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Abstract

More and more organizations around the globe are expecting that 
professionals will make data-driven decisions. Employees, team lead-
ers, managers, and executives who can think quantitatively should be in 
high demand. This book is for beginners to statistics and covers the role 
statistics plays in the business world and making data-driven decisions. 
The goal of this book is to improve your ability to identify a problem, col-
lect data, and organize and analyze data, which will aid in making more 
effective decisions. You will learn techniques that can help any manager 
or business person who is responsible for decision making. This book has 
been created for decision makers whose primary goal is not just to do the 
calculation and the analysis, but to understand and interpret the results 
and make recommendations to key stakeholders. You will also learn how 
using the popular business software, Microsoft Excel, can support this 
process. This book will provide you with a solid foundation for thinking 
quantitatively within your company. To help facilitate this objective, this 
book follows two fictitious companies that encounter a series of business 
problems, while demonstrating how managers would use the concepts in 
the book to solve these problems and determine the next course of action. 
This book is intended for beginners, and the reader does not require prior 
statistical training. All computations will be completed using Microsoft 
Excel.

More information, datasets, and supporting materials can be found at 
http://www.betterbusinessdecisions.org/

Keywords

Analyze data, data-driven decisions, decision making, Microsoft Excel, 
misuses of data, quantitative thinking, statistical inference, summarize 
data, visualize data
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CHAPTER 1

Statistics and  
Statistical Software

Preview: The study of statistics is vitally important, yet many people have only 
a vague understanding of it. Statistical analyses play a role in everything from 
politics and social science to studies of biological diversity, and individuals 
with a deep understanding of the science are always in high demand. Many 
people think they understand statistics, but the actual results of a statistical 
analysis can be counterintuitive. That is why it is so important to move beyond 
intuition and into the realm of science. It is important to realize that statistics 
is not an end in itself. Rather, it is a means for the identification and analysis 
of problems, and it is a useful tool to arrive at better decisions. The statistical 
method is used to make decisions with ramifications in the real world, and 
that makes the science a vital part of modern business. Simply put, statistics 
attempts to make sense of data. Descriptive statistics involves the collection 
and description of data. Once the data has been collected and described, the 
researcher is able to understand the context in which the results are presented. 
Inferential statistics collects data from a subset of the population and uses that 
information to draw conclusions about the population as a whole. The pop-
ulations used in a statistical analysis can be anything from a group of water 
quality measurements in a river system to the heights of soldiers in the U.S. 
Army. The science behind the analysis is the same no matter where the data are 
drawn from. No matter what kind of data is being analyzed, the statistical 
analysis process uses the same steps: problem definition, data collection, data 
analysis, and reporting the final analysis. This process is designed to be rigorous 
and scientific, providing an impartial look at the data and an impartial 
analysis of the results.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:
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1.	Set up Microsoft Excel to run statistical analyses
2.	Understand the importance of random sampling
3.	Demonstrate how to use Microsoft Excel to identify a random 

sample
4.	Understand basic vocabulary in the statistics field
5.	Explain the importance in using statistics for business decision 

making
6.	Identify the sources and types of data used in business.

Introduction

Statistics is one of those strange entities that people describe as useful 
or even important without knowing precisely what it is; people seem 
to intuitively know about statistics (or think they know). For example, 
one of the first questions we ask when teaching a statistics course is 
(naturally): “What do you think statistics is?” Answers typically range 
from “statistics consists of compiling lots of numbers [...]” to “statistics 
deals with collecting and analyzing data”; indeed, most students have 
something to say. Even prolific writers such as Mark Twain have an opin-
ion about statistics; he is reported to have said: “there are three kinds of 
lies: lies, damned lies, and statistics” (the exact origin of this phrase is 
unclear). Contrast that, for example, with what would happen if you ask 
people what “calculus” is and whether they think it might be useful for 
them: You most likely earn a majority of blank stares (and not even Mark 
Twain came up with any quips about calculus).

Thus, statistics as a mathematical topic has an advantage: You do not 
necessarily have to convince people it is useful; you merely have to ensure 
they know exactly what it is and how to use it (and how it can be abused). 
In addition, statistics has a lot to do with data analysis and everybody 
relies on data in one way or another:

•	 Corporate presidents decide company policy based on 
quarterly sales figures.

•	 Politicians decide on campaign strategy based on polls.
•	 Teachers decide on grades based on a bell curve.
•	 You and I decide whether to smoke or not based on the 

analysis of health records of other people.
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As a student studying statistics for decision-making purposes, you 
should realize that statistics is not the end game. It is a tool, not the 
ultimate goal of our efforts. We use statistics as a method to identify, ana-
lyze, and solve a problem to arrive at a useful decision. That is, the decision 
is the end game; the statistical methods are just what we are using to help 
us solve the problem. Thus, in this text we will always opt for mathemati-
cal simplicity over detail and we will emphasize how to use statistical anal-
ysis to arrive at meaningful decisions as opposed to studying statistics for 
its own sake. Let us now start for real with a broad definition of statistics.

Definition: Statistics is the study of making sense of data.

In this text we will focus on two basic concepts to make sense of data: 
descriptive statistics (Chapters 1 to 3) and inferential statistics (Chapters 
5 to 9).

Definition: Descriptive statistics involves collecting data, summarizing 
it, and generally “telling the story” behind the data. This helps describe 
the data and lets the reader understand the context in which any results 
should be interpreted. Inferential statistics, on the other hand, uses data 
collected from a subset of the overall study to draw conclusions about 
the whole.

In real-world problems you frequently have to combine descriptive 
and inferential statistics.

Example: A tax auditor is responsible for 25,000 accounts. The auditor 
wants to know how many of these accounts are in error (resulting in 
a loss of revenue) and how this compares to a (fictional) nationwide 
error rate of 2.5 percent.

The steps involved in trying to find a suitable answer to this question 
might be:

•	 Identify the objective: How does the error rate for a 
particular tax auditor compare to the nationwide average?

•	 Collect the data: The auditor investigates all 25,000 accounts 
and finds errors with 1,050 of them (say).

•	 Analyze the data: In this case, we simply compute that 
1,050/25,000 = 4.2 percent of accounts are in error.
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•	 Report the analysis: Based on our data analysis we conclude 
that 4.2 percent of the accounts are in error. Since the national 
error rate is 2.5 percent, more accounts than usual are in error.

So far we have conducted descriptive statistics: we computed the exact 
error rate for one auditor and compared it to the national error rate. Note 
that the data analysis here, such as it is, was done with the help of a sim-
ple calculator. More commonly, special software is used to help with the 
data analysis, and in fact with all stages of a statistical analysis. In this text 
we will use Microsoft Excel (any one of the most recent versions should 
work) to help us perform statistical analysis.

The previous example has the big drawback that it would be very 
time-consuming to analyze all 25,000 accounts. It would be easier to 
select only a handful of them, analyze those, and then use the results 
from that subset to make inferences about all accounts. This might not be 
as precise as checking every account but it might be so much faster and 
cheaper that the gain in efficiency outweighs the loss of accuracy. Since 
we are using the analysis of a sample to draw conclusions about all 25,000 
accounts, we now engage in inferential statistics.

When we collect data, we have the option of obtaining data from 
primary or from secondary sources. Primary sources are sources of data in 
which the person collecting the data is also using it. Secondary sources are 
data sets that the person running a study did not collect, but instead were 
collected from another individual or institution.

A population could be (1) the set of all photographs of Mars, (2) the 
set of heights of people in the U.S. Army, (3) the set of all measurements 
for the quality of water taken from the Hudson River, or (4) the set of 
all problems that can be solved using statistics. On the other hand, sam-
ples for these populations could consist of (a) the pictures from a specific 
region of Mars, (b) the heights of people in a particular division of the 
U.S. Army, (c) the set of water measurements for the Hudson River taken 
on July 24, 2013, or (d) the statistical problems we are solving in this 
class. See Table 1.1.

Definition: The term population stands for the set of all measurements 
of interest while the term sample denotes any subset of measurements 
selected from the population.
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We finally need a flexible term to denote what is being measured:

Definition: A variable is a characteristic or property of a population 
where the observations can vary.

Using this terminology, we could refine our four stages of statistical 
analysis and approach a “generic statistical problem” using these four 
steps:

•	 Problem definition: What is the population of interest and 
what are the variables to be investigated?

•	 Data collection: Describe and select a sample from the 
population.

•	 Data analysis: Make statistical inferences from the analysis of 
the sample and apply them to the population.

•	 Analysis reporting: Report the inference together with a 
measure of reliability for the inference.

With this terminology in place we can revisit our previous example of 
checking accounts.

Example: A tax auditor is responsible for 25,000 accounts. How many 
of these accounts are in error (resulting in a loss of revenue), and how 
does this compare to a (fictional) nationwide error rate of 2.5 percent?

The steps involved in trying to find a suitable answer to this question 
might now be as follows:

•	 Defining the problem: The entire population consists of 
all 25,000 accounts, and the variable to be investigated is 

Table 1.1  Examples of populations and samples

Population Sample
Set of all photographs of Mars Pictures from a specific region of Mars

Set of heights of all soldiers in the U.S. 
Army

Heights of soldiers from the 5th Infantry 
Division

All water quality measurements from the 
Hudson River

Water quality measurements taken on July 
24, 2015

Set of all problems that can be solved 
using statistics

Problems that we will solve in this class
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whether an account is in error or not. Thus, we have defined 
one variable, which has a total of 25,000 values.

•	 Data collection and summary: The auditor decides to select 
200 accounts at random, somehow, tests each of them, and 
finds that 8 of them are in error.

•	 Data analysis: Some statistical theory is applied to allow 
drawing a conclusion from the sample of 200 accounts and 
applying it to all 25,000 accounts. In this case, the likely 
theory involves computing 8/200 = 4 percent.

•	 Analysis reporting: Based on our data analysis we infer that 
approximately 4 percent of the accounts will be in error. 
Additional theory (which we will cover in Chapter 5) shows 
that our guess has an error of ±0.9 percent. Thus, it seems 
that our accounts contain more errors than the national 
average of 2.5 percent.

The analysis of the data is usually done by using a calculator, or—
more frequently these days—with the help of a software package. In this 
textbook we will use Microsoft Excel (any recent version of Excel should 
work) to help us perform statistical analysis.

Samples and “Random Samples”

We have defined the terms population and sample and we were interested 
in selecting a random sample in our last example. The natural question is: 
What is a random sample, and how do we select one?

Definition: A random sample of size n is a sample that is selected by a 
process such that any other sample of that size n has the same chance 
of being selected.

This definition might seem abstract and perhaps not so useful. We could 
paraphrase it by saying that a random sample is a sample where the selection 
has taken place without any bias of any sort. If there was no bias of any kind 
in making a selection of n objects, then any other set of n objects would have 
had the same chance of being selected. Thus, no bias implies a random sample.
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There are cases where it is not only more efficient to work with a 
random sample, but it might even give more accurate answers than trying 
to work with the population.

Example: Find the average income for people living in New York City 
(NYC).

This seems straightforward. The most accurate approach apparently 
would be to ask everyone living in NYC their income, add up all the 
figures, and divide the sum by the total number of people asked (which 
will give the precise average). However, that is not only impractical, it 
would not even work:

•	 When people are asked their income not everyone will answer 
(for a variety of reasons).

•	 People might not answer truthfully (again for a variety of 
reasons).

•	 It will be difficult to physically track down everyone living in 
NYC.

•	 By the time the last people are asked, others have moved in or 
out of NYC already.

Therefore, instead of finding the exact—and arguably elusive—
average, we should try to estimate it. Note that according to the U.S. 
Constitution, Article 1, Section 2, a census needs to be conducted every 
10 years so that the people can have a proper proportion of representation 
in the U.S. House of Representatives. Instead of attempting to count 
everyone, as seems required, many statisticians argue that using a carefully 
selected random sample would in fact give more accurate results. But 
using such inference might be in violation of the constitution depending 
on the exact meaning of “census.” Discussing constitutional law, however, 
is way beyond the scope of this text, so, our first problem will simply be 
to randomly select a small sample, say of size n = 1,000, of people living 
in NYC and find the average income of that sample (which is perfectly 
within our capabilities). Then we draw conclusions from that sample 
about the whole population.
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Thus, our question now is: How do I select a random sample of size 
1,000 from the population of inhabitants of NYC? We might try to use 
the following procedure:

1.	Open the latest NYC phone book.
2.	Select one page “at random” (perhaps by throwing the book in the 

air).
3.	Select 1,000 people starting from that page that the book opens up 

on.

Call those people and ask them for their income. Compute the 
average of that group and say that this average is representative for the 
average income of all people in NYC, approximately.

But this is not at all a procedure to obtain a “random sample”: all 
people selected will most likely be from one borough, or all may have a 
name starting with “Mac” (and are therefore likely to be of Irish ancestry, 
which introduces bias). Thus, this is not a random sample. In fact, it turns 
out that to select a random sample you need to carefully and deliberately 
select people from all sociological backgrounds, all races, all cultures, and 
so on. In other words, contrary to what you might think a random sample 
must be selected very deliberately in this case.

Random Sample Selection Procedure

While we will generally avoid the problem of random sample selection, 
we do want to mention at least some way to do this.

Example: Select a random sample of size n = 5 from a population of 
2,000 measurements.

We proceed as follows:

1.	Label all measurements from 1 to 2,000, in any order.
2.	Start a computer program that can generate random numbers.
3.	Use that computer program to generate five unique random numbers 

between 1 and 2,000.
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4.	Select the five measurements from the total population located at 
those random positions.

This procedure will give a random sample (assuming the computer’s 
random number generator is working correctly). Another approach that 
works particularly well using Excel is as follows (see Figure 1.1):

1.	List all measurements from 1 to 2,000, in any order.
2.	Create random numbers between 0.0 and 1.0 and store them with 

each measurement.
3.	Sort all numbers according to their associated random number 

between 0 and 1.
4.	Pick the first five elements from the list of measurements.

For additional details, please see the “Excel Demonstration” section. 
This works because we are able to list all measurements, which is not 
always possible. For example, if you want to find the average pollution 
of a certain river, you clearly cannot label all possible measurements (you 
cannot even take all possible measurements). In the case of NYC, the 
phone book is indeed a convenient list of people, but it certainly does not 
contain everyone: some people might opt for unlisted numbers (probably 
rich, or younger), others might not have a phone at all (presumably poor), 
and so on.

Values in original order with 
associated random number

Values sorted by associated 
random number (column B)

Figure 1.1  Selecting a random sample in Excel
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From now on, we will take a very simple approach: We will ignore the 
problem of selecting a random sample and assume that a random sample 
has been selected somehow.

Variables and Distributions

When we are looking at a particular population and selecting samples 
to make inferences, we need to record our observations or the 
characteristics of the data we are studying. Recall that a variable is the 
term used to record a particular characteristic of the population we are 
studying.

For example, if our population consists of pictures taken from Mars, 
we might use the following variables to capture various characteristics of 
our population:

•	 Quality of a picture
•	 Title of a picture
•	 Latitude and longitude of the center of a picture
•	 Date the picture was taken

It is useful to put variables into different categories, as different 
statistical procedures apply to different types of variables. Variables can be 
categorized into two broad categories, numerical and categorical:

Definition: Categorical variables are variables that have a limited 
number of distinct values or categories. They are sometimes called 
discrete variables. Numeric variables refer to characteristics that have a 
numeric value. They are usually continuous variables, that is, all values 
in an interval are possible.

Categorical variables again split up into two groups, ordinal and 
nominal variables.

Definition: Ordinal variables represent categories with some intrinsic 
order (e.g., low, medium, high; or strongly agree, agree, disagree, 
strongly disagree). Ordinal variables could consist of numeric values 
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that represent distinct categories (e.g., 1 = low, 2 = medium, 3 = high). 
Note that this does not turn them into numeric variables; the numbers 
are merely codes. To best remember this type of variable, think of 
“ordinal” containing the word “order.”

Nominal variables represent categories with no intrinsic order 
(e.g.,  job category, company division, and race). Nominal variables 
could also consist of numeric values that represent distinct categories 
(e.g., 1 = male, 2 = female).

It is usually not difficult to decide whether a variable is categorical or 
numerical.

Example: An experiment is conducted to test whether a particular drug 
will successfully lower the blood pressure of people. The data collected 
consists of the sex of each patient, the blood pressure measured, and 
the date the measurement took place. The blood pressure is measured 
three times, once before the patient was treated, then one hour after 
administrating the drug, and again two days after administrating the 
drug. What variables comprise this experiment?

The characteristics measured in the experiment seem to be the 
patient’s sex, blood pressure, and treatment date, so it looks like we need 
three variables to capture the outcomes: sex (nominal), blood pressure 
(numeric), and date (ordinal). But the fact that the blood pressure is 
measured three times does not quite fit this scheme. In fact, for each 
patient participating in the study we actually measure five characteristics: 
sex, treatment date, blood pressure prior to treatment, blood pressure 
right after treatment, and blood pressure two days after treatment. 
Thus, we really have five variables, not three. In fact, we also have one 
additional variable, namely, the ID (or name) of the patient. Thus, the 
data collected for four (fictitious) patients is recorded in six variables as 
shown in Table 1.2.

Note that many statistical software packages follow this convention 
to setup variables in columns, one column per variable, and to record the 
values for each case in rows.
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Table 1.2  Recording variables and values in tabular form

Patient 
ID 
(nominal)

Sex 
(nominal)

Date 
(ordinal)

Pressure 
(pre)

(numeric)

Pressure 
(post) 

(numeric)

Pressure 
(after) 

(numeric)
1 Male January 1, 2014 180 135 150

2 Female January 1, 2014 170 140 145

3 Male January 3, 2014 200 130 140

4 Male January 7, 2014 190 160 190

Example: Consider the following survey, given to a random sample of 
students taking a university course:

Q1: What is your status?
[ ] Freshmen [ ] Sophomore [ ] Junior [ ] Senior [ ] Graduate 

Student
Q2: What is your major? 
Q3: What is your age? 
Q4: How often do you use the following support services?

Daily
Few  

times/week
Few  

times/month
Few  

times/year Never
Dining 
services

Health 
services

Recreation 
center

PC support 
services

Campus 
ministry

Q5. The following student support services are effective:
1 (Strongly 

agree) 2 3 4
5 (Strongly 
disagree)

−1 (No 
opinion)

Dining services

Health services

Recreation center

PC support services

Campus ministry

Note: 1 = Strongly agree, 2 = Agree, 3 = Neutral, 4 = Disagree,  
5 = Strongly disagree, −1 = Not applicable.
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The survey consists of a total of 13 variables as follows: Q1 (status) 
is an ordinal variable, Q2 (major) is nominal, and Q3 (age) is numeric. 
Q4 consists of five variables (one for each row of the table), all being ordi-
nal, and Q5 again consists of five ordinal variables. Note in particular that 
the five variables in question 5 are not numeric. The numbers are simply 
codes for particular categories. However, ordinal variables share some 
characteristics of numerical ones, as we will see in Chapter 3. Following 
our previous example, we should introduce one additional nominal 
variable to capture the ID of each subject. This allows us to have a unique 
identification for each data record.

When the results of a survey or an experiment are recorded, the 
outcomes usually vary, and the variation of each variable usually occurs 
with different frequencies. For example, a survey given to a random sample 
of U.S. citizens might record the sex of the subject. The frequencies of the 
values for this variable will likely be approximately 52 percent female and 
48 percent male. Recognizing patterns in the frequencies of outcomes is 
in fact one of the goals of statistics.

Sometimes variables are distributed so that all outcomes are equally, 
or nearly equally likely. Other variables show results that “cluster” around 
one (or more) particular value.

Definition: The distribution of a variable refers to the set of all possible 
values of a variable and the associated frequencies or probabilities with 
which these values occur.

Example: Suppose you are conducting a survey that tries to determine 
whether women are typically shorter than men. Thus, your survey, 
administered to 100 randomly selected people, asks for the respondent’s 
sex and height. Do you anticipate homogeneous or heterogeneous 
distributions from these variables?

Definition: A heterogeneous distribution is a distribution of values of 
a variable where all outcomes are nearly equally likely. A homogeneous 
distribution is a distribution of values of a variable that cluster around 
one or more values, while other values are occurring with very low 
frequencies or probabilities.
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Since approximately half of all people are male and half are female 
and the survey was given to 1,000 randomly selected participants, there 
should be approximately the same number of men and women queried. 
Thus, the variable sex should have a heterogeneous distribution—all 
possible values are just about equally likely. The second variable, height, 
however, will likely cluster around one or two most frequent values. Or 
conversely, few people are really short (4 ft. or less) or really tall (7 ft. or 
more), so this variable should be homogenously distributed.

Example: Suppose a company issues sales reports for two years, 2014 
and 2015, as shown in Figure 1.2. We can consider this report as having 
two variables (v_2014 and v_2015, say), each one having four values 
(for North, South, East, and West, separately). Are the distributions of 
values hetero- or homogeneous?

The values for the 2014 variable (v_2014 if you like) are pretty close 
to each other. In the chart you can see that all 2014 bars are approximately 
of equal height. If we looked at the original figures, we would find an 
(about) equal amount of sales for North, South, East, and West, and no 
region would stick out, particularly. Thus, each region is equally likely 
in terms of number of sales—the distribution is heterogeneous (if we 
checked where an individual, randomly selected, came from, each region 
would be approximately equally likely).

The values for the 2015 variable (v_2015 in our terminology) differ 
widely. In Figure 1.2 the 2015 bars are of different heights, with “East” 
being by far the highest. If we would look at the original figures, we 
would find that most sales were made in the East. Thus, a sale from the 

Figure 1.2  A sample company sales report
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East is much more likely than from any other region—the distribution 
is homogeneous (if we checked where an individual, randomly selected, 
came from, she would most likely come from the east). This seems some-
how counter intuitive:

•	 If all bars of a distribution are approximately equally high, the 
variable is heterogeneous.

•	 If some bars of a distribution dominate the others, the variable 
is homogeneous.

Introduction to Microsoft Excel

This text utilizes Microsoft Excel 2013. If you are using Microsoft Excel 
2007 or 2010, there will be very minor differences and you should be 
able to follow along with the examples in this textbook. Understanding 
the basic workings of Microsoft Excel will be necessary in this course; 
however, advanced knowledge of the software is not necessary. The guided 
examples are designed so that anyone with basic knowledge of the soft-
ware can follow along. If you need additional assistance with the basic 
functions and working of Excel, such as entering values and formulas, 
selecting ranges, basic functions, saving and retrieving files, and so on, 
we recommend spending some time using the resources available on 
Microsoft’s website at https://support.office.com. Search for “Basic Tasks 
in Excel 2013.”

Installing the Analysis ToolPak in Microsoft Excel

Excel contains a variety of “add-ons” that allow you to perform additional 
calculations beyond the basic features built into Excel from the start. 
Some of these add-ons might require you to insert the Microsoft Office 
CD ROM; others can be installed without that disk. In general, the more 
add-ons you install into Excel, the longer the program takes to start up. 
Therefore, you only want to install those options that you are really going 
to use, or uninstall add-ons when you do not need them any longer.

For this text you must install the “Analysis ToolPak,” which contains 
a variety of procedures for conducting statistical analysis. Installing an 
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add-on is simple, but differs slightly depending on your version of Excel. 
Here is the procedure for the 2013 version of Excel for Windows. (Note 
that Excel for Mac does not include this ToolPak. If you are using a Mac, 
try and install the free software from www.analystsoft.com/en/products/
statplusmacle/ instead.)

•	 Start Excel as usual with a blank sheet.
•	 Click on the “File” button in the top left corner.
•	 Click on “Options” near the bottom of the menu.
•	 Highlight the “Add-Ins” option on the list on the left.
•	 Under the “Manage” section, make sure Excel Add-ins is 

selected and click the “GO” button as shown in Figure 1.3.
•	 Another dialog box will appear; check the “Analysis ToolPak” 

and click “OK.” (Caution: Be sure not to install the Analysis 
ToolPak—VBA version.)

The functions from the Analysis ToolPak will now be available in the 
“Data” ribbon as the right-most entry, named “Data” (and not in the 
“Add-ins” ribbon as you might expect). The specific functions in that 
add-in are the same for most versions of Excel for Windows. If you select 

Figure 1.3  Dialog to install the Analysis ToolPak for Excel for 
Windows
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the “Data Analysis …” option under “Data” you will see the procedures 
as shown in Figure 1.4 for performing statistical analysis on data in your 
spreadsheet.

We will explore several of these options in the rest of this course, but 
you are welcome to click on “Help” now to learn more about the Analysis 
ToolPak.

Excel Demonstration

In this textbook we will follow two fictitious companies, Company S and 
Company P. Both of these companies will be faced with common work-
place problems as we proceed through the text, and you will be provided 
with demonstrations on how to arrive at answers for these problems using 
statistics and Microsoft Excel. Here is a background of the two companies.

Company S is a mid-sized accounting firm with approximately 600 
employees. As a service-based organization, Company S provides services 
such as general accounting, bookkeeping, tax preparation, software con-
sultation, controller services, business accounting, and payroll services. 
Company S comprises a management team, support staff, and certified 
public accountants (CPAs). Management is responsible for developing 
strategies to generate new clients, while the support staff and CPAs fulfill 
the service requests of their clients.

Company P is a large manufacturer of paper products with approxi-
mately 1,000 employees and supplies various paper products to retailers 
around the United States. These products include industrial supplies, 
food service supplies, sanitary supplies, and packaging supplies. As a 

Figure 1.4  Procedures of the Analysis ToolPak
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product-based organization, Company P, in addition to management 
and support staff, has a sales force that is broken into sales teams, with 
each team given a regional territory. Each sales team is responsible for 
establishing and managing relationships with retailers and the sale of 
products to retailers within their territory.

Using Excel to Select a Random Sample

Problem: Company P would like to interview a random sample of 5 of 
the top 20 clients in the company. Use Excel to select a random sample of 
size 5 from the population of 20 clients.

The task is to assign a random number to each client and then sort by 
this number in order to pull a random sample of five clients. First, enter 
the 20 client names into a new Excel worksheet into column A. Then, 
next to each client name, enter the Excel function =RAND(). Note that 
in order to enter an Excel function, you must start with a leading equal 
sign. If it worked you should see a random number between 0 and 1 in 
that cell but when you click on it you will see the =RAND() function in 
the Excel edit bar. You could now type this function into the remaining 
19 cells but to speed up the process, “copy and paste” the entry from the 
first cell value into the following 19 cells in column B. See Figure 1.5.
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CHAPTER 2

Data Visualization

Preview: Presenting data visually can make it easier to understand and 
absorb. It is one thing to read a row of figures on the page, but quite another 
to see those figures presented in a user-friendly chart. The data visualization 
process aims to make sense of the raw data, presenting it in a manner that is 
easy to understand even for non experts. Pie charts and bar charts are among 
the most commonly used data visualization techniques; they can be created 
easily using common spreadsheet programs like Microsoft Excel. Numerical 
data can be represented in histograms, while categorical data can be visu-
alized using frequency tables and charts. Cumulative frequencies count the 
number of data points up to a given value and are used to find the median, 
quartile, and percentiles in a group of data. Relative frequency, on the other 
hand, is used to represent how often something happens relative to some total. 
For example, the relative frequency may be used to show that a given sales 
team won 10 of its last 13 contracts, while the cumulative frequency will 
show the median number of contracts won across the entire year. Visualizing 
data is an important skill, and that ability is important whether you are 
running a business or teaching a class. You can get a sense of the importance 
of the data by looking at numbers on a spreadsheet, but a well-chosen visual 
representation of that data can be much more useful.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Organize data
2.	Construct tables and charts for numerical data
3.	Construct tables and charts for categorical data
4.	Describe the principles of properly presenting graphs
5.	Use Microsoft Excel to present data in basic graphs and charts
6.	Demonstrate how to create a pivot table and histogram
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Introduction

As we have seen in Chapter 1, statistics is the study of making sense of 
data and consists of four components: defining the problem, collecting 
and analyzing data, and reporting the results. In this chapter we will con-
cern ourselves with summarizing data and presenting it visually.

Usually when data is collected there are several numbers, results, 
responses, and so on. In fact, there is often so much data that it needs to 
be summarized before you can make sense of it; raw data usually does not 
reveal any patterns or insights. One approach to summarizing data is to 
summarize it in graphical or tabular form. Since a picture is worth a thou-
sand words, we hope to be able to detect patterns or to draw conclusions 
once we see data presented graphically.

In this chapter we will discuss a variety of ways to visualize data and 
how to use Excel to accomplish the visualization. We will also show 
how charts can be used to emphasize different points of views without 
modifying or falsifying data.

Pie Charts and Bar Charts

Pie charts are a convenient way to visualize data if the categories that 
divide the data are not that numerous (eight or less). Pie charts apply to 
categorical variables (either ordinal or nominal); in most cases pie charts 
are not appropriate for numerical variables.

A pie chart divides a circle into segments such that the area of each 
segment over the total area corresponds to the ratio of each number over 
the total. A pie chart representing the preceding data is shown in Figure 2.1.

See the following text for the mechanics of creating charts with Excel. 
Note that Excel has automatically converted the raw data into percentages 

Example: Suppose a survey was conducted among 1,000 adults about 
their job status, with the following results:

No job One job More than one job
122 536 342

Use a pie chart to represent this data.
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of the total and rounded it properly. In other words the figure for “one 
job” was converted to

�536/(122 + 536 + 342) * 100 = 536/1000 * 100 = 53.6 percent, 
rounded up to 54 percent.

If you move your cursor over the various slices of the pie while inside 
Microsoft Excel, you will see the total number as well as the number in 
percentage corresponding to that slice.

Exploding your pie chart: You can also explode your pie chart (which 
sounds a lot more fun than it is). Simply click on one of the pie slices (not 
any text, though) and drag it outwards a little—your chart will explode! 
You can either make one slice move out of the pie or all slices. This is 
useful to highlight one particular slice. In Figure 2.2 we have also colored 
that slice light gray to further accentuate it.

Bar charts are applicable to categorical variables, just as pie charts, but 
they can accommodate more categories.

Figure 2.1  Sample pie chart with three segments

No Job
12%

One Job
54%

More than 
one Job

34%

Example: A survey was conducted to find the number of workers 
employed by major foreign investors. The results are presented in this 
table.

Great Britain Germany Japan Netherlands Ireland
6,500 1,450 1,200 200 138

Construct a bar chart representing this data.
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A bar chart uses vertical or horizontal bars whose length corresponds 
to the frequency of each category. In our example, the bars represent 
the number of workers employed by major foreign investors. The first 
attempt is shown in Figure 2.3.

Nice, but we do not like that the bars go horizontally; it would be 
nicer if they went vertically. We use some of the options Excel provides to 
change the bar chart to the one shown in Figure 2.4.

To summarize:

•	 Pie charts and bar charts can be used to visualize the number 
of values in each category for a categorical variable. They 

Figure 2.2  A so-called exploding pie chart

More than one
job, 342

One job, 536

No job,
122

Figure 2.3  A sample bar chart

Great Britain

Germany

Japan

Netherlands
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0 2,000 4,000 6,000 8,000
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represent a visual representation of the frequencies of the var-
ious categories and are useful to quickly find data that either 
has a particularly high or low frequency as compared to other 
data values.

•	 A pie chart becomes difficult to read if there are more than 6 
or 7 categories, while a bar chart can handle up to 20 catego-
ries or more.

Frequency Histograms

The previous chart types work well for categorical data since there are 
usually a limited number of categories. The most important type of 
graphical data representation for numerical data is a frequency histogram, 
or histogram for short. Let us first consider a simple example.

First, as a quick review, this is a nominal variable; do not get fooled 
by the minor detail that the values are all numbers (they are merely codes 
for the categories).

Second, a usual bar chart (or pie chart) would not work well. We are 
not really interested in the fact that some responses were 1 and others 
were 2. Instead we want to know how many 1’s (men) and how many 2’s 
(women) there are, or in the frequencies of the various responses. In this 

Figure 2.4  A bar chart with vertical bars and a title

7,000

6,000

5,000

4,000

3,000

2,000

1,000

0
Great Britain Germany Japan

Employed by foreign investor

Netherlands Ireland

Example: In an anonymous survey of students in a statistics course 
(like the one you are taking at the moment), students were asked about 
their sex, male or female. Visualize the responses received: 2, 1, 2, 1, 2, 
1, 2, 1, 2, 1, 1, 1, 2, 1, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 2, 
2, 1, 2, 1, 2, 2, 1, where 1 = male and 2 = female.
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case we could (relatively) easily count the values manually to find the 
following frequencies:

Frequency
Male (1) 15

Female (2) 24

Totals 39

This frequency table tells us, for example, that more women than 
men are taking this statistics class. These frequencies directly translate to 
probabilities: if we meet a person from this class completely at random 
on the street, there is a “15 in 39” or 38 percent chance it is a man and 
a “24 in 39” or 62 percent chance it is a woman (we will discuss some 
probability theory later but this should make common sense). A pie chart 
could be used to illustrate these figures nicely and shows at a glance that 
there are more females than males. See Figure 2.5.

In the preceding example we could generate our frequency table 
manually in an easy manner. But if we have hundreds or thousands of 
responses, we want to use Excel to generate the frequency table and asso-
ciated chart automatically. First, however, we will work out a slightly 
more elaborate frequency histogram manually.

Figure 2.5  Sample pie chart showing counts in each category as 
percentage

Male
38%

Female
62%

Example: Many communities add fluoride to water to prevent tooth 
decay. In a 25-day period, these levels of fluoride were measured: 75, 
86, 84, 85, 97, 94, 89, 84, 83, 89, 88, 78, 77, 76, 82, 72, 92, 105, 
94, 83, 81, 85, 97, 93, 79. Create an appropriate frequency histogram 
representing this data.
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There are too many numbers for a pie or bar chart; in fact we are 
not interested in the actual numbers as much as we are interested in the 
frequency with which they occur. Hence, we want to group them into 
categories, and then graph the frequency counts of these categories instead 
of the original numbers. We decide, somewhat arbitrarily, to group the 
data into six categories that we will call bins. The smallest data value is 72, 
the largest is 105, so that the width of each bin should be (105 − 72)/6 = 
5.5. Thus, our bins are:

72.0 to 72.0 + 5.5 = 77.5
77.5 to 77.5 + 5.5 = 83.0
83.0 to 83.0 + 5.5 = 88.5
88.5 to 88.5 + 5.5 = 94.0
94.0 to 94.0 + 5.5 = 99.5
99.5 to 99.5 + 5.5 = 105.0.

Next we count how many of our data values will fall in each bin. If 
a number should fall on a boundary between two bins, we will decide 
to count it in the lower bin if possible. The frequencies are shown in 
Table 2.1.

We can of course construct a bar chart for this frequency table; to 
distinguish a frequency histogram from a bar chart we set the gap between 
the columns to zero. See Figure 2.6.

A frequency histogram, in addition to being able to assign proba-
bilities to certain events, also tells you the type of distribution of your 
variable: homogeneous or heterogeneous. For this example, the variable 
is heterogeneous.

Table 2.1  Frequencies of fluoride levels in water supplies (in parts 
per billion [ppb])

Bin Data Frequency
less than 77.5 75, 77, 76, 72 4

77.5–83.0 83, 78, 82, 83, 81, 79 6

83.0–88.5 86, 84, 85, 84, 88, 85 6

88.5–94.0 94, 89, 89, 92, 94, 93 6

94.0–99.5 97, 97 2

more than 99.5 105 1
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The data in that file has the following format:

We use Excel’s histogram tool, which is outlined in detail in the “Using 
Microsoft Excel” section, to create the chart as shown in Figure 2.7.

According to this histogram, most values are between 20.8 and 
24.6. Thus, most values are pretty similar so that this is a homogeneous 
distribution. Another way to look at this is to say that if we meet a random 
member of this survey, that person is most likely between 20.8 and 24.6 
years old.

Figure 2.6  A frequency histogram

72–77.5
0

1

2

3

4

5

6

7

77.5–83.0 83.0–88.5 88.5–94.0 94.0–99.5 99.5–105

Example: Open the Excel spreadsheet linked in the following text. 
It shows the age of respondents to a survey. Generate a frequency 
histogram and determine if the variable is homogeneous or hetero-
geneous. Use the default number of categories Excel comes up with.

www.betterbusinessdecisions.org/data/math1101_survey_numeric.xls

Example: The next Excel spreadsheet contains data for salaries of 
almost 20,000 Major League Baseball (MLB) players from 1988 to 
2011. Open the data files and create a histogram for the salary variable. 
Think about whether it is actually a good idea to create this histogram.
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www.betterbusinessdecisions.org/data/MLBPlayerSalaries.xlsx

This data set consists of salary information for almost 20,000 MLB 
players. It has the following format:

Using Excel’s histogram tool with 10 bins, defined manually, gives the 
histogram shown in Figure 2.8 (you might want to jump to the “Using 
Microsoft Excel” section to see how to use Excel’s histogram tool, and 
then return here).

This histogram shows again a homogeneous distribution with most 
players making less than $3.3 million. This diagram is accurate but it does 
not tell the whole story because it ignores the fact that players’ salaries 
typically increased over the years. A more accurate analysis would per-
haps create several histograms, maybe one per decade. That would give a 
more accurate picture of how salaries changed over time and how they are 
distributed in each decade.

Figure 2.7  Frequency histogram as generated by Excel’s histogram 
tool

0

5

10

15

20

25

17 20.8 24.6 28.4 32.2 and
greater



30	 USING STATISTICS FOR BETTER BUSINESS DECISIONS

Figure 2.8  Frequencies of MLB salary information
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Relative Frequency Histograms

The preceding charts and tables have used the count, or frequency, of each 
category. In most cases, though, we are not interested in the raw numbers 
but in relative frequencies.

Recall the data from that example (see Table 2.2 on the left). It clearly 
shows that the fluoride level went beyond 94 ppb on three days. However, 
that raw count tells us little. To interpret it and to put it in perspective 
we need to relate it to the total number of days that measurements were 

Example: Convert the frequencies in Table 2.1 showing the level of 
fluoride in drinking water to obtain show relative frequencies. How 
often did the fluoride level go beyond 94 ppb?

Bin Frequency
72.0–77.5 4

77.5–83.0 6

83.0–88.5 6

88.5–94.0 6

94.0–99.5 2

99.5–105 1

Total 25

Bin Frequency Relative frequency %
72.0–77.5 4 4/25 = 16

77.5–83.0 6 6/25 = 24

83.0–88.5 6 6/25 = 24

88.5–94.0 6 6/25 = 24

94.0–99.5 2 2/25 = 8

99.5–105 1 1/25 = 4

Total 25 100

Table 2.2  Frequencies and relative frequencies



	 DATA VISUALIZATION	 31

taken. In this case, the level went above 94 ppb on 3 out of 25 days, or 
12  percent of the time. In fact, we can convert each frequency into a 
relative frequency by dividing it by the sample size n, as in Table 2.2 on 
the right.

Usually we are interested in relative frequencies, since they put the 
raw count in perspective. However, if the sample size is particularly small, 
relative frequencies can be misleading.

The relative frequencies of the sample are clear: 33 percent of the 
samples were female and 67 percent were male. This seems to suggest that 
about 33 percent of all evaluations were submitted by females, 67 percent 
by males. However, since the sample size is so small, these figures are 
likely to be incorrect. Thus, if the sample size is small, relative frequencies 
might convey a false sense of certainty.

Perhaps a reasonable solution is to state the relative frequency as a 
ratio, not in percentage. In other words, one out of three evaluations was 
female and two out of three were male.

To create a relative frequency table, we first create a standard frequency 
table; as before, then we convert each frequency into a relative frequency 
by dividing it by the sample size. Figure 2.9 shows the resulting table, 
using 10 categories, of MLB salaries in 2011. We added a column con-
taining the relative frequencies by dividing each frequency by the sample 
size n = 843. Now it is easy to see that approximately 6.5 + 64.8 + 12.9 + 
5.8 = 90% of MLB players made less than $13 million in 2011.

Note that a frequency histogram and a relative frequency histogram 
will have the exact same shape. The only difference between the two 
would be the scale on the (vertical) y-axis.

Example: A sample of size 3 was selected from a survey of teacher 
evaluations. Two respondents were male and one was female. Discuss 
the merits of relative versus raw frequencies.

Example: Consider the same data set of MLB salaries and create a 
relative frequency table and corresponding histogram for the salaries 
in 2011 only. How many players, approximately, made less than $13 
million in 2011?
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Cumulative Frequency Histograms

Another frequency that is often used is the cumulative frequency. It is 
defined as the sum of the relative frequencies up to the given bin.

To compute the cumulative frequency for a row, we add the relative 
frequencies up to and including that row, or equivalently we add the 
current relative frequency to the prior cumulative frequency (see Table 2.3).

We already saw that relative frequencies translate to probabilities. 
Cumulative frequencies, on the other hand, will be useful to find median, 
quartiles, and percentiles (see Chapter 3).

Excel provides a number of additional charts as well as variations on 
existing types. It is easy to experiment so feel free to check out other types 
of charts.

Bending the Rules: Lying or Exaggeration

Using graphical data representation provides a great opportunity to 
visualize data so that it conveys a particular point of view. This is not 
cheating; it is simply using some visual aids to make your data appear 

Example: Consider the salaries of MLB players in 2011 and add 
cumulative frequencies to the table.

Table 2.3  Relative and cumulative frequency table for MLB salaries 
in 2011

Bin ($) Frequency
Relative 

frequency (%)
Cumulative  

frequency (%)
414,000 55 6.5 6.5

3,572,600 546 64.8 6.5 + 64.8 = 71.3

6,731,200 109 12.9 71.3 + 12.9 = 84.2

9,889,800 49 5.8 84.2 + 5.8 = 90.0

13,048,400 38 4.5 90.0 + 4.5 = 94.5

16,207,000 25 3.0 94.5 + 3.0 = 97.5

19,365,600 11 1.3 97.5 + 1.3 = 98.8

22,524,200 5 0.6 98.8 + 0.6 = 99.4

25,682,800 3 0.4 99.4 + 0.4 = 99.8

28,841,400 1 0.1 99.8 + 0.1 = 99.9

and greater 1 0.1 99.9 + 0.1 = 100

843 100.0
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to support one particular point of view over another without actually 
changing the data. Table 2.4 shows, for example, some data of how much 
different states spent per student in dollars in 2013.

It is easy to see that of the states listed, New Jersey (NJ) spends the 
most per student, about twice as much as states like Arkansas (AR) or 
Mississippi (MS). The difference between NJ and AR is pretty clear (see 
Figure 2.10).

Now suppose we want to give a presentation in which the state of 
AR is supposed to look reasonably good as compared to the state of 
NJ. We could create a bar chart that minimizes the visual differences 
in state spending by using a particularly “large” scale on the y-axis. See 
Figure 2.11.

We are also de-emphasizing the empty space that results in choosing a 
large y-scale by placing the chart title into that area. In this chart it is still 
clear that NJ spends the most per student—after all, we cannot change 
the actual data—but the difference does not look quite so stark any more. 
As another option, we could remove the horizontal gridlines to make it 
harder to see exactly how much money the different states actually spend.

Table 2.4  Money spent per student in select states in 2013

State $ per student State $ per student
Arkansas 9,394 Idaho 6,791

Mississippi 8,130 New Jersey 17,572

North Dakota 11,980 Washington 9,672

Figure 2.10  Standard bar chart representing money spent per student 
in 2013
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Now let us try the opposite: we want to give a presentation in which 
the state of AR looks bad as compared to the state of NJ. Thus, we pick 
a scale on the y-axis that makes sure that the difference between AR and 
NJ appears as large as possible. In particular, we choose a y-scale that 
starts at 6,000 and ends at 17,600 instead of the standard values. See 
Figure 2.12.

We can also pick an “aggressive” color (such as red) for the AR figure 
and a “calm” color (such as green) for NJ, emphasizing the fact that we 
want to represent AR as “bad” and NJ as “good.” In this chart AR indeed 
looks pretty bad compared to NJ—in fact, it seems as if NJ spends many 
times more money per student than AR—but we have not changed the 
actual data values.

Figure 2.11  Spending per student, de-emphasizing differences 
between states

$0 

$10,000 

$20,000 

$30,000 

$40,000 

$50,000 

$60,000 
Expenditure per Student in 2013

Ark
an

sas

M
iss

iss
ipp

i

Nor
th

 D
ak

ot
a

Id
ah

o

New
 Je

rse
y

W
ash

in
gto

n

Figure 2.12  Spending per student, emphasizing the difference 
between AR and NJ
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All three charts represent the same data and are perfectly valid. Yet 
visually they tell different stories. There are many other tricks that can be 
used to represent data in such a way as to support one particular point of 
view without outright changing the data.

If you were a health official in Dallas, you might want to use this data 
to try to get people in your region to vaccinate against the H1N1 flu 
or to encourage a government agency to fund prevention and treatment 
programs in Dallas. Thus, you are trying to create a chart that emphasizes 
the number of cases in Dallas versus the other regions so that your citizens 
are motivated to get vaccinated or that funding is approved. Figure 2.13 
shows a few suggestions.

Try this: check your local newspaper or online news source to find 
some charts. See if these charts try to promote any particular point of 
view or if they are relatively neutral.

Using Microsoft Excel

Usually we use Excel for help with some calculations only. This is rela-
tively easy and needs no further explanation. However, Excel also includes 
some more complex procedures useful for statistics; we will explore some 
of them in this section.

Exercise: Suppose you have some data showing the cases of H1N1 
influenza infections per region as follows:

•	 Region 01—Boston: 215
•	 Region 02—New York: 229
•	 Region 03—Philadelphia: 193
•	 Region 04—Atlanta: 301
•	 Region 05—Chicago: 1,788
•	 Region 06—Dallas: 734
•	 Region 07—Kansas City: 164
•	 Region 08—Denver: 175
•	 Region 09—San Francisco: 1,080
•	 Region 10—Seattle: 420
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Creating Charts

We have already seen bar charts and pie charts to summarize our data. 
Such charts can be created in Excel with just a few clicks. Note that the 
following instructions are for Excel 2013 but other versions of Excel offer 
similar capabilities.

We have only six categories for our data, so neither a bar chart nor 
a pie chart can be excluded. We will create both to see which one seems 
more meaningful.

•	 Enter the data into an empty spreadsheet in Excel.
•	 Use the mouse (or cursor keys while holding SHIFT) to select 

the cells in the first two columns, including the first row con-
taining the variable names; ignore the third column for now.

•	 Select the “Insert” ribbon. You should see an icon for 
“recommended chart” as well as icons for specific chart types. 
It is usually a good idea to check the recommended chart. 
In our case, though, we know which chart type we want, so 
we directly click on the pie chart icon and select the “3D” 
subtype.

While you hover over a particular chart type you will see a preview of 
the chart. In our case the 3D pie chart for the variable poverty is shown in 

Example: Table 2.5 shows the percentage of the population living in 
poverty and the violent crime rate per 100,000 people in 2009 (from 
census.gov) in the six New England states. Decide if a bar chart or pie 
chart is better to represent the data.

Table 2.5  Poverty and crime data for New England states in 2009

State Poverty Crime
Connecticut 9.4 306.7

Maine 12.3 119.4

Massachusetts 10.3 466.2

New Hampshire 8.5 166

Rhode Island 11.5 252.8

Vermont 11.4 140.8
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Figure 2.14 on the left. We repeat the procedure to produce a 3D column 
bar chart, shown on the right in Figure 2.14.

The pie chart is not very helpful. It is difficult to grasp which slice rep-
resents what state and it is difficult to see the actual poverty rate for each 
slice. In addition, Excel recommends pie charts if the various category 
values add to 100 percent. This is not the case, so this chart type is out. 
The bar chart in Figure 2.14 on the right side has more potential but at 
the moment it is not looking its best.

•	 Click on the chart title “Poverty” and press Delete. The title 
will disappear and the chart will grow slightly.

•	 Excel offers some “styles” on the “Insert” ribbon that can 
further improve the look of a chart. We pick, for example, the 
third option called “style 3” to get a nicely formatted, readable 
chart as shown in Figure 2.15.

To create a chart for the “crime” variable we first switch the second 
and third columns with each other via cut and paste—for simple charts 
it is easiest to make sure that the data and the labels are next to each 
other. If you select all three columns, Excel will recommend a “stacked” 
chart, which is not appropriate for this data. Alternatively, you could use 
the cursor keys together with CTRL to select the non-adjacent columns 
“State” and “Crime.” We leave the details to you.

For additional help and information, see “How to use the Chart 
Wizard,” available at https://support.microsoft.com/en-us/kb/304421

Excel’s Histogram Tool

The Analysis ToolPak provides a convenient tool to create histograms for 
numerical variables.

Example: Many communities add fluoride to water to prevent tooth 
decay. In a 25-day period, these levels of fluoride were measured: 75, 
86, 84, 85, 97, 94, 89, 84, 83, 89, 88, 78, 77, 76, 82, 72, 92, 105, 
94, 83, 81, 85, 97, 93, 79. Create an appropriate frequency histogram 
representing this data, using the appropriate Analysis ToolPak tool.
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Here is a quick walk-through of this procedure:

•	 Start Excel and enter the preceding numbers, all in one 
column. You do not need to enter a title or anything else, just 
the numbers in one column, one number in each row.

•	 Bring up the “Data Analysis ...” dialog (remember, it is 
available on the “Data” ribbon). If you do not see this item, 
you must first install the “Analysis ToolPak” as described in 
Chapter 1. You will see a dialog box listing all procedures 
available in this Analysis ToolPak. Highlight the entry 
“Histogram”; then click “OK.”

•	 Next, enter the options for a (frequency) histogram, including 
the location of the data to use and, optionally, the categories 
(bin ranges) that you want to define. See Figure 2.16 for 
details.

To define the input range, you can use the “cell selector” icon  
next to the “Input Range” field. Click it and use the mouse or cursor keys 
to select the appropriate cells by highlighting them. Click the “Return” 
icon to return to the original “Histogram” dialog box. Leave the “Bin 
Range” empty for now so that the tool will automatically pick the bins 
for the data. Make sure to check “New Worksheet Ply” as your output 
options, check the “Chart Output,” and click OK. Note that if your first 
cell contained a variable label instead of the first value, you would need 

Figure 2.15  Nicely formatted bar chart for poverty data
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to check the “Labels” option as well. The resulting histogram is shown in 
Figure 2.17.

As usual, we can now customize our chart by double-clicking on its 
components to replace the various titles by more meaningful names, and 
removing the “Frequency” label. In this example Excel determined the 
categories for our numerical variable (the “bins”) automatically.

•	 Category 1 includes all numbers less than 72 and includes 
one measurement.

•	 Category 2 goes from 72 to 78.6 and includes 
four measurements.

•	 Category 3 goes from 78.6 to 85.2 and includes 
nine measurements.

•	 Category 4 goes from 85.2 to 91.8 and includes 
four measurements.

•	 Category 5 goes from 91.8 to 98.4 and includes 
six measurements.

•	 Category 6 includes everything above 98.4 and includes 
one measurement.

If we want to define the bin boundaries manually, we would add the 
numbers representing the bin boundaries in increasing order somewhere 

Figure 2.16  Options for the histogram procedure in Analysis  
ToolPak
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in a column and select them by clicking the cell selector icon in the “Bin 
Range” field.

We need to determine the boundaries of the bins so that we end 
up with exactly four bins. We can use Excel’s =min(RANGE) and 
=max(RANGE) functions to determine the smallest and largest data 
point. Then, if we use bins with width of (max − min)/(number of 
bins), we will end up with the right number of equally spaced bins:

min = 72, max = 105, bin width = (105 − 72)/4 = 8.25.

Now we add a column to the Excel table where we define the bin 
boundaries:

min + width = 80.25
min + 2 * width = 88.5
min + 3 * width = 96.75.

Note that we need three bin boundaries to define four bins:

less than 80.25
between 80.25 and 88.5
between 88.5 and 96.75
bigger than 96.75.

Finally, start the histogram procedure from our Analysis ToolPak. Define 
the data range as usual, but also define as bin range the three bin boundaries 
we just computed. The resulting histogram will now have four bars, as desired.

Figure 2.17  A histogram with automatically generated bins

Example: Use Excel to create another histogram for the fluoride data 
that has four bins.
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Students frequently have trouble using the histogram tool with a 
given number of bins, so here is one more example.

We first compute the minimum and maximum data values and then 
use them to define the bin widths for our bins. Finally we create 9 bin 
boundaries to define our 10 bins, letting Excel do the actual computations 
(see Figure 2.18).

With these boundaries in place, start the histogram tool as usual. 
Enter the range for the salary data C2:C19544 and use the boundaries we 
just computed as bin range (H6:H14). Make sure the option for “Chart 
Output” is checked to generate this histogram chart in addition to the 
table. The resulting histogram should look like the one in Figure 2.8.

Excel’s Pivot Tool: Charts for Categorical Data

Often one would like to know the frequency of occurrence of values for a 
variable in percentage. This is similar to a frequency histogram we studied 

Example: Consider the Excel spreadsheet containing salary data of 
almost 20,000 MLB players from 1988 to 2011. Create a histogram 
for the salary variable with 10 equally spaced bins.

www.betterbusinessdecisions.org/data/MLBPlayerSalaries.xlsx

Figure 2.18  Computing bin boundaries for MLB data
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earlier, but a histogram only applies to numerical variables, while the 
procedure outlined in this section applies to categorical variables.

Loading this data into Excel, we see in Figure 2.19 that the column 
of interest is column E titled “Race.” However, that column represents 
a categorical variable (ordinal or nominal?), so we cannot compute a 
frequency histogram.

Before we figure out how Excel can generate the desired data auto-
matically let us do it by hand. Inspecting the data we see that there are 
five categories: White, Black, Hispanic, Pacific Islander, and Other. We 
can manually count how many people are contained in each category (see 
Figure 2.20).

Our manual procedure worked because we did not have that much 
data. For large data sets we need to figure out an automatic procedure 
to generate the appropriate table. Fortunately, Excel has just such a 
procedure, called a Pivot Table. The pivot tool is found as the first button 
of the “Insert” ribbon. It looks slightly different depending on your 
version of Excel but the differences are pretty minor. To use the pivot tool:

Example: A survey was conducted in the summer of 2014, asking 
several students in a statistics course a number of questions about their 
background and musical taste. The data can be found by clicking on 
the following link. Display a bar chart for the race of the students. In 
other words, compute how many of the students are White, Black, 
Hispanic, and so on and display those figures in a bar chart.

www.betterbusinessdecisions.org/data/student-survey.xls

Figure 2.19  Excerpt of data from a student survey
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•	 Load the preceding spreadsheet into Excel and click anywhere 
outside the data area, for example, below the last row of data 
(otherwise the pivot tool may be disabled).

•	 Select “Insert | Pivot Table” and choose the entire data table 
for the Input Range field, using the by now familiar range 
selector. Make sure to pick the entire data table, including 
the first row containing labels. Excel should by default have 
selected the entire table already for your convenience.

•	 Choose to put the resulting pivot table into a new spread-
sheet and click “Okay” to generate the pivot table, which will 
initially be empty.

You will see a “potential frequency table” containing labels such as 
“Drop Row Field Here,” “Drop Column Fields Here,” and so on, but 
no data values are yet contained in the table (see Figure 2.21). There will 
also be a list containing the available variables from your data, in our case 
“id,” “Sex,” “Weight,” “Height,” “Race,” and so on. You can “drag and 
drop” these variables onto the various slots in the table to create a variety 
of useful tables for data analysis.

•	 Drag the variable “Race” from the field list into the “Drop 
Row Fields” area of the table. Your table will adjust, showing 
you all available “Race” categories but as for now no 
frequencies (counts).

•	 Next, again drag the variable “Race” from the field list, 
but this time drag it to the “Drop Value Fields” area in the 
middle.

Figure 2.20  A frequency table generated manually
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You will now see the counts of how many occurrences fell inside each race 
category, which of course will turn out similar to the one we created manually 
before in Figure 2.17, except this time it includes the “blank” category (and 
the order may be different). See Figure 2.22 for the finished pivot table.

See if you can eliminate the “blank” response row. (Hint: Maybe 
you can find a drop-down menu somewhere where you can “uncheck” 
unwanted categories.) Also, when you double-click the “Count of Race” 
label in the table you can specify exactly what type of counts should be 
shown and in which way it should be formatted. Try, for example, to get 
your counts to appear as percentage of the overall total.

You can now create a bar chart as usual, including or excluding the 
blank response as you see fit. We will later revisit the pivot table tool and 
investigate additional options and possibilities.

Figure 2.21  An empty pivot table with a list of named fields

Figure 2.22  A pivot table showing the counts in the race categories





CHAPTER 3

Numerical Data Summary

Preview: Charts and graphs are useful for representing data in a user-friendly 
format, but there are times when it is more important to summarize data 
numerically. A quality numerical data summary has meaning even to 
individuals who have no previous experience with the data being presented. 
You do not have to be a scientist or a doctor to understand that the average 
cholesterol for a given male population is 220, while the cholesterol level for 
women in the same population is 190. In order to understand the power 
of numerical data summary, it is important to understand the difference 
between the median and the mean: the mean is the average of all observations, 
while the median is the point at which half the numbers are larger and half 
are smaller. The mode is another important numerical data representation: it 
is the observation that occurs most frequently. The mean, median, and mode 
are important, but so is the variance. The term variance is used to measure 
how widely, or narrowly, spread out a group of numbers is. For instance, a 
set of numbers in which all values are 7 has zero variance. These terms are 
used to summarize a set of numbers and help the observer make sense of the 
results. Whether the data being represented is a list of baseball statistics, salary 
data for a Fortune 500 company, or the cholesterol levels of heart patients, the 
summarization techniques are the same.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Describe the properties of central tendency, variation, and shape in 
numerical data

2.	Compute descriptive summary measures for a population
3.	Construct and interpret a box plot
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Introduction

As we have seen in Chapter 1, statistics is the study of making sense of 
data and consists of four components: collecting, summarizing, analyzing, 
and presenting data. In Chapter 2 we focused on summarizing data 
graphically; in this chapter we will concern ourselves with summarizing 
data numerically.

While charts are certainly very nice and often convincing, they do have 
at least one major drawback: they are not very “portable.” In other words, 
if you conduct an experiment measuring cholesterol levels of male and 
female patients, it is certainly suited to create appropriate histograms and 
colorful charts to illustrate the outcome of your experiment. However, if 
you are asked to summarize your results, for example, for a radio show or 
just during a conversation, charts will not help much.

Instead you need a simple, short, and easy-to-memorize summary of 
your data that—despite being short and simple—is meaningful to others 
with whom you might share your results.

For example, in our study of levels of cholesterol we could condense 
the results by stating that the “average” level of cholesterol for men is X, 
while the average for women is Y, and most people would understand. Of 
course, when we condense data in this way, some level of detail is lost, but 
we gain the ease of summarizing the data quickly.

This chapter will discuss some numbers (or “statistics” as they will 
be called) that can be used to summarize data numerically while still 
trying to capture much of the structure hidden in the data. Among the 
descriptive statistics we will study are the mean, mode, and median; the 
range, variance, and standard deviation; and more detailed descriptors 
such as percentiles, quartiles, and skewness. Toward the end of this chap-
ter we will learn about the “box plot” that combines many of the numer-
ical descriptors in one structure.

Measures of Central Tendency

While charts are commonly very useful to visually represent data, they are 
inconvenient for the simple reason that they are difficult to display and 
reproduce. It is frequently useful to reduce data to a couple of numbers 
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that are easy to remember and easy to communicate, yet capture the 
essence of the data they represent. The mean, median, and mode are our 
first examples of such computed representations of data.

Mean, Median, and Mode

Another way to show how the mean is computed is:

mean
n

x
n

x x xi
i

n

n =
1 1

1
1 2

=
∑ = + + +( )º .

Here n stands for the number of measurements, xi stands for the 
individual i-th measurement, and the Greek symbol sigma ∑ stands for 
“sum of.” This formula is valid for computing either the population mean 

 m or the sample mean x .
Of course, the idea—ultimately—is to use the sample mean (which is 

usually easy to compute) as an estimate for the population mean (which 
is usually unknown). For now, we will just show examples of computing a 
mean, but later we will discuss in detail how exactly the sample mean can 
be used to estimate the population mean.

The mean of that sample is:
x  = (95 + 86 + 78 + 90 + 62 + 73 + 89)/7 = 573/7 = 81.9.

Definition: The mean represents the average of all observations. It 
describes the “quintessential” number of your data by averaging all 
numbers collected. The formula for computing the mean is:

mean = (sum of all measurements)/(number of measurements).

In statistics, two separate letters are used for the mean:

•	 The Greek letter m (mu) is used to denote the mean of the 
entire population, or population mean.

•	 The symbol x  (read as “x bar”) is used to denote the mean 
of a sample, or sample mean.

Example: A sample of seven scores from people taking an achievement 
test was taken. Find the mean if the numbers are:

95, 86, 78, 90, 62, 73, 89.
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The mean applies to numerical variables, and in some situations to 
ordinal variables. It does not apply to nominal variables.

Another, and in some sense better, measure of central tendency is the 
median, or middle number.

Important: Before you try to determine the median you must first 
sort your data in ascending order.

The numbers are already sorted, so that it is easy to see that the median 
is 3 (two numbers are less than 3 and two are bigger).

The numbers are again sorted, but neither 3 nor 4 (nor any other of 
the numbers) can be the median. In fact, the median should be some-
where between 3 and 4. In that case (when there is an even number of 
numbers) the median is computed by taking the “middle between the 
two middle numbers.” In our case the median, therefore, would be 3.5 
since that is the middle between 3 and 4, computed as (3 + 4)/2. Note 
that indeed three numbers are less than 3.5, and three are bigger, as the 
definition of the median requires. For larger data sets, the median can be 
selected as follows:

Sort all observations in ascending order.

•	 If n is odd, pick the number in the 
n+1

2
 position of your data.

•	 If n is even, pick the numbers at positions 
n
2

 and 
n
2

1+  and 

find the middle of those two numbers.

This does not imply that the median is 
n+1

2
 (if n is odd) but rather 

that the median is that number which can be found at position (n + 1)/2.

Definition: The median is that number from a population or sample 
chosen so that half of all numbers are larger and half of the numbers 
are smaller than that number. The computation is different for an even 
or odd number of observations.

Example: Compute the median of the numbers 1, 2, 3, 4, and 5.

Example: Compute the median of the numbers 1, 2, 3, 4, 5, and 6.
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The median is usually easy to compute when the data is sorted and 
there are not too many numbers. For unsorted numbers, in particular 
several numbers, the median becomes quite tedious, mainly because you 
have to sort the data first. The median applies to numerical variables, 
and in some situations to ordinal variables. It does not apply to nominal 
variables.

The final measure of central tendency is the mode. It is the easiest, 
most applicable, but least useful of the measures of central tendency.

The mode is frequently not unique and is therefore not that often 
used, but it has the advantage that it applies to numerical as well as 
categorical variables. As with the median, the mode is easy to find if the 
data is small and sorted.

The mode is 7, because that number occurs more often than any other 
number.

This time the mode is 2 and 7, because both numbers occur thrice, 
more than the other numbers. Sometimes variables that are distributed 
this way are called bimodal variables.

Pros and Cons

Since there are three measures of central tendency (mean, median, and 
mode), it is natural to ask which of them is most useful (and as usual the 
answer will be ... “it depends”).

The usefulness of the mode is that it applies to any variable. For 
example, if your experiment contains nominal variables then the mode is 
the only meaningful measure of central tendency. The problem with the 
mode, however, is that it is not necessarily unique, and mathematicians 
do not like it when there are more than one correct answers.

Definition: The mode is that observation that occurs most often.

Example: Scores from a test were: 1, 2, 2, 4, 7, 7, 7, 8, 9. What is the 
mode?

Example: Scores from a test were: 1, 2, 2, 2, 3, 7, 7, 7, 8, 9. What is 
the mode?
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Mean and median usually apply in the same situations, so it is more 
difficult to determine which one is more useful. To understand the 
difference between median and mean, consider the following example.

The actual computations are pretty simple:

•	 In Case 1 the mean is $30,000 and the median is also 
$30,000.

•	 In Case 2 the mean is $351,666 whereas the median is still 
$30,000.

Clearly we were unlucky in Case 2: one set of parents in this sample is 
very wealthy, but that is—probably—not representative for the students 
of the class. However, we selected a random sample, so scenario 1 is 
equally likely as scenario 2. Therefore, it seems that the median is actually 
a better measure of central tendency than the mean, especially for small 
numbers of observations. In other words:

•	 The mean is influenced by extreme values, more so than the 
median.

•	 The median is more stable and is therefore the better measure 
of central tendency.

However, for large sample sizes the mean and the median tend to be 
close to each other anyway, and the mean does have two other advantages:

Example: Suppose we want to know the average income of parents of 
students in this class. To simplify the calculations and to obtain the 
answer quickly, we randomly select three students to form a random 
sample. Let us consider two possible scenarios:

•	 Case 1: The three incomes were, say, $25,000, $30,000, 
and $35,000.

•	 Case 2: The three incomes were, say, $25,000, $30,000, 
and $1,000,000.

Compute mean and median in each case and discuss which one is 
more appropriate.
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•	 The mean is easier to compute than the median since it 
does not require sorted observations (this is true even if you 
use Excel: sorting numbers is time-consuming even for a 
computer, but in most cases the sample size is so small that we 
do not notice this).

•	 The mean has nice theoretical properties that make it more 
useful than the median.

We will use both mean and median in the remainder of this course, 
while the mode will be less useful for us and will usually be ignored.

Mean, Median, and Mode for Ordinal Variables

As mentioned, the mean and median work best for numerical values, 
but you can compute them for ordinal variables as well if you properly 
interpret the results.

Obviously the mode is “great,” since that is the most frequent response. 
For the other measures of central tendency we have to introduce numeri-
cal codes for the responses. We could define, for example:

“great” = 1, “average” = 2, and “poor” = 3.

Then the preceding ordinal data is equivalent to

1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 3, 1, 2.

Now it is easy to see that the average is 22/14 = 1.57 and the median 
is 1. Of course the actual values for these central tendencies depend on 
the numerical code we are using for the original variables. We would 
need to justify or at least mention the codes we are using in a report so 
that the answers can be put in proper context. In other words, instead of 

Example: Suppose you want to find out how students like a particular 
statistics lecture, so you ask them to fill out a survey, rating the lecture 
“great,” “average,” or “poor.” The 14 students in the class rank the 
lecture as:

great, great, average, poor, great, great, average, great, great, great, 
average, poor, great, average.

Compute the mean, the mode, and the median.
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reporting mean and median as 1.57 and 1, respectively, it would be more 
appropriate to report that the median category was “great” (1), and the 
average category was between “great” (1) and “average” (2). In a proper 
survey we would in fact list the code values together with the responses.

One particular type of response that is frequently used in surveys is a 
Likert scale.

For a Likert scale like this, it should be clear that we could compute 
mean and median in addition to mode, even though the two variables are 
ordinal.

Mean, Median, and Mode for Frequency Distributions

We have seen how to compute mean, mode, and median for numeri-
cal data, and how to create frequency tables for categorical variables and 
histograms for numerical ones. As it turns out, it is possible to compute 
these measures of central tendency even if only the aggregate data in terms 
of a frequency table or histogram is available.

Definition: A Likert scale is a sequence of items (responses) that are 
usually displayed with a visual aid, such as a horizontal bar, representing 
a simple scale (see Figure 3.1).

Figure 3.1  A survey with a Likert scale

Strongly
agree

1 2 3 4 5

1 2 3 4 5

1. The software I
    wanted was easy
    to find

2. The checkout
    process was easy

Agree Undecided Disagree
Strongly
disagree

Example: Suppose the sizes of widgets produced in a certain factory 
are:

3, 2, 5, 1, 4, 11, 3, 8, 23, 2, 6, 17, 5, 12, 35, 3, 8, 23, 6, 14, 41, 7, 
16, 47, 8, 18, 53, 10, 22, 65, 9, 20, 59.
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Suppose we previously constructed a frequency table as seen in 
Table 3.1 from this data.

Category Count
13.8 and less 19

Between 13.8 and 26.6 8

Between 26.6 and 39.4 1

Between 39.4 and 52.2 2

Bigger than 52.2 3

Total 33

Table 3.1  Frequency table

Based solely on this table (and not on the actual data values), 
estimate the mean and compare it with the true mean of the full data.

If all we knew was this table, we would argue as follows:

•	 Nineteen data points are between 1 and 13.8, that is, 19 data 
points are averaging (1 + 13.8)/2 = 7.4.

•	 Eight data points are between 13.8 and 26.6, that is, eight 
data points are averaging (26.6 + 13.8)/2 = 20.2.

•	 One data point is between 26.6 and 39.4, or one data point 
averages (26.6 + 39.4)/2 = 33.0.

•	 Two data points average (39.4 + 52.2)/2 = 45.8.
•	 Three data points are above 52.2, or between 52.2 and 65.0, 

so that three data points average (52.2 + 65)/2 = 58.6.

Thus, we could estimate the total sum as:

19 * 7.4 + 8 * 20.2 + 1 * 33 + 2 * 45.8 + 3 * 58.6 = 602.6

and therefore the average should be approximately 602.6/33 = 18.26.
The true average of the original data is 17.15. Thus, our estimated 

average is pretty close to the true average.
Of course if you had the original data, you would not need to do this 

estimation—you would use that data to compute the mean. But there are 

Example: Table 3.2 shows the salaries of graduates from a university. 
Assume we do not have access to the original raw data and estimate the 
mean based only on the summary data.
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cases where you only have the aggregate data in table form, in which case you 
could use this technique to find at least an approximate value for the mean.

We will use Table 3.3 (hopefully together with Excel) to get organized.
To estimate the average, we compute the range midpoints and product 

entries in Table 3.3. Then we divide the sum of the products by the sum 
of the counts to get as average $29,047,920/1,100 = $26,407.20.

There is no way to determine the actual average from this table, since 
we do not know how the numbers fit into the various intervals. We would 
need access to the original raw data to find the true mean. In a similar way 
you can compute the mean of an ordinal variable as long as you can assign 
some numerical value to the categories.

That settles finding the mean, but how do we find the median or the 
mode? Well, that is actually much easier than the mean:

•	 Compute the percentages for the frequency table:
{{ The mode is the category with the largest percentage.

•	 Add a column named “cumulative percentage” to the fre-
quency table by computing the sum of all percentages of all 
categories below the current one:
{{ The median is the first category where the cumulative percent-

age is above 50 percent.

Table 3.2  Frequency table for salary data

Salary range ($) Count
7,200–18,860 130

18,860–30,520 698

30,520–42,180 254

42,180–53,840 16

53,840–65,500 2

Table 3.3  Augmented frequency table to compute average

Salary range ($) Range midpoint Count Product
7,200–18,860 13,030 130 1,693,900

18,860–30,520 24,690 698 17,233,620

30,520–42,180 36,350 254 9,232,900

42,180–53,840 48,010 16 768,160

53,840–65,500 59,670 2 119,340

Total 1,100 29,047,920
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We add two columns to the table: one containing the frequency as per-
centage and the second containing the cumulative percentage (see Table 3.4).

We can see that the mode is the second category $18,860–$30,520 
since it occurs most often with a relative frequency of 63.5 percent. The 
median is also the second category, since it is the first where the cumula-
tive percentage is above 50 percent.

Note that finding the median depends on the fact that the categories 
are ordered, of course, which means that the variable must be ordinal (or 
numerical in the case of a histogram).

While an average often helps in understanding the essence of data, 
it is not always helpful. For example, if a quarterback throws the ball 
one foot too far half the time and one foot short the other half, then on 
average he has a perfect game yet he does not make a single completion. 
As another example, suppose that school attendance in a particular school 
has risen from 80 to 95 percent over the past five years. To evaluate next 
year’s attendance, we compare it to the average over the past five years, 
which is 87 percent. Suppose attendance comes in at 90 percent. We 
think we had an improvement in attendance as compared to the five-year 
average, yet in reality attendance dropped from the previous year.

Measures of Dispersion:  
Range, Variance, and Standard Deviation

While mean and median tell you about the center of your observations, it 
says nothing about the spread of the numbers.

Example: Find the median and the mode for the salary (Table 3.2).

Table 3.4  Frequency table with cumulative percent

Salary range ($) Count Percentage
Cumulative 
percentage

7,200–18,860 130 130/1100 = 11.8 11.8

18,860–30,520 698 698/1100 = 63.5 63.5 + 11.8 = 75.3

30,520–42,180 254 254/1100 = 23.1 75.3 + 23.1 = 98.4

42,180–53,840 16 16/1100 = 1.4 98.4 + 1.4 = 99.8

53,840–65,500 2 2/1100 = 0.2 99.8 + 0.2 = 100

Total 1100 100  
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First we verify that the average length of the sample is 10:

Mean for machine A: x = =110
11

10 .

Mean for machine B: x = =110
11

10 .

In both cases, the mean is 10, indeed. However, the first machine 
seems to be the better one, since most nails are close to 10 in. Therefore, 
we must find additional numbers indicating the spread of the data.

Range, Variance, and Standard Deviation

The easiest measure of the data spread is the range.

In the preceding example, the range is the same for both machines, 
namely, 14 − 6 = 8. The range is, while useful, too crude a measure of dis-
persion. As a case in point, both machines in the preceding example have 
the same range, so that figure cannot be used to differentiate between the 
two machines.

We now want to find out how much the data points are spread 
around the mean. To do that, we could find the difference between each 
data point and the mean, and average these differences. However, we 
want to measure these differences regardless of the sign (positive and 
negative differences should not cancel out). Therefore, we could find 
the absolute value of the difference between each data point and the 
mean, average these differences. But for theoretical reasons an absolute 

Example: Suppose two machines produce nails that are on average 10 
in. long. A sample of 11 nails is selected from each machine and each 
length is recorded, as denoted in the following text. Which machine is 
“better” (justify your choice)?

Machine A: 6, 8, 8, 10, 10, 10, 10, 10, 12, 12, 14.
Machine B: 6, 6, 6, 8, 8, 10, 12, 12, 14, 14, 14.

Definition: The range is the difference between the highest and the 
lowest data value.
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value function is not easy to deal with, so that one chooses a square 
function instead, which also neutralizes signs. Finally, for yet other 
theoretical reasons we shall use not the sample size n to compute an 
average but instead n − 1. Hence, we will use the following formulas to 
compute the data spread, or variance.

Note that the two formulas are very similar: The population vari-
ance involves the population mean m, the population size N, and divides 
the sum by N, whereas the sample variance uses the sample mean x , 
the sample size n, and divides the sum by n − 1. As mentioned in the 
definition, we will use the formula for the sample variance exclusively. For 
some information about sample versus population variance, see https://
en.wikipedia.org/wiki/Variance.

It is useful to compute the variance at least once “manually” before we 
show how to use some shortcuts (and more Excel to accomplish the same 
feat quickly and easily).

How to Find the (Sample) Variance Manually

•	 Make a table of all x values.
•	 Find the mean of the data.

Definition: The variance measures the spread of the data around 
the mean. Its definition depends on whether you want to find the 
population or sample variance. There are two symbols for the variance, 
just as for the mean:

s m2
1

21= −( )=∑N
N

xii
 is the variance for a population.

s
n

x xii

n2
1

21
1

=
−

−( )=∑  is the variance for a sample.

In virtually all applications we will use the second formula (the 
sample variance). This is true in particular when we do not specify 
which of the two formulas to use: the default formula is the one for 
sample variance.
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•	 Add a column with the difference of each data point to the 
mean.

•	 Add a column with the square of that difference.
•	 Sum up the last column and divide the sum by (n − 1).

Table 3.5 shows the results of this procedure for the preceding sample 
of nails from machines A and B. Note that the mean is the sum of col-
umn 1 divided by N = 11, which we need to compute first before we can 
determine column 2 or 3.

Thus we have the following:

•	 The variance of machine A is 
1

1
1

10
48 4 82

n
x

−
−( ) = ⋅ =∑ m . .

•	 The variance of machine B is 

1
1

1
10

112 11 22

n
x

−
−( ) = ⋅ =∑ m . .

Thus, the spread around the mean for machine A is 4.8 and that for 
machine B is 11.2. This means that machine A, as a rule, produces nails 
that stick pretty close to the average nail length. Machine B, on the other 
hand, produces nails with more variability than machine A. Therefore, 
machine A would be preferred over machine B.

Table 3.5  Computing variances

X x - m (x - m)
2 X x - m (x - m)

2

6 4 16 6 4 16

8 2 4 6 4 16

8 2 4 6 4 16

10 0 0 8 2 4

10 0 0 8 2 4

10 0 0 10 0 0

10 0 0 12 −2 4

10 0 0 12 −2 4

12 −2 4 14 −4 16

12 −2 4 14 −4 16

14 4 16 14 −4 16

110 0 48 110 0 112

Machine A Machine B
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Note: The unit of the variance is the square of the original unit, 
which is unfortunate; we would prefer the same unit as the original data. 
Therefore, one introduces an additional statistic, called the standard 
deviation, to fix this unit problem.

To compute the standard deviation, we must first compute the mean, 
then the variance, and finally we can take the square root to obtain the 
standard deviation. In this case we do not need to create a table since there 
are very few numbers:

•	 The mean: 
1
5

6 7 5 3 4
25
5

5+ + + +( )= =

•	 The variance: 
1
4

6 5 7 5 5 5 3 5 4 5
10
4

2 5
2 2 2 2 2

−( ) + −( ) + −( ) + −( ) + −( )( )= = .

•	 Standard deviation: 2 5 1 58. .=

Shortcut for Variance

It is somewhat inconvenient that we first have to compute the mean 
before getting to the standard deviation. In particular, if we compute 
the standard deviation of n data points and then for some reason add 
one more data point, we have to redo the entire calculation. Fortunately 
there is a nice shortcut to compute the variance (and thus the standard 
deviation) that can be proved as an exercise:

s
n

x
n

x
x

n
2 2 2

2
1

1
1

1
=

−
−( ) =

−
−

( )









∑ ∑∑m .

Definition: The standard deviation measures the spread of the data 
around the mean, using the same unit as the data. It is defined as the 
square root of the variance. As with the mean, there are two letters for 
variance and standard deviation:

s s= 2  is the population standard deviation.

s s= 2  is the sample standard deviation.

Example: Consider the sample data 6, 7, 5, 3, 4. Compute the stan-
dard deviation for that data.
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At first this second formula looks much more complicated, but it 
is actually easier since it does not involve computing the mean first. In 
other words, using the second formula we can compute the variance (and 
therefore the standard deviation) without first having to compute the mean.

In our preceding example of machine B we would compute the 
variance using this shortcut as shown in Table 3.6.

Thus x =∑ 110 and x2 1212=∑  so that the variance is

1
1

1
10

1212
110

11
1

10
1212 11002

2
2

n
x

x

n−
−

( )











= −






= −( )∑∑ == 11 2. ,

which of course is the same number as before, but a little easier to arrive 
at. If you need to compute the variance manually, you should always use 
this shortcut formula. For practice, compute the variance of machine A 
using this shortcut method.

Variance and Standard Deviation for Frequency Tables

Just as we were able to approximate the mean and median of a variable 
from its distribution (frequency table or histogram) we can do something 
similar for the variance (and hence the standard deviation).

Table 3.6  Applying shortcut to compute variance

x x2

6 36

6 36

6 36

8 64

8 64

10 100

12 144

12 144

14 196

14 196

14 196

110 1212
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Create Table 3.7 to get organized.
To estimate the variance we use the shortcut formula:

1
1

1
1099

827 185 889 200
29 047 920

110
2

2
2

n
x

x

n−
−

( )











= −∑∑ , , ,
, ,

00
54 696 684 42







= , , . .

Thus, the variance is approximately 54,696,684.42 and therefore the 
standard deviation, which has the unit of “dollars,” is the square root of 
that number, or $7,395.72.

The numbers in this example turned out to be huge, which made 
the process somewhat confusing. For smaller numbers, everything seems 
slightly easier, hopefully.

Of course this is an ordinal variable so that we need to come up with 
(more or less arbitrary) numerical code values. With those codes chosen, 
we will expand the table as shown in the previous example (see Table 3.9).

Therefore, the mean is 2.04 and the standard deviation is 1.21 as you 
can confirm with a calculator. In other words, the average category is 
“good” and the spread is relatively small, about one category.

Example: Table 3.2 shows a frequency table of study of salaries of 
graduates from a university. Assuming the original data is unavailable, 
estimate the standard deviation.

Table 3.7  Augmented frequency table to compute the variance

Salary 
range ($) Count Mid Count * mid Mid2 Count * mid2

7,200–18,860 130 13,030 1,693,900 169,780,900 22,071,517,000

18,860–30,520 698 24,690 17,233,620s 609,596,100 425,498,077,800

30,520–42,180 254 36,350 9,232,900 1,321,322,500 335,615,915,000

42,180–53,840 16 48,010 768,160 2,304,960,100 3,687,841,600

53,840–65,500 2 59,670 119,340 3,560,508,900 7,121,017,800

Total 1,100 29,047,920 827,185,889,200

Example: The evaluation of a statistics lecture resulted in the frequency 
distribution shown in Table 3.8. Find the mean, median, variance, and 
standard deviation.
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Quartiles and Percentiles

At this point we can describe the results of an experiment using two 
numbers (or parameters): a measure of central tendency (mean or median) 
and a measure of dispersion (the standard deviation, computed from the 
variance). That will tell us the “center” of the distribution of values (mean) 
and the “spread” around that center (standard deviation). For example, 
if we measure the height of U.S. army soldiers, we might find that the 
average height of U.S. soldiers is 1.73 m, with a standard deviation of 
0.15 m (the numbers are made up). This gives you a reasonable idea about 
how a generic soldier looks (he/she is about 1.73 m tall) and how much 
variation from that generic look there is. To describe the distribution in 
more detail we need additional descriptive measures, starting with the 
lower and upper quartiles.

Table 3.8  Frequency table for course evaluation

Category Count
Very good 10

Good 5

Neutral 4

Poor 2

Very poor 1

Table 3.9  Augmented frequency table to compute variance

Category Code Count Count * code Code2 Count * code2

Very good 1 10 10 1 10

Good 2 5 10 4 20

Neutral 3 4 12 9 36

Poor 4 2 8 16 32

Very poor 5 1 5 25 25

Total 22 45 123

Definition: The lower quartile Q1 is that number such that 25 percent 
of observations are less than it and 75 percent are larger, or to be more 
precise, at least 25 percent of the sorted values are less than or equal 
to Q1 and at least 75 percent of the values are greater than or equal 
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to Q1. The upper quartile Q3 is that number such that 75 percent of 
observations are less than it and 25 percent are larger, or to be more 
precise, at least 75 percent of the sorted values are less than or equal to 
Q3, and at least 25 percent of the values are greater than or equal to Q3.

Following this notation, the median should actually be called the 
“middle quartile” Q2, since it is that number such that 50 percent are less 
than it and 50 percent are larger; traditionally, however, the term median 
is used.

Important: To find the quartiles, you must first sort your data (similar 
to finding the median).

The numbers are already sorted, so that it is easy to see that the median 
is 8 (three numbers are less than 8 and three are bigger). In other words, 
8 splits our numbers up into the set of smaller numbers {2, 4, 6} and the 
set of larger ones {10, 12, 14}. The quartiles, in turn, split up these sets in 
the middle again, so that Q1 = 4 and Q3 = 12.

Note that the numbers 2 and 4 are less than or equal to the lower 
quartile, while 4, 6, 8, 10, 12, 14 are larger than or equal to Q1. Therefore, 
2 out of 7 or 28 percent of values are less than or equal to Q1 and 6 out of 
7 = 86 percent are larger than Q1.

Now the median is 3, leaving two sets {1, 2} and {4, 5}. To split these 
numbers in the middle does not work, so it is not immediately clear what 
the quartiles are.

•	 If Q1 = 1, then one value out of five is less than or equal to 
Q1, or 20 percent. According to our definition that is not 
enough, so Q1 must be bigger than 1.

•	 If Q1 = 2, then two values out of five are less than or equal 
to Q1, or 40 percent. Similarly, four values out of five, or 

Example: Compute the upper and lower quartiles of the numbers 2, 
4, 6, 8, 10, 12, 14.

Example: Compute the upper and lower quartiles of the numbers 1, 
2, 3, 4, 5.
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80 percent, are larger than or equal to Q1 so that the lower 
quartile is indeed 2.

•	 Similarly, the upper quartile can be shown to be 4.

Note that the preceding definition of quartiles does not necessarily 
produce a unique answer. For example, for the data set {2, 4, 6, 8} any 
number between 2 (included) and 4 (excluded) would be a valid lower 
quartile, because for any such number one out of four data values are 
smaller, while three out of four values are larger. Thus, we select a slightly 
different and constructive algorithm to define quartiles (uniquely).

Definition: We compute upper and lower quartiles as follows.
For the lower quartile:

•	 Sort all observations in ascending order.
•	 Compute the position L1 = 0.25 * N, where N is the total 

number of observations.
•	 If L1 is a whole number, the lower quartile is midway 

between the L1-th value and the next one.
•	 If L1 is not a whole number, change it by rounding up to 

the nearest integer. The value at that position is the lower 
quartile.

For the upper quartile:

•	 Sort all observations in ascending order.
•	 Compute the position L3 = 0.75 * N, where N is the total 

number of observations.
•	 If L3 is a whole number, the lower quartile is midway 

between the L3-th value and the next one.
•	 If L3 is not a whole number, change it by rounding up to 

the nearest integer. The value at that position is the lower 
quartile.

Examples: Find the quartiles for the values 2, 4, 6, 8, 10, 12, 14 and 
also for the values 2, 4, 6, 8 using this new method.
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First we observe that the data set(s) are already sorted. For the set 2, 4, 
6, 8, 10, 12, 14 we have N = 7. Thus:

•	 L1 = 0.25 * 7 = 1.75, which gets rounded up to 2. Thus, take 
the number in the second position to be the lower quartile so 
that Q1 = 4.

•	 L3 = 0.75 * 7 = 5.25, which gets rounded up to 6. Thus, take 
the sixth number to be the upper quartile so that Q3 = 12.

For the set 2, 4, 6, 8 we have N = 4. Thus:

•	 L1 = 0.25 * 4 = 1, a whole number. Thus, we again take the 
number between the first and second positions to be the lower 
quartile, that is, Q1 = 3.

•	 L3 = 0.75 * 4 = 3. Thus, we take the number between the 
third and fourth values, that is, Q3 = 7.

Note that there are at least a dozen different ways to compute 
quartiles. The preceding procedures are the preferred way in this text but 
depending on the software package used (such as SAS, JMP, MINITAB, 
or Excel), other numbers are possible. We will revisit the quartiles to 
figure out what these numbers can tell us about the distribution of our 
data. Before we do that, though, we will expand the idea of quartiles to 
“percentiles.”

Quartiles are useful and they help to describe the distribution of 
values as we will see later. However, we often want to know how one 
particular data value compares to the rest of the data. For example, when 
taking standardized test scores such as SAT scores, I want to know not 
only my own score, but also how my score ranks in relation to all scores. 
Percentiles are perfect for this situation.

Definition: The k-th percentile is that number such that k percent of 
all data values are less and (100 − k) percent are larger than it. More 
precisely, at least k percent of the sorted values are less than or equal to 
it and at least (100 − k) percent of the values are greater than or equal 
to it.
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Note: The lower quartile is the same as the 25th percentile, the median 
is the same as the 50th percentile, and the upper quartile is the same as 
the 75th percentile.

If a score is ranked as the 95th percentile, then by definition 95 percent 
of all scores are less than the given score, while only 5 percent of students 
scored higher. That would be a pretty good result with only 5 percent of 
students who scored higher than that student. In other words, our stu-
dent would be in the top 5 percent.

To find the k-th percentile:

•	 Sort all observations in ascending order.
•	 Compute the position L = (k/100) * N, where N is the total 

number of observations.
•	 If L is a whole number, the k-th percentile is the value 

midway between the L-th value and the next one.
•	 If L is not a whole number, change it by rounding up to 

the nearest integer. The value at that position is the k-th 
percentile.

First note that before we start our computations we must sort the 
data—computing percentiles for non sorted data is the most common 
mistake. Here is the same data again, this time sorted:

Example: A student took the SAT test. Her score in the math portion 
of the test puts her in the 95th percentile. Did she do well or poorly 
on the test?

Example: Consider the following cotinine levels of 40 smokers:

0 87 173 253 1 103 173 265 1 112

198 266 3 121 208 277 17 123 210 284

32 130 222 289 35 131 227 290 44 149

234 313 48 164 245 477 86 167 250 491

Find the quartiles and the 40th percentile.
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0 1 1 3 17 32 35 44 48 86
87 103 112 121 123 130 131 149 164 167
173 173 198 208 210 222 227 234 245 250
253 265 266 277 284 289 290 313 477 491

Now we can do our calculations, with N = 40 (number of values in 
our data set):

•	 Lower quartile: 0.25 * 40 = 10, so we need to take the value 
midway between the 10th value, which is 86, and the 11th 
value, which is 87. Hence, the lower quartile is 86.5.

•	 Upper quartile: 0.75 * 40 = 30, so we need to take the value 
midway between the 30th value, which is 250, and the 31st 
value, which is 253. Hence, the upper quartile is (250 + 
253)/2 = 251.5.

•	 40th percentile: 0.4 * 40 = 16, so the 40th percentile is 
(130 + 131)/2 = 130.5.

However, for percentiles another question is usually asked: given a 
particular value, find that percentile that corresponds to this value. In 
other words, determine how many values are lesser and how many values 
are larger than the particular value.

First note that in our sorted data the value 245 is in the 29th position. 
Therefore, according to our formula:

Percentile value of 245 = 29/40 * 100 = 72.5.

Thus, by definition of percentiles, 72.5 percent of values are less than 
245 while (100 − 72.5) = 27.5 percent are larger than 245.

Definition: The percentile value of a number x is:
Percentile value of x = (number of values less than x)/(total number of 
values) * 100.

Example: Suppose you took part in the preceding study of cotinine 
levels and your personal cotinine level was 245. What is the percentile 
value of 245, and how many people in the study had a higher cotinine 
level than you?
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Box Plot and Distributions

By now we have a multitude of numerical descriptive statistics that 
describe some feature of a data set of values: mean, median, range, 
variance, quartiles, percentiles, ranks, and so on. There are, in fact, so 
many different descriptors that it is going to be convenient to combine 
many of them into a suitable graph called the box plot.

We already computed the lower and upper quartiles to be Q1 = 86.5 
and Q3 = 251.5, respectively. It is easy to see that the minimum is 0 and 
the maximum is 491. A quick computation shows that the median is 170. 
The corresponding box plot is shown in Figure 3.2.

You can see that the horizontal line (sometimes called the “whiskers”) 
goes from 0 to 491 (minimum to maximum), while the inside box 

Definition: The box plot, sometimes also called “box and whiskers 
plot,” combines the minimum and maximum values (and therefore 
the range) with the quartiles and the median into one useful graph. 
It consists of a horizontal line, drawn according to scale from the 
minimum to the maximum data value, and a box drawn from the 
lower to upper quartile with a vertical line marking the median.

Figure 3.2  Box plot

–10 90 190 290 390 490

Example: In an earlier example we considered the following cotinine 
levels of 40 smokers. Draw a box plot for that data.

0 87 173 253 1 103 173 265 1 112
198 266 3 121 208 277 17 123 210 284
32 130 222 289 35 131 227 290 44 149
234 313 48 164 245 477 86 167 250 491



	 Numerical Data Summary	 73

extends from 86.5 (= Q1) to 251.5 (= Q3) with a middle vertical line at 
170 (the median).

For some data sets you will see some points beyond the line indicating 
the whisker. Those points are outliers; they are exceptionally small or large 
compared to the rest of the data. Technically these outliers are part of your 
data but for certain purposes it will be advantageous to dismiss them. The 
exact definition of an outlier is provided in the following text.

The life expectancy data lists average life expectancy and literacy rates 
in 223 countries of the world in 2014. We sort the data from the smallest 
to the largest and compute the quartiles and the medium:

Q1: position = 223 * 0.25 = 55.75, Q1 = 66.85 (for Papua New 
Guinea)

Q3: position = 223 * 0.75 = 167.25, Q3 = 78.3 (for Panama)
Median: position = 223 * 0.5 = 111.5, median = 74.33 (for Bulgaria)

Thus, the “lower hinge” of the box is Q1 = 66.85 and the upper hinge 
is Q3 = 78.3. By definition, that makes the IQR = 78.3 − 66.85 = 11.45.

In addition to giving you a quick view of the range, the quartiles, 
the median, and the IQR, the box plot also indicates the shape of the 
histogram for this data, that is, its distribution:

•	 The histogram would look slightly skewed to the left if the 
box in the box plot is shifted somewhat toward the right.

•	 The histogram would look slightly skewed to the right if the 
box in the box plot is shifted toward the left.

In fact, even though the box plot does not directly contain the mean 
(it only shows the median) it is possible to estimate whether the mean is 

Definition: The inter quartile range (IQR) is defined as the difference 
between the upper and lower quartiles. It is used, among other things, 
to define outliers.

Example: Find the IQR for the life expectancy data in 2014:

 www.betterbusinessdecisions.org/data/life.xlsx
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less than or greater than the median by looking whether the box plot is 
skewed to the left or to the right. First, let us look again at histograms and 
define what we mean by “skewed” histograms (and distributions).

Figure 3.3  A normal distribution
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Figure 3.4  A distribution skewed to the right
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Definition: A histogram (distribution) is called bell-shaped or normal 
if it looks similar to a symmetric “bell curve.” Most data points fall in 
the middle; there are few exceptionally small and few exceptionally 
large values. Compare with Figure 3.3.

A histogram (distribution) is called skewed to the right if it looks 
like a bell curve with a longer tail on the right and the mount pushed 
somewhat to the left. Most data points fall to the left of the middle; 
there are more smaller than larger values, but there are a few extreme 
values on the right. Compare with Figure 3.4.

A histogram (distribution) is called skewed to the left if it looks like 
a bell curve with a longer tail on the left and the mount pushed some-
what to the right. Most data points fall to the right of the middle; there 
are more larger than smaller values, but there are a few extreme values 
on the left. See Figure 3.5.
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You can tell the shape of the histogram (distribution)—in many cases at 
least—just by looking at the box plot, and you can also estimate whether the 
mean is less than or greater than the median. Recall that the mean is impacted 
by especially large or small values, even if there are just a few of them, while 
the median is more stable with respect to exceptional values. Therefore:

•	 If the distribution is normal, there are few exceptionally large 
or small values. The mean will be about the same as the median 
and the box plot will look symmetric.

•	 If the distribution is skewed to the right most values are “small,” 
but there are a few exceptionally large ones. Those large 
exceptional values will impact the mean and pull it to the 
right, so that the mean will be greater than the median. The 
box plot will look as if the box was shifted to the left so that 
the right tail will be longer, and the median will be closer to 
the left line of the box in the box plot.

•	 If the distribution is skewed to the left, most values are “large,” but 
there are a few exceptionally small ones. Those exceptional values 
will impact the mean and pull it to the left, so that the mean 
will be less than the median. The box plot will look as if the box 
was shifted to the right so that the left tail will be longer, and the 
median will be closer to the right line of the box in the box plot.

As a quick way to remember skewedness and its implications:

•	 Longer tail on the left ⇒ skewed to the left ⇒ mean on the 
left of median (smaller)

Figure 3.5  A distribution skewed to the left
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•	 Longer tail on the right ⇒ skewed to the right ⇒ mean on 
the right of median (larger)

•	 Tails equally long ⇒ normal ⇒ mean about equal to median

Create a box plot for the data from each variable and decide, based 
on that box plot, whether the distribution of values is normal, skewed 
to the left, or skewed to the right, and estimate the value of the mean in 
relation to the median. Then compute the values and compare them with 
your conjecture.

Note that Excel does not include a facility to produce a box plot 
automatically, but we will introduce a convenient alternative later. 
For your convenience, we have created the corresponding box plots in 
Figures 3.6 to 3.8.

One of the data columns results in the box plot shown in Figure 3.6 
(note that there is one outlier on the left). The distribution is shifted to 
the left, and the mean should be less than the median (the exact numbers 
are: mean = 0.3319, median = 0.4124).

The other data column has the box plot shown in Figure 3.7 (it has 
two outliers on the right). The distribution is shifted to the right, and the 

Example: Consider the (fictitious) data in an Excel sheet for three 
variables named varA, varB, and varC:

 www.betterbusinessdecisions.org/data/distribution-data.xls

Figure 3.6  Box plot skewed to the left
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mean should be greater than the median (the exact numbers are: mean = 
−0.3192, median = −0.4061).

The final data column has the box plot shown in Figure 3.8. The dis-
tribution is (approximately) normal, and the mean and median should be 
similar (the exact numbers are: mean = 0.013 median = 0.041).

Unfortunately, we forgot to write down which of these cases corre-
spond to varA, varB, and varC—can you figure it out?

Outliers and the Standard Deviation

We have seen that even though the box plot does not explicitly include 
the mean, it is possible to get an approximate idea about it by comparing 
it against the median and the skewness of the box plot:

•	 If the distribution is skewed to the left, the mean is less than 
the median.

•	 If the distribution is skewed to the right, the mean is bigger 
than the median.

Figure 3.7  Box plot skewed to the right
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Figure 3.8  Box plot for normal distribution
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In a somewhat similar fashion you can estimate the standard deviation 
based on the box plot.

Another useful application for the IQR is to define outliers.

The data ranges from 0 to 491 (from minimum to maximum), while 
Q1 = 86.5 and Q3 = 251. Thus, we have two estimates for the standard 
deviation:

•	 s is approximately equal to range/4 = 491/4 = 122.75.
•	 s is approximately equal to 3/4 * IQR = 0.75 * (251 − 86.5) = 

123.375.

The estimates are pretty close to each other and since the true standard 
deviation is 119.5, they are both pretty close to the actual value. The 
best part of these estimates is, however, that they are very simple to com-
pute and thus they give you a quick ballpark estimate for the standard 
deviation. As for any outliers, they would be data values:

•	 Above Q3 + 1.5 * IQR = 251 + 1.5 * 164.5 = 497.75: none
•	 Below Q1 − 1.5 * IQR = 86.5 − 1.5 * 164.5 = −160.1: none

Definition: The relation between range, IQR, and standard deviation 
is:

•	 The standard deviation is approximately equal to range/4.
•	 The standard deviation is approximately equal to 3/4 * IQR.

Both estimates work best for normal distribution, that is, 
distributions that are not skewed, and the first approximation works 
best if there are no outliers.

Definition: Outliers are data points that fall below Q1 − 1.5 * IQR or 
above Q3 + 1.5 * IQR.

Example: Consider the preceding data on cotinine levels of 40 smok-
ers. Find the IQR and use it to estimate the standard deviation. Also 
identify any outliers.
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So there are no outliers in this case (which is one reason why the 
estimate of range/4 works so well).

For that data set we found that IQR = 78.3 − 66.85 = 11.45 and 
therefore the outliers would be data values:

•	 Above Q3 + 1.5 * IQR = 78.3 + 1.5 * 11.45 = 95.475
•	 Below Q1 − 1.5 * IQR = 66.85 − 1.5 * 11.45 = 49.675

Thus, two data points for South Africa (49.56) and Chad (49.44) are 
outliers below, while there are no outliers above. Note that since there are 
outliers, the range/4 estimate for the standard deviation should not work 
as well as the estimate based on the IQR. Confirm that!

Descriptive Statistics Using Excel

Excel of course provides simple functions for computing measures of 
central tendency:

= average(RANGE) Computes the average (mean) of the numbers contained in the 
RANGE. Ignores cells containing no numerical data, that is, 
cells that contain text or no data do not contribute anything to 
the computation of the mean. 

= count(RANGE) Computes the amount of numbers contained in the RANGE.

= mode(RANGE) Computes the mode of the numbers contained in the RANGE. 
If the cell range consists of several numbers with the same 
frequency, the function returns only the first (smallest) number 
as the mode. If all values occur exactly once, the Excel mode 
function returns N/A for “not applicable.”

= median(RANGE) Computes the median of the numbers contained in the 
RANGE. Ignores cells containing no numerical data.

= sum(RANGE) Computes the sum of the numbers contained in the RANGE.

= skew(RANGE) Returns the skewness: if negative, data is left skewed. If positive, 
data is right skewed. 

Example: Find all outliers for the life expectancy data we looked at 
before:

 www.betterbusinessdecisions.org/data/life.xlsx
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Let us use our new formulas on an interesting data set: the salaries of 
Major League Baseball (MLB) players from 1988 to 2011.

Exercise: Find the mean, mode, and median of the salary of MLB 
players. Why are they so different? Which one best represents the 
measure of central tendency? Did we compute the population mean 
(or median) or the sample mean (or median)?

www.betterbusinessdecisions.org/data/MLBPlayerSalaries.xlsx

Figure 3.9 shows the formulas that were used together with the result-
ing values. The mean is $1,916,817, which is indeed very different from 
the median of $565,000. To explain the difference, we also computed the 
skewness factor, which is 3.0. That means that the distribution is (heavily) 
skewed to the right, that is, there are a few exceptionally large values that 
will pull the mean up above the median. Indeed, there are a few superstar 
baseball players who impact the mean but not the median. Leading the 
pack is Alex Rodriguez from the New York Yankees with $33,000,000 
per year in 2009 and 2010 and a combined salary of over $284,000,000 
between 2001 and 2011. Most players do not come close to this figure; in 
fact, 50 percent of players make less than the relatively modest $565,000, 
since that is the median.

For the fun of it, we used the pivot tool to compute the average salary 
per ball club for the combined years (see Figure 3.10). As most of you 
probably suspected, the team with the highest average salary (by far) is 
the New York Yankees, followed by the Boston Red Sox and the New 
York Mets. Bringing up the rear are the Washington Nationals and the 
Pittsburgh Pirates.

Figure 3.9  Mean, mode, and median for MLB data
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In addition to measures of central tendency, Excel also provides for-
mulas to compute range, variance, and standard deviation:

=max(RANGE) − 
min(RANGE)

Computes the range as the maximum minus the minimum 
value.

=var(RANGE) Computes the variance (ignores cells containing no  
numerical data).

=var.p(RANGE) New function to compute the population variance.

=var.s(RANGE) New function to compute the sample variance.

=stdev(RANGE) Computes the standard deviation (ignores cells containing 
no numerical data).

=stdev.p(RANGE) New function to compute the population standard deviation.

=stdev.s(RANGE) New function to compute the sample standard deviation.

All that is involved here is adding the appropriate formulas to the 
Excel worksheet (see Figure 3.11).

Note: The variance is displayed as dollars, even though that is not 
correct (it should be “square dollars,” which does not make much sense). 
The standard deviation, on the other hand, has indeed dollars as unit.

There are a number of additional statistical functions that can be used 
as needed but Excel also provides a convenient tool to compute many 
of the most commonly used descriptive statistics such as mean, mode, 

Figure 3.10  Average salaries per ball club in MLB

Example: Use the preceding formulas to compute the mean, range, 
variance, and standard deviation of the salaries of graduates for the 
University of Florida:

 www.betterbusinessdecisions.org/data/u-floridagraduationsalaries.xls
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median, variance, standard deviation, and more all at once and for multi-
ple variables simultaneously.

Load the data set as usual. Then switch to the Data ribbon and pick 
the Data Analysis tool from our ToolPak on the far right. Select the 
Descriptive Statistics tool. Define as range the second and third columns 
titled “Life Expectancy” and “Literacy Rate” from B1 to C206, check the 
box “Label in First Row,” and check the option “Summary Statistics.” 
Then click OK.

Excel will compute a variety of descriptive statistics all at once and 
for all (numerical) variables in the selected range; Figure 3.12 shows the 
output.

We can see, for example, that for the average “Life Expectancy” we 
have computed the mean to be 71.68, the median to be 74.2, and the 
mode to be 76.4. The standard deviation is 8.77, the variance is 76.96, 
and the range is 40.2. Both variables have a distribution that is skewed to 
the left and hence the mean will be smaller than the median. Note that 
variance and standard deviation refer to the sample variance and standard 
deviation formulas.

Figure 3.11  Mean, range, variance, and standard deviation of 
salaries

Example: The following Excel spreadsheet contains some data about 
life expectancy and literacy rates in over 200 countries of the world in 
2014. Compute the mean, mode, median, variance, standard devia-
tion, and range of the two variables:

 www.betterbusinessdecisions.org/data/life_literate.xlsx
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Using Excel to Find Percentiles

Of course Excel can be used to find percentiles, and therefore upper and 
lower quartiles (which are just the 25th and 75th percentiles, respectively):

=quartile 
(RANGE, N)

Computes the lower quartile if N = 1, the median if N = 2, 
or the upper quartile if N = 3. Note that Excel uses a 
slightly different method to compute the quartiles from that 
described in the “Quartiles and Percentiles” section.

=percentile 
(RANGE, P)

Computes percentiles, where RANGE is a range of cells and 
P is the percentile to compute as a decimal number between 
0 and 1. The data does not have to be sorted.

=percentrank 
(RANGE, X)

Computes the rank of a value x in a RANGE as a percentage 
of the data set (in other words, the percentile value of x). 
The data does not have to be sorted.

Note: the QUARTILE function used in Excel uses a definition that 
is slightly different from our (second) one earlier. Thus, you cannot use 
Excel to check your own manual answers in many cases. In fact, the cal-
culation of the quartiles is different depending on the text or computer/
calculator package being used (such as SAS, JMP, MINITAB, Excel, and 
TI-83 Plus); it turns out that Excel alone offers two functions to com-
pute quartiles: QUARTILE.EXC and QUARTILE.INC (which is the 
same as our familiar QUARTILE function). Check the article at www 
.amstat.org/publications/jse/v14n3/langford.html for more details.

Figure 3.12  Output of Excel’s descriptive statistics procedure
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We can use either the percentile or the quartile function to find the per-
centiles, or manually compute them. For the variable “Life Expectancy”:

•	 =percentile(B2:B206, 0.25) or =quartile 
(B2:B206,1) gives 67.1 as Q1

•	 =percentile(B2:B206, 0.75) or =quartile 
(B2:B206,3) gives 78.0 as Q3

•	 =0.25 * N = 51.25, so we pick the number at position 52, 
which is 67.1

•	 =0.75 * N = 153.75, so we pick the number at position 154, 
which is 78.0

For the variable “People who Read”:

•	 =percentile(C2:C206, 0.25) or =quartile 
(B2:B206,1) gives 81.4 as Q1

•	 =percentile(C2:C206, 0.75) or =quartile 
(B2:B206,1) gives 98.9 as Q3

To find the relative ranking (aka percentiles) for Japan, the United 
States, and Afghanistan we use the “percentrank(range, x)” function 
where we substitute the life expectancy of the respective countries for x:

•	 =percentrank(B2:B206, 50.5) = 0.014. Afghanistan is at the 
1.4th percentile in life expectancy, that is, about 1.4 percent 
of countries have shorter and 98.6 percent have longer life 
expectancy than Afghanistan.

Example: Load the Excel spreadsheet that contains the data about life 
expectancy and literacy rates in 205 countries of the world in 2014. 
Find the upper and lower quartiles for both variables. What is the 
percentile value for life expectancy in Japan, the United States, and in 
Afghanistan?

 www.betterbusinessdecisions.org/data/life_literate.xlsx
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•	 =percentrank(B2:B206, 84.5) = 0.99. Japan is at the 99th 
percentile in life expectancy, that is, about 99 percent of 
countries have shorter and 1 percent has longer life expec-
tancy than Japan.

•	 =percentrank(B2:B206, 79.6) = 0.828. The United States 
is at the 82.8th percentile in life expectancy, that is, about 
82.8 percent of countries have shorter and 17.2 percent have 
longer life expectancy than the United States.

Drawing a Box Plot With Excel

Unfortunately Excel does not have a nice built-in facility to quickly create 
a box plot. You could of course use the formulas introduced earlier to 
compute the values needed and then draw a box plot manually. However, 
there is an easy-to-use Excel template that is not quite as convenient as 
the data analysis tools we have been using, but it is still pretty simple and 
useful. To use the Excel box plot template, click on the following icon to 
download the file:

When you open the file, Excel will show you a worksheet with a fin-
ished box plot already, and a column on the right in green where you can 
enter or paste your data (see Figure 3.13).

 www.betterbusinessdecisions.org/data/boxplot.xls

Figure 3.13  A box plot generated by an Excel template
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Simply delete the data currently in column M and replace it with your 
new data to create a new plot. The box plot will update automatically.

When the spreadsheet opens up, mark all numerical data in column 
B (the life expectancy column) but not including the column header and 
copy it to the clipboard (e.g., press CTRL-c). Then open the boxplot.xls 
spreadsheet and position your cursor to the first data value in column M. 
Paste the copied data values (e.g., press CTRL-v) into that column and 
the box plot will automatically update itself as shown in Figure 3.14.

If your picture looks slightly different, you can double-click the hori-
zontal axis to adjust the scale (minimum and maximum) so that the pic-
ture looks like that in Figure 3.14. We can see one outlier value on the left 
(check if there really are extreme values according to our definition) and 
it seems that the distribution is skewed to the left. Thus, we would expect 
the mean to be less than the median (verify that).

Excel Demonstration

Company S would like to better describe the processing times of tax returns 
for small businesses to future clients. To do so, Company S collected the 
processing time in days for the last 27 tax returns (see Table 3.10). What 
would we tell a potential client about the expected processing times for 
tax returns?

Example: Create a box plot for the life expectancy data by country 
that we considered before:

 www.betterbusinessdecisions.org/data/life.xls

Figure 3.14  Box plot generated by Excel template for life 
expectancy data
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Step 1: Enter the data in two columns, labeled “Return ID” and “Pro-
cessing Time” into Excel.

Step 2: Let us describe the data by finding out the mean, median, 
first quartile, third quartile, range, interquartile range, and stan-
dard deviation. We can find many of these using the Analysis Tool-
Pak “descriptive statistics” function, or we can use Excel formulas. 
In the Analysis ToolPak, click on Descriptive Statistics as shown in 
Figure 3.15.

Table 3.10  Table of processing time

Return ID Processing time Return ID Processing time
1 73 15 45

2 19 16 48

3 16 17 17

4 64 18 17

5 28 19 17

6 28 20 91

7 31 21 92

8 90 22 63

9 60 23 50

10 56 24 51

11 31 25 69

12 56 26 16

13 22 27 17

14 18

Figure 3.15  The analysis ToolPak functions available
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Then, for the input range select the data, check Labels in first row 
since we included the labels, and click Summary statistics as shown in 
Figure 3.16; then click OK.

We are provided with the descriptive statistics for processing time and 
return ID. Note we will not need data for Return ID for our analysis. 
Figure 3.17 shows the output of the procedure.

From this table we can now see the average processing time, median 
processing time, range, and standard deviation. We can find the remain-
ing required statistics using the formulas shown in Figure 3.18.

Figure 3.16  Available parameters for descriptive statistics procedure

Figure 3.17  Output of the descriptive statistics procedure
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In conclusion, we can tell our potential client that the average pro-
cessing time is around 44 days, and that based on the positively right 
skewed statistic, we expect most of the processing times to fall toward 
the lower portion of the distribution, so that there is hope that the actual 
processing time might be shorter.

Figure 3.18  Computing various statistics using individual 
Excel commands





CHAPTER 4

Probability Theory

Preview: Probability theory is the study of likelihoods that given events will 
occur. Probability theory plays a role in everything from operating a local 
casino to the techniques used to minimize side effects and negative outcomes 
in a medical setting.

No matter what the setting, probabilities can be represented by numbers 
between 0.0 and 1.0, where a probability of 0.0 means that there is no chance 
a given result will be achieved, while a probability of 1.0 means that the event 
will take place for certain. Probability theory often uses relative frequency to 
predict how often a given event will take place. That event can be anything, 
from the number of wins and losses for a soccer team to the number of times 
heads come up in a coin toss. Probability theory also examines the distribution 
of all results, which often is represented via a bell-shaped curve. It plays a 
big role in probability theory and it is an important concept for students to 
understand.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Compute the expected value and variance of a probability distribution
2.	Compute probabilities from binomial distributions
3.	Solve business problems using binomial distributions
4.	Compute probabilities from normal or continuous distributions
5.	Solve business problems using normal or continuous distributions

Introduction

We will now switch gears and start involving probabilities in our dis-
cussions. Until now we talked about descriptive statistics, using numbers 
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(mean, standard deviation), graphs (pie chart, histogram), or general con-
cepts (skewed distribution) to describe data, whether from a population 
or from a sample. In subsequent chapters we want to introduce inferential 
statistics where we draw conclusions about a population based on proper-
ties of a sample and discuss the precision and accuracy of our conclusions 
in terms of probabilities. However, we will only use as much probability 
as necessary; we will not study probability theory in its own right here. 
This chapter will introduce the elements of probability theory that will be 
useful to us in subsequent chapters. Let us start with the basics.

Definition: A sample space S is the set of all possible outcomes of an 
experiment. An event is a subset of S. We will consider the probability 
of an event as the chance, or likelihood, that this event indeed takes 
place. All probabilities will be numbers between 0.0 and 1.0, inclusive, 
where a probability of 0 means that an event does not happen and a 
probability of 1.0 means that an event will happen for certain. We 
will often use the notation P(A) to denote the probability of event A 
occurring. The total probability of all events must be equal to 1.0, that 
is, P(S) = 1.

Sometimes a sample space, a set of possible events, and the probabil-
ities assigned to each event are collectively called a probability space. We 
could make this more mathematically rigorous: a probability is a function 
that has as its domain a certain collection of sets that are subsets of some 
sample space S and associates with each set E ⊂ S a number between 0.0 
and 1.0 so that the following properties are satisfied.

1.	 P( )∆ = 0  (probability of the empty set is zero) and P(S) = 1 (prob-
ability of all events is one).

2.	 0 1≤ ≤P E( )  for every event E.
3.	If E Ej j= =U 0

•  and all Ej are mutually disjoint, then 
P E P E P Ej j jj

( ) ( ) ( )= == =∑U 0 0
• •

, that is, the probability of a union 
of disjoint sets equals the sum of the probabilities of each set.
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The first experiment consists of throwing a single coin. There are two 
possible outcomes, heads or tails (coins do not land on their side). Thus, 
the sample space S is {H, T }. Whenever all outcomes of an experiment 
are equally likely, we can compute probabilities simply by counting. We 
have for any event E:

P E
elements in E
elements in S

( )
#
#

= ,

where S is the sample space, as usual. In tossing a coin, for example, there 
are two possible outcomes, head (H ) or tail (T ), both equally likely (if the 
coin is fair). Thus, our sample space is the set {H, T } and the probability 
of obtaining a head should be (# elements in {H })/(# elements in {H, T }), 
or 1/2. Another way of saying this is that the chance of a head in tossing 
a fair coin is 1 out of 2, which in mathematics simply means “1 divided 
by 2.” Thus: P({H }) = 0.5.

These axioms are known as the Kolmogorov axioms, in honor of Andrei 
Kolmogorov, a famous Russian mathematician who lived from 1903 to 
1987. If this more rigorous definition sounds somewhat abstract, you are 
right. If it actually sounds too abstract for comfort, very good! In a true 
probability theory course we would use this above abstract definition and 
then continue to derive various properties of it. But for this course we will 
be content with saying that probabilities of events are numbers between 
0 and 1 that determine the likelihood of events occurring. That should 
sound much simpler. In many cases these probabilities are determined by 
counting or as proportions.

Example: Let us say our experiment consists of tossing fair a coin once. 
List the sample space. What is the probability of obtaining head? Sup-
pose our experiment consists of rolling a die. What is the probability of 
getting a 5 or a larger number? What is the probability of two dice add-
ing to 4 when tossing them simultaneously? If we throw a dart randomly 
into a square with side length 1 m, what is the probability of landing in 
a circle of radius 10 cm in the middle of the square (bull’s-eye).
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Similarly, for a die there are six possible outcomes, all equally likely. 
Thus, our sample space consists of the set S = {1, 2, 3, 4, 5, 6}, and the 
event of obtaining a number 5 or more is composed of the event of get-
ting a 5 or a 6. Thus, the corresponding probability should be 2 out of 6, 
2/6, or 1/3. In other words: P({5 or 6}) = 2/6 = 1/3 = 0.3333.

Next, if we throw two dice simultaneously, each could show a number 
from 1 to 6. If we record their sum, the sample space is S = {2, 3, 4, 5, 6, 
7, 8, 9, 10, 11, 12}. To compute the probabilities of these numbers occur-
ring, we create a table where each entry inside the table denotes the sum 
of the die in that column and that row (see Table 4.1). Using that table to 
establish probabilities is again a simple exercise in counting: There are a 
total of 36 possible ways to throw two dice; we are interested in their sum 
being 4; from the table we see that there are three possible throws adding 
up to 4 (a 3 + 1, 2 + 2, and 1 + 3) so that our probability is 3 out of 36, 
or 3/36, which reduces to 1/12. Thus: P({sum of two dice = 4}) = 3/36 = 
1/12 = 0.0833.

For the final example we need to compute areas. We assume that every 
dart thrown will land inside the large square. Then the chance of hitting 
the little circle at random is the ratio of the area of that circle over the area 
of the square (see Figure 4.1). Recall that the area of a square with side x 
is x 2 and the area of a circle with radius r is pr2. Thus, the probability of 
hitting a bull’s-eye at random is

P bull s eye
area of circle

area of square
({ ’ }) .= = = =p p10

100 100
0 03

2

2 114 .

Table 4.1  Sum of two dice

1 2 3 4 5 6
1 2 3 4   5   6   7

2 3 4 5   6   7   8

3 4 5 6   7   8   9

4 5 6 7   8   9 10

5 6 7 8   9 10 11

6 7 8 9 10 11 12
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Since the coin is weighted, the chance of getting one head is no longer 
50–50. So we toss the coin 100 times and find 71 heads (and conse-
quently 29 tails). Thus, we proclaim that

P({H }) = 0.71 and consequently P({T }) = 1 − 0.71 = 0.29.

Note that the probability remains the same regardless of where the 
little circle is located inside the square (as long as it is completely inside 
the square). Also, by practicing, a dart player can significantly increase the 
probability of hitting a bull’s-eye; the preceding number refers to darts 
thrown randomly at the board.

In more real-life experiments it may be too time-consuming or simply 
impossible to list all possible outcomes or to count the ones we are inter-
ested in, but we can instead use experimentation or relative frequencies to 
come up with approximate probabilities.

Figure 4.1  Darts thrown at a dart board

Example: Suppose we have a weighted coin. Find the probability of 
obtaining a head (H) in one toss of the coin.

Example: Suppose that a (hypothetical) frequency distribution for the 
age of people in a survey is as shown in Table 4.2. What is the missing 
probability? What is the chance that a randomly selected person is 40 
years or younger?
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Here we simply used decimal numbers instead of percentages, that 
is, the entry in the first row means that 15 percent of the people in the 
survey were between 0 and 18 years old. One number is missing in the 
table but since probabilities have to add up to 1.0, the missing number is 
1.0 − (0.15 + 0.25 + 0.3) = 0.3.

The event of being 40 years or younger means that a person is either 
in the 0 to 18 category, with probability 0.15, or in the 19 to 40 category, 
with probability 0.25. Therefore, the total probability of a person being  
40 years or younger is 0.15 + 0.25 = 0.40, or equivalently 40 percent.

It is often helpful to consider probabilities in relation to frequency 
histograms graphically.

Table 4.2  Relative frequencies for age

Category Probability
0–18 0.15

19–40 0.25

41–65

66 and older 0.3

Example: The following data set consists of a number of variables 
related to the health records of 40 female patients, randomly selected. 
Construct a frequency histogram for the height of the 40 patients, 
including a chart. Then use that histogram to find:

•	 The probability, approximately, that a woman is 60 in. or 
shorter

•	 The probability, approximately, that a woman is 65 in. or 
taller

•	 The probability, approximately, that a woman is between 
60 and 65 in. tall

For each question, shade the part of the histogram chart that you used 
to answer the question.

 www.betterbusinessdecisions.org/data/health_female.xls
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We construct a frequency histogram using the appropriate Analysis 
ToolPak procedure as described in Chapter 2. We have manually specified 
the bin boundaries and modified the histogram table slightly to clarify 
the bin boundaries. We also computed the relative frequency for each 
row, defined as the number in that row divided by the total number of 
observations. The results are shown in Figure 4.2.

Using this chart it is now easy to answer the questions. Note that our 
bin boundaries do not exactly correspond to the boundaries posed in the 
questions, but we can use the closest bin boundary available to get the 
approximately right answer.

•	 P(women 60 in. or less) = (1 + 1 + 3)/40 = (0.025 + 0.025 + 
0.075) = 0.125

•	 P(a women 65 in. or more) = (3 + 7)/40 = (0.075 + 0.175) = 
0.25

•	 P(women between 60 and 65 in.) = (6 + 8 + 11)/40 =  
(0.15 + 0.2 + 0.275) = 0.625

To illustrate these probabilities, we have shaded the respective por-
tions in Figure 4.3.

To be sure, our probabilities are approximate only because the bin 
boundaries do not exactly match the questions. In addition, we have not 
really computed, for example, that the probability of a general woman to 
be between 60 and 65 in. tall is 62.5 percent. Instead, we computed that 
the probability of a randomly selected woman from our sample of 40 women is 
between 60 and 65 in. tall is 62.5 percent. But if in turn the entire sample 
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was truly randomly selected, then it is a fair guess to propose that the prob-
ability of any woman to be between 60 and 65 in. tall is 62.5 percent, or, 
phrased differently, that 62.5 percent of all women are between 60 and 65 in. 
tall. Of course we have generalized from the women in our sample to the set 
of all women, which might seem reasonable but the big question is whether 
such an inference really works and how well it works. We will tackle that in 
the next chapter; first we need more background information.

The Normal Distribution

If you compute a lot of frequency histograms and their associated charts 
you will notice that most of them differ in detail but have somewhat similar 
shapes: the chart is usually “small” on the left and right sides with a “bump” 
in the middle. With a little bit of imagination you might say that such dis-
tributions look somewhat similar to a “church bell” (see Figure 4.4).

Figure 4.5 shows several histogram charts with the imagined “church 
bell” shape super imposed (all of the data comes from the health_female.
xls and health_male.xls data files).

These bell-shaped distributions differ from each other by the location of 
their hump and the width of the bell’s opening, and they have a special name.

Figure 4.4  The bell curve

Definition: A distribution that looks bell-shaped is called a normal dis-
tribution. The position of the hump is denoted by m and stands for the 
mean of the distribution, and its width is denoted by s and corresponds 
to the standard deviation. Thus, a particular normal distribution with 
mean m and standard deviation s is denoted by N(m, s).

The special normal distribution N(0, 1), that is, bell-shaped with 
mean 0 and standard deviation 1, is called the standard normal distribution.
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Figure 4.6 shows three normal distributions. Remember that they simply 
represent relative frequency charts, with the height of each bar correspond-
ing to the probability of a randomly selected number falling in that bin.

Side note: The bell-shaped normal distribution is frequently called 
the Gaussian normal distribution, named after the famous German 
mathematician Carl Friedrich Gauss (1777–1855). It can be modeled 

mathematically by the exponential function N x
s

en s

x
s

,

( )

( ) =
− −1

2

2

22
p

m

,  
where m stands for the mean and s for the standard deviation of the distri-
bution. Figure 4.7 shows four normal distributions with different param-
eters. For each, the mean n shows where the top of the hill is, which is 
also the axis of symmetry, and indicates the most likely occurrence. The 
standard deviation s specifies the width of the hill.

Computing Normal Probabilities with Excel

Instead of creating a frequency histogram with (more or less) arbitrary 
bin boundaries, we can compute the mean and the standard deviation of 
the data and use the normal distribution with that particular mean and 
standard deviation to compute the probabilities we are interested in.

Example: Consider the Excel data set health_female.xls, showing a 
number of variables related to the health records of 40 female patients, 
randomly selected.

 www.betterbusinessdecisions.org/data/health_female.xls

Compute the mean and standard distribution for the height vari-
able of that data set and then use the corresponding normal distribu-
tion to visualize:

•	 The probability, approximately, that a woman is 60 in. or 
shorter

•	 The probability, approximately, that a woman is 65 in. or 
taller

•	 The probability, approximately, that a woman is between 
60 and 65 in. tall
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As explained in Chapter 3, we can use Excel to quickly compute the 
mean and standard deviation to be as follows: mean m = 63.2 and stan-
dard deviation s = 2.74. The normal distribution with these parameters 
is N x e x

63 2 2 74
0 0666 63 20 1456

2

. , .
. ( . )( ) .= − −  (see Figure 4.8).

We can now use that graph to visualize the various probabilities by 
shading the appropriate area under that curve (see Figure 4.9).

If you happen to have had calculus prior to this course, you might 
remember that the area under a curve is computed via integration (do 
not worry, if you have not had calculus or you do not care about it, just 
skip to the next paragraph). Therefore, the probabilities are:

P height e dx
x

( ) . .
. ( . )

≤ = =
−
∫

− −
60 0 1456 0 1214

60 0 0666 63 2 2

•

,

P height e dx
x

( ) . .
. ( . )

≥ = =∫
− −

65 0 1456 0 2556
65

0 0666 63 2 2•
,

P height e dx
x

( ) . .
. ( . )

60 65 0 1456 0 6230
60

65 0 0666 63 2 2

≤ ≤ = =∫
− −

.

Figure 4.8  Graph of the normal distribution N(63.2, 2.74)
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If you are using this formula in Excel, do not forget to start it with an 
equal sign, as you would do for any Excel formula. For example:

Note that the last value happens to be exactly the area we need to 
answer the first of our three questions. Therefore: P (x ≤ 60) = NORM-
DIST(60, 63.2, 2.74, true) = 0.1214. The original method, using the 
actual frequency histogram, yields 0.125. Both computed values are close 
to each other, but using the normal distribution and Excel is way faster 
and allows for arbitrary boundary points to be used.

To evaluate these integrals is actually pretty difficult, even if you 
remember your calculus well; we have used an advanced computer pro-
gram called Mathematica to get the answers. The good news is that Excel 
can easily compute these areas under a normal distribution as well, but 
there is a catch.

Figure 4.9  Shading the relevant portion of the normal distribution 
N(63.2, 2.74)
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Definition: To compute probabilities under a normal distribution 
Excel provides the formula NORMDIST(X, m, s, true), where m and s 
are the mean and standard deviation, respectively, and the last param-
eter should always be set to “true.” The value of that formula always 
represents the probability (aka area under the curve) on the left side 
under the normal distribution up to the value of X: NORMDIST(X, m, 
s, true) = P(x ≤ X ), where x is N(m, s).
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Instead of constructing a complete frequency histogram, we quickly 
use Excel to compute the mean and the standard deviation of our data. 
Then we use the NORMDIST function, just as earlier, but of course using 
the mean and standard deviation for this data set. Here we go:

Other probabilities can be computed in a similar way, using the addi-
tional fact that the probability of everything must be 1. For example, 
suppose we want to use an N(63, 2) normal distribution to compute 
the probability P(height ≥ 65). We cannot simply use the Excel formula 
NORMDIST(65, 63, 2, true) because that formula computes, as always, 
P(x ≤ 65), not what we want (in fact, it is kind of the opposite). However, 
we know that the probability of everything is 1 so that:

P(height ≤ 65) + P(height ≥ 65) = 1.

To compute a probability like P(60 ≤ height ≤ 65), we can apply a 
similar trick, shown in Figure 4.10.

Now, in fact, we can use Excel to rapidly compute probabilities with-
out ever constructing a frequency histogram at all. In fact, we do not even 
need to have access to the complete data set. All we need is to know the 
mean and the standard deviation of the data so that we can pick the right 
normal distribution.

Example: Consider the Excel data set health_male.xls, showing a 
number of variables related to the health records of 40 male patients, 
randomly selected. Without constructing a frequency histogram for 
the height of the 40 patients, find the following probabilities.

•	 What is the probability, approximately, that a man is 60 in. 
or shorter?

•	 What is the probability, approximately, that a man is 65 in. 
or taller?

•	 What is the probability, approximately, that a man is 
between 60 and 65 in. tall?
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mean height: 68.3
st. dev. 3.02
P(height <=60) = 0.002995 =NORMDIST(60,68,3,3.02, 

TRUE)
P(height >=60) = 0.862741 =1-NORMDIST(65,68.3,3.02, 

TRUE)
P(60 <= height <=65) = 0.134265 =NORMDIST(65,68.3,3.02, 

TRUE) - NORMDIST 
(60,68.3,3.02, TRUE)

Note that the probability of a man being less than 60 in. tall is now 
about 0.003, or 0.3 percent, much lower than the probability for a woman. 
That makes sense, since men are, on average, taller than woman (68.3 in. 
versus 63.2 in.), so the probability of a man being less than 60 in. tall 
should indeed be lower than the comparable probability for women. The 
other figures equally make sense. Note also that all three probabilities add 
up to 1 (approximately). Again, that makes sense—explain.

Important: The computed probabilities will be (approximately) 
correct under the assumption that the height of men is indeed normally 
distributed.

Now it should be clear how to use various normal distributions 
together with Excel to quickly compute probabilities. To practice, here 
are a few exercises for you to do. The answers are listed, but not how to 
get them. Remember, sometimes you need to use 1 − NORMDIST or 
subtract two NORMDIST values from each other—draw a picture of the 
normal curve, shade the desired area, and determine how that area relates 
to the Excel function NORMDIST.

Example: Find the indicated probabilities, assuming that the variable 
x has a distribution with the given mean and standard deviation.

1.	x has mean 2.0 and standard deviation 1.0. Find P(x <= 3.0)  
[ = 0.8413].
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The Inverse Normal Problem

While we now can easily compute probabilities P(x < a) for given values 
of a, we sometimes want to do just the opposite: given a probability p, 
find a cut-off value a such that P(x < a) = p. Excel has just the function 
for us, as usual.

Of course, once we can find values of a such that P(x < a) = p, we can 
also find cut-off values if the prescribed probability has a different form. 
Perhaps an example will clarify this:

Definition: If x is N(m, s), that is, normal with mean m and standard 
deviation s, then the Excel function NORMINV(p, m, s) gives the 
value of a such that P(x < a) = p. Thus, the Excel functions NORM-
DIST and NORMINV are inverses of each other.

Example: If x is standard normal, find a such that P(x < a) = 0.4. What 
if x was N(4, 1.5)? Can you use the NORMINV function to find b such 
that P(x > b) = 0.05 if x is N(5, 1)?

2.	x has mean 1.0 and standard deviation 2.0. Find P(x >= 1.5)  
[ = 0.4013].

3.	x has mean −10 and standard deviation 5.0. Find P(−12 <= x 
<= −7) [ = 0.3812].

4.	x is a standard normal variable. Find P(x <= −0.5) [ = 0.3085].
5.	x is a standard normal variable. Find P(x >= −0.5) [ = 0.6915].
6.	x is a standard normal variable. Find P(x >= 0.6) [ = 0.2742].
7.	x is a standard normal variable. Find P(−0.3 <= x <= 0.4)  

[ = 0.2733].

For the first question, we know right away that a must be less than 0 
because the distribution is normal with mean 0 and standard deviation 1. 
Thus, if a probability of the form P(x < a) wants to be less than 50 per-
cent, a must be negative. In fact, a = NORMINV(0.4, 0, 1) = −0.2533. 
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Indeed, we can check that NORMDIST(−0.2533, 0, 1, true) = 0.4, which 
is of course the inverse of the problem.

If the variable x was N(4, 1.5) instead of the standard normal and we 
again wanted to find a such that P(x < a) = 0.4, then it is easy to see that 
a has to be less than the mean of 4. In fact, a = NORMINV(0.4, 4, 1.5) = 
3.6200. We could verify this again using NORMDIST but we will leave 
that to you.

Finally, with a little imagination and the picture of the normal distri-
bution in our mind we can figure out that to find b such that P(x > b) = 
0.05 is equivalent to P(x < b) = 0.95 so that b = NORMINV(0.95, 5, 1) 
= 6.6448. Indeed, to double-check: P(x > 6.6448) = 1 − P(x < 6.6448) = 
1 − NORMDIST(6.6448, 5, 1, true) = 0.05.

Normal Distribution and Its Standard Deviation

While the mean of a normal distribution is easy to see (it is the line of 
symmetry through the top of the mountain), it seems harder to visual-
ize the standard deviation. It is relatively simple to decide which of the 
two normal distributions has the smaller variance, but as it turns out 
even if you have only one normal distribution you can “see” the standard 
deviation.

Definition: If x is normally distributed with mean m and standard devi-
ation s, then the three-sigma rule of thumb states (compare Figure 4.11):

•	 The interval (m − s, m + s) contains ≈68 percent of the data.
•	 The interval (m − 2s, m + 2s) contains ≈95 percent of the 

data.
•	 The interval (m − 3s, m + 3s) contains ≈99 percent of the 

data.

This rule can be used to verify whether a given distribution of data is 
normal or not: check how much of the data is within one, two, and three 
standard deviations of the mean and compare it with the three-sigma 
rule of thumb: if there is an approximate match, the distribution is likely 
normal.
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We want to find:

P x NORMDIST true
NORMDIST

( ) ( , , . , )
( , ,

420 430 430 425 2 5
420 425 2

≤ ≤ =
− .. , )5 true ,

which works out to 0.9545. This matches with our observation that the 
interval (m − 2s, m + 2s) contains approximately 95 percent. Thus, we 
expect 0.95 ⋅ 500 = 475 bags will have the desired weight.

Incidentally, the preceding rule explains why we can approximate the 
standard deviation s as range/4, as we saw in Chapter 3: the interval m − 
2s to m + 2s contains approximately 95 percent of the data, or in other 
words, the strip from m − 2s to m + 2s has a width of 4s and contains 95 
percent of the data, approximately. Thus, 4s ≈ range or s ≈ range/4.

Converting to z-Scores

It turns out that you can easily convert one normal distribution into 
another. This is particularly handy when converting an arbitrary normal 
distribution to the standard normal N(0,1).

Example: Bags of chips have an average weight of 425 g, with a stan-
dard deviation of 2.5 g. Assuming the weight is normal, how many 
bags in a box of 500 bags weigh between 420 and 430g?

Figure 4.11  Normal distribution and standard deviation
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This formula allows us to compute probabilities of normally distrib-
uted variables in (at least) two ways.

Transformation Formula for Normal Distributions: If x is normal 
with mean m and standard deviation s, then z

x m
s

= −
 has the stan-

dard normal distribution, that is, the mean of z is 0 and its standard 
deviation is 1. The number 

x m
s
−

 is frequently called the z-score of x.

For part (a) we compute as usual:

P x NORMDIST true NORMDIST true( ) ( , , , ) ( , , , )
.

2 6 6 5 2 2 5 2
0 6915

< < = −
= − 00 0668 0 6247. .=

By the transformation formula the variable z
x= − 5

2
 is N(0, 1). But 

if x = 2 then the z-score is z = − = −2 5
2

1 5.  and the z-score of x = 6 is 

z = − =6 5
2

0 5. . Thus:

P x P z
NORMIDST true NORMDIST

( ) ( . . )
( . , , , ) ( .

2 6 1 5 0 5
0 5 0 1 1

< < = − < <
= − − 55 0 1

0 6915 0 0668 0 6247
, , , )

. . .
true

= − =

Thus, as long as you know how to compute probabilities of the stan-
dard normal distribution you can actually compute probabilities of any 
normal distribution. Therefore, Excel includes a special function to com-
pute probabilities of the standard normal.

Example: Suppose x is normally distributed as N(5, 2), that is, normal 
with mean 5 and standard deviation 2. Then compute P(2 < x < 6) 
using (a) the original parameters and (b) using z-scores.

Definition: The Excel function =NORMSDIST(Z) computes the 
probability P(z < Z) if z has a standard normal distribution. In other 
words, NORMSDIST(Z) = NORMDIST(Z, 0, 1, true).
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The NORMSDIST has the advantage that it is somewhat simpler to 
use but offers no other benefits. Thus, we will stick with NORMDIST(Z, 
0, 1, true) as a reminder that the standard normal distribution has mean 
0 and standard deviation 1.

Discrete and Continuous Random Variables

Previously we have used the term “variable” without properly defining it; 
we relied on common sense. Since we are currently adding a solid foun-
dation to our discussion anyway, we might as well do the same for our 
most basic terminology.

Let us say we are tossing a single coin once. A random variable needs 
to assign numbers to the events in the sample space. Thus, we define a 
random variable x by saying, for example, that x({H }) = 0 and x({T }) = 1. 
If we toss a coin twice, a random variable could count the number of H’s, 
so that x({T,T }) = 0, x({T,H }) = x({H,T }) = 1, and x({H,H }) = 2. These 
two variables are discrete. As an example for a continuous variable, con-
sider an experiment that measures the height of people. A random variable 
x could simply be the height of a person in inches. For discrete random 
variables it is convenient to define them via a table of values including 
their probabilities, while continuous random variables are often repre-
sented as the graph of a function called the probability density function.

Mean and Standard Deviation for Discrete Random Variables

Of course we can compute the mean or standard deviation of discrete ran-
dom variables. It is similar to computing those parameters for frequency 
tables but we need to take into account that the distinct values of our 
random variable can occur with different probabilities.

Definition: A random variable is a variable whose values are numer-
ical outcomes of an experiment. A discrete random variable can take 
only distinct values; a continuous one can take any value within a 
range.



	 Probability Theory	 115

First, we will convert the information into our new lingo: we define 
the random variable x to measure how much profit a pizzeria makes. Thus, 
x has four distinct values with the probabilities as shown in column 2 of 
Table 4.3.

Definition: The mean m (or expected value E(x)) of a discrete random 
variable x with values x1, x2, ..., xn is:

m = = + = + + =x x x1 1 2 2P x x P x x P x xn n( ) ( ) ( )�

	
= =∑ x P x xi i( ) .

The variance s2 of a discrete random variable x is:

s m m m2
1

2
1 2

2
2

2= − = + − = + + − = =( ) ( ) ( ( ) ( ( )x P x x x P x x x P x xn n) )�

= − = = = −∑ ∑( ( ) ( )x P x x x P x xi i i im m)2 2 2 .

The standard deviation is, as usual, the square root of the variance: 

s s= 2

This looks pretty intimidating but once you work through an example 
everything should clear up and you should have no problems. Note that 
interpreting the mean of a random variable as the expected value is partic-
ularly interesting.

Example: Suppose you want to open a new pizzeria. You do some 
research and you find that 30 percent of comparable pizzerias operate 
at a loss of $35,000, 40 percent break even, 20 percent make a profit of 
$25,000, and 10 percent make a profit of $95,000. How much money 
can you expect to make if you go through with your plans? What is the 
standard deviation?
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To find the mean, or the expected value, we multiply xi P(x = x1) and 
add column 3 to the table. Since we also need to find the standard devi-
ation, we add one more column containing xi

2 P(x = x1). Then we find 
the total of column 3, which will be the expected value of x. Thus, the 
expected value of x is $4,000, which means that statistically speaking you 
can expect a profit of $4,000 if you open the pizzeria.

To compute the variance (and hence the standard deviation), we add 
up the fourth column and use the preceding formula to compute the 
variance: s2 = 1,395,000,000 − 16,000,000 = 1,379,000,000 so that the 
standard deviation becomes $37,134.89.

Mean and Standard Deviation for Continuous Random Variables

Defining mean and standard deviation for continuous random variables 
requires integration of functions—that is, areas under curves—and is 
generally beyond the scope of this text. Still, for completeness, we list the 
definitions here as well.

Table 4.3  Finding the expected profit opening a pizzeria

x (Profit) ($) P(x = xi) xi P(x = x1) x2
i P(x = x1)

−35,000 0.3 −10,500 367,500,000

0 0.4 0 0

25,000 0.2 5,000 125,000,000

95,000 0.1 9,500 902,500,000

4,000 1,395,000,000

Definition: The mean m, or expected value E(x), of a continuous ran-
dom variable x with density function p(x) is:

m
•

•

= =
−
∫E x x p x dx( ) ( ) .

The variance s2 of the continuous random variable x is:

s m
•

•
2 2= −

−
∫ ( ) ( )x p x dx .
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The standard deviation is, as usual, the square root of the variance: 

s s= 2 .

Even though we do not know how to integrate, here is a relatively 
simple example.

Example: Suppose we constructed a dial with a spinner, similar to a 
wheel of fortune, and spin it randomly (see Figure 4.12). Define the 
random variable x to be the angle at which the spinner comes to a rest. 
Compute the mean and variance of x.

Figure 4.12  A continuous “wheel of fortune”
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360

Figure 4.13  Uniform distribution

The random variable x can take any value between 0 and 360: it is 
therefore a continuous variable. Since you are spinning randomly, every 
angle is equally likely, so x is called a uniformly distributed random variable. 
The probability density function for x must be constant, since every value 
between 0 and 360 is equally likely: p(x) = c for 0 ≤ x ≤ 360 (see Figure 4.13).
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We know that the total probability has to be 1, as always, so that the 
area of the rectangle with width 360 and height c must be 1. Therefore, 
360 c = 1, so that 

c = =1
360

0 0028. . Now we can find the mean and variance:

m
•

•

= = =
−
∫ ∫x p x dx

x
dx( )

360
180

0

360

,

s m
•

•
2 2 2

0

360

180
1

360
10 800= − = − =

−
∫ ∫( ) ( ) ( ) ,x p x dx x dx .

Other Distributions

There are many different distributions. In fact, any function p(x) that is 
non-negative for all x and with the total area under the curve being 1 can 
generate a probability distribution. We already introduced the normal 
distributions and worked extensively with them, and in the previous sec-
tion we introduced a uniform distribution for 0 ≤ x ≤ 360. Now we will 
introduce two additional ones.

Definition: Two other frequently used continuous distributions are 
the Student t-distribution and the F distribution. Both have compli-
cated density functions but in terms of Excel they are defined via:

•	 Student t-distribution: TDIST(x, df, tails), where df stands 
for degree of freedom and tails is 1 (to compute one tail) or 
2 (to compute two tails). TDIST(x, df, 1) = P(X > x) and 
TDIST(x, df, 2) = P(X > x) + P(X < −x) for positive x.

•	 F distribution: FDIST(x, df 1, df 2), where df 1 and 
df 2 stand for degrees of freedom 1 and 2, respectively. 
FDIST(x, df 1, df 2) = P(X > x).
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You can see their graphs in Figures 4.14 and 4.15.
The t-distribution looks similar to the standard normal distribution 

but its peak is not quite as high whereas its tails are wider. If the degree of 
freedom is high, the t-distribution is nearly identical to the standard nor-
mal distribution. The F distribution, on the other hand, looks completely 
different (see Figure 4.14). In particular, it has no axis of symmetry. We 
will need these distributions in later chapters, at which point we will also 
explain the significance of the degree of freedoms. Right now we just 
want to familiarize ourselves with new ways to compute probabilities.

Note that the Excel definitions of both TDIST and FDIST give the 
probabilities at the tail end of the distribution whereas NORMDIST gives 
the probability to the left of x. See Figure 4.15.

–4 –2 2

0.1

0.2

0.3

0.4 N(0,1) F dist, df1 = 10, df2 = 7

F dist, df1 = 10, df2 = 2T dist, df = 2
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0.3

0.4

0.5

0.6

0.7

4 21 4 53

Figure 4.14  t-distribution versus standard normal (left) and two 
F distributions (right)

Example: Suppose x is distributed according to a t-distribution with 
six degrees of freedom. Use Excel to find P x( . )≥ 1 5  and P x(| | )≤ 1 .  
Also verify that for large degrees of freedom the t-distribution and 
the standard normal distribution are approximately the same. Finally, 
compare the one-tailed probabilities P x( . )≥ 1 5  if x is distributed 
according to the F distribution with df1 = 10 and df 2 = 2 with the 
standard normal one.
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Assuming x is distributed according to a t-distribution with df = 6, we 
have P x TDIST( . ) ( . , , ) .≥ = =1 5 1 5 6 1 0 092. On the other hand, P(|x| ≤ 1) 
= 1 − TDIST(1,6,2) = 0.8220.

To verify that a t-distribution with high degrees of freedom is about 
equal to the standard normal distribution, we compare TDIST(1,1000,1) 
= 0.15878 with 1 1 0 1 0 15865− =NORMDIST true( , , , ) .  and repeat those 
calculations for different values of x. You will find that the probabilities 
agree very well indeed.

If x is distributed according to the F distribution with df 1 = 10 and df 2 
= 2 then P x FDIST( . ) ( . , , ) .≥ = =1 5 1 5 10 2 0 4651. On the other hand, if 
x is N(0, 1) then P x NORMDIST true( . ) ( . , , , ) .≥ = − =1 5 1 1 5 0 1 0 06680.

The Inverse Probability Problem

We have seen that before that we can also solve the inverse probability 
problem: instead of finding the probability P(x < a) for a given value of a, 
we compute that value of a that results in a given probability p = P(x < a). 
If x is normal, then we can use the Excel function NORMINV. Similarly, 
Excel offers the functions TINV and FINV that are similar to NORM-
INV, but with slight differences in the interpretation of their inputs.

•	 If x is distributed according to a t-distribution with degrees of 
freedom df, then the Excel function TINV(p, df  ) returns that 
value a such that P(x < −a) + P(x > a) = P(|x| > a) = p.

•	 If x is distributed according to an F distribution with degrees 
of freedom df 1 and df 2, then the Excel function  
FINV(p, df 1, df 2) returns that value a such that P(x > a) = p.

The functions TINV and TDIST are inverse of each other, as are 
FINV and FDIST.

The Central Limit Theorem

In the “Introduction” section we saw that we can use frequency distri-
butions to compute probabilities of various events. Then we determined 
that we could use various normal distributions as a shortcut to compute 
those probabilities, which was very convenient. Using that technique we 
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This theorem is perhaps somewhat hard to understand, so here is a 
more colloquial restatement.

were able to compute all kinds of probabilities just based on the fact that 
we knew the mean and sample standard deviation of the distribution. We 
had to assume, however, that the (unknown) distribution of the variable 
in question was normal with the computed mean and standard deviation 
as parameters.

As it turns out, there is some mathematical justification for that; it 
says, in effect, that most distributions—in some sense—are “normal.” 
That theorem, called the Central Limit Theorem, is one of the corner 
stones of statistics. It has many practical and theoretical implications, 
some of which we will explore in subsequent chapters.

In this course we will simply state the theorem without any proof. In 
more advanced courses we would provide a justification or mathematical 
proof, but for our current purposes it will be enough to understand the 
theorem and to apply it in subsequent chapters.

If we want to talk colloquially, we have actually already seen the Cen-
tral Limit Theorem. We noted previously that “most histograms are (more 
or less) bell-shaped,” which is in fact one way to state the Central Limit 
Theorem. To state this theorem precisely, we need to specify, among other 
things, exactly which normal distribution we are talking about.

Central Limit Theorem for Means: Suppose x is a variable for a pop-
ulation whose distribution has a mean m and standard deviation s but 
whose shape is unknown. Suppose further we repeatedly select random 
samples of size N from that population and compute the sample mean 
each time. Finally, we plot the distribution (histogram) of all these 
sample means. Then the distribution of all sample means is approxi-
mately normal (bell-shaped) with mean m (the original mean) and 
standard deviation 

s
N

.
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If we roll a single die, the numbers 1 to 6 are all equally likely to come 
up. Thus, the probability for each outcome is 1/6 so that the distribution 
looks like Figure 4.16.

The importance of this theorem is that it allows us to start with an 
arbitrary and possibly unknown distribution, yet use the normal distribu-
tion with appropriate mean and standard deviation to perform various 
computations, at least approximately.

Central Limit Theorem, colloquial version: No matter what shape 
the distribution of a population has, the distribution of means com-
puted for samples of size N is approximately bell-shaped (normal). The 
approximation gets better as N gets larger. Moreover, if we know the 
mean and standard deviation of the original distribution, the mean for 
the sample means will be the same as the original one, while the new 
standard deviation will be the original one divided by the square root 
of N.

Example: Roll a single die once and record the number on the upper 
face. What is the distribution for this experiment? Now roll two dice 
and record the average of the numbers on the up faces. What is the dis-
tribution for this experiment? Finally, roll three dice, record the aver-
age, and determine the distribution. Relate your results to the Central 
Limit Theorem.
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Figure 4.16  Uniform distribution for tossing one die
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Note that the mean m = 3.5 and the standard deviation s = 1.7078.
If we throw two dice and record their average, we get the outcomes 

2/2, 3/2, 4/2, 5/2, 6/2, 7/2, 8/2, 9/2, 10/2, 11/2, and 12/2. We can list 
these outcomes in Table 4.4, similar to what we did before.

As before, we can determine the probabilities by counting to create 
the distribution in Figure 4.17.

Now we throw three dice and record the average. There are 6 × 6 
× 6 = 216 total possibilities, with probabilities like P(average = 3/3) = 
P({1,1,1}) = 1/216, P(average = 4/3) = P({1,1,2}, {1,2,1}, {2,1,1}) = 3/216, 
and so on. We could show the outcomes in a three-dimensional table, but 
instead we simply show the resulting distribution in Figure 4.18. While 
we are at it, we also show the result of recording the average of four dice.

We can see that as the sample size N increases, the distribution looks 
more and more bell-shaped (normal), exactly as the Central Limit Theo-
rem predicts.

The Central Limit Theorem Applet

If you want to see the Central Limit Theorem in action, check out the 
Central Limit Applet (see Figure 4.19; it requires the latest version of the 
Java plug-in, which you can download for free).

Try the following:

•	 Click on the preceding link for the Central Limit Theorem 
applet.

•	 Click on the “Start CLT Applet” button (the applet might 
take a few seconds to initialize).

Table 4.4  Average for tossing two dice

1 2 3 4 5 6
1 2/2 3/2 4/2 5/2 6/2 7/2

2 3/2 4/2 5/2 6/2 7/2 8/2

3 4/2 5/2 6/2 7/2 8/2 9/2

4 5/2 6/2 7/2 8/2 9/2 10/2

5 6/2 7/2 8/2 9/2 10/2 11/2

6 7/2 8/2 9/2 10/2 11/2 12/2
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�	 When you click “Start,” the program will pick a random 
sample from a population, compute the mean, and mark 
where that mean is on the x-axis to start a frequency distri-
bution for the sample mean.

�	 Then the program picks another random sample, computes 
its mean, marks it in blue, and continues in that fashion—
check the “Slow Motion” checkbox to see what the pro-
gram does in slow motion.

•	 After the program is running for a while, notice that the blue 
bars are slowly building up to a real frequency distribution 
(the yellow bars underneath show the distribution of the 
underlying population from which the random samples are 
selected).

Figure 4.18  Distribution for tossing three and four dice

Distribution for the average of three dice Distribution for the average of four dice
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Figure 4.19  Central Limit Theorem Applet

Source: http://www.mathcs.org/java/programs/CLT/clt.html
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Now try the following:

•	 Let the program run (at regular speed) for a while. What 
shape is the distribution of the random samples (blue bars), at 
least approximately?

•	 Experiment with different distributions (click on [Pick] to 
choose another distribution). What shape does the distribu-
tion of the sample means (blue chart) have when you pick 
other distributions for the population? Is that true regardless 
of the underlying population distribution (yellow chart)?

•	 What is the mean for the distribution of the sample means 
(blue chart) in relation to the mean of the distribution of 
the original distribution (yellow chart)? The figures for the 
sample means are shown in the category “Sample Stats,” but 
make sure to run the program for a while before looking at 
the numbers. Note that these numbers represent the “sam-
ple mean” for the distribution of all sample means, and the 
“sample standard deviation” for the distribution of all sample 
means (yes, it sounds odd, but that is what it is).

•	 Is there a relation between the standard deviation of the 
sample means (blue chart) and that of the original population 
(yellow chart)? Experiment with sample sizes 16, 25, 36, 49, 
and 64 to find the relation, but make sure to press the Reset 
button before using new parameters or sample sizes, and let 
the program run for a while before estimating the sample stats.

If you have done everything correctly, you have just discovered the 
Central Limit Theorem! Relax: if you have any trouble with that applet, 
or if you are not exactly sure what it shows and how it works, do not 
worry. In this class we are interested in the consequences of the Central 
Limit Theorem, coming up in the next chapter, and not in that theorem 
in and of itself.

Proportions and the Binomial Distribution

Of the continuous distributions the normal ones are the most important, 
but they require a numerical variable. Is there anything we can do for 
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categorical variables? It turns out that if our data is such that it falls into 
exactly two categories, it can be modeled by a binomial distribution.

Note: A random experiment with exactly two outcomes where the 
probability of success does not change is sometimes called a Bernoulli 
Trial, named after the well-known Swiss mathematician Jacob Bernoulli 
(1654–1705). As so often, the preceding definition sounds really compli-
cated but once you see examples it will become much clearer.

Definition: Suppose a random experiment has exactly two outcomes. 
We (arbitrarily) call one of them success (S) and the other one failure 
(F). Suppose further that the probability of success is p (and hence the 
probability of failure is q = 1 − p). Assume finally that this experiment 
is repeated independently N times and the random variable x counts 
the number of successes. Then x is a binomial random variable and has 
the binomial distribution B(p, N).

Example: Find the parameters for the following binomial distributions.

•	 Flip a coin 33 times and count the number of heads.
•	 It turns out that individuals with a certain gene have a 0.70 

probability of contracting a certain disease. We conduct a 
study of 100 individuals with that gene to count the num-
ber of individuals who will contract the disease.

•	 Consider a population of 25,000 voters in a given state. 
The proportion of voters who favor candidate A is equal to 
0.40.

We can describe each of these situations using our terminology for a 
binomial distribution. In the first case of flipping a single coin, we (arbi-
trarily) consider heads to be a success (this would be our Bernoulli trial). 
Then the probability of success is p = 1

2
. Since we repeat this experi-

ment 33 times, the random variable x counting the number of successes 
is B(1/2, 33).
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This is pretty nifty. It gives us the probability of getting k successes in 
N total tries, each of which has probability of success p.

In the second case we consider it a success to contract the disease 
(which may sound odd). Then p = 0.7 and since we repeat this 100 times, 
we have a B(0.7, 100) distribution. We could just as well consider it a 
success not to contract the disease (avoiding a disease does sound more 
successful). In that case p = 1 − 0.7 = 0.3 and this variable, call it y, count-
ing the number of successes, is B(0.3, 100).

For the last case we consider a vote for candidate A a success so that 
p = 0.4. Since we have 25,000 voters, our distribution is B(0.4, 25,000).

It turns out that there is a (relatively) simple formula for a bino-

mial distribution but it requires the formula c k
n n

k n kn k,
!

!( )!
= ( ) =

−
,  

where n n n n! ( ) ( ) ...= ⋅ − ⋅ − ⋅ ⋅ ⋅ ⋅1 2 3 2 1 and 0! = 1. We pro-
nounce n! as “n factorial” and cn k k

n
, or ( ) as “n choose k” or 

“choose k out of n.” For example  4 4 3 2 1 24! = ⋅ ⋅ ⋅ =  and 
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Note that “n choose k” always comes out an integer even though at first 
glance that seems unlikely.

Definition: Suppose a random variable x is B(p, N). Then x is a dis-
crete binomial random variable and its distribution is

P x k C p pN k
k N k( ) ( ),= = ⋅ − −1 .

The mean of x is m = np and the variance is s2 1= −np p( ).

Example: Create the probability distribution for counting heads in 
flipping a coin six times.

Some of the probabilities are easy to determine. For example, the 
probability of obtaining six heads should clearly be (0.5)6. Also, the 
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probability of obtaining no heads is equal to the probability of getting six 
tails, which again is (0.5)6. For the probabilities in between we need to 
apply the preceding formula; see Table 4.5 and Figure 4.20 for the results.

Table 4.5  Binomial distribution B(1/2, 6)

k P(X = k)
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Figure 4.20  Binomial distribution B(1/2, 6)
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Using Excel’s BINOM.DIST (or BINOMDIST in Excel 2007) func-
tion it is easy to create the probability distribution for B(0.2, 40); see 
Figure 4.21. We can then create the cumulative probability chart to deter-
mine Q1 = 7, Q3 = 11, and the median = 9, as explained in Chapter 3. 
The mean of B(0.2, 40) is 8. The distribution in Figure 4.21 looks approx-
imately normal but shifted slightly to the right.

Using Excel to Compute the Binomial Distribution

Excel, of course, includes functions to easily compute P(x = k) if x is 
B(p, N).

FACT(n)	 computes n!
COMBIN(n, k)	� computes “n choose k,” that is, the 

number of ways to select k objects 
from n objects

BINOMDIST(x, N, p, false)	� computes probability of obtaining k 
successes in N trials if the probability 
of success is p

Example: Use Excel to create the distribution chart for B(0.2, 40), that 
is, the distribution of selecting k successes out of 40 trials with prob-
ability of success p = 0.2. Describe the distribution. Find Q1 and Q3 
as well as the mean and the median.
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Figure 4.21  Distribution for B(0.2, 40)
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Let x be a variable that counts the number of successful shuttle launches. 
Because of our assumptions, x has a binomial distribution with B(0.992, 
N). Thus, the probability of 25 successful launches (and no failures) is 
P x( ) . .= = =25 0 992 0 818125  or about 82 percent. The probability of 
135 successes in a row is similarly 0 992 0 3381135. .=  or only 33 percent.

To find N such that the probability of N successful launches drops 
below 50 percent we need to solve P x N N( ) . .= = =0 992 0 5 . We can take 

the natural logarithm on both sides to find that N = =ln( . )
ln( . )

.
0 5

0 992
86 3. 

Thus, the probability of 87 successful launches has dropped to less than 
50 percent. However, the probability of the 88th launch is again 99.2 
percent, regardless of what happened before. Such is the nature of the 
binomial distribution: no matter how close the probability of success p 
is to 1, the probability of N successes in a row eventually drops to zero! 
Still, each trial has again a probability of success p, regardless of how many 
successes in a row already happened. To put this in words: in a binomial 
distribution it is certain that disaster will strike eventually, but you cannot 
predict when.

Let us conclude this chapter with an interesting application that 
might give you pause for thought.

Example: The National Aeronautics and Space 
Administration (NASA) flew a total of 135 space 
shuttle missions from 1982 to 2011. In 1986 the 
shuttle Challenger, the 25th shuttle launch, broke 
apart 73 sec into its flight, leading to the deaths of 
all seven crew members. A subsequent investigation, 
led by famous physicist Richard Feynman, found out 
that a simple O-ring failure caused by cold weather 

resulted in this disaster. Assuming that space shuttle launches are inde-
pendent and that the probability of each successful launch is approx-
imately 99.2 percent, find the probability of 25 successful shuttle 
launches in a row. Determine how many successful launches it takes 
before the probability of N successful launches in a row drops to 50 
percent. Should you then launch the N + 1 shuttle? What is the prob-
ability of 135 successful launches in a row?
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Excel Demonstration

Recall that to solve a probability problem using a binomial distribution, 
you would need the number of successes you are looking for, the number 
of trials, and the probability of success. In the following text is a quick 
tip sheet on the scripts to use in Excel for specific situations. Note that 
TRUE/FALSE represents whether or not we are looking for the cumula-
tive probability. In other words, if we are looking for the probability of 5, 
and if we were to say TRUE in our script, that means we would get the 
probability of everything up to and including 5 (the cumulative amount). 
If we say FALSE (meaning we are saying NO to the cumulative) that 
means we only want 5, not the cumulative value.

Rules for Finding Binomial Probabilities in Excel

•	 If the question asks you to find the probability of exactly one 
number, use BINOMDIST(successes,trials,probability,FALSE).

•	 If the question asks you to find the probability of up to and 
including a number (less than or equal to a number), use 
BINOMDIST(successes,trials,probability,TRUE).

•	 If the question asks you to find the probability of less than a 
number, use BINOMDIST(successes,trials,probability,TRUE) − 
BINOMDIST(successes,trials,probability,FALSE).

•	 If the question asks you to find the probability of at least 
one number (greater than or equal to a number), use (1 − 
BINOMDIST(successes,trials,probability,TRUE)) + BINOM-
DIST(successes,trials,probability,FALSE).

•	 If the question asks you to find the probability of greater 
than a number, use 1 − BINOMDIST(successes,trials,
probability,TRUE).

Example: Company P, the paper products manufacturer, has a cus-
tomer service and return department. A customer service represen-
tative’s records show that the probability that a newly sold product 
needing to be returned in the first 90 days is 0.05. If a sample of three 
new products is selected:



134	 USING STATISTICS FOR BETTER BUSINESS DECISIONS

	 a.	What is the probability that none needs to be returned?
	 b.	What is the probability that at least one needs to be returned?
	 c.	What is the probability that more than one needs to be returned?

The key parameters to this problem are: sample size (trials) N = 3, 
probability of “success” p = 5 percent, and number of “successes” (a) 
exactly 0, (b) 1 or more, or (c) more than one. To solve in Excel, we would 
use the following formulas:

	 a.	BINOMDIST(0,3,0.05,FALSE) to get the result of: 0.857375 or 
around 86 percent

	 b.	1 − BINOMDIST(0,3,0.05,FALSE) to get the result of: 0.142625 or 
around 14 percent

	 c.	1 − BINOMDIST(1,3,0.05,TRUE) to get the result of: 0.142625 or 
around 14 percent

Example: Company S, the accounting firm, knows that to resolve cli-
ent inquires on the same day is highly important for keeping client 
satisfaction. This means the client relations department works quickly 
to resolve inquiries on the same day. Past data from the customer rela-
tionship management database indicates that the likelihood is 0.70 
that client inquiries that come in on a Monday (the busiest day of 
the week) will be resolved on the same day. For the first five inquiries 
submitted on a given Monday:

	 a.	What is the probability that all 5 will be resolved on the same day?
	 b.	What is the probability that at least 3 will be resolved on the same 

day?
	 c.	What is the probability that fewer than 2 will be resolved on the 

same day?
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The key parameters for this problem are: sample size (trials) N = 5, 
probability of success p = 70 percent, and number of successes (a) exactly 
5, (b) 3 or more, or (c) fewer than two. To solve this in Excel, we would 
use the following formulas:

a.	=BINOMDIST(5,5,0.7,FALSE ) to get the result of: 0.16807 or 
around 17 percent

b.	=1 − BINOMDIST(3,5,0.7,TRUE) + BINOMDIST(3,5,0.7,FALSE ) 
to get the result of 0.83692 or around 84 percent

c.	=BINOMDIST(2,5,0.7,TRUE) − BINOMDIST(2,5,0.7,FALSE) to 
get the result of 0.03078 or about 3 percent

Solving Probability Problems Using Normal 
Distribution Techniques

Company P determined that its truck drivers making deliveries are spend-
ing a lot of time on the road, and the trucks are becoming worn out 
quickly. Company P determined that the annual distance traveled per 
truck is normally distributed, with a mean of 72,000 miles and a standard 
deviation of 17,000 miles.

a.	What proportion of trucks can be expected to travel between 38,000 
and 62,000 miles in the year?

b.	What percentage of the trucks travel less than 35,000 miles in the 
year?

c.	What percentage of the trucks travel more than 57,000 miles in the 
year?

d.	How many miles will be traveled by more than 72 percent of the 
trucks?

In Excel 2013, go to Formulas, and click Insert Function (which 
is the fx entry in the input line). Type in NORMDIST and select GO. 
Double-click on the NORMDIST option (see Figure 4.22).
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To solve question A of finding the probability of traveling between 
38,000 and 62,000, find the probability of 62,000 and then subtract 
from the probability of 3800,000:

•	 To find the probability of 62,000, input 62,000 for X, 72,000 
for MEAN, 17,000 for Standard Deviation, and TRUE for 
Cumulative. The probability for 62,000 is 0.27  
(see Figure 4.23).

•	 Now change X to 38,000 and the probability is 0.02.
•	 Subtract 0.27 and 0.02 to get 0.25 or 25 percent as the 

answer to A.

Figure 4.22  Dialog for NORMDIST function

Figure 4.23  The standard normal probability for x = 62,000
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As you can see, the answer to D is 61,582 miles.

To solve question B, leave the same dialog box up and leave the mean, 
standard deviation, and cumulative value as they were. Replace X with 
35,000 to get 0.01 or 1 percent for B.

To solve question C, find the probability of less than or equal to 
57,000 first by replacing X with 57,000 and leaving cumulative as True. 
This gives you 0.18 or 18 percent as the probability of getting less than 
or equal to 57,000. To find the probability of getting more than 55,000, 
subtract 0.18 from 1 to get 0.82 or 82 percent, which is the solution.

To solve question D, we must use the inverse function of NORMDIST 
since we want to compute a cut-off value for x to get a specified proba-
bility. Go to Insert Function and type in NORMINV (see Figure 4.24).

You are asked to find how many miles will be traveled by more than 
72 percent of the trucks, so you are looking for the instances that fall 
above 72 percent, which is the top 27 percent. If it had asked us for less 
than 72 percent of the trucks then we would have been concerned with 
those trucks in the 0 to 72 percent range, not the 73 to 100 percent range. 
Input the following numbers into the dialog box shown in Figure 4.24.

Figure 4.24  Dialog for NORMINV function





CHAPTER 5

Estimation

Preview: Estimation is an important concept to understand no matter what 
field you work in. Estimating outcomes may seem like a simple matter, but 
it is actually a complicated process. In order to create an accurate estimation, 
it is important to not only gather the right information but also to make the 
proper inferences from that data. The sample size plays a role here as well and 
can have a profound impact on the accuracy of the estimate: a large sample 
size yields better estimates than a small one. We will provide our estimates in 
the form of confidence intervals, which in turn come with a margin of error. 
If you have ever reviewed polling data for a presidential election, you know 
that all of those polls report a margin of error, which varies from poll to poll. 
Margin of error is defined as the amount allowed for miscalculation. If a poll 
reports that candidate A has the support of 52 percent of the population while 
candidate B enjoys the support of 48 percent of the people and the margin of 
error is 3 percent, candidate A could have the support of between 49 percent 
and 55 percent of the people surveyed, while support for candidate B could be 
between 45 percent and 51 percent. These deviations may be small, but they 
can mean the difference between one candidate and the other prevailing on 
election day. We will provide estimates for the population mean, the difference 
of population means, and for proportions.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Construct and interpret confidence interval estimates for the mean 
and the proportion

2.	Determine the sample size necessary to develop a confidence interval 
estimate for the mean or proportion

3.	Use confidence interval estimates in solving business problems
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Introduction

Up to now we discussed descriptive statistics (Chapters 1 to 3) and we 
developed some basic understanding of probability theory (Chapter 4). 
Beginning with this chapter we will talk about inferential statistics, which 
will be based on the theory we developed in Chapter 4. The principal idea 
is that we want to estimate parameters of a population based on informa-
tion gathered from a random sample.

Confidence Intervals for Means

Let us start by estimating the mean of a population, given that we know 
the mean of a particular sample. In other words, if a sample of size, say, 
100 is selected at random from some population, it is easy to compute the 
mean of that sample. It is equally easy to then use that sample mean as an 
estimate for the unknown population mean. But just because it is easy to 
do does not necessarily mean it is right.

For example, suppose we randomly select 100 people from the popu-
lation of all people in the United States, measure their height, and com-
pute the average height of our sample to be, say, 164.432 cm. If we now 
wanted to know the average height of everyone in our population (i.e., 
everyone in the United States), it seems reasonable to estimate that the 
average height of everyone is 164.432 cm as well. However, if we think 
about it, it is of course highly unlikely that the average for the entire 
population comes out exactly the same as the average for our random 
sample of just 100 people. It is much more likely that our sample mean 
of 164.432 cm is only approximately equal to the (unknown) population 
mean. It is the purpose of this section to clarify, using probability theory, 
what exactly we mean by “approximately equal.”

Example: Consider the following data set for approximately 400 cars, 
assumed to be collected at random. We would like to make predictions 
about all automobiles, based on that random sample. In particular, the 
data set lists miles per gallon, engine size, and weight of 400 cars, but 
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It is of course simple to compute the mean of the various variables of 
the sample, starting with gas mileage. We find that the sample mean gas 
mileage is x = 23 5.  miles per gallon (mpg), the sample standard deviation 
s = 7.82 mpg, and the sample size n = 398. We need to know how well this 
sample mean x  predicts the actual and unknown population mean m. Our 
best guess is clearly that the average mpg for all cars is 23.5 mpg—it is after 
all pretty much the only number we have—but how good is that estimate?

In fact, we know more than just the sample mean: we also know that 
all sample means are distributed normally, according to the Central Limit 
Theorem, and that the distribution of all sample means (of which ours 
is just one) is normal with the same mean as the population mean and a 
standard deviation of 7 82 398 0 3920. .= .

Let us say we want to estimate a (unknown) population mean so that 
we are, say, 95 percent certain that the estimate is correct (or 90 percent, 
or 99 percent, or any other predetermined notion of certainty we might 
want to have). In other words, we need to compute a lower limit a and an 
upper limit b in such a way as to be 95 percent sure that our (unknown) 
population mean is between a and b (see Figure 5.1). That interval (a, b) 
is known as a 95 percent confidence interval for the unknown mean. Using 
standard probability notation we can rephrase this: we want to find a and 
b so that P a b( ) .< < =m 0 95  (see Figure 5.1).

Using symmetry and focusing on the part of the distribution that we 
can compute with Excel, this is equivalent to finding a value of a such 
that P(x < a) = 0.025, since P x a P a x b P x b( ) ( ) ( )< + < < + > = 1  and  
P x a P x b( ) ( )< = >  (see Figure 5.2).

But that is an inverse normal problem as described in Chapter 4 and 
the Excel function NORMINV will come to the rescue: a = NORMINV 
(0.025, 23.5, 0.3290) = 22.8552.

Similarly, to find b such that P x b( ) .> = 0 025  implies that b = 
NORMINV(0.975, 23.5, 0.3290) = 24.1448. Thus, we conclude that the 
unknown population mean is between 22.8551 and 24.1448 with 95 

we would like to know the average miles per gallon, engine size, and 
weight of all cars, based on this sample.

 www.betterbusinessdecisions.org/data/cars.xls
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percent certainty. Alternatively, we say that the 95 percent confidence 
interval for the average gas mileage of all cars is (22.8551, 24.1448).

We compute the sample mean to be 193 in.3 with a standard devi-
ation of 104.55 in.3 and the sample size n = 398. To find a 95 percent 
confidence interval, we need to find a such that P(x < a) = 0.025 and b 

Figure 5.1  P(a < m < b) = 0.95 and related probabilities

0.025

0
a m b

0.025

0.95
in

total

Figure 5.2  P(x < a) = 0.025 and related probabilities

0.95
in

total

0.025
0.025

0
a m b

Example: Again using our data on cars, as earlier, find the 95 percent 
confidence interval for the engine size of all cars.
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such that P(x > b) = 0.025, assuming that x is N(193 104 55 398, . ). 
Thus, since 104 55 398 5 2406. .= :

•	 a = NORMINV(0.025,193,5.2406) = 182.7286
•	 b = NORMINV(0.975,193,5.2406) = 203.2714

Therefore, our 95 percent confidence interval is (182.73, 203.27) or, 
in other words, we are 95 percent certain that the unknown population 
mean—in this case the size of the engines of all cars—is between 182.73 
and 203.2, with the mean 193 right in the middle.

Note that the preceding discussion is based on the Central Limit The-
orem. It lets us use a normal distribution for the sample means even if 
the underlying distribution of the original data is unknown. However, 
that approximation works best for large sample sizes n, so for small n we 
need to employ a slightly different procedure. Thus, we will summarize 
our procedure for finding a confidence interval for a population mean m, 
depending on the sample size n.

Large Sample Size

Here we will summarize the procedure to find a confidence interval for a 
large sample size n. In fact, we will consider n to be large if n > 30.

Note: the sample mean m will always be half way between a and b, 
that is, (a + b)/2 = m. You could use this relationship to quickly check 
your calculations.

Confidence Interval for Mean, n > 30 (with Excel): Suppose we have 
selected a random sample with size n > 30 and with sample mean m 
and sample standard deviation s. Then the p% confidence interval for 
the unknown population mean m is the interval (a, b), where

•	 a = NORMINV((1 − p)/2, m, s N )
•	 b = NORMINV((1 + p)/2, m, s n )
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We have N = 100 > 30, so our preceding procedure for a large sample 
size is valid. Thus, we find:

•	 a NORMINV NORMINV= −





= =1 0 95
2

7 8
0 8
100

0 025 7 8 0 08
.

, . ,
.

( . , . , . ) 77 6432.

	
a NORMINV NORMINV= −





= =1 0 95
2

7 8
0 8
100

0 025 7 8 0 08
.

, . ,
.

( . , . , . ) 77 6432.

•	 b NORMINV NORMINV= +





= =1 0 95
2

7 8
0 8
100

0 975 7 8 0 08
.

, . ,
.

( . , . , . ) 77 9568.

	
b NORMINV NORMINV= +





= =1 0 95
2

7 8
0 8
100

0 975 7 8 0 08
.

, . ,
.

( . , . , . ) 77 9568.

Note that a b
m

+ = + = = =
2

7 6432 7 9568
2

15 6
2

7 8
. . .

.  so that our 

calculations check out.
We have found that the average weight of all 8 oz packages of cheese 

is between 7.6432 oz and 7.9568 oz and we are 95 percent certain of this 
estimate.

Incidentally, this would mean that it is likely that these 8 oz packages 
of cheese are mislabeled! They should of course contain 8 oz of cheese on 
average, but we found that the (unknown) average is less than 7.9568 
with 95 percent certainty. In other words, there is a small chance that the 
average weight of all cheeses is indeed 8 oz, but that chance is less than 
5 percent. Thus, we are relatively certain that the cheese manufacturer is 
indeed mislabeling their cheese. This kind of argument, in fact, will be 
formalized in the next chapter on hypothesis testing. For now we will be 
content with obtaining estimates together with their certainty.

By the way, do you think a 99 percent confidence interval would be 
wider or narrower than the 95 percent interval (7.6432, 7.9568)? You will 

Example: We want to know the average weight of cheese that comes 
in 8 oz packages. We select a random sample of 100 packages, weigh 
them, and find that the sample mean is 7.8 oz with a standard devia-
tion of 0.8 oz. Estimate the average weight of all 8 oz packages, using 
a 95 percent confidence interval.
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find the answer later in this section but you should try to think about it 
already.

The preceding summary works well but it relies on Excel. We can, 
however, use the z-score introduced in “The Normal Distribution” sec-
tion to compute some confidence intervals without resorting to Excel at 
all.

According to our preceding summary, a standard normal distribution 
has a 95 percent confidence interval (a, b) where a = NORMINV(0.025, 
0, 1) = −1.96 and b = NORMINV(0.975, 0, 1) = 1.96. Thus, if we start 
with a normal distribution with mean m and standard deviation s, then 
(x − m)/s is standard normal and has a 95 percent confidence interval 
(−1.96, 1.96). In other words, the confidence interval goes from (x − m)/s 
= −1.96 to (x − m)/s = 1.96, or equivalently, solving for x, from x = m − 
1.96 s to x = m + 1.96 s. Thus, the 95 percent confidence interval for x is 
(m − 1.96 s, m + 1.96 s).

Now we can finish up this discussion by resorting to the Central 
Limit Theorem: if x has a distribution with mean m and standard 
deviation s then the sample means are normal with mean m and stan-
dard deviation s N . But then the sample means have a 95 percent 
confidence interval from m s N−1 96.  to m s N+1 96. . Putting 
everything together, we can summarize an alternative method of 
computing confidence intervals, at least for the ones most commonly 
used.

Confidence Interval for Mean, N > 30 (Alternate Version): Suppose 
we have selected a random sample with size N > 30 and with sample 
mean m and sample standard deviation s. Then:

•	 A 90 percent confidence interval goes from m
s
N

− ⋅1 645.  

to m
s
N

+ ⋅1 645. .

•	 A 95 percent confidence interval goes from m
s
N

− ⋅1 96.  

to m
s
N

+ ⋅1 96. .
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Note: As you could have (hopefully) guessed from our preced-
ing discussion, the 90 percent and 99 percent intervals use the con-
stants NORMINV(0.05, 0, 1) = −1.645 and NORMINV(0.005, 0, 
1) = −2.58, respectively. The improvement of this alternate version is 
based on the fact that you do not need Excel to compute any of these  
constants, a simple, plain calculator would do just fine here (unless 
you want to find an interval different from 90 percent, 95 percent, or 
99 percent).

Using our alternate version the problem is pretty easy:

•	 90 percent confidence: from 23 5 1 645
7 82
398

22 85. .
.

.− ⋅ =  to 

23 5 1 645
7 82
398

24 14. .
.

.+ ⋅ = , or in interval notation (22.85, 

24.14)

•	 95 percent confidence: from 23 5 1 96
7 82
398

22 73. .
.

.− ⋅ =  to 

23 5 1 96
7 82
398

24 27. .
.

.+ ⋅ = , or (22.73, 24.27)

•	 99 percent confidence: from 23 5 2 58
7 82
398

22 49. .
.

.− ⋅ =  to 

23 5 2 58
7 82
398

24 51. .
.

.+ ⋅ = , or (22.49, 24.51)

•	 A 99 percent confidence interval goes from m
s
N

− ⋅2 58.  

to m
s
N

+ ⋅2 58. .

Each of the intervals is centered at the mean m. The term s N  is 
known as the standard error.

Example: In an earlier example we analyzed the gasoline efficiency of 
cars. Recall that we looked at a sample of size N = 398 with m = 23.5 
and s = 7.82. Find a 90 percent, 95 percent, and 99 percent confidence 
interval for the average mpg of all cars.
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Thus, we are 90 percent certain that the average mpg for all cars is 
between 22.85 and 24.14; we are 95 percent certain that it is between 22.73 
and 24.27, and we are 99 percent certain it is between 22.49 and 24.51.

Usually you only need to compute one of these intervals, depend-
ing on your preferred level of certainty. There is a price to pay, though: 
the more certain you want to be, the bigger your interval will turn out. 
Eventually, a 100 percent confidence interval would be (−•, +•): you are 
clearly 100 percent certain that the unknown population mean is in that 
interval (after all, any number is) but that answer, while correct, does not 
help at all.

Small Sample Size

As we mentioned, the derivation of the formulas for confidence intervals 
uses the Central Limit Theorem, which works better for larger values of N 
(the sample size). For N > 30 we declare the sample size big enough but 
for smaller N we need to be more careful. In this case the method is based 
on the Student’s t-distribution, but is otherwise similar to before. Since all 
t-distributions have a mean of zero, we cannot generalize our first procedure 
to find confidence intervals. However, the alternate method works fine.

This is similar to the alternate method for large N, but the multiplier 
tp depends not only on which percentage interval we want to find but also 
on the sample size N. It turns out, however, that the multiplier tp is always 

Confidence Interval for Mean, N ≤ 30 (Alternate Version): Suppose 
we have selected a random sample with size N ≤ 30 and with sample 
mean m and sample standard deviation s. Compute the number tp = 
TINV(1 − p, N − 1), where TINV is inverse of the t-distribution with 
degrees of freedom df = N − 1 and p is the confidence interval to com-
pute. Then:

•	 The p% confidence interval goes from m t
s
Nb− ⋅  to 

m t
s
Nb+ ⋅ .
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greater than the corresponding multiplier zp for large N (e.g., zp = 1.96 for 
a 95 percent confidence interval) so that a confidence interval using the 
small sample size procedure is always bigger than the one using the large 
sample size procedure.

The sample size is N = 10, which is considered small, so that the “small 
size” procedure applies. We need to find t0.99 using N − 1 = 9 as degrees 
of freedom: t0.99 = TINV(0.01,9) = 3.2498. Thus, our 99 percent con-

fidence interval goes from m t
s
Np− = − ⋅ =15 3 2498

2 1
10

12 84.
.

.  to 

m t
s
Np+ = + ⋅ =15 3 2498

2 1
10

17 16.
.

. , or in interval notation (12.84, 

17.16).

Using Excel to Compute Confidence Intervals

We have used Excel to find various confidence intervals using the mean 
m and standard deviation s of a data set. This works fine even if we do not 
have access to the entire data, as long as we know N, m, and s. If we do 
know the complete data set, Excel offers yet another method to compute 
confidence intervals and a host of other parameters all at once and for 
several variables simultaneously.

Example: Suppose you want to measure the efficacy of a new blood 
pressure drug. Since trials involving human beings are expensive, you 
test the new drug on only 10 randomly selected patients. You find 
that the average decrease of blood pressure in the group tested was 15 
mmHg with a standard deviation of 2 mmHg. Since we are dealing 
with medication given to humans, we want to be very sure about my 
results, so we want to know a 99 percent confidence interval.

Example: Consider the following data set for approximately 400 cars 
that we analyzed before. Find 95 percent confidence intervals for the 
average miles per gallon, engine size, and weight of cars using this data.

 www.betterbusinessdecisions.org/data/cars.xls
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We will use the “Descriptive Statistics” tool of Excel’s Analysis Tool-
Pak. Load the data set specified, then choose “Data Analysis …” from 
the “Data” ribbon, and select “Descriptive Statistics” from the choice of 
available procedures (see Figure 5.3).

Select as input range the first few columns, including “Miles per Gal-
lon,” “Engine Size,” “Horse Powers,” and “Weight in Pounds” and make 
sure to check the “Labels in First Row” box, the “Summary Statistics” 
box, and the “Confidence Level for Mean,” as shown in Figure 5.3. We 
also need to specify the level of confidence for the “Confidence Level for 
Mean”—enter 90 percent and then click “Okay.”

You should see a number of parameters for our data set, including 
the familiar mean, median, variance, and standard deviation as well as 
our new descriptors standard error and confidence level (90 percent)—see 
Figure 5.4. To find the actual confidence intervals in the form we are used 
to, we need to add/subtract the Confidence Level to/from the Mean. In 
our case we have:

•	 90 percent confidence interval of average miles per gallon:
{{ from 23.4957 − 0.6468 = 22.8489 to 23.4957 + 0.6468  

= 24.1425

Figure 5.3  Descriptive statistics procedure options
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•	 90 percent confidence interval of average engine size:
{{ from 192.8577 − 8.6568 = 184.2008 to 192.8577 + 

8.6568 = 201.5145073
•	 90 percent confidence interval of average weight (in pounds)

{{ from 2960.9799 − 70.3841 = 2890.5957 to 2960.9798 + 
70.3842 = 3031.3640

Comparing Confidence Intervals

To finish up our discussion of estimating the mean we want to investigate 
the relation between the various intervals we could compute.

To answer this question, let us first look at an example: we compute 
both a 90 percent and a 99 percent confidence interval for the “Horse 
Power” in the preceding data set about cars, using Excel. The procedure of 
computing the numbers is similar to the one earlier; here are the answers:

•	 The sample mean for the “Horse Power” is 104.27.
•	 The 90 percent confidence level results in 3.19, so that the 

90 percent confidence interval goes from 104.27 − 3.19 to 
104.27 + 3.19, or from 101.08 to 107.46.

•	 The 99 percent confidence level results in 5.01, so that the 
99 percent confidence interval goes from 104.27 − 5.01 to 
104.27 + 5.01, or from 99.26 to 109.28.

Figure 5.4  Output of the descriptive statistics procedure

Example: Suppose we compute, for the same sample data, both a 90 
percent and a 99 percent confidence interval. Which one is larger?



	 Estimation	 151

Since the 99 percent interval (99.26, 109.28) includes the 90 percent 
interval (101.08, 107.46), we conjecture that in general a 99 percent con-
fidence interval is always larger than a 90 percent confidence interval (see 
Figure 5.5).

That makes sense: If we want to be more certain that we have captured 
the true (unknown) population mean correctly, we need to make our 
interval larger; the larger the interval, the better our chance of capturing 
the unknown population mean. Hence, a 99 percent confidence interval 
must be wider than a 90 percent confidence interval.

Another way to argue is that every 99 percent interval is automatically 
also a 90 percent interval, because if we are 99 percent certain to include 
the mean, we are in particular 90 percent certain to include it. The other 
way around is not true. Thus, the 99 percent interval must contain the 90 
percent interval and must therefore be wider.

Last, we want to compare the two methods for computing confidence 
intervals: the one based on a normal distribution (for N > 30) and the 
other one based on the t-distribution (for N ≤ 30). First, we will consider 
an example.

Figure 5.5  90 percent (top) versus 99 percent (bottom) 
confidence interval

100 102 104 106 108 110

Example: A crime scene investigator finds an unknown liquid at a 
crime scene. To help identify it, she decides to determine its boiling 
point. Heating up the entire liquid would destroy the evidence, so 
instead she takes nine small samples and determines their boiling 
points. It turns out that the sample mean is 86.5°C with a sample 
standard deviation of 0.6°C. Find a 95 percent confidence interval for 
the boiling point of the substance, using the small and the large sam-
ple size method (even though only one of the methods is appropriate, 
technically speaking).
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Small sample method: We need to find the multiplier t0.95 = 

TINV(0.05,8) = 2.3060 and the standard error s
N

= =0 6
9

0 2
.

. . Then 

the 95 percent confidence interval goes from 86.5 – 2.306 ⋅ 0.2 = 86.0388 

to 86.5 + 2.306 ⋅ 0.2 = 86.9612 (see Figure 5.6).
Large sample method: The multiplier for a 95 percent confidence inter-

val is always 1.96 while the standard error is the same as before. Thus, 
the interval goes from 86.5 – 1.96 ⋅ 0.2 = 86.108 to 86.5 – 1.96 ⋅ 0.2 = 
86.892 (see Figure 5.6).

Our conjecture is, therefore, that the small sample size method yields 
a wider interval than the large sample size method. This is indeed true 
because the t-distribution has “thicker” tails than the standard normal 
distribution; hence the cut-off value x0 where P x x(| | ) .> =0 0 05 will be 
larger for the t-distribution than for the standard normal one.

Therefore using the t-distribution will yield a more conservative, that 
is, wider, confidence interval for any sample size; we could do away with 
the large sample size procedure entirely and not be wrong. However, 
doing so might make our interval unnecessarily wide and our estimate for 
the population mean would not be as sharp as it could be.

Confidence Intervals for Difference of Means

Now we will discuss confidence intervals for the difference of two 
means. This procedure applies if we have two samples whose means 
we want to compare. There are many situations where this is useful; 
perhaps the most important one relates to medical trials, where people 
are frequently divided at random into two groups: one group called 
treatment that receives a new medical treatment and a second group 
called control that will receive a placebo instead. We can then determine 
the efficacy of the treatment by comparing the means of treatment and 
control.

Figure 5.6  Small sample size (bottom) versus large sample size (top) 
confidence interval

86.0 86.2 86.4 86.6 86.8 87.0
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We distinguish between two cases, that of equal variance and of 
unequal variances of the two populations.

Equal Variances

Suppose we have two populations with (unknown) means m1 and m2 and 
standard deviations s1 and s2, respectively. Moreover, assume that the 
two variances are equal, approximately. If we select independent sam-
ples of sizes n1 and n2, respectively, from these populations, then the dis-
tribution of the difference of the sample means x x2 1−  has joint mean 

m m m= −2 1  and pooled standard deviation S
n s n s

n np =
− + −

+ −
( ) ( )1 1

2
2 2

2

1 2

1 1
2  

as well as joint standard error SE S
n np= +1 1

1 2
. The confidence interval 

for m m2 1−  goes from ( )x x t SEp2 1− − ⋅  to ( )x x t SEp2 1− + ⋅ , where  
SE is the joint standard error, and the multiplier t TINV p dfp = −( , )1 ,  
TINV is the inverse of the t-distribution with degrees of freedom 
df n n= + −1 2 2  and p is the confidence interval to compute.

These formulas apply if the variances are approximately equal. How 
can you tell? As a guideline, compute the ratio of the sample variances 
s

s
1
2

2
2 . If that ratio is between 0.5 and 2.0, we will assume that the popu-

lation variances are approximately the same and the formulas listed earlier 
apply. In fact, there are quite a number of formulas here, but as the next 
example shows, if you compute them one at a time, things are not as bad 
as they look.

First we check the ratio of the sample variances to test the assumption 
of equal variances:

Example: We want to determine if there is a difference in the spending 
habits between men and women at soccer games. A randomly selected 
sample of 45 men spent an average of $21 with a standard deviation 
of $4. A randomly selected sample of 57 women, on the other hand, 
spent an average of $19 with a standard deviation of $3. Find a 95 
percent confidence interval for the difference of means and interpret 
the answer.
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s
s

1
2

2
2

2

2
4
3

16
9

1 778= = = . .

The ratio is less than 2, so that according to our guidelines our formu-
las apply. Next, we compute the pooled standard deviation Sp:

S
n s n s

n np =
− + −

+ −
= − + −

+ −
( ) ( ) ( ) ( )1 1

2
2 2

2

1 2

2 21 1
2

45 1 4 57 1 3
45 57 2

	
= ⋅ + ⋅ = =(

.
44 16 56 9

100
1208
100

3 476 .

Note that Sp is between the two original variances. Next, we go for the 
joint standard error SE:

SE S
n np= + = + = ⋅ =1 1

3 476
1
45

1
57

3 476 0 1994 0 6931
1 2

. . . . .

Finally we need to find the multiplier tp = TINV(1 – p,df  ), where 
df n n= + − =1 2 2 100 :

t TINVp = =( . , ) .0 05 100 1 9840 .

But now we have all ingredients in place to compute the given con-
fidence interval. It goes from (19 − 21) − 1.984 ⋅ 0.6931 = −3.3751 to 
(19 − 21) + 1.984 ⋅ 0.6931 = −0.62489.

Thus, our 95 percent confidence interval for the difference of means is 
(−3.3751, −0.62489). In particular, we can say with 95 percent certainty 
that the difference of population means m2 − m1 is negative, which implies 
that m2 < m1. In other words, we are 95 percent sure that women spend 
less money, on average, than men at soccer games. This seems obvious, 
considering the sample means for men and women, but just because one 
sample mean is less than another does not imply that the first population 
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mean is necessarily less than the other population mean. The point of the 
preceding example is that in this case we can infer from the sample about 
the population, and we can even specify the degree of certainty.

Note that tp = 1.9840 is close to 1.96, the multiplier we used for large 
sample size confidence interval for a single mean. This makes sense, since 
for large sample sizes the t-distribution is close to the normal distribution. 
However, for simplicity we will stick to using the t-distribution for differ-
ence of means regardless of the sample sizes.

Unequal Variances

The procedure in the case of unequal variances is similar except that the 
formula to compute the degrees of freedom for the t-distribution is differ-
ent (and much more complicated).

If the variances for the two populations are different, the confi-
dence interval for m2 − m1 as before goes from ( )x x t SEp2 1− − ⋅  to 

( )x x t SEp2 1− + ⋅  where SE
s
n

s
n

= +1
2

1

2
2

2
 and t TINV p dfp = −( , )1 , 

where TINV is the inverse of the t-distribution with degrees of freedom 

df

s
n

s
n

s
n

n

s
n

n

=
+













−
+







−

1
2

1

2
2

2

2

1
2

1

2

1

2
2

2

2

21 1

 (use the nearest integer) and p is the confidence interval to 

compute.
This procedure is similar to the one before but the degree of freedom 

for the t-distribution is a lot more complicated.

First, we need to decide on a confidence interval. We choose a 90 
percent confidence interval (which means that we are somewhat favorably 

Example: A female student did poorly in a class and suspects the 
teacher is biased against women. She complains to the department 
chair who investigates the situation. The chair selects a random sample 
of 21 women and 9 men who have previously taken a class with the 
teacher. It turns out that the average grade for the men is 3.4 with 
standard deviation 0.9 and for the women it is 2.9 with a standard 
deviation of 1.5. What can you conclude?
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disposed toward the student). Next, we check the ratio of the two stan-
dard deviations to determine which of our procedures applies:

s
s

1
2

2
2

2

2
0 9
1 5

0 81
2 25

0 36= = =.
.

.

.
. .

Since that ratio is not between 0.5 and 2, we need to assume unequal 
variances. We compute the standard error SE:

SE
s
n

s
n

= + = + = + =1
2

1

2
2

2

2 20 9
9

1 5
21

0 09 0 1071 0 4440
. .

. . . .

The multiplier t TINV df0 90 0 1. ( . , )= , but the degree of freedom is hard 
to compute:

df

s
n

s
n

s
n

n

s
n

n

=
+













−
+







−

=

1
2

1
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The next closest integer to that value is 24, so we know that df = 24. Thus

t TINV0 1 0 1 124 1 7109. ( . , ) .= = .

Now we have all the ingredients so that the 90 percent confidence interval 
goes from

(3.4 − 2.9) − 0.4440 ⋅ 1.7109 = −0.2596 to  
(3.4 − 2.9) + 0.4440 ⋅ 1.6572 = 1.2596.

This means, in particular, that our 90 percent confidence interval 
includes 0, and if the difference of means was indeed 0, there would be 
no difference in the scores of men and women. Thus, it is perfectly possi-
ble, based on our calculations, that on average the instructor in question 
shows no bias toward men or women. Therefore, the department chair 
will dismiss the accusation. Note that this does not mean that there truly 
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is no bias; it is just that based on the available data we cannot conclude 
that there is.

The question of whether there is or is not a difference in the average 
score is actually better suited for a “test of hypothesis,” which we will tackle 
in the next chapter. But first we want to apply the concept of estimation 
to proportion.

Note that another difference of means situation applies in the case of 
paired differences. This situation arises if we take two measurements from 
each member of a population. For example, we might be interested in 
figuring out whether consumption of wine or beer has a different impact 
on a person’s concentration. We could divide our participants at random 
into two groups, give wine to one and beer to the other, and measure the 
level of concentration for each group. This would be a difference of means 
situation, just as we covered already. Alternatively, I could give everyone 
in my population wine, measure their level of concentration, then (after 
waiting an appropriate time) give everyone beer, and again measure their 
concentration. This is advantageous, for example, if the total available 
sample size is small. We will not develop this situation here but refer the 
reader, for example, to www.real-statistics.com/students-t-distribution/
paired-sample-t-test/ for a nice discussion of this situation.

Estimating Proportions

As we mentioned in the previous chapter, many variables are categorical 
not numerical, so that the idea of estimating the mean does not even 
apply (since there is no mean). In special cases, however, we can resort to 
the idea of proportions and we could try to estimate them. This section 
will explain how that works.

Example: The General Social Science survey from 2008 includes data 
provided by a random sample of adults in the United States. You will 
find, among many other variables, answers to the question: Did humans 
develop from animals? Based on that sample data, provide an estimate 
of how many people in the entire United States think that way.

 www.betterbusinessdecisions.org/data/gss2008-short-2.xls
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Looking at the file we find the data for that question in column AH. 
The data is categorical, so the first thing we need to do is count all the 
“true” and all “false” values. As we learned in Chapter 2, Excel’s Pivot tool 
will do that for us. Here are the steps, in case you forgot:

1.	Click on the “Insert” ribbon and select the “Pivot” menu choice.
2.	Make sure the entire table is selected; then click “OK.”
3.	Drag the field “SCI: HUMANS DEVELOPED FROM ANIMALS” 

onto the Row Fields; then drag the same field also onto the Value 
Fields.

This should finish the pivot table (see Figure 5.7) and show that 651 
out of 1,316 answered “false” while 665 out of 1,316 answered “true.”

Incidentally, the total number of people participating in this survey 
was 2,023 but only 1,316 answered this particular question. Thus, as far 
as analyzing this question is concerned, the sample size is n = 1,316. 
To phrase this as a proportion problem, we need to define success (and 
failure): We call it a success if someone believes that humans developed 
from animals, since then the probability of success p is exactly what we 
want to know. What we do know is the ratio of success for our sample, 

which is p∧ = =665
1316

0 5052. . To finish the problem, we need to know 

the standard error SE and the multiplier m, as is usual for all confidence 
intervals.

Definition: Suppose x is a binomial random variable with probabil-
ity of success p. If we take a random sample of size n, we can com-

pute the sample proportion of success p∧  as p
x
n

∧ = , where x counts 

the number of successes. Then the standard error SE of the sample 

is SE
p p

n
=

⋅ −∧ ∧( )1
 and we can compute a confidence interval for p 

from  p Z SEp
∧ − ⋅  to p Z SEp

∧ + ⋅  where zp = 1.645 for a 90 percent 

confidence interval, zp = 1.96 for a 95 percent confidence interval, and 
zp = 2.54 for a 99 percent confidence interval. This procedure is valid 
as long as there are at least 10 successes and 10 failures.
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Now we can complete our example. Note that there were over 600 suc-
cesses and failures so that the assumptions of our procedure are satis-

fied. We know that p∧ = =665
1316

0 5052.  so that the standard error is 

SE
p p

n
=

−
= ⋅ =

∧ ∧( ) . .
.

1 0 5052 0 4948
131

0 0138. Finally, suppose we 

want to compute a 95 percent confidence interval. It goes from p∧ − 1.96 
SE = 0.5052 − 1.96 ⋅ 0.0138 = 0.47815 to p∧ + 1.96 SE = 0.5052 + 1.96 
⋅ 0.0138 = 0.53225.

Summary

Instead of providing a point estimate for an unknown population parameter 
we provide an interval instead, called confidence interval. The interval is 
based on a random sample of size n. Three particular confidence intervals 
are most common: a 90 percent, a 95 percent, or a 99 percent confidence 
interval (other intervals are possible). Each interval has the form:

from P m SE− ⋅  to P m SE+ ⋅ , or P m SE± ⋅ ,

where P is a point estimator for the parameter being estimated, SE is the 
standard error, and m is a multiplier based on the standard normal or the 
t-distribution. The quantity m ⋅ SE is known as the margin of error.

•	 Population mean µ, large sample: point estimator P x= , 

standard error SE
s
n

= , multiplier m = 1.645, 1.96, or 2.54

Figure 5.7  Counts for the question: did humans develop from animals?
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•	 Population mean µ, small sample: point estimator P x= ,  

standard error SE
s
n

= , multiplier m = TINV(0.05, df  ), 

TINV(0.025, df  ), or TINV(0.005, df  ) with df = n − 1
•	 Difference of means µ2 − µ1, equal variances  

(if 0 5 21
2

2
2. < <

s
s

): point estimator P x x= −2 1 , pooled 

standard deviation S
n s n s

n np =
− + −

+ −
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1 2
, multiplier m = TINV(0.05, df  ), 

TINV(0.025, df  ), or TINV(0.005, df  ) with df = n1 + n2 − 2
•	 Difference of means µ2 − µ1, unequal variances (if 
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 (use the closest integer)

•	 Probability of success: point estimator p
x
n

∧ = , standard error 

SE
p p

n
=

−∧ ∧( )1 , multiplier m = 1.645, 1.96, or 2.54

The preceding multipliers refer, in that order, to a 90 percent, 95 
percent, and 99 percent interval. The certainty of the estimate is denoted 
by its confidence level.
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Excel Demonstration

Company P wants to estimate the mean sales volume for all employees 
within the company. The sales director selects a sample of employees and 
calculates the average sales. The director now wants to be able to construct 
a confidence interval for the average of sales for the entire population of 
sales representatives in the company. The director decides that a 95 per-
cent confidence level is sufficient and pulls the average sales from a sample 
of 14 representatives:

Rep 1: 24,000	 Rep 2: 22,000	 Rep 3: 23,000
Rep 4: 21,000	 Rep 5: 22,000	 Rep 6: 22,000
Rep 7: 18,000	 Rep 8: 19,000	 Rep 9: 21,000
Rep 10: 21,000	 Rep 11: 18,000	 Rep 12: 19,000
Rep 13: 21,000	 Rep 14: 17,000

Step 1: Insert the data into Excel with the labels in column A and the 
numbers in column B.

Step 2: Run the descriptive statistics: Go to “Data | Data Analysis 
| Descriptive Statistics.” For the “Input Range,” select Cells B1 
through B14. Check the “Summary Statistics” and the “Confidence 

Figure 5.8  Parameters for the descriptive statistics procedure
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Level for Mean” boxes and type in 95 percent into the “Confidence 
Level” field. Compare your input with Figure 5.8; then click OK.

After you click OK, the descriptive statistics are provided, which are 
as follows:

Column1
Mean 20,571.42857

Standard Error 551.8628365

Median 21,000

Mode 21,000

Standard Deviation 2,064.881659

Sample Variance 4,263,736.264

Kurtosis −0.82560218

Skewness −0.240896459

Range 7,000

Minimum 17,000

Maximum 24,000

Sum 288,000

Count 14

Confidence Level (95.0%) 1,192.227175

Step 3: Construct the upper and lower limits of the confidence inter-
val. Recall that the “confidence level” is the product of the appropri-
ate multiplier and the standard error.

•	 Lower Limit: Mean (20,571.42) − Confidence Level 
(1,192.22) = 19,379.20

•	 Upper Limit: Mean (20,571.42) + Confidence Level 
(1,192.22) = 21,763.64

You could write the 95 percent confidence interval as: $19,379.20  
≤ m ≤ $21,763.64. In other words, you can be 95 percent confi-
dent that the average sales per representative is somewhere between 
$19,379.20 and $21,763.64.



CHAPTER 6

Hypothesis Testing

Preview: It is one thing to develop a hypothesis but quite another to actually 
prove it beyond a reasonable doubt. Your intuition may lead you to believe 
that men and women who are obese are more likely to die early than those 
who are of normal weight. While that conclusion may seem logical, you can-
not simply assume that it is true. In order to prove or disprove the hypothesis, 
you must first develop a series of experiments to determine the truth or false-
hood of your assumption. You might look at the distributions of weight across 
a given population and compare that information to mortality statistics. In 
the case of early mortality and excess weight, the purpose of the study is to 
find out whether obese individuals do in fact have shorter life spans than 
their thinner counterparts. When developing a statistical test, we introduce 
a null hypothesis, which refers to the status quo, and a competing alternative 
hypothesis. We then gather data that in turn will support either the null or the 
alternative hypothesis. If we find sufficient evidence to support the alternative, 
we reject the null hypothesis. In the case outlined earlier, the null hypothesis 
would mean there is no difference in longevity between obese individuals and 
nonobese ones, whereas the alternative one is that nonobese people would live 
longer. We will develop statistical tests for a mean, a difference of means test, 
and a test for a proportion.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Describe the basic principles of hypothesis testing
2.	Use hypothesis testing to test for a mean, a difference of means, and 

a proportion
3.	Evaluate the assumptions of each hypothesis-testing procedure
4.	Avoid the pitfalls involved in hypothesis testing
5.	Describe the ethical issues involved in hypothesis testing
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Introduction

In the previous chapter we investigated how to provide estimates for pop-
ulation parameters based on sample data, complete with error estimation. 
Now we want to handle “Yes or No” questions such as “Is the average 
weight of a bag of chips really 450 gr?” or “Is new medication X better 
than medication Y?”; of course we want to include an error estimate with 
our answer. The technical term for what we will describe in this chapter 
is “hypothesis testing.”

Innocent Until Proven Guilty: Hypothesis Testing  
as a Trial by Jury

Consider the following case: A company is labeling their product to 
weigh, on average, 10 oz. However, the last time we bought that product 
it only weighed 8.5 oz, so either we were unlucky to get one of the rare 
but possible cases where the weight differs a lot from the listed mean or 
the manufacturer is cheating and puts less product in the package than 
they are claiming on the label. We suspect that the company is indeed 
cheating and want to determine whether our suspicion is true or not.

If the company was correct in saying that their packages weigh 10 oz 
on average, it does not mean that each and every package weighs exactly 
10 oz. However, it is likely that most packages weigh close to 10 oz and 
only a few weigh a lot less or more. Conversely, if I found a package that 
weighs a lot more or a lot less than 10 oz, then it seems likely that the 
company’s claim may be wrong. In fact, the chances that the original 
claim is incorrect are higher the more the weights of our sample differ 
from 10 oz.

As another example, we suppose a new medical drug claims to work 
better in lowering a person’s cholesterol level than currently existing drugs. 
From past experiments we know that the existing drugs lower cholesterol 
levels by 10 percent, on average. We want to determine whether the new 
drug is really more effective than the existing ones.

To check the assumption that the new drug works better than old 
drugs, we could test it on a sample of, say, 100 patients. If we find that 
the drug for these 100 patients lowers the cholesterol level by more than 
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10 percent it seems likely that it indeed works better than the other drugs. 
In fact, the higher the difference to 10 percent, the more likely it seems 
that the drug is really better. The question is: What exactly do we mean 
when we say that the difference should be higher than 10 percent. Is 
11 percent already good enough? Or should we require a difference of 
20 percent before conceding that the new drug is better than the old ones.

In general, we are interested in testing a particular hypothesis and we 
want to decide whether it is true or not. Moreover, we want to associate a 
probability with our decision so that we know how certain (or uncertain) 
we are about our decision.

We will approach this problem like a trial. Recall that in a standard 
trial in front of a judge or jury there are two mutually exclusive hypothe-
ses: The defendant is either guilty or not guilty.

During the trial evidence is collected and weighed either in favor of 
the defendant being guilty or in favor of the defendant being not guilty. 
At the end of the trial the judge (or jury) decides between the two alter-
natives and either convicts the defendant (if he/she was assumed to be 
proven guilty beyond a reasonable doubt) or lets them go (if there was 
sufficient doubt in the defendant’s guilt). Note that if the judge (or jury) 
decides a defendant is not guilty, it does not necessarily mean he/she is 
innocent. It simply means there was not enough evidence for a convic-
tion. Now we will formalize this procedure.

Definition: A statistical test involves four elements.

•	 Null Hypothesis (written as H0): The “tried and true 
situation,” “the status quo,” or “innocent until proven 
guilty.”

•	 Alternative Hypothesis (written as Ha): This is what you 
suspect is really true, the new situation, “guilty beyond a 
reasonable doubt”—in general, it is the opposite of the 
null hypothesis.

•	 Test Statistics: Collect evidence—in our case we usually 
select a random sample and compute some number based 
on that sample data.
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•	 Rejection Region: Do we reject the null hypothesis (and 
therefore accept the alternative, which was the opposite 
of null hypothesis) or do we declare our test inconclusive? 
Moreover, if we do decide to reject the null hypothesis, 
what is the probability that our decision is correct?

Please note that our final conclusion is always one of two options: We 
either reject the null hypothesis or we declare the test inconclusive. We 
never conclude anything else, such as accepting the null hypothesis.

•	 Rejecting the null hypothesis when in fact it is true is called 
type-1 error. It should, of course, be small so that we can be 
confident in our decision to reject the null hypothesis.

•	 Accepting the null hypothesis when in fact it is false is called a 
type-2 error. This type of error is not covered by our procedure 
since we will never accept the null hypothesis; we instead 
declare our test inconclusive if necessary.

Most importantly, your conclusion should always be stated in terms 
that are easy to understand for anyone, even if they had no statistical 
training, and it is preferable using the terms of the original hypothesis

Since the sample mean is 11.3, which is more than other drugs, it 
looks like this sample mean supports the claim (because the mean from 
our sample is indeed bigger than 10). But the question is whether that 
difference is so big that it could not have happened by chance if the null 

Example: A new antihypertensive drug is tested. It is supposed to 
lower blood pressure more than other drugs. Other drugs have been 
found to lower the pressure by 10 mmHg on average, but we suspect 
(or hope) that our new drug will work better. To collect evidence, we 
select a random sample of size n = 62 (say), administer the new drug, 
and find a sample mean of 11.3 and a sample standard deviation of 
5.1. Is the new drug better than the old drugs, that is, does the new 
drug lower blood pressure more than other drugs?
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hypothesis was true. In other words, we want to know if the difference 
is statistically significant. To find out, we set up the four components of a 
statistical test.

•	 The null hypothesis H0 is the “tried and true” assumption that 
all drugs are about the same and the new drug has about the 
same effect as all other drugs. Thus, the null hypothesis is that 
the average decrease in blood pressure (the population mean) 
is 10 mmHg, just as for all other drugs. Thus H0: m = 10.

•	 The alternative hypothesis Ha is what we hope to be true, 
that is, the new drug results in a higher decrease than the 
traditional dugs. Thus, the alternative hypothesis is that the 
average decrease in blood pressure (the population mean) is 
different from 10 mmHg. Hence Ha: m ≠ 10.

•	 For our test statistics we collect evidence in the form of a 
random sample. We found that for this random sample the 
sample mean is 11.3 mmHg, the sample standard deviation 
is 5.1 mmHg, and the sample size N is 62. These figures 
convert into a standard z-score of z = 2.007 (as we will 
soon see).

•	 Rejection region: Finally we use the test statistics z = 2.007 
to compute the probability p that this could happen due 
to chance if the null hypothesis was true. This p is the 
probability of committing an error in deciding to reject the 
null hypothesis when in fact it was true (the type-1 error). 
If that error is small, we do indeed decide to reject the 
null hypothesis; otherwise we will declare the test to be 
inconclusive. It turns out that p = 0.044 or 4.4 percent 
(see the following text for the computation).

So, if we decide to reject the null hypothesis, this decision is invalid 
with a probability of about 4 percent. That is an acceptable risk for us, so 
we indeed decide to reject the null hypothesis and thus accept the alterna-
tive. This means, in terms of our original problem, that there is sufficient 
evidence to conclude that the new drug is better than the existing drugs in 
lowering blood pressure. In fact, our alternative hypothesis is that the new 
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drug is different from the old drugs, but since the sample mean is indeed 
bigger, the difference must be that the new drug works better.

Testing Hypothesis for Mean

In this section we will answer the question: Is the population mean m 
equal to a particular number or not? We will follow the outline of a statis-
tical test as described in the previous section, but adjust the four elements 
of the test to our situation of testing for a population mean. It turns out 
that such a test is slightly different depending on the sample size n.

Large Sample Size (n > 30)

Our first test is a test for a sample mean when the sample size is relatively 
large:

•	 Null hypothesis:  H0: m = m0 where m0 is a fixed number
•	 Alternative hypothesis:  Ha: m ≠ m0

•	 Test statistics:  z
x

s n
0

0=
−

( )
m

•	 Rejection region:  p P z Z NORMDIST ABS z true= > = −2 2 1 0 10 0( ) ( ( ( ), , , )) 
p P z Z NORMDIST ABS z true= > = −2 2 1 0 10 0( ) ( ( ( ), , , )). If p is small, reject the null hypothesis; 

otherwise the test is inconclusive.

In other words, we compute the z-score to help us decide between 
null and alternative hypotheses. This makes sense, since we know that 
sample means are normal by the Central Limit Theorem if the sample 
size is large. Thus, assuming the null hypothesis is true, the distribution 
of sample means itself has mean m0 with standard deviation s n . There-
fore, the difference between the actually measured sample mean x  and 
the assumed population mean m0 being large would be unlikely, so that if 
that difference was indeed large the null hypothesis could not be true and 
we are inclined to reject it. Converting to z-scores enables us to compute 
the actual probability p that the sample mean could be as far away from m0 
as has been measured, assuming the null hypothesis was true.
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In most cases you pick a predetermined number a, called the level of 
significance, before you start any calculations, that specifies the maximum 
error you are willing to accept. Then you conduct the test as described 
and reject the null hypothesis if p < a; if not, the test was inconclusive. 
Typically, a = 0.1, a = 0.05, or a = 0.01 (compare this to a 90 percent, 95 
percent, or 99 percent confidence interval, respectively).

Let us review the previous example, now that we have introduced the 
appropriate formulas.

The two competing hypotheses are:

H0 : m = 10.0

Ha : m ≠ 10.0.

The test statistics is:

z
x

s n
0

0 11 3 10 0
5 1 62

1 3
0 6477

2 007=
−

( ) = − = =
m . .

.
.

.
. .

The rejection region is:

p P z z NORMDIST ABS true= > = − = =2 2 1 2 007 0 1 2 0 022 0 040( ) ( ( ( . ), , , )) * . . 44.

Since 0.044 = p < a = 0.05, we reject the null hypothesis and accept 
the alternative. Thus, the new drug is more effective than the old one with 
an error of 4.4 percent.

Example: A new antihypertensive drug is tested. It is supposed to lower 
blood pressure more than other drugs. Other drugs have been found 
to lower the pressure by 10 mmHg on average, so we suspect (or hope) 
that our drug will lower blood pressure by more than 10 mmHg. To 
collect evidence, a random sample of size n = 62 was selected (say), 
which was found to have a sample mean of 11.3 and a sample standard 
deviation of 5.1. Conduct a test at the a = 0.05 level of significance.
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Comments

•	 The null hypothesis for this test is that the population mean is 
equal to a particular number. That number is usually thought 
of as the “default value,” the “status quo,” or the “best guess” 
value. It is usually mentioned explicitly somewhere in the 
problem.

•	 The alternative hypothesis could actually be split into two 
cases: a so-called two-tailed test where m ≠ m0 or a one-tailed 
test where either m > m0 or m < m0. However, for simplicity we 
will restrict ourselves to the more conservative two-tailed case 
here while discussing one-tailed tests in a later section.

•	 Please note that even if we reject a null hypothesis and hence 
accept the alternative it is still possible that the null hypothesis 
is true. However, the probability with which that can happen 
is p, which is small if we choose this answer (smaller than our 
predetermined comfort level a). This error of rejecting the 
null hypothesis even though it is true is called a type-1 error.

•	 In our statistical language there are two outcomes for a test: 
reject H0 or inconclusive test. For real problems, however, you 
should always phrase your conclusion in terms that are rele-
vant for the particular problem and easy to understand even if 
you knew nothing about statistics.

After all this talk it is high time for another example.

Example: Bottles of ketchup are filled automatically by a machine that 
must be adjusted periodically to increase or decrease the average con-
tent per bottle. Each bottle is supposed to contain 18 oz. It is import-
ant to detect an average content significantly above or below 18 oz so 
that the machine can be adjusted; too much ketchup per bottle would 
be unprofitable, while too little would be a poor business practice and 
open the company up to law suits about invalid labeling. We select 
a random sample of 32 bottles filled by the machine and compute 
their average weight to be 18.24 with a standard deviation of 0.7334. 
Should we adjust the machine? Use a comfort level of 5 percent.
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We can see right away that the average weight of our sample, being 
18.24 oz, is indeed different from what it is supposed to be (18 oz), but 
the question is whether the difference is statistically significant (or “large 
enough” so that it would be unlikely if the null hypothesis was true). Our 
statistical test for the mean will provide the answer. The two competing 
hypotheses are:

H0: m = 18.0

Ha: m ≠ 18.0.

The test statistics is:

z
x

s n
0

0 18 24 18 0
0 7334 32

0 24
0 1296

1 852=
−

( ) = − = =
m . .

.
.

.
. .

The rejection region is defined via:

p P z z NORMDIST true= > = −( ) =2 2 1 1 852 0 1 0 0640( ) ( . , , , ) . .

This time we have 0.064 = p > a = 0.05 so that our test is inconclusive. 
For our example, this means that we do not know conclusively if the 
machine works correctly or not. In particular, we would not adjust the 
machine at this time.

Null hypothesis: H0: m = 20, that is, there is no improvement, every-
thing is as it has always been.

Example: In a nutrition study, 48 calves were fed “factor X” exclusively 
for six weeks. The weight gain was recorded for each calf, yielding a 
sample mean of 22.4 lb and a standard deviation of 11.5 lb. Other 
nutritional supplements are known to cause an average weight gain of 
about 20 lb in six weeks. Can we conclude from this evidence that, in 
general, a six-week diet of “factor X” will yield an average weight gain 
of 20 lb or more at the 1 percent level of significance? In other words, 
is “factor X” feed significantly better than standard supplements?
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Alternative hypothesis: Ha: m ≠ 20 (we actually want to know whether 
“factor X” results in higher average weight gains, so that our alternative 
hypothesis really should be Ha: m > 20 but that would be a one-tailed test, 
which we will not conduct.

Test statistics: Sample mean is 22.4, standard deviation is 11.5, and 

sample size is 48. That makes the z-score z0
22 4 20 0
11 5 48

1 446= − =. .
.

. .

We finally use Excel to compute p = 2 * (1 − NORMSDIST(1.446)) = 
0.148 or 14.8 percent. This probability is relatively large: If we reject the 
null hypothesis, the probability that we make a mistake is 14.8 percent. 
This is larger than our comfort level of 1 percent, so our conclusion is: 
The test is inconclusive, which means there is not enough evidence to 
decide whether “factor X” feed is better (or worse) than the regular feed.

We can easily compute (using Excel) that the sample mean is −10.9 
and the standard deviation is 21.33. The sample size is N = 20, which is 
a problem, since N should be at least 30 to use the procedure introduced 
earlier. So, we need to define the procedure to test for a sample mean if 
the sample size is small before we can continue.

Small Sample Size (n ≤ 30)

In this section we will adjust our statistical test for the population mean to 
apply to small sample situations. Fortunately (sic!), this will be easy—in 

Example: A group of secondary education student teachers were given 
2.5 days of training in interpersonal communication group work. The 
effect of such a training session on the dogmatic nature of the stu-
dent teachers was measured as the difference of scores on the “Rokeach 
dogmatism test” given before and after the training session. The differ-
ence “post minus pre score” was recorded as follows:

−16, −5, 4, 19, −40, −16, −29, 15, −2, 0, 5, −23, −3,  
16, −8, 9, −14, −33, −64, −33.

Can we conclude from this evidence that the training session makes 
student teachers less dogmatic (at the 5 percent level of significance)?
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fact, once you understand one statistical test, additional tests are easy 
since they all follow a similar framework.

The only difference in performing a “small sample” statistical test for 
the mean as opposed to our “large sample” test is that we do not use 
the normal distribution as prescribed by the Central Limit theorem, but 
instead the more conservative t-distribution introduced earlier.

Fix an error level you are comfortable with (as usual, something like 10 
percent, 5 percent, or 1 percent is most common) and denote that “comfort-
able” error level by a (our level of significance). Then set up the test as follows:

•	 Null hypothesis: H0: m = m0, where m0 is a fixed number
•	 Alternative hypothesis: Ha: m ≠ m0

•	 Test statistics: t
x

s n
0

0=
−

( )
m

•	 Rejection region: p P t t TDIST ABS t df= > =2 20 0( ) ( ( ), , ),  
where df = n − 1. If p < a, reject the null hypothesis; 
otherwise the test is inconclusive.

Note that the null and alternative hypothesis for this test are the same as 
before; the calculation of the test statistics is the same as well, but the result 
is called t0 instead of z0. The final probability p, however, is computed using 
the t-distribution. To see how this works, let us reconsider our last example.

Example: A group of secondary education student teachers were given 
2.5 days of training in interpersonal communication group work. The 
effect of such a training session on the dogmatic nature of the student 
teachers was measured as the difference of scores on the “Rokeach 
dogmatism test” given before and after the training session. The differ-
ence “post minus pre score” was recorded as follows:

−16, −5, 4, 19, −40, −16, −29, 15, −2, 0, 5, −23, −3, 16,  
−8, 9, −14, −33, −64, −33.

Can we conclude from this evidence that the training session makes 
student teachers less dogmatic at the 5 percent level of significance?
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We have already computed the mean x = −10 9.  and the standard 
deviation s = 21.33. The sample size is N = 20, so our test goes as follows:

•	 Null hypothesis: H0: m = 0
•	 Alternative hypothesis: Ha: m ≠ 0
•	 Test statistics: 

t
x

s n
0

0 10 9 0
21 33 20

10 9 10
21 33

2 285=
−

( ) = − − = = −
m .

.
.

.
.

•	 Rejection region: p = 2P(t > 2.285) = TDIST (2.285,20 − 1,2)  
= 0.034. Since 0.034 = p < a = 0.05, we reject the null 
hypothesis and conclude that the training indeed had an impact.

To be picky, we do not want to know whether the training had an 
impact (m ≠ 0) but we really want to know if the training made the stu-
dent teachers less dogmatic (m < 0). Technically this amounts to a one-
tailed test, which we will cover a little later in this chapter. Here is one 
more example.

By now statistical testing is second nature:

•	 Null hypothesis: H0: m = 162
•	 Alternative hypothesis: Ha: m ≠ 162

Examples: Suppose GAP, the clothing store, wants to introduce their 
line of clothing for women to another country. But their clothing sizes 
are based on the assumption that the average size of a woman is 162 
cm. To determine whether they can simply ship the clothes to the new 
country they select five women at random in the target country and 
determine their heights as follows:

149, 165, 150, 158, 153.

Should they adjust their line of clothing or they ship them without 
change? Make sure to decide at the 0.05 level.
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•	 Test statistics: t
x

s n
0

0 155 162
6 59 3

2 37=
−

( ) = − = −
m

.
.

•	 Rejection region: p = 2P(t > 2.37) = TDIST(2.37,5 − 1,2) = 
0.077. Since 0.077 = p > a = 0.05, the test is inconclusive.

Note that our test is inconclusive, which does not mean that we accept 
the null hypothesis. Thus, we do not recommend anything to GAP. Using 
common sense, however, we could suggest that GAP conduct a new study 
but this time with a random sample of (much) larger size, something like 
100 or more. Hopefully the new study will provide statistically significant 
evidence.

Difference of Means Test

Our next test applies to differences of means. Such tests are common 
when you conduct a study involving two groups. In many medical trials, 
for example, subjects are randomly divided into two groups: One group 
receives a new drug and the second receives a placebo (sugar pill). Then a 
researcher measures any differences between the two groups to check the 
efficacy of the new medication.

While our test for a single mean used the sample size to distinguish 
between two slightly different procedures, a test for the difference of two 
means uses the variances of the two underlying populations to distinguish 
between two different procedures. We use the ratio of sample variances 
s s1
2

2
2 to decide which case to use:

If the ratio of sample variances s s1
2

2
2 is between 0.5 and 2 we 

assume that the population variances are approximately equal and 
use the procedure for equal variances, otherwise that for unequal 
variances.

Equal Variances

Suppose that two independent samples with sizes n1 and n2, are selected from 
two populations that have approximately the same population variances. 
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Compute the pooled standard deviation S
n s n s

n np =
−( ) + −( )

+ −
1 1

2
2 2

2

1 2

1 1
2

 as 

well as joint standard error SE S
n np= +1 1

1 2
. Then a two-sample test 

about the difference of means goes as follows:

•	 Null hypothesis: H0: m1 − m2 = c, where c is some constant
•	 Alternative hypothesis: Ha: m1 − m2 ≠ c

•	 Test statistics: t
x x c

SE0
1 2=

− −
, where SE is the joint standard 

error (see earlier)
•	 Rejection region: p P t t TDIST ABS t df= > =2 20 0( ) ( ( ), , )  

with df = n1 + n2 − 2. If p is small, reject the null hypothesis; 
otherwise the test is inconclusive.

As in previous test, “p is small” means that p < a for some fixed number 
a, typically 0.1, 0.05, or 0.01.

Using Excel we find the means and standard deviations of the two vari-
ables as:

Example: Two procedures to determine the amylase in human body 
fluids were studied. The “original” method is considered to be an 
acceptable standard method, while the “new” method uses a smaller 
volume of water, making it more convenient as well as more econom-
ical. Proponents of the new method claim that the amylase values 
obtained by the new method yields better results, on average, than the 
original method. A test using the original method was conducted on 
14 subjects and the test with the new method on 15 subjects, giving 
the data displayed in Table 6.1. Test the claim at the 1 percent level.

Table 6.1  Data for amylase analysis example

Original 38 48 58 53 75 58 59 46 69 59 81 44 56 50

New 46 57 73 60 86 67 65 58 85 74 96 55 71 63 74
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n1 14= , x1 56 714= .  and s1 11 932= .

n2 15= , x2 68 667= .  and s2 13 281= . .

Note that 
s
s
1
2

2
2

2

2
11 932
13 281

0 8= =.
.

. , which is between 0.5 and 2 so that we can 

indeed use the procedure for equal variances. The test for the difference 
of means therefore is:

•	 Null hypothesis: m1 − m2 = 0
•	 Alternative hypothesis: m1 − m2 ≠ 0

{{ Pooled standard deviation:
	

S
n s n s

n np =
−( ) + −( )

+ −
= ⋅ + ⋅

+ −
1 1

2
2 2

2

1 2

2 21 1
2

13 11 932 14 13 281
14 15 2

. . == 12 649.

{{ Joint standard error: 

SE S
n np= + = ⋅ =1 1

12 649 0 3716 4 7005
1 2

. . .

•	 Test statistic: t0
56 714 68 667

4 7005
11 952

4 7005
2 5427= − = − = −. .

.
.

.
.

•	 Rejection region: 
p P t t TDIST= > = =2 2 5427 27 2 0 0170( ) ( . , , ) . . Since p is 

(just barely) larger than 0.01, our test is inconclusive at the 
1 percent level.

This means that there is not enough evidence to conclude that the two 
methods of checking amylase are different. In particular, neither method 
can be called better than the other. Now it is tempting to change the 
value of a to 0.05, because at that level the test would be conclusive. But 
that is not correct. The value of a should be chosen carefully prior to 
starting your experiment. Presumably whatever reason made you decide 
on a 1 percent value has not changed. Adjusting a after the fact amounts 
to fixing the data to support whatever conclusion you want to come out.
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Unequal Variances

Suppose we have two independent samples with sizes n1 and n2, selected 
from populations with unequal variances. Compute the joint standard 

error SE
s
n

s
n

= +1
2

1

2
2

2
. Then a two-sample test about the difference of 

means goes as follows:

•	 Null hypothesis: H0: m1 − m2 = c, where c is some constant
•	 Alternative hypothesis: Ha: m1 − m2 ≠ c

•	 Test statistics: t
x x c

SE0
1 2=

− −
, where SE is the standard 

error defined earlier
•	 Rejection region: p = 2P(t > |t0|) = TDIST(ABS(t0),df,2)

with degree of freedom df

s
n

s
n

s
n

n

s
n

n

=
+













−
+







−

1
2

1

2
2

2

2

1
2

1

2

1

2
2

2

2

21 1

 (use the nearest 

integer). If p is small, reject the null hypothesis; otherwise the 
test is inconclusive

As usual, “p is small” means that p < a for some fixed number a, typically 
0.1, 0.05, or 0.01.

Since we have the raw data we could use the appropriate test proce-
dure from the Analysis ToolPak (which you should try as practice—see 
the following text), but we will first use the manual procedure outlined 

Example: The data file employeenumeric-split.xls contains the salaries 
for the Acme Widget Company, separated by sex. Use that data to test 
the hypothesis that women make at least $10,000 less on average than 
men at that company.

 www.betterbusinessdecisions.org/data/employeenumeric-split.xls
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earlier. First, we need to find the mean and standard deviations for the 
two samples of our data.

Mean ($) Standard deviation ($) N
Males 41,442 19,499.21 258

Females 26,032   7,558.02 216

Next, we need to decide if the variances are equal or not by checking 
the ratio of the sample variances:

s
s
1
2

2
2

2

2
19 499 21
7 558 02

6 65= =, .
, .

. .

This ratio is greater than 1, so we need to use the “unequal variance” 
procedure. Now we can proceed with our two-sample test as usual:

•	 Null hypothesis: H0: m1 − m2 ≠ $10,000
•	 Alternative hypothesis: Ha: m1 − m2 ≠ $10,000

{{ Joint standard error: 

SE
s
n

s
n

= + = + =1
2

1

2
2

2

2 219499 21
258

7558 02
216

1318 4
. .

.

{{ Degree of freedom: df

s
n

s
n

s
n

n

s
n

n

=
+













−
+







−

=

1
2

1

2
2

2

2

1
2

1

2

1

2
2

2

2

21 1

344..26  (closest 

integer) so that df = 344

	 Test statistics: t0
41442 26032 10000

1318 4
4 103= − − =( )

.
.

•	 Rejection region: p = 2P(t > 4.103) = TDIST(4.103,344,2) 
= 0.00005. Since p < 0.01, we reject the null hypothesis and 
accept the alternative.

Thus, the difference in average salary between men and women at the 
Acme Widget Company is at least $10,000 and we are very sure that this 
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answer is correct (since p = 0.00005). Note that our test actually confirms 
that the difference is not equal to $10,000, but looking at the actual val-
ues of the means as computed by Excel we can clearly conclude that the 
difference must be more than $10,000 (it is certainly not less). In fact, a 
one-tailed test would be more appropriate here (see the “One-Tailed and 
Two-Tailed Tests” section), which would show indeed that men make at 
least $10,000 more than women.

Excel actually provides several procedures in the Analysis ToolPak 
to help conduct this test, including the “t-test assuming unequal vari-
ances” and the “t-test assuming equal variances.” We leave the details to 
you, but the output Excel produces for the last two examples is shown in 
Figure 6.1.

Testing Hypothesis for Proportion

Finally, let us introduce one more test, namely, testing for a proportion. 
This will be useful because it works on non-numerical variables whereas 
our previous tests required numerical ones. Recall that a proportion 
p is the number of successes divided by the total number of tries in a 
Bernoulli trial that has only two outcomes called success or failure. Our 
goal is to decide what the (unknown) probability of success might be, 
or—to phrase it in terms appropriate for a test—whether the probability 
of success equals a specific value or not. The test has the form:

Figure 6.1  Output of Analysis ToolPak two-sample t-test with equal 
variance (amylase example, left) and with unequal variances (salary 
example, right)
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•	 Null hypothesis H0: p = p0

•	 Alternative hypothesis: Ha: p ≠ p0

•	 Test statistics: z
p p

SE0
0=

−∧

, where SE
p p

n
=

⋅ −0 01( )

•	 Rejection region: p = 2(1 − NORMDIST(ABS(z0),0,1,true)); 
reject the null hypothesis if p < a

Here p
x
n

∧ =  is the ratio of the number of successes divided by the 

total number of trials. This procedure is valid as long as there are at least 
10 successes and 10 failures in our sample. Note that we use the standard 
normal distribution to compute the p-value. This is only an approxima-
tion, actually, and we could compute p exactly. However, the added accu-
racy is negligible, so we will not bother.

Of course at first glance it looks like the town should increase taxes, 
since 108 out of 200, or 54 percent, voted yes. But that is only 54 percent 
of the sample asked whereas we need to infer the proportion of the entire 
town from that. In fact, we need to figure out whether the population 
proportion is 50 percent or not, based on the sample. So, we set up our 
hypothesis as follows:

Null hypothesis H0: p = 0.5
Alternative hypothesis Ha: p ≠ 0.5.

If our test lets us reject the null hypothesis we would accept the alter-
native where p ≠ 0.5. But our sample ratio of 0.54 would then imply that 
p > 0.5 so that we could conclude that the majority of all people in the 
town want to see taxes raised. The other outcome would be that the test 

Example: Providing municipal services costs money; in order to cover 
the rising costs, a municipality could raise taxes or cut services. The 
town conducts a survey, asking 200 randomly selected people if taxes 
should go up; it turns out that 108 vote to increase taxes and 92 vote 
no. If you were hired by the town as statistical consultant, how would 
you advise the town?
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is inconclusive so that we would not recommend any course of action to 
the town.

Once set up, the calculations are straightforward. First, let us fix our 
level of significance a = 0.05. Then:

•	 p∧ = =108
200

0 54.  and 

SE
p p

n
=

⋅ −
= ⋅ − =0 01 0 5 1 0 5

200
0 0354

( ) . ( . )
.

•	 Test statistics z
p p

SE0
0 0 54 0 5

0 0354
1 13=

−
= − =

∧ . .
.

.

•	 Rejection region p = 2(1 − NORMDIST(1.13,0,1,true)) = 0.2585

Since 0.2585 = p > a = 0.05, our test is inconclusive. Thus, 108 out of 
a sample of 200 is not enough “yes” votes to convince us that the majority 
of the entire town is for raising taxes. Of course the town could decide 
to raise taxes after all, but if they claimed that based on this survey the 
majority of people were for raising taxes, their margin of error would be 
25 percent, which should be way too high to feel comfortable about.

The preceding example is interesting because at first it seems 
unclear what the null hypothesis should be. Other examples are more 
straightforward.

After loading that data file you will find the variable in column 
AJ. As we learned earlier, a pivot table can be used to find the ratio of  

Example: The General Social Science Survey from 2008 includes data 
provided by a random sample of adults in the United States. You will 
find, among many other variables, answers to the question “Did the 
universe begin with a huge explosion?” Based on that sample data, 
does the majority of people in the United States believe that this is 
false? Use a level of significance a = 0.01.

 www.betterbusinessdecisions.org/data/gss2008-short-2.xls
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true/false answers for this survey. It turns out that 606 out of 1,088 sub-
jects responded negatively, while 482 agreed. The example clearly asked 
whether p = 0.5, so setting up this test should be straightforward.

We defined “success” if someone answered “no” to the question of 
whether the universe began with a huge explosion. Then our test works 
as follows:

•	 Null hypothesis H0: p = 0.5
•	 Alternative hypothesis Ha: p ≠ 0.5

{{ SE = ⋅ − =0 5 1 0 5
1088

0 0151
. ( . )

.

•	 Test statistics Z0

606
1033

0 5

0 0151
3 7739=

−
=

.

.
.

•	 Rejection region p = 2(1 − NORMDIST(3.7739,0,1,true)) = 
0.00016

Since 0.00016 = p < a = 0.01, our test is conclusive. Therefore, we 
reject the null hypothesis and accept the alternative. In words this means 
that over 50 percent of the U.S. population does not believe that the 
universe started with a huge explosion.

Note: It is generally accepted today that the universe did start with 
the “Big Bang” (a huge explosion) some 13.798 ± 0.037 billion years ago 
(according to Wikipedia). Note that the age of the universe is an estimate 
just like we have learned in Chapter 5 but without mentioning which 
confidence interval this represents.

One-Tailed and Two-Tailed Tests

All of our tests so far tested whether a parameter was equal to a fixed 
value or not. In many cases, however, we are interested more specifically 
if the parameter is bigger than a fixed value, or perhaps smaller, not just 
unequal.
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1.	We want to test for the mean weight of ketchup. Let x be the weight 
of the contents of a ketchup bottle and m be the (unknown) popula-
tion average. Then:

H0: m = 16
Ha: m < 16.

2.	We know that old feed for cows results in a weight gain of 100 lb per 
week on average. Let x be the weight gain for cows getting the new 
feed and m be the population average. Then:

H0: m = 100
Ha: m > 100.

3.	Hypertension drugs are supposed to lower blood pressure. If m1 
denotes the average blood pressure of patients on the new drug and 
m2 that of patients on the traditional drug, we want to test:

H0: m1 = m2

Ha: m1 ≠ m2.

Examples 1 and 2 are called one-tailed tests, whereas Example 3 is a 
two-tailed test. A two-tailed test at a level of significance a allocates half 
of that alpha to testing the statistical significance in one direction and 
half of the alpha to testing statistical significance in the other direction. A 
one-tailed test, on the other hand, concentrates the entire alpha on one of 
the tails of the distribution. Thus, a one-tailed test has a slightly different 
rejection region.

Example: For each of the following situations, determine the null and 
alternative hypotheses that best reflect the question:

1.	Do bottles of ketchup contain less than the indicated weight of 
16 oz?

2.	Does the new feed for cows result in higher weight gain than the 
average of 100 lb per week when using standard feeds?

3.	Is the effect of a new hypertension drug different from that of the 
traditional drug?
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•	 One-tailed test for the mean (large sample size):

	 If Ha: m > m0 then p = P(z > z0) = 1 − NORMDIST(z0,0,1,true).
	 If Ha: m < m0 then p = P(z < z0) = NORMDIST(z0,0,1,true).

•	 One-tailed test for the mean (small sample size):

	 If Ha: m > m0 then p = P(t > t0) = TDIST(t0,df,1) if t0 > 0.
	 If Ha: m < m0 then p = P(t < t0) = TDIST(−t0,df,1) if t0 < 0.

•	 One-tailed test for the difference of two means—compute df 
as usual:

	 If Ha: m1 − m2 > c then p = P(t > t0) = TDIST(t0,df,1) if t0 > 0.
	 If Ha: m1 − m2 < c then p = P(t < t0) = TDIST(−t0,df,1) if t0 < 0.

This is a one-tailed test; here we go:

H0: m = 16.0

Ha: m < 16

z0
15 5 16
2 6 100

0 5
2 6

10 1 9231= − = − ∗ = −.
.

.
.

.

p P z NORMDIST true= < − = − =( . ) ( . , , , ) .1 9231 1 9231 0 1 0 0272.

Thus, since p = 0.0272 < a = 0.05, we reject the null hypothesis and 
thus we think that the bottles indeed contain too little content.

Note: Had we used a two-tailed test we would have found that p = 
2 * 0.0272 = 0.0544 > a = 0.05, so that a two-tailed test would come 
out inconclusive. This is no coincidence: A one-tailed test is more pow-
erful than a two-tailed test; it is possible that a two-tailed test is incon-
clusive but the corresponding one-tailed test results in rejecting the null 

Example: We suspect that bottles of ketchup contain less than the 
indicated weight of 16 oz. We collect a sample of 100 bottles and find 
that the sample mean is 15.5 oz with s = 2.6 oz. Decide at the a = 0.05 
level.
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hypothesis. On the other hand, if a one-tailed test is inconclusive then the 
corresponding two-tailed test will also be inconclusive. Thus, if we only 
consider two-tailed tests we might decide that a test is inconclusive when 
it actually might be significant (as a one-tailed test) but we will never call 
a test significant when in fact it is not.

Note: If we conduct a one-tailed test Ha: m < m0 and the sample mean 
comes out bigger than m0, then the one-tailed test will always be inconclu-
sive. That makes sense: If we suspect a population mean to be less than, say, 
10, but our sample mean comes out bigger than 10, this can never support 
the alternative hypothesis. Thus, the test is inconclusive. Mathematically 
we have that if x > 10 then z0 > 0 so that p = NORMDIST(z0,0,1,true) > 
0.5 for z0 > 0. A similar argument applies if we test the alternative hypoth-
esis Ha: m > m0 and the sample mean x < m0: this test, too, is inconclusive.

Relationship Between Confidence Intervals and 
Hypothesis Testing

While confidence intervals and hypothesis testing are used for different 
purposes, they are related. For example, to decide whether a population 
mean equals a certain value m0 you would naturally conduct a test for a 
mean. However, you could also compute a confidence interval as long as 
you interpret the answer properly:

•	 If a 95 percent confidence interval about the mean includes 
the number m0, the test whether the mean equals m0 would be 
inconclusive at the a = 0.05 level.

•	 If a 95 percent confidence interval about the mean excludes the 
number m0, we would reject the null hypothesis that m = m0 
and accept the alternative that m ≠ m0 at the a = 0.05 level.

Example: To equip soldiers with properly fitting helmets it is import-
ant to know the average head size of all soldiers. A study selected 80 
soldiers at random and measured their head size. It turns out that the 
sample has an average head size of 56 cm with a standard deviation 
of 1.36 cm. Find a 95 percent confidence interval for the population 
mean and use it to decide if the population mean could be 56.3.
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To compute a 95 percent confidence interval (for large N), we need 

to find x
s
n

± = ± = ±1 96 56 1 96
1 36

80
56 0 298. .

.
.  so that the 95 percent 

confidence interval goes from 55.702 to 56.298. This interval does not 
include the hypothesized mean of 56.3 so that according to our discus-
sion the population mean could not be 56.3 (within our alpha level of 
0.05).

Let us conduct a proper test to see if we get the same answer. Our 
null hypothesis would be H0: m = 56.3 with the alternative Ha: m ≠ 56.3. 

We compute the z-score z0
56 3 56
1 36 80

1 973= − =.
.

. . Finally we compute 

the value of p = 2 * (1 − NORMDIST(1.973,0,1,true)) = 0.485. This is 

smaller than alpha so that we indeed reject the null hypothesis and con-
clude that the population mean indeed cannot be equal to 56.3.

Note that the hypothesized mean of 56.3 is barely outside the 95 
percent confidence interval. That corresponds to the p-value being just 
smaller than 0.05. If we checked for a number well outside the 95 percent 
confidence interval, the corresponding p-value would be much smaller 
than 0.05.

Summary

Hypothesis testing lets you decide which of two mutually exclusive situa-
tions is true and provides an error estimate for your answer. Each test has 
four components: (1) a null hypothesis H0, (2) an alternative hypothesis 
Ha, (3) test statistics, and (4) a rejection region where you compute a 
probability p and decide to reject H0 (and accept Ha) if p < a; otherwise 
the test is inconclusive. The number a is called level of significance and is 
typically 0.1, 0.05, or 0.01. We covered the following tests.

•	 Test for a mean: (1) H0: m = m0 and (2) Ha: m ≠ m0; (3) test 

statistics z
x
s n0

0=
− m

; and (4) probability p = 2(1 − NORM-

DIST(ABS(z0),0,1,true)) for large samples (n > 30) or p = 

TDIST(ABS(t0),N − 1,2) for small samples (n ≤ 30).
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•	 Test for a difference of means (equal variances):  
(1) H0: m1 − m2 = c and (2) Ha: m1 − m2 ≠ c; (3) test statistics 

t
c

SE0
1 2=
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n s n s
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•	 Test for a difference of means (unequal variances):  
(1) H0: m1 − m2 = c and (2) Ha: m1 − m2 ≠ c; (3) test statistics 
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the nearest integer).
•	 Test for proportion: (1) H0: p = p0 and (2) Ha: p ≠ p0; (3) test 

statistics z
p p

SE0
0=

−∧

, where SE
p p

n
=

⋅ −( )0 01
; and  

(4) p = 2(1 − NORMDIST(ABS(z0),0,1,true)).

While the preceding tests list are all two-tailed tests, they also come 
in a one-tailed variety, in which case the computation of the p-value is 
slightly different.

Excel Demonstration

Company P, the large manufacturer of paper products, has the business 
objective of developing an improved process for fulfilling orders during 
the 12 p.m. to 1 p.m. lunch period. The management decides to first 
study the fulfillment and delivery time in the current process in the plant. 
The fulfillment time is defined as the number of minutes that elapses from 
when the order enters the plant until the product is packed and ready to 
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ship. The data collected from a random sample are presented from two 
assembly lines within the company. Assuming that the population vari-
ances from both lines are unequal, is there evidence of a difference in the 
mean fulfillment time between the two lines, using alpha = 0.05?

Step 1: Enter the fulfillment times into Excel in Column A and create 
a corresponding identifying label in Column B (see Figure 6.2):

	 Assembly Line 1: 4.22, 5.56, 3.01, 5.14, 4.78, 2.35, 3.53, 3.21, 
4.49, 6.11, 0.39, 5.13, 6.47, 6.20, 3.80

	 Assembly Line 2: 9.77, 5.91, 8.01, 5.78, 8.72, 3.81, 8.02, 8.36, 
10.48, 6.69, 5.67, 4.09, 6.18, 9.90, 5.48.

Step 2: Click on “Data,” then “Data Analysis,” and choose “t-Test: 
Two-Sample Assuming Unequal Variances.”

	 Note: In this example we were told the variances are unequal, which 
is why we chose the tool we did. If you are not told, you must first 
check whether the variances are equal in both groups, which deter-
mines the type of t-test to perform (one that assumes equal vari-
ances or one that does not make that assumption). A conservative 
approach is to always assume unequal variances.

Step 3: For “Variable Range 1,” enter or select the range of numbers 
for Assembly Line 1 in column A. For “Variance Range 2,” enter or 
select the range of numbers for Assembly Line 2, column A.

Step 4: Since we did not use labels in the first row, we do not need 
to check the “Labels” box. The alpha level is set by default to 0.05, 
which is what we wanted to use. Compare with Figure 6.3; then 
Click OK.

Figure 6.2  Fulfillment data in Excel (excerpt)
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The procedure should produce the following output. 

t-Test: Two-Sample Assuming Unequal Variances

 Variable 1 Variable 2

Mean 4.292666667 7.124666667

Variance 2.688206667 4.356940952

Observations 15 15

Hypothesized Mean Difference 0

Df 27

t Stat −4.132318902

P(T <= t) one-tail 0.000155796

t Critical one-tail 1.703288446

P(T <= t) two-tail 0.000311591

t Critical two-tail 2.051830516  

This relates to our problem as follows.

•	 Null hypothesis: There is no difference (the two means are 
equal) in fulfillment time between Assembly Line 1 and 
Assembly Line 2.

•	 Alternative hypothesis: There is a difference (the two means are 
not equal) in fulfillment time between Assembly Line 1 and 
Assembly Line 2.

Figure 6.3  The parameters for the “t-Test: Two-Sample Assuming 
Unequal Variances”
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•	 Results: We have a two-tailed p-value of 0.0003. This is less 
than our alpha value, so we reject the null hypothesis and 
conclude that there is difference (the two means are not equal) 
in fulfillment time between Assembly Line 1 and Assembly 
Line 2.

Even though we used a two-tailed test, that is, we do not care which 
mean is larger, it is clear that the means are different because Assem-
bly Line 1 has a smaller mean than line 2. Since Company P wishes to 
reduce fulfillment times within their manufacturing plant, the man-
agement should try to identify why there is a difference and consider 
implementing the work practices of Assembly Line 1 across all assembly 
lines as best practice.





CHAPTER 7

Association Between 
Categorical Variables

Preview: When studying statistics, it can be important to understand the 
association, if any, between two categorical variables. To investigate this, we 
create a two-dimensional table where one variable defines the columns and 
the second the rows. Such tables are called contingency tables. We then com-
pare the actual entries in the table with those entries that would result under 
the assumption that there was no association between the two variables. Then 
we check the combined relative difference between the actual and expected 
values. If this difference is small, we were correct in assuming no relation, but 
if the difference is large, the variables must be related. We formalize this idea 
into a statistical test called a chi-square test.

For example, if there is a positive relationship between holding an MBA 
degree and earning more money, for example, high school graduates and 
college students may conclude that a graduate degree is a smart investment.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Understand row and column percentage tables and when to use 
which one

2.	Use the chi-square test for contingency tables
3.	Understand actual versus expected theory and practice
4.	Perform a chi-square test to solve a business problem

Introduction

Up to this point we have analyzed data one variable at a time. We have 
seen how to compute measures of central tendency, estimated parameters, 
and tested hypothesis but each concept applied to one variable at a time. 
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Now we want to investigate two (or more) variables simultaneously to 
discover any potential relation between them. Usually, a typical question 
about two variables is:

Is there some relation between one variable and another, and if so, 
how can one use knowledge about one variable to predict, approxi-
mately, the other?

Answers to such questions can be very useful, such as in these examples:

•	 If smoking causes cancer, we should stop smoking.
•	 If having an advanced college degree increases the chance to 

have a well-paying job, we should try our best to graduate 
college.

•	 If exercising increases our general state of health, we should 
exercise regularly.

•	 If a new drug really does have a positive impact on lowering 
blood pressure, we should take it if we have high blood 
pressure.

In most cases it is difficult to determine whether two variables (such 
as smoking and cancer) are indeed related and even harder to determine 
whether there is a causal relationship between them, that is, which is cause 
and which is result. (If smokers have higher cancer rates, does smoking 
cause cancer or does having cancer somehow induce you to smoke?) In 
general, correlation does not necessarily imply causation.

•	 The more firemen are fighting a fire, the bigger the fire is 
observed to be. Therefore, firemen cause an increase in the 
size of a fire.

•	 Sleeping with one’s shoes on is strongly correlated with 
waking up with a headache. Therefore, sleeping with one’s 
shoes on causes headaches.

Obviously, both conclusions are wrong. In the first case, the causal 
relationship goes the other way (a bigger fire requires more firemen), 
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while in the second case there is an “invisible” third condition that 
causes both events of sleeping with one’s shoes on and waking up with a 
headache.

Two-Dimensional Data Summary

Let us start our investigation about relationships between variables by 
taking a closer look at representing categorical data in tables.

This example does not seem clear. To convert a number into percent-
ages, we need to know the total out of which this number represents a 
percentage. But for the preceding table it is not clear which figure to use 
as total, so as a first step we expand the table by including all possible row 
and column totals (see Table 7.2).

Now we can convert any number into three percentage values. For 
example, there are 92 people aged 50 or under who voted for the zoning 
law. In terms of percentage, we could say:

•	 92 out of a total of 179 (51.4 percent) people for the zoning 
law are aged 50 or under.

Example: The residents of Green Township were asked their opinion 
about a new Zoning Ordinance. The answers were broken down by 
age of the people who were questioned. The results of the survey are 
summarized in Table 7.1. Convert these figures into percentages.

Table 7.1  Results of survey about zoning law

Age 50 or under Age over 50
For zoning law 92 87

Against zoning law 158 75

Table 7.2  Expanded survey results about zoning law

 Age 50 or under Age over 50 Total
For zoning law 92 87 179

Against zoning law 158 75 233

Total 250 162 412
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•	 92 out of a total of 250 (36.8 percent) people aged 50 or 
under were for the zoning law.

•	 92 out of a total of 412 (22.3 percent) people were aged 50 or 
younger and for the zoning law.

Thus, there are three possible percentage tables we could create from 
the preceding data (Table 7.3).

•	 Row percentage table using the row totals (Table 7.3b)
•	 Column percentage table using the column totals (Table 7.3c)
•	 Total percentage table using the overall total (Table 7.3d)

Row Versus Column Percentages

The total percentage table turns out to be not useful but row and column 
percentages are; the question is when to use which. Consider two similar 
but very much different questions.

•	 How many people, in percentage, who are for the zoning law 
are aged 50 or under?

•	 How many people, in percentage, 50 or under are for the 
zoning law?

These questions seem similar: We are looking at the intersection 
between the row “For zoning” and the column “Age 50 or under.” From 
the first table we know that 92 people fall into that category, but that 
number is not in percentage. On the other hand, there are two candidates 
for the percentage number, 51.4 percent from the row percentages or 
36.8 percent from the column percentages. Which one answers which 
question?

•	 Question 1 asks, rephrased: Out of all people who are for 
the zoning law, how many of them are aged 50 or under? In 
other words, question 1 considers all people who are for the 
zoning law as a total—that is a row total, so that the answer 
to question 1 is the row percentage 51.4 percent.
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•	 Question 2 asks, rephrased: Out of all people who are 50 or 
under, how many of them are for the zoning law? In other 
words, question 2 considers all people who are 50 or under as 
a total—that is, a column total, so that the answer to question 
2 is the column percentage 36.8 percent.

From this example we see that the key to answering questions such 
as these is which group is considered the “total” group for the particular 
question.

•	 If the total for that group is found in a row, use row 
percentages.

•	 If the total for that group is found in a column, use column 
percentages.

It seems that generating these percentage tables is a fair amount of 
work. Of course Excel provides an easier method for generating such 
tables from actual data, which we will explore soon.

Contingency Tables

In an earlier chapter we saw how to use Excel’s “Pivot” function to 
compute counts or frequencies, using one (categorical) variable at a time. 
Now we want to generate tables involving two variables from a particular 
data set (review the “Bending the Rules: Lying or Exaggeration” section 
if necessary).

Example: Load the following Excel data file, which lists salary and 
other information about employees of a particular company. Create 
and interpret tables relating:

•	 Gender with Salary Level
•	 Salary Level with Years of Education
•	 Salary Level with Job Category

 www.betterbusinessdecisions.org/data/employeeselected.xls
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With Excel, the appropriate tool to create such crosstabs tables for 
categorical variables is the “PivotTable …” in the “Insert” ribbon.

•	 Load the preceding spreadsheet into Excel.
•	 Click “Insert” and then “PivotTable ….”
•	 Use the range selector tool to select the entire data set.

You will then see a table where you can drag variables from the 
PivotTable fields into the “Row,” “Column,” or “Values” areas. We will 
not make use of “Filters” (see Figure 7.1).

To analyze the relationship—if any—between “Gender” and “Salary 
Level,” drag the variable “Salary Level” to the “Row” field of the table and 
the variable “Gender” to the “Column” field (if you accidentally drop a 
variable in the wrong spot, simply drag it back).

This will create a table with “Salary Levels” as rows and “Gender” as 
columns, but containing no data yet. Finally, drag either “Gender” or 
“Salary Level” into the “Data” field in the middle (in our case it does not 
matter which one but in Figure 7.2 we used “Salary Level”) and the table 
will be complete—but with raw data, not percentages.

This table shows, for example, that 32 female employees out of 474 
total employees earn between $10,000 and $20,000, while, for example, 
45 male employees earn more than $60,000.

Similarly, we can create tables to relate “Salary Level” with “Years of 
Education” (see Figure 7.3). We could start again from scratch, but since 
we already have the Pivot table available, we can simply drag the “Salary 
Level” and “Gender” variables out of the table and drag the “Years of 

Figure 7.1  Pivot table tool
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Education” and “Salary Level” into the respective row, column, and data 
area to create the table shown in Figure 7.3.

Similarly, we can create the table relating “Salary Level” with “Job 
Category”; details are left to you. To finish our discussion, we use the 
preceding tables to answer specific questions.

At first glance it might seem that we have already created the right 
tables to answer these questions (see Figures 7.2 and 7.3). However, 
this time we want the answers in percentage, while our preceding tables 

Figure 7.2  Results of the Pivot tool, relating income with sex 
(gender)

Figure 7.3  Years of education versus salary level

Example: Using the Excel data as before, answer the following 
questions in percentage.

1.	How many female employees earn less than $40,000? How many 
males?

2.	How many people earning more than $60,000 have 15 years 
of education or less? How many have more than 15 years of 
education?
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contain actual numbers. And, as we have discussed in the previous sec-
tion, when we want to generate percentage tables we need to decide 
whether we want row or column percentages.

To answer question 1, we clearly need to generate a table relating 
salary with gender. We will use salary as the row variable and gender as 
the column variable (see Figure 7.2). Question 1 uses as total all female 
employees, and in our table the “females” go along a column. Therefore, 
we need to generate column percentages.

•	 Double-click the “Count of Salary Level” button in your 
table and click on “Options” in the dialog that pops up (see 
Figure 7.4). Then select “% of column” in “Show values as.”

You should see the final table, containing column percentages, as 
shown in Figure 7.5. Note that you can see that the table shows column 
percentages since the percentages across the columns add up to 100 percent.

Now we can answer question 1 easily: “How many female employees 
earn less than $40,000?” In the female column we need to add the 
numbers: 14.81% + 66.67% + 13.43% = 94.91%. For the male employees 
the answer is: 63.95 percent of males earn less than $40,000.

Actually, this seems to indicate that female employees, as a rule, earn 
less money than male employees. We will learn how to answer questions 
such as these in the next section.

Figure 7.4  Value field settings for Pivot table
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It is left as an exercise to answer question 2: “How many people 
earning more than $60,000 have 15 years of education or less? How many 
have more than 15 years of education?” Figure 7.6 shows the particular 
table we need to figure out the answers.

By the way, is that table using row or column percentages? The correct 
answers are:

•	 2.22 percent of people earning more than $60,000 have 
15 years or less of education.

•	 97.78 percent of people earning more than $60,000 have 
more than 15 years of education.

Again, a more interesting question would be to determine whether 
more years of education generally result in higher salaries (it does look 
that way)—we will answer that type of question in the next section.

The Chi-Square Test for Categorical Crosstabs

In the previous section we computed crosstabs tables, analyzing two 
categorical variables simultaneously. A natural question to ask now is:

Figure 7.5  Salary level versus sex in column percentage

Figure 7.6  Salary level versus years of education as row percentages
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Is there a statistically significant relationship between two (categorical) 
variables, or do they appear to be independent?

We should of course define the new types of variables we just 
introduced.

We will eventually develop a statistical test with null hypothesis and 
alternative hypothesis, similar to the tests we developed in Chapter 6. 
But the question is intuitively easy to understand, so we will give a brief 
discussion on how to answer it without covering all the mathematical 
details first.

We do not know yet whether there is a relation between the two 
variables. But if there was, sex would certainly be the independent 
variable, while salary would be the dependent one. Thus, if there was a 
relation, gender would have an impact on the salary a worker makes. It 
is pretty clear that it cannot be the other way round: A change in salary 
level will certainly not change your gender. Note that gender is indeed 
determined prior to salary in time.

Actual Versus Expected—Theory

Let us say we are interested in figuring out whether there is a relation 
between sex (male/female) and smoking (yes/no), or whether the two 
variables are independent of each other. We conduct an experiment and 
ask a randomly selected group of people for their sex and whether they 
smoke. Then we construct the corresponding crosstabs table. Let us say 
the response is as shown in Table 7.4 (the actual numbers are fictitious).

Definition: Two variables are related if changing the value of one will 
also change the value of the other. The variable that changes as a result 
of changing the other one is called the dependent variable, and the 
other variable is called independent. Note that the independent variable 
usually occurs first in time.

Example: Consider the crosstabs table relating income with sex for a 
particular company as shown in Figure 7.2. Identify independent and 
dependent variables.
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Of the 35 people who smoke, 30 of them are male. Conversely, 
of the 65 people who do not smoke, 55 of them are female. Such an 
outcome—using common sense—would suggest that there is a relation 
between smoking and sex, because the vast majority of smokers are 
male, while the majority of nonsmokers are female. On the other hand, 
we might have obtained results as in Table 7.5 (again with fictitious 
numbers).

In Table 7.5 the smokers and nonsmokers are divided more evenly 
among men and woman, suggesting perhaps that the two variables are 
independent of each other (a person’s sex does not seem to have an impact 
on their smoking habit).

Now let us see exactly how a table should look if we assume that two 
variables are indeed independent. Suppose we are again conducting our 
experiment and select some random sample, but for now we only look 
at totals for each variable separately (the actual numbers are once again 
fictitious). Suppose, for example:

•	 Number of smokers is 35 and number of nonsmokers is 65.
•	 Number of males is 40 and number of females is 60.
•	 Total number of data values (subjects) is 100.

With this information we could construct a crosstabs table as in 
Table 7.6.

But what kind of distribution in the various cells would we expect if 
the two variables were independent?

•	 We know that 35 of 100 (35 percent) smoke; there are 40 
males and 60 females—if being male and female had nothing 
to do with smoking (the variables were independent), we 
would expect that 35 percent of the 40 males and 35 percent 
of the 60 females smoke.

Table 7.4  Fictitious data for smoking versus sex

Male Female Totals
Smoking 30 5 35

Not smoking 10 55 65

Totals 40 60 100
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•	 We also know that 65 of 100 (65 percent) do not smoke; 
there are 40 males and 60 females—if the two variables were 
independent, we would similarly expect that 65 percent of the 
40 males and 65 percent of the 60 females do not smoke.

Under the assumption of independence we would therefore expect the 
numbers shown in Table 7.7.

Note that the cells automatically add up to the correct row and 
column totals. In other words, if a crosstabs table with two rows and two 
columns has row totals r1 and r2, respectively, and column totals c1 and c2, 
then if the two variables were independent we would expect the complete 
table to look like Table 7.8.

Table 7.5  Different data for smoking versus sex

Male Female Totals
Smoking 17 18 35

Not smoking 23 42 65

Totals 40 60 100

Table 7.6  Setting up expected values in contingency table

Male Female Totals
Smoking ? ? 35

Not smoking ? ? 65

Totals 40 60 100

Table 7.7  Computing expected values

Male Female Totals
Smoking 35/100 * 40 = 14 35/100 * 60 = 21 35

Not smoking 65/100 * 40 = 26 65/100 * 60 = 39 65

Totals 40 60 100

Table 7.8  How to compute expected values

 X Y Totals
A r1/total * c1 r1/total * c2 r1

B r2/total * c1 r2/total * c2 r2

Totals c1 c2
total



206	 USING STATISTICS FOR BETTER BUSINESS DECISIONS

Now that we know what distribution to expect if two variables were 
independent and we can compare it against the actual distribution 
of numbers: if it is not close to the conjectured distribution, then the 
variables cannot be independent and thus they must be related!

With that in mind we create an effective procedure to test whether 
two variables are independent. First we define the table of expected values 
as follows.

For example, the expected value in the second row B and third column 

Y of Table 7.9 would be 20 15
60

5
⋅ = .

Now, here is the clue: If the actual values are very different from the 
expected values, the conclusion is that the variables cannot be independent 
after all (because if they were independent the actual values should look 
similar to the expected values). We define the total difference as follows.

Definition: We create a table of expected values as follows.

•	 Create a crosstabs table as usual, containing the actual or 
observed values (not percentage).

•	 Create a second crosstabs table where you leave the row 
and column totals as observed, but replace the count in the 
i-th row and j-th column by:

(total of row i) * (total of column j)/(overall total).

Fill in all cells in this way and call the resulting crosstabs table the 
expected values table, because these numbers would be expected in this 
table cell if the two variables under investigation were independent.

Definition: Let va be the actual value and ve the expected value in 
a cell of a crosstabs table. The total difference between the actual and 

expected values is defined as the sum of 
v v

v
a e

e

−( )2

, where the sum is 

taken over all cells of the table. This total difference is denoted by x2 
(chi-squared):

x
v v

v
a e

e

2
2

=
−( )∑ .
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The only question left to answer is: “Exactly when is this difference too 
large? That is: At which point can we assume that the difference between 
expected and actual values is so large that we have to conclude that the 
variables cannot be independent? Before we answer that question, let us 
return to our original example.

Actual Versus Expected—Example

Recall our earlier example comparing smoking versus gender. We had 
two hypothetical tables of actual values. For each table we compute the 
expected value in each cell and show it in parenthesis. Then we compute 
the total difference x2 as defined earlier for both tables.

x2
2 2 2 230 14

14
5 21

21
10 26

26
55 39

39
46 89=

−( ) +
−( ) +

−( ) +
−( ) = .

x2
2 2 2 217 14

14
18 21

21
23 26

26
42 39

39
1 65=

−( ) +
−( ) +

−( ) +
−( ) = . .

For Table 7.10 common sense told us that the two variables were not 
independent and the chi-square difference turned out to be x2 = 46.89. 
For Table 7.11 we figured that the two variables could very well be 
independent and the chi-square difference worked out to x2 = 1.65.

Note: We compute the value of x2 here (and in some other examples) 
manually, which can be quite a lot of work. In real life, we will of course 
use software such as Excel for that; so if you feel that computing x2 is just 
too much, do not worry, we will soon show how to use Excel for this.

We developed our algorithm for the expected values using a 2 × 2 
table, but that algorithm easily extends to n × m tables, that is, tables 

Table 7.9  How to compute an expected value

W X Y Z Totals
A 10

B
20 15

60
5

⋅ = 20

C 30

Totals 5 10 15 30 60
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with n rows and m columns. Suppose, for example, we wanted to deter-
mine whether sex (gender) and salary level in the particular company are 
related to each other. We create a table relating the two variables, such as 
Table 7.12 of actual values. Note that the table with actual values must 
contain counts, not percentages.

To compute the table of expected values, each entry is computed as 
the product of the row and column total for that cell divided by the overall 
total (see Table 7.13).

Note that the row and column totals add up correctly (except for 
rounding errors). If we compare expected versus actual values in 
Tables 7.12 and 7.13, we see that of the people making $60K or more, 
fewer than expected are female (0 versus 20.5) while more than expected 
are male (45 versus 24.5). On the other hand, in the low-income category 
of $10 to $20K, more than expected are female (32 versus 15.1) while 
fewer than expected are male (1 versus 17.9).

This seems to point toward a gender bias for salaries, that is, women 
make less money than men as a rule, or to phrase it differently: row and 
column variables do not seem independent of each other. Indeed, if we 
compute the total difference, we get x2 = 131.9, which is quite large.

However, in a table with many rows and columns the total difference 
x2 can get quite large even though each individual difference between 
the actual and the expected value is small, merely because we are adding 
up more and more terms. Thus, the big question left is: When is the 

Table 7.10  Data with large x2

Male Female Totals
Smoking 30 (14) 5 (21) 35

Not smoking 10 (26) 55 (39) 65

Totals 40 60 100

Table 7.11  Data with small x2

Male Female Totals
Smoking 17 (14) 18 (21) 35

Not smoking 23 (26) 42 (39) 65

Totals 40 60 100
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difference small enough for us to accept the independence assumption, 
and when is the difference so large that we can no longer assume indepen-
dence and must therefore accept dependence? The answer to this question 
is provided by the chi-square test.

The Chi-Square Test

From Chapter 6 we know that a statistical test has four parts. We will now 
specify these parts to define a chi-square test of independence.

Table 7.12  2 × 6 Table of actual values

Salary level ($) Female Male Total
10–20K 32 1 33

20–30K 144 86 230

30–40K 29 78 107

40–50K 5 28 33

50–60K 6 20 26

> 60K 45 45

Total 216 258 474

Table 7.13  2 × 6 table of expected values

Salary level ($) Female Male Total
10–20K 33 * 216/474 = 15.1 33 * 258/474 = 17.9 33

20–30K 104.8 125.2 230

30–40K 48.8 58.2 107

40–50K 15.1 17.9 33

50–60K 11.8 14.2 26

>60K 20.5 24.5 45

Total 216 258 474

Definition: A chi-square test of independence consists of the following 
four parts.

•	 Null hypothesis H0: the two variables are independent.
•	 Alternative hypothesis Ha: the two variables are dependent.
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•	 Test statistics: x
v v

v
a e

e

2
2

=
−( )∑ , where va  is the actual and 

ve  the expected value in each cell of a contingency table.
•	 Rejection region: Compute the p value, which depends on 

the value of the test statistics x2 and also on the number of 
rows and columns.

If the probability value p is small, differences between actual and 
expected values are judged to be significant (large) and therefore you 
reject the null hypothesis of independence and accept the alternative 
that the variables are related. If p is large, the test is inconclusive.

Typically, values of p = 0.05 or less are considered small enough 
to reject independence; the closer p is to zero the more convincing the 
relationship is.

How exactly is the value of p computed? We will not provide the 
details here but simply use the Excel function p = chisq.test(actual_range, 
expected_range), where actual_range is the range for the actual values and 
expected_range is the range for the expected values. Note that we do not 
need to compute the value of x2; the = chisq.test function will take care 
of that.

We have created the tables of actual and expected values; they are 
shown in Figure 7.7.

We need to check all expected values but none is less than 5. 
The value of p is computed via Excel with the command =CHISQ.
TEST(B2:C7,G2:H7), and turns out to be p = 9.38713E−27, which is 

Definition: One important restriction states that the chi-square test 
is not appropriate if any of the expected values is less than 5. You 
need to manually inspect all expected values to ensure none of them 
have a value less than 5. We call this the rule of thumb for a chi-square 
test.

Example: Use a chi-square test to determine if salary and gender are 
related.
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the scientific notation for 0.00000000000000000000000000938713. 
Thus, p is most definitely small, so we reject the null hypothesis of inde-
pendence and conclude that there is a relation between the two variables 
sex and salary. In other words, the salary level in this particular company 
does depend on the sex of the employees.

After loading the data and working out the actual values via Excel’s 
Pivot tool, we compute the expected values, which is a lot of work. The 
two tables are shown in Figures 7.8a and 7.8b.

Finally, we compute the chi-square test value p, again with the help of 
Excel: p = 0.00. Again the value of p is for all intent and purposes 0, so it 
seems that we can with a high degree of certainty conclude that there is a 
relation between years of education and the salary level (in other words, 
based on this data you make more money with more years of education, 
just like your parents told you).

But we failed to check if the expected values pass our “rule-of-thumb” 
test! In fact, quite a few of the expected values are small, certainly smaller 
than 5. Thus, in this case the chi-square test is not reliable and we should 
not believe its conclusions since the assumptions of the test were not 
satisfied! To remedy the problem, you could recategorize the data by using 
fewer groups so that hopefully the expected values in the new tables will 
all be above 5.

Figure 7.7  Actual and expected values in “sex versus income level”

Example: Using the following data set, is there a relation between 
salary and years of schooling?

 www.betterbusinessdecisions.org/data/employeeselected.xls
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After downloading and opening the data file, we construct a crosstabs 
table for “Party Affil” and “Capital Punishment” using the Pivot table. 
Then we copy the table (of actual values) to a second table and construct 
the expected values as described earlier (this time the table is pretty small, 
so computing the expected values is not that much work; see table 7.9).

Finally, we use Excel to compute the value of p = 0.00000 (to six 
digits of accuracy). Before jumping to any conclusion, we check our rule 
of thumb: This time the smallest expected value is 9.02, which is above 5 

Figure 7.8  (a) The table of actual values

Figure 7.8  (b) The table of expected values

Example: Every year there are large-scale surveys, selecting a represen-
tative sample of people in the United States and asking them a broad 
range of questions. One such survey is the General Social Science 
(GSS) survey from 1996 (which contains mostly categorical data). 
Use the data (which is real-life data from 1996) to analyze if there 
is a relation between party affiliation and people’s opinion on capital 
punishment.

 www.betterbusinessdecisions.org/data/gss96-selected.xls
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so that it is valid to apply our chi-square test. Again p is very close to 0, 
implying that there is a relation between party affiliation and opinion on 
capital punishment.

In fact, if you compare the actual versus expected values directly for the 
Democrats you can see that fewer Democrats than expected favor the death 
penalty, while more than expected oppose it. For Republicans it is just the 
other way round. For independents and people with other party affiliations 
there seems to be little difference between actual and observed values.

So far in all our examples the variables were dependent. Of course that 
is not always the case.

After constructing the tables as required (see Figure 7.10) we see that 
the computed p value is p = 0.045, which is larger than the required 
alpha level of 0.01. Thus, our test is inconclusive. In particular, we cannot 
conclude that the variables are dependent. Note that all expected values 
are bigger than 5, so our chi-square test does apply.

Figure 7.9  Actual and expected values of party affiliation by “Capital 
Punishment”

Example: Set up the corresponding tables for actual and expected 
values for the data from the GSS96 survey relating people’s outlook 
on life (variable “Life is”) with their opinion on “Capital Punishment” 
and complete a chi-square test for independence at the alpha = 0.01 
level.

Example: Below is the GSS Survey 2008 data file. This data set 
is similar to the GSS survey from 1996 but it contains a lot more 
variables and more recent data. Is there a relation between being born 
in the United States and gender?

 www.betterbusinessdecisions.org/data/gss2008-short.xls
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By now a question like this is routine. We load the data set, create 
a Pivot table relating the variables “born in this country” with “sex,” 
compute the expected values, and conduct a chi-square test. The results 
can be found in Figure 7.11.

As it turns out, p = 0.452, which is way bigger than 0.05; so there is 
no reason to think the variables are not independent. This makes sense 
since it is difficult to think of a reason why being born in the United 
States should be related to one’s gender.

Excel Demonstration

Using chi-square, we are looking to see if there is a significant difference 
between what we would expect results to be and what the actual results 
were. That is, we want to compare the expected versus observed data. We 
will review how to find the expected values and Microsoft Excel will help 
us to determine this.

Figure 7.10  Actual and expected values for “Life is …” versus 
opinion on “Death Penalty”

Figure 7.11  Expected versus actual values
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Listed in Table 7.14 are data from a survey conducted recently where 
large firms and small firms responded to their client satisfaction with 
Company S (this is fictitious data).

We are interested in finding out if there is a significant difference in 
how we expected large firms to respond and what large firms actually 
responded with; we follow the same method for small firms. We will test 
this using a chi-square test with a cut-off value of p = 0.05. In other words, 
we want to know if there is a relation between the level of satisfaction and 
the size of the client.

Step 1: In Excel, let us first calculate the row percentage of population 
responses. We will take the total responses to “Not at all” (40) and 
divide that by the total responses (118) to determine the percent-
age of respondents who responded in this category; we will do that 
for all responses (see Figure 7.12).

We can see that 33.89 percent of all responses were “Not at 
all,” 29.66 percent were “Somewhat,” 36.44 percent were “Very” 
satisfied, and so on.

Example: Company S, the accounting and tax strategy service firm, 
wants to determine if they are more suited to service large clients 
or smaller clients so that they can focus their efforts on the market 
segment most compatible with the organization. One variable they 
are interested in is client satisfaction. It has been thought that since 
they are a large firm, the larger clients they service are more satisfied 
with the services than the smaller clients, who may not be getting the 
individualized attention they expect.

Table 7.14  Measures of satisfaction for large and small firms

Response Large Small Total
Not at all 18 22 40

Somewhat 17 18 35

Very 26 17 43

Total 61 57 118
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Step 2: Since 33.89 percent of all respondents said “Not at all,” we 
expect to see 33.89 percent of the 61 large firms to say “Not at 
all,” as well as 33.89 percent of the 57 small firms, and so forth for 
the remaining groups, assuming the row and column variables are 
independent. Thus, we create a new table with expected values by 
multiplying the column totals by the row percentages in each row. 
We put the results below the table of actual values to create the table 
of expected values, as shown in Figure 7.13.

Figure 7.12  Satisfaction data augmented by row percentages

Figure 7.13  Actual and expected values

Figure 7.14  Computing the p value using chisq.test
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Step 3: Figure 7.13 shows what all of our “expected” results should 
have been if the variables were independent, and we can compare 
that with our actual results by computing x2. Of course we will not 
do this manually but instead use Excel’s CHI SQUARE TEST to 
compute our p-value, as shown in Figure 7.14.

We get a p-value of 0.3363505. This is much larger than our level of 
significance of 0.05, so we fail to reject the null hypothesis of indepen-
dence and conclude that there is no significant evidence to prove that 
large firm and small firm actual results are different from the expected 
results of large firms and small firms in the population. In other words, 
there seems to be no relation between the level of satisfaction and the size 
of firms.





CHAPTER 8

Linear Regression

Preview: Linear regression is another important concept for any researcher. 
Whether you are studying the relationship between sun exposure and skin 
cancer or the link between excess fat consumption and obesity, the concept 
of linear regression plays a big role. Linear regression is the approach used 
to explore a linear relationship between a dependent numerical variable y 
and one or more independent numerical variables x. The correlation between 
numerical values is an integral part of the linear regression approach. In some 
cases the correlation may be intuitive—it seems reasonable, for example, that 
students who had a high GPA in high school would go on to have a high GPA 
in college—but, as always, a thorough testing of the hypothesis will be nec-
essary to prove or disprove it. Regardless of the subject being studied, the cor-
relation coefficient is always a number between −1.0 and +1.0. A correlation 
coefficient close to +1.0 means there is a strong correlation between the two 
variables. In addition to computing the correlation coefficient and the equa-
tion of the least-squares regression line, we also introduce the scatter plot. A 
scatter plot is a type of graph in which the values of two different variables are 
plotted on the two axes of the chart. The pattern of points that results shows the 
correlation between the two variables. Once you have determined the equa-
tion of the least-squares regression line you can even use it to make predictions.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Use regression analysis to predict the value of a dependent variable 
based on an independent variable

2.	Evaluate the assumptions of regression analysis
3.	Determine the correlation coefficient and describe its meaning
4.	Use simple regression techniques to solve business problems and 

make recommendations
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Looking at this data it seems clear that the college GPA is always worse 
than the high school one, and the smaller the high school GPA the smaller 
the college GPA. This seems to indicate a relationship but it seems diffi-
cult to quantify how strong the relationship is. It also seems clear that if 

Introduction

In Chapter 7 we saw how to create contingency tables, relating categorical 
variables and we computed the chi-square statistics to test if the variables 
are independent or not. While this type of analysis is useful for categorical 
data, for numerical data the resulting tables would (usually) be too big to 
be useful. Therefore, we need to learn different methods for dealing with 
numerical variables to decide whether two such variables are related. In 
addition, the new techniques will allow us to make predictions of future 
events based on events in the past.

Correlation Between Numerical Variables

We will start by determining whether there is a correlation between two 
numerical variables (similar to determining whether two categorical vari-
ables are related, although the procedure will be very much different).

Example: Suppose that five students were asked their high school and 
college GPA, with the answers shown in Table 8.1.

Table 8.1  High school and college GPA pairs

Student HS GPA College GPA
Bert 3.8 2.8

Jane 3.1 2.2

Justin 4.0 3.5

Susan 2.5 1.9

Wendy 3.3 2.5

We want to know if high school and college GPA are related, and if 
they are related, can we use the high school GPA to predict the college 
GPA?
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To compute the correlation coefficient for our preceding GPA exam-
ple we create a table containing both variables, with additional columns 
for their squares as well as their product, somewhat similar to computing 
the variance (see Table 8.2).

there was a relation, the high school GPA would be our independent vari-
able, while the college GPA, occurring later in time, is the dependent one.

We will first discuss how to compute and interpret the so-called cor-
relation coefficient to help decide whether two numerical variables are 
related or not. The formulas we need might look pretty intense but when 
we see the examples they should become crystal clear.

Definition: If our data is given in (x,y) pairs where x and y are numeric 
variables with x denoting the independent variable and y the depen-
dent one, then compute the quantities:

S x
x

nxx = −
( )∑∑ 2

2

,

S y
y

nyy = −
( )∑∑ 2

2

,

S xy
x y

nxy = −
( )( )∑ ∑∑ ,

where the “sigma” symbol indicates summation and n stands for the 
number of data points. With these quantities computed, the correla-
tion coefficient r (rho) is defined as:

r =
S

S S
xy

xx yy
.

Example: Compute the correlation coefficient for the data in Table 8.1 
of high school (x) and college GPA (y).
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The last row contains the sum of the x’s, y’s, x-squared, y-squared, and 
x·y, which are precisely the quantities that we need to compute Sxx, Syy, 
and Sxy. Thus:

S x
x

nxx = −
( )

= − =∑ ∑2

2
2

57 19
16 7

5
1 412.

.
. ,

S y
y

nyy = −
( )

= − =∑ ∑2

2
2

34 79
12 9

5
1 508.

.
. ,

S xy
x y

nxy = −
( )( )

= − ⋅ =∑ ∑ ∑
44 46

16 7 12 9
5

1 374.
. .

. .

Therefore, the correlation coefficient for this data is:

r =
⋅

=1 374
1 412 1 508

0 9416
.

. .
. .

Now we need to know what this number means.

Table 8.2  GPA data augmented by columns for x2, y2, and x·y

Student

High 
school 

GPA (x)
College  
GPA (y) x2 y2 x·y

A 3.8 2.8 3.82 = 14.44 2.82 = 7.84 3.8 * 2.8 = 10.64

B 3.1 2.2 3.12 = 9.61 2.22 = 4.84 3.1 * 2.2 = 6.82

C 4.0 3.5 4.02 = 16.00 3.52 = 12.25 4.0 * 3.5 = 14.00

D 2.5 1.9 2.52 = 6.25 1.92 = 3.61 2.5 * 1.9 = 4.75

E 3.3 2.5 3.32 = 10.89 2.52 = 6.25 3.3 * 2.5 = 8.25

Sum 16.7 12.9 57.19 34.79 44.46

Definition: The correlation coefficient r as defined earlier measures 
how strong a linear relationship exists between two numerical variables 
x and y. Specifically:

•	 The correlation coefficient is always a number between 
−1.0 and +1.0.
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•	 If the correlation coefficient is close to +1.0, then there is a 
strong positive linear relationship between x and y. In other 
words, if x increases, y also increases.

•	 If the correlation coefficient is close to −1.0, then there is a 
strong negative linear relationship between x and y. In other 
words, if x increases, y will decrease.

•	 The closer to zero the correlation coefficient, the lesser the 
extent of the linear relationship between x and y.

We have already computed the correlation coefficient to be r = 
0.9416, which is very close to +1. Therefore, we can conclude that there 
indeed is a strong positive relationship between high school GPA and 
college GPA in this particular example.

Using Excel to Compute the Correlation Coefficient

While the preceding table certainly helps in computing the correlation 
coefficient, it is still a lot of work, especially if there are several (x, y) data 
points. Even using Excel to help compute Table 8.2 seems a lot of work. 
However, Excel has a convenient function to quickly compute the cor-
relation coefficient without the need for a complicated table. The Excel 
built-in function

=correl(x_range, y_range)

returns the correlation coefficient of the cells in x_range (for the x values) 
and the y_range (for the y values). All cells must contain numbers, and no 
cell should be empty.

Example: To use this Excel function to compute the correlation coef-
ficient for the previous GPA example, we would enter the data and the 
formulas as shown in Figure 8.1.

Example: Determine if there is a linear relationship between high 
school and college GPA for the data in Table 8.1.
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Figure 8.1 shows the correlation coefficient computed by Excel to be 
0.9416, which is—of course—the same as we computed manually before.

Figure 8.1  Computing the correlation coefficient with Excel

Example: Consider the following artificial examples: Some data for 
x and y (which have no particular meaning right now) are listed in 
Table 8.3 for three different cases.

Table 8.3  Three different cases of (x, y) points

x = 10, y = 20
x = 20, y = 40
x = 30, y = 60
x = 40, y = 80
x = 50, y = 100

x = 10, y = 200
x = 20, y = 160
x = 30, y = 120
x = 40, y = 80
x = 50, y = 40

x = 10, y = 100
x = 20, y = 20
x = 30, y = 200
x = 40, y = 50
x = 50, y = 100

Case A Case B Case C

Guess the correlation coefficient in each case and then confirm your 
guess by computing it exactly (perhaps with Excel).

Just looking at Table 8.3 it seems pretty obvious that:

•	 In case A, there should be a strong positive relationship 
between x and y, so we expect the correlation coefficient to 
be close to +1.

•	 In case B, there should be a strong negative relationship 
between x and y, so we expect the correlation coefficient to 
be close to −1.
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•	 In case C, there seems to be no apparent relationship between 
x and y, so the correlation coefficient should be close to zero 
(it is hard to say whether it is positive or negative).

Indeed, using Excel to compute each correlation coefficient confirms 
this:

•	 In case A, the coefficient equals 1.0, that is, there is a strong 
positive correlation—in fact, in this easy case we can see that 
the linear relation between x and y is y = 2x.

•	 In case B, the coefficient equals −1.0, that is, there is a strong 
negative correlation—the actual equation relating x with y is a 
little harder to see, though (but not impossible, try to guess it).

•	 In case C, the coefficient is 0.069, which is close to zero, so 
there is no correlation.

The preceding cases are artificial; real-life data is usually not so 
clear-cut.

Example: In a previous section we looked at an Excel data set that shows 
various information about employees. Here is the spreadsheet data, but 
this time the salary is left as an actual number instead of a category.

   www.betterbusinessdecisions.org/data/employeenumeric.xls

Download this file into Excel and find out whether there is a linear rela-
tionship between the salary and the years of education of an employee.

Download the preceding spreadsheet and start Excel with that work-
sheet as input. Click on an empty cell in your spreadsheet and enter the 
formula:

=CORREL(B2:B475,C2:C475),

where the first input range B2:B475 corresponds to the salary, while 
the second range C2:C475 corresponds to “Years of Education.” Excel 
will compute the correlation coefficient, which turns out to be 0.66 (see 
Figure 8.2).
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Since the correlation coefficient is 0.66, it means that there is indeed 
some positive relation between years of schooling and salary earnings. 
But since the value is not that close to +1.0, the relationship is not super 
strong.

In the following sections we will introduce a more detailed analysis, 
which will allow us to not only determine the strength of a linear relation, 
but also to compute the exact equation of that relation, which we can in 
turn use to make predictions.

Scatter Plots

So far we have seen how to determine whether two variables are indepen-
dent (chi-square test for categorical variables) or linearly related (correla-
tion coefficient for numerical variables). In this section we will investigate 
the relationship, if any, graphically.

We have already defined dependent and independent variables but in 
our current context we say that if there is a relationship between two vari-
ables in such a way that knowledge of the first allows the computation or 
prediction of the second, then the first variable is called the independent 
variable—usually denoted by x—while the second is called the dependent 
variable—usually denoted by y. As before, the independent variable often 
refers to a time prior to that of the dependent variable.

Figure 8.2  Computing the correlation coefficient between salary and 
education

Example: A group of 10 students was selected at random and asked 
for their high school GPA and their freshmen GPA in college the sub-
sequent year. The results are shown in Table 8.4.
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Table 8.4  High school versus college GPA

Student High school GPA Freshmen GPA
1 2.0 1.6

2 2.2 2.0

3 2.6 1.8

4 2.7 2.8

5 2.8 2.1

6 3.1 2.0

7 2.9 2.6

8 3.2 2.2

9 3.3 2.6

10 3.6 3.0

Visualize this data to see a potential relation between the two variables.

Since students go to high school prior to going to college, the high 
school GPA refers to a time before that of the freshmen GPA. There-
fore the high school GPA is the independent variable, called x, while the 
freshmen GPA is the dependent variable y. That makes sense since it is 
conceivable that the high school GPA determines the freshmen GPA but 
not the other way round. With our choice of x and y, Table 8.4 translates 
into a series of (x, y) data points:

(2.0, 1.6), (2.2, 2.0), (2.6, 1.8), (2.8, 2.1), (3.1, 2.0), (2.9, 2.6), (3.2, 
2.2), (3.3, 2.6), (3.6, 3.0).

We can now plot these points in a standard Cartesian coordinate 
system. Of course, we will use Excel to generate that graph for us.

•	 Start as usual with Microsoft Excel, with an empty spreadsheet.
•	 Label the first two columns “High School GPA” and “College 

GPA,” respectively. Do not worry if you cannot see the first 
label in its entirety.

•	 Enter the data in columns, each high school GPA in the first 
column and the corresponding college GPA in the second.

•	 Use the mouse to mark all data, labels as well as numbers. 
Then click on the “Insert” ribbon and select “XY (Scatter)” 
as chart type. The resulting chart is shown in Figure 8.3.
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You can customize the chart to make it look more to your liking. In 
our case, for example, we can double-click on the “X” axis (horizontal 
axis) to change the scale so that the minimum value starts at 1.8. We can 
also click on the “Y” axis (vertical) to change its scale so that it also starts 
at 1.4. After all, there are no values less than 1, so why not start the axis at 
that number instead of at zero? Figure 8.4 shows a possible final version of 
the chart (where we have also changed the background color).

Figure 8.3  A scatter plot of high school GPA versus college GPA
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We plotted the data in a scatter plot in Figure 8.4 where we men-
tioned that the data seem to cluster around some imaginary diagonal line 
that, somehow, fits the data points in the “best possible” way. Figure 8.5 
shows three candidates for such a line.

In each case we have drawn a line that somehow passes through the 
data points. It seems clear that:

•	 No straight line can pass through all data points.
•	 Line 1 does not fit the data points very well because too many 

points are to the right, or below that line.

Now that we can see the data it seems that there is indeed some 
loose relationship between high school and college GPA. The dots are 
not randomly distributed, and they seem to follow some pattern: low 
high school GPAs result in low college GPAs; higher high school scores 
result in better college performance; all college grades are somewhat worse 
than high school grades; and the dots seem to cluster around an imagi-
nary diagonal line. If we computed the correlation coefficient it would 
come out to be 0.69665, confirming that there is some linear relationship 
between the variables but not a strong one.

In the next section we learn a precise way to determine the linear 
equation relating x and y and to use the projected relation to make 
predictions for values that are not part of the original data set.

Linear Regression

This time we again want to look at data from two variables that are possi-
bly related, but we want to determine the exact nature of this relationship, 
if any, and develop some formulas that will allow us to make predictions. 
Let us start with the same example we have used before.

Example: A group of 10 students was selected at random and asked 
for their high school GPA and their freshmen GPA in college the sub
sequent year. The results are shown in Table 8.4. Is there a linear relation-
ship between the high school GPA and the freshmen GPA? If so predict 
the freshmen GPA for a student with a high school GPA of, say, 3.4.
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•	 Line 2 does not fit the data points very well because too many 
points are above the line.

•	 Line 3 does not fit the data points perfectly, but seems to have 
the best fit of these three lines.

Mathematically speaking, the line that gives the “best fit” is that line 
where the sum of the squares of the differences to all data points has 
the smallest possible value (this can be proved in multivariate calculus). 
Therefore, the line that fits best in that sense is called least-squares regres-
sion line and the process of finding it is called least-squares linear regression.

Least-squares Regression Line “Manually”

Our goal is to determine the equation of the “least-squares regression” 
line. In other words, we want to find the equation of a line that happens 
to be called “least-squares regression line” and that fits the data best. We 
know from previous algebra classes that any line has the equation:

y = mx + b,

where m is the slope of the line and b is the interception of the line with 
the y-axis. We also recall from high school that lines that go up have a 
positive slope (as the lines 1, 2, and 3 in Figure 8.5), while lines with 
negative slopes go down.

Example: Suppose we have four equations of lines as follows:
(a) y = x − 1  (b) y = 2x − 1  (c) y = −x + 1  (d) y = −2x + 1.
Match these equations to the graphs shown in Figure 8.6.
According to the equations of the lines, we know:

•	 y = x − 1 is a line with slope 1 (going up) and y-intercept −1.
•	 y = 2x − 1 is a line with slope 2 (going up more) and 

y-intercept −1.
•	 y = −x + 1 is a line with slope −1 (going down) and 

y-intercept 1.
•	 y = −2x + 1 is a line with slope −2 (going down more) and 

y-intercept 1.
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Graphs A and D show lines going up, so both have positive slopes. 
Both also intersect the y-axis at −1, so both have y-intercept −1. But the 
line in graph D is steeper, so it has a bigger slope. Thus, Equation 1 
matches graph A while Equation 2 matches graph D.

Similarly, both graphs B and C have negative slopes and y-intercept 
+1, but line C goes down faster and thus has a more negative slope. There-
fore, Equation 3 matches graph B while Equation 4 matches graph C.

So to determine the least-squares regression line we must first and 
foremost find the equation of a line; this means we need to identify its 
slope m and y-intercept b. As it happens, the slope is related to the quan-
tities Sxx, Syy, and Sxy we computed in the“Linear Regression” section while 
the y-intercept is related to the averages (means) of x and y. The formulas 
are as follows:

•	 Slope	 m
S

S
xy

xx
=

•	 y-intercept	 b y x m= − ⋅

Figure 8.6  Graphs of four lines with different slopes and y-intercepts
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Just as we did for the correlation coefficient in the “Correlation 
Between Numerical Variables” section, we create the following table.

Student x y x2 y2 x·y
1 2.0 1.6 4.00 2.56 3.20

2 2.2 2.0 4.84 4.00 4.40

3 2.6 1.8 6.76 3.24 4.68

4 2.7 2.8 7.29 7.84 7.56

5 2.8 2.1 7.84 4.41 5.88

6 3.1 2.0 9.61 4.00 6.20

7 2.9 2.6 8.41 6.76 7.54

8 3.2 2.2 10.24 4.84 7.04

9 3.3 2.6 10.89 6.76 8.58

10 3.6 3.0 12.96 9.00 10.80

Totals 28.4 22.7 82.84 53.41 65.88

Thus, we can compute:

S x
x

nxx = −
( )

= − =∑ ∑2
2 2

282 84 28 4 10 2 184. . . ,

S y
y

nyy = −
( )

= − =∑ ∑2
2 2

253 41 22 7 10 1 881. . . ,

S xy
x y

nxy = −
( )( )

= − =∑ ∑ ∑
65 88 28 4 22 7 10 1 412. . * . . .

Here x
n

xi= ∑1
 is the mean of the x values and y

n
yi= ∑1

 is the 

mean of the y values.
In this text we will not try to determine how these formulas come 

about. That would be done in more advanced mathematical courses. We 
will be content using these equations, as in our next example.

Example: Consider the data in Table 8.4 of high school versus college 
GPA and compute the equation of the least-squares regression line. 
Also compute the correlation coefficient.
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First, note that x = 3.7 is not one of the original high school GPA 
scores. But we know the general relationship between x and y (the equa-
tion of the least-squares regression line) is:

y = 0.645 * x + 0.4382,
which we can use for our prediction: If x = 3.7 then y = 0.645 * 3.7 + 
0.4382 = 2.8247.

Thus, our prediction is that a high school GPA of 3.7 will result in 
a college GPA of 2.83, approximately. Moreover, because of our cor-
relation coefficient, we are somewhat confident that our prediction is 
accurate.

This was a lot of work but before we use Excel to simplify the compu-
tations, let us do one more example manually.

Since we already know the sums of x and of y, we can also quickly 
compute:

x- = 28.4/10 = 2.84 (mean of x),
y- = 22.7/10 = 2.27 (mean of y).
But now the difficult work is over and we can determine the slope and 

y-intercept, as well as the correlation coefficient:
Slope m = Sxy/Sxx = 1.412/2.184 = 0.645,

y-intercept b y m x= − ⋅ = − =2 27 2 84 0 645 0 4382. . * . . ,

Correlation coefficient r =
⋅

=1 412
2 184 1 881

0 6966
.

. .
. .

Thus, the equation of our least-squares regression line, relating 
high school GPA (x) and college GPA (y) is y = 0.645 * x + 0.4382, 
and the correlation coefficient of 0.6966 indicates that the relation 
is not very strong. We can now use our computed equation to make 
predictions.

Example: Using the data in Table 8.4 for high school and college 
GPAs, predict the college GPA for a student with a high school GPA 
of 3.7. Do you think your prediction is valid?
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Example: Suppose some (made-up) data for two variables x and y are 
as shown in the table. Use this data to predict the y value for x = 5 and 
state how confident you are in your prediction.

x 1 2 3

y 3 5 6

We create a table of x, y, x2, and so on values, draw a scatter plot, 
compute Sxx, Syy, and so forth, and finish up with the equation of the line. 
Figure 8.7 shows the results.

But now the difficult work is over and we can compute the slope and 
y-intercept, as well as the correlation coefficient, as follows:

Slope m = Sxy/Sxx = 3/2 = 1.5,
y-intercept b = (mean of y) − (mean of x) * m = 4.667 − 2 * 1.5 = 1.667,
Correlation coefficient r = 3/sqrt(2 * 4.667) = 0.982.
Thus, the equation of our least-squares regression line relating x and 

y is y = 1.5 x + 1.667.
Thus, if x = 5 we compute our prediction to be y = 1.5 * 5 + 1.667 

= 9.167 and since the correlation coefficient is 0.982, we know that the 
relation is very strong. Therefore, we are pretty sure about our prediction.

Note that we are basing our prediction or forecast on only three 
data points. Such a small sample is generally not adequate for good 
predictions.

Least-Squares Regression Line “Automatically”

After all this work it should be relaxing to focus on using Excel to deliver 
the least-squares regression line for us, which carries out all these calcula-
tions automatically.

Figure 8.7  Table of values, scatter plot, and related quantities

S
xx

= 14 - 62/3 = 2

S
yy
 = 70 - 142/3 = 4.667 

S
xy
 = 31 - 6*14/3 = 3 

mean of x = 6/3 = 2 

mean of y = 14/3 = 4.667

x y x2 y2 xy

1 3 1 9 3
2 5 4 25 10
3 6 9 36 18

Totals 6 14 14 70 31 0
0
2
4
6
8

2 4
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•	 Start Excel as usual and enter the data from the preceding 
GPA example.

•	 From the “Tools” menu, select the “Data Analysis …” menu 
item and choose “Regression.”

•	 In the “Regression” dialog window use the selector tools and 
select the X and Y range (be careful, the first range to choose 
is the Y range, i.e., the dependent variable, not X, i.e., the 
independent one). If you include labels in the X, Y ranges, 
make sure to check the “Labels” box (see Figure 8.8).

•	 To get a scatter plot including the least-squares regression 
line, make sure to check “Line Fit Plots” in the “Residuals” 
category (see Figure 8.8).

Click OK—you should see a lot of output, much of it mysterious, 
grouped into regions.

The Chart: This consists of a scatter plot in the X,Y coordinate system. 
Of course you can change the way the chart looks. At the very least you 
want to connect the computed points with the least-squares regression 

Figure 8.8  Parameters for the linear regression tool
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line: double-click on the chart; then click on the data points and select 
“Solid line” from the options on the right. Figure 8.9 shows the result.

The Regression Statistics: This group is shown in Figure 8.10. The most 
important number here is “Multiple R,” which has the value of 0.6966 
in this case. In fact, this number is the absolute value of our previous 
correlation coefficient. If we square it, the result, called “R Square,” tells 
us how much percentage of the variation of the dependent variable (y) is 
explained by the independent variable (x). In our case, 48 percent of the 
variation in college GPA can be explained by the high school GPA.

Note that “multiple R” is always between 0 and 1, and closer to 1 
indicates a stronger relation. In our example the multiple R is reasonably 
close to 1, which implies that the two variables are indeed somewhat 
linearly (positive or negative) related (and the least-squares regression line 
indeed fits the data points relatively well).

Figure 8.9  Scatter plot of high school versus college scores, including 
least-squares regression line
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Figure 8.10  Multiple R, the absolute value of the correlation 
coefficient
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The Analysis of Variance (“ANOVA”) Section: The next section produced 
by our regression analysis is the ANOVA section shown in Figure 8.11.

The two most important numbers in this section are the “Coefficients” 
for the “Intercept” and the “High School GPA.” In this case “Intercept” is 
0.4339 and “High School GPA” is 0.6465 (rounded). These two numbers 
are the slope and intercept of the least-squares regression line. In other 
words, the actual equation of the least-squares regression line is:

y = 0.6465 · x + 0.4339.

That equation of the line can be used for predictions. For example, 
if we want to know the college GPA (y) for a student with a high school 
GPA (x) of 3.4 we substitute x = 3.4 in the preceding equation and we 
find the corresponding y value to be y = 0.6465 * 3.4 + 0.4339 = 2.632.

Note that from this section we see that the slope is positive, which 
means that the correlation coefficient is also positive.

The “Significance F” tells us whether the results are statistically signifi-
cant; it should be small (less than 0.05). It gives the p-value for the testing 
the null hypothesis H0: slope = 0 (i.e., the true regression line is really a flat 
line) against the alternative H0: slope ≠ 0. If that p-value is small enough, 
we get to reject H0 and accept the alternative (i.e., the regression equation 
does a better job of predicting the dependent variable rather than using a 
line with slope 0).

The “Residual Output” Section: This is not important for us in this 
context, so we ignore it.

Now we can also answer the original question: Based on our data 
and a least-squares regression analysis of that data, we can predict that a 

Figure 8.11  The ANOVA group of our regression output
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Of course we will use Excel’s “regression” tool we just discussed, using 
the literacy rate as the independent variable (x) and life expectancy as the 
dependent one (y). The details should be clear, so we will simply state and 
interpret the results: The least-squares regression line fits the data quite 
well as you can see from the scatter plot in Figure 8.12 as well as from the 
correlation coefficient of 0.67.

The coefficients of the least-squares regression line are 41.17541984 
(intercept) and 0.349593582 (slope) so that the regression line has the 

student with a high school GPA of 3.4 will have a college GPA of approx-
imately 2.632. Since the correlation coefficient is 0.69, we are somewhat 
confident that our prediction is accurate.

Here is one more example, this time with real—and interesting—data.

Figure 8.12  Plot of least-squares regression line
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Example: In the attached Excel spreadsheet you will find data about 
the literacy rate (percentage of people who can read) and average life 
expectancy of over 200 countries in the world, based on 2014 data. 
Load that data into Excel and perform a least-squares regression anal-
ysis to see if there is a linear relationship between literacy rate and 
average life expectancy. If you find that there is a relation, determine 
what would happen to the life expectancy of people in Afghanistan 
if its literacy rate could be raised to, say, 60 percent (from its current 
value of 29 percent).

 www.betterbusinessdecisions.org/data/life_literate.xls
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equation y = 0.3496 · x + 41.1754. This means that if a country such as 
Afghanistan had a literacy rate of y = 60 percent, we would predict an 
average life expectancy of approximately y = 0.3496 · 60 + 41.1754 = 
62.1514 or approximately 62 years (as opposed to its current life expec-
tancy of 50.5 years with a literacy rate of 28.1 percent).

Note: This does not mean that reading books causes people to live 
longer. After all, at the beginning of Chapter 7 we mentioned that 
correlation does not necessarily imply causation. But what it does mean is 
that if a country can raise its literacy rate, probably through a wide variety 
of programs and policy decisions, then a beneficial side effect seems to 
be that the average life expectancy goes up proportionally as well. It also 
means that if a country—perhaps for political reasons—does not make 
its life expectancy rate public, but its literacy rate is known, we can obtain 
a pretty good estimate of that life expectancy based exclusively on the 
literacy rate of the country.

Excel Demonstration

Company P, the large manufacturer of paper products, was asked by one of 
its retail clients to provide an analysis on the role that shelf space has on the 
sales of a product. The marketing manager of a large retail chain that pur-
chases paper products from Company P has the business objective of using 
shelf space most efficiently. Toward that goal, she would like to use shelf 
space to predict the sales of a specialty paper plate product. Data collected 
from a random sample of 12 equal-sized stores are presented in Table 8.5.

You have been asked to answer the following questions.

1.	Produce a line fit plot to demonstrate the trend in shelf space and 
sales along with the predicted path.

2.	Is there a strong relationship between shelf space and sales?
3.	Can you tell us how much shelf space accounts for the variation of 

sales?
4.	Is there is a significant relationship between shelf space and sales?
5.	Develop a linear equation for predicting sales, given shelf space.
6.	Predict the weekly sales of the specialty paper product for stores with 

7 ft. of shelf space for the paper product.



	 Linear Regression	 241

Step 1: Enter the data into a new Excel worksheet in two columns, 
including column titles.

Step 2: Click on Data, then DATA Analysis, and choose Regression.
Step 3: Fill in the Regression dialog box shown in Figure 8.13 and then 

click OK.

Table 8.5  Data on shelf space use

Shelf space (in ft.) Sales (in thousands)
5 161

6 225

5 138

10 192

10 245

10 263

15 234

15 275

15 279

20 264

20 296

20 317

Figure 8.13  Regression dialog
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•	 For the Y range, include the data in the Sales category 
(include the label).

•	 For the X range, include the data in the Shelf Space category 
(include the label).

•	 Check the Labels box since we have to include the label.
•	 Check the Confidence Level box and leave it as the default 

95 percent.
•	 Check the Line Fit Plot box to display the least-squares regres-

sion line.

Step 4: Interpret the results shown in Figure 8.14.

Now we can answer the aforementioned questions.

1.	Produce a line fit plot to demonstrate the trend in shelf space and sales 
along with the predicted path. Figure 8.15 shows the scatter plot with 
the least-squares regression line.

Figure 8.15  Scatter plot with regression line
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Figure 8.14  Results of the regression analysis
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2.	Is there a strong relationship between shelf space and sales? We see from 
Figure 8.14 that “Multiple R” is 0.837252268. This is close to 1 so 
that there is a fairly strong correlation between shelf space and sales. 
From the plot in Figure 8.15 we see that the regression line has a 
positive slope, so that the correlation is fairly strong and positive.

3.	Is there a significant relationship between shelf space and sales? From 
Figure 8.14 we see that the “Significance F” value is 0.000679576, 
which is less than our requested alpha level of 0.05, indicating that 
there is a significant relationship between shelf space and sales.

4.	Develop a linear equation for predicting sales, given shelf space. We see 
from Figure 8.14 that the intercept coefficient is 141.3239437 and 
the shelf space coefficient, or slope, is 7.901408451. Thus, our least-
squares regression line is y = 141.324 + 7.901 x.

5.	Predict the weekly sales of the specialty paper product for stores with 7 ft. 
of shelf space for the paper product. We just found the equation of our 
least-squares regression line to be y = 141.324 + 7.901 x. Thus, we 
substitute 7 for x in the equation to get: y = 141.324 + 7.901 · 7 = 
196.634. Thus, if we gave the product 7 ft. of shelf space we can 
expect sales to be around $196,000.

This helps a business person to optimize the use of shelf space so that 
products that will result in the highest sales are given the most space on 
shelves.





CHAPTER 9

Analysis of Variance

Preview: Testing for the differences between two means is a relatively straight-
forward exercise, but what happens when there are three or more groups? These 
multiple groups may have means that differ significantly from one another, 
which makes the comparison process much more complicated. Fortunately, 
there is a way to test the means no matter how many groups are involved. For 
example, if a researcher wanted to study the impact of listening to music on 
student test scores, she could randomly divide the class into three groups of stu-
dents. One group would listen to popular music while they study or do home-
work. The second group would listen to classical music while studying and the 
third group would study in silence. At the conclusion of the study period, the 
performance of students in each group is evaluated. The analysis of variance 
(ANOVA) procedure is then used to determine whether there is a significant 
difference among a group of means, and Excel will do all calculations for you 
automatically.

Learning Objectives: At the conclusion of this chapter, you should 
be able to:

1.	Use a factor to partition an experiment into multiple groups
2.	Understand the assumptions to check before using a one-way 

ANOVA
3.	Use the one-way ANOVA to test for differences among the means 

of several groups
4.	Understand how to obtain information about two-factor ANOVA

Introduction

We have already introduced a test for the difference of (two) means. But 
in many cases there are three or more groups whose means may or may 
not differ significantly.
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There are two types of variables in this example: the performance of 
students on a test and the type of music students listen to. The first vari-
able (quiz_score) is numerical, while the second (music_type) is categor-
ical and is used to partition the first variable into three groups. This, as it 
turns out, is typical for an ANOVA test to compare multiple means. Note 
that to decide whether multiple means of various groups are different 
from each other, we could use multiple difference of means tests between 
pairs of means, but that would quickly escalate.

•	 For three groups we would need three comparisons: m1 ≠ m2, 
m1 ≠ m3, and m2 ≠ m3.

•	 For four groups we would need six comparisons:  
m1 ≠ m2, m1 ≠ m3, m1 ≠ m4, m2 ≠ m3, m2 ≠ m4, and m3 ≠ m4.

•	 For five groups we would need 10 comparisons, and so on.

This quickly becomes a lot of work. In addition—and perhaps more 
important—each time we conduct a difference of means test we accept 
an error, typically 5 percent. These errors add up, approximately, so that 
checking three group means would add up to an error of 15 percent. 
Thus, we need a new procedure that keeps the error at a constant level 
even if we are comparing quite a number of means.

Note that in case the ANOVA procedure is used for only two means 
it should reduce to a difference of means test. It might sound strange 
for a procedure that claims to test for differences of means to be called 

Example: Many parents complain that students listen to pop music 
while they study. To test the impact of music on students’ concentra-
tion levels, we divide 40 students randomly into three groups: Group 
A does not listen to any music, group B listens to pop music, and 
group C listens to classical music. All students study a text for 30 min 
and then they take a test about their understanding of the text.

Definition: The ANOVA procedure is used to test for a significant 
difference among a group of means. The null hypothesis is: H0: m1 = m2 
= … = mk and the alternative is that at least two means differ signifi-
cantly: Ha: mj ≠ mi.
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ANOVA. However, it turns out that we can analyze the variances yet draw 
conclusions about any difference of means.

The procedure works by comparing the variance SSB between group 
means against the variance SSW within groups to determine whether the 
groups are all part of one larger population (no difference between means) 
or separate populations with different characteristics (at least two means 
differ significantly).

One-Factor ANOVA

Suppose we have quiz scores of students in a statistics course as follows:

2 (male), 5 (female), 1 (male), 3 (male), 6 (female), 7 (female).

We want to know if there is a difference in mean scores between males 
and females. Since these represent two samples only, we could use our 
familiar difference of means test (which incidentally results in a t-value of 
t = −4.0 and a p-value of p = 0.016) but we want to use a different method 
that will readily extend to more than two groups and their means. First, 
we use sex to divide the scores into two groups, as follows.

Male Female

2 6

1 5

3 7

For a single-factor ANOVA we will assume that all groups are 
approximately normal with roughly the same standard deviations. In the 
preceding example we are using one factor (sex) to define the groups; 
consequently we will perform a single-factor ANOVA. Both groups 
have sample variances of 1, as you can readily compute. The samples are 

Definition: The variable we are interested in analyzing is called the 
dependent variable, while the variable we use to divide the dependent 
variable into groups is called the independent variable or factor. For 
ANOVA, the dependent variable should be numerical while the factor 
should be categorical. A single-factor ANOVA uses one factor to divide 
the dependent variable into groups.
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really too small to check for normality but for this example we will sim-
ply assume everything is normal. If the variable used as factor had more 
values (categories), it would result in that many groups; still it would be 
a single-factor ANOVA.

We now compare the variance of our overall data with the variances of 
each group. In fact, since the variance is a function of the square difference 
of each point to the respective mean, we compute only the sum of the 
square differences to the mean instead of the full variance (see Table 9.1).

As you can see, the means for the two groups are quite different. 
The sums of square differences within each group are 2. Adding them 
together, we get SSW = 4. If we ignore group membership and compute 
the total sum of square differences SST based on the overall mean 4, we get 
SST = 28. In other words, the variance (aka sums of squares) SSW within 
the groups is much smaller than the total variability SST, which indicates 
that the means are indeed different.

More precisely, under the null hypothesis that there are no mean dif-
ferences between groups in the population, we would expect only minor 
random fluctuation in the means of the two groups. Therefore, under the 
null hypothesis, it turns out that the variance SSW within groups divided 
by the degree s of freedom within groups should be about the same as the 
variance SSB between groups divided by the degrees of freedom between 
groups. We can compare those expressions via the F distribution and 
test whether their ratio is significantly greater than 1. Here is the formal 
definition of a single-factor ANOVA.

Table 9.1  Group and total variances or sum of square (SS) differences 
to the mean

Male Female
Data 2 6

1 5

3 7

Mean 2 6

Group SS (2 − 2)2 + (1 − 2)2 + (3 − 1)2 = 2 (6 − 6)2 + (5 − 6)2 + (7 − 6)2 = 2

Total mean 4

Total SS (2 − 4)2 + (1 − 4)2 + (3 − 4)2 + (6 − 4)2 + (5 − 4)2 + (7 − 4)2 = 28
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Now we can finish the preceding example: dfB = 2 − 1 = 1, dfW = 
(3 − 1) + (3 − 1) = 4, SST = 28, SSW = 2 + 2 = 4, SSB = SST − SSW = 28 
− 4 = 24. At this point we know the variance within groups SSW as well 

as the variance between groups SSB so that f0
24
1

4
4

24= 









 =  and  

p = P( f > f0) = FDIST(24,1,4) = 0.008.
Hence, assuming as usual that a = 0.05, we reject the null hypothesis 

and conclude that there is a difference between the means. Incidentally, 
this would have been our conclusion had we used the difference of means 
procedure. Now we are ready for a true ANOVA, that is, for an example 
with more than two groups.

Definition: Suppose we have k groups and each group contains nj 
measurements, 1 ≤ j ≤ k. Assume that all groups are approximately 
normal and that their standard deviations are approximately the same. 
The four components of a single-factor ANOVA are:

H0: m1 = m1 = … = mk,

Ha: mi ≠ mj for some i, j.

Test statistics: f
SS
df

SS
df

B

B

W

W
0 =













, where dfB = k − 1, dfW = 

(n1 − 1) + (n2 − 1) + … + (nk − 1), sum of squares within groups  
SSW = SS1 + SS2 + … + SSk, the total sum of squares SST , and the sum 
of squares between groups SSB = SST − SSW .

Rejection region: Reject H0 if p = P( f  > f0) < a, where P( f  > f0) = 
FDIST( f0,dfB,dfW ) using the F distribution.

Example: We want to determine if a new drug is effective in lowering 
blood pressure, and what dosage might work best. So we give three 
different levels of the drug (zero drugs, low amount, high amount) to 
20 patients and measure the difference in blood pressure before and 
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30 min after administering the drug. The 20 people were randomly 
assigned to receive one of the three dosages. The results are:

Zero dosage: 4, 1, 7, 8, 2, 10
Low dosage: 11, 15, 12, 13, 18, 16, 14
High dosage: 15, 17, 12, 13, 10, 11, 10.

Is there a significant difference between the three averages? Test at the 
a = 0.05 level.

The computations for our ANOVA test are as follows:

x x x xtotal1 2 35 333 14 14 12 57 10 95= = = =. , . , . , .

SS1
2 2 24 5 333 1 5 333 10 5 333 63 33= − + − + + − =( . ) ( . ) ( . ) .�

SS2
2 2 211 14 14 15 14 14 14 14 14 34 85= − + − + + − =( . ) ( . ) ( . ) .�

SS3
2 2 215 12 57 17 12 57 10 12 57 41 71= − + − + + − =( . ) ( . ) ( . ) .�

so that SS SS SS SSW = + + =1 2 3 139 90.

SST = − + − + + − + − =( . ) ( . ) ( . ) ( . ) .4 10 95 1 10 95 11 10 95 10 10 95 418 952 2 2 2�

so that SS SS SSB T W= − = − =418 95 139 9 279 065. . .

df dfB W= =2 17,  so that, finally:

f
SS
df

SS
df

B W
0

1 2
139 52 8 229 16 95=













= =. / . .  and therefore

p FDIST= =( . , , ) .16 95 2 17 0 0000085  and p a< = 0 05. .
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Thus, we reject the null hypothesis and accept the alternative, that is, 
there is a significant difference between (at least two of ) the means.

This is a lot of work and it is very easy to make mistakes. Fortunately, 
Excel has a procedure to perform these calculations automatically.

First, we enter the data into Excel in three columns, one column per 
group (see Figure 9.1).

Next, click on the “Data Analysis” on the Data ribbon, select 
“ANOVA: Single factor,” and define as input range the data you entered, 
including the data labels in the first row. Make sure that “Labels in First 
Row” is checked and hit OK. The output of the ANOVA procedure is 
shown in Figure 9.2.

Exercise: Given the data from the previous example, use Excel to 
perform an ANOVA to decide whether the means differ significantly.

Figure 9.1  Data entered in columns for each group

Figure 9.2  Output of single-factor ANOVA routine
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The SUMMARY block in Figure 9.2 shows the means and variances 
of the three groups. In the more interesting ANOVA section we can see 
that SSB = 279.04 and SSW = 139.90. It lists the degrees of freedom next 
and finally shows the f0 value of 16.95 together with the associated prob-
ability p = 0.000089, computed using the F distribution. Our conclusion 
is, just as before, to reject the null hypothesis and accept that some means 
differ significantly from each other.

We will show another, carefully worked out problem in the last sec-
tion of this chapter; you can check that if you have any questions. You 
might want to work out that example manually, as we did earlier, and 
compare your answers.

But the idea of the ANOVA is even more powerful and applies to 
more complex experiments.

Two-Way ANOVA

As we mentioned, a one-factor ANOVA uses one categorical variable 
called factor to divide the dependent variable into groups. But complex 
situations often depend on more factors, which will result in two-way 
ANOVA or higher. As it turns out, the ANOVA procedure cannot only 
decide on whether means are different but detect interaction effects between 
variables, and therefore can be used to test more complex hypotheses 
about reality. As it turns out, in many areas of research five-way or higher 
interactions are not that uncommon.

However, this discussion is difficult and, while most certainly useful, 
is beyond the scope of this text. Thus, we will refer the reader to more 
advanced statistical textbooks, or better yet, appropriate online resources 
and we will not discuss two-way (or higher) ANOVA here. For more 
information, the reader can check:

•	 Introduction to Probability and Statistics by Mendenhall, 
Beaver, and Beaver

•	 Introduction to ANOVA/MANOVA at www.statsoft.com/ 
Textbook/ANOVA-MANOVA

•	 Analysis of variance at http://en.wikipedia.org/wiki/Analysis 
_of_variance
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Excel Demonstration

Company S, the accounting firm, has an HR department that has 
suggested managers learn different leadership styles to help decrease 
employee stress levels. An experiment was conducted to determine if lead-
ership styles (transformational and transactional) in management signifi-
cantly impacted employee stress levels compared to no intervention. An 
employee survey was given to three groups: one group under a manager 
who started using a transformational motivation technique, one group 
under a manager who began using a transactional motivation technique, 
and then a control group with no new technique used. Stress levels were 
self-reported by the employees as shown in Table 9.2. Use alpha = 0.05.

Step 1: Start a new Excel worksheet and enter the preceding data (see 
Figure 9.3).

Step 2: Click on DATA, then Data Analysis, and then ANOVA: Single 
Factor. We are choosing Single Factor because we have only one 
dependent variable (stress level) that defines three categories of inde-
pendent variables (transformational, transactional, control).

Step 3: In the dialog that comes up, select all of the data including the 
labels at once as shown in Figure 9.3. Check the box called “Labels 
in First Row.” Notice that Alpha is automatically set to 0.05. Click 
OK. The output of this procedure is shown in Figure 9.4.

In a review of the p-value in the between groups row, we see a p = 0.02 
that is less than our alpha level of 0.05, so we know there is a significant 
difference in stress levels between the groups.

Table 9.2  Data for stress levels

Transformational Transactional Control
0 2 6

7 5 5

3 3 8

5 0 9

2 1 5
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Now that we know there is a general difference between all the groups, 
we would like to run a post hoc test to determine if there is a significant 
difference between certain groups, like between transformational and 
control; or between control and transactional; and so on. In Excel, it is 
difficult to do this. However, a quick and easy way is to run a two-sample 
t-test between the two groups that you wish to check (only do this if you 
have determined that there is a significant difference between all groups).

Figure 9.3  Data for stress levels of employees together with 
ANOVA dialog

Figure 9.4  Output of the single-factor ANOVA procedure
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More and more organizations around the globe are expecting 

that professionals will make data-driven decisions. Employees, 

team leaders, managers, and executives that can think 

quantitatively should be in high demand. The goal of this 

book is to increase ability to identify a problem, collect data, 

organize, and analyze data that will help aid in making more 

effective decisions. 

This book will provide you with a solid foundation for 

thinking quantitatively within your company. To help facilitate 

this objective, this book follows two fictitious companies that 

encounter a series of business problems, while demonstrating 

how managers would use the concepts in the book to solve these 

problems and determine the next course of action. This book 

is for beginners and does not require prior statistical training.  

All computations will be completed using Microsoft Excel.

Dr. Justin Bateh is a professor in the School of Business and 

Professional Studies at Florida State College at Jacksonville, 

where he teaches management, operations, and statistics 

courses. He received a doctorate in business administration 

from Walden University. Following his doctoral studies, 

he pursued post-graduate specializations from Penn State 

University in applied statistics and from the University of 

Arkansas in operations management. His research interests 

are focused on the appropriate use of statistical methods 

and quantitative approaches to problems in organizational 

management and leadership.

Dr. Bert G. Wachsmuth, associate professor of mathematics 

and computer science at Seton Hall University, received his 

PhD from Indiana University, where he worked on problems 

related to the Monge Ampère Equation in Several Complex 

Variables. In addition to pursuing a rigorous research program, 

Dr. Wachsmuth is an avid programmer and he is currently 

interested—aside from mathematics—in robotics, small 

device programming, and technology applications in teaching 

and learning. He has also developed an open-source online 

survey system and evaluation tool that is widely used to help 

institutions and organizations manage and deliver surveys 

and analyze their results.
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