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Abstract

Updated to integrate the management of associated information pro-
cesses, expand some application discussions, and provide additional 
reference material, the intent of this monograph is to help business 
professionals use waiting line (queuing) analysis methods to improve both 
service and manufacturing business applications of queuing situations. 
Emphasis is given to discussing the caveats in applying waiting line theory 
and becoming aware of the assumptions used in developing that theory. 
The importance of accounting for variability in waiting line processes is 
discussed in some detail because the basic queuing equations provide only 
average performance data under steady-state conditions. Understanding 
how much variability can exist for a given waiting line scenario provides 
a manager with the insight required to reduce these effects and develop 
innovative solutions for improving service while reducing operating costs.

In general the mathematical tone of the book is focused on applications, 
not the derivation of the formulas presented. The few derivation exceptions 
illustrate some approaches not commonly discussed in textbooks—for 
example, the use of state diagrams and random number approximations 
of the probability distributions for use in simple simulation models.

To aid in understanding the material presented, some practical exam-
ples are given at appropriate points in the text and some simulation 
approaches using common spreadsheet software are described.

Keywords

arrival distributions, arrival rate, assembly line performance, cost 
trade-offs, deterministic process, Erlang distributions, Excel applications, 
exponential distribution, Kendall notation, limited population service, 
line capacity restrictions, Little’s law, Markovian, memoryless, multiple 
servers, normal distribution, poisson distribution, priority queues, 
queues, queuing theory, service classes, service distributions, service 
process design, service process improvement, service rate, simulation 
methods, state diagrams, stochastic process, triangular distribution, 
uniform distribution, utilization, variances, waiting lines, waiting time
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Preface

The initial impetus for writing this book was the product of several 
conversations with friends and colleagues, an accumulation of professional 
experiences, and interactions with business students and faculty regarding 
operations and process management improvements. This second edition 
augments the original content to include the important concept of 
integrating the management of information when improving waiting line 
processes. This concept is discussed separately in more detail in another 
Business Expert Press book by the author titled Integrated Management 
of Processes and Information (2013) for those readers who are interested. 
In addition, the content is revised in some of the chapters to answer 
some questions posed by astute readers and to provide some additional 
clarification and examples.

Nearly a decade ago, I retired from a long career that included 
individual and managerial responsibilities for a variety of engineering 
and business functions in several industries; many of these organizations 
were key players in the development of integrated circuit technology and 
computer applications. After a year or so working on restoring old cars, 
taking welding classes, and puttering around a small ranch property, the 
glow of retirement began to dim. When a former colleague approached 
me with the proposal of temporarily teaching an operations management 
course at the local university, I thought it would be an interesting challenge 
and agreed to do it. Little did I imagine then that this decision would lead 
to eight years of teaching, new professional relationships, developing new 
courses, and reviewing several textbooks for authors and publishers.

The increased focus on supply chain principles and business consid-
erations in a global economy has often resulted in less classroom time in 
many business school curriculums for more in-depth coverage of specific 
operations methods, such as queuing analysis, linear programming, 
simulation methods, and the factors affecting the variability of the predicted 
results of such methods. As a result, these topics are often provided as 
chapter supplements on DVDs or the Internet for recent editions of 
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operations management textbooks, and many analytical methods are 
only briefly discussed in undergraduate classes. The expectation is that if 
students are at least made aware of the existence of these methods and if 
their use is needed in a future career, our graduates should be capable of 
educating themselves regarding that use.

Discussions regarding this situation with my academic colleagues 
and some of the authors whose books I have reviewed indicate a need 
for small books focused on different operations methods to help senior-
level students and business graduates in that self-education. This revised 
monograph on waiting lines will hopefully satisfy part of that need.

It is important that I acknowledge the valued discussions, advice, and 
inputs provided by colleagues, friends, and the professionals at Business 
Expert Press. These individuals include the following:

•	 John Sloan, Zhaohui Wu, Rene Reitsma, V. T. Raja, Michael 
Curry, James Moran, Bryon Marshall, and Erik Larson in 
the College of Business at Oregon State University. J. Sloan, 
J. Moran, and E. Larson have retired from the College of 
Business since the original publication of this book.

•	 James and Mona Fitzsimmons, who coauthored the textbook1 
used in one of my courses and whose work provided me with 
a number of good ideas. They were the ones who inspired me 
to begin this book.

•	 Scott Eisenberg of Business Expert Press who provided 
encouragement, great feedback, and patience during the 
completion of the original text and this second edition.

Last, but far from least, I must express my thanks and appreciation 
to my wife, Judy, for her continued patience and support as I spent 
considerable retirement time on writing books to share my business 
knowledge with others.



Introduction

When waiting line (queuing) theory is introduced in business or engi-
neering classes, students are presented fundamental rules and equations 
that give consistent results for the same set of conditions. This simplifies 
the initial discussion of often complex issues to enable students to become 
comfortable with the basic concepts and obtain the average results for 
various waiting line performance measures. Later, usually at the graduate 
level, the pesky details regarding the real-life variability in the outcomes 
of these processes are revealed to explain why the predictions provided by 
the fundamental rules rarely are exactly true. As many of you no doubt 
recognize, this last statement also applies to many other disciplines and 
thus should be considered a basic fact of life.

The tone and scope of this monograph assumes that you, the reader, 
are a person who has already taken the initiative to increase your under-
standing of the waiting line and associated service aspects of your busi-
ness, with the goal of either improving service, reducing operating cost, or 
both. You have probably reviewed your old college texts, talked to some 
more experienced colleagues, reviewed the literature available online or 
in the local library, and used Internet search engines to find sites that 
might help. A common result is that you probably noticed that many of 
the equations provided by different authors do not appear to be the same 
for a particular performance measure, such as average waiting time or line 
length. Another outcome is that you often encounter different terms used 
for what appears to be the same concept. My goal is help you navigate 
through these apparent discrepancies, introduce you to some new useful 
concepts that are likely to be unfamiliar, and help you achieve a better 
understanding for your business needs. So let us begin.

We begin by reviewing the fundamental rules for different waiting 
line models and then expand the discussion to cover some of those 
all-too-frequent occasions where what we observe in actual practice does 
not seem to agree with the predicted values. These variations should not be 
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viewed with dismay, however, but rather as opportunities for innovating, 
developing a competitive advantage, and assessing possible business risks.

Some mention of the level of mathematic understanding expected 
of you is appropriate at this point. Several of the performance expres-
sions will intuitively make sense. Others will require you to accept their 
validity on faith because the mathematics behind their derivation can be 
quite daunting to someone who is not a mathematician. For the most 
part, we will avoid the derivation of most formulas because this mono-
graph is focused on application. However, we will occasionally need to 
delve more deeply into how a few formulas are derived so we can better 
understand their limitations in predicting actual business outcomes. 
In addition, we will develop some expressions that, while not exactly 
mathematically rigorous, will provide good enough approximations for 
pragmatic business decisions.

The following is likely to be the most useful and important piece of advice 
you can gain from reading this monograph: As people gain experience in 
business, they develop a gut feeling as to what the ballpark estimate of the 
results of a business analysis will be. Hence when the calculated result does 
not agree with their estimate, they double-check the calculations. Because 
of the probabilistic content in waiting line equations, it is more difficult 
to acquire an intuitive feeling as to what the result should be. Many of 
the waiting line equations can be quite complex, and the likelihood of 
typographical errors in equations presented in references and other mate-
rial is increased. In fact, I discovered formula errors and other formula 
differences in many of the references consulted during my research for 
this monograph. Some of these are obvious to an astute reader, but others 
can take considerable effort to detect.

Therefore, I cannot stress enough how important it is to make sure 
that the units of measure for each parameter in a waiting line equation 
are accounted for and that their use balances out into the proper units for 
the answer. Consistent checking of the units in your answers will help 
indicate the presence of errors, whether they are caused by an error in 
the equation, an incorrect entry in the equation, or a calculation error 
on your part.

Chapter 1 reviews the basic concepts used for waiting line process 
analysis; discusses the most common probability distributions; and 
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introduces state diagrams that are used to derive many queuing formulas, 
descriptions and notation for different waiting line models, priority rules, 
and basic cost considerations.

Chapter 2 covers the characteristics and analysis of basic single-
channel, single-phase models common to small businesses and sections 
of manufacturing lines. Chapter 3 covers the characteristics and analysis 
of basic multiple-channel, single-phase models like most of us have 
encountered in banks and post offices. You can skip these chapters if you 
feel that you are sufficiently familiar with the basics; but there are some 
useful clarifications not usually discussed in college textbooks that will be 
helpful when we address more complex situations.

Chapters 4 and 5 cover more complex concepts related to less com-
mon arrival and service distributions, line capacity limitations, limited 
population applications commonly used for maintenance activities, 
multiple-server situations, and manufacturing applications. Chapter 5 
also includes equations for direct computations of limited population 
models to allow you to use spreadsheet methods instead of finite queu-
ing tables. Some new nomenclature is introduced to help avoid some 
confusion that can occur when using such equations.

Chapter 6 focuses on managerial considerations regarding waiting 
line decisions. The limitation that commonly used waiting line equations 
predict only average performance is discussed in some detail. Knowing 
more about performance variability is necessary to enable managerial 
consideration to reduce its effects on customer service and operating 
costs. Some possible strategies and methods for reducing variability 
in both the arrival and the service rates are reviewed, and some cost 
decisions, such as cost trade-offs between adding service capacity versus 
process improvements, are discussed. Chapter 6 also discusses some of the 
softer factors, such as waiting line psychology, priority management, and 
preferred customer treatment.

In Chapter 7, several tools are discussed. The first is Little’s Law, a 
useful mathematical expression relating waiting line length to waiting 
time using the arrival rate. The use of Little’s Law as a handy method 
to obtain some useful starting data about a waiting line situation with-
out requiring extensive data gathering over extended periods of time is 
also described. To gain knowledge about performance variability for the 
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evaluation of best- and worst-case scenarios, simulation is required. Some 
examples show how simulation models can be constructed for several 
waiting line situations using functions commonly available in Excel 2007 
or 2010.

A list of updated references and the chapter notes are provided at 
the end. Appendix A provides a revised glossary of terms; Appendix B 
lists symbols used with their definitions; Appendix C presents some use-
ful tables and spreadsheet examples for multiple-channel applications; 
Appendix  D provides some useful simulation design information and 
other helpful application data for Excel users; and a new Appendix E 
provides some new information regarding the use of Excel data tables for 
simulation applications for this second edition.



CHAPTER 1

Concepts, Probabilities, 
Models, and Costs

Standing in line for some service is a universal human experience. We all 
have had the experience of choosing one line that appears to be moving 
the fastest only to observe later that an adjacent line is now moving faster. 
The reality is that all customers do not have the same service require-
ments, and even if they do, that service does not always take the same 
amount of time to complete.

Some of us are prepared to ask for what we need when we reach the 
server; others are still making up their minds as to exactly what they want. 
The process of paying for the service also adds to service time variabil-
ity. How many of us have watched the person being served in front of 
us take a considerable amount of time collecting belongings and find-
ing money or a credit card to pay the server while another customer is 
more organized, has exact change, and moves out of the line quickly when 
the service is completed. Such observations are important because they 
illustrate that one way to improve customer service is to help customers 
be better prepared when they reach the server. An illustration of this in 
practice is the security line process at many airports.

An important consideration for service businesses is being able to 
estimate how many customers might arrive during a given time period T. 
It is also important to know the nature of customer arrivals. Are they at 
regular intervals, random, one at a time, in groups, or in some other way? 
Given this information and the internal knowledge of how long service 
usually takes, businesses can use waiting line analysis to determine how 
many servers are needed to provide an acceptable level of performance at 
a reasonable cost. Some other performance measures of possible interest 
are as follows:
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•	 How long is the average line?
•	 What is the typical customer waiting time before being 

served?
•	 What is the probability that the line will exceed the available 

waiting space?
•	 What is the probability that a customer will not have to wait 

in line?
•	 Are customer arrivals relatively consistent during the hours 

that the service is available or are they variable at predictable 
times during the hours of operation?

•	 If one server is not enough to satisfy demand in a timely 
manner, how many more servers are needed?

•	 How much do we have to reduce average service time to avoid 
adding another server?

•	 Which is more cost-effective—buying a new automated 
machine to handle part of the demand or hiring more servers?

•	 What effect would setting up separate lines for different 
classes of customers have on overall service performance and 
operating costs?

When applying queuing theory to factory applications, some waiting 
line parameters are more easily controlled; others become more complex, 
particularly when more than one process step (phase) is involved. Pro- 
duction scheduling can reduce variability in the arrival rate. The service 
rate variability is usually constrained when manufacturing standardized 
items but can vary much the same as when dealing with customers if 
the factory is providing repairs or custom items with varying work 
flows. Moving items between batch and one-at-a-time processes are also 
analytical challenges. Performance measures of possible interest in such 
applications include the following:

•	 What is the average throughput?
•	 What is the typical processing time?
•	 What is the line capacity and which step limits it?
•	 What is the average amount of work in process (WIP)?
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•	 How much storage capacity is needed for the inventory 
(queue) before each step?

•	 How are mixed job flows handled?

In some cases, basic queuing equations can provide rough estimations 
for some of these manufacturing questions. For more accurate estimates, 
however, simulation methods are required. For those who do not want 
to develop their own applications, a variety of vendors have produced 
simulation programs for common situations. However, it is important 
if you take either path toward using simulation that you are aware of 
the assumptions and queuing models available. Selecting the wrong 
model for your application will not provide useful results no matter how 
sophisticated the simulation package is.

Managerial considerations regarding the previous performance ques-
tions and others are discussed in Chapter 6. Many of them have different 
options depending on the waiting line model(s) used. Chapter 7 discusses 
some simple simulation applications and how a simple model can be used 
as a building block for more complex simulations. Appendix D provides 
information for using Excel for some basic simulations. Appendix B 
defines the symbols used throughout this monograph. Because three of 
these symbols are necessary to any discussion of waiting line situations, 
analysis, models, or concepts, they need to be defined here:

λ: the average arrival rate of customers or items seeking service
µ: the average service rate
ρ: the ratio λ/µ, often referred to as the utilization factor

The fundamental assumption of waiting line analysis is that the 
behavior of customer arrivals and service times can be described by 
appropriate probability distributions given the average interarrival time 
1/λ, the average service time 1/µ, and some knowledge of the pool of 
possible customers (the “calling population”) to be served.1 Many of the 
waiting line performance measure formulas discussed in this chapter are 
a result of this assumption combined with the insight and the contribu-
tions of many talented individuals and organizations.
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We will accept most of these formulas without derivation except 
when a partial or a complete derivation is necessary to gain a better 
understanding of what a particular formula does or does not address. For 
those interested in such derivations and some good application examples, 
the books by Laguna and Marklund2 on business process modeling and 
Hillier and Lieberman3 on operations research are useful references. 
Another reference is Nelson’s book4 on modeling stochastic processes.

The most commonly used probability distributions are the Poisson 
distribution for discrete values and the exponential distribution for 
continuous values with the assumption that the calling population is 
infinite. Other distributions are used when some control over the arrival 
rate or the service time is possible and when the population pool or the 
waiting line capacity is limited.

In selecting distributions that best represent a given queuing situation, 
it is important to select an appropriate time interval for data collection and 
the analysis on which the average values for arrival and service rates can 
be based. The average waiting line performance measures are independent  
of the time interval chosen, which will be shown later when using the 
formulas. However, you will lose sight of how much the arrival rate can 
vary during the day if you choose an interval that is too large.

Poisson Distribution

The Poisson distribution is a discrete distribution because there are no 
fractional arrivals. It is described by Equation 1.1, where P(n) is the 
probability that n arrivals will arrive during time interval T given an 
average arrival rate of λ:

			 
P n

T e
n

n
n T

( )
( )

!
, , ,...= =

−λ λ

for .0 1 2 � (1.1)

The Poisson distribution for an average arrival rate of 4 is shown in 
Figure 1.1. It is important to note that there is a finite probability that no 
arrivals will occur during the time interval on which the average rate is 
based. Knowing this value—often designated as P0 rather than P(0)—is 
very useful in business decisions, as we will discuss in Chapter 6.
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Another useful property is that adding individual Poisson distribu-
tions results in another Poisson distribution. Conversely, breaking down 
a Poisson distribution into two or more separate distributions results in a 
set of two or more Poisson distributions. This is advantageous when add-
ing together the known arrival rates of individual classes of customers or 
determining the effect of diverting a part of an existing arrival distribution 
to a new branch office. We will discuss this in more detail in Chapter 6.

Exponential Distribution

An exponential distribution is a versatile probability distribution that 
is used to describe both service times and the times between arrivals in 
waiting line scenarios. It is most often expressed by Equation 1.2, where 
P(time > t) is the probability that the service time or the interarrival time 
will be greater than time t, setting α = µ for service time probabilities and 
α = λ for interarrival time probabilities:

			            P t e tt( ) .time for> = ≥−α 0 � (1.2)

The exponential distributions for two average service rates of 3 and 
6.5 are shown in Figure 1.2. Your intuition that the probability of a task 
requiring a given completion time should decrease as the service rate 

Figure 1.1  Poisson distribution for an average arrival rate of 4
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increases is now validated. You should also note that a probability of 
36.79 percent5 corresponds to the average service time of 1/µ.

An exponential probability distribution has the property of being 
“memoryless.” That is, its predictions of what happens next are indepen-
dent of what has happened before. For example, the probability at any 
given moment that the next customer will arrive in two minutes is the 
same whether the previous customer arrived a few seconds ago or an hour 
ago. Such a distribution is also referred to as being “Markovian” and is 
indicated by the symbol M in the waiting line model notation described 
later in this chapter. More common examples of this property are the 
probability of the next coin flip being heads or the next roll of two dice 
adding up to five. The odds of either occurring are unaffected by any 
knowledge of the results of previous coin flips or dice throws.

Other Probability Distributions

In many service scenarios, the performance data collected will indicate 
that either the arrival or the service characteristics are not well represented 
by Poisson and exponential distributions. For example, consider a coffee 
shop where there is a mix of customers, some who just want a standard 
cup of coffee and others who want more customized lattes and mochas. 
In addition, while the exponential distribution allows the probability of 
very short service times, in practice, the minimum time required to serve 

Figure 1.2  Exponential distributions for service rates of 3 and 6.5
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a customer is greater than those values. If we want to evaluate more than 
the average performance values, this mix of relatively constant and widely 
varying service times plus a minimum service time usually does not fit 
well with using a single exponential distribution.

Also, consider standardized service situations where the service times 
are more predictable (deterministic). In such cases, normal distributions 
or even constant values can be used. This situation is discussed in more 
detail in Chapter 4.

A variant of the Erlang6 distribution can be used to determine the 
number of customers turned away by insufficient capacity, and phase-
type distributions can be used to characterize waiting lines with more 
than one phase (step) in sequence. When there is more than one phase in 
a channel, the mathematics for analytical expressions describing waiting 
line performance becomes much more challenging. In such cases, we can 
make some approximations or use computer simulation to provide more 
useful insight for business applications. One example is a production 
line with several assembly operations. This situation is discussed in more 
detail in Chapters 4 and 7.

State Diagrams and Balance Equations

The intent of this monograph is not to make you an expert on deriving 
waiting line expressions; however, it is useful to spend some time discussing 
how state diagrams are used to develop some of the simpler formulas. This 
then provides a better understanding of the relationships between arrival 
rates, service rates, and the probabilities of different line conditions, such 
as nobody in line (P0), two people in line (P2), and so forth.

Figure 1.3 shows a generic state diagram where each hexagon rep-
resents a specific number of customers in a single-channel waiting line. 
In this case, we will keep it simple by limiting the maximum number of 
customers in the system to two. This is not a far-fetched simplification 
because it could represent an independent stockbroker’s telephone with a 
capacity for only one call on hold.

To obtain an intuitive feel for what this diagram represents, we first 
consider the first two states on the left (state 2 is ignored for now). One 
can see that the maximum flow from the state of no customers in the 
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system to the state of one customer in the system is the arrival rate λ. 
The maximum flow back to a state of no customers is the service rate µ. If 
both the arrival and the service rates are constant with no variability, then 
the proportion of time each state exists is determined by the difference 
between the arrival and the service rates. This then requires the service 
rate to be greater than the arrival rate to avoid the need for further states 
to account for inadequate capacity.

So, what is missing in this state diagram? While it may be obvious to 
the frequent state diagram user, it often is not obvious to many business 
students. The key factor here and the magic behind using state diagrams 
to develop queuing analysis formulas is that each state has a probability 
of existence that allows the rates into a state to equal the rates from that 
state. Such balance equations allow one to determine the probability for 
each state in terms of the given average arrival and service rates. This 
becomes particularly important when the distributions for the arrival 
and the service rates are taken into account. While their probabilities of 
occurring are low, there will be instances when the arrival rate is greater 
than the service rate. Then an overflow to higher states is necessary for 
situations when a momentary burst of customers overwhelms the service 
rate and results in more customers in the system.

For example, the balance equations (inputs equal outputs) for the 
three states in Figure 1.3 are as follows:

		
State 0: (P

1
 × µ) = (P

0
 × λ),

 State 1: (P
0
 × λ) + (P

2
 × µ) = (P

1
 × λ) + (P

1
 × µ),

State 2: (P
1
 × λ) = (P

2
 × µ).

� (1.3)

Figure 1.3  State diagram for a single-channel waiting line
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λ λ

µ µµ



	 CONCEPTS, PROBABILITIES, MODELS, AND COSTS	 9

Given the above set of balance equations for all the possible states, 
the individual probabilities for steady-state behavior can be derived. For 
example, we first use the equation for State 0 to solve for P0 in terms of 
P1. Then, using the requirement that the sum of all probabilities must be 
equal to 1, we solve for P2 in terms of P1 and P0. That is, P2 = 1 − P1 − P0 = 
1 − P1 − [(µ/λ) × P1]. Remembering that μ/λ is 1/ρ and substituting these 
results for P0 and P2 in the equation for State 1, we can then determine 
the value for P1 in terms of ρ. Knowing P1, we can then obtain the values 
for P0 and P2 using the equations for States 0 and 2. The following results 
are produced:

				  

P
0
 = 1/(1 + ρ + ρ2),

P 
1
 = ρ/(1 + ρ + ρ2),

P
2
 = ρ2/(1 + ρ + ρ2).

� (1.4)

If our calculations are correct, the sum of P0, P1, and P2 should  
equal 1, which they do. What is also useful here is having answers 
requiring only the utilization factor ρ. This may not always be the case, 
but it simplifies the analysis when it is.

For a larger number of states, the mathematics involved can be quite 
daunting. However, for a queuing situation, where the number of states is 
limited by physical constraints such as a finite calling population, limited 
line length, or the number of phone lines, state diagrams can be quite 
useful in obtaining useful expressions without having to employ exten-
sive mathematical methods. We will return to this state diagram when 
we discuss the more complex aspects of single-channel waiting lines in 
Chapter 4.

Waiting Line Models and Notation

Although there is some commonality across various waiting line mod-
els, such as Little’s Law which is discussed in Chapter 7, many of the 
formulas predicting various performance measures are dependent on the 
type of model used. Most references use Kendall’s notation7 to identify 
which waiting line situation they are discussing. The original notation 
reportedly had just three characteristics, A/B/C, indicating, in order, the 
nature of the arrival distribution, the service distribution, and the number 
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of channels or servers. This notation has been expanded over time to five 
or six characteristics, A/B/C/d/e/f, to include values for the limit on line 
length, the size of the calling population, and the priority rule used to 
process customers.

You will find in various references that there is no consistent order 
for indicating the last three characteristics or even for using all three. 
Hence, it is important to note that here we will use the d/e/f sequence 
defined in the previous paragraph. The symbols used to designate the 
various probability distributions are defined in Appendix B. For example, 
the single-channel, single-phase model discussed in Chapter 2 is given the 
notation M/M/1/∞/∞/FCFS, where M indicates the choice of Markovian 
distributions for the arrival and the service rates. In most references, this 
notation is shortened to M/M/1.

Priority Rules

Unless specified otherwise, a first-come, first served (FCFS) priority  
rule is assumed for most waiting line situations. This rule can also be 
expressed as a first-in, first-out (FIFO) priority for single-line situations.8 
Customers consider this to be the fairest approach, particularly when 
other customers waiting in line are visible.

However, there are situations where an FCFS rule is not the best 
approach, such as the processing of patients in a hospital emergency 
room. Obviously, there will be some patients with more urgent needs for 
care than others, regardless of their place in the arrival sequence. Another 
example is travelers waiting in line to check in at the airport. When the 
lines at airline ticket counters become long at peak periods and the wait-
ing time becomes greater than the time left before flight departure for 
some travelers, some process is required to expedite the ticket and baggage 
check-in processing for those passengers.

Not so obvious is the desire by many service operations to give 
some preference to their more important customers. In situations where 
customers can see other customers waiting, this desire can be satisfied by 
having dedicated servers for the more important customers. Examples 
are the frequent flyer lines at the airport, a business-only teller window 
at the bank, or a window dedicated for package pickup at the post office. 
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Note that it is a good business practice to encourage the servers for the 
dedicated lines to take care of customers in other lines when there are no 
preferential customers waiting to be served.

More solutions for providing preferential treatment to selected cus-
tomers are available when customers cannot view other customers wait-
ing. One example is a call center for a financial institution. Such solutions 
are discussed in more detail in Chapter 5.

In a manufacturing line situation, you may want a system for expedit-
ing critical orders, often referred to as “hot lots,” while also taking care to 
avoid any given item from being delayed too long because of preemptions 
by expedited orders. This is especially important if the customer-ordering 
process frequently accepts too many rush orders. Part of the solution is 
a carefully considered managerial policy regarding the use of expediting, 
which is discussed in Chapter 6. In addition, you can take advantage of 
computer methods for managing the sequence of items being processed, 
which is described in Chapter 7.

While not often considered to be a typical waiting line situation, 
the boarding of passengers can be characterized using both single and 
multiple line configurations with an arrival rate determined by a mix 
of people arriving at random and determined by priority. What makes 
the analysis challenging is that the service rate is also a mix of typ-
ical servers (agents checking tickets) and the passengers doing some 
of the work (stowing personal items and handling carry-on baggage). 
In addition to the obvious priorities for allowing first-class passengers, 
frequent flyers, and persons needing assistance to board earlier, various 
priority schemes have been developed to help expedite the boarding of 
the main cabin.9 Reducing boarding time helps increase the efficiency 
of the transportation equipment since time spent on the ground or 
standing at the station or terminal is time not spent moving passengers. 
At airports longer boarding times can also cause planes to miss sched-
uled departure windows and affect the ability of an airport to handle 
the amount of traffic required. In such cases the increased operational 
costs can be significant.

Finally, although rarely discussed in most waiting line textbooks, 
effective methods are needed to deal with rude, unruly, or disruptive 
customers. Considering how your business addresses such incidents 
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before they actually occur is especially important when such behavior is 
visible to other customers.

Cost Curves

The relationship between operation costs and the costs of waiting is 
illustrated in many references by similar versions of the simplified 
graph shown in Figure 1.4. As more servers are hired, customers have 
to wait less, but the costs of doing business increase. In addition to the 
obvious increase in salary and benefits costs additional equipment and 
facility increases are likely to be needed, particularly if the improved 
service performance attracts additional customers. This trade-off between 
customer service and operating costs is shown in Figure 1.4 to have a 
minimum value that intuitively would appear to be the desired business 
solution.

However, this simplified model does not depict actual conditions 
for many service businesses, particularly since the operating costs rarely 
increase in a linear fashion. So, you may ask, how does one obtain the 
actual waiting costs for a particular situation? The costs related to adding 
more servers or items being out of service while they wait for maintenance 
are more easily determined than the costs of unhappy customers. Some 
marketing firms have done surveys about how much a typical customer is 
willing to wait for service or what length of line will discourage a customer 

Figure 1.4  Waiting and operating cost relationships

Staffing, Facilities, and Equipment Æ

C
os

ts
 Æ Queuing

Operating

Total



	 CONCEPTS, PROBABILITIES, MODELS, AND COSTS	 13

from even entering it. But you need to be wary of this information unless 
such surveys have been done for your particular type of service in your 
locality. Even then, you should recognize that customer attitudes will vary 
from one day to the next, depending on whether or not customers are in 
a good mood, are in a hurry, or are with friends in line; the weather is 
sunny or miserable; and so forth. Did the marketing group survey people 
actually in line under different conditions or did they just interview a 
group of people about their service preferences?

Is your service one of choice—like buying a cup of coffee—or one 
of necessity—like obtaining a new driver’s license? Do you have several 
competitors or are you the only choice for the service? In the latter situ-
ations, customers may not like the performance provided but must put 
up with it because there are no other alternatives available. This is often 
the case with government agencies, where the trade-off is better service 
or lower taxes.

In most business situations, operating costs are rarely linear, as implied 
in Figure 1.4. Increases in equipment and the number of servers create 
jumps in operating costs. Facility additions and other fixed costs required 
to support additional servers and equipment must be accounted for, and 
the effect on other behind-the-scenes (back office) support costs should 
be considered.

Waiting line costs are also not always linear. Waiting a few minutes 
longer may be inconvenient, but waiting long enough for a meal to get 
cold or to miss a deadline like a scheduled transportation departure can 
cause the cost for a customer to increase significantly.

In some situations the waiting line cost is also a significant part of the 
operating cost for a business and would be more accurately described as 
a queuing cost to make it clearer that the costs are just those caused by 
waiting. In the earlier section regarding priority rules we discussed pas-
senger boarding processes and the potential increase in operational costs 
if they were not efficient. In essence, a transportation business is also a 
customer waiting in line for a service (boarding) to be completed. The 
range of cost components is broad and interactive between the passengers 
and the carrier. Boarding delays add to overall turnover time for equip-
ment and reduce system capacity. Such delays can cause a passenger to 
miss a connecting flight or a critical business appointment or not be able 
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to attend an important family event. Complicating this situation is that 
normal approaches for reducing waiting time such as adding more servers 
or making existing servers more efficient are not an option. For example, 
adding another aisle on an aircraft could help speed up boarding, but 
would reduce passenger capacity. Since increasing server efficiency would 
involve making the passengers be more efficient in getting their items 
stowed and seated an airline could decide to prohibit carry-on luggage 
requiring an overhead bin and have it checked instead. However, this 
would increase baggage handling costs and could increase the time to 
load and unload the plane. The increased practice of charging for checked 
baggage to offset baggage handling costs has increased the use of carry- 
on luggage by passengers and as a consequence has made the boarding 
process less efficient and longer. This is not to say that there is no optimal 
solution for such cost trade-offs, but such a solution requires careful 
consideration of all system costs and their interactions.

These costs and some suggested methods for managing them are 
discussed in more detail in Chapter 6.



CHAPTER 2

The Basics— 
Single-Channel,  

Single-Phase Model

A single line of people waiting for some service is arguably the most 
common business model on our planet (see Figure 2.1). The variations 
of this simple theme are nearly infinite when you consider the forms that 
the service can take and the nature of the customers desiring that service.

We will use a typical coffee shop where customers from different 
walks of life enter the shop; wait in line; and, when they reach the service 
window, order anything from a simple cup of coffee to a more complex 
mixture of coffee and other ingredients to larger orders of multiple 
combinations of these. To analyze the basic behavior of this model, we 
must make some assumptions where the full Kendall notation for the 
model is M/M/1/∞/∞/FCFS:

•	 The customer arrival rate is described by a Poisson 
distribution using an average rate λ, which means that the 
interarrival times can be characterized by an exponential 
distribution with an average interarrival time of 1/λ. 
Interarrival times are independent of the number of customers 
in the system.

•	 The variability in service time is defined by an exponential 
distribution with an average service time of 1/µ, where 
µ represents the average service rate. Service times are 
independent of the number of customers in the system. While 
one could argue that the server would be under more pressure 
to work faster when the customer line is longer, in practice 
this is not a good assumption for a service business to make. 
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Such actions increase the likelihood of mistakes that require 
additional time to correct and offset any potential reduction 
in average service time.

•	 The number of channels (servers) is one, and the number 
of phases in the service is one. We assume here that a single 
server does everything for the customer in the coffee shop: 
taking the order, preparing the coffee, and collecting the 
payment. Obviously, in many coffee shops with a higher 
volume of customers, more than one person likely performs 
these activities. We will discuss these complexities in 
Chapter 4.

•	 The arrival or calling population is infinite in size. This avoids 
complications introduced by the possibility of having served 
all available customers. Limited or fixed customer situations 
are discussed in Chapters 4 and 5.

•	 The length of the waiting line can be infinite. Although not 
really possible in real-world situations, this avoids analysis 
complications introduced by the rare possibility that some 
customers are blocked from entering the line. We will discuss 
the effects of limited line lengths in later chapters.

•	 The priority rule is first come, first served (FCFS).
•	 Balking or reneging by customers is not considered in the 

analysis.

Figure 2.1  M/M/1 configuration
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•	 The average arrival rate is less than the average service rate  
(λ < µ). That is, the utilization factor ρ = λ/µ is less than 1.

This last assumption should be intuitively obvious because the average 
line length will increase significantly when the arrival rate approaches the 
service rate, as shown in Figure 2.2.

One thing that is often confusing when reviewing the equations 
presented by different authors for a given waiting line model is that at 
first glance they do not always appear to be the same. However, with 
closer inspection, we can see that one version is equivalent to another 
version because some author(s) substituted ρ for some combinations 
of λ and µ or have applied Little’s Law (defined in a moment). The 
different versions are provided here for your reference with what is 
considered to be the most useful version listed first. The various per-
formance measures for the basic M/M/1 model are listed in the same 
order in which they will be presented for other waiting line models 
later in the book.

•	 Utilization factor: ρ = λ/µ; for a basic M/M/1 model, ρ must 
be less than 1.

•	 Probability of 0 customers in the system (this is also the prob-
ability that a customer will experience no waiting for service): 
P0 = 1 − ρ.

Figure 2.2  Increase in average line length as l Æ µ
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•	 Probability of exactly n customers in the system: P =  
(1 − ρ)ρn = P0 ρ

n.
•	 Probability that the number of customers in the system is 

greater than k:
P

n>k
 = ρk+1.

•	 Probability that the server is busy: Pn>0 = 1 − P0 = ρ.
•	 Average number of customers in the system:

L = λ/(µ − λ) = ρ/(1 − ρ) = λW.

•	 Average total time customers spend in the system: W = 1/(µ − 
λ) = L/λ.

•	 Average number of customers waiting in the queue (not yet 
being served):

L
q
 = ρL = ρλ/(µ − λ) = λ2/[µ(µ − λ)] = ρ2/(1 − ρ) = L − ρ = λW

q
.

•	 Average time customers wait in the queue before being served:

W
q
 = ρW = W − (1/µ) = ρ/(µ − λ) = λ/[µ(µ − λ)] = L

q
/λ.

The term system applies to not only the number of customers waiting 
in line but also any customer(s) being served. Also useful to remember is 
that the sum of all possible probabilities for a parameter must equal 1. 
This allows you to determine a probability that may be difficult to calculate 
directly. In such a case, you add together all the other possible probabili-
ties excluding the one you want to determine and subtract that sum from 
1. An example of this is shown in the list of performance measures above 
for the probability that a server is busy.

If you study the formulas for line lengths and waiting time carefully, 
you can see that the ratio of the average number of people in the system 
to the average waiting time in that system is equal to the average arrival 
rate when the system is in a steady-state condition. Expressed in the form 
L = λW, this ratio is referred to as Little’s Law.1 This ratio also applies 
when considering just the number of people waiting in line and the time 
they spend waiting in that line before being served. As we will see in 
subsequent chapters, Little’s Law applies across a wide range of waiting 
line models regardless of the probability distributions chosen to represent 
the arrival and the service rates. Hence, Little’s Law is especially useful for 
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manufacturing applications of queuing analysis where such probability 
distributions are often unknown.

Another significant observation can be drawn by looking at the 
formulas for L, Lq, and P0 that use only the utilization factor ρ = λ/µ. 
This means that these values vary only with ρ; that is, as long as the 
arrival and service rates increase in direct proportion to each other (ρ 
remains constant), the values for L, Lq, and P0 will remain unchanged. 
However, W and Wq will decrease with increasing values of λ and µ. 
Figure 2.2 shows the value for L versus ρ, and you can see that the line 
length is essentially flat for ρ < 0.4. In Chapter 3, you will see that this 
characteristic also holds true for multiple-channel lines.

You may observe what appears to be an inconsistency in the expres-
sions for Lq, where it is shown as being equal to both ρL and L − ρ. Is 
this possible? Most textbooks avoid this question by presenting only one 
version for Lq; however, both versions were included in my class lectures 
as a check on whether students were reading the material. To answer the 
question: If both equations are true, then ρL must equal L − ρ. Moving 
all the L terms to one side of the equation gives the result that L(1 − 
ρ) = ρ. Dividing both sides by (1 − ρ) gives L = ρ/(1 − ρ), which is the 
equation for L.

Example 2.1  Coffee Shop with One Server

To gain a more comfortable understanding of how the preceding per-
formance measures can be used, consider a small coffee shop we will 
call Ken’s Caffeine Fix. The shop is located in a downtown area and 
provides various forms of coffee to nearby office workers who stop in 
for a cup of their favorite brew at various times of the day. We will make 
two assumptions: (1) The average arrival rate does not vary during the 
day, and (2) the owner performs all parts of the service provided: takes 
the order, prepares the coffee, and collects the payment. The issues 
created by arrival rates varying during the day and having a helper do 
parts of the service will be discussed in later chapters. To assign some 
values to this operation, let us assume that it takes an average of two 
minutes to serve each customer, and the average number of customers 
per hour is 24.
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This gives us an average arrival rate λ of 24 customers per hour and 
an average service rate µ of 1 customer per 2 minutes = 30 customers/
hour. This illustrates a critical consideration when analyzing waiting 
line situations for small businesses—the arrival rate must be less than 
the service rate. Or put another way, the service rate must be greater 
than the expected arrival rate for the business.

Many businesses collect operating data in this way: the average 
number of customers per some time period and the typical service 
time. Thus some conversion of the data is necessary because the time 
references for the arrival and service rates must be the same. A real-life 
example of collecting data for coffee shops on a college campus will be 
given in Chapter 7.

The utilization factor ρ is 24/30 = 0.8 or 80 percent. This is the 
probability that the owner will be busy serving a customer when the 
next customer enters the shop. Hence the probability of no customers 
in the shop (P0) is 1 − ρ = 20 percent. This is a useful value to know 
because the owner needs some time during each hour for support 
activities such as replenishing the cream-and-sugar station, brewing 
more regular coffee, and general cleanup.

The average number of customers in the shop (L) is expected to 
be 24/(30 − 24) = 4 customers, and the average number waiting in 
line (Lq) is 0.8 × 4 = 3.2 customers. You should recognize that these 
values are independent of the time period chosen. If the owner had 
collected data on customer arrivals and service times over a sequence of 
15-minute periods rather than hours, the results for L and Lq would be 
the same. In other words, because the utilization factor is unchanged, 
L and Lq are unchanged. That is, the average line length is independent 
of the time reference for the average arrival and service rates.

The average total time spent by customers getting their coffee is 
60/(30 − 24) = 10 minutes, and the time spent waiting in line is 0.8 × 
10 = 8 minutes. This obviously is too long for an office worker just 
wanting a quick cup of regular coffee. Ways to shorten the wait for 
this class of customer are discussed in Chapter 6. Of interest here is 
that Little’s Law indicates the waiting time decreases as the arrival rate 
increases, provided that the utilization factor remains constant (that is, 
the service rate increases proportionately with the arrival rate).
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Figure 2.3 shows typical individual waiting times and service (brew-
ing) times along with the number of customers already in the shop when 
each customer arrives. These values were obtained using a simple Excel 
simulation program. This set of sample data does not show any values for 
L that are greater than 5, which could lead a person to assume that the line 
lengths for the business are not too long. However, subsequent simulation 
runs using the same interarrival and service time distributions and the 

Figure 2.3  Some typical performance values for the first 
100 customers entering a typical coffee shop
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same number of customers have demonstrated possible line lengths as 
great as 14, brewing times as long as 16 minutes, and waiting times up to 
20 minutes. To obtain more information regarding the variability of the 
performance measures, multiple simulation runs are required. These will 
be explored in detail in Chapter 7. You should note in Figure 2.3 that the 
average for each performance measure depicted rarely occurs, if at all, for 
any customer. This leads to a very important observation that the average 
performance values derived from the queuing equations are primarily useful 
for the longer-term business perspective and are a very poor indicator of what 
a typical customer encounters.

As mentioned in Chapter 1, an exponential distribution is not the 
most accurate distribution to represent the service time for this type of 
business because the minimum service time required for even a simple 
cup of house coffee is likely to be greater than 30 seconds when the time 
for payment is included. Yet the simulated data in Figure 2.3 show several 
occasions when the brewing time is less than 30 seconds (0.5 minute). 
The longer brewing times shown can be expected when one considers a 
customer ordering several coffees for a group of people. Perhaps an Erlang 
distribution with an appropriate k factor would be a better representation 
for this type of service, as discussed in Chapter 4.

Finally, market surveys can provide estimates of how long a line can 
be before customers looking into the shop are likely to decide to not even 
enter (balking). For example, let us say that a line longer than five people, 
including the person being served, is a definite turnoff for a potential coffee 
shop customer.2 So, what is the probability of this occurring? Referring to 
the data in Example 2.1 and using the formula Pn>k = ρk+1, where k = 5,  
we obtain 0.86 

= 0.2621 or 26.21 percent. Thus, Ken’s Caffeine Fix 
coffee shop is likely to lose at least one fourth of its possible customers. 
Conversely, the probability that the average number of customers in the 
shop is 5 or less is 1 − 0.2621 = 0.7379 or 73.79 percent.



CHAPTER 3

The Basics— 
Multiple-Channel,  
Single-Phase Model

When demand exceeds the output of a business, either that business 
must become more productive, increasing its output rate to cope with 
the increased demand, or adding more capacity to satisfy it. In a service 
situation, you either reduce your average service time per server or you 
add more servers. In this chapter, we expand the basic waiting line analysis 
to take into account the effects of adding more servers. In Chapter 6, we 
will explore the alternative of reducing service time.

Figure 3.1 shows a simple multiple-channel, single-phase model 
M/M/s with two servers. Two queue configurations are possible: a sepa-
rate line for each server and one queue feeding both servers.

Grocery and retail store checkout lines, traffic lanes, and old-style 
ticket counters are common examples of the separate lines configuration, 
and most banks and post offices are common examples of the single line 
configuration that directs each customer to the next available server. Some 
authors refer to the single line arrangement as a “snake” configuration 
because it often requires a winding layout to accommodate its length. 
A common example is the arrangement at airports before the passenger 
security checkpoints.

You may think that analyzing this will be easy. Your intuition may 
lead you to believe that all you would have to do is either multiply the 
service rate by the number of servers for a single line feeding two servers 
or divide the arrival rate in half for two separate lines and then use the 
performance measures discussed in Chapter 2 for the single-channel, 
single-phase model M/M/1. However, this is incorrect for a single service 
location with more than one server because the number of customers for 
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one server is not independent of the number of customers for the other 
server. There are other nuances to be considered, such as the probability 
of no customers for one server when the other server is still busy, the 
probability that a newly arriving customer will pick a particular line in the 
separate line per server configuration, or the probability that a customer 
in a slowly moving line will change lines to a more quickly moving line  
(a process called jockeying).

Figure 3.1  Multiple-server waiting line configurations: (a) separate 
line per server and (b) one line feeding both servers

(a)

(b)
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To analyze the basic behavior of this model, we must make 
some assumptions, where the full Kendall notation for the model is 
M/M/s/∞/∞/FCFS:

•	 The arrival rate distribution is described by a Poisson distribu-
tion using an average rate λ, which means that the interarrival 
times can be characterized by an exponential distribution 
with an average interarrival time of 1/λ. Interarrival times are 
independent of the number of customers in the system.

•	 The service time distribution for each server is defined by an 
exponential distribution with an average service time of 1/µ, 
where µ represents the average service rate. The service rates 
are considered to be the same for each server. Obviously, a 
new server is likely to be not as productive as an experienced 
server. However, keep in mind that the waiting line equations 
are based on a steady state condition, which implies that the 
new server has attained the average service rate capability. 
How long this may take is discussed in more detail in 
Chapter 5.

•	 Service times are independent of the number of customers in 
the system.

•	 The number of phases in the service is one. We are assuming 
here that each server can do everything for the customer in 
the respective business: take the customer’s request, perform 
the necessary actions, and collect any payment. However, in 
many businesses where there is a higher volume of customers 
and several employees, some of these actions are likely to be 
assigned to only one or more of the servers. Some examples 
are the teller handling business customers at a bank or the 
express line at a grocery for customers with only ten items or 
less. We will discuss some of these complexities in Chapter 5.

•	 The arrival or calling population is infinite in size. This avoids 
complications introduced by the possibility of having served 
all available customers.

•	 The length of the waiting line(s) can be infinite. Although 
not really possible in real-world situations, this avoids analysis 
complications introduced by the rare possibility that some 
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customers are blocked from entering the line. We will discuss 
the effects of limited line lengths in later chapters.

•	 The priority rule is first come, first served (FCFS).
•	 Balking or reneging by customers is not considered in the 

analysis.
•	 Jockeying is allowed in separate line configurations.
•	 The average arrival rate is less than the average total service 

rate (λ < sµ). That is, the multichannel utilization factor  
(ρs = λ/sµ) is less than 1.

This last requirement clarifies an error that occasionally occurs in the 
queuing literature. Some texts consistently use a value for ρ as defined for 
the M/M/1 model in their equations for the M/M/s model, while other 
texts use a ρ value equivalent to ρs but without the s subscript to indicate 
that their use of ρ has a different definition in the M/M/s equations. 
In this monograph, ρ always represents λ/µ, s represents the number of 
servers, and ρs is used to represent λ/sµ. Thus, ρs = ρ/s. For a given average 
arrival rate and an average service rate per server, the minimum number 
of servers must then be large enough so that ρs is less than one. The actual 
number of servers for many situations is likely to be greater than this 
minimum number to achieve desired performance values.

As for the M/M/1 model discussed in Chapter 2, there are different 
versions of some of the multiple-channel performance measure equations 
in the literature regarding queuing analysis. Some alternate versions 
are provided here for your reference, with what is considered to be the 
more common version listed first. The various performance measures 
are listed in the same order as they are presented for the M/M/1 model in 
Chapter 2. Additional measures special to the M/M/s model are discussed 
in Chapter 5. You are reminded that the term system includes not only 
the number of customers waiting in line but also the customer(s) being 
served.

•	 M/M/s utilization factor: ρs = λ/sµ: for an M/M/s model, this 
value must be less than one for the following equations to be 
valid.
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•	 Probability of zero customers in the system: The equation for 
P0 here is more complicated:1
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•	 Probability of exactly n customers in the system: This equation 
has different forms dependent on n compared to the number 
of servers:
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•	 Probability that the number of customers in the system is 
equal to or greater than the number of servers (e.g., all the 
operators in a call center are busy):
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•	 The average number of customers in the system:
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•	 The average total time customers spend in the system:

W = L/λ = (L
q
/λ) + (1/µ).

•	 The average number of customers waiting in the queue (not 
yet being served):

L
q

(  – L = λ/µ),

or, alternatively,
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•	 The average time customers wait in the queue before being 
served:

W
q
 = L

q
/λ.

Now, let us examine these expressions. First, we consider the case 
where s = 1. This is the M/M/1 model. Do the equations reduce down 
to the equations given in Chapter 2 for the M/M/1 model? Because they 
should, this is a good check for both typographical errors when using 
the multiple-channel equations from your favorite reference and for 
validating your understanding of what the more advanced mathematical 
notation signifies.

My classroom experiences indicate that it would be useful at this time 
to review some mathematical notation to save you the effort of looking it 
up for yourself.

The exclamation point indicates a factorial expression, where

n! = 1 × 2 × . . . × (n − 1) × n.

When n = 0, n! = 1.
Any value raised to a power of zero is 1. For example, (x − 1)0 = 1.

The summation term 
i

n
ix

=
∑

0
 is shorthand notation for x0 + x1 + x2 +  

. . . + xn+1 + xn, where i is a counter that represents the parameter range 
from 0 to n. Of course, x0 = 1.

Returning now to the equations at hand, the key parameter that must 
be derived first is P0 because its value is necessary to determine the other 
measures. Equation 3.1 can be a nasty piece of work with increasing 
chances of making a mathematical error when there are many servers to 
deal with. Likewise, determining L (Equation 3.4) also requires care. The 
equations for L and P0 can be expressed differently using only the value 
for s and the ratio of λ/µ. This allows an easier computation and enables 
the creation of reference tables for P0, Lq, and L for various combinations 
of λ/µ and s when using the M/M/s model. These tables are provided in 
Appendix C.
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The good news is that the expressions for queue length and waiting 
times are quite simple thanks to Little’s Law.

The probability of just n customers in the system (Equation 3.2) is 
useful for determining how likely it is that one or more servers are idle. 
This helps later when scheduling workloads in a place like a grocery store 
because it gives you an estimate of the slack time available for servers, who 
may then, for example, help restock shelves or do other work.

Another useful observation is that a service manager can obtain an 
estimate of the overall average waiting time per customer by merely 
tallying the number of customers who enter the business during some 
selected time interval and counting the number of customers in the 
business at the end of that time interval. By collecting this information 
for several selected sequential time periods, say every 15 minutes during 
a typical business day, you can average the results to obtain estimates of 
L and λ. Hence, using Little’s Law, W = L/λ. An example of this will be 
discussed in Chapter 7.

Example 3.1  Coffee Shop with Two Servers

Let’s return to the Ken’s Caffeine Fix example in Chapter 2. The coffee 
shop has an average arrival rate (λ) of 24 customers per hour and an 
average service rate (µ) of 1 customer every 2 minutes = 30 customers/ 
hour. Recall that the average time spent waiting to be served in that 
coffee shop was eight minutes, which is much too long for the typical 
office worker desiring a cup of coffee during his or her break. The 
average line length was 3.2 customers.

One solution to reduce the waiting time is for the owner to hire 
another server to increase the overall service rate for the coffee shop. 
So, plugging in the values for two servers in Equation 3.1 for P0, we 
should get

P0 2

1

1 24 30
24 30

2 1 24 60

0 428571=
+ +

−

=
( )

( )
( ( ))

. .
/

/
/

You may ask, “Is this value correct? We only doubled the number 
of servers, but P0 has more than doubled compared to the M/M/1 
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model.” The answer is yes, and it indicates that simply doubling the 
service rate of a single server is not the same as adding another server. 
This observation has important implications when deciding whether 
to hire another person or invest in service improvements (discussed 
in Chapter 6). Table 3.1 compares the performance measure results 
for the M/M/1, M/M/2, M/M/1 with µ doubled, and M/M/1 with 
λ halved approaches. This will help illustrate why such simplified 
approaches, although they look like they would intuitively work, do 
not provide accurate answers.

Some readers may also ask, “Why are the answers expressed in so 
many significant digits?” In queuing analysis, particularly for the more 
complex models, it is important that you maintain as much precision 
as possible in the intermediate computations until you obtain the 
final result, which then can be rounded to a less detailed answer. Not 
doing this can have a noticeable effect on the final result. Not being 
aware of this creates considerable confusion for students who are doing 
homework together because when they compare their results, their 
answers often do not agree—leading them to assume that one of them 
has made a mistake.

Now that we have the value for P0, we can determine the probabil-
ity that just one server will be idle. Using Equation 3.2 for one server 
idle (i.e., n = 1 customer in the system), this is simply

λP0/µ = ρP0 = 0.343.

Again, this is useful to know when considering how much of a new 
employee’s time can be used for work not directly related to serving 
customers.

Determining the probability of more than five customers in the 
shop is much more complicated than the simple formula used for the 
M/M/1 model. Now we need to determine the respective probabilities 
of just 0, 1, 2, 3, 4, and 5 customers in the shop using Equation 3.2, 
add those values together, and then, recalling that the total of all possi-
ble probabilities must equal 1, subtract that sum from 1 to obtain the 
probability we seek. Without showing the intermediate calculations, 
the values in this example are P1 = 0.343, P2 = 0.137, P3 = 0.055,  



	 THE BASICS—MULTIPLE-CHANNEL, SINGLE-PHASE MODEL	 31

P4 = 0.022, and P5 = 0.009. We have already calculated P0 and sub-
tracting the sum of probabilities from 1.0 gives a value for Pn>5 = 0.006 
or 0.6 percent, which is a large improvement over the 26.2 percent 
value for the M/M/1 model.

Now we consider our major concern, “How much did we reduce 
the average waiting time?” First, we need to calculate the average line 
length using Equation 3.4. Plugging in the numbers using the P0 value 
determined earlier, we should get

L
/

! /
0.9

( )
( ( ))

.=
× −

× + =24 30
2 2 1 24 60

0 428571
24
30

3

2 552381 customer

Dividing L by λ gives us a total average customer time W in the 
shop of 0.039682 hour, or roughly 2.4 minutes, which is a much more 
reasonable time to get a cup of coffee. The corresponding average 
length of the queue is now 0.152381 customer, and the average wait 
in line before being served is less than a minute at 22.9 seconds.

Table 3.1  Comparison of the results using correct analysis methods 
with the results using incorrect methods (Shaded results)

M/M/1 M/M/2 M/M/1 (2µ) M/M/1 (l/2)
P0 0.2 0.428 0.600 0.600

L 4 0.952 0.667 0.667

Lq 3.2 0.152 0.267 0.267

W 10 minutes 2.38 minutes 3.33 minutes 1.67 minutes

Wq 8 minutes 0.38 minute 1.33 minutes 0.67 minute

Finally, let’s return to the earlier comment about why one should not 
use the M/M/1 equations in Chapter 2 for determining the enhanced 
performance provided by adding another server. Referring to Table 3.1, 
if one simply doubles the service rate using a single line, the average line 
appears to be shorter than the M/M/2 solution, but the average total wait 
is longer. If one assumes that customers will evenly split between separate 
lines for each server (i.e., halving the arrival rate), the average line length 
and the average total waiting time are both smaller than for the M/M/2 
solution. What are the reasons for not being able to use the results in the 
shaded cells of Table 3.1?
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As will be explored further in subsequent chapters, there are several 
subtle things going on here. One server working at an average of 30 sec-
onds per customer is not the same as the combination of two servers 
each working at an average of one minute per customer. The average 
throughput is the same, but the combined variance in the service rate for 
two servers is not the same as the variance for a single server. In addition, 
the average service rate of 2µ is valid only when both servers are busy. 
When only one server is busy, the service rate is µ.

Referring to our discussion of state diagrams in Chapter 1, let us 
change the situation from a single-channel system to a multiple-channel 
system with two servers. An example would be a call center with two 
operators and no ability to have callers on hold. The output from state 2 
back to state 1 shown in Figure 1.3 would be 2µ for a two-server system. 
The output from state 1 back to state 0 would remain the same at μ 
because only one server would be required and the second server would 
be idle. The set of expressions for Equation 1.3 would change to

State 0: (P
1
 × µ) = (P

0
 × λ),

State 1: (P
0
 × λ) + (P

2
 × 2µ) = (P

1
 × λ) + (P

1
 × µ),

State 2: (P
1
 × λ) = (P

2
 × 2µ).

Solving for P0, P1, and P2 in the same manner as described in Chapter 1, 
we obtain

P
0
 = 1/[1 + ρ + (ρ2/2)],

P
1
 = ρ/[1 + ρ + (ρ2/2)],

P
2
 = (ρ2/2)/[1 + ρ + (ρ2/2)].

The results show a relative increase in the probabilities of states 0 and 
1 and a corresponding decrease in the probability of state 2, as we should 
expect. Again, adding P0, P1, and P2, we obtain a value of 1 as a check on 
our derivation.

When a customer enters a shop with two lines, the customer normally 
picks the shorter line, but he or she can pick the longer line if the customer 
perceives that the shorter line has a customer ahead in line that is likely to 
require a much longer service time (e.g., a person with a large number of 
packages at the post office).
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Customers may change lines if the line they are in is moving slower 
than the other line. (We all have done this in slow-moving traffic when 
given an opportunity to move into a lane that appears to be moving faster.) 
This behavior is called jockeying. The multiple-channel configuration of a 
single line feeding the next available server prevents jockeying and reduces 
the chances that a new customer will get stuck in a line behind a customer 
requiring a long service time.

You can divide the arrival rate if you establish a separate location 
for the second server because the possibility of customers choosing or 
jockeying between the lines is then eliminated. Then the two lines can 
be considered to be independent of each other, and each can be analyzed 
separately using the M/M/1 model equations. In such situations, the 
arrival rate for each location is determined by dividing the original total 
arrival rate according to what percentage of your customers you estimate 
will go to each location.

You can have an average total waiting time that is less than the 
average service time when the customer volume is low (ρ < 0.5) because 
the probability of a long service time for one customer delaying other 
customers is reduced. In effect, you are averaging the service time at the 
windows with a customer with zero service time at the windows with 
no customers. In addition, when you use an exponential distribution 
to describe the range of possible service times, there is a cumulative 
probability that at least 63 percent of the possible service times will be 
shorter than the average service time.

Correspondingly, the cumulative probability for possible service times 
greater than the average service time is therefore 37 percent. It should be 
noted that these service times can be much longer although they only 
account for 37 percent of the potential customers. If the service time 
can be more accurately represented with a normal distribution, such as 
businesses providing only standardized services, these cumulative proba-
bilities would each be 50 percent.





CHAPTER 4

More Complex  
Single-Channel Models

In many service businesses and manufacturing line applications, the basic 
M/M/1 model does not provide useful results that appear to agree with 
reality. There are several possible reasons for this poor performance:

•	 Chief and foremost, the waiting line formulas are based 
on the waiting line achieving a steady-state condition. This 
takes time and should lead you to the observation that the 
formulas are likely to be a poor predictor of what occurs at 
the beginning of a business day.

•	 The service time distribution is not best described by an 
exponential distribution.

•	 The capacity for accommodating the waiting line is limited.
•	 The calling population is not infinite.
•	 The interarrival time distribution is not best described by an 

exponential distribution.
•	 The M/M/1 model is based on a single-service phase, where 

the server performs all the service required. How do we 
handle situations where there is more than one phase or step? 
In some cases, we can combine the separate service steps to 
approximate a single phase. In others, we require either more 
complicated analysis approaches or simulations to obtain the 
performance data we want.

There are several adjustments we can make in the performance 
measures to cope with many of these situations. Some will work out 
well; others will give us only rough estimates of what is happening. In 
such cases, discrete simulation models may be the only way to gain more 
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accurate insight into what is occurring. Some examples of simple simu-
lations that can be done in Excel to analyze these situations are discussed 
in Chapter 7.

Instead of the normal choice of an exponential distribution for the 
interarrival and service times, we have a variety of probability distribu-
tions that can be used to more accurately represent a particular service 
business situation. Some of these distributions will make the performance 
measures more complicated to determine. Some will require the use of 
simulations because of the lack of suitable, closed-form (analytical) solu-
tions. The good news is that because Little’s Law applies regardless of our 
choices for service and arrival distributions, all we have to be able to do is 
to calculate L, Lq, W, or Wq to determine the other values.

Alternate Service Time Distributions

The M/G/1 and M/D/1 models allow for other choices of service time 
distributions than the exponential distribution. Some common situations 
that require a different choice are when

•	 The minimum service time is significantly greater than the 
nearly zero times allowed by an exponential distribution;

•	 The service time may have a much smaller variance than 
allowed by the exponential distribution;

•	 The service time may even be consistent enough to be 
considered a constant value;

•	 The service time can have a discrete distribution, such as in 
the case of a business offering only a few standardized services;

•	 Or the service time can be a collection of exponentially 
distributed service times, such as in the case of different 
classes of customers being served by the same facility.

Fortunately, we can obtain the steady-state average performance 
measures for many of these situations by using the Pollaczek-Khintchine 
(P-K) formula.1 This formula uses the coefficient of variation (Cx) for a 
probability distribution of x to calculate the average waiting time in line 
(Wq). Because we are dealing only with the average steady-state value for 
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the waiting time, the shape of the probability distribution used for the 
service time is unimportant as long as we know the distribution’s mean 
value and standard deviation or variance (the standard deviation squared). 
Here we assume that for an M/G/1 model, x represents the mean service 
time, and the mean service time is the reciprocal of the average service 
rate (µ):
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Examine this formula carefully. For a constant service time where the 
standard deviation is zero, the time spent waiting in line is exactly half of 
what is predicted for the M/M/1 model using the same average service 
time.

You may very well say, “No service time is exactly constant where 
people are involved, what then?” In that case, we can use a normal dis-
tribution, where we collect samples of actual service times and calculate 
their average (1/µ) and corresponding standard deviation (σ). This would 
give a C(1/μ ) value of µσ, and Equation 4.1 for a M/G/1 model using a 
normal service time distribution becomes

		
W .q = ×

−
×

+( )
= +

−
1 1

2
1
2

2 2 2

µ
λ

µ λ
(µσ) ρ µ σ

µ λ( )
( )

( )
� (4.2)

Let us examine this expression more closely. It says that as the variance 
in the service time increases, the wait becomes longer even though the 
average service time does not change.

Here is an important corollary: Reducing variances in the service time 
reduces the average waiting time. This corollary is important because most 
textbook examples focus on shortening the average service time to reduce 
the average waiting time. Reducing variability in manufacturing or pro-
duction step service times, particularly when there are many steps required 
can often be more beneficial than trying to shorten service time. This is 
one of the benefits of applying statistical process control (SPC) methods 
whose focus is on reducing variability in processes. Some other approaches 
for addressing service time variability are discussed in Chapter 6.
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What about the problem with the probability of unrealistically short 
service times using the exponential distribution? Unfortunately, the 
steady-state performance measures do not illustrate this problem; one 
must use simulation to see its effect. However, the subtle effects on aver-
age waiting time and line lengths can be taken into account by choosing 
general service time distributions that have a lower probability of shorter 
service times. In addition to the constant and normal distributions, we 
can use the Erlang probability density function, which is defined by the 
following formula:
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where α = the scale factor,2 k = the shape factor, αk = the mean, 
and the variance = α

2k. In a gamma distribution, k is a continuous 
value; in an Erlang distribution, k is restricted to integer values greater 
than zero and, in essence, represents the number of identical but still 
independent exponential distributions that are added together to form 
an Erlang distribution. When k = 1, this distribution defaults to the 
exponential distribution, where the average time is α (substitute 1/λ for 
the interarrival time or 1/µ for the service time). This leads to another 
version of Equation 4.3 that is easier to understand when using it for 
service time distribution in M/Ek/1 models because it is expressed in 
terms of the service rate instead of α:
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Therefore, the mean becomes k/µ, and the variance becomes k/µ2. 
Plots of Equation 4.4 for an average service rate of 5 and using values 
of k = 1, 2, and 4 are shown in Figure 4.1. This service rate corresponds 
to an average service time of 0.2; while you may observe that the peak 
of the probability distribution for k = 2 roughly occurs at that time, 
that fact does not mean that the best value for k is 2. However, the 
mean for that curve is k/µ = 2/5 = 0.4, indicating that there are a 
larger number of possible times greater than the most probable time 
compared to the number of possible times less than the most probable 
time.
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This illustrates a common area of confusion when trying to under-
stand the mathematics behind the waiting line performance equations. 
My students often confused the maximum value of a probability density 
function with the average they obtained from a collection of observa-
tions. They also forgot that the Central Limit Theorem states that the 
distribution of sample averages is normally distributed regardless of the 
underlying distribution being sampled. I demonstrated to students that 
knowing the mean is not enough to determine which probability density 
function applies by giving them two sets of data that provided the same 
mean and standard deviation but showed significantly different frequency 
distributions when the raw sample results were plotted in histograms.

So, let us use the mean and variance for an Erlang distribution in the 

P-K formula given in Equation 4.1. In this case, C
k

,/( )1
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As a check, you can see that when k = 1, we obtain the same  
equation for an exponential distribution in the M/M/1 model. What if 
we try k = 2 to reduce the possibility of really short service times? Then 
using Equation 4.5, Wq = 75 percent of the Wq for the M/M/1 model. 
If the choice for k is much larger, we converge on the same result as for a 
constant service time.

Figure 4.1  Probability density functions for an average service rate of 
5 using an Erlang distribution with k = 1, 2, and 4
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How can this be? We have reduced the probability of short service 
times, so should the wait not be longer? This illustrates how our intuition 
is sometimes misleading when it comes to analyzing waiting lines. First, 
keep in mind that the exponential distribution was not representing real-
istic service times for Ken’s Caffeine Fix, so comparing the new Wq to an 
incorrect Wq is inappropriate. Second, the higher k factor could have also 
reduced the probability of really long service times. What really matters 
is which service time distribution is the best representation of reality for a 
business like Ken’s Caffeine Fix.

Example 4.1  Coffee Shop Using Different Service Distributions

Let us compare the differences in performance using different service 
distributions for Ken’s Caffeine Fix analyzed in Example 2.1. The val-
ues for ρ and P0 remain the same, but Wq, Lq, W, and L will vary. The 
average service rate of 30 customers per hour will be the same for all 
distributions, and we will assume a standard deviation of service time 
of 15 seconds for the normal distribution. Table 4.1 shows the results.

Observe that the best performance is with a normal service time 
distribution. Why is the constant service time not providing the best 
performance? Once again we must consider that when there is some 
variance in service time, we can have better results because there is a 
reasonable probability that the shorter service times will occur at the 
same time as when there is a higher than average arrival rate, enabling 
the line to move faster in such cases. Similarly, there is also a probabil-
ity of longer service times occurring when the arrival rate is lower than 
normal, which will reduce their usual effect in increasing line lengths. 

Table 4.1  Ken’s caffeine fix coffee shop performance measures for 
different service distributions with an average service rate of 30 
customers per hour

Performance Exponential Constant Normal Erlang (k = 2)
Wq (minutes)   8 4 3.05 4.5

W (minutes) 10 5 3.18 5.63

Lq (customers)   3.2 1.6 1.22 1.8

L (customers)   4 2 1.52 2.25
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The combination of these two possibilities results in slightly improved 
performance as long as the variance in service time is not too large. 
For example, if the standard deviation increases from 15 seconds to 
30 seconds, Wq increases to 3.19 minutes, and Lq increases to 1.28 
customers—as expected.

What about the beta distribution commonly used to represent com-
pletion times in project management planning? This asymmetrical distri-
bution could be used because it allows the selection of a minimum time 
and the probability for much longer times. However, its mean and variance 
terms are much more complex compared to the choice of an Erlang  
distribution with the proper value of k. In project management analy-
sis, the beta distribution is often approximated by a normal distribution  
to simplify the mathematics. This approximation and its use for probabi-
listic estimates of project completion time can be found in many project 
management texts.

Finally, sometimes there is not enough information to determine 
what might be the best distribution to use. In such cases, we can take 
what historical operational data we do have regarding service times to 
form a discrete distribution that can be used in a simulation program. An 
example of this will be discussed in Chapter 7.

Alternate Arrival Time Distributions

For most service business situations, the exponential distribution is a very 
good representation of customer arrival behavior. But, for some busi-
nesses, a better representation is needed. The Kendall notation for this 
situation using a single-channel, single-phase system is G/M/1:

•	 The arrival distribution may not be best represented by a 
Poisson distribution.

•	 Arrival rates can vary during the day and often have regularly 
occurring peak and slack periods depending on the nature of 
the service(s) provided.

•	 The arrival population could be a combination of different 
types of customers.
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When appointments or production schedules are used to control the 
arrival rate, the notation is D/M/1. You may ask why we would want 
to use waiting line analysis for such a predictable situation. If we want 
to select the best time between successive appointments, it is necessary to 
evaluate the effects of varying service times. If the appointment duration 
is too short, we end the day with a long line of disgruntled customers still 
waiting to be served. If the appointment time is too long, we reduce the 
number of customers we can accommodate per day and will have more 
idle time than we can profitably use to do other tasks, such as preparation, 
cleanup, record keeping, and so forth. In other words, we must ensure 
that the average arrival rate is sufficiently lower than the average service 
rate to prevent unnecessary backups but not so low that we unnecessarily 
limit our capacity and create excess idle time. Selecting the optimal value 
is a cost decision that we will discuss in Chapter 6.

Dealing with varying arrival rates is difficult because the waiting line 
equations assume steady-state conditions. For small businesses, there is 
likely to be insufficient volume to achieve a steady-state situation each 
day. For businesses such as government driver’s license bureaus or the post 
office, where the customer really does not have a choice of an alternate 
supplier, you can average the total number of arrivals during the day to 
determine the level of service required. For businesses such as Ken’s Caf-
feine Fix, staffing has to better match the ebb and flow of customers to 
provide acceptable service for customers who are not as tolerant of long 
lines and waiting times.

In both cases, but more so for Ken’s and places like banks and gro-
cery stores, it is important to have staff that can perform other business 
tasks when customer arrival volume is low. Knowing how much time is 
required for those tasks and the estimate of P0 from the queuing analysis 
can provide guidance as to the total staffing needed.

Many businesses have collected point-of-sale data regarding the nature 
of the services they provide and the types of customers. Such data can be 
used to improve waiting line performance in several ways, particularly 
when more than one server is available, as will be discussed in more detail 
in Chapter 5. For single server operations, this information can be used 
to ensure that adequate supplies are available for the different services 
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requested by customers and help identify those parts of the service that 
might be delegated to some of the customers. For example, a coffee shop, 
noting that about 30 percent of its customers want a cup of house coffee 
only, could set up a self-serve station for those customers so that customers 
wanting more complex coffee mixtures could be served more quickly.

In factory applications, manufacturing custom or semicustom prod-
ucts creates different classes of arrival and service rates. Depending on 
the overall demand separate production lines or appropriate production 
scheduling could be used to provide such products efficiently. Another 
application where different classes of customers are likely is the machine 
repair model discussed later in this chapter when we cover the limited 
calling population model.

From an analysis viewpoint, it is relatively easy to combine separate 
classes of customers if the arrival behavior of each class can be described 
by a separate exponential distribution. In this case, the average arrival rate 
for the total distribution is just the sum of the individual average arrival 
rates. That is, λtotal = λ1 + λ2 + λ3 +. . . . Similarly, a total exponential 
distribution can be separated into individual exponential distributions 
according to their probability of occurrence.

Finally, there is one common arrival scenario that is difficult to 
classify, let alone analyze. Consider the restaurant situation where there 
is the usual exponential arrival of individual customers combined with 
regularly scheduled arrivals who have made reservations. So how does 
the restaurant handle an unscheduled tour bus unloading a large group 
of passengers for lunch or dinner? Does the restaurant mix them in with 
individual customers to determine the appropriate service level or do they 
treat the group separately? What if the tour bus stops are scheduled?

A closed-form solution does not exist for many of these arrival 
situations, and those that have been developed for very special situations 
are beyond the mathematical scope covered by this monograph. What 
we can do here is to attempt to break such a situation into separate parts 
that can be analyzed individually. For example, in the restaurant scenario, 
management could choose to require that groups above a certain size 
make a reservation to be served—in essence, creating two separate service 
operations that could be analyzed independently.
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Limited Capacity

There can be physical limits on how many customers may be in line. This 
may take the form of how many customers can be accommodated on 
hold when a single operator at a call center is busy or when there is not 
enough room to accommodate a long line in a small shop. The Kendall 
notation for this situation is M/M/1/K/∞/FCFS, where K is the maxi-
mum number of people in a queue, including the customers being served 
at the moment. A specific example of this model was analyzed by the state 
diagram discussed in Chapter 1 and shown in Figure 1.3. In that example, 
the value for K was two customers.

The performance measures for an M/M/1/K model are similar to 
those for the M/M/1 model but with slight modifications to account for 
a system capacity of K customers:

•	 Utilization factor: ρ = λ/µ; for a M/M/1/K model, ρ must 
be ≤ 1

•	 Probability of zero customers in the system: P0 = (1 − ρ)/(1 − 
ρ

K+1) for λ < µ and P0= 1/(1 + K) for λ = µ
•	 Probability of exactly n customers in the system: Pn = P0 ρ

n 
for n ≤ K

•	 Probability that the server is busy: Pn>0 = 1 − P0 = ρ
•	 Probability that a customer will be turned away: PK = P0 ρ

K

•	 Average number of customers in the system: L = K/2 for λ = µ 
and
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•	 Effective arrival rate: λ′ = λ(1 − PK)
•	 Average total time customers spend in the system: W = L/λ′ = 

L/(λ(1 − PK))
•	 Average number of customers waiting in the queue (not yet 

being served): 
•	 Average time customers wait in the queue before being served: 
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Recall that for Little’s Law, we need to use an effective arrival rate (λ′), 
which is the arrival rate multiplied by the probability of acceptance (one 
minus the probability that a customer will be turned away). There are 
three possible assumptions here: (1) We lose the customers who are turned 
away because they have alternate service choices with our competitors, 
(2) those customers return later to try again as would be the case for a 
call center where they have no other choice for the support they want, or 
(3) the blocked customers give up trying.

Because we lose some customers in the first assumption or can smooth 
out peak arrival rates for the second assumption by forcing customers to 
call back again later, we can allow the average arrival rate to be as high as 
the average service rate, which explains the conditional equations for P0 
and L.

PK gives us a value for lost business that can be used to compare with 
the cost of adding additional line capacity. PK is sometimes called the 
blocking probability.

The astute reader may notice that the equation given for P0 when 
K = 2 is not the same as the state diagram equation derived for P0 in 
Chapter 1. Let us compare them:

Does 1/(1 + ρ + ρ2) = (1 − ρ)/(1 − ρ3)?

Multiplying both sides by the denominators to remove the fractions, 
we get

1 − ρ3 = (1 − ρ)(1 + ρ + ρ2) = 1 + ρ + ρ2 − ρ − ρ2 − ρ3 = 1 − ρ3.

Okay, they match! (Before I get too cocky, maybe we should also 
check the respective equations for L just to be sure.)

Once we have the probability for each state in Figure 1.3, we can 
determine the average number of persons in the system by multiplying 
the number of persons represented by each state by that state’s probability. 
That is, L = (P0 × 0) + (P1 × 1) + (P2 × 2) for the state diagram in Figure 1.3, 
which gives L = (ρ + 2ρ

2)/(1 + ρ + ρ2). Does that equate to the expression 
in Equation 4.6 when K = 2? That is, does (ρ + 2ρ

2)/(1 + ρ + ρ2) = [ρ/
(1 − ρ)] − [3ρ

3/(1 − ρ3)]?
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Multiplying both sides by the denominators to remove the fractions 
and then combining the terms on both sides, we can see that the two 
expressions do equate to the same value.

It is suggested that you do this check for yourself as practice in verifying 
formulas. When there are several terms with subscripts and superscripts, it is 
easy for typographical errors to occur. Verifying equations and making sure 
that the units of measure cancel out to the desired set of units are methods for 
detecting many typographical errors in the literature and when drafting your 
own presentations.

The lesson to be learned here is that customers lost because of capac-
ity limitations are not often noticed because the line is longest at those 
times when the server is busiest. This also results in the average line 
length and overall waiting time being shorter, creating an illusion that 
the service is being performed more efficiently than it is. A 5  percent 
customer loss may not seem to be that significant, but when you 
compare its lost revenue with the profit margin for many small service 
businesses …

Example 4.2  Coffee Shop with Limited Capacity

Returning to Ken’s Caffeine Fix, the owner is concerned that the 
shop is turning away customers because the maximum customer 
capacity is seven customers. Using the same arrival rate of 24/hour, 
a service rate of 30/hour, and a capacity K = 7, we determine P0 to 
be (1 − 0.8)/ (1 − 0.88) = 0.240319. Compare this value with the 
20 percent value obtained for P0 in Chapter 2; you can see that the 
loss of customers turned away has increased the probability of idle 
time.

To determine the percentage of customers lost, we need to deter-
mine the value for PK = P0 ρ

K = 0.240319 × 0.87 = 0.050398 = 5%. 
This loss creates an effective arrival rate λ′ = 24 × (1 − PK) = 22.8/hour, 
and the average line length L = 4 from Chapter 2 is reduced using 
Equation 4.6 to 4 − [(8 × 0.88)/(1 − 0.88)] = 2.39 customers. The total 
wait in the system has been reduced from 10 minutes to 2.39/22.8 = 
0.1048 hours = 6.29 minutes.
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Limited Calling Population

The available customer population may be limited, as in the case for a 
service operation maintaining a fleet of airplanes for a major airline or 
a group servicing the copiers at a company. The Kendall notation for 
this situation when there is only one server is M/M/1/∞/N/FCFS, where 
N represents the number of customers or items to be served. In many 
textbooks and articles, this situation is often referred to as the machine 
repairman problem.

Because the costs of downtime can be quite high, there are often two 
or more servers to get equipment back in service quickly. This complicates 
the closed-form solutions considerably. This situation will be discussed in 
much more detail in Chapter 5. Here, we will discuss the single-server 
model because it provides some insight into the fundamental issues 
involved and is appropriate for many small service operations respon-
sible for maintaining and repairing a small set of equipment. This also 
applies to those operations where one professional serves a select group 
of customers.

The arrival rate for a repair operation supporting N machines is usu-
ally dictated by three things: the recommended preventive maintenance 
period, the expected failure rate, and the equipment usage rate (supplies 
replenishment). Equivalents of these rate components also apply to han-
dling a select group of clients, such as at a financial advisor brokerage: 
regularly scheduled status appointments, typical percentage of emergency 
consultations, and volume-related requests.

We can attempt to analyze these classes as one combined calling 
population, or we can assign separate servers for each class. Consider that 
the preventive maintenance arrivals are essentially appointment based, 
and their respective service times are likely to be relatively constant or at 
least normally distributed with small standard deviations. The failure rate 
and subsequent repair times are more likely to be described by exponential 
distributions.

The base arrival rate for an M/M/1/∞/N model is defined by the needs 
of one customer, item, or machine for the situation under consideration. 
In the case of a machine, it can be the expected time between repairs 
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or scheduled maintenance. The effective arrival rate is the base arrival 
rate per unit λu multiplied by the number of units (N − L) in the finite 
population N that are not already in line for service in the system. The 
calculations for P0 with a finite population of N customers (machines) 
are considerably nastier because now we have to account for the reduced 
probability of future arrivals as current arrivals enter the system and are 
being taken care of. This requires using N summation terms, as shown in 
the following set of performance measures:

•	 Effective arrival rate: λ′ = λu(N − L)
•	 Unit utilization factor ρu = λu/µ
•	 Probability of zero customers in the system:
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•	 Probability of exactly n customers in the system:
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•	 Average number of customers waiting in the queue (not yet 
being served):
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•	 Average number of customers in the system: L = Lq + (1 − P0)
•	 Average time customers wait in the queue before being served:

W
q
 = L

q
/(λ

u
(N − L))

•	 Average total time customers spend in the system:

W = W
q
 + (1/µ) = L/( λ

u
(N − L))

Looking at the equation for P0, it increases in value as N becomes 
smaller, which is what we would expect with a lighter workload. However, 
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as N becomes larger, there will be many terms in the denominator. This 
leads some business students to ask the question, “How large would N 
have to be where we could assume that an infinite calling population 
model could give us a ballpark estimate with only a small percentage of 
error? The calculations would certainly be easier to do.”

If we attempt to do this, students are reminded that they must recog-
nize that we are not dealing with the same definition of arrival rate. In a 
repair service situation, the average arrival rate is based on some expected 
rate of failure per unit; as the number of possible items to be repaired 
increases, the effective arrival rate increases. The M/M/1/∞/N model 
takes these increases in N into account in its performance measures, but 
an M/M/1/∞/∞ model assumes an average arrival rate that is independent 
of population size. That is, some of that infinite population can choose to 
never arrive, or at least take a very long time before they choose to do so.

Example 4.3  Repair Service With One Server

Consider an in-house service activity staffed with a single person. 
Campus Reboot is responsible for maintaining a set of network print-
ers located in several buildings clustered together as part of a liberal 
arts college. Campus Reboot is only responsible for repairs because 
routine reloading of paper, installing new toner cartridges, and clearing 
simple paper jams are done when needed by the respective department 
secretaries. At the moment, there are only 10 of these printers in use, 
but their popularity with the faculty for printing exams and quizzes 
is increasing, and the dean of the college wants to know what effect 
increasing the number of printers to 25 or even 50 units will have 
on the repair response. For now, we will ignore the associated costs 
but will return to this example in Chapter 6 to discuss the cost trade-
offs. The failure rate for the current printer model used is 250 hours 
between repairs, and the typical repair takes an average of four hours, 
which includes any time spent to order parts or travel between build-
ings. This information converts into an arrival rate λu per printer of  
1/250 = 0.004 printer/hour and an average service rate of 0.25 printer/
hour. This results in a value for ρu = 0.004/0.25 = 0.016.
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There is an important consideration to note here. Some of you may 
be tempted to multiply the arrival rate per item by the total number 
of items to obtain the average arrival rate for λ. Do not do this because 
the derivation of the equations is based on the arrival rate per unit, 
which I designate by λu to avoid confusion with the more common 
understanding of what λ represents.

For example, consider the state diagram for a population of four 
items, as shown in Figure 4.2, where each state indicated by the hexagons 
represents the number of items L in the system. The arrival rate from state 
0 to state 1 is 4λu because the entire population is available to move to 
that state. Similarly, the number of items available to move from state 3 to 
state 4 is only one because all the other items in the population are already 
in the system. The rate for moving the other direction, reducing the num-
ber of items in the system, is the service rate, which can be applied to only 
one item at a time. If there are two servers instead of one server, then the 
reduction rate is 2µ from states 2, 3, and 4 and µ from state 1.

If you use Excel to determine P0, I recommend having separate col-
umns as shown in Figure 4.3, for the terms in the summation portion 
of the denominator of Equation 4.7: n, (ρu)

n, (N − n)!, and the product 
within the brackets, rather than attempting to compose a single 
expression to calculate P0. Using N as an input value and summing the 
column for the products allows a simpler algorithm for computing the 
final result. This helps minimize computation errors, which is critically 
important for P0 because it is used for subsequent calculations. It also 
allows for easy expansion to larger N values by using Excel’s AutoFill 
capability to copy the respective formulas in each column further down 
the sheet. Appendix E shows the formulas used to determine the results 
in each of the cells depicted in Figure 4.3 for those interested.

0 1 2 3 4

4λ
u

3λ
u

2λ
u

1λ
u

µ µµ µ µ

Figure 4.2  State diagram for a single-server system with a limited 
population of four items with individual arrival rates of λu
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Table 4.2 summarizes the results for repair populations of 10, 25, 
and 50 printers in response to the dean’s request regarding the effect 
of adding more printers to Campus Reboot’s repair response. With 
10 printers, the average wait before repair work begins is about 39 
minutes. This average waiting time increases to about 2.3 hours for 25 
printers and nearly 10 hours for 50 printers. The number of printers 

Table 4.2  Performance measures for M/M/∞/N model with N = 
10, 25, and 50 units using the input data for campus reboot from 
Example 4.3

N 10 25 50
P0 0.842919 0.609848   0.242301

Lq 0.025346 0.225374   1.886103

L 0.182427 0.615525   2.643802

λ′ 0.0392702 0.0975379   0.1894248

Wq (hours) 0.645432 2.310626   9.957002

W (hours) 4.645432 6.310626 13.957

Figure 4.3  Excel setup to determine P0 (shaded cell at upper right) 
and Pn for Example 4.3 with a population of 10 network printers. 
P0 is the inverse of the sum of the products in the fifth column, 
and the other Pns are the respective product for the value of n in 
the first column multiplied by the value for P0. As a check on the 
accuracy of the computations, the sum of the probabilities Pn in the 
sixth column is 1.0 (See the Excel formula view at the beginning of 
Appendix E for the calculations used in this table.)

n (N − n)! N!/(N − n)! (ρu)
n Product Pn

0 3628800 1 1 1 0.842919

1 362880 10 0.016 0.16 0.134867

2 40320 90 0.000256 0.02304 0.019421

3 5040 720 4.1E-06 0.002949 0.002486

4 720 5040 6.55E-08 0.00033 0.000278

5 120 30240 1.05E-09 3.17E-05 2.67E-05

6 24 151200 1.68E-11 2.54E-06 2.14E-06

7 6 604800 2.68E-13 1.62E-07 1.37E-07

8 2 1814400 4.29E-15 7.79E-09 6.57E-09

9 1 3628800 6.87E-17 2.49E-10 2.1E-10

10 1 3628800 1.1E-18 3.99E-12 3.36E-12

Sum 1.186354 1
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It should be noted here that many college textbooks still use lookup 
tables to solve this type of example for both single-channel and multiple- 
channel situations. As a result, the equations presented by those authors 
do not look anything like the equations used here. Instead, they use terms 
and expressions that work with these tables, often referred to in some 
textbooks as finite queuing tables (to be more correct some authors use 
the terms finite queuing for limited capacity models and finite sourcing 
for limited calling population models, which applies here). An example is 
the service factor X = average service (repair) time T divided by the sum 
of the average repair time T and the average time between repairs U. For 
Example 4.3, Campus Reboot’s service factor would be 4/(250 + 4) = 
0.0157. The finite sourcing table for a given repair population level pro-
vides two variables, D and F, for each combination of X and number of 
servers. Using these variables, one can then determine the usual perfor-
mance measures.

Such methods are a product of an earlier time when personal com-
puters and spreadsheet programs were not yet available. At that time, 
calculations like those shown in Figure 4.3 using pencil-and-paper 
methods were tedious, time-consuming, and more prone to errors. 
This led to the development of lookup tables for various values of N, 
service factors, and the number of servers (repair persons) to expedite 
such analysis. Often-quoted examples of finite sourcing tables in college 

awaiting repair increases from the current value of 0.025 printer to 
nearly two printers for a 50-printer population.

Reviewing the results in Figure 4.3, the likelihood of more than 
one printer awaiting repair (two or more printers total in the repair 
shop) by Campus Reboot is less than (1 − P0 − P1) = 0.022214 = 
2.22 percent for the current population of 10 printers.

If Campus Reboot works only a normal 8-hour day, it is likely 
that it will often take more than two days before some departments 
get back their broken printer if the number of printers increases to 50. 
This would be unacceptable given that a normal exam week is only five 
days long. We will return to this example in Chapter 5 to determine 
the effect of adding another repair person to Campus Reboot’s staff.
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textbooks are sample tables for N = 5 or 10 used with permission from the 
1958 reference published by Peck and Hazelwood.3

In this monograph readers are encouraged to use Excel-based methods 
because they allow a wider range of choices and conditions to best suit a 
given business situation. Instead of providing lookup tables, the equations 
for their creation are provided. Readers wishing more details regarding 
the derivation of these equations are encouraged to consult the excellent 
books by Hillier and Lieberman (2010) or Laguna and Marklund (2005).

Multiple Phases

In factory applications and some service businesses, there is more than 
one step (phase) in the process. How do we deal with those cases? 
Because each phase is likely to have a different service rate distribution, a 
closed-form generic solution would be unwieldy, even if the solution were 
possible. Some references are provided for those who are interested in 
pursuing closed-form solutions when they are available. A cautionary note 
is appropriate here. Many of the analytical solutions involve some in-depth 
mathematics and statistics understanding to determine whether they are 
appropriate for your business situation.

What if you do not want to become a math whiz to obtain some 
insight into how a multiple-phase process works? Not to fear, there are 
some characteristics we can work with to gain some understanding about 
such processes without the need for complex mathematics.

•	 The average arrival rate into each phase will be the same, 
assuming no losses or additions at each phase and that the 
average service rate for the phase is greater than the average 
arrival rate, because what went into the previous phase must 
come out of that phase.

•	 If losses or additions do occur during the process, they can 
be handled if we know their percentage related to the initial 
input arrival rate.

•	 In the case of factory applications, we usually have control 
over the arrival rate distribution by using production 
scheduling.



54	 OPERATIONS METHODS

•	 Each phase can have a different service rate without affecting 
the average arrival rates into each phase. WARNING! This 
is still subject to the condition that the average service rate is 
greater than the average arrival rate. If the average service rate 
for a step is less than the average arrival rate, that step will 
become a bottleneck, causing work to pile up before that step 
and that step’s service rate will determine the capacity for the 
entire production sequence of steps.

Given these conditions, we can analyze or simulate a production 
process as a sequence of single-channel, single-phase waiting lines with 
the output of the preceding phase becoming the input to the following 
phase.

What do you need to look out for? A number of things can interfere 
with an otherwise successful simulation model. First, it is very, very 
difficult to include all of the disruptions that can occur in a multiple-phase 
process. Second, relatively predictable disruptions such as downtime for 
each phase for preventive maintenance, repair, operator training, late 
material deliveries, and tool setup time are often overlooked as to their 
effects on service and arrival rates. Third, while it is possible to include 
many disruptions in a simulation model many businesses do not collect 
sufficient operating data regarding their past frequency of occurrence or 
probability of happening. The need for such information and how to 
collect it is discussed in more detail in Chapter 6.

Because we can also accommodate a mixture of multiple-channel, 
single-phase process steps in manufacturing to deal with bottleneck 
capacity issues described above, there is a more detailed discussion of 
multiple-phase applications in Chapter 7.



CHAPTER 5

More Complex  
Multiple-Channel Models

In many service businesses and manufacturing line applications, the basic 
M/M/s model, like the M/M/1 model discussed in Chapter 4, does not 
always provide useful results that appear to agree with reality. In addition 
to the reasons listed at the beginning of Chapter 4, there are added factors 
as a result of using more than one server:

•	 More complex formulas to deal with, particularly for 
situations with limited queues or limited calling populations

•	 The opportunity to separate customers into different classes
•	 The opportunity to treat customers with different priorities
•	 The effects of using different line configurations
•	 Server capability differences (varying service rates)

Equations 3.1 through 3.5 for the basic M/M/s model are restated 
here in a different form using ρ instead of λ/μ.1 This allows for easier 
computation of basic performance values and provides some insight into 
the minimum number of servers needed because ρ is now allowed to be 
greater than one.
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The time spent waiting in line and the total time in the system can be 
easily determined for a given average arrival rate using Little’s Law after 
you have calculated the number of customers in line and in the system. 
The data tables in Appendix C provide the values of P0, Lq, and L for 
various combinations of ρ values and a number of servers up to 10. You 
are encouraged to set up your own spreadsheet to do these calculations for 
values of ρ not listed and/or larger numbers of servers.

Looking at the values listed in Appendix C, one can observe that as 
ρ approaches a value equal to the number of servers chosen, the length 
of the queue rapidly increases. The implication is, like the situation for 
a single-channel model, to not plan for an overall utilization factor, ρ/s, 
greater than 90 percent if you want to have some reserve capacity for unex-
pected increases in the average customer arrival rate (e.g., an unexpected 
tour bus stop for dinner at a truck stop restaurant). Also, the tables do 
not list values for every combination of ρ and number of servers because 
I have arbitrarily limited the values to what I consider to be practical solu-
tions. For example, having more than three servers for ρ < 1 would be a 
waste of resources in most situations.

Looking at some of the values for L, some of my business students 
asked why one would want to plan for fewer customers in the system 
than the number of servers available. They were reminded that the L 
values are a steady-state average over time, but there will often be clus-
ters of customers arriving within a limited period in a real-life situation. 
Without some reserve capacity, the customer waits at those times can be 
unacceptably long. The managerial view here is to have servers whose 
skills are flexible enough so that they can do other necessary things for 
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the business when the number of customers is sparse. Businesses that are 
good at this are grocery stores, banks, and the post office—either calling 
staff to the checkout lines when business is heavy or training employees 
to open another service window when a customer line exceeds a specified 
length.

Limited Capacity

This situation using multiple-channel models is often applied to call cen-
ters where the number of people who can be put on hold awaiting the 
next available representative is limited. When that capacity is filled with 
waiting customers, new customers encounter a busy signal and in effect 
are blocked from entering the system. Estimating how many customers are 
being turned away is necessary to determine how many representatives 
(and phone lines) are needed to provide a desired level of service (the 
percentage of customers who do not encounter busy signals; that is, those 
not blocked from entering the system).

When the number of customers is equal to the number of servers, 
there are no customers waiting in line. This condition occurred in the 
early days of queuing theory when the most common application was 
telephone exchanges using operators to make connections for callers. The 
technology for allowing customers to wait in an electronic line was not 
yet developed, and callers got a busy signal if the operators were already 
engaged with helping previous callers. Such queuing models were called 
an Erlang loss system because potential customers were lost when all the 
servers were busy. When a waiting line application allowed customers 
waiting for service to form a line, it was then called an Erlang delay system 
because those customers were not lost when all the servers were busy; they 
were just delayed in receiving service.

The set of average performance equations for the M/M/s/K model 
with a system capacity of K customers is as follows (K must be ≥ s):

•	 Utilization factors (note that ρ can be greater than 1 if the 
number of servers is greater than 1):

ρ
s
 = λ/sµ

ρ = λ/µ
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•	 Probability of zero customers in the system:
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•	 Probability of exactly n customers in the system:
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•	 Probability of customers in the system greater than the 
number of servers (probability that the servers are busy):
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•	 Probability that a customer will be turned away: PK = 
P0ρ

K/s!sK − s

•	 Average number of customers waiting in the queue (not yet 
being served):
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There is no solution in Equation 5.8 when ρs = ρ/s = 1. 
A solution can be found using L’Hospital’s Rule2 twice to obtain 
the limit for Lq when ρ/s approaches the value of 1. Although the 
resulting numerator terms can be complex, the denominator term 
reduces to 2s!s for ρ/s = 1.

•	 Average number of customers in the system:
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•	 Effective arrival rate: λ′ = λ(1 − PK)
•	 Average total time customers spend in the system: W = L/λ′ = 

L/(λ(1 − PK))
•	 Average time customers wait in the queue before being served:

Like the discussion in Chapter 4 for the M/M/1 model, we need to use 
an effective arrival rate (λ′) for Little’s Law. This is the arrival rate minus 
the customers or items turned away by the limit in line capacity. The 
assumption is that those customers are lost and do not return. Because we 
lose some customers, we can allow the average arrival rate to be as high as 
the average service rate, which explains the conditional equations for Pn 
expressed by Equation 5.7. PK gives us a value for lost business that can 
be used to compare with the cost of adding additional line capacity. PK is 
sometimes called the blocking probability.

Limited Calling Population

Example 4.3 described a repair service with one person responsible for 
maintaining 10 items. When the number of customers or items becomes 
significantly larger, as illustrated in that example, more than one person 
is usually needed to provide an adequate turnaround time for items need-
ing repair or maintenance. There are two approaches for analyzing the 
performance of adding staff:

1.	If an item requiring service is of the type where a service crew can be 
effectively used (such as maintenance on an airplane or a truck), then 
the repair crew is treated as a single server where adding a member 
to the crew hopefully reduces the average service time per item. In 
this case, the M/M/1/∞/N model discussed in Chapter 4 would still 
apply, but we would use a shorter repair time associated with the 
increased crew staff for our calculations.

2.	However, in many repair and maintenance situations, the item 
requiring service can be effectively worked on by only one person. 
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In this situation we need to use the M/M/s/∞/N model to deter-
mine the average performance expected if we decide to add one or 
more servers to improve performance. The disadvantage is that the 
equations become much more challenging to use, and additional 
care is required to avoid mathematical errors.

Recalling the use of an unit arrival rate and associated unit utilization 
factor as discussed for the single-channel limited population model in 
Chapter 4, the set of average performance equations for the M/M/s/∞/N 
model with a limited population of N customers or items to be served is 
as follows (N must be ≥ s):

•	 Arrival rate per unit in the population: λu

•	 Unit utilization factor: ρu = λu/μ
•	 Probability of zero customers in the system:
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•	 Probability of exactly n customers in the system:
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•	 Probability of customers in the system equal to or greater than 
the number of servers (probability that the servers are busy):

P P
N

N n nn s
n

s
u
n

>
=

= −
−∑1 0

0

!

( )! !

ρ

•	 Average number of customers waiting in the queue (not yet 
being served):
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•	 Average number of customers in the system:
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•	 Effective arrival rate: λ′ = λu (N − L)
•	 Average total time customers spend in the system: W = L/λ′ = 

L/(λu (N − L))
•	 Average time customers wait in the queue before being served:

•	 Probability of no waiting time for the next arrival:

Before returning to Example 4.3 to see what improvement is possible 
for a greater number of printers by adding staff, let us consider how 
we might develop our own finite queuing tables3 using Equations 5.10 
through 5.13 in a spreadsheet program like Excel. Similar to the 
multiple-server tables in Appendix C, we can obtain some useful values 
of P0, Lq, and L for various combinations of N, ρ, and s. Like the finite 
queuing tables published by Peck and Hazelwood (1958), it will be best 
if we prepare separate tables for different calling population sizes. But 
unlike Peck and Hazelwood’s tables, we can set up our Excel solutions so 
that we can obtain P0, Lq, and L directly rather than going through the 
use of some intermediary variables in a lookup table.

Unlike the equations provided in Chapter 3 for the basic M/M/s 
model, the equations for P0, Lq, and L when the population is limited 
become too complicated to formulate in a single Excel cell because of the 
extensive summations required in the formulas. Therefore, if you want 
to set up your own set of tables, you will need to use some additional 
columns to compute the summation values for specific combinations of 
ρu and s for a specific population N. Recall that we did this in Chapter 4 
when we analyzed a single-channel model with a limited line capacity K 
(see Figure 4.3).

An example spreadsheet solution is illustrated in Appendix C for 
Example 5.1, where we return to the Campus Reboot situation discussed 
in Chapter 4 and consider adding one or more servers to that repair 
service.
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Example 5.1  Repair Service with Multiple Servers

Returning to the Campus Reboot service example in Chapter 4, we 
recall that the service response would become unacceptable if we added 
25 or 50 printers. So the dean has asked us how much improvement 
we would obtain if we hired another repair person or two. Using 
the equations just given for the M/M/s/∞/N model, we obtain the 
values shown in Table 5.1. Appendix C shows a copy of the Excel 
spreadsheet for the N = 10, s = 3 situation. Like the Excel setup shown 
in Figure 4.3, it is useful to set up separate columns for the summation 
terms required. Once those columns are established, it is easy to add 
additional terms for larger values of N by just copying the formulas 
down the sheet for each value of 0 to N. The use of these columns also 
allows easier troubleshooting for mathematical errors.

As a check for mathematical errors, several conditions can be 
observed to indicate whether or not they are present. If these condi-
tions are not present, then it is very likely that you have made either a 
mathematical error or incorrectly typed in a cell reference. Check the 
following:

•	 Is the waiting time in the system W at least equal to, or 
greater than the repair time for the item in question? For 
Example 5.1, the repair time is four hours per printer.

Table 5.1  Performance measures for M/M/s/∞/N Model with  
N = 10, 25, and 50 units using 1, 2, or 3 servers for example 5.1

N 10 Printers 25 Printers 50 Printers
Servers s = 1 s = 2 s = 3 s = 1 s = 2 s = 3 s = 1 s = 2 s = 3

P0 0.842 0.853 0.853 0.609 0.669 0.672   0.242 0.434 0.450

Lq 0.025 0.001 0.000 0.225 0.014 0.001   1.886 0.131 0.016

L 0.182 0.158 0.158 0.616 0.407 0.395   2.644 0.917 0.803

λ′ 0.039 0.040 0.040 0.098 0.098 0.098   0.189 0.196 0.197

Wq 
(hours)

0.645 0.018 0.001 2.311 0.141 0.010   9.957 0.669 0.080

W 
(hours)

4.645 4.018 4.001 6.311 4.141 4.010 13.95 4.669 4.080
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Different Classes of Customers

An important consideration in improving service performance when 
working with multiple-channel waiting lines is recognizing whether or 
not you have different classes of customers with different service distri-
butions. When more than one server is required to provide acceptable 
service, a subsequent decision is whether you have each server handle any 
customer that arrives or designate servers to specific classes of customers. 
A common example is the use of express and regular checkout lines at a 
grocery store when the store is large enough to justify having more than 
one checkout clerk. Another example is providing a window at a bank for 
business customers in addition to windows for regular customers.

•	 Does P0 increase in diminishing increments as the number 
of servers increases for a given value of N?

•	 Do Lq and L decrease in diminishing increments as the 
number of servers increases for a given value of N?

•	 Does λ′ increase as the number of servers increases (minor 
change) and with increases in N (bigger change)?

•	 Is the sum of all the Pn’s calculated for a given value of N 
equal to 1.000? Given the numerical precision used in your 
calculations, the result could be off a significant digit or 
two, but it must be very close to 1.000.

Observing the results in Table 5.1, my initial conclusion would 
recommend staying with one server for the current population of 10 
printers and using two servers for the populations of 25 printers and 
50 printers. This recommendation would provide roughly equivalent 
turnaround performance for all populations. It should also be noted 
that with a population of 50 printers, it is more likely that a faculty 
member can find an alternate printer to use temporarily when his or 
her usual printer is being repaired. This possibility would support a 
business decision to not add a third server for the 50-printer situation.

To obtain a full analysis for a more informed recommendation, we 
need to consider the trade-offs in the costs of hiring another repair person 
versus having a faculty member wait longer for a repair to be completed.
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More detailed aspects about taking advantage of customer classes for 
improving service performance is discussed in Chapter 6, where we also 
can take into account other managerial considerations.

Different Customer Priorities

Multiple-channel waiting lines provide additional options for handling 
customers with different service priorities. When there is only one server, 
priorities can be handled only by manipulating the order of customers in 
the queue. This is a frequent concern in a small hospital emergency room 
with only one doctor on duty, where the most gravely ill patient must be 
treated first. Obviously, when there is more than one of these patients at a 
time, then tough choices have to be made as to which one is treated first. 
That decision with its moral and ethical implications is clearly beyond the 
scope of the level of analysis discussed here.

When more than one server is available, several options are available 
for managing priority needs. In one aspect, priority defines a class of 
customers that are handled in a different way than we decide to handle 
other classes. This can be because some customers have more urgent 
needs, their service is more complicated or requires special skills, or their 
long-term relationship with a business merits some extra consideration. 
These approaches will be discussed in more detail in Chapter 6—where 
we will discuss class management.

Different Line Configurations

More servers also allow some creativity in how the line(s) of customers 
are arranged, particularly when some servers are dedicated to a particular 
customer class or priority. In addition to improving service performance, 
important considerations for line configuration design include the psy-
chological effects on customers and opportunities to inform customers as 
to what they can do to help speed up the service process.

A common example of different line configuration approaches used 
in many banks, post offices, and airport security check-ins was shown in 
Figure 3.1. From a strict average performance business viewpoint, both 
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the separate line per server and one line feeding all servers (the “snake”) 
configurations have the same average values for service performance.

The differences between the two configurations are found in individual 
customer waiting time experiences and psychological impressions. Because 
of this, the configuration choice is often more dependent on managerial 
attitudes and prior experience rather than actual numbers. We will discuss 
this topic in more detail in Chapter 6 where we will focus on managerial 
concerns.

Service Capability Variations

In Chapter 3 and this chapter, our analysis has assumed a consistent 
service rate for each server. In reality, we all know that this assumption is 
often invalid based on our experiences in a line where a server gets tired 
at the end of their shift or, more noticeably, a new teller or checkout clerk 
is learning on the job. Most service activities are repetitive in nature, and 
repetition makes a person more proficient (faster and more accurate) as 
he or she gains experience doing that task. Such improvement is more 
dramatic at first and slowly diminishes in magnitude over time until the 
person’s performance essentially flattens out to a steady level; ignoring for 
the moment, any degradation caused by fatigue. Some good examples are 
learning how to ride a bicycle or memorizing commonly used reference 
values or coffee recipes instead of having to look them up each time you 
need them.

Learning curves can be used to estimate the time to reach a given 
proficiency if there is information available as to what percentage of 
improvement over time is typical for a given job content. In general, 
the more repetition and less variety of tasks involved, the faster the 
improvement rate. The learning curve equation is based on the concept 
that every time the total number of repetitions of a task is doubled, the 
amount of time per repetition is reduced by a constant percentage. The 
equation for a learning curve takes the following form:
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Here Tn is the time required to do the nth repetition, T1 is the 
time required to do the first repetition, and the % sign is the learning  
percentage value in decimal form. A learning percentage value of 
80  percent (0.8) corresponds to a 20 percent reduction in time per 
repetition every time the total number of repetitions doubles. So a higher 
learning percentage corresponds to a slower improvement in proficiency 
(100% = no improvement with repetitions).

If you have some data regarding how long each successive repetition 
takes for your situation, you can estimate your typical learning percentage 
in two different ways. The first method is more universal but a bit more 
complicated:
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The other method is to take the ratio of any pair of repetition times, 
where the number of repetitions for one time is double or half the num-
ber of repetitions for the other time. Then the learning percentage is the 
shorter time divided by the longer time. That is, the % = Tx/Tx/2 or T2x/Tx.

Figure 5.1 shows several learning curves with different learning 
percentages. A table of the values used for the different learning curve 
percentages and numbers of repetitions in Figure 5.1 is in Appendix C.

Figure 5.1  Learning curves showing the decrease in time required 
per repetition as the number of repetitions increase experience for 
different learning rates. Contrary to intuition, the higher the learning 
curve percentage, the longer it takes to acquire proficiency
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Example 5.2  Service Time Reduction Learning Rates

How long does it take for a server to become proficient in a given 
service activity? Searching the Internet can provide some estimates 
of what others think the time is if there is insufficient information 
for your business. For example, Grasing (2011) comments that many 
banking people estimate that it takes typically three months for a new 
teller to reach full proficiency, and a teller typically should be able 
to handle an average of 30 transactions per hour at that level. Like 
many pieces of information on the Internet, we must ask, “Are these 
realistic estimates by the banking crowd?” before proceeding to use 
them for our analysis. One verification is the article by Kotha et al. 
(1996), where they relate how the management at KeyCorp initiated a 
campaign that reduced average service time down from slightly more 
than four minutes to less than two minutes. This result is consistent 
with the value of 30 transactions per hour reported by Grasing.

Let us assume a relatively slow learning curve of 90 percent and use 
a Tn of two minutes from the 30 transactions per hour expectation. 
Further, let us assume that it takes about 10 minutes (T1) for a new 
teller to do a transaction for the first time. Manipulating Equation 
5.14 to solve for n, the number of repetitions required to achieve a 
proficiency of 30 transactions per hour, we obtain

In(n) = (1/b) × In(Tn/T1) where b = −0.152 for a learning 
percentage of 90 percent.

Plugging in the other values, we get In(n) = 10.588191 → n = 
39,664. Is this a realistic value? As a check, consider how many transac-
tions could be done in three months by a proficient teller at an average 
of 30 transactions per hour. For thirteen 40-hour workweeks, the total 
would be 15,600 transactions. We are obviously off here either in the 
learning percentage, the first task time estimate, or both. Assuming that 
a typical business would more likely have an accurate estimate of the 
time required for the first repetition, we will stay with our 10-minute 
first-repetition time. Hence a faster learning rate estimate is needed 
to reduce the total number of repetitions required to reach an average 
two-minute transaction time. Because of the exponential nature of this 
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Is three months too long for a service employee to become proficient? 
Shortening the amount of time required would be to the advantage of any 
business. It obviously depends on the skills needed and the complexity of 
the tasks to be done. An earlier edition of a popular college operations 
management textbook4 used a bakery to illustrate the use of various 
manufacturing process strategies in a single business. In the video of the 
bakery operations that accompanied the text, the bakery manager com-
mented on the typical training time for new employees for each process. 
The highly automated bread process required only a few weeks, work 
in a pastry shop required about three months, and a cake decorator 
required about six months to become proficient. Because effective train-
ing approaches often are dependent on the right managerial support, we 
will reserve further discussion about such methods for Chapter 6.

When the server is a combination of a person and equipment or 
just primarily an equipment operation, other service variabilities come 
into play. Allowances must be made for maintaining the equipment and 
ensuring a steady supply of materials for it to use. One needs to be careful 
to not use the performance figures provided by the equipment makers 
without understanding how those performance figures were obtained. 
Did they include typical downtimes for service or repair, account for 
some degradation caused by wear, and so on?

Lacking such data, many businesses apply a fudge factor to such 
performance claims in the range of 75 to 90 percent with this rationale in 

learning curve formula, only a small adjustment is required. Using a 
learning percentage of 88.5 percent, we obtain –0.176 for b and 9,242 
transactions for n. This is a more reasonable result because we would 
expect that the total number of transactions for a new employee over 
three months would be less than 15,600. It also indicates that the esti-
mate of three months by the banking crowd reported by Grasing is 
more likely a worst-case value.

Note: We could have solved this problem more accurately using 
Excel’s Goal Seek or Solver add-ins but doing so would have obscured 
the reasoning used to set up either of those tools. Readers might find 
determining a learning rate answer that best fits the values quoted in 
the literature using either of these add-ins to be a useful exercise.
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mind. If they operate a piece of equipment at 80 percent of rated capacity 
and it unexpectedly goes down for an hour they can catch up on that 
lost hour’s production by running the equipment at 100 percent of rated 
capacity for four hours. In a similar manner, if the demand (arrival rate) 
unexpectedly increases for a short time they have some reserve capacity 
to satisfy it without adversely affecting their usual performance for the 
normal arrival rate. In the realistic situation where the equipment is no 
longer capable of running at rated capacity, they still have enough reserve 
capacity to catch up in less than six hours at 95 percent capacity or eight 
hours at 90 percent. As equipment wears out, this fudge factor should be 
reduced correspondingly.

Multiple Phases

In many multiple-phase applications the individual steps can be a sequence 
of single-channel configurations as discussed at the end of Chapter 4 or a 
mixture of single-channel and multiple-channel configurations to better 
handle situations where one of the single-channel steps does not have 
sufficient capacity. That is, its service rate is lower than that of the other 
steps and thus it limits the capacity of all of the steps following it and 
causes a pile up of partially completed work by the faster steps preceding 
it. Adding another server or piece of equipment at this step eliminates 
such a bottleneck by increasing the effective service rate for this step.

While this makes the simulation for such process more complex it 
can be done by treating the multiple-channel as a black box, if you will, 
with its input the arrival rate from the preceding step, its output as the 
arrival for the following step, and its internal workings described by mul-
tiple-channel equations rather than single-channel equations. This is the 
approach discussed in more detail at the conclusion of Chapter 7.





CHAPTER 6

Managerial Considerations

This chapter covers topics where an astute managerial choice can minimize 
uncertainties and improve overall performance for businesses affected by 
some form of waiting line behavior. The areas of consideration include 
the following:

•	 Variances in waiting line performance, which includes looking 
at variances from both the customer and the business points 
of view plus estimating the risks of worst-case scenarios

•	 Waiting line cost factors from both the customer and 
the business perspectives. (As mentioned in Chapter 1 
these factors can be strongly interrelated, particularly in 
transportation and delivery applications.)

•	 Cost trade-off analysis
•	 Service improvement approaches
•	 Use of customer participation to reduce waiting and service 

times
•	 Waiting line configuration considerations
•	 Psychological factors (while difficult to quantify, these factors 

are significant considerations that are interlinked with many 
other areas in this list.)

•	 Arrival rate management methods
•	 Options for dealing with priorities, such as more urgent need, 

rush orders, and preferred customers
•	 The more effective use of information gathered by a business 

and what additional information should be collected for 
managing and improving waiting line applications.

Some of you may have jumped ahead to this chapter because you feel 
that you already know all you have to know about waiting line theory. 
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That may be true for some; but for most, it would be wise to review at 
least some of the topics in Chapters 2 through 5 if parts of the following 
discussion are confusing.

Variance and Risk Considerations

When I asked business students to select the better business solution after 
giving them the average performance for each of the choices presented, 
most of them quickly chose the one with the highest average. When more 
than one choice had the same average performance, the same group of 
students often commented that any of those choices would do.

A few students will look beyond the average performance to consid-
erations of risk or the accuracy of the average performance value before 
making their choice. To evaluate risk or accuracy, some knowledge of the 
variances in a process is necessary. Unfortunately waiting line equations 
provide only steady-state average performance. Start-up variances, such 
as whether there is a line of customers waiting when a business opens 
its doors or there is a set of items left over from the previous day of pro-
duction that need to be completed before beginning new work, are not 
included in steady-state results. Larger variances, such as no customers for 
periods of time or a large group of customers that arrive all at once during 
the day, occur less often; but when they do, they can cause significant 
business disruptions.

Events such as the probability the line will be longer than the capac-
ity of the business can be calculated, but when that condition can occur 
during a period of time cannot be predicted. Managers need to remember 
that waiting line arrivals and service times are memoryless. That is, what 
happens next is not influenced by what has just happened in the past. For 
example, when flipping a coin, the next coin toss result is unaffected by 
whether or not there were two heads, two tails, a head and a tail, or tail 
and a head for the previous two tosses.

One variance often not considered is the potential variance in normal 
service and arrival times when waiting lines are much longer or shorter 
than usual. This is often referred to as a state-dependent variance or rate.1

When waiting lines get long, some newly arriving customers may be 
discouraged from entering the line (balking), and some current custom-
ers may choose to give up and leave (reneging). At the same time, many 
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servers feel the pressure to speed up their work to help move the line 
faster. As a result, this creates three general managerial concerns:

1.	Arrival rate variances caused by balking or reneging result in lost 
business opportunities, which were discussed in earlier chapters and 
can be assigned a cost value for trade-off decisions if sufficient infor-
mation has been collected regarding various operating costs.

2.	When the line is short, a server may unnecessarily chat with a cur-
rent customer or otherwise work more slowly. This reduces the 
opportunity for the server to do other work useful for the business. 
(This can also happen when lines are long if the server is tired or a 
customer is someone they know well.)

3.	When the line is long, servers may work faster by taking shortcuts 
and perhaps not being as careful to prevent mistakes, which, when 
they occur, often offset any time gained because of the additional 
time required to correct them. This affects the customer’s perception 
of the service quality received and can be quite serious if the mistake 
is preparing or assembling the wrong order, omitting something 
from the order, or making an error in recording the payment and/or 
giving the customer change.

Clear managerial communication and good server training can min-
imize server variances by letting servers know they will not be penalized 
for remaining careful and not taking shortcuts when lines are long and 
making clear any requirements regarding what servers are expected to do 
during times when no customers are present or a customer wants to chat 
unnecessarily.

In manufacturing lines, some of the arrival rate variances can be 
minimized through careful production scheduling; but when dealing 
with customers, we have to work with arrival rate variances unless the 
business is conducive to using an appointment or reservation system. In 
customer service lines, reneging and balking can be reduced by opening 
up a temporary express window for customers with standard, easy-to-do 
needs. An advantage of this approach is that you can use a staff person 
who may not be trained in the full range of services offered. An example 
of this is opening up a window strictly for customers only picking up mail 
and/or packages at post offices when the line is long.
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So, how do we assess potential variances and risks in waiting line 
performance? We can perform three basic actions:

1.	Be aware that variances and their associated costs exist and often 
can be much larger than one would normally expect. In addition, 
we need to accept that average performance values predicted by 
queuing equations are the exception rather than the rule for indi-
vidual customer experience or item behavior in a queue. Figure 2.3 
illustrates this situation by showing some of the performance data 
for the first 100 customers entering a typical coffee shop.

2.	Collect data about how the business operates (Shaw 2013, Chapter 4).  
Be particularly careful to be consistent across all business functions 
in acquiring data related to similar business operations. One exam-
ple is using the same time references for arrival and service rates 
and for assessing costs. The value of an analysis is only as good as 
the data used to perform it, another statement of the principle of 
garbage-in, garbage-out (GIGO). Observing the number of arrivals 
per period and the number of customers or items in the system 
at the end of each period allows a determination of waiting times 
using Little’s Law and an estimation of service times. Processing 
point-of-sale (POS) data can provide estimates of the percentage 
of different customer classes and service time distributions. This 
data can be used to develop more accurate discrete distributions for 
arrival and service rates in simulation models. Some of these data 
collection and simulation methods are discussed in more detail in 
Chapter 7.

3.	Simulation runs using an accurate model of the given business pro-
cess can be used to provide more accurate average performance values 
than the standard queuing models can predict. This is particularly 
true when the arrival and service distributions for a business are not 
well described by the basic probability distributions. The simulation 
runs also can provide a picture over time as to how the performance 
values can vary and identify the possible worst-case and best-case 
scenarios. The caveat here is that the simulation results are useful 
only to the degree that the simulation model accurately represents 
how the particular business actually operates. Some of the Chapter 7  
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simulation examples illustrate how to calculate data regarding 
possible variances.

Variances that are very difficult to quantify are differences in customer 
attitudes. Their tolerance of waiting times and long lines can vary greatly 
depending on the time of day, the weather, whether they are with a friend 
or not, whether their service need is urgent or not, any personal time 
limitations, and so forth. Although we cannot usually address the direct 
causes of these variations, we can reduce their intensity by considering the 
psychological factors associated with waiting. Some of these factors and 
methods for reducing their effects are discussed later in this chapter. The 
most important consideration to remember when accounting for variability in 
waiting line business decisions is that the variances experienced by the business 
are NOT directly related to the variances encountered by customers.

Waiting Line Costs

Many of us have been in the situation where the cost information is scanty, 
but our boss requires a quick decision. So, what do we do? We make the 
best decision we can with what data we have and fill in the gaps with our 
intuition and past experiences. This is a pretty good solution in many 
business situations, but when waiting line characteristics are involved, 
we need to recognize that there is a much higher level of uncertainty 
because we no longer can count heavily on our intuition and experience 
in processing limited data to guide us to a reasonable answer.

When evaluating cost trade-offs, you should also recognize that such 
analysis is only as good as the understanding you have regarding your 
business. Estimated values result in only ballpark guesses as to the best 
choice. Even worse is when you are unaware of a background activity 
that is necessary for you to be able to provide your service. Many of the 
textbook examples for waiting lines focus only on “front-office” activities 
when evaluating cost. However, some process changes when directly deal-
ing with customers can have a significant effect on “back-office” processes. 
Therefore, it is strongly recommended that you and your staff develop a 
service blueprint2 of your business to help take into account all the costs 
and performance factors affecting its outcomes.
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The simple graph in Figure 1.4 shows the basic idea that the total cost 
of a waiting line application has some minimal value per customer served 
or item produced when the proper balance of resources and customer 
satisfaction is achieved. The concept here is that adding more resources 
and/or improving service performance reduces the waiting time and the 
length of the queue.

•	 For manufacturing applications, this correlates to faster 
throughput time and reduced work-in-process (WIP) 
inventories.

•	 For repair and maintenance activities, this means that 
equipment is not out of service for as long, which reduces the 
size of the equipment fleet required for adequate operational 
capacity.

•	 For customer applications, this correlates to retaining more 
customers, reducing the possibility of balking, and increasing 
the business volume that can be accommodated.

However, these increases in resources and equipment to improve 
service performance also increase operational costs. The basic trade-off 
that must be considered, therefore, is as follows: “If I add more resources 
to improve service, is there enough reduction in waiting and other costs 
combined with a potential increase in the number of customers to more 
than pay for those resources?”

Table 6.1 lists several cost values that are needed to make useful 
waiting line business decisions. The list is not intended to be inclusive, 
but it provides enough items to help you identify the types of costs that 
you should consider for your business decisions. Table 6.1 also gives some 
symbols that we will use here to simplify the equations for analyzing 
cost trade-offs. Many textbook authors use C to represent cost, with a 
subscript or parenthetical notation to represent the particular type of cost. 
For example,

C(Total) = C(Waiting) + C(Resource)
or

CTotal = CWaiting + CResource
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Here we will use a larger set of cost symbols, which are defined in 
greater detail in Appendix B. This helps us remember that there are several 
waiting-cost and service-cost components, as indicated in Tables  6.1 
and 6.2.

It is rare that you can trade off one waiting cost factor against one 
resourcecost factor without having some effect on other cost factors. Therefore, 
do not be surprised if the result of your decision is not exactly what your 
analysis told you to expect.

Volume-related costs, such as utilities3 and the materials associated 
with what each customer or item requires for service, are usually ignored 

Table 6.1  Some cost components to be considered when seeking a 
minimal cost balance between waiting costs and resource costs

Cost Symbols Components Data sources
Balking CB Lost customers, bad PR Marketing

Blocking CB Limited capacity K M/M/s/K model

Reneging CB Line not moving fast enough Marketing

Waiting time CW Waiting time in line, total 
time in service process

All models and 
simulation

Throughput time CW Waiting time in line, total 
time in service process, 
capacity

Simulation

Financing C$ Credit interest, insurance Accounting

Spoilage C$ Production loss, step yields, 
perishable inventory, theft

Accounting and 
manufacturing

Warehouse space CH, CF Inventory holding costs, rent All models and
Accounting

Lost business 
capacity

C$ Repair time, line length, 
population size N, late 
penalties

M/M/s/∞/N model

Appointment 
delays

C$ Appointment schedule, 
service time variation

All models and 
simulation

Staffing CS Salaries, benefits Accounting and 
human resources

Equipment CE Price, maintenance, spare 
parts, depreciation

Vendor and 
accounting

Facility CF Construction, permits, rent, 
maintenance, capacity, 
security, insurance, utilities, 
janitorial services

Vendors, 
accounting, service 
process
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in cost trade-off analyses unless the supplies are perishable (such as 
food) and the cost decision has a direct effect on the amount of spoil-
age. Where things get complicated is how we handle floor space costs. 
If these costs are solely due to business volume (more total customers 
→ more space), then they are usually not a factor in determining the 
minimal total value. But if more floor space is required to not turn 
away potential customers, then the profits gained from the increased 
number of customers per period must exceed the increased facility cost 
per period.

Lost business capacity and lost profit costs are similar in that both 
lose a potential profit. Lost business capacity is when you lose some of 
your normal capacity for a short time, such as when a resource is delayed 
in the repair shop when you had planned to use that resource to satisfy 
an existing customer order. Lost profit is when your normal capacity is 
insufficient to accommodate a customer who would have entered your 
business to place an order if not discouraged by a long line or insufficient 
capacity for waiting customers. Lost business capacity often has addi-
tional losses because you may have to pay a late-delivery penalty to the 
customer, or the customer may cancel the order after you have already put 
some work into its completion.

A tricky cost component is the percentage of server idle time. Most 
businesses include it as part of the service costs associated with a server. 
However, when P0 is more than 10 percent to 15 percent of an individual 
server’s time, there is an opportunity to reduce total costs by asking the 
server to do some routine maintenance or other support tasks instead of 
assigning them to back-office staff. In businesses with a staff of several 
servers, this practice could reduce the overall staffing needs by one or 
more people.

You may notice that I did not specifically list line length in the waiting 
costs column for Table 6.2. Line length plays a part when considering a 
limited capacity situation (M/M/1/K and M/M/s/K models), where the 
length of the line affects blocking costs. However, it is the time spent 
waiting in line that is the primary cost driver in many situations. The old 
adage “time is money” applies very well here. To help illustrate why line 
length is not as important as waiting time, consider Example 6.1. You 
may feel the background information is more than needed, but the intent 
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is to illustrate the importance of considering factors that, at first glance, 
may not seem relevant to the goal of reducing total costs.

A special category included in Table 6.2 is when there is only one 
possible source for the service, such as a government agency (passport 
office, driver’s license bureau, business registration, the courts, airport 
security, etc.). In such situations, balking, lost customers, and customer 
satisfaction are not likely costs, and the only issue of primary interest 
is providing enough capacity in the form of facilities and staff to meet 
the average demand within some maximum time limit at the lowest cost 
possible. I have not included post offices in this category because many 
countries have alternatives to official government agencies for mail and 
package shipments.

Several examples follow to illustrate approaches for determining 
cost trade-offs for waiting line situations. Example 6.1 describes some 
basic cost calculations, and Examples 6.2 and 6.3 illustrate the nature of 

Typical Application
Waiting Costs: CB, 

CL, CW, and CH

Resource Costs: CS, 
CE, and CF

Coffee shop, bank Balking, blocking, waiting 
time, reneging

Staffing, equipment, facility

Single source: passport 
office, department of motor 
vehicles, licensing, other 
government agencies

Waiting time Staffing, equipment, facility

Manufacturing line Throughput time, 
financing, spoilage, 
warehouse space

Equipment, staffing, facility

Self-service Reneging, waiting time Equipment

Repair and maintenance Lost business (capacity 
reduction), spare 
equipment

Staffing, equipment, facility

Call centers Blocking, reneging, waiting 
time

Staffing, equipment, hold 
capacity

Parking lots Blocking, reneging, waiting 
time

Facility, maintenance

Health clinics, professional 
services

Appointment delays Staffing, facility

Table 6.2  Some waiting and resource costs to be considered when 
working with different categories of waiting line applications
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things to consider for more complex cost trade-off analyses. For a good 
discussion regarding total cost analysis for queuing situations, readers are 
referred to the online Chapter 26 supplement by Hillier and Lieberman 
(2010).4

Example 6.1  Sandwich Stand Cost Trade-Offs

Samantha runs a small sandwich stand on the streets of Portland,  
Oregon, selling three types of ready-to-go sandwiches for $3.05 each. 
Because Oregon does not have a sales tax and her costs per sandwich 
are $2.80, she nets $0.25 per sandwich. We will also assume here that 
Samantha has learned her market very well and is careful to not make 
more sandwiches than she can sell in a day. When business is brisk, 
Samantha sells out more quickly and gets a longer afternoon off. For 
the few times she has any sandwiches left, Samantha cheerfully donates 
them to the local homeless shelter at the end of the day. Thus we will 
not consider monetary losses due to surplus sandwiches that must be 
discarded.

Samantha has been studying waiting line theory when she gets off 
early and has decided to collect some data about her business and see 
if it really works. She determines that it takes about one minute for a 
customer to choose which type of sandwich and pay for it. By check-
ing the reduction in her inventory during her peak hours, she also has 
determined that the average number of customers between 11:30 a.m. 
and 1:30 p.m. is 54 per hour.

Using these values for λ and µ, Samantha determined that the uti-
lization factor during the peak period is 0.9, the average line length (L) 
should be nine customers, and the average total time for a customer to 
get a sandwich is 10 minutes. Because the author of her waiting line 
book has stressed that average values are rarely actually experienced 
by customers, she concluded that if some customers get their sand-
wiches in less than 10 minutes, then others have to wait longer than 
that. Thinking further, Samantha realized that because lunch-time 
customers do not want to spend any more time than necessary to get 
their lunches, she is likely losing some customers to other food vendors 
when her line gets longer.
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Wishing to reduce the average waiting time, Samantha worked on 
the only factor within her control—service time. Observing transac-
tions for several days, Samantha noticed that the major part of the 
service time was making change for customers, particularly dealing 
with coins. In the interest of learning more about waiting line theory, 
Samantha decided to invest some of her profit in an experiment to 
shorten service time by reducing the price to $3.00, eliminating the 
need for handling coins. After a week, Samantha observed that this 
change reduced the average service time by 10 seconds, increasing her 
average service rate per hour from 60 to 72.

Plugging her new average service time into the M/M/1 equations, 
Samantha now determined that L should be three customers—a dramatic 
improvement from nine customers. But she was puzzled because such a 
change should have been evident, yet she had not noticed significant 
line differences during the lunchtime period. She was also selling out her 
stock of sandwiches earlier in the day, which agreed with the faster ser-
vice time. What could be wrong with her analysis? Then she remembered 
to recheck her sales rate during the peak time and discovered that it had 
increased from 54 to 65 customers per hour. Plugging that value into the 
M/M/1 equations resulted in a revised average line length of nine cus-
tomers and an average total time in line of 8.57 minutes per customer. 
The line length did not change, but the average time in the system did.

At this point, let us step back and look at what happened here. 
First, line lengths can stay the same while total waiting time changes 
as long as the utilization factor remains the same. That is, service rates 
keep up with increased arrival rates. Stated another way, arrival rates 
tend to increase when service times are reduced because customers can 
get faster service. The length of a line is not as important to customers 
if they perceive the line is moving faster (a psychological factor to 
consider). In this case, Samantha’s stand attracted more customers 
because they could observe the line moving more quickly (the price 
reduction and customers not having to deal with coinage could also be 
contributors). (Note: I fudged the amount of the service time reduc-
tion to illustrate more clearly that the same line length could have 
different waiting times.)
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To illustrate situations where reasonable service improvements could 
pay off in lower total cost, we will discuss three more examples. The first is 
a classic repair service problem, where long turnaround times could cost a 
company significant money. The second is a manufacturing system where 
WIP inventory is expensive. The third is evaluating the benefit of adding 

Let us look at the profit margin during the peak period for the two 
scenarios: 108 × $0.25 versus 130 × $0.20 → $27 versus $26. From 
a profit viewpoint, the process improvement cost Samantha $1.00 of 
profit based on the lunchtime results, but we should take into account 
the effect of the improved service time on Samantha’s business the rest of 
the day and the possibility for her to sell more sandwiches per day before 
deciding whether or not to continue offering the sandwiches for $3.00.

Given the nature of Samantha’s service process, there are limited 
possibilities for her to reduce her service time. In such cases, the primary 
option is to add another server at the peak time. Referring to the table 
in Appendix C and using Samantha’s initial value of ρ = 0.9, adding one 
more server would reduce the average line length to 1.1285 customers, 
and the average total time to get a sandwich would decrease to 1.25 
minutes. Now Samantha has an estimate of how many more customers 
she can expect to attract by reducing waiting time from her service 
time reduction experiment, so she estimated that with the even better 
performance provided by another server, she could keep the increased 
volume and also charge her original price of $3.05. Would this pay for 
the cost of another server? Running the numbers, the increased profit 
would be $5.50—not enough to pay minimum wage for even an hour.

The conclusion here is that sometimes the options available for 
improving a particular service process are not enough for the customer 
volume and profit model associated with that process. In Samantha’s 
case, she would have to have significantly higher volume to justify 
hiring another server. Just shortening the waiting time and the average 
line length are not likely to attract that many more customers; other 
things such as expanding her sandwich choices, adding beverages to 
the selection, and so forth, would be needed, which, in turn, would 
introduce a whole new set of cost factors.
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more space to accommodate longer lines. Working through the solutions 
is left to the reader as an exercise; each example discusses the situation, 
indicates what costs should be considered, and how one might go about 
determining the best solution.

Example 6.2  Helicopter Shuttle Business Costs

This business provides regular flights for residents of a small rural city 
to the nearest major airport located some distance away. The busi-
ness goals are to not miss a regularly scheduled departure—because 
being late could cause greater hardship for their passengers—and 
accomplish that performance at a minimum total cost. Operational 
cost factors to consider include keeping the size of the helicopter as 
small as possible because helicopters are costly to own and maintain, 
determining the number of daily flights required to satisfy customer 
demand, the routine maintenance schedule required by the Federal 
Aviation Administration, how many reserve helicopters are required, 
the likelihood of unexpected breakdowns, and the possibility of 
unavailable staff due to illness or vacation. Some factors to compare 
are the costs of having or leasing spare helicopters versus reducing the 
average maintenance time by either adding staff to existing service 
crews to reduce the average service time, adding one or more service 
crews plus the facilities to support them to reduce maintenance and 
repair waiting time, or paying for some on-call staff. Performance and 
total costs for each business option can be evaluated using the M/M/
s/∞/N model, where s, N, and µ and their unit costs are the variables.

For some specific examples discussed in detail, Hillier and Leiber-
man (2010), Chapter 17, Section 17.10, is a good place to start.

Example 6.3  Factory Inventory Costs

A small business runs a factory line customizing an expensive large 
product with just one operation step. The demand for this product 
does not allow using a production schedule to help manage the average 
line length; thus its arrival rate is best described by an exponential 
distribution. The inventory costs associated with the average line 
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length can be quite high for this product. Some factors to compare, 
with the goal of achieving the lowest total cost, are inventory financing 
costs (price and interest) and warehouse costs (facility space, rent, 
handling, security, utilities, and insurance) versus hiring more staff to 
reduce waiting time or buying new or additional equipment to reduce 
service time. Performance and total costs for each business option can 
be evaluated using the M/M/s model, where s and µ and the unit costs 
for each option are the variables.

Example 6.4  Ice Cream Shop with Limited Customer Space

A small ice cream shop occasionally loses customers on hot summer 
days because it can only accommodate a small number of customers 
within the store. Is it worth adding more space for the line to accom-
modate more customers? The factors to compare are the lost profit per 
customer not accommodated versus adding floor space, reducing the 
average line length (which reduces the probability that the line will 
exceed the current available space) by adding staff, or reducing the 
average service time by buying equipment or otherwise improving the 
service rate. Costs can be evaluated for all possible business options 
using the M/M/s/K model.

Improving Service Performance

There are several basic goals to consider when improving service 
performance. Some of these are strictly from the business perspective—
reducing total cost, completing services faster, and accommodating higher 
customer volume. Others are from the customer perspective—not hav-
ing to wait as long for service, a lower service charge, perceived fairness, 
and a more pleasant waiting experience. Because some of the possible 
approaches apply to both perspectives, they are listed first.

•	 Reducing the variation in service times reduces the average 
waiting time, even if the average service time remains the 
same (see Chapter 4).
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•	 Reduce the average service time.
•	 Reduce the average waiting time.
•	 Add capacity—more servers, more waiting space.

Variation reduction is normally the least expensive approach because 
you are working on using existing resources more effectively. Standardiz-
ing all or part of the services provided reduces the variation in service time 
and reduces the average waiting time, even when the average service time 
remains the same. In Example 6.1, Samantha standardized part of her 
service by having sandwiches ready-to-go rather than assembling them 
to order. This reduced both variability and the duration of the average 
service time, allowing a single server, Samantha, to handle more custom-
ers. She could provide more sandwich selections without adding to the 
service time by setting up a condiment station so that customers can add 
their own condiments rather than asking her to do it, a change that would 
help decrease her average service time and also reduce some of the vari-
ability of that time.

Of course, Samantha will have to spend some time to maintain the 
condiment station, but this can be done during any idle time when there 
are no customers. For her utilization factor of 0.9, P0 = 10 percent, which 
gives her an average of six minutes per hour to maintain the station. The 
hidden cost factors to be considered are Samantha’s choice of method for 
obtaining ready-to-go sandwiches—typically a classic make-versus-buy 
decision.

Another approach for reducing service time variability is to replace the 
manual parts of a service with more automated methods. This in effect 
is another form of standardization most often applied to manufacturing 
situations, but it can also be used effectively in service situations. For 
example, consider the coffee machines at many gasoline station con-
venience stores. The cost trade-off considered here is whether having a 
person keep a hot pot of coffee ready to pour a cup when a customer wants 
it or having a machine prepare the coffee for the customer on demand is 
the least expensive option. Doing the cost comparison involves not only 
the difference and variability in average service times between the two 
options but also the consideration of spoilage with the manual method, 
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variation in the coffee preparation time, equipment and maintenance 
costs for either option, and response times for a sudden jump in customer 
volume (probability the coffee pot is empty, the time to brew a full pot 
versus the fixed response time for a machine). Another factor, of course, 
to be considered is the average customer preference for pot-brewed coffee 
versus machine-brewed coffee. (Given the average age of most pot-brewed 
coffee in gas stations, I personally prefer the machine-brewed versions.)

Reducing the average service time reduces the average waiting time 
while increasing the capacity of the service system. Adding more servers 
is often the first strategy employed to reduce the average service time. 
But this also increases the probability of no customers in the system (idle 
time). Normally, the cost of adding servers is offset in the cost analysis by 
reductions in waiting time costs and expected increases in customer vol-
ume. Hidden cost factors that are not often considered are the possibility 
of using idle server time to do other tasks required by the business that are 
not directly related to serving customers. Some examples are managing 
inventory and cleaning and restocking equipment or service areas, such 
as a convenience store coffee machine or Samantha’s condiment station. 
This, of course, requires servers who have more flexible job skills and thus 
may require a higher salary. The primary focus here should be that the 
added staff is hired primarily to be a server.

The opposite approach is when a staff member hired primarily for 
a back-office activity is asked to serve customers during periods of peak 
demand. The limitation of course is that back-office staff members are 
often not very skilled in performing the full range of service activities, but 
they can be used for providing simpler, more standardized services during 
peak demand periods. This often works well for situations such as banks, 
post offices, and grocery stores where the customer arrival rates are highly 
variable during the day.

Reducing the average service time by eliminating unnecessary (non–
value-added) steps is a common approach discussed in process manage-
ment texts, but it can be difficult to do when there is little possibility of 
standardization in the service process. What can be done is to eliminate 
the execution of some customized steps by the server and have the 
customer do them instead. Some examples are having customers fill out 
forms (health insurance, food orders, address labels, etc.) while they wait 
instead of the server asking questions and filling out the form for the 
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customer. There is also a psychological benefit in doing this, which will 
be discussed in more detail later in this chapter.

Another way to reduce the average service time without adding serv-
ers is to inform customers about what is expected from them when they 
reach the server. In fast-food restaurants and coffee shops, displaying the 
menu with prices in clear view of the line helps reduce the time customers 
spend at the server window deciding what they want to order. Promptly 
displaying the amount of payment due after receiving the order reduces 
more service time by allowing a customer to decide on the payment 
method or collect the appropriate change while the server either processes 
the order or forwards it on to the kitchen or the barista. This leads to 
one of my big rules regarding customer–server interactions: Uninformed 
customers require more service time. Use the time spent waiting in line to 
educate them.

The current best example of this is the airport security check-in 
process. Clear and properly located information signs5 can prepare the 
customer as to what the customer must do at each step instead of the secu-
rity agents having to take time to explain individually what is expected of 
each customer at each stage of the check-in process. This saves the agent’s 
voice and lowers frustration for the agent as well as the customer.

Reducing the average waiting time is very difficult to do unilaterally 
for all customers because it is so strongly related to the arrival rate and 
service rates. But it can be reduced for some customers in the arrival 
population by either separating them into different service classes with 
different average service times or by assigning them a higher priority. 
Some common examples of this are as follows:

•	 Express lines at grocery stores for customers with only a few 
items

•	 Windows dedicated for mail pickup at the post office
•	 Bank tellers dedicated to commercial business customers
•	 Frequent-traveler express lines at airports, car rental agencies, 

and hotel check-ins
•	 Separate coffee shop line for customers just wanting a 

standard cup of house coffee. They could even pour it 
themselves and self-pay with their cell phone.

•	 Self-service stations or checkout lines for standardized services
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•	 Moving airline travelers who would otherwise miss their flight 
to the head of the airline counter check-in lines

•	 Taking care of more seriously ill patients in an emergency 
room first

•	 Prescreened air travelers at security check-in lines and customs 
checkpoints.

The disadvantage with methods that reduce the average service time 
and/or the average waiting time for some of your customers by serving 
them according to priority or class is that if you retain the same resource 
level for the same total average population, your average service rate will 
remain the same, but the overall variability in the waiting time experi-
enced by your customers will increase: Some classes will have a shorter 
average waiting time, and others will have a longer average waiting time. 
The old adage “there is no such thing as a free lunch” holds true in waiting 
line operations.

The “classes” approach requires a multiple-server situation with at 
least two servers—more if there are several classes to be served separately. 
Thus, if you do not already have multiple servers, you are in effect adding 
resources to reduce waiting time. The “priority” approach can be used in 
both single-channel and multiple-channel waiting line models.

In the classes and priority approaches, the overall average throughput 
rate remains unchanged provided that in multiple-server applications a 
server who is normally assigned to higher priority or a specific class of 
customers is expected to take care of lower priority or other classes of 
customers when that server is idle (jockeying is allowed in that case). 
Therefore, from a business viewpoint, capacity and average throughput 
rate remain unchanged. From the customer viewpoint, some of them 
are served faster at the expense of other customers now having to wait 
longer.

At this point, some of you are likely thinking, “Why bother doing 
this? It sounds like a no-gain situation that rewards only some customers.” 
The answer is that sometimes there is little choice to not do it. For a hos-
pital emergency room, it should be clear that having a priority approach 
is necessary. Rewarding customers who individually contribute a higher 
percentage of your profits with higher-priority service is a standard 
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business practice to encourage them to continue being your customers 
when competing with other businesses that also provide such incentives.

What are not so obvious are the potential cost advantages. To keep 
the mathematics manageable, the basic closed-form, waiting line equa-
tions assume that all servers are equally capable of providing the same 
service rate. In Chapter 5, we discussed the situation of how long it would 
take for a new bank teller to achieve that proficiency. Now consider the 
advantage of a classes approach that would allow new tellers to handle 
simple transactions, such as deposits and withdrawals, at first and move to 
more complicated banking transactions later. Their learning curve could 
then be broken into two or more learning curves with faster learning 
percentages.

This leads to an important conclusion: Classes allow the use of a range 
of server skills, which, in turn, allows the possibility of a range of server costs. 
For example, consider a three-server application where all the servers 
are expected to be able to handle the full range of expected customer 
transactions. But in many situations, part of the normal customer 
population needs only services that could be done using a self-service 
machine. Automatic teller machines (ATMs), online banking, Web 
check-in, flat-rate package mailing, and convenience store coffee machines 
are some examples that this is true.

This is one area where managers earn their salaries. We can do the 
cost comparisons using the three-server example versus two servers and a 
machine or even one server versus one or two machines. We can account 
for the differences in capabilities (flexibility of the server or server substi-
tute) and relative costs, assuming we have a good estimate of how many 
customers in each class we plan to serve. This is the easier part. What is 
more difficult is considering the risks involved.

In this situation, if one server becomes ill, it is likely that the service 
can still be provided but with commensurate longer waiting times. This 
is also the case when we replace one server with a self-service machine: 
If the machine breaks down, the two remaining full-service servers can 
temporarily take up the slack. (In both cases, λ/µ must be less than two 
for this to be possible.) But if one of the two remaining servers becomes 
ill, the machine cannot take up the entire sick server’s load because of its 
more limited capability. That is, a server can take all the work of a broken 
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machine, but a machine can take over for only part of a server’s work. 
The risk imposed by this lack of interchangeability increases when cost 
comparisons indicate to a manager that the most economical situation 
is two machines and one server. (Note: Since this book was originally 
published the capability of the typical bank ATM has expanded consider-
ably and even cell phones can be used to make check deposits and access 
account balance information.)

Considering that more complex transactions are usually more critical, 
I would want to be sure that they are covered. Therefore, without even 
looking at the cost comparisons beforehand, I would restrict my cost 
comparisons for this situation to the three-server or the two-server-plus-
machine options.

If some of the possible classes turn out to be a very low percentage 
of the total population, it is usually better that they be included as part 
of a larger class. But, if a class is a significant percentage of a business’s 
clientele, it is usually worthwhile to consider how you can provide a 
separate service or priority for them.

One great example of how to serve one class of customer without add-
ing either servers or machines was at a local coffee shop in Oregon where 
the owner set up a self-serve station for his customers who just wanted a 
cup of house coffee. He also eliminated the need for a server to handle 
payments for the house coffees by posting the price for each size of cup 
and trusting his customers to put the appropriate amount into a locked 
cashbox with a slit in it. I discretely observed that almost no customers 
skipped the payment, and some put in more than what was asked because 
they did not have adequate change. In this case, he reduced not only the 
average waiting time for his house coffee customers but also the need for 
server time to support that part of his business.

So how does a business owner identify different classes of customers? 
In sales operations, POS data can really help. Some examples are as 
follows:

•	 You can screen your POS receipts for the percentage of 
customers who buy less than a given number of items to 
determine whether or not an express checkout line would 
be useful.
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•	 You can screen the POS data for how many customers order 
products or services that require only a standard service time.

•	 You can analyze your sales data for your highest volume 
buyers or service requests.

•	 Adding a time stamp to the POS receipt allows an estimation 
of the number of customers served per time of day that can be 
used to develop discrete distributions for simulation models.

•	 Combined with the date stamp, seasonal variations in 
customer volume and demand for different services or items 
can be determined.

You can also ask your customers to help by allowing them to select 
the class of service they want. This is particularly useful for call center 
and repair service operations. When calling in for support, we all have 
encountered choice menus that let us identify what type of question we 
want answered. This not only directs us to the right person to answer 
that question but also provides data that the call center can use to adjust 
staffing levels, allows the looking up records by the computer for some 
requests like asking for your current account balance, or makes the records 
already available for an operator to reduce the average service time and 
required staffing levels.

A useful concept is to recognize that when arrival rates are described 
by exponential distributions with appropriate average values, one can 
easily combine or separate average arrival rate distributions for the classes. 
The results will also be exponential distributions with the same general 
characteristics.

For example, consider a typical banking call center operation where 
there are three choices (effectively classes where the customer tells you 
what class they are in) on the telephone menu, such as the following:

1.	Account balance check
2.	Billing and payment questions
3.	All other questions

Assume that the bank knows the average arrival rate for each choice by 
analyzing its previous call history. We will designate these rates as λ1, λ2, 
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and λ3. Hence the total arrival rate λ to be handled by the call center if it 
is operated as a multiple-channel, single-phase system where any operator 
can answer the next call is merely the sum of λ1, λ2, and λ3. Of course, 
in a large call center with several operators with different skill levels, each 
individual arrival rate (menu choice) is likely to be assigned to a specific 
operator or even an automated response for some choice. It should be 
obvious that the third choice listed is the one that would require the 
most skilled operator because of the wide range of possible questions that 
choice allows.

Consider a similar situation with the same choices, where the business 
knows the overall average arrival rate λ for its customer base but has not 
yet collected enough data to break down that rate into the individual 
rates for each choice. Wanting to improve its service by possibly desig-
nating specific operator(s) or automated responses to each choice, the 
business checks with a call center consulting firm for information about 
industry average percentages for each class of questions. The consulting 
firm provides the values of P1, P2, and P3, respectively, for the business’s 
choices. Because exponential distributions can also be easily separated 
into components that are also exponential distributions, the bank can 
then obtain λi by multiplying λ by the respective probability Pi.

You can get useful information even when a consulting firm does 
not have all the usual percentages. This is often the case because your 
customer base does not match up well with any of the databases that con-
sulting firms might have. Software can monitor the frequency of choices 
selected in the telephone menu: Given that information, a manager can 
then decide whether or not in the future to address the choices separately 
or as a combined pool.

Finally, when improving service performance by adding more servers, 
the training time required for a new server to achieve an acceptable 
proficiency level becomes a business priority. Those businesses that can 
do it faster than their competitors have a competitive advantage when 
the demand for their type of services is increasing. The most important 
element is clear communication between the manager and the service 
employees about the training process and what is expected. This should 
include how to deal with long-line situations to avoid the state-dependent 
rate variances discussed earlier.
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One common method to increase the learning rate is using a mentor 
alongside a new employee for the first week or so. It is important that the 
mentor have the new employee do all the repetitions for the best result. 
This means that the mentor needs to resist the temptation to step in and 
do some of the steps for the employee to serve a long line of waiting 
customers more quickly. In such situations, it is better, if possible, for the 
mentor to open up another line temporarily to take some of the pressure 
off the new employee’s learning experience.

Another training method for businesses that handle different classes 
of customers separately is to start the new employee with the simpler 
service operations and then include handling more complex services as 
that employee’s proficiency increases.

A common example illustrated in Figure 6.1 is the practice of many 
coffee shops of having one or two servers take customer orders and collect 
payments and a separate group of baristas prepare the different types of 
coffees requested. In most instances, the order takers also handle non-
preparation services, such as pouring house coffees and taking care of 
pastry orders. This not only provides a training path for new hires but 

Figure 6.1  Coffee shop waiting line configuration for customers with 
simple orders (white symbols) and more complex orders (gray and 
black symbols)

$
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also allows the more effective use of the more highly trained barista staff 
and the ability to use part-time workers for the order taking. In effect, two 
lines and two classes have been created here: one for all customers and a 
second line (phase) for customers with more complex orders.

Since the first edition of this book, advances in communication 
technology have resulted in new useful variations of the order taking 
process. For example, drive-through coffee shops can use smart phones 
or wireless tablet computers to allow taking orders from the cars waiting 
in line, shortening the service time at the pickup window. Taking this 
technology a step further, there are attachments for those devices that 
allow the use of credit cards for making payments to further reduce the 
service time at the window.

Waiting Line Configurations, Psychological Factors

Many times, it is not practical or even possible to do much to reduce the 
average waiting time for a service. First, it is important to not do things 
that would increase a customer’s perception of how long the wait is 
likely to be. Second, there are things we can do to reduce anxiety while 
waiting in line or even to allow a customer to make more effective use 
of that waiting time. Some suggestions paraphrased from the available 
online literature are given here; for more detailed information, con-
sult the classic article by Maister (1985) and the discussion by Norman 
(2008).

Some general axioms regarding the waiting experience are as follows:

•	 If a customer has time limitations, anxiety increases, and 
the wait appears to be longer. This is especially appropriate 
for lunchtime customers and passengers at baggage check-in 
whose flight is scheduled to leave very soon.

•	 The more desirable the service, the longer people are willing 
to wait. Popular restaurants, popular movies and shows, and 
limited attendance venues are good examples. A corollary here 
is that excellent service can compensate for some poor waiting 
conditions. However, a business should avoid relying on this 
corollary if they want to remain competitive.
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•	 The more necessary the service, the more customers will 
tolerate a long wait.

•	 Waiting on hold seems longer than waiting in line because the 
customer cannot see how long the line really is and how fast it 
might be moving.

•	 When there is more than one line, your line always appears to 
be more slowly. You notice it when the other line moves with 
respect to you but not when your line moves with respect to 
the other line.

•	 Time moves more slowly when you have nothing to do but 
wait. The corollary is that the wait appears to end more 
quickly when you have something to do like reading a book 
or chatting with a companion.

Some negative psychological factors to be avoided are as follows:

•	 A clock on the wall that can be seen by those waiting in line 
reminds customers of the passage of time.

•	 Not informing customers about what is to be expected 
(priority rules, what preparation is required of the customer 
to obtain service, how long the current average wait is, 
etc.). One common failure in this regard is the practice of 
many restaurants to assign specific tables to each server on 
duty. Customers who are unaware of this can be quite upset 
when they have been waiting and a nearby server who is 
not assigned to their table seems to be ignoring them. Some 
customer dissatisfaction can be avoided by the host or hostess 
seating customers at their table and telling them who their 
assigned server will be and perhaps even taking their drink 
orders to get things started when the restaurant is busier than 
normal.

•	 An uncomfortable waiting environment: Expecting people to 
wait outside in a predominantly rainy climate like the Pacific 
Northwest or asking medical patients to stand instead of sit 
while waiting are just cruel practices. When people have other 
more comfortable waiting options at a competitor for the 
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service they want, such practices will cost a business many of 
its customers.

Some positive things a business can do are as follows:

•	 Give customers something to do while they wait. The best 
items are things that contribute to completing the service 
process, such as filling out forms, informing customers about 
what they will need to do when they reach the server, or 
letting them know about any personal data or items that may 
be required for service rather than finding out that need when 
they reach the server window after a long wait. In some cases, 
it is possible to allow a customer to leave the service facility 
to do other things during the waiting time and then return 
shortly before they are next in line for service.6,7

•	 Use a single-line configuration for multiple-server applications 
wherever possible. The single-line and parallel-line configu-
rations in Figure 3.1 provide the same average waiting time 
from a business perspective, but the variability in individual 
customer experience and the perception of how fast the line 
moves are different. The single-line configuration moves every 
time a single customer is processed; parallel lines move only 
when a customer in that line is processed. The more servers, 
the faster the single line moves in respect to individual lines. 
In addition, the variability in individual customer waiting 
times is reduced because the effect of individual service times 
that are very long or very short are averaged out over the 
number of servers rather than affecting just the line in front of 
one server.

•	 Make the waiting area more comfortable and even produc-
tive for customers while they wait. Seating, wireless access to 
the Internet, and self-serve coffee stations have become more 
common in many waiting areas as businesses become aware 
that customers who have something to do are more tolerant of 
uncertain or longer waits. The use of having customers take a 
numbered ticket when they enter allows much more flexibility 
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in where they wait and how they use their waiting time. In an 
area where many customers are arriving and leaving, such as a 
governmental office, the progression of the numbers called up 
for service also provides a sense of how fast the line is being 
served.

Arrival Rate Management Methods

Another approach for reducing variability in service processes is to try 
to control the arrival rate to some degree. The most familiar method is 
using appointments or reservations. Appointments are used where there is 
more predictability in the nature of the services requested and the facility 
capacity and choice of servers are relatively constant. When the service 
time has a greater range of variability, such as serving meals in a popular 
restaurant, and a wider choice of servers can serve a given customer, res-
ervations are more appropriate. Other significant factors here are the cost 
and availability of servers. The higher the skill requirements, the higher 
the cost per server and the lower the part-time availability is for such 
skilled individuals—hence the prevalent use of appointments for most 
professional services.

Consider a typical medical clinic appointment schedule. The facility 
has a fixed number of medical staff and examination rooms. The capacity 
of the facility is dependent on the effectiveness of the appointment 
schedule. Some medical services, such as vaccinations and routine tests, 
have a relatively constant service time, making their appointment schedule 
easy if the demand requires it (when some daily peaks are greater than 
the daily capacity). The appointment time then becomes whatever the 
service time is plus some easily calculated small addition to accommodate 
cleanup and preparation between patients.

But when we consider the appointment schedule for doctors on the 
staff, life just became more complicated. The factors to be considered 
are that not all doctors require the same average examination time, 
examination times can vary considerably from one patient to the 
next, patients sometimes arrive a bit late, some room must be left in 
the appointment schedule to accommodate unscheduled urgent care 
patients,8 and, most important of all, when a patient examination lasts 
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longer than the allotted appointment time, it affects the timing of some 
if not all the subsequent appointments that day. Taking all this into 
account, the goal of an appointment scheduling time analysis is to select 
an appointment duration that reduces the possibility of an appointment 
running late without trading off too much patient capacity. The trade-off 
is between the costs of having staff stay later to accommodate the patient 
who made the last appointment versus accommodating fewer patients 
during the day.

Having a probability distribution that accurately represents the 
distribution of examination times is essential. Unfortunately, the stan-
dard use of an exponential service distribution to represent service time 
in general queuing analysis models does not work well here because it 
allows a high percentage of service times lower than the average time. 
A  normal distribution is more representative of medical examinations, 
and Erlang or beta distributions are better, but the best is when the clinic 
has collected enough data to determine its own discrete distribution for 
use in simulation programs for scheduling. The process of moving med-
ical records from paper form to online digital form makes it much easier 
to collect data for analyzing and improving service processes. Just the 
opportunity to readily and automatically record time-of-day data with 
medical observations recorded online makes it easier to determine discrete 
service time distributions for various medical activities.

Example 6.5  Appointment Schedule Analysis

A doctor and a nurse are reviewing their appointment schedule 
to see if they can revise the average appointment time. The goal is 
reduce the number of evenings working late to take care of the last 
patient when some appointments run over. Their data show that the 
average examination time for a patient takes 15 minutes. They also 
need an average of two minutes to prepare the examination room for 
the next patient and enter the current patient’s medical records into 
the computer. Their current appointment time is 20 minutes, which 
allows them to take care of 24 appointment or urgent-care patients in 
an 8-hour day. They had thought that amount of time would provide 
enough spare time to accommodate an occasional appointment 
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overrun, but experience indicates that it is not enough. They have 
not yet accumulated enough data to have an accurate estimate of the 
variability of the examination times, but they do remember that a few 
examinations took as long as 30 minutes.9

Let’s use a normal service time distribution to see if we can get a 
rough estimate on what might be a better appointment time. We will 
use 15 minutes for the mean time and 30 minutes as a worst-case time; 
then we can estimate the standard deviation σ as being one-third of 
the difference between the maximum time and the mean time, which 
gives us a standard deviation of five minutes. We are assuming here 
that a ±3σ distribution around the average time will include almost all 
(99.74 percent) of the possible examination times. I have not included 
the two minutes for preparation and record-keeping because this is 
under the control of the doctor and nurse, does not vary much from 
patient to patient, and can be made up in different ways that do not 
affect patient times.

The current overrun margin is 20 − 15 = 5 minutes or 1σ. Con-
sulting a normal distribution table, the percentage of the normal 
distribution less than or equal to 20 minutes is 84.13 percent, so there 
is a 15.87 percent chance that an examination will take longer than 
20 minutes. Because there are currently 24 appointment periods per 
day, an average of 0.1587 × 24 = 3.8 appointments will run over each 
day. This, of course, does not tell us when those overrun appoint-
ments will occur during the day. If they all occur early in the day, some 
following patients will have to wait longer for their appointments. 
(Keep in mind here that the normal distribution also has appointment 
times shorter than 15 minutes, providing an opportunity to make up 
some time during the day for longer appointments that occur early in 
the day. But the later in the day that those longer appointments occur, 
the less opportunity for making up time there is.) If they all occur late 
in the day, the doctor and nurse will really be working late. Thus, when 
the overruns occur is very important for this analysis.

If the doctor and nurse increase the appointment time to 25 
minutes, the probability of an overrun drops to 2.28 percent, which is 
less than one appointment overrun per day. But we also have reduced 
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Example 6.5 illustrates how a normal service time probability 
distribution can be used to estimate the probability of an appointment 
running over. This simplified problem illustrates the need for using 
simulation methods, where the effect of various appointment times and 
different overrun times can be evaluated to determine the best result that 
provides the highest capacity without undue costs and customer waits. 
A normal distribution is rarely the best distribution for scheduling pur-
poses, but it is often the choice because it is easier to use in queuing 
analysis models and more familiar to users.

Some other observations are that if the examination room preparation 
and patient record entry could be handled independently of the doctor 
and the nurse, it would free up another two minutes per appointment. 
For example, you could have a dedicated record clerk do the entries and 
a dedicated attendant prepare examination rooms. The problem of course 
is that you would lose the immediacy of the time-of-day data related to 
when the entry data were actually collected.

Staggering the appointment times so that each doctor in a practice 
does not start appointments at the same times would simplify the sched-
uling of these back-office support activities. Staggering appointment 
times would also space out appointment check-ins for a smoother process 
flow at the check-in desk and provide a positive psychological effect in the 
waiting room because patients would be arriving and departing on a more 
regular basis, not intermittently in groups.

Actual operational data are necessary to provide the best representa-
tions of the service time and arrival time distributions in simulations. It 
cannot be emphasized enough that the result of a simulation is only as 
good as the knowledge of the real-life process and the accuracy of the 
actual operational data available for it. For some good discussion about 
what operational data to collect for a variety of situations and ways to 
acquire it, refer to the book by Hubbard (2010).

the number of appointments per day from 24 to 19, a capacity loss of 
20.8 percent. This would create a need to add facilities and doctors 
somewhere else to take care of the five patients who are being turned 
away each day.



	 MANAGERIAL CONSIDERATIONS	 101

For this medical clinic problem, the following data are needed for an 
accurate simulation solution:

•	 A history of actual examination times is needed to build an 
accurate discrete probability distribution for those times.

•	 A history of appointment overruns, how long each was, and 
what time of day it occurred gives a picture of the typical 
overrun.

•	 Separate this information into values associated with regular 
patients and values associated with unscheduled urgent-care 
patients. (It is likely that longer examination times are more 
closely associated with urgent-care patients, but this assump-
tion should be verified.)

•	 Identify the number of urgent-care patients per day per 
class of care. This helps in planning the number of open 
appointments needed per day and how they might be shared 
among the doctors who are most capable of handling the 
particular class of care required.10

•	 Identify the history of times that patients arrived for an 
appointment: how early or late were they and what time of 
day was the appointment. Such arrival timing variations can 
contribute to overruns and hinder the ability to catch up after 
an overrun or even get ahead of schedule.

Reservation policies have similar constraints and data collection needs, 
but they allow some simplifications because the number of reservations 
required per day is more limited. For many popular restaurants, the 
number of successive reservations (turns) for a given location is limited 
to how many groups they expect to seat at that location during a normal 
dining period (breakfast, lunch, or dinner). Obviously, the restaurant 
will require an estimate of how long customers will typically take to 
order and eat their meals and also must recognize that their service rate 
contributes to the length of this period. One rule of thumb to help judge 
the variability of dining time is that the larger the group, the longer one 
might expect customers will take for dinner because of the increased 
amount of socializing (and beverages) that are likely to occur.
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In many European restaurants, a group has the table for the evening, 
so the likelihood of a late-night reservation is not considered. In that 
respect, such restaurants are no different from one-time events, such as 
airplane flights, hotel rooms, Broadway shows, and sporting events. The 
challenge here is to fill the available seats or rooms for maximum profit. 
There is always some risk that someone with a reservation will cancel at 
the last minute. Knowing the average number of no-shows based on their 
past experience, some businesses will accept that number of reservations 
over their available capacity to ensure full usage of that capacity. The risk 
they take on is possibly having to deal with a highly dissatisfied customer 
who has a reservation and no accommodation because the usual number 
of no-shows did not occur. This practice, called overbooking, is used by 
many airlines and hotels. While overbooking analysis also involves work-
ing with arrival distributions and probabilities, it is not included in the 
scope of this monograph.11

Data and Information Management

Collecting the appropriate data and processing it to gain information for 
managing and improving waiting line applications is essential if a business 
using such applications wants to remain competitive. One obstacle to 
overcome is the exponentially increasing volume of data collected by most 
businesses today because the advances in information technology (IT) 
have made it easy to do. The challenge for management is winnow out 
the data potentially useful for queuing applications from this deluge of 
numbers, facts, customer feedback, and so on often referred to these days 
as Big Data. Sadly, despite the plethora of data, it is often lacking the one 
important set of data points required to process relevant data into useful 
information for waiting line problems. A common example is accurate 
time-of-occurrence data to help determine probability distributions, aver-
age service and arrival rates, seasonality factors, customer losses because 
of inadequate service capability, and probabilities of downtime and other 
process disruptions.

A major contribution to this situation has been the growth of IT 
groups, departments, or functions, depending on the size of the business 
or enterprise, to manage the hardware and software technology required 
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to collect and process the data a business requires to be successful. The 
catch is that many of these functions have also been given the respon-
sibility for selecting what and how the data are collected and processed 
with an often unspoken understanding that those groups will, of course, 
consult with the other parts of the business dependent on that data and 
information regarding what is selected. This approach made a lot of sense 
in the beginning days of IT when there were few people that understood 
both how the technology worked and how it might be used. Today, how-
ever, the average desktop system on a worker’s desk is more capable than 
a building full of mainframes, card readers, and tape/disk drives in the 
1980s. In addition its operating system is much easier to use and minimal 
programming skills are required to take advantage of the computational 
features offered by programs such as Excel.

Okay, so what does this mean? It means that managers and employees 
need to be more involved in the selection of what data is collected, 
the conditions under which it is collected, and how it is processed to 
provide useful information. Otherwise, they may make a decision using 
information that is not exactly relevant to their situation or will obtain 
analytical results that are not representative of what actually is occurring 
in real life. That is, the management of information processes used in 
conjunction with other business processes such as waiting line applications 
needs to be done in an integrated manner as discussed in considerable 
depth by me in another Business Expert Press book (Shaw 2013). Some 
highlights from that book most appropriate for waiting line situations are:

•	 Information is the result of processing data and can be done 
internally using data collected directly by the business or can 
be purchased from others, such as a marketing firm, with the 
caution that in that case one often does not have any knowl-
edge of what sets of data were chosen and how they were used 
to provide that information.

•	 For each step or process in a business, a manager or improve-
ment professional should ask what data/information are 
required for its successful execution?, what data/information 
are created?, what data/information are stored?, and what 
data/information are transferred elsewhere in the business?
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•	 Information and data security are not directly essential 
for managing and improving service and other queuing 
applications but they must be considered as critical to the 
overall success of a business and the trust of its customers. 
Thus, when answering the questions for the second bullet 
in this list, a manager should also determine which of those 
information and data components deserve some form of 
security appropriate to preventing the risk of them becoming 
available to undesired recipients. A concomitant question to 
be asked is which information or data are critical to ongo-
ing business operations and what precautions are in place to 
prevent their loss?

•	 Regarding the question of what data/information are needed 
for managing and improving waiting line applications, 
the following are particularly important as illustrated in 
Chapter 7: frequency data (number of occurrences and times 
of occurrence) are required for determining which probabil-
ity distributions to use in queuing models or in simulations, 
number of customers in line or in the system at the end of a 
defined time period and the number of arrivals during that 
time period to make use of Little’s Law, and accurate cost 
data for servers, lost customers, and service facilities and 
equipment.

Priority Management

To conclude this chapter, some discussion regarding suggested guidelines 
for using priorities in waiting line applications is in order. We will cover 
this in two parts: people and items. When dealing with people, one 
basic rule to remember is that when you selectively improve the wait-
ing experience of one group in a queue, you have also chosen to make 
that experience worse for the other groups in the queue unless you add 
more resources for serving the queue. Another basic rule to also consider 
is that when dealing with systems where all servers are equally capable of 
handling all customers, priority management does not affect the overall 
average performance.
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Simply put, moving some people to the head of the line makes others 
wait longer. If you do this too often in a single line, you run the risk of 
delaying some customers long enough that they give up and leave the line 
without being served. If the reason you give some customers priority is 
not explained or appears to be unfair to the remaining customers, you risk 
losing even more customers who will take their business elsewhere.

Dealing with these issues is easy in some situations. Giving prefer-
ence to more critically ill patients in an emergency room is generally 
understood by the other patients and even expected. Another commonly 
understood preference is when passengers who would otherwise miss 
their flights are called to the head of the line at the airline ticket counter. 
The announcement not only helps identify who needs preference but also 
tells the others why they are being given preference.

Giving preference to more valuable customers on hold in a call center 
is easy because the process is invisible to other customers on hold and the 
selection can even be automated.12 For face-to-face professional services, 
some businesses even use separate entrances for preferred customers to 
achieve a form of call center anonymity.

When the number of customers requiring some preference is rela-
tively large, it is better to treat them as a class and set up either a separate 
line (frequent travelers at an airport) or a business process like an express 
line at a grocery store to handle them. This also helps communicate to 
other customers the reason for the different treatment to reduce their 
impressions of being treated unfairly.

Nonpreemptive and Preemptive Priorities

There are two ways to handle higher-priority customers: nonpreemptively 
and preemptively.

A nonpreemptive approach moves a higher-priority customer to the 
head of the waiting line, allowing a lower-priority customer currently 
being served to continue being served until that service is completed. 
A preemptive approach allows a higher-priority customer (A) to replace a 
lower-priority customer (B) currently being served, delaying the comple-
tion of the service for B until later when there are no more higher-priority 
customers to preempt B. If there are a large number of higher-priority 
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customers, B is likely to wait a long time before his or her service can 
be completed. In general, the use of a preemptive approach should be 
limited to situations where there is a clear enough urgency for the current 
customer to have his or her service delayed such as in an emergency room 
situation.

The nonpreemptive approach is preferred for most call center priority 
applications because it best preserves the invisibility aspect of the priori-
tization process. (Imagine being asked to be put back on hold while the 
operator takes care of another caller.) It is also preferred in most appli-
cations where immediate service is not the sole reason for the priority 
and where the line behavior is observable by all customers because it is 
perceived as being fairer than the preemptive approach.

While this should be intuitively obvious, using priorities increases the 
variability of waiting times: the higher the percentage of customers get-
ting preferential treatment, the higher the variability. Because variability 
adds uncertainty to business outcomes, using priority rules in processing 
waiting line customers should be carefully considered; if used, it should 
be limited to only a small percentage of the arrival population.

Some models13,14 have been developed to determine the increased 
variability in average waiting time when using both nonpreemptive and 
preemptive priorities. These models also aid in determining the degree of 
reduction in the average waiting time for higher-priority customers and 
the concomitant increase in waiting time for lower-priority customers. 
If you are interested in possibly applying these models to your situation, 
consult Hillier and Lieberman (2010), Chapter 17, and Haussmann 
(1970). Be sure to review the assumptions and conditions for using such 
models to make sure they are appropriate for your situation.

An effective use of intermittent nonpreemptive prioritization is 
when a customer being served needs to fill out a form or otherwise do 
something that only the customer can do to complete the service. Instead 
of asking the customers waiting in line to wait longer while this is done 
by the customer and the server waits, the server asks the customer to leave 
the line to fill out the form or do the other activity and then reenter at 
the head of the line when done, in effect giving that customer a higher 
priority. Such a line is occasionally referred to as a double-ended queue or 
dequeue. This has several benefits with no additional cost to the business 
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to implement it; it reduces the average service and waiting times, improves 
customer satisfaction, and is generally viewed by customers as a fair use 
of prioritization.15

Manufacturing applications can use a wider range of priority rules 
when dealing with items or jobs with varying service times. These rules 
are normally applied as part of the production scheduling process. At 
the beginning of each day, the production scheduler reviews the list of 
jobs or items to be produced and then sequences them according to the 
priority rule used. Some of the more commonly used rules16,17 are as 
follows: shortest process time first (SPT), first-come, first-served (FCFS) 
or first-in, first-out (FIFO), earliest due date (EDD), slack per remaining 
operations (S/O or SRO), critical ratio (CR), and Johnson’s Rule (for the 
special case of items moving through two sequential steps with each item 
requiring varying service times at each step.).

Performance measures for such schedules include the average num-
ber of jobs or work-in process (WIP inventory—same as L in queuing 
analysis), the average job lateness (missing any due dates), the job flow 
time (same as W in queuing analysis), and makespan (the total time to 
complete a group of jobs).18 

It should be obvious that the scheduling goal is to minimize the value 
for each measure. Because priority rules do not all affect performance 
measures to the same degree or in the same manner, a manager should 
select a rule that best addresses the performance measure that is most 
important for that manager’s business. If all jobs must go through the same 
sequence of steps or operations, the queuing analysis models discussed in 
this monograph can be used to determine which scheduling priority rule 
provides the best performance measure values for a particular business.

However, when the job flow is not the same for all items, which 
occurs in many job shops, most queuing models are inadequate for the 
task and developing useful simulation models is very difficult. There is 
considerable work in progress to develop good mathematical models for 
job shop situations, but the mathematics involved is challenging, and the 
current results available are usually difficult to understand by someone 
who does not have strong mathematical or statistical skills.

One special priority rule used in manufacturing is the practice of 
using “hot lots” for preferentially moving selected items or jobs through a 
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process faster. While in practice it is best to avoid the need for expediting 
items through a manufacturing process, sometimes it is necessary to satisfy 
the need of a critical customer or cope with output constraints imposed 
by a manufacturing process. This need was prevalent in many early inte-
grated circuit fab facilities because of the large variance in final product 
yields and long manufacturing times of several weeks or more. A problem 
frequently encountered then using hot lots was that there were often so 
many rush requests from different customer groups that the reduced pro-
cessing time advantage for hot lots became so small that the prioritization  
was not worthwhile. This forced many fab managers to put restrictions 
on the number of hot lots they would accept at any one time. This limit 
was typically between 5 percent and 10 percent based on the experience 
of a given fab manager. Analysis using some of the priority, queuing, and 
simulation models available today would have allowed managers to set 
more appropriate hot-lot limits for a desired expedited throughput time.

In summary, my experience has indicated that using priority systems 
in single-channel queuing applications is less effective when dealing with 
people and should be generally avoided unless there is a clear justification 
for them (emergency rooms, 911 calls, etc.). Separating customers into 
different service classes with appropriate servers is a better way to offer 
improved services to customers.



CHAPTER 7

Useful Tools and  
Simulation Methods

This chapter discusses some tools that can simplify waiting line analyses 
and the basic simulation approaches for evaluating variances in waiting 
line behavior and analyzing situations for which no closed-form mathe-
matical solution yet exists. Specific topics include the following:

•	 Little’s Law
•	 Waiting line data collection
•	 Probability distribution determination
•	 Simulation models
�	Excel tools
�	Single-channel models

•	 M/M/1 model
•	 M/G/1 model
•	 G/M/1
•	 G/G/1 model

�	Multiple-channel models
�	Single-channel, multiple-phase manufacturing model

•	 Random number approximations of probability distributions

Little’s Law,1 L = λW or Lq = λWq, is arguably the most useful concept 
that waiting line analysts have in their toolboxes. It holds true regardless 
of the probability distributions used to describe the arrival and service 
rates for a waiting line; it is also independent of the number of servers 
used. Its primary value is that data for determining L, Lq, and λ can be 
collected easily in most businesses, which allows easy calculations of  
W and Wq. Knowing all these values allows an easy determination of the 
average service time for many of the waiting line models.



110	 OPERATIONS METHODS

The following discussion on collecting waiting line data gives some 
examples of the versatility of Little’s Law.

Waiting Line Data Collection

Having actual operational data about your business is necessary for being 
able to use queuing analysis models effectively. In many situations, the 
classic exponential distributions for arrival and service rates do not rep-
resent your business as well as the choice of another standard probability 
distribution or a discrete distribution tailored to fit your typical business 
conditions. To assess the need for choosing an alternate probability dis-
tribution for either the arrival rate or the service rate, you need to collect 
enough data to guide you in that choice and provide some of the average 
performance values for the appropriate waiting line model. In many cases 
this data can be used to form a discrete distribution that can be used in 
simulation models to represent your particular business application.

One class exercise that I asked my process management students to 
do was to collect data while observing the waiting line behavior at various 
campus coffee shops. They were expected to analyze that data and use 
it in a subsequent waiting line simulation exercise. A sample data sheet 
from that exercise is shown in Figure 7.1. While these student exercises 
are specific to coffee shops, the general data collection and simulation 
approach is applicable to a wide variety of waiting line scenarios. We will 
discuss their work in more detail in the examples presented in this chapter.

We will collect data only about line lengths and arrival rates. Observ-
ing actual waiting and service times is much more difficult and not needed 
because we can derive average waiting times from the line length and 
arrival data. Average service times are a bit trickier but can be estimated 
for most scenarios once we have the waiting time values. For good data, 
the following guidelines should be followed:

•	 Select a suitably short collection period for each pair of line 
length and arrival rate values. For low arrival rates, when there 
is typically enough time between arrivals to count the number 
of people in the facility being served and waiting for service, 
it is better to record the amount of time between each arrival 
to determine the arrival rate. If the arrival rate is too fast to 
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count the number of customers in the facility between arriv-
als, then select a fixed time segment that is at least three or 
four times as long as it typically takes to count the number of 
customers in line. Record the number of arrivals during each 
period and the number of customers in the facility at the end 
or the beginning of each period. For the student’s coffee shop 
exercise, the fixed time period was five minutes.

•	 Hint: It is useful to have one person note the arrivals and 
another person count the customers. Trying to do both at the 
same time can be challenging for a single person, particularly 
if the business is busy. Mechanical counters and stopwatches 
or kitchen timers are useful but unnecessary tools if you have 
a good watch and paper and pencil for making tally marks.

•	 If you want to determine average service times, note the 
number of servers on duty during each recording period. 

Figure 7.1  A data collection form for a coffee shop waiting line 
process study. The length of the data collection period is five minutes
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If not, you can ignore this information (more about this 
decision later).

•	 Unless you have good reason to believe that your arrival rate 
is relatively constant throughout the working day, record 
the starting time for each record period. This is not usually 
required for production lines, where the production schedule 
normally ensures a relatively steady arrival rate.

•	 If your business has different service classes (express lanes, 
commercial customers only, etc.), be sure to collect data 
separately for each class if you want to derive service time 
and arrival rates per class. In this case, for more accurate data, 
avoid having servers in one class serve customers from another 
class when those servers have an idle period. (The students 
were not asked to do this because the intent was to not have 
their collection actions interfere with any of the operations at 
the coffee shop they chose.)

•	 Pay close attention to the measurement units. In Figure 7.1, 
the average line length is independent of the length of the 
collection period. Not so for the average arrival rate shown; 
that average is dependent on the number of arrivals per 
period. The form also clearly states that the line values are for 
L, not Lq.

Example 7.1  Data Collection for an M/M/1 Model

This example demonstrates how we can use the information collected 
in Figure 7.1, where the duration of each data collection period is five 
minutes and two hours’ worth of data is collected. If we are comparing 
different businesses it is important that the two hours’ worth of data 
is collected at the same time of day for each business. For a business 
application, we would want more data, particularly if we wanted to 
also develop a more accurate discrete probability distribution that we 
could use to represent the arrival rate in a simulation model.

First, the students added the 24 line values they recorded for a total 
of 44 and divided that total by 24 to get an average line length of 
1.833. However, they incorrectly added the line values because the total 
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should be 50, not 44 (did you catch it?), so the correct average line 
length is 50/24 = 2.083 = L. This error indicates that their other results 
should also be checked. Sure enough, there is one more error where they 
translated five tally marks for the 50-minute period into the number 
4 instead of the correct value of 5. Hence, the correct total number of 
arrivals is 131, not 130. This gives an average arrival rate per collection 
period of 131/24 = 5.458 arrivals every five minutes. Because we also 
know that the total time for the data collection took 120 minutes, we 
can also divide the total number of arrivals by that time to get the rate 
per minute = 1.0916/minute or 65.5 customers per hour.

Why did we spend time here dealing with mathematical errors? 
First, we are emphasizing that manual data collection methods are 
prone to mathematical errors because of the sheer volume of numbers 
involved. Second, even small errors, particularly when they occur in 
only one variable, can result in considerable analysis and simulation 
errors. It is always good to double-check your data before investing 
more analysis time in using it, another example of the GIGO principle.

Using Little’s Law, the average total time W spent in the coffee 
shop is therefore L/λ = 2.083 ÷ 1.0916/minute = 1.908 minutes or 
114.5 seconds, a respectable time for students who want to just pop in 
for a quick coffee before going to class.

Now we did not collect waiting-in-line data for Lq, but we can still 
obtain that value, the average time spent waiting in line, and also the 
average service time with what we have because the coffee shop line 
can be described as an M/M/1 model. For that model, W = 1/(µ − λ) = 
L/λ and Wq = W − (1/µ). Because we now have L and λ from the data 
collection and W using Little’s Law, we can use the first equation to 
solve for µ and then use the second equation to solve for Wq, which in 
turn will give us Lq using Little’s Law again. Running the numbers, we 
obtain µ = λ + (1/W) = 1.0916/minute + 1/1.908 minutes = 1.6157 
customers per minute. Therefore, Wq = 1.908 minutes − (1/1.6157) 
minutes = 1.289 minutes and Lq = λWq = 1.0916 × 1.289 = 1.407 
customers.

In this example, there is not enough information (should have at 
least 50 values per set and at least 10 sets taken at different times during 
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the week) to determine whether a different probability distribution 
than the usual exponential distribution should be used for the arrival 
rate. Although we were able to determine the average service rate, 
there are no individual service time values to use for determining a 
service time distribution. We would need to collect actual individual 
service time values to do that; this could be done by having a staff 
member time each transaction for a long enough time to get at least 
50 values, more when the variability of the values is high. Similarly, if 
we desire a more accurate estimate of the interarrival time distribution, 
we need to also collect at least 50 or more values for the length of time 
between each successive customer arrival. We will go into these data 
requirements in some more detail in Example 7.2. Note: Unlike line 
length values, arrival and service time values can be collected in any 
order and combined for the purpose of analyzing actual probability 
distributions because both values are memoryless.

Discrete Probability Distributions

A valuable characteristic of simulation models is that they can work with 
either continuous distributions, like the ones we have discussed for various 
queuing models, or discrete distributions based on collections of actual 
data. The difference in the approach is that we use random numbers to 
calculate the values for the simulation from the mathematical functions that 
describe the continuous distributions, or we use those random numbers in 
a lookup table to select a discrete value from the histogram of the data col-
lection. Examples 7.2 and 7.3 illustrate these two approaches using some 
more data collected from my coffee shop data collection assignments.

Example 7.2  Continuous Distribution Determination

The data collection time for a different campus coffee shop from 
that used in Example 7.1 was increased to 500 minutes to enable 
the collection of 100 data values, keeping five-minute data periods 
for both arrival rate and the line length. Graphs of both values 
collected are shown in Figure 7.2. This length of time is consistent 
with an eight-hour day. Using the same types of calculations shown in 
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Example 7.1 for this larger data set, we obtain λ = 1.470/minute or 
7.35 arrivals every five minutes, L = 3.260, W = 2.218 minutes, and 
µ = 1.921/minute. Looking at the values versus time in Figure 7.2, we 
can observe that average values rarely occur and certainly not at the 
same time, line lengths are less than or equal to the arrival rates at any 
given time, line lengths sometimes decrease when arrival rates decrease 
(when a cluster of short service times occurs), and both values can be 
considerably larger or smaller than the average values. Like Figure 2.3, 
this reemphasizes the fact that the average values obtained from wait-
ing line model equations are not good indicators of what a typical 
customer will observe.

Although you can obtain some useful information from this exer-
cise, you must be careful in using the data. The values for L and λ 
were calculated using individual pieces of data, and a histogram of that 
data will represent the true distribution of that data. Calculating the 
average interarrival time for a period by dividing five minutes by the 
number of arrivals for that period gives an average interarrival time 
for a data sample that contains one or more pieces of individual data. 
Similarly, calculating the service rate for a period is an average of the 
service times that took place during that period and thus is also con-
sidered a sample of data because it contains one or more pieces of 

Figure 7.2  Arrival and line length data collected over a 
500-minute interval for a coffee shop waiting line process study. 
The length of each data collection period is five minutes
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individual data in its value. That is, each individual arrival has its own 
interarrival and service times that are being treated as being the same 
value during a data collection period when they actually differ for each 
arrival. Complicating the validity of the service time data is that some 
of the individual service times in one period are for some of the arrivals 
from the previous period.

Because the Central Limit Theorem states that the distribution of 
sample averages approaches that of a normal distribution as the num-
ber of samples increases, this means that histograms of interarrival and 
service times obtained in the way discussed previously will not give 
us an idea of what their underlying probability distributions are. We 
have to have histograms of raw data to do that. This is the reason for also 
collecting individual service and interarrival times and is a key part of 
the discussion with students when they do this exercise.

So how do we proceed with the data we have? First, we must 
recognize that the line length values are results, not inputs or drivers 
to the situation. What we need to focus on are the drivers: arrivals 
and service times. We will begin with a histogram2 of the arrival data 
and see what it can tell us. We have some choices to make in setting 
up the histogram. The choice of bin size for sorting the arrival values 
is important. A large bin size reduces the number of bins required 
but requires counting the occurrences of a range of arrival values in 
each bin. A small bin size allows assigning a bin to record the number 
of occurrences for each distinctive arrival value but requires a large 
number of bins. In general, the number of bins should be roughly 
between 10 percent and 20  percent of the number of values to be 
plotted if you want to look at the shape of the distribution. Reviewing 
the arrival values plotted in Figure 7.2, I chose a bin range from 0 to 
23 (minimum to maximum arrival values) and a bin size of one. This 
bin size allows me to determine the number of occurrences (frequency) 
for each distinctive arrival value. Because we have 100 values for 
this situation, the percentage of bins is 23 percent. I also asked the 
histogram function to plot the cumulative percentage of the arrival 
frequencies. The result is shown in Figure 7.3.

The frequency bars indicate that the arrival distribution approx-
imates a Poisson distribution, and the cumulative percentage plot 
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verifies this assumption by closely approximating the cumulative 
distribution function for an exponential distribution. To further verify 
this conclusion, we can check to see if our average arrival rate value 
corresponds to the 63.3 percent point3 on the curve. The histogram 
shows that value to be somewhere between seven and eight arrivals per 
period. Our value is 7.35 arrivals every five minutes, a close agreement. 
This allows us to use an exponential distribution with an average arrival 
rate of 1.47 arrivals per minute for this coffee shop.

This outcome is not unexpected because an exponential distribution 
is often a good representation of real-life arrival behavior. Thus we can 
use an exponential distribution formula with a random number as its 
input to simulate arrival rates and interarrival times in our simulation 
for this coffee shop business. Such formulas are discussed later in this 
chapter.

Figure 7.3  Arrival rate histogram for data shown in Figure 7.2. 
The bin size is one; the bin number represents the arrival rate 
value counted in that bin. For example, bin four shows the number 
of times only four arrivals occurred during a five-minute period
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Example 7.3  Discrete Distribution Determination

In an attempt to determine what service-time probability distribution 
we should use for a simulation of our coffee shop business, we will try 
a little experiment where we determine the average service rate for each 
five-minute data collection period by using the arrival rate and the line 
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length for that period to determine the waiting time for that period, 
which then should allow us to calculate an average service time for 
that period using the equation µ = (1/W) + λ from the M/M/1 model. 
Averaging those 100 average service rate values, we obtain an aver-
age rate of 1.94/minute. Wait a minute! That does not agree with the 
1.921/minute value derived at the beginning of Example 7.2. What 
did we do wrong?

Because the 1.921 value for µ was derived from the averages for λ 
and L using equations that account for probability distributions and 
the 1.94 value is based on only a global average of sample averages 
for µ, the methods are not exactly equivalent. Remembering that the 
average service rate for each period is partly based on service times 
for arrivals that occurred in previous periods but were not serviced in 
those periods, the 1.921 value is the more accurate estimate because 
averaging over the total time of 500 minutes minimizes those effects.

Because we do not have actual individual service times to deter-
mine the most appropriate service distribution for our simulation, can 
we just use an exponential distribution with an average service rate 
of 1.921/minute as suggested by the waiting line models? Recogniz-
ing that most service operations have a minimum service time, a pure 
exponential distribution is not appropriate for this simulation because 
it allows for a relatively high percentage of short service times. A nor-
mal distribution could be used for fairly standard services, but for a 
typical coffee shop, there can be some fairly long service times associ-
ated with large orders or complicated coffee requests.

Recalling Example 4.1, it would be better if we start with an Erlang 
distribution that can be adjusted to fit a variety of service distributions 
by varying its k value (the number of independent exponential distri-
butions that are added together to form the overall distribution). Use 
k = 2 as a starting point for our simulation and compare its predictions 
with our actual values. If there is close agreement, we are good to go. If 
not, we can try different k values to achieve a better result. If that fails, 
we need to collect actual individual service time data to determine a 
more suitable distribution or use that data to describe a discrete proba-
bility distribution that the simulation can use in a lookup table.
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Let’s look at the service rate values that we calculated for each 
five-minute period for the coffee shop in Figures 7.2 and 7.3. The 
histogram is shown in Figure 7.4. Keep in mind that decimal values 
will be counted in the bin preceding the next higher integer; that is, a 
value of 9.37 will be counted in bin nine.

As might be expected, given how the values were calculated, the 
distribution and the cumulative percentage curve are more ragged. 
Two values are not counted in the available bins, and there are two 
occurrences of zero service rates because there were zero arrivals for 
two periods. In actual practice, these are nonexistent values and must 
be ignored because service rate only has meaning when associated with 
a customer. The one occurrence for bin 13 indicates that the associ-
ated service time (1/µ) is an unlikely service time for this coffee shop. 
Discrete distributions have an advantage over continuous distributions 
in that anomalies like this can be accounted for in simulations.

To convert this information into a discrete distribution for use in 
simulations, we need to do the following:

1.	List the valid recorded values in order of value in one column. 
Ignore the zero service rate value for this example. List each 
distinct value only once.

2.	List the associated number of occurrences for each value in an 
adjacent column to the right of the first column. Total the number 
of occurrences for all listed values at the bottom of that column.

3.	In a third column adjacent and to the right of the second column, 
calculate the cumulative percentage for the occurrences, beginning 
at the top and ending with 100 percent at the bottom.

4.	In a fourth column adjacent and to the left of the first column, 
assign ranges of random numbers to each value in the first 
column by specifying a random number equal to the cumulative 
percentage for the previous value. Although this may be con- 
fusing, it supports the format for lookup tables in Excel.

5.	Use the columns created in steps 1 and 4 for creating a vertical 
lookup table in Excel, where random numbers can be used to 
select values according to their probability of occurring.
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Figure 7.5 shows the result of this process using the service rate 
values shown in Figure 7.4. Unlike the histogram in Figure 7.4, this 
process allows us to use exact decimal values for our discrete distribu-
tion rather than numbers rounded off according to bin size.

As an example of how the result in Figure 7.5 is used in a simu-
lation, when a service time needs to be assigned to a new customer 
according to this discrete service rate distribution, the Excel expression 
in Equation 7.1 is used to obtain that service time. To help under-
stand the cell assignments in the expression, the cell containing the 
title “Minimum Random Number Assigned” has a cell address of K4 
in the spreadsheet.

The VLOOKUP function for a simulated service time for this 
coffee shop (remembering that service time = 1/µ and that µ here is 
based on data for a five-minute period) is as follows:

	 = 5/(VLOOKUP(RAND(),$K$6:$L$47,2,TRUE))� (7.1)

For a random number equal to 0.343681, this expression finds a 
service rate of 7.5 customers every five minutes and returns an average 
service time of 0.666667 minutes.

Figure 7.4  Service rate histogram for data shown in Figure 7.2. 
The bin size is one; the bin number represents the service rate 
value counted in that bin. For example, bin four shows the number 
of times only four customers were serviced during a five-minute 
period
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Figure 7.5  Discrete distribution and lookup table

Minimum
Random
Number
Assigned

Service Rate
per Period

Sorted
Count per

Value
Cumulative
Percentage

Ignore0.00
0 1.50 1 1.02%

0.0102 2.00 2 3.06%
0.0306 3.00 9 12.24%
0.1224 4.00 8 20.41%
0.2041 5.00 3 23.47%
0.2347 6.00 5 28.57%
0.2857 6.67 1 29.59%
0.2959 7.00 3 32.65%
0.3265 7.50 5 37.76%
0.3776 8.00 5 42.86%
0.4286 8.17 1 43.88%
0.4388 8.40 1 44.90%
0.4490 8.75 3 47.96%
0.4796 9.00 3 51.02%
0.5102 9.33 3 54.08%
0.5408 10.00 5 59.18%
0.5918 10.50 2 61.22%
0.6122 10.67 2 63.27%
0.6327 11.00 1 64.29%
0.6429 11.25 2 66.33%
0.6633 11.43 1 67.35%
0.6735 12.00 5 72.45%
0.7245 12.38 1 73.47%
0.7347 13.50 1 74.49%
0.7449 13.75 2 76.53%
0.7653 14.00 5 81.63%
0.8163 14.40 1 82.65%
0.8265 15.00 1 83.67%
0.8367 15.08 1 84.69%
0.8469 15.60 1 85.71%
0.8571 16.00 2 87.76%
0.8776 16.15 1 88.78%
0.8878 16.33 1 89.80%
0.8980 16.80 1 90.82%
0.9082 18.00 2 92.86%
0.9286 18.29 1 93.88%
0.9388 20.00 1 94.90%
0.9490 20.57 1 95.92%
0.9592 21.25 1 96.94%
0.9694 22.00 1 97.96%
0.9796 25.09 1 98.98%
0.9898 30.00 1 100.00%
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Simulation Models

Setting up simulation models for waiting lines is simpler than for some 
other types of simulations. Because waiting lines are time based with a 
defined sequence of steps or phases, all the simulation has to do is keep 
track of when each customer or item enters the queue and how much 
time a customer spends at each step in the waiting line sequence. The 
tricky part is that the movement of customers that enter the queue later 
can be affected by the movements of customers who entered the queue 
earlier. When the time between successive arrivals is short, the probability 
of this occurring obviously increases.

Figure 7.6 shows an example of the sequence of events for a simple 
M/M/1 model with one service operation. The vertical axis represents the 
number of customers who have entered the queue, and the horizontal axis 
represents the passage of time. A horizontal bar represents each customer; 
the length of the bar represents how long the customer spent in the service 
system, with the left end representing when he or she entered and the right 
end when he or she left. This bar is normally divided into two parts, one 
shaded gray to represent how long the customer waits in the queue for 
service and the other colored black to represent how long the service took. 
The entry times are determined by the arrival distribution associated with 
the type of queue being simulated, and their service times are determined 
by the service distribution appropriate for the service being simulated. 

Figure 7.6  Time-lapse diagram of customer arrivals into an M/M/1 
queuing system beginning at the top of the diagram for the first 
customer and showing the amount of time each customer spent 
waiting (gray rectangle) and being served (black rectangle)

Elapsed Time

A

B
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Of interest in Figure 7.6 are the conditions when there are no customers 
in the system, indicated by the arrow labeled A, and when there are five 
customers in the system, indicated by the arrow labeled B.

If Figure 7.6 is compared to the look of a typical computer spread-
sheet, you should be able to recognize the similarities where the rows and 
columns of the spreadsheet could be used to represent the activities taking 
place and determine some of the performance values. Figure 7.7 shows 
an example of how this can be done and provides a template for a basic 
simulation module for waiting line analysis.

Like the diagram in Figure 7.6, the simulation model template in 
Figure 7.7 addresses each customer or unit in an order going down 
the sheet and determines the various performance times in an order 
moving toward the right. The Arrival Time column is where the entry 
time for the customer is entered in the template. This time is deter-
mined by adding the interarrival time for customer n to the arrival time 
recorded for customer n – 1. The interarrival time is chosen at random 
from the arrival distribution chosen for the model using an appropriate 
method that determines an interarrival value based on a random num-
ber input generated by the spreadsheet program. A similar method is 
done to select a service time for a customer using a separate random 
number. When using continuous probability distributions, the method 
uses the random number to calculate a corresponding value according 
to that distribution as described in Appendix D. When using discrete 
probability distributions, the method uses the random number to select 
a corresponding value using a lookup table similar to that shown in  
Figure 7.5.

The Service Starts column determines when the service begins for 
customer n by comparing customer n’s arrival time with the Service Ends 
time for customer n – 1. If that Service Ends time is greater than customer 
n’s arrival time, it becomes the start of service time for customer n; if 
not, the start of service time is the same as customer n’s arrival time. The 
Service Ends column is the randomly chosen service time for a customer 
added to that customer’s start of service time.

Hence the arrival times in the simulation are solely determined by the 
arrival distribution chosen for the simulation. But the service start and 
end times are affected by both the previous customer’s service end time 
and the nature of the service distribution chosen.
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Wq is merely the difference between a customer’s arrival time and when 
service starts for that customer. W is merely the difference between the 
service end time and the arrival time. Slack time is any positive difference 
between the service end time for customer n − 1 and the start of service 
for customer n (occurs only when customer n arrives after the service for 
customer n − 1 is completed). This time is idle time and can be used to 
determine P0 for the simulation.

Obtaining L is a bit tricky but not difficult. If you observe the situa-
tion indicated by arrow B in Figure 7.6, you can see that the number of 
people in the system after customer n arrives is the number of customers, 
including customer n, whose start of service times are greater than 
customer n’s arrival time. So all you have to do is count the number of 
service start times for customers n, n − 1, n − 2, n − 3 . . . 3, 2, and 1 that 
are greater than the arrival time for customer n. If you desire an Lq result 
that indicates what a potential customer would see when entering your 
business, delete customer n in your Lq calculations. The Excel COUNTIF 
function is very useful for the L determination. Count the range of cells 
containing the service completion times for all the previous customers 
using the following criteria statement in the COUNTIF expression:

“>”&(cell address for customer n’s arrival time)

There is an example in Appendix D of using the COUNTIF function 
for the results shown in Figure 7.8.

You should see that this model works for all choices of arrival and 
service distributions. All you need to do is alter the algorithms for select-
ing arrival times and service times to fit your chosen distributions. Hence, 
M/D/1, M/G/1, G/M/1, G/G/1, D/M/1, and D/G/1 models can be 
accommodated.

The last two models with deterministic (D) arrival distributions can 
be used to simulate appointment-based arrival distributions, such as the 
health-care situation discussed in Example 6.5. Using an exponential or 
Erlang distribution to describe service time, you can then evaluate different 
appointment durations by using constant interarrival times equal to those 
durations. You can even accommodate potential late or early arrivals by 
adding a small variation value to each interarrival time. That value could 
be normally distributed, or it could be based on a discrete distribution 
created from actual early or late arrival data.
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Random Number Approximations of Probability 
Distributions

Many arrival and service distributions are in a form that allows the use 
of random numbers to select a value from the distribution in accordance 
with its probability of occurring. Random numbers generated by many 
spreadsheet programs are in the form of a decimal value varying from 
one significant digit greater than 0 to one significant digit less than 1, 
for example, 0.00000001 to 0.99999999. These values have a uniform 
distribution; that is, the probability of any random number occurring 
is equally likely. This means that they can be used as probability values 
without introducing any bias to the selection.

Consider the probability density function for the exponential distri-
bution as given by f(t) = αe− αt for t ≥ 0, where α can represent either λ 
or µ, and t is the time between arrivals or successive service starts (same 
as service times). The cumulative distribution function for this probabil-
ity density function represents the cumulative area underneath the curve 
represented by the probability density function as a function of t. This 
function is described by the equation

				    P(t) = 1 - e− αt for t ≥ 0.� (7.2)

For an exponential distribution, a plot of the cumulative distribution 
function is the vertical inverse of the plot for the probability density func-
tion. That is, the first plot increases more rapidly at first from zero and 
then more slowly at the end as it approaches a maximum value of one. 
The other plot decreases rapidly at first from a maximum value of one and 
then more slowly at the end as it approaches a value of zero. Equation 7.2 
gives us the probability that the time between intervals will be t or less. 
Now if we substitute a random number (RN) for P(t), in effect using the 
random number to represent a given probability value, we should be able 
to solve Equation 7.2 for the t value correlating to that probability value. 
The result is that we can use that equation to give us intervals of time 
using random numbers as the inputs:

				    P(t) = RN = 1 − e− αt for t ≥ 0.� (7.3)

Rearranging Equation 7.3, we first obtain e− αt = 1 − RN. Then taking 
the natural logarithms of both sides gives us the result: −αt = ln(1 − RN). 
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Solving for t, we arrive at the equation we want to use in our simulation 
model for obtaining an interarrival time or service time described by an 
exponential distribution.

t = − (1/α) × ln(1 − RN).

Recognizing that (1 − RN) is also a random number with the same 
range of values,

				    t = − α−1 × ln(RN).� (7.4) 

Equation 7.4 is used to provide the results shown in Figure 7.8 for 
a simulation that uses the values collected for Examples 7.2 and 7.3. 
A list of other equations that have been derived for different probability 
distributions is provided in Appendix D.

Basic Universal Simulation Model

Finally, considering the basic module shown in Figure 7.9 as a building 
block for simulations with a set of inputs (arrivals) and a set of outputs 
(departing customers or completed items), you can mix and match these 
modules to address more complicated waiting line situations by observing 
a few rules, as follows:

1.	Like state diagrams, each module can be considered as a state with 
inputs equaling outputs. The state of the module can be described by 
its work-in-progress (WIP) inventory (line length).

2.	Like the probability distributions that describe arrival rates and ser-
vice times, each module’s internal actions are essentially independent 

Figure 7.9  The basic G/G/1 simulation module represented as a 
building block for larger-scale simulations. Inside this module is a 
simulation as shown in Figure 7.7 with arrival times tallied in a 
column on the left and departure times listed in a column on the right

Basic G/G/1
simulation

module
Arrivals Departures
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of each other, provided that there is no sharing of resources (servers, 
equipment) with other modules.

3.	When the outputs of a module are divided among two or more 
subsequent modules or when the inputs to a module come from 
more than one source, separate types of simulation modules must 
be developed to manage this traffic, as illustrated in Figure 7.10. 
This is not difficult if the various input or output components can 
be defined by fixed percentages or known probability distributions.

4.	Single-line configurations for multiple servers are easier to model 
than parallel-line configurations, but both require a traffic module, as 
shown in Figure 7.11a and Figure 7.11b. One module directs the next 
customer in a single line to the next available server; the other module 
distributes incoming customers to the available parallel lines accord-
ing to whatever rule is desired. For example, in typical bank or gov-
ernmental office applications the rule is likely to be to the parallel line 
with the least number of customers waiting in line. Another example 
is directing incoming customers according to their class or priority.

5.	An advantage of simulation is that modules can have different service 
distributions, which are useful when simulating multiple-phase lines 
or customizing a multiple-server situation where not every server can 
be assumed to have the same service capability. For example, one can 
simulate the effect of dedicating one server to standardized services 
in a two- or three-server situation as compared to all servers handling 
the full range of services.

6.	When one module’s output is the input to a following module, the 
arrival distribution for the following model is the same as the output 
distribution for the preceding model, as shown for the production 

Figure 7.10  The basic traffic modules required as building blocks for 
more complex simulations. The services performed by these modules 
take essentially zero time and typically are combining or sorting 
algorithms

Input traffic
module

Arrivals

Departures

Arrivals

Output traffic
module

Departures

Departures

Departures
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line simulation in Figure 7.12. Note that the output distribution 
of a previous module is not the same as that module’s service time 
distribution unless the server in that module is continually busy, as 
may be the case in a production line situation.

It can be seen that spreadsheet implementations of these modules for 
different simulations can be pretty straightforward. For example, a mul-
tiple step production process can use the first few columns of the spread-
sheet as shown in Figure 7.7 for the first step, the next set of columns for 
the second step set up in the same way as for the first step with the Service 
Ends column values for the first step also acting as the Arrival Time values 
for the second step and so forth. What is useful is that the line length val-
ues for each module can be used to determine how much space is required 
for waiting material before each piece of equipment in a manufacturing 
or other production line with a number of phases or steps.

Finally, some useful references for further study about spreadsheet 
simulation methods are Laguna and Marklund (2005), Chapter 6; 
Winston (2004); and Weida et al. (2001).

Figure 7.11  Simulation module configurations for the two different 
multiple-server line configurations: (a) single-line multiple-server 
simulation and (b) parallel-line multiple-server simulation
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APPENDIX A

Glossary

Arrival. A customer or item entering a line or queue for service or 
further processing.

Arrival distribution. The variability in the number of arrivals per some 
selected period of time. This variability can be represented by probability 
distributions selected to best describe the particular situation, with the 
Poisson distribution being most commonly used.

Arrival rate. The average number of arrivals per some selected period 
of time. This continuous value can have a decimal component for 
small arrival rates, but it is often rounded to whole numbers for larger 
rates. This value is represented by the Greek lambda (λ) in waiting line 
equations. Some typical values are 30 products per day, 18 customers 
per hour, or 1.6 cars every 15 minutes.

Back office. A term that denotes those activities in a service process where 
direct contact with the customer is not required for their completion.

Balance equation. A useful condition in waiting line analysis that can 
be used to derive several performance measures. Consider a state n 
where there are n customers in the system and the queue is in a steady 
state. At this time, the inputs to state n are equal to the outputs from 
state n. That is, Rate(→ n) = Rate(← n). This allows the creation of 
a set of equations, one per state, which then can be mathematically 
manipulated to determine the probability of existence for each state. 
Given those probabilities, average line lengths and, subsequently, the 
average waiting times can be determined.

Balking. Refusal of a customer to enter a line the customer considers to 
be too long. It is a variable component of waiting line cost, particularly 
larger if the customer decides to never return. Balking is also an example 
of a state-dependent rate in which the probability of its occurrence is 
related to the length of the waiting line observed by the next arrival.
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Birth and death process. A continuous Markov chain that is occasion-
ally abbreviated by some authors as BDP. In queuing analysis, its state 
diagram can be used to determine how long it will take for a queuing 
situation to reach a steady state of behavior. When that condition exists, 
it can be used to derive the various waiting line performance formulas.

Blocking. Not allowing a customer to enter a line because of limited 
capacity. One example is when all the lines to a call center are busy. It is 
a component of waiting line cost.

Calling population. The pool of possible arrivals. For most customer 
services, the calling population is assumed to be infinite; but for some 
situations, this population has a limited or fixed size that affects sub-
sequent arrival rates over time. Some may wonder why the adjective 
calling is used; the likely reason is because early waiting line analysis was 
focused on the needs of telephone companies to provide their users (call-
ers) acceptable service at the lowest cost.

Central Limit Theorem. A law that states that the distribution of 
sample averages approaches that of a normal distribution as the number 
of samples increases. This occurs regardless of the nature of the under-
lying distribution of the individual data values from which the samples 
were taken.

Channel. A single server for a waiting line.

Coefficient of variation. The standard deviation/mean ratio for a 
distribution. This ratio is a key component of the Pollaczek-Khintchine 
formula used for general distributions in waiting line analysis equations. 
See also Pollaczek-Khintchine (P-K) formula.

Coxian distribution.1 A special case of a phase-type distribution where 
the requirement for entering the first phase in a sequence of phases is 
relaxed so that the sequence can be entered at any phase. A typical appli-
cation would be sequencing analysis in a job shop to make the best use 
of each of its pieces of equipment.

CR. Critical ratio. A priority rule that processes arrivals per the smallest 
ratio of time remaining to a deadline divided by the amount of service 
time remaining to be done.
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Dequeue (or sometimes deque). A concept usually reserved for com-
puter applications, where a customer can be added or subtracted from 
either the head or the tail of the line.

Deterministic. Having a predictable value with a very narrow range of 
variance. As a result, deterministic variables do not require probability 
distributions to describe their behavior in analysis methods and can 
usually be represented by a constant value. In the context of this mono-
graph, some examples are the service time for an automated process, 
arrival times created by a production schedule, the number of servers, 
finite population size, and finite capacity. See also stochastic.

EDD. Earliest due date. A priority rule giving preference to arrivals that 
have the least time left before they must be served or completed. An 
example is giving preference to travelers whose flight will be departing 
shortly.

Erlang distribution.2 A special case of the gamma distribution where 
the shape factor k is restricted to integer values. The shape factor 
represents the number of independent exponential distributions added 
together to form the distribution. When k = 1, the distribution defaults 
to a single exponential distribution.

Erlang loss function. Also referred to as the Erlang B expression, can 
be used to estimate how many customers are turned away (blocked) by 
limited capacity (no waiting positions, for example, all lines are busy 
at a call center). The Erlang C expression, which is more complicated, 
assumes that there are infinite waiting positions. It is used to estimate 
the probability that a customer will arrive, find that all servers are 
currently busy, and then get into line to wait until a server becomes 
available.

FCFS. First come, first serve. The most common priority rule for a 
waiting line.

FIFO. First in, first out. Same as FCFS in single-channel waiting lines.

Front office. A term used to denote those activities in a service 
process where direct contact with a customer is necessary for their 
completion.
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GIGO. Garbage-in, garbage-out. An acronym for the principle that 
a result is only as good as the data, material, or effort required to 
produce it.

Interarrival distribution. The variability in the interarrival time, 
which can be represented by selected probability distributions that best 
describe the particular situation, with the exponential distribution being 
the most commonly used.

Interarrival time. The time between arrivals in a waiting line. The aver-
age value is the inverse of the average arrival rate (i.e., 1/λ). The sequence 
of interarrival times is often characterized as a Markovian process.

Jockeying. Changing from a slowly moving line to another line that 
is perceived to be moving faster in a multiple-channel situation using 
separate lines for each server.

Johnson’s Rule. A priority rule for scheduling jobs through two work 
centers in a way that minimizes the makespan for completing all of 
the jobs and also minimizes the total idle time at each work center.  
See Stevenson (2012, pp. 718–720) for an example.

Kendall notation.3 A shorthand method for identifying different 
waiting line models using designated symbols for the arrival rate 
distribution, the service time distribution, the number of channels, the 
line length limitation, the calling population size, and the priority rule.

Line length. The number of customers or items in a queue. The average 
line length is characterized by two continuous values: the average 
number in line (Lq) awaiting service and the total number in the system 
(L), which includes those currently being served.

Little’s Law. An observation, valid for all waiting line models regardless 
of their arrival and service distributions, that the ratio between given 
average line length and waiting time values is equal to the average arrival 
rate value (λ = L/W).

Makespan. The total time required to complete a group of jobs in 
manufacturing. For waiting lines, this corresponds to the total amount 
of time required to process a group of waiting customers.
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Markovian process.4 A process characterized by a sequence of random 
variables (x1, x2, x3, . . .) whose order is indicated by increasing values 
of a parameter, usually time in waiting line scenarios, and having the 
property that any prediction of the next value of the sequence (xn) can 
be based on knowing just the current state or previous value (xn−1). That 
is, the future value of such a variable is independent of the values of all 
of the previous values but the last one.

Memoryless. A condition where a value is independent of any previous 
value. That is, it can be said that the value has no memory of any 
preceding values.

PASTA. An abbreviation for the statement “Poisson arrivals see time 
averages.” In other words, for any line with exponentially distributed 
interarrival times, each customer has the same probability of seeing a 
given line condition. Therefore, the average of what a frequent customer 
observes each time he or she enters the same line at a business will be the 
same as the average determined by waiting line analysis.

Phase. A single step service with no internal waiting lines. Multiple-phase 
sequences can have lines between each phase, but also require a separate 
server for each phase.

Phase-type distribution. A distribution for one or more phases in 
sequence whose intervening arrival rates can be characterized by inter-
related Poisson distributions. These complex expressions are beyond 
the scope of this monograph and are mentioned here only for readers 
wishing to delve further into analytical solutions.

Pollaczek-Khintchine (P-K) formula.5 An expression developed to 
determine the average delay in a single-channel waiting line for any 
general service time distribution. All that is needed to be known about 
the distribution is its mean and variance. The generalized formula in the 
context of the terms used in this monograph is as follows:

W
C

q =






×
−

×1
1 2

1
2

ρ
ρ

ρ
ρ/ .
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POS. Point of sale. Useful information regarding the nature of services 
performed and the types of customers served can be gained by a business 
collecting and analyzing its POS data.

Priority queue. A waiting line where the order in which arrivals are 
served is different from first come, first served. Different preemptive and 
nonpreemptive rules can be applied within a single line, or separate lines 
can be established for different priorities.

Priority rule. A waiting line discipline for serving arrivals after they 
enter the queue. The most commonly used rule is first come, first served; 
but in other more urgent situations, the most important needs will 
prevail, such as in emergency room queues. See also priority queue.

Probability of zero customers. The percentage of time when a service 
business will have no customers in line and being served. This value 
is represented by the symbol P0 in most waiting line formulas and is 
important to managers because it allows an estimate of how much time 
servers can be available to work on other activities not directly related to 
customer service.

Queue. A line of people waiting for some service or a sequence of items 
waiting for the next process step. This term is more widely used outside 
the United States and is considered synonymous with the term waiting 
line.

Reneging. Leaving a line before being served after having spent some 
time in it. If a customer is dissatisfied enough to not come back, it is a 
significant component of waiting line cost.

Service blueprint. A process diagram for services where the activities are 
separated into two groups: customer involvement required (front office) 
and support behind the scenes (back office). Sometimes the service 
blueprint adds a third group of activities, where customer involvement 
may or may not be required depending on the particular circumstances.

Service distribution. The variability in a service time, which can be 
represented by probability distributions selected to best describe the 
particular situation, with the exponential distribution being most 
commonly used.
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Service rate. The average number of arrivals serviced or processed per 
some selected period of time. This continuous value can have a decimal 
component for small service rates, but it is normally rounded to whole 
numbers for larger rates. This value is represented by the Greek mu (µ) 
in waiting line equations. Some typical values are 1.2 customers per 
minute, 6 cars per hour, or 120 products per week.

Service time. The time required to perform a service or process. The 
average value is the inverse of the service rate (i.e., 1/µ).

Sojourn time. The total time spent in a service system. See also waiting 
time.

SPC. Statistical process control. A method for evaluating and monitor-
ing the variability in process outcomes.

SPT. Shortest processing time. A priority rule for giving preference to 
arrivals that require the least amount of service time. A common exam-
ple is a grocery express line.

SRO. Shortest remaining time per operation. A priority rule giving 
preference to arrivals whose ratio of time left to a deadline divided by 
the number of steps or phases remaining is the smallest. A variation of 
the EDD priority rule.

State-dependent rate. A rate influenced by the current state of a waiting 
line. See also balking and reneging for examples of factors creating a 
state-dependent arrival rate. Some models that have a state-dependent 
arrival rate are those dealing with a limited population (K) or limited 
queuing capacity (N).

State diagram. A graphical method showing the conditions for each 
state of a waiting line. Each state represents a specific number of persons 
or items in the queue. When the queue reaches a steady-state condition, 
the movements from one state to another are governed by a balance 
equation based on the rule that the sum of the inputs to a state must 
equal the sum of the outputs from that state.

Stochastic. Having an unpredictable value because of the possibility of 
a wide range of possible results. As a result, stochastic variables must be 
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represented by either discrete or continuous probability distributions 
in analysis methods such as queuing equations or simulation models. 
Examples in the context of this monograph are infinite population 
arrival times, how long a customer is willing to wait before giving up on 
a service line, and which of the several service lines available is selected 
by the next customer. See also deterministic.

System. In the context of this book, a system includes what happens, 
including the conditions existing in the service environment, from when 
a customer enters a line or queue for service until that customer has 
been served and leaves.

Utilization factor. The ratio of the arrival rate λ to the service rate µ. 
This value is represented by the Greek rho (ρ = λ/u) in waiting line 
equations. This is analogous to machine capacity reduced by some 
percentage (cushion) to allow some time for preventive maintenance or 
reserve some capacity for unexpected increases in demand. This factor 
must be less than 1 for a single-channel waiting line situation to reach 
a steady state. Modifications of this factor to accommodate conditions 
associated with multiple servers and/or limited calling populations 
are indicated in this monograph by the use of appropriate subscript 
notation as defined in the text and in Appendix B.

Waiting line cost. A measure of the estimated level of overall customer 
dissatisfaction. This cost can take the form of lost profit when customers 
are turned away by a busy situation, estimates of lost business caused 
by dissatisfied customers not wanting to return or telling potential 
customers about their poor service experiences, or even work required to 
correct a service error. See also balking, blocking, and reneging.

Waiting time. The time spent in a waiting line or queue. The average 
waiting time is characterized by two values: the average time (Wq) spent 
in line awaiting service and the total time (W) spent in the system 
(waiting in line plus service time). W is often called throughput time in 
manufacturing applications and sojourn time in service applications.

WIP. Work in process. It is the number of items in a manufacturing 
system waiting for processing or being worked on. In effect, it is the 
same as L for a customer service business.
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Symbol Definitions

a Represents a parameter of choice in many equations. Do not 
assume that α represents the same thing throughout the text.

b Represents a parameter of choice in many equations. Do not 
assume that β represents the same thing throughout the text.

B Used as a subscript to indicate performance measures related 
to customers or items being blocked from entering the system 
because of limits imposed by the maximum number of servers 
and places (capacity) available.

C Represents cost in cost trade-off analysis. Various subscripts 
designate various types of costs: W, waiting time costs; S, server 
costs; B, blocking, balking, and reneging costs; L, line length 
costs; H, handling costs; E, equipment costs; F, facility costs; 
and $, finance costs.

Cx The coefficient of variation for the distribution of x. This coeffi-
cient is the ratio of the standard deviation of x to its mean,

σ x

x
.





D Represents a deterministic (constant) service or arrival time in 
Kendall notation for waiting line models.

! The math symbol for a factorial, which is a continuous multi-
plication of integers from 0 to n. That is, where 0! is defined as 
having a value of 1 and 1 × 2 × 3 × . . . × (n − 1) × n = n!

Ek Represents an Erlang distribution with shape factor k in 
Kendall notation for waiting line models.

E(n) The expected (mean) value of parameter n. Therefore, E(T) can 
represent the average time spent in a system.
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G Represents a general independent distribution in Kendall 
notation for waiting line models. One example is a normal 
distribution for service or arrival times that are relatively 
constant but can vary by a small percentage.

i Used as a counter for a sequence of values in equations.
j Used as a counter for a sequence of values in equations.
K Represents the buffer size in Kendall notation for waiting line 

models (the number of places available for waiting and service 
when the line length is limited).

k Shape factor for Erlang distribution. It can also be used as a 
counter for a sequence of values in equations.

L The average length of a line in a service process, including the 
customers currently being served. That is, the total number of 
customers or items in the system.

Lb The average number of customers waiting to be served in a 
multiple-channel service process when all the servers are busy.

l The average arrival rate in number per unit of time.
lu

The individual arrival rate per unit or customer in a limited 
population model.

l′ The effective average arrival rate. For limited capacity models, 
λ′ = λ(1 − PK); for limited population models, λ′ = λu(N − L).

Lq The average length of the line waiting to be served.
M Represents a Markovian distribution in Kendall notation for 

waiting line models. This is usually an exponential distribution 
for service rate and a Poisson distribution for arrival rate.

µ The average service rate in number per unit of time.
N The maximum number of customers or items in a finite calling 

population (also called a limited population).
n The number of customers. It can also be a counter for a 

sequence of values in equations.
PH Represents a phase-type distribution in Kendall notation for 

waiting line models with more than one phase in sequence. One 
example of this is a Coxian distribution for two or more phases, 
where the restriction on entering the first phase first is relaxed.
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PB The blocking probability. See also B and Pk.
Pk The probability that the number of customers or items in the 

system is equal to the maximum system capacity. It is often 
called the blocking probability with the alternate symbol PB.

Pn The probability of exactly n customers in a system during the 
given period of time on which the associated arrival and service 
rates are based. In many texts, this is expressed by P(n).

P0 The probability of no customers in the system during the given 
period of time on which the associated arrival and service rates 
are based. In other texts, this may be expressed as P(0) or even 
shortened to P0.

Π A math symbol for a continuous multiplication of a sequence 
of terms. A simplification of this function for a sequence of 
integers from 0 to n is called a factorial.

q Used as subscript to indicate values associated with the line 
awaiting service (not yet being served). Examples are line 
length and the time spent waiting in line.

r A utilization factor (λ/µ). Note: Some authors also use 
ρ as defined for ρs. This can be confusing when using 
multiple-channel queuing equations from other texts and 
references; be sure to check the author’s use of this symbol. In 
this monograph, ρ always represents only λ/µ.

rs
The utilization factor for a multiple-channel system (λ/sµ).

ru
The utilization factor for a single unit or customer in a limited 
population model.

s The number of servers or channels. In some textbooks, 
this value is represented by c or M. (These symbols are not 
used here to avoid confusion with the representation for a 
Markovian distribution in Kendall notation for waiting line 
models.)

Â The math symbol for summation of a sequence of terms.
s The standard deviation for a normal distribution.
u A subscript used to designate a unit value. This is particularly 

necessary in equations for limited population models.
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Vx The variance for the distribution of x. Equal to σ2 for a normal 
distribution of x.

W The average total waiting time in a service process, including 
the time when being served.

Wb The average time spent waiting in line before being served in a 
multiple-channel service process when all the servers are busy.

Wq The average time spent waiting in line before being served.
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Multiple-Channel 
Application Data
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Learning Curve Tables (multiply all times by same constant to 
make repetition time 1 = actual value for first time)
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Learning Curve Tables (multiply all times by same constant to 
make repetition time 1 = actual value for first time)
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Simulation Information

This appendix serves as a reference for readers who are interested in developing 
their own simulation models using Excel. Figure D.1 shows the Excel 
expressions used for the M/M/1 simulation module described in Figures 7.6 
and 7.7. Additional expressions for using random numbers to generate input 
values for simulation are provided along with some general tips for using 
Excel. A description of useful Excel functions and capabilities for simulation 
applications completes this appendix.

Basic simulation module set up for an M/M/1 model. See Figure D.1 
on the following page. Note the necessary differences in the equations for the 
first three customers or items. To help identify what the cell addresses in the 
formulas are referring to, the cell address for the “Arrival Time” label is C11.

Inverse probability distributions expressions for simulating oper-
ating values using random number (RN) inputs. Some of these distri-
butions can be used in simulating failure probabilities for maintenance 
service applications or for distributing arrivals or outputs for the simula-
tion modules described at the conclusion of Chapter 7.

Exponential distribution. t = − (1/(λ or µ) × ln(RN)

Uniform distribution. (min value = a, max value = b): t = a + RN(b − a); 
for an equivalent Excel function, use RANDBETWEEN(a,b)

Normal distribution.1 t t RNavg
i

i= + −



=

∑σ
1

12

6 ; for an equivalent Excel 

function, use NORM.INV(RN,mean,sigma)

Beta distribution. Use Excel’s BETA.INV(RN,α,β,A,B) function.

Gamma distribution (often used instead of Erlang’s distribution). Use Excel’s 
GAMMA.INV(RN,α,β) function.

Log normal distribution. Use Excel’s LOGNORM.INV(RN,mean,stan-
dard_dev) function.
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Excel Application Information and Tips

Data Analysis Package

The Analysis ToolPak option in Excel needs to be activated for simulations 
because many of the functions mentioned require it. It is loaded when the 
software is installed, but for reasons unknown, the user must activate 
it. Similarly, Excel’s Solver option must also be activated by the user. 
To activate both options, use the appropriate instructions given here.

Excel Version 2003: Select the Tools menu, scroll down to the Add-Ins 
choice, select, and you will see a list of add-ins. Click the box for Analysis 
ToolPak. If not already activated, clicking the boxes for the other choices 
that do not have VBA (Visual Basic for Applications) at the end would 
be a good idea for future use in business problems. (VBA is for advanced 
Excel users who wish to program their own special functions.) Click OK 
and return to Excel. The data analysis add-in is then found as a choice on 
the Tools menu.

Excel Version 2007: Click on the big button in the upper left corner, 
select Excel Options at the lower right of the menu, then select Add-Ins in 
the left column of choices. Then check to see if the Analysis ToolPak and 
the Solver Add-in applications are active. If not, click Go on the Manage 
Excel Add-ins menu at the bottom and then check the Analysis ToolPak 
and Solver Add-ins menu that appears and click OK. The Data Analysis 
and Solver Add-ins are then found on the far right of the Data tab menu.

Excel Version 2010: The instructions are similar to those for Excel 
2007, but you select the File menu to access the Options menu instead of 
clicking on the big button.

Excel Version 2013: The instructions are similar to those for Excel 2010 
to start, but you need to select the Manage box after selecting Add-ins. 
Then select Excel Add-ins and then click Go. In the Add-Ins available 
box, select the Analysis ToolPak check box, and then click OK. In the 
event that the Analysis ToolPak is not listed in the Add-Ins available box, 
click Browse to locate it. If you are informed that the Analysis ToolPak is 
not currently installed on your computer, click Yes to install it. After you 
activate the Analysis ToolPak, the Data Analysis command is displayed in 
the Analysis group on the Data tab.
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Useful Excel Functions for Simulation Model Creation

Excel has a fairly good help menu for learning new functions. The 
functions you may find particularly useful for simulations are presented 
here.

IF Function

Returns one result if the logical expression is true (e.g., X > 60), another 
if it is false. By cleverly concatenating IF functions, different sets of 
outcomes can be determined depending on the input conditions. 
A number of useful applications of this function are described by Held in 
Chapter 2 of his book.

VLOOKUP and HLOOKUP Functions

These functions are used to select one piece of data in a table based on a 
correlating piece of data in that table when there is no equation to relate 
the two values directly. An example would be selecting the arrival rate 
associated with a given probability of occurrence.

COUNTIF Function

This function, =COUNTIF(range,criteria), is very useful for determining 
the current line length for a waiting line simulation. Examples are given 
in the M/M/1 model shown in Figure D.1. The criteria statement in the 
function to tell it when to count an item is generally easy to set up as 
illustrated in the Help files, but the criteria here for counting when one 
cell value in a range of cells is greater than a reference cell value is tricky 
when that reference cell address keeps changing. That is, the critieria in 
Figure D.1 is “>” (cell address for customer n’s arrival time) and the range 
is all of the service end times for customers 1 through n − 1.

Descriptive Statistics, Histogram, Regression, Rank, and Percentile 
Functions

These functions are found in the Analysis ToolPak. The other functions 
provided are also useful from time to time, but the descriptive statistics, 
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histogram, regression, rank, and percentile functions are more commonly 
needed. If you are unfamiliar with using any of these functions, the 
Excel Help button provided with each function provides a basic tutorial 
regarding its use:

•	 Descriptive statistics allows you to select a range of data values 
and obtain results, such as average, min, max, standard devia-
tion, median, and kurtosis, with just one keystroke.

•	 Histogram sorts the selected data into bins and can also auto-
matically create a histogram chart of the results. Bin sizes can 
be specified by you as described in Chapter 7, or the function 
will automatically choose an appropriate bin size if you wish. 
However, the automatic choice of bin size is likely to reduce 
the resolution of different arrival rates or service times in 
discrete probability lookup tables created from the histogram 
results. Hence, it is better if you learn how to specify the 
correct bin size for your situation as discussed in Chapter 7.

•	 Regression allows calculating the intercept and slope constants 
from a set of x and y data in a straight-line approximation of 
this information.

•	 Rank and Percentile sorts a set of integer data from highest 
occurrence to lowest and calculates the percentage for each 
occurrence value as a percentage of the whole. This function 
can be useful for determining probabilities for discrete distri-
butions in simulations.

Data Tables

This obscure capability of Excel is useful for summarizing simulation 
results. For example, when you run a simulation for 100 customers that 
might represent one day’s work and summarize the result—for example, 
average line length, max and min values—it is laborious to press the 
F9 key to execute customer simulation run, copy and save the results in 
a table for the  the summarization, and repeat this process 100 times or 
more for a simulation of perhaps a month’s worth of work. Data tables 
allow you to collect a number of such summaries with one press of the 
F9 key, a major savings in time for simulation analysis.
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The problem is that most Excel handbooks are quite vague about how 
to set data tables up for simulation runs and even finding the menu for 
more general use of data tables is difficult. In Excel 2010, the menu is 
part of the What If Analysis submenu under the Data tab on the tool-
bar. Chapter 26 in the book by Jelen (2010) has a short discussion of 
What-If tables (data tables), which is a useful introduction. I attempted 
to use the Scenario Manager in the Excel 2010 What-IF Analysis menu 
for setting up a simulation data table, but had no success. The Scenario 
Manager may be able to help, but at this time I am unable to provide the 
proper inputs because its nomenclature does not seem to correlate with 
any familiar simulation terms.

The book by Weida et al. (2001) has a fair introduction to the use of 
data tables for queuing simulations if you are using an older version of 
Excel than the 2007 and 2010 versions. Chapter 15 of Winston (2004) 
provides several examples on how to set them up for one-way and two-
way applications. The problem is that to apply them to summarizing 
simulation data, the handbooks rarely discuss how to use a variable that is 
not actually used in the calculations (such as the simulation run number) 
to trigger the number of repetitions desired. Normally, when you use a 
sequence of run numbers as the one input variable, but do not use it in 
the data table calculations, all you get is one result. The trick is recog-
nizing that the use of the random number function in the simulation 
equations causes the results to change each time a run is done. When, 
and only when, random numbers are involved, you can designate the run 
numbers as the input variable to trigger the run calculations. Weida et al. 
(2001) does that in chapter 13.2.2, but it is often tricky to make it work 
right. The other difficulty is that help searches for data tables often assume 
that you meant pivot tables, so the search takes you there. But data tables 
and pivot tables are not the same!

I am working on a much clearer explanation on how to use data tables 
in later Excel versions for simulation applications, which I plan to include 
in a future revision of this monograph. In the meantime, it might take some 
effort to get a data table to work for you, but the effort is well worth it.
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Second Edition Update on Data Tables.

I have found two good online references on the subject that are 
worthwhile reading. The lengthy post (40 plus pages) by Hui (listed in 
the References) covers a wide range of data table applications including 
Monte Carlo simulations and includes a number of interesting exchanges 
between Hui and the readers.

The other by Susan Harkins (also listed in the References) on the Tech 
Republic website is a useful introduction with good examples, but sadly 
with the omission of how to use the input numbers for formulas that do 
not use them, but instead rely on the use of random numbers to generate 
the list of varying values in the table.

The trick is to use the first column to designate the run number, such 
as 1 through 10 for ten simulations, but not use those numbers in the 
calculations for arrival rate, service rate, line lengths, and waiting times. 
That is, you designate a column input cell that has a initial value in it but 
that value is not used in any of the formulas used for the column head-
ers in the table. See the simple data table and the associated spreadsheet 
showing the formulas used for that table for the two-die throw example 
given in Appendix E.
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Second Edition Supplements

Formulas for Figure 4.3. Figure E.1 shows the formulas used to 
determine the values shown in Figure 4.3 for Example 4.3 in Chapter 4.

Data Table Example. Here we want to calculate the results of 24 throws 
of a pair of dice and calculate some summary data such as the average 
value for each of the two dice and the average value of their sum. We 
use the RANDBETWEEN(Bottom value,Top value) function in Excel 
for the dice throw with the bottom and top values being, obviously, one 
and six.

We begin by setting up four column headings in a single row with the 
necessary formulas in the row just below. Using Excel’s Autofill feature we 
enter the throw numbers in the leftmost column for the desired number 
of throws. The results at this point are shown in Figure E.2.

The formulas used at this point are shown in Figure E.3 and the area 
that is shaded shows the area selected before we start to set up our Data 
Table. This step is important because the Data Table needs a defined 
range of cells to work with. Note that the shaded area does not include 
the column titles or the summary averages at the bottom.

Now we first select all of the cells in the shaded region and then choose 
the Data tab, then the What If analysis menu, and finally the Data Table 
choice. A small box appears offering the choice of either a row or column 
input cell. Since our changing variable is the throw number and the num-
ber of throws is listed in the left column we first select the column input 
cell and then click on the cell showing throw number 1 and then click 
OK in the box. The results are shown in Figure E.4. 



164	 SECOND EDITION SUPPLEMENTS

F
ig

ur
e 

E
.1

 F
or

m
ul

as
 u

se
d 

fo
r 

va
lu

es
 s

ho
w

n 
in

 F
ig

ur
e 

4.
3.

 F
or

 r
ef

er
en

ce
 in

 u
nd

er
st

an
di

ng
 t

he
 fo

rm
ul

as
 t

he
 c

el
l l

ab
el

ed
 w

it
h 

a 
lo

w
er

-c
as

e 
n 

at
 t

he
 u

pp
er

 le
ft

 h
as

 a
 c

el
l a

dd
re

ss
 o

f G
$ 

an
d 

th
e 

va
lu

e 
of

 t
he

 c
el

l r
ef

er
en

ce
d 

as
 $

B
$8

 is
 1

0,
 t

ha
t 

is
, 

th
e 

va
lu

e 
fo

r 
N

 in
 a

ll 
ca

lc
ul

at
io

ns
 h

er
e 

is
 1

0

C
om

pu
ta

ti
on

 o
f 

fa
ct

or
ia

l t
er

m
s:

n
N

N
–n

(N
–n

)!
N

!/
(N

–n
)!

(ρ
u)

n
P

ro
du

ct
P

(n
)

0
=$

B
$8

=H
5–

G
5

=F
A

C
T

(I
5)

=(
FA

C
T

(H
5)

)/
J5

=(
$B

$4
/$

B
$5

)^
G

5
=K

5*
L5

=1
/M

16

1
=$

B
$8

=H
6–

G
6

=F
A

C
T

(I
6)

=(
FA

C
T

(H
6)

)/
J6

=(
$B

$4
/$

B
$5

)^
G

6
=K

6*
L6

=M
6*

$N
$5

2
=$

B
$8

=H
7–

G
7

=F
A

C
T

(I
7)

=(
FA

C
T

(H
7)

)/
J7

=(
$B

$4
/$

B
$5

)^
G

7
=K

7*
L7

=M
7*

$N
$5

3
=$

B
$8

=H
8–

G
8

=F
A

C
T

(I
8)

=(
FA

C
T

(H
8)

)/
J8

=(
$B

$4
/$

B
$5

)^
G

8
=K

8*
L8

=M
8*

$N
$5

4
=$

B
$8

=H
9–

G
9

=F
A

C
T

(I
9)

=(
FA

C
T

(H
9)

)/
J9

=(
$B

$4
/$

B
$5

)^
G

9
=K

9*
L9

=M
9*

$N
$5

5
=$

B
$8

=H
10

–G
10

=F
A

C
T

(I
10

)
=(

FA
C

T
(H

10
))

/J
10

=(
$B

$4
/$

B
$5

)^
G

10
=K

10
*L

10
=M

10
*$

N
$5

6
=$

B
$8

=H
11

–G
11

=F
A

C
T

(I
11

)
=(

FA
C

T
(H

11
))

/J
11

=(
$B

$4
/$

B
$5

)^
G

11
=K

11
*L

11
=M

11
*$

N
$5

7
=$

B
$8

=H
12

–G
12

=F
A

C
T

(I
12

)
=(

FA
C

T
(H

12
))

/J
12

=(
$B

$4
/$

B
$5

)^
G

12
=K

12
*L

12
=M

12
*$

N
$5

8
=$

B
$8

=H
13

–G
13

=F
A

C
T

(I
13

)
=(

FA
C

T
(H

13
))

/J
13

=(
$B

$4
/$

B
$5

)^
G

13
=K

13
*L

13
=M

13
*$

N
$5

9
=$

B
$8

=H
14

–G
14

=F
A

C
T

(I
14

)
=(

FA
C

T
(H

14
))

/J
14

=(
$B

$4
/$

B
$5

)^
G

14
=K

14
*L

14
=M

14
*$

N
$5

10
=$

B
$8

=H
15

–G
15

=F
A

C
T

(I
15

)
=(

FA
C

T
(H

15
))

/J
15

=(
$B

$4
/$

B
$5

)^
G

15
=K

15
*L

15
=M

15
*$

N
$5

Su
m

:
=S

U
M

(M
5:

M
15

)
=S

U
M

(N
5:

N
15

)



	 SECOND EDITION SUPPLEMENTS	 165

Throw Dice 1 Dice 2 Sum
1 1 6 7

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Averages 1 6 7

Figure E.2  Data table range for simulating the outcomes of two dice 
throws. See Figure E.3 for the formula view of this range

When random numbers are used for variations in the results of a set 
of formulas the data table variable is not used in those formulas but is still 
necessary as a counter for the iterations. This is important because if one 
would want a change to 40 iterations the entire process of setting up the 
data will need to be repeated from the beginning with a larger region to 
include the additional iterations. That is, the magnitude of a data table 
cannot be modified without starting over.
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Throw Dice 1 Dice 2 Sum
1 =RANDBETWEEN(1,6) =RANDBETWEEN(1,6) =C5+D5

2      

3      

4      

5      

6      

7      

8      

9      

10      

11      

12      

13      

14      

15      

16      

17      

18      

19      

20      

21      

22      

23      

24      

25      

Averages =AVERAGE(C5:C29) =AVERAGE(D5:D29) =AVERAGE(E5:E29)

Figure E.3  Formulas and range (shaded region) selected for the data 
table. The reference for the cell titled “Throw” is B4.
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Throw Dice 1 Dice 2 Sum
1 3 4 7

2 5 6 11

3 6 6 12

4 3 1 4

5 1 2 3

6 4 4 8

7 2 3 5

8 4 5 9

9 4 3 7

10 5 1 6

11 3 1 4

12 2 3 5

13 2 1 3

14 5 5 10

15 4 4 8

16 1 4 5

17 2 5 7

18 6 3 9

19 2 5 7

20 3 6 9

21 2 6 8

22 1 5 6

23 1 5 6

24 3 3 6

25 6 4 10

Averages 3 4 7

Figure E.4  Completed data table





Notes

Preface

1.	Fitzsimmons and Fitzsimmons (2011).

Chapter 1

1.	Refer to Appendices A and B for more detailed descriptions of the 
terms and symbols used in the text.

2.	Laguna and Marklund (2005, ch. 6).
3.	Hillier and Lieberman (2010, ch. 17).
4.	Nelson (2010, ch. 8).
5.	Some of you are probably asking, “Shouldn’t this value be 50%?” 

Many of my students ask this question because their familiarity in 
using normal distributions implies that the average should be at the 
50% point. Although this is true for a normal distribution, it is not 
true for the majority of distributions. For an exponential distribution, 
the average value corresponds to the 36.78% point and to the 1 − 
0.3678 = 63.21% point for the inverse exponential distribution.

6.	Abner Krarup Erlang (1878–1929) is a Danish mathematician 
who developed a number of queuing theory concepts for telephone 
company applications in the early 1900s. Refer to Appendix A for 
further details.

7.	Attributed to the British statistician D.G. Kendall (1918–2007) 
during the period from 1951 to 1953.

8.	In multiple-line situations first-in-first-out does not always correctly 
specify what happens when a customer requires a long service time. 
Then it is possible for one or more successive customers to be served 
and leave before the service for the first customer is completed.

9.	A few years ago when I took a regional flight in Japan I observed the 
boarding of about 140 passengers in less than six minutes using no 
defined boarding process. They lined up before the agent checking 
tickets, all had their tickets ready, and moved onto the aircraft quickly. 
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Those with carry-on luggage promptly stowed it in the overhead bin 
taking care to not stand in the aisle impeding other passengers while 
doing so. In a similar manner the security check process at the airport 
was also very efficient and required little prompting by the officials 
about what was expected of the passengers. Both processes were 
an example of the increase in waiting line performance when the 
customers know what to do and focus on keeping the line moving.

Chapter 2

1.	Named after J.D.C. Little, who published a proof of this formula 
in 1961. The formula had been observed and used by others shortly 
before Little published his proof.

2.	How long a waiting line must be before it discourages potential 
customers is also a function of their perception of how fast the line 
is expected to move. If their prior experience is that the line moves 
swiftly they are more willing to enter a long line.

Chapter 3

1.	Note the parentheses added around the summation term in the 
denominator to clarify that the second term is not to be included in 
the summation. This addresses a commonly observed mistake made 
by many of the students when we first added waiting line topics to 
our process and operations management courses.

Chapter 4

1.	Pollaczek (1930) and Khintchine (1932). See glossary (Appendix A).
2.	This use of α should not be confused with its use in Equation (1.2) 

for the exponential distribution.
3.	Peck and Hazelwood (1958).

Chapter 5

1.	This is done to simplify the equations for calculating P0 and Lq 
because only ρ and the number of servers s is required in these 
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equations. This also agrees with the P0 and Lq data tables provided 
for a range of ρ and s values in Appendix C. The reader is reminded 
that ρ here is not the same as ρs = λ/µs, the multiple-channel ρ used 
by some authors.

2.	Named after a sixteenth-century French mathematician, L’Hospital 
or L’Hôpital. When confronted with an expression where it is not 
possible to define a limit as a variable approaches a certain value 
(1 in this case), successive derivatives of the numerator and the 
denominator with respect to that variable are taken until they 
converge to a definable limit.

3.	The term “finite queuing table” is not exactly correct for this situation 
since we are discussing finite sources here, not finite queues. The 
term is more appropriate for our earlier discussion regarding limited 
line capacity. However, this term is used in many textbooks for both 
capacity and sourcing issues because it is consistent with its usage by 
Peck and Hazelwood (1958), a commonly used resource for solving 
finite sourcing problems.

4.	Krajewski et al. (2010).

Chapter 6

1.	Bekker (2005) is a good overall reference; Hillier and Lieberman 
(2010) discuss this in Chapter 17, Section 17.5.

2.	If you are unfamiliar with service blueprints, the article by Shostack 
(1984) is a good introduction.

3.	One utility cost often forgotten is waste management. A good waste 
management policy can help keep this cost low and reduce the 
number of staff required to support it.

4.	This material was formerly Chapter 18 in the previous edition of this 
reference.

5.	McCarran Airport in Las Vegas does this in an effective and enter-
taining way by showing video clips on conveniently placed video 
monitors in the security check-in process area. The clips are of local 
Las Vegas Strip entertainers doing or being corrected for not doing 
the right thing at different security checkpoints.

6.	Some Disney theme parks let customers buy tickets for popular 
rides, where the ticketing system calculates the average waiting time 
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until the ticket holder can board the next available ride and prints 
that time on the ticket. This allows customers to visit other parts of 
the park, such as food and retail shops, instead of waiting in line. 
Longer waits are then not as significant, and park visitors can even go 
and buy other tickets for rides later in the day. The ticketing system’s 
job in forecasting the average waiting time is simplified because the 
service time (the duration of the ride) is essentially constant. The 
somewhat hidden advantage here is that park revenue from food and 
retail shops is less affected by lost customer visits while they wait in 
line at the rides.

7.	Abilla (2007).
8.	This constrains us to a fixed appointment time during the day 

because we cannot predict when these urgent-care situations will 
occur during the day. For doctors who are not expected to handle 
such drop-in patients, we have more flexibility regarding the length 
of the appointment times, allowing a mixture of short appointments 
and long appointments according to patient needs. Then we can 
even use short-term scheduling rules to schedule the order in which 
patients are offered appointment times.

9.	These values used here should not be construed to represent all 
medical practices. When a full range of medical services is being 
provided and urgent care patients must be accommodated, these 
values are typically larger and have greater variance.

10.	As a note of interest, the need to accommodate some urgent-care 
patients is often greater at the beginning and ending of the week. 
This is likely caused by the more limited availability of health care 
professionals on weekends.

11.	For those interested in learning more about reservation systems and 
overbooking, Chapter 11 in Fitzsimmons and Fitzsimmons (2011) 
is a good introduction.

12.	Asking a customer to key in their account number or other form of 
ID when they call for support allows the system to recognize more 
valued customers. Since many systems can also check the telephone 
number of the caller it can be compared against listed numbers for 
customers to not only identify more valued customers but also help 
verify their identity for account access or credit card activations.
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13.	Hillier and Lieberman (2010, ch. 17).
14.	Haussmann (1970).
15.	It should be noted that the benefits of dequeuing can also be achieved 

by educating the customers waiting in line as to what will be required 
when they reach the server window, allowing them to fill out such 
forms in advance while they are waiting. This gives them something 
to do while also improving line performance.

16.	Stevenson (2012, ch. 16).
17.	Jacobs and Chase (2011, ch. 19).
18.	While we do not show a specific example of how makespan can be 

used for waiting line management, one example would be estimating 
how long it would usually take to process customers remaining to be 
served after normal closing time.

Chapter 7

1.	Little (1961).
2.	If you are unfamiliar with how to create histograms in Excel using 

the function provided in Excel’s Analysis ToolPak, refer to the Excel 
tips section in Appendix D.

3.	Where this value comes from was commented on earlier for the 
discussion regarding exponential distributions in Chapter 1.

Appendix A

1.	Named for D.R. Cox (1995).
2.	Named for the Danish mathematician Agner Krarup Erlang (1878–

1929). His work with the Copenhagen Telephone Company in the 
early 1900s provided the foundation for several aspects of modern 
waiting line analysis.

3.	Kendall (1951). This method is commonly indicated by the generic 
A/B/C/d/e/f notation. The last three characteristics are not shown 
in many textbooks; those that do use them often do not follow the 
order given in the definition above.

4.	Named for the Russian mathematician Andrey Andreyevich Markov 
(1856–1922). Sometimes the term Markovian process is restricted 
to describing sequences of independent random variables with 
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continuous values, such as those defined by exponential distribu-
tions. When this is done, similar sequences of discrete variables are 
referred to as Markov chains.

5.	Named for Felix Pollaczek and Aleksandr Khintchine. Each inde-
pendently developed this formula, in 1930 and 1932, respectively. 
Many citations of their formula have a wide range of spelling 
variations for Khintchine.

Appendix D

1.	See Fitzsimmons and Fitzsimmons (2011, 438), for the reasoning 
behind the derivation of this expression. For a more convenient 
method than using 12 random numbers for each value required, use 
Excel’s NORM.INV function.
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Updated to integrate the management of associated infor­

mation processes, expand some application discussions, 

and provide additional reference material, the intent of this 

monograph is to help business professionals use waiting 

line (queuing) analysis methods to improve both service and 

manufacturing business applications of queuing situations. 

Emphasis is given to discussing the caveats in applying 

waiting line theory and becoming aware of the assumptions 

used in developing that theory. The importance of accounting 

for variability in waiting line processes is discussed in some 

detail because the basic queuing equations provide only 

average performance data under steady-state conditions. 

Understanding how much variability can exist for a given 

waiting line scenario provides a manager with the insight  

required to reduce these effects and develop innovative 

solutions for improving service while reducing operating costs.

In general the mathematical tone of the book is focused 

on applications, not the derivation of the formulas presented. 

The few derivation exceptions illustrate some approaches not 

commonly discussed in textbooks—for example, the use of 

state diagrams and random number approximations of the 

probability distributions for use in simple simulation models.

To aid in understanding the material presented, some 

practical examples are given at appropriate points in the text 

and some simulation approaches using common spreadsheet 

software are described.

Kenneth (Ken) Shaw has a PhD and MS in electrical engineer­

ing from Arizona State University and a BSEE from Purdue 

University. His experience in industry was gained at a number 

of high-technology enterprises that include Naval Avionics 

Facility, Royal Melbourne Institute of Technology, General 

Electric, Motorola Semiconductor, Unisys, and four divisions 

of Hewlett-Packard. He shared the lessons learned from that 

experience as an adjunct professor teaching operations and 

process management for the College of Business at Oregon 

State University from 2003 to 2011.
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