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PREFPREFPREFPREFPREFACEACEACEACEACE

Differential Geometry and Functional Analysis are important branches of
Mathematics having many applications in different areas of Mathematical sciences.
An international conference on “Differential Geometry, Functional Analysis and
Applications” was held at Department of Mathematics, Jamia Millia Islamia, New
Delhi under DRS-I of University Grant Commission, Govt. of India. The
conference focused on some selected topics namely Submanifolds Theory, Fibre
bundle, Harmonic morphisms, Homogeneous and symmetric spaces, Structures
on manifolds, Variational analysis, Fixed point theory, Operator theory, Fourier
analysis, Wavelet analysis, Approximation theory.

The conference was attended by participants from different parts of India
and abroad.

We have received many papers for the proceeding of the conference and
after due process of refereeing, some papers have been accepted for publication
in this volume.

Department of Mathematics, JMI expresses its sincere thanks to the UGC,
NBHM, DST, CSIR, Bank of India and officials of JMI for providing financial
support to hold this conference. We are thankful to INSA for its financial support
which is being utilized for the publication of this volume. Finally, we appreciate
Narosa Publishing House, New Delhi for their good job in publishing this volume.

                                                          Editors
Mohammad  Hasan Shahid

Sharfuddin Ahmad
Khalil Ahmad
M. Rais Khan

Khursheed Haider
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SYMMETRIES OF TYPE N PURE RADIATION
FIELDS AND RICCI SOLITONS

ZAFAR AHSAN1 AND MUSAVVIR ALI2

Abstract. The present paper puts an emphasis on the de-
scription of Ricci solitons with a physical interpretation of the
notion of the vector field occurring in the definition. We in-
vestigate the geometrical symmetries of Petrov type N pure
radiation fields along the vector field associated to Ricci soli-
tons.

1. Introduction

It is known that Petrov type N solutions of Einstein vacuum
equations are among the most interesting, rather difficult and lit-
tle explored of all empty spacetime metrics ([18], [26]). From the
physical point of view, they represent spacetime filled up entirely
with gravitational radiation while mathematically they form a class
of solutions of Einstein equations which should be possible to be
determined explicitly. The behavior of the gravitational radiation
from a bounded source is an important physical problem. Even rea-
sonably far from the source, however, twisting type N solutions of
the vacuum field equations are required for an exact description of
that radiation. Such solutions would provide small laboratories in
which to understand better the complete nature of singularities of
type N solutions and could also be used to check numerical solu-
tions that include gravitational radiation [28].

Moreover, in general theory of relativity the curvature tensor
describing the gravitational field consists of two parts viz., the mat-
ter part and the free gravitational part. The interaction between
these two parts is described through Bianchi identities. For a given

2000 Mathematics Subject Classification. 53C25, 53C80, 83C20.
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distribution of matter, the construction of gravitational potential
satisfying Einstein’s field equations is the principal aim of all inves-
tigations in gravitational physics and this has often been achieved
by imposing symmetries on the geometry compatible with the dy-
namics of the chosen distribution of matter. The geometrical sym-
metries of the spacetime are expressible through the vanishing of
the Lie derivative of certain tensors with respect to a vector.

In a series of papers ([13]-[15], [19]-[21]) Katzin, Levine, Davis
and collaborators have identified a number of symmetries for the
gravitational field with their interrelationships and have obtained
the corresponding weak conservation laws as the integrals of the
geodesic equation. Different types of matter distribution compati-
ble with geometrical symmetries have been the subject of interest
of several investigators for quite sometime and in this connection,
Oliver and Davis [24], for the perfect fluid spacetimes, have studied
the time-like symmetries with special reference to conformal mo-
tion and family of contracted Ricci collineation. The perfect fluid
spacetimes including electromagnetic field which admit symmetry
mapping belonging to the family of contracted Ricci collineation,
have been studied by Norris et al. [23]. The role of geometri-
cal symmetries in the study of fluid spacetimes, with an emphasis
on conformal collineation has been explored by Duggal [16] and
Duggal and Sharma [17] (see also [4]). The geometrical symmetry
£ξRij = 2ΩRij, known as Ricci inheritance, has been studied by
Ahsan [6], who obtained the necessary and sufficient conditions for
perfect fluid spacetimes to admit such symmetries in terms of the
kinematical quantities (also see [1]-[3]). Different types of symme-
tries of Petrov type N gravitational fields has been the subject of
interest since last few decades (cf., [5]) but a complete analysis of
collineations is not found in the literature (as far as we know).

Recently geometric flows have become important tools in Rie-
mannian geometry and general relativity. List [10] has studied a
geometric flow whose fixed points
correspond to static Ricci flat spacetime which is nothing but Ricci
flow pullback by a certain diffeomorphism. The association of each
Ricci flat spacetime gives notion of local Ricci solitons in one higher



dimension. The importance of geometric flow in Riemannian geom-
etry is due to Hamilton who has given the flow equation and List
generalized Hamilton’s equation and extend it to spacetime for
static metrics. He has given system of flow equations whose fixed
points solve the Einstein free-scalar field system. This observation
is useful for the correspondence of solutions of system i.e., Ricci
solitons and symmetry properties of spacetime, that how Riemann-
ian space (or spacetime) with Ricci solitons deals different kind of
symmetry properties.

Motivated by the role of symmetries and Ricci solitons, a study
of vector field involved in the definition of Ricci solitons and symme-
tries of spacetime is made. In section 2 preliminaries are given. The
main results on the relationship between the symmetries of Petrov
type N pure radiation fields and Ricci solitons has been given in
section 3. Finally section 4 deals with the conclusion.

2. Preliminaries

The geometrical notion known as Ricci solitons is shouldered
on the concepts of Hamilton’s flow. So far it has been discussed in
different settings of Riemannian manifolds.
(a) Ricci Solitons A family gλ = g(λ; x) of Riemannian metrics
on a n-dimensional (n ≥ 3) smooth manifold M with parameter λ
ranging in a time interval J ⊂ R including zero is called a Ricci flow
if the Hamilton’s equations

∂g0
∂λ

= −2Ric0 (1)

of the Ricci flow (cf; [11], [12]) for g0 = g(0) and the Ricci tensor
Ric0 of the g0 are satisfied. Corresponding to self similar solution
of equation (1) is the notion of the local Ricci solitons, defined as a
metric g0 satisfying the equation

−2Ric0 = £ξg0 + 2kg0 (2)

for vector field ξ on Vn and a constant k. The Ricci solitons is said
to be steady (static) if k = 0, shrinking if k < 0 and expanding if
k > 0. The metric g0 is called a gradient Ricci solitons if ξ = ∇φ
i.e., gradient of some function φ. For Schwarzschild metric, Akbar



and Woolger [9] have derived the expressions around this notion;
while Ali and Ahsan [8] have studied this concept for obtaining the
Gaussian curvature of Schwarzschild solitons.

For n-dimensional Riemannian manifold equation (2) can be
written in general as

Rij − 1

2
£ξgij = kgij (3)

So far more than twenty seven different types of collineations
have been studied and the literature on such collineations is very
large and still expanding with results of elegance (cf., [6]). However,
here we shall mention only those symmetry assumptions that are
required for subsequent investigation and we have
(b) Motion A spacetime is said to admit motion if there exists a
vector field ξa such that

£ξgij = ξi;j + ξj;i = 0 (4)

Equation (4) is known as Killing equation and vector ξa is called a
Killing vector field (cf. [27]).
(c) Conformal Motion (Conf M) If

£ξgij = σgij (5)

where σ is a scalar, then the spacetime is said to admit conformal
motion and vector field ξ is called a conformal Killing vector field.

(d) Special Conformal Motion (SCM) A spacetime admits
SCM if

£ξgij = σgij, σ;ij = 0 (6)

(e) Curvature Collineation (CC) A spacetime admits curvature
collineation if there is a vector field ξi such that

£ξR
i
jkl = 0 (7)

where Ri
jkl is Riemann curvature tensor.

(f) Ricci Collineation (RC) A spacetime is said to admit Ricci
collineation if there is a vector field ξi such that

£ξRij = 0 (8)



where Rij is the Ricci tensor.

(g) Affine Collineation (AC) If

£ξΓ
i
jk = ξi;jk +Ri

jmkξ
m = 0 (9)

then the spacetime is said to admit an AC.

(h) Weyl Projective Collineation (WPC)
A symmetry property of a spacetime is called WPC if and only

if

£ξW
i
jkl = 0 (n > 2) (10)

where W i
jkl is Weyl projective tensor.

3. Main Results

In this section, we shall discuss the role of Ricci solitons in the
study of Einstein spaces and Petrov type N pure radiation fields. In
4-dimensional spacetime, the Weyl tensor is related to the Riemann
and Ricci tensors through the equation

Cijkl = Rijkl − 1

2
(gikRjl + gjlRik − gjkRil − gilRjk)

+
1

6
(gikgjl − gilgjk)R

(11)

In NP-formalism (cf., [22]), the components of Weyl tensor are ex-
pressed by five complex scalars Ψ0, Ψ1, Ψ2, Ψ3 and Ψ4. Through
these components the gravitational field has been classified into six
categories type I, II, D, III, N and O (cf. [26]). The Weyl scalar
along with Goldberg-Sachs theorem declares type N pure radiation
field follow the conditions

Ψ4 = Ψ �= 0, Ψi = 0, i = 0, 1, 2, 3 (12)

and

κ = σ = ε = 0 (13)

where κ, σ, ε are the spin-coefficients [22]. Ali and Ahsan [7] have
obtained symmetries for Weyl conformal tensor. Using equations
(11)-(13) and definitions (b)-(c), we can write



Lemma 1 In type N PR fields every conformal motion, special con-
formal motion and homothetic motion, all degenerate to motion.

From equations (3) and (4), we have

2Rij = £ξgij + 2kgij (14)

= ξi;j + ξj;i + 2kgij

Contracting this equation with gij, we get

R = ξi;i + kn (15)

which can be expressed as

divξ = ∇iξ
i = (R− kn) (16)

where R = gijRij is scalar curvature. From equations (14) and (16),
we get

(n−1Rgij −Rij) = −1
2
£ξgij + n−1(divξ)gij (17)

Now for gij to be Einstein metric i.e., Rij = μgij where μ can be
chosen as n−1R, equation (14) together with the definition of con-
formal motion (£ξgij = σgij), gives

Lemma 2 [25] The vector field ξ associated with Ricci solitons
(M, g) is conformally Killing if and only if (M, g) is an Einstein
manifold of dimension (n ≥ 3).

Using Lemmas 1 and 2, we can state

Theorem 1 Type N pure radiation fields admit motion along a vec-
tor field ξ associated to Ricci solitons (M, g) if and only if M is an
Einstein space.

For Killing vector field ξ, equation (3) reduces to

Rij = kgij (18)

Taking Lie derivative with respect to vector field ξ

£ξRij = k£ξgij = 0

Thus, we have



Theorem 2 A vector field ξ associated to Ricci solitons (M, g) is
Ricci collineation vector field in Type N PR fields if g is Einstein
metric.

Taking the Lie derivative of Christoffel symbol

Γi
jk =

1

2
gil

(
∂gjl
∂ξk

− ∂gjk
∂ξl

+
∂gkl
∂ξj

)
along the vector field ξ, after a

careful calculation we get

£ξΓ
i
jk = ξi;jk +Ri

jmkξ
m (19)

Now if ξ is Killing vector field, then

ξi;jk +Ri
jmkξ

m = 0 (20)

where

Rh
ijk = −

∂Γh
ij

∂xk
+
∂Γh

ik

∂xj
− Γa

ijΓ
h
ak + Γb

ikΓ
h
bj (21)

is the Reimann curvature tensor.

Using equations (19) and (20) along with the definition of affine
collineation, we have

Theorem 3 Type N pure radiation fields admit affine collineation
along a Killing vector field ξ associated to Ricci solitons (M, g) if
and only if M is an Einstein space.

From the definition of Lie derivative

£ξR
i
jkl = ξhRi

jkl;h −Rh
jklξ

i
;h +Ri

hklξ
h
;j +Ri

jhlξ
h
;k +Ri

jkhξ
h
;l (22)

while using the definition of Christoffel symbol and Killing vector
field ξ, we have

£ξR
i
jkl = 0

which establishes the curvature collineation, so we have

Theorem 4 A Killing vector field ξ associated to Ricci solitons
(M, g) is Curvature collineation vector field in type N PR fields if
g is Einstein metric.



The Weyl projective tensor is given by

W i
jkl = Ri

jkl − 1
3
(Rjkδ

i
j −Rjlδ

i
k)

For Rij = 0, W i
jkl = Ri

jkl or Wijkl = Rijkl

(23)

From equations (7) and (23), we can easily write

Lemma 3 [20] In a Riemannian manifold curvature collineation im-
plies the Weyl projective collineation but converse is true for empty
spacetimes.

So, theorem 4 and lemma 4 constitute the following

Corollary 1 A Killing vector field ξ associated to Ricci solitons
(M, g) is Weyl Projective collineation vector field in type N PR
fields if g is Einstein metric.

4. Conclusion

For Einstein spaces different kind of symmetry properties for
type N pure radiation fields are established with the help of vec-
tor field associated with Ricci solitons. There are other symme-
tries for type N which can be obtained through the existence of
Killing vectors corresponding to Ricci solitons. Further the results
on geometrical symmetries can be obtained in plenty for spaces of
constant curvature (space forms) because these are maximally sym-
metric spaces.
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SEMI-SYMMETRIC LIGHTLIKE HYPERSURFACES
OF AN INDEFINITE KENMOTSU SPACE FORM

RAM SHANKAR GUPTA

Abstract. In this paper, we study semi-symmetric lightlike
hypersurfaces of an indefinite Kenmotsu space form with struc-
ture vector field tangent to hypersurface. Also, I have given an
example of totally geodesic semi-symmetric lightlike hypersur-
face in R7

2.

1. Introduction

A semi-Riemannian manifold is called semi-symmetric if R(X, Y )·
R = 0, where R(X, Y ) is the curvature operator act as a derivative
on R. It is well known that the class of semisymmetric manifolds in-
cludes the set of locally symmetric manifolds (∇R = 0) as a proper
subset. Semisymmetric Riemannian manifolds were first studied by
E. Cartan, A. Lichnerowicz, R.S. Couty and N.S. Sinjukov . In [3]
K. Nomizu asked the question if there exist complete, irreducible
and simply connected Riemannian manifolds of dimension n ≥ 3
semi-symmetric and not locally symmetric. The first positive ex-
ample was constructed in [6]. A general study of semi-symmetric
Riemannian manifolds was made by Szabo [5].
In the theory of hypersurfaces of semi-Riemannian manifolds it

is interesting to study the geometry of lightlike hypersurfaces due
to the fact that the intersection of normal vector bundle and the
tangent bundle is non-trivial. Thus, the study becomes more inter-
esting and remarkably different from the study of non-degenerate
hypersurfaces. The geometry of lightlike hypersurfaces of semi-
Riemannian manifolds was studied in [1]. The lightlike hypersur-
faces of semi-Euclidean spaces satisfying curvature conditions of
semi-symmetry type was studied in [4].

2000 Mathematics Subject Classification. 53C15, 53C40, 53C50, 53D15.
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The purpose of the present paper is to study the semi-symmetric
lightlike hypersurface of indefinite Kenmotsu space form with struc-
ture vector field ξ tangent to hypersurface.
In Section 2, I have collected the formulae and information which

are useful in our subsequent sections. Section 3, is devoted to
study the semi-symmetric lightlike hypersurfaces of an indefinite
Kenmotsu space form. Also, I have given an example of totally
geodesic semi-symmetric lightlike hypersurface in R7

2.

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M is said to be
an indefinite almost contact metric manifold if there exist structure
tensors {φ, ξ, η, g}, where φ is a (1,1) tensor field, ξ a vector field,
η a 1-form and g is the semi-Riemannian metric on M satisfying
(2.1)⎧⎪⎨
⎪⎩

φ2 X = −X + η(X)ξ, η ◦ φ = 0, φξ = 0, η(ξ) = 1

g(φX, φY ) = g(X, Y )− η(X)η(Y ), g(X, ξ) = η(X)

for any X, Y ∈ Γ(TM), where Γ(TM) denotes the Lie algebra of
vector fields on M .
An indefinite almost contact metric manifold M is called an in-

definite Kenmotsu manifold if [2],

(2.2) (∇Xφ)Y = g(φX, Y )ξ−η(Y )φX, and ∇Xξ = X−η(X)ξ
for any X, Y ∈ TM , where ∇ denote the Levi-Civita connection on
M .
An indefinite almost contact metric manifold {M,φ, ξ, η, g} is

called an indefinite Kenmotsu space form M(c) if it satisfies [2]

(2.3)

R(X, Y )Z = c−3
4
{g(Y, Z)X − g(X,Z)Y }

+ c+1
4
{g(X,φZ)φY − g(Y, φZ)φX

+2g(X,φY )φZ + η(X)η(Z)Y − η(Y )η(Z)X

+g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}
for any X, Y, Z ∈ Γ(TM).



We write as follows:

(2.4) R(X, Y, Z,W ) = g(R(X, Y )Z,W )

(2.5) Ric(X, Y ) = trace{Z → R(X,Z)Y }
where Ric denotes the Ricci tensor on M for X, Y, Z,W ∈ Γ(TM).
For a (0, k)-tensor field T on M , k ≥ 1, the (0, k + 2) tensor

field R ·T = 0 is called curvature conditions of semi-symmetry type
[4] and given by

(2.6)
(R.T )(X1, ...., Xk, X, Y ) = −T (R(X, Y )X1, X2, ..., Xk)

−...− T (X1, ..., Xk−1, R(X, Y )Xk)

for X, Y,X1, Xk ∈ Γ(TM).
A semi-Riemannian space form M is said to be semi-symmetric

if R · R = 0. Thus, from (2.6) and properties of curvature tensor,
we have
(2.7)

(R(X, Y ).R)(U, V )W = R(X, Y )R(U, V )W −R(U, V )R(X, Y )W

−R(R(X, Y )U, V )W −R(U,R(X, Y )V )W = 0,

for any X, Y, U, V,W ∈ Γ(TM).
Let (M, g) be a hypersurface of a (2m + 1)-dimensional semi-

Riemannian manifold (M, g) with index s, 0 < s < 2m+1 and g =
g|M . Then M is lightlike hypersurface

ofM if g is of constant rank (2m−1) and the normal bundle TM⊥ is
a
distribution of rank 1 on M [1]. A non-degenerate complemen-
tary distribution S(TM) of rank (2m − 1) to TM⊥ in TM , that
is, TM = TM⊥⊥S(TM), is called screen distribution. The follow-
ing result (cf. [1], Theorem 1.1, page 79) has an important role in
studying the geometry of lightlike hypersurface.

Theorem A. Let (M, g, S(TM)) be a lightlike hypersurface of
M . Then, there exists a unique vector bundle tr(TM) of rank 1 over
M such that for any non-zero section E of TM⊥ on a coordinate
neighbourhood U ⊂M , there exists a unique section N of tr(TM)



on U satisfying g(N,E) = 1 and g(N,N) = g(N,W ) = 0, ∀W ∈
Γ(S(TM)|u).
Then, we have the following decomposition:
(2.8)
TM = S(TM)⊥TM⊥, TM = S(TM)⊥(TM⊥ ⊕ tr(TM)).

Throughout this paper, all manifolds are supposed to be para-
compact and smooth. We denote by Γ(E) the smooth sections of the
vector bundle E, by ⊥ and ⊕
the orthogonal and the non-orthogonal direct sum of two vector bun-
dles,
respectively.
Let ∇, ∇ and ∇t denote the linear connections onM ,M and vec-

tor bundle tr(TM), respectively. Then, the Gauss and Weingarten
formulae are given by

(2.9) ∇XY = ∇XY + h(X, Y ), ∀X, Y ∈ Γ(TM)

(2.10) ∇XV = −AVX +∇t
XV, ∀V ∈ Γ(tr(TM))

where {∇XY,AVX} and {h(X, Y ),∇t
XV } belongs to Γ(TM) and

Γ(tr(TM)),
respectively and AV is the shape operator of M with respect to
V . Moreover, in view of decomposition (2.9), equations (2.10) and
(2.11) take the form

(2.11) ∇XY = ∇XY +B(X, Y )N

(2.12) ∇XN = −ANX + τ(X)N

for any X, Y ∈ Γ(TM) and N ∈ Γ(tr(TM)), where B(X, Y ) and
τ(X) are local second fundamental form and a 1-form on U , respec-
tively. It follows that

B(X, Y ) = g(∇XY,E) = g(h(X, Y ), E), B(X,E) = 0, and

τ(X) = g(∇t
XN,E).

Let P denote the projection morphism of Γ(TM) on Γ(S(TM))
and ∇∗, ∇∗t denote the linear connections on S(TM) and STM⊥,
respectively. Then from the decomposition of tangent bundle of
lightlike hypersurface, we have

(2.13) ∇XPY = ∇∗XPY + h∗(X,PY )

(2.14) ∇XE = −A∗EX +∇∗tXE



for any X, Y ∈ Γ(TM) and E ∈ Γ(TM⊥), where h∗, A∗ are the
second fundamental form and the shape operator of distribution
S(TM) respectively.
By direct calculations using Gauss-Weingarten formulae, (2.14)

and (2.15), we find

(2.15) g(ANY, PW ) = g(N, h∗(Y, PW )); g(ANY,N) = 0,

(2.16) g(A∗EX,PY ) = g(E, h(X,PY ); g(A∗EX,N) = 0,

for any X, Y,W ∈ Γ(TM), E ∈ Γ(TM⊥) and N ∈ Γ(tr(TM)).
Locally, we define on U

(2.17) C(X,PY ) = g(h∗(X,PY ), N), λ(X) = g(∇∗tXE,N).
Hence,

(2.18) h∗(X,PY ) = C(X,PY )E, ∇∗tXE = λ(X)E.

On the other hand, by using (2.12), (2.13), (2.15) and (2.18), we
obtain

λ(X) = g(∇XE,N) = g(∇XE,N) = −g(E,∇XN) = −τ(X).
Thus, locally (2.14) and (2.15) become
(2.19)
∇XPY = ∇∗XPY + C(X,PY )E, ∇XE = −A∗EX − τ(X)E.

Finally, (2.16) and (2.17), locally become

(2.20) g(ANY, PW ) = C(Y, PW ); g(ANY,N) = 0,

(2.21) g(A∗EX,PY ) = B(X,PY ); g(A∗EX,N) = 0.

We note that second equation of (2.21) implies thatANX ∈ Γ(S(TM))
for
X ∈ Γ(TM), i.e. AN is Γ(S(TM)) valued. On the other hand, from
g(∇XE,E) = 0, we have

(2.22) B(X,E) = 0.

In general, the induced connection ∇ on M is not a metric connec-
tion. Since ∇ is a metric connection, we have

0 = (∇Xg)(Y, Z) = X(g(Y, Z))− g(∇XY, Z)− g(Y,∇XZ).



By using (2.12) in this equation, we obtain
(2.23)
(∇Xg)(Y, Z) = B(X, Y )θ(Z)+B(X,Z)θ(Y ), X, Y ∈ Γ(S(TM)|u),
where θ is a differential 1-form locally defined on M by θ(·) =
g(N, ·).

If R and R are the curvature tensors of M and M , then using
(2.12) in the equation R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,
we obtain
(2.24)

R(X, Y )Z = R(X, Y )Z +B(X,Z)ANY − B(Y, Z)ANX

+{(∇XB)(Y, Z)− (∇YB)(X,Z) + τ(X)B(Y, Z)− τ(Y )B(X,Z)}N

(2.25) (∇XB)(Y, Z) = XB(Y, Z)− B(∇XY, Z)− B(Y,∇XZ).

3. Semi-symmetric Lightlike Hypersurfaces in Indefinite
Kenmotsu Space Form

In this section, we consider semi-symmetric lightlike hypersur-
faces M in an indefinite Kenmotsu space form M(c).
For X ∈ Γ(TM), we write

(3.1) φX = tX + β(X)N

where tX is the tangential parts of φX and β is the one form on
M .

Definition B. Let M be a lightlike hypersurface of a (2m + 1)-
dimensional indefinite Kenmotsu space form M(c). We say that M
is semi-symmetric if the following condition is satisfied

(3.2) (R(X, Y ) ·R)(X1, X2, X3, X4) = 0

for X, Y,X1, X2, X3, X4 ∈ Γ(TM).
We note that (R(X, Y ) · R)(X1, X2, X3, E) = 0 for E ∈ Γ(TM⊥),
therefore equation (3.2) reduces to

(3.3) (R(X, Y ) ·R)(X1, X2, X3, PX4) = 0.

We have following :
Lemma 3.1. Let M be a lightlike hypersurface of a (2m + 1)-
dimensional



indefinite Kenmotsu space form M(c). Then the Gauss equation
of M is given by
(3.4)

R(X, Y )Z = B(Y, Z)ANX − B(X,Z)ANY+

c−3
4
{g(Y, Z)X − g(X,Z)Y }

+ c+1
4
{g(X,φZ)tY − g(Y, φZ)tX + 2g(X,φY )tZ + η(X)η(Z)Y

−η(Y )η(Z)X + g(X,Z)η(Y )ξ − g(Y, Z)η(X)ξ}.
Proof: From (2.3), (2.25), (3.1) and comparing the tangential part,
we obtain (3.4).
Theorem 3.1. LetM be a totally geodesic lightlike hypersurface of
(2m+1)-dimensional indefinite Kenmotsu space form M(c). Then,
M is semi-symmetric if c = −1 .

Proof: Let M be a lightlike hypersurface of indefinite Kenmotsu
space form. Then, we have

(3.5)

g((R(X, Y ).R)(U, V )W,Z) = g(R(X, Y ).R(U, V )W,Z)

−g(R(U, V )R(X, Y )W,Z)− g(R(R(U, V )X, Y )W,Z)

−g(R(X,R(U, V )Y )W,Z)
∀ X, Y, Z, U, V,W ∈ Γ(TM).
Using (3.4) and Definition B in (3.10), we obtain

g((R(X, Y ).R)(U, V )W,PZ)

= B(Y,R(U, V )W )g(ANX,PZ)− B(X,R(U, V )W )g(ANY, PZ)−
B(V,R(X, Y )W )g(ANU, PZ) + B(U,R(X, Y )W )g(ANV, PZ)−
B(Y,W )g(ANR(U, V )X,PZ) + B(R(U, V )X,W )g(ANY, PZ)−
B(R(U, V )Y,W )g(ANX,PZ) + B(X,W )g(ANR(U, V )Y, PZ) +

c−3
4
{g(Y,R(U, V )W )g(X,PZ)− g(X,R(U, V )W )g(Y, PZ)−
g(V,R(X, Y )W )g(U, PZ) + g(U,R(X, Y )W )g(V, PZ)−
g(Y,W )g(R(U, V )X,PZ) + g(R(U, V )X,W )g(Y, PZ)

− g(R(U, V )Y,W )g(X,PZ) + g(X,W )g(R(U, V )Y, PZ)}+



c+1
4
{g(X,φR(U, V )W )g(tY, PZ)− g(Y, φR(U, V )W )g(tX, PZ) +
2g(X,φY )g(tR(U, V )W,PZ)− g(U, φR(X, Y )W )g(tV, PZ) +
g(V, φR(X, Y )W )g(tU, PZ)− 2g(U, φV )g(tR(X, Y )W,PZ)−
g(R(U, V )X,φW )g(tY, PZ) + g(tR(U, V )X,PZ)g(Y, φW )−

2g(R(U, V )X,φY )g(tW, PZ)− g(X,φW )g(tR(U, V )W,PZ) +
g(tX, PZ)g(R(U, V )Y, φW )− 2g(X,φR(U, V )Y )g(tW, PZ) +
η(X)η(R(U, V )W )g(Y, PZ)− η(Y )η(R(U, V )W )g(X,PZ) +
g(X,R(U, V )W )η(Y )η(PZ)− g(Y,R(U, V )W )η(X)η(PZ)−
η(U)η(R(X, Y )W )g(V, PZ) + η(V )η(R(X, Y )W )g(U, PZ)−
g(U,R(X, Y )W )η(V )η(PZ) + g(V,R(X, Y )W )η(U)η(PZ)−
η(R(U, V )X)η(W )g(Y, Z) + η(Y )η(W )g(R(U, V )X,PZ)−

g(R(U, V )X,W )η(Y )η(PZ) + g(Y,W )η(R(U, V )X)η(PZ)−
g(R(U, V )Y, PZ)η(X)η(W ) + g(X,PZ)η(R(U, V )Y )η(W )−
g(X,W )η(R(U, V )Y )η(PZ) + g(R(U, V )Y,W )η(X)η(PZ)}.

Or,

g((R(X, Y ).R)(U, V )W,PZ)

= g(ANX,PZ)[B(Y,ANU)B(V,W )− B(Y,ANV )B(U,W ) +
c−3
4
{g(V,W )B(Y, U)− g(U,W )B(Y, V )}+

c+1
4
{η(U)η(W )B(Y, V )−g(V, φW )B(Y, tU)+2g(U, φV )B(Y, tW )+
η(U)η(W )B(Y, V )− η(V )η(W )B(U, Y ) + g(U,W )η(V )B(Y, ξ)−

g(V,W )η(U)B(Y, ξ)}]− g(ANY, PZ)[B(X,ANU)B(V,W )−
B(X,ANV )B(U,W ) + c−3

4
{g(V,W )B(X,U)− g(U,W )B(X, V )}+

c+1
4
{η(U)η(W )B(X, V )− g(V, φW )B(X, tU) +

2g(U, φV )B(X, tW ) + η(U)η(W )B(X, V )− η(V )η(W )B(U,X) +
g(U,W )η(V )B(X, ξ)− g(V,W )η(U)B(X, ξ)}]−

g(ANU, PZ)[B(V,ANX)B(Y,W )− B(V,ANY )B(X,W ) +
c−3
4
{g(Y,W )B(V,X)− g(X,W )B(V, Y )}+

c+1
4
{g(X,φW )B(V, tY )−g(Y, φW )B(V, tX)+2g(X,φY )B(V, tZ)+

η(X)η(W )B(V, Y )− η(Y )η(W )B(V,X) + g(X,W )η(Y )B(V, ξ)−
g(Y,W )η(X)B(V, ξ)}] + g(ANV, PZ)[B(U,ANX)B(Y,W )−

B(U,ANY )B(X,W ) + c−3
4
{g(Y,W )B(U,X)− g(X,W )B(U, Y )}+

c+1
4
{g(X,φW )B(U, tY )−g(Y, φW )B(U, tX)+2g(X,φY )B(U, tZ)+

η(X)η(W )B(U, Y )− η(Y )η(W )B(U,X) + g(X,W )η(Y )B(U, ξ)−
g(Y,W )η(X)B(U, ξ)}]− B(Y,W )[g(ANB(V,X)ANU, PZ)−

g(ANB(U,X)ANV, PZ) + g(AN
c−3
4
{g(V,X)U − g(U,X)V }, PZ) +

g(AN
c+1
4
{g(U, φX)tV − g(V, φX)tU + 2g(U, φV )tX}, PZ) +

g(AN
c+1
4
{η(U)η(X)V − η(V )η(X)U + g(U,X)η(V )ξ −



g(V,X)η(U)ξ}, PZ)] + g(ANY, PZ)[B(V,X)B(ANU,W )−
B(U,X)B(ANV,W ) + c−3

4
{g(V,X)B(U,W )− g(U,X)B(U,W )}+

c+1
4
{g(U, φX)B(tV,W )− g(V, φX)B(tU,W ) +

2g(U, φV )B(tX,W ) + η(X)η(U)B(V,W )− η(X)η(V )B(U,W ) +
g(X,U)η(V )B(ξ,W )− g(X, V )η(U)B(ξ,W )}]−

g(ANX,PZ)[B(U, Y )B(ANU,W )− B(U, Y )B(ANV,W ) +
c−3
4
{g(V, Y )B(U,W )−g(U, Y )B(V,W )}+ c+1

4
{g(U, φY )B(tV,W )−

g(V, φY )B(tU,W ) + 2g(U, φV )B(tY,W ) + η(U)η(V )B(V,W )−
η(V )η(Y )B(U,W )+g(U, Y )η(V )B(ξ,W )−g(V, Y )η(U)B(ξ,W )}]+

B(X,W )[g(ANB(V, Y )ANU, PZ)− g(ANB(U, Y )ANV, PZ) +
g(AN

c−3
4
{g(V, Y )U − g(U, Y )V }, PZ) + g(AN

c+1
4
{g(U, φY )tV −

g(V, φY )tU + 2g(U, φV )tY }, PZ) + g(AN
c+1
4
{η(U)η(Y )V −

η(V )η(Y )U + g(U, Y )η(V )ξ − g(V, Y )η(U)ξ}, PZ) +
c−3
4
{g(Y,R(U, V )W )g(X,PZ)− g(X,R(U, V )W )g(Y, PZ)−
g(V,R(X, Y )W )g(U, PZ) + g(U,R(X, Y )W )g(V, PZ) +
g(R(U, V )X,W )g(Y, PZ)− g(R(U, V )X,PZ)g(Y,W )−
g(PZ,R(U, V )Y )g(X,W )− g(W,R(U, V )Y )g(X,PZ)}+

c+1
4
{g(X,φR(U, V )W )g(tY, PZ)− g(Y, φR(U, V )W )g(tX, PZ) +
2g(X,φY )g(PZ, tR(U, V )W ) + g(V, φR(X, Y )W )g(tU, PZ)−
g(U, φR(X, Y )W )g(tV, PZ)− 2g(U, φV )g(PZ, tR(X, Y )W )−
g(R(U, V )X,φW )g(tY, PZ) + g(Y, φW )g(tR(U, V )X,PZ)−

2g(R(U, V )X,φY )g(tW, PZ)− g(X,φW )g(tR(U, V )W,PZ)−
g(R(U, V )Y, φW )g(tX, PZ)− 2g(X,φR(U, V )Y )g(tW, PZ) +
η(X)η(R(U, V )W )g(Y, PZ)− η(Y )η(R(U, V )W )g(X,PZ) +
η(Y )η(PZ)g(R(U, V )W,X)− η(X)η(PZ)g(R(U, V )W,Y )−
g(V, PZ)η(U)η(R(X, Y )W ) + g(U, PZ)η(V )η(R(X, Y )W )−
g(U,R(X, Y )W )η(V )η(PZ) + g(V,R(X, Y )W )η(U)η(PZ)−
η(R(U, V )X)η(W )g(Y, PZ) + η(Y )η(W )g((R(U, V )X,PZ)−
g(R(U, V )X,W )η(Y )η(PZ) + g(Y,W )η(R(U, V )X)η(PZ)−
g(R(U, V )Y, PZ)η(X)η(W ) + g(X,PZ)η(R(U, V )Y )η(W )−
g(X,W )η(R(U, V )Y )η(PZ) + g(R(U, V )Y,W )η(X)η(PZ)}.

Putting Y = U = E ∈ Γ(TM⊥) in above equation and a straight
forward
calculations, we have

(3.6) g((R(X,E).R)(E, V )W,PZ) =

−g(ANE,PZ)[B(V,W )B(X,ANE)− c+1
4
{g(V, φW )B(X, tE)−

2g(E, φV )B(X, tW )} − B(V,ANE)B(X,W ) +



c+1
4
{g(X,φW )B(V, tE)− g(E, φW )B(V, tX) +

2g(X,φE)B(V, tZ)} − B(V,X)B(ANE,W )−
c+1
4
{g(E, φX)B(tV,W )−

g(V, φX)B(tE,W )2g(E, φV )B(tX,W )}] +
g(ANX,PZ)[

c+1
4
{g(V, φE)B(tE,W )− 2g(E, φV )B(tE,W )}] +

B(X,W )[g(AN
c+1
4
{−g(V, φE)B(tE,W ) + 2g(E, φV )tE}, PZ)] +

c−3
4
[g(E,R(E, V )W )g(X,PZ) + g(E,R(X,E)W )g(V, PZ) +
g(X,W )g(R(E, V )E,PZ)− g(R(E, V )E,W )g(X,PZ)}+

c+1
4
{g(X,φR(E, V )W )g(tE, PZ)− g(E, φR(E, V )W )g(tX, PZ) +
2g(X,φE)g(PZ, tR(E, V )W ) + g(V, φR(X,E)W )g(tE, PZ)−
g(E, φR(X,E)W )g(tV, PZ)− 2g(E, φV )g(PZ, tR(X,E)W )−
g(R(E, V )X,φW )g(tE, PZ) + g(E, φW )g(tR(E, V )X,PZ)−
2g(R(E, V )X,φE)g(tW, PZ)− g(X,φW )g(tR(E, V )W,PZ)−
g(R(E, V )E, φW )g(tX, PZ)− 2g(X,φR(E, V )E)g(tW, PZ) +
η(X)η(R(E, V )W )g(E,PZ)− η(X)η(PZ)g(R(E, V )W,E)−
g(E,R(X,E)W )η(V )η(PZ)− g(R(E, V )E,PZ)η(X)η(W ) +
g(X,PZ)η(R(E, V )E)η(W )− g(X,W )η(R(E, V )E)η(PZ) +

g(R(E, V )E,W )η(X)η(PZ)}.
Taking c = −1 and using the fact that M is totally geodesic in

above equation, we find

g((R(X, Y ).R)(U, V )W,PZ) = 0,

which proves the theorem.

In the following example, (R2m+1
q , φ, ξ, η, g) will denote the man-

ifold R2m+1
q with its usual Kenmotsu structure given by

η = dz, ξ = ∂z,

g = η
⊗

η−e2z{∑q/2
i=1(dx

i
⊗

dxi+dyi
⊗

dyi)}+e2z{∑m
i=q dx

i
⊗
(dxi+

dyi
⊗

dyi)},

φ(
∑m

i=1(Xi∂x
i + Yi∂y

i) + Z∂z) =
∑m

i=1(Yi∂x
i −

Xi∂y
i),

where (xi, yi, z) are the Cartesian coordinates.

Example 1. LetM = (R7
2, g) be a semi-Euclidean space, where g is



of signature
(-, +, +, -, +, +, +) with respect to the canonical basis

{∂x1, ∂x2, ∂x3, ∂y1, ∂y2, ∂y3, ∂z}.
Consider a hypersurface M of R7

2, defined by

X(u, v, θ1, θ2, s, t) = (u, u, v, θ1, θ2, s, t).

Then a local frame of TM is given by

Z1 = e−z{∂x1 + ∂x2}, Z2 = e−z∂x3, Z3 = e−z∂y1, Z4 =
e−z∂y2, Z5 = e−z∂y3, Z6 = ξ = ∂z.

Hence, TM⊥ = span{Z1} and tr(TM) is spanned byN = e−z

2
(−∂x1+

∂x2). Using Gauss and Weingarten formulae, we obtain that

h(Zi, Zj) = 0 and ∇Zi
N = 0, for i, j = 1, ...6.

Hence M is totally geodesic semi-symmetric lightlike hypersurface,
which support Theorem 3.1.
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GENERIC LIGHTLIKE SUBMANIFOLDS OF
INDEFINITE KAEHLER MANIFOLDS

MANISH GOGNA, SANGEET KUMAR, RAKESH KUMAR AND R. K.
NAGAICH

Abstract. We introduce generic lightlike submanifolds of an
indefinite Kaehler manifold and study the existence of this class
in an indefinite complex space form. We find the conditions for
the integrability of various distributions of a generic lightlike
submanifold and also obtain conditions for the distributions to
define totally geodesic foliation in generic lightlike submani-
fold. Finally we obtain necessary and sufficient condition for
an induced connection to be a metric connection.

1. Introduction

In the geometry of lightlike submanifolds, the normal vector bun-
dle intersects with the tangent bundle. Thus the study of light-
like submanifolds becomes more difficult and striking different from
study of non-degenerate submanifolds, that is, one cannot use fun-
damental concepts of classical theory to define any induced objects
on a lightlike submanifold,(for detail see [2]). Yano and Kon [6, 7] in-
troduced generic submanifolds with positive definite metric. There-
fore this geometry may not be applicable to the other branches of
mathematics and physics, where the metric is not necessarily defi-
nite. Therefore the lightlike notion of generic submanifolds of indef-
inite Sasakian and indefinite cosymplectic manifolds is introduced
recently in [3, 4]. The general notion of generic lightlike submani-
folds of indefinite Keahler has not been introduced yet. Since the
geometry of lightlike submanifolds is used in mathematical physics,
in particular, in general relativity. Therefore we introduce generic
lightlike submanifold of indefinite Kaehler manifolds and prove its

2000 Mathematics Subject Classification. 53C15, 53C40, 53C50.
Key words and phrases. Indefinite Kaehler manifold, Genric lightlike sub-

manifold, integrability of distributions, metric connection.



existence in an indefinite complex space form. We find the con-
ditions for the integrability of the various distributions of generic
lightlike submanifolds of indefinite Kaehler manifold. We also find
the conditions for the distributions D and D′ to define totally ge-
odesic foliation in generic lightlike submanifold. Finally we char-
acterize the induced connection to be a metric connection on the
genric lightlike submanifold.

2. Lightlike Submanifolds

Let (M̄, ḡ) be a real (m+n)-dimensional semi-Riemannian man-
ifold of constant index q such that m,n ≥ 1, 1 ≤ q ≤ m+n− 1 and
(M, g) be an m-dimensional submanifold of M̄ and g the induced
metric of ḡ on M . If ḡ is degenerate on the tangent bundle TM of
M then M is called a lightlike submanifold of M̄ . For a degenerate
metric g on M , TM⊥ is a degenerate n-dimensional subspace of
TxM̄ . Thus both TxM and TxM

⊥ are degenerate orthogonal sub-
spaces but no longer complementary. In this case, there exists a
subspace RadTxM = TxM ∩TxM⊥ which is known as radical (null)
subspace. If the mapping RadTM : x ∈M −→ RadTxM , defines a
smooth distribution on M of rank r > 0 then the submanifold M
of M̄ is called an r-lightlike submanifold and RadTM is called the
radical distribution on M .
Screen distribution S(TM) is a semi-Riemannian complementary

distribution of Rad(TM) in TM , that is, TM = RadTM⊥S(TM)
and S(TM⊥) is a complementary vector subbundle to RadTM in
TM⊥. Let tr(TM) and ltr(TM) be complementary (but not or-
thogonal) vector bundles to TM in TM̄ |M and to RadTM in
S(TM⊥)⊥ respectively. Then we have

(2.1) tr(TM) = ltr(TM)⊥S(TM⊥).

(2.2)
TM̄ |M= TM⊕tr(TM) = (RadTM⊕ltr(TM))⊥S(TM)⊥S(TM⊥).

Let u be a local coordinate neighborhood of M and consider the
local quasi-orthonormal fields of frames of M̄ along M , on u as
{ξ1, ..., ξr,Wr+1, ...,Wn, N1, ..., Nr, Xr+1, ..., Xm}, where {ξ1, ..., ξr},
{N1, ..., Nr} are local lightlike bases of Γ(RadTM |u), Γ(ltr(TM) |u
) and {Wr+1, ...,Wn}, {Xr+1, ..., Xm} are local orthonormal bases



of Γ(S(TM⊥) |u) and Γ(S(TM) |u) respectively. For this quasi-
orthonormal fields of frames, we have

Theorem 2.1. ([2]). Let (M, g, S(TM), S(TM⊥)) be an r-lightlike
submanifold of a semi-Riemannian manifold (M̄, ḡ). Then there ex-
ists a complementary vector bundle ltr(TM) of RadTM in S(TM⊥)⊥

and a basis of Γ(ltr(TM) |u) consisting of smooth section {Ni} of
S(TM⊥)⊥ |u, where u is a coordinate neighborhood of M such that

ḡ(Ni, ξj) = δij, ḡ(Ni, Nj) = 0, for any i, j ∈ {1, 2, .., r},
where {ξ1, ..., ξr} is a lightlike basis of Γ(Rad(TM)).

Let ∇̄ be the Levi-Civita connection on M̄ then according to the
decomposition (2.2), the Gauss and Weingarten formulas are given
by

(2.3) ∇̄XY = ∇XY + h(X, Y ), ∇̄XU = −AUX +∇t
XU,

for any X, Y ∈ Γ(TM) and U ∈ Γ(tr(TM)), where {∇XY,AUX}
and {h(X, Y ),∇t

XU} belong to Γ(TM) and Γ(tr(TM)), respec-
tively. Here ∇ is a torsion-free linear connection on M , h is a
symmetric bilinear form on Γ(TM) which is called second funda-
mental form, AU is a linear operator on M and known as shape
operator.
According to (2.1), considering the projection morphisms L and

S of tr(TM) on ltr(TM) and S(TM⊥), respectively, then (2.3) be-
comes
(2.4)
∇̄XY = ∇XY+h

l(X, Y )+hs(X, Y ), ∇̄XU = −AUX+D
l
XU+D

s
XU,

where we put hl(X, Y ) = L(h(X, Y )), hs(X, Y ) = S(h(X, Y )), Dl
XU =

L(∇⊥XU), Ds
XU = S(∇⊥XU).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued re-
spectively, therefore they are called as the lightlike second funda-
mental form and the screen second fundamental form on M . In
particular

(2.5) ∇̄XN = −ANX +∇l
XN +Ds(X,N),

(2.6) ∇̄XW = −AWX +∇s
XW +Dl(X,W ),



where X ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). Using
(2.4)-(2.6) we obtain

ḡ(hs(X, Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX, Y ),

ḡ(hl(X, Y ), ξ) + ḡ(Y, hl(X, ξ)) + g(Y,∇Xξ) = 0,

for any ξ ∈ Γ(RadTM),W ∈ Γ(S(TM⊥)) andN,N ′ ∈ Γ(ltr(TM)).
Let P be the projection morphism of TM on S(TM) then we

can induce some new geometric objects on the screen distribution
S(TM) on M as

(2.7) ∇XPY = ∇∗XPY + h∗(X, Y ),

(2.8) ∇Xξ = −A∗ξX +∇∗tXξ,
for any X, Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where {∇∗XPY,A∗ξX}
and {h∗(X, Y ),∇∗tXξ} belong to Γ(S(TM)) and Γ(RadTM), re-
spectively. ∇∗ and ∇∗t are linear connections on complementary
distributions S(TM) and RadTM , respectively. h∗ and A∗ are
Γ(RadTM)-valued and Γ(S(TM))-valued bilinear forms and called
as the second fundamental forms of distributions S(TM) andRadTM ,
respectively. Using (2.4), (2.7) and (2.8), we obtain

ḡ(hl(X,PY ), ξ) = g(A∗ξX,PY ), ḡ(h∗(X,PY ), N) = ḡ(ANX,PY ),

for any X, Y ∈ Γ(TM), ξ ∈ Γ(Rad(TM)) and N ∈ Γ(ltr(TM)).
From the geometry of Riemannian submanifolds and non degen-

erate submanifolds, it is known that the induced connection ∇ on a
non degenerate submanifold is a metric connection. Unfortunately,
this is not true for a lightlike submanifold. Indeed, considering ∇̄ a
metric connection then we have

(∇Xg)(Y, Z) = ḡ(hl(X, Y ), Z) + ḡ(hl(X,Z), Y ),

for any X, Y, Z ∈ Γ(TM).
In their celebrated paper [1], Barros and Romero defined indefinite
Kaehler manifolds as

Definition 2.2. Let (M̄, J, ḡ) be an indefinite almost Hermitian
manifold and ∇̄ be the Levi-Civita connection on M̄ with respect to
ḡ. Then M̄ is called an indefinite Kaehler manifold if J is parallel
with respect to ∇̄, that is

(2.9) (∇̄XJ)Y = 0, ∀ X, Y ∈ Γ(TM̄).



Indefinite complex space form is a connected indefinite Kaehler
manifold of constant holomorphic sectional curvature c, denoted by
M̄(c), whose curvature tensor field R̄ is given by [1].

R̄(X, Y )Z =
c

4
{ḡ(Y, Z)X − ḡ(X,Z)Y + ḡ(JY, Z)JX

−ḡ(JX,Z)JY + 2ḡ(X, JY )JZ}.(2.10)

for any X, Y ∈ Γ(TM̄)

3. Generic Lightlike Submanifolds

There exists a class of submanifolds, called generic submanifolds,
of an almost complex manifold M̄ with induced non-degenerate met-
ric g. We say that M is a generic submanifold of M̄ if the normal
bundle (TM)⊥ of M is mapped into the tangent bundle TM by ac-
tion of the structure tensor J of M̄ , that is, J(TM)⊥ ⊂ TM [6, 7].
In this section we extend the concept of generic submanifold to an
almost complex manifold M̄ having degenerate (lightlike) induced
metric g.
Kupeli [5] obtained that the screen distribution S(TM) is not

unique since it is canonically isomorphic to the factor vector bun-
dle S(TM)∗ = TM/Rad(TM). Therefore all screen distributions
S(TM) are mutually isomorphic. Moreover all the screen distribu-
tions are non-degenerate. Hence, we define generic lightlike sub-
manifolds of an indefinite almost complex manifold M̄ as follow:

Definition 3.1. We say that M is a generic lightlike submanifold
of an indefinite almost complex manifold M̄ if there exists a screen
distribution S(TM) of M such that

(3.1) J(S(TM)⊥) ⊂ S(TM).

Let (M̄, ḡ, J) be a real 2m-dimensional, m > 1, indefinite al-
most Hermitian manifold, where ḡ is a semi- Riemannian metric
of index ν = 2q, 0 < q < m. Let (M, g) be a lightlike sub-
amnifold of M̄ , where g is the degenerate induced metric on M .
Since the ambient manifold M̄ has additional geometric structure
J , we expect a particular screen distribution S(TM) on M . Let
ξ be a local section of Rad(TM) then ḡ(Jξ, ξ) = 0 implies that
Jξ is tangent to M , that is, J(Rad(TM)) is a distribution on M
such that Rad(TM) ∩ J(Rad(TM)) = {0}. Let N be a local sec-
tion of the lightlike transversal vector bundle ltr(TM) of M then



ḡ(JN, ξ) = −ḡ(N, Jξ) = 0, this implies that JN is tangent to
M . Moreover, ḡ(JN,N) = 0 implies that the component of JN
with respect to ξ vanishes and therefore JN ∈ Γ(S(TM)). Since
ḡ(JN, Jξ) = ḡ(N, ξ) = 1 therefore J(ltr(TM)) ⊕ J(Rad(TM)) is
a vector subbundle of S(TM). Then there exists a non degenerate
distribution μ on M such that
(3.2)
TM = {Jltr(TM)⊕ JRad(TM)}⊥JS(TM⊥)⊥Rad(TM)⊥μ,

further we can write (3.2) as

(3.3) TM = D ⊕D′

where D = Rad(TM)⊥JRad(TM)⊥μ and
D′ = {Jltr(TM)⊥JS(TM⊥)}. Let P , Q1 and Q2 be the projec-
tions from TM to D, Jltr(TM) and JS(TM⊥) respectively then
any X in TM can be written as

(3.4) X = PX +Q1X +Q2X,

applying J to (3.4) we obtain

(3.5) JX = TX + w1X + w2X,

where TX = JPX ∈ D, w1X = JQ1X ∈ ltr(TM) and w2X =
JQ2X ∈ S(TM⊥). Then (3.5) can be written as

(3.6) JX = TX + wX,

where TX and wX are the tangential and transversal components
of JX, respectively.
Similarly

(3.7) JV = BV,

for any V ∈ Γ(tr(TM)), where BV is the sections of TM
Differentiating (3.5) and using (2.4)-(2.6) and (3.7) we have

(3.8) Ds(X,w1Y ) = −∇s
Xw2Y + w2∇XY − hs(X, TY ).

(3.9) Dl(X,w2Y ) = −∇l
Xw1Y + w1∇XY − hl(X, TY ).

Using Kaehlerian property of ∇̄ with (2.5) and (2.6), we have the
following lemmas.



Lemma 3.2. Let M be a Genric lightlike submanifold of an indef-
inite Kaehlerian manifold M̄ . Then we have

(3.10) (∇XT )Y = Aw1YX + Aw2YX +Bhs(X, Y ) + Bhl(X, Y ),

(3.11) (∇l
Xw1)Y = −hl(X, TY )−Dl(X,w2Y ),

and

(3.12) (∇s
Xw2)Y = −hs(X, TY )−Ds(X,w1Y ).

where X, Y ∈ Γ(TM) and

(3.13) (∇XT )Y = ∇XTY − T∇XY,

(3.14) (∇l
Xw1)Y = ∇l

Xw1Y − w1∇XY,

and

(3.15) (∇s
Xw2)Y = ∇s

Xw2Y − w2∇XY.

Lemma 3.3. Let M be a Genric lightlike submanifold of an indef-
inite Kaehlerian manifold M̄ . Then we have

(3.16) (∇s
XB)W = −TAWX +BDl(X,W ),

and

(3.17) (∇l
XB)N = −TANX +BDs(X,N),

where X ∈ Γ(TM), W ∈ Γ(S(TM⊥)), N ∈ Γ(ltr(TM)) and

(3.18) (∇s
XB)W = ∇XBW − B∇s

XW,

(3.19) (∇l
XB)N = ∇XBN − B∇l

XN.

4. Existence Theorem

Theorem 4.1. A lightlike submanifold M of an indefinite complex
space form M̄(c) with c �= 0 is genric lightlike submanifold with
μ �= 0 if and only if

(a) The maximal subspace of TpM ,p ∈M define a distribution

D = Rad(TM)⊥JRad(TM)⊥μ,
where μ is a non-degenerate complex distribution.



(b) There exists a lightlike transversal vector bundle ltr(TM)
such that

ḡ(R̄(X, Y )N,N ′) = 0,

for any X, Y ∈ Γ(μ) and N,N ′ ∈ Γ(ltr(TM)).
(c) There exists a screen transversal lightlike vector bundle S(TM⊥)

such that

ḡ(R̄(X, Y )W,W ′) = 0,

for any X, Y ∈ Γ(μ) and W,W ′ ∈ Γ(S(TM⊥)).

Proof. Suppose M be a genric lightlike submanifold of M̄(c) such
that c �= 0. Then, using the definition of generic lightlike submani-
fold

D = Rad(TM)⊥JRad(TM)⊥μ,
is a maximal invariant subspace. Let X, Y ∈ Γ(μ) and N,N ′ ∈
Γ(ltr(TM)) then using (3.18), we have

ḡ(R̄(X, Y )N,N ′) =
c

2
ḡ(X, JY )ḡ(JN,N ′),

using the definition of genric lightlike submanifolds, we have ḡ(J̄N,N ′) =
0. Therefore ḡ(R̄(X, Y )N,N ′) = 0. Similarly for any X, Y ∈ Γ(μ)
and W,W ′ ∈ Γ(S(TM⊥)), using (3.18), we get

ḡ(R̄(X, Y )W,W ′) =
c

2
ḡ(X, JY )ḡ(W ′,W ) = 0.

Conversely, assume that (a), (b) and (c) are satisfied. Then from
(a), it is clear that Rad(TM) is a distribution of TM such that
Rad(TM) ∩ JRad(TM) = {0}. This implies that JRad(TM) is
tangent to M . Now, using (b) and (3.18), we have

c

2
ḡ(X, JY )ḡ(JN,N ′) = 0,

for any X, Y ∈ Γ(μ) and N,N ′ ∈ Γ(ltr(TM)). Since c �= {0} and μ
is non-degenerate therefore we have

(4.1) ḡ(JN,N ′) = 0,

that is , component of JN with respect to ξ vanishes and J(ltr(TM))
defines a distribution on M such that J(ltr(TM)) ∩ Rad(TM) =
{0}. On the other hand, using (c) and (3.18), we have

c

2
ḡ(X, JY )ḡ(JW,W ′) = 0,



for any X, Y ∈ Γ(μ) andW,W ′ ∈ Γ(S(TM⊥)). Again since c �= {0}
and μ is non-degenerate therefore we get

(4.2) ḡ(JW,W ′) = 0,

that is, J(S(TM⊥))⊥S(TM⊥). Similarly, we can prove that
J(S(TM⊥))⊥ltr(TM), J(S(TM⊥))⊥Rad(TM),
J(S(TM⊥))⊥J(Rad(TM)), J(S(TM⊥))⊥μ and
J(S(TM⊥))⊥ J(ltr(TM)). Thus we can conclude that J(S(TM⊥)) ⊂
S(TM), this completes the proof. �
Theorem 4.2. Let M be a genric lightlike submanifold of an indef-
inite Kaehler manifold M̄ then

(i) the distribution D is integrable, if and only if, h(X, TY ) =
h(Y, TX), for any X, Y ∈ Γ(D).

(ii) the distribution D′ is integrable, if and only if, AJZU =
AJUZ, for any Z,U ∈ Γ(D′).

Proof. Let X, Y ∈ Γ(D) then using (3.11), (3.12), (3.14) and (3.15),
we have

ω1∇XY = hl(X, TY ), and ω2∇XY = hs(X, TY ),

that is,

ω∇XY = h(X, TY ).

Replacing X by Y and then subtracting the resulting equation from
this equation, we get

ω[X, Y ] = h(X, TY )− h(Y, TX),

which proves (i). Now, let Z,U ∈ Γ(D′) then using (3.10) and
(3.13), we have

−T∇ZU = Aw1UZ+Aw2UZ+Bh
s(Z,U)+Bhl(Z,U) = AωUZ+Bh(Z,U),

Then, similarly as above, we have

T [Z,U ] = AJZU − AJUZ,

this completes the proof of (ii). �
Theorem 4.3. Let M be a genric lightlike submanifold of an in-
definite Kaehler manifold M̄ . Then the distribution D defines a
totally geodesic foliation in M , if and only if, h(X, JY ) = 0, for
any X, Y ∈ Γ(D).



Proof. Since D′ = Jltr(TM)⊥JS(TM⊥), therefore D defines a to-
tally geodesic foliation in M , if and only if

g(∇XY, Jξ) = g(∇XY, JW ) = 0,

for any X, Y ∈ Γ(D), ξ ∈ Γ(Rad(TM)) and W ∈ Γ(S(TM⊥)).
Using (2.4), we have

(4.3) g(∇XY, Jξ) = −ḡ(∇̄XJY, ξ) = −ḡ(hl(X, JY ), ξ),
and

(4.4) g(∇XY, JW ) = −ḡ(∇̄XJY,W ) = −ḡ(hs(X, JY ),W ).

Hence, from (4.3) and (4.4), the assertion follows. �

Theorem 4.4. Let M be a genric lightlike submanifold of an in-
definite Kaehler manifold M̄ . Then the distribution D′ defines a
totally geodesic foliation in M , if and only if, AωYX ∈ Γ(D′), for
any X, Y ∈ Γ(D′) .
Proof. Using (3.10) and (3.13), we have

−T∇XY = AωYX +Bh(X, Y ),

for any X, Y ∈ Γ(D′). Let D′ defines a totally geodesic foliation in
M , therefore AωYX = −Bh(X, Y ) and this implies that AωYX ∈
Γ(D′). Conversely, AωYX ∈ Γ(D′), for any X, Y ∈ Γ(D′) implies
that T∇XY = 0. Hence ∇XY ∈ Γ(D′) which completes the proof.

�

Theorem 4.5. Let M be a genric lightlike submanifold of an indefi-
nite Keahler manifold M̄ . Then the induced connection ∇ is metric
connection, if and only if,

∇∗XJξ ∈ Γ(JRad(TM)), h∗(X, Jξ) = 0 and Bh(X, Jξ) = 0,

for any ξ ∈ Γ(Rad(TM)) and X ∈ Γ(TM).

Proof. Let X ∈ Γ(TM) and ξ ∈ Γ(Rad(TM)) then using (2.9), we
have

∇̄XJξ = J∇̄Xξ,

then using (2.3), we obtain

∇Xξ + h(X, ξ) = −J(∇XJξ + h(X, Jξ)).



Since ξ ∈ Γ(Rad(TM)) therefore Jξ ∈ Γ(S(TM)), hence using the
definition of genric lightlike submanifolds, we obtain

∇Xξ + h(X, ξ) = −T∇XJξ − ω1∇XJξ − ω2∇XJξ − Bh(X, Jξ).

Equating tangential components of above equation both sides, we
get

∇Xξ = −T∇XJξ − Bh(X, Jξ),

now using (2.7), we obtain

∇Xξ = −T∇∗XJξ − Th∗(X, JY )− Bh(X, Jξ).

Thus from above equation, it is clear that, ∇Xξ ∈ Γ(RadTM), if
and only if, Bh(X, Jξ) = 0,∇∗tXJξ ∈ Γ(J(RadTM)) and h∗(X, JY ) =
0. Hence, the assertion follows using the Theorem 2.4 in [2], page
no. 161. �
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ON THE W2-CURVATURE TENSOR OF
N(k)-CONTACT METRIC MANIFOLDS

SHYAMAL KUMAR HUI

Abstract. The object of the present paper is to study N(k)-
contact metric manifolds admitting W2-curvature tensor. We
classify N(k)-contact metric manifolds satisfying the condi-
tions R(ξ, U) ·W2 = 0, W2(ξ, U) ·R = 0 and W2(ξ,X) · S = 0.
In this paper, ξ-W2 flat and φ-W2 flat N(k)-contact metric
manifolds are also studied.

1. Introduction

A contact manifold is a smooth (2n + 1)-dimensional manifold
M2n+1 equipped with a global 1-form η such that η ∧ (dη)n �= 0
everywhere. Given a contact form η, there exists a unique vector
field ξ, called the characteristic vector field of η, satisfying η(ξ) = 1
and dη(X, ξ) = 0 for any vector field X on M2n+1. A Riemannian
metric g is said to be associated metric if there exists a tensor field
φ of type (1,1) such that

(1.1) η(X) = g(X, ξ), dη(X, Y ) = g(X,φY ) = −g(φX, Y )

φ2X = −X + η(X)ξ

for all vector fields X, Y on M2n+1. Then the structure (φ, ξ, η, g)
on M2n+1 is called a contact metric structure and the manifold
M2n+1 equipped with such a structure is said to be a contact metric
manifold [3]. It can be easily seen that in a contact metric manifold,
the following relations hold:

(1.2) φξ = 0, η(φX) = 0, g(φX, φY ) = g(X, Y )− η(X)η(Y )

for any vector field X, Y on M2n+1.
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In a contact metric manifold M2n+1(φ, ξ, η, g), we define a (1,1)
tensor field h by h = 1

2
£ξφ, where £ denotes the operator of Lie

differentiation. Then h is symmetric and satisfies

(1.3) hξ = 0, hφ = −φh, Tr.h = Tr.φh = 0.

Also we have the following relation

(1.4) ∇Xξ = −φX − φhX,

where ∇ denotes the Riemannian connection of g.
A contact metric manifoldM2n+1(φ, ξ, η, g) for which ξ is a Killing

vector field is called a K-contact manifold.
In 1988 Tanno [26] introduced the notion of k-nullity distribu-

tion of a contact metric manifold as a distribution such that the
characteristic vector field ξ of the contact metric manifold belongs
to the distribution. The contact metric manifold with ξ belonging
to the k-nullity distribution is called N(k)-contact metric manifold.
The N(k)-contact metric manifold is also studied by De and Gaji
[8], De and Mondal [9], Ghosh, De and Taleshian [12], Shaikh and
Bagewadi [21], Yildiz et. al [30] and many others.
In 1970 Pokhariyal and Mishra [20] introduced new tensor fields,

calledW2 and E tensor fields, in a Riemannian manifold and studied
their properties. According to them a W2-curvature tensor on a
manifold (M2n+1, g), n > 1, is defined by [20]

(1.5) W2(X, Y )Z = R(X, Y )Z +
1

2n

[
g(X,Z)QY − g(Y, Z)QX

]
,

where Q is the Ricci-operator, i.e., g(QX, Y ) = S(X, Y ) for all X,
Y .
The W2-curvature tensor was introduced on the line of Weyl pro-

jective curvature tensor and by breaking W2 into skew-symmetric
parts the tensor E has been defined. Rainich conditions for the
existence of the non-null electrovariance can be obtained by W2

and E, if we replace the matter tensor by the contracted part of
these tensors. The tensor E enables to extend Pirani formulation
of gravitational waves to Einstein space ([18], [19]). It is shown
that [20] except the vanishing of complexion vector and property of
being identical in two spaces which are in geodesic correspondence,
the W2-curvature tensor possesses the properties almost similar to
the Weyl projective curvature tensor. Thus we can very well use



W2-curvature tensor in various physical and geometrical spheres in
place of the Weyl projective curvature tensor.
The W2-curvature tensor have also been studied by various au-

thors in different structures such as De and Sarkar [10], Hui and
Sarkar [13], Matsumoto, Ianus and Mihai [15], Pokhariyal ([17],
[18], [19]), Shaikh, Jana and Eyasmin [22], Shaikh, Matsuyama and
Jana [23], Taleshian and Hosseinzadeh [25], Tripathi and Gupta [27],
Venkatesha, Bagewadi and Kumar [28], Yildiz and De [29], Yildiz
et. al [30] and many others.
In [5] Blair, Kim and Tripathi studied the concircular curvature

tensor of a contact metric manifold. In [16] Pak and Shin studied
conformal curvature tensor of a contact metric manifold. Also Kim
et. al [14] studied conformal curvature tensor of a contact metric
manifold. In [30] Yildiz et. al studied the Weyl projective curva-
ture tensor of an N(k)-contact metric manifolds. Recntly Ghosh,
De and Taleshian [12] studied conharmonic curvature tensor on an
N(k)-contact metric manifolds. Motivated by the above studies,
the object of the present paper is to study W2-curvature tensor of
N(k)-contact metric manifolds. The paper is organized as follows.
Section 2 is concerned with N(k)-contact metric manifolds.
A Riemannian manifold (M2n+1, g) is said to be semisymmetric

[24] if it satisfies R(X, Y )·R = 0, where R(X, Y ) acts as a derivation
on R. Section 3 is devoted to the study of N(k)-contact metric
manifolds with R(ξ, U) ·W2 = 0. It is proved that if a N(k)-contact
metric manifold satisfies R(ξ, U) · W2 = 0, then the manifold is
either locally isometric to the Riemannian product En+1(0)×Sn(4)
or Einstein. Section 4 deals with N(k)-contact metric manifolds
with W2(ξ, U) ·R = 0.
A Riemannian manifold (M2n+1, g) is said to be Ricci-semisymmetric

[24] if its Ricci tensor S satisfies R(X, Y ) · S = 0, where R(X, Y )
acts as a derivation on S. Ricci-semisymmetric manifold are studied
by several authors. Section 5 consists with a study of N(k)-contact
metric manifolds satisfying W2(ξ,X) · S = 0. It is shown that if
a N(k)-contact metric manifold satisies W2(ξ,X) · S = 0 then the
square of the length of the Ricci tensor of such a manifold is 2nkr,
where r is the scalar curvature of the manifold.
A Riemannian manifold (M2n+1, g) is said to be flat ifR(X, Y )Z =

0. It is called ξ-flat ifR(X, Y )ξ = 0, where ξ is a non-null unit vector



field in M2n+1. The condition of ξ-flatness is weaker than the con-
dition of flatness. In [7], De and Biswas studied the ξ-conformally
flat contact metric manifolds with ξ ∈ N(k) is ξ-conformally flat if
and only if it is an η-Einstein manifold. In [11] Dwivedi and Kim
proved that a Sasakian manifold is ξ-conharmonically flat if and
only if it is an η-Einstein. Section 6 deals with the study of ξ-W2

flat N(k)-contact metric manifolds. It is shown that a N(k)-contact
metric manifold is ξ-W2 flat if and only if it is an Einstein manifold.
In [12] Ghosh, De and Taleshian studied φ-conharmonically flat

N(k)-contact metric manifolds. In section 7, we have studied φ-W2

flat N(k)-contact metric manifolds. A (2n + 1)-dimensional N(k)-
contact metric manifold is said to be φ-W2 flat ifW2(φX, φY, φZ, φW ) =
0 for any vector field X, Y , Z and W ∈ M . It is shown that a
(2n + 1)-dimensional φ-W2 flat N(k)-contact metric manifold is a
Sasakian manifold.

2. N(k)-contact metric manifolds

Let us consider a contact metric metric manifoldM2n+1(φ, ξ, η, g).
The k-nullity distribution [26] of a Riemannian manifold (M, g) for

N(k) : p→ Np(k) = {Z ∈ TpM : R(X, Y )Z = k[g(Y, Z)X−g(X,Z)Y ]}
for any X, Y ∈ TpM . Hence if the characteristic vector field ξ of a
contact metric manifold belongs to the k-nullity distribution, then
we have

(2.1) R(X, Y )ξ = k[η(Y )X − η(X)Y ].

Thus a contact metric manifold M2n+1(φ, ξ, η, g) satisfying the re-
lation (2.1) is called a N(k)-contact metric manifold. In a N(k)-
contact metric manifold, k is always a constant such that k ≤ 1
[26]. Also in a N(k)-contact metric manifold M2n+1(φ, ξ, η, g), we
have the following ([21], [26]):

(2.2) Qφ− φQ = 4(n− 1)hφ,

(2.3) h2 = (k − 1)φ2, k ≤ 1,

(2.4) Tr.h2 = 2n(1− k),

(2.5) R(ξ,X)Y = k[g(X, Y )ξ − η(Y )X],

(2.6) S(X,φY ) + S(φX, Y ) = 2(2n− 2)g(φX, hY ),



(2.7) S(φX, φY ) = S(X, Y )− 2nkη(X)η(Y )− 2(2n− 2)g(hX, Y ),

(2.8) η(R(X, Y )Z) = k{g(Y, Z)η(X)− g(X,Z)η(Y )},

S(X, Y ) = 2(n− 1)g(X, Y ) + 2(n− 1)g(hX, Y )(2.9)

+
[
2nk − 2(n− 1)

]
η(X)η(Y ), n ≥ 1,

(2.10) S(X, ξ) = 2nkη(X), Qξ = 2nkξ,

(2.11) (∇Xη)(Y ) = g(X + hX, φY ),

(∇Xh)(Y ) =
[
(1− k)g(X,φY ) + g(X, hφY )

]
ξ(2.12)

+ η(Y )h(φX + φhX),

(2.13) (∇Xφ)(Y ) = g(X + hX, Y )ξ − η(Y )(X + hX)

for any vector field X, Y on M2n+1. Also in a N(k)-contact metric
manifold the scalar curvature r is given by ([1], [6], [21])

(2.14) r = 2n(2n− 2 + k).

In view of (2.1), (2.4), (2.5) and (2.9), we have from (1.5) that
(2.15)

W2(X, Y )ξ = k
[
η(Y )X − η(X)Y

]
+

1

2n

[
η(X)QY − η(Y )QX

]
,

(2.16) W2(ξ, Y )Z =
[ 1
2n
QY − kY

]
η(Z),

η(W2(X, Y )Z) = 0.(2.17)

We recall the following result which will be used later on

Lemma 2.1. [4] Let M2n+1(φ, ξ, η, g) be a contact metric manifold
with R(X, Y )ξ = 0 for all vector fields X, Y . Then the manifold is
locally isometric to the Riemannian product En+1(0)× Sn(4).

Lemma 2.2. [2] Let M2n+1 be an η-Einstein manifold of dimension
(2n+1)(n ≥ 1). If ξ belongs to the k-nullity distribution, then k = 1
and the structure is Sasakian.



In a (2n+1)-dimensional almost contact metric manifold if {e1, e2, · · · , e2n, ξ}
is a local orthonormal basis of the tangent space of the manifold then
{φe1, φe2, · · · , φe2n, ξ} is also a local orthonormal basis. Also we
get [12]

(2.18)
2n∑
i=1

g(ei, ei) =
2n∑
i=1

g(φei, φei) = 2n,

(2.19)
2n∑
i=1

S(ei, ei) =
2n∑
i=1

S(φei, φei) = r − 2nk,

(2.20)
2n∑
i=1

g(ei, Z)S(Y, ei) =
2n∑
i=1

g(φei, Z)S(Y, φei) = S(Y, Z)−2nkη(Y )η(Z),

(2.21)
2n∑
i=1

g(ei, φZ)S(Y, ei) =
2n∑
i=1

g(φei, φZ)S(Y, φei) = S(Y, φZ).

Definition 2.1. A (2n+1)-dimensional N(k)-contact metric man-
ifold M2n+1(φ, ξ, η, g) (n > 1) is said to be η-Einstein if its Ricci
tensor S of type (0,2) is of the form

(2.22) S = ag + bη ⊗ η,

where a and b are smooth functions on M .

3. N(k)-contact metric manifolds satisfying
R(ξ, U) ·W2 = 0

Let us take a N(k)-contact metric manifoldM2n+1(φ, ξ, η, g)(n >
1) with R(ξ, U) ·W2 = 0, which implies

R(ξ, U)W2(X, Y )Z −W2(R(ξ, U)X, Y )Z(3.1)

−W2(X,R(ξ, U)Y )Z −W2(X, Y )R(ξ, U)Z = 0.

By virtue of (2.5) we have from (3.1) that

k
[
g(U,W2(X, Y )Z)ξ − η(W2(X, Y )Z)U − g(U,X)W2(ξ, Y )Z(3.2)

+η(X)W2(U, Y )Z − g(U, Y )W2(X, ξ)Z + η(Y )W2(X,U)Z

−g(U,Z)W2(X, Y )ξ + η(Z)W2(X, Y )U
]
= 0.



Setting Z = ξ in (3.2) and using (2.15) and (2.16), we get

k
[
W2(X, Y )U − g(U, Y ){kX − 1

2n
QX}

−k{η(X)g(Y, U)− η(Y )g(X,U)}ξ
− 1

2n
{η(Y )S(X,U)− η(X)S(Y, U)}ξ] = 0,

which implies either k = 0 or

W2(X, Y )U = g(U, Y ){kX − 1

2n
QX}(3.3)

+ k{η(X)g(Y, U)− η(Y )g(X,U)}ξ
+

1

2n
{η(Y )S(X,U)− η(X)S(Y, U)}ξ.

If k = 0 then from (2.1), we have R(X, Y )ξ = 0 for all X, Y and
hence by Lemma 2.1, it follows that the manifold is locally isometric
to the Riemannian product En+1(0)× Sn(4).
Next we consider the case (3.3). Setting U = ξ in (3.3) and using
(1.1) and (2.10), we get

(3.4) W2(X, Y )ξ = η(Y )
[
kX − 1

2n
QX

]
.

In view of (2.15), (3.4) yields

QY = 2nkY,

i.e.,

(3.5) S(Y, V ) = 2nkg(Y, V ),

which implies that the manifold under consideration is Einstein.
Thus we can state the following:

Theorem 3.1. LetM2n+1(φ, ξ, η, g)(n > 1) be a (2n+1)-dimensional
N(k)-contact metric manifolds with R(ξ, U) · W2 = 0. Then the
manifold is either locally isometric to the Riemannian product En+1(0)×
Sn(4) or is Einstein.



4. N(k)-contact metric manifolds with W2(ξ, U) ·R = 0

We now consider aN(k)-contact metric manifoldM2n+1(φ, ξ, η, g)(n >
1) satisfying W2(ξ, U) ·R = 0, which implies

W2(ξ, U)R(X, Y )Z −R(W2(ξ, U)X, Y )Z(4.1)

−R(X,W2(ξ, U)Y )Z −R(X, Y )W2(ξ, U)Z = 0.

In view of (2.8) and (2.16), (4.1) yields

k
[
η(X)g(Y, Z)− η(Y )g(X,Z)

][ 1
2n
QU − kU

]
(4.2)

+k
[
η(X)R(U, Y )Z + η(Y )R(X,U)Z + η(Z)R(X, Y )U

]
− 1

2n

[
η(X)R(QU, Y )Z + η(Y )R(X,QU)Z + η(Z)R(X, Y )QU

]
= 0.

Setting Z = ξ in (4.2) and using (2.1), we get

(4.3) R(X, Y )QU = 2nkR(X, Y )U,

i.e.,

(4.4) R(X, Y,QU, V ) = 2nkR(X, Y, U, V ).

Contracting (4.4) over X and V , we get

(4.5) S(Y,QU) = 2nkS(Y, U).

Let {e1, e2, · · · , e2n, ξ} be a local orthonormal basis of the tangent
space of the manifold and let l2 =

∑2n+1
i=1 S(ei, Qei) be the square

of the length of Ricci tensor. Then from (4.5), we get

(4.6) l2 =
2n+1∑
i=1

S(ei, Qei) = 2nk
2n+1∑
i=1

S(ei, ei) = 2nkr,

where r is the scalar curvature of the manifold.
This leads to the following:

Theorem 4.1. The square of the length of the Ricci tensor of a
(2n+1)-dimensional N(k)-contact metric manifoldM2n+1(φ, ξ, η, g)
(n > 1) with W2(ξ, U) ·R = 0 is 2nkr.



5. N(k)-contact metric manifolds satisfying
W2(ξ,X) · S = 0

We now consider aN(k)-contact metric manifoldM2n+1(φ, ξ, η, g)(n >
1) with W2(ξ,X) · S = 0. Then we have

(5.1) S(W2(X, Y )Z, ξ) + S(Z,W2(X, Y )ξ) = 0.

Using (2.10), (2.15) and (2.17) in (5.1), we get
(5.2)
η(X)S(QY,Z)−η(Y )S(QX,Z) = 2nk

[
η(X)S(Y, Z)−η(Y )S(X,Z)].

Setting Z = ξ in (5.2) and using (2.10), we obtain

(5.3) S(QY,Z) = 2nkS(Y, Z).

Let {e1, e2, · · · , e2n, ξ} be a local orthonormal basis of the tangent
space of the manifold and let l2 =

∑2n+1
i=1 S(ei, Qei) be the square

of the length of Ricci tensor. Then from (4.5), we get

(5.4) l2 =
2n+1∑
i=1

S(ei, Qei) = 2nk
2n+1∑
i=1

S(ei, ei) = 2nkr,

where r is the scalar curvature of the manifold.
This leads to the following:

Theorem 5.1. The square of the length of the Ricci tensor of a
(2n+1)-dimensional N(k)-contact metric manifoldM2n+1(φ, ξ, η, g)
(n > 1) with W2(ξ, U) · S = 0 is 2nkr.

6. ξ-W2 flat N(k)-contact metric manifolds

In [12], Ghosh, De and Taleshian studied ξ-conharmonically flat
N(k)-contact metric manifolds. Motivated by the above studies,
in this section we consider a (2n + 1)-dimensional ξ-W2 flat N(k)-
contact metric manifolds. Then from (1.5), we obtain

(6.1) R(X, Y )ξ =
1

2n

[
η(Y )QX − η(X)QY

]
.

Using (2.1) in (6.1), we obtain

(6.2) k
[
η(Y )X − η(X)Y

]
=

1

2n

[
η(Y )QX − η(X)QY

]
.

Putting Y = ξ in (6.2) and using (2.10), we obtain

(6.3) QX = 2nkX,



i.e.

(6.4) S(X,U) = 2nkg(X,U),

which implies that the manifold under consideration is an Einstein.
Conversely, we assume that a (2n + 1)-dimensional N(k)-contact
metric manifold satisfies the relation (6.4). Then it follows from
(1.5) that W2(X, Y )ξ = 0, i.e., the manifold under consideration is
ξ-W2 flat.
Thus we can state the following:

Theorem 6.1. A (2n+ 1)-dimensional N(k)-contact metric man-
ifold is ξ-W2 flat if and only if it is an Einstein manifold.

7. φ-W2 flat N(k)-contact metric manifolds

This section deals with a (2n + 1)-dimensional φ-W2 flat N(k)-
contact metric manifold. Then we have from (1.5) that
(7.1)

R(φX, φY, φZ, φU) =
1

2n

[
g(φY, φZ)S(φX, φU)−g(φX, φZ)S(φY, φU)].

Let {e1, e2, · · · , e2n, ξ} be a local orthonormal basis of the tangent
space of the manifold. Then {φe1, φe2, · · · , φe2n, ξ} is also a local
orthonormal basis of the tangent space. Putting X = U = ei in
(7.1) and summing up from 1 to 2n, we have

(7.2)
2n∑
i=1

R(φei, φY, φZ, φei)

=
1

2n

2n∑
i=1

[
g(φY, φZ)S(φei, φei)− g(φei, φZ)S(φY, φei)

]
.

Using (2.19) - (2.21) in (7.2) we obtain

(7.3) S(φY, φZ) =
r − 2nk

2n+ 1
g(φY, φZ).

Replacing Y and Z by φY and φZ in (7.3) and using (1.1) and
(2.10), we get

(7.4) S(Y, Z) =
r − 2nk

2n+ 1
g(Y, Z) +

4n(n+ 1)k − r

2n+ 1
η(Y )η(Z),



which implies that the manifold under consideration is an η-Einstein
manifold.
This leads to the following:

Theorem 7.1. A (2n+1)-dimensional φ-W2 flat N(k)-contact met-
ric manifold is an η-Einstein manifold.

In view of Lemma 2.2 and Theorem 7.1, we can state the follow-
ing:

Theorem 7.2. A (2n+1)-dimensional φ-W2 flat N(k)-contact met-
ric manifold is a Sasakian manifold.
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SLANT LIGHTLIKE SUBMANIFOLDS OF
INDEFINITE ALMOST CONTACT MANIFOLDS

RASHMI, RAKESH KUMAR AND S. S. BHATIA

Abstract. We study slant lightlike submanifolds of indefinite
Sasakian manifolds. We obtain a necessary and sufficient con-
dition for a slant lightlike submanifold to be an anti-invariant.
We also derive an equivalent condition for a lightlike subman-
ifold to be a slant lightlike submanifold.

1. Introduction

The study of Riemannian and semi-Riemannian geometries have
been active areas of research in differential geometry. In the case
of lightlike submanifolds, the geometry is quite different than the
counter part of non-degenerate submanifolds as there is a natu-
ral existence of null (lightlike) subspaces. In 1996, Duggal-Bejancu
presented a book [6] on the lightlike (degenerate) geometry of sub-
manifolds needed to fill an important missing part in the general
theory of submanifolds. Chen [4, 5], introduced the notion of slant
submanifolds as a generalization of holomorphic and totally real
submanifolds for complex geometry and further extended by Lotta
[9] for contact geometry. Cabrerizo et. al. [2, 3] studied slant,
semi-slant and bi-slant submanifolds in contact geometry. They all
studied the geometry of slant submanifolds with positive definite
metric. Therefore this geometry may not be applicable to the other
branches of mathematics and physics, where the metric is not nec-
essarily definite. Thus the notion of slant lightlike submanifolds of
indefinite Hermitian manifolds was introduced by Sahin [12]. The
notion of slant lightlike submanifolds of indefinite Sasakian mani-
folds is introduced by Sahin and Yildirim in [13], recently and ob-
tained necessary and sufficient conditions for their existence.
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In the present paper, we obtain a necessary and sufficient condi-
tion for a slant lightlike submanifold to be an anti-invariant (The-
orem (4.1)). We also derive an equivalent condition for a lightlike
submanifold to be a slant lightlike submanifold (Theorem (4.3)).

2. Preliminaries

An odd-dimensional semi-Riemannian manifold M̄ is said to be
an indefinite almost contact metric manifold if there exist structure
tensors (φ, V, η, ḡ), where φ is a (1, 1) tensor field, V is a vector
field called structure vector field, η is a 1-form and ḡ is the semi-
Riemannian metric on M̄ satisfying

(2.1) φ2X = −X + η(X)V, η ◦ φ = 0, φV = 0, η(V ) = 1,

(2.2) ḡ(φX, φY ) = ḡ(X, Y )− η(X)η(Y ) ḡ(X, V ) = η(X),

for X, Y ∈ Γ(TM̄), where TM̄ denotes the Lie algebra of vector
fields on M̄ .
An indefinite almost contact metric manifold M̄ is called an in-

definite Sasakian manifold if (see [11]),

(2.3) (∇̄Xφ)Y = −ḡ(X, Y )V + εη(Y )X, and ∇̄XV = φX,

for any X, Y ∈ Γ(TM̄), where ∇̄ denote the Levi-Civita connection
on M̄ and ε = ±1.
A submanifold Mm immersed in a semi-Riemannian manifold

(M̄m+n, ḡ) is called an r-lightlike submanifold [6], if it admits a
degenerate metric g induced from ḡ, whose radical distribution
RadTM = TM ∩ TM⊥ is of rank r, where 0 ≤ r ≤ min{m,n}.
Let S(TM) be a screen distribution which is a semi-Riemannian
complementary distribution of RadTM in TM , that is,

(2.4) TM = RadTM ⊥ S(TM),

and S(TM⊥) be a screen transversal vector bundle, which is a semi-
Riemannian complementary vector bundle of RadTM in TM⊥. For
any local basis {ξi} of RadTM , there exists a null vector bundle
ltr(TM) in (S(TM))⊥ such that {Ni} is a basis of ltr(TM) satis-
fying

(2.5) ḡ(Ni, Nj) = 0 and ḡ(Ni, ξj) = δij,



for any i, j ∈ {1, 2, ..., r}. Let tr(TM) be the complementary (but
not orthogonal) vector bundle to TM in TM̄ |M . Then
(2.6) tr(TM) = ltr(TM)⊥S(TM⊥).

(2.7)
TM̄ |M= TM⊕tr(TM) = (RadTM⊕ltr(TM))⊥S(TM)⊥S(TM⊥).

Let ∇̄ and ∇ denote the linear connections on M̄ and M , respec-
tively. Then the Gauss and Weingarten formulae are given by

(2.8) ∇̄XY = ∇XY + h(X, Y ), ∇̄XU = −AUX +∇⊥XU,
X, Y ∈ Γ(TM), U ∈ Γ(tr(TM)), where {∇XY,AUX} and
{h(X, Y ),∇⊥XU} belongs to Γ(TM) and Γ(tr(TM)), respectively.
Here ∇ is a torsion-free linear connection on M , h is a symmetric
bilinear form on Γ(TM) which is called the second fundamental
form, AU is a linear operator on M , known as the shape operator.
Considering the projection morphisms L and S of tr(TM) on

ltr(TM) and S(TM⊥), respectively then using (2.6), Gauss and
Weingarten formulae become
(2.9)
∇̄XY = ∇XY+h

l(X, Y )+hs(X, Y ), ∇̄XU = −AUX+D
l
XU+D

s
XU,

where we put hl(X, Y ) = L(h(X, Y )), hs(X, Y ) = S(h(X, Y )), Dl
XU =

L(∇⊥XU), Ds
XU = S(∇⊥XU).

As hl and hs are Γ(ltr(TM))-valued and Γ(S(TM⊥))-valued re-
spectively, therefore they are called as the lightlike second funda-
mental form and the screen second fundamental form on M . In
particular, we have

(2.10) ∇̄XN = −ANX +∇l
XN +Ds(X,N),

(2.11) ∇̄XW = −AWX +∇s
XW +Dl(X,W ),

where X ∈ Γ(TM), N ∈ Γ(ltr(TM)) and W ∈ Γ(S(TM⊥)). By
using (2.6)-(2.7) and (2.9)-(2.11), we obtain

(2.12) ḡ(hs(X, Y ),W ) + ḡ(Y,Dl(X,W )) = g(AWX, Y ),

for any X, Y ∈ Γ(TM) and W ∈ Γ(S(TM⊥)). Let P̄ is a pro-
jection of TM on S(TM) then using the decomposition TM =
RadTM⊥S(TM), we can write

(2.13) ∇XP̄ Y = ∇∗XP̄ Y + h∗(X, P̄Y ), ∇Xξ = −A∗ξX +∇∗tXξ,



for any X, Y ∈ Γ(TM) and ξ ∈ Γ(RadTM), where {∇∗XP̄ Y , A∗ξX}
and {h∗(X, P̄Y ), ∇∗tXξ} belong to Γ(S(TM)) and Γ(RadTM), re-
spectively. Here ∇∗ and ∇∗tX are linear connections on S(TM) and
RadTM respectively. By using (2.9), (2.10) and (2.13), we obtain
(2.14)
ḡ(hl(X, P̄Y ), ξ) = g(A∗ξX, P̄Y ), ḡ(h∗(X, P̄Y ), N) = ḡ(ANX, P̄Y ).

3. Slant lightlike submanifolds

A lightlike submanifold has two distributions, namely the radical
distribution and the screen distribution. The radical distribution is
totally lightlike and it is not possible to define angle between two
vector fields of the radical distribution where the screen distribution
is non-degenerate. There are some definitions for angle between two
vector fields in Lorentzian setup [10], but not appropriate for our
goal. Therefore to introduce the notion of slant lightlike subman-
ifolds one needs a Riemannian distribution. For such distribution
Sahin and Yildirim [13] proved the following lemmas.

Lemma 3.1. Let M be an r-lightlike submanifold of an indefinite
Sasakian manifold M̄ of index 2q. Suppose that φRadTM is a
distribution on M such that RadTM ∩ φRadTM = {0}. Then
φltr(TM) is a subbundle of the screen distribution S(TM) and
φltr(TM)∩φRadTM = {0}.
Lemma 3.2. Let M be an r-lightlike submanifold of an indefinite
Sasakian manifold M̄ of index 2r. Suppose that φRadTM is a dis-
tribution on M such that RadTM ∩ φRadTM = {0}. Then any
complementary distribution to φltr(TM) ⊕ φ(RadTM) in screen
distribution S(TM) is Riemannian.

Definition 3.3. ([13]) Let M be an r-lightlike submanifold of an
indefinite Sasakian manifold M̄ of index 2r. Then we say that M
is a slant lightlike submanifold of M̄ if the following conditions are
satisfied:

(A) RadTM is a distribution onM such that φRadTM∩RadTM =
{0}.

(B) For each non zero vector field X tangent to D̄ = D ⊥ {V }
at x ∈ U ⊂ M , if X and V are linearly independent, then
the angle θ(X) between φX and the vector space D̄x is con-
stant, that is, it is independent of the choice of x ∈ U ⊂ M



and X ∈ D̄x, where D̄ is complementary distribution to
φltr(TM)⊕ φRadTM in screen distribution S(TM).

The constant angle θ(X) is called the slant angle of the distribution
D̄. A slant lightlike submanifold M is said to be proper if D̄ 
= {0},
and θ 
= 0, π

2
.

Since a submanifold M is invariant (respectively anti-invariant)
if φTpM ⊂ TpM , (respectively φTpM ⊂ TpM

⊥), for any p ∈ M .
Therefore from above definition, it is clear that M is invariant (re-
spectively anti-invariant) if θ(X) = 0, (respectively θ(X) = π

2
).

Then the tangent bundle TM of M is decomposed as
(3.1)
TM = RadTM⊥S(TM) = RadTM⊥(φRadTM ⊕ φltr(TM))⊥D̄,
where D̄ = D⊥{V }. Therefore for any X ∈ Γ(TM), we write

(3.2) φX = TX + FX,

where TX is the tangential component of φX and FX is the transver-
sal component of φX. Similarly for any U ∈ Γ(tr(TM)), we write

(3.3) φU = BU + CU,

whereBU is the tangential component of φU and CU is the transver-
sal component of φU . Using the decomposition in (3.1), we denote
by P1, P2, Q1, Q2 and Q̄2 be the projections on the distributions
RadTM , φRadTM , φltr(TM), D and D̄ = D⊥V , respectively.
Then for any X ∈ Γ(TM), we can write

(3.4) X = P1X + P2X +Q1X + Q̄2X,

where Q̄2X = Q2X + η(X)V. Applying φ to (3.4), we obtain

(3.5) φX = φP1X + φP2X + FQ1X + TQ2X + FQ2X.

Then using (3.2) and (3.3), we get
(3.6)
φP1X = TP1X ∈ Γ(φRadTM), φP2X = TP2X ∈ Γ(RadTM),

(3.7)
FP1X = FP2X = 0, TQ2X ∈ Γ(D), FQ1X ∈ Γ(ltr(TM)).

Lemma 3.4. Let M be a slant lightlike submanifold of an indefinite
Sasakian manifold M̄ then FQ2X ∈ Γ(S(TM⊥)), for any X ∈
Γ(TM).



Proof: Using (2.5) and (2.6) it is clear that FQ2X ∈ Γ(S(TM⊥))
if g(FQ2X, ξ) = 0, for any ξ ∈ Γ(Rad(TM)). Therefore g(FQ2X, ξ) =
g(φQ2X − TQ2X, ξ) = g(φQ2X, ξ) = −g(Q2X,φξ) = 0. Hence the
result follows.

Thus from the Lemma (3.4) it follows that F (Dp) is a subspace of
S(TM⊥). Therefore there exists an invariant subspace μp of TpM̄
such that

(3.8) S(TpM
⊥) = F (Dp)⊥μp,

therefore

(3.9) TpM̄ = S(TpM)⊥{Rad(TpM)⊕ ltr(TpM)}⊥{F (Dp)⊥μp}.
Now, differentiating (3.5) and using (2.9)-(2.11), (3.2) and (3.3), for
any X, Y ∈ Γ(TM), we have
(3.10)
(∇XT )Y = AFQ1YX +AFQ2YX +Bh(X, Y )− g(X, Y )V + εη(Y )X,

and

Ds(X,FQ1Y ) +Dl(X,FQ2Y ) = F∇XY − h(X, TY ) + Chs(X, Y )

−∇s
XFQ2Y −∇l

XFQ1Y.(3.11)

By using Sasakian property of ∇̄ with (2.8), we have the following
lemmas.

Lemma 3.5. Let M be a slant lightlike submanifold of an indefinite
Sasakian manifold M̄ then we have

(3.12) (∇XT )Y = AFYX +Bh(X, Y )− g(X, Y )V + εη(Y )X,

(3.13) (∇t
XF )Y = Ch(X, Y )− h(X, TY ),

where X, Y ∈ Γ(TM) and
(3.14)
(∇XT )Y = ∇XTY − T∇XY, (∇t

XF )Y = ∇t
XFY − F∇XY.

.
In [13], Sahin and Yildirim proved the following theorem.

Theorem 3.6. Let M be a q lightlike submanifold of an indefinite
Sasakian manifold M̄ . Then M is a slant lightlike submanifold if
and only if



(i) φ(RadTM) is a distribution on M such that φRadTM ∩
Rad(TM) = {0}.

(ii) D̄ = {X ∈ Γ(D̄) : T 2X = −λ(X − η(X)V } is a distribu-
tion such that it is complementary to φltr(TM)⊕φRadTM ,
where λ = −cos2θ.

Lemma 3.7. Let M be a slant lightlike submanifold of an indefinite
Sasakian manifold M̄ . Then we have

(3.15) g(TQ̄2X, TQ̄2Y ) = cos2θ[g(Q̄2X, Q̄2Y )− η(Q̄2X)η(Q̄2Y )]

and

(3.16) g(FQ̄2X,FQ̄2Y ) = sin2θ[g(Q̄2X, Q̄2Y )− η(Q̄2X)η(Q̄2Y )]

for any X, Y ∈ Γ(TM).

Proof: From (2.1) and (3.2), we obtain

g(TQ̄2X, TQ̄2Y ) = −g(Q̄2X, T
2Q̄2Y ), ∀ X, Y ∈ Γ(TM).

Then from Theorem (3.6), we obtain (29) and (30). This completes
the proof.

4. Characterization of Slant lightlike submanifolds
of an indefinite Sasakian manifold

Theorem 4.1. Let M be a slant lightlike submanifold of an in-
definite Sasakian manifold M̄ . Then M is anti-invariant lightlike
submanifold of M̄ , if and only if, Q is parallel .

Proof: Let M be a slant lightlike submanifold of an indefinite
Sasakian manifold M̄ , then using part (ii) of Theorem (3.6) for X
and Y in TM , we have

(4.1) T 2Y = QY = cos2θ(Y − η(Y )V ),

this implies

(4.2) Q∇̄XY = cos2θ(∇̄XY − η(∇̄XY )V ).

By taking covariant derivative of (31) with respect to X ∈ TM ,
we get

(4.3)
∇̄XQY = cos2θ(∇̄XY − η(∇̄XY )V − g(Y, ∇̄XV )V − η(Y )∇̄XV ).



Using (32) and (33), we obtain

(4.4) (∇̄XQ)Y = cos2θ(g(Y,∇XV )V + η(Y )∇XV ),

then further using (2.3), we get

(4.5) (∇̄XQ)Y = cos2θ(g(Y, TX)V + η(Y )TX).

Thus the assertion follows from (4.5).

Lemma 4.2. Let M be an immersed submanifold of an indefinite
Sasakian manifold M̄ such that V is tangent to M . Then for any
X, Y ∈ TM , we have

(4.6) R(X, Y )V = (∇XT )Y − (∇Y T )X.

where ∇, R are respectively the Levi-Civita connection and the
curvature tensor field associated to the metric induced by M̄ on M .
Moreover

(4.7) R(V,X)V = QX +∇V TX

(4.8) R(X, V,X, V ) = g(QX,X)

Proof: Using (2.3) and (2.9), for any X, Y ∈ TM , we obtain

(4.9) φX = ∇XV + hl(X, V ) + hs(X, V )

Using (16) and comparing tangential component of (4.9), we get

(4.10) TX = ∇XV.

Using (4.10) in (3.14), we have

(4.11) (∇XT )Y = ∇XTY − T∇XY = ∇X∇Y V −∇∇XY V.

Similarly

(4.12) (∇Y T )X = ∇Y TX − T∇YX = ∇Y∇XV −∇∇Y XV.

Thus by subtracting (4.11) and (4.12), we get (4.6). Next, sub-
stitute X= V and Y= X in (4.6), we get



(4.13) R(V,X)V = (∇V T )X − (∇XT )V = (∇V T )X +QX.

Now taking the scalar product of the above equation with X, and
using

(4.14) g((∇V T )X,X) = g(∇VX, TX)− g(TX,∇VX) = 0,

we obtain (4.8). This proves the lemma.

Theorem 4.3. Let M be an immersed submanifold of an indefinite
Sasakian manifold M̄ , such that the characteristic vector field V of
M̄ is tangent to M . If θ ∈ (0, Π

2
), then the following statements are

equivalent:

(a) M is slant, with slant angle θ.
(b) For any x ∈ M , the sectional curvature of any 2-plane of

TxM containing Vx equals cos2θ.

Proof: Let the statement (a) be true, then for any unit vector
field X⊥V , using Theorem 3.6(ii), we get

QX = cos2θX,

then by virtue of (4.8), we yield

(4.15) R(X, V,X, V ) = cos2θ,

hence (b) is proved. Conversely, assuming that (b) is true, then
for any X ∈ TM , we can write

(4.16) X = (P1X + P2X +Q1X +Q2X) + (η(X)V ).

this further can be written as

(4.17) X = X⊥
V +XV .

whereXV = η(X)V andX⊥
V is the component ofX perpendicular

to the V , then using (4.15) and (4.17), we get

(4.18)
R(X⊥

V , V,X
⊥
V , V )

|X⊥
V |2

= cos2θ,

this implies



(4.19) R(X⊥
V , V,X

⊥
V , V ) = cos2θ|X⊥

V |2.
Let X be a unit vector such that QX = 0. Then from (4.6) and

(4.19), we have

(4.20) cos2θ|X⊥
V |2 = 0

Since θ ∈ (0, π
2
) therefore cosθ 
= 0, hence X⊥

V = 0. Then from
(4.17) X = XV . This implies that, at each point x ∈M , we have

(4.21) Ker(Q) = 〈XV 〉
Let A be the matrix of the endomorphism Q at x ∈ M , then

for a unit vector field X on M,QX = AX. Since Q(XV ) = 0 and
X = XV . Then using (4.8) and (4.19), we get

(4.22) A = cos2θI

Choosing λ = cos2θ, then using (4.21) and Theorem 3.6 (ii),M is
slant lightlike submanifold in M̄ with slant angle θ. Finally, suppose
that cosθ = 0 and X is an arbitrary unit vector field such that
QX = λX where λ ∈ C∞(M). Then, from (4.8) and (4.19), we infer
g(QX,X) = 0, that is, λ = 0 and therefore Q = 0, which means M
is an anti-invariant lightlike submanifold. Hence the proof.
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ON DOUBLY TWISTED PRODUCT
CR-SUBMANIFOLDS

MAJID ALI CHOUDHARY AND MOHAMMED JAMALI

Abstract. A. Bejancu [2] defined and studied CR-submanifolds

of a Kaehler manifold. Since then many papers appeared on this

topic. In {[5],[4]} B. Y. Chen and in [11] B. Sahin studied warped

product submanifolds of a Kaehlerian manifold. In the present

note, we investigate the existence of doubly twisted product CR-

submanifolds in locally conformal quaternion Kaehler manifolds

and prove that there do not exist doubly twisted product CR- sub-

manifolds in locally conformal quaternion Kaehler manifolds.

1. Introduction

R. L. Bishop and B. O’Neill in [3] tossed the concept of warped

product manifolds while constructing example of Riemannian mani-

folds with negative sectional curvatures. In general, doubly twisted

product manifolds can be considered as generalization of warped prod-

ucts. Warped product manifolds have importance as they are widely

used to provide setting to model space time near black holes or bodies

with large gravitational force. Suppose that (B, gB) and (F, gF ) be

semi-Riemannian manifolds of dimensions m and n, respectively and

further suppose that π : B × F → B and σ : B × F → F be the

canonical projections. Let b : B × F → (0,∞), f : B × F → (0,∞)

be smooth functions. Then the doubly twisted product ([7],[10]) of

(B, gB) and (F, gF ) with twisting functions b and f is defined to be the

product manifold M = B × F with metric tensor g = f 2gB ⊕ b2gF .

Denoting this kind of manifolds by fB ×b F and by F (B) denoting

the algebra of smooth functions on B and by Γ(E) the F (B) module
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of smooth sections of a vector bundle E (same notation for any other

bundle) over B. If X ∈ Γ(TB) and V ∈ Γ(TF ), then from Proposition

1 of [7], we have

∇XV = V (lnf)X +X(lnb)V(1.1)

where∇ denotes the Levi-Civita connection of the doubly twisted prod-

uct fB×bF of (B, gB) and (F, gF ). In particular, if f = 1, then B×bF

is called the twisted product of (B, gB) and (F, gF ) with twisting func-

tion b. We note that the notion of twisted products was introduced in

[5]. If M = B ×b F is a twisted product manifold, then (1.1) becomes

∇XV = X(lnb)V(1.2)

On the other hand, locally conformal Kaehler manifold was intro-

duced by I. Vaisman in [13]. However, the geometry of the locally con-

formal quaternion Kaehler manifolds has been studied in ([6],[8],[9])

and their QR-Submanifolds have been studied in [12].

A locally conformal quaternion Kaehler manifold (Shortly, l.c.q.K

manifold) is a quaternion Hermitian manifold whose metric is con-

formal to a quaternion Kaehler metric in some neighborhood of each

point. The main difference between l.c.K. manifold and l.c.q.K. mani-

fold is that the Lee form of a compact l.c.q.K. manifold can be chosen

as parallel form without any restrictions [6].

A. Bejancu [2] defined and studied CR-submanifolds of a Kaehler

manifold. B. Y. Chen [4] introduced twisted product CR-submanifolds

in Kaehler manifolds and showed that a twisted product CR-submanifold

in the form M⊥ ×f MT is a CR-product. He also considered twisted

product CR- submanifolds in the formMT×fM⊥ and established a gen-

eral sharp inequality for twisted product CR-submanifolds in Kaehler

manifolds. Then, B. Sahin [11] studied doubly warped product and

doubly twisted warped product submanifolds of a Kaehlerian mani-

fold.
In this note, we investigate the existence of doubly twisted product

CR-submanifolds in locally conformal quaternion Kaehler manifolds



and give a result showing that there do not exist doubly twisted product

CR-submanifolds in locally conformal quaternion Kaehler manifolds.

2. Preliminaries

In this section, we recall the definitions of l.c.q.K. manifold and CR-

submanifold.

Definition 2.1. Let (M̃, J, g) be a quaternion Hermitian manifold

where H is a sub-bundle of End(TM̃) of rank 3 which is spanned by

almost complex structures J1 , J2 , and J3. The quaternion Hermitian

metric g is said to be a quaternion Kaehler metric if its Levi-Civita

connection ∇̃ satisfies ∇̃H ⊂ H.

A quaternion Hermitian manifold with metric g is called a locally

conformal quaternion Kaehler (l.c.q.K.) manifold if over neighborhoods

Ui covering M̃ , g |Ui
= efigi where gi is a quaternion Kaehler metric

on Ui. In this case, the Lee form ω is locally defined by ω |Ui
= dfi and

satisfies [8]

dθ = ω ∧ θ, dω = 0.

Let M̃ be l.c.q.K. manifold and ∇̃ denotes the Levi Civita connection

of M̃ . Let B be the Lee vector field given by g(X,B) = ω(X). Then

for l.c.q.K. manifold we have [8]

(∇̃XJa)Y = 1
2
{θ(Y )X − ω(Y )JaX − g(X, Y )A− Ω(X, Y )B}

+Qab(X)JbY +Qac(X)JcY(2.1)

for any X, Y ∈ TM̃ ,where Qab is a skew symmetric matrix of local

forms, θ = ωoJa and A = −JaB.
A Riemannian manifoldM , isometrically immersed in a l.c.q.K. man-

ifold M̃ is called CR-submanifold [1] if there exists on M a differen-

tiable holomorphic distribution D, i.e. JaD = D for a = 1, 2, 3 whose

orthogonal complement D⊥ of D in T (M) is totally real distribution

on M , i.e. JaD
⊥ ⊂ T (M)⊥ for a = 1, 2, 3. A CR-submanifold is called



holomorphic submanifold if dim D⊥ = 0, totally real if dim D = 0 and

proper if it is neither holomorphic nor totally real.

Let M be a Riemannian manifold isometrically immersed in M̃ and

denote by the same symbol g the Riemannian metric induced on M .

Let TM be the Lie algebra of vector fields in M and TM⊥, the set of
all vector fields normal to M . Denote by ∇ the Levi-Civita connection

of M . Then the Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X, Y )(2.2)

and

∇̃XN = −ANX +∇⊥xN(2.3)

for any X, Y ∈ TM and any N ∈ TM⊥, where ∇⊥ is the connection in
the normal bundle TM⊥, h is the second fundamental form of M and

AN is the Weingarten endomorphism associated with N . The second

fundamental form and the shape operator A are related by

g(ANX, Y ) = g(h(X, Y ), N)(2.4)

3. Doubly twisted Product CR-submanifolds

In this section, we consider CR-submanifolds which are doubly twisted

products in the form fMT ×bM⊥, whereMT is a holomorphic subman-

ifold and M⊥ is a totally real submanifold of M̃ .

Theorem 3.1. Let M̃ be a locally conformal quaternion Kaehler man-

ifold. Then there do not exist doubly twisted product CR-submanifolds

of M̃ which are not (singly) twisted product CR-submanifolds in the

form fMT ×bM⊥ such that MT is a holomorphic submanifold and M⊥

is a totally real submanifold of M̃ .

Proof. Let us suppose that M be a doubly twisted product CR-

submanifold of a l.c.q.K. manifold M̃ . Then from (2.1) we have

(∇̃XJa)Y = 1
2
{θ(Y )X − ω(Y )JaX − g(X, Y )A− Ω(X, Y )B}

+Qab(X)JbY +Qac(X)JcY



for X, Y,B ∈ Γ(D) and V ∈ Γ(D⊥). Using (2.2) we have
g(∇XY, V ) = g(h(X, JaY ), JaV )(3.1)

From equation (1.1), we get

g(∇XV, Y ) = V (lnf)g(X, Y )

Taking into account that D and D⊥ are orthogonal, we obtain

−g(V,∇XY ) = V (lnf)g(X, Y )(3.2)

So, from (3.1) and (3.2), we have

−g(h(X, JaY ), JaV ) = V (lnf)g(X, Y )(3.3)

for X, Y ∈ Γ(D) and V ∈ Γ(D⊥).
But, by the use of Gauss formula we have,

g(h(X, JaY ), JaV ) = g(∇̃JaYX, JaV )

which upon applying equation (2.1) reduces to

g(h(X, JaY ), JaV ) = −g(∇̃JaY JaX, V ).

In the light of Gauss formula and taking into account the orthogo-

nality of D and D⊥ , above equation reduces to

g(h(X, JaY ), JaV ) = g(∇JaY V, JaX)

In view of equation (1.1), above equation gives

g(h(X, JaY ), JaV ) = V (lnf)g(JaX, JaY )(3.4)

for X, Y ∈ Γ(D) and V ∈ Γ(D⊥). From equations (3.3) and (3.4), we

have V (lnf)g(X, Y ) = 0. Since D is Riemannian, we get V (lnf) = 0.

This implies that f only depends on the point of MT . Thus, we can

write

g = gMT
⊕ b2gM⊥

where gMT
= f 2gMT

.

Thus, it follows that M is a twisted product CR-submanifold in the

form MT ×bM⊥ ([4] for twisted product CR-submanifolds). Hence, we

conclude that there are no doubly twisted product CR-submanifolds in



l.c.q.K. manifold, other than twisted product CR-submanifolds. �
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A NOTE ON TRANS-SASAKAN MANIFOLDS

RAJENDRA PRASAD, KWANG-SOON PARK, AND JAI PRAKASH

Abstract. In this paper we have studied conformally flat
and quasi-conformally flat trans-Sasakian manifolds. We have
proved that in a conformally flat trans-Sasakian manifold, ξ is
an eigen vector of Ricci operator Q. Some expressions, lem-
mas and theorems for trans-Sasakian manifolds have been ex-
plored.For trans-Sasakian manifolds expression for φQ − Qφ

has been found. It is shown that Ricci operator Q does not
commute with(1, 1) tensor field φ for such manifolds. If a trans-
Sasakian manifold is conformally flat then it is η−Einstein.

1. Introduction

In [3] , Okumura showed that a conformally flat Sasakian mani-
fold of dimension > 3 is of constant curvature and in [4] , Tanno
extended this result to the K-contact case and for dimension ≥ 3.
Some new examples of conformally flat manifolds, as a step towards
a classification of such manifolds upto conformal equivalence was
given by Kulkarni in 1972 [8] .It is known that the Ricci operator
Q commute with (1, 1) tensor field φ for a Sasakian manifold and
Kenmotsu manifold but this commutativity need not hold for a con-
tact metric manifold and an almost contact metric manifold. It is
shown in this paper that above commutativity does not hold for a
trans-sasakian manifold also.

In [1] , Blair proved that there are no contact metric manifolds of
vanishing curvature and of dimension ≥ 5. Generalizing this result
Olszak [2] proved that any contact manifold of constant sectional
curvature and of dimension≥ 5 has the sectional curvature equal to

2000 Mathematics Subject Classification. Primary 05C38, 15A15; Secondary
05A15, 15A18.

Key words and phrases. Trans-Sasakian manifolds, Conformally flat mani-
folds, Ricci operator,Ricci tensor.
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1 and is a Sasakian manifold. Olszak also proved that on a confor-
mally flat contact metric manifold of dimension 2n+1 (n > 1) , the
scalar curvature r satisfies r ≤ 2n (2n + 1) , where equality holds
if and only if the manifold is Sasakian. In [7] , Gosh and Sharma
proved the following result.

Theorem: Let M be a (2n + 1) dimensional (n > 1) contact
strongly pseudo-convex integrable CR manifold such that ξ is an
eigen vector of Ricci-operator at each point. If M is conformally
flat. then it is of constant curvature 1.

The notion of the quasi-conformal curvature tensor was given
by Yanno and Sawaki [10] in 1968. According to them a quasi-
conformal curvature tensor Č of (2n + 1) dimensional manifold M
is defined as

Č(X, Y )Z = aR(X, Y )Z + b[S(Y, Z)X − S(X, Z)Y (1.1)

+g(Y, Z)QX − g(X, Z)QY ]

−
r

(2n + 1)
(

a

2n
+ 2b)[g(Y, Z)X − g(X, Z)Y ],

where a and b are constants and R, S, Q and r are the Riemannian
curvature-tensor, the Ricci- tensor, the Ricci operator and the scalar
curvature tensor of the manifold respectively. If a = 1 and b =
− 1

2n−1
, then Č becomes a conformal curvature tensor C , given by

C(X, Y )Z = R(X, Y )Z −
1

2n − 1
{g(Y, Z)QX − g(X, Z)QY }

+S (Y, Z)X − S (X, Z) Y }

+
r

2n (2n − 1)
{g (Y, Z)X − g (X, Z) Y }, (1.2)

Let M be a (2n + 1)- dimensional almost contact metric mani-
fold [10] with almost contact metric structure (φ, ξ, η, g), Let M be
a (2n + 1)- dimensional almost contact metric manifold [10] with
almost contact metric structure (φ, ξ, η, g), where φ is a (1, 1) ten-
sor field, ξ is a vector field, η is a 1-form and g is a compatible
Riemannian metric on M such that

φ2 = −I + η ⊗ ξ, η (ξ) = 1, φξ = 0, (1.3)



g (φX, φY ) = g (X, Y ) − η (X) η (Y ) , (1.4)

g (φX, Y ) = −g (X, φY ) , g (X, ξ) = η (X) , (1.5)

for all X, Y ∈ TM.
An almost contact metric manifold is said to be contact manifold

if
An almost contact metric manifold M is called trans- Sasakian

manifold if

(∇Xφ)Y = α{g (X, Y ) ξ − η (Y )X} + β{g (φX, Y ) ξ − η (Y )φX},
(1.6)

where ∇ is Levi-Civita connection of Riemannian metric g and
α, β are smooth functions on M.

From equation(1.7) and equations(1.3) , (1.4) and (1.5) , we get

∇Xξ = −αφX + β [X − η (X) ξ] , (1.7)

(∇Xη)Y = −αg (φX, Y ) + βg (φX, φY ) . (1.8)

∇ξφ = 0 (1.9)

Let us define the tensor h by 2h = £ξφ, where £ is the Lie
diferentiation operator.

Further, on such a trans−Sasakian manifold M of dimension
(2n + 1) with almost contact structure(φ, ξ, η, g) , the following re-
lations hold [11] ,

S (X, ξ) =
(

2n
(

α2 − β2
)

− ξβ
)

η (X) − (2n − 1) Xβ − (φX) α,
(1.10)

Qξ =
(

2n
(

α2 − β2
)

− ξβ
)

ξ − (2n − 1) gradβ + φ (gradα) . (1.11)

2. Quasi-conformaly Flat and Conformally Flat

Manifolds

Let M be a (2n + 1)−dimensional quasi-conformally flat manifold,
then from equation(1.1) , we have



aR (X, Y ) Z = b[−g (Y, Z)QX + g (X, Z)QY (2.1)

−S (Y, Z)X + S (X, Z) Y ]

+
r

2n (2n − 1)
[
a

2n
+ 2b]

[g (Y, Z)X − g (X, Z)Y ],

Let {e1,e2...e2n,e2n+1 = ξ} is orthonormal base field.
Putting Y = Z = ei in equation (2.1), we get

S (X, W ) =
r

2n + 1
g (X, W ) if a+(2n − 1) b 6= 0 (2.2)

Hence we have the following lemma

Lemma 2.1 A (2n + 1)−dimensional quasi-conformally flat man-

ifold M is an Einstein manifold if a+(2n − 1) b 6= 0.

If a+(2n − 1) b = 0, then from equations(1.1) and(1.2), we have

Č (X, Y ) Z = a (C (X, Y ) Z) (2.3)

If a = 1, b = − 1
2n−1

then a+(2n − 1) b = 1+(2n − 1)
(

− 1
2n−1

)

= 0
so condition a+(2n − 1) b = 0 is satisfied for conformal curvature

tensor.
From equation (2.3), we have following Lemma:

Lemma 2.2 A (2n + 1) dimensional quasi-conformally flat mani-

fold M is conformaly flat if a + (2n − 1) b = 0 and a 6= 0.
from equation (2.1) and (2.2) , we have

R (X, Y )Z =
r(1 + 4nb/a)

2n (2n + 1)
{g (Y, Z)X − g (X, Z) Y },

ifa 6= 0, a + (2n − 1) b 6= 0 (2.4)

Hence we have following theorem

Theorem 2.3 A quasi-conformally flat manifold is a manifold of

constant curvature if a 6= 0,a+(2n − 1)b6=0.

Note: A conformally flat almost constant manifold is not in gen-
eral a manifold of constant curvature.



3. Quasi-conformally Flat Trans-sasakian Manifold

For a trans-Sasakian manifold, we have

S (X, ξ) =
(

2n
(

α2 − β2
)

− ξβ
)

η (X) − (2n − 1) Xβ − (φX) α,
(3.1)

S (ξ, ξ) = 2n
(

α2 − β2 − ξβ
)

, (3.2)

If a trans-Sasakian manifold is quasi-conformally, then from equa-
tion (2.2) and (3.2) , we have

r = 2n (2n + 1)
(

α2 − β2 − ξβ
)

(3.3)

if a + (2n + 1)b6=0
from equation(2.5), we have

R (X, Y ) Z =
(

α2 − β2 − ξβ
)

(1 + 4nb/a){g (Y, Z)X (3.4)

−g (X, Z) Y } ifa + (2n − 1) b 6= 0, a 6= 0

Lemma 3.2 In a trans-Sasakian manifold M, h = 0 [11] .
Proof: Using definition of h

hX =
1

2
[(£ξφ)X] (3.5)

=
1

2
{(∇ξφ)X −∇φXξ + φ (∇Xξ)} (3.6)

using equation(1.8) and(1.10) , we have
hX = 0,for allX

h = 0 (3.7)

hence we have,
hφ = φh

Lemma 3.3 In s trans-Sasakian manifold M , the following relation
holds:



R (X, Y ) φZ − φR (X, Y )Z =
(

α2 − β2
)

[g (X, Z)φY − g (Y, Z)φX

+g (φX, Z) − g (φY, Z)X]

+2αβ[g (Y, Z)X − g (X, Z)Y

+g (φX, Z) φY − g (φY, Z)φX]

+ (Xα) [g (Y, Z) ξ − η (Z)Y ]

− (Y α) [g (X, Z) ξ − η (Z)X]

− (Y β) [g (φX, Z) ξ − η (Z)φX] (3.8)

for all vector fields X, Y and Z on M .

Proof: We know that

R (X, Y )φZ − φR (X, Y )Z = (∇X∇Y φ)Z − (∇Y ∇Xφ)Z

−
(

∇[X,Y ]φ
)

Z (3.9)

For trans-Ssakian manifold we have (∇X∇Y φ)Z ,(∇Y ∇Xφ)Z
,
(

∇[X,Y ]φ
)

Z
From the equations (3.9),we get the Lemma.

Lemma 3.4 In a conformally flat trans-Sasakian manifold, ξ is an
eigen vector of Ricci operator Q.

Proof:

Putting X = ξ in equation(3.8) , we get

R (ξ, Y )φZ − φR (ξ, Y ) Z = −
(

α2 − β2

−ξβ) {g (φY, Z) ξ − η (Z) φY } (3.10)

Let M be a trans-Sasakian manifold of dimension (2n + 1)
Let {e1,e2...e2n+1 = ξ} be orthnormal basis. Putting Y = Z = ei

in equation(3.10) and taking summation, we get



2n+1
∑

i=1

R (ξ, ei)φei = φQξ (3.11)

If the manifold is conformally flat,C = 0
then

R (X, Y )Z =
1

(2n − 1)
[g (Y, Z)QX − g (X, Z) QY

−S (Y, Z)X + S (X, Z)Y ]

+
r

2n (2n − 1)
[g (Y, Z) X − g (X, Z) Y ],(3.12)

Putting X = ξ, Y = ei, Z = φei in above equation and taking
summation in above

using equation(3.8) ,we get

φQξ =
1

2n − 1
{(trQφ) ξ + φQξ} (3.13)

Since trQφ = 0. Also n > 1, therefore φQξ = 0 and hence
Qξ = (trl) ξ.

Hence the lemma.
On almost contact metric manifold, define operator l by

lX = R (X, ξ) ξ for every X (3.14)

obviously lξ = 0
For trans-Sasakian manifold M of dimension (2n + 1)

trl =
2n+1
∑

i=1

g (R (ei, ξ) ξ, ei) (3.15)

S (X, W ) =
r

2n + 1
g (X, W ) if a + (2n − 1) b 6= 0

= 2n
(

α2 − β2 − ξβ
)

(3.16)

lX = R (X, ξ) ξ =
(

α2 − β2 − ξβ
)

[X − η (X) ξ] (3.17)

lφX =
(

α2 − β2 − ξβ
)

φX (3.18)



so, φl = lφ in a trans-Sasakian manifold.

φlφX − lX =
(

α2 − β2 − ξβ
)

.0 = 0 (3.19)

φlφ = l (3.20)

so
η (lX) = g (R (X, ξ) ξ, ξ) = 0 (3.21)

so
ηol = 0 (3.22)

K (ξ, X) =′ R (ξ, X, ξ, X) (3.23)

= g (R (ξ, X) ξ, X) (3.24)

= −
(

α2 − β2 − ξβ
)

[g (X, X) − η (X) η (X)] (3.25)

K (ξ, φX) = −
(

α2 − β2 − ξβ
)

[g (φX, φX)]

= −
(

α2 − β2 − ξβ
)

[g (X, X) − η (X) η (X)] (3.26)

K (ξ, X) = K (ξ, φX) (3.27)

Lemma 3.5 A conformally flat trans-Sasakian manifold is η- Ein-
stein.

Proof:
For conformally flat trans-Sasakian manifold M of dimension

(2n + 1) , we have C (X, Y )Z = 0

R (X, Y )Z = −
1

2n − 1
{g (Y, Z)QX − g (X, Z)QY

+S (Y, Z)X − S (X, Z) Y }

−
r

2n (2n − 1)
{g (Y, Z)X − g (X, Z)Y },(3.28)

Putting Y = Z = ξ, we get
So manifold is η−Einstein and hence



Qφ = φQ.

Differentiating Qξ = (trl) ξ, along an orbitrary vector field X

(∇XQ) ξ = Q{αφX + β (η (X) ξ −X)} + X (trl) ξ (3.29)

− (trl) {αφX + β (η (X) ξ − X)

= αQφX + βη (X) Qξ − βQX + X (trl) ξ (3.30)

− (trl)αφX − β (trl){η (X) − X}

As C = 0, we have divC = 0 or equivalently

g ((∇XQ)Y, Z)−g ((∇Y Q)X, Z) =
1

4n
{Xrg (Y, Z)−(Y r) g (X, Z)}

(3.31)
Putting Y = Z = ξ,we get

X (trl) −
1

4n
(Xr) = {ξ (trl)−

1

4n
ξr}η (X) (3.32)

First applying exterior derivative on(3.41) , using the Poincare
lemma: d2 = 0, and then replacing X, Y respectively by φX, φY in
resulting equation, we get

ξ (trl) =
1

4
(ξr) (3.33)

and hence

Xtrl =
1

4n
Xr (3.34)

∇X

(

trl −
1

4n
r

)

= 0 (3.35)

for every X
(

trl − 1
4n

r
)

is constant.

so
r = 4ntrl + const

Hence we have following Lemma:



Lemma 3.6 In a conformally flat trans-Sasakian manifold M of
dimension (2n + 1) , the scalar curvature is given by

r = 4ntrl + const.

Theorem 3.7 In a trans-Sasakian manifold M of dimension (2n + 1),
the following relation holds

QφX − φQX = 8αβ (n − 1) φ2X + (Xα) ξ − (ξα) η (X) ξ

− (2n − 1) (φX)βξ + η (X)

φ [(2n − 1) grad β − φ (grad α)] (3.36)

Proof: Let {Xi, φXi, ξ} (i = 1, 2, ..., n) be a local φ−basis at any
point of the manifold. Then putting Y = Z = Xi in (3.45)and
taking summation over i, we obtain by virtue of η (Xi) = 0, we get

−φQ (φX) = QX −
[

2n
(

α2 − β2
)

− ξβ
]

η (X) ξ

+8αβ (n − 1)φX

+ [(2n − 1) (φX) α − φXβ] ξ

+η (X) [(2n − 1) grad β − φ (grad α)] (3.37)

operating φ on both sides, we get

QφX − φQX (3.38)

= 8αβ (n − 1) φ2X + (Xα) ξ − (ξα) η (X) ξ

− (2n − 1) (φX) βξ + η (X)φ [(2n − 1) grad β − φ (grad α)]

In a three dimensional trans-Sasakian manifolds, we have

QφX − φQX = (Xα) ξ − (ξα) η (X) ξ

− (φX) βξ + η (X) φ [grad β − φ (grad α)]

Lemma 3.8 If in a three dimensional trans-Sasakian manifolds in
which ξ is an eigen vector of Ricci-operator Q,then Qφ = φQ.
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ON THE CAUCHY PROBLEM FOR THE NONLINEAR
DIFFERENTIAL EQUATIONS WITH VALUES IN

MODULAR FUNCTION SPACES

W. M. KOZLOWSKI

Abstract. We consider the Cauchy problem u′(t)+(I−T )u(t) =

0, u(0) = f , where an unknown function takes its values in a given

modular function space, and T is a nonlinear mapping which is

nonexpansive in the modular sense. It has been recently proved

that under certain natural assumptions this Cauchy problem can

be solved. In this paper, we demonstrate that the solution set for

this problem forms a continuous nonexpansive semigroup of map-

pings. This result is then used to prove the existence of common

fixed points of this semigroup, as well as to define some construc-

tion algorithms for such points. These results are then utilized

in the construction of a stationary point for a process defined by

the Cauchy problem in question. We illustrate these results by the

Urysohn process extensively usedin the area of integral equations

and applications.

1. Introduction

In a recent article [51], the author proved the existence of a solution

of a Cauchy problem given by a differential equations u′(t) + (I −
T )u(t) = 0, where an unknown function takes its values in a modular

function space, and T is a nonlinear mapping which is nonexpansive

in the modular sense, and not necessarily in the norm sense. The

purpose of the current paper is to demonstrate that the solution set for

this problem forms a continuous nonexpansive semigroup of mappings.

2010 Mathematics Subject Classification. Primary 34G20, Secondary 34K30,
65J15, 46E30, 47H09, 46B20, 47H10, 47H20, 47J25.

Key words and phrases. Ordinary differential equation, nonlinear equation,
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This result is then used to prove the existence of common fixed points

of this semigroup, as well as to define some construction algorithms

for such points. These results are then utilized in the construction

of a stationary point for a process defined by the Cauchy problem in

question. We illustrate these results by the Urysohn process which is

extensively used in the area of integral equations and applications.

Modular function spaces are natural generalizations of both function

and sequence variants of many important, from applications perspec-

tive, spaces like Lebesgue, Orlicz, Musielak-Orlicz, Lorentz, Orlicz-

Lorentz, Calderon-Lozanovskii spaces and many others, see the book

by Kozlowski [44] for an extensive list of examples and special cases.

The results and methods of fixed point theory, applied to spaces

of measurable functions, have been used extensively in the field of

differential and integral equations. Since the 1930s many prominent

mathematicians like Orlicz and Birnbaum recognized that using the

methods of Lp-spaces alone created many complications and in some

cases did not allow to solve some non-power type integral equations,

see [6, 62, 63]. They considered spaces of functions with some growth

properties different from the power type growth control provided by the

Lp-norms. Orlicz and Birnbaum considered function spaces defined as

follows:

Lϕ =

{
f : R→ R; ∃λ > 0 :

∫
R

ϕ
(
λ|f(x)|) dm(x) <∞

}
,

where ϕ : [0,∞) → [0,∞) was assumed to be a convex function in-

creasing to infinity, i.e. the function which to some extent behaves

similarly to power functions ϕ(t) = tp. Let us mention two other typ-

ical examples of such functions: ϕ1(t) = et − t − 1 or ϕ2(t) = et
2 − 1.

The possibility of introducing the structure of a linear metric in Lϕ as

well as the interesting properties of these spaces, later named Orlicz

spaces, and many applications to differential and integral equations

with kernels of nonpower types were among the reasons for the devel-

opment of the theory of Orlicz spaces, their applications and gener-

alizations. Consider for example the following Hammerstein nonlinear



integral equation which plays an important role in the elasticity theory:

f(x) =

∫ 1

0

k(x, y)ϕ(f(y))dy,

where ϕ(u) is a function which increases more rapidly than an arbi-

trary power function. Krasnosel’skii and Rutickii, [55], showed that

the Hammerstein operator defined by the right member of this inte-

gral equation does not operate in any of the Lp spaces. And yet, they

showed how to find an Orlicz space where the Hammerstein operator

is well defined and posses properties allowing to use some fixed point

theorems for solving the corresponding integral equation.

Many successful applications of Orlicz spaces led to several exten-

sions and generalizations. Using the apparatus of abstract modular

spaces introduced by Nakano in [61] and then developed further by

Musielak and Orlicz, see e.g. [59, 60], Musielak developed a theory

of generalized Orlicz spaces, known in the contemporary literature as

Musielak-Orlicz spaces, see the book by Musielak [58]. Musielak-Orlicz

spaces have been proven to be very useful in application to integral and

differential equations to to their flexibility and generality (e.g. they do

not have to be symmetric spaces). They have been generalized to

a more abstract and even more flexible setting of modular functions

spaces introduced by Kozlowski in [42, 43, 44]. We refer the reader to

the Section “Preliminaries” for the brief recollection of the fundamen-
tals of the theory of modular function spaces.

There is a solid body of work on the subject of ordinary and partial

differential equations in Orlicz and Musielak Orlicz spaces (but not in

general modular function spaces), especially in the context of Orlicz-

Sobolev and Musielak-Orlicz-Sobolev spaces, see for instance [23, 67,

24, 28, 12], and more recent works often related to applications to

modeling of “smart fluids”, see e.g. [66, 16, 27, 3, 25, 26, 5] and the

papers referenced there. Frequently in these applications, a nonlinear

extension of modular function spaces are used leading to the concepts

of the modular metric spaces, see e.g. [10, 11, 1].



Typically these results use the classical techniques of differential

equations with values in Banach spaces. Our approach is to use the

modular notions, like the ρ-nonexpansiveness, whenever this is prac-

tical. Our results generalize the results of Khamsi from [33] obtained

for norm-continuous, nonexpansive mappings acting in Musielak-Orlicz

spaces Lϕ with ϕ satisfying the Musielak-Orlicz version of the Δ2 con-

dition, in relation to the problem of existence of ρ-nonexpansive semi-

groups of mappings, which - on their own - extended classical Banach

space results of [13, 65].

2. Preliminaries

Let us introduce basic notions related to modular function spaces

and related notation which will be used in this paper. For further

details we refer the reader to preliminary sections of the recent articles

[36, 37, 14] or to the survey article [48]; see also [42, 43, 44] for the

standard framework of modular function spaces.

Let Ω be a nonempty set and Σ be a nontrivial σ-algebra of subsets

of Ω. Let P be a δ-ring of subsets of Ω, such that E ∩ A ∈ P for

any E ∈ P and A ∈ Σ. Let us assume that there exists an increasing

sequence of sets Kn ∈ P such that Ω =
⋃
Kn. By E we denote the

linear space of all simple functions with supports from P . By M∞
we will denote the space of all extended measurable functions, i.e. all

functions f : Ω→ [−∞,∞] such that there exists a sequence {gn} ⊂ E ,
|gn| ≤ |f | and gn(ω) → f(ω) for all ω ∈ Ω. By 1A we denote the

characteristic function of the set A.

Definition 2.1. Let ρ :M∞ → [0,∞] be a nontrivial, convex and even

function. We say that ρ is a regular convex function pseudomodular if:

(i) ρ(0) = 0;

(ii) ρ is monotone, i.e. |f(ω)| ≤ |g(ω)| for all ω ∈ Ω implies ρ(f) ≤
ρ(g), where f, g ∈M∞;

(iii) ρ is orthogonally subadditive, i.e. ρ(f1A∪B) ≤ ρ(f1A) + ρ(f1B)

for any A,B ∈ Σ such that A ∩B 	= ∅, f ∈M;



(iv) ρ has the Fatou property, i.e. |fn(ω)| ↑ |f(ω)| for all ω ∈ Ω

implies ρ(fn) ↑ ρ(f), where f ∈M∞;

(v) ρ is order continuous in E , i.e. gn ∈ E and |gn(ω)| ↓ 0 implies

ρ(gn) ↓ 0.

Similarly, as in the case of measure spaces, we say that a set A ∈ Σ
is ρ-null if ρ(g1A) = 0 for every g ∈ E . We say that a property holds ρ-

almost everywhere if the exceptional set is ρ-null. As usual we identify

any pair of measurable sets whose symmetric difference is ρ-null as well

as any pair of measurable functions differing only on a ρ-null set. With

this in mind we define M = {f ∈ M∞ : |f(ω)| < ∞ ρ − a.e}, where
each element is actually an equivalence class of functions equal ρ-a.e.

rather than an individual function.

Definition 2.2. We say that a regular function pseudomodular ρ is a

regular convex function modular if ρ(f) = 0 implies f = 0 ρ − a.e..

The class of all nonzero regular convex function modulars defined on Ω

will be denoted by .

Definition 2.3. [42, 43, 44] Let ρ be a convex function modular. A

modular function space is the vector space Lρ = {f ∈ M : ρ(λf) →
0 as λ→ 0}.

The following notions will be used throughout the paper.

Definition 2.4. Let ρ ∈ .
(a) We say that {fn} is ρ-convergent to f and write fn → f (ρ) if and

only if ρ(fn − f)→ 0.

(b) A sequence {fn} where fn ∈ Lρ is called ρ-Cauchy if ρ(fn−fm)→ 0
as n,m→∞.

(c) A set B ⊂ Lρ is called ρ-closed if for any sequence of fn ∈ B, the

convergence fn → f (ρ) implies that f belongs to B.

(d) A set B ⊂ Lρ is called ρ-bounded if sup{ρ(f−g) : f ∈ B, g ∈ B} <
∞.

(e) A set B ⊂ Lρ is called strongly ρ-bounded if there exists β > 1 such

that Mβ(B) = sup{ρ(β(f − g)) : f ∈ B, g ∈ B} <∞.



Since ρ fails in general the triangle identity, many of the known

properties of limit may not extend to ρ-convergence. For example, ρ-

convergence does not necessarily imply ρ-Cauchy condition. However,

it is important to remember that the ρ-limit is unique when it exists.

The following proposition brings together few facts that will be often

used in the proofs of our results.

Proposition 2.1. Let ρ ∈ .
(i) Lρ is ρ-complete.

(ii) ρ-balls Bρ(x, r) = {y ∈ Lρ : ρ(x− y) ≤ r} are ρ-closed and ρ-a.e.

closed.

(iii) If ρ(αfn) → 0 for an α > 0 then there exists a subsequence {gn}
of {fn} such that gn → 0 ρ− a.e.

(iv) ρ(f) ≤ lim inf ρ(fn) whenever fn → f ρ−a.e. (Note: this property
is equivalent to the Fatou Property).

Definition 2.5. The following formula defines a norm in Lρ (fre-

quently called the Luxemburg norm) :

‖f‖ρ = inf{α > 0 : ρ(f/α) ≤ 1}.

Remark 2.1. It is not difficult to prove that ‖ · ‖ρ defines actually

a norm such that ‖f‖ρ ≤ ‖g‖ρ whenever |f)| ≤ |g| ρ-a.e. It is also

straightforward to demonstrate that ‖fn‖ρ → 0 if and only if ρ(αfn)→
0 for every α > 0. See Theorem 1.6 in [58].

The above remarks immediately implies the next proposition.

Proposition 2.2. Let ρ ∈ . If C ⊂ Lρ is ρ-closed then C is closed

with respect to the Luxemburg norm.

Since every ρ ∈  is a left-continuous, convex modular we have the

following result, see Theorems 1.5 and 1.8 in [58].

Proposition 2.3. Let ρ ∈ . The following assertions are true:

(a) If ‖f‖ρ < 1 then ρ(f) ≤ ‖f‖ρ
(b) ‖f‖ρ ≤ 1 if and only if ρ(f) ≤ 1.



Using the definition of the Luxemburg norm, it is easy to prove the

following proposition.

Proposition 2.4. Let ρ ∈  and let f ∈ Lρ. Then ‖f‖ρ > 1 implies

ρ(f) ≥ ‖f‖ρ.
In the sequel, we will use the following important result being an

immediate corollary to Proposition 2.4.

Proposition 2.5. Let ρ ∈ . If C ⊂ Lρ is ρ-bounded then C is

bounded with respect to the Luxemburg norm.

We will also need the definition of the Δ2-property of a function

modular, see e.g. [44, 14].

Definition 2.6. Let ρ ∈ . We say that ρ has the Δ2-property if

sup
n
ρ(2fn, Dk)→ 0

whenever Dk ↓ ∅ and sup
n
ρ(fn, Dk)→ 0.

The next result is a straightforward consequence from Definitions

2.5 and 2.6, and from Remark 2.1.

Proposition 2.6. Let ρ ∈ . The ρ-convergence is equivalent to the

convergence with respect to the Luxemburg norm ‖ · ‖ρ if and only if ρ

has the Δ2-property.

A specific subspace of Lρ will be of particular importance for our

discussions in this paper.

Definition 2.7. Define L0ρ = {f ∈ Lρ; ρ(f, ·) is order continuous}
and Eρ = {f ∈ Lρ; λf ∈ L0ρ for every λ > 0}.
The position of Eρ with respect to Lρ is characterized in the following

theorem.

Theorem 2.1. [42, 43, 44] Let ρ ∈ .
(a) Lρ ⊃ L0ρ ⊃ Eρ,

(b) Eρ has the Lebesgue property, i.e. ρ(αf,Dk) → 0 for α > 0,

f ∈ Eρ and Dk ↓ ∅.



(c) Eρ is the closure of E (in the sense of ‖ · ‖ρ).
(d) Eρ = Lρ if and only if ρ has the Δ2-property.

An extremal flexibility gained by using the apparatus of the modular

function spaces can be illustrated as follows: the operator itself is used

for the construction of a modular and hence a space in which this oper-

ator has required properties. Let us consider for instance the following

Uryshon integral operator, being a generalization of the Hammerstein

operator:

T (f)(x) =

∫ 1

0

k(x, y, |f(y)|)dy + f0(x),

where f0 is a fixed function and f : [0, 1]→ R is Lebesgue measurable.

For the kernel k we assume that

(a) k : [0, 1]× [0, 1]× R+ → R+ is Lebesgue measurable,

(b) k(x, y, 0) = 0,

(c) k(x, y, .) is continuous, convex and increasing to +∞,

(d)

∫ 1

0

k(x, y, t)dx > 0 for t > 0 and y ∈ (0, 1),

Assume in addition that for almost all t ∈ [0, 1] and measurable func-

tions f, g there holds

∫ 1

0

{∫ 1

0

k(t, u, |k(u, v, |f(v)|)−k(u, v, |g(v)|)|)dv
}
du ≤

∫ 1

0

k(t, u, |f(u)−g(u)|)du.

Setting ρ(f) =

∫ 1

0

{∫ 1

0

k(x, y, |f(y)|)dy
}
dx and using Jensen’s in-

equality it is easy to show that ρ is a nonnegative, even, convex nonlin-

ear functional on the space of measurable functions Lρ = {f : [0, 1]→
R : ∃λ > 0, ρ(λf) < ∞}, and that ρ(T (f) − T (g)) ≤ ρ(f − g), that

is, T is nonexpansive with respect to ρ. We will come back to this

example towards the end of this paper, see Example 4.2.

An additional importance for applications of modular function spaces

consists in the richness of structure of modular function spaces, that -

besides being Banach spaces (or F-spaces in a more general settings)

- are equipped with modular equivalents of norm or metric notions,



and also are equipped with almost everywhere convergence and conver-

gence in submeasure. As the above example of the Urysohn operator

vividly demonstrated, in many situations in differential and integral

equations, approximation and fixed point theory, modular type con-

ditions are much more natural and modular type assumptions can be

more easily verified than their metric or norm counterparts. There are

also important results that can be proved only using the apparatus of

modular function spaces.

Let us recall the definition of ρ-nonexpansive mappings.

Definition 2.8. Let ρ ∈  and let C ⊂ Lρ be nonempty. A mapping

T : C → C is called a ρ-nonexpansive mapping if ρ(T (f) − T (g)) ≤
ρ(f − g), for all f, g ∈ C.
Definition 2.9. [47] A one-parameter family F = {Tt : t ≥ 0} of

mappings from C into itself is said to be a ρ-nonexpansive semigroup

on C if F satisfies the following conditions:

(i) T0(x) = x for x ∈ C;
(ii) Tt+s(x) = Tt(Ts(x)) for x ∈ C and t, s ≥ 0;

(iii) for each t ≥ 0, Tt is ρ-nonexpansive).

Definition 2.10. A semigroup F = {Tt : t ≥ 0} is called continuous

if for every z ∈ C, the mapping t �−→ Tt(z) is ρ-continuous at every

t ∈ [0,∞), i.e. ρ
(
Ttn(z)− Tt(z)

)
→ 0 as tn → t.

By F (F) we will denote the set of common fixed points of the semi-
group F .
Let us finish this section with the existence theorems for nonex-

pansive mappings and semigroups of nonexpansive mappings acting in

modular function spaces. First we need to recall a notion of uniformly

convex function modulars.

Definition 2.11. Let ρ ∈ . We define the following uniform convex-

ity type properties of the function modular ρ:

(i) Let r > 0, ε > 0. Define

D1(r, ε) = {(f, g); f, g ∈ Lρ, ρ(f) ≤ r, ρ(g) ≤ r, ρ(f − g) ≥ εr}.



Let

δ1(r, ε) = inf
{
1− 1

r
ρ
(f + g

2

)
; (f, g) ∈ D1(r, ε)

}
, ifD1(r, ε) 	= ∅,

and δ1(r, ε) = 1 if D1(r, ε) = ∅.
(ii) We say that ρ is uniformly convex (UUC1) if for every s ≥ 0, ε >

0 there exists

η1(s, ε) > 0

depending on s and ε such that

δ1(r, ε) > η1(s, ε) > 0 for r > s.

Example 2.1. It is known that in Orlicz spaces, the Luxemburg norm

is uniformly convex if and only ϕ is uniformly convex and Δ2 prop-

erty holds; this result can be traced to early papers by Luxemburg [56],

Milnes [57], Akimovic [2], and Kaminska [32]. It is also known that,

under suitable assumptions, the modular uniform convexity in Orlicz

spaces is equivalent to the very convexity of the Orlicz function [39, 9].

Remember that the function ϕ is called very convex if or every ε > 0

and any x0 > 0, there exists δ > 0 such that

ϕ

(
1

2
(x− y)

)
≥ ε

2
(ϕ(x) + ϕ(y)) ≥ εϕ(x0),

implies

ϕ

(
1

2
(x+ y)

)
≤ 1

2
(1− δ) (ϕ(x) + ϕ(y)) .

Typical examples of Orlicz functions that do not satisfy the Δ2 condi-

tion but are very convex are: ϕ1(t) = e|t| − |t| − 1 and ϕ2(t) = et
2 − 1,

[57, 55]. Therefore, these are the examples of Orlicz spaces that are

not uniformly convex in the norm sense and hence the classical Kirk

theorem cannot be applied. However, these spaces are uniformly convex

in the modular sense, and respective modular fixed point results can be

applied.

Theorem 2.2. [37] Assume ρ ∈  is uniformly convex (UUC1). Let

C be a ρ-closed ρ-bounded convex nonempty subset of Lρ. Then any



T : C → C ρ-nonexpansive mapping has a fixed point. Moreover, the

set of all fixed points F (T ) is convex and ρ-closed.

Note that the statement of Theorem 2.2 is completely parallel to that

of the Browder/Gohde/Kirk classic fixed point theorem but formulated

purely in terms of function modulars without any reference to norms.

Also, note that the results in [37] actually extend outside nonexpan-

siveness and assumes merely asymptotic pointwise ρ-nonexpansiveness

of the mapping T . Therefore, Theorem 2.2 can be actually understood

as the modular equivalent of the theorem by Kirk and Xu [41], see also

[22, 64, 21, 71, 68, 7, 69, 70, 30, 31, 20, 40, 29, 45, 46, 49, 50, 52] and

the literature referenced there.
The existence result was then extended to the existence of common

fixed points of a ρ-nonexpansive semigroup of nonlinear mappings.

Theorem 2.3. [47] Assume ρ ∈  is (UUC1). Let C be a ρ-closed ρ-

bounded convex nonempty subset. Let F be a ρ-nonexpansive semigroup

on C. Then the set F (F) of common fixed points is nonempty, ρ-closed

and convex.

3. Vitali Property

According to Proposition 2.6, the ρ-convergence and the ‖·‖ρ-convergence
are in general equivalent if only if ρ satisfies Δ2. However, it is legiti-

mate to ask on what subsets of Lρ such equivalence may hold even ρ

does not have Δ2. In the paper [51] the author introduced a new con-

cept of sets with the Vitali property that play this role. The reference

to Giuseppe Vitali is justified by the following version of the Vitali

Convergence Theorem which was proved in the context of modular

function spaces in [44], Theorem 2.4.3.

Theorem 3.1. [44] Let ρ ∈ . Let fn ∈ Eρ, f ∈ Lρ and fn → f ρ-a.e.

Then the following conditions are equivalent:

(i) f ∈ Eρ and ‖fn − f‖ρ → 0.



(ii) for every α > 0 the subadditive measures ρ(αfn, ·) are order

equicontinuous, that is, if Ek ∈ Σ are such that Ek ↓ ∅ then

lim
k→∞

sup
n∈N

ρ(αfn, Ek) = 0.

Definition 3.1. [51] A set C ⊂ Lρ is said to posses the Vitali property

if C ⊂ Eρ, and for any g ∈ Lρ and gn ∈ C with ρ(gn − g) → 0

there exists a subsequence {gnk
} of {gn} such that for every α > 0 the

subadditive measures ρ(αgnk
, ·) are order equicontinuous.

Our next result characterizes sets with the Vitali property as those

subsets of Eρ on which the ρ-convergence and the ‖ · ‖ρ-convergence
are indeed equivalent.

Theorem 3.2. [51] Let ρ ∈ . A set C ⊂ Lρ has the Vitali property

if and only the following two conditions are satisfied:

(i) C ⊂ Eρ.

(ii) If g ∈ Lρ and gn ∈ C with ρ(gn − g)→ 0 then ‖gn − g‖ρ → 0.

Remark 3.1. Combining Proposition 2.2 with Theorem 3.2, we can

easily see that a set with the Vitali property is ρ-closed if and only if it

is ‖ · ‖ρ-closed.
Remark 3.2. Let C ⊂ Lρ be a set with the Vitali property and let

a, b ∈ R. Let u : [a, b] → C be a ρ-continuous function, that is,

ρ(u(tn) − u(t)) → 0 provided tn → t. It follows immediately from

Theorem 3.2 that u is ‖ · ‖ρ-continuous.
As an immediate corollary to Remark 3.2 we obtain the following

important result.

Remark 3.3. Let Z be a separable linear subspace of (Eρ, ‖ · ‖ρ) and
let C ⊂ Z have the Vitali property. Assume that the function u :

[a, b] → C is ρ-continuous. Then u is the Bochner integrable function

with respect the the Lebesgue measure m on [a, b], i.e. u ∈ L1(Ω, Z,m).
In this context, let us discuss the separability of (Eρ, ‖ · ‖ρ). First,

we need the following definition.



Definition 3.2. The function modular ρ ∈  is called separable if

‖f 1(·)‖ρ) is a separable set function for each f ∈ E, which means

that there exists a countable A ⊂ P such that to every A ∈ P there

corresponds a sequence {Ak} of elements of A with

(3.1) ρ(αf,AΔAk)→ 0

for every α > 0, where Δ denotes the symmetric set difference.

We are now ready to formulate the following characterization of sep-

arable (Eρ, ‖ · ‖ρ) spaces, see Theorem 2.5.4 in [44].

Theorem 3.3. [44] Let ρ ∈ . The space (Eρ, ‖ · ‖ρ) is a separable

Banach space if and only ρ is separable.

Finally, we can combine the last two results into the following very

useful statement.

Proposition 3.1. Let ρ ∈  be a separable function modular. If u :

[a, b]→ C is ρ-continuous, where C ⊂ Eρ has the Vitali property, then

u ∈ L1(Ω, Z,m).
Let us discuss the Fatou property in the context of the Vitali prop-

erty. We have the following very useful result.

Proposition 3.2. Let ρ ∈ . Assume that C ⊂ Eρ has the Vitali

property and that

(3.2) ρ(fn − f)→ 0, ρ(gn − g)→ 0

as n→∞, with fn, f, gn, g ∈ C. Then

(3.3) ρ(f − g) ≤ lim inf
n→∞

ρ(fn − gn).

Proof. Since C has the Vitali property it follows from (3.2) that

(3.4) ρ((fn − gn)− (f − g)))→ 0.

Using (3.4) and the Fatou property of ρ ( Proposition 2.1) it is easy to

get required inequality (3.3). �

Let us finish this section with few examples of sets with the Vitali

property.



Example 3.1. If ρ has Δ2 property then every set C ⊂ Lρ has the

Vitali property.

Example 3.2. Let C ⊂ Eρ. If there exists g ∈ Eρ such that |f(ω) ≤
|g(ω)| ρ-a.e for every f ∈ C then C has the Vitali property.

Example 3.3. Let C ⊂ Eρ be ‖ · ‖ρ-conditionally compact. Then C

has the Vitali property (see Theorem 2.5.1 in [44]) .

4. Solution of the Initial Value Problems in Modular
Function Spaces

To the end of this paper we will be considering the following initial

value problem for an unknown function u : [0, A]→ C, where C ⊂ Eρ:

(4.1)

{
u(0) = f

u′(t) + (I − T )u(t) = 0,

where f ∈ C and A > 0 are fixed and T : C → C is ρ-nonexpansive.

Let us first consider the following question: Are the ρ-nonexpansive

mappings really different from the mappings nonexpansive with respect

to the Luxemburg norm associated with the modular ρ? First we will

show the following simple result.

Proposition 4.1. Let ρ ∈ . If for every λ > 0

(4.2) ρ (λ (T (f)− T (g))) ≤ ρ (λ(f − g))

then, ‖T (f)− T (g)‖ρ ≤ ‖f − g‖ρ.

Proof. Assume to the contrary that there exist f, g ∈ Lρ and α > 0

such that

‖f − g‖ρ < α < ‖T (f)− T (g)‖ρ.



Then,

∥∥∥∥f − g

α

∥∥∥∥
ρ

< 1, which by Proposition 2.3 part (a) implies that

ρ

(
f − g

α

)
< 1. It also implies that

1 <

∥∥∥∥T (f)− T (g)

α

∥∥∥∥
ρ

,

which, by Proposition 2.3 part (b), yields 1 < ρ

(
T (f)− T (g)

α

)
. Fi-

nally, setting λ = α−1, we obtain

ρ (λ(f − g)) < 1 < ρ (λ (T (f)− T (g))) .

Contradiction completes the proof. � �

In view of Proposition 4.1, we need to ask whether the inequality

(4.2) needs to hold for every λ > 0 in order to ensure the norm nonex-

pansiveness? If we knew that it sufficed to assume it merely for λ = 1,

then there would be no real reason to consider ρ-nonexpansiveness. The

answer to this question can be found in the following simple example

of a mapping which is ρ-nonexpansive but it is not ‖.‖ρ-nonexpansive.

Example 4.1. [38] Let X = (0,∞) and Σ be the σ-algebra of all

Lebesgue measurable subsets of X. Let P denote the δ-ring of subsets

of finite measure. Define a function modular by

ρ(f) =
1

e2

∫ ∞

0

|f(x)|x+1dm(x).

Let B be the set of all measurable functions f : (0,∞) → R such that

0 ≤ f(x) ≤ 1/2. Consider the map

T (f)(x) =

{
f(x− 1), for x ≥ 1,
0, for x ∈ [0, 1].

Clearly, we have T (B) ⊂ B. For every f, g ∈ B and λ ≤ 1, we have

ρ (λ (T (f)− T (g))) ≤ λρ (λ(f − g)) ,



which implies that T is ρ-nonexpansive. On the other hand, if we take

f = 1[0,1], then

‖T (f)‖ρ > e ≥ ‖f‖ρ,
which clearly implies that T is not ‖.‖ρ-nonexpansive. Note that T is

linear.

Returning to our Cauchy problem (4.1), the meaning of the above

considerations is that for such mappings T the classical methods of

differential equations for functions with values in Banach spaces would

not work. It is also worthwhile mentioning that, due to the indirect def-

inition of the Luxemburg norm, quite often it is much more convenient

to evaluate formulas expressed only in terms of a modular which is,

in applications, typically given by a direct formula allowing numerical

computations.

Let us introduce the following convenient notations which will be

used throughout this paper. For any t > 0 we define

(4.3) K(t) = 1− e−t =
∫ t

0

es−tds.

We define the ρ-diameter of a set C ⊂ Lρ as

(4.4) δρ(C) = sup
f,g∈C

ρ(f − g).

Observe that δρ(C) <∞ whenever the set C is ρ-bounded.

Let us start with the following technical result.

Lemma 4.1. [51] Let ρ ∈  be separable. Let x, y : [0, A] → Lρ be

two Bochner-integrable ‖ · ‖ρ-bounded functions, where A > 0. Then

for every t ∈ [0, A] we have

(4.5) ρ
(
e−ty(t) +

∫ t

0

es−tx(s)ds
)
≤ e−tρ(y(t)) +K(t) sup

s∈[0,t]
ρ(x(s)).

In the sequel, we will be using the following key result proven in [51].

Theorem 4.1. [51] Let ρ ∈  be separable. Let C ⊂ Eρ be a nonempty,

convex, ρ-bounded, ρ-closed set with the Vitali property. Let T : C → C

be a ρ-nonexpansive mapping. Let us fix f ∈ C and A > 0 and define



the sequence of functions un : [0, A] → C by the following inductive

formula:

(4.6)

{
u0(t) = f

un+1(t) = e−tf +
∫ t

0
es−tT (un(s))ds.

Then for every t ∈ [0, A] there exists u(t) ∈ C such that

(4.7) ρ(un(t)− u(t))→ 0

and the function u : [0, A] → C defined by (4.7) is a solution of the

Initial Value Problem (4.1). Moreover, the solution u can be extended

to the whole of [0,+∞), and

(4.8) ρ(f − un(t)) ≤ Kn+1(A)δρ(C).

Remark 4.1. Theorem 4.1 extends results of [33] proven for norm

continuous, nonexpansive mappings acting in Musielak-Orlicz spaces

with the Δ2 property.

Example 4.2. Let us go back to the example of the Urysohn operator

T from the Preliminary section of this paper:

T (f)(x) =

∫ 1

0

k(x, y, |f(y)|)dy + f0(x),

As we saw, T i a ρ-nonexpansive mapping where the convex function

modular ρ is defined as

(4.9) ρ(f) =

∫ 1

0

{∫ 1

0

k(x, y, |f(y)|)dy
}
dx.

Let us fix an r > 0 and set C = {f ∈ Eρ : ρ(f − f0) ≤ r}. It is easy

to see that T : C → C. If we assume additionally that there exists a

constant M > 0 and a Bochner-integrable function h : [0, 1]× [0, 1] →
[0,∞) such that for every u ≥ 0 and x, y ∈ [0, 1]
(4.10) k(x, y, 2u) ≤Mk(x, y, u) + h(x, y),

then the modular ρ has the property Δ2 in the sense of Definition 2.6.

Using the Vitali property of C and Theorem 4.1 it is then easy to see



that the corresponding Initial Value Problem

(4.11)

{
u(0) = f0

u′(t) + (I − T )u(t) = 0,

has a solution in C that can be calculated as the ρ-limit of the sequence

{un} as defined in Theorem 4.1.

5. The Solution Set is a Continuous Semigroup

Still in the context of Theorem 4.1, we introduce the following no-

tation: let f ∈ C, by uf we will denote a solution of the Initial Value
Problem (4.1) obtained by the ρ-limit (4.7). For any t ≥ 0 let us define

a mapping St : C → C by

(5.1) St(g) = ug(t).

Denote S = {St}t≥0 and F (S) = {f ∈ C : St(f) = f, for all t ≥ 0}.
In this section we will prove that S is a continuous ρ-nonexpansive

semigroup of nonlinear mappings. This result will be used in the fol-

lowing section for proving existence and constructing stationary points

of the process defined by the system (4.1)

First let us introduce the following convenient notation:

(5.2) U : C × [0,+∞) � (g, t) �→ U(g, t) = ug(t) = St(g) ∈ C,

Also, for any n ∈ N define Un : C × [0,+∞) → C by following the

recurrent system

(5.3)

{
U0(g, t) = g

Un+1(g, t) = e−tg +
∫ t

0
es−tT (Un(g, s))ds.

First we need to prove the following important technical result.

Lemma 5.1. Let ρ ∈  be separable. Let C ⊂ Eρ be a nonempty,

convex, ρ-bounded, ρ-closed set with the Vitali property. Let T : C → C



be a ρ-nonexpansive mapping. Then for any g ∈ C, t ≥ 0, μ ≥ 0,

n ∈ N, m ∈ N

(5.4)

ρ
(
Un(U(g, μ), t)−Un+m(g, t+μ)

)
≤

n+m+1∑
i=n+1

Ki(μ)δρ(C)+K
n+1(t)δρ(C).

Proof. The proof is by induction on n ∈ N.

Assume first that n = 0. Calculate

U0(U(g, μ), t)− Um(g, t+ μ)(5.5)

= U(g, μ)− Um(g, t+ μ)

= ug(μ)− Um(g, t+ μ)

= ug(μ)− e−t−μg −
∫ t+μ

0

es−t−μT (Um−1(g, s))ds.

Using straightforward calculus we get

∫ t+μ

0

es−t−μT (Um−1(g, s))ds(5.6)

=

∫ μ

0

es−μT (Um−1(g, s))ds+
∫ t

0

esT (Um−1(g, s+ μ))ds.

Using the definition of Um and the formula (5.6) we obtain the fol-

lowing

Um(g, t+ μ) = e−t
(
e−μ +

∫ μ

0

es−μT (Um−1(g, s))ds
)

(5.7)

+e−t
∫ t

0

esT (Um−1(g, s+ μ))ds

= e−tUm(g, μ) + e−t
∫ t

0

esT (Um−1(g, s+ μ))ds.



Substituting (5.7) into (5.5) we get

U0(U(g, μ), t)− Um(g, t+ μ)(5.8)

= ug(μ)− e−tUm(g, μ)− e−t
∫ t

0

esT (Um−1(g, s+ μ))ds

= e−t
(
ug(μ)− Um(g, μ)

)
+

∫ t

0

es−t
(
ug(μ)− T (Um−1(g, s+ μ))

)
ds,

where we used the fact that

(5.9) e−tug(μ) +
∫ t

0

es−tug(μ)ds = ug(μ).

Let us apply Lemma 4.1 with

x(t) = ug(μ)− T (Um−1(g, t+ μ)),

y(t) = ug(μ)− Um(g, μ).

Hence, using (4.5) and (5.8) we get

ρ
(
U0(U(g, μ), t)− Um(g, t+ μ)

)
= ρ

(
e−ty(t) +

∫ t

0

es−tx(s)ds
)

(5.10)

≤ e−tρ(y(t)) +K(t) sup
0≤s≤t

ρ(x(s))

= e−tρ(ug(μ)− Um(g, μ)) +K(t) sup
0≤s≤t

ρ
(
ug(μ)− T (Um−1(g, s+ μ))

)

≤ e−tρ(ug(μ)− Um(g, μ)) +K(t)δρ(C).

Applying to (5.10) inequality (4.8) we finally arrive at

(5.11) ρ
(
U0(U(g, μ), t)−Um(g, t+μ)

)
≤ Km+1(t)δρ(C)+K(t)δρ(C),

which gives us desired inequality (5.4) with n = 0.

Assume now that (5.4) is true for n ∈ N and let us prove it for n+1.

Using the definition of the recurrent sequence combined with (5.7) we



have

Un+1(U(g, μ), t)− Un+m+1(g, t+ μ)(5.12)

= e−tU(g, μ) +
∫ t

0

es−tT (Un(U(g, μ), s))ds− Un+m+1(g, t+ μ)

= e−tU(g, μ) +
∫ t

0

es−tT (Un(U(g, μ), s))ds

−
(
e−tUn+m+1(g, μ) + e−t

∫ t

0

esT (Un+m(g, s+ μ))ds
)

= e−t
(
U(g, μ)− Un+m+1(g, μ)

)
+

∫ t

0

es−t
(
T (Un(U(g, μ), s))− T (Un+m(g, s+ μ))

)
ds.

Applying Lemma 4.1 with

x(t) = T (Un(U(g, μ), t))− T (Un+m(g, t+ μ)),

y(t) = U(g, μ)− Un+m+1(g, μ),

we conclude from (5.12) that

ρ
(
Un+1(U(g, μ), t)− Un+m+1(g, t+ μ)

)
(5.13)

≤ e−tρ(U(g, μ)− Un+m+1(g, μ))

+K(t) sup
0≤s≤t

ρ
(
T (Un(U(g, μ), s))− T (Un+m(g, s+ μ))

)
.

Using the ρ-nonexpansiveness of T , the inductive assumption and

(4.8) we conclude from (5.13) that

ρ
(
Un+1(U(g, μ), t)− Un+m+1(g, t+ μ)

)
(5.14)

≤ e−tρ(U(g, μ)− Un+m+1(g, μ)) +K(t)
( n+m+1∑

i=m+1

Ki(μ) +Kn+1(t)
)
δρ(C)

≤ e−tKn+m+2(μ)δρ(C) +K(t)
( n+m+1∑

i=m+1

Ki(μ) +Kn+1(t)
)
δρ(C)

≤
n+m+2∑
i=m+1

Ki(μ)δρ(C) +Kn+2(t)δρ(C),(5.15)



which completes the proof of Lemma 5.1. �

We are now ready to prove the main result of this section:

Theorem 5.1. Let ρ ∈  be separable, C ⊂ Eρ be a nonempty, convex,

ρ-bounded, ρ-closed set with the Vitali property. Assume T : C → C

to be a ρ-nonexpansive mapping. Denote St(f) = uf (t), where t ≥
0, f ∈ C and uf (t) is a solution of the Initial Value Problem (4.6).

Then {St}t≥0 is a continuous ρ-nonexpansive semigroup of non-linear

mappings on C.

Proof. First let us fix t ≥ 0 and demonstrate that St is ρ-nonexpansive.

Fix f, g ∈ C and recall that by Theorem 4.1,

ρ(Un(f, t)− U(f, t))→ 0(5.16)

ρ(Un(g, t)− U(g, t))→ 0

as n→∞. By Proposition 3.2 it follows from (5.16) that

(5.17) ρ(U(f, t)− U(g, t)) ≤ lim inf
n→∞

ρ(Un(f, t)− Un(g, t)).

Applying Lemma 4.1 with

x(t) = Un(f, t)− Un(g, t),

y(t) = f − g,

we have

ρ(Un+1(f, t)− Un+1(g, t))(5.18)

= ρ
(
e−tf +

∫ t

0

es−tUn(f, s)ds− e−tg −
∫ t

0

es−tUn(g, s)ds
)

≤ e−tρ(f − g) +K(t) sup
0≤s≤t

ρ(Un(f, s)− Un(g, s)).

By obvious induction, keeping in mind that K(t) = 1 − e−t we can

easily deduce from (5.18) that

(5.19) ρ(Un(f, t)− Un(g, t)) ≤ ρ(f − g),



which together with (5.17) gives us finally

(5.20) ρ(St(f)− St(g)) = ρ(U(f, t)− U(g, t)) ≤ ρ(f − g),

hence St is ρ-nonexpansive.

Now let us prove that {St}t ≥ 0 forms a semigroup of non-linear

mappings. Since it is obvious that S0(f) = uf (0) = f , it remain to

prove that

(5.21) Sμ+t = Sμ ◦ St

for any μ, t ≥ 0. Let us fix temporarily n ∈ N and note that by

Theorem 4.1

(5.22) ρ(Un+m(f, t+ μ)− U(f, t+ μ))→ 0

as m → ∞. Hence, by Proposition 3.2 and by inequality (5.4) from

Lemma 5.1, using also the fact that the series
∑

iK
i(μ) is convergent,

we obtain the following

ρ
(
Un(U(f, μ), t)− U(f, t+ μ)

)
(5.23)

≤ lim inf
m→∞

ρ
(
Un(U(f, μ), t)− Un+m(f, t+ μ)

)

≤ lim inf
m→∞

n+m+1∑
i=n+1

Ki(μ)δρ(C) +Kn+1(t)δρ(C)

≤ Kn+1(t)δρ(C).

From (5.23) we see that

(5.24)

ρ
(
Un(U(f, μ), t)− St+μ(f)

)
= ρ

(
Un(U(f, μ), t)− U(f, t+ μ)

)
→ 0

as n→∞. On the other hand, it follows from Theorem 4.1 that

(5.25)

ρ
(
Un(U(f, μ), t)− St(Sμ(f))

)
= ρ

(
Un(Sμ(f), t)− St(Sμ(f))

)
→ 0

as well. The uniqueness of the ρ-limit yields to St+μ(f) = St(Sμ(f)) for

every t, μ ≥ 0 and every f ∈ C. To prove ρ-continuity of the semigroup



{St}t≥0 let us observe that if tn → t then

(5.26) ρ(Stn(f)− St(f)) = ρ(uf (tn)− uf (t))→ 0

because uf is continuous as a solution of the differential equation (4.6).

This completes the proof of Theorem 5.1. �

6. Application to Existence and Construction of
Stationary Points

In the previous section we proved that S = {St}t≥0, where St(g) =

ug(t) for any g ∈ C, is a continuous ρ-nonexpansive semigroup of non-
linear mappings. Such a situation is quite typical in mathematics and

applications. For instance, in the theory of dynamical systems, the

modular function space Lρ would define the state space and the map-

ping (t, x)→ St(x) would represent the evolution function of a dynam-

ical system. The question about the existence of common fixed points,

and about the structure of the set of common fixed points, can be in-

terpreted as a question whether there exist stationary points for this

process, that is, elements of C that are fixed during the state space

transformation St at any given point of time t, and if yes - what the

structure of a set of such points may look like and how such points can

be constructed algorithmically. In the setting of this paper, the state

space may be an infinite dimensional. Therefore, it is natural to apply

these result to not only to deterministic dynamical systems but also to

stochastic dynamical systems.

It is immediate that if F ∈ C is a common fixed point of S then

St(f) = f for all t ≥ 0 which means that uf (t) = f for every such t.

Therefore, the process defined by the equation (4.6) has a stationary

point at such f . Let us now interpret our previous results in this

context.
Combining Theorem 2.3, Theorem 4.1 and Theorem 5.1, we arrive

at the following result.

Theorem 6.1. Let ρ ∈  be separable and (UUC1), C ⊂ Eρ be a

nonempty, convex, ρ-bounded, ρ-closed set with the Vitali property. As-

sume T : C → C to be a ρ-nonexpansive mapping. Denote St(f) =



uf (t), where t ≥ 0, f ∈ C and uf (t) is a solution of the Initial Value

Problem (4.6). Then S = {St}t≥0 forms a continuous ρ-nonexpansive

semigroup of non-linear mappings on C. Moreover, the set of the sta-

tionary points for the process defined by the differential equation (4.6)

with the evolution function (t, x)→ St(x), is equal to F (S), the set of

all common fixed points of S, which is nonempty, ρ-closed and convex.

Proving existence is one thing but being able to actually construct

algorithmically such a stationary point is a completely different propo-

sition. Fortunately in some cases this daunting task can be replaced by

a simpler task of constructing a fixed point for just one ρ-nonexpansive

mapping. To this end let us quote the following very recent represen-

tation result.

Theorem 6.2. [4] Let ρ ∈  be (UUC), and let F = {Tt : t ≥ 0}
be a continuous semigroup of ρ-nonexpansive mappings on a ρ-closed,

ρ-bounded, convex, nonempty subset of Lρ. Let α > 0 and β > 0 be two

real numbers such that α/β /∈ Q. Fix an arbitrary λ ∈ (0, 1). Then

(6.1) F (F) = F
(
λTα + (1− λ)Tβ

)
.

Remark 6.1. Using different methods, the conclusion of Theorem 6.2

can be proved without the assumption of the uniform convexity but as-

suming instead the strong continuity of the semigroup F , see Theorem

3.1 in [54].

In view of Theorem 6.2 and Remeark 6.1, in order to construct a

stationary point for a process defined by (4.6) it is enough (under

some reasonable assumptions) to construct a fixed point for just one

ρ-nonexpansive mapping. There are several known algorithms, based

on the Mann and Ishikawa processes, that can be used for such con-

struction, see e.g. [14, 15, 4].

The above-mentioned results establish a connection between the the-
ory of differential equations in modular function spaces and the fixed

point theory for nonlinear mappings acting in modular function spaces.

The latter theory has been a subject to intensive study since 1990s, see

e.g. [38, 39, 34, 35, 17, 18, 19, 36, 37, 47, 48, 14, 54, 53, 51, 15, 4].



Let us finish this section and the paper by providing an example how

the results of the preceding sections can be utilized for constructing a

stationary point of a process defined by the Urysohn operator:

T (f)(x) =

∫ 1

0

k(x, y, |f(y)|)dy + f0(x),

with the assumptions as per Example 4.2. Using Theorem 4.1 we see

that, given f ∈ C, the Initial Value Problem

(6.2)

{
u(0) = f

u′(t) + (I − T )u(t) = 0,

has a solution uf : [0,+∞] → C. As proved in our Theorem 5.1 the

formula

St(f) = uf (t)

defines the semigroup of ρ-nonexpansive mappings. Note that ρ in this

example is orthogonally additive and hence it has the Strong Opial

Property, see [35]. Therefore, assuming ρ is (UUC1) and uniformly

continuous, see [58, 38, 9] for several criteria, we can use the algo-

rithmic methods from [4] (generalized Mann process in Theorem 4.3,

and modified Ishikawa process in Theorem 5.2) to construct a common

fixed point of the semigroup {St} which will be a stationary point of the
Urysohn process defined by the evolution function (t, f)→ uf (t) ∈ C.
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COINCIDENCES AND COMMON FIXED POINT
THEOREMS IN INTUITIONISTIC FUZZY METRIC

SPACES USING GENERAL CONTRACTIVE
CONDITION OF INTEGRAL TYPE

AMIT SINGH AND B. FISHER

Abstract. In the present paper, we first of all prove a coin-
cidence theorem for a family of mappings on an arbitrary set
with values in an intuitionistic fuzzy metric space. We further
establish a common fixed point theorem. Our results general-
ize and extend some of the well known results in metric and
other spaces.

1. Introduction

Atanassov [4] introduced and studied the concept of intuitionistic
fuzzy sets as a generalization of fuzzy sets. Since then, there has
been much progress in the study of intuitionistic fuzzy sets by many
authors, see for instance [5], [6], [7] and [8]. Recently, J.H. Park [13]
has introduced and studied the notion of intuitionistic fuzzy metric
spaces. In [3] Alaca, Turkoglu and Yildiz, they proved the well
known fixed point theorems of Banach and Edelstein in intuitionistic
fuzzy metric spaces with the help of Grabiec [9]. Further, Jesic and
Babacev [10] proved some common fixed point theorems for a pair
of R-weakly commuting mappings on this newly defined space.
The present paper is concerned with extending and generalizing

the theory of fixed points to intuitionistic fuzzy metric spaces. We
first of all prove a coincidence theorem for a family of mappings
on an arbitrary set with values in an intuitionistic fuzzy metric
space. We further establish a common fixed point theorem for a
family of self mappings along with the mappings P, Q, S and T.
We generalize and extend some of the results of Jesic & Babacev

2000 Mathematics Subject Classification. 47H10, 54H25.
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[10] and Mishra, Singh & Chadha [12] to intuitionistic fuzzy metric
spaces. Our results fuzzify and generalize several results on metric,
fuzzy and Menger spaces.

2. Preliminaries

Definition 2.1. [14]. A binary operation ∗: [0, 1] × [0, 1] → [0, 1]
is a continuous t norm if ∗ satisfies the following conditions:

(a) ∗ is commutative and associative,
(b) ∗ is continuous,
(c) a ∗ 1 = a for all a ∈ [0, 1],
(d) a ∗ b ≤ c ∗ d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.2. [14]. A binary operation �: [0, 1] × [0, 1] → [0, 1]
is a continuous t-conorm if � satisfies the following conditions:

(a) � is commutative and associative,
(b) � is continuous,
(c) a � 0 = a for all a ∈ [0, 1],
(d) a � b ≤ c � d whenever a ≤ c and b ≤ d and a, b, c, d ∈ [0, 1].

Definition 2.3. [3]. A 5-tuple (X,M,N, ∗, �) is said to be an
intuitionistic fuzzy metric space if X is an arbitrary set, ∗ is a
continuous t-norm, � is a continuous t-conorm and M N are fuzzy
sets on X2 × [0,∞) satisfying the following conditions:

(i) M(x, y, t) +N(x, y, t) ≤ 1,
(ii) M(x, y, 0) = 0,
(iii) M(x, y, t) = 1 for all t > 0 iff x = y,
(iv) M(x, y, t) =M(y, x, t),
(v) M(x, y, t) ∗M(y, z, s) ≤M(x, z, t+ s) for all x, y, z ∈ X,

s, t > 0,
(vi) M(x, y, •) : [0,∞) → [0, 1] is left continuous,
(vii) lim

t→∞
M(x, y, t) = 1 for all x, yinX,

(viii) N(x, y, 0) = 1,
(ix) N(x, y, t) = 0 for all t > 0 iff x = y,
(x) N(x, y, t) = N(y, x, t),
(xi) N(x, y, t) �N(y, z, s) ≥ N(x, z, t+ s) for all x, y, z ∈ X and

s, t > 0,
(xii) N(x, y, •) : [0,∞)→ [0, 1] is right continuous,
(xiii) lim

t→∞
N(x, y, t) = 0 for all x, y in X.

Then (M,N) is called an intuitionistic fuzzy metric on X. The



functionsM(x, y, t) and N(x, y, t) denote the degree of nearness and
degree of non-nearness between x and y with respect to t, respectively.

In an intuitionistic fuzzy metric spaceX,M(x, y, •) is non-decreasing
and N(x, y, •) is non-increasing for all x, y in X.
Example 2.1. [13]. Let (X, d) be a metric space. For every a, b ∈
[0, 1] with a ∗ b = a.b and a � b = min{1, a + b}, let M(x, y, t) =

t
t+d(x,y)

and N(x, y, t) = d(x,y)
t+d(x,y)

for all x, y ∈ X and t > 0. Then

(X,M,N, ∗, �) is an intuitionistic fuzzy metric space induced by the
metric d. It is obvious that N(x, y, t) = 1−M(x, y, t).

Definition 2.4. [3]. Let (X,M,N, ∗, �) be an intuitionistic fuzzy
metric space. Then

(A) a sequence {xn} in X is said to be Cauchy sequence if for
each t > 0 and p > 0

lim
n→∞

M(xn+p, xn, t) = 1 and lim
n→∞

N(xn+p, xn, t) = 0,

(B) a sequence {xn} in X is converging to x in X if for each
t > 0,

lim
n→∞

M(xn, x, t) = 1 and lim
n→∞

N(xn, x, t) = 0.

An intuitionistic fuzzy metric space is said to be complete if and
only if every Cauchy sequence is convergent.

Lemma 2.1. [11]. Let (X,M,N, ∗, �) be an intuitionistic fuzzy
metric space which satisfies the following conditions:
M(x, y, 0) = lim

t→0
M(x, y, t) = 0

and
N(x, y, 0) = lim

t→0
N(x, y, t) = 1 for x 	= y.

Further, let ϕ : (0,∞)→ (0,∞) be a continuous, non-decreasing
function which satisfies ϕ(t) < t for all t > 0. Then the following
statements hold:

(a) if M(x, y, ϕ(t)) ≥M(x, y, t) for all t > 0, then x = y,
(b) if N(x, y, ϕ(t)) ≤ N(x, y, t) for all t > 0, then x = y.

Alaca et al. [3] proved the following result:

THEOREM A. (Instuitionistic fuzzy Banach contraction theo-
rem). Let (X,M,N, ∗, �) be a complete intuitionistic fuzzy metric
space. Let T : X → X be a mapping satisfying

M(Tx, Ty, kt) ≥M(x, y, t) and N(Tx, Ty, kt) ≤ N(x, y, t)



for all x, y in X where 0 < k < 1. Then T has a unique fixed point.

To prove our results we need the following Lemma:

Lemma 2.2. [1, 2]. Let {yn} be a sequence in an intuitionistic fuzzy
metric space (X,M,N, ∗, �) such that b∗b ≥ b and (1−b)�(1−b) ≤
(1 − b) for all b ∈ (0, 1). If there exists a constant k ∈ (0, 1) such
that
(2.1)
M(yn, yn+1, kt) ≥M(yn−1, yn, t) and N(yn, yn+1, kt) ≤ N(yn−1, yn, t)

for all n ∈ N , where t > 0, then {yn} is a Cauchy sequence in X.

3. Coincidences and fixed point theorems

Theorem 3.1. Let Y be an arbitrary set and (X,M,N, ∗, �) be an
intuitionistic fuzzy metric space, such that b∗b ≥ b and (1−b)�(1−
b) ≤ (1 − b) for all b ∈ (0, 1). Let {Ai}i∈N : Y → X, B : X → Y
and mappings P,Q, S, T : Y → X be such that

(a) Ai(Y ) ⊂ PBQ(Y ) ∩ SBT (Y ), i ∈ N.
(b) there exists a constant k ∈ (0, 1) such that

∫ M(Aix,Ajy,kt)

0

ϕ(t)dt ≥
∫ m(x,y,t)

0

ϕ(t)dt

and ∫ N(Aix,Ajy,kt)

0

ϕ(t)dt ≥
∫ n(x,y,t)

0

ϕ(t)dt,

where ϕ : R+ → R+ is a Lebesgue integrable mapping which is
summable on each compact subset of R+, non-negative and such
that ∫ ε

0

ϕ(t)dt > 0 for each ε > 0,

where
m(x, y, t) ≥M(Aix, PBQx, t) ∗M(Ajy, SBTy, t)

(3.1) ∗M(Aix, SBTy, αt) ∗M(Ajy, PBQx, (2− α)t)

n(x, y, t) ≤ N(Aix, PBQx, t) �N(Ajy, SBTy, t)

(3.2) �N(Aix, SBTy, αt) �N(Ajy, PBQx, (2− α)t),



for all t > 0 and α ∈ (0, 2) and for each x, y ∈ Y, i, j ∈ N with
i 	= j,

(3.3) PBQ(Y ) ∩ SBT (Y ) is a complete subspace of X.

Then for each i ∈ N,
(i) Ai and PBQ have a coincidence point,
(ii) Ai and SBT have a coincidence point.

PROOF. Choose a point x0 ∈ Y . Since Ai(Y ) ⊂ SBT (Y ), we
can choose a point x1 ∈ Y such that A1x0 = SBTx1.
Similarly, we can choose a point x2 ∈ Y such that A2x1 =

PBQx2. Inductively, we can find a sequence {xn} in Y such that

A2nx2n−1 = PBQx2n = y2n

and

A2n+1x2n = SBTx2n+1 = y2n+1.

Then by (b), with α = 1 + q and q ∈ (0, 1), we have
∫ M(y2n+1,y2n,kt)

0

ϕ(t)dt =

∫ M(A2n+1x2n,A2nx2n−1,kt)

0

ϕ(t)dt

≥
∫ m(x2n,x2n−1,t)

0

ϕ(t)dt.

Now, using (3.1), we have

m(x2n, x2n−1, t) ≥ M(A2n+1x2n, PBQx2n, t)

∗M(A2nx2n−1, SBTx2n−1, t)

∗M(A2n+1x2n, SBTx2n−1, (1 + q)t)

∗M(A2nx2n−1, PBQx2n, (1− q)t)

= M(y2n+1, y2n, t) ∗M(y2n, y2n−1, t)

∗M(y2n+1, y2n−1, (1 + q)t) ∗M(y2n, y2n, (1− q)t)

≥ M(y2n+1, y2n, t) ∗M(y2n, y2n−1, t)

∗M(y2n+1, y2n, t) ∗M(y2n, y2n−1, qt)

∗M(y2n, y2n−1, t) ∗ 1
≥ M(y2n+1, y2n, t) ∗M(y2n, y2n−1, t)

and then



∫ N(y2n+1,y2n,kt)

0

ϕ(t)dt =

∫ N(A2n+1x2n,A2nx2n−1,kt)

0

ϕ(t)dt

=

∫ n(x2n,x2n−1,t)

0

ϕ(t)dt.

Now, using (3.2), we have

n(x2n, x2n−1, t) ≤ N(y2n+1, y2n, t) �N(y2n, y2n−1, t)
�N(y2n+1, y2n, t) �N(y2n, y2n−1, qt)
�N(y2n, y2n−1, t) � 0

= N(y2n+1, y2n, t) �N(y2n, y2n−1, t).
Since the t-norm ∗ and the t-norm � are continuous, M(x, y, •) is

left continuous and N(x, y, •) is right continuous, we get on letting
q → 1,

m(x2n, x2n−1, t) ≥ M(y2n, y2n−1, t) ∗M(y2n+1, y2n, t)N(y2n+1, y2n, t)

�N(y2n, y2n−1, t)
and

n(x2n, x2n−1, t) ≤ N(y2n, y2n−1, t) �N(y2n+1, y2n, t).
Therefore∫ M(y2n+1,y2n,kt)

0

ϕ(t)dt ≥
∫ M(y2n,y2n−1,t)∗M(y2n+1,y2n,t)

0

ϕ(t)dt

and∫ N(y2n+1,y2n,kt)

0

ϕ(t)dt ≤
∫ N(y2n,y2n−1,t)�N(y2n+1,y2n,t)

0

ϕ(t)dt.

By repeated applications of the above argument, we have∫ M(ym+2,ym+1,kt)

0

ϕ(t)dt ≥
∫ M(ym+1,ym,t)∗M(ym+2,ym+1,tk−p)

0

ϕ(t)dt

and∫ N(ym+2,ym+1,kt)

0

ϕ(t)dt ≤
∫ N(ym+1,ym,t)�N(ym+2,ym+1,tk−p)

0

ϕ(t)dt

for all m, p ∈ N.



Since M(ym+2, ym+1, tk
−p) → 1 and N(ym+2, ym+1, tk

−p) → 0 as
p→∞, we obtain

∫ M(ym+2,ym+1,kt)

0

ϕ(t)dt ≥
∫ M(ym+1,ym,t)

0

ϕ(t)dt

and ∫ N(ym+2,ym+1,kt)

0

ϕ(t)dt ≤
∫ N(ym+1,ym,t)

0

ϕ(t)dt

for all m ∈ N.
By Lemma 2.7, {yn} is a Cauchy sequence in PBQ(Y )∩SBT (Y )

and so has a limit, say u. Then there exist v and w such that

v ∈ (PBQ)−1u and w ∈ (SBT )−1u.
Therefore, PBQv = u = SBTw.
We will now prove that Aiv = u. By (b) and (3.1), with α = 1+k,

we have ∫ M(Aiv,y2n,t)

0

ϕ(t)dt =

∫ M(Aiv,A2nx2n−1,t)

0

ϕ(t)dt

=

∫ m(v,x2n−1,t)

0

ϕ(t)dt.

Now by (3.1), we have

m(v, x2n−1, t) ≥ M(Aiv, PBQv, t/k)

∗M(A2nx2n−1, SBTx2n−1, t/k)

∗M(Aiv, SBTx2n−1, (1 + k)t/k)

∗M(A2nx2n−1, PBQv, (1− k)t/k)

= M(Aiv, PBQv, t/k) ∗M(y2n, y2n−1, t/k)

∗M(Aiv, y2n−1, (1 + k)t/k)

∗M(y2n, PBQv, (1− k)t/k).

Similarly from (b) and (3.2), we obtain

n(v, x2n−1, t) ≤ N(Aiv, PBQv, t/k) �N(y2n, y2n−1, t/k)
�N(Aiv, y2n−1, (1 + k)t/k)

�N(y2n, PBQv, (1− k)t/k).



Since {yn} is a Cauchy sequence, it converges to u = PBQv and
so on letting n→∞, we have

m(v, x2n−1, t) ≥ M(Aiv, PBQv, t/k) ∗ 1
∗M(Aiv, PBQv, (1 + k)t/k) ∗ 1

≥ M(Aiv, PBQv, (1 + k)t/k) and

n(v, x2n−1, t) ≤ N(Aiv, PBQv, (1 + k)t/k).

Therefore∫ M(Aiv,PBQv,t)

0

ϕ(t)dt ≥
∫ M(Aiv,PBQv,(1+k)t/k)

0

ϕ(t)dt

and ∫ N(Aiv,PBQv,t)

0

ϕ(t)dt ≤
∫ N(Aiv,PBQv,(1+k)t/k)

0

ϕ(t)dt.

Since M(x, y, •) is non-decreasing and N(x, y, •) is non-increasing,
we must have

Aiv = PBQv = u

for each i ∈ N.
Similarly

Aiw = SBTw = u

for each i ∈ N.
Thus, v is a coincidence point of Ai and PBQ and w is a co-

incidence point of Ai and SBT. This completes the proof of the
theorem.

In the following, C(S, T ) stands for the set of coincidence points
of the mappings S and T i.e.

C(S, T ) = {z ∈ X : Sz = Tz}.
Theorem 3.2. Let (X,M,N, ∗, �) be an intuitionistic fuzzy metric
space with b ∗ b ≥ b and (1− b) � (1− b) ≤ (1− b) for all b ∈ (0, 1).
Let {Ai} be a family of self mappings on X. Suppose that P,Q, S, T
be self mappings on X such that Ai(X) ⊂ PQ(X) ∩ ST (X) for all
i ∈ N and conditions (2.2) and (2.3) hold. Suppose further that Ai

commutes with each of P,Q, S and T ; PQ commutes with S and T ;
P commutes with Q. Then P,Q, S, T and the family {Ai} have a
unique common fixed point.



PROOF. In Theorem 3.1, we have proved that v ∈ C(Ai, PQ)
and w ∈ C(Ai, ST ). We then notice that

(3.4) PQv = Aiv = u = STw = Ajw,

(3.5) Aiv = AiPQv = PAiQv = PQAiv = PQu

and

(3.6) Aju = AjSTw = SajTw = STAjw = STu.

Now from (b) and (3.1), taking α = 1 and using (2.5) - (2.7), we
have ∫ M(u,Aiu,kt)

0

ϕ(t)dt =

∫ M(Aiv,Aju,kt)

0

ϕ(t)dt

=

∫ m(v,u,t)

0

ϕ(t)dt

≥
∫ M(Aiv,PQv,t)∗M(Aju,STu,t)∗M(Aiv,STu,t)∗(M(Aju,PQv,t)

0

ϕ(t)dt

=

∫ 1∗1∗M(u,Aju,t)∗M(Aju,u,t)

0

ϕ(t)dt

≥
∫ M(u,Aiu,t)

0

ϕ(t)dt

and from (3.2), we have

∫ N(u,Aiu,kt)

0

ϕ(t)dt ≤
∫ M(u,Aiu,t)

0

ϕ(t)dt,

which implies that u = Aju.
From (3.5) and (3.6), u is a common fixed point of PQ and ST.
We now show that u is a common fixed point of P,Q, S and T.

From (3.1) and using (3.4) - (3.6), we have

∫ M(Su,u,kt)

0

ϕ(t)dt =

∫ M(SAiv,Aju,kt)

0

ϕ(t)dt

=

∫ M(AiSv,Aju,kt)

0

ϕ(t)dt



≥
∫ M(AiSv,PQSv,t)∗M(Aju,STu,t)∗M(AiSv,STu,αt)∗(M(Aju,PQSv,(2−α)t)

0

ϕ(t)dt

=

∫ M(SAiv,SPQv,t)∗M(Aju,Aju,t)∗M(SAiv,STu,αt)∗(M(Aju,SPQv,(2−α)t)

0

ϕ(t)dt

=

∫ M(Su,Su,t)∗M(u,u,t)∗M(Su,u,αt)∗(M(u,Su,(2−α)t)

0

ϕ(t)dt

≥
∫ 1∗1∗M(Su,u,αt)

0

ϕ(t)dt

≥
∫ M(Su,u,αt)

0

ϕ(t)dt.

Similarly,
∫ N(Su,u,kt)

0

ϕ(t)dt ≤
∫ N(Su,u,αt)

0

ϕ(t)dt.

and letting α→ 1, we have Su = u.
Similarly, we can prove that Tu = u = Pu = Qu. Hence u is a

common fixed point of P,Q, S and T.
Finally, we prove that u is the unique common fixed point. Sup-

pose that u and v are two distinct fixed points. Taking α = 1 from
(b) and (3.1), we have

∫ M(u,v,kt)

0

ϕ(t)dt =

∫ M(Aiu,Ajv,kt)

0

ϕ(t)dt

≥
∫ M(Aiu,PQu,t)∗M(Ajv,STv,t)∗M(Aiu,STv,t)∗(M(Ajv,PQu,t)

0

ϕ(t)dt

=

∫ 1∗1∗M(u,v,t)∗M(v,u,t)

0

ϕ(t)dt

≥
∫ M(u,v,t)

0

ϕ(t)dt

and ∫ N(u,v,kt)

0

ϕ(t)dt ≤
∫ N(u,v,t)

0

ϕ(t)dt,



giving a contradiction which implies that u = v. Hence u is the
unique common fixed point. This completes the proof of the theo-
rem.

Corollary 3.1. Let Y be an arbitrary set, let X an intuitionistic
FM-space and let A,B : Y → X. If there exists a constant k ∈ (0, 1)
and mappings P,Q, S, T : Y → X such that

(a) A(Y ) ∪B(Y ) ⊂ PQ(Y ) ∩ ST (Y ), and for each x, y ∈ Y,
(b) there exists a constant k ∈ (0, 1), such that

∫ M(Ax,By,kt)

0

ϕ(t)dt ≥
∫ m(x,y,t)

0

ϕ(t)dt,

∫ N(Ax,By,kt)

0

ϕ(t)dt ≥
∫ n(x,y,t)

0

ϕ(t)dt,

for all x, y ∈ X, where ϕ : R+ → R+ is a Lebesgue integrable
mappings which is summable on each compact subset of R+, non-
negative and such that∫ ε

0

ϕ(t)dt > 0 for each ε > 0,

m(Ax,By, kt) ≥M(Ax, PQx, t) ∗M(By, STy, t) ∗M(Ax, STy, αt)
(3.7)

∗M(By, PQx, (2− α)t)

N(Ax,By, kt) ≤ N(Ax, PQx, t) �N(By, STy, t) �N(Ax, STy, αt)
(3.8)

�N(By, PQx, (2− α)t)

for all t > 0 and α ∈ (0, 2);
(3.9) PQ(Y ) ∩ ST (Y )is a complete subspace of X;

(i) then A and PQ have a coincidence point,
(ii) B and ST have a coincidence point.
Further, if X = Y, and

PQAu = PAQu = APQu; u ∈ C(A,PQ)
and

BSTv = SBTv = STBv; v ∈ C(B, ST ),
then A,B, PQ and ST have a unique common fixed point.



This corollary is indeed Theorem 3.1 and Theorem 3.2 together
with A = A2i+1 and B = A2i, i ∈ N.
Corollary 3.2. Let A,B, ST : Y → X. If A(Y ) ∩ B(Y ) ⊂ ST (Y )
and (3.7)-(3.9) hold with PQ = ST, then A,B and ST have a
coincidence point, i.e., there exists a point z in Y such that Az =
Bz = STz. Further, if X = Y and ST commutes with each of A
and B (only) at z, then A,B and ST have a unique common fixed
point.

Corollary 3.3. Let X be a complete intuitionistic FM-space and
A,B : X → X. If there exists a constant k ∈ (0, 1) such that

∫ M(Ax,By,kt)

0

ϕ(t)dt ≥
∫ m(x,y,t)

0

ϕ(t)dt,

∫ N(Ax,By,kt)

0

ϕ(t)dt ≥
∫ n(x,y,t)

0

ϕ(t)dt,

for all x, y ∈ X, where ϕ : R+ → R+ is a Lebesgue integrable
mapping which is summable on each compact subset of R+, non-
negative and such that∫ ε

0

ϕ(t)dt > 0 for each ε > 0,

m(Ax,By, kt) ≥ M(x,Ax, t) ∗M(y, By, t)

∗M(y, Ax, αt) ∗M(x,By, (2− α)t)

m(Ax,By, kt) ≤ N(x,Ax, t) �N(y, By, t)
�N(y, Ax, αt) �N(x,By, (2− α)t)

for all t > 0 and α ∈ (0, 2), then A and B have a unique common
fixed point.

Remark 3.1. A number of coincidence and common fixed point
theorems may be obtained as the special cases of Theorem 3.1 and
Theorem 3.2 for two to four mappings in intuitionistic FM-spaces.
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CHARACTERIZATION OF SOBOLEV
SPACES USING M-BAND FRAMELET

PACKETS

F. A. SHAH∗, HUMAIRA SIDDIQUI∗∗ AND K.
AHMAD∗∗

ABSTRACT. In [Shah and Debnath, Explicit construction of M -
band framelet packets, Analysis, 32 (2012), 281-294], authors have
given a general construction scheme for a class of stationary M -
band tight framelet packets in L2(R) via extension principles. In
this paper, we use these M -band framelet packets to characterize
the Sobolev norm of any function f ∈ H

s(R),−α < s < α by means
of the framelet packet coefficient sequence

{〈f, ωn,j,k〉
}
Ij,n∈ΓJ ,k∈Z ∪{〈f, ψ�,j,k〉

}
�=1,...,L,j≥J,k∈Z.

1

1. INTRODUCTION

The traditional wavelet frames provide poor frequency local-
ization in many applications as they are not suitable for signals
whose domain frequency channels are focused only on the middle
frequency region. Therefore, in order to make more kinds of sig-
nals suited for analyzing by wavelet frames, it is necessary to ex-
tend the concept of wavelet frames to a library of wavelet frames,
called framelet packets or wavelet frame packets. The original idea of
framelet packets was introduced by Coifman et al. in [3] to provide
more efficient decomposition of signals containing both transient
and stationary components. The concept of wavelet packet was fur-
ther generalized to many different setups, for example, Chui and

12000 Mathematics Subject Classification: 42C40; 42C15; 65T60

Keywords: M -band wavelets; Tight wavelet frame; Framelet packet; Extension
principle; Fourier transform; Sobolev spaces



Li [2] generalized the concept of orthogonal wavelet packets to the
case of non-orthogonal wavelet packets so that they can be applied
to the spline wavelets and so on. In his recent paper, Shah [10] has
constructed p-wavelet packets on the positive half-line R+ using the
classical splitting trick of wavelets where as Shah and Debnath in
[11] have constructed the corresponding p-wavelet frame packets on
R
+ using the Walsh-Fourier transform. The introduction ofM -band

wavelet packets on R attributes to Jiankang et al. [6].

On the otherhand, the standard orthogonal wavelets are not
also suitable for the analysis of high-frequency signals with rela-
tively narrow bandwidth. To overcome this shortcoming, M -band
orthonormal wavelets were created as a direct generalization of the
2-band wavelets [13]. The motivation for a larger M(M > 2) comes
from the fact that, unlike the standard wavelet decomposition which
results in a logarithmic frequency resolution, the M -band decom-
position generates a mixture of logarithmic and linear frequency
resolution and hence generates a more flexible tiling of the time-
frequency plane than that resulting from 2-band wavelet. The
other significant difference between 2-band wavelets and M -band
wavelets in construction lies in the aspect that the wavelet vectors
are not uniquely determined by the scaling vector and the orthonor-
mal bases do not consist of dilated and shifted functions through
a single wavelet, but consist of ones by using M − 1 wavelets (see
[1,7]). It is this point that brings more freedoms for optimal wavelet
bases.

A tight wavelet frame is a generalization of an orthonormal
wavelet basis by introducing redundancy into a wavelet system.
Tight wavelet frames have some desirable features such as near
translation invariant wavelet frame transforms and it may also be
easier to recognize patterns in a redundant transform. A catalyst
for this development is the unitary extension principle (UEP) intro-
duced by Ron and Shen [9], which provides a general construction
of tight wavelet frames for L2(Rn) in the shift-invariant setting,
and included the pyramidal decomposition and reconstruction filter
bank algorithms. The resulting tight wavelet frames are based on a
multiresolution analysis, and the generators are often called mother



framelets. The theory of tight wavelet frames has been extensively
studied and well developed over the recent years. In the M -band
setting, Han and Cheng [5] have provided the general construction
of M -band tight wavelet frames on R by following the procedure of
Daubechies et al.[4] and Petukhov [8] via extension principles.

Recently, Shah and Debnath [12] have introduced a general
construction scheme for a class of stationary M-band tight framelet
packets in L2(R) via extension principles. They proved a lemma on
the so-called splitting trick and splited the wavelet spaces Wj,�, � =
0, 1, ..., L by means of the framelet symbols m�, � = 0, 1, . . . , L and
then by recursive decomposition, constructed various M -band tight
framelet packets in L2(R). In this paper, we use the weighted l2-
norm of the stationaryM -band framelet packet coefficient sequence{〈f, ωn,j,k〉

}
Ij,n∈ΓJ ,k∈Z∪

{〈f, ψ�,j,k〉
}
�=1,...,L,j≥J,k∈Z of a given function

f ∈ H
s(R) to characterize its Sobolev norm in H

s(R),−α < s < α.

The rest of this paper is organized as follows. In Section 2, we
review some basic facts about stationary M -band framelet pack-
ets in L2(R) using extension principles. In Sections 3, we prove
our main result regarding the characterization of Sobolev spaces
H

s(R),−α < s < α using stationary M -band framelet packets.

2. PRELIMINARIES AND M-BAND FRAMELET
PACKETS

We begin this section by reviewing some major concepts con-
cerning M -band framelet packets. In the rest of this paper, we use
N,Z and R to denote the sets of all natural numbers, integers and
real numbers, respectively.

The Fourier transform of a function f ∈ L1(R) is defined as usual
by:

f̂(ξ) =

∫
R

f(x) e−iξxdx, ξ ∈ R



and its inverse is

f(x) =
1

2π

∫
R

f̂(ξ) eiξxdξ, x ∈ R.

For a real number s, we denote by H
s(R) the Sobolev space con-

sisting of all tempered distributions f such that

‖f‖2
Hs(R) =

1

2π

∫
R

∣∣∣f̂(ξ)
∣∣∣2 (1 + |ξ|2)sdξ <∞.

Note thatH0(R) = L2(R) and ‖f‖H0(R) = ‖f‖L2(R) by the Plancherels
theorem.

For f, g ∈ L2(R), we define the bracket product function [. , .] as

[f , g] =
∑
k∈Z

f(.+ 2πk) g(.+ 2πk).

Clearly [. , .] ∈ L1(T) whenever f, g ∈ L2(R), where T is any tour of
R. Moreover, for f, g ∈ L2(R), [. , .]s is defined as

(2.1) [f , g]s =
∑
k∈Z

f(.+ 2πk) g(.+ 2πk)
(
1 + |.+ 2πk|2)sdξ.

For given Ψ :=
{
ψ1, . . . , ψL

} ⊂ L2(R), define the M -band wavelet
system

X
(
Ψ
)
:=

{
ψ�,j,k : 1 ≤ � ≤ L; j, k ∈ Z

}

where ψ�,j,k =M j/2ψ�(M
j.−k). The wavelet system X(Ψ) is called

a M-band wavelet frame, or simply a M-band framelet system, if
there exist positive numbers 0 < A ≤ B < ∞ such that for all
f ∈ L2(R)

(2.2) A
∥∥f∥∥2 ≤

L∑
�=1

∑
j∈Z

∑
k∈Z

∣∣〈f, ψ�,j,k〉
∣∣2 ≤ B

∥∥f∥∥2.



The largest A and the smallest B for which (2.2) holds are called
wavelet frame bounds. A wavelet frame is a tight wavelet frame if
A and B are chosen such that A = B = 1 and then generators
ψ1, ψ2, ..., ψL are often referred as M-band framelets.

The construction of framelet systems often starts with the con-
struction of MRA, which is built on refinable functions. A function
ϕ ∈ L2(R) is called M-refinable if it satisfies a refinement equation:

(2.3) ϕ(x) =
∑
k∈Z

h0[k]ϕ(Mx− k),

for some h0 ∈ l2(Z). The Fourier transform of (2.3) yields

(2.4) ϕ̂ (ξ) = m0

(
ξ

M

)
ϕ̂

(
ξ

M

)
,

where

m0(ξ) =
1

M

∑
k∈Z

h0[k]e
ikξ,

is a 2π-periodic measurable function in L∞[−π, π] and is often called
the refinement symbol of ϕ. Given an M -refinable function ϕ ∈
L2(R) with ϕ̂(0) 
= 0, the sequence of subspaces {Vj}j∈Z defined by

Vj = span
{
ϕ(M jx− k) : k ∈ Z

}
, j ∈ Z

will form an MRA for L2(R). Recall that {Vj}j∈Z is called an MRA
if it satisfies (i) Vj ⊂ Vj+1 for every j ∈ Z; (ii)

⋃
j∈ZVj is dense in

L2(R) and (iii)
⋂

j∈ZVj = {0}. In this paper, we only consider the
refinable function ϕ ∈ L2(R) satisfying the following properties:
(2.5) lim

ξ→0
ϕ̂(ξ) = 1, ξ ∈ R;

and

(2.6)
∑
k∈Z

∣∣ϕ̂(ξ + 2kπ)
∣∣2 ∈ L∞[−π, π].



Given an MRA generated by the M -refinable function ϕ, one can
construct (see [4]) a set of MRA-based framelets Ψ := {ψ1, ..., ψL} ⊂
V1 which is defined by

(2.7) ψ̂� (ξ) = m�

(
ξ

M

)
ϕ̂

(
ξ

M

)
,

where

m�(ξ) =
1

M

∑
k∈Z

h�[k] e
ikξ, � = 1, . . . , L

are the 2π-periodic measurable functions in L∞[−π, π] and are called
the framelet symbols or wavelet masks. The so-called unitary exten-
sion principle (UEP) provides a sufficient condition on Ψ such that
the resulting M -band system X(Ψ) forms a tight frame of L2(R).
In this connection, an explicit construction scheme is provided in
[5] for the construction of M -band tight framelets on R.

Theorem 2.1[5]. Suppose that the refinable function ϕ and the
framelet symbolsm0,m1, . . . ,mL satisfy (2.4)−(2.6). Define ψ1, . . . , ψL

by (2.7). LetM(ξ) =
{
m�

(
ξ + 2πp

M

) }M−1
�,p=0

such thatM(ξ)M∗(ξ) =

IM , for a.e ξ ∈ σ(V0) :=
{
ξ ∈ [−π, π] : ∑k∈Z |ϕ̂(ξ + 2kπ)|2 
= 0

}
,

then M -band wavelet system X(Ψ) forms a tight wavelet frame for
L2(R) with frame bound 1.

Let X(Ψ) be the M -band tight wavelet frame for L2(R) con-
structed via UEP in an MRA {Vj}j∈R generated by theM -refinable
function ϕ with combined UEP mask m = [m0,m1, . . . ,mL]. Then,
for each j ∈ Z, we define

Vj = span
{
ϕj,k : k ∈ Z

}
,

and
Wj,� = span

{
ψ�,j,k : k ∈ Z

}
, � = 0, 1, . . . , L.

Therefore, in view of tight frame decomposition, we have

(2.8) Vj = Vj−1 +
L∑

�=1

Wj−1,�.



It is immediate from the above decomposition that these L + 1
spaces are in general not orthogonal. Therefore, by the repeated
applications of (2.8), we can further split the Vj spaces as:

Vj = Vj−1 +
L∑

�=1

Wj−1,� = Vj−2 +
j−1∑

r=j−2

L∑
�=1

Wr,� = ......

= Vj0 +

j−1∑
r=j0

L∑
�=1

Wr,� =

j−1∑
r=−∞

L∑
�=1

Wr,�.

Recently, Shah and Debnath [12] have constructed various station-
ary tight M-band framelet packets on R by the recursive decompo-
sition of wavelet spaces Wj,�, � = 0, 1, . . . , L, j ∈ Z.

For n = 0, 1, 2, . . . , the basic M-band framelet packets associ-
ated with the M -refinable function ϕ are defined as

ω̂n(ξ) = ω̂(L+1)r+�(ξ) = m�

(
ξ

M

)
ω̂r

(
ξ

M

)
,

(2.9) � = 0, 1, . . . , L, r = 0, 1, 2, . . .

Note that for r = 0 and � = 1, . . . , L, we have

ω̂�(ξ) = m�

(
ξ

M

)
ω̂0

(
ξ

M

)
= m�

(
ξ

M

)
ϕ̂

(
ξ

M

)
,

which shows that ω�(x) = ψ�(x), � = 1, . . . , L.

Define a family of subspaces of L2(R) by

(2.10) Un := span
{
ωn,0,k : k ∈ Z

}
, n = 0, 1, 2, . . .

Clearly U0 = V0 and U� = W0,� for � = 1, . . . , L. Moreover, for any
f ∈ L2(R) and n, j ∈ N, (see [12], Lemma 3.1), we have



(2.11) U j
n =

(L+1)j(n+1)−1∑
r=(L+1)jn

Ur ,

and

(2.12)
∑
k∈Z

∣∣〈f, ωn,j,k〉
∣∣2 =

(L+1)j(n+1)−1∑
r=(L+1)jn

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2.

By substituting n = 0 in (2.11) and (2.12), we get

(2.13)

Vj =

(L+1)j−1∑
r=0

Ur , and
∑
k∈Z

∣∣〈f, ϕj,k〉
∣∣2 =

(L+1)j−1∑
r=0

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2,

for any f ∈ L2(R), respectively. Further, for n = �, 1 ≤ � ≤ L,
(2.11) and (2.12) yield

(2.14) Wj,� = W j
0,� = U j

� =

(L+1)j(�+1)−1∑
r=(L+1)j�

Ur ,

and
(2.15)

∑
k∈Z

∣∣〈f, ψ�,j,k〉
∣∣2 = ∑

k∈Z

∣∣〈f, ω�,j,k〉
∣∣2 =

(L+1)j(�+1)−1∑
r=(L+1)j�

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2,

for any f ∈ L2(R), respectively. It is immediate from (2.15) that
each wavelet space Wj,�, � = 1, . . . , L, j ≥ 1, can be further decom-
posed into (L+1)j subspaces Ur, r ∈

[
(L+1)j�, (L+1)j(�+1)−1].

By choosing j to be fixed level J > 0, we have

(2.16) L2(R) =

(L+1)J−1∑
r=0

Ur +
L∑

�=1

∑
j≥J

Wj,�.



Theorem 2.2[12]. For a given M-band tight wavelet frame X(Ψ),
the system

F =
{
ωn,0,k : 0 ≤ n ≤ (L+ 1)J − 1, k ∈ Z

}

∪
{
ψ�,j,k : � = 1, . . . , L, j ≥ J, k ∈ Z

}

forms a tight frame for L2(R), where ωn, n = 0, 1, . . . , are the basic
M-band framelet packets given by (2.9).

The concept of the basic M -band framelet packets enables us
to construct various tight frames for L2(R) by choosing other L2(R)
space decompositions. To do this, let ΓJ be the disjoint partition
of a finite set of non-negative integers

(2.17) ΔJ =
{
r ∈ N0 : 0 ≤ r ≤ (L+ 1)J − 1

}

into disjoint subsets of the form

Ij,n =
{
(L+ 1)jn, ..., (L+ 1)j(n+ 1)− 1

}
, j, n ∈ N0,

i.e.,

(2.18) Γj =
{
Ij,n :

⋃
Ij,n = ΔJ

}
.

Theorem 2.3[12]. Let ΓJ be a disjoint partition of ΔJ , where ΓJ

and ΔJ are defined in (2.17) and (2.18), respectively. Then, the
system

FΓJ
=

{
ωn,j,k : Ij,n ∈ ΓJ , k ∈ Z

}
∪
{
ψ�,j,k : � = 1, . . . , L, j ≥ J, k ∈ Z

}

generates a tight frame for L2(R), where ωn, n = 0, 1, . . . , are the
basic M -band framelet packets given by (2.9).

3. MAIN RESULTS



Theorem 3.1. Suppose X(Ψ) is aM-band tight wavelet frame con-
structed via UEP in an MRA and m0,m1, . . . ,mL are the framelet
symbols satisfying the UEP conditionM(ξ)M∗(ξ) = IM . Let ωn, n =
0, 1, . . . , be as in equation (2.9). Assume that for α > 0 there exists
a positive constant C such that

(3.1)
1− |m0(ξ)|2 ≤ C|ξ|2α, ξ ∈ R, and

[
ϕ̂, ϕ̂

]
α
(ξ) ≤ C, ξ ∈ R.

For any fixed J > 0,ΓJ is a disjoint partition of ΔJ , where ΓJ

and ΔJ are defined in (2.17) and (2.18), respectively. Moreover, if
−α < s < α, then the collection

F s
ΓJ
=

{
M jsωn,j,k : Ij,n ∈ ΓJ , k ∈ Z

}

∪
{
M jsψ�,j,k : � = 1, . . . , L, j ≥ J, k ∈ Z

}

is a M -band framelet packet frame of Hs(R), i.e., there exist posi-
tive constants C1, C2 such that

C1
∥∥f∥∥2

Hs(R)
≤

∑
Ij,n∈ΓJ

∑
k∈Z

M2js
∣∣〈f, ωn,j,k〉

∣∣2

+
L∑

�=1

∞∑
j=J

∑
k∈Z

M2js
∣∣〈f, ψ�,j,k〉

∣∣2 ≤ C2
∥∥f∥∥2

Hs(R)

holds for all f ∈ H
s(R).

Proof. By Parseval’s formula and the definition of bracket product
(2.1) for −α < s < α, we have



∑
k∈Z

∣∣〈f, ϕJ,k〉
∣∣2 = 1

2π

∑
k∈Z

∣∣〈f̂ , ϕ̂J,k〉
∣∣2

=
1

2π

∫
T

MJ
∣∣∣[f̂ (

MJ .
)
, ϕ̂

]
(ξ)

∣∣∣2 dξ

≤ MJ

2π

∫
T

[
f̂
(
MJ .

)
, f̂

(
MJ .

)]
−s
(ξ) [ϕ̂, ϕ̂]s (ξ) dξ

≤ ∥∥[ϕ̂, ϕ̂]s∥∥L∞(R)
MJ

2π

∫
T

[
f̂
(
MJ .

)
, f̂

(
MJ .

)]
−s
(ξ) dξ

≤ ∥∥[ϕ̂, ϕ̂]α∥∥L∞(R)
MJ

2π

∫
R

∣∣∣f̂ (
MJξ

)∣∣∣2 (1 + |ξ|2)−s dξ

≤ C

2π

∫
R

∣∣∣f̂(ξ)
∣∣∣2 (1 + |M−Jξ|2)−s dξ

=
C

2π

∫
R

∣∣∣f̂(ξ)
∣∣∣2 (1 + |ξ|2)−s

(
1 + |ξ|2

1 + |M−Jξ|2
)s

dξ

≤ Cmax
{
1,M2Js

} 1

2π

∫
R

∣∣∣f̂(ξ)
∣∣∣2 (1 + |ξ|2)−s dξ

(3.2) = Cmax
{
1,M2Js

}∥∥f∥∥2
H−s(R)

,

and in the last inequality, we used the fact that

1 ≤ 1 + |ξ|2
1 + |M−Jξ|2 ≤M2J , ξ ∈ R, J ∈ N.



On the otherhand, we have∑
Ij,n∈ΓJ

∑
k∈Z

M−2js∣∣〈f, ωn,j,k〉
∣∣2 ≤M2(J−1)|s| ∑

Ij,n∈ΓJ

∑
k∈Z

∣∣〈f, ωn,j,k〉
∣∣2

=M2(J−1)|s| ∑
Ij,n∈ΓJ

(L+1)j(n+1)−1∑
r=(L+1)jn

∑
k∈Z

∣∣〈f, ωr,0,k〉
∣∣2

=M2(J−1)|s|
(L+1)J−1∑

n=0

∑
k∈Z

∣∣〈f, ωn,0,k〉
∣∣2

=M2(J−1)|s|∑
k∈Z

∣∣〈f, ϕJ,k〉
∣∣2

(3.3)
≤ CM2(J−1)|s|max

{
1,M2Js

} ‖f‖2
H−s(R).

Since X(Ψ) is aM -band tight wavelet frame of L2(R), by [9, Propo-
sition 2.1] and equation (3.1) , we obtain

L∑
�=1

∞∑
j=J

∑
k∈Z

M−2js∣∣〈f, ψ�,j,k〉
∣∣2 ≤ C

∥∥Bs,�,J

∥∥
L∞(R)

∥∥f∥∥2
H−s(R)

,

where

Bs,�,J =
∞∑
j=J

M−2js(1 + |ξ|2)s(
1 + |M−Jξ|2)α

L∑
�=1

∣∣m�(M
−jξ)

∣∣2 ∈ L∞(R).

Combining the inequalities (3.2) and (3.3), we obtain

∑
Ij,n∈ΓJ

∑
k∈Z

M−2js∣∣〈f, ωn,j,k〉
∣∣2

+
L∑

�=1

∞∑
j=J

∑
k∈Z

M−2js∣∣〈f, ψ�,j,k〉
∣∣2 ≤ C ′

∥∥f∥∥2
H−s(R)

,



where C ′ = C
(∥∥Bs,�,J

∥∥
L∞(R) +M2(J−1)|s|max

{
1,M2Js

})
.

By duality argument as in the proof of [9, Theorem 1.2], we can
obtain

1

C ′
∥∥f∥∥2

Hs(R)
≤

∑
Ij,n∈ΓJ

∑
k∈Z

M2js
∣∣〈f, ωn,j,k〉

∣∣2

+
L∑

�=1

∞∑
j=J

∑
k∈Z

M2js
∣∣〈f, ψ�,j,k〉

∣∣2 ≤ C ′‖f‖2
Hs(R),

for all f ∈ H
s(R),−α < s < α. This completes the proof.
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APPROXIMATION OF BOUND FOR THE CLASS
OF POLYNOMIALS VANISHING INSIDE THE DISK

ARTY AHUJA AND K.K. DEWAN

Abstract. Let p(z) be a polynomial of degree n having all
its zeros in |z| ≤ k, k > 1, then Aziz [Bull. Austral. Math.
Soc., 35 (1987)] proved that

M(p,R) ≥
(
R+ k

1 + k

)n

M(p, 1) for R ≥ k2 .

The above inequality is valid for k > 1 and R ≥ k2. In this
paper, we have obtained a similar type of result for lacunary

type of polynomials p(z) = anz
n +

n∑
j=μ

an−jz
n−j , 1 ≤ μ ≤ n

having all its zeros in |z| ≤ k, k > 1 where R < k2. Our
result also improves upon the result due to Dewan, Singh and
Yadav [Southeast Asian Bull. Math., 27 (2) (2003)], Dewan
and Upadhyaye [Ind. J. Pure Appl. Math., 30 (2007)].

1. Introduction

Let p(z) be a polynomial of degree n and let M(p, δ) = max
|z|=δ

|p(z)|
(0 ≤ δ < ∞). Then applying the Maximum Modulus Principle to the
polynomial

p∗(z) = zn p

(
1

z̄

)
,

we see that

M(p, r)=rnM(p∗, r−1)≥rnM(p∗, 1)=rnM(p, 1) (0≤r<1),(1.1)

where equality holds if and only if p(z) = czn, c �= 0.
For polynomials not vanishing in |z| < 1, Rivlin [7] obtained a stronger

inequality and proved that if p(z) =
n∑

ν=0
aνz

ν is a polynomial of degree

2000 Mathematics Subject Classification. 30A10, 30C10, 30C15.
Key words and phrases. Maximum Modulus, Polynomials, Zeros.



n which does not vanish in |z| < 1, then

M(p, r) ≥
(
r + 1

2

)n

M(p, 1) for 0 ≤ r < 1.(1.2)

Here equality is attained if p(z) = α(z − β)n, |β| = 1.

Aziz [1] obtained the following result for the class of polynomials hav-
ing all its zeros in |z| ≤ k, k > 1. In fact, he proved

Theorem A. If p(z) =
n∑

ν=0
aνz

ν is a polynomial of degree n having all

its zeros in |z| ≤ k, k > 1, then

M(p,R) ≥
(
R+ k

1 + k

)n

M(p, 1) for R ≥ k2.(1.3)

Inequality (1.3) is valid for k > 1 and R ≥ k2. Jain [5] obtained
similar type of inequality for k > 1 and R < k2 by proving the following
theorem.

Theorem B. Let p(z) =
n∑

ν=0
aνz

ν be a polynomial of degree n having all

its zeros in |z| ≤ k, k > 1. Then for k < R < k2

M(p,R) ≥ Rs

(
R+ k

1 + k

)
M(p, 1) for s < n,(1.4)

where s is the order of a possible zero of p(z) at z = 0.

Dewan and Upadhyaye [4] considered the class of polynomials

p(z) = anz
n +

n∑
j=μ

an−jzn−j , 1 ≤ μ ≤ n, of degree n having all its zeros

in |z| ≤ k, k > 1 and extended Theorem B to lacunary polynomial in
the following manner.

Theorem C. Let p(z) = anz
n+

n∑
j=μ

an−jzn−j, 1 ≤ μ ≤ n be a polynomial

of degree n having all its zeros in |z| ≤ k, k > 1. Then for k < R < k2

M(p,R) ≥ Rs

(
Rμ + kμ

Rμ−1 + kμ

)n

M(p, 1),(1.5)

where s is the order of a possible zero of p(z) at z = 0 and 0 ≤ s ≤ n−μ.

By involving coefficients Barchand [2] generalized Theorem C and
proved that



Theorem D. Let p(z) = anz
n +

n∑
j=μ

an−jzn−j, 1 ≤ μ ≤ n, be a poly-

nomial of degree n having all its zeros in |z| ≤ k, k > 1. Then for
k < R < k2

max
|z|=R

|p(z)|(1.6)

≥ Rs

⎛
⎝ (Rn−s−1k2μ +Rμ−s+μkμ−1)(n− s)|an|

+μ|an−μ|(Rn−s+μ−1 +Rn−skμ−1)

⎞
⎠

⎛
⎝ (Rn−s−1k2μ +Rμkμ−1)(n− s)|an|

+μ|an−μ|(Rμ−1 +Rn−skμ−1)

⎞
⎠

max
|z|=1

|p(z)|,

where s is the order of a possible zero of p(z) at origin with s ≤ n− μ.

If we involve m = min
|z|=k

|p(z)| also, then we are able to improve upon

Theorems C and D for the class of polynomials p(z) = anz
n+

n∑
j=μ

an−jzn−j ,

1 ≤ μ ≤ n, having all its zeros in |z| ≤ k, k > 1. More precisely, we
prove that

Theorem. Let p(z) = anz
n +

n∑
j=μ

an−jzn−j, 1 ≤ μ ≤ n, be a polynomial

of degree n having all its zeros in |z| ≤ k, k > 1. Then for k < R < k2

max
|z|=R

|p(z)|(1.7)

≥ Rs

⎛
⎝ (Rn−s−1k2μ +Rn−s+μkμ−1)(n− s)|an|

+μ|an−μ|(Rn−s+μ−1 +Rn−skμ−1)

⎞
⎠

⎛
⎝ (Rn−s−1k2μ +Rμkμ−1)(n− s)|an|

+μ|an−μ|(Rμ−1 +Rn−skμ−1)

⎞
⎠

max
|z|=1

|p(z)|

+
Rs+μ−1

ks

⎛
⎜⎝ (Rn−s − 1)

×((n− s)|an|Rkμ−1 + μ|an−μ|)

⎞
⎟⎠

⎛
⎝ (k2μ +Rn−s−1 + kμ−1Rμ)(n− s)|an|

+μ|an−μ|(kμ−1 +Rn−s +Rμ−1)

⎞
⎠

min
|z|=k

|p(z)|,



where s is the order of a possible zero of p(z) at origin with s ≤ n− μ.

In particular, for μ = 1, we get

Corollary 1. Let p(z) =
n∑

j=0
ajz

j be a polynomial of degree n having all

its zeros in |z| ≤ k, k > 1, then for k < R < k2

max
|z|=R

|p(z)| ≥ Rs

⎛
⎜⎝ {(Rn−s−1k2 +Rn−s+1)

×(n− s)|an|+ 2|an−1|Rn−s}

⎞
⎟⎠

⎛
⎜⎝ (Rn−s−1k2 +R)(n− s)|an|

+|an−1|(1 +Rn−s)

⎞
⎟⎠

max
|z|=1

|p(z)|(1.8)

+
Rs

ks
(Rn−s − 1){(n− s)|an|R+ |an−1|}⎛
⎜⎝ (k2Rn−s−1 +R)(n− s)|an|

+|an−1|(Rn−s + 1)

⎞
⎟⎠

min
|z|=k

|p(z)|,

where s is the order of a possible zero of p(z) at origin with s ≤ n− 1.

It can be easily seen that Corollary 1 is an improvement of Theorem B.

2. Lemmas

Lemma 1. If p(z) = a0+
n∑

ν=μ
aνz

ν , 1 ≤ μ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≥ k, k ≥ 1, then

max
|z|=1

|p′(z)| ≤ n

(
n|a0|+ μ|aμ|kμ+1

n|a0|(1 + kμ+1) + μ|aμ|(kμ+1 + k2μ)

)
max
|z|=1

|p(z)|
(2.1)

− n

kn

(
n|a0|kμ+1 + μ|aμ|k2μ

n|a0|(1 + kμ+1) + μ|aμ|(kμ+1 + k2μ)

)
min
|z|=k

|p(z)|.

The above lemma is due to Dewan, Singh and Yadav [3].

Lemma 2. If p(z) = a0+
n∑

ν=μ
aνz

ν , 1 ≤ μ ≤ n, is a polynomial of degree

n having all its zeros in |z| ≥ k, k ≥ 1, then for r ≤ k ≤ R



max
|z|=R

|p(z)| ≤

⎛
⎜⎝ n|a0|(Rn + kμ+1rn−μ−1)rμ

+μ|aμ|rμ−1kμ+1(Rn + kμ−1rn−μ+1)

⎞
⎟⎠

⎛
⎜⎝ n|a0|(rμ+1 + kμ+1)rn−1

+μ|aμ|rnkμ+1(rμ−1 + kμ−1)

⎞
⎟⎠

max
|z|=r

|p(z)|

(2.2)

− 1

kn
rn−1(Rn − rn)(n|a0|kμ+1 + μ|aμ|k2μr)⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)rn−1

+μ|aμ|rnkμ+1(rμ−1 + kμ−1)

⎞
⎟⎠

min
|z|=k

|p(z)|.

Proof of Lemma 2. Let 0 ≤ r ≤ k. Since p(z) is a polynomial of degree
n having no zero in |z| < k, k ≥ 1, the polynomial T (z) = p(rz) has no
zero in |z| < k

r ,
k
r ≥ 1, therefore, applying Lemma 1 to T (z), we get

max
|z|=1

|T ′(z)|

≤ n
n|a0|+ μ|rμaμ|k

μ+1

rμ+1

n|a0|
(
1 +

kμ+1

rμ+1

)
+ μ|rμaμ|

(
kμ+1

rμ+1
+

k2μ

r2μ

) max
|z|=1

|T (z)|

− nrn

kn

n|a0|k
μ+1

rμ+1
+ μ|rμaμ|k

2μ

r2μ

n|a0|
(
1 +

kμ+1

rμ+1

)
+ μ|rμaμ|

(
kμ+1

rμ+1
+

k2μ

r2μ

) min
|z|= k

r

|T (z)|.

Replacing T (z) by p(rz), we get

max
|z|=r

|p′(z)| ≤ n
n|a0|rμ + μ|aμ|rμ−1kμ+1⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

max
|z|=r

|p(z)|(2.3)



− nrn−1

kn
n|a0|kμ+1 + μ|aμ|rk2μ⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

min
|z|=k

|p(z)|.

Since p′(z) is a polynomial of degree at most (n− 1), then by Maximum
Modulus Principle [6, p. 158, Problem III, 269], we have

M(p′, t)
tn−1

≤ M(p′, R)

rn−1
for t ≥ r.

The above inequality in conjunction with (2.3), yields

max
|z|=t

|p′(z)| ≤ ntn−1

rn−1

(
n|a0|rμ + μ|aμ|rμ−1kμ+1⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

max
|z|=r

|p(z)|

− rn−1

kn
n|a0|kμ+1 + μ|aμ|rk2μ⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

min
|z|=k

|p(z)|
)
.

Now, for 0 ≤ θ < 2π, we have

|p(Reiθ)− p(reiθ)|

≤
∫ R

r
|p′(teie)|dt

≤ n

rn−1

(
n|a0|rμ + μ|aμ|rμ−1kμ+1⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

max
|z|=r

|p(z)|

− rn−1

kn
n|a0|kμ+1 + μ|aμ|rk2μ⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

min
|z|=k

|p(z)|
)∫ R

r
tn−1dt



=
Rn − rn

rn−1

(
n|a0|rμ + μ|aμ|rμ−1kμ+1⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

max
|z|=r

|p(z)|

− rn−1

kn
n|a0|kμ+1 + μ|aμ|rk2μ⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

min
|z|=k

|p(z)|
)
.

M(p,R) ≤
[
1 +

(
Rn − rn

rn−1

)
n|a0|rμ + μ|aμ|rμ−1kμ+1⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

max
|z|=r

|p(z)|

−
(
Rn − rn

kn

)
n|a0|kμ+1 + μ|aμ|rk2μ⎛

⎜⎝ n|a0|(rμ+1 + kμ+1)

+μ|aμ|(kμ+1rμ + k2μr)

⎞
⎟⎠

min
|z|=k

|p(z)|
)
,

from which the result follows. �

3. Proof of Theorem

Proof of Theorem. Since the polynomial p(z) has all its zeros in |z| ≤ k,
k > 1 with s-fold zeros at the origin, therefore, the polynomial q(z) =

zn p
(
1
z̄

)
has all its zeros in |z| ≤ 1

k ,
1
k < 1 and is of degree (n− s).

On applying Lemma 2 to the polynomial q(z) with R = 1, we obtain
for 1

k2 < r < 1
k

max
|z|=r

|q(z)| ≥

⎛
⎜⎜⎝

rn−s−1
(
rμ+1 +

1

kμ+1

)
(n− s)|an|

+μ|an−μ|rn−s 1

kμ+1

(
rμ+1 +

1

kμ−1

)
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
1 +

rn−s−μ−1

kμ+1

)
rμ(n− s)|an|

+μ|an−μ| r
μ−1

kμ+1

(
1 +

rn−s−μ−1

kμ−1

)
⎞
⎟⎟⎠

max
|z|=1

|q(z)|



+

rn−s−1(1− rn−s)
{
(n− s)|an| 1

kμ+1
+ μ|an−μ| r

k2μ

}

1

kn−s

⎛
⎜⎜⎝

[(
1 +

rn−s−μ−1

kμ+1

)
rμ(n− s)|an|

+μ|an−μ| r
μ−1

kμ+1

(
1 +

rn−s−μ+1

kμ−1

)]
⎞
⎟⎟⎠

min
|z|= 1

k

|q(z)|

which implies

max
|z|=r

∣∣∣∣∣znp
(
1

z̄

)∣∣∣∣∣

≥

rn−s−1

⎛
⎜⎜⎝

{(
rμ+1 +

1

kμ+1

)
(n− s)|an|

+μ|an−μ| r

kμ+1

(
rμ−1 +

1

kμ−1

)}
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
1 +

rn−s−μ−1

kμ+1

)
rμ(n− s)|an|

+μ|an−μ| r
μ−1

kμ+1

(
1 +

rn−s−μ+1

kμ−1

)
⎞
⎟⎟⎠

max
|z|=1

|p(z)|

+

⎛
⎜⎜⎝

rn−s−1kn−s(1− rn−s)

×
{
(n− s)|an| 1

kμ+1
+ μ|an−μ| r

k2μ

}
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
1 +

rn−s−μ−1

kμ+1

)
rμ(n− s)|an|

+μ|an−μ| r
μ−1

kμ+1

(
1 +

rn−s−μ+1

kμ−1

)
⎞
⎟⎟⎠

min
|z|= 1

k

∣∣∣∣znq
(
1

z

)∣∣∣∣

This is equivalent to

max
|z|= 1

r

|p(z)| ≥

⎛
⎜⎜⎝

r−s−1
{(

rμ+1 +
1

kμ+1

)
(n− s)|an|

+μ|an−μ|
(

rμ

kμ+1
+

r

k2μ

)}
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
rμ +

rn−s−1

kμ+1

)
(n− s)|an|

+μ|an−μ|
(
rμ−1

kμ+1
+

rn−s

k2μ

)
⎞
⎟⎟⎠

max
|z|=1

|p(z)|



+

⎛
⎜⎜⎝

r−s−1k−s(1− rn−s)

×
{
(n− s)|an| 1

kμ+1
+ μ|an−μ| r

k2μ

}
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
rμ +

rn−s−1

kμ+1

)
(n− s)|an|

+μ|an−μ|
(
rμ−1

kμ+1
+

rn−s

k2μ

)
⎞
⎟⎟⎠

min
|z|=k

|p(z)|.

Now replacing r by 1
R in above inequality so that 1

k2 < 1
R < 1

k or k <

R < k2, we get

max
|z|=R

|p(z)|

≥

Rs+1

⎛
⎜⎜⎝

{(
1

Rμ+1
+

1

kμ+1

)
(n− s)|an|

+μ|an−μ|
(

1

Rμkμ+1
+

1

Rk2μ

)}
⎞
⎟⎟⎠

⎛
⎜⎜⎝

(
1

Rμ
+

1

Rn−s−1kμ+1

)
(n− s)|an|

+μ|an−μ|
(

1

Rμ−1kμ+1
+

1

Rn−sk2μ

)
⎞
⎟⎟⎠

max
|z|=1

|p(z)|

+
Rs+1

ks

(
1− 1

Rn−s

){
(n− s)|an| 1

kμ+1
+ μ|an−μ| 1

k2μR

}
⎛
⎜⎜⎝

(
1

Rμ
+

1

Rn−s−1kμ+1

)
(n− s)|an|

+μ|an−μ|
(

1

Rμ−1kμ+1
+

1

Rn−sk2μ

)
⎞
⎟⎟⎠

min
|z|=k

|p(z)|

which on simplification reduces to

max
|z|=R

|p(z)| ≥ Rs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(Rn−s−1k2μ +Rn−s+μkμ−1)(n− s)|an|
+μ|an−μ|(Rn−s+μ−1 +Rn−skμ−1)

(Rn−s−1k2μ +Rμkμ−1)(n− s)|an|
+μ|an−μ|(Rμ−1 +Rn−skμ−1)

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

max
|z|=1

|p(z)|



+
Rs+μ−1

ks
(Rns − 1){(n− s)|an|Rkμ−1 + μ|an−μ|}⎧⎪⎨
⎪⎩

(Rn−s−1k2μ +Rμkμ−1)(n− s)|an|

+μ|an−μ|(Rμ−1 +Rn−skμ−1)

⎫⎪⎬
⎪⎭

min
|z|=k

|p(z)|.

This completes the proof of Theorem. �
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STRONG AND Δ -CONVERGENCE OF KHAN ET.
AL. ITERATIVE PROCEDURE IN CAT(0) SPACES

MADHU AGGARWAL1 AND RENU CHUGH2

Abstract. In this paper, we prove some strong and Δ- con-
vergence theorems of Khan et. al. iterative procedure in
CAT(0) spaces which converges at a rate similar to that of Pi-
card and Agarwal et. al. but faster than Mann, Ishikawa-type
and one studied by Yao and Chen[22]. The results obtained
are extension of some recent results of Khan and Abbas[11] to
the case of two mappings.

1. Introduction and Preliminaries

Fixed point theory in CAT(0) spaces was first studied by kirk(see
[14] and [15]). He showed that every nonexpansive (singlevalued)
mapping defined on a bounded closed convex subset of a com-
plete CAT(0) space always has a fixed point. In 2008, Kirk and
Panyanak[13] generalized Lims[17] concept of Δ-convergence in
CAT(0) spaces to prove the CAT(0) space analogs of some Banach
space results which involve weak convergence, and Dhompongsa
and Panyanak[7] obtained Δ-convergence theorems for the Picard,
Mann and Ishikawa iterative procedures in the CAT(0) space set-
ting. Afterwards, Panyanak and Laokul[19], Beg and Abbas[2],
Shahzad[21], Chaoha and Phon-on[5]and Laokul and Panyanak[16]
continued to work in this direction and obtained some results using
Mann and Ishikawa iterative procedures involving one mapping. In
2011, Khan and Abbas[11] obtained strong and Δ-convergence the-
orems for Agarwal et. al. iterative procedure which is both faster
than and independent of the Ishikawa iterative procedure. They
also obtained some convergence results for two mappings using the
Ishikawa-type iterative procedure. In this paper, we prove some

2000 Mathematics Subject Classification. 47H09,47H10, 54H25.
Key words and phrases. CAT(0)spaces, Δ-convergence, strong convergence,

nonexpansive mappings, common fixed points, Iterative procedures.



strong and Δ-convergence results for approximating common fixed
points of two nonexpansive self mappings in CAT(0) spaces using
Khan et. al. iterative procedure.
Now, we recall some well known concepts and results.
Throughout this paper, N denotes the set of all positive integers

and R denotes the set of all real numbers.
Let (X, d) be a metric space. A geodesic path joining x ∈ X to

y ∈ X (or, more briefly, a geodesic from x to y) is a map c from
a closed interval [0, l] ⊂ R to X such that c(0) = x, c(l) = y and
d(c(t), c(t́)) = |t− t́| for all t, t́ ∈ [0, l]. In particular, c is an isometry
and d(x, y) = l. Usually, the image c([0, l]) of c is called a geodesic
(or metric) segment joining x and y. A geodesic segment joining x
and y is not necessarily unique in general. In particular, in the case
when the geodesic segment joining x and y is unique, we use [x, y]
to denote the unique geodesic segment joining x and y.
The space (X, d) is said to be a geodesic space, if every two points

of X are joined by a geodesic, and X is said to be uniquely geodesic
space, if there is exactly one geodesic joining x and y, for each
x, y ∈ X. A subset Y ⊆ X is said to be convex, if Y includes every
geodesic segment joining any two of its points.
A geodesic triangle Δ(x1, x2, x3) in a geodesic metric space (X, d)

consists of three points x1, x2, x3 ∈ X (the vertices of Δ ) and a
geodesic segment between each pair of vertices (the edges of Δ). A
comparison triangle for the geodesic triangle Δ(x1, x2, x3) in (X, d)
is a triangle Δ̄(x1, x2, x3) := Δ(x̄1, x̄2, x̄3) in the Euclidean plane
E2 such that dE2(x̄i, x̄j) = d(xi, xj) for i, j ∈ {1, 2, 3}. The point
p̄ ∈ [x̄, ȳ] is called a comparison point in Δ̄ for p ∈ [x, y] if d(x, p) =
dE2(x̄, p̄).
A geodesic space is said to be a CAT(0) space, if all geodesic

triangles satisfy the following comparison axiom.
CAT(0): Let Δ be a geodesic triangle inX and Let Δ̄ be comparison
triangle for Δ. Then Δ is said to satisfy CAT(0) inequality if for
all x, y ∈ Δ and all comparison points x̄, ȳ ∈ Δ̄, d(x, y) ≤ dE2(x̄, ȳ).
If x, y1, y2 are points of a CAT(0) space and if y0 is the midpoint

of the segment [y1, y2] then the CAT(0) inequality implies

(CN) d(x, y0)
2 ≤ 1

2
d(x, y1)

2 +
1

2
d(x, y2)

2 − 1

4
d(y1, y2)

2.



This is the (CN) inequality of Bruhat and Tits[4]. In fact, (c.f. [3],
p. 163), a geodesic space is a CAT(0) space if and only if it satisfies
(CN) inequality.

Remark 1.1. For κ < 0 , a CAT(κ) space is defined in terms
of comparison triangles in the hyperbolic plane (see [3]for details).
Here, for sake of simplicity, we omit definition, since it is known
(see[3], page 165) that any CAT(κ1) space is also CAT(κ2) space
for any pair (κ1, κ2) with κ2 ≥ κ1. This means that the results in
CAT(0) spaces can be applied to CAT(κ) spaces with κ ≤ 0.

Lemma 1.1 ([7]). Let (X, d) be a CAT(0) space. Then

(i) (X, d) is uniquely geodesic.

(ii) Let p, x, y ∈ X and α ∈ [0, 1]. Let m1,m2 denote, respectively,

[p, x], [p, y] satisfying d(p,m1) = αd(p, x), d(p,m2) = αd(p, y).

Then d(m1,m2) ≤ αd(x, y).

(iii) Let x, y ∈ X, x �= y and z, w ∈ [x, y] such that

d(x, z) = d(x, w). Then z = w.

(iv) Let x, y ∈ X. For each t ∈ [0, 1] there exists unique point z ∈ [x, y]
such that d(x, z) = td(x, y) and d(y, z) = (1− t)d(x, y).

For convenience, from now onwards we will use the notation (1−
t)⊕ ty for the unique point z satisfying (iv).

Lemma 1.2 ([7]). Let (X, d) be a CAT(0) space. Then

d((1− t)x⊕ ty, z) ≤ (1− t)d(x, z) + td(y, z)

for all x, y, z ∈ X and t ∈ [0, 1].
Lemma 1.3 ([15]). Let p, x, y be points of a CAT(0) space X, let
α ∈ [0, 1]. Then

d((1− α)p⊕ αx, (1− α)p⊕ αy) ≤ αd(x, y).

The following Lemma is a generalization of (CN) inequality.

Lemma 1.4 ([7]). Let (X, d) be a CAT(0) space. Then

d((1− t)x⊕ ty, z)2 ≤ (1− t)d(x, z)2 + td(y, z)2 − t(1− t)d(x, y)2

for all x, y, z ∈ X and t ∈ [0, 1].



Let {xn} be a bounded sequence in a CAT(0) space X. For each
x ∈ X, we set

r(x, {xn}) = lim sup
n→∞

d(x, xn).

The asymptotic radius r({xn}) of {xn} is given by
r({xn}) = inf{r(x, {xn}) : x ∈ X}.

And the asymptotic center A({xn}) of {xn} is the set
A({xn}) = {x ∈ X : r({xn}) = r(x, {xn})}.

Therefore, the following equivalence holds for any point u ∈ X:
(1.1) u ∈ A({xn})⇔ lim sup

n→∞
d(u, xn) ≤ lim sup

n→∞
d(x, xn)

for all x ∈ X. It is known (see, e.g., [8], Proposition 7) that in a
CAT(0) space, A({xn}) consists of exactly one point.
We now give the definition of Δ-convergence in a CAT(0) space.

Definition 1.1 ([13]). A sequence {xn} in X is said to be Δ-
convergent to x ∈ X if x is the unique asymptotic center of {un}
for every subsequence {un} of {xn}. In this case we write

(1.2) Δ− lim
n
xn = x and call x the Δ− limit of {xn}.

We denote, ωΔ(xn) = ∪{A({un})} ,where the union is taken over
all subsequence {un} of {xn}.
Definition 1.2. Let C be nonempty subset of a CAT(0) space X
and T : C → X be a mapping. Then T is called nonexpansive if
for each x, y ∈ C,
(1.3) d(Tx, Ty) ≤ d(x, y).

A point x ∈ C is called a fixed point of T if x = Tx. We denote
with F (T ) the set of fixed points of T .

Lemma 1.5 ([7]). Let (X, d) be a CAT(0) space. Then

(i) Every bounded sequence in X has a Δ− convergent subsequence.

(ii) If C is a closed convex subset of X and if {xn} is a bounded sequence in C,

then the asymptotic center of {xn} is in C.

(iii) If C is a closed convex subset of X and if T : C → X is nonexpansive

mapping, then the conditions , {xn} is Δ− convergent to x and

d(xn, T (xn))→ 0, imply x ∈ C and T (x) = x.



Let C be a nonempty subset of a Banach space X and T, S : C →
C be two mappings. The Picard iterative procedure is defined by
the sequence {xn}: {

x1 = x ∈ C
xn+1 = Txn, n ∈ N

(1.4)

In 1953, Mann[18] defined the following iterative procedure:
{
x1 = x ∈ C
xn+1 = (1− an)xn + anTxn, n ∈ N

(1.5)

where {an} is in (0, 1). It is known that Picard iteration scheme
converges for contractions but may not converge for nonexpansive
mappings whereas Mann iterative procedure converges for nonex-
pansive mappings as well.
The sequence {xn} defined by⎧⎪⎨

⎪⎩
x1 = x ∈ C
xn+1 = (1− an)xn + anTyn

yn = (1− bn)xn + bnTxn, n ∈ N
(1.6)

where {an} and {bn} are in (0, 1), is known as the Ishikawa[10]
iterative procedure.
In 2007, Agarwal et. al.[1] introduced the following iterative pro-

cedure: ⎧⎪⎨
⎪⎩
x1 = x ∈ C
xn+1 = (1− an)Txn + anTyn
yn = (1− bn)xn + bnTxn, n ∈ N

(1.7)

where {an} and {bn} are in (0, 1). The iterative procedure (1.7)
is independent of (1.6) (and hence of (1.5)).They showed that this
procedure converges at a rate same as that of Picard iteration and
faster than Mann (1.5) for contractions. It is easy to see on the
similar lines that iterative procedure (1.7) also converges faster than
the Ishikawa iterative procedure (1.6)
The above procedures deal with one mapping only. The case of

two mappings in iterative procedures was firstly studied by Das and



Debata[6] on the pattern of the Ishikawa iterative procedure:⎧⎪⎨
⎪⎩
x1 = x ∈ C
xn+1 = (1− an)xn + anTyn

yn = (1− bn)xn + bnSxn, n ∈ N
(1.8)

where {an} and {bn} are in (0, 1). This iterative procedure reduces
to the Ishikawa iterative procedure (1.6)when S = T and to Mann
iterative procedure (1.5) when S = I.
Yao and Chen[22] studied the following iterative procedure:

{
x1 = x ∈ C
xn+1 = anxn + bnTxn + cnSxn, n ∈ N

(1.9)

where {an}, {bn} and {cn} are in (0, 1) and an+bn+cn = 1. We note
that (1.9) reduces to Mann iterative procedure (1.5) when T = I or
S = I.
In 2010, Khan et. al.[12] modified the iterative procedure (1.7)

to case of two mappings as follows:⎧⎪⎨
⎪⎩
x1 = x ∈ C
xn+1 = (1− an)Txn + anSyn
yn = (1− bn)xn + bnTxn, n ∈ N

(1.10)

where {an} and {bn} are in (0, 1). This iterative procedure reduces
to the Agarwal et. al iterative procedure (1.7) when S = T and
to Mann iterative procedure (1.5) when T = I. They showed that
this procedure converges at a rate same as that of Picard (1.4)
and Agarwal et. al (1.7) but faster than (1.5) ,(1.8) and (1.9) for
contractions.
The iterative procedure (1.10) is independent of both (1.8) and

(1.9). Also neither of (1.8) and (1.9) reduces to (1.7) nor conversely.
It means that results proved by (1.8) and (1.9) do not include results
proved by (1.7).
Clearly (1.7) does not reduces to (1.5) but (1.10) does. This

implies that (1.10) not only covers the results proved by (1.7) but
also by (1.5) which are not covered by (1.7).
In 2011, Khan and Abbas[11] modified (1.7) for a nonexpansive

mapping T : C → C (where C be a nonempty subset of a CAT(0)



space X) as follows:⎧⎪⎨
⎪⎩
x1 = x ∈ C
xn+1 = (1− an)Txn ⊕ anTyn

yn = (1− bn)xn ⊕ bnTxn, n ∈ N
(1.11)

where {an} and {bn} are in (0, 1).
Let C be a nonempty subset of a CAT(0) space X and T, S :

C → C be two mappings. We now modify (1.10) in CAT(0) spaces
as follows: ⎧⎪⎨

⎪⎩
x1 = x ∈ C
xn+1 = (1− an)Txn ⊕ anSyn
yn = (1− bn)xn ⊕ bnTxn, n ∈ N

(1.12)

where {an} and {bn} are in (0, 1).
The aim of this paper is to study Khan et. al. iterative procedure

(1.12) for approximating common fixed points of two nonexpansive
mappings in the setting of CAT(0) spaces. This iterative procedure
extends Agarwal et. al. iterative procedure (1.11) studied by Khan
and Abbas[11] to the case of two mappings. Also it is faster than
both Ishikawa type iterative procedure (1.8) and the one studied by
Yao and Chen (1.9). We also obtain some strong and Δ-convergence
results for approximating common fixed points of two nonexpansive
self mappings using iterative procedure (1.12) in CAT(0) spaces. In
the light of Remark.1.1 it is also noted that our results in CAT(0)
spaces can be applied to CAT(κ) spaces with κ ≤ 0.

2. Main Results

In this section we obtain strong and Δ-convergence theorems of
iterative procedure (1.12). In the sequel F denotes the set of com-
mon fixed points of the mappings T and S.

Lemma 2.1. Let C be a nonempty closed convex subset of a CAT(0)
space X and T, S : C → C be two nonexpansive mappings. Let {xn}
be defined by iterative procedure (1.12). Let {an} and {bn} be such
that 0 < a ≤ an, bn ≤ b < 1 for all n ∈ N and for some a, b. Then

(i) lim
n→∞

d(xn, q) exists for all q ∈ F.
(ii) lim

n→∞
d(xn, Txn) = 0 = lim

n→∞
d(xn, Sxn).



Proof. Let q ∈ F . Then by Lemma 1.2,
d(xn+1, q) = d((1− an)Txn ⊕ anSyn, q)(2.1)

≤ (1− an)d(Txn, q) + and(Syn, q)

≤ (1− an)d(xn, q) + and(yn, q).

But

d(yn, q) = d((1− bn)xn ⊕ bnTxn, q)(2.2)

≤ (1− bn)d(xn, q) + bnd(Txn, q)

≤ (1− bn)d(xn, q) + bnd(xn, q)

= d(xn, q).

Combining (2.1) and (2.2), we have

d(xn+1, q) ≤ d(xn, q).(2.3)

Thus, {d(xn, q)} is decreasing and hence limn→∞ d(xn, q) exists for
all q ∈ F . This proves part (i). Let

lim
n→∞

d(xn, q) = c.(2.4)

By (2.1), we have d(xn+1, q) ≤ (1− an)d(xn, q) + and(yn, q). Thus,

and(xn, q) ≤ d(xn, q) + and(yn, q)− d(xn+1, q),

that is,

d(xn, q) ≤ d(yn, q) +
1

an
[d(xn, q)− d(xn+1, q)]

≤ d(yn, q) +
1

a
[d(xn, q)− d(xn+1, q)].

This gives

lim inf
n→∞

d(xn, q) ≤ lim inf
n→∞

d(yn, q) + lim inf
n→∞

1

a
[d(xn, q)− d(xn+1, q)]

so that

c ≤ lim
n→∞

d(yn, q).(2.5)

By (2.2) and (2.4), we get lim supn→∞ d(yn, q) ≤ c. Combining it
with (2.5), we have

lim
n→∞

d(yn, q) = c.(2.6)



Now, by Lemma 1.4,

d(yn, q)
2 = d((1− bn)xn ⊕ bnTxn, q)

2

≤ (1− bn)d(xn, q)
2 + bnd(Txn, q)

2 − bn(1− bn)d(xn, Txn)
2

≤ (1− bn)d(xn, q)
2 + bnd(xn, q)

2 − bn(1− bn)d(xn, Txn)
2

≤ d(xn, q)
2 − bn(1− bn)d(xn, Txn)

2

Using (2.4) and (2.6), we get lim supn→∞ d(xn, Txn) ≤ 0. Thus,

lim
n→∞

d(xn, Txn) = 0.(2.7)

Again using Lemma 1.4, we get

d(xn+1, q)
2 = d((1− an)Txn ⊕ anSyn, q)

2

≤ (1− an)d(Txn, q)
2 + and(Syn, q)

2 − an(1− an)d(Txn, Syn)
2

≤ (1− an)d(Txn, q)
2 + and(yn, q)

2 − an(1− an)d(Txn, Syn)
2.

Using (2.4) and (2.6), we have

lim
n→∞

d(Txn, Syn) = 0.(2.8)

Now, using Lemma 1.2,

d(yn, xn) = d((1− bn)xn ⊕ bnTxn, xn)

≤ (1− bn)d(xn, xn) + bnd(Txn, xn).

Using (2.7), we have

lim
n→∞

d(yn, xn) = 0.(2.9)

Finally,

d(xn, Sxn) ≤ d(xn, Txn) + d(Txn, Syn) + d(Syn, Sxn)

≤ d(xn, Txn) + d(Txn, Syn) + d(yn, xn).

Using (2.7), (2.8) and (2.9),

lim
n→∞

d(xn, Sxn) = 0.

�
Theorem 2.2. Let X, C, T , S, F , {an}, {bn} and {xn} be as in
Lemma 2.1. Then, {xn} Δ-converges to a point of F .



Proof. Let q ∈ F . Then by Lemma 2.1, limn→∞ d(xn, q) exists for
all q ∈ F . Thus {xn} is bounded. As proved in Lemma 2.1, we have
limn→∞ d(xn, Txn) = 0 = limn→∞ d(xn, Sxn) .
Firstly, we show that ωΔ(xn) ⊂ F . Let u ∈ ωΔ(xn), then there

exists a subsequence {un} of {xn} such that A({un}) = {u}. By
Lemma 1.5(i), there exists a subsequence {vn} of {un} such that
Δ− limn vn = v for some v ∈ C . Then by repeated application of
Lemma 1.5(iii) on T and S, we obtain v ∈ F . By above Lemma,
limn→∞ d(xn, v) exists. Now, we claim that u = v. Assume on the
contrary that u �= v. Then by the uniqueness of asymptotic centers,
we have

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, u) ≤ lim sup
n→∞

d(un, u) < lim sup
n→∞

d(un, v)

= lim sup
n→∞

d(xn, v) = lim sup
n→∞

d(vn, v),

a contradiction. Thus u = v ∈ F and hence ωΔ(xn) ⊂ F .
To show that {xn} Δ-converges to a point of F , we show that

ωΔ(xn) consists of exactly one point. Let {un} be a subsequence of
{xn}. By Lemma 1.5(i), there exists a subsequence {vn} of {un}
such that Δ− limn vn = v for some v ∈ C . Let A({un}) = {u} and
A({xn}) = {x}. We have already obtained that u = v ∈ F . Finally,
we claim that x = v. If not, then existence of limn→∞ d(xn, v) and
uniqueness of asymptotic center imply that

lim sup
n→∞

d(vn, v) < lim sup
n→∞

d(vn, x) ≤ lim sup
n→∞

d(xn, x) < lim sup
n→∞

d(xn, v)

= lim sup
n→∞

d(vn, v),

a contradiction. Thus x = v ∈ F and hence ωΔ(xn) = {x} Thus,
{xn} Δ-converges to a point of F . �
Theorem 2.3. Let X be a complete CAT(0) space and, C, T , S, F ,
{an}, {bn}, {xn} be as in Lemma 2.1. If F �= φ then, {xn} converges
strongly to a point of F if and only if lim infn→∞ d(xn, F ) = 0, where
d(x, F ) = inf{d(x, p) : p ∈ F}.
Proof. Necessity is obvious. Conversely, suppose that lim infn→∞ d(xn, F ) =
0 . As proved in Lemma 2.1, we have d(xn+1, p) ≤ d(xn, p) for all p ∈
F . This implies that d(xn+1, F ) ≤ d(xn, F ) so that limn→∞ d(xn, F )
exists. But by hypothesis lim infn→∞ d(xn, F ) = 0. Therefore
limn→∞ d(xn, F ) = 0.



Next, we show that {xn} is a cauchy sequence in C. Let ε > 0
be arbitrarily chosen. Since limn→∞ d(xn, F ) = 0, there exists a
positive integer n0 such that

d(xn, F ) <
ε

4
, for all n ≥ n0.

In particular, inf{d(xn0 , p) : p ∈ F} < ε
4
. Thus there must exist

p′ ∈ F such that d(xn0 , p
′) < ε

2
. Now, for all m,n ≥ n0 we have

d(xn+m, xn) ≤ d(xn+m, p
′) + d(xn, p

′)

≤ 2d(xn0 , p
′)

< 2
ε

2
= ε.

Hence {xn} is a Cauchy sequence in a closed subset C of a complete
CAT(0) space X and so it must converge to a point q in C. Now,
limn→∞ d(xn, F ) = 0, gives that d(q, F ) = 0. Since F is closed, so
we have q ∈ F . �

Fukhar-ud-din and Khan[9] introduced the condition(Á) as fol-

lows: Two mappings T, S : C → C are said to satisfy the condition(Á)
if there exists a nondecreasing function f : [0,∞) → [0,∞) with
f(0) = 0, f(r) > 0 for all r ∈ (0,∞), such that either f(d(x, F ) ≤
d(x, Tx) or f(d(x, F ) ≤ d(x, Sx)for all x ∈ C, where d(x, F ) =
{d(x, p) : p ∈ F}
If we take S = T in this condition, then it reduces to condition(A)

of Senter and Doston[20].
Applying Theorem 2.3, we obtain strong convergence of the iter-

ative procedure (1.12) under the condition(Á) as follows:

Theorem 2.4. Let X be a complete CAT(0) space and C, T , S, F ,
{an}, {bn}, {xn} be as in Lemma 2.1. Suppose that T, S satisfies the

condition(Á) and F �= φ. Then, sequence {xn} converges strongly
to a point of F .

Proof. We have proved in Lemma 2.1 that limn→∞ d(xn, p) exists
for all p ∈ F . Let this limit be c. As proved in Lemma 2.1,
we have d(xn+1, p) ≤ d(xn, p) for all p ∈ F . This gives that
infp∈F d(xn+1, p) ≤ infp∈F d(xn, p), which means that d(xn+1, F ) ≤
d(xn, F ), so that limn→∞ d(xn, F ) exists.Again using Lemma 2.1,
we have limn→∞ d(xn, Txn) = 0 = limn→∞ d(xn, Sxn) .



From the condition(Á), either

lim
n→∞

f(d(xn, F ) ≤ d(xn, Txn) = 0, or lim
n→∞

f(d(xn, F ) ≤ d(xn, Sxn) = 0.

Hence, limn→∞ f(d(xn, F )) = 0. Since f : [0,∞)→ [0,∞) is a non-
decreasing function satisfying f(0) = 0, f(r) > 0 for all r ∈ (0,∞),
therefore we have limn→∞ d(xn, F ) = 0. Now, all the conditions of
Theorem 2.3 are satisfied, therefore by its conclusion {xn} converges
strongly to a point of F . �
Remark 2.1. If we take S = T in Theorems 2.2, 2.3 and 2.4 we
obtain theorems 1, 2 and 3 of Khan and Abbas[11].
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