HWE uses a seasonal 
index similar to the decomposition technique (DT). Different from the 
DT, the HWE adds a third equation to the existing two equations of 
the double exponential smoothing (DE) instead of decomposing other 
components of the time series.

The second approach to the triple exponential smoothing is called the 
higher-order exponential smoothing (HOE) because it adds a nonlinear 
term to the trend equation. The nonlinear term could be in quadratic, cubic, 
logarithmic, or any other form depending on the curvature of the series.

Concept

Holt–Winters Exponential Smoothing 

This model comprises three equations with three parameters. The first 
parameter, a, is used to smooth out the original series:

	 Et = a(At / St−L) + (1 − a) * (Et−1 + Tt−1), 0 < a < 1,	 (7.11)

where
L = the length of the cyclical component
S = the seasonal index
L = 4 if quarterly data are used
L = 12 if monthly data are used (Lapin 1994). The subscript (t − L) indi-
cates that the seasonal factor is considered from L periods before period t

At this point, Arti asks, “Does that mean that the HWE uses the 
individual seasonal indexes instead of the composite ones?” Dr. Theo 
commends her for the correct observation and provides us with an 
example from Figure 7.3, where the actual data on hotel occupancy for 
the first quarter of 2012 should be divided by the seasonal index for the 
first quarter of 2011:

	 EQ1, 2012 = a(AQ1, 2012/SQ1, 2011) + (1 − a) * (EQ4, 2011 + TQ4, 2011)
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The second parameter, b, is used to smooth out the trend Tt, which is 
the same as the one in Chapter 4:

	 Tt = b(Et − Et−1) + (1 − b) Tt−1, 0 < b < 1	 (7.12)

The third parameter, c, is used to smooth out the seasonal changes:

	 St = c(At / Et) + (1 − c) St−L, 0 < c < 1	 (7.13)

The equation for the multiple period forecasts is:

	 Ft+m = (Et + Tt m) * St -L+m	 (7.14)

Because the three distinct parameters are used in the three equations, 
this approach is also called three-parameter exponential smoothing.

Higher-Order Exponential Smoothing

This approach is appropriate when the curvature of the trend is observed. 
Adding a quadratic term is suitable if the curve is convex, that is, the 
trend rises at increasing rates over time. If the curve is concave, adding a 
logarithmic term is more suitable than a quadratic one.

Alte asks, “How can we know the curvature of the time series?” 
Dr. Theo replies, “Constructing a time series plot will help you recognize 
the shape of the curve and select the model.” He then says that this 
curve fitting processes already smooth out for the seasonal and cyclical 
components, so there is no need to go through the de-seasoning and 
de-randomizing processes as in decomposition technique. Thus, the 
forecast model with a quadratic term added is:

	 Ft+1 = b1 + b2 t + b3 t 
2 + et+1	 (7.15)

where  Ft+1 = the forecasted value of the series at time (t + 1)
b1	 = �the intercept of the trend curve = the initial value of the 

actual data
b2	 = the slope of the linear trend
b3	 = the slope of the nonlinear trend
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If the trend equation is extended to allow a logarithmic term, then 
Equation 7.15 becomes:

	 Ft+1 = b1 + b2 t + b3 ln(t) + et+1	 (7.16)

In Equations 7.15 and 7.16, there are a total of three parameters to 
be estimated, so the technique is also called the triple exponential or 
three-parameter exponential smoothing technique. We learn that estimat-
ing Equation 7.15 or Equation 7.16 to obtain the three parameters and 
the predicted values in one regression is the best approach of forecasting.

Dr. Theo tells us that researchers also try higher-order polynomial 
models (Brown 1963; Montgomery, Jennings, and Kulahci 2008) and 
hence we have the name higher-order exponential smoothing.

Excel Applications

Holt–Winters Exponential Smoothing 

The file Ch07.xls, Fig.7.4, displays the same data from Fligh as those 
in the file Ch07.xls, Fig.7.2, and the calculations using the smoothing 
factors a = 0.4, b = 0.6, and c = 0.7. The data are on hotel occupancy in 
Maui, Hawaii from the first quarter of 2008 through the second quarter 
of 2013. The initial exponential smoothing value is chosen as the first 
actual value, and the first trend value is calculated by averaging the first 
two trend values. We learn to proceed as follows:

Figure 7.4  Holt-Winters exponential smoothing: obtaining forecast values



156	 SEEING THE FUTURE

In cell G7, type = ((D7 − D6) + (D5 − D4))/2, then press Enter
In cell F8, type = 0.4 * (D8/E4) + 0.6 * (F7 + G7), then press Enter
Copy and paste the formula into cells F9 through F15
In cell G8, type = 0.6 * (F8 − F7) + 0.4 * G7, then press Enter
Copy and paste the formula into cells G9 through G15
In cell H8, type = 0.7 * (D8/F8) + 0.3 * E4, then press Enter
Copy and paste the formula into cells H9 through H15
In cell I12, type = (F11 + G11) * H8, then press Enter
Copy and paste the formula into cells I13 through I16
The one period forecast is in cell J16

For multiperiod forecasts, follow the same alternative procedures as 
those in Chapter 4. The advantage of the HWE is that it can be used for 
data that exhibit seasonal patterns in addition to the two deterministic 
and random components as in moving average and DE techniques.

Higher-Order Exponential Smoothing

Cita is doing research on the behavior of the firms and shares with us data 
on labor force from the Department of Business, Economic Development, 
and Tourism in Hawaii. Data are for the first quarter of 2006 through the 
second quarter of 2013 and are available in the file Ch07.xls, Fig.7.5. 
To select an appropriate model for regression, we need to construct a time 
series plot. Figure 7.5 displays this plot, which shows a concave curve and 
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Data Source: Department of Business, Economic Development, and Tourism: State of Hawaii (2014).
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implies that adding a logarithmic trend to the forecast model appears to 
be the best strategy.

Hence, the econometric model is written as:

	 LABORt+1 = b1 + b2 TIMEt + b3 ln(TIMEt) + et+1

We learn to perform the following steps with the data in the file Ch07.xls,  
Fig.7.6:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is D1:D31, the input X range is B1:C31
Check the boxes Labels and Residuals
Check the button Output Range and enter G21 then click OK
(We place the results into cell G21 to make the next steps of calcula-

tions convenient)
A dialogue box will appear, click OK to overwrite the data

Dr. App reminds us to click on Residuals so that predicted values are 
reported in the Excel results. Sections of the regression results and data 
(from time period t = 26 through t = 30) are displayed in Figure 7.6. 
We also notice that the actual and predicted values from Excel results end 
at period t = 30, where a dark line marks the end in cell E31. The advan-
tage of this approach is that multiperiod forecasts can be easily obtained. 

Figure 7.6  Higher-order exponential smoothing: obtaining forecast 
values
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The values in cells E32 through E39 are multiperiod forecasts. To proceed 
with this exercise, we must follow these steps:

Copy and paste the formula in cell C31 into cells C32 through C39
In cell E32, type = $H$37 + $H$38 * B32 + $H$39 * C32, then press 

Enter
Copy and paste this formula into cells E33 through E39

Dr. App reminds us that we can extend the forecasts as far as we wish 
into the future. The results from Figure 7.6 also confirm our intuition 
that a combination of a logarithmic trend and linear trend is suitable 
for this time series: coefficient estimates of both variables are statistically 
significant with p-values of TIME and ln(TIME) equal 0.0035 and 
0.041, respectively.

Dr. Theo says that sometimes our selection of a model might not be 
suitable. If the model is not statistically significant, then we will need 
adjustments as discussed in Chapters 5.

A Brief Introduction to AR and ARIMA Models

The name ARIMA sounds so pretty that we are curious to learn about 
the model. The autoregressive (AR) and autoregressive integrated moving 
average (ARIMA) models belong to time series analyses instead of 
associative analyses because they involve only the dependent variable and 
its own lags instead of an outside explanatory variable.

Concept

AR and ARIMA models explore the characteristics of a time series dataset 
that often has the current value correlated with its lagged values and can 
be used for multiple period forecasts.

AR models

A dependent variable in an AR model can contain numerous lags. The 
model is denoted as AR( p), where p is the number of lags. When a 
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dependent variable is correlated to its first lag only, the model is called an 
autoregressive model of order one and is denoted as AR(1):

	 yt = ayt−1 + et 	  (7.17)

If |a| < 1, then the series is stationary because the series gradually 
approaches zero when t approaches infinity. When |a| ≥ 1, the series is 
nonstationary: If a >1, then the series explodes when t approaches infinity. 
If |a| = 1, the series is said to follow a random walk because it is wandering 
aimlessly upward and downward with no real pattern:

	 yt = yt−1 + et 	 (7.18)

At this point, Ex asks, “Why is the process called a random walk?” Fin 
raises his hand and offers a story to explain the concept, “A drunken man 
behind the wheel was stopped by a police officer, who then asked him to 
walk a straight line. Of course the man could not do it. He just wandered 
aimlessly one step to the right, one step to the left, going forward one 
step, and then going backward one step. Hence, the best you can guess of 
his next step is to look at his previous step and add some random error to 
it. This is exactly what we see in Equation 7.18.”

Dr. Theo thanks Fin for the fun story and says that et is assumed to 
be independent with a mean of zero and a constant variance. He then 
continues, “If all lagged variables are stationary as in Equation 7.17, 
regressions using OLS can be performed, and multiple period forecasts 
can be obtained by the same recursive principle discussed in Chapter 6.  
For example, a model with a constant and two lagged values can be 
estimated as:

	 y∧ t = â1 + â2 yt−1 + â3 yt−2

	 y∧ t+1 = â1 + â2 y
∧

t + â3 yt−1

	 y∧ t+2 = â1 + â2 y∧ t+1 + â3 y
∧

t

Hence, long-term forecasts can be obtained in a very convenient 
manner.”
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Point Forecasts

We then break into groups to work on the following example. Estimating 
a stationary AR(2) model of Galaxy phone sales from a telephone shop in 
our city gives the following results:

	 SALEt = 0.54 SALEt−1 + 0.48 SALEt−2

Sale values are known as SALEt = $4800 and SALEt−1 = $4700. 
Thus:

	 SALEt+1 = 0.54 SALEt + 0.48 SALEt−1

	 = 0.54 * 4800 + 0.48 * 4700 = 4848

	 SALEt+2 = 0.54 SALEt+1 + 0.48 SALEt

	 = 0.54 * 4848 + 0.48 * 4800 ≈ 4922

	 SALEt+3 = 0.54 SALEt+2 + 0.48 SALEt+1

	 = 0.54 * 4922 + 0.48 * 4848 ≈ 4985

Dr. Theo tells us that when a series follows a random walk, we 
might obtain significant regression results from completely unrelated 
data, which is called a spurious regression. He assures us that if one of 
the lagged variables has unit coefficient (ak = 1), taking the first differ-
ence of the equation can turn it into a stationary series. For example, 
taking the first difference of Equation 7.18 yields a first differencing 
model:

	∆ yt = yt − yt−1 = et 	  (7.19)

∆yt is a stationary series because et is an independent random variable 
with a mean of zero and a constant variance. Any series that can be made 
stationary by taking the first difference is said to be integrated of order one 
and is denoted as an I(1). Any series similar to ∆yt is said to be integrated 
of order zero and is denoted as an I(0). This characteristic can be applied 
in forecasting an AR( p) model, in which ( p − 1) series are stationary. 
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For example, an AR(3) model that has the first lagged series nonstationary 
is as follows:

	 yt = yt−1 + a2 yt−2 + a3 yt−3 + et, where |a2| <1 and |a3| <1

	∆ yt = yt − yt−1 = a2 yt−2 + a3 yt−3 + et	  (7.20)

Estimation can be performed on Equation 7.20 using the OLS tech-
nique. Once coefficient estimates are obtained, the predicted value of ∆yt 
can be calculated. Since yt−1 is known, yt can be calculated, which allows 
for multiperiod forecasts.

We then work on the next example. A restaurant estimates this equa-
tion for its sale values:

	 ΔSALEt = SALEt − SALEt−1 = 0.12 SALEt−2 + 0.08 SALEt−3

Sale values are known as SALEt = $4200, SALEt−1 = $4100, and 
SALEt−2 = $4000. Hence:

	 ΔSALEt+1 = SALEt+1 − SALEt = 0.12 SALEt−1 + 0.08 SALEt−2

	 = 0.12 * 4100 + 0.08 * 4000 = 812	

	 SALEt+1 = 812 + SALEt = 4200 + 812 = 5012

	 ΔSALEt+2 = SALEt+2 − SALEt+1 = 0.12 SALEt + 0.08 SALEt−1

	 = 0.12 * 4200 + 0.08 * 4100 = 832

	 SALEt+2 = 832 + SALEt+1 = 832 + 5012 = 5844

Dr. Theo then reminds us that the first differenced model can be 
extended to panel data. The suitable case for using first differencing in panel 
data is that the error term follows a random walk (Wooldridge 2013). In 
this case, taking the first difference serves two purposes: (i) to eliminate the 
intercept a1i presented in Equation 6.24, and (ii) to make ∆e become an I(0):

	

e e v
y a a x a x e
y y a x

it i t it

it i i it i it it

it i t i

= +
= + + +
− =

−

−

,

, (

1

1 2 2 3 3

1 2 2iit i t i it i t it i tx a x x e e− + − + −− − −2 1 3 3 3 1 1, , ,) ( ) ( )
  (7.21)



162	 SEEING THE FUTURE

Interval Forecasts

The formula for the standard error of the regression, s, in AR(p) models 
is still the same:

	 s
N K

=
−

SSE

However, the formulas for the standard error of the forecast, se( f   ), 
can be calculated in a more precise manner than the ones in the previous 
chapters and are shown in Hill, Griffiths, and Lim (2011):
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For AR(1) models, the first two se( f    ) values are the same as in 
Equation 7.22, but the se( f  ) for the interval forecasts can be extended 
into m periods ahead as shown in Griffiths, Hill, and Judge (1993):

	
se f st m

m( ) [ ... ]( )
+

−= + + + +∧ ∧ ∧2
2
2

2
4

2
2 1 1a a a 	 (7.23)

As an example, suppose that SSE = 1260 and T = 40. The point 
forecasts from the previous example are:

 SALEt+1 = 0.54 SALEt + 0.48 SALEt−1 �= 0.54 * 4800 + 0.48 * 4700  
= 4848

 SALEt+2 = 0.54 SALEt+1 + 0.48 SALEt �= 0.54 * 4848 + 0.48 * 4800  
≈ 4922

 SALEt+3 = 0.54 SALEt+2 + 0.48 SALEt+1 �= 0.54 * 4922 + 0.48 * 4848  
≈ 4985



	 ADVANCED TIME SERIES TECHNIQUES	 163

The standard errors of the forecast errors are:

	
s se f st
2

1
1260
40 2

33 1579 33 1579 5 7583=
−

= = = =+. ; ( ) . .

	 se f t( ) . * ( . ) . * . .+ = + = =2
233 1579 0 54 1 33 1579 1 2916 6 5442

	
se f t( ) . * ( . . ) .+ = + + 3

2 233 1579 0 54 0 48 1 2916

	 = =33 1579 1 8870 7 91. * . . 	

Thus, the interval forecasts for a 95 percent confidence interval are:

	 SALEt+1 = 4848 ± 5.7583 * 2.024 = (4836; 4860)

	 SALEt+2 = 4922 ± 6.5442 * 2.024 = (4909; 4935)

	 SALEt+3 = 4985 ± 7.91 * 2.024 = (4969; 5001)

ARMA versus ARIMA

When a dependent variable is correlated to a lagged value of its errors, the 
model is called a moving average of order one and is denoted as MA(1):

	 yt = a et−1	  (7.24)

Combining an AR(1) and an MA(1) gives an ARMA(1, 1) model:

	 yt = a1 yt−1 + et + a2 et−1	  (7.25)

If the series can be made stationary by taking the first difference, 
the ARMA(1, 1) becomes an ARIMA(1, 1, 1), where the letter I in the 
middle of ARIMA stands for integrated of order one.

The model can have any order. Hence, a general ARIMA model can 
be written as an ARIMA ( p, d, q), where p is the order of autoregressive, 
d is the order of integration (differencing), and q is the order of moving 
average. Once an ARIMA model is specified, the value for period (t + 1)  
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can be forecasted by substituting the value for period t into Equation 7.17 
or Equation 7.18 and continue for the subsequent periods using the 
recursive principle.

For choosing p and q in the ARIMA ( p, d, q) model, a model search 
process called Box–Jenkins procedure is often followed. The Box–Jenkins 
procedure consists of three steps. The first step is the model identification, 
in which a model is derived based on economic theories. The second step 
is the estimation, in which regressions are performed. The third step is the 
diagnostic checking, in which tests are carried out and residual plots are 
produced to evaluate the robustness of the model. The procedure is then 
repeated until the best model is obtained.

To conclude the section, Dr. Theo says that the topic of ARIMA 
models requires an in-depth knowledge of time series analysis and is 
beyond the scope of this textbook. He encourages us to read a book 
written specifically for time series modeling if we are interested in ARIMA 
models and the Box–Jenkins procedure.

Testing for Stationarity

We learn that the test is called the Dickey–Fuller test or unit-root test 
because a series is stationary if a < 1. The null hypothesis is that y is nonsta-
tionary. The calculations of the statistic values are the same as those of the 
t-statistics. However, when y is nonstationary, the variance of y is inflated 
and so the distribution is no longer a t-distribution but follows a τ (tau)  
distribution. The statistic is therefore called τ-statistic (tau-statistic).  
The original equation to derive the test is:

	 yt = ayt−1 + et

Subtracting yt−1 from both sides yields:

	 yt − yt−1 = (a − 1) yt−1 + et

	 Δyt = c yt−1 + et	  

where

	 c = a – 1	 (7.26)
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If a = 1 then c = 0, so Equation 7.26 is very convenient to test because 
t-statistics in all quantitative packages are for a test of significance with 
the null hypothesis for c = 0. The four steps of the Dickey–Fuller test are 
similar to those in Chapter 5 with the hypotheses:

	 H0: c = 0; Ha: c < 0

To perform the Dickey–Fuller test, the model in Equation 7.26 is 
often extended to allow for a constant term and a trend. The model with 
the constant term is:

	 Δyt = a1 + c yt−1 + et	 (7.27)

The model that adds the trend is:

	 Δyt = a1 + c yt−1 + b t + et	 (7.28)

Dr. Theo says that these three models are usually estimated concur-
rently so that the most appropriate model is selected based on whether or 
not the constant term or the trend is significant. The τ-critical values for 
Dickey–Fuller tests are organized into tables that are three pages long in 
Fuller (1976, 371–3). For instructional purposes, Table 7.1 displays the 
most important ones based on OLS estimates for large samples and are 
reformatted to fit the preceding models.

Since τ-statistics have the same values as t-statistics, you can look 
for the standard errors from Excel Summary Outputs and calculate the  
t-statistics using the same formula for those in Chapter 5. Hence, the four 
standard steps of the Dickey–Fuller tests are as follows.

Table 7.1  Critical values for Dickey–Fuller τ distribution

Significance Level 0.01 0.025 0.05 0.10
For model (7.26) −2.58 −2.23 −1.95 −1.62

For model (7.27) −3.43 −3.12 −2.86 −2.57

For model (7.28) –3.96 −3.66 −3.41 −3.12

Source: Adapted from Fuller (1976, 373).
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	 i.	H0: c = 0; Ha: c < 0.
	 ii.	Calculate τ-statistics = t-statistics.
	 iii.	Find τ-critical.
	 iv.	Decision: If |τ-statistics| > |τ-critical| (or τ-statistics < τ-critical), we 

reject H0, meaning c < 0, implying the model is stationary.

Dr. Theo reminds us that we can extend the preceding models to 
allow more lags and still use the critical values listed in Table 7.1.

Excel Applications

Dr. App starts this section by informing us that we will need special statis-
tical packages to perform estimations and obtain forecasts with ARIMA 
( p, d, q) models. Hence, she only provides demonstrations for the AR( p) 
model in the following section.

Sol is doing research on the effect of the solar energy on electricity 
companies. She shares with us a monthly dataset on the sales of electricity 
for commercial facilities in Kauai from the Department of Business, 
Economic Development and Tourism in Hawaii. The data are available 
in the file Ch07.xls, Fig.7.8.

Testing Stationarity

We first estimate Equation 7.26 by regressing ΔELECTt on ELECTt−1 
without a constant term:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E99, the input X range is D1:D99
Check the boxes Labels and Constant is Zero
Check the button Output Range and enter I1 and click OK
Click OK again to overwrite the data

We learn that Figure 7.7 displays coefficient estimates and their  
t-statistics for the three regressions of Equations 7.26, 7.27, and 7.28. Panel 
7.8a is for Equation 7.26. Panels 7.8b and 7.8c are for Equations 7.27 
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and 7.28, respectively. We then continue with the second regression of 
ΔELECTt on ELECTt−1 for Equation 7.27, which has the constant term 
added to the model:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E99, the input X range is D1:D99
Check the box Labels (this time do not check on the box Constant is 

Zero)
Check the button Output Range and enter N1 and click OK
Click OK again to overwrite the data and obtain the results in 

Panel 7.8b

Finally, we perform the third regression of ΔELECTt on ELECTt−1 

and TIME for Equation 7.28:

Go to Data then Data Analysis, select Regression and click OK
The input Y range is E1:E99, the input X range is C1:D99
Check the box Labels
Check the button Output Range and enter S1 and click OK
Click OK to overwrite the data and obtain the results in Panel 7.8c

From the results in Panel 7.8a, the null hypothesis is not rejected, 
implying that the model is not stationary. From the results in Panel 7.8b 
and 7.8c, the null hypotheses are rejected for the second and the third 
models, implying the stationarity of each model. Panel 7.8c also shows 
that the trend is significant. Hence, forecasting should be performed 
using the third model in Panel 7.8c.

Figure 7.7  Regression results for the Dickey–Fuller tests

Data Source: Department of Business, Economic Development, and Tourism: State of Hawaii 
(2014).
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Forecasting with AR Models

Since we choose Equation(7.28), of which the results are displayed in 
Panel 7.8c, using the recursive principle to project one period forward 
yields:

	 ΔELECTt+1 = 9,533,512 − 10082 TIME − 0.3889 ELECTt

The data shows that ELECTFeb-06 = 21,761,678, so

ΔELECTMar-06 �= 9,533,512 − 10082 * 1 − 0.3889 * 21,761,678  
= 1,060,313

ELECTMar-06 �= ELECTFeb-06 + ΔELECTMar-06 = 21,761,678 + 1,060,314 
= 22,821,991

To obtain the multiperiod forecasts in Excel, we must perform the 
following steps:

In cell F3, type = 9533512 − 10082 * C2 − 0.3889 * B2 and press 
Enter

(Alternatively, you can enter the cell numbers in cells T17, T18, and 
T19, respectively)

In cell G3, type = B2 + F3 and press Enter
In cell F4, type = 9533512 − 10082 * C3 − 0.3889 * G3
Copy and paste the formula into cells F5 through F103
(Ignore the values at this moment, as the formula in cell G4 needs to 

be adjusted)
In cell G4 type = G3 + F4
Copy and paste the formula into cells G4 through G103 for multi-

period forecast

Dr. App concludes, “You can extend the forecasts into long-term 
future by extending columns F and G. You can also obtain the interval 
forecasts by typing the formulas in the section on “Concept” under 
“A Brief Introduction to AR and ARIMA Models” in any Excel cells using 
the mathematical operations learned throughout this book. However, a 
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handheld calculator is doing just as well and so no Excel application is 
introduced for interval forecasts.”

Exercises

1.	The file Hawaii.xls contains data on the number of visitor arrivals to 
the Big Island of Hawaii from Quarter 1, 2008, to Quarter 2, 2013. 
Obtain point forecasts for the next four quarters (Quarter 3, 2013, 
through Quarter 2, 2014) using the decomposition technique with-
out the cyclical component.

2.	Use the dataset in (1) to obtain point forecasts for the next four 
quarters (Quarter 3, 2013, through Quarter 2, 2014) using the 
decomposition technique with the cyclical component and MA(5) 
to de-randomize the cyclical component.

3.	The file Molokai.xls contains data on oil consumption in Molokai, 
Hawaii. Perform the Dickey–Fuller tests on Equations 7.26, 7.27, 
and 7.28.

4.	Use the dataset in (3) to obtain point forecasts for the next four 
periods by performing a regression on model (7.28) and by using the 
recursive principle to project the model forward.

5.	The file Kauai.xls contains data on energy consumption (ENER) in 
Kauai for the period from February 2006 through March 2014.

	 a.	Estimate the AR(1) model by regress ENERt on ENERt−1

	 b.	Obtain the first-period interval forecast (m = 1) following the 
formula in Equation 7.22 and the subsequent example.





PART IV

Business and Economic 
Applications of Forecasting

This part contains three chapters:

•	 Chapter 8 Business Models
•	 Chapter 9 Economic Models
•	 Chapter 10 Business Cycles and Rates of Changes





CHAPTER 8

Business Models

Sol comes to the class today with exciting news. A new customer at 
her Solarists store wants to sign a contract with her company in a joint 
production process. The customer will start a new company called 
Photoics that installs the photovoltaic systems for the city residents while 
her company will provide solar panels. For inventory planning, her boss 
wanted her to forecast the demand of the photovoltaic systems. Unfor-
tunately, data on the photovoltaic demand for the city are very limited 
because this is a new product. How can she solve the problem?

Dr. Theo is very glad that she raises the question. He says that one 
of the sections in this chapter will address her problem. Several business 
models of the associative analyses using either nonregression or regression 
techniques will be introduced. Upon completion of the chapter, we will 
be able to:

1.	Analyze the concept of operational forecasting.
2.	Describe each of the financial forecast techniques.
3.	Explain the two diffusion models to forecast sales and demand for a 

new product.
4.	Apply Excel commands while forecasting the models in (1), (2), 

and (3).

We are looking forward to learn these practical models.

Operational Forecasting

Operational forecasting involves various departments in a company such 
as manufacturing, input purchases, marketing, sales, and so on. Krueger 
(2008) introduced a running forecast technique, of which a simplified 
version is summarized in this section.
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Running Forecasts

Dr. Theo explains, “In a running process, forecasts are calculated for 
the coming multiple periods but are revised each period throughout the 
horizon. For example, a company can start from January and calculate 
forecasts for the next 12 months. The full cycle repeats by the follow-
ing January. However, the forecasts are revised each month throughout 
the next 12 months. This is another forecast of forecast technique, where 
demand for a company’s product has been forecasted using any of the 
techniques introduced in the previous chapters. Based on the demand 
forecasts, the company develops operational plans to order inputs, deliver 
its products, or post advertisements for its coming products.”

Dr. Theo then asks, “Is there any of you who is familiar with the 
technique?” Arti raises her hand to share her experience. Her Artistown 
School usually orders books from nationwide suppliers to sell to its stu-
dents. In the past, they ordered exactly the same number of books every 
month. Since enrolling in this class, she has been able to forecast the 
student demand more accurately. She now looks forward to learning 
this forecast of forecast technique so that she can efficiently place book 
orders. For the instructional purposes, she shows us a full dataset in the 
file Ch08.xls, Fig.8.3.

Dr. Theo picks the first four months of the dataset and makes a 
simplification by rounding the number of books to the nearest tens. 
This  subset is displayed in Table 8.1 and can be calculated using a 
handheld calculator.

Table 8.1  Artistown School: balance sheet before book orders are 
placed

(1) (2) (3) (4) (5) (6) (7)

Month Forecast Inventory Reserve Balance Order Arrive

December 100

January 30 100 − 30 = 70 30 * 0.5 = 15 70 − 15 = 55 0 0

February 40 70 − 40 = 30 40 * 0.5 = 20 30 − 20 = 10 0 0

March 50 30 − 50 = −20 50 * 0.5 = 25 −20 −25 = −45 0 0

April 70 −20 − 70 = −90 70 * 0.5 = 35 −90 − 35 = −125 0 0
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Arti points out that in this figure, column (2) reports her forecasts 
of book demands from January through April. She also says that she 
calculated these forecasts in the December of the previous year. In column 
(3) she begins with 100 books, which were the remaining inventory 
from December. Each of the other values in column (3) is the projected 
remaining inventory at the end of each month.

Column (4) represents the reserve of books for emergency when 
demand from the students suddenly increases. At Artistown School, the 
reserve is 50 percent of the monthly demand. Column (5) is the balance 
if no book is ordered and so no book will arrive at the studio. For this 
reason, the values in columns (6) and (7) are all zeros. Arti wants us to 
help her fill out these two columns.

We look at columns (3) and (4) of this figure and focus on the values 
in March to discover that there is a shortage of 20 books to satisfy the 
forecast demand of 50 and another shortage of 25 books for the reserve in 
March. Hence, the total shortage is 45 books in column (5) if no shipment 
arrives in March. This total shortage will rise to 125 books if no shipment 
arrives in April. Dr. Theo points out that the variables in columns (6) and 
(7) depend on the values in columns (2) through (5). Arti says her school 
often plans two months ahead for the number of books to be ordered 
because it takes six to eight weeks for the books to arrive.

We break into groups to discuss the solutions to the problem. 
Table 8.2 reports these forecasts of book orders to be placed in January 
and February. The forecasts can be made for a whole year and can be 
adjusted each month. Because there will be a shortage of 45 books in 
March, this amount needs to be ordered in January so that they can arrive 
by March. These 45 books will be added to the remaining inventory of 
30 books from February to make an inventory of 75 books. This new 
book total satisfies both the demand of 50 books in March and the reserve 
of 25 books. Hence, the balance in March becomes zero.

In February, if the school follows the value on the last row of 
column (5) in Table 8.1, which is −125, and orders 125 books, then there 
will a surplus of 45 books, which was already ordered in January. Hence, 
the school needs to adjust the forecast and reduces its order to 80 books  
(= 125 − 45), which adds to the 25 books remaining from March to make 
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105 books by April, just enough to satisfy both the demand of 70 books 
in April and the reserve of 35 books.

We now see that we can continue to obtain our forecasts in a rolling 
process and so it is called the running forecast technique.

Excel Application

Arti reminds us that Figure 8.1 displays the full dataset of her Artistown 
School for 13 months and that the data and commands are available in 
the file Ch08.xls, Fig.8.3.

Columns B through F are equivalent to columns (1) through (5) in 
Table 8.1, of which columns (6) and (7) are not displayed in Figure 8.1 
because they all contain zero values. Columns H through L are equiva-
lent to columns (3) through (7) of Table 8.2, of which columns (1) and 
(2) are already in columns B and C in Figure 8.1. Column M is added 

Table 8.2  Artistown School: balance sheet after book orders are 
placed

(1) (2) (3) (4) (5) (6) (7)

Month Forecast Inventory Reserve Balance Order Arrive
December 100

January 30 100 – 30 = 70 30 * 0.5 = 15 70 – 15 = 55 45 0

February 40 70 − 40 = 30 40 * 0.5 = 20 30 – 20 = 10 80 0

March 50 75 − 50 = 25 50 * 0.5 = 25 25 – 25 = 0 45

April 70 105 – 70 = 35 70 * 0.5 = 35 35 − 35 = 0 80

Figure 8.1  Artistown School: running forecasts of book orders



	 BUSINESS MODELS	 177

to calculate cumulative purchases over time. Initially, only the demand 
forecasts and the remaining inventory in December are known. We need 
to perform the following steps:

In cell D3, type = D2 − C3 and press Enter
In cell E3, type = 0.5 * C3 and press Enter
In cell F3, type = D3 − E3 and press Enter
Copy and paste the formula in cells D3, E3, and F3 into cells D4 

through F15
Copy and paste-special the values in cells D2 through D4 into cells 

H2 through H4
In cell H5, type = L5 + H4 − C5 and press Enter
Copy and paste the formula in cell H5 into cells H6 through H15
(Ignore the temporary values, which will be adjusted gradually in a 

running process)
Copy and paste-special the values in cell E2 through E15 into cells I2 

through I15
In cell J3, type = H3 − I3 and press Enter
Copy and paste the formula in cell J3 into cells J4 through J15
(Ignore again the temporary values, which will be adjusted gradually)
In cells K3 and M5, type the number 45
In cell L5, type = K3 then press Enter
Copy and paste the formula in cell L5 into cells L6 through L15
In cell M6, type = M5 + L6
Copy and paste the formula in cell M6 into cells M7 through M15
In cell K4 type = ABS(F6) − M5 then press Enter
Copy and paste the formula in cell K4 into cells K5 through K13
(The last order will be in November for the following January)
The final results in cells J5 through J15 of Figure 8.1 should be all 

zeros

Financial Forecast

Financial forecasting covers any subject related to financial markets such 
as expected interest rates, yields to maturity in a bond market, rates of 
returns by holding a stock, assets and liabilities, prices and exchange rates, 
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and so on. Since the topics are numerous, Dr. Theo says we only discuss 
the most frequently used models in businesses.

Bond Markets

In this section, we discuss two groups of models: The first is based on 
expectations theory, which assumes that an investor cares only about 
the expected yield to maturity (YTM) of a bond; the second group adds 
uncertainty to the interest rate.

Calculating Expected YTM

When a company invests in a bond market, the future payment is:

	 FV = PV * (1 + i)T 	 (8.1)

where FV is the future value, PV is the present value, which is also the 
price of the bond, i is the interest rate or the expected YTM if the bond is 
held until it matures, T is the number of years. We can solve for the other 
variables from Equation 8.1:

	 PV = FV/(1 + i)T	
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The term (1 + i) is called the discount factor, and i is the interest rate, 
which is the expected YTM in bond markets and which is also called the 
rate of discount.

At this point, Fin raises his hand to offer an example. A customer came 
to him to invest $200,000 in a bond market. He offered her a bond that 
will pay $225,000 in three years. The customer then asks him, “So what 
is my expected yield per year?” He was able to calculate the YTM for the 
customer as follows:
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The customer was very happy and decided to buy the bond. Fin then 
says that there are two complicated cases that we cannot calculate the 
yield so easily. Dr. Theo asks him if he can share his experience with the 
class. Fin is very happy to oblige, and here is his analysis.

The first case is a fixed payment security, in which a payment on the 
security is the same every year so that the principal is amortized. The 
equation for this security is:
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where P is the principal of the bond, and F is the future payment.
At this point, Dr. Theo interrupts Fin to remind us that the derivation 

of Equation 8.3 is in Appendix 8.A. Fin then continues with his discussion.
In this case, you cannot easily solve for i, so the best strategy is to solve 

for P/F:
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Once this ratio is obtained, educational guesses and adjustments have 
to be made to come up with an expected YTM.

The second case is the coupon bond, which pays a regular interest 
payment until the maturity date, when the face value (V ) is repaid. The 
equation for this security is:
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where P is the price of the bond, F is the future payment, and V is the 
face value.

In this case, you cannot even solve for P/F and will have to start 
guessing with the original equation. For Equation 8.4 or Equation 8.5, the 
guess-and-adjustment process is best worked out on an Excel spreadsheet.
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Dr. Theo says that it is very true and that Dr. App will show us the 
Excel applications later.

Interest Rate Forecasts

Dr. Theo says that in the previous section, we assume that investors only 
care about their returns. In reality, investors also worry about the risk 
incurred by a rise in interest rates, which cause the prices of bonds to fall. 
The uncertainty increases over time, so a term premium is added to the 
interest rates on long-term bonds.

To account for the risk, we have to forecast the interest rate instead 
of using a fixed rate. Currently, there are three models for interest rate 
forecasting (IRF). The first is based on growth theory, which links the 
interest rate to real GDP growth. The second is based on monetary 
theory, which links the interest rate to inflation. And the last one is based 
on financial theory, which links the interest rate to the volatility of the 
financial market.

Dr. Theo says that we will combine all three into an econometric 
model using multiple linear regressions. Hence, the equation is written as:

	 INT GDPG INF INTt
i

t t t t ta a a a e+ += + + + − +1 1 2 3 4 1( int ) 	  (8.6)

where	

	 INTt
i
+1 = the long-term interest rate on bond i at time t

	 GDPGt = the growth rate of real GDP at time t
	 INFt = the inflation, measured by the growth rate of CPI at time t
	 INTt = �the average long-term interest rate (5–30-year U.S.  

Treasuries)
	 intt = �the short-term interest rate (usually on three-month  

T-bills)
(INTt − intt ) = �the term premium, which measures the volatility of the 

market
We learn that we can estimate Equation 8.6 as discussed in Chapter 6 

to obtain point and interval forecasts and that alternative measures of the 
interest rate determinants are in Orphanides and Williams (2011).
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Stock Market

We are very happy to get to this section. We all think that stock markets 
are fascinating because of their high returns, random behavior, and 
competitiveness. It turns out that stock markets are not completely 
random. There are some patterns that help us predict the market values. 
Dr.  Theo says that this section will introduce the capital asset pricing 
model (CAPM), the arbitrage pricing theory (APT) model, and the divi-
dend discount model (DDM).

Capital Asset Pricing Model

The CAPM formulates the expected return on a particular stock as a 
dependent variable of the market risk premium, which is the difference 
between the average return to the stock market as a whole and the interest 
rate on a risk-free bond. First introduced by Treynor (1962), a simple 
version of the model can be constructed as an econometric model for a 
linear regression:

	 R r R r et
i

t
i

t t t
i= + − +b ( ) 	  (8.7)

where

	 Rt
i = the expected return on stock i at time t

	 rt = �the yield (rate of return) on a risk-free bond, often a treasury 
bond (T-bond)

	 Rt = average return to the stock market as a whole
(Rt − rt) = �the market risk premium, which measures the volatility of the 

market
	 bi = the estimated coefficient of the market risk premium

All assumptions on simple linear regressions hold. There are also five 
assumptions on the market:

i.	The market is competitive.
ii.	There are no transaction costs or taxes.

iii.	The investors have all information regarding investment choices.
iv.	All investors can borrow and lend without changing the interest rate.
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Bollerslev, Engle, and Wooldridge (1988) turn this model into a forecast 
model, of which a simple version is introduced here:

	 R r R r et
i

t
i

t t t
i

+ += + − +1 1b ( ) 	  (8.8)

where Rt
i
+1 is the forecast value for the following period. Using this 

model, an expected return of a stock can be forecasted. For example, if 
your regression result yields bi = 0.3, and at a particular time t you find 
Rt = 11%, rt = 1%, then you can calculate the forecast value:

	 Rt
i
+1 = 1% + 0.3 * (11% − 1%) = 4%.

Thus, the expected return of the stock in the next period is 4 percent. 
The estimated coefficient of bi reveals the direction and volatility of a 
stock. If bi > 0, the stock moves in the same direction with the market, 
and if bi < 0, the stock moves in the opposite direction with the market. 
Additionally, if bi < |1|, the stock is less volatile than the market, and if 
bi > |1|, the stock is more volatile than the market as a whole.

APT Model

The APT model is an extension of the CAPM and was developed by 
Ross (1976). This model allows for more than one explanatory variable. 
For example, the stock price of an agricultural sector might depend on 
climate changes and the quality of land. This can be written as an econo-
metric model for multiple regressions:

	 R r R r X et
i

t
i

t t
i

t t
i= + − + + +b b1 2 2( ) ... 	 (8.9)

where X is any factor that affects the expected return of the stock in 
question in addition to the market risk premium. Based on the forecast 
version for the CAPM model, the APT model can also be written as:

	 R r R r X et
i

t
i

t t
i

t t
i

+ += + − + + +1 1 2 2 1b b( ) ... 	 (8.10)

where Rt
i
+1 is again the forecast value for the following period. The regres-

sion results then can be used to calculate the expected return of the stock 
in the following period.
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Ex raises his hand and offers an example: His company’s stock depends 
positively on the income (INC) of its trading partners and negatively on 
the profits (PRO) of its trading competitors. Performing a regression, he 
finds that b INC

i
 = 0.4 for the INC coefficient and bPRO

i  = 0.2 for the 
PRO coefficient. This year, the growth rate of INC is 3 percent and the 
growth rate of PRO is 2 percent. Using Rt = 11%, rt = 1%, and bi = 0.3, 
he forecasts the expected return as:

	 Rt
i
+1 = 1 + 0.3 * (11% − 1%) + 0.4 * 3% − 0.2 * 2% = 4.8%

We are very impressed with Ex’s example, which gives us a feel of a 
real-life situation. Dr. Theo then moves to the next model.

Dividend Discount Model

The DDM utilizes the present value formulas in the section on “Bond 
Markets” to calculate a company’s expected price based on the investment 
value theory by Williams (1938). First introduced by Gordon and Shapiro 
(1956), the model was modified by Gordon (1959) and so was often called 
the Gordon growth model. The main idea is that a company’s stock price 
is worth the sum of all of its future dividend payments. The equation for 
calculating the expected price of a stock is:

	
P

D
i

D
i

D
i

T
T=

+
+

+
+ +

+
1 2

21 1 1( )
...

( )
	  (8.11)

where
P	 = the expected price of a company’s stock
DT = the expected dividend paid by the company at the end of time T
T	 = the number of time periods
i	 = the investor’s discount rate

The investor’s discount rate is subjective. For example, if you want to 
receive at least 5 percent return from investing in any security, then your 
discount rate is 5 percent.

If the actual stock price exceeds the expected one, the stock is over-
valued. In this case, you might want to move some of your shares in this 
stock to a different stock. If the actual stock price is below this expected 
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price, the stock is undervalued, and you can predict that the price of this 
stock will rise. Therefore, it might be profitable to buy some shares of the 
stock. For this reason, the expected stock price is also called the intrinsic 
value or fundamental value of a stock.

Assuming that the company’s profits and subsequent dividends are 
growing at a constant rate over time:

	
P

G
i G

D= +
−







1
0* 	  (8.12)

where
D0 = the initial dividend
G  = growth rate of the company’s profits (Π) and dividends (D)

D0 is known at the beginning, and G can be forecasted using any 
technique introduced in the previous chapters.

At this point, Cita asks, “How can you obtain Equation 8.12 from 
Equation 8.11?” Dr. Theo says that the derivation is in Appendix 8.B.

Sol then gives an example: As a part of her retirement plan, her com-
pany offers her either investing in the company stock or investing in a 
savings account that pays 0.3 percent per quarter. The initial quarterly div-
idend paid by her company four quarters ago is $2 per share, her discount 
rate is 1 percent per quarter, and the average growth rate of her company’s 
profits over the past four quarters has been 0.5 percent per quarter. We are 
able to calculate the expected price of her company’s stock as:

	
P = +

−






=1 0 5
1 0 5

2 6 00.
.

* $ $ .

Dr. Theo then tells us to log on to The Wall Street Journal website 
and look at her company stock price. We find that it is listed on the stock 
exchange for $2.50 today. Thus, we know that the stock is undervalued, 
and there is a high probability that its price will rise in the future. Sol is 
very excited and decides to choose the stock option without delay.

To conclude the section, Dr. Theo reminds us that the assumption of 
a constant growth rate for both profits and the dividends might not hold 
in the long run. Thus, the errors might be large, and it is safer to use this 
model only for short-run forecasts.
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Excel Applications

Dr. App reminds us that Figure 8.2 provides a demonstration for bond 
markets. Columns A through D display calculations for Equation 8.4, 
and columns F and G display calculations for Equation 8.5.

Expected YTM

Alte offers an example from her Alcorner for the case of fixed payments: 
A business loan of $25,000 is provided by a local bank to her business. 
She will repay the bank a fixed amount of $5,000 each year for six years. 
Dr. App tells us to find out the bank’s YTM at the end of the sixth year. 
We find the data in the file Ch08.xls, Fig.8.4, and proceed as follow:

In cell C2, type = A2/B2 and press Enter (hence P/F = 5 as shown in 
cell C2)

(Try the first calculation with any interest rate, e.g., i = 10% = 0.1)
In cell D2, type = (1 − (1/(1 + 0.1))^6)/0.1 and press Enter
Copy and paste the formula in cell D2 into cells D3 through D9 so 

that you can try various rates
(The answer, P/F = 4.35526, is too low, so try to reduce i to 0.09)
Double click on cell D3 and change 0.1 to 0.09 and press Enter
Continue to reduce i by 0.01 gradually from cells D4 through D6 

where you will see the value 4.91732 which is close to 5
In cell D7, change i from 0.06 to 0.055 and press Enter
In cell D8, change i further to 0.054 and press Enter
In cell D9, change i further to 0.0545 and press Enter

Figure 8.2  YTM of the fixed payment security and the coupon bond
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Now you obtain roughly 5.0035, which is at i = 0.0545
Hence, the bank’s YTM is 5.45%

Cita provides an example for the case of a coupon bond: She considers 
buying a bond that pays $1,200 per year for five years and then repays the 
face value of $20,000 at the end of the fifth year. The price of the bond is 
$19,000. She asks us to find the YTM for her.

We try the first calculation again with an arbitrary interest rate 
i = 10% = 0.1. We find the data in columns F and G of the file Ch08.xls, 
Fig.8.4, and proceed as follows:

In cell G2, type = (1200 * (1 − (1/(1 + 0.1))^5)/0.1) + (20000/((1/
(1 + 0.1))^5) and press Enter

Copy and paste cell G2 into cells G3 through G9
Continue to reduce i by 0.01 gradually from cells G4 through G9
Cell G9 shows roughly 19,013, and the calculation bar shows 

i = 0.0721 = 7.21%

Interest Rate Forecasts

Dr. App instructs us to perform a regression of model (8.6) using the data 
in the file Ch08.xls, Fig.8.5, and following the commands in the previous 
chapters. Figure 8.3 displays a section of the regression results and the 
forecasts for the interest rate on a 10-year U.S. Treasury Bond. We choose 
the output range of G21 to place the regression results close to cells B36 
because the command for the forecasting starts in this cell. From this 
figure, the estimated equation is:

	 INT GDPG INFt
i

t t+ = + +1 0 2307 0 4726 1 0971. . * . *

	 + −0 8282. * ( int )INTt t

We find that the forecasts of the explanatory variables are already 
calculated by Dr. App for our convenience. We only have to perform the 
following steps to obtain the forecasts:

In cell B36, type = $H$37 + $H$38 * C36 + $H$39 * D36 + $H$40 
* E36 then press Enter

Copy and paste this formula into cells B37 through B40
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Forecasting Stock Markets

Mo offers us daily data on the prices of his company Motorland stock 
(MOT). He also shares with us daily data on the market risk premium. 
The data are for the period from May 1 to May 30, 2014, and are 
available in the file Ch08.xls, Fig.8.6. We perform a regression of model 
(8.8) for the CAPM model and display a section of the regression results 
in Figure 8.4.

The estimated coefficient of bi is 0.6151, so the estimated equation is:

	 Rt
i
+1 = −0.1414 + 0.6151 * ( )R rt t−

We then use this equation to calculate the expected returns for May 29  
through June 1, 2014: R5/29(MOT) = 0.5607, R5/30(MOT) = 0.5939, and 
R6/1(MOT) = 0.5380. The values R5/29(MOT) and R5/30(MOT) are for 
evaluation by comparing them to the actual values.

Figure 8.3  Forecasting interest rates: regression results and forecasts

Data Source: Federal Reserve.com (2014).

Figure 8.4  Forecasting expected return using CAPM model: 
regression results
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We see that the results reveal a mean absolute percentage error (MAPE) 
of roughly 30 percent, which is too large. Dr. App says, “This is the very 
reason that the model needs to be extended to allow more variables than 
just the market risk premium.” The regression results also show that the 
MOT moves in the same direction with the general market (bi > 0), and 
the former is less volatile than the latter (bi < 1).

We then forecast this stock market using the APT model as shown 
in (8.10). Since the motorcycle production also depends on aluminum 
and petroleum prices, these two variables are added to the econometric 
model with MET as the average daily price of pressed metal compa-
nies and PETRO as the average daily price of petroleum companies 
on the stock exchange. The regression results, which are shown in 
the file Ch08.xls, on the sheet APT, yield the estimated equation as  
Rt

i
+1 = − − + −−0 0376 0 1724 0 6519 0 4847. . . * .( ) MET  PETROt tt tR r .

Substituting the coefficient estimates into this equation, we obtain 
the forecasts for May 29 through June 1, 2014: R5/29(MOT) = 0.7350, 
R5/30(MOT) = 0.6915, and R6/1(MOT) = 0.8558. The results reveal a 
MAPE of roughly 20 percent, which is an improvement compared to 
the results using the CAPM model. Since stock markets are more volatile 
than bond markets, this forecast result can be deemed as acceptable.

The estimated coefficients for the two regressions of models (8.8) and 
(8.10) are quite similar, except that the coefficient for the market risk 
premium in (8.10) is no longer statistically significant. This implies that 
the market risk premium might not be the most important determinant 
of the expected return on the MOT. However, an F-test reveals that the 
estimated coefficients are jointly significant, so we should not exclude the 
variable market risk premium from model (8.10) in the regressions and 
calculations of the forecasts.

Finally, we come to the section that discusses the production adoption 
process needed for Sol’s forecasts of the photovoltaic demand in the city.

Diffusion Models on Sales and Demand

We learn that the first diffusion model was introduced by Rogers (1962), 
refined by Bass (1969), and extended by Lawrence and Lawton (1981) 
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to forecast the process of how a new product will be adopted in a pop-
ulation. The models allow a forecaster to generate an entire product life 
cycle from a few data observations such as the number of the previous 
buyers and the total market size. Key parameters and their changes can be 
calculated to obtain the potential demand of a new product prior to the 
existence of historical sale data.

Sol is very happy that she will not need to collect a long series of the 
historical data to analyze photovoltaic demand. She shares with us one of 
the datasets from various cities in the nation to examine the pattern of 
the product adoption process. We chart the data from the file Ch08.xls, 
Fig.8.7, and display the plot in Figure 8.5.

From this figure, we see that the adoption process has a noncumu-
lative distribution that follows a nearly normal distribution. Dr. Theo 
tells us that this is the model’s assumption, which might not hold, so 
the diffusion models usually produce large errors. From this assumption, 
the cumulative distribution of the adoption is in the form of an S curve. 
We  also chart the cumulative distribution using the data from the file 
Ch08.xls, Fig.8.8, and display the plot in Figure 8.6.

From this figure, we see that the cumulative distribution of the 
adoption process is indeed in the form of an S-curve for this case.

Bass Model

The Bass model is based on the assumption that the timing of a consum-
er’s initial purchase is related to the number of previous buyers.

Figure 8.5  Noncumulative distribution of the product adoption 
process
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Adopters are classified into various categories depending on the tim-
ing of their adoptions. The adopters who make the decision to adopt 
a product early and independently of other adopters are called the 
innovators. Bass (1969) lists five classes of adopters from the earliest to 
the latest: (1) innovators, (2) early adopters, (3) early majority, (4) late 
majority, and (5) laggards. The innovators and the early adopters are 
the ones who create a diffusion process that results in purchasing by 
the later adopters. All classes of adopters after innovators are considered 
imitators.

P(T ) is the probability that an initial purchase will be made at time T 
given that no purchase has yet been made. Then a function with P(T ) as 
the dependent variable can be written as:

	 P(T ) = p + (q/m) * N(T )	 (8.13)

where
P = �the coefficient of innovation, which depends on factors affecting 

innovators
q = �the coefficient of imitation, which depends on factors affecting 

imitators
m = the total market potential during the considered period

N(T ) = �is the number of previous buyers up to time T
Factors affecting innovators can be advertisements or personal prefer-

ences. Factors affecting imitators can be interaction with the innovators 
or peer pressure. Extended surveys in the past have shown that the average 

Figure 8.6  Cumulative distribution of the product adoption process
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value of p often falls between 0.01 and 0.03, and that the average value of 
q often falls between 0.3 and 0.5.

Let f (T ) be the likelihood of a purchase at time T, then sales at time 
T is:

	 S(T ) = mf (T ) = P(T ) * [m − N(T )]	  (8.14)

Combining Equations 8.13 and 8.14 yields:

	 S(T ) = [p + (q/m) * N(T )] * [m − N(T )], so:

	 S(T ) = p m + (q − p) * N(T ) − (q/m) * [N(T )]
2	 (8.15)

For example, suppose the total market potential for the iOS8 phones 
in San Francisco is 120,000 people, the number of previous buyers in the 
second quarter of 2014 is 10,000 people, quarterly p = 0.02, and quar-
terly q = 0.4. Then the potential number of sales in the third quarter is:

S(Q3) = (0.02) * 120 + (0.4 − 0.02) * (10) − (0.4/120) * 102

	 = 2.4 + 3.8 − 0.3333 = 5.8667 (in thousands) 

	 = 5,8667 (iOS8 phones).

Lawrence–Lawton Model

Dr. Theo reminds Sol to take notes carefully on this model because it is 
more refined than the original Rogers and Bass models, so it will help her 
obtain forecasts of a whole production cycle with only a few observations. 
Lawrence, Klimberg, and Lawrence (2009) analyze in details five steps of 
the diffusion process, which is summarized here:

i.	Awareness: The potential buyers become aware of the innovation.
ii.	Interest: The potential buyers seek additional information.

iii.	Evaluation: Enough information is gathered for judgments.
iv.	Trial: Samples of the innovation are provided for trying out.
v.	Adoption: The adoption process takes place.
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The model introduced by Lawrence and Lawton (1981) is for a 
cumulative unit of sales, S(T ), to the end of period T :

	
S T

N N
N N e

Np Td
( )

[ ( / ) ]
=

+
+

−−
0

0
01

	  (8.16)

where  N0 = cumulative number of adopters at time T0

N	 = total market potential buyers
 pd	 = �a diffusion-rate parameter, which is the speed that the new 

idea spreads from one consumer to the next
We break into groups to work on this example: If pd = 0.4, there is 

a 40 percent possibility that one consumer will tell another consumer in 
the market about the new product. Suppose the total market for a new 
brand of camcorders in Korea is 10,000 people, the cumulative number 
of adopters at the beginning is 1,000 people, the time horizon is two 
years, and the yearly diffusion rate pd = 0.5, then:
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Hence, the cumulative unit of sales for the two-year period is 1,351 
camcorders.

In reality, we have to estimate N0 based on the trial sale of the first 
period S1 = S(1), that is, the number of sales is the same as the cumulative 
sales in the first period:
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	  (8.17)

The number of sales in the following periods is:

	 S2 = S(2) − S(1),

	 S3 = S(3) − S(2),…,

	 ST = S(T ) − S(T−1)	  (8.18)
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For example, suppose yearly pd = 0.7, N = 400,000 people; S1 = S(1) 
= 35,000 for a new brand of computers initially sold in Shanghai, then 
you can calculate N0 and S(2):

	 N
e

e0

0 7

0 7
400 000 35 000

400 000 1 35 000
41 789=

− −
=

−

−
, * , *

[ , * ( ) , ]
,

.
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S
e

( ) , ,
[ ( , / , ) ]

, ,.2 400 000 41 789
1 400 000 41 789

41 789 89 60 7 2= +
+

− =− × 880

That is, the cumulative number of sales for the two-year period is 
89,680 and hence the sale forecast for the second year alone is:

S2 = S(2) − S1 = 89,680 − 35,000 = 54.680 new computers

Excel Application

Since the Bass model can be easily calculated using the mathematical 
operations for Excel introduced in Chapter 1, Dr. App only provides us 
with one Excel application for the Lawrence–Lawton model here. Photo-
voltaic electricity came into existence recently and has developed rapidly 
in the city. Sol shares with us her data on the photovoltaic permits issued 
by the city government. Figure 8.7 reveals that the total market potential 
is N = 55,000 in cell C2.

Figure 8.7  Forecasting photovoltaic sales
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Since a photovoltaic company does not apply for a permit from the 
county until a contract with a home owner is signed, this number of 
permits is a good proxy for the market sales and demand and can be used 
to forecast future sales and demand.

The sale number in the first quarter of 2014 is the number of permits 
issued from January 2 to March 30, S1 = S(1) = 1,766, and is displayed 
in cell E2. Since this is the first period used in the forecast, it is also the 
first quarterly sale value, which is displayed in cell F2. A survey of the 
early adopters in the city reveals the quarterly diffusion rate parameter 
pd = 0.15, which is displayed in cell D2.

We find the data in the file Ch08.xls, Fig.8.9, and proceed as follows:

In cell C3, type = (C2 * E2 * (EXP(−D2)))/(C2 * (1 − (EXP(−D2))) 
− E2) and press Enter

(this is the formula to calculate N0)
In cell E3, type = (($C$2 + $C$3)/(1 + ($C$2/$C$3) * EXP(−$D$2 

* B3))) − $C$3 and press Enter
(this is the formula to calculate S(2) the cumulative units of sales)
In cell F3, type = E3 − E2 and press Enter
(this is the formula to calculate S2, the forecasted sales for quarter 2)
Copy and paste the formulas in cells E3 and F3 into cells E4 through 

F13
The forecasts up to the fourth quarter of 2016 are in cells F3 through F13

Dr. App then tells us that monitoring and adjustments are crucial 
because the actual data provided by Sol are limited to a quarter, so 
evaluations for long-term forecasts cannot be performed. She confirms 
Dr. Theo’s remark that the model might produce very large errors if the 
assumption of nearly normal distribution is violated.

Exercises

1.	A CD store in Hong Kong has the forecasts on its CD demand 
displayed in Table 8.3.

Use an Excel spreadsheet or a handheld calculator to fill in the 
blank spaces and construct another table similar to Figure 8.1 with 
the reserve values equal 50 percent of the forecast values.
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2.	A company considers buying a coupon bond that pays $600 per 
year for six years and then repays the face value of $10,000 at the 
end of the sixth year. The price of the bond is $9,200. Use an 
Excel spreadsheet to find out the YTM of this bond.

3.	A regression on the return of an automobile company (AUTO) stock 
on the market risk premium and the changes in oil prices of a petro-
leum company (PETRO) yields b1

i = 0.75 for the coefficient of the 
market risk premium and b2

i = −0.2 for the coefficient of PETRO. 
Additionally, the average return on the stock market as a whole is 
9  percent yearly, the average yield on a three-year T-bond is 1 percent 
yearly, and the growth rate of PETRO price is 4 percent yearly. Use a 
handheld calculator to forecast the expected return on AUTO stock 
in the next period.

4.	Suppose the total market potential for a new Galaxy tablet in Dubai is 
9 million people, the number of previous buyers in the third quarter 
of 2014 is 1 million people, quarterly p = 0.02, and quarterly q = 0.4 
for the Bass model. Use a handheld calculator to forecast the potential 
number of sales in the fourth quarter of 2014.

5.	The Lawrence–Lawton model:
	 a.	� A town has the cumulative number of adopters of the iCloud at 

time T0 = 1300. The market size = 12,000 and the diffusion rate 
parameter = 0.6. Forecast the yearly cumulative unit of sales up to 
the end of year 2.

	 b.	� Given N = 400,000 people in a city, S1 = 30,000 iClouds, pd = 0.7,  
use a handheld calculator to calculate N0, forecast cumulative 
sales S(2), and sale forecast in year 2, S2.

	 c.	� Use an Excel spreadsheet to calculate S(1) = St and annual sale 
forecasts ST for T = 3 through T = 15.

Table 8.3  Forecasts for CD demand

Week Forecast Inventory Reserve Balance Order Arrive

Week 1 90

Week 2 20

Week 3 30

Week 4 45

Week 5 55
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Appendixes

The following appendixes provide the derivations of Equations 8.3 and 
8.12 in the section on “Financial Forecast.”

Appendix 8.A  Deriving Equation 8.3
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Combining Equations A.4 and A.1 yields:
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Appendix 8.B  Deriving Equation 8.12
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Because the growth rate is G,
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Combining Equations B.1 and B.2 yields:
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Combining Equations B.3 and B.5 yields:
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CHAPTER 9

Economic Models

Cita has just returned from an important meeting with the city council. 
The city recently established an Economic Competitiveness Office with 
Cita as the chair. The office is in charge of helping the private firms in 
three regards: (1) determining their production allocations based on the 
profit maximization or cost minimization principle subject to uncertainty 
in resources and demands, (2) calculating the changes in their input and 
final-good demands due to changes in technologies, and (3) making 
decisions on their rental prices of land to guarantee a competitive market 
for city land use. Cita is worried because her knowledge of economic 
theories is only at undergraduate level. Dr. Theo assures her that several 
models based on economic theories will be discussed this week. Once we 
finish with the chapter, we will be able to:

1.	Explain the product allocation model based on economic principles.
2.	Analyze changes in input and final-consumption demands of a product.
3.	Develop a model for a private firm on land-use forecasts.
4.	Calculate trip-distribution forecasts for the city.
5.	Apply Excel while analyzing the topics in (1), (2), (3), and (4).

Most of us do not know much about economic theories, so we all look 
forward to gaining new knowledge.

Production Forecasts

We learn that the two production models are production allocations 
and input–output models. The production–allocation model helps firms 
forecast how much of each good to produce in the near future subject to 
uncertainty in the resources. The input–output model has many applica-
tions. In this chapter, it is used to forecast what will happen to the total 
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input demand for a good if one of the technical coefficients changes and 
what will be the changes in the demand for final consumption of a good if 
one of the inputs changes.

Production Allocations

Given its historical data and interval forecasts on labor, capital, and 
market demand, a firm needs to forecast how much of each good it should 
produce the next period so that it can order inputs for its production and 
make a delivery plan of its production to markets. The firm is operating 
based on the profit maximization or cost minimization principle.

We learn that the model was first introduced by Leonid Kantorovich 
(1940), a Soviet mathematician and economist, during World War II to 
plan military expenditures based on the cost minimization principle.

The classical model for production allocations comprises three parts:

1.	A linear function to be maximized (such as profits) or minimized 
(such as costs)

2.	A set of constraints such as labor, capital, land, natural resources, 
and so on

3.	A set of production limits that depend on market demand or quotas

The only difference between the preceding model and a forecast model 
for production allocations is that the forecast model faces uncertainty in 
resources or demand or both. Hence, this allocation forecast problem can 
be solved using linear programing, also called linear optimization. At this 
point, Dr. Theo asks our class to share our experiences if we have any. Mo 
says that his cousins run a factory in Europe. He puts forth a problem 
regarding the factory and shows us how it can be solved using a handheld 
calculator before using Excel.

The Ammonia Division of his cousins’ fertilizer company in Europe 
produces ammonium sulfate (SU ) and ammonium salts (SA). Their his-
torical data reveal that the profit rates of the two products are different:

	 Profit per unit (euros per ton)  SU  €40	

	 SA  €25	 (9.1)
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Their production time is also different:

	 Time (minutes per ton):  SU  Two minutes

	 SA  One minute	 (9.2)

Additionally, the maximum limits of weekly production quantities 
depend on the quotas set by the provincial authority, which faces 
uncertainty on the quota for SA:

	 Maximum limits (tons):  SU  5,500

	 SA  6,600–7,200	 (9.3)

Another uncertainty is that there might be 120 to 150 worker hours 
available for the Ammonia Division four weeks from this week. Given this 
information, their task is to forecast how many tons of each product they 
should produce four weeks from now to maximize the division’s total profit.

Dr. Theo is quite pleased and tells us to work on the problem. He 
also decides to call the quantities of ammonium sulfate X tons and that 
of ammonium salts Z tons for easy applications in Excel later. Based on 
Equations 9.1 through 9.3, he instructs us to perform the following steps:

1.	The linear function: Since the profits per unit are €40 for ammo-
nium sulfate (X ) and €25 for ammonium salts (Z ), we are able to 
write the linear function for the profit maximization as:

Maximize 40 25X Z+

2.	The constraints: Because 120 to 150 worker hours are available, we 
need to write an equation for the total worker hours, which equal 
the hours to make a unit of each product times quantities. We then 
change minutes to hours and write the constraint as follows:

Time (hours per ton): For SU (X )  Two minutes = �1/30 hours  
per ton

	 For SA (Z )  One minute = �1/60 hours  
per ton

Constraints (hours):  ( / ) ( / ) ;1 30 1 60 150X Z+ ≤ or
	 ( / ) ( / )1 30 1 60 120X Z+ ≤
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Dr. Theo tells us that the constraints can be written as 
120 1 30≤ +[( / )X  ( / ) ]1 60 150Z ≤ . Here they are written separately 
for Excel Solver in the next section on “Excel Application”.

3.	Production limits: We combine the aforementioned maximum 
limits set by the provincial authority and the nonnegative conditions 
for the quantities:

0 5 500
0 7 200 0 6 600

≤ ≤
≤ ≤ ≤ ≤

X
Z Z

,
, ; or ,

In sum, the problem is:
  Maximize 40 25X Z+

  Subject to ( / ) ( / ) ;1 30 1 60 150X Z+ ≤ or
	 ( / ) ( / )1 30 1 60 120X Z+ ≤ 	 (9.4)

	 0 5 500 0 7 200 0 6 600≤ ≤ ≤ ≤ ≤ ≤X Z Z, ; , ; or ,

Using a handheld calculator, we first calculate the profit per hour 
for SU (ΠSU) and SA (ΠSA). From the constraint, one unit of SU (X ) 
is produced in 1/30 hours whereas one unit of SA (Z ) is produced in 
1/60  hours, so profit per hour for each product is:

	

ΠSU = =

=

1
1 30

40 30 40

120
/

( / ) * (euro/ ) ( / ) * (euro/ )ton hr ton ton hr ton

00
1

1 60
25 60 25

(euro/ )

/
( / ) * (euro/ ) ( / ) * (eu

hr

ton hr ton ton hrΠSA = = rro/ )

(euro/ )

ton

hr= 1500

Hence, SA is more profitable to produce than SU, and Mo’s cousins 
want to produce up to its maximum limit of 7,200 units, which require 
120 worker hours (= 7,200/60), or a maximum of 6,600 units, which 
requires 110 worker hours (= 6,600/60).

If they have 150 worker hours, then the remaining 30 to 40 worker 
hours is for SU, which will come off at 900 to 1,200 units (= 30 tons 
per hour * 30 hours, or = 30 tons per hour * 40 hours). If they have 
120 worker hours, then the remaining 0 to10 hours is for SU, which will 
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come off at 0 to 300 units. In brief, their forecasts for four weeks from 
now are:

Ammonium salts:  between 6,600 and 7,200 units
Ammonium sulfate:
	 With 150 worker hours:  between 900 and 1,200 units
	 With 120 worker hours:  between 0 and 300 units
“Wow, that is a long problem,” we exclaim. Dr. Theo says that if we 

have many constraints, it will be complicated to solve by hand, so Excel 
is very convenient.

Input–Output Demands

Dr. Theo says there is another production forecast model based on  
input–output demand. Although the idea of linking various input sectors 
to final output sectors goes back to the 19th century, Leontief (1986) 
introduced the modern version that has been used widely at the present 
time. The model is realistic because each sector in the economy produces 
goods that are used as both inputs and final demands. For example, 
the agriculture sector provides apples and oranges as final goods for the 
consumers, but also as inputs for the manufacturing sector to produce 
apple and orange juices.

Given an economy with n sectors, each sector produces a good i that 
can be used as inputs for several sectors in addition to being used as a 
final good. Let xij be the quantity of output of good i used by sector j 
and xj the product of sector j; then the technical coefficient for good j is 
defined as:

	 a x xij ij j= /

Let y be the input demands for j = 1, 2, … n sectors. If the economy 
can produce m inputs, then:

y a X a X a Xm m1 11 1 21 2 1 1= + + +...
...............................................

...y a X a X a Xn n n n mn mn= + + +1 1 2

, where Xi is the total output of good i. 	
� (9.5)
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If Ai is the collection of all aij used as inputs for the n sectors and Fi the 
final consumption of good i, then the total output of good i is:

	 X A X Fi i i i= + 	 (9.6)

The input–output model has numerous applications. Dr. Theo tells us 
that we only address a simple problem of two goods that do not require the 
knowledge of matrix operations. He encourages the students who are inter-
ested in a full input–output model to take a course on the general equilib-
rium computational model. For the problem of two goods, the equations are 

	 y a X a Xi i i= +1 1 2 2

	 F X yi i i= −  for i = 1 and 2

Cita has carried out research on the subject and shares an example on 
two sectors in the American economy with the class. The dataset for the 
output of the two sectors, agriculture (A) and manufacturing (M ), is from 
the Bureau of Economic Analysis website:

Total output (billions of dollars)
Agriculture:	 XA = 420
Manufacturing:  XM = 5,419
Their estimated technical coefficients are reported as follows:

Output 1: 
Agriculture (A)

Output 2: 
Manufacturing (M)

Input 1: Agriculture (A) 0.11 0.05

Input 2: Manufacturing (M) 0.22 0.27

We first calculate the total input demand for each sector:

	 yA = AAXA = 0.11 * 420 + 0.05 * 5,419	

= 46.2 + 270.95 = 317.15 ($ billions) = input demand for A.

	 yM = AMXM = 0.22 * 420 + 0.27 * 5,419	

= 92.4 + 1463.13 = 1555.53 ($ billions) = input demand for M.
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We also calculate the original demand for final consumption of the 
agricultural product:

	 F X yA A A= −  = 420 − 317.15 = 102.85 ($ billions)

Dr. Theo then asks us to recalculate the total input demand and the 
demand for final consumption of the agricultural product if the technical 
coefficient for the agricultural product used in the manufacturing sector 
falls 10 percent, that is, from 100 percent to 90 percent.

We recalculate the new total input demand for the agricultural 
product:

	 yA′  = 0.11 * 420 + 0.05 * (0.90) * 5419

	 = 46.2 + 243.86 = 290.06 ($ billions)

We are also able to recalculate the new demand for the final consump-
tion of the agricultural product:	

	 F X yA A A′ ′= − = 420 − 290.06 = 129.94 ($ billions)

Thus, the change in final consumption of the agricultural product is 
27.09 billion dollars (= 129.94 − 102.85).

Excel Application

Dr. App tells us that the exercise in the section on “Input–Output 
Demands” can be repeated using Excel mathematical operations. 
However, they are simple enough to solve using a handheld calculator. 
Regarding large matrices of input–output, we will need special software 
and so they are beyond the scope of this book. Hence, this section only 
uses Excel to solve the same problem in the section on “Production 
Allocations.” We can add as many constraints as we wish to solve without 
too much trouble compared to solving by hand. First, we need to install 
another “Add-Ins” tool.
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For Microsoft Office (MO) 1997–2003:

Go to Data Tools, click on Add-Ins from the drop down menu
Click on Solve Add-in option from the new drop down menu and 

click OK
Whenever you need this tool, click on Data Tools and then click on 

Solver

For MO 2007:

Click on the Office logo at the top left that you have to click on to 
open any file

Click on Excel Options at the bottom center
Click on Add-Ins from the menu at the bottom of the left column in 

the Excel Options window
The View and Manage Microsoft Office Add-Ins window will 

appear
In this window, click on Go at the bottom center
A new dialog box will appear, check the Solve Ad-in box and then 

click OK
Whenever you need this tool, click on Data and then Solver on the 

Ribbon

For MO 2010:

Click on File and then Options at the bottom left column
Click on Add-Ins from the menu at the bottom of the left column in 

the Excel Options window
The View and Manage Microsoft Office Add-Ins window will 

appear
In this window, click on Go at the bottom center
A new dialog box will appear, check the Solve Ad-in box and then 

click OK
Whenever you need this tool, click on Data and then Solver on the 

Ribbon
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Figure 9.1 displays the Excel spreadsheet, which is available in the file 
Ch09.xls, Fig.9.1. We learn that we must proceed as follows:

Go through cells A1 through B4 to make sure that all mathematical 
expressions from System 9.4 are there.

(Note that max stands for maximize, and st stands for subject to)
Highlight the solution space in cells E6 and F6 (where Solver will 

report the solutions).

We then open the file Ch09.xls, Fig.9.2, because we need to enter the 
linear function into Excel. We find that Figure 9.2 shows what the Excel 
page looks like and what we should do:

In cell A5 type Max (Maximize)
In cell A6 type = 40 * E6 + 25 * F6 and press Enter

Figure 9.1  The problem and solution space in Excel

Figure 9.2  Entering the linear function and the constraints
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Dr. App tells us to ignore what we see on the Excel spreadsheet tempo-
rarily because we have not opened the Solver tool). Here are the next steps:

In cell A7 type st (subject to)
In Cell A8, type = (1/30) * E6 + (1/60) * F6 and press Enter
In Cell B8, type <= and press Enter; in Cell C8, type 150 and press 

Enter
In Cell A9, type = E6 and press Enter
In Cell B9, type <= and press Enter; in Cell C9 type 5500 then press 

Enter
In Cell A10, type = F6 and press Enter
In Cell B10, type <= and press Enter; in Cell C10, type 7200 and 

press Enter

Do not worry about the nonnegative condition and the zero values on 
the page; Excel will automatically adjust the condition and the values later.

Next, we are going to open the Solver
Click on Data on the Ribbon and then click on Solver

Figure 9.3 displays the Solver Parameters dialog box and the selected 
parameters.

In the box Set Objective enter A6
Check the button Max if it has not been checked
In the box By Changing Variable Cells enter E6:F6
Click on the box Subject to the Constraints and then click on Add
The Add Constraint dialog box will appear

Figure 9.4 displays this dialog box and the selected constraints.

In the box Cell Reference enter A8
Click on the arrow of the next box to choose <=; in the box Constraint 

enter C8
Once you finish entering this constraint, click Add to add the next two 

constraints



	 ECONOMIC MODELS	 209

In the box Cell Reference enter A9
Click on the arrow of the next box to choose <=
In the box Constraint enter C9 and click Add
In the box Cell Reference enter A10

Figure 9.3  The solver parameters in the solver dialog box

Figure 9.4  The add constraint dialog box with the first constraint 
entered
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Click on the arrow of the next box to choose <=; in the box Constraint 
enter C10

After the last constraint is entered, click OK to return to the Solver 
shown in Figure 9.3

Use the arrow in the Select a Solving Method box to choose Simplex 
LP (linear program)

Click on Solve at the bottom right next to Close; a new dialog box 
will appear

Select Keep Solver Solution and click OK

We now see the quantity 900 and 7200 appearing in cells E6 and F6 
in Figure 9.5 or in the file Ch09.xls, Fig.9.5.

We learn that we should repeat the same procedures for the other 
constraints of the 120 worker hours and production limit of 6,600 units.

Gravity Models

We are delighted to learn that we are going to modify a model that is 
based on Newton’s law of gravitational attraction:

	
f k m m d1 2 1 2 1 2

2
, ,* * /= 	 (9.7)

where  f1, 2 = the gravitational attraction force between any two objects
m1 = the mass of the first object
m2 = the mass of the second object

d1, 2 = is the distance between the two

Figure 9.5  The first production allocation for ammonium division
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The parameter k is a measure of gravitational attraction and has 
to be decided case by case based on the characteristics of the masses. 
For example, if the gravitational attraction between the two is one half of 
their masses, then the parameter k = 0.5.

Gravity models have many applications. In econometrics, it is used to 
predict bilateral trade between two countries, which depends positively 
on their income and negatively on their distance in addition to several 
other determinants. Dr. Theo says that we only discuss two cases in 
forecasting: land use and trip distribution. He also reminds Cita that the 
land-use model is closely related to her job at the Economic Competitive-
ness Office.

Land-Use Forecasts

We learn that the early studies on land distribution focused on the 
population density in the cities and found that urban population is 
crowded around the downtown area and gradually spread out in the more 
remote areas. However, in this class, we focus on a model introduced 
by Dunn (1954) for land-use forecasting in both urban and rural areas. 
This  model is simple but has useful applications and is related to the 
gravity model in that one of the factors that affect the land use (called 
determinants of the land use) is the distance to the market:

	 R Q P C Q T dt t t t t t+ = − −1 ( ) 	 (9.8)

where
Rt+1 = the rental price per unit of land at time (t + 1)
	 Q t = the quantity of production at time t
	 Pt = the market price per unit of production at time t
	 Ct = the production cost per unit of production at time t
	 Tt = the unit transportation cost at time t
	 d = the distance from the firm’s headquarter to the market

From this equation, the first group on the right-hand side is the profit 
from the production process, that is, QP is total revenue and QC the total 
cost. The second group on the right-hand side is the cost of transportation 
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to the market for any firm. Hence, the right-hand side is the net profit of 
the firm, and the breakeven point is where the rental price per unit of land 
equals the net profit of the firm. Data on Q, P, C, T, and d are collected 
for the current period, and the forecast of the rental price for the next 
period is calculated.

At this point, Fligh says that he can offer an example from his friend, 
who is the manager of a firm that produces tractors in the city. His firm 
produces 100 tractors per month that can be sold for $100,000 each. 
The  cost to produce a tractor is $60,000. The transportation cost is 
$100 per mile per tractor and the distance to the tractor dealer is 100 miles.

Dr. Theo is very pleased and asks us to substitute these data into 
Equation 9.8 to forecast his rental price next month.

R = 100 * (100,000 − 60,000) − 100 * 100 * 100 
	 = 4,000,000 − 1,000,000 = $ 3,000,000

Hence, his rental price for the next month should be roughly 
$3,000,000 in order to break even and survive the competition from 
other companies.

Trip-Distribution Forecasts

We learn that the trip distribution model is popular in transportation 
forecasts. The model was initially used to understand how people accept 
a job offer or remain in a job, and lately it has been used to predict the 
pattern of transportation between two regions, often called the origin and 
destination. We start with a simple version of the Voorhees (1956) model 
for trip-distribution forecasting with one origin where workers (W ) live 
and one destination where the jobs ( J ) are offered. In this case, the fore-
cast model is:

	
T

aW bJ
COD

O D

OD
c= 	 (9.9)

where TOD = �the number of round trips between the origin and the 
destination
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WO = the number of workers in the origin
JD = the number of jobs at the destination

COD = �the travel costs between the two regions, such as money (m) 
or distance (d )

The parameters a, b, c are friction factors that have to be calibrated 
based on actual surveys, for example, a is the friction factor for the 
workers and shows the reluctance of the people who make the trips to a 
job based on their family conditions at home, b is the friction factor for  
the jobs and reveals how attractive a job is, and c is the friction factor 
for the travel costs and indicates how much people are willing to travel to 
various distances. The calibration of the trip-distribution model involves 
adjustments of these friction factors.

Given this model, we want to forecast how many round trips the 
workers will make from their hometown to their workplaces. Levinson 
and Kumar (1994, 1995) suggest several models for friction factors; the 
most commonly used model is:

	 a
J d

b
W dD OD O OD

= =
∑ ∑

1 1; 	 (9.10)

If a survey found that the most significant cost between two regions is 
the distance, and the relation is

	 C dOD
c

OD= 2 	 (9.11)

then substituting Equations 9.10 and 911 into Equation 9.9 will allow 
us to calculate TOD:

	
T

aW bJ
dOD

O D

OD

= 2 	 (9.12)

Dr. Theo then extends the original model for two regions to a model 
for four regions. The friction factors can now be written as:

	
a

J d J d
a

J d J d1
1 11 2 21

2
1 12 2 22

1 1=
+

=
+

;
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b

W d W d
b

W d W d1
1 11 2 21

2
1 12 2 22

1 1=
+

=
+

; 	 (9.13)

The number of round trips between two regions is then calculated 
using these equations:

	

T a W b J d T a W b J d

T a W b J d T
11 1 1 1 1 11

2
12 1 1 2 2 12

2

21 2 2 1 1 21
2

22

= =

= =

/ ; / ;

/ ; aa W b J d2 2 2 2 22
2/

	 (9.14)

Arti raises her hand and says her friend works for the county office and 
has a problem that needs to be solved. The four regions in her province 
are: Ami (A), Bero (B), Cira (C), and Dore (D). Data for the number 
of workers (W  ), the number of jobs ( J ), and the distances (d ) between 
them are provided in Table 9.1.

A survey of the friction factors between any two regions in her 
provinces yields the following equations:

	
a

J d
b

W di
OD

j
OD

= =
∑ ∑

1 1
/

;
/

	 (9.15)

	
T

aW bJ
C

C dOD
O D

OD
c OD

c
OD= =; 	 (9.16)

We are more than glad to help Arti’s friend find the solutions. The cal-
culations can be done using a handheld calculator and then Excel. First, 
we use this information to calculate the friction factors:	

	 a1 = 1/(40/24 + 32/28) = 1/(1.67 + 1.14) = 1/2.81 = 0.3559	

	 a2 = 1/(40/18 + 32/25) = 1/(2.22 + 1.28 )= 1/3.5 = 0.2857	

Table 9.1  Workers/jobs and distance among four regions

Workers/jobs 
(in thousands)

W  
(in miles) J 

Distance 
dij 1 (A) 2 (B)

1 (C) 30 40 (A) 1 (C) 24 18

2 (D) 35 32 (B) 2 (D) 28 25
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	 b1 = 1/(30/24 + 35/28) = 1/(1.25 + 1.25) = 1/2.5 = 0.4	

	 b2 = 1/(30/18 +35/25) = 1/(1.67 + 1.4) = 1/3.07 = 0.3257	

We then forecast the number of round trips between two regions by 
substituting these data into Equation 10.16:

	 T11 = (0.3559 * 0.4 * 30 * 40)/24 ≈ 7.12 (thousand) 
	 ≈ 7,120 trips between A and C	

	 T12 = (0.3559 * 0.3257 * 30 * 32)/18 ≈ 6.19 (thousand) 
	 ≈ 6,190 trips between B and C	

	 T21 = (0.2857 * 0.4 * 35 * 40)/28 ≈ 5.71 (thousand) 
	 ≈ 5,710 trips between A and D

	 T22 = (0.2857 * 0.3257 * 35 * 32)/25 ≈ 4.17 (thousand) 
	 ≈ 4,170 trips between B and D

Arti is very happy. She is going to show the solutions to her friend.
Dr. Theo reminds us that trip-distribution forecasts for more than 

four regions requires knowledge of matrix algebra and that a comprehen-
sive analysis of N regions is presented in Tsekeris and Stathopoulos (2006) 
for our reference.

Excel Application

Dr. App tells us that the exercise in the section on “Land-Use Forecasts” 
is simple enough to solve using a handheld calculator. Thus, we only 
use an Excel spreadsheet to solve the problem in the section on “Trip-
Distribution Forecasts”. Figure 9.6 displays data on the number of work-
ers, number of jobs, and the distances.

Dr. App tells us to open the file Ch09.xls, Fig.9.7, and enter the 
following commands:

In cell H1, type = 1/((C2/E2) + (C3/E3)) and press Enter
In cell H2, type = 1/((C2/F2) + (C3/F3)) and press Enter
In cell H3, type = 1/((B2/E2) + (B3/E3)) and press Enter
In cell H4, type = 1/((B2/F2) +(B3/F3)) and press Enter
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Figure 9.7 displays the same data and calculations of round trips 
between pairs of cities. We open the file Ch09.xls, Fig.9.8, and proceed 
as follows:

In cell J1, type = (H1 * H3 * B2 * C2)/E2 and press Enter
In cell J2, type = (H1 * H4 * B2 * C3)/F2 and press Enter
In cell J3, type = (H2 * H3 * B3 * C2)/E3 and press Enter
In cell J4, type = (H2 * H4 * B3 * C3)/F3 and press Enter

Dr. App asks us to compare the results using the Excel spreadsheet 
with those using a handheld calculator. We find that they are the same 
once the values on the Excel spreadsheet are rounded off to two decimal 
places.

Exercises

1.	The Pan Division of a kitchen-appliance manufacturer produces two 
kinds of pans: large (L) and small (S ). Their historical data reveal 
that the profit rates of the two products are:

	 Profit per unit (dollars per pan)	 L	 $4.0
					     S	 $2.2

Figure 9.6  Data and calculations of friction factors

Figure 9.7  Data and calculations of friction factors
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Their production time is:
	 Time (minutes per unit):	 L	 Two minutes
		  S 	 One minute

From the firm’s plan, between 180 to 200 worker hours will be 
available for this Pan Division next week. Additionally, the maximum 
limits of weekly production quantities depend on the quotas set by 
the plant leaders:

	 Maximum limits (units):	 L	 6,000
		  S	 8,400

Use a handheld calculator and then an Excel spreadsheet to 
forecast how many units of each product this Pan Division should 
produce next week to maximize the division’s total profit.

2.	Data on two manufacturing sectors in an economy are given in the 
following text:
	 Total output (millions of dollars)	

	 Meat processing:		  XM = 250
	 Vegetable processing:	 XV = 180
Their estimated technical coefficients are reported as follows:

Output 1:  
Meat (M)

Output 2:  
Vegetables (V)

Input 1: Meat (M) 0.20 0.10

Input 2: Vegetables (V) 0.10 0.05

a.	Calculate the total input demand for each sector.
b.	Calculate the original demand for final consumption in the 

vegetables sector.
c.	Recalculate the total input demand and the demand for final 

consumption if the technical coefficient for the vegetable products 
used in the meat processing sector falls 50 percent (from 100 to 
50 percent).

3.	Given the trip-distribution model involving four regions—A, B, C, 
D—with workers and jobs in thousands and distances in miles, the 
equations of the friction factors are as follows:

	
a

J d
b

W di j= =
∑ ∑

1 1
/

;
/AB AB
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The equations for the round trips between two regions are:

	 T a W b J d T a W b J d T a W b J d11 1 1 1 1 11 12 1 1 2 2 12 21 2 2 1 1 21= = =/ ; / ; / ;

	 T a W b J d22 2 2 2 2 22= /

The data for the regions are provided in Table 9.2.
Use a handheld calculator and then an Excel spreadsheet to calculate 

the friction factors and forecast the number of round trips between any 
two regions.

Table 9.2  Workers, jobs, and distances

Workers/jobs 
(thousands) W J

Distance di 
(miles) 1 (A) 2 (B)

1 (C) 24 30 (A) 1 (C) 22 16

2 (D) 26 34 (B) 2 (D) 28 18



CHAPTER 10

Business Cycles and Rates  
of Change

Fligh has a conversation with Dr. Theo before class. His company, Fligh-
time Airlines, is engaged in a fierce competition with a new arrival, 
Skylight, which started very small but has attracted customers away 
from his Flightime by undercutting airfares. Currently, Flightime is still 
ahead of Skylight in their respective sales. However, he heard that sales 
at Skylight have been growing at a rate of 7.5 percent monthly whereas 
sales at his Flightime have only grown at a rate of 2 percent. He is worried 
that Skylight will soon catch up with his company’s sales and wants to 
find out when that will happen if their respective rates remain at 7.5 and 
2 percent.

Dr. Theo tells him this issue of catching up will be one of the topics for 
this week. Upon completing the chapter, we will be able to:

1.	Describe the concept of business cycles and economic leading 
indicators.

2.	Construct a diffusion index for these indicators to predict the 
economic turning point.

3.	Explain the catching-up models using the rates of change concept.
4.	Develop various investment strategies.
5.	Obtain forecasts for (2), (3), and (4) using Excel.

Forecasts on the turning points of the economy use business cycle 
measurements and rates of change. Forecasts on catching up and invest-
ment choices are based on rates of change only.
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Turning Points

We have learned that a time series often has a cyclical component. 
The  difference between any cyclical component of any time series and 
the business cycles is that the latter fluctuate around a long-run trend in 
real gross domestic product (RGDP). When the RGDP is approaching 
a peak, the economy is in an expansionary period. When the RGDP is 
approaching a trough, the economy is in a recessionary period. The tech-
nique we are going to learn helps us forecast the turning point, when the 
economy changes its direction. The technique can also be applied to the 
business forecast of a company’s turning point based on the company’s 
leading factors.

Theoretically, an economy is in recession (having a turning point) if its 
RGDP falls continuously for six consecutive months. Also, an economy is 
in a period of expansion if its RGDP rises continuously for six consecutive 
months. In reality, RGDP might go down for four months, inch up slightly 
in the fifth month then decline again in the next two months, making it 
hard to conclude whether the economy is having a turning point.

To help forecast a turning point in the economy, various measures 
called economic indicators are developed. The Conference Board, a global 
nonprofit organization for businesses, publishes the Global Business 
Cycle Indicators for each month on its website. The list always comprises 
indices of the leading, the coincident, and the lagging indicators, as well 
as their rates of change.

Concept

The leading indicators occur before a turning point and so provide a 
warning of a possible change in the direction of the economy. The coinci-
dent indicators happen concurrently with a change in the direction of the 
economy, and the lagging indicators measure factors that change after the 
economy has already followed a new pattern. Only leading indicators help 
with forecasting and will be discussed in this chapter. The most recent 
leading indicators published by the Conference Board are as follows:

Average weekly hours in the manufacturing sector
Average weekly initial claims for unemployment insurance
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Manufacturers’ new orders of consumer goods and materials
Institute for Supply Management (ISM) index of new orders 
Manufacturers’ new orders of nondefense capital goods 
Building permits for new private housing units
Stock prices for 500 common stocks
Leading credit index
Interest rate spread for the 10-year Treasury bonds minus the federal 

funds target
Average consumer expectations for business conditions

Fin then tells us that some of the leading indicators affect the 
economy very strongly. For that reason, the business reporters, who 
are allowed to enter the locked rooms in Washington, DC, where the 
statistics are released, often write frantically in their 30-minute allowance 
before breaking their stories to the world. In the meantime, the tension 
level is also high worldwide, where corporate leaders, business managers, 
financial advisors, and individual investors are staring at their computer 
screens waiting eagerly for the news release. This is what Fin encounters 
on most of his weekdays.

Dr. Theo thanks him for sharing his experience and then summarizes 
the general opinion of several experts on the leading indicators to help us 
understand the concept. He says that the detailed analyses can be found 
in Rogers (2009), Baumohl (2008), or Ellis (2005).

Average Weekly Hours in the Manufacturing Sector

This series is a leading indicator because any adjustment to the working 
hours of existing employees is usually made in advance of a new hire or 
layoff. The indicator measures new jobs created, the unemployment rate, 
average hourly earnings, and the length of the average workweek. Since 
consumer spending rises with employment, this is a much anticipated 
indicator for each month and can be considered a highly sensitive series 
for forecasting.

Since the indicator contains information about both job and wage 
growth, several economists choose to focus more on the wage data than 
on the employment data, arguing that it is the income that drives spend-
ing instead of employment. This argument has gained attention recently 
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due to the slow recovery period from 2009 to 2013 when employment 
was growing but wages remained flat.

The data are reported by the U.S. Department of Labor on the first 
Friday of each month at 8:30 a.m. Eastern time for the previous month.

Initial Jobless Claims

This series is reported weekly and measures the number of people filing 
first-time claims for state unemployment insurance. It is more sensitive 
than other measures of unemployment because laid-off workers usually 
file claims immediately either to receive unemployment benefits or to 
look for a new job if they are not qualified for the benefits. The series can 
be considered highly sensitive. However, the series is also very volatile and 
requires revisions by taking four-week moving averages to smooth out the 
volatility in claims.

The data are reported by the U.S. Department of Labor every Thursday 
at 8:30 a.m. Eastern time for the previous week.

Manufacturers’ New Orders of Consumer Goods and Materials

This information is considered a leading indicator because it reflects the 
changes in consumer demand and hence leads to changes in actual pro-
duction. Its official name is the Preliminary Report on Manufacturers’ 
Shipments, Inventories, and Orders and is a measure of shipments (sales), 
inventories, and orders at the manufacturing level.

The data are reported by the U.S. Bureau of the Census during the 
first week of the month at 8:30 a.m. Eastern time for the previous two 
months. Since the data are two months old, the index is not considered 
a good prediction of the economy and can be considered a low 
sensitive series.

ISM Index of New Orders

This index is compiled by the ISM and is one of the first released each 
month that is believed to have a high impact on the markets. It is a 
leading indicator because orders of inputs have to be placed in advance 
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of the production. The indicator is based on a survey of purchasing at 
roughly 300 industrial companies and is considered the best indicator for 
the manufacturing sector.

Surprisingly, the series does not help as much in forecasting as expected. 
Perhaps the index is calculated from nine subindexes: new orders, pro-
duction, employment, supplier deliveries, inventories, prices, new export 
orders, imports, and backlog of orders. Some of these subindexes are deter-
mined only once the economy has already settled in a clear pattern instead 
of leading the economy. Hence, the series can be considered moderately 
sensitive.

The data are released by the ISM on the first business day of the 
month at 10 a.m. Eastern time for the previous month.

Manufacturers’ New Orders for Nondefense Capital Goods

This information is considered a leading indicator because investing in 
capital goods requires long-term plans, so firms do not place new orders 
unless they realize positive changes in actual production and rising demand.

The data are reported by the U.S. Bureau of the Census during the first 
week of the month at 8:30 a.m. Eastern time for the previous two months. 
Since the data are also two months old, the index is not considered a good 
prediction of the economy and can be considered a low sensitive series.

Building Permits for New Private Housing Units

This information leads the economy because a construction firm does 
not apply for a building permit until a contract for a new building in the 
near future is signed with a customer. Since construction is a large invest-
ment, it is supposed to have a large impact on the economy. Officially 
named Housing Starts and Building Permits, the indicator also measures 
the number of buildings already under construction in addition to the 
number of permits.

The series is a leading indicator of home sales and spending in general. 
However, consumers and firms usually do not invest until the economy 
has already shown signs of improvement from a recession. Also, in an eco-
nomic expansion, building permits and new houses continue to be built 
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until a recession looms large. Hence, the series can only be considered 
moderately sensitive.

The data are released by the U.S. Bureau of the Census around the 
18th day of the month at 8:30 a.m. Eastern time for the previous month.

Stock Prices of 500 Common Stocks

This dataset is from the Standard & Poor’s 500 (S&P 500) and is con-
sidered a leading indicator because changes in stock prices reflect the 
investor’s expectations for the future of the economy. The S&P 500 incor-
porates the 500 largest companies in the United States and so its price 
change is a good measure of the movements in the stock prices. The S&P 
500 stock prices are posted on The Wall Street Journal website and various 
other websites every weekday. So it is very timely and highly sensitive.

The index is reported in the third or fourth week of each month by 
the Conference Board based on the previous month’s data.

Leading Credit Index

This index is a new indicator at the Conference Board, introduced to 
replace the previous indicator of Money Supply, which no longer pre-
dicts the turning point of the RGDP very well but has trailed behind the 
economy since 2008. The credit index is constructed based on the several 
subindicators that predict the movements in the financial markets and 
can lead the economy.

The indicator was initially released on January 26, 2012, by the 
Conference Board for the previous month and has been reported in the 
third or fourth week of each month by the board since then. It has been 
welcomed by the professional world as a highly sensitive series.

Interest Rate Spread of the 10-Year Treasury Less Federal  
Funds Target

This measure is usually referred to as the term spread, which is highly 
sensitive because a long-term bond has to yield a higher rate than a short-
term one in order to attract any investor at all due to the risks involved in 
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holding a long-term bond. It is a leading indicator because right before 
a recession, the spread between the short-term and long-term bonds 
becomes closer. Then the yield of long-term bonds declines sharply during 
a recession, which causes a negative spread.

The difference between these two series can also be studied in a yield 
curve, which is upward-sloping over time in the normal situation with the 
yield of the short-term bond much smaller than that of the long-term. 
A change in the direction of this curve, called an inverted yield curve, can 
predict a recession in the economy. Recently this indicator has lost favor 
among the professionals because it failed to predict the 1990–91 and the 
2007–08 recessions. Hence, the series can only be considered moderately 
sensitive.

Interest rates are posted on The Wall Street Journal website and various 
other websites every weekday.

Average Consumer Expectations for Business Conditions

This information is the only leading indicator that is based solely on expec-
tations. The indicator measures consumer confidence and leads the econ-
omy because it can indicate an increase or decrease in consumer spending 
that affects the demand side of the economy. Unfortunately, consumer 
confidence changes quite often depending on daily news regarding stock 
markets and the world economy, so the series can be considered moder-
ately sensitive.

The indicator is released by the University of Michigan in two rounds: 
The first round is on the 15th of the month (a preliminary reading), and 
the second round is on the last business day of the month (a final reading) 
at 10 a.m. Eastern time for the current month.

Constructing Diffusion Indexes

Dr. Theo reminds us that the Conference Board also calculates a compos-
ite index that averages the 10 leading indicators and adjusts for seasonal 
fluctuation. A simple idea is to look at this composite index. If it goes 
down for three consecutive months, one might predict a coming recession 
and vice versa.
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For example, the Conference Board reported on December 22, 
2014, that the Leading Economic Index for the United States increased 
0.8 percent in September, followed by a 0.6 percent increase in October 
and a 0.6 percent increase in November. This is a consistent three-month 
rise and might predict an economic expansion in the near future.

At this point, Fin raises his hand and asks, “Is predicting a turning 
point so easy?” Dr. Theo answers, “No, actually this rule is too simple to 
give a reliable prediction in reality, especially in predicting a recession. 
Additionally, if you come from a developing country, the 10 preceding 
indicators might not fit your country’s conditions, and you might want to 
track a different set of indexes. Hence, a diffusion index for each month 
will take into account the rates of change in all relevant indicators and 
help you construct your own indexes instead of looking at the single com-
posite index provided by the Conference Board.”

There are several approaches to calculating the diffusion indices. 
Dr. Theo says he has compiled the steps presented in the following text 
based on the suggestions of the Conference Board:

i.	Calculate the rate of change for each indicator:
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−
= −









−

− −

I I
I

I
I

t t

t

t

t

1

1 1
100 1 100 	 (10.1)

where I is an individual index for a leading indicator
For example, if an index changes from 20 to 19 going from 

January to February, then the rate of change between the two 
months is:

	 % * % * % (%)∆ = − = −
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1 100 5 	

ii.	Ascribe an assigned value (AV) to each change:
1 to a positive change

0.5 to the unchanged one
0 to a negative change

This raises a question of how much change should be considered 
a true change.
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The Conference Board suggests that a positive movement is 
any rise that is equal to or greater than 0.5 percent, and a negative 
movement is any fall that is equal to or greater than 0.5 percent. This 
implies that any change less than 0.5 percent constitutes an unchanged  
variable.

iii.	Sum the AV calculated in step (ii), divide the sum by the number of 
indexes, and multiply the ratio by 100.

We then break into groups to work on an example: Table 10.1 shows 
the following monthly indexes of eight leading indicators in a hypothet-
ical economy between January and February 2013 and the steps to cal-
culate a diffusion index for February. The results show an index of 62.5, 
which is above the average index of 50 and implies a stable economic 
condition.

Dr. Theo says that in his opinion, you have to continue to track 
the diffusion indexes for at least five months. If the diffusion indexes 
are below 50 for 80 percent of the time, the economy has a high prob-
ability of landing in a recession and vice versa. Additionally, if more 
than seven out of 10 individual indexes are falling, the economy looks 
gloomy. The severity of the gaps in the diffusion indices also have to be 
taken into account, for example, a negative gap of 20 points from the 
average of 50 points implies a severe condition compared with a gap of 
five points.

Arti then asks, “We are talking about economic recessions and expan-
sions. But then why is the cycle called a business instead of an economic 
cycle?” Alte offers to answer. Here is her explanation: “The up and down 
cycle of the economy depends on the business activities. When businesses 

Table 10.1  Calculating a diffusion index

Indicators 1 2 3 4 5 6 7 8
Diffusion 

index
January 20 30 15 40 28 14 30 40

February 19 30.1 16 39 30 15 31 40

(i) %∆Δ −5 0.3 6.7 −2.5 7.1 7.1 3.3 0

(ii) AV 0 0.5 1 0 1 1 1 0.5

(iii) Index: [(0 + 0.5 + 1 + 0 + 1 + 1 + 1 + 0.5)/8] * 100 = 62.5
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are growing, they start to invest in new capital, which causes the economy 
to expand for several years until it reaches a peak. Then businesses are no 
longer growing, and there is no additional capital. Gradually, the plants 
and capital are worn out, and the economy is approaching a trough. This 
cycle is renewed when depleted capital is replaced by a new one.”

“Excellent,” Dr. Theo commends her. He then continues with the 
discussion of the diffusion index by saying, “The Conference Board also 
suggests that you construct a six-month diffusion index. In this case, you 
list all six months first and see if an individual index is going up or down 
at the end of the six-month period.”

Dr. Theo believes that a six-month diffusion index is not much of a 
difference from the Conference Board composite index because it provides 
only one index for the whole six-month period. Moreover, he does not 
believe this diffusion index is of much help in forecasting because the 
economy is already in a recession after six months of continuous declining 
RGDP, so it is too late to predict the situation. Hence, he suggests, “If you 
wish to have longer-term indices, you can construct two-month or 
three-month indexes, which give more room to think ahead of a possible 
turning point.”

One remaining issue with diffusion indexes is that the Conference 
Board and current researchers treat them equally. Dr. Theo also believes 
some weighted approaches should be used to account for the difference in 
the level of sensitivity in the released data. He says that scrutinizing Excel 
applications will clarify this point.

Excel Applications

Dr. App shows us Figure 10.1, which displays the data from the file  
Ch10.xls, Fig.10.2, on 10 indexes of the leading indicators for a hypo-
thetical economy from January through July 2014.

We learn that the following steps must be performed:

In cell C4, type = ((C3 − C2)/C2) * 100 and press Enter
Copy and paste the formula into cells D4 through L4
In cell C7, type = ((C6 − C3)/C3) * 100 and press Enter



	 BUSINESS CYCLES AND RATES OF CHANGE	 229

Copy and paste the formula into cells D7 through L7 and into the 
following cells:

  Cells C10 through L10
  Cells C13 through L13
  Cells C16 through L16
  Cells C19 through L19
Enter values 0, 0.5, or 1 by looking at the percentage changes

For example, the value in cell C4 is −3.226. This implies a fall of 
3.226 percent, which is more than a 0.5 percent decrease, so enter 0. 
Once you finish entering all values of 1, 0.5, or 0:

In cell M5, type = ((C5 + D5 + E5 + F5 + G5 + H5 + I5 + J5 + K5 
+ L5)/10) * 100 and press Enter

Copy and paste the formula from cell M5 into cells M8, M11, M14, 
M17, and M20

The diffusion indexes are in column M.
The results reveal that only four out of six indexes are below 50, 

which is only 67 percent below 50 instead of the 80 percent benchmark 
mentioned by Dr. Theo in his theoretical section. Alte asks, “Should 
we still send a warning that the economy is heading into a recession?” 

Figure 10.1  Obtaining diffusion indexes for February through July 
2014
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Dr. App says, “Here is my interpretation of the indexes: The two indexes 
above 50 are just 5 points from the 50 level, whereas the ones below 50 
show gaps of 20 to 30 points. Based on this observation alone, I would 
rather send a warning on a high probability of a recession.”

Dr. App now comes to Dr. Theo’s last point in the section on 
“Constructing Diffusion Indexes”: Should we use a weighted approach 
to constructing diffusion indexes? Dr. App says that she also believes in a 
weighted-index approach. However, she warns us, “This is the technique 
suggested by this class’ instructors, so take it at your own risk.” Here is the 
idea: We can assign different weights across the leading indicators based 
on their own level of sensitivity, either high (H), low (L), or moderate 
(M). For example, Table 10.2 lists the leading indicators reported by the 
Conference Board, their sensitivity, and possible weights.

Hence, the total of the weighted indexes are:
Total = 2 + 2 + 1 + 1.5 + 1 + 1.5 + 2 + 2 + 1.5 + 1.5 = 16

The steps of calculations are as follows:

	 i.	Calculate the rate of changes for each indicator using Equation 10.1 
as usual.

	 ii.	Ascribe a value of 1 to a positive change, 0.5 to the unchanged one, 
and 0 to a negative change. After that multiply the values by 2 and 
1.5 for the highly sensitive and moderately sensitive indicators, 
respectively.

	 iii.	Sum the value calculated in step (ii), divide the sum by 16, and mul-
tiply the ratio by 100.

Figure 10.2 displays the data from the file Ch10.xls, Fig.10.4, as well 
as the new calculations. From the results, we are now more confident to 

Table 10.2  Assigning different weights across leading indicators

Indicator 1 2 3 4 5 6 7 8 9 10
Sensitivity H H L M L M H H M M

Weight 2 2 1 1.5 1 1.5 2 2 1.5 1.5
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conclude that the economy is heading into a recession because all six dif-
fusion indices are below 50 with many substantially so.

We then work with Dr. Theo on several models based on rates of change.

Models Based on Rates of Change

We learn that we can apply the rates of change concept to models in this 
section to forecast catching-up games and investment choices. The orig-
inal ideas are from Thirlwall (2003) and are modified to fit the business 
problems in this section.

Catching Up

Rates of change can be used to study convergence (or catching up) among 
countries or companies. For example, the sales of Fligh’s company have 
grown at a monthly rate of 2 percent whereas those of Skylight have 
grown at a monthly rate of 7.5 percent. How long would it take Skylight 
to catch up with Flightime at their respective growth rates?

In economic theory, there is an unconditional convergence where 
developing countries will catch up with the developed countries even if 
the former do not grow faster than the latter. There are three arguments 
for this unconditional convergence.

First, the neoclassical growth theory assumes diminishing returns 
to capital. A developed country, which has accumulated a large stock of 

Figure 10.2.  Obtaining diffusion indexes using weighted indicators
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capital per worker over time, will eventually reach a long-run equilib-
rium called the steady state, where the country’s growth rate of capital per 
worker will be zero. This will allow a developing country to catch up and 
the two will converge to the same level of RGDP.

Second, since knowledge and technology are considered public goods, 
there are positive externalities flowing from developed to developing 
countries. These knowledge and technology transfers and spillovers allow 
the developing countries to harvest benefits from the developed countries 
without costs because the former do not have to fund the research and 
development (R&D) that results in new knowledge and technology.

Third, the progress from an underdeveloped economy to a developed 
one always goes through an industrialization process. During this process, 
the factors of production and resources are automatically moving from 
the agricultural sector with low productivity to the manufacturing and 
service sectors with high productivity. Since resources cannot be shifted 
forever, developing countries will have greater shifts of resources and be 
able to catch up.

Empirically, there is no clear evidence of unconditional convergence. 
There are certain conditions for the convergence to occur. The conditions 
for a country could be high investment in education, a higher savings 
rate, or good governance.

The following section modifies the original ideas to forecast catching 
points between two companies. The conditions for a company to catch up 
with another company could be corporate restructuring, high investment 
in capital, rigorous R&D funding, or simply launching an aggressive 
campaign.

Catching Up to Current Level

Given an average growth rate in the sales of a small company, we can find 
how long it would take a small company to catch up with a large com-
pany, whose sales do not grow. The relationship between the former and 
the latter can be expressed as:

	 SALELt = SALESt (1 + GROWS )
T 	 (10.2)
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where
SALELt	 = the current sales of the large company at time t
SALESt	 = the current sales of the small company at time t
GROWS = the sale growth rate of the small company
T	 = �the time it takes for the small company to catch up with the 

large one
Taking the natural logarithm of Equation 10.2 yields:
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To this point, Fligh raises his hand and asks, “Can we apply this prob-
lem to calculate how long it would take for Skylight to catch up with 
Flightime if my company does not grow?” Dr. Theo replies, “Sure, let’s 
work on the problem.”

Fligh provides the class with the information: His company’s sales this 
month are $134,840, and Skylight’s sales are $45,040. We already know 
that monthly sale growth at Skylight is 7.5 percent, so

	
T =

+
= ≈

ln ,
,

ln( . )
.

134 840
45 040

1 0 075
15 27 15

Hence, it would take Skylight roughly 15 months at a growth rate of 
7.5 percent to catch up with Flightime if the latter does not grow.

Catching Up at Future Level

Dr. Theo then says, “But Flightime is also growing, so we need to revise 
Equation 10.2 to find how long it would take for the gap between the two 
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companies to be eliminated in the future.” The relationship between the 
former and the latter can be expressed as:

	 SALELt (1 + GROWL)
T = SALESt (1 + GROWS)

T 	 (10.4)

where GROWL = the sale growth rate of the large company
Taking the natural logarithm of Equation 10.4 yields:
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Dr. Theo then says, “Let’s work on the problem between Flightime 
and Skylight again.” We already know that the monthly sale growth at 
Fligh’s company is 2 percent, and the monthly sale growth at Skylight is 
7.5 percent; hence:

	
T =

+ − +
= ≈

ln ,
,

ln( . ) ln( . )
.

134 840
45 040

1 0 075 1 0 02
21 02 21

Thus, it takes Skylight roughly 21 months to catch up with Flightime’s 
sales. Fligh exclaims, “That is fast! I will report this result to my boss so 
that he can pursue an aggressive campaign to increase sales. Otherwise, 
we might soon go bankrupt.”

Required Growth Rate to Reach a Target

Dr. Theo continues, “In solving the problem in Equation 10.5, we assume 
that Skylight is growing at a constant rate of 7.5 percent. Suppose that 
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Flightime continues to grow at a 2 percent rate, but Skylight sets a target 
to catch up with the Flightime in 25 months instead of 21 months. 
It then needs to calculate the required growth rate to reach that target.” 
We can start from Equation 10.4:
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We work on the problem again by substituting 25 months, sales 
for the two airlines, and the sale growth of 2 percent for Flightime into 
Equation 10.6:
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Thus, Skylight has to grow at a monthly rate of 6.6 percent to 
eliminate the gap in 25 months.

Required Growth Rate to Keep a Constant Gap

Dr. Theo discusses the last case of the catching-up games: Suppose Skylight 
is running out of resources to compete with Flightime at this moment 
and wants to know what growth rate will keep the gap between the two 
companies constant until a certain date in the future, say 25 months from 
now. In this case, the equation is:

	 SALELt − SALESt = SALELt (1 + GROWL)
T − SALESt (1 + GROWS)

T

	 (10.7)
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We work on the airline problem a last time:
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Therefore, Skylight can keep the gap at a constant value for 25 months 
if its sales grow at a monthly rate of 4.4 percent.

Investment Choices

Cita shares with us a problem from the city council. The mayor wants 
to make decisions on various investment possibilities. He wants Cita 
to help with finding the right mix of strategies and time horizons to 
maximize the city’s welfare in the future. Cita provides us the following 
information:

The city economy has a capital output ratio of 1.5, that is, K/Y = 1.5, 
and so Y = K/1.5.

The initial capital stock is $390 million.
The depreciation rate is 10 percent (d = 0.1), so the capital for the next 

period = K (1 − d) unless a new investment is made.
Consumption is chosen as the measure of the city welfare.
The social discount rate is 1 percent (i = 0.01).
For starting, we assume no government spending; hence:

	
C

Y I
i t= −

+( )1
; t = 0, 1, 2, 3, 4.
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The mayor is newly elected in November and has four years ahead as 
his time horizon. He has to make a decision between two invest-
ment scenarios: the first is to invest 8 percent of the output and 
have more output value for current consumption. The second is 
to invest 9 percent of the output and have less output value for 
current consumption but more for future consumption.

The mayor wants to make a decision on the plan that will maximize 
the city’s welfare in four years. We work on the calculations and display 
them in Table 10.3.

The results show that the second plan yields more capital than the 
first one: by the end of the first year, the first plan has $410.8 million 
(= 390 + 20.8) whereas the second plan has $413.4 million (= 390 + 
23.4). Hence, by the end of the second year, the second plan already 
yields a better consumption value of $233.2 million (= [261.4 − 23.5]/
[1.01]2) compared with $232.9 million (= [258.3 − 20.7]/[1.01]2) for 
the first plan. Additionally, output and capital stock grow at faster rates 
with the second plan thanks to the high rate of investment, opening a 
venue for future growth. However, if the mayor has only one year to 
go, he should choose the first plan with the 8 percent investment rate 
because by the end of the first year, the first plan yields a better con-
sumption value of $224.5 million compared to $223.5 million for the 
second one.

Dr. Theo tells us that Excel applications conducted by Dr. App will 
add government spending and use more time horizons.

Excel Applications

Dr. App says that the problems in the section on “Catching Up” can 
be solved faster with a handheld calculator, so she only shows us Excel 
demonstrations for the investment problems in the section on “Invest-
ment Choices.” The problem is to choose between two investment plans: 
the first one invests 8 percent of the output, and the second invests 
16 percent of the output. The depreciation rate is 10 percent, and the 
discount rate is 3 percent. The capital output ratio equals 3, and govern-
ment spending is fixed at $10 million. Figure 10.3 shows data from the 
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file Ch10.xls, Fig.10.6. Dr. App tells us to proceed with the following 
steps, ignoring the results in each column for a while because they will be 
gradually adjusted:

In cell D3, type = C3/3 and press Enter
(Note that the values in cells B3, C3, H3, and I3 are initial capital with 

d = 0 for t = 0)
Copy and paste the formula from cell D3 into cells D4 through D13 

and J3 through J13
In cell E3, type = D3 * 0.08 and press Enter
Copy and paste the formula from cell E3 into cells E4 through E13

In cell K3, type J3*0.16 and press Enter
Copy and paste the formula into cells K4 through K13
In cell G3, type = (D3 − E3 − F3)/1.03^(A3) and press Enter
Copy and paste the formula from cell G3 into cells G4 through G13 

and M3 through M13
In cell B4, type =B3 + E3 and press Enter
Copy and paste the formula from cell B4 into cells B5 through B13 

and H4 through H13
In cell C4, type =B4 * (1 − 0.1) and press Enter
Copy and paste the formula from cell C4 into cells C5 through C13 

and I4 through I13

The forecast values for future consumption are in columns F and M.

Figure 10.3  Obtaining forecasts on future consumption from two 
investment plans
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From the results, Plan A will not achieve a higher consumption value 
than plan B until the end of period 4. Thus, if the time horizon is three 
years, Plan A is a better option than Plan B.

At this point, Mo raises his hand and asks, “Comparing Figure 10.3 
with Table 10.3, I guess that the higher the discount rate, the longer it 
takes to maximize the consumption when we choose a higher investment 
rate. Is that true?”

Dr. App says, “This guessing turns out to be true only for low discount 
rates, which are roughly between 1 and 3 percent. When the discount rate 
is more than 3 percent, different results can occur. Therefore, you will 
have to experiment with more than two plans before drawing your own 
decisions.”

She then gives us another example: Figure 10.4 displays the data from 
the file Ch10.xls, Fig.10.7, and the results for a similar problem with the 
discount rate of 4 percent. The steps of entering formulas are the same as 
those in Figure 10.3 except for the ones in columns G and M, where the 
discount factor has to be changed to 1.04. In this figure, Plan B surpasses 
Plan A at the end of period 2, sooner than the results in Figure 10.3, 
which has a discount rate of 3 percent.

From the results, Plan A is only superior to Plan B when the one-year 
horizon is taken using the discount rate of 4 percent.

To conclude the chapter, Dr. App says that while an individual discount 
rate is subjective, we can use the interest rate in the market as a proxy for 
a social discount rate. She also says that the decision of using short-term 
or long-term interest rates depends on the targeted time horizons of a 
project and the subjective preferences on the future consumption of each 
community.

Figure 10.4  Future consumption from two investment plans with 
discount rate = 4 percent
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Exercises

1.	The file Diffusion.xls provides data on the individual indexes of the 
leading indicators for January through July. Construct the first dif-
fusion index for February using a handheld calculator then continue 
with the indexes for the other months using Excel commands.

2.	Artistown’s profit is $108,100 and grows at an annual rate of 
2 percent while another school’s profit is $269,500 and grows at 
an annual rate of 1 percent. How long would it take for the gap 
between the two schools to be eliminated in the future?

3.	Use the same information in Exercise (2) except the growth rate 
of Artistown. Find out how fast Artistown has to grow annually to 
eliminate the gap in two years.

4.	Use the same information in Exercise (2) except the growth rate of 
Artistown. Find out the growth rate of Artistown that will keep the 
gap between the two schools the same in the next two years.

5.	Consider three different investment ratios of 0, 8, and 40 percent. 
Assume that the capital output ratio is 2, and that there is no depre-
ciation rate, government spending, or discount rate. The initial 
capital stock equals 300.

	 a.	�Construct a table similar to Figure 10.3 up to eight years using a 
handheld calculator or an Excel spreadsheet.

	 b.	�When does the second policy become superior to the first in wel-
fare enhancement? When does the third policy become superior 
to the second?

	 c.	�What could have made the results more realistic?





CHAPTER 11

Conclusion

Our class is approaching the end. Our professors are very anxious to sum-
marize the important points so that the knowledge gained during this 
class will benefit the students for a lifetime.

Mo asks to tell us a story he saw on the Internet: “Aristotle (384–322 
BC) raised the question of whether the chicken comes first or the egg 
comes first and concluded that both must have always existed. Thurman 
and Fisher (1988) tried to answer the question by performing a test using 
data on chickens that lay eggs except for commercial broilers and on eggs 
produced in the United States from 1930 to 1983. They found that the 
egg comes first.” He then asks, “Does that mean that the egg causes the 
chicken to come into existence?”

Dr. Theo thanks Mo for raising a good question. He says that this will 
be one of the topics discussed today but he first wants to summarize the 
techniques learned throughout this course.

Theoretical Summary

Dr. Theo’s summarization comprises two broad categories.

Pros and Cons of the Techniques

Moving Averages and Double Moving Averages—Chapters 2 to 4

Moving averages (MA) and double moving averages (DM) are the sim-
plest techniques in forecasting. They are easy to implement and are the 
most cost-effective method, so they are good starting steps to forecasting. 
However, the simplicity of the models, including the weighted moving 
averages (WM) model with integer weights, might render inaccurate 
forecasts. The techniques usually produce a mean absolute percentage 
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error (MAPE) of roughly 12 to 15 percent for one-period forecasts and 
20 to 25 percent for four-period forecasts.

Exponential Smoothing and Double Exponential Smoothing— ―
Chapters 2 to 4

These are more sophisticated techniques than the MAs because the weight 
(or weights in the double exponential smoothing [DE]) can be adjusted 
continuously from zero to one. Hence, the exponential smoothing (ES) 
technique often provides more accurate forecasts than the MA technique. 
However, the ES and DE models can only cover a limited range of data 
because they do not account for the seasonal and cyclical components of 
a time series. The techniques usually produce an MAPE of roughly 10 to 
12 percent for one-period forecasts and 18 to 22 percent for four-period 
forecasts.

Advanced Time Series Analysis—Chapter 7

The decomposition and triple ES both incorporate the seasonal and cycli-
cal components of a time series into their models and so can cover a 
wider range of data and longer-term forecasts than the preceding two 
techniques. The triple ES can even handle nonlinear trends, and the AR 
and ARMA/ARIMA models can handle a time series that follows a ran-
dom walk. They are also able to reduce errors, with an MAPE of roughly 
8 to 10 percent for one-period forecasts and 15 to 17 percent for four-
period forecasts. Their weakness is that they still make forecasts based 
only on past performances of a time series.

Linear Regression Technique—Chapters 5 and 6

A widely applied technique in associative analyses, a linear regression, 
irrespective of whether it is simple or multiple linear regressions, often 
produces a smaller MAPE than those obtained from MA and ES 
techniques because the technique aims to minimize the errors (the least 
squared approach). Additionally, it takes into account more determinants 
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of a market than the time series itself. A good linear regression model can 
produce an MAPE of roughly 8 to 10 percent for one-period forecasts 
and 15 to 17 percent for four-period forecasts. However, when the rela-
tionship between the dependent variable and the explanatory ones are 
not linear in parameters, advanced knowledge of nonlinear regressions is 
needed to adjust the model accordingly.

Business Models—Chapter 8

These are very helpful models because they are developed specifically 
for businesses and have enjoyed wide applications in the business 
world. The running forecast model helps with inventory and ordering. 
The financial models help with investing, and the diffusion model is good 
for product adoption forecasts. The weakness of the running forecast 
model is that its applications are limited to inventory and ordering plans. 
The weakness of the other two groups is that the errors are large with an 
MAPE of roughly 14 to 18 percent for one-period forecasts and 20 to 
25 percent for four-period forecasts.

Economic Models—Chapter 9

Between the two groups of the economic models, namely, production 
models and gravity models, the production models have a stronger base in 
economic theory. Hence, the production models produce smaller errors 
than the business models, with an MAPE of roughly 10 to 12 percent 
for one-period forecasts and 18 to 22 percent for four-period forecasts. 
The  gravity models usually result in an MAPE’s range similar to that 
for business models. Their weakness lies in their applications, which are 
much more limited than those of the business models.

Business Cycles and Rates of Change—Chapter 10

The turning-point technique is popular in all disciplines whereas the 
models based on rates of change are currently used in the realm of pub-
lic policy. However, they can be applied to a business environment, for 
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example, forecasting a turning point of a business or catching-up games 
between two companies. Both groups are for long-term forecasts, but the 
models based on rates of change are for longer terms than the turning 
point models. The weakness of these models is that the errors are large, 
with an MAPE of roughly 15 to 20 percent for one-period forecasts, 
20  to  25 percent for four-period forecasts, and 25 to 45 percent for 
12-period forecasts.

Cautions on Forecast Results

Dr. Theo then emphasizes that there are several pitfalls to avoid.

Mistaking Correlation for Causality

This is the very issue raised by Mo about the chickens and the eggs. 
Dr.  Theo explains that although the correlation between two variables 
makes them move in the same direction, stating that a variable X causes a 
variable Y to change is a common mistake in forecasting. In fact, variable 
X does not need to cause variable Y in order to help predict Y. Hence, 
producing a model that has predictive power is the most important goal 
in forecasting. Using a holdout sample is one way to test the predictive 
power of a model. The second way is to carry out an F-test on the regres-
sion model. The third way is to perform a Granger Causality test, which 
is the test on the chickens and the eggs mentioned by Mo.

Dr. Theo then says, “However, the fact that the egg comes first might 
not imply that the egg causes the chicken to come into existence. That 
is one of the reasons I did not teach the Granger Causality test in this 
class. Another reason is that I cannot teach a whole econometric course 
in a forecasting course. You can find details of the test in Ramanathan 
(1998) or Stock and Watson (2007), which are introductory textbooks 
in econometrics.”

We now understand Dr. Theo’s point: It is a good habit to make 
evaluations on the predictive power of a model, which is crucial, instead 
of focusing on the causal relation, which is not important, in making 
forecasts and discussing the forecast results.



	 CONCLUSION	 247

Spurious Precision

Forecasters and decision makers are often confused between precision 
and accuracy. Due to the uncertainty of the future, all point forecasts 
carry large errors, especially when the forecasts are several periods away 
from the current one. Hence, interval forecasts should be more important 
than point forecasts, and a good forecaster should report a confidence 
interval instead of a single point. Use past experiences and current market 
conditions to make a decision on whether we should follow an upper or 
lower bound of an interval forecast for ordering inputs and delivering 
our products.

Theory-less Forecasting

Naïve forecasters may extrapolate past data without understanding any 
plausible theory behind them. For example using an AR(p) model with-
out understanding the model structure and the conditions to use it can 
lead to a spurious regression due to nonstationarity. When this occurs, 
the results show strongly significant coefficients but the model still fails 
to predict the future. Hence, most sound forecasts are grounded not 
only in empiricism but also in theory. If the results seem to contradict 
a theory, a respecification process should be carried out to adjust 
the model.

Overreliance on Forecasts

Forecasters are sometimes subjective and can overestimate or under-
estimate the future. For example, a production manager, who holds 
an optimistic view of a company, can overestimate the forecast values. 
In  contrast, a sales person who receives bonuses for his sales might 
underestimate the expected values so that his actual sales will exceed 
the forecasts in the future. For this reason, decision makers who take 
forecast values literally can be in for a great surprise. Thus, good decision 
makers should be cautious and communicate with related parties to 
adjust accordingly.
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Ignoring Global Market Movements

The Financial Crisis of 2008–2009 revealed that the era of independent 
economies no longer exists. No matter how closed or strong an economy is 
and how sophisticated our forecast model, excluding international market 
movements might lead to huge errors in our results. We learn that we 
should utilize the Global Indicator Program provided by the Conference 
Board to assist us in understanding global financial conditions and  
adjusting our forecasts as analyzed in Manini and Ozyildirim (2013).

To conclude his remarks, Dr. Theo emphasizes that regardless of what 
we are trying to forecast, a combination of several quantitative techniques 
and qualitative judgments usually provides the best results.

Empirical Summary

Dr. App starts her section by sharing her experience in applying the fore-
cast concepts into data analyses.

Data Issues

Collecting Data

If someone offers us a historical dataset, we are very lucky. In many 
instances, we have to search for one. To locate a dataset it is best to inquire 
within our company’s other departments, partner companies, or firms 
that we have to order inputs from, or firms to which we deliver outputs. 
We can also contact federal and local government offices. For example, 
Cita’s office has data on private firms in the city. We learn that we can 
also ask the Department of Energy, Department of Urban and Regional 
Planning, or the Department of Business and Economic Development 
in our city.

Dr. App then says, “In the worst situation, create your own dataset.”
At this point Arti offers her own experience, “Two years ago, before 

opening my art school, I conducted a quantitative survey by sending out 
survey forms asking people for specific values that they can fill in my 
questionnaires on their income, the number of children in their house-
holds, their preferences in visual and performing arts, and so on. Based 
on the information, I compiled a dataset for myself on the demand for 



	 CONCLUSION	 249

instructions in the arts. I did not know how to forecast at that time, 
but I was able to perform some statistical analysis and came up with an 
estimate of the potential revenue for my school.”

Alte also raises her hand and says, “Last year, when I was considering 
to buy the alteration business at Alcorner, I went to the site and sat on a 
bench outside the store with a handful of my beads. Whenever a customer 
was walking out of the store with the store’s shopping bag, I moved a bead 
from my right pocket to my left one. At the end of the day, I multiplied 
the number of beads with a spending average of $10 for each paying cus-
tomer to make one data point. I did this every day for two weeks as an 
approximation of the demand for alterations and came up with a dataset. 
I eventually decided to purchase the business.”

Dr. App thanks them for sharing their experiences with the class and 
moves on to the next subject. In the following section is what she says.

Cleaning the Data

Once you have successfully downloaded a dataset, do the following steps:

1.	Eliminate all text except the labels on the top row.
2.	For cross-sectional data or time series data, refer to Chapter 1 

commands to transpose the data from horizontal to vertical arrange-
ments.

3.	For panel data: You can only transpose the time series section of each 
identity. You then copy and paste the time series for each identity 
gradually into Excel. 

4.	However, you can still refer to Chapter 1 to see how panel data 
should be organized.

5.	Time series periods should be arranged from the lowest to the high-
est values. Refer to Chapter 1 for the sort commands.

6.	A missing observation is often marked with a dot (.) or the letters 
N/A (nonapplicable). Delete the dot or the letters from the cell.

Missing Observations

Excel cannot handle missing observations. In cross-sectional data anal-
yses, the best solution is to eliminate the observation completely. For 



250	 SEEING THE FUTURE

example, suppose you want to regress productivity on education and 
investment. You have data on productivity and investment for 50 states 
and Washing, DC, but data on education for Washington, DC, is missing. 
The best course of action is to eliminate Washington, DC, completely 
from the data analyses.

In time series analysis, eliminating one period creates a gap in the 
series. For example, Mo wants to regress motorcycle sales on income and 
has data on motorcycle sales from January 2012 to December 2012, but 
data on the income of the city residents for June 2012 are missing. In this 
case, instead of eliminating data for June, the best strategy is to calculate 
an approximated value of the city resident income in June by averaging 
the income values in May and July. He can use this average to fill in the 
missing value for June.

Changing Units

We learn that if we only need to interpret the effect of an explanatory 
variable on the dependent variable while holding other variables con-
stant, then the units of the explanatory variables should not matter. Since 
we need to calculate the predicted values in forecasting, we will have 
great difficulty if too many units are used. For example, if consumption 
is in dollars, income is in hundreds of dollars, and the stock prices are 
in thousands of dollars, then before calculating we will have to change 
the values of the coefficient estimates. Hence, changing all units into 
a single unit before performing regressions will make the calculations 
much easier.

Logarithmic Functions

Dr. App also reminds us that the logarithm of zero is undefined as shown 
in any college algebra textbook. Hence, if a cross-sectional dataset has 
a zero number, we can eliminate the data point before performing the 
regressions. If a time series dataset has a zero number, we can replace the 
zero with a small number. In order for the number to be small enough 
so that it does not bias the results, we need to scale up the dataset. 
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For example, if the units are in thousands of dollars and the other values 
are in the range of 5 through 10, we can change them to dollars so that 
the values are in the range of 5,000 through 10,000 and then add 1.0 to 
the whole series so that 5,000 becomes 5,001 and the zero becomes 1.0.

Preliminary Analysis

Preliminary steps of data analysis such as sketching a time series plot and 
performing descriptive statistics before applying any forecast technique 
are very important. The fact that we obtain a reliable dataset does not 
imply that we can use all observations for estimations. For example, the 
maximum value in descriptive statistics might reveal an extremely high 
sale volume due to a recent promotion. This value will cause an over-
estimation of future sales. Any outlier should be eliminated before data 
analyses are performed. After a model is developed and forecast values are 
obtained, add these outliers back to the periods to which they belong. 
Other values reported in the descriptive statistics are also important as 
discussed in Chapter 1.

Technical Summary

Finally, Dr. App provides us with a summary table of all techniques intro-
duced in this course and goes over each technique with us. Her table is 
displayed in Table 11.1.

Dr. Apps concludes her section by telling us that this textbook is an 
introduction to forecasting. Although it might be enough for simple 
problems, she hopes that we continue our learning in the future by read-
ing more advanced books whenever we have the time. She also hopes that 
we combine the quantitative knowledge we have learned in this class with 
our common sense and qualitative judgment to obtain the best forecasts 
for our businesses.

We thank Dr. Theo and Dr. App for a course that has provided valuable 
knowledge that we can apply to our daily lives. Many of our classmates 
came to this country as political refugees with empty hands but have been 
doing quite well thanks to their entrepreneurial spirits, the determination 
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to learn, and their eagerness to apply what they have learned into manag-
ing their businesses. We know that we can do the same.

It is time to say goodbye. We all wish the professors and each other 
good luck. We also wish you all the best for your future and hope that you 
have enjoyed this course as much as we have.
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